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Résumé. Dans cette thèse, nous étudions la structure algébrique et la géométrie du

complexe de Chiu-Tamarkin, qui est un outil pour étudier la géométrie symplectique

à l’aide de la théorie microlocale des faisceaux. Les principaux résultats de la thèse

sont organisés en deux parties : structure et calcul.

Pour la partie structure, nous rappelons d’abord le complexe de Chiu-Tamarkin

Z/`-équivariant C`,T (U,K). Nous exposons une variante du produit de Yoneda. Il

généralise le cup-produit habituel sur l’anneau de cohomologie d’une variété et le pro-

duit de Chas-Sullivan sur la espace des lacets. Ensuite, nous définissons le complexe

de Chiu-Tamarkin S1-équivariant CS1

T (U,K) en utilisant une structure cyclique sur le

noyau microlocal. Enfin, nous construisons différentes capacités symplectiques asso-

ciées à différentes versions du complexe de Chiu-Tamarkin. En particulier, la structure

cyclique explique pourquoi nous avons besoin de la version Z/` pour la preuve du théo-

rème de non-squeezing de contact.

Pour la partie calcul, nous présentons les calculs du complexe de Chiu-Tamarkin

pour les domaines toriques convexes et les fibrés en disques unitaires. Pour les do-

maines toriques convexes, nous démontrons un théorème de structure qui nous aide

à calculer les capacités. Le calcul implique que nos capacités sont les mêmes que les

capacités de Gutt-Hutchings pour les domaines toriques convexes. Pour les fibrés en

disques unitaires, nous prouvons un isomorphisme de Viterbo, qui est un isomorphisme

d’algèbres entre le complexe de Chiu-Tamarkin du fibré de disques unitaires et la co-

homologie de l’espace des lacets de la base.

Mot-clés : Faisceaux microlocal, Complexe de Chiu-Tamarkin, Noyau mi-

crolocal, Capacités symplectiques, Théorème de non-écrasement, espace

des lacets.

Classification MSC : 35A27, 53D35, 53D25, 57R17, 55N30, 55N31, 55N35,

55N45, 55N91, 55P48, 55P50.
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Abstract. In this thesis, we study the algebra structures and geometry of the Chiu-

Tamarkin complex, which is a tool to study symplectic geometry using the microlocal

theory of sheaves. The main results of the thesis are organized into two parts: struc-

ture and computation.

On the structure part, we first review the Z/`-equivariant Chiu-Tamarkin complex

C`,T (U,K). We exhibit a variant of the Yoneda product. It generalizes the usual

cup product on the cohomology ring of a manifold and the Chas-Sullivan product

on the string topology. Next, we define the S1-equivariant Chiu-Tamarkin complex

CS1

T (U,K) using a cyclic structure on the microlocal kernel. Finally, we construct

different symplectic capacities associated with different versions of the Chiu-Tamarkin

complex. In particular, the cyclic structure explains why we need Z/`-version on the

proof of the contact non-squeezing theorem.

On the computational part, we present the computations of the Chiu-Tamarkin

complex for convex toric domains and unit disk bundles. For convex toric domains,

we demonstrate a structure theorem that helps us to compute the capacities. The

computation implies that our capacities are the same as the Gutt-Hutchings capacities

for convex toric domains. For the unit disk bundle, we prove a Viterbo isomorphism,

which is an algebra isomorphism between the Chiu-Tamarkin complex of a unit disk

bundle and the string topology of its base.

Keywords: Microlocal sheaf, Chiu-Tamarkin complex, Microlocal kernel,

Symplectic capacities, Non-squeezing theorem, String topology.
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Let us be, first and above all, kind, then honest and then let us never
forget each other!

—Fyodor Dostoevsky, The Brothers Karamazov

And stay curious.
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Introduction (en Français)

1. Faisceaux microlocaux: ancien et nouveau.

L’analyse algébrique a été introduite par Sato dans les années 60. L’idée principale est
d’utiliser des outils algébriques comme les faisceaux et les catégories pour étudier des
problèmes d’analyse, notamment les équations aux dérivées partielles. En illustration
de la philosophie de Sato, Kashiwara et Schapira ont introduit et développé la théorie
microlocale des faisceaux dans [KS82, KS83a, KS83b, KS90]. En particulier, les
applications de la théorie microlocale des faisceaux aux D−modules nous présentent la
puissance de l’analyse algébrique.

Les principales notions de la théorie des faisceaux microlocaux sont la microlocalisation
de Sato et le microsupport. Dans cette thèse, nous nous concentrerons principalement
sur les applications de la notion de microsupport. Le microsupport SS(F ) détecte
l’extensibilité locale des sections d’un faisceau F . On montre que, sur une variété com-
plexe X, pour un DX-module cohérent M, le microsupport SS(Sol(M)) est le même
que la variété caractéristique du DX-module M. Précisément, un covecteur est dans
le microsupport du faisceau de solutions Sol(M) si les solutions locales près du cov-
ecteur peuvent être étendues près de la codirection, ce qui signifie exactement que la
codirection est dans la variété caractéristique deM. Nous pouvons également formuler
l’extensibilité globale à l’aide du lemme de Morse microlocal (voir chapitre 1, Corol-
lary 1.6). Un des points forts de la théorie est la nouvelle preuve du fait que les variétés
caractéristiques d’un D-module cohérent sont co-isotropes en utilisant le théorème de
co-isotropie de Kashiwara-Schapira. D’autre part, il est prouvé dans [KS90] que SS(F )

est un sous-ensemble conique fermé et coisotrope de T ∗X. Lorsque X est réellement
analytique, SS(F ) est lagrangienne si et seulement si F est (faiblement) constructible.
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Ce résultat illustre le rôle de la théorie des faisceaux microlocaux dans la géométrie sym-
plectique du faisceau cotangent T ∗X. En tant que nouvelle direction de la géométrie
symplectique, les techniques de faisceaux sont en plein essor ces dernières années.

Faisceau Géométrie
Les faisceaux constructibles sur X Lagrangienne conique dans T ∗X
Les faisceaux constructibles sur X ×X Les correspondances lagrangiennes entre T ∗X
Convolution des faisceaux Composition des correspondances
Guillermou-Kashiwara-Schapira
quantification[GKS12] Action du groupe hamiltonien

Guillermou quantification[Gui12]/
Viterbo quantification[Vit19] lagrangienne exact dans T ∗X

Table 1. Une correspondance entre les faisceaux et la géométrie.

Commençons par les travaux de Tamarkin. Dans [Tam18], Tamarkin a développé
la notion de catégorie de Tamarkin D(X). La catégorie de Tamarkin D(X) est un
quotient de D(X × Rt) par des faisceaux microsupportés négativement le long de t, et
est isomorphe à une sous-catégorie triangulée complète de D(X × Rt). Nous pouvons
donc considérer ses objets comme des faisceaux sur X × Rt.

Le rôle de la variable t est double:

• Le microsupport SS(F ) est conique sous la dilatation des fibres cotangentes. Mais la
plupart des problèmes en géométrie symplectique sur les fibrés cotangents ne sont pas
coniques.

Tamarkin suggère donc d’utiliser l’application de ”déconification”

ρ : T ∗X × T ∗
τ>0Rt → T ∗X, (q,p, t, τ) 7→ (q,p/τ).

Donc pour A ⊂ T ∗X, nous avons un sous-ensemble conique ρ−1(A) ⊂ T ∗X × T ∗
τ>0Rt,

qui peut être le (un majorant de) microsupport pour un faisceau sur X × Rt.

• D’autre part, l’application ρ se factorise par l’application de symplectisation q du
fibré de 1-jets J1X de manière tautologique :

T ∗X × T ∗
τ>0Rt J1(X) = T ∗X × Rt T ∗X.

q

ρ
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Ainsi, la conicité provient en fait du processus de symplectisation q du fibré 1-jets J1X,
et la variable supplémentaire t, joue en fait le rôle d’action pour les lagrangiennes dans
T ∗X.

Maintenant, considérons les applications de translation

Tc : X × Rt → X × Rt, (q, t) 7→ (q, t+ c).

Microlocalement, les foncteurs Tc∗ quantifient le flot de Reeb dTc de la forme de contact
canonique α = dt+ pdq.

Il est crucial que, sur la catégorie de Tamarkin D(X), nous ayons une transformation
naturelle τc : Id⇒ Tc∗ pour c ≥ 0. Cette transformation naturelle τc peut nous aider à
définir des invariants numériques pour F ∈ D(X).

q

t

FL

Tc∗F

q

t

FL

T(L+ε)∗F

Figure 0.1. Considérons le faisceau constant F = KZ , où Z est
l’ensemble localement fermé bleu. Puisque la frontière de Z est la pro-
jection frontale du noeud legendrien trivial, nous avons que SS(F ) est la
conification du noeud legendrien trivial en J1R. De plus, nous définissons
L comme étant la longueur de la seule corde de Reeb. On peut montrer
que τc(F ) = 0 pour c > L et τc(F ) 6= 0 pour 0 ≤ c < L. De cette façon,
nous trouvons la longueur de la corde de Reeb.

Ainsi, au lieu de dire que les objets de la catégorie de Tamarkin quantifient des lagrang-
iennes dans des fibrés cotangents, il est préférable de dire que les objets de la catégorie
Tamarkin quantifient des legendriennes dans des espaces de 1-jets.

A partir de ce point de vue, Tamarkin développe une nouvelle méthode pour étudier
la déplaçabilité dans [Tam18]. Les travaux de Tamarkin sont très influents. Asano et
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Ike ont développé la distance de persistance d’un point de vue quantitatif à partir des
travaux de Tamarkin et ont commencé les recherches numériques des faisceaux avec des
applications sur l’énergie de déplacement symplectique, les immersions lagrangiennes
rationnelles et la géométrie symplectique C0 en [AI20a, AI20b, AI22]. Du côté des
catégories, Biran, Cornea et Zhang ont développé la notion de catégorie de persistance
triangulée dans [BCZ21], qui abstrait les structures catégoriques de la catégorie de
Tamarkin.

En outre, il existe de nombreux travaux sur la géométrie symplectique qui sont basés
sur la théorie des faisceaux microlocaux. Guillermou donne des preuves de la rigidité
C0 de Gromov-Eliashberg, de la conjecture des 3 cuspides et du résultat d’Abouzaid et
Kragh selon lequel les lagrangiennes exacts fermés dans les faisceaux cotangents sont
homotopiquement équivalents à la section nulle (Voir [Gui12, Gui13, Gui16] et le
mémoire [Gui19] sur ces sujets). Ike estime les intersections lagrangiennes exactes
dans les fibrés cotangents (voir [Ike19]), et Li estime les cordes de Reeb dans les
espaces des 1-jets (voir [Li21a]). Dans [CG22], Casals et Gao construisent une infinité
de remplissages lagrangiens pour certains noeuds de tores legendriens en utilisant les
espaces de modules des faisceaux comme invariants.

D’autre part, de nombreux travaux étudient la catégorie des faisceaux du point de vue
de la catégorie de Fukaya. Cela commence par les travaux de Bondal-Ruan [BdR].
Voir également les travaux de Nadler et Zaslow sur la catégorie de Fukaya compacte
[NZ09, Nad09], de Nadler [Nad16], et de Ganatra, Pardon, et Shende sur la catégorie
de Fukaya enroulée [GPS18a].

2. Théorème de non-plongement de contact.

Le célèbre non plongement de Gromov a ouvert la porte à la géométrie symplectique
moderne. Mais la correspondance de contact n’a pas été discutée avant les travaux
pionniers d’Eilashberg-Kim-Poltervich : [EKP06].

Une tentative naïve est d’établir le problème de non plongement du contact dans le
fibré des 1-jets J1Rd = T ∗Rd × Rt équipé de la forme de contact α = dt + pdq. Mais
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l’application de changement d’échelle (q,p, z) 7→ (rq, rp, r2t), qui est un contactomor-
phisme, envoie tout ensemble compact dans un petit voisinage arbitraire de l’origine
lorsque r est suffisamment grand. Cette naturalité conforme de l’espace de 1-jets illustre
qu’il est préférable d’étudier l’espace préquantifié T ∗Rd×S1, où S1 est un cercle, équipé
d’une forme de contact α = dθ + 1

2(qdp− pdq). Mais il existe un contactomorphisme
global FN : T ∗Rd × S1 → T ∗Rd × S1 défini comme suit : On utilise les coordonnées
complexes T ∗Rd ∼= Cd, puis FN(z, θ) := (ν(θ)e2πNθz, θ), où ν(θ) = (1+Nπ|z|2)−1/2. On
peut calculer directement que FN envoie toute boule dans un voisinage arbitrairement
petit de {0} × S1 pour N assez grand. Cependant, nous remarquons que FN n’est pas
à support compact.

Une meilleure définition du plongement de contact est donc la suivante, proposée dans
loc. cit.

Définition. [EKP06, p1636] Soit (V, α) une variété de contact. Soit U1, U2 ⊂ V deux
sous-ensembles ouverts. On dit que U1 est plongeable dans U2 s’il existe une isotopie de
contact à support compact ϕs : U1 → V , s ∈ [0, 1], telle que ϕ0 = Id, et ϕ1(U1) ⊂ U2.

Un phénomène intéressant, qui n’apparaît pas dans la situation symplectique, est que
la taille de la boule affecte la validité du plongement. Deux résultats concernant le
plongement et le non plongement des boules de contact BπR2 × S1 sont :

Théorèm. (1) [EKP06, Theorem 1.3] Supposons que d ≥ 2. Alors pour tout 0 <

πr2, πR2 < 1, on peut plonger la boule de contact BπR2 × S1 dans Bπr2 × S1 quelle que
soit la relation entre r et R.

(2) [EKP06, Theorem 1.2] S’il existe un entier m ∈ [πr2, πR2], alors BπR2 × S1 ne
peut pas être plongé dans Bπr2 × S1.

En ce qui concerne le phénomène à grande échelle, Eliashberg, Kim et Polterovich
donnent une très bonne explication physique en utilisant le processus de quantification.
Le seul cas restant concernant le non plongement de contact est le suivant : que se
passe-t-il s’il existe un entier m tel que m < πr2 < πR2 < m + 1 ? Il est résolu par
Chiu à l’aide de la théorie microlocale des faisceaux [Chi17], et par Fraser à l’aide de la
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technique des courbes J-holomorphes [Fra16] dans l’esprit de [EKP06]. Ils ont prouvé
ce qui suit :

Théorèm ([Chi17, Fra16]). Si 1 ≤ πr2 < πR2, alors BπR2 × S1 ne peut pas être
plongé dans Bπr2 × S1.

Les deux preuves nécessitent un invariant homologique Z/`-équivariant. Du côté des
courbes J-holomorphes, Fraser a construit une version de l’homologie de contact. Côté
faisceau, Chiu a construit ce que nous avons appelé le complexe de Chiu-Tamarkin
(contact). Reprenons ici la preuve de Chiu dans nos notations.

Pour (n, `) ∈ N0 × N et une classe d’ensembles ouverts V ⊂ T ∗Rd × S1, incluant les
boules de contact Bπr2×S1 et leurs images isotopiques de contact, Chiu définit un espace
vectoriel gradué H∗C`,n`(V,K). Nous introduisons également une classe fondamentale
ηc`,n`(V,K) ∈ H0C`,n`(V,K), qui est déjà définie implicitement par Chiu.

Lorsque ` est un nombre premier impair et K = F`, on a que H∗C`,n`(V,K) est un
module sur F`[u, θ], où |u| = 2, |θ| = 1 et θ2 = 0.

On peut alors formuler la preuve de Chiu de la manière suivante :

• Si πr2 > 1, Chiu construit un isomorphisme de F`[u, θ]-modules:

H∗C`,`(Bπr2 × S1,F`) ∼= u−db`/πr2cF`[u, θ],

et un élément Λr = ku−db`/πr2c tel que ηc`,`(Bπr2 foisS1,F`) = udb`/πr2cΛr 6= 0.

• For a compactly supported contact isotopy ϕ : I×T ∗Rd×S1 → T ∗Rd×S1 and z ∈ I,
we have an isomorphism of F`[u, θ]-modules

Φz : H∗C`,`(ϕz(Bπr2 × S1),F`) ∼= H∗C`,`(Bπr2 × S1,F`)

such that ηc`,`(ϕz(Bπr2 × S1),F`) is mapped to ηc`,`(Bπr2 × S1,F`).

Pour une isotopie de contact prise en charge de manière compacte ϕ : I×T ∗Rd×S1 →

T ∗Rd × S1 and z ∈ I, on a un isomorphisme de F`[u, θ]-modules

Φz : H∗C`,`(ϕz(Bπr2 × S1),F`) ∼= H∗C euh,`(Bπr2 × S1,F`)
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tel que ηc`,`(ϕz(Bπr2 × S1),F`) est envoyé sur ηc`,`(Bπr2 × S1,F`).

• S’il existe une inclusion BπR2 × S1 ⊂ Bπr2 × S1, pour r < R, on a un morphisme de
degré 0 de F`[u, θ]-modules

i : H∗C`,`(Bπr2 × S1,F`)→ H∗C`,`(BπR2 × S1,F`),

qui préserve la classe fondamentale. En particulier, nous avons que ηc`,`(BπR2×S1,F`) =

udb`/πr2ci(Λr) dans H0C`,`(BπR2 × S1,F`).

• Cependant, la comparaison des degrés donne i(Λr) = 0 dans H∗C`,`(BπR2 × S1,F`)

pour ` assez grand. C’est une contradiction car nous savons que ηc`,`(BπR2×S1,F`) 6= 0.

Pour un cas particulier où V = U × S1, la définition de H∗C`,n`(U × S1,F`) repose sur
un faisceau PU ∈ D(X × X). Si U a une frontière de contact, nous pouvons montrer
que le microsupport est borné par la conification du flot de Reeb de ∂U . Le complexe
de Chiu-Tamarkin H∗C`,n`(U×S1,F`), qui utilise P⊠`

U , encode un changement d’échelle
de rapport ` du flot de Reeb sur ∂U .

Géométriquement, cela signifie que pour une orbite fermée de Reeb en ∂U , disons γ,
on n’étudie pas seulement γ. Au lieu de cela, nous considérons γ`(t) = γ(`t), qui est
un revêtement ` de γ. Si T est la période de γ, la période de γ` est T/`. Dans le
cas préquantifié, si l’action T est un nombre entier, on peut relever γ à T ∗X × S1, et
on l’appelle γ̃. De plus, lorsque T/` ∈ N0, on peut relever γ` vers ‹γ`. C’est pourquoi
nous avons besoin d’une intégrale n dans la définition du complexe de Chiu-Tamarkin
contact. Le rôle de la symétrie Z/` est de distinguer γ` en utilisant la structure F`[u, θ]-
module de H∗C`,n`(U × S1,F`).

3. Aperçu de la thèse et principaux résultats

Dans cette thèse, nous voudrions comprendre systématiquement l’algèbre et la géométrie
du complexe de Chiu-Tamarkin. Comme la preuve de Chiu pour le théorème de non-
plongement de contact est convaincante mais mystèrieuse, on pense que de nombreuses
structures algébriques se cachent derrière la définition du complexe de Chiu-Tamarkin.
Le contenu de la thèse est une combinaison de l’article de l’auteur [Zha21] et de certains
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travaux en préparation. Pour être compréhensibles, nous fournissons quelques prélim-
inaires aux lecteurs dans les deux premiers chapitres. Nous signalons aux lecteurs que
nous fixons quelques notations à la section Notation and conventions entre Introduction
et Chapter 1.

La thèse est organisée en 3 points de vue : structures algébriques, informations numé-
riques, calculs. Ils sont reliés les uns aux autres. Les structures algébriques nous aident
à extraire des informations numériques significatives, et les calculs nous aident à revoir
et vérifier nos structures.

Par rapport à la version contact de Chiu, nous discutons ici de la version symplectique.

Nous considérons un variété différentielle X. Dans l’introduction, nous supposons que
X est orientable, mais nous pouvons traiter certaines situations non orientables dans
le contenu principal.

Pour un ensemble ouvert U ⊂ T ∗X, et son complément Z = T ∗X \ U , considérons les
deux catégories de faisceaux suivantes :

DZ(X) ={F ∈ D(X) : ρ(SS(F ) ∩ {τ > 0}) ⊂ Z}

DU(X) =⊥DZ(X), le complément orthogonal gauche de DZ(X).

Sur la base de l’idée de Tamarkin et Chiu, nous souhaitons construire des foncteurs
projecteurs dans les deux catégories ci-dessus en utilisant des foncteurs de convolution
avec des noyaux PU , QU ∈ D(X × X). Nous appelons PU , QU les noyaux microlocaux
associés à U .

Cependant, l’existence de noyaux microlocaux n’est pas évidente. On dit qu’un ensem-
ble ouvert U est admissible s’il admet des noyaux microlocaux et si les noyaux forment
un triangle distingué:

PU → K∆X2 ×[0,∞) → QU
+1−→,

où K∆X2 ×[0,∞) est le faisceau constant soutenu sur ∆X2 × [0,∞) ⊂ X×X×R. Comme
le foncteur de convolution défini par K∆X2 ×[0,∞) est le foncteur identité de D(X), le
triangle distingué est une version de la décomposition du foncteur identité.
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Chiu prouve que les boules sont admissibles. Sa méthode se généralise directement aux
ensembles ouverts bornés (et plus):

Proposition A (Corollaires de Proposition 2.15). Les ensembles ouverts bornés, les
domaines toriques et les faisceaux de disques unitaires sur des variétés complètes sont
dynamiquement admissibles.

Une analogie élémentaire vient de l’algèbre linéaire: si vous voulez étudier un sous-
espace W d’un espace vectoriel V , une façon est de considérer le projecteur f ∈ Fin(V )

telle que Im(f) = W . En particulier, f est idempotent au sens f 2 = f .

Pour la sous-catégorie DU(X), le projecteur joue le rôle de f , et le noyau PU joue le rôle
de la matrice de f . Ainsi, il n’est pas surprenant que pour chaque ` ∈ N, le faisceau PU
vérifie l’identité idempotente, par rapport à l’opération de convolution des faisceaux,

P ?`
U

∼=−→ PU ∈ D(X2).

Toutes nos constructions partent de l’identité idempotente.

La principale application des noyaux microlocaux est de définir le complexe de Chiu-
Tamarkin C`,T (U,K), qui est mentionné implicitement dans [Tam15], et est écrit ex-
plicitement par Chiu dans [Chi17].

3.1. Complexe de Chiu-Tamarkin non équivariant et cup-produit. Pour
simplifier, partons du cas non équivariant. Pour une variété orientable, le complexe de
Chiu-Tamarkin non équivariant de paramètre T ≥ 0 est le complexe hom

C1,T (U,K) = RHom(PU ,K∆X2 ×{T}).

Nous pouvons prouver que

C1,T (U,K) ∼= RHom(PU ,TT∗(PU)).

Si T = 0, on aura un endomorphisme dérivé de PU , qui admet le produit de Yoneda.
Si T > 0, comme PU ∈ D(X × X), on a un morphisme τT (PU) : PU → TT∗(PU).
Ainsi, nous pouvons étendre le produit Yoneda habituel à une version décalée. C’est
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exactement la structure de catégorie de persistance triangulée, au sens de Biran-Cornea-
Zhang, de la catégorie Tamarkin. Nous tirons également le produit de Yoneda décalé
vers C1,T (U,K), nous appelons le produit résultant le cup-produit sur le complexe Chiu-
Tamarkin non équivariant.

Il n’est pas surprenant que le produit de Yoneda décalé soit unitaire et associatif.
Cependant, l’identité idempotente P ?2

U
∼= PU montre que le produit de Yoneda décalé

est gradué commutatif.

Théorèm B. Le produit de Yoneda décalé sur Ext∗(PU ,TT∗PU) est associatif, commu-
tatif gradué et unital. Lorsque X est orientable, l’isomorphisme des espaces vectoriels
K,

Ext∗(PU ,TT∗PU) ∼= H∗C1,T (U,K),

identifie le produit de Yoneda décalé et le cup-produit.

Pour U = T ∗X, nous avons l’isomorphisme H∗C1,T (T ∗X,K) ∼= H∗(X,K) et le produit
de Yoneda/cup-produit décalé est le même que le cup-produit habituel sur H∗(X,K).

3.2. Complexe de Chiu-Tamarkin équivariant. Le complexe de Chiu-Tamarkin
non équivariant est très simple mais pas assez puissant.

Comme nous l’avons vu dans la preuve de Chiu pour le théorème de non-plongement
de contact, nous avons besoin d’une structure de module sur un anneau de polynômes,
qui provient généralement d’une théorie équivariante Z/` ou S1. Historiquement, Chiu
et Tamarkin construisent d’abord la version Z/` et on pense que la version S1 apparaît
d’une manière ou d’une autre dans l’article de Tamarkin [Tam15].

Dans cette thèse, je voudrais expliquer comment dériver naturellement la définition
de la Z/`-théorie de Chiu et donner une définition plus accessible pour une théorie
équivariante S1. Tous deux basés sur nos observations sur les identités idempotentes
P ?`
U

∼=−→ PU .
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En utilisant les identités idempotentes, nous pouvons réécrire le complexe de Chiu-
Tamarkin non équivariant:

C1,T (U,K) ∼= RHom(P ?`
U ,K∆X2 ×{T}).

Maintenant, si nous écrivons soigneusement P ?`
U par la définition de convolution (voir

Equation 1.13 pour le cas ` = 3). Nous trouverons que

C1,T (U,K) ∼= RHom
Å
P

L
⊠`
U , s`!t ∆̃X∗π

!
qKT [−d]

ã
,

où

πq : X` × R→ R,

∆̃X : X` × R→ X2` × R,

∆̃X(q1, . . . ,q`, t) = (q`,q1,q1, . . . ,q`−1,q`−1,q`, t),

s`t : X2` × R` → X2` × R,

s`t(−, t1, · · · , t`) = (−, t1 + · · ·+ t`).

Remarquons que, du côté droit de la formule, les deux facteurs admettent un lifting
Z/`-équivariant dans la catégorie dérivée Z/`-équivariant DZ/`((X2×R)`). (Le groupe
Z/` agit sur (X2 × R)` sous permutation cyclique.)

Ainsi, dans [Chi17], Chiu a défini (jusqu’à un degré de décalage) le complexe de Chiu-
Tamarkin Z/`-équivariant comme étant le complexe hom équivariant

C`,T (U,K) ∼= RHomZ/`

Å
P

L
⊠`
U , s`!t ∆̃X∗π

!
qK[−d]

ã
.

Pour la théorie S1-équivariante, les choses deviennent plus subtiles puisque P
L
⊠∞
U n’a

pas de sens.

Rappelons maintenant l’exemple typique de l’action S1 algébrique : Soit une algèbre
associative A, le complexe de Hochschild {A⊗•} est un groupe abélien cyclique, c’est-
à-dire un groupe abélien simplicial avec permutation cyclique sur chaque A⊗n.
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Notre observation est que les identités idempotentes P ?m
U

∼=−→ P ?n
U ensemble définissent

naturellement un objet simplicial dans D(X × X). De plus, notre explication de la
Z/`-théorie nous fournit un moyen d’aborder l’action Z/` sur chaque composant.

Cependant, un problème technique de base est que nous utilisons de nombreux isomor-
phismes dans la catégorie dérivée D(X ×X ×R). Il n’est donc pas trivial de s’assurer
que tous nos choix sont pris par homotopie de manière cohérente.

Après une discussion approfondie, nous pouvons résoudre ce problème technique lorsque
K est un corps, voir Section 3.3. Finalement, on obtient un S1-complexe algébrique :
Un complexe mixte, c’est-à-dire un module dg sur l’algèbre dg K[ε] où |ε| = −1 et
ε2 = 0, F S1

• (U,K)T .

Par conséquent, nous pouvons définir le complexe de Chiu-Tamarkin S1-équivariant (et
quelques variantes).

Définition C. Pour un ensemble ouvert admissible et T ≥ 0, on définit

CS1

T (U,K) := RHomK[ε](F S1

• (U,K)T ,K[−d]),

where K[ε] means that we take the hom in the category of mixed complex.

3.3. Capacités. Jusqu’à présent, l’application la plus importante du complexe de
Chiu-Tamarkin est la preuve du théorème de non-plongement de contact.

Comme nous l’avons vu précédemment, les ingrédients clés de sa preuve sont une action
K[u] sur les complexes de Chiu-Tamarkin et une classe fondamentale qui est invariante
sous les isotopies de contact et les inclusions. Nous les construirons tous plus tard, puis
nous les traduirons comme certaines capacités symplectiques.

Pour le cas Z/`-équivariant, on désigne par p` le facteur premier minimal de `, on
considère

Spec(U, k) :=

T ≥ 0 :
∃p premier de telle sorte que ∀` ∈ N≥2, p` ≥ p,

∃Λ` ∈ H∗C`,T (U,Fp`
), η`,T (U,Fp`

) = ukΛ`

 ,
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et
ck(U) := inf Spec(U, k) ∈ [0,+∞].

Pour le cas S1-équivariant, nous considérons

Spec(U, k) :=
¶
T ≥ 0 : ∃γS1 ∈ H∗CS1

T (U,Q), ηS1

T (U,Q) = ukγS
1©

et
ck(U) := inf Spec(U, k)) ∈ [0,+∞].

En général, si U n’est pas admissible, alors on définit ck et ck comme le supremum sur
toutes les approximations admissibles. Le troisième résultat est

Théorèm D. Les fonctions ck, ck : Open(T ∗X) → (0,∞] sont des capacités sym-
plectiques invariantes par isotopies hamiltoniennes globalement définies et à support
compact.

La définition de la capacité ck est plus simple, mais H∗CS1
T (U,Q) est difficile à définir

puisque nous approximons S1 algébriquement de manière très délicate. La capacité
ck utilise H∗C`,T (U,Q), qui est plus facile à définir, mais la capacité elle-même est
plus compliquée puisque nous choisissons une manière d’approximer numériquement
S1. L’avantage pour ck est que nous pouvons utiliser l’idée dans le cas contact ci-
dessous.

3.4. Fibré de préquantification. Dans le cas de la préquantification, comme
nous l’avons déjà dit, la seule différence est que nous devons supposer que T/` est un
entier. Dans ses travaux, Chiu prend T = n`. Ici, nous supposer que T/` est un entier
positif quelconque (T est positif). Dans ce cas, le complexe de Chiu-Tamarkin contact
Z/`-équivariant, C`,n`(U,K)., la classe fondamentale de contact ηc`,n`(U,K) et toutes nos
propriétés nécessaires sont toujours disponibles.

Par conséquent, nous pouvons définir une suite de capacités de “contact” similaires à
ck.
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Définition E. Pour un ensemble ouvert admissible U ⊂ T ∗X × S1, k ∈ N, définissons

[Spec](U, k) :=

n` ∈ N≥2 :
(n, `) ∈ N× N≥2, ∃p premier de telle sorte que ∀`, p` ≥ p,

∃Λ` ∈ H∗C`,n`(U,Fp`
), ηc`,n`(U,Fp`

) = ukΛ`

 ,

et
[c]k(U) := min[Spec](U, k) ∈ N≥2.

Pour un ensemble ouvert général U , nous prenons également

[c]k(U) = sup{[c]k(V ) : V ⊂ U, V est admissible}.

Alors nous avons

Théorèm F. Les fonctions [c]k : Open(T ∗X×S1)→ N≥2 sont une famille de capacités
de “contact”.

Ici, remarquons à nouveau que la construction du complexe de Chiu-Tamarkin via une
action de S1 ne peut pas être définie dans le cas contact. Puisque la définition utilise
toutes les informations des `, il est impossible d’admettre T/` ∈ N pour tous les ` ∈ N.

3.5. Calcul du complexe de Chiu-Tamarkin. La dernière partie de la thèse
consiste en deux calculs du complexe de Chiu-Tamarkin: domaines toriques convexes
et fibrés en disques unitaires.

Domaines toriques convexes

L’action hamiltonienne standard du tore sur Cd
u = T ∗Rd

q et son application moment
sont les suivantes

z · (u1, . . . , ud) = (exp (−2iπz1)u1, . . . , exp (−2iπzd)ud).

µ(u1, . . . , ud) = (π|u1|2, . . . , π|ud|2).

Pour Ω ⊂ Rd ouvert, nous appelons XΩ := µ−1(Ω) ⊂ T ∗Rd un domaine torique (ouvert).
Nous disons que XΩ est un domaine torique convexe si |Ω| := {ζ ∈ Rd : (|ζ1|, . . . , |ζd|) ∈

Ω} est convexe. On dit que XΩ est concave si Rd
ζ≥0 \ Ω est convexe. Par exemple, les

polydisques et les ellipsoïdes sont des domaines toriques convexes.
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Pour T ≥ 0, nous définissons

Ω◦
T := Ω◦ ∩ {t = T} = {z ∈ Rd : T + 〈z, ζ〉 ≥ 0,∀ζ ∈ Ω},

‖Ω◦
T‖∞ = max

z∈Ω◦
T

‖z‖∞.

Alors ‖Ω◦
T‖∞ = T‖Ω◦

1‖∞. On définit également

I(Ω◦
T ) = max

z∈Ω◦
T

I(z), avec I(z) =
d∑
i=1

⌊
−zi
⌋

for z ∈ Rd.

Après une application rapide de l’existence des noyaux microlocaux, nous obtenons un
modèle de fonction génératrice du noyau microlocal pour les domaines toriques.

De plus, le modèle de fonction génératrice nous donne une formule claire pour F`(XΩ,K)

pour les domaines toriques convexes. Précisément, il existe Ed` ∈ DZ/`(Rd
z) tel que

F`(XΩ,K)T ∼= RΓc(Rd
z, Ed`

L
⊗KΩ◦

T
).

Le faisceau Ed` a la fibre K[−d− 2I(z)] sur z ∈ Rd
≤0.
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Figure 0.2. F`(XΩ,K)T pour un domaine torique convexe.

Par conséquent, nous pouvons obtenir le théorème structurel du complexe de Chiu-
Tamarkin pour les domaines toriques convexes. Pour être plus concis, nous énonçons
une version plus simple du théorème.

Théorèm G. Pour un domaine torique convexe XΩ ⫋ T ∗Rd
q, et ` ∈ N≥2:

(1) Il existe une constante C(Ω) telle que si 0 ≤ T < p`C(Ω), alors pour chaque Z ∈ Ω◦
T ,

on peut trouver une décomposition de la classe fondamentale η`,T (XΩ,Fp`
) = uI(Z)γZ,`
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pour un élément γZ,` ∈ H−2I(Z)C`,T (XΩ,Fp`
), et η`,T (XΩ,Fp`

) est non nul. Le degré de
cohomologie minimal de H∗C`,T (XΩ,Fp`

) est exactement −2I(Ω◦
T ).

(2) Si T ≥ 0 et pour tout corps K ⊃ Q, on a que pour chaque Z ∈ Ω◦
T on peut induire

une décomposition de la classe fondamentale ηS
1

T (XΩ,K) = uI(Z)γS
1

Z pour un élément
γZ,` ∈ H−2I(Z)CS1

T (XΩ,Fp`
), et ηS1

T (XΩ,K) est non nul. Le degré de cohomologie minimal
de H∗CS1

T (XΩ,K) est exactement −2I(Ω◦
T ).

Comme corollaire, nous obtenons un calcul pour nos capacités.

Théorèm H. Pour un domaine torique convexe XΩ ⫋ T ∗V , on a

ck(XΩ) = ck(XΩ) = inf {T ≥ 0 : ∃z ∈ Ω◦
T , I(z) ≥ k} = cGH

k (XΩ),

où cGH
k est la capacité de Gutt-Hutchings.

Fibré de disques unitaires

Pour le fibré de disques unitaires, nous montrons que F`(D∗X,K) calcule la cohomologie
des espaces de lacets libres. Par conséquent, nous obtenons l’isomorphisme de Viterbo
pour le complexe de Chiu-Tamarkin.

Théorèm I. Pour une variété compacte X, T ∈ [0,∞], nous avons

H−qC`,T (D∗X,K) ∼= H
Z/`
q+d(L≤TX,K),

et
H−qCS1

T (D∗X,K) ∼= HS1

q+d(L≤TX,K),

où L≤TX est le sous-espace de l’espace des lacets libres constitué de lacets de longueur
au plus égale à T .

De plus, si l’on considère le cup-produit, on a

Théorèm J. Pour une variété orientable compacte X, l’isomorphisme de Viterbo

H−qC1,T (D∗X,K) ∼= Hq+d(L≤TX,K),
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est un isomorphisme de K-algèbres par rapport au cup-produit sur l’homologie de Chiu-
Tamarkin et au produit de Chas-Sullivan sur la espace des lacets.

4. Organisation de la thèse

Avant le chapitre 1, nous rassemblons quelques notations et conventions générales pour
l’ensemble de la thèse. Nous recommandons vivement au lecteur de traiter cette section
comme une partie du contenu principal.

Dans le chapitre 1, nous rassemblons les préliminaires sur la théorie des faisceaux mi-
crolocaux qui apparaissent dans la thèse. Nous commençons par la définition et des
exemples du microsupport et des estimations de microsupport dont nous avons besoin.
Nous présentons également des définitions et des exemples du calcul des noyaux, y
compris la composition, la convolution et leurs estimations de microsupport. Enfin,
nous rappelons la quantification des faisceaux de Guillermou-Kashiwara-Schapira.

Dans le chapitre 2, nous rappelons la notion de catégorie de Tamarkin. En particulier,
nous introduisons la notion de noyaux microlocaux et présentons les propriétés de base
des noyaux microlocaux. La partie la plus importante du chapitre est l’existence de
noyaux microlocaux pour les ensembles ouverts dynamiquement admissibles.

Le chapitre 3 est une partie principale de la thèse. Nous rappelons la définition orig-
inale du complexe de Chiu-Tamarkin et nous développons la définition du complexe
de Chiu-Tamarkin S1-équivariant en utilisant une structure cyclique basée sur les pro-
priétés de projecteur des noyaux microlocaux. Nous utilisons également les propriétés
de projecteur pour définir un cup-produit sur un complexe de Chiu-Tamarkin non-
équivariant, qui récupère le cup-produit habituel sur H∗(X,K) lorsque U = T ∗X. Nous
étudions également l’invariance, les propriétés fonctorielles et la classe fondamentale du
complexe de Chiu-Tamarkin. Ces ingrédients nous aident à définir les capacités sym-
plectiques et de contact. L’idée de la définition des capacités est une généralisation de
l’idée de Chiu sur le théorème de non-plongement de contact.

Le chapitre 4 est une autre partie principale de la thèse. Il consiste en deux calculs: un
pour les domaines toriques convexes et un pour les faisceaux de disques unitaires sur les
variétés compactes. Nous présenterons la preuve du théorème de structure du complexe
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de Chiu-Tamarkin pour les domaines toriques convexes et le calcul des capacités dans
ces domaines. Pour les fibrés de disques unitaires, nous prouvons l’isomorphisme de
Viterbo du complexe de Chiu-Tamarkin et comparons le cup-produit et le produit de
Chas-Sullivan dans le cas non-équivariant.

Nous discuterons des résultats et ferons quelques conjectures dans le chapitre 5.

En annexe, nous présentons un résumé sur la catégorie dérivée équivariante et l’homologie
de Borel-Moore.
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Introduction

1. Microlocal sheaves: old and new.

The algebraic analysis is introduced by Sato in the ’60s. The main idea is to use
algebraic tools like sheaves and categories to study problems in analysis, especially
partial differential equations. As an illustration of Sato’s philosophy, Kashiwara and
Schapira introduced and developed the microlocal theory of sheaves in [KS82, KS83a,
KS83b, KS90]. In particular, the applications of the microlocal theory of sheaves to
D-modules presents us the power of algebraic analysis.

The main notions of the microlocal sheaf theory are Sato’s microlocalization and the
microsupport. In this thesis, we will mainly focus on applications of the notion of
microsupport. The microsupport SS(F ) detects the local extendability of sections of a
sheaf F . It is shown that, on a complex manifold X, for a coherent DX-moduleM, the
microsupport SS(Sol(M)) coincides with the characteristic variety of the DX-module
M. Precisely, a covector is in the microsupport of the solution sheaf Sol(M) if the
local solutions near the covector could be extended near the codirection, which exactly
means that the codirection is in the characteristic variety ofM. We can also formulate
global extendability using the microlocal Morse lemma (see chapter 1, Corollary 1.6).
A highlight of the story is the new proof of the fact that the characteristic varieties of
coherent D-modules are co-isotropic using Kashiwara-Schapira’s co-isotropic theorem.
On the other hand, it is proved in [KS90] that SS(F ) is a closed conic and coisotropic
subset of T ∗X. When X is real analytic, SS(F ) is Lagrangian if and only if F is
(weakly) constructible. This result illustrates the role of the microlocal sheaf theory
in symplectic geometry of the cotangent bundle T ∗X. As a new trend of symplectic
geometry, sheaves techniques is shining in recent years.
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Sheaf Geometry
Constructible sheaves over X conic Lagrangian in T ∗X
Constructible sheaves over X ×X Lagrangian correspondences between T ∗X
Convolution of sheaves Composition of correspondences
Guillermou-Kashiwara-Schapira
quantization[GKS12] Hamiltonian group action

Guillermou quantization[Gui12]/
Viterbo quantization[Vit19] exact Lagrangian in T ∗X

Table 2. A sheaf-geometry correspondence.

Let us start from the work of Tamarkin. In [Tam18], Tamarkin developed the notion
of Tamarkin category D(X). The Tamarkin category D(X) is a quotient of D(X ×Rt)

by sheaves microsupported negatively along t, and is isomorphic to a full triangulated
subcategory of D(X × Rt), so we can think of its objects as sheaves over X × Rt.

The role of the variable t is twofold:

• The microsupport SS(F ) is conic under the dilation on cotangent fibres. But most
symplectic geometry problems on cotangent bundles are not conic.

Tamarkin introduces the cone map

ρ : T ∗X × T ∗
τ>0Rt → T ∗X, (q,p, t, τ) 7→ (q,p/τ).

So for A ⊂ T ∗X, we have a conic subset ρ−1(A) ⊂ T ∗X × T ∗
τ>0Rt, which is possible to

be the (an upper bound of) microsupport for a sheaf over X × Rt.

• On the other hand, the cone map ρ factors through the symplectization map q of the
1-jet bundle J1X tautologically:

T ∗X × T ∗
τ>0Rt J1(X) = T ∗X × Rt T ∗X.

q

ρ

So, the conicity actually comes from the symplectization q of the 1-jet bundle, and the
extra variable t, in fact, play the role of action for Lagrangians in T ∗X.

Now, consider the translation maps

Tc : X × Rt → X × Rt, (q, t) 7→ (q, t+ c).
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Microlocally, the functors Tc∗ quantize the Reeb flow dTc of the canonical contact form
α = dt+ pdq.

It is crucial that, on the Tamarkin category D(X), we have a natural transform τc :

Id⇒ Tc∗ for c ≥ 0. This natural transform τc can help us to define numerical invariants
for F ∈ D(X).

q

t

FL

Tc∗F

q

t

FL

T(L+ε)∗F

Figure 0.1. Consider the constant sheaf F = KZ , where Z is the cyan
locally closed set. Since the boundary of Z is the front projection of
the Legendrian unknot, we have that SS(F ) is the conification of the
Legendrian unknot in J1R. In addition, we set L to be the length of the
only Reeb chord. We can show that τc(F ) = 0 for c > L and τc(F ) 6= 0
for 0 ≤ c < L. In this way, we find out the length of the Reeb chord.

So, instead of saying that objects in the Tamarkin category quantize Lagrangian in
cotangent bundles, it is better to say objects in the Tamarkin category quantize Leg-
endrian in 1-jet spaces.

Based on this point of view, Tamarkin develops a new method to study displacibility
in [Tam18].

Tamarkin’s works are so influential. Asano-Ike developed the persistence-like distance
along a quantitative point of view on the work of Tamarkin and went into the numeri-
cal researches of sheaves with applications on symplectic displacement energy, rational
Lagrangian immersions, and C0-symplectic geometry in [AI20a, AI20b, AI22]. On
the categorical side, Biran-Cornea-Zhang developed the notion of triangulated persis-
tence category in [BCZ21], which abstract the categorical structures of the Tamarkin
category.
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Besides, there are many works on symplectic geometry that are based on the microlocal
sheaf theory. Guillermou gives sheafy proofs of Gromov-Eliashberg C0-rigidity, the 3-
cusp conjecture, and of the result by Abouzaid and Kragh that closed exact Lagrangians
in cotangent bundles are homotopically equivalent to the zero section. See [Gui12,
Gui13, Gui16] and the survey [Gui19] about these topics. Ike estimates the exact
Lagrangian intersections in the cotangent bundles (see [Ike19]), and Li estimates the
Reeb chords in the 1-jet spaces (see [Li21a]). Casals and Gao construct infinitely
many Lagrangian fillings for some Legendrian torus knots based using moduli spaces
of sheaves as invariants in [CG22].

On the other hand, many works are studying the category of sheaves from the point of
view of the Fukaya category. It is started from the work of Bondal-Ruan [BdR]. Also,
see the work of Nadler and Zaslow on the compact Fukaya category [NZ09, Nad09];
and the work of Nadler[Nad16], and Ganatra, Pardon, and Shende on the wrapped
Fukaya category[GPS18a].

2. Contact non-squeezing theorem.

The famous Gromov non-squeezing opened the door to modern symplectic geome-
try. But the contact correspondence was not discussed until the pioneering work of
Eilashberg-Kim-Poltervich [EKP06].

A naive attempt is to setup the contact non-squeezing problem in the 1-jet bundle
J1Rd = T ∗Rd × Rt equipped with the contact form α = dt + pdq. But the re-scaling
map (q,p, z) 7→ (rq, rp, r2t), which is a contactomorphism, squeezes any compact set
into an arbitrary small neighborhood of the origin when r is big enough. This conformal
naturality of 1-jet space illustrates that it is better to study the prequantized space
T ∗Rd× S1, where S1 is a circle, equipped with a contact form α = dθ+ 1

2(qdp−pdq).
But there is a global contactomorphism FN : T ∗Rd×S1 → T ∗Rd×S1 defined as follows:
We use complex coordinates T ∗Rd ∼= Cd, and then FN(z, θ) := (ν(θ)e2πNθz, θ), where
ν(θ) = (1 +Nπ|z|2)−1/2. One can compute directly that FN is still embedding any ball
into an arbitrarily small neighbourhood of {0} × S1 for N big enough. However, we
notice that FN is not compactly supported.
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So a better definition of contact squeezing is the following proposed in loc. cit.

Definition. [EKP06, p1636] Let (V, α) be a contact manifold. If U1, U2 ⊂ V are two
open subsets, we say that U1 is squeezed into U2 if there exists a compactly support
contact isotopy ϕs : U1 → V , s ∈ [0, 1] such that ϕ0 = Id, and ϕ1(U1) ⊂ U2.

An interesting phenomenon, which does not appear in the symplectic situation, is the
scale of the ball will affect the validity of the squeezing. Two results about both squeez-
ing and non-squeezing of contact balls BπR2 × S1 are:

Theorem. (1) [EKP06, Theorem 1.3] Suppose d ≥ 2. Then for all 0 < πr2, πR2 < 1,
one can squeeze the contact ball BπR2×S1 into Bπr2×S1 whatever the relation between
r and R is.

(2) [EKP06, Theorem 1.2] If there exists an integer m ∈ [πr2, πR2], then BπR2 × S1

cannot be squeezed into Bπr2 × S1.

About the large scale phenomenon, Eliashberg, Kim, and Polterovich give a very nice
physical explanation using the quantization process. Then the only case left about
the contact non-squeezing is: what will happen if there is an integer m such that
m < πr2 < πR2 < m + 1? It is solved by Chiu using the microlocal theory of sheaves
[Chi17], and by Fraser using the technique of J-holomorphic curves [Fra16] in the
spirit of [EKP06]. They proved the following:

Theorem ([Chi17, Fra16]). If 1 ≤ πr2 < πR2, then BπR2 × S1 cannot be squeezed
into Bπr2 × S1.

Both proofs need a Z/`-equivariant homological invariant. On the J-holomorphic curves
side, Fraser constructed a version of contact homology. On the sheaf side, Chiu con-
structed what we called the (contact) Chiu-Tamarkin complex. Let us review Chiu’s
proof here in our notations.

For (n, `) ∈ N0 × N and a class of open sets V ⊂ T ∗Rd × S1, including open contact
balls Bπr2 × S1 and their contact isotopic images, Chiu defines a graded vector space
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H∗C`,n`(V,K). We also introduce a fundamental class ηc`,n`(V,K) ∈ H0C`,n`(V,K), which
is already defined by Chiu implicitly.

When ` are odd prime numbers and K = F`, we have that H∗C`,n`(V,K) is a module
over F`[u, θ], where |u| = 2, |θ| = 1 and θ2 = 0.

Then we can formulate Chiu’s proof in the following way:

• If πr2 > 1, Chiu constructs an isomorphism of F`[u, θ]-modules:

H∗C`,`(Bπr2 × S1,F`) ∼= u−db`/πr2cF`[u, θ],

and an element Λr = ku−db`/πr2c such that ηc`,`(Bπr2 × S1,F`) = udb`/πr2cΛr 6= 0.

• For a compactly supported contact isotopy ϕ : I×T ∗Rd×S1 → T ∗Rd×S1 and z ∈ I,
we have an isomorphism of F`[u, θ]-modules

Φz : H∗C`,`(ϕz(Bπr2 × S1),F`) ∼= H∗C`,`(Bπr2 × S1,F`)

such that ηc`,`(ϕz(Bπr2 × S1),F`) is mapped to ηc`,`(Bπr2 × S1,F`).

• If there exists an inclusion BπR2 × S1 ⊂ Bπr2 × S1, for r < R, we have a degree 0

morphism of F`[u, θ]-modules

i : H∗C`,`(Bπr2 × S1,F`)→ H∗C`,`(BπR2 × S1,F`),

which preserves the fundamental class. In particular, we have that ηc`,`(BπR2×S1,F`) =

udb`/πr2ci(Λr) in H0C`,`(BπR2 × S1,F`).

• However, degree comparison makes i(Λr) = 0 in H∗C`,`(BπR2×S1,F`) for big enough
`. This is a contradiction because we know that ηc`,`(BπR2 × S1,F`) 6= 0.

For a special case that V = U×S1, the definition of H∗C`,n`(U×S1,F`) relies on a sheaf
PU ∈ D(Rd × Rd). If U has a contact boundary, we can show that the microsupport
is bounded by the conification of the Reeb flow of ∂U . The Chiu-Tamarkin complex
H∗C`,n`(U × S1,F`), which uses P⊠`

U , encodes the `-rescaling of the Reeb flow on ∂U .

Geometrically, it means that for a closed Reeb orbit in ∂U , say γ, we do not study γ

only. Instead, we consider γ`(t) = γ(`t), which is a `-covering of γ. If T is the period
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of γ, the period of γ` is T/`. In the prequantized case, if the action T is an integer
number, we can lift γ to T ∗X × S1, and we call it γ̃. Moreover, when T/` ∈ N0, we
can lift γ` to ‹γ`. That is why we need an integral n in the definition of the contact
Chiu-Tamarkin complex. The role of the Z/`-symmetry is to distinguish γ` using the
F`[u, θ]-module structure of H∗C`,n`(U × S1,F`).

3. Overview of the thesis and main results

In this thesis, we hope to systematically understand the algebra and geometry of the
Chiu-Tamarkin complex. As Chiu’s proof for the contact non-squeezing theorem is
compelling but full of mystery, it is believed that many algebraic structures are behind
the definition of the Chiu-Tamarkin complex. The content of the thesis is a combination
of the author’s paper [Zha21] and some works in preparation. To be comprehensible,
we supple some preliminaries for readers at the first 2 chapters. We would like to remain
the readers that we fix some notations at Section Notation and conventions between
Introduction and Chapter 1.

The thesis is organised into 3 points of view: algebraic structures, numerical infor-
mation, computations. They are consistent. Algebraic structures help us to extract
meaningful numerical information, and computations help us to review and check our
structures.

Compare to Chiu’s contact version, let us discuss the symplectic version here. We
consider a real manifold X. In the introduction, we assume X is orientable, but we can
treat some non-orientable situation in the main content.

For an open set U ⊂ T ∗X and its complement Z = T ∗X \ U , consider the following
two categories of sheaves:

DZ(X) ={F ∈ D(X) : ρ(SS(F ) ∩ {τ > 0}) ⊂ Z}

DU(X) =⊥DZ(X), the left orthogonal complement of DZ(X).

Based on the idea of Tamarkin and Chiu, we would like to construct projectors functors
into above two categories using convolution functors with kernels PU , QU ∈ D(X ×

X). We call PU , QU the microlocal kernels associated with U . However, the existence
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of microlocal kernels is not obvious. We call an open set U admissible if it admits
microlocal kernels and the kernels form a distinguished triangle:

PU → K∆X2 ×[0,∞) → QU
+1−→,

where K∆X2 ×[0,∞) is the constant sheaf supported on ∆X2 × [0,∞) ⊂ X × X × R.
As the convolution functor defined by K∆X2 ×[0,∞) is the identity functor of D(X), the
distinguished triangle is a version of decomposition of the identity functor.

Chiu proves that balls are admissible. His method generalizes directly to bounded open
sets (and more):

Proposition A (Corollaries of Proposition 2.15). Bounded open sets, toric domains,
and unit disk bundles over complete Riemannian manifolds are admissible.

An elementary analogy comes from linear algebra: If you want to study a subspace W
of a vector space V , one way is to consider the projector map f ∈ End(V ) such that
Im(f) = W . In particular, f is idempotent in the sense f 2 = f .

For the subcategory DU(X), the projector plays the role of f , and the kernel PU plays
the role of the matrix of f . So, it is not surprising that for each ` ∈ N, the sheaf PU
satisfies the idempotent identity, with respect to the convolution operation of sheaves,

P ?`
U

∼=−→ PU ∈ D(X2).

All of our stories start from the idempotent identity.

The main application of microlocal kernels is to defined the Chiu-Tamarkin complex
C`,T (U,K), which is mentioned implicitly in [Tam15], and written explicitly by Chiu
in [Chi17].

3.1. Non-equivariant Chiu-Tamarkin complex and cup product. To be
simpler, let us start from the non-equivariant case. For an orientable manifold, the
non-equivariant Chiu-Tamarkin complex with the parameter T ≥ 0 is the hom complex

C1,T (U,K) = RHom(PU ,K∆X2 ×{T}).
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We can prove that
C1,T (U,K) ∼= RHom(PU ,TT∗(PU)).

If T = 0, we will get an derived endomorphism of PU , which admits the Yoneda product.
If T > 0, as PU ∈ D(X ×X), we have a morphism τT (PU) : PU → TT∗(PU). So, we can
extend the usual Yoneda product to a shifted version. This is exactly the triangulated
persistence category structure, in the sense of Biran-Cornea-Zhang, of the Tamarkin
category. We also pull the shifted Yoneda product to C1,T (U,K), we call the resulting
product the cup product on the non-equivariant Chiu-Tamarkin complex.

It is not surprising that the shifted Yoneda product is unital and associative. However,
the idempotent identity P ?2

U
∼= PU shows that the shifted Yoneda product is graded

commutative.

Theorem B. The shifted Yoneda product on Ext∗(PU ,TT∗PU) is associative, graded
commutative and unital. When X is orientable, the isomorphism of K-vector spaces,

Ext∗(PU ,TT∗PU) ∼= H∗C1,T (U,K),

identifies the shifted Yoneda product and the cup product.

For U = T ∗X, we have the isomorphism H∗C1,T (T ∗X,K) ∼= H∗(X,K) and the shifted
Yoneda product/cup product is the same as the usual cup product on H∗(X,K).

3.2. Equivariant Chiu-Tamarkin complex. The non-equivariant Chiu-Tamarkin
complex is very simple but not powerful enough.

As we discussed in Chiu’s proof for the contact non-squeezing theorem, we need a
module structure over a polynomial ring, which usually comes from a Z/` or S1 equi-
variant theory. Historically, Chiu and Tamarkin construct the Z/` version first and it
is believed that the S1-version appears in Tamarkin’s paper [Tam15] in some way.

In this thesis, I would like to explain how to naturally derive the definition of Chiu’s
Z/` theory and to give a more accessible definition for an S1 equivariant theory. Both
of them based on our observations on the idempotent identities P ?`

U

∼=−→ PU .
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Using the idempotent identities, we can rewrite the non-equivariant Chiu-Tamarkin
complex:

C1,T (U,K) ∼= RHom(P ?`
U ,K∆X2 ×{T}).

Now, if we carefully write down P ?`
U by the definition of convolution (see Equation 1.13

for the case ` = 3). We will find that

C1,T (U,K) ∼= RHom
Å
P

L
⊠`
U , s`!t ∆̃X∗π

!
qKT [−d]

ã
,

where

πq : X` × R→ R,

∆̃X : X` × R→ X2` × R,

∆̃X(q1, . . . ,q`, t) = (q`,q1,q1, . . . ,q`−1,q`−1,q`, t),

s`t : X2` × R` → X2` × R,

s`t(−, t1, · · · , t`) = (−, t1 + · · ·+ t`).

Noticed that, on the right hand side of the formula, both factors admit Z/`-equivariant
lifting in Z/`-derived category DZ/`((X2 × R)`). (The group Z/` acts on (X2 × R)`

under cyclic permutation.)

So in [Chi17], Chiu defined (up to a degree shifting) the Z/`-equivariant Chiu-Tamarkin
complex to be the Z/`-equivariant hom complex

C`,T (U,K) ∼= RHomZ/`

Å
P

L
⊠`
U , s`!t ∆̃X∗π

!
qKT [−d]

ã
.

For the S1-equivariant theory, things become more subtle since P
L
⊠∞
U does not make

sense.

Now, let’s recall the typical example for algebraic S1-action: Take an associative algebra
A, the Hochschild chain {A⊗•} is a cyclic abelian group, i.e. a simplicial abelian group
together with cyclic permutation on each A⊗n.
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Our observation is all idempotent identity P ?m
U

∼=−→ P ?n
U together naturally defines a

simplicial object in D(X ×X). Moreover, our explanation for Z/`-theory provides us
with a way to address the Z/`-action on every component.

However, a basic technical problem is we use many isomorphisms in the derived category
D(X × X × R). So it is non-trivial to make sure all our choices are taken homotopy
coherently.

After a careful discussion, we can fulfil the technical gap when K is a field, see Sec-
tion 3.3. Eventually, we obtain an algebraic S1-complex: A mixed complex, i.e. a dg
module over the dg-algebra K[ε] where |ε| = −1 and ε2 = 0, F S1

• (U,K)T .

Consequently, we can define the S1-equivariant Chiu-Tamarkin complex (and some
variants).

Definition C. For an admissible open set, T ≥ 0, we define

CS1

T (U,K) := RHomK[ε](F S1

• (U,K)T ,K[−d]),

where K[ε] means that we take the hom in the category of mixed complex.

3.3. Capacities. So far, the most important application for the Chiu-Tamarkin
complex is the proof of the contact non-squeezing theorem.

As we discussed before, the key ingredients for his proof are an K[u]-action on the
Chiu-Tamarkin complexes and a fundamental class which is invariant under contact
isotopies and inclusions. We will construct all of them later, and then we packing them
as some symplectic capacities.

For the Z/`-equivariant case. Denote p` the minimal prime factor of `, we consider

Spec(U, k) :=

T ≥ 0 :
∃p prime such that ∀` ∈ N≥2, p` ≥ p,

∃Λ` ∈ H∗C`,T (U,Fp`
), η`,T (U,Fp`

) = ukΛ`

 ,

and
ck(U) := inf Spec(U, k) ∈ [0,+∞].
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For the S1-equivariant case, we consider

Spec(U, k) :=
¶
T ≥ 0 : ∃γS1 ∈ H∗CS1

T (U,Q), ηS1

T (U,Q) = ukγS
1©

and
ck(U) := inf Spec(U, k)) ∈ [0,+∞].

In general, if U is not admissible, then we take define ck and ck by taking supremum
over all admissible approximations. The third result is

Theorem D. The functions ck, ck : Open(T ∗X) → (0,∞] are symplectic capacities
invariant under globally defined compactly supported Hamiltonian isotopies.

The definition for the capacity ck is simpler, but H∗CS1
T (U,Q) is hard to define since we

approximate S1 algebraically in a very delicate way. The capacity ck uses H∗C`,T (U,Q),
which is easier to define, but the capacity itself is more complicated since we choose a
way to numerical approximate S1. The advantage for ck is that we can use the idea in
the contact case below.

3.4. Prequantization bundle. On the prequantization case, as we discussed be-
fore, the only difference is we need to assume T/` to be an integer. In his work,
Chiu requires that T = `. Here, we allow T/` to be any non-negative integer (T
is non-negative). In this case, the Z/`-equivariant contact Chiu-Tamarkin complex
C`,n`(U,K), the contact fundamental class ηc`,n`(U,K) and all our necessary properties
are still available.

Therefore, we can define a sequence of contact capacities similar to ck.

Definition E. For an admissible open set U ⊂ T ∗X × S1, k ∈ N, define

[Spec](U, k) :=

n` ∈ N≥2 :
(n, `) ∈ N× N≥2, ∃p prime such that ∀`, p` ≥ p,

∃Λ` ∈ H∗C`,n`(U,Fp`
), ηc`,n`(U,Fp`

) = ukΛ`

 ,

and
[c]k(U) := min[Spec](U, k) ∈ N≥2.
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For a general open set U , we also take

[c]k(U) = sup{[c]k(V ) : V ⊂ U, V is admissible}.

Then we have

Theorem F. The functions [c]k : Open(T ∗X × S1) → N≥2 are a family of “contact”
capacities.

Here, let us remark again that the construction of the S1-Chiu-Tamarkin complex can
not be defined in the contact case. Since the definition use all ` information but it is
impossible to allow T/` ∈ N for all ` ∈ N.

3.5. Computation of Chiu-Tamarkin complex. The last part of the thesis
consists of two computations of the Chiu-Tamarkin complex: convex toric domains and
unit disk bundles.

Convex toric domains

The standard Hamiltonian torus action on Cd
u = T ∗Rd

q and its moment map are

z · (u1, . . . , ud) = (exp (−2iπz1)u1, . . . , exp (−2iπzd)ud).

µ(u1, . . . , ud) = (π|u1|2, . . . , π|ud|2).

For Ω ⊂ Rd open, we call XΩ := µ−1(Ω) ⊂ T ∗Rd an (open) toric domain. We say XΩ

is a convex toric domain if |Ω| := {ζ ∈ Rd : (|ζ1|, . . . , |ζd|) ∈ Ω} is convex. We say XΩ

is concave if Rd
ζ≥0 \Ω is convex. For example, poly-discs and ellipsoids are convex toric

domains.

For T ≥ 0, we set

Ω◦
T := Ω◦ ∩ {t = T} = {z ∈ Rd : T + 〈z, ζ〉 ≥ 0,∀ζ ∈ Ω},

‖Ω◦
T‖∞ = max

z∈Ω◦
T

‖z‖∞.
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Then ‖Ω◦
T‖∞ = T‖Ω◦

1‖∞. We also set

I(Ω◦
T ) = max

z∈Ω◦
T

I(z), where I(z) =
d∑
i=1

⌊
−zi
⌋

for z ∈ Rd.

After a quick application of the existence of microlocal kernels, we obtain a generating
function model of the microlocal kernel for toric domains. Moreover, the generating
function model gives us a clear formula for F`(XΩ,K) for convex toric domains. Pre-
cisely, there exists Ed` ∈ DZ/`(Rd

z) s.t.

F`(XΩ,K)T ∼= RΓc(Rd
z, Ed`

L
⊗KΩ◦

T
).

The sheaf Ed` has the stalk K[−d− 2I(z)] over z ∈ Rd
≤0.
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Figure 0.2. F`(XΩ,K)T for a convex toric domain.

Therefore, we can obtain the structural theorem for the Chiu-Tamarkin complex for
convex toric domains. To be shorter, we state a simpler version of the theorem.

Theorem G. For a convex toric domain XΩ ⫋ T ∗Rd
q, and ` ∈ N≥2:

(1) There is a constant C(Ω) such that if 0 ≤ T < p`C(Ω), then we have that, for each
Z ∈ Ω◦

T , one can find a decomposition of the fundamental class η`,T (XΩ,Fp`
) = uI(Z)γZ,`

for an element γZ,` ∈ H−2I(Z)C`,T (XΩ,Fp`
), and η`,T (XΩ,Fp`

) is non-zero. The minimal
cohomology degree of H∗C`,T (XΩ,Fp`

) is exactly −2I(Ω◦
T ).

(2) If T ≥ 0 and for any field K ⊃ Q, we have that, for each Z ∈ Ω◦
T , one can

find a decomposition of the fundamental class ηS1
T (XΩ,K) = uI(Z)γS

1
Z for an element
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∈ H−2I(Z)CS1
T (XΩ,Fp`

), and ηS
1

T (XΩ,K) is non-zero. The minimal cohomology degree
of H∗CS1

T (XΩ,K) is exactly −2I(Ω◦
T ).

As corollary, we obtain a computation for our capacities.

Theorem H. For a convex toric domain XΩ ⫋ T ∗V , we have

ck(XΩ) = ck(XΩ) = inf {T ≥ 0 : ∃z ∈ Ω◦
T , I(z) ≥ k} = cGH

k (XΩ),

where cGH
k is the Gutt-Hutchings capacity.

Unit disk bundle

For the unit disk bundle, we show that F∗(D∗X,K) compute the cohomology of free
loop spaces. Therefore, we obtain the Viterbo isomorphism for the Chiu-Tamarkin
complex.

Theorem I. For a compact manifold X, T ∈ [0,∞], we have

H−qC`,T (D∗X,K) ∼= H
Z/`
q+d(L≤TX,K),

and
H−qCS1

T (D∗X,K) ∼= HS1

q+d(L≤TX,K),

where L≤TX is the subspace of the free loop space consists of loops of length at most T .

Moreover, if we consider the cup product, we have

Theorem J. For a compact orientable manifold X, the Viterbo isomorphism

H−qC1,T (D∗X,K) ∼= Hq+d(L≤TX,K),

is an isomorphism of K-algebras with respect to the cup product on the Chiu-Tamarkin
homology and the Chas-Sullivan product on the string topology.
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4. Organization of the thesis

Before chapter 1, we collect some general notation and conventions for the whole thesis.
We strongly recommend the reader treat the section as a part of the main content.

In chapter 1, we collect preliminaries on the microlocal sheaf theory that appear in the
thesis. We start with the definition and examples of the microsupport and microsup-
port estimates we need. We also present definitions and examples of kernel calculus,
including composition, convolution and their microsupport estimates. Last, we will
review the Guillermou-Kashiwara-Schapira sheaf quantization.

In chapter 2, we review the notion of the Tamarkin category. In particular, we in-
troduce the notion of microlocal kernels and present the basic properties of microlocal
kernels. The most important part of the chapter is the existence of microlocal kernels
for dynamically admissible open sets.

Chapter 3 is one main part of the thesis. We review the original definition of the Chiu-
Tamarkin complex and we develop the definition of the S1-equivariant Chiu-Tamarkin
complex using a cyclic structure based on projector properties of microlocal kernels.
We also use the projector properties to define a cup product on a non-equivariant
Chiu-Tamarkin complex, which recover the usual cup product on H∗(X,K) when U =

T ∗X. We also study the invariance, functorial properties, and fundamental class for the
Chiu-Tamarkin complex. These ingredients help us to define symplectic and contact
capacities. The idea of the definition of the capacities is a generalization of Chiu’s idea
on contact non-squeezing theorem.

Chapter 4 is another main part of the thesis. It consists of two computations. One for
convex toric domains and one for unit disk bundles over compact manifolds. We will
present the proof of the structure theorem of the Chiu-Tamarkin complex for convex
toric domains and the computation of capacities there. On the unit disk bundle, we
prove the Viterbo isomorphism of the Chiu-Tamarkin complex and compare the cup
product and the Chas-Sullivan product in the non-equivariant case.

We will discuss the results and make some conjectures in the Chapter 5.
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In the appendix, we present a review on the equivariant derived category and the Borel-
Moore homology.
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Notation and conventions

In this short paragraph, we collect our general notation and convention. We will not
specify them in the later chapters.

The natural number N will start from 1, and N0 will denote N ∪ {0}. For n ∈ N0, we
denote [n]0 = {0, 1, . . . , n}, and for n ∈ N, we denote [n] = {1, . . . , n}. For any ` ∈ N≥2,
we denote the minimal prime factor of ` by p`.

When we write G, we mean a group. The cyclic group of order n is denoted by Z/n

(not only the group of mod n integers), and S1 is the unit circle in C. So, we treat Z/n
as a subgroup of S1 by thinking of Z/n as the set of all nth root of units.

We use subscripts to represent elements in sets. For example, a ∈ A is denoted by Aa.
In some situations, we use underlined a = (a1, . . . , an) to record elements in Cartesian
products An. The product set itself is denoted by Ana . For the Cartesian product An,
we define δAn : A→ An to be the diagonal map and its image is denoted by ∆An .

Projection maps of product spaces are always denoted by π, with a subscript that
encode the fiber of the projection. For example, if there are two sets Xx and Yy, two
projections are

πY = πy : Xx × Yy → Xx, πX = πx : Xx × Yy → Yy.

If we have a trivial vector bundle X × Vv, its summation map is

idX × snV = idX × snv : X × V n → X × V, (x, v1, . . . , vn) 7→ (x, v1 + · · ·+ vn).

In all cases, we will ignore the idX and only use snV = snv for simplicity.

Usually, for a manifold X, we use q ∈ X to represent both points and local coordinates
of X. Accordingly, the canonical Darboux coordinate of T ∗X will be denoted by (q,p).
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Vector spaces that are considered as parameter spaces are an exception. For example,
Rt, its dual coordinate is denoted by τ ∈ (Rt)∗ = Rτ ; for the time parameter z ∈ Rm

z ,
its dual coordinate is denoted by ζ ∈ (Rm

z )∗ = Rm
ζ .

In the cotangent bundle T ∗X, we set Ṫ ∗X = T ∗X \ 0X . For S ⊂ T ∗X, we set Ṡ =

S ∩ Ṫ ∗X. We denote the bundle projection by pX : T ∗X → X.

The 1-jet space of X is J1(X) = T ∗X ×Rt, which is a contact manifold equipped with
the contact form α = dt+ pdq. The symplectization of J1(X) is identified with T ∗X×

T ∗
τ>0Rt = T ∗X ×Rt×Rτ>0, equipped with the symplectic form ω = dp∧ dq + dτ ∧ dt.

The symplectic reduction of T ∗X × T ∗
τ>0Rt with respect to the hypersurface {τ = 1} is

denoted by ρ, which is identified with

(N.1) ρ : T ∗X × T ∗
τ>0Rt → T ∗X, (q,p, t, τ) 7→ (q,p/τ).

We call it the Tamarkin’s cone map. The map ρ factors through the symplectization
map q tautologically:

T ∗X × T ∗
τ>0Rt J1(X) T ∗X.

q

ρ

Let f : X → Y be a smooth map of manifolds. Then there is a diagram of cotangent
maps:

(N.2)
T ∗X X ×Y T ∗Y T ∗Y

X Y

pX

df∗ fπ

p pY

f

The coefficient ring K is a commutative Noetherian ring with finite global dimension.
Usually, we will take K to be Z or a field.

For a manifold X, let us denote D(X) the derived category of complexes of sheaves of
K-module over X. Let us remark that we do not specify the boundedness of complexes
we used in general. But in most of our applications, the complexes are locally bounded
in the sense that their restrictions on relatively compact open sets are bounded. The
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constant sheaf KX ∈ D(X) is given by

KX(U) = {f : U → K, f is locally constant}.

For a smooth map f : X → Y , we have the standard six operations formalism: RHom,
L
⊗, Rf∗, f−1, Rf! , f !. For the constant map aX : X → pt, we have that KX

∼= a−1
X K.

The relative dualizing complex is defined as ωX/Y := f !KY . For F ∈ D(X), G ∈ D(Y ),

we set F
L

⊠G = π−1
Y F

L
⊗π−1

X G.

For a locally closed inclusion i : Z ⊂ X and F ∈ D(X) we set

F |Z = i−1F, FZ = i!i
−1F, RΓZF = i∗i

!F.

In particular, we write KZ = (KX)Z ∈ D(X) for simplicity. We call it the constant
sheaf supported on Z ⊂ X.

For a sheaf F ∈ D(X × Y ), and a locally closed subset Z ⊂ Y , we will write F |X×Z by
F |Z as well if there is no confusion.

For more details on the derived category and six operations, we refer to the first two
chapters of [KS90].
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CHAPTER 1

Microsupport and kernel calculus

In this chapter, I would like to review the notation and basic computations that will
be utilized very often. In the first section, we will review the notion of microsupport
and its functorial estimates, they play a fundamental role in the theory of the whole
thesis. Next, we would like to discuss the calculus of kernels, in particular, the com-
position and convolution operations of sheaves. They are operations defined by the
usual sheaf 6-operations, they share the idea of integral kernels in analysis. Finally,
we review one particular class of kernels we need: The Guillermou-Kashiwara-Schapira
sheaf quantization. They are kernels that correspond to Hamiltonian actions.

Most of the results in the chapter are well-known. In Subsection 1.3.1, we present
a concrete formula of the sheaf quantization of the geodesic flow, which is known to
experts but does not appear in the literature.

We remind the reader that the section notation and convention contains basic notation
that are not mentioned in the following. We also remind that there is a table of symbols
at the end of the thesis.

1.1. Microsupport of sheaves and functorial estimates

1.1.1. Reminder on the microsupport and its variants. For a manifold X

and a commutative ring K, let us denote D(X) the derived category of complexes of
sheaves of K-module over X.

Definition 1.1 ([KS90, Definition 5.1.2]). For F ∈ D(X), the microsupport of F is

SS(F ) =

(q,p) ∈ T ∗X :
There is a C1-function f near q such that

f(q) = 0, df(q) = p and
(
RΓ{f≥0}F

)
q 6= 0.

.
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Let us look at some basic examples. They can be derived directly from the definition
or by the functorial estimates in the Subsection 1.1.2.

Example 1.2. (1) For a non-zero locally constant sheaf L on X, we have SS(L) = 0M .
Actually, we also have the converse direction:

Theorem 1.3 ([KS90, Theorem 5.4.5(ii)(c)]). For F ∈ D(X), we have the equivalence:

SS(F ) ⊂ 0X if and only if for all k ∈ Z,Hk(F ) are local systems.

Consequently, we care more about ˙SS(F ) = SS(F ) ∩ Ṫ ∗X.

(2) For a closed inclusion i : Z ⊂ X with smooth boundary, let N∗
i = {(q,−τv(q)) :

q ∈ ∂D, τ ≥ 0} be the interior conormal of ∂Z, where v is the exterior normal vector
field on ∂Z, we have ˙SS(KZ) = N∗

i .

(3) For an open inclusion j : U ⊂ X with smooth boundary ∂U , let N∗
e = {(q, sv(q)) :

q ∈ ∂D, τ ≥ 0} be the exterior conormal of ∂U , we have ˙SS(KU) = N∗
e .

(4) For a closed submanifold i : S ⊂ X, we have SS(KS) = T ∗
SX, the conormal bundle

of S.

(5) Let (X,OX) be a complex manifold, M be a coherent D-module, i.e. a module
over the ring sheaf DX = Der(OX) of holomorphic differential operators. Let F =

RHom(M,OX) be the solution complex, then Kashiwara and Schapira show SS(F ) =

char(M)[KS90, Theorem 11.3.3], the characteristic variety of M.

Figure 1.1. Microsupport of constant sheaves. Example 1.2: (2)Closed
set, (3)Open set, (4)Submanifold.

There are some basic properties of the microsupport:
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• The microsupport is a conic closed subset of T ∗X.

• SS(F ) ∩ 0X = pX(SS(F )) = supp(F ) if we identify X with zero section 0X , where
pX is the cotangent projection.

• The microsupport satisfies the triangular inequality: For a distinguished triangle
F1 → F2 → F3

+1−→, then for a, b, c ∈ {1, 2, 3}, we have

SS(Fa) ⊂ SS(Fb) ∪ SS(Fc), b 6= c,

SS(Fa)4SS(Fb) ⊂ SS(Fc), c 6= a, b,

where 4 stands for the symmetric difference of sets.

The conicity is an issue since we want to consider general subsets of T ∗X. We will use
the Tamarkin’s cone map ρ (i.e. (N.1)) to resolve the conicity.

ρ : T ∗X × T ∗
τ>0Rt → T ∗X, (q,p, t, τ) 7→ (q,p/τ).

The map ρ factors through the symplectization map q tautologically:

T ∗X × T ∗
τ>0Rt J1(X) T ∗X.

q

ρ

This is important because most of symplectic geometric problems are non-conic. How-
ever, the cone map is only defined when τ > 0 and it is helpful to introduce the Legendre
microsupport and the sectional microsupport as follows: For sheaves F ∈ D(X × Rt),
we set

µsL(F ) = q (SS(F ) ∩ {τ > 0}) ⊂ J1X,

µs(F ) = ρ (SS(F ) ∩ {τ > 0}) ⊂ T ∗X.
(1.1)

A direct consequence is that µsL(F ) and µs(F ) are non-conic. However, µsL(F ) and
µs(F ) will lose τ ≤ 0 information. Usually, we will consider sheaves that satisfy
SS(F ) ⊂ {τ ≥ 0}. And it will be often the case, in practice, that SS(F ) ∩ {τ ≤ 0} ⊂

0X×R. So, the Theorem 1.3 shows that we will not lose much information.

1.1.2. Functorial estimate. The following functorial estimates are fundamental
to the entire thesis. For the definitions of df ∗ and fπ, see (N.2).
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Theorem 1.4 ([KS90, Theorem 5.4]). Let f : Y → X be a C∞ map of manifolds,
F ∈ D(Y ), G ∈ D(X).

(1) One has

SS(F
L

⊠G) ⊂ SS(F )× SS(G),

SS(RHom(π−1
X F, π−1

Y G)) ⊂ (−SS(F ))× SS(G).

(2) Assume f is proper on supp(F ), then SS(Rf!F ) ⊂ fπ(df ∗)−1 (SS(F )).

(3) Assume f is non-characteristic for SS(G), i.e., if (q,p) ∈ ˙SS(G) and df ∗
q (p) = 0,

then we have p = 0. Then the morphism f−1G
L
⊗ωX/Y → f !G is an isomorphism, and

SS(f−1G) ∪ SS(f !G) ⊂ df ∗f−1
π (SS(G)).

(4) Assume f is a submersion. Then SS(F ) ⊂ Y ×X T ∗X if and only if ∀j ∈ Z, the
sheaves Hj(F ) are locally constant on the fibres of f .

Corollary 1.5. Let F1, F2 ∈ D(X).

(1) Assume SS(F1) ∩ (−SS(F2)) ⊂ 0X , then SS(F1
L
⊗F2) ⊂ SS(F1) + SS(F2).

(2) Assume SS(F1) ∩ SS(F2) ⊂ 0X , then SS(RHom(F2, F1)) ⊂ (−SS(F2)) + SS(F1).

Corollary 1.6. For F ∈ D(X), let φ : X → R be a C1-function that is proper on
supp(F ). Let a < b in R and assume dφ(x) /∈ SS(F ) for a ≤ φ(x) < b. Then the
natural morphisms RΓ({φ(x) < b}, F ) → RΓ({φ(x) < a}, F ) and RΓ{φ(x)≥b}(X,F ) →

Γ{φ(x)≥a}(X,F ) are isomorphisms.

The Corollary 1.6 is called the microlocal Morse lemma. In particular, if we take
F = KX , we will get the cohomology version of the deformation lemma in classical
Morse theory. For the non-proper pushforward, we have

Theorem 1.7 ([Tam18, Corollary 3.4]). Let V be an R-vector space, πV : X×V → X,
and π#

V : T ∗X × V × V ∗ → T ∗V × V ∗ be the corresponding projections, and i : T ∗X →

T ∗V × V ∗ be the inclusion. Then for F ∈ D(X × V ), we have

SS(πV !F ), SS(πV ∗F ) ⊂ i−1π#
V (SS(F )).
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In this thesis, we will frequently use the equivariant derived category DG(X) for a
G-space X, see appendix A for its definition.

Definition 1.8. For an object F = (FX , F , β) ∈ DG(X), where FX ∈ D(X), we define
the microsupport of F to be SS(F ) := SS(FX).

This definition makes sense by (A.1), Theorem 1.4-(4), and Theorem 1.3.

1.2. Compositions and convolutions

The composition and convolution are the most important sheaf operations to us. I will
review their definitions and their microsupport estimates. We recall notations of the
projection map πX : X × Y → Y and the summation map s`v : X × V ` → X × V for a
vector space Vv, see Notation and conventions.

Let Xi, i = 1, 2, 3, 4 be smooth manifolds. In section, we will use the notation X1234 =

X1×X2×X3×X4, X123 = X1×X2×X3, Xjk = Xj×Xk, j, k = 1, 2, 3. We will ignore
some q (See Notation and conventions) in the notation of projections to simplify.

1.2.1. Composition. Let’s introduce composition first. Composition is a bifunc-
tor:

◦
X2

:D(X12)×D(X23)→ D(X13),

(F1, F2) 7→ F1 ◦ F2 = Rπ2!(π−1
3 F1

L
⊗π−1

1 F2).
(1.2)

Here, the projections are from X123 to Xjk. Sometimes, we also use subscript ◦
q2
, q2 ∈

X2. If there is no confusion, we could omit the subscript.

Example 1.9. As corollaries of the proper base change formula and the projection
formula, one can show:

(1) For four manifolds Xi, i = 1, 2, 3, 4, Fj ∈ D(Xj,j+1), j = 1, 2, 3, we have

(1.3)
Å
F1 ◦

X2
F2

ã
◦
X3
F3 ∼= F1 ◦

X2

Å
F2 ◦

X3
F3

ã
∼= Rπ23!(π−1

34 F1
L
⊗π−1

14 F2
L
⊗π−1

12 F3),

where π are projections.
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(2) Let X1 = X2 = X, X3 = Y . Let ∆X2 ⊂ X ×X be the diagonal, then we have

(1.4) K∆X2 ◦
X
F ∼= F, for any F ∈ D(X × Y ).

(3) If we identify products of X1 and X3 by v : X1×X3 → X3×X1, (q1,q3) 7→ (q3,q1),
then for (F1, F2) ∈ D(X12)×D(X23), v induces a natural isomorphism

(1.5) F1 ◦
X2
F2 ∼= F2 ◦

X2
F1.

(4) Let X1 = X, X2 = Y, X3 = {pt}, y ∈ Y , and K{y} ∈ D(Y ) be the skyscraper sheaf.
Then

(1.6) F ◦
Y
K{y} ∼= F |X×{y}.

Remark 1.10. All isomorphisms above are natural. Moreover, we can verify some com-
patible conditions, which makes

(
D(X ×X), ◦,K∆X2

)
a symmetric monoidal category.

It can act on D(X × Y ) by the composition.

To describe the effect of composition on the microsupport, we first introduce com-
position of sets. Suppose we have two correspondences, i.e. subsets, Λ ⊂ T ∗X12 ∼=
T ∗X1 × T ∗X2, Λ′ ⊂ T ∗X23 ∼= T ∗X2 × T ∗X3. Recall that pXij

= pij is the cotangent
projection to Xij, then we set

(1.7) Λ ◦ Λ′ := p13(p−1
12 (−Λ) ∩ p−1

23 (Λ′)).

Then apply the estimate Theorem 1.4. We have that ifa) supp(F1)×X2 supp(F2)→ X13 is proper, and

b)
(
p−1

12 (−SS(F1)) ∩ p−1
23 (SS(F2))

)∩ (0X1 × T ∗X2 × 0X3) ⊂ 0X123 ,

then we have

(1.8) SS(F1 ◦ F2) ⊂ SS(F1) ◦ SS(F2).

It means that microsupport of a composition is bounded by the composition of micro-
supports.
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The composition operation has a relative version. Let I be another manifold. Suppose
F1 ∈ D(X12 × I), F2 ∈ D(X23 × I), then we set

(1.9) F1 ◦I F2 := Rπ2!(π−1
3 F1

L
⊗π−1

1 F2),

where the projections are from X123 × I to Xjk × I. On the set level, we define the
relative composition by

(1.10) Λ ◦I Λ′ := r2(r−1
3a (Λ) ∩ r−1

1 (Λ′)),

where the maps T ∗X1×T ∗X2×T ∗X3× (T ∗I ×I T ∗I)→ T ∗Xi×T ∗Xj ×T ∗I are given
as follows:

r3a : (p1,p2,p3, ζ1, ζ2) 7→ (p1,−p2, ζ1),

r1 : (p1,p2,p3, ζ1, ζ2) 7→ (p2,p3, ζ2),

r2 : (p1,p2,p3, ζ1, ζ2) 7→ (p1,p3, ζ1 + ζ2).

Similarly, we assume thata) supp(F1)×X2×I supp(F2)→ X13 × I is proper, and

b)
(
r−1

3aIa(Λ) ∩ r−1
1 (Λ′)

)∩ (0X1 × T ∗X2 × 0X3 × T ∗I) ⊂ 0X123×I .

where

r3aIa : T ∗X1×T ∗X2×T ∗X3×T ∗I → T ∗X1×T ∗X2×T ∗I, (ξ1, ξ2, ξ3, u) 7→ (ξ1,−ξ2,−u).

Then we have the following estimate:

SS(F1 ◦I F2) ⊂ SS(F1) ◦I SS(F2)(1.11)

1.2.2. Convolution. Next, let us introduce the convolution.

The convolution over R is a bifunctor:

?
X2

: D(X12 × Rt1)×D(X23 × Rt2)→ D(X13 × Rt=t1+t2),

(F1, F2) 7→F1 ?
X2
F2 = Rs2

t!Rπq2!(π−1
(q3,t2)F1

L
⊗π−1

(q1,t1)F2).
(1.12)
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Sometimes, we also use subscript ?
q2
,q2 ∈ X2. For simplicity, we will omit the super-

script and subscript if there is no confusion.

In particular, when X2 is a point, we also use the notation F1 □? F2 to emphasize.

We can also define the non-proper convolution if we replace Rs2
t! by Rs2

t∗, i.e. F1?npF2 :=

Rs2
t∗Rπq2!(π−1

(q3,t2)F1
L
⊗π−1

(q1,t1)F2). Then we have F1 ?np F2 ∼= F1 ? F2 if s2
t is proper on

supp
Å

Rπq2!(π−1
(q3,t2)F1

L
⊗π−1

(q1,t1)F2)
ã

.

Remark 1.11. (1) In some cases, convolution could be presented by composition on
X × Rt. For example, if F ∈ D(X2 × Rt1) and G ∈ D(X × Rt2). Let us consider the
change of coordinate t = t1 + t2 = s2

t (t1, t2) and t′ = t2. So we set m(t, t′) = t− t′ = t1,
and we have

F ? G ∼= (m−1F ) ◦G,

by the proper base change and the projection formula.

But convolution involves spaces of lower dimension. Hence, we prefer to use convolution
in this paper. In geometric applications, the factor Rt will play the role of action. So
the convolution is more helpful for us to look at action information.

(2) It is easy to generalize the convolution over R to convolution over a higher dimen-
sional vector space V . This is unnecessary in this thesis, so we will not do it.

Example 1.12. Similarly to the case of composition, the proper base change formula
and the projection formula show that

(1) For four manifolds Xi, i = 1, 2, 3, 4, Fj ∈ D(Xj,j+1 × R), j = 1, 2, 3, F4 ∈ D(X34),
we have the isomorphisms in D(X14 × R),Å

F1 ?
X2
F2

ã
?
X3
F3 ∼= F1 ?

X2

Å
F2 ?

X3
F3

ã
∼= Rs3

t!Rπ(q2,q3)!(π−1
(q3,q4,t2,t3)F1

L
⊗π−1

(q1,q4,t1,t3)F2
L
⊗π(q1,q2,t1,t2)F3),Å

F1 ?
X2
F2

ã
◦
X3
F4 ∼= F1 ?

X2

Å
F2 ◦

X3
F4

ã
∼= Rs2

t!Rπ(q2,q3)!(π−1
(q3,q4,t2)F1

L
⊗π−1

(q1,q4,t1)F2
L
⊗π−1

(q1,q2,t1,t2)F4).

(1.13)
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(2) Let X1 = X2 = X, X3 = Y , and let ∆X2 ⊂ X ×X be the diagonal. Then for any
F ∈ D(X × Y × R), we have

(1.14) K∆X2 ×{0} ?
X
F ∼= F.

(3) If we identify products of X1 and X3 by v : X1×X3 → X3×X1, (q1,q3) 7→ (q3,q1),
then for any (F1, F2) ∈ D(X12 × R)×D(X23 × R), there is

(1.15) F1 ?
X2
F2 ∼= F2 ?

X2
F1.

(4) Let X1 = X, X2 = Y, X3 = {pt}, y ∈ Y , and let K{(y,0)} ∈ D(Y × R) be the
skyscraper sheaf. Then for any F ∈ D(X × Y × R)

(1.16) F ?
Y
K{(y,0)} ∼= F |X×{y}×R.

(5) Let X1 = X, X2 = X3 = {pt}, c ∈ R, Tc : X × R → X × R, (q, t) 7→ (q, t + c).
Then for any F ∈ D(X × R), we have

(1.17) F ?K{c} ∼= Tc∗F.

Remark 1.13. We also remark that all isomorphisms here are natural. Moreover, we
can verify some compatible conditions, which makes

(
D(X ×X × R), ?,K∆X2 ×{0}

)
a

symmetric monoidal category. This category acts on D(X × Y × R) by convolution.

If we take Y1 = X1 × R1, Y2 = X2, Y3 = X3 × R2. Then we have

F1 ?
X2
F2 ∼= Rs2

t!(F1 ◦
X2
F2).

Noticed that ds2
t

∗(τ) = (τ, τ). Since for F ∈ D(X × R), we have that SS(Rs2
t!F )

is bounded by the symplectic reduction of SS(F ) with respect to {τ1 = τ2} under
some properness conditions. Therefore we can deduce the microsupport estimates of
convolution using the microsupport estimates of composition.
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1.3. The Guillermou-Kashiwara-Schapira sheaf quantization

As a sheaf pattern of Hamiltonian action, we introduce the Guillermou-Kashiwara-
Schapira (GKS for short) sheaf quantization as a basic tool here, see [GKS12] for
more details. It also provides many important composition kernels and convolution
kernels. So far, most known kernels arise from GKS sheaf quantization. On the other
hand, Li construct a Lagrangian cobordism functor in [Li21b], which isomorphic the
convolution functor defined by GKS sheaf quantization.

Consider Ṫ ∗Y as a symplectic manifold equipped with the Liouville symplectic form
and with a R>0-action by dilation along the cotangent fibers. If ϕ : Ṫ ∗Y × I → Ṫ ∗Y is
a R>0-equivariant symplectic isotopy, one can show that it must be Hamiltonian with
a R>0-equivariant Hamiltonian function H.

Consider its total graph Λϕ ⊂ Ṫ ∗(I × Y 2):

(1.18) Λϕ :=
{

(z,−Hz ◦ ϕz(q,p), (q,−p), ϕz(q,p)) : (q,p) ∈ Ṫ ∗Y, z ∈ I
}
.

Besides, for each z0 ∈ I, the graph of ϕz0 is the symplectic reduction of Λϕ with respect
to {z = z0}

(1.19) Λϕz0
:=
{

((q,−p), ϕz0(q,p)) : (q,p) ∈ Ṫ ∗Y
}
⊂ Ṫ ∗(Y 2).

Then Guillermou, Kashiwara, and Schapira proved the following theorem:

Theorem 1.14 ([GKS12, Theorem 3.7]). Using the above notation, we have a sheaf
K = K(ϕ) ∈ D(I × Y 2) such that

(1) ˙SS(K) = Λϕ, (2) K0 = K∆Y 2 , where Kz = K|{z}×Y 2.

If we set K−1
z = v−1RHom(Kz, ωY

L

⊠KY ), v(q1, q2) = (q2, q1), q1, q2 ∈ Y, z ∈ I, then

a) supp(K) ⇒ I × Y are both proper,

b) Kz ◦K−1
z
∼= K−1

z ◦Kz
∼= K∆Y 2 ,

c) K is unique up to a unique isomorphism.
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Consequently, F 7→ Kz ◦F , D(Y )→ D(Y ) is an equivalence of categories for all z ∈ I,
whose quasi inverse is K−1

z ◦ F .

Example 1.15. Let us present the simplest example here. Take Y = Rd equipped with
the standard norm. Consider the flow

ϕz(q,p) = (q + zp/‖p‖,p) : Ṫ ∗Y → Ṫ ∗Y.

This is the flow associated with the Hamiltonian function H(q,p) = ‖p‖. The sheaf
quantization K of the flow fits in a distinguished triangle:

K{(z,q1,q2):{‖q1−q2‖<z}[d]→ K → K{(z,q1,q2):‖q1−q2‖≤−z}
+1−→ .

z K{|q1−q2|≤−z}K{|q1−q2|<z}[d] K∆R2

{q1 + q2 = 0}

q1

q2

K∆R2

{z = 0}

q1

q2
K{|q1−q2|<z}[d]

{z > 0}

q1

q2
K{|q1−q2|≤−z}

{z < 0}

Figure 1.2. Slices of K for X = R at q1 + q2 = 0 and different z.

Remark 1.16. (1) Microlocally, one can shows that iz : Y 2 → I×Y 2 is non-characteristic
for Λϕ for all z ∈ I. Then, we have ˙SS(Kz) = Λϕz , and for F ∈ D(Y ), we have

(1.20) ˙SS(Kz ◦ F ) = ϕ−1
z ( ˙SS(F )).
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It means that, geometrically, Kz◦ acts as the Hamiltonian isotopy ϕ−1.

(2) By the construction of the GKS quantization, we know that it is likely that there
exists a topological space and a locally closed subset Z ⊂ I × Y 2 × W such that
K ∼= RπW !KZ , when I is a finite interval.

Let us describe three situations where we will use the theorem.

1.3.1. Geodesic flows. Here, let us study the geodesic flow for a general complete
Riemannian manifold, which generalizes the result in Example 1.15.

Assume (X, g) is a complete Riemannian manifold. Let us take the homogeneous Hamil-
tonian function H(q,p) = |p|g. Then the associated R>0-equivariant Hamiltonian flow
is the (normalized) geodesic flow ϕgeo

z (we identify T ∗X and TX using the metric g).
Now, applying the GKS theorem with Y = X, we know there is a sheafKg ∈ D(Rz×X2)

that quantizes the geodesic flow. In the following we give an explicit formula of Kg.

We assume that the convex radius rconv(X, g) > 2, then the injective radius rinj(X, g) >

4. First of all, let us consider the small time z situation. Then [PS21] shows that, if
we restrict to I = (−2, 2) ⊂ Rz, we have

(1.21) K{(z,q1,q2):{d(q1,q2)<z}
L
⊗π−1

q1
ωX → Kg|(−2,2)z → K{(z,q1,q2):d(q1,q2)≤−z}

+1−→ .

As a generalization of Example 1.15 to general Riemmannian manifolds, the Figure 1.2
could be treated as a schematic diagram for Kg|(−2,2). We only need to replace straight
lines |q1 − q2| = ±z therein by curves d(q1,q2) = ±z and add the twisting π−1

q1
ωX .

Our problem is to extent the formula to larger z. Since H is autonomous, on the flow
level, we have ϕz1+z2 = ϕz1 ◦ ϕz2 . This is also true for the kernel Kg,z. In fact, for
z1, z2 ∈ R, we have Kg,z1 ◦Kg,z2

∼= Kg,z1+z2 . In particular, for N ∈ N, we have

Kg,Nz
∼=Kg,z ◦ · · · ◦Kg,z.

Based on this slicewise formula, we first set K1
g = Kg|(−2,2)z , then let

(1.22) KN
g
∼= r−1

N (K1
g ◦I · · · ◦I K1

g ),

where rN(z,q1,q2) = (z/N,q1,q2).
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The microsupport estimate (1.11) shows

˙SS(K1
g ◦I · · · ◦I K1

g ) ⊂ {(z,−N |p|g,q,−p,q′,p′) : (q′,p′) = ϕgeo
Nz(q,p), z ∈ (−2, 2)}.

Then,

˙SS(KN
g ) ⊂ {(z,−|p|g,q,−p,q′,p′) : (q′,p′) = ϕgeo

z (q,p), z ∈ (−2N, 2N)}.

Besides, it is direct to verify that KN
g |{z=0} ∼= K∆X2 . Then the uniqueness part of the

Theorem 1.14 shows

(1.23) Kg|(−2N,2N) ∼= KN
g .

For example,

Kg|(−2N,0] ∼= KN
g,−
∼= Rπ(q1,...,qN−1)!KMNX ,(1.24)

where

(1.25) MNX = {(z,q0, . . . ,qN) : d(qi,qi+1) ≤ −
z

N
, i ∈ [N − 1]0, −2N < z ≤ 0},

is the discrete Moore path space and [N − 1]0 = {0, 1, . . . , N − 1}.

We will use this formula to prove the Viterbo isomorphism of the Chiu-Tamarkin com-
plex in Section 4.2.

1.3.2. Compactly supported Hamiltonian flows. Let ϕ : I × T ∗X → T ∗X

be a compactly supported Hamiltonian isotopy. For Y = X × Rt, one can lift ϕ to
ϕ̂ : I × Ṫ ∗Y → Ṫ ∗Y . Specifically, we have the following:

Proposition 1.17 ([GKS12, Proposition A.6]). Let ϕ : I×T ∗X → T ∗X be a compactly
supported Hamiltonian isotopy, whose Hamiltonian function is H ∈ C∞(I × T ∗X).

There is an R>0-equivariant Hamiltonian isotopy ϕ̂ : I × Ṫ ∗Y → Ṫ ∗Y such that:

a) “H = τH(−, ρ(−)) is a Hamiltonian function of ϕ̂.

b) The lifting ϕ̂ commutes with both the symplectization and the Tamarkin’s cone map.
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c) We can take

ϕ̂(z, q, t,p, τ) = (τ · ϕ(z, q,p/τ), t+ u(z, q,p/τ), τ), τ 6= 0,

ϕ̂(z, q, t,p, 0) = (q,p, t+ v(z), 0), τ = 0,

where u ∈ C∞(I × T ∗X), v ∈ C∞(I). In fact, the proof shows that u(z, q,p) =

SH(z, q,p) =
∫ z

0 [α(XHλ
)−Hλ] ◦ ϕxH(q,p)dλ is the symplectic action function.

We call this ϕ̂ or ϕ̂z the conification of ϕ.

Remark 1.18. (1) We notice that it is easy to lift ϕ to T ∗X × T ∗
τ>0Rt without the

compactly supported assumption, but this is not enough to apply the Guillermou-
Kashiwara-Schapira theorem. If we want to lift ϕ to Ṫ ∗(X×Rt), we need the compactly
supported condition.

(2) Recently, Chiu propose a construction of sheaf quantization of the lifting of ϕ to
T ∗X×T ∗

τ>0Rt when H defines a flow which is complete and short-term separating. See
[Chi21].

Now, applying Theorem 1.14 to ϕ̂, we obtain a sheaf K(ϕ̂) ∈ D(I ×X2 × R2
t ).

In our later application, we prefer to use only one t-variable, and using convolution.
This is possible. Consider m(t1, t2) = t1 − t2 , then [Gui19, Corollary 2.3.2] shows
there is a unique K(ϕ̂) ∈ D(I × X2 × Rt) such that K(ϕ̂) ∼= m−1K(ϕ̂), and K(ϕ̂) ∼=
Rm!K(ϕ̂). Then we can take K(ϕ̂) as the sheaf quantization of ϕ. Moreover, since
we have SS(K(ϕ̂)z) = Λϕ̂z , we will denote K(ϕ̂z) and K(ϕ̂z) by K(ϕ̂)z and K(ϕ̂)z
respectively.

One can show that, for F ∈ D(X × R), we have K(ϕ̂z) ◦ F ∼= K(ϕ̂z) ? F , see (1) of
Remark 1.11.
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By the commutativity of the lifting with symplectization, we have the following esti-
mates for the Legendrian microsupport and sectional microsupport of K(ϕ̂):

µsL(K(ϕ̂)) ⊂ {(z,−H(q,p),q,−p, ϕz(q,p),−SH(z,q,p)) : (z,q,p) ∈ I × T ∗X},

µs(K(ϕ̂)) ⊂ {(z,−H(q,p),q,−p, ϕz(q,p)) : (z,q,p) ∈ I × T ∗X}.

(1.26)

From the point of view of (1.20), for F ∈ D(X × R), we have

(1.27) µs(K(ϕ̂z) ? F ) = µs(K(ϕ̂z) ◦ F ) = ϕ−1
z (µs(F )).

When z = 0, K(ϕ̂)|z=0 = K∆(X×R)2 . Then K(ϕ̂)|z=0 = K∆X2 ×{0}.

1.3.3. Contact isotopies on prequantized cotangent bundles. Let ϕ : I ×

T ∗X × S1 → T ∗X × S1 be a contact isotopy of T ∗X × S1 with a contact Hamiltonian
H ∈ C∞(I × T ∗X × S1). One can lift ϕ to a Z-equivariant contact isotopy ϕ′ of
J1(X) = T ∗X × Rt, where Z acts by shifting t. Here, by Z-equivariant, we mean that
J1(Tk)ϕ′ = ϕ′J1(Tk) for k ∈ Z, where J1(Tk)(q,p, t) = (q,p, t+ k).

Remark 1.19. In the symplectic case the Hamiltonian H does not depend on t, and
does commute with T′

c for all real number c. In the contact case, usually ϕ′ does not
commute with T′

c for all real number c and merely commutes with T′
k for k ∈ Z.

Then it is easy to lift ϕ′ to the symplectization, T ∗X × T ∗
τ>0Rt, of J1(X) to a Z×R>0

equivariant Hamiltonian isotopy “ϕ′ : I × T ∗X × T ∗
τ>0Rt → T ∗X × T ∗

τ>0Rt. Here,
by Z-equivariance, we mean that dT∗

k
“ϕ′ = “ϕ′dT∗

k for k ∈ Z, where dT∗
k(q,p, t, τ) =

(q,p, t+ k, τ) is the cotangent map of the shifting map Tk(q, t) = (q, t+ k).

Similarly to the symplectic case, the compactly supported condition is necessary to
extend “ϕ′ to whole Ṫ ∗(X × Rt).

In this case, we still take the sheaf quantization K = K(“ϕ′) ∈ D(I × X2 × R2) of “ϕ′

as sheaf quantization of ϕ. However the contact Hamiltonian H(q,p, t) will depend on
the variable t, K = K(“ϕ′) is not pulled back from D(I × X2 × R) by m. So, we will
work with compositions rather than convolutions.
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The Z-equivariance is inherited by the sheaf K(“ϕ′). Precisely, it means that

(1.28) K(“ϕ′) ◦K∆X2 ×{(t,t+k):t∈R} ∼= K∆X2 ×{(t,t+k):t∈R} ◦K(“ϕ′).

This is due to K∆X2 ×{(t,t+k):t∈R} = KΓTk
quantizes dT∗

k, then we apply the uniqueness
part of Theorem 1.14 to “ϕ′ = d(T−1

k )∗“ϕ′dT∗
k = dT∗

−k
“ϕ′dT∗

k to obtain the isomorphism
(1.28).
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CHAPTER 2

Tamarkin categories and microlocal projectors

In this chapter, we study the Tamarkin category and its open/closed subset version.
For an open set U ⊂ T ∗X and its complement Z = T ∗X\U . We consider two categories
and projector functors into them:

DZ(X) ={F ∈ D(X) : µs(F ) ⊂ Z}

DU(X) =⊥DZ(X), the left orthogonal complement of DZ(X).

A decomposition of the diagonal as in Definition 2.9 will create microlocal kernels
associated with the projector functors. Microlocal kernels are sheaves, so they are more
accessible for computation than projector functors. They play the role of “matrix” of
projector functors.

In the first two sections, we will review the notion of the Tamarkin category, Tamarkin
category associated with open/closed subsets, and the definition of microlocal kernels.
We explain some direct consequences of the existence of these kernels in Section 2.
Finally, we will review Chiu’s construction of microlocal kernels and some corollaries of
the construction.

Before going into further discussion, let us review the notion of semi-orthogonal decom-
position of a triangulated category.

Let T be a triangulated category and C a thick full triangulated subcategory of T . The
left semi-orthogonal of C is defined by

(2.1) ⊥C := {X ∈ T : HomT (X,Y ) = 0,∀Y ∈ C}.

One can show that the following proposition holds, see [KS06, Chapter 4 and Exercise
10.15.].
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Proposition 2.1. Using the above notation, we have the following three equivalent
properties:

(1) The inclusion C → T admits a left adjoint functor L : T → C.

(2) There is an isomorphism T /C
∼=−→ ⊥C, where T /C is the Verdier localization.

(3) There are two functors P,Q : T → T such that ∀X ∈ T , we have the distinguished
triangle:

P (X)→ X → Q(X) +1−→

such that P (X) ∈ ⊥C, and Q(X) ∈ C.

In this situation, we say one of these data gives a left semi-orthogonal decomposition
of T . One can verify that if one of the conditions here is satisfied, then P 2 ∼= P , and
Q2 ∼= Q. P, Q are called a pair of projectors associated with C.

2.1. Tamarkin categories

Now, let T = D(X×Rt), and C = {F : SS(F ) ⊂ {τ ≤ 0}}. The triangulated inequality
of microsupport shows that C is a thick full triangulated subcategory of T . Tamarkin
constructs a pair of projectors associated to C given by convolution functors:

Theorem 2.2 ([Tam18]). The functors F 7→ K[0,∞)?F , F 7→ K(0,∞)[1]?F on D(X×Rt)

and the excision triangle,

K[0,∞) → K0 → K(0,∞)[1] +1−→,

give a left semi-orthogonal decomposition of D(X × Rt) associated to C. Namely, for
F ∈ D(X × Rt) we have the distinguished triangle

(2.2) K[0,∞) ? F → F → K(0,∞)[1] ? F +1−→,

with K[0,∞) ? F ∈ ⊥C, K(0,∞)[1] ? F ∈ C.

One can also see [GS14, Proposition 4.19] for a proof and some generalizations of the
proposition.
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Definition 2.3. We define the Tamarkin category as the following left semi-orthogonal
complement:

D(X) = ⊥ {F : SS(F ) ⊂ {τ ≤ 0}} ∼= D(X × R)/ {F : SS(F ) ⊂ {τ ≤ 0}} .

By Proposition 2.1 and (2.2) , F ∈ D(X × R) is in D(X) if and only if

(2.3) F ∼= K[0,∞) ?pt
F ∼= K∆X2 ×[0,∞) ?

X
F.

Consequently, the convolution functor K∆X2 ×[0,∞)?
X

of the Tamarkin category D(X)

coincides with the identity functor.

q

t

K

q

t

K

K[−1]

Figure 2.1. Objects in D(X)

Remark 2.4. (1) For F ∈ D(X), one can show SS(F ) ⊂ {τ ≥ 0} using functorial
estimates of microsupport, see [GS14, Proposition 3.17]. In general, let γ = (−∞, 0].
Then D(X) is a full-subcategory of D(X ×Rγ) where we equip R with the γ-topology
in the sense of [KS90, Section 3.5]. The microlocal cut-off lemma, proposition 5.2.3 in
loc.cit., shows that D(X × Rγ) is equivalent to {F ∈ D(X × R) : SS(F ) ⊂ {τ ≥ 0}},
which is also equivalent to {F ∈ D(X × R) : K[0,∞) ?np F ∼= F} where K[0,∞) ?np F :=

Rs2
t∗(K[0,∞)

L

⊠F ). Objects in these equivalent categories are called γ-sheaves.

(2) If X admits a G action and we put the trivial action on R, then we can define the
equivariant Tamarkin category DG(X) ⊂ DG(X ×R) in the same way using the micro-
support of equivariant sheaves defined in Definition 1.8. We also have the Tamarkin
projector using the equivariant 6-operations. Then nothing needs to be changed here.
The discussion also applies for equivariant γ-sheaves.
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2.1.1. Functors of Tamarkin categories. Consider, the translation map Tc :

X × R → X × R, (x, t) 7→ (x, t + c). Then the push forward map Tc∗ : D(X × R) →

D(X × R) is a family of endfunctors.

For F ∈ D(X × Rγ), we have Tc∗ ∼= − ?K{c} ∼= − ?np K{c} by Example 1.12(3), where
? and ?np are discussed in the Subsection 1.2.2. By Remark 2.4-(1), we know that
F ∼= K[0,∞) ?np F . Moreover, we have Tc∗F ∼= K[c,∞) ?np F . Therefore, when c ≥ 0, we
deduce a family of natural transforms τc : Id→ Tc∗, which is induced by the restriction
map K[0,∞) → K[c,∞), on D(X×Rγ). For a γ-open set U = U+γ, the natural morphism
τc(F ) is induced by

RΓ(U, F )→ RΓ(U + c, F ) ∼= RΓ(U,Tc∗F ).

Therefore, Tc∗ and τc commute with the 6-operations and adjunctions on D(X × Rγ).
For example, if f : X → Y , consider fR = f × IdR : X × R → Y × R. Then fR is a
continuous map on X × Rγ. Then we have

τc(RfR∗F ) = RfR∗(τc(F )) : RfR∗F → Tc∗RfR∗F ∼= RfR∗Tc∗F.

For F ∈ D(X), we also have Tc∗ ∼= K{c} ?np − ∼= K{c} ?− ∼= K[c,∞) ?− by (2.3). Then
the natural transform τc restricts to D(X). It also commutes with the 6-operations and
adjunctions.

The discussion also applies if X admits a group action and f is an equivariant map.

Geometrically, the functor Tc∗ quantizes the Reeb flow of the canonical contact form of
J1X. It also indicates that the extra variable Rt for objects in the Tamarkin category
D(X) is a kind of action, and the natural transform τc “moves” Reeb chords in a
homological way. From this point of view, we define our first numerical invariant of
sheaves.

Definition 2.5. For F ∈ D(X), the sheaf energy is defined to be:

e(F ) = inf{c ≥ 0 : τc(F ) = 0}.
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q

t

FL

Tc∗F

q

t

FL

T(L+ε)∗F

Figure 2.2. For the sheaf F = KZ , Z is the cyan locally closed set.
The Legendrian µsL(F ) is the trivial Legendrian knot in R3 = J1R with
a Reeb chord of length L. Then τc(F ) is a generator of Hom(KZ ,KTcZ) ∼=
H0(Z ∩ TcZ,K) for 0 ≤ c < L, and τc(F ) = 0 if c > L. Then we have
e(F ) = L.

It means that when we move some Reeb chord of µsL(F ) after action c, the chord will
not intersect with itself. In particular, the smallest c corresponds to the Reeb action of
the chord.

Asano and Ike define a translation distance and then displacement energy using a similar
idea in [AI20a]. In particular, as a corollary of the theorem 4.18 in loc. cit., we have
that if µs(F ) is compact, then

e(µs(F )) ≥ e(F ),

where the displacement energy e, for A ⊂ T ∗X, is defined by

e(A) := inf
{
‖H‖Hofer : H ∈ C∞

c (I × T ∗X), A ∩ ϕH1 (A) = ∅
}
.

To build projectors we will follow Chiu’s construction and use the Fourier-Sato trans-
form, which is a sheaf-theoretic analogue of the Fourier transform. The Fourier-Sato
transform defines a functor D(V )→ D(V ∗), where V is a real vector space and V ∗ is the
dual of V . One can see [KS90, Section 3.7, Section 5.5] for more details. We want to
mention that the Fourier-Sato transform gives an equivalence between R>0-equivariant
sheaves on V and V ∗. Tamarkin introduced a new version of the Fourier transform on
the category D(V ) which also works for non-R>0-equivariant sheaves. We call it the
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Fourier-Sato-Tamarkin transform. For the relation between the different versions of
Fourier transforms, we refer to [D’A13, Gao17a].

Now, consider a real vector space V = Vz and its dual space V ∗ = V ∗
ζ . Let Leg(V ) =

{(z, ζ, t) : t+ 〈z, ζ〉 ≥ 0} ⊂ V × V ∗ × Rt, we have that KLeg(V ) ∈ D(V × V ∗).

Definition 2.6. The Fourier-Sato-Tamarkin transform is defined as

FT : D(Vz × Rt)→ D(V ∗
ζ ),

FT(F ) = F̂ := F ?KLeg(V )[dim V ].

One can see that the restriction of FT(F ) on D(Vz) is an equivalence of categories in
[Tam18, Theorem 3.5].

Sometimes, for F ∈ D(Vζ), we will use the notation

(2.4) ÊF := KLeg(V )[dim V ] ◦ F ∈ D(Vz × Rt),

here the composition is taken over Vζ . We have ÊF(z,t) = RΓc ({ζ : t+ 〈z, ζ〉 ≥ 0}, F [dim V ]).

z

F [2]

ζ1

ζ2

(0,−t/z2)
(−t/z1, 0)

Figure 2.3. The stalk of ÊF at (z, t) computes the compact supported
cohomology of F [dim V ] over the gray half plane with normal vector z.
In the picture, we take dim V = 2 and z = (z1, z2).
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Geometrically, the set Leg(V ) is associated with the Legendre transform between V

and V ∗. The important thing for us is the microsupport estimate under the Fourier-
Sato-Tamarkin transform. Combining the theorem 3.5 and the theorem 3.6 (and its
proof) of [Tam18], we have

Theorem 2.7. Let ϕ : J1V → J1V ∗ be the map ϕ(z, ζ, t) = (ζ,−z, t − 〈z, ζ〉), where
we identify V ∗∗ with V naturally. Then for F ∈ D(V ), then we have the microsupport
relation:

(2.5) µsL(F̂ ) = ϕ(µsL(F )).

Proof. The original statement of [Tam18, Theorem 3.6] claim that µs(F̂ ) ⊂

ϕ0(µs(F )), here ϕ0(z, ζ) = (ζ,−z). But the proof indicate that the inclusion can
be lift to J1V and ϕ, i.e.:

µsL(F̂ ) ⊂ ϕ(µsL(F )).

Moreover, the theorem 3.5 in loc. cit. shows that the Fourier transform F 7→ F̂ has an
inverse which is given by G 7→ Ǧ = G?KLeg′(V ) where Leg′(V ) = {(ζ, z, t) : t−〈z, ζ〉 ≥

0} ⊂ V ∗ × V × Rt. We also have an estimate

µsL(Ǧ) ⊂ ϕ−1(µsL(G)).

Then the equal of (2.5) follows by taking G = F̂ . □

2.2. Tamarkin categories of subsets and microlocal projectors

In this section, we continue our discussion of the last section on the subset version of
the Tamarkin category. Importantly, we will focus on admissible open sets (in the sense
that the microlocal kernels of the microlocal projectors exist). We will then study some
properties of microlocal kernels.

2.2.1. Tamarkin categories of open and closed sets. Now, we fix an open
subset U ⊂ T ∗X and set Z = T ∗X \ U . Then we define
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Definition 2.8. For an open set U ⊂ T ∗X and the closed set Z = T ∗X \U , we define
the full subcategories

DZ(X) ={F ∈ D(X) : µs(F ) ⊂ Z}

DU(X) =⊥DZ(X), the left orthogonal complement of DZ(X).

Again, the triangulated inequality of microsupport shows that DZ(X) is a thick full
triangulated subcategory of D(X).

Now we have a diagram of inclusions

(2.6) DZ(X) ↪→ D(X)←↩ DU(X)

In general, these two inclusions admit both left and right adjoint functors by the Brown
representation theorem. An ∞-category version proof can be found in [Kuo21]. They
are called microlocal projectors. However, we need more than just microlocal projector
functors, we need that these projectors can be represented by convolution functors.
This is the object of the next subsection.

2.2.2. Admissible open sets and microlocal projectors. Following Tamarkin,
we are looking for convolution kernels that represent microlocal projector functors and
give the corresponding semi-orthogonal decomposition.

Definition 2.9. We say U is K-admissible if there exists a distinguished triangle

PU
a−→ K∆X2 ×[0,∞)

b−→ QU
+1−→,

in D(X2) such that the convolution functor ?PU is right adjoint to DU(X) ↪→ D(X)

and ?QU is left adjoint to DZ(X) ↪→ D(X), i.e.,

DZ(X) ?QU←−− D(X) ?PU−−→ DU(X),

are two microlocal projectors. Such a pair of sheaves (PU , QU) together with the distin-
guished triangle give an orthogonal decomposition of D(X) by Proposition 2.1. We call
the pair (PU , QU) microlocal kernels associated with U , and the distinguished triangle
as the defining triangle of U .
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We say U is admissible if U is Z-admissible.

Remark 2.10. We define the K-admissibility of U at the beginning. But the coefficient
dependence seems redundant because all our existence results in the following work for
all K, especially for K = Z. Moreover, one can show that if U is admissible, then U is
K-admissible for all K (by taking the tensor product K

L
⊗Z with kernels and then use

the uniqueness). From this point of view, we do not emphasize the coefficient ring K

for the kernels (PU , QU). But we will see later that the K does affect the computation
of the Chiu-Tamarkin complex.

We first study functoriality with respect to inclusions and the uniqueness of kernels.
We start with some simple facts.

Lemma 2.11. Suppose U1 ⊂ U2 is an inclusion between K-admissible open subsets in
T ∗X and their defining triangles are

PUi

ai−→ K∆X2 ×[0,∞)
bi−→ QUi

+1−→, i = 1, 2.

(1) We have QU2 ? PU1
∼= 0, and the natural morphism

a2 ? PU1 = [PU2 ? PU1 → PU1 ],

is an isomorphism, where a2 is defined in the defining triangle. In particular, we have
PU ? PU ∼= PU and QU ? PU ∼= 0 for any admissible open sets U .

(2) For any admissible open sets U and for all F,G ∈ D(X2×R), we have the isomor-
phism:

HomD(X2×R)(F ? PU , G ? PU)→ HomD(X2×R)(F ? PU , G).

(3) For all c ≥ 0, we have RHom(PU1 ,Tc∗(QU2)) ∼= 0 and

(2.7) RHom(PU1 ,Tc∗(a2)) : RHom(PU1 ,Tc∗(PU2)) ∼= RHom(PU1 ,K∆X2 ×{c}).

Proof. (1) First, applying ?PU1 to the defining triangle of V , we obtain

PU2 ? PU1

a2?PU1−−−−→ PU1

b2?PU1−−−−→ QU2 ? PU1
+1−→ .
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Notice that, for all x ∈ X, and for all K ∈ D(X × X × R) we have K{x}×[0,∞) ? K '

K|{x}×X×[0,∞) ∈ D(X).

Now, since U1 ⊂ U2, we have, for all x ∈ X,

µs(K{x}×[0,∞) ? QU2) = µs(QU2|{x}×X×R) ⊂ T ∗X \ U2 ⊂ T ∗X \ U1.

Consequently, we have K{x}×[0,∞) ? QU2 ? PU1
∼= (QU2 ? PU1)|{x}×X×R = 0 for all x ∈ X.

Then we have QU2 ? PU1 = 0 and a2 ? PU1 is an isomorphism.

(2) Consider the functor ‹P(F ) = F ? PU : D(X2 × R) → D(X2 × R). Notice that,
the functor ‹P has the same formula as the microlocal projector but they have different
domains.

Using the morphism a : PU → K∆X2 ×[0,∞) and the isomorphisms a ? PU , PU ? a :

PU ? PU ∼= PU , we have the natural transform of functors: ε : ‹P → Id = IdD(X2×R)

and the natural isomorphisms ‹P ◦ ε, ε ◦ ‹P : ‹P2 → ‹P . Then ‹P defines a projector on
D(X2 × R)op in the sense of [KS06, Definition 4.1.1].

So, we can apply the Proposition 4.1.3 in loc.cit. to conclude that, for any F,G ∈

D(X2 × R), we have the isomorphism:

HomD(X2×R)(F ? PU , G ? PU) −◦G?a−−−−→ HomD(X2×R)(F ? PU , G).

(3) We take U = U1, F = K∆X2 ×{0}, and G = Tc∗QU2 [d] for all d ∈ Z. Then (2) implies
that RHom(PU1 ,Tc∗(QU2)) ∼= 0 since K∆X2 ×{0} ? PU1

∼= PU1 and Tc∗QU2 [d] ? PU1
∼=

Tc∗(QU2 ? PU1)[d] ∼= 0. Next, applying RHom(PU1 ,−) to the defining triangle of U2

(shifted by Tc∗), we have that RHom(PU1 ,Tc∗(a2)) is an isomorphism. □

The functorial property of microlocal kernels is first proven in [Chi17, Theorem 4.7(2)]
for the contact case, and the uniqueness appears in [Zha20, Section 4.6] for the sym-
plectic case. Here, we prove a strong form of the functorial property of kernels, which
ensures that the defining triangle is also functorial and unique.
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Proposition 2.12. For any inclusion U1 ⊂ U2 ⊂ T ∗X between K-admissible open
subsets and their defining triangles are

PUi

ai−→ K∆X2 ×[0,∞)
bi−→ QUi

+1−→, i = 1, 2.

We have a morphism between the defining triangles:

PU1 K∆X2 ×[0,∞) QU1

PU2 K∆X2 ×[0,∞) QU2 .

a

a1 b1

Id b

+1

a2 b2 +1

These morphisms are natural with respect to inclusions of admissible open sets. In
particular, when U1 = U2 (but PU1 and PU2 are a priori not the same), the morphism
of the defining triangles is an isomorphism of distinguished triangles.

Proof. First of all, let us construct a and b such that a1 = a2a and b2 = bb1.

By (1) of the Lemma 2.11, we have an isomorphism a2 ? PU1 : PU2 ? PU1
∼= PU1 . Then

we obtain the commutative diagram below:

PU1 K∆X2 ×[0,∞)

PU2 ? PU1 PU2 .

a1

a

PU2?a1

∼= a2

The morphism a : PU1 → PU2 is the dashed arrow.

Similarly, we have an isomorphism QU2 ? b1, which is given by:

QU2 ? PU1 → QU2

∼=−→ QU2 ? QU1
+1−→,

and the commutative diagram

K∆X2 ×[0,∞) QU1

QU2 QU2 ? QU1 .

b1

b2 b2?QU1b
∼=

The morphism b : QU1 → QU2 is the dashed arrow.
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One can verify the naturality of the morphisms a and b (see [Chi17, Theorem 4.7] for
example). In particular, when U1 = U2, we have that a and b are isomorphisms.

Next, consider the following morphism of distinguished triangles constructed by TR3:

PU1 K∆X2 ×[0,∞) QU1

PU2 K∆X2 ×[0,∞) QU2 .

a

a1 b1

Id ψ

+1

a2 b2 +1

Applying the functor RHom(−, QU2) to the defining triangle of U1, we have the distin-
guished triangle as follows:

RHom(QU1 , QU2) −◦b1−−→ RHom(K∆X2 ×[0,∞), QU2) −◦a1−−−→ RHom(PU1 , QU2) +1−→ .

Then (3) of Lemma 2.11 shows that RHom(PU1 , QU2) ∼= 0 and −◦b1 is an isomorphism.
Taking H0, we have the isomorphism:

Hom(QU1 , QU2) −◦b1−−→ Hom(K∆X2 ×[0,∞), QU2).

Finally, one conclude that b = ψ since their image under the isomorphism − ◦ b1 is b2.

Then we obtain the morphism of defining triangles that is functorial with respect to
inclusion of admissible open sets. □

Now we check that PU , QU are determined locally around the projection of U × U to
the base.

Proposition 2.13. For an admissible open set U ⊂ T ∗X with the distinguished triangle

PU → K∆X2 ×[0,∞) → QU
+1−→ .

Let XU = pX(U) ⊂ X, which is an open set, we have

(1) supp(PU) ⊂ XU × X × R and K∆X2 ×[0,∞)|(X\XU )×X×R → QU |(X\XU )×X×R is an
isomorphism.

68



(2) For any open set X ′ with XU ⊂ X ′, the open set U ⊂ T ∗X is admissible in T ∗X ′

by the distinguished triangle

PU |X′2×R → K∆X′2 ×[0,∞) → QU |X′2×R
+1−→ .

Proof. (1) The first part is a corollary of the observation: For x ∈ X \ XU , the
morphism, induced by convolution (see Example 1.12(4)),

K{x}×[0,∞) → K{x}×[0,∞) ? QU
∼= QU |{x}×X×R,

is an isomorphism since µS(K{x}×[0,∞)) = T ∗
xX ⊂ T ∗X \ U .

Taking the stalk at (y, t) ∈ X × R, we have that, for all (x, y, t) ∈ (X \XU)×X × R,

K∆X2 ×[0,∞)|(x,y,t) → QU |(x,y,t)

is an isomorphism. Then one concludes by the fact that a morphism is an isomorphism
if it induces an isomorphism on every stalk.

(2) To be clear, we call U ′ = U when we treat U as an open subset of T ∗X ′, and set
j : X ′ → X to be the inclusion map. For F ∈ D(X ′), then the first part and the proper
base change induce a commutative diagram:

F F ? (QU |X′2×R)

j−1j!F j−1(j!F ? QU).

∼= ∼=

On the other hand, for F ∈ DT ∗X′\U ′(X ′), we have µs(j!F ) ⊂ T ∗X \U when XU ⊂ X ′.
In fact, we can not shrink X ′ to be XU since µs(j!F ) would change along ∂X ′. But at
least µs(j!F ) ⊂ T ∗X \ U is true in general.

Then we have

F ∈ DT ∗X′\U ′(X ′) ⇐⇒ F → F ? (QU |X′2×R) is an isomorphism.

Then we can take QU ′ ∼= QU |X′2×R. Finally, we set PU ′ to be the cocone of

K∆X′2 ×[0,∞) → QU |X′2×R.
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However, an obvious candidate of the cocone is PU |X′2×R. So, we have PU ′ ∼= PU |X′2×R.

Finally, we can check that (PU ′ , QU ′) are microlocal kernels associated with U ′ since
(PU , QU) are microlocal kernels associated with U . □

2.3. Existence of microlocal kernels

Now, let us study the existence of admissible open sets U ⊂ T ∗X. In general, we can
take a smooth Hamiltonian function H such that U = {H < 1}. Our tools to construct
kernels are sheaf quantizations and the Fourier-Sato-Tamarkin transform.

For our later application for toric domains, let us state our idea in a more general
form. Suppose there is a Hamiltonian Rm

z -action on T ∗X, i.e., a symplectic action
ϕ : Rm

z × T ∗X → T ∗X with a moment map µ : T ∗X → (Rm
z )∗ = Rm

ζ . Let us consider
U of the form µ−1(Ω), where Ω ⊂ Rm

ζ . We assume there is a sheaf quantization
K ∈ D(Rm

z ×X2 × R) associated with the Hamiltonian action in the sense:

K|z=0 ∼= K∆X2 ×[0,∞),

µs(K) ⊂ {(z,−µ(q,p),q,−p, ϕz(q,p)) : (z,q,p) ∈ Rm
z × T ∗X}.

(2.8)

Remark 2.14. One can see that when m = 1, it is exactly the single Hamiltonian
situation µ = H. Now, if we additionally assume that µ = H is compactly supported
up to constant, then we can take K = K(”ϕH) ?K[0,∞) as the sheaf quantization. Here,
K(”ϕH) is introduced in Subsection 1.3.2.

In fact, as [GKS12, Remark 3.9] discussed, it exists for all m ∈ N and when the action
is compactly supported.

The sheaf K lives over the z-variable space. Intuitively, if we want to restrict the mi-
crosupport of some sheaves into Ω ⊂ Rm

ζ , we need a sheaf transform to interchange
z and ζ variables, which are dual to each other. Then we cut-off the support of
the resulting sheaf in some way. This operation is classical in mechanics and ther-
modynamics, i.e. the Legendre transform. However, we have noticed that the sheaf
correspondence of the Legendre transform is the Fourier-Sato(-Tamarkin) transform.
Consequently, let us apply the Fourier-Sato-Tamarkin transform to the z-variable, i.e.,
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K̂ = K ?KLeg(Rm
ζ

)[m] ∈ D(Rm
ζ ×X2). So by (2.8) and (2.5), we have

(2.9) µs(K̂) ⊂ {(µ(q,p), z,q,−p, ϕz(q,p)) : (z,q,p) ∈ Rm
z × T ∗X}.

Then, we construct the kernels in the following way. Consider the excision triangle:

KΩ → KRm
ζ
→ KRm

ζ
\Ω

+1−→ .

Composing the distinguished triangle with K̂, we obtain a distinguished triangle in
D(X2):

K̂ ◦KΩ → K̂ ◦KRm
ζ
→ K̂ ◦KRm

ζ
\Ω

+1−→ .

By the associativity of convolutions and compositions (Example 1.12 (1)), we have
K̂ ◦ F = (K ? KLeg(Rm

ζ
)[m]) ◦ F ∼= K ? (KLeg(Rm

ζ
)[m] ◦ F ). Recall that, we set ÊF =

KLeg(Rm
ζ

)[m] ◦ F in (2.4).

Since KLeg(Rm
ζ

)[m] ◦KRm
ζ

= K{z=0, t≥0}, we have

(K̂ ◦KRm
ζ

) ∼= K ?K{z=0, t≥0} ∼= K∆X2 ×[0,∞),

where the last isomorphism comes from (2.8), i.e., K|z=0 ∼= K∆X2 ×[0,∞). Therefore, we
have the distinguished triangle

K̂ ◦KΩ → K∆X2 ×[0,∞) → K̂ ◦KRm
ζ

\Ω
+1−→ .

Proposition 2.15. Let ϕ be a Hamiltonian Rm
z -action on T ∗X with a moment map

µ : T ∗X → Rm
ζ . We assume that there exists a sheaf quantization K ∈ D(Rm

z ×X2×Rt)

of the Hamiltonian action in the sense of (2.8). For an open subset Ω ⊂ Rm
ζ such that

one of the following two conditions are correct:

(1) ([Chi17, Theorem 3.1]) For all ζ ∈ Ω, µ−1(ζ) is compact,

(2) ([Chi21]) The Hamiltonian H defines a complete and short-term separating flow,

we have that the open set U = µ−1(Ω) ⊂ T ∗X is admissible.

More precisely, the distinguished triangle

(2.10) K̂ ◦KΩ → K∆X2 ×[0,∞) → K̂ ◦KRm
ζ

\Ω
+1−→,
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and the pair of sheaves

(2.11) PU := K̂ ◦KΩ, QU := K̂ ◦KRm
ζ

\Ω,

provide the defining triangle and the microlocal kernels of U .

Proof. Our construction is a straightforward generalization of Chiu’s results [Chi17,
Chi21].

Let us sketch the proof of Chiu for the convenience of readers.

Step 1: We prove that, for F ∈ D(X), we have F ?QU ∈ DT ∗X\U(X). Let Ωc = Rm
ζ \ Ω,

π = π(ζ,q1), π1 = π(ζ,q2,t2), π2 = π(t1).

They are maps with domain Rm
ζ × X1 × X2 × Rt1 × Rt2 . By definition of convolu-

tion/composition (see Section 1.2), we have

F ? QU
∼= F ? K̂ ◦KΩc

∼= Rπ!Rs2
t!(π−1

1 F
L
⊗π−1

2 K̂
L
⊗KΩc×X1×X2×Rt1 ×Rt2

).

The microsupport estimate of µs(K̂) can be found in (2.9). Then Theorem 1.4 shows

SS(π−1
1 F ) ⊂ {(ζ, 0,q1, τ1p1,q2, 0, t1, τ1, t2, 0) : τ1 ≥ 0.},

SS(π−1
2 K̂) ⊂ {(µ(q1,p′

1), τ2z,q1,−τ2p′
1, τ2ϕz(q1,p′

1), t1, 0, t2, τ2) :

τ2 ≥ 0, (z,q1,p′
1) ∈ Rm

z × T ∗X} ∪ 0Rm
ζ

×X1×X2×Rt1 ×Rt2
,

SS(KΩc×X1×X2×Rt1 ×Rt2
) ⊂N∗(Ωc)× 0X1×X2×Rt1 ×Rt2

⊂ Ωc × Rm
z × 0X1×X2×Rt1 ×Rt2

.

In the last estimate, N∗(Ωc) is the conormal cone of Ωc. See [KS90, Section 5.3] for
the definition of conormal cone and the estimate. Actually, we only need the second
inclusion which can be proven directly using pX(SS(F )) = supp(F ). But we still left
the first inclusion here for the convenience of readers.

Since SS(π−1
1 F ) ∩ [−SS(π−1

2 K̂)] ⊂ 0Rm
ζ

×X1×X2×Rt1 ×Rt2
, we have

SS(π−1
1 F

L
⊗π−1

2 K̂) = SS(π−1
1 F ) + SS(π−1

2 K̂)

⊂{(µ(q1,p′
1), τ2z,q1, τ1p1 − τ2p′

1, τ2ϕz(q1,p′
1), t1, τ1, t2, τ2) :
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τ1, τ2 ≥ 0, (z,q1,p′
1) ∈ Rm

z × T ∗X}.

Then we have SS(π−1
1 F

L
⊗π−1

2 K̂)∩ [SS(KΩc×X1×X2×Rt1 ×Rt2
)] ⊂ 0Rm

ζ
×X1×X2×Rt1 ×Rt2

, and

SS(π−1
1 F

L
⊗π−1

2 K̂
L
⊗KΩc×X1×X2×Rt1 ×Rt2

)

⊂SS(π−1
1 F

L
⊗π−1

2 K̂) + SS(KΩc×X1×X2×Rt1 ×Rt2
)

⊂{(ζ, τ2z + σ,q1, τ1p1 − τ2p′
1, τ2ϕz(q1,p′

1), t1, τ1, t2, τ2) :

τ1, τ2 ≥ 0, (z,q1,p′
1) ∈ Rm

z × T ∗X, ζ = µ(q1,p′
1), (ζ, σ) ∈ N∗(Ωc)}.

The effect of Rs2
t! to microsupport is to make τ = τ1 = τ2 and t = t1 + t2, then we have

SS(Rs2
t!(π−1

1 F
L
⊗π−1

2 K̂
L
⊗KΩc×X1×X2×Rt1 ×Rt2

))

⊂{(ζ, τz + σ,q1, τ(p1 − p′
1), τϕz(q1,p′

1), t1 + t2, τ) :

τ ≥ 0, (z,q1,p′
1) ∈ Rm

z × T ∗X, ζ = µ(q1,p′
1), (ζ, σ) ∈ N∗(Ωc)} =: Z.

Now, we need the estimate for non-proper pushforward Theorem 1.7. Notice that the
theorem stated there works only when X is a vector space, and π# is a well-defined
map only when X is parallelizable. But the microsupport is a local notion. So we can
take a Darboux chart and work locally, and here we use the notation π# locally. It
means that we forget q1 locally.

Then we have (q,p, t, 1) ∈ SS(Rπ!Rs2
t!(π−1

1 F
L
⊗π−1

2 K̂
L
⊗KΩc×X1×X2×Rt1 ×Rt2

)) = SS(F ?

QU) if

(−, 0,−, 0,q,p, t, 1) ∈ π#(SS(Rs2
t!(π−1

1 F
L
⊗π−1

2 K̂
L
⊗KΩc×X1×X2×Rt1 ×Rt2

))) ⊂ π#(Z),

where

π#(Z) ={(ζ, τz + σ, τ(p1 − p′
1), τϕz(q1,p′

1), t1 + t2, τ) :

τ ≥ 0, (z,q1,p′
1) ∈ Rm

z × T ∗X, ζ = µ(q1,p′
1), (ζ, σ) ∈ N∗(Ωc)}.
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Then, by definition of closure, we have a sequence of (ζn, zn,−,−, ϕzn(qn,pn), tn, τn) ∈

π#(Z) such that

τnϕzn(qn,pn)→ (q,p), τn → 1,

ζn = µ(qn,pn), (ζn, zn) ∈ N∗(Ωc).

Now, as ζn = µ(qn,pn) = µ(ϕzn(qn,pn)) ∈ Ωc, we have

µ(ϕzn(qn,pn)) ∈ Ωc → µ(q,p) ∈ Ωc.

I.e. we have (q,p) ∈ U = µ−1(Ωc), and F ? QU ∈ DT ∗X\U(X).

Step 2: For F ∈ DT ∗X\U(X), and G ∈ D(X), we prove RHom(G ? PU , F ) ∼= 0. Here,
we refresh the notation. We set some projections and inclusions in the diagram below
(and only valid in step 2).

With these maps and definition of composition/convolution, adjoint isomorphisms,
proper base change and projection formula show that

RHom(G ? PU , F ) ∼= RHom(j−1
1 π−1

1 G,Rπ∗j
−1RHom(π−1

2 K̂, σ!F )),

where σ(ζ,q1,q2, t1, t2) = (q2, t1 + t2).

X1 × Rt1 Rm
ζ ×X1 ×X2 × Rt2

Rm
ζ ×X1 × Rt1 Rm

ζ ×X1 ×X2 × Rt1 × Rt2 X2 × Rt

Ω×X1 × Rt1 Ω×X1 ×X2 × Rt1 × Rt2

π1

π

π2

σ

j1 j

π

Now, we can estimate the microsupport with the help of Theorem 1.4. We have

SS(π−1
2 K̂) ⊂ {(µ(q1,p1), τ1z,q1,−τ1p1, τ1ϕz(q1,p1), t1, 0, t2, τ1) :

τ1 ≥ 0, (z,q1,p1) ∈ Rm
z × T ∗X} ∪ 0Rm

ζ
×X1×X2×Rt1 ×Rt2

.

By F ∈ DT ∗X\U(X), we have

SS(σ!F ) ⊂ {(ζ, 0,q1, 0,q2, τ2p′
2, t1, τ2, t2, τ2) : τ2 > 0, µ(q2,p′

2) ∈ Ωc} ∪ {τ2 = 0}.
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Then, SS(π−1
2 K̂) ∩ SS(σ!F ) ⊂ 0Rm

ζ
×X1×X2×Rt1 ×Rt2

, and we have

RHom(π−1
2 K̂, σ!F ) ⊂ [−SS(π−1

2 K̂)] + SS(σ!F ) ⊂ Z,

where

Z :={(µ(q1,p1),−τ1z,q1,−τ1p1, (q2, τ2p′
2)− τ1ϕz(q1,p1), t1, τ2, t2, τ2 − τ1) :

τ1 ≥ 0, τ2 > 0, (z,q1,p1) ∈ Rm
z × T ∗X,µ(q2,p′

2) ∈ Ωc}

∪ T ∗(Rm
ζ ×X1 ×X2)× {t1, 0, t2,−τ1 : τ1 ≥ 0}.

Claim: Rπ∗j
−1RHom(π−1

2 K̂, σ!F ) ∈ D{τ≤0}(Ω×X1 × R).

It means that SS(Rπ∗j
−1RHom(π−1

2 K̂, σ!F )) ⊂ {τ ≤ 0}. We prove this by contradic-
tion. If it is false, there exists

v = (ζ, z,q1,p, t1, 1) ∈ SS(Rπ∗j
−1RHom(π−1

2 K̂, σ!F )).

Like in the step 1, we need the estimate for non-proper pushforward Theorem 1.7. In
the same way we use the notation π# locally. Then we have

(ζ, z,q1,p,−, 0, t1, 1,−, 0) ∈ π#(SS(j−1RHom(π−1
2 K̂, σ!F ))) ⊂ π#((dj)−1Z).

So, we have a sequence of vn ∈ π#((dj)−1Z) such that vn → v. In particular, τn2 → 1,
τn2 − τn2 → 0 show that τn1 , τn2 → 1. Next, {(qn2 , τn2 pn2 ′)− τn1 ϕz(qn1 ,pn1 )} → 0.

Under both conditions of the theorem, there is a subsequence of ϕz(qn1 ,pn1 ) convergent
to a finite limit (q,p). We assume the subsequence is the sequence itself. Combining
with {(qn2 , τn2 pn2 ′)− τn1 ϕz(qn1 ,pn1 )} → 0, one concludes that (qn2 ,pn2 ′) converges to (q,p)

as well.

As ζn = µ(ϕz(qn1 ,pn1 )) = µ(qn1 ,pn1 ) ∈ Ω. So, its limit µ(q,p) is also in Ω. However,
µ(qn2 ,pn2 ′) ∈ Ωc, so its limit µ(q,p) is also in Ωc. Now, we get a contradiction.

Therefore, one concludes that

Rπ∗j
−1RHom(π−1

2 K̂, σ!F ) ∈ D{τ≤0}(Ω×X1 × R).

So, Rπ∗j
−1RHom(π−1

2 K̂, σ!F ) ?K[0,∞) ∼= 0 in D(Ω×X1).
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Finally, it is direct to check that, as G ∈ D(X), we have j−1
1 π−1

1 G ∈ D(Ω×X1).

Therefore, one concludes that

RHom(G ? PU , F ) ∼=RHom(j−1
1 π−1

1 G,Rπ∗j
−1RHom(π−1

2 K̂, σ!F ))

∼=RHom(j−1
1 π−1

1 G,Rπ∗j
−1RHom(π−1

2 K̂, σ!F ) ?K[0,∞)) ∼= 0,

since D(Ω×X1) is a full subcategory of D(Ω×X1 × R).

Finally, the result follows from the Proposition 2.1. □

Definition 2.16. We say an admissible open set U is dynamically admissible if the
microlocal kernels can be constructed using the recipe of Proposition 2.15 .

Remark 2.17. (1) For a dynamically admissible open set U = µ−1(Ω), we have PU ∼=
K̂ ◦KΩ ∼= K ?ÈKΩ. Here, ÈKΩ is a sheaf over Rm

z × Rt. We denote πt(supp(ÈKΩ)) ⊂ Rm
z ,

then we have
PU ∼= K ?ÈKΩ ∼= KX2×πt(supp(ÍKΩ))×R ?

ÈKΩ.

For example, when m = 1, Ω = (−∞, 1), and U = {H < 1} for a Hamiltonian
H, then we have ÈKΩ ∼= K{(z,t):−t≤z≤0} (it is direct from (2.4) and Figure 2.3), and
πt(supp(ÈKΩ)) = {z ≤ 0}. In this case, we have

PU ∼= K{z≤0} ?K{(z,t):−t≤z≤0}.

z

t

K{(z,t):−t≤z≤0}

Figure 2.4. The sheaf ÈKΩ for Ω = (−∞, 1).

(2) Due to Remark 1.16, when U is dynamically admissible, for a finite interval I, it is
likely that there exists a topological space W and a locally closed set Z ⊂ X2×W × I
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such that (PU)I ∼= RπW !KZ . When the sheaf quantization K is a pushforward of a
constant sheaf, PU is a pushforward of a constant sheaf, since PU is a composition of
sheaves which are pushforward of constant sheaves.

2.3.1. Corollaries of the existence theorem. Now let us state some corollaries
of the existence theorem.

Proposition 2.18. Bounded open sets are dynamically admissible.

Proof. Let U ⊂ T ∗X be a bounded open set, we have T ∗X \ U is a closed subset
of T ∗X. Then there exists a smooth function H : T ∗X → [0, 1] such that U = {H < 1}

and T ∗X \ U = {H ≥ 1}. Actually, we take a non negative function f such that
f−1(0) = T ∗X \ U , see [Lee03, Theorem 2.29]. Then we take H(x) = 1− f(x).

Since U is bounded, the subsets {H = a} ⊂ U with a < 1 are compact. Moreover dH
has compact support. So we can take the GKS quantization K(”ϕH). Then the result
follows from the Proposition 2.15 by taking Ω = (−∞, 1). □

Using this construction, we can estimate the microsupport of the kernel PU .

Corollary 2.19. For a bounded open set U , the microlocal kernel PU satisfies the
following microsupport estimate:

µsL(PU) ⊂ {(q,−p, q,p, 0) : H(q,p) ≤ 1, q ∈ XU}

∪ {(q,−p, ϕHz (q,p),−
∫
c
α) : H(q,p) = 1, z < 0, q ∈ XU},

(2.12)

where c is the path s ∈ [z, 0] 7→ ϕHs (q,p) and XU = pX(U) as the Proposition 2.13.

Proof. The formula (1.26) shows that

µsL(K(”ϕH)) ⊂ {(z,−H(q,p),q,−p, ϕHz (q,p),−SH(z,q,p)) : (z,q,p) ∈ I × T ∗X}.

So, we apply the microsupport estimate of the Fourier-Sato-Tamarkin transform (2.5),
we have

µsL(K̂(”ϕH)) ⊂ {(H(q,p), z,q,−p, ϕHz (q,p),−SH(z,q,p)−zH(q,p)) : (z,q,p) ∈ I×T ∗X}.
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For an autonomic Hamiltonian function H, we have

−SH(z,q,p) = −
∫
c
(α−Hds) = −

∫
c
α + zH(q,p),

where c is the path s ∈ [z, 0] 7→ ϕHs (q,p).

So, the t-component of µsL(K̂(”ϕH)) is −
∫
c α for a path c as above.

Finally, the microsupport of K{ζ≤1} is

{(ζ, 0) : ζ ≤ 1} ∪ {(1, z) : z < 0} ⊂ Rz × Rζ .

The functorial microsupport estimate of Theorem 1.4 implies that for (q,p,q′,p′, t) ∈

µs(PU), we have either

ζ = H(q,p) ≤ 1, t = −
∫
c
α = 0,

or,
ζ = H(q,p) = 1, t = −

∫
c
α,

for the path c: s ∈ [z, 0] 7→ ϕHs (q,p) with z < 0.

Finally, the support estimate follows directly from Proposition 2.13. □

The second corollary here is about the kernel of products of open sets.

Proposition 2.20. Suppose we have two dynamically admissible open sets Ui ⊂ T ∗Xi

of the same type (i.e. satisfying the same condition of the Proposition 2.15), with
two pairs of kernels (PUi

, QUi
), i = 1, 2. Then U1 × U2 is dynamically admissible and

PU1×U2
∼= PU1 □? PU2.

Proof. By the assumption, we have two Hamiltonian functions Hi ∈ C∞(T ∗Xi)

such that Ui = {Hi < 1} and we associate with them two sheaf quantizations Ki. Then

(PUi
, QUi

) = (K̂i ◦K(−∞,1), K̂i ◦K[1,∞)), i = 1, 2.

Now, consider the product Hamiltonian R2
z-action on T ∗(X1×X2) whose moment map

is µ = (H1, H2), and has same type with Hi. Then K1 □? K2 is a sheaf quantization of
the Hamiltonian action in the sense of (2.8).
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Observe that if we take Ω = {ζ = (ζ1, ζ2) : ζ1 < 1, ζ2 < 1}, then we have U1 × U2 =

µ−1(Ω). Consequently, the Proposition 2.15 implies that U1 × U2 is admissible by the
following distinguished triangle

K̂ ◦KΩ → K∆×{t≥0} → K̂ ◦KR2
ζ
\Ω

+1−→ .

Subsequently, let us compute K̂ ◦KΩ.

Recall
K̂ ◦KΩ ∼= K ?ÈKΩ.

Notice Ω is an open convex set. Therefore ÈKΩ = K{(z,ζ,t):t+z·ζ≥0}[2] ◦KΩ is the constant
sheaf KΩ◦ supported on the polar cone Ω◦ of Ω, where

Ω◦ = {(z, t) : t+ z · ζ ≥ 0, ∀ζ ∈ Ω}.

In fact, K{(z,ζ,t):t+z·ζ≥0}[2] ◦ KΩ is the Fourier-Sato transform of the constant sheaf of
the conification of Ω. The conification is a convex cone. The Fourier-Sato transform
of a constant sheaf supported on a convex cone is the constant sheaf supported on the
polar cone of the given cone. A direct computation shows that the polar cone of the
conification of Ω is exactly Ω◦. Then our computation follows. One can also derive the
computation directly from the definition and Figure 2.3.

In particular, when Ω = {ζ1 < 1, ζ2 < 1}, we have Ω◦ = {(z, t) : z = (z1, z2), , z1 ≤

0, z2 ≤ 0, t ≥ −(z1 + z2) ≥ 0}. Moreover, KΩ◦ ∼= Rs2
t!(Kγ1×γ2), where γi = {(zi, t) : t ≥

−zi ≥ 0}.

Now we have

K̂ ◦KΩ ∼= K ?ÈKΩ ∼= K ?KΩ◦ ∼= K ? Rs2
t!(Kγ1×γ2)

∼= (K1 □? K2) ? Rs2
t!(Kγ1×γ2) ∼= (K1 ?Kγ1) □? (K2 ?Kγ2).

Finally, noticing that K{(z,t):t≥−z≥0} ∼= K{(z,ζ,t):t+zζ≥0}[1]◦K(−∞,1), one can conclude that

PU1×U2
∼= K̂ ◦KΩ ∼= (K1 ?Kγ1) □? (K2 ?Kγ2) ∼= PU1 □? PU2 .

□
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CHAPTER 3

Chiu-Tamarkin complexes

This chapter is a main part of the thesis. We will review the definition of the Chiu-
Tamarkin complex C`,T (U,K) and also define some variants, denoted H∗C`,∞(U,K),
C`,(T,T ′](U,K) and C+

`,T (U,K). Two distinguished triangles related to them are also
obtained. Usually, the Chiu-Tamarkin complex is negatively graded, so we sometime
use the homology grading convention Hq = H−q, and call the cohomology of the Chiu-
Tamarkin complex the Chiu-Tamarkin homology.

We also study the functorial properties and invariance of the Chiu-Tamarkin complex.
We define the fundamental class η`,T (U,K) ∈ H0C`,T (U,K). It will be used to define
capacities associated with U . Then we show that both C`,T (U,K) and η`,T (U,K) are
natural with respect to T and U , and they are invariant under compactly supported
Hamiltonian isotopies.

Next, we show that the coalgebra structure on PU induced by the idempotent properties
of PU implies that the Ext-algebra Ext∗(PU ,Tc∗(PU)) equipped with the shifted Yoneda
product is a graded commutative K-algebra. We also present the Yoneda product
as a cup product on the non-equivariant Chiu-Tamarkin cohomology H∗C1,T (U,K).
This cup product is the usual cup product on X when U = T ∗X, and we will see in
Subsection 4.2.3 that the cup product is the Chas-Sullivan product when U = D∗X is
an open disk bundle.

Next, we can present a cyclic structure on the Chiu-Tamarkin complex, which is a
formal process to see the S1 structure on the Chiu-Tamarkin complex. In particular,
we define the S1-equivariant Chiu-Tamarkin complex CS1,+

T (U,K) and CS1
T (U,K) over

fields.

As an interlude, we develop some geometric understanding of microlocal kernels with
the help of the notion of dynamical admissibility.
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At the almost end of the chapter, we define some symplectic capacities: c, ck, and c̄k

using different versions of Chiu-Tamarkin cohomology. They are also another main
construction in this chapter.

Both of them extract delicately the ring action of the Ext-algebra on the fundamental
class. The capacities c is defined using the non-equivariant Chiu-Tamarkin cohomology,
which is a reformulation of the sheaf energy for the microlocal kernel PU since the
fundamental class η1,T (U,K) is equivalent with τT (PU). For ck, and c̄k, they are defined
using the equivariant Chiu-Tamarkin homology by studying when η?,T (U,K) can be
divided by uk for u 6= 0 ∈ A = Ext2

G(K,K). The restriction morphism Ext∗
G(K,K) →

Ext∗(K,K) maps u to 0 for fields, then we see that ck, and c̄k are non-equivariant
generalization of the sheaf energy e. We will prove that all of c, ck, and c̄k are symplectic
capacities and they can be represented by Reeb actions for the contact boundary.

Finally, we develop all the possible generalizations of the results in the chapter when
we deal with the contact geometry of the prequantized contact manifold T ∗X × S1.
In particular, our cyclic structure helps to understand why we need Z/`-theory on the
contact non-squeezing theorem.

3.1. Chiu-Tamarkin complexes

Let Z/` be the finite cyclic group of order ` ∈ N, X be a smooth manifold of dimension
d.

Now take an admissible open set U ⊂ T ∗X, and let PU be the kernel associated with
U . The manifold (X2 × Rt)` admits a Z/`-action induced by the cyclic permutation
of the ` factors. According to the appendix C, the object P

L
⊠`
U of D((X2 × Rt)`) has a

natural lift StD(PU) as an object of the equivariant derived category DZ/`((X2×Rt)`),

that we also denote, due to historically reason, by P
L
⊠`
U . Then we have P□?`

U = Rs`t!P
L
⊠`
U ∈

DZ/`((X2)` × Rt).

Consider the Z/`-equivariant maps

πq : X` × R→ R,

∆̃X : X` × R→ X2` × R,
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∆̃X(q1, . . . ,q`, t) = (q`,q1,q1, . . . ,q`−1,q`−1,q`, t),

iT : pt→ R,

where ∆̃X is a twisted diagonal map of X.

There is an adjoint pair (α`,T,X , β`,T,X):

F ∈ DZ/`((X2 × Rt)`) DZ/`(pt) 3 G,
α`,T,X

β`,T,X

defined by:

α`,T,X(F ) = i−1
T Rπq!∆̃−1

X Rs`t! (F ) ,

β`,T,X(G) = s`!t ∆̃X∗π
!
qiT∗G.

(3.1)

Now, we define a functor

(3.2) F`,X = Rπq!∆̃−1
X Rs`t! : DZ/`((X2 × Rt)`)→ DZ/`(R).

Then α`,T,X = i−1
T F`,X .

Similarly, we define another adjoint pair (α′
`,T,X , β

′
`,T,X):

F ∈ DZ/`((X2)` × Rt) DZ/`(pt) 3 G,
α′

`,T,X

β′
`,T,X

α′
`,T,X(F ) = i−1

T Rπq!∆̃−1
X (F )

β′
`,T,X(G) = ∆̃X∗π

!
qiT∗G.

(3.3)

We also define a functor

(3.4) F ′
`,X = Rπq!∆̃−1

X : DZ/`(X2` × Rt)→ DZ/`(R).

Then α′
`,T,X = i−1

T F ′
`,X .

If there is no risk of confusion, we will also denote (α`,T,X , β`,T,X) = (αT , βT ) and
(α′

`,T,X , β
′
`,T,X) = (α′

T , β
′
T ) for simplicity.

Remark 3.1. We will frequently use α`,T,X , β`,T,X (α′
`,T,X , β

′
`,T,X), and F`,X (F ′

`,X) in
the non-equivariant categories. We denote them by the same notation later.
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Definition 3.2. With the notation above, we define an object of D(K[Z/`]−Mod) '

DZ/`(pt) that we call the Chiu-Tamarkin complex

C`,T (U,K) = RHomZ/`

Å
α`,T,X(P

L
⊠`
U ),K[−d]

ã
= RHomZ/` ((F`(U,K))T ,K[−d])

∼= RHomZ/`

Å
P

L
⊠`
U , β`,T,XK[−d]

ã
,

where F`(U,K) = F`,X(P
L
⊠`
U ) = F ′

`,X(P□?`
U ).

We define the positive Chiu-Tamarkin complex, also in DZ/`(pt)

C+
`,T (U,K) = RHomZ/`

Å
α`,T,X(Q

L
⊠`
U ),K[1− d]

ã
= RHomZ/`

(
(F+

` (U,K))T ,K[1− d]
)

∼= RHomZ/`

Å
Q

L
⊠`
U , β`,T,XK[1− d]

ã
,

where F+
` (U,K) = F`,X(Q

L
⊠`
U ) = F ′

`,X(Q□?`
U ).

We set A = Ext∗
Z/`(K,K), which is isomorphic to H∗

Z/`(BZ/`.K) (see (B.2)). Then
H∗C`,T (U,K) and H∗C+

`,T (U,K) are graded modules over A ∼= Ext∗
Z/`(K[−d],K[−d])

via the Yoneda product.

Usually, the Chiu-Tamarkin complex is negatively graded. Then the cohomology of the
Chiu-Tamarkin complex should be think of a homology. So we will use the homology
grading convention sometime, and call the cohomology of the Chiu-Tamarkin complex
the Chiu-Tamarkin cohomology or homology, depending on the convention. It is defined
for all versions of the Chiu-Tamarkin complex.

HqC?(U,K) := H−qC?(U,K).

Remark 3.3. (1) The object C`,T (U,K) is mentioned by Tamarkin in [Tam15], and
is defined explicitly by Chiu in [Chi17]. Our definition looks slightly different from the
definition of Chiu. But one can check directly that, when X is orientable, β`,T,XK[−d]

is exactly the constant sheaf supported on the twisted diagonal with a degree shift
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depending only on ` and dimX. So the complex C`,T (U,K) is essentially the same
as what Chiu defined. Compare to C`,T (U,K), we will see later that C+

`,T (U,K) does
not consist of information of constant loops insides XU , but consist of information of
constant loops outside of XU .

(2) For later use we denote the adjoint isomorphism by:

N : RHomZ/`

Å
αT (P

L
⊠`
U ),K[−d]

ã
∼=−→ RHomZ/`

Å
P

L
⊠`
U , βTK[−d]

ã
.

N ′ : RHomZ/`
(
α′
T (P□?`

U ),K[−d]
) ∼=−→ RHomZ/`

(
P□?`
U , β′

TK[−d]
)
.

(3.5)

(3) Let XU = pX(U) ⊂ X, then we have (PU)XU ×X×R ∼= PU by the Proposition 2.13.
Then, one has

F`(U,K) = F`,X(P
L
⊠`
U ) ∼= F`,XU

((PU |X2
U ×R)

L
⊠`).

That means, to obtain C`,T (U,K), we may restrict PU to X2
U × R.

On the contrary, F+
` (U,K) is defined using QU on whole X2 × R.

(4) Due to Remark 2.17 (2), when PU ∼= Rπ!KZ for some locally closed set Z, the
equivariant structure of P

L
⊠`
U is given in the way described in example C.3.

3.1.1. Persistence structure of Chiu-Tamarkin complexes. A persistence
module M is a functor from (R,≤) to the category of R-modules. Equivalently, we
have a family of R-modules MT and a family of morphisms M(T ≤ T ′) : MT → MT ′

such that M(T ≤ T ′′) = M(T ′ ≤ T ′′)◦M(T ≤ T ′) and M(T = T ) = IdMT
. In practice,

we will assume MT = 0 for T << 0. Here, we do not assume any regularity conditions
as usual to simplify discussions. We refer the readers to [PRSZ20] for more about
persistence modules.

Here, we will not completely follow this definition, and we will study a family of mor-
phisms of complexes {M(T, T ′)}T ′≥T (we set c = T ′−T ≥ 0) in the equivariant derived
category DZ/`(pt):

M(T, T + c) : C`,T (U,K)→ C`,T+c(U,K),
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with respect to the functor condition. Then we take cohomology Hq or H∗ and put the
trivial module at T < 0 to create persistence modules, over R = K or R = A, in the
usual sense.

We study ` = 1 first. Since PU ∈ D(X2), then there exists τc(PU) : PU → Tc∗PU for
c ≥ 0. Applying α1,X,T ◦ T−c∗, we have

F1(U,K)T+c ∼= α1,X,T (T−c∗PU)→ F1(U,K)T .

Then, we have a family of morphisms for c ≥ 0:

(3.6) C1,T (U,K)→ C1,T+c(U,K).

For a general `, we apply the same idea. Since PU ∈ D(X2), we have that P□?`
U ∈

DZ/`(X2`). Therefore, for all c ≥ 0, we have τc(P□?`
U ) : P□?`

U → Tc∗P
□?`
U in DZ/`(X2`)

induced by τc/`(PU) : PU → Tc/`∗PU . So, we obtain an equivariant morphism

F`(U,K)T+c = α′
`,X,T+c(P□?`

U ) ∼= α′
`,X,T (T−c∗P

□?`
U )→ α′

`,X,T (P□?`
U ) ∼= F`(U,K)T .

Then we have a family of morphisms for c ≥ 0:

(3.7) C`,T (U,K)→ C`,T+c(U,K).

On the other hand, we have a different way to obtain the persistence structure. We
apply the Tamarkin projector in the equivariant case to obtain

C`,T (U,K) = RHomZ/` (F`(U,K)T ,K[−d])

∼= RHomZ/`
(
F`(U,K),K{T}[−d]

)
∼= RHomZ/`

(
F`(U,K),K[T,∞)[−d]

)
.

Then we also have a family of morphisms for c ≥ 0:

(3.8) C`,T (U,K)→ C`,T+c(U,K),

which is induced by K[T,∞) → K[T+c,∞).

Actually, these two ways are equivalent because τc commutes with the 6-operations and
adjunctions as we discussed in Subsection 2.1.1.
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The parameter T indicates the action of Reeb orbits and the translations Tc∗ quantize
the Reeb flow. Therefore, we can define some Chiu-Tamarkin complexes of other action
windows using a different cut-off of T .

Definition 3.4. When T =∞, we define

(3.9) H∗C`,∞(U,K) := lim−→
T≥0

H∗C`,T (U,K).

When we have an action window (T, T ′], using the morphism C`,T (U,K)→ C`,T ′(U,K),
we define

C`,(T,T ′](U,K) :=RHomZ/`
(
F`(U,K),K[T,T ′)[−d]

)
∼=cocone(C`,T (U,K)→ C`,T ′(U,K))

(3.10)

As an immediate consequence, we have a distinguished triangle for 0 ≤ T < T ′, say:

(3.11) C`,(T,T ′](U,K)→ C`,T (U,K)→ C`,T ′(U,K) +1−→ .

This is called the action exact triangle of the Chiu-Tamarkin complex.

The discussions here also apply to C+, including versions for different actions, H∗C+
`,∞(U,K),

C+
`,(T,T ′](U,K) and a similar distinguished triangle. One just need to replace PU here by

QU . Let us compute an example when U = T ∗X. Recall PT ∗X = K∆X2 ×[0,∞). So

∆̃−1 (P□?`
T ∗X

)
= K∆

X` ×[0,∞).

Then
F`(T ∗X,K) = Rπq!(K∆

X` ×[0,∞)) = E[0,∞),

where E = RΓc(∆X` ,K), E[0,∞) is the constant sheaf supported on [0,∞) and Z/` acts
on E = RΓc(∆X` ,K) ∼= RΓc(X,K) trivially. Since Z/` acts on E trivially, we have, by
Poincaré-Verdier duality,

C`,T (T ∗X,K) ∼= RHomZ/`(E,K[−d]) ∼= RHomZ/`(K,K)
L
⊗RHom(E,K[−d])

∼=RHomZ/`(K,K)
L
⊗RΓ(X, orX) ∼= RHomZ/`(K,K)

L
⊗RΓX(T ∗X,K)[d].

(3.12)
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Since QT ∗X
∼= 0, we have F+

` (T ∗X,K) = F`,X(0) = 0 and

C+
`,T (T ∗X,K) = RHomZ/`(0,K[T,∞)[1]) ∼= 0.

Also, for 0 ≤ T < T ′, we have

C`,(T,T ′](T ∗X,K) = RHomZ/`(E[0,∞),K(T,T ′])

∼= RHomZ/`(K[0,∞),K(T,T ′])
L
⊗RΓ(X,K)

∼= RHom(K[0,∞),K(T,T ′])
L
⊗RHomZ/`(K,K)

L
⊗RΓ(X,K)

∼= 0,

where we use RHom(K[0,∞),K(T,T ′]) ∼= RHom(K[0,∞)∩[T,T ′),KR) ∼= 0, since [0,∞)∩[T, T ′)

is empty or half-closed. Finally, for 0 ≤ T < T ′ ≤ ∞ and assuming K is a field, we
have

H∗C`,T (T ∗X,K) ∼= A⊗HBM
d−∗ (X,K) ∼= A⊗H∗+d

X (T ∗X,K),

H∗C+
`,T (T ∗X,K) ∼= H∗C`,(T,T ′](T ∗X,K) ∼= 0.

(3.13)

3.1.2. Functoriality and invariance.

Theorem 3.5 (Theorem 4.7 of [Chi17]). Let U,U1, U2 be admissible open sets and
U1

i
↪−→ U2 be an inclusion. Then one has, for T ≥ 0,

(1) There is a morphism C`,T (U2,K) i∗−→ C`,T (U1,K), which is functorial with respect to
inclusions of admissible open sets.

(2) For a compactly supported Hamiltonian isotopy ϕ : T ∗X × I → T ∗X, we have an
isomorphism, in the equivariant category, Φz,`,T : C`,T (U,K)

∼=−→ C`,T (ϕz(U),K), for all
z ∈ I. The isomorphism Φz,`,T is functorial with respect to the restriction morphisms
in (1). When U = T ∗X, we have Φz,`,T = Id.

Taking into account the structure of A = Ext∗
Z/`(K,K)-modules, we have

Corollary 3.6. Under the notation of Theorem 3.5, we have:

(1) H∗(i∗) is a morphism of A-modules.
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(2) H∗(Φz,`,T ) is an isomorphism of A-modules.

For our later application, let us present a proof here. The notation is the same as in
Theorem 3.5. But the proof for (2) is different from Chiu’s original one.

Proof of Theorem 3.5: (1) Recall, Proposition 2.12 shows that we have a nat-
ural morphism PU1 → PU2 . Then we apply F` to obtain

(3.14) F`(U1,K) F`(i,K)−−−−→ F`(U2,K).

Then the first part follows by taking stalks over T .

(2) To prove the invariance we use the expression C`,T (U,K) ∼= RHomZ/`(P□?`
U , β′

TK[−d])

given by the adjoint isomorphism N ′ in (3.5).

• We first relate PU with Pϕz(U). By the results of [GKS12] recalled in Subsection 1.3.2,
there exists K ∈ D(X2 × Rt) (taking K = K(ϕ̂)−1

z ) such that the convolution functor,

D(X × Rt)→ D(X × Rt), F 7→ K ? F,

is an equivalence of categories and µsL(K ? F ) = ϕz(µsL(F )). Since ϕ̂z preserves τ of
T ∗(X×Rt), this functor descends to the quotient D(X) and gives an auto-equivalence.

Since K ?− identifies DT ∗X\U(X) with DT ∗X\ϕz(U)(X), with inverse K−1 ?−, we deduce
that F 7→ K−1 ? PU ?K ? F is the projector to DT ∗X\ϕz(U)(X). By Proposition 2.12 we
obtain Pϕz(U) ∼= K−1 ? PU ?K. In particular, for U = T ∗X, the isomorphism is realized
by:

K∆X2 ×[0,∞) ∼= K−1 ?K ?K∆X2 ×[0,∞) ∼= K−1 ?K∆X2 ×[0,∞) ?K.

Let us write K` = K□?`, K−1
` = (K−1)□?`. We remark that K` has a natural lift in

the equivariant category and that K`, K−1
` are mutually inverse for the convolution.

Hence K` ? − is an equivalence and RHomZ/`(A,B) ∼= RHomZ/`(K` ? A,K` ? B) for
any A,B ∈ DZ/`(X2l × Rt). We denote by κ the auto-equivalence on DZ/`(X2` × Rt)

induced by conjugation with K`:

(3.15) κ(F ) := K−1
` ? F ?K`.
89



Then we have an isomorphism P□?`
ϕz(U)

∼= K−1
` ?P□?`

U ?K` = κ(P□?`
U ), and for U = T ∗X, the

isomorphism is realized by K□?`
∆X2 ×[0,∞)

∼= K−1
` ?K` ?K□?`

∆X2 ×[0,∞)
∼= K−1

` ?K□?`
∆X2 ×[0,∞) ?K`.

Then the composition induces the isomorphism

RHomZ/`(P□?`
U , β′

TK)
κ∼= RHomZ/`(κ(P□?`

U ), κ(β′
TK))∼=RHomZ/`(P□?`

ϕz(U), κ(β′
TK)).

• Then it is enough to construct an isomorphism κ(β′
TK) = K−1

` ? β′
TK ? K` ∼= β′

TK.
Compare to Chiu’s original proof, we will construct the isomorphism explicitly.

Notice that β′
TK is, up to orientation and shift, the constant sheaf on the graph of

the permutation map f : X` → X`, (q1, . . . ,q`) 7→ (q2, . . . ,q`,q1). Set Y = X` and
identify Y 2 = (X2)` by (q1

1, . . . ,q1
` ,q2

1, . . . ,q2
`) 7→ (q1

1,q2
1, . . . ,q1

` ,q2
`). Then, up to

degree shifting, we have

β′
TK ∼= KΓf ×{T} ? E ∼= E ?KΓf ×{T},

where E = δY 2!(ωY ) ⊠ K{T}, with ωY the dualizing sheaf and δY 2 the usual diagonal
embedding. In general, we have E ?− ∼= − ? E.

Now we have the general fact A?KΓg×{T} ∼= (IdY × g×TT )!(A) for any A and any map
g. This formula has the symmetric form KΓ′

g×{T} ? A ∼= (g× IdY ×TT )!(A) where Γ′
g is

the switched graph Γ′
g = {(g(y), y) : y ∈ Y }. When g is invertible, we have Γg−1 = Γ′

g.
So, we obtain

K` ? β′
TK ∼= K` ?KΓf ×{T} ? E ∼= (IdY × f × TT )!(K`) ? E,

and

β′
TK ?K` ∼= E ?KΓf ×{T} ?K` = E ?KΓ′

f−1 ×{T} ?K` ∼= E ? (f−1 × IdY × TT )!(K`).

But in coordinate (X2)` we have f × f((q1
j ,q2

j))j∈Z/` = ((q1
j+1,q2

j+1))j∈Z/`. In other
words (f × f) is the cyclic permutation of the X2 factors in (X2)`. It is then clear that
(f × f × IdR)!K` ∼= K` (even in the equivariant category). Then we deduced that

β′
TK ?K` ∼= E ? (f−1 × IdY × TT )!(K`) ∼= E ? (IdY × f × TT )!(K`) ∼= K` ? β′

TK.
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Consequently, we have

κ(β′
TK) = K−1

` ? β′
TK ?K` ∼= K−1

` ?K` ? β′
TK ∼= β′

TK.

In summary, the Φz,`,T is defined as following. For any f ∈ Ext∗
Z/`(P□?`

U , β′
TK[−d]), we

have
Φz,`,T (f) : P□?`

ϕz(U)
∼=κ(P□?`

U ) κ(f)−−→ κ(β′K[−d])∼=β′K[−d].

The functoriality of Φz,`,T follows since κ is a functor.

For U = T ∗X, the isomorphism P□?`
T ∗X
∼=κ(P□?`

T ∗X) is induced by the natural isomorphism
PT ∗X ? K ∼= K ? PT ∗X . So does κ(β′K[−d])∼=β′K[−d]. Then the induced isomorphism
Φz,`,T (f) is the identity on the cohomology level. □

Actually, the construction of κ(β′K)∼=β′K is functorial with respect to M = K. For
general M ∈ DZ/`(pt), we only need to replace K = δY 2!(π!

YK) in the proof by K(M) =

δY 2!(π!
YM). Consequently, we can construct an isomorphism of functors

Φz,`,T (−) : RHomZ/`(F`(U,K)T ,−)
∼=−→ RHomZ/`(F`(ϕ(U),K)T ,−).

Now, let us take M = F`(ϕ(U),K)T . Then IdF`(ϕ(U),K)T
provide us an isomorphism

Φ′
z,`,T := Φ−1

z,`,T (IdF`(ϕ(U),K)T
) = F`(U,K)T → F`(ϕ(U),K)T .

In summary, we have

Proposition 3.7. For a compactly supported Hamiltonian isotopy ϕ : T ∗X × I →

T ∗X, then there is an isomorphism, in the equivariant category, Φ′
z,`,T : F`(U,K)T →

F`(ϕz(U),K)T , for all z ∈ I.

Remark 3.8. All results of this section are true for H∗C`,∞(U,K), C`,(a,b](U,K), and
C+
`,T (U,K).

3.1.3. Fundamental class. In this subsection, let X be an oriented manifold of
dimension d with a fixed orientation.
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For U iU
↪−→ T ∗X an admissible open subset and T ≥ 0, the Theorem 3.5-(1) shows that

we have a morphism in the Z/`-equivariant derived category:

C`,T (T ∗X,K)
i∗U−→ C`,T (U,K),

and it induces a morphism on cohomology

H
BM,Z/`
d−q (X,K) ∼= HqC`,T (T ∗X,K)

i∗U−→ HqC`,T (U,K),

here the first isomorphism is given in (3.12). Since X is orientable, we have the equi-
variant fundamental class [X]Z/` of X in H

BM,Z/`
d (X,K). (See appendix B.)

Definition 3.9. If X is orientable with a fixed orientation. For an admissible open set
U

iU
↪−→ T ∗X, and T ≥ 0, we define its fundamental class ηT (U,K) as the image of [X]Z/`

under i∗U . I.e. ηT (U,K) = i∗U([X]Z/`) ∈ H0C`,T (U,K).

Remark 3.10. (1) In the point of view of appendix C, we have [X]Z/` = StD([X]),
where [X] is the non-equivariant fundamental class. Then we have η`,T (U,K) = StD(η1,T (U,K))

since StD commute with the 6-operations.

(2) For any open setW ⊂ X, under the restriction mapHBM,Z/`
d (X,K)→ H

BM,Z/`
d (W,K),

we have [X]Z/` 7→ [W ]Z/`. For any W such that U ⊂ T ∗W ⊂ T ∗X, we have ηT (U,K) =

i∗U([X]Z/`) = i∗U([W ]Z/`). In particular, one can take W = XU = pX(U) ⊂ X.

(3) By definition and the adjoint isomorphism, the fundamental class can be computed
as the following composition:

(F`(U,K))T → (F`(T ∗X,K))T ∼= RΓc(X,K) or−→ HdRΓc(X,K)[−d] ∼= K[−d].(3.16)

It is direct to see that the fundamental class is natural with respect to the morphism
C`,T (U,K)→ C`,T+c(U,K), i.e.,

η`,T (U,K) 7→ η`,T+c(U,K).

As a corollary of theorem 3.5, we have
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Proposition 3.11. (1) Let U ⊂ V ⊂ T ∗X be an inclusion of admissible open sets.
Through the natural morphism

H0C`,T (V,K)→ H0C`,T (U,K)

we have
η`,T (V,K) 7→ η`,T (U,K).

(2) Let ϕ : T ∗X × I → T ∗X be a compactly supported Hamiltonian isotopy and U be
an admissible open set. Recall the A-module isomorphism, defined in Theorem 3.5,

H∗(Φz,`,T ) : H∗C`,T (U,K)
∼=−→ H∗C`,T (ϕz(U),K).

Then we have H0(Φz,`,T )(η`,T (U,K)) = η`,T (ϕz(U),K) for all z ∈ I.

3.1.4. Tautological triangle of Chiu-Tamarkin complex. For an admissible
open set U with kernel PU , Lemma 2.11 shows PU ? PU

∼=−→ PU ∈ D(X × X). So, in
general, we have P ?`

U

∼=−→ PU for ` ∈ N. Also, we have QU

∼=−→ Q?`
U .

Now, let us describe P ?`
U more precisely. Consider

d : X`+1 × Rt → X2` × Rt, d(q0, . . . ,q`, t) = (q0,q1,q1, . . . ,q`−1,q`−1,q`, t).

We have

(3.17) H1 ? H2 ? · · ·H`
∼= Rπ(q1,...,q`−1)!d

−1Rs`t!(H1 ⊠H2 ⊠ · · ·⊠H`).

On the other hand, recall the proof of P ?`
U

∼=−→ PU , which is given by P ?`
U

∼=−→ K?(`−1)
∆X2 ×[0,∞) ?

PU . Then the isomorphism is obtained by applying G = Rπ(q1,...,q`−1)!d
−1Rs`t! to the

following morphism

P
L
⊠`
U → K

L
⊠(`−1)
∆X2 ×[0,∞)

L

⊠PU .

But the projection formula and the base change formula provides a natural isomorphism
of functors

F1,X ◦G ∼= F`,X .
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Then we have the following isomorphism

(3.18) F`,X(P
L
⊠`
U )∼=F1,X(P ?`

U )
∼=−→ F1,X(PU).

A similar result holds for QU , then we have

Proposition 3.12. For an admissible open set U , we have isomorphisms of sheaves of
K-module:

F`(U,K) ∼= F1(U,K) F+
1 (U,K) ∼= F+

` (U,K).

Notice that, this isomorphism is not in the equivariant derived category. Actually,
F1(U,K) is not an equivariant sheaves.

Recall that, if we apply the functor F1 to the defining triangle of U , then we have a
distinguished triangle:

F1(U,K)→ RΓc(X,K)→ F+
1 (U,K) +1−→ .

Proposition 3.12 shows that we can replace F1 above by F` to obtain a distinguished
triangle in the non-equivariant category. We would like to lift it to the equivariant
category.

Proposition 3.13. For an admissible open set U , we have a distinguished triangle in
the equivariant derived category:

(3.19) F`(U,K)→ RΓc(X,K)→ F+
` (U,K) +1−→ .

Then a distinguished triangle for Chiu-Tamarkin complex follows:

(3.20) RΓ(X,ωZ/`
X )→ C`,T (U,K)→ C+

`,T (U,K) +1−→ .

We call them the tautological exact triangles for the Chiu-Tamarkin complex.

Proof. Take the defining triangle of U , say:

PU
a−→ K∆X2 ×[0,∞)

b−→ QU
+1−→,

then we have ba = 0.
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By taking Steenrod operation and Rs`t!, we have two morphisms in the equivariant
derived categories:

P□?`
U

a□? `

−−→ K□?`
∆X2 ×[0,∞)

b□? `

−−→ Q□?`
U ,

and their composition is 0. But the Steenrod operation is not a triangulated functor,
so they can not form a distinguished triangle in an obvious way.

Let us take the cone of a□?` in the equivariant category, then we have a distinguished
triangle in the equivariant category:

(3.21) P□?`
U

a□? `

−−→ K□?`
∆X2 ×[0,∞)

c`

−→ C` +1−→ .

Since b□?`a□?` = 0, by applying the cohomological functor HomZ/`(−, Q□?`
U ), we have a

morphism ψ : C` → Q□?`
U that fits into the commutative diagram in the equivariant

category:

P□?`
U K□?`

∆X2 ×[0,∞) C`

Q□?`
U .

a□? ` c`

b□? `
ψ

+1

However, we do not know if ψ is an isomorphism. But we can show that F ′
`(ψ) (see

(3.4)) is an isomorphism in the equivariant category. Then the distinguished triangle
(3.19) follows.

We will argue that F ′
`(ψ) is an isomorphism in the following steps. Let us consider

the forgetful functor For : DZ/` → D. We will show that there exists an isomorphism
φ : For(F ′

`(C`)) → For(F ′
`(Q□?`

U )) such that For(F ′
`(ψ)) = φ in the non-equivariant

derived category D. However, it is proven in Proposition A.2 that For is a conservative
functor. Then F ′

`(ψ) is an isomorphism in the equivariant derived category DZ/`.

Therefore, we will only consider the non-equivariant derived category and then we omit
the functor For in the following. The idea for the proof is more or less the same as the
proof of Proposition 2.12. To the convenience of readers, we present details here.

Using the morphism P
L
⊠`
U → K

L
⊠`−1
∆X2 ×[0,∞)

L

⊠PU , we embed (3.21) into the following dia-
gram:
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P□?`
U K□?`

∆X2 ×[0,∞) C`

K□?`−1
∆X2 ×[0,∞) □? PU K□?`

∆X2 ×[0,∞) K□?`−1
∆X2 ×[0,∞) □? QU

a□? ` c`

=

+1

+1

Applying G′ = Rπ(q1,...,q`−1)!d
−1 (see (3.17)) to the diagram, we obtain a diagram below.

To be precise, we explicitly give the morphisms for distinguished triangles.

P ?`
U K∆X2 ×[0,∞) G′(C`) P ?`

U [1]

PU K∆X2 ×[0,∞) QU PU [1]

a?`

∼=

G′(c`)

=

e

∼=

a b d

So TR3 shows that there exists an isomorphism G′(C`) → QU which fills the diagram
into a commutative diagram. Then we take ψ′ to be the composition:

G′(C`)→ QU → Q?`
U ,

which is an isomorphism. Now, we have the commutative diagram

K∆X2 ×[0,∞) G′(C`)

QU Q?`
U .

G′(c`)

b ψ′

So we obtain one factorization b?` = ψ′G′(c`).

On the other hand, applying G′ to the factorization b□?` = ψc`, we obtain another
factorization b?` = G′(ψ)G′(c`).

Consequently, (ψ′−G′(ψ))G′(c`) = 0 determines an element u ∈ Hom(P ?`
U [1], Q?`

U ) such
that

ψ′ −G′(ψ) = ue.

However, we have
Hom(P ?`

U [1], Q?`
U ) ∼= Hom(PU [1], QU) ∼= 0.

Then we have
ψ′ = G′(ψ).
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Consequently, we have

φ = F1(ψ′) = F1(G′(ψ)) = F ′
`(ψ),

and φ = F1(ψ′) is an isomorphism since ψ′ is an isomorphism. □

3.2. Yoneda product and cup product

Let us study the Yoneda product on {Ext∗(PU ,Tc∗PU)}{c≥0}. Then we will formulate
the Yoneda product as a cup product on H∗C1,c(U,K) when X is orientable.

Definition 3.14. For α ∈ Exta(PU ,TA∗PU), β ∈ Extb(PU ,TB∗PU), we define the
shifted Yoneda product α • β ∈ Exta+b(PU ,T(A+B)∗PU) to be the composition:

PU
β−→ TB∗PU

TA∗α−−−→ T(A+B)∗PU .

The shifted Yoneda product is a Tc∗ shifted version of the usual Yoneda product on
Ext∗(PU , PU). It also appears in [BCZ21, Lemma 6.4.4]. We can see that it is unital
and associative like the usual Yoneda product. But an interesting thing is that, since
PU is a coalgebra in the symmetric monoidal category (D(X2), ?) by the kernel property
(as will be seen in the proof), we have the following stronger property.

Theorem 3.15. The shifted Yoneda product is unital, associative and graded commu-
tative.

Proof. First of all, the usual identity Id = IdPU
is the unit of the shifted Yoneda

product. The associativity follows from the associativity of the usual Yoneda product
and the functor identity T(A+B+C)∗ ∼= TA∗ ◦ TB∗ ◦ TC∗.

Let us prove the graded commutativity. As PU is a projector, we have an isomorphism

ν : PU ? PU
∼=−→ PU .

Now, let us define another product using ν. The convolution ? is a bifunctor, for
α ∈ Exta(PU ,TA∗PU), β ∈ Extb(PU ,TB∗PU), then we have

α ? β : PU ? PU → TA∗PU ? TB∗PU ∼= T(A+B)∗(PU ? PU).
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Then we define
α?β = T(A+B)∗(ν) ◦ (α ? β) ◦ ν−1.

We will apply the Eckmann-Hilton argument below to the shifted Yoneda product and
the convolution to prove that

(1) : α?β = α • β,

(2) : α • β is graded commutative.

To apply the Eckmann-Hilton argument we first notice the following identities:

• Id?α = α?Id = α,

• For αi ∈ Extai(PU ,TAi∗PU), i = 1, 2, 3, 4, we have

(α1 • α2)?(α3 • α4) = (−1)a2a3(α1?α3) • (α2?α4).

To prove them, let us notice that ? is a bifunctor, and that the graded shifting [1] defines
isomorphisms Ext∗(F,G[1]) ∼= Ext∗(F,G)[1] ∼= Ext∗(F [−1], G) such that the following
diagram is anti-commutative for all F,G:

Ext∗(F [1], G[1]) Ext∗(F,G[1])[−1]

Ext∗(F [1], G)[1] Ext∗(F,G).

Next, the Eckmann-Hilton argument uses the two above identities to conclude as fol-
lows:

α1?α2 = (α1 • Id)?(Id • α2) = (α1?Id) • (Id?α2) = α1 • α2

and

α1 •α2 = α1?α2 = (Id•α1)?(α2 • Id) = (−1)a1a2(Id?α2)• (α1?Id) = (−1)a1a2α2 •α1. □

Now, let us recall that, when X is orientable, we have the following isomorphism (see
(2.7)) of K-modules:

Θ : Ext∗(PU ,TT∗PU)
∼=−→ Ext∗(PU ,K∆X2 ×{T})∼=H∗C1,T (U,K)

[PU
α−→ TT∗PU ] 7→ α̃ = [PU

α−→ TT∗PU → K∆X2 ×{T}] 7→ N(α̃),
(3.22)
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here we use the orientation of X to identify K∆X2 ×{T} with β1,T,XK[−d] and the adjoint
isomorphism N is defined in (3.5).

We would like to expressflα • β =fiα?β into a more geometric form in the non-equivariant
Chiu-Tamarkin cohomology. Let us define a cup product on H∗C1,T (U,K).

Take Θ(α) ∈ HaC1,A(U,K) and Θ(β) ∈ HbC1,B(U,K) that correspond to α, β ∈

Ext−(PU ,T−∗PU).

Then, we consider

F2(α̃
L

⊠β̃) : F2(PU
L

⊠PU) α
L
⊠β−−→ T(A+B)∗F2(PU

L

⊠PU)→ T(A+B)∗F2(K∆X2×{0}

L

⊠K∆X2 ×{0}).

Recall Proposition 3.12, we take ` = 2 here. We denote the isomorphism therein by:

s = s(U) : F1(U,K)→ F2(U,K).

Therefore, we have

F2(PU
L

⊠PU) T(A+B)∗F2(PU
L

⊠PU)

F1(PU) T(A+B)∗F1(PU)

F2(α
L
⊠β)

s(U)

F1(α?β)

T(A+B)∗s(U)

On the other hand, consider the inclusion U ⊂ T ∗X. Then, we apply the naturality of
the morphism s to obtain

F2(PU
L

⊠PU) F2(K∆X2 ×{0}
L

⊠K∆X2 ×{0})

F1(PU) F1(K∆X2 ×{0}).

s(U)

η0(U,K)

s(T ∗X)

Then, we apply T(A+B)∗ to the second diagram, and put these two diagrams together
to obtain the commutative diagram

F2(PU
L

⊠PU) T(A+B)∗F2(PU
L

⊠PU) F2(K∆X2 ×{A}
L

⊠K∆X2 ×{B})

F1(PU) T(A+B)∗F1(PU) F1(K∆X2 ×{A+B})

F2(α
L
⊠β)

s(U)

F1(α?β)

T(A+B)∗(s(U))

T(A+B)∗(η0(U,K))

T(A+B)∗(s(T ∗X))

Now, the second row of the diagram is F1(fiα?β), and then let us defined
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Definition 3.16. Take α ∈ HaC1,A(U,K) and β ∈ HbC1,B(U,K). We define the cup
product to be

α ∪ β = T(A+B)∗(s(T ∗X))−1 ◦ F2(Θ−1(α)
L

⊠Θ−1(β)) ◦ s(U) ∈ Ha+bC1,A+B(U,K).

Then, our discussion here is summarized as

Proposition 3.17. The isomorphism of K-modules Θ in (3.22) is an isomorphism of
K-algebras.

Compare to the Yoneda product, the cup product is more geometrical. Actually, con-
sider the external tensor

α
L

⊠β : P
L
⊠2
U → K∆X2 ×{A}×∆X2 ×{B}[a+ b].

Next, we apply the Gysin morphism associated to the pair (∆̃,∆X4).

e : K∆X2 ×∆X2 ×{(A,B)} → K∆X4 ×{(A,B)} → K∆̃×{(A,B)}[a+ b+ d],

where ∆̃ = {(q,q′,q′,q) ∈ X4 : q,q′ ∈ X}, and the first map is the natural restriction.

In fact, the Gysin morphism is given by composion with the Thom class, which is given
by the following isomorphisms:

Extd(K∆X4 ×{(A,B)},K∆̃×{(A,B)}) ∼= Extd(K∆X4 ,K∆̃)

∼=Extd(K∆X2 ,KX2) ∼= Hd
∆X2 (X2,K) ∼= H0(X,K).

The last isomorphism comes from the excision and the Thom isomorphism. Then
1 ∈ H0(X,K) correspond to the Thom class

K∆X4 ×{(A,B)} → K∆̃×{(A,B)}[d].

Then, we obtain a class

e ◦ (α
L

⊠β) ∈ Exta+b+d(P
L
⊠2
U ,K∆̃×{(A,B)}).
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Finally, we apply Rs2
t! to e ◦ (α

L

⊠β) to obtain

Rs2
t!(e ◦ (α

L

⊠β)) ∈ Exta+b+d(Rs2
t!P

L
⊠2
U ,K∆̃×{A+B}).

Then, it is direct to use adjoint isomorphisms and the fact K∆̃×{A+B}[d] ∼= ∆̃∗π
!
X2K[−d]

to see that Rs2
t!(e ◦ (α

L

⊠β)) represents the cup product.

At the end, let us remark some corollaries and examples.

Remark 3.18. (1) Since PT ∗X
∼= K∆X2 ×[0,∞), we have that, for all T ≥ 0,

H∗C1,T (T ∗X,K) ∼= Ext∗(K∆X2 ×[0,∞),K∆X2 ×[T,∞)) ∼= Ext∗(KX ,KX) ∼= H∗(X,K).

It is known that the Yoneda product on Ext∗(KX ,KX) is the usual cup product on
H∗(X,K), see [Ive86]. So, the cup product we defined here is the same as the usual
cup product on H∗(X,K). Moreover, the morphism

H∗(X,K) ∼= H∗C1,T (T ∗X,K)→ H∗C1,T (U,K),

is a morphism of K-algebra.

(2) Using the Yoneda product, we see thatH∗C1,T (U,K) is a right module over Ext∗(PU , PU),
and a left-module over Ext∗(K∆X2 ×[T,∞),K∆X2 ×[T,∞)) ∼= H∗(X,K).

(3) The cup product is compatible with the persistence structure on H∗C1,T (U,K). So,
the cup product descents to a K -algebra structure on H∗C1,∞(U,K).

3.3. Cyclic structure and S1-equivariant Chiu-Tamarkin complex

In this section, we would like to present a formal discussion on the idea: The Chiu-
Tamarkin complex studies a discrete approximation of the S1 action. We will use the
structure maps of microlocal kernels to give an algebraic S1 action, i.e. mixed complex,
on the F`(U,K) for all `. Then we will define a S1-equivariant Chiu-Tamarkin complex.

3.3.1. Cyclic structure. The idea of Proposition 3.12 can help us to define a
pre-cyclic structure using Fn(U,K) for all n. Basically, the morphism

P
L
⊠n
U → K∆X2 ×[0,∞)

L

⊠P
L
⊠n−1
U ,
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and its cyclic permutations induce some morphisms

di : Fn+1(U,K)→ Fn(U,K)

tn : Fn(U,K)→ Fn(U,K),

for i ∈ [n]. Moreover, they satisfy the relations:

didj = dj−1di, i < j,

tn+1
n = Id,

in D(R). So we obtain a pre-cyclic object of D(R). Similarly, we can define a pre-
cocyclic object of D(R) using QU . Taking the stalk at T , we will obtain a pre-(co)cyclic
object of D(K−Mod).

A standard construction can help us define a mixed complex, in the sense of [Kas87],
associated with a pre-(co)cyclic complex. However, the problem here is that what
we have is only a pre-cyclic object in D(K − Mod). Even though we take injective
resolutions for every Fn(U,K)T , the relations they satisfied are only true up to chain
homotopy. So, in general, we can not easily obtain a pre-(co)cyclic complex in this way.
It is probably possible to track all homotopies to define a ∞-version of pre-(co)cyclic
complex, then it is possible to define a∞-version of mixed complex. But this is beyond
the scope of the discussion in the thesis and we will use a different approach based on
classical tricks.

In this way, we are going to construct a strict pre-(co)cyclic complex using resolutions.
Here, another difficulty is that if we consider PU → K∆X2 ×[0,∞), then we need to take an
injective resolution K∆X2 ×[0,∞) → I. But on the other hand, we need to use the fact that
K∆X2⊗F ∼= F∆X2 as chain complexes for a chain complex of sheaves F . This is not true
for general I. Instead, we can take an injective resolution QU → Q and then take a chain
morphism K∆X2 ×[0,∞) → QU

qis−→ Q. In this way, the representative of K∆X2 ×[0,∞) does

not change. Moreover, to achieve that Q
L
⊠` is c-soft, we need to assume the resolution Q

is flat. This is not true in general. So, it is better to assume K is a field. Then we can
run the 6-operations without deriving many things. Consequently, we can construct a
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pre-cocyclic complex using only QU . Then we can define a mixed complex F S1,+(U,K)T ,
and we will define F S1(U,K)T as the cocone of RΓS1

c (X,K)→ F S1,+(U,K)T .

First, let us recall some morphisms and define something new. Recall that we have

πn = πq : Xn × R→ R,

∆̃n = ∆̃X : Xn × R→ (X2)n × R,

∆̃n(q1, . . . ,qn, t) = (qn,q1,q1, . . . ,qn−1,qn−1,qn, t),

here we will only emphasise the index n since X is fixed. Points in the ith-copy of X2

are called (q1
i ,q2

i ), then the definition of ∆̃n means requiring q2
i = q1

i+1 = qi.

Besides, we define the partial diagonals δi : Xn → Xn+1,

δi(q1, . . . ,qn, t) = (q1, . . . ,qi+1,qi+1, . . . ,qn, t), i = 0, 1, . . . , n− 1,

δn(q1, . . . ,qn, t) = (q1,q2, . . . ,qn,q1, t),

and the cyclic permutation

τn : Xn+1 × R→ Xn+1 × R, (q1,q2, . . . ,qn,qn+1, t) 7→ (q2,q3, . . . ,qn+1,q1, t).

Then one has δjδi = δiδj−1 for i < j, τnδi = δi−1τn−1 for i ∈ [n] and τnδ0 = δn. So
(Xn+1, δi, τn) form a pre-cocyclic space.

Now, suppose U is admissible. Then we have a morphism K∆X2 ×[0,∞) → QU in D(X2×

R). We can equip an injective model structure on the category of chain complex C(X2×

R). Fibrant objects of the model structure are K-injective and injective chain complexes
of sheaves over X2×R. Then we can take a K-injective and injective resolution for QU ,
say QU → Q. In particular, Q is a complex of c-soft sheaves over X2×R. We also take
a flat and c-soft resolution of KX , say KX → I (for example the Godement resolution),
where I ∈ C≥0(X). Then for δ = δX2 , we have K∆X2 ×[0,∞) = δ!KX ⊠ K[0,∞) →

δ!I ⊠K[0,∞) is a flat and c-soft (relative to X2) resolution of K∆X2 ×[0,∞).
103



Since QU → Q is a K-injective resolution, we have the following isomorphisms of func-
tors,

(3.23) HomD(−, QU) ∼= HomD(−, Q) ∼= HomK(−, Q),

where D = D(X2 × R) and K = K(X2 × R).

Now, we apply the isomorphisms (3.23) to the diagram

K∆X2 ×{0} ← K∆X2 ×[0,∞)
qis−→ δ!I ⊠K[0,∞).

The resulting diagram is a commutative diagram of isomorphisms since Q ∼= QU ∈

D(X2).

Consequently, we have

(3.24) HomD(K∆X2 ×[0,∞), QU) ∼= HomK(K∆X2 ×{0}, Q) ∼= HomK(δ!I ⊠K[0,∞), Q).

We may take two chain maps,

K∆X2 ×{0} → Q← δ!I ⊠K[0,∞),

representing K∆X2 ×[0,∞) → QU using the isomorphisms (3.24). In particular, we have
the following commutative diagram of chain maps:

(3.25)
K∆X2 ×{0} Q

K∆X2 ×[0,∞) δ!I ⊠K[0,∞)

Lemma 3.19. Recall that K is a field. With above notation, we have an isomorphism
of complexes of sheaves over Xn+1 × R:

δi!∆̃−1
n snt!(Q⊠n) ∼= ∆̃−1

n+1(sn+1
t! ([i]Q⊠n+1)),

where [i]Q⊠n+1 = Q⊠i+1 ⊠ K∆X2 ×{0} ⊠ Q⊠n−i−1 for i = 0, 1, . . . , n − 1 and [n]Q⊠n+1 =

K∆X2 ×{0} ⊠Q⊠n. Moreover, the isomorphism represents the isomorphism

Rδi!∆̃−1
n Rsnt!(Q⊠n

U ) ∼= ∆̃−1
n+1(Rsn+1

t! ([i]Q⊠n+1
U )),
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in the derived category.

Proof. At the beginning, we assume i = n. Recall that we are working over a field
K, so we do not need to derive the tensor product.

First of all, Q is c-soft because Q is injective. By exercise II.14 of [Bre97], we have that
Q⊠n is c-soft. Precisely, the Künneth formula shows that if U, V ⊂ X2 × R are open,
then (Q⊠2)U×V is Γc-acyclic. Then a Mayer-Vietoris argument and the set of product
open sets {U × V } is a base of the product topology of (X2 × R)2 together show that
(Q⊠2)W is Γc-acyclic for all open sets W ⊂ (X2 × R)2. Then Q⊠2 is c-soft. So, Q⊠n is
c-soft for both projection and summation.

Take t′ = t1, t′′ = t2 + · · · + tn + tn+1, and t = t′ + t′′. Then we have a decomposition
of sn+1

t = s2
t ◦ (Idt0 × snt ). In this way, we first have

sn+1
t! (K∆X2 ×{0} ⊠Q⊠n

U ) ∼= s2
t!(K∆X2 ×{0} ⊠ snt!Q

⊠n
U ) ∼= K∆X2 ⊠ snt!Q

⊠n
U .

Here, since K-vector spaces are flat, we can use the non-derived projection formula.
Moreover, the non-derived proper base change is an isomorphism of functors. Then we
can apply the Künneth isomorphism, which is a combination of the projection formula
and the proper base change, to obtain the isomorphism of complexes. Moreover, Q⊠n

U

is snt -c-soft, and K∆X2 ×{0} ⊠Q⊠n
U is Idt1 × snt -c-soft. The first isomorphism descents to

the derived category. The last isomorphism also descents to the derived category since
K∆X2 ×{0} ⊠ snt!Q

⊠n
U is s2

t! c-soft. Now, we have

∆̃−1
n+1(sn+1

t! ([i]Q⊠n+1
U )) ∼= ∆̃−1

n+1(K∆X2 ⊠ snt!Q
⊠n
U ) ∼= ((d′)−1K∆X2 )⊗ (d−1snt!Q

⊠n
U ),

where d(q1,q2, . . . ,qn+1, t) = (q1,q2,q2, . . . ,qn,qn,qn+1, t) and d′(q1,q2, . . . ,qn+1, t) =

(qn+1,q1). The second isomorphism comes from the commutation of inverse image and
usual tensor.

Notice that the isomorphism (d′)−1K∆X2 = δn!KXn×R is an isomorphism in degree 0.
Then we have

δn!KXn×R ⊗ (d−1snt!Q
⊠n
U ) ∼= δn!((dδn)−1snt!Q

⊠n
U ) ∼= δn!(∆̃−1

n snt!Q
⊠n
U ).
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Here, we use the projection formula for δn, and this is an isomorphism of complexes.

For different i, we can apply τn several times times and use the relations τnδi = τn−1δi−1

for i ∈ [n] and τnδ0 = δn−1. Then we conclude using the isomorphism τ−1
n ∆̃−1

n snt!Q
⊠n
U
∼=

∆̃−1
n snt!Q

⊠n
U . □

With the notation of the lemma, we see that both sides of

δi!∆̃−1
n snt!(Q⊠n) ∼= ∆̃−1

n+1(sn+1
t! ([i]Q⊠n+1)),

are πn+1-c-soft complexes. Then one concludes that

π(n+1)!(∆̃−1
n+1(sn+1

t! ([i]Q⊠n+1))) ∼= πn!(∆̃−1
n snt!(Q⊠n)),

and they represent F+
n (U,K) in the derived category by [KS06, Proposition 14.3.4] since

both π(n+1)! and πn! have finite cohomological dimension. To simplify the notation, we
set F+

n,inj(U,K) = πn!(∆̃−1
n snt!(Q⊠n)).

Now, let us define the following morphisms

d+
i :F+

n,inj(U,K) ∼= π(n+1)!(∆̃−1
n+1(sn+1

t! ([i]Q⊠n+1)))

→ π(n+1)!(∆̃−1
n+1(sn+1

t! (Q⊠n+1))) = F+
n+1,inj(U,K),

and
t+n = (−1)nπ(n+1)!(∆̃−1

n+1(τ−1
n )) : F+

n+1,inj(U,K)→ F+
n+1,inj(U,K).

They represent
d+
i : F+

n (U,K)→ F+
n+1(U,K),

which is induced by K∆X2 ×[0,∞) → QU , and

t+n = (−1)nFn(τ−1
n ) : F+

n (U,K)→ F+
n (U,K),

in the derived category D(R).

We can verify that d+
i and t+n satisfy the following relations on chain level:

d+
j d

+
i = d+

i d
+
j−1, i < j,

t+n d
+
i = −d+

i−1t
+
n−1, i ∈ [n],
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t+n d
+
0 = (−1)nd+

n .

Then we conclude

Proposition 3.20. If K is a field, the data (F+
n+1,inj(U,K), d+

i , t
+
n )n∈N0 form a pre-

cocyclic complex (with sign) of c-soft sheaves over R.

Taking stalks over T ≥ 0, we obtain the a pre-cocyclic complex of K-vector spaces
(F+

n+1,inj(U,K)T , d+
i , t

+
n )n∈N0 .

The construction shows that, if we take another resolution Q′ of QU , the resulting
pre-cocyclic complexes (F+

n+1,inj(U,K)T , d+
i , t

+
n )n∈N0 are homotopy equivalent with each

other.

On the other hand, let us define a pre-cocyclic K-module (Fn+1,inj(T ∗X,K)T , di, tn)n∈N0

as follows: We first set Fn+1,inj(T ∗X,K)T =
(
π(n+1)!(∆̃−1

n+1(sn+1
t! (δ!I ⊠K[0,∞))⊠n+1))

)
T
,

which is isomorphic to
(
π(n+1)!(∆̃−1

n+1((δ!I)⊠n+1 ⊠K[0,∞)))
)
T

as chain complexes. Now,
a difference is that di is induced by K∆X2 ×[0,∞) → δ!I ⊠ K[0,∞). In this case, it is by
construction that (δ!I⊠K[0,∞))⊠n+1 is sn+1

t! -acyclic and πn+1-c-soft. So, we would like to
use K∆X2 ×[0,∞) rather than K∆X2 ×{0} to keep the correct direction of arrows. The defi-
nition of tn is the same. So, we have that Fn+1,inj(T ∗X,K)T represent Fn+1(T ∗X,K)T
in D(R). Notice that I is flat for all ring K regardless requiring K to be a field. For
compatibility with the definition of F+

n,inj, we keep assuming K to be a field here.

The morphism δ!I ⊠K[0,∞) → Q together with the diagram (3.25) induce a morphism
of pre-cocyclic complexes:

(Fn+1,inj(T ∗X,K)T , di, tn)→ (F+
n+1,inj(U,K)T , d+

i , t
+
n ),

that represents Fn+1(T ∗X,K)T → F+
n+1(U,K)T in D(K−Mod).

We will use them to construct two mixed complexes and a morphism of mixed com-
plexes. To begin with, let us review the basic notions and constructions about mixed
complexes.
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3.3.2. Mixed complexes. Consider the dg-algebra K[ε] where |ε| = −1 and ε2 =

0. A dg-module over K[ε] is a triple (M, b,B) where (M, b) is a cochain complex, |b| =
−|B| = 1 and b2 = B2 = Bb + bB = 0, which is also called a mixed complex [Kas87].
The derived category of dg-module of K[ε] is called the mixed derived category. For
our later applications, we will use the dg derived category for dg algebras.

On the other hand, consider the dg-algebra K[u] where |u| = 2 and d = 0. Then we
have the Koszul duality (see [GKM98]):

Ddg(K[ε]−Mod) ∼= Ddg(K[u]−Mod), (M, b,B) 7→MhS1 = (MJuK, δ = b+ uB),

where MJuK is the (u)-adic completion of M ⊗K[u]. Using the following free resolution
of K,

· · · ε−→ K[ε] ε−→ · · · ε−→ K[ε] ε−→ K[ε] ε=0−−→ K,

we have that RHomK[ε](K,M) ∼= MhS1 = (MJuK, δ = b + uB) is the homotopy fixed
point of the mixed complex (M, b,B).

We can also define the homotopy orbit complex and the Tate complex, say

MhS1 = M
L
⊗K[ε]K = (M((u))/uMJuK, δ = b+ uB),

MTate = MhS1 ⊗K[u] K[u, u−1] = (M((u)), δ = b+ uB).

These three K[u] modules are related by the following distinguished triangle:

MhS1 →MTate →MhS1 [2] +1−→,

due to the following distingushed triangle:

KJuK→ K((u))→ K((u))/KJuK ∼= u−1K((u))/KJuK +1−→ .

Remark 3.21. In the literature, A∞-modules of K[ε] are called S1-complexes or multi-
complexes or∞-mixed complexes, see [BO16, DSV15, Gan19, Zha19] and references
therein, the mixed complex is call the strict S1-complex. On the module theory over
K[ε], we will mainly follow the narrative of [Gan19] even though the author focus on
A∞-modules.
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We also have the equivalence ([BL94])

Ddg(K[u]−Mod) ∼= DS1,dg(pt),

which treat the S1-equivariant derived over point.

Now, I would like to explain how to equip a mixed complex from a pre-cocyclic chain
complex, i.e. pre-cocyclic object valued in the abelian category C(K −Mod) of chain
complex of K-module. The idea is first found by Tsygan in [Tsy83] and independently
by Loday-Quillen in [LQ84].

Now, take a pre-cocyclic complex C = (Cp, di, tp, ∂p), where di are face maps, tp are
cyclic permutations, and ∂p is the differential of the complex Cp. First, we define

d =
n∑
i=0

(−1)idi, d′ =
n−1∑
i=0

(−1)idi.

They satisfies d2 = (d′)2 = 0, and d∂ = ∂d, d′∂ = ∂d′. So (Cq
p , d, (−1)p+q+1∂) and

(Cq
p , d

′, (−1)p+q+1∂) are two bicomplexes.

Then consider the product totalization of these two bicomplexes. Specifically, we set
Tot(C)n = ∏

q+p=nC
q
p and the differential b = d + (−1)n+1∂. Then the totalization is

(Tot(C), b = d+ (−1)n+1∂). Similarly, we have (Tot(C), b′ = d′ + (−1)n+1∂).

On the other hand, the cyclic permutation satisfies the relations (1 − t)d = d′(1 − t).
So we have a morphism of complexes:

(Tot(C), b = d+ (−1)n+1∂)→ (Tot(C), b′ = d′ + (−1)n+1∂).

Now, taking the mapping cocone of this chain map, we get a complexM(C) = (Tot(C)⊕

Tot(C)[−1], b). We also define a degree −1 morphism B : M(C) → M(C). Precisely,
we have

b =

Ñ
b 0

1− t −b′

é
, B =

Ñ
0 N

0 0

é
,

where N = 1 + t + · · · + tn. It is direct to see that B2 = B b + bB = 0. So, we have
that M(C) = (M(C), b, B) form a mixed complex.

109



If C comes from a cocyclic complex C = (Cp, di, si, t, ∂) (satisfying some other relations
about si), then we have b′s + sb′ = Id where s = sn, and the following morphism is a
homotopy equivalence of mixed complexes(

1 s(1− t)
)t

: (Tot(C), b, B)→ (M(C), b, B),

where B = Ns(1 − t). The mixed complex (M(C), b, B) is functorial with respect to
morphisms of pre-cocyclic complexes, but (Tot(C), b, B) is not. Moreover, if there is
a quasi-isomorphism of pre-cocyclic complexes, then we have a quasi-morphism of the
associated mixed complex.

3.3.3. S1-equivariant Chiu-Tamarkin complex. Now, we apply the construc-
tion to the morphism of pre-cocyclic complexes

(Fn+1,inj(T ∗X,K), di, tn)→ (F+
n+1,inj(U,K)T , d+

i , t
+
n ).

As we said, different choices of resolutions Q and I produce homotopy equivalences
of associated mixed complexes. Different choices of morphism δ!I → Q produce a
homotopy commutative diagram of mixed complexes. Consequently, we have

Proposition 3.22. If K is a field. Then for an admissible open set U , the data

F S1,+
• (U,K)T := M(F+

•,inj(U,K)T , d+
i , t

+
n ),

F S1

• (T ∗X,K)T := M(F•,inj(T ∗X,K)T , di, tn),

define objects of Ddg(K[ε]−Mod). The degree 0 closed morphism

F S1

• (T ∗X,K)T → F S1,+
• (U,K)T

defines an object in Mor(Ddg(K[ε]−Mod)).

Presently, even though we can not define F S1(U,K) for general U , the situation of U =

T ∗X is quite simple as we presented. On the other hand, the defining triangle of kernel
(PU , QU), and consequently the tautological triangle ((3.20)), indicate that we should
expect F S1(U,K) to be the cocone of the morphism F S1

• (T ∗X,K)T → F S1,+
• (U,K)T .
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Therefore, we define

(3.26) F S1

• (U,K)T := cone(F S1

• (T ∗X,K)T [−1]→ F S1,+
• (U,K)T [−1]).

Using the equivalence Ddg(K[ε]−Mod) ∼= Ddg(K[u]−Mod) ∼= DS1,dg(pt), we also define
objects F S1,+(U,K)T , F S1(U,K)T of DS1,dg(pt) and we can also identify F S1(T ∗X,K)T
with RΓc(X,KS1) in DS1,dg(pt), where we treat X as a trivial S1-spaces.

Definition 3.23. For a field K, an admissible open set U , and T ≥ 0, we define the
S1-equivariant Chiu-Tamarkin complex to be

CS1,+
T (U,K) :=RHomK[ε](F S1,+

• (U,K)T ,K[1− d]) ∼= RHomS1(F S1,+(U,K)T ,K[1− d]),

CS1

T (U,K) :=RHomK[ε](F S1

• (U,K)T ,K[−d]) ∼= RHomS1(F S1(U,K)T ,K[−d]),

where we equip K with the trivial mixed complex structure, the RHomK[ε] stands for
the derived hom in the dg mixed derived category.

Remark 3.24. (1) In the dg derived category Ddg(K[ε] − Mod), the definition of
CS1
T (U,K) is canonical. If we work in the usual derived category, CS1

T (U,K) is not
canonical but its cohomology, what we really care, is well defined.

(2) In practice, we can find a good representation of CS1
T (U,K) using topological res-

olution of Fn(U,K)T ∼= Γc(Wn,K). In this case, we can take a resolution of KWn

directly rather than take a resolution of QU , and then apply further manipulations like
Lemma 3.19. In particular, we can define CS1

T (U,K) over any coefficient ring K for this
particular case. So far, all examples fit into this remark. But the author does not know
how this idea works in general. See more in Remark 3.25.

Consequently, we have an exact sequence of mixed complexes:

0→ F S1,+(U,K)T [−1]→ F S1(U,K)T → RΓS1

c (X,K)→ 0,

and the tautological exact triangle of S1-equivariant Chiu-Tamarkin complex:

(3.27) RΓ(X,ωS1

X )→ CS1

T (U,K)→ CS1,+
T (U,K) +1−→ .
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The persistence module structure still exists here. But a little difference is we first use
the persistence structure on CS1,+

T (U,K), then we derive the persistence structure on
CS1
T (U,K). This is possible because the cone is functorial in the dg derived category.

Then we can also define the T =∞ version and action window version. By definition,
we have H∗CS1

T (U,K) and H∗CS1,+
T (U,K) are left modules over Ext∗

S1(K,K) ∼= K[u]. As
we computed before, one has H∗CS1

T (T ∗X,K) ∼= HBM
d−∗ (X,K)⊗K[u] for all T ∈ [0,∞],

with trivial K[u] action on HBM
d−∗ (X,K).

The functoriality and invariance are still true. Our proof of functoriality and invariance
of F+

n work for all n. Then the discussion on well-definiteness also demonstrate the
corresponding properties for CS1,+

T (U,K) and CS1
T (U,K).

The S1-equivariant fundamental class ηS1
T (U,K) ∈ H0CS1(U,K) is defined as the image

of [X]S1 ∈ HBM,S1

d (X,K) under the morphism

HBM,S1

d (X,K) ∼= H0RΓ(X,ωS1

X )→ H0CS1

T (U,K),

which is induced by taking H0 for the tautological distinguished triangle (3.27).

An important feature of cyclic cohomology is the Connes’ long exact sequence, or the
Gysin long exact sequence. Precisely, for trivial mixed complex K, we have Ext∗

K[ε](K,K) ∼=
K[u]. Then there is a morphism u : K→ K[2]. One can embed it into the distinguished
triangle

K[ε] ε=0−−→ K u−→ K[2] +1−→ .

For any mixed complex M = (M, b,B), taking RHomK[ε](−,M), we have the distin-
guished triangle

MJuK/uMJuK→MJuK u−→MJuK +1−→,

of K[u]-modules. Then it induces long exact sequence of K-vector spaces:

Extp−2
K[u](MJuK,K) ·u−→ ExtpK[u](MJuK,K)→ ExtpK[u](MJuK/uMJuK,K) +1−→ .

Using the equivalence Ddg(K[ε]−Mod) ∼= Ddg(K[u]−Mod), we have the following long
exact sequence

Extp−2
K[ε](M,K) ·u−→ ExtpK[ε](M,K)→ ExtpK(M,K) +1−→ .
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For the third term, it is due to

ExtpK[u](MJuK/uMJuK,K) ∼= ExtpK(M,K),

where we treat M = (M, b) as a usual complex on the right hand side.

Now, we can take M = F S1,+(U,K) and M = F S1(U,K) to obtain the following long
distinguished triangles:

Hp−2CS1,+
T (U,K) ·u−→ HpCS1,+

T (U,K)→ ExtpK(F S1,+
• (U,K)T ,K) +1−→,

Hp−2CS1

T (U,K) ·u−→ HpCS1

T (U,K)→ ExtpK(F S1

• (U,K)T ,K) +1−→ .

So, let us compute ExtpK(F S1,+(U,K)T ,K) and ExtpK(F S1(U,K)T ,K).

For F S1,+
• (U,K)T , the pre-cosimplicial complex structure is (F+

n+1(U,K)T , d+
i ). Now,

consider the cutoff pre-cosimplicial complexG = (Gn+1(U,K)T , 0) such thatG1(U,K)T =

F1(U,K)T , Gn+1(U,K)T = 0 for n ≥ 1. We have a cosimplicial map

F•(U,K)T → G•(U,K)T .

We already know that all d+
i are isomorphisms in the derived category of sheaves D(R),

then the induced map

(Tot(F ), b+ ∂)→ (Tot(G), b+ ∂),

is a quasi isomorphism. However G•(U,K)T = (Gn+1(U,K)T , 0) is concentrated in the
level n = 0, we have

F S1,+
• (U,K)T ∼= (Tot(G), b) = F+

1 (U,K) in D(K−Mod).

For F S1(U,K)T , by forgetting B, we have a distinguished triangle in D(K−Mod):

F S1,+(U,K)T [−1]→ F S1(U,K)T → RΓc(X,K) +1−→ .

But we already know, in D(K−Mod), that F S1,+(U,K)T [−1] ∼= F+
1 (U,K)T [−1]. Then

we can conclude that F S1(U,K)T ∼= F1(U,K)T in D(K −Mod) using the tautological
triangle (3.19) of F1.
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So, we obtain the Connes’ long exact sequence or the Gysin long exact sequence for
S1-equivariant Chiu-Tamarkin cohomology:

Hp−2CS1,+
T (U,K) ·u−→ HpCS1,+

T (U,K)→ HpC+
1,T (U,K) +1−→,

Hp−2CS1

T (U,K) ·u−→ HpCS1

T (U,K)→ HpC1,T (U,K) +1−→ .
(3.28)

It is direct to see that under the morphism HpCS1
T (U,K) → HpC1,T (U,K), the funda-

mental class ηS1
T (U,K) is mapped to η1,T (U,K).

For the subgroup Z/` ⊂ S1 with ` ≥ 2, we have the restriction functor:

Res` : DS1(pt)→ DZ/`(pt).

Question: Do we have an isomorphism below?

Res`(F S1(U,K)T ) ∼= F`(U,K)T .

It would induce a morphism of Chiu-Tamarkin complex:

HqCS1

T (U,K)→ HqC`,T (U,K).

It is a module homomorphism, with respect to the algebras Ext∗
S1(K,K) = K[u] and

Ext∗
Z/`(K,K). Under the morphism, ηS1

T (U,K) should be mapped to η`,T (U,K).

Remark 3.25. In practical computations of chapter 4, all S1-structures have already
been observed and realized by some homotopy types equipped with a S1-action. In this
case, we can define F S1(U,K)T directly, and it is quasi isomorphic to the cone definition
of F S1(U,K)T .

Specifically, let us remark on a typical situation we will face. For fixed T , we will find
that

Fn(U,K)T ∼= RΓc(Wn,K),

where Wn ⊂ Y n is a sub CW -complex of a product manifold for a smooth manifold Y .
Also, the face maps di are realized by diagonal maps ∆i at the ith position of Y n, the
cyclic permutation is realized by cyclic permutation of factors of Y n. In this way, (W•)

will form a pre-cocyclic space.
114



Moreover, di are homotopy equivalence in practice, then we can reduce the computation
of H∗CS1

T (U,K) to a computation of cyclic cohomology of a pre-cyclic complex that
comes from the cohomology of the pre-cocyclic space (W•).

This pre-cyclic complex will compute (co)homology of the fat geometric-realization of
the pre-cocyclic space (W•). For a pre-cocyclic space, the method of Jones shows that
the fat geometric realization |W•| of (W•) (as a simplicial space) is a S1-space([Jon87]).

Another application for di being homotopy equivalence is that, under mild conditions
(true for all known examples), we have

|W•| ∼= |W`| ∼= |W1|,

as S1-spaces. Then our computation for HqCS1
T (U,K) will be reduced to compute the

S1-equivariant cohomology of |W 1| ∼= W 1. Moreover, we observe that there exists a
natural S1-action on |W1| ∼= W1 and the natural S1-action is the same as the S1-action
on |W•| ∼= |W1| ∼= W1 induced by Jones’ construction.

We also observe that the Z/`-action, induced by cyclic permutation, on W` comes
from the restriction of the S1-action under the identification |W`| ∼= |W1|. So, in this
situation, the answer to the restriction isomorphism question is positive.

3.4. Geometry of F`(U,K)

In this section we assume that U is dynamically admissible and we give a more accessible
expression of the Chiu-Tamarkin complex using sheaf quantization. We then discuss
the underlying geometry.

Following ideas of Chiu, we first compute F`(U,K) ∼= Rπq!‹∆−1
X

Å
Rs`t!P

L
⊠`
U

ã
going back

to the construction of PU .

We recall that K is the sheaf quantization of a Hamiltonian Rm
z action on T ∗X with a

moment map µ, Ω ⊂ Rm
ζ and U = µ−1(Ω). Then we have PU ∼= K̂ ◦ KΩ ∼= K ?ÈKΩ ∼=

K
πt(supp(ÍKΩ)) ?

ÈKΩ, where the last isomorphism is given in Remark 2.17.
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As a corollary of the proper base change and the projection formula, we have the
following:

P
L
⊠`
U
∼= (K ?ÈKΩ)

L
⊠` ∼= Rπz!Rs2

R`!

(
π−1
t2 K

L
⊠` L⊗π−1

t1
ÈKΩ

L
⊠`
)
.

Next, we have

F`(U,K) ∼= Rπq!‹∆−1
X Rs`t!Rπz!Rs2

R`!

(
π−1
t2 K

L
⊠` L⊗π−1

t1
ÈKΩ

L
⊠`
)

∼= Rπz!Rs`t!Rs2
R`!

(
π−1
t2

Å
Rπq!‹∆−1K

L
⊠`
ã

L
⊗π−1

t1
ÈKΩ

L
⊠`
)
,

where, z = (z1, . . . , z`) ∈ (Rm)`, ti = (t1i , . . . , t`i) ∈ R` for i = 1, 2, and t = (t1, . . . , t`) =

s2
R`(t1, t2). Now, let z = z1 + · · · + z` and take t′i = t1i + · · · + t`i . Using this change of

coordinate, we have the decomposition πz = πzs
`
z and s`ts

2
R` = s2

t′(s`t1 × s
`
t2). Therefore,

we obtain

F`(U,K) ∼= Rπz!Rs`t!Rs2
R`!

(
π−1
t2

Å
Rπq!‹∆−1K

L
⊠`
ã

L
⊗π−1

t1
ÈKΩ

L
⊠`
)

∼= Rπz!Rs2
t′!Rs`z!R(s`t1 × s

`
t2)!

(
π−1
t2

Å
Rπq!‹∆−1K

L
⊠`
ã

L
⊗π−1

t1
ÈKΩ

L
⊠`
)

∼= Rπz!Rs2
t′!Rs`z!

Å
π−1
t′2

Ä
Rπq!‹∆−1K□?`

ä L
⊗π−1

t′1
ÈKΩ

□?`
ã
.

(3.29)

The formula shows, as the construction itself, that we can consider separately the
Hamiltonian action and the cut-off by Ω. Let us study the Hamiltonian action first. In
view of (3.29), it is convenient to define

CL`(K) := Rπq!(‹∆−1(K□?`)) ∈ DZ/`((Rm
z )` × Rt),

CL`(K) := Rs`z∗ CL`(K) ∈ DZ/`(Rm
z × Rt).

(3.30)

Here, in the definition, we use the same formula as the formula for F`,X (See (3.2)).
But, here, as πq is projected to Rm

z × R, we use a different notation CL`(K).

The sheaves CL`(K) and CL`(K) encode the cohomology information of a discrete
Hamiltonian loop space. Precisely, we have
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Proposition 3.26. With the notation (3.30) we have

(1) The sectional microsupport µs(CL`(K)), which is a subset of T ∗(Rm
z )`, is contained

in (zj, ζj) :
There exist (qj,pj) ∈ T ∗((X2)`) such that

(qj+1,pj+1) = zj · (qj,pj), ζj = −µ(qj,pj) j ∈ Z/`


(2) CL`(K) ∼= (s`z)−1Rs`z∗CL`(K), CL`(K) ∼= Rs`z∗(s`z)−1CL`(K).

Proof. (1) It follows directly from the functorial estimate of microsupport. First,
the formula (1.26) shows that

µs(K□?`) ⊂ {(zj, ζj,qj,−pj,q′
j,p′

j) : (q′
j,p′

j) = zj · (qj,pj), j ∈ Z/`}.

The transpose derivative of ‹∆ is given by

d‹∆∗(q`,q1, . . . ,q`−1,q`; p1,p2, . . . ,p2`−1,p2`) = (q1, . . . ,q`; p2 + p3, . . . ,p2` + p1).

By the bound (1.4) (3), we deduce that µs(‹∆−1(K□?`)) is a subset of(zj, ζj,q′′
j ,p′′

j ) :
There exist (qj,−pj,q′

j,p′
j) ∈ T ∗((X2)2`) such that (q′

j,p′
j) = zj · (qj,pj),

q′′
j = q′

j = qj+1, p′′
j = p′

j − pj+1, ζj = −µ(qj,pj) j ∈ Z/`

 .

Finally, let us apply the non proper estimate Theorem 1.7.

The set π#
q′′(SS(‹∆−1(K□?`))) comes from forgetting q′′

j for all j from SS(‹∆−1(K□?`)).
Then (zj, ζj, t, 1) ∈ µs(CL`(K)) if there exists a sequence (znj , ζnj ,p′′n

j ) ∈ π#
q′′(SS(‹∆−1(K□?`)))

such that znj → zj, ζnj → ζj, and p′′n
j → 0.

On the other hand, the relations above imply that there exists (qnj ,−pnj ,qj ′n,pj ′n) ∈

T ∗((X2)`) such that (qj ′n,pj ′n) = znj · (qnj ,pnj ) and q′′n
j = q′n

j = qnj+1, p′′n
j = p′n

j −

pnj+1, ζ
n
j = −µ(qnj ,pnj ). So the continuity of the group action and the moment map

shows that, after taking limit n → ∞, we have (q′
j,p′

j) = zj · (qj,pj) and q′′
j = q′

j =

qj+1, 0 = p′
j − pj+1, ζj = −µ(qj,pj). Then we have that µs(CL`(K)) is contained in(zj, ζj) :

There exist (qj,−pj,q′
j,p′

j) ∈ T ∗((X2)`) such that (q′
j,p′

j) = zj · (qj,pj),

q′′
j = q′

j = qj+1, 0 = p′′
j = p′

j − pj+1, ζj = −µ(qj,pj) j ∈ Z/`

 .
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Finally, we simplify the notation by reducing the variables with primes.

(2) If (zj, ζj) ∈ µs(CL`(K)), there exists (qj,pj) ∈ T ∗((X2)`) such that (qj+1,pj+1) =

zj · (qj,pj). Therefore, the invariance of the moment map shows that

ζj+1 = µ(qj+1,pj+1) = (qj,pj) = ζj, j ∈ Z/`.

Then, the isomorphism follows from [KS90, Proposition 5.4.5(ii)]. □

Remark 3.27. If K is a sheaf quantization from a non-autonomous Hamiltonian func-
tion, then the microsupport estimate for CL`(K) is still true. But the second statement
is not true in this case.

Now, using the projection formula, we can write the formula (3.29) as

(3.31) F`(U,K) ∼= Rπz!Rs2
t!

Å
π−1
t2 CL`(K)

L
⊗π−1

t1 Rs`z!
ÈKΩ

□?`
ã
.

Next, let us study Rs`z!
ÈKΩ

□?` ∼= Rs`(z,t2)!
ÈKΩ

L
⊠`

. First, with the help of [D’A13, Section
6, Appendix A], ÈKΩ is the (inverse) Fourier-Sato transform K̂Ω′ of KΩ′ , where Ω′ =

{(ζ, τ) : τζ ∈ Ω, τ > 0}. Now, using the functorial properties of the Fourier-Sato
transformation (see [KS90, Section 3.7]), and writing in the same way the two Fourier
transforms, we have:

Rs`z!
ÈKΩ

□?` ∼= Rs`(z,t2)!K̂Ω′

L
⊠` ∼= Rs`(z,t2)!K̂

L
⊠`
Ω′
∼= Rs`(z,t2)!

‘KΩ′` ∼= ¤�(ts`(z,t2))−1KΩ′` .

Since the transpose of the summation map s`(z,t2) is the diagonal map δ(z,t2)` , we conclude
that

Rs`z!
ÈKΩ

□?` ∼= Rs`(z,t2)!K̂Ω′

L
⊠` ∼= Ÿ�δ−1

(z,t2)`KΩ′` ∼= K̂Ω′ ∼= ÈKΩ.

By the Steenrod’s construction in appendix C, our external tensor power is in fact an
object of the Z/`-equivariant derived category. We need to mention that the Fourier
transform (of any version) is a convolution functor defined by a kernel, which is a
constant sheaf supported on a closed subset. So, on the product space, the Fourier
transform is defined by a kernel that is a constant sheaf supported on a product of
the same closed subsets. So, the kernel is a Z/`-equivariant sheaf. Moreover, the
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Steenrod’s construction is compatible with the Grothendieck 6-operations. So, the
Fourier transform can be defined on the equivariant derived category. Finally, all maps
here are Z/`-equivariant with respect to cyclic permutation action and the formulas we
used here are valid in the equivariant category. In conclusion, all identities here are
true in the equivariant derived category.

Consequently, (3.31) could be read as

F`(U,K) ∼= Rπz!Rs2
t!

Å
π−1
t2 CL`(K)

L
⊗π−1

(q,t1)
ÈKΩ

ã
∼= Rπz!

Ä
CL`(K) ?ÈKΩ

ä
.(3.32)

From this formula, the study of F`(U,K) is reduced to understanding CL`(K).

The m = 1 case is particularly useful for our applications. Now Ω = (−∞, 1) andÈKΩ ∼= K{(z,t):−t≤z≤0}. For T ≥ 0, (3.32) shows

α`,X,T (P
L
⊠`
U ) ∼= F`(U,K)T ∼= RΓc

Å
Rz × R2

(t1,t2);
Å
CL`(K)

L

⊠KRt2

ã
Z

ã
,(3.33)

where Z = {(z, t1, t2) : t1 + t2 = T,−t2 ≤ z ≤ 0}.

Again, using the formula (3.32), we obtain the following action spectrum estimate of
the microsupport of F`(U,K) for dynamically admissible sets.

Lemma 3.28. Let U = {H < 1} be a dynamically admissible set defined by a Hamil-
tonian function H. If the boundary ∂U is a non-degenerated hypersurface of restricted
contact type (RCT) given by ∂U = {H = 1}, then we have

(3.34) µsL(F`(U,K)) ⊂
ß
t ∈ R : t =

∣∣∣∣ ∫
c
pdq

∣∣∣∣ for a closed orbit c of ϕHz in ∂U

™
.

Actually, since F1(U,K) ∼= F`(U,K) in D(R) (by Proposition 3.12), we only verify the
proposition for F1(U,K) (see Definition 1.8). This estimate is a corollary of (2.12), it
also appears in [Zha20, formula 74].

Geometrically, we call the right hand side the action spectrum of the Reeb action in
∂U .
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Proof. By assumption, we have U = {H ≤ 1}. Recall the microsupport bound
(2.12), we have the estimate

µsL(PU) ⊂{(q,−p,q,p, 0) : (q,p) ∈ U}∪

{(q,−p,q′,p′,−
∫
c
α) : (q′,p′) = ϕHz (q,p) ∈ ∂U, z < 0},

where c is the path s ∈ [z, 0] 7→ ϕHs (q,p).

Recall that F1(U,K) ∼= Rπq!(∆−1(PU)), then we have

µsL(∆−1(PU)) ⊂{(q,p, 0) : H(q,p) ≤ 1}∪

{(q,p,−
∫
c
α) : (q,p) = ϕHz (q,p) ∈ ∂U, z < 0}.

Then the curve c defined as above is a closed orbit of ϕHs (q,p), i.e. c(z) = c(0). Now,
we need the non proper pushforward estimate Theorem 1.7.

We remark that t = 0 ∈ µsL(F1(U,K)) since the constant orbits, which have action 0,
occur here.

Now, for t > 0, if (t, 1) ∈ SS(F`(U,K)) then there exists (qn,pn, tn, τn) and zn < 0

such that τn → 1, tn → t, and (qn,pn) = ϕznH(qn,pn). Let cn(s) = ϕHs (s), s ∈ [zn, 0],
then tn = −

∫
cn pdq.

But the non-degenerate assumption of the hypersurface ∂U shows that the action spec-
trum of ∂U is discrete. So, tn = −

∫
cn pdq → t means that tn = t for all n. On the

other hand, for two orbits cn and cm, if they are different, i.e. assume zn 6= zm, we have

0 =
∫
cn−cm

pdq =
∫ zm

zn
pdq.

Therefore, it means that we get a non-constant closed Reeb orbit in ∂U which has 0

action. This is impossible since ∂U is of RCT. Therefore, all zn are the same and we
obtain the unique orbit c = cn for all n. The absolute value appears since

∫
c pdq < 0

when z = zn < 0. □
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For the S1-equivariant theory, it does not make sense to talk about the microsupport
estimate since we do not have a sheaf F S1(U,K) over R. But the estimate (3.34) shows
that

Corollary 3.29. Under the same condition of Lemma 3.28. For (T, T ′] ⊂ [0,∞), ifß
t ∈ R : t =

∣∣∣∣ ∫
c
pdq

∣∣∣∣ for a closed orbit c of ϕHz in ∂U

™
∩ (T, T ′] = ∅,

then the morphism,
F S1(U,K)T ′ → F S1(U,K)T ,

is an isomorphism in D(K[ε]−Mod).

Proof. The estimate (3.34) shows that the morphism,

F`(U,K)T ′ → F`(U,K)T ,

is an isomorphism for all `. Then the result follows because we use all F` to defines
F S1 . □

So far, we find two different ways to understand F`(U,K). Initially, from the definition of
F`(U,K), we first cut off the energy of a Hamiltonian isotopy up to Legendre transform
to obtain the kernels and then use the functor αT to obtain cohomology of some discrete
loop space. On the other hand, the results of this section shows, we can study discrete
loops of a Hamiltonian isotopy first, and then cut off energy up to Legendre transform.
The result of the section clarifies that these two ways are the same. The second way
is more direct than the first in many cases; we will see more about this point of view
when doing computation for toric domains and the unit cotangent bundle.

3.5. Capacities

Now, for ` ∈ N≥2, p` is the minimal prime factor of `, and Fp`
is the finite field of order

p`. The Yoneda algebra A = Ext∗
Z/`(Fp`

,Fp`
) is isomorphic to Fp`

[u, θ] (See (B.3)),
where |u| = 2, |θ| = 1, and θ2 = ku (k = 0 if ` is odd and k = `/2 if ` is even).
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Definition 3.30. For an admissible open set U and k ∈ N we define

Spec(U, k) :=

T ≥ 0 :
∃p prime such that ∀` ∈ N≥2, p` ≥ p,

∃Λ` ∈ H∗C`,T (U,Fp`
), η`,T (U,Fp`

) = ukΛ`

 ,

and

(3.35) ck(U) := inf Spec(U, k) ∈ [0,+∞].

In general, if U is not admissible, then we define

ck(U) = sup{ck(V ) : V ⊂ U, V is admissible}.

In the following, we will prove step by step that (ck)k∈N defines a sequence of non-trivial
symplectic capacities.

Theorem 3.31. The functions ck : Open(T ∗X)→ [0,∞] satisfy the following:

(1) ck ≤ ck+1 for all k ∈ N.

(2) For two open sets U1 ⊂ U2, we have ck(U1) ≤ ck(U2).

(3) For a compactly supported Hamiltonian isotopy ϕz : T ∗X → T ∗X, we have ck(U) =

ck(ϕz(U)).

(4) Suppose U = {H < 1} is admissible such that ∂U = {H = 1} is a non-degenerated
hypersurface of restricted contact type defined by a Hamiltonian function H. If ck(U) <

∞, then ck(U) is represented by the action of a closed characteristic in the boundary
∂U .

(5) ck(U) > 0 for all open sets U .

Proof. We can assume U is admissible; the general case follows directly. Then
(1) is the direct consequences of the Definition 3.30 and (2), (3) are corollaries of the
Proposition 3.11.

For (4), let T = ck(U). Suppose it is not given by the action of a closed characteristic.
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By assumption, the boundary ∂U has non-degenerated Reeb dynamics, so there are
only finitely many closed characteristics with action less than 2T . So there is a small
ε > 0 such that there is no action happening in [T − ε, T + ε].

However, one has the following microsupport estimate (3.34):

µsL(F`(U,K)) ⊂
ß
t ∈ R : t =

∣∣∣∣ ∫
c
pdq

∣∣∣∣ for some closed orbit c of ϕHz
™
.

Therefore F`(U,K) is constant on [T − ε, T + ε]. Consequently, (F`(U,K))T−ε ∼=
(F`(U,K))T , and then η`,T−ε(U,K) = η`,T (U,K) for all ` and all K. In particular for
K = Fp`

for all ` ∈ N≥2. Then we have that ck(U) ≤ T − ε, which gives a contradiction.
So we have

(3.36) ck(U) ∈
ß∣∣∣∣ ∫

c
pdq

∣∣∣∣ : c is a closed orbit of ϕHz
™
.

Finally, let us prove that the ck’s are positive. We will see, in Corollary 4.9, that
for a ball Ba, one has ck(Ba) = dk/dea. In general, for any admissible open set U ,
for any (q,p) ∈ U , we take a neighborhood X ′ ∼= Rd of q and a small Darboux ball
Ba(q,p) ⊂ U near (q,p) ∈ T ∗X ′ ∼= Cd. Then the invariance and the local property of
fundamental classes show ck(U) ≥ ck(Ba(q,p)) = ck(Ba) > 0. □

Remark 3.32. We also see from ck(Ba) = dk/dea that if U is a bounded open set
(which is admissible by Proposition 2.18), then ck(U) <∞.

The property (4) is called representativity of capacity. For some class of capacities,
representativity can imply the conformal property. But our capacities are not in this
class. So, we present a proof of the conformal property of star-shaped domains in T ∗Rd.

Proposition 3.33. For X = Rd, if the bounded open set U ⊂ T ∗X has smooth boundary
∂U , and U is star-shaped (i.e. the radial vector field on T ∗Rd = R2d is transverse to
∂U), then ck(rU) = r2ck(U) for r > 0.

Proof. Assume r > 1, otherwise we can study rU and replace r by 1/r. When U is
star-shaped, U can be defined as U = {H < 1} for a unique function H ∈ C∞(R2d\{0}),
satisfying H(cx) = c2H(x) for c ≥ 0 (see [GHR22, Theorem 6.1]). The function H
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could be extended continuously to 0 by homogeneity, but the extension is not smooth
at the origin. Besides H is not compactly supported up to a constant, so we can not
directly use the GKS quantization. We choose a non-decreasing function f(x) = 1/2

for x ≤ 1/2, f(x) = x for 2/3 ≤ x ≤ 2r2, and f(x) = 3r2 for x ≥ 4r2.

x

f(x)

0 1 2 3 4
2r21

2
3
4

3r2

Now we take H(x) = f(H(x)), which is smooth on R2d and is constant outside 4r2U .
Moreover, U = {H < 1}, rU = {H < r2}.

Now, take the GKS quantization K(H), which exists since H is compactly supported
up to a constant. Consider the map i(z) = r2z. One can estimate the microsupport to
see that i−1K(H) is the quantization of r−2H. Then applying our existence to i−1K(H)

and Ω = (−∞, 1), we get the kernel P{H<r2} = PrU .

Then the projection formula shows us that

PrU ∼= i−1K(H) ?K{(z,t):−t≤z≤0} ∼= K(H) ?K{(z,t):−t/r2≤z≤0}.

Then, after applying α`,r2T,Rd (recall (3.1)), the formula (3.33) shows that we have an
isomorphism

F`(rU,K)r2T
∼= F`(U,K)T .

Moreover, taking the convolution ?K{(z,t):z=0,t≥0} shows that the fundamental class is
respected under the isomorphism. So we have that

η`,r2T (rU,K) = η`,T (U,K),

and
Spec(U, k) ×r2

−−→ Spec(rU, k)
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is a bijection. Then the result follows. □

Next, we work on the S1-equivariant version. We recall that A = Ext∗
S1(K,K) ∼= K[u]

(see (B.3)) with |u| = 2. We can give a similar definition as ck but easier.

Definition 3.34. For an admissible open set U and k ∈ N we define

Spec(U, k) :=
¶
T ≥ 0 : ∃ΛS1 ∈ H∗CS1

T (U,Q), ηS1

T (U,Q) = ukΛS1©
.

and

(3.37) ck(U) := inf Spec(U, k)) ∈ [0,+∞].

In general, if U is not admissible, then we define

ck(U) = sup{ck(V ) : V ⊂ U, V is admissible}.

One can write down the following theorem without any modification of the proof for
Theorem 3.31 and Proposition 3.33 (Notice that we should use Corollary 3.29 to replace
(3.34)).

Theorem 3.35. The functions ck : Open(T ∗X)→ [0,∞] satisfy the following:

(1) ck ≤ ck+1 for all k ∈ N.

(2) For two open sets U1 ⊂ U2, then ck(U1) ≤ ck(U2).

(3) For a compactly supported Hamiltonian isotopy ϕ : I × T ∗X → T ∗X, we have
ck(U) = ck(ϕz(U)).

(4) Suppose U = {H < 1} is admissible such that ∂U = {H = 1} is a non-degenerated
hypersurface of restricted contact type defined by a Hamiltonian function H. If ck(U) <

∞, then ck(U) is represented by the action of a closed characteristic in the boundary
∂U .

(5) ck(U) > 0 for all open sets U .

(6) If X = Rd, and U is of star-shaped centered at the origin, then ck(rU) = r2ck(U)

for r > 0.
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We end this section with a quick discussion on the non-equivariant capacities. Recall
that, PU is an object of the Tamarkin category D(X2). So, we can study its sheaf
energy (see Definition 2.5), i.e.

e(PU(Q)) = inf{c : τc(PU(Q)) = 0}.

Under the isomorphism (3.22) and the definition of the fundamental class, τc(PU(K))

is mapped to η1,c(U,K):
η1,c(U,Q) = Θ(τc(PU(Q))).

We can also defined for an admissible open set U

c(U) = e(PU(Q)) = inf{c ≥ 0 : η1,c(U,Q) = 0},(3.38)

and, for a general open set U , c(U) = sup{c(V ) : V ⊂ U, V is admissible}. So the
capacities ck and ck are equivariant generalizations of the sheaf energy.

The proof of Theorem 3.31 and Proposition 3.33 still apply word by word and give:

Theorem 3.36. The function c : Open(T ∗X)→ [0,∞] satisfies the following:

(1) For two open sets U1 ⊂ U2, then c(U1) ≤ c(U2).

(2) For a compactly supported Hamiltonian isotopy ϕ : I × T ∗X → T ∗X, we have
c(U) = c(ϕz(U)).

(3) Suppose U = {H < 1} is admissible such that ∂U = {H = 1} is a non-degenerated
hypersurface of restricted contact type defined by a Hamiltonian function H. If c(U) <

∞, then c(U) is represented by the action of a closed characteristic in the boundary ∂U .

(4) c(U) > 0 for all open sets U .

(5) If X = Rd, and U is of star-shaped centered at the origin, then c(rU) = r2c(U) for
r > 0.

We have the following natural questions about the relation between the capacities in-
troduced so far: do we have ck(U) = ck(U) and c(U) = c1(U) = c1(U)?
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Algebraically, in the Z/` or S1 equivariant category we have a non-zero u ∈ Ext2
G(K,K)

for many fields K, and Ext2(K,K) = 0 for any field K.

Under the restriction map of equivariant derived category, we find that η`,T and ηS
1

T

are mapped to η1,T (U,K). The class u ∈ Ext2
G(K,K) is mapped to 0. Consequently, if

η`,T (U,K) = uΛ or ηS1
T (U,K) = uΛ, then η1,T (U,K) = 0 ∈ Ext0(K,K). Therefore, we

have c1(U) ≥ c(U) and c1(U) ≥ c(U).

On the other hand, by the (3.28), we have η1,T (U,K) = 0 if and only if there exists
Λ ∈ H−2CS1

T (U,K) such that ηS1
T (U,K) = uΛ. So, we have c1(U) ≤ c(U). Then we

have

Proposition 3.37. For an admissible domain U , we have

c1(U) = c(U).

In general, we do not know if we have ck(U) = ck(U). But we will see later via the
computation that equalities are true for convex toric domains (Theorem 4.8). Moreover,
we guess the only difference comes from the algebraic property of cyclic homology.

Remark 3.38. Finally, let us remark about the computability of ck. As H∗C`,T (U,K)

is defined using PU , which is an object in the derived category. Even though it is unique
in the derived category, we can take different chain representatives of PU . Therefore,
to compute ck(U), we can choose particular chain representative of PU . Usually, these
chain representatives of PU admit properties that are not so obvious from general exis-
tence results like Proposition 2.15, and Proposition 2.18.

3.6. Contact invariants

I will explain how the Chiu-Tamarkin complex works for the contact geometry of (con-
tact) admissible open sets in the prequantized space T ∗X × S1.

For any open set U ⊂ T ∗X × S1, we can lift it to a Z-invariant set Ũ ⊂ J1X in the
sense T ′

k(Ũ) = Ũ , where T ′
k(q,p, t) = (q,p, t+k) for k ∈ Z. In this way, we can discuss

sheaves microsupported in J1X \ Ũ . Then DJ1X\‹U(X) and its left semi-orthogonal
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complement are all well-formulated. Specifically, for Z = J1X \ Ũ , we define

DcZ(X) ={F ∈ D(X) : µsL(F ) ⊂ Z},

DcU(X) =⊥DcZ(X), the left orthogonal complement of DcZ(X).

Same as the symplectic case, we can define the notion of admissibility and microlocal
kernels. Be compatible with the Hamiltonian action of contact isotopy as we discussed
in Section 1.3, we will use composition functors rather than convolution functors. On
the other hand, in the symplectic case, we require that microlocal kernels are objects
in the Tamarkin category. Now, we need a (2-variable) variant version of the Tamarkin
category for contact microlocal kernels. Let D(X2) be the full triangulated subcategory
{F ∈ D(X2 × R2) : F ◦K{t2≥t1}

∼=−→ F} of D(X2 × R2). Then we define

Definition 3.39. We say U is K-admissible if there exists a distinguished triangle

PU → K∆X2 ×{t2≥t1} → QU
+1−→,

in D(X2) such that the composition functor ◦PU is right adjoint to DcU(X) ↪→ D(X)

and ◦QU is left adjoint to DcZ(X) ↪→ D(X), i.e.,

DcZ(X) ◦QU←−− D(X) ◦PU−−→ DcU(X),

are two microlocal projectors.

Such a pair of sheaves (PU ,QU) together with the distinguished triangle give an orthog-
onal decomposition of D(X) by Proposition 2.1. We call the pair (PU ,QU) microlocal
kernels associated with U ⊂ T ∗X × S1, and the distinguished triangle as the defining
triangle of U .

We say U is admissible if U is Z-admissible.

The uniqueness and functoriality has the same proof, just need to replace convolution
by composition. We have the existence of kernels for the prequantized open set W ×S1

where W ⊂ T ∗X is a symplectic admissible open set. Precisely, we have the following
proposition.
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Proposition 3.40. If W ⊂ T ∗X is (symplectic) admissible by the following distin-
guished triangle:

PW → K∆X2 ×{t≥0} → QW
+1−→ .

Then W×S1 ⊂ T ∗X×S1 is (contact) admissible by the following distinguished triangle:

PW×S1 → K∆X2 ×{t2≥t1} → QW×S1
+1−→,

where PW×S1 = m−1PW , QW×S1 = m−1QW and m(t1, t2) = t2 − t1.

Notice that we have K∆X2 ×{t2≥t1} = m−1K∆X2 ×[0,∞).

Proof. The second distinguished triangle comes from applying m−1 to the first
one and we have m−1F ∈ D(X2) for F ∈ D(X2). On the other hand, as we mentioned
in (1) of Remark 1.11, we have

F ? PW ∼= F ◦PW×S1 , F ? QW
∼= F ◦QW×S1 ,

for F ∈ D(X). Finally, as ·�W × S1 = W × R, we have that µsL(F ) ⊂ J1X \·�W × S1 if
and only if µs(F ) ⊂ T ∗X \W . Then the result follows. □

Now, we can define the contact Chiu-Tamarkin complex for admissible open sets U ⊂
T ∗X × S1. As in the symplectic case, let us introduce the adjoint pair first:

F ∈ DZ/`((X2 × R2
t )`) DZ/`(pt) 3 G,

αc
`,T,X

βc
`,T,X

defined by:

αc`,n,X(F ) = (i`n∗)−1Rπq!∆̃−1
X R‹m! (F ) ,

βc`,n,X(G) = ‹m!∆̃X∗π
!
qi
`
n∗G[−1],

(3.39)

where ‹m : (X2 × R2)` → X2` × R`,‹m(q, t11, t21, . . . , t1` , t2`) = (q, t2` − t11, t21 − t12, . . . , t2`−1 − t1`);‹∆X : X` × R` → X2` × R`,‹∆X(q1, . . . ,q`, t) = (q`,q1,q1, . . . ,q`−1,q`−1,qn, t);
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πq : X` × R` → R`;

i`n(pt) = (n, . . . , n) ∈ R`,

where q = (q1, . . . ,q`) and t = (t1, . . . , t`).

Definition 3.41. With the notation above, for ` ∈ N and n ∈ N0, we define the contact
Chiu-Tamarkin complex as follows:

C`,n`(U,K) = RHomZ/`
(
αc`,n,X(P⊠`

U ),K[−d]
)

∼= RHomZ/`
(
P⊠`

U , βc`,n,XK[−d]
)
.

Compare to the symplectic case, the parameter T is replaced by a discrete parameter
T = n`. First, let us compare C`,n`(W × S1,K) and C`,n`(W,K) if W ⊂ T ∗X is
symplectic admissible. By Proposition 3.40, the prequantized open set W × S1 is
contact admissible.

Proposition 3.42. For a symplectic admissible open set W ⊂ T ∗X, for ` ∈ N, n ∈ N0,
we have

C`,n`(W,K) ∼= C`,n`(W × S1,K).

Proof. Since PW×S1 ∼= m−1PW , we have

P⊠`
W×S1

∼= (m`)−1P⊠
W ,

where m`(q, t11, t21, . . . , t1` , t2`) = (q, t21 − t11, . . . , t2` − t1`). Then we have

C`,n`(W × S1,K) ∼= RHomZ/`
(
P⊠`
W ,m`

∗β
c
`,n,XK[−d]

)
.

So, we only need to verify that

m`
∗β

c
`,n,XK ∼= β`,n`,XK.

By proper base change, we only need to assumeX = pt and then show thatm`
∗‹m!i`n∗K[−1] ∼=

s`!t in`∗K. Direct computation shows that both sides are isomorphic to K{(t1,··· ,t`):t1+···+t`=n`}[`−

1]. □
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On the other hand, the constrain T/` ∈ N0 is adapt to the problem of invariance. As
the lifting of a contact isotopy is merely Z-equivariant, the sheaf quantization will only
be Z-equivariant (see Remark 1.19). So our discussion on invariance for symplectic
version does not applies directly. However a slight modification for the proof of the
symplectic invariance works.

Theorem 3.43 ( [Chi17, Theorem 4.7]). Let U,U1, U2 be contact admissible open sets
and U1

i
↪−→ U2 be an inclusion. Then one has, for ` ∈ N, n ∈ N0,

(1) There is a morphism C`,n`(U2,K) i∗−→ C`,n`(U1,K), which is natural with respect to
inclusions of admissible open sets.

(2) For a compactly supported contact isotopy ϕ : I × T ∗X × S1 → T ∗X × S1, we have
an isomorphism, in the equivariant category, Φc

z,`,n` : C`,n`(U,K)
∼=−→ C`,n` (ϕz(U),K), for

all z ∈ I. The isomorphism Φc
z,`,n` is functorial with respect to restriction morphisms

in (1). When U = T ∗X × S1, we have Φc
z,`,n` = Id.

The proof for (1) is the same as the symplectic case. Let us present the proof for
invariance, which is slightly different from the symplectic one.

Proof of Theorem 3.43 (2). For the contact isotopy ϕ, we take the GKS quan-
tization K(“ϕ′) as we discussed in Section 1.3. Let K = K(“ϕ′)−1

z , K` = K⊠` and
K−1
` = (K−1)⊠`.

Recall the proof of Theorem 3.5 (2). In the contact case, we still have an isomorphism

Pϕz(U) ∼= K−1 ◦PU ◦K,

as well as the auto-equivalence κ(F ) := K−1
` ◦ F ◦K` of DZ/`((X × R)2`).

So, we only need to construct an isomorphism

(3.40) κ(βcnK) = K−1
` ◦ βcnK ◦K`

∼= βcnK,

where βcn = βc`,n,X . As in Theorem 3.5, we only need to find an isomorphism

βcnK ◦K`
∼= K` ◦ βcnK.
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To emphasize the difference between the contact case and the symplectic case, let
us present the construction precisely. Let W = X × R, f : W ` → W `, (w1, . . . , w`) 7→

(w2, . . . , w`, w1) where wi = (qi, ti) and T`
c : W ` → W `, (w1, . . . , w`) 7→ (Tc(w1), . . . ,Tc(w`)),

where c ∈ R and Tc(wi) = Tc(qi, ti) = (qi, ti+c). Set Y = W ` and identify Y 2 = (W 2)`

by (w1
1, . . . , w

1
` , w

2
1, . . . , w

2
` ) 7→ (w1

1, w
2
1, . . . , w

1
` , w

2
` ). Then βcnK is, up to orientation and

shift, the constant sheaf on the graph of the composition f ◦ T`
n = T`

n ◦ f . Precisely,
we have

βcnK ∼= KΓf
◦KΓT`

n
◦ E ∼= E ◦KΓf

◦KΓT`
n
,

where E = δY 2!(ωY ), with ωY the dualizing sheaf and δY 2 the usual diagonal embedding.
The relation f ◦ T`

n = T`
n ◦ f implies KΓf

◦ KΓT`
n

∼= KΓT`
n
◦ KΓf

. Moreover we have
E ◦ − ∼= − ◦ E.

Now we have the general fact G ◦KΓg
∼= (IdY × g)!(G) for any G and any map g. This

formula has the symmetric form KΓ′
g
◦G ∼= (g×IdY )!(G) where Γ′

g is the switched graph
Γ′
g = {(g(y), y) : y ∈ Y }. When g is invertible, we have Γg−1 = Γ′

g. So we obtain

K` ◦ βcnK ∼= K` ◦KΓT`
n
◦KΓf

◦ E ∼= (IdY × f)!(K` ◦KΓT`
n
) ◦ E,

and

βcnK ◦K`
∼= E ◦KΓf

◦KΓT`
n
◦K` = E ◦KΓ′

f−1
◦KΓT`

n
◦K`

∼= E ◦ (f−1× IdY )!(KΓT`
n
◦K`).

Now, recall the GKS quantization K(“ϕ′) satisfies the Z-equivariant condition (1.28), so
the restriction on z-slices, K` = K⊠`, also satisfies

K ◦K∆X2 ×{(t,t+n):t∈R} ∼= K∆X2 ×{(t,t+n):t∈R} ◦K.

Notice that ∆X2 ×{(t, t+ n) : t ∈ R} = ΓTn where Tn(x, t) = (x, t+ n). Then we have

K` ◦KΓT`
n

∼= KΓT`
n
◦K`.

Then we have

K` ◦ βcnK ∼= (IdY × f)!(K` ◦KΓT`
n
) ◦ E ∼= E ◦ (IdY × f)!(KΓT`

n
◦K`).
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Then the isomorphism (3.40) follows from

(IdY × f)!(KΓT`
n
◦K`) ∼= (f × f)!(f−1 × IdY )!(KΓT`

n
◦K`) ∼= (f−1 × IdY )!(KΓT`

n
◦K`).

The isomorphism Φc
z,`,n` follows. □

Remark 3.44. The significant difference between C`,T and C`,n` is that the definition
of αc also twist t variables while α only twist q variables. This is crucial for the contact
invariance. However Proposition 3.42 shows that when we consider the admissible sets
of the form U × S1 for U ⊂ T ∗X, the Chiu-Tamarkin complex itself is not affected by
the difference. This is helpful for our computations.

Now, we assume ` ∈ N≥2 and U ⊂ T ∗X × S1 is admissible. Then H∗C`,n`(U,K)

is a module of A = Ext∗
Z/`(K,K). For an orientable manifold X, the fundamental

class ηc`,n`(U) is defined as the image of the fundamental class [X]Z/` = [X] ⊗ 1 under
the morphism HBM

d (X,K) ⊗ Ext0
Z/`(K,K) ∼= H0C`,n`(T ∗X × S1,K)

i∗U−→ H0C`,n`(U,K).
Similarly to Proposition 3.11, the Theorem 3.43 shows that the fundamental class is
preserved under inclusion and contact isotopy.

For the definition of capacities, it is reasonable to require a discrete spectrum.

Definition 3.45. For an admissible open set U ⊂ T ∗X × S1, k ∈ N. Define

[Spec](U, k) :=

n` ∈ N≥2 :
(n, `) ∈ N× N≥2, ∃p prime such that ∀`, p` ≥ p,

∃Λ` ∈ H∗C`,n`(U,Fp`
), ηc`,n`(U,Fp`

) = ukΛ`

 ,

and
[c]k(U) := min[Spec](U, k) ∈ N≥2.

For a general open set U , we also define

[c]k(U) = sup{[c]k(V ) : V ⊂ U, V is admissible}.

Let us discuss the properties of [c]k. The invariance and monotonicity are true with the
same proof as in the symplectic case. The proof of representing property is invalid now.
The positivity for open sets is obviously true by definition. However it is possible that
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[c]k is always 2, which is treated as the trivial situation here. To avoid this situation, we
must address some restrictions on the size of domains. In fact, in the computation of
[c]k(Ba×S1), we need to take T = n` < ap` to make sure ηc`,n`(Ba×S1,Fp`

) is non-zero.
Here, the constraint is read as a > n`/p` for ` ∈ N≥2 and n ∈ N. In particular, for
prime ` and n = 1, we have a > 1. So, we require a > 1 as a necessary size constraint
for Ba × S1. This fits into the framework of [EKP06] that a small contact ball can be
squeezed into smaller contact balls. Therefore, we define

Definition 3.46. For an open set U ⊂ T ∗X ×S1, we say it is big if there is a prequan-
tized ball Ba × S1 ⊂ U such that a > 1.

In summary, we organize our discussions as the following theorem. In the contact case,
the spectrum sets could provide us more interesting obstructions. So we state results
of spectrum sets as well.

Theorem 3.47. The functions [c]k : Open(T ∗X × S1)→ N≥2 satisfy the following:

(1) [c]k ≤ [c]k+1 and [Spec](U, k + 1) ⊂ [Spec](U, k), for all k ∈ N.

(2) For two open sets U1 ⊂ U2, then [c]k(U1) ≤ [c]k(U2) and [Spec](U2, k) ⊂ [Spec](U1, k).

(3) For a compactly supported contact isotopy ϕ : I × T ∗X × S1 → T ∗X × S1, we have
[c]k(U) = [c]k(ϕz(U)) and [Spec](U, k) = [Spec](ϕHz (U), k).

(4) If U is big, then it cannot happen that [c]k(U) = 2 for all k ∈ N.

At the end of the section, let us explain why we cannot define contact capacities for
T ∗X × S1 using the S1-equivariant version of the Chiu-Tamarkin complex. To define
the S1-structure, we need to work on all F` with the persistence structure to define the
capacities, ck for example. To obtain the contactomorphism invariance on T ∗X×S1, we
must require T/` ∈ N0 for a fixed T ≥ 0 and for all ` ∈ N. It only happen when T = 0.
But as (3.34) shows, non-trivial geometric information appears only when T > 0.

Therefore, at least there is no obvious way to directly use the S1-theory to define contact
capacities. For the symplectic case, this problem will not happen, since for all T ≥ 0,
T/` ≥ 0 is obvious. So the definition of ck makes sense.
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But the definition of [c]k is a sophisticated numerical analogy of the homological S1-
action, which does define contact capacities.
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CHAPTER 4

Computing of the Chiu-Tamarkin complex

In this chapter, I would like to present some computational results.

The first one is about the toric domains. We construct the microlocal kernels of toric
domains via the generating function model of Hamiltonian rotation given by Chiu.
Then we use the generating function model to compute the Chiu-Tamarkin homology
for convex toric domains. We will present a structure theorem, and then use it to
compute the capacities we defined in Section 3.5.

The second example is the unit disk bundle. We will use the formula of the sheaf
quantization for geodesic flow (see Subsection 1.3.1) to prove a Viterbo isomorphism of
the Chiu-Tamarkin homology, which relates the Chiu-Tamarkin homology of the open
disk bundle with the homology of the free loop space. Next, we will see that the cup
product we defined in Section 3.2 is the Chas-Sullivan product.

4.1. Toric domains

In this section, we study toric domains. The 2-dimensional rotation ϕz(u) = exp (−2iπz)u

on Cu is the Hamiltonian flow of the Hamiltonian function H(u) = π|u|2. Here, we iden-
tify Cu with T ∗Rq by u = q + ip.

Consider the product action of single 2-dimensional rotations given by

z · (u1, . . . , ud) = (exp (−2iπz1)u1, . . . , exp (−2iπzd)ud).

This is a Hamiltonian action of Rd
z, which is indeed a torus action, on Cd

u = T ∗V , where
V = Rd

q is a real vector space of dimension d, and u = q + ip. We call it the standard
Hamiltonian torus action on Cd

u = T ∗V .

The moment map of the standard Hamiltonian torus action is

(4.1) µ : Cd
u = T ∗V → (Rd

z)∗ = Rd
ζ , µ(u1, . . . , ud) = (π|u1|2, . . . , π|ud|2).

137



Definition 4.1. For an open set Ω ⊂ Rd
ζ , we call XΩ := µ−1(Ω) ⊂ T ∗V an (open) toric

domain. We say XΩ is a convex toric domain if |Ω| := {ζ ∈ Rd : (|ζ1|, . . . , |ζd|) ∈ Ω} is
convex. We say XΩ is concave if Rd

ζ≥0 \ Ω is convex.

Remark 4.2. Since the moment map µ has the image Rd
ζ≥0, the toric domain XΩ

is determined by Ω ∩ Rd
ζ≥0. So we have freedom to choose suitable Ω. For example,

we always assume −Rd
ζ≥0 ⊂ Ω. If XΩ is a convex or a concave toric domain, one can

indeed take Ω to be convex or concave (in the usual sense) and satisfying the condition
−Rd

ζ≥0 ⊂ Ω. (e.g. replace Ω by Ω− Rd
ζ≥0).

For example, we can take a non-decreasing sequence a = (a1, . . . , ad) of positive real
numbers, let ΩD(a) = {ζ : ζi < ai, i ∈ [d]} and ΩE(a) = {ζ : ζ1

a1
+ · · · + ζd

ad
< 1}. Then

XΩD(a) = D(a) is an open poly-disc and XΩE(a) = E(a) is an open ellipsoid. Both of
them are convex toric domains.

4.1.1. Generating function model for microlocal kernel of Toric domains.
In [Chi17, Proposition 3.10], Chiu constructs a sheaf quantization of Hamiltonian
rotation in all dimensions, particularly for the 2-dimensional ϕz, say S ∈ D(Rz×Rq1 ×

Rq2 × Rt). This quantization possesses one more property than we stated for general
sheaf quantizations (see (2.8)), namely

(4.2) S ∼= Rπ(q2,...,qN )!K{(z,q1,...,qN+1,t):t+
∑N

j=1 SH(z/N,qj ,qj+1)≥0},

where we identify qN+1 with q2 after pushforward, N is big enough so that z/N ∈
(−1/4, 0) ∪ (0, 1/4), and SH is the generating function of the Hamiltonian rotation:

(4.3) SH(z, q, q′) = q2 + q′2

2 tan(2πz)
− qq′

sin(2πz)
.

The formula (4.2) is essential when computing the Chiu-Tamarkin complexes for convex
toric domains.

Let

(4.4) T := S□?d = Rsdt!(S
L
⊠d) ∈ D(Rd

z × V1 × V2 × Rt),
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where Vi = Rd
qi

. The microsupport estimates show T is a sheaf quantization of the
standard torus action in the sense of (2.8). As a corollary of Proposition 2.15, we have

Proposition 4.3. A toric domains XΩ is dynamically admissible by the distinguished
triangle

(4.5) “T ◦KΩ → K∆V 2 ×{t≥0} → “T ◦KRd
ζ
\Ω

+1−→,

and the pair of kernels

(4.6) PXΩ := “T ◦KΩ, QXΩ := “T ◦KRd
ζ
\Ω.

This pair of microlocal kernels (PXΩ , QXΩ) constructed from T is called the generating
function models of the microlocal kernel associated to toric domains.

Actually, by the microsupport estimate of “T , see (2.9) for example. If (ζ, z,q,p,q′,p′, t, τ) ∈
˙SS(“T ) then we have ζ = µ(q,p) ∈ Rd

ζ≥0. So, if ζ /∈ Rd
ζ≥0 and (ζ, z,q,p,q′,p′, t, τ) ∈

SS(“T ), we have (p,p′, τ) = 0. Accordingly, for any ζ /∈ Rd
ζ≥0, we have SS(“T |(ζ,q,q′)) ⊂

{τ = 0} by the microsupport estimate Theorem 1.4. So “T |(ζ,q,q′) ∼= MR is a constant
sheaf over R by Theorem 1.3 for some M ∈ D(K−Mod). But “T |(ζ,q,q′) ∈ D(pt), and we
have “T |(ζ,q,q′) ∼= MR ∼= MR ?K[0,∞) ∼= 0. Therefore, we conclude that supp(“T ) ⊂ Rd

ζ≥0.

Consequently, the kernel PXΩ satisfies that

(4.7) PXΩ := “T ◦KΩ ∼= Rπζ!(“T L
⊗KΩ×X2×Rt

) ∼= Rπζ!(“T L
⊗K(Ω∩Rd

ζ≥0)×X2×Rt
),

which only depends on Ω ∩ Rd
ζ≥0. So, it is the same as Remark 4.2 that the notation

PXΩ makes sense.

In general, it is complicated to compute the Fourier transform. However, with the help
of associativity of composition and convolution (Example 1.12 (1)), we have

(4.8) “T ◦KΩ ∼= T ?ÈKΩ.

When XΩ is convex, we can take a suitable Ω, which is convex in the usual sense. Now,
the Fourier transform ÈKΩ is easy to compute. Actually, when XΩ is convex, we have
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ÈKΩ ∼= KΩ◦ by a similar argument with Proposition 2.20, where

Ω◦ = {(z, t) : t+ 〈z, ζ〉 ≥ 0, ∀ζ ∈ Ω}.

The assumption −Rd
ζ≥0 ⊂ Ω shows Ω◦ ⊂ Rd

z≤0 × [0,∞). Then we conclude that when
XΩ is a convex toric domain, we have

(4.9) PXΩ
∼= T ?KΩ◦ , F`(XΩ,K) ∼= Rπz!Rs2

t! (CL`(T ) ?KΩ◦) .

Example 4.4. Let a = (a1, . . . , ad) be a non-decreasing sequence of positive real num-
bers.

(1) Suppose ΩD(a) = {ζ : ζi < ai, i ∈ [d]}, then XΩD(a) = D(a) is the open poly-disc.
Let Pr be the kernel of the open disc {π|u|2 < r} in C, then Proposition 2.20 applies
and PD(a) ∼= Pa1 □? · · · □? Pad

.

ζ1

ζ2
(a1, a2)

O
z1

z2

O −T/a1

−T/a2

Figure 4.1. The sets ΩD(a) and Ω◦
D(a) ∩ {t = T}.

(2) Suppose ΩE(a) = {ζ : ζ1
a1

+ · · · + ζd

ad
< 1}, then XΩE(a) = E(a) is the open ellipsoid,

and Ω◦
E(a) = {(z, t) : t ≥ −a1z1 = · · · = −adzd ≥ 0}.

Let i : Rz → Rd
z, z 7→ (a1z, . . . , adz), then KΩ◦

E(a)
= R(i × IdR)!K{t≥−z≥0}. Therefore,

we have that

PE(a) ∼= T ?R(i× IdR)!K{t≥−z≥0} ∼= ((i× IdR)−1T )?K{t≥−z≥0} ∼= ¤�(i× IdR)−1T ◦K(−∞,1).

Here we should be careful that, to obtain the second isomorphism, we need to use the
explicit formula (4.4) and (4.2).
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ζ1

ζ2

O a1

a2

z1

z2

−(T/a1, T/a2)

O

Figure 4.2. The sets ΩE(a) and Ω◦
E(a) ∩ {t = T}.

One can check directly that (i × IdR)−1T is the sheaf quantization of the diagonal
Hamiltonian rotation ϕz(u) = (e

−2iπz
a1 u1, . . . , e

−2iπz
ad ud) in the sense of (2.8). In particu-

lar, when a1 = · · · = ad = πR2 > 0, the construction is the same as Chiu’s for balls.

Remark 4.5. For the concave toric domain case, the Fourier transform ÈKΩ is not as
easy as the convex case (which is a complex only concentrated in degree 0). Actually,ÈKΩ is represented by a complex of sheaves concentrated in cohomological degree [0, d].
Accordingly, the results in the next section cannot generalize directly to the concave
situation.

For toric domains neither convex nor concave, the first example we can consider is an
open annulus bounded by two concentric spheres. Then we can take Ω = {x ∈ Rd :

a <
∑
xi < A}. In this case, when T ≥ 0, we can only extract numerical information

about the exterior sphere from ÈKΩ. Then we cannot know numerical information for
the interior ball. Maybe it is a feature of the present definition of capacities, we expect
more understanding to overcome this defect.

4.1.2. Chiu-Tamarkin complexes and Capacities of Convex Toric Do-
mains. In this section, we focus on convex toric domains, i.e., XΩ = µ−1(Ω), where
Ω ⊂ Rd is an open set such that {(ζ1, ζd) ∈ Rd : (|ζ1|, . . . , |ζd|) ∈ Ω} is convex. As we
discussed in Remark 4.2, we could take a convex Ω such that Rd

ζ≤0 ⊂ Ω. Because of
the identity (4.7), we see that such a choice of Ω does not affect the computation of
Chiu-Tamarkin complex for XΩ, we will see this feature again in the Remark 4.17.
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One can verify that, under such conditions, the polar cone satisfies {O} ×R≥0 ⊂ Ω◦ ⊂

Rd
≤0 × R≥0, where O ∈ Rd is the origin. For T ≥ 0, we set

Ω◦
T := Ω◦ ∩ {t = T} = {z ∈ Rd

z : T + 〈z, ζ〉 ≥ 0,∀ζ ∈ Ω}.

We also define the function I(z) = ∑d
i=1
⌊
−zi
⌋
, z ∈ Rd. For a subset Σ ⊂ Rd, we define

(4.10) ‖Σ‖∞ = max
z∈Σ
‖z‖∞ and I(Σ) = max

z∈Σ
I(z).

Then we have ‖Ω◦
T‖∞ = T‖Ω◦

1‖∞ for T ≥ 0.

For x, y ∈ Rd, the segment xy is defined as {tx+ (1− t)y : t ∈ [0, 1]}.

Here, we can state the structural theorem of Chiu-Tamarkin cohomology for a convex
toric domain XΩ. Since there are slight differences, I will repeat the Z/`-version and
the S1-version:

Theorem 4.6. For a convex toric domain XΩ ⫋ T ∗V , and ` ∈ N≥2

(1) If 0 ≤ T < p`/‖Ω◦
1‖∞, we have

• For each Z ∈ Ω◦
T , the inclusion of the segment OZ ⊂ Ω◦

T induces a decomposition
of the fundamental class η`,T (XΩ,Fp`

) = uI(Z)ΛZ,` for a non-torsion element ΛZ,` ∈

H−2I(Z)C`,T (XΩ,Fp`
). In particular, η`,T (XΩ,Fp`

) is non-zero.

• The minimal cohomology degree of H∗C`,T (XΩ,Fp`
) is exactly −2I(Ω◦

T ), i.e.,

H∗C`,T (XΩ,Fp`
) ∼= H≥−2I(Ω◦

T )C`,T (XΩ,Fp`
),

and
H−2I(Ω◦

T )C`,T (XΩ,Fp`
) 6= 0.

• H∗C`,T (XΩ,Fp`
) is a finitely generated Fp`

[u]-module. The free part is isomorphic to
A = Fp`

[u, θ], so H∗C`,T (XΩ,Fp`
) is of rank 2 over Fp`

[u].

The torsion part is given by H∗C+
`,T (XΩ,Fp`

), which is located in cohomology degree
[−2I(Ω◦

T ),−1]. H∗C`,T (XΩ,Fp`
) is torsion free when XΩ is an open ellipsoid.

(2) If T ≥ 0 and for any field K ⊃ Q, we have
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• For each Z ∈ Ω◦
T , the inclusion of the segment OZ ⊂ Ω◦

T induces a decompo-
sition of the fundamental class ηS

1
T (XΩ,K) = uI(Z)ΛS1

Z for a non-torsion element
ΛS1
Z ∈ H−2I(Z)CS1

T (XΩ,K). In particular, ηS1
T (XΩ,K) is non-zero.

• The minimal cohomology degree of H∗CS1
T (XΩ,K) is exactly −2I(Ω◦

T ), i.e.,

H∗CS1

T (XΩ,K) ∼= H≥−2I(Ω◦
T )CS1

T (XΩ,K),

and
H−2I(Ω◦

T )CS1

T (XΩ,K) 6= 0.

• H∗CS1
T (XΩ,K) is a finitely generated K[u]-module. The free part is isomorphic to

A = K[u], so H∗CS1
T (XΩ,K) is of rank 1 over K[u].

The torsion part is given by H∗CS1,+
T (XΩ,K), which is located in cohomology degree

[−2I(Ω◦
T ) + 1,−1]. H∗CS1

T (XΩ,K) is torsion free when XΩ is an open ellipsoid.

Remark 4.7. (1) We will use the equivariant localization idea in the proof. The S1

case is studied by Borel and Atiyah-Bott (See [AB84, Bor16]), while the Z/` case
is studied by Quillen in a more general localization question about Z/`-equivariant
cohomology in [Qui71]. Quillen considered a localization with respect to x = f(u, θ) ∈

A for a polynomial f , which the generator θ appears. The result of Quillen shows
again that, modulo torsion, H∗CT,`(XΩ,Fp`

) is isomorphic to A as an A-module, which
improves parts our result. However his result cannot provide us the information about
minimal cohomology degree, that is why we provide this proof, which is essentially
independent of the result of Quillen.

(2) We will see later in the proof that our computation is reduced to compute the equi-
variant homology of a S1-space, then [Vit97, Appendix] applies and H∗C`,T (XΩ,Fp`

) ∼=
H∗CS1

T (XΩ,Z) ⊗ Fp`
[θ] since H∗CS1

T (XΩ,Z) is torsion-free as an abelian group if 0 ≤

T < p`/‖Ω◦
1‖∞. Notice here, the definition of H∗CS1

T (XΩ,Z) should be careful due to
the Remark 3.24.

Before proving Theorem 4.6, let us use it to compute the capacities ck(XΩ) and ck(XΩ).
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Theorem 4.8. For a convex toric domain XΩ ⫋ T ∗V , we have

ck(XΩ) = ck(XΩ) = inf {T ≥ 0 : ∃z ∈ Ω◦
T , I(z) ≥ k} .

Proof. We only prove the ck-case, the ck is similar (actually easier). Let S =

{T ≥ 0 : ∃z ∈ Ω◦
T , I(z) ≥ k}, L = inf(S).

For T ∈ S, there is Z ∈ Ω◦
T such that I(Z) = k. Consider the closed inclusion of the

segment OZ ⊂ Ω◦
T . We choose a prime p with p > T‖Ω◦

1‖∞. Then for all ` ∈ N≥2 with
p` ≥ p, we have p` > T‖Ω◦

1‖∞, and the Theorem 4.6 shows that the closed inclusion
induces a decomposition η`,T (XΩ,Fp`

) = ukΛZ,`. So T ∈ Spec(XΩ, k), and L ≥ ck(XΩ).

Conversely, if T ∈ Spec(XΩ, k), there is a prime p such that for all ` ∈ N≥2 with p` ≥ p

there is a Λ` ∈ H∗C`,T (XΩ,Fp`
) such that η`,T (XΩ,Fp`

) = ukΛ`. Now, we can take
a prime ` = p` > p big enough such that T < `/‖Ω◦

1‖∞, then η`,T (XΩ,Fp`
), and Λ`

are non-zero. Hence we have an equation of degree: 0 = |η`,T (XΩ,Fp`
)| = 2k + |Λ`|,

which shows that 2k = −|Λ`|. Therefore, the Theorem 4.6 shows 2k = −|Λ`| ≤ 2I(Ω◦
T ).

Hence T ∈ S, and ck(XΩ) ≥ L. □

Here, let us test the result by the example of ellipsoids. They are all direct corollaries
of the structure Theorem 4.6 and the computation Theorem 4.8.

Corollary 4.9. Let XΩ = E = E(a1, . . . , ad) be an ellipsoid and ` ∈ N≥2. For 0 ≤

T < p`a1, set Z(a) = (−T/a1, . . . ,−T/ad). We have H∗C`,T (E,Fp`
) ∼= u−I(Z(a))Fp`

[u, θ]

and H∗CS1
T (E,K) ∼= u−I(Z(a))K[u], the fundamental class is non-zero in all cases, and

ck(E) = ck(E) = min{T ≥ 0 : ∑d
i=1bT/aic ≥ k}. In particular, ck(Ba) = ck(Ba) =

dk/dea.

4.1.3. Cohomology sheaf CL`(T ) for the standard torus action. Recall the
results of Subsection 4.1.1, and discussions in Section 3.4. It is necessary to study the
cohomology sheaf CL`(T ) carefully. Recall that T = S□?d = Rsdt!(S

L
⊠d), where S is the

sheaf quantization of Hamiltonian rotation in dimension 2. Using the Künneth formula
and the Proposition 3.26, we have

CL`(T ) ∼= Rs`z∗

(Ä
(s`zj

)−1CL`(S)
ä□?d)
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∼= Rs`z∗

Ä
(s`z)−1 (CL`(S))□?d

ä
∼= Rs`z∗(s`z)−1

Ä
(CL`(S))□?d

ä
∼= Rsdt! (CL`(S))□?d ,

where z = (z1, . . . , zd). Moreover, an explicit formula for CL`(S) is obtained by Chiu:

Proposition 4.10. ([Chi17, Formula (38)]) For all fields K, there is a (unique) sheaf
E` ∈ DZ/`(Rz) such that we have an isomorphism in DZ/`(Rz × Rt)

(4.11) CL`(S) ∼= E`
L

⊠K[0,∞).

Moreover, for any N ∈ N,

(4.12) E`|(−N`/4,0)
∼= Rπq!KWN

`
,

with q = (q1, . . . , qN`) and

WN
` = {(z, q1, . . . , qN`) ∈ (−N`/4, 0)× RN` :

∑
k∈Z/N`

SH(z/N`, qk, qk+1) ≥ 0},

and
SH(z, qk, qk+1) =

q2
k + q2

k+1
2 tan(2πz)

− qkqk+1

sin(2πz)
.

The Z/`-action on E` is induced by the linear action (qk) 7→ (qk−N) of Z/` on RN`, and
Z/` acts trivially on Rz × Rt.

A disadvantage for the formula (4.12) is that we don’t know if the isomorphism can
be extended to z = 0 since the right hand side is not defined for z = 0. But such an
extension is necessary for our later computation. So, let us start from an extension of
the isomorphism (4.12) to z = 0. Notice that z/N` ∈ (−1/4, 0), so sin(2πz/N`) < 0.
One can rewrite WN

` as follow:

WN
` =

{
(z, q1, . . . , qN`) ∈ (−N`/4, 0)× RN` : cos(2πz/N`)

∑
k∈Z/N`

q2
k ≤

∑
k∈Z/N`

qkqk+1

}
.
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Let us define

(4.13) Q(z, q1, . . . , qN`) :=
∑

k∈Z/N`Z

(
qkqk+1 − cos(2πz/N`)q2

k

)
.

Since Q(0, q1, . . . , qN`) is well defined, we can extend the definition of WN
` (using the

same notation) to

(4.14) WN
` = {(z, q1, . . . , qN`) ∈ (−N`/4, 0]× RN` : Q(z, q1, . . . , qN`) ≥ 0}.

For our convenience, we also set, for z ∈ (−N`/4, 0],

(4.15) WN
` (z) = {(q1, . . . , qN`) ∈ RN` : Q(z, q1, . . . , qN`) ≥ 0}.

The Z/`-action on the extension is the same as the original one.

One can check that CL`(S)|{z=0} = RΓc(∆R` ,K∆R`
)
L

⊠K{t≥0} since S|{z=0} = K∆R2

L

⊠K{t≥0}.
On the other hand, by the fundamental inequality, we have ∑

k q
2
k ≥

∑
k qkqk+1, and it

takes equality when q1 = · · · = qN`. So

WN
` (0) = {(q1, . . . , qN`) ∈ RN` : q1 = · · · = qN`} = ∆RN` .

So, CL`(S)|{z=0} = RΓc(WN
` (0),KWN

`
(0))

L

⊠K{t≥0}.

Therefore, it is make sense to consider E ′
` := Rπq!i!KWN

`
∈ DZ/`((−N`/4,+∞)) where

i : (−N`/4, 0]× RN` ⊂ (−N`/4,+∞)× RN` is the closed inclusion.

Lemma 4.11. We have an equivariant isomorphism

E`|(−N`/4,0] ∼= E ′
`|(−N`/4,0] = Rπq!KWN

`
.

Proof. First, since WN
` is a closed set defined by a smooth function, the Exam-

ple 1.2 (2) shows that SS(i!KWN
`

) ⊂ {ζ ≤ 0}. So the non-proper pushforward estimate
Theorem 1.7 shows that SS(E ′

`) ⊂ {ζ ≤ 0}, and SS((E ′
`)(−N`/4,0]) ⊂ {ζ ≤ 0}. On the

other hand, we have SS(CL`(S)) ⊂ {ζ ≤ 0}. Hence SS(E`) = SS(CL`(S)|t=0) ⊂ {ζ ≤

0} and then we also have SS((E`)(−N`/4,0]) ⊂ {ζ ≤ 0}.
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Now, let j be the inclusion (−N`/4, 0) ⊂ (−N`/4,∞), consider the distinguished tri-
angle

RΓ{z≥0}((E`)(−N`/4,0])→ (E`)(−N`/4,0] → RΓ(−N`/4,0)((E`)(−N`/4,0])
+1−→ .

We would like to show that RΓ{z≥0} (E`)(−N`/4,0]
∼= 0. In fact, by definition, we have

supp(RΓ{z≥0}((E`)(−N`/4,0])) ⊂ {0}. So we only need to show that (RΓ{z≥0}((E`)(−N`/4,0]))0 ∼=
0.

But on (−N`/4,+∞), the closed set {z ≥ 0} is defined by the function f(z) = z and
{f(z) ≥ 0}. Therefore, by definition of microsupport, (RΓ{z≥0}((E`)(−N`/4,0]))0 ∼= 0

if df0 = (0, 1) /∈ SS((E`)(−N`/4,0]). This is true due to the microsupport estimate
SS((E`)(−N`/4,0]) ⊂ {ζ ≤ 0}.

Consequently, we have an isomorphism (E`)(−N`/4,0]
∼= RΓ{z<0}((E`)(−N`/4,0]). This iso-

morphism holds in the equivariant category since the corresponding morphism is an
equivariant morphism.

Since the argument is purely microlocal, we can also conclude that (E ′
`)(−N`/4,0]

∼=
RΓ{z<0}((E ′

`)(−N`/4,0]).

On the other hand, the isomorphism (4.12) and our discussion on WN
` show that

j−1((E`)(−N`/4,0]) ∼= j−1((E ′
`)(−N`/4,0]).

Therefore, the natural isomorphism Rj∗j
−1 ∼= RΓ{z<0} shows that

(E`)(−N`/4,0]
∼= Rj∗j

−1((E`)(−N`/4,0]) ∼= Rj∗j
−1((E ′

`)(−N`/4,0]) ∼= (E ′
`)(−N`/4,0] .

Finally, we conclude by restricting the isomorphism to (−N`/4, 0] and the definition of
E ′
`. □

Topology of WN
` (z): By the Lemma 4.11, we know that (E`)z ∼= RΓc(WN

` (z),K) if
−N`/4 < z ≤ 0. So it is necessary to discuss the topology of WN

` (z). For a fixed
z ∈ (−N`/4, 0], the function Qz(q1, . . . , qN`) = Q(z, q1, . . . , qN`) is a quadratic form by
(4.13). Therefore, it is easy to study the topology of WN

` (z) = {(q1, . . . , qN`) ∈ RN` :

Qz ≥ 0}. The matrix of Qz is a circulant matrix
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Az =



− cos(2πz
N`

) 1
2 0 · · · 1

2
1
2 − cos(2πz

N`
) 1

2 · · · 0

0 1
2 − cos(2πz

N`
) · · · 0

... ... ... ...
1
2 0 0 · · · − cos(2πz

N`
)


.

So one can diagonalize Az unitarily using the discrete Fourier transform

(ω(i−1)(j−1))i,j=Z/N`,

where ω is a primitive N`th root of unity. Therefore, the eigenvalues of Az are

(4.16) λk(z) = Re
Ç

exp
Ç

2πk
√
−1

N`

åå
− cos

Å2πz
N`

ã
= cos

Å2πk
N`

ã
− cos

Å2πz
N`

ã
,

where k ∈ Z/N`.

We always have λ0(z) = 1− cos
(2πz
N`

)
≥ 0. It is direct to see that λk(z) = λN`−k(z) for

k = 1, . . . , N`− 1. So, for k ≥ 1, we need to consider two situations:

If N` is odd. For k = 1, . . . , (N`− 1)/2, λk(z) ≥ 0 if k ≤
⌊
−z
⌋
. Therefore, in this case,

Az admits #{k ∈ Z/N` : λk ≥ 0} = 1 + 2
⌊
−z
⌋

non-negative eigenvalues.

If N` is even. The eigenvalue λN`/2(z) = −1 − cos
(2πz
N`

)
< 0 since z > −N`/4. For

k = 1, . . . , (N`/2) − 1, λk(z) ≥ 0 if k ≤
⌊
−z
⌋
. Therefore, in this case, Az also admits

#{k ∈ Z/N` : λk ≥ 0} = 1 + 2
⌊
−z
⌋

non-negative eigenvalues.

In any case, we have that Az admits #{k ∈ Z/N` : λk ≥ 0} = 1 + 2
⌊
−z
⌋

non-negative
eigenvalues.

Therefore, WN
` (z) = {Qz ≥ 0} is a quadratic cone of index 1 + 2

⌊
−z
⌋
. In particular,

WN
` (z) = {Qz ≥ 0} is properly homotopic to a vector space R1+2

⌊
−z
⌋
.

Now we can describe the non-equivariant structure of E`|(−∞,0]. Here, we forget its
equivariant structure and use the same notation E`|(−∞,0]. In particular, E`|(−∞,0] ∼=
E1|(−∞,0] non-equivariantly. Consider πq : WN

` → (−N`/4, 0] for N` big enough, it
restricts to a proper homotopical fiber bundle with fiber R1+2n over each interval (−n−

1,−n] for n ∈ N≥0, and n + 1 < N`/4. Therefore, we conclude that E`|(−n−1,−n] ∼=
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K(−n−1,−n][−1− 2n]. On the other hand, in the non-equivariant derived category, K(x,y]

and K(z,w][2] has no non-trivial extension if K is a field. Therefore, (E`)(−n−1,−n] has no
non-trivial extension for different n. In conclusion, we have

Proposition 4.12. For all fields K and for all ` ∈ N, we have the decomposition in
the non-equivariant derived category D((−∞, 0]):

E`|(−∞,0] ∼=
⊕

n∈N≥0

K(−n−1,−n][−1− 2n].

To describe the equivariant information, more specifically, the Z/`-action onWN
` (z), it

is better to consider the diagonal form of Qz.

Let xk = (q1, . . . , qN`)(1, ωk, ω2k, . . . , ω(N`−1)k)t ∈ C, k ∈ Z/N`. They are coordinates
after diagonalization using the discrete Fourier transform. As ω is a root of unity, we
have that xk = xN`−k. In particular, x0 is a real number. Also recall that λk(z) =

λN`−k(z). Then the diagonal form of Qz is

Qz(x0, x1, . . . , xN`−1) = λ0(z)x2
0 +

N`−1∑
k=1

λk(z)|xk|2,

(x0, x1, . . . , xN`−1) ∈ R× CN`−1.

(4.17)

Notice that the discrete Fourier transform that we applied is a complex linear transform,
it is easier to work in complex coordinates. However, the constrains xk = xN`−k shows
that actually we only have half independent complex coordinates, so the real dimension
here is correct. But to our convenience in formulating the action, we still use the
complex coordinates. We also need to discuss parity ofN`. SinceN is chosen arbitrarily,
we can always assume N is odd. Then the parity of N` is the parity of `.

If ` is odd, the diagonal form is

Qz(x0, x1, . . . , x(N`−1)/2) = λ0(z)x2
0 + 2

(N`−1)/2∑
k=1

λk(z)|xk|2,

(x0, x1, . . . , x(N`−1)/2) ∈ R× C(N`−1)/2 ∼= RN`.

(4.18)
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If ` is even, the diagonal form is

Qz(x0, x1, . . . , xN`/2−1, xN`/2) = λ0(z)x2
0 + 2

N`/2−1∑
k=1

λk(z)|xk|2 + λN`/2(z)|xN`/2|2,

(x0, x1, . . . , xN`/2−1, xN`/2) ∈ R× CN`/2−1 × R ∼= RN`.

(4.19)

Now, the group action is easier to describe under the diagonal form. By definition of
xk, we have xk = ∑

i∈Z/N` qi+1ω
ik. The Z/`-action is given by (qi) 7→ (qi−N). Then we

have

xk =
∑

i∈Z/N`
qi+1ω

ik 7→
∑

i∈Z/N`
qi+1−Nω

ik = ωkN
∑

i∈Z/N`
qi+1−Nω

(i−N)k = ωkNxk.

Therefore, the Z/`-action on the diagonal form is as follows: if we take µ = ωN a
primitive `th root of unity, then

(4.20) µ · (xk) = (µkxk),

where k = 0, 1, . . . , N`/2− 1 if ` is odd and k = 0, 1, . . . , N`/2 if ` is even.

Consequently, the fixed point sets
(
WN

` (z)
)Z/` is again a quadratic cone, whose index is

1+2
⌊
−z/`

⌋
. The diagonal ∆RN` is given by {(x0, 0, . . . , 0) : x0 ∈ R} under the diagonal

form, it is a subset of
(
WN

` (z)
)Z/`.

Under the diagonal form, we can also find the S1-action, which is, for µ ∈ S1,

(4.21) µ · (xk) = (µkxk),

where k = 0, 1, . . . N`/2− 1 if ` is odd and k = 0, 1, . . . N`/2 if ` is even.

Remark 4.13. We need to notice that when ` is even, the S1-action formula is not
valid since xN`/2 is a real number but µN`/2xN`/2 is not necessarily real. However,
this does not affect our eventual results because we know from the formula (4.16) that
λN`/2(z) is always negative. Then we can just, harmlessly, think of xN`/2 as a complex
variable, and extend the definition of Qz and WN

` (z) such that they are defined over
R× CN`/2−1 × C. This extension does not change the S1-homotopy type of WN

` (z).
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Now the S1 action is locally free and the fixed points set is just the diagonal {(x0, 0, . . . , 0) :

x0 ∈ R}. In particular, the Z/`-action is the restriction of the S1-action.

Finally, we go back to the isomorphism of Proposition 4.12. Take z′ ≤ z ≤ 0. As
SS(E`) ⊂ {ζ ≤ 0}, there is a natural map

(E`)z′ ∼= RΓ(R, (E`)[z′,0])→ RΓ(R, (E`)[z,0]) ∼= (E`)z,

which is induced by

RΓc(R1+2b−z′c,K)→ RΓc(R1+2b−zc,K).

The decomposition, Proposition 4.12, tells us that the natural morphism is 0 in the
non-equivariant category.

In the equivariant category, the action of Z/` on R1+2b−zc is the restriction of a
S1-action. The S1 acts trivially on R, and acts on R2b−zc ∼= Cb−zc via the weight
(1, 2, . . . , b−zc). So, in the S1-equivariant derived category, the morphism is given by
the mod K reduction of the top Chern class for the vector bundle

R1+2b−z′c ×S1 S∞ → R1+2b−zc ×S1 S∞.

Therefore, the decomposition Proposition 4.12 is not necessarily a direct sum decom-
position. But we can describe the extension class between two blocks.

For K = Z, the morphism is given by (b−z′c!/b−zc!)ub−z′c−b−zc, which is non-zero.
After restricting to the Z/`-equivariant derived category, it lifts to the vector bundle

R1+2b−z′c ×Z/` S
∞ → R1+2b−zc ×Z/` S

∞.

So after suitable reduction in a finite field K, for example if we require b−z′c < char(K),
the morphism is non-zero as well.

The higher dimension (d ≥ 2) case: Now, we start to discuss the higher dimension
situation. We already know that CL`(T ) ∼= CL`(S)□?d. Then the Proposition 4.10 shows
that

(4.22) CL`(T ) ∼= E`
L
⊠d L⊠K{t≥0}.
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As the decomposition indicated in Proposition 4.12, E`
L
⊠d|{z≤0} has a decomposition on

{z ≤ 0} indexed by lattice points. Besides, we also have a topological description of

E`
L
⊠d|{z≤0}. Let us discuss the topological description first and then state the decompo-

sition. As we have d copies of E`, it is convenient to denote q = (q1, . . . , qd) ∈ Rd =: Vq.
Then the Lemma 4.11 shows us

(4.23) E`
L
⊠d
∣∣∣∣
(−N`/4,0]d

∼= Rπq!K∏
i=1 WN

`,i
,

where WN
`,i means the ith copy of one WN

` , i ∈ [d] = {1, . . . , d} and q = (q1, . . . ,qN`).
Also, let us define

dWN
` :=

d∏
i=1
WN

`,i = {(z,q1, . . . ,qN`) ∈ (−N`/4, 0]d × V N` : Qzi
(qik) ≥ 0, i ∈ [d]},

dWN
` (z) :=

d∏
i=1
WN

`,i(zi) = {(q1, . . . ,qN`) ∈ V N` : Qzi
(qik) ≥ 0, i ∈ [d]}.

Here qk = (q1
k, . . . , q

d
k), z = (z1, . . . , zd). The group Z/` acts on each WN

` via (qik) 7→

(qik−N). Therefore, Z/` acts diagonally on dWN
` via (qk) 7→ (qk−N).

The diagonalization applies for each i ∈ [d], and then on dWN
` (z). We set xk =

(x1
k, . . . , x

d
k) and xik = (xi1, . . . , xiN`), then the coordinates of dWN

` (z) after diago-
nalization are (xik) = (xk) = (xi), where k = 0, 1, . . . , (N` − 1)/2 if ` is odd and
k = 0, 1, . . . , N`/2 if ` is even.

So for each z = (z1, . . . , zd) ∈ (−N`/4, 0]d, dWN
` (z) is a product of quadratic cones of

indices 1 + 2
⌊
−zi
⌋

respectively, and then dWN
` (z) is properly homotopic to a quadratic

cone of index d + 2I(z), where I(z) = ∑d
i=1
⌊
−zi
⌋
. Therefore, dWN

` (z) is properly
homotopic to Rd+2I(z), a refinement of this fact is proven in Lemma 4.19.

The fixed point sets
(
dWN

` (z)
)Z/` is also properly homotopic to a quadratic cone of

index d + 2I(z/`). The diagonal ∆V N` is given by {(xik) : ∀i, ∀k 6= 0, xik = 0, xi0 ∈ R}

under the diagonal form, it is a subset of
(
dWN

` (z)
)Z/`.
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To be clear, let us set some higher dimensional interval notation. For x, y ∈ Rd, we let
(x, y] = ∏d

i=1(xi, yi] be the half-open cube from x to y. Similarly, we can define half-
open cubes [x, y), open cubes (x, y), and closed cubes [x, y] in the same way. Recall
that we use xy to denote the segment between x, y.

Also, recall O ∈ Rd is the origin, and we set 1 = (1, . . . , 1) and ei = (δij)dj=1 where δij
stand for the Kronecker symbol.

Then either our topology description of dWN
` or the decomposition result Proposi-

tion 4.12 shows that

Lemma 4.14. For each z ≤ 0, we have the equivariant isomorphism

E`
L
⊠d|z ∼= RΓc(Rd+2I(z),K) ∼= K[−d− 2I(z)].

In the non-equivariant derived category, we have a decomposition as follows:

E`
L
⊠d|{z≤0} ∼=

⊕
v∈Nd

0

K(−v−1,−v][−d− 2I(−v)].

In the equivariant derived category, for z′, z ∈ (−∞, 0]d, if z′
i ≤ zi for all i ∈ [d], the

natural morphism,

E`
L
⊠d|z′ ∼= K[−d− 2I(z′)]→ E`

L
⊠d|z ∼= K[−d− 2I(z)],

is the mod-K reduction of the top Chern class of the vector bundle

Rd+2I(z′) ×S1 ES∞ → Rd+2I(z) ×S1 S∞,

where S1 acts on Rd trivially, and acts on R2I(z) by the weight ((1, . . . , b−zic))i∈[d].

Propagation and γ-topology Finally, let us describe a propagation phenomena of
E`. It is simple but crucial for our later application. Notice that, for a given z ∈

(−N`/4, 0], the map z 7→ WN
` (z) is a decreasing map with respect to the inclusion

order. Microlocally, it means that SS(E`) ⊂ {ζ ≤ 0}, which is already known to us as a
general fact from the microsupport estimate (by Corollary 1.6 for example). We have,
for z ≤ 0, that

(E`)z ∼= RΓc(R, (E`)[z,0]) ∼= K[−1− 2
⌊
−z
⌋
].
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z1

z2

O

−2

−4

−4

−6

−6

−6

−8

−8

−8

−8

−10

−10

−10

−10

−10

−12

−12

−12

−12

−14

−14

−14

−16

−16

−18

−1

−2

−3

−4

−5

−1 −2 −3 −4 −5

Figure 4.3. The lattice description (Lemma 4.14) for E`
L
⊠d|{z≤0} (d = 2

case): The cyan set is (−v − 1,−v] for v = (−3,−2). Numbers inside
boxes indicate the degree shifting for K(−v−1,−v].

In higher dimension, the same thing still happens since we have SS(E
L
⊠d
` ) ⊂ {ζi ≤ 0, i ∈

[d]}. Now, for z ∈ (−∞, 0]d, since [z, O] = ({z}+ [0,∞)d) ∩ (−∞, 0]d, we have

(E
L
⊠d
` )z ∼= RΓc(R, (E`)[z,O]) ∼= K[−d− 2I(z)].

We can state a stronger result which follows directly from the microsupport estimate
in the same way. We set γ = (−∞, 0]d, γa = −γ = [0,∞)d; and for any closed subset
Σ ⊂ γ, we set Σγ = (Σ + γa) ∩ γ. For example, {z}γ = [z, O] for z ∈ γ.

The notion above is related to the γ-topology, see [KS90, Section 3.5, Section 5.2] and
[KS18] for more about the definition and sheaf theory related to γ-topology. A closed
subset Z ⊂ Rd is γ-closed if Z = Z + γa. Now, let us consider the induced topology
of the γ-topology on γ. Then the notation Σγ = (Σ + γa) ∩ γ is exactly the closure of
the γ-topology for a closed set Σ ⊂ γ. So, for a closed subset Σ ⊂ γ, we say Σγ the
γ-closure of Σ and we say Σ is γ-closed if Σγ = Σ.

Then, if Σ is compact and convex, we have that

(4.24) RΓc(Rd
z, (E⊠d` )Σ) ∼= RΓc(Rd

z, (E⊠d` )Σγ ).
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We can give a proof of (4.24) as follow: The microsupport SS((E⊠d` )γ) ⊂ Rd
z×γζ together

with the microlocal cut-off lemma [KS90, Proposition 5.2.3] shows that (E⊠d` )γ is a γa-
sheaf on Rd

z, i.e. (E⊠d` )γ is pullbacked from a sheaf on Rd
z equipped with the γa-topology.

Then its global section over Σ is isomorphic to the global section over the γ-closure Σγ

by [KS90, Proposition 3.5].

4.1.4. Proof of the Theorem 4.6. In this section, we will prove the structure
theorem. We will only present the proof for the Z/` version. The proof for the S1

version is given by minor modification which will be indicated in the proof. In this
section, we assume K to be a field. So it is not necessary to derive the tensor product.

Idea and sketch of the proof: We present (F`(XΩ,K))T as RΓc
(
Rd, (E`⊠d)Ω◦

T

)
,

where we can apply the results in the Subsection 4.1.3. Now, consider the inclusion
sequence {O} ⊂ ZO ⊂ Ω◦

T , then we have a commutative diagram

RΓc
(
Rd, (E`⊠d)Ω◦

T

)
RΓc

(
Rd, (E`⊠d)ZO

)
K[−d− 2I(Z)]

RΓc
(
Rd, (E`⊠d)O

)
K[−d]

∼=

kZu
I(Z)

∼=

By definition, the inclined arrow composed with the bottom isomorphism gives the
fundamental class, and we call the upper horizontal arrow (up to constant) ΛZ,`. The
Lemma 4.14 shows that (up to a constant kZ) the vertical morphism is uI(Z). Eventually,
we absorb the constant into ΛZ,` since the constant is uniquely determined by Z and
`. The commutative diagram induces a decomposition η`,T (XΩ,Fp`

) = uI(Z)ΛZ,`. In
particular, the presence of ΛZ,` shows us the minimal cohomology degree is smaller
than −2I(Z) for all Z ∈ Ω◦

T .

To achieve the non-torsioness, we need to prove that the fundamental class η`,T (U,K),
a degree 0 morphism, is non-zero. We have two approaches. The easiest one is to
take a small ball B ⊂ U , and then we apply the computation for balls (which can
be derived directly from Lemma 4.14). The harder one is that we study its cocone,
i.e. F+

` (XΩ,K)[−1] using (3.19), which is computed by homology of a union of finite
dimensional manifolds.
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I will discuss the harder approach since it provides us with more structural results,
for example, rank and degree distribution of torsion elements. We will argue by a
localization trick. In particular, we show that H∗C`,T (XΩ,Fp`

) is a finitely generated
module whose free part is of rank 2. Then the argument also shows that torsion can
not happen in non-negative degrees.

Finally, we study further the cocone of the fundamental class to show that the minimal
cohomology degree is greater than −2I(Ω◦

T ).

Therefore, our technical discussion will focus on the formula for RΓc
(
Rd, (E`⊠d)W

)
for

a locally closed set W ⊂ Ω◦
T , and its minimal degree estimate. We will organize our

arguments in the following way:

• We first compute (F`(XΩ,K))T using its isomorphism with RΓc
(
Rd, (E`⊠d)Ω◦

T

)
, where

E`⊠d is discussed in the last section. Consequently, we derive a similar formula for the
cocone of the fundamental class, i.e. F+

` (XΩ,K)[−1] ∼= RΓc
(
Rd, (E`⊠d)Ω◦

T \O
)
. Then the

result of the last section will reduce them to a cohomology computation of a topological
space WN

` (Ω◦
T ). We will realize the targets in Lemma 4.16.

• Recall the lattice decomposition (Proposition 4.12) of the sheaf E⊠d` , we hope to
utilize the lattice description to obtain a minimal degree estimate for the cocone of
the fundamental class. But a problem here is that we are computing cohomology of
sheaves over Ω◦

T . But Ω◦
T is usually curved. So, our idea is to decompose Ω◦

T into
“almost cubes”, which are introduced in Lemma 4.18. Next, we will study the proper
homotopy type ofWN

` (Ω◦
T ) in case that Ω◦

T is an almost cube. This is the Lemma 4.19.

• Finally, we use the computation for almost cubes as an induction step to obtain the
minimal degree estimate in general. This is done using the Mayer–Vietoris sequence in
Lemma 4.20. After that, we will finish the proof of Theorem 4.6.

Remark 4.15. A technical fact is that in the induction process of the minimal degree
estimate, we have to deal with some sets that are not necessarily convex. But they
are γ-closed. So, we will present the result for γ-closed set Σ, not only Ω◦

T , from the
beginning in the following.
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Preliminary lemmas: For a convex toric domain XΩ, we review the first paragraph
of Subsection 4.1.2. We have Ω◦ ⊂ γd × [0,∞). Then (3.32) and (4.22) show that

F`(XΩ,K) ∼= Rπz!Rs2
t!
(
E`⊠d ⊠K{t1≥0} ⊗ π−1

t1 KΩ◦
)

∼= Rπz!
[
(E`⊠d ⊠K{t≥0})Ω◦

]
.

(4.25)

Therefore, we conclude that

(4.26) (F`(XΩ,K))T ∼= RΓc
(
Rd, (E`⊠d)Ω◦

T

)
.

In particular, for XRd = T ∗V , we have

(F`(T ∗V,K))T ∼= RΓc
(
Rd, (E`⊠d)O

) ∼= K[−d].

Then, by definition, the fundamental class is

RΓc
(
Rd, (E`⊠d)Ω◦

T

)
→ RΓc

(
Rd, (E`⊠d)O

) ∼= K[−d].

For Z ∈ Ω◦
T , we apply (4.24) for the segment Σ = ZO, then we have (recall that [Z,O]

denotes a cube here)

RΓc(Rd
z, (E⊠`` )ZO) ∼= RΓc(Rd

z, (E⊠`` )[Z,O]) ∼= K[−d− 2I(Z)],

since [Z,O] = ZOγ. Now, we can embed the fundamental class into an excision triangle:

RΓc
(
Rd, (E`⊠d)Ω◦

T \O
)
→ RΓc

(
Rd, (E`⊠d)Ω◦

T

) η`,T (XΩ,K)−−−−−−→ RΓc
(
Rd, (E`⊠d)O

) +1−→ .

But by definition of F+
` (XΩ,K), we have F+

` (XΩ,K)[−1] ∼= RΓc
(
Rd, (E`⊠d)Ω◦

T \O
)
.

Both Ω◦
T and ZO are compact convex. We would like to apply the isomorphism (4.23)

to compute the cohomology of E⊠d` in term of dWN
` .

Assumption: For any compact subset Σ ⊂ γ, we will fix an odd integer N = N(Σ) > 0

and a positive number ε > 0 such that Σ ⊂ [−N`/4− ε, 0]d. The existence of N and ε
is ensured by the compactness of Σ.
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Lemma 4.16. For a compact set Σ ⊂ γ such that Σ ∩ [x, y] is empty or contractible
for all x ≤ y, x, y ∈ γ (recall here, [x, y] means the closed cube from x to y). We have

(4.27) RΓc
(
Rd, (E`⊠d)Σ

) ∼= RΓc
(
WN

` (Σ),K
)
,

where

(4.28) WN
` (Σ) =

∪
z∈Σ

dWN
` (z) = πz

(
dWN

` ∩ (Σ× V N`)
)
.

As Σ = Ω◦
T is convex for T ≥ 0, we have, in particular

(F`(XΩ,K))T ∼= RΓc
(
Rd, (E`⊠d)Ω◦

T

) ∼= RΓc
(
WN

` (Ω◦
T ),K

)
,

(F+
` (XΩ,K)[−1])T ∼= RΓc

(
Rd, (E`⊠d)Ω◦

T \O)
) ∼= RΓc

(
WN

` (Ω◦
T ) \∆V N` ,K

)
.

(4.29)

Proof. For N = N(Σ) > 0 and ε > 0 such that Σ ⊂ [−N`/4− ε, 0]d, we have the
isomorphism (4.23) E`⊠d|[−N`/4−ε,0]d

∼= Rπq!KdWN
`

∩([−N`/4−ε,0]d×V N`), and then we obtain

RΓc
(
Rd, (E`⊠d)Σ

) ∼= Rπz!
Ä
(Rπq!KdWN

`
)Σ
ä

∼= Rπz!Rπq!KdWN
`

∩(Σ×V N`)

∼= Rπq!Rπz!KdWN
`

∩(Σ×V N`).

Claim: When restricted to dWN
` ∩ (Σ × V N`), the fibers of πz are compact and con-

tractible. Indeed, Chiu proved, in the Lemma 4.10 of [Chi17], that the fibers of the
restriction of πzi

on WN
` ∩ ([−N`/4 − ε, 0] × RN`) are closed intervals. Let us present

the proof here. For fixed (qik), k ∈ RN`, we have (zi, qik) ∈ WN
` when Qzi

≥ 0. It means
that −N`/4− ε ≤ zi ≤ 0 and

cos(2πzi/N`)
∑
k

(qik)2 ≤
∑
k

qikq
i
k+1,

where k ∈ Z/N`. Now, −N`/4 − ε ≤ zi ≤ 0 shows that −π/2 ≤ 2πzi/N` ≤ 0. When
(qik) = 0, we obtain −N`/4− ε ≤ zi ≤ 0. When (qik) 6= 0, we have

−N`
4
− ε ≤ zi ≤ − arccos

Å∑
k q

i
kq
i
k+1∑

k(qik)2

ã
.
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So the fibers of the restriction of πz on dWN
` ∩ ([−N`/4− ε, 0]×RN`) are closed cubes.

Hence, the fibers of the restriction of πz on dWN
` ∩ (Σ×V N`) are intersections of closed

cubes and Σ, which are either empty or compact and contractible by assumption.

Consequently, the Vietoris-Begel theorem implies

Rπz!KdWN
`

∩(Σ×V N`)
∼= Kπz(dWN

`
∩(Σ×V N`)) = KWN

`
(Σ).

Therefore, RΓc
(
Rd, (E`⊠d)Σ

)
= Rπq!(KWN

`
(Σ)) ∼= RΓc

(
WN

` (Σ),K
)
.

The last statement follows from the discussion above the lemma. □

Remark 4.17. The condition in the lemma is true for compact convex sets Σ. But
for our last applications, we need to consider γ-closed sets. Recall that γ = (−∞, 0]d,
γa = −γ = [0,∞)d. For a closed set Σ ⊂ γ, the γ-closure is defined as Σγ = (Σ+γa)∩γ.
We say Σ is γ-closed if Σγ = Σ. For example, γ \ (̊γ + z) is γ-closed for z ∈ γ, and
the intersection of two γ-closed sets is γ-closed. The γ-closed sets satisfy the condition
of the Lemma 4.16. Indeed, for a closed cube [x, y] with x, y ∈ γ, a γ-closed Σ, and
any z ∈ Σ ∩ [x, y], the segment xz ⊂ Σ ∩ [x, y] lies in Σ ∩ [x, y]. Therefore, Σ ∩ [x, y] is
star-shaped and then contractible.

As z 7→ W(z) is a decreasing map, one can see thatWN
` (Σ) =WN

` (Σγ) for all compact
subset Σ ⊂ γ. In particular, if Σ satisfies the condition of the Lemma 4.16, then the
lemma implies that

RΓc
(
Rd, (E`⊠d)Σγ

) ∼=−→ RΓc
(
Rd, (E`⊠d)Σ

)
,

which can be seen as a generalization of (4.24) for compact sets satisfying the condition
of Lemma 4.16 in the case of E`⊠d. Later, we will mainly focus on γ-closed sets Σ.

Now, to understand the cohomology ofWN
` (Σ) (see (4.28)), we start from a special case

that Σ is an “almost closed cube”, defined in Lemma 4.18 below. Let us recall some
notation and introduce some new ones.

First, recall that, for x, y ∈ Rd, we let (x, y] = ∏d
i=1(xi, yi] be the half-open cube from

x to y. Similarly, we define open cubes and closed cubes in this way. Also, recall
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O ∈ Rd is the origin, and we set 1 = (1, . . . , 1) and ei = (δij)dj=1 where δij stands for
the Kronecker symbol. For simplicity, we also denote Cx = [x, x+ 1) for x ∈ Rd.

Next, for a compact γ-closed set Σ ⊂ γ, we set

JΣ = (−Σ) ∩ Zd≥0 = {v ∈ Zd≥0 : (−Σ) ∩ Cv 6= ∅},

∂JΣ = {v ∈ JΣ : ∀i, v + ei 6∈ JΣ} = {v ∈ JΣ : (−Σ) ∩ (Cv \ Cv) = ∅}.

The compactness of Σ shows that both JΣ and ∂JΣ are finite sets.

z1

z2
O

−v

Figure 4.4. An example of an almost cube.

Lemma 4.18. Let Σ ⊂ γ be a compact γ-closed set. Then ∂JΣ = {v} for some v ∈ Zd≥0

if and only if [O, v] ⊂ −Σ ⊂ [O, v + 1) for the same v ∈ Zd≥0.

We say that Σ is an almost cube if it satisfies these equivalent conditions.

Proof. When [O, v] ⊂ −Σ ⊂ [O, v + 1), taking the intersection with Cw \ Cw, for
all w ∈ JΣ, we obtain

[O, v] ∩ (Cw \ Cw) ⊂ (−Σ) ∩ (Cw \ Cw) ⊂ [O, v + 1) ∩ (Cw \ Cw).

Then we can obtain ∂JΣ = {v} from that [O, v] ∩ (Cw \ Cw) = ∅ only when v = w.

Conversely, when ∂JΣ = {v}, we have −v ∈ Σ. So Σ = Σγ implies [−v,O] = {−v}γ ⊂

Σ. Now, suppose −Σ ⊈ [O, v + 1), then there is a z ∈ Σ such that −zi = vi + 1 for
some i ∈ [d]. Therefore, v + ei ∈ JΣ. If v + ei /∈ ∂JΣ, the argument repeats and there
exists another j ∈ [d] such that v + ei + ej ∈ JΣ. We can continue until we obtain a
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index set I (with possible multiplicities) such that v + ∑
I ei ∈ ∂JΣ. Since JΣ is a finite

set, then the index set must be finite. But, ∂JΣ = {v}, then v + ∑
I ei /∈ ∂JΣ. Hence

we get a contradiction. Then −Σ ⊂ [O, v + 1). □

Here, we are going to prove a refinement of the fact that dWN
` (−v) is properly homotopic

to Rd+2I(−v) as noticed before Lemma 4.14.

Lemma 4.19. For a compact γ-closed set Σ ⊂ γ with ∂JΣ = {v}, the subspace Rd ×

CI(−v) is a strong deformation retract ofWN
` (Σ) under a proper deformation retraction.

Moreover, ∆V N`
∼= Rd × {0} ⊂ Rd × CI(−v) is invariant under the retraction.

Proof. Here, we use the diagonal form of Qz we introduced in (4.17). Then the
coordinate system on

Ä
R× CN`−1

2

äd
is (xik) = (xk) = (xi) with xk = (x1

k, . . . , x
d
k) and

xi = (xi0, . . . , xik), where i ∈ [d] = {1, . . . , d}, k = 0, 1, . . . (N` − 1)/2 if ` is odd and
k = 0, 1, . . . N`/2 if ` is even. For shortness, we only deal with the ` odd case. The `
even case has the same proof with minor corrections on the notation. Recall that

WN
` (Σ) =

{
(xi) = (xi0, xik) : ∃z ∈ Σ,∀i, Qzi

(xi) ≥ 0
}
,

∆V N` =
{

(xi) = (xi0, xik) : ∀k ≥ 1, i ∈ [d], such that xik = 0
}
.

For 0 ≤ m ≤ (N`− 1)/2, i ∈ [d], consider him : R× CN`−1
2 × [0, 1]→ R× CN`−1

2 ,

him(xi0, xi+, xi−, t) = him,t(xi0, xi+, xi−) = (xi0, xi+, txi−),

where xi+ = (xi1, . . . , xim), xi− = (xim+1, x
i
m+2, . . . , x

i
(N`−1)/2).

By assumption of the lemma, v ∈ −Σ ⊂ [0, N`/4)d. Then we have 0 ≤ vi < N`/4 ≤

(N`− 1)/2. Now, define Hv :
Ä
R× CN`−1

2

äd
× [0, 1]→

Ä
R× CN`−1

2

äd
by

Hv,t = h1
v1,t × · · · × h

d
vd,t
.

Then we have Hv,1 is the identity map. Next, we have the following:
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• Hv,t(WN
` (Σ)) ⊂ WN

` (Σ). Indeed, (xi) ∈ WN
` (Σ) implies there exists z ∈ Σ such that

for all i ∈ [d], we have Qzi
(xi) ≥ 0. So, in the diagonal form (4.18), we have

λ0(zi)|xi0|2 + 2
vi∑
k=1

λk(zi)|xik|2 ≥ 2
∑

k≥vi+1
(−λk(zi))|xik|2.

Now −Σ ⊂ [O, v + 1) implies that zi < vi + 1 for all i ∈ [d], hence λk(zi) < 0 for
k ≥ vi + 1 and for all i ∈ [d]. So

λ0(zi)|xi0|2 + 2
vi∑
k=1

λk(zi)|xik|2 ≥ 2
∑

k≥vi+1
(−λk(zi))|xik|2 ≥ 2t2

∑
k≥vi+1

(−λk(zi))|xik|2,

i.e., Qzi
(hvi,t(xi)) ≥ 0 for all i ∈ [d]. Hence Hv,t(x1, . . . ,xd) ∈ WN

` (Σ).

• Hv|WN
`

(Σ) is proper. Indeed, take (xi) ∈ WN
` (Σ) such that Hv(xi) ∈ [−R2, R2]d, we

have ∑vi
k=0 |xik|2 + ∑

k≥vi+1 |txik|2 ≤ R2, for all i ∈ [d].

Obviously, ∑vi
k=0 |xik|2 ≤ R2, for all i ∈ [d], and

2 max
k=0,...,vi
z∈Σ

|λk(zi)|R2 ≥ λ0(zi)|xi0|2 + 2
vi∑
k=0

λk(zi)|xik|2

≥ 2
∑

k≥vi+1
(−λk(zi))|xik|2

≥ 2 min
k≥vi+1
z∈Σ

|λk(zi)|
∑

k≥vi+1
|xik|2.

Since λk(zi) < 0 for k ≥ vi+1, and z ∈ Σ, we have mink≥vi+1
z∈Σ

|λk(zi)| > 0. Consequently,

∑
k≥vi+1

|xik|2 ≤

max
k=1,...,vi
z∈Σ

|λk(zi)|

min
k≥vi+1
z∈Σ

|λk(zi)|
R2 =: KR2.

It means that ∑vi
k=0 |xik|2 + ∑

k≥vi+1 |xik|2 ≤ (1 +K)R2, for all i ∈ [d], where K = K(Σ)

is a constant only depending on WN
` (Σ).

So, we have shown that the pre-image of a bounded set under Hv|WN
`

(Σ) is bounded. It
means that Hv|WN

`
(Σ) is proper.

Hence Hv|WN
`

(Σ) is a proper homotopy with Hv,1|WN
`

(Σ) = IdWN
`

(Σ)
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• Rd × CI(−v) × {0} ⊂ WN
` (Σ). Let (xi) ∈ Rd × CI(−v) × {0}. This means that for

all i ∈ [d], xi = (xi0, xi+, xi−) satisfies xi− = 0. Since z = −v ∈ Σ, by assumption, it is
enough to check that Q−vi

(xi) ≥ 0. Now λk(−vi) ≥ 0 for k = 0, 1, . . . , vi. Then for all
i ∈ [d], we have

Q−vi
(xi0, xi+, 0) = λ0(−vi)|xi0|2 + 2

vi∑
k=1

λk(−vi)|xik|2 ≥ 0.

So (xi) ∈ WN
` (Σ) and then Rd × CI(−v) × {0} ⊂ WN

` (Σ).

• Hv,0(WN
` (Σ)) ⊂ Rd × CI(−v) × {0}. Indeed for (xi) ∈ WN

` (Σ), we have hivi,0(xi) =

(xi0, xi+, 0) for all i ∈ [d]. Then Hv,0(WN
` (Σ)) ⊂ Rd × CI(−v) × {0}.

On the other hand, by definition of hivi
, we have

hivi
(xi0, xi+, 0, t) = (xi0, xi+, t0) = (xi0, xi+, 0).

So Hv,t|Rd×CI(−v)×{0} = IdRd×CI(−v)×{0} for all t ∈ [0, 1]. Therefore, Rd × CI(−v) × {0} is
a proper strong deformation retract of WN

` (Σ) under Hv,t|WN
`

(Σ). □

Below, we will frequently use the equivariant global section functor RΓc
(
Rd, (E`⊠d)W

)
for locally closed set W ⊂ γ. Then we denote it by

(4.30) ΓE(W ) := RΓc
(
Rd, (E`⊠d)W

)
,

for shortening the length of notation until the end of the subsection.

Lemma 4.20. Let Σ ⊂ γ be a compact γ-closed set. Let K = Fp`
when G = Z/` and

let K be a field of characteristic 0 when G = S1. Recall the notation I(Σ) at (4.10).
We assume further that Σ ⊂ (−p`1, O] for the G = Z/` case. Then

Extq−dG (ΓE(Σ \O),K) ∼= 0 if

q /∈ [−2I(Σ) + 1,−1] for G = S1,

q /∈ [−2I(Σ),−1] for G = Z/`.

The K-vector space Extq−dG (ΓE(Σ \O),K) is finite dimensional.

Proof. We proceed by induction on |JΣ|. We notice that the maximum I(Σ) can
be achieved by some v since Σ∩Zd is finite. Moreover, if v ∈ JΣ satisfies I(−v) = I(Σ),
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then v ∈ ∂JΣ. We will use the excision distinguished triangle

(4.31) ΓE(Σ \O)→ ΓE(Σ) ηΣ−→ ΓE(O) +1−→ .

If |JΣ| = 1, that is JΣ = {0}, then the Lemma 4.19 shows that ηΣ is an isomorphism in
the derived category. Then ΓE(Σ \O) ∼= 0 by (4.31) and the result follows.

Now, we suppose the result is true for all Σ′ such that |JΣ′| < |JΣ| and we distinguish
the cases |∂JΣ| = 1 and |∂JΣ| > 1.

(1) If ∂JΣ = {v} is a singleton. The case v = 0 is already done and we assume
I(−v) > 0. Then the excision sequence (4.31), the Lemma 4.16, and the Lemma 4.19
together show the isomorphisms in the equivariant derived category

ΓE(Σ \O) ∼= RΓc(WN
` (Σ) \∆V N` ,K) ∼= RΓ(S2I(−v)−1,K)[−d− 1],

where the action of G on S2I(−v)−1 is given in (4.20) for G = Z/` and (4.21) for G = S1.
We have

Ext∗−d
G (ΓE(Σ \O),K) ∼= Ext∗+1

G

Ä
RΓ(S2I(−v)−1,K),K

ä
∼= Ext∗+1 (KS2I(−v)−1 , ω!

S2I(−v)−1

)
∼= HG

−∗−1(S2I(−v)−1,K),

where we used the equivariant Poincaré duality, which holds since S2I(−v)−1 is compact
and orientable.

When G = Z/`, under the assumption Σ ⊂ (−p`1, O], the Z/`-action is free by (4.20).
Hence HG

−∗−1(S2I(−v)−1,K) computes the usual cohomology of the quotient. When
G = S1, the action is locally free by (4.21), i.e. all stabilizer are finite groups. Then,
as we take a coefficient field of characteristic 0, we have that HG

−∗−1(S2I(−v)−1,K) also
computes the usual cohomology of the quotient.

Let QG = S2I(−v)−1/G, then QZ/` is a smooth lens space of dimension 2I(−v) − 1

and QS1 is a weighted complex projective space of dimension 2I(−v) − 2 and weight
(1, 2, . . . , I(−v)− 1).
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Then, we have

Hq(QS1) =

K, q ∈ [0, 2I(−v)− 2] ∩ 2Z,

0, q /∈ [0, 2I(−v)− 2] ∩ 2Z,

and

Hq(QZ/`) =

K, q ∈ [0, 2I(−v)− 1],

0, q /∈ [0, 2I(−v)− 1].

Converting to cohomology degree, we obtain: Ext∗−d
G (ΓE(Σ \O),K) is concentrated in

[−2I(−v) + 1,−1] ∩ (2Z + 1) or [−2I(−v),−1].

The proof of this part is independent of our induction, so it can be applied to the second
case. Now, let us focus on G = Z/` case for simplicity.

(2) If |∂JΣ| ≥ 2, take v ∈ ∂JΣ such that I(−v) = I(Σ). Then we can take 1 > ε > 0

such that Σ ∩ (γ + (ε1 − v)) ⊂ (−v, 0]. This is possible due to the compactness of Σ.
Let us define:

A = [Σ ∩ (γ + (ε1− v))]γ,

B = Σ ∩ [γ \ (̊γ + (ε1− v))].
(4.32)

Then we have a closed covering Σ = A ∪ B. Moreover, both A and B are compact
γ-closed sets, then so is A ∩B.

C−v

O A

C−v

O B

C−v

O A ∩B

Figure 4.5. The picture illustrate the construction of A,B. Σ is the
background blue set.

Then we have the Mayer-Vietoris triangle,

ΓE(Σ \O)→ ΓE(A \O)⊕ ΓE(B \O)→ ΓE((A ∩B) \O) +1−→ .
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Next, we apply the Ext∗−d
G (−,K) ∼= Ext∗

G (−,K[−d]) to obtain a long exact sequence

Ext∗−d
G (ΓE((A ∩B) \O),K)→

Ext∗−d
G (ΓE(A \O),K)⊕

Ext∗−d
G (ΓE(B \O),K)

→ Ext∗−d
G (ΓE(Σ \O),K) +1−→ .

(4.33)

By our construction (4.32), we have

• |∂JA| = 1. Hence we can apply the result of (1). So that Ext∗−d
G (ΓE(A \O),K) is

concentrated in [−2I(A),−1] ⊂ [−2I(Σ),−1].

• |JB| < |JΣ|. We can use the induction hypothesis, hence Ext∗−d
G (ΓE(B \O),K) is

concentrated in [−2I(B),−1] ⊂ [−2I(Σ),−1].

• |JA∩B| < |JΣ|, since JA∩B ⊂ JA but v /∈ JA∩B. Then we can use the induc-
tion hypothesis, that Ext∗−d

G (ΓE((A ∩B) \O),K) is concentrated in [−2I(A∩B),−1].
Moreover, in JA, v is the only lattice point such that I(−v) = I(Σ), then for all
v′ ∈ JA∩B ⊂ JA \ {v}, we have I(−v′) < I(Σ). Then |I(A ∩ B)| < I(Σ), and
[−2I(A ∩B),−1] ⊂ [−2I(Σ) + 2,−1].

Therefore, it follows from the sequence (4.33) that Ext∗−d
G (ΓE(Σ \O),K) is concen-

trated in [−2I(Σ),−1].

For the case G = S1, the argument is the same and we only need to be careful on the
degree distribution. □

Now, we are in the position to prove the Theorem 4.6.

Proof of Theorem 4.6. We only prove the Z/`-case, the S1 case being similar.
So we take K = Fp`

. The equation (4.29) says that (F`(XΩ,Fp`
))T ∼= ΓE(Ω◦

T ). Now,
consider the inclusion sequence {O} ⊂ ZO ⊂ Ω◦

T of closed sets. Then we have a
commutative diagram:
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ΓE(Ω◦
T ) ΓE(ZO) Fp`

[−d− 2I(Z)]

ΓE(O) Fp`
[−d]

∼=

kZu
I(Z)

∼=

By definition, the inclined arrow compose with the bottom isomorphism gives the
fundamental class η`,T (XΩ,Fp`

). The terms ΓE(ZO) and ΓE(O) are computed us-
ing Lemma 4.14 and (4.24). Then loc. cit. also shows that the vertical morphism is
kZu

I(Z), where kZ is a constant only depends on Z. We absorb the constant into the
horizontal arrow, then we call it ΛZ,`. Therefore, the commutative diagram induces a
decomposition η`,T (XΩ,Fp`

) = uI(Z)ΛZ,`.

Now, let us embed the fundamental class η`,T (XΩ,Fp`
) into the excision triangle (the

triangle (4.31) for Σ = Ω◦
T )

(4.34) ΓE(Ω◦
T \O)→ ΓE(Ω◦

T )
η`,T (XΩ,Fp`

)
−−−−−−−→ ΓE(O) +1−→ .

The isomorphism (F`(XΩ,Fp`
))T ∼= ΓE(Ω◦

T ) and the distinguished triangle (3.19) show
us that (F+

` (XΩ,Fp`
)[−1])T ∼= ΓE(Ω◦

T \O).

So, after applying RHomZ/`(−,Fp`
[−d]), we get the tautological triangle (3.20) of Chiu-

Tamarkin complex for XΩ:

(4.35) RΓ(V, ωZ/`
V )→ C`,T (XΩ,Fp`

)
RHomZ/`(η`,T (XΩ,Fp`

),Fp`
[−d])

−−−−−−−−−−−−−−−−−−→ C+
`,T (XΩ,Fp`

) +1−→ .

Here V ∼= Rd and it is equipped with the trivial Z/`-action. Taking cohomology for the
distinguished triangle, we get a long exact sequence of the Chiu-Tamarkin cohomology:

(4.36) H∗
Z/`(V,Fp`

)→ H∗C`,T (XΩ,Fp`
)

Ext∗−d
Z/`

(η`,T (XΩ,Fp`
),Fp`

)
−−−−−−−−−−−−−−−→ H∗C+

`,T (XΩ,Fp`
) +1−→ .

When 0 ≤ T < p`/‖Ω◦
1‖∞, we have Ω◦

T ⊂ Zp`1
. Then we can apply the Lemma 4.20,

H∗C+
`,T (XΩ,Fp`

) ∼= Ext∗−d
Z/` (ΓE(Ω◦

T \O),Fp`
) is a finite dimensional graded Fp`

vector
space which is concentrated in degrees [−2I(Ω◦

T ),−1]. Then, it is torsion as a Fp`
[u]-

module.
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One the other hand, H∗
Z/`(V,Fp`

) ∼= Ext∗
Z/`(Fp`

[−d],Fp`
[−d]) ∼= Fp`

[u, θ] = A, where
|u| = 2, |θ| = 1, and θ2 = ku (k = 0 if ` is odd and k = `/2 if ` is even), is concentrated
in [0,∞).

Therefore, after tensoring with Fp`
((u)), Ext∗−d

Z/` (η`,T (XΩ,Fp`
),Fp`

)⊗Fp`
[u] Fp`

((u)) is an
isomorphism of Fp`

((u))-vector spaces. Then, we conclude that Ext∗−d
Z/` (η`,T (XΩ,Fp`

),Fp`
) 6=

0 and so η`,T (XΩ,Fp`
) 6= 0.

Actually, it also shows that H∗C`,T (XΩ,Fp`
) is a finitely generated Fp`

[u] module whose
rank is 2, whose minimal degree is at least −2I(Ω◦

T ) and torsion elements can only
happen in degree [−2I(Ω◦

T ),−1].

On the other hand, this estimate is sharp. Indeed, we take Z ∈ Ω◦
T such that I(Z) =

I(Ω◦
T ). Then the decomposition η`,T (XΩ,Fp`

) = uI(Z)ΛZ,` shows that we have a degree
equation: 0 = 2|I(Z)| + |ΛZ,`|. Then |ΛZ,`| = −2I(Ω◦

T ) realizes the minimal degree
−2I(Ω◦

T ).

When XΩ is an ellipsoid E(a), let Z = (−T/a1, . . . ,−T/ad), then Ω◦
T = ZO is a

segment. So, we can compute H∗C`,T (XΩ,Fp`
) directly from Lemma 4.14, and ΛZ,` we

defined above is an isomorphism of A module. So H∗C`,T (XΩ,Fp`
) is torsion free as a

Fp`
[u]-module. □

H<0 H≥0

u

u

u

u

Figure 4.6. The shape of Ext∗−d
G (ΓE(Σ),K)

At the end of the section, let us make a description of the structure of Ext∗−d
G (ΓE(Σ),K[−d]),

where Σ is a γ-closed set, and Σ ⊂ (−p`1, O].

Due to our structural theorem, we know that Ext∗−d
G (ΓE(Σ),K) could be given as follow:

For each v ∈ ∂JΣ, we have a copy of A = K[u, θ] or K[u], degree shifted by −2I(−v),
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we can think of it as a flower, and treat the non-negative degree part as the stem of
the flower.

Next, we can imagine we have many flowers. Then we tie their stems, so we have
a beautiful bouquet now. That is Ext∗−d

G (ΓE(Σ),K[−d]). Moreover, the K[u]-module
structure seems like a water-drop is draping down from the top of blooms into the earth
(maybe never reach).

4.1.5. Contact toric domains. Finally, let us discuss the prequantized toric do-
mains. I.e., XΩ × S1 for a symplectic toric domain XΩ. We say XΩ × S1 is convex if
XΩ is convex.

Actually, we do not need to change the arguments much here, because we already set
everything up well. Using Proposition 3.42, we only need to change the statement of
the structural theorem slightly.

Theorem 4.21. For a big prequantized convex toric domain XΩ×S1 ⊂ T ∗V ×S1 (that
means ‖Ω◦

1‖∞ < 1, see Definition 3.46), ` ∈ N≥2, n ∈ N0 and n` ≤ p`/‖Ω◦
1‖∞. We

have:

• For each Z ∈ Ω◦
n`, the inclusion ZO ⊂ Ω◦

n` induces a decomposition ηc`,n`(XΩ ×

S1,Fp`
) = uI(Z)ΛZ,` for a non-torsion element ΛZ,` ∈ H−2I(Z)C`,n`(XΩ × S1,Fp`

). In
particular, ηc`,n`(XΩ × S1,Fp`

) is non-zero.

• The minimal cohomology degree of H∗C`,n`(XΩ × S1,Fp`
) is exactly −2I(Ω◦

n`), i.e.,

H∗C`,n`(XΩ × S1,Fp`
) ∼= H≥−2I(Ω◦

n`)C`,n`(XΩ × S1,Fp`
)

and
H−2I(Ω◦

n`)C`,n`(XΩ × S1,Fp`
) 6= 0.

• H∗C`,n`(XΩ×S1,Fp`
) is a finitely generated Fp`

[u]-module. The free part is isomorphic
to A = Fp`

[u, θ], so H∗C`,n`(XΩ × S1,Fp`
) is of rank 2 over Fp`

[u].

The torsion part is located in cohomology degree [−2I(Ω◦
n`),−1]. H∗C`,n`(XΩ×S1,Fp`

)

is torsion free when XΩ is an open ellipsoid.
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Theorem 4.22. For a big prequantized convex toric domain XΩ × S1 ⫋ T ∗V × S1, we
have:

[c]k(XΩ × S1) = min
ß
n` ∈ N≥2 : (n, `) ∈ N× N≥2, n` <

p`
‖Ω◦

1‖∞
, ∃z ∈ Ω◦

n`, I(z) ≥ k

™
= min

ß
n` ∈ N≥2 : (n, `) ∈ N× N≥2, n` <

p`
‖Ω◦

1‖∞
, n` ≥ ck(XΩ)

™
.

The result is much weaker than the symplectic case, but it is still interesting. For
example, when we consider ellipsoids, we have

[c]k(E × S1) = min
®
n` ∈ N≥2 : (n, `) ∈ N× N≥2, n` < p`a1,

d∑
i=1

õ
n`

ai

û
≥ k

´
= min {n` ∈ N≥2 : (n, `) ∈ N× N≥2, n` < p`a1, n` ≥ ck(E)} ,

where 1 < a1 ≤ a2 ≤ · · · ≤ ad.

A more concrete example is as follow. Suppose XΩ × S1 = E(3, 4)× S1, we have:

k 1 2 3 4 5 6 7 8 9 10 11

ck 3 4 6 8 9 12 12 15 16 18 20

[c]k 3 4 6 10 10 13 13 15 17 19 22

4.2. Unit cotangent bundles and the Viterbo isomorphism

4.2.1. Microlocal kernel of unit disk bundles. Let us assume (X, g) is com-
plete Riemannian manifold. The open unit codisk bundle is D∗X = {(q,p) : |p|g < 1}.
Let us take H(q,p) = |p|g, then D∗X = {(q,p) : H < 1}.

However, H only defines a Hamiltonian function on Ṫ ∗X, and the associated Hamil-
tonian flow— the normalized geodesic flow, is defined on Ṫ ∗X. As H is homogeneous,
we use the homogeneous version of the GKS sheaf quantization to assert that there is
a sheaf K ∈ D(Rz ×X ×X) such that

(4.37) ˙SS(Kg) = ΛH ,

the graph of ϕH .

We have already presented a precise description of Kg in the Subsection 1.3.1 under
the condition rconv(X, g) > 2.
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Now, take Kg := Kg

L

⊠K{t≥0} ∼= Kg

L

⊠K{0} ∈ D(Rz ×X ×X × Rt), we have

(4.38) µs(Kg) ⊂ ΛH t 0Rz×X×X .

Directly, it seems that the microsupport condition of (2.8) is not satisfied on the zero
section, since ϕH is only defined on Ṫ ∗X. But a feature of the geodesic flow is, if
(z, ζ, q, p, q′, p′) ∈ ΛH , then ζ = −|p|g = −|p′|g. So in case that one of them is non-
zero, all of them are non-zero. Moreover, completeness of the metric g shows that the
normalized geodesic flow is complete and short-term separating. Therefore, one can
check carefully that the proof of Proposition 2.15 still works.

Let us compute PD∗X here. For Ω = {ζ < 1}, we have ÈKΩ = K{(z,t):−t≤z≤0}. Then we
have

PD∗X
∼= Kg ?K{(z,t):−t≤z≤0} ∼= Kg ◦K{(z,t):−t≤z≤0}.

Now, if we restrict on t ≤ N for N ∈ N, then we have

PD∗X |{t≤N} ∼= Kg ◦K{(z,t):−N≤−t≤z≤0} ∼= (Kg){−N≤z≤0} ◦K{(z,t):−N≤−t≤z≤0}.

Now, recall (1.24), we can take

Kg|(−2N,0] ∼= KN
g,−
∼= Rπ(q1,...,qN−1)!KMNX ,

where

MNX = {(z,q0, . . . ,qN) : d(qi,qi+1) ≤ −
z

N
, i ∈ [N − 1]0, −2N < z ≤ 0},

is the discrete Moore path space and [N − 1]0 = {0, 1, . . . , N − 1}. Therefore, we have

PD∗X |{t≤N} ∼= Rπz!Rπ(q1,...,qN−1)!K›MNX
∼= Rπ(q1,...,qN−1)!Rπz!K›MNX

,

where

M̃NX = {(z,q0, . . . ,qN , t) : d(qi,qi+1) ≤ −
z

N
, i ∈ [N − 1]0, −N ≤ −t ≤ z ≤ 0}.

Now, the restriction of the projection πz(z,q0, . . . ,qN , t) = (q0, . . . ,qN , t) on M̃NX is
proper, and its fibers are closed intervals. Therefore, one can apply the Vietoris-Begle
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theorem to show that
Rπz!K›MNX

∼= KMN
0 X
,

where

MN
0 X := πz(M̃NX)

={(q0, . . . ,qN , t) : d(qi,qi+1) ≤
t

N
, i ∈ [N − 1]0, 0 ≤ t ≤ N}

⊂{(q0, . . . ,qN , t) : d(qi,qi+1) ≤ 1, t ≥ 0}.

(4.39)

Therefore, we conclude that

Proposition 4.23. For a complete Riemannian manifold (X, g), the microlocal kernel
of its open unit disk bundle D∗X is given by

PD∗X |{t≤N} ∼= Rπ(q1,...,qN−1)!KMN
0 X
.

4.2.2. The Viterbo isomorphism. Now, we are going to compute F`(D∗X,K).
Recall (3.2) and Definition 3.2, we have

F`(D∗X,K) = Rπq!∆̃−1
X (P□?`

D∗X).

By Proposition 4.23, we notice that PD∗X is supported on X ×X × [0,∞). Therefore,
F`(D∗X,K) is supported on [0,∞).

Now, for T ≥ 0, suppose T ≤ `N for some N ∈ N, we have

F`(D∗X,K)|[0,T ] ∼= Rπq!∆̃−1
X Rs`t!(PD∗X |[0,T/`])

L
⊠` ∼= Rπq!∆̃−1

X (PD∗X |[0,T/`])□?`

Now, for j ∈ Z/`, we apply the Proposition 4.23 to the jth copy of PD∗X |
L
⊠`
[0,T/`], which

is the following sheaf

PD∗X |{tj≤T/`} ∼= Rπ(qj
1,...,q

j
N−1)!K(MN

0 X)j
,

where (MN
0 X)j is the jth-copy ofMN

0 X). In particular, we have d(qji ,qji+1) ≤ 1 for all
i, j. Then we have

F`(D∗X,K)|[0,T ] ∼= Rπq!KLN
`
X ,
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where

(4.40) LN` X :=

(q, t) = (qji , t)i,j :
d(qji ,qji+1) ≤ 1,

∑̀
j=1

d(qji ,qji+1) ≤ t/N,

i ∈ [N − 1]0, j ∈ Z/`, 0 ≤ t ≤ T

 ,

here we require qj = qjN = qj+1
0 . The space LN` X is a Z/`-space and the action is given

by σ(t,qji )i,j = (t,qj+1
i )i,j, where σ is a generator of Z/`. Therefore, we have

F`(D∗X,K)|T ∼= Rπq!KLN
`,T

X ,

where

(4.41) LN`,TX :=

(qji )i,j :
d(qji ,qji+1) ≤ 1,

∑̀
j=1

d(qji ,qji+1) ≤ T/N,

i ∈ [N − 1]0, j ∈ Z/`

 ,

is a Z/` space in the same way.

Now, consider the free loop space LX = Map(S1, X). Here, the maps could be C∞,
L2

1 or just C0 maps. We equip LX with the compact-open topology. It is proven by
Palais that no matter which model we choose, they are all homotopy equivalent with
each other, see [Pal68, Theorem 13.14] or [Kli83, Theorem 1.2.10]. This is enough for
us since we only study their homology groups. When we take L2

1 maps, it is proven in
[Kli83] that LX has a structure of Hilbert manifold; when we take C∞ maps LX has
a structure of Fréchet manifold. To be simpler, let us take C∞ maps here. The length
function

L : LX →, c 7→
∫
c
|ċ|g,

is a Morse function.

The free loop space LX is also a S1-space, and the S1-action is given by (eiθ · c)(t) =

c(t+ θ). The length function is a S1-invariant function. Let

L≤TX = {c ∈ LX : L(c) ≤ T}.
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The invariance of the length function shows L≤TX is also a S1-space. In particular,
L≤TX is restricted to a Z/`-space. The Z/`-action on L≤TX is given by (σ · c)(t) =

c(t+ 1/`) (σ is the generator of Z/`).

It follows the discussion of [Mil63], we can see that the closed subset LN`,TX is home-
omorphic to a closed subset of the finite dimensional manifold XN where N = bT/2c.
So, if we additionally assume that X is compact, then LN`,TX is compact.

It follows from the argument of loc. cit., that we have

Proposition 4.24. The two spaces LN`,TX and L≤TX are Z/`-equivariant homotopy
equivalent.

Proof. As d(qji ,qji+1) ≤ 1 for all i, j, then there are minimal geodesics cji :

[0, 1/(N`)] → X from qji to qji+1, in particular, we have L(cji ) = d(qji ,qji+1). Now,
let cj : [0, 1/`] → X be the concatenation of cji s, and c : [0, 1] → X be the concatena-
tion of cjs, then c( i+1

N`
+ j−1

`
) = qji .

The condition ∑`
j=1 d(q

j
i ,qji+1) ≤ T/N makes sure L(c) = ∑

i,j L(cji ) ≤
∑
i T/N = T .

Then the piecewise geodesic map is given by (qji ) 7→ c. The actions here are (qji ) 7→
(qj+1

i ) and cj 7→ cj+1. So the piecewise geodesic map is Z/`-equivariant.

Finally, recall that the interpolation homotopy in [Mil63] can be taken piecewisely on
each cj. So we can take a Z/`-equivariant homotopy equivalence between the identity
map and the piecewise geodesic map. Then the proposition follows. □

For the S1-action. It is constructed by Abouzaid in [Abo15, Formula (11.79)] that there
exists a homotopical S1-action on LN`,TX which restricts to the Z/`-action here, and the
homotopy equivalence is S1-equivariant. So, actually, the proposition provides us with
a S1-equivariant homotopy equivalent. Moreover, the cyclic structure of F S1(D∗X,K)

is compatible with Abouzaid’s S1-action.

Besides, since the action acts isometrically on LX, and the isomorphism is compatible
with the translation map along T . So we can conclude the following theorem.
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Theorem 4.25. For a compact manifold X, T ∈ [0,∞], we have

HqC`,T (D∗X,K) ∼= H
Z/`
d−q(L≤TX,K),

and we have
HqCS1

T (D∗X,K) ∼= HS1

d−q(L≤TX,K).

Here the definition of HqCS1
T (D∗X,K) over any coefficient ring K follows from Re-

mark 3.24.

As the Z/`-action is exactly the restriction of the S1-action on the free loop space,
recall [Vit97, Appendix], we have

Corollary 4.26. For ` ≥ 3, and any factor µ of `, if HS1
∗ (L≤TX,Z) has no µ-torsion

as an abelian group. Then for T ∈ [0,∞], we have

HqC`,T (D∗X,Z/µ) ∼= HqC`,T (D∗X,Z)
L
⊗H∗(S1,Z/µ) ∼= HS1

d−q(L≤TX,Z)
L
⊗H∗(S1,Z/µ).

An application for the Viterbo isomorphism is to compare the Chiu-Tamarkin co-
homology of disk bundles with the symplectic cohomology of disk bundles, which is
also known as the Viterbo isomorphism. The Viterbo isomorphism is first proposed
by Viterbo in [Vit99], and is proven using generating function homology in [Vit96].
Later, Abbondandolo-Schwarz and Salamon-Weber prove it in different methods, see
[AS06, SW06]. Then Kragh emphasizes the role of the Spin structure of the base in
[Kra18]. See [Abo15] for a survey of the Viterbo isomorphism for symplectic coho-
mology.

Using the Viterbo isomorphism of the symplectic cohomology, we have:

Corollary 4.27. For a compact simply connected spin manifold X. There are isomor-
phisms

HqC1,∞(D∗X,Z) ∼= Hd−q(LX,Z) ∼= SHq(D∗
X,Z),

HqCS1

∞ (D∗X,Z) ∼= HS1

d−q(LX,Z) ∼= SHq
S1(D∗

X,Z).
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Also, when some local coefficients are considered, we can drop the Spin condition on
the symplectic cohomology side (See [Abo15, Kra18]). But we do not know how local
coefficients appear on the sheaf side.

4.2.3. Product structure. In this section, we will compute the product we con-
structed in Section 3.2. In particular, they are the same as the Chas-Sullivan product
on the homology of free loop space. For the Chas-Sullivan product, we use the Thom
collapse approach given in [CJ02] as the definition. We refer [CHV06] for more dis-
cussion on the string topology.

Let us review the notation of (4.41). In particular, let us denote

(4.42) LNT X = LN1,TX = {(qi)i : d(qi,qi+1) ≤ min{1, T/N}, i ∈ K/N}.

Then, when X is orientable and 0 ≤ T ≤ N for N ∈ N, we have

(4.43) H−qC1,T (D∗X,K) ∼= Ext−q(KLN
T X
,KXN [−d]).

Now, take α ∈ H−aC1,A(D∗X,K), and β ∈ H−bC1,B(D∗X,K). Let us assume 0 ≤

A,B ≤ N , then the identification (4.43) presents α and β as follow:

α : KLN
AX
→ KXN [−a− d], β : KLN

BX
→ KXN [−b− d],

and α
L

⊠β corresponds to

α
L

⊠β : KLN
AX×LN

BX
→ KX2N [−a− b− 2d].

Next, apply the collapsing map, we have

KLN
AX×LN

BX
→ KX2N [−a− b− 2d]→ KX2N ∩{qN =q2N }[−a− b− 2d].

It is a class in

Ext−a−b−2d(KLN
AX×LN

BX
,KX2N ∩{qN =q2N })

∼=Ext−a−b−2d(KLN
AX×LN

BX∩{qN =q2N },KX2N ∩{qN =q2N }).
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Notice that, if we apply the piecewise geodesic map , we will see that the homotopy
type of LNAX × LNBX ∩ {qN = q2N} is the space of free composible loops:

FA+BX = {(c1, c2) ∈ L≤AX × L≤BX : c1(0) = c2(0)}.

Next, we apply the Gysin map to the pair (X2N , X2N ∩ {qN = q2N}), we have a class

KLN
AX×LN

BX∩{qN =q2N } → KX2N ∩{qN =q2N }
e−→ KX2N [d],

which corresponds to e◦α
L

⊠β. Under the piecewise geodesic construction, it corresponds
to applying the Gysin map associated to the pair (LA+BX,FA+BX).

Now, we have an element

e ◦ α
L

⊠β ∈ Ext−a−b−d(KLN
AX×LN

BX∩{qN =q2N },KX2N ).

On the other hand, the construction of s(D∗X) induces the isomorphism after applying
adjoint isomorphisms:

s(D∗X) : Ext−a−b−d(KL2N
A+BX

,KX2N ) ∼= Ext−a−b−d(KLN
AX×LN

BX∩{qN =q2N },KX2N ),

which is the tautological map that turns a figure 8 type curve in X into a closed curve
by forgetting the crossing point of 8.

So, we have

e ◦ α
L

⊠β ◦ s(D∗X) ∈ Ext−a−b−d(KL2N
A+BX

,KX2N ) ∼= Ext−a−b(F1(D∗X,K)A+B,K[−d]),

which represents α ∪ β.

Now, we track all steps and applies the piecewise geodesic construction in all steps, we
see that α ∪ β represent the Chas-Sullivan product of α, β in Ha+b+d(L≤A+BX,K).

Consequently, we proved that

Theorem 4.28. For a compact orientable manifold X, the Viterbo isomorphism

HqC1,T (D∗X,K) ∼= Hd−q(L≤TX,K),
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is an isomorphism of K-algebras with respect to the cup product on the Chiu-Tamarkin
homology and the Chas-Sullivan product on the string topology.

Interpolate the Viterbo isomorphism of symplectic cohomology and the comparison of
products given by Abbondandolo-Schwarz in [AS10]. We conclude that

Corollary 4.29. For a compact simply connected spin manifold X, we have an iso-
morphism of rings

HqC1,T (D∗X,Z) ∼= SHq(D∗
X,Z),

where we equip the cup product on the Chiu-Tamarkin cohomology and the pair-of-pants
product on symplectic cohomology.
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CHAPTER 5

Discussion

Gutt and Hutchings constructed a sequence of capacities (cGH
k )k∈N in [GH18] based on

the positive S1-equivariant symplectic homology. They computed cGH
k for convex toric

domains and concave toric domains. For example, when XΩ is convex, they showed
that

(5.1) cGH
k (XΩ) = min

®
‖v‖∗

Ω : v ∈ Nd,
d∑
i=1

vi = k

´
= inf {T ≥ 0 : ∃z ∈ Ω◦

T , I(z) ≥ k} ,

where ‖v‖∗
Ω = max{〈v, w〉 : w ∈ Ω}.

Therefore, ck(XΩ) = ck(XΩ) = cGH
k (XΩ) by (5.1) and Theorem 4.8.

On the other hand, one may ask how about the concave case. It is explained in Re-
mark 4.5 that some technical issues exist. So we can not derive a clear structure theorem
as Theorem 4.6, and then the computation of capacities is also not completely clear.
But manual computation of some examples shows the coincidence with Gutt-Hutchings
capacities is still true.

Based on the computation on the convex toric domains and concave toric domains, Gutt
and Hutchings conjectured ([GH18, Conjecture 1.9]) that, for a bounded star-shaped
domain U and for all k ∈ N,

cEH
k (U) = cGH

k (U).

In fact, the result cEH
1 (U) = cGH

1 (U) = Minimal action has been proven by Irie [Iri19]
for convex bodies U . Comparing to our results, we hope the consistency could be
extended to ck and ck as well.

Conjecture 5.1. For a convex domain U and for all k ∈ N, we have

cEH
k (U) = cGH

k (U) = ck(U) = ck(U).
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We also hope for a cohomology level correspondence between the Chiu-Tamarkin coho-
mology and the symplectic cohomology.

Conjecture 5.2. Let X be simply connected and spin, and let U ⊂ T ∗X be a bounded
open set with contact boundary such that U is a Liouville domain with respect to the
standard contact form induced from T ∗X. Then we have an isomorphism of Q(u)-vector
space:

SHq
S1(U,Q)⊗Q[u] Q(u)→ HqCS1

∞ (U,Q)⊗Q[u] Q(u)

and an isomorphism of Q-algebra:

SHq(U,Q)→ HqC1,∞(U,Q),

with respect to the pair of pants product and the cup product.

Also, we should have isomorphisms of filtered version on both sides.

The conjecture is already proved for disk bundle U = D∗X in Theorem 4.25 and for
convex toric domain XΩ in Theorem 4.6. In particular, the convex toric domain case
explains that why we need a tensor product ⊗Q[u]Q(u) because SHq

S1(XΩ,Q) is free as
Q[u] module while HqCS1

∞ (XΩ,Q) is not. So one may also ask, what is the corresponding
Q[u]-torsion part on the symplectic cohomology side.

Actually, by our construction for the S1 equivariant Chiu-Tamarkin complex, we guess
that it is a cyclic cohomology of the corresponding (dg)-Tamarkin category. I.e.

Conjecture 5.3. For an admissible open set U , we have

HC∗
T (DU,dg(X)) ∼= H∗CS1

T (U,K).

When the cyclic permutation is forgotten, we also hope an isomorphism

HH∗
T (DU,dg(X)) ∼= H∗C1,T (U,K).

Here, we hope there exists some filtered version of Hochschild/Cyclic cohomology HH∗
T/HC

∗
T

of a dg triangulated persistence category (see [BCZ21]), and DU,dg(X) stands for the
dg version of triangulated persistence category of the Tamarkin category.
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The conjecture is based on the following ideas:

• The similarity of the Chiu-Tamarkin complex and the symplectic homology has been
observed by Zhang in [Zha20, Section 4.8].

• A similar idea has been realized for the non-equivariant case for the derived category
of coherent sheaves over an algebraic variety V , see [Kuz09]. Kuznetsov shows that for
an admissible subcategory A of Db(V ), the derived category of coherent sheaves over an
algebraic variety V , the Hochschild homology HH∗(A) is isomorphic to RHom(P, P ⊗

ωV×V/V [dimV ]), where P is the kernel of the projector associated with the admissible
subcategory A.

• Jones’ work on equivariant homology [Jon87] studied the notion of cyclic space,
which is an analog of simplicial space. Then he shows that we can construct a S1-action
on the geometric realization of a cyclic space. Subsequently, equivariant (co)homology is
exactly a version of cyclic (co)homology. For the sheaf theory over cyclic space, a similar
construction without the group action has been studied by Deligne, say the theory of
simplicial sheaves (see [Del74]). The correspondence algebraic theory provides us with
a point of view of the Hochschild cohomology. Then it goes back to the last paragraph.

• A comparison of the wrapped Fukaya category and the category of wrapped sheaves
is established in [GPS18a] by Ganatra-Shende-Pardon. It is known that the S1-
equivariant/non-equi. symplectic cohomology are isomorphic to the Cyclic/Hochschild
cohomology of wrapped Fukaya category for Weinstein manifolds (see [CRGG17,
Gao17b, GPS18b, Gan19]). So, we hope that some variant of the Ganatra-Shende-
Pardon’s result and the conjecture Conjecture 5.3 combine to prove the Conjecture 5.2.

• Generating functions can also play a role. In this paper, we exhibit the existence of
PU using the sheaf quantization of Guillermou-Kashiwara-Schapira, whose construction
is generating function theory natural[GKS12]. We can also see the construction of
[Tam18] using generating functions. We also hope to know a construction of the
Chiu-Tamarkin complex from the generating function, and then it is possible to deduce
a correspondence between the generating function homology and the Chiu-Tamarkin
homology.
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On the other hand, Viterbo constructs a sheaf quantization of compact Lagrangian
submanifold in cotangent bundles using the Lagrangian Floer theory [Vit19]. Hence,
it is hopeful to construct a sheaf quantization using the Hamiltonian Floer theory,
which is closer to the theory of symplectic cohomology. It is possible to construct a
sheaf quantization of Hamiltonian isotopy using Floer theory. Then we hope that the
uniqueness of the sheaf quantization of Hamiltonian isotopy can help us to identify it
with the GKS construction. This is also a possible way to Conjecture 5.2.
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APPENDIX A

Equivariant sheaves and equivariant derived categories

Here, we review basic notions about equivariant sheaves. We refer to [BL94] for all
details about the general theory of equivariant sheaves and equivariant derived cate-
gories. On the other hand, to use the 6-operations on the unbounded derived category,
we adapt the technical framework of [KS06] and [SS16]. All topological spaces are
assumed to be locally contractible and paracompact to make sure the cohomology of
constant sheaf is isomorphic to the singular cohomology.

A.1. Equivariant sheaves

For a topological space X with a G action ρ : G × X → X, a G-equivariant sheaf is
a pair (F, θ) where F ∈ Sh(X) and θ : ρ−1F ∼= π−1

G F is an isomorphism of sheaves
satisfying the cocycle conditions:

d−1
0 θ ◦ d−1

2 θ = d−1
1 θ, s−1

0 θ = IdF .

Here

d0(g, h, x) = (h, g−1x),

d1(g, h, x) = (gh, x),

d2(g, h, x) = (g, x),

s0(x) = (e, x).

A sheaf morphism between two G-equivariant sheaves is equivariant if it commutes with
the θ’s. We let ShG(X) be the category of G-equivariant sheaves and equivariant sheaf
morphisms. For example, when X = pt and G is discrete, ShG(X) ' K[G]−Mod, the
category of all G-modules. The category of G-equivariant sheaves ShG(X) is Abelian.
Moreover, Grothendieck proved in [Gro57] that when G is discrete, ShG(X) admits

183



enough injective objects. Therefore, the derived category D(ShG(X)) makes sense,
which is treated as a naive version of the equivariant derived category of sheaves.

A.2. Equivariant derived categories

For general topological groups, the naive version is not as good as we expected. A
basic difference is the hom space RHomD(ShG(X))(KX ,KX) is not isomorphic to the
equivariant cohomology of X, which is true for non-equivariant sheaf. A more serious
problem is how to define the 6-operations.

To resolve these problems, we must use the equivariant derived category DG(X) de-
fined by Burnstein-Lunts, where the expected isomorphism holds, and the correct 6-
operations live.

Let us assume G is a compact Lie group in this article. Then there is a universal
bundle EG and a classifying space BG, which are unique up to homotopy. Because
G is a compact Lie group, there exists a family of finite dimensional approximations.
Let us fix a model of EG and BG. That means EG = ∪mEGm and BG = ∪mBGm

where πm : EGm → BGm is a principal G-bundle and BGm are compact manifolds with
πi(EGm) = 0 for m >> i, and both of inclusions EGm ⊂ EGm+1 and BGm ⊂ BGm+1

are closed embeddings of submanifolds. We equip EG and BG with the weak topology.

Now, we have a diagram of topological spaces:

X
p←− X × EG q−→ X ×G EG.

Definition A.1. An object F ∈ DG(X) is a triple F = (FX , F , βF ), where FX ∈ D(X),
F ∈ D(X ×G EG), and βF : p−1FX → q−1F is an isomorphism in D(X × EG). A
morphism α : F → H is a pair (αX , α) where αX : FX → HX , α : F → H, and a
commutative diagram in D(X × EG):

p−1FX q−1F

p−1HX q−1H.

βF

p−1αX q−1α

βH
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For example, the equivariant constant sheaf is given by KG
X = (KX ,KX×GEG, IdKEG

).

Bernstein and Lunts constructed a triangulated structure and the 6-operations on the
equivariant derived category.

We say F → F ′ → F ′′ +1−→ is distinguished if F → F ′ → F ′′ +1−→ is. Then one can check
that we define a triangulated structure on DG(X).

One also can define the canonical t-structure of DG(X) in the same way as the non-
equivariant case. One can prove that the heart of the t-structure is isomorphic to
ShG(X) (see [BL94, Appendix B]).

We have a forgetful functor For : DG(X)→ D(X) which is given by

F = (FX , F , βF ) 7→ FX .

The forgetful functor is a triangulated functor. We need the following fact in our main
discussion.

Proposition A.2. The forgetful functor For : DG(X) → D(X) is a conservative
functor. Precisely, it means that, for a morphism α : F → H in DG(X), if αX : FX →

HX is an isomorphism in D(X), then α is an isomorphism.

Proof. Taking the cone C of α, then we have a distinguished triangle

F → H → C
+1−→ .

By definition, we have the distinguished triangle in D(X ×G EG):

F → H → C
+1−→ .

Then we have the isomorphism of distinguished triangle in D(X × EG):

q−1F q−1H q−1C

p−1FX p−1HX p−1CX .

βF βH

+1

βC

+1
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Now, because αX is an isomorphism, we have CX ∼= 0 and then p−1CX ∼= 0. So we have
q−1C ∼= 0. Then we can conclude that C ∼= 0 since q is surjective. □

Generally, suppose K is a Lie subgroup of G. Because G acts on EG freely, then so
does K. In particular, we can take EK = EG. Now, we have a fibration

G/K → X ×K EG/K
qG,K−−−→ X ×G EG.

Now, take F = (FX , F , βF ) ∈ DG(X), then (FX , q−1
G,KF , βF )c defines an object of

DK(X). It defines a triangulated functor, which is the restriction functor:

ResGK : DG(X)→ DK(X).

The forgetful functor is a particular case, where K is the trivial subgroup. This can
be seen either from that EK could be taken as one point, or the following discussion
about the quotient space functor.

The quotient space functor is quo−1 : D(X/G)→ DG(X), quo−1(F ) = (q′−1F, p′−1F, βF ),
where we have a commutative diagram:

X × EG X

X ×G EG X/G,

q

p

q′

p′

and βF is the isomorphism p−1q′−1F ∼= q−1p′−1F . When X is a free G-space, the
quotient functor is an equivalence ([BL94, 2.2.1]).

On the other hand, we have another functor DG(X) → D(X ×G EG), F 7→ F . One
can show that this functor is fully-faithful, and the essential image is

(A.1) D(X ×G EG|p) = {F : ∃FX , β, such thatβ : p−1FX ∼= q−1F},

see [BL94, 2.3.2]. In particular, one has that DG(pt) is equivalent to the full subcat-
egory of D(BG) which consist of complexes of locally constant cohomology ([BL94,
2.7.2]).

For a G-map f : X → Y , we define maps induced from f as follows:
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X X × EG X ×G EG

Y Y × EG Y ×G EG.

f

p q

f̂ f

p′ q′

Now F, F ′ ∈ DG(X) , H ∈ DG(Y ) in the equivariant derived categories, we define the
6-operations:

F
L
⊗F ′ = (FX

L
⊗F ′

X , F
L
⊗F ′, βF

L
⊗βF ′),

RHomG(F, F ′) = (RHom(FX , F ′
X),RHom(F, F ′),RHom(βF , βF ′)),

Rf∗F = (Rf∗FX ,Rf ∗F̄ ,Rf̂∗βF ),

f−1H = (f−1HX , f
−1
H, f̂−1βH)).

For f! and f !, we need to assume f is separated locally proper (it is true when X,Y

are Hausdorff and locally compact) and f! has finite cohomological dimension. Then
we set

Rf!F = (Rf!FX ,Rf !F̄ ,Rf̂!βF ),

f !H = (f !HX , f
!
H, f̂ !βH).

Then we have

Proposition A.3. All properties of the 6-operations hold in the equivariant case under
the condition that f is separated locally proper and f! has finite cohomological dimension.

In particular, we have the equivariant Verdier duality: For F, F ′ ∈ DG(X), we have

RHomG(Rf!F, F
′) ∼= RHom(F, f !F ′).

Using the Verdier duality, we can construct another important equivariant sheaf: the
dualizing complex. For the constant map aX : X → pt, the non equivariant dualizing
complex is ωX = a!

XK. So, we use the same formula ωX = ωGX = a!
XK ∈ DG(X).

Therefore, our definition of a!
X shows

ωX = ωGX = (a!
XK, aX !KBG, âX

!IdKEG
).
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Remark A.4. In [BL94], the authors use the approximation EGm to define these
functors. The reason is, classically, the 6-operations and related propositions (especially
the proper base change) are demonstrated for finite (cohomological) dimensional locally
compact Hausdorff spaces. But usually, X ×G EG is not in this class.

However, in the framework of [SS16], the authors introduce a relative notion called
separated locally proper maps, for which a proper base change formula is true. In
particular, here our f̂ and f are separated locally proper if f is, and f̂! and f ! have
finite cohomological dimension if f! has finite cohomological dimension. Consequently,
we can provide those simpler formulas for the equivariant 6-operations, and they also
work in the unbounded derived category.

On the other hand, suppose F is concentrated in an interval I. Then, for sufficient
big m with |I| ≤ m, we can replace EG and BG by EGm and BGm in the definition
of the equivariant derived category and the 6-operations. This is close to the original
approach of Bernstein-Lunts.

Then obviously, the 6-operations commute with the restriction functors, in particular
the forgetful functor. So, in practice, we usually denote an object F ∈ DG(X) by the
non-equivariant part FX of F .

To compare the derived category of equivariant sheaves and the equivariant derived
category, we start from a triangulated functor:

i : D(ShG(X))→ DG(X).

The definition is as follows: First, one can show that if G acts on Y freely, then the
quotient map q : Y → Y/G induces a equivalence between q−1 : Sh(Y/G) → ShG(Y ).
Whose quasi inverse is given by qG : ShG(Y ) → Sh(Y/G), where F is mapped to the
G-invariant subsheaf qG∗ (F ) = (q∗F )G.

Now, for H ∈ D(ShG(X)), we define

i(H) = (H, qG∗ (p−1H), βi(H)),
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where
X

p←− X × EG q−→ X ×G EG,

and βi(H) is the isomorphism that defines the quasi-inverse pair (q−1, qG∗ ).

One can show that i defines an equivalence between Abelian categories: ShG(X) and
the heart of DG(X). Hence, i is essentially surjective. However, in general, i is not
fully-faithful. So it does not define an equivalence between triangulated categories.

But for discrete group, this is true.

Theorem A.5 ([BL94, Theorem 8.3.1]). For a discrete group G, the triangulated
functor i defined as before is an equivalence between D(ShG(X)) and DG(X).

Under this identification, both the naive and advanced versions of equivariant sheaves
are equivalent, i.e., D(ShG(X)) ' DG(X). In particular, D(K[G] −Mod) ' DG(pt).
So for us, D(ShG(X)) is enough for our applications. In practice, for a discrete group
G, we always write everything in the usual derived category and run the machine of
equivariant derived category implicitly. As a rule of convenience, we only write a lower
subscript G for all possible places to indicate that we are working on a version of
equivariant categories without mentioning which one we are really working on.

In this thesis, our main working example is G = S1 and K = Z/` ⊂ G for ` ∈ N.
Then, we take EG = S∞ and EGm = S2m+1. Since Z/` is discrete, we adapt the
remark above: We work on DZ/`(X) only when we need 6-operation. Otherwise we use
D(ShZ/`(X)) and treat objects there as complex of sheaves equipped with a Z/`-action.
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APPENDIX B

Equivariant cohomology, Borel-Moore homology, and

equivariant Borel-Moore homology

In this appendix, we assume X is a locally contractible locally compact Hausdorff
topological space (a manifold for example), and G is a compact Lie group as in the last
section, we additionally assume that the finite dimensional approximations EGm and
BGm are orientable.

B.1. Equivariant cohomology

Using the equivariant 6-operations, we have the notion of equivariant sheaf cohomology.
Precisely, let F ∈ DG(X) and for aX : X → pt be the constant map.

The equivariant cohomologies are defined by

H∗
G(X,F ) = R∗Γ(BG,RaX∗F ),

H∗
c,G(X,F ) = R∗Γ(BG,RaX !F ).

First, let us study the equivariant cohomology of the constant sheaf KX = (KX ,KX×GEG, Id).

H∗
G(X,KX) =H∗RΓ(BG,RaX∗KX×GEG)

=H∗RaBG∗RaX∗KX×GEG

=H∗RaX×GEG∗KX×GEG

=H∗RΓ(X ×G EG,KX×GEG).

Under our assumption of X, the last is the Borel equivariant cohomology of X. Directly,
we have the expected isomorphism

(B.1) Ext∗
G(KX ,KX) ∼= H∗

G(X,KX) ∼= H∗
G,Borel(X,K),
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where the latter is the Borel equivariant cohomology of X.

In particular, when X = pt is a point, we have

(B.2) Ext∗
G(K,K) ∼= H∗

G(pt,K) ∼= H∗
G,Borel(pt,K) ∼= H∗(BG,K).

For example,

Ext∗
S1(Z,Z) ∼= H∗(CP∞,Z) ∼= Z[u],

Ext∗
Z/`(K,K) ∼= H∗(L∞

` ,K) ∼= K[u, θ],
(B.3)

where L∞
` = S∞/(Z/`) is the infinite dimensional lens space, K is a finite field of

char(K)|`, |u| = 2, |θ| = 1, and θ2 = ku (k = 0 if ` is odd and k = `/2 otherwise). The
second computation can be found in [Hat02, Example 3E.2, Exercise 3E.1].

B.2. Borel-Moore homology, and equivariant Borel-Moore homology

Definition B.1. The Borel-Moore homology of X is defined as

HBM
i (X,K) := H−iR(X,ωX) ∼= Ext−i (RΓc(X,KX) ,K).

When X is a G-space, we define the equivariant Borel-Moore homology to be:

HBM,G
i (X,K) := H−iR(X,ωGX) ∼= Ext−i

G (RΓc(X,KX) ,K).

Then, because EGm and BGm are orientable, we have aX !KBGm
∼= KBGm [− dimBGm].

Consequently, there is

HBM,G
i (X,K) ∼= HBM

i+dimBGm
(X ×G EGm,K),

here we take i << m.

By the equivariant Verdier duality, we have the equivariant Poincaré duality when K is
a field:

HBM,G
i (X,K) ∼= H i

G(X,K), ∀i ∈ Z.

Since X is locally contractible, we have

HBM
i (X,K) ∼= Hi(Slfi (X,K)),
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where Slf∗ (X,K) is the chain complex of locally finite singular chain in X. This is also
true for the equivariant version since EGm and BGm are manifolds.

Using the locally finite chain formulation, we have

HBM
i (X,K) ∼= H∗(M,M \X,K),

where j : X → M is an (arbitrary) embedding and M is compact. In particular, one
can take one point compactification (M,M \X) = (X̂,∞), and then the Borel-Moore
homology computes the reduced homology of X̂. Also, when X itself is compact, the
Borel-Moore homology is the same as the singular homology.

When X is an orientable manifold of dimension d, one can show that ωX ∼= KX [−d]

in both non-equivariant and equivariant derived categories. So, we have the following
Poincaré duality.

H i
G(X,K) ∼= HBM,G

d−i (X,K), H i(X,K) ∼= HBM
d−i (X,K).

Therefore, we can assign a fundamental class from (1, . . . , 1) ∈ H0 ∼= Kπ0(X):

[X]G ∈ HBM,G
d (X,K), [X] ∈ HBM

d (X,K).

Moreover, since the forgetful functor from equivariant to non-equivariant derived cate-
gory commutes with the 6 operations, we have a forgetful map:

HBM,G
i (X,K)→ HBM

i (X,K),

which maps [X]G to [X].

The Yoneda product, let us state the equivariant case only, here is

ExtiG(KX ,KX)⊗ Ext−j
G (KX , ωX)→ Exti−jG (KX , ωX).

Using the definition of Borel-Moore homology and (B.1), the product is tautologically：

H i
G(X,K)⊗HBM,G

j (X,K)→ HBM,G
j−i (X,K).

Then the Yoneda product turns thatHBM,G
j (X,K) into a graded module overH i

G(X,K).
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One can verify, in the non-equivariant case, that if X is compact, then this module
structure is given by the cap product of the singular chain (see [Ive86]). So we also
call the module structure the cap product. Now, since we work on the equivariant
case, H i

G(X,K) is an algebra over H i
G(pt,K). So, HBM,G

j (X,K) is also a module over
H i
G(pt,K).

B.3. The restriction map

Now, suppose K is a Lie subgroup of G. Consider the restriction functor ResGK :

DG(X)→ DK(X). Then, it is direct to see that ResGK(KX) = KX and ResGK(ωGX) = ωKX .
Then the restriction functor induces the restriction map of equivariant cohomology and
equivariant Borel-Moore holomogy:

H∗
G(X,K)→ H∗

K(X,K),

HBM,G
i (X,K)→ HBM,K

i (X,K).

In particular, these maps are induced by the fibration

G/K → X ×K EG/K
qG,K−−−→ X ×G EG.

For example, for G = S1 and K = Z/`, the restriction map

Ext∗
S1(K,K) ∼= K[u]→ Ext∗

Z/`(K,K) ∼= K[u.θ]

is an embedding of algebras given by u 7→ u, where K is a finite field with char(K)|`,
|u| = 2, |θ| = 1,θ2 = ku.
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APPENDIX C

Steenrod’s construction for sheaves

In this chapter, I would like to explain Steenrod’s construction in the framework of
sheaves. Here, we follow the approach of Lonergan [Lon21, Section 2.2] without re-
quiring that ` be prime. When ` is prime, Steenrod’s construction admits more elegant
properties, but we do not need it in the thesis, we refer to the loc. cit. for the readers.

Here, we denote by C(X) the abelian category of complex of sheaves of K-modules over
X, where X is a topological space; and if Y is a Z/`-space, we denote by CZ/`(Y ) the
abelian category of complexes of Z/`-equivariant sheaves (see Section A) of K-modules
over Y . The derived categories D(X), DZ/`(Y ) are defined as usual.

Consider the `-external tensor power functor

C(X) ⊠`−→ C(X`).

The functor factor through, by the equivariant category, as

⊠` : C(X)
St`C−−→ CZ/`(X`)→ C(X`).

Precisely, for F • ∈ C(X), the external tensor power is the following complex:

(F •)⊠` = (⊕n1+···+n`=•F
n1 ⊠ · · ·⊠ F n`)• .

Since Z/` is a discrete group, a Z/`-equivariant sheaf is a sheaf with a Z/`-action. So,
we define a Z/`-action on (F •)⊠` in the following way: for the generator τ of Z/`, there
is an isomorphism of complex τ∗ : (F •)⊠`

∼=−→ τ−1(F •)⊠` defined degreewise by

τ∗ : F n1 ⊠ F n2 ⊠ · · ·⊠ F n`
∼=−→ τ−1F n2 ⊠ · · ·⊠ F n` ⊠ F n1 ,

and twisted by (−1)n1(n2+·+n`) following the Koszul rule. In this way, we denote (F •)⊠`

together with the Z/`-action by StC(F •). It is direct to see that for f : F → G in C(X),
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f⊠` is a Z/`-equivariant morphism. So StC is a functor. Moreover, both StC and the
forgetful functor CZ/`(X`) → C(X`) preserve quasi isomorphisms. So, the universal
property of derived category induces functors on derived categories:

L

⊠` : D(X)
St`D−−→ DZ/`(X`)→ D(X`).

Since St`D(F [1]) ∼= StD(F )[`], St`D is not triangulated. Now St`D is even not additive.
It is proven in loc. cit., that

Proposition C.1. For f, g : F → G in D(X), there exists a non-equivariant morphism
h : F

L
⊠` → G

L
⊠` such that

StD(f + g)− StD(f)− StD(g) : StD(F )→ StD(G),

equals
Av(h) =

∑
x∈Z/`

: StD(F )→ StD(G).

We can check on complex level that Steenrod’s construction is compatible with the
6-operations.

Proposition C.2. For a continuous map u : X → X ′, let u×` be the Cartesian product
of u, we have

Ru×`
∗ StD ∼= StDRu∗,

(u×`)−1StD ∼= StDu
−1,

StD(−)
L
⊗StD(−) ∼= StD(−

L
⊗−),

RHom(StD(−), StD(−)) ∼= StDRHom(−,−).

When u is separated locally proper and u! has finite cohomological dimension, we have

Ru×`
! StD ∼= StDRu!,

(u×`)!StD ∼= StDu
!.

All of these morphisms commute with any and all adjunction morphisms of the 6-
operations formalism.
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Finally, we present an example that is essential for our applications.

Example C.3. Suppose Z ⊂ X2×Y is a locally closed subset, consider F = RπY !KZ ∈

D(X2). We can take the singular cochain resolution for KZ , and then apply the Künneth
isomorphism. The definition at complex level of Steenrod’s construction shows that

F
L
⊠` ∼= RπY `!KZ` ,

and the Z/`-action is induced by the cyclic permutation on Z`. They together form
StD(F ).

Under the equivalence of Theorem A.5, the equivariant lifting of StD(F ) is given by

(F
L
⊠`, F

L
⊠`, Id), where

F
L
⊠` ∼= RπY `!KZ`×Z/`S

∞ .
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Microsupport of relative composition, 47

Relative composition, 47

Convolution of sheaves, 47

Chiu-Tamarkin complex, 84
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Equivariant cohomology, 191
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Equivariant sheaf, 183

FourierTransform
Microsupport of Fourier-Sato-Tamarkin transform, 63

Fundamental Class, 92
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Microlocal projectors, 64
Microsupport, 41
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