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Abstract (en)
In the field of instrumental learning, mammals are able to implement two different

behavioral strategies to interact with the environment: goal directed behavior

(GDB), computationally flexible but slow, suitable to learn new tasks and adapt to

changing environments; and habitual behavior, hard-coded, but suitable for faster

motor responses and facing recurrent tasks. The advantage of GDB resides in the use

of an inner representation of the environment, a ‘model of the world’, to encode

stimuli-actions-outcomes associations, and its exploitation to choose future

actions, in a process called planning. GDB is supported by large-scale networks

involving both cortical and subcortical regions. Nevertheless, several open questions

still remain. The aim of this thesis is to contribute to the understanding of three

open questions (declined in three studies) that pertain to the neural and

computational mechanisms of GDB.

In the first study, we investigated how complex computations, such as learning the

model of the world and planning, can emerge from simple neural activity. To achieve

that, we built a spiking neural network, able to encode stimulus-actions-outcomes

associations as a hidden Markov model (HMM), using biologically inspired

mechanisms such as spike-timing dependent plasticity (STDP), and to test this

model to correctly plan actions in order to solve a visuomotor goal directed task. The

performance of the model was validated on behavioral data from human participants

that performed the same task.

In the second study, we assessed the importance of striatum in encoding the reward

prediction error (RPE) signals, a relevant update signal in most instrumental

learning models. To do so, we analysed local field potentials (LFPs) recorded in

rhesus macaque striatum while performing a probabilistic goal-directed learning

task. Then, we computed the trial-by-trial RPE using a Q-learning model fitted on

monkeys’ behavior. Our results showed a significant increase of mutual information
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(MI) between the beta-band (15-30Hz) oscillatory activity and the RPE after the

outcome presentation. Moreover, such correlates of RPE signals form an

anatomo-functional gradient in the striatum, showing stronger effects toward the

rostro-ventral part and vanishing toward the caudo-dorsal part.

In the third study, we investigated the neural correlates of GDB at the whole-brain

cortical level in humans. To do so, we recorded the brain activity of human

participants using magnetoencephalography (MEG) while they were performing a

goal-directed causal learning task. We exploited cortical high-gamma activity

(HGA, 60-120Hz) to map the spatio-temporal dynamics during learning. In

particular, we used an ideal observer Bayesian model to estimate the trial-by-trial

evolution of relevant behavioral variables, such as action-outcome probabilities and

contingency values. We used MI and group-level cluster-based statics between HGA

and those variables to obtain a whole brain profile of behavioral-dependent regions

of interests’ activity, confirming some results from the literature.
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Abstract (fr)
Dans le domaine de l'apprentissage instrumental, les mammifères sont capables de

mettre en œuvre deux stratégies comportementales différentes pour interagir avec

l'environnement: le comportement dirigé vers un but (“goal-directed behavior”,

GDB), flexible sur le plan computationnel mais lent, adapté à l'apprentissage de

nouvelles tâches et à l'adaptation à des environnements changeants; et le

comportement habituel, encodé de façon rigide, mais adapté à des réponses

motrices plus rapide, adapté aux tâches récurrentes. L'avantage du GDB réside dans

l'utilisation d'une représentation interne de l'environnement, un ‘modèle du monde’,

pour encoder les associations stimuli-actions-conséquences, et dans l'utilisation de

ce modèle pour choisir les actions futures au cours du processus de planification. Le

GDB est soutenu par des réseaux cérébraux à grande échelle impliquant des régions

corticales et sous-corticales. Néanmoins, plusieurs questions ouvertes demeurent.

L'objectif de cette thèse est de contribuer à la compréhension de trois questions

ouvertes (déclinées en trois études) qui concernent les mécanismes neuronaux et

computationnels du GDB.

Dans une première étude, nous avons cherché à savoir comment des calculs

complexes, tels que l'apprentissage du modèle du monde et la planification, peuvent

émerger de l’activité neuronale. Pour ce faire, nous avons construit un réseau de

neurones actifs, capable d'encoder des associations stimulus-actions-conséquences

sous la forme d'un modèle de Markov caché (Hidden Markov Model, HMM), en

utilisant des mécanismes d'inspiration biologique tels que la ‘spike-timing

dependent plasticity’ (STDP), et d'utiliser ce modèle pour planifier correctement des

actions afin de résoudre une tâche visuomotrice. Les performances du modèle ont

été validées sur des données comportementales de participants humains ayant

effectué la même tâche.
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Dans une deuxième étude, nous avons évalué l'importance du striatum dans

l'encodage de l'erreur de prédiction de la récompense (Reward Prediction Error,

RPE), un signal de mise à jour pertinent dans la plupart des modèles d'apprentissage

instrumental. Pour ce faire, nous avons analysé les potentiels de champ locaux

(Local Field Potentials, LFP) enregistrés dans le striatum de macaques rhésus

pendant l'exécution d'une tâche d'apprentissage probabiliste dirigée vers un but.

Ensuite, nous avons calculé la RPE essai par essai en utilisant un modèle de

‘Q-learning’ adapté au comportement des singes. Nos résultats ont montré une

augmentation significative de l'information mutuelle (Mutual Information, MI)

entre l'activité oscillatoire dans la bande bêta (15-30 Hz) et la RPE après le résultat

de l’action. De plus l'information sur la RPE forme un gradient impliquant

l'ensemble du striatum, plus intense dans la partie rostro-ventrale que dans la

partie caudo-dorsale.

Dans la troisième étude, nous avons étudié les corrélats neuronaux du GDB au

niveau cortical du cerveau entier chez l'homme. Pour ce faire, nous avons enregistré

l'activité corticale de participants humains à l'aide de la magnétoencéphalographie

(MEG) pendant qu'ils effectuaient une tâche d'apprentissage causal dirigée vers un

but. Nous nous sommes concentrés sur l'extraction et l'analyse de l'activité

oscillatoire dans la bande gamma haute (High-Gamma Activity, HGA 60-120 Hz)

pour mapper la dynamique spatio-temporelle pendant l'apprentissage. Ensuite,

nous avons utilisé un modèle Bayésien d'observateur idéal pour estimer l'évolution

essai par essai des variables comportementales pertinentes, telles que les

probabilités de résultats d'action et les valeurs de contingence. Nous avons utilisé la

MI et des statiques au niveau du groupe basées sur le cluster entre le HGA et ces

variables pour obtenir un profil du cerveau entier de l'activité des régions d'intérêt

dépendant du comportement, confirmant certains résultats de la littérature.
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Section 1. Introduction

1.1 Behavioral principles of instrumental learning

In order to cope with a constantly changing environment, animals are faced with the

complex task of rapidly adapting to a huge variety of incoming stimuli, perceived

through different sensory channels, and to select the most appropriate behaviors.

One of the most basic forms of motor response are reflexes. Reflex actions are

automatic, involuntary and fast; they are triggered by a sensory stimulus and

supported by the so-called reflex arcs, the neural pathways controlling a reflex. For

example, if we touch a hot surface, the withdrawal reflex allows us to retract our

hand before we can have serious injuries (Hultborn, 2006). Interestingly, although

reflexes do not involve directly the central nervous system, they can be modulated

by descending signals from the brain. For example, during prepulse inhibition (PPI)

experimental paradigm, a stimulus (a pre-pulse) inhibits a startle response

consequent to an aversive acoustic or tactile stimulus (Li et al., 2009). On the other

hand, in order to perform more complex behavioural responses and plan multiple

actions, an agent should be able to combine information about external and internal

stimuli, as well as past experiences and predictions about future outcomes. A

cognitive function that supports the ability to acquire and integrate knowledge

about the relations among stimuli, actions and outcomes is associative learning

(Shanks, 1995; Wasserman and Miller, 1997; Mitchell et al., 2009; Dickinson, 2012).

Associative learning is the ability to learn contingency relations between events in

their environment (De Houwer, 2009) and it reflects a fundamental component of

adaptive behavior. Two large categories of associative learning are classically

defined: classical conditioning, describing stimulus-stimulus associations learning;

and instrumental learning, describing stimulus-action and action-outcome
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associations learning. I will now briefly outline the basic principles of classical

conditioning, and then focus on instrumental learning, which is the main topic of

my PhD. project.

1.1.1 Classical or Pavlovian learning

In behavioural psychology, two distinct classes of learning are acknowledged:

classical learning and instrumental learning. Classical or Pavlovian conditioning,

formulated by Ivan Petrovic Pavlov in 1927 (Pavlov and Anrep, 1927), is defined as

the ability to learn stimuli-stimuli associations. According to this paradigm, if the

experimenter presents a salient stimulus, as for example some food, to a dog, he will

show a salivary response anticipating the consummatory act (if the dog has previous

knowledge about the smell and the appearance of that food, and if he already

consumed it before). Thus, food is defined as the unconditioned stimulus (US), while

the subsequent salivation takes the name of unconditioned response (UR). The

pairing of a second non-salient stimulus, as for example the ring of a bell, together

with the US for a sufficient number of times, will lead to the creation of an

“association”, which will suffice to trigger the salivary response, even in the absence

of the food. In this case, the ring of the bell takes the name of conditioned stimulus

(CS), because it is associated with the US, while the salivary response takes the name

of conditioned response (CR). Importantly, one of the first observations made on

this paradigm was that a prominent factor for the conditioning to happen, is the

timing of the occurrence of the non-salient stimulus during learning, called

contiguity. Indeed, the conditioning will be effective only if the CS and the US are

contiguous in time and space, meaning that the CS should be presented before,

during, or shortly after the presentation of the US, but at the same time it should

not occur too early or too late. Thus, we can define a precise effective temporal

window for learning to occur.
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Figure 1. The Pavlovian paradigm for classical learning. Image taken on Google.

The paradigm of classical conditioning can be generalised to aversive stimuli (i.e.,

negative reinforcers), that is all the stimuli that normally induce an aversive UR, and

that are thus associated with a negative value; they are stimuli that an agent would

try to avoid. Another form of classical learning is multiple-order conditioning

(Rizley and Rescorla, 1972), which is defined as the ability to associate a second

non-salient stimulus, such as the lighting-up of a light bulb, to the previously

associated CS (ringing bell). Such pairing will trigger salivation as a second-order

CR. Finally, a last aspect of classical conditioning extensively studied in associative

learning is extinction (Skinner, 1938). Extinction refers to the gradual decrease in

response to a conditioned stimulus that occurs when the stimulus is presented

without reinforcement. For example, once the experimenter creates one or

multiple-order CS, if they’re presented repeatedly without giving the opportunity to

then carry out the consummatory behavior, the association between CS and CR will

slowly vanish. Interestingly, if after extinction the experimenter wants the CS to

take back its salience, the dog will need less training time to restore the association

between CS and CR. It is worth noting that classical conditioning does not rely on
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the motivational state, indeed it is possible to use the same paradigm with an

aversive stimulus, that will be followed by an aversive response.

1.1.2 Instrumental learning

Classical conditioning does not depend on the actions performed by the agent. On

the other hand, in instrumental or operant conditioning, the US depends on

instrumental behavior. In other words, the agent is asked to respond with a

voluntary behaviour that can be triggered or inhibited by a reinforcement (reward or

punishment). In this framework, a stimulus can be used to signal the subject about

the possibility to perform the motor response in order to achieve the desired result;

but an explicit stimulus (e.g., a light or a tone) is not always needed, indeed it can be

represented by the current ensemble of environmental stimuli, also called context.

Thus, instrumental learning is a type of associative learning process through which

the strength of a behavior is modified by reinforcement or punishment.

Experimental paradigms for instrumental learning

Edward Lee Thorndike was one of the first scientists to describe instrumental

behavior with a simple experimental paradigm leading to the development of

operant conditioning within Behaviorism. His major contribution to the field

consisted in a novel approach to quantify the behavioral changes occuring during

instrumental learning. He used a cage with an opening mechanism that could be

activated through pulling a rope, and he placed a cat inside of it and a visible reward

outside of it. The cat learned by trial-and-error to pull the rope, in order to open the

cage and earn the reward, and showed with training a reduction of the time required

to perform the task (Thorndike, 1898). The decrease in reaction times was

considered as an index for learning. Thanks to this paradigm, Thorndike formulated

the ‘law of effect’, stating that motor responses that produce a pleasing effect in a

particular context become more likely to occur again in that context, while motor
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responses that produce an unpleasant effect become less likely to occur again in that

context.

Another classical experimental setup to study instrumental learning, invented by

Burrhus Frederic Skinner in 1938 (Skinner, 1938), is the so-called Skinner box

(Figure 2). It is composed of different signaling devices, such as a speaker and some

lights, some input response devices such as levers, and a reward/punishment

delivery device such as a pellet dispenser or an electrified grid. The Skinner box

allowed for the first time the training of animals with as little as possible

intervention and the development of quantifiable training protocols, the so-called

reinforcement schedules, that manipulate learning by means of varying ratios (VR)

or rewards or variable intervals (VI) of time between rewards. With this set-up, it is

possible, for example, to teach an agent to press a lever in response to a visual

stimulus in order to receive a pellet unit or to avoid an electric shock. Different

variations of this simple example allow to dissociate different aspects of the

behavior. In this case, the definition about the positive or negative value

subjectively attributed to the reinforcer does not depend on what can be considered

pleasant or unpleasant, but on the empirical rate of performed motor responses to

obtain or avoid the reinforcer. Importantly, this paradigm led to development of the

modern reinforcement learning (RL) theory, where a reward or a punishment can act

respectively as positive or negative reinforcer of the learned instrumental behavior

(Sutton and Barto, 1998).
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Figure 2. The Skinner box and its principal components. Image taken on Google.

Pavlovian to instrumental transfer (PIT)

Although classical and instrumental conditioning belong to separate categories of

associative learning, they nevertheless share some common properties that can be

highlighted in experimental paradigms, such as the ‘Pavlovian to instrumental

transfer’ (PIT), according to which after conditioning a subject on a stimulus-reward

association (e.g. sound-pellet) and on an action-reward association (e.g. lever

pressing-reward), the stimulus will be able to trigger the action, meaning that a

stimulus-action (sound-lever) association is formed (for a very exhaustive

explanation see (Holmes et al., 2010)).

Goal-directed learning

Modern associative learning theories suggest that instrumental behaviors are

controlled by complementary, but interacting, systems that lead to different

behavioral strategies: goal-directed and habitual learning (Dickinson and Balleine,

1994, 2000; Keramati et al., 2011; Dolan and Dayan, 2013) .
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Goal-directed learning is driven by internal goals and motivational state, it is

flexible and used in particular to find solutions to new problems or to face changing

conditions. In general, goal-directed behaviors are computationally intense and not

suitable to provide a fast and automatic motor response. Goals are defined

differently from rewards or action’s outcome. Goals are the starting point of the

willful control of actions (Gollwitzer and Moskowitz), they are ideal desired states

that drive behavior, in which one or a set of conditions are satisfied (as for example

in a reward maximization task) (Ressler, 2004). During the acquisition of a GDB, the

associations between actions and their outcomes are learned.

The acquisition of goal-directed behaviors leads to creation of internal

representation of contingencies between actions and outcomes (Blaisdell, 2006;

Penn and Povinelli, 2007; Liljeholm, 2018, 2021). Indeed, goal-directed learning can

be defined as the ability to learn if a certain action can effectively cause or prevent a

given outcome, or if actually there is no association between them. Goal-directed

learning therefore forms the basis of a key cognitive function, which supports the

creation of our sense of causality between our behaviors and their outcomes.

According to a popular model in cognitive psychology, the sense of causality can be

quantified experimentally as the action-outcome contingency, called ΔP. The

action-outcome contingency is defined as the difference between two conditional

probabilities: P(O|A), that is the probability associated to the outcome when the

agent perform an action; and P(O|¬A), that is the probability that the outcome

spontaneously occurs not associated with the agent's action (Allan, 1980; Allan and

Jenkins, 1980; Hammond, 1980; Allan, 1993; Allan et al., 2008; Morris et al., 2017).

Being the result of the difference between two probabilities, ΔP can take all the

values from -1 to 1; positive values are associated with a positive sense of causality

(the action triggers the outcome), negative values are associated with a negative

sense of causality (the action prevents the outcome), while values close to zero gives

no sense of causality (the action and the outcome have no causal dependence).
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These actions-outcomes contingency values can be learned by trial-and-error,

retained in memory, and used to adjust behavior with respect to changing context,

providing an efficient strategy to reach the goal. Thus, GDB is defined as

model-based (Lee et al., 2014), meaning that it uses an internal representation of

the world and transition probabilities between actions and outcomes. This resonates

with the notion of a cognitive map (Tolman, 1948) that keeps track of previous

experiences in order to orient future actions. Indeed, an additional component of

goal-directed learning is the ability to plan future behaviors according to internal

goals and motivational states. In other words, planning is the ability to use the

knowledge about the model of the world, in order to program future actions. Since

knowledge about the structure of the environment is collected from the interaction

with the environment, such information about the experienced actions-outcomes is

kept into memory, and then used to efficiently explore the environment. Thus,

another key feature of planning is to use a still partially observed model of the world

to select actions (Bonet and Geffner, 2014).

Habits

The second form of behavioral strategy supporting instrumental learning concerns

habits. Habitual behaviors are inflexible, and arise from long-term training and

consolidation of stimulus-response-outcome associations. Habits can arise in

particular to respond to familiar problems or to face well-known tasks, thus it

results computationally light and suitable to provide a fast motor response whether

possible (Balleine and O’Doherty, 2010). Habitual behavior is outcome independent,

indeed to trigger an HB it is sufficient that the subject perceives a stimulus that is

strongly enough associated with an action to produce the motor response. Habits

are thought to be primarily triggered by antecedent stimuli, rather than the

prediction of future outcomes. For this reason, habits are normally considered as

model-free: there is no need for the agent to keep track of the actions or the

actions-outcomes transition probabilities or the internal representation of the task
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(Graybiel, 2008; Dolan and Dayan, 2013). The insensibility to the outcomes and the

absence of a model, and therefore of planning, are the causes of HB’s inflexibility

and speed. Indeed, if we train an agent for a long enough time on a task,

consequently to a slow consolidation he will learn a HB, and from then on it will be

very hard for him to change his behavior also if the rules of the task changes (Yin

and Knowlton, 2006; Hilario, 2008). To modify his behavior, the agent will need a

very long time. On the other hand, the agent will be very good in performing the

original task for which he developed a habit, always giving the correct answer in a

short time, as soon as a stimulus appears.

Experimental paradigms to determine if a behavior is goal-directed

There exists two main experimental paradigms that can be used to establish if an

observed behavior can be considered as goal-directed or not: 1) outcome

devaluation and 2) contingency degradation. Outcome devaluation paradigm was

defined by Dickinson in 1985 (Dickinson, 1985) and refined by Balleine and

Dickinson in 1998 (Balleine and Dickinson, 1998). The aim of outcome devaluation

is to assess if the behavior of an agent changes accordingly with changes in the value

assigned to an outcome. According to this paradigm, we can train an agent to

perform two different actions each one leading to a different type of outcome (e.g.

different food), at the beginning the agent will perform the two actions equally

across time. Then, it is possible to devalue one of the two outcomes, for example

making it always available; after that, if the behavior is goal-directed, the agent

should lose interest in performing the motor response leading to the devalued

outcome, to fully focus on the other action. In this case, if the agent had established

a habit, he would have continued performing both the actions with the same

frequency.

Contingency degradation was at first observed by Robert A. Rescorla (Rescorla, 1966,

1968) on studies about classical learning: after an agent was trained to respond to a

CS, if the corresponding US was presented without being preceded by the CS for
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enough times, the response to the CS decreases over time. This paradigm was then

extended to instrumental behavior (Adams and Dickinson, 1981; Schreiner et al.,

2020). As an example, we can train an agent to perform an action in order to receive

a desired outcome. After training, if we start to give him that outcome at some

random point in time, also if he doesn't perform the action, the agent can lose

interest in performing the trained action. This would be linked to the fact that its

sense of action-outcome contingency, or causal sensation, will drop close to zero,

meaning that his behavior was still goal-directed as he updated its internal model.

On the contrary, if the agent established a HB, he would have continued to perform

the action independently of the introduced devaluation, at least for a long period of

time, until he comes back to a goal-directed strategy.

Although the transition from GDB to HB and vice-versa are well described

phenomena, less is still known on how an agent is called to perform an action in a

goal-directed or in a habitual way, and which is the computational mechanism

underlying this switch. So far, one of the most accredited hypotheses is the

existence of a cognitive computational arbitrator model that selects one of the two

behaviors. I will give a better overview of these arbitrator models in Section 1.4.3.

1.1.3 Toward a unified vision of learning

As we can see, there is some similitude in between Pavlovian conditioning and

habitual behavior. A recent review proposes a slight modification of this cognitive

organization, proposing a dichotomous division between a stimulus-driven

model-free control and a goal-directed model-based control (Corbetta and Shulman,

2002; O’Doherty et al., 2017). The first category comprehends the reflexes, the

Pavlovian classical conditioning and the HB. Those three types of learning share

indeed some characteristics such as the fact that they take control over the actions

in a rapid and efficient way, the fact that they are automatically deployed, inflexible

and hard to modify, moreover they are model-free and outcome independent.
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Stimulus-driven control can be thought of as retrospective, in that it depends on

integrating past experiences. The second category comprehends exclusively the

GDB, whose main characteristics are: slow but flexible computations, the need of a

model, and the fact that it can be stimulus independent. Goal-directed control may

be thought of as prospective in that it leverages a cognitive map of the decision

problem to flexibly reevaluate states and action. Overall, open questions exist

concerning the relation between habit and goal-directed learning, and a unified

theory is still missing.

1.2 Brain circuits of goal-directed learning

Instrumental learning is thought to be mediated by the activity of neural circuits

and populations distributed over fronto-striatal loops (O'Doherty et al. 2017).

Instrumental learning has been extensively investigated with the use of both animal

models and in humans, highlighting the role of cortical and subcortical areas

involved in its implementation. Each of this network can be composed of several

cortical and subcortical functionally connected brain regions, able to express

different cognitive aspects of the behavior (Figure 3).

In goal-directed behavior, one of the most important concepts is the idea that an

agent needs to be able to represent the values of the outcomes, in order to build an

efficient cognitive map that allows him to compute how to achieve the desired

outcome, that is the one with the highest value, and thus the sequences of actions

that can lead him to that. In order to do so, the brain should also be able to establish

associations between states, whether they represent stimuli, actions or outcome. In

this section I will give a general overview of the participation of different brain

regions, at first cortical and then subcortical, and of their interactions in

instrumental learning.
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Figure 3. Schematization of the three fronto-striatal loops. Image taken from Jahanshahi

et al., (2015).

1.2.1 Fronto-striatal loops

Physiological, anatomical and imaging studies in both human and non human

primates, revealed that the basal ganglia complex follows an intrinsic

anatomo-functional organization, forming cortico-basal ganglia loops of

connections implied in different aspects of behavioral control involving different

cortical regions (Haber, 2003; Nakano et al., 2000; Redgrave et al., 2010; Liljeholm

and O’Doherty, 2012; Jahanshahi et al., 2015; Morris et al., 2016). Three main

distinct fronto-striatal loops are identified: 1) the limbic loop, implied in

motivational and emotional aspects, that involves the ventral part of the striatum,

the anterior cingulate cortex, the orbitofrontal cortex and the amygdala; 2) the

associative loop, implied in planning and higher cognitive control, involving the
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anterior part of the striatum (dorso-medial striatum in rodents), the dlPFC and the

PPC; 3) the sensorimotor loop, implied in motor control, that involves the posterior

part of the striatum striatum (dorso-lateral striatum in rodents) and the

sensorimotor and supplementary motor cortices. Also if the differences among these

loops are well identified, the anatomy of these circuits doesn’t follow a strict

separation, but more a transitional gradient (Figure 4) (Vogelsang and D’Esposito,

2018; Han et al., 2021). Some studies revealed that the transition from goal-directed

to habitual behavior can rely on a gradual switching between the fronto-striatal

loops, especially from the associative to the sensorimotor networks (Yin and

Knowlton, 2006; Ashby et al., 2010). Overall, these studies suggest that

goal-directed learning is based on the associative and limbic fronto-striatal circuits.

1.2.2 Cortical regions

Before going into details, a small clarification here is needed: usually when we talk

about cortical regions we talk about regions belonging to the neocortex, and thus to

the frontal, parietal, temporal and occipital lobe. The neocortex has a very

conservative structure, made of six layers, each one containing the bodies of

different cellular types, organised in cortical columns (core sections perpendicular

to the brain surface of about half a millimeter diameter, comprising all the six

layers). The thickness of each layer can vary depending on the location and the

function of that part of the cortex we are considering; a very well known example of

that is the primary motor cortex, in which layer IV (inner granular layer) is thinner

in favour of a thicker layer V (inner pyramidal projection neurons layer). The layers,

and thus, the cortical columns are all oriented on the same axis, with the axons of

the neurons perpendicular to the surface, and are organised in convolutions that

form sulci, in order to maximise the surface on volume ratio. But the neocortex

represents 90% of the whole cortex, the remaining 10% is represented by the

allocortex, which only has 3-4 layers, and which comprehends olfactory and limbic
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structures, such as the insular pole and the hippocampus. This clarification is due

because in Study 3, we will use marsatlas for the brain parcelization of human

participants; this atlas includes the insular pole among the cortical regions

(together with neocortical structures), and the hippocampus among subcortical

regions (together with the basal ganglia, the thalamus and other limbic structures

such as the amygdala, also if it belong to cortex), but that is just for labeling

simplicity. For the sake of uniformity, I will follow the same subdivision also in the

following paragraph in which I will outline the current hypotheses regarding the role

of different cortical areas in goal-directed learning.

Figure 4. Cortical and subcortical areas involved in different aspects of instrumental

learning. Image taken from O’Doherty et al., (2017).
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Orbitofrontal cortex (OFC)

OFC has several key roles in instrumental learning, spanning from encoding the

cognitive map to the representation of outcomes’ identity and expected and

effective value. Regarding its role in encoding the cognitive map, computational

studies suggest that the OFC is able to represent states, in particular in an abstract

task space (Wilson et al., 2014). The OFC encodes preferentially stimuli and

outcomes associations instead of actions. Indeed, it is able to encode for expected

value based on a stimulus-stimulus association, and to encode the outcome identity,

activating in presence of stimuli which predicts those outcomes (Howard et al.,

2015). Moreover, the OFC seems to differently respond to the values of conditioned

stimuli to unconditioned appetitive or aversive stimuli, and to the predicted values

of those conditioned stimuli (Schoenbaum et al., 1998; Salzman et al., 2007;

Salzman and Fusi, 2010). Other studies showed that OFC discriminates between

different amounts of values of the outcomes, and the values of expected and

prospective outcomes (Padoa-Schioppa and Assad, 2006; McDannald et al., 2011).

OFC responds also to different kinds of already experienced outcomes and responds

differently according to the motivational state associated with them (O’Doherty et

al., 2001; Rolls, 2003; Smith et al., 2010). The role of OFC in goal-directed learning

is still object of intense studying (for a deepening see:

https://psycnet.apa.org/PsycARTICLES/journal/bne/135/2)

Ventromedial prefrontal cortex (vmPFC)

vmPFC is involved mostly in representing outcomes’ value, and shares some

functions with OFC, such as responding accordingly with the amount of value

attributed to an outcome, encoding outcomes value after their reception, and

econding motivational value assigned to outcomes (O’Doherty et al., 2001; Rolls,

2003; Padoa-Schioppa and Assad, 2006; Smith et al., 2010). Pan et al. in 2014

observed that monkeys’ lateral prefrontal cortex can compute higher-order

outcomes values, indeed, its activation correlates with the value of an outcome
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associated to a novel stimuli, and inferred by the previously experienced

stimuli-outcomes associations; the human vmPFC seems to act in a similar way

(O’Doherty et al., 2017). Another study demonstrated that the activity of vmPFC

scales with the outcome values, responding with an increase in activity for positive

values and a decrease in activity for negative values (Plassmann et al., 2010).

Sometimes an agent is called to evaluate different types of outcome and to compare

them, vmPFC seems to be involved in assigning a common currency to different

outcome’s categories to allow a comparison (Chib et al., 2009; Levy and Glimcher,

2012). Also, vmPFC seems able to encode the incentive value of the actions, and the

action-outcome causal relation in an instrumental contingency learning task

(Matsumoto et al., 2003; Liljeholm et al., 2011).Moreover a recent studies indicates

its role in positive reward associated prediction errors (Gueguen et al., 2021).

Dorsolateral prefrontal cortex (dlPFC)

dlPFC is related to the ability of building cognitive maps involving actions, and in

action planning (Balleine and Dickinson, 1998). In a 2010 paper, Glascher and

colleagues proposed the existence of a state prediction error (SPE), another type of

prediction error, not based on reward, that acts like a signal to update model-based

expectations, which measure the surprise of a new state based on the current

estimate of the state-action-state transition probability (Gläscher et al., 2010).

Using fMRI, they found out that dlPFC correlates with SPE, meaning that this region

can be involved in learning cognitive models that involve actions. Moreover, in order

to build an internal model that takes in consideration the actions, the agent should

be able also to retain in his memory the past actions and the transitions between

states, and dlPFC is indeed associated with working memory (Levy and

Goldman-Rakic, 2000; Miller and Cohen, 2001; Procyk and Goldman-Rakic, 2006) .
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Posterior parietal cortex (PPC)

PPC covers several different aspects of decision making. It participates, for example,

in perceptual decision making, that is the ability to establish the identity of a

stimulus in a limited space of categories, useful for state identification (Shadlen and

Newsome, 2001). According to those findings, other studies showed that PPC

encodes the category of current or future potential states and stimuli (Freedman and

Assad, 2006; Doll et al., 2015). The activity in the inferior parietal lobule, a part of

the PPC, has been found to vary according to the causal contingency measure

resulting as a function of two outcome probabilities, called ΔP, together with actions

rates and judgment of the causal efficacy of those actions (Liljeholm et al., 2011,

2013). Moreover, as dlPFC, PPC was found to respond to SPE (Gläscher et al., 2010)

and to participate in action values representation and action planning, as it has a

well established role in numerical cognition (Platt and Glimcher, 1999).

1.2.3 Subcortical regions

Subcortical brain regions comprehend a variety of different structures, all with

different roles, essential for sustaining higher cortical computations. A major

complex is represented by the basal ganglia, an ensemble of nuclei that was first

thought to contribute mostly to motor functions, and was later found to be involved

in higher cognitive processes and emotions (Lanciego et al., 2012). The basal ganglia

complex includes:

● striatum: it is the main component, a very complex structure at the

connectivity, cellular and molecular level, that in primates is subdivided in a

ventral part containing the nucleus accumbens (NAc) and a dorsal part,

including two nuclei, the putamen and the caudate nucleus. From this

structure originates both the direct and the indirect basal ganglia pathways;

● globus pallidus: structure composed by GABAergic neurons that receives

GABAergic afferents from the striatum, it can be subdivided in its external
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portion (GPe) that projects on subthalamic nucleus participating in the

indirect pathway, and its internal portion (GPi) that projects on the thalamus

participating in the direct pathway;

● subthalamic nucleus (STN): small nucleus that is intensively studied for its

clinical relevance, especially after the advent of deep brain stimulation (DBS),

an effective treatment to reduce symptoms in Parkinson’s disease. It is also

involved in the hyperdirect basal ganglia pathway, receiving excitatory inputs

directly from the cortex and sending its projections toward GPi and the

substantia nigra pars reticulata.

● substantia nigra, that is subdivided in two parts: the pars reticulata (SNr)

that receives GABAergic afferents from striatum and GPe nucleus and

glutamatergic afferents from the STN, and sends GABAergic efferent

projections to the thalamus; the pars compacta (SNc) that receives GABAergic

afferents from the striatum and sends modulatory dopaminergic efferent

projections to the striatum together with the ventral tegmental area (VTA).

Striatum

The whole striatum receives glutamatergic projections from the cortex and the

thalamus (called corticostriatal and thalamostriatal projections respectively) and

receives midbrain dopaminergic projections from the SNc and VTA. The SNc and

VTA are two regions that are well known to be involved in the encoding of reward

value and reward prediction error (RPE) (Apicella et al., 1991; Schultz, 2016a,

2016b). Moreover, it receives afferences from the amygdala and the hippocampus. It

sends GABAergic projections to the GPi and GPe (called striatopallidal projections)

forming respectively the direct and the indirect striatal pathways. The activation

tuning of those two pathways is allowed by the same nature of the dopamine and of

its receptors. Indeed, the effect of dopamine on D1 receptors is to activate

GABAergic neurons involved in the direct pathway, inhibiting the GABAergic

neurons of the GPi and SNr, that results in a thalamic activation; while dopamine
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inhibits neurons expressing D2 receptors, allowing GPe GABAergic neurons involved

in the indirect pathway to be activated, thus inhibiting the STN, that sends

glutamatergic excitatory efferent projections to the GPi and SNr, allowing them to

inhibit the thalamus. The synergy between these two pathways allows the fine

regulation of the thalamocortical circuits controlling behavioral expression. The

three main nuclei of the striatum (NAc, putamen, and caudate) are associated with

different functions. The ventral striatum, to which we refer as the ‘limbic striatum’

for its implication in the limbic loop, has been implicated in reward circuit and

encoding of RPE signals, as shown notably by human fMRI studies (Delgado et al.,

2005; Wang et al., 2016). Moreover it is implied in motivational aspects and decision

making. Ventral striatum sends projections to the GPi and SNr, and contacts cortices

associated with limbic functions such as the rostral cingulate cortices. NAc is also

involved in predictions of CS linked to both appetitive and aversive US, and in

conditioned skeletomotor reflexes such as consummatory or avoidance responses

(O’Doherty et al., 2017). Dorsal striatum (caudate and putamen) is instead implied

in motor functions and in their inhibitory control, in stimulus-action associations

learning (Balleine et al., 2007; Bissonette and Roesch, 2015; Yager et al., 2015) and

in punishment (Pessiglione et al., 2006; Palminteri et al., 2012; Palminteri and

Pessiglione, 2017).
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Figure 5. Schematization of the striatal pathways. Image taken from Schroll and Hamker,

(2013).

Amygdala

Amygdala (Amy) is a nucleus belonging to the limbic complex, and thus involved in

emotions, such as fear, and in some rapid behavioral response like the fight or flight

response, or conditioned automatic reflexes (LeDoux et al., 1988). Studies in rodents

and monkeys showed that Amy is also involved in encoding conditioned stimuli

when they are linked to unconditioned appetitive or aversive stimuli, moreover it is

involved in representing context, stimulus identity, and reward expectation

(Schoenbaum et al., 1998; Paton et al., 2006; Salzman and Fusi, 2010) .

Hippocampus

Hippocampus (Hipp) belongs to the allocortex and can be subdivided in 5 parts:

cornus ammonis (CA) from 1 (more external, in continuity with the subiculum) to 4
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(more internal) and the dentate gyrus (DG). Hipp has a very well established role in

declarative long-term memory and in representing space through place cells, able to

inform the agent about a specific position in space, but not following a specific

pattern as grid cells in the entorhinal cortex, with whom they communicate (Bird

and Burgess, 2008; Moser et al., 2008). For those reasons, Hipp was always

considered a good candidate to encode cognitive maps, especially in spatial decision

making tasks where a model-based planning is needed, and indeed the activity of

place cells can represent the agent trajectory during a spatial decision-making task

(Pfeiffer and Foster, 2013). Hipp seems to be more involved in stimuli-stimuli

associations encoding, more than actions-outcomes associations, as some study

showed its ability to link reward to perceived stimuli (Wimmer and Shohamy, 2012).

To conclude, current literature suggests that goal-directed learning is supported by

subcortical areas, through the expression of rostro-caudal gradients involving the

basal ganglia and the cortical brain regions.

1.3 Advantages and pitfalls of brain data acquisition

techniques for the study of goal-directed learning

Learning is surely a brain network phenomenon. On the other hand, functional

specificity exists at the microscopic and mesoscopic level. One of the challenges of

future studies will be to integrate brain data from multiple spatial and temporal

scales so as to have a complete picture of the neural bases of goal-directed learning.

This section introduces the state-of-the-art concerning the methodological

approaches for the analysis of the neural correlates of goal-directed learning and the

underlying computationsValid correlates for neural activity find their roots in

different kinds of signals, electrical, biological, optical and so forth; the only limit is
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engineers' fantasy, and technological or computational limitations. Each of these

techniques has its own pros and cons that should be taken in consideration during

experimental design. The constraints that are taken in consideration are spatial

resolution, temporal resolution, mobility and coverage.

Evidently, there exists no single experimental technique that allows the

measurement of brain activity at both a high spatial and temporal resolution in

humans or non-human primate. In this section I will describe two of the techniques

that I exploited for the studies described in Section 3 (LFP) and Section 4 (MEG).

Moreover, I will compare them with similar techniques, and finally I will give a brief

description of other data acquisition techniques.

1.3.1 Spikes and Local field potentials (LFPs)

Neurons are cells able to transmit information to each other using electrical and

chemical signals. When a neuron generates an electrical impulse, that is called

action potential or spike, it is transmitted through the axon to then reach the

synapses, which, releasing neurotransmitters, generate a postsynaptic potential

(PSP) in the dendrites of adjacent neurons.

Using microelectrodes, we are able to record the spiking activity of single neurons in

the brain of behaving subjects, using the difference of potential with respect to a

reference. The electrical signal is usually band pass filtered between 300 and 6000

Hz in order to capture just the fastest events. It is possible to perform spikes

detection during (by hardware) or after (by software) the recording in order to obtain

a time series that can be used to compute, for example, the inter-spikes interval or

the firing rate of that neuron. A relevant feature of spikes is that it is possible to

understand which kind of neuron we are recording by observing the spike waveform.

On the contrary, Local Field Potentials (LFPs) represent larger and slower electrical

phenomena, recorded in a radius of 0.5 - 2 millimeters from the tip of the electrode

and low-pass filtered with a cutoff frequency in the range of 100-300 Hz (Buzsáki,
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2006). About their origin, LFPs are thought to be the result of the synchronization of

the synaptic potentials (both excitatory and inhibitory postsynaptic potentials

(E/IPSP), and sometimes also membrane hyperpolarization) occurring in that radius

(Buzsáki, 2006; van der Meer, 2010; Buzsáki et al., 2012). LFPs are particularly useful

to study oscillatory activity, indeed after preprocessing and artifact rejection, we can

use the time series to extract the power of several frequency bands in order to build

a time-frequency map that describes how synchronous activity evolves for each

frequency band in time (preprocessing and power extraction techniques will be

better described in the next paragraph). Spikes and LFPs recordings can be combined

to compute the spike-LFP phase-coupling, which is especially effective for the study

of long range interactions.

The aim of all of these approaches is to relate the properly treated signal with some

relevant behavioral variable recorded at the same time as the neurophysiological

signal, in order to further proceed with descriptive analysis and statistics.

Those two techniques have the advantage of a very high temporal resolution, but on

the other side they are very invasive, meaning that they need a surgical procedure in

order for the electrode to be placed. This leads to disadvantages, like the fact that

the experimenter should be careful in inserting the electrodes, especially if he is

supposed to reach a deep part of the brain, and the fact that the recording position

is relatively unknown. Indeed a common procedure is to make use of anatomical

atlas and stereotaxic coordinates to implant the electrodes, to then cause an

electrical or thermal damage before removing the electrodes, in order to verify their

recording site in a postmortem histological analysis. However, the brain coverage of

those techniques is getting better and better, from single pin electrodes we passed

to multiple-pins electrodes and microelectrodes (e.g. NeuroPixels), arrays of

electrodes ad microelectrodes (e.g. Utah Arrays), and recently even to record an

entire hemisphere of a behaving macaque monkey, using a large-scale semi-chronic

microdrive recording system developed in Charles Gray’s lab (Dotson et al., 2017).
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In Section 3 I analysed a dataset recorded by the team of Paul Apicella to

investigate the neural correlates of goal-directed learning in behaving non-human

primates striatum, performing a free-choice goal-directed learning task. In

particular, I wanted to assess how striatal oscillatory activity correlates with

relevant learning signals such as RPE in different striatal fields.

1.3.2 Electro- and Magneto-encephalography (EEG and

MEG)

Most popular for human studies, EEG and MEG are non-invasive whole-brain

recording techniques. They differ in the acquisition phase, but they share very

similar data analysis pipelines.

In an EEG, a soft plastic or silicon cap containing several equidistant holes is placed

on the head of a subject. This cap is used to hold in place the EEG electrodes: the

experimenter injects inside each hole, on the subject’s scalp, some conductive gel to

then place the electrodes on the top of it. The origin of the signal is the same as the

LFP one and it’s recorded as an electric field in the order of microvolts (mV, V).10−3

In MEG, a hard plastic cap, often associated with a chair or a table, is placed on the

subject's head. This cap already contains the sensors in a fixed position, the sensor

can be of two types: magnetometers, to measure the magnetic field, or

gradiometers, which are pairs of magnetometers placed very close one each other to

measure the difference in magnetic field between them. MEG machine needs a

couple more attentions compared to EEG setting: the machine should be isolated

from magnetic fields with the use of a metal alloy called mu-metal, that has infinite

magnetic permeability; moreover the coils used in MEG sensors should be able to

record magnetic field in the order of femtotesla (fT, T), thus they need to be10−15

constantly kept under very low temperature using liquid helium. The origin of the

magnetic field is attributed to synchronous excitatory or inhibitory PSPs of several
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close neurons, acting like small electrical wires that generate a magnetic field

orthogonal to current direction. Thus, the magnetic field is perpendicular to

neuronal axon direction, and in fact its power is maximal in the correspondence of

cortical sulci’s walls, and minimal on sulci’s ridges.

Both in EEG and in MEG it is possible to add electrodes out of the scalp surface to

record eye movements (vertical, horizontal and blinks) or cardiac activity: those

signals will be used during preprocessing  to remove artifacts.

The result of an EEG or MEG recording is composed of an ensemble of

neurophysiological time series at the sensor level, that at first should pass through

preprocessing. This stage is used to clean the data from artifacts and includes

different steps such as: notch filtering (a band-stop filter used to subtract the

periodic influence of electrical current from the signal, that is 50Hz in Europe),

artifact rejection by independent or principal component analysis (ICA or PCA),

band-pass filtering (or high-pass or low-pass), and a crucial visual inspection.

Indeed, there is no fixed preprocessing pipeline applicable to all the dataset, this is

something still lacking also if there is some new proposed solution based on the use

of deep learning algorithm.

After the preprocessing, time series can be analysed at the sensor level extracting

the time-frequency map, but this is not so much informative, because on the

contrary of LFPs, here the sensors and the sources of the signal are not in the same

location. Each recorder time series coming from the sensors (outside the brain)

contain signals coming from several sources (inside the brain); thus we are

interested in extracting the signal at the local source level before proceeding with

analysis. To do so, an MRI of the subject and a series of computational passages are

needed.

The MRI is used to reconstruct a complete 3D model of the brain of the subject,

including the skull and skin, through the use of softwares such as FreeSurfer or

BrainVISA. The brain is further segmented between white and gray matter and then

with parcelization an atlas is applied in order to label different cortical or subcortical
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regions. Atlases can follow an anatomical or a functional division, following

different subdivision rules, some example are the Brodman atlas following

cytoarchitecture, the Desikan-Killiany (Desikan et al., 2006) following gyruses, and

MarsAtlas (Auzias et al., 2016) following sulci.

Once we have the model of the anatomy, we need to model what we can observe

from our sensors given the anatomical constraints that we just computed, in other

words we need a forward model. To do so we must compute two things: a source

space and a volume conduction model. The source space is needed to describe

sources’ position relative to each sensor and their orientation in space, that is the

orientation of the electrical dipoles. Sources can be placed on a surface mesh, with

orientation corresponding to the normal direction of the surface, or in a volumetric

space, with free orientation. Volume conduction models are needed in EEG because

the electric field can diffuse differently through brain, skull and skin, causing

distortions in the recorded electrical signal, while in MEG is needed because this

diffusing electrical field generates itself a small magnetic field that can distort the

magnetic signal, but generally MEG is less affected by this phenomena because

magnetic fields penetrates non-magnetisable materials. One of the most used

volume conduction models is obtained with the boundary elements method (BEM)

because it is easy to compute, since it consists of a mesh of triangles describing the

surface of the skull and the skin surrounding the brain. Other available methods are

the finite element method (FEM) and the finite difference method (FDM), which

return 3D conductivity models.

Once we have the forward model, we must compute the contribution of each source

given the recorded signal from the sensor, or in other words the inverse model.

Several techniques can be used for inverse modelling, such as single/multiple dipole

fitting (minimizing the error between model and measured field), distributed source

models, and state of the art spatial filtering methods (also called beamforming), like

the dynamic inherent court of sources (DICS), the Linearly Constrained
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Minimum-Variance (LCMV) or the Synthetic Aperture Magnetometry (SAM). Those

algorithms give as result a source-level time-resolved signal.

Usually, the number of computed sources are higher than the number of original

sensors (e.g. in study 3 we computed 4000 sources for each brain hemisphere

starting from a total of 248 sensors), thus to simplify computations is better to

group and merge them (e.g. averaging) accordingly to the pre-computed

parcelization, to reduce the number of signal dimensionality to the number of

parcels (e.g. in study 3 we used MarsAtlas that has 48 parcels per hemisphere).

After all these passages, we can use the signal at the parcel level to compute event

related potentials (ERP, also called evoked responses), or a time-frequency map of

the power of several frequency bands. Extracting the power of a signal is very

common because it allows to study the rhythmic oscillatory activity of well

established frequency ranges: delta (1–4 Hz) linked to sleep state, theta (4–8 Hz)

linked to drowsiness, alpha (8–12 Hz) linked to resting state, beta (15–30 Hz) linked

to attention, gamma (30–80 Hz) linked to focus, and high-gamma (>50 Hz) linked to

problem solving and concentration (Cole and Voytek, 2017). This is just an overview,

but these bands are shown to correlate with precise motor responses (Jenkinson and

Brown, 2011; Schwerdt et al., 2020), cognitive states (Brovelli et al., 2005), behavior

(Engel and Fries, 2010) and also with pathological states (Holt et al., 2019).

Moreover, different frequency bands are associated with different ranges of cortical

interactions, with the lower bands implied in large scale computations and higher

frequency associated with local activations (von Stein and Sarnthein, 2000).

There are several different algorithms to extract the periodic component of a signal,

as for example the Fast Fourier Transform (FFT), the Morlet Wavelet convolution

(MW), and the Multitaper method (MTM), that are among the most used algorithms.

The FFT took over the Discrete Fourier Transform (DFT) for its computational speed,

especially when considering long time series, and it's still used for spectral analysis

and denoising. The MW method allows fast resolving of the periodic components in

both time and frequency domain. This is possible through the computation of
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several wavelets, small frequency-specific waves with particular properties, that are

convolutionally multiplied to the signal. The MW has one particular parameter used

for the construction of the wavelets, that can bias the result of the analysis: the

number of cycles. This is a well known issue of this method, responsible for what is

called the temporal-spectral tradeoff, by which wavelets with a lower number of

cycles give a better representation in the time domain, while wavelets with a higher

number of cycles give a better representation in the spectral domain. In order to find

a good compromise between time and spectral precision it is usually used a variable

number of cycles, increasing together with the frequencies.

The MTM uses Slepian tapers sequence, small snippets of data of which the first one

is a gaussian and all the others are orthogonal among them. The data are

convolutionally multiplied to all of these tapers, highlighting different properties of

the signal, and then a FFT is computed on each data-taper to obtain the spectral

analysis. The sum of these spectra gives the power of the data for each convolution.

In the end, we can understand why these techniques are largely used to study brain

computations and brain dynamics, indeed they have an outstanding temporal

resolution (in the order of milliseconds, with a final sampling frequency of around

500-1000 Hz), they are non invasive and they allow recording the whole brain

activity, but a little clarification here is needed. When we find the word ‘brain’

associated with these techniques, it is more convenient to read it as ‘cortical’.

Indeed, when we build the source space, we can consider both cortical and

subcortical sources, but the more they are distant from the recording zone the more

the modeled signals can incur in artifacts. That can happen for several reasons, such

as leaking activity or error in the volume conduction model, and in the specific case

of MEG we should also consider that the force of the magnetic field is inversely

proportional to the square of the distance from the source of the field. Despite that,

new solutions, algorithms and procedures to enhance the signal reconstruction at

the level of deep sources are often proposed (Pizzo et al., 2019; Seeber et al., 2019),

making it a still active research field.

38

https://www.zotero.org/google-docs/?vHHoqb


In Section 4, I investigated the large-scale correlates of goal-directed learning using

MEG recorded on human participants while performing a goal-directed

causal-learning task. After data acquisition I computed the high-gamma activity

(HGA) at the single-trial level and used information theory tools to relate it to

behavioral variables.

1.3.3 Complementary techniques

As I told before, there are numerous techniques that are used for neurophysiological

recordings and among them fMRI is one of the most used. fMRI is a non-invasive

technique that uses a very powerful electromagnet to orient in space hydrogens’

nuclei of water molecules, in order to let them produce a detectable magnetic field,

with different variations in strength which allow us to distinguish different

structures. To give an idea of how powerful these machines are, the earth’s magnetic

field is about 30 to 60 microtesla (µT), while the highest resolution fMRI machine so

far can produce up to 7T, giving us the opportunity to produce images in wich we

can discriminate cortical layers. Moreover, thanks to the properties of hemoglobin,

fMRI can detect variations in blood oxygenation level (blood oxygenation level

dependent signal, or BOLD signal) that correlates positively with brain’s areas

activity. Unfortunately, fMRI falls in the category of good spatial but bad temporal

resolution, indeed their sampling rate is about 0.5 Hz (one point each two seconds),

making them not particularly suitable for network dynamics studies. Anyway, new

hybrid techniques that allow EEG recording during fMRI acquisition are so

promising for solving problems of both the techniques.

Another exploited technique, especially in last years, is two-photons calcium

imaging, whit which is possible to record the activity of populations of neurons,

with a single neuron resolution, in behaving subjects. It is a very invasive technique,

the region of interest is injected with a calcium-sensitive dye or more often neurons

are genetically modified to express a calcium indicator, in order to emit a fluorescent
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signal that reflects the spiking activity. A window is opened on subjects’ skulls in

order to access them with a two-photons microscope able to capture the intensity of

fluorescence emitted by neurons, with a temporal resolution of around 10-30 Hz.

Ideally, the best solution would be to develop the perfect recording technique that

allows us to acquire large brain areas activity at the neural level and with a few

thousands of hertz of temporal resolution in a non-invasive way. But until that

moment, the best practice is to choose wisely the technique that we want to use

according to our study and the phenomena that we want to observe. Indeed we can’t

say that one of these techniques is better than the other, but just that one can be

more suitable than the others in that specific context.

1.4 Computational models of goal-directed  learning

Nowadays, computational models are used in several fields of research, not only

regarding life science. Computational models can be useful to explain observed

phenomena, to make predictions, to formulate new theories, to test hypotheses and

to find analogies with reality. In the context of neurosciences, the aim of

computational modelling is to provide common theoretical ground for disparate

neurophysiological studies. Cognitive neurosciences and computational models can

be considered as two sides of the same coin. Indeed most of the cognitive theories of

behavior, referred both to classical and instrumental learning, find their roots in

computational models based on behavioral studies (Rescorla, 1966; Rescorla and

Wagner, 1972; Allan and Jenkins, 1980; Watkins and Dayan, 1992; Dayan et al.,

1995; Sutton and Barto, 1998). An important part of cognitive modelling is the

choice of the model to use. This depends on what we are trying to model, on what

we expect as output of the model and how we want to use this output. In this work

we made extensive use of computational models: in Section 2 we used a spiking

neural network model to explain how higher cognitive computations, such as

planning and GDB, can emerge from neural processes (Basanisi et al., 2020). In
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Section 3 we used a Q-learning model, a type of reinforcement learning model,

fitted on monkeys’ behavioral data in order to retrieve single-trials RPE values. In

Section 4 we implemented a Bayesian optimal agent model to compute relevant

behavioral values, such as the contingency values, adapted on the behavior of

human participants performing a goal-directed causal learning task.

1.4.1 Neural networks

A glimpse of history

Artificial neural networks (ANN) started their history in 1958 with Frank

Rosenblatt’s perceptron (Rosenblatt, 1958). The idea behind perceptron was easy:

two or more input units are connected to one or more output units through

weighted connections; the activation of each output unit depends on the sum of the

weights of its active input units passed through an activation function (e.g. a step

function or a sigmoid function). This is the general principle that most neural

networks follow. But this simple perceptron was only able to solve linear problems

(e.g. the OR and the AND problems) but not nonlinear problems (e.g. the

exclusive-or, or XOR problem). This was possible after a while (after the so called ‘AI

winter’) with the advent of multilayer perceptron, that showed that adding one or

more middle ‘hidden’ layer between the input and the output, and using a

supervised learning algorithm called backpropagation, was sufficient to solve most

of classification problems, if we only have enough training time, enough layers, and

enough weights to train. Soon after this problem was solved, and with the advent of

improved computational power, newer ANN models exploded in a variety of novel

structures and learning rules (Shrestha and Mahmood, 2019).
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Figure 6. A mostly complete chart of neural networks. Image taken from the Asimov

Institute (https://www.asimovinstitute.org/neural-network-zoo/).
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Spiking Neural Networks

The need of building biologically inspired ANN led to consider time as an important

feature of the network, thus new structures such as echo-state networks made of

leaky neurons, or the spiking neural networks (SNN) made of integrate-and-fire

neurons or spiking neurons ariesed (Maass, 1997; Ghosh-Dastidar and Adeli, 2009;

Ponulak and Kasinski, 2011). The SNN that we describe in Section 2 provides one

example: at each discrete instant of time, once computed the sum of the weights'

contributions that each unit receives, the network stochastically selects one firing

unit through a SoftMax function. The firing event triggers the update of the weights

following the Hebbian rule based on the spike-timing dependent plasticity (STDP),

that increments the weight between that unit and the previously spiking one, and

lowers the strength towards the units that fired distant in time. This process,

combined with the network architecture, allows some kind of lateral inhibition that

installs a ‘winner-take-all’ (WTA) mechanism, making the network able to learn in

an unsupervised fashion the transitions between states as a Hidden Markov Model

(HMM). Those powerful models are still currently studied because they represent a

good possible bridge (and compromise) between neural models, bayesian

computations, and biological complexity.

1.4.2 Reinforcement learning models (RLM)

Reinforcement learning (RL) was influenced by behavioral psychology and modern

neuroscience, and it was developed as an emerging field of artificial intelligence and

machine learning (Sutton and Barto, 1998). RL can be considered as a particular case

of unsupervised learning based on the interaction with the environment. Indeed,

contrary to supervised learning, RLMs do not need an explicit input nor an outcome

to tend toward. They rely on a reward and a RPE signal to learn by trial and error

actions’ consequences on the environment. The general principles of RLMs can be

summarized as follows: given an agent, able to perform a set of actions ‘A’ in an
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environment that can be discretized in a set of states ‘S’, it will learn to predict the

actions dependent state-state transitions in order to maximize the received reward

‘r’. This process resembles what is called a Markov Decision Process (MDP), where

the choice of the action to perform, to reach the next desired state, is based only on

the last observed state. The rise of these models started with the Temporal

Difference (TD) learning model (Sutton and Barto, 1998), directly deriving from the

Rescorla-Wagner model for classical conditioning (Rescorla and Wagner, 1972).

Those two models introduced in their algorithm the concept of ‘error based

learning’, that became so popular especially after the discovery that dopaminergic

midbrain neurons activity correlates with error signals (Schultz et al., 1997).

TD-learning can efficiently solve the prediction problem, indeed it is able to learn to

predict the states associated values over multiple time steps. However, the control

problem, i.e. to make an agent able not only to learn to predict the states values but

also to use this prediction to orient its actions in order to maximise the reward, was

still unsolved. As an extension of the TD-learning, addressing the problem relative

to the choice of the actions distinctive of instrumental learning, in 1989 Christopher

J.C.H. Watkins introduced the Q-learning model, then formalised in 1992 by Watkins

and Peter Dayan (Watkins and Dayan, 1992). Briefly, Q-learning is a model-free

algorithm able to numerically describe relations between state-action couples,

assigning and updating these values depending on the RPE. The RPE is computed as

the difference between the received reward and the expected reward. The action to

perform is computed with a SoftMax function, that preferentially selects the action

that will lead the agent toward the state with the higher expected reward. In Section

3, we used a Q-learning model fitted on monkeys behavior to estimate the RPE

values from behavioral choices. Such learning signals were then correlated with

LFPs data recorded in striatum, finding a RPE responsive beta-oscillatory activity

establishing a gradient from the most rostro-ventral striatal part to its most

caudo-dorsal part. For their versatility, and for the fact that they can have both an
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algorithmic and a neural implementation, RLM are currently widely used in several

fields of research.

The RLM that I described here is considered model-free, indeed, although it might

sample from experience memory, it relies only on on-line samples from the

environment. This means that it doesn’t generate predictions of the next state and

next reward to drive behaviour. Thus, it is particularly suitable for modelling HB but

not for GDB, that is model-based, and needs an exhaustive model of

stimuli-actions-outcomes to implement specific functions like planning.

HB-GDB modulation: the arbitrator model

One of the open issues in decision-making is how an agent is able to switch between

habitual and goal-directed behavior, and thus between a model-free and a

model-based strategy, and vice-versa. The generally accepted idea is that an agent

starts to explore the environment in a goal directed way building a model of

action-outcome associations. As learning goes by, if the environment is stable , the

agent progressively consolidates those associations into habitual responses,

becoming outcome insensitive. Thus, the more the agent repeats these

action-outcome associations, the more they will shift toward a stimulus-response

association. Later in time, if the known stimulus appears, an arbitration mechanism

will trigger an habitual response. That’s also the reason why HB is outcome

insensitive and it will be way harder to shift back from HB to GDB. As we can see,

this hypothesis is based on a main assumption: HB and GDB relies on two different

competing systems, and thus presumably on different brain networks (Daw et al.,

2005; Brovelli et al., 2008; Lee et al., 2014). Therefore, as we gradually pass from a

HB to a GDB, we should be able to observe a gradual switch between the use of the

two networks. Some studies in rodents (Yin and Knowlton, 2006; Hilario, 2008)

actually confirmed this hypothesis, suggesting the involvement of the striatum in

the arbitration mechanism, by observing a spatial shift in activation from its most
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dorso-lateral part to its most ventro-medial part, and finding some similarity in

humans (Balleine and O’Doherty, 2010).

The discussion is still open on how this arbitration mechanism orchestrates HB and

GDB to efficiently switch from one to the other when both learning and action

execution are needed. One of the most accepted models hypothesizes the existence

of a flat arbitration mechanism that acts like a switch between the two

comportamental strategies. Thus, when an agent is introduced to a new task, it is

supposed to start using the surrounding stimuli to try to trigger a fast habitual

response or a reflexive GDB (Keramati et al., 2011). Here, if the agent has no

previous knowledge about stimuli-actions associations, the arbitration system

allows the agent to inhibit the habitual system in order to switch toward a

goal-directed strategy. Thus the agent starts exploring all the possible actions and to

observe the consequent outcomes. Once he finds out which action leads to the

desired outcome in response to the stimuli, he will start exploiting that action.

Thus, a first phase of the GDB is exploration, during which the agent starts to

perform random actions and to observe the resulting outcomes to collect knowledge

about the structure of the task. After he obtained an undesired outcome, an agent

can decide if to continue exploration, or on the contrary, after obtaining a desired

outcome, he can pass to the second phase of GDB that is exploitation, that is the

repetition of actions that led the agent in the desired state (Mehlhorn et al., 2015;

Domenech et al., 2020). Exploration and exploitation are two swappable phases of

GDB, indeed if we introduce a volatility in the task that changes the associations

between actions and outcomes, the agent will restart exploring the environment in

order to change the previously learned model of the world, and coming back

exploiting the correct motor response in a few trials. A computational study based

on the combination of a Q-learning model with a Bayesian working memory seems

to accreditate this cognitive model by reproducing behavioral performances and

reaction times of human participants performing a visuomotor learning task (Viejo

et al., 2015).
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Other studies stated instead the existence of a hierarchical control of the GDB,

where the transition from goal-directed to habitual actions relies mostly on a

process similar to the motor chunking of movement primitives (Ostlund et al., 2009;

Botvinick et al., 2009; Dezfouli and Balleine, 2013; Balleine et al., 2015). According

to this cognitive model, a global goal directed system is always active, and it

evaluates at each decision if there is an HB that can be triggered in order to

efficiently actuate a motor response in order to achieve the goal. If a habit is

selected, after the action or sequence of action are executed, the behavior returns to

be goal directed (Dezfouli and Balleine, 2013).

1.4.3 Bayesian models for goal-directed causal learning

Bayesian statistics finds its roots back in 1763, with an essay written by Reverend

Thomas Bayes. This theorem outlines how to determine the probability of future

events by taking into account how past events are distributed, also called inverse

probability. Although this theorem was formalised about 250 years ago, its use

increased exponentially in the past few years in several research fields, from

statistics to modelling. Bayesian models took over cognitive science together with

the idea that the brain operates like a probabilistic Bayesian machine, able to

represent uncertainties of the world in terms of probability distributions and

inferential processes based on Bayes’ rule (Dayan et al., 1995, 2007). This concept

was then extended to model higher cognitive processes and decision making (Baker

et al., 2006; Griffiths et al., 2008). The elements composing Bayes theorem are three:

1) a prior probability, expressing beliefs and uncertainty about the distribution of

past data, before any evidence is taken into account; 2) a likelihood function, that is

a model of the relations between the prior and the posterior probabilities based on

the observable data; 3) a posterior probability, that describes the distribution of the

data taking in consideration prior knowledge and the likelihood function. In study 4

we used a Bayesian ideal observer model, able to reproduce the behavior of human
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participants performing a goal-directed causal learning task. We decided to use a

Bayesian model because it allows us to model step by step the exploration phase and

the progression of participants’ learning, since the task we used was not focused on

maximising expected reward (as in RL), but in maximising the knowledge about the

causal relation between actions and their outcomes. Thanks to this model, we were

able to estimate, at the single-trial level, the evolution of relevant task-related

behavioral variables that we used to assess the role of different brain regions.

Bayesian models are very powerful to describe the behavior of an agent at an high

level, and for this reason their implication in artificial intelligence is increasing,

however they are poorly informative about the low level neural computations.

Studies attempting to bridge Bayesian computations and neural architectures are

currently emerging.

1.5 Identifying the neural correlates of goal-directed

learning

The aim of the studies described in Section 3 and Section 4 was to identify the

neurophysiological correlates of goal directed learning. To do so, we correlated the

single-trial brain dynamic aligned on a relevant event with the single-trial

estimation of both task-related and modelled behavioral data. With a single-trial

level analysis, we can describe how neural signals and behavior coevolve in time,

and this is suitable for the study of cumulative processes, such as learning. To

perform single-trial analysis and quantify the relation between neural and

behavioral variables, we used an information theoretic approach and measures, such

as the Mutual Information (MI), able to quantify the statistical dependence between

two variables. Finally we used group-level inference and cluster based statistics to

assess for significance.

48



1.5.1 Model-free and model-based analysis of brain data

Often, in neurophysiology, once defined the objective of the study, the experimenter

is called to design a task in order to make some behavioral difference explicit during

the task execution. Indeed, the final interest of analysing a set of neurophysiological

data is to find differences among the data, or to couple them with the behavior in

order to find some correlations that can explain the recorded data. There are two

common methods to find those differences: following a model-free approach or

following a model-based approach. Both of these approaches have pros and cons.

In the model-free approach, the data are divided by (or compared with) explicit task

or subject dependent variables. They can correspond to, for example, reward and

punishment values, reaction times, or different imposed conditions. The advantage

of using this approach is that we are working with empirically observable and

measurable variables, which allows us to explore data without making any

assumption on their distribution. The limitations of model-free analysis are linked

to task-design or recording machines, indeed it is often difficult, if not impossible,

to retrieve trial by trial specific behavioral measures. Moreover, some behavioral

variables originate from behavioral models and thus it is not possible to directly

measure them.

On the contrary, using a model-based approach, a technique that derives from the

fMRI literature (O’Doherty et al., 2007; Brovelli et al., 2008), means making

assumptions on how the data are distributed, and that can be done in two ways: 1)

using statistical (e.g. decoders or regression) data-driven models, fitted directly on

the data to learn how they are distributed. In this case the assumption depends on

the choice of the statistical model (e.g. linear vs. non-linear regression); 2) using

behavioral models to compute implicit non-observable variables, in this case the

assumption depends on the chosen algorithm to compute that variable, that can

change the shape of its distribution. Usually, this latter approach requires the

considered model to be previously validated or fitted on behavioral data, giving us

the advantage to test hypotheses on modeled behavioral variables, often computed
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at a finer time scale than the recorded ones. This second approach is very powerful

for relating the subject's behavior to neural correlates and potentially disentangling

subtle cognitive processes (like contextual learning). However, the limitations of

model-based analysis are linked not only to the choice of the model, indeed

sometimes modeled behavioral variables can incur in misinterpretation or

overinterpretation, as they derive from definitions borrowed by cognitive science.

For the studies described in Section 3 and Section 4 we performed model-free

analysis based on information theoretic measures, namely the mutual information,

of which I will give an overview in the next paragraph.

1.5.2 Information theory

Thanks to the pioneristic work of Claude Elwood Shannon on information theory

(Shannon, 1948), we were able to build a mathematical framework that links the

probability of an event to its uncertainty, or entropy, and consequently to its

information. Information theory, formerly used mainly in communication, is now

used in countless fields, and it is nowadays of common application in neuroscience

(Timme and Lapish, 2018). Given an event with probability to occur, we can write𝑝
𝑖

the associated shannon entropy ( ) as:𝐻

(1)𝐻 =−
𝑖

∑ 𝑝
𝑖
𝑙𝑜𝑔

2
(𝑝

𝑖
) 

The base of the logarithm defines the unit of the entropy. As we used a base 2

logarithm, the result of this equation will be expressed in bit (binary digit), another

common base for the logarithm in Equation 1 is the Euler number , in that case the𝑒

entropy is expressed in nat (natural unit of information). Importantly, Shannon

linked the concept of entropy and uncertainty to the concept of information and

surprise. The information content of an event quantifies how surprising that event is

on average, thus the more an event is uncertain, the more its occurrence is

surprising and yields information. It means that, on the contrary, a deterministic
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event yields no information at all. Moreover, the less probable an event is, the more

information it yields. In the case that more independent events are measured

separately, the sum of the information content over single events gives us the total

amount of information. To give an example that resumes what was said until now,

I’ll take in consideration the case of a coin toss and a dice roll. Imagine we should

say how much information is carried by a coin toss: the possible results are head or

tail, thus the probability to obtain one of the results is . Given that entropy𝑝 = 0. 5

tells us the average information in a probability distribution over the sample space,

we can write:

𝐻 =− ( 1
2 𝑙𝑜𝑔

2
( 1

2 ) + 1
2 𝑙𝑜𝑔

2
( 1

2 )) =  1 𝑏𝑖𝑡

Knowing the result of a coin toss give us 1 bit of information; instead, in the case of

a dice roll, where the probability to have 1 of the six numbers is , the𝑝 =  1/6

information obtained from knowing the result of the roll is:

𝐻 =− 6 * ( 1
6 𝑙𝑜𝑔

2
( 1

6 )) ≃ 2. 58 𝑏𝑖𝑡

As we can see, knowing the result of a dice roll gives us more information than the

coin flip. That can be interpreted as the fact that knowing the result of a dice roll

means also knowing that five other equiprobable results were discarded.

If we have a set of events we can write:𝑋 =  {𝑥
1
,  𝑥

2
,  ...,  𝑥

𝑛
}

(2)𝐻(𝑋) =−
𝑥∈𝑋
∑ 𝑝(𝑥)𝑙𝑜𝑔

2
(𝑝(𝑥))

Following the Venn diagram in Figure 7, if we consider two sets of independent

events and , we can define the joint entropy between and as the sum of the𝑋 𝑌 𝑋 𝑌

individual entropies:

(3)𝐻(𝑋, 𝑌) =−
𝑥𝑦
∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔

2
(𝑝(𝑥, 𝑦))

The conditional entropy of given , is the average conditional probability over :𝑋 𝑌 𝑌

(4)𝐻(𝑋|𝑌) = 𝐻(𝑋, 𝑌) − 𝐻(𝑌)

𝐻(𝑋|𝑌) =−
𝑦∈𝑌
∑ 𝑝(𝑦)

𝑥∈𝑋
∑ 𝑝(𝑥|𝑦)𝑙𝑜𝑔

2
(𝑝(𝑥|𝑦))
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(5)=−
𝑥𝑦
∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔

2
(𝑝(𝑥|𝑦))

Figure 7. Venn diagram of Shannon entropy and mutual information. Image taken from Google.

Mutual Information (MI)

The mutual information quantifies the statistical dependency between two𝐼(𝑋; 𝑌)

variables and , expressing it as the amount of information carried by one of the𝑋 𝑌

two variables when we observe the other one. MI is a non-negative and symmetric (

) measure that is formulated by the definition of conditional and𝐼(𝑋; 𝑌) = 𝐼(𝑌; 𝑋)

joint entropy:

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)

= 𝐻(𝑌) − 𝐻(𝑌|𝑋)

(6)= 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋|𝑌)

In the context of this thesis we used MI as a descriptive measure of the statistical

dependence between neurophysiological signals and model-free or model-based

behavioral variables. A standard approach for estimating MI between two

continuous variables implies a binning step in order to estimate the full joint

probability distribution (Timme and Lapish, 2018). However, a consequent amount

of data, hard to reach in the context of brain signals, is usually required in order to
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have a decent sampling of this probability distribution. To overcome those inherent

limitations, we used a binning-free alternative, originated from the field of

economics and recently ported to neuroscience, called Gaussian Copula Mutual

Information (GCMI) (Ince et al., 2017). In short, the GCMI exploits the fact that the

MI does not depend on the marginal distributions of the variables but only on the

copula function which describes their statistical dependency. GCMI has shown to be

a robust alternative to MI, and to capture both linear and non-linear statistical

dependencies as long as this relation is roughly monotonic.

1.6 Thesis objectives

The objective of this thesis is to give a contribution to the investigation of the

computational and neurophysiological correlates of goal-directed learning and

behavior through the analysis of neural data and the use of neural and behavioral

models. To achieve that, we first built a spiking neural network model to provide a

plausible explanation of how goal-directed model-based learning can emerge from

neural computation in an unsupervised fashion (Section 2). Thanks to its

architecture and to the STDP-based learning rule the model is able to encode

sequences of stimuli-actions-outcomes and to use them according to the goal to

orient behavior and make predictions. Then I investigated the role of beta-band

oscillations in non-human primates striatum in encoding RPEs signals computed

with a Q-learning model, associated with a free-choice probabilistic learning task

(Section 3). We found that information about RPEs are distributed across striatal

fields forming a gradient stronger toward the rostro-ventral part and weaker toward

the caudo-dorsal part. Finally, we investigated the temporal dynamic of different

cortical brain regions of human participants performing a goal-directed causal

learning task, in encoding relevant cognitive measures computed through the use of

an optimal observer Bayesian model (Section 4). We characterized both action and
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outcome-related activation of mostly orbitofrontal and prefrontal regions, but also

parietal and temporal regions, significantly responding to ΔP, P(O|A) and P(O|C).

Section 5 of this manuscript will give an overview of my scientific contributions in

and outside the BraiNets team and of my personal scientific interests, especially

those related to the Open Science movement and neuroinformatics projects.
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Abstract
Reward prediction errors (RPEs) reflect the difference between obtained and

predicted rewards, and they are a building block of basic forms of reinforcement

learning. RPE signals are encoded by the activity of midbrain dopaminergic neurons

that innervate the striatum and frontal cortex, suggesting that RPE signals are

integrated in cortico-basal ganglia circuits. In the current study, we investigated the

participation of the different territories of the striatum in the encoding of RPE. To do

so, we recorded local field potentials (LFPs) in the striatum of two rhesus monkeys

performing a task involving a choice among options for movement with different

reward probabilities. The trial-by-trial evolution of RPE was estimated using a

reinforcement learning model fitted on monkeys’ choice behavior. We found that

changes in beta band oscillations (15-30 Hz) during the outcome period appear

consistent with RPE encoding. Moreover, the learning-relevant outcome information

contained in beta oscillations increased along a dorsolateral-to-ventromedial

gradient. These region-specific changes in LFP activity suggest a relationship

between beta oscillations in the striatum and the evaluation of outcome based on

reward feedback, highlighting a specific contribution of the ventral striatum to the

updating of choice behavior.
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Introduction
The striatum is the major component of the basal ganglia and it plays a key role in

action selection and reward-guided learning under the influence of ascending

dopaminergic projections from the ventral midbrain. Previous research in monkey

neurophysiology (Samejima et al., 2005; Lau and Glimcher, 2007; Seo et al., 2012;

Yamada et al., 2013) and functional magnetic resonance imaging (fMRI) in humans

(Balleine et al., 2007; Delgado et al., 2005; Wang et al., 2016) has identified neural

signals coding action-value in the striatum. Striatal neuronal activity has also been

reported to reflect the difference between received and expected rewards, the

so-called reward prediction error or RPE (Sutton and Barto, 1998). RPE signals are

thought to be crucial for the update of action values (Schultz, 2007; Fujiyama et al.,

2015; Schultz, 2016a, 2016b). Several studies have shown evidence, in the striatum

of both monkeys and rodents, that output neurons (Roesch et al., 2009; Oyama et

al., 2010; Asaad and Eskandar, 2011) and putative interneurons (Apicella et al.,

2009; Stalnaker et al., 2012) encode RPE to promote reward-guided learning. fMRI

studies in humans have assessed the role of striatum, in particular its ventral part, in

encoding RPE (O’Doherty, 2004; O’Doherty et al., 2007; Bray and O’Doherty, 2007;

Park et al., 2012; Kumar et al., 2018; Calderon et al., 2021). Another fMRI study

proposed that RPEs deriving from different types of reward can recruit distinct

partially overlapping striatal circuits (Valentin and O’Doherty, 2009). Despite these

findings highlighting the involvement of striatum in RPE encoding, less is still known

about neurophysiological activity supporting RPE learning across striatal regions.

Among neural signals that may serve as potential physiological markers for the

processing of information in basal ganglia circuits, there is a strong emphasis on

local field potential (LFPs) that are supposed to reflect the synchronous activity of

populations of neurons in a given brain region (Goldberg, 2004; Brown and

Williams, 2005). In particular, oscillations in the beta-frequency band (typically about

15–30 Hz ) have been related to motor function. Indeed, increases in beta LFP

oscillatory activity have been linked to motor impairments in patients with

Parkinson’s disease (Brown, 2007; Jenkinson and Brown, 2011) and animals with

experimentally induced Parkinson-like states (Wichmann et al., 1994; Nini et al.,

91

https://www.zotero.org/google-docs/?qqLqhJ
https://www.zotero.org/google-docs/?qqLqhJ
https://www.zotero.org/google-docs/?SnMVgF
https://www.zotero.org/google-docs/?ZbOiiY
https://www.zotero.org/google-docs/?OiFAna
https://www.zotero.org/google-docs/?OiFAna
https://www.zotero.org/google-docs/?0e87jo
https://www.zotero.org/google-docs/?0e87jo
https://www.zotero.org/google-docs/?cmY6GT
https://www.zotero.org/google-docs/?cmY6GT
https://www.zotero.org/google-docs/?kqhKEB
https://www.zotero.org/google-docs/?kqhKEB
https://www.zotero.org/google-docs/?5pr6Dq
https://www.zotero.org/google-docs/?fPHXaH
https://www.zotero.org/google-docs/?fPHXaH
https://www.zotero.org/google-docs/?P1BtFi
https://www.zotero.org/google-docs/?Rkls6W


1995; Deffains et al., 2016; Kondabolu et al., 2016). This beta LFP oscillatory activity

has been detected at different levels of the basal ganglia network, including the

striatum. Besides their well known link to pathology, striatal beta oscillations were

also present in normal behaving rats (Berke et al., 2004; Leventhal et al., 2012;

Schmidt et al., 2013) and monkeys (Courtemanche et al., 2003; Bartolo et al., 2014).

Numerous studies have provided evidence that this oscillatory activity can be

modulated during specific phases of behavioral tasks, possibly reflecting a wide

range of cognitive processes, such as modulation of task performances through

reinforcement learning (Feingold et al., 2015), response to attentional cues (Banaie

Boroujeni et al., 2020), and cues utilization for action programming (Leventhal et al.,

2012). Prior studies have shown that striatal beta activity is modulated by reward

delivered on correct trials during learning tasks in rats (Howe et al., 2011) and by

different task parameters, including reward value, in monkeys (Schwerdt et al.,

2020). So far, no consensus has been achieved on the functional implications of

such changes. In particular, it is not clear whether RPE signals during the processing

of action outcomes may influence  striatal beta activity.

Moreover, previous research has pointed out that striatal beta oscillations and their

relation to motor and reward processing may occur in a regionally dependent

manner (Howe et al., 2011; Schwerdt et al., 2020). It has long been recognized that

the striatum is divided into three functional domains (i.e., motor, associative and

limbic) (Parent, 1990; Lanciego et al., 2012). In primates, the motor division is

located in posterior dorsolateral portions of the putamen, while the associative and

limbic divisions encompass dorsal and ventral portions of the anterior caudate

nucleus and putamen, respectively (Nakano et al., 2000; Liljeholm and O’Doherty,

2012; Eisinger et al., 2018). Several fMRI studies in humans have reported that the

processing of reward-related information, including RPE, is dominant in the ventral

rather than the dorsal striatum (Apicella et al., 1991; O’Doherty, 2004; Abler et al.,

2006; O’Doherty et al., 2007; Hare et al., 2008). In addition, neuronal recordings in

rats have shown that the nucleus accumbens is important for updating choice

behaviors (Ito and Doya, 2009). To our knowledge, no experiment in the monkey has

provided an in-depth analysis comparing changes in beta oscillations across distinct

territories of the striatum in relation to RPE signals.
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In the present study, we test the hypothesis that the striatum encodes RPE signals

according to an anatomo-functional gradient. To do so, we studied LFP activity

recorded at different sites in the striatum of two monkeys performing a free-choice

probabilistic learning task. The aim was to characterize the relationship between

beta oscillations and choice behavior and its possible role in encoding RPE. The

results indicate that changes in striatal beta-band activity play a role in encoding

RPEs along an anatomo-functional gradient, which shows a dominant component in

the ventral, rather than the dorsal striatum.

Figure 1. Sequence of events and performance in the choice task.
A) Experimental set-up of the free-choice probabilistic learning task. The monkey sat in
a cage with three buttons in front. Keeping the hand on a metal bar allowed the trial to
start.
B) Single trial time course. After the beginning of a new trial, a cue signal warned the
monkey about the arrival of the go signal in one second. When the go signal appeared,
the monkey performed the motor response towards one of the three yellow targets (no
cue about the most rewarding response was given). At target touch, the monkey received
feedback (reward or no reward). Correlates of the RPE signals were analysed in the time
window indicated as “outcome”.
C) The two curves depict monkeys’ performances as the probability of correct response
averaged across learning sessions for monkey F (blue) and T (red).
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Results
In this work, we studied whether striatal beta-band (15-30Hz) oscillations are

involved in encoding RPE in different striatal territories. To do so, we recorded local

field potentials (LFPs) from the striatum of two macaque monkeys while performing a

free-choice probabilistic learning task.

The analysis of behavioral performances during task execution confirmed that both

monkeys learned by trial-and-error over the course of each session which target was

most rewarding. Each session was characterised by an initial exploration phase that

allowed monkeys to find the most rewarding action, followed by a phase in which

monkeys preferentially chose the most rewarding target until the end of the block. In

order to quantify behavioral performance across monkeys, we aligned all the

sessions to the beginning of each block and computed the probability of correct

response across trials. The probability of correct response quantified the monkey’s

ability to choose the most rewarding button among the three options. As we can see

from the progression of the curves in Figure 1, 15-20 trials were sufficient for both

monkeys to figure out the position of the most rewarding target.

LPF power was analysed using a reinforcement learning model-based approach.

Finally, we used information theory tools and cluster based statistics together with

linear regression models to perform statistical analyses.

Reward modulates beta band power

We then investigated whether modulations in striatal beta-band activity differed

among rewarded and unrewarded trials. To do so, we collected all the single trial

time-frequency maps for each condition (rewarded and unrewarded). Then we

performed a two-sided t-test analysis across the two obtained data samples, and

then we Bonferroni corrected the p-values on the total number of points in the

time-frequency matrix. The significant clusters (p<0.05, Figure 2) were observed for

both monkeys in the beta band. On the other hand, the clusters were centred around

25 Hz for monkey F and around 30 Hz for monkey T. We used those two central
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frequencies to perform subject-specific analyses of beta band power using the

multitaper method.

Figure 2. Statistical power of the t-test performed on the time-frequency power map for
each monkey, when contrasting rewarded vs. non-rewarded trials. Time 0 corresponds to
button press. The p-values were Bonferroni corrected across the total number of points
in the map. To simplify visualization, we are showing the -log10 corresponding value
(-log10(0.05) = ~1.3).

In order to study whether such modulation in beta band power reflected reward

prediction errors (RPEs), we fitted a standard Q-learning model to the single-session

behavioral data.

From the model, we extracted two values, the RPE and its absolute value, and we

used these two model-based variables together with three other model-free variables

(reaction times, movement times and chosen action) to fit a multiple linear regression

model with respect to the beta band neurophysiological data. Then we used the

obtained distributions of angular coefficients to compute a two tailed t-test. As you

can see in Table 1, the only significant regressor related to the examined period of

activity was the RPE.

Thus, in order to identify neural correlates of RPEs, we then computed the mutual

information between evolution of RPE and beta band activity across trials in a

time-resolved manner. Statistical analysis was performed using cluster-based

statistics combined with permutation tests.

As shown in Figure 3, we found a significant relation, quantified by means of MI,

between RPEs and beta band activity. In both monkeys, the time-course of MI
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increased around 200 msec, peaked around 450 msec after outcome onset and

lasted a total of approximately 550msec. Significant values (p<0.05) are represented

in the plot by the continuous line; this measure can be interpreted as a trial by trial

covariation in time of the electrophysiological and the behavioral measures.This

result is confirmed by cluster-based statistics and permutation tests. The statistical

framework that we used is detailed in the Materials and Methods section. This

result confirms that beta band power variation in the striatum is differentially

modulated by feedback type (i.e., presence or absence of rewards) and encodes

RPE signals.

Figure 3. Mutual Information (MI) between beta-band oscillation and RPE. The dashed
lines represent non significant values (p ≥ 0.05), while the continuous lines represent
significant values (p < 0.05).

Information about RPE dissociates striatal regions

We next investigated whether the encoding of RPEs by beta-band LPF power

modulations differentially recruited the sensorimotor, associative and limbic territories

of the striatum. Figure 4 illustrates the spatial distribution of striatal sites at which

we recorded LFPs in one monkey, as verified by histological analysis. We subdivided

the recording sessions into different groups according to their spatial location in the

striatum. In order to group recording sessions into homogeneous clusters, we used

the KMeans algorithm applied to the 3-dimensional spatial coordinates (AP, ML and

depth) of the recording sites. We set the number of clusters equal to six for each
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territory (putament, caudate and nucleus accumbens), in order to retain a sufficient

number of trials per cluster. Thus, we obtained a total of eighteen spatial clusters, as

represented in Figure 5A. Once we obtained the clusters, we computed the MI

between the RPEs and beta power as described in the previous section. We

observed that the amount of information carried by the beta-band LFP power about

the RPE is higher in the limbic striatum then slowly decreases in the associative

territory to finally drop down in the motor striatum. In Figure 5B, each line

corresponds to a striatal territory, and for each line the figures are ordered by the

maximum value of the sum of the MI of each cluster. As in Figure 4, dashed lines

correspond to non-significant time intervals, while full lines correspond to significant

temporal clusters. As shown in Figure 5B, the number of significant clusters

decreases across territories following this pattern.

Figure 4. Positions of all striatal recording sites in monkey F. Each dot corresponds to a
single LFP recording site. Coronal sections are labeled in rostrocaudal stereotaxic planes
according to distances from the anterior commissure (AC) used as a reference
landmark.The inset shows a photomicrograph of a coronal section stained with Cresyl
violet at the level of the posterior putamen (i.e., motor striatum) with visible traces of
electrode tracks above the putamen. Cd, caudate nucleus; Put, putamen.
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Figure 5. A) two-dimensional spatial positions of the clusters of recording sites, for
monkey F and T. Clusters are represented along their antero-posterior (AP) position
(antero = positive numbers, posterior = negative numbers) and depth (deeper = lower
number) of the recording site. Each color corresponds to an anatomo-functional region:
red = limbic striatum, blue = associative striatum, green = motor striatum.
B) MI computed in each of the clusters, for monkey F and T. The colour and the number
associated with each cluster corresponds with the image on the top. From this image
emerges how the number of clusters with a statistical significant increase of MI is higher
in limbic striatum, to then progressively diminish in associative and motor striatum.

RPE follows a rostro-caudal and dorso-ventral gradient

We then assessed how the average amount of information about the RPE is

distributed across striatum. To answer this question, we defined a rostro-caudal and

dorso-ventral axis by taking the highest and the most posterior among electrodes’

positions to define a referential point in space for each of the two monkeys. We

computed the euclidean distance from the reference point to the center of each

cluster, which allowed us to investigate the presence of linear or nonlinear relations

between clusters’ positions and functional effects (MI values). Figure 6 shows an

increase in RPE information with the distance from the referential point, toward the
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rostral-ventral striatum. Linear correlation analysis revealed a significant and positive

correlation (p-values < 0.05) for both monkeys. In other words, this result indicates

that the amount of information about RPE signals follows an anatomical gradient,

showing higher values in the rostro-ventral part of the striatum and gradual decrease

towards the most dorso-caudal part.

Figure 6. Striatal gradient of the total RPE-beta band MI. On the y-axis we plotted the
sum over the outcome time of the MI computed among RPE and beta band activity. On
x-axis we plotted the distance of clusters from a reference point computed taking the AP
coordinate of the most posterior recording site and the Depth coordinate of the higher
recording site of each monkey. The linear regression with the associated p-value shown
in the figure suggests an increasing gradient of RPE related activity toward the most
rostro-ventral part of the striatum.
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Material and Methods

Experimental procedure and data acquisition

Experimental set-up and behavioral task

Two male adult rhesus monkeys (Macaca mulatta) were trained in an instrumental

free-choice probabilistic learning task, in which they learned to choose among three

options depending on the relative difference in reward probability associated with

each option. All procedures were approved by the Institut de Neurosciences de la

Timone Ethics Committee (Protocol A2-10-12) and were in accordance with

guidelines from the National Institute of Health. Briefly, the surgically implanted

monkeys were head-restrained to allow for stable electrophysiological recordings in

different regions of the striatum.

The task required monkeys to choose among three spatial cues that were associated

with different probabilities of liquid reward. Both monkeys were previously involved in

other experiments studying single-neuron activity in the striatum during performance

of simplified versions of the reaching task (Marche et al., 2017; Marche and Apicella,

2021). As shown in Figure 1, the experimental setup consisted of three targets

(10-mm diameter) aligned horizontally (left, center, right), at the monkey’s eye level,

in a panel that was placed at a distance of 30 cm in front of the animal. The distance

between targets was 10 cm. A two-color (red and green) light-emitting diode (LED)

was located in the bottom of each target. Monkeys were trained to keep their hands

on a metal rod, located on the lower part of the panel, at their waist level, as a

starting position for the movement. A tube positioned directly in front of the animal’s

mouth dispensed small amounts of fruit juice (0.3 ml) as reinforcement.

Each trial was initiated when the monkey kept its hand on the rod for 1 s, after which

all three LEDs were lit with a green color for 500 ms (cue onset). A fixed delay period

of 1 s followed the offset of the cue. After the delay period, all three LEDs turned to

red and this instructed the monkey to start a movement toward the chosen target.

Once a target was touched, all three stimuli turned off and the monkey immediately

received the associated outcome (reward or no reward) according to the
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programmed schedule. Regardless of the outcome, the monkey had to bring the

hand back on the rod to initiate a new trial. A new trial could not begin until the total

duration of the current trial (6 s) had elapsed. Trials in which the monkey released

the bar before trigger onset were aborted. If the monkey did not release the bar

within a maximum time of 1 s after trigger onset or did not contact a target within a

maximum time of 1 s after bar release, this was considered as incorrect.We tested

monkeys in two learning contexts in which the probability of reward associated with

each target was varied, a first ‘easy’ condition and a second ‘hard’ condition with

relative reward probabilities of 70%-15%-15% and 50%-25%-25%.

Each condition was predetermined at the beginning of each block of trials and was

changed from block to block. No explicit information regarding reward probabilities

was available. Therefore, monkeys learned by trial-and-error the location of the

most-rewarding target (i.e., the option with higher reward probability). The location of

the best rewarded target was chosen pseudorandomly across trial blocks. There was

no explicit information indicating transitions between blocks of trials and there was a

varying number of trials per block (30-80 trials) to prevent anticipation of a block

transition by the number of trials.

For each trial, we computed the reaction time (RT, defined as the time interval

between the go signal and the bar release) and the movement time (MT, from the

beginning of the movement to the target contact).

Acquisition of neurophysiological data

We used conventional techniques for recording single neuron activity from striatum

(Marche et al., 2017). Monkeys were implanted with a recording chamber targeting

the striatum, centered on the anterior commissure. This location allowed vertical

access with custom-made glass-coated tungsten microelectrodes (impedance: 1–2.5

MΩ) to the putamen and caudate nucleus. Recordings were made in striatal sites

where single-neuron activity was found, and the sites changed from session to

session. LFPs from electrode were amplified (x 5000), bandpass filtered (3-150 Hz),

and then sampled at 16.6 kHz by using a Power1401 Analog-Digital converter and a

multi-channel acquisition software (Spike2, version 7.2; Cambridge Electronic

Design).
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Histological reconstructions

Recording sites were histologically verified in both animals, using several small

electrolytic lesion marks in the putamen anterior and posterior to the anterior

commissure (Marche et al., 2017). Upon completion of electrophysiological

recordings, monkeys were anesthetized by using pentobarbital and perfused with 4%

paraformaldehyde. Coronal brain slices (40 μm thickness) containing the striatum

were prepared and stained by using Cresyl violet to identify the lesion marks.

Electrode penetrations were reconstructed in serial sections through the striatum in

each monkey.

Behavioral model

In order to model behavioral choices and estimate the evolution of RPEs during

learning, we used a Q-learning model (Watkins and Dayan, 1992) from

reinforcement learning theory (Sutton and Barto, 1998). Briefly, the Q-learning model

updates action values through the Rescorla-Wagner learning rule (1972) expressed

by the following equation:

(1)𝑄
𝑎
(𝑡 + 1) = 𝑄

𝑎
(𝑡) + ∆𝑄

where corresponds to the value of action a=1, 2, 3 (three possible movements𝑄
𝑎
(𝑡)

to 3 targets) at trial t, and corresponds to the update value, also called Reward∆𝑄

Prediction Error (RPE):

(2)∆𝑄 = 𝑅𝑃𝐸 = ɑ · (𝑟(𝑡) − 𝑄
𝑎
(𝑡))

where is the learning rate (which varies from 0 to 1) and models the type ofɑ 𝑟

outcome. The r parameter takes values equal to 1 for a correct response, 0 if

incorrect. Action values are then transformed into probabilities according to the

softmax equation:
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(3)𝑃
𝑎
(𝑡) = 𝑒𝑥𝑝(β𝑄

𝑎
(𝑡)) / 

𝑎
∑ 𝑒𝑥𝑝(β𝑄

𝑎
(𝑡))

The coefficient β is termed the inverse ‘temperature’: low β (less than 1) causes all

actions to be (nearly) equiprobable, whereas high β (greater than 1) amplifies the

differences in association values.

We identified the set of parameters that best fitted the behavioural data using a

maximum likelihood approach. The model was fitted separately for each block of

trials and learning session.

For each learning session, we varied the learning rate λ from 0.1 to 1 (in steps of

0.01) and β was varied from 1 to 10 (in steps of 0.2). The two free variables of the

model that we fitted are the learning rate of the learning rule (λ) and the inverse of

the temperature used by the softmax function, and we used a grid search algorithm

to find the best fitting couple of values. For each parameter set, we computed the

log-likelihood of the probability to make the action performed by the animal as

follows:

(4)𝐿 =
𝑡
∑ 𝑙𝑛 𝑃

𝑐ℎ𝑜𝑠𝑒𝑛
(𝑡)

Neurophysiological Data Analysis

Preprocessing of LFP data

LFP signals were preprocessed using a notch filter around 50Hz and a band pass

filter between 1Hz and 140 Hz were applied. Artifact rejection was performed by

visual inspection on the blocks of trials, keeping the ones that were not affected by

the spiking activity.
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Finally, filtered LFP signals were downsampled to 1000 Hz and cutted into epochs

aligned on single events, namely the outcome presentation, used to define the

period of analysis (from 0.0 to 0.8 sec), and the cue onset, used to define the

baseline period (from -0.55 to -0.05 sec). After epoching, a second visual inspection

was performed to remove artefacts from analysis, e.g. deriving from electrical

interferences or by spiking activity. The period of analysis was chosen according to

the fact that in some block of trials an artifact was produced at the moments of the

release and of the contact between the monkey and the metal bar. Recording blocks

included were cut at least 25 trials for two reasons: to be sure that the monkey

discovered the correct target, and because, especially in the difficult variation of the

task, we observed a decrease in performances in very late trials.

Statistical analysis of model-free and model-based behavioral correlates

In order to explore the relation between LFP power modulations and behavioral or

model parameters, we computed the Linear regression between the

neurophysiological signal and five behavioral variables that we considered significant

for the purpose of this specific study: the RPE, the absolute value of the RPE

(absRPE), the reaction time (RT), the movement time (MT) and the chosen action

(Action).

As a control analysis, we assessed the degree of correlation between model-free

(such as RTs and MTs) and model based (such as RPE and absRPE) behavioral

variables, and single-trial LFP power values. To do so, we used a multiple linear

regression (MLR) model, considering as the dependent variable (y) the average of

the beta power in each trial, and as the independent variable (x) the four behavioral

variables. A MLR was applied to each recording block, and once we collected all the

angular coefficients relative to each block we performed a group level analysis

computing a two tailed t-test. As we can see in Table 1, the distribution of the beta

values relative to the RPE are significant for both the monkeys. This means that RPE

is able to explain the variation in the beta-frequency band, and thus we focused on it

to perform further analysis.
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Table 1: p-values associated to the two-tailed t-test analysis of the angular coefficients
resulting from the MLR

Spectral analysis of LFP data

Time-frequency analysis

To estimate the power of the LFP signals, we performed a time-frequency analysis

using the Morlet wavelet method (Cohen, 1995), considering the frequency bands

from alpha to gamma - high gamma: the analysis was performed on 55 frequency

steps, logarithmically spaced, in the range of 8Hz to 50Hz, and the number of cycles

used for each band corresponded to its frequency divided by 4. We computed the

time-frequency map in the defined periods aligned on the two previously mentioned

events (baseline and period of interest). Then we applied a baseline correction at

this stage of analysis, we computed the relative change with respect to the baseline,

that corresponds to subtracting and then dividing the signal by the average over time

of the baseline.

Once we obtained the corrected single-trials time-frequency maps, we divided them

into two sub-datasets between rewarded and unrewarded trials. Then, we contrasted

the two conditions for each monkey, performing a two-sided t-test analysis across all

the trials. Thus, for each monkey we obtained a 2D p-values map with the same size

of the original time-frequency maps (Figure 2). Since the t-test was performed
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across all the considered frequencies and time points, we Bonferroni corrected the

resulting p-values multiplying them by the total number of considered frequencies

and time points, in order to consider the multiple comparison problem and avoid to

have significative p-values by chance. The goal of this analysis was to define in

which frequency band there was a peak of significant difference between the two

conditions for each of the two monkeys. For monkey F, the major difference was

around 25 Hz whereas for monkey T it was found at 30 Hz. These values were

subsequently used to define the two frequency bands as the central frequency to

estimate a single band power using the multitaper method for each monkey. Also in

this case we used the relative change with respect to the baseline to correct the

data.

Beta-band analyses

We then focused on a limited frequency band to study the role of beta band

oscillations using the subjects’ specific high beta - low gamma band power, to then

perform mutual information based statistical analysis.

Single band spectral density estimation was performed using a multitaper method

based on discrete prolate spheroidal (slepian) sequences (Percival and Walden,

1993; Mitra and Pesaran, 1999). To extract beta-band power estimates, LFPs time

series were multiplied by k orthogonal tapers (k=4) (0.33 s in duration and 15 Hz of

frequency resolution), centered at 25 and 30 Hz for monkey F and monkey T,

respectively, and then Fourier-transformed.

All data analysis was performed by using subroutines written in Python (version 3.6).

Data were readed and analysed using the NEO (version 0.8) and MNE (version

0.21) libraries.

Information theoretical and statistical analysis of LFP data

We used information-theoretic metrics to quantify the statistical dependency between

the beta band signals and RPE signals. To this end, we computed the mutual
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information (MI) between the LFP power and the behavioral variable. As a reminder,

mutual information is defined as:

𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)

Where the variables and represent the trial by trial power of the LFP and RPEs,𝑋 𝑌

respectively. is the entropy of , and is the conditional entropy of𝐻(𝑋) 𝑋 𝐻(𝑋|𝑌) 𝑋

given . The MI can be difficult to estimate in practice as it requires sampling the full𝑌

joint distribution of the two considered variables. Therefore, here we used the

recently proposed semi-parametric binning-free Gaussian-Copula Mutual Information

(GCMI) (Ince et al., 2017). In short, the GCMI exploits the fact that the MI does not

depend on the marginal distributions of the variables, but only on the copula function

which encapsulates their statistical dependency. The GCMI is a robust rank-based

approach allowing to detect any type of relation as long as this relation is roughly

monotone.

For the statistical inferences, we used a group-level approach based on

non-parametric permutations and encompassing non-negative measures of

information (Combrisson et al., 2021) implemented in the Frites1 Python software. To

this end, we used a fixed-effect model across sessions per monkey (respectively 192

and 136 blocks for monkey F and T). By estimating the effect size across sessions,

we improved the statistical power and the overall signal-to-noise ratio at the cost of

ignoring the session-to-session random variations. The MI is estimated across

sessions between the LFP power and the behavioral variable, at each time point and

for each electrode. Finally, we used the cluster-based statistics for correcting the

p-values for multiple comparisons across all time points and electrodes.

Anatomo-functional analysis of striatal territories

Once we found a strong and significant relation between beta band and RPE, we

wanted to investigate how the information about the evolution of the RPE is encoded

in the striatum, if its localization is restrained to the ventral striatum (Abler et al.,

2006; Morris et al., 2012; Calderon et al., 2021) or if it is detectable also in dorsal

1 https://github.com/brainets/frites
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and caudal striatal regions, as was shown in previous works (Rektor et al., 2005;

Valentin and O’Doherty, 2009; Asaad and Eskandar, 2011).

The electrophysiological data were collected in all the three putative regions of the

striatum (i.e.,limbic, associative, and motor striatum). In order to have a better spatial

resolution, we decided to divide recording sites in six different clusters following the

given anatomical subdivision. The number of clusters was set according to a

compromise between trial number and number of clusters.Clusters were computed

using the KMeans algorithm implemented in scikit-learn, on the 3D coordinates of

the electrodes defined as the antero-posterior (AP) and dorso-medial (DM) distance

from the zero of the recording chamber on the monkeys’ skull surface, and the depth

of the electrodes. This clustering algorithm divides the data in a pre-defined number

of n groups with the assumption that they should have the same variance, this result

is achieved by the minimization of the within-cluster sum of squares. We also tried

other techniques for clustering, but using the KMeans clustering resulted to be the

best method to obtain well spatially defined and unbiased clusters.

Thus, we obtained eighteen spatial clusters and we repeated a MI based analysis

similar to the one described in the previous paragraph, with the difference that a

permuted MI matrix was computed for each region, and that the cluster forming

threshold and the maxstat correction were applied among all this matrices. In Figure
4, we plotted the clusters centers’ positions relative to the AP position (x axis) and

the depth (y axis). In this figure, the clusters’ centers are numbered following the

ascending values of the average of the MI computed for each cluster, splitted up

following the territory division (represented by the colours) that is used in Figure 4.

Indeed, in Figure 4 we can observe that higher values of MI belong to more

ventromedial striatal territories, and that also the most significant values are linked to

the spatial position.

After this step, we set as reference the position of the most upper and posterior

recording sites and the AP and depth coordinates of each cluster center position to

calculate the euclidean distance between them. This quantity gives us a good

relative measure for each monkey to estimate a gradient axis. We performed a linear

regression analysis between this distance and the average MI of each cluster to find

out a positive correlation, suggesting that the more rostro-ventral part of the striatum
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carries more information about the RPE, and that this information is not completely

lost, but fading toward the caudo-dorsal part of the striatum.
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Discussion
Two main aspects of the functional organization of the striatum emerge from the

present study: (1) changes in LFP beta-band oscillations that may be consistent with

RPE encoding (i.e., the difference between expected and actual outcomes) are

observed in different parts of the striatum which are assumed to correspond to

functionally distinct regions; (2) the quantity of RPE associated information is

dependent on the striatal region following rostro-caudal and dorso-ventral

gradients, with a maximum in the ventral part of the anterior striatum traditionally

regarded as the limbic striatum in the primate. These data highlight a relationship of

beta oscillatory activity in the striatum to non-motor aspects of behavior, such as the

signaling of reward information, and distinct contributions for striatal regions in the

evaluation of action outcome based on reward feedback.

Role  of striatal beta oscillations in outcome evaluation

A key finding in our study is the occurence of LFP beta oscillations during the

outcome period of the task that may play a role in evaluative processing after action

choice (i.e., presence or absence of reward). Our analysis suggests that RPE was

the most important variable influencing striatal LFP beta oscillations, this trend being

present in data from every striatal region in which we recorded . To our knowledge,

this is the first report to demonstrate that beta oscillations in the monkey striatum

may play a role in RPE encoding.

Beta band oscillations in the basal ganglia are mostly associated with motor control.

Indeed, numerous studies in humans and animals have provided evidence that an

increased beta oscillatory activity within basal ganglia circuitry occurred with an

impaired dopaminergic transmission and the expression of motor deficits observed in

humans with Parkinson’s disease (Brown, 2007; Jenkinson and Brown, 2011).

Moreover, deep brain stimulation of the STN in dopamine-depleted conditions

interferes with this abnormal oscillatory activity and improves motor symptoms (Kühn

et al., 2004; Holt et al., 2019).

Beta oscillations have also been reported in the striatal LFP activity of normal

animals, both rodents and monkeys, during specific phases of behavioral tasks

(Berke et al., 2004; Courtemanche et al., 2003; Leventhal et al., 2012; Schmidt et al.,
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2013; Bartolo et al., 2014), but the potential functional significance of such oscillatory

activities is still under debate. In particular, despite the proposed role of the striatum

in action valuation and reward-driven learning, few studies have specifically

investigated whether striatal beta oscillations could possibly be associated with

reward processing (Howe et al., 2011; Leventhal et al., 2012; Münte et al., 2017;

Schwerdt et al., 2020). For example, the work of Leventhal et al. (2012) has shown

that beta band oscillations are associated with cue utilization in rat striatum. They

used four different variants of the classic Go-NoGo task, founding a whole-striatum

and non lateralized event-related synchronization (ERS) in the beta band associated

to the cue, and not linked to motor initiation or suppression, in every variant of this

task. The relevant feature that should follow the cue to produce a beta ERS is the

presence of the reward. Indeed in all of these task variants, in which the reward is

deterministic, if we think about the cognitive role of the cue producing the beta band

power increase, it seems ‘anticipating’ the reward release.

Reward prediction error encoding in the striatum

The role of midbrain dopamine neurons in RPE encoding is well established (Fiorillo

et al., 2003; Abler et al., 2006; Bray and O’Doherty, 2007; Fujiyama et al., 2015).

Animal electrophysiology and human neuroimaging have provided extensive

evidence of RPE-related activity in the striatum (Apicella et al., 2009; Roesch et al.,

2009; Oyama et al., 2010; Asaad and Eskandar, 2011; Stalnaker et al., 2012) which

is the main target structure of ascending dopamine projections from neurons located

in the substantia nigra pars compacta and ventral tegmental area. RPE is a

non-linear measure that can have positive or negative values, computed as the value

of the reward (0 or 1) minus the value of the prediction relative to the state-action

couple (Asaad and Eskandar, 2011); it can’t be directly measured, for this reason we

used a Q-learning model fitted on monkeys’ choice behavior to compute it trial by

trial. RPE is essential for adaptive behavior in order to avoid non rewarding actions

and exploit the rewarding ones, by improving the predictions about future outcomes

(O’Doherty et al., 2017), playing a crucial role in the acquisition of new learned

behaviors (Ressler, 2004; O’Doherty, 2007; Keramati et al., 2011; Nonomura et al.,

2018). From our work, a significant increment of mutual information between the

beta band and the RPE is detected in both monkeys, with a slightly stronger effect in
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monkey F compared to monkey T. To interpret this result, we should consider that

the MI between two variables can be considered as an index of covariation between

them. Thus, in this analysis an increment in MI corresponds to a strong covariation

between the across trial evolution of the beta-oscillations power and the RPE.

Moreover, according to the statistic we used, the significance indicates that these

variables covariates between them over a substantial number or recording blocks.

Thus, the striatum can have a major role in encoding and transmission of RPE

signals across different functional regions. More studies about the transmission of

RPE signals both intra-striatum and across the striato-cortical network are needed in

order to better understand the time course, the localization and the behavioral

salience of this signal, so important for the regulation of higher cognitive processes.

Finally, one may consider that the observed changes in striatal beta activity could

possibly be associated, at least in part, with other aspects of information processing

during the outcome period of the choice task, such as return movements to the

resting bar or the experience during reward consumption (sensory pleasure or mouth

movements). Additional studies are necessary to disambiguate the affective, motor,

or cognitive origin of changes in beta oscillations at the end of the trial in our task.

Functional parcellation of the striatum

Different parts of the striatum and their corresponding cortical inputs are assumed to

serve different functions, with a major involvement of the dorsal part of the posterior

putamen in motor processing, whereas the ventral part of the anterior caudate

nucleus and putamen is more concerned with mediating motivation and reward

(Apicella et al., 1991; Fiorillo et al., 2003; Marchand et al., 2008; Brovelli et al., 2011;

Pennartz et al., 2011; Schultz, 2016a, 2016b; Han et al., 2021). Taking account of

these regional differences, we investigated LFP activity in both anterior and posterior

parts of the striatum. According to our results, different clusters of recording sites

were associated with different quantities of MI in the outcome period. Thus we

wanted to understand if the total value of MI summed over time is following a spatial

organization, to then perform a linear regression analysis between the total MI and

their relative position to a rostro-ventral to caudo-dorsal anatomical axis. We chose

to form the clusters respecting the classical functional striatal regionalization given

by well known anatomical constraints (Jahanshahi et al., 2015).
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Several lines of evidence point to a major involvement of the ventral part of the

anterior striatum, including the nucleus accumbens, in the processing of

reward-related information (Apicella et al., 1991; O’Doherty, 2004; Schultz, 2016c).

In particular, a number of studies have highlighted the role of the ventral striatum in

the computation of RPEs (Abler et al., 2006; Bray and O’Doherty, 2007; Schultz,

2016a; Calderon et al., 2021). Our results suggest that the information about RPE is

present, to varying degrees, in all parts of the explored striatum, forming a fading

gradient stronger toward the rostro-ventral striatum and weaker toward its

caudo-dorsal part. This result is in line with fMRI studies in humans showing that

striatal circuitry is able to establish different functional gradients, spanning from the

dopaminergic signaling to the cognitive control (Mestres-Missé et al., 2012;

Vogelsang and D’Esposito, 2018; Alberquilla et al., 2020; Han et al., 2021),

determined by parallel pathways from motor, associative, and limbic cortical areas

running through different regions of the striatum.

It seems that a communication between distinct functional territories is implemented

by gradients of information carried by oscillations. Indeed, also if a well structured

connectivity is needed to transmit precise signals, the information contained in those

can participate in other behavioral functions. RPE is indeed needed to update the

inner model of action values in response to a particular state, and those values

should be retained in short term memory in order to plan future actions in a

goal-directed way. Given its intricate internal connectivity shaped by cholinergic and

GABAergic interneurons, and its diffuse projections over cortical and subcortical

regions, the striatum lends itself well to the role of messenger. Thus, the RPE

gradient can be a result of the internal striatal transmission (and processing) of the

dopaminergic signal, allowing it to reach different behavioral systems. Our results

are in line with the idea that the RPE is an important signal affecting several aspects

of the behavior, and that for this reason it should propagate in limbic, cognitive and

motor areas of the brain (Silvetti et al., 2014; Schultz, 2016b). .

We have already pointed out that the RPE signal exerts a driving influence on

goal-directed learning. As such, it is used together with our present knowledge in

order to plan future actions (Takikawa et al., 2002; Ressler, 2004; Gläscher et al.,

2010; Izawa and Shadmehr, 2011; Schultz, 2016a). Thus, one can expect that this
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signal should be able to reach all striatal regions in order to participate in limbic,

associative and motor functions, and propagate in the functional associated cortices,

such as the cingulate cortex, the prefrontal cortex and the premotor cortex (Oya et

al., 2005; Mestres-Missé et al., 2012; Vogelsang and D’Esposito, 2018).

In the present study, we focused on LFPs oscillations to study their implication in

outcome processing. Contrary to spiking activity that is detected at higher

frequencies reflecting the very local activation of neurons, LFPs are detected at

lower frequencies, and are assumed to reflect the activity of populations of neurons

(Buzsáki et al., 2012). Thus, LFPs can be considered as signals recorded on a

relatively larger area (generally a couple of millimeters of diameters from the

electrode), containing the average coordinate activity of several neurons. According

to literature, the main contributors to LFPs are the excitatory and inhibitory

postsynaptic potentials (E/IPSP), and sometimes also membrane hyperpolarization

(Buzsáki, 2006; van der Meer, 2010; Buzsáki et al., 2012). The recorded activity can

contain rhythmic oscillation in specific frequency bands, which can be related to

some environmental, behavioral or cognitive aspects. Although this signal can

sometimes contain traces of leaking activity from surrounding brain areas, LFPs are

increasingly used for the study of striatal activity (Courtemanche et al., 2003; Berke

et al., 2004; Brown and Williams, 2005; van der Meer, 2009; Münte et al., 2017;

Suzuki and Tanaka, 2019). Taking into account this limitation, one of our future

interests will be to consider the Spiking-LFP coupling to better investigate the role of

beta oscillations in encoding RPE and its distribution through striatum. This study

could be also helpful to understand differences and similarities between rodents’ and

primates’ striatal activity.

Indeed, although we have concentrated, in our study, on striatal LFP oscillations in

the beta band, experiments with rodents have shown that LFP oscillations in the

gamma band are more prominent in the ventromedial striatum, as compared to the

dorsolateral striatum (Berke et al. 2004; Berke 2009; van der Meer and Redish 2009;

van der Meer et al. 2010; Kalensher et al. 2010). To our knowledge, there is no

evidence of a similar RPE related gamma activity in primates striatum. Given their

similar role in encoding reward related information and outlining a gradient of activity,

we wonder if this difference in bands’ activity can be given by an interspecific shift in

oscillations, consequent to morphological striatal change.
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Conclusion
The aim of this study was to assess the role of different functional striatal regions in

encoding RPEs signals. To do so, we analysed LFPs data recorded in three different

striatal anatomical regions of two monkeys while performing a free choice

probabilistic learning task. We provided new evidence that changes in beta band

oscillations may reflect the encoding of RPEs defined in reinforcement learning

models. Then, we divided the recording sites in eighteen spatial clusters and we

observed that such changes were dominant in the rostro-ventral rather than the

caudo-dorsal striatum, supporting the notion of a prominent role for the limbic part of

the striatum in evaluative processing useful for future actions. Based on our mapping

of the spatial organization of oscillatory beta activity in the striatum, we propose that

the RPE encoding can occur first in the ventral region and then spread in the dorsal

region. This finding may be of clinical importance as it is known that dorsal and

ventral parts of the striatum are differentially involved in neuropsychiatric diseases,

with dorsal striatal circuits mainly related to motor and cognitive disorders, whereas

ventral striatal circuits are involved rather in the expression of affective disorders and

compulsive behaviors. However, more studies are needed to understand which are

the neural computations at the base of striatal gradients formation.
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Abstract
Humans have an extraordinary ability to infer causal relations between actions, or

more generally behaviors, and their consequences. Such sense of causality is

thought to be linked to the action-outcome contingency, which is defined as the

difference between the probability of observing a given outcome when an action is

performed (P(O|A) and the probability of receiving the same outcome when the

action is withheld (P(O|¬A). Although neural correlates of goal-directed causal

learning are well addressed in literature, less is still known about the temporal

dynamics of the underlying brain regions. We analysed the cortical high-gamma

activity (HGA, 60-120Hz) estimated from magnetoencephalography (MEG) data

recorded from human participants while performing a causal learning task with

different associated contingency values. A Bayesian ideal observer model was used

to estimate the evolution of action-outcome probabilities and contingencies from the

sequence of stimuli and behavioral choices. Model-based analysis of HGA exploiting

information theory measures combined with cluster-based statistics was used to

identify the brain regions mediating such learning computations, together with their

temporal dynamics. Our findings suggest a major role of the prefrontal cortices, and

in particular the orbitofrontal cortex (OFC) and the rostral prefrontal cortices in

encoding post outcome signals related to contingency update and learning.
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Introduction
In the context of goal-directed learning (Balleine and Dickinson, 1998; Dickinson and

Balleine, 2000; Dolan and Dayan, 2013), mammals and especially humans prove to

be particularly able to infer causal relations between the actions they perform and the

outcomes they receive (Blaisdell, 2006; Penn and Povinelli, 2007; Liljeholm, 2018,

2021). This ability is required in order to manage a probabilistic environment and to

flexibly adapt to changing rules. The ability to infer causal relations relies on the

ability of creating an inner representation of the environment, and to use this internal

model of actions-outcomes interactions to compute their contingency value

(Dickinson and Balleine, 2000; Moore et al., 2009). Psychologists defined

instrumental contingency using a mathematical formulation, according to which the

perceived contingency value, called ΔP, corresponds to the difference between the

conditional probability of obtaining an outcome after performing an action (P(O|A))

and the conditional probability of receiving the same outcome when the action is

withheld (P(O|¬A)) (Hammond, 1980; Allan and Jenkins, 1980; Allan, 1993; Allan et

al., 2008; Morris et al., 2017).

Thus the contingency value corresponds to a subjective judgement of causality, that

according to its definition can take values from -1 to 1, being the difference between

two probability values ranging from 0 to 1. A positive ΔP corresponds to a positive

causal perception meaning that the subject has the impression that the action

triggers the outcome, while a negative ΔP value corresponds to a negative causal

perception, meaning that the subject has the impression that the action prevents the

outcome. Additionally, when the ΔP value is close to 0 the subject will have a null

causal perception, meaning that there is no apparent causal relation between the

action and the outcome (Shanks and Dickinson, 1991; Msetfi et al., 2013).

Previous behavioral studies, in which different couples of the two conditional

probabilities were used, confirmed that humans are sensitive to small variations of

ΔP, and that this measure reflects causal judgment (Wasserman et al., 1983; Shanks,

1985). Other studies used a contingency degradation paradigm (Balleine and

Dickinson, 1998), in which the value of P(O|A) is fixed and the value of P(O|¬A) is
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gradually increased leading the subject to a loss of interest toward the action,

confirming sensitivity toward action-outcomes contingency values. Studies both in

rats (Balleine and Dickinson, 1998; Corbit and Balleine, 2003; Yin et al., 2005) and in

humans (Tanaka et al., 2008) used this paradigm to show the important role of

cortical prefrontal regions such as the prelimbic cortex, the medial prefrontal cortex

(mPFC) and the medial orbitofrontal cortex (mOFC), together with subcortical regions

such as the dorsal striatum. Importantly, some functional Magnetic Resonance

Imaging (fMRI) study (Liljeholm et al., 2011, 2013) found significant correlations

between distinct aspects of contingency learning and cortical and subcortical regions,

highlighting the implication of more posterior areas such as the superior and inferior

parietal lobule.

Although causal learning is strictly linked to instrumental learning and goal-directed

learning, of which brain areas implication are widely addressed by literature, less is

still known about the link between neural and computational dynamic underlying

causal learning. The aim of this study is to assess the temporal dynamics of the

contribution of different cortical brain regions during contingency acquisition in

humans.

To do so, we asked eighteen participants to perform a goal-directed causal learning

task while their brain activity was recorded with magnetoencephalography (MEG), in

order to extract and analyse the power of the signal in the high-gamma band, that is

known to account for local computations (von Stein and Sarnthein, 2000; Buzsáki

and Wang, 2012) and reflect fMRI hemodynamic response (Logothetis et al., 2001;

Brovelli et al., 2005). Then, in order to estimate the trial-by-trial evolution of the

conditional probabilities, we built a Bayesian computational model of an optimal

observer (Meyniel et al., 2015). We fitted the model with the behavior of the

participants in order to obtain the subjective progression of the perception of task

related variables, such as the ΔP. We then used mutual information (MI) to

investigate the relations between cortical activity and behavior and we analysed the

results using a non-parametric cluster based statistics method.
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Methods

Figure 1. Probability values linked to the volleyball task. The causal perception ΔP is
given by the difference between the contingency values P(O|A) and P(O|¬A). A positive ΔP
is linked to a positive causal perception, a negative ΔP is linked to a negative causal
perception, while a ΔP close to zero is linked to no causal perception between the action
and the outcome.

Experimental set-up and causal learning task

Eighteen healthy participants accepted to take part in our study, all of them were right

handed, 13 were females and 5 males, and the average age was around 25 years.

We submitted to them a written informed consent according to established

institutional guidelines and local ethics committee. At the end of the experience,

participants received a 50€ monetary compensation.

We designed an original task, that we called the ‘volleyball task’, which allowed us to

modulate both the actions-outcomes conditional probabilities (P(O|A) and P(O|¬A)) in

order to obtain 5 possible values of ΔP, both positive and negative (-0.6; -0.3; 0; 0.3;

0.6). To avoid introducing some possible biases associated with the values of

conditional probabilities, each of these ΔP values was computed using three different

couples of P(O|A) and P(O|¬A); thus we obtained a total of fifteen possible scenarios

(3 couples ⨉ 5 ΔP). A list of the fifteen scenarios with their associated probabilities,
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and the resulting contingency values can be found in Figure 1. Moreover, as shown

in Figure 1, introducing this variability in the task design is also important to study

different intensities of causal perception.

Participants performed fifteen scenarios of the task in a randomized order, and all of

them received the same instructions. Participants were instructed to impersonate a

volleyball trainer, trying to evaluate the causal effect of fifteen players in their team.

To do so, they had the opportunity to simulate forty matches for each player

(corresponding to forty trials for each scenario). This task was self-paced, meaning

that no previous stimulus about the beginning of trials was given to participants: they

could have started a trial in every moment by performing a motor response. Thus,

when they wanted to simulate a match, they could have chosen if to let the

questioned player play the match or not, by pushing one of two buttons under their

right hand. Each button was associated to a visual cue (a ‘play’ or a ‘pause’ symbol)

projected on a black screen informing the participants about their corresponding

action value The order of the cues (and as a consequence the action associated to

the buttons) was inverted in half of the scenarios to avoid possible biases due to

positional effect. The outcome of the match was presented 250 msec after the choice

of the participant. The feedback could be either a green happy face or a red sad face

appeared at the center of the screen to inform the participants about the result of the

match (respectively win or lose). The outcome image was displayed for 1.5 sec,

during which it was not possible to perform an action. After the outcome image

disappeared, we imposed an additional waiting period of 300 msec before taking any

other action in consideration. See Figure 2 for a visual description of a single trial

time course. At the end of each scenario, we asked the participants to verbally report

a ‘causal score’ from -100 to 100 to evaluate the performances of the player, where

-100 corresponds to a very negative causal perception (‘everytime I put this player in

my team they lose’), 100 corresponds to a very positive causal perception (‘everytime

I put this player in my team they win’) and 0 corresponds to a null causal perception

(‘the player doesn’t affect at all the performances of my team’)
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Figure 2. Single trial description of the volleyball task. The task was self-paced, meaning
that the participants didn’t receive any cue to start. 250 msec after selection and
execution of the action (‘play’ or ‘not play’) they received an outcome. The outcome was
informative about the result of the simulated match and lasted 1.5 sec. Only after an
additional 300 msec the participants were able to start the next trial.

Data acquisition

Anatomical MRI images were acquired for each participant using a 3T whole-body

imager equipped with a circular polarized head coil. MEG recordings were performed

using a 248 magnetometers system (4D Neuroimaging, magnes 3600). Five

additional electrodes were placed to record cardiac activity, eye-blinks and both

vertical and horizontal eye movements. Visual stimuli were projected using a video

projection, and motor responses were acquired using a LUMItouch optical response

keypad with five keys. Presentation software was used for stimulus delivery and

experimental control during MEG acquisition. Sampling rate was 2034.5 Hz. We

recorded as a baseline ten seconds of resting state activity at the beginning of each

scenario, asking the participants to keep their eyes open and fixate a red cross in the

middle of a black screen. The fifteen scenarios were divided in five recording blocks

to offer participants the opportunity to have pauses. Location of the participant’s head

with respect to the MEG sensors was recorded both at the beginning and end of

each recording block to potentially exclude sessions and/or participants with large

head movements. However, none of the participants moved >3 mm during each
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block. With the exception of participants 3 and 12 which were excluded for MRI

artifacts not allowing respectively the coregistration and the anatomical

reconstruction, all remaining 16 participants were considered for further analysis.

MarsAtlas-based cortical source model

To perform cortical reconstruction we used the FreeSurfer1 (Fischl, 2012) toolbox,

then to build surface meshes and perform parcelization we used the BrainVISA2

(Cointepas et al., 2001) toolbox. The parcelization was performed following the

MarsAtlas (Auzias et al., 2016) anatomical atlas, thus we obtained a total of 82

cortical parcels (41 each hemisphere). Then we used the BV2MNE toolbox3, a

python library developed in our team based on MNE-python4 (Gramfort, 2013), able

to transform the 3D spatial coordinates of the BrainVISA meshes back to MNI space

for MNE compatibility, and to compute the Boundary Element Model (BEM), the

source space, and the forward model. These three elements are needed for the

power estimation at the source level, which will be discussed in the next paragraph.

We performed the coregistration using the ‘mne coreg’ interface.

Single-trial High-Gamma Activity (HGA)

Preprocessing and artefact rejection

To analyse neurophysiological data we used a procedure similar to the one described

in (Brovelli et al., 2015). All the following analyses were performed using the MNE

toolbox (Gramfort, 2013). Raw MEG signals passed a visual inspection to check

recording quality, two defective MEG sensors were excluded from the analysis for all

participants. MEG signals were high pass filtered to 1Hz, low-pass filtered to 250 Hz,

notch filtered in multiples of 50Hz and segmented into epochs aligned on outcome

presentation (win/lose face). In the same way, a baseline epoch was computed from

the 10 sec recording at the beginning of each scenario. We performed an

Independent Component Analysis (ICA) taking the 95% of the whole explained

variance in order to detect and reject cardiac, eye-blink and oculomotor associated

4 https://mne.tools/stable/index.html
3 https://github.com/brainets/bv2mne
2 https://brainvisa.info/web/
1 https://surfer.nmr.mgh.harvard.edu/
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artifacts. Artifact rejection was performed semi automatically, at first we performed a

visual inspection of the epochs’ time series, then we used the autoreject python

library (Jas et al., 2017) that uses machine learning and k-fold cross-validation

methods to detect and reject bad epochs from further analysis.

Single-trial HGA in MarsAtlas

Spectral density estimation was performed using a multitaper method based on

Discrete Prolate Spheroidal Sequences (DPSSs or Slepian Tapers; (Percival and

Walden, 1993; Mitra and Pesaran, 1999)). We focused on HGA because it is well

known to be a good neurophysiological marker for local mesoscopic event related

activity (von Stein and Sarnthein, 2000; Ray and Maunsell, 2011; Buzsáki and Wang,

2012), and involved in higher cognitive processing (Scherberger et al., 2005; Gaona

et al., 2011). To estimate the power of the high gamma band (from 60 to 120 Hz),

MEG time series were multiplied by k orthogonal tapers (k = 11) (0.2 s in duration

and 60 Hz of frequency resolution, each stepped every 0.005 s), centered at 90 Hz,

and Fourier-transformed. Complex-valued estimates of spectral measures, including

cross-spectral density matrices, were computed at the sensor level for each trial n,

time t, and taper k.

In MEG we are interested in estimating the power of a signal at the level of virtual

sources (dipoles) placed on the surface of the participants’ 3D brain model. In order

to pass from the sensor space to the source space, a forward model is needed. The

forward model combines geometrical relations between sensors and sources with the

BEM, which is a volume conduction model. For each participant, we generated a

BEM using a single-shell model constructed from the segmentation of the cortical

tissue obtained from individual MRI scans (Nolte, 2003). Those spatial and physical

information were used to derive single-participant forward models.

We used adaptive linear spatial filtering (Veen et al., 1997) to estimate the power at

the source level (inverse model). We used the Dynamical Imaging of Coherent

Sources (DICS) method, a beam-forming algorithm for the tomographic mapping in

the frequency domain (Gross et al., 2001), which is well suited for the study of neural

oscillatory responses based on single-trial source estimates of band-limited MEG

signals. At each source location, DICS algorithm uses a spatial filter that passes

activity from this location with unit gain while maximally suppressing any other
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activity. The spatial filters were computed on all trials for each time point and session

and then applied to single-trial MEG data.

Once the single-trial high-gamma power at each source location was estimated both

for the outcome aligned activity and for the baseline activity, we normalized the

single-band power computing the relative change respect to the baseline defined as:

(1)𝑋
𝑠𝑜𝑢𝑟𝑐𝑒
𝑛, 𝑡 =

𝑥
𝑠𝑜𝑢𝑟𝑐𝑒
𝑛, 𝑡 − 𝑡

∑𝑏
𝑠𝑜𝑢𝑟𝑐𝑒
𝑛, 𝑡

𝑡

𝑡
∑𝑏

𝑠𝑜𝑢𝑟𝑐𝑒
𝑛, 𝑡

𝑡

Where and corresponds respectively to the normalized and𝑋
𝑠𝑜𝑢𝑟𝑐𝑒
𝑛, 𝑡 𝑥

𝑠𝑜𝑢𝑟𝑐𝑒
𝑛, 𝑡

non-normalized power source estimate for each trial (n) and time point (t), and 𝑡
∑𝑏

𝑠𝑜𝑢𝑟𝑐𝑒
𝑛, 𝑡

𝑡

correspond to the power source estimate of the baseline averaged over time.

Finally, we averaged the normalized source’s power over the previously defined

MarsAtlas parcel to obtain a single power time course for each region of interest

(ROI). With this method we obtained for each participant a matrix describing the

single-trial time course of HGA sampled at 200 Hz of 82 cortical brain regions

(Figure 3).
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Figure 3. MarsAtlas parcelization and average HGA. MarsAtlas is an anatomical atlas
that comprehends a total of 82 cortical regions (41 each hemisphere). Here we showed
the the average HGA computed across all the participants and all the trials, the figure
clearly shows an event related potential interesting the motor, premotor, and sensorial
cortices aligned with the action execution (-0.25 msec), and the visual activity triggered
by the outcome delivery (0.0 msec).

Bayesian ideal observer model of causal learning

In psychology, the contingency value ΔP is computed as the difference between two

conditional probabilities: P(O|A), that is the probability of obtaining a positive

outcome when the action is performed, and P(O|¬A) that is the probability of

obtaining a positive outcome in absence of the action. Those two probabilities are

independent, and they can be separately considered as Bernoulli distributions

because of the binary nature of the outcome (0 = negative outcome; 1 = positive

outcome). Thus, if we call the outcome result and its associated probability we𝑥𝑖 θ

can write the probability mass function as:

(2)𝑝(𝑥𝑖|θ) =  { 
1−θ   →   𝑖𝑓 𝑥𝑖=0
θ          →   𝑖𝑓 𝑥𝑖=1

That can be written also as:

for (3)𝑝(𝑥𝑖|θ) = θ𝑥𝑖(1 − θ)1−𝑥𝑖 𝑥𝑖 ∈ {0,  1}
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Equation 3 describes the probability function for a single outcome event, but if we

want to consider the whole sequence of equally likely outcomes obtained by the

sequence of independent trials, expressed as a vector of length , we should𝐷 𝑛

rewrite this equation as:

(4)𝑝(𝐷|θ) =
𝑛
∏ 𝑝(𝑥𝑖|θ)

Given that we are considering equally likely independent trials, this equation can be

written as a binomial experiment, using the binomial coefficient notation. Thus, given

number of trials, number of positive outcomes and number of negative𝑛 𝑘 𝑛 − 𝑘

outcomes, we can write:

(5)
𝑛
∏ 𝑝(𝑥𝑖|θ) =  𝑛

𝑘( ) (θ𝑘(1 − θ)𝑛−𝑘)

(6)= (𝑛! /(𝑘! (𝑛 − 𝑘)!))(θ𝑘(1 − θ)𝑛−𝑘)

We are now interested in finding the distribution able to describe the data . Sinceθ 𝐷

a binomial distribution describes the distribution of the outcomes but not the

distribution of the trials’ probabilities, we used Bayes rule using the binomial

distribution for likelihood and a beta distribution ( ) as conjugate prior. The𝐵(α, β)

product of the two generates a posterior beta distribution able to describe the

distributions of the probabilities associated to the outcome observing the outcomes’

results:

(7)𝑝(θ|𝐷) = 𝐵(𝑘 + α;  𝑛 − 𝑘 + β)

As we can see, Equation 7 is able to describe the update of beliefs depending on

discrete states of the world, that in this case corresponds to the sequence of received

outcomes, and on the total number of accumulated evidence, acting like an optimal

Bayesian observer. The variables and can be considered as prior beliefsα β

influencing the skewness and the shape of the beta distribution. We fixed those two

values to 1.1 to give a symmetrical and constant prior belief that has an influence

especially on the early trials.

To simplify the comprehension of how the model works we can see it in a frequentist

way, as shown in Figure 4A. Having two possible actions with their independent

outcome probability, we can define two distinct beta models:

134



and𝑝(θ|𝐷
𝐴

) =  𝐵(𝑓(𝑂|𝐴) +  α;  𝑓(¬𝑂|𝐴) + β)

(8)𝑝(θ|𝐷
¬𝐴

) =  𝐵(𝑓(𝑂|¬𝐴) +  α;  𝑓(¬𝑂|¬𝐴) + β)

At each trial, when an action (play / no play) is performed and an outcome (win /

lose) is received, only one of the four variables among the two models is updated

(meaning consequently that only one of the models, the one corresponding to the

chosen action, is updated). Thus, for each trial we can compute relevant behavioral

variables associated to the participants behavior, for example we can compute

P(O|A) and P(O|A) taking the mean of the two distributions, and then use those

values to compute the updating belief about ΔP (Figure 4B):

(9)Δ𝑃 = 𝑓(𝑂|𝐴)
𝑓(𝑂|𝐴)+𝑓(¬𝑂|𝐴) − 𝑓(𝑂|¬𝐴)

𝑓(𝑂|¬𝐴)+𝑓(¬𝑂|¬𝐴)
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Figure 4. A) Trial-by-trial evolution of the two contingency models. At the beginning
both of the models’ probability distributions are centered at p=0.5, which represents the
probability of obtaining the outcome considering the past relative actions. At each trial
one of the two models is updated according to the chosen action. The result of the
outcome establishes the skewness of the probability distribution function.
B) At each trial we computed the average of both beta distributions, corresponding to
the evolution of P(O|A) and P(O|¬A), and we used these two values to compute the ΔP.

Model-based analysis of cortical HGA

Model-based information theoretical analysis

We used information-theoretic metrics to quantify the statistical dependency between

single trial HGA and the model-based behavioral variables computed with the beta
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model. Information-based measures quantify how much the neural activity of a single

brain region explains a variable of the task. To this end, we computed the mutual

information (MI); as a reminder, mutual information is defined as:

(10)𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)

In this equation the variables and represent the HGA power and the behavioral𝑋 𝑌

variables, respectively. is the entropy of , and is the conditional𝐻(𝑋) 𝑋 𝐻(𝑋|𝑌)

entropy of given . In particular, here we used Gaussian-Copula Mutual Information𝑋 𝑌

(GCMI) (Ince et al., 2017), that is a semi-parametric binning-free technique to

calculate MI, in order to overcome some difficulties linked to the use of its classical

version. Indeed MI requires sampling the full joint distribution of the two considered

variables, making it difficult to estimate in case of limited amount of data, while the

GCMI exploits the fact that the MI does not depend on the marginal distributions of

the variables, but only on the copula function which encapsulates their statistical

dependency. The GCMI results being a robust rank-based approach that allows to

detect any type of relation as long as this relation is roughly monotone.

Statistical analysis

For the statistical inferences, we used a group-level approach based on

non-parametric permutations and encompassing non-negative measures of

information (Combrisson et al., 2021) implemented in the Frites5 Python software. We

used a random effect (RFX) to take into account the inter-subject variability, at the

cost of needing a slightly larger dataset to achieve reliable statistical inferences. In

this approach the MI between the neurophysiological signal and the behavioral

regressor is computed across trials for each participant separately, at each time point

and brain region. To sample the distribution of MI attainable by chance, we computed

the MI between the brain data and a randomly shuffled version of the behavioral

variable (Combrisson and Jerbi, 2015). This procedure was then repeated 1000

times. Thus, we took the mean of the MI values computed on the permutations, and

used this mean(MI) to perform a one sample t-test across all the participants’ MI

values obtained both from original and permuted data. We then used a cluster-based

5 https://github.com/brainets/frites
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approach to assess whether the size of the estimated t-values significantly differs

from its distribution. The cluster forming threshold was defined as the 95th percentile

of the distribution of t-values. We used this cluster forming threshold to identify the

cluster mass of t-values on both original and permuted data. Finally, to correct for

multiple comparisons across both time and space, we build a distribution made of the

1000 largest clusters estimated on the permuted data. The final corrected p-values

were inferred as the proportion of permutations exceeding the t-values.
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Results

Figure 5. A) Linear regression between the task associated ΔP values and the
participants’ scores.
B) Linear regression between the ΔP values computed by the Bayesian model and the
participants’ scores.

Learning causal relations

Our first objective was to assess if participants correctly performed the task showing

to be able to learn contingency values. At the end of each learning scenario, we

asked participants to report the causal score they wanted to attribute to the evaluated

player. The score could have been expressed by a number in an interval between

-100 (negative causal perception) and 100 (positive causal perception), where the 0

represented an absence of causal relation. We divided these scores by 100 in order

to rescale them between -1 and 1 and we performed a linear regression between

them and the ideal ΔP values that we used in the task. As we can see in Figure 5A,

we found a very strong significant (p≃2.089*10^-83) positive correlation between

participants’ causal perception and the ΔP values associated with the task, meaning

that they were able to correctly estimate the hidden probabilities. Moreover, as shown

in Figure 6A, the estimated values obtained by the linear regression, represented by

the black line, are very close to the values that we would obtain if the participants

were able to perfectly estimate the causal score, represented by the red line.

Interestingly, participants’ scores seem to be ‘optimistic’, in the sense that they are

increasingly higher when they try to infer higher values of  ΔP.
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Model performance

We built a behavioral model based on an ideal Bayesian observer. This allowed us to

obtain a trial-by-trial description of how the cognitive representation of the task

related probabilities evolves during learning. To assess if the model is actually able to

capture the participants’ ability to encode causality, we performed a linear regression

analysis between the last values of ΔP computed by the model at the end of each

scenario and the score reported by participants normalized between -1 and 1. In

Figure 5B, we can observe a significant (p≃1.506*10^-83) positive correlation

between the causal effect computed by the beta model and the one reported by the

participants at the end of each scenario. This means that the model can actually give

a good indication of how the participants build their final representation of the

contingency values associated with the task when observing the actions-outcomes

succession. Moreover, in Figure 6B we plotted the variance of the final scores

obtained by the model in function of the task ΔP values and the linear regression

between those two variables (black line) in comparison with the perfect estimation of

the task associated ΔP values (the red line). We can see just one of the two lines

because they are almost overlapping, suggesting that the model truly act like an

optimal observer.
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Figure 6. A) Variance of the participants’ scores relative to the task related ΔP values.
The black line represents the linear regression computed in Figure 5, while the red line
represents the ideal regression if the participants’ were able to perfectly infer the ΔP
values.
B) Variance of the model ΔP relative to the task related ΔP values. The black line
represents the linear regression between the two variables, and is not visible because it is
almost superposed to the red line representing the ideal regression if the model were
able to perfectly predict the ΔP values.

Neural correlates of instrumental contingency learning

We computed the trial-by-trial ΔP values with the Bayesian model and the single trial

HGA of each participant, aligned on the outcome delivery. Then we estimated the MI

between these two variables along the time series, and we performed statistics

following the previously explained RFX protocol. We found a substantial increment of

MI in the post-outcome period, in four prefrontal regions of the right hemisphere: the

ventral, ventrolateral and ventromedial orbitofrontal cortices (OFCv, OFCvl and

OFCvm respectively) and the rostral dorsolateral inferior prefrontal cortex (Pfrdli).

However, after the statistic analysis only one of these regions resulted significant,

that is the OFCv (Figure 7, p≃0.006) peaking around 0.5 seconds after the outcome,

while the Pfrdli and the OFCvl were slightly higher the significance threshold

(p≃0.053 and p≃0.074 respectively), and the OFCvm was well above the significance

threshold (p≃0.193).

Neural correlates of actions-outcome probabilities

We followed the same pipeline used for the ΔP to find the neurophysiological

correlates to the actions-outcome contingency values. In this case we computed from
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the model two regressors: the probability of winning when the new player plays the

match, or P(O|A), and the probability of winning when the new player doesn’t play, or

P(O|¬A). Additionally, we computed a regressor based on the task-related probability

of winning according to the chosen action, that we called P(O|C). As shown in Figure
7, we found significant clusters of MI in seven different brain regions of the right

hemisphere associated with the P(O|A). In the frontal lobe we found a long significant

cluster interesting the insular cortex (IC, p≃0.001) from slightly before the outcome

presentation until around 0.38 seconds, together with the post-outcome activity of the

OFCvl (p≃0.012), the rostral ventrolateral prefrontal cortex (PFrvl, p≃0.038), and the

rostroventral premotor cortex (PMrv, p≃0.001). In the parietal lobe we found

significant MI clusters soon after the outcome presentation in the superior parietal

cortex (SPC, p≃0.012) and in the dorsal inferior parietal cortex (IPCd, p≃0.038). In the

temporal lobe, we found a cluster interesting the caudal superior temporal cortex

(STCc, p≃0.017) from -0.04 to 0.21 seconds respect to the outcome. Surprisingly, we

observed an increment of the MI in the left rostral dorsal and medial prefrontal

cortices (PFrd and PFrm respectively, result not shown in figures), but no significant

cluster were detected for any regions, responding to the P(O|¬A). Regarding P(O|C),

we found 4 significant clusters in as many brain regions across both the

hemispheres, two aligned on the action and two on the outcome. In the right frontal

lobe, a post-outcome significant cluster was detected in the IC (p≃0.018), while in the

OFCvl we found a first significant cluster aligned with the action (p≃0.018), and a

second cluster above the significance threshold aligned with the outcome (p≃0.105).

In the left temporal lobe, a post-outcome significant cluster was detected in the

rostral superior temporal cortex (STCr, p≃0.048), and a significant cluster aligned with

the action was found in the rostral inferior temporal cortex (ITCr, p≃0.046).
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Figure 7. Neural dynamic related to behavioral variables. Red lines represent significant
clusters. On green background: MI with the ΔP values. On red background: MI with the
P(O|A). On blue background: MI with the P(O|C).
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Table 1. Summary of the ROIs significantly correlating with the evolution of contingency
(dP) and conditional action-outcome probabilities (P(O|A) and P(O|C)), and their
cluster-based p-values.
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Discussion
In this study we investigated the temporal neural dynamics linked to causal learning.

We asked human participants to perform a task in which they had to maximise their

knowledge about the hidden contingencies of the task in a MEG machine. In order to

model the trial-by-trial evolution of the contingency value and the relative probability

of outcome given the chosen action we used an optimal observer Bayesian model

based on a beta distribution. Finally we used MI and cluster based statistics to find

significant relations between the time resolved high-gamma activity and the modeled

behavioral variables.

Our results suggest a deep engagement of frontal, and especially prefrontal and

orbitofrontal, cortical areas in encoding relevant aspects of causal learning, such as

the contingency value (ΔP), the probability of the positive outcomes relative to the

action ‘play’ (P(O|A)) and the task related probabilities of positive outcome given the

chosen action (P(O|C)).

Participants’ and model performances

The task that we proposed to participants is quite complex and requires more

computational effort to be accomplished in comparison to classical contingency

learning tasks. One of the differences is that the participant is not called to choose

between performing an action and not performing it, but rather on choosing one

action or another. The taken decision is then transferred to a middle agent (the player

under evaluation) that is then supposed to execute (or not) the action. Moreover the

goal of the task is less explicit, as we ask the participants to maximize their

knowledge about the performance of the player under evaluation, and not, for

example, to maximise the number of achieved positive outcomes.

Nonetheless, participants were able to learn contingency values and give an

approximative final correct estimate of the causal scores. Most of them equally

explored both of the possible actions. A common strategy was to change the chosen

action each 3-5 trials. Questioning the participants after the task execution, some of

them reported that sometimes they noticed late in the execution of a scenario that the

action position was swapped. That can be the reason for some rare outliers that
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emerged by the behavioral analysis. The model was able to reproduce participants'

performances. The variance across the final modelled ΔP values, given by the

differences in the sequence of actions performed by the participants, is lower with

respect to the variance of the participants’ scores. So far, the model is not able to

explain the across participants variance. In the future we would like to take in

consideration the behavioral variance in our model, fitting individually the initial prior

probability (Lu et al., 2008). Another interesting model parameter to study would be

the quantity of the post-outcome update increment, that can be related to the

individual causal power perception of the actions (Cheng, 1997; Buehner et al.,

2003).

Dynamic of the OFC in causal learning

Our results are in line with the literature, showing a prominent role of the OFC and in

particular of its right-side rostro-ventral part in encoding information about the

outcome identity and in discriminating the differences in outcome values. Despite

most of the literature implicates the OFC in the encoding of the stimulus-outcome

associations, for example in response to the presentation of a cue signaling a reward

(Salzman et al., 2007; Salzman and Fusi, 2010; Howard et al., 2015), we should

consider that in instrumental learning, in order to establish the relation between the

stimulus and its outcome, an agent should be able to link the information about

actions in a stimulus-action-outcome association (O’Doherty, 2007). Our results

indicate that OFC can be sensible to the action value and that it can play a role in

building a cognitive representation of the actions-outcomes probabilistic associations,

indeed its implication in encoding the contingency value ΔP implies the knowledge of

the conditional probabilities of the outcome given the action (Cheng, 1997; Hagmayer

and Waldmann, 2007; Tanaka et al., 2008). In a fMRI study (Valentin et al., 2007)

conducted on human participants performing an outcome devaluation task, the

results suggested that the OFC is able to represent actions-outcomes information,

showing a different activation profile for valued and devalued actions. This result is

also in line with animals’ studies performed on rats showed that prefrontal cortex and

dorso-medial striatum are important to learn actions-outcomes association during

goal directed learning (Balleine and Dickinson, 1998; Corbit and Balleine, 2003;

Killcross, 2003). Moreover, the fact that OFC activity responds to ΔP and P(W|P)
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after outcome presentation, and responds to P(W|C) after the action executions, can

highlight its role both in acquisition and update of the actions-outcomes association

and in outcome prediction.

Role of the PFC in encoding contingency

As the OFC, the prefrontal cortex (PFC) is implied in encoding outcome values. From

our results we can see that the lateral rostro-ventral prefrontal cortex (PFrvl)

participates in encoding positive outcome values but only if associated to the action

‘play’ and not to any chosen action. The ventral prefrontal cortex is known to mediate

attentional processes and to encode stimulus salience (Asplund et al., 2010; Walther

et al., 2011). Thus, we question whether this observed effect can be linked to an

action dependent attentional mechanism, possibly derived by an unequal perception

of the causal power attributable to the direct intervention of the agent (‘play’) rather

than a random environmental variable (‘no play’). Further investigations about the

role of this region in the attentional processes linked to instrumental learning are

needed.

Premotor cortex and insula

Also the premotor rostro-ventral cortex (PMrv) seems to be involved in encoding the
P(W|P). This result is particularly challenging to discuss, as we would expect to find a
modulation of the PMrv before the action selection, participating in action planning
(Gremel and Costa, 2013), and not after the outcome presentation. This area has
been defined as a relay from parietal to medial prefrontal cortices in visuomotor task
(Viejo et al., 2015), but also in this case further investigations are needed.
Concerning the P(W|P) and the P(W|C), we found significant activation also in the

insular cortex (IC) after receiving the outcome. The IC is known to participate in

instrumental behavior in encoding incentive memories together with the amygdala

(Parkes et al., 2015), in encoding the summed activity of potential outcomes

(Liljeholm et al., 2013), and in retrieving outcome incentive values in order to guide

the actions, but not in learning action-outcomes associations (Parkes et al., 2017).

Thus, the activation of this region responding to these two behavioral regressors after

the outcome presentation can be linked to the update of these values.
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Parietal and temporal lobes

We observed an increment in MI in the parietal cortex in relation to ΔP values,

however, statistical analysis showed that this increment is just below the significance

threshold. Curiously, this effect turns out to be significant if we perform the analysis

using the ΔP computed as log(P(W|P) / P(W|nP)) as behavioral regressors, while the

effect found in the OFC is just below the significance threshold. Together, these result

seems to indicate a role of the parietal cortex in encoding contingency values, also

according to previous literature showing parietal cortex tracks contingency values

computed both as ΔP and as the Jensen-Shannon divergence between the

probabilities of the outcome conditioned on different actions (Liljeholm et al., 2011,

2013).

Regarding the temporal lobe, its implication in instrumental learning is less

understood in comparison to other regions, nonetheless its activity has been related

to formation and updating inferences about optimal behavioral strategies (O’Doherty

et al., 2017).
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Conclusion
The aim of this study is to assess the temporal dynamics of the contribution of

different cortical brain regions during contingency acquisition in humans. To do so we

instructed human participants in performing a goal-directed causal learning task

under MEG recording. Then we built a Bayesian optimal observer model to perform

single-trial model-based analysis. We found a prominent role of the OFC and the

rostral PFC in encoding relevant behavioral correlates, such as the ΔP and the

P(O|A). Despite most of the results presented here confirming previous findings, we

believe that the neurophysiological correlates of goal directed causal learning needs

a deeper investigation. That can be achieved going in two directions: I) improving the

Bayesian model enhancing the fitting of the single subject behavior through the fine

tuning of relevant parameters, and II) investigating the oscillatory activity of lower

frequency bands. Indeed, in this work we focused specifically on the high-gamma

band oscillatory activity. Moreover, It will be interesting to study the cortico-cortical

interactions between pairs of brain regions forming functional networks supporting

causal learning in time, using techniques such as Granger Causality (GC) or Partial

Information Decomposition (PID).
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Section 5. Neuroinformatics, tools,

Open Science

5.1 Team resources

During my PhD I wrote pipelines for future students in order to allow them to easily

access team resources. A first pipeline is focused on the creation and organization of

neurophysiological dataset on the INT’s high performance computing cluster

‘frioul’.

A second pipeline is focused on how to use BrainVISA and FreeSurfer to manage and

analyse MRI data, in order to compute brain volumetric space and cortical surface of

participants’ MRI, to then apply the MarsAtlas parcelization.

A third pipeline is focused on the use of rsync, an informatic tool that we use to

transfer data on and between clusters and local machines. All the pipelines are open

and accessible at BraiNets’ resources GitHub page

(https://github.com/brainets/ressources).

5.2 Softwares development

In collaboration with David Menieur, I developed a python library called BV2MNE

(https://github.com/brainets/bv2mne). This library acts like an interface between

BrainVisa and MNE softwares. Indeed, it can access the cortical meshes generated by

BrainVisa to transform them in a MNI space, a format that is compatible with MNE.

Starting from the transformed meshes, BV2MNE computes the boundary element

model (BEM) and a labelized source space that will be used to compute the forward

and inverse model (i.e. the sensor signal reconstruction at the source level).

Moreover, the library contains visualization functions able to show source
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disposition and lablization in a 3D dynamic space, together with the cortical meshes

and the BEM.

I also contributed in Etienne Combrisson python library ‘Frites’ (FRamework for

Information Theoretical analysis of Electrophysiological data and Statistics;

https://github.com/brainets/frites), especially in the testing part, and in the

conversion of CPU function for the GPU use. Frites is a toolbox for assessing

information-theoretic measures on human and animal neurophysiological data, to

extract task-related cognitive brain dynamics and perform group-level statistics.

5.3 Open science

During my PhD I dedicated part of my time to the culture of open science, especially

with the participation and organization of BrainHack events hosted in Marseille.

BrainHack Global (https://brainhack.org/) is a community promoting the culture of

open science all over the world. Through the organization of local events (both in

person and on-line), BrainHack leads people from different fields with their own

skills and ideas to meet up and join already existing projects or proposing their own.

In 2019 I presented BV2MNE as a project in the BrainHack Marseille community. In

2020 I participated in the organization of BrainHack Marseille

(https://brainhack-marseille.github.io/), and I proposed a project together with

Etienne Combrisson on GPU porting of Frites’ python library functions. The culture

of open science is important to promote scientific collaborations in an inclusive

environment, to improve the flow of information between domains of the same or

different disciplines. It can raise scientists' awareness on the use and misuse of data,

and of big datasets, that are so expensive to collect. Moreover it poses an accent on

the importance of having common and reproducible good practices, to enhance

research workflows. Last but not least, it is an occasion to meet other people and

increase networking.
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5.4 NeuroMatch Academy - Deep Learning

In summer 2021, I attended the one month NeuroMatch Academy summer school on

ANN and deep learning. In the last years, ANN found vaste applications in several

fields, indeed especially after the advent of Deep Neural Networks (DNNs) (Shrestha

and Mahmood, 2019; Emmert-Streib et al., 2020) and Deep Learning (DL)

(Goodfellow et al., 2016) almost all devices and softwares of everyday use

extensively exploits this technology . DNN have become famous for their efficiency

in solving different tasks, with more or less variations in their architectures and

learning algorithms. For example, Convolutional Neural Networks (CNNs) (Gu et al.,

2018) are mostly used to perform image processing, while Recurrent Neural

Networks (RNNs) (Buesing et al., 2011; Lipton et al., 2015) are particularly suitable

for natural language processing. A great innovation was represented by generative

deep networks, such as Generative Adversarial Networks (GANs) (Goodfellow et al.,

2014) and Variational Auto-Encoders (VAEs) (Kingma and Welling, 2014), that are

not only able to classify inputs, but also to produce them by stochastically sampling

learned characteristics of the corresponding input from a continuous features’

space. Among the limitations of DNNs we can indicate the needed long training

time, and the fact that they are data-hungry. Whereas, the limitations of DNNs

related to the study of the brain can be attributed to their biological implausibility,

due to the use of artificial algorithms to improve learning and reduce learning time,

as for example the very backpropagation. There are recent studies that propose to

relate brain areas activity to DNNs’ layers representations, using Representational

Similarity Analysis (RSA) (Kriegeskorte, 2008).
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Section 6. Discussion and Conclusion

Goal-directed behavior (GDB) is a flexible but computationally heavy decision

making strategy that allows us to face novel problems in an adaptable way. It

comprehends several non-trivial cognitive aspects, making it hard to model and to

study in terms of underlying neural and network computations. At first, we need to

have a mental representation of the goal, a desired future state to which we want to

tend. Then, to achieve this goal, we should be able to represent the space of

actions-outcome combinations in a cognitive map and to use and update it in order

to plan our future responses, balancing our behavior in between exploring or

exploiting actions after evaluating received outcomes. Moreover, if the rules of the

context change, this cognitive map should be flexible enough to allow rapid

behavioral adjustments. This complexity is supported by intricate brain networks

involving neural computations at both cortical and subcortical levels, in particular

prefrontal, orbitofrontal and parietal cortical regions, the hippocampus, and the

whole striatum.

The aim of this thesis was to expand our current knowledge about neural and

computational mechanisms that give rise to GDB through the analysis of three

aspects:

1) Neural network mechanisms for goal-directed learning: Identify

potential neural network mechanics able to learn the world model

contextually to its use for planning and to learn such a world model in an

autonomous fashion based on unsupervised learning processes, using a

spiking neural-network architecture bridging planning as inference and

brain-like mechanisms.
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2) Anatomo-functional gradients along the striatum for goal-directed

learning: Describe the role of the striatum in nonhuman primates in

goal-directed learning, and in particular its activity in response to RPE; a

relevant behavioral signal used to update the values of state-dependent

actions in response to  reward, through the use of a Q-learning model.

3) Cortical circuits for causal goal-directed learning: Outline the possible

contributions of different brain areas in humans during the execution of a

goal-directed causal learning task, relating their brain activity with

trial-by-trial behavioral variables obtained through the use of an optimal

agent Bayesian model.

In the next sections I will discuss and give a future perspective of each of these three

aspects to then give a general possible future perspective related to this research

topic.

6.1 A generative spiking neural-network model of

goal-directed behaviour and one-step planning -

Faced problems and solutions to GDB modelling

The spiking neural network described in Section 2 exhibits two relevant features: its

capacity to autonomously form neural internal representations (hidden causes) of

the observations at different times and to activate them in sequence; and that the

spiking sampling probability reflects the probability distributions expressed by the

world model. Thus this model is not only able to build a representation of the world

in an unsupervised way, but also to use it to simulate stimuli-actions-outcomes

trajectories that can be used to plan goal-directed actions to achieve a desired state.

These properties of the network arise from Spike-Timing Dependent Plasticity

(STDP) unsupervised learning rule and the features of the model architecture,
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together with the stochastic nature of the model. Altogether, they allow the model

to ‘imagine’ different action-feedback sequences in correspondence to a stimulus.

The ensemble of these complex processes arising from this neural architecture

highlights another property of the network, that is its emergent generativity.

Emergent generativity is characterised by two relevant elements. The first element

regards ‘generativity’ and involves the stochastic nature of spike sampling that

allows the production of alternative patterns in correspondence to the same context.

This means that the network is able to form new chains of consecutive spikes even if

that sequence was never observed before, using the previously learned

representations of the states. This process is important as the generation of

alternative plausible patterns is at the core of search algorithms possibly employed

by the brain. For example, generativity can support the search of different courses of

action that might lead to a desired goal state starting from a given initial condition.

In deep neural networks, generativity is often based on stochastic elements

supporting the generation of novel plausible patterns, as it happens in Generative

Adversarial Networks (GANs; (Goodfellow et al., 2014)) and Variational

Autoencoders (VAEs; (Kingma and Welling, 2014)) able to generate new plausible

input patterns by drawing sample patterns from prior probability distributions and

then by transforming them through deterministic neural components trainable with

supervised learning. The second important element of emergent generativity

regards ‘emergence’ and involves the process for which in complex systems, such as

the brain, the dynamical interaction of low-level elements can give rise to organised

patterns at higher levels (Newman, 2011). In particular, in the brain, events

involving spike neurons at a low level are amplified by neural mechanisms in order

to generate patterns that encode content, such as perceptions, thoughts and actions,

at a higher cognitive level.

The obtained results highlight the novelties of the architecture that we proposed

with respect to other current models. A first novelty with respect to the previous
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models implementing planning as inference based on brain-like mechanisms

(Friedrich and Lengyel, 2016; Rueckert et al., 2016; Tanneberg et al., 2016) is that

our architecture proposes an hypothesis on how organisms might learn the world

model while using it for planning. This is a key challenge for planning, as recently

highlighted in (Tschantz et al., 2020). The challenge is different from the

exploration/exploitation issue in model-free models (Sutton and Barto, 1998), and

requires arbitration mechanisms different from the classic ones used to balance

goal-directed and habitual processes (Daw et al., 2005; Viejo et al., 2015).

A second novel feature that allowed the architecture to autonomously learn the

world

model is the use of a Hidden Markov Model (HMM) having a relevant difference with

respect to those used in other planning-as-inference spiking network models

(Rueckert et al., 2016; Tanneberg et al., 2016). These models use a world

model-based on a classic HMM reproducing possible sequences of states but not

actions. Instead, the world model used here is based on a HMM that observes

sequences of states and of actions. This allows the world model to directly select

actions to perform; instead, previous models (Rueckert et al., 2016; Tanneberg et al.,

2016) need an additional mechanism selecting actions on the basis of the state

sequence produced by the world model. Moreover, for each environment state the

world model can suggest the selection of actions that have a potential relevance in

that context, rather than any action, along with the idea of affordance in cognitive

science (Baldassarre et al., 2019).

A third and last novel feature that allowed the architecture to autonomously learn

the world model is the explicit representation of the goal used to condition the

probability distribution expressed by the world model. Previous state-of-the-art

models (Rueckert et al., 2016; Tanneberg et al., 2016) combined goal, initial state,

and environment conditions into a whole ‘context’ representation. Our

representation of goals allows their manipulation independently of other
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conditions, as shown by the model’s capacity to successfully plan how to reach new

goals on the basis of the experience that the world model acquired in other tasks.

Finally, we used the model to try to reproduce the behavioral performances and the

reaction times of a previous study on human participants performing a goal-directed

learning task (Brovelli et al., 2008). The architecture has reproduced the target

behaviour, has furnished an explanation of the mechanisms possibly underlying it,

and has proposed predictions testable in future empirical experiments.

Despite that we acknowledge that the model has various limitations that might be

improved in future work. A first open issue concerns the generalisation from

neurons firing at discrete times to neurons firing in continuous time. This might be

done using the inhomogeneous Poisson process (Kappel et al., 2014). Although this

would not drastically modify the theoretical contribution of the model, it might

simplify a comparison with real data from the brain at a finer temporal level with

respect to what is done here. A second issue to face would be to use other tasks with

respect to the one considered here (Brovelli et al., 2008), to test its robustness and

capacity to scale-up to more complex tasks. A relevant issue to face in future work

concerns the new arbitration mechanism proposed with the model. Here, the

entropy measure at the core of the arbitration mechanism is grounded on the

probability distribution of neurons. However, it is now hardwired, and future work

should thus aim to implement this process with neural mechanisms. Another

improvement of the model might involve the full development of a habitual

component, not included here because it is out of the scope of this work.
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6.2 Beta oscillations in the monkey striatum encodes

reward prediction error - The role of beta-band

oscillations in striatal RPE signaling

In the study described in Section 3, we recorded Local Field Potentials’ (LFPs)

activity in the striatum of monkeys performing a free-choice probabilistic learning

task. The task required monkeys to choose between three options for movement,

each one associated with different reward probabilities. The aim of the study was to

investigate modulations in striatal activity, using this probabilistic design in order

to detect changes specific to the processing of actions’ outcomes (i.e. rewards). In

particular, we aimed at studying the encoding of reward prediction errors in the

monkey striatum. This task is well suited for studying action selection guided by

predictions about future events and comparisons of those predictions with actual

outcomes which correspond to Reward Prediction Error (RPE), RPE is an error signal

generated by midbrain dopaminergic neurons (Abler et al., 2006; Schultz, 2007,

2016a) crucial to modify our behavior in order to improve the predictions about

possible environmental outcomes (O’Doherty et al., 2017), thus playing an essential

role in GDB (Ressler, 2004; Keramati et al., 2011). The role of midbrain dopaminergic

neurons in RPE encoding is well established (Abler et al., 2006; Schultz, 2007,

2016a). Animal electrophysiology and human neuroimaging have also found

evidence of RPE-related activity in the striatum (Schultz, 2016b). It is considered as

a crucial signal that adaptatively support GDB, contributing to the world model

updating and action planning (Takikawa et al., 2002; Ressler, 2004; Izawa and

Shadmehr, 2011; Keramati et al., 2011; Schultz, 2016b) .

Three main results about striatal functional organization emerge from this study:

(1) we observed a significantly different pattern of oscillation in the high beta - low

gamma frequency band when contrasting rewarded trials with non-rewarded trials;

(2) we found a significant increment in mutual information between the beta band
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oscillation and the RPE computed using a Q-learning algorithm fitted on monkeys’

choice behavior during the task;

(3) we divided the data according to the recording sites in eighteen clusters

respecting the striatal anatomical constraints, then we computed the MI between

the data of each cluster and the respective RPE, and we observed a significant

positive linear correlation between the rostro-caudal and dorso-ventral clusters

distribution and the total amount in time of RPE related MI, which we refer to an

anatomo-functional gradient

A key finding in our study is the role of the beta band oscillations in carrying

information about RPE in the basal ganglia system. Beta band activity is historically

linked to motor control. Indeed, oscillations in this band have been observed in the

motor cortex, especially associated with specific movements, like for example

precision movements (Feingold et al., 2015; Khanna and Carmena, 2017). Moreover,

after the advent of deep brain stimulation, data recorded from the STN of

Parkinson’s disease (PD) patients showed that an abnormal increase in beta

oscillatory activity is associated to a lack of dopaminergic signaling, leading to

Parkinsonian symptoms, and that a stimulation of the STN can interrupt this

oscillatory beta activity and block PD motor symptoms (Kühn et al., 2004; Holt et

al., 2019). Lately, some studies have reconsidered the role of beta band in the

striatum, showing that it can be related to other important behavioral features and

to reward value (Leventhal et al., 2012; Münte et al., 2017; Schwerdt et al., 2020). To

our knowledge, this is the first report to demonstrate that outcome processing is an

important variable influencing striatal beta activity in the nonhuman primate.

As we pointed out earlier, the RPE signal is essential to modulate several aspects of

behavior. Thus, one can expect that this signal should be integrated within different

domains of the striatum in order to participate in various functional processes

involving limbic, associative, and motor cortico-striatal circuits (Oya et al., 2005;
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Gläscher et al., 2010; Mestres-Missé et al., 2012; Vogelsang and D’Esposito, 2018). It

is well known that dopamine is responsible for RPE signaling in the striatum (Abler

et al., 2006; Schultz, 2016b). Furthermore, we know that around 95% of striatal

neurons in monkeys are gabaergic medium spiny neurons (MSN), long projection

neurons innervating pallidal and nigral areas, while the remaining 5% (this ratio

follows interspecific changes) is composed of cholinergic interneurons (Lecumberri

et al., 2017) spreading their axons across striatum, connecting NAcc, putamen (Put),

and caudate (Cau) nuclei (Assous and Tepper, 2019). Further studies about the role

of the striatal interneurons and the internal transmission of information can help us

understand how RPE signal propagates across the striatum.

Another major finding was that the information about RPE is present, to varying

degrees, in all territories of the striatum, forming a fading gradient stronger toward

the rostro-ventral striatum and weaker toward its caudo-dorsal part. This result is in

line with other studies, in which striatal circuitry is able to establish different

functional gradients, spanning from the dopaminergic signaling to the cognitive

control (Mestres-Missé et al., 2012; Vogelsang and D’Esposito, 2018; Alberquilla et

al., 2020; Han et al., 2021), determined by the cortico-striatal and striato-thalamic

loops. At the same time, this hypothesis casts a new light on the idea that basal

ganglia, and especially striatum, can be roughly divided in functional regions,

participating in limbic, associative or motor functions. Indeed, the idea of a neat

functional division that was established, especially in other basal ganglia’s

structures like the STN (Eisinger et al., 2018), is lately going through a review

(Alkemade and Forstmann, 2014; Eisinger et al., 2019). It is less astonishing to

support the idea of gradients if we take in consideration the behavioral salience of

the RPE. Indeed, also if a well structured connectivity is needed to transmit precise

signals, the information contained in those can participate in other behavioral

functions. RPE is needed to update the inner model of action values in response to a

particular state, and those values should be retained in short term memory in order
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to plan future actions in a goal-directed way. Our results are in line with the idea

that the RPE is an important signal affecting several aspects of the behavior, and

that for this reason it should propagate in limbic, associative, and motor

cortico-striatal circuits. Understanding how this gradient rises from striatal

connectivity remains to be elucidated.

6.3 Dynamics of human cortical circuits mediating

goal-directed causal learning - High-gamma activity

in human prefrontal cortex reflects relevant

behavioral aspects of goal-directed causal learning

In the study described in Section 4, we investigated the functional role of prefrontal

cortical areas and their implications in goal-directed causal learning. We asked

human participants to perform a task in which they had to maximise their

knowledge about the hidden contingencies of the task and to report us the supposed

causal score at the end of each recording block, while being recorded in a MEG

machine. In order to model the trial-by-trial evolution of the contingency value and

the relative probability of outcome given the chosen action we used an optimal

agent Bayesian model-based on a beta distribution (i.e., the ideal observer model).

Finally we used MI to find significant relations between the estimated high-gamma

activity in time and the modeled task-related behavioral variables.

Our results suggest a deep engagement of frontal, and especially prefrontal and

orbitofrontal, cortical areas in encoding relevant aspects of causal learning, such as

the contingency value (ΔP), the probability of the positive outcomes relative to the

action ‘play’ (P(W|P)) and the task related probabilities of positive outcome given

the chosen action (P(W|C)).
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Our results are in line with the literature, showing a prominent role of the OFC and

in particular of its right-side rostro-ventral part in encoding information about the

outcome identity and in discriminating the differences in outcome values.

Surprisingly, our results indicate that OFC can be sensible to the action value and

that it can play a role in building a cognitive representation of the actions-outcomes

probabilistic associations, indeed its implication in encoding the contingency value

ΔP implies the knowledge of the conditional probabilities of the outcome given the

action (Cheng, 1997; Hagmayer and Waldmann, 2007; Tanaka et al., 2008). Despite

most of the literature implicates the OFC in the encoding of the stimulus-outcome

associations, for example in response to the presentation of a cue signaling a reward

(Salzman et al., 2007; Salzman and Fusi, 2010; Howard et al., 2015), we should

consider that in instrumental learning, in order to establish the relation between the

stimulus and its outcome, an agent should be able to link the information about

actions in a stimulus-action-outcome association (O’Doherty, 2007). In a fMRI study

(Valentin et al., 2007) conducted on human participants performing an outcome

devaluation task, the results suggested that the OFC is able to represent

actions-outcomes information, showing a different activation profile for valued and

devalued actions. This result is also in line with animals’ studies performed on rats

showed that prefrontal cortex and dorso-medial striatum are important to learn

actions-outcomes association during goal-directed learning (Balleine and

Dickinson, 1998; Corbit and Balleine, 2003; Killcross, 2003). Moreover, the fact that

OFC activity responds to ΔP and P(W|P) after outcome presentation, and responds to

P(W|C) after the action executions, can highlight its role both in acquisition and

update of the actions-outcomes association and in outcome prediction.

As the OFC, the prefrontal cortex (PFC) is implied in encoding outcome values. From

our results we can see that the lateral rostro-ventral prefrontal cortex (PFrvl) seems

to participate in encoding positive outcome values but only if associated to the

action ‘play’ and not to any chosen action. The ventral prefrontal cortex is known to
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mediate attentional processes and to encode stimulus salience (Asplund et al., 2010;

Walther et al., 2011). Thus, we question whether this observed effect can be linked

to an action dependent attentional mechanism, possibly derived by an unequal

perception of the causal power attributable to the direct intervention of the agent

(play) rather than a random environmental variable (no play). Further investigations

about the role of this region in the attentional processes linked to instrumental

learning are needed.

Concerning the P(W|P) and the P(W|C), we found significant activation also in the

insular cortex (IC) after receiving the outcome. The IC is known to participate in

instrumental behavior in encoding incentive memories together with the amygdala

(Parkes et al., 2015) and in retrieving outcome incentive values in order to guide the

actions, but not in learning action-outcomes associations (Parkes et al., 2017). Thus,

the activation of this region responding to these two behavioral regressors after the

outcome presentation can be linked to the update of these values.

Also the premotor rostro-ventral cortex (PMrv) seems to be involved in encoding the

P(W|P). This result is particularly challenging to discuss, as we would expect to find

a modulation of the PMrv before the action selection, participating in action

planning (Gremel and Costa, 2013), and not after the outcome presentation. This

area has been defined as a relay from parietal to medial prefrontal cortices in

visuomotor task (Viejo et al., 2015), but also in this case further investigations are

needed.

We observed an increment in MI in the parietal cortex in relation to ΔP values,

however, statistical analysis showed that this increment is just below the

significance threshold. Curiously, this effect turns out to be significant if we perform

the analysis using the ΔP computed as log(P(W|P) / P(W|nP)) as behavioral

regressors, while the effect found in the OFC is just below the significance threshold.
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Together, these result seems to indicate a role of the parietal cortex in encoding

contingency values, also according to previous literature showing parietal cortex

tracks contingency values computed both as ΔP and as the Jensen-Shannon

divergence between the probabilities of the outcome conditioned on different

actions (Liljeholm et al., 2011, 2013).

Regarding the temporal lobe, its implication in instrumental learning is less

understood in comparison to other regions, nonetheless its activity has been related

to formation and updating inferences about optimal behavioral strategies

(O’Doherty et al., 2017).

Despite most of the results presented here confirming previous findings, we believe

that the neurophysiological correlates of goal-directed learning, and especially

causal learning, needs a deeper investigation. In this work we focused specifically on

the high-gamma band oscillatory activity, but it would be of particular interest to

look into the contributions of other frequency bands, in order to better understand

global computations associated to causal learning, as high-gamma activity reflects

local computations, while lower frequency bands seems to be more associated to

extensive computations (von Stein and Sarnthein, 2000).

The task that we proposed to participants is quite complex and requires more

computational effort to be accomplished in comparison to a classical contingency

learning task. One of the differences is that the participant is not called to choose

between performing an action and not performing it, but rather on choosing one

action or another. The taken decision is then transferred to a middle agent (the

player under evaluation) that is then supposed to execute (or not) the action.

Moreover the goal of the task is less explicit, as we ask the participants to maximize

their knowledge about the performance of the player under evaluation, and not, for

example, to maximise the number of achieved positive outcomes. This level of

complexity offers us the opportunity to study several different aspects of causal
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learning, but for these reasons, the significance of some element of this task should

be better addressed both in modelling and in comparison with the brain activity.

Finally, It will be interesting to study the cortico-cortical interactions between pairs

of brain regions forming functional networks supporting causal learning in time,

using techniques such as Granger Causality (GC) or Partial Information

Decomposition (PID).

6.4 Future perspectives

Besides the clinical purposes, the interest in neuroscience is to understand how the

brain can successfully interact with the environment producing complex behaviors.

These behaviors emerge from different levels of complexity, from the molecular

interactions leading processes as the synaptic plasticity, to cellular organization,

networks’ dynamics and beyond. But this is not enough, indeed the environment can

trigger changes inside the brain, both if we are interacting with it and if we are only

observing it, activating networks, cells, and stimulating synaptic plasticity to form

novel interactions. This is a two-way flux of information, a bottom-up process to

produce successful behaviors, and a top-down one to learn. But lately, we also

understood that the brain has not only a decoding/encoding function, but it is also

generative, meaning that it is able to internally loop this information in order to

produce predictions that can influence both behavior and learning. This is exactly

what happens in goal-directed decision making: once setted a desired state, we

observe the environment and we make a prediction that guides our response, then,

depending on the feedback, an error signal is produced to update our prediction

model. Less is still known on how we can represent goals, or internally generate

goals; this would be a really interesting branch to explore both with models and with

neurophysiological data analysis. For about seventy years to now, goal-directed

learning and behavior have been studied at different levels, but what we still lack is

to bind together this knowledge in order to fill the gaps. In my opinion, this can be
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achieved by making some efforts in two directions: building biologically inspired

models, and linking these models with brain activity.

Nowadays, powerful Bayesian and deep learning models are used to model brain

behavior, and they work really well but despite that they’re very poorly informative

about the lower level computations. On the other side, we have the problem of

computational power, indeed it is impossible to implement a neural network taking

into account the whole complexity of the brain network that we are trying to model.

Thus, it would be interesting to build models based on veritable neural

architectures, able to perform higher bayesian computations as the state of the art

models, finding a compromise between descriptive accuracy and computational

performances.

Then, it would be interesting to use these models to explain neurophysiological

recordings, similarly to what is done today on deep learning models, especially the

one concerning vision and language processing, thanks to a recent technique called

Representational Similarity Analysis (RSA) (Kriegeskorte, 2008).

Moreover, given the complexity on which this system relies, it would be of a certain

interest to further investigate the interplay between cortical regions and basal

ganglia and their functional connectivity and dynamics. This aim is harder to

achieve because of the difficult accessibility of the subcortical regions, which allows

a simultaneous accurate recording of cortical and subcortical regions only in animal

models. More informations about cortico-striatal computations can also be useful to

improve architectures and algorithms of GDB models
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