
HAL Id: tel-03768673
https://hal.science/tel-03768673v1

Submitted on 4 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic and Neural Network methods for many-body
open quantum systems

Filippo Vicentini

To cite this version:
Filippo Vicentini. Stochastic and Neural Network methods for many-body open quantum systems.
Condensed Matter [cond-mat]. Université Paris Diderot - Paris 7, 2019. English. �NNT : �. �tel-
03768673�

https://hal.science/tel-03768673v1
https://hal.archives-ouvertes.fr


Université de Paris

Laboratoire Matériaux et Phénomènes Quantiques

École Doctorale 564 : Physique en Ile-de-France

Thèse de doctorat de Physique

Stochastic and Neural Network
methods for many-body open

quantum systems
presentée par

Filippo Vicentini

sous la direction de:
Prof. Cristiano Ciuti

Jury

PR Sara DUCCI Université de Paris Prèsident
PR Dieter JAKSCH University of Oxford Rapporteur
PR Guido PUPILLO Université de Strasbourg Rapporteur
DR Markus HOLTZMANN Université de Grenoble Alpes Examinateur
DR Mazyar MIRRAHIMI Inria Paris Examinateur
PR Cristiano CIUTI Université de Paris Directeur de thèse

Thèse défendue publiquement à Paris le 11 decembre 2019





A Marco e Marina



iv



Acknowledgements

With the defence of this Ph.D. thesis I am also concluding another dynamic part of my life,
characterised by an eclectic mixture of enthusiasm and depression, love and mental health
crises, a lot of work, passion and a huge personal development. The overall successful tale
of this doctorate owes several debts to the interwined web of people that surrounded. After
all, the real outcome of this Doctorate in Physics is not the little knowledge contained
in those pages, but the emergent beauty of the chaotic patchwork of connections and
friendships that emerged. So much, in fact, that at times I believe I now hold Doctorate
in Tailoring, having perfected the art of knitting together the personalities of the different
characters I happened to find in that endless source that Paris is.

Within this colorful mosaic, I particularly love the melody created by the antiresonance
of Cristiano’s unfathomable optimism with my limitless critical pessimism. However, the
only reason this worked out is because of the ton of hard work invested by those like
Riccardo and, especially, Alberto, who devoted time to patiently walk me throughout all
the chapters of ‘how to be a physicist, for dummies‘.

Of course, the real emotional load of the unlimited mental stress caused by the un-
healthy academic societal structure lied on the shoulders of those who spent the rest of the
working days with me, such as Titta and Silvia together with the squatters Francesca and
Alberto, without whom I would probably not resisted so long. With them, I also think
about those other people I owe lots to, such as the Thellinos, Lucia, Enrico and Rocco
who (approximately) met one night in a night train between Paris and Milano, and the
dancers, Marie-Laure and Claire, as well as Lucille, who so patiently taught me how to
speak French and enjoy the parisian life.

Finally, this story could never have been lived if my family had not supported me
through this endeavour that lasted more than 8 years, allowing me to focus on the beautiful
questions that Physics and being young throw at you, while only stressing me a (not-really-
so-)little bit about everything else that life threw at them and at me.

The moments that I shared with all the people I mentioned above, as well as the many
unnamed ones, are the reason why I can confidently say that I would forever do this again
and I’m grateful I decided to stay in Paris, a few years ago.

Thank you all,
Filippo

v



0. Acknowledgements

vi



Summary

This thesis is devoted to the theoretical study of driven-dissipative many-body quantum
systems with a particular focus on advanced computational methods. After reviewing
several state-of-the-art numerical methods to determine the steady-state and dynamics
of open quantum systems described by a Lindblad master equation for the density ma-
trix, this thesis manuscript presents two original methods: (i) an optimal unraveling of
stochastic quantum trajectories for disordered systems; (ii) a variational neural network
method. The stochastic methods have been applied to investigate the driven-dissipative
Bose-Hubbard lattice model that can for instance describe lattices of coupled nonlinear
electromagnetic resonators such those obtained with semiconductor microcavities or su-
perconducting quantum circuits. Our study has shown that a critical slowing down of the
dynamics occurs for some parameters in dimensions higher than one. The phenomena is
linked to a first-order dissipative phase transition and to lattice-level collective bistability.
Furthermore, we reveal the role of disorder on the spatial correlation properties of these
phenomena. In the last part of the thesis, we present the strong connection between fun-
damental concepts of machine learning and variational approaches in quantum physics.
We present a novel computational method for open quantum systems based on neural net-
work ansätze that is compatible with a stochastic minimisation of a cost function through
Monte Carlo sampling. As a first application, we have applied this method to the dissi-
pative transverse quantum Ising model. Exciting perspectives and possible developments
are also drawn in the concluding remarks.

Keywords: Open Quantum Systems, Phase transitions, Quantum optics, Many-body
physics, Neural Networks, Numerical methods, Monte Carlo, Disorder
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0. Summary

Résumé: Cette thèse est consacrée à l’étude théorique des systèmes quantiques dissi-
patifs à plusieurs corps avec un accent particulier sur les méthodes de calcul avancées.
Après une revue des plusieurs méthodes numériques de pointe pour déterminer l’état
d’équilibre et la dynamique des systèmes quantiques ouverts décrits par une équation
maitresse de Lindblad pour la matrice de densité, ce manuscrit présente deux méthodes
originales: (i) un sampling optimal des trajectoires stochastiques quantiques pour les
systèmes désordonnés; (ii) une méthode variationnel base sur les réseau neuronal. Les
méthodes stochastiques ont été appliquées pour étudier le modèle de réseau de Bose-
Hubbard dissipatif entrâıné qui peut par exemple décrire des réseaux de résonateurs
électromagnétiques non linéaires couplés tels que ceux obtenus avec des microcavités à
semi-conducteurs ou des circuits quantiques supraconducteurs. Notre étude a montré
qu’un ralentissement critique de la dynamique se produit pour certains paramètres de
dimensions D > 1. Le phénomène est lié à une transition de phase dissipative du pre-
mier ordre et à une bistabilité collective au niveau du réseau. De plus, nous révélons
le rôle du désordre sur les propriétés de corrélation spatiale de ces phénomènes. Dans
la dernière partie de la thèse, nous présentons le lien étroit qui existe entre les concepts
fondamentaux de l’apprentissage automatique et les approches variationnelles en physique
quantique. Nous présentons une nouvelle méthode de calcul pour les systèmes quantiques
ouverts basée sur une méthode de réseau de neurones compatible avec une minimisation
stochastique d’une fonction de coût par échantillonnage de Monte Carlo. Comme première
application, nous avons appliqué cette méthode au modèle Ising quantique transverse dis-
sipatif. Des perspectives intéressantes et des évolutions possibles sont également exposées
dans les remarques finales.

Mots-cle: Systèmes quantiques ouverts, Transitions de phase, Désordre, Optique quan-
tique, Physique many-body, Réseaux de neurones, Méthodes numériques, Monte Carlo
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CHAPTER 1

Introduction

In recent years a significant amount of resources has been dedicated to the development
of quantum technologies, which includes, among several, quantum computing and simu-
lation [6

.

]. With the development of science and technology, the need of developing tools
to attack and solve some computationally-demanding problems has emerged. In general,
it is possible to separate those computational problems into two classes: P -class prob-
lems which can be solved in deterministic polynomial time by ordinary calculators, while
NP−class cannot [7

.

, 8

.

]. Advances in computer science produced several algorithms to
solve P−problems in increasingly efficient ways. However it has long been understood that
the asymptotical cost of NP problems cannot be made polynomial and therefore manage-
able [8

.

]. Unfortunately, several problems that might guarantee interesting developments
in medicine, material science and artificial intelligence belong to the NP class [9

.

, 10

.

, 11

.

,
12

.

, 13

.

].

At the beginning of the 1980s physicists began to realise that it might be possible to ex-
ploit the fundamental properties of quantum mechanics to solve some of those problems in
polynomial time. In particular, one might engineer a device that does not perform boolean
operations on bits, but unitary operations on some fundamental quantum-informational
unit, the qubit, realising a Digital Quantum Computer [14

.

]. Alternatively, it might be pos-
sible to encode certain problems into the ground-state properties of a quantum-mechanical
system, measurable in the laboratory, building an analog computer, known also as a quan-
tum simulator [15

.

, 16

.

].

To build those devices one must ensure that the quantum nature of the devices is
preserved during the computation. Fighting the inevitable relaxation to thermal equilib-
rium that destroys quantum information is traditionally achieved by properly isolating
the device from the environment. Yet, despite the tremendous experimental progress in
the isolation of quantum systems, a finite coupling to the environment is unavoidable and
certainly plays a crucial role in the practical implementation of quantum information and
quantum simulation protocols [17

.

]. Building a computer capable of performing quantum
calculations of arbitrary complexity would require an improvement of several orders of

1



1. Introduction

magnitude in the quality of our devices. A paradigmatic shift in the error-correcting pro-
tocols would be required to account for qubit-level errors that inevitably happen during
the calculation [18

.

]. A simple theoretical description of those systems can be obtained
within the realm of the traditional equilibrium quantum mechanics for closed systems
which assumes that the degrees of freedom are decoupled from the rest of the universe, so
that the resulting time-evolution is unitary. Such a strong approximation simplifies the
theoretical description, but as we push our models to ever-longer time scales the descrip-
tion of quantum systems as isolated shows its limits. Quantum systems typically decay
towards thermal states described by generalised Gibbs ensembles [19

.

, 20

.

], and their relax-
ation process can be modelled through unital channels with relative ease, but those tools
are not able to capture the more general behaviour of non-equilibrium states that can be
created by engineering the driving and the dissipation of such systems.

A tool to better confront those setups is the framework of open quantum systems, which
allows for a more refined model of the interaction between the system and the environment,
capturing non-equilibrium phenomena not treated within the traditional thermodynam-
ical description. Historically the field was born out of the necessity of describing out-
of-equilibrium quantum systems such as those found in cavity quantum electrodynamics
setups. In those systems, one or more atoms interact with the quantum-electromagnetic
field confined between two highly-reflective mirrors. Excited photons, however, inevitably
leak outside of the mirrors, and the confined field must be continuously repopulated by
optical pumping. Remarkably, experimentalists gather information about the system only
through those photons that leak outside the system, and an understanding of the dissipa-
tion allows to model the observations.

The competition between the dissipation and the pump creates interesting novel phe-
nomena, where thermodynamical equilibrium can be replaced by an effective dynamical
equilibrium once the system has relaxed to its steady-state [21

.

, 22

.

]. These phenomena
are common to several experimental platforms exploiting light-matter interaction, such
as superconduting quantum circuits [23

.

, 24

.

], semiconductor cavities [25

.

, 26

.

] and optome-
chanical resonators [27

.

]. Those systems are particularly interesting in the regime where
the matter and wave degrees of freedom strongly couple, and are canonically described by
means of hybrid bosonic quasi-particles called polaritons [26

.

, 28

.

]. Polaritons can be inter-
preted as photon-like particles is dressed by the matter degree of freedom, which can be
represented by phonons [29

.

], excitons [30

.

, 31

.

], plasmons [32

.

] or intersubband excitations
[33

.

] to give a few examples. Even though photons in vacuum are known to interact so
weakly that a photon-photon interaction event has only been recently detected in high-
energy experiments [34

.

], polaritons can be engineered to have very strong interactions,
while retaining the controllability of optical frequencies. Those properties make polari-
tons a good platform to simulate bosonic Hamiltonians or to use as the foundation of a
Quantum Computer architecture [35

.

], but one must first understand the fundamental laws
that govern such dissipative systems.

While at equilibrium interesting physical properties such as Bose-Einstein condensation
emerge when many particles are made to interact [36

.

], and they can be understood through
general thermodynamical paradigms such as free energy and symmetry considerations,
those tools do not generally work out of equilibrium and our understanding of what drives
transitions is far from complete. For example, the fate of the famous Noether’s theorem

2



1. Introduction

on the link between symmetries and conserved quantities has only recently been extended
to dissipative systems [37

.

, 38

.

], as well as the physical interpretation of the spectrum of
those systems [39

.

, 40

.

] and the emergence of criticality in presence of phase transitions
does not follow the same paradigms of equilibrium statistical mechanics [41

.

, 42

.

, 43

.

, 44

.

,
45

.

, 46

.

]. Recently, it has also been shown that engineering non-thermal, parametric baths
creates non-trivial attractors [47

.

, 48

.

, 49

.

, 50

.

] which can in some cases enforce dissipative
symmetries in the non-equilibrium steady-state, a promising candidate for dissipation-
resilient qubit encodings [51

.

].

Understanding the fundamental laws that govern non-equilibrium quantum systems is
therefore important to the development of science and quantum technologies. However,
the theoretical study of such systems is hampered by the remarkable complications that
arise in this context. In particular, there exist only few systems for which one can compute
analytically observables in the steady-state [52

.

, 53

.

, 54

.

], and non-observables like operator-
entanglement or entropy cannot be computed, while the analytical solution to the full
dynamics can be recovered only for a handful of almost-linear transport models that can
be fully solved if dissipation is added at the edges of a chain [55

.

] thanks to a general
technique known as third-quantisation [56

.

].

For generic systems that do not respect those conditions, researchers usually resort to
a combination of several approximation schemes as well as numerical simulations. Yet, the
exponential growth of the Hilbert space with the system size combined with the need of
representing mixed states [21

.

] makes the simulation of open quantum many-body systems
a formidable task. It is for that reason that, researchers have devoted significant resources
both to the study of fundamental properties of dissipative systems and to the development
of powerful computational methods to simulate the physics of open systems. Fruitful de-
velopments came from the generalisation of established techniques originally developed for
closed systems, such as renormalisation group calculations in the Keldysh formalism [57

.

,
58

.

], impurity solvers for dynamical mean field theory [59

.

], permutation-invariant solvers
[60

.

], the full configuration-interaction Monte Carlo [61

.

] and cluster methods [62

.

, 63

.

].
Several complications have been encountered when trying to generalise Tensor-Network
techniques to dissipative systems [64

.

, 65

.

, 66

.

], and different solutions to the problem of
positive-definite evolution have been proposed [67

.

, 68

.

]. Lastly, there also exist other nu-
merical techniques that have been developed natively for dissipative systems, such as the
corner-space renormalisation method [69

.

].

Having noticed the effectiveness of neural-networks in solving generic optimisation
problems, several groups have tried to bridge the gap between the language of machine
learning and numerical physics. This effort resulted in a series of remarkable results both
for equilibrium [70

.

, 71

.

, 72

.

] and dissipative systems [3

.

, 73

.

, 74

.

, 75

.

]. Nevertheless bringing
closer together machine learning and quantum physics has not only been useful to produce
novel numerical methods, but it has also produced interesting algorithms integrating to
perform machine-learning of quantum circuits [76

.

, 77

.

], thanks to quantum gate automatic
differentiation [78

.

, 79

.

] and to classical or quantum optimisation procedures of potentially
NP problems [80

.

, 81

.

].

This thesis presents the main results obtained during the three years of my Ph.D.
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1. Introduction

research in Physics. In Chapter 2

.

we introduce the theoretical tools needed to describe
open quantum systems. In Section 2.1

.

we introduce the Lindblad master equation and
give an interpretation in terms of continuous measurement theory, while in Section 2.2

.

we
give an overview of the unraveling of quantum trajectories.

In Chapter 3

.

we summarise several numerical methods developed to treat those sys-
tems, beginning with generic linear solvers in Section 3.1

.

, steady-state methods (3.2.1

.

),
and tensor networks (3.3

.

). In Section 3.4

.

we comprehensively discuss trajectory meth-
ods that will be used in the following chapter, and in Section 3.5

.

we introduce our own
sampling scheme to deal with disordered quantum systems (based on [2

.

]).
Chapter 4

.

is devoted to the understanding of a generic first-order dissipative phase
transition. In particular, the dynamical properties are studied numerically in Section 4.3

.

(based on [1

.

]) and the statical properties as well as the effect of disorder are discussed in
Section 4.4

.

(based on [3

.

]).
In Chapter 5

.

we provide an introduction to neural-networks in order to later introduce
our own novel numerical method to treat open quantum systems, based on [3

.

]. Future
developments are discussed at the end of the chapter.

Finally, we conclude the manuscript with Chapter 6

.

, where we summarise our conclu-
sions discussing the possible future directions.
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CHAPTER 2

Theory of open quantum systems

Any quantum system cannot be perfectly isolated from the environment, even more so if
we wish to measure it. It is therefore important to work within a framework where the
processes through which the system interacts with the environment are taken into account.
Remarkably, the action of the environment onto the system can be understood in terms of
a continuous measurement. In this chapter we will first introduce the theoretical frame-
work of the Lindblad Master Equation (Section 2.1

.

), which describes the time evolution
of quantum systems coupled to memoryless environments, and provide the two comple-
mentary interpretations in terms of continuous monitoring (Section 2.1.2

.

) and starting
from microscopic principles (Section 2.1.3

.

). We then introduce the Stochastic Schrödinger
Equation (Section 2.2

.

), which provides an interpretation of the Lindblad Master Equa-
tion in terms of stochastic processes. In Section 2.3

.

we revisit a technique to reformulate
the master equation in phase space, which will later be used to derive efficient numerical
approximations.

Contents

2.1 The Lindblad master equation

.

. . . . . . . . . . . . . . . . . . . . 6

2.1.1 Density matrix and quantum maps

.

. . . . . . . . . . . . . . . . . 6

2.1.2 Continuous monitoring interpretation

.

. . . . . . . . . . . . . . . 8

2.1.3 Microscopic interpretation

.

. . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 The Liouvillian spectrum and the steady-state

.

. . . . . . . . . . 13

2.2 Quantum trajectories

.

. . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 The stochastic Schrödinger equation

.

. . . . . . . . . . . . . . . . 15

2.2.2 Photon counting trajectories

.

. . . . . . . . . . . . . . . . . . . . 16

2.2.3 Homodyne trajectories

.

. . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Phase-space representation of bosonic systems

.

. . . . . . . . . . 19

2.3.1 Coherent states

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Phase-space representations of the density matrix

.

. . . . . . . . . 20
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2.3.3 Phase-space equations of motion

.

. . . . . . . . . . . . . . . . . . 22

2.3.4 Example: the harmonic oscillator

.

. . . . . . . . . . . . . . . . . . 22

2.1 The Lindblad master equation

As we have discussed in the introduction, a quantum system cannot be perfectly isolated
from the experimental apparatus and from its environment. Modelling the effect that this
interaction has on the dynamics is not an easy task, as the environment is in principle an
infinitely large system, in itself already intractable and difficult to describe [21

.

, 22

.

, 82

.

].
Keeping track of the precise microscopic state of the environment, and therefore its action
at all times, is virtually impossible. Therefore we cannot hope to have a perfect knowledge
of the state of the system, and we must resort to a statistical description of the quantum
system. In this section we briefly introduce the required theoretical tools.

2.1.1 Density matrix and quantum maps

In quantum mechanics the state of an isolated quantum system S with Hilbert space HS

is described by a state vector or wavefunction |ψ⟩ ∈ HS . Quantities of interest describing
the state of the system are called observables and are described by self-adjoint operators
Â ∈ B(HS) acting on the Hilbert space1

.

[83

.

]. In the canonical formulation of quantum me-
chanics, the wavefunction has a statistical meaning [84

.

], and observables can be computed
by means of the expectation values:

⟨Â⟩ = ⟨ψ|Â|ψ⟩ . (2.1)

The wavefunction is also called a pure-state, and encodes information about uncertainities
arising from quantum-mechanical properties of the physical system.

Density Matrices

When dealing with finite temperature or systems coupled to an environment a quantum
system is, in general, not in a pure state. For example a spin system might be in the state
|ψ↑⟩ with probability p↑ ≈ 1 but the orthogonal state |ψ↓⟩ can occur with probability
p↓ = 1 − p↑. In such cases, we can account for this additional uncertainty by performing
a weighted sum over all possible pure states, namely,

⟨Â⟩ =
∑

i

pi ⟨ψi|Â|ψi⟩ . (2.2)

We stress the difference between the quantum-related uncertainty, arising from the intrinsic
quantum expectation value over pure states, and the classical uncertainty arising from the
average over the classical ensemble {ψ↓, ψ↑}.

1B(H) is the space of bounded linear operators acting on H. If A ∈ B(H) → B : H → H, then there
exists an M ≥ 0 such that, ∀ |ψ⟩ ∈ H, ⟨ψ|A|ψ⟩ ≤M ⟨ψ|ψ⟩.
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2. Theory of open quantum systems

Mathematically, the object encoding all the statistical properties of a classical mixture
is the covariance matrix of a random variable [85

.

, 21

.

]. In the case where the random
variable is a pure quantum state |ψ⟩, the covariance matrix has the form

ρ̂ = E[|ψ⟩ ⟨ψ|] =
∑

i

pi |ψi⟩ ⟨ψi| , (2.3)

and is called the density matrix. The density matrix encodes a mixed state, which is an
incoherent mixture of pure quantum states2

.

. We recall that the density matrix object has
the following properties:

• Trace 1,
∑

i pi = 1 by construction, to normalize probability;

• ρ̂ is hermitian (ρ̂ = ρ̂†);

• ρ̂ is positive-semidefinite, that is, ∀ψ ⇒ ⟨ψ|ρ̂|ψ⟩ ≥ 0;

• If the state is mixed, there exist infinitely many decompositions like Eq. (2.3

.

), not
all of which are orthogonal. Otherwise, if the state is pure, the decomposition is
unique and there is only one wavefunction.

Quantum Maps

Having defined the mathematical object encoding mixed states in the previous section, a
general problem of interest is that of describing its time evolution. In general, the time-
evolution of the density matrix operator ρ̂(t) will be generated by the so-called quantum
map Φ : B(HS) → B(HS) according to

ρ̂(t+ dt) = Φ(ρ̂(t)). (2.4)

The quantum map Φ is a superoperator, because it acts on operator spaces. As the
quantum map evolves quantum states, it must preserve the properties of the density
matrix described above, therefore it:

• must be linear, Φ(αρ̂a + βρ̂b) = αΦ(ρ̂a) + βΦ(ρ̂b);

• must preserve the hermitian nature of ρ̂, therefore if ρ̂ = ρ̂† ⇒ Φ(ρ̂) = (Φ(ρ̂))†;

• must preserve the positive definit character of ρ̂, namely ∀ψ ⇒ ⟨ψ|Φ(ρ̂)|ψ⟩ ≥ 0.

• must preserve the trace, i.e. Tr[ρ̂] = Tr[Φ(ρ̂)];

Maps that respect those 4 properties are known as completely positive trace preserving
maps (CPTP). Kraus theorem states that CPTP maps can be always decomposed in the
form

Φ(ρ̂) =
∑

k

B̂kρ̂B̂
†
k, (2.5)

2By incoherent mixture we mean, in statistical terms, a classical superposition. In the following the
two definitions will be used interchangeably.
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2. Theory of open quantum systems

where the set of operators B̂k ∈ B(HS) satisfy the condition3

.

∑
k B̂

†
kB̂k = I [86

.

]. This
decomposition is also known as the Kraus decomposition of a quantum map.

In general, it is useful not to study directly the quantum map, but the differential
superoperator that generates the map according to the equation

dρ̂

dt
= L(ρ̂). (2.6)

L(ρ̂) is often called the Liouvillian because of an analogy between the equation above
and the Liouville equation of classical mechanics. The quantum map is then obtained by
formally integrating over time the above equation.

Physical quantum maps are completely-positive and trace-preserving, therefore also
the Liouvillian generating it must have the same properties. Remarkably, Lindblad proved
in 1976 that the Liouvillian can always be decomposed into the following form4

.

(setting
ℏ = 1, which will be assumed for the rest of the manuscript):

L(ρ̂) = −i
[
Ĥ, ρ̂

]
+
∑

i

(
L̂iρ̂L̂

†
i −

1

2

{
ρ̂, L̂†

i L̂i

})
, (2.7)

where H is an Hermitian operator and Lk are arbitrary jump operators [87

.

, 88

.

]. This form
is commonly called the Lindblad master equation, or, more generally, Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) equation. Nevertheless, this is a purely mathematical result,
and care must be taken to obtain a physical interpretation of the various terms above,
which will be done in the following paragraphs.

2.1.2 Continuous monitoring interpretation

In the previous paragraph we have seen that the time-independent physical evolution of a
quantum system in a mixed state must be of the form given by Eq. (2.27

.

). In this section
we would like to give an interpretation of the above equation in terms of a system being
continuously measured. To do so, we will first briefly introduce the formalism of generalised
Positive-Operator Valued Measures (POVM), with which generalised measurements (non
self-adjoint) on mixed states are represented.

Measurements on mixed states

In general, a measurement with possible outcomes {r} can be completely specified in terms
of the set of measurement operators {M̂r}. The probability to measure the outcome r is

given by the expectation value of the operator Êr = M̂ †
r M̂r. Therefore to normalise the

probability, the operators must satisfy the completeness condition

∑

r

M̂ †
r M̂r = I. (2.8)

3For a completely positive map, which does not preserve (therefore contracts) the trace, the normaliza-
tion condition can be relaxed to

∑
k B̂

†
kB̂k = αI for α ≤ 1.

4More technically, Lindblad’s theorem states that The generator of any quantum operation satisfying
the semigroup property must have the form of Eq. (2.27

.

). In any case, one can show that any quantum
operation generated by exponentiating a time-independent superoperator satisfy the semigroup property.
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2. Theory of open quantum systems

Upon performing the measurement {M̂r} on ρ̂, the outcome r will be obtained with

probability pr = Tr
[
M̂rρ̂M̂

†
r

]
, after which the state will be

ρ̂r =
M̂rρ̂M̂

†
r

Tr
[
M̂rρ̂M̂

†
r

] , (2.9)

which is the properly normalised covariance matrix of M̂r |ψ⟩5

.

. If a measurement is car-
ried out on a state ρ̂, but the result is unknown, or not kept track of, we say that the
measurement was unread. The state ρ̂′ after an unread measurement is the sum of all
possible outcomes ρ̂r weighted by their respective probabilities pr,

ρ̂′ =
∑

r

prρ̂r = M̂rρ̂M̂
†
r . (2.10)

This form is the same of Eq. (2.5

.

), therefore the act of measuring a system without reading
the result generates a valid CPTP quantum map.

Quantum maps as continuous measurements

To interpret the Lindblad master equation 2.27

.

in terms of measurement operators, we
start by writing the coherent evolution of an isolated quantum system with Hamiltonian
Ĥ in terms of the Kraus decomposition defined by Eq. (2.5

.

). The following ansatz,

B̂ = I− idtĤ, (2.11)

respects the normalization condition B̂†B̂ = I up to first order in dt and generates the
quantum map,

ρ̂(t+ dt) = Φ(ρ̂(t)) (2.12)

= (I− idtĤ)ρ̂(t)(I+ idtĤ) (2.13)

= ρ̂(t)− idt[Ĥ, ρ̂(t)] +O(dt2). (2.14)

If the time interval is small enough (dt → 0), this map is equivalent to the Heisenberg
equation of motion,

dρ̂(t)

dt
=
ρ̂(t+ dt)− ρ̂(t)

dt
= −i

[
Ĥ, ρ̂(t)

]
. (2.15)

We now seek to generalise this unitary evolution by incorporating measurements according
to an operator L̂ with two possible outcomes, r = {0, 1}. To preserve the normalisation

condition
∑

r B̂
†
rB̂r = I, a set of at least two Kraus operators will be necessary to describe

the dynamics, namely: {
B̂0 = I− idt(Ĥ − iL̂†L̂/2)

B̂1 =
√
dtL̂

(2.16)

5Assuming ψ is a random variable as defined in Section 2.1

.
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2. Theory of open quantum systems

If the system evolving under Hamiltonian Ĥ is continuously measured with L̂ but the
result of the measurement is unread, the equation of motion is obtained by substituting
Eqs. (2.10

.

) and (2.39

.

) into Eq. (2.15

.

), which yields

dρ̂(t)

dt
=
B̂0ρ̂(t)B̂

†
0 + B̂1ρ̂(t)B̂

†
1 − ρ̂(t)

dt
, (2.17)

= −i( ˆ̃Hρ̂(t)− ρ̂(t) ˆ̃H†) + L̂ρ̂(t)L̂†, (2.18)

where ˆ̃H = Ĥ − iL̂†L̂/2 is the effective non-hermitian Hamiltonian. This equation is
equivalent to the Lindblad master equation (2.27

.

), but now the L̂ operators have a precise
physical meaning: they represent a continuous binary measurement being performed on
the system.

The probability to have the outcome r = 1 in the measurement during an infinitesimal
time interval dt is given by the infinitesimal expectation value

P1 = dtTr
[
L̂†L̂ρ̂

]
. (2.19)

The probability for the measurement r = 0, P0 = 1 −O(dt), is of the order of unity and
therefore it is regarded as a null result. If the measurement gives the null result, the system
state changes infinitesimally, but not unitarily, according to the evolution generated by the

non hermitian Hamiltonian ˆ̃H. At random times distributed according to the rate P1/dt,
the measurement gives the result r = 1, and the system undergoes a finite evolution
induced by the operator B̂1, which we call a quantum jump.

Comparing the first term of Eq. (2.39

.

) with the coherent evolution generated by

Eq. (2.11

.

), it is clear that the non hermitian operator ˆ̃H = Ĥ−iL̂†L̂/2 plays the same role
of the continuous time evolution of the Hamiltonian in the coherent case. In the context of
non-hermitian (or more generally PT-preserving) quantum mechanics only the dynamics

generated by the non hermitian Hamiltonian ˆ̃H is considered, and the term generating
quantum jumps is neglected.

Lastly, we remark that this proof can be generalised to the case of an arbitrary (finite)
number N of measurement operators L̂i. In this case the decomposition involves the N+1
Kraus operators {

B̂0 = I− idt(Ĥ − i
∑

i L̂
†
i L̂i/2)

B̂i =
√
dtL̂i

, (2.20)

which can be interpreted as before, and the differential equation governing the dynamics
is in the Lindblad form, where the set of operators {L̂i} are the unread measurements
performed on the system.

2.1.3 Microscopic interpretation

We have shown in the previous section that the Lindblad master equation encodes the
evolution of a quantum system subject to continuous measurement by an observer. As we
will see, the Master Equation formalism is more general, as it also describes the stochas-
tic evolution of open quantum systems, that is, systems not perfectly isolated from the
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2. Theory of open quantum systems

environment. In the following, we sketch a microscopic derivation of the Lindblad mas-
ter equation in terms of a system coupled to a reservoir largely following the derivation
of Breuer and Petruccione [21

.

]. This derivation will be useful to interpret the coupled
environment as an observer measuring the quantum system.

The reduced density matrix

In general, the state of the quantum system S is a wave-function in the Hilbert space HS ,
and the environment E has a state defined in an infinitely large space HE , obtained by
coupling an infinite number of degrees of freedom together. The wavefunction Ψ ∈ HSE

describing the system and environment will be a vector in the “universe” Hilbert space
HSE = HS ⊗HE . This object holds precise informations not only about the system, but
also about correlations in the environment. To reduce the complexity of the problem, we
can forgo the exact description in terms of pure states of the quantum system [21

.

, 89

.

], and
describe its state as a statistical mixture Section 2.1.1

.

. The statistical uncertainty arises
from our ignorance of the precise state of the environment.

To obtain the reduced density matrix for the system S starting from a pure state Ψ,
one can perform the partial trace of the universe density matrix |Ψ⟩ ⟨Ψ|,

ρ̂S = TrE [|Ψ⟩ ⟨Ψ|] =
∑

ij

ci,j |ψi⟩ ⟨ψj | (2.21)

where |ψi⟩ ∈ HS is a pure state of the system. The reduced density matrix is, to all effects,
a density matrix and has the same properties that were introduced in Section 2.1.1

.

.

The master equation

We now wish to derive an expression of the quantum map evolving the reduced density
matrix ρ̂S . We recall that Lindblad’s theorem states that this quantum map must have
the Lindblad form Eq. (2.27

.

), but the derivation will allow us to give a precise microscopic
interpretation of the measurement operators L̂.

We assume that the pure-state |Ψ⟩ of the universe evolves coherently under the Hamil-
tonian dynamics Ĥ

Ĥ = ĤS ⊗ IE + IS ⊗ ĤE + ĤI , (2.22)

where ĤS ∈ B(HS) is the Hamiltonian of the system, ĤE ∈ B(HE) is the Hamiltonian
of the environment and ĤI ∈ B(HS ⊗ HE) is the interaction Hamiltonian. IS/E is the
identity operator acting on the system and environment Hilbert spaces respectively. To
derive the equations of motion for the system’s density matrix, it is useful to assume that
the coupling between the system and the reservoir is weak (this is also known as the Born
approximation).

Thus, the density matrix of the reservoir is only negligibly affected by the interaction
and the state at all times t may be approximately by a tensor product

ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂B, (2.23)

where we also assumed that the reservoir is in an equilibrium state ρ̂B that is no longer
evolving due to its internal dynamics. We will assume the rather general form of interaction
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2. Theory of open quantum systems

ĤI =
∑

i

L̂i ⊗ B̂i (2.24)

where L̂i ∈ HS is acting on the system only and B̂i on the bath only.

A further approximation is assumption of Markovian dynamics. This means that the
instantaneous action depends only on the state at time t and not on its history. This is
consistent with our assumption that the reservoir is made of a continuous collection of
infinite degrees of freedom, and its time-correlation functions decay faster then the time
scales of the system. Lastly, to obtain a valid equation we also need to perform the secular
(or rotating wave) approximation, by integrating over rapidly decaying degrees of freedom.

Starting from the Heisenberg’s equation for the universe density matrix,

d |Ψ⟩ ⟨Ψ|
dt

= −i
[
Ĥ, |Ψ⟩ ⟨Ψ|

]
, (2.25)

if we take the partial trace over the environment on both sides of the equation, we obtain
the expression

dρ̂S
dt

= −i
[
ĤS , ρ̂S

]
+TrE [−i[HI , ρ̂S ⊗ ρ̂B]]. (2.26)

Using the Markov and secular approximations, it can be simplified into the Lindblad
master equation

dρ̂S
dt

= −i
[
ĤS , ρ̂S

]
+
∑

i

(
L̂iρ̂SL̂

†
i −

1

2

{
ρ̂S , L̂

†
i L̂i

})
, (2.27)

where L̂i are the so-called jump operators describing internal transitions due to the in-
teraction with the environment. We remark that if the system and the bath do not
interact, L̂ = 0 and therefore this equation reduces to the standard Heisenberg equation
of motion for the density matrix. It is possible to show that in some particular cases a
non-markovian environment introduces a dependency of the system-bath coupling ĤI on
spectrum of the system. In this case the resulting master equation has the same form,
and the frequency-dependence can be hidden inside of the jump operators L̂i [90

.

, 91

.

].

Environment as an observer

We have shown that the dynamics of a quantum system weakly coupled to an environment,
which acts on the system according to the operator L̂, is equivalent to the dynamics
describing the evolution of a quantum system under continuous unread measurements
described by the same jump operator.

To give a more through interpretation, let us consider an example: a bosonic system
with trivial dynamics Ĥ = 0, linearly coupled with rate γ to a zero-temperature bath
modelled with the jump operator L̂ = â. In this case, the master equation is

Lρ̂(t) = γ

[
âρ̂(t)â† − 1

2

{
ρ̂(t), â†â

}]
. (2.28)

12



2. Theory of open quantum systems

As we have shown previously, this master equation is generated by the two Kraus Operators

{
B̂0 = I− dtγ

2 â
†â

B̂1 =
√
dtγ â

(2.29)

and since they respect the trace condition B̂†
0B̂0 + B̂†

1B̂1 = I, they form a generalised
measurement (POVM) on the system.

The two outcomes of the measurements r = {0, 1} are observed with the probabilities
⎧
⎨
⎩
p0(t) = Tr

[
B̂0ρ̂(t)B̂0

]
= 1− dtγ ⟨n⟩ (t)

p1(t) = Tr
[
B̂1ρ̂(t)B̂1

]
= dtγ ⟨n⟩ (t),

(2.30)

where ⟨n⟩ (t) = Tr
[
â†âρ̂(t)

]
. With probability of order 1 the outcome of the measurement

is r = 0 (no signal), and the system is unchanged. With probability of order dtγ and
proportional to the number of photons inside the cavity the observed measurement is
r = 1 (a signal) and the system is changed by applying the bosonic destruction operator
to the system according to

ρ̂(t+ dt) =
âρ̂(t)â†

Tr[âρ̂(t)â†]
. (2.31)

This means that if the measurement gives a positive result, the measurement destroyed
a photon in the system. Moreover, the rate at which the measurement destroys photons
in the system is τ = p1(t)/dt = γ ⟨n⟩ (t). This allows us to interpret the action of the
environment as an observer looking at photons coming out the system.

2.1.4 The Liouvillian spectrum and the steady-state

The Liouvillian can always be decomposed into its eigenvalues. Since it is not hermitian,
in general left (ρ̂λ) and right (π̂λ) eigenstates do not coincide, and the eigenvalues λ are
complex numbers. Left and right eigenstates satisfy the equations:

Lρ̂λ = λρ̂λ (2.32)

π̂λL = λπ̂λ (2.33)

It can be proven that if a single eigenvalue is real, then left and right eigenstates coincide
[40

.

]. In the following, we want to show that the spectrum of a Liouvillian is closely related
to the dynamics of the system. In particoular, by integrating over time the Lindblad
master equation 2.27

.

, it is possible to obtain the formal expression of the quantum map
Φ as

ρ̂(t) = eLtρ̂(0), (2.34)

where ρ̂(0) is the initial state at t = 0. Assuming the Liouvillian is time-independent and
the Hilbert space is finite-dimensional then there always exists at least one steady-state
ρ̂ss [21

.

], which is defined as
Lρ̂ss = 0. (2.35)

Steady states of a Liouvillian are elements of its kernel, and therefore are 0-eigenvalues of
the super-operator L. The 0-eigenvalue has algebraic molteplicity equal to the number of
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steady states. The emergence of multiple steady states has been associated by Albert et
al. to super-symmetries [37

.

]. As the invariance under a super-symmetry of the Liouvillian
is a very strong requirement, and easy to verify analitically, in this thesis we will always
assume that the systems studied have a single steady state. Regardless, the numerical
methods developed in this thesis should be easily extensible to the case of multiple steady
states by accurate decomposition of the operators involved.

Physically, the steady state is obtained by taking the infinite-time limit solution

ρ̂ss = lim
t→∞

ρ̂(t) = lim
t→∞

eLtρ̂(0). (2.36)

If the system has a single steady state, it will eventually converge to it, regardless of the
initial conditions [92

.

]. If the system has multiple steady-states, taking the infinite-time
limit gives in general a linear combination of the steady states [37

.

, 38

.

].

The dynamics of the density matrix can be expanded into the eigenstates of the Liou-
villian:

ρ̂(t) = ρ̂ss +
∑

i ̸=0

ci(0)e
λitπi. (2.37)

From this equation, it is clear that the real part (which is always negative) of the eigen-
values govern the relaxation towards the steady state, while the imaginary part gives an
oscillatory behaviour, that will eventually disappear due to the damping. As the real part
of the eigenvalues sets the damping rate, it is customary to order the eigenvalues in such
a way that λ0 < |Re[λ1]| < |Re[λn]. This way the first few eigenvalues determine the
long-time dynamics. Assuming that a single steady-state exists, the asymptotic behaviour
in the long-time limit is given by

ρ̂(t→ ∞) ≃ ρ̂ss + e−|λ1|tπ1. (2.38)

Re[λ1] is usually called the Liouvillian gap or the asymptotic decay rate [39

.

].

2.2 Quantum trajectories

The Lindblad master equation introduced in the previous section encodes the dynamics
of a quantum system subject to continuous measurements onto an equation of motion for
its reduced density matrix ρ̂S(t). This object represents a classical mixture of quantum
states defined on the underlying Hilbert spaceHS , which can be interpreted as a functional
P [ψ] : H → R, associating a probability to states. To make an analogy with classical
stochastic processes we recall that the Fokker-Planck equation is also an equation of motion
for a probability functional, describing the dynamics of a whole ensemble of particles
evolving according to a stochastic process. In similar spirit, in this section we want
to show how it is possible to unravel the ensemble dynamics of the Liouvillian L into
a stochastic process ψ(t) defined over the system’s Hilbert space HS . The stochastic
process encodes the evolution of a single element of the classical ensemble, which we call a
quantum trajectory. The quantum trajectories are obtained by recording the outcomes of
the measurements carried out by the environment, instead of performing an average over
all possible results as done in Section 2.1.2

.

.
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While the point of view of trajectories and stochastic processes are consistent with the
ensemble dynamics after taking an ensemble and noise average, more information can be
extracted by looking at their statistical properties, as will be shown in Section 4.3

.

.

The mathematical remapping of the master equation into a stochastic process was
originally proposed by Davies [93

.

], and was only later given a physical interpretation [94

.

].
The treatment presented here is largely inspired by Breuer and Petruccione [21

.

], Gardiner
and Zoller [85

.

], Carmichael [95

.

], the seminal paper by Dalibard, Castin and Molmer [96

.

]
and by a few other references [97

.

].

2.2.1 The stochastic Schrödinger equation

We recall that a mixed state ρ̂ =
∑

i pi |ψ⟩ ⟨ψ| represents a classical mixture of several pure
quantum states. The uncertainty arises from the fact that the measurement performed
by the environment is unread. If one records the result of every measurement, which is a
stochastic process, it is possible determine the precise evolution of the quantum state. We
consider a system initialized in a pure state |ψ(t)⟩, evolving under the coherent dynamics
of the Hamiltonian Ĥ, and subject to the measurement (dissipation) by the operator L̂.
As we have shown before, the action of the dissipation is equivalent to a continuous unread
measurement according to the two measurement operators

{
B̂0 = I− idt(Ĥ − iL̂†L̂/2),

B̂1 =
√
dtL̂.

(2.39)

The result of the measurement at each infinitesimal time increment dt is a random pois-
sonian process dr(t) = {0, 1}. At every timestep, the expectation value of dr(t) is the
probability to detect r = 1, which is given by

E[dr(t)] = dt ⟨ψ(t)|L̂†L̂|ψ(t)⟩ . (2.40)

At every time t, if dr(t) = 0 the measurement gives the null result and therefore the
system undergoes a smooth non unitary evolution induced by the non hermitian Hamil-
tonian,

|ψ0(t+ dt)⟩ = B̂0 |ψ(t)⟩√
⟨ψ(t)|B̂†

0B̂0|ψ(t)⟩
(2.41)

=

(
1− idt

[
ˆ̃H + i

1

2
⟨ψ0(t)|L̂†L̂|ψ0(t)⟩

]
+O(dt2)

)
|ψ(t)⟩ . (2.42)

On the contrary, if the result of measurement is dr(t) = 1 the measurement is positive
and the state changes significantly following a quantum jump. After the jump the state
becomes, to first order in dt,

|ψ1(t+ dt)⟩ = B̂1 |ψ(t)⟩√
⟨ψ(t)|B̂†

1B̂1|ψ(t)⟩
=

L̂ |ψ(t)⟩√
⟨ψ(t)|L̂†L̂|ψ(t)⟩

, (2.43)
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By combining the two evolutions, we can write the wavefunction |ψ(t)⟩ as a stochastic
process, the so-called Stochastic Schrödinger Equation (SSE),

d |ψ(t)⟩ = [(1− dr(t)) |ψ0(t+ dt)⟩+ dr(t)(|ψ1(t+ dt)⟩ − |ψ(t)⟩)] (2.44)

=

⎡
⎣idt

(
− ˆ̃H − i

1

2
⟨L̂†L̂⟩ψ(t)

)
+ dr(t)

⎛
⎝ L̂√

⟨L̂†L̂⟩ψ(t)
− 1

⎞
⎠
⎤
⎦ |ψ(t)⟩ (2.45)

where we used the property of stochastic calculus that dr(t)dt = 0 [85

.

, 82

.

, 98

.

]. By closely
inspecting Eq. (2.45

.

) we see that its first term closely resembles that of the Schrödinger’s
equation, while the second term is a jump term. Equations of this form are jump-diffusion
equations, which are a particular type of Stochastic Differential Equations (SDE).

To show that this process is consistent with the ensemble evolution of the Lindblad
master equation, one simply needs to compute the covariance matrix of this process. It is
possible to verify that this process is consistent with the ensemble dynamics of the Lindblad
master equation. To verify that, it is sufficient to define the projector π(t) = |ψ(t)⟩ ⟨ψ(t)|,
compute its stochastic increment by differentiating it as

dπ(t) = d |ψ(t)⟩ ⟨ψ(t)|+ |ψ(t)⟩ d ⟨ψ(t)|+ d |ψ(t)⟩ d ⟨ψ(t)| , (2.46)

substituting Eq. (2.45

.

) and retaining terms up to first order in dt. Finally, when taking
the ensemble average of this process, which is equivalent to taking the stochastic average
over the processes dr(t), one will find that

E[dπ(t)]
dt

= Lρ̂(t) (2.47)

Details of the calculation are left in the appendix.

2.2.2 Photon counting trajectories

A traditional setup considered in quantum optics is that of a bosonic system which evolves
under the Hamiltonian Ĥ, where experimentalists measure the photons leaking out of the
system with rate γ by means of a photodetector. The photodetector can give two outcomes,
r = {0, 1}, corresponding to the outcomes no photon detected (r = 0) and photon detected
(r = 1). The corresponding measurement operators, which also generate the dynamics of
the system, are the usual

{
B̂0 = I− idt

(
Ĥ − iγ2 â

†â
)

B̂1 =
√
dtγâ

(2.48)

and once again, the probability to detect a photon (r = 1) is

p1(t) = dtγ Tr
[
â†âρ̂(t)

]
= dtγ ⟨n⟩ (t). (2.49)

In the limit of dt → 0, the measurement will return a null result at almost every time,
and the system will evolve according to the dynamics generated by B̂0. With probability
p1(t), a photon will leak out of the system and it will be observed (assuming the detector
has 100% efficiency).

An example of photon counting trajectories is given in the left panel of Fig. 2.1

.

, where
the discrete jumps in the number of photons are clearly visible.
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Figure 2.1: Example of different trajectory unravelings of the same Liouvillian. The
system is initialized in a fock state with ten photons, and evolves under the action of
Ĥ = 0 and jump operator L̂ = â (γ = 1). Photon counting (left panel) and Homodyne
(right panel) trajectories are plotted with a colored solid line. The exact solution obtained
by integrating the master equation is plotted with a dashed black line.

2.2.3 Homodyne trajectories

In the previous paragraph we described the evolution of a lossy optical system through the
two operators B̂0 and B̂1 representing a certain continuous measurement being performed
on the system. It is possible to verify that the resulting Lindblad master equation is
invariant under the transformation

√
γâ→ √

γâ+ βI Ĥ → Ĥ − i

2
(β⋆â− βâ†) (2.50)

where β is an arbitrary complex number [21

.

, 82

.

]. If the same transformation is applied to
the measurement operators, one obtains

{
B̂0 = I− idt

(
Ĥ − i

2(β
⋆â+ βâ†) + γ

2 â
†â
)

B̂1 =
√
dt(

√
γâ+ βI)

(2.51)

This shows that the unraveling of the deterministic master equation into stochastic quan-
tum trajectories is not unique. Physically, this means that B̂1 does not measure only the
field coming out of the system (∝ γ ⟨n⟩), but rather the mixing of the output field with
a classical field β. This transformation can be realized in an experiment by changing the
way we measure the system: instead of using a detector to measure only the outgoing
field, one can mix it with the much stronger field of an oscillator. As the quantum system
is left untouched and only the measurement setup is modified, it is clear why this should
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Figure 2.2: Example of experimental setup for photon-counting detection (left), where the
output signal is directly measured and homodyne detection (right), where it is mixed with
a local oscillator. In practice, in homodyne detection experiments a second detector is used
to get the reference value of β, which would be otherwise be subject to big uncertainities.

leave the master equation unchanged. In such a setup, the probability to have a positive
measurement is given by

p1 = dtγ ⟨n⟩+√
γβ ⟨x̂⟩+ |β|2, (2.52)

where we have chosen γ ∈ R and x̂ = â + â†. In the limit when the local field is much
stronger than the output field (β/γ → ∞), the detector will be triggered at every timestep.
In fact, to properly compute this limit one should also send dt → 0, as otherwise, due to
the strength of the field, one could have more than one detection per timestep (signaled
by the fact that p1 > 1, which could no longer be interpreted as a probability) [21

.

, 82

.

].
In this limit, the stochastic nature of the process becomes continuous and one obtains the
stochastic differential equation

d |ψ(t)⟩ =
[
−idt

(
ˆ̃H − i

L̂†L̂
2

+ L̂
⟨L̂† + L̂⟩

2
− ⟨L̂† + L̂⟩2

8

)
+

+dW (t)

(
L̂ − ⟨L̂† + L̂⟩

2

)]
|ψ(t)⟩ , (2.53)

where dW (t) is a diagonal noise term, which is obtained from the continuous limit of the
poissonian process dr(t) previously considered.

Using photon counting or homodyne trajectories to study a system will give the same
results once averaged, but the statistical distributions of the trajectories will differ. Most
importantly, all observables should give the same average values regardless of the choice
of trajectory protocol, even though the fluctuations can differ. An interesting example is
given by the informational-theoretic quantity of entropy production: if the system is out
of equilibrium, as is usually the case in open systems, it continually produces entropy (also
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X
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〉
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∆
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θ

∆θ

Figure 2.3: Representation of coherent states in the phase space (X,P ). The highlighted
region corresponds to the region containing the 95% of probability. |α| corresponds to
the average number of photons, and θ to the phase. It is clear that in the limit of many
photons, the uncertainty on the phase becomes negligible, while the uncertainity on the
number of photons remains constant.

at the steady state), and dissipates it into the environment so that the following relation
holds

dS[ρ̂]

dt
= Φ+Π, (2.54)

where Π is the rate of entropy production and Φ is the rate of entropy dissipation [99

.

,
100

.

]. It has been shown that those quantities depend on the relative strength of the local
oscillator β [101

.

], which is consistent with the fact that entropy-related quantities are
linked to fluctuation properties of the trajectories and are not observables [102

.

, 103

.

]. While
a considerable theoretical effort has been invested in the field of stochastic thermodynamics
[104

.

, 105

.

, 106

.

, 107

.

, 108

.

], there only exist few experimental implementations [109

.

].

2.3 Phase-space representation of bosonic systems

Describing quantum mechanical systems with kets and operators, objects which normally
do not commute, causes several complications when performing analytical calculations.
An useful set of tools to simplify the description of those systems to a manageable level
are phase-space methods, which describe quantum systems through C−numbers. In this
section we will describe how the density matrix can be represented as a quasi-probability
distribution. Those will be used to construct a phase-space version of the lindblad master
equation.
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2.3.1 Coherent states

When working with many-body quantum systems, a natural basis is the Fock basis. The
Fock basis labels the space according to the number of fermionic or bosonic excitations in
each mode, and has the likable property of being orthonormal. Fock states are defined as
the quantized eigenstates of the quantum harmonic oscillator, therefore they are naturally
quantum objects. A different choice of basis are coherent states, originally introduced by E.
Schrödinger when studying the lowest uncertainity eigenstates of the harmonic oscillator.
As we will show below, they have a very well defined interpretation in terms of classical
objects, and therefore complement Fock states.

It is well known that uncertainity of two observables Â and B̂ in quantum mechanics
must satisfy

⟨∆A⟩2 ⟨∆B⟩2 ≥ 1

4
⟨i[Â, B̂] ⟩2 , (2.55)

where ∆Â = Â− ⟨Â⟩. If we consider the quadrature operators from quantum optics

X̂ =
â† + â

2
, P̂ =

â† − â

2i
, (2.56)

it is possible to show that the state |α⟩ which ensures the equality in Eq. (2.55

.

) must
satisfy the equation

∆X̂ |α⟩ = −i∆P̂ |α⟩ , (2.57)

which is verified when
(X̂ + iP̂ ) |α⟩ = ( ⟨X̂⟩+ i ⟨P̂ ⟩) |α⟩ (2.58)

where the coherent states are defined as

â |α⟩ = α |α⟩ . (2.59)

Coherent states are therefore defined as the eigenstates of the destruction operator and
minimize the uncertainty. It is therefore easy to see from Fig. 2.3

.

that, as the number
of photons is increased (the distance from the origin in the X,P plane is increased) the
uncertainty in the phase becomes negligible. Coherent states can be obtained by displacing
the vacuum state |0⟩ by the complex vector α, namely

|α⟩ = D̂(α) |0⟩ = exp
[
αâ† − α⋆â

]
|0⟩ , (2.60)

therefore they all have the same uncertainty as the vacuum (which classically has no
uncertainty). For that reason one might interpret the quantum noise of a coherent state
as being due only to quantum fluctuations of the vacuum.

2.3.2 Phase-space representations of the density matrix

The expression for the statistical average of measurements of a quantum observable Â
performed on a system with state ρ̂ is given by the trace of their product:

⟨Â⟩ = Tr
[
ρ̂Â
]
. (2.61)
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Cahill and Glauber proposed a formalism where, instead of operatorial equations such as
the one above, the statistical average is computed with an integral over a distribution
space (phase-space) [110

.

], according to standard probability theory :

⟨Â⟩ → ⟨A⟩ =
∫
Ws(α, α

⋆)As(α, α
⋆)dαdα⋆ (2.62)

where As(α, α
⋆) is a phase-space analogue of the operator Â, s = {±1, 0} is an integer

labelling one of several phase-space representations. Ws(α, α
⋆) provides the integration

measure in the C2 space yielding expectation values, as a probability density function
normalized according to ∫

Ws(α, α
⋆)dαdα⋆ = 1. (2.63)

However, Ws is not a canonical probability distribution as it is possible to verify that the
various states (α, α⋆) do not represent mutually exclusive (orthogonal) states, as required
by probability theory. Moreover, in general it can take negative values as Ws(α, α

⋆) < 0.
But since Ws has similar mathematical properties of a probability density function, it is
called a quasi-probability distribution.

The quasi-probability distribution Ws is defined to be the complex Fourier transform
of the characteristic function χs according to:

Ws(α, α
⋆) =

1

π2

∫
χs(ξ, ξ

⋆)eαξ
⋆−α⋆ξdξdξ⋆. (2.64)

The characteristic function is defined by

χs(ξ, ξ
⋆) = Tr

[
ρ̂D̂s(ξ, ξ

⋆)
]
, (2.65)

where D̂s is the normally ordered (s = 1) anti-normally ordered (s = −1) or symmetrically
ordered (s = 0) exponential

D̂s(ξ, ξ
⋆) = exp

[
ξâ† − ξ⋆â+

1

2
s|α|2

]
. (2.66)

In general, the phase-space analogue of the expectation value of an operator can be
deduced from the property (which follows from the definition of D̂s above),

{(â†)n(â)m}s =
∂n

∂ξn

(
∂

∂ξ⋆

)m
D̂s(ξ, ξ

⋆)|ξ⋆=ξ=0. (2.67)

Expectation values of s-ordered operators can be computed according to

⟨{(â†)n(â)m}s⟩ =
∫
(α⋆)nαm Ws(α, α

⋆) dαdα⋆. (2.68)

The different orderings give rise to quasi-probability distributions having different like-
able properties. Most notably, if s = −1 the distribution essentially given by the diagonal
elements of the density matrix in the coherent basis,

Q(α, α⋆) ≡W−1(α, α
⋆) =

1

π
⟨α|ρ̂|α⟩ . (2.69)
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This is called Housimi Q distribution, and it is useful to perform some analytical calcula-
tions and can often be directly measured in experiments.

The value s = 1 gives rise to the Glauber-Sudarshan P representation such that
P (α, α⋆) =W1(α, α

⋆), where

ρ̂ =

∫
P (α, α⋆)dαdα⋆. (2.70)

The ensemble generated by the P distribution is a diagonal collection of coherent states.
Therefore it is easy to see that the P distribution will be positive in the case of su-
perpositions of classical coherent states. Moreover, as the P representation generates
normal-ordered operator averages, it is often used to perform analytical calculations [111

.

,
95

.

].

Lastly, the values s = 0, which corresponds to symmetric ordering, generates the
Wigner representation W (α, α⋆) ≡ W0(α, α

⋆). The Wigner quasi-probability can be used
to efficiently build a semiclassical approximation of the lindblad master equation which
accounts for vacuum fluctuations, as we will see in Section 3.4.3

.

.

2.3.3 Phase-space equations of motion

Overall, one wants to compute the equation of motion for the quasi-probability distribution
that are equivalent to the Lindblad master equation. After a lengthy calculation it is
possible to derive simple conversion rules, where one has to substitute to the operators in
the equation of motion of ρ̂ particoular Wirtinger derivatives in phase-space [112

.

, 113

.

].

The conversion table for bosonic ladder operators, in the same generic formalism of
the references above, is reported here:

ρ̂→Ws(α, α
⋆) (2.71)

âρ̂→
[
α− s− 1

2

∂

∂α⋆

]
W (α, α⋆), ρ̂â →

[
α− s+ 1

2

∂

∂α⋆

]
W (α, α⋆),

â†ρ̂→
[
α⋆ − s+ 1

2

∂

∂α

]
W (α, α⋆), ρ̂â† →

[
α⋆ − s− 1

2

∂

∂α

]
W (α, α⋆),

Performing the mapping from operatorial-space to phase-space will yield a partial-
differential equation (PDE) in (α, α⋆) as opposed to an operatorial equation. The resulting
PDE will have the structure of a generalised Fokker-Planck equation [85

.

] and can be
studied by solving repeatedly the associated stochastic differential equation [112

.

, 114

.

,
115

.

, 116

.

].

2.3.4 Example: the harmonic oscillator

For example, if we consider a coherently driven harmonic resonator with single-particle
losses, described by the Hamiltonian

Ĥ = −∆â†â− F (â† + â), (2.72)
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and loss operator L̂ =
√
γâ, the resulting phase-space equation of motion will be

∂Ws(α, α
⋆, t)

∂t
= LsWs(α, α

⋆, t), (2.73)

where the linear operator Ls is given by

Ls =− ∂

∂α
[−γα + i∆α + iF ] + (2.74)

− ∂

∂α⋆
[−γα⋆ − i∆α⋆ − iF ] + (2.75)

+ γ(1− s)
∂2

∂α∂α⋆
. (2.76)

It is worth noting that Ls identifies a Fokker Planck equation with diffusion coefficient
γ(1− s) and drift vector i(∆α+ iF )− γα.

As we had discussed in Section 2.3.1

.

, the statistical uncertainity associated with co-
herent states emerges from quantum fluctuations of the vacuum. In the fokker planck
equation those fluctuations arise due to the diffusion term. As the Fokker-Planck equation
2.73

.

has a positive-definite diffusion term, if the system is initialized so thatWs(α, α
⋆) > 0

everywhere, it is possible to interpret Ws as a probability distribution at all times.
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CHAPTER 3

Numerical methods for open quantum systems

The simulation of Open Quantum Systems on a classical computer is more demanding
and complicated than simulating an Hamiltonian problem, as the number of elements in
the density matrix is the square of the Hilbert space dimension. Moreover, the dynamical
equation, the so-called master equation, being non hermitian is more complicated to treat
numerically. In recent years, considerable effort has been invested in developing methods
to simulate systems under generic non-equilibrium conditions, such as renormalisation
group calculations exploiting the Keldysh formalism [57

.

, 58

.

], dynamical mean field [117

.

],
truncated correlation hierarchies [118

.

], corner-space renormalization [69

.

], permutation-
invariant solvers [60

.

], full configuration-interaction Monte Carlo [61

.

], cluster factorisations
[62

.

] or expansions [63

.

] and tensor-network techniques [65

.

, 67

.

, 68

.

, 66

.

].

Alternatively, exploiting the continuous monitoring interpretation of open quantum
systems, several other methods that can be applied to quantum trajectories have been
proposed, such as those based on matrix product states [119

.

], cluster ansätzes [120

.

],
Gützwiller mean-field [121

.

, 122

.

], semiclassical approaches [1

.

, 123

.

], or with an analyti-
cal ansatz [124

.

]. There also exist some variational-inspired methods [64

.

, 125

.

], which have
been recently combined with neural networks [3

.

, 73

.

, 74

.

, 75

.

].

In this chapter we will present a brief review of some numerical methods that are
routinely used to simulate finite-size open quantum systems. We will start with a few
details on how to best treat the full master equation in Section 3.1

.

. We will then discuss
methods targeting the full steady-state density matrix in Section 3.2

.

and in Section 3.3

.

we will give an outline of the developments of tensor-network based techniques for open
systems. Variational methods, while relevant, will not be discussed, as the entirety of
Chapter 5

.

will be devoted to the topic. Section 3.4

.

will present a discussion of stochastic
trajectory methods, both exact and approximate. To conclude, in Section 3.5

.

we will
address how to treat disordered systems, in particular by introducing in Section 3.5.3

.

the
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optimal stochastic unraveling of disordered open quantum systems [2

.

].
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3.1 The Lindblad master equation

As discussed in the previous chapter, the Lindblad master equation

dρ̂S
dt

= −i
[
ĤS , ρ̂S

]
+
∑

i

(
L̂iρ̂SL̂

†
i −

1

2

{
ρ̂S , L̂

†
i L̂i

})
, (2.27

.

)

encodes the dynamics of an open quantum system. This equation identifies a system of
Ordinary Differential Equations (ODE) of the form ˙̂ρ = Lρ̂, which can be numerically in-
tegrated to obtain the time-evolution of ρ̂(t). If a metastable state arises in the quantum
system, the Jacobian of the ODE might become ill-conditioned for a short time. This phe-
nomenon (which is otherwise not very well mathematically defined) is known as stiffness,
and in general it has the consequence that explicit solvers (such as those based on the
Taylor expansion of the ODE) will introduce non-negligible errors or require exponentially
small timesteps; implicit solvers, which are more computationally demanding, circumvent
the problem [126

.

]. Methods based on the Runge-Kutta of 4th(5) order with adaptive step
size [127

.

] are in general the best for reliability and efficiency. It should be noted that
textbook versions of Runge-Kutta 4(5) perform well only on non-stiff problems, and the
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Dormann-Prince variant [128

.

] should be preferred, as it can handle semi-stiff equations1

.

.
If the system is known for certain to be non-stiff, the TSIT5 solver [129

.

] gives the best
performance.

For small systems a viable strategy is to compute all the elements of L and store it as
a sparse matrix according to Eq. (A.4

.

). If l is the local Hilbert space dimension, N is the
number of local spaces and s a constant, the computational complexity of building the full
Liouvillian is roughly2

.

O(l2(1+N)s2(1+N)). On a desktop computer it is typically feasible
to construct the Liouvillian of a spin-1/2 system only up to 9 lattice sites (dim(H) ≈ 500).
It is therefore intractable to build this matrix already for relatively small lattices, as the
cost of constructing the ODE would exceed by far the time taken to solve it. Fortunately,
efficient ODE solvers do not need to work with a full matrix, but only need a way to
evaluate the action of Eq. (2.27

.

) on an arbitrary input3

.

. This way, it is possible to solve
systems up to approximately 16 spins (dim(H) ≈ 6 · 104).

3.1.1 Factorized methods

The time-integration of the Lindblad master equation (2.27

.

) for extended lattice systems is
a formidable task. The exponential increase of the Hilbert space makes a direct integration
of the master equation unfeasible already for relatively small system sizes.

A possible approximated approach for this problem is given by mean field methods,
such as those based on Gützwiller’s factorised ansatz for the density matrix [130

.

]. Such
approach can be generalised to clusters (or plaquettes) of sites [62

.

]. The general idea is
that even if it is not possible to integrate the master equation dρ̂/dt = Lρ̂ for the whole
system, it is possible to do so for a smaller partition. Consider the subdivision of all the
sites [1...N ] of the system into NC disjoint clusters, each with a number [1, N [ of sites, so
that the union of all clusters reconstructs the system. This subdivision can be used to
construct a factorised cluster ansatz for the global density matrix

ρ̂ ≈ ⊗NC
i=1ρ̂Ci , (3.1)

where ρ̂Ci is the density matrix of the i−th cluster (which could be as small as a single site).
Factorised methods keep track of quantum correlations within the cluster, but withhold
only classical correlations among clusters. Assuming that L is composed only of local and

1The Runge-Kutta-Dormann-Prince from [128

.

], known as DP5 or DOPRI is the default method used
by ode45 in Matlab and SciPy. In Julia’s DifferentialEquations.jl package it is implemented under the
name DP5.

2The complexity is derived assuming operators are stored as sparse matrices. Dense matrices would
lead to worse asymptotical performance. The complexity of taking the tensor product of two l × l sparse
matrices with s nonzero entries per row is O(l2s2). The chain of tensor products needed to build local
operators require asymptotically O(l1+Ns1+N ) many operations, and the most-complicated term is the
one of the form L⊗ L which has squared this complexity.

3Using a linear map instead of a matrix is a fundamental trick in numerical computation. It is important
to note that, contrary to solving matricial ODEs, solving ODEs with linear maps requires extra care in
interpreted languages such as python, otherwise performance might quickly degrade. In particular, if the
user-provided map is not compiled, performance will quickly degrade. Compilation is typically ensured by
using Cython/Numba in Python. Compiled languages such as Fortran/C++/Julia do not need to worry.
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Figure 3.1: Sketch of the cluster mean field approach in a dissipative system of interacting
spin-1/2 particles. The figure refers to a 2× 2 cluster on a two dimensional square lattice.
Figure from [62

.

].

2-local operators4

.

, it can be casted into the form,

L =
∑

i

Li +
∑

i,j

Li,j , (3.2)

where Li is the local Liouvillian term for the i−th cluster, given by the local Hamiltonian
and dissipation, and Li,j is the coupling term between clusters i and j, given by coherent
hopping or non-local dissipators. Substituting the ansatz of Eq. (3.1

.

) and the factorised
Liouvillian into Eq. (2.27

.

) gives the reduced master equation for every cluster Ci,

dρ̂Ci
dt

= Liρ̂Ci +
∑

⟨i,j⟩
Li,j ρ̂Ci ρ̂Cj . (3.3)

This is the composed by the local term dρ̂Ci/dt = Liρ̂Ci plus a coupling to the neighbouring
clusters. The coupling term can be computed self-consistently at every timestep with a
computational cost comparable to that of computing a local observable because the ansatz
is factorised, leading to the self-consistent master equation

dρ̂Ci
dt

= (Li +
∑

⟨i,j⟩
L[j]
i )ρ̂Ci , (3.4)

L[j]
i = Tr

[
Li,j ρ̂Cj

]
, (3.5)

Therefore, with this approximation the computational complexity of time-evolving the
system is no longer proportional to O(l2N ) but rather to O(NCl2C). For the Gützwiller
factorisation (clusters of size 1) this further simplifies to mO(Nl2). Furthermore, if one
assumes that all clusters are equivalent, the equation simplifies further and the multiplica-
tive term N disappears. Even if in this formulation we used the factorisation of the Hilbert

4However the method can be easily generalised to any K-local super-operator
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space to simplify the full master equation, it has recently been proposed to combine the
factorised wavefunction ansatz together with photon-counting [121

.

, 120

.

] and homodyne
[122

.

] trajectories.

3.1.2 Symmetries and permutation-invariant solvers

In general, one must always choose a basis of the Hilbert space to express the various
operators and the state. An open quantum system is said to be invariant under the action
of some symmetry operator Ĵ if

[
Ĵ , Ĥ

]
=
[
Ĵ , L̂i

]
= 0 ∀i, (3.6)

that is, if the generator of the symmetry commutes with the Hamiltonian and all the loss
operators [37

.

]. Symmetries reduce the effective size of the Hilbert space if a suitable basis
is chosen. The dynamics of the Liouvillian will also factorise into sectors that do not talk
to each other, further reducing the memory requirements.

An example of an interesting symmetry on open quantum systems is the quadratically
driven, quadratically dissipating Kerr model [53

.

, 131

.

, 132

.

]. When dealing with periodic
homogeneous lattice systems it might be interesting to consider the set of translations,
point rotations and reflections. In an N -dimensional lattice of size L× L× ...× L, there
are a total of O(LN ) symmetries, which would reduce polynomially the total size of the
Hilbert space.

Remarkably, homogeneous systems with long-range interaction such as the Dicke are
invariant under permutations of the modes. As there exist N ! permutations of N variables,
this is a very strong symmetry that, when implemented, provides an exponential speed-up
of the computations [60

.

].

3.2 Methods determining the steady-state

Computing the full time-evolution of a dissipative system, either through the ODE or
by using trajectory-based methods (see Section 3.4

.

) can be computationally demanding.
Often when studying open systems we are only interested in the properties of the steady
state ρ̂ss, which is the 0-eigenvalue, defined by the equation

Lρ̂ss = 0. (3.7)

There exist a few techniques that target directly the steady state without computing the
whole time-dynamics.

3.2.1 Direct solution of the linear system

Equation (3.7

.

) identifies a system of linear equations that can be solved rather efficiently
by means of linear solvers, developed extensively in mathematical optimisation theory.
Solving this equation for the steady state is usually much simpler than integrating the
temporal dynamics of the quantum system. Thus, it can be done faster and for larger
systems.
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The main issue with this approach is the fact that Eq. (3.7

.

) does not have a zero-

dimensional kernel, but all matrices M̂ = tρ̂ss with Tr
[
M̂
]
= t are valid solutions. Savona

et al. proposed originally in [132

.

] to add as an additional constraint the trace condition

Tr
[
M̂
]
= 1 , by either adding another equation or substituting a line of the Liouvillian.

The resulting system can then be solved with a linear-algebra solver. As the system is
not hermitian, we found that the best performance is achieved by using the BiConjugate-
Stabilized Gradient method [133

.

, 134

.

], but it is possible that future research on linear
algebra solvers might find better solvers. We also remark that those solvers can be executed
efficiently on a GPU, with a notable speedup (typically an improvement of two orders of
magnitude) compared to a standard CPU implementation.

3.3 Tensor networks methods

Tensor Network methods have had a remarkable success in modern numerical physics
because of their effectiveness in representing quantum states with finite computational
resources. The problems those method try to address is to encode with non exponential
resources the wavefunction

|Ψ⟩ = Ψσ1,··· ,σN |σ1, · · · , σN ⟩ , (3.8)

where σ1, · · · , σN ∈ H1 ⊗ . . .HN = H.

The fundamental idea of tensor networks consist in approximating the many-body
wavefunction with a product of many contracted tensors. The so-called Matrix Product
State (MPS) ansatz to express the wavefunction of a 1D system with N sites is such an
example:

Ψσ1,··· ,σN =
∑

i1,i2,...,iN

Ai1,i2σ1 Ai2,i3σ2 . . . AiN ,i1σN
, (3.9)

where the N local tensors Ai,jσi have 3 dimensions: σi labels the elements of the local
Fock space, and i, j are fictitious indices used to introduce correlations among sites. We
remark that if i, j where absent, this would correspond to the Gützwiller factorised ansatz
with no correlations introduced in Section 3.1.1

.

. The amount of correlations that can be
encoded in such an ansatz is proportional to the bond-dimension M . This is the size of
the space spanned by those unphysical indices, and it determines the total dimension of a
MPS ansatz, which is l M2, where l is the local Hilbert space dimension.

When applying an operator to the wavefunction Ψ(σ1, · · · , σN ), the physical indices
σ1, · · · , σN are summed together with those of the operator. The MPS ansatz is extremely
effective in 1D because it is possible to compute expectation values ⟨Ψ|Ĥ|Ψ⟩ by performing
those contractions exactly with a numerically efficient algorithm. For D ≥ 2, however,
the sum over all contractions is known to be an hard problem and it cannot be treated
exactly. Extensive research is still ongoing to find efficient yet general schemes to compute
those contractions in 2D.
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3.3.1 Matrix Product Density Operator

For open-quantum systems one must, however, approximate the density matrix and po-
tentially ensure its positive-definite character, a computationally hard problem. In the
following we will consider the density matrix written in the form,

ρ̂ =
∑

σ1,σ̃1...,σN ,σ̃N

ρσ1,σ̃1,...,σN ,σ̃N |σ1, . . . , σN ⟩ ⟨σ̃1, . . . , σ̃N | , (3.10)

where (σ1, σ̃1) ∈ H ⊗ H are the two indices that label the local space of the density
matrix. In the past years, several schemes have been proposed to approximate the function
ρσ1,σ̃1,...,σN ,σ̃N . This approach suffers from the same limitations as product states when
used in more than 1 dimension in addition to problems related to enforcing the positivity
of the state. The simplest ansatz is based on the Choi’s isomorphism [86

.

] which associates
to a density matrix a pure state in an Hilbert space of doubled dimension. The vectorised
density matrix is described with a matrix product state, which can be easily done by
performing the replacement

A
il,il+1
σl → A

il,il+1

σl,σ̃l
, (3.11)

and maintaining the same contraction structure of Eq. (3.9

.

), valid in the 1D case. In doing
so, one obtains the form of the Matrix Product Operator (MPO) given by [135

.

],

ρσ1,σ̃1,...,σN ,σ̃N = Ai1,i2σ1,σ̃1
Ai2,i3σ2,σ̃2

. . . AiN ,i1σN ,σ̃N
, (3.12)

where we use the Einstein’s summation convention, implying that contracted indices are
summed upon. This firm is equivalent to the MPS ansatz where every local tensor has
two physical dimensions (σiσ̃i) instead of one (σi). While this ansatz has proven effective
and very simple, it does not guarantee that the resulting matrix is positive definite, and
as such cannot always guarantee physical results, especially when combined with time-
evolutions along very long time scales. Moreover, checking if a matrix is positive definite
is an NP-hard problem and therefore cannot be done when systems become relatively large
[136

.

].

Time evolution

Since the matrix product operator ansatz represents mixed states as pure states in a
doubled Hilbert space, the time-evolution can be performed by interpreting the Liouvillian
super-operator L as a matrix, and using the traditional time-evolving-block-decimation
(TEBD) algorithm [137

.

]. While it is not hard to initialise the ansatz in a valid (positive)
state, performing a Trotter-approximation of the time-evolution will introduce errors in
the eigenvalues of the density matrix, which is not guaranteed to remain positive definite
along the evolution. As such, it is not possible to integrate the MPO master equation for
arbitrarily long time intervals. Regardless, several interesting results have been obtained
for dissipative systems with this technique, which has recently been generalised to 2D
systems [66

.

].
Alternatively, it is possible to perform a variational optimisation of the MPO ansatz

targeting the steady state, in a spirit similar to what will be described in Chapter 5

.

. For
example, Cui et Al. have proposed a method for finding the steady-state by searching
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for the ground state of the effective Hamiltonian L†L [65

.

], while Savona et al. improved
on this result by only searching for the null eigenstate of a local Li, and sweeping along
all sites [64

.

]. A limit of both techniques is that the computational cost scales with the
inverse of the squared Liouvillian gap, contrary to real-time evolution which will decay to
the steady state with an exponential rate equal to the gap.

3.3.2 Locally purified tensor networks

An improvement to this last ansatz is achieved by the Locally Purified Density Operator
(LPDO), constructed through a purification procedure, which ensures positive states. The
underlying idea is that of the purification ansatz. It is possible to build a valid mixed
state by taking the reduced trace of a pure state in a bigger Hilbert space, similar to the
construction used in Section 2.1.3

.

. There is freedom in the way one defines the extended
space, and it is unclear if one definition is better than others. In general, the extended
space is built by coupling to each local site an ancilla of dimension l̃, and then building
the MPS wavefunction of this extended system H⊗A = H1 ⊗A1 ⊗ . . .HNAN ,

Ψσ1,a1,...,σN ,aN = Ai1,i2σ1,a1 . . . A
iN ,i1
σN ,aN

. (3.13)

The purification ansatz is built by tracing out the ancillary degrees of freedom of |Ψ⟩ ⟨Ψ|,
obtaining the reduced density matrix of the physical system

ρσ1,σ̃1,...,σN ,σ̃N =
∑

a1,...,aN

Ai1,i2σ1,a1A
ĩ1 ,̃i2
σ̃1,a1

. . . AiN ,i1σN ,aN
AĩN ,̃i1σ̃N ,aN

(3.14)

This ansatz is built to be positive-definite, as it has the form AA† (as well as every

local term A
ik,ik+1
σk,ak A

ĩk ,̃ik+1

σ̃k,ak
is locally positive definite). We remark that the locally-purified

MPO and the vectorised MPO are not equivalent. In fact, while the first might seem more
refined as it enforces some likeable physical property, it has been shown that the bond
dimension of a LPDO is not bounded by that of a vectorised MPDO [138

.

, 139

.

]. This
signals that LPDO are not as efficient encoders as MPDOs. However, when one needs
to compute information-theoretical quantities such as fidelity or mutual information, even
small imaginary or negative eigenvalues of the density matrix introduce a significant error.

Time-evolution

This ansatz was originally introduced to describe mixed thermal states, which evolve
under the action of an Hamiltonian (or an imaginary Hamiltonian). In fact, it is relatively
simple to evolve those states while preserving their internal structure under the action
of an hermitian operator, by acting first to the left, then to the right side of the density
matrix. Unfortunately, the Liouvillian operator has a mixed term L̂ρ̂L̂†, which cannot be
easily treated. Therefore, to maintain the purified structure one must resort to elaborate
schemes, which have proven to be computationally very costly [68

.

].

We would like to conclude by remarking remark that tensor networks have shown to
be relevant not only for encoding quantum states, but also for general machine learning
problems [77

.

, 140

.

, 141

.

].
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Figure 3.2: Sketch of the corner space renormalisation method. In the top panel the
density matrices of the two disjoint systems A and B are shown. In the middle panel the
merged system A ∪B and the corner space are sketched. From Ref.[69

.

].

3.3.3 Corner space renormalisation

One of the main problems encountered when simulating large many-body systems is the
exponential growth of the Hilbert space, and therefore of the computational cost. The
Corner-space renormalisation method is a recently developed technique to determine the
steady-state of an open-quantum system, targeting the relevant subspace of the Hilbert
space, the so-called corner space, for increasingly large systems. By construction, the
method is not suitable for steady states with a large entropy, because the corner space
is built by truncating parts of the Hilbert Space with negligible occupation. However, it
has been used to study spin systems at criticality [43

.

], frustrated bosonic lattices [142

.

],
second-order transitions in bosonic lattices [132

.

] and non-Markovian (incoherently driven)
Hubbard lattices [91

.

].

The idea of the algorithm, sketched in Fig. 3.2

.

, is depicted in what follows. Consider
two systems A and B with Hilbert spaces HA and HB. It is essential to consider systems
small enough so that they can be solved exactly (with any of the methods described

before) in order to obtain the steady-state density matrices ρ̂
(A)
ss and ρ̂

(B)
ss . When targeting

homogeneous systems, one can take A = B. Each density matrix can be diagonalised as

ρ̂(A)ss =
∑

r

p(A)r |ψ(A)
r ⟩⟨ψ(A)

r | , (3.15)

ρ̂(B)
ss =

∑

r

p(B)
r |ψ(B)

r ⟩⟨ψ(B)
r | , (3.16)

where the states |ψ(A/B)
r ⟩ form an orthonormal basis of the Hilbert space HA/B, and
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p
(A/B)
r give the corresponding probabilities such that

∑
r p

(A/B)
r = 1.

The corner method aims at constructing a truncated basis for the merged system
HA∪B = HA⊗HB. The corner-space of dimensionM , C(M) ⊂ HA∪B is built by composing
the basis elements of HA and HB according to some rule. The rule originally proposed in

[69

.

] takes the M most probable basis elements of the joint system |ψ(A)
r1 ⟩ |ψ(B)

r′1
⟩, ranked

according to the joint probability p
(A)
r p

(B)
r′ . In other words, the corner space is spanned

by the orthonormal basis

C(M) =
{
|ψ(A)
r1 ⟩ |ψ(B)

r′1
⟩ , |ψ(A)

r2 ⟩ |ψ(B)
r′2

⟩ , . . . , |ψ(A)
rM

⟩ |ψ(B)
r′M

⟩
}
, (3.17)

where

p(A)r1 p
(B)
r′1

≥ p(A)r2 p
(B)
r′2

≥ · · · ≥ p(A)rM
p
(B)
r′M
, (3.18)

(where indices can repeat themselves, and ri and rj can be identical). For the procedure
to be successful, the total probability captured by the C(M) basis must be

M∑

i=1

p(A)ri p
(B)
r′i

≈ 1 (3.19)

If this was not to be the case, truncation errors might arise. This condition can be met
by systems with moderate entropy. The precise value of M is determined by increasing
it until convergence is reached for a target observable. Once a truncated basis C(M) is
built, the whole procedure can be repeated to build the corner space for increasingly large
systems.

The structure of the state constructed by means of such iterative renormalisation
method is that of a tree-tensor network [143

.

]. The tree network structure is known to be
capable of encoding correlations in arbitrary dimensions, as has been further confirmed
by the various study of critical systems with the corner-space method [43

.

, 132

.

, 144

.

, 91

.

].

3.4 Trajectory-based methods

Until now we have only described methods that target the density matrix, either exactly
or through controlled approximations. A different approach when dealing with open quan-
tum systems consists in not treating the whole density matrix, but rather approximate it
with a finite set of pure quantum states, usually obtained by working with the quantum
trajectories introduced in Section 2.2

.

. This is a similar approach to what is done with
Fokker-Planck equations, where solving the partial differential equations for the distribu-
tion probability is a much harder problem than sampling individual stochastic trajectories
[145

.

, 146

.

].

Numerical methods based on the unravelling of the master equation approximate the
density matrix ρ̂(t) according to

ρ̂(t) ≈ 1

N

N∑

i=1

|ψi(t)⟩ ⟨ψi(t)| , (3.20)
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where the set of N wavefunction {ψi} are sampled stochastically by solving an equal
number of times the stochastic Schrödinger equation [111

.

]. If the size of the Hilbert space
is sufficiently large, reconstructing the whole density matrix is computationally unfeasible.
Quantities of interest such as observables and correlation functions are computed by taking
stochastic averages over the ensemble of sampled trajectories according to the formula

⟨Ô⟩ ≈ 1

N

N∑

i=1

⟨O⟩i =
1

N

N∑

i=1

⟨ψi(t)|Ô|ψi(t)⟩ . (3.21)

Care should be taken when computing two-time correlation functions, as their expression in
terms of stochastic averages requires the use of the quantum regression theorem [21

.

, 82

.

, 97

.

,
147

.

]. From Eq. (3.20

.

) one can easily see that the density matrix under this approximation
has at most N independent eigenvalues and states, and, similarly, at most rank N . This
is a controlled approximation, as it is possible to increase the number of trajectories N
until convergence is reached. Of course the value of N at which convergence will be
reached varies depending on how entropic the system is and what particular quantity one
is computing.

This approximation is particularly effective when working with almost pure (low Von-
Neumann entropy) states, which correspond to low-rank density matrices. In this case,
the number of trajectories needed to converge is limited. The method is instead inefficient
when dealing with high-entropy states, such as the maximally mixed states which require
many (O ∼ dim[H]) eigenstates [148

.

].

From an algorithmic point of view, wavefunction based methods trade memory for the
number of operations: when solving the Lindblad master equation for the time-evolution of
the full density matrix, one needs to compute the superoperator-operator product O(

tf−ti
dt )

times, with a memory requirement of O(exp[2D]), where D is the number of lattice sites
in the system. With a wavefunction based method, instead, one evolves N trajecto-
ries, therefore requiring O(N

tf−ti
dt ) matrix-vector products, with a memory requirement

of O(exp[D]). While still having exponential memory requirements, the decrease from
O(exp[2D]) to O(exp[D]) allows researchers to push numerical simulations much farther.
Moreover, as each stochastic trajectory ψi(t) is an independent stochastic process the al-
gorithm can be easily parallelised. This is opposed to the time-evolution of the density
matrix, which requires solving a single ODE, a task that traditionally cannot be scaled to
more than a handful of computing cores. However, we would like to point out that a set of
ODE solvers known as PITA (parallel in time) [149

.

] or PFASST (parallel full approxima-
tion scheme in space and time) [150

.

], which provide decent, though far from ideal, scaling
when distributed across compute nodes, have been developed in recent years.

3.4.1 Photon-counting trajectories

We have shown in Section 2.2.1

.

that it is possible to perform two (actually, several)
different unravellings of the master equation, both of which are based upon the stochastic
Schrödinger equation. While all the unravellings lead to a stochastic differential equation,
they must be treated differently in order to achieve numerical efficiency.

In case of photon-counting, the differential equation derived in Section 2.2.2

.

takes the
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form of

d |ψ(t)⟩
dt

=

⎡
⎣i
(
− ˆ̃H − i

2

∑

i

⟨L̂†
i L̂i⟩ψ(t)

)
+
∑

i

dRi(t)

⎛
⎝ L̂i√

⟨L̂†
i L̂i⟩ψ(t)

− 1

⎞
⎠
⎤
⎦ |ψ(t)⟩

(3.22)

where ˆ̃H = Ĥ − i
2

∑
i L̂

†
i L̂i is the effective non-Hermitian Hamiltonian and {L̂i} is the

set of jump operators. Molmer, Castin and Dalibard showed in 1992 that this equation
can be interpreted as if the system is evolving according to the effective non-hermitian

Hamiltonian ˆ̃H [151

.

]. This leads to a decrease in the norm of the wavefunction given by
⟨ψ(t+ dt)|ψ(t+ dt)⟩ = ⟨ψ(t)|ψ(t)⟩ − dp(t) +O(dt2), where we retain only terms linear in
dt,

dp(t) = dt
∑

i

pi(t) = dt
∑

i

⟨ψ(t)|L̂†
i L̂i|ψ(t)⟩

⟨ψ(t)|ψ(t)⟩ , (3.23)

and the timestep dt must be chosen so that dp≪ 1. The square modulus of states in quan-

tum mechanics are interpreted as probabilities. The fact that ˆ̃H does not conserve the total
probability means that it does not represent all possible outcomes of the time.evolution
In particular, with probability 1− dp(t) the time-evolved state will be given by

ψ(t+ dt)1−dp(t) = exp
[
−i ˆ̃Hdt

]
ψ(t), (3.24)

while with probability dp(t) the system has been measured by the environment and its
state is macroscopically changed by the jump operator L̂i (where the i−th operator is
selected with probability dpi(t)). Based on this idea, modern algorithms implemented
in QuTip [152

.

, 153

.

] or QuantumOptics.jl [154

.

] employ a faster than the clock algorithm
consisting of three steps:

1 Chose a random number r ∈ [0, 1], encoding the probability that a quantum jump
occurs;

2 Solve the dynamics generated by ˆ̃H for the state |ψ(t)⟩ until the time t′ when the
norm of the wavefunction satisfies ⟨ψ(t′)|ψ(t′)⟩ = r;

3 At time t′ select the i−th quantum jump with probability pi(t
′), and apply the

corresponding L̂i operator to |ψ(t′)⟩, and normalise the resulting state, obtaining

⏐⏐ψ′(t′)
⟩
=

L̂i |ψ(t′)⟩
⟨ψ(t′)|L̂†

i L̂i|ψ(t′)⟩
(3.25)

4 Use the state |ψ′(t′)⟩ as starting point of the algorithm again, until the end time of
the simulation is reached.

Interestingly, by exploiting the fact that jump-diffusion processes are particular ex-
amples of Random Ordinary Differential Equations (RODE) [155

.

], in the future it might
be possible to introduce more advanced, adaptive methods [156

.

]. Notably, computing the
different trajectories in parallel can be done with practically zero overhead, and scaled to
big computing clusters [157

.

].
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3.4.2 Homodyne trajectories

The other type of quantum trajectory introduced in Section 2.2.3

.

are homodyne trajecto-
ries. In the canonical limit of infinite reference field amplitude, the stochastic Schrödinger
equation is rewritten as

d |ψ(t)⟩ =
[
−idt

(
ˆ̃H +

i

2
⟨L̂† + L̂⟩ L̂

)
+ dW (t)

(
L̂ +

1

2
⟨L̂† + L̂⟩

)]
|ψ(t)⟩ . (3.26)

Where, for simplicity, we considered the case of only one jump operator L̂. In the
equation above dW (t) is a real-valued Wiener process, which generates a δ−correlated
noise [158

.

]. The above equation is a stochastic differential equation with drift vector

µ = ˆ̃H + i
2 ⟨L̂† + L̂⟩ L̂ and diffusion vector σ2 = L̂ + 1

2 ⟨L̂† + L̂⟩.
A simple, order method to solve this kind of equations is the following (Euler-Mayurma):

• At every timestep t, compute dW (t) by generating a random number drawn from a
gaussian distribution with mean 0 and variance dt;

• Use dW (t) to compute the new state according to |ψ(t+ dt)⟩ = |ψ(t)⟩+ d |ψ(t)⟩;
While this algorithm is very easy to implement, it only has order O(

√
dt) and thus requires

very small timesteps to converge correctly. More advanced, higher order algorithms are
described in the book by Kloeden and Platen [98

.

], but they do not scale well for systems
with more than one dissipator. In those cases, more advanced adaptive timestepping
algorithms improve the performance by several orders of magnitude [159

.

, 160

.

, 161

.

].

3.4.3 Semiclassical methods

Photon-counting and homodyne trajectories are a powerful tool when describing quan-
tum systems, as they evolve numerically exact trajectories. The error arising from the
stochastic sampling of observables can be made arbitrarily small by increasing the number
of trajectories. However, since those methods encode the pure states into a vector repre-
sentation of the full Hilbert space, they are also plagued by an exponentially-increasing
computational cost as the size of the system increases. A possible alternative is encoding
those pure states into Matrix Product States [162

.

, 163

.

], which compress more efficiently
the information and allow for cheap evaluation of quantities such as entanglement entropy
[164

.

].
Alternative approaches forego an exact description of the pure state, and perform a

semiclassical approximation of the system to obtain a set of C−number SDEs. While
this approximation is uncontrolled, the regime is often of interest in quantum optical
experiments, and it reduces the computational cost exponentially.

The first approach of this kind was proposed by Vogel and Risken in 1989 [112

.

] and was
based upon a truncation of the phase-space master equation, dubbed Truncated Wigner
Approximation.

Truncated Wigner Approximation

The derivation of this method depends on the particular system chosen. We will introduce
the approximation in the context of a single-mode Kerr resonator with single photon losses
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and a coherent drive, described by the Hamiltonian (written in the frame rotating at the
pump frequency and assuming ℏ = 1),

Ĥ = −∆â†â+
U

2
â†â†ââ+ F (â† + â), (3.27)

with jump operator D =
√
γâ. The Lindblad master equation

dρ̂

dt
= −i

[
Ĥ, ρ̂

]
+
γ

2

{
ρ̂, â†â

}
− γâρ̂â†, (3.28)

can be rewritten as a master equation for the quasi-probability distribution Ws(α, α
⋆)

using the rules 2.71

.

derived in Section 2.3

.

. The time-evolution of the Wigner (s = 0)
Housimi-Q (s = 1) and Glauber-p (s = −1) representations are encoded into the following
partial differential equation

∂Ws(α, α
⋆)

∂t
= LsW (α, α⋆) (3.29)

where the linear operator Ls is given by

Ls =− ∂

∂α

{[
i
(
∆− U(|α|2 − 1)

)
− γ
]
α + iF

}
(3.30)

− ∂

∂α⋆

{[
−i
(
∆− U(|α|2 − 1)

)
− γ
]
α⋆ − iF

}
(3.31)

+ γ(1− s)
∂2

∂α∂α⋆
(3.32)

+ is
U

2

(
∂

∂α2
α2 − ∂

∂α⋆2
α⋆2
)

(3.33)

+ iU(1− s2)
∂2

∂α∂α⋆

(
∂

∂α
α− ∂

∂α⋆
α⋆
)
. (3.34)

The operator Ls constitutes a generalised Fokker-Planck equation, as derivatives with
order higher than two appear. As this operator encodes the whole complexity of the
Liouvillian L, solving the time-dynamics of Eq. (3.29

.

) is at least as complex as solving
the Lindblad Master Equation (in practice, solving the PDE is an even more complicated
problem from the numerical point of view). To lower the computational complexity, we
could exploit the fact that a Fokker-Planck equation can be unravelled into a stochastic
differential equation for some stochastic trajectories, and compute the expectation values
by stochastically sampling only a certain number of trajectories. Unfortunately, there is
no established and well-regarded technique to perform such unravelling when terms such
as those in Eq. (3.34

.

) are present, as they cannot be mapped onto a drift or diffusion
term of a Langevin process uniquely [113

.

]. Instead, one usually writes the most general
Langevin noise term and computes the associated Fokker-Planck equation. Third order
terms, which arise from the (anti)-normal ordering, could be eliminated by setting s = ±1
and choosing the P or Q representation. However, we would be left to deal with the term
of Eq. (3.33

.

), which reads:

∝ is

∫ (
∂

∂α2
α2 − ∂

∂α⋆2
α⋆2
)
Ws(α, α

⋆)dαdα⋆. (3.35)
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Such term can in general take non-positive values, thus leading to numerical divergences
when trying to integrate the associated SDE trajectories [114

.

, 116

.

].
The Truncated Wigner Approach takes instead a different path: by considering the

Wigner representation (s = 0) the term of Eq. (3.33

.

) leading to non positive diffusion
is excluded (it is simple to verify that Eq. (3.32

.

), being a positive diagonal term, leads
to a constant positive diffusion). Lastly, assuming that U ≪ γ, one can truncate the
third-order derivates, obtaining the valid, positive definite FP equation for the Wigner
probability

∂W (α, α⋆)

∂t
=

∂

∂α
D(α, α⋆)W (α, α⋆)+

∂

∂α⋆
D⋆(α, α⋆)W (α, α⋆)+Σ

∂2

∂α∂α⋆
W (α, α⋆), (3.36)

where γ is the diagonal positive diffusion constant and the drift operator D(α, α⋆) is given
by

D(α, α⋆) =
{[
i
(
∆− U(|α|2 − 1)

)
− γ
]
α+ iF

}
. (3.37)

For FP equations with diagonal constant diffusion, the associated SDE is simply the
Langevin equation [113

.

] given by

dα(t) = −D(α, α⋆) +

√
γ

2
dW (t) (3.38)

=
{[
i
(
∆− U(|α|2 − 1)

)
− γ
]
α(t) + iF

}
dt+

√
γ

2
dW (t), (3.39)

where dW (t) is a Wiener process. This SDE can easily be generalised to systems with
many coupled bosonic modes, where there will be a diagonal noise for each mode. The
numerical methods to solve this kind of SDE have already been discussed at the end of
Section 3.4.2

.

.
We point out that to sample the symmetric functions O(α, α⋆), corrseponding to some

operator Ô one can use the simple identity

⟨O⟩ =
∫
O(α, α⋆)W (α, α⋆)dαdα⋆ =

1

N

N∑

i=1

O(αi(t), α
⋆
i (t)) (3.40)

for the sample of N trajectories {αi(t)}. While evaluating observables requires somewhat
a small number of trajectories even in systems with many sites, a limit of those unravelling
techniques is that it is very hard to compute the Von-Neumann entropy for more than
a few sites, as it requires computing the integral of the log-probability across the whole
phase space.

Coherent state trajectories

The approach has recently been generalised by Verstraelen and Wouters [124

.

], who showed
that by projecting the SDE of photon-counting (Eq. (3.22

.

)) and homodyne (Eq. (3.26

.

))
trajectories onto the basis of gaussian states. To apply the technique a choice of basis,
such as the two quadratures X,P or the phase and amplitude N,Φ must be chosen and
gaussianity of the two conjugate variables is imposed. The technique has a computational
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complexity comparable to that of the Truncated Wigner5

.

, retaining the continuous mon-
itoring interpretation of the trajectories, but depending on the system and the chosen set
of basis, it can give less accurate results than the Truncated Wigner Approximation.

3.5 Disordered Systems

It is often true that to better understand the physics of a system it is useful to simplify
to a great extent the mathematical model used to describe it, such as assuming spa-
tial homogeneity. But once the underlying physical properties and phase diagram of a
system are understood, the scenario can be further enriched if one considers the effects
of disorder. For closed systems, the interplay of interaction and disorder in a quantum
many-body system can lead to remarkable effects such as the breakdown of ergodicity
due to quantum effects, a phenomenon known as many-body localisation [165

.

, 166

.

, 167

.

].
Moreover, disorder and glass dynamics are believed to play a fundamental role in the high
encoding capability of Spin Glasses (Neural Networks). Some studies on the subject have
recently been performed in the context of open systems [168

.

, 169

.

, 170

.

, 171

.

, 172

.

, 173

.

,
174

.

] in order to unveil the competition between dissipation and localization phenomena.
However, the theoretical investigations of the nature of far-from-equilibrium correlated
phases in the presence of disorder have only scratched the surface [175

.

]. Moreover, while
the non-equilibrium extension of stochastic mean-field theory has been developed [176

.

],
the scarcity of effective numerical and analytical tools to tackle the problem beyond the
mean-field paradigm has limited the study of the effects of disorder on extended systems.
Indeed, dealing with disordered systems introduces an additional layer of complexity with
respect to the clean problem because it requires to average over a number of disorder
realisations to extract the properties of the system. This motivated us to develop an effi-
cient numerical approach to simulate the dynamics of generic open many-body quantum
systems in presence of disorder.

In Section 3.4

.

we have shown that a convenient way to study open quantum systems
are stochastic quantum trajectories, which considerably lower the memory requirements
compared to density-matrix based methods, while reducing the wall-clock time necessary
to carry out the simulations because those calculations can be easily distributed across
several computing nodes.

In this section we will first briefly introduce our notation for dealing with disordered
systems (Section 3.5.1

.

), and then we will present an optimal stochastic trajectory approach
to efficiently compute observables of disordered systems (Section 3.5.3

.

) which we have
proposed in a recent publication [2

.

].

3.5.1 Disordered open quantum systems

In a system with static disorder, we take into account random variations of the parameters
describing the system, which we encode in the vector of random variables w. Those
inhomogeneities satisfy a certain probability distribution pD(w), which will determine how
likely a certain configuration w is to occur. The open system dynamics of the disordered

5As truncated Wigner trajectories tend to fluctuate wildly, as opposed to gaussian trajectories, the
authors claim that this technique requires many fewer trajectories to get a sensible averaging.
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system is obtained by adding to the Lindbladian of the clean system Lclean a second
Lindblad term LD(w), which accounts for both coherent and incoherent disorder-induced
processes

L(w) = Lclean + LD(w). (3.41)

Let us note that L(w) is still a well-defined Lindbladian according to Eq. (2.27

.

) and
can be formally integrated to give the time-evolution of the density matrix for the system
in the presence of static disorder,

ρ̂(t,w) = eL(w)tρ̂0, (3.42)

where ρ̂0 is the state at t = 0. The expectation value of an observable Ô at a given time
t for a specific disorder realisation w reads as

⟨Ô⟩(t,w) = Tr
[
Ôρ(t,w)

]
. (3.43)

In order to access the statistical properties of the system we need to take the average of
observables over the possible disordered configurations w, weighted by their probability
pD(w). We will refer to this average as the configuration average, and will represent it
with an overline •. Dropping the time-dependance we get:

⟨Ô⟩ =
∫
dw pD(w) ⟨Ô⟩(w) (3.44)

= lim
R→∞

1

R

R∑

i=1

⟨Ô⟩(wi), (3.45)

where, in the second line, we introduced the sum over the set of R disorder configurations
{wi}i=1,...,R sampled according to the distribution pD(w).

Note that it is always possible to define a disorder-averaged density matrix as

ρ̂(t) =

[∫
dw pD(w)eL(w)t

]
ρ̂0, (3.46)

such that Tr
[
ρ̂(t)Ô

]
= ⟨Ô⟩ for any given observable Ô. Through Eq. (3.46

.

), it is also

possible to define the averaged (or quenched) propagator

exp[Lavet] =

∫
dw pD(w)eL(w)t, (3.47)

which governs the averaged dynamics of the system. This would allow us to obtain directly
the disorder-averaged dynamics of the system in the particular cases when the formal
expression of Eq. (3.47

.

) can be exactly integrated.
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Figure 3.3: Sketch of the optimal sampling method for a disordered open system, whose
dynamics is unraveled in terms of individual stochastic trajectories. The configuration-

averaged expectation value ⟨Ô⟩(t) of an observable is obtained by averaging its value⟨
Ô
⏐⏐⏐Ô
⟩
i
(t) over an ensemble of trajectories i = 1, 2, . . . R, where each individual trajectory

is evolved in the presence of a different disorder configuration wi.

3.5.2 Density-matrix approach to disordered systems

Obtaining the analytic form of the disorder-averaged propagator is a formidable task,
and in general cannot be relied upon. Therefore, to treat disordered systems one has to
resort to manually performing the disorder average of several density matrices evolved
according to Eq. (2.27

.

). One may compute the Liouvillians L(wi) for a set of R disorder
configurations {wi}i=1,...,R, and then compute the density matrices ρ̂(wi) with one of the
methods presented in Sections 3.1

.

to 3.3

.

. Only at the end one can average the density
matrices, obtaining ¯̂ρ. This approach increases the computational cost of studying a
disordered system by R-times. Indeed, each density matrix ρ̂ has dimension dN × dN for
a system made of N sites with local Hilbert space having dimension d, and the method
suffers from the same memory limits as methods for clean systems.

3.5.3 Optimal stochastic unraveling of disordered open quantum sys-
tems

As mentioned in Section 3.4

.

, numerical methods based on quantum trajectories lower
the memory cost from O(d2N ) to O(dN ) [148

.

]. In this section we present our approach,
sketched in Fig.3.3

.

, to the problem of disordered open quantum systems.
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Statistical errors of stochastic trajectories

We have already shown that the master equation can be formally written as an integral
over the space of trajectories

ρ̂ =

∫

H
dψ p(ψ) |ψ⟩ ⟨ψ| , (3.48)

which is the continuous limit of Eq. (3.20

.

) where we omitted the time-dependence. The
distribution p(ψ) is sampled by independently evolving a finite number of trajectories. As
this is a stochastic sampling of the distribution, the error of the estimated expectation
value Ô scales as 6

.

ϵclean = α

√
Varψ[Ô]

T
, (3.49)

where T is the number of trajectories and Varψ[Ô] is the statistical variance of the observ-
able across the trajectories which depends on the specific evolution protocol and on the
observable Ô. The prefactor α = ϵ/σ arises from the definition of the absolute deviation

ϵ = ⟨|Ô− ⟨Ô⟩|⟩, as opposed to that of the standard deviation σ =

√
⟨Ô2 − ⟨Ô⟩2⟩. As it is

obvious from the definition, both are measures of the deviation (spread) of the distribution
O, but while the first has a more direct interpretation when sampling, the latter has much
better mathematical properties. It is possible to show that α ∈ [0, 1], and we will simply
treat it as a trivial proportionality factor with a value usually around that of the normal
distribution, namely α =

√
2/π [177

.

, pgs. 81-85 and 113].

Stochastic trajectories for disordered systems

We can now introduce our method to perform an efficient estimate of disorder-averaged
expectation values. Our aim is to efficiently compute the expectation value defined by
Eq. (3.44

.

) when the density matrix is unravelled stochastically. By inserting Eq. (3.48

.

)
into Eq. (3.44

.

) we get:

⟨Ô⟩ =
∫
dw pD(w)

∫
dψ p(ψ|w)o(ψ), (3.50)

where p(ψ|w) = p(ψ,w)/pD(w) is the conditional probability of obtaining the state |ψ⟩
given the disorder configuration w and o(ψ) = ⟨ψ(w)| Ô |ψ(w)⟩. Sampling the disorder-
averaged expectation value can therefore be interpreted as performing the sampling of
multivariate distribution p(ψ,w) which depends on ψ and w.

There exist several ways to perform such a sampling. Indeed, we have freedom to choose
how many trajectories we want to evolve according to a given disorder configuration. In
the general case one evolves T trajectories for each of the R disorder realisations for a total
computational cost C = R × T . We will show that, when computing disorder-averaged

6This assumes that all trajectories are independent. Because the initial state is fixed, for small times
below the correlation time the trajectories are not independent variables, and a covariance correction to
the variance should be included through the substitution Varψ → Varψ +Covψ. As this is related to the
correlation time, it must decay exponentially in time. Note that this only affects the efficiency of the
sampling, but not the expectation value, which is unaffected.
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expectation values, the most computationally efficient sampling strategy is realised for
T = 1, i.e. one needs to evolve only one trajectory for each disorder configuration. This
strategy is sketched in Fig. 3.3

.

. In this case, the error committed when computing the
expectation value is

ϵ2 = α2
⟨Ô2⟩ −

(
⟨Ô⟩

)2

R
(3.51)

= α2

⟨Ô2⟩ − ⟨Ô⟩2 +
[
⟨Ô⟩2 −

(
⟨Ô⟩

)2]

R
. (3.52)

The first term ⟨Ô2⟩ − ⟨Ô⟩2 = Varψ[Ô] is the disorder-averaged statistical variance of the
observable [see Eq. (3.49

.

)] and accounts for the uncertainty due to the trajectory protocol.
This is the same contribution found in the clean case described by Eq. (3.49

.

). The second

term ⟨Ô⟩2−
(
⟨Ô⟩

)2
= VarD[⟨Ô⟩], instead, is the variance of the expectation value of the

observable ⟨Ô⟩ due to the presence of disorder. Exploiting these identifications, we can
rewrite Eq. (3.52

.

) in a more compact form as

ϵ = α

√
Varψ(Ô) + VarD(⟨Ô⟩)

R
, (3.53)

which is valid when sampling one trajectory for each disorder realisation. The gener-
alisation of Eq. (3.53

.

) to the T > 1 case is obtained by performing the substitution
Varψ[Ô] → Varψ[Ô]/T which reflects the reduction in the statistical error when evolving
multiple trajectories. After some algebra, we obtain the general formula for the error as a
function of R and T

ϵ(R, T ) = α

√
Varψ(Ô) + T VarD(⟨Ô⟩)

RT
. (3.54)

We point out that in the absence of disorder, VarD = 0 and the only term playing a role
is the uncertainty associated with the trajectories. In this case, the distinction between
different disorder configurations becomes meaningless, and Eq. (3.54

.

) reduces to Eq. (3.49

.

)
where the total number of trajectories is T → C. Equivalently, when integrating the master
equation exactly for R different configurations of w one obtains a similar formula where
the contribution of the trajectories is absent (Varψ = 0) and only VarD contributes to the
error.

From Eq. (3.54

.

) it is easy to deduce that the most efficient sampling strategy, i.e.
the choice of T which minimises the error for a fixed computational cost C = R × T , is
realised for T = 1. We remark that the only assumption we made to obtain Eq. (3.54

.

) is
to consider that the dynamics of the T trajectories we evolve for each disorder realisation
is not correlated 7

.

, as required for an effective stochastic unraveling [85

.

]. Thus Eq. (3.54

.

)
holds for arbitrary evolution protocols and disorder distributions.

7If the evolution is started from a pure state, then the trajectories will be correlated for times t < τ
below the correlation time. Nevertheless, our method still yields correct results, but the error will scale
slightly worse, as there are cross-correlations that are harder to average out.
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Figure 3.4: Mean absolute error ϵ = |nss − nexact|/2 as a function of the computational
cost C, for the average number of bosons in a driven-dissipative Bose-Hubbard chain made
of 5 sites with U = 1.0γ, F = 2.0γ, J = 0.5γ and ∆ = N (1.0, 0.5). The dashed lines are
predicted by ϵ(C/T, T ) as defined in Eq. (3.54

.

), while dots are numerical data. The cases
of T = 1, 10, 100, 1000 trajectories are considered. Numerical data has been computed
using a combination of QuTiP [152

.

, 153

.

] and QuantumOptics.jl [154

.

].

3.5.4 Numerical verification

As a benchmark of the optimality of the method, we have applied the optimal stochastic
unraveling to the driven-dissipative Bose-Hubbard model with on-site static disorder. Here
we simply use system as a benchmark. If the reader is interested in the physical details of
this system, he can refer to Chapter 4

.

. The coherent part of the evolution (in the frame
rotating at the driving frequency and setting ℏ = 1) is ruled by the following Hamiltonian

ĤBH =

L∑

j=1

[
−∆j â

†
j âj +

U

2
â†2j â

2
j + F

(
â†j + âj

)]
− J

∑

⟨i,j⟩
â†i âj , (3.55)

where the local energies {∆j} are assumed to be random variables obeying a gaussian
distribution N (∆0,W ) with mean ∆0 and variance W 2. Dissipative processes, i.e. local
boson leakage, are modelled with a set of local jump operators L̂j = âj (j being the site
index) with uniform rate γ leading to the following expression for the master equation

∂tρ̂(t) = −i
[
ĤBH, ρ̂

]
+
γ

2

L∑

j=1

[
2âj ρ̂â

†
j −

{
â†j âj , ρ̂

}]
. (3.56)

We benchmark against a chain of L = 5 sites with periodic boundary conditions and
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interaction strength U = γ. First, we have computed the observables via a brute force
integration of the master equation averaged over 2000 disorder configurations, sufficient to
reduce the statistical error below 5 · 10−3. We take the value of the average boson density
n̂ =

∑L
j=1 â

†
j âj/L computed in this way as the exact value nexact against which we will

compare the sampling performed with trajectories.
We then unravel the dynamics of the master equation (3.56

.

) in terms of photon-
counting quantum trajectories evolved according to the wavefunction Monte Carlo method
presented in Section 3.4.1

.

[96

.

, 151

.

]. We generate R disorder configurationsw, and compute
T = 1, 10, 100, 1000 different trajectories for every configuration. We extract the steady-
state average boson density ni for every i = 1, . . . , C = RT trajectory.

In Fig. 3.4

.

we show the mean absolute error ϵ(R, T ) = 1
C
∑C

i=1 |ni − nexact| computed

both numerically and analytically (Eq. (3.54

.

) with α =
√
2/π), finding a perfect agree-

ment. The fact that at a fixed computational cost C the lowest sampling error ϵ is achieved
by considering T = 1 further confirms the optimality of our method.

3.6 Conclusions

To summarise, we have shown that there exist several numerical methods to treat finite
size open quantum systems, which can often be combined together. In general, if one is
only interested in the steady-state, this can be computed with a much lower computational
cost compared to the full time-evolution. Iterative solvers targeting the steady-state can
be combined with other ansätze that truncate that space, either semiclassically such as
Gützwiller or by computing the corner space. Alternatively, an efficient and scalable
approach is ensured by quantum trajectories, which can also be combined with several
ansätze. The main limitation for those numerical methods is the entropy of the state,
which limits the effectiveness of rank-reduction techniques, and the presence of quantum
correlations, which cannot be treated semiclassically. Tensor network techniques, which
perform remarkably for very mixed states, are limited to only 1 dimensional systems, and
only few proof of concept exist in higher dimensional systems.

At the end of the chapter we have also introduced a general sampling method to effi-
ciently compute configuration averages of observables in disordered open systems, whose
dynamics has been unraveled with stochastic trajectories. We have proven that the op-
timal strategy is realised when each trajectory evolves according to a different disorder
configuration. Our approach allows us to drastically reduce the computational cost needed
to perform disorder-averaged quantities, because the scaling of the statistical error with the
number of trajectories and disorder configurations is independent of the specific stochastic
evolution protocol and of the particular disorder distribution

46



CHAPTER 4

Critical phenomena in the driven-dissipative Bose-Hubbard model

In a closed many-body quantum system at zero temperature, the pure ground state may
undergo a quantum phase transition when there is a competition between two physical
processes described by non-commuting Hamiltonian terms [178

.

]. In an open system, the
competition between unitary Hamiltonian evolution and incoherent dissipation can induce
a dissipative phase transition for the steady-state in the thermodynamic limit [39

.

], as it has
been discussed theoretically for photonic systems [179

.

, 180

.

, 181

.

, 182

.

, 183

.

], lossy polariton
condensates [184

.

, 185

.

, 186

.

] and spin models [43

.

, 187

.

].
In this chapter we will present a thorough investigation of the the driven-dissipative

Bose-Hubbard model, and the closely-related phenomenon of optical bistability. We will
begin in Section 4.1

.

by briefly reviewing the experimental platforms relevant for this model.
In Section 4.2

.

we will introduce the physics of a single dissipative nonlinear resonator. In
Section 4.2.4

.

we will show that by coherently driving several coupled resonators it is possi-
ble to create a macroscopic population of bosons in the zero-wavevector mode (k = 0). In
Section 4.3

.

we will show via numerical results that if those resonators exhibit non-linear
behaviour, this mode can be linked with a first-order phase transition that remarkably
exhibits long-range order. Moreover, we will show that such first-order criticalities are
signalled by the emergence of a bistable behaviour. In Section 4.4

.

we will investigate the
effects of disorder. This theoretical investigation is relevant to experiments on lattices
of photonic resonators can be constructed with relative ease [26

.

, 188

.

, 189

.

, 190

.

], in plat-
forms such as patterned semiconductor microcavities [191

.

] and nonlinear superconducting
microwave resonators [24

.

, 192

.

, 193

.

].
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4.1 Experimental systems

In this section we will thoroughly study the physics of interacting massive bosonic particles
in a dissipative context. There exist several experimental platforms that allow the confine-
ment and control of bosonic particles, such as optomechanical resonators [27

.

], Rydyberg
atoms [187

.

, 194

.

, 195

.

], exciton polaritons [30

.

] and superconducting circuits [193

.

].

4.1.1 Exciton polaritons

Particularly relevant experimental platforms are those exploiting hybrid light-matter quasi-
particles, the so-called polaritons. The underlying idea is that confining light in a cavity
gives it an effective mass, and photon-photon interaction can be mediated by a mat-
ter degree of freedom strongly coupled to the photons. The confinement of photons is
achieved by delimiting a cavity through some reflective mirrors. At optical frequencies
stacks of Bragg Mirrors are used, which allow to create quasi 0-dimensional, 1D or 2D
electromagnetic cavities. 2D cavities are interesting because the in-plane (parallel to the
mirrors) dispersion relation of the confined light reproduces that of a massive particle.
This can be seen by expanding to second order in |k⊥|/kz the modulus of the wave-vector
k = {k⊥, kz},

|k| =
√
k2z + |k⊥|2 = kz

(
1 +

|k⊥|2
2k2z

)
+O(

|k⊥|4
k4z

). (4.1)

and by substituting this term into the dispersion relation

ωph(k) =
ℏc
n0

|k| = meffc
2 +

(ℏ|k⊥|)2
2meff

, (4.2)
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4. The driven-dissipative Bose-Hubbard model

Figure 4.1: Left panel: Sketch of a planar semiconductor microcavity delimited by two
Bragg mirrors and embedding a quantum well (QW). The wave vector in the z direction
perpendicular to the cavity plane is quantized, while the in-plane motion is free. The
cavity photon mode is strongly coupled to the excitonic transition in the QW. Right panel:
energy dispersion for an exciton-polariton. In the lower panel the 2D photonic dispersion
and the excitonic part are represented with dashed lines. The lower and upper polariton
dispersions are drawn with continuous lines. In the top panel a continuum excitonic modes
are depicted, which when pumped will relax towards the lower polariton. From [26

.

].

where n0 is the refraction index of the medium between the mirrors, kz is quantised due
to the boundary conditions imposed by the mirrors, and meff = ℏn0kz/c is the effective
mass of the photons confined to the 2D in-plane space.

The non-linear interaction among photons, which is usually negligible at optical fre-
quencies in the vacuum [34

.

], can be induced by inserting a nonlinear medium, such as a
quantum well, inside of the Fabry-Perot cavity. When light is shined on semiconductors,
photons might be absorbed by electrons, which are then promoted from the valence band
into the conduction band. When this happens an electron-hole pair is created; as those
particles have opposite charge, they attract each other, binding together into a quasi-
particle with bosonic statistics, the exciton. Excitons interact through the Coulomb force
because of their fundamental electronic nature. and they decay radiatively by emitting a
photon in the cavity.

This system can be modelled theoretically by the Hamiltonian for the cavity photons
(ĉk) and excitons (d̂k),

Ĥ =
∑

k

ℏ
[
ωph(k)ĉ

†
kĉk + ωex(k)d̂

†
kd̂k +Ω(d̂†kĉk + ĉ†kd̂k)

]
+
∑

k,k′,q

Uex-ex

2
d̂†k+qd̂

†
k′−qd̂kd̂k′ ,

(4.3)
where Ω is the Rabi frequency quantifying the coupling between the bosons and the pho-
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tons, and Uex-ex is the exciton-exciton interaction strength, for which we have omitted the
dependency from the wave-vectors. This Hamiltonian can be diagonalised by introducing
the polariton operators as a linear combination of the photonic ĉ and matter d̂ operators
[196

.

].

â
LP/UP
k = u

LP/UP
k, ph ĉk + u

LP/UP
k, ex d̂k. (4.4)

The operator â†,LP (â†,UP ) creates a lower (upper) polariton. For every wave-vector k

the condition |uLP/UP
k, ph |2 + |uLP/UP

k, ex |2 = 1 implies that Ck = |uLP/UP
k, ph |2 can be interpreted

as the photonic fraction of the polariton and Xk = |uLP/UP
k, ex |2 as the excitonic fraction.

With this change of coordinates one can rewrite the Hamiltonian into the form

Ĥ =
∑

j∈{LP,UP}

∑

k

ℏωj(k)â†j,kâj,k +
∑

k′,q

Uj,j′,j′′,j′′′

2
â†j,k+qâ

†
j′,k′−qâj′′,kâj′′′,k′ , (4.5)

where ωj(k) and Uj,j′,j′′,j′′′ depend on the coefficients ωph, ωex, Ω and Uex-ex. The resulting
dispersion relation for a 2D cavity is depicted in Fig. 4.1

.

. If one considers only the lower-
polariton branch and considers only a single spatial mode, then the Hamiltonian reads

Ĥsingle−mode = ℏω0â
†â+

U

2
â†â†ââ, (4.6)

where ω0 = meffc
2. this is a Kerr Hamiltonian. The leaking of photons out of the cavity

can be modelled within the master-equation formalism by adding single-polariton losses
through the dissipative channel â with rate γ.

We remark that the polariton-polariton interaction strength for exciton polaritons is
usually in the range of U/γ ≃ 10−2, with a few state of the art devices reported to have
nonlinearities as high as U/γ ≃ 5 · 10−2 [197

.

].

4.1.2 Lattices of resonators

By etching a planar cavity in order to obtain a quasi 0-D structure like a micropillar it
is possible to create a system with few and energetically separated modes. The polariton
picture can still be used to describe those systems, but instead of a collection of k modes
only few are available. Moreover, by coupling several of those pillars it is possible to
engineer 1D chains, 2D lattices or even artificial systems such as benzene molecules [198

.

],
which can produce remarkable properties. The coupling is usually achieved by slightly
overlapping the pillars, so that the photons, and therefore the polaritons, can hop from
one resonator to another (see for example Fig. 4.2

.

). While the exact form of the coupling
depends on the shape of the pillars and microscopic details of the system, it is in general
possible to model it with a nearest neighbour hopping term of the polariton,

Hhop = −J
∑

⟨i,j⟩
â†i âj + âiâ

†
j , (4.7)

where the pedix i labels the site where the creation/destruction operators act, and J is
the hopping rate. Devices like that allow to study the physics of interacting lattices, such
as the Bose-Hubbard model in the weakly interacting limit.
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Figure 4.2: A: photography of an artificial benzene molecule consisting of 6 coupled
micropillars. The structure of the micropillars is sketched on the right, where the top
and bottom stacks of Bragg mirrors and the nonlinear quantum well are evidenced. B:
The experimentally-measured energy dispersion of the structure above. C-d: A one-
dimensional chain of pillars used to simulate the SSH model, and a two-dimensional hon-
eycomb lattice. Left panels are adapted from [198

.

], while right panels have been kindly
provided by the authors.

4.1.3 Superconducting resonators

It is also possible to work with polaritons in the microwave regime using a different physical
implementation. At those frequencies the electromagnetic cavity can be implemented via
a superconducting transmission line resonator, delimited by two capacitors which behave
effectively as the mirrors. Three-dimensional cavities are made by using a superconducting
box. The nonlinearity is provided by embedding a nonlinear element, usually a Josephson
junction or a SQUID into the resonator. The physics of several coupled resonators can
be studied by capacitively (or inductively) coupling the resonators. When working with
microwaves it is possible to fabricate resonators with quality factors much higher than the
optical counterpart (106 − 1010 versus 103 − 105 for optical setups). Additionally, it is
easy to produce devices with very high nonlinearities (U/γ > 10) [192

.

, 193

.

].

Microwave resonators can be modeled theoretically with the tools of circuits quantum-
electro-dynamics, which provide a quantized description of the currents and voltages. In
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electrical devices energy can be stored in the electric field of a capacitor, or in the magnetic
flux of an inductance. In a capacitance C, the stored energy is given by EC = Q2/2C where
Q is the accumulated charge. Likewise, the energy stored within an inductance L is given
by EL = Φ2/2L, where Φ is the magnetic flux. The flux and the charge can be modelled

as canonically-conjugated quantum operators with commuting relation
[
Φ̂, Q̂

]
= i. This

quantization produces the Hamiltonian

Ĥ =
Φ̂2

2L
+
Q̂2

2C
. (4.8)

In the same spirit as the quantum harmonic oscillator, it is possible to diagonalise the
Hamiltonian by defining the ladder operator, (where ℏ = 1),

â =
1√
ω

(
Φ̂√
2L

− i
Q̂√
2C

)
, (4.9)

where the frequency is given by ω = 1/
√
LC. With this operator, which respects the

traditional commuting relation
[
â, â†

]
= 1, the Hamiltonian reduces to the standard single-

mode harmonic oscillator

Ĥ = ω(â†â+
1

2
). (4.10)

The dissipation is naturally provided by the radiative coupling with the environment, both
because of defects in the fabrication of the microwave cavity and because the mirrors are
not perfectly reflective.

Interestingly, it is also possible to couple the nonlinear cavity with another degree of
freedom, such as an artificial two-level system represented by a Josephson junction. This
setup has been used to probe dissipatively stabilized Mott insulators [199

.

], and could be
also used to study incoherent pumping schemes [91

.

, 44

.

, 45

.

].

4.2 Single-mode Kerr model

As a pedagogical step towards an understanding of the phenomena that emerges in a lattice
of coupled nonlinear cavities, we first briefly discuss the single cavity driven-dissipative
Kerr Model.

The Kerr model describes a single bosonic mode with frequency ωc with boson-boson
interaction U , driven by a pump at frequency ωp and amplitude F . The Hamiltonian of
the system is,

ĤKerr = ωcâ
†â+

U

2
â†â†ââ+ iF (eiωptâ† + e−iωptâ). (4.11)

The coupling to the environment is modelled by single-boson losses at rate γ and jump
operator L̂ = â. We shift the frame to the one rotating at the pump frequency with the
unitary transformation U = e−iωptâ

†â in order to obtain the time-independent Hamiltonian

Ĥ = −∆â†â+
U

2
â†â†ââ+ F (â† + â), (4.12)
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Figure 4.3: Top panel: semiclassical solutions for the steady state average population as a
function of the drive amplitude for the Kerr model with detuning ∆ = 2γ. The bottom line
represent the low density solution, the top bright line represent the high density solution
and the middle dashed line is the intermediate unstable solution. Bottom panel: number
of semiclassical non-degenerate solutions as a function of the drive amplitude F/γ and
detuning ∆/γ. The dark area has a single (triple-degenerate) solution while the bright
area has three non degenerate solutions. The horizontal line is ∆/γ =

√
3/2. The kerr

nonlinearity is U/γ = 0.1.

where ∆ = ωp − ωc is the detuning between the cavity and the pump frequency. The
resulting Lindblad master equation is therefore

dρ̂(t)

dt
= −i

[
Ĥ, ρ̂(t)

]
+ γ

(
âρ̂(t)â† − 1

2
{â†â, ρ̂(t)}

)
. (4.13)

4.2.1 Semiclassical theory

By computing the equations of motion for the expectation value of â(t) operator using the
adjoint master equation [21

.

]

d ⟨â⟩
dt

= −i∆ ⟨â⟩+ iU ⟨â†ââ⟩+ F − γ

2
⟨â⟩ , (4.14)

we can then perform a semiclassical analysis by replacing operator-valued expectation
values with C−numbers encoding the (classical) coherent state of the system. Upon per-
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forming the substitution â(t) → α(t) we obtain the so-called driven-dissipative Gross-
Pitaievskii equation

α̇ =
{
−i
[
∆− U |α|2

]
− γ

2

}
α+ F. (4.15)

The steady state equation α̇ = 0 can be recast into a cubic equation for the mean-field
coherent population n = |α|2,

n

[
(∆− Un)2 +

γ2

2

]
= F 2, (4.16)

which has three solutions. It is possible to analytically show that the three solutions are
degenerate if ∆/γ < ∆⋆/γ =

√
3/2, while for ∆ > ∆⋆ there always exists an interval

F/γ ∈ [F<, F>] where the three solutions are non-degenerate, as shown in the bottom
panel of Fig. 4.3

.

. By performing a linear stability analysis, one verifies that of the three
non-trivial solutions one is actually dynamically unstable. This means that in presence of
perturbations or fluctuations the system runs away from the unstable steady state. An
example of the three solutions is given in the top panel of Fig. 4.3

.

, where U/γ = 0.1 and
∆/γ = 2.

The existence of two stable solutions at the semiclassical level is in stark contrast to
what is given by the full quantum solution found by Drummond and Walls [52

.

], who
showed that the system has an unique steady state. The expectation value for the number
of photons in the steady state is also plotted in Fig. 4.3

.

. In that figure we also show that
the semiclassical theory gives a perfect prediction of the number of photons in the region
with a single solution, while it fails in the bistable region.

Unravelling the master equation (4.13

.

) into photon-counted trajectories, as introduced
in Section 2.2.2

.

, and computing the expected number of photons ⟨ψ| n̂ |ψ⟩ along the re-
sulting stochastic process yields the following: when F < F< or F > F> the observed
trajectory oscillates around the population predicted by the semiclassical theory. Instead,
if F lies in the bistable region, the system oscillates either around the low- or the high-
density solutions, and rarely jumps suddenly from one solution to the other.

The two dynamically stable solutions are correctly interpreted as stable by the semi-
classical theory. The single solution predicted by the master equation reflects the fact that
if the results of the measurements are not kept track of, the system will be in a mixed
superposition of the two, and it’s impossible to tell in which one it is exactly without
measuring.

4.2.2 The driven-dissipative Bose-Hubbard model

Remarkable properties arise in quantum systems when several modes interact. The Bose-
Hubbard model, which accounts for particle exchange among several interacting bosonic
modes, has been extensively studied in the context of closed Hamiltonian systems both the-
oretically [200

.

, 201

.

, 202

.

, 203

.

, 204

.

, 205

.

] and experimentally in experiments where ultracold-
atoms are loaded in optical lattices [206

.

, 207

.

]. Recent advancements in the fabrication
and control of arrays of resonators, both in the microwave and optical frequency domain
provides the opportunity to study Bose-Hubbard systems in the presence of driving and
dissipation under controlled conditions. After the initial proposal for the experimental
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Figure 4.4: Time evolution of the number of photons along two photon-counting trajec-
tories. The semiclassical prediction for the low and high density solutions are represented
by dotted lines. Parameters are the same as in the top panel of Fig. 4.3

.

.

implementation in lattices of coupled photonic cavities [208

.

, 209

.

, 210

.

], research initially
focused on phenomena close to the Mott insulator-superfluid quantum phase transition
[211

.

, 212

.

, 213

.

]. More recently, an extensive investigation of the features found only in the
driven-dissipative context, such as bistability and dissipative phase transitions have been
carried out both theoretically [26

.

, 214

.

, 215

.

, 181

.

, 183

.

, 216

.

] and experimentally [24

.

, 192

.

,
197

.

].

In the following, we will focus on the driven-dissipative Bose-Hubbard model described
by the Hamiltonian,

H = −
∑

i

∆â†i âi − J
∑

⟨i,j⟩
â†i âj + âiâ

†
j +

U

2

∑

i

â†i â
†
i âiâi +

∑

i

F (â†i + âi) (4.17)

and with homogeneous single particle loss rate γ on every site, described by the jump
operator âi.

4.2.3 Mean-field studies

Initial investigations into the lattice model resorted to a combination of mean-field tech-
niques with other approximations. Performing a mean-field approximation on top of the
semiclassical approximation described in the previous chapter (setting all fields α = αi ∀i)
yields the same equations of the Kerr model, where the single-particle energy is replaced
by the effective detuning ∆ → ∆+ zJ (z beeing the coordination number of the lattice),
and bistability is still predicted whenever ∆ + zJ >

√
3/2.
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Figure 4.5: Rescaled steady-state expectation value of the occupation number as a function
of the pump amplitude F/γ. The dotted line represents the semiclassical solution implying
multistability, while the coloured lines are computed for different values of the rescaling
factor N . Parameters as in Fig. 4.3

.

: ∆ = 2γ and U = 0.1γ.

A more accurate study has been performed with a self-consistent Gutzwiller mean-field
approximation, which approximates the density matrix as

ρ̂ ≈ ⊗N
i=1ρ̂i (4.18)

where ρ̂i is the local density matrix of site i. This approach neglects quantum correlations
among sites, but thanks to the self-consistent time evolution it correctly models classical
correlations. Unfortunately, also this method does not take into account the spatial di-
mensionality of the system. Through this approximation Le Boitè et al. have shown that
the system still exhibits bistability, (and in some cases even multistability) [214

.

] though
the boundaries are slightly shifted compared to the semiclassical mean-field prediction.

4.2.4 Momentum space description

An insight in how the physics of the single-cavity model is related to the physics of the
lattice model is obtained by rewriting the driven-dissipative Bose-Hubbard model in mo-

mentum space [183

.

]. We perform the canonical substitution âj⃗ = 1/
√
N
∑

k⃗
eik⃗j⃗ â

k⃗
, where

N is the total number of sites in the lattice. With some algebra, it is possible to show
that linear dissipation in real space transforms into linear dissipation in momentum space,
namely, ∑

i

D(âj⃗) →
∑

k⃗

D(â
k⃗
). (4.19)
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The Hamiltonian, instead, can be rewritten as

H =
∑

k

−(∆ + 2zJ cos(k))â†kâk +
U

2N

∑

k,p,q

â†kâ
†
pâqâq−k−p + F

√
N(â†0 + â0), (4.20)

where we see that the homogeneous pumping translates in k−space to a pump acting
only on the k = 0 mode. As all modes have the same loss rate, but only one is pumped,
modes with k ̸= 0 will relax to the vacuum unless they are coupled to the homogeneous
mode. From Eq. (4.20

.

) it is evident that the coupling arises from the interaction U/N and
conserves total momentum. Upon inspection, we see that the coupling term can couple
the following modes: (i) the k = 0 mode with itself, through the term â†0â

†
0â0â0; (ii) the

k = 0 mode with 2 other modes â†kâ
†
−kâ0â0+ c.c.; (iii) the k = 0 mode with 3 other modes

â†kâ
†
pâq − p − kâ0 + h.c.; (iv) four k ̸= 0 modes. As the action of the ladder operators is

âk ̸=0 |nk⟩ =
√
nk |nk − 1⟩, assuming that

√
nk ≈ 0 because the modes are not pumped,

we could as a first approximation neglect those terms and study the effective single-mode
Hamiltonian

Hk=0 = −(∆ + 2zJ)n̂0 +
U

2N
â†0â

†
0â0â0 + F

√
N(â†0 + â0). (4.21)

The approximation could be improved by treating the most relevant couplings to the other
modes. This effective Hamiltonian is equivalent to that of the Kerr resonator, where the
single-particle energy ∆ → ∆+2zJ is rescaled by the lattice hopping, and the interactions
and pump amplitude are rescaled by the number of sites of the lattice. Recently, it was
suggested by Casteels et al. to study the N → +∞ of the Kerr model as a proxy of
the thermodynamic limit of the lattice model [183

.

]. In Fig. 4.5

.

we show the rescaled
steady-state occupation number ⟨n̂⟩ /N of the Kerr model in the N → ∞ limit, which
can be interpreted as the mean occupation of the lattice model. The appearance of a
discontinuity in the limit N → ∞, suggests that the lattice model might support a first
order phase transition in the thermodynamic limit of the bistable region.

4.3 Phase transition in the homogeneous systems

To investigate this discontinuity of the lattice model within a framework that keeps track
of dimensionality, we will present a finite-size scaling analysis of statical and dynamical
properties of the system in the bistable region.

4.3.1 The numerical method

Numerically, performing a finite-size scaling of a quantum system will incur in an exponen-
tial slowdown due to the increase of the dimensionality of the Hilbert space. This problem
could be avoid by using the Corner-Space renormalisation method, but that would prevent
us from studying dynamical properties. Alternatively, Matrix Product Operators diminish
the impact of the increasing dimensionality, but established techniques only work on 1D
lattices and at the time when this research was carried out MPO techniques had yet to
be applied to 2D dissipative lattices (later, a proof of concept far from a phase transition
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was developed by Kshetrimayum et Al. [66

.

]). A viable alternative are phase-space meth-
ods based on stochastic differential equations. While in principle a full treatment of the
quantum nature of the system would be possible with Gauge-P representation techniques
[115

.

, 116

.

], the literature on the subject is still scarce. For that reason, we considered the
Truncated Wigner Approximation presented in Section 3.4.3

.

, which works in regimes of
weak interaction, relevant for semiconductor-micropillar devices.

The Lindblad master equation is mapped exactly onto a third-order differential equa-
tion for the Wigner quasi-probability, representing the density matrix. In the limit of
small U/γ, the third-order derivatives can be neglected so that the differential equation
becomes a Fokker-Planck equation [111

.

] for a well defined probability function [112

.

, 26

.

].
This equation can be solved via a Monte Carlo average of the solution of the stochastic
differential equations for the complex field αj(t) describing the bosonic mode in the j-th
site, namely,

α̇j =
[
−i(∆− U(|αj |2 − 1)− γ/2)

]
αj − iJ

∑

j′
αj′ + iF +

√
γ/2χ(t), (4.22)

where j′ runs over the nearest neighbours of j and χ(t) is a normalised random complex
gaussian noise such that ⟨χ(t)χ(t′)⟩ = 0 and ⟨χ(t)χ∗(t′)⟩ = δ(t − t′). Within this for-
malism, expectation values for symmetrised products of operators [112

.

, 26

.

] are obtained

by averaging over different stochastic trajectories through the relation
⟨{

(â†i )
n, âmj

}
s

⟩
=

1
Ntraj

∑
r(α

∗
i,r)

nαmj,r, where the index r runs over the Ntraj random trajectories.

To validate our approach on the driven-dissipative Bose-Hubbard lattice, we bench-
marked the Truncated Wigner Approximation against numerically exact techniques, such
as photon counting trajectories [148

.

] combined with the corner-space renormalisation
method [69

.

]. The benchmark presented in the Appendix B.1

.

shows that for small chains
of 4 sites (the biggest we could simulate exactly) the Truncated Wigner Approximation
provides numerically accurate results for nonlinearities up to U/γ = 0.5. For our analysis,
we fixed U/γ = 0.1 in order to ensure numerical accuracy. Moreover, this value is within
reach for state of the art semiconductor micropillar lattices.

Anticipating a result that will be discussed later, we will show that the Jacobian of
the SDE is ill-conditioned in the vicinity of its metastable solutions. As such, to perform
a quantitative analysis of dynamical quantities it is essential to employ a stiff solver.
Non-stiff solvers such as Euler-Mayurama or Euler-Heun, which normally ensure strong
convergence, will only ensure weak convergence on this particular problem, and dynamical
quantities will be skewed and be weakly correlated to the selected time-step [98

.

]. As such,
to numerically solve the Eq.(4.22

.

) we used a combination of recently developed stiff solvers1

.

[161

.

, 160

.

] implemented in Julia [217

.

] within the DifferentialEquations.jl package [218

.

].

1Initial benchmarking suggested that SKenCarp performs poorly on this particular problem. SOSRA2
and SOSRI2 provided excellent results, both in agreement with each other and with the full quantum
solution at small lattice sizes. SOSRA2 proved to be the most efficient, and was selected to produce the
entirety of the results presented in the following sections of the chapter.
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4. The driven-dissipative Bose-Hubbard model

Figure 4.6: Left panels are for 1D arrays, while right panels refer to 2D square lattices.
(a) and (b): steady-state average population per site versus driving amplitude F (in units
of the dissipation rate γ) for lattices of different size. The dashed line is the prediction of
the Gross-Pitaevskii mean-field theory. (c), (d): time-dependent single-trajectory popula-
tion nWj in the j−th site (dark blue) and same quantity averaged over all sites n̄Wj (light
orange) for F = 1.5695γ. (e), (f): contour plot of the probability distribution p(n) of the
site-averaged steady-state population versus the driving. White diamonds represent the
steady-state average population per site, also shown in panels (a) and (b). (c) and (e)
are for a 256× 1 array, while (d) and (f) are for a 14× 14 lattice. Trajectories have been
computed via the truncated Wigner approximation with parameters: U = 0.1γ, ∆ = 0.1γ
and zJ = 0.9γ (hopping rate times the coordination number z).
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4. The driven-dissipative Bose-Hubbard model

4.3.2 Statical and dynamical properties of the lattice boson population

Here we will compare the behaviour of 1D and 2D lattices in the region where mean-field
[214

.

, 215

.

] predicts multiple solutions. To make the comparison effective, we will consider
the same value of zJ for different lattices, so that the mean field prediction is the same
for the 1D and 2D cases, and discrepancies are only due to effects beyond mean-field. In
Fig. 4.6

.

(a) we present results obtained with the truncated Wigner approximation for the

steady-state site-averaged population nss =
1
N

∑N
i=1Tr(ρ̂ssâ

†
i âi) for 1D arrays of different

length L (up to L = 512). In Fig. 4.6

.

(b), the same observable is reported for 2D L × L
lattices (up to 14× 14). Both 1D and 2D calculations have been performed with periodic
boundary conditions. In both Fig. 4.6

.

(a) and (b) the Gross-Pitaevskii-like mean-field
prediction is depicted by the dashed line. Similar to what was seen in our treatment of
the Kerr resonator, the multistability predicted by mean-field theories disappears when we
target the steady-state density matrix, as the solution, in absence of strong symmetries, is
unique under quite general assumptions [52

.

, 37

.

]. In the same way, quantum fluctuations
perturb the mean-field solutions so that on a single trajectory the system switches back
and forth from one metastable state to another on a time scale related to some eigenvalue
of the Liouvillian [112

.

, 181

.

, 219

.

, 197

.

] (see also Fig. 4.6

.

(c)). The results in Fig. 4.6

.

(a) show
that the S-shaped multivalued curve of the mean-field theory is replaced by a single-valued
function, which depends on the array size L. Remarkably, by increasing the size L of the
array nss(F ) eventually converges to a curve with a finite slope. On the other hand, in 2D
the slope of nss(F ) does not saturate when increasing the size L of the lattices, suggesting
the emergence of a discontinuous jump in the thermodynamic limit compatible with a
first-order phase transition.

In Fig. 4.6

.

(c) and Fig. 4.6

.

(d), we present the dynamics of the boson population in a
single stochastic Wigner trajectory for the 1D and 2D lattices, respectively. While Wigner
trajectories per se are a mathematical tool that cannot be given a physical interpretation
before averaging, their mathematical definition given by Eq. (4.22

.

) is equivalent (except
for a small effective rescaling of the single particle energy given by the term ∝ −Uα) to
the dynamics of the semiclassical field. Therefore, Wigner trajectories will show the same
qualitative (switching) behaviour of a physical system in the semiclassical regime.

In 1D, switches between the two metastable mean-field solutions are barely visible
in the population of the j-th site nWj (t) (blue curve) and absent in the site-averaged

population n̄W (t) = 1/N
∑N

j=1 n
W
j (t) (orange curve), consistent with the formation of

moving domains with low and high density inside the array [216

.

]. We remark that domains
are not clearly identified in this case because of our choice of parameters, and upon further
investigations we understood that by increasing the single particle energy ∆ we separate
more clearly the low- and high-density branches, which results in more clearly marked
domains.

The 2D lattice exhibits a strikingly different behaviour, with random switchings of the
average population nWi (t) between two well definite metastable states. The populations in
all sites switch collectively since nWj (t) and n̄W (t) strongly overlap. Furthermore, notice
that the 2D timescales are far longer than in the 1D case, indicating a significantly slower
dynamics. The fact that all site populations jump suddenly at the same time suggests
that a macroscopic fraction of the population lies in the k = 0 mode. This is consistent
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with the preliminary analysis presented in Section 4.2.4

.

, where we had claimed, under
certain approximations that neglected the effects of dimensionality, that the k = 0 would
undergo bistable dynamics qualitatively similar to those found in the Kerr single-mode
model [183

.

].

Additional insight is provided by the study of the probability distribution p(n) of the
occupation number n. Formally, this is defined as

p(n) =
⟨n|ρ̂|n⟩
Tr[ρ̂]

, (4.23)

and can be obtained with most numerical methods. To compute p(n) at the steady
state we select a time ts ≈ λ−3 where the system on average is steady and statistically
collect the values of n = n̄W (t > ts) for all the considered trajectories. We plot p(n) in
Fig. 4.6

.

(e,f) for different values of the driving amplitude F . We notice that, in the 1D
case, this distribution is mono-modal for all values of F and the steady-state mean value
of the population follows the peak of this distribution. In the 2D lattice p(n) exhibits
a completely different behaviour: it has a single peak in the limit of small and large F ,
while it is bimodal in proximity of the critical region. Here, for finite-size the steady-state
expectation value nss falls in a region of negligible probability (p(nss) ≃ 0) in-between two
peaks corresponding to the low and high population phases. When the 2D lattice size is
increased, the crossover between the two phases becomes steeper and therefore the bistable
region also becomes narrower, eventually collapsing to a single point when L → ∞. This
explains why in large lattices a very fine scan in F is necessary to observe this feature.

4.3.3 Critical slowing down

To investigate the emergence of criticality in the dynamical properties, we calculated the
time evolution towards the steady-state value nss of the site-averaged mean occupation
number n(t) = 1

N

∑N
i=1Tr(ρ̂(t)â

†
i âi) , taking the vacuum as initial state. For values of F

close to the critical point, n(t)−nss decays exponentially to zero at large times as reported
in Fig. 4.7

.

. As we have shown in Section 2.1.4

.

, in this asymptotic regime the decay dynam-
ics is dominated by the Liouvillian frequency gap λ, which can be extracted by fitting the
results with n(t) = nss+Ae−λt. Note that in order to have enough accuracy, calculations
have required up to 106 stochastic Wigner trajectories for each data point. Experimen-
tally, the asymptotic decay rate can be also measured using the time-dependence of the
second-order correlation function [220

.

], dynamical optical hysteresis [197

.

] and switching
statistics [192

.

, 197

.

].

The particular case of F = 1.57γ is analysed in Fig. 4.7

.

, where we plot |nss − n(t)|
for 1D arrays (panel a) and 2D lattices (panel b) of different sizes. For this fixed value
of F , the dynamics gets slower as the size of the simulated system is increased. While in
the 1D case the exponential decay rate saturates in the thermodynamic limit, this is not
the case for 2D systems. The slowing down of the dynamics is studied quantitatively in
Fig. 4.8

.

, where we present the relation between the asymptotic decay rate and the size of
the system. The Liouvillian gap λ as a function of the driving amplitude F in 1D arrays is
plotted in Fig. 4.8

.

(a): it is apparent that, when the size L is large enough, the Liouvillian
gap converges to a finite value for all the values of F , thus proving the absence of critical
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Figure 4.7: Transient dynamics of the absolute difference between the mean occupation
number n(t) and its steady-state value nss for 1D arrays (a) and 2D lattices (b) of different
sizes, with driving amplitude F = 1.57γ. Other parameters as in Fig. 4.6

.

.

slowing down. The behaviour is strikingly different for 2D lattices, as shown in Fig. 4.8

.

(b):
in this case, every curve λ(F ) presents a minimum, which becomes smaller and smaller as
the size L of the lattice is increased. As shown in the inset of Fig. 4.8

.

(b), the minimum
of λ follows the power-law decay minλ(L) ∝ L−η, with exponent η = 3.3 ± 0.1. Since
the phase transition is of first order, this exponent is not universal [183

.

, 220

.

]. To verify
this, we computed the critical exponent in lattices with a different nonlinearity (the other
parameters were unchanged), finding η = 5.3 ± 0.1 for U/γ = 0.06 and η = 1.7 ± 0.2
for U/γ = 0.15. However, field-theoretic computations suggested that if one where to
compute those exponents exactly at the tri-critical point of Fig. 4.3

.

, one would find the
same exponents of a thermal Ising model [216

.

, 46

.

].

4.3.4 Steady-state observables

To finally confirm the fact that this phase transition is arising in the homogeneous mode,
we studied the fraction of population in the k = 0-mode

f0 =
nk=0

ntot
=

∑N
i,j=1 ⟨â†i âj⟩∑N
i=1 ⟨â†i âi⟩

, (4.24)

where nk=0 is the steady-state population of the driven k = 0-mode and ntot is the total
lattice population. In Fig. 4.9

.

(a) and (b) we report the finite-size analysis of f0 as a
function of F . In the region of mean-field bistability, f0 presents a minimum in both 1D and
2D. In 1D this minimum saturates to a finite value as one approaches the thermodynamic
limit, while in 2D f0 exhibits a behaviour consistent with a finite jump at the critical

62



4. The driven-dissipative Bose-Hubbard model

1.5 1.54 1.58 1.62

0.01

0.02

0.04

0.08

0.10

2x1

4x1

8x1

256x1

2 4 8 16 64 256

0.0

0.02

0.04

0.06

1.5 1.54 1.58 1.62
10

-4

10
-3

10
-2

10
-1

4x4

6x6

8x8

14x14

4 6 8 14

10
-4

10
-3

10
-2

Figure 4.8: The Liouvillian gap λ (log scale) versus the driving amplitude for several L×1
arrays (a) and L×L lattices (b). Notice the different scales used for the 1D and 2D case.
The bottom panels show the minimum of λ as a function of the size L. For the 2D case we
also plot the gap for U/γ = 0.06 and for U/γ = 0.15. The dashed line is a linear power-law
fit to the data. Error bars are within the symbol size. Parameters as in Fig. 4.6

.

.

point. For the considered interaction, in both cases the population of the driven mode is
dominant (f0 close to 1), showing that the fluctuations induced by the coupling to non-zero
momentum modes destroy the critical behaviour in 1D.

To conclude the study of the homogeneous model, we present the local equal-time

second-order correlation function g
(2)
0 = ⟨â†j â

†
j âj âj⟩/⟨â

†
j âj⟩2 as a function of F . This

quantity describes the amplitude of the fluctuations in the field, and has been employed
extensively to investigate critical behaviour in in optical systems. In 1D this quantity
has a broad peak whose shape is shown to converge for large enough L (Fig. 4.9

.

(c)),
while in 2D (Fig. 4.9

.

(d)) the finite-size results show an emerging singular behaviour in
its derivative at the critical point. The same qualitative behaviour is also observed in the
large population limit of a single-mode nonlinear resonator [183

.

, 53

.

], which is equivalent
to the k = 0 approximation described above.
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Figure 4.9: (a) and (b): population fraction f0 = nk=0/ntot in the zero-momentum mode as
a function of the driving amplitude. (c) and (d): zero-delay local second-order correlation

g
(2)
0 versus F . Left panels are for 1D arrays, right panels for 2D lattices. Same parameters
as in Fig. 4.6

.

.

4.4 Role of disorder on the first-order dissipative phase tran-
sition in 2D lattices

In this section we will study how resilient the phase transition that we uncovered in the
previous section is, and what happens to the bistability of the k = 0 mode. This question
is triggered by the fact that previously we have been considering a perfectly homogeneous
system where we pumped the homogeneous k = 0 mode. Moreover, it is unclear how
disorder, which tends to localise excitations and scatter particles into different modes,
would affect the criticality.

In what follows, disorder is introduced into the on-site part of the Hamiltonian, by
assuming that the local detunings ∆j are random variables distributed according to a
Gaussian distribution N (∆,W ) with mean ∆0 and variance W 2. We will keep all the
parameters fixed to the same values as before, and the average detuning ∆0 = ∆ = 0.1
will match the value used previously.

The calculations presented in this section have been performed combining the Trun-
cated Wigner Approximation (also used in the previous section) with the optimal stochas-
tic unraveling method that we have developed and presented in Section 3.5.3

.

[2

.

].
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Figure 4.10: Probability distribution of the disorder-averaged steady-state population nss
for different amplitudes W of the disorder. The white diamonds represent the steady-
state expectation value ⟨nss⟩. The insets show a typical distribution of the site-dependent
boson density at long times for a given disorder configuration. Parameters are J = 0.225γ,
∆ = 0.1γ in a 14× 14 lattice. Up to 1000 trajectories, evolved for t > 4τ were considered
for each point.

4.4.1 Effects on the probability distribution of the density

Let us start our analysis by studying the bosonic population across the transition. In Fig.
4.10

.

we computed the probability distribution of the average steady-state density nss for
several values of the disorder W on a N = L × L lattice with L = 14. In the insets we
show typical snapshots of the site-resolved density along a single trajectory, where the
formation of domains can be seen for stronger disorder. We note that the abrupt jump
present in the clean case [see Fig. 4.10

.

, panel (a)] becomes progressively smoother when
influenced by the local disorder. Interestingly, even for disorder distributions well within
the single-site linewidth (W ≪ γ) the transition is rounded and replaced by a smooth
crossover.

The underlaying mechanism responsible for the suppression of the criticality is the
depletion of the homogeneous k = 0 mode of the lattice which is macroscopically occupied
across the transition for W = 0. In Fig. 4.11

.

, we show the homogeneous fraction f0 in
the steady state for different disorder strengths W . Local inhomogeneities in the energy
landscape force the system to populate k ̸= 0 modes, competing against the transition.
We point out that the strongest depletion takes place for F < Fcrit. Indeed, in the
linear regime the term that dominates the local energy is proportional to the random
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Figure 4.11: Fraction of bosonic population in the k = 0 mode (f0 = nk=0/n) as a function
of F/γ for different disorder amplitudes in a 14× 14 lattice. Parameters as in Fig. 4.10

.

.

local detuning. When F > Fcrit the leading term due to the nonlinearity U grows as n2ss,
making this phase less sensitive to the presence of disorder.

To better characterise the effect of disorder on the criticality, we studied the behaviour
of the slope at the transition

S =
∂nss(F/γ)

∂(F/γ)

⏐⏐⏐⏐
F=F ∗

, (4.25)

where F ∗ is the value of F for which S is largest. In Fig. 4.12

.

we show S−1 as a function of
W−1 for different system sizes. As the size of the array is increased, the data progressively
display a power-law behaviour

S ∼W−β, (4.26)

with β = 0.98±0.05. This result proves that the discontinuous population jump occurring
in the thermodynamic limit is smoothened by disorder. Thus only a perfectly homogeneous
system (W = 0) would display a true criticality S → ∞ when L → ∞ if one drives the
k = 0 mode. This does not exclude that the criticality could be restored by engineering a
space-dependent driving field which couples more effectively to the modes of the disordered
system.

The value of the exponent β has been extrapolated by fitting the data for L = 22.
Interestingly, any finite-size system made of L×L sites, follows the clean-system behaviour
in Eq. (4.26

.

) up to a certain value 1/W ∗ which increases as L is increased. This is due to
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Figure 4.12: Scaling of the inverse slope S−1 as a function of γ/W , for different lattice
sizes. The dashed line is the power-law S−1 = (0.063±0.010)W 0.98±0.05 obtained by fitting
the 22× 22 data. Parameters as in Fig. 4.10

.

.

finite-size effects and, in particular, the relation between W ∗ and L is connected with the
typical correlation length of the systems. To get further insight about this point, in the
following section we study the behaviour of the correlation functions at the transition in
clean and disordered systems.

4.4.2 Correlation functions

The rounding of the transition due to disorder is also witnessed by the connected part of
the one-body correlation functions

g(1)(r = |l−m|) = ⟨â†l âm⟩ − ⟨â†l ⟩ ⟨âm⟩ , (4.27)

where l and m are the 2D coordinates of lattice sites. In a coherently-driven system it is
necessary to consider the connected part of the correlators in order not to account for the
coherence imprinted by the external driving field 2

.

.

Results are shown in Fig. 4.13

.

3

.

. In the clean case (W = 0), the system displays

2Given that ⟨âi⟩ ̸= 0, ∀i because of the local driving term one would simply get lim|l−m|→∞ ⟨â†l âm⟩ ∼
⟨â†l ⟩ ⟨âm⟩ → const.

3Each point is obtained considering the mean value of the correlator Eq.(4.27

.

) averaged over all the
pairs of sites at a distance r
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Figure 4.13: Main panel: log-log plot of the two-point correlation function g(1)(r) in a
22 × 22 lattice with periodic boundary conditions at F = 1.569γ ≈ Fcrit for increasing
disorder strength W . The dots are the numerical data while the solid lines are the power-
law (for W = 0) and exponential fits (for W > 0). The other parameters are as in Fig.
4.10

.

. Inset (a): semilog plot of the same data in the main panel. Inset (b): log-log
plot of the extrapolated correlation length λ(W ) for W > 0. The dashed line is the fit
λ(W ) ∝W−η with η = 1.1± 0.2.

long-range order and the correlation function decays as a power-law

g(1)(r) ∼ r−α. (4.28)

The exponent α = 0.16 ± 0.01 is obtained by fitting the data for L = 22. This result is
somehow unexpected since in proximity of a first-order transition one would not expect a
divergent correlation length [178

.

]. However, this is a peculiar feature of a perfectly clean
system and disorder suppresses long-range order.

Indeed, in a disordered system (W ̸= 0), the correlation function (4.27

.

) decays expo-
nentially as

g(1)(r) ∼ e−r/λ(W ), (4.29)

where λ(W ) ∼ W−η (with η = 1.1 ± 0.2) is the correlation length which decreases as W
is increased. This is a consequence of the formation of coherent domains with typical size
λ(W ). This means that as long as one considers arrays with L ≲ λ(W ), the system will
behave cooperatively. Indeed, for a system of size L, we do expect departure from the
critical thermodynamic behaviour when L > λ(W ) ∼ W−η. This is consistent to what
has been shown in Fig. 4.12

.

, since we find that 1/W ∗ ∼ L1/η.
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Figure 4.14: Top panel: p(B) and p(B̃) distribution for the clean case (W = 0) for F <
Fcrit, F > Fcrit, and F ≈ Fcrit, as indicated in the legend. Bottom panel: probability
distributions for different values of the disorder amplitude W at F ≈ Fcrit.

4.4.3 Collective bistability

In the clean case the phase transition can be also witnessed by studying the dynamics of
Wigner trajectories. When F = Fcrit the lattice exhibits a collective bistable behaviour,
dynamically switching between the low- and the high-density phases with a rate linked to
the Liouvillian gap. This is due to the fact that the density matrix at the transition is
perfectly bimodal [40

.

] and the trajectories will unravel it exploring the two phases with
equal probability. Consequently, the probability distribution of the observable witnessing
the transition (in this case the boson density) is perfectly bimodal (i.e, it exhibits two
peaks with the same probability) at the transition.

To quantitatively characterise the bistable nature of the system near criticality we
computed the bimodality coefficient of the density distribution [221

.

]. To this aim, let
us define nji as the probability distribution of the density in the i-th site along the j-th
trajectory. The bimodality coefficient is then defined as the ratio between the square of
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the second central moment and the fourth moment of the distribution 4

.

Bji =
µ2[n

j
i ]
2

µ4[n
j
i ]
, (4.30)

where µn is the n-th moment of the distribution. If nji = N (n0, σ
2) satisfies a Gaussian

(monomodal) distribution, then B = 1/3, regardless of its mean value n0 and variance σ.
In the opposite limit, if the distribution is the sum of two normally distributed variables
(nji = [N (nA, σ

2
A) +N (nB, σ

2
B)]/2), then B = 1 for |nA − nB| ≫ σA, σB. Therefore these

values can be taken as a reference to distinguish between a perfect mono- and bi-modal
probability distribution. We also define the average bistability coefficient of the j-th
trajectory B̃j =∑N

i=1B
j
i /N , by averaging over all the lattice sites for a given trajectory.

Since B and B̃ are statistical quantities, they are characterized through their probabil-
ity distributions. In the following, we will analyze the probability distribution p(B) of the
site- and trajectory-resolved bistability coefficient (4.30

.

) comparing it to its site-averaged
version p(B̃). This comparison can be very useful to signal collective synchronized be-
haviour (such as the bistability expected at the transition) and their fate in the disordered
case. Indeed, the average of N uncorrelated identically-distributed random variables is
itself a random variable with the same mean and a rescaled variance Var[B̃] = Var[B]/N .
This is what we do expect in the strong-disorder regime (W ≫ γ). On the contrary, if the
dynamical behaviour of different sites is correlated, long-range order forces all resonators
to follow the same dynamics. In this case, the covariance among the sites will be maximal,
and therefore B and B̃ will obey to the same probability distribution.

As a starting point, let us summarize the results for the clean case (W = 0) (top panel of
Fig.4.14

.

). At criticality (F = 1.569γ ≃ Fcrit) the bistable dynamics of the trajectories lead
to a distribution p(B) with a peak at B ≈ 0.85, which signals the emergence of the bistable
collective dynamics. In this case, the fact that the system is behaving cooperatively leads
to identical distributions for B and B̃. Far from criticality (F ≷ Fcrit), we obtain that
p(B) < 0.6. In particular p(B) is centred at B ≈ 0.1 and B ≈ 0.4 for F < Fcrit and
F > Fcrit, respectively. This reflects the different nature of the steady-state in the low-
and high-density phase. In the first case the ρ̂SS ≈ |α⟩ ⟨α| (|α⟩ being a coherent state)
leading to quasi-gaussian oscillations around the steady state while in the latter the steady-
state is squeezed leading to an asymmetrical non-Gaussian distribution.

We now study the effect of disorder on the bistable behaviour at the transition. In Fig.
4.14

.

we show the distributions p(B) and p(B̃) computed for different values of the disorder
amplitude W and F = Fcrit = 1.57γ. Already for very weak disorder W = 0.01γ, the
clean-system picture is modified. The peak at B ≈ 0.85 decreases and the probability to
obtain lower values of B becomes more relevant. However, p(B) and p(B̃) remain almost
superimposed. This means that for very weak disorder the system still behaves as a whole
[since L < λ(W )] even if the number of bimodal trajectories decreases. Increasing further
the disorder to W = 0.05γ we get a distribution which can be roughly subdivided into
three regions: approximately 15% of the trajectories lie in the region with B > 0.45, where

4The time-correlation of ⟨n⟩ (t) complicates the distribution of B, therefore to decorrelate it we perform
a step of gaussian filtering on the temporal data and then we subsample. This is similar to the debunching
typically done in Monte Carlo calculations.
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p(B) ≈ p(B̃), meaning that this fraction of randomly generated disorder configurations are
still critical and exhibit a bistable behaviour. The rest of the trajectories do not display
bistability and can be divided between two peaks, one around B ≈ 1/3 and one at B ≈ 0.1,
as in the clean case for F < Fcrit and F > Fcrit, respectively. In this range p(B) ̸= p(B̄)
since the dynamics of different sites is uncorrelated. Increasing the disorder even further
to W = ∆ = 0.1γ yields a Gaussian distribution centred around 1/3. In this regime,
correlations among different sites are very weak since L≫ λ(W ) and each site experiences
a monomodal Gaussian dynamics uncorrelated with the behaviour of the other sites.

4.5 Conclusions and perspectives

In conclusion, in this chapter we have studied the physics of the driven-dissipative Bose-
Hubbard model, which describes for example driven photonic lattices. First, we have
shown that the average collective dynamics of an homogeneous lattice can be related to a
particular limit of the single-resonator model, where the mapping is expected to be exact
in the mean-field limit. Then, we have theoretically predicted the critical slowing down
associated with a first-order dissipative phase transition of the model. Through a finite
size analysis we have shown that this transition emerges in 2D lattices where it is linked
to a finite size bistability of the whole lattice. We have also shown that those features
are absent in 1D arrays, where fluctuations destroy criticality of the dynamics even if the
driven mode is macroscopically occupied. This suggests that the lower critical dimension
must be at least two.

In the following, we have explored the role of disorder in the same dissipative phase
transition, revealing that criticality would be suppressed by any amount of finite disorder.
We have also exploited our optimal unraveling method to show that correlation functions
in the homogeneous system decay algebraically in space. As disorder introduces a natural
correlation length in the system, if such length is smaller than the system size it is pos-
sible to see a crossover to exponential decays of correlations. By studying the statistical
distribution of the time-evolving occupation number along every trajectory we have been
able to show that the lattice-level bistability disappears (on average) as soon as disorder
is introduced in the system.

Even though we derived those properties for a particular system, we expect the results
to be general across the wide class of systems such as the transverse-field dissipative Ising
model and the dissipative XY model, which exhibit similar properties, such as bistability
and slowing down of the dynamics. Interestingly, relating first order criticalities to lattice-
level bistability which only occur when correlation lengths diverge may suggest that those
dissipative phase transitions have diverging correlation lengths, which may seem counter-
intuitive as in closed-systems the two are unrelated. We believe that this possibility
warrants further research.

Additionally, our study is consistent with field-theoretical calculations that suggested
that the driven-dissipative Bose-Hubbard model in the tri-critical point recovers in the
thermodynamical limit the critical exponents of the classical Ising model [216

.

]. It would
be interesting to further investigate how that picture is modified when the transition is
superimposed with another quantum phase transition [46

.

].

The emerging picture is directly relevant for the ongoing experiments in state-of-art
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photonic quantum simulators based on superconducting circuits and semiconductor mi-
crocavities. In these systems, the presence of on-site disorder in the local frequency of
resonators is unavoidable. Experimentally, by tuning the size (and/or the disorder) of
a sample, one can explore different regimes where collective critical dynamics or density
domains dominates the physics.s Lastly, it would be also interesting to study the impact
of disorder on a second-order dissipative criticality and to study models where long-range
interactions competes with local disorder [222

.

].
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CHAPTER 5

Neural Networks for Driven-Dissipative Quantum Systems

In this chapter we introduce an original numerical algorithm to compute the steady state
of open quantum systems based on neural networks. To begin, in Section 5.1

.

we briefly
introduce machine learning in a perspective relevant to our work. In Section 5.2

.

we give a
biased introduction to neural networks, giving particular importance to their properties of
function approximators. In particular in Section 5.2.3

.

we introduce energy based models
such as Restricted Boltzmann Machines (RBM) and summarise analytical results about
their representation power. In Section 5.2.1

.

we introduce the more general Feed Forward
Neural Networks (FFNN) and some conjectures on their representation power. In Sec-
tion 5.4

.

we introduce the variational principle for open quantum systems used in our work
and compare it with other results on variational methods for open quantum systems. In
Section 5.5

.

we review a first order and a second order method to solve the optimization
problem introduced in the previous chapter, and benchmark our method in Section 5.6

.

.
Finally, in Section 5.7

.

we present some unpublished developments to further generalise
the network structure by sampling in a constrained purified space.
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5.1 Overview of machine learning and neural networks

5.1.1 Historical introduction

Since the dawn of the human kind, persons have understood that they are not efficient at
performing certain tasks, and have built tools and devices that are more adequate. Since
the first programmable computer was built, scientists have identified a set of problems
that are hard to solve for humans, but which are relatively straightforward for a computer,
such as matrix calculus. Those problems are usually described and solved by a finite list
of formal, mathematical rules. In the field of artificial intelligence scientist are interested
by another set of tasks, where humans excel but machines perform relatively weakly, such
as image recognition. Those problems are solved intuitively by humans, and they cannot
be easily phrased in terms of mathematical rules.

Machine learning

Machine learning is a scientific field that studies how to program computers to efficiently
solve artificial intelligence tasks. Instead of explicitly identifying a set of rules, we let
the computers learn from experience and identify by themselves the rules to solve the
task. This is achieved by specifying only the desired high-level behaviour of the program
(solution) and its high level structure. In more mathematical terms, we are not selecting
a single program (by programming it) in the program-space, but we are rather defining a
whole subset of programs, and ask the computer to identify the one that better performs
in this set. From this point of view, machine learning rephrases the problem of writing
specific algorithms to optimising a generic algorithm. In general, a program solving a
certain task is a function that takes some input and returns an output. Therefore in the
rest of the chapter we will speak about optimising functions1

.

.
Extensive research in the field of machine learning revolves around how to parametrise

the program-space which contains the possible solutions to the task or problem considered.
Answers to the question date back to the late 50s, when Rosenblatt invented the percep-
tron [224

.

], an algorithm for performing pattern recognition. Rosenblatt had essentially
rephrased in mathematical language the biological behaviour of a neuron.

1Some people refer to this new way to think software programming as Software 2.0 [223

.

].
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The idea of combining several such neurons into a dense network to describe a more
complex function, which can be tuned by changing internal parameters, had already been
considered in the late 60’s [225

.

] but practical issues delayed the surge in popularity to the
new millennia. The overarching problem was that computers were not powerful enough to
perform the kind of calculations necessary to optimise those networks. Moreover, efficient
optimisation algorithms for those kind of problems did not exist and were only proposed
more than 15 years later [226

.

]. Thanks in part to Moore’s law and in part to the develop-
ment of specialized hardware, computers today can perform roughly 109 more operations
per second than in the 70′s [227

.

], and research in the field restarted.
There are essentially two questions that people try to answer in machine learning:

• How to write general solutions to some class of problems, which must later be opti-
mised;

• How to optimise those general solutions.

In a language more familiar to physicists, the first question is the problem of finding a
good yet generic variational ansatz, while the second is how to optimise the ansatz.

Supervised and unsupervised learning

Machine learning algorithms are techniques to optimise a general solution f ∈ H in the
space of all solutions H and find the best-guess. Algorithms can be distinguished into two
broad categories, supervised and unsupervised learning, distinguished by what kind of
dataset they are allowed to consume during the learning process.

• Supervised learning algorithms consume a labelled dataset {(x,y)}, which means
that to every entry x in the dataset corresponds some target label y that we wish to
reconstruct. Roughly speaking, curve-fitting is some sort of (very trivial) supervised
learning, where given a set of points (x⃗, y) the objective is finding the f(x) that best
minimises the distance χ2.

• Unsupervised learning algorithms consume a datasets {x}, which is usually a set
of samples taken from an unknown distribution p(x), and attempts to find the ap-
proximated distribution f(x) which best reproduces p(x). This can be achieved,
for example, by minimising the Kullback-Leibler divergence between the two dis-
tributions KL(f, p), which plays the same role of the χ2 in the previous example
[228

.

].

In the two examples above, the solution is found by minimising the χ2 and the K-L
divergence respectively. Those functions are known as cost functions, and play a similar
role to the energy-functional that must be minimised to find the best solution in physics.
We remark that cost functions usually do not carry much information about the solution
to the problem, but are merely computationally cheap quantities that can be optimised
to improve the solution f . The main difference between machine learning techniques and
more traditional optimisation is that the first avoids performing the optimisation exactly,
resorting to approximated algorithms. It is therefore crucial that the cost function is some
quantity that can be computed approximately cheaply.
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Neural Networks

Regardless of the optimisation algorithm used, one must still define the subset H of the
function space where to search for solutions. Historically, people experimented with a
certain class of functions named neural networks and witnessed that they perform well in
encoding those solutions. Neural networks are parametrised functions, loosely inspired by
how a real neuron works, which are often used in the context of machine learning because
of their versatility.

The power of networks arises from chaining several nonlinear functions together, which
allow for a more dense encoding compared to an expansion on a linear basis. While at first
research focused on very small neural networks, with only one nonlinear function, it has
later been understood that the optimal performance comes when several such functions
are chained into a structure called deep neural network. Interestingly, Kolmogorov and
Arnold had already noticed this property in the latter part of the 1950s, and published
few papers where they proved that a chaining two sets of particular nonlinear functions
could be used to approximate any other smooth function with a polynomially bounded
number of parameters [229

.

, 230

.

].

5.2 Deep feedforward networks as universal approximators

Deep feedforward networks, also called feedforward neural networks (FFNN) or multilayer
perceptrons, are the quintessential deep learning model [228

.

]. The goal of a feedforward
network is to approximate an arbitrary function f⋆. A feedforward network defines a
mapping y = fθ(x), where θ are the parameters of the representation that achieve the
approximation fθ ≈ f⋆.

These models are called feedforward because information flows from the input vector
x to the output y through a chain of intermediate computations. There are no feedback
connections in which the output of a computation is fed back into some previous layer.
They are called networks or graphs because it is customary to represent the mathematical
formulas that define them as a graph. Feedforward networks correspond to directed acyclic
graphs, describing how functions are composed together. Usually nodes represent a sum
over a vector of inputs and the application of a non-linear function. Links among nodes
represent the multiplication of the input by a parameter.

5.2.1 Feedforward neural networks

A feedforward neural network is typically written as a chain of M functions f1, . . . , fM , as
f(x) = fM ◦fM−1◦· · ·◦f1(x). In this chain, fi is the i−th layer, and fM is the output layer.
Every layer is a function fi : R

N → RM , and the dimension of the domain is called width
of the layer. The number of layers gives the depth of the network. Networks with only
one non-linear layer are called shallow or single-layer models, whereas the rest are known
as deep networks. In a deep network, the domain and codomain of the function that we
want to approximate constrain the width of the input and output layer respectively. All
the intermediate layers can have arbitrary width. Usually, the output layer of a network
is a simple linear function like the sum

∑
.
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Figure 5.1: Graph representation of single neuron (perceptron) as described by Eq. (5.1

.

).
The neuron takes as input a vector of n values {x1, . . . xn}, performs the weighted sum
with weights {w1, . . . wn} and shifts the result by the bias b. The result is then passed
through a nonlinear activation function σ.

We call those networks artificial neural networks because they were loosely inspired
by neuroscience and by how neurons work. Neuroscientists model neurons as a scalar
nonlinear function n : RN → R acting on some linear mixing of the inputs x ∈ RN , as
depicted in Fig. 5.1

.

,

n(x) = σ

⎡
⎣b+

∑

j

Wj xj

⎤
⎦ , (5.1)

where W is a linear mixing vector, b is a scalar bias, and σ is an arbitrary continuous
nonlinear bounded function (usually a sinh), called activation function.

Layers of a feedforward networks are then built by combining several of those neurons
in parallel, generating a function mapping vectors x ∈ RN to vectors in RM , according to
the following function D(x) = {Ni(x)}i=1...M such that

D(x) = σ ◦ [b+Wx] , (5.2)

where σ = {σi} ∀i = 1 . . .M is a set of activation functions, the Hadamard symbol ◦
denotes element-wise application of a function on a vector, b = {bi} ∀i = 1 . . .M is a set
of biases acting like the bias b in a single neuron, and W ∈M(RM ,RN ) is a linear mixing
matrix.
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When all σi are identical D : RN → RM is called a dense layer. The simplest FFNNs
are obtained by chaining several dense layers together into f =

∑ ◦D3 ◦D2 ◦D1.

5.2.2 Representation power of feedforward networks

In general, the representation power of a parametrised function is related to its ability of
approximating up to arbitrary precision, generic functions. While a precise definition does
not exist, a neural network is said to have higher representation power than another one
if it can approximate more functions with the same number of parameters.

The representation power of neural networks is an active domain of research as it allows
to better understand their limitations. In the last decades several rigorous theorems on the
representability of networks have been proven. To convince even the most sceptic reader
that we do understand why neural networks work, we will present a series of results that
prove that networks can be used as approximations to arbitrary complex functions.

Theorem 1 (Universal Approximation Theorem). Let IM denote the M-dimensional unit
hypercube [0, 1]M and C(IM ) the space of real-valued continuous functions on IM . Let
f : RM → R be a single-layer dense neural network f =

∑ ◦ D with width N and
arbitrary activation function σ (continuous, bounded and non-constant) :

f =
∑

◦ vσ ◦ [b+Wx]

where W ∈ RN × RM ∧ v, b ∈ RM . Given any function f⋆ ∈ C(IM ) and any arbitrary
error ϵ > 0, there exist a width N and set of parameters (W, v, b) so that

|f⋆(x)− f(x)| < ϵ ∀x ∈ RM

Equivalently, single-layer dense neural networks are dense in C(IM ).

Initially the theorem was formulated only for the sigmoid activation function, σ(x) =
1 + e−x [231

.

], but later it was understood that this result is more general and valid
for any activation function [232

.

]2

.

. The theorem essentially proves that in the limit of
limN→∞, namely in the limit of an infinite number of parameters, a single-layer FFNN
can approximate any continuous function on a compact support. However, the size of
such a neural network can be exponential in the input dimension [234

.

]. It has been
shown that Artificial Neural Networks (ANN) struggle with highly varying functions,
particularly when they have a high density of local extremas. In those cases the single-
layer FFNN reduces to performing a piece-wise approximation of the function, requiring
a width exponential in the dimension of the input [235

.

, 236

.

].
Even though shallow networks are inefficient encodings of arbitrary functions, deep

networks are much more efficient. In 2015 it was proven by Eldan et al. that given an
arbitrary function g : RM → R, there exist a two-layer deep dense FFNN with width at
most CM19/4 approximating to arbitrary precision g. The constant C depends linearly on
the precision (see section 2 in [235

.

] for a detailed formulation of the theorem, and section
3 for a proof).

2The theorem is actually even more general, as it has been generalised to the ReLU activation function
f(x) = max(0, x), which is not continuous nor nonlinear or bounded [233

.

].
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Comparison to the expansion on linear basis

Chaining nonlinear functions together is not the only way to approximate functions. An-
other simple alternative involves writing the function as a linear combination of some basis
elements. This expansion is the foundation of the Fourier expansion, but it is also widely
used in physics when functions acting on an Hilbert space are expanded in the position
basis or the k-space basis. Also Matrix Product States algorithms are based on this expan-
sion. Those methods are based on the fact that the control parameter of the approximation
(such as the maximum momentum k in the Fourier expansion, or the bond-link dimension
b in an MPS state) can be linked to what regions of the function-space are neglected.
It is therefore easy to understand, at least with respect to the artificial neural network
approach, what can be represented and what cannot be represented when truncating the
space.

On the contrary, the space of (well behaved) Lebesgue-integrable functions on RM has
dimension dim(L2(RM )) ∝ eM . Those linear expansions are not efficient encodings for
arbitrary functions. Deep FeedForward Networks, in principle, are efficient encodings.

5.2.3 Energy based models

In this section we have introduced Deep Feed Forward Neural networks as efficient encod-
ings of arbitrary functions defined on a Real-valued. Other then the constraints set by the
representation power, a feedforward network can approximate any function. Although,
in physics we are often interested in describing particular functions, such as probability
distributions, density matrices or a many-body wavefunction. Those functions are not
arbitrary, but satisfy certain constraints. To avoid performing constrained optimisation,
which is a harder problem than unconstrained optimisation, it is of interest to devise ANN
models which satisfy those constraints by construction.

A simple yet useful constrain that can be enforced on the network is positivity of the
output, so that upon normalisation it can be considered a valid probability distribution. A
simple way to enforce this condition is by exponentiating an arbitrary real-valued function
E(x), so that p(x) = exp[−E(x)]. Since exp(z) is positive ∀z ∈ R, this guarantees
positivity. To increase the representative power for distributions of the variables x ∈ RV ,
a bigger space RV ⊗ RH is used, where RV is the domain of the distribution and RH is a
latent space used to encode hidden degrees of freedom and correlations among the physical
variables.

p(x) =
∑

h∈RH
exp[−E(x,h)] (5.3)

Models described by an equation of the form Eq. (5.3

.

) are called energy-based models,
because the function E can be interpreted as an energy functional on the space RV ⊗RH .
When the variables x and h are allowed only binary ±1 values, the energy functional
identifies a spin-glass model. For that reason, the study of high-dimensional glassy models
is deeply linked with the representation power and learning of neural networks.

A paradigmatic example of such a model is the Restricted Bolzmann Machine (RBM)
depicted in Fig. 5.2

.

, which is based on the energy of a spin-glass with bipartite all-to-all
connections. Let us suppose that input variables are binary spins (this can be generalised
to higher dimensional spins without major difficulties). Then, a generic state of the system
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Figure 5.2: Graph representation of the energy-based model defined by Eq. (5.4

.

). Spins
are divided into two partitions, the lower (visible) lives in the same space as the target
distribution, while the top (hidden) is a latent space used to encode information. α is the
hidden space density. Interactions are between all spins of one partition with all spins of
the other partition.

is (σ,h) where vb ∗ σ is part of the visible layer and h is part of the hidden layer. The
energy functional of a RBM reads

E(σ,h) = σT · b(v) + hT · b(h) + σTWh, (5.4)

where b(v) is the local energy term (bias) for the visible layer, b(h) is the bias for the hidden
layer and W is the matrix describing the interactions.

We wish to represent probability distributions p(σ) : RM → R defined on the space
RM . Setting the visible layer so that σ ∈ RM and replacing Eq. (5.4

.

) in Section 5.2.1

.

and
taking a partial trace over the hidden layer, we obtain

p(σ) =
∑

h

exp[−E(σ,h)] = exp
[
−σT · b(v)

] ∏

j=1,...,N

2 cosh
(
b
(h)
j +W (j)σ

)
. (5.5)

The restriction to only bipartite interactions among the spins is what allows to carry
out analytically the summation over the latent space, and ultimately to obtain those
analytical formulas. This greatly reduces the computational cost of evaluating restricted
Boltzmann machines, which would otherwise require performing the trace summation
numerically.

We remark that the log-probability log[p(σ)] encoded in a restricted Boltzmann ma-
chine can be written as a feedforward network with a dense layer if the on site terms b(v)

are neglected3

.

. An example of this representation is given in Fig. 5.3

.

.

3It could be written as a feedforward network with a more exotic intermediate layer, but as that bias
term does not usually encode much information, canonical applications of RBMs neglect it.
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Figure 5.3: Representation of the restricted Bolztmann machine defined by Eq. (5.4

.

)
and Fig. 5.2

.

as a single layer feedforward neural network encoding the log-probability
log[p(σ)]. The on-site energy term b(v) is not shown here, as it cannot be written as a
dense layer. The first and only intermediate layer applies the linear mixing W and the
bias b to the inputs, and then applies the nonlinear function 2 cosh. The output layer (top
part) simply sums over the result of the hidden layer.

Representation power of RBMs

The restricted Boltzmann machine represented by Eq. (5.5

.

) encodes the probabilities in
the parameter of the spin-glass energy functional. Namely, if the domain σ ∈ [0, 1]N

and h ∈ [0, 1]M , then we are approximating functions on a N−dimensional space using
an M−dimensional latent space. It follows trivially that b(v) ∈ RN , b(h) ∈ RM and
W ∈ RN ⊗RM . By increasing the latent-space dimension M , one increases the number of
parameters and therefore increases the representation power of this functional.

5.3 Approximating quantum states with neural networks

In the previous section we have shown that neural networks can be used to approximate
arbitrary real-valued functions, and can be further constrained to be positive in order to
encode probability distributions. In this section we will show how this can be applied to
approximate quantum states.

5.3.1 Neural quantum states

For simplicity we will start by considering closed Hamiltonian systems defined on an
Hilbert space HS . The state of said system is encoded into a wavefunction |ψ⟩ ∈ HS . If
{|σ⟩ = |σ1, σ2, . . . , σN ⟩} denotes a basis of states for the Hilbert space HS , the wavefunc-
tion can be expanded onto this basis according to the definition

|ψ⟩ =
∑

σ1,σ2,...,σN

ψ(σ1, σ2, . . . , σN ) |σ1, σ2, . . . , σN ⟩ . (5.6)
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The scalar, complex-valued wavefunction ψ(σ1, σ2, . . . , σN ) : HS → C describes the state
of the system.

The dimension of the Hilbert space of a quantum system increases exponentially with
the number of components. As already discussed in Chapter 3

.

, this growth hampers the
possibility of storing the whole wavefunction in vector form for relatively small systems
when performing numerical simulations. Therefore it is of paramount importance to find
ways to compress or approximate the wavefunction with a lower dimensional encodings.
A standard technique involves restricting the wavefunction to be described by a specific
parametrised function, known as variational ansatz. The ansatz maps a set of parameters
v into a wavefunction ψv defined by

ψ :W → HS , (5.7)

v → |ψv⟩ . (5.8)

A well-constructed variational ansatz usually has the property dimW ≪ dimH, so that
it can be stored more efficiently than the whole wavefunction. The price to pay is being
limited to only a certain class of wavefunctions ψv. There are many types of ansatz,
each with its own pros and cons, and with different regimes of applicability, such as the
Gutzwiller ansatz [237

.

], the matrix product states ansatz [238

.

], the projected entangled
pair states ansatz for 2D systems [239

.

], the entangled plaquette states (EPS) ansatz [240

.

].
The combination of the variational principle with variational ansätze gave rise to the

field of Variational Monte Carlo (VMC) methods [241

.

] which have shown remarkable
progress in the last decades [242

.

, 243

.

]. Recently, Carleo and Troyer remarked that, as ar-
tificial neural networks are low-dimensional approximations to extremely high-dimensional
functions, they are a good fit to be used as variational ansätze for a many-body wavefunc-
tion [70

.

]. Restricting ourselves to a system of N spins, Carleo and Troyer proposed to
construct a Restricted Boltzmann Machine where physical spins σ1, σ2, . . . , σN are iden-
tified with the input layer. Even if they introduced the idea with spins, the approach is
general and can be generalised to any system with a locally-finite Hilbert space4

.

. The
resulting ansatz is the following:

ψv(σ) = exp
[
−σT · b(v)

] ∏

j=1,...,N

2 cosh
(
b
(h)
j +W (j)σ

)
. (5.9)

Note that the ansatz parameters are v = (b(v), b(h),W ), with b(v) ∈ CN , b(h) ∈ CM
and W ∈ CN×M . Complex weights have been considered, as opposed to the real weights
of a standard RBM, because the wavefunction is complex-valued. We remark that the
theorems introduced in Section 5.2.2

.

stating that in the limit of M → ∞ this network can
approximate any distribution, are not valid for the generic complex-valued case. However
it is conjectured that they should hold, and it has been shown for some specific complex
functions [244

.

].
An alternative and more rigorous approach involves splitting the wavefunction into

its modulus, and the phase, and represent each of those two different functionals with an

4It should be possible to further generalise the principle to continuous (infinite) Hilbert spaces, but the
numerical implementation of the algorithm would have to undergo some non-trivial changes that, to the
best of our knowledge, nobody has addressed yet.
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identical neural network, namely

ψv(σ) =
√

PvA(σ) exp[−1/2 log(Pvθ(σ))], (5.10)

where the amplitude PvA and phase Pvθ of the wavefunction are represented by two
Boltzmann machines. In this case the two functionals are real-valued, therefore the rep-
resentability theorems hold. Both those representations have been used in the literature,
and it is still an open question whether one performs better than the other.

A limit of energy-based networks is that, even if they output valid wavefunctions, those
wavefunctions are unnormalised and one typically has to compute the total amplitude to
normalise observables, according to the definition

Zv =
∑

σ∈H
ψv(σ). (5.11)

As the Hilbert space dimension can be huge, computing Z has exponential complexity and
cannot be done in general. Therefore it is typically approximated through Markov-Chain
sampling schemes which we will discuss later in the chapter [242

.

].

Other ansätze

Even though the ansatz presented above has demonstrated a remarkable success, in recent
months many more neural-network based ansätze have been proposed. In particular,
deep FFNNs schemes have been shown to better handle bosonic systems [245

.

, 246

.

], and
convolutional networks inspired by Google’s PixelNet [247

.

] have been proposed for directly
sampling a normalised wavefunction [248

.

]. As the focus of this manuscript is open quantum
systems and not closed systems, we will not discuss them.

5.3.2 Density Matrix ansatz

To deal with open quantum systems, we do not need to parametrize the wavefunction but
the full density matrix ρ̂ ∈ B(H)

ρ̂ =
∑

σ,σ̃

ρ(σ, σ̃) |σ⟩ ⟨σ̃| . (5.12)

Taking inspiration from the Choi’s isomorphism, one can easily perform the indentification
B(H) ↔ H⊗H. This is the same procedure used in the Matrix Product Operator repre-
sentation of operators, and relies on representing them as vectors in a quadratically-bigger
vector space. While this approach is viable, it encodes all linear operators (therefore all
matrices) on H, and is not restricted to density operators, which are positive-semidefinite.
To construct a network that only parametrizes valid (positive-semidefinite) states, we re-
sort to a construction based on the purification ansatz, originally proposed by Torlai et
Melko [249

.

].
In order to construct our neural network ansatz for the density matrix, we consider an

extended Hilbert space H = HS ⊗HA where HS,A represents respectively the system and
ancillary Hilbert spaces. Such extended space is spanned by the basis set {|σ,a⟩} where
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Figure 5.4: Graph representation of the purified state ansatz as described by the the
energy functional in Eq. (5.16

.

). Even if it is depicted differently, this ansatz is equivalent
to a Restricted Bolzman Machine, where the latent space is made of the hidden and ancilla
layers.

a = (a1, a2, ..., aNa) labels the ancillary degrees of freedom. We start by considering a
pure state in the extended Hilbert space, represented by the wavefunction ψv(σ,a). In
this framework the reduced density matrix of the system S is obtained by tracing out the
ancillary degrees freedom, namely

ρv(σ,σ
′) =

∑

a

ψv(σ,a)ψ
⋆
v(σ

′,a). (5.13)

This purified procedure automatically ensures that ρ̂v is Hermitian and positive semi-
definite, as required for a density matrix.

The next step is to represent ψv(σ,a) via a neural network ansatz such as that de-
scribed in Section 5.3.1

.

. The only difference is that the ancilla variables are encoded as
a latent space that is not immediately traced away as the hidden space. Following the
approach of Torlai and Melko [249

.

] the complex nature of the purified wavefunctions is
encoded by using two different real valued networks, one encoding the log-amplitude and
the other the phase, namely

ψv(σ,a) =
√
PvA(σ,a) exp[−1/2 log(Pvθ(σ,a))]. (5.14)

With this approach, both the amplitude PvA(σ,a) and phase Pvθ(σ,a) of the purified
wavefunction are given by the Boltzmann-like expression

Pν(σ,a) =
∑

h

exp[−Eν(σ,a,h)], (5.15)
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with ν ∈ {vA,vθ} labeling the sets of variational parameters for the two RBMs. The
associated dimensionless energy reads

Eν(σ,a,h) = σ · b(σ)
ν + a · b(a)ν + h · b(h)ν + σTWνh+ σTUνa. (5.16)

Note that the ansatz parameters are v = (vA,vθ) where vν = (b
(σ)
ν , b

(a)
ν , b

(h)
ν ,Wν , Uν).

The rectangular matrix Wν weighs the connections between the system variables (visible
layer) to the auxiliary variables (hidden layer), while the weight matrix Uν quantifies the
connection between the system variables and the ancillary ones (ancillary layer). Such
neural network ansatz is represented by a tri-partite Restricted Boltzmann Machine de-
picted in Fig. 5.4

.

. In other words, there are two independent artificial neural networks,
one for the amplitude (ν = A) and one for the phase (ν = θ). By substituting those
formulas into Eq. (5.13

.

) and carrying out the sum over the ancillary degrees of freedom
one obtains a closed formula for the entries of the density matrix:

ρv(σ,σ
′) = exp

[
Γ−
v (σ,σ

′) + Γ+
v (σ,σ

′) + Πv(σ,σ
′)
]

(5.17)

where the expression of Γ+/− and Π are given by

Γ+
v (σ, σ̃) =

1

2

⎡
⎣b(v)A · (σ + σ̃) +

∑

j

log
[
G(θ[j]A (σ))

]
+
∑

j

log
[
G(θ[j]A (σ̃))

]
⎤
⎦ , (5.18)

Γ−
v (σ, σ̃) =

i

2

⎧
⎨
⎩b

(v)
θ · (σ − σ̃) +

∑

j

log
[
G(θ[j]θ (σ))

]
−
∑

j

log
[
G(θ[j]θ (σ̃))

]
⎫
⎬
⎭ , (5.19)

Πv(σ, σ̃) =
∑

k

log
{
G
[
1/2(σ + σ̃)TU

[k]
A + i/2(σ − σ̃)TU

[k]
θ + b

(a)
A,k

]}
. (5.20)

U
[k]
ν is the k−th column of the Uν matrix, and θ

[j]
ν is the j−th component of the θν vector

θν(σ) = b
(h)
ν + σTWν . (5.21)

G(x) is a non-linear activation function depending on the values that hidden spins can
take. We considered binary spins (hi = {0, 1}), so G(x) = 1 + e−x, but one can take G(x)
to be any valid activation function. The representation power [250

.

, 251

.

, 252

.

] of this ansatz
can be systematically improved by increasing the density of the hidden (α = Nh/N) and
ancillary layer (β = Na/N). The total number of real variational parameters of the neural
network ansatz (the length of the vector v) is given by the following formula:

Npar = dim(v) = 2(N + αN + βN + αN2 + βN2), (5.22)

For N ≫ 1 and assuming β = 1 (the motivation for this choice is discussed in Section 5.6

.

),
we get Npar ∼ O

(
(α+ 1)N2

)
. The number of parameters can be compared to a Matrix

Product Operator representation of the density matrix where NMPO
par ∼ O(Nχ2) where

χ is the bond-link dimension [65

.

], playing a role similar to α. For comparison, an exact
description in the full Hilbert space requires O(22N ) parameters
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Figure 5.5: Graph representation of the neural density matrix, obtained by tracing over
the ancilla, according to Eq. (5.13

.

), of two coupled purified states as those in Fig. 5.4

.

.
The expression of this network is given by Eq. (5.17

.

).

It is worth pointing out that the neural density matrix ansatz is not specific to this
network topology, but relies only on the general fact that if two visible layers are connected
by a shallow ancillary layer, the ancilla can be traced out analytically and an efficient
neural-network description of the density matrix can be obtained. In fact, in a graph
representation, the network, after tracing out has the structure shown in Fig. 5.5

.

. The
analytical trace can only be performed when the ancilla (red layer) is shallow. However the
hidden space (green layer) does not need to be necessarily traced out analytically, so one
can in general use a similar ansatz, with a deeper structure in place of the hidden layer.
Mathematically, this means that the analytical trace necessary to perform the purification
procedure allows to describe any state

ρ(σ, σ̃) = exp[Ψ0(σ) + Ψ⋆
0(σ̃) + Πv(σ, σ̃)], (5.23)

where Ψ0(σ) is an arbitrary deep neural network.

5.4 Variational method for open quantum systems

In quantum mechanics the variational method is a technique used to find approximately
the ground state and low-lying excited states of a quantum Hamiltonian. The method uses
an ansatz, which is a parametrised function depending on the set of parameters v. The
target state is determined by the optimal value of vgs, obtained by iteratively minimising
the energy

E(v) = ⟨ψv| Ĥ |ψv⟩ ≥ ⟨ψgs| Ĥ |ψgs⟩ = Egs, (5.24)

which is a real quantity bounded from below by the ground-state energy. It is worth noting
that E(v) can be interpreted as a cost function to be minimised, in a similar spirit to how
unsupervised learning minimises the cross-entropy with the target distribution.
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Even if the ansatz we introduced in the previous section has real parameters W, in
general ansätze used in quantum mechanics will have complex weights, and the function
to minimise will be

C : C → R (5.25)

v → C(v), (5.26)

which in general is a complex non-holomorphic function5

.

. Unfortunately, the literature on
complex functions is mainly focused on holomorphic functions, and the literature about
variational methods in quantum mechanics deal mainly with real weights. In Section C.2

.

we introduce a few results on CR−calculus, necessary to understand how to optimise
non-holomorphic functions. If a reader is not interested in those details, the only result
necessary to understand the following is that the steepest gradient of a real-valued complex
function is the conjugate-gradient ∇v⋆ and not the gradient ∇v.

In this section we will present general formulas valid in the case of real-valued or
holomorphic functions. In Section C.3

.

we will re-derive the same formulas, in the case of
non-holomorphic ansätze.

5.4.1 Variational principles and cost functions

As we have shown in the previous section it is possible to write a variational ansatz for the
density matrix by employing neural networks. We want to investigate the generalisation of
the variational method to the case of open quantum systems, in order to find the optimal
set of weights vss that best approximates the steady state of the ordinary differential
equation

˙̂ρ = Lρ̂, (5.27)

which is defined as ρ̂ss = limt→∞ ρ̂(t). We recall that it satisfies the condition Lρ̂ss = 0.
A variational principle can be determined by a function C : W → R with the following

properties:

i) C(vss) = cmin ⇐⇒ ρvss = ρss;

ii) ∀v ∈ W, C(v) ≥ cmin.

Moreover, in order to build an efficient method, it is also useful that:

iii) The computational cost of evaluating C(v) can be bounded through controlled ap-
proximations.

iv) The computational cost of evaluating the gradient of C(v) can be bounded through
controlled approximations.

We will refer to C(v) as the cost-function, in order to highlight the similarity to the machine
learning problem.

The distance in matrix between the time derivative of the state ρ̂(vss) and the time
derivative of the state ρ̂(v) is a good candidate for the cost function, as it respects the first

5We recall that any real-valued function of complex parameters is non-holomorphic.
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two points above. Because Lρ̂(vss) = 0 the distance from the origin of Lρ̂(v) corresponds
with it’s norm. Even if there exist several matrix norms, we will consider only Schatten
p-norms because they are invariant under unitary transformations (||ρ̂||i = ||U †ρ̂U ||i),
preserving this feature of the density matrix [253

.

]. For any value p ∈ [1,∞) the p-norm is
defined as

Â
 =

(∑

i

λpi

)1/p

, (5.28)

where λi are the singular values of Â. The most common values are p = 1, called Trace-
class norm, which is the sum of all singular values and p = 2 or the Hilbert–Schmidt norm,
which is the sum of the squares of all entries. We define the cost function as

Cp,pn(v) =
∥Lρ̂∥p
∥ρ̂∥pn

, (5.29)

where p and pn select the Schatten norm used. By construction, ∀p, pn, Eq. (5.29

.

) satisfies
points (i) and (ii) above, therefore generating a good variational principle.

In his work, H. Weimer [125

.

] analyses the case where pn = 1. This case is the most
physically-relevant, as pn = 1 corresponds to normalising density matrices so that they
have trace equal to 1. In the supplemental material of [125

.

], he shows that the cost
functions ∀p ̸= 1 are biased, because they are exponentially small for the maximally
mixed state.

If we consider an iterative procedure to minimise C1,1(v), we need to compute its

gradient. Assuming the decomposition ρ̂v = UvΣvDv and Lρ̂v = ŨvΣ̃vD̃v,

∇vC1,1(v) ∝
(ŨvD̃

†
v)

†L [∇vρv]

Tr
[
Σ̃v

] . (5.30)

Unfortunately, computing the matrices Ũ and Ṽ requires performing the singular-value
decomposition of Lρv, which is a computationally demanding task. The computational
complexity of the SVD decomposition for a lN×lN matrix is O(l3N ). It is possible to lower
this cost by not computing the exact decomposition of Lρ̂v, but instead by using a low-rank
approximation. The low-rank approximately sampled SVD decomposition is a very recent
development in the field of numerical linear algebra [254

.

, 255

.

, 256

.

], originally developed to
solve the so-called Netflix problem. Unfortunately, the rank of a density matrix gives an
upper bound on the Von-Neumann Entropy of the system, therefore performing a low-rank
approximation effectively bounds the maximum entropy. Investigating the combination
of variational methods with approximate SVD decomposition would be a very interesting
research direction, but a method to treat states with limited entropy has already been
developed in our group [69

.

], and we desired to develop a technique that could complement
the corner space renormalisation method. As such, we have decided not to consider the
trace norm for the cost function.
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Another norm, much easier to work with, is the L2 norm. The cost function

C2,2(v) =
∥Lρ̂v∥
∥ρ̂v∥

=
Tr
[
ρ̂†vL†Lρ̂v

]

Tr
[
ρ̂†vρ̂v

] , (5.31)

does not suffer from the bias towards the maximally mixed state because it is normalised
with the same L2 norm. It is easy to see that this cost function can be rewritten, with a
bit of algebra, into the form

C2,2(v) =
∑

σ,σ̃

pv(σ, σ̃)
⏐⏐⏐Cloc(v,σ, σ̃)

⏐⏐⏐
2
, (5.32)

where:

Cloc(v,σ, σ̃) =
∑

σ′,σ̃′
L(σ, σ̃,σ′, σ̃′)

ρv(σ
′, σ̃′)

ρv(σ, σ̃)
, (5.33)

pv(σ, σ̃) =
|ρv(σ, σ̃)|2

Z
, (5.34)

Z =
∑

σ,σ̃

|ρv(σ, σ̃)|2. (5.35)

In particular, Cloc(v,σ, σ̃) is the contribution to the cost function of the (σ, σ̃) entry,
pv(σ, σ̃) is a well-defined probability and Z is the normalisation factor. Equation (5.32

.

)
shows explicitly that the cost function can be rewritten as the expectation value of the
function Cloc over the random variable (σ, σ̃). We remark that if L is K-Local, then only
a polynomial number of entries for each row will be non-zero and computing Cloc(v,σ, σ̃)
will have a bounded cost. Any physical system with finite-range interaction and dissipation
will have a K-local Liouvillian, therefore this is not a strong assumption.

In the following we will use notation
⟨
Â
⟩
v
to indicate the expectation value of A(σ, σ̃),

assumed to be a random variable on the space H⊗H, weighted by the probability distri-
bution pv(σ, σ̃). With that notation, we can express the cost function as the expectation
value of the square modulus of the local cost function,

C2,2(v) = ⟨|Cloc
v |2⟩v , (5.36)

which this follows directly from Eq. (5.32

.

).
An important quantity to compute when performing the stochastic optimisation of

the variational ansätze is the gradient of the cost function. To provide more compact
expressions, we express the diagonal log-derivative and conjugate-log-derivative operator
in terms of its entries6

.

,

Ov(σ, σ̃) =
∇vρ̂v(σ, σ̃)

ρ̂v(σ, σ̃)
, Ov⋆(σ, σ̃) =

∇v⋆ ρ̂v(σ, σ̃)

ρ̂v(σ, σ̃)
, (5.37)

6Technically, if we want to maintain the analogous to the variational method in closed Hamiltonian
systems, O(σ, σ̃,σ′, σ̃′) is a diagonal superoperator. As the only non-zero entries of O are those where
the first two indices equal the last two, we can treat it as an operator.
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where ∇vρ̂v(σ, σ̃) is the npar−dimensional gradient of the ansatz (npar = dim[W] being
the number of variational parameters). As with the local cost function, this can also be
understood as a random variable on the space H⊗H. With the aid of the log-derivative
we can express the gradient of the cost function as (details of the calculations are reported
in Section C.3

.

),

∇v⋆C2,2(v) = ⟨Cloc∇v⋆Cloc⟩v − ⟨|Cloc|2⟩v ⟨O⋆
v⟩v , (5.38)

where we assumed that ρ̂v(σ, σ̃) is holomorphic with complex weights. If the ansatz is
real-analytic and all weights are real, it is easy to show that the expression becomes

∇v⋆C2,2(v) = Re
[
⟨Cloc∇v⋆Cloc⟩v − ⟨|Cloc|2⟩v ⟨O⋆

v⟩v
]
. (5.39)

A more general form for the case of non-holomorphic ansätze can be found in the appendix.
In both expressions above the gradient of the local cost function is defined as,

∇v⋆Cloc(v,σ, σ̃) =
∑

σ′,σ̃′
L(σ, σ̃;σ′, σ̃′)

ρv(σ
′, σ̃′)

ρv(σ, σ̃)
Ov(σ

′, σ̃′). (5.40)

5.4.2 Sampling the cost function

The cost function of Eq. (5.32

.

) is obtained by summing over the whole space H⊗H, which
is a task with exponential complexity. Among all local contributions to the cost-function,
many states (σ, σ̃) have a negligible probability pv(σ, σ̃) ≈ 0 and could be dropped from
the summation. If the probability distribution pv(σ, σ̃) is sufficiently peaked around a
finite support, it is possible to compute the expectation values for the cost function and
its gradient (Eqs. (5.36

.

) and (5.39

.

)) by stochastically sampling only a bounded number of
elements according to the distribution.

Even though treating the cost function as a stochastic function bounds its computa-
tional cost, one must properly treat the sampling procedure itself. Sampling a probability
distribution such as pv(σ, σ̃) requires in principle the computation of the full distribution,
which involves the evaluation of an exponential number of elements. To avoid this, one
might still randomly generate M elements (σ, σ̃) until he captures the majority of the
distribution, so that

∑M
i=1 pv(σi, σ̃i) ≈ Z. For the particular ansatz we presented in the

previous section, however, computing the normalisation factor Z requires performing the
full sum over the doubled Hilbert space, an exponentially complex task. In general, it is
not tractable to compute this quantity, except for a small class of autoregressive ansätze
(built on convolutional neural networks originally proposed by Google) [248

.

].
To avoid this problem, it is possible to use more advanced sampling techniques such

as Markov Chains, which in the limit of sufficiently long chains provide good sampling of
the space [257

.

, 258

.

].

5.4.3 Encoding symmetries

Physical systems often exhibit symmetries, which must also be present in their steady-state
[38

.

]. Symmetries can be exploited to reduce the computational complexity of computa-
tional methods or to improve their stability. Assume that the Lindblad master equation
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is invariant under the action of a symmetry group defined by the set of linear transforma-
tions Ts where s = 1, . . . S (S is the dimension of the symmetry). The density matrix ρ̂
transforms according to

ρ̂→ Tsρ̂T †
s , (5.41)

and should be invariant under this transformation for every value of s.

It is possible to generalise certain neural network ansätze to be invariant under the
action of translations or rotations [259

.

, 260

.

], as it has already been demonstrated in the
case of closed Hamiltonian systems [70

.

, 71

.

]. This approach should be easy to generalise
to the case of mixed states by ensuring that the same transformation is enforced both
in the rows and the columns of the density matrix. While this approach is of interest
because it reduces the number of parameters, it requires that the first layer be a dense
layer and therefore is not completely general7

.

. Moreover, it is not evident how to enforce
more complicated symmetries such as ZN , U(1) or other non-abelian symmetries.

A simpler yet more general approach that could be applied would be to symmetrize
the evaluation of the network, by replacing every evaluation of ρ(σ, σ̃) with

ρsym(σ, σ̃) =
S∑

s=1

ρ(Tsσ, Tsσ̃), (5.42)

and performing a similar transformation on the gradient O(σ, σ̃). This technique has
been applied in the context of convolutional ansätze of closed Hamiltonian systems [248

.

].
The technique can also be improved by performing the Markov chain in the space of the
irreducible representations, as recently reported by Vieijra et al. [261

.

].

5.4.4 A note on alternative expressions for the cost function

We remark that the cost function C2,2 can be rewritten in another, possibly more intuitive
form, namely

C2,2(v) =
∑

σ,σ̃

pv(σ, σ̃)Cloc, 2(v,σ, σ̃), (5.43)

Cloc, 2(v,σ, σ̃) =
∑

σ′,σ̃′
(L†L)(σ, σ̃,σ′, σ̃′)

ρv(σ
′, σ̃′)

ρv(σ, σ̃)
. (5.44)

The equivalence between the two expressions is valid only as long as the sum
∑

σ,σ̃

is performed exactly over the whole space. However, when the sum is evaluated via a
Monte Carlo procedure, Eq. (5.32

.

) and Eq. (5.43

.

) have different convergence properties.
In particular, Eq. (5.43

.

) can assume a positive or negative real part. Equation (5.32

.

),
instead, is a sum over positive real terms, and respects the 0-variance property for the
steady-state.

7Restricted Boltzmann machines, when written as a feedforward network have a single dense layer.
The symmetric counterpart of a Boltzmann machine with αN hidden neurons is a single convolutional
layer with α kernels. This reduces the number of parameters by a factor S = N (Assuming all translation
symmetries of a periodic lattice).
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Figure 5.6: The cost function C2,2 computed iteratively with the two schemes of Eq. (5.32

.

)
and Eq. (5.43

.

) respectively. While both schemes converge to the same value, the first one
converges much faster to the exact value.

To make a comparison to closed systems, optimising the first is similar in spirit to
performing a variance minimisation of the variational wavefunction as opposed to the
latter, which is a simple energy minimisation [262

.

]. This leads to faster convergence as
a function of the Markov chain length when C2,2, as shown in Fig. 5.6

.

. We remark that
computing the gradient of C2,2 through this expression of local weights leads to a different
form of the gradient,

∇v⋆C2,2(v) = ⟨Cloc,2 O⋆
v⟩v − ⟨Cloc,2⟩v ⟨O⋆

v⟩v , (5.45)

which is obtained by imposing the fact that L†L is hermitian. Since this super-operator
is quadratically denser than L itself, it is usually more expensive to compute.

For those reasons, we strongly recommend not to use this expression of the local cost-
function for driven-dissipative systems.

5.5 Optimisation algorithms for the variational problem

Finding the global minima vss of C(v) is an optimisation problem. To solve optimisation
problems there exist mainly two classes of classical algorithms: gradient-free global opti-
misers [263

.

], such as swarm algorithms [264

.

] or simulated annealing [265

.

], and gradient-
based iterative methods. When optimising functions in very high dimensional spaces
(dim > 500) global optimisers tend to perform rather poorly, and the only possible choice
are iterative methods.

5.5.1 Stochastic Gradient Descent

The simplest iterative method used when optimising (or learning) neural networks is the
gradient descent method, a first-order iterative method that updates the weights according
to the gradient at each iteration.

vi+1 = vi − η∇v⋆ C(vi) (5.46)
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where η is the learning rate, and determines how fast one descends along the gradient
direction. In the context of machine learning, it is often intractable to evaluate exactly
the gradient ∇v C(v), which is instead sampled stochastically; in that case the method is
called Stochastic gradient descent (SGD) [266

.

].

It is rather interesting to note that while exact gradient descent optimisation of a
non-convex function might easily get stuck into local minima, in the typical problems of
machine learning (stochastic optimisation and very high-dimensional spaces) this is not
the case. In particular, it has been shown that local minima are rarely a problem in deep
networks when the dimensionality is sufficiently high [267

.

].

Thermalisation-like features

Stochastic gradient descent can, under certain assumptions8

.

, be interpreted as a Langevin
process. Computing the gradient approximately introduces random noise that can be
modelled as a Wiener process,

dv = −∇v⋆ C(v)η +
√
β−1D(v)dW, (5.47)

where β(η) is an effective temperature that depends on the sampling algorithm andD(v) is
the variance of ∇v⋆ C(v) [268

.

]. Stochastic sampling of the gradient introduces an effective
temperature that allows the optimisation to get out of local minima, in the same spirit of
annealing. Evidently, a tradeoff is required between the accuracy of the solution, which
increases with η and the speed with which one falls towards the minima, which depends
on η−1.

5.5.2 Nesterov accellerated momentum

An improvement to the basic stochastic gradient descent, is obtained by changing η dy-
namically. This is effective to accelerate the optimisation in regions where the gradient is
very small. Moreover, it protects from sudden variations in the gradient, which sometime
arise due to ill-conditioning of the problem or insufficient sampling.

A possible approach to obtain an effective adaptivity of η is by introducing momentum
in the update rules, for example through the so-called Newton scheme. Here, we will
detail a more advanced formulation known as Nesterov accelerated momentum, where the
equation of motion have been integrated with the leap-frog scheme in order to guarantee
a more stable convergence [269

.

]. Within this approach the updates are given by the two
iterative equations

v̇t+1 = µvt − η∇v⋆ C(v + µv̇t), (5.48)

vt+1 = vt + v̇t+1, (5.49)

where the initial speed can be set to v̇0 = 0, µ ∈ [0, 1[ is the damping coefficient and η is
the bare learning rate. It is possible to show that the effective step size depends on the
gradient and will be ≤ η µ

1−µ .

8Mean field treatment of the different parameters, otherwise geometric noise terms might appear.
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5.5.3 Stochastic reconfiguration

A different method that improves convergence towards the global minimum of the cost
function is the stochastic reconfiguration method, also known as natural gradient descent
by the machine learning community [270

.

, 271

.

]. The stochastic reconfiguration corrects
the gradient descent so that small variations δv in the parameters do not cause large
variations, according to a certain norm, for the density matrices. The generalisation of
this method, previously developed for closed systems [243

.

], can be straightforwardly made
in our case. In what follows we give a sketch of the derivation.

Consider the first-order Taylor expansion of the variational density matrix with respect
to the variational parameters:

ρ̂v+δv = ρ̂v +
∑

i

δviOvi ρ̂v, (5.50)

where i ∈ [1, Npar] spans all the variational parameters. The distance between ρ̂v and
ρ̂v+δv is defined to be:

δs2v =


ρ̂v+δv

∥ρ̂v+δv∥
− ρ̂v

∥ρ̂v∥


2

2

, (5.51)

where in the following we have chosen the 2-norm, defined by ∥Â∥ 2

2 = Tr
[
Â†Â

]
. It is also

known that the distance between two vectors in a space is given by the metric tensor S as

δs2v = δv†Svδv. (5.52)

By keeping only the leading terms in δv it is possible to rewrite Eq. (5.51

.

) in order to show
that the metric tensor can be written as the expectation value (valid for an holomorphic
ansatz)

Sv = ⟨OvO†
v⟩v − ⟨Ov⟩v ⟨O†

v⟩v . (5.53)

In the case of an ansatz with real parameters this expression is instead

Sv = Re[ ⟨OvO†
v⟩v]− Re[ ⟨Ov⟩v]Re[ ⟨O†

v⟩v]. (5.54)

For the more complicated case of non-holormophic ansätze check the appendix. We remark
that it has the same form of the covariance matrix of the stochastic gradient, and therefore
it is equivalent to the Fisher’s (classical) information matrix for the distribution ρ.

We will now show how it is possible to use the information contained in the metric
tensor to correct an otherwise standard gradient descent. Consider a generic iterative
method; if the variational weights are updated according to the rule v → v′ = v + δv,
after every iteration the change in the cost function will be

∆C = C(v + δv)− C(v) = δvT∇vC + δv†∇v⋆C +O(|δv|2), (5.55)

where we only retained terms linear in the weight updates. To enforce the constrain that
an update δv gives a small variation in the space of ρ̂, one can introduce a Lagrange
multiplier µ and minimise with respect to the variations of δv the quadratic form

∆C + µδs2 = δvT∇vC + δv†∇v⋆C +O(|δv|2) + µδv†Svδv, (5.56)
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where we have added to both sides of the equation the equality µδs2 = µδv†Sδv. By
asking that the partial derivative with respect to δv† is zero, we obtain the solution

∇v⋆C = −Svδv. (5.57)

By inverting S we then obtain the stochastic reconfiguration (or natural gradient) update
rule,

v → v + δv where δv = −S−1
v ∇v⋆C(v), (5.58)

where the metric tensor S is often called the SR matrix. Notably, this formula also de-
scribes the standard steepest-gradient descent, where the metric tensor is taken to be the
identity, as is the case for the euclidean space W. The metric tensor Sv is a real, dense,
symmetric matrix of size Npar ×Npar, which has often many degenerate eigenvalues. De-
generate eigenvalues represent the fact that not all parameters are (linearly) independent
around v. Moreover, the null eigenvalues identify parameters, or combination of param-
eters, which do not change the resulting density matrix ρ̂. Consequently, it is hard to
numerically invert the metric tensor efficiently and accurately. Moreover, matrix inversion
methods are computationally very expensive and their precision scales rather badly. When
working with a neural network ansatz it is customary to have Npar > 1000. Krylov-space
iterative solvers such as MINRES-QLP are more suitable at determining the update vec-
tor δv without ever inverting the matrix [272

.

]. To avoid numerical stability issues arising
from the zero eigenvalues of Sv, we can add a uniform diagonal bias b,

(Sv + b I)δv = ∇v⋆C(v), (5.59)

with b ∈ [10−4, 10−2] in practical numerical implementations. As this system is not equiv-
alent to the original, the bias sets a lower bound to the lowest possible value of the cost
function. As such, it should either be lowered during the optimisation, and ensure that it
is always at least one order of magnitude smaller than the current C(v). An alternative
approach employs a non-diagonal bias such as that used in Ref. [73

.

].

We would also like to remark that, by using iterative methods one only needs to
compute products between Sv and a vector used by the linear solver. As the matrix Sv
is nether computed exactly but it is obtained by sampling the log-derivatives Ov, it is
possible to avoid computing the full matrix altogether and implement the product via
matrix-free methods. This would also lower the memory cost from N2

par to Npar × M
whereM is the number of stochastic samples. We also expect that the computational cost
of a well-designed distributed implementation to be lower than the full-matrix equivalent,
though we have not yet experimented with that.

5.6 Benchmarking on spin systems

In order to benchmark our neural-network approach for open quantum systems, we con-
sider here the dissipative quantum transverse Ising model, whose Hamiltonian is

H =
V

4

∑

⟨j,l⟩
σ̂zj σ̂

z
l +

g

2

∑

j

σ̂xj , (5.60)
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Figure 5.7: Top panel: sketch of the considered physical system described by the dissipative
quantum transverse Ising 1D model with periodic boundary conditions. The quantity g
denotes an applied magnetic field, V the spin-spin coupling and γ the spin flip rate.

being σ̂αj the Pauli matrices (α ∈ {x, y, z}) acting on the j-th site. The first term represents
the nearest-neighbour spin-spin interaction depending only on the z-components, being V
the coupling strength. The second term accounts for a local and uniform magnetic field
along the transverse direction x. We consider local dissipative spin-flip processes described

by the site-dependent jump operator L̂
(z)
j = σ̂−j = 1

2(σ̂
x
j − iσ̂yj ), which fully determine the

Lindblad master equation.

Numerical results for steady-state observables of the dissipative quantum transverse
Ising model on a 1D periodic chain are reported in Fig. 5.8

.

. An up to date package
implementing the computational method is freely accessible in GitHub [273

.

], while the
precise version used for the simulations presented here is stored in Zenodo [274

.

]. We
discuss some implementation details are briefly discussed in Section C.4

.

. In particular, we
report the spatial components of the averaged magnetisation as a function of the magnetic
field g (in units of the dissipation rate γ) for V/γ = 2. For N = 16 lattice sites the
predictions of the neural-network variational method (circles) are compared to the results
obtained with a brute-force exact integration of the master equation in the whole Hilbert
space, showing a good agreement over all the parameter range. For g ≲ γ and g ≳ 2.5γ
a remarkable precision is reached for all the local observables with a low density of the
hidden and ancillary layer α = β = 1 and O(102) minimisation steps. For 1 ≲ g/γ ≲ 2.5 an
higher number of variational parameters is required. In particular, as shown in Fig. 5.9

.

, a
systematic improvement of the relative error ϵrel

[
⟨σx⟩

]
with respect to the exact solution

can be obtained by increasing the ancilla density β. This figure also suggests that varying
the hidden layer density α has little effect on the representation power of the ansatz.
Indeed, if one rewrites the ansatz in the form ρ(σ, σ̃) = exp[Ψ0(σ) + Ψ⋆

0(σ̃) + Πv(σ, σ̃)]
it is easy to show that α increases the representation power of the pure-part Ψ0 and that
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Figure 5.8: The prediction of the neural-network variational calculations (circles) are
compared to the results obtained by quantum trajectory simulations of the master equation
by considering the whole Hilbert space (solid lines). The top, middle and bottom panels
depict the expectation values of the three components of the averaged magnetisation as a
function of the applied magnetic field g (in units of γ). Model parameters: V/γ = 2 (spin-
spin coupling), N = 16 (number of lattice sites). Neural-network parameters: α = β = 1
for g ≤ γ and g ≥ 2.5γ while α = 1 and β = 4 for the remaining points. The parameters
required for the convergence of the Monte Carlo calculations depend on the value of
g/γ, with the intermediate region being the most demanding. The maximum number of
accepted Monte Carlo samples is 8640 and the maximum number of steps for the stochastic
gradient descent is 104. For points outside the intermediate region 3000 accepted Monte
Carlo samples and 103 iteration steps have been performed.
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Figure 5.9: Relative error with respect to the exact result for the observable ⟨σx⟩ as a
function of α and β. Parameters are set as in Fig.5.8

.

but for a fixed value g/γ = 1.2.

β increases the representation power of the mixed part Π. This hints that the system is
encoding all the information into the mixed part, which is unfortunately the part that
is constrained due to the analytical integration of the ancilla and that cannot be made
deeper.

Interestingly, for 1 ≲ g/γ ≲ 2.5, we note that the gradient-descent procedure requires
more iterations. This region corresponds to the range of g/γ where the smallest nonzero
eigenvalue of L†L decreases significantly [275

.

]. In this range the steady-state density
matrix also displays nontrivial correlations and non-thermal mixedness properties [275

.

].
Remarkably, the fidelity of the reconstructed local density matrix with respect to the exact
one is alway larger then 0.998 for all the values of g/γ considered.

Finally, as an example of convergence, the top-left panel of Fig. 5.10

.

depicts a typical
evolution of the cost function in the iterative minimisation procedure for a fixed set of
parameters (g/γ = 1), showing a good convergence towards the global minimum. In
the bottom-left panel of Fig. 5.10

.

, the convergence of the x-component of the averaged
magnetisation is also reported. For this particular value of the parameters, good agreement
in the local observables is attained when C ≲ 10−2. It is however not easy to generalise
this quantity to a general system, as this cost function does not scale homogeneously with
the system size.

The convergence towards the steady state can also be represented more graphically
thanks to mean field techniques. By taking the weights of the network at the end of the
optimisation procedure v⋆ and picking two gaussian random vectors δα and δβ, we can
compute the cost function C(v+αδα+ βδβ). If v

⋆ is a local minima the landscape in the
manifold spanned by the two random vectors will be representative [276

.

], as shown in the
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Figure 5.10: Left panel: same parameters as in Fig. 5.8

.

but for a fixed value g/γ = 1.
Top panel: the cost function is shown as a function of the iteration steps. Bottom panel:
the corresponding evolution of the x-component of the average magnetisation during the
stochastic minimisation is shown. Right panel: landscape of the log-cost function log[C(v)]
along two non-orthogonal representative directions α and β around the global minima
(α, β) = 0, computed according to [276

.

].

right panel of Fig. 5.10

.

.

To conclude, in Fig. 5.11

.

we report the scaling of the runtime performance of the
neural network algorithm, compared to traditional brute-force Runge-Kutta integration
of the master equation and to a quantum trajectory approach for the value of the transverse
field g/γ = 0.7 and a number of monte-carlo samples depending loosely on the size of the
system. We see an advantage to using Quantum trajectories for lattices with as little as
12 sites.

5.7 Possible future generalisation based on purified space
sampling

To conclude the chapter we will introduce a possible improvement that could be imple-
mented in the future to make our method even more general.

We have shown in the benchmarking that the network seems to learn even relatively-
pure states through the components encoding the correlations among row and columns of
the density matrix. If the neural density matrix ansatz is written in the form,

ρ(σ, σ̃) = exp[Ψ0(σ) + Ψ⋆
0(σ̃) + Πv(σ, σ̃)], (5.61)

the network is encoding information in Πv, which is the only part that we cannot change
freely. If we want to write a ansatz for the density matrix ρ(σ, σ̃) starting from some
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Figure 5.11: Runtime cost (in CPU-core-seconds) of various algorithms as a function of the
system size N . Red squared: the brute-force RK45 integration of the master equation up
to Tend = 50γ. Green triangles: the integration of 500 trajectories up to Tend = 50γ with
the TSIT5 ode-integrator. Black circles: the CPU-time of the Neural Network algorithm
presented in this paper, with α = 1, β = 2, M = 103 ∗ (1+log2(N)) Markov-chain samples
and 150 iterations.

purified wavefunction ψ(σ,a), we need to perform the analytical summation over the an-
cillary degrees of freedom. We had initially thought this would not be a big limitation,
as we could substitute the relatively simple form for Ψ0 that we have used in the bench-
mark with more complicated functions, mainly inspired from Machine Learning literature.
However, our results seem to suggest that this would not be efficient, as in the end the
network would concentrate the encoding of the information into the part that is fixed.

In the following we propose a sampling and optimisation scheme that allows for truly
generic and unconstrained ansätze, while still enforcing the positivity of the resulting
density matrix. The idea stems from the purification ansatz, which is positive definite for
an arbitrary wavefunction ψ⋆v(σ,a), we could compute the cost function by sampling also
in the ancillary space, thus avoiding the analytical summation over the ancilla’s variables.

To be able to sample stochastically the cost function by performing a Markov-Chain
in the space (σ,a), where every configuration is weighted by |ψ⋆v(σ,a)|2, we must impose
the proper normalisation. Interestingly, purified wavefunctions have the property that

∥ψv∥2 = Tr[ρ̂] =
∑

σ,a

|ψ⋆v(σ,a)|2. (5.62)

Therefore the following cost function can be sampled in that space

C2,1(v) =
∥Lρ̂v∥2
Tr[ρ̂v]

2 . (5.63)

We remark that this cost function, when computed for sufficiently big systems, would
be biased towards the maximally mixed state because it is normalised with the same L2
norm [125

.

]. Nevertheless, it is possible that this bias would not arise in iterative schemes
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if properly initialised to stay far from the mixed state. This suggests that it might a viable
alternative.

By substituting Eq. (5.62

.

) into Eq. (5.63

.

) we obtain

C2,Tr(v) =
∑

σa,σ′
a

p(σa)p(σ
′
a)
∑(

L(σ, σ̃,σ′, σ̃′)
ψ(σ̃a)

ψ(σa)

)(
L(σ, σ̃,σ′, σ̃′)

ψ(σ̃′
a)

ψ(σ′
a)

)⋆
,

(5.64)

where we used the shorthand notation σa = (σ,a) and σ′
a = (σ′,a[′]) (the tilde does not

get applied to a). The probabilities are given by

p(σa) = |ψ⋆v(σ,a)|2/Z, (5.65)

Z =
∑

σ,a

|ψ⋆v(σ,a)|2. (5.66)

Unfortunately this expression cannot be written as a squared term, so its sampled value
will have worse convergence properties than something that is bounded from below such
as C2,2. It is possible to perform the sampling through two independent Markov-Chains
running in the purified space HS ⊗ HA, but the increased sampling cost of this scheme
could be offset by leveraging the generality of this method. As we have no constraints in
the functional form of the ansatz, it would be possible to use the Convolutional ansatz
presented by Sharir et Al, which allows direct sampling of a wavefunction, to efficiently
sample the whole space [248

.

]. We also remark that the Stochastic Reconfiguration method
must be slightly adapted when sampling the purified space. In fact, we should not consider
the metric induced by the vector bra-ket product in the space HS ⊗ HA, but we should
rather consider, as before, the distance between the resulting density matrices.

5.8 Conclusions and perspectives

In this chapter we have shown that machine learning and variational methods in quantum
mechanics have much in common. We have presented a general and novel variational
approach for the steady-state density matrix of open quantum many-body systems based
on an artificial neural network scheme. Our method is scalable since the cost function,
which ultimately measures how much the proposed state differs from the exact steady-
state, can be sampled via Monte Carlo methods provided that the Liouvillian is composed
of K-local operators and dissipators. We have demonstrated a proof-of-principle of this
novel scheme by successfully benchmarking to brute-force finite-size simulations in the full
Hilbert space for arrays of spins described by the dissipative quantum transverse Ising
model. The approach that we have implemented and benchmarked is general and can be
extended to deep neural networks. As a future development it would be interesting to
fully generalise the structure of the ansatz, and we have already taken a first step towards
this goal by sketching one possible scheme at the end of this chapter. Developments
in this direction should be combined with convolutional networks that allow to greatly
reduce the sampling cost while increasing the accuracy. Such approach are also capable
of extracting great performance from specialised hardware such as GPUs. It would be
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also interesting to study how alternative cost function behave when used in conjunction
with neural-networks, as well as implementing a variational time-evolution of the density
matrix or of stochastic trajectories.
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CHAPTER 6

Conclusions and outlook

The framework of open quantum systems is relevant to the theoretical modelling of such
systems because it can model out of equilibrium phenomena arising from the interaction
with the environment or from engineered devices. The remarkable complications intro-
duced by the coupling to the environment require advanced analytical and numerical tools
to advance our understanding. We have shown that in the last decade several numerical
techniques have been developed, either by generalising existing tools initially proposed for
closed systems or by developing novel ideas. Nevertheless, numerical methods must be
carefully chosen depending on the system and regime of interest, as they all have advan-
tages and drawbacks. For example, semiclassical methods can be used to simulate very
efficiently certain weakly interacting systems [2

.

, 124

.

], but fail in the quantum regime [114

.

].
Tensor network methods provide the best performance in one dimensional systems [238

.

],
but their application to higher dimensions is not so straightforward [66

.

]. The corner space
renormalisation method faces difficulties when the state becomes highly entropic, but it
treats long range correlations with ease [118

.

, 132

.

]. Variational methods are not limited
by correlations or entropy, but by the generality and representation power of the ansatz
[2

.

, 72

.

].

From a more fundamental point of view, within this Ph.D. thesis we have investigated
the critical phenomena and the role of disorder in dissipative transitions. Disorder, in
particular, is of interest because it might drive a localisation transition which could be
used to engineer technological devices. With our research, we contributed to the field
by developing a simple yet effective optimal sampling protocol, to efficiently compute
expectation values of disordered systems through trajectory protocols [2

.

]. This protocol
is general, and can be applied to any kind of trajectory, regardless of the approximation
or unravelling used to obtain it.

With regards to phase transitions, we studied the driven-dissipative Bose-Hubbard
model. This fundamental model describes the coherent hopping of particles in a lattice
through an exchange term, and it includes many-body features by accounting for boson-
boson interaction. Incoherent single-particle losses are modelled within the Lindblad mas-
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ter equation formalism. Thanks to the truncated Wigner approximation [112

.

], we have
been able to perform a finite-size scaling analysis of the model, revealing a critical slowing
down of the dynamics in 2D lattices, suggesting that the lower critical dimension of the
model is d < 2. We linked the slowing down, which is caused by a closing of the Liouvillian
gap at the transition, to a first-order phase transition [1

.

]. Our analysis has also revealed
that in lower dimensional systems such as 1D chains local density fluctuations, which de-
plete the homogeneous mode, destroy the criticality. Interestingly, we have been able to
show that critical finite-size systems exhibit lattice-level bistability of their homogeneous
mode, with instantaneous switches of the whole lattice between the two phases occurring
during dynamical evolution [2

.

]. This phenomenon is not only prevented in d < 1, but also
by any finite amount of disorder, which creates density domains. However, as long as the
system is smaller than the length scale set by disorder, the system will behave qualitatively
as if it was homogeneous, which might be of interest to experiments wishing to investigate
this phenomenon. In the future, it would be interesting to study if coloured pumping
schemes could offset the localisation induced by disorder and reinstate the criticality. We
also envisage further studies on the lower critical dimension, for example by investigating
fractal or frustrated lattices. Lastly, we believe that a more theoretical study of the link
between bistability, long-range order and first-order dissipative transitions might uncover
interesting novel results.

During our research we have often faced problems due to the sheer complexity of the
simulations involved. The last part of this thesis has been devoted to creating a bridge
between the language used in machine learning with that used by numerical physicists,
showing that the underlying mathematical tools have a common ground. This has allowed
us to develop a general method that could be used in higher dimensional (D ≥ 2) systems
and that would not be limited by the entropy [3

.

]. We have proposed a variational principle
to iteratively compute the steady-state of a Lindblad master equation. Notably, as the
associated cost function is written in terms of stochastic averages, it is possible to forgo
the exact evaluation, resorting to Monte Carlo sampling schemes that circumvent the
otherwise exponential complexity of the Hilbert space. By combining this variational
procedure with an ansatz inspired by machine learning, we have shown that it is possible
to efficiently compute observables of driven-dissipative quantum systems.

The method we have proposed, while quite general, has a single constraint on the
functional form of the neural network ansatz. Benchmarking on the dissipative transverse
field Ising model suggested that the method could be improved by relaxing this constraint
and allowing for a more general ansatz that could build more complicated correlations. We
believe an interesting research direction would be to generalise the variational principle
and the sampling scheme to be able to use more generic networks, and we have taken a
first step in this direction by proposing the doubled purified space sampling at the end of
the chapter. Completely foregoing the functional constraints will permit to use state of the
art machine learning techniques such as autoregressive networks that avoid the Markov
chain sampling all together. Another low-hanging fruit would be to implement symmetries
into this scheme, which would further reduce the number of parameters needed while also
increasing the accuracy of the sampling.

While physicists have developed several techniques to understand the effects of trunca-
tion of linear bases of the Hilbert space, it is still unclear what exactly is the limit of those
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chains of nonlinear functions, and it would be extremely worthwhile to investigate this,
even more so in the context of mixed states. The results, directly relevant to numerical
physics, would probably also be of interest to data scientist working with ensembles of
distributions.

To conclude, with the recent announcement of quantum supremacy [277

.

] and the on-
going development of noisy intermediate scale quantum computers and simulators the
development of algorithms for those devices is a very actual problem. Investigating the
effectiveness of quantum neural networks, which are usually implemented in terms of pa-
rameterised quantum circuits, in encoding classical and quantum information will provide
very valuable insight on future applications of those technologies. Moreover, understand-
ing the differences between classical and quantum optimisation of quantum circuits, or the
relationship between their depths and representation power would be surely worthwile.
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APPENDIX A

Liouvillian superoperator as a matrix

Rewriting the Liouvillian master equation as a super-operator is quite intuitive if one ex-
plicitly writes the indices associated to the matrix-vector multiplications (assuming Ein-

stein’s summation convention and ˆ̃H = ĤS − i
∑

i L̂
†
i L̂i):

(Lρ̂)σ,σ̃ = −i( ˆ̃Hρ̂)σ,σ̃ + i(ρ̂ ˆ̃H†)σ,σ̃ −
∑

i

(L̂iρ̂L̂
†
i )σ,σ̃ (A.1)

= −i(H̃σ,σ′ρσ′,σ̃ + i(ρσσ̃′H̃†
σ̃′,σ̃)−

∑

i

Li,σ,σ′ρσ′,σ̃′L†
i,σ̃′,σ̃ (A.2)

=

[
−iH̃σ,σ′δσ̃,σ̃′ + iδσ,σ′H̃†

σ̃′,σ̃ −
∑

i

Li,σ,σ′L†
i,σ̃′,σ̃

]
ρσ′,σ̃′ . (A.3)

Noticing that δσ̃,σ̃′ expresses the entries of the identity matrix, we can rewrite this in
tensor notation, namely,

Lρ̂ =

[
−i ˆ̃H ⊗ I+ i I⊗ ˆ̃H† −

∑

i

L̂i ⊗ L̂†
i

]
ρ̂, (A.4)

which can be used when working with numerical solvers.
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APPENDIX B

Numerics

B.1 Benchmark of the Truncated Wigner Approximation

In this appendix, we present numerical results showing that the Truncated Wigner Ap-
proximation is accurate in the regime of parameters considered in the manuscript. To
do so, we compare its results to what was obtained with numerically exact methods for
small systems. In Fig. B.1

.

, we present the steady-state average population in a 4 × 1
array computed with the Truncated Wigner approximation and with the corner-space
renormalization method [69

.

] finding an excellent agreement between the two. The val-
ues considered are the same as in the main text. We would like to point out that for
the considered value of U/γ = 0.1, a brute-force integration of the master equation for

1.5 1.52 1.54 1.56 1.58 1.6 1.62 1.64
3

4

5

6

7

8

9

10
Truncated Wigner

Corner Method

Figure B.1: Steady-state average boson occupation per site as a function of the driving
F/γ in a 4 × 1 array: different symbols correspond to different numerical methods. The
statistical error is of the order of the symbol size. Parameters are U/γ = 0.1, zJ/γ = 0.9,
∆/γ = 0.1.
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Figure B.2: Ratio between the steady-state average occupation obtained through the
Truncated Wigner approximation nTW and the exact Runge-Kutta Integration of the
Lindblad Master Equation nex in a 2×1 array. The error bars refer to the statistical noise
of the results associated to the stochastic Langevin simulations. F/γ has been varied so
that UF 2/γ3 = 2.465 is kept constant; zJ/γ = 0.9 and ∆/γ = 0.1 are fixed. Note that
the results for U/γ ≤ 0.2 have been obtained with the corner-space renormalization.

a one-site system requires a cutoff of Nmax = 40 bosons in order to achieve adequate
numerical convergence. In a 4 × 1 lattice the required dimension of the Hilbert space
would be 404 = 2.56 · 106 which cannot be handled numerically without more advanced
methods. For the parameters considered in the main text, this lattice can still be tackled
by the corner-space renormalization method (going to larger lattice sizes would require
significantly larger computational resources).

In Fig. B.2

.

we present the ratio nTW /nex between the steady-state average population
obtained via the truncated Wigner approximation nTW and exact methods nex as a func-
tion of the nonlinearity U/γ. We used this quantity to identify the range of values in U/γ
for which the truncated Wigner approximation is quantitatively accurate, finding that for
U/γ ≤ 0.3 the Truncated Wigner yields results within 1% of the exact value.
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APPENDIX C

Details on neural network methods for open quantum systems

C.1 Log-Derivatives of the NDM ansatz

The logarithmic derivatives of the variational density matrix ρv(σ, σ̃) appearing in Eq.
(10) of the main text are computed with respect to the various components of v as follows:

∂ log[ρv(σ, σ̃)]

∂b
(v)
A

=
1

2
(σ + σ̃), (C.1)

∂ log[ρv(σ, σ̃)]

∂b
(v)
θ

=
i

2
(σ − σ̃), (C.2)

∂ log[ρv(σ, σ̃)]

∂b
(h)[j]
A

=
1

2

{G′

G [θ
[j]
A (σ)] +

G′

G [θ
[j]
A (σ̃)]

}
, (C.3)

∂ log[ρv(σ, σ̃)]

∂b
(h)[j]
θ

=
i

2

{G′

G [θ
[j]
θ (σ)]− G′

G [θ
[j]
θ (σ̃)]

}
, (C.4)

∂ log[ρv(σ, σ̃)]

∂b
(a)[j]
A

=
G′

G

[
1

2
(σ + σ̃) ·U[j]

A +
i

2
(σ − σ̃) ·U[j]

θ + b
(a)
A,j

]
, (C.5)

∂ log[ρv(σ, σ̃)]

∂W
[j]
A

=
1

2

{G′

G [θ
[j]
A (σ)] σ +

G′

G [θ
[j]
A (σ̃)] σ̃

}
, (C.6)

∂ log[ρv(σ, σ̃)]

∂W
[j]
θ

=
i

2

{G′

G [θ
[j]
θ (σ)] σ − G′

G [θ
[j]
θ (σ̃)] σ̃

}
, (C.7)

∂ log[ρv(σ, σ̃)]

∂U
[j]
A

=
1

2
(σ + σ̃)

G′

G

[
1

2
(σ + σ̃) ·U[j]

A +
i

2
(σ − σ̃) ·U[j]

θ + b
(a)
A,j

]
, (C.8)

∂ log[ρv(σ, σ̃)]

∂U
[j]
θ

=
i

2
(σ − σ̃)

G′

G

[
1

2
(σ + σ̃) ·U[j]

A +
i

2
(σ − σ̃) ·U[j]

θ + b
(a)
A,j

]
, (C.9)
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where G′(x) = −e−x and G′
G [x] = (ex − 1)−1.

We remark that the particular form of G = 1+e−x used here originates from the partial
trace over the hidden layer, whose neurons can assume on the binary values {0, 1}. This
function, known as softmax in the machine learning literature, is just one of the many
possible choices.

C.2 A discussion of holomorphic and non-holomoprhic func-
tion optimisation

In general an optimization problem involves finding the global minima of a real-valued
scalar function f : RN → R. The gradient of f in x ∈ RN is defined as the column-
vector ∇xf = [∂x1f, ∂x2f, . . . , ∂xNf ]

T , where ∂xif is the partial derivative with respect
to the i-th component of x. If the function is analytic (or, more precisely, R−analytic),
its gradient will be well defined for any value of x. Expanding f(x + δ) to linear order
around x we obtain

f(x+ δ) = f(x) + δT∇xf(x) +O(δ2), (C.10)

where δT∇xf(x) =
∑N

i=1 δi∇xif(x). Therefore, the change of the function f when updat-
ing the parameters x → x+ δ is

|∆f | = f(x+ δ)− f(x) =
⏐⏐δT∇xf(x)

⏐⏐ ≤ ∥δ∥∥∇xf(x)∥, (C.11)

where we used the Schwartz’s inequality to bound the update. Assuming that the gradient
is fixed, the update vector δ that gives the maximum change ∆f , the maximum is achieved
when δ = η∇xf(x), which is the steepest-gradient update rule.

This can be understood as the proof that any function that is R−analytic almost
everywhere1

.

can be optimised with an iterative gradient descent scheme.

C.2.1 Extension to complex functions

In general a complex function f : CN → CM can be split into its real u and imaginary v
part, namely

f(z) = u(x,y) + iv(x,y), (C.12)

where C ∋ z = x + iy and x,y ∈ R. For a complex function it is possible to define the
gradient and the conjugate-gradient,

∇zf = ∇xf − i∇yf, ∇z⋆f = ∇xf + i∇yf. (C.13)

Those two gradients, also known as Wirtinger gradients, can be computed operatively
by assuming that z and z⋆ are independent variables. A complex function is said to be
holomorphic or C−analytic if it respects the Cauchy-Riemann relation

∇z⋆f = 0, (C.14)

1In practice, some activation functions such as rectified linear unit (relu) relu(x) = xθ(x) where θ is the
Heaviside step function are non-analytic in a set of points of measure zero. As such, the probability that
an iterative method will pass through that point is effectively zero, and the function can still be optimised
as if it was analytic.
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which means that the function has a single, well-defined gradient when treated as a function
of only one parameter. In this case, one can treat the function and its derivatives like any
traditional real-valued function. We remark that any operation such as mod [z] =

√
zz⋆,

Re[z] or Im[z] is not analytic. It is therefore easy to prove that any real-valued complex
function f : CN → R is non-holomorphic.

Even if a function is not C−analytic, its real and imaginary parts u and v can still be
R−analytic, as is almost always the case in practical applications. In this case for every
input z both the gradient and the co-gradient will be well defined. For that reason, we
can still perform an iterative optimisation of a scalar real-valued complex functions can
f : CN → R which is R−analytic.

To perform an iterative optimisation we need to obtain the direction of maximum
change, which can be done by expanding the function to linear order in the variations δ
as

f(x+ δ) = f(x) + δT∇xf(x) + δ†∇x⋆f(x) +O(|δ|2). (C.15)

The change of the function when updating the weights will then be

|∆f | = Re[δT∇x⋆f(x)] ≤ ∥δ∥∥∇x⋆f(x)∥, (C.16)

where we used the fact that f(x) = f(x)⋆. Like before, it is then trivial to see that the
direction of most change is identified by δ = ∇x⋆f(x), which proves that an iterative
optimisation of a complex cost function must descend along the conjugate-gradient and
not the gradient.

Chain rule

Because an R−analytic complex function must be treated as a function of two variables,
the chain rule for computing derivatives is modified accordingly. In particular, a function

f(z) = h ◦ g = h(g(z)), (C.17)

has the derivatives

∇zf(z) = ∇gh(g(x))∇zg(z) +∇g⋆h(g(z))∇zg
⋆(x), (C.18)

∇z⋆f(z) = ∇gh(g(x))∇zg(z) +∇g⋆h(g(z))∇z⋆g
⋆(x). (C.19)

We remark that if the function h(z) is holomorphic, even if g is not, then∇⋆
gh(g(z)) = 0 and

the expressions above simplify considerably. In this case, when evaluating the conjugate-
gradient of f(z) one will only need to compute one gradient instead of two, halving the
computational cost. If instead we had expressed the conjugate gradient as a sum of the
gradient with respect to the real part ∇Re z and the imaginary part ∇Im z of z, this would
not be the case, and even if h was holomorphic two gradients would be required.

This does not make a difference when we compute the gradient analytically, because the
two formulas will give the same result. However, the general approach in machine learning
consists in only writing the ansatz, and letting the computer figure out automatically
the gradients. This technique is called Automatic Differentiation (AD for short) [278

.

].
In this case, knowing before-hand which functions are holomorphic and using Wirtinger
derivatives will allow the program to simplify automatically the expressions.
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C.3 Log-Derivatives of cost function

We will here detail the calculation of the conjugate-gradient of the cost function

C2,2(v) =
∑

σ,σ̃

pv(σ, σ̃)
⏐⏐⏐Cloc(v,σ, σ̃)

⏐⏐⏐
2
, (C.20)

where

Cloc(v,σ, σ̃) =
∑

σ′,σ̃′
L(σ, σ̃,σ′, σ̃′)

ρv(σ
′, σ̃′)

ρv(σ, σ̃)
, (C.21)

pv(σ, σ̃) =
|ρv(σ, σ̃)|2

Z
, (C.22)

Z = Tr
[
ρ̂†ρ̂
]
. (C.23)

In the following we will only assume that ρ̂v is C−analytic. We recall that the log-gradients
of the ansatz are given by

Ov(σ, σ̃) =
∇vρ̂v(σ, σ̃)

ρ̂v(σ, σ̃)
, Ov⋆(σ, σ̃) =

∇v⋆ ρ̂v(σ, σ̃)

ρ̂v(σ, σ̃)
, (C.24)

and the latter is zero if the ansätz is holomorphic. With those definitions, we can compute
the gradient of the partition function Z

∇v⋆Z

Z
=

1

Z

{
Tr
[
(∇v⋆ ρ̂

†)ρ̂
]
+Tr

[
ρ̂† ∇v⋆ ρ̂

]}
(C.25)

=
1

Z

{
1

Z
Tr

[(∇v⋆ ρ̂
†

ρ̂†

)
ρ̂†ρ̂
]
+Tr

[
ρ̂†ρ̂

(∇v⋆ ρ̂

ρ̂

)]}
(C.26)

=
1

Z

{
Tr
[
ρ̂†ρ̂ Ov⋆

]
+Tr

[
ρ̂†ρ̂ O†

v

]}
(C.27)

= ⟨Ov⋆⟩+ ⟨O†
v⟩ , (C.28)

where we recall that the first term is zero if ρ̂ is holomorphic. Similarly, one can compute
the gradient of Z, namely,

∇vZ

Z
= ⟨Ov⟩+ ⟨O†

v⋆⟩ . (C.29)

With this, one can easily compute the gradients of the probability distribution pv(σ, σ̃),

∇v⋆pv(σ, σ̃) =
|ρv(σ, σ̃)|2

Z

(
Ov⋆(σ, σ̃) +O†

v(σ, σ̃)
)
− |ρv(σ, σ̃)|2

Z

∇v⋆Z

Z
(C.30)

= pv(σ, σ̃)
(
Ov⋆(σ, σ̃)− ⟨Ov⋆⟩+O†

v(σ, σ̃)− ⟨O†
v⟩
)

(C.31)

= pv(σ, σ̃)
(
∆Ov⋆(σ, σ̃) + ∆O†

v(σ, σ̃)
)
, (C.32)

where we have defined ∆Ov⋆(σ, σ̃) = Ov⋆(σ, σ̃) − ⟨Ov⋆⟩ and ∆Ov(σ, σ̃) = Ov(σ, σ̃) −
⟨Ov⟩. The other gradient is

∇v⋆pv(σ, σ̃) = pv(σ, σ̃)
(
∆Ov(σ, σ̃) + ∆O†

v⋆(σ, σ̃)
)
. (C.33)
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We also define the conjugate gradient of the local cost function as,

∇v⋆Cloc(v,σ, σ̃) =
∑

σ′,σ̃′
L(σ, σ̃;σ′, σ̃′)

ρv(σ
′, σ̃′)

ρv(σ, σ̃)
Ov(σ

′, σ̃′). (C.34)

Substituting those expressions into the definition of C2,2(v) we obtain,

∇v⋆C2,2(v) =
∑

σ,σ̃

∇v⋆pv(σ, σ̃)
⏐⏐⏐Cloc

⏐⏐⏐
2
+ pv(σ, σ̃)∇v⋆

⏐⏐⏐Cloc
⏐⏐⏐
2

(C.35)

=

⟨
(∆Ov +∆Ov⋆)

⏐⏐⏐Cloc
⏐⏐⏐
2
⟩
− ⟨∆Ov +∆Ov⋆⟩

⟨⏐⏐⏐Cloc
⏐⏐⏐
2
⟩
, (C.36)

which simplifies to the formula in the main text when the ansatz ρv is holomorphic and
∆Ov⋆ = 0.

C.4 Implementation details

Obtaining a performant numerical implementation of this algorithm was not an easy task.
Numerical code implementing this method has been written in Julia [217

.

] and is accessible
online on GitHub [274

.

, be sure to check the most recent version]. Work is currently
underway to also implement it in the python toolbox NetKet [5

.

].

The core of the algorithm requires evaluating the network and its gradient efficiently.
The code performing those calculations should therefore be compiled efficiently, not in-
terpreted; as such, it is not possible to have an efficient neural network implementation
in pure Python (unless Cython/Numba is used). Frameworks like PyTorch are relatively
easy to use and will compile the network to efficient machine code. Moreover, they provide
working implementations of automatic differentiation and support GPUs out of the box.
Unfortunately, existing machine learning platforms rarely support complex numbers and
as such we have ruled them out. We implemented the neural network in pure Julia, which
guarantees an implementation with equivalent performance to C++’s Eigen library [279

.

],
with a more concise code.

We remark that data scientists working with neural networks usually only write code
defining the network and the cost function, leaving the task of generating efficient code for
the gradient to Automatic Differentiation (AD) frameworks [280

.

]. We observed that exist-
ing frameworks are engineered to compute gradients for a scalar function given a batch of
inputs. Unfortunately, it is a rather complicated task to implement the liouvillian in a scal-
able manner that can be handled by the automatic differentiation engine. Furthermore, in
2019 support for computing the gradient of expectation values was absent in the majority
of those frameworks. For that reason, we investigated using automatic differentiation to
generate the gradient code, and then computing the cost function on our own, finding that
AD frameworks struggle when evaluating gradients one at a time, with slowdowns in the
range of ≈ 50− 100 times with respect to a hand-written kernel. We therefore resorted to
handwriting them. However, we point out that due to the fast-evolving nature of software
it is likely that in early 2020 several of those limitations will be overcome.
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The other critical part of the implementation is the liouvillian. It is impossible to store
the Liouvillian as a dense matrix, and in an extended lattice system it is also exponentially-
hard to compute the sparse Liouvillian. As such, we resorted to an advanced implemen-
tation where the super-operator is stored as a sum of K-local operators, and each local
term only stores the list of sites upon which it acts, and its matrix representation within
that basis. The conversion between the basis on the local space and the Hilbert space of
the whole system is performed on the fly.

Independent Markov chains are distributed across several computing nodes with MPI.jl
and averaged on the fly.
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[41] S. Schütz, S. B. Jäger, and G. Morigi. “Dissipation-Assisted Prethermalization in
Long-Range Interacting Atomic Ensembles”. In: Phys. Rev. Lett. 117 (8 Aug. 2016),
p. 083001. doi: 10.1103/PhysRevLett.117.083001

.

(cit. on p. 3

.

).

[42] J. Marino and S. Diehl. “Driven Markovian Quantum Criticality”. In: Phys. Rev.
Lett. 116 (7 Feb. 2016), p. 070407. doi: 10.1103/PhysRevLett.116.070407

.

(cit.
on p. 3

.

).

[43] R. Rota et al. “Critical behavior of dissipative two-dimensional spin lattices”. In:
Phys. Rev. B 95 (13 Apr. 2017), p. 134431. doi: 10.1103/PhysRevB.95.134431

.

(cit. on pp. 3

.

, 33

.

, 34

.

, 47

.

).

[44] O. Scarlatella, R. Fazio, and M. Schiró. “Emergent Finite Frequency Criticality
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