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Chapter 1

Introduction

It is the purpose of an introduction to give an overview of thesis, review the literature as well as establish and

legitimise the gap in the current research which the thesis fills. In order to do this, we have chosen a rather

unusual structure for the introduction of the thesis as the author feels that it is best to have the issue of the thesis

demonstrated as opposed to just described. Furthermore, some of the concepts in the literature review are best

illustrated through numerical experiments on our test cases; after all that is why we chose the particular test-cases.

It is for this reason that we give a brief introduction to the thesis where we avoid citing any literature (Section 1.1).

Then we present our test cases (Section 1.2) and the derivations of first order approximations via WNLE. We then

review the literature (Section 1.3) using our test cases to demonstrate various concepts with numerical experiments.

Lastly, we give brief descriptions of the chapters of the thesis (Section 1.4).

1.1 Brief Introduction

To provide a mathematical description of open shear flows is an interesting and challenging task owing to the non-

self-adjointness inherent in the linear operator and also the nonlinearity present in equations such as the Navier-

Stokes equations and Ginzburg-Landau equation. It is also an important task when one considers the examples

of mixing layers, jets, wakes and boundary layers found in industrial and geoscientific applications. The flows de-

scribed by these equations can develop self-sustained oscillations in time, which have characteristic spatial distribu-

tions, saturation amplitudes and saturation frequencies. In the Fluid Mechanics community, these spatially-coherent

structures are called “Global Modes”. For marginally unstable systems, which are systems where the largest eigen-

value is zero and the rest are negative, there have been several attempts at approximating these global modes by

the spatial development of the leading eigenvector (the eigenvector that corresponds to the zeroth eigenvalue). The

spatial development is categorised by an amplitude equation derived via methods such as normal form theory or

weakly nonlinear expansions (WNLE). These methods are generally successful in the cases where the operator
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is self-adjoint, but, for non-self-adjoint systems, only the early time characteristics are captured and the saturation

characteristics are under-estimated.

In this thesis, we have taken a closer look at this problem by looking at specifically why first order approximations

derived via weakly nonlinear expansions do not approximate the governing system well in non-self-adjoint cases.

This is a historic problem that has been tacked in various ways. For instance, authors have tried to build higher order

approximations including spatial structures different from the zeroth eigenvectors, but there is a problem regarding

the non-uniqueness of higher order terms. Other authors have also tried to build higher order amplitude equations,

i.e. more elaborate amplitude equations that describe the leading eigenvector. This approach can be seen as a way

to circumvent the non-uniqueness. However, by still only approximating with the leading eigenvector, even though

its temporal development is elaborated by a higher order amplitude equation, spatial structures different from the

leading eigenvector are neglected.

For our purposes, we have chosen two particular test-cases in order to study the failure of first-order weakly non-

linear expansions at approximating non-self-adjoint cases; the Real non-self-adjoint Ginzburg-Landau and Complex

non-self-adjoint Ginzburg-Landau equations (labelled RnsaGL and CnsaGL respectively). They have similar prop-

erties to the Navier-Stokes equations in the sense that they are non-self-adjoint and nonlinear, but are different in

the sense that the linear operators generate strongly-continuous semigroups (C0-semigroups), which allow us to

write the equations in integral form and in this way derive error bounds. Also, in the real case, we have a quasi-

basis structure that allows us to expand our solutions into amplitude-eigenvector pairs, which cannot always be

done meaningfully for non-self-adjoint systems (completeness of eigenvectors guarantees an expansion, but the

amplitudes are not guaranteed to be finite). This is the first known application of the quasi-basis structure in Fluid

Mechanics.

We begin by consolidating the literature and giving an overview of different mathematical descriptions of Fluid

Mechanics. In the first chapter, we give an example of higher order amplitude equations regarding the RnsaGL;

this should be seen as an extension to the introduction, as it is not necessarily new. Nevertheless, it demonstrates

that for non-self-adjoint systems contributions from spatial structures different from the leading eigenvector are

significant and therefore cannot be neglected. We also see that for higher order amplitude equations that the radius

of convergence is very small thus limiting the utility of these higher order amplitude equations. We then derive higher

order approximations with additional spatial structures. The problem of non-uniqueness persists, but we combat

this using additional assumptions - these assumptions are different in comparison to the ones used by previous

authors. We notice for the RnsaGL, where there is a quasi-basis structure, we can normalise the higher order

spatial structures in two ways; we can either make them orthogonal to the zeroth direct eigenvector or the zeroth

adjoint eigenvector. We then derive error bounds for the discrepancy between the direct and adjoint eigenvectors.

A key part of the derivation of the error bounds is to transform the governing partial differential equations into

integral form, which is possible owing to the fact the linear operators generate C0-semigroups. However, these error
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bounds remain theoretical tools that show a radius of convergence exists as opposed to telling us what that radius

of convergence is. Lastly, we consider a stochastic homogenisation procedure, which is different from WNLE as it

does not neglect all stable eigenmodes as a first step.

1.2 Test Cases and Derivation of First Order Approximations via WNLE

In Fluid Mechanics, we generally want to study equations of the form

∂u

∂t
= Lu+N (u) + δu (1.1)

where L is a linear operator, N is the nonlinear operator and 0 < δ < 1 is the a constant perturbation from criticality.

In this thesis, we have chosen Ginzburg-Landau-type equations for our test cases. Ginzburg-Landau equations have

often been used as test cases in Fluid Mechanics (Cossu and Chomaz (1997) [28], Couairon and Chomaz (1999)

[29]; Huerre and Monkevitz (1990) [54] and Chomaz (2005) [25] to name a few) as they exhibit similar features to

the Navier-Stokes equations. A specificity of our Ginzburg-Landau-type equations is that increasing the advection

velocity, U , makes both equations more non-normal - in the sense that the direct and adjoint spatial structures of

eigenvectors move further apart - but the operator stays critical, meaning that the real part of the leading eigenvalue

remains zero for increasing U but the real part of all other eigenvalues remains negative.

We have chosen both a real and a complex case as they display different phenomena. In the real case, there

exists an unbounded transformation to transform the operator of the RnsaGL into a self-adjoint equation that allows

us to use concepts from Non-Hermitian Quantum Mechanics. In the complex case, we can consider both the

saturation frequency and the saturation amplitude. When we decompose the equation into the equation for the

frequency and amplitude, i.e. let u(x, t) = r(x, t)eiϕ(x,t) where r(x, t) is the amplitude and ϕ(x, t) is the frequency,

only the linear operator for the amplitude demonstrates strong transient growth. Therefore, the saturation frequency

is well captured as a first order expansion.

The real and complex test cases are respectively;

• Real non-self-adjoint Ginzburg-Landau equation

∂u

∂t
= LRGLu− u3 + δu (RnsaGL)

where

LRGL =
∂2

∂x2
− U

∂

∂x
+

(
U2

4
+
√
c2 − c2x

2

)
with boundary conditions |u| −→ 0 as x −→ ±∞.
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• Complex non-self-adjoint Ginzburg-Landau equation

∂u

∂t
= LCGLu− |u|2u+ δu (CnsaGL)

where

LCGL = (1− i)
∂2

∂x2
− (U + 0.2i)

∂

∂x
+

[
C1 +

1

8
(U2 − 0.4U − 0.04)

]
− c2x

2

with C1 = ℜ{
√
(1− i)c2}, with boundary conditions |u| −→ 0 as x −→ ±∞.

In the above equations, the real coefficient in front of the ∂2u
∂x2 is the diffusion constant, c2 > 0 determines the

non-parallelism of the flow (throughout this thesis and in all numerical experiments c2 = 0.005) and U is the mean

advection velocity. The two-dimensional form of this equation has been used in order to model cylinder flow Rous-

sopoulous et al. (1996) [81].

WNLE is a procedure that combines the method of multiple scales and perturbation theory. It is often tailored to

the application at hand. Therefore, there is no rigorous definition. However, loosely the three main steps are, for a

problem of the form (1.1); firstly, introduce a diffusive scaling centered around a small parameter ϵ that allows the

linear operator to remain dominant, secondly, introduce an expansion in terms of the small parameter, ϵ, in order to

get a hierachy of equations, and, thirdly, use the Fredholm alternative repeatedly to obtain solvability conditions at

each order to elabourate the terms of the expansion. We have chosen the word elabourate on purpose, because

often it is not possible to determine the terms of the expansion fully owing to the Fredholm alternative.

Below, we give our two versions of the Fredholm alternative in order to reference them when we derive amplitude

equations in our test cases. The versions of the Fredholm alternative used in this thesis are tailor-made in order to fit

the decay boundary conditions and complexity of the equation in the case of the CnsaGL. The Fredholm Alternative

as given in Evans [44] (see Theorem 4, Chapter 6.2) is given on a fixed interval L where the solution is in the space

H1
0 (L). In order to extend this to a real line for an elliptic PDE of non-constant coefficients, we considered the

following space

HL1

:= {u ∈ L2(R) : ||u||L1 <∞} (1.2)

where

L1 =
∂

∂x
− x and || · ||2L1 = ⟨L1·,L1·⟩. (1.3)

HL1

is compactly embedded1 into L2(R). We give both versions of the theorem, because, even though they are

identical to look at, the complex version requires the Complex Lax-Milgram Theorem, so they are not identical in
1We have included key definitions such as “compact embedding” in the first section of the Appendix A before giving the proofs of in the real

and complex case in the second and third sections respectively.
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proof.

• Theorem (Tailored Fredholm Alternative for LRGL). Given LRGL as in RnsaGL defined as above

i Precisely one of the following statements holds:

either

(α) For each f ∈ L2(R)2, there exists a unique weak solution u of the equation3

−LRGLu = f in L2(R) (1.4)

or else

(β) There exists a weak solution, u ̸= 0 of the homogeneous problem

−LRGLu = 0 in L2(R) (1.5)

ii Furthermore, should assertion (β) hold, the dimension of the subspace N ⊂ HL1

of weak solutions of

(1.5) is finite and equals the dimension of the subspace N† ⊂ HL1

of weak solutions of

−(LRGL)†v = 0 in L2(R) (1.6)

where (LRGL)† is the L2-adjoint of (LRGL), i.e. ⟨(LRGL)†u, v⟩ = ⟨u, (LRGL)v⟩ where ⟨·, ·⟩ is the L2-inner

product.

iii Finally, the boundary-value problem (1.4) has a weak solution if and only if

⟨v, f⟩ = 0 for all v ∈ N†. (1.7)

Proof. This theorem with proof is given in Appendix A.2.

• Theorem (Tailored Fredholm Alternative for LCGL). Given LCGL as in the CnsaGL defined as above

i Precisely one of the following statements holds:

either

(α) For each f ∈ L2(R), there exists a unique weak solution u of the equation

−LCGLu = f in L2(R) (1.8)

2This is owing to the fact that L2(R) ⊂ (HL1
)∗ where the ∗ denotes the dual space.

3Note, we put the minus sign for the necessary ellipticity condition, the equation also takes on a minus sign when we consider the inhomoge-
neous problem in the weakly nonlinear expansions. We have added it to the other equations for the continuity of the presentation.
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or else

(β) There exists a weak solution, u ̸= 0 of the homogeneous problem

−LCGLu = 0 in L2(R) (1.9)

ii Furthermore, should assertion (β) hold, the dimension of the subspace N ⊂ HL1

of weak solutions of

(1.9) is finite and equals the dimension of the subspace N† ⊂ HL1

of weak solutions of

−(LCGL)†v = 0 in L2(R) (1.10)

where (LCGL)† is the L2-adjoint of LCGL, i.e. ⟨(LCGL)†u, v⟩ = ⟨u, (LCGL)v⟩ where ⟨·, ·⟩ is the L2-inner

product.

iii Finally, the boundary-value problem (1.8) has a weak solution if and only if

⟨v, f⟩ = 0 for all v ∈ N†. (1.11)

Proof. This theorem with proof is given in Appendix A.3.

We perform WNLE on the RnsaGL and the CnsaGL to illustrate this concretely in Example 1 and Example 2

respectively. In these examples, we have performed computations using a Hermite pseudo-spectral method for the

discretisation of the operator in space and a finite-difference method in time. Details of the numerics can be found

in the Appendix B. As we are always in situation (β) of the real or complex version of the Fredholm Alternative, i.e.

LRGLu = 0 and LCGL = 0 have non-trivial solutions, we can never determine higher order terms uniquely.

• Example 1 (WNLE for the RnsaGL)

In this case, we put the equation on the diffusive timescale u = ϵ
1
2 v(x, τ) where τ = ϵt. Furthermore, we let

δ = ϵδ̃ where δ̃ = O(1). This gives the following equation

−LRGLv = ϵ

(
∂v

∂τ
+ δ̃v − v3

)
. (1.12)

We expand v = v0 + ϵv1 + ...+ ϵnvn in order to get the following hierachy of equations

−LRGLv0 = 0, (1.13)

−LRGLv1 =

(
∂v0
∂τ

+ δ̃v0 − v30

)
(1.14)

From (1.13), we let v0 = C(τ)e0, where e0 solves the equation LRGLe0 = 0 and C(τ) is the corresponding
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amplitude of this spatial structure.

We apply the Fredholm alternative to (1.14). By this take the inner product with (ê0)
†, which solves the following

equation

(LRGL)†e†0 = 0 (1.15)

where (LRGL)† is the L2-adjoint of LRGL given by

(LRGL)† = a
∂2

∂x2
+ U

∂

∂x
+

(
U2

4a
+

√
ac2 − c2x

2

)
, (1.16)

in order to obtain the following amplitude equation

dC

dτ
= δ̃C − ⟨e†0, e30⟩

⟨e†0, e0⟩
C3. (1.17)

The first order approximation, uapp to the solution of u, is given by

uapp = ϵ
1
2C(τ)e0 = B(t)e0 (1.18)

where we have let B(τ) = ϵ
1
2C(τ). By doing this, we can write the amplitude equation (1.17) on the original

timescale
dB

dt
= δB − ⟨e†0, e30⟩

⟨e†0, e0⟩︸ ︷︷ ︸
λ1

B3. (1.19)

We call the constant in front of the cubic term λ1 as is customary (this will be discussed further in the literature

review). We obtain the saturation amplitude, Bsat by setting dB
dt in (1.19) to zero. This gives

Bsat =

√
δ

λ1
. (1.20)

We illustrate the problem by comparing the difference ||u−uapp||L2 for different values of U in Figure 1. We see

that the approximation gets worse as U increases. However, for early time, in the linear regime we have that

the global mode is well approximated by uapp. This suggests that the failure of approximation is a combination

of non-normality and nonlinearity.

The next order approximation would be of the form uapp = ϵ
1
2 (v0 + ϵv1). However, as we are in situation (β) of

the Fredholm alternative demonstrated in (1.5), we cannot determine v1 uniquely. We will discuss additional

assumptions used to circumvent this problem in the literature review.
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Figure 1. A plot of ||u− uapp||L2 for various values of U shown in plot, with δ = 0.01

• Example 2 (WNLE for the CnsaGL)

We let u(x, t) = eiω0tϵ
1
2 v(x, τ, t) in the CnsaGL equation. λ0 = iω0 with ω0 ∈ R is the largest eigenvalue

corresponding to eigenvector e0. The operator remains with this eigenvalue as the leading eigenvector as U

increases. As the real part of λ0 is zero, the operator is still critical.

(
iω0 − LCGL

)
v = ϵ

(
− ∂

∂τ
v + δ̃v − |v|2v

)
. (1.21)

Introducing the expansion v = v0 + ϵv1 + ...+ ϵnvn in order to get the following hierarchy of equations

(
iω0 − LCGL

)
v0 = 0, (1.22)(

iω0 − LCGL

)
v1 = − ∂

∂τ
v0 + δ̃v0 − |v0|2v0 (1.23)

As before, from the (1.22) we approximate v0 = C(τ)e0 where e0 solves the equation LRGLê0 = 0. The

amplitude equation for C(τ) is obtained similarly to previous case by applying the Fredholm alternative

∂C(τ)

∂τ
= δ̃C(τ)− ⟨e0, |e0|2e0⟩

⟨e†0, e0⟩︸ ︷︷ ︸
λ1

|C(τ)|2C(τ) (1.24)

where e†0 solves the adjoint problem

(LCGL)†e†0 = 0 (1.25)
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where (LCGL)† is the L2-adjoint of (LCGL) given by

(LCGL)† = (1 + i)
∂2

∂x2
+ (U − 0.2i)

∂

∂x
+

[
C1 +

1

8
(U2 − 0.4U − 0.04)

]
− c2x

2 (1.26)

We again label the coefficient of the cubic term λ1.

We let B = ϵ
1
2 eiωtC(τ). Then the amplitude equation in terms of B is then

dB

dt
= (δ + iω0)B − |B|2B (1.27)

and the approximation is given by uapp

uapp = Be0. (1.28)

We assume δ to be real and consider the real and imaginary parts of B in polar coordinates, i.e. B = reiϕ.

Furthermore, we write λ1 = λr + iλi We obtain the following two equations

dr

dt
= δr − λrr

3. and
∂ϕ

∂t
= ω0 − λir

2. (1.29)

From the equations in (1.29) we see that the saturation amplitude rA and saturation frequency ϕA are given

by rA =
√

δ
λr

and ϕA = ω0 − λi
δ
λr

.

In order compare the solutions to the approximation. Firstly, we consider the solution difference in amplitude.

We decompose our solution as u = ReiΦ, and we consider ||R−r||L2 for different values of U . In Figure 2a, we

plot this. We see the same phenomena as last time where the amplitude is underestimated by the first order

approximation as the non-normality increases. Secondly, we look at the saturation frequency by considering

the time signal of the solution at a particular point x. We choose x = − 4α2

α2
1

, as this is the maximum point

of the spatial structure ê0, so it is equally where we expect the signal to be the strongest. We obtain the

saturation frequency by performing the Fast Fourier transform on the signal between t = 1500 and t = 1750

where we assume the flow has saturated from looking at the graph. In Table 1, we give values from performing

the Fourier transform on the time signal of the solution and eiϕAt. The values correspond to the frequency

of the single peak of the energy spectrum, which is computed via the numpy FFT package, We see that the

approximations capture the frequency well in all cases.

We comment as we did in the previous test case, at the next order of the expansion, the approximation would

be of the form uapp = ϵ
1
2 eiω0t(v0 + ϵv1). However, as we are in situation (β) of the Fredholm alternative

demonstrated in (1.9), we cannot determine v1 uniquely.

The phenomena of the saturation frequency’s being well approximated and the saturation amplitude’s not
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being approximated well can be seen in other cases; notably, in the case of cylinder flow, where Sipp and

Lebedev (2007) [92] use WNLE to determine saturation characteristics for cylinder flow whereas Carini et al.

(2015) [21] use the method of Coullet and Spiegel (1983) [30] that is based on normal form theory. In the

literature review, we perform numerical experiments on the CnsaGL to theorise why this is the case. We save

these for the literature review, as it requires a notion of transient growth that is built up in the literature review.

We expect these results extend to the linearised Navier-Stokes operator but this needs to be confirmed by

numerical experiments.

Figure 2. A plot of various ||R− r||L2 for various values of U shown in plot, with δ = 0.01.

Frequency (Hz) U
0.0 0.2 0.4 0.6 0.8 1.0 1.2

eiϕAt 0.006 0.0004 0 −0.006 −0.0014 −0.0022 −0.0032
u 0.006 0.0004 0 −0.006 −0.0014 −0.0022 −0.0032

Table 1. A table of the frequencies in Hz corresponding to the single peak (as there is only one frequency) of

the energy spectrum of u and eiϕAt. The values of u are shown in plot with δ = 0.01
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1.3 Literature Review

In order to provide a mathematical description of Fluid Mechanics, different approaches have been taken. In our

exploration of the issues with WNLE, we have notably connected different aspects of different linear descriptions

together. Therefore, to understand the relevance of this thesis, not only as a presentation of new results, but, also

as a pedagogical resource, it is important to understand what these linear approaches entail. The method WNLE

is one of many “nonlinear” approaches, and, as the thesis is focused on trying to improve this method, we have not

considered any of the other nonlinear methods. Examples of nonlinear approaches include the use of Lyapunov

functions to establish the stability of nonlinear systems; this removes the problem of the loss of information as a

result of linearisation. However, for us, the loss of information is exactly the issue we study.

We have therefore divided the literature review intro two sections to facilitate this; “The Mathematics of Linear

Approaches” and “Examples of Amplitude Equations in Fluid Mechanics and Elsewhere”. The first section brings

together the mathematics of linear approaches as the title would suggest, whereas the second section evaluates the

approaches that other authors have taken to deal with the loss of information demonstrated in the previous section.

The latter section also considers the following amplitude equation given by equation

dB

dt
= δB − λ1|B|2B (1.30)

which is historical, (1.30) was firstly derived by Landau in the 1940s but with the form of the constant λ1 not explicitly

derived. In the 1960s, in the midst of new computational power, attempts were made to fit these coefficients for

various fluid flows, but the fitting only worked in the linear regime for very small δ. In this thesis, we build notions as

to why this is the case.

1.3.1 The Mathematics of Linear Approaches

The Linear Approaches to Fluid Mechanics problems loosely fit into three categories, the Local Framework, the

Global Framework and the Non-modal Framework. Each of these categories align themselves with a different math-

ematical object namely Green’s functions, Resolvent Operators and Eigenvalues. How these objects are connected

together is how the different descriptions are connected together. The reader may find it helpful to consider Figure 1,

where we have drawn a diagram that gives the framework and the corresponding mathematical objects the various

approaches and connects them together. In the following points, we elabourate on each of these approaches, citing

important works and definitions. Afterwards, we discuss how these objects are mathematically connected together.
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Figure 1. A pictorial representation of how different mathematical approaches to Fluid Mechanics, namely the

global approach, the local approach and the non-modal approach connect together.

• The Local Framework The local framework considers whether or not flows are absolutely or convectively un-

stable. We present the definitions of absolute and convective stability from the review article by Huerre and

Monkevitz (1990) [54]. These definitions, as remarked by Huerre and Monkevitz, originated in Plasma physics

before finding more general application (see Landau and Lifshitz (1954, 1959) [62, 63]). For these definitions,

we need the following reference equation (
∂

∂t
− L

)
u = 0, (1.31)

with initial condition u(t = 0) = u0. L is a linear operator, t is time and u is the unknown. The equation

corresponding to the Green’s function G(x, t) on to the operator on the left-hand-side of (1.31) is given by

(
∂

∂t
− L

)
G(x, t) = δ(t)δ(x) (1.32)

where δ is the Dirac delta function.

The basic flow described by u is said to be

– linearly stable if limt→∞G(x, t) −→ 0 along rays x
t = constant,

– linearly unstable if limt→∞G(x, t) −→ ∞ along at least one ray x
t = constant.
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From the linearly unstable flows, there are two types of impulse response. The basic flow is said to be

– absolutely unstable if limt→∞G(x, t) −→ ∞ along the ray x
t = 0,

– convectively unstable if limt→∞G(x, t) −→ 0 along the ray x
t = 0.

These are local phenomena as they are based on the behaviour along the ray x
t . They can be contrasted with

the definition of global stability; the flow described by u is said to be

– globally unstable if limt→∞G(x, t) −→ ∞ for some x.

For illustration, we give the following diagrams from the book in Figure 2 by Schmid and Henningson (2002)

[83] that depict absolute and convective instability.

Figure 2. From Schmid and Henningson (2002), two diagrams illustrating absolute (left) and convective

instability (right). The impulse was applied at the origin of the (x− t) diagram.

These definitions allow us to describe a flow through the impulse response of the governing linear operator.

Furthermore, there are tools available that enable us see whether a flow described by the dispersion relation

(1.31) is absolutely or convectively unstable. We invite the reader to consult the book by Schmid and Hen-

ningson (2002) [83], which gives a detailed explanation of the Briggs Method. Briggs (1964) [20] developed

the method of categorising instabilities via complex analysis originally for plasma physics. In order to apply

the Briggs criterion, the problem (1.31) must be considered in (k − ω)-space, which is achievable via Laplace

and Fourier transforms.

In the local framework, we have the restriction that the impulse occurred at precise point x. When one con-

siders parallel flows, this is not a problem as the linear operator L does not change with respect to x. For

non-parallel flows, we can circumvent this problem by calculating the Green’s function at each position s. Now,
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for a spatially-varying operator, i.e. an operator with a well potential, we solve the following equation;

(
∂

∂t
− L

)
G(x, s, t) = δ(x− s)δ(t). (1.33)

By using this approach, In Chomaz (1991) [26], demonstrated the necessary condition that, in order for global

instability to occur, there has to be a finite region of absolute instability. This condition was established using

WKB theory, see Schmid and Henningson (2002) [83] for more details.

• The Global Approach Let the solution of (1.31) be decomposed as u = eλtû. We then obtain the following

eigenvalue equation for û.

λû = Lû (1.34)

This equation has multiple solutions that we will label û = ûn for corresponding λ = λn. If any of the λn are

such that ℜ{λn} > 0, the solution then the solution u grows in time. This definition coincides with the definition

of a globally unstable flow that we defined in the last section. We will demonstrate this after giving a summary

of each approach.

This kind of linear stability analysis has a rather old basis that can be traced back to Poincaré’s work “On

the Curves defined by Differential Equations” (in French ”Mémoire sur les courbes définies par une équation

différentielle”) (1882) [77]. In this work, he developed the field known as ”the qualitative study of differential

equations”. That being said, efficient numerical calculation of the spectrum of two-dimensional and three-

dimensional systems continues to be a dynamic area of research. The author invites the reader to consider

the review article by Theofilus (2011) [96]. Furthermore, for the Navier-Stokes equations, there is the problem

of establishing the appropriate form form of L such that a change of parameter leads to the flow becoming

globally unstable. This issue is discussed in the beginning of the article by Sipp and Lebedev [92] in the

context of whether L should be taken as the linearisation of the Navier-Stokes operator around the base flow

or mean flow.

• The Non-modal Approach The non-modal framework is characterised by considering the norm of the matrix

exponential ||etL||. This quantity can be interpreted as the maximum response over all initial conditions, but

also coincides with the definition of the semigroup of a linear operator L. We will discuss this more when we

build the connections between these approaches. For a Fourier transformed system one can consider the

maximum frequency response that is given by the norm of the operator (iω − L)−1. Studying this quantity

for various values of ω is at the heart of the field called “Resolvent Analysis”. The purpose of this non-modal

framework is to identify the transient growth of a system. The eigenvalues of a system provide the asymptotic

nature but may not capture the bump before decaying. The reader is invited to consider the article by Schmid

[82] for a passionate review of this subject explicitly arguing against the eigenvalue-based approach that we
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described in the last section.

We demonstrate the phenomenon of transient growth via the RnsaGL before relating this to the idea of pseu-

dospectra. In Figure 3, we plot the norm of the semigroup ||et(LRGL+δ)||L2 for the critical case (δ = 0) and

sub-critical case (δ = −0.01) for two values of U ; we choose U = 0 (the self-adjoint case) in Figure 3a and

U = 1 in the non-self-adjoint case (Figure 3b) respectively. We compute this matrix exponential using the

”expm” function in the NumPy package in Python. Note that in both of these cases, ||etL||L2 is not divergent,

so they are globally stable.

a) b)

Figure 3. The L2 norm of ||et(LRGL+δ)|| for a) U = 0 (left) and b) U = 1 right respectively. In both figures, the

orange lines represent the case where δ = −0.01 and the blue lines represent the case δ = 0.

We notice that the “bump” only occurs in the non-self-adjoint case and also that the semigroup bound is much

larger. The physical interpretation of this is that the impulse excites the non-orthogonal modes, which forms

a wave packet or “bump” that eventually decay. For the full equation with the nonlinearity, this bump interacts

with the zeroth eigenvector via the non-linearity. In the self-adjoint case, there is no wave packet to interact

with the global mode hence the solution is predominantly the spatial development of the leading eigenvector.

The Figures 1 and 2 in the previous section (Section 1.3) showcase this property.

One can estimate the size of the bump shown in Figure 3a using pseudospectra; the definition of the pseu-

dospectra is given as follows

– Definition (ϵ-pseudospectra). Let L be a closed operator and let ϵ > 0 be arbitrary. The ϵ- pseudospectra

is the set of z ∈ C defined by

||(z − L)−1|| ≥ ϵ−1. (1.35)

Sometimes, the “ϵ” is dropped in the nomenclature and we refer to this as simply “pseudospectra”.

The pseudospectra is connected to the norm of the semigroup etL using the theorems in Chapter 4 in the

book “Spectra and Pseudospectra” by Trefethen and Embree (2005). A consequence of these theorems can
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be seen in Schmid (2007) [82], where the so-called “Kreiss Constant” is used to give a lower bound on the

norm of the semigroup

Computing the norm of the semigroup is non-self-adjoint cases more time-intensive, especially for multi-

dimensional systems in Fluid Mechanics. For self-adjoint operators, the L2-norm is given by ||etL||L2 = eλ0t

where λ0 is the biggest eigenvalue (E. B. Davies [33]). Hence, in the critical case we get ||et(L+δ)||L2 = 1 and

the sub-critical case, we get ||et(L+δ)||L2 = e−0.01t. In Cossu and Chomaz (1997) [28], similar plots are made

for their linear operator [28], which is similar to the CnsaGL but without the quality of remaining at criticality for

any advection velocity. Their plots however were done with respect to the supremum norm and they relied on

Hunt’s form of the Green’s function to calculate the semigroup norm. The author believes the choice of norm

may have been a result of the computational power available.

Non-modal theory, particularly regarding pseudospectra, has been developed further in the field of Non-

Hermitian Quantum Mechanics. The link between this work and Fluid Mechanics can be seen from the point

of view that the LRGL and LCGL can be recast in the following way

L :=

(
− i

d

dx
+ a

)2

+ bx2 (1.36)

where a and b are constants. This is can be recognised as a Schödinger operator. In particular with a and

b to be purely real, the quantum-mechanics interpretation of (self-adjoint) L would be that of an electron

interacting with the magnetic field of vector potential a and a harmonic-oscillator electric field of frequency b.

In the paper Krejčiřı́k et al. (2015) [61], theorems were derived that allowed us to extract basis properties from

the pseudospectra of operators with a compact resolvent. It is meaningful to define what a Quasi-Hermitian

operator as well as give the theorems that relate the pseudospectra to the basis properties, as we can consider

the early Fluid Mechanics paper by Reddy et al. (1993) [79] where the pseudospectra for the Orr-Sommerfeld

operator was computed.

We firstly define a Quasi-Hermitian operator and a Riesz basis:

– Definition (Quasi-Hermitian Operator). Let H be a Hilbert Space and L, if there exists a positive operator

G such that for an operator L

L†G = GL, (1.37)

where G is a positive operator called a metric operator where L† denotes the adjoint in the Hilbert space

H. The operator is said to be Quasi-Hermitian.

– Definition (Riesz or Unconditional Basis, as given in [61]). Let H be a Hilbert Space. Let {en}∞k=0 be a

collection of functions, normalised to 1 in H. {en}∞k=0 is a Riesz or unconditional basis if it forms a basis
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and for all functions ϕ ∈ X the inequality

C−1||ϕ||2 ≤
∞∑
k=1

|⟨en, ϕ⟩|2 ≤ C||ϕ||2. (1.38)

The Riesz basis ensures that all projections onto the collection of vectors are bounded, which is very powerful

for practical applications. Other notions of bases, such as the Abel-Lidskii basis are looser, often requiring

only completeness and are not as useful in practical applications. The following theorem connects the Riesz

basis to the existence of the metric operator;

– Theorem (Riesz Basis if and only if Bounded Metric Operator with Bounded Inverse). Let L be an opera-

tor with a compact resolvent in a Hilbert space H. Then the eigenvectors of L form a Riesz basis if and

only if L is Quasi-Hermitian and possesses a bounded and boundedly-invertible metric operator.

Proof. See Proposition 4 in Krejčiřı́k et al. (2015) [61]. □

We can use this theorem in conjunction with the following definition of “trivial pseudospectra” and the following

theorem that connects the quasi-hermiticity of the operator with implications about the pseudospectra.

– Definition (Trivial Pseudospectra). We say that the pseudo-spectrum of L is trivial if there exists a fixed

constant C such that, for all ϵ > 0,

σϵ(L) ⊆ {z ∈ C| dist(z, σ(L)) < Cϵ}. (1.39)

– Theorem (Quasi-Hermitian Implications for Pseudospectra). Let H be quasi-Hermitian with a positive,

bounded and boundedly-invertible metric. Then the pseudospectrum of H is trivial.

Proof. See Proposition 3 in Krejčiřı́k et al. (2015) [61]. □

In Reddy et al. (1993) [79] the pseudospectra was used to estimate the size of the transient growth using

methods described earlier in this section. Furthermore, it was reinforced that the a sufficient condition for

no transient growth is that the numerical range of the linear operator is restricted to the left half plane - this

was established as the extension of the Hille-Yosida Theorem. In Figure 4, we give the pseudospectra plots

[74] for the Orr-Sommerfeld operator, LOS as well as the Davies Oscillator LD (these operators are shown

in shot) that were given in the talk by Novák (2015) [74]. The former demonstrates an operator with trivial

pseudospectra and the latter demonstrates an operator with non-trivial pseudospectra. In Reddy et al. (1993)

[79], the projection coefficients, ⟨en, ϕ⟩ in (1.39), were calculated and found to be large.
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Figure 4. Plots of the pseudospectra given in the talk by Novák [74]. The scale of the contour lines are on a

logarithmic scale (orange to green) from −8 to −2 in increments of 0.5.

This demonstrates how we can use the above theorems, namely solely in the reverse implication. From

the computations regarding the Davies operator, one visualise what seems to be non-trivial pseudospectra.

Often, the non-triviality of pseudospectra can be proven rigorously using semi-classical analysis and defining

the pseudomodes when the structure of the eigenmodes cannot be easily deduced - the reader is invited to

see Davies (2004) et al. [35], Dencker at al. (2003) [37] and Krejčiřı́k et al. (2015) [61]. Many examples

concerning non-trivial pseudospectra are centred around the imaginary cubic oscillator, which has a complete

set of eigenvectors which do not form a Riesz basis; this can be established via the non-existence of trivial

pseudospectra. In contrast, we cannot determine the existence of a Riesz basis from the existence of trivial

pseudospectra, hence we cannot assume the eigenvectors of the Orr-Sommerfeld operator form a Riesz basis.

One can circumvent this problem by considering the metric operator directly, but establishing the form of the

metric operator is a highly non-trivial task. The interested reader is invited to consider Ergun (2013) [42] that

provides examples about how to establish the metric operator in particular cases. The reader is also invited to

consider the works of Shubov (1996, 2016, 2017, 2020) [87, 88, 89, 90], who looks at the basis properties for

mechanical systems including flutter, damped waves and energy harvesting.

We now relate these approaches together by considering the mathematical objects. We take special care to

emphasize where the non-normality creates difficulty. We will first describe these relationships with words before
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describing them mathematically. The Global Framework is related to the Local Framework by considering the

eigenvector expansion of the green’s function. This connection only requires that the eigenvectors are complete.

As previously discussed, some notions of basis only require completeness, and these bases sometimes are not

appropriate for expanding the functions in. The connection between the Global Framework and the Non-modal

Framework can be observed particularly with self-adjoint operators when considering the L2-norm of the semigroup

is ||etL||L2 = eλ0t where λ0 is the biggest eigenvalue (E. B. Davies [33]). Thus in the self-adjoint case, the leading

eigenvector captures everything from the initial growth, to the transient growth as well as the asymptotic behaviour.

These three things are strongly differentiated in the non-self-adjoint case. The Non-modal Framework and the Local

Framework are connected by considering the relationship between Green’s function and semigroup.

Now, let us recreate these relationships mathematically. We firstly consider the eigenvalue equation

Len(x) = λnen(x) (1.40)

where {en}∞n=0 are the eigenvectors of L form a complete set and {λn}∞n=0 are the constant corresponding constant

eigenvalues. Now consider the eigenvalue equation for L2-adjoint of L,

L†e†n(x) = λ†ne
†
n(x) (1.41)

where {e†n}∞n=0 are the adjoint eigenvectors of L†, which also form a complete set, and {λ†n}∞n=0 are the corre-

sponding constant eigenvalues. We have that (λn)∗ = λ† where ∗ denotes the complex conjugate. We assume

that {en}∞n=0 and {e†n}n=0 are bi-orthonormal to each other such that ⟨e†m, en⟩ = δnm. Therefore, considering the

expansion of u into (1.31) into amplitude-eigenvectors pairs
∑∞

n=0 anen. We then get the following equation

∞∑
n=0

en
dan
dt

=

∞∑
n=0

λnanen. (1.42)

We take the inner product of (1.42) with each e†n in order to get the infinite-dimensional dynamical system,

dan
dt

= λnan, (1.43)

which should be solved with appropriate initial conditions, i.e an(t = 0) = ⟨ê†n, u0⟩, thus u0 =
∑∞

n=0 an(t = 0)en.

Thus, the solution of (1.31) can be written as

u =

∞∑
n=0

eλnt an(t = 0)en(x)︸ ︷︷ ︸
u0

=

∫ s2

s1

G(s, x, t) an(t = 0)en(s)︸ ︷︷ ︸
u0

ds (1.44)

where the Green’s function is given byG(x, s, t) =
∑∞

n=0 e
λnte†n(s)en(x) (s1 and s2 are the endpoints of the boundary
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(in the case of the RnsaGl and CnsaGL will be s1 = −∞ and s2 = ∞). In this way, we have related the Global

Framework and the Local Framework together.

In order to relate the Global Framework to the non-modal approach one recognises that, provided the eigenvec-

tors form a complete set,

etL =

∞∑
n=0

eλntPn (1.45)

where Pn is the projection operator onto each eigenvector of L and λn are the eigenvalues of L. In this case, it is

clear as to why an eigenvalue with positive real part equates to global instability. However, the additional difficulty

comes from the fact that completeness is not enough to ensure that the projection operators are bounded. One

needs a stronger notion of a basis that ensures the projection operators are bounded. The non-modal approach

relies on different representations of the semigroup etL when the projection operators are unbounded; these include

the same formula one uses for matrix exponentials when the linear operator is a bounded operator

etau0 = etAu0 = etLu0 =

∞∑
n=0

tn

n!
Ln. (1.46)

and also the Cauchy integral formula which works in the case of unbounded operator

etL =
1

2πi

∫
+∂U

eλtR(λ,L)dλ (1.47)

where R(λ,L) = (λ − L)−1 is the resolvent operator for λ /∈ σ(L) where σ(L) is the spectrum of L containing the

eigenvalues λn. For a full discussion of formulas through which the evolution operator etL can be expressed, the

author suggests Section II.3.3 of the book “One parameter evolution semigroups for Linear Evolution Equations” by

Engel and Nagel (2000) [41]. In this way, the global approach and the non-modal approach are connected together.

Lastly, we related the non-modal approach and the local approach together. This is done by recognising that the

Green’s function G(x, s, t) is the integral kernel of the semigroup etL, i.e.

etLu =

∫ s2

s1

G(x, s, t)u(s)ds. (1.48)

One can also see this from (1.44). As an example of the intersection between the different frameworks , we can con-

sider Cossu and Chomaz (1997) [28]. In Cossu and Chomaz (1997) [28], the global instability of a Ginzburg-Landau

operator (this was the same as the CnsaGL up to constants) was inferred from local properties by considering the

Green’s function, G(x, s, t) on each point of the domain. In this way, they essentially reconstituted the Green’s

function on the right-hand-side of (1.48) and then considered the following norm

||eLt||∞ = sup
−∞≤x≤∞

∫ ∞

∞
|G(x, s, t)|ds. (1.49)
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They did not refer to the operator on the left-hand-side of (1.49) as a semigroup but instead an evolution operator.

Global instability was then corresponds to the divergence of ||eLt||∞. However, this technique of establishing global

instability via Green’s functions is not universal and the existence of the Green’s function for a non-self-adjoint

operator was specific to the case chosen in Cossu and Chomaz (1997) [28]. In Cossu and Chomaz (1997) [28], the

form of the Green’s function was deduced by Hunt and Crighton (1991) [55] using perturbation theory. Having an

analytical form for the Green’s function is somewhat unusual for operators in Fluid Mechanics, but this is precisely

why it was an elucidating test case.

In the author’s opinion, it is better to redefine global instability as when the quantity etL diverges. This is more

harmonious and does not force the definition of a Green’s function when there does not exist a Green’s function

as the integral kernel of etL. The difficulty is as etL is an operator it has to be measured in terms of norm, so it is

possible that the quantity ||etL|| may be divergent in norms like the supremum norm or energy norm, but may be

convergent in more exotic norms.

Interestingly, we obtain the Green’s function derived by Hunt (1991) [55] by considering the eigenvalue expansion

as he does using perturbation theory. This exemplifies that often the definition of a basis can be adapted to fit for

a purpose, i.e. completeness for defining a Green’s function, but something stronger such as a Riesz basis for

expanding an arbitrary function in the eigenvectors. We demonstrate this in the following derivation. For references

on the construction of Green’s function of eigenvector expansions, the reader is invited to consider Dolph (1961)

[39], Greenlee (1982) [50] and Friedman and Mishoe (1956) [46].

• Derivation of Green’s Function for CnsaGL.

Recall the linear operator from the CnsaGL;

LCGL = (1− i)
∂2

∂x2
− (U + 0.2i)

∂

∂x
+

[
C1 +

1

8
(U2 − 0.4U − 0.04)

]
− c2x

2 (1.50)

where C1 = ℜ{(1− i)c2}.

The eigenfunctions and eigenvalues of LCGL are given by

en = exp{−1

4
(α1x)

2+α2x}Hen(α1x) and λn = −(1+2n)
√

(1− i)c2− i

[
U2 + 0.4U − 0.04

]
8

+C1 (1.51)

where Hen(α1x) are Probabilists’ Hermite polynomials where α1 = ( 4c2
1−i )

1
4 and α2 = U+0.2i

2(1−i) .

We denote the L2-adjoint linear operator of LCGL by (LCGL)†. (LCGL)† and its eigenvectors {e†n}∞n=0 are given

by

(LCGL)† = (1+i)
∂2

∂x2
+(U−0.2i)

∂

∂x
+

[
C1+

1

8
(U2−0.4U−0.04)

]
and e†n = exp{−1

4
(β1x

2)−β2x}Hen(β1x)

(1.52)
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where β1 = α∗
1 and β2 = α∗

2 The eigenvalues of L† are the complex conjugates of λn, i.e. λ†n = (λn)
∗. We

normalise the direct and adjoint eigenvectors such that ⟨ê†m, ên⟩ = δ̃n, where ⟨·, ·⟩ is the L2-inner product on

the real line, i.e. for ⟨f, g⟩ =
∫∞
−∞ f̄gdx where the bar, ¯, denotes complex conjugation4, via the normalisation

constant ên = 1
Zn
en and ê† = 1

Zn
e†n where Zn = (n!

√
2π

α1
)

1
2 .

For the time-dependent operator ( ∂
∂t−LCGL), generating a set eigenvectors with a corresponding set of adjoint

eigenvectors, the formula for the Green’s function is given by [105]

G(x, s, t) =

∞∑
n=0

e−λnt(¯̂e†n(s))(ên(x)). (1.53)

G(x, s, t) =

∞∑
n=0

e−λnt
α1

n!
√
2π
Hen(α1s)Hen(α1x). (1.54)

We rearrange this in the following way

G(x, s, t) = C exp{−α
2
1

4
(s2 + x2) + α2(x− s)}

∞∑
n=0

(et
√

4(1−i)c2))n

n!
Hen(α1s)Hen(α1x), (1.55)

where the constant C = α1√
2π

exp{−
√

(1− i)c2 − i
8 (U

2 + 0.4U − 0.04) + C1}. Let ρ(t) = et
√

4(1−i)c2 . The

application of Mehler’s formula (1866) [66] gives the following

G(x, s, t) =
C√

1− ρ(t)2
exp

{
1

1− ρ(t)2

[
− (α1)

2

4
(s2 + x2)(1 + ρ2(t)) + (α1)

2ρ(t)xs+ α2(x− s)(1− ρ2)

]}
,(1.56)

which is the same as the solution derived by Hunt (1991) [55] and used by Cossu and Chomaz (1997) [28].

Previously, we said that we would perform numerical experiments on the CnsaGL in order to showcase the

phenomena of the saturation frequency’s being well captured and the saturation amplitude’s not being well captured.

We have built up a notion of transient growth throughout this literature review, but now we hope to showcase it with

this example. As previously stated, the pseudospectra and the semigroup are closely related. We will start by

presenting plots of the pseudospectra for the operators LRGL and LCGL before going more in-depth on the complex

case.

• Pseudospectra of LRGL and LCGL. We plot the following pseudospectra for LRGL and LCGL in Figure 5 and

Figure 6 respectively. Details of the numerics can be found in Appendix B. In all figures, the analytically-derived

eigenvalues are in orange and the numerically derived eigenvalues are in blue. The grey areas indicate the

positive real axis. We also note in all of our plots (apart from the self-adjoint case for the LRGL when U = 0),

we have spectral pollution, which is the difference between the analytical eigenvectors and the numerically
4We use two notations for complex conjugation, namely the bar ¯ for functions and the ∗ for constants. Regarding spaces ∗ denotes the dual

space.
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computed eigenvectors. This is clear in Figure 5 and would be clear in Figure 6 if we showed a larger domain.

A discussion of spectral pollution, which is a particular problem for non-self-adjoint operators, can be found

in Aboud et al. (2020) [1]. Also, spectral pollution can also be a problem for certain classes of self-adjoint

operators, the interested reader is directed toward the paper by Davies et al. (2004) [35].

In Figure 5, left, we see pseudospectra of LRGL with U = 0, i.e. the self-adjoint case. We know for the RnsaGL

when U = 0, we have a basis as the operator is self-adjoint, hence the pseudospectra is trivial. We would

have to zoom in order to see the tubular neighbourhoods indicating trivial pseudospectra. We notice that in

the cases of U = 1 and U = 2, the pseudospectra extends to the right-hand-side hence in these cases we see

transient growth. For the case U = 0, we can see the smallest contour corresponding to 100 extending hence

we cannot interpret transient growth from this.

Figure 5. A plot the pseudospectra for the RnsaGL with δ = 0 for U = 0 (left), U = 1 (center) and U = 2

(right). The contour plots are presented on a logarithmic scale with 100 being the smallest contour and 1016

being the largest contour. The analytical eigenvalues are in orange and the numerically derived eigenvalues

are in blue. The grey areas indicate the positive real axis.

In Figure 6, left, we see pseudospectra of LCGL with U = 0, i.e. the self-adjoint case. We know for the RnsaGL

when U = 0, the operator is still not self-adjoint, but we see what we would call minimal transient growth. It

is not clear that we have the tubular neighbourhoods as we had in the real case. For U = 1 and U = 2, the

pseudospectra extends to the right-hand-side hence in these cases we see transient growth.
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Figure 6. A plot the pseudospectra for the CnsaGL with δ = 0 for U = 0 (top left), U = 1 (bottom left) and

U = 2 (right). The contour plots are presented on a logarithmic scale with 101 being the smallest contour and

105 being the largest contour. The analytical eigenvalues are in orange and the numerically derived

eigenvalues are in blue. The grey areas indicate positive real axis.

• Transient Growth of Amplitude but not Frequency for the CnsaGL We let u = ReiΦ in the CnsaGL, separating

the equation into the real and imaginary parts gives the following two equations

∂R

∂t
= LRR−NR(R,Φ) + δR (1.57)

and
∂Φ

∂t
= LΦΦ−NΦ(R,Φ) (1.58)

where

LR =
∂2

∂x2
− U

∂

∂x
+

[
C1 +

1

8
(U2 − 0.4U − 0.04)

]
− c2x

2 and LΦ =
∂2

∂x2
− U

∂

∂x
, (1.59)

NR = 2

(
∂R

∂x

)(
∂Φ

∂x

)
−R

(
∂Φ

∂x

)2

+R

(
∂2Φ

∂x2

)
−R

(
∂R

∂x

)
− 0.2R

(
∂θ

∂x

)
−R3

and

NΦ = − 1

R

(
∂2R(x, t)

∂x

)
+

2

R

(
∂R

∂x

)(
∂Φ

∂x

)
+

(
∂Φ

∂x

)2

+ 0.2
1

R

(
∂R

∂x

)
.

We plot the matrix exponentials of LR + δ and LΦ + δ in Figure 7 where δ = −0.01. Again, we use a slightly
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sub-critical operator to demonstrate transient growth. In Figure 4b, we still see transient growth which can

be attributed to the superposition of non-orthogonal modes but it is only small. We notice also that with

appropriate boundary conditions LΦ is sub-critical unlike LR.

Figure 7. (Left) The L2 norm of ||et(LR+δ)|| for a) U = 0 (blue) and U = 1 (orange). (Right) The L2 norm of

||et(LΦ+δ)|| for U = 0 (blue) and U = 1 (orange). The magnified figure is a zoomed view of what is in the box

at in the top left-hand corner of the figure.

1.3.2 Examples of Amplitude Equations in Fluid Mechanics and Elsewhere

In this section, we look specifically at amplitude equations as approximations to partial differential equations. We be-

gin with amplitude equations in Fluid Mechanics which takes us from Landau’s research in the 1940s to applications

of WNLE analysis in the last two decades. We then look at the approaches taken in other fields such as stochastic

mathematics. We also consider the evaluation of amplitude equations via error bounds, in particular cases involving

the Kuramoto-Sivashinsky equation and Swift-Hohenburg equation.

Landau (1945) [63] first described the amplitude of a single fluid instability using what we call the family Stuart-

Landau equation. The starting point is a flow v, being decomposed as v = v0 + v1 where v0 is a steady solution to

the Navier-Stokes and v1, is a small unsteady perturbation. By what is now classical argument, he showed that a

small unsteady perturbation, v1, could be written as

v1 = A(t)f(x, y, z)

where f(x, y, z) is a coherent structure. We have called f(x, y, z) deliberately a coherent structure because the

vocabulary of global modes was used later by Drazin [40] in 1974. A(t) satisfies

dA

dt
= δA(t)− λ1|A(t)|2A(t) (1.60)
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where δ is the distance to critical Reynolds number and λ1 is known as the λ1 constant or the “Landau” constant.

Landau did not work out the value of the constant constant, but it was firstly derived by Stuart (1960) [93] for

Poiseuille Flow. Numerical values of the λ1-constant derived by Stuart were calculated by Reynolds and Potter

(1967) [80] and Pekeris and Shkoller (1967) [76] who found that the amplitude equation was only valid for very small

δ and for early times only5. In essence, this is similar to what we saw in the examples for the RnsaGL and CnsaGL in

the last section (In Section 1.2, Figures 1 and 2 show that there is no difference in norm at early times between the

solution of the RnsaGL and the CnsaGL and their respective first order approximations.). The amplitude equations

approximated the solution well at early times.

It is for this reason that higher order approximations of the solution were sought. However, for higher order terms

there were issues of non-uniqueness when determining the higher order spatial coefficients; again this corresponds

how we had difficulty establishing v1 in (1.14) and (1.23) in the RnsaGL and CnsaGL owing to being in situation

β of the real and complex Fredholm alternative. Therefore, additional assumptions were needed to specify these

coefficients. Herbert (1983) [52] circumvented the problem by introducing normalisation condition which ensured

that the A(t) took a particular value at a particular reference point. This idea was used by subsequent authors

including Crouch (1993) [31] and Fujimura (1989) [47]. However, the higher order terms would differ depending on

where the reference point was taken. In Watson (1960) [102], a way of obtaining higher order amplitude equations

was introduced. This method was called the amplitude expansion method. The idea was with these new higher

order amplitude equations, one could describe the coherent structure f(x, y, z) more elaborately by having more

terms of the form |A|2mA on the right-hand-side of (1.3.2) and therefore capture more of the flow. Fujimura (1989)

[47] showed that higher order amplitude equations derived via WNLE coincide with amplitude equations made such

as the amplitude expansion method (we demonstrate higher order amplitude equations made via WNLE in the next

chapter). Fujimura (1991) [48] also showed that approximations obtained via WNLE coincide with those obtained

through an application of centre manifold theory provided the disturbance amplitude is correctly defined in each

setting. Additionally, Coullet and Spiegel (1983) used normal form theory to make higher order amplitude equations

[30].

Three of these methods, namely the amplitude expansion method, WNLE and the method of Coullet and Spiegel,

are conveniently connected together in later works by the same test case for cylinder flow. Sipp and Lebedev (2007)

[92] successfully approximated the saturation frequency of the first bifurcation of a cylinder flow via WNLE with a first

order expansion, but the saturation amplitude was underestimated. We should compare this to the transient growth

analysis performed in the last section on the CnsaGL where we considered the linear operator concerning the

frequency and the amplitude separately. We found that although non-self-adjoint, the transient growth was minimal

unlike the operator for the amplitude. Carini et al. (2015) [21] used the method of Coullet and Spiegel (1983) [30], a

method based on normal form theory, in order to derive a higher order amplitude expansion describing the flow past
5In this thesis, we do not consider a large range of parameters for δ, but we will show that error bounds that we derive increase with δ and U .
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a circular cylinder as well as codimension-two bifurcation arising in the flow past two side-by-side circular cylinders.

Concerning cylinder flow, the authors Sipp and Lebedev (2007) [92] and Carini et al. (2015) [21]) obtained the

same first order amplitude equation, which, when contrasted with numerical experiments of Giannetti and Luchini

(2007) [49], approximated well the dynamics at early times and not at saturation. Carini et al. (2015) explored the

convergence of the terms in the higher order amplitude equation and it was found to be vanishingly small. The

interpretation in this case was that the amplitude expansion was an asymptotic series as opposed to a convergent

one, and hence an appropriate truncation of the series provides a good physical approximation. A non-coincidence

at this point is the correspondence between the theoretical work of Sipp and Lebedev (2007) [92] and Carini et al.

[21] (2015) and the numerical experiments of Giannetti and Luchini [49] is the same as the validity as the Stuart-

Landau equation for Poiseuille flow, i.e. a slightly critical value of δ and only at early times. Again, we reason that

the spatial development of the leading eigenvector approximates the early times well because the other modes have

not been strongly mixed by the nonlinearity yet.

An important article is Chomaz (2005) [25], in which a Ginzburg-Landau equation exhibiting the same features

as the CnsaGL (his version did not have the same constants to maintain the equation at criticality for any value

of U ). He established that “when the non-normality is strong, the bifurcation is abrupt and the weakly nonlinear

analysis becomes invalid”. He also noticed that if one forces the equation by adding a term such as ϵf(x, t) to

the right-hand-side of the CnsaGL, the forcing response was inversely proportional to the quantity ⟨e†0, e0⟩. For the

complex Ginzburg-Landau operator used in his equation, but also any operator where the non-normality manifests in

the direct and adjoint eigenvectors moving further apart, this quantity becomes smaller as the parameter governing

non-normality increases. He determined some physical consequences; the region where the direct and adjoint

modes overlap, sometimes called the wave-maker region, is crucial for determining the global mode frequency.

Therefore, the size of the spatial structures themselves6 does not affect the resulting saturation amplitude.

As a response to the failure of weakly nonlinear analysis, in the same article (Chomaz (2005) [25]), the author

considered the importance of “nonlinear global modes” and the adaptation of concepts like absolute and convective

instability to the nonlinear setting. We give these definitions so that the reader can see that they are similar to the

previous definitions, but the Green’s function structure has been replaced by the fully-nonlinear response. These

definitions were first introduced in Chomaz (1992) [24] and have since become part of the standard lexicon used

by various authors considering nonlinear global modes, some of which we will discuss afterwards. Let a system at

t = 0 be in the state s, we call this system the ”basic state”, we define the following;

• The basic state of system is nonlinearly convective, if for all initial perturbations of finite extent and finite

amplitude, the system relaxes to the basic state everywhere in the laboratory frame.

• The basic state of a system is nonlinear absolute if for some initial condition of finite extent and amplitude, the

6In the case where the direct and adjoint eigenvectors are normalised with respect to themselves, i.e. for en, ⟨ên, ên⟩ = δ̃nm where δnm is
the Kronecker δ. Thus, ên = ên

||en|| .
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system does not relax to the basic state everywhere in the laboratory frame.

• The basic state of a system is nonlinearly stable if, for all initial perturbations of finite extent and amplitude, the

system relaxes to the basic state in any moving frame. It is nonlinearly unstable if it is not nonlinearly stable.

Systems under consideration are often explored by reducing the problem to the front or leading edge. The selection

problem for the front velocities that has been long explored via amplitude equations. The terminology of pulled

fronts and pushed fronts is used to describe the fronts when the selected frequency is associated with the linear

upstream region or nonlinear downstream region. In Chomaz (2005) [25], he cites different research on pushed and

pulled fronts in Ginzburg-Landau systems, but does not remark that the pulled front arises from a self-adjoint system

system (Dee and Lander (1983) [36]) whereas pushed fronts occur in various configurations of complex Schrödinger

equations (van Saarloos and Hohenberg (1992) [99]), which are non-self-adjoint. Furthermore, he concludes the

review article with the following statement; ”the reason why the majority of open flows seem to follow linear front

velocity selection is still mysterious and it should ultimately be interpreted and modeled before concluding that the

present theory is complete”. By present theory, he means the analysis of nonlinear global modes (or fronts) with

the nonlinear generalisations of the definitions present. This statement summarises the other perspective to take,

i.e. why can so much be extrapolated via linear analysis from some equations and not others which have the same

nonlinear operators?

It is useful here to clarify here as to why the response the failure of WNLE in Chomaz (2005) [25] in a non-

self-adjoint setting is a fully nonlinear framework. Especially, as it has been the tendency over the years to make

strong distinctions between the effects of non-normality and nonlinearity in Fluid Mechanics (The reader is invited to

consider Waleffe (1995) [101] and Balasubramanian et al. (2008) [12]). At first glance, the saturation frequency and

saturation amplitude may seem to be more a feature of the full nonlinear operator as opposed to non-normal linear

operator because saturation occurs once all the modes have been mixed by the nonlinearity. However, there have

been many examples where the leading eigenvector and amplitude have approximated a system with a nonlinear

operator; the difference was that these systems had a normal linear operator (Collet and Eckmann (1990) [27],

Kirrman et al. (1992) [58] for the Swift-Hohenberg equation, and Schneider (1994) [85], where the Ginzburg-Landau

equation is derived as an approximation to the Kuramoto-Sivashinksy equation), thus reinforcing the conclusions

in Chomaz (2005) [25]. The reason why Chomaz’s response to non-normality was a fully nonlinear framework is

therefore not due to the nonlinearity itself but rather that in a nonlinear framework that nothing is ”thrown away”.

In this thesis, we decided to explore the discrepancy by deriving error bounds between the solution and the

approximation. The validity of reduced order models for systems of PDEs has been explored in the examples with

normal linear operators was in the previous paragraph. However, in these cases, the linear operator generated a

strongly-continuous semigroup, and the error bounds were derived using the integral form of the PDE. We have

chosen the RnsaGL and the CnsaGL because the linear operators in both of these cases generate strongly contin-
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uous semigroups so we can follow the same methodology of to a large extent. In this thesis, we do follow the proof

by Kirrman et al. in [58]. The proof is achieved via bootstrap argument7. In the literature, there are many results

deriving error bounds in this way, but, in this thesis, we continually emphasize that these are theoretical tools and

not practical ones. For instance, one cannot ascertain the minimum order that an expansion needs to go be within

a certain threshold or necessarily what values for ϵ the expansion v = v0 + ϵv1 + ...+ converges.

Similar error bounds were derived by Blömker et al. (2005) (2007) (2011) [14, 15, 16] for SPDEs where the

stochastic PDE was derived via infinite-dimensional homogenisation. By similar we mean that, let u be the function

and uA be its corresponding approximation. In the deterministic case, the error bound is of the form ||u− uA|| ≤ bϵ,

where b is a constant. In the stochastic case, the error bound is of the form P(supt∈[0,T ] ||u(t) − uA|| ≥ cϵ) ≤ dϵ,

where c and d are constants. In all of these papers assumptions are made to ensure a mild solution. In Blömker

et al, i.e. the linear operator generates a C0-semigroup and the nonlinearity is dissipative. In Blömker (2005),

the Rayleigh-Bernard problem [14] was considered. In this problem, the linear operator is non-self-adjoint and a

corresponding first order approximation was derived. However, there are a no numerical experiments that explore

the validity of this approximation for different values of the perturbing parameter (analogous to the role of δ in our

equations). An intriguing point about stochastic homogenisation is that it does not discard all stable modes as a first

step but instead uses an invariant measure in order to average over all of them. In the last chapter of the thesis,

we do numerical experiments with noise on the RnsaGL where the quasi-basis structure exists to see if the first

order approximation derived via the infinite-dimensional stochastic homogenisation approximates the solution of the

governing equations well. We choose a strength of noise in particular that should not have any effect on the first

order amplitude equation (Mohammed et al. (2014) [71]), with the notion that this may yield a different result from

the Stuart-Landau equation in the deterministic system.

Furthermore, studying the convergence of v = v0+ϵv1+...+ directly is useful but one cannot ascertain whether or

not the approximation converges towards the solution. In Vishik and Lyusternik (1960) [100], linear non-self-adjoint

elliptic operators were considered with elliptic perturbations. As the authors were studying the elliptic problem,

they did not have the non-uniqueness at higher terms which occurs in the parabolic problem. Additionally, the

authors proved convergence of their approximating expansion using results from Koshelev (1958) [59]. Although

many of Koshelev’s important works were translated into English, the paper that was cited had not been translated

and the author of this thesis struggled to retrace the argument. He proved the convergence of the sequence
7We give a small bootstrap argument, this can be found in Johnathan Ben-Artzi’s lecture notes on diffusive equations

(https://jbenartzi.github.io/2015.Dispersive/index.html) and is extremely illustrative. Although bootstrap arguments are standard, the logic is
often unclear to the reader precisely the logic if they have never seen one before;
Example (Bootstrap Argument)
Theorem. Let f : [0, T ) −→ [0,∞) be continuous, where 0 < T ≤ ∞, and fix a constant C > 0. Suppose the following conditions hold:

1. f(0) ≤ C.

2. f(t) ≤ 4C for some t > 0, then in fact f(t) ≤ 2C.

Then, f(t) ≤ 4C (and hence f(t) ≤ 2C) for all t ∈ [0, T ).
Proof. Let A := {t ∈ [0, T )|f(s) ≤ 4C for all 0 ≤ s ≤ t}. Note that A is non-empty, since 0 ∈ A, and that A is closed, since f is continuous.
Now, if t ∈ A, then the second assumption implies f(t) ≤ 2C, so that t + δ ∈ A for small enough δ > 0. Thus A is a non-empty, closed and
open subset of the connected set [0, T ) and hence, A = [0, T ).
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v = v0 + ϵv1 + ... for the case where the problem was “off the eigenvalue” and therefore in situation (α) of the

Fredholm alternative. It is not clear how to adapt this proof the nonlinear case, but also in the case where we are in

(β) of the Fredholm Alternative. One possibility for considering the nonlinear case where we are in situation (α) of

the Fredholm alternative is to use the Adomian polynomials, but this is outside the scope of this thesis. The reader is

invited to consider Adomian (1994) for an overview [2] and Cherruault (1989) [22] for a criteria on the convergence

of the polynomials..

Lastly, we mention two areas of research for completeness, namely “non-modal nonlinear stability analysis” and

“weak convergence methods for nonlinear partial differential equations”. These topics do not fall under the purview

of this thesis, as we reiterate that the objective of the thesis is to understand where WNLE go awry, but nevertheless

they are important for contextualising the research in a broader sense.

Non-modal nonlinear stability analysis is the extension of non-modal analysis to nonlinear systems. It is important

to note that this is not a response to WNLE. The problem is stated as thus; given a nonlinear system (unlike what we

saw in the Linear Framework), what is the most dangerous initial condition in terms of energy. The most dangerous

initial condition can often result in new findings about solutions that have not previously been anticipated as it

is necessary to consider the whole parameter-space as opposed to just an expansion around a fixed point. In

our example, we restrict ourselves to a small perturbation δ. When δ goes from negative to positive the leading

eigenvector crosses the imaginary axis resulting in a pitchfork bifurcation in the case of the RnsaGL and limit cycle

in the case of the CnsaGL. In more complicated systems, there could be different behaviours accessible by different

dangerous initial conditions. In comparison to finding the most dangerous initial condition in the case of (1.31),

the problem in the nonlinear case is a fully nonlinear optimisation problem. The interested reader can discover the

article by Kerswell (2018) [57].

Weak convergence methods of nonlinear partial differential equations deals with the following problem. Given

an equation with nonlinear operator A

Au = f (1.61)

where u is the unknown and f is a forcing function and a series of approximating problems

Akuk = fk. (1.62)

such that Ak −→ A and fk −→ f . How can we guarantee that uk −→ u? Techniques for solving dealing with this

problem can be found in the book by Evans (1990) [43]. The approach of taking an additional timescale ϵt (or spatial

scale ϵx), and comparing whether the homogenised valid is still relevant as ϵ −→ 0 forms the basis of ”Two-Scale

Convergence”, which has been extensively studied by G. Allaire (1992) [3], Furthermore, a non-self-adjoint example

was studied by Allaire (2007) [4] on a periodic domain. In this work, the use of the two scales in space was justified

as ϵ −→ 0. Another technique used to justify the convergence of a homogenised equation to the governing equation
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is the so-called energy method of Tartar, which is also applicable to non-self-adjoint operators. The author of this

recommends the book by Tartar (2009) [95] that goes over the subtleties of different types of convergence as well

as contextualising them historically.

1.4 Structure of Thesis

The reader can find below a summary of all of the core chapters after which follows a conclusion and appendices.

In each chapter, we have put an emphasis on derivations, so as to make this thesis useful for those in the Fluid

Mechanics community who want to recreate the derivations.

• In Chapter 2, “An Argument Against Higher Order Amplitude Equations”, we compute higher order amplitude

equations using WNLE on the RnsaGL. We perform numerical experiments that demonstrate as U increases

a smaller percentage of U is along the zeroth eigenvector. Thus reiterating that non-normality is a problem in

space instead of a problem in time.

• In Chapter 3, “Equations and their Properties”, we derive some properties of the RnsaGl and CnsaGL. We

show that the linear operators in the RnsaGL and CnsaGL generate strongly continuous one parameter (C0-

semigroups). As also the nonlinearity in each case is dissipative, we can write the equations in integral form

and use this to prove the existence of local solutions.

• In Chapter 4, “Properties of the Eigenvectors of the LRGL and LCGL”, we prove that neither the eigenvectors

of the LRGL or LCGL for bases. We see in the case of LRGL that owing to the existence of a unbounded

metric operator, the eigenvectors of the linear operator form a quasi-basis. This means that we can express

functions that exist in a certain Hilbert-Space (embedded into the L2-Space) using the eigenvectors of LRGL.

• In Chapter 5, “Amplitude Equations - Derivations and Analysis”, we derive higher order approximations for the

RnsaGL and the CnsaGL. We then perform numerical experiments that showcase their validity. In particular,

the fact that the linear operator of the RnsaGL forms a quasi-basis allows us two possible normalisation

choices of higher order terms.

• In Chapter 6, “Error Bound Analysis”, we derive the amplitude equations via a bootstrapping argument. We

also use the results of Chapter 3, by writing the equation for the discrepancy in integral form. We then perform

numerical experiments in order to show that these error bounds grossly over estimate the difference between

the solution and the approximation.

• In Chapter 7, “Stochastic Amplitude Equations”, we consider a SPDE with noise strength such that the noise

should not effect the first order approximation. This has been justified via a theorem for self-adjoint SPDEs.

We add noise of the same strength to the RnsaGL and derive a first order approximation of the resulting
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system. Afterwards, we perform numerical experiments to see how noise affects the non-self-adjoint system

in comparison to the self-adjoint system. Furthermore, we adapt some stochastic notions to the quasi-basis

structure.
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Chapter 2

An Argument Against Higher Order

Amplitude Equations

In this chapter, we derive and analyse higher order amplitude equations for the RnsaGL using the method of multiple

scales, described in Fujimura (1989) [47], who showed that this method is equivalent to the amplitude expansion

method. This chapter should really be considered an extension of the introduction as it demonstrates to the reader

specifically why we neglect higher order expansions. As we only consider the RnsaGL, we have dropped on LRGL,

so as to just have L.

2.1 Derivation

We introduce two new timescales τ0 = ϵt and τ1 = ϵ2t in the RnsaGL and also introduce the diffusive scaling

u = ϵ
1
2w(τ1, τ2). This yields the following PDE

ϵ
∂w

∂τ1
+ ϵ2

∂

∂τ2
= Lw − ϵw3 + ϵδ̃w. (2.1)

We expand w = w0 + ϵw1 + ϵ2w2 + ϵ3w3 + ... in order to get the following hierachy of equations;

• O(1)

−Lw0 = 0 (2.2)

gives w0 = C0(τ0, τ1)ê0 where C0 is the amplitude and ê0 is the eigenvector corresponding to λ0 = 0.

• O(ϵ)

−Lw1 = −∂w0

∂τ0
− w3

0 + δ̃v0 (2.3)
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We input w0 and then we apply the Fredholm alternative in order to obtain

∂C0

∂τ0
= δ̃C0 − λ1C3

0 (2.4)

where λ1 = ⟨ê†0, ê30⟩. ê
†
0 is the solution to the adjoint eigenproblem that we previously defined in Section 1.2.

Note that we have normalised the direct and adjoint eigenvectors such that ⟨ê†n, ên⟩ = δnm where δnm is the

Kronecker delta.

Putting (2.4) back into the equation (2.3), we establish that w1 has the structure w1 = C1ê0 + C3
0 ŵ1, where

⟨ê0, ŵ1⟩ = 0. We can find ŵ1 by inverting the singular operator on the right-hand-side of 2.3 with the condition

⟨ê0, ŵ1⟩ = 0.

• O(ϵ2)

−Lw2 = −∂w1

∂τ0
− ∂w0

∂τ1
− 3w2

0w1 + δ̃w1 (2.5)

We apply the Fredholm alternative in order to get the following equation

∂C1

∂τ0
+
∂C0

∂τ1
= −2C3

0 δ̃⟨ê
†
0, ŵ1⟩+ 3C5

0 [λ
1⟨ê†0, ŵ1⟩ − ⟨ê†0, ŵ1e

2
0⟩]− 3C2

0C1λ
1 + δ̃C1 (2.6)

We use (2.6) to remove the derivative terms from (2.5) from the above equation in order to get an expression

for v2. In this way, we obtain

−Lw2 = 2C3
0 δ̃[⟨ê

†
0, ŵ1⟩ê0 − ŵ1] + 3C5

0 [λ
1ŵ1 − λ1⟨ê†0, ŵ1⟩ê0 + ⟨ê†0, ŵ1e

2
0⟩ê0 − ê20ŵ1] + 3C2

0C1[λ
1ê0 − ê30]. (2.7)

Therefore, w2 = C2ê0 + ŵ2(C0, C1, x) where ŵ2 = 2C3
0 δ̃ŵ

a
2 + 3C5

0 ŵ
b
2 + 3C2

0C1ŵ
c
2 and the spatial terms ŵa

2 , ŵb
2

and ŵc
2 are obtained from (2.7) using the conditions ⟨ê0, ŵa

2⟩ = 0, ⟨ê0, ŵb
2⟩ = 0 and ⟨ê0, ŵ2

c ⟩ = 0. We can see

that ŵc
2 = ŵ1.

• O(ϵ3)

−Lw3 = −∂w2

∂τ0
− ∂w1

∂τ1
− ∂w0

∂τ2
− 3w2

0w2 − 3w2
1w0 + δ̃w2 (2.8)
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Applying the Fredholm alternative gives the following equation

∂C2

∂τ0
+
∂C1

∂τ1
+
∂C0

∂τ2
=

C1C
4
0

[
6λ1⟨ê†0, ŵ1⟩+ 9λ1⟨ê†0, ŵ1⟩ − 15⟨ê†0, ê20ŵ1⟩

]
− 4C3

0 δ̃
2⟨ê†0, ŵa

2⟩ − 6δ̃C1C
2
0 ⟨ê

†
0, ŵ1⟩

− 3C2
0C2λ

1 − 3C2
1C0λ

1 + δ̃C2 + δ̃C5
0

[
6λ1⟨ê†0, ŵa

2⟩ − 12⟨ê†0, ŵb
2⟩+ 6⟨ê†0, ŵ1⟩2 − 6⟨ê†0, ê20ŵa

2⟩
]

+ C7
0

[
15λ1⟨ê†0, ŵb

2⟩ − 9λ1⟨ê†0, ŵ1⟩2 + 9⟨ê†0, ŵ1(ê0)
2⟩⟨ê†0, ŵ1⟩ − 9⟨ê†0, ê20ŵb

2⟩ − 3⟨ê†0, ê0ŵ2
1⟩
]
. (2.9)

In order to obtain a second order amplitude equation, it is not necessary to work out C1, C2 explicitly hence we

do not have to deal with the non-uniqueness. We define C = ϵ
1
2 (C0 + ϵC1 + ϵ2C2...), and therefore

dC

dt
= ϵ

3
2
∂C0

∂τ0
+ ϵ

5
2

(
∂C1

∂τ0
+
∂C0

∂τ1

)
+ ϵ

7
2

(
∂C2

∂τ0
+
∂C1

∂τ1
+
∂C0

∂τ2

)
+ .... (2.10)

We input the right-hand-side terms in brackets using (2.4), (2.6) and (2.9) and rewrite them in terms of C,

dC

dt
= δC − µ1C

3 + µ2C
5 − µ3C

7 (2.11)

where

µ1 = λ1 + δµ1
1 + δ2µ2

1 (2.12)

with

µ1
1 = 2⟨ê†0, ŵ1⟩ and µ2

1 = 4⟨ê†0, ŵa
2⟩, (2.13)

µ2 = µ1
2 + δµ2

2 (2.14)

with

µ1
2 = 3λ1⟨ê†0, ŵ1⟩ − 3⟨ê†0, ŵ1ê

2
0⟩ and µ2

2 = 6λ1⟨ê†0, ŵa
2⟩ − 12⟨ê†0, ŵb

2⟩+ 6⟨ê†0, ŵ1⟩2 − 6⟨ê†0, ê20ŵa
2⟩, (2.15)

and lastly

µ3 = 9⟨ê†0, ê20ŵb
2⟩+ 3⟨ê†0, ê0ŵ2

1⟩+9λ1⟨ê†0, ŵ1⟩2 − 15λ1⟨ê†0, ŵb
2⟩ − 9⟨ê†0, ŵ1ê

2
0⟩⟨ê0

†, ŵ1⟩. (2.16)

Therefore, truncating (2.10), we obtain a first-order, second-order and third-order amplitude equation; respectively

given by
dC1st

dt
= δC1st − λ1(C1st)3, (2.17)
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dC2nd

dt
= δC2nd − [λ1 + δµ1

1](C
2nd)3 + [µ1

2](C
2nd)5 (2.18)

and
dC3rd

dt
= δC3rd − µ1(C

3rd)3 + µ2(C
3rd)5 − µ3(C

3rd)7. (2.19)

where we have denoted the solutions to the first order amplitude equations, second order amplitude equations

and third order amplitude equations by C1st, C2nd and C3rd respectively. Just to clarify the notation, all of these

amplitude equations describe the evolution of the leading eigenvector e0, but the spatial development of e0 happens

across the timescales τ1 and τ2. However, we label them after the order of ϵ at which they are determined.

From these, we construct the following three approximations, u1A = C1stê0, u2A = C2ndê0 and u3A = C3rdê0 that

we analyse in the following section.

2.2 Analysis of Approximation Abilities

2.2.1 Radius of Convergence

We plot the approximation u1A, u2A and u3A as well as the PDE in Figure 1 at a point near the origin x = 0.22 for U = 0

(left) and U = 1 (right) respectively. This is the closest point to the 0 in its discretisation. At this point, the eigenvector

ê0(U = 0) ≈ ê0(U = 1). We firstly notice even in the normal case, C1st is the better approximation but this is just

one spatial point, so is not really indicative of how well the approximation performs. However, we showcase these

plots not necessarily to evaluate the approximations, but discuss their radius of convergence. We notice from the

plot on the right in Figure 1, u1A diverges hence there is an underlying problem.

Figure 1. A plot of C1st (orange), C2nd (green), C3rd (red) and u (blue) at x = 0.22, with δ = 0.01 against t for

different values of U , U = 0 (left) and U = 1 (right).
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In order to explore the underlying problem, we consider the radius of convergence as in [47] and [21], we apply

the uniform convergence criterion on the terms we have, i.e. finding a δ that satisfies the following inequalities from

(2.12) and (2.14)

δ
|µ1

1|
|λ1|

< 1, δ
|µ2

1|
|µ1

1|
< 1, and δ

|µ2
2|

|µ1
2|
< 1. (2.20)

We remark that tells us to what extent our finite approximations are valid, but it does not tell us whether an infinite

series expansion would be valid or not, as it may converge ultimately despite having some large coefficients in early

terms. This gives us the possibility of re-summing the terms in order to create an expansion with a larger radius

of convergence. The reader is invited to consider Bender and Orszag (2013) [13] for techniques concerning Borel

Resummation and Padé approximations. The table below (Table 2) gives values the smallest value of δ satisfying

all three inequalities in (2.20).

U Radius of Convergence

0 0.0746

1 0.0069

2 0.0001

Table 2. The radius of convergence defined by the smallest δ that satisfies the inequalities in (2.20).

Whilst, this is not indicative of the radius of convergence for the entire expansion, it is indicative of the upper bound

for the radius of convergence for the truncated expansions. Using Table 2, we safely assume why we did not have

convergence in the case of U = 1 as our value δ was too large. Therefore, the approach of higher order amplitude

equations is limited if we want to model larger perturbations and larger values of δ.

2.2.2 Ability to Capture Spatial Structures Orthogonal to the Zeroth Eigenvector

When studying non-self-adjoint systems, it is reasonable question to ask is how much of the solution is along the

ê0? We create the following quantity up, which is the fraction of the overall solution that is along the unit vector ê0
||ê0|| ;

up =
⟨ ê0
||ê0||L2

, u⟩
||u||L2

. (2.21)

Note that we do not take the inner product with the adjoint eigenvector, because this would be falsely assuming that

a basis property exists. In Figure 3, we plot the time evolution of up for different values of U .
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Figure 1. A plot of uf against t for different values of U , namely U = 0 (blue), U = 0.4 (orange), U = 0.8 (green),

U = 1.2 (red), U = 1.6 (purple) and U = 2 (brown).

We see that as the non-normality increases up becomes smaller at saturation. This shows that to obtain good

approximations of the flow at saturation, it is important to take into consideration other spatial structures as opposed

to just the leading eigenvectors. Therefore a higher order approximation, no matter how elabourate, will not capture

the overall solution. We also see that at early times, regardless of the non-normality, the solution is totally projected

along ê0. The physical interpretation of this is that it takes time for the modes to be mixed by the nonlinearity.

2.3 Summary of Chapter

In this chapter, we derived higher order amplitude for the RnsaGL equations and performed numerical experiments.

The first numerical experiments show the radius of convergence for a amplitude equation seemingly decreases as

the order increases, when comparing terms using the uniform convergence criterion. Therefore, the utility of the

amplitude equations for even describing the trajectory of the zeroth eigenvector is limited. This could potentially be

improved by re-summation. The second set of numerical experiments show the non-normality causes the overall

solution to contain significant spatial structures other than the zeroth eigenvector. Therefore, higher order amplitude
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equations, which solely describe the temporal development of the zeroth eigenvector, are unsuitable for modelling

a non-self-adjoint system.
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Chapter 3

Equations and their Properties

soul In the introduction, we gave the RnsaGL and the CnsaGL. We then cited examples where error bounds had

been derived to capture the difference between solutions and their approximations. These error bounds were

derived largely owing to the fact the solution could be written in integral form. Two components necessary to write

the solution to a PDE in integral form are, firstly the linear operator generates a strongly-continuous semigroup

and that nonlinearity is sufficiently well-behaved. In this chapter, we prove that we can write the RnsaGL and the

CnsaGL in integral form. We use the semigroup properties in order to prove also that the local solutions exist.

In the first section (Section 3.1), we give the definitions of the linear operators in the point of view of their domains.

As the linear operators have unbounded coefficients, we have to essentially use tailor made spaces as was done

in the case of Metafune et al. (2006) [67]. In second section (Section 3.2), we briefly give the motivation behind

strongly continuous one-parameter semigroups (C0-semigroups) before proving that LRGL and LCGL as defined

in Section 3.1 generate C0-semigroups. We prove that LRGL and LCGL generate C0-semigroups using different

strategies. In the former case, we rely heavily on the work of Metafune et al. (2005) [67], whereas in the latter

case we rely on standard theorems from the study of non-Hermitian operators [23]. Lastly, we prove in this case,

existence and uniqueness theorems for the the RnsaGL and the CnsaGL using the modern theory of semilinear

parabolic equations (Miklavčič (1998) [69], Henry (2006) [51], Yagi (2009) [104]). This relies us The uniqueness of

solutions is juxtaposed with the method of weakly nonlinear expansions in the next chapter.

3.1 Definitions of Linear Operators

In this thesis, we consider unbounded operators. The definition of an unbounded operator is given as follows by

Cheverry and Raymond (2009) [23];

• Definition (Unbounded operator from Cheverry and Raymond (2019) [23]) Let E and F be Banach spaces. An
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unbounded operator T : E −→ F is a pair (D(T ), T ) where

– D(T ) is a linear subspace of E;

– T is a linear map from D(T ) to F .

It can be helpful to refer to D(T ) as the “chosen domain” in contrast to the maximal domain given by, Dm(T ),

Dm(T ) = {u ∈ F : ||Tu||F <∞}. (3.1)

It is often difficult to establish precisely what the maximal domain Dm(T ) is or characterise it in terms of a few

characteristics such as the existence of a certain number of weak derivatives. The domain D(T ) is often chosen

with respect to these characteristics and this is what we have done in the case of the RnsaGL and CnsaGL. Let us

recall the LRGL and LCGL in the context of their equations that we presented in the introduction. These are given

as follows;

• Real non-self-adjoint Ginzburg-Landau equation

∂u

∂t
= LRGLu− u3 + δu (RnsaGL)

where

LRGL =
∂2

∂x2
− U

∂

∂x
+

(
U2

4
+
√
c2 − c2x

2

)
with boundary conditions |u| −→ 0 as x −→ ±∞.

• Complex non-self-adjoint Ginzburg-Landau equation

∂u

∂t
= LCGLu− |u|2u+ δu (CnsaGL)

where

LCGL = (1− i)
∂2

∂x2
− (U + 0.2i)

∂

∂x
+

[
C1 +

1

8
(U2 − 0.4U − 0.04)

]
− c2x

2

with C1 = ℜ{
√
(1− i)c2}, with boundary conditions |u| −→ 0 as x −→ ±∞.

We consider the operators as unbounded operators in L2(R,R) and L2(R,C) in the case of the LRGL and

complex case LCGL. We determine their domains by firstly considering the boundary conditions u −→ 0 as |x| −→

±∞ before dealing with the unbounded terms c2x2 in the linear operator. We encode the boundary conditions by

considering domain of the operator to be a subsection of the space H2(R). To see why this satisfies our boundary

conditions, let us first consider the space H1
0 (R), we mean the closure of the space C∞

c (R) in the H1-norm. This
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means that for functions f ∈ H1
0 (R)

lim
x−→∞

f = 0 and lim
x−→−∞

f = 0. (3.2)

There is a subtlety that occurs on the real-line as opposed to finite intervals that means we do not need to specify that

the functions vanish at infinity; as the space C1
c (R) is dense in W 1,p(RN ), W 1,p

0 (RN ) =W 1,p(RN ) (as demonstrated

in Brezis (2011) [19], Chapter 9, 287). In this way, the function space H2(R) also encodes the boundary conditions,

u −→ 0 as |x| −→ ∞. This viewpoint can be reinforced by considering that differentiability implies uniform continuity

(by Morrey’s inequality, see Evans (2010) [44] Theorem 4, Section 5.6.2) which implies on the real line the functions

vanish at infinity1.

We now consider the operators, L̂RGL
n and L̂CGL

n

L̂RGL
n =

∂2

∂x2
− U

∂

∂x
− (1 + c2x

2), (3.3)

and

L̂CGL
n = (1− i)

∂2

∂x2
− (U + 0.2i)

∂

∂x
− (1 + c2x

2). (3.4)

These operators are similar to the operators LRGL and LCGL, but instead we have removed the constant term and

moreover subtracted the identity operator. This is to put ensure that these operators are of the form of the operators

used in the theorems by Metafune et al. (2005) [67]. Later on we will prove that these operators are sectorial that

will allow us to prove our existence and uniqueness theorems. However, currently, we write them in this way in order

to motivate the form of the following potential V = (1 + c2x
2), and introduce the following space

H2
V (R) = {u ∈ H2(R) : V u ∈ L2(R)}. (3.5)

We consider this space for the RnsaGL and the CnsaGL, but we remind the reader that in the real case the inner

product on L2(R,R) is without conjugation on the first argument as we only want to consider real-valued functions.

We can clarify this with the following notation

H2
V r(R) = {u ∈ H2(R,R) : V u ∈ L2(R,R)} (3.6)

and

H2
V c(R) = {u ∈ H2(R,C) : V u ∈ L2(R,C)}. (3.7)

1These notions could possibly be formalised further by extending the real number line R̄ = R∪{−∞,∞}, so we have that f(∞) = f(−∞) =
0.
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The spaces H2
V r and H2

V c, equipped with the respective norms

||u||HV r
= ||u||H2(R,R) + ||V u||L2(R,R) (3.8)

and

||u||HV c
= ||u||H2(R,C) + ||V u||L2(R,C), (3.9)

are Banach spaces. We use this spaces as the following operator domains,

D(LRGL) := H2
V r and D(LCGL) := H2

V c (3.10)

respectively. However, the distinction to such an extent between the real and complex case is not necessary.

We note that for all u ∈ D(LRGL)

||LRGLu||2L2 = ||∂
2u

∂x2
||2L2 + U2||∂u

∂x
||2L2 + c21||u||2L2 + ||(1 + c2x

2)u||2L2

+ 2c1⟨u,
∂2u

∂x2
⟩ − 2c1U⟨u, ∂u

∂x
⟩ − 2c1⟨u, (1 + c2x

2)u⟩

− 2U⟨∂
2u

∂x2
,
∂u

∂x
⟩ − 2⟨∂

2u

∂x2
, (1 + c2x

2)u⟩+ 2U⟨∂u
∂x
, (1 + c2x

2)u⟩

≤ ||∂
2u

∂x2
||2L2 + U2||∂u

∂x
||2L2 + c21||u||2L2 + ||(1 + c2x

2)u||2L2

+ 2c1||u||2L2 ||
∂2u

∂x2
||L2 + 2c1U ||u||L2 ||∂u

∂x
||L2 + 2c1||u||L2 ||(1 + c2x

2)u||L2

+ 2U ||∂
2u

∂u2
||L2 ||∂u

∂u
||L2 + 2||∂

2u

∂u2
||L2 ||(1 + c2x

2)u||L2 + 2U ||∂u
∂x

||L2 ||(1 + c2x
2)u||L2 <∞ (3.11)

where on the right-hand-side we have used the Cauchy-Schwartz inequality as well as the abbreviation c1 = U2

4 +

√
c2 + 1. A similar inequality holds for the LCGL but with modified cross terms to suit the complexity. In this way, we

have that D(LRGL) ⊆ Dm(LRGL). It can be shown in the same manner that D(LCGL) ⊆ Dm(LCGL).

Thus we are in a position to formally define the operators as pairs as in the definition of an unbounded oper-

ator. We have that LRGL : D(LRGL) −→ L2(R,R) and LCGL : D(LCGL) −→ L2(R,C). From now on, we will

denote LRGL : D(LRGL) −→ L2(R,R) and LCGL : D(LCGL) −→ L2(R,C) by the pairs (D(LRGL),LRGL) and

(D(LCGL),LCGL) respectively.
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3.2 Semigroup Properties of the Linear Operators

In the introduction, we motivated the following form of the semigroup for a linear operator L

etL =

∞∑
n=0

eλntPn (3.12)

where Pn is the projection operator onto each eigenvector of L and λn are the eigenvalues of L, but said that this

viewpoint is only valid providing the eigenvectors form a complete set. Nevertheless, this motivates regarding the

semigroup in this way as a generalisation of the exponential function; i.e. in the same way that u = etau0 solves the

following equation
du

dt
= au, u(t = 0) = u0, (3.13)

where a is a constant, the definition of a C0-semigroup gives meaning to the expression u = etLu0 for the following

abstract Cauchy problem
∂u

∂t
= Lu, u(t = 0) = u0, (3.14)

where L is a linear operator.

The definition of the C0-semigroup and its generator (definitions can be found in Miklavčič (1998) [69] but are

standard) are given by

• Definition (C0-semigroup). A family of bounded linear operators {T (t)}t≥0 on a Banach space X is called a

strongly-continuous semigroup (or C0 semigroup) if

1. T (0) = I where I is the identity operator on X

2. ∀t, s ≥ 0: T (t+ s) = T (t)T (s)

3. ∀x0 ∈ X : ||T (t)x0 − x0|| −→ 0 as t ↓ 0

Furthermore, a contraction is a C0-semigroup such that ||T (t)|| ≤ 1 for all t ≥ 0.

• Definition (Infinitesimal Generator of a C0-semigroup). Let {Q(t)}t≥0 be a C0 semigroup on a Banach space

X. Define D(L) to be the set of all xinX for which there exists y ∈ X such that

lim
t−→0+

||1
t
(x− T (t)x)− y|| = 0; (3.15)

for such x and y define Ax = y. The linear operator, −A, is called the generator (or the infinitesimal generator)

of the semigroup.

The theorem that we use to prove that the LRGL proves that the semigroup generated by LRGL is not only a C0-

semigroup, but also an analytic semigroup. It is for this reason that we give the definition of an analytic semigroup
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as follows as well as the theorem connecting analytic semigroups to sectorial operators. Sectorial operators are

highly useful when determining the existence of solutions as they are easily bounded in norm. The definitions that

we use in this case can be found in Henry (2006) [51], but are again standard and align perfectly with those given in

other standard texts about semigroups2.

• Definition (Sectorial Operator as given in Henry (2006) [51], (Definition 1.3.1)). We call a linear operator −L a

sectorial operator if it is closed, densely-defined operator such that, for some ϕ in (0, π2 ) and some M ≥ 1 and

real a,

(a) the sector

Sa,ϕ = {ϕ ≤ |arg(λ− a)| ≤ π, λ ̸= a} (3.16)

is contained in the resolvent set ρ(−L), and

(b)

||(λ− L)−1|| ≤ M

|λ− a|
for all λ ∈ Sa,ϕ. (3.17)

• Definition (Analytic Semigroup as given in Henry (2006) [51] (Definition 1.3.3)). An analytic semigroup on a

Banach space X is a family of continuous linear operators on X, {T (t)}t≥0, satisfying

1. T (0) = I where I is the identity operator on X

2. ∀t, s ≥ 0: T (t+ s) = T (t)T (s)

3. ∀x0 ∈ X : ||T (t)x0 − x0|| −→ 0 as t ↓ 0.

4. t −→ T (t)x is real analytic on 0 < t <∞ for each x ∈ X.

• Theorem (Analytic Semigroups and Sectorial Operators as given in Henry (2006) [51] (Theorem 1.3.4)). −L is

a sectorial operator if and only if3 an analytic semigroup {e−tL}t≥0, where

e−Lt =
1

2πi

∫
γ

(λ+ L)−1eλtdλ (3.18)

where Γ is a contour in ρ(−L) with arg λ −→ ±θ as |λ| −→ ∞ for some θ in (π2 , π).

Proof. See Theorem 1.3.4 in Henry (2006) [51] and the references therein. □

We use the following theorem to prove that L̂RGL
n generates an analytic semigroup and therefore −LRGL

n is a

sectorial operator by the theorem ”Analytic Semigroups and Sectorial Operators”.
2Often on the topic of semigroups, the author’s preference can effect what is given as a definition and what is given as a theorem. For

example, what are presented as theorems in Kato (2013) [56] are presented as theorems in Pazy [75] (2012).
3In Henry (2006) [51], the author proves the forward implication and then cites the proves of the backward implication in Friedman (1969)[45]

and Hoppenstadt (1969) [53].
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• Theorem (Generation of Analytic Semigroup from Metafune et al. (2005) [67]). Consider the operator, T of the

following form

Tu =
∂2u

∂x2
+ U

∂u

∂x
− V u (3.19)

where V ∈ C1(R) and U is a constant. Assume the following

(a) |∂V∂x | < γV
3
2

(b) There exists a κ such that U ≤ κV
1
2 and (γ2 )κ+ (γ2 )

2 ≤ 1

then (T,H2
V (R)) is closed and (T,H2

V (R)) generates an analytic C0-semigroup T2(·) in L2(R), such that

T2(z) ≤ 1 for |arg(z)| ≤ ϕp and some ϕp > 0.

Proof. See Theorem 3.2 for the closedness and Theorem 3.4 for the generation of the analytic semigroup in

Metafune et al. (2005) [67]4. □

• Corollary ((D(LRGL), L̂RGL
n ) is a Sectorial Operator). (D(LRGL), L̂RGL

n ) is a sectorial operator.

Proof. We firstly use the theorem “Generation of Analytic Semigroup” from Metafune et al. (2005) [67] on the

operator (D(LRGL), L̂RGL
n ); we have (3.19) V = (1 + c2x

2) and U = U . We can take γ = 1 and κ = U5.

Therefore, we have that L̂RGL
n generates an analytic semigroup. By the Theorem ”Analytic Semigroups and

Sectorial Operators” it follows that L̂RGL
n is a sectorial operator. □.

Lastly, by the following theorem, it follows that LRGL generates a C0-semigroup that we prove as a corollary;

• Theorem (Perturbations by Bounded Linear Operators as given in Pazy (2012) [75]). LetX be a Banach space

and let L be the infinitesimal generator of a C0-semigroup T (t) on X satisfying ||T (t)|| ≤ Meωt. If B is a

bounded linear operator on X, then L+B is the infinitesimal generator of C0-semigroup S(t) on X, satisfying

||S(t)|| ≤Me(ω+M ||B||)t Proof. See Chapter 3, Section 3.1, Theorem 1.1 of Pazy (2012) [75]. □

• Corollary ((D(LRGL),LRGL) generates a C0-semigroup). (D(LRGL),LRGL) generates a C0-semigroup.

Proof. We can consider LRGL−L̂RGL
n as a bounded perturbation. Therefore, that ((D(LRGL,LRGL) generates

a C0-semigroup follows from “Perturbations by Bounded Linear Operators as given in Pazy (2012).

As the theorems by Metafune et al. (2005) [67] have the condition that the coefficient of ∂2

∂x2 is real-valued we

cannot use the same approach to prove that L̂CGL
n is a sectorial operator. We instead use another approach that

uses theorems from non-hermitian quantum mechanics that can be found in Cheverry and Raymond (2019) [23] in

Appendix C.
4We have set M = 1, p = 2 in our presentation of this theorem as the theorem given in Metafune et al. (2005) [67] is more general.
5In this case, condition (b) gives the condition U ≤ 3

2
but this can be compensated by adjusting the potential V , i.e. we took V = (1 + c2x2)

but we can take also V = (a+ c2x2) where a is a constant chosen to create a more flexible condition.
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3.3 Integral form of the RnsaGL and CnsaGL and the Existence and Unique-

ness of Solutions

In the introduction to this section, we said that the two components necessary to write an equation in integral form

was that the operator generated a C0-semigroup and that the nonlinearity was sufficiently well-behaved. There are

different ways to characterise how well behaved a nonlinearity is in terms of dissipativity and Lipschitz continuity.

For our intent and purpose, we consider nonlinearities in the space6 N (u) ∈ C([0, T ), X).

We are in a position to prove the following theorem that allows us to write a PDE under certain assumptions

satisfied by the CnsaGL and RnsaGL in integral from. This theorem is an amalgamation of several theorems from

Miklavčič (1998) [69] that we have put together. In Miklavčič (1998) [69], this combination of theorems was used as

the first step in Theorem 6.4.3, which gives conditions under which a semilinear parabolic equation has a solution

when the operator is sectorial (and therefore must generate a C0-semigroup).

• Theorem (Integral form with C0-semigroup and well-behaved nonlinearity). Assume u0 ∈ X and u, N (u) ∈

C([0, T ), X) and L generates a C0 semigroup on X. Then we can write the equation

∂u

∂t
= Lu+N (u) + δu u(t = 0) = u0 (3.21)

as

u = etLu0 +

∫ t

0

etL(N(u(s)) + δu(s))ds. (3.22)

Proof. Choose t ∈ (0, T ), and let v(s) = e(t−s)Lu(s) for 0 < s ≤ t. Let s, s+ h ∈ (0, t], ̸= 0. We want to find the

derivative of v(s) and then apply the fundamental theorem of calculus. To this end, we consider

v(s+ h)− v(s)

h
=

1

h

[
e(t−s−h)Lu(s+ h)− e(t−s)Lu(s)

]
=

1

h

[
e(t−s−h)Lu(s+ h)− e(t−s)Lu(s)

]
+

1

h

[
e(t−s−h)Lu(s)− e(t−s−h)Lu(s)

]
+

1

h

[
e(t−s−h)Lu′(s)− e(t−s)Lu′(s)

]
= e(t−s−h)Lu′(s)− 1

h

[
e(t−s−h)L − e(t−s)L

]
u(s) (3.23)

The first equality is simply by writing v(s) = e(t−s)Lu(s), the second equality is from adding and subtracting the
6We clarify this notation as hybrid spaces C((0, T ], X) are not used uniformly in the literature on semilinear parabolic equations [44]. We

define C((0, T ], X) as the following
• Definition (C([0, T ], X), as defined in [44]). Let X denote a Banach space with norm || · ||, then the space C([0, T ];X) comprises of all

continuous functions u : [0, T ] −→ X with the norm

||u||C([0,T ];X) := max
0≤t≤T

sup ||u(t)|| < ∞. (3.20)
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same terms in order to get the third inequality. Now, as L generates a C0-semigroup, for continuous function

f(s) we have the following limit
1

h

[
e(−h)L − 1

]
e(t−s)Lf(s) = Lf(s) (3.24)

(this follows from (2) in the definition of a C0 semigroup). Therefore, may write in the limit h −→ 0

dv(s)

ds
= e(t−s)L

[
u′(s) + Lu(s)

]
= e(t−s)L(N (u(s) + δu(s)) (3.25)

Therefore, recognising that as s −→ 0, we have v(0) = etLu0 (this follows from (3) in the definition of C0-

semigroup), and that v(t) = u(t). We can apply the fundamental theorem of calculus to obtain

u(t) = etLu0 +

∫ t

0

e(t−s)L(N (u(s) + δu(s))ds (3.26)

and hence prove the theorem. □

Now, for us to write RnsaGL and CnsaGL in integral from we have to choose the spaceX in the theorem “Integral

form with C0-semigroup and well-behaved nonlinearity”. We discuss to motivate the choice of this space. Firstly, a

solution u of equation (3.21) must satisfy the following equation

u = Φ(u) (3.27)

where Φ(u) is the mapping given by the integral form of the equation

Φ(u) = etLu0 +

∫ t

0

e(t−s)L(N (u(s) + δu(s))ds. (3.28)

In other words, we are looking to show that equation (3.27) has a fixed point. We can do this by considering Banach’s

fixed point theorem;

• Theorem (Banach’s Fixed-Point Theorem). Let (Y, ||·||) be a non-empty complete metric space with contraction

mapping C : Y −→ Y . Then C admits a unique fixed-point x∗ in X.

In order to use Banach’s fixed point theorem, we need to establish, for a complete metric space X (this space

coincides with the space in the theorem ”Integral form with C0-semigroup and well-behaved nonlinearity”) that is

also the same space as in the theorem show that Φ(u) : X −→ X and then show Φ is a contraction. We have

shown that L̂RGL
n and L̂CGL

n are sectorial operators in order to use the rich theory of semilinear parabolic equations

that uses the fractional powers of operators. The idea is to define the space X as a space that between the domain

defined in 3.1 and the range of the operator (L2(R)) that provides the conditions of Banach’s fixed point theorem.

Often an approach is to define the nonlinearity in an interpolation space, i.e. H1(R), but in such spaces we often
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have issues with differential operator not commuting with the linear operator (and thereby the semigroup). Therefore,

it is difficult to make arguments about the relative size of semigroup in the interpolation space. Studying the sectorial

operators circumvents this problem as the fractional powers of the sectorial operators, Lα are well defined, i.e.

• Definition (Fractional powers of Operators, as defined in [51]). Suppose −L is a sectorial operator and ℜ(σ(L)) <

0; then for any α > 0

(−L)−α =
1

Γ(α)

∫ ∞

0

tα−1eLtdt. (3.29)

We define (−L)α = inverse of A−α (α > 0), D(−Lα) = R(A−α); A0 = I.

We use these fractional powers of operators in to define the space where we prove the conditions of Banach’s fixed

point theorem. Let Xα be defined as the following space

Xα = {u ∈ X : ||u||α ≤ ∞}. (3.30)

where ||u||α = ||(−L)αu||. Then the space

X (T ) = C([0, T ], Xα) (3.31)

equipped with the norm || · ||X (T ) = sup0≤t≤T ||u||α is a complete metric space.

We now present the next two theorems that are useful when proving the existence of solutions. The first theorem

enables us to determine what restrictions there need to be on α in order to satisfy the conditions of Banach’s theorem

and the second theorem allows us to estimate the norm of the semigroup multiplied by the linear operator;

• Theorem (Useful Embeddings). Suppose Ω ⊂ Rn is an open set having the Cm extension property, 1 ≤ p <∞,

and A is a sectorial operator in X = Lp(Ω) with D(A) = X1 ⊂Wm,p(Ω) for some m ≥ 1. Then for 0 ≤ α ≤ 1.

Xα ⊂W k,q(Ω) when k − n

q
< mα− n

p
, q ≥ p, (3.32)

Xα ⊂ Cν(Ω) when 0 ≤ ν < mα− n

p
(3.33)

Proof. See Theorem 1.6.1 in Henry (2006) [51]. □

• Theorem (Bounds on Semigroup in Xα). Suppose (−L)α is sectorial and ℜ(−L)α > δ1 > 0. For α ≥ 0, there

exists a Cα <∞ such that

||(−L)αeLt||L2 ≤ Cαt
−αe−δ1t (3.34)

for t > 0.
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Proof. See Theorem 1.4.3 in Henry (2006) [51]. □

We are now in a position to prove the existence of local solutions to the RnsaGL and the CnsaGL. We prove only

the existence of local solutions RnsaGL; the CnsaGL follows in the same way as in Appendix C we prove that L̂CGL
n

is a sectorial operator.

• Theorem (Existence and Uniqueness of Solution to the RnsaGL). Let us define the two spaces Xα and X (S)

as in (3.30) and (3.31) with X = L2(R), L = −L̂RGL
n and α ∈ ( 12 , 1). There exists a unique7 solution to the

u ∈ X to the RnsaGL for initial data u0 ∈ Xα.

Proof. Let us begin by recasting the RnsaGL in the following way;

∂u

∂t
= L̂RGL

n u+ N̂ (u) (3.35)

where N̂ (u) = (LRGL − L̂RGL
n )u+ δu− u3.

From the theorem “Integral form with C0-Semigroup and well-behaved nonlinearity”. We can write (3.35) in the

following way;

u = e
tL̂RGL

n
0 u0 +

∫ t

0

etL̂
RGL
n N̂ (u)dx. (3.36)

It remains to show that the map, Φ̂(u) on the right-hand-side of (3.36)

Φ̂(u) = e
tL̂RGL

n
0 u0 +

∫ t

0

etL̂
RGL
n N̂ (u)dx (3.37)

maps X (S) to X (S) and is a contraction. We split the proof up into two steps:

1. Firstly, we show that Φ̂(u) : X (S) −→ X (S). Consider the following inequality

||u3||L2 ≤ ||u3||H1 ≤ C2||u||3H1 ≤ C3||u||3α (3.38)

where C1, C2 and C3 are positive constants. The first and third inequality follow from (3.32) and the

second inequality comes from the product formula.

Therefore, we have that

||Φ̂u||α ≤ ||etL̂
RGL
n u0||α + C

∫ t

0

||(−L̂RGL
n )αe(t−s)L̂RGL

n ||
(
||u||α + ||u||3α

)
ds (3.39)

where the constant Cα comes from (3.34) and the constant C absorbs the constants (LRGL − L̂RGL) + δ

and C3.
7In our case, the uniqueness follows from Banach’s Fixed-Point Theorem, but there are cases where the initial data is rougher. The reader is

invited to consider Step 4 in the proof of Theorem 4.1 of Yagi (2009) [104] for a more intricate proof of uniqueness and also the discussion above
example 6.4.1 in Miklavčič (1998).

55



We split the integral on the right-hand-side into two parts

||Φ̂u||α ≤ ||etL̂
RGL
n u0||α + C

∫ s

0

||(−L̂RGL
n )αe(s−τ)L̂RGL

n ||
(
||u||α + ||u||3α

)
dτ︸ ︷︷ ︸

I1

+ C

∫ t

s

||(−L̂RGL
n )αe(t−τ)L̂RGL

n ||
(
||u||α + ||u||3α

)
dτ︸ ︷︷ ︸

I2

(3.40)

We consider I2 first. Let

M = sup
0≤s≤T

(
||u||α + ||u||3α

)
(3.41)

then

∫ t

s

||(−L̂RGL
n )αe(t−τ)L̂RGL

n ||
(
||u||α + ||u||3α

)
dτ ≤MCα

∫ t

s

(t− τ)−αe−δ1(t−τ)dτ

≤MCα

∫ t

s

(t− τ)−αdτ ≤MCα
(t− s)1−α

(1− α)
, (3.42)

therefore I2 is bounded.

For I1, we consider the following quantity

Aα = sup
0≤τ≤T

tα||(−L̂RGL
n )αeL̂

RGL
n t||, (3.43)

then it follows that

I1 =

∫ s

0

||(−L̂RGL
n )αe(t−τ)L̂RGL

n ||
(
||u||α + ||u||3α

)
dτ ≤ MAα

∫ s

0

(s − τ)−αdτ ≤ MAα
(s)1−α

(1− α)
. (3.44)

Moreover, we have that I1 −→ 0 as s −→ 0.

Lastly,

||(−L̂RGL
n )αetL̂

RGL
n u0|| ≤ ||etL̂

RGL
n || ||(−L̂RGL

n )αu0|| ≤ ||u0||α. (3.45)

From (3.42), (3.44) and (3.45), we have Φ̂(u) : X (S) −→ X (S).

2. Now, we prove Φ̂(u) : X (s) −→ X (s). We consider two functions u, v ∈ X (S). We begin by stating the

inequality

u3 − v3 = (u− v)(u2 + v2 + uv). (3.46)
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Therefore, we have

||u3 − v3|| ≤ ||u3 − v3||H1 ≤ ||u− v||H1
0

[
||u||2H1 + ||v||2H1 + ||u||H1

0
||v||H1

]
≤ CN ||u− v||α. (3.47)

By result (3.32), we have that the quantities ||u||H1 and ||v||H1 are bounded, hence we can contain them

in the constant CN .

Suppose u and v have the same initial data, then

||Φ̂(u)− Φ̂(v)||α ≤ C

∫ t

0

||(−L)αe(t−s)L̂RGL

|| ||u− v||ds

≤ C sup
0≤s≤t

{||u− v||}Aα

∫ t

0

1

(t− s)α
ds ≤ C

t(1−α)

(1− α)
. (3.48)

Therefore, providing S such that (0, t] ∈ S is sufficiently small, we have that Φ̂(u) is a contraction.

As we have shown that the two conditions of Banach’s theorem are satisfied for Φ̂(u) in the complete metric

space X (S), there exists a unique fixed point of (3.27). It follows that there exists a unique solution to the

RnsaGL with initial data in Xα. □

3.4 Summary of Chapter

In this chapter, we firstly defined fully the LRGL and LCGL with the appropriate domains. These domains coincided

with the ones established by Metafune et al. (2005) [67] to prove regularity for elliptic problems with unbounded

coefficients. We proved that LRGL generated a C0-semigroup using the theorems of Metafune et al. (2005) [67]

(there is an analogous proof for LCGL in Appendix C). As the nonlinearity is dissipative in the cases of the RnsaGL

and the CnsaGL, these equations can be written in integral form using the fact that the linear operators generate C0-

semigroups. We used the integral form to prove existence and uniqueness for the RnsaGL when the initial condition

had appropriate regularity. The regularity condition can be relaxed somewhat and has been in the references Yagi

[104] (2009), Miklavčič (1998) [69] and Henry (2006) [51].
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Chapter 4

Properties of the Eigenvectors of the LRGL

and LCGL

In this chapter, we explore to what degree the eigenvectors of the LRGL and LCGL form a basis. In the first section,

we discuss different notions of a basis and prove that the eigenvectors of the LRGL and LCGL do not from bases

that allow us to meaningfully expand arbitrary L2-functions in eigenvector-amplitude pairs (except in the case of

U = 0 for the LRGL). In the following section, we recognise that LRGL is a Quasi-Hermitian Operator with an

unbounded metric operator. We give the relevant definitions which define a Lattice of Hilbert Spaces (LHS). In

the third section, we define a quasi-basis that allows us to expand functions that are in a subset of L2, namely an

extremal space of the LHS, into eigenvector-amplitude pairs. This has ramifications in terms of the normalisation

choices with respect to higher order terms using WNLE. Furthermore, the quasi-basis structure allows us to perform

the infinite-dimensional homogenisation of Blömker et al. (2005, 2007, 2011) [14, 15, 16].

4.1 (Lack of) Basis Properties for LRGL and LCGL

A significant reason why we chose the RnsaGL and the CnsaGL as our test-cases was largely owing to knowing

what the form of the eigenvectors without computation. Furthermore, these eigenvectors have compact resolvents

that allows us to use the theorems from Krejčı̀řik et al. (2015) [61]. We prove the fact that these operators have

compact resolvents in Appendix D.

Let us denote the direct and adjoint eigenvectors for the LRGL are denoted by {en} and {e†n} respectively. Let us

also denote the LCGL, we denote the direct and adjoint eigenvectors by {ecn} and {(ecn)†} respectively. This is the

only time that the LRGL and LCGL will be considered in the same section. We describe the normalisation constant

in the real case by Z and the complex case by Zc. The forms of {en}, {e†n}, {ecn} and {e†n} are given as follows
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•

ên =
1

Zn
exp{−1

4
(α1x)

2 +
U

2a
x}Hen(α1x) (4.1)

•

ê†n =
1

Zn
exp{−1

4
(α1x)

2 − U

2a
x}Hen(α1x) (4.2)

•

êcn =
1

Zc
n

exp{−1

4
(αc

1x)
2 + αc

2x}Hen(αc
1x) (4.3)

•

(êcn)
† =

1

Zc
n

exp{−1

4
(βc

1x)
2 − βc

2x}Hen(βc
1x) (4.4)

where we have real constant α1 = (4c2)
1
4 and complex constants αc

1 = ( 4c2
1−i )

1
4 , αc

2 = U+0.2i
2(1−i) , βc

1 = (αc
1)

∗,

βc
2 = (αc

2)
∗. The normalisation constants Zn and Zc

n are given by Zn = (n!
√
2π

α1
)

1
2 and Zc

n = (n!
√
2π

αc
1

)
1
2

Let us consider the following definitions of a basis before we prove that neither the eigenvectors of LRGL or

LCGL form a basis. Below we give both the definitions of a conditional basis and an unconditional basis. These are

just two examples that exist in the literature. There are other definitions of a basis in the literature, some relying on

just completeness, but these are not appropriate for expanding functions in eigenvector-amplitude pairs.

• Definition (Schauder or Conditional Basis, as given in Krejčı̀řik (2015) [61]) LetX be a Banach space, {en}∞k=0

is a Schauder basis or conditional basis if every en ∈ X has a unique expansion in the vectors {en}∞k=0.

• Definition (Riesz or Unconditional Basis, as given in Krejčı̀řik (2015) [61]) Let X be a Banach space, {en}∞k=0,

normalised to 1 in X, is a Riesz or unconditional basis if it forms a basis and for all functions ϕ ∈ X the

inequality

C−1||ϕ||2 ≤
∞∑
k=1

|⟨en, ϕ⟩2 ≤ C||ϕ||2 (4.5)

holds with a positive constant C independent of ϕ.

We give the following two theorems (they are also presented in Section 2); the first is a theorem from Davies

(2007) [34] that provides context for the second theorem given in Krejčı̀řik (2015) [61] of which we use the reverse-

implication to prove that the eigenvectors of the LRGL and LCGL do not form a basis.

• Theorem (Biorthogonality of Basis vectors from Davies (2007) [34]). Let X be a Banach space and f be a

function in X. If {ψn}∞n=1 is a basis in a Banach space X, then there exists a ϕn ∈ X∗ such that the Fourier

coefficients αn are given by αn := ⟨f, ϕn⟩. The pair of sequences {ψn}∞n=1, {ϕn}∞n=1 is biorthogonal in the

sense that ⟨fn, ϕm⟩ = δ̃n,m for all m,n,

Proof. See Lemma 3.3.1 from Davies (2007) [34].
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• Theorem (Condition of the Uniform Boundedness of Projections). Let X be a Banach space. Let L be an

operator with a compact resolvent and let us denote that has a basis of eigenvectors by ϕn. Let us denote the

associated one-dimensional projections as

Pk := ψk⟨ϕk, ·⟩. (4.6)

If {ϕk⟩∞k=0 is a basis, then both Pk and
∑N

k=0 are uniformly bounded in X.

Proof. See Krejčı̀řik et al. (2015) [61].

In the next two theorems, we prove that the the projections onto the eigenvectors are unbounded in both cases

thus proving that the eigenvectors of LRGL and LCGL do not form bases. All the references of the expansion

polynomials formula that we use can be found in Mityagin et al. (2013) [70].

• Theorem (Divergence of Projections for eigenvectors of LRGL). Let ên and ê†n be defined as in (4.1) and (4.2)

respectively with U ̸= 0. These form a biorthogonal set. We define the projections

Pn = ⟨ê†n, ·⟩en. (4.7)

We have that

||Pn|| =
e2(nC)

1
2

2
√
π(C)

1
4n

1
2

(1 +O(n−
1
2 )) (4.8)

and hence diverge as n −→ ∞.

Proof.

We have that

||Pn|| = ||ê†n||L2 ||ên||L2 (4.9)

Looking at the individual terms gives

||ên||L2 =
1

Z2
n

√∫ ∞

−∞
exp

{
− 1

2
α2
1x

2 +
U

a
x

}
Hen(α1x)Hen(α1x)dx. (4.10)

Note, we have that we have the formula for physicist polynomials

∫ ∞

−∞
e−(x−y)2Hm(x)Hn(x)dx = 2nπ

1
2m!yn−mLn−m

n (−2y2), (4.11)

where Ln−m
n (x) are the Laguerre polynomials. Therefore, firstly by noticing that Hen(α1x) = 2−

n
2Hn(

α1√
2
x).
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Then, we perform the change of variables y = α1√
2
x in order to obtain

∫ ∞

−∞
exp

{
− 1

2
α2
1x

2 +
U

a
x

}
Hen(α1x)Hen(α1x)dx

= 2−n

√
2

α1
e

1

2α2
1

U2

a2

∫ ∞

−∞
exp

{
−
(
y − 1

α1

√
2

U

a

)2}
Hn(y)Hn(y)dy

=

√
2

α1
e

1

2α2
1

U2

a2
π

1
2n!L0

n

(
− 2

(
1

α1

√
2

U

a

)2)
(4.12)

We now use the following asymptotic formula for the Laguerre Polynomials,

∀x ∈ C \ R+, L0
k(x) =

e
x
2 e2(−kx)

1
2

2
√
π(−x) 1

4 k
1
2

(1 +O(k−
1
2 )) (4.13)

Therefore, let C = 2( 1
α1

√
2
U
a )

2 > 0 We have

||en||2L2 =
e2(nC)

1
2

2
√
π(C)

1
4n

1
2

(1 +O(n−
1
2 )) (4.14)

which diverges as n −→ ∞

We notice that by replacing U by −U , we obtain the same formula for ||e†n||L2 ;

||e†n||2L2 =
e2(nC)

1
2

2
√
π(C)

1
4n

1
2

(1 +O(n−
1
2 )) (4.15)

.

Therefore, we have that

||Pn|| =
e2(nC)

1
2

2
√
π(C)

1
4n

1
2

(1 +O(n−
1
2 )) (4.16)

which diverges as n −→ ∞. □

Theorem (Divergence of Projections for eigenvectors of LCGL). Let êcn and (êcn)
† be defined as in (4.1) and

(4.2) respectively, which form a biorthogonal set. We define the projections

Pn = ⟨(êcn)†, ·⟩ecn. (4.17)

As n −→ ∞

||Pn|| ≥ | e2(nC)
1
2

2
√
π(C)

1
4n

1
2

| (4.18)

thus ||Pn||L2 diverges as n −→ ∞.
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Proof. We have that

||Pn|| = ||(êcn)†||L2 ||(êcn)||L2 (4.19)

Looking at the individual terms gives

||êcn||L2 =

√
1

|Zc
n|2

∫ ∞

−∞
| exp

{
− 1

4
(αc

1x)
2 + αc

2x

}
Hen(αc

1x)|2dx. (4.20)

By acknowledging that

|
∫ ∞

−∞
ê2ndx| ≤

∫ ∞

∞
|ên|2dx, (4.21)

we can proceed in the same way as last time, and prove that ||Pn|| is bounded below by something divergent.

Note, we have that we have the formula for physicist polynomials

∫ ∞

−∞
e−(x−y)2Hm(x)Hn(x)dx = 2nπ

1
2m!yn−mLn−m

n (−2y2), (4.22)

where Ln−m
n (x) are the Laguerre polynomials with complex argument. Therefore, firstly by noticing that

Hen(α
c
1x) = 2−

n
2Hn(

αc
1√
2
x). Then, we perform the change of variables y =

αc
1√
2
x and complete the square

−y2 + 2
αc
2

√
2

αc
1

= −(y2 − 2
αc
2

√
2

αc
1

) = −
[
(y − αc

2

√
2

αc
1

)2 − 2(αc
2)

2

(αc
1)

2

]
. (4.23)

We consider the following integral

∫ ∞

−∞
exp

{
− 1

2
(αc

1)
2x2 + 2(αc

2)x

}
Hen(α

c
1x)Hen(α

c
1x)dx

= 2−n

√
2

αc
1

e
2

(αc
2)2

(αc
1)2

∫ ∞

−∞
exp

{
−
(
y − (αc

2)
√
2

αc
1

)2}
Hn(y)Hn(y)dy

= 2−n

√
2

αc
1

e
2

(αc
2)2

(αc
1)2 π

1
2n!L0

n

(
− 2

(
(αc

2)
√
2

(αc
1)

)2)
(4.24)

We now use the following asymptotic formula for the Laguerre Polynomials,

∀x ∈ C \ R+, L0
k(x) =

e
x
2 e2(−kx)

1
2

2
√
π(−x) 1

4 k
1
2

(1 +O(k−
1
2 )) (4.25)

Therefore, let C = 2(α2

√
2

α1
)2 > 0 We have as n −→ ∞

|
∫ ∞

−∞
(êcn)

2dx| ≈ | e2(nC)
1
2

2
√
π(C)

1
4n

1
2

| (4.26)
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In the case of (êcn)† we find that the same argument but we replace α2 by −α2 on the grounds that | exp{− 1
4 (α

c
1x)

2−

αc
2x}Hen(αc

1x)|2 = | exp{− 1
4 (β

c
1x)

2−βc
2x}Hen(βc

1x)|2. We see that this gives us the same formula as n −→ ∞

|
∫ ∞

−∞
((êcn)

†)2dx| ≈ | e2(nC)
1
2

2
√
π(C)

1
4n

1
2

| (4.27)

Therefore, from (4.20) and (4.21) we have that

||Pn||2 = ||(êcn)†||2||êcn||2 (4.28)

Therefore we have that as n −→ ∞

||Pn||2 ≥ | e2(nC)
1
2

2
√
π(C)

1
4n

1
2

|2. (4.29)

Therefore, we have that

(
||Pn|| − | e2(nC)

1
2

2
√
π(C)

1
4n

1
2

|
)(

||Pn||+ | e2(nC)
1
2

2
√
π(C)

1
4n

1
2

|
)

≥ 0 (4.30)

which leads to

||Pn|| ≥ | e2(nC)
1
2

2
√
π(C)

1
4n

1
2

| (4.31)

The right-hand-side diverges as n −→ ∞, hence ||Pn||L2 diverges. □

4.2 Quasi-Hermiticity of LRGL

In the following, we are going to define and motivate the lattice of Hilbert-spaces based around a generic metric

operator, G, before defining G for LRGL. Our construction is the same as that found in Antoine et al. (2015) [7]. For

a didactic reference on the construction of partial inner product spaces, the reader is invited to consider the book by

Antoine and Trapani (2012) [5].

We firstly define a Quasi-Hermitian Operator and the corresponding metric operator;

• Definition (Quasi-Hermitian Operator in the sense of Dieudonné (1960) [38]). A closed operator L, with dense

domain D(L) is called quasi-Hermitian if there exists a self-adjoint, positive operator G, known as the metric

operator, with dense domain D(G) such that D(L) ⊆ D(G)1 and

⟨Lu,Gv⟩ = ⟨Gu,Lv⟩, u, v ∈ D(L). (4.32)
1The condition that D(L) ⊂ D(G) is imposed to make sure there are interesting things in D(G) to consider as opposed to just {0}.
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Now, let us considering the operator G
1
2 in a Hilbert Space H, the domain of this operator is given by

D(G
1
2 ) = {u ∈ H : ||G 1

2u||H ≤ ∞}. (4.33)

We equip this space with various norms that can be induced by an inner product. For instance, equipping the space

D(G
1
2 ) with the norm || · ||G = ||G 1

2 · || =
√
⟨G 1

2 ·, G 1
2 ·⟩, yields a Hilbert Space that we denote H(G). Equipping the

space with the norm || · ||1+G = ||(1 + G)
1
2 · || =

√
⟨(1 +G)

1
2 ·, (1 +G)

1
2 ·⟩, yields a Hilbert Space that we denote

H(1 + G). It follows that H(1 + G) = H ∩ H(G). Likewise, we consider the domain of the metric operator (G
1
2 )−1,

D((G
1
2 )−1) defined as

D((G
1
2 )−1) = {u ∈ H : ||(G 1

2 )−1u||H ≤ ∞} (4.34)

and define the spaces || · ||G−1 and || · ||1+G−1 . It follows that H(G) = D(G
1
2 ) and H(G−1) = D((G

1
2 )−1).

Furthermore, the conjugate dual space, that we denote by a superscript X is given by H(G+ 1)
X is the space

H( 1
1+G ). Therefore, one gets the following triplet

H(1 +G) ⊂ H ⊂ H(
1

1 + G
). (4.35)

Likewise, these relations hold for the inverse, G−1. In this way, we can define the extreme spaces H(G)∩H(G−1) =

H(1 + G) ∩ H(1 + G−1) and H(G) + H(G−1) = H( 1
1+G ) + H( 1

1+G−1 ). We equip the spaces H(G) ∩ H(G−1) and

H(G) +H(G−1) with the inductive norm and projective norm respectively. These are given by

||f ||H(G)∩H(G−1) = ||f ||G + ||f ||G−1 (4.36)

and

||f ||H(G)+H(G−1) = inf
f=g+h

{||g||G + ||h||G−1 : g ∈ H(G), h ∈ H(G−1)}. (4.37)

These spaces together generate a Lattice of Hilbert Spaces (LHS) that is shown in Figure 1. This picture is the

same as the one in [5], but we have doctored the arrows to fit our notation. The arrows denote continuous and

dense embeddings.
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Figure 1. The lattice of Hilbert space as demonstrated in [5, 6] but adapted to the notation used. All of the arrows

represent continuous embeddings with dense range.

It follows that LRGL is a Quasi-Hermitian operator with respect to the metric operator G = e−
U
a x. We can

consolidate this in the following theorem so we can refer to it later;

• Theorem (Quasi-Hermiticity of LRGL). LRGL is Quasi Hermitian with respect to the metric operator G = e−
U
a x.

Proof. The proof follows from the definition of a ”Quasi-Hermitian Operator” given at the start of this section. □

We note that the eigenvectors of LRGL and (LRGL)† form orthonormal bases in the spaces H(e−
U
a x) and H(e

U
a x)

respectively. However, as the metric operator is unbounded, the spaces H(e−
U
a x) and H and H(e

U
a x) are not

comparable as the norms induced by the inner product are not equivalent. Moreover, when one considers LRGL in

the space H(e
U
a x), one is considering a non-Hermitian realisation of the quantum oscillator Mostafazedeh (2010,

2013) [72, 73].

4.3 Quasi-Basis Structure for the LRGL

The reason why we are interested in this construction is because the direct eigenvectors of LRGL, {en}∞n=0, and

the adjoint eigenvectors. {e†n}∞n=0, can be used to describe functions from the space H(e
U
a x) ∩ H(e−

U
a x). In the

following, we will describe this construction generally with a metric operator G before making precise to our case.

The reader is invited to consider the following papers by Bagarello et al. (2010, 2010, 2013) [8, 9, 10] in which the

mathematical aspects are developed more so than they are in this thesis. Quasi-bases in particular were motivated

by the need to describe coherent states for non-Hermitian systems with an underlying structure. The definition of

quasi-basis is given as follows

• Definition (Quasi-Basis, as defined in [10]). Given a suitable dense subspace X1 of a Hilbert space H. Let

EL = {en}∞n=0 and EL† = {e†n}∞n=0 be two orthogonal sets such that all en ∈ X1 and all e†n ∈ X1. EL and EL†
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are X1 quasi-bases if, for all f, g ∈ X1,

⟨f, g⟩ =
∑
n=0

⟨f, en⟩⟨e†n, g⟩ =
∑
n=0

⟨f, e†n⟩⟨en, g⟩. (4.38)

We note that, although our choices of {en} and {e†n} are derived from the direct and adjoint eigenvectors of LRGL.

The idea of a quasi-basis a much more general concept that need not be motivated by an operator L and can just

exist based on a metric operator. This can be shown in the following theorem where there is no operator L;

• Theorem (The Existence of Quasi-Bases under certain conditions). Let Ê = {ên}∞n=0 be an orthonormal basis

in a Hilbert Space H. Consider the two sets E = {en}∞n=0
∞ and E† = {e†n}∞n=0, such that for the metric

operator G
1
2 where G

1
2 en = ên and (G

1
2 )−1e†n = ên. Let the domain, D(G

1
2 ) of G

1
2 and D((G

1
2 )−1) be defined

as in (4.33) and (4.34). Given the following assumptions:

– En and Ên are bi-orthogonal.

– If f ∈ H(G) is orthogonal to all the en then f = 0.

– If f ∈ H(G−1) is orthogonal to all the e†n then f = 0.

The En and Ên are quasi-basis for the space H(G−1) ∩H(G).

Proof. See Bagarello (2013) [10].

Furthermore, we can make it explicit as to why quasi-bases are useful for our application in the following theorem.

• Theorem (Expressing elements of H(G) ∩H(G−1) in terms of non-orthogonal basis vectors). Let Ê = {ên}∞n=0

be an orthonormal basis in a Hilbert Space H. Consider the two sets E = {en}∞n=0
∞ and E† = {e†n}∞n=0, such

that for the metric operator G where G
1
2 en = ên. Furthermore, (G

1
2 )−1e†n = ên and G−1e†n = en. Then each

element of u ∈ H(G) ∩H(G−1) (with the spaces H(G) and H(G−1) defined by (4.34) and (4.33) respectively)

can be expressed as u =
∑∞

n=0⟨en, u⟩e†n =
∑∞

n=0⟨e†n, u⟩en.

Proof. Let f ∈ H(G) ∩ H(G−1). As ên is an orthonormal basis, we can write f =
∑∞

n=0⟨ên, f⟩ên. We apply

G
1
2 , which gives G

1
2 f =

∑∞
n=0⟨ên, G

1
2 f⟩ên =

∑∞
n=0⟨ê†n, f⟩ên. Then it follows that

||f −
∞∑

n=0

⟨en, f⟩e†n|| = ||(G 1
2 )−1

(
G

1
2 f −

∞∑
n=0

⟨ê†n, f⟩ên
)
|| ≤ ||(G 1

2 )−1|| ||
(
G

1
2 f −

∞∑
n=0

⟨ê†n, f⟩ên
)
|| (4.39)

Note, we have that for all f ∈ H(G) ∩H(G−1), G
1
2 is a unitary operator from H(G) on H, and likewise (G

1
2 )−1

is a unitary operator from H(G−1) on H. Therefore, we want to show that G 1
2 f ∈ H(G−1), provided that

f ∈ H(G) ∩H(G−1). In this way, we can use that (G
1
2 )−1 : H(G−1) −→ H and thus ||(G 1

2 )−1|| = 1 in (4.39).
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Given that (G
1
2 )−1 : H(G−1) −→ H is bounded, we have that

||G 1
2 f ||H(G−1) = ||(G 1

2 )−1G
1
2 f ||H = ||f ||H, (4.40)

which is bounded as f ∈ H(G) ∩H(G−1).

Therefore, it follows from (4.39)

||f −
∞∑

n=0

⟨en, f⟩e†n|| ≤ ||
(
G

1
2 f −

∞∑
n=0

⟨ê†n, f⟩ên
)
|| −→ 0 (4.41)

as higher and higher terms are taken in
∑∞

n=0⟨ê†n, f⟩ên.

Thus we have shown that f can be written in the following way f =
∑∞

n=0⟨en, f⟩ê†n. Showing f can be written

as f =
∑∞

n=0⟨ê†n, f⟩en follows the same pattern. □

Lastly, we can see that this is true for the direct and adjoint eigenvectors of the LRGL;

• Theorem (Quasi-Basis Structure for RnsaGL). RnsaGL has a quasi-basis structure in the above set-up with

underlying Hilbert Space H = L2 and G = e−
U
2a .

Proof. We use the proof entitled ”The existence of Quasi-Bases under certain conditions” that was just given.

We can see for the eigenvectors {en}∞n=0 and {e†n}∞n=0 are biorthogonal from their explicit form. Moreover, they

both form complete sets hence the second and third conditions of the theorem are met. □

4.4 Summary of Chapter

In this chapter, we considered the eigenvectors of the RnsaGL and the CnsaGL. We proved that neither of these

eigenvectors formed a useful basis because the projections on the sets of eigenvectors were unbounded. We could

prove this only as we had the forms of the eigenvectors. We saw that LRGL was a Quasi-Hermitian operator with

respect to the metric operatorG = e−
U
a x. We constructed a lattice of Hilbert spaces from an arbitrary metric operator

G, before discussing the ramifications of this underlying lattice operator for our unbounded metric operator. We have

that owing to the underlying quasi-basis structure we can use the direct and adjoint eigenvectors for LRGL in order

expand the functions in the space H(e−
U
a x)∩H(e

U
a x) in terms of eigenvector-amplitude pairs where the amplitudes

are guaranteed to be finite.

68



Chapter 5

Amplitude Equations - Derivations and

Analysis

In this chapter, we derive amplitude equations for the RnsaGL and the CnsaGL and then perform numerical exper-

iments to evaluate them. As we deal with each case separately, we have abbreviated LRGL and LCGL to L as it is

obvious which space we are considering. Regarding the real case, we have a quasi-basis structure that allows us

to have two normalisation choices for higher order terms. We verify these and compare them numerically. We also

perform WNLE in the space H(G) and thus show that the first order approximation provides a good approximation

of the solution in this space where the operator LRGL is self-adjoint.

5.1 Real Case

5.1.1 Derivation

We begin by putting the RnsaGL equation on a dissipative timescale u = ϵ
1
2 v(x, τ) where τ = ϵt;

ϵ
∂v

∂τ
= Lv − ϵv3 + ϵδ̃v. (5.1)

We introduce the expansion

v = Cê0︸︷︷︸
v′
0

+ϵ [v1(C, x) + γ1(C)ê0]︸ ︷︷ ︸
v′
1

+ϵ2 [v2(C, x) + γ2(C)ê0]︸ ︷︷ ︸
v′
2

+ϵ3 [v3(C, x) + γ3(C)ê0]︸ ︷︷ ︸
v′
3

+o(ϵ3)... (5.2)
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to we obtain the following hierachy of equations

−Lv′0 = 0, −Lv′1 = N1(v′0), −Lv′2 = N2(v′0, v
′
1), . . . , −Lv′n = Nn(v′0, v

′
1, ..., v

′
n) (5.3)

where

Nn+1(v′0, ..., v
′
n) = −∂v

′
n

∂τ
+ δ̃v′n −

( n∑
i=0

n−i∑
k=0

ϵ
1
2+(n+1)v′iv

′
kv

′
n−i−k

)
(5.4)

for all n ≥ 1.

We put the expansion (5.1) into the equation (5.2) and compare terms at like order;

• O(1)

CLê0 = 0 (5.5)

• O(ϵ)

−Lv1 = N1(v′0) = −∂C
∂τ

ê0 + δ̃Cê0 − C3(ê0)
3 (5.6)

We apply the Fredholm alternative to (5.6) in order to get the amplitude equation

∂C

∂τ
= δ̃C − λ1C3, (5.7)

where λ1 = ⟨ê†0, (e0)3⟩. We substitute (5.7) back into (5.6) in order to obtain

−Lv1 = C3[λ1ê0 − (ê0)
3]. (5.8)

We let v1(C, x) = C3v̂1 and we invert the singular operator L with the normalisation condition ⟨ê0, v̂1⟩ = 0 to

obtain v̂1, i.e. we consider the augmented system

 L e0

⟨ê0, ·⟩ 0


v̂1
c

 =

−(e†0)
3

0

 (5.9)

where we treat c as an unknown. Upon inverting the matrix, we obtain c = −λ1. This provides a nice numerical

check that the inversion was performed properly.

• O(ϵ2)

−Lv2 = N1(v′0, v
′
1) = −∂[C

3v̂1 + γ1(C)ê0]

∂τ
+ δ̃[C3v̂1 + γ1(C)ê0]− 3C2(ê0)

2[C3v̂1 + γ1(C)ê0] (5.10)
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Applying the Fredholm alternative to this equation gives

0 =
∂γ1(C)

∂C
− (δ̃ − 3C2λ1)

(δ̃C − λ1C3)
γ1(C) +

2δ̃C3λ2 − 3C5(λ1λ2 − λ3)

(δ̃C − λ1C3)
(5.11)

where λ2 = ⟨e†0, v̂1⟩ and λ3 = ⟨ê†0, v̂1(ê0)2⟩.

We integrate the above equation (5.11) using the integrating factor in order to obtain the following representa-

tion for γ1 where D is a constant to be determined;

γ1(C) =
1

2(λ1)2

[
(λ1λ2 − 3λ3)δ̃C + 3(λ1λ2 − λ3)(δ̃C − λ1C3) log(δ̃ − λ1C2)

]
+D(δ̃C − λ1C3). (5.12)

We introduce an assumption to establish D. The assumption is that all of the linear behaviour is dealt with

at first order, and therefore there must be no contributions at higher order terms to the linear behaviour of

the approximation. This is an assumption based on the empirical results that we saw in the introduction,

where the first order approximation captured the behaviour well at early times. We consider the linearisation

of γ1(C) = γlin1 (C)

γ lin
1 (C) =

1

2(λ1)2

[
(λ1λ2 − 3λ3)δ̃C + 3(λ1λ2 − λ3)(δ̃C) log(δ̃)

]
+D(δ̃C) (5.13)

and set this equal to zero in order to obtain

D = − 1

2(λ1)2

[
(λ1λ2 − 3λ3) + 3(λ1λ2 − λ3) log(δ̃)

]
. (5.14)

This gives the full version of γ1(C) as

γ1(C) =
1

2(λ1)2

[
(λ1λ2 − 3λ3)(λ1C3) + 3(λ1λ2 − λ3)(δ̃C − λ1C3) log

(
δ̃ − λ1C2

δ̃

)]
. (5.15)

Inserting γ1(C) into (5.10) gives the following representation of v2;

−Lv2 = 2δ̃C3[λ2ê0 − v̂1] + 3C5

[
[λ1v̂1 − λ1λ2ê0] + [λ3ê0 − v̂1(ê0)

2]

]
+ 3C2γ1(C)[λ

1ê0 − (ê0)
3]. (5.16)

We let v2 = 2δ̃C3v̂a2 +3C5v̂b2 +3C2γ1(C)v̂1 and obtain v̂2a and v̂2b by solving the following augmented systems;

 L e0

⟨ê0, ·⟩ 0


v̂2a
ca

 =

−v̂1

0

 (5.17)

71



and  L e0

⟨ê0, ·⟩ 0


v̂2b
cb

 =

[λ1v̂1 − λ1λ2ê0]− v̂1(ê0)
2

0

 , (5.18)

where we obtain ca = −λ2 and cb = −λ3, which is consistent with (5.16).

• O(ϵ3)

− Lv3(C, x) = −∂[v2(C, x) + γ2(C)ê0]

∂τ
+ δ̃[v2(C, x) + γ2(C)ê0]− 3[v1(C, x) + γ1(C)ê0]

2C(ê0)

− 3[v2(C, x) + γ2(C)ê0]C
2(ê0)

2 (5.19)

We will use this order to show that often we do not need to solve an ODE if we want to obtain the saturation

value of γ2. Furthermore, for just working out the saturation amplitude, we remove the problem of non-

uniqueness at higher order terms, i.e. we do not need to determine another constant like D at the previous

order1.

We firstly apply the Fredholm alternative to (5.19) and set all of the time derivatives equal to zero; this gives

γ2(Csat) =
1

2δ̃
⟨ê†0, δ̃v2(Csat, x)− 3[v1(Csat, x) + γ1(Csat)ê0]

2Csat(ê0)− 3[v2(Csat, x)C
2
sat(ê0)

2⟩. (5.23)

Now, we change back to the original timescale u = ϵ
1
2u(x, ϵt). We let B(t) = ϵ

1
2C(τ). The governing amplitude

on this timescale is given by
dB

dt
= δB − λ1B3. (5.24)

We label the following approximations for the solutions of the RnsaGL as zeroth order, u0th, first order, u1st and

second order approximation u2ndsat (calculated at the saturated value) respectively;

u0th = Bê0, (5.25)

1We note that if we set ∂u
∂t

= 0 to zero in the governing equation we obtain an elliptic equation that was dealt with in Vishik and Lyusternik
(1960) [100]. We notice that there is no non-uniqueness in this case. We compute the first few terms on the stationary case below;

Lv0 = 0 (5.20)

Lv1 = δ̃u0 − u3
0 (5.21)

Lv2 = δ̃(v1 + γ1ê0) + 3u2
0(v1 + γ1ê0) (5.22)

From applying first term, we obtain u = C1ê0 where C1 is a constant. Applying the Fredholm alternative at second order we obtain C1 =√
δ̃
λ1 . At second order, we can let v1 = ( δ̃

λ1 )
3
2 v̂1 and obtain v̂1 via the augmented system (5.32). Lastly, in this case we would have

γ1 = δ
2(λ1)2

δ̃
λ1 [λ

1λ2 − 3λ3], which coincides with the definition of (5.12) at saturation.
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u1st = (B + γ′1(B))ê0 +B3v̂1 (5.26)

and

u2ndsat ≈ (Bsat + γ′1(Bsat) + γ′2(Bsat))ê0 +B3
satv̂1 + v′2(Bsat, x) (5.27)

where γ′1(B), v′2(B) and γ′2(Bsat) are given by;

γ′1(B) =
1

2(λ1)2

[
(λ1λ2 − 3λ3)(λ1B3) + (δB − λ1B3) log

(
δ − λ1B2

δ

)]
, (5.28)

v′2(B, x) = δB3v̂a2 (x) + 3B5v̂b2(x) + 3B2γ1(C)v̂1(x) (5.29)

and

γ′2(Bsat) =
1

2δ
⟨ê†0, δv2(Bsat, x)− 3[v1(Bsat, x) + γ1(Bsat)ê0]

2Bsat(ê0)− 3v2(Bsat, x)B
2
sat(ê0)

2⟩ (5.30)

where the addition of the primes is to distinguish the different timescales τ and t.

5.1.2 Two normalisation choices

Note that owing to the underlying quasi-basis structure and the fact that our solution exists in the space H(G) ∩

H(G−1), we have two normalisation choices for our higher order terms. Previously, we chose to normalise v1, v̂a2

and v̂b2 such that ⟨ê0, v̂1⟩ = 0, ⟨ê†0, v̂a2 ⟩ = 0 and ⟨ê†0, v̂b2⟩ = 0. As we are able to write u =
∑∞

n=0⟨ê
†
0, u⟩ên owing to the

quasi-basis structure, we can use the normalisation conditions ⟨ê†0, ṽ1⟩ = 0, ⟨ê†0, ṽa2 ⟩ = 0 and ⟨ê†0, ṽb2⟩ = 0, where we

have differentiated these normalisation conditions to the previous normalisation conditions by using tildes .̃

Let us consider the O(ϵ) equation as an example,

−Lv1 = C3[λ1ê0 − (ê0)
3]. (5.31)

We can let v1 = C3ṽ1 and invert the equation (5.31) with the condition ⟨ê†0, ṽ1⟩ = 0, i.e. the augmented system (5.32)

becomes  L e0

⟨ê†0, ·⟩ 0


ṽ1
c

 =

−(e†0)
3

0

 (5.32)

where the inner product in the lower right-hand-corner now contains a ê0 instead of a ê†0.
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Note that applying the normalisation against the adjoint eigenvector ê†0 results in different forms of ṽ′2, i.e.

γ̃′1(B) = − 3λ3

2(λ1)2

(
(δB − λ1B3) log

(
δ − λ1B2

δ

)
+ λ1B3

)
, (5.33)

γ̃′2(Bsat) = − 3

2δ

[
B7

sat⟨ê
†
0, (ṽ1)

2ê0⟩+Bsat(γ1(Bsat))
2λ1 + 2B4

satγ1(Bsat)λ
3 + ⟨ê†0, ṽ2(Bsat, x)B

2
sat(ê0)

2⟩
]

(5.34)

and

ṽ′2(Bsat, x) = δB3
satṽ

a
2 (x) + 3B5

satṽ
b
2(x) + 3B2

satγ1(Bsat)ṽ1(x), (5.35)

where ṽa2 (x), ṽb2(x), ṽ1(x) are obtained from inverting the analogous equation2 to (5.16) with the conditions ⟨ê†0, ṽa2 (x)⟩ =

0 and ⟨ê†0, ṽb2(x)⟩ = 0.

We also denote the different approximations with tildes;

ũ0th = Bê0, (5.38)

ũ1st = (B + γ′1(B))ê0 +B3ṽ1, (5.39)

and

ũ2ndsat ≈ (Bsat + γ′1(Bsat) + γ′2(Bsat))ê0 +B3
satṽ1 + ṽ′2(Bsat, x) (5.40)

where B is given by (5.24).

5.1.3 Numerical Experiments

In the previous two sections, we worked out the following approximations u0th, u1st and u2nd, where higher terms

were normalised to be orthogonal to the direct eigenvector and ũ0th, ũ2nd and ũ3rd where higher order terms were

normalised with respect to the adjoint eigenvector; these equations can be found in (5.25), (5.26) and (5.27), and

(5.38), (5.39) and (5.40) respectively.

We firstly concentrate on the spatial structures v̂1, v̂a2 and v̂b2 with the direct normalisation and ṽ1, ṽa2 and ṽb2 with

2The analogous equation to (5.16) is given by

Lv2 = δ̃C3v̂1 + 3C5

[
λ3ê0 − (ê0)

2v̂1

]
+ 3C2γ1(C)

[
λ1ê0 − (ê0)

3

]
(5.36)

We can see that it is the same as (5.16) but with λ2 = 0, and also the coefficient of δ̃C3v̂1 is 1 instead of 2. We obtain ṽa2 by augmented matrix
on the left hand side of (

L e0
⟨ê0, ·⟩ 0

)(
ṽ2a
c

)
=

(
v̂1 + ê0

0

)
(5.37)

where we get c = 1; thus the mathematical trick of making this well-posed numerically is to ê0 to both sides.
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the adjoint normalisation. There are two fundamental points of interest that we deliver with relevant figures;

• As the non-normality increases, we see that the spatial structures normalised with respect to the direct eigen-

vector, v̂1 (Figure 1a), v̂a2 (Figure 1b) and v̂b2 (Figure 1c), as well as the spatial structures normalised with

respect to the adjoint eigenvectors, ṽ1 (Figure 1d), ṽa2 (Figure 1e) and ṽb2 (Figure 1f), become more distinct and

grow in size. This demonstrates that as the linear operator becomes more non-normal, higher order spatial

structures become more important as they exist.

Figure 1a. (Left) A plot of v̂1 against x for various values of U shown in plot. The black box represents the zoomed

in area shown in the figure on the right. (Right) A zoomed in region of v̂1 against x.

Figure 1b. (Left) A plot of v̂a2 against x for various values of U shown in plot. The black box represents the zoomed

in area shown in the figure on the right. (Right) A zoomed in region of v̂a2 against x.
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Figure 1c. (Left) A plot of v̂b2 against x for various values of U shown in plot. The black box represents the zoomed

in area shown in the figure on the right. (Right) A zoomed in region of v̂b2 against x.

Figure 1d. (Left) A plot of ṽ1 against x for various values of U shown in plot. The black box represents the zoomed

in area shown in the figure on the right. (Right) A zoomed in region of ṽb1 against x.

76



Figure 1e. (Left) A plot of ṽa2 against x for various values of U shown in plot. The black box represents the zoomed

in area shown in the figure on the right. (Right) A zoomed in region of ṽa2 against x.

Figure 1f. (Left) A plot of ṽb2 against x for various values of U shown in plot. The black box represents the zoomed

in area shown in the figure on the right. (Right) A zoomed in region of ṽb2 against x.

• We recall that v′n = vn(C, x) + γn(C)ê0. Let ṽ′n = ṽ′n + γ̃n(C)ê0. We see that there is no difference in the

structures of v′n and ṽ′n no matter what the non-normality. We plot these spatial structures for time points

t = 0, t = 1000 and t = 2000 for three different values of U , namely U = 0, U = 0.6 and U = 1.2 in Figure 2a,

Figure 2b and Figure 2c, respectively, and in each plot the figures overlap. We notice how the spatial structures

are exceedingly small for t = 0 and t = 1000. This is because the energy from the zeroth eigenvector has not

been transferred to the other modes by the nonlinearity yet. In Figure 3, we also plot v′2 and ṽ′2 at saturation

for U = 0, U = 0.6 and U = 1.2, and again they overlap completely.

Whilst it is perhaps not a surprising result that our two normalisation choices overlap, it reinforces the notion

that there exists a quasi-basis structure underneath. Furthermore, in our subsequent analysis. we only

consider one choice of normalisation as the results in terms of proximity to the real solution in norm are the

same for both.
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Figure 2a. The spatial structures of ṽ′1 and v̂1 for U = 0 at t = 0 (left), t = 1000 (center) and t = 2000 (right).

Figure 2b. The spatial structures of ṽ′1 and v̂1 for U = 0.6 at t = 0 (left), t = 1000 (centre) and t = 2000 (right).

Figure 2c. The spatial structures of ṽ′1 and v̂1 for U = 1.2 at t = 0 (left), t = 1000 (centre) and t = 2000 (right).

Figure 3. A plot of v′2(Bsat, x) and ṽ′2(Bsat, x) for U = 0 (left), U = 1 (center) and U = 2 (right).

In this thesis, we are concerned with successfully approximating the saturation characteristics. After a certain

time, the solution starts converging to particular spatial structure asymptotically hence true saturation time is t = ∞,

but we are “asymptotically close” earlier in time. We choose Tsat as it is the last point in our time domain, T = 2000.

We firstly begin by comparing u with the approximations unth at Tsat = 2000 in L2 by considering the difference

given by ||u(Tsat) − unth(Tsat)||L2 in Figure 4. The crosses refer to the highest order approximation we derived

||u(Tsat) − u2nd(Tsat)||L2 (u2nd is given by (5.27)), and the stars refer to ||u(Tsat) − u1st(Tsat)||L2 (u1st is given by

(5.26)). The circles refer to ||u(Tsat)− u0th(Tsat)||L2 (u0th is given by (5.25)), which is the result that we were trying

to improve. In these plots δ = 0.01. All plots are on a logarithmic scale and on the x axis, we have the value
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of the advection velocity. The squares refer to ||u||L2 and are there as a reference. From Figure 4, we can see

that the higher order terms give us the best approximations in all cases apart from U = 1.2, which we will discuss

imminently with regard to Figure 5. It should be noticed that also in all cases apart from U = 1.2 and U = 1, the

discrepancy reduced by at least one order of magnitude by going higher in order, i.e. the discrepancy for U = 0

given by ||u − unth||L2 is of order 10−4 for n = 0, 10−7 for n = 1 but nearly 10−12 for n = 2. For the case of U = 1,

there is still significant improvement, but not as much, and the improvement is not so important considering the size

of u itself. Furthermore, in general, there is a concertina of the different approximations as we go higher in order.

Figure 4. A scatter plot of the following quantities at Tsat = 2000 against U on a logarithmic scale; Red points:

||u||L2 (square), ||u− u0th||L2 (filled circle), ||u− u1st||L2 (star), ||u− u2nd||L2 (cross).

In Figure 5, we plot the spatial profiles for u0th, u1st, and u2nd with u at Tsat for U = 0.6 and U = 1.2. We see

for U = 0.6. u1st and u2nd improve upon u and capture the solution. However, for U = 1.2, the order u1st is a

better approximation of the solution than u2nd. However, from the plot the solution u lies “in between” the first and

second approximation. This leaves open the possibility that the approximations will successively overestimate and

then underestimate before converging to the solution.

We now compare the values of sup0≤t≤Tsat
||u − u0th||L2 and sup0≤t≤Tsat

||u − u1st||L2 in Figure 6. The key is

the same as in Figure 4, and also given in the figure label. This quantity gives us a notion of how the solutions work
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over time. We plot this against sup0≤t≤Tsat
||u||L2 . This plot implies that the assumption regarding the preservation

of linear behaviour does not cause anything to go awry. For further evidence of this, we plot the difference between

||u − u1st||L2 over time for a range of U values in Figure 7. We see for early times, the graph is flat suggesting

that the linear regime has not been contaminated. We see that there is a slight bump for higher order non-normal

terms, which suggests that the approximation does not capture well the transition between the linear regime and

the nonlinear regime. This feature becomes more exaggerated with non-normality.

Figure 5. (Left) The spatial structures of u0, u1st, u2nd and u at Tsat for U = 0.6 with δ = 0.01. (Right) The spatial

structures of u0, u1st, u2nd and u at Tsat for U = 1.2 with δ = 0.01.

Figure 6. A scatter plot of sup0≤t≤Tsat
||u||L2 (square), sup0≤t≤Tsat

||u− u0th||L2 (filled circle) and

sup0≤t≤Tsat
||u− u1st||L2 (star) against U for δ = 0.01
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Figure 7. A plot of ||u− u1st||L2 for different values of U shown in plot.

In the next set of plots, we increase δ. This has some interesting effects on our approximations. For increased

δ and increased U , the higher order approximations are no longer reliable. In Figure 8a, we plot the differences in

norm given by ||u(Tsat)−unth(Tsat)||L2 , but this time for δ = 0.05. The key is the same as in Figures 4 and 6 and also

given in label. In Figure 8b, we plot the the supremum of the difference in norm given by sup0≤t≤Tsat
||u − u0th||L2

and sup0≤t≤Tsat
||u− u1st||L2 . As before, all plots are on a logarithmic scale.

Figure 8. (a) A scatter plot of the following quantities at Tsat = 2000 against U on a logarithmic scale; ||u||L2

(square), ||u− u0th||L2 (filled circle), ||u− u1st||L2 (star), ||u− u2nd||L2 (cross), with δ = 0.05. (b) A scatter plot of

sup0≤t≤Tsat
||u||L2 (square), sup0≤t≤Tsat

||u− u0th||L2 (filled circle) and sup0≤t≤Tsat
||u− u1st||L2 (star) againt U with

δ = 0.05
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In Figure 9, we look more closely at U = 0.6 and U = 1.2 as we did previously in Figure 5. For U = 0.6, the

structure u2nd is still the closest, but for U = 1.2, u2nd is the worst approximation. In order to explore this further, the

convergence of the expansion given by (5.2) must be explored3.

Figure 9. (Left) The spatial structures of u0, u1st, u2nd and u at Tsat for U = 0.6 with δ = 0.01. (Right) The spatial

structures of u0, u1st, u2nd and u at Tsat for U = 1.2 with δ = 0.01.

Lastly, we present a numerical experiment that shows how the solution behaves in the space H(G). In the

following, we plot ||u||H(G), ||u0th||H(G), ||u||L2 and ||u0th|| for U = 1. We see in Figure 10 that the approximation

and the solution are much closer in the space H(G). However, one should be aware that this is a non-Hermitian

representation of a self-adjoint system. Thus, these norms are not comparable.

Figure 10. A plot of ||u||H(G), ||u0th||H(G), ||u||L2 and ||u0th|| against time for U = 1

3We do not explore the convergence in this thesis, but an example of the convergence of a series concerning a linear equation can be found
in the article by Vishik and Lyusternik (1960) [100] for an linear elliptic PDE, as mentioned in the literature review. It is not clear to the author how
to extend the methodology of Vishik and Lyusternik (1960) [100] to a nonlinear parabolic PDE.
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5.2 Complex Case

5.2.1 Derivation

As before, we put the solution on a diffusive timescale u = eiω0tϵ
1
2 v(x, τ) but we include an eiω0t coefficient as the

zeroth eigenvector is iω0;

(iω0 − L) = −ϵ
(
∂v

∂τ
+ δ̃v − v3

)
. (5.41)

We then expand the solution as

v = ei(θ0+ϵθ1+ϵ2θ2+...)τ

[
rê0 + ϵ(v1(r, x) + γ1(r)ê0) + ϵ2(v2(r, x) + γ2(r)ê0) + ...

]
. (5.42)

We compare terms at like orders

• O(1)

(iω0 − L)ê0 = 0 (5.43)

• O(ϵ)

(iω0 − L)v1(r, x) = −
(
∂r

∂τ
+ ir

∂θ0
∂τ

)
ê0 + δ̃rê0 − r3|ê0|2ê0 (5.44)

Applying the Fredholm alternative gives

∂r

∂τ
+ ir

∂θ0
∂τ

= δ̃r − ⟨ê†0, |ê0|2ê0⟩r3. (5.45)

We let λ1 = ⟨ê†0, |ê0|2ê0⟩, and consider also the real and imaginary parts λ1 = λ1r + iλ1i . This gives us the real

and imaginary equations
∂r

∂τ
= δ̃r − λ1rr

3 (5.46)

and
∂θ0
∂τ

= −λ1i r2 (5.47)

respectively.

We put this back into the equation, letting v1(x) = r3v̂1 and we get

(iω0 − L)v̂1 = λ1ê0 − |ê0|2ê0. (5.48)

We invert this matrix to find v̂1 using the condition ⟨ê0, v̂1⟩ = 0.

• O(ϵ2)
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(iω0 − L)v2(r, x) = −i
(
∂θ1
∂τ

rê0 +
∂θ0
∂τ

(v1(r, x) + γ1(r)ê0)

)
−
[
∂v1(r, x)

∂τ
v̂1 +

∂γ1(r)

∂r

∂r

∂τ
ê0

]
−
(
2r2|ê0|2(v1(r, x) + γ1(r)ê0) + r2(ê0)

2(v̄1(r, x) + γ1(r)¯̂e0)

)
+ δ̃(v1(r, x) + γ1(r)ê0) (5.49)

Taking the Fredholm alternative and splitting real and imaginary parts gives us the following two equations

∂γ1(r)

∂r
− (δ̃ − 3r2λ1r)

(δ̃r − λ1rr
3)
γ1(r) = −2r3λ2r δ̃ − Ĉ1r

5

(δ̃r − λ1rr
3)

(5.50)

and
∂θ1
∂τ

=

(
− 2λ2i δ̃r

2 + C̃1r
4 − 2r(λ1i )γ1(r)

)
(5.51)

where Ĉ1 = (3λ2rλ
1
r − λ3r − λ1iλ

2
i ) and C̃1 = [3λ2iλ

1
r + λ2rλ

1
i − (λ3i )].

Solving this equation by the same procedure as we did in the last section gives us the following form for γ1(r),

γ1(r) =
1

2(λ1r)
2

[
(Ĉ1 − 2λ1rλ

2
r)λ

1
rr

3 + Ĉ1(δ̃r − λ1rr
3) log

(
δ̃ − λ1rr

2

δ̃

)]
, (5.52)

which we can substitute into (5.51).

Now, have to find an expression for v2, substituting γ1(r) in (5.49) gives us the following equation

(iω0 − L)v2(r, x) = 2δ̃r3[λ2ê0 − v̂1]

+ r5
[
λ3ê0 −

(
2|ê0|2v̂1 + (ê0)

2 ¯̂v1

)
+

(
3λ1r + iλ1i

)
(v̂1 − λ2ê0)

]
+ 3γ1(r)r

2[λ1ê0 − |ê0|2ê0]. (5.53)

From this equation, we can choose an appropriate form of v2. We v2(r, x) = 2δ̃r3va2 + r5vb2 + 3γ1(r)r
2v̂1. Then

the augmented systems that we consider are

(iω0 − L) ê0

⟨ê0, ·⟩ 0


 v̂a2

−λ2

 =

v̂1
0

 (5.54)

and (iω0 − L) ê0

⟨ê0, ·⟩ 0


 v̂b2

−λ3

 =

−
(
2|ê0|2v̂1 + (ê0)

2 ¯̂v1

)
+

(
3λ1r + iλ1i

)
(v̂1 − λ2ê0)

0

 . (5.55)

Inverting these matrices on the left of (5.55) and (5.54) gives us the full form of v̂2.

• O(ϵ3)

84



(iω0 − L)v3 = −i(v2 + γ2(r)ê0)

[
∂θ0
∂τ

]
− i(v1 + γ1(r)ê0)

[
∂θ1
∂τ

]
− irê0

[
∂θ2
∂τ

]
− ∂r

∂t

[
∂v2
∂r

+
∂γ2(r)

∂r
ê0

]
−
[
[2r2|ê0|2v2 + v̄2(e0)

2] + 2|v1 + γ1(r)ê0|2rê0 + (v1 + γ1(r)ê0)
2r¯̂e0]− 3γ2(r(Tsat))|ê0|2e0

]
+ δ̃(v2 + γ2(r)ê0) (5.56)

By taking the Fredholm alternative and setting dr
dτ = 0, we obtain the following equations for γ2(r(Tsat)) and[

∂θ2
∂τ

]
r(Tsat)

,

γ2(r(Tsat)) =
1

2δ̃
ℜ
{
⟨ê†0,−i(v2(r(Tsat, x))

[
∂θ0
∂τ

]
r(Tsat)

− i(v1(r(Tsat), x) + γ1(r)ê0)

[
∂θ1
∂τ

]
r(Tsat)

−
[
[2r2|ê0|2v2(r(Tsat), x),+v̄2(r(Tsat), x)(e0)2]

+ 2|v1(r(Tsat), x) + γ1(r)ê0|2rê0 + (v1(r(Tsat), x) + γ1(r(Tsat))ê0)
2r(Tsat)¯̂e0

]
+ δ̃v2(r(Tsat), x)⟩

}
(5.57)

and

[
∂θ2
∂τ

]
r(Tsat)

=
1

r(Tsat)
ℑ
{
⟨ê†0,−i(v2(r(Tsat), x) + γ2(r(Tsat))ê0)

[
∂θ0
∂τ

]
Tsat

− i(v1(r(Tsat), x) + γ1(r(Tsat))ê0)

[
∂θ1
∂τ

]
Tsat

−
[
[2r2(Tsat)|ê0|2v2(r(Tsat), x) + v̄2(r(Tsat), x)(e0)

2]

+ 2|v1(r(Tsat), x) + γ1(r(Tsat))ê0|2r(Tsat)ê0 + (v1(r(Tsat), x) + γ1(r(Tsat))¯̂e0)
2r(Tsat)¯̂e0

]
− 3γ2(r(Tsat))|ê0|2e0 + δ̃(v2 + γ2(r)ê0)⟩

}
(5.58)

We now present the following approximations where we have let r′ = ϵ
1
2 r,

u0th(r′(t), t) = ei[ω0+θ0(r
′)]tr′ê0, (5.59)

u1st(r′(t), t) = ei[ω0+θ0(r
′)+θ1(r

′)]t

[
r′ê0 + (v1(r

′, x) + γ1(r
′)ê0)

]
, (5.60)
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and

u2nd(r′(Tsat), Tsat) = ei[ω0+θ0(r
′(Tsat))+θ1(r

′(Tsat))+2(r
′(Tsat))]t

[
r′(Tsat)ê0

+ [v̂1(r
′(Tsat), x) + γ1(r

′(Tsat))ê0] + [v̂2(r
′(Tsat), x) + γ1(r

′(Tsat)]

]
, (5.61)

where r′ solves
dr′

dt
= δr′ − λ1r(r

′)3. (5.62)

We have also that

v̂1(r
′) = (r′)3v̂1, (5.63)

v̂2(r
′) = 2δ(r′)3va2 + (r′)5vb2 + 3γ1(r

′)(r′)2v̂1, (5.64)

γ1(r
′) =

1

2(λ1r)
2

[
(Ĉ1 − 2λ1rλ

2
r)λ

1
r(r

′)3 + Ĉ1(δ(r
′)− λ1r(r

′)3 log

(
δ − λ1r(r

′)2

δ

)]
, (5.65)

and

γ2(r
′(Tsat)) =

1

2δ
ℜ
{
⟨ê†0,−i(v2(r′(Tsat, x))

[
∂θ0
∂t

]
r′(Tsat)

− i(v1(r
′(Tsat), x) + γ1(r

′)ê0)

[
∂θ1
∂t

]
r′(Tsat)

−
[
[2r2|ê0|2v2(r′(Tsat), x),+v̄2(r′(Tsat), x)(e0)2]

+ 2|v1(r′(Tsat), x) + γ1(r
′)ê0|2r′ê0 + (v1(r

′(Tsat), x) + γ1(r
′(Tsat))ê0)

2r′(Tsat)¯̂e0

]
+ δ̃v2(r

′(Tsat), x)⟩
}
, (5.66)

where
∂θ0
∂t

= −λ1i (r′)2 (5.67)

and
∂θ1
∂t

=

(
− 2λ2i δ(r

′)2 + C̃1(r
′)4 − 2r′(λ1i )γ1(r

′)

)
. (5.68)
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Furthermore,

[
∂θ2
∂t

]
r′(Tsat)

=
1

r′(Tsat)
ℑ
{
⟨ê†0,−i(v2(r′(Tsat), x) + γ2(r

′(Tsat))ê0)

[
∂θ0
∂t

]
Tsat

− i(v1(r
′(Tsat), x) + γ1(r

′(Tsat))ê0)

[
∂θ1
∂t

]
Tsat

−
[
[2(r′)2(Tsat)|ê0|2v2(r′(Tsat), x) + v̄2(r

′(Tsat), x)(e0)
2]

+ 2|v1(r′(Tsat), x) + γ1(r
′(Tsat))ê0|2r′(Tsat)ê0 + (v1(r

′(Tsat), x) + γ1(r
′(Tsat))¯̂e0)

2r′(Tsat)¯̂e0

]
− 3γ2(r

′(Tsat))|ê0|2e0 + δ(v2(r
′(Tsat), x) + γ2(r

′)ê0)⟩
}
. (5.69)

We have that as t −→ ∞, (the “value” of Tsat),

θ0 ∼ −λ1i (r′(Tsat))2, (5.70)

θ1 ∼
(
− 2λ2i δ(r

′)2 + C̃1(r
′)4 − 2r′(λ1i )γ1(r

′)

)
(5.71)

and

θ2 ∼ 1

r′(Tsat)
ℑ
{
⟨ê†0,−i(v2(r′(Tsat), x) + γ2(r

′(Tsat))ê0)

[
∂θ0
∂t

]
Tsat

− i(v1(r
′(Tsat), x) + γ1(r

′(Tsat))ê0)

[
∂θ1
∂t

]
Tsat

−
[
[2(r′)2(Tsat)|ê0|2v2(r′(Tsat), x) + v̄2(r

′(Tsat), x)(e0)
2]

+ 2|v1(r′(Tsat), x) + γ1(r
′(Tsat))ê0|2r′(Tsat)ê0 + (v1(r

′(Tsat), x) + γ1(r
′(Tsat))¯̂e0)

2r′(Tsat)¯̂e0

]
− 3γ2(r

′(Tsat))|ê0|2e0 + δ(v2(r
′(Tsat), x) + γ2(r

′)ê0)⟩
}

(5.72)

5.2.2 Numerical Experiments

In the previous section, we obtained the following approximations u0th, u1st and u2nd. In this section, we test these

approximations against the solution.

We firstly begin by comparing saturation frequency. As addressed in the introduction, if we decompose the

solution as u = ReiΦ. We compute the fast Fourier transforms of eiθ
nth

at where the saturation frequencies θnth

given by θth0 = ω0 + θ0, θ1st = ω0 + θ0 + θ1 and θ2nd = ω + θ0 + θ1 + θ2, as well as the Fast Fourier transform of the

solution at solution at a point in the domain where the signal was of significant strength. We computed the signal

between t = 1750 and t = 2000 as the flow is saturated during these times. In Table 1, we plot these frequencies.
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Frequency(Hz) U
0.0 0.2 0.4 0.6 0.8 1.0 1.2

eiθ
0tht 0.006 0.0004 0 -0.006 -0.0014 -0.0022 -0.0032

eiθ
1stt 0.006 0.0004 0 −0.006 −0.0014 −0.0022 −0.0032

eiθ
2nd

0.006 0.0004 0 −0.006 −0.0014 −0.0022 −0.0032
u 0.006 0.0004 0 −0.006 −0.0014 −0.0022 −0.0032
eiω0t 0.006 0.0004 0 −0.006 −0.0014 −0.0022 −0.0032

Figure 1. A table of the frequencies in Hz computed via the FFT in python. The values of u are shown in plot with

δ = 0.01

We see that the frequency is well approximated no matter the order of the expansion. We relate this to the plots

shown in the introduction where the linear operator governing the frequency demonstrates less transient growth

when the norm of the semigroup is calculated.

In Figure 2, we consider the difference in amplitude, let rnth = |unth|. We then compare ||R − rnth||L2 where n

refers to the order of the approximation. In this way, we remove any difference in energy that may be attributed to the

graphs being out of phase. We begin by comparing this quantity at Tsat = 2000, as in the last section. The crosses

refer to the highest order approximation we derived ||R(Tsat) − r2nd(Tsat)||L2 (r2nd = |u2nd| where u2nd is given by

(5.61)), and the stars refer to ||r(Tsat)− R1st(Tsat)||L2 (r1st = |u1st| where u1st is given by (5.60)). The circles refer

to ||r(Tsat) − r0th(Tsat)||L2 (r0th = |u0th| where u0th (5.59)), which is the result that we were trying to improve. As

before, we have given the ||r||L2 as a reference. We notice that there is generally an improvement between the

approximation r0th and the approximations r1st and r2nd, but sometimes the approximation r1st is better that r2nd

on the logarithmic scale, but in these cases the differences are really minute. In Figure 3, we investigate this further

by plotting log(|r(Tsat) − r1st(Tsat|) (blue) and log(|r(Tsat) − r2nd(Tsat)|) (orange) against x for U = 1 (left) and

U = 1.2. We see that we cannot tell the difference between plots in this case as they overlap. In Figure 4, we plot

sup0≤Tsat
||R−rnth||L2 for a variety of U -values where n = 0 and n = 1. This is a measure of how the approximation

performs over time. We see that u1st performs better that u0th for all values of U considered.
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Figure 2. A scatter plot of the following quantities at Tsat = 2000 against U on a logarithmic scale; Red points:

||R||L2 (square), ||R− r0th||L2 (filled circle), ||R− r1st||L2 (star), ||R− r2nd||L2 (cross). In both cases, δ = 0.01.

Figure 3. A plot of log(|r(Tsat)− r1st(Tsat|) (blue) and log(|r(Tsat)− r2nd(Tsat)|) (orange) against x for U = 1 (left)

and U = 1.2. In both cases δ = 0.01.
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Figure 4. A scatter plot of sup0≤t≤Tsat
||u||L2 (square), sup0≤t≤Tsat

||u− u0th||L2 (filled circle) and

sup0≤t≤Tsat
||u− u1st||L2 (star) for various values of U with δ = 0.01.

5.3 Summary of Chapter

In this chapter, we have showcased the derivation of higher order approximations for the RnsaGL and CnsaGL

using a method that has not been used before. We also showed a consequence of the quasi-basis structure

that exists for the RnsaGL, that we were able to normalise the higher order terms in the expansion in two ways,

namely for the terms to be orthogonal to the zeroth direct eigenvector or the zeroth adjoint eigenvector. We then

explored these approximations via numerical experiments. In the case of the RnsaGL, we found that the higher order

approximations generally provide an improvement to the first order WNLE expansions derived in the introduction.

The only suspect cases were the extreme values of U and δ that we considered; but, without considering the

convergence of the series expansion given by (5.2), we cannot know the nature of these suspect cases. i.e. is it the

case that the expansion will oscillate to the solution or whether or not we are outside of the radius of convergence. In

the complex case, we saw the phenomena outlined in the introduction as in that the frequency is well-approximated

no matter the non-normality. Lastly, it should be noted we do not have the two choices of normalisation in the case

of CnsaGL. The reader is invited to try the expansion for themselves and one can see the results are not particularly

useful. We suspect that this is basis property does not exist as the complexity is significant in the case of Krejcirik
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and Siegl (2019) [60]. 4. An interpretation of the fact we get nonsensical results with by normalising v̂1, v̂2 etc. to

be orthogonal to ê†0 is that this normalisation causes spatial contributions along ê†0 to be missed. These will not be

compensated by the terms γ1(C)ê0, γ2(C)ê0, etc. as they are in the case of the RnsaGL.

4A result that would ensure that a quasi-basis structure does not exist in the case of the CnsaGL would be to prove the non-existence of the
metric operator. Results that the non-existence of the metric operator for the imaginary cubic oscillator can be found in the paper by Krejcirik and
Siegl (2012) [91]. In the conclusion, we discuss this more in the context of a future project.
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Chapter 6

Error Bound Analysis

In this chapter, there are two sections. In the first section, we derive error bounds for the RnsaGL via a bootstrapping

argument. We restrict our studies to the RnsaGL (hence we drop the superscripts) in this case but the same

methodology can be applied to the CnsaGL. The process of deriving error bounds for amplitude equation is fairly

standard and based on a bootstrap argument. An interested reader can see the example of Kirrmann et al. (1992)

[58] for an example that follows ours extremely closely. However, there are other notable examples in Schneider

(1994a) [84], Schneider (1994b) [85] and Mielke et al. (1995) [68]. In the second section, we consider the practicality

of these error bounds. The need for this is based in the fact that error bounds between approximations and solutions

generally tell us that there exists a radius of convergence for the small parameter ϵ where an approximation is within

a fixed distance to the solution of the governing equation in norm, but not what the radius of convergence is1. We

explore the question that, given a solution and an means of calculating an approximation, can we tell how high we

need to go in the order of the approximation or what is the range of ϵ we can take using the error bounds?

6.1 Error Bound Derivation

In this section, we prove that there exists a radius of convergence for the parameter ϵ for which. When the value of ϵ

is with this radius, the difference between the solution and the approximation in norm is below a particular threshold.

For our purposes, we use the L2-norm, which shows that the are close in terms of energy2.

1For clarity, we distinguish two notions of the radius of convergence here. The first notion is the radius of convergence can be given by the
ϵ chosen such that the series given by (5.2) converges. We explored this using the uniform convergence criterion for higher order amplitude
equations in chapter two. The error bounds that we derive give a fixed distance between the approximation and the solution dependent on a
small parameter. For certain values of the small parameter, the difference between the solution and approximation is below a certain threshold.
Thus it is up to us what discrepancies are tolerable. We refer to values that the small parameter can take also as the radius of convergence and
that is what we will be considering in this chapter. Both of these criteria give conditions for the size of the small parameter, in our case ϵ, but the
latter often comes from practical application.

2We remark that equally we could have used the L1 norm which quantifies the difference between the solutions along the entire domain.
Semigroups bounds behave differently in different norms as demonstrated in Davies (2005) [33].
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We start by defining the following quantities

u′n = ϵ
1
2+nv′n (6.1)

where the v′n are defined in (5.2). We then define the sum

UN =

N∑
n=0

u′n =

N∑
n=0

ϵ
1
2+nv′n. (6.2)

We now derive the error bounds in the following theorem,

• Theorem (Traditional Error Bounds). Let u be a solution of the RnsaGL and UN be the expansion defined in

(6.2). Let the initial data be such that ||u(0, x) − uN (0, x)||α ≤ dϵN . Then, for each T > 0 and d > 0, there

exists an ϵ ∈ (0, ϵ0) and a C > 0 such that the estimate

||u(t)− UN (t)||L2 ≤ CϵN , ∀ (t, x) ∈ [0, T ]× R (6.3)

is satisfied.

Proof. The goal of this proof is to establish the size of the relative error u(t, x) − uN (t, x) in norm. If we

substitute just uN (t, x) we are left with a residual term, so it is simpler to take the next order expansion and

then use a further argument to infer the size of u(t, x)− uN (t, x). We let

u = UN+1 + ϵNR, (6.4)

where R stands for the residual. We put this into the RnsaGL in order to get the following equation

dR

dt
= LR+ δR+N(UN+1(ϵ, t), R(t)) (6.5)

where

N(UN+1(ϵ, t), R(t)) =
1

ϵN

[
− dUN+1

dt
+ δUN+1 − (UN+1 + ϵNR)3

]
(6.6)

=
1

ϵN

[(
−
∂u′N+1

∂t
+ δu′N+1 +

N∑
n=0

( n∑
i=0

n−i∑
k=0

u′iu
′
ku

′
n−i−k

))
− u3

]
, (6.7)

where the square brackets contain terms of ϵN+1 or higher. Importantly, in (6.5), we have no terms of order

ϵ
1
2 .

We split the operator L into L̂n + (L − L̂n) where L̂n was the sectorial operator defined in Section 3.1 of the
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thesis. We label C1 = (L− L̂n) + δ. Then from the results of Section 3.3, we can write our equation in integral

form as

R(x, t) = etL̂nR(x, 0) +

∫ t

0

e(t−s)L̂n

[
C1R+N(UN+1(ϵ, t), R(t))

]
ds. (6.8)

We consider the L2 norm of the above equation in order to obtain

||R(x, t)|| ≤ ||etL̂nR(x, 0)||+ ||
∫ t

0

e(t−s)L̂n

[
C1R+N(UN+1(ϵ, t), R(t))

]
ds|| (6.9)

Then, for every D1 > 0, we have that sup0≤s≤t{||N(UN+1(ϵ, t), R(t))||L2} ≤M(ϵ) for all ||R||L2 ≤ D1. As L̂n is

a contraction, we have the following inequality

||R(x, t)||L2 ≤
[
(d+M(ϵ)t) + C1

∫ t

0

||R(x, t)||L2ds

]
. (6.10)

We use Gronwall’s inequality to write the equation as

||R(x, t)||L2 ≤ (d+M(ϵ)t)eC1t. (6.11)

The bootstrapping occurs as follows; let ϵ be chosen such that M(ϵ) < M . Let D2 = (d +Mt)eC1t. Then it

follows that ||R(x, t)||L2 ≤ D2. However, the bound (6.11) is more strict, and so it follows that ||R(x, t)||L2 ≤ D2.

Using the triangle inequality with u − UN = u − UN+1 + u′N+1, we have that therefore the difference between

the approximation UN and u is

||u(t)− UN (t)||L2 ≤ ϵN (d+Mt)eC1t + ||u′N+1(x, t)||L2 , (6.12)

where we can write

||u(t)− UN (t)||L2 ≤ CϵN (6.13)

with absorbing constant C = (d+MT )eC1T + ||u′N+1(x, t)||L2 for specific fixed T . □

6.2 Error Bound Functionality

In the last section, we established that there exists a radius of convergence. In this section, we focus on the utility

of error bounds, i.e. “can we use the error bounds derived in the last section to ascertain what values of ϵ or what

order we need to go to, so that the approximation works well?”.
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We begin by considering the following error bound that was derived in the last section;

||u(t)− UN+1(t)||L2 ≤ ϵN ( sup
0≤s≤t

{||N(UN+1(ϵ, t), R(t))||L2}t)eC1t (6.14)

where we have just replaced all of the quantities in (6.11) by there explicit forms and set d = 0 as the governing

equation and the approximation are initialised in the same way. As C1 = U2

4 +
√
c2 + δ + 1, we see from the

right-hand-side of (6.15) that the error bound is governed by the U and δ, Tsat (we do not vary c2). Also, we recall

δ = δ̃ϵ.

We begin by defining the right-hand-side of (6.14) as F(t).

F(N, ϵ, t) = ϵN ( sup
0≤s≤t

{||N(UN+1(ϵ, t), R(t))||L2}t)eC1t. (6.15)

In the following numerical computations, we vary U and δ to see how F(N.ϵ, t) We also consider different values of

t. We fix N to obtain

||N(U1(ϵ, t), R(t))||L2 = −∂u
′
1

∂t
+ δu′1 + u30 − u3 (6.16)

for N = 0 and

||N(U2(ϵ, t), R(t))||L2 = ||
(
− ∂u′2

∂t
+ δu′2 + u30 + 3u20u1 − u3

)
||L2 (6.17)

for3 N = 1.

3For the purposes of this section, we computed u′
2(x, t) = v2(x, t) + γ2(B)ê0. v2(B) was given in the previous chapter, but γ2(B) was only

calculated at saturation. Applying our normalisation procedure gives

γ2(B) = −
δ

2(λ1)2

[
18⟨ê†0, (ê0)

2vb2⟩+ 6(CA)2λ1 + λ1[6⟨ê†0, (ê0)
2va2 ⟩ − 18⟨ê†0, v

b
2⟩ − 2⟨ê†0, v

a
2 ⟩λ1]− 18CAλ1λ2 + 30CAλ3

+ 6CACB(λ1)2 + 3CBλ1[2CB(λ1)2 − 3λ1λ2 + 5λ3] + 6⟨ê†0, v̂1v̂1ê0⟩
]
B3

3

2(λ1)

[(
3⟨ê†0, ê0ê0v

b
2⟩+ (CA)2λ1 − 5⟨ê†0, v

b
2⟩λ1 + CA(2CB(λ1)2 − 5(λ1)(λ2) + 5λ3)

+ CBλ1(2CB(λ1)2 − 3(λ1)(λ2) + 5λ3) + ⟨ê†0, v̂1v̂1ê0⟩
)]

B5

−
3δ

2(λ1)3

[
6⟨ê†0, (ê0)

2vb2⟩+ 2(CA)2λ1 + 2CA(CB(λ1)2 − 3λ1λ2 + 5λ3) + 2⟨ê†0, v̂1v̂1ê0⟩

+ λ1[2⟨ê†0, (ê0)
2va2 ⟩ − 6⟨ê†0, v

b
2⟩ − 2⟨ê†0, v

a
2 ⟩λ1 + 2(CB)2(λ1)2 − 3CBλ1λ2 + 5CBλ3]

]
(δ̃B − λ1B3) log

(
δ − λ1B2

δ

)
+

3

2(λ1)

[
CB(2CAλ1 + 2CB(λ1)2 − 5λ1λ2 + 5λ3)

]
(δB − λ1B3)B2 log

(
δ − λ1B2

δ

)
−

3δ

4(λ1)2
CB

(
− 2CAλ1 + (3λ1λ2 − 5λ3)

)
(δB − λ1B3)

[
log

(
δ − λ1B2

δ

)]2
+

3

2
(CB)2(δ − λ1C2)(δB − λ1B3)

[
log

(
δ − λ1B2

δ

)]2
. (6.18)

where we have computed the terms using Wolfram Mathematica.
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In this section, we focus on the difference between log(||u−UN+1||) and log(||F(N, ϵ, t)||). We focus on different

features, namely how the norms change with δ and U . In our first range of figures (Figure 1), we have fixed δ = 0.01.

We plot log(||u−UN+1||) (U0 with red stars and U1 with blue stars) and log(||F(N, ϵ = 0.01, t)||) for N = 0 and N = 1

(red crosses and blue crosses respectively) increasing U for t = 100, t = 1000 and t = 2000 in Figures 1a, 1b and

1c respectively. We notice the error bound increases owing to the exponential dependence on T . We notice also

that for t = 100 and t = 1000, that one approximation is not necessarily better as we are still in the linear regime.

For t = 2000, the N = 1 approximation is slightly better. One could say this is reflected in the more conservative

error bound.

In our second range of figures (Figure 2), we have fixed δ = 0.05. We plot log(||u−UN+1||) (U0 with red stars and

U1 with blue stars) and log(||F(N, ϵ = 0.01, t)||) for N = 0 and N = 1 (red crosses and blue crosses respectively)

increasing U for t = 100, t = 1000 and t = 2000 in Figures 2a, 2b and 2c respectively. In this case, we notice that

error bounds always present the first approximation as being better even when this is sometimes dubious. We find

that the approximation given by N = 0 is slightly better larger U . We attribute this to our approximations poorly

approximating the transitions from the linear regime to the saturated regime. One of the limitations of these error

bounds is that the error bound relating to U = 1 is uniformly better even though this may not be the case.

a) b)

c)

Figure 1. Plots of log(||u− U0||) (red stars) and log(||u− U1||) (blue stars) for δ = 0.01 with log(||F(0, ϵ = 0.01, t)||
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(red crosses) and log(||F(1, ϵ = 0.01, t)|| for the following times t = 100 (a), t = 1000 (b) and t = 2000 (c).

a) b)

c)

Figure 2. Plots of log(||u− U0||) (red stars) and log(||u− U1||) (blue stars) for δ = 0.05 with log(||F(0, ϵ = 0.01, t)||

(red crosses) and log(||F(1, ϵ = 0.01, t)|| for the following times t = 100 (a), t = 1000 (b) and t = 2000 (c).

After a certain time the solution does not grow anymore but instead converges asymptotically to a particular

value. Therefore, if we pick a time point, Tc when the solution is on this “asymptotic approach”, we can input this

value Tc into the formula for the error bound (6.14), and this error values will apply from for the entire time domain,

as F(N, ϵ, t) is an increasing function. This is especially useful when we increase δ which reduces the saturation

time. In Figure 3, we plot the ||u||L2 for a range of δ. From this value, it is shown that we could pick earlier times for

Tc for increasing δ and thus make the error bounds tighter.
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Figure 3. A plot of ||u||L2 against t for a range of δ shown in plot.

6.3 Summary of Chapter

In the first section of this chapter, we derived error bounds for the RnsaGL (error bounds for the CnsaGL can be

derived similarly). We did this via a bootstrapping argument that was facilitated by being able to write our operator in

integral form. The bootstrapping argument showed us that a radius of convergence existed, but did not elucidate the

what the radius of convergence was. These error bounds were importantly dependent on U and δ. In the second

part of the chapter, we explored the error bound for various parameters. We saw that the error bound overestimates

the discrepancy between the approximation and the solution to an enormous extent, thus demonstrating that these

theoretical error bounds are not useful for providing guidance regard to what order to take the approximation up to

or how big ϵ should be. The error bounds can be improved by picking the earliest time point when the solution is

on the “asymptotic approach”. This would provide tighter more nuanced error bounds, particularly as the solution

saturates earlier for higher delta.
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Chapter 7

Stochastic Amplitude Equations

In the papers of Blömker et al. (2005, 2007, 2011) [14, 15, 16] and Mohammed et al. (2011) [71] as well as

Pradas et al. [78], the method of stochastic homogenisation was used to explore the effects of additive noise on

PDEs via amplitude equations. A key ingredient to this method was that the solutions could be expanded such that

u =
∑

n=0 anen where an and en are amplitude-eigenvector pairs. As the RnsaGL gives rise to a quasi-basis, we

have tried to apply the same method of deriving amplitude equations in the case of additive noise. The noisy SPDE

that we consider is given by
∂u

∂t
= LRGLu− u3 + ϵδ̃u+ ϵ

3
4

N∑
n=1

αnβn(t)ên (7.1)

where βn is a standard Brownian motion and ên are the eigenvectors for the non-self-adjoint operators. The αn are

constants that determine the strength of the noise that we put along each mode; the sum starts at 1 as we want no

noise on the unstable mode. ϵ is the distance from criticality and W is a Q-Wiener process on H(G) ∩ H(G). We

choose a noise strength of ϵ
3
4 , because in the paper by by Mohammed et al. (2014) [71], it was shown that additive

noise of the order ϵ
3
4 along the stable eigenvectors results in a deterministic amplitude equation, namely the same

first order amplitude equation derived via WNLE. What is interesting is that this approach is fundamentally different

from our approach as no modes were discounted as a first step.

Before, we apply the averaging method, we begin by providing the key concepts from stochastic mathematics

(Section 6.1). For example, what it means for equation (7.1) to have a solution and the definition of the Backward-

Kolmogorov equation. We particularly look at a sequence of proofs from Da Prato and Zabczyk (1992) [32] that

establish the existence of a mild solution for (7.1). We also prove that a Wiener process W in H(G) ∩ H(G−1) can

be expanded using the quasi-basis of the RnsaGL. In Section 6.2 we derive the first order amplitude equation and

in Section 6.3, we perform numerical experiments.
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7.1 Definitions and Concepts

In this section, we briefly go over some of the concepts necessary to define (7.1) and ensure that it has a solu-

tion. This section is very much analogous to the theorems that we generated in Section 3, but, as well as having

conditions such as LRGL’s being the generator of strongly continuous semigroup and a relatively well behaved non-

linearity, we also need conditions on the noise. This section is largely her for pedagogical reasons for the reader

who may not be au fait with stochastic mathematics, but furthermore the expansion of a Wiener process is a nice

result that promises to have applications elsewhere, for instance in the field of Non-Hermitian Quantum Mechanics.

We firstly define what we mean by “noise”. For this we need the following definitions; random variable, prob-

ability space, stochastic process, and Q-Wiener process, all of which we take from Da Prato and Zabczyk (1992)

[32]. These definitions and subsequent theorems form part of the apparatus for showing that (7.1) has a solu-

tion, but moreover allow us to define the “Backward-Kolmogorov operator”, which we use to perform the stochastic

homogenisation.

• Definition (Random Variable). A measurable space is a pair (Ω,F) where Ω is a non-empty set and F is also

called a σ-algebra of subsets of Ω. This means that the family F contains the set Ω and is closed under the

operator of taking complements and countable unions of its elements. If (Ω,F) and (E ,G) are two measurable

spaces, then a mapping X form Ω into E such that the set {ω ∈ Ω : X(ω) ∈ A} = {X ∈ A} belongs to F for

arbitrary A ∈ G is called a measurable mapping or a random-variable from (Ω,F) to (E ,G).

• Definition (Probability Space). A probability measure on a measurable space (Ω,F) is a σ-additive function P

from F into [0, 1] such that P(σ) = 1. The triple (Ω,F ,P) is called a probability space.

• Definition (Stochastic Process). Assume that E is a separable Banach space and let B(E) be the σ-field of its

Borel subsets. Let (Ω,F ,P) be a probability space on an interval I of R+. An arbitrary family X = {X(t)}t∈I

of E-valued random variables X(t), t ∈ I, defined on Ω is called a stochastic process.

• Definition (Q-Wiener Process). Assume H is a separable Hilbert space and Q is a non-negative trace class

operator on H. A H-valued stochastic processes W (t) is called a Q-Wiener process

1. W (t = 0) = 0

2. W has independent increments: for every t ≥ 0, the future increments W (t+ u)−W (t) are independent

of the past values W (s), s ≤ t.

3. W has Gaussian Increments, mean that W (t+ u)−W (t) is normally distributed with mean 0 and covari-

ance operator Q, i.e. u, W (t+ s)−W (t) ∼ N (0, (t− s)Q)

4. W has continuous paths: W (t) is continuous in t, a.s. in Ω.
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We recall that as Q is defined as a trace class operator there exists a complete orthonormal system {ek} in H

and a bounded sequence of non-negative real numbers {λk} such that

Qek = λkek (7.2)

We consider now the following important proposition that follows form the definition of a Q-Wiener process.

• Proposition (Properties of Wiener Process in terms of Expansion in the Eigenvectors of Q). Assume W (t) is a

Q-Wiener Process. Then the following statements hold.

1. W is a Gaussian process on H and

E(W (t)) = 0, Cov(W (t)) = tQ, t ≥ 0. (7.3)

2. For arbitrary t ≥ 0, W has the expansion

W (t) =

∞∑
j=1

√
λjβj(t)ej (7.4)

where

βj(t) =
1√
λj

⟨W (t), ej⟩, (7.5)

for all j ∈ N . Furthermore, βj(t) are all real valued Brownian motions mutually independent on (Ω,F ,P)

and the series in (7.4) is L2-convergent.

Proof. See Proposition (4.3) of Da Prato and Zabcyzk [32]. □

We use the same idea to justify the form of the noise in (7.1) into individual Brownian motions. As we want to

recreate the stochastic homogenisation method by putting noise down the non-orthogonal eigenvectors, we have to

show that we can decompose a general Wiener process W such as

W (t) =

∞∑
n=0

⟨ê†n,W (t)⟩ên (7.6)

We do this through the following theorem;

• Theorem (Expansion of noise in the eigenvectors of LRGL). Let W be a H-valued Wiener process where H =

H(G) ∩ H(G−1). Let ê⊥n be the eigenvectors of the RnsaGL when the equation is self-adjoint (U = 0). Let

these be the eigenvectors of Q such that

Qê⊥k = λkê
⊥
k (7.7)
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thus the noise can be expanded as

W (t) =

∞∑
j=0

√
λjβj(t)ê

⊥
j (7.8)

where 1√
λj

⟨ê⊥j ,W (t)⟩. Then the noise can also be expanded as

W (t) =

∞∑
j=0

√
λj β̂j êj . (7.9)

where β̂j = 1√
λj

⟨ê†j ,W (t)⟩.

Proof. The proof follows from the theorem “Expressing elements of H(G)∩H(G−1) in terms of non-orthogonal

basis vectors” in Section 4.3.

In Section 3, we showed how the existence of a strongly continuous semigroup allowed us to write our solutions

in integral form. A key difference between stochastic equations and deterministic equations is that they must be

interpreted in integral form. Often this is the starting point of the definition of a “mild solution”. The full definition of

a “mild solution” can be given as follows

• Definition (Mild Solution). Let H be a Hilbert-Space and consider the following stochastic differential equation

du

dt
= Lu+N (u) +

dW

dt
(7.10)

with L is the linear operator, N (u) is the nonlinear operator and W is a Q-Wiener process. Then (7.10) has a

mild solution if it can be written in the following form

u(t) = etLu0 +

∫ t

0

e(t−s)LN (u)ds+

∫ t

0

e(t−s)LdW (s) (7.11)

for arbitrary t ∈ [0, T ) if all terms are “well-defined” in H.

We give the definition of the Stochastic integral in the Itō, as this provides meaning to the last term of (7.11);

• Definition (Itō Integral). Let γ(x, t) be a smooth function of (x, t), then we define the Itō integral as

∫ t

0

γdW = lim
n−→∞

∑
[ti−1,ti]∈πn

γ(x, ti−1)(W (ti)−W (ti−1)) (7.12)

where πn is a sequence of partitions of [0, t].

Given the definition of mild solution, we have the following theorem from Da Prato and Zabcyzk (1992) [32];

• Theorem (Existence and Uniqueness of SPDE with Dissipative Nonlinearity). Let H be a Hilbert space and let

E be continuously and densely embedded in H. Let us assume the following about the terms in (7.10):
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(a) Let L generates a C0 semigroup in H.

(b) Let LE be “the part” of L in E , i.e. LE : E −→ E , and let LE also generate a C0-semigroup on E such that

||eLE ||H ≤ eωt where ω ∈ R for all t ≥ 0.

(c) Let the nonlinearity be uniformly continuous and dissipative on bounded sets of E .

(d) W is a H-valued Q-Wiener process.

(e) u0 ∈ E .

then there exists a unique mild solution (7.11) in C([0,∞);E) to the equation (7.10).

Proof. See Theorem 7.11 Da Prato and Zabcyzk (1992) [32]. □

We can now prove that the (7.1) has a mild solution;

• Corollary (Mild solution to (7.1)). By the above definitions, let H = L2(R) and E = H1(R). The equation (7.1)

has a mild solution.

Proof. We show that each assumption of the theorem “Existence and Uniqueness of SPDE with Dissipative

Nonlinearity” is satisfied. Let L = LRGL + ϵδ̃ and let N (u) = −u3. Furthermore, let us assume that initial

condition u0 ∈ E as a starting point, hence (e) is satisfied. By definition, (d) is satisfied as H(G)∩H(G−1) ⊂ H.

Furthermore, W is a Q-Wiener process, as the noise is only placed a long a finite number of global modes.

We notice that (a) is also satisfied as we showed previously that L̂RGL
n is a contraction and thus by adding

another bounded operator, we get a C0-semigroup. We have that (c) is satisfied as we have

−⟨u3 − v3, u− v⟩ = −
∫ ∞

−∞
(u2 + v2)[(u− v)2 + uv] ≤ 0. (7.13)

The uniform continuity follows from

||v3 − u3||H1 = ||(v − u)(v2 + u2 + uv)||H1 ≤ C||(v − u)||H1 (7.14)

where C is a constant. Lastly, we have that (b) is satisfied as ||e(t−s)(LRGL+δ)|| ≤ eωt, as LRGL is a closed

operator that generates a C0-semigroup. □

Now, we introduce the Backward-Kolmogorov equation, which is the quantity upon which we perform the stochas-

tic homogenisation. It is not necessary to consider the Backward-Kolmogorov equation in order to perform the

stochastic homogenisation as the same results can be obtained in a path-wise manner from the governing equa-

tions by the application of Itō’s lemma. The papers of Blömker and his collaborators (2005, 2007, 2011) [14, 15, 16]

used this technique to derive error bounds. In contrast, the procedure we use follows Pradas et al. (2012) [78] by

using the Backwards-Kolmogorov equation.
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• Definition (Kolmogorov Equation). We define the Backward-Kolmogorov equation as

dv(u, t)

dt
=

1

2
Tr[Q

∂2

∂u2
v(u, t)] + ⟨(Lu+N (u),

∂

∂u
v(u, t)⟩ (7.15)

with v(u, 0), for t ≥ 0, u ∈ D(L).

Under certain assumptions, the equation has a solution. The significance of this equation is given in the following

theorem

• Theorem (Equivalence of the Solution to the Backward-Kolmogorov Equation and Expectation). Consider the

reference equation (7.10). Let L : D(L) ⊂ H −→ H where L is a symmetric operator that has a set of

eigenvectors {en} that form an orthonormal basis and with corresponding eigenvalues {λn}, where λn ≤ 0.

Furthermore, let W be a Q-Wiener process such that Q ∈ (0, 1] such that Q = (−L)−r for r ∈ (0, 1], and let

N ∈ H1. Then for any ϕ ∈ B(H), we have

v(t, x) = E[ϕ(u, (t, x))], (7.16)

t ∈ 0, x ∈ H where v is the mild solution of (7.27) and u is the mild solution of (7.10).

Proof. Theorem 9.4.3 of Da Prato and Zabcyzk (1992) [32]

We notice that in the self-adjoint case of the RnsaGL, with δ = −0.01, the assumptions of the theorem “Equiv-

alence of the Solution to the Backward-Kolmogorov Equation and the Expectation” are satisfied with Q(−(LRGL +

δ))−r with r ∈ (0, 1].

7.2 Derivation of First Order Approximation

soul We note that we derived the first order approximation as it was done in Pradas et al. 2011. [78]. Before, we

begin our derivation, we give the theorem that provides similar results in the self-adjoint case. This theorem is from

the paper by Mohammed et al. (2014) [71].

• Theorem (Amplitude Equations for a Stochastic Partial Differential Equation (SPDE) with Additive Noise of

Order ϵ
3
4 ). Let H be a Hilbert space with norm || · || and inner product ⟨·, ·⟩, and consider the following equation

∂u

∂t
= Lu+ ϵδu+ F(u, u, u) + ϵ

3
4
∂W

∂t
(7.17)

where
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(a) L is a non-positive self-adjoint operator on H with real eigenvalues −λk such that

0 = λ0 = . . . = λn < . . . ≤ λk ≤ . . . and λk ≥ Ckm (7.18)

for all sufficiently large k and onem > 0 where the corresponding eigenfunctions {ek}∞k=1 form a complete

orthonormal system in H such that Lek = −λk

(b) δ is a constant.

(c) F is a nonlinearity such that F : (Hα) −→ H such that

||F(u, v, w)|| ≤ C||u||α||v||α||ω||α ∀u, v, w ∈ Hα (7.19)

and furthermore we have that

⟨F(a, a, a), a⟩ ≤ −c0|a|4 (7.20)

(d) W is a finite-dimensional Wiener process of H, such that for t ≥ 0,

W (t) =
∑
k

αkβk(t)ek for finitely many k ≥ n+ 1 (7.21)

where (βk))k are independent, standard Brownian motions in R and (αk)k are real numbers.

Then consider the amplitude equation

dA

dt
= δA+ P0(F(Aê0, Aê0, Aê0)). (7.22)

where P0 is the projection onto the zeroth eigenvector. Provided that (7.17) and (7.22) are initialised such that

u(t = 0) = A(t = 0)e0 then for all p > 1 and T0 > 0 and all κ ∈ (0, 1
18 ), there exists a C such that

P
(

sup
t∈[0,

T0
ϵ

||u(x, t)−Aê0||α > ϵ(
3
4−10κ)

)
≤ Cϵ

p
2 . (7.23)

Proof. See the proof of Theorem 16 in Mohammed et al. (2014) [71].

The reader should recognise (7.22) as the Stuart-Landau equation. We see that all the conditions of the above

theorem are satisfied for the RnsaGL apart from the self-adjointness; (d) is satisfied owing to the quasi-basis struc-

ture. We derive the amplitude equation (7.22) in the following “derivation”.

• Derivation (First Order Amplitude Equation in the Stochastic Case).

107



We put equation (7.1) on a diffusive-timescale by letting u = ϵ
1
2 v(x, τ)

−1

ϵ
Lv =

(
− ∂v

∂τ
+ δ̃v − v3

)
+

1

ϵ
1
4

N∑
n=0

αnβnên. (7.24)

where the noise has been such that Ŵ = ϵW (τ). We expand in terms of the amplitude-eigenvector pairs given

by v =
∑∞

n=0 anên, which is possible owing to the quasi-basis structure and we take the L2-inner product. We

take the L2 inner product with each ê†n in order to isolate the different modes. This gives the following infinite-

dimensional system of equations

∂a0(τ)

∂τ
= δ̃a0 − ⟨ê†0, (

∞∑
k=0

akêk)(

∞∑
l=0

alêl)(

∞∑
m=0

amêm)⟩ (7.25)

and for n ≥ 1

∂an(τ)

∂τ
= −1

ϵ
λ̂nan + δ̃an − ⟨ê†n, (

∞∑
k=0

akêk)(

∞∑
l=0

alêl)(

∞∑
m=0

amêm)⟩+ 1

ϵ
1
4

αnβn (7.26)

where λ̂n = |λn|. The Backward-Kolmogorov equation is for the system of SDEs is

∂wϵ

∂τ
= Lbkwϵ (7.27)

where we have the “Backward-Kolmogorov operator”, Lbk, given by

Lbk =
1

ϵ
L0 +

1

ϵ
1
2

L1 + L2 (7.28)

with

L0 =

∞∑
n=1

−λ̂an
∂

∂an
, L1 =

∞∑
n=1

1

2
αn

∂2

∂a2n
and L2 =

∞∑
n=0

(δ̃an +Nn)
∂

∂an
(7.29)

where we have used the abbreviation

Nn = ⟨ê†n, (
∞∑
k=0

akêk,

∞∑
l=0

alêl,

∞∑
m=0

amêm)⟩. (7.30)

We let the solution to the Backward-Kolmogorov equation take the following form

wϵ = w0 + ϵ
1
2w1 + ϵw2 + ... (7.31)

Putting this into (7.27) the following equations at each order
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• O( 1

ϵ
1
2
)

L0w0 = 0 (7.32)

• O( 1ϵ )

L0w1 = −L1w0 (7.33)

• O(1)

L0w2 = −L1w1 +

(
− ∂w0

∂t
+ L2w0

)
(7.34)

From the equations (7.32) and (7.33) we ascertain that w0(a0) and w1(a0) only. From the equation (7.34), we

notice that there is no stochastic part as L1w1 = 0. Now, we have to average with respect to the invariant

measure given by L†
0ρ = 0, which is given by ρ = δ(a1)δ(a2)... for all n ≥ 1 where δ is the Dirac delta function1.

This gives the following equation
∂w0

∂τ
=
∂w0

∂a0

(
(δ̃a0 + (a0)

3λ1)

)
(7.35)

Therefore, the resulting amplitude equation is given by

∂w0

∂a0

∂a0
∂τ

=

(
(δ̃a0 + (a0)

3λ1)

)
(7.36)

which corresponds to the following amplitude equation

dA

dτ
= δ̃A− λ1A3. (7.37)

We let B = ϵ
1
2A and we put the equation back on the original timescale. This gives

dB

dτ
= δ̃B − λ1B3 (7.38)

which is the same result as in the deterministic case. Therefore the first order stochastic approximation u0ths

is given by

u0ths = Bê0. (7.39)

1We notice that the adjoint of the operator L†
0 = −

∑∞
n=0 λn(an

∂
∂an

+ 1). The kernel of this operator is non-trivial but satisfied by the Dirac
Delta function (the reader is invited to consider the paper McKane and Waxman (2007) [65] for a similar example with pure drift). Therefore, we
let the invariant measure ρ = δ(a1)δ(a2)δ(a3)..., which is such that

∫+∞
−∞ ρda = 1. Furthermore, every integration of the form

∫∞
−∞ δ(an)andan,∫∞

−∞ δ(an)a2ndan and
∫∞
−∞ δ(an)a3ndan equals zero.
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7.2.1 Numerical Experiments

In our numerical experiments, we solve (7.1) with α1 = 1 and for k ̸= 1, αk = 0. Therefore, there is noise on the

eigenvector ê1 but not along any other eigenvector. In these figures, we have tailored the time-step to the relative

size of the noise term. Information on the numerical procedures can be found in the Appendix B.

In Figure 1, we plot side by side the L2 norm of the solution of (7.1) alongside the stochastic path taken at

x = 0.22 (the nearest point to the origin on the x-domain) for U = 0. We also plot the norm of the approximation

given by Aê0 and the value of Aê0 at x = 0.22. These graphs coincide enough to validate the first order deterministic

approximation.

Figure 1. (Left) Figure 1. (Left) The norm of the solution u of (7.1) (blue) and the approximation u0ths given by (7.39)

(orange) for U = 0, δ = 0.01. (Right) The solution u (blue) and the approximation u0ths given by (7.39) for U = 0,

δ = 0.01 taken at point x = 0.22.

For U = 1, we compare the same structures namely the difference in norm between the solution of u given by (7.1)

and approximation given by the amplitude equation. We see from the picture on the right-hand-side a phenomena of

switching, which suggests that the solution is described by the approximation (7.39) is not adequate. We liken this to

the deterministic phenomena where the higher order structures, in this case, noisy structures are more significant.

In Figure 3, we also plot relative size of the eigenvectors with this normalisation, i.e. ê1 for U = 0 and ê1 for U = 1.

We notice that the size of the eigenvector in the case U = 1 may have a significant effect on noise strength to have

provoked the switching in the numerical experiments.
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Figure 2. (Left) The norm of the solution u of (7.1) (blue) and the approximation u0ths given by (7.39) (orange) for

U = 1, δ = 0.01. (Right) The solution u (blue) and the approximation u0ths given by (7.39) for U = 1, δ = 0.01 taken

at point x = 0.22.

Figure 3. The eigenvectors ê1 for U = 0 (blue) and U = 1 (orange).
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7.3 Summary of this Chapter

In this chapter, we considered a theorem by Mohammed et al. (2014) [71] which showed for a specific noise strength,

the first order approximation to an SPDE was still deterministic. However, one of the assumptions in this theorem

was that the operator was self-adjoint thus to allow for a well-defined stochastic convolution. We extended some

stochastic concepts for when the linear operator is not self-adjoint, but there exists a quasi-basis structure, and

hence showed that in our case the stochastic convolution was well defined. Furthermore, we proved the existence

of a mild solution to the noisy RnsaGL and then we then derived a first-order amplitude equation assuming that the

solution of the Backward-Kolmogorov equation is equivalent to the expectation even in a situation where the operator

is non-self-adjoint but a quasi-basis structure still exists. A theorem equating the solution to the expectation does

not exist in the literature to the author’s knowledge, but would be a possible direction of future work. We performed

numerical experiments that showed the first order deterministic amplitude equation worked well in the self-adjoint

case for the value of ϵ considered but poorly in the non-self-adjoint case. Furthermore, in the non-normal case,

there was switching between different branches of the pitchfork bifurcation.
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Chapter 8

Conclusion

In this thesis, we have used the problem of the failure of first order approximations derived via WNLE to approximate

the solutions of non-self-adjoint partial differential equations to explore non-self-adjointness itself. We did this using

two test-cases, the RnsaGL and the CnsaGL. These equations exhibited different features; the eigenvectors of the

RnsaGL formed a quasi-basis in the space H(G) ∩ H(G−1) and the CnsaGL exhibited the same phenomena seen

in numerical experiments as the linearised Navier-Stokes operator where the frequency was well approximated by

a first order approximation, but the amplitude was not (Sipp and Lebedev (2007) [92] and Carini et al [21] (2015)).

In the following paragraphs, we will go over the main conclusions from each chapter and try to contextualise the

significance of the literature in a broader sense as well as talk about avenues of future research. The author believes

that this PhD, although not presenting extremely technical results, has strength because the results brought together

different fields and in this way created several budding areas for future research.

In the introduction, we surveyed different linear descriptions of Fluid Mechanics and aligned them with different

mathematical objects. We also did some rudimentary numerical experiments demonstrating transient growth. Addi-

tionally, we split the linear operator LCGL into two different equations for amplitude and frequency. We showed that,

in the case of the CnsaGL, the linear operator for frequency is sub-critical and only demonstrates minimal transient

growth. We hypothesize that the frequency operator in the case of the linearised Navier-Stokes equations displays

similar phenomena, and hence why the frequency is captured via a first-order approximation. We also connected

the different linear approaches via the corresponding mathematical objects. Furthermore, we contextualised the

previous work by Hunt and Crighton (1991) [55] by showing that the same result could be derived via an eigenvalue-

expansion method despite the eigenvectors only forming a complete set and not satisfying any stronger notion of a

basis.

In the second chapter, we provided an argument against higher order amplitude equations by performing nu-

merical experiments that showed non-normality is largely a problem in space - not a problem in time - and that

any approximation that disregards the stable modes is not appropriate for modelling a non-normal system. For the
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RnsaGL, we showed that a significant part is orthogonal to the leading eigenvector, which will not be captured in

an approach that involves building higher order amplitude equations for the zeroth eigenvector. Similar numerical

experiments may be elucidating in the case of other non-normal operators where the first order approximation fails

to capture the behaviour of the governing equation well, such as the linearised Navier-Stokes equations. This kind

of analysis should be performed as a first step.

In the third chapter, we proved that LRGL and LCGL generated C0-semigroups. We also proved local existence

and uniqueness of solutions to the RnsaGL and the CnsaGL. For the RnsaGL, we were inspired by the work of

Metafune et al. (2005) [67] to define the domains of our operators, but, unlike Metafune et al. (2005), we did not

go down the route of proving extra regularity given the regularity of the initial condition. In the fourth chapter, we

emphasized that there are different notions of basis and that these are appropriate for different uses. The notion

of a Riesz basis allows us to expand functions within that basis such that the corresponding coefficients are finite.

When no Riesz basis is present, there is still the possibility of expressing functions in the space H(G) ∩ H(G−1)

using a quasi-basis providing the metric operator G is known. A future area of possible research would be to tie

the third and fourth chapters together by defining the domain of our operators as the exponentially waited space

H(G) ∩H(G−1) and then to prove that the solution stays in this space.

From a numerical perspective, there is perhaps a possibility for exploring sharper numerical approximations by

expressing functions in these quasi-bases. For instance, we used a Hermite-discretisation in order to capture the

asymptotic tails of our solution, but this does not capture the asymmetry. The author sees no reason why a quasi-

basis structure could not be used in order to provide new discretisation schemes to better express asymmetric

functions. A difficulty in the general applications of the quasi-basis structure is to know whether or not the metric

operator exists. The pseudospectra gives a good test for the existence of a bounded metric, but as we have

seen that in certain scenarios unbounded metrics are very useful, and thus the non-existence of these metric

operators is very useful also. In Krejčiřı́k and Siegl (2019) [60], the non-existence of a metric operator for certain

Schrödinger operators was proven on the basis that these had a “significant” complex part. It would be enlightening

to reproduce such proofs for the CnsaGL. Furthermore, the splitting of the equation into the frequency operators and

the amplitude operator could be a way forward if a complex diffusion term prohibits the existence of a quasi-basis.

In the fifth chapter, we derived higher order approximations using a technique that has not been used previously,

namely normalising higher order terms such that they preserved the linear development of the zeroth eigenvector.

We used this assumption because it was gifted to us empirically, but we would like to in future work extend this as-

sumption. For example, the assumption can be viewed as ensuring no O(1) terms exist in higher order expansions.

However, one could also argue that, in the way O(1) terms do not appear at O(ϵ), O(1) and O(ϵ) terms should not

appear at O(ϵ2) and so on and so forth. For higher values of U and higher values of δ, the approximations did not

necessarily improve for higher orders. Therefore, we should consider the radius of convergence of the expansion

(5.2), as this could give us possible limitations regarding ϵ. To explore the convergence of the series, it would be use-
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ful to implement the numerical procedure using symbolic computing as the higher order terms can get laborious to

deal with by hand. On a different note, the derivation of the higher order approximations was inspired predominantly

by the work of Vishik and Lyusternik (1960) [100]. We demonstrated how they dealt with the elliptic case, where

there is no non-uniqueness at higher terms. In the paper, Vishik and Lyusternik (1960) [100] they consider also

the case when there exist “associated eigenvectors”; in today’s vocabulary, we would refer to these as associated

eigenvectors. This may have applicability to the case of Poiseuille flow where the eigenvectors are nearly parallel

(Trefethen et al. (1993) [98]). However, the natural next step is to calculate these higher order approximations for

configurations such as cylinder flow at with Reynolds number equal to 47 (the first bifurcation of a cylinder flow)

where the non-normality manifests in the same way, with the direct and adjoint eigenvectors becoming further apart.

In the sixth chapter, we derived error bounds for the RnsaGL using a bootstrapping method, but again we

purposely did not restrict ϵ or do the bootstrapping with ϵ, as we are interested with how the discrepancy grows for

large δ = δ̃ϵ. We found that the coefficient in (6.13) depended on δ as well as the advection velocity U and the time

T . The exponential dependence on T in particular made these error bounds large. We re-emphasized that these are

theoretical tools only. Furthermore, the error bounds do not reflect the case when the first approximation is better

than the second order approximation. The author thinks that, in hindsight, it would have been better to compare the

attractors of the solution and the approximation. Arguments regarding the relative size of attractors can be found in

Schneider (1994) [84]. An LP -theory for the Linearised Navier-Stokes equations would allow us to derive use error

bounds by writing them in integral form; this is also an extremely difficult problem that has been tackled with the

aim of finding solutions to the Navier-Stokes equations. Nevertheless, there is a possibility for similar bounds to be

derived between the approximation and the solution in the case of the linearised Navier-Stokes operator via energy

methods.

In the seventh chapter, we derived a first-order amplitude equation for the noisy RnsaGL. We derived our am-

plitude equation by using the Backward-Kolmogorov operator. However, we acknowledged that the appropriate

mathematical framework did not exist concerning a quasi-basis. In the numerical experiments, we saw that for

U = 1 the solution was not approximated well by the first-order amplitude equation at all. The fact that, when U = 1,

switching occurs suggests is indicative that an order violation has taken place, i.e. the size of the noise term with

stable non-self-adjoint eigenvector is greater than the proceeding-in-order spatial structure. The development of the

stochastic apparatus in order to deal with the presence of a quasi-basis is another direction for future research, as

well as looking at the possible stabilisation effect of additive noise on a non-self-adjoint PDE (a possible stabilisation

by additive noise has been explored in self-adjoint cases, the reader is invited to see Blömker et al. (2009) [17]).

To conclude, we hope that the reader can see that the two test cases of the RnsaGL and the CnsaGL provide

a wealth of discovery regarding the role of non-normality in Fluid Mechanics, as well as a plethora of new potential

research opportunities. The quasi-basis structure really allows the use mathematical techniques from non-Hermitian

Quantum Mechanics that have not yet been fully explored in a Fluid Mechanics context. Furthermore, the author
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believes that this thesis also has a strong pedagogical aspect. The reasons behind why we do things like resolvent

analysis in Fluid Mechanics are given from a mathematical point of view; for example, one is of course interested

in the most dangerous frequency response but also when the operator does not generate a strongly-continuous

semigroup it is one of the few things that we can do. The author also believes that a key strength of this thesis

is its interdisciplinary nature. Often in the study of non-self-adjoint operators, the information is in different places

that are sometimes out of the respective purview of the engineer and theoretical physicist; for instance, many of

the quasi-basis results were motivated by pseudobosons [6, 9]. This thesis has not only collated research from

different fields but provided demonstrative examples that have assisted in elucidating the role of non-normality in

Fluid Mechanics.
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Appendix A

In this appendix, we prove two versions of the Fredholm Alternative for the RnsaGL and the CnsaGL respectively. We

apply these theorems when deriving our amplitude equations throughout the thesis and often just say ”by applying

the Fredholm Alternative”. The sections of this appendix are as follows; in the first section, we give important

definitions and theorems, namely the definition of a compact operator and compact embedding, the Kolmogorov-

Riesz-Fréchet theorem that criteria for a compact embedding, the Fredholm alternative for compact operators, and

the Lax-Milgram theorem in its real and complex forms. We reference these theorems when proving the Fredholm

Alternative in the real case and complex case in Sections A.2 and A.3 respectively.

A.1 Useful Theorems and Definitions

In order to prove the Fredholm Alternative, we need a space that is compactly embedded into L2(R) that represents

the boundary conditions in each case, i.e. u −→ 0 as x −→ ∞. We give the definition of a compact embedding and

a compact operator before giving the Fredholm Alternative for Compact Operators.

• Definition (Compact Embedding). Let X and Y be Banach spaces, X ⊂ Y . We say that X is compactly

embedded in Y , written X ⊂⊂ Y , provided

(a) ||x||Y ≤ C||x||X (x ∈ X) for some constant C

(b) each bounded sequence in X is pre-compact in Y (has a convergent subsequence in Y )

• Definition (Compact Operator). Let X, Y be normed spaces and T : X −→ Y a linear operator. T is a

compact operator if for any bounded sequence xnn∈N in X, the sequence {Txn}n∈N contains a converging

subsequence.

Often we prove that an embedding is compact by proving the following two criteria of the Kolmogorov-Riesz-

Fréchet Theorem;

• Theorem (Kolmogorov-Riesz-Fréchet). Let F be a bounded set in Lp(RN ) with 1 ≤ p <∞. Assume that
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(a) lim|h|−→0 ||f(x+ h)− f(x)||Lp = 0 uniformly in f(x) ∈ F , (x ∈ Rn), i.e. for all ϵ > 0, there exists a δ such

that ||f(x+ h)− f(x)||Lp < ϵ for all f ∈ F , for all h ∈ RN with h < δ

(b) For all ϵ > 0, there exists Ω ⊂ RN , bounded and measurable such that ||f ||Lp(Rn\Ω) < ϵ for all f ∈ F .

Then F is pre-compact in Lp(R).

Proof. See Brezis (2011) [19], Chapter 4, Theorem 4.26 and Corollary 4.27. on page 111-113.

In our proofs of the respective Fredholm Alternatives, we use the Fredholm Alternative for compact operators.

This is given by the following theorem; in this theorem, the nullspace and range of an operator T this is denoted by

N(T ) and R(T ) respectively.

• Theorem (Fredholm Alternative for Compact Operators). Let K : H −→ H be a compact linear operator on a

Hilbert space H. Then

i N(I −K) is finite dimensional,

ii R(I −K) is closed,

iii R(I −K) = N(I −K∗)⊥

iv N(I −K) = {0} is and only if R(I −K) = H,

v dimN(I −K) = dimN(I −K∗)

Proof. See Appendix D, Theorem 5 of Evans (2010) [44].

A key component to any Fredholm Alternative proof is the underlying Lax Milgram Theorem. The real and

complex variations are given as follows;

• Theorem (Lax-Milgram). Let H be a real Hilbert space. Assume that B : H ×H −→ R is a bilinear mapping,

for which there exist constants α, β > 0 such that

(a)

|B[u, v]| ≤ α||u||||v|| (u, v ∈ H), (A.1)

and

(b)

β||u||2 ≤ B[u, u] (u ∈ H). (A.2)

Finally, let f : H −→ R be a bounded linear functional on H. Then there exists a unique element u ∈ H such

that

B[u, v] = ⟨f, v⟩ (A.3)
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for all v ∈ H.

Proof. See Evans (2010) [44], Section 6.2.1.

• Theorem (Complex Lax-Milgram). Let H be a complex Hilbert space. Assume that B : H × H −→ R is a

bilinear mapping, for which there exist constants α, β > 0 such that

(a)

|B[u, v]| ≤ α||u||||v|| (u, v ∈ H), (A.4)

and

(b)

β||u||2 ≤ ℜ{B[u, u]} (u ∈ H). (A.5)

Finally, let f : H −→ R be a bounded linear functional on H. Then there exists a unique element u ∈ H such

that

B[u, v] = ⟨f, v⟩ (A.6)

for all v ∈ H.

Proof. This result follows from the generalisation of the Lax-Milgram Theorem by Lions, See Theorem 2.1 in

Showalter (2013) [86].

A.2 Fredholm Alternative for RnsaGL

As mentioned previously, we need to create a space that is compactly embedded into L2(R) that contains the

boundary conditions. In order to create this space, we consider the following unbounded operator

L1 =
∂

∂x
− x. (A.7)

Let us consider the norm || · ||L1 defined as the norm induced by the inner product ⟨L1·,L1·⟩;

||u||2L1 = ⟨L1u,L1u⟩ = ||∂u
∂x

||2L2 + ||ux||2L2 − 2⟨u, x∂u
∂x

⟩. (A.8)

Via integration by parts, we have

2⟨u, xdu
dx

⟩ = [u2x]∞−∞ − ||u||2L2dx (A.9)

where the first term on the right-hand-side goes to zero. Therefore, we have that

||u||2L1 = ⟨L1u,L1u⟩ = ||∂u
∂x

||2L2 + ||ux||2L2 + ||u||2L2 . (A.10)
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We define the following Hilbert1 space HL1

as i.e.

HL1

:= {u ∈ L2(R) : ||u||L1 <∞}. (A.11)

We want to show that the space HL1

is compactly embedded into L2(R), where the definition of a compact embed-

ding was given in the last section. We do this in the following theorem;

• Theorem (Compact Embedding of HL1

into L2(R)). HL1

is compactly embedded in L2(R).

Proof. The criterion (a) in the definition of a compact embedding follows from the definitions of the norms.

To prove criterion (b) in the definition of compact operator, we fix a bounded sequence un, n ∈ N in HL1

and

set F = {un}∞n=0 and show that the terms satisfy the conditions of the Kolmogorov-Riesz-Fréchet theorem.

We have that condition (a) of the Kolmogorov-Riesz-Fréchet theorem because the functions un are in H1(R).

Therefore, by Morrey’s inequality (Theorem 4, Section 5.6.2 in Evans (2010) [44]), the functions un are Holder

continuous with exponent α = 1
2 and thereby uniformly continuous. To prove part (b) of Kolmogorov-Riesz-

Fréchet theorem, we use the fact that the norm ||un||L1 controls of ||xun||L2 . Therefore, we have that for

un ∈ HL1

and an interval D of radius R

M > ||xun||L2(R) ≥ ||xun||L2(R\D) ≥
√∫

|x|>R

x2u2ndx ≥
√
R2

∫
|x|>R

u2ndx = R||un||L2(R\D), (A.12)

which gives

||un||L2(R\D) <
M

R
. (A.13)

We can always tune R such that M
R = ϵ for all ϵ, thus part (b) of the Kolmogorov-Riesz-Fréchet theorem is

satisfied. Thus, un has a convergent subsequence in L2(R) and thus the embedding is compact. □

We can now prove the following theorem;

• Theorem (Tailored Fredholm Alternative for LRGL). Given LRGL as in the (RnsaGL). Then

i Precisely one of the following statements holds:

either

(α) For each f ∈ L2(R), there exists a unique weak solution u of the equation

−LRGLu = f in L2(R) (A.14)

1We can show that HL1
is a Hilbert space by considering a Cauchy sequence fn −→ f in HL1

. We want to show that the limit of this
sequence f is in HL1

. We have owing to the definition of the norms that the space HL1
is continuously embedded in L2(R) so any Cauchy

sequence in HL1
is also Cauchy in L2(R). Moreover, as L2(R) is a complete space, we have that the limit f is also in L2(R). Furthermore, as

we have that HL1
is continuously embedded in L2(R) we have in L2 that xfn −→ f1, dfn

dx
−→ f2 in L2(R), with f1, f2 ∈ L2(R). Owing to the

uniqueness of limits, we have xf = f1 and ∂f
∂x

= f2, and thus f ∈ HL1
.
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or else

(β) There exists a weak solution, u ̸= 0 of the homogeneous problem

−LRGLu = 0 in L2(R) (A.15)

ii Furthermore, should assertion (β) hold, the dimension of the subspace N ⊂ HL1

of weak solutions of

(A.15) is finite and equals the dimension of the subspace N† ⊂ HL1

of weak solutions of

−(LRGL)†v = 0 in L2(R) (A.16)

where (LRGL)† is the L2-adjoint operator of (LRGL), i.e. ⟨(LRGL)†u, v⟩ = ⟨u, (LRGL)v⟩ where ⟨·, ·⟩ is the

L2-inner product.

iii Finally, the boundary-value problem (A.14) has a weak solution if and only if

⟨v, f⟩ = 0 for all v ∈ N†. (A.17)

Proof. Like in Evans (2010) [44], we split this proof up into steps

1. Let us choose γ such that the the bilinear from Bγ [u, v] := B[u, v] + γ⟨u, v⟩ where B[u, v] = ⟨u,−LRGLu⟩

that corresponds to the linear operator Lγu := −LRGL + γ where γ is a constant that facilitates the

fulfilment of the coercivity condition (A.5). Then for each g ∈ L2(R), there exists a unique function

u ∈ HL1

solving

Bγ [u, v] = ⟨g, v⟩ for all v ∈ HL1

(A.18)

by the Lax-Milgram Theorem. Let us write

u = L−1
γ g (A.19)

whenever (A.18) holds.

2. We have that u ∈ HL1

is a weak solution of (A.14) if and only if

Bγ [u, v] = ⟨γu+ f, v⟩ for all v ∈ HL1

. (A.20)

Ergo, if and only if

u = L−1
γ (γu+ f). (A.21)
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Rewriting this equation as is done in Evans (2010) [44] we have the following

u−Ku = h (A.22)

where Ku := γL−1
γ u and h := L−1

γ f .

3. Now, we claim that K : L2(R) −→ L2(R) is a bounded, linear, compact operator. This is where we

fundamentally differ from Evans (2010) [44] and where the usefulness of space HL1

comes in. We have

the following inequality

C||u||2L1 ≤ Bγ [u, v] = ⟨u,−LRGLu⟩+ γ⟨u, u⟩ = ⟨u, g⟩ ≤ ||g||L2 ||u||L1 (A.23)

where C is a constant. The first inequality follows from

⟨u,−Lu⟩ = −
∫ ∞

∞
u

[
∂2u

∂x2
+ U

∂u

∂u
− c1u+ c2x

2u

]
dx = ||du

dx
||2 − c1||u||2 + c2||ux||2dx. (A.24)

Using the definition of K := γL−1
γ and the inequality (A.23), we obtain

||Kg||L1 = ||γu||L1 ≤ C||g||L1 (A.25)

where C ′ is a constant.

4. We may now apply the “Fredholm Alternative for Compact Operators” that we gave in the last section;

this asserts that either:

(a) For each h in L2(R), the equation u−Ku = h has a unique solution u ∈ L2(R).

(b) The equation u−Ku = 0 has nonzero solutions in L2(R).

Should assertion (a) hold then owing to step 2, there exists a unique solution to (A.14). On the other

hand, should (b) be valid, then necessarily γ ̸= 0, and the dimension of the space of solutions, N , to

u−Ku = 0 is finite and equals the dimension of the space, N†, of solutions to v −K†v = 0 where K† is

the adjoint operator of K in the space L2(R). Furthermore, by the same construction done in Step 2, we

have that Ku−u = 0 holds if and only if u is a weak solution of (A.15), and, also, K†v−v = 0 holds if and

only if v is a weak solution of (A.16). Thus, points (i) and (ii) of theorem “Tailored Fredholm Alternative for

LRGL” are proven.

5. Lastly we prove the third point of the theorem. We notice by the “Fredholm Alternative for Compact

Operators” that (A.22) has a solution if and only if

⟨v, h⟩ = 0. (A.26)
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We have that, using the definition of h = L−1
γ f and the definition of K := γL−1

γ , we have that

⟨h, v⟩ = 1

γ
⟨Kf, v⟩ = 1

γ
⟨f,K†, v⟩ = 1

γ
⟨f, v⟩. (A.27)

Consequently, we have that (A.14) if and only if ⟨f, v⟩ = 0 for all weak solutions v of (A.15). □

A.3 Fredholm Alternative for CnsaGL

As in the last case, we need a space that is compactly-embedded in the L2(R) space. The only difference here

is the conjugation that we take on the argument as well as using the complex version of the Lax-Milgram theorem.

Otherwise, the proof remains the same. We still give it in full as the use of the Complex Lax Milgram lemma provides

an insight as to how more general notions of ellipticity are useful with Fluid Mechanics applications.

As in the last proof, we have

L1
c =

∂

∂x
− x. (A.28)

where the c just distinguishes the complex case. We define the norm || · ||L1
c
, we have

||u||2L1
c
= ⟨L1

cu,L1
cu⟩ = ||∂u

∂x
||2L2 + ||ux||2L2 − ⟨u, x∂u

∂x
⟩ − ⟨x∂u

∂x
, u⟩. (A.29)

Therefore, via integration by parts,

⟨u, xdu
dx

⟩+ ⟨xdu
dx
, u⟩ = [|u|2x]∞−∞ − ||u||2L2dx. (A.30)

The first term on the right-hand-side goes to zero (the reader is invited to see the discussion in the section on the

definition of the operators about the boundary conditions). Therefore, we have that

||u||2L1
c
= ⟨L1

cu,L1
cu⟩ = ||∂u

∂x
||2L2 + ||ux||2L2 + ||u||2L2 . (A.31)

We define the following Hilbert2 space

HL1
c := {u ∈ L2(R) : ||u||L1

c
<∞}. (A.32)

We want to show that the space HL1
c is compactly embedded into L2(R), where the definition of a compact embed-

2We can show that HL1
c is a Hilbert space by considering a Cauchy sequence fn −→ f in HL1

c . We want to show that the limit of this
sequence f is in HL1

c . We have owing to the definition of the norms that the space HL1
c is continuously embedded in L2(R) so any Cauchy

sequence in HL1
c is also Cauchy in L2(R). Moreover, as L2(R) is a complete space, we have that the limit f is also in L2(R). Furthermore, as

we have that HL1
c is continuously embedded in L2(R) we have in L2 that xfn −→ f1, dfn

dx
−→ f2 in L2(R), with f1, f2 ∈ L2(R). Owing to the

uniqueness of limits, we have xf = f1 and ∂f
∂x

= f2, and thus f ∈ HL1
c .
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ding was given in A.1. We do this in the same way as we did in the real case.

• Theorem (Compact Embedding of HL1
c into L2(R)). HL1

c is compactly-embedded into L2(R).

Proof. The first criteria for a compact embedding follows from the definitions of the norms. To prove the second

part of the definition, we fix a bounded sequence un, n ∈ N in HL1
c and set F = {un}∞n=0 and show that the

terms satisfy the conditions of the Kolmogorov-Riesz-Fréchet theorem. Condition (a) of the Kolmogorov-Riesz-

Fréchet theorem is satisfied as the functions un are in H1(R) are Holder continuous with exponent α = 1
2 and

thereby uniformly continuous. To prove part (b) of Kolmogorov-Riesz-Fréchet theorem, we use the fact that

the norm ||un||L1 controls of ||xun||L2 . Therefore, we have that for un ∈ HL1

and an interval D of radius R

M > ||xun||L2 ≥ ||xun||L2(R\D) ≥
√∫

|x|>R

x2|un|2dx ≥
√
R2

∫
|x|>R

u2ndx = R||un||L2(R\D), (A.33)

which gives

||un||L2(R\D) <
M

R
(A.34)

We can always tune R such that M
R = ϵ for all ϵ, thus part (b) of the Kolmogorov-Riesz-Fréchet theorem is

satisfied. Thus, un has a convergent subsequence in L2(R) and thus the embedding is compact. □

We can now prove the following theorem;

• Theorem (Tailored Fredholm Alternative for LCGL). Given LCGL as in the (CnsaGL) defined as above

i Precisely one of the following statements holds:

either

(α) For each f ∈ L2(R), there exists a unique weak solution u of the equation

−LCGLu = f in L2(R) (A.35)

or else

(β) There exists a weak solution, u ̸= 0 of the homogeneous problem

−LCGLu = 0 in L2(R) (A.36)

ii Furthermore, should assertion (β) hold, the dimension of the subspace N ⊂ HL1

of weak solutions of

(A.36) is finite and equals the dimension of the subspace N† ⊂ HL1

of weak solutions of

−(LCGL)†v = 0 in L2(R) (A.37)
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where (LCGL)† is the L2-adjoint operator of LCGL, i.e. ⟨(LCGL)†u, v⟩ = ⟨u, (LCGL)v⟩ where ⟨·, ·⟩ is the

L2-inner product.

iii Finally, the boundary-value problem (A.35) has a weak solution if and only if

⟨v, f⟩ = 0 for all v ∈ N†. (A.38)

Proof. Like in Evans (2010) [44], we split this up into steps

1. Let us choose γ such that the the bilinear from Bγ [u, v] := B[u, v] + γ⟨u, v⟩ where B[u, v] = ⟨u,−LCGLu⟩

that corresponds to the linear operator Lγu := −LCGL + γ where γ is a constant that facilitates the

fulfilment of the complex coercivity condition (A.5) in the complex Lax-Milgram lemma. Then for each

g ∈ L2(R), there exists a unique function u ∈ HL1
c solving

Bγ [u, v] = ⟨g, v⟩ for all v ∈ HL1

(A.39)

by the Complex Lax-Milgram Theorem. Let us write

u = L−1
γ g (A.40)

whenever (A.39) holds.

2. We have that u ∈ HL1

is a weak solution of (A.14) if and only if

Bγ [u, v] = ⟨γu+ f, v⟩ for all v ∈ HL1

. (A.41)

Ergo, if and only if

u = L−1
γ (γu+ f). (A.42)

Rewriting this equation as is done in Evans (2010) [44] we have the following

u−Ku = h (A.43)

where Ku := γL−1
γ u and h := L−1

γ f .

3. Now, we claim that K : L2(R) −→ L2(R) is a bounded, linear, compact operator. This is where we

fundamentally differ from Evans (2010) [44] and where the usefulness of space HL1
c comes in as well as
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the Complex Lax-Milgram Lemma. We have the following inequality

C||u||2L1 ≤ ℜ{Bγ [u, v]} ≤ |Bγ [u, v]| ≤ |⟨u,−LCGLu⟩+ γ⟨u, u⟩| = |⟨u, g⟩| ≤ ||g||L2 ||u||L1 (A.44)

where C is a constant. We use the definition of K := γL−1
γ and the inequality (A.44) in order to obtain

||Kg||L1 = ||γu||L1 ≤ C||g||L1 (A.45)

where C is again a constant (note, this is a different C, i.e. not necessarily the same as derived via

different means) from C in (A.44). As we proved in the theorem HL1
c ↪−→ L2(R,C) is a compact operator

on HL1
c .

4. We may now apply the “Fredholm Alternative for Compact Operators” that we gave in the last section;

this asserts that either:

(a) For each h in L2(R) the equation u−Ku = h has a unique solution u ∈ L2(R).

(b) The equation u−Ku = 0 has nonzero solutions in L2(R)

Should assertion (a) hold then owing to the series of equations in Step 2, there exists a unique solution to

(A.35). On the other hand, should (b) be valid, then necessarily γ ̸= 0, and the dimension of the space of

solutions, N , to u−Ku = 0 is finite and equals the dimension of the space, N†, of solutions to v−K†v = 0

where K† is the adjoint operator of K in the space L2(R). Furthermore, by the same construction done in

Step 2, we have that Ku− u = 0 holds if and only if u is a weak solution of (A.36), and, also, K†v− v = 0

holds if and only if v is a weak solution of (A.37). Thus, points (i) and (ii) of theorem “Tailored Fredholm

Alternative for LRGL”) are proven.

5. Lastly we prove the third assertion. We notice by the “Fredholm Alternative for Compact Operators” that

(A.43) has a solution if and only if

⟨v, h⟩ = 0. (A.46)

We have that, using the definition of h = L−1
γ f and the definition of K := γL−1

γ , we have that

⟨h, v⟩ = 1

γ
⟨Kf, v⟩ = 1

γ
⟨f,K†, v⟩ = 1

γ
⟨f, v⟩. (A.47)

Consequently, we have that (A.35) if and only if ⟨f, v⟩ = 0 for all weak solutions v of (A.36).

□
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Appendix B

In this appendix, we go over some numerical methods used. Throughout the thesis, we relied heavily on the

SciPy package linear algebra package to compute various norms, inverting various matrices and compute matrix

exponentials. Furthermore, all odes were solved via the “solve ivp” package from NumPy. We do not give details

regarding the inbuilt functions in NumPy ans SciPy but we do however give the methods of spatial and temporal

discretisation and how we computed the pseudospectra.

B.1 Hermite Discretisation

The numerical experiments are done by discretising the RnsaGL and the CnsaGL operator using Hermite functions,

as done in [11]. The differentiation matrices were provided by Weideman and Reddy [103] with corresponding

matlab codes and kindly converted into python (https://github.com/ronojoy/pyddx/blob/master/sc/dmsuite.py). To

approximate the derivatives in the RnsaGL and the CnsaGL, the solution u is expanded into Physicist’s Hermite

functions

q(x, t) =

n∑
j=1

cj(t) exp(−
1

2
α2
1x

2)Hj−1(α1x) (B.1)

where Hj(α1x) refers to the j − th Hermite polynomial. The differentiation process is exact for solutions of the

form f(x) = exp(− 1
2α

2
1x

2)p(α1x) where p(α1x) is any polynomial of degree n − 1 or less. The scaling parameter

α1 is used to optimise the accuracy of the discretisation [94], by matching as closely as possible to decay of the

(real-part) of the non-self-adjoint eigenvectors (??) as x −→ ∞. This particular choice of discretisation means that

our boundary conditions are enforced implicitly.

We use 220 points, and our collocation points are given as the roots of Hn(α1x). There is a slight discrepancy

between our using Probabilist’s Hermite polynomials for our eigenvectors and using Physicist’s Hermite polynomials

for our discretisation, but we still have a highly accurate approximation of L. This discretisation transforms our

solution into a flow variable u(x, t) into a flow variable û(t) of dimension n. We therefore define our L2 inner product

as

⟨f, g⟩ =
∫ ∞

∞
f(x)g(x)dx ≈ f̂TMĝ (B.2)
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where the T denotes the transpose and M is the positive define matrix that contains the integration weights of the

chosen quadrature rule. We use a trapezoidal rule where the integration points are selected as the midpoints of the

quadrature points.

B.2 Time-Stepping

We use different time-stepping methods according to whether we are dealing with a SPDE or a PDE. We describe

them below before giving the following functions over the page. In the following we denote û as the solution to the

RnsaGL, CnsaGL, or noisy RnsaGL, given by (7.1) in its discretised form, having been discretised in space using

the Hermite Differentiation matrices described in Section 1 of the Appendix.

• PDEs We use the following second order technique. Let us consider the following discretised forms of the

PDE
ûn − ûn−1

dt
= L̂un − u3n (B.3)

and
ûn − ûn−1

dt
= L̂un+1 − u3n. (B.4)

Adding these two equations and rearranging gives the following second order scheme

ûn = (1− 0.5dtL̂)−1[(1 + 0.5dtL̂)un−1 − dt(ûn−1)
3]. (B.5)

In our computations, we use dt = 0.1.

• SPDEs We use the Euler-Maruyama technique. Consider the noisy RnsaGL given by u. We denote the

discretisation of ên with the extra hat, and ˆLRGL We perform a first order discretisation in time where the

subscripts n correspond to the evenly spaced time points {tn} between t = 0 and t = 10000

ûn+1 − ûn
dt

= L̂RGLûn+1 − û3n − ϵ
3
4 ˆ̂en[β1(tn+1)− β1(tn)]. (B.6)

Furthermore, we have performed a Picard iteration in order to make L̂RGLûn+1 a future term. As β1 is just a

standard Brownian motion, we have that β1(tn+1) − β1(tn) = z
√
t2 − t1 where z is an independent normally-

distributed variable. For the specifics, the reader is invited to consult [64].

We rearrange this equation in order to obtain

ûn+1 = (1 + L̂RGLdt)−1[−û3ndt− ϵ
3
4 ˆ̂enz

√
dt] (B.7)
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where dt is the time-step. We generate z using the randn function in NumPy. In our calculations dt = 10−5.

B.3 Computing Pseudospectra

For computing the pseudospectra, we create a grid of x-points {xm} and y-points {ym} (we used 200 by 200 points)

and then find the norm of the inverted matrix (L− (xm + ymi))
−1 in each instance by using the norm function in the

NumPy linear algebra module. This returns the largest singular value of the matrix. We note that faster techniques

are possible and described in the following article by Trefethen (1999) [97]. However, as we only considered a

one-dimensional example, all of our pseudospectra calculations were finished in minutes as opposed to hours.

In both cases, we divided the domain, shown in figure, into a grid of 200 by 200 evenly spaced points, which

we used as our z when calculating the resolvent (LRGL − z)−1 or (LCGL − z)−1. The norm of these operators was

calculated via the norm function in the NumPy Linear Algebra package after the operators were discretised via our

Hermite discretisation method. The reader is directed to the appendix for further details.
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Appendix C

In the first section, we prove that LCGL generates a C0-semigroup. In the second section, we prove that L̂CGL
n is a

sectorial operator.

C.1 LCGL generates a C0-semigroup

We show that the operator LCGL generates a C0-semigroup by firstly proving the conditions of Lumer-Phillips theo-

rem for L̂CGL
n and then using the theorem “Perturbations by Bounded Operators”. The latter theorem was given in

the thesis, but we give both theorems here for ease of use of the appendix. We also have the theorem “Conditions

on the Domains of Symmetric Operators”, which we use to prove one component of the Lumer-Phillips theorem as

well as a theorem about the density of D(LCGL) in L2(R). This density condition needs to be satisfied in order to

use the Lumer-Phillips theorem.

• Theorem (Lumer-Phillips). Let L be a linear operator defined on a dense linear subspace D(L) of the reflexive

Banach space X. Then L generates a contraction semigroup if and only if L is closed and both L and its

adjoint operator L∗ are dissipative.

Proof. See Engel and Nagel (2001) Chapter 2, Corollary 3.17 [41]. □

• Theorem (Perturbations by Bounded Linear Operators). Let X be a Banach space and let A be the infinitesi-

mal generator of a C0-semigroup T (t) on X satisfying ||T (t)|| ≤ Meωt. If B is a bounded linear operator on

X, then A+B is the infinitesimal generator of C0-semigroup S(t) on X, satisfying ||S(t)|| ≤Me(ω+M ||B||)t

Proof. See Chapter 3, Section 3.1, Theorem 1.1 of Pazy (2012) [75]. □

• Theorem (Conditions on the Domains of Symmetric Operators). A densely-defined operator T is symmetric if

and only if T ⊂ T ∗ (i.e. if D(T ) ⊆ D(T ∗), ∀u ∈ D(T ), Tu = T ∗u).

Proof. See Proposition 2.57 in Cheverry and Raymond (2019) [23]. □

• Theorem (Density of D(LCGL)). The space C∞
0 (R) is dense in D(LCGL).

Proof. See Lemma 2.5, Metafune et al. (2005) [67]. □
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Firstly, we show that the operator is closed. We do this by using integration by parts. Secondly, we show that the

domain of the adjoint (L̂CGL
n )† operator is smaller than the domain of the direct operator. This allows us to test the

dissipativity of the adjoint operator on functions that are in the domain of the direct operator.

• Theorem (Lumer-Phillips Closedness Condition). The operator (D(LCGL), L̂CGL
n ) is closed.

Proof. Firstly we prove that the operator (D(LCGL), L̂CGL
n ) is closed; i.e. let {un}∞n=0 ∈ D(LCGL) be a se-

quence of functions such that both un −→ u and L̂CGLun −→ g as n −→ ∞ in L2(R). We seek to prove that

L̂CGLu = g and u ∈ D(LCGL).

We begin by taking the L2 inner product of Lu with a smooth, compactly supported test function ϕ ∈ C∞
0 ; we

denote the L2 inner product using ⟨·, ·⟩. We perform integration by parts to obtain,

⟨ϕ, L̂CGL
n u⟩ = ⟨(L̂CGL

n )†ϕ, u⟩

= ⟨(L̂CGL
n )†ϕ, lim

n−→∞
un⟩

= lim
n−→∞

⟨(L̂CGL
n )†ϕ, un⟩ (using the continuity of the inner product L2)

= lim
n−→∞

⟨ϕ, L̂CGL
n un⟩

= ⟨ϕ, lim
n−→∞

L̂CGL
n un⟩ (using the continuity of the inner product L2)

= ⟨ϕ, g⟩.

Furthermore, it follows from the integration by parts that Lu = g. It can be seen that u ∈ D(L). □

• Theorem (Lumer-Phillips Dissipativity Condition A). D((L̂CGL
n )†) ⊂ D(L̂CGL

n ) = D(L̂CGL).

Proof. We have that for u ∈ D(L̂CGL), ⟨u, L̂CGLu⟩ is not real, and therefore the operator is not symmetric.

Therefore, we can use the reverse implication from the theorem “Conditions on the Domains of Symmetric

Operators”, i.e. D((L̂CGL
n )∗) ⊂ D(L̂CGL

n ). □.

• Theorem (Lumer-Phillips Dissipativity Condition B). L̂CGL
n and (L̂CGL

n )∗ are dissipative.

Proof. We need to show that ℜ{⟨u, L̂CGL
n u⟩} ≤ 0 and ℜ{⟨u, (L̂CGL

n )†u⟩} ≤ 0 are dissipative for all u ∈ D(L̂CGL
n )

and u ∈ D((L̂CGL
n )†) respectively. By the last theorem “Lumer-Phillips Dissipativity Condition A”, it suffices to

just test u ∈ D(L̂CGL
n ). We remark that we have the following quantities

⟨u, ∂
2u

∂x2
⟩ = −⟨∂u

∂x
,
∂u

∂x
⟩ = −

(
||du
dx

||L2

)2

, ⟨u, ∂u
∂x

⟩ = 1

2
[u2]+∞

−∞ = 0

−⟨u, (1 + c2x
2)u⟩ = −||u||2L2 −

(
||ux||L2

)2

for all u ∈ D(L̂CGL
n ). From these quantities, we can see that ℜ{⟨u, L̂CGL

n u⟩ ≤ 0 and ℜ{⟨u, L̂CGL
n u} ≤ 0.
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Now, we put the components together;

• Theorem ((D(LCGL),LCGL) generates a C0-semigroup). (D(LCGL),LCGL) generates a C0-semigroup.

Proof. By the above theorems “Lumer-Phillips Closedness Condition A”, “Lumer-Phillips Dissipativity Condi-

tion A”, “Lumer-Phillips Dissipativity Condition B” and “Density of HV (R)”. We have that L̂CGL
n generates

a contraction semigroup. Therefore, by the theorem “Perturbations by Bounded Operators”, we have that

(D(LCGL),LCGL) generates a C0-semigroup. □

C.2 L̂CGLn is a sectorial operator

We proved in the last section that L̂CGL
n generates a contraction semigroup. We recall the definition of a sectorial

operator that we gave in Section 3.2.

• Definition (Sectorial Operator as given in Henry (2006) [51], (Definition 1.3.1)). We call a linear operator −L a

sectorial operator if it is closed, densely-defined operator such that, for some ϕ in (0, π2 ) and some M ≥ 1 and

real a,

(a) the sector

Sa,ϕ = {ϕ ≤ |arg(λ− a)| ≤ π, λ ̸= a} (C.1)

is contained in the resolvent set ρ(−L), and

(b)

||(λ− L)−1|| ≤ M

|λ− a|
for all λ ∈ Sa,ϕ. (C.2)

We show that L̂CGL
n coincides with the above definition of the sectorial operator. In the previous section of this

appendix, we showed that the operator is closed and densely defined. Therefore, we need to show (a) and (b) of

the above definition. In order to show (a), we firstly recognise that often is rephrase (C.1) in terms of the numerical

range. We define the numerical range;

• Definition (Numerical Range). Let L be a linear operator. The numerical range of L is defined by

F(L) = {z : z = ⟨u,Lu⟩, where u ∈ D(L), ||u|| = 1} (C.3)

Let us consider the following quantity Σ(−L) = C\cl(F(−L)). Then Σ(−L) ∈ ρ(−L). Therefore, we can show that

F(−L) lies in a sector Sc,θ = {θ ∈ C : |arg(λ− c)|} ≤ θ then we have (C.1). We show that L̂CGL
n satisfies (a) of the

definition of a sectorial operator in the following theorem;
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• Theorem (Numerical Range Condition of the Definition of a Sectorial Operator). There exists a c and θ such

that F(−L̂CGL
n ) lies in the sector

Sc,θ = {λ ∈ C : |arg(λ− c)| ≤ θ}. (C.4)

Proof. We consider the following quadratic form

Q(−L̂CGL
n − c) = −⟨u, (L̂CGL

n + c)u⟩. (C.5)

Now, as we have

ℜ{Q(−L̂CGL
n − c)} = ||∂u

∂x
||2L2 + c2||ux||2L2 − c||u||2L2 and ℑ{Q(−L̂CGL

n − c)} = −||∂u
∂x

||2L2 , (C.6)

we want to find a c such that ℜ{Q(−L̂CGL
n − c)} ≥ ℑ{Q(−L̂CGL

n − c)}

2||∂u
∂x

||2L2 + c2||ux||2L2 ≥ −c||u||2L2 . (C.7)

We can again take c = 0. Regarding θ, it follows that |ℑ{Q(−L̂CGL)}
ℜ{Q(− ˆLCGL})

| < 1. Thus, we can take θ = arctan(1). □

For part (b) of the definition of a sectorial operator we can use the Hille-Yosida theorem as we proved in the last

section that L̂CGL
n generates a contraction semigroup

• Theorem (Hille-Yosida, as given in Pazy (2012) [75]). A linear (unbounded) operator (D(L),L) is the infinites-

imal generator of C0-semigroup of contractions etL, t ≥ 0 if and only if

(a) L is closed and Cl(L) = X.

(b) The resolvent set ρ(L) of L contains R+ and for every λ > 0

||(λ− L)−1|| ≤ 1

λ
(C.8)

Proof. See Theorem 3.1 of Section 1.3 of Pazy (2012) [75]. □

Now, we can prove the title of this section;

• Theorem (−L̂CGL
n is a sectorial operator), −L̂CGL

n is a sectorial operator.

Proof. As seen in the last section, LCGL
n is closed and densely-defined. From the theorem, “Numerical Range

Condition of the Definition of a Sectorial Operator”, (C.1) is satisfied (aspect (a) of the definition of a sectorial

operator). We have that As L̂CGL is contractions, it follows from (C.8) of the Hille-Yosida Theorem that (C.2) is

satisfied with M = 1 and a = 0. Therefore, L̂CGL
n is a sectorial operator. □
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Appendix D

D.1 Compact Resolvents of LRGL and LCGL

In this appendix, we prove that both LRGL and LCGL have compact resolvents. This allows us to satisfy the

assumptions of “Condition on the Uniform Boundedness of Projections”. We actually go one step further in order

to show that both the operators LRGL and LCGL have discrete spectrums. This is useful as there is a problem

with spectral pollutions when numerically determining the spectra of non-self-adjoint linear operators, but even in

self-adjoint cases as well; the reader is invited to see the review article Boulton (2016) [18] about the failure of

Galerkin-methods for determining pseudospectra.

We give the following theorems that allow us to ascertain the compact resolvent. What is instrumental in this case

is the Kolmogorov-Riesz-Fréchet theorem that was used in Appendix A with the proofs of the Fredholm Alternative,

but this time we are using it to show that the domain of the operator is compactly-embedded in the L2(R) whereas

previously we showed that the interim space HL1

(R) was compactly embedded in L2(R).

• Theorem (Compact Resolvent Condition). Let H be a Hilbert Space. A closed operator (D(L),L) has a com-

pact resolvent if and only if the injection i : (D(L), || · ||T ) ↪−→ (X, || · ||X) is compact.

Proof. See Proposition 4.24 in Cheverry and Raymond (2019) [23]. □

• Theorem (Discrete Spectrum Condition). Let H be a Hilbert Space. Let (D(L),L) be a closed operator. As-

sume that the resolvent set is non-empty and the resolvent set is compact. Then the spectrum of L is discrete.

Proof. See Corollary 5.12 in Cheverry and Raymond (2019) [23]. □

• Theorem (Kolmogorov-Riesz-Fréchet). Let F be a bounded set in Lp(RN ) with 1 ≤ p <∞. Assume that

(a) lim|h|−→0 ||f(x+ h)− f(x)||Lp = 0 uniformly in f(x) ∈ F , (x ∈ Rn), i.e. for all ϵ > 0, there exists a δ such

that ||f(x+ h)− f(x)||Lp < ϵ for all f ∈ F , for all h ∈ RN with h < δ

(b) For all ϵ > 0, there exists Ω ⊂ RN , bounded and measurable such that ||f ||Lp(Rn\Ω) < ϵ for all f ∈ F .

Then F is pre-compact in Lp(R).

Proof. See Brezis (2011) [19], Chapter 4, Theorem 4.26 and Corollary 4.27. on page 111-113.
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We now have the following two theorems, where we prove that L̂RGL
n and L̂CGL

n have a discrete spectrum. Within

these proofs, we prove that each operator has a compact resolvent. Again, these proofs are very similar, but as they

rely on different proofs regarding the generation of an analytic semigroups, we have kept them separate.

• Theorem (Discrete Spectrum of (D(LRGL),LRGL)). (D(LRGL),LRGL) has a discrete spectrum.

Proof. Firstly, we use the theorem “Compact Resolvent Condition”, we need to show that the injection

(D(LRGL), || · ||HV
) ↪−→ (L2(R), || · ||L2(R)) (D.1)

is compact. The first criteria for a compact embedding follows from the definitions of the norms. To prove

the second part, we fix a bounded sequence un, n ∈ N in D(LRGL) and set F = {un}∞n=0 and show that

the terms satisfy the conditions of the Kolmogorov-Riesz-Fréchet theorem. We have the first condition of the

Kolmogorov-Riesz-Fréchet theorem as the functions un are in H2(R), and therefore by Morrey’s inequality

(Theorem 4, Section 5.6.2 in Evans (2010) [44]) are Holder continuous with exponent α = 1
2 and thereby

uniformly continuous. To prove part (b) of Kolmogorov-Riesz-Fréchet theorem, we use the fact that the norm

||un||HV
controls of ||(1 + c2x

2)un||L2 . Therefore, we have that for un ∈ (D(LRGL), || · ||HV
) and an interval D

of radius R,

M > ||(1 + c2x
2)un||L2(R) ≥ ||(1 + c2x

2)un||L2(R\D) ≥
√∫

|x|>R

(1 + c2x2)2u2ndx

≥
√
(1 + c2R2)2

∫
|x|>R

u2ndx = (1 + c2R
2)||un||L2(R\D), (D.2)

which gives

||un||L2(R\D) <
M

(1 + c2R2)
. (D.3)

We can always tune R such that M
(1+c2R2) = ϵ for all ϵ, thus part (b) of the Kolmogorov-Riesz-Fréchet theorem

is satisfied. Thus, un has a convergent subsequence in L2(R) and thus the embedding is compact.

Therefore, the operator satisfies the conditions of the theorem “Discrete Spectrum Condition”; the closedness

and that L̂RGL
n generates an analytic semigroup can be obtained from the theorems in Appendix C. Further-

more, there exists a positive constant α follows L̂RGL
n + α where α such L̂RGL

n + α is invertible hence the

resolvent set is non-empty. □

• Theorem (Discrete Spectrum of (D(LCGL),LCGL)). (D(LCGL),LCGL) has a discrete spectrum.

Proof. Firstly, we use the theorem “Compact Resolvent Condition”, we need to show that the injection

(D(LCGL), || · ||HV
) ↪−→ (L2(R), || · ||L2(R)) (D.4)
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is compact. The first criteria for a compact embedding follows from the definitions of the norms. To prove

the second part, we fix a bounded sequence un, n ∈ N in D(LRGL) and set F = {un}∞n=0 and show that

the terms satisfy the conditions of the Kolmogorov-Riesz-Fréchet theorem. We have the first condition of the

Kolmogorov-Riesz-Fréchet theorem as the functions un are in H2(R), and therefore by Morrey’s inequality

(Theorem 4, Section 5.6.2 in Evans (2010) [44]) are Holder continuous with exponent α = 1
2 and thereby

uniformly continuous. To prove part (b) of Kolmogorov-Riesz-Fréchet theorem, we use the fact that the norm

||un||HV
controls of ||(1 + c2x

2)un||L2 . Therefore, we have that for un ∈ (D(LCGL), || · ||HV
) and an interval D

of radius R,

M > ||(1 + c2x
2)un||L2(R) ≥ |||1 + c2x

2|un||L2(R\D) ≥
√∫

|x|>R

|1 + c2x2|2u2ndx

≥
√

|1 + c2x2|2
∫
|x|>R

u2ndx =
√
|1 + c2x2|2||un||L2(R\D), (D.5)

which gives

||un||L2(R\D) <
M

|1 + c2R2|
. (D.6)

We can always tune R such that M
|1+c2R2| = ϵ for all ϵ, thus part (b) of the Kolmogorov-Riesz-Fréchet theorem

is satisfied. Thus, un has a convergent subsequence in L2(R) and thus the embedding is compact.

Therefore, the operator satisfies the conditions of the theorem “Discrete Spectrum Condition”; the closedness

and that L̂CGL
n generates an analytic semigroup can be obtained from the theorems in Appendix C. Further-

more, there exists a positive constant α follows L̂CGL
n + α where α such L̂CGL

n + α is invertible hence the

resolvent set is non-empty. □
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[91] P. Siegl and D. Krejčiřı́k. On the metric operator for the imaginary cubic oscillator. Physical Review D, 86

(12), Dec 2012. ISSN 1550-2368. doi: 10.1103/physrevd.86.121702. URL http://dx.doi.org/10.1103/

PhysRevD.86.121702.

[92] D. Sipp and A. Lebedev. Global stability of base and mean flows: a general approach and its applications to

cylinder and open cavity flows. Journal of Fluid Mechanics, 593:333–358, 2007.

[93] J. Stuart. On the non-linear mechanics of wave disturbances in stable and unstable parallel flows part 1. the

basic behaviour in plane poiseuille flow. Journal of Fluid Mechanics, 9(3):353–370, 1960.

[94] T. Tang. The hermite spectral method for gaussian-type functions. SIAM Journal on Scientific Computing, 14

(3):594–606, 1993.

[95] L. Tartar. The general theory of homogenization: a personalized introduction, volume 7. Springer Science &

Business Media, 2009.

[96] V. Theofilis. Global linear instability. Annual Review of Fluid Mechanics, 43:319–352, 2011.

[97] L. N. Trefethen. Computation of pseudospectra. Acta numerica, 8:247–295, 1999.

[98] L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A. Driscoll. Hydrodynamic stability without eigenvalues.

Science, 261(5121):578–584, 1993.

[99] W. van Saarloos and P. Hohenberg. Fronts, pulses, sources and sinks in generalized complex ginzburg-landau

equations. Physica D: Nonlinear Phenomena, 56(4):303–367, 1992.

[100] M. I. Vishik and L. A. Lyusternik. The solution of some perturbation problems for matrices and selfadjoint or

non-selfadjoint differential equations i. RuMaS, 15(3):1–73, 1960.

[101] F. Waleffe. Transition in shear flows. nonlinear normality versus non-normal linearity. Physics of Fluids, 7(12):

3060–3066, 1995.

[102] J. Watson. On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows. J. Fluid

Mech, 9(371-389):219, 1960.

[103] J. A. Weideman and S. C. Reddy. A matlab differentiation matrix suite. ACM Transactions on Mathematical

Software (TOMS), 26(4):465–519, 2000.

143

http://dx.doi.org/10.1103/PhysRevD.86.121702
http://dx.doi.org/10.1103/PhysRevD.86.121702


[104] A. Yagi. Abstract parabolic evolution equations and their applications. Springer Science & Business Media,

2009.

[105] L. Zhang, Y. B. Gao, and C. Wang. Green function and perturbation method for dissipative systems based on

biorthogonal basis. Communications in Theoretical Physics, 51:1017–1022, 2009.

144



Titre: Une étude des complexités liées à la dérivation d’équations d’amplitude via des développements faible-
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Résumé: L’interaction entre la non-normalité et la
non-linéarité a fait l’objet de nombreux travaux mais
aussi de controverses en mécanique des fluides.
Dans cette thèse, nous explorons la relation en-
tre la non-normalité et la non-linéarité en analysant
les limitations des approximations au premier ordre
des développements faiblement non linéaires (WNLE)
pour prédire l’amplitude des branches bifurquées de
systèmes non auto-adjoints.
L’approximation du premier ordre correspond à un
vecteur propre marginal multiplié par une amplitude
régie par une équation, dite équation d’amplitude .
Dans la littérature, les auteurs ont utilisé diverses ap-
proches pour améliorer cette approximation, comme
aller plus haut dans l’ordre dans l’approximation, ce
qui nécessite des hypothèses supplémentaires en rai-
son de la non-unicité des termes d’ordre supérieur,
ainsi que la construction d’équations d’amplitude
d’ordre supérieur pour décrire le développement tem-
porel du vecteur propre considéré. Cette dernière
approche peut être considérée comme un moyen
pour gérer la non-unicité. Cependant, en ne con-
sidérant dans l’approximation que le vecteur propre
dominant, même si son développement temporel est
régi par une équation d’amplitude d’ordre supérieur,
on néglige les structures spatiales différentes de ce
vecteur propre.
Dans cette thèse, nous choisissons deux cas tests
pour explorer les phénomènes décrits ci-dessus,
à savoir l’équation de Ginzburg-Landau non-auto-
adjointe réelle (RnsaGL) et l’équation complexe de
Ginzburg-Landau non-auto-adjointe (CnsaGL). Nous
choisissons ces cas tests car les opérateurs linéaires
génèrent dans chaque cas des semi-groupes forte-
ment continus. Également dans le cas réel, il existe
une structure de quasi-base. Cela nous permet de
rechercher la solution de RnsaGL sous la forme de
couples valeur propre-vecteur propre.
Dans un premier temps, nous consolidons les
recherches effectuées par d’autres auteurs dans
la littérature en dérivant des équations d’amplitude

d’ordre supérieur pour le cas RnsaGL. Il est démontré
que les équations d’amplitude d’ordre supérieur ont
un rayon de convergence plus petit. Nous argu-
mentons également contre les équations d’amplitude
d’ordre supérieur en projetant la solution obtenue
numériquement sur le vecteur propre dominant : nous
constatons que, pour une non-normalité croissante,
la solution est de moins en moins alignée avec le
vecteur propre dominant. Ainsi, quelle que soit la
complexité de l’équation d’amplitude, elle ne peut pas
représenter la solution.
Nous dérivons ensuite des approximations d’ordre
supérieur en utilisant une hypothèse différente des
travaux des auteurs précédents ; à savoir qu’il ne peut
y avoir de contributions linéaires dans l’approximation
des termes d’ordre supérieur. On voit que dans le cas
RnsaGL, cette hypothèse peut être prescrite en im-
posant que les termes d’ordre supérieur sont orthog-
onaux au vecteur propre direct ou au vecteur propre
adjoint (dans le cas CnsaGL, on ne peut choisir que le
vecteur propre direct). Après cela, nous dérivons des
bornes d’erreur afin de quantifier la différence entre
les solutions numériques et leurs approximations cor-
respondantes. La dérivation de ces bornes d’erreur
est facilitée par le fait que les opérateurs linéaires
dans les cas considérés génèrent des semi-groupes
fortement continus. Ces bornes d’erreur sont des out-
ils théoriques pour montrer l’existence d’un possible
rayon de convergence (ils ne nous permettent pas de
déterminer le rayon de convergence exact). Nous dis-
cutons comment ces bornes d’erreur théoriques peu-
vent être utilisées concrètement. Enfin, nous profi-
tons de l’existence de la quasi-base en présentant
une technique de moyennage stochastique où les
modes stables sont soumis à du bruit. Cette tech-
nique de moyennage stochastique est différente de la
technique WNLE car aucun mode propre n’est négligé
dans l’approche, mais les caractéristiques de satura-
tion sont encore sous-estimées dans le cas non auto-
adjoint.





Title: A study of the complications regarding the derivation of amplitude equations via weakly nonlinear anal-
ysis for non-self-adjoint partial differential equations
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Abstract: The interplay between non-normality and
nonlinearity has been the focus of numerous works
but also contention in Fluid Mechanics. In this thesis,
we explore the relationship between non-normality
and nonlinearity by considering the failure of first-
order approximations derived via weakly nonlinear ex-
pansions (WNLE) to capture saturation characteris-
tics of non-self-adjoint systems.
The first-order approximation achieved via WNLE is
of the form of the leading eigenvector multiplied by an
amplitude, which is governed by an amplitude equa-
tion. Authors have used various approaches to im-
prove upon this approximation, such as going higher
in order in the approximation, which requires addi-
tional assumptions owing to the non-uniqueness of
higher order terms, as well as also building higher or-
der amplitude equations to describe the temporal de-
velopment of the leading eigenvector. The latter ap-
proach can be seen as a way to circumvent the non-
uniqueness. However, by still only approximating with
the leading eigenvector, even though its temporal de-
velopment is elaborated by a higher order amplitude
equation, spatial structures different from the leading
eigenvector are neglected.
In this thesis, we choose two test-cases to explore the
phenomena described above, namely the real non-
self-adjoint Ginzburg-Landau equation (RnsaGL) and
the Complex non-self-adjoint Ginzburg-Landau (Cn-
saGL) equation. We choose these test cases be-
cause the linear operators in each case generate
strongly continuous semigroups, but, also in the real
case, there exists a quasi-basis structure. This al-
lows us to expand the solution of the RnsaGL into
eigenvalue-eigenvector pairs, which is not always
possible for non-self-adjoint linear operators as the
eigenvectors’ forming an orthonormal basis is not
guaranteed as it is in the self-adjoint case.
We begin the thesis by consolidating the research
done by other authors in the literature review and in

one of the core chapters where we derive higher or-
der amplitude equations for the RnsaGL. It is demon-
strated for the RnsaGL that higher order amplitude
equations have a smaller radius of convergence,
which essentially limits the usefulness of the approxi-
mation. We also argue against higher order amplitude
equations by projecting the solution of our test cases
onto the zeroth eigenvector, where we find that, for in-
creasing non-normality, less of the overall solution is
projected onto the zeroth eigenvector. In this way, no
matter how elaborate the amplitude equation, it is in-
capable of representing the entire system.
Following the consolidation of previous research, we
derive higher order approximations using an assump-
tion that is different to the work of previous authors;
namely that there can be no linear contributions to the
approximation at higher order terms. We see that in
the case of the RnsaGL, this assumption can manifest
by ensuring that the higher order terms are orthogo-
nal to the direct eigenvector or the adjoint eigenvector
(in the case of the CnsaGL, we can only choose the
direct eigenvector). After this, we derive error bounds
in order to quantify the difference between the solu-
tions of the test cases and their corresponding ap-
proximations. The derivation of these error bounds
is facilitated by the fact that the linear operators in our
test cases generate strongly continuous semigroups.
These error bounds are theoretical tools to show the
existence of a possible radius of convergence rather
than telling us what the radius of convergence is. We
therefore discuss how to turn these error bounds from
theoretical tools to something that can be used for ap-
plication. Lastly, we profit from the existence of the
quasi-basis by using a stochastic averaging technique
where noise is put on the stable modes. This stochas-
tic averaging technique is different from WNLE as no
eigenmodes are neglected as a first step, but the sat-
uration characteristics are still underestimated in the
non-self-adjoint case.
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error bounds from theoretical tools to something that can be used for application.
Lastly, we profit from the existence of the quasi-basis by using a stochastic averaging technique where noise is put on the stable modes. This stochastic averaging
technique is different from WNLE as no eigenmodes are neglected as a first step, but the saturation characteristics are still underestimated in the non-self-adjoint case.
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Une étude des complexités liées à la dérivation d'équations d’amplitude via des développements faiblement non
linéaires d'équations aux dérivées partielles non auto-adjointes

L’interaction entre la non-normalité et la non-linéarité a fait l’objet de nombreux travaux mais aussi de controverses en mécanique des fluides. Dans cette thèse, nous
explorons la relation entre la non-normalité et la non-linéarité en analysant les limitations des approximations au premier ordre des développements faiblement non
linéaires (WNLE) pour prédire l’amplitude des branches bifurquées de systèmes non autoadjoints.
L’approximation du premier ordre correspond à un vecteur propre marginal multiplié par une amplitude régie par une équation, dite équation d’amplitude.
Dans la littérature, les auteurs ont utilisé diverses approches pour améliorer cette approximation, comme aller plus haut dans l’ordre dans l’approximation, ce qui
nécessite des hypothèses supplémentaires en raison de la non-unicité des termes d’ordre supérieur, ainsi que la construction d’équations d’amplitude d’ordre supérieur
pour décrire le développement temporel du vecteur propre considéré. Cette dernière approche peut être considérée comme un moyen pour gérer la non-unicité.
Cependant, en ne considérant dans l’approximation que le vecteur propre dominant, même si son développement temporel est régi par une équation d’amplitude d’ordre
supérieur, on néglige les structures spatiales différentes de ce vecteur propre.
Dans cette thèse, nous choisissons deux cas tests pour explorer les phénomènes décrits ci-dessus, à savoir l’équation de Ginzburg-Landau non-auto-adjointe réelle
(RnsaGL) et l’équation complexe de Ginzburg-Landau non-auto-adjointe (CnsaGL). Nous choisissons ces cas tests car les opérateurs linéaires génèrent dans chaque
cas des semi-groupes fortement continus. Également dans le cas réel, il existe une structure de quasi-base. Cela nous permet de rechercher la solution de RnsaGL sous
la forme de couples valeur proprevecteur propre.

Dans un premier temps, nous consolidons les recherches effectuées par d’autres auteurs dans la littérature en dérivant des équations d’amplitude d’ordre supérieur pour
le cas RnsaGL. Il est démontré que les équations d’amplitude d’ordre supérieur ont un rayon de convergence plus petit. Nous argumentons également contre les
équations d’amplitude d’ordre supérieur en projetant la solution obtenue numériquement sur le vecteur propre dominant : nous constatons que, pour une non-normalité
croissante, la solution est de moins en moins alignée avec le vecteur propre dominant. Ainsi, quelle que soit la complexité de l’équation d’amplitude, elle ne peut pas
représenter la solution.
Nous dérivons ensuite des approximations d’ordre supérieur en utilisant une hypothèse différente des travaux des auteurs précédents ; à savoir qu’il ne peut y avoir de
contributions linéaires dans l’approximation des termes d’ordre supérieur. On voit que dans le cas RnsaGL, cette hypothèse peut être prescrite en imposant que les
termes d’ordre supérieur sont orthogonaux au vecteur propre direct ou au vecteur propre adjoint (dans le cas CnsaGL, on ne peut choisir que le vecteur propre direct).
Après cela, nous dérivons des bornes d’erreur afin de quantifier la différence entre les solutions numériques et leurs approximations correspondantes. La dérivation de
ces bornes d’erreur est facilitée par le fait que les opérateurs linéaires dans les cas considérés génèrent des semi-groupes fortement continus. Ces bornes d’erreur sont
des outils théoriques pour montrer l’existence d’un possible rayon de convergence (ils ne nous permettent pas de déterminer le rayon de convergence exact). Nous
discutons comment ces bornes d’erreur théoriques peuvent être utilisées concrètement. Enfin, nous profitons de l’existence de la quasi-base en présentant une
technique de moyennage stochastique où les modes stables sont soumis à du bruit. Cette technique de moyennage stochastique est différente de la technique WNLE car
aucun mode propre n’est négligé dans l’approche, mais les caractéristiques de saturation sont encore sous-estimées dans le cas non autoadjoint.
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