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Abstract

The Gaussian free field (GFF) is one of the most fundamental objects of Statistical Physics
and Quantum Field Theory. There is a strong connection between this GFF and the random
walks (in discrete) and the Brownian motion (in continuum). These are the so called ”isomor-
phism theorems”, which originate from Euclidean Quantum Field Theory. This manuscript
presents an overview of the results obtained by myself and my coauthors on this topic. An
important aspect of my work was to relate in dimension 2 the isomorphism theorems to the
theory of Schramm-Loewner Evolutions (SLE) and to describe the intrinsic geometry of the
2D continuum GFF in terms of clusters of Brownian trajectories. A method commonly used
throughout this manuscript is that of metric graphs, which I introduced earlier during my PhD.
Other aspects of the isomorphism theorems covered by this manuscript include their relation
to the 2D Gaussian multiplicative chaos, their relation to the topological expansion, and the
inversion of the isomorphism theorems and how it involves self-repelling processes.

Résumé

Le champ libre gaussien (CLG) est un des objets le plus fondamentaux de la Physique
Statistique et de la Théorie Quantique des Champs. Il y a une forte relation entre ce CLG
et les marches aléatoires (dans le discret) et le mouvement brownien (dans le continu). Ce
sont les théorèmes dit ”d’isomorphisme”, qui proviennent de la Théorie Quantique des Champs
Euclidienne. Ce manuscrit présente un panorama des résultats obtenus par moi-même et mes
coauteurs sur ce sujet. Un aspect important de mon travail a été de relier en dimension 2 les
théorèmes d’isomorphisme à la théorie des Évolutions de Schramm-Loewner (SLE) et de décrire
la géométrie intrinsèque du CLG sur espace continu 2D en termes d’amas de trajectoires brown-
iennes. Une méthode beaucoup utilisée dans ce manuscrit est celle des graphes métriques, que
j’ai introduite pendant mon Doctorat. Les autres aspects des théorèmes d’isomorphisme traités
dans ce manuscrit incluent leurs relations avec le chaos multiplicatif gaussien en dimension 2,
leurs relations avec l’expansion topologique, ainsi que l’inversion des théorèmes d’isomorphisme
et comment cela fait intervenir des processus auto-répulsifs.
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Vincent Vargas d’avoir accepté de faire partie de mon jury de soutenance. Je suis très heureux
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Introduction

There are two main characters in this memoir. The first one is the Gaussian free field (GFF),
also known as Euclidean bosonic free field. It will appear both on continuous domains and on
discrete electrical networks, and importantly, on so called metric graphs (or cable systems), but
more on them later. The GFF is ubiquitous in Statistical Physics, but it traces its origins back
to the earliest works on Quantum Field Theory (QFT) in the 1920s. One can turn the QFT
into essentially a subdomain of Statistical Physics and Probability Theory in generally by a
procedure known as the Wick rotation: in the functional integrals associated to quantum fields
one sees the time coordinate as a pure imaginary additional space coordinate. The Wick rotation
relates a dynamical quantum picture in space dimension d− 1 to a static statistical picture in
space dimension d. It is a major ingredient in the mathematically rigorous constructive QFT
[GJ87, Sim74]. The GFF is obtained by Wick-rotating the (quantum) bosonic free field, which
is a gas of non-interacting spin-0 bosons. This memoir will mostly deal with the free field,
but it is worth mentioning that by adding an interaction potential to the free field one gets
an interacting quantum field, such as the φ4 (Phi 4), and then the major questions are the
renormalization of the field in continuum, the asymptotic triviality and the symmetry breaking.

The second main character of this memoir is the random walk in discrete or the Brown-
ian motion in continuum (these two count for one). The two characters, GFF and random
walk/Brownian motion are related through the so called isomorphism theorems which tell that
the square of the former is of the same nature as the occupation times of the latter. The
term ”isomorphism” is not completely well suited here. It is rather a correspondence, a family
of exact identities, rather than an isomorphism between objects of the same category. These
isomorphisms emerged from the Euclidean QFT, i.e. the QFT which deals with the Wick-
rotated quantum fields. The precursor of these isomorphisms was a work of the physicist Kurt
Symanzik [Sym66] in the 1960s. He expressed the correlations of the Euclidean φ4 field in terms
of Brownian paths, closed Brownian loops, and their intersection local times. His expression
was purely formal and did not deal with the renormalization or the triviality of the φ4 in higher
dimensions. Symanzik’s identities are related, but different from the expansion of the correla-
tions of the φ4 into Feynman diagrams, and unlike the latter do not require a small value of the
coupling constant in the interaction potential. Then, a mathematically cleaner identity of the
same nature was given separately by Brydges, Fröhlich and Spencer [BFS82] and by Dynkin
[Dyn84a] in the 1980s. It will be referred to in this memoir as the BFS-Dynkin isomorphism.
Other identities of the same nature were discovered or rediscovered over time by different prob-
abilists. These isomorphism identities are more general than that of Symanzik [Sym66] in the
following sense. It is no longer just about the correlations of the φ4 and the self-intersection
local times, it is more generally about the square of the GFF and the occupation times. Then
indeed, if an interaction potential depends on the square of the field (and so does the φ4), and
does not take into account its signs, then the isomorphism identities give an expression of the
corresponding correlations in terms of random walks in discrete, and after suitable renormal-
ization in terms of Brownian motions in continuum. A major achievement in this domain was
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the proof by Fröhlich of the asymptotic triviality of the φ4 field in dimensions d ≥ 5 [Frö82].
He related through isomorphisms this asymptotic triviality to the asymptotic non-intersection
of two independent random walks.

More recently, a new perspective emerged in dimension 2 both on the GFF and on the
Brownian motion with the introduction of Schramm-Loewner Evolutions (SLE) [Sch07]. This
is related to the conformal invariance, since both the 2D continuum GFF and the 2D Brownian
motion are conformally invariant in law. The SLEs are random fractal curves in 2D domains
that satisfy the conformal invariance in law and a domain Markov property. The SLE curves
appear, or are conjectured so, as scaling limits of interfaces in different models of Statistical
Physics at criticality in dimension 2. The SLE curves are primarily classified by a parameter
κ > 0 (SLEκ). The SLEκ curves join two boundary points of a 2D domain. There are also
versions of these curves that are loops (i.e. closed curves) inside the domain. These are the
conformal loop ensembles CLEκ [SW12].

Schramm and Sheffield introduced the notion of level lines of the 2D continuum GFF [SS09,
SS13]. The GFF on a continuous domain in dimensions d ≥ 2 is not a pointwise defined
function, rather a random generalized function living in a Sobolev space. Nevertheless one can
make sense of the level lines of the GFF in dimension d = 2. These are SLE4 type curves in
the case of level lines touching the boundary of the domain, and CLE4 type loops in case in the
case of level lines staying inside the domain.

Also in this context of conformally invariant stochastic processes, Lawler and Werner redis-
covered in [LW04] the Symanzik’s measure on Brownian loops that Symanzik used to express
the correlations of the φ4 field [Sym66]. Lawler and Werner also introduced Poisson point
processses of Brownian loops with intensity proportional to these measure, which they called
Brownian loop soups. So a Brownian loop soup comes with an intensity parameter α > 0.
Actually the Symanzik’s loop measure has an ultraviolet divergence, therefore a Brownian loop
soup contains countably infinitely many loops, with small loops of each scale. In dimension 2
the Brownian loop soups satisfy a conformal invariance in law if one considers only the range of
the loops and forgets about their time parametrization. Because of this conformal invariance,
the 2D Brownian loop soups are related to the SLE and CLE processes. Sheffield and Werner
studied in [SW12] the clusters of Brownian loops in a Brownian loop soup on a simply connected
2D domain. They showed that there is a phase transition. For α > 1/2 there is a.s. only one
cluster that is everywhere dense in the domain, and for α ∈ (0, 1/2] there are infinitely many
clusters. Moreover, in the latter case, the outermost boundaries of clusters are distributed as a
CLEκ conformal loop ensemble, with a correspondence between α and κ. Actually, if one adds
on top of the Brownian loops an additional independent Poisson point process of Brownian
boundary excursions, then one can construct an interface distributed as an SLEκ joining two
boundary points.

So in the picture above the intensity parameter α = 1/2 plays a particular role, as it is the
critical one for the Brownian loop clusters. The corresponding value of κ is κ = 4. Thus, the
Brownian loop soup with α = 1/2 is related to SLE4, CLE4, and therefore indirectly related
to the 2D continuum GFF, because of the level lines story. There is also an other relation
between the Brownian loop soup with α = 1/2 and the continuum GFF, the one that comes
from the isomorphism theorems that were discussed at the beginning. Actually in discrete, the
occupation times of the random walk loop soup with α = 1/2, the discrete equivalent of the
Brownian loop soup, are distributed as the square of the discrete GFF. This is the Le Jan’s
isomorphism [LJ10, LJ11]. In dimension 2 one can renormalize this relation in the continuum
limit by considering the Wick’s square of the GFF. So one has a relation between the occupation
times of the Brownian loop soup and the square of the GFF which originates from the Euclidean
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QFT, and an other relation between the boundaries of clusters in a Brownian loop soup and
the level lines of GFF, which is specific to the dimension 2 and is related to the conformal
invariance.

A major part of my research was to unify these two different relations between the Brow-
nian loop soup with α = 1/2 and the GFF. The first step was to answer the following ques-
tion. The isomorphism theorems related the square of a GFF to occupation times of random
walk/Brownian paths. But what about the sign of the GFF? How is it related to these ran-
dom walk/Brownian paths? I answered this question during my PhD under the supervision of
Prof. Yves Le Jan at Université Paris-Sud (now Université Paris-Saclay). There is one case
when it is simple to pin down the signs. It is the continuous 1D setting. The Brownian loops
in 1D do not have much geometry. Their range is just a line segment, however it carries a
non-trivial 1D Brownian local time process, distributed as a square Bessel 4 bridge. As for
the GFF, in dimension 1 is is just a Brownian motion. It is easy to see that the excursions
of this GFF away from 0 are exactly the clusters of the Brownian loop soup with α = 1/2.
Further, the idea is to force this continuous 1D picture into frameworks with more geometry.
For this I extended the discrete GFFs to metric graphs. A metric graph (or cable system) is
obtained from a discrete undirected graph by replacing each edge by a continuous line segment,
so as to obtain a continuous topological object. The discrete GFF on the vertices of the graph
has a natural interpolation to the metric graph by adding conditionally independent Brownian
bridges inside the edges. Similarly, the nearest neighbor random walk on the discrete graph
can be interpolated to a continuous Markovian diffusion on the metric graph, the metric graph
Brownian motion. On the metric graph the sign clusters of the GFF again coincide with the
clusters of the Brownian loop soup with α = 1/2. This is explained in my article [16]. By
relying on this correspondence, I proved in [14] the convergence in dimension 2 of boundaries
of clusters in both random walk loop soup and metric graph loop soup to the CLEκ-s in the
scaling limit.

My research after my PhD relied heavily on the results I obtained and methods I introduced
during my PhD. In particular I worked on the relation between the Brownian loop soup with
α = 1/2 and the continuum GFF in dimension 2. For instance, with Juhan Aru (now at
EPFL) and Avelio Sepúlveda (now at Universidad de Chile) we constructed the so called first
passage sets (FPS) of the 2D continuum GFF [9, 8]. We gave two constructions of this object.
The first one is by iterating an infinite sequence of level lines of the GFF. The second one is
by taking a Brownian loop soup with α = 1/2 plus an independent Poisson point process of
Brownian boundary excursions, and by considering the clusters connected to the boundary in
this soup of Brownian paths. The equivalence of these two constructions is achieved by using
the isomorphism theorems on metric graphs and taking the scaling limit. An FPS essentially
carries a chunk of the GFF. The restriction of the GFF to an FPS is a positive Radon measure,
actually a Minkowski content measure of the FPS in the gauge | log r|1/2r2. One can see it as a
renormalized uniform measure on the FPS, since the Lebesgue measure of the FPS is 0.

Further, one can combine these results on the FPS with the results of Qian and Werner
[QW19] on the decomposition of Brownian loop soup clusters (which in turn relied on my
convergence result from [14]) to obtain a decomposition of the 2D continuum GFF in terms of
clusters of the Brownian loop soup. Each cluster has a sign, −1 or +1, chosen independently
and uniformly. Each cluster also carries a Radon measure, the Minkowski content measure of
the FPS in the gauge | log r|1/2r2. By summing over the clusters these measures multiplied by
the respective signs one gets the 2D continuum GFF. Note however that this does not mean that
the GFF is a signed measure. Without the compensations induced by the signs, the absolute
value of the GFF diverges in every open subset. At the end of the day, given a Brownian loop
soup with α = 1/2, plus an additional randomness given by the signs −1 or +1 on clusters, one
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can simultaneously obtain the GFF, its renormalized square and the CLE4 associated to the
GFF.

Recently, in a collaboration with Elie Aı̈dekon (Sorbonne Université), Nathanaël Berestycki
(University of Vienna) and Antoine Jégo (now at EPFL), we obtained a description of the
Gaussian multiplicative chaos (GMC) associated to the 2D GFF in terms of the Brownian
loop soup [1]. One can renormalize the exponential of a 2D GFF. This is its GMC. There
is a general theory of the multiplicative chaos of log-correlated Gaussian fields, introduced by
Kahane [Kah85]. The multiplicative chaos of the 2D GFF in particular is a very popular topic
now because it appears in the Liouville quantum gravity. See [RV14] for a review. In [1] we
essentially showed that this GMC of the 2D GFF is a measure supported on points that are
an intersection of infinitely many Brownian loops in a Brownian loop soup with α = 1/2, and
such that for each of the loops it is a point of infinite multiplicity. We also constructed similar
measures for every value of the intensity parameter α of the loop soup. These measures have
many features in common with the GMC, such as the values of the carrying dimensions and the
conformal covariance. For α ̸= 1/2, these measures are a sort of non-Gaussian multiplicative
chaoses.

To conclude this discussion, one can say that the 2D continuum GFF, despite being only a
generalized function, has an intrinsic geometry. This geometry can be accessed either through
SLE and CLE processes, or through the Brownian loop soup and other soups of Brownian tra-
jectories, and there is to some extent a correspondence between the two descriptions. However,
the description through SLE and CLE is related to the conformal invariance and is specific
to the dimension 2. But the isomorphism theorems between the GFF and the random walks
in discrete are not dimension specific. This suggests that it should be possible to describe
the intrinsic geometry of the continuum GFF through Brownian loops, in particular through
clusters of Brownian loops, in some higher dimensions too. Wendelin Werner formulated some
conjectures in this direction in [Wer21]. His conjectures were inspired by my works on metric
graphs and in 2D continuum.

My other works presented in this memoir are all either related to the isomorphism theorems
or at least to the GFF. These works include the law of the extremal distance of a CLE4 loop,
the Lévy type transformation for the metric graph GFF, the combination of the isomorphism
theorems for the matrix-valued fields with the topological expansion, the isomorphism theorems
for the β-Dyson’s Brownian motions, and the inversion of the isomorphism theorems in relation
with the self-repelling random walks and self-repelling diffusions.

Organization of the manuscript

My works in this memoir are grouped thematically rather than chronologically. The memoir is
made of 6 parts. In Part I is introduced the background on the isomorphism theorems and on
SLE, CLE and level lines of the 2D continuum GFF. It is to be considered as a more detailed
introduction into my research topics. The results I obtained during my PhD are also presented
there. Parts II to V are an overview of my research after the PhD. Part VI presents some
further directions of research. These are either works in progress, or problems on my to-do list,
or longer term open problems. At the end there is a bibliography. It is split into two. First
appears the list of the articles that I authored or coauthored. These publications and preprints
are numbered from 1 to 18. Then comes the list of all other bibliographical references. These
are cited by the authors’ initials and the year. All my publications can be downloaded

� on HAL https://hal.archives-ouvertes.fr/search/index/q/*/authIdHal_s/titus-lupu,
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� on arXiv https://arxiv.org/search/math?query=Lupu%2C+Titus&searchtype=author&
abstracts=show&order=-announced_date_first&size=50.

Next follows a more detailed presentation of the content of Parts II to V.
Part II is dedicated to the construction of random conformally invariant or covariant fields

in dimension 2 out of Brownian loop soups. In Chapter 4 is presented the joint work with Aru
and Sepúlveda [9, 8] where we construct the first passage sets of the GFF in continuum and
describe them as clusters of Brownian loops and excursions. In Chapter 5 is presented a joint
work with Hao Wu (YMSC, Tsinghua University) [2]. By relying on the results presented in
Chapter 4, we showed that the notion of level lines of the continuum GFF can be extended to
measure-valued boundary conditions. Previously more regularity was assumed on the boundary
conditions. In Chapter 6 is presented the joint work with Aı̈dekon, Berestycki and Jégo [1] on
the multiplicative chaoses of the Brownian loop soups.

Part III is an overview of my others works related to the 2D GFF, but not necessarily to
the isomorphism theorems. In Chapter 7 is presented a joint work with Aru and Sepúlveda
[4]. We showed that certain geometrical quantities related to a CLE4 loop can be read on a
one-dimensional Brownian trajectory. More precisely, we give the joint law of the conformal
radius and extremal distance (or extremal length) of a CLE4 loop in terms of a first exit time
and last passage time of a 1D Brownian motion. The law of the conformal radius was known
previously, but not that of the extremal distance. Our proof relies on the coupling of the CLE4

with the continuum GFF. In Chapter 8 is presented an article coauthored with Wendelin Werner
[11]. There we show that the classical Lévy transformation for the 1D Brownian motion can be
generalized to GFFs on any metric graph. Further, we conjecture that in dimension 2 this Lévy
transformation has a fine mesh limit in continuum, and that this limit is related to a growth
process for the CLE4 loops.

In Part IV are presented my works on the relations between the isomorphism theorems and
the topological expansion. The topological expansion appears in random matrix theory and
expresses the moments of random matrices as sums over maps on 2D surfaces, with weights
depending on the topology of the surface and the number of faces of the map. In Chapter
9 is presented my article [6]. There I considered Gaussian fields of real symmetric, complex
Hermitian or quaternionic Hermitian matrices over an electrical network, and described how the
isomorphisms between these fields and random walks give rise to topological expansions encoded
by ribbon graphs. I further considered matrix-valued Gaussian fields twisted by an orthogonal,
unitary or symplectic (quaternionic unitary) connection. In this case the isomorphisms involve
traces of holonomies of the connection along random walk loops parametrized by boundary
cycles of ribbon graphs. In Chapter 10 is presented my article [3]. There I show that the β-
Dyson’s Brownian motions for general values of β satisfy both a Le Jan type and BFS-Dynkin
type isomorphism with the local times of one-dimensional Brownian trajectories. The Le Jan
type isomorphism involves a whole range of intensity parameters α for the 1D Brownian loop
soup, not just α half-integer. I further ask the question whether the β-Dyson’s Brownian
motions have natural generalizations in a multi-dimensional setting. This is motivated by the
study of random walk and Brownian loop soups with a non half-integer intensity parameter α.

Part V is dedicated to the inversion of isomorphism theorems. The general question is the
following. Rather than starting from random walks and constructing the square of discrete
GFF, or the whole discrete GFF, from these random walks, one starts from the GFF or its
square and asks for the conditional law of the random walks. This is a topic initiated by
Christophe Sabot (Université Lyon 1 Claude Bernard) and Pierre Tarrès (NYU Shanghai) in
[ST15a]. They showed in particular that the conditional law is related to a natural model
for a self-repelling random walk, the Vertex Diminished Jump Process (VDJP). Part V begins
with Chapter 11 where are recalled some elements on the combinatorics of the Ising model, in
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relation with the FK-Ising random cluster model and the random currents. This is because the
inversion of the isomorphisms is related to these FK-Ising random clusters and to the random
currents. In Chapter 11 is also presented a short note by Wendelin Werner and myself [12]
where we gave a probabilistic coupling between the random currents and the FK-Ising random
clusters. In Chapter 12 is presented my joint work with Sabot and Tarrès [10]. There we do
the inversion in discrete when one conditions by the GFF with its signs, rather than just the
square of the GFF as in [ST15a]. What we obtain is a VDJP on FK-Ising type random clusters,
where the clusters themselves evolve over time by being progressively eroded. In Chapter 13
are presented two other articles coauthored with Sabot and Tarrès [7, 5]. There we consider the
VDJP and its reinforced dual, the Vertex Reinforced Jump Process (VRJP). We show that in
dimension one the VRJP and the VDJP admit continuous fine mesh limits that can be expressed
through stochastic flows introduced by Bass and Burdzy in [BB99]. These limits can be seen
a continuous 1D reinforced, respectively self-repelling diffusion processes. The self-repelling
diffusion in particular inverts the isomorphism theorems in 1D continuum.
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Part I

Random walk representations of
scalar bosonic fields: old and new
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Chapter 1

From occupation times of random
walks to the square of bosonic fields

In this Chapter we first introduce the Gaussian free field (GFF) and explain how it is re-
lated to scalar bosonic fields in Quantum Field Theory (Section 1.1). We then present the
description of the square of the discrete, respectively continuum space GFF, in terms of oc-
cupation times of random walks, respectively Brownian motions (Section 1.2). These random
walk/Brownian motion representations of the GFF, sometimes called isomorphism theorems,
originated in Mathematical Physics, motivated by the study of interacting bosonic fields, such
as the φ4 field [BFS82, Frö82], following the seminal work of Symanzik who formally expanded
the correlations of the continuum φ4 field in terms of Brownian loops [Sym65, Sym66, Sym69].
These isomorphism identities were one of the starting points of my research.

1.1 Gaussian free field and interacting bosonic fields: origins
and motivations

1.1.1 Discrete GFF

A central object in this manuscript is the Gaussian free field [She07]. We first present it in the
discrete setting. Let G = (V,E) be a connected undirected graph. For simplicity, we assume it
finite, without multiple edges or self-loops. The set of vertices V is partitioned V = Vint ⨿ V∂ ,
where Vint is considered as the subset of interior edges and V∂ as the boundary, and both are
non-empty. Each edge {x, y} ∈ E is endowed with a conductance C(x, y) = C(y, x) > 0, thus
making G into an electrical network. We will denote by x ∼ y the fact that {x, y} ∈ E. For an
example of electrical network, one could think G to be a finite box in Zd, with V = [−n, n]d∩Zd,
Vint = [−(n− 1), (n− 1)]d ∩ Zd, and each edge having a unit conductance.

Definition 1.1. The massless Gaussian free field (GFF) on G with boundary condition f on
V∂ is the random Gaussian field (ϕ(x))x∈V which coincides with f on V∂ , and for the values on
Vint with density

1

Zf
exp

(
− 1

2

∑
{x,y}∈E

C(x, y)(φ(y)− φ(x))2
)
.

The massive GFF with boundary condition f on V∂ and square-mass K > 0 is the random
Gaussian field (ϕK(x))x∈V which coincides with f on V∂ , and for the values on Vint with density

1

Zf,K
exp

(
− 1

2

∑
{x,y}∈E

C(x, y)(φ(y)− φ(x))2 − K

2

∑
x∈Vint

φ(x)2
)
.
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The constant K above is proportional to the square of a mass in Quantum Field Theory;
see Section 1.1.3.

Let ∆G be the discrete Laplacian on G:

(∆Gu)(x) =
∑
y∼x

C(x, y)(u(y)− u(x)). (1.1)

The covariance structure of the massless GFF is given by the Green’s function (G(x, y))x,y∈V
of −∆G , with 0 boundary conditions. For the massive GFF the covariance structure is given by
(GK(x, y))x,y∈V , the Green’s function of −∆G+K, with 0 boundary conditions. The expectation
of the massless GFF is given by the discrete harmonic extension of its boundary conditions.

The discrete GFF, both massless and massive, satisfies an obvious Markov property. Let
V̂ ⊂ V , such that both V̂ and V \ V̂ are non-empty. Then, conditionally of (ϕ(x))

x∈V̂ , resp.
(ϕK(x))

x∈V̂ , the distribution of (ϕ(x))
x∈V \V̂ , resp. (ϕK(x))

x∈V \V̂ , is that of a massless, resp.

massive, GFF on V \ V̂ with boundary conditions given by(ϕ(x))
x∈V̂ , resp. (ϕK(x))

x∈V̂ . Note

that for these boundary conditions, only matter the values on the vertices of V̂ that are adjacent
to V \ V̂ . This weak Markov property can be upgraded to a strong Markov property, where V̂ is
random and a stopping set, i.e. for every deterministic U ⊂ V , the event {V̂ = U} is measurable
with respect to (ϕ(x))x∈U , resp. (ϕK(x))x∈U .

1.1.2 Continuum GFF

Let d ≥ 1. Let be an open bounded connected subset D ⊂ Rd. For simplicity, we assume that D
has a Lipschitz boundary, although this is not strictly necessary. For N ≥ 1, let DN = D∩ 1

NZd.
We see DN as a subgraph of Zd. Let ϕN be the massless discrete GFF on DN with 0 boundary
conditions, where the conductances on DN are given by CN (x, y) = N−(d−2) for ∥y − x∥ = 1

N .
We are interested in the continuum limit of ϕN as N → +∞.

In dimension d = 1, this is just a Brownian bridge. However, in dimension d ≥ 2, it cannot
be defined as a random function, but only as a random generalized function, which we will
denote by ϕD. To properly construct ϕD, one can use its expansion in the eigenbasis of the
Dirichlet Laplacian on D. Let (λi)i≥1 be the sequence of eigenvalues of −∆ with 0 boundary
condition on ∂D, 0 < λ1 < λ2 ≤ λ3 ≤ . . . . Let (ui)i≥1 be the corresponding orthonormal basis
of L2(D). Let (Zi)i≥1 be an i.i.d. sequence of N (0, 1) r.v.s. One can decompose

ϕD =
∑
i≥1

λ
−1/2
i Ziui. (1.2)

According to the Weyl law, λi is of order i
2/d. Thus, it is easy to see that the sum (1.2) converges

a.s. in the Sobolev space H−α(D) for the Sobolev norm

∥u∥2H−α(D) =
∑
i≥1

λ−αi ⟨u, ui⟩
2,

provided that α > d/2 − 1. For details, we refer to [She07, Section 2.3]. This leads to the
following definition.

Definition 1.2. Given f : ∂D → R a bounded measurable function, the continuum massless
GFF on D with boundary condition f is given by

ϕD = h(f) +
∑
i≥1

λ
−1/2
i Ziui,
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where h(f) is the harmonic extension of f and (Zi)i≥1 is an i.i.d. sequence of N (0, 1) r.v.s. For
K > 0, the continuum massive GFF on D with boundary condition f and square-mass K is
given by

ϕD,K = hK(f) +
∑
i≥1

(λi +K)−1/2Ziui,

where hK(f) is the solution to (−∆+K)u = 0 with boundary condition f .

The covariance kernel of ϕD, resp. ϕD,K , is given by GD, resp. GD,K , the Green’s function
of −∆, resp. −∆ +K, with 0 boundary conditions of ∂D. The divergence on the diagonal is
as follows:

d = 2 : GD(x, y) ∼
1

2π
log(1/∥y − x∥), d ≥ 3 : GD(x, y) ≍ ∥y − x∥−(d−2).

The same for GD,K .
Just as the discrete GFF, the continuum GFF, both massless and massive, satisfies a Markov

property. For more on this, we refer to Section 4.1.
One particular feature of the massless GFF in dimension 2, and which is at the heart of

many results presented in this manuscript, is its conformal invariance. Given D and D′ two
conformally equivalent domains, ψ a conformal map from D to D′ and ϕD a massless GFF on
D, then ϕD ◦ψ−1 is distributed as a massless GFF on D′. This can be seen with the conformal
invariance of Green’s functions GD′(x, y) = GD(ψ

−1(x), ψ−1(y)). Ultimately this comes from
the conformal covariance of the Laplacian: ∆(u ◦ ψ) = |ψ′|2(∆u) ◦ ψ.

1.1.3 Relation to the quantum bosonic free field

Here we present the physicists point of view on the continuum GFF, which is mathematically
non-rigorous. They see the distribution of the massless GFF as

1

Z
exp

(
− 1

2

∫
D
∥∇φ∥2

)
Dφ, (1.3)

where Dφ is a uniform measure on fields on D, with some fixed boundary conditions on ∂D.
Such a measure actually does not exist. Also the partition function Z is not well defined, and∫
D ∥∇φ∥

2 does not make sense for φ a GFF. This corresponds to the Feynman’s functional
integral. For the massive free field, one has

1

Zm
exp

(
− 1

2

∫
D
∥∇φ∥2 +m2φ2

)
Dφ, (1.4)

with m2 = K.
Now we explain briefly the relation to the Quantum Field Theory (QFT). Consider the

Euclidean space Rd and let (x1, x2, . . . , xd) be the coordinates. Then formally perform the
change of variables

t = −ixd, (1.5)

with i =
√
−1. This is the Wick rotation. The variable t represents a physical coordinate

time. The Wick rotations transforms the Euclidean inner product x21 + · · · + x2d−1 + x2d into
the Lorentzian inner product x21 + · · · + x2d−1 − t2, which is an invariant in Einstein’s special

relativity. We will denote Rd endowed with this inner product by Rd−1,1. This is the Minkowski
space-time. The functional integrals (1.3), resp.(1.4), become after Wick rotation (also with
Rd−1,1 instead of D)

1

Z̃
exp

( i
2

∫
Rd−1,1

−∥∇Rd−1φ∥2 +
(∂φ
∂t

)2)
Dφ, (1.6)
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resp.
1

Z̃m

exp
( i
2

∫
Rd−1,1

−∥∇Rd−1φ∥2 +
(∂φ
∂t

)2
−m2φ2

)
Dφ, (1.7)

where ∇Rd−1 denotes the gradient with respect to the variables (x1, . . . , xd−1). These are the
functional integral representations for a gas of non-interacting bosons (several particles can
occupy the same quantum state) with spin zero. The mass of a particle is the m in (1.7). This
is the bosonic free field, and it has been introduced in the earliest works on QFT [BJ25, BHJ26].
The wavefunction of an individual particle obeys the free Klein-Gordon equation

∂2

∂t2
ψ = ∆Rd−1ψ −m2ψ. (1.8)

For more details, we refer to [Fol08]. As for the probabilistic GFF, it is often called Euclidean
bosonic free field, since the Wick rotation transforms the Minkowski space-time into the Eu-
clidean space.

We would like to point out that although the physicists often manipulate the functional
integrals (1.6) and (1.7) as complex-valued measures on real scalar fields, they cannot be defined
mathematically as such, not even as complex-valued measures on generalized fields (Schwartz
distributions). This is because the corresponding total variation measures would not be sigma-
finite. This is a difference between the functional integrals (1.3) and (1.4) on one hand and (1.6)
and (1.7) on the other. However, one can perform analytic continuations from the Euclidean to
the Minkowski setting.

1.1.4 Interacting bosonic fields

Both from the Quantum Field Theory and from Statistical Physics point of view, it is often
interesting to add interactions to the bosonic fields. We will not develop this in our manuscript,
which mostly focuses on the free theory. However, this is something worth mentioning, since the
random walk representations of the GFF (Section 1.2) originated from the study of interacting
fields; see Section 1.2.4.

One way to achieve interactions is to consider a potential V and the functional integral (in
the Euclidean setting)

1

ZV
exp

(
− 1

2

∫
D
∥∇φ∥2 −

∫
D
V(φ)

)
Dφ. (1.9)

The most commonly studied is the φ4 interaction with V(φ) = λ

4!
φ4, for λ > 0. The definition

of the φ4 (Phi 4) field is straightforward on a finite graph or in continuum in dimension d = 1.
However, in dimensions d ≥ 2 in continuum it requires a renormalization. In dimension d = 2,
instead of the fourth power of the continuum GFF ϕ4, one uses the Wick-renormalized fourth
power : ϕ4 :

: ϕ4 := lim
ε→0

ϕ4ε − E[ϕ2ε]ϕ2ε + 3E[ϕ2ε]2,

where ϕε is a mollification of ϕ. In this way, on a bounded domain D, the renormalized φ4 field
is absolutely continuous with respect to the GFF; see [GJ87, Section 8.6]. In dimension d = 3
the renormalization of the φ4 field is more complicated and in particular it is not absolutely
continuous with respect to the GFF. See [GJ87, Section 23.1] and the references therein. In
dimensions d ≥ 4, the φ4 field is asymptotically trivial, that is to say a formal lattice approxi-
mation would in fact converge just to the free field [Frö82, ADC21]. This is also related to the
fact that in dimension d ≥ 4, two independent Brownian motions with different starting points
do not intersect; see Section 1.2.4.
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In dimension 2 in continuum, one can also take for V any polynomial P of even degree with
positive leading term and apply to the corresponding P (φ) field the Wick renormalization; see

[GJ87, Section 8.6] and [Sim74]. One can also take V(φ) = e
√
2πγφ for a suitable range of γ

(γ ∈ (0, 2)) [HK71]. This also corresponds to the Liouville field theory [RV14, Section 5.2]. See
also Chapter 6.

Also note that the Standard Model of Particle Physics contains primarily different types of
fields, that is to say fermions and gauge bosons. The latter correspond in the Euclidean setting
to random holonomy fields; see [Fol08, Chapter 9] and [GJ87, Chapter 22].

1.2 Bosonic fields and gases of random walk loops and excur-
sions

1.2.1 Interior excursions and the BFS-Dynkin isomorphism

Here we return to the discrete setting of Section 1.1.1 and consider a finite electrical network
G = (V,E) endowed with the conductances C(x, y) = C(y, x) > 0 for x ∼ y. Let (Xt)t≥0 be
the nearest-neighbor Markovian jump process on G with the jump rate from a vertex x ∈ V to
a neighbor y given by the conductance C(x, y). The infinitesimal generator of (Xt)t≥0 is the
discrete Laplacian ∆G (1.1). Let TV∂

be the following first hitting time:

TV∂
= inf{t ≥ 0|Xt ∈ V∂}.

Then (Xt)0≤t<TV∂
is the Markov jump process killed upon hitting V∂ . Let p(t, x, y) be the

corresponding transition densities, where

∀x ∈ Vint,∀t ≥ 0,
∑

y∈Vint

p(t, x, y) = Px(TV∂
> t).

For every x, y ∈ Vint and K > 0, we have that∫ +∞

0
p(t, x, y)dt = G(x, y),

∫ +∞

0
e−Ktp(t, x, y)dt = GK(x, y). (1.10)

Given x, y ∈ Vint and t > 0, let Px,y
t be the law of (Xs)0≤s≤t with X0 = x, conditioned on Xt = y

and TV∂
> t.

Definition 1.3. Given x, y ∈ Vint, the interior-to-interior excursion measure from x to y is

µx,y =

∫ +∞

0
dt p(t, x, y)Px,y

t .

Given (1.10), we have that the total mass of a measure µx,y is given by the Green’s function
G(x, y). The image of µx,y by time reversal in µy,x.

Given a generic path ℘ parametrized by continuous time, we will denote by T (℘) its total
duration. We will be interested in the occupation times on paths on G. Given (℘(t))0≤t≤T (℘)

such a path and x ∈ V , we will denote

ℓx(℘) =

∫ T (℘)

0
1℘(t)=xdt.

Next we present a result relating the local times of paths under mesures µx,y and the square
of the Gaussian free field. It is often referred to as Dynkin’s isomorphism [Dyn84a, Dyn84b],
however it appeared first in the work of Brydges, Fröhlich and Spencer [BFS82, Theorem 2.2].
Therefore we will refer to it as the BFS-Dynkin isomorphism.
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Theorem 1.4 (BFS-Dynkin). Let ϕ be the massless GFF on G with 0 boundary condition on
V∂ (Definition 1.1). Let x1, x2, . . . , x2k ∈ Vint. Then for any F bounded measurable function on
RV ,

E
[( 2k∏

i=1

ϕ(xi)
)
F
((1

2
ϕ(x)2

)
x∈V

)]
=

∑
({aj ,bj})1≤j≤k

partition in pairs
of {1,2,...,2k}

∫ k∏
j=1

µ
xaj ,xbj (d℘j)E

[
F
((1

2
ϕ(x)2 +

k∑
j=1

ℓx(℘j)
)
x∈V

)]
, (1.11)

where the sum runs over the (2k)!/(2kk!) partitions in pairs as in the Wick’s rule for Gaussians.

Note that on the right-hand side of (1.11) appear the occupation times of k continuous-time
random walk trajectories and they are homogeneous to the square of the GFF.

A standard way to prove the BFS-Dynkin isomorphism is to consider F (f) = e−
∑

x∈V λxf(x).
Then one gets a Laplace transform on both sides of (1.11), which is explicit in both cases. For
a different and recent approach we refer to [BHS21].

The BFS-Dynkin isomorphism can be extended to the case of general non-negative bound-
ary conditions for the GFF. It will then involve not only interior-to-interior excursions, but also
interior-to-boundary excursions, which we introduce next.

Definition 1.5. Given x ∈ Vint, and y ∈ V∂ , the interior-to-boundary excursion measure from
x to y is

µx,y =
∑

z∈Vint
z∼y

C(z, y)µx,z,

where the µx,z above are given by Definition 1.3. Thus defined, µx,y is a measure on paths from
x to a neighbor z of y in Vint. By convention, we add to such a path a terminal jump to y,
without adding holding time at y, thus turning it into an actual path from x to y which spends
zero time in y.

The total mass of an interior-to-boundary excursion measure µx,y is

H(x, y) =
∑

z∈Vint
z∼y

C(z, y)G(x, z) = Px(XTV∂
= y).

The functionH(x, y) is the discrete Poisson kernel. Moreover, the probability measure µx,y/H(x, y)
is the law of (Xt)0≤t≤TV∂

with X0 = x, conditioned on XTV∂
= y.

We do not know if the identity below appeared previously as such in the literature, but it
is closely related to the Eisenbaum’s isomorphism [Eis95].

Proposition 1.6. Take f : V∂ → R+. Let ϕ be the massless GFF on G with boundary condition
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f on V∂. Let x1, . . . , xn ∈ Vint. Then for any F bounded measurable function on RV ,

E
[( n∏

i=1

ϕ(xi)
)
F
((1

2
ϕ(x)2

)
x∈V

)]
=∑

I⊂{1,...,n}
n−|I| even

∑
(yi)i∈I∈V I

∂

∏
i∈I

f(yi)
∑

({aj ,bj})1≤j≤(n−|I|)/2
partition in pairs
of {1,...,n}\I∫ ∏

i∈I
µxi,yi(d℘̃i)

(n−|I|)/2∏
j=1

µ
xaj ,xbj (d℘j)E

[
F
((1

2
ϕ(x)2 +

∑
i∈I

ℓx(℘̃i) +

(n−|I|)/2∑
j=1

ℓx(℘j)
)
x∈V

)]
.

In particular, for n = 1,

E
[
ϕ(x1)F

((1
2
ϕ(x)2

)
x∈V

)]
= E

[
f(XTV∂

)F
((1

2
ϕ(x)2 + ℓx((Xt)0≤t≤TV∂

)
)
x∈V

)]
,

where on the right-hand side ϕ and (Xt)t≥0 are independent and X0 = x1.

1.2.2 Boundary excursions and the generalized Ray-Knight theorem

Next we define the boundary-to-boundary excursion measures.

Definition 1.7. Given x, y ∈ V∂ , the boundary-to-boundary excursion measure from x to y is

µx,y =
∑

z∈Vint
z∼x

∑
w∈Vint
w∼y

C(x, z)C(w, y)µz,w,

where the µz,w above are given by Definition 1.3. Thus defined, µx,y is a measure on paths from
a neighbor z of x in Vint to a neighbor w of y in Vint. By convention, we add to such a path an
initial jump from x to z and a terminal jump from w to y, without adding holding time at x or
y, thus turning it into an actual path from x to y which spends zero time in x and y.

The total mass of a boundary-to-boundary excursion measure µx,y is

H(x, y) =
∑

z∈Vint
z∼x

∑
w∈Vint
w∼y

C(x, z)C(w, y)G(z, w). (1.12)

Here, H(x, y) is the boundary Poisson kernel. The image of µx,y by time reversal is µy,x.
Given a non-negative boundary condition f : V∂ → R+, let Ξf denote the Poisson point

process (PPP) of boundary-to-boundary excursions with intensity measure equal to

1

2

∑
(x,y)∈V 2

∂

f(x)f(y)µx,y. (1.13)

We see Ξf as a rendom collection of excursions. Given x ∈ V , ℓx(Ξf ) will denote its occupation
time in x:

ℓx(Ξf ) =
∑
℘∈Ξf

ℓx(℘).

The following identity in law relates ℓx(Ξf ) to the square of a GFF with boundary condition
f . This is an extension of the generalized Ray-Knight theorem [EKM+00]. The details of
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the proof can be found in [8, Appendix]. It is also closely related to Sznitman’s isomorphism
for random interlacements, who rather considered an infinite volume setting [Szn12a]. Note
that the original Ray-Knight theorem [Ray63, Kni63] dealt only with the local times of a one-
dimensional Brownian motion, which is actually the GFF in the continuum one-dimensional
setting; see Theorem 13.7.

Theorem 1.8 (Generalized Ray-Knight). Take f : V∂ → R+. Let ϕf be the massless GFF on
G with boundary condition f on V∂. Let ϕ0 be the massless GFF on G with 0 boundary condition
on V∂. Let Ξf be a PPP of boundary-to-boundary excursions independent from ϕ0. Then the
following identity in law holds:(1

2
ϕ0(x)

2 + ℓx(Ξf )
)
x∈V

(law)
=

(1
2
ϕf (x)

2
)
x∈V

.

1.2.3 Loops and Le Jan’s isomorphism

Next we introduce a measure on nearest-neighbor loops associated with the Markov jump process
(Xt)t≥0. Its Brownian analogue has been first introduced by Symanzik [Sym65, Sym66, Sym69].
Therefore we will call this measure Symanzik’s loop measure. The discrete-space continuous-
time loops were studied by Le Jan [LJ10, LJ11]. For discrete-time random walk loops, see
[LTF07] and [LL10, Chapter 9]. Also, we will consider rooted loops. It is often useful to
consider unrooted loops, however, we will not emphasize the distinction between the two.

Definition 1.9. The Symanzik’s loop measure is

µloop(d℘) =
∑

x∈Vint

∫ +∞

0

dt

t
p(t, x, x)Px,x

t (d℘) =
1

T (℘)

∑
x∈Vint

µx,x(d℘).

The measure µloop has an infinite total mass. Actually for every x ∈ Vint, it puts an infinite
mass on trivial ”loops” that stay only in x and do not jump. The induced measure on the
duration of such loops is

1t>0e
−t/G(x,x)dt

t
.

However, µloop puts a finite weight on loops that visit at least two different vertices:

µloop({Loops with skeleton x1 → x2 → · · · → xn → x1})

=
1

n

C(x1, x2) . . . C(xn−1, xn)C(xn, x1)

W (x1)W (x2) . . .W (xn)
,

where
W (x) =

∑
y∈V
y∼x

C(x, y).

So the measure induced on the discrete skeletons is the same appearing in [LTF07] and [LL10,
Chapter 9].

Definition 1.10. A continuous-time random walk loop soup on G is a Poisson point process
(PPP) Lα with intensity measure αµloop for an intensity parameter α > 0. It is a random
countable collection of nearest neighbor loops in G that do not touch V∂ , parametrized by
continuous time. The occupation field of Lα is given by the occupation times

ℓx(Lα) =
∑
℘∈Lα

ℓx(℘).
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Definition 1.11. Given α ∈ C and a matrix M = (Mij)1≤i,j≤n, the α-permanent of M is

Permα(M) =
∑

σ permutation
of {1,...,n}

α# cycles of σ
n∏

i=1

Miσ(i).

Theorem 1.12 (Le Jan). Fix α > 0. The occupation field (ℓx(Lα))x∈V is the α-permanental
field on V with kernel (G(x, y))x,y∈V characterized by its moments:

E
[
ℓx1(Lα)ℓx2(Lα) . . . ℓxn(Lα)

]
= Permα((G(xi, xj))1≤i,j≤n).

For every λ = (λx)x∈Vint,

E
[
exp

( ∑
x∈Vint

λxℓ
x(Lα)

)]
=

( det(−∆G)
det(−∆G − λ)

)α
, (1.14)

where ∆G is considered to be the Dirichlet Laplacian with 0 boundary condition on V∂. In
particular, the Laplace transform is finite if and only if −∆G − λ is positive definite.

Fix x ∈ Vint. Then ℓx(Lα) follows a Γ(α,G(x, x)) distribution with density

1t>0
1

Γ(α)G(x, x)α
tα−1e−t/G(x,x)dt.

As a process in α, α 7→ ℓx(Lα) is a Gamma subordinator with Lévy measure

1t>0e
−t/G(x,x)dt

t
.

In particular, conditionally on ℓx(Lα), the family (ℓx(℘))℘∈Lα is a Poisson-Dirichlet partition
PD(α) of the interval (0, ℓx(Lα)).

For the intensity parameter α = 1/2, (1.14) is the Laplace transform of a square Gaussian.
This is the Le Jan’s isomorphism [LJ10, LJ11].

Theorem 1.13 (Le Jan). For α = 1/2, the following identity in law holds:

(ℓx(L1/2))x∈V
(law)
=

(1
2
ϕ(x)2

)
x∈V

,

where ϕ is the massless GFF on G with 0 boundary condition on V∂.

1.2.4 All together

The results of Proposition 1.6, Theorem 1.8 and Theorem 1.13 can all be regrouped into a single
statement.

Proposition 1.14. Fix f : V∂ → R+. Let ϕ be the massless GFF on G with boundary condition
f on V∂. take Ξf and L1/2 PPPs of boundary-to-boundary excursions and loops respectively,
with Ξf independent from L1/2. Let x1, . . . , xn ∈ Vint. Then for any F bounded measurable
function on RV , the following holds:

E
[
F
((1

2
ϕ(x)2

)
x∈V

)]
= E[F ((ℓx(L1/2) + ℓx(Ξf ))x∈V )]; (1.15)
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E
[( n∏

i=1

ϕ(xi)
)
F
((1

2
ϕ(x)2

)
x∈V

)]
=∑

I⊂{1,...,n}
n−|I| even

∑
(yi)i∈I∈V I

∂

∏
i∈I

f(yi)
∑

({aj ,bj})1≤j≤(n−|I|)/2
partition in pairs
of {1,...,n}\I∫ ∏

i∈I
µxi,yi(d℘̃i)

(n−|I|)/2∏
j=1

µ
xaj ,xbj (d℘j)E

[
F
((
ℓx(L1/2)+ℓx(Ξf )+

∑
i∈I

ℓx(℘̃i)+

(n−|I|)/2∑
j=1

ℓx(℘j)
)
x∈V

)]
.

(1.16)

Note that one the right-hand side of (1.15) and (1.16) the GFF does not appear at all.
Everything is expressed through the occupation field of a family of continuous-time random walk
like trajectories: loops L1/2, always present, boundary-to-boundary excursions Ξf accounting
for a non-zero boundary condition, excursions ℘̃i from some of the xi to the boundary and
excursions ℘j joining xaj and xbj . See Figure 1.1. See also the discussion in [Szn12b, Section
4.3]. One can also replace the massless GFF by a massive GFF with square mass K. In this
case one only needs to weight each measure on trajectories µz,w and µloop by e−KT (℘) with T (℘)
the duration of the path.

Figure 1.1: Conceptual illustration of Proposition 1.14. The loops are in dotted lines, the
boundary-to-boundary excursions in dashed lines, and the excursions from the xi in full lines.
Picture inspired by Figure 0.1 in [Szn12b].

One of the original motivations for the development of the above isomorphism identities,
in particular in Symanzik [Sym65, Sym66, Sym69], Brydges-Fröhlich-Spencer [BFS82], Fröhlich
[Frö82], is that it provides a method to deal with interacting bosonic fields (1.9). Indeed, one
can take in (1.15) and (1.16) for F :

F
((1

2
φ(x)2

)
x∈V

)
= exp

(
−

∑
x∈V
V(|φ(x)|)

)
,
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where V(|φ|) is some interaction potential depending only on |φ| and not on the sign of φ.
Then Proposition 1.14 provides and expression for the moments of such fields purely in terms

of random walks. For instance, for the discrete φ4 field, V(|φ|) =
λ

4!
φ4, this would involve

exponentials of intersection local times ℓx(℘)ℓx(℘̃), for ℘ and ℘̃ two different paths, and self-
intersection local times ℓx(℘)2, since

ℓx(℘)2 = 2

∫
0<t1<t2<T (℘)

1℘(t1)=℘(t2)=xdt1dt2.

Proposition 1.14 leaves open the question how the signs of the field are related to these
random walk trajectories. I answered this question during my PhD Thesis [13, 16], and it is all
about clusters of paths. See Chapter 3 for details.

1.2.5 The continuum setting

The identities of Proposition 1.14 also extend to the continuum setting in dimensions d ≤ 3.
Let us first see the continuum analogues of the measures on paths.

Assume d ≥ 2. Let D ⊂ Rd be an open bounded subset with nice enough boundary.
Let (Bt)t≥0 be the Brownian motion on Rd. Actually we will use the Brownian motion with
infinitesimal generator ∆ rather than the standard Brownian motion, which has for infinitesimal
generator 1

2∆. This choice will simplify the tracking of different normalization constants. Let
T∂D denote the first exit time

T∂D = inf{t ≥ 0|Bt ̸∈ D}.

Let pD(t, x, y) denote the transition densities of the Brownian motion (Bt)0≤t<T∂D
killed upon

exiting D, so that for every x ∈ D and t > 0,∫
D
pD(t, x, y)dy = Px(T∂D > t).

Recall that GD denotes the Green’s function of −∆ on D with 0 boundary conditions on ∂D.
For every x, y ∈ D, we have that

GD(x, y) =

∫ +∞

0
pD(t, x, y)dt.

For x ∈ D and y ∈ ∂D, with ∂D C1 around y, let HD(x, y) denote the Poisson kernel

HD(x, y) = ∂−→nGD(x, z)|z=y,

where ∂−→n is the normal derivative pointing inwards. The kernel HD(x, y) is the density of the
harmonic measure seen from x. For x ̸= y ∈ ∂D, with ∂D C1 around x and around y, let
HD(x, y) denote the boundary Poisson kernel

HD(x, y) = ∂−→n ∂−→nGD(z, w)|z=x
w=y

.

Note that
HD(x, x) = lim

y→x
HD(x, y) = +∞.

For x, y ∈ D, let Px,y
D,t denote the Brownian bridge probability measure conditioned on the bridge

staying in D.
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Definition 1.15. 1. Given x, y ∈ D, the Brownian measure on interior-to-interior excursions
from x to y in D is

µx,yD =

∫ +∞

0
dt pD(t, x, y)Px,y

D,t. (1.17)

Its total mass in GD(x, y).

2. Given x ∈ D and y ∈ ∂D, the Brownian measure on interior-to-boundary excursions from
x to y in D is

µx,yD = lim
ε→0

ε−1µ
x,y+ε−→n y

D ,

where −→n y is the unit normal vector at y pointing inwards. The total mass of µx,yD is
given by the Poisson kernel HD(x, y). The probability measure µx,yD /HD(x, y) is the law
of (Bt)0≤t≤T∂D

with B0 = x, conditioned on BT∂D
= y.

3. Given x, y ∈ ∂D, the Brownian measure on boundary-to-boundary excursions from x to
y in D is

µx,yD = lim
ε→0

ε−2µ
x+ε−→n y ,y+ε−→n y

D ,

The total mass of µx,yD is given by the boundary Poisson kernel HD(x, y).

4. The Symanzik’s Brownian loop measure on D is

µloopD =

∫
x∈D

dx

∫ +∞

0

dt

t
pD(t, x, x)Px,x

D,t.

It has an infinite total mass because of the ultraviolet divergence.

For details on these Brownian measures, we refer to [Law05, Chapter 5] and [LW04]. In
dimension d = 1 in continuum, there are also the analogues of these measures; see [18].

Definition 1.16. 1. Given f : ∂D → R+ a bounded measurable function, the soup of
Brownian boundary-to-boundary excursions inD induced by f is the Poisson point process
Ξf
D with intensity measure

1

2

∫∫
∂D×∂D

dx dy f(x)f(y)µx,yD , (1.18)

where the integral is with respect to the hypersurface measure on ∂D (counting measure
if d = 1).

2. Given α > 0, the Brownian loop soup in D of intensity parameter α is the Poisson point
process LαD with intensity measure αµloopD .

A Brownian loop soup LαD contains a.s. infinitely many small loops. The same is true for

an excursion soup Ξf
D provided f is not 0 almost everywhere on ∂D. However, in both cases

the number of paths of diameter larger than a fixed scale ε > 0 is finite a.s.
Now we have the measures and the random collections of Brownian paths involved in the

continuum version of Proposition 1.14. It remains to see what the square of the continuum
GFF and the occupation fields of paths mean. In dimension d = 1 this is straightforward. The
continuum GFF is actually a Brownian bridge if D is an interval. It is defined pointwise, and so
is its square. As for the quantities ℓx(℘) for ℘ Brownian like paths, these are to be understood
as the Brownian local times

ℓx(℘) = lim
ε→0

1

2ε

∫ T (℘)

0
1|℘(t)−x|<εdt (1.19)
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which in dimension 1 are defined pointwise; see [RY99, Chapter VI].
In dimensions d ≥ 2 one faces a difficulty. The continuum GFF ϕD is not defined pointwise,

so one has to make sense of its square first. In dimensions 2 and 3 on can use the Wick’s square
of the GFF:

: ϕ2D := lim
ε→0

(ϕ2D,ε − E[ϕ2D,ε])

for ϕD,ε a mollification of ϕD. : ϕ2D : is a centered random generalized function (not a positive
measure) measurable w.r.t. ϕD. To ensure the convergence, one can use a second moment
method, and in the limit

E
[
⟨: ϕ2D :, u⟩2

]
= 2

∫∫
D×D

u(x)GD(x, y)
2u(y)dxdy (1.20)

+4

∫∫
D×D

u(x)(h(f))(x)GD(x, y)u(y)(h(f))(y)dxdy < +∞,

where h(f) is the harmonic extension of f . See [LJ11, Section 10.1] for details. Note that the
right-hand side of (1.20) is infinite in dimensions d ≥ 4. In dimension 2 there is a more general
theory of the Wick renormalization of powers of the GFF; see [Sim74] and [Jan97, Chapter 3].

As for the occupation times of Brownian paths, these can be defined as random Radon
measures on D:

ℓ(℘,A) =

∫ T (℘)

0
1℘(t)∈Adt. (1.21)

Each Brownian path involved will have a finite occupation measure given by (1.21). However

the PPPs Ξf
D and L1/2D contain each infinitely many paths. It is easy to see that the occupation

measure of Ξf
D is still a.s. finite and

E[ℓ(Ξf
D)] =

1

2
h(f)2.

To the contrary, the occupation measure of L1/2D diverges in every open subset of D because
of the accumulation of small loops. Yet, in dimensions 2 and 3 one can define a renormalized,

centered occupation field of L1/2D , denoted : ℓ(L1/2D ) :. We have that

: ℓ(L1/2D ) := lim
ε→0

( ∑
℘∈L1/2D ,diam(℘)>ε

ℓ(℘)− E
[ ∑
℘∈L1/2D ,diam(℘)>ε

ℓ(℘)
])
.

For details see [LJ11, Section 10.2].
So in dimensions 2 and 3 in continuum, a renormalized version of the identities (1.15) and

(1.16) holds. One has to subtract the expectation of the fields involved on both sides of the
equalities. In particular this involves the Wick’s square of the GFF : ϕ2D : and the centered

occupation field of L1/2D , : ℓ(L1/2D ) :. See [LJ11, Section 10.2]. It is not known whether it is
possible to get a meaningful renormalization of the identities (1.15) and (1.16) in dimensions 4
and higher.

To end this Chapter, I would like to point out that none of the proofs of isomorphism
theorems is technically complicated, but all may appear surprising and relying on miraculous
coincidences. So one question I personally get often asked is how people came up with these
identities in the first place. So here is what I think. One should keep in mind the relation of the
continuum GFF to the QFT through the Wick rotation (1.5), as mentioned in Section 1.1.3.
The same Wick rotation transforms an expectation w.r.t. a Brownian motion into a Feynman
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path integral describing the propagation of a relativistic spin-0 particle, whose wave-function
satisfies the free Klein-Gordon equation (1.8). This space-time trajectory of the particle is
actually virtual, as it is not observed through a measurement. Now, the correlations of fields
in perturbative QFT are expanded into infinite sums on Feynman diagrams. An edge in a
Feynman diagrams corresponds to the propagation of a particle, and the (complex) weight of
the edge is given by the path integral describing the propagation of this particle in space-time.
So the isomorphism theorems appear to be probabilistic reinterpretations of relations in QFT
between fields and particles, virtual particles in particular. Symanzik points to it, as he sees
his Brownian loop expansion of the φ4 field [Sym66] to be analogous to expansions in Quantum
Electrodynamics [Fey50]. Note however that the isomorphism identities, unlike the expansions
into Feynman diagrams for the interacting fields, are not perturbative and do not require a
small value of the coupling constant in the interaction potential.
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Chapter 2

Dimension two: clusters of Brownian
paths and Schramm-Loewner
Evolutions

In this Chapter is presented a second source of inspiration for my research, alongside the isomor-
phism identities described in Chapter 1. This second source is the theory of Schramm-Loewner
Evolutions (SLE) in dimension 2, in particular in relation to the continuum GFF (Section 2.2)
and to clusters in a Brownian loop soup (Section 2.3).

2.1 SLE and CLE: a brief overview

The Schramm-Loewner evolutions (SLE) are random growth processes for curves in a 2D do-
main that satisfy the conformal invariance in law and a domain Markov property. They were
introduced by Schramm [Sch00] and appear, or are conjectured so, as scaling limits of interfaces
in different models of Statistical Physics at criticality in dimension 2 [Sch07]. Let us consider
the chordal SLE from 0 to ∞ in the upper half-plane

H = {z ∈ C| Im(z) > 0}.

By conformal invariance this is the same as considering any other simply connected domain (no
holes) with two marked points. (η(t))t≥0 is a continuous curve in H from 0 to∞. Let Ht denote
the unbounded connected component of H \ η([0, t]). Let gt be the unique conformal from Ht

to H normalized at ∞ as
gt(z) = z +

a

z
+O(|z|−2),

where the quantity a above is the half-plane capacity of η([0, t]), hcap(η([0, t])). One also
chooses the time-parametrization such that hcap(η([0, t])) = 2t. Then gt satisfies the Loewner
differential equation

∂

∂t
gt(z) =

2

gt(z)− ξt
, z ∈ Ht,

where (ξt)t≥0 is the driving function of (η(t))t≥0. In the case of an SLEκ, one take ξt =
√
κWt,

where (Wt)t≥0 is a standard Brownian motion on R starting at 0. The SLEκ is defined for all
κ > 0. It is a random fractal continuous curve, with Hausdorff dimension (1 + κ/8) ∧ 2. There
are three phases:

� For κ ∈ (0, 4], the SLEκ is a simple (i.e. non self-intersecting) curve, and hits the boundary
R = ∂H only at the origin, for t = 0.
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� For κ ∈ (4, 8), the curve SLEκ has self-intersections and also hits the boundary R = ∂H
for t > 0. However, the range on η has an empty interior

� For κ ≥ 8, the SLEκ is a space-filling curve.

For more on SLE, we refer to [Law05].

Figure 2.1: SLE4 on the left and SLE6 on the right. Pictures kindly provided by Hao Wu.

Figure 2.2: CLE3 on the left and CLE4 on the right. The CLE loops are the boundaries between
the blue and the white. Computer simulation by David Bruce Wilson available on his webpage
http://dbwilson.com/.

Next are the most remarkable values of κ for SLE.

� The SLE2 is the scaling limit of the loop-erased random walk [Sch00].

� The SLE8 is the scaling limit of contours of the uniform spanning tree [Sch00].

� The SLE8/3 appears as the outer boundary of a 2D Brownian trajectory. It also satisfies
a conformal restriction property [LSW03]. It is conjectured to be the scaling limit of the
self-avoiding walk [Sch07].

� The SLE6 satisfies the locality property. It is conjectured to be the scaling limit of
interfaces in the critical percolation. So far this has been proved for the triangular lattice
[Smi09].
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� The SLE3 is the scaling limit of interfaces in the critical Ising model [CS12].

� The SLE16/3 is the scaling limit of boundaries of clusters in the critical FK-Ising model
(random cluster model with q = 2) [CS12].

� The SLE4 is a level line of the continuum GFF; see Section 2.2. It is also conjectured to
appear in the scaling limit of the double dimer model [Ken14, Dub19, BC18].

The chordal SLE curves join two points on the boundary of a simply connected domain.
There is also a version of SLE-type loops in the interior of the domain, that describe the scaling
limits of inner interfaces. These are the Conformal Loop Ensembles CLEκ, for κ ∈ (8/3, 4],
introduced in [She09, SW12]. A CLEκ is a random infinite countable collection of loops in
a simply connected domain D, and satisfies the conformal invariance in law and a domain
Markov property. Each loop is a closed Jordan curve and does not touch the boundary ∂D.
Two different loops do not intersect and do not surround each other. Each loop looks locally as
an SLEκ curve. See Figure 2.2. For a construction of the CLE through Brownian loop soups,
see the forthcoming Theorem 2.3.

2.2 SLE4, CLE4 and the continuum GFF

In dimension 2, the continuum massless GFF is invariant in law under conformal transforma-
tions. Despite not being defined pointwise, it has intrinsic interfaces that are SLE-type curves.
These interfaces fully encode the GFF and provide a new understanding of it, different and
complementary to the one through duality by evaluation against test functions. In particular,
in their seminal work [SS09, SS13], Schramm and Sheffield introduced the notion of level lines
and height gap of the GFF. The picture is the following. The continuum 2D GFF is spanned
by cliffs. On one side of the cliff the GFF has some value, and on the other side a different one.
The difference between the two is a universal constant, depending only on the normalization of
the GFF. This is the height gap, often denoted 2λ. With the normalization in Definition 1.2,

2λ =
√
π/2. (2.1)

The height gap can be interpreted as originating from an entropic repulsion. As for the cliffs
themselves, these are the level lines, although cliff lines would perhaps have been a better name.
A typical level line is an SLE4-type curve.

Let D ⊊ C be an open simply connected domain. Let x ̸= y ∈ ∂D such that x and y divide
∂D into two connected components, ∂LD and ∂RD (left and right). Let a, b ∈ (−λ, λ), where λ
is the half-height gap (2.1). Set

ρL = −1 + b

λ
, ρR = −1 + a

λ
.

Let η be the chordal SLE4(ρL, ρR) process from x to y with force points in x− and x+ (infinites-
imally left and right from x). If D = H, x = 0 and y = ∞, then the driving function of η
satisfies

dξt = 2dWt +
ρLdt

ξt − gt(0−)
− ρRdt

gt(0+)− ξt
,

where (Wt)t≥0 is a standard Brownian motion on R starting at 0. In particular, if a = b = λ,
then ρL = ρR = 0 and η is just an SLE4 curve. Let DL be the open subset of D delimited by
∂LD and η, and similarly DR delimited by ∂RD and η. See Figure 2.3.
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Figure 2.3: On the left illustration of the Schramm-Sheffield coupling. On the right illustration
of the Miller-Sheffield coupling.

Theorem 2.1 (Schramm-Sheffield). Let ϕL and ϕR be two independent massless GFFs in DL,
resp. DR, also independent from η, with the following boundary conditions. ϕL has a boundary
condition b on ∂LD and λ on the left side of η. ϕR has a boundary condition −a on ∂RD and
−λ on the right side of η. Let ϕD de the following field on D:

ϕD = 1DL
ϕL + 1DR

ϕR.

Then ϕD is distributed as the massless GFF on D with boundary conditions b on ∂LD and −a
on ∂RD. Moreover, in this coupling of (ϕD, η, ϕL, ϕR) are measurable w.r.t. ϕD. η is in this
way a level line of ϕD.

Also note that Schramm and Sheffield also proved the convergence towards a level line of a
discrete interface in the discrete GFF [SS09]. This approximation from discrete is actually the
hard part of their work.

Subsequently, Miller and Sheffield provided a coupling between the GFF and the CLE4.
The loops in a CLE4 are thus interior level lines (not touching the boundary ∂D) of a GFF.
See Figure 2.3. For a proof of the Miller-Sheffield coupling, we refer to [WW17, ASW19].

Theorem 2.2 (Miller-Sheffield). Let C be a CLE4 loop ensemble in a simply connected domain
D. For a loop ℘ ∈ C, let Int(℘) denote the interior enclosed by ℘. Let (ϕ℘)℘∈C be a family
of generalized fields, conditionally independent given C, with the conditional distribution of ϕ℘
being that of a massless free field in Int(℘) with 0 boundary conditions on ℘. Let (σ℘)℘∈C be a
family of conditionally i.i.d. uniform signs in {−1, 1}, also conditionally independent from the
fields (ϕ℘)℘∈C. Let ϕD be the field in D given by

ϕD =
∑
℘∈C

1Int(℘)(ϕ℘ + σ℘2λ).

Then ϕD is distributed as the massless GFF in D with 0 boundary conditions on ∂D. More-
over, in this coupling of (ϕD,C, (ϕ℘)℘∈C, (σ℘)℘∈C), the family (C, (ϕ℘)℘∈C, (σ℘)℘∈C) is measurable
w.r.t. ϕD.
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2.3 Clusters in a Brownian loop soup, CLE and SLE

The outer boundary of a 2D Brownian trajectory is an SLE8/3-type curve. This is related to the
conformal restriction property of the SLE8/3 [LSW03, Wer08]. Actually, one can obtain SLEκ-
type curves for every κ ∈ (8/3, 4] if one considers not one Brownian trajectory but clusters in a
Brownian loop soup.

Let D ⊊ C be an open simply connected domain. Fix α > 0 and let LαD be the Brownian
loop soup in D with intensity parameter α; see Definition 1.16. In dimension 2, the Brownian
loop soup LαD is conformally invariant in law up to time reparametrization of the loops; see
[Law05, Section 5.7]. This is a consequence of the conformal invariance of the 2D Brownian
motion up to time change. In particular, if one considers only the ranges of Brownian loops in
LαD, one gets a full conformal invariance.

Let us consider the clusters of loops in LαD. Two Brownian loops ℘ and ℘̃ in LαD belong
to the same cluster if there is a finite chain ℘0, ℘1, . . . , ℘n of Brownian loops in LαD where ℘i

intersects ℘i−1, and ℘0 = ℘ and ℘n = ℘̃. Sheffield and Werner studied these clusters in [SW12]
and proved the following.

Theorem 2.3 (Sheffield-Werner). If α > 1/2, then the Brownian loops in LαD form a.s. one
single cluster, everywhere dense in D.

If α ∈ (0, 1/2], then a.s. LαD contains infinitely many clusters. The outer boundaries of
the outermost clusters (not surrounded by others) are distributed as a conformal loop ensemble
CLEκ with the correspondence

2α =
(3κ− 8)(6− κ)

2κ
. (2.2)

See Figure 2.4.

Figure 2.4: Illustration of Theorems 2.4 and 2.3. The Brownian loops are in dotted lines. The
boundary excursions are in dashed lines. In red is an SLEκ(ρ) curve. In blue is the CLEκ.

In (2.2), the value α = 1/2 corresponds to κ = 4, and the limit α = 0 to κ = 8/3. In

particular, one can see that the critical Brownian loop soup L1/2D is related to the continuum
GFF in two different ways. The first one is through the renormalized Le Jan’s isomorphism

(Theorem 1.13). It involves the occupation field of L1/2D . The second relation is via the CLE4
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and the Miller-Sheffield coupling (Theorem 2.2). It involves the interfaces in L1/2D . Part of my
research would be to unify these two descriptions; see Part II.

Further, in [WW13a] Werner and Wu showed that if on top of the Brownian loop soup one
takes a Poisson point process (PPP) of boundary-to-boundary Brownian excursions, one can
get a chordal SLEκ(ρ) curve. In the upper half-plane H, a chordal SLEκ(ρ) curve with one force
point at 0− is given by a driving function satisfying

dξt =
√
κdWt +

ρdt

ξt − gt(0−)
,

where (Wt)t≥0 is a standard Brownian motion on R starting at 0. One has to take ρ > −2.
In particular, if ρ = 0, then this is just an SLEκ curve. Now if one has a simply connected
domain D and x ̸= y ∈ ∂D such that x and y divide ∂D into to connected components,
∂LD and ∂RD (left and right), then a chordal SLEκ(ρ) from x to y with one force point at
x− is obtained from the SLEκ(ρ) in H via a conformal mapping ψ : H → D with ψ(0) = x,
ψ(∞) = y and ψ(R−) = ∂LD. Given a constant b > 0, one can also consider Ξb

D a PPP of
boundary-to-boundary excursions from ∂LD to ∂LD with intensity measure given by

b2

2

∫∫
∂LD×∂LD

dx dy µx,yD ;

see Definitions 1.15 and 1.16. One also takes an independent Brownian loop soup LαD and
considers the clusters of Brownian paths in LαD ∪ Ξb

D. There are two types of clusters: those
that contain both boundary excursions and interior loops, and those that contain only interior
loops. Let A(LαD,Ξb

D) be the union clusters that contain both loops and excursions and are
thus connected to ∂LD. Let ∂RA(LαD,Ξb

D) be the rightmost boundary component of A(LαD,Ξb
D)

joining x and y. See Figure 2.4. If α > 1/2, then by Theorem 2.3, ∂RA(LαD,Ξb
D) = ∂RD. If

α ∈ (0, 1/2], then ∂RA(LαD,Ξb
D) is a non-trivial curve in D from x to y.

Theorem 2.4 (Werner-Wu). Let α ∈ (0, 1/2] and b > 0. Then ∂RA(LαD,Ξb
D) is distributed as

a chordal SLEκ(ρ) from x to y with one force point at x−. The κ is given by (2.2). The ρ is
given by

b2 =
π

2

(ρ+ 2)(ρ+ 6− κ)
κ

.

In the limit case α = 0 (no loops, only boundary excursions Ξb
D), ∂RA(Ξb

D) is distributed as an
SLE8/3(ρ) curve.

The case κ = 4, i.e. α = 1/2, is again particular. The SLE4(ρ) is a level line of the
continuum GFF for the boundary conditions b on ∂LD and 0 on ∂RD (Theorem 2.1). So the

gas of Brownian paths L1/2D ∪ Ξb
D is related to the GFF in two different ways. On one hand

its (renormalized) occupation field gives the (renormalized) square of the GFF; see Proposition

1.14. On the other hand one of its interfaces, ∂RA(L1/2D ,Ξb
D), is a level line of the GFF with

the same boundary conditions. Also note that the proofs of both Theorem 2.3 and Theorem 2.4
crucially relied on the simple connectedness of the domain D, while the isomorphism theorems
are in a sense blind to the geometry of the domain.
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Chapter 3

Clusters of Brownian paths and
signs of the fields

In this Chapter are presented the results I obtained during my PhD thesis [13]. I related
the signs of the GFF in discrete to clusters of random walk trajectories that appear in the
isomorphism theorems (Proposition 1.14). My idea was to replace the discrete edges in an
electrical network by continuous lines of length proportional to the resistance, so as to get a
so called metric graph, and then to interpolate the discrete GFF to this topological object by
taking 1D Brownian bridges inside the edge-lines. See Section 3.2. Using this technique I proved
certain results, in particular the convergence of random walk clusters to Brownian clusters in
a loop soup in dimension 2 (Section 3.3). Both this convergence result and the method of the
metric graph GFF will play an important role in my subsequent research; see Parts II and III.

3.1 Continuum 1D setting: clusters of Brownian loops and ex-
cursions of the occupation field

In [18] I studied the Brownian loop soups (Definition 1.16) in dimension 1. Take as a domain

the half-line R∗+ = (0,+∞) and consider the 1D Brownian loop measure µloopR∗
+

(Definition 1.15).

The range of a loop ℘ will be just a line segment [min℘,max℘]. However a Brownian loop ℘
will carry a non-trivial local time process on its range, (ℓx(℘))min℘≤x≤max℘; see (1.19).

Theorem 3.1 ([18], Section 3.5). The measure on (min℘,max℘) induced by µloopR∗
+
(d℘) is

10<a<b
da db

(b− a)2
.

Conditionally on (min℘,max℘) = (a, b), the process (2ℓx(℘))min℘≤x≤max℘ is a square Bessel 4
bridge from 0 to 0 of length b− a. In particular, the process (ℓx(℘))min℘≤x≤max℘ is continuous

for µloopR∗
+
(d℘)-almost every ℘, is positive on (min℘,max℘) and zero on min℘ and max℘.

Now consider a 1D Brownian loop soup LαR∗
+
with intensity measure αµloopR∗

+
(d℘). Its occu-

pation field

ℓx(LαR∗
+
) =

∑
℘∈LαR∗+

ℓx(℘)

is a stochastic process in x ≥ 0, distributed actually as a square Bessel process of dimension 2α
[18, Proposition 4.6]. For references on Bessel processes see [RY99, Chapter XI]. The main take
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away in the study of the 1D Brownian loop soups is that the excursions of (ℓx(LαR∗
+
))x≥0 above

level 0, i.e. the connected components of

{x ≥ 0|ℓx(LαR∗
+
) > 0},

are exactly the ranges of the clusters of loops in LαR∗
+
. Recall that two Brownian loop ℘ and

℘̃ in LαR∗
+
belong to the same cluster if there is a finite chain ℘0, ℘1, . . . , ℘n of Brownian loops

in LαR∗
+
where ℘i intersects ℘i−1, and ℘0 = ℘ and ℘n = ℘̃. This is because ℓx(℘) is positive on

(min℘,max℘), and so is ℓx(LαR∗
+
). Moreover, a.s. for every ℘ ∈ LαR∗

+
, there is ℘̃ ∈ LαR∗

+
such that

ℓmin℘(℘̃) > 0. And similarly for max℘. So ℓx(LαR∗
+
) is actually positive on [min℘,max℘] for

every ℘ ∈ LαR∗
+
. Finally, a.s. for every x ≥ 0 such that x is not visited by any loop, ℓx(LαR∗

+
) = 0.

A bit of care is needed in the above argument because there are infinitely countably many loop
in a loop soup; see [18, Corollary 5.5].

Theorem 3.2 ([18], Section 4.2). Fix α > 0. The process (2ℓx(LαR∗
+
))x∈0 is a.s. continuous and

distributed as a square Bessel process of dimension 2α starting at 0 in x = 0. In particular, for
α = 1/2 it is the square of a Brownian motion. The excursions of (ℓx(LαR∗

+
))x∈0 above level 0

give exactly the clusters of loops in LαR∗
+
. In particular there is a phase transitions at α = 1: for

α ≥ 1 there is a.s. one single cluster.

3.2 Isomorphisms for the GFF on metric graphs

3.2.1 Brownian paths on metric graphs

In dimension 1 in continuum there is a nice correspondence between clusters of Brownian paths
and the connected components of the positive set of their occupation field (Theorem 3.2).
One would like to combine this correspondence with a non-trivial geometry for the ranges of
Brownian paths, something one does not get on a line. So the idea is to consider metric graphs.
Consider a discrete electrical network G = (V,E) with conductances (C(x, y))x∼y, as in Section
1.1.1. We will replace each discrete edge of the graph G by a continuous line segment, so one
can move inside the edge.

Definition 3.3. The metric graph G̃ associated with the electrical network G = (V,E) is
obtained by replacing each edge {x, y} ∈ E by a continuous line segment I{x,y}. Topologically,

G̃ is a one-dimensional simplicial complex, with V being the family of 0-cells and (Ie)e∈E the
family of 1-cells. Moreover, G̃ is endowed with a metric dG̃ by setting the length of each line

segment I{x,y} to be equal to C(x, y)−1. It is also endowed with the corresponding interval-
length (Lebesgue) measure mG̃ .

One can define on the metric graph G̃ a natural continuous Markovian diffusion process
[BC84]. It is the symmetric Markov process associated with the Dirichlet form

EG̃(f, f) =
∫
G̃
(f ′(x))2mG̃(dx),

where f is a continuous function on G̃ which is C1 inside each edge-line Ie and has bounded
derivatives. This is the metric graph Brownian motion and will be denoted (B̃t)t≥0. Inside an

edge line Ie, (B̃t)t≥0 behaves as a one-dimensional Brownian motion. Upon reaching a vertex
x ∈ V , the process will perform Brownian excursions in each of the adjacent edges. See [16,
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Section 2] for details. The process (B̃t)t≥0 has local times (ℓxt (B̃))x∈G,t≥0 continuous in (x, t),
characterized by ∫ t

0
f(B̃s)ds =

∫
G
f(x)ℓxt (B̃)mG̃(dx), (3.1)

for t ≥ 0 and f a bounded measurable function on G̃. It is easy to see that the trace of (B̃t)t≥0
on the vertices x ∈ V is the Markovian jump process with jump rates given by the conductances.

Proposition 3.4. Let x0 ∈ V and (B̃t)t≥0 the metric graph Brownian motion staring at x0.
For u ≥ 0, let be

Au = inf
{
t > 0

∣∣∣∑
x∈V

ℓxt (B̃) > u
}
. (3.2)

Then the process (B̃Au)u≥0 is the Markovian jump process on the discrete electrical network G
with jump rates given by the conductances C(x, y) as in Section 1.2.1.

We will also consider the process B̃t killed upon reaching V∂ . The measures on interior-to-
interior excursions (Definition 1.3), interior-to-boundary excursions (Definition 1.5), boundary-
to-boundary excursions (Definition 1.7) and on interior loops (Definition 1.9), all have their
metric graph equivalents. Moreover, one can recover the discrete-space measures by applying
(3.2). In this way, one can consider metric graph Brownian loop soups Lα

G̃
. Note that the loops

in Lα
G̃
do not hit the boundary V∂ . There are two types of loops in Lα

G̃
, those that do not visit

any vertex in V and stay inside an edge-line Ie, and those that visit vertices in Vint. The trace
of the latter on the vertices is actually distributed as a continuous-time random walk loop soup
Lα (Definition 1.10). One can also define the occupation field (ℓx(Lα

G̃
))

x∈G̃ by summing over the

metric graph loops the local times (3.1). The analog of Theorem 3.2 holds on metric graphs.

Theorem 3.5 ([16], Section 2). Fix α > 0. The field (ℓx(Lα
G̃
))

x∈G̃ is a.s. continuous in x, and

equals 0 on V∂. Moreover, the clusters of loops in Lα
G̃
are exactly the connected components of

{x ∈ G̃|ℓx(LαG̃) > 0}.

Now let us see how the clusters of metric graph loops in Lα
G̃
and the clusters of discrete-space

loops in Lα are related. First note that for every x ∈ V , ℓx(Lα
G̃
) = ℓx(Lα). Obviously, each

cluster of Lα is contained in a cluster of Lα
G̃
. However, a cluster of Lα

G̃
can contain strictly

more vertices. This is because both the excursions of loops inside the edge-lines Ie and the
metric graph loops that stay inside Ie create additional connections that one does not see at
the discrete level. For e ∈ E set

ω̃e =

{
1 if ∀x ∈ Ie, ℓx(LαG̃) > 0,

0 otherwise;
ωe =

{
1 if e visited by a loop in Lα,
0 otherwise.

(3.3)

An edge e ∈ E is open for Lα
G̃
, resp. Lα, if ω̃e = 1, resp. ωe = 1. Clearly, ω̃e ≥ ωe.

Theorem 3.6 ([16], Theorem 1 bis). Fix α > 0. If α ≥ 1, then a.s. ω̃e = 1 for every edge e
not adjacent to a vertex in V∂, and ω̃e = 0 for e adjacent to V∂. If α ∈ (0, 1), then conditionally
on Lα, the configuration (ω̃e)e∈E is distributed as follows. For e = {x, y} ∈ E, ω̃e is set to 1 if
ωe = 1. If ωe = 0, then

P(ω̃e = 1|Lα, ωe = 0) = P(ω̃e = 1|ℓx(Lα), ℓy(Lα), ωe = 0) = pα(ℓ
x(Lα), ℓy(Lα), C(x, y)) ∈ (0, 1),

where pα(ℓ
x(Lα), ℓy(Lα), C(x, y)) can be expressed as the probability that a certain one-dimensional

stochastic process does not have zeroes. Moreover, the variables (ω̃e)e∈E,ωe=0 are conditionally
independent given Lα. In the particular case α = 1/2,

p1/2(ℓ
x(Lα), ℓy(Lα), C(x, y)) = 1− exp

(
− 2C(x, y)

√
ℓx(Lα)ℓy(Lα)

)
.
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3.2.2 Metric graph GFF and isomorphisms

The discrete GFF ϕ on G (Definition 1.1) can be interpolated to a continuous Gaussian field ϕ̃
on the metric graph G̃ such that ϕ is the restriction of ϕ̃ to V , ϕ = ϕ̃|V .

Definition 3.7. The massless metric graph GFF on G̃ with boundary condition f on V∂ is the
random Gaussian field (ϕ̃(x))x∈V distributed as follows. The restriction of ϕ̃ to vertices, ϕ̃|V ,
is distributed as the massless discrete GFF on G with boundary condition f on V∂ (Definition
1.1). Conditionally on ϕ̃|V , the fields (ϕ̃|Ie)e∈E are independent. For each {x, y} ∈ E, ϕ̃|I{x,y} is

distributed as a 1D Brownian bridge of length C(x, y)−1 between the values ϕ̃(x) and ϕ̃(y).

See Figure 3.1, left picture. By construction, ϕ̃ is a continuous field on G̃, and on V∂ it equals
f , the boundary condition. It also satisfies a strong Markov property, even if one cuts it inside
the edge-lines; see [16, Section 3]. Compared to the discrete GFF, it also has the advantage
to satisfy the intermediate value property, because of the continuity. Le Jan’s isomorphism
(Theorem 1.13) extends to the metric graph setting, with the correspondence of Theorem 3.5
on top of that. See Figure 3.1, right picture.

Figure 3.1: On the left, an illustration of the metric graph GFF. In green is the height of the
discrete GFF on the vertices. In orange the interpolating Brownian bridges. On the right, the
sign clusters of metric graph GFF, positive in red and negative in blue. The bold lines represent
the edges visited by the random walk loops. The black dots represent the boundary vertices in
V∂ . The boundary condition is 0.

Theorem 3.8 ([16], Theorem 1). Take L1/2
G̃

the metric graph loop soup of intensity parameter

α = 1/2. Let (σC̃)C̃ cluster of L1/2
G̃

be a conditionally i.i.d. family of signs in {−1, 1} with

P(σC̃ = 1|L1/2
G̃

) = P(σC̃ = −1|L1/2
G̃

) = 1/2. For x ∈ G̃ such that ℓx(L1/2
G̃

) > 0, denote by C̃(x)
the cluster covering x. For x ∈ G̃, set

ϕ̃(x) = σC̃(x)

√
2ℓx(L1/2

G̃
).

Then the field ϕ̃ is distributed as the metric graph GFF on G̃ with 0 boundary condition on V∂.

Theorem 3.8 also has a version where the metric graph GFF ϕ̃ has some non-negative
boundary conditions. Then on top of the metric graph Brownian loop soup one has to add an

36



independent PPP of boundary-to-boundary excursions that accounts for the non-zero boundary
condition. This will be important in the study of the first passage sets; see Chapter 4, in
particular Section 4.4.

On the picture on the right on Figure 3.1 there are 3 types of clusters. First there are the
clusters of the random walk loops in L1/2 (bold lines). Then there are the clusters of metric

graphs loops in L1/2
G̃

, that are in general strictly larger. By Theorem 3.8 the latter also coincide

with the sign clusters of the metric graph GFF ϕ̃. Finally there are the sign clusters of the
discrete GFF ϕ. These can be strictly larger than that of ϕ̃. Indeed, given e ∈ E an edge, the
sign at both ends of e may be the same, but the opposite sign may occur on a portion of the
corresponding edge-line Ie. Then this change of sign is not seen at the level of the vertices, but
seen on the metric graph level. These 3 types of clusters have a natural interpretation in terms
of the combinatorics of the Ising model; see Chapter 11.

In dimension 2, it turns out that the clusters of L1/2 and that of L1/2
G̃

are in the fine mesh

limit the same. I proved this in [14]; see Section 3.3. However, the sign clusters of ϕ̃ and that
of ϕ are predicted to be different in the fine mesh limit. The boundaries of clusters of ϕ̃ are in
the limit the CLE4 [14], which is consistent with the Miller-Sheffield coupling (Theorem 2.2).
As for the clusters of ϕ, its sign clusters in the limit are predicted to correspond to the arc loop
ensemble (ALE) [QW18]. The latter, just as the CLE4, is a collection of SLE4 type loops, but
unlike the CLE4, the loops in ALE are boundary touching and two different loops may touch
each other. So in 2D, the sign clusters of ϕ are macroscopically larger than the sign clusters of
ϕ̃.

The coupling of Theorem 3.8 provides an upper bound for the probability of two points
belonging to the same cluster of L1/2.

Corollary 3.9 ([16], Proposition 5.2). Let x, y ∈ Vint. Then

P(x, y connected by L1/2) ≤ P(x, y connected by L1/2
G̃

) = E[sign(ϕ̃(x)) sign(ϕ̃(y))]

= E[sign(ϕ(x)) sign(ϕ(y))] =
2

π
Arcsin

( G(x, y)√
G(x, x)G(y, y)

)
. (3.4)

3.3 Convergence of clusters of loops in 2D

Consider the discrete upper half-plane H = Z×N and the random walk loop soups LαH on H. A
natural question is whether LαH contains infinite or only bounded clusters of loops. So one sees
LαH as a dependent percolation model on the edges of H. Note that it is pointless to consider the
random walk loop soup in the whole discrete plane Z2. Indeed, because of the recurrence of the
2D random walk, LαZ2 will a.s. contain one single cluster covering all the vertices, whatever the
value of α > 0.

I proved that for the clusters of LαH , the phase transition occurs at the intensity parameter
α = 1/2, which corresponds to the GFF case (Theorem 1.13) and which is also critical for
the 2D Brownian loop soup in continuum (Theorem 2.3). To show that for α ∈ (0, 1/2] there
is no percolation by loops [16] I relied on the upper bound (3.4). To show that for α > 1/2
there is indeed percolation [15], I used a comparison between discrete and Brownian loops, and
a 1-depend block percolation argument together with the Ligett-Schonmann-Stacey’s theorem
[LSS97]. One can also consider H̃, the metric graph associated with H, and the corresponding
metric graph Brownian loop soups Lα

H̃
. For these a similar result holds.
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Theorem 3.10 ([16], Theorem 2 and [15], Theorem 1). For α ∈ (0, 1/2], both LαH and Lα
H̃

contain only bounded clusters of loops. For α > 1/2, both LαH and Lα
H̃
contain one and only one

unbounded cluster of loops, the other clusters being bounded.

Further, for α ∈ (0, 1/2], one can consider the scaling limits of clusters in LαH and Lα
H̃
. It

turns out that these are the same. More precisely, in [14] I considered the clusters of loops on
the rescaled lattices, i.e. in Lα1

N
H
and Lα1

N
H̃
, and proved the following.

Theorem 3.11 ([14], Theorem 1.1). Let α ∈ (0, 1/2]. As N → +∞, the outer boundaries
of outermost clusters of loops in both Lα1

N
H
and Lα1

N
H̃
converge in law to a CLEκ on the upper

half-plane H, with the relation (2.2) between α and κ.

Now let us see the main ideas for the proof of Theorem 3.11. Brug, Camia and Lis proved
in [vdBCL16] that if one throws away all the small loops up to some mesoscopic scale (loops
with less than N θ jumps for a θ ∈ (16/9, 2)), then one gets convergence of random walk clusters
to Brownian clusters. They relied on a Komlós-Major-Tusnády (KMT) type coupling between
random walk an Brownian loops that appeared in [LTF07]. However the KMT coupling fails
for small loops, let alone the small loops on the metric graph. So one gets a lower bound, the
boundaries in Lα1

N
H
and Lα1

N
H̃
cannot be asymptotically smaller than a CLEκ. But one needs

an upper bound since small loops (and there are many of them) create additional connections
that could a priori make the clusters strictly larger even at a macroscopic level. It is actually
enough to establish the upper bound for α = 1/2 and κ = 4, as this would imply one for all the

smaller values of α. Also, it is enough to consider the metric graph loop soup L1/21
N
H̃
since there

the clusters are larger.
To establish the upper bound I considered the following topological events. One fixes four

points x1 < x2 < x3 < x4 ∈ R, and two values u, v > 0. One takes the Brownian loop soup L1/2H
in H, and on top of it two independent PPPs of boundary-to-boundary Brownian excursions
Ξu
12 and Ξv

34, with respective intensity measures

u2

2

∫∫
(x1,x2)2

µx,yH dx dy,
v2

2

∫∫
(x3,x4)2

µx,yH dx dy;

see (1.18). Let E(u, v) be the event that Ξu
12 and Ξv

34 are connected, either directly because one

excursion from Ξu
12 intersects one from Ξv

34, or indirectly trough a chain of loops in L1/2H ; see
Figure 3.2. The probability of this event can be computed using the theory of the conformal
restriction [LSW03] and is actually

P(E(u, v)) = 1−
((x3 − x1)(x4 − x2)
(x4 − x1)(x3 − x2)

)−uv
8π .

A similar event, denoted EN (u, v), can be defined on the metric graph 1
N H̃, and by a computation

similar in spirit to (3.4) one has

P(EN (u, v)) = 1− e−Ceff
N uv,

where Ceff
N is an effective conductance in 1

N H̃ from (x1, x2) to (x3, x4). The convergence of Ceff
N

ensures that
lim

N→+∞
P(EN (u, v)) = P(E(u, v)).

This establishes the desired upper bound, as otherwise P(EN (u, v)) would have been asymptot-
ically larger than P(E(u, v)).

By combining Theorem 3.11 and the coupling of Theorem 3.8, one immediately gets the
following.
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Figure 3.2: Two Brownian boundary excursions (dashed lines) connected by a chain of Brownian
loops (dotted lines).

Corollary 3.12 ([14]). Let ϕ̃N be the massless metric graph GFF on 1
N H̃ with 0 boundary

conditions. Then the outer boundaries of outermost sign clusters of ϕ̃N converge in law to the
CLE4 on the upper half-plane H.

The above convergence is consistent with the Miller-Sheffield coupling (Theorem 2.2).
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Part II

Constructing fields out of Brownian
paths in dimension two

40



Chapter 4

First passage sets of the continuum
GFF

In this Chapter will be presented the results obtained in a collaboration of myself with Juhan
Aru and Avelio Sepúlveda, that appeared in two companion papers [9, 8]. This is a project that
was initiated during my post-doc at ETH Zürich. In [9] we constructed what we called the first
passage sets (FPS) of the continuum GFF in dimension 2. These are random stopping sets of
the continuum GFF. See Section 4.1 for generalities on Markovian decompositions of the latter.
An FPS can be informally described as all the points in the domain that can be reached from the
boundary by a continuous path along which the GFF is larger than some value. This description
does not make immediate sense in continuum, but an FPS can be rigorously constructed through
the level lines of the GFF; see Section 4.2. We also prove a characterization of the FPS that
is useful to show convergences (Theorem 4.8). An FPS has zero Lebesgue measure, yet the
restriction of the GFF to it is non-trivial. It is a positive Radon measure, actually a Minkowski
content in the gauge | log r|1/2r2; see Section 4.3. In [8] we described the FPS as a cluster
of Brownian loops and boundary-to-boundary excursions. To get this, one first considers the
analogue of the FPS on metric graphs, and uses the isomorphism theorems to show that the FPS
is a cluster of loops and excursions on the metric graph; see Section 4.4. Then by convergence
from the metric graphs, one establishes the analogous result in continuum; see Section 4.5.
Finally, based on this work, Aru, Sepúlveda and myself announced the decomposition of the
GFF in the whole domain into excursion sets, by analogy with excursions of the one-dimensional
Brownian motion, with the excursion sets being given by the clusters in a Brownian loop soup.
This decomposition will be briefly presented in Section 4.6.

4.1 Markov property and local sets of the GFF

In this Section we recall the Markov properties of the continuum GFF and the notion of local
sets. We will restrict to the 2D setting, however these notions are valid in any dimension.

Let D ⊊ C be an open connected subset. For simplicity we assume D bounded. Let ϕD be
the massless GFF on D with some boundary condition f on ∂D; see Definition 1.2. Let K be a
deterministic subset of D such that K ∩D ̸= ∅ and D \K ̸= ∅. Let (ũi)i≥1 be an orthonormal
eigenbasis of −∆ on D \ K with 0 boundary conditions. The Dirichlet inner product of ϕD
against ũi is well defined (see [She07, Section 2.1]):

⟨∇ϕD,∇ũi⟩ =
∫
D\K
∇ϕD · ∇ũi.
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Denote
ϕD\K =

∑
i≥1
⟨∇ϕD,∇ũi⟩ũi, ϕK = ϕD − ϕD\K .

Next we state the weak Markov property of the continuum GFF. We refer to [She07, Section
2.6].

Proposition 4.1 (Weak Markov property). The random fields ϕD\K , and thus ϕK , are well
defined as generalized functions in H−ε(D) for ε > 0. The field ϕD\K is Gaussian, distributed

as the massless GFF on D \K with 0 boundary conditions. The restriction of the field ϕK to
D \K is a harmonic function. The fields ϕD\K and ϕK are independent.

The GFF ϕD also satisfies a strong Markov property. We refer to [SS13, Lemma 3.9].

Proposition 4.2 (Strong Markov property). Let K be a random compact subset of D. Assume
that K is a stopping set, i.e. for every open deterministic subset U ⊂ D, the event K ⊂ U is
measurable w.r.t. 1UϕD. Then ϕD admits a decomposition

ϕD = ϕK + ϕD\K , (4.1)

with the restriction of ϕK to D \K being a.s. harmonic, and ϕD\K being distributed, condition-

ally on (K,ϕK), as the massless GFF on D \K with 0 boundary conditions.

Examples of stopping sets include the level lines (Theorem 2.1) and the CLE4 gasket, i.e.
the exterior of the CLE4 loops (Theorem 2.2). Note however that in these examples the mea-
surability w.r.t. the free field is non-trivial, because the latter is not defined pointwise. Also
for that reason one prefers to use a more general notion, that of local sets, introduced in [SS13].
One only needs a decomposition (4.1), and does not assume the measurability of K w.r.t. to
ϕD. In this way, a random compact set independent from ϕD will be a local set but not a
stopping set. The local sets are also more stable by convergence from discrete.

Definition 4.3. Let K be a random compact subset of D coupled to ϕD. K is a local set of
ϕD if ϕD decomposes

ϕD = ϕK + ϕD\K , (4.2)

where the restriction of ϕK to D \K is a.s. harmonic, and conditionally on (K,ϕK), ϕD\K is
distributed as the massless GFF on D \K with 0 boundary conditions.

There is an important distinction between thin and non-thin local sets which we present
next. We refer to [Sep19].

Definition 4.4. A local set K of ϕD is thin if in the decomposition (4.2), ϕK coincides with
its restriction to D \K, i.e. it is a random harmonic function on D \K. Otherwise, the local
set K is said non-thin.

The level lines (Theorem 2.1) and the CLE4 gasket (Theorem 2.2) are thin local sets. In
these two examples, ϕK is nothing more than the harmonic extension of the boundary values
on the SLE4 type interfaces. If the local set K has non-empty interior with positive probability,
then it is obviously non-thin. However, there are more interesting examples of non-thin local
sets. The first passage sets that will be developed in this Chapter are an example of local sets
that a.s. have empty interior and even zero Lebesgue measure, but are still non-thin.

Next we consider continuously growing families of local sets K(t) and how the value of
ϕK(t)(z) evolves for a fixed point z ∈ D away from the K(t). This was first observed for the
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level lines in [SS13] and then generalized in [MS16, Proposition 6.5]. Also recall that the Green’s
function on D can be decomposed as

GD(z, w) =
1

2π
log(1/∥w − z∥) + gD(z, w),

where gD(z, w) is a continuous function on D ×D. If D is simply connected, then

gD(z, z) =
1

2π
log CR(z,D),

where CR(z,D) denotes the conformal radius of D seen from z (Definition 7.1).

Definition 4.5. Let (K(t))0≤t≤T be a non-decreasing random family of compact subsets of D,
coupled to the GFF ϕD, and continuous for the Hausdorff metric. Let (Ft)0≤t≤T be the natural
filtration induced by (K(t))0≤t≤T . The process (K(t))0≤t≤T is said to be a local set process for
ϕD if for every τ stopping time for (Ft)0≤t≤T , K(τ) is a local set for ϕD.

Proposition 4.6. Let (K(t))0≤t≤T be a local set process for the GFF ϕD. Fix z ∈ D and assume
that a.s. z ̸∈ K(T ). Set Mt = ϕK(t)(z) (recall that ϕK(t) is a.s. harmonic on D \K(t)). Then
the process (Mt)0≤t≤T is a continuous martingale in the natural filtration of (K(t), ϕK(t))0≤t≤T .
Moreover, its quadratic variation is given by

⟨M,M⟩t = gD(z, z)− gD\K(t)(z, z).

4.2 First passage sets: construction and characterization

Here we present the notion of first passage sets (FPS) of the continuum 2D GFF that was
intruduced in [9] by Aru, Sepúlveda and myself. We assume that the domain D is finitely
connected, i.e. C\D has finitely many connected components. Also, each connected component
of C \D is assumed to be non-polar. For simplicity sake, we also take here D to be bounded.
The field ϕD is a massless GFF on D with a boundary condition f on ∂D which is piecewise
constant. Let −a ∈ R. To avoid technical complications, here we will assume that −a < inf∂D f ,
although this restrictive condition in not present in [9]. Informally, the first passage set of ϕD
of level −a is the subset of all points z ∈ D that can be reached from ∂D by a continuous path
along which ϕD ≥ −a. Since ϕD is not defined pointwise, this does not make immediately sense.
However, a similar definition makes perfectly sense in the metric graph setting; see Section 4.4.

Definition 4.7 ([9], Definition 4.1). A local set A is a first passage set of ϕD of level −a if the
following conditions are satisfied.

1. ϕA = µA − a1D, where µA is a non-negative Radon measure supported on A.

2. Each connected component of A a.s. intersects ∂D.

In [9], the first passage sets are constructed by iterating an infinite countable sequence of
level lines inside the domain D; see [9, Proposition 4.4]. Each level line is an SLE4 type curve,
as in Theorem 2.1. There is a first generation of level lines that touch ∂D. Then in the smaller
domain delimited by the level lines of the first generation, one samples a second generation of
level lines. Then one continues with successive generations of level lines sampled inside domains
delimited by the previous generations. Finally one takes the topological closure of all the level
lines sampled during this process. The values of ϕD along these level lines depend on the
value −a one aims to. We will denote by A−a this particular first passage set. Note that by
construction it is a stopping set, not just a local set, because the level lines of the GFF are.
The crucial result is that A−a is actually the only first passage set, and thus the first passage
set of level −a.
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Theorem 4.8 ([9], Theorem 4.3). Let A be a local set of the GFF ϕD. Assume that A is a
first passage set of level −a. Then A = A−a a.s.

The proof of this result is done in two steps. The first step consists in showing that A−a ⊂ A
a.s. Informally, this is done as follows. Let η be one of the level lines involved in the construction
of A−a. The values of the GFF on either side of η are v, resp. v + 2λ, with v ≥ −a. If η would
have entered a connected O component of D \ A, then it would no be able to hit ∂O again
because the boundary values of ϕD on ∂O are −a. Thus, v would not be able to exit O and
reach its destination, and would stay trapped in O. This is a contradiction, and thus η does
not enter O in the first place. So η has to stay in A.

The second step consists in showing that A = A−a a.s. given that A−a ⊂ A a.s. From
general considerations on local sets one gets that µA ≥ µA−a a.s., and further that

E[µA − µA−a |A−a] = E[ϕD\A−a
|A−a] = 0.

Thus µA = µA−a a.s. and ϕD\A−a
= ϕD\A a.s. Then,∫∫

(D\A−a)2
GD\A−a

(z, w) dz dw = E[⟨ϕD\A−a
,1D\A−a

⟩2|A−a]

= E[⟨ϕD\A,1D\A−a
⟩2|A−a] =

∫∫
(D\A)2

GD\A(z, w) dz dw.

This implies that A−a = A a.s.

Now consider that the domain D is simply connected, that the boundary condition of ϕD
is 0 and that −a = −2λ (2.1). Then the FPS A−2λ can be constructed out of the nested
CLE4; see Figure 4.1. One samples a first generation of the CLE4 inside D. Then inside each
CLE4 one samples and independent CLE4 to get the second generation, and than continuous
on with the successive generations. For each new CLE4 loop one adds either −2λ or 2λ with
equal probability. In this way one gets a branching random walk of step size 2λ, with infinite
offspring at each generation. To get the FPS A−2λ one stops along each branch upon hitting the
value −2λ. In this way, the connected components of ∂(D \ A−2λ) are CLE4 loops of different
random generations, rather than a fixed one. There are also exceptional branches along which
the random walk never hits −2λ. This branches are important too, because they give rise to
the measure µA−2λ .

4.3 The measure on first passage sets

Given an FPS A−a, the GFF ϕD decomposes

ϕD = µA−a − a1D + ϕD\A−a
, (4.3)

where µA−a is a non-negative Radon measure supported on A−a, and conditionally on A−a,
ϕD\A−a

is distributed as a massless GFF on D \ A−a with 0 boundary conditions. In this

Section we will present the identification of the measure µA−a . First note that

E[µA−a ] = (h(f) + a)1D,

where h(f) is the harmonic extension of the boundary condition f . So in particular, one has
P(µA−a ̸= 0) > 0. Thus, the FPS A−a is a non-thin local set; recall Definition 4.4. One can
actually show that µA−a ̸= 0 a.s. [9, Proposition 4.6].
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Figure 4.1: On the left: construction of the FPS of level −2λ through the nested CLE4. The
blue loops correspond to the level −2λ and one does not iterate inside. On the right: computer
simulations of FPSs of levels −λ (dark blue), −2λ, −3λ and −4λ (bright yellow). Done with
the help of Brent Werness.

Let (Wt)t≥0 be a one-dimensional standard Brownian motion starting from 0. For x < 0,
set

τx = inf{t ≥ 0|Wt = x}.

Fix z ∈ D. Actually a.s. z ̸∈ A−a. Proposition 4.6 implies that

gD(z, z)− gD\A−a
(z, z)

(law)
= τ−h(f)(z)−a, (4.4)

where h(f)(z) is the harmonic extension of the boundary condition at z. This implies that as
t→ +∞,

P(−gD\A−a
(z, z) > t) ≍ t−1/2. (4.5)

Further, one can show that there is a constant C = C(D) > 1, depending on the domain D,
such that a.s. for every z ∈ D \ A−a,

d(z,A−a) ≤ e2πgD\A−a
(z,z) ≤ C(D)d(z,A−a). (4.6)

See [9, Lemma 5.13]. If D is simply connected, one can take C(D) = 4, and this follows from
Koebe quarter theorem; see [Ahl10, Section 5.1]. For general D, one can apply the Beurling
estimate [Law05, Theorem 3.76]. Let (A−a)r denote the r-neighborhood of A−a. By combining
(4.5) and (4.6) one gets that as r → 0,

E[Leb((A−a)r)] ≍ | log r|−1/2,

where Leb denotes the Lebesgue measure on C. So in particular, Leb(A−a) = 0 a.s. There is a
more precise result.

Theorem 4.9 ([9], Theorem 5.1). A.s. the measure µA−a is the restriction to D of the weak
limit of the measures

1z∈D,d(z,A−a)<r
1

2
| log r|1/2 dz

as r → 0. That is to say, µA−a is a Minkowski content measure in the gauge | log r|1/2r2.
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Next we explain the main ideas of the proof of Theorem 4.9. We go through the Gaussian
multiplicative chaos (GMC). The GMC is the renormalized exponential of the GFF. Let (ϕD)ε(z)
denote the average value of the GFF ϕD on the circle of radius ε with center z. It is defined
pointwise and continuous in z. For γ ∈ (−2, 2), the GMC measure µγ is

µγ = lim
ε→0

εγ
2/2e

√
2πγ(ϕD)ε(z)dz.

See Section 6.1 for details. µγ is a random Radon measure on D.
Let also denote µ̂γ the GMC associated with the field ϕD\A−a

(4.3). For γ ∈ (0, 2), one can
see that

µ−γ = e
√
2πγaµ̂−γ . (4.7)

See [APS20]. Informally, the idea is that e−
√
2πγµA−a

is bounded from above, and converges to
0 once multiplied by the renormalization factor εγ

2/2.
Further, one has

ϕD = − lim
γ→0+

1√
2π

d

dγ
µ−γ , .

Together with (4.7), one gets

ϕD = − lim
γ→0+

1√
2π

d

dγ
µ̂−γ − a1D.

By taking the conditional expectation w.r.t. A−a, and after checking that E[·|A−a] and
d

dγ
commute, one gets that

E[ϕD|A−a] = − lim
γ→0+

1√
2π

d

dγ
E[µ̂−γ |A−a]− a1D.

But from the decomposition (4.3) one gets that

E[ϕD|A−a] = µA−a − a1D.

Thus,

µA−a = − lim
γ→0+

1√
2π

d

dγ
E[µ̂−γ |A−a].

Further, the conditional expectation E[µ̂−γ |A−a] is an absolutely continuous measure

E[µ̂−γ |A−a] = 1z∈D\A−a
e
γ2πgD\A−a

(z,z)
dz.

Thus,

µA−a = − lim
γ→0+

√
2πγ1z∈D\A−a

gD\A−a
(z, z)e

γ2πgD\A−a
(z,z)

dz.

By applying (4.6), one gets that

µA−a = lim
γ→0+

√
2πγ1z∈D\A−a,d(z,A−a)<1| log d(z,A−a)|d(z,A−a)γ

2/2. (4.8)

So one gets a first expression for the measure µA−a . It is a.s. a weak limit of absolutely
continuous measures on D \ A−a. In the limit γ → 0+, the right-hand side of (4.8) is actually
non-zero, but concentrates on A−a. One can further see that this limit is actually a Minkowski
content measure in the gauge | log r|1/2r2. Indeed, if one studies the function

r 7→
√
2πγ1r∈(0,1)| log r|rγ

2/2,

one gets that it attains its maximum in rγ = e−2/γ
2
, and the value of the maximum is

√
2πγ × 2

γ2
e−1 ≍ | log rγ |1/2.
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4.4 First passage sets on metric graphs

Consider a discrete electrical network G = (V,E) with conductances (C(x, y))x∼y, and G̃ the

associated metric graph; see Section 3.2. Let ϕ̃ be a massless metric graph GFF on G̃ with a
boundary condition f on V∂ ; see Definition 3.7. Next we define the first passage sets of ϕ̃.

Definition 4.10. Let −a < minV∂
f . The first passage set of ϕ̃ of level −a is

Ã−a = {x ∈ G̃|∃℘ continuous path from V∂ to x s.t. ϕ̃ ≥ −a on ℘}.

By construction, Ã−a is a closed subset of G̃ containing V∂ , and each connected component of
Ã−a is connected to V∂ . For every x ∈ Ã−a, ϕ̃(x) ≥ −a. It is easy to see that Ã−a is a stopping
set for the GFF ϕ̃. Moreover, conditionally on (Ã−a, ϕ̃1Ã−a

), the field ϕ̃1G̃\Ã−a
is distributed

as a massless metric graph GFF on G̃ \ Ã−a with −a boundary conditions on ∂(G̃ \ Ã−a). The
very name first passage set has been chosen because of the analogy with the first passage time
and first passage bridge for one-dimensional Brownian motion.

The first passage sets on metric graphs were first introduced in a collaboration of Wendelin
Werner and myself [11]. See Chapter 8 for details, in particular Section 8.4. There was also
observed the metric graph analogue of the identity in law (4.4). LetGG̃(x, y), resp. GG̃\Ã−a

(x, y),

denote the metric graph Green’s function on G̃, resp. G̃ \ Ã−a with 0 boundary conditions. Let
h̃(f) denote the harmonic extension to G̃ of the boundary condition f on V∂ . As previously, let
(Wt)t≥0 be a standard one-dimensional Brownian motion with W0 = 0, and (τx)x<0 its family
of first passage times.

Theorem 4.11 ([11], Corollary 1). For every x ∈ G̃,

P(x ∈ Ã−a) = P(τ−h̃(f)(x)−a > GG̃(x, x)).

Moreover,

(GG̃(x, x)−GG̃\Ã−a
(x, x))1

x ̸∈Ã−a

(law)
= τ−h̃(f)(x)−a1−τh̃(f)(x)−a<GG̃(x,x)

.

Next we explain how Ã−a can be represented through clusters of metric graph loops and
boundary-to-boundary excursions. This is an extension of Theorem 3.8 to the case of non-zero

boundary conditions. Let L1/2
G̃

be a metric graph Brownian loop soup of intensity parameter

α = 1/2. Additionally, we consider Ξf+a

G̃
an independent Poisson point process of boundary-to-

boundary Brownian excursions on G̃ with intensity measure

1

2

∑
(x,y)∈V 2

∂

(f(x) + a)(f(y) + a)µx,y
G̃

;

see (1.13). We consider the clusters C̃ created by L1/2
G̃
∪Ξf+a

G̃
. We see a cluster C̃ as a subset of

G̃. Let be
A(L1/2

G̃
,Ξf+a

G̃
) =

⋃
C̃ cluster of L1/2

G̃
∪Ξf+a

G̃
C̃∩V∂ ̸=∅

C̃.

One takes only the clusters connected to the boundary V∂ , i.e. C̃ ∩ V∂ ̸= ∅. Note that these are

exactly the clusters that contain at least an excursion from Ξf+a

G̃
, not just loops in L1/2

G̃
.

Theorem 4.12 ([8], Proposition 2.5). The first passage set Ã−a has the same distribution as

A(L1/2
G̃
,Ξf+a

G̃
), where A(L1/2

G̃
,Ξf+a

G̃
) is the topological closure of A(L1/2

G̃
,Ξf+a

G̃
).
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4.5 Convergence from metric graph to continuum and conse-
quences

In [8], Aru, Sepúlveda and myself considered approximations of a continuum domain D ⊂ C
by metric graphs D̃N obtained from the square lattice with mesh size N−1. On D̃N one has a
metric graph GFF ϕ̃N , converging as N → +∞ to the continuum GFF ϕD. Denote by Ã−a,N
the first passage sets of ϕ̃N .

Theorem 4.13 ([8], Theorem 4.7). For every fixed a, one has the joint convergence in law of

(ϕ̃N , Ã−a,N , (ϕ̃N + a)1Ã−a,N
)

towards
(ϕD,A−a, µA−a)

as N → +∞, where the convergence of Ã−a,N is for the Hausdorff metric.

In the above convergence, the tightness of (Ã−a,N )N≥1 is immediate, because of the com-
pactness of the space of compact subsets for the Hausdorff metric. To identify the sub-sequential
limits of (Ã−a,N )N≥1 with A−a we relied on the uniqueness result of Theorem 4.8.

Now, in the continuum domainD consider the 2D Brownian loop soup L1/2D (Definition 1.16),

of intensity parameter α = 1/2. Take also an independent PPP Ξf+a
D of Brownian excursions

in D from ∂D to ∂D (Definition 1.16). Consider the clusters C of L1/2D ∪Ξf+a
D , which we see as

subsets of D.
A(L1/2D ,Ξf+a

D ) =
⋃

C cluster of L1/2D ∪Ξf+a
D

C∩∂D ̸=∅

C.

The clusters C intersecting ∂D are exactly the clusters containing at least one excursions from

Ξf+a
D and not just loops from L1/2D . The convergence of clusters from metric graph to 2D

continuum also holds. This is a strengthening of the result I proved during my PhD (Theorem
3.11), since one considers the whole cluster and not just the outer boundaries.

Theorem 4.14 ([8], Proposition 4.11). As N → +∞, we have the convergence in law of

A(L1/2
D̃N

,Ξf+a

D̃N
) towards A(L1/2D ,Ξf+a

D ) for the Hausdorff metric.

By combining the Theorems 4.12, 4.13 and 4.14 one immediately gets the following rep-
resentation of an FPS A−a as a cluster of Brownian loops and excursions connected to the
boundary.

Corollary 4.15 ([8], Proposition 5.3). Let −a < inf∂D f . Then the FPS A−a has the same

distribution as A(L1/2D ,Ξf+a
D ).

This also implies that the cluster of Brownian pathsA(L1/2D ,Ξf+a
D ) has a non-trivial Minkowski

content in the gauge | log r|1/2r2 (Theorem 4.9). However, each individual Brownian loop or
excursion has a 0 Minkowski content in this gauge. For a 2D Brownian path one has to take

the Minkowski gauge | log r|r2. So actually the Minkoswki content on A(L1/2D ,Ξf+a
D ) originates

from by the accumulation of small Brownian loops of all possible scales. The large loops and

excursions contribute only to the macroscopic shape of A(L1/2D ,Ξf+a
D ), but not to the Minkowski

content.
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For now we have assumed throughout that −a < inf∂D f , where f is the boundary condition
of the GFF ϕD. This was to avoid discussing some technical complications. However, this
limitation is not present in [9, 8]. In particularly, Corollary 4.15 holds whenever −a ≤ inf∂D f .
By taking f to coincide with −a on some subarcs of ∂D, one gets that some outer boundaries

of A(L1/2D ,Ξf+a
D ) are level lines of the GFF ϕD. See [8, Proposition 5.11] and the left picture in

Figure 4.2. In a simply connected domain, one can also get in this way the multiple commuting
SLE4 that have been introduced in[Dub07]. The corresponding probabilities for each non-
crossing partition were computed in [PW19].

Figure 4.2: Both on left and right, the Brownian loops are represented in green, and the
boundary excursions in blue. In red are represented the boundary curves of clusters that join
two points on ∂D. On the left is represented a level line of the GFF from x0 to y0 in a multiply
connected domain. On the right are represented multiple commuting SLE4 in a disk.

4.6 Decomposition of the continuum GFF into excursion sets

Here we will consider all the clusters in a Brownian loop soup L1/2D . In [QW19], Qian and Werner

proved that in a simply connected domain D, given a cluster C of L1/2D , the Brownian loops
that touch the outer boundary ∂oC of C can be decomposed into a PPP of Brownian excursions
from and to ∂oC, conditionally on ∂oC distributed as Ξ2λ

Int(∂oC), with Int(∂oC) being the interior

enclosed by ∂oC. The proof of Qian and Werner relies on the Miller-Sheffield coupling (Theorem
2.2), on the isomorphism theorems, in particular the continuum analogue of Theorem 1.8, and on
the approximation by metric graphs. In particular they use my convergence result of Theorem
3.11.

So given ∂oC the outer boundary of a cluster C of L1/2D , there are Brownian loops that touch
∂oC and these decompose into a PPP Ξ2λ

Int(∂oC), and the Brownian loops that are surrounded
by ∂oC but do not touch it, and these form a conditionally independent Brownian loop soup

L1/2Int(∂oC) in the domain enclosed by ∂oC. So by further combining the result of Qian and Werner

[QW19] with our Corollary 4.15, one can further identify the whole cluster C with a first passage
set inside Int(∂oC). We state this somewhat informally below.
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Corollary 4.16 ([8], Corollary 5.4). Assume that the domain D is simply connected. Con-

ditionally on the outer boundary ∂oC of a cluster C of L1/2D , the cluster C is distributed as a
first passage set of level 0 of a GFF ϕInt(∂oC) inside Int(∂oC) with boundary condition 2λ on the

inner side of ∂oC. In particular, all the clusters of L1/2D can be deterministically obtained out of
a labeled nested CLE4 inside D; see Figure 4.1 left.

Actually, if the domain D is multiply connected, an analogue of Corollary 4.16 still holds.
One can use an absolute continuity argument for that. One can consider the domainD∗ obtained
by filling the inner holes of D. Then the picture on D is absolutely continuous w.r.t that on D∗

away from the inner holes of D, both for the GFF and the Brownian loo soup.
What precedes leads to a decomposition of the 2D continuum GFF into excursion sets. It

has been announced by Aru, Sepúlveda and myself. At this stage there are some technical
details to work out. We present it here nevertheless. Let D be a finitely connected open domain

in C and L1/2D a Brownian loop soup in D. For each cluster C of L1/2D sample an independent

sign σC ∈ {−1, 1}, with P(σC = −1|L1/2D ) = P(σC = 1|L1/2D ) = 1/2. Also, let µC be the measure
obtained as the weak limit

µC = lim
r→0

1

2
| log r|1/2 1d(z,C)<r dz,

which a.s. exists as is non-trivial. Set

ϕD =
∑

C cluster of L1/2D

σCµ
C . (4.9)

Then ϕD is distributed as the massless free field on D with 0 boundary conditions. The sum
(4.9) is not absolutely convergent. One needs the compensations induced by the signs σC , and
in particular the GFF is not a signed measure. The choice of the signs σC has to be independent
of the order of summation. The convergence holds in L2. Further, the Wick’s square of this

GFF ϕD is given by the renormalized occupation field of L1/2D (see Section 1.2.5):

1

2
: ϕ2D :=: ℓ(L1/2D ) : a.s.

The clusters C of L1/2D form the so-called excursion sets of the GFF ϕD, and, together with
the signs σC , are actually measurable w.r.t. ϕD. The decomposition (4.9) is the continuum 2D
analogue of the decomposition of Theorem 3.8 on metric graphs.

Now let us present an other heuristic explanation for the Minkowski gauge | log r|1/2r2.
Consider D̃N a metric graph approximation of D. Let CN be the typical number of vertices in

a macroscopic cluster of L1/2
D̃N

. Let be two points z, w ∈ D̃N , macroscopically far away. Then

up to a constant order,

P(x, y connected by L1/2
D̃N

) ≍
(CN

N2

)2
.

But the identity (3.4) ensures that

P(x, y connected by L1/2
D̃N

) ≍ 1

logN
.

Thus,
CN ≍ (logN)−1/2N2.

So to get convergence, one has to renormalize the counting measure on vertices on a macroscopic

cluster of L1/2
D̃N

by the factor (logN)1/2.
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Chapter 5

Level lines of the continuum GFF
with measure-valued boundary
conditions

In this Chapter is presented a collaboration with Hao Wu (YMSC, Tsinghua University) [2].
Relying on the results of [8] presented in Section 4.5, we show that the notion of level lines of
the GFF can be extended to measure-valued boundary conditions. Previously, more regularity
on the boundary conditions was assumed [PW17]. In Section 5.1 we recall the topological
background we rely on. In Section 5.2 we introduce chordal SLEκ-type curves constructed
out of CLEκ and Poisson point processes of boundary-to-boundary excursions, with intensities
parametrized by non-negative measures on the boundary. In Section 5.3 we explain how the
continuity of in law of these curves with respect to the boundary measures is obtained. This
uses the notions of Section 5.1. In Section 5.4 we describe how for the value κ = 4 this gives
the level lines of the GFF with measure-valued boundary conditions.

5.1 Local connection and cut points

In this Section we present the required topological background. For details we refer to [Pom92,
Chapter 2]. We start with the notion of local connection.

Definition 5.1. Given C a closed non-empty subset of C, and z, z′ ∈ C, we say that z and z′

are ε-connected in C if there is K a compact connected subset of C with diam(K) < ε such
that z, z′ ∈ K.

A closed non-empty subset C ⊂ C is locally connected if for every ε > 0, there is δ > 0 such
that for every z, z′ ∈ C with |z′ − z| < δ, the points z and z′ are ε-connected in C.

A family of closed non-empty subsets (Cn)n≥0 of C is uniformly locally connected if for every
ε > 0, there is δ > 0 such that for every n ≥ 0 and every z, z′ ∈ Cn with |z′− z| < δ, the points
z and z′ are ε-connected in Cn.

Definition 5.2. Given C a closed connected non-empty subset of C, a point z ∈ C is said to
be a cut point of C if C \ {z} is not connected.

Next is the Carathéodory theorem. See [Pom92, Theorem 2.1] and [Pom92, Theorem 2.6].

Theorem 5.3 (Carathéodry). Let D be an open bounded simply connected domain in C. Let
ψ be a conformal map from the unit disk D to D.
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1. If C \D is locally connected, then ψ extends continuously to D. In particular ∂D can be
parametrized as a continuous closed curve.

2. If on top of that, ∂D has no cut points, then ∂D is a Jordan curve, i.e. continuous closed
simple curve, and ψ extends to a homeomorphism from D to D.

Next we recall the notion of Carathéodry convergence.

Definition 5.4. Let D and (Dn)n≥0 be open non-empty simply connected domains in C, differ-
ent from C. Let w ∈ D, respectively wn ∈ Dn. The sequence of marked domains ((Dn, wn))n≥0
is said to converge to (D,w) in the Carathéodory sense if the following holds:

1. wn → w.

2. For every z ∈ D, there is a neighborhood U of z in D such that

U ⊂
⋂
n≥m

Dn

for m large enough.

3. For every z ∈ ∂D, there exist zn ∈ Dn such that zn → z as n→ +∞.

Note that the Carathéodory convergence does not imply that Dn converges to D for the
Hausdorff distance, even if D is bounded.

For the following theorem we refer to [Pom92, Theorem 1.8], [Pom92, Proposition 2.3] and
[Pom92, Corollary 2.4].

Theorem 5.5. Let D and (Dn)n≥0 be open simply connected domains in C, different from C
and containing 0. Let ψ, resp. ψn, be the conformal map from the unit disk D to D, resp. Dn,
such that ψ(0) = 0 and ψ′(0) > 0, resp. ψn(0) = 0 and ψ′n(0) > 0. Assume the following.

1. There are R > r > 0 such that for every n ≥ 0, rD ⊂ Dn ⊂ RD.

2. The sequence of marked domains ((Dn, 0))n≥0 converges in the Carathéodory sense to
(D, 0).

3. The family (C \Dn)n≥0 is uniformly locally connected.

Then C \D is locally connected and ψn converges to ψ uniformly on D.

5.2 SLEκ type curve as envelop of CLEκ and Brownian excur-
sions

Let D be the unit disk, D = {z ∈ C||z| < 1}. Let AL and AR denote the left and right half-circles
on ∂D:

AL = {z ∈ ∂D : Re(z) < 0}, AR = {z ∈ ∂D : Re(z) > 0}.

Note that because of the conformal invariance, the particular choice of D for our simply con-
nected domain, and the particular choice of marked points −i and i do not matter. Let ν be
a finite non-negative Radon measure on AL. Let Ξν

D be the PPP of Brownian excursion from
and to AL of intensity

1

2

∫∫
AL×AL

ν(dx)ν(dy)µx,yD . (5.1)
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So compared to (1.18), one replaces a non-negative function f on ∂D by a measure ν. If ν has
no atoms, then (5.1) involves only excursion measures µx,yD for x ̸= y. If ν has atoms, then there
are also measures µx,xD for x an atom. Let κ ∈ (8/3, 4] and let Cκ be an independent CLEκ in

D. Let be Ĉκ the subset of Cκ made of the CLEκ loops that intersect excursions in Ξν
D. Denote

Sκ,ν =
⋃

℘∈Ξν
D

Range(℘) ∪
⋃

℘̂∈Ĉκ

Range(℘̂).

Let Oκ,ν be the connected component of D \ Sκ,ν that is adjacent to AR. By construction, Oκ,ν

is an open simply connected subset of D. Set

ηκ,ν = ∂Oκ,ν \AR.

Actually, ηκ,ν is the rightmost envelop of Sκ,ν ; see Figure 5.1. Because of the correspondence
between Brownian loop soups and the CLEκ (Theorem 2.3), the construction could have been
done with Brownian loop soups LαD instead of the CLEκ. If the measure ν is of form ν = 1AL

b
for a constant b > 0, then by Theorem 2.4, ηκ,ν is distributed as a chordal SLEκ(ρ) curve.
In general, let ψκ,ν denote the conformal mapping from D to Oκ,ν defined by the following
conditions:

ψκ,ν(1) = 1, ψκ,ν(−i) = −i, ψκ,ν(i) = i, ψκ,ν(AR) = AR.

Figure 5.1: On the left, the PPP of boundary excursions Ξν
D. In the middle, a CLEκ. On the

right, the curve ηκ,ν in red.

Proposition 5.6 ([2], Proposition 1.1). A.s., the conformal mapping ψκ,ν extends continuously
to D. In particular, ηκ,ν can be parametrized as a continuous curve from −i to i, as image of
AL by ψκ,ν .

We rely on the Carathéodory theorem (Theorem 5.3). One needs to check that C \ Oκ,ν

is locally connected. For this it is enough to show that ∂D ∪ Sκ,ν is locally connected. Each
excursion in Ξν

D and each CLEκ loop is locally connected, as image of a compact locally connected
set (interval [0, 1]) by a continuous map; see [New64, Theorem 8.2, Chapter IV] and [Pom92,
Section 2.2]. Then one has to deal with the fact that ∂D∪Sκ,ν is an infinite countable union of
locally connected subsets; see [2, Lemma 2.3] for this.

Further, the curve ηκ,ν satisfies the following properties.

� For every open subarc A ⊂ AL, P(A ⊂ ηκ,ν) > 0 if and only if ν(A) = 0. Indeed, if
ν(A) > 0, then a.s. Ξν

D contains infinitely many excursions with endpoints in A. See
Lemma 2.10 and Proposition 3.2 in [2].
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� Locally away from the boundary AL the curve ηκ,ν is absolutely continuous with respect
to a chordal SLEκ curve. This follows from Theorem 2.4, by comparing with the case
when ν = 1AL

b for a constant b > 0. For the precise formulation and details we refer to
[2, Theorem 3.7].

� If the measure ν has no atoms, the the curve ηκ,ν is a.s. simple, i.e. does not have
multiple points [2, Lemma 3.3]. For this we use that for each excursion ℘ ∈ Ξν

D its
rightmost boundary is a simple curve without cut points, actually a chordal SLE8/3(2/3)
curve joining the two endpoints of ℘; see [LSW03, Corollary 8.5]. If ν has atoms, then in
some cases an atom of ν can be a double point of ηκ,ν with positive probability. See [2,
Proposition 3.4] for a discussion on this.

� If the compact support of ν is the whole half-circle AL, then the curve ηκ,ν can be
parametrized as a Loewner chain with continuous driving function [2, Proposition 1.3].

5.3 Continuity with respect to the boundary conditions

Fix κ ∈ (8/3, 4] and consider a sequence (νn)n≥0 of finite non-negative Radon measure on AL,
converging weakly to ν. We will see that the curves ηκ,νn converge in law to ηκ,ν in a precise
sense.

For ε > 0, denote
Dε = {z ∈ D|d(z,AL) < ε}.

Given ℘ an excursion, recall that T (℘) denotes its total duration. For an excursion ℘ visiting
D \ Dε, denote

T f
ε (℘) = inf{t ∈ [0, T (℘)|℘(t) ∈ D \ Dε}, T l

ε(℘) = sup{t ∈ [0, T (℘)|℘(t) ∈ D \ Dε}.

Denote Ξν
ε :

Ξν
ε = {(℘(t+ T f

ε (℘))0≤t≤T l
ε(℘)−T f

ε(℘)
)|℘ ∈ Ξν

D, ℘ visits D \ Dε}.

So one keeps only the middle part ℘([T f
ε (℘), T

l
ε(℘)]).

Proposition 5.7 ([2], Proposition 4.1). One can couple on the same probability space the
PPPs Ξν

D and all the Ξνn
D such that for every ε > 0, there is nε ∈ N, such that for every n ≥ nε,

Ξνn
ε = Ξν

ε .

The above Proposition uses the fact that for every ε > 0, Ξν
ε and all the Ξνn

ε are a.s. finite
PPPs, and the intensity measure of Ξνn

ε converges as n→ +∞ to that of Ξν
ε in total variation.

Using this coupling we deduce the following.

Theorem 5.8 ([2], Theorem 1.2). Assume the PPPs Ξν
D and all the Ξνn

D are coupled as in
Proposition 5.7. Also take a CLEκ independent from (Ξν

D, (Ξ
νn
D )n≥0). Then in this coupling,

a.s. the sequence of conformal mappings (ψκ,νn)n≥0 converges to ψκ,ν uniformly on D. In
particular, the curves ηκ,νn a.s. converge uniformly to ηκ,ν when parametrized by AL via ψκ,νn.

The proof done through the following steps.

1. First one shows that a.s., for every w ∈ Oκ,ν , the marked domains (Oκ,νn , w) converge to
(Oκ,ν , w) in the Carathéodory sense (Definition 5.4). See [2, Lemma 4.8].

2. Then one shows that a.s., the family (C \ Oκ,νn)n≥0 is uniformly locally connected (Def-
inition 5.1). For this it is enough to show that the family (∂D ∪ Sκ,νn)n≥0 is uniformly
locally connected. See [2, Lemma 4.9].
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3. Finally, one concludes by using Theorem 5.5.

One can further show that if the measure ν and all the measures νn has full compact support
on AL, then the driving functions of the Loewner chains for ηκ,νn converge to that of ηκ,ν [2,
Proposition 1.4].

5.4 A level line of the GFF

The level lines of a GFF with piecewise constant boundary conditions are known to be SLE4(ρ)
curves with multiple force points. In [PW17] Powell and Wu extend the notion of level lines
to regulated boundary conditions. The regulated functions are exactly the uniform limits of
piecewise constant functions. Additionally, Powell and Wu require a threshold condition that
ensures that the level lines do not hit the boundary too often. For instance, their framework
does not cover the boundary condition f(eiθ) = 1π

2
<θ< 3π

2
(π2 − |θ − π|) for θ ∈ (0, 2π]. This

boundary condition is certainly regulated, since it is continuous, but it does not satisfy the
threshold condition in [PW17], and the method of [PW17] does not provide a control of the
corresponding level line near −i and i.

In my work [2] in collaboration with Wu we show that one can take positive measures, not
just regulated functions, as boundary conditions, and we also remove the threshold assumption.
Our proof goes through isomorphism theorems. In the construction of the curves ηκ,ν presented
in Section 5.2, one takes κ = 4. We show the following.

Theorem 5.9 ([2], Theorems 1.7 and 1.8). Given ν a positive finite Radon measure with full
support on AL and without atoms, then one can couple the curve η4,ν and a GFF ϕD in D with
boundary condition given by ν, such that η4,ν is a level line of ϕD, with value 0 to the right of
η4,ν and 2λ to the left of η4,ν . Moreover, in this coupling, η4,ν is deterministically determined
by the field ϕD.

The result for ν a piecewise constant function has been shown in my article [8] with Aru
and Sepúlveda; see Section 4.5. For general ν, we approximate it weakly by piecewise constant
functions and use the convergence result of Theorem 5.8. As for ν not having atoms, actually
a weaker condition is used in [2], which we do not detail here. We only need that a.s. η4,ν does
not hit an atom of ν, which still allows ν to have certain types of atoms.

Importantly, in the proof of Theorem 5.9 we do not rely on the theory of Loewner flows
ans SLE processes alone. From abstract considerations, the curve η4,ν has a continuous driving
function, and one can even write down an equation for this driving function on the time intervals
when η4,ν is away from AL [2, Section 5.3]. However, it is not clear how to describe the evolution
of the curve on the time intervals when η4,ν hits AL. And actually for some ν-s, η4,ν can hit the
boundary AL a lot, which we formalize below.

Theorem 5.10 ([2], Proposition 3.10). There are continuous non-negative functions f on AL

such that the curve η4,f (i.e. η4,ν with ν = f) satisfies the following. On one hand, a.s.
η4,f ∩ AL has empty interior, i.e. does not contain open subarcs. On the other hand, with
positive probability, η4,f ∩AL has a non-zero Lebesgue measure.
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Chapter 6

Brownian loop soups and
multiplicative chaoses

In this Chapter are described the results obtained in collaboration with Elie Aı̈dékon (Sorbonne
Université), Nathanaël Berestycki and Antoine Jégo (University of Vienna) [1]. Out of 2D
Brownian loop soups we construct random measures that have many similarities with Gaussian
multiplicative chaoses and satisfy a conformal covariance property. For the particular intensity
parameter α = 1/2 of the loop soup we recover the renormalized hyperbolic cosine of the
continuum GFF. This comes from the Le Jan’s isomorphism (Theorem 1.13). Our construction
works however for any intensity parameter α > 0, and for α ̸∈ 1

2N it provides new non-Gaussian
multiplicative chaoses. In Section 6.1 we recall the notion of the multiplicative chaos of the
GFF and its main properties. In Section 6.2 we recall the notion of Brownian multiplicative
chaos for finitely many independent 2D Brownian trajectories that was constructed in [BBK94,
AHS20, Jé20]. In Section 6.3 we present the multiplicative chaos of the Brownian loop soup
constructed in [1]. Compared to the case of finitely many Brownian trajectories it requires
additional renormalizations due to the ultraviolet divergence in the loop soup. In Section 6.4
we present the martingale method that was used in the proofs. In Section 6.5 we present the
approximations from discrete, and deduce for α = 1/2 the identity in law with the renormalized
cosh of the GFF.

6.1 Gaussian multiplicative chaos

Here is a quick review on the Gaussian multiplicative chaos (GMC). For details, we refer to
[RV14, Ber17]. Here by GMC we will mean the random positive measure obtained as the

renormlized exponential for the 2D continuum GFF, e
√
2πγϕD , γ ∈ (0, 2). In the L2 regime, i.e.

γ ∈ (0,
√
2), this is actually a Wick’s renormalization. The interacting bosonic field

1

Zγ
exp

(
− 1

2

∫
D
∥∇φ∥2 −

∫
D
e
√
2πγφ

)
Dφ

has been constructed for γ ∈ (0,
√
2) by Høegh-Krohn in [HK71]; see Section 1.1.4. Indepen-

dently, Kahane constructed in [Kah85] the GMC measures for the whole range of parameters
and for more general Gaussian logarithmically correlated fields.

Let D ⊂ C be an open bounded domain. For simplicity, we assume that it is simply
connected, however this is unimportant. Let ϕD be the continuum massless GFF on D with
0 boundary conditions. Let (ϕD)ε(z) denote the average value of the GFF ϕD on the circle of
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radius ε with center z. It is defined pointwise and continuous in z. Fix γ ∈ (0, 2). The measures

µεγ = 1z∈Dε
γ2/2e

√
2πγ(ϕD)ε(z)dz (6.1)

converge weakly in probability as ε→ 0 towards a random Radon measure µγ on D that is a.s.
finite and positive. The latter is the Gaussian multiplicative chaos (GMC). The construction
through circle averages has been used by Duplantier and Sheffield in [DS11]. One can extend
the definition to γ ∈ (−2, 0), since −ϕD has the same law as ϕD, and to γ = 0 by setting
µγ = 1z∈Ddz. For every u continuous function on D, the function γ 7→ ⟨µγ , u⟩ is a.s. analytic
on (−2, 2), and can be extended to a random holomorphic function by considering complex γ-s.

The range γ(−
√
2,
√
2) corresponds to the L2 regime.

Proposition 6.1. We have that E[⟨µγ , 1⟩2] < +∞ if and only if |γ| <
√
2.

By applying the Cameron-Martin formula for the GFF, one immediately gets the following
description of the µγ-typical points.

Proposition 6.2. Fix γ ∈ (−2, 2) \ {0}. Let F be a bounded measurable functional on couples
point-field. Then

E
[ ∫

D
F (z, ϕD)µγ(dz)

]
=

∫
D
CR(z,D)γ

2/2E[F (z, ϕD + 2πγGD(z, ·))]dz,

where CR(z,D) denotes the conformal radius (Definition 7.1) and GD(z, ·) is the function w 7→
GD(z, w). In particular, a.s. for µγ(dz) almost every z ∈ D,

lim
ε→0

(ϕD)ε(z)/| log ε| = γ. (6.2)

Note that the behavior (6.2) is very untypical from a GFF standpoint. Typically, for fixed
z ∈ D and ε > 0 small, |(ϕD)ε(z)| is of order | log ε|1/2. The points z ∈ D satisfying (6.2)
are called, following [HMP10], thick points of the GFF. Hu, Miller and Peres also identified in
[HMP10] the Hausdorff dimension of the thick points.

Theorem 6.3 (Hu-Miller-Peres). Fix γ ∈ (−2, 2)\{0}. The Hausdorff dimension of the random
subset of D defined by the condition (6.2) is a.s. 2− γ2/2.

The measures µγ satisfy the following conformal covariance property. Let D̂ be an other

simply connected domain and ψ : D → D̂ a conformal mapping. Let µ̂γ be the GMC measure

associated with the GFF ϕ
D̂

on D̂.

Proposition 6.4. Fix γ ∈ (−2, 2). The following identity in law holds:

(ϕD ◦ ψ−1, ψ∗µγ)
(law)
= (ϕ

D̂
, |ψ′ ◦ ψ−1|−(2+γ2/2)µ̂γ),

where ψ∗µγ is the image measure of µγ by ψ.

Biskup and Louidor proved in [BL19] the following approximation of the GMC from discrete.
Let DN be a discrete approximation of the domain D on the lattice 1

NZ2. Let ϕN be the discrete
massless GFF on DN with 0 boundary conditions. For γ > 0, let µN,γ be the measure

µN,γ = γ
(logN)1/2

N2−γ2/2

∑
z∈DN

1ϕN (z)≥(2π)−1/2γ logNδz,

where δz is the Dirac measure at z.

Theorem 6.5 (Biskup-Louidor). There are universal constants C, c0 > 0, such that for every

γ ∈ (0, 2) one has the joint convergence in law of (ϕN , µN,γ) towards (ϕD, Cc
γ2/2
0 µγ).
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6.2 Brownian multiplicative chaos

Here we present random measures, called Brownian multiplicative chaoses, supported on points
of infinite multiplicity of a 2D Brownian trajectory, that share many similarities with the Gaus-
sian multiplicative chaos. There are three different constructions for these measures, first by
Bass, Burdzy and Khoshnevisan [BBK94], then recently by Aı̈dékon, Hu and Shi [AHS20], and
by Jégo [Jé20]. This is also closely related to the problem of points visited exceptionally often
by the 2D random walk, studied by Erdös and Taylor [ET60], and more recently by Dembo,
Peres, Rosen and Zeitouni [DPRZ01]. Here we will present the construction due to Jégo [Jé20],
as it is the one used in our joint work [1].

Let D ⊂ C be an open bounded simply connected domain. Again, the simple connectedness
in non-essential, just for simplicity. Fix z0 ∈ D and let (Bt)t≥0 be a Brownian motion in C,
with B0 = z0. Let T∂D be the first hitting time of ∂D. Let ℓB denote the occupation measure
of (Bt)0≤t≤∂D:

ℓB(A) =

∫ T∂D

0
1Bt∈Adt.

For ε > 0 and z ∈ D, let ℓBε (z) denote the circle average of ℓB on a circle of radius ε around z.
The function (z, ε) 7→ ℓBε (z) is a.s. well defined and Hölder continuous [Jé20, Proposition 1.1].
For a > 0, letMB

a,ε denote the following measure:

MB
a,ε = (4πa)−1/21z∈D| log ε|1/2εae(4πaℓ

B
ε (z))1/2dz. (6.3)

Jégo proves in [Jé20, Theorem 1.1] the following.

Theorem 6.6 (Jégo). Fix a ∈ (0, 2). As ε → 0, the measure MB
a,ε converges weakly in prob-

ability to a random Radon measure MB
a supported on the range of (Bt)0≤t≤T∂D

. The measure
MB

a is a.s. non-zero and finite.

The measure MB
a above coincides a.s. with the measures constructed differently by Bass-

Burdzy-Khoshnevisan [BBK94] and by Aı̈dékon-Hu-Shi [AHS20]. In [BBK94, AHS20] one uses
the crossings by the Brownian motion rather than the occupation measure ℓB.

The measureMB
a is a Brownian analogue of the Gaussian multiplicative chaos, and therefore

it has been called Brownian multiplicative chaos. The presence of ℓBε (z)
1/2 in (6.3) is natural

in view of the isomorphism theorems of Section 1.2, which relate ℓB to square-Gaussians. The
relation between the parameter γ of the GMC µγ and the parameter a (thickness parameter)
ofMB

a is

a =
γ2

2
. (6.4)

There are two major differences between µγ andMB
a . First, the compact support of µγ is the

whole D, while that ofMB
a is just the range of the Brownian motion. Moreover, in (6.3) there

is an extra renormalization factor | log ε|1/2 that does not appear in (6.1).
The analogue of Proposition 6.1 holds for the Brownian multiplicative chaos.

Proposition 6.7. We have that E[⟨MB
a , 1⟩2] < +∞ if and only if a < 1.

For z ∈ D, let Ξz
a denote the Poisson point process of Brownian excursions from z to z

in D with intensity measure 2πaµz,zD , where µz,zD is given by (1.17) (Definition 1.15). By a
slight abuse of notation, Ξz

a will also denote the loop obtained by concatenation of all these
excursions. For z ̸= z′ ∈ D, let ℘z,z′ denote a Brownian excursion from z to z′ in D with

distribution µz,z
′

D /GD(z, z
′) (1.17). The analogue of Proposition 6.2 holds for the Brownian

multiplicative chaos.
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Theorem 6.8 (Bass-Burdzy-Khoshnevisan, Aı̈dékon-Hu-Shi, Jégo). Fix a ∈ (0, 2). Let F be a
bounded measurable functional on couples point-trajectory. Then

E
[ ∫

D
F (z, (Bt)0≤t≤T∂D

)MB
a (dz)

]
=

∫
D
GD(z0, z) CR(z,D)aE

[
F (z, ℘z0,z∧Ξz

a∧(Bz
t )0≤t≤T∂D

)
]
dz,

where Bz is a Brownian motion starting at z, the symbol ∧ denotes the concatenation of paths,
and the three paths ℘z0,z, Ξz

a and (Bz
t )0≤t≤T∂D

are independent.
In particular, a.s. MB

a (dz) almost every z is a point of infinite multiplicity for the Brownian
path (Bt)0≤t≤T∂D

. Moreover, forMB
a (dz) almost every z,

lim
ε→0

ℓBε (z)/| log ε|2 = a. (6.5)

Let N z
ε denote the number of excursions of (Bt)0≤t≤T∂D

from z to the circle of center z and
radius ε. Then a.s. forMB

a (dz) almost every z,

lim
ε→0

N z
ε /| log ε| = a. (6.6)

The points satisfying either (6.5) or (6.6) are called a-thick points of the Brownian motion.
It is further shown in [AHS20] that the carrying dimension of the measureMB

a is 2− a, which
is also consistent with Theorem 6.3 and (6.4).

In [Jé19] Jégo proved a convergence towards the Brownian multiplicative chaos from discrete,
which is the Brownian analogue of Theorem 6.5. Let DN be a discrete approximation of the

domain D on the lattice 1
NZ2. Let (X

(N)
t )t≥0 be a Markov jump process on 1

NZ2 normalized to
converge in law towards a Brownian motion on C as N → +∞. Let TDc

N
denote its first exit

time from DN . For z ∈ DN , let ℓN (z) be the renormalized local time

ℓN (z) = N2

∫ TDc
N

0
1
X

(N)
t =z

dt.

LetM(N)
a be the measure

M(N)
a =

logN

N2−a

∑
z∈DN

1ℓN (z)≥(2π)−1a(logN)2δz.

Theorem 6.9 (Jégo). Assume that X
(N)
0 converges as N → +∞ towards z0. Then there is a

universal constant c0 > 0, such that for every a ∈ (0, 2) one has the joint convergence in law of

((X
(N)
t )0≤t≤TDc

N
,M(N)

a ) towards ((B)0≤t≤T∂D
, ca0MB

a ).

The notion of Brownian multiplicative chaos can be extended to a finite number of inde-
pendent Brownian trajectories, B(1), B(2), . . . , B(n); see [AHS20, Section 7.2] and [Jé19, Section
1.4]. Let be

ℓB
(1),...,B(n)

= ℓB
(1)

+ ℓB
(2)

+ · · ·+ ℓB
(n)
.

The measureMB(1),...,B(n)

a is the weak limit in probability of

(4πa)−1/21z∈D| log ε|1/2εae(4πaℓ
B(1),...,B(n)

ε (z))1/2dz.

It can be decomposed according to the number of trajectories that generate a given a-thick
point:

MB(1),...,B(n)

a =
∑

J⊂{1,...,n}
J ̸=∅

∫
S(J,a)

daJM
⋂

j∈J B(j)

(aj)j∈J
, (6.7)
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where S(J, a) is the simplex

S(J, a) =
{
(aj)j∈J ∈ [0, a]J

∣∣∣∑
j∈J

aj = a
}
,

daJ is the Lebesgue measure on S(J, a), andM
⋂

j∈J B(j)

(aj)j∈J
is a measure on a-thick points generated

by the intersection of (B(j))j∈J , where each B(j) brings a partial thickness aj .

6.3 Multiplicative chaos of a Brownian loop soup: presentation

In the collaboration [1] by Aı̈dékon, Berestycki, Jégo and myself we consider the Brownian loop
soups LαD (Definition 1.16) rather than a finite family of Brownian trajectories, and construct
the corresponding multiplicative chaoses. Because of the ultraviolet divergence in the loop soup
(too many small loops), this requires an additional layer of renormalization compared to the
construction of Section 6.2. Indeed, one can apply an ultraviolet cutoff to LαD so as to keep
finitely many loops, and then take their multiplicative chaos. But as one lowers the cutoff,
the corresponding measure diverges a.s. in every open subset of D. So one needs to apply a
renormalization factor to tame this divergence.

So let D ⊂ C be an open bounded simply connected domain. Let us first present the cutoff
that is used in [1]. The most natural cutoff would have been by the diameter or the time duration
of a Brownian loop. However, in order to reduce the technical complexity a different one was
used. For each loop ℘ ∈ LαD we associate a uniform r.v. U℘ on (0, 1), with the conditional
distribution of (U℘)℘∈LαD being i.i.d. Given a constant K > 0, denote

Lα,KD = {℘ ∈ LαD|e−KT (℘) ≤ U℘},

where T (℘) is the total time duration of a loop ℘. The complementary LαD \ L
α,K
D is the so

called massive Brownian loop soup, with K being the square mass or equivalently the killing
rate; see also Section 1.1.3 and Section 1.2.4. The subset Lα,KD is non-decreasing in K. Note

that Lα,KD contains a.s. infinitely many loops. However, the density of small loops is rarefied
compared to LαD. Indeed, as ε→ 0.

E[#{℘ ∈ LαD|diam(℘) > ε}] ≍ ε−2, E[#{℘ ∈ Lα,KD | diam(℘) > ε}] ≍ | log ε|.

The reason for the choice of the cutoff through the square mass K will be detailed in Section
6.4.

Despite Lα,KD being a.s. infinite, one can define a Brownian multiplicative chaos of Lα,KD

by using the construction of Section 6.2, without requiring additional renormalization. For
a ∈ (0, 2), letMα,K

a denote the multiplicative chaos measure of thickness a generated by Lα,KD .

A.s., Mα,K
a (dz) almost every z is intersection of finitely many loops in Mα,K

a . Moreover, a
decomposition similar to (6.7) holds:

Mα,K
a =

∑
n≥1

1

n!

∑
℘1,...,℘n∈Lα,K

D
℘j-s distinct

∫
S(n,a)

da{1,...,n}M
⋂

1≤j≤n ℘j

(aj)1≤j≤n
,

where S(n, a) = S({1, . . . , n}, a) andM
⋂

1≤j≤n ℘j

(aj)1≤j≤n
is the measure on a-thick points generated by

the intersection of the n Brownian loops ℘1, . . . , ℘n, with each ℘j contributing a thickness aj .
In [1] we prove the following.
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Theorem 6.10 ([1], Theorem 1.1). Fix α > 0 and a ∈ (0, 2). Then as K → +∞, the measure
(logK)−αMα,K

a converges weakly in probability to a random Radon measure Mα
a on D. The

measureMα
a satisfies the following properties.

1. The measureMα
a is a.s. finite.

2. A.s., for every O open subset of D,Mα
a (O) > 0.

3. The measure Mα
a is conformally covariant in law. Let D̂ be an other simply connected

domain and ψ : D → D̂ a conformal mapping. Let M̂α
a be the measure on D̂. Then

ψ∗Mα
a

(law)
= |ψ′ ◦ ψ−1|−(2+a)M̂α

a .

4. One has E[⟨Mα
a , 1⟩2] < +∞ if and only if a < 1.

The limit measure Mα
a is the multiplicative chaos of the Brownian loop soup LαD. Its

conformal covariance is a consequence of the conformal covariance of the 2D Brownian loop
soup; see Section 2.3. The wayMα

a is constructed, it is a priori measurable with respect to LαD
and the values of the uniform r.v.s (U℘)℘∈LαD . However, it is easy to check thatMα

a is actually
independent from (U℘)℘∈LαD and thus measurable with respect to LαD; see [1, Section 9.1]. The
main ideas in the proof of Theorem 6.10 will be presented in Section 6.4.

Next we describe how the Brownian loop soup looks like viewed from a Mα
a -typical point.

It is to be compared with Proposition 6.2 and and Theorem 6.8. Recall that Ξz
a denotes the

loop rooted at z obtained by concatenating the excursions from z to z in a PPP of intensity
2πaµz,zD .

Theorem 6.11 ([1], Theorem 1.8 and Theorem 1.11). Fix α > 0 and a ∈ (0, 2). Let F be
bounded measurable functional on couples point-collection of loops. Then

E
[ ∫

D
F (z,LαD)Mα

a (dz)
]
=

1

2αa1−αΓ(α)

∫
D
CR(z,D)aE

[
F (z,LαD ∪ {Ξz

aj
, j ≥ 1})

]
dz,

where on the right-hand side the aj-s satisfy
∑

j≥1 aj = a, and are distributed according to a
Poisson-Dirichlet partition PD(α) of (0, a), independent from LαD; the family of loops (Ξz

aj
)j≥1

is independent from LαD and the Ξz
aj
-s are conditionally independent given (aj)j≥1. In particular,

a.s. Mα
a (dz) almost every z is an intersection of infinitely many Brownian loops in LαD, and is

a point of infinite multiplicity for each of these loops.
For z ∈ D, let N z

r be the number of crossings in LαD from the circle of center z and radius
r to the circle of center z and radius er. Then a.s. forMα

a (dz) almost every z,

lim
n→+∞

1

n2
N z

e−n = a. (6.8)

Moreover, the dimension of the random subset of D defined by (6.8) is a.s. 2− a.

Note that prior to the construction of the measures Mα
a it was not known that the 2D

Brownian loop soup contains points that are intersection of infinitely many loops. The Poisson-
Dirichlet partitions appear already in the discrete setting of continuous-time random walk loop
soups; see Theorem 1.12. The behavior (6.8) is very different from that for a fixed deterministic
z ∈ D. Indeed, for the latter, N z

e−n is of order n and not n2; see [1, Section 7.2].
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6.4 The crucial martingale

The proof of Theorem 6.10 relies on a martingale method. So let us introduce the martingale.
Recall that for K > 0, GD,K denotes the massive Green’s function. Set

CK(z) = 2π(GD −GD,K)(z, z),

which is well defined and continuous in z ∈ D. Let α > 0 and a ∈ (0, 2) be fixed. For K > 0,
let be

M̃α,K
a = 1z∈D

1

2αΓ(α)a1−α
CR(z,D)ae−aCK(z)dz

+

∫ a

0
du

1

2αΓ(α)(a− u)1−α
CR(z,D)a−ue−(a−u)CK(z)Mα,K

u .

Let FK be the σ-algebra of Lα,KD , so that (FK)K≥0 is a filtration.

Theorem 6.12 ([1], Proposition 3.4). The process (M̃α,K
a )K≥0 is a measure-valued martingale

in the filtration (FK)K≥0.

Let us explain how the martingale (M̃α,K
a )K≥0 has been obtained. One uses a reverse

engineering approach. One wants to construct the measure Mα
a (Theorem 6.10), and for that

one starts by constructing its conditional expectation given FK , which is actually M̃α,K
a . The

measure M̃α,K
a is a sum of two terms. The first one is deterministic and is the expectation of the

multiplicative chaos generated by LαD\L
α,K
D . The second one, which is random, is the conditional

expectation of the multiplicative chaos generated by the interaction of LαD \ L
α,K
D and Lα,KD ,

with u being the thickness brought by Lα,KD , and a−u the thickness brought by LαD \L
α,K
D . The

expectation ofMα,K
u can be expressed through Kummer’s confluent hypergeometric functions [1,

Proposition 3.1], and the martingale property of (M̃α,K
a )K≥0 follows from a functional equation

on these hypergeometric functions [1, Lemma 5.5]. The martingale (M̃α,K
a )K≥0 is the main

reason of the choice of the ultraviolet cutoff in LαD though the square-mass K. For a different
cutoff, say by diameter or the duration of loops, the conditional expectation ofMα

a is much less

explicit and more difficult to analyze than M̃α,K
a .

Since the martingale (M̃α,K
a )K≥0 is non-negative, it has an a.s. limit

Mα
a = lim

K→+∞
M̃α,K

a . (6.9)

Theorem 6.13 ([1], Section 3). The martingale (M̃α,K
a )K≥0 is uniformly integrable. In par-

ticular, the convergence of M̃α,K
a toMα

a also holds in L1.
Furthermore for all Borel sets A ⊂ D,

lim
K→+∞

E
[∣∣M̃α,K

a (A)− (logK)−αMα,K
a (A)

∣∣] = 0.

The convergence in Theorem 6.10 essentially follows from Theorem 6.13 above. To prove the
latter, one distinguishes between the L2 regime (a ∈ (0, 1)) and the non-L2 regime (a ∈ [1, 2)).
In the L2 regime we use the second moments and show that

sup
K>0

E[⟨M̃α,K
a , 1⟩2] < +∞, lim

K→+∞
E
[(
M̃α,K

a (A)− (logK)−αMα,K
a (A)

)2]
= 0.

The convergence (6.9) is then also in L2.
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The non-L2 regime is significantly more technical. We use a method inspired by the approach
of Berestycki [Ber17] to the non-L2 regime of the GMC. For z ∈ D, r > 0 and K > 0, denote
by N z,K

r the number of crossings by Lα,KD from the circle of center z and radius r to the circle
of center z and radius er. For b ∈ (a, 2) and n ≥ 0, denote AK

b,n the random subset of D

AK
b,n = {z ∈ D|∀k ≥ n,N z,K

e−k ≤ bk2}.

We consider the restricted measures 1AK
b,n
Mα,K

a . Then for all n ≥ 0 and b ∈ (a, 2) with b close

enough to a,
sup
K≥2

(logK)−2αE
[〈
1AK

b,n
Mα,K

a , 1
〉2]

< +∞.

Thus one can use the second moment method for the restricted measures (logK)−α1AK
b,n
Mα,K

a .

Moreover, for b ∈ (a, 2) with b close enough to a,

lim
n→+∞

sup
K≥2

(logK)−αE
[〈
(1− 1AK

b,n
)Mα,K

a , 1
〉]

= 0.

For details, see [1, Section 7].

6.5 Convergence from discrete and relation to the Gaussian
multiplicative chaos

We further prove that the measure Mα
a can be approximated from discrete. Let DN be a

discrete approximation of the domain D on the lattice 1
NZ2. Consider LαDN

the continuous
time random walk loop soup on DN (Definition 1.10), renormalized to converge in law to the
Brownian loop soup LαD. For ℘ ∈ LαDN

, let ℓzN (℘) be the rescaled occupation time at z:

ℓzN (℘) = N2

∫ T (℘)

0
1℘(t)=zdt,

and let be
ℓzN (LαDN

) =
∑

℘∈LαDN

ℓzN (℘).

LetMN,α
a be the measure

MN,α
a =

(logN)1−α

2αN2−a

∑
z∈DN

1ℓzN (LαDN
)≥(2π)−1a(logN)2δz.

Theorem 6.14 ([1], Theorem 1.12). For a universal constant c0 > 0, and for every α > 0 and
a ∈ (0, 2), the couple (LαDN

,MN,α
a ) converges in distribution as N → +∞ towards (LαD, ca0Mα

a ).

To prove the convergence above, we introduce in discrete the cutoff by the square-mass
K (suitably renormalized) as we did in continuum, and consider Lα,KDN

⊂ LαDN
, with Lα,KDN

converging to Lα,KD as N → +∞. Set

MN,α,K
a =

logN

2αN2−a

∑
z∈DN

1
ℓzN (Lα,K

DN
)≥(2π)−1a(logN)2

δz.

Note that the renormalization factors inMN,α
a andMN,α,K

a differ by a (logN)−α.
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By relying on Theorem 6.9, we first show that for every K > 0, (Lα,KDN
,MN,α,K

a ) converges

in law towards (Lα,KD , ca0M
α,K
a ). Then we show that for every Borel subset A ⊂ C,

lim
K→+∞

lim sup
N→+∞

E
[∣∣MN,α

a (A)− (logK)−αMN,α,K
a

∣∣] = 0.

By combining the two, one gets Theorem 6.14. For a ∈ (0, 1), the proof of the second step uses
the second moment method. For a ∈ [1, 2) one additionally considers the restrictions of the
measures MN,α,K

a to ”good” subsets, similarly to what has been done in continuum (Section
6.4).

For the particular value of the intensity parameter of the loop soup α = 1/2, the Le Jan’s

isomorphism (Theorem 1.13) ensures that the field (ℓzN (L1/2DN
))z∈DN

is distributed as half the
square of a discrete GFF on DN . By combining the convergences of Theorem 6.14 and Theorem
6.5 one gets the following identification in the continuum limit.

Theorem 6.15 ([1], Theorem 1.5). Let be α = 1/2 and a ∈ (0, 2). The measure M1/2
a has the

same distribution as
1

2γ
(µγ + µ−γ),

where γ =
√
2a and µγ and µ−γ are GMC-s associated with the same GFF ϕD.

The measure µγ + µ−γ can be interpreted as the renormalized cosh (hyperbolic cosine) of
the GFF. It is also the renormalized exponential of the absolute value:

µγ + µ−γ = lim
ε→0

1z∈Dε
γ2/2e

√
2πγ|(ϕD)ε(z)|dz.

Here is also something that is not proven in [1] but which we plan to do in the future: the

measureM1/2
a is actually the cosh of precisely the GFF given by (4.9). By restrictingM1/2

a to
clusters C such that σC = 1, one gets simply 1

2γµγ .
One can also show that for an intensity parameter of form α = k/2 with k ∈ N \ {0}, the

measureMk/2
a corresponds to the renormalized exponential of the Euclidean norm of a vector-

valued GFF with k i.i.d. components. If α is not half-integer (α ̸∈ 1
2N), then the measures

Mα
a appear to be new objects. There are many similarities with the multiplicative chaos of the

GFF, including the carrying dimensions (2 − a = 2 − γ2/2) and the conformal covariance. So
these are non-Gaussian multiplicative chaoses.
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Part III

Other works related to the
two-dimensional setting
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Chapter 7

Extremal distance and conformal
radius of a CLE4 loop

In this Chapter will be presented the results obtained in a collaboration of myself with Juhan
Aru and Avelio Sepúlveda, that appeared in the preprint [4]. There we consider the loop in
a CLE4 ensemble surrounding a fixed point in a simply connected domain and determine the
joint law of the corresponding conformal radius and extremal distance. The latter two notions
are recalled in Section 7.1. In Section 7.2 we state our results. The joint law of conformal
radius and extremal distance is expressed in terms of stopping times and last passage times of a
one-dimensional Brownian motion. The law of the conformal radius alone was previously known
[She09, SSW09], but not that of the extremal distance. Our derivation of this joint law relies on
the coupling between the CLE4 and the GFF (see Theorem 2.2). In Section 7.3 we explain how
to derive the law of the extremal distance alone, without the joint law. It relies on the idea that
one can discover the same interface of the 2D continuum GFF by Markovian exploration both
from outside and from inside. We called this property reversibility. An additional argument is
required to establish the joint law, and we present it in Section 7.4. We look at how the law of
an interface changes when one modifies the boundary conditions for the GFF.

7.1 Conformal radius and extremal distance

Here we recall the notion of conformal radius. We have already encountered it in Sections 4.3
and 6.1.

Definition 7.1. Let D ⊂ C be an open simply connected domain with D ̸= C. Fix z ∈ D.
The conformal radius of D seen from z, denoted CR(z,D), is given by

CR(z,D) = |ψ′(0)|,

where ψ is any conformal map from the unit disk D = {z ∈ C||z| < 1} to D with ψ(0) = z.

If D is a disk with center in z, then CR(z,D) is just its radius. In general, for D ⊂ C an
open simply connected domain with D ̸= C, the following distortion bounds hold:

d(z,D) ≤ CR(z,D) ≤ 4d(z,D). (7.1)

The lower bound in (7.1) comes from monotonicity, since D contains the disk of center z and
radius d(z,D). The upper bound is actually the Koebe quarter theorem; see [Ahl10, Section
5.1].
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Next we recall the notions of extremal distance between the two boundaries of an annular
domain. For details we refer to [Ahl10, Chapter 4]. Let A ⊂ C be an open connected domain
such that C \ A has two connected components, both not reduced to one point, and of which
one is unbounded and the other bounded. We call such a domain annular domain. Such a
domain is doubly-connected (one hole). Its boundary ∂A has two connected components, the
outer boundary ∂oA and the inner boundary ∂iA.

Definition 7.2. Let u be the harmonic function on A with boundary conditions 0 on ∂oA and
1 on ∂iA. The extremal distance (or extremal length) ED(∂oA, ∂iA) between ∂oA and ∂iA is

ED(∂oA, ∂iA) =
(∫

A
∥∇u∥2

)−1
.

The extremal distance ED(∂oA, ∂iA) is actually an effective resistance (Ohms). Indeed, one
sees the harmonic function u as en electric potential (Volts). Then the quantity

∫
A ∥∇u∥

2 is
the corresponding electric power (Watts). The resistance is given by the Ohm’s law

R =
V

I
=
V 2

P
,

where R denotes the resistance, V the voltage, I the electric current and P the electric power.
The extremal distance is a conformal invariant. Two annular domains A and A′ are confor-

mally equivalent if and only if

ED(∂oA, ∂iA) = ED(∂oA
′, ∂iA

′).

Let D denote the unit disk, D = {z ∈ C||z| < 1}. If A is an actual annulus of form roD \ (riD),
then

ED(ro∂D, ri∂D) =
1

2π
log(ro/ri).

Thus, every annular domain A is conformally equivalent to an annulus D \ (riD) with

ri = e−2πED(∂oA,∂iA).

If ℘ is a Jordan curve in D surrounding 0 and Int(℘) is the interior enclosed by ℘, then

ED(∂D, ℘) ≤ − 1

2π
log CR(0, Int(℘)). (7.2)

Denote
r−(℘) = d(0, ℘), r+(℘) = max{|z||z ∈ ℘}. (7.3)

One has the following distortion bounds:

e−2πED(∂D,℘) ≤ r+(℘) ≤ 4e−2πED(∂D,℘). (7.4)

The lower bound in (7.4) comes from monotonicity, since the domain delimited by ∂D and ℘
contains an annulus D \ (r+(℘)D). The upper bound follows from Grötzsch’s theorem [Ahl10,
Section 4-11]. For details, see [4, Proposition 2.5]. By combining (7.1) and (7.4), we get

e−2πED(∂D,℘)CR(0, Int(℘))−1 ≤ r+(℘)

r−(℘)
≤ 16e−2πED(∂D,℘)CR(0, Int(℘))−1. (7.5)

The constant 16 above is likely non-optimal.
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7.2 Presentation of results

Here we present the results obtained by Aru, Sepúlveda and myself in [4].
Consider the unit disk D and a CLE4 conformal loop ensemble inside D. Let ℘0 be the CLE4

loop surrounding 0, which exists a.s. We determined the joint law of (ED(∂D, ℘0),CR(0, Int(℘0))).
Because of the conformal invariance in law of the CLE4, the particular choice of D and 0 does
not matter, and one could have taken any other simply connected domain D and any point
z ∈ D. The law of the conformal radius CR(0, Int(℘0)) alone has been determined by Sheffield
in [She09]. He also gives the laws of the conformal radii for all the CLEκ with κ ∈ (8/3, 4]. A
further description of these laws appeared in [SSW09]. However, the laws for the corresponding
extremal distances were unknown. So we answered this question for κ = 4, by relying on the
coupling with the Gaussian free field.

Let (Wt)t≥0 be a one-dimensional standard Brownian motion starting at 0. For x > 0,
denote

τ±x = inf{t ≥ 0||Wt| = x}, τ̄±x = sup{t ∈ [0, τ±x]|Wt = 0}.

Theorem 7.3 ([4], Theorem 1.1). The following identity in law holds:(
ED(∂D, ℘0),−

1

2π
log CR(0, Int(℘0))

)
(law)
= (τ̄±2λ, τ±2λ),

where 2λ =
√
π/2 is the height gap of the 2D continuum GFF (2.1).

So one can read (ED(∂D, ℘0),CR(0, Int(℘0))) on a single 1D Brownian trajectory. Note that
the fact that τ̄±2λ < τ±2λ a.s. is consistent with (7.2).

Recall the notations r−(℘0) and r+(℘0) (7.3). The tail asymptotic for r−(℘0) was known
from the distortion bounds (7.1):

lim
r→0

logP(r−(℘0) ≤ r)
| log r|

= lim
r→0

logP(CR(0, Int(℘0)) ≤ r)
| log r|

= lim
t→+∞

1

2πt
logP(τ±2λ ≥ t) = −

1

8
.

Similar results hold for r+(℘0), resp. r+(℘0)/r−(℘0), by applying the bounds (7.4), resp. (7.5),
in combination with the tail asymptotics for τ̄±2λ, resp. τ±2λ − τ̄±2λ. We have that

lim
t→+∞

1

2πt
logP(τ̄±2λ ≥ t) = lim

t→+∞

1

2πt
logP(τ±2λ ≥ t) = −

1

8
.

As for τ±2λ− τ̄±2λ, it is distributed as first hitting time of a Bessel 3 process starting at 0. Using
that, one gets

lim
t→+∞

1

2πt
logP(τ±2λ − τ̄±2λ ≥ t) = −

1

2
.

Corollary 7.4 ([4], Corollary 1.2). One has that

lim
r→0

logP(r+(℘0) ≤ r)
| log r|

= −1

8
, lim

r→+∞

logP(r+(℘0)/r−(℘0) ≥ r)
log r

= −1

2
.

We would like to mention that the situation for several nested CLE4-s around 0 is more
complicated. Say on has the first CLE4 loop ℘0 around 0. Then one samples a conditionally
independent CLE4 inside Int(℘0), and takes the loop surrounding 0, denoted ℘∗0. There are
then 5 r.v.s: CR(0, Int(℘0)), CR(0, Int(℘

∗
0)), ED(∂D, ℘0), ED(∂D, ℘∗0) and ED(℘0, ℘

∗
0). Given

the 1D Brownian motion (Wt)t≥0 as above, consider the following times:

τ = τ±2λ, τ̄ = τ̄±2λ, τ∗ = inf{t ≥ τ ||Wt −Wτ | = 2λ}, τ̄∗ = sup{t ∈ [τ, τ∗]|Wt =Wτ}.
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By iterating Theorem 7.3, we get the following identity in law:(
ED(∂D, ℘0),−

1

2π
log CR(0, Int(℘0)),ED(℘0, ℘

∗
0),−

1

2π
log CR(0, Int(℘∗0))

)
(law)
= (τ̄ , τ, τ̄∗−τ, τ∗).

One can also show an other identity in law, which does not follow directly from Theorem 7.3
and requires additional inputs (see [4, Section 5.4]):(

ED(∂D, ℘0),ED(℘0, ℘
∗
0),ED(∂D, ℘∗0),−

1

2π
log CR(0, Int(℘∗0))

)
(law)
= (τ̄ , τ̄∗ − τ, τ̄∗, τ∗).

So one can read two different combinations of 4 out of 5 r.v.s out of a single 1D Brownian
trajectory. However, one can not have all the 5. Indeed, the couple(

− 1

2π
log CR(0, Int(℘0)),ED(∂D, ℘∗0)

)
does not have the same joint law as (τ, τ̄∗), although the one-dimensional marginals match.
Indeed, τ < τ̄∗ a.s., whereas

P
(
− 1

2π
log CR(0, Int(℘0)) > ED(∂D, ℘∗0)

)
> 0.

Indeed, with positive probability, both CR(0, Int(℘0)) and ED(∂D, ℘∗0) are simultaneously small,
as on Figure 7.1 on the left.

Figure 7.1: On the left, ℘0 in green and ℘∗0 in blue. On the right, some non-contractible
interfaces of ϕAr .

7.3 The law of the extremal distance alone

Let us first recall how the law of the conformal radius CR(0, Int(℘0)) can be obtained through
the coupling of CLE4 with the GFF (Theorem 2.2). Actually, there is a local set process
(Definition 4.5) of the GFF discovering the CLE4.

Let ϕD be the massless GFF on D with 0 boundary conditions. Take an arbitrary x ∈ ∂D.
One takes (η(t))t≥0 a radial SLE4(−2) process in D starting from x an targeted at 0 (see [ASW19,
Section 4] and [4, Section 2.6.1]), parametrized by the log conformal radius

t = − 1

2π
log CR(0,D \ η([0, t])). (7.6)

69



The process (η(t))t≥0 can be coupled to ϕD as a local set process. It draws CLE4 loops in D,
up to a time t0 when it draws the loop surrounding 0, that is to say ℘0. The values of ϕD
discovered by (η(t))t≥0 up to time t0 belong to {−2λ, 0, 2λ}, and on the inner side of a loop
closed by (η(t))t≥0 the value is either −2λ or 2λ. With the notations of Section 4.1, ϕη([0,t])(0)
denotes the value of the harmonic extension in 0 of the values of ϕD discovered by η([0, t]). For
t ≤ t0, ϕ

η([0,t])(0) is a mixture of −2λ, 0 and 2λ, and thus ϕη([0,t])(0) ∈ [−2λ, 2λ]. For t = t0,
ϕη([0,t0])(0) equals either −2λ or 2λ. According to Proposition 4.6, the process (ϕη([0,t])(0))t≥0 is
distributed as a standard 1D Brownian motion starting at 0, and so t0 has the same distribution
τ±2λ. Because of (7.6), we get the law of

CR(0,D \ η([0, t0])) = CR(0, Int(℘0)).

To get the law of the extremal distance, the idea is to discover the CLE4 loop ℘0 by a local
set process from inside rather than from outside. To make this rigorous, in [4] we cut a small
hole around 0 and work on the annulus

Ar = D \ (rD). (7.7)

Eventually we let r tend to 0. Let

T (r) = ED(∂oAr, ∂iAr) =
1

2π
| log r|.

Let ϕAr be the massless GFF on Ar with 0 boundary conditions. First one takes a local set
process (η̂(t))0≤t≤T (r) for ϕAr starting from ∂oAr and ending on ∂iAr, parametrized by the
extremal distance

t = ED(∂oAr ∪ η̂([0, t]), ∂iAr).

This local set process is a kind of annulus version of the radial SLE4(−2). It discovers some

non-contractible interfaces ℘̂1, ℘̂2, . . . , ℘̂N̂ (N̂ random) of ϕAr . See Figure 7.1 on the right.
These interfaces correspond to the jumps of −2λ or 2λ in the values of the GFF ϕAr . Each
℘̂j is a random SLE4-type loop that separates ∂oAr from ∂iAr, and each ℘̂j+1 is surrounded
by ℘̂j . Moreover, as r → 0 (i.e. Ar tends to D), the law of the interface ℘̂1 (the first non-
contractible interface discovered) converges in total variation to that of the CLE4 loop ℘0. By
using a generalization of Proposition 4.6 (see [4, Proposition 2.18]), one gets the joint law of the
extremal distances (ED(℘̂j , ∂iAr))1≤j≤N̂ in terms of stopping times of a 1D Brownian bridge

from 0 to 0 of duration T (r). Let (Ŵt)0≤t≤T (r) be this 1D Brownian bridge associated with the
local set process (η̂(t))0≤t≤T (r) and let

τ̂ = inf{t ∈ [0, T (r)]||Ŵt| = 2λ}.

The event that (Ŵt)0≤t≤T (r) does not exit (−2λ, 2λ) coincides with the event that N̂ = 0, i.e.

(η̂(t))0≤t≤T (r) does not discover any non-contractible interface. On the event that (Ŵt)0≤t≤T (r)

exits (−2λ, 2λ), we have that T (r)− τ̂ = ED(℘̂1, ∂iAr). Moreover T (r)−ED(℘̂1, ∂iAr) converges
in law as r → 0 towards − 1

2π log CR(0, Int(℘0)). So one can rederive in this way the law of
CR(0, Int(℘0)).

This is not however what we want. So instead we interchange the roles of ∂oAr and ∂iAr

and take a local set process (η̌(t))0≤t≤T (r) from ∂iAr to ∂oAr. It successively discovers non-

contractible interfaces for ϕAr : ℘̌
1, ℘̌2, . . . , ℘̌Ň (Ň random). The local set process (η̌(t))0≤t≤T (r)

is again associated with a 1D Brownian bridge (W̌t)0≤t≤T (r) from 0 to 0, and one can jointly
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read the extremal distances (ED(∂oAr, ℘̌
j))1≤j≤Ň on this bridge. In particular, for the last

non-contractible interface discovered, ℘̌Ň , we have that

ED(∂oAr, ℘̌
Ň ) = T (r)− τ̌ ,

where

τ̌ = inf{t ∈ [0, T (r)]|W̌t = 0, (W̌s)0≤s≤t exits (−2λ, 2λ), (W̌s)t≤s≤T (r) stays in (−2λ, 2λ)}.

Now the key point is the following.

Theorem 7.5 ([4], Theorem 4.4). A.s. Ň = N̂ and

(℘̌1, ℘̌2, . . . , ℘̌Ň ) = (℘̂N̂ , ℘̂N̂−1, . . . , ℘̂1).

The theorem above says that one can discover the same non-contractible interfaces of the
GFF ϕAr by local set processes both from the outer boundary ∂oAr and from the inner boundary
∂iAr. We call this reversibility. This property is both intuitive and rather tricky to prove
rigorously, because the 2D continuum GFF is a generalized function not defined pointwise, so
one does not really observe its interfaces. The proof of the reversibility property constitutes
actually the main hard point in [4].

Since one knows the law of ED(∂oAr, ℘̌
Ň ) and ℘̌Ň = ℘̂1 a.s., one gets the law of ED(∂oAr, ℘̂

1).
By letting r → 0, one also gets the law of ED(∂oAr, ℘0). However, this method does not provide
the joint law of (ED(∂oAr, ℘̂

1),ED(℘̂1, ∂iAr)), just the one-dimensional marginals. This is
because the Brownian bridge (W̌t)0≤t≤T (r) associated with (η̌(t))0≤t≤T (r) is not a.s. equal to

the time-reversal of the bridge (Ŵt)0≤t≤T (r) associated with (η̂(t))0≤t≤T (r). So an additional
input is required to get the joint law in Theorem 7.3.

7.4 The joint law of conformal radius and extremal distance

At this stage we obtained the law of CR(0, Int(℘0)) and that of ED(∂D, ℘0), but not yet the
joint law. We will again work on the annulus Ar (7.7), but we will require an additional degree

of freedom. We will consider constants v ∈ R, and GFFs ϕ
(v)
Ar

on Ar with boundary condition

0 on ∂oAr and v on ∂iAr. With some positive probability, ϕ
(v)
Ar

has a non-contractible interface

℘̂1,v, with a value a(v) ∈ {−2λ, 2λ} on the inner side of ℘̂1,v. If v = 0, this interface is just ℘̂1.

Let (Ŵ
(v)
t )0≤t≤T (r) be a 1D Brownian bridge of duration T (r) from 0 to v, and denote

τ̂ (v) = inf{t ∈ [0, T (r)]||Ŵ (v)
t | = 2λ}, ˆ̄τ (v) = sup{t ∈ [0, τ̂ (v)]|Ŵ (v)

t = 0}.

Similarly to the case v = 0, we have that

P(The interface ℘̂1,v exists) = P(Ŵ (v) exits (−2λ, 2λ)),

(ED(℘̂1,v, ∂iAr), a
(v))

(law)
= (T (r)− τ̂ (v), Ŵ (v)

τ̂ (v)
), (ED(∂oAr, ℘̂

1,v), a(v))
(law)
= (ˆ̄τ (v), Ŵ

(v)

τ̂ (v)
),

but we do net get directly the joint law of (ED(∂oAr, ℘̂
1,v),ED(℘̂1,v, ∂iAr), a

(v)). The idea is to
look at how the law of the interface ℘̂1,v and the value a(v) change changes depending on v. Let
Q(v) denote the measure

Q(v)(F ) = E
[
F (℘̂1,v, a(v))1℘̂1,v exists

]
.

The measure Q(v) is absolutely continuous w.r.t. Q(0) with the following Radon-Nikodym deriva-
tive.
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Proposition 7.6 ([4], Proposition 3.3). Let v ∈ R. The following absolute continuity holds:

dQ(v)

dQ(0)
= exp

(
− v2

2
(ED(℘̂1,0, ∂iAr)

−1 − T (r)−1) + a(0)vED(℘̂1,0, ∂iAr)
−1

)
. (7.8)

The important point is that the Radon-Nikodym derivative (7.8) is a function of only
ED(℘̂1,0, ∂iAr) and a

(0). This immediately implies the following.

Corollary 7.7. The conditional law of ℘̂1,v given (ED(℘̂1,v, ∂iAr), a
(v)) is the same whatever

the value of v. In particular, the conditional law of ED(∂oAr, ℘̂
1,v) given (ED(℘̂1,v, ∂iAr), a

(v))
is the same whatever the value of v.

Then we use the following characterization of the joint law, which is a result purely on 1D
Brownian bridges.

Proposition 7.8 ([4], Proposition 5.4). Assume that for every v ∈ R there is a triple of

random variables (ρ
(v)
o , ρ

(v)
i , θ(v)) with ρ

(v)
o ∈ [0, T (r)], ρ

(v)
i ∈ [0, T (r)], ρ

(v)
o + ρ

(v)
i ≤ T (r) and

θ(v) ∈ {−2λ, 2λ}. Assume moreover that the following conditions are satisfied:

1. For every v ∈ R, the joint law of (ρ
(v)
i , θ(v)) on the event ρ

(v)
i > 0 is the same as that of

(T (r)− τ̂ (v), Ŵτ̂ (v)) on the event τ̂ (v) < T (r).

2. For every v ∈ R, the joint law of (ρ
(v)
o , θ(v)) on the event ρ

(v)
i > 0 is the same as that of

(ˆ̄τ (v), Ŵτ̂ (v)) on the event τ̂ (v) < T (r).

3. For every σ ∈ {−1, 1} and Lebesgue almost every ρ ∈ (0, T (r)), the conditional law of ρ
(v)
o

given that ρ
(v)
i = ρ and θ(v) = σ2λ is the same whatever v ∈ R.

Then for every v ∈ R, the joint law of (ρ
(v)
o , ρ

(v)
i , θ(v)) on the event ρ

(v)
i > 0 is the same as that

of (ˆ̄τ (v), T (r)− τ̂ (v), Ŵτ̂ (v)) on the event τ̂ (v) < T (r).

The above characterization implies that for every v ∈ R,

(ED(∂oAr, ℘̂
1,v),ED(℘̂1,v, ∂iAr), a

(v))
(law)
= (ˆ̄τ (v), τ̂ (v), Ŵ

(v)

τ̂ (v)
).

By letting r → 0 with v fixed, we get Theorem 7.3.
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Chapter 8

Lévy-type transformation for the
GFF

In this Chapter is presented an article written in collaboration with Wendelin Werner [11]. The
motivation for our work is explained in Section 8.1. It has to do with a second coupling between
the CLE4 and the 2D continuum GFF (Theorem 8.1), different but related to the Miller-Sheffield
coupling (Theorem 2.2). In [11] we show that the relation between the two couplings has a
natural analogue on metric graphs. This is explained in Section 8.2. We show that the Lévy
transformation for one-dimensional Brownian motions can be generalized to massless metric
graph GFFs, and that the law of the latter is invariant under this transformation (Theorem
8.2). We further conjecture that in the 2D setting, this Lévy transformation has a continuum
limit, which actually relates the two couplings between the CLE4 and the 2D continuum GFF.
In Section 8.3 are explained the ideas behind the proof of Theorem 8.2. It mainly relies on
stochastic calculus on metric graphs. In Section 8.4 are additionally presented some exact laws
related to the Lévy transformation on metric graphs.

8.1 Motivation: a second coupling between the CLE4 and the
GFF

Let us first explain the motivation behind the work in [11]. Let D ⊂ C be an open simply
connected domain, D ̸= C. We have already seen a coupling due to Miller and Sheffield
(Theorem 2.2) between the CLE4 conformal loop ensemble in D and the massless continuum
GFF on D with 0 boundary conditions. There is actually an other coupling between these two
objects, and we will refer to it as the second coupling. It is due to Werner and Wu [WW13b].

There is a conformally invariant way to explore all the CLE4 loops from the boundary ∂D
through a growth dynamic introduced in [WW13b]. In this way each CLE4 loop ℘ comes with
a random time t℘ > 0, which is the moment at which the growth dynamic reaches it. The
labeled family (℘, t℘)℘∈CLE4 is conformally invariant in law. The label t℘ is a sort of distance
between ℘ and ∂D; not the Euclidean distance of course, but a random one depending on the
whole CLE4 loop family.

Theorem 8.1 (Werner-Wu). Let C be a CLE4 loop ensemble in a simply connected domain
D. Consider the random labels t℘ for ℘ ∈ C obtained through the growth dynamic of [WW13b].
Let (ϕ℘)℘∈C be a family of generalized fields, conditionally independent given (℘, t℘)℘∈C, with
the conditional distribution of ϕ℘ being that of a massless free field in Int(℘) with 0 boundary
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conditions on ℘. Let ϕD be the field in D given by

ϕD =
∑
℘∈C

1Int(℘)(ϕ℘ + 2λ− t℘),

where 2λ is the height gap 2.1. Then ϕD is distributed as the massless GFF in D with 0 boundary
conditions on ∂D.

The coupling above looks similar to the Miller-Sheffield coupling (Theorem 2.2), with the
difference that instead of the boundary condition −2λ or 2λ on the inner side of ℘, with
probability 1/2 each, one takes for boundary condition 2λ − t℘. For details, see also [WW17,
Section 3]. We shall see in the next section that this second coupling has a natural interpretation
through the metric graphs.

8.2 Lévy transformation on metric graphs

The relation between the Miller-Sheffield coupling (Theorem 2.2) and the second coupling (The-
orem 8.1) is analogous the the Lévy transformation for the 1D Brownian motion. Let us explain
this analogy.

Let (Wt)t≥0 be a standard 1D Brownian motion with W0 = 0. Let ℓxt (W ) denote the local
times of (Wt)t≥0; see [RY99, Chapter VI]. Let (W̄t)t≥0 be the following process:

W̄t = |Wt| − ℓ0t (W ). (8.1)

The procedure (8.1) is known as the Lévy transformation, and the resulting process (W̄t)t≥0 is
again a Brownian motion; see [RY99, Chapter VI, Theorem 2.3]. For every t ≥ 0,

inf
[0,t]

W̄ = −ℓ0t (W ). (8.2)

If (Wt)tl≤t≤tr is an excursion ofW away from 0, positive or negative, then (W̄t)tl≤t≤tr is a positive
excursion of W̄ above the negative level inf [0,tl] W̄ . So in a sense one takes the excursions of W
away from 0, reflects the negative ones so as to make them positive, and glues the excursions in
the same order but in a different way, above negative levels given by the process (8.2). This is
analogous to taking boundary conditions ±2λ in Theorem 2.2, reflecting −2λ to 2λ, and then
subtracting a level t℘, so as to get the second coupling of Theorem 8.1.

The Lévy transformation (8.1) has a generalization to 1D Brownian bridges. Let T > 0 and

let (Ŵt)0≤t≤T be a standard Brownian bridge from 0 to 0 of duration T . Let ℓxt (Ŵ ) be the local

times of (Ŵt)0≤t≤T :

ℓxt (Ŵ ) = lim
ε→0

1

2ε

∫ t

0
1|Ŵs−x|<ε

ds.

For t ∈ [0, T ], denote

δ̂t = ℓ0t (Ŵ ) ∧ (ℓ0T (Ŵ )− ℓ0t (Ŵ )).

Then the process (|Ŵt| − δ̂t)0≤t≤T is again distributed as a 1D Brownian bridge from 0 to 0.
For a proof, see [BP94, Theorem 4.1].

In the article [11] Werner and myself showed that the Lévy transformation admits a gen-
eralization to GFFs on any metric graph. Consider a discrete electrical network G = (V,E)
with conductances (C(x, y))x∼y, as in Section 1.1.1. Recall that V∂ is a special subset of V

considered as the boundary. Let G̃ be the metric graph associated with G; see Definition 3.3.
Let f : V∂ → R+ be a non-negative boundary condition. Let ϕ̃ be the massless metric graph
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GFF on G̃ with boundary condition f ; see Definition 3.7. Given (℘(t))0≤t≤T (℘) a continuous

path in G̃ such that its derivative ℘′(t) is defined besides at most finitely many times t for which
℘(t) ∈ V , and is bounded, one can define

ℓ0(ϕ̃, ℘) = lim
ε→0

1

2ε

∫ T (℘)

0
1|ϕ̃(℘(t))|<ε|℘

′(t)|dt.

Indeed, as ℘(t) moves inside an edge-line, the field ϕ̃ on the edge-line is locally more or less a
1D Brownian motion, and it admits a local time process. So in ℓ0(ϕ̃, ℘) one essentially sums
local times at level 0 of different 1D Brownian motions. Note that ℓ0(ϕ̃, ℘) is invariant under
reparametrizations of the path ℘. Given x, y ∈ G̃, define

δ̃(x, y) = inf
℘ path in G̃
from x to y

ℓ0(ϕ̃, ℘).

Then δ̃ defined in this way is a random pseudo-metric on G̃. Given x, y ∈ G̃, one has δ̃(x, y) = 0
if and only if either x = y or there is a continuous path (℘(t))0≤t≤T (℘) joining x and y such that

ϕ̃(℘(t)) ̸= 0 for every t ∈ (0, T (℘)). In other words, the pseudo-metric δ̃ identifies all the points
in the topological closure of a sign cluster of ϕ̃.

Further, for x ∈ G̃, define
δ̃(x, V∂) = inf

y∈V∂

δ̃(x, y).

So δ̃(x, V∂) is the pseudo-distance from x to the boundary V∂ . Note that the function x 7→
δ̃(x, V∂) is continuous on G̃ and constant on each sign cluster of ϕ̃. Define ϕ̂ to be the following
field on G̃:

ϕ̂(x) = |ϕ̃(x)| − δ̃(x, V∂). (8.3)

We see (8.3) as a Lévy transformation of the metric graph GFF, generalizing the Lévy trans-
formation for a 1D Brownian motion or Brownian bridge. See Figure 8.1. In [11] we prove the
following.

Theorem 8.2 ([11], Proposition 1). Let ϕ̃ be a massless metric graph GFF on G̃ with a non-
negative boundary condition f on V∂. Then the field ϕ̂ defined by (8.3) has the same distribution
as ϕ̃.

Figure 8.1: On the left in orange, the metric graph GFF ϕ̃. The dots represent its zero set. On
the right, the field ϕ̂ obtained through Lévy transformation of ϕ̃.
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We would like to emphasize that Theorem 8.2 works on any metric graph and there is
no planarity involved. The ideas behind the proof of Theorem 8.2 will be presented in the
next section. For now, let us discuss how Theorem 8.2 enlightens the coupling of Theorem
8.1. Let D ⊂ C, D ̸= C, be an open simply connected domain. Let D̃N be a metric graph
approximation of D obtained from the square lattice wish mesh size N−1. Let ϕ̃N be the
massless metric graph GFF on D̃N with 0 boundary conditions, approximating a continuum
GFF on D. Let δ̃N the level 0 local time pseudo-metric on D̃N associated with ϕ̃N and let ϕ̂N
denote the Lévy transformation of ϕ̃N . Given C̃ a sign cluster of ϕ̃N , we have that for every
x, y ∈ C̃, δ̃N (x, ∂D̃N ) = δ̃N (y, ∂D̃N ), and thus we can denote by δ̃N (C̃, ∂D̃N ) this common value.
We know that the outermost boundaries of the outermost sign clusters of ϕ̃N converge in law to
the CLE4 in D (Theorem 3.11). The quantity δ̃N (C̃, ∂D̃N ) is the metric graph analogue of the
random labels t℘ for ℘ a loop in the CLE4. More precisely, we formulate in [11] the following
conjecture.

Conjecture 8.3 ([11], Conjecture 15). Let CN,o denote the collection of outermost sign clusters

of ϕ̃N , i.e. not surrounded by other. For C̃ ∈ CN,o, let ∂oC̃ denote the outer boundary of C̃.
Then as N → +∞, the family (∂oC̃, δ̃N (C̃, ∂D̃N ))C̃∈CN,o

converges in law towards the labeled

family (℘, t℘)℘∈C where C is a CLE4 in D. Moreover, the whole pseudo-metric δ̃N converges in
law to a random pseudo-metric δD on D, coupled to a continuum GFF ϕD, where δD identifies
the points on a same excursion set of ϕD.

The proof of the conjecture above is somewhere on my to-do list. It tells that the Lévy
transformation extends to the continuum setting in dimension 2.

8.3 Method: stochastic calculus on metric graphs

Our proof of Theorem 8.2 relies on stochastic calculus on metric graphs. So let G̃ be this
metric graph and ϕ̃ the GFF on it. We will consider continuous Markovian explorations of ϕ̃,
analogous to local set processes used in continuum (Definition 4.5). Let (K̃(t))0≤t≤T be a family

of continuously growing random compact subsets of G̃. We assume moreover the following.

� K̃(0) = V∂ .

� K̃(T ) = G̃.

� For every t ∈ [0, T ], each connected component of K̃(t) intersects V∂ .

� For every t ∈ [0, T ] and every U deterministic open subset of G̃, the event K̃(t) ⊂ U is
measurable w.r.t. 1U ϕ̃.

Let ∂K̃(t) denote the boundary of K̃(t) as a subset of G̃. Note that ∂K̃(0) = K̃(0) = V∂
and ∂K̃(T ) = ∂G̃ = ∅, and that the subset ∂K̃(t) is always finite. Let T be the subset
of [0, T ] made of moments t at which K̃(t) finishes exploring one or several edge-lines Ie for
e ∈ E, which happens either because a particle in K̃(t) finishes crossing Ie and reaches its
end-vertex, or because two different particles in K̃(t) traveling from opposite sides of Ie meet
somewhere inside Ie. Note that by construction, the subset T is a.s. finite, with |T | ≤ |E|.
For intervals of time J ⊂ [0, T ] \ T , one can enumerate the elements of ∂K̃(t) (with t ∈ J):
(X1(t), X2(t), . . . , Xn(t)(t)), with each Xi(t) evolving continuously and n(t) constant on J . Each
Xi(t) evolves inside an edge-line Iei , and we will denote by ri(t) the length of the interval
Iei ∩ K̃(t) which is non-decreasing in t. Next we write down the stochastic differential equation
satisfied by (ϕ̃(X1(t)), ϕ̃(X2(t)), . . . , ϕ̃(Xn(t)(t))) for t ∈ J .
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Theorem 8.4 ([11], Section 2.2). With the notations above, let ϕ̃ be a massless metric graph
GFF on G̃ and (K̃(t))0≤t≤T a Markovian exploration of ϕ̃. Let (Ft)0≤t≤T be the natural filtration

of (K̃(t),1
K̃(t)

ϕ̃)0≤t≤T . Then on the time intervals J ⊂ [0, T ]\T , the following SDE is satisfied:

dϕ̃(Xi(t)) = dMi(t) +
∑

1≤j≤n(t)
j ̸=i

HG̃\K̃(t)
(Xi(t), Xj(t))(ϕ̃(Xj(t))− ϕ̃(Xi(t)))dri(t), 1 ≤ i ≤ n(t),

(8.4)
where HG̃\K̃(t)

denotes the boundary Poisson kernel on G̃ \ K̃(t), and each Mi is a continuous

martingale in the filtration (Ft)0≤t≤T , with the quadratic covariations given by

d⟨Mi,Mj⟩t = 1i=jdri(t).

Conversely, if ϕ̃ is a continuous random field on G̃ that admits a Markovian exploration (K̃(t))0≤t≤T
along which the SDE (8.4) is satisfied, then ϕ̃ is a massless metric graph GFF on G̃.

However, an arbitrary Markovian exploration (K̃(t))0≤t≤T of the GFF ϕ̃ is not necessar-
ily a Markovian exploration of ϕ̂. Actually, the variables δ̃(Xi(t), V∂) are not necessarily Ft-
measurable, since there may be a δ̃-shorter path from Xi(t) to V∂ than that discovered by
K̃(t). So the idea is to take a Markovian exploration (K̃(t))0≤t≤T of ϕ̃ satisfying the following
additional property:

∀t ∈ [0, T ], ∀x, y ∈ ∂K̃(t), δ̃(x, V∂) = δ̃(y, V∂).

The construction of such explorations is explained in [11, Section 2.3]. If moreover the boundary
conditions of ϕ̃ on V∂ are non-negative, then it is easy to see that (K̃(t))0≤t≤T is a Markovian

exploration for the field ϕ̂ too, and that the natural filtration of (K̃(t),1
K̃(t)

ϕ̃)0≤t≤T and that of

(K̃(t),1
K̃(t)

ϕ̂)0≤t≤T coincide. Moreover, for every t ∈ [0, T ] and every x, y ∈ ∂K̃(t), such that

ϕ̃(x) ̸= 0, ϕ̃(y) ̸= 0, the following holds:

sign(ϕ̃(x)) = sign(ϕ̃(y)).

Thus, by Tanaka’s formula [RY99, Chapter VI, Theorem 1.2], on time intervals J ⊂ [0, T ] \ T ,
we have that

dϕ̂(Xi(t)) = sign(ϕ̃(Xi(t)))dMi(t)

+ sign(ϕ̃(Xi(t)))
∑

1≤j≤n(t)
j ̸=i

HG̃\K̃(t)
(Xi(t), Xj(t))(ϕ̃(Xj(t))− ϕ̃(Xi(t)))dri(t)

= sign(ϕ̃(Xi(t)))dMi(t) +
∑

1≤j≤n(t)
j ̸=i

HG̃\K̃(t)
(Xi(t), Xj(t))(|ϕ̃(Xj(t))| − |ϕ̃(Xi(t))|)dri(t)

= dM̂i(t) +
∑

1≤j≤n(t)
j ̸=i

HG̃\K̃(t)
(Xi(t), Xj(t))(ϕ̂(Xj(t))− ϕ̂(Xi(t)))dri(t), 1 ≤ i ≤ n(t),

where M̂i are martingales satisfying

dM̂i(t) = sign(ϕ̃(Xi(t)))dMi(t).

By applying Theorem 8.4, we get that the field ϕ̂ is distributed as a GFF on G̃. This proves
Theorem 8.2.
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8.4 Some exact identities and invariances under rewiring

So one has a metric graph GFF ϕ̃ on G̃, with non-negative boundary conditions on V∂ , and its

Lévy transformation ϕ̂ (8.3). Moreover ϕ̂
(law)
= ϕ̃. Let a > 0. By construction,

{x ∈ G̃|δ̃(x, V∂) ≤ a} = {x ∈ G̃|∃℘ continuous path from V∂ to x s.t. ϕ̂ ≥ −a on ℘}. (8.5)

On the left appears the closed a-neighborhood of V∂ for the pseudo-metric δ̃. On the right
is nothing else than the first passage set of level −a of the field ϕ̂; see Definition 4.10. So in
Theorem 4.11 we have already given the explicit law of the electric resistance from a fixed point
x ∈ G̃ to the subset (8.5), including the value of the probability that x belongs to the subset
(8.5). It is remarkable that this law takes as parameter only the quantity GG̃(x, x), where

GG̃ is the Green’s function on the metric graph G̃. The quantity GG̃(x, x) can be interpreted
in electrical terms as the effective resistance from the point x to V∂ . So it is invariant under
potential-preserving rewirings of the electrical network, such as the star-triangle transformation,
very classical in electrical engineering; see Figure 8.2. To prove Theorem 4.11, we again use in
[11] the stochastic calculus on metric graphs. See [11, Section 3] for details.

Figure 8.2: Star triangle transformation. Ri-s and R′i-s denote resistances. The condition to
obtain an equivalent electrical circuit is RiR

′
i = RiRj +RjRk +RkRi, 1 ≤ i ≤ 3.

We also obtain in [11] an other explicit law that is invariant under potential-preserving
rewirings of the electrical network, too. Assume that the boundary V∂ is made of two disjoint
parts,

V∂ = V∂,1 ⨿ V∂,2,
where V∂,1 and V∂,2 are both non-empty. The boundary condition f is assumed to have constant
sign (positive or negative) on V∂,1 and constant sign on V∂,2. f is also allowed to have some 0
values on part or whole V∂,1 and on part or whole V∂,2. Denote

δ̃(V∂,1, V∂,2) = inf
x∈V∂,1

y∈V∂,2

δ̃(x, y).

In other words, δ̃(V∂,1, V∂,2) is the distance between V∂,1 and V∂,2 for the pseudo-metric δ̃. Let
(H(x, y))x,y∈V∂

be the boundary Poisson kernel (1.12) on the discrete graph G. For x ̸= y,

this is also the boundary Poisson kernel on the metric graph G̃. It is invariant under potential-
preserving rewirings of the electrical network, such as the star-triangle transformation on Figure
8.2. Denote

Cf (V∂,1, V∂,2) =
∑

x∈V∂,1

∑
y∈V∂,2

f(x)H(x, y)f(y).

The law of δ̃(V∂,1, V∂,2) is entirely explicit.
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Theorem 8.5 ([11],Proposition 10). Under the assumptions above, for every a ≥ 0,

P(δ̃(V∂,1, V∂,2) ≥ a) =
∏

x∈V∂,1

y∈V∂,2

exp
(
− 1

2
H(x, y)(|f(x)|+ |f(y)|+ a)2 +

1

2
H(x, y)(f(y)− f(x))2

)
.

In particular, if the sign of f on V∂,1 and V∂,2 is the same, then

P(δ̃(V∂,1, V∂,2) = 0) = 1− e−2Cf (V∂,1,V∂,2). (8.6)

The event δ̃(V∂,1, V∂,2) = 0 happens if and only if the GFF ϕ̃ has a crossing from V∂,1 to
V∂,2 along which it does not hit 0. The field ϕ̃ has to be non-zero also on the endpoints of the
crossing. The following corollary is just a restatement of (8.6), but a useful one.

Corollary 8.6. Assume that the boundary V∂ is made of three disjoint parts,

V∂ = V̄∂,0 ⨿ V̄∂,1 ⨿ V̄∂,2,

with V̄∂,1 and V̄∂,2 both non empty and V̄∂,0 being allowed to be empty. Assume that the boundary
condition f is positive on both V̄∂,1 and V̄∂,2, and 0 on V̄∂,0. Then

P(∃℘ crossing from V̄∂,1 to V̄∂,2 s.t. ϕ̃ > 0 on ℘) = 1− e−2Cf (V̄∂,1,V̄∂,2),

where
Cf (V̄∂,1, V̄∂,2) =

∑
x∈V̄∂,1

∑
y∈V̄∂,2

f(x)H(x, y)f(y).

The above corollary is obtained by applying (8.6) to V∂,1 = V̄∂,1 ∪ V̄∂,0 and V∂,2 = V̄∂,2, and
noting that a positive crossing joining V∂,1 and V∂,2 cannot end at V̄∂,0, and thus is a positive
crossing from V̄∂,1 to V̄∂,2.

Consider a box Λ = (0, L) × (0, l) and Λ̃N its metric graph approximations with a square
lattice of mesh size N−1. Let ∂lΛ̃N , ∂rΛ̃N , ∂tΛ̃N , resp. ∂bΛ̃N denote the left, right, top, resp.
bottom side of the boundary ∂Λ̃N . Fix a > 0 and consider metric graph GFFs ϕ̃N on Λ̃N

with boundary conditions a on ∂lΛ̃N and ∂rΛ̃N , and 0 on ∂tΛ̃N and ∂bΛ̃N . Then Corollary 8.6
implies that as N → +∞, the probability of a left to right crossing in Λ̃N by the positive set
of ϕ̃N is of constant order, bounded away from 0 and 1. Moreover, it has a limit in (0, 1). This
limit probability has a natural interpretation in terms of level lines of the continuum GFF on
Λ. Curiously enough, if the boundary condition mixes both positive and negative values, say
a on ∂lΛ̃N and ∂rΛ̃N and −a on ∂tΛ̃N and ∂bΛ̃N , then there is no known expression for the
probability of positive crossing on metric graphs. It is also not known whether this probability
is invariant under potential-preserving rewirings of the electrical network. However, one can
still show that this probability has a limit in (0, 1) as N → +∞. For this, one can combine
Corollary 8.6 with the convergence of first passage sets (Theorem 4.13 and [8, Theorem 4.7]).
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Part IV

Isomorphism theorems and
topological expansion
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Chapter 9

Isomorphisms between random
walks and matrix-valued fields

In this Chapter is presented my article [6]. There I considered Gaussian fields of real symmetric,
complex Hermitian or quaternionic Hermitian matrices over an electrical network, and described
how the isomorphisms between these fields and random walks give rise to topological expan-
sions encoded by ribbon graphs. I further considered matrix-valued Gaussian fields twisted by
an orthogonal, unitary or symplectic (quaternionic unitary) connection. In this case the isomor-
phisms involve traces of holonomies of the connection along random walk loops parametrized by
boundary cycles of ribbon graphs. In Section 9.1 I recall how the topological expansion works
for a single random matrix. Section 9.2 contains a brief overview of the notion of connection
on vector bundles on top of a graph, of holonomy and of gauge transformation. In Section
9.3 are presented some results of Kassel and Lévy [KL21], who considered vector-valued GFFs
twisted by a connection and showed how the random walk representations of these fields involve
holonomies along random walk paths. In Section 9.4 are presented my results that appeared in
[6].

9.1 One-matrix integrals and topological expansion

In this section we will recall how the topological expansion for random matrices works. Here
Eβ,n will denote the space of n × n matrices that are real symmetric for β = 1, complex
Hermitian for β = 2, and quaternionic Hermitian for β = 4. Consider the Gaussian distribution
on Eβ,n with the following density:

1

Zβ,n
e−

1
2
Tr(M2). (9.1)

⟨·⟩β,n will denote the exception w.r.t. (9.1). The distribution of the ordered family of eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn of (9.1) is

1

Zev
β,n

1λ1>λ2>···>λn

∏
1≤i<j≤n

(λi − λj)βe−
1
2
(λ2

1+λ2
2+···+λ2

n) dλ1 dλ2 . . . dλn.

This is the Gaussian Orthogonal Ensemble GOE(n) (β = 1), the Gaussian Unitary Ensemble
GUE(n) (β = 2), resp. the Gaussian Symplectic Ensemble GSE(n) (β = 4). We will use the
common encompassing notation GβE(n). For more on random matrices, see [Meh04].

Given a family ν = (ν1, ν2, . . . , νm) of positive integers, m(ν) will denote m (the number of
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integers) and |ν| will denote

|ν| =
m(ν)∑
i=1

νi.

Let us recall the combinatorics behind the moments〈m(ν)∏
k=1

Tr(Mνk)
〉
β,n
. (9.2)

One needs only to consider |ν| even, since for |ν| odd (9.2) equals 0. This combinatorial structure
is known as the topological expansion, because one sums over the maps on 2D surfaces. For
background, see [tH74, BIPZ78, BIZ80, IZ80, Zvo97, LZ04, MW03, BP09, Eyn16, EKR18].

So given ν with |ν| even, one first considers m(ν) vertices, where each vertex has adjacent
ribbon half-edges: ν1 half-edges for the first vertex, ν2 for the second, etc. A ribbon half-edge
is a two-dimensional object and carries an orientation. Also, the ribbon half-edges around each
vertex are ordered in a cyclic way. The ribbon half-edges are numbered from 1 to |ν|. See
Figure 9.1 for an illustration with ν = (4, 3, 1).

Figure 9.1: Ribbon half-edges in the case of ν = (4, 3, 1).

Since the total number of half-edges, |ν|, is even, one can pair them to obtain a ribbon graph
(not necessarily connected), with m(ν) vertices and |ν|/2 ribbon edges. Each time we pair two
half-edges, we can glue the corresponding ribbons in two different ways. Either the orientations
of the two ribbon half-edges match, or are opposite. In the first case we get a straight ribbon
edge, in the second a twisted ribbon edge. See Figure 9.2. We call such a pairing of ribbon
half-edges that keeps straight or twists the ribbons a ribbon pairing. Let Rν be the set of all
possible ribbon pairings associated to ν. The number of different ribbon pairings is

Card(Rν) =
|ν|!

2|ν|/2(|ν|/2)!
2|ν|/2 =

|ν|!
(|ν|/2)!

.

Figure 9.3 displays an example of a ribbon pairing with only straight edges, and Figure 9.4 an
example with both straight and twisted edges.

Figure 9.2: A straight ribbon edge on the left and a twisted ribbon edge on the right.

A ribbon pairing ρ ∈ Rν induces a partition in pairs of {1, . . . , |ν|}, denoted pν(ρ). The
pairs correspond to the labels of ribbon half-edges associated into an edge. Conversely, given p
a partition in pairs of {1, . . . , |ν|}, Rν,p will denote the subset of Rν made of all ribbon pairings
ρ such that pν(ρ) = p (Card(Rν,p) = 2|ν|/2).
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Figure 9.3: A ribbon pairing in the case of ν = (4, 3, 1) with only straight edges. The induced
partition in pairs is pν(ρ) = {{1, 3}, {2, 4}, {5, 8}, {6, 7}}.

Figure 9.4: A ribbon pairing in the case of ν = (4, 3, 1) with straight and twisted edges. The
induced partition in pairs pν(ρ) is the same as on Figure 9.3.

Given a ribbon pairing ρ ∈ Rν , one can see the corresponding ribbon graph as a two-
dimensional compact bordered surface (not necessarily connected). Let fν(ρ) denote the number
of the connected components of the boundary, that is to say the number of distinct cycles formed
by the borders of ribbons. On Figure 9.3, fν(ρ) = 3, and on Figure 9.4, fν(ρ) = 2. Then, one can
glue along each connected component of the boundary a disk (fν(ρ) disks in total), and obtain
in this way a two-dimensional compact surface (not necessarily connected) without boundary.
We will denote it Σν(ρ), and consider it up to diffeomorphisms. On the example of Figure 9.3,
Σν(ρ) has two connected components, a torus on the left and a sphere on the right. On the
example of Figure 9.4, Σν(ρ) has again two connected components, a Klein bottle on the left
and a projective plane on the right. Observe that if all the edges are straight, the surfaces
that appear are orientable. Let χν(ρ) denote the Euler’s characteristic of Σν(ρ). According to
Euler’s formula,

χν(ρ) = m(ν)− |ν|
2

+ fν(ρ).

If one contracts the ribbons in a ribbon graph (i.e. reduces the width of the ribbons to 0), then
one gets a map drawn on the surface Σν(ρ), that is to say a graph whose faces (fν(ρ) in total)
are topological disks.

Given a ribbon pairing ρ ∈ Rν , we associate to it a weight wν,β(ρ) depending on β:

wν,β=1(ρ) =
1

2|ν|/2
, wν,β=2(ρ) = 1ρ has only straight edges, wν,β=4(ρ) = (−2)χν(ρ)2−2m(ν)+|ν|/2.
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In all three cases β ∈ {1, 2, 4}, for every p partition in pairs of {1, . . . , |ν|},∑
ρ∈Rν,p

wν,β(ρ) = 1.

Theorem 9.1 (Brézin-Itzykson-Parisi-Zuber [BIPZ78], Mulase-Waldron [MW03]). For β ∈
{1, 2, 4} and |ν| even, the value of the matrix integral (9.2) is given by〈m(ν)∏

k=1

Tr(Mνk)
〉
β,n

=
∑
ρ∈Rν

wν,β(ρ)n
fν(ρ). (9.3)

Note that the right-hand side of (9.3) is a polynomial in n, the size of the matrices. Also
note that in the quaternionic case the coefficients wν,β=4(ρ) may take negative values.

9.2 Connections, gauge equivalence and Wilson loops

Let H denote here the division ring of quaternions. Le be a discrete electrical network G = (V,E)
as in Section 1.1.1. Let n ∈ N, n ≥ 2. Let U be the group of either n× n orthogonal matrices
O(n), or unitary matrices U(n), or quaternionic unitary matrices U(n,H). We consider that
each undirected edge in E consists of two directed edges of opposite direction. We consider a
family of matrices in U, (U(x, y)){x,y}∈E , with

U(y, x) = U(x, y)∗ = U(x, y)−1, ∀{x, y} ∈ E.

(U(x, y)){x,y}∈E is our connection on the vector bundle with base space G and fiber respectively
Rn, Cn or Hn. In Physics literature, U is called a gauge field.

Given a nearest-neighbor oriented discrete path ℘ = (y1, y2, . . . , yj), the holonomy of U
along ℘ is the product

holU (℘) = U(y1, y2)U(y2, y3) . . . U(yj−1, yj).

If ℘ is a nearest-neighbor path parametrized by continuous time, and does only a finite number
of jumps, the holonomy holU (℘) is defined as the holonomy along the discrete skeleton of ℘. We
will denote by ←−℘ the time-reversal of a path ℘. We have that

holU (←−℘ ) = holU (℘)∗ = holU (℘)−1. (9.4)

Given a nearest-neighbor oriented discrete closed path (i.e. a loop) ℘ = (y1, y2, . . . , yj),
with yj = y1, we will consider the observable Tr(holU (℘)) in the orthogonal and unitary case,
and Re(Tr(holU (℘))) in the quaternionic unitary case. Such observables are called Wilson loops
[Wil74]. Note that the Wilson loop observable does not depend on where the loop ℘ is rooted.
Indeed, if ℘̃ is the loop visiting (yi, . . . , yj , y1, . . . , yi−1, yi) (i ∈ {2, . . . , j}), and if ℘′ is the path
visiting (y1, . . . , yi) then

holU (℘̃) = holU (℘′)−1holU (℘)holU (℘′).

Given another family of matrices in U, (U(x))x∈V , this time on top of vertices, it induces a
gauge transformation on the connection U :

(U(x, y)){x,y}∈E 7−→ (U(x)−1U(x, y)U(y)){x,y}∈E .

Two connections related by a gauge transformation are said to be gauge equivalent. A connection
is trivial if it is gauge equivalent to the identity connection. A criterion for triviality is that
along any nearest-neighbor loop ℘ = (y1, y2, . . . , yj), with yj = y1, hol

U (℘) = In. In general,
any two gauge equivalent connections have the same Wilson loop observables. The converse is
also true (but non-obvious): the collection of all possible Wilson loop observables characterizes
a connection up to gauge transformations [Gil81, Sen94, Lé04].
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9.3 BFS-Dynkin isomorphism for the Gaussian free field twisted
by a connection

In [KL21] Kassel and Lévy introduced the vector-valued GFF twisted by an orthogonal/unitary
connection, and generalized the isomorphisms with random walks to this case. They relied on
a covariant Feynman-Kac formula ([BFS79] and [KL21, Theorem 3.1]).

Let us consider on top of the electrical network G = (V,E) an orthogonal connection
(U(x, y)){x,y}∈E , U(x, y) ∈ O(n). The Green’s function GU associated to the connection U
is a function from V × V toMn(R) (i.e. the n× n matrices with real entries), with the entries
given by

GU
ij(x, y) =

∫
γ
holUij(γ)µ

x,y(d℘), x, y ∈ V, i, j ∈ {1, . . . , n},

where the measure on paths µx,y(d℘) is given by Definition 1.3. Since the image of µx,y by time
reversal is µy,x, and because of (9.4), we have that

GU
ij(x, y) = GU

ji(y, x), GU
ij(x, x) = GU

ji(x, x).

i.e. GU (x, y)T = GU (y, x), (where T denotes the transpose) and GU (x, x) is symmetric. One can
see GU as a symmetric linear operator on (Rn)V . It is positive definite (see [KL21, Proposition
2.15]). We will denote by detGU the determinant of this operator.

The Rn-valued Gaussian free field on G twisted by the connection U (massless, with 0
boundary condition) is a random Gaussian function ϕ̂ : V → Rn (ϕ̂(x) = (ϕ̂1(x), . . . , ϕ̂n(x)))
with the distribution given by

1

ZU
GFF

exp
(
− 1

2

∑
{x,y}∈E

C(x, y)∥φ̂(x)− U(x, y)φ̂(y)∥2
) ∏

x∈Vint

n∏
i=1

dφ̂(x)i,

where ∥ · ∥ is the usual L2 norm on Rn and

ZU
GFF = ((2π)n|V | detGU )

1
2 .

Note that if {x, y} ∈ E,

∥φ̂(x)− U(x, y)φ̂(y)∥2 = ∥φ̂(y)− U(y, x)φ̂(x)∥2.

We have that E[ϕ̂] ≡ 0. As for the covariance structure, it is given by

E[ϕ̂i(x)ϕ̂j(y)] = GU
ij(x, y);

see [KL21, Proposition 4.1]. If (U(x))x∈V is a gauge transformation, then (U(x)ϕ̂(x))x∈V is the
Gaussian free field related to the connection (U(x)−1U(x, y)U(y)){x,y}∈E . In particular, if the

connection U is trivial, the field ϕ̂ can be reduced to n i.i.d. copies of a scalar GFF (massless,
with 0 boundary condition).

In [KL21], Theorems 5.1 and 7.3, Kassel and Lévy gave a BFS-Dynkin-type isomorphism
for GFFs twisted by connections, thus generalizing Theorem 1.4.
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Theorem 9.2 (Kassel-Lévy). Let k ∈ N \ {0}, x1, x2, . . . , x2k ∈ Vint, J(1), J(2), . . . , J(2k) ∈
{1, . . . , n} and F a bounded measurable function RV → R. Then

E
[ 2k∏
i=1

ϕ̂J(i)(xi)F (∥ϕ̂∥2/2)
]

=
∑

({aj ,bj})1≤j≤k

partition in pairs
of {1,2,...,2k}

∫
E
[
F
((
∥ϕ̂(x)∥2/2 +

k∑
j=1

ℓx(℘j)
)
x∈V

)] k∏
j=1

holUJ(aj)J(bj)(℘j)µ
xaj ,xbj (d℘j),

where the sum runs over the (2k)!/(2kk!) partitions of {1, . . . , 2k} in pairs.

Note that holU (℘j) is an n × n matrix in O(n), and holUJ(aj)J(bj)(℘j) means that one takes

the entry J(aj)J(bj). Also note that this entry may be negative.

9.4 Matrix valued fields, isomorphisms and topological expan-
sion

In my article [6] I observed that the topological expansion (Theorem 9.1) combines well with
the BFS-Dynkin isomorphism (1.4) provided one considers matrix-valued fields, that is to say
spin systems on a graph where the spins are matrices.

First we will present the case without connection (gauge field). Fix β ∈ {1, 2, 4}. On top
of each vertex x ∈ V , one considers a matrix M(x) ∈ Eβ,n (n × n real symmetric, complex
Hermitian or quaternionic Hermitian depending on the value of β), with M(x) = 0 for x ∈ V∂ .
The distribution of the matrix-valued field is given by

1

ZGβ,n
exp

(
− 1

2

∑
{x,y}∈E

C(x, y) Tr
((
M(y)−M(x)

)2)) ∏
x∈Vint

dM(x). (9.5)

This is a matrix-valued GFF. We will denote by ⟨·⟩Gβ,n the expectation with respect to (9.5).

For every x ∈ Vint, M(x)/G(x, x)
1
2 under ⟨·⟩Gβ,n follows the distribution (9.1).

Given ν = (ν1, ν2, . . . , νm(ν)) a family of positive integers, kν will denote the map from

{1, . . . , |ν|} to {1, . . . ,m(ν)} such that k−1ν (k) = {ν1 + · · ·+ νk−1 + 1, . . . , ν1 + · · ·+ νk−1 + νk}.

Theorem 9.3 ([6], Theorem 3.1). Let β ∈ {1, 2, 4}. Let ν be a finite family of positive integers
with |ν| even. Let x1, x2, . . . , xm(ν) ∈ Vint. Then for any F bounded measurable function on RV ,

〈(m(ν)∏
k=1

Tr(M(xk)
νk)

)
F
((1

2
Tr(M(x)2)

)
x∈V

)〉G
β,n

=

∑
p=({aj ,bj})1≤j≤|ν|/2

partition in pairs
of {1,2,...,|ν|}

( ∑
ρ∈Rν,p

wν,β(ρ)n
fν(ρ)

)

×
∫ 〈

F
((1

2
Tr(M(x)2) +

|ν|/2∑
j=1

ℓx(℘j)
)
x∈V

)〉G
β,n

|ν|/2∏
j=1

µ
xkν (aj)

,xkν (bj)(d℘j).
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In other words, one sums over the ribbon graphs associated to the family of positive integers
ν. As in Theorem 9.1, each ribbon graph ρ comes with a weight wν,β(ρ)n

fν(ρ), which may be
negative in the case β = 4. Each vertex of ρ with νk ribbon edges corresponds to a point xk in
Vint. To each ribbon edge between xkν(aj) and xkν(bj) is associated a nearest-neighbor path ℘j

on G between xkν(aj) and xkν(bj). For instance, the contribution of the ribbon graph appearing
on Figure 9.3, resp. Figure 9.4, would be

wν=(4,3,1),β(ρ)n
3µx1,x1(d℘1)µ

x1,x1(d℘2)µ
x2,x2(d℘3)µ

x2,x3(d℘4),

resp. wν=(4,3,1),β(ρ)n
2µx1,x1(d℘1)µ

x1,x1(d℘2)µ
x2,x2(d℘3)µ

x2,x3(d℘4).

Note that for the ribbon graph on Figure 9.3, the coefficients wν=(4,3,1),β(ρ) are

wν=(4,3,1),β=1(ρ) =
1

16
, wν=(4,3,1),β=2(ρ) = 1, wν=(4,3,1),β=4(ρ) = 1;

and in the case of Figure 9.4,

wν=(4,3,1),β=1(ρ) =
1

16
, wν=(4,3,1),β=2(ρ) = 0, wν=(4,3,1),β=4(ρ) = −

1

2
.

Now let us consider the setting with a connection. Let (U(x, y)){x,y}∈E be such a connection,
orthogonal for β = 1, unitary for β = 2 and quaternionic unitary for β = 4. Consider the
distribution

1

ZG,Uβ,n

exp
(
− 1

2

∑
{x,y}∈E

C(x, y) Tr
((
M(y)− U(y, x)M(x)U(x, y)

)2)) ∏
x∈Vint

dM(x). (9.6)

and let ⟨·⟩G,Uβ,n denote the expectation with respect to (9.5). Note that if {x, y} ∈ E , then

Tr((M(x)− U(x, y)M(y)U(y, x))2) = Tr((M(y)− U(y, x)M(x)U(x, y))2).

Also, if the connection U is non-trivial, M(x)/G(x, x)
1
2 under ⟨·⟩G,Uβ,n does no longer follow in

general the distribution (9.1). As for the distribution of ( 1√
n
Tr(M(x)))x∈V , it is the same

whatever the connection U , and it is that of a scalar GFF [6, Remark 3.9].

Theorem 9.4 ([6], Theorem 3.4). Let β ∈ {1, 2, 4}. Let ν be a finite family of positive integers
with |ν| even. Let x1, x2, . . . , xm(ν) ∈ Vint. Then for any F bounded measurable function on RV ,

〈(m(ν)∏
k=1

Tr(M(xk)
νk)

)
F
((1

2
Tr(M(x)2)

)
x∈V

)〉G,U
β,n

=

∑
p=({aj ,bj})1≤j≤|ν|/2

partition in pairs
of {1,2,...,|ν|}

∑
ρ∈Rν,p

wν,β(ρ)

∫ 〈
F
((1

2
Tr(M(x)2) +

|ν|/2∑
j=1

ℓx(℘j)
)
x∈V

)〉G,U
β,n

× Trβ(hol
U
ν,ρ(℘1, ℘2, . . . , ℘|ν|/2))

|ν|/2∏
j=1

µ
xkν (aj)

,xkν (bj)(d℘j),

where Trβ(hol
U
ν,ρ(℘1, ℘2, . . . , ℘|ν|/2)) is a holonomy factor explained below.
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The factor Trβ(hol
U
ν,ρ(℘1, ℘2, . . . , ℘|ν|/2)) is a product of fν(ρ) Wilson loops, i.e. traces of

holonomies along closed loops for β = 1 or β = 2, real parts of traces for β = 4. The loops
are formed by concatenation of some of the paths among ℘1, ℘2, . . . , ℘|ν|/2, and one can read
them on the ribbon graph ρ. A ribbon edge is associated to a path ℘j . As one follows one of
the two boundaries of the ribbon edge, one moves along ℘j , or in the opposite direction, along
←−℘ j . So if one completes a turn along one of the fν(ρ) boundary cycles of the ribbon graph ρ,
then the random walk paths that one has followed form concatenated a loop, and one takes the
holonomy of U along this loop. So, in the example of Figure 9.3,

Trβ(hol
U
ν=(4,3,1),ρ(℘1, ℘2, ℘3, ℘4)) =

Trβ(hol
U (℘1)hol

U (℘2)hol
U (℘1)

−1holU (℘2)
−1)×Trβ(holU (℘3)hol

U (℘4)hol
U (℘4)

−1)×Trβ(holU (℘3)
−1),

and in the example of Figure 9.4,

Trβ(hol
U
ν=(4,3,1),ρ(℘1, ℘2, ℘3, ℘4)) =

Trβ(hol
U (℘1)hol

U (℘2)
−1holU (℘1)

−1holU (℘2)
−1)× Trβ(hol

U (℘3)
2holU (℘4)hol

U (℘4)
−1).

Note that each path ℘j appears in total twice. This is because a ribbon edge has two borders.
Also note that if the connection U is trivial, then Trβ(hol

U
ν,ρ(℘1, ℘2, . . . , ℘|ν|/2)) is just n

fν(ρ).
Note that the fact that the holonomies appear only inside Wilson loops (traces along

closed paths) is not a surprise. Indeed, the fields of eigenvalues of (M(x))x∈V are invari-
ant in law under gauge transformations. Indeed, if the new gauge equivalent connection is
(U(x)−1U(x, y)U(y)){x,y}∈E , then only needs to apply the conjugation

(M(x))x∈V 7→ (U(x)−1M(x)U(x))x∈V

to get the field for this new connection. So the law of the fields of eigenvalues only depends
on the gauge equivalence class of U , which is characterized by the Wilson loop observables
[Gil81, Sen94, Lé04].

Next are some comments on the proofs, without going into details. The traces Tr(M(xk)
νk)

can be expressed though the coefficients of the matricesM(xk), which are Gaussian. So Theorem
9.3 is a consequence of Theorem 1.4 and Theorem 9.4 is a consequence of Theorem 9.2. However,
as one expands the product of traces and applies the BFS-Dynkin (Theorem 1.4) or Kassel-
Lévy isomorphism (Theorem 9.2), one gets plenty of terms, many of which given identical
contributions, many give zero contribution, and many give contributions that get canceled out
by other terms. So Theorems 9.3 and 9.4 essentially present a way to organize the final result in
a combinatorially meaningful way. A brute force approach through direct computation can be
carried out in the case β = 1 and β = 2, but for β = 4 it becomes particularly arduous because
of the non-commutativity of quaternions, and even more so in the presence of a gauge field. So
instead I relied in [6] on an induction on |ν|/2, the number of ribbon edges, inspired by Bryc
and Pierce [BP09]. This approach covers all the three cases β ∈ {1, 2, 4}.
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Chapter 10

Isomorphisms between 1D Brownian
local time and β-Dyson’s Brownian
motion

In this Chapter is persented my article [3]. There I show that the β-Dyson’s Brownian mo-
tions for general values of β satisfy both a Le Jan type (Theorem 1.13) and BFS-Dynkin type
(Theorem 1.4) isomorphism with the local times of one-dimensional Brownian trajectories. The
Le Jan type isomorphism involves a whole range of intensity parameters α for the 1D Brown-
ian loop soup, not just α half-integer. In Section 10.1 is explained the motivation behind this
work. In Section 10.2 is recalled the notion of Gaussian beta ensembles. In Section 10.3 are
detailed the isomorphism theorems for the continuum GFF in dimension one. In Section 10.4
is explained the Le Jan type isomorphism for the β-Dyson’s Brownian motion. In Section 10.5
is presented the BFS-Dynkin type isomorphism for the β-Dyson’s Brownian motion. In Sec-
tion 10.6 are presented important open questions that motivated this whole work. In essence,
the question is whether the Gaussian beta ensembles have natural generalizations to arbitrary
electrical networks.

10.1 Motivation

Here is explained the motivation behind my work [3]. It is primarily contained in the open
questions presented in Section 10.6.

The relation between the GFF and the loop soup (random walk or Brownian) of intensity
parameter α = 1/2 (Theorem 1.13 and Theorem 3.8) provides a powerful tool to study both the
GFF and the loop soup itself, in particular in dimension 2 (see Part II). Some aspects are easier
to see though the GFF, some other through the loop soup, and the isomorphisms between the
two enable a transfer of results from one object to the other.

In dimension 2 in continuum, the Brownian loop soups are of major interest for any intensity
parameter α, not just α = 1/2. This is because of the conformal invariance, the relation to the
conformal loop ensembles CLEκ (Theorem 2.3), and the non-Gaussian multiplicative chaoses
constructed out of loop soups (Chapter 6). However, for α ̸= 1/2, the Brownian loop soups are
much less understood and the picture is overall more complicated. So the idea is to obtain for
α ̸= 1/2 some isomorphism Theorems similar to Le Jan’s (Theorem 1.13) which would relate
the loop soups to some random fields, preferably satisfying some integrability/exact-solvability.

If α is half-integer, α = d/2, then there is an isomorphism with a vector-valued GFF
with d i.i.d. components. So for general α, what one looks at is a natural notion of non-integer
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dimension. It turns out that there is a notion of non-integer dimension in the theory of Gaussian
beta ensembles GβE(n); see Section 10.2 and (10.2). Further, the β-Dyson’s Brownian motion
is a one-dimensional field version of the GβE(n), where there is a sample on the GβE(n) on
top of each point on the line; see Section 10.4. It turns out that there is indeed a Le Jan type
isomorphism between the β-Dyson’s Brownian motion and a 1D Brownian loop soup, with an
intensity parameter α depending on β and n and that may be non half-integer (Corollary 10.4).
On top of that, the β-Dyson’s Brownian motion also satisfies a BFS-Dynkin type isomorphism
(Theorem 10.9).

Now it would be interesting to have the same thing on any electrical network. These are the
open questions presented in Section 10.6. One would like to have a sample of GβE(n) on top
of each vertex of a graph, everything being correlated in a non-trivial way, so as to interpolate
and extrapolate the fields of eigenvalues in matrix-valued GFFs for β ∈ {1, 2, 4}. We would
also like to emphasize that we are not interested in the large n (number of ”eigenvalues”) limit
that is usually studied random matrix theory. What we are interested in is for fixed values of
n, including small ones, 2,3,4,5, etc. Most importantly, the pseudo-dimension d(β, n) (10.2) has
to be fixed. It is the electrical network that eventually has to become large.

10.2 Gaussian beta ensembles

For references on Gaussian beta ensembles, see [DE02, For15], [EKR18, Section 1.2.2], and
[AGZ09, Section 4.5]. Fix n ≥ 2. A Gaussian beta ensemble GβE(n) follows the distribution
on λ = (λ1, λ2, . . . , λn) ∈ Rn,

1

Zev
β,n

1λ1>λ2>···>λn

∏
1≤i<j≤n

(λi − λj)βe−
1
2
(λ2

1+λ2
2+···+λ2

n) dλ1 dλ2 . . . dλn, (10.1)

where the partition function Zev
β,n is given by

Zev
β,n =

(2π)
n
2

n!

n∏
j=1

Γ
(
1 + j β2

)
Γ
(
1 + β

2

) .
This distribution is well defined for every β > −2/n, but in the literature one usually is interested
in the large n limit and considers only β > 0. For β = 1, 2, resp. 4, one gets the GOE(n),
GUE(n), resp. GSE(n); see Section 9.1. For n = 0, one gets the reordered family of n i.i.d.
N (0, 1) Gaussian r.v.s. In the limit β → −2/n, the GβE(n) converges in law to( 1√

n
ξ,

1√
n
ξ, . . . ,

1√
n
ξ
)
,

where ξ follows N (0, 1).
The brackets ⟨·⟩β,n will denote the expectation w.r.t. (10.1). For q ≥ 1, pq(λ) will denote

the q-th power sum polynomial

pq(λ) =

n∑
j=1

λqj .

By convention, p0(λ) = n. Let d(β, n) denote

d(β, n) = n+ n(n− 1)
β

2
. (10.2)

One can see d(β, n) as a kind of pseudo-dimension. For β ∈ {1, 2, 4}, d(β, n) is the dimension
of the corresponding space of matrices.

Next are some elementary properties of GβE.
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Proposition 10.1. The following holds.

1. For every β > −2/n, 1√
n
p1(λ) under GβE has for distribution N (0, 1).

2. For every β > −2/n, p2(λ)/2 under GβE has for distribution Gamma(d(β, n)/2, 1).

3. p1(λ) and λ− 1
np1(λ) under GβE are independent.

4. 1
2

(
p2(λ)− 1

np1(λ)
2
)
= 1

2p2
(
λ− 1

np1(λ)
)
under GβE has for distribution Gamma((d(β, n)−

1)/2, 1).

Let ν = (ν1, ν2, . . . , νm) be a finite family of positive integers. We will denote

m(ν) = m, |ν| =
m(ν)∑
k=1

νk.

Let pν(λ) denote

pν(λ) =

m(ν)∏
k=1

pνk(λ).

By convention, we set p∅(λ) = 1 and |∅| = 0. Note that p∅(λ) ̸= p0(λ). We are interested
in the expression of the moments ⟨pν(λ)⟩β,n. These are 0 if |ν| is odd. For |ν| even, these
moments are given by a recurrence known as loop equation or Schwinger-Dyson equation ([LC09,
Lemma 4.13], [LC13, slide 3/15] and [EKR18, Section 4.1.1]). This generalizes Theorem 9.1 to
β ̸∈ {1, 2, 4}.

Proposition 10.2 (Schwinger-Dyson equation). For every β > −2/n and every ν as above
with |ν| even,

⟨pν(λ)⟩β,n =
β

2

νm(ν)−1∑
i=1

⟨p(νr)r ̸=m(ν)
(λ)pi−1(λ)pνm(ν)−1−i(λ)⟩β,n (10.3)

+
(
1− β

2

)
(νm(ν) − 1)⟨p(νr)r ̸=m(ν)

(λ)pνm(ν)−2(λ)⟩β,n

+

m(ν)−1∑
k=1

νk⟨p(νr)r ̸=k,m(ν)
(λ)pνk+νm(ν)−2(λ)⟩β,n,

where p0(λ) = n. The recurrence (10.3) and the initial condition p0(λ) = n determine all the
moments ⟨pν(λ)⟩β,n.

10.3 Isomorphism theorems in continuum in dimension one

Let K > 0. Let (ϕ(x))x∈R be the massive continuum GFF on R with square-mass K. This is
nothing else than a stationary Ornstein-Uhlenbeck process, satisfying the SDE

dϕ(x) =
√
2dW (x)−

√
2Kϕ(x)dx,

where dW (x) is a white noise on R. Here we will think of x as a one-dimension space variable
rather than a time variable. The covariance function of ϕ is given by the Green’s function GR,K

of −1
2

d2

dx2 +K:

GR,K(x, y) =
1√
2K

e−
√
2K|y−x|.
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Let (Bt)t≥0 denote the standard Brownian motion on R. Let pR(t, x, y) denote its transition
densities (heat kernel) and Px,y

R,t the 1D Brownian bridge measures. The massive measure on 1D
Brownian loops is

µloopR,K =

∫
R
dx

∫ +∞

0
e−Ktdt

t
pR(t, x, x)Px,x

R,t .

For α > 0, let LαR,K denote the Poisson point process with intensity measure αµloopR,K . This is the
massive 1D Brownian loop soup. Given a 1D Brownian path (℘(t))0≤t≤T (℘), we will denote by
ℓx(℘) the Brownian local times

ℓx(℘) = lim
ε→0

1

2ε

∫ T (℘)

0
1|℘(t)−x|<εdt.

Further, ℓx(LαR,K) will denote

ℓx(LαR,K) =
∑

℘∈LαR,K

ℓx(℘).

According to the continuum massive version of the Le Jan’s isomorphism (Theorem 1.13),

for α = 1/2, the field (ℓx(L1/2R,K))x∈R has the same distribution as (ϕ(x)2/2)x∈R. In general, one
can see (ℓx(LαR,K))x∈R as a stationary solution to the SDE

dℓx(LαR,K) = 2(ℓx(LαR,K))1/2dW (x) + 2αdx. (10.4)

For x, y ∈ R, we will denote by µx,yR,K the massive measure on Brownian excursions from x
to y:

µx,yR,K =

∫ +∞

0
dte−KtpR(t, x, y)Px,y

R,t .

The measures µx,yR,K are involved in the BFS-Dynkin isomorphism for the field ϕ (Theorem 1.4).

In the 1D setting, the measures µx,yR,K can be further decomposed as follows. Let be x < y ∈ R.
Let τx be the first hitting time of level x by a Brownian motion (Bt)t≥0. Let µ̌x,yR,K be the
following measure on paths:∫

F (℘)µ̌x,yR,K(d℘) = EB0=y

[
e−KτxF ((Bτx−t)0≤t≤τx)

]
.

The total mass of µ̌x,yR,K is

EB0=y

[
e−Kτx

]
=
GR,K(x, y)

GR,K(x, x)
= e−

√
2K(y−x).

Further, the measure µx,yR,K is the image of the product measure µx,xR,K ⊗ µ̌
x,y
R,K under the concate-

nation of two paths.

10.4 β-Dyson’s Brownian motion and Le Jan type isomorphism

For references on β-Dyson’s Brownian motion, see [Dys62, Cha92, RS93, CL97, CL07], [Meh04,
Chapter 9] and [AGZ09, Section 4.3]. Let β ≥ 0 and n ≥ 2. Let K > 0. We consider the
process (λ(x) = (λ1(x), . . . , λn(x)))x∈R with λ1(x) ≥ · · · ≥ λn(x), satisfying the SDE

dλj(x) =
√
2dWj(x)−

√
2K λj(x) + β

√
2K

∑
j′ ̸=j

dx

λj(x)− λj′(x)
, (10.5)

92



the dWj , 1 ≤ j ≤ n, being n i.i.d. white noises on R, and λ being stationary, with (2K)
1
4λ(x)

being distributed according to (10.1). This is the stationary β-Dyson’s Brownian motion.
For β ∈ {1, 2, 4}, this is the diffusion of eigenvalues in a stationary matrix-valued Ornstein-
Uhlenbeck process. Since we will be interested in the isomorphisms of the β-Dyson’s Brownian
motion with 1D Brownian local time, we will see x as a one-dimensional space variable rather
than a time variable. For β ≥ 1, there is no collision between the λj(x)-s, and for β ∈ [0, 1) two
consecutive λj(x)-s can collide, but there is no collision of three or more particles [CL07]. Note
that the case β ∈ (−2/n, 0) has not been considered in the literature, although I believe that
the β-Dyson’s Brownian motion should still exist for this range of β. However, the problem is
the extension of the process after a collision of λj(x)-s. If β < 0, the collision of three or more

particles, including all the n together for β < − 2(n−3)
n(n−1) , is no longer excluded.

Next are some elementary properties of the β-Dyson’s Brownian motion. See [3, Proposition
4.2].

Proposition 10.3. The following holds.

1. The process
(

1√
n
p1(λ(x))

)
x∈R has the same law as ϕ; see Section 10.3.

2. The process (12p2(λ(x)))x∈R is a stationary solution to the SDE

dZ(x) = 2(Z(x))1/2dW (x) + d(β, n)dx, (10.6)

where d(β, n) is given by (10.2).

3. The processes (p1(λ(x)))x∈R and
(
λ(x)− 1

np1(λ(x))
)
x∈R are independent.

4. The process
(
1
2

(
p2(λ(x))− 1

np1(λ(x))
2
))

x∈R is a stationary solution to the SDE

dZ(x) = 2(Z(x))1/2dW (x) + (d(β, n)− 1)dx. (10.7)

By comparing (10.6) and (10.7) to (10.4), one can observe that the Le Jan’s isomorphism
(Theorem 1.13) has a generalization to β-Dyson’s Brownian motion and it involves a whole
range of α-s, not just α half-integers.

Corollary 10.4 ([3], Proposition 4.21). Take α = d(β, n)/2. The process (12p2(λ(x)))x∈R has
the same law as the occupation field (ℓx(LαR,K))x∈R of a 1D massive Brownian loop soup LαR,K .

Moreover, the process
(
1
2

(
p2(λ(x))− 1

np1(λ(x))
2
))

x∈R has the same law as (ℓx(Lα−1/2R,K ))x∈R.

10.5 BFS-Dynkin type isomorphism for β-Dyson’s Brownian
motion

We observed that the Le Jan’s isomorphism has a generalization for the β-Dyson’s Brownian
motion (Corollary 10.4). Actually, the BFS-Dynkin isomorphism (Theorem 1.4) has such a
generalization, too. This is proved in my article [3]. For β ∈ {0, 1, 2, 4} this reduces to the
Gaussian case; see Theorem 9.3. But for general values of β this requires involved combinatorics,
which are not just partitions in pairs as in the Wick’s rule.

To begin with, we will present the expression for the symmetric moments of a β-Dyson’s
Brownian motion. Let the brackets ⟨·⟩R,Kβ,n denote the expectation w.r.t. to a stationary β-
Dyson’s Brownian motion (10.5). Let ν = (ν1, ν2, . . . , νm(ν)) be a family of positive integers and
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consider m(ν) points x1 < x2 < · · · < xm(ν) ∈ R. We are interested in an expression for

〈m(ν)∏
k=1

pνk(λ(xk))
〉R,K

β,n
. (10.8)

Curiously enough, despite an important literature on the β-Dyson’s Brownian motion, an ex-
pression for these symmetric moments was nowhere to be found. So I gave one in my paper;
see [3, Section 4.2]. It involve a recurrence similar to that of Proposition 10.2. I am not
aware whether it has appeared previously elsewhere. The recurrence will be introduced in what
follows.

Let (Ykk)k≥1 denote a family of formal commuting polynomials variables. We will consider
finite families of positive integers ν = (ν1, ν2, . . . , νm(ν)) with |ν| even. The order of the νk-s
will matter. That is to say we distinguish between ν and (νσ(1), νσ(2), . . . , νσ(m(ν))) for σ a
permutation of {1, . . . ,m(ν)}. We want to construct a family of formal polynomials Qν,β,n with
parameters ν,β and n, where Qν,β,n has for variables (Ykk)1≤k≤m(ν). To simplify the notations,
we will drop the subscripts β, n and just write Qν . The polynomials Qν will appear in the
expression of the symmetric moments (10.8). We will denote by c(ν, β, n) the solutions to the
recurrence (10.3), which for β ∈ (−2/n,+∞) are the moments ⟨pν(λ)⟩β,n of the GβE(n). By
convention, c((0), β, n) = n and c(∅, β, n) = 1. For k ≥ 1 and Q a polynomial, Qk← will denote
the polynomial in the variables (Yk′k′)1≤k′≤k, obtained from Q by replacing each variable Yk′k′

with k′ ≥ k + 1 by the variable Ykk. Note that Q
m(ν)←
ν = Qν and that Q1←

ν is an univariate
polynomial in Y11. For Y a formal polynomial variable, degY will denote the partial degree in
Y.

See next page.
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Definition 10.5 ([3], Definition 4.7). The family of polynomials (Qν)|ν| even is defined by the
following.

1. Q1←
ν = c(ν, β, n)Y

|ν|/2
11 .

2. If m(ν) ≥ 2, then for every k ∈ {2, . . . ,m(ν)},

∂

∂Ykk
Qk←

ν =
β

2

∑
k≤k′≤m(ν)

νk′>2

ν(k′)

2

νk′−2∑
i=2

Qk←
((νr)r ̸=k′ ,i−1,νk′−1−i)

(10.9)

+
β

2
n

∑
k≤k′≤m(ν)

νk′>2

ν(k′)Qk←
((νr)r ̸=k′ ,νk′−2)

+
β

2
n2

∑
k≤k′≤m(ν)

νk′=2

Qk←
(νr)r ̸=k′

+
(
1− β

2

) ∑
k≤k′≤m(ν)

νk′>2

νk′(νk′ − 1)

2
Qk←

((νr)r ̸=k′ ,νk′−2)

+
(
1− β

2

)
n

∑
k≤k′≤m(ν)

νk′=2

Qk←
(νr)r ̸=k′

+
∑

k≤k′<k′′≤m(ν)
νk′+νk′′>2

νk′νk′′Q
k←
((νr)r ̸=k′,k′′ ,νk′+νk′′−2)

+n
∑

k≤k′<k′′≤m(ν)
νk′=νk′′=1

Qk←
(νr)r ̸=k′,k′′

.

If k = m(ν), then the last two lines of (10.9) vanish.

Proposition 10.6 ([3], Proposition 4.8). Definition 10.5 uniquely defines a family of polyno-
mials (Qν)|ν| even. Moreover, the following properties hold.

1. For every A monomial of Qν and every k ∈ {2, . . . ,m(ν)},

2
∑

k≤k′≤m(ν)

degYk′k′
A ≤

∑
k≤k′≤m(ν)

νk′ , (10.10)

and
2

∑
1≤k′≤m(ν)

degYk′k′
A = |ν|.

In particular, Qν is a homogeneous polynomial of degree |ν|/2.

2. For every k ∈ {1, . . . ,m(ν)} and every permutation σ of {k, . . . ,m(ν)},

Qk←
(νr)1≤r≤k−1,(νσ(r))k≤r≤m(ν)

= Qk←
ν .

On top of the formal commuting polynomial variables (Ykk)k≥1 appearing in the polynomials
Qν , we also consider the family of the formal commuting variables (Y̌k−1 k)k≥2, also commut-
ing with the first one. A polynomial Pν = Pν,β,n will have for variables (Ykk)1≤k≤m(ν) and

(Y̌k−1 k)2≤k≤m(ν).
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Definition 10.7 ([3], Definition 4.10). Given ν a finite family of positive integers with |ν|
even, let Pν be the polynomial in the variables (Ykk)1≤k≤m(ν), (Y̌k−1 k)2≤k≤m(ν) defined by the
following.

1. Pν((Ykk)1≤k≤m(ν), (Y̌k−1 k = 1)2≤k≤m(ν)) = Qν((Ykk)1≤k≤m(ν)).

2. For every A monomial of Pν and every k ∈ {2, . . . ,m(ν)},

degY̌k−1 k
A+ 2

∑
k≤k′≤m(ν)

degYk′k′
A =

∑
k≤k′≤m(ν)

νk′ .

The property (10.10) ensures that Pν = Pν,β,n is well defined. The polynomials Pν are
involved in the expression of the symmetric moments (10.8); see Theorem 10.8 below. As an
illustration, we provide below some examples of polynomials Pν .

⟨p2(λ)p1(λ)2⟩β,n =
β

2
n3 +

(
1− β

2

)
n2 + 2n,

P(2,1,1) =
(β
2
n3 +

(
1− β

2

)
n2

)
Y11Y22Y̌23 + 2nY2

11Y̌
2
12Y̌23, (10.11)

P(1,2,1) =
(β
2
n3 +

(
1− β

2

)
n2 + 2n

)
Y11Y̌12Y22Y̌23,

P(1,1,2) =
(β
2
n3 +

(
1− β

2

)
n2

)
Y11Y̌12Y33 + 2nY11Y̌12Y22Y̌

2
23,

Theorem 10.8 ([3], Proposition 4.9, Corollary 4.11 and Proposition 4.22). Let ν = (ν1, ν2, . . . , νm(ν))
be a family of positive integers, with |ν| even, and consider m(ν) points x1 < x2 < · · · < xm(ν) ∈
R. Then the moment (10.8) is obtained by evaluating the polynomial Pν as follows:〈m(ν)∏

k=1

pνk(λ(xk))
〉R,K

β,n
= Pν((Ykk = 1/

√
2K)1≤k≤m(ν), (Y̌k−1 k = e−

√
2K(xk−xk−1))2≤k≤m(ν)).

The polynomials Pν are also involved in the BFS-Dynkin type isomorphism for β-Dyson’s
Brownian motion. Given ν a finite family of positive integers with |ν| even and x1 < x2 < · · · <
xm(ν) ∈ R, µν,x1,...,xm(ν)

R,K (also depending on β and n) will be the measure on finite families of
continuous paths obtained by substituting in the polynomial Pν = Pν,β,n for each variable Ykk

the measure µxk,xk
R,K , and for each variable Y̌k−1 k the measure µ̌

xk−1,xk

R,K ; see Section 10.3. Since

we will deal with the occupation fields under µ
ν,x1,...,xm(ν)

R,K , the order of the Brownian measures
in a product will not matter. For instance, for ν = (2, 1, 1), the expression for P(2,1,1) appears
in (10.11), and

µ
(2,1,1),x1,x2,x3

R,K =
(β
2
n3 +

(
1− β

2

)
n2

)
µx1,x1

R,K ⊗ µx2,x2

R,K ⊗ µ̌x2,x3

R+

+2nµx1,x1

R,K ⊗ µx1,x1

R,K ⊗ µ̌x1,x2

R,K ⊗ µ̌x1,x2

R,K ⊗ µ̌x2,x3

R,K .

Note that depending on values of n and β, a measure µ
ν,x1,...,xm(ν)

R,K may be signed.

Theorem 10.9 ([3], Proposition 4.14 and Proposition 4.22). Let ν be a finite family of positive
integers, with |ν| even and let x1 < x2 < · · · < xm(ν) ∈ R. Let F be a bounded measurable
functional on C(R). Then

〈m(ν)∏
k=1

pνk(λ(xk))F
((1

2
p2(λ(x))

)
x∈R

)〉R,K

β,n
=∫ 〈

F
((1

2
p2(λ(x)) +

∑
ℓx(℘j)

)
x∈R

)〉R,K

β,n
µ
ν,x1,...,xm(ν)

R,K ((d℘j)j).
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10.6 Open questions

Here we present the open questions that motivated the paper [3]. The first question is combi-
natorial. We would like to have the polynomials Pν,β,n given by Definitions 10.5 and 10.7 under
a more explicit form. The recurrence on polynomials (10.9) is closely related to the Schwinger-
Dyson equation (10.3). Its very form suggests that the polynomials Pν,β,n might be expressible
as weighted sums over maps drawn on 2D compact surfaces (not necessarily connected), where
the maps associated to ν have m(ν) vertices with degrees given by ν1, ν2, . . . , νm(ν), with powers
of n corresponding to the number of faces. This is indeed the case for β ∈ {1, 2, 4}, and this
corresponds to the topological expansion of matrix integrals; see Chapter 9.

Question 10.10. Is there a more explicit expression for the polynomials Pν,β,n? Can they be
expressed as weighted sums over the maps on 2D surfaces (topological expansion)?

The second question is whether there is a natural generalization of Gaussian beta ensembles
and β-Dyson’s Brownian motion to electrical networks.

Question 10.11. We are in the setting of an electrical network G = (V,E) as in Section 1.1.1.
Given n ≥ 2 and β > − 2

n , is there a distribution on the fields (λ(x) = (λ1(x), λ2(x), . . . , λn(x)))x∈V ,
with λ1(x) > λ2(x) > · · · > λn(x), satisfying the following properties?

1. For β ∈ {1, 2, 4}, λ is distributed as the fields of ordered eigenvalues in a GFF with
values into n × n matrices, real symmetric (β = 1), complex Hermitian (β = 2), resp.
quaternionic Hermitian (β = 4) (see Chapter 9).

2. For β = 0, λ is obtained by reordering n i.i.d. scalar GFFs.

3. As β → − 2
n , λ converges in law to( 1√

n
ϕ,

1√
n
ϕ, . . . ,

1√
n
ϕ
)
,

where ϕ is a scalar GFF on G.

4. For every x ∈ Vint, λ(x)/
√
G(x, x) is distributed as the GβE (10.1).

5. For every x, y ∈ Vint, the couple (λ(x)/
√
G(x, x), λ(y)/

√
G(y, y)) is distributed as the

values of a β-Dyson’s Brownian motion (10.5) (with K = 1/2) at points 0 and
− log(G(x, y)/

√
G(x, x)G(y, y)).

6. The fields p1(λ) and λ− 1
np1(λ) are independent.

7. The field 1√
n
p1(λ) is distributed as a scalar GFF.

8. The field 1
2

(
p2(λ)− 1

np1(λ)
2
)
is distributed as the occupation field of the continuous-time

random walk loop soup Lα−
1
2 .

9. The symmetric moments 〈m(ν)∏
k=1

pνk(λ(xk))
〉G
β,n

are linear combination of products ∏
1≤k≤k′≤m(ν)

G(xk, xk′)
akk′ ,
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with akk′ ∈ N and for every k ∈ {1, . . . ,m(ν)},

2akk +
∑

1≤k′≤m(ν)
k′ ̸=k

akk′ = νk,

the coefficients of the linear combination being universal polynomials in β and n, not
depending on the electrical network and its parameters; see also Question 10.10.

10. λ satisfies a BFS-Dynkin type isomorphism with continuous time random walks.

In the simplest case n = 2, the answer to the question above is yes on any electrical network.
I provided a simple construction relying precisely on random walk loop soups in [3, Section 5.2].
For n ≥ 3 things become complicated. If the graph G is a tree, the natural generalization
λ of the β-Dyson’s Brownian motion is straightforward to construct. In absence of cycles, λ
satisfies a Markov property, and along each branch of the tree one has the values of a β-Dyson’s
Brownian motion at different positions. However, if the graph G contains cycles, constructing
λ is not immediate, and I have not encountered such a construction in the literature. One does
not expect a Markov property, since already for β ∈ {1, 2, 4} one has to take into account the
angular part of the matrices.
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Part V

Inverting the isomorphism theorems:
relation to self-interacting random

walks
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Chapter 11

GFF and the combinatorics of the
Ising model

In this Chapter is explained the relation between between the discrete GFF, the metric graph
GFF and the random walk loop soup on one side and the Ising related models, spin Ising, FK-
Ising, random currents, on the other side. The latter appear once one conditions by the absolute
value of the discrete GFF on vertices. This relation led Wendelin Werner and myself [12] to
a probabilistic coupling between the FK-Ising and the random current model; see Proposition
11.4.

11.1 Spin Ising, FK-Ising and random currents

Let Ĝ = (V̂ , Ê) be a finite undirected graph, and for {x, y} ∈ Ê, consider coupling constants
J(x, y) = J(y, x) > 0.

Definition 11.1. The spin Ising field is a random configuration (σ̂(x))
x∈V̂ ∈ {−1, 1}

V̂ , such

that for every σ ∈ {−1, 1}V̂

P(σ̂ = σ) =
1

ZIsing
exp

( ∑
{x,y}∈Ê

J(x, y)σ(x)σ(y)
)
. (11.1)

The FK-Ising model is a rendom configuration of edges (ŵe)e∈Ê ∈ {0, 1}
Ê (0 for closed and

1 for open) with the following distribution. For every w ∈ {0, 1}Ê ,

P(ŵ = w) =
1

ZFK
2k(w)

∏
e∈Ê

(1− e−2J(e))we(e−2J(e))1−we ,

where k(w) is the number of connected components induced by the open edges {e ∈ Ê|we = 1}.
Given S ⊂ V̂ with |S| even, the random current with sources in S is a random configuration

(n̂e)e∈Ê ∈ NÊ that is even outside S and odd in S in the following sense. For every x ∈ V̂ \ S,∑
e∈Ê

e adjacent to x

n̂e
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is even, and for every x ∈ S it is odd. The distribution of (n̂e)e∈Ê ∈ NÊ is given by the following.

For every (ne)e∈Ê ∈ NÊ ,

P(n̂ = n) = 1(ne)e∈Ê
admissible

1

ZRC,S

∏
e∈Ê

J(e)ne

ne!
.

If S = ∅, the random current is said to be sourceless.

For more on the FK-Ising model, see [Gri06]. For more on random current model, see
[Aiz82, DC16].

Now let us recall how the three models above are related. We start with the Edwards-Sokal
coupling between spin Ising and FK-Ising [ES88].

Theorem 11.2 (Edwards-Sokal). Given an FK-Ising model, sample on each cluster an inde-
pendent uniformly distributed spin. The spins are then distributed according to the Ising model.
Conversely, given a spin configuration σ̂ following the Ising distribution, consider each edge
{x, y} ∈ Ê, such that σ̂(x)σ̂(y) < 0, closed, and each edge {x, y} ∈ Ê, such that σ̂(x)σ̂(y) > 0
open with probability 1 − e−2J(x,y). Then this edge configuration is distributed according to the
FK-Ising model. The two couplings between FK-Ising and spin Ising are the same.

Further let us recall the relation between the spin Ising model and the random currents at
the level of partition functions. This is elementary and well known, and follows from expanding
the exponential in (11.1) into a series and removing the terms that get canceled out.

Proposition 11.3. The following identity between partition functions holds: ZIsing = 2|V̂ |ZRC,∅.

Moreover, given points x1, x2, . . . , x2k ∈ V̂ , two by two distinct, set S = {x1, x2, . . . , x2k}. Then

E[σ̂(x1)σ̂(x2) . . . σ̂(x2k)] =
ZRC,S

ZRC,∅
.

Then, in our note [12], Werner and myself observed that there is actually a probabilistic
coupling between the random current model and the FK-Ising model. It appears that this has
not been known before. This is the Ising version of the idea of opening additional edges that
appeared in Theorem 3.6. Sometimes this is referred to as sprinkling. See Section 11.2 for more
explanations.

Proposition 11.4 ([12]). Let (n̂e)e∈Ê ∈ NÊ be a sourceless random current. Let (ω̄e)e∈Ê ∈
{0, 1}Ê be an independent Bernoulli percolation, with

P(ω̄e = 1) = 1− e−J(e).

Set
ω̂e = (n̂e ∧ 1) ∨ ω̄e,

that is to say an edge e is open for the configuration ω̂ is either n̂e > 0, or e is open for ω̄.
Then the configuration ω̂ follows an FK-Ising distribution.

The coupling of Proposition 11.4 starts from a random current, and with some additional
randomness returns an FK-Ising. It is possible to describe the same coupling by starting from
the FK-Ising. This is not in [12], as it has been observed only later. Perhaps it did not appear
anywhere. We state this next.
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Proposition 11.5. Let (ω̂e)e∈Ê ∈ NÊ be an FK-Ising. Further, for each e ∈ Ê, consider a

Poisson r.v. N̂e with parameter J(e), with different Poisson r.v.s. being independent, and the

whole family independent from ω̂. Let (n̂e)e∈Ê ∈ NÊ be sampled among all the configurations

(ne)e∈Ê ∈ NÊ satisfying the following two constraints:

1. for every e ∈ Ê, ne ≤ ω̂e(1 + N̂e);

2. for every x ∈ V̂ ,
∑

e∈Ê
e adjacent to x

ne is even;

with weights proportional to ∏
e∈Ê
ω̂e=1

(1 + N̂e)!

ne!(1 + N̂e − ne)!
.

Then n̂ is distributed as a sourceless random current. Moreover, the joint distribution of (n̂, ω̂)
is the same as in Proposition 11.4.

11.2 Real scalar GFF conditioned on its absolute value and
Ising model

Let G = (V,E) be an electrical network as in Section 1.1.1, with conductances C(x, y). Com-
pared to Section 11.1, let be V̂ = Vint and

Ê = {{x, y} ∈ E|x, y ∈ Vint}.

Let G̃ be the metric graph associated to G (Definition 3.3). Let ϕ be a massless discrete GFF
on G with 0 boundary conditions (Definition 1.1) and let be its metric graph extension ϕ̃ on G̃
(Definition 3.7). Let L1/2

G̃
be a metric graph loop soup of intensity parameter α = 1/2, coupled

to ϕ̃ as in Theorem 3.8. Let L1/2 be the random walk loop soup obtained from L1/2
G̃

by consider

the traces of the latter on the vertices V . Consider the edge configuration (ω̃e)e∈E given by
(3.3), with α = 1/2:

ω̃e =

{
1 if ∀x ∈ Ie, ϕ̃(x) ̸= 0,
0 otherwise.

Note that for e ∈ E \ Ê, ω̃e = 0. For e ∈ E, denote by Ne(L1/2) the total number of crossings
of the edge e by the random walk loop soup L1/2, in either of the directions. Note that for
e ∈ E \ Ê, Ne(L1/2) = 0. For {x, y} ∈ Ê, denote

J|ϕ|(x, y) = C(x, y)|ϕ(x)ϕ(y)|.

Next we explain how the isomorphisms for the GFF are related to the combinatorics of the
Ising model when one conditions on the absolute value of the GFF on vertices.

Proposition 11.6. Conditionally on the absolute value on vertices (|ϕ(x)|)x∈V , the following
holds:

1. The field (sign(ϕ(x)))
x∈V̂ is distributed as a spin Ising field with coupling constants J|ϕ|(x, y).

2. The configuration of edges (ω̃e)e∈Ê follows an FK-Ising distribution with coupling con-
stants J|ϕ|(x, y).
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3. The field (Ne(L1/2))e∈Ê is distributed as a sourceless random current with coupling con-
stants J|ϕ|(x, y).

4. The fields (sign(ϕ(x)))
x∈V̂ and (ω̃e)e∈Ê are coupled as in the Edwards-Sokal coupling (The-

orem 11.2).

5. The fields (ω̃e)e∈Ê and (Ne(L1/2))e∈Ê are coupled as in Proposition 11.4.

The point 1. above is obvious from the density of the discrete GFF (ϕ(x))x∈V . The point
3. has been observed by different people, including Le Jan. The point 2. was first observed by
Werner and myself in our note [12]. The point 4. follows immediately from Theorem 3.8. The
point 5. follows from Theorem 3.6. Precisely the five observations above led Werner and myself
to the coupling of Proposition 11.4 [12].
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Chapter 12

Inversion of the isomorphism
theorems in discrete: relation to
self-repelling jump processes

In this Chapter is presented the conditional law of a random walk loop soup of parameter
α = 1/2 given a discrete GFF. It appeared in a collaboration of myself with Sabot and Tarrès
[10]. This inversion of isomorphism involves self-repelling jump processes, more precisely a
variant of the Vertex Diminished Jump Process (VDJP) on FK-Ising type clusters, where the
clusters themselves evolve by getting eroded over time. Section 12.1 is a general overview of
the Vertex Diminished Jump Process, and its dual the Vertex Reinforced Jump Process. These
two processes will also appear in Chapter 13. In Section 12.2 is presented the result of Sabot
and Tarrès [ST15a] who gave the conditional law of the loop soup given the square of the GFF
(without the signs). This conditional law involves an other variant of VDJP, the magnetized
VDJP. In Section 12.3 is presented the result of Sabot, Tarrès end myself, for the signed GFF.
It will be also applied in Chapter 13 for the construction of a continuous fine mesh limit of the
VDJP in dimension one.

12.1 Vertex Reinforced and Vertex Diminished Jump Processes

In this section we will show a glimpse on two models of self-interacting random walks, the Vertex
Reinforced (VRJP) and the Vertex Diminished (VDJP) Jump Processes, since the VDJP will
appear in the sequel of this Chapter, and both the VRJP and the VDJP will appear in Chapter
13. This is by no means an exhaustive presentation.

Let Ĝ = (V̂ , Ê) be a finite undirected graph, and for {x, y} ∈ Ê, consider conductances
C(x, y) = C(y, x) > 0.

Definition 12.1. Let L0 be a positive function on V̂ . Let x0 ∈ V̂ . The Vertex Reinforced Jump
Process (VRJP) on Ĝ starting from x0 with initial occupation profile L0 is the nearest neighbor
jump process (X̂s)s≥0, with X̂0 = x0, and for x, y two neighbors, the jump rate from x to y at

time s being given by C(x, y)L̂s(y), where

L̂s(y) = L0(y) +

∫ s

0
1
X̂s′=y

ds′.

The Vertex Diminished Jump Process (VDJP) on Ĝ starting from x0 with initial occupa-
tion profile L0 is the nearest neighbor jump process (X̌s)s≥0, with X̌0 = x0, and for x, y two
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neighbors, the jump rate from x to y at time s being given by C(x, y)Ľs(y), where

Ľs(y) = L0(y)−
∫ s

0
1X̌s′=yds

′.

The VDJP is defined up to the time

šmax = inf{s ≥ 0|∃x ∈ V̂ , Ľs(x) = 0},

which is finite a.s.

The VRJP, resp. VDJP, is a model of reinforced, resp. self-repelling random walk. The
evolution of (X̂s, (L̂s(x))x∈V ) and that of (X̌s, (Ľs(x))x∈V ) is Markovian, but that of X̂s or X̌s

alone is not.
Note that in the case of the VRJP there is global acceleration of the jump rates over time,

and in the case of the VDJP there is a global slowdown of the process. Therefore, sometimes
in the literature is used a different time scale which removes the global acceleration, resp.
slowdown. For the VRJP, the time change is given by

dt = L̂s(X̂s)ds.

We will simply write X̂t (instead of X̂s) for the process in this new time scale, and will further
use only this time scale. The jump rate of X̂t from x to a neighbor y at time t is given by

C(x, y)

√
L0(y)

2 + 2ℓ̂t(y)

L0(x)2 + 2ℓ̂t(x)
,

where

ℓ̂t(z) =

∫ t

0
1
X̂t′=z

dt′.

Similarly, for the VDJP we consider the time change

dt = Ľs(X̌s)ds.

We will simply write X̌t (instead of X̌s) for the process in this new time scale, and will further
use only this time scale. The jump rate of X̌t from x to a neighbor y at time t is given by

C(x, y)

√
L0(y)

2 − 2ℓ̌t(y)

L0(x)2 − 2ℓ̌t(x)
, (12.1)

where

ℓ̌t(z) =

∫ t

0
1X̌t′=zdt

′.

In this time scale, the VDJP is defined up to the time

ťmax = inf{t ≥ 0|∃x ∈ V̂ , ℓ̌t(x) = L0(x)
2/2},

which is finite a.s.
The VRJP and the VDJP satisfy a remarkable property, the partial exchangeability. Roughly

speaking, the infinitesimal weight of the path depends only on total times spent at each vertex
and the number of jumps that have occurred along each edge, but not on the order of these
jumps. In particular, this partial exchangeability implies, through an extension of de Finetti’s
theorem [Fre96], that the VRJP has the same distribution as a mixture of Markovian jump
processes in a random environment. The explicit law of this random environment was given
by Sabot and Tarrès [ST15b]. Further Bauerschmidt, Helmuth and Swan showed in [BHS21]
that the VRJP and the VDJP satisfy BFS-Dynkin type isomorphism (Theorem 1.4). Indeed,
the VRJP is related through an isomorphism to a random field with values into the hyperbolic
space, and the VDJP to a random field with values into the half-spherical space.
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12.2 From the squared GFF to the random walk loop soup
through the magnetized VDJP

Let G = (V,E) be an electrical network as in Section 1.1.1, with conductances C(x, y). Let ϕ
be a massless discrete GFF on G with 0 boundary conditions, and L1/2 a random walk loop
soup with α = 1/2, coupled to ϕ through Le Jan’s isomorphism (Theorem 1.13). One can ask
the following question. What is the conditional law of L1/2 given ϕ2/2 = (ℓx(L1/2))x∈V ? Let
x0 ∈ Vint. Sabot and Tarrès showed [ST15a] that one can obtain the conditional law of all the
loops visiting x0 through a self-interacting jump process, a magnetized version of the VDJP.
We will describe this next.

Fix x0 ∈ Vint. We will consider a Markovian evolution (X̌t, (Φ̌t(x))x∈Vint) where X̌t ∈ Vint
and Φ̌t is a positive field on Vint. For {x, y} ∈ E with x, y ∈ Vint, denote

J̌t(x, y) = C(x, y)Φ̌t(x)Φ̌t(y). (12.2)

For x, y ∈ Vint, denote

⟨σ(x)σ(y)⟩t =

∑
σ∈{−1,1}Vint σ(x)σ(y)

∑
{z,w}∈E
z,w∈Vint

eJ̌t(z,w)σ(z)σ(w)

∑
σ∈{−1,1}Vint

∑
{z,w}∈E
z,w∈Vint

eJ̌t(z,w)σ(z)σ(w)
.

In other words, ⟨σ(x)σ(y)⟩t is a two-point correlation in a spin Ising field with coupling constants
J̌t. Note that ⟨σ(x)σ(y)⟩t ≥ 0, as one can see from Proposition 11.3. Further, denote

ℓ̌t(x) =

∫ t

0
1X̌t′=xdt

′. (12.3)

The field Φ̌t is given by

Φ̌t(x) =

√
Φ̌2
0 − 2ℓ̌t(x), (12.4)

that is to say
1

2
Φ̌t(x)

2 =
1

2
Φ̌0(x)

2 − ℓ̌t(x).

The process X̌t is a nearest neighbor jump process, with jump rates from x to a neighbor y at
time t given by

C(x, y)
Φ̌t(y)⟨σ(x0)σ(y)⟩t
Φ̌t(x)⟨σ(x0)σ(x)⟩t

.

By comparing (12.4) to (12.1), we see that the jump rates above are similar to those of a VDJP,
but there are additional magnetization factors ⟨σ(x0)σ(y)⟩t and ⟨σ(x0)σ(x)⟩t. The process
(X̌t, (Φ̌t(x))x∈Vint) is defined up to the time

ťmax = inf{t ≥ 0|∃x ∈ Vint, ℓ̌t(x) = Φ̌0(x)
2/2}, (12.5)

which is finite a.s.

Theorem 12.2 (Sabot-Tarrès). Fix x0 ∈ Vint. Let ϕ be a massless discrete GFF on G with
0 boundary conditions. Let (X̌t, (Φ̌t(x))x∈Vint)0≤t≤ťmax

be the self-interacting process as above,
with initial conditions

X̌0 = x0, ∀x ∈ Vint, Φ̌0(x) = |ϕ(x)|.
Then X̌ťmax

= x0 a.s. The path (X̌t)0≤t≤ťmax
and the field (Φ̌ťmax

(x))x∈Vint are independent. The

path (X̌t)0≤t≤ťmax
is distributed as the concatenation of all the loops in the random walk loop

soup L1/2 that visit x0 (one roots the loops in x0). The field (Φ̌ťmax
(x))x∈Vint is distributed as

the absolute value of a discrete GFF with boundary conditions 0 on V∂ ∪ {x0}.
To see why the Ising magnetization factor should appear, check Section 11.2.
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12.3 From the GFF with signs to the random walk loop soup
through the VDJP on clusters

Consider now that the random walk loop soup L1/2 is coupled to the GFF ϕ through the metric
graph extension as in Theorem 3.8. In particular the sign of ϕ is constant of each cluster of L1/2.
One can further ask what is the conditional law of L1/2 given ϕ. That is to say one conditions
also on the sign of ϕ, not just it absolute value as in Section 12.2. The answer to this question
was given in a collaboration of myself with Sabot and Tarrès [10]. The conditional law involves
a VDJP on FK-Ising type clusters, where the clusters themselves get eroded over time.

As previously, fix x0 ∈ Vint. We will consider a Markovian evolution (X̌t, (Φ̌t(x))x∈Vint , (ω̃t(e))e∈E)
where X̌t ∈ Vint, Φ̌t is a positive field on Vint and ω̃t ∈ {0, 1}E . Specifically, X̌0 = x0 and X̌t

will be at all time in the connected component of x0 induced by the edge configuration ω̃t.
We will keep the notations (12.2), (12.3) and (12.5). As previously, we will have Φ̌t(x) =√

Φ̌2
0 − 2ℓ̌t(x), and the whole process will be defined only up to the time ťmax (12.5). Given two

neighbors x, y ∈ V , the jump rate of X̌t from x to y at time t is

C(x, y)
Φ̌t(y)

Φ̌t(x)
ω̃t({x, y}),

that is to say the jump from x to y cannot occur if the edge {x, y} is closed for ω̃t. Moreover,
if ω̃t({x, y}) = 1 and X̌t = x, then the edge is {x, y} is closed (i.e. ω̃t({x, y}) set to 0) with rate

2C(x, y)
Φ̌t(y)

Φ̌t(x)
(e2J̌t(x,y) − 1)−1,

and conditionally on the last event,

� if x and y still belong to the same connected component induced by ω̃t after {x, y} closed,
then X̌t instantaneously jumps to y with probability 1/2 and stays in x with probability
1/2;

� otherwise X̌t moves or stays with probability 1 on the unique extremity of {x, y} which
remains connected to x0.

Theorem 12.3 ([10], Proposition 3.4). Fix x0 ∈ Vint. Let ϕ be a massless discrete GFF on
G with 0 boundary conditions. Let (X̌t, (Φ̌t(x))x∈Vint , (ω̃t(e))e∈E)0≤t≤ťmax

be the self-interacting
process as above, with initial conditions

X̌0 = x0, ∀x ∈ Vint, Φ̌0(x) = |ϕ(x)|,

and conditionally on ϕ, the (ω̃0(e))e∈E being independent, with

P(ω̃0({x, y}) = 1) = 1ϕ(x)ϕ(y)>0(1− e−2C(x,y)ϕ(x)ϕ(y)).

Then X̌ťmax
= x0 a.s. Moreover, the path (X̌t)0≤t≤ťmax

is independent from ((Φ̌ťmax
(x))x∈Vint , (ω̃ťmax

(e))e∈E).

The path (X̌t)0≤t≤ťmax
is distributed as the concatenation of all the loops in the random walk

loop soup L1/2 that visit x0 (one roots the loops in x0). The field (Φ̌ťmax
(x))x∈Vint is distributed

as the absolute value of a discrete GFF with boundary conditions 0 on V∂ ∪ {x0}. On top of
that, if one samples i.i.d. uniform signs in {−1, 1} for each cluster induced by ω̃ťmax

, one gets
a discrete GFF (with its signs) with boundary conditions 0 on V∂ ∪ {x0}.
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Chapter 13

Continuum limits of the Vertex
Reinforced and Vertex Diminished
Jump Processes in dimension 1

In this Chapter are presented two articles written in a collaboration of myself with Sabot
and Tarrès [7, 5]. There we construct in dimension one the fine mesh limits of the Vertex
Reinforced Jump Process (VRJP) [7] and of the Vertex Diminished Jump Process (VDJP) [5].
See Section 12.1 for a presentation of the discrete processes. The limits we constructed can
be seen a self-interacting (reinforced and self-repelling) continuous one-dimensional diffusions.
Our construction is done through stochastic flows of diffeomorphisms of R introduced by Bass
and Burdzy in [BB99]. Note that Bass and Burdzy introduced these flows for reason completely
unrelated to self-interacting processes. In Section 13.1 are presented the heuristics explaining
how the Bass-Burdzy flows appear. In Section 13.2 is given the rigorous construction of the self-
interacting diffusions out of the Bass-Burdzy flows and the convergence results are stated. In
Section 13.3 the reinforced diffusion is presented as a mixture of Langevin motions in random
potential, a property that it inherits from the VRJP. In Section 13.4 is presented how the
self-repelling diffusion is involved in the inversion of the Ray-Knight identity. This is a one-
dimensional continuum version of Theorem 12.3.

13.1 Presentation and heuristic reduction to Bass-Burdzy flows

Let I be an open interval of R, bounded or unbounded. Let L0 be a continuous positive function
on I, satisfying ∫

inf I
L0(x)

−2dx = +∞,
∫ sup I

L0(x)
−2dx = +∞. (13.1)

The condition above is to avoid an explosion in finite time of the self-interacting processes on

I we are going to construct. For N ≥ 1, denote IN = I ∩ ( 1
NZ). Consider X̂

(N)
t and X̌

(N)
t the

following self-interacting nearest neighbor jump processes on IN and denote

ℓ̂
(N)
t (x) = N

∫ t

0
1
X̂

(N)

t′ =x
dt′, ℓ̌

(N)
t (x) = N

∫ t

0
1
X̌

(N)

t′ =x
dt′.

The jump rate of X̂
(N)
t , resp. X̌

(N)
t , from x ∈ IN to y = x± 1

N is

1

2
N2

√√√√L0(y)
2 + 2ℓ̂

(N)
t (y)

L0(x)2 + 2ℓ̂
(N)
t (x)

, resp.
1

2
N2

√√√√L0(y)
2 − 2ℓ̂

(N)
t (y)

L0(x)2 − 2ℓ̂
(N)
t (x)

.
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Thus, X̂
(N)
t is a VRJP on IN and X̌

(N)
t is a VDJP on IN ; see Section 12.1. We are interested

in the limits in law of X̂
(N)
t and X̌

(N)
t as N → +∞.

Let X̂t and X̌t denote the limit processes. We see X̂t as a reinforced diffusion process, and
X̌t as a self-repelling diffusion process. On a purely formal level, without dealing with the
convergence or the meaning of the terms involved, one gets the following equations:

dX̂t = dWt + ”
1

2
∂x log(L0(x)

2 + 2ℓ̂t(x))
∣∣∣
x=X̂t

dt”, (13.2)

dX̌t = dWt + ”
1

2
∂x log(L0(x)

2 − 2ℓ̌t(x))
∣∣∣
x=X̌t

dt”,

where dWt is a white noise, ∂x denotes the space derivative, and ℓ̂t(x), resp. ℓ̌t(x), are the
local times of X̂t, resp. X̌t. Note however that the equations (13.2) are not classical SDEs. It

is not immediately clear how to make sense of the drift terms
1

2
∂x log(L0(x)

2 + 2ℓ̂t(x))
∣∣∣
x=X̂t

dt

and
1

2
∂x log(L0(x)

2 − 2ℓ̌t(x))
∣∣∣
x=X̌t

dt, as x 7→ ℓ̂t(x) and x 7→ ℓ̌t(x) will not be differentiable

for t > 0, and moreover there will not be a change of spatial scale under which these will be
differentiable for all t > 0. So the problem is not only to solve (13.2) by an approximation
scheme, the problem is already to give an appropriate meaning to being a solution to (13.2).
The equations (13.2) are also somewhat misleading, as it is believed that the solutions are not
semi-martingales (see the comment after Proposition 13.2), and in particular the drift terms
1

2
∂x log(L0(x)

2+2ℓ̂t(x))
∣∣∣
x=X̂t

dt and
1

2
∂x log(L0(x)

2−2ℓ̌t(x))
∣∣∣
x=X̌t

dt are in reality not absolutely

continuous w.r.t. dt. However, it turns out that the equations (13.2) are in some sense exactly
solvable, and the solutions involve stochastic flows of diffeomorphisms of R introduced by Bass
and Burdzy in [BB99] for unrelated reasons. This is what is described next, in an informal
heuristic way to begin with.

We will focus on X̂t, since the derivations for X̌t are similar. Let t0 > 0 and let X̂
(t0)
t be the

continuous process that coincides with X̂t on [0, t0], and for t > t0 is just a Markovian diffusion
with infinitesimal generator

1

2

d2

dx2
+

1

2
∂x log(L0(x)

2 + 2ℓ̂t0(x))
d

dx
.

Then after time t0, X̂
(t0)
t is a scale and time changed Brownian motion. Given x 7→ Ŝt0(x) an

anti-derivative of (L0(x)
2 + 2ℓ̂t0(x))

−1, Ŝt0(X̂
(t0)
t ) is a local martingale for t ≥ t0. By further

performing the time change

du = (L0(X̂
(t0)
t )2 + 2ℓ̂t0(X̂

(t0)
t ))−2dt,

we get a standard Brownian motion.

Then, it is reasonable to assume that near time t0, X̂t is close to X̂
(t0)
t . The idea is to let

the change of the spatial scale depend on time. Assume there is a flow of changes of scales
Ŝt : I → R, such that Ŝt is an anti-derivative of (L0(x)

2 + 2ℓ̂t(x))
−1, and such that Ŝt(X̂t) is a

local martingale. Consider u(t) the change of time given by

du = (L0(X̂t)
2 + 2ℓ̂t(X̂t))

−2dt.

and t(u) the inverse time change. Assume that, by analogy with the Markovian case, (Ŝt(u)(X̂t(u)))u≥0
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is a standard Brownian motion (Bu)u≥0. Let x1 < x2 ∈ I. Then

d

du
(Ŝt(u)(x2)− Ŝt(u)(x1)) =

dt

du

d

dt

∫ x2

x1

(L0(x)
2 + 2ℓ̂t(x))

−1dx

= −(L0(X̂t)
2 + 2ℓ̂t(X̂t))

2 d

dt

∫ t

0
1
x1<X̂t′<x2

2(L0(X̂t′)
2 + 2ℓ̂t′(X̂t′))

−2dt′

= −2(L0(X̂t)
2 + 2ℓ̂t(X̂t))

2(L0(X̂t)
2 + 2ℓ̂t(X̂t))

−21
x1<X̂t<x2

= −21
x1<X̂t<x2

= −21
Ŝt(u)(x1)<Bu<Ŝt(u)(x2)

.

This implies that d
du Ŝt(u)(x) is of form

d

du
Ŝt(u)(x) = −1Ŝt(u)(x)>Bu

+ 1
Ŝt(u)(x)<Bu

+ f(u),

for some function f(u) not depending on x ∈ I. Further, it is reasonable to assume that the
left and the right sides of X̂t play symmetric roles, and thus f(u) ≡ 0. Then, we get that

∀x ∈ I, d

du
Ŝt(u)(x) = −1Ŝt(u)(x)>Bu

+ 1
Ŝt(u)(x)<Bu

. (13.3)

This is an equation studied by Bass and Burdzy in [BB99].
In the self-repelling case of X̌t the dynamic change of spatial scale Št is given by the anti-

derivative of (L0(x)
2 − 2ℓ̌t(x))

−1, and the change of time by

du = (L0(X̌t)
2 − 2ℓ̌t(X̌t))

−2dt.

The change of spatial scale is governed by the equation

∀x ∈ I, d

du
Št(u)(x) = 1Št(u)(x)>Bu

− 1Št(u)(x)<Bu
,

that is to say the signs are opposite to those in (13.3).
In the next section the processes X̂t and X̌t will be defined rigorously out of the flows of

solutions to the Bass-Burdzy equations.

13.2 Construction of a self-interacting diffusions out of Bass-
Burdzy flows

Let (Bu)u≥0 be a standard Brownian motion on R with B0 = 0. The convergent Bass-Burdzy
flow is given by the differential equation

dYu
du

=

{
−1 if Yu > Bu,
1 if Yu < Bu,

(13.4)

and the divergent Bass-Burdzy flow is given by

dYu
du

=

{
1 if Yu > Bu,
−1 if Yu < Bu,

(13.5)

As ODEs, (13.4) and (13.5) do not satisfy the usual Cauchy-Lipschitz conditions for the existence
and uniqueness of solutions. However, it is shown in [BB99] that given an initial condition,
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(13.4) and (13.5) each admits a.s. a unique solution defined for all positive times that is
Lipschitz continuous. Moreover, these Lipschitz continuous solutions form a flow of increasing
C1 diffeomorphisms of R, both in the case of (13.4) and that of (13.5). We will denote by
(Ψ̂u)u≥0 the flow for (13.4) and by (Ψ̌u)u≥0 the flow for (13.5). For the properties of these flows,
we refer to [BB99, HW00, Att10].

Denote
ξ̂u = Ψ̂−1u (Bu), ξ̌u = Ψ̌−1u (Bu).

The divergent Bass-Burdzy flow (Ψ̌u)u≥0 satisfies a bifurcation property: there is a finite random
value ybif ∈ R, such that for y > ybif , Ψ̌u(y) > Bu for u large enough, and lim+∞ Ψ̌u(y) = +∞,
for y < ybif , Ψ̌u(y) < Bu for u large enough and lim+∞ Ψ̌u(y) = −∞, and {u ≥ 0|Ψ̌u(ybif) = Bu}
is unbounded. Moreover,

ybif = lim
u→+∞

ξ̌u.

The processes (ξ̂u)u≥0 and (ξ̌u)u≥0 are locally 1/2− ε Hölder continuous for every ε > 0 but are
believed not to be semi-martingales [HW00]. See also Proposition 13.2 and the comment that
follows it. The process (ξ̂u)u≥0, resp. (ξ̌u)u≥0, admits a family of local times λ̂u(y), resp. λ̌u(y),
such that for any f bounded Borel-measurable function on R and u ≥ 0,∫ u

0
f(ξ̂v)dv =

∫
R
f(y)λ̂u(y)dy,

∫ u

0
f(ξ̌v)dv =

∫
R
f(y)λ̌u(y)dy.

Moreover, these local times are related to the spatial derivatives of the flows as follows:

∂

∂y
Ψ̂u(y) = 1− 2λ̂u(y),

∂

∂y
Ψ̌u(y) = 1 + 2λ̌u(y).

Note that for all y ∈ R, supu≥0 λ̂u(y) ≤ 1/2.

Definition 13.1 ([7], Definition 1.1, and [5], Definition 1.3). Let x0 ∈ I and L0 a positive
continuous function on I satisfying (13.1). Let be the change of scale

S0(x) =

∫ x

x0

L0(x
′)−2dx′, (13.6)

and S−10 the inverse change of scale.

1. Consider the change of time t(u) from u to t (and u(t) the inverse time change) given by

dt = L0(S
−1
0 (ξ̂u))

4(1− 2λ̂u(ξ̂u))
−2du.

Set X̂t = S−10 (ξ̂u(t)).

2. Consider the change of time t(u) from u to t (and u(t) the inverse time change) given by

dt = L0(S
−1
0 (ξ̌u))

4(1 + 2λ̌u(ξ̌u))
−2du.

Let

ťmax =

∫ +∞

0
L0(S

−1
0 (ξ̌u))

4(1 + 2λ̌u(ξ̌u))
−2du,

with ťmax < +∞ a.s. Set X̌t = S−10 (ξ̌u(t)), for t ∈ [0, ťmax].
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With the definition above, a posteriori,

ℓ̂t(x) =
1

2
L0(x)

2((1− 2λ̌u(S0(x)))
−1 − 1), ℓ̌t(x) =

1

2
L0(x)

2(1− (1 + 2λ̌u(S0(x)))
−1),

ťmax = inf{t ≥ 0|∃x ∈ I, L0(x)
2 − 2ℓ̌t(x) = 0}, X̌ťmax

= S−10 (ybif).

Next are some regularity properties of the processes X̂t and X̌t that appeared in our articles
[7, 5].

Proposition 13.2 ([7], Proposition 2.4). Denote by (F̂t)t≥0 the natural filtration of (X̂t)t≥0,

and by (F̌t)t≥0 that of (X̌t∧ťmax
)t≥0. The processes (X̂t)t≥0 and (X̌t∧ťmax

)t≥0 admit adapted
decompositions

X̂t = M̂t + R̂t, X̌t∧ťmax
= M̌t + Řt.

The processes M̂t, resp. M̌t, are martingales w.r.t. (F̂t)t≥0, resp. (F̌t)t≥0, with

M̂t =

∫ t

0
(L0(X̂t′)

2 + 2ℓ̂t(X̂t′))dBu(t′), M̌t =

∫ t∧ťmax

0
(L0(X̌t′)

2 − 2ℓ̌t(X̌t′))dBu(t′),

with the quadratic variation

⟨M̂, M̂⟩t = t, ⟨M̌, M̌⟩t = t ∧ ťmax,

and M̂t thus being an (F̂t)t≥0 Brownian motion. As for the processes R̂t and Řt, they are a.s.
locally 3/4− ε Hölder continuous, for every ε > 0, and have thus a zero quadratic variation.

The above tells that (X̂t)t≥0 and (X̌t∧ťmax
)t≥0 admit an adapted decomposition into a local

martingale and a process with zero quadratic variation, and thus are Dirichlet processes in the
sense of Föllmer [Fö81]. It is not shown in our articles [7, 5], but we believe that the exponent
3/4 is optimal for R̂t and Řt, and that the latter do not have a bounded variation and thus,
(X̂t)t≥0 and (X̌t∧ťmax

)t≥0 are not semi-martingales.

In [7, 5] we prove that the self-interacting diffusions X̂t, resp. X̌t, are the fine mesh limits

of the VRJP X̂
(N)
t , resp. of the VDJP X̌

(N)
t .

Theorem 13.3 ([7], Theorem 1.3 and [5], Theorem 1.4). Assume that

lim
N→+∞

X̂
(N)
0 = lim

N→+∞
X̌

(N)
0 = x0 = X̂0 = X̌0.

Then, as N → +∞, the process (X̂
(N)
t )t converges in law to the process (X̂t)t and the process

(X̌
(N)
t )t converges in law to the process (X̌t)t.

In both cases, the proof of the convergence in law goes through the construction at the
discrete level of something that approximately resembles a Bass-Burdzy flow. We will not
detail this here. However, the proof of the convergence also requires to know a priori the

tightness of the discrete processes (X̂
(N)
t )t and (X̌

(N)
t )t and of the corresponding local time

processes ℓ̂Nt (x) and ℓ̌Nt (x). This is achieved differently in the case of the VRJP and in the
case of the VDJP. For the VRJP, we use that it is also a mixture of Markov jump processes in
random environment; see Section 13.3. For the VDJP we rely on the relation to the Ray-Knight
identity; see Section 13.4.
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13.3 Reinforced diffusion and random environment

Sabot and Tarrès showed in [ST15b] that the VRJP on any graph corresponds to the annealed
description of a Markov jump process in random environment, and gave the distribution of this
environment. In the one-dimensional setting this distribution is simpler to describe.

Consider a family of independent r.v.s (VN (x, x+1/N))x,x+1/N∈IN , with the distribution of
VN (x, y), where y = x+ 1/N , given by√

NL0(x)L0(y)

2
√
π

exp
(
−NL0(x)L0(y) sinh(v/2)

2 + v/2
)
dv.

Define UN (x) for x ∈ IN as follows:

UN (x) =


0 if x = X̂

(N)
0 ,∑N(x−X̂(N)

0 )
j=1 VN (X̂

(N)
0 + (j − 1)/N, X̂

(N)
0 + j/N) if x > X̂

(N)
0 ,∑N(X̂

(N)
0 −x)

j=1 VN (X̂
(N)
0 − j/N, X̂(N)

0 − (j − 1)/N) if x < X̂
(N)
0 .

Note that UN (x) depends on the initial starting point X̂
(N)
0 .

Theorem 13.4 (Sabot-Tarrès). The VRJP (X̂
(N)
t )t has the same distribution as the annealed

nearest neighbor Markov jump process on IN in random environment, with jump rate from x to
y = x± 1/N given by

1

2
N2L0(y)

L0(x)
e−UN (y)+UN (x).

By passing the random environment (UN (x))x∈IN to the limit as N → +∞, we obtained

in [7] a description of the reinforced diffusion (X̂t)t≥0 as a Markovian diffusion in random
environment. Let us first describe this environment. Let (W(y))y∈R be a bilateral standard
Brownian motion, that is to say (W(y))y≥0 and (W(−y))y≥0 are two independent Brownian
motion, with W(0) = 0. Define for x ∈ I

U(x) =
√
2W ◦ S0(x) + |S0(x)|,

where S0(x) is given by (13.6).

Theorem 13.5 ([7], Theorem 1.6). The reinforced diffusion (X̂t)t≥0 given by Definition 13.1
has the same distribution as the annealed Markovian diffusion in random environment on I,
with infinitesimal generator

1

2

d2

dx2
+
( d

dx
(log(L0(x))− U(x))

) d

dx
. (13.7)

A Markovian diffusion with infinitesimal generator (13.7) can be rigorously defined through
a change of spatial scale. (13.7) is actually the generator of a Langevin motion in a random
potential. Prior to our work [7], no connection between the convergent Bass-Burdzy flow (13.4)
and the diffusions in random environment was known. This description through diffusion in
random environment implies the following large time asymptotic for (X̂t)t≥0.

Corollary 13.6 ([7], Proposition 4.9). Take I = R and L0 ≡ 1. Then

lim inf
t→+∞

X̂t

log t
= −1

6
a.s., lim sup

t→+∞

X̂t

log t
=

1

6
a.s.
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13.4 Self-repelling diffusion and the Ray-Knight identity

Given a ≥ 0, (ϕ(a)(x))x∈R will denote a massless GFF on R conditioned to be a at x = 0, that is
to say (ϕ(a)(x)/

√
2)x≥0 and (ϕ(a)(−x)/

√
2)x≥0 are two independent standard Brownian motions

starting from a/
√
2. We recall the Ray-Knight theorem.

Theorem 13.7 (Ray-Knight). Fix a > 0. Let (βt)t≥0 be a standard Brownian motion starting

from 0 and let ℓβt (x) be its local time process. Let τβ
a2/2

be the stopping time

τβ
a2/2

= inf{t ≥ 0|ℓβt (0) > a2/2}.

Let (ϕ(0)(x))x∈R be a massless Gaussian free field on R conditioned to be 0 at x = 0, independent
from the Brownian motion β. Then the field

(ϕ(0)(x)2/2 + ℓβ
τβ
a2/2

(x))x∈R

has the same law as the field (ϕ(a)(x)2/2)x∈R.

In discrete, the inversion of the Ray-Knight type identities involves a modification of the
VDJP where the jump process evolves on clusters that themselves get eroded over time; see
Theorem 12.3. It turns out that in dimension one, in a fine mesh limit, this modified VDJP and
the ordinary VDJP coincide up to some random macroscopic time. Using this, the following is
proved in [5].

Theorem 13.8 ([5], Theorem 1.5). Let a > 0 and (ϕ(a)(x))x∈R be a massless Gaussian free
field on R conditioned to be a at x = 0. Let I(ϕ(a)) be the connected component of 0 in
{x ∈ R|ϕ(a)(x) > 0}. For x ∈ I(ϕ(a)), set L0(x) = ϕ(a)(x). Then a.s. L0 satisfies the condition
(13.1). Let (X̌t)0≤t≤ťmax

be the process, distributed conditionally on (ϕ(a)(x))x∈R, as the self-

repelling diffusion on I(ϕ(a)), starting from X̌0 = 0, following Definition 13.1. Let be the triple

(ϕ(0)(x)2, βt, ϕ
(a)(x)2)

x∈R,0≤t≤τβ
a2/2

,

jointly distributed as in the Ray-Knight identity (Theorem 13.7). Let be

T β,a = inf{t ∈ [0, τβ
a2/2

]|ϕ(0)(βt) = 0 and ∀t′ ∈ (t, τβ
a2/2

], βt′ ̸= βt}.

Then the couple
(X̌t, ϕ

(a)(x)2)x∈R,0≤t≤ťmax

has the same distribution as
(βt, ϕ

(a)(x)2)x∈R,0≤t≤Tβ,a .

In a sense, the self-repelling diffusion X̌t inverts the Ray-Knight coupling in continuum in
dimension one. It gives the conditional law of βt up to time T β,a given ϕ(a). To get βt up to
time τβ

a2/2
one has to perform a surgery and glue together countably infinitely many processes

defined each through a divergent Bass-Burdzy flow (13.5).
Actually, the convergence Theorem 13.3 in the self-repelling case is first proved for L0

random given by L0(x) = ϕ(a)(x). Then it is extended to the general deterministic L0 by a
change of scale argument.
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Part VI

Some further perspectives of
research

115



Chapter 14

Dimension two

14.1 Finalizing the description of the continuum GFF through
Brownian loop soup

An important aspect of my research was relating different aspects of the 2D continuum GFF

ϕD to the Brownian loop soup L1/2D and to Brownian trajectories in general; see Parts II and
III. There are still things to prove in this direction. These are listed below. To a large extent,
these are already works in progress.

� Prove the decomposition of ϕD through the clusters of L1/2D (4.9) presented in Section 4.6.

� Prove that the multiplicative chaos of the loop soup L1/2D constructed in Chapter 6 is
exactly the renormalized cosh of the GFF given by (4.9), that is to say that the relation
is a.s. and not just in law. Also show that the renormalized exponential is obtained by
restricting the renormalized cosh to clusters with positive sign in (4.9).

� Relate the odd Wick powers of ϕD to the Brownian loop soup L1/2D . For the even Wick
powers, Le Jan showed [LJ10, LJ11] that these correspond to the renormalized intersection

and self-intersection local times of L1/2D . This however does not work for the odd Wick
powers, and the relation should be more in the spirit of (4.9), taking into account the sign

of each cluster of L1/2D .

� Prove Conjecture 8.3 and show that the Lévy transformation (Chapter 8) extends in the
fine mesh limit to the 2D continuum GFF.

14.2 The P (ϕ)2 fields

Given a bounded domain D ⊂ C and P a polynomial of even degree with positive leading term,
on can define define a P (ϕ) field which is absolutely continuous w.r.t. the GFF ϕD on D, with
density

1

ZP,D
e−

∫
D:P (ϕD):, (14.1)

where : P (ϕD) : denotes the Wick’s renormalization of P (ϕD). See Section 1.1.4. Note that the
P (ϕ) fields are no longer conformally invariant in law. The density (14.1) can also be expressed

through the Brownian loop soup L1/2D . Now, one can also take infinite volume limits of a P (ϕ)
field, i.e. D → C. See [Sim74, Section VIII.6]. An infinite volume P (ϕ) field is not globally
absolutely continuous w.r.t. a free field, only locally. Now, what happens to the Brownian loop
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soup weighted by (14.1) in the infinite volume limit, in particular in the case of spontaneous
symmetry breaking for P (ϕ), or generally when P (ϕ) has multiple infinite volume limits? For
instance, one can take P (ϕ) = λ

4!ϕ
4 − µ2ϕ2 (double well potential). Then, depending on the

values of λ and µ, there is either only one infinite volume field or several, and in particular two
translation invariant ergodic laws related through ϕ 7→ −ϕ (symmetry breaking). This is similar
to the magnetization in the Ising model. In the symmetry broken phase, does the corresponding
Brownian loop soup contain ”loops” that are actually excursions from ∞ to ∞, i.e. loops that
close only at ∞?

14.3 Fields for α ∈ (0, 1/2) and relation to SLE processes

As explained in Section 10.1, in dimension 2 the Brownian loop soups LαD are of major interest
for every α ∈ (0, 1/2] because of the conformal invariance in law and the relation to the CLEκ

(Theorem 2.3). So one would like to have conformally invariant fields that play for α ∈ (0, 1/2)

the same role as the GFF for α = 1/2, as the GFF was instrumental for many results on L1/2D .
Currently I see two approaches to this problem. The fist one is through the multiplicative chaos
measures that have been constructed for every α > 0 (Chapter 6). The second approach is more
speculative, through the multi-dimensional extensions of the β-Dyson’s Brownian motion; see
Chapter 10 and Question 10.11. If such hypothetical extensions are possible on a 2D lattice,
then one can further consider the fine mesh limits, which have good reasons to be conformally
invariant in law. Once such fields constructed, one can consider their level lines or other types
of interfaces, and investigate how these are related to different SLE processes.

A particularly intriguing value is α = 1/4. For this value, according to Theorem 2.3, the
outermost boundaries in a Brownian loop soup are distributed as CLE3. The CLE3 also appears
in the scaling limit of 2D critical Ising interfaces [CS12]. So the question is whether it is possible
to find a deeper connection between the Brownian loop soup with α = 1/4 and the 2D critical
Ising model. In particular, is there a combinatorial relation between the 2D random walk loop
soup in discrete and the planar self-dual Ising model?
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Chapter 15

Higher dimensions

15.1 Geometrical description of the continuum GFF

First, let us emphasize once more that the identification of the sign clusters of a metric graph
GFF with the clusters of a metric graph loop soup with α = 1/2 (Theorem 3.8) is not related
to planarity. It holds on any electrical network. So a natural question is what happens in the
scaling limit in dimensions d ≥ 3. In his publication [Wer21], Wendelin Werner presented a
series of conjectures on this topic. Let us summarize them.

In dimension d = 3 one believes that the picture is pretty similar to that in dimension 2,
however more challenging to prove. Loops in a 3D Brownian loop soup can be combined in
clusters, since two independent Brownian paths can intersect in dimension 3. All the clusters
in the full space R3 should be bounded. The dimension of each cluster should be 5/2. Let us
explain how this 5/2 is obtained. This is similar to the heuristic presented at the end of Section
4.6. On the metric graph of Z3, the probability that two distant points x and y belong to the
same sign cluster of the GFF is, according to Corollary 3.9, of order ∥y − x∥−1. On the other
hand, if δ is the dimension of a cluster in continuum, one expects the above probability to decay
as ∥y−x∥−2(3−δ), as one loses ∥y−x∥ to the codimension 3− δ at both ends of a cluster. From
this one gets δ = 5/2. Further, as for the dimension 2 (Section 4.6 and (4.9)), in dimension 3
each cluster will come with an i.i.d. uniform sign and with a Radon measure supported on the
cluster. This Radon measure in likely a Minkowski content measure for the dimension 5/2.

In dimensions 4 and 5, on one hand the Brownian loops cannot intersect, but on the other
hand the dimension in the limit of clusters on a metric graph should be 1+d/2, that is to say 3
for d = 4 and 7/2 for d = 5. First of all theses dimensions are strictly larger than 2 (dimension
of a Brownian path), and moreover the corresponding codimension is strictly smaller than 2. So
the clusters should be able to intersect with positive probability macroscopic Brownian loops.
It is conjectured that despite the fact that the Brownian loops do not intersect, there is still a
way to regroup them into non-trivial clusters, each cluster being of dimension 1 + d/2. There
is some sort of ”glue” that lives outside the Brownian loops and that is inherited from the
mesoscopic loops in discrete (which do not correspond to Brownian loops in the scaling limit),
and this glue binds different macroscopic loops together. Moreover, Werner conjectures that
in dimension d = 4 the ”glue” is actually measurable w.r.t. the Brownian loop soup, while in
dimension d = 5 it involves additional randomness.

In dimension d ≥ 7 the GFF and the loop soup are considered to be independent in the
scaling limit. This is because 1 + d/2 < d − 2, so a typical macroscopic cluster on a metric
graph with high probability does not contain macroscopic loops. In fact, on a metric graph,
the number of clusters with large loops is of smaller order than the number of large clusters
without large loops. The publication [Wer21] contains some proofs in this direction.
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The dimension d = 6 is not discussed in [Wer21]. It is in some sense critical, because then
1 + d/2 = d− 2, and there the picture is the hardest even to imagine.

Trying to prove the conjectures above constitutes and exciting and challenging endeavor,
which is also of fundamental importance for understanding the intrinsic geometry of the GFF
in higher dimensions. Already the dimension d = 3 is much harder than d = 2, since one does
not have the tools related to the planarity. The dimensions 4 and 5 require on top of that the
introduction of new mathematical objects, the mysterious ”glue”.

A related question is whether the Lévy transformation of the GFF (Chapter 8) has a contin-
uum limit in dimensions d ≥ 3. This is related to the continuum first passage sets. Indeed, on
metric graphs the ”balls” around the boundary for the pseudo-metric involved in the Lévy trans-
formation are distributed as first passage sets (8.5). Moreover, in the continuum limit these first
passage sets should be clusters of Brownian loops and Brownian boundary excursions, which
connects to the discussion above.

15.2 Phi 4 field in dimension 3 and the Brownian loop soup

Let D be a bounded domain in R3. On a purely formal level, the ϕ4 field on D has a density
w.r.t. a GFF ϕD on D, which is

1

ZD
exp

(
− λ

4!

∫
D
ϕD(x)

4dx
)
.

In the Le Jan’s isomorphism (Theorem 1.13), the quantity ϕD(x)
4 corresponds to a self-

intersection local time of the Brownian loop soup L1/2D . This is actually close to the original
picture presented by Symanzik [Sym66]. However, the values ϕD(x)

4 do not make sense, and
one has to apply a renormalization procedure. In dimension 3 the renormalization procedure is
more complicated than the Wick’s renormalization in dimension 2, and at the end of the day the
renormalized ϕ4 field in 3D is not absolutely continuous w.r.t. the GFF ϕD. See [GJ87, Section
23.1]. A natural question is whether this renormalization procedure has an interpretation in

terms of the Brownian loop soup L1/2D , in particular in terms of the double points of L1/2D , since

heuristically the double points of L1/2D carry the self-intersection local times. A double point of

L1/2D is either a double point for one of the Brownian loops in L1/2D , or an intersection point of

two different loops in L1/2D . Also note that the 3D Brownian motion, and by extension the 3D
Brownian loop soup, does not have points of multiplicity 3 or higher [MP10, Section 9.3].
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[BIPZ78] Édouard Brézin, Claude Itzykson, Giorgio Parisi, and Jean-Bernard Zuber. Planar
diagrams. Communications in Mathematical Physics, 59:35–51, 1978.

[BIZ80] Daniel Bessis, Claude Itzykson, and Jean-Bernard Zuber. Quantum field theory
techniques in graphical enumeration. Advances in Applied Mathematics, 1(2):109–
157, 1980.

[BJ25] Max Born and Pascual Jordan. Zur Quantenmechanik. Zeitschrift für Physik,
34(1):858–888, 1925.

[BL19] Marek Biskup and Oren Louidor. On intermediate level sets of two-dimensional
discrete Gaussian free field. Annales de l’Institut Henri Poincaré, Probabilités et
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[BP09] Wlodzimierz Bryc and Virgil Pierce. Duality of real and quaternionic random ma-
trices. Electronic Journal of Probability, 14(17):452–476, 2009.

[Cha92] Terence Chan. The Wigner semi-circle law and eigenvalues of matrix-valued diffu-
sions. Probability Theory and Related Fields, 93:249–272, 1992.
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[Dub19] Julien Dubédat. Double dimers, conformal loop ensembles and isomonodromic de-
formations. Journal of European Mathematical Society, 21(1):1–54, 2019.

123



[Dyn84a] Evgeniy Dynkin. Gaussian and non-Gaussian random fields associated with Markov
processes. Journal of Functional Analysis, 55:344–376, 1984.

[Dyn84b] Evgeniy Dynkin. Local times and quantum fields. In Seminar on Stochastic Pro-
cesses, Gainesville 1983, volume 7 of Progress in Probability and Statistics, pages
69–84. Birkhauser, 1984.

[Dys62] Freeman J. Dyson. A Brownian-motion model for the eigenvalues of a random
matrix. Journal of Mathematical Physics, 3:1191–1198, 1962.

[Eis95] Nathalie Eisenbaum. Une version sans conditionnement du théorème
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