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Abstract (en)

In the field of instrumental learning, mammals are able to implement two different behavioral strategies to interact with the environment: goal directed behavior (GDB), computationally flexible but slow, suitable to learn new tasks and adapt to changing environments; and habitual behavior, hard-coded, but suitable for faster motor responses and facing recurrent tasks. The advantage of GDB resides in the use of an inner representation of the environment, a 'model of the world', to encode stimuli-actions-outcomes associations, and its exploitation to choose future actions, in a process called planning. GDB is supported by large-scale networks involving both cortical and subcortical regions. Nevertheless, several open questions still remain. The aim of this thesis is to contribute to the understanding of three open questions (declined in three studies) that pertain to the neural and computational mechanisms of GDB.

In the first study, we investigated how complex computations, such as learning the model of the world and planning, can emerge from simple neural activity. To achieve that, we built a spiking neural network, able to encode stimulus-actions-outcomes associations as a hidden Markov model (HMM), using biologically inspired mechanisms such as spike-timing dependent plasticity (STDP), and to test this model to correctly plan actions in order to solve a visuomotor goal directed task. The performance of the model was validated on behavioral data from human participants that performed the same task.

In the second study, we assessed the importance of striatum in encoding the reward prediction error (RPE) signals, a relevant update signal in most instrumental learning models. To do so, we analysed local field potentials (LFPs) recorded in rhesus macaque striatum while performing a probabilistic goal-directed learning task. Then, we computed the trial-by-trial RPE using a Q-learning model fitted on monkeys' behavior. Our results showed a significant increase of mutual information (MI) between the beta-band (15-30Hz) oscillatory activity and the RPE after the outcome presentation. Moreover, such correlates of RPE signals form an anatomo-functional gradient in the striatum, showing stronger effects toward the rostro-ventral part and vanishing toward the caudo-dorsal part.

In the third study, we investigated the neural correlates of GDB at the whole-brain cortical level in humans. To do so, we recorded the brain activity of human participants using magnetoencephalography (MEG) while they were performing a goal-directed causal learning task. We exploited cortical high-gamma activity (HGA, to map the spatio-temporal dynamics during learning. In particular, we used an ideal observer Bayesian model to estimate the trial-by-trial evolution of relevant behavioral variables, such as action-outcome probabilities and contingency values. We used MI and group-level cluster-based statics between HGA and those variables to obtain a whole brain profile of behavioral-dependent regions of interests' activity, confirming some results from the literature.

Abstract (fr)

Dans le domaine de l'apprentissage instrumental, les mammifères sont capables de mettre en oeuvre deux stratégies comportementales différentes pour interagir avec l'environnement: le comportement dirigé vers un but ("goal-directed behavior", GDB), flexible sur le plan computationnel mais lent, adapté à l'apprentissage de nouvelles tâches et à l'adaptation à des environnements changeants; et le comportement habituel, encodé de façon rigide, mais adapté à des réponses motrices plus rapide, adapté aux tâches récurrentes. L'avantage du GDB réside dans l'utilisation d'une représentation interne de l'environnement, un 'modèle du monde', pour encoder les associations stimuli-actions-conséquences, et dans l'utilisation de ce modèle pour choisir les actions futures au cours du processus de planification. Le GDB est soutenu par des réseaux cérébraux à grande échelle impliquant des régions corticales et sous-corticales. Néanmoins, plusieurs questions ouvertes demeurent. L'objectif de cette thèse est de contribuer à la compréhension de trois questions ouvertes (déclinées en trois études) qui concernent les mécanismes neuronaux et computationnels du GDB.

Dans une première étude, nous avons cherché à savoir comment des calculs complexes, tels que l'apprentissage du modèle du monde et la planification, peuvent émerger de l'activité neuronale. Pour ce faire, nous avons construit un réseau de neurones actifs, capable d'encoder des associations stimulus-actions-conséquences sous la forme d'un modèle de Markov caché (Hidden Markov Model, HMM), en utilisant des mécanismes d'inspiration biologique tels que la 'spike-timing dependent plasticity' (STDP), et d'utiliser ce modèle pour planifier correctement des actions afin de résoudre une tâche visuomotrice. Les performances du modèle ont été validées sur des données comportementales de participants humains ayant effectué la même tâche.

Dans une deuxième étude, nous avons évalué l'importance du striatum dans l'encodage de l'erreur de prédiction de la récompense (Reward Prediction Error, RPE), un signal de mise à jour pertinent dans la plupart des modèles d'apprentissage instrumental. Pour ce faire, nous avons analysé les potentiels de champ locaux (Local Field Potentials, LFP) enregistrés dans le striatum de macaques rhésus pendant l'exécution d'une tâche d'apprentissage probabiliste dirigée vers un but.

Ensuite, nous avons calculé la RPE essai par essai en utilisant un modèle de 'Q-learning' adapté au comportement des singes. Nos résultats ont montré une augmentation significative de l'information mutuelle (Mutual Information, MI) entre l'activité oscillatoire dans la bande bêta (15-30 Hz) et la RPE après le résultat de l'action. De plus l'information sur la RPE forme un gradient impliquant l'ensemble du striatum, plus intense dans la partie rostro-ventrale que dans la partie caudo-dorsale.

Dans la troisième étude, nous avons étudié les corrélats neuronaux du GDB au niveau cortical du cerveau entier chez l'homme. Pour ce faire, nous avons enregistré l'activité corticale de participants humains à l'aide de la magnétoencéphalographie (MEG) pendant qu'ils effectuaient une tâche d'apprentissage causal dirigée vers un but. Nous nous sommes concentrés sur l'extraction et l'analyse de l'activité oscillatoire dans la bande gamma haute pour mapper la dynamique spatio-temporelle pendant l'apprentissage. Ensuite, nous avons utilisé un modèle Bayésien d'observateur idéal pour estimer l'évolution essai par essai des variables comportementales pertinentes, telles que les probabilités de résultats d'action et les valeurs de contingence. Nous avons utilisé la MI et des statiques au niveau du groupe basées sur le cluster entre le HGA et ces variables pour obtenir un profil du cerveau entier de l'activité des régions d'intérêt dépendant du comportement, confirmant certains résultats de la littérature. N.B.: *A complete list of publications can be found in Section 1.7. Each of these studies has its own bibliography, listed at the end of each corresponding section.

List of studies *

The bibliography at the end of this manuscript only refers to the remaining sections. **The study described in Section 2 started during an Erasmus stage in Marseille, to then be refined and finalised during my PhD. The contribution of Gianluca Baldassarre in this project was fundamental for its good success.

Section 1. Introduction

Behavioral principles of instrumental learning

In order to cope with a constantly changing environment, animals are faced with the complex task of rapidly adapting to a huge variety of incoming stimuli, perceived through different sensory channels, and to select the most appropriate behaviors.

One of the most basic forms of motor response are reflexes. Reflex actions are automatic, involuntary and fast; they are triggered by a sensory stimulus and supported by the so-called reflex arcs, the neural pathways controlling a reflex. For example, if we touch a hot surface, the withdrawal reflex allows us to retract our hand before we can have serious injuries (Hultborn, 2006). Interestingly, although reflexes do not involve directly the central nervous system, they can be modulated by descending signals from the brain. For example, during prepulse inhibition (PPI) experimental paradigm, a stimulus (a pre-pulse) inhibits a startle response consequent to an aversive acoustic or tactile stimulus [START_REF] Li | Top-down modulation of prepulse inhibition of the startle reflex in humans and rats[END_REF]. On the other hand, in order to perform more complex behavioural responses and plan multiple actions, an agent should be able to combine information about external and internal stimuli, as well as past experiences and predictions about future outcomes. A cognitive function that supports the ability to acquire and integrate knowledge about the relations among stimuli, actions and outcomes is associative learning (Shanks, 1995;Wasserman and Miller, 1997;Mitchell et al., 2009;Dickinson, 2012).

Associative learning is the ability to learn contingency relations between events in their environment (De Houwer, 2009) and it reflects a fundamental component of adaptive behavior. Two large categories of associative learning are classically defined: classical conditioning, describing stimulus-stimulus associations learning; and instrumental learning, describing stimulus-action and action-outcome associations learning. I will now briefly outline the basic principles of classical conditioning, and then focus on instrumental learning, which is the main topic of my PhD. project.

Classical or Pavlovian learning

In behavioural psychology, two distinct classes of learning are acknowledged: classical learning and instrumental learning. Classical or Pavlovian conditioning, formulated by Ivan Petrovic Pavlov in 1927 [START_REF] Pavlov | Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex[END_REF], is defined as the ability to learn stimuli-stimuli associations. According to this paradigm, if the experimenter presents a salient stimulus, as for example some food, to a dog, he will show a salivary response anticipating the consummatory act (if the dog has previous knowledge about the smell and the appearance of that food, and if he already consumed it before). Thus, food is defined as the unconditioned stimulus (US), while the subsequent salivation takes the name of unconditioned response (UR). The pairing of a second non-salient stimulus, as for example the ring of a bell, together with the US for a sufficient number of times, will lead to the creation of an "association", which will suffice to trigger the salivary response, even in the absence of the food. In this case, the ring of the bell takes the name of conditioned stimulus (CS), because it is associated with the US, while the salivary response takes the name of conditioned response (CR). Importantly, one of the first observations made on this paradigm was that a prominent factor for the conditioning to happen, is the timing of the occurrence of the non-salient stimulus during learning, called contiguity. Indeed, the conditioning will be effective only if the CS and the US are contiguous in time and space, meaning that the CS should be presented before, during, or shortly after the presentation of the US, but at the same time it should not occur too early or too late. Thus, we can define a precise effective temporal window for learning to occur. The paradigm of classical conditioning can be generalised to aversive stimuli (i.e., negative reinforcers), that is all the stimuli that normally induce an aversive UR, and that are thus associated with a negative value; they are stimuli that an agent would try to avoid. Another form of classical learning is multiple-order conditioning (Rizley and Rescorla, 1972), which is defined as the ability to associate a second non-salient stimulus, such as the lighting-up of a light bulb, to the previously associated CS (ringing bell). Such pairing will trigger salivation as a second-order CR. Finally, a last aspect of classical conditioning extensively studied in associative learning is extinction (Skinner, 1938). Extinction refers to the gradual decrease in response to a conditioned stimulus that occurs when the stimulus is presented without reinforcement. For example, once the experimenter creates one or multiple-order CS, if they're presented repeatedly without giving the opportunity to then carry out the consummatory behavior, the association between CS and CR will slowly vanish. Interestingly, if after extinction the experimenter wants the CS to take back its salience, the dog will need less training time to restore the association between CS and CR. It is worth noting that classical conditioning does not rely on the motivational state, indeed it is possible to use the same paradigm with an aversive stimulus, that will be followed by an aversive response.

Instrumental learning

Classical conditioning does not depend on the actions performed by the agent. On the other hand, in instrumental or operant conditioning, the US depends on instrumental behavior. In other words, the agent is asked to respond with a voluntary behaviour that can be triggered or inhibited by a reinforcement (reward or punishment). In this framework, a stimulus can be used to signal the subject about the possibility to perform the motor response in order to achieve the desired result; but an explicit stimulus (e.g., a light or a tone) is not always needed, indeed it can be represented by the current ensemble of environmental stimuli, also called context. Thus, instrumental learning is a type of associative learning process through which the strength of a behavior is modified by reinforcement or punishment.

Experimental paradigms for instrumental learning

Edward Lee Thorndike was one of the first scientists to describe instrumental behavior with a simple experimental paradigm leading to the development of operant conditioning within Behaviorism. His major contribution to the field consisted in a novel approach to quantify the behavioral changes occuring during instrumental learning. He used a cage with an opening mechanism that could be activated through pulling a rope, and he placed a cat inside of it and a visible reward outside of it. The cat learned by trial-and-error to pull the rope, in order to open the cage and earn the reward, and showed with training a reduction of the time required to perform the task (Thorndike, 1898). The decrease in reaction times was considered as an index for learning. Thanks to this paradigm, Thorndike formulated the 'law of effect', stating that motor responses that produce a pleasing effect in a particular context become more likely to occur again in that context, while motor responses that produce an unpleasant effect become less likely to occur again in that context.

Another classical experimental setup to study instrumental learning, invented by Burrhus Frederic Skinner in 1938(Skinner, 1938), is the so-called Skinner box (Figure 2). It is composed of different signaling devices, such as a speaker and some lights, some input response devices such as levers, and a reward/punishment delivery device such as a pellet dispenser or an electrified grid. The Skinner box allowed for the first time the training of animals with as little as possible intervention and the development of quantifiable training protocols, the so-called reinforcement schedules, that manipulate learning by means of varying ratios (VR) or rewards or variable intervals (VI) of time between rewards. With this set-up, it is possible, for example, to teach an agent to press a lever in response to a visual stimulus in order to receive a pellet unit or to avoid an electric shock. Different variations of this simple example allow to dissociate different aspects of the behavior. In this case, the definition about the positive or negative value subjectively attributed to the reinforcer does not depend on what can be considered pleasant or unpleasant, but on the empirical rate of performed motor responses to obtain or avoid the reinforcer. Importantly, this paradigm led to development of the modern reinforcement learning (RL) theory, where a reward or a punishment can act respectively as positive or negative reinforcer of the learned instrumental behavior (Sutton and Barto, 1998). 

Pavlovian to instrumental transfer (PIT)

Although classical and instrumental conditioning belong to separate categories of associative learning, they nevertheless share some common properties that can be highlighted in experimental paradigms, such as the 'Pavlovian to instrumental transfer' (PIT), according to which after conditioning a subject on a stimulus-reward association (e.g. sound-pellet) and on an action-reward association (e.g. lever pressing-reward), the stimulus will be able to trigger the action, meaning that a stimulus-action (sound-lever) association is formed (for a very exhaustive explanation see (Holmes et al., 2010)).

Goal-directed learning

Modern associative learning theories suggest that instrumental behaviors are controlled by complementary, but interacting, systems that lead to different behavioral strategies: goal-directed and habitual learning (Dickinson andBalleine, 1994, 2000;Keramati et al., 2011;Dolan and Dayan, 2013) .

Goal-directed learning is driven by internal goals and motivational state, it is flexible and used in particular to find solutions to new problems or to face changing conditions. In general, goal-directed behaviors are computationally intense and not suitable to provide a fast and automatic motor response. Goals are defined differently from rewards or action's outcome. Goals are the starting point of the willful control of actions (Gollwitzer and Moskowitz), they are ideal desired states that drive behavior, in which one or a set of conditions are satisfied (as for example in a reward maximization task) (Ressler, 2004). During the acquisition of a GDB, the associations between actions and their outcomes are learned.

The acquisition of goal-directed behaviors leads to creation of internal representation of contingencies between actions and outcomes (Blaisdell, 2006;[START_REF] Pavlov | Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex[END_REF]Liljeholm, 2018Liljeholm, , 2021)). Indeed, goal-directed learning can be defined as the ability to learn if a certain action can effectively cause or prevent a given outcome, or if actually there is no association between them. Goal-directed learning therefore forms the basis of a key cognitive function, which supports the creation of our sense of causality between our behaviors and their outcomes.

According to a popular model in cognitive psychology, the sense of causality can be quantified experimentally as the action-outcome contingency, called ΔP. The action-outcome contingency is defined as the difference between two conditional probabilities: P(O|A), that is the probability associated to the outcome when the agent perform an action; and P(O|¬A), that is the probability that the outcome spontaneously occurs not associated with the agent's action (Allan, 1980;Allan and Jenkins, 1980;[START_REF] Hammond | The effect of contingency upon the appetitive conditioning of free-operant behavior[END_REF]Allan, 1993;Allan et al., 2008;[START_REF] Morris | The algorithmic neuroanatomy of action-outcome learning[END_REF].

Being the result of the difference between two probabilities, ΔP can take all the values from -1 to 1; positive values are associated with a positive sense of causality (the action triggers the outcome), negative values are associated with a negative sense of causality (the action prevents the outcome), while values close to zero gives no sense of causality (the action and the outcome have no causal dependence).

These actions-outcomes contingency values can be learned by trial-and-error, retained in memory, and used to adjust behavior with respect to changing context, providing an efficient strategy to reach the goal. Thus, GDB is defined as model-based [START_REF] Lee | Neural Computations Underlying Arbitration between Model-Based and Model-free Learning[END_REF], meaning that it uses an internal representation of the world and transition probabilities between actions and outcomes. This resonates with the notion of a cognitive map (Tolman, 1948) that keeps track of previous experiences in order to orient future actions. Indeed, an additional component of goal-directed learning is the ability to plan future behaviors according to internal goals and motivational states. In other words, planning is the ability to use the knowledge about the model of the world, in order to program future actions. Since knowledge about the structure of the environment is collected from the interaction with the environment, such information about the experienced actions-outcomes is kept into memory, and then used to efficiently explore the environment. Thus, another key feature of planning is to use a still partially observed model of the world to select actions (Bonet and Geffner, 2014).

Habits

The second form of behavioral strategy supporting instrumental learning concerns habits. Habitual behaviors are inflexible, and arise from long-term training and consolidation of stimulus-response-outcome associations. Habits can arise in particular to respond to familiar problems or to face well-known tasks, thus it results computationally light and suitable to provide a fast motor response whether possible (Balleine and O'Doherty, 2010). Habitual behavior is outcome independent, indeed to trigger an HB it is sufficient that the subject perceives a stimulus that is strongly enough associated with an action to produce the motor response. Habits are thought to be primarily triggered by antecedent stimuli, rather than the prediction of future outcomes. For this reason, habits are normally considered as model-free: there is no need for the agent to keep track of the actions or the actions-outcomes transition probabilities or the internal representation of the task (Graybiel, 2008;Dolan and Dayan, 2013). The insensibility to the outcomes and the absence of a model, and therefore of planning, are the causes of HB's inflexibility and speed. Indeed, if we train an agent for a long enough time on a task, consequently to a slow consolidation he will learn a HB, and from then on it will be very hard for him to change his behavior also if the rules of the task changes (Yin and Knowlton, 2006;Hilario, 2008). To modify his behavior, the agent will need a very long time. On the other hand, the agent will be very good in performing the original task for which he developed a habit, always giving the correct answer in a short time, as soon as a stimulus appears.

Experimental paradigms to determine if a behavior is goal-directed

There exists two main experimental paradigms that can be used to establish if an observed behavior can be considered as goal-directed or not: 1) outcome devaluation and 2) contingency degradation. Outcome devaluation paradigm was defined by Dickinson in 1985(Dickinson, 1985) and refined by Balleine andDickinson in 1998 (Balleine andDickinson, 1998). The aim of outcome devaluation is to assess if the behavior of an agent changes accordingly with changes in the value assigned to an outcome. According to this paradigm, we can train an agent to perform two different actions each one leading to a different type of outcome (e.g. different food), at the beginning the agent will perform the two actions equally across time. Then, it is possible to devalue one of the two outcomes, for example making it always available; after that, if the behavior is goal-directed, the agent should lose interest in performing the motor response leading to the devalued outcome, to fully focus on the other action. In this case, if the agent had established a habit, he would have continued performing both the actions with the same frequency.

Contingency degradation was at first observed by Robert A. Rescorla (Rescorla, 1966, 1968) on studies about classical learning: after an agent was trained to respond to a CS, if the corresponding US was presented without being preceded by the CS for enough times, the response to the CS decreases over time. This paradigm was then extended to instrumental behavior (Adams and Dickinson, 1981;Schreiner et al., 2020). As an example, we can train an agent to perform an action in order to receive a desired outcome. After training, if we start to give him that outcome at some random point in time, also if he doesn't perform the action, the agent can lose interest in performing the trained action. This would be linked to the fact that its sense of action-outcome contingency, or causal sensation, will drop close to zero, meaning that his behavior was still goal-directed as he updated its internal model.

On the contrary, if the agent established a HB, he would have continued to perform the action independently of the introduced devaluation, at least for a long period of time, until he comes back to a goal-directed strategy.

Although the transition from GDB to HB and vice-versa are well described phenomena, less is still known on how an agent is called to perform an action in a goal-directed or in a habitual way, and which is the computational mechanism underlying this switch. So far, one of the most accredited hypotheses is the existence of a cognitive computational arbitrator model that selects one of the two behaviors. I will give a better overview of these arbitrator models in Section 1.4.3.

Toward a unified vision of learning

As we can see, there is some similitude in between Pavlovian conditioning and habitual behavior. A recent review proposes a slight modification of this cognitive organization, proposing a dichotomous division between a stimulus-driven model-free control and a goal-directed model-based control (Corbetta and Shulman, 2002;[START_REF] O'doherty | Learning, reward, and decision making[END_REF]. The first category comprehends the reflexes, the Pavlovian classical conditioning and the HB. Those three types of learning share indeed some characteristics such as the fact that they take control over the actions in a rapid and efficient way, the fact that they are automatically deployed, inflexible and hard to modify, moreover they are model-free and outcome independent.

Stimulus-driven control can be thought of as retrospective, in that it depends on integrating past experiences. The second category comprehends exclusively the GDB, whose main characteristics are: slow but flexible computations, the need of a model, and the fact that it can be stimulus independent. Goal-directed control may be thought of as prospective in that it leverages a cognitive map of the decision problem to flexibly reevaluate states and action. Overall, open questions exist concerning the relation between habit and goal-directed learning, and a unified theory is still missing.

Brain circuits of goal-directed learning

Instrumental learning is thought to be mediated by the activity of neural circuits and populations distributed over fronto-striatal loops [START_REF] O'doherty | Learning, reward, and decision making[END_REF].

Instrumental learning has been extensively investigated with the use of both animal models and in humans, highlighting the role of cortical and subcortical areas involved in its implementation. Each of this network can be composed of several cortical and subcortical functionally connected brain regions, able to express different cognitive aspects of the behavior (Figure 3).

In goal-directed behavior, one of the most important concepts is the idea that an agent needs to be able to represent the values of the outcomes, in order to build an efficient cognitive map that allows him to compute how to achieve the desired outcome, that is the one with the highest value, and thus the sequences of actions that can lead him to that. In order to do so, the brain should also be able to establish associations between states, whether they represent stimuli, actions or outcome. In this section I will give a general overview of the participation of different brain regions, at first cortical and then subcortical, and of their interactions in instrumental learning. et al., (2015).

Fronto-striatal loops

Physiological, anatomical and imaging studies in both human and non human primates, revealed that the basal ganglia complex follows an intrinsic anatomo-functional organization, forming cortico-basal ganglia loops of connections implied in different aspects of behavioral control involving different cortical regions (Haber, 2003;Nakano et al., 2000;Redgrave et al., 2010;[START_REF] Liljeholm | Contributions of the striatum to learning, motivation, and performance: an associative account[END_REF]Jahanshahi et al., 2015;Morris et al., 2016). Three main distinct fronto-striatal loops are identified: 1) the limbic loop, implied in motivational and emotional aspects, that involves the ventral part of the striatum, the anterior cingulate cortex, the orbitofrontal cortex and the amygdala; 2) the associative loop, implied in planning and higher cognitive control, involving the anterior part of the striatum (dorso-medial striatum in rodents), the dlPFC and the PPC; 3) the sensorimotor loop, implied in motor control, that involves the posterior part of the striatum striatum (dorso-lateral striatum in rodents) and the sensorimotor and supplementary motor cortices. Also if the differences among these loops are well identified, the anatomy of these circuits doesn't follow a strict separation, but more a transitional gradient (Figure 4) (Vogelsang and D'Esposito, 2018;Han et al., 2021). Some studies revealed that the transition from goal-directed to habitual behavior can rely on a gradual switching between the fronto-striatal loops, especially from the associative to the sensorimotor networks (Yin and Knowlton, 2006;Ashby et al., 2010). Overall, these studies suggest that goal-directed learning is based on the associative and limbic fronto-striatal circuits.

Cortical regions

Before going into details, a small clarification here is needed: usually when we talk about cortical regions we talk about regions belonging to the neocortex, and thus to the frontal, parietal, temporal and occipital lobe. The neocortex has a very conservative structure, made of six layers, each one containing the bodies of different cellular types, organised in cortical columns (core sections perpendicular to the brain surface of about half a millimeter diameter, comprising all the six layers). The thickness of each layer can vary depending on the location and the function of that part of the cortex we are considering; a very well known example of that is the primary motor cortex, in which layer IV (inner granular layer) is thinner in favour of a thicker layer V (inner pyramidal projection neurons layer). The layers, and thus, the cortical columns are all oriented on the same axis, with the axons of the neurons perpendicular to the surface, and are organised in convolutions that form sulci, in order to maximise the surface on volume ratio. But the neocortex represents 90% of the whole cortex, the remaining 10% is represented by the allocortex, which only has 3-4 layers, and which comprehends olfactory and limbic structures, such as the insular pole and the hippocampus. This clarification is due because in Study 3, we will use marsatlas for the brain parcelization of human participants; this atlas includes the insular pole among the cortical regions (together with neocortical structures), and the hippocampus among subcortical regions (together with the basal ganglia, the thalamus and other limbic structures such as the amygdala, also if it belong to cortex), but that is just for labeling simplicity. For the sake of uniformity, I will follow the same subdivision also in the following paragraph in which I will outline the current hypotheses regarding the role of different cortical areas in goal-directed learning. 

Orbitofrontal cortex (OFC)

OFC has several key roles in instrumental learning, spanning from encoding the cognitive map to the representation of outcomes' identity and expected and effective value. Regarding its role in encoding the cognitive map, computational studies suggest that the OFC is able to represent states, in particular in an abstract task space (Wilson et al., 2014). The OFC encodes preferentially stimuli and outcomes associations instead of actions. Indeed, it is able to encode for expected value based on a stimulus-stimulus association, and to encode the outcome identity, activating in presence of stimuli which predicts those outcomes [START_REF] Howard | Identity-specific coding of future rewards in the human orbitofrontal cortex[END_REF]. Moreover, the OFC seems to differently respond to the values of conditioned stimuli to unconditioned appetitive or aversive stimuli, and to the predicted values of those conditioned stimuli (Schoenbaum et al., 1998;Salzman et al., 2007;Salzman and Fusi, 2010). Other studies showed that OFC discriminates between different amounts of values of the outcomes, and the values of expected and prospective outcomes [START_REF] Padoa-Schioppa | Neurons in the orbitofrontal cortex encode economic value[END_REF]McDannald et al., 2011).

OFC responds also to different kinds of already experienced outcomes and responds differently according to the motivational state associated with them (O'Doherty et al., 2001;Rolls, 2003;Smith et al., 2010) 

Ventromedial prefrontal cortex (vmPFC)

vmPFC is involved mostly in representing outcomes' value, and shares some functions with OFC, such as responding accordingly with the amount of value attributed to an outcome, encoding outcomes value after their reception, and econding motivational value assigned to outcomes (O'Doherty et al., 2001;Rolls, 2003;[START_REF] Padoa-Schioppa | Neurons in the orbitofrontal cortex encode economic value[END_REF]Smith et al., 2010). Pan et al. in 2014 observed that monkeys' lateral prefrontal cortex can compute higher-order outcomes values, indeed, its activation correlates with the value of an outcome associated to a novel stimuli, and inferred by the previously experienced stimuli-outcomes associations; the human vmPFC seems to act in a similar way [START_REF] O'doherty | Learning, reward, and decision making[END_REF]. Another study demonstrated that the activity of vmPFC scales with the outcome values, responding with an increase in activity for positive values and a decrease in activity for negative values (Plassmann et al., 2010).

Sometimes an agent is called to evaluate different types of outcome and to compare them, vmPFC seems to be involved in assigning a common currency to different outcome's categories to allow a comparison (Chib et al., 2009;[START_REF] Levy | The root of all value: a neural common currency for choice[END_REF]. Also, vmPFC seems able to encode the incentive value of the actions, and the action-outcome causal relation in an instrumental contingency learning task (Matsumoto et al., 2003;Liljeholm et al., 2011).Moreover a recent studies indicates its role in positive reward associated prediction errors (Gueguen et al., 2021).

Dorsolateral prefrontal cortex (dlPFC)

dlPFC is related to the ability of building cognitive maps involving actions, and in action planning (Balleine and Dickinson, 1998). In a 2010 paper, Glascher and colleagues proposed the existence of a state prediction error (SPE), another type of prediction error, not based on reward, that acts like a signal to update model-based expectations, which measure the surprise of a new state based on the current estimate of the state-action-state transition probability (Gläscher et al., 2010).

Using fMRI, they found out that dlPFC correlates with SPE, meaning that this region can be involved in learning cognitive models that involve actions. Moreover, in order to build an internal model that takes in consideration the actions, the agent should be able also to retain in his memory the past actions and the transitions between states, and dlPFC is indeed associated with working memory [START_REF] Levy | Segregation of working memory functions within the dorsolateral prefrontal cortex[END_REF]Miller and Cohen, 2001;Procyk and Goldman-Rakic, 2006) .

Posterior parietal cortex (PPC)

PPC covers several different aspects of decision making. It participates, for example, in perceptual decision making, that is the ability to establish the identity of a stimulus in a limited space of categories, useful for state identification (Shadlen and Newsome, 2001). According to those findings, other studies showed that PPC encodes the category of current or future potential states and stimuli (Freedman and Assad, 2006;Doll et al., 2015). The activity in the inferior parietal lobule, a part of the PPC, has been found to vary according to the causal contingency measure resulting as a function of two outcome probabilities, called ΔP, together with actions rates and judgment of the causal efficacy of those actions (Liljeholm et al., 2011(Liljeholm et al., , 2013)). Moreover, as dlPFC, PPC was found to respond to SPE (Gläscher et al., 2010) and to participate in action values representation and action planning, as it has a well established role in numerical cognition (Platt and Glimcher, 1999).

Subcortical regions

Subcortical brain regions comprehend a variety of different structures, all with different roles, essential for sustaining higher cortical computations. A major complex is represented by the basal ganglia, an ensemble of nuclei that was first thought to contribute mostly to motor functions, and was later found to be involved in higher cognitive processes and emotions [START_REF] Lanciego | Functional Neuroanatomy of the Basal Ganglia[END_REF]. The basal ganglia complex includes:

• striatum: it is the main component, a very complex structure at the connectivity, cellular and molecular level, that in primates is subdivided in a ventral part containing the nucleus accumbens (NAc) and a dorsal part, including two nuclei, the putamen and the caudate nucleus. From this structure originates both the direct and the indirect basal ganglia pathways;

• globus pallidus: structure composed by GABAergic neurons that receives GABAergic afferents from the striatum, it can be subdivided in its external portion (GPe) that projects on subthalamic nucleus participating in the indirect pathway, and its internal portion (GPi) that projects on the thalamus participating in the direct pathway;

• subthalamic nucleus (STN): small nucleus that is intensively studied for its clinical relevance, especially after the advent of deep brain stimulation (DBS), an effective treatment to reduce symptoms in Parkinson's disease. It is also involved in the hyperdirect basal ganglia pathway, receiving excitatory inputs directly from the cortex and sending its projections toward GPi and the substantia nigra pars reticulata.

• substantia nigra, that is subdivided in two parts: the pars reticulata (SNr) that receives GABAergic afferents from striatum and GPe nucleus and glutamatergic afferents from the STN, and sends GABAergic efferent projections to the thalamus; the pars compacta (SNc) that receives GABAergic afferents from the striatum and sends modulatory dopaminergic efferent projections to the striatum together with the ventral tegmental area (VTA).

Striatum

The whole striatum receives glutamatergic projections from the cortex and the thalamus (called corticostriatal and thalamostriatal projections respectively) and receives midbrain dopaminergic projections from the SNc and VTA. The SNc and VTA are two regions that are well known to be involved in the encoding of reward value and reward prediction error (RPE) (Apicella et al., 1991;Schultz, 2016aSchultz, , 2016b)). Moreover, it receives afferences from the amygdala and the hippocampus. It sends GABAergic projections to the GPi and GPe (called striatopallidal projections)

forming respectively the direct and the indirect striatal pathways. The activation tuning of those two pathways is allowed by the same nature of the dopamine and of its receptors. Indeed, the effect of dopamine on D1 receptors is to activate GABAergic neurons involved in the direct pathway, inhibiting the GABAergic neurons of the GPi and SNr, that results in a thalamic activation; while dopamine inhibits neurons expressing D2 receptors, allowing GPe GABAergic neurons involved in the indirect pathway to be activated, thus inhibiting the STN, that sends glutamatergic excitatory efferent projections to the GPi and SNr, allowing them to inhibit the thalamus. The synergy between these two pathways allows the fine regulation of the thalamocortical circuits controlling behavioral expression. et al., 2007;Bissonette and Roesch, 2015;Yager et al., 2015) and in punishment [START_REF] Pessiglione | Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans[END_REF][START_REF] Palminteri | Critical Roles for Anterior Insula and Dorsal Striatum in Punishment-Based Avoidance Learning[END_REF][START_REF] Palminteri | Opponent Brain Systems for Reward and Punishment Learning[END_REF]. 

Amygdala

Amygdala (Amy) is a nucleus belonging to the limbic complex, and thus involved in emotions, such as fear, and in some rapid behavioral response like the fight or flight response, or conditioned automatic reflexes [START_REF] Ledoux | Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear[END_REF]. Studies in rodents and monkeys showed that Amy is also involved in encoding conditioned stimuli when they are linked to unconditioned appetitive or aversive stimuli, moreover it is involved in representing context, stimulus identity, and reward expectation (Schoenbaum et al., 1998;[START_REF] Paton | The primate amygdala represents the positive and negative value of visual stimuli during learning[END_REF]Salzman and Fusi, 2010) .

Hippocampus

Hippocampus (Hipp) belongs to the allocortex and can be subdivided in 5 parts: cornus ammonis (CA) from 1 (more external, in continuity with the subiculum) to 4 (more internal) and the dentate gyrus (DG). Hipp has a very well established role in declarative long-term memory and in representing space through place cells, able to inform the agent about a specific position in space, but not following a specific pattern as grid cells in the entorhinal cortex, with whom they communicate (Bird and Burgess, 2008;Moser et al., 2008). For those reasons, Hipp was always considered a good candidate to encode cognitive maps, especially in spatial decision making tasks where a model-based planning is needed, and indeed the activity of place cells can represent the agent trajectory during a spatial decision-making task [START_REF] Pfeiffer | Hippocampal place-cell sequences depict future paths to remembered goals[END_REF]. Hipp seems to be more involved in stimuli-stimuli associations encoding, more than actions-outcomes associations, as some study showed its ability to link reward to perceived stimuli (Wimmer and Shohamy, 2012).

To conclude, current literature suggests that goal-directed learning is supported by subcortical areas, through the expression of rostro-caudal gradients involving the basal ganglia and the cortical brain regions.

Advantages and pitfalls of brain data acquisition techniques for the study of goal-directed learning

Learning is surely a brain network phenomenon. On the other hand, functional specificity exists at the microscopic and mesoscopic level. One of the challenges of future studies will be to integrate brain data from multiple spatial and temporal scales so as to have a complete picture of the neural bases of goal-directed learning.

This section introduces the state-of-the-art concerning the methodological approaches for the analysis of the neural correlates of goal-directed learning and the underlying computationsValid correlates for neural activity find their roots in different kinds of signals, electrical, biological, optical and so forth; the only limit is engineers' fantasy, and technological or computational limitations. Each of these techniques has its own pros and cons that should be taken in consideration during experimental design. The constraints that are taken in consideration are spatial resolution, temporal resolution, mobility and coverage.

Evidently, there exists no single experimental technique that allows the measurement of brain activity at both a high spatial and temporal resolution in humans or non-human primate. In this section I will describe two of the techniques that I exploited for the studies described in Section 3 (LFP) and Section 4 (MEG).

Moreover, I will compare them with similar techniques, and finally I will give a brief description of other data acquisition techniques.

Spikes and Local field potentials (LFPs)

Neurons are cells able to transmit information to each other using electrical and chemical signals. When a neuron generates an electrical impulse, that is called action potential or spike, it is transmitted through the axon to then reach the synapses, which, releasing neurotransmitters, generate a postsynaptic potential (PSP) in the dendrites of adjacent neurons.

Using microelectrodes, we are able to record the spiking activity of single neurons in the brain of behaving subjects, using the difference of potential with respect to a reference. The electrical signal is usually band pass filtered between 300 and 6000

Hz in order to capture just the fastest events. It is possible to perform spikes detection during (by hardware) or after (by software) the recording in order to obtain a time series that can be used to compute, for example, the inter-spikes interval or the firing rate of that neuron. A relevant feature of spikes is that it is possible to understand which kind of neuron we are recording by observing the spike waveform.

On the contrary, Local Field Potentials (LFPs) represent larger and slower electrical phenomena, recorded in a radius of 0.5 -2 millimeters from the tip of the electrode and low-pass filtered with a cutoff frequency in the range of 100-300 Hz (Buzsáki, 2006). About their origin, LFPs are thought to be the result of the synchronization of the synaptic potentials (both excitatory and inhibitory postsynaptic potentials (E/IPSP), and sometimes also membrane hyperpolarization) occurring in that radius (Buzsáki, 2006;van der Meer, 2010;Buzsáki et al., 2012). LFPs are particularly useful to study oscillatory activity, indeed after preprocessing and artifact rejection, we can use the time series to extract the power of several frequency bands in order to build a time-frequency map that describes how synchronous activity evolves for each frequency band in time (preprocessing and power extraction techniques will be better described in the next paragraph). Spikes and LFPs recordings can be combined to compute the spike-LFP phase-coupling, which is especially effective for the study of long range interactions.

The aim of all of these approaches is to relate the properly treated signal with some relevant behavioral variable recorded at the same time as the neurophysiological signal, in order to further proceed with descriptive analysis and statistics.

Those two techniques have the advantage of a very high temporal resolution, but on the other side they are very invasive, meaning that they need a surgical procedure in order for the electrode to be placed. This leads to disadvantages, like the fact that the experimenter should be careful in inserting the electrodes, especially if he is supposed to reach a deep part of the brain, and the fact that the recording position is relatively unknown. Indeed a common procedure is to make use of anatomical atlas and stereotaxic coordinates to implant the electrodes, to then cause an electrical or thermal damage before removing the electrodes, in order to verify their recording site in a postmortem histological analysis. However, the brain coverage of those techniques is getting better and better, from single pin electrodes we passed to multiple-pins electrodes and microelectrodes (e.g. NeuroPixels), arrays of electrodes ad microelectrodes (e.g. Utah Arrays), and recently even to record an entire hemisphere of a behaving macaque monkey, using a large-scale semi-chronic microdrive recording system developed in Charles Gray's lab (Dotson et al., 2017).

In Section 3 I analysed a dataset recorded by the team of Paul Apicella to investigate the neural correlates of goal-directed learning in behaving non-human primates striatum, performing a free-choice goal-directed learning task. In particular, I wanted to assess how striatal oscillatory activity correlates with relevant learning signals such as RPE in different striatal fields.

Electro-and Magneto-encephalography (EEG and MEG)

Most popular for human studies, EEG and MEG are non-invasive whole-brain recording techniques. They differ in the acquisition phase, but they share very similar data analysis pipelines.

In an EEG, a soft plastic or silicon cap containing several equidistant holes is placed on the head of a subject. This cap is used to hold in place the EEG electrodes: the experimenter injects inside each hole, on the subject's scalp, some conductive gel to then place the electrodes on the top of it. The origin of the signal is the same as the LFP one and it's recorded as an electric field in the order of microvolts (mV, V). 10 -3

In MEG, a hard plastic cap, often associated with a chair or a table, is placed on the subject's head. This cap already contains the sensors in a fixed position, the sensor can be of two types: magnetometers, to measure the magnetic field, or gradiometers, which are pairs of magnetometers placed very close one each other to measure the difference in magnetic field between them. MEG machine needs a couple more attentions compared to EEG setting: the machine should be isolated from magnetic fields with the use of a metal alloy called mu-metal, that has infinite magnetic permeability; moreover the coils used in MEG sensors should be able to record magnetic field in the order of femtotesla (fT, T), thus they need to be 10 -15 constantly kept under very low temperature using liquid helium. The origin of the magnetic field is attributed to synchronous excitatory or inhibitory PSPs of several close neurons, acting like small electrical wires that generate a magnetic field orthogonal to current direction. Thus, the magnetic field is perpendicular to neuronal axon direction, and in fact its power is maximal in the correspondence of cortical sulci's walls, and minimal on sulci's ridges.

Both in EEG and in MEG it is possible to add electrodes out of the scalp surface to record eye movements (vertical, horizontal and blinks) or cardiac activity: those signals will be used during preprocessing to remove artifacts.

The result of an EEG or MEG recording is composed of an ensemble of neurophysiological time series at the sensor level, that at first should pass through preprocessing. This stage is used to clean the data from artifacts and includes different steps such as: notch filtering (a band-stop filter used to subtract the periodic influence of electrical current from the signal, that is 50Hz in Europe), artifact rejection by independent or principal component analysis (ICA or PCA), band-pass filtering (or high-pass or low-pass), and a crucial visual inspection. Indeed, there is no fixed preprocessing pipeline applicable to all the dataset, this is something still lacking also if there is some new proposed solution based on the use of deep learning algorithm.

After the preprocessing, time series can be analysed at the sensor level extracting the time-frequency map, but this is not so much informative, because on the contrary of LFPs, here the sensors and the sources of the signal are not in the same location. Each recorder time series coming from the sensors (outside the brain) contain signals coming from several sources (inside the brain); thus we are interested in extracting the signal at the local source level before proceeding with analysis. To do so, an MRI of the subject and a series of computational passages are needed.

The MRI is used to reconstruct a complete 3D model of the brain of the subject, including the skull and skin, through the use of softwares such as FreeSurfer or BrainVISA. The brain is further segmented between white and gray matter and then with parcelization an atlas is applied in order to label different cortical or subcortical regions. Atlases can follow an anatomical or a functional division, following different subdivision rules, some example are the Brodman atlas following cytoarchitecture, the Desikan-Killiany (Desikan et al., 2006) following gyruses, and MarsAtlas (Auzias et al., 2016) following sulci.

Once we have the model of the anatomy, we need to model what we can observe from our sensors given the anatomical constraints that we just computed, in other words we need a forward model. To do so we must compute two things: a source space and a volume conduction model. The source space is needed to describe sources' position relative to each sensor and their orientation in space, that is the orientation of the electrical dipoles. Sources can be placed on a surface mesh, with orientation corresponding to the normal direction of the surface, or in a volumetric space, with free orientation. Volume conduction models are needed in EEG because the electric field can diffuse differently through brain, skull and skin, causing distortions in the recorded electrical signal, while in MEG is needed because this diffusing electrical field generates itself a small magnetic field that can distort the magnetic signal, but generally MEG is less affected by this phenomena because magnetic fields penetrates non-magnetisable materials. One of the most used volume conduction models is obtained with the boundary elements method (BEM) because it is easy to compute, since it consists of a mesh of triangles describing the surface of the skull and the skin surrounding the brain. Other available methods are the finite element method (FEM) and the finite difference method (FDM), which return 3D conductivity models.

Once we have the forward model, we must compute the contribution of each source given the recorded signal from the sensor, or in other words the inverse model.

Several techniques can be used for inverse modelling, such as single/multiple dipole fitting (minimizing the error between model and measured field), distributed source models, and state of the art spatial filtering methods (also called beamforming), like the dynamic inherent court of sources (DICS), the Linearly Constrained Minimum-Variance (LCMV) or the Synthetic Aperture Magnetometry (SAM). Those algorithms give as result a source-level time-resolved signal.

Usually, the number of computed sources are higher than the number of original sensors (e.g. in study 3 we computed 4000 sources for each brain hemisphere starting from a total of 248 sensors), thus to simplify computations is better to group and merge them (e.g. averaging) accordingly to the pre-computed parcelization, to reduce the number of signal dimensionality to the number of parcels (e.g. in study 3 we used MarsAtlas that has 48 parcels per hemisphere).

After all these passages, we can use the signal at the parcel level to compute event related potentials (ERP, also called evoked responses), or a time-frequency map of the power of several frequency bands. Extracting the power of a signal is very common because it allows to study the rhythmic oscillatory activity of well established frequency ranges: delta (1-4 Hz) linked to sleep state, theta (4-8 Hz) linked to drowsiness, alpha (8-12 Hz) linked to resting state, beta (15-30 Hz) linked to attention, gamma (30-80 Hz) linked to focus, and high-gamma (>50 Hz) linked to problem solving and concentration (Cole and Voytek, 2017). This is just an overview, but these bands are shown to correlate with precise motor responses (Jenkinson and Brown, 2011;Schwerdt et al., 2020), cognitive states (Brovelli et al., 2005), behavior (Engel and Fries, 2010) and also with pathological states (Holt et al., 2019).

Moreover, different frequency bands are associated with different ranges of cortical interactions, with the lower bands implied in large scale computations and higher frequency associated with local activations (von Stein and Sarnthein, 2000).

There are several different algorithms to extract the periodic component of a signal, as for example the Fast Fourier Transform (FFT), the Morlet Wavelet convolution (MW), and the Multitaper method (MTM), that are among the most used algorithms.

The FFT took over the Discrete Fourier Transform (DFT) for its computational speed, especially when considering long time series, and it's still used for spectral analysis and denoising. The MW method allows fast resolving of the periodic components in both time and frequency domain. This is possible through the computation of several wavelets, small frequency-specific waves with particular properties, that are convolutionally multiplied to the signal. The MW has one particular parameter used for the construction of the wavelets, that can bias the result of the analysis: the number of cycles. This is a well known issue of this method, responsible for what is called the temporal-spectral tradeoff, by which wavelets with a lower number of cycles give a better representation in the time domain, while wavelets with a higher number of cycles give a better representation in the spectral domain. In order to find a good compromise between time and spectral precision it is usually used a variable number of cycles, increasing together with the frequencies.

The MTM uses Slepian tapers sequence, small snippets of data of which the first one is a gaussian and all the others are orthogonal among them. The data are convolutionally multiplied to all of these tapers, highlighting different properties of the signal, and then a FFT is computed on each data-taper to obtain the spectral analysis. The sum of these spectra gives the power of the data for each convolution.

In the end, we can understand why these techniques are largely used to study brain computations and brain dynamics, indeed they have an outstanding temporal resolution (in the order of milliseconds, with a final sampling frequency of around 500-1000 Hz), they are non invasive and they allow recording the whole brain activity, but a little clarification here is needed. When we find the word 'brain' associated with these techniques, it is more convenient to read it as 'cortical'.

Indeed, when we build the source space, we can consider both cortical and subcortical sources, but the more they are distant from the recording zone the more the modeled signals can incur in artifacts. That can happen for several reasons, such as leaking activity or error in the volume conduction model, and in the specific case of MEG we should also consider that the force of the magnetic field is inversely proportional to the square of the distance from the source of the field. Despite that, new solutions, algorithms and procedures to enhance the signal reconstruction at the level of deep sources are often proposed [START_REF] Pizzo | Deep brain[END_REF]Seeber et al., 2019), making it a still active research field.

In Section 4, I investigated the large-scale correlates of goal-directed learning using MEG recorded on human participants while performing a goal-directed causal-learning task. After data acquisition I computed the high-gamma activity (HGA) at the single-trial level and used information theory tools to relate it to behavioral variables.

Complementary techniques

As I told before, there are numerous techniques that are used for neurophysiological recordings and among them fMRI is one of the most used. fMRI is a non-invasive technique that uses a very powerful electromagnet to orient in space hydrogens' nuclei of water molecules, in order to let them produce a detectable magnetic field, with different variations in strength which allow us to distinguish different structures. To give an idea of how powerful these machines are, the earth's magnetic field is about 30 to 60 microtesla (µT), while the highest resolution fMRI machine so far can produce up to 7T, giving us the opportunity to produce images in wich we can discriminate cortical layers. Moreover, thanks to the properties of hemoglobin, fMRI can detect variations in blood oxygenation level (blood oxygenation level dependent signal, or BOLD signal) that correlates positively with brain's areas activity. Unfortunately, fMRI falls in the category of good spatial but bad temporal resolution, indeed their sampling rate is about 0.5 Hz (one point each two seconds), making them not particularly suitable for network dynamics studies. Anyway, new hybrid techniques that allow EEG recording during fMRI acquisition are so promising for solving problems of both the techniques.

Another exploited technique, especially in last years, is two-photons calcium imaging, whit which is possible to record the activity of populations of neurons, with a single neuron resolution, in behaving subjects. It is a very invasive technique, the region of interest is injected with a calcium-sensitive dye or more often neurons are genetically modified to express a calcium indicator, in order to emit a fluorescent signal that reflects the spiking activity. A window is opened on subjects' skulls in order to access them with a two-photons microscope able to capture the intensity of fluorescence emitted by neurons, with a temporal resolution of around 10-30 Hz.

Ideally, the best solution would be to develop the perfect recording technique that allows us to acquire large brain areas activity at the neural level and with a few thousands of hertz of temporal resolution in a non-invasive way. But until that moment, the best practice is to choose wisely the technique that we want to use according to our study and the phenomena that we want to observe. Indeed we can't say that one of these techniques is better than the other, but just that one can be more suitable than the others in that specific context.

Computational models of goal-directed learning

Nowadays, computational models are used in several fields of research, not only regarding life science. Computational models can be useful to explain observed phenomena, to make predictions, to formulate new theories, to test hypotheses and to find analogies with reality. In the context of neurosciences, the aim of computational modelling is to provide common theoretical ground for disparate neurophysiological studies. Cognitive neurosciences and computational models can be considered as two sides of the same coin. Indeed most of the cognitive theories of behavior, referred both to classical and instrumental learning, find their roots in computational models based on behavioral studies (Rescorla, 1966;Rescorla and Wagner, 1972;Allan and Jenkins, 1980;Watkins and Dayan, 1992;Dayan et al., 1995;Sutton and Barto, 1998). An important part of cognitive modelling is the choice of the model to use. This depends on what we are trying to model, on what we expect as output of the model and how we want to use this output. In this work we made extensive use of computational models: in Section 2 we used a spiking neural network model to explain how higher cognitive computations, such as planning and GDB, can emerge from neural processes (Basanisi et al., 2020). In Section 3 we used a Q-learning model, a type of reinforcement learning model, fitted on monkeys' behavioral data in order to retrieve single-trials RPE values. In Section 4 we implemented a Bayesian optimal agent model to compute relevant behavioral values, such as the contingency values, adapted on the behavior of human participants performing a goal-directed causal learning task.

Neural networks A glimpse of history

Artificial neural networks (ANN) started their history in 1958 with Frank Rosenblatt's perceptron (Rosenblatt, 1958). The idea behind perceptron was easy: two or more input units are connected to one or more output units through weighted connections; the activation of each output unit depends on the sum of the weights of its active input units passed through an activation function (e.g. a step function or a sigmoid function). This is the general principle that most neural networks follow. But this simple perceptron was only able to solve linear problems (e.g. the OR and the AND problems) but not nonlinear problems (e.g. the exclusive-or, or XOR problem). This was possible after a while (after the so called 'AI winter') with the advent of multilayer perceptron, that showed that adding one or more middle 'hidden' layer between the input and the output, and using a supervised learning algorithm called backpropagation, was sufficient to solve most of classification problems, if we only have enough training time, enough layers, and enough weights to train. Soon after this problem was solved, and with the advent of improved computational power, newer ANN models exploded in a variety of novel structures and learning rules (Shrestha and Mahmood, 2019). 

Spiking Neural Networks

The need of building biologically inspired ANN led to consider time as an important feature of the network, thus new structures such as echo-state networks made of leaky neurons, or the spiking neural networks (SNN) made of integrate-and-fire neurons or spiking neurons ariesed [START_REF] Maass | Networks of spiking neurons: the third generation of neural network models[END_REF]Ghosh-Dastidar and Adeli, 2009;Ponulak and Kasinski, 2011). The SNN that we describe in Section 2 provides one example: at each discrete instant of time, once computed the sum of the weights' contributions that each unit receives, the network stochastically selects one firing unit through a SoftMax function. The firing event triggers the update of the weights following the Hebbian rule based on the spike-timing dependent plasticity (STDP), that increments the weight between that unit and the previously spiking one, and lowers the strength towards the units that fired distant in time. This process, combined with the network architecture, allows some kind of lateral inhibition that installs a 'winner-take-all' (WTA) mechanism, making the network able to learn in an unsupervised fashion the transitions between states as a Hidden Markov Model (HMM). Those powerful models are still currently studied because they represent a good possible bridge (and compromise) between neural models, bayesian computations, and biological complexity.

Reinforcement learning models (RLM)

Reinforcement learning (RL) was influenced by behavioral psychology and modern neuroscience, and it was developed as an emerging field of artificial intelligence and machine learning (Sutton and Barto, 1998). RL can be considered as a particular case of unsupervised learning based on the interaction with the environment. Indeed, contrary to supervised learning, RLMs do not need an explicit input nor an outcome to tend toward. They rely on a reward and a RPE signal to learn by trial and error actions' consequences on the environment. The general principles of RLMs can be summarized as follows: given an agent, able to perform a set of actions 'A' in an environment that can be discretized in a set of states 'S', it will learn to predict the actions dependent state-state transitions in order to maximize the received reward 'r'. This process resembles what is called a Markov Decision Process (MDP), where the choice of the action to perform, to reach the next desired state, is based only on the last observed state. The rise of these models started with the Temporal Difference (TD) learning model (Sutton and Barto, 1998), directly deriving from the Rescorla-Wagner model for classical conditioning (Rescorla and Wagner, 1972).

Those two models introduced in their algorithm the concept of 'error based learning', that became so popular especially after the discovery that dopaminergic midbrain neurons activity correlates with error signals (Schultz et al., 1997).

TD-learning can efficiently solve the prediction problem, indeed it is able to learn to predict the states associated values over multiple time steps. However, the control problem, i.e. to make an agent able not only to learn to predict the states values but also to use this prediction to orient its actions in order to maximise the reward, was still unsolved. As an extension of the TD-learning, addressing the problem relative to the choice of the actions distinctive of instrumental learning, in 1989 Christopher J.C.H. Watkins introduced the Q-learning model, then formalised in 1992 by Watkins and Peter Dayan (Watkins and Dayan, 1992). Briefly, Q-learning is a model-free algorithm able to numerically describe relations between state-action couples, assigning and updating these values depending on the RPE. The RPE is computed as the difference between the received reward and the expected reward. The action to perform is computed with a SoftMax function, that preferentially selects the action that will lead the agent toward the state with the higher expected reward. In Section 3, we used a Q-learning model fitted on monkeys behavior to estimate the RPE values from behavioral choices. Such learning signals were then correlated with LFPs data recorded in striatum, finding a RPE responsive beta-oscillatory activity establishing a gradient from the most rostro-ventral striatal part to its most caudo-dorsal part. For their versatility, and for the fact that they can have both an algorithmic and a neural implementation, RLM are currently widely used in several fields of research.

The RLM that I described here is considered model-free, indeed, although it might sample from experience memory, it relies only on on-line samples from the environment. This means that it doesn't generate predictions of the next state and next reward to drive behaviour. Thus, it is particularly suitable for modelling HB but not for GDB, that is model-based, and needs an exhaustive model of stimuli-actions-outcomes to implement specific functions like planning.

HB-GDB modulation: the arbitrator model

One of the open issues in decision-making is how an agent is able to switch between habitual and goal-directed behavior, and thus between a model-free and a model-based strategy, and vice-versa. The generally accepted idea is that an agent starts to explore the environment in a goal directed way building a model of action-outcome associations. As learning goes by, if the environment is stable , the agent progressively consolidates those associations into habitual responses, becoming outcome insensitive. Thus, the more the agent repeats these action-outcome associations, the more they will shift toward a stimulus-response association. Later in time, if the known stimulus appears, an arbitration mechanism will trigger an habitual response. That's also the reason why HB is outcome insensitive and it will be way harder to shift back from HB to GDB. As we can see, this hypothesis is based on a main assumption: HB and GDB relies on two different competing systems, and thus presumably on different brain networks (Daw et al., 2005;Brovelli et al., 2008;[START_REF] Lee | Neural Computations Underlying Arbitration between Model-Based and Model-free Learning[END_REF]. Therefore, as we gradually pass from a HB to a GDB, we should be able to observe a gradual switch between the use of the two networks. Some studies in rodents (Yin and Knowlton, 2006;Hilario, 2008) actually confirmed this hypothesis, suggesting the involvement of the striatum in the arbitration mechanism, by observing a spatial shift in activation from its most dorso-lateral part to its most ventro-medial part, and finding some similarity in humans (Balleine and O'Doherty, 2010).

The discussion is still open on how this arbitration mechanism orchestrates HB and GDB to efficiently switch from one to the other when both learning and action execution are needed. One of the most accepted models hypothesizes the existence of a flat arbitration mechanism that acts like a switch between the two comportamental strategies. Thus, when an agent is introduced to a new task, it is supposed to start using the surrounding stimuli to try to trigger a fast habitual response or a reflexive GDB (Keramati et al., 2011). Here, if the agent has no previous knowledge about stimuli-actions associations, the arbitration system allows the agent to inhibit the habitual system in order to switch toward a goal-directed strategy. Thus the agent starts exploring all the possible actions and to observe the consequent outcomes. Once he finds out which action leads to the desired outcome in response to the stimuli, he will start exploiting that action.

Thus, a first phase of the GDB is exploration, during which the agent starts to perform random actions and to observe the resulting outcomes to collect knowledge about the structure of the task. After he obtained an undesired outcome, an agent can decide if to continue exploration, or on the contrary, after obtaining a desired outcome, he can pass to the second phase of GDB that is exploitation, that is the repetition of actions that led the agent in the desired state (Mehlhorn et al., 2015;Domenech et al., 2020). Exploration and exploitation are two swappable phases of GDB, indeed if we introduce a volatility in the task that changes the associations between actions and outcomes, the agent will restart exploring the environment in order to change the previously learned model of the world, and coming back exploiting the correct motor response in a few trials. A computational study based on the combination of a Q-learning model with a Bayesian working memory seems to accreditate this cognitive model by reproducing behavioral performances and reaction times of human participants performing a visuomotor learning task (Viejo et al., 2015).

Other studies stated instead the existence of a hierarchical control of the GDB, where the transition from goal-directed to habitual actions relies mostly on a process similar to the motor chunking of movement primitives [START_REF] Ostlund | Evidence of Action Sequence Chunking in Goal-Directed Instrumental Conditioning and Its Dependence on the Dorsomedial Prefrontal Cortex[END_REF]Botvinick et al., 2009;Dezfouli and Balleine, 2013;[START_REF] Parkes | Interaction of Insular Cortex and Ventral Striatum Mediates the Effect of Incentive Memory on Choice Between Goal-Directed Actions[END_REF]. According to this cognitive model, a global goal directed system is always active, and it evaluates at each decision if there is an HB that can be triggered in order to efficiently actuate a motor response in order to achieve the goal. If a habit is selected, after the action or sequence of action are executed, the behavior returns to be goal directed (Dezfouli and Balleine, 2013).

Bayesian models for goal-directed causal learning

Bayesian statistics finds its roots back in 1763, with an essay written by Reverend Thomas Bayes. This theorem outlines how to determine the probability of future events by taking into account how past events are distributed, also called inverse probability. Although this theorem was formalised about 250 years ago, its use increased exponentially in the past few years in several research fields, from statistics to modelling. Bayesian models took over cognitive science together with the idea that the brain operates like a probabilistic Bayesian machine, able to represent uncertainties of the world in terms of probability distributions and inferential processes based on Bayes' rule (Dayan et al., 1995(Dayan et al., , 2007)). This concept was then extended to model higher cognitive processes and decision making (Baker et al., 2006;Griffiths et al., 2008). The elements composing Bayes theorem are three: 1) a prior probability, expressing beliefs and uncertainty about the distribution of past data, before any evidence is taken into account; 2) a likelihood function, that is a model of the relations between the prior and the posterior probabilities based on the observable data; 3) a posterior probability, that describes the distribution of the data taking in consideration prior knowledge and the likelihood function. In study 4 we used a Bayesian ideal observer model, able to reproduce the behavior of human participants performing a goal-directed causal learning task. We decided to use a Bayesian model because it allows us to model step by step the exploration phase and the progression of participants' learning, since the task we used was not focused on maximising expected reward (as in RL), but in maximising the knowledge about the causal relation between actions and their outcomes. Thanks to this model, we were able to estimate, at the single-trial level, the evolution of relevant task-related behavioral variables that we used to assess the role of different brain regions.

Bayesian models are very powerful to describe the behavior of an agent at an high level, and for this reason their implication in artificial intelligence is increasing, however they are poorly informative about the low level neural computations.

Studies attempting to bridge Bayesian computations and neural architectures are currently emerging.

Identifying the neural correlates of goal-directed learning

The aim of the studies described in Section 3 and Section 4 was to identify the neurophysiological correlates of goal directed learning. To do so, we correlated the single-trial brain dynamic aligned on a relevant event with the single-trial estimation of both task-related and modelled behavioral data. With a single-trial level analysis, we can describe how neural signals and behavior coevolve in time, and this is suitable for the study of cumulative processes, such as learning. To perform single-trial analysis and quantify the relation between neural and behavioral variables, we used an information theoretic approach and measures, such as the Mutual Information (MI), able to quantify the statistical dependence between two variables. Finally we used group-level inference and cluster based statistics to assess for significance.

Model-free and model-based analysis of brain data

Often, in neurophysiology, once defined the objective of the study, the experimenter is called to design a task in order to make some behavioral difference explicit during the task execution. Indeed, the final interest of analysing a set of neurophysiological data is to find differences among the data, or to couple them with the behavior in order to find some correlations that can explain the recorded data. There are two common methods to find those differences: following a model-free approach or following a model-based approach. Both of these approaches have pros and cons.

In the model-free approach, the data are divided by (or compared with) explicit task or subject dependent variables. They can correspond to, for example, reward and punishment values, reaction times, or different imposed conditions. The advantage of using this approach is that we are working with empirically observable and measurable variables, which allows us to explore data without making any assumption on their distribution. The limitations of model-free analysis are linked to task-design or recording machines, indeed it is often difficult, if not impossible, to retrieve trial by trial specific behavioral measures. Moreover, some behavioral variables originate from behavioral models and thus it is not possible to directly measure them.

On the contrary, using a model-based approach, a technique that derives from the fMRI literature (O'Doherty et al., 2007;Brovelli et al., 2008), means making assumptions on how the data are distributed, and that can be done in two ways: 1) using statistical (e.g. decoders or regression) data-driven models, fitted directly on the data to learn how they are distributed. In this case the assumption depends on the choice of the statistical model (e.g. linear vs. non-linear regression); 2) using behavioral models to compute implicit non-observable variables, in this case the assumption depends on the chosen algorithm to compute that variable, that can change the shape of its distribution. Usually, this latter approach requires the considered model to be previously validated or fitted on behavioral data, giving us the advantage to test hypotheses on modeled behavioral variables, often computed at a finer time scale than the recorded ones. This second approach is very powerful for relating the subject's behavior to neural correlates and potentially disentangling subtle cognitive processes (like contextual learning). However, the limitations of model-based analysis are linked not only to the choice of the model, indeed sometimes modeled behavioral variables can incur in misinterpretation or overinterpretation, as they derive from definitions borrowed by cognitive science.

For the studies described in Section 3 and Section 4 we performed model-free analysis based on information theoretic measures, namely the mutual information, of which I will give an overview in the next paragraph.

Information theory

Thanks to the pioneristic work of Claude Elwood Shannon on information theory (Shannon, 1948), we were able to build a mathematical framework that links the probability of an event to its uncertainty, or entropy, and consequently to its information. Information theory, formerly used mainly in communication, is now used in countless fields, and it is nowadays of common application in neuroscience (Timme and Lapish, 2018). Given an event with probability to occur, we can write 𝑝 𝑖 the associated shannon entropy ( ) as: 𝐻

(1) 𝐻 =- 𝑖 ∑ 𝑝 𝑖 𝑙𝑜𝑔 2 (𝑝 𝑖 )
The base of the logarithm defines the unit of the entropy. As we used a base 2 logarithm, the result of this equation will be expressed in bit (binary digit), another common base for the logarithm in Equation 1 is the Euler number , in that case the 𝑒 entropy is expressed in nat (natural unit of information). Importantly, Shannon linked the concept of entropy and uncertainty to the concept of information and surprise. The information content of an event quantifies how surprising that event is on average, thus the more an event is uncertain, the more its occurrence is surprising and yields information. It means that, on the contrary, a deterministic event yields no information at all. Moreover, the less probable an event is, the more information it yields. In the case that more independent events are measured separately, the sum of the information content over single events gives us the total amount of information. To give an example that resumes what was said until now, I'll take in consideration the case of a coin toss and a dice roll. Imagine we should say how much information is carried by a coin toss: the possible results are head or tail, thus the probability to obtain one of the results is . Given that entropy 𝑝 = 0. 5 tells us the average information in a probability distribution over the sample space, we can write:

𝐻 =-( 1 2 𝑙𝑜𝑔 2 ( 1 2 ) + 1 2 𝑙𝑜𝑔 2 ( 1 2 )) = 1 𝑏𝑖𝑡
Knowing the result of a coin toss give us 1 bit of information; instead, in the case of a dice roll, where the probability to have 1 of the six numbers is , the 𝑝 = 1/6 information obtained from knowing the result of the roll is: 

𝐻 =-6 * (

Mutual Information (MI)

The mutual information quantifies the statistical dependency between two 𝐼(𝑋; 𝑌)

variables and , expressing it as the amount of information carried by one of the 𝑋 𝑌 two variables when we observe the other one. MI is a non-negative and symmetric (

) measure that is formulated by the definition of conditional and 𝐼(𝑋; 𝑌) = 𝐼(𝑌; 𝑋) joint entropy:

𝐼(𝑋; 𝑌) = 𝐻(𝑋) -𝐻(𝑋|𝑌) = 𝐻(𝑌) -𝐻(𝑌|𝑋) (6) = 𝐻(𝑋) + 𝐻(𝑌) -𝐻(𝑋|𝑌)
In the context of this thesis we used MI as a descriptive measure of the statistical dependence between neurophysiological signals and model-free or model-based behavioral variables. A standard approach for estimating MI between two continuous variables implies a binning step in order to estimate the full joint probability distribution (Timme and Lapish, 2018). However, a consequent amount of data, hard to reach in the context of brain signals, is usually required in order to have a decent sampling of this probability distribution. To overcome those inherent limitations, we used a binning-free alternative, originated from the field of economics and recently ported to neuroscience, called Gaussian Copula Mutual Information (GCMI) [START_REF] Ince | A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula: Gaussian Copula Mutual Information[END_REF]. In short, the GCMI exploits the fact that the MI does not depend on the marginal distributions of the variables but only on the copula function which describes their statistical dependency. GCMI has shown to be a robust alternative to MI, and to capture both linear and non-linear statistical dependencies as long as this relation is roughly monotonic.

Thesis objectives

The objective of this thesis is to give a contribution to the investigation of the computational and neurophysiological correlates of goal-directed learning and behavior through the analysis of neural data and the use of neural and behavioral models. To achieve that, we first built a spiking neural network model to provide a plausible explanation of how goal-directed model-based learning can emerge from neural computation in an unsupervised fashion (Section 2). Thanks to its architecture and to the STDP-based learning rule the model is able to encode sequences of stimuli-actions-outcomes and to use them according to the goal to orient behavior and make predictions. Then I investigated the role of beta-band oscillations in non-human primates striatum in encoding RPEs signals computed with a Q-learning model, associated with a free-choice probabilistic learning task (Section 3). We found that information about RPEs are distributed across striatal fields forming a gradient stronger toward the rostro-ventral part and weaker toward the caudo-dorsal part. Finally, we investigated the temporal dynamic of different cortical brain regions of human participants performing a goal-directed causal learning task, in encoding relevant cognitive measures computed through the use of an optimal observer Bayesian model (Section 4). We characterized both action and outcome-related activation of mostly orbitofrontal and prefrontal regions, but also parietal and temporal regions, significantly responding to ΔP, P(O|A) and P(O|C).

Section 5 of this manuscript will give an overview of my scientific contributions in and outside the BraiNets team and of my personal scientific interests, especially those related to the Open Science movement and neuroinformatics projects.

Publications

• Basanisi, R., Brovelli, A., Cartoni, E., & Baldassarre, G. (2020). A generative spiking neural-network model of goal-directed behaviour and one-step planning. PLoS Computational Biology,16(12), e1007579.

• Basanisi, R., Marche, K., Combrisson, E., Apicella, P., & Brovelli, A. ( 2021 (Samejima et al., 2005;Lau and Glimcher, 2007;Seo et al., 2012;Yamada et al., 2013) and functional magnetic resonance imaging (fMRI) in humans (Balleine et al., 2007;Delgado et al., 2005;Wang et al., 2016) has identified neural signals coding action-value in the striatum. Striatal neuronal activity has also been reported to reflect the difference between received and expected rewards, the so-called reward prediction error or RPE (Sutton and Barto, 1998). RPE signals are thought to be crucial for the update of action values (Schultz, 2007;Fujiyama et al., 2015;Schultz, 2016aSchultz, , 2016b)). Several studies have shown evidence, in the striatum of both monkeys and rodents, that output neurons (Roesch et al., 2009;Oyama et al., 2010;Asaad and Eskandar, 2011) and putative interneurons (Apicella et al., 2009;Stalnaker et al., 2012) encode RPE to promote reward-guided learning. fMRI studies in humans have assessed the role of striatum, in particular its ventral part, in encoding RPE (O'Doherty, 2004;O'Doherty et al., 2007;Bray and O'Doherty, 2007;Park et al., 2012;Kumar et al., 2018;Calderon et al., 2021). Another fMRI study proposed that RPEs deriving from different types of reward can recruit distinct partially overlapping striatal circuits (Valentin and O'Doherty, 2009). Despite these findings highlighting the involvement of striatum in RPE encoding, less is still known about neurophysiological activity supporting RPE learning across striatal regions.

Among neural signals that may serve as potential physiological markers for the processing of information in basal ganglia circuits, there is a strong emphasis on local field potential (LFPs) that are supposed to reflect the synchronous activity of populations of neurons in a given brain region (Goldberg, 2004;Brown and Williams, 2005). In particular, oscillations in the beta-frequency band (typically about 15-30 Hz ) have been related to motor function. Indeed, increases in beta LFP oscillatory activity have been linked to motor impairments in patients with Parkinson's disease (Brown, 2007;Jenkinson and Brown, 2011) and animals with experimentally induced Parkinson-like states (Wichmann et al., 1994;Nini et al., 1995;Deffains et al., 2016;Kondabolu et al., 2016). This beta LFP oscillatory activity has been detected at different levels of the basal ganglia network, including the striatum. Besides their well known link to pathology, striatal beta oscillations were also present in normal behaving rats (Berke et al., 2004;[START_REF] Leventhal | Basal Ganglia Beta Oscillations Accompany Cue Utilization[END_REF]Schmidt et al., 2013) and monkeys (Courtemanche et al., 2003;Bartolo et al., 2014).

Numerous studies have provided evidence that this oscillatory activity can be modulated during specific phases of behavioral tasks, possibly reflecting a wide range of cognitive processes, such as modulation of task performances through reinforcement learning (Feingold et al., 2015), response to attentional cues (Banaie Boroujeni et al., 2020), and cues utilization for action programming [START_REF] Leventhal | Basal Ganglia Beta Oscillations Accompany Cue Utilization[END_REF]. Prior studies have shown that striatal beta activity is modulated by reward delivered on correct trials during learning tasks in rats (Howe et al., 2011) and by different task parameters, including reward value, in monkeys (Schwerdt et al., 2020). So far, no consensus has been achieved on the functional implications of such changes. In particular, it is not clear whether RPE signals during the processing of action outcomes may influence striatal beta activity.

Moreover, previous research has pointed out that striatal beta oscillations and their relation to motor and reward processing may occur in a regionally dependent manner (Howe et al., 2011;Schwerdt et al., 2020). It has long been recognized that the striatum is divided into three functional domains (i.e., motor, associative and limbic) (Parent, 1990;[START_REF] Lanciego | Functional Neuroanatomy of the Basal Ganglia[END_REF]. In primates, the motor division is located in posterior dorsolateral portions of the putamen, while the associative and limbic divisions encompass dorsal and ventral portions of the anterior caudate nucleus and putamen, respectively (Nakano et al., 2000;[START_REF] Liljeholm | Contributions of the striatum to learning, motivation, and performance: an associative account[END_REF]Eisinger et al., 2018). Several fMRI studies in humans have reported that the processing of reward-related information, including RPE, is dominant in the ventral rather than the dorsal striatum (Apicella et al., 1991;O'Doherty, 2004;Abler et al., 2006;O'Doherty et al., 2007;Hare et al., 2008). In addition, neuronal recordings in rats have shown that the nucleus accumbens is important for updating choice behaviors (Ito and Doya, 2009). To our knowledge, no experiment in the monkey has provided an in-depth analysis comparing changes in beta oscillations across distinct territories of the striatum in relation to RPE signals.

In the present study, we test the hypothesis that the striatum encodes RPE signals according to an anatomo-functional gradient. To do so, we studied LFP activity recorded at different sites in the striatum of two monkeys performing a free-choice probabilistic learning task. The aim was to characterize the relationship between beta oscillations and choice behavior and its possible role in encoding RPE. The results indicate that changes in striatal beta-band activity play a role in encoding RPEs along an anatomo-functional gradient, which shows a dominant component in the ventral, rather than the dorsal striatum. 

Results

In this work, we studied whether striatal beta-band (15-30Hz) oscillations are involved in encoding RPE in different striatal territories. To do so, we recorded local field potentials (LFPs) from the striatum of two macaque monkeys while performing a free-choice probabilistic learning task.

The analysis of behavioral performances during task execution confirmed that both monkeys learned by trial-and-error over the course of each session which target was most rewarding. Each session was characterised by an initial exploration phase that allowed monkeys to find the most rewarding action, followed by a phase in which monkeys preferentially chose the most rewarding target until the end of the block. In order to quantify behavioral performance across monkeys, we aligned all the sessions to the beginning of each block and computed the probability of correct response across trials. The probability of correct response quantified the monkey's ability to choose the most rewarding button among the three options. As we can see from the progression of the curves in Figure 1, 15-20 trials were sufficient for both monkeys to figure out the position of the most rewarding target.

LPF power was analysed using a reinforcement learning model-based approach.

Finally, we used information theory tools and cluster based statistics together with linear regression models to perform statistical analyses.

Reward modulates beta band power

We then investigated whether modulations in striatal beta-band activity differed among rewarded and unrewarded trials. To do so, we collected all the single trial time-frequency maps for each condition (rewarded and unrewarded). Then we performed a two-sided t-test analysis across the two obtained data samples, and then we Bonferroni corrected the p-values on the total number of points in the time-frequency matrix. The significant clusters (p<0.05, Figure 2) were observed for both monkeys in the beta band. On the other hand, the clusters were centred around 25 Hz for monkey F and around 30 Hz for monkey T. We used those two central frequencies to perform subject-specific analyses of beta band power using the multitaper method. In order to study whether such modulation in beta band power reflected reward prediction errors (RPEs), we fitted a standard Q-learning model to the single-session behavioral data.

From the model, we extracted two values, the RPE and its absolute value, and we used these two model-based variables together with three other model-free variables (reaction times, movement times and chosen action) to fit a multiple linear regression model with respect to the beta band neurophysiological data. Then we used the obtained distributions of angular coefficients to compute a two tailed t-test. As you can see in Table 1, the only significant regressor related to the examined period of activity was the RPE. Thus, in order to identify neural correlates of RPEs, we then computed the mutual information between evolution of RPE and beta band activity across trials in a time-resolved manner. Statistical analysis was performed using cluster-based statistics combined with permutation tests. 

As shown in

Information about RPE dissociates striatal regions

We next investigated whether the encoding of RPEs by beta-band LPF power modulations differentially recruited the sensorimotor, associative and limbic territories of the striatum. Figure 4 illustrates the spatial distribution of striatal sites at which we recorded LFPs in one monkey, as verified by histological analysis. We subdivided the recording sessions into different groups according to their spatial location in the striatum. In order to group recording sessions into homogeneous clusters, we used the KMeans algorithm applied to the 3-dimensional spatial coordinates (AP, ML and depth) of the recording sites. We set the number of clusters equal to six for each territory (putament, caudate and nucleus accumbens), in order to retain a sufficient number of trials per cluster. Thus, we obtained a total of eighteen spatial clusters, as represented in Figure 5A. Once we obtained the clusters, we computed the MI between the RPEs and beta power as described in the previous section. We observed that the amount of information carried by the beta-band LFP power about the RPE is higher in the limbic striatum then slowly decreases in the associative territory to finally drop down in the motor striatum. In 

RPE follows a rostro-caudal and dorso-ventral gradient

We then assessed how the average amount of information about the RPE is distributed across striatum. To answer this question, we defined a rostro-caudal and dorso-ventral axis by taking the highest and the most posterior among electrodes' positions to define a referential point in space for each of the two monkeys. We computed the euclidean distance from the reference point to the center of each cluster, which allowed us to investigate the presence of linear or nonlinear relations between clusters' positions and functional effects (MI values). 

Material and Methods

Experimental procedure and data acquisition Experimental set-up and behavioral task

Two male adult rhesus monkeys (Macaca mulatta) were trained in an instrumental free-choice probabilistic learning task, in which they learned to choose among three options depending on the relative difference in reward probability associated with each option. All procedures were approved by the Institut de Neurosciences de la Timone Ethics Committee (Protocol A2-10-12) and were in accordance with guidelines from the National Institute of Health. Briefly, the surgically implanted monkeys were head-restrained to allow for stable electrophysiological recordings in different regions of the striatum.

The task required monkeys to choose among three spatial cues that were associated with different probabilities of liquid reward. Both monkeys were previously involved in other experiments studying single-neuron activity in the striatum during performance of simplified versions of the reaching task (Marche et al., 2017;Marche and Apicella, 2021). As shown in Figure 1, the experimental setup consisted of three targets (10-mm diameter) aligned horizontally (left, center, right), at the monkey's eye level, in a panel that was placed at a distance of 30 cm in front of the animal. The distance between targets was 10 cm. A two-color (red and green) light-emitting diode (LED) was located in the bottom of each target. Monkeys were trained to keep their hands on a metal rod, located on the lower part of the panel, at their waist level, as a starting position for the movement. A tube positioned directly in front of the animal's mouth dispensed small amounts of fruit juice (0.3 ml) as reinforcement.

Each trial was initiated when the monkey kept its hand on the rod for 1 s, after which all three LEDs were lit with a green color for 500 ms (cue onset). A fixed delay period of 1 s followed the offset of the cue. After the delay period, all three LEDs turned to red and this instructed the monkey to start a movement toward the chosen target.

Once a target was touched, all three stimuli turned off and the monkey immediately received the associated outcome (reward or no reward) according to the programmed schedule. Regardless of the outcome, the monkey had to bring the hand back on the rod to initiate a new trial. A new trial could not begin until the total duration of the current trial (6 s) had elapsed. Trials in which the monkey released the bar before trigger onset were aborted. If the monkey did not release the bar within a maximum time of 1 s after trigger onset or did not contact a target within a maximum time of 1 s after bar release, this was considered as incorrect.We tested monkeys in two learning contexts in which the probability of reward associated with each target was varied, a first 'easy' condition and a second 'hard' condition with relative reward probabilities of 70%-15%-15% and 50%-25%-25%.

Each condition was predetermined at the beginning of each block of trials and was changed from block to block. No explicit information regarding reward probabilities was available. Therefore, monkeys learned by trial-and-error the location of the most-rewarding target (i.e., the option with higher reward probability). The location of the best rewarded target was chosen pseudorandomly across trial blocks. There was no explicit information indicating transitions between blocks of trials and there was a varying number of trials per block (30-80 trials) to prevent anticipation of a block transition by the number of trials.

For each trial, we computed the reaction time (RT, defined as the time interval between the go signal and the bar release) and the movement time (MT, from the beginning of the movement to the target contact).

Acquisition of neurophysiological data

We used conventional techniques for recording single neuron activity from striatum (Marche et al., 2017). Monkeys were implanted with a recording chamber targeting the striatum, centered on the anterior commissure. This location allowed vertical access with custom-made glass-coated tungsten microelectrodes (impedance: 1-2.5 MΩ) to the putamen and caudate nucleus. Recordings were made in striatal sites where single-neuron activity was found, and the sites changed from session to session. LFPs from electrode were amplified (x 5000), bandpass filtered (3-150 Hz), and then sampled at 16.6 kHz by using a Power1401 Analog-Digital converter and a multi-channel acquisition software (Spike2, version 7.2; Cambridge Electronic Design).

Histological reconstructions

Recording sites were histologically verified in both animals, using several small electrolytic lesion marks in the putamen anterior and posterior to the anterior commissure (Marche et al., 2017). Upon completion of electrophysiological recordings, monkeys were anesthetized by using pentobarbital and perfused with 4% paraformaldehyde. Coronal brain slices (40 μm thickness) containing the striatum were prepared and stained by using Cresyl violet to identify the lesion marks.

Electrode penetrations were reconstructed in serial sections through the striatum in each monkey.

Behavioral model

In The coefficient β is termed the inverse 'temperature': low β (less than 1) causes all actions to be (nearly) equiprobable, whereas high β (greater than 1) amplifies the differences in association values.

We identified the set of parameters that best fitted the behavioural data using a maximum likelihood approach. The model was fitted separately for each block of trials and learning session.

For each learning session, we varied the learning rate λ from 0.1 to 1 (in steps of 0.01) and β was varied from 1 to 10 (in steps of 0.2). The two free variables of the model that we fitted are the learning rate of the learning rule (λ) and the inverse of the temperature used by the softmax function, and we used a grid search algorithm to find the best fitting couple of values. For each parameter set, we computed the log-likelihood of the probability to make the action performed by the animal as follows:

(4)

𝐿 = 𝑡 ∑ 𝑙𝑛 𝑃 𝑐ℎ𝑜𝑠𝑒𝑛 (𝑡)

Neurophysiological Data Analysis

Preprocessing of LFP data LFP signals were preprocessed using a notch filter around 50Hz and a band pass filter between 1Hz and 140 Hz were applied. Artifact rejection was performed by visual inspection on the blocks of trials, keeping the ones that were not affected by the spiking activity.

Finally, filtered LFP signals were downsampled to 1000 Hz and cutted into epochs aligned on single events, namely the outcome presentation, used to define the period of analysis (from 0.0 to 0.8 sec), and the cue onset, used to define the baseline period (from -0.55 to -0.05 sec). After epoching, a second visual inspection was performed to remove artefacts from analysis, e.g. deriving from electrical interferences or by spiking activity. The period of analysis was chosen according to the fact that in some block of trials an artifact was produced at the moments of the release and of the contact between the monkey and the metal bar. Recording blocks included were cut at least 25 trials for two reasons: to be sure that the monkey discovered the correct target, and because, especially in the difficult variation of the task, we observed a decrease in performances in very late trials.

Statistical analysis of model-free and model-based behavioral correlates

In order to explore the relation between LFP power modulations and behavioral or model parameters, we computed the Linear regression between the neurophysiological signal and five behavioral variables that we considered significant for the purpose of this specific study: the RPE, the absolute value of the RPE (absRPE), the reaction time (RT), the movement time (MT) and the chosen action (Action).

As a control analysis, we assessed the degree of correlation between model-free (such as RTs and MTs) and model based (such as RPE and absRPE) behavioral variables, and single-trial LFP power values. To do so, we used a multiple linear regression (MLR) model, considering as the dependent variable (y) the average of the beta power in each trial, and as the independent variable (x) the four behavioral variables. A MLR was applied to each recording block, and once we collected all the angular coefficients relative to each block we performed a group level analysis computing a two tailed t-test. As we can see in Table 1, the distribution of the beta values relative to the RPE are significant for both the monkeys. This means that RPE is able to explain the variation in the beta-frequency band, and thus we focused on it to perform further analysis.

Table 1: p-values associated to the two-tailed t-test analysis of the angular coefficients resulting from the MLR

Spectral analysis of LFP data

Time-frequency analysis

To estimate the power of the LFP signals, we performed a time-frequency analysis using the Morlet wavelet method (Cohen, 1995), considering the frequency bands from alpha to gamma -high gamma: the analysis was performed on 55 frequency steps, logarithmically spaced, in the range of 8Hz to 50Hz, and the number of cycles used for each band corresponded to its frequency divided by 4. We computed the time-frequency map in the defined periods aligned on the two previously mentioned events (baseline and period of interest). Then we applied a baseline correction at this stage of analysis, we computed the relative change with respect to the baseline, that corresponds to subtracting and then dividing the signal by the average over time of the baseline.

Once we obtained the corrected single-trials time-frequency maps, we divided them into two sub-datasets between rewarded and unrewarded trials. Then, we contrasted the two conditions for each monkey, performing a two-sided t-test analysis across all the trials. Thus, for each monkey we obtained a 2D p-values map with the same size of the original time-frequency maps (Figure 2). Since the t-test was performed across all the considered frequencies and time points, we Bonferroni corrected the resulting p-values multiplying them by the total number of considered frequencies and time points, in order to consider the multiple comparison problem and avoid to have significative p-values by chance. The goal of this analysis was to define in which frequency band there was a peak of significant difference between the two conditions for each of the two monkeys. For monkey F, the major difference was around 25 Hz whereas for monkey T it was found at 30 Hz. These values were subsequently used to define the two frequency bands as the central frequency to estimate a single band power using the multitaper method for each monkey. Also in this case we used the relative change with respect to the baseline to correct the data.

Beta-band analyses

We then focused on a limited frequency band to study the role of beta band oscillations using the subjects' specific high beta -low gamma band power, to then perform mutual information based statistical analysis.

Single band spectral density estimation was performed using a multitaper method based on discrete prolate spheroidal (slepian) sequences (Percival and Walden, 1993;[START_REF] Mitra | Analysis of Dynamic Brain Imaging Data[END_REF]. To extract beta-band power estimates, LFPs time series were multiplied by k orthogonal tapers (k=4) (0.33 s in duration and 15 Hz of frequency resolution), centered at 25 and 30 Hz for monkey F and monkey T, respectively, and then Fourier-transformed.

All data analysis was performed by using subroutines written in Python (version 3.6).

information (MI) between the LFP power and the behavioral variable. As a reminder, mutual information is defined as:

𝐼(𝑋; 𝑌) = 𝐻(𝑋) -𝐻(𝑋|𝑌)

Where the variables and represent the trial by trial power of the LFP and RPEs, 𝑋 𝑌 respectively. is the entropy of , and is the conditional entropy of 𝐻(𝑋) 𝑋 𝐻(𝑋|𝑌) 𝑋

given . The MI can be difficult to estimate in practice as it requires sampling the full 𝑌 joint distribution of the two considered variables. Therefore, here we used the recently proposed semi-parametric binning-free Gaussian-Copula Mutual Information (GCMI) [START_REF] Ince | A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula: Gaussian Copula Mutual Information[END_REF]. In short, the GCMI exploits the fact that the MI does not depend on the marginal distributions of the variables, but only on the copula function which encapsulates their statistical dependency. The GCMI is a robust rank-based approach allowing to detect any type of relation as long as this relation is roughly monotone.

For the statistical inferences, we used a group-level approach based on non-parametric permutations and encompassing non-negative measures of information (Combrisson et al., 2021) implemented in the Frites1 Python software. To this end, we used a fixed-effect model across sessions per monkey (respectively 192 and 136 blocks for monkey F and T). By estimating the effect size across sessions, we improved the statistical power and the overall signal-to-noise ratio at the cost of ignoring the session-to-session random variations. The MI is estimated across sessions between the LFP power and the behavioral variable, at each time point and for each electrode. Finally, we used the cluster-based statistics for correcting the p-values for multiple comparisons across all time points and electrodes.

Anatomo-functional analysis of striatal territories

Once we found a strong and significant relation between beta band and RPE, we wanted to investigate how the information about the evolution of the RPE is encoded in the striatum, if its localization is restrained to the ventral striatum (Abler et al., 2006;Morris et al., 2012;Calderon et al., 2021) or if it is detectable also in dorsal and caudal striatal regions, as was shown in previous works (Rektor et al., 2005;Valentin and O'Doherty, 2009;Asaad and Eskandar, 2011).

The electrophysiological data were collected in all the three putative regions of the striatum (i.e.,limbic, associative, and motor striatum). In order to have a better spatial resolution, we decided to divide recording sites in six different clusters following the given anatomical subdivision. The number of clusters was set according to a compromise between trial number and number of clusters.Clusters were computed using the KMeans algorithm implemented in scikit-learn, on the 3D coordinates of the electrodes defined as the antero-posterior (AP) and dorso-medial (DM) distance from the zero of the recording chamber on the monkeys' skull surface, and the depth of the electrodes. This clustering algorithm divides the data in a pre-defined number of n groups with the assumption that they should have the same variance, this result is achieved by the minimization of the within-cluster sum of squares. We also tried other techniques for clustering, but using the KMeans clustering resulted to be the best method to obtain well spatially defined and unbiased clusters.

Thus, we obtained eighteen spatial clusters and we repeated a MI based analysis similar to the one described in the previous paragraph, with the difference that a permuted MI matrix was computed for each region, and that the cluster forming threshold and the maxstat correction were applied among all this matrices. In Figure 4, we plotted the clusters centers' positions relative to the AP position (x axis) and the depth (y axis). In this figure, the clusters' centers are numbered following the ascending values of the average of the MI computed for each cluster, splitted up following the territory division (represented by the colours) that is used in Figure 4.

Indeed, in Figure 4 we can observe that higher values of MI belong to more ventromedial striatal territories, and that also the most significant values are linked to the spatial position.

After this step, we set as reference the position of the most upper and posterior recording sites and the AP and depth coordinates of each cluster center position to calculate the euclidean distance between them. This quantity gives us a good relative measure for each monkey to estimate a gradient axis. We performed a linear regression analysis between this distance and the average MI of each cluster to find out a positive correlation, suggesting that the more rostro-ventral part of the striatum carries more information about the RPE, and that this information is not completely lost, but fading toward the caudo-dorsal part of the striatum.

Discussion

Two main aspects of the functional organization of the striatum emerge from the present study: (1) changes in LFP beta-band oscillations that may be consistent with RPE encoding (i.e., the difference between expected and actual outcomes) are observed in different parts of the striatum which are assumed to correspond to functionally distinct regions;

(2) the quantity of RPE associated information is dependent on the striatal region following rostro-caudal and dorso-ventral gradients, with a maximum in the ventral part of the anterior striatum traditionally regarded as the limbic striatum in the primate. These data highlight a relationship of beta oscillatory activity in the striatum to non-motor aspects of behavior, such as the signaling of reward information, and distinct contributions for striatal regions in the evaluation of action outcome based on reward feedback.

Role of striatal beta oscillations in outcome evaluation

A key finding in our study is the occurence of LFP beta oscillations during the outcome period of the task that may play a role in evaluative processing after action choice (i.e., presence or absence of reward). Our analysis suggests that RPE was the most important variable influencing striatal LFP beta oscillations, this trend being present in data from every striatal region in which we recorded . To our knowledge, this is the first report to demonstrate that beta oscillations in the monkey striatum may play a role in RPE encoding.

Beta band oscillations in the basal ganglia are mostly associated with motor control.

Indeed, numerous studies in humans and animals have provided evidence that an increased beta oscillatory activity within basal ganglia circuitry occurred with an impaired dopaminergic transmission and the expression of motor deficits observed in humans with Parkinson's disease (Brown, 2007;Jenkinson and Brown, 2011).

Moreover, deep brain stimulation of the STN in dopamine-depleted conditions interferes with this abnormal oscillatory activity and improves motor symptoms [START_REF] Kühn | Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance[END_REF]Holt et al., 2019).

Beta oscillations have also been reported in the striatal LFP activity of normal animals, both rodents and monkeys, during specific phases of behavioral tasks (Berke et al., 2004;Courtemanche et al., 2003;[START_REF] Leventhal | Basal Ganglia Beta Oscillations Accompany Cue Utilization[END_REF]Schmidt et al., 2013;Bartolo et al., 2014), but the potential functional significance of such oscillatory activities is still under debate. In particular, despite the proposed role of the striatum in action valuation and reward-driven learning, few studies have specifically investigated whether striatal beta oscillations could possibly be associated with reward processing (Howe et al., 2011;[START_REF] Leventhal | Basal Ganglia Beta Oscillations Accompany Cue Utilization[END_REF]Münte et al., 2017;Schwerdt et al., 2020). For example, the work of [START_REF] Leventhal | Basal Ganglia Beta Oscillations Accompany Cue Utilization[END_REF] has shown that beta band oscillations are associated with cue utilization in rat striatum. They used four different variants of the classic Go-NoGo task, founding a whole-striatum and non lateralized event-related synchronization (ERS) in the beta band associated to the cue, and not linked to motor initiation or suppression, in every variant of this task. The relevant feature that should follow the cue to produce a beta ERS is the presence of the reward. Indeed in all of these task variants, in which the reward is deterministic, if we think about the cognitive role of the cue producing the beta band power increase, it seems 'anticipating' the reward release.

Reward prediction error encoding in the striatum

The role of midbrain dopamine neurons in RPE encoding is well established (Fiorillo et al., 2003;Abler et al., 2006;Bray and O'Doherty, 2007;Fujiyama et al., 2015).

Animal electrophysiology and human neuroimaging have provided extensive evidence of RPE-related activity in the striatum (Apicella et al., 2009;Roesch et al., 2009;Oyama et al., 2010;Asaad and Eskandar, 2011;Stalnaker et al., 2012) which is the main target structure of ascending dopamine projections from neurons located in the substantia nigra pars compacta and ventral tegmental area. RPE is a non-linear measure that can have positive or negative values, computed as the value of the reward (0 or 1) minus the value of the prediction relative to the state-action couple (Asaad and Eskandar, 2011); it can't be directly measured, for this reason we used a Q-learning model fitted on monkeys' choice behavior to compute it trial by trial. RPE is essential for adaptive behavior in order to avoid non rewarding actions and exploit the rewarding ones, by improving the predictions about future outcomes [START_REF] O'doherty | Learning, reward, and decision making[END_REF], playing a crucial role in the acquisition of new learned behaviors (Ressler, 2004;O'Doherty, 2007;Keramati et al., 2011;Nonomura et al., 2018). From our work, a significant increment of mutual information between the beta band and the RPE is detected in both monkeys, with a slightly stronger effect in monkey F compared to monkey T. To interpret this result, we should consider that the MI between two variables can be considered as an index of covariation between them. Thus, in this analysis an increment in MI corresponds to a strong covariation between the across trial evolution of the beta-oscillations power and the RPE.

Moreover, according to the statistic we used, the significance indicates that these variables covariates between them over a substantial number or recording blocks.

Thus, the striatum can have a major role in encoding and transmission of RPE signals across different functional regions. More studies about the transmission of RPE signals both intra-striatum and across the striato-cortical network are needed in order to better understand the time course, the localization and the behavioral salience of this signal, so important for the regulation of higher cognitive processes.

Finally, one may consider that the observed changes in striatal beta activity could possibly be associated, at least in part, with other aspects of information processing during the outcome period of the choice task, such as return movements to the resting bar or the experience during reward consumption (sensory pleasure or mouth movements). Additional studies are necessary to disambiguate the affective, motor, or cognitive origin of changes in beta oscillations at the end of the trial in our task.

Functional parcellation of the striatum

Different parts of the striatum and their corresponding cortical inputs are assumed to serve different functions, with a major involvement of the dorsal part of the posterior putamen in motor processing, whereas the ventral part of the anterior caudate nucleus and putamen is more concerned with mediating motivation and reward (Apicella et al., 1991;Fiorillo et al., 2003;Marchand et al., 2008;Brovelli et al., 2011;Pennartz et al., 2011;Schultz, 2016aSchultz, , 2016b;;Han et al., 2021). Taking account of these regional differences, we investigated LFP activity in both anterior and posterior parts of the striatum. According to our results, different clusters of recording sites were associated with different quantities of MI in the outcome period. Thus we wanted to understand if the total value of MI summed over time is following a spatial organization, to then perform a linear regression analysis between the total MI and their relative position to a rostro-ventral to caudo-dorsal anatomical axis. We chose to form the clusters respecting the classical functional striatal regionalization given by well known anatomical constraints (Jahanshahi et al., 2015).

Several lines of evidence point to a major involvement of the ventral part of the anterior striatum, including the nucleus accumbens, in the processing of reward-related information (Apicella et al., 1991;O'Doherty, 2004;Schultz, 2016c).

In particular, a number of studies have highlighted the role of the ventral striatum in the computation of RPEs (Abler et al., 2006;Bray and O'Doherty, 2007;Schultz, 2016a;Calderon et al., 2021) should be retained in short term memory in order to plan future actions in a goal-directed way. Given its intricate internal connectivity shaped by cholinergic and GABAergic interneurons, and its diffuse projections over cortical and subcortical regions, the striatum lends itself well to the role of messenger. Thus, the RPE gradient can be a result of the internal striatal transmission (and processing) of the dopaminergic signal, allowing it to reach different behavioral systems. Our results are in line with the idea that the RPE is an important signal affecting several aspects of the behavior, and that for this reason it should propagate in limbic, cognitive and motor areas of the brain (Silvetti et al., 2014;Schultz, 2016b). .

We have already pointed out that the RPE signal exerts a driving influence on goal-directed learning. As such, it is used together with our present knowledge in order to plan future actions (Takikawa et al., 2002;Ressler, 2004;Gläscher et al., 2010;Izawa and Shadmehr, 2011;Schultz, 2016a). Thus, one can expect that this signal should be able to reach all striatal regions in order to participate in limbic, associative and motor functions, and propagate in the functional associated cortices, such as the cingulate cortex, the prefrontal cortex and the premotor cortex [START_REF] Oya | Electrophysiological correlates of reward prediction error recorded in the human prefrontal cortex[END_REF]Mestres-Missé et al., 2012;Vogelsang and D'Esposito, 2018).

In the present study, we focused on LFPs oscillations to study their implication in outcome processing. Contrary to spiking activity that is detected at higher frequencies reflecting the very local activation of neurons, LFPs are detected at lower frequencies, and are assumed to reflect the activity of populations of neurons (Buzsáki et al., 2012). Thus, LFPs can be considered as signals recorded on a relatively larger area (generally a couple of millimeters of diameters from the electrode), containing the average coordinate activity of several neurons. According to literature, the main contributors to LFPs are the excitatory and inhibitory postsynaptic potentials (E/IPSP), and sometimes also membrane hyperpolarization (Buzsáki, 2006;van der Meer, 2010;Buzsáki et al., 2012). The recorded activity can contain rhythmic oscillation in specific frequency bands, which can be related to some environmental, behavioral or cognitive aspects. Although this signal can sometimes contain traces of leaking activity from surrounding brain areas, LFPs are increasingly used for the study of striatal activity (Courtemanche et al., 2003;Berke et al., 2004;Brown and Williams, 2005;van der Meer, 2009;Münte et al., 2017;Suzuki and Tanaka, 2019). Taking into account this limitation, one of our future interests will be to consider the Spiking-LFP coupling to better investigate the role of beta oscillations in encoding RPE and its distribution through striatum. This study could be also helpful to understand differences and similarities between rodents' and primates' striatal activity.

Indeed, although we have concentrated, in our study, on striatal LFP oscillations in the beta band, experiments with rodents have shown that LFP oscillations in the gamma band are more prominent in the ventromedial striatum, as compared to the dorsolateral striatum (Berke et al. 2004;Berke 2009;van der Meer and Redish 2009;van der Meer et al. 2010;Kalensher et al. 2010). To our knowledge, there is no evidence of a similar RPE related gamma activity in primates striatum. Given their similar role in encoding reward related information and outlining a gradient of activity, we wonder if this difference in bands' activity can be given by an interspecific shift in oscillations, consequent to morphological striatal change.

Conclusion

The aim of this study was to assess the role of different functional striatal regions in encoding RPEs signals. To do so, we analysed LFPs data recorded in three different striatal anatomical regions of two monkeys while performing a free choice probabilistic learning task. We provided new evidence that changes in beta band oscillations may reflect the encoding of RPEs defined in reinforcement learning models. Then, we divided the recording sites in eighteen spatial clusters and we observed that such changes were dominant in the rostro-ventral rather than the caudo-dorsal striatum, supporting the notion of a prominent role for the limbic part of the striatum in evaluative processing useful for future actions. Based on our mapping of the spatial organization of oscillatory beta activity in the striatum, we propose that the RPE encoding can occur first in the ventral region and then spread in the dorsal region. This finding may be of clinical importance as it is known that dorsal and ventral parts of the striatum are differentially involved in neuropsychiatric diseases, with dorsal striatal circuits mainly related to motor and cognitive disorders, whereas ventral striatal circuits are involved rather in the expression of affective disorders and compulsive behaviors. However, more studies are needed to understand which are the neural computations at the base of striatal gradients formation.
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and the conditional probability of receiving the same outcome when the action is withheld (P(O|¬A)) [START_REF] Hammond | The effect of contingency upon the appetitive conditioning of free-operant behavior[END_REF]Allan and Jenkins, 1980;Allan, 1993;Allan et al., 2008;[START_REF] Morris | The algorithmic neuroanatomy of action-outcome learning[END_REF].

Thus the contingency value corresponds to a subjective judgement of causality, that according to its definition can take values from -1 to 1, being the difference between two probability values ranging from 0 to 1. A positive ΔP corresponds to a positive causal perception meaning that the subject has the impression that the action triggers the outcome, while a negative ΔP value corresponds to a negative causal perception, meaning that the subject has the impression that the action prevents the outcome. Additionally, when the ΔP value is close to 0 the subject will have a null causal perception, meaning that there is no apparent causal relation between the action and the outcome (Shanks and Dickinson, 1991;Msetfi et al., 2013).

Previous behavioral studies, in which different couples of the two conditional probabilities were used, confirmed that humans are sensitive to small variations of ΔP, and that this measure reflects causal judgment (Wasserman et al., 1983;Shanks, 1985). Other studies used a contingency degradation paradigm (Balleine and Dickinson, 1998), in which the value of P(O|A) is fixed and the value of P(O|¬A) is gradually increased leading the subject to a loss of interest toward the action, confirming sensitivity toward action-outcomes contingency values. Studies both in rats (Balleine and Dickinson, 1998;Corbit and Balleine, 2003;Yin et al., 2005) and in humans (Tanaka et al., 2008) used this paradigm to show the important role of cortical prefrontal regions such as the prelimbic cortex, the medial prefrontal cortex (mPFC) and the medial orbitofrontal cortex (mOFC), together with subcortical regions such as the dorsal striatum. Importantly, some functional Magnetic Resonance Imaging (fMRI) study (Liljeholm et al., 2011(Liljeholm et al., , 2013) ) found significant correlations between distinct aspects of contingency learning and cortical and subcortical regions, highlighting the implication of more posterior areas such as the superior and inferior parietal lobule.

Although causal learning is strictly linked to instrumental learning and goal-directed learning, of which brain areas implication are widely addressed by literature, less is still known about the link between neural and computational dynamic underlying causal learning. The aim of this study is to assess the temporal dynamics of the contribution of different cortical brain regions during contingency acquisition in humans.

To do so, we asked eighteen participants to perform a goal-directed causal learning task while their brain activity was recorded with magnetoencephalography (MEG), in order to extract and analyse the power of the signal in the high-gamma band, that is known to account for local computations (von Stein and Sarnthein, 2000;Buzsáki and Wang, 2012) and reflect fMRI hemodynamic response [START_REF] Logothetis | Neurophysiological investigation of the basis of the fMRI signal[END_REF]Brovelli et al., 2005). Then, in order to estimate the trial-by-trial evolution of the conditional probabilities, we built a Bayesian computational model of an optimal observer [START_REF] Meyniel | The Sense of Confidence during Probabilistic Learning: A Normative Account[END_REF]. We fitted the model with the behavior of the participants in order to obtain the subjective progression of the perception of task related variables, such as the ΔP. We then used mutual information (MI) to investigate the relations between cortical activity and behavior and we analysed the results using a non-parametric cluster based statistics method.

Methods

Figure 1. Probability values linked to the volleyball task. The causal perception ΔP is given by the difference between the contingency values P(O|A) and P(O|¬A). A positive ΔP is linked to a positive causal perception, a negative ΔP is linked to a negative causal perception, while a ΔP close to zero is linked to no causal perception between the action and the outcome.

Experimental set-up and causal learning task

Eighteen healthy participants accepted to take part in our study, all of them were right handed, 13 were females and 5 males, and the average age was around 25 years.

We submitted to them a written informed consent according to established institutional guidelines and local ethics committee. At the end of the experience, participants received a 50€ monetary compensation.

We designed an original task, that we called the 'volleyball task', which allowed us to modulate both the actions-outcomes conditional probabilities (P(O|A) and P(O|¬A)) in order to obtain 5 possible values of ΔP, both positive and negative (-0.6; -0.3; 0; 0.3; 0.6). To avoid introducing some possible biases associated with the values of conditional probabilities, each of these ΔP values was computed using three different couples of P(O|A) and P(O|¬A); thus we obtained a total of fifteen possible scenarios Participants performed fifteen scenarios of the task in a randomized order, and all of them received the same instructions. Participants were instructed to impersonate a volleyball trainer, trying to evaluate the causal effect of fifteen players in their team.

To do so, they had the opportunity to simulate forty matches for each player (corresponding to forty trials for each scenario). This task was self-paced, meaning that no previous stimulus about the beginning of trials was given to participants: they could have started a trial in every moment by performing a motor response. Thus, when they wanted to simulate a match, they could have chosen if to let the questioned player play the match or not, by pushing one of two buttons under their right hand. Each button was associated to a visual cue (a 'play' or a 'pause' symbol)

projected on a black screen informing the participants about their corresponding action value The order of the cues (and as a consequence the action associated to the buttons) was inverted in half of the scenarios to avoid possible biases due to positional effect. The outcome of the match was presented 250 msec after the choice of the participant. The feedback could be either a green happy face or a red sad face appeared at the center of the screen to inform the participants about the result of the match (respectively win or lose). The outcome image was displayed for 1.5 sec, during which it was not possible to perform an action. After the outcome image disappeared, we imposed an additional waiting period of 300 msec before taking any other action in consideration. See Figure 2 for a visual description of a single trial time course. At the end of each scenario, we asked the participants to verbally report a 'causal score' from -100 to 100 to evaluate the performances of the player, where -100 corresponds to a very negative causal perception ('everytime I put this player in my team they lose'), 100 corresponds to a very positive causal perception ('everytime I put this player in my team they win') and 0 corresponds to a null causal perception ('the player doesn't affect at all the performances of my team') 

Data acquisition

Anatomical MRI images were acquired for each participant using a 3T whole-body imager equipped with a circular polarized head coil. MEG recordings were performed using a 248 magnetometers system (4D Neuroimaging, magnes 3600). Five additional electrodes were placed to record cardiac activity, eye-blinks and both vertical and horizontal eye movements. Visual stimuli were projected using a video projection, and motor responses were acquired using a LUMItouch optical response keypad with five keys. Presentation software was used for stimulus delivery and experimental control during MEG acquisition. Sampling rate was 2034.5 Hz. We recorded as a baseline ten seconds of resting state activity at the beginning of each scenario, asking the participants to keep their eyes open and fixate a red cross in the middle of a black screen. The fifteen scenarios were divided in five recording blocks to offer participants the opportunity to have pauses. Location of the participant's head with respect to the MEG sensors was recorded both at the beginning and end of each recording block to potentially exclude sessions and/or participants with large head movements. However, none of the participants moved >3 mm during each artifacts. Artifact rejection was performed semi automatically, at first we performed a visual inspection of the epochs' time series, then we used the autoreject python library [START_REF] Jas | Autoreject: Automated artifact rejection for MEG and EEG data[END_REF] that uses machine learning and k-fold cross-validation methods to detect and reject bad epochs from further analysis.

Single-trial HGA in MarsAtlas Spectral density estimation was performed using a multitaper method based on Discrete Prolate Spheroidal Sequences (DPSSs or Slepian Tapers; (Percival and Walden, 1993;[START_REF] Mitra | Analysis of Dynamic Brain Imaging Data[END_REF]). We focused on HGA because it is well known to be a good neurophysiological marker for local mesoscopic event related activity (von Stein and Sarnthein, 2000;Ray and Maunsell, 2011;Buzsáki and Wang, 2012), and involved in higher cognitive processing (Scherberger et al., 2005;[START_REF] Gaona | Nonuniform High-Gamma (60-500 Hz) Power Changes Dissociate Cognitive Task and Anatomy in Human Cortex[END_REF]. To estimate the power of the high gamma band (from 60 to 120 Hz), MEG time series were multiplied by k orthogonal tapers (k = 11) (0.2 s in duration and 60 Hz of frequency resolution, each stepped every 0.005 s), centered at 90 Hz, and Fourier-transformed. Complex-valued estimates of spectral measures, including cross-spectral density matrices, were computed at the sensor level for each trial n, time t, and taper k.

In MEG we are interested in estimating the power of a signal at the level of virtual sources (dipoles) placed on the surface of the participants' 3D brain model. In order to pass from the sensor space to the source space, a forward model is needed. The forward model combines geometrical relations between sensors and sources with the BEM, which is a volume conduction model. For each participant, we generated a BEM using a single-shell model constructed from the segmentation of the cortical tissue obtained from individual MRI scans (Nolte, 2003). Those spatial and physical information were used to derive single-participant forward models.

We used adaptive linear spatial filtering (Veen et al., 1997) to estimate the power at the source level (inverse model). We used the Dynamical Imaging of Coherent Sources (DICS) method, a beam-forming algorithm for the tomographic mapping in the frequency domain (Gross et al., 2001), which is well suited for the study of neural oscillatory responses based on single-trial source estimates of band-limited MEG signals. At each source location, DICS algorithm uses a spatial filter that passes activity from this location with unit gain while maximally suppressing any other activity. The spatial filters were computed on all trials for each time point and session and then applied to single-trial MEG data.

Once the single-trial high-gamma power at each source location was estimated both for the outcome aligned activity and for the baseline activity, we normalized the single-band power computing the relative change respect to the baseline defined as:

(1) 𝑋 

Bayesian ideal observer model of causal learning

In psychology, the contingency value ΔP is computed as the difference between two conditional probabilities: P(O|A), that is the probability of obtaining a positive outcome when the action is performed, and P(O|¬A) that is the probability of obtaining a positive outcome in absence of the action. Those two probabilities are independent, and they can be separately considered as Bernoulli distributions because of the binary nature of the outcome (0 = negative outcome; 1 = positive outcome). Thus, if we call the outcome result and its associated probability we 𝑥𝑖 θ can write the probability mass function as:

(2)

𝑝(𝑥𝑖|θ) = { 1-θ → 𝑖𝑓 𝑥𝑖=0 θ → 𝑖𝑓 𝑥𝑖=1
That can be written also as:

for (3) 𝑝(𝑥𝑖|θ) = θ 𝑥𝑖 (1 -θ) 1-𝑥𝑖 𝑥𝑖 ∈ {0, 1}
Equation 3 describes the probability function for a single outcome event, but if we want to consider the whole sequence of equally likely outcomes obtained by the sequence of independent trials, expressed as a vector of length , we should 𝐷 𝑛 rewrite this equation as:

(4)

𝑝(𝐷|θ) = 𝑛 ∏ 𝑝(𝑥𝑖|θ)
Given that we are considering equally likely independent trials, this equation can be written as a binomial experiment, using the binomial coefficient notation. Thus, given number of trials, number of positive outcomes and number of negative 𝑛 𝑘 𝑛 -𝑘 outcomes, we can write:

(5)

𝑛 ∏ 𝑝(𝑥𝑖|θ) = 𝑛 𝑘 ( ) (θ 𝑘 (1 -θ) 𝑛-𝑘 ) (6) = (𝑛! /(𝑘! (𝑛 -𝑘)!))(θ 𝑘 (1 -θ) 𝑛-𝑘 )
We are now interested in finding the distribution able to describe the data . Since θ 𝐷 a binomial distribution describes the distribution of the outcomes but not the distribution of the trials' probabilities, we used Bayes rule using the binomial distribution for likelihood and a beta distribution ( ) as conjugate prior. The 𝐵(α, β) product of the two generates a posterior beta distribution able to describe the distributions of the probabilities associated to the outcome observing the outcomes' results: [START_REF] Hagmayer | Inferences about unobserved causes in human contingency learning[END_REF] 𝑝(θ|𝐷) = 𝐵(𝑘 + α; 𝑛 -𝑘 + β)

As we can see, Equation 7 is able to describe the update of beliefs depending on discrete states of the world, that in this case corresponds to the sequence of received outcomes, and on the total number of accumulated evidence, acting like an optimal Bayesian observer. The variables and can be considered as prior beliefs α β influencing the skewness and the shape of the beta distribution. We fixed those two values to 1.1 to give a symmetrical and constant prior belief that has an influence especially on the early trials.

To simplify the comprehension of how the model works we can see it in a frequentist way, as shown in At each trial, when an action (play / no play) is performed and an outcome (win / lose) is received, only one of the four variables among the two models is updated (meaning consequently that only one of the models, the one corresponding to the chosen action, is updated). Thus, for each trial we can compute relevant behavioral variables associated to the participants behavior, for example we can compute P(O|A) and P(O|A) taking the mean of the two distributions, and then use those values to compute the updating belief about ΔP (Figure 4B): 

(9) Δ𝑃 = 𝑓(𝑂|𝐴) 𝑓(𝑂|𝐴)+𝑓(¬𝑂|𝐴) - 𝑓(𝑂|¬𝐴) 𝑓(𝑂|¬𝐴)+𝑓(¬𝑂|¬𝐴)

Model-based analysis of cortical HGA Model-based information theoretical analysis

We used information-theoretic metrics to quantify the statistical dependency between single trial HGA and the model-based behavioral variables computed with the beta model. Information-based measures quantify how much the neural activity of a single brain region explains a variable of the task. To this end, we computed the mutual information (MI); as a reminder, mutual information is defined as:

(10) 𝐼(𝑋; 𝑌) = 𝐻(𝑋) -𝐻(𝑋|𝑌)

In this equation the variables and represent the HGA power and the behavioral 𝑋 𝑌 variables, respectively. is the entropy of , and is the conditional

𝐻(𝑋) 𝑋 𝐻(𝑋|𝑌)
entropy of given . In particular, here we used Gaussian-Copula Mutual Information 𝑋 𝑌 (GCMI) [START_REF] Ince | A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula: Gaussian Copula Mutual Information[END_REF], that is a semi-parametric binning-free technique to calculate MI, in order to overcome some difficulties linked to the use of its classical version. Indeed MI requires sampling the full joint distribution of the two considered variables, making it difficult to estimate in case of limited amount of data, while the GCMI exploits the fact that the MI does not depend on the marginal distributions of the variables, but only on the copula function which encapsulates their statistical dependency. The GCMI results being a robust rank-based approach that allows to detect any type of relation as long as this relation is roughly monotone.

Statistical analysis

For the statistical inferences, we used a group-level approach based on non-parametric permutations and encompassing non-negative measures of information (Combrisson et al., 2021) implemented in the Frites5 Python software. We used a random effect (RFX) to take into account the inter-subject variability, at the cost of needing a slightly larger dataset to achieve reliable statistical inferences. In this approach the MI between the neurophysiological signal and the behavioral regressor is computed across trials for each participant separately, at each time point and brain region. To sample the distribution of MI attainable by chance, we computed the MI between the brain data and a randomly shuffled version of the behavioral variable (Combrisson and Jerbi, 2015). This procedure was then repeated 1000 times. Thus, we took the mean of the MI values computed on the permutations, and used this mean(MI) to perform a one sample t-test across all the participants' MI values obtained both from original and permuted data. We then used a cluster-based approach to assess whether the size of the estimated t-values significantly differs from its distribution. The cluster forming threshold was defined as the 95th percentile of the distribution of t-values. We used this cluster forming threshold to identify the cluster mass of t-values on both original and permuted data. Finally, to correct for multiple comparisons across both time and space, we build a distribution made of the 1000 largest clusters estimated on the permuted data. The final corrected p-values were inferred as the proportion of permutations exceeding the t-values.

Results

Figure Interestingly, participants' scores seem to be 'optimistic', in the sense that they are increasingly higher when they try to infer higher values of ΔP. 

Neural correlates of instrumental contingency learning

We computed the trial-by-trial ΔP values with the Bayesian model and the single trial HGA of each participant, aligned on the outcome delivery. Then we estimated the MI between these two variables along the time series, and we performed statistics following the previously explained RFX protocol. We found a substantial increment of MI in the post-outcome period, in four prefrontal regions of the right hemisphere: the ventral, ventrolateral and ventromedial orbitofrontal cortices (OFCv, OFCvl and OFCvm respectively) and the rostral dorsolateral inferior prefrontal cortex (Pfrdli).

However, after the statistic analysis only one of these regions resulted significant, that is the OFCv (Figure 7, p≃0.006) peaking around 0.5 seconds after the outcome, while the Pfrdli and the OFCvl were slightly higher the significance threshold (p≃0.053 and p≃0.074 respectively), and the OFCvm was well above the significance threshold (p≃0.193).

Neural correlates of actions-outcome probabilities

We followed the same pipeline used for the ΔP to find the neurophysiological correlates to the actions-outcome contingency values. In this case we computed from the model two regressors: the probability of winning when the new player plays the match, or P(O|A), and the probability of winning when the new player doesn't play, or P(O|¬A). Additionally, we computed a regressor based on the task-related probability of winning according to the chosen action, that we called P(O|C). As shown in Figure 7, we found significant clusters of MI in seven different brain regions of the right hemisphere associated with the P(O|A). In the frontal lobe we found a long significant cluster interesting the insular cortex (IC, p≃0.001) from slightly before the outcome presentation until around 0.38 seconds, together with the post-outcome activity of the OFCvl (p≃0.012), the rostral ventrolateral prefrontal cortex (PFrvl, p≃0.038), and the rostroventral premotor cortex (PMrv, p≃0.001). In the parietal lobe we found significant MI clusters soon after the outcome presentation in the superior parietal cortex (SPC, p≃0.012) and in the dorsal inferior parietal cortex (IPCd, p≃0.038). In the temporal lobe, we found a cluster interesting the caudal superior temporal cortex (STCc, p≃0.017) from -0.04 to 0.21 seconds respect to the outcome. Surprisingly, we observed an increment of the MI in the left rostral dorsal and medial prefrontal cortices (PFrd and PFrm respectively, result not shown in figures), but no significant cluster were detected for any regions, responding to the P(O|¬A). Regarding P(O|C), we found 4 significant clusters in as many brain regions across both the hemispheres, two aligned on the action and two on the outcome. In the right frontal lobe, a post-outcome significant cluster was detected in the IC (p≃0.018), while in the OFCvl we found a first significant cluster aligned with the action (p≃0.018), and a second cluster above the significance threshold aligned with the outcome (p≃0.105).

In the left temporal lobe, a post-outcome significant cluster was detected in the rostral superior temporal cortex (STCr, p≃0.048), and a significant cluster aligned with the action was found in the rostral inferior temporal cortex (ITCr, p≃0.046). Table 1. Summary of the ROIs significantly correlating with the evolution of contingency (dP) and conditional action-outcome probabilities (P(O|A) and P(O|C)), and their cluster-based p-values.

Discussion

In this study we investigated the temporal neural dynamics linked to causal learning.

We asked human participants to perform a task in which they had to maximise their knowledge about the hidden contingencies of the task in a MEG machine. In order to model the trial-by-trial evolution of the contingency value and the relative probability of outcome given the chosen action we used an optimal observer Bayesian model based on a beta distribution. Finally we used MI and cluster based statistics to find significant relations between the time resolved high-gamma activity and the modeled behavioral variables.

Our results suggest a deep engagement of frontal, and especially prefrontal and orbitofrontal, cortical areas in encoding relevant aspects of causal learning, such as the contingency value (ΔP), the probability of the positive outcomes relative to the action 'play' (P(O|A)) and the task related probabilities of positive outcome given the chosen action (P(O|C)).

Participants' and model performances

The task that we proposed to participants is quite complex and requires more computational effort to be accomplished in comparison to classical contingency learning tasks. One of the differences is that the participant is not called to choose between performing an action and not performing it, but rather on choosing one action or another. The taken decision is then transferred to a middle agent (the player under evaluation) that is then supposed to execute (or not) the action. Moreover the goal of the task is less explicit, as we ask the participants to maximize their knowledge about the performance of the player under evaluation, and not, for example, to maximise the number of achieved positive outcomes.

Nonetheless, participants were able to learn contingency values and give an approximative final correct estimate of the causal scores. Most of them equally explored both of the possible actions. A common strategy was to change the chosen action each 3-5 trials. Questioning the participants after the task execution, some of them reported that sometimes they noticed late in the execution of a scenario that the action position was swapped. That can be the reason for some rare outliers that emerged by the behavioral analysis. The model was able to reproduce participants' performances. The variance across the final modelled ΔP values, given by the differences in the sequence of actions performed by the participants, is lower with respect to the variance of the participants' scores. So far, the model is not able to explain the across participants variance. In the future we would like to take in consideration the behavioral variance in our model, fitting individually the initial prior probability [START_REF] Lu | Bayesian generic priors for causal learning[END_REF]. Another interesting model parameter to study would be the quantity of the post-outcome update increment, that can be related to the individual causal power perception of the actions (Cheng, 1997;Buehner et al., 2003).

Dynamic of the OFC in causal learning

Our results are in line with the literature, showing a prominent role of the OFC and in particular of its right-side rostro-ventral part in encoding information about the outcome identity and in discriminating the differences in outcome values. Despite most of the literature implicates the OFC in the encoding of the stimulus-outcome associations, for example in response to the presentation of a cue signaling a reward (Salzman et al., 2007;Salzman and Fusi, 2010;[START_REF] Howard | Identity-specific coding of future rewards in the human orbitofrontal cortex[END_REF], we should consider that in instrumental learning, in order to establish the relation between the stimulus and its outcome, an agent should be able to link the information about actions in a stimulus-action-outcome association (O'Doherty, 2007). Our results

indicate that OFC can be sensible to the action value and that it can play a role in building a cognitive representation of the actions-outcomes probabilistic associations, indeed its implication in encoding the contingency value ΔP implies the knowledge of the conditional probabilities of the outcome given the action (Cheng, 1997;[START_REF] Hagmayer | Inferences about unobserved causes in human contingency learning[END_REF]Tanaka et al., 2008). In a fMRI study (Valentin et al., 2007) conducted on human participants performing an outcome devaluation task, the results suggested that the OFC is able to represent actions-outcomes information,

showing a different activation profile for valued and devalued actions. This result is also in line with animals' studies performed on rats showed that prefrontal cortex and dorso-medial striatum are important to learn actions-outcomes association during goal directed learning (Balleine and Dickinson, 1998;Corbit and Balleine, 2003;[START_REF] Killcross | Coordination of Actions and Habits in the Medial Prefrontal Cortex of Rats[END_REF]. Moreover, the fact that OFC activity responds to ΔP and P(W|P) after outcome presentation, and responds to P(W|C) after the action executions, can highlight its role both in acquisition and update of the actions-outcomes association and in outcome prediction.

Role of the PFC in encoding contingency

As the OFC, the prefrontal cortex (PFC) is implied in encoding outcome values. From our results we can see that the lateral rostro-ventral prefrontal cortex (PFrvl)

participates in encoding positive outcome values but only if associated to the action 'play' and not to any chosen action. The ventral prefrontal cortex is known to mediate attentional processes and to encode stimulus salience (Asplund et al., 2010;Walther et al., 2011). Thus, we question whether this observed effect can be linked to an action dependent attentional mechanism, possibly derived by an unequal perception of the causal power attributable to the direct intervention of the agent ('play') rather than a random environmental variable ('no play'). Further investigations about the role of this region in the attentional processes linked to instrumental learning are needed.

Premotor cortex and insula

Also the premotor rostro-ventral cortex (PMrv) seems to be involved in encoding the P(W|P). This result is particularly challenging to discuss, as we would expect to find a modulation of the PMrv before the action selection, participating in action planning (Gremel and Costa, 2013), and not after the outcome presentation. This area has been defined as a relay from parietal to medial prefrontal cortices in visuomotor task (Viejo et al., 2015), but also in this case further investigations are needed.

Concerning the P(W|P) and the P(W|C), we found significant activation also in the insular cortex (IC) after receiving the outcome. The IC is known to participate in instrumental behavior in encoding incentive memories together with the amygdala [START_REF] Parkes | Interaction of Insular Cortex and Ventral Striatum Mediates the Effect of Incentive Memory on Choice Between Goal-Directed Actions[END_REF], in encoding the summed activity of potential outcomes (Liljeholm et al., 2013), and in retrieving outcome incentive values in order to guide the actions, but not in learning action-outcomes associations [START_REF] Parkes | Insular and Ventrolateral Orbitofrontal Cortices Differentially Contribute to Goal-Directed Behavior in Rodents[END_REF].

Thus, the activation of this region responding to these two behavioral regressors after the outcome presentation can be linked to the update of these values.

Parietal and temporal lobes

We observed an increment in MI in the parietal cortex in relation to ΔP values, however, statistical analysis showed that this increment is just below the significance threshold. Curiously, this effect turns out to be significant if we perform the analysis using the ΔP computed as log(P(W|P) / P(W|nP)) as behavioral regressors, while the effect found in the OFC is just below the significance threshold. Together, these result seems to indicate a role of the parietal cortex in encoding contingency values, also according to previous literature showing parietal cortex tracks contingency values computed both as ΔP and as the Jensen-Shannon divergence between the probabilities of the outcome conditioned on different actions (Liljeholm et al., 2011(Liljeholm et al., , 2013)).

Regarding the temporal lobe, its implication in instrumental learning is less understood in comparison to other regions, nonetheless its activity has been related

to formation and updating inferences about optimal behavioral strategies [START_REF] O'doherty | Learning, reward, and decision making[END_REF].

Conclusion

The aim of this study is to assess the temporal dynamics of the contribution of different cortical brain regions during contingency acquisition in humans. To do so we 
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BrainVISA: Software platform for visualization and analysis of multi-modality brain data. NeuroImage 13, 98. Section 5. Neuroinformatics, tools, Open Science

Team resources

During my PhD I wrote pipelines for future students in order to allow them to easily access team resources. A first pipeline is focused on the creation and organization of neurophysiological dataset on the INT's high performance computing cluster 'frioul'.

A second pipeline is focused on how to use BrainVISA and FreeSurfer to manage and analyse MRI data, in order to compute brain volumetric space and cortical surface of participants' MRI, to then apply the MarsAtlas parcelization.

A third pipeline is focused on the use of rsync, an informatic tool that we use to transfer data on and between clusters and local machines. All the pipelines are open and accessible at BraiNets' resources GitHub page (https://github.com/brainets/ressources).

Softwares development

In collaboration with David Menieur, I developed a python library called BV2MNE

(https://github.com/brainets/bv2mne). This library acts like an interface between BrainVisa and MNE softwares. Indeed, it can access the cortical meshes generated by BrainVisa to transform them in a MNI space, a format that is compatible with MNE.

Starting from the transformed meshes, BV2MNE computes the boundary element model (BEM) and a labelized source space that will be used to compute the forward and inverse model (i.e. the sensor signal reconstruction at the source level).

Moreover, the library contains visualization functions able to show source disposition and lablization in a 3D dynamic space, together with the cortical meshes and the BEM.

I also contributed in Etienne Combrisson python library 'Frites' (FRamework for Information Theoretical analysis of Electrophysiological data and Statistics; https://github.com/brainets/frites), especially in the testing part, and in the conversion of CPU function for the GPU use. Frites is a toolbox for assessing information-theoretic measures on human and animal neurophysiological data, to extract task-related cognitive brain dynamics and perform group-level statistics. 

Open science

NeuroMatch Academy -Deep Learning

Beta oscillations in the monkey striatum encodes reward prediction error -The role of beta-band oscillations in striatal RPE signaling

In the study described in Section 3, we recorded Local Field Potentials' (LFPs) activity in the striatum of monkeys performing a free-choice probabilistic learning task. The task required monkeys to choose between three options for movement, each one associated with different reward probabilities. The aim of the study was to investigate modulations in striatal activity, using this probabilistic design in order to detect changes specific to the processing of actions' outcomes (i.e. rewards). In particular, we aimed at studying the encoding of reward prediction errors in the monkey striatum. This task is well suited for studying action selection guided by predictions about future events and comparisons of those predictions with actual outcomes which correspond to Reward Prediction Error (RPE), RPE is an error signal generated by midbrain dopaminergic neurons (Abler et al., 2006;Schultz, 2007Schultz, , 2016a) ) crucial to modify our behavior in order to improve the predictions about possible environmental outcomes [START_REF] O'doherty | Learning, reward, and decision making[END_REF], thus playing an essential role in GDB (Ressler, 2004;Keramati et al., 2011). The role of midbrain dopaminergic neurons in RPE encoding is well established (Abler et al., 2006;Schultz, 2007Schultz, , 2016a)). Animal electrophysiology and human neuroimaging have also found evidence of RPE-related activity in the striatum (Schultz, 2016b). It is considered as a crucial signal that adaptatively support GDB, contributing to the world model updating and action planning (Takikawa et al., 2002;Ressler, 2004;Izawa and Shadmehr, 2011;Keramati et al., 2011;Schultz, 2016b) .

Three main results about striatal functional organization emerge from this study:

(1) we observed a significantly different pattern of oscillation in the high beta -low gamma frequency band when contrasting rewarded trials with non-rewarded trials;

(2) we found a significant increment in mutual information between the beta band oscillation and the RPE computed using a Q-learning algorithm fitted on monkeys' choice behavior during the task;

(3) we divided the data according to the recording sites in eighteen clusters respecting the striatal anatomical constraints, then we computed the MI between the data of each cluster and the respective RPE, and we observed a significant positive linear correlation between the rostro-caudal and dorso-ventral clusters distribution and the total amount in time of RPE related MI, which we refer to an anatomo-functional gradient

A key finding in our study is the role of the beta band oscillations in carrying information about RPE in the basal ganglia system. Beta band activity is historically linked to motor control. Indeed, oscillations in this band have been observed in the motor cortex, especially associated with specific movements, like for example precision movements (Feingold et al., 2015;Khanna and Carmena, 2017). Moreover, after the advent of deep brain stimulation, data recorded from the STN of Parkinson's disease (PD) patients showed that an abnormal increase in beta oscillatory activity is associated to a lack of dopaminergic signaling, leading to Parkinsonian symptoms, and that a stimulation of the STN can interrupt this oscillatory beta activity and block PD motor symptoms [START_REF] Kühn | Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance[END_REF]Holt et al., 2019). Lately, some studies have reconsidered the role of beta band in the striatum, showing that it can be related to other important behavioral features and to reward value [START_REF] Leventhal | Basal Ganglia Beta Oscillations Accompany Cue Utilization[END_REF]Münte et al., 2017;Schwerdt et al., 2020). To our knowledge, this is the first report to demonstrate that outcome processing is an important variable influencing striatal beta activity in the nonhuman primate.

As we pointed out earlier, the RPE signal is essential to modulate several aspects of behavior. Thus, one can expect that this signal should be integrated within different domains of the striatum in order to participate in various functional processes involving limbic, associative, and motor cortico-striatal circuits [START_REF] Oya | Electrophysiological correlates of reward prediction error recorded in the human prefrontal cortex[END_REF]Gläscher et al., 2010;Mestres-Missé et al., 2012;Vogelsang and D'Esposito, 2018). It is well known that dopamine is responsible for RPE signaling in the striatum (Abler et al., 2006;Schultz, 2016b). Furthermore, we know that around 95% of striatal neurons in monkeys are gabaergic medium spiny neurons (MSN), long projection neurons innervating pallidal and nigral areas, while the remaining 5% (this ratio follows interspecific changes) is composed of cholinergic interneurons [START_REF] Lecumberri | Neuronal density and proportion of interneurons in the associative, sensorimotor and limbic human striatum[END_REF] spreading their axons across striatum, connecting NAcc, putamen (Put), and caudate (Cau) nuclei (Assous and Tepper, 2019). Further studies about the role of the striatal interneurons and the internal transmission of information can help us understand how RPE signal propagates across the striatum.

Another major finding was that the information about RPE is present, to varying degrees, in all territories of the striatum, forming a fading gradient stronger toward the rostro-ventral striatum and weaker toward its caudo-dorsal part. This result is in line with other studies, in which striatal circuitry is able to establish different functional gradients, spanning from the dopaminergic signaling to the cognitive control (Mestres-Missé et al., 2012;Vogelsang and D'Esposito, 2018;Alberquilla et al., 2020;Han et al., 2021), determined by the cortico-striatal and striato-thalamic loops. At the same time, this hypothesis casts a new light on the idea that basal ganglia, and especially striatum, can be roughly divided in functional regions, participating in limbic, associative or motor functions. Indeed, the idea of a neat functional division that was established, especially in other basal ganglia's structures like the STN (Eisinger et al., 2018), is lately going through a review (Alkemade and Forstmann, 2014;Eisinger et al., 2019). It is less astonishing to support the idea of gradients if we take in consideration the behavioral salience of the RPE. Indeed, also if a well structured connectivity is needed to transmit precise signals, the information contained in those can participate in other behavioral functions. RPE is needed to update the inner model of action values in response to a particular state, and those values should be retained in short term memory in order to plan future actions in a goal-directed way. Our results are in line with the idea that the RPE is an important signal affecting several aspects of the behavior, and that for this reason it should propagate in limbic, associative, and motor cortico-striatal circuits. Understanding how this gradient rises from striatal connectivity remains to be elucidated.

Dynamics of human cortical circuits mediating

goal-directed causal learning -High-gamma activity in human prefrontal cortex reflects relevant behavioral aspects of goal-directed causal learning

In the study described in Section 4, we investigated the functional role of prefrontal cortical areas and their implications in goal-directed causal learning. We asked human participants to perform a task in which they had to maximise their knowledge about the hidden contingencies of the task and to report us the supposed causal score at the end of each recording block, while being recorded in a MEG machine. In order to model the trial-by-trial evolution of the contingency value and the relative probability of outcome given the chosen action we used an optimal agent Bayesian model-based on a beta distribution (i.e., the ideal observer model).

Finally we used MI to find significant relations between the estimated high-gamma activity in time and the modeled task-related behavioral variables.

Our results suggest a deep engagement of frontal, and especially prefrontal and orbitofrontal, cortical areas in encoding relevant aspects of causal learning, such as the contingency value (ΔP), the probability of the positive outcomes relative to the action 'play' (P(W|P)) and the task related probabilities of positive outcome given the chosen action (P(W|C)).

Our results are in line with the literature, showing a prominent role of the OFC and in particular of its right-side rostro-ventral part in encoding information about the outcome identity and in discriminating the differences in outcome values.

Surprisingly, our results indicate that OFC can be sensible to the action value and that it can play a role in building a cognitive representation of the actions-outcomes probabilistic associations, indeed its implication in encoding the contingency value ΔP implies the knowledge of the conditional probabilities of the outcome given the action (Cheng, 1997;[START_REF] Hagmayer | Inferences about unobserved causes in human contingency learning[END_REF]Tanaka et al., 2008). Despite most of the literature implicates the OFC in the encoding of the stimulus-outcome associations, for example in response to the presentation of a cue signaling a reward (Salzman et al., 2007;Salzman and Fusi, 2010;[START_REF] Howard | Identity-specific coding of future rewards in the human orbitofrontal cortex[END_REF], we should consider that in instrumental learning, in order to establish the relation between the stimulus and its outcome, an agent should be able to link the information about actions in a stimulus-action-outcome association (O'Doherty, 2007). In a fMRI study (Valentin et al., 2007) conducted on human participants performing an outcome devaluation task, the results suggested that the OFC is able to represent actions-outcomes information, showing a different activation profile for valued and devalued actions. This result is also in line with animals' studies performed on rats showed that prefrontal cortex and dorso-medial striatum are important to learn actions-outcomes association during goal-directed learning (Balleine and Dickinson, 1998;Corbit and Balleine, 2003;[START_REF] Killcross | Coordination of Actions and Habits in the Medial Prefrontal Cortex of Rats[END_REF]. Moreover, the fact that OFC activity responds to ΔP and P(W|P) after outcome presentation, and responds to P(W|C) after the action executions, can highlight its role both in acquisition and update of the actions-outcomes association and in outcome prediction.

As the OFC, the prefrontal cortex (PFC) is implied in encoding outcome values. From our results we can see that the lateral rostro-ventral prefrontal cortex (PFrvl) seems to participate in encoding positive outcome values but only if associated to the action 'play' and not to any chosen action. The ventral prefrontal cortex is known to mediate attentional processes and to encode stimulus salience (Asplund et al., 2010;Walther et al., 2011). Thus, we question whether this observed effect can be linked to an action dependent attentional mechanism, possibly derived by an unequal perception of the causal power attributable to the direct intervention of the agent (play) rather than a random environmental variable (no play). Further investigations about the role of this region in the attentional processes linked to instrumental learning are needed.

Concerning the P(W|P) and the P(W|C), we found significant activation also in the insular cortex (IC) after receiving the outcome. The IC is known to participate in instrumental behavior in encoding incentive memories together with the amygdala [START_REF] Parkes | Interaction of Insular Cortex and Ventral Striatum Mediates the Effect of Incentive Memory on Choice Between Goal-Directed Actions[END_REF] and in retrieving outcome incentive values in order to guide the actions, but not in learning action-outcomes associations [START_REF] Parkes | Insular and Ventrolateral Orbitofrontal Cortices Differentially Contribute to Goal-Directed Behavior in Rodents[END_REF]. Thus, the activation of this region responding to these two behavioral regressors after the outcome presentation can be linked to the update of these values.

Also the premotor rostro-ventral cortex (PMrv) seems to be involved in encoding the P(W|P). This result is particularly challenging to discuss, as we would expect to find a modulation of the PMrv before the action selection, participating in action planning (Gremel and Costa, 2013), and not after the outcome presentation. This area has been defined as a relay from parietal to medial prefrontal cortices in visuomotor task (Viejo et al., 2015), but also in this case further investigations are needed.

We observed an increment in MI in the parietal cortex in relation to ΔP values, however, statistical analysis showed that this increment is just below the significance threshold. Curiously, this effect turns out to be significant if we perform the analysis using the ΔP computed as log(P(W|P) / P(W|nP)) as behavioral regressors, while the effect found in the OFC is just below the significance threshold.

Together, these result seems to indicate a role of the parietal cortex in encoding contingency values, also according to previous literature showing parietal cortex tracks contingency values computed both as ΔP and as the Jensen-Shannon divergence between the probabilities of the outcome conditioned on different actions (Liljeholm et al., 2011(Liljeholm et al., , 2013)).

Regarding the temporal lobe, its implication in instrumental learning is less understood in comparison to other regions, nonetheless its activity has been related

to formation and updating inferences about optimal behavioral strategies [START_REF] O'doherty | Learning, reward, and decision making[END_REF].

Despite most of the results presented here confirming previous findings, we believe that the neurophysiological correlates of goal-directed learning, and especially causal learning, needs a deeper investigation. In this work we focused specifically on the high-gamma band oscillatory activity, but it would be of particular interest to look into the contributions of other frequency bands, in order to better understand global computations associated to causal learning, as high-gamma activity reflects local computations, while lower frequency bands seems to be more associated to extensive computations (von Stein and Sarnthein, 2000).

The task that we proposed to participants is quite complex and requires more computational effort to be accomplished in comparison to a classical contingency learning task. One of the differences is that the participant is not called to choose between performing an action and not performing it, but rather on choosing one action or another. The taken decision is then transferred to a middle agent (the player under evaluation) that is then supposed to execute (or not) the action.

Moreover the goal of the task is less explicit, as we ask the participants to maximize their knowledge about the performance of the player under evaluation, and not, for example, to maximise the number of achieved positive outcomes. This level of complexity offers us the opportunity to study several different aspects of causal learning, but for these reasons, the significance of some element of this task should be better addressed both in modelling and in comparison with the brain activity.

Finally, It will be interesting to study the cortico-cortical interactions between pairs of brain regions forming functional networks supporting causal learning in time, using techniques such as Granger Causality (GC) or Partial Information Decomposition (PID).

Future perspectives

Besides the clinical purposes, the interest in neuroscience is to understand how the brain can successfully interact with the environment producing complex behaviors.

These behaviors emerge from different levels of complexity, from the molecular interactions leading processes as the synaptic plasticity, to cellular organization, networks' dynamics and beyond. But this is not enough, indeed the environment can trigger changes inside the brain, both if we are interacting with it and if we are only observing it, activating networks, cells, and stimulating synaptic plasticity to form novel interactions. This is a two-way flux of information, a bottom-up process to produce successful behaviors, and a top-down one to learn. But lately, we also understood that the brain has not only a decoding/encoding function, but it is also generative, meaning that it is able to internally loop this information in order to produce predictions that can influence both behavior and learning. This is exactly what happens in goal-directed decision making: once setted a desired state, we observe the environment and we make a prediction that guides our response, then, depending on the feedback, an error signal is produced to update our prediction model. Less is still known on how we can represent goals, or internally generate goals; this would be a really interesting branch to explore both with models and with neurophysiological data analysis. For about seventy years to now, goal-directed learning and behavior have been studied at different levels, but what we still lack is to bind together this knowledge in order to fill the gaps. In my opinion, this can be achieved by making some efforts in two directions: building biologically inspired models, and linking these models with brain activity.

Nowadays, powerful Bayesian and deep learning models are used to model brain behavior, and they work really well but despite that they're very poorly informative about the lower level computations. On the other side, we have the problem of computational power, indeed it is impossible to implement a neural network taking into account the whole complexity of the brain network that we are trying to model.

Thus, it would be interesting to build models based on veritable neural architectures, able to perform higher bayesian computations as the state of the art models, finding a compromise between descriptive accuracy and computational performances.

Then, it would be interesting to use these models to explain neurophysiological recordings, similarly to what is done today on deep learning models, especially the one concerning vision and language processing, thanks to a recent technique called Representational Similarity Analysis (RSA) (Kriegeskorte, 2008).
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 1 Figure 1. The Pavlovian paradigm for classical learning. Image taken on Google.
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 2 Figure 2. The Skinner box and its principal components. Image taken on Google.
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 3 Figure 3. Schematization of the three fronto-striatal loops. Image taken from Jahanshahi
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 4 Figure 4. Cortical and subcortical areas involved in different aspects of instrumental learning. Image taken from O'Doherty et al., (2017).
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 5 Figure 5. Schematization of the striatal pathways. Image taken from Schroll and Hamker, (2013).

Figure 6 .

 6 Figure 6. A mostly complete chart of neural networks. Image taken from the Asimov Institute (https://www.asimovinstitute.org/neural-network-zoo/).
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 7 Figure 7. Venn diagram of Shannon entropy and mutual information. Image taken from Google.
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Figure 1 .

 1 Figure 1. Sequence of events and performance in the choice task. A) Experimental set-up of the free-choice probabilistic learning task. The monkey sat in a cage with three buttons in front. Keeping the hand on a metal bar allowed the trial to start. B) Single trial time course. After the beginning of a new trial, a cue signal warned the monkey about the arrival of the go signal in one second. When the go signal appeared, the monkey performed the motor response towards one of the three yellow targets (no cue about the most rewarding response was given). At target touch, the monkey received feedback (reward or no reward). Correlates of the RPE signals were analysed in the time window indicated as "outcome". C) The two curves depict monkeys' performances as the probability of correct response averaged across learning sessions for monkey F (blue) and T (red).

Figure 2 .

 2 Figure 2. Statistical power of the t-test performed on the time-frequency power map for each monkey, when contrasting rewarded vs. non-rewarded trials. Time 0 corresponds to button press. The p-values were Bonferroni corrected across the total number of points in the map. To simplify visualization, we are showing the -log10 corresponding value (-log10(0.05) = ~1.3).

Figure 3 ,

 3 we found a significant relation, quantified by means of MI, between RPEs and beta band activity. In both monkeys, the time-course of MI increased around 200 msec, peaked around 450 msec after outcome onset and lasted a total of approximately 550msec. Significant values (p<0.05) are represented in the plot by the continuous line; this measure can be interpreted as a trial by trial covariation in time of the electrophysiological and the behavioral measures.This result is confirmed by cluster-based statistics and permutation tests. The statistical framework that we used is detailed in the Materials and Methods section. This result confirms that beta band power variation in the striatum is differentially modulated by feedback type (i.e., presence or absence of rewards) and encodes RPE signals.

Figure 3 .

 3 Figure 3. Mutual Information (MI) between beta-band oscillation and RPE. The dashed lines represent non significant values (p ≥ 0.05), while the continuous lines represent significant values (p < 0.05).

  Figure 5B, each line corresponds to a striatal territory, and for each line the figures are ordered by the maximum value of the sum of the MI of each cluster. As in Figure 4, dashed lines correspond to non-significant time intervals, while full lines correspond to significant temporal clusters. As shown in Figure 5B, the number of significant clusters decreases across territories following this pattern.

Figure 4 .

 4 Figure 4. Positions of all striatal recording sites in monkey F. Each dot corresponds to a single LFP recording site. Coronal sections are labeled in rostrocaudal stereotaxic planes according to distances from the anterior commissure (AC) used as a reference landmark.The inset shows a photomicrograph of a coronal section stained with Cresyl violet at the level of the posterior putamen (i.e., motor striatum) with visible traces of electrode tracks above the putamen. Cd, caudate nucleus; Put, putamen.

Figure 5 .

 5 Figure 5. A) two-dimensional spatial positions of the clusters of recording sites, for monkey F and T. Clusters are represented along their antero-posterior (AP) position (antero = positive numbers, posterior = negative numbers) and depth (deeper = lower number) of the recording site. Each color corresponds to an anatomo-functional region: red = limbic striatum, blue = associative striatum, green = motor striatum. B) MI computed in each of the clusters, for monkey F and T. The colour and the number associated with each cluster corresponds with the image on the top. From this image emerges how the number of clusters with a statistical significant increase of MI is higher in limbic striatum, to then progressively diminish in associative and motor striatum.

Figure 6

 6 shows an increase in RPE information with the distance from the referential point, toward the rostral-ventral striatum. Linear correlation analysis revealed a significant and positive correlation (p-values < 0.05) for both monkeys. In other words, this result indicates that the amount of information about RPE signals follows an anatomical gradient, showing higher values in the rostro-ventral part of the striatum and gradual decrease towards the most dorso-caudal part.

Figure 6 .

 6 Figure 6. Striatal gradient of the total RPE-beta band MI. On the y-axis we plotted the sum over the outcome time of the MI computed among RPE and beta band activity. On x-axis we plotted the distance of clusters from a reference point computed taking the AP coordinate of the most posterior recording site and the Depth coordinate of the higher recording site of each monkey. The linear regression with the associated p-value shown in the figure suggests an increasing gradient of RPE related activity toward the most rostro-ventral part of the striatum.

  order to model behavioral choices and estimate the evolution of RPEs during learning, we used a Q-learning model (Watkins and Dayan, 1992) from reinforcement learning theory (Sutton and Barto, 1998). Briefly, the Q-learning model updates action values through the Rescorla-Wagner learning rule (1972) expressed by the following equation: value of action a=1, 2, 3 (three possible movements 𝑄 𝑎 (𝑡) to 3 targets) at trial t, and corresponds to the update value, also called Reward ∆𝑄 learning rate (which varies from 0 to 1) and models the type of ɑ 𝑟 outcome. The r parameter takes values equal to 1 for a correct response, 0 if incorrect. Action values are then transformed into probabilities according to the softmax equation:

  (3 couples ⨉ 5 ΔP). A list of the fifteen scenarios with their associated probabilities, and the resulting contingency values can be found in Figure1. Moreover, as shown in Figure1, introducing this variability in the task design is also important to study different intensities of causal perception.

Figure 2 .

 2 Figure 2. Single trial description of the volleyball task. The task was self-paced, meaning that the participants didn't receive any cue to start. 250 msec after selection and execution of the action ('play' or 'not play') they received an outcome. The outcome was informative about the result of the simulated match and lasted 1.5 sec. Only after an additional 300 msec the participants were able to start the next trial.

  non-normalized power source estimate for each trial (n) and time point (t), and 𝑡 ∑𝑏 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛, 𝑡 𝑡 correspond to the power source estimate of the baseline averaged over time.Finally, we averaged the normalized source's power over the previously defined MarsAtlas parcel to obtain a single power time course for each region of interest(ROI). With this method we obtained for each participant a matrix describing the single-trial time course of HGA sampled at 200 Hz of 82 cortical brain regions (Figure3).

Figure 3 .

 3 Figure 3. MarsAtlas parcelization and average HGA. MarsAtlas is an anatomical atlas that comprehends a total of 82 cortical regions (41 each hemisphere). Here we showed the the average HGA computed across all the participants and all the trials, the figure clearly shows an event related potential interesting the motor, premotor, and sensorial cortices aligned with the action execution (-0.25 msec), and the visual activity triggered by the outcome delivery (0.0 msec).

Figure 4A .

 4A Having two possible actions with their independent outcome probability, we can define two distinct beta models: (𝑓(𝑂|¬𝐴) + α; 𝑓(¬𝑂|¬𝐴) + β)

Figure 4 .

 4 Figure 4. A) Trial-by-trial evolution of the two contingency models. At the beginning both of the models' probability distributions are centered at p=0.5, which represents the probability of obtaining the outcome considering the past relative actions. At each trial one of the two models is updated according to the chosen action. The result of the outcome establishes the skewness of the probability distribution function. B) At each trial we computed the average of both beta distributions, corresponding to the evolution of P(O|A) and P(O|¬A), and we used these two values to compute the ΔP.

  Figure 5. A) Linear regression between the task associated ΔP values and the participants' scores. B) Linear regression between the ΔP values computed by the Bayesian model and the participants' scores.

Figure 6 .

 6 Figure 6. A) Variance of the participants' scores relative to the task related ΔP values. The black line represents the linear regression computed in Figure 5, while the red line represents the ideal regression if the participants' were able to perfectly infer the ΔP values. B) Variance of the model ΔP relative to the task related ΔP values. The black line represents the linear regression between the two variables, and is not visible because it is almost superposed to the red line representing the ideal regression if the model were able to perfectly predict the ΔP values.

Figure 7 .

 7 Figure 7. Neural dynamic related to behavioral variables. Red lines represent significant clusters. On green background: MI with the ΔP values. On red background: MI with the P(O|A). On blue background: MI with the P(O|C).

  instructed human participants in performing a goal-directed causal learning task under MEG recording. Then we built a Bayesian optimal observer model to perform single-trial model-based analysis. We found a prominent role of the OFC and the rostral PFC in encoding relevant behavioral correlates, such as the ΔP and the P(O|A). Despite most of the results presented here confirming previous findings, we believe that the neurophysiological correlates of goal directed causal learning needs a deeper investigation. That can be achieved going in two directions: I) improving the Bayesian model enhancing the fitting of the single subject behavior through the fine tuning of relevant parameters, and II) investigating the oscillatory activity of lower frequency bands. Indeed, in this work we focused specifically on the high-gamma band oscillatory activity. Moreover, It will be interesting to study the cortico-cortical interactions between pairs of brain regions forming functional networks supporting causal learning in time, using techniques such as Granger Causality (GC) or Partial Information Decomposition (PID).

  During my PhD I dedicated part of my time to the culture of open science, especially with the participation and organization of BrainHack events hosted in Marseille. BrainHack Global (https://brainhack.org/) is a community promoting the culture of open science all over the world. Through the organization of local events (both in person and on-line), BrainHack leads people from different fields with their own skills and ideas to meet up and join already existing projects or proposing their own. In 2019 I presented BV2MNE as a project in the BrainHack Marseille community. In 2020 I participated in the organization of BrainHack Marseille (https://brainhack-marseille.github.io/), and I proposed a project together with Etienne Combrisson on GPU porting of Frites' python library functions. The culture of open science is important to promote scientific collaborations in an inclusive environment, to improve the flow of information between domains of the same or different disciplines. It can raise scientists' awareness on the use and misuse of data, and of big datasets, that are so expensive to collect. Moreover it poses an accent on the importance of having common and reproducible good practices, to enhance research workflows. Last but not least, it is an occasion to meet other people and increase networking.
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  -trivial cognitive aspects, making it hard to model and to study in terms of underlying neural and network computations. At first, we need to have a mental representation of the goal, a desired future state to which we want to tend. Then, to achieve this goal, we should be able to represent the space of actions-outcome combinations in a cognitive map and to use and update it in order to plan our future responses, balancing our behavior in between exploring or exploiting actions after evaluating received outcomes. Moreover, if the rules of the context change, this cognitive map should be flexible enough to allow rapid with the stochastic nature of the model. Altogether, they allow the model to 'imagine' different action-feedback sequences in correspondence to a stimulus.The ensemble of these complex processes arising from this neural architecture highlights another property of the network, that is its emergent generativity.Emergent generativity is characterised by two relevant elements. The first element regards 'generativity' and involves the stochastic nature of spike sampling that allows the production of alternative patterns in correspondence to the same context. This means that the network is able to form new chains of consecutive spikes even if that sequence was never observed before, using the previously learned representations of the states. This process is important as the generation of alternative plausible patterns is at the core of search algorithms possibly employed by the brain. For example, generativity can support the search of different courses of action that might lead to a desired goal state starting from a given initial condition. shown by the model's capacity to successfully plan how to reach new goals on the basis of the experience that the world model acquired in other tasks.Finally, we used the model to try to reproduce the behavioral performances and the reaction times of a previous study on human participants performing a goal-directed learning task(Brovelli et al., 2008). The architecture has reproduced the target behaviour, has furnished an explanation of the mechanisms possibly underlying it, and has proposed predictions testable in future empirical experiments.Despite that we acknowledge that the model has various limitations that might be improved in future work. A first open issue concerns the generalisation from neurons firing at discrete times to neurons firing in continuous time. This might be done using the inhomogeneous Poisson process(Kappel et al., 2014). Although this would not drastically modify the theoretical contribution of the model, it might simplify a comparison with real data from the brain at a finer temporal level with respect to what is done here. A second issue to face would be to use other tasks with respect to the one considered here(Brovelli et al., 2008), to test its robustness and capacity to scale-up to more complex tasks. A relevant issue to face in future work concerns the new arbitration mechanism proposed with the model. Here, the entropy measure at the core of the arbitration mechanism is grounded on the probability distribution of neurons. However, it is now hardwired, and future work should thus aim to implement this process with neural mechanisms. Another improvement of the model might involve the full development of a habitual component, not included here because it is out of the scope of this work.
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	(Goodfellow et al., 2016) almost all devices and softwares of everyday use extensively exploits this technology . DNN have become famous for their efficiency in solving different tasks, with more or less variations in their architectures and learning algorithms. For example, Convolutional Neural Networks (CNNs) (Gu et al., 2018) are mostly used to perform image processing, while Recurrent Neural Networks (RNNs) (Buesing et al., 2011; Lipton et al., 2015) are particularly suitable for natural language processing. A great innovation was represented by generative deep networks, such as Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and Variational Auto-Encoders (VAEs) (Kingma and Welling, 2014), that are In deep neural networks, generativity is often based on stochastic elements supporting the generation of novel plausible patterns, as it happens in Generative requires arbitration mechanisms different from the classic ones used to balance goal-directed and habitual processes (Daw et al., 2005; Viejo et al., 2015). A second novel feature that allowed the architecture to autonomously learn the world model is the use of a Hidden Markov Model (HMM) having a relevant difference with comprehends several nonbehavioral adjustments. This complexity is supported by intricate brain networks respect to those used in other planning-as-inference spiking network models
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	autonomous fashion based on unsupervised learning processes, using a at a higher cognitive level. models (Rueckert et al., 2016; Tanneberg et al., 2016) combined goal, initial state,
	spiking neural-network architecture bridging planning as inference and and environment conditions into a whole 'context' representation. Our
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. These models use a world model-based on a classic HMM reproducing possible sequences of states but not actions. Instead, the world model used here is based on a HMM that observes sequences of states and of actions. This allows the world model to directly select actions to perform; instead, previous models
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Abstract

Reward prediction errors (RPEs) reflect the difference between obtained and predicted rewards, and they are a building block of basic forms of reinforcement learning. RPE signals are encoded by the activity of midbrain dopaminergic neurons that innervate the striatum and frontal cortex, suggesting that RPE signals are integrated in cortico-basal ganglia circuits. In the current study, we investigated the participation of the different territories of the striatum in the encoding of RPE. To do so, we recorded local field potentials (LFPs) in the striatum of two rhesus monkeys performing a task involving a choice among options for movement with different reward probabilities. The trial-by-trial evolution of RPE was estimated using a reinforcement learning model fitted on monkeys' choice behavior. We found that changes in beta band oscillations (15-30 Hz) during the outcome period appear consistent with RPE encoding. Moreover, the learning-relevant outcome information contained in beta oscillations increased along a dorsolateral-to-ventromedial gradient. These region-specific changes in LFP activity suggest a relationship between beta oscillations in the striatum and the evaluation of outcome based on reward feedback, highlighting a specific contribution of the ventral striatum to the updating of choice behavior.

Information theoretical and statistical analysis of LFP data

We used information-theoretic metrics to quantify the statistical dependency between the beta band signals and RPE signals. To this end, we computed the mutual Bibliography • Abler, B., Walter, H., Erk, S., Kammerer, H., and Spitzer, M. (2006). Prediction error as a linear function of reward probability is coded in human nucleus accumbens. NeuroImage 31, 790-795. • Alberquilla, S., Gonzalez-Granillo, A., Martín, E.D., and Moratalla, R. (2020).
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Abstract

Humans have an extraordinary ability to infer causal relations between actions, or more generally behaviors, and their consequences. Such sense of causality is thought to be linked to the action-outcome contingency, which is defined as the difference between the probability of observing a given outcome when an action is performed (P(O|A) and the probability of receiving the same outcome when the 

MarsAtlas-based cortical source model

To perform cortical reconstruction we used the FreeSurfer 1 [START_REF] Fischl | FreeSurfer[END_REF] [START_REF] Gramfort | Premotor cortex is critical for goal-directed actions[END_REF], able to transform the 3D spatial coordinates of the BrainVISA meshes back to MNI space for MNE compatibility, and to compute the Boundary Element Model (BEM), the source space, and the forward model. These three elements are needed for the power estimation at the source level, which will be discussed in the next paragraph.

We performed the coregistration using the 'mne coreg' interface.

Single-trial High-Gamma Activity (HGA)

Preprocessing and artefact rejection

To analyse neurophysiological data we used a procedure similar to the one described in (Brovelli et al., 2015). All the following analyses were performed using the MNE toolbox [START_REF] Gramfort | Premotor cortex is critical for goal-directed actions[END_REF] 

Model performance

We built a behavioral model based on an ideal Bayesian observer. This allowed us to obtain a trial-by-trial description of how the cognitive representation of the task related probabilities evolves during learning. To assess if the model is actually able to capture the participants' ability to encode causality, we performed a linear regression analysis between the last values of ΔP computed by the model at the end of each scenario and the score reported by participants normalized between -1 and 1. In In the next sections I will discuss and give a future perspective of each of these three aspects to then give a general possible future perspective related to this research topic.

A generative spiking neural-network model of goal-directed behaviour and one-step planning -

Faced problems and solutions to GDB modelling

The spiking neural network described in Section 2 exhibits two relevant features: its capacity to autonomously form neural internal representations (hidden causes) of the observations at different times and to activate them in sequence; and that the spiking sampling probability reflects the probability distributions expressed by the world model. Thus this model is not only able to build a representation of the world in an unsupervised way, but also to use it to simulate stimuli-actions-outcomes trajectories that can be used to plan goal-directed actions to achieve a desired state.

These properties of the network arise from Spike-Timing Dependent Plasticity (STDP) unsupervised learning rule and the features of the model architecture, • Takikawa, Y., Kawagoe, R., Itoh, H., Nakahara, H., and Hikosaka, O. (2002).

Modulation of saccadic eye movements by predicted reward outcome. • Yin, H.H., and Knowlton, B.J. (2006). The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464-476. • (2007). Bayesian brain: probabilistic approaches to neural coding (Cambridge, Mass: MIT Press).