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Résumé

Ces travaux de thèse s’intéressent à la modélisation hydrologique-hydraulique des réseaux hy-
drographiques et à l’intégration optimale de données multi-sources. La richesse informative
croissante des jeux de données apportés par l’hydrométéorologie et la télédétection à haute ré-
solution en complément des mesures in situ, est encore insuffisamment exploitée pour contrain-
dre des modélisations hydrodynamiques fines à l’échelle des bassins. De telles représentations
numériques sont pourtant cruciales pour l’estimation spatio-temporelle précise des états-flux, en
vue de répondre à des enjeux socio-économiques majeurs comme la prévision des crues en con-
texte de changement climatique. Les quantités physiques d’intérêt vont des hydrogrammes de
débit amonts et échanges latéraux jusqu’à leur traduction en hauteurs d’eau, vitesses et temps
de submersion sur les plaines d’inondation en aval. De telles informations sont difficilement ac-
cessibles, en particulier pour les crues sur de larges territoires où de nombreux cours d’eau sont
potentiellement non jaugés. Plusieurs problématiques sont reliées à la modélisation numérique
hydrologique-hydraulique de bassin et à sa mise en cohérence avec des données multi-sources
hétérogènes en espace, en temps et en nature.

Ce manuscrit présente des approches de modélisation des réseaux hydrographiques, basées
sur des modèles hydrauliques-hydrologiques couplés et exploitant des méthodes d’assimilation
variationnelle de données multi-sources. Ces approches sont basées sur la synergie entre, d’une
part des modèles numériques complexes qui représentent des quantités physiques et, d’autre
part, l’observabilité hétérogène de signatures hydrodynamiques à l’échelle des réseaux hydro-
graphiques. Les développements des outils numériques sont effectués au sein de la plateforme
d’assimilation variationnelle et de modélisation hydrodynamique DassFlow.

La première partie de ce travail porte sur l’estimation variationnelle de paramètres inconnus
ou incertains (couple friction-bathymétrie, hydrogrammes latéraux) d’un modèle hydraulique
1D appliqué à large échelle spatiale, à partir d’observations altimétriques et optiques de défor-
mations de la surface libre des rivières. La difficulté de cette estimation vient de l’effet corrélé
des paramètres sur les signatures hydrauliques, de leur observabilité hétérogène et éparse en
comparaison des échelles physiques des propagations et longueurs de contrôles hydrauliques.
Les problèmes inverses considérés sont généralement mal posés et des méthodes de régularisa-
tion sont utilisées dans la méthode d’assimilation. Ce travail repose sur l’ajout de termes sources
pour la prise en compte d’apports latéraux dans un modèle Saint-Venant 1D et sur l’analyse
des signatures hydrauliques associées. Ces signatures apportent une information importante
sur l’identifiabilité des paramètres qui les provoquent, en contexte d’observabilité éparse de la
surface libre. Dans cette partie, des inférences très précises sont obtenues quand la quantité
d’information contenue dans les observables et les informations a priori sont suffisantes au re-
gard de la nature, de la quantité et du type des inconnues. Un modèle grande échelle d’un cours
d’eau Amazonien anastomosé et alimenté par de nombreux affluents est construit à partir de
données satellitaires optiques et altimétriques et est alimenté par des débits simulés avec le mod-
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èle hydrologique grande échelle MGB. Le modèle effectif calé sur des chroniques altimétriques
historiques permet une représentation réaliste des signatures de crues. Leurs caractéristiques
fréquentielles et leur visibilité par altimétrie large fauchée SWOT sont analysées à l’aide de
cartographies d’identifiabilité. Des inférences simultanées de bathymétrie, friction et hydro-
grammes latéraux spatialement distribués sont effectués sur ce modèle, à l’aide d’observations
altimétriques large fauchée synthétiques. Ces dernières correspondent à celles qu’apportera la
future mission SWOT, qui fournira une couverture spatiale sans précédent des rivières à l’échelle
du globe. Cette mission aura une période de revisite suffisamment courte pour observer la
propagation d’ondes de crue sur de grands bassins. Cette étude ouvre la voie vers l’utilisation
d’observations SWOT pour l’estimation régionale de flux.

La deuxième partie de ce travail présente une nouvelle méthode pour la modélisation et
l’assimilation hydraulique-hydrologique multi-échelle de réseaux hydrographiques, implémen-
tée dans l’environnement de calcul parallèle et d’optimisation variationnelle de DassFlow. Un
modèle hydraulique multi-dimensionnel est proposé, sur la base des équations de Saint-Venant
2D complètes résolues par un solveur volumes finis appliqué à des maillages 1Dlike-2D de
réseaux hydrographiques complets. Il permet de répondre au besoin de modélisation 2D précise
dans les zones d’intérêt, comme les plaines d’inondation et les confluences, à travers l’utilisation
de maillages 2D localisés. Une stratégie de maillage “1Dlike” des cours principaux des riv-
ières, pouvant utiliser des bases de données de masques d’eau issus d’images haute résolu-
tion, permet la modélisation hydrodynamique de ces tronçons à l’échelle du réseau tout en
gardant un coût de calcul relativement bas. Le solveur hydraulique 2D est adapté pour gérer
les interfaces entre les maillages 1Dlike et 2D. Le modèle hydrologique parcimonieux GR4H,
dans sa version “espace-temps” qui est différentiable, est couplé au modèle hydraulique multi-
dimensionnel et inclus à la chaîne d’assimilation DassFlow. La chaîne intégrée ainsi obtenue
est validée sur des cas académiques et réels. L’inférence de champs de friction et bathymétries
effectives permet de représenter fidèlement des lignes d’eau et la propagation de crues avec un
modèle 1Dlike d’un bief de la Garonne. Des inférences de forçages hydrauliques temporels sont
effectuées sur un modèle 1Dlike du réseau hydrographique de l’Adour, à partir d’observations
in situ et permettent l’estimation de flux incertains. Un modèle 1Dlike-2D de l’Adour permet
la modélisation haute résolution d’écoulements dans un grand réseau hydrographique et ses
plaines d’inondation pour un coût de calcul relativement faible. Des inférences de paramètres
hydrologiques sont effectuées sur un cas test synthétique, à partir d’observables hydrauliques
en aval. Ces résultats démontrent la possibilité de remontée d’information dans la chaîne de
modélisation sur un réseau hydrographique.

Mots-clés: Assimilation variationnelle, Modèles hydrauliques-hydrologiques, Équations de
Saint-Venant, Altimétrie satellite, Observations multi-sourcées, Modèle Multi-dimensionnel
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Abstract

This work studies the large scale hydraulic-hydrological modeling of hydrographic networks and
the optimal integration of their multi-source observability. The growing wealth of information in
data sets brought by hydrometeorology and high resolution remote-sensing, in complement to
in situ measurements, is still insufficiently exploited to constrain fine, basin scale hydrodynamic
models. Yet, such numerical representations are crucial for the accurate estimation of fluxes
and states in hydrographic networks in order to answer major socio-economic issues, like flood
prediction, especially in the context of climate change. The physical quantities of interest include
inflow hydrographs, water depths, flow velocities and flood extents and durations. Information
on such quantities is difficult to obtain, especially for floods over large areas, where multiple
rivers are potentially ungauged. Several issues are related to the integration of multi-source
data, heterogeneous in space, time and nature, into basin-scale hydraulic-hydrological models.

This manuscript presents modeling approaches based on hydraulic-hydrological models and
using variational data assimilation methods with multi-source data. These approaches aim at the
synergy of, on one hand, complex numerical models that represent physical quantities and, on
the other hand, the heterogeneous observability of hydrodynamic signatures over a hydrographic
network. Numerical implementation are carried out in the variational data assimilation and
hydrodynamic modeling platform DassFlow.

The first part of this work deals with the variational estimation of uncertain or unknown
model parameters (bathymetry-friction couple and lateral inflows), in a 1D hydraulic model at a
large spatial scale, from altimetric and optic satellite observations of water surface deformations
of river surfaces. The difficulty of the estimation lies in the correlated effect of parameters on
hydraulic signatures and on their heterogeneous and sparse observability when compared to the
physical scale of propagations and to the length of hydraulic controls. The considered inverse
problems are ill-posed and regularization methods are used within the assimilation process. This
work introduces source terms for the modeling of lateral inflows in a 1D Saint-Venant model and
relies on the analysis of the associated hydraulic signatures. These signatures provide important
information for parameter identifiability in the context of the sparse observability of the free
surface. It is demonstrated that accurate inferences can be obtained when information provided
by observables and a priori estimates are sufficient with regard to the nature, quantity and type
of the sought parameters. A large scale model of an anastomosed Amazonian river inflowed
by numerous tributaries is built from altimetric and optical satellite data and inflowed with the
large scale hydrological model MGB. This effective model, calibrated using historic altimetric
data, allows a fair modeling of flood signatures. Their characteristics and the visibility given by
wide swath altimetry are analyzed with the help of identifiability maps. Simultaneous inferences
of distributed bathymetry, friction and lateral inflow hydrographs are carried out on this model,
using noisy wide-swath satellite altimetry. This synthetic observability is that of the upcoming
SWOT mission, which features unprecedented spatial coverage of global rivers and sufficient
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revisit time to observe flood wave propagation. Inferences lead to accurate parameter estimations
and this study paves the way towards uses of SWOT observations for the regional estimation of
fluxes.

The second part of this work presents a new method for the multi-scale hydraulic-hydrological
modeling of river networks implemented in the parallel computation and variational assimila-
tion DassFlow framework. A multi-dimensional model is proposed using the full 2D shallow
water equations, solved by a single finite volume solver applied to a 1Dlike-2D mesh of a com-
plete hydrographic network. It answers the need for accurate 2D modeling in areas of interests
such as floodplains and confluences through 2D meshes. A so-called “1Dlike” meshing strategy
is applied to 1D reaches - it can make use of water masks database extracted from high reso-
lution images - and allows hydrodynamic representation of these reaches at the network scale
while keeping computational cost relatively low. The 2D hydraulic solver is adapted to handle
interfaces between 1Dlike and 2D meshes. The parsimonious hydrological model GR4H, in its
differentiable state-space version, is coupled to the multi-dimensional hydraulic model and in-
tegrated into the DassFlow assimilation tool chain. The obtained integrated chain is validated
on synthetic and real cases. Effective bathymetry and friction allow fitting fine water surface
elevations and signal propagation on a large scale 1Dlike model of a reach the Garonne river.
Inferences of hydraulic temporal forcings are carried out on a 1Dlike model of the Adour net-
work from in situ observability and lead to estimation of uncertain inflows. A 1Dlike-2D version
of the Adour model allows the modeling of high resolution flow in a large network for a low
computational cost. Inferences of hydrological parameters are carried out on a synthetic case
using downstream hydraulic observable. These results demonstrate the possibility of informa-
tional feedback over a hydrographic network in the assimilation tool chain.

Keywords: Variational Data assimilation, Hydraulic-hydrological models, Shallow Water
equations, Satellite altimetry, Multi-source observations, Multi-dimensional model
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Introduction

In surface hydrology, the accurate estimation of fluxes is a key scientific problem, linked to
important socio-economic issues, like flood and drought prediction. Indeed, river discharge is
defined as an essential physical variable by the World Meteorological (see Global Climate Ob-
serving System Organization, 2011]). Climate change and the potential intensification of the hy-
drological cycle it implies make this goal even more crucial. To address it, fine, accurate, dynamic
and spatially distributed modeling of basin-scale river network states and fluxes are needed. The
physical quantities to represent include discharge and water levels, inundation extents and sub-
mersion times. Information on these states and fluxes is difficult to obtain at appropriate spatial
and temporal scales, especially along large, potentially ungauged, river networks. However, the
growth in size and quality of multi-source datasets given by high resolution hydrometeorol-
ogy and satellite and airborne sensors provides an opportunity that is as of yet underexploited.
In complement to in situ observations, this data can be integrated into hydraulic-hydrological
models to improve flux prediction capabilities.

This PhD thesis studies the hydraulic-hydrological modeling of hydrographic networks and
the optimal integration of multi-source observations. This integration consists in the coherent
combination of, on one hand, complex numerical flow models and, on the other hand, obser-
vations of hydrodynamic signatures in river networks, heterogeneous in nature and in spatio-
temporal patterns. In this work, hydraulic models solving the full Shallow Water equations,
either 1D or 2D, are used in a variational data assimilation framework. Several issues are related
to the hydrological-hydraulic modeling of river networks and to the fusion of heterogeneous
multi-source observations.

One issue is the relatively sparse observability of the water surface compared to the hydraulic
signatures at play. On one hand, in situ data is limited to static stations, that provide data that
is dense in time but relatively sparse in space with regards to the scales of signatures related
to hydraulic controls (bathymetry-friction and lateral exchanges), and costly data acquisition
campaigns, that provide rich but localized information. On the other hand, current satellite
observations provide global data, but their revisit time are still relatively large with regards to
signal propagation times.
In view to enrich observability and to make the most of available data, satellite and in situ data
can be combined, which leads to a second issue: their heterogeneity. That is an heterogeneity of
spatial and temporal patterns and frequencies, of sensor/product accuracy and an heterogeneity
in the type of observed quantities. Satellite radar altimetry provides water surface elevation over
relatively large global rivers (over 50 to 100 m wide), while satellite optical sensors may provide
river widths and flood extents. Spaceborne radars (Shuttle Radar Topography Mission, SRTM)
enabled building a global Digital Elevation Model, while airborne LiDAR (Laser Imaging De-
tection and Ranging) can provide bathymetry over a region of interest, like a floodplain, with
higher accuracy and resolution. In situ flow sensors can provide water depth and local discharge
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estimation, while fixed or airborne optical sensors, i.e. cameras, may provide 2D surface velocity
fields.
Airborne measurement of river channels bathymetry remains difficult except for shallow and
clear waters via penetrating LiDAR. Therefore most parameters required to model worldwide
rivers networks remain poorly observed or not observed at all. Thus, the third issue is the
inference of uncertain or unknown river flow model parameters. These include channel param-
eters, such as bathymetry and friction, distributed inflows but also hydrological parameters for
integrated models. Given hydrodynamic flow models and partial flow observability, one faces
difficult ill-posed inverse problems and the introduction of a priori knowledge and regulariza-
tion strategies is necessary.

Another important issue lies in the difficulty to estimate distributed hydrological inflows over
a river network. This pertains to the problem of spatially distributed hydrological model cali-
bration and regionalization, that is prediction of discharge at ungauged locations. Considering
sparse observability of hydraulic signatures, is it possible to infer semi-distributed hydrological
parameters in a hydrological-hydraulic model using a VDA method? In other words, which
information feedback is possible from the river network to upstream hydrological components ?

The above issues are studied is this PhD. All numerical developments are implemented in
the hydrodynamic modeling and assimilation platform DassFlow.

In Chapter 1, hydraulic and hydrological modeling is presented in the scope of basin-scale
hydrographic network observability. In Chapter 2, the identifiabilty of model parameters and
temporal forcings is studied on synthetic and real-like 1D models using satellite altimetry. In
Chapter 3, a new method for the multi-scale modeling of complex river network with data as-
similation is developed. This work is concluded in Chapter 4, which contains work perspectives
and the general conclusion.
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River networks modeling and remote
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4 River networks modeling and remote sensing

This chapter presents the general context and scientific issues studied in this work, as well as
the models and tools exploited or expanded upon. Recall that this thesis aims at the improve-
ment of model-data synergy in river network hydraulic-hydrological models through the use
of multi-source observations and data assimilation methods. Section 1 presents basin-scale hy-
draulic and hydrological phenomenons in the scope of their heterogeneous observations through
diverse sensing methods. Section 2 presents the mathematical hydraulic models and resolution
methods used in the following chapters of this work, along with a summary of state-of-the-art
computational hydraulic models. Section 3 introduces hydrological modeling and contains a
detailed presentation of two hydrological models used in the following chapters. Considering
multi-source river flow observations and hydraulic-hydrological models, the inverse problems
of interest are formulated in Section 4 and the variational data assimilation method used in the
following chapters is presented.

1.1 Fluvial hydraulics and hydrological variabilities

Water circulation on Earth, in the so-called “great water cycle”, represents a dynamic equilib-
rium. Surface hydrology aims at studying the spatio-temporal variability of continental fresh-
water storage and fluxes (see e.g. Chow [1964]; Dingman [2009]). In this section, large scale
hydrological processes are recalled before focusing on river network flows in a multi-source
observability context (in situ, spaceborne and airborne sensors).

1.1.1 Catchment hydrology

Given a river cross-section (XS), one can define a topographical catchment as the upstream ge-
ographical area, delineated by its water divide line (“ligne de partage des eaux” in French, see
Musy and Higy [2004]). The amount of freshwater within a catchment is largely driven by cli-
mate variability, through effective precipitation that feeds the compartments of hydrosystems
(i.e. rivers, lakes, biosphere, aquifers and unsaturated soils (Milly [1994], Fig. 1.1).

Freshwater residence times can vary from hours, to days, to thousands years depending on
the hydrological compartment (De Marsily [2012]). Average residence time is estimated to be in
the tens of days for river networks, of a few years in wetlands and upper soil layers, of decades
in lakes and of thousands of years for aquifers and glaciers (Anctil [2005]).

Hydrological responses, in terms of water storage and fluxes, result from the complex combi-
nation of meteorological signals with catchment properties, involving soil-biosphere-atmosphere
couplings, at play in the so-called continental water cycle (see e.g. Oki et al. [1999]). The het-
erogeneous physical properties, organization and connectivity of hydrological compartments
modulate the distribution and dynamics of water flow (see e.g. Flipo et al. [2014]; Schuite et al.
[2019]).

Complex non-linear and coupled physical processes are at play in the soil-vegetation zone
and in the unsaturated superficial soil layers. They determine the partition of water between
vertical and lateral flow components such as infiltration, surface and sub-surface runoff and
percolation to bedrock/aquifers.
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Name
Average yearly

precipitation (cm)
Localization

Equatorial humid 200 Inland and coasts (e.g. Amazon basin)

Subtropical humid 100-150
Inland and coasts (e.g. Yangtze river basin,

eastern Mississipi basin)
Subtropical dry 25 Inland and coasts (e.g. Sahara region)

Intertropical coastal 150 Coasts (e.g. eastern central America)
Temperate continental 10-50 Inland (e.g. American great plains)

Temperate oceanic 100
Inland and coasts (e.g. western Europe, 80-200

cm/year in metropolitan France)
Polar and arctic 30 North of 60th parallel (e.g. northern Canada)

Table 1.1: Worldwide pluviometric regimes (adapted from Fabre [1990])

Solid and liquid precipitation accounts for most of the water inputs in a catchment (orders
of magnitudes of yearly precipitation given by climate types in Table 1.1). A significant part
of this precipitation is evaporated from the soil, from open water surfaces or through plant
transpiration. The remaining water integrates the surface and sub-surface storage and flows.

Soil, a porous medium, has a limited local infiltration capacity. Part of the infiltrated water re-
mains in the upper soil layers, while another part is percolated deeper, in the aquifer, through the
action of gravity. When the local infiltration capacity limit is reached, excess water participates
in surface runoff (Anctil [2005]).

Surface runoff descends towards the lowest point of a catchment, forming naturally linked
drainage channels (called hydrographic network). Before reaching the oceans, except in the
case of endorheic basins such as the Okavango basin in sub-equatorial Africa, freshwater passes
through hydrographic networks.

Sub-surface water may interact with the hydrographic network through lateral flows (e.g.
Schuite et al. [2019] and references therein) and water exchanges can occur between distinct
topographical catchments because of groundwater or human-induced fluxes (e.g. Mul et al.
[2007]).

Exchanges between surface, sub-surface and groundwater compartments can be vertical or
lateral, depending on compartment levels: during low-flow periods, exchanges are directed to-
wards the river network (a low frequency signal) while in high-flow periods, surface hydrolog-
ical processes transmit a high frequency flood signal (Flipo et al. [2012]). The propagation of
upstream hydrological signals within a river network is studied in fluvial hydraulics.
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(a) Qualitative representation from Britannica [Accessed 28 October 2021]. Athmospheric,
surface and sub-surface exchanges are included.

(b) Quantitative representation from Margat and Andréassian [2008]. Exchanges between
the main hydrological compartments are represented. Green water is water evaporated from
or transpired by plants (from forests, uncultivated fields). Blue water is water involved in
surface (roughly 15%) and sub-surface (roughly 85%) flows.

Figure 1.1: Complete continental water cycle.
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1.1.2 River discharge

River discharge, resulting from the aggregation of upstream and past hydrological processes,
is a crucial physical quantity for hydraulic studies and for the characterization of hydrological
phenomenons. It has been defined as an essential climate variable by the World Meteorological
Organization (WMO) in the Global Climate Observation System (GCOS, see int [2016]). World-
wide rivers discharges span a significant range of scales, as can be seen for the sample rivers
presented in Table 1.2.

The largest river discharge module - or average inter-annual flow - on Earth is that of the
Amazon River, about 209 000 m3/s near its estuary, and its two major upstream tributaries,
the Solimoẽs and Negro rivers have a respective module of 103 000 m3/s and 28 400 m3/s and
drainage areas of 2 147 700 km2 and 279 900 km2 (see Table 1.2, see also Ouillon [1993]; Filizola
[2003] for solid discharges). Such large and hard-to-access basins are difficult to instrument and
remote sensing provides an unprecedented observability of large rivers, as discussed later in
Section 1.1.4.

Smaller rivers are also observable, such as the Garonne river (France) around Toulouse (see
Biancamaria et al. [2017]) which represents the lower limit of observability of current altimetric
satellites. Its module at the Gironde estuary is 1000 m3/s for a drainage area of 56 000 km2.

Let us define river discharge from a fluid kinematics approach, that is a mathematical de-
scription of a flow field without accounting for the forces and conditions that create it. Under
the usual hypothesis of fluid continuum and considering fluid particles in a Cartesian coordinate
system (see e.g. Chassaing [1997]), the instantaneous volumic discharge through a section A and
at a given time is defined as the integration of the flow velocity through this section as:

Q =
∫

A

−→u .−→n dA (1.1)

with −→u =
(
ux, uy, uz

)T
[m/s] the local velocity vector of the flow and −→n the outer normal

vector to the flow section A
[
m2] and with Q

[
m3/s

]
the volumic discharge. River flows are

predominantly free surface flows, which means that the surface of the fluid, i.e. its interface
with the atmosphere, is not subject to shear stress. In fluvial hydraulics studies, a XS orthogonal
to the main flow vein is commonly chosen. A realistic velocity profile for a free surface channel
flow is shown in figure 1.2.
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Figure 1.2: Cross-sectional variability of flow velocity, as given by Acoustic Doppler Current
Profiler (ADCP) measurements (from Negrel [2011]).

River Basin surface (km2) Discharge module (m3/s)
Amazon [4] 7 050 000 (at estuary) 209 000

Negro
279 900 [83](at Serrinha

station)
28 400 [4] (14% of the Amazon module)

Solimoẽs
2 147 700 [83] (at

Manacapuru station)
103 000 [4](49% of the Amazon module)

Niger 2 117 700 [266] (at estuary)
5 589 [3] (at Lokoja, historical extremes are

27 600 m3/s and 500 m3/s)
Garonne

[240]
56 000 (at estuary) 1 000

Rhine [56] 185 000
2 200 (with average high and low flows

around 6 000 m3/s and 1 000 m3/s)

Moselle [56] 27 100 (at Cochem station)
288 (with average high and low flows of

3 740 m3/s and 9.7 m3/s)

Table 1.2: Sample of world rivers observable by satellite altimetry, orders of magnitude of their
discharges and drainage basin areas

1.1.3 Fluvial hydraulics

Fluvial hydraulics, also called open channel flows in civil engineering, governs the motion of
water in river networks and is an essential discipline to the study of hydrology (Dingman [2009]).
Indeed, river networks are generally composed of river channels and floodplains and convey
the water fluxes that stem from hydrological processes occurring within a catchment. Fluvial
hydraulics is an applicative sub-discipline of fluid dynamics (hydrodynamics or aerodynamics)
that studies the motion of fluids (liquids or gas). Fluid dynamics offer a systematic structure
based on empirical and semi-empirical laws derived from flow measurements (see e.g. Chassaing
[1997]; Ancey [2018]). Its foundational axioms, based on classical mechanics, are conservation
laws such as conservation of mass and linear momentum considered in the following (see Section
1.2).

In river flows, diverse physical processes are at play at multiple scales, from very localized
structures in boundary layers (e.g. Nikora et al. [2013]) to larger scale wave propagations (e.g.
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Dingman [2009]; Thual [2010]). The two main forces at play in open channel flows are gravita-
tional and shear forces. Gravitational force, that is a body force acting on each fluid particle, is
responsible for motion, whereas a shear force opposed to motion arises from frictional resistance
of the solid boundary with viscous and turbulent effects (Kline et al. [1967]). Another surface
force at play is the pressure force. The variabilities of free surface flows arise from the mass
balance and forces balance that are reflected in free surface deformations and can be predicted
by hydraulic theory (see e.g. Thual [2010]; Ancey [2018]; Dingman [2009]). The complexity of
flows within a river reach can vary depending on lateral exchanges, channel shape and sinuos-
ity, slopes, banks and bottom rugosity, the presence of vegetation, of confluences or diffluences,
or of inline (bridges, weirs, logjams) or lateral man-made structures (lateral weirs, dykes), see
Graf and Altinakar [2000]. The observation of river flows variabilities is of great importance for
physics and engineering applications and is discussed hereafter.

1.1.4 River networks monitoring

Human societies developed in close relation with water because of irrigation and transportation
needs, drinking water supply. Therefore, the observation of river flows has early become a
subject of interest. Let us mention historical observations of river flows such as for the Nile River
in ancient Egypt (from Arab records starting in the 7th century, see Toussoun and international
de géographie [11: 1925: Le Caire]) or more recent observations of the Rhône River, with records
dating up to the 16th century (see Pichard [1995]). These historical measurements, typically of
flood peak heights at local sites of importance, have evolved into distributed sensor networks. In
the last decades, satellite observations have offered the opportunity to complement these in situ
observations. Even more recently, airborne sensors, carried by planes and drones, have further
contributed to increase the observability of river networks.

Nowadays, the monitoring of river networks involves a variety of sensors, aimed at observing
rivers flows variabilities. In the following, we differentiate between local measurements, that
include permanent stations and local remote-sensing, and global satellite observations.

1.1.4.1 Local measurements

In situ measurements can be divided into: i) permanent local stations gathering temporally dense
data (see e.g. Musy and Higy [2004] for measurement tools and techniques) and ii) impermanent
data acquisition campaigns that focus on areas-of-interests over a shorter time period (see e.g.
Hauet et al. [2014]; Altenau et al. [2017] and details below).

Local stations provide either water depth measurements (e.g. through limnimetric physical
scales or limnigraphic automated sensors, see Fig. 1.4b(a)) or discharge estimation (e.g. through
stage-discharges relations, called rating curves (RC), or direct measurement, see Fig. 1.4b(b)),
over large time scales and at relatively low time steps. Permanent stations are distributed het-
erogeneously around the surface of the Earth. In France, a network of limnimetric and current
meters (the French Banque HYDRO1, Fig. 1.3, left)regroups 3200 current stations for 670 000 km2

of drained area (or 210 km2 per station on average). This network finds use in hydraulic and
hydrological studies but also in real-time flood warning systems such as in the French vigilance

1http://hydro.eaufrance.fr

http://hydro.eaufrance.fr
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system for floods, Vigicrue2, and for flash floods, Vigicrue Flash3. Other regions are less densely
gauged, like the Amazon basin (Fig. 1.3, right), with a few hundreds of stations for 7× 106 km2

of drained area). Overall, permanent station number is in decline worldwide with some regional
disparities (see Fekete and Vorosmarty [2002]).

Impermanent observation means include: at-a-section measurements, e.g. through simple
helix-based current meters or more advanced Acoustic Doppler Current Profilers (ADCP, see
Fig. 1.6) that provide depth and width dependent water velocity measurements (see Fig. 1.5(a)),
and longitudinal measurements, e.g. through on-board GPS altimeters that can provide spatially
dense WS elevation and WS slope data across a river reach or river network (see Fig. 1.5(b)).

New remote-sensing methods are also deployed at the local scale. Airborne sensors, carried
by plane (e.g. Altenau et al. [2017]) and, more recently, by drones (e.g. Tauro et al. [2016]; Strel-
nikova et al. [2020]), bring lower cost and more flexibility to data acquisition. Recent progress in
measurement techniques, such as penetrating blue LiDAR operated from low altitude overflight
(e.g. Lee and Wang [2018]; Hopkinson [2007]), provide high resolution and accurate bathymetry
of floodplains and relatively shallow main channels. Furthermore, remote non-intrusive optical
sensors (i.e. cameras), either fixed in place or mobile, can provide bi-dimensional fields of sur-
face velocities extracted by Large Scale Particle Image Velocimetry (LSPIV) methods, see Le Coz
et al. [2010]. For example, Dramais et al. [2011] presents channel discharge estimations using
static cameras.

Local measurements represent a large part of the available observability of rivers. Local
in situ bathymetric surveys are crucially needed in river engineering and modeling, for most
river channels and especially at deeper locations. In situ stage and flow measurements generally
provide temporally dense observation of the water depth variations. In turn, both permanent and
impermanent local data sources are necessary to constrain at a station stage-discharge laws (e.g.
in Getirana et al. [2010]; Malou et al. [2021] and references therein) or more complex hydraulic
models (e.g. in Papanicolaou et al. [2011]; Pujol et al. [2020] and references therein).

2https://www.vigicrues.gouv.fr/
3https://apic-vigicruesflash.fr

https://www.vigicrues.gouv.fr/
https://apic-vigicruesflash.fr
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(a) Map of river network and Banque HYDRO stations of the Rhin-Sarre territory. 84 gauging
stations for an area (in white) of around 1.1× 104 km2 (or 1310 km2 per station on average).

(b) Water level gauging stations given by the ANA, CotaOnline, RHN and GDH databases
(available from http://www.snirh.gov.br). 82 active stations cover a drainage area around
7 × 106 km2 (or 85 000 km2 per station on average). Note that only 58% of this area is in
Brazil, further upstream observability may be derived from other gauging networks, notably
in Peru, Bolivia, Colombia and Venezuela.

Figure 1.3: Metropolitan France and Amazon in situ observation station networks.
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(a) Left: A limnimetric scale on the Negro river, far upstream from Manaus, near Taracua
(photograph by author, 2018). Measurements are written down by a local resident at a sub-
daily time step. Right: Historic floods of the Seine visualized on the Alma bridge zouave.

(b) Measured water depth and discharge at the Austerlitz ultrasonic flow measure-
ment station, near the Alma bridge. Data accessed at 14:42 on December 3rd at
https://www.vigicrues.gouv.fr. The Vigicrue flood risk information service provides real-
time unexpertized data freely over the last 30 days and expertized data over the station
life-time.

Figure 1.4: In situ observation station measurements

https://www.vigicrues.gouv.fr
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(a) ADCP measurements results on the Solimoẽs river near Manacapuru (see sensor setup in
Fig. 1.6). The color heatmap is a cross-sectional flow velocity field. The boat took 28 minutes
to cross the 2950 m of river width. Estimated total flow is around 50 900 m3/s (for a river
module of 103 000 m3/s, see Table 1.2).

(b) Top-down representation of an ADCP campaign results. Depth-averaged velocities of
ADCP transects at the confluence of Negro and Solimões Rivers (Trevethan et al. [2016]).

Figure 1.5: Impermanent data acquisition mission results (1)
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(c) GPS altimetry measurements of the Negro river WS elevation upstream from its conflu-
ence with the Solimoẽs river, using boat-carried onboard GPS altimeter. This data is used to
build a large scale 1D model in Chapter 2. Data comes from 4 different descents of the river
in 2009 and 2010, during low flow season, and is aggregated over 25 km steps (courtesy of
D. Moreira and the Companhia de Pesquisas de Recursos Minerais (CPRM)). Note that raw
data is much denser, with an average step of around 2 km. The average measured slope is
3× 10−5 m/m, with much lower slopes in the downstream part.

Figure 1.5: Impermanent data acquisition mission results (2)

Figure 1.6: ADCP sensors mounted on a small boat (photograph by author, 2018). The top part
of the metal bar is fitted with a GPS to track the boat position during a transect.
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1.1.4.2 Satellite observations

Global observation of the oceans dates back to the mapping of oceans for sailing purposes,
through not only coast but also wind and current maps. In 1957, the first satellite launch opened
up a new way to observe the Earth, first through orbiting Laser and Doppler sensors for geodesic
measurements4. In 1978, the first satellite mission aimed at ocean surface observation, notably
using nadir altimetry, is launched. Since then, increased efforts to observe the Earth with space-
borne sensors have been made, bringing unprecedented datasets on ocean, atmosphere and
continental surfaces.

Recent satellite missions provide an increasing amount of observations related to the global
hydrological cycle and basin properties: precipitation, surface soil moisture, surface tempera-
tures, ice sheet surfaces, large scale water storage, oceanic and continental water surfaces eleva-
tion and extent, topography and soil occupation (see summary of satellite missions in Table 1.3,
see also freely available Sentinel mission imagery in Fig. 1.8). The satellite-based remote sensing
of hydraulic and hydrological signatures (see Subsection 1.1.1) can provide a global complement
to in situ hydrometric networks (review in Balsamo et al. [2018]), which are declining in some
regions worldwide (see Fekete and Vorosmarty [2002] and references therein). Notably, higher
vertical accuracy of altimetric data has enabled a larger observability of the hydrological cycle
(e.g. altimetry on rivers down to 50 m in width expected with the forthcoming SWOT mission,
see Pavelsky et al. [2014]). Furthermore, advances in high-performance computing have enabled
representation of the Earth at unprecedentedly fine scales and exploitation of this new wealth-
of-information. For example, in Mizielinski et al. [2014], high resolutions satellite data have been
used to build a finer global climate model (25× 25 km2 tiles, 85 vertical levels, worldwide) run
on supercomputers.

In the present work, we focus on radar altimetry as a rich source of information on catchment
scale hydrodynamic responses (see relevant satellite missions in Table 1.4, see sample nadir
and large swath observability in Fig. 1.7). Initially, satellite altimetry over continental surfaces
enabled measurements over ice sheets (Ridley and Partington [1988]; Remy et al. [1989]) and large
inland water surfaces such as over the the Amazon river (Koblinsky et al. [1993]). Koblinsky
et al. [1993] suggests that an observational Root Mean Square Error (RMSE) of 10 cm would
allow the monitoring of large river water levels, although measurements at the time (from the
Geosat mission) reached only 50 cm in RMSE and had insufficient spatio-temporal coverage.
Since then, decades of nadir altimetry (see Frappart et al. [2006]; Birkett [1998]; Da Silva et al.
[2012]; Calmant et al. [2008, 2016]) and imagery (e.g. Allen and Pavelsky [2018]) of inland waters
have been exploited and detection capabilities have been improved: observable river widths were
around 1 km in Birkett [1998] (TOPEX/POSEIDON mission) and are currently around 100 to 50 m
(Cryosat, Jason, Sentinel and SWOT missions, see Table 1.4). This enables global observation of
many worldwide rivers.

Notably, the upcoming Surface Water and Ocean Topography (SWOT, see Rodríguez [2012];
Fu et al. [2012]) mission (to be launched 2022) will use a new wide-swath altimeter (see Table
1.4 for resolution). This would offer extensive global observations with a relatively dense spatio-
temporal sampling and decimetric vertical accuracy (discussed below, see also Rodríguez et al.
[2018, 2020]). Pavelsky et al. [2014] estimates that observing 50 m wide rivers would allow dis-

4https://www.aviso.altimetry.fr/en/techniques/altimetry/history.html
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charge estimation on more than 60% of catchments with an area of 10 000 km2 and above. In the
case of the Amazon basin SWOT observations enables to depict hydrological processes such as
regional rainfall-evapotranspiration patterns, inter-basin fluxes or floodplain storage (see review
in Fassoni-Andrade et al. [2021]).

Thus, multi-satellite observations contain important information on WS deformation obser-
vations, from a combination of diverse spatio-temporal patterns and resolutions. An aggregated
multi-satellite product, especially including the most recent and upcoming missions, would pro-
vide extensive observations of global hydrodynamic signatures to be analyzed, learned and as-
similated into fine river network models. Spatially distributed observations of river surfaces
deformations can provide interesting information on local geometric-friction parameters (see
Hostache et al. [2010]; Brisset et al. [2018]; Garambois et al. [2020] and references therein), while
temporally dense observations may carry information on the local hydrodynamic response of the
global hydrographic network (see Brisset et al. [2018] and references therein). The latter scientific
issue is studied in Chapter 2.
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(a) Ground tracks of multiple altimetric missions over the Mediterranean sea (from AVISO).
In blue: Jason-2, in green: Saral, in red: CryoSat, in pink: HY-2A.

(b) Schematic representation of SWOT wide-swath altimetry coverage and global map of
SWOT revisit numbers during its 21 days cycle (from Biancamaria et al. [2016]).

Figure 1.7: Satellite observability of the Earth from altimetric sensors.

https://www.aviso.altimetry.fr/en/techniques/altimetry/multi-satellites.html
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(a) The Yukon river at Old Crow Flats. A single channel meandering river in an arctic region.
Around 500 m in width at this point.

(b) The Congo River around 300 km upstream from Kinshasa. A heavily anastomosed river
in a tropical region. Around 10 km in total width at this point.

Figure 1.8: Sentinel mission imagery, featuring contrasted lateral river variabilities (accessed
through https://apps.sentinel-hub.com/sentinel-playground).

https://apps.sentinel-hub.com/sentinel-playground
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Table 1.3: Main satellite missions used in hydrology (adapted from Observatoire Midi-Pyrénées
(OMP)).

https://www.omp.eu/missions/recherche/les-actions-scientifiques-transverses/ast-eau/ast-eau-science/
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1.1.4.3 Signal scales and measurement error

We define hydraulic signatures as information on hydrological cycle components carried by wa-
ter surface deformations. From a hydraulic modeling perspective, model state variables carry the
hydraulic signature of model parameters and temporal forcings (see Section 1.4). To inform on
hydraulic signatures, observations of water surface deformations must have sufficient i) accuracy
and ii) spatial and temporal sampling, with regards to the phenomenons at play.

In terms of accuracy, satellite altimetry remains less accurate than most in situ measurements.
For spaceborne sensor products, vertical altimetric uncertainties range in the tens of centimeters.
The SWOT mission will provide data over its 3 years planned mission lifetime, over a 120 km
large swaths, and its requirements are a 10 to 25 cm vertical accuracy and down to 1.7 cm/km
slope accuracy (Rodríguez [2012]). To achieve this accuracy, wide swath data will be treated and
averaged over large surfaces, i.e. accuracy may be lower or observations may be less dense in
smaller river. For in situ station measurements of water depth, uncertainties tend to be under
10 cm, although in situ network quality may vary globally. Lang et al. [2006] estimates that
piezoresistive (resp. bubble-based) sensors, used in the French observation network, have an
accuracy of 0.1 % (resp. 0.3 %) of their total range, which translates to less than decimetric
accuracy. In situ sensors tend to be sensitive to sediment load and water and air temperature,
whereas radar sensors are insensitive to temperature.

In terms of hydraulic signature temporal scales, Allen et al. [2018] estimates that the global
median flood wave propagation time across a network is around 6 days, with a majority of
networks having wave propagation time of less than a day. Allen et al. [2018] uses simple
geomorphological considerations and approximates the flood wave to a kinematic wave. Tempo-
rally dense data from in situ stations would provide good local observability of such signatures.
Missions with relatively low revisit time, like SWOT (1 to 4 pass every 21 days “repeat” cycle
depending on latitude, see also Fig. 1.9), would provide data relevant to the scale of river dis-
charge variations. For example, regional flood wave propagations, that can take place over the
course of a week or more over large basins, would be observable.

Then arises the question of the spatial dimension of the observed signatures. Several spatial
scales can be considered in the study of fluvial hydraulics, from the very local to the regional
scale:

• Near the flow boundary layer, the localized impact of basal friction (from banks, bottom
friction) or drag effects on obstacles, can be seen in the water surface. Satellite observations
generally do not yield meaningful information on these phenomenons. These localized
phenomenons are studied in laboratory-scale experiment (e.g. Nikora et al. [2004]).

• At the local scale, the longitudinal scale of phenomenons is lower than their lateral scale.
Phenomenons include local backwater effects, small singularities of section or slope and
change of flow regimes. High resolution satellite sensors and some impermanent measure-
ments, e.g. using LSPIV and ADCP, may provide observability at this scale.

• At the reach scale, the longitudinal scale of phenomenons is higher or equal to their lat-
eral scale. For this scale, we define fluvial hydraulic controls (HC) as characterized by a
maximal deviation of the water depth from the normal depth following Montazem et al.
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[2019]. They can be exerted by control sections (e.g. reduced width, in-line structure, con-
fluence) over up to hundreds of kilometers upstream (see Allen and Pavelsky [2015, 2018]).
Multi-satellite altimetry offers coverage at this scale and, depending on station density,
permanent in situ networks may too.

• At the network scale, hydrological and hydrogeological phenomenons impact water surface
deformations.

The observability of hydrodynamic signatures given by current available sensors networks, that
is in situ stations and campaigns and satellite sensors, is extensive, yet heterogeneous. The
combination of observations from satellite and local measurements, each providing specific and
crucial information at the basin scale, should be strived for with the goal to enable the estimation
of hydraulic parameters and hydrological fluxes. This thesis work aims at proposing methods to
achieve this synergetic combination.

Mission Start End
Cycle period

(days)
Seasat 1978 1978 17
Geosat 1986 1989 17

ERS-1 (5
missions)

1991 to 1995 1992 to 1996 3 to 168

Topex/Poseidon 1992 2005 10
ERS-2 1995 2003 35

Jason-1 and 2 2001 and 2008 2014 and 2019 10
Envisat 2002 and 2010 2010 and 2012 35 and 27

CryoSat-2 2010 - 91
SARAL 2013 - 35
Jason-3 2016 - 10

Sentinel-3A and
3B

2016 and 2018 - 27

GRACE 2002 and 2018 2017 and - 4

SWOT 2022/2023 -
21 (1 to 4 obs per

cycle)

Table 1.4: Main satellite missions providing altimetric observations of inland water surfaces.
Note that the number of passes per cycle period varies based on latitude and satellite trajectory.



22 River networks modeling and remote sensing

Figure 1.9: Spatio-temporal scale and satellite observability of hydrological cycle components
(see Tavakolifar et al. [2017], adapted from Uhlemann [2013]; Hirschboeck [1988]). In green,
spatio-temporal domain of hydrological phenomenons. In blue, river network and floodplain
domain of variability. In red, orange and purple, observation windows of the upcoming SWOT
wide-swath altimetry mission and of the Jason and Sentinel-3 nadir altimetry missions.

1.2 Hydraulic models

In this work, we use hydraulic models as a mean to represent flow states in river networks. They
are a simplified representation of real flow physics and consist in partial differential equations
describing the motion of water in a free surface flow. More precisely, shallow water equations
(SWE) are considered. The 2D SWE equations (Eq. 1.6, presented below) are obtained by vertical
integration of the 3D Navier-Stokes equations which are based on the principles of mass and mo-
mentum conservation applied to a volume of fluid (see e.g. Thual [2010]). The 1D SWE equations
(Eq. 1.2, presented below) are obtained from integration of the 3D Navier-Stokes equations over
a flow section. Both versions are widely used in fluvial hydraulics; their demonstration from the
Navier-Stokes equations is presented in Appendix A. Classical hypotheses for establishing those
flow models are (see e.g. Chow [1959]; Carlier [1982]; Guinot [2010]; Ancey [2018]):

• The fluid is of constant volumic mass ρ, which implies it is incompressible and that no
sediment transport is considered.
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• The flow is gradually varied, which implies that the flow surface is close to a plane and
varies slowly in space, and that there is no sharp change in the flow section. Thus, flow lines
are parallel to each other and close to parallel to the river bottom, and vertical velocities
are negligible. This is also called the long wave assumption, as it means that with regards
to the water depth, signal wavelength is high (Boussinesq [1871]).

• The bottom slope (and thus the water surface slope) is low, such that the water depth can
be measured as perpendicular to the river bottom.

Figure 1.10: Proposed modeling method for flood modeling using a 1D model (from Tayefi
et al. [2007]). A 1D river channel (modeled with HEC-RAS) is laterally coupled to a series of
interconnected storage cells through weir laws. Storage cells are linked between themselves
through transfer laws as well. The article compares a computationally costly 2D approach to
adapted, less computationally costly 1D methods for flood modeling.

Furthermore, since the Navier-Stokes equations are obtained far-from-everything, i.e. outside
of the influence of liquid domain borders and without interaction between fluid layers, it does
not account for shear stress and turbulence (Dingman [2009]). Thus, to account for this important
phenomenon in fluvial hydraulics applications, a frictional source term is added and classically
given by the empirical Manning-Strickler formulation established for uniform flows (or other
similar variants of the original analytical Darcy-Weisbach formula). As an empirical relation, the
friction source term accounts for all sources of momentum loss that are not specifically modeled
(e.g. through an additional drag force term). Therefore, friction coefficient values may differ
between SW models.

Hydraulic models are physically-based, deterministic and spatially distributed. The resolu-
tion of a hydrodynamic model requires data to describe river geometry and friction, but also
to set boundary conditions for upstream, lateral and downstream flow conditions. The amount
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of data required depends on the modeling goals and the underlying hypotheses. Examples of
applications taken from current bibliography include flood modeling with a 1D hydraulic model
and connected lateral storage cells (Tayefi et al. [2007], Fig. 1.10) or with a 2D model (Mulatu
et al. [2021], Fig. 1.11(a)) and 2D modeling of within-banks flows with adaptative mesh for
morphodynamic models (Langendoen et al. [2016], Fig. 1.11(b)).

(a) Simulated flooding extents for different events using a 2D model with a Cartesian grid
(from Mulatu et al. [2021]). This recent applied engineering article investigates the impact of
a dam project on flooding events using a weak coupling of the hydrological model HEC-HMS
and the 2D solver of the hydraulic model HEC-RAS.

Figure 1.11: Hydraulic models: 2D hydraulic models used for river reach and floodplain model-
ing (1)
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(b) Simulated water depth at successive snapshots over a non-Cartesian grid for within-banks
flow (from Langendoen et al. [2016]). The article presents numerical methods for adaptative
mesh in morphodynamic models using Telemac-Mascaret.

Figure 1.11: Hydraulic models: 2D hydraulic models used for river reach and floodplain model-
ing (2)

This section presents the 1D and 2D SWE (see demonstration in Appendix A), as well as an
overview of numerical schemes used to solve these equations in the current work. The section
also presents some widely used hydraulic models and discusses their design, intended uses and
the integration of data assimilation methods.
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1.2.1 Mathematical flow models

Mathematical flow models describe movement in a continuous medium. In this work, the
medium is an incompressible Newtonian fluid modeled from an Eulerian perspective. The fun-
damental equations are the 3D Navier-Stokes equations that stem from applying conservation
laws of mass and linear momentum to an infinitesimally small fluid volume (Chassaing [1997];
Thual [2010]; Dingman [2009], see Fig. A.1 in Appendix A). In fluvial hydraulics, these equations
integrated over water depth to lead to a 2D formulation (Eq. 1.6), and to the 1D formulation (Eq.
1.2) when integrated over a XS. Both integrated forms are known as Shallow Water equations.
Adhémar Barré de Saint-Venant, a French physicist and mathematician, was the first to mathe-
matically describe quasi-monodimensional flows in 1871 (Barré de Saint-Venant [1871]), from a
heuristic perspective. Hence 1D SW equations are also called Saint-Venant equations.

This section presents the classically used 1D and 2D SW equations, models and the resolution
methods performed in the DassFlow computational platform that is used in this work.

1.2.1.1 Rivers shape and notations

Let us define model parameters and state variables in 1D and 2D frameworks. Let t denote the
time and x the spatial location.

In 1D models, x ∈ R denotes a curvilinear abscissa on a filar network representation. River
reaches are represented as a series of XS (defined over separate y axes, see Fig. 1.12(b)), where
XS profiles b̃ (x, y) and friction parameters are defined. The water depth h (x, t) is given by
Z (x, t) − b (x), where b (x) = miny

(
b̃ (x, y)

)
. The top width w (x, t) is given by the position

of the banks and the water depth at t. The state variables are A (x, t) =
∫ yD(x,t)

yG(x,t)

∫ Z(x,y,t)
b̃(x,y)

dzdy[
m2], the flow section, and Q (x, t) =

∫ yD(x,t)
yG(x,t)

∫ Z(x,y,t)
b̃(x,y)

uxdzdy
[
m3/s

]
, the flow crossing A (see

Fig. 1.12(a)). Note that Q/A = U, where U is the section-averaged flow velocity.
In 2D models, x ∈ R2 denotes the spatial coordinates. The state variables are the water depth

h (x, y, t) [m] and the depth-averaged velocity u = (u, v)T [m/s]. They are evaluated at each
model cell, see Fig. 1.12(b)).



§1.2 Hydraulic models 27

(c) Left: Longitudinal and cross-sectional view. ql is a lateral inflow, see e.g. Eq. (1.2). yG and
yD denote the position in a XS of the left and right banks respectively. zre f is the reference
altitude. Right: Top-down view. In 1D models, the curvature is neglected, hence Q (ux).

(d) Left: 2D notations. Right: Example mesh intended for overbank flow modeling, with
gradually varied edge lengths/cell sizes between river bed and floodplain.

Figure 1.12: Notations in 1D (A, Q) and 2D (h, u, v) models. (a) Longitudinal and cross-sectional
notations of parameters and variables used in Eq. (1.2). (b) Notations of cell variables used in
Eq. (1.6) and sample mesh of river bed and the surrounding floodplain (from Christopher and
Arturo [2013]).

1.2.1.2 1D Saint-Venant equations

We consider a 1D river domain Ω1D ⊂ R and denote by t ∈ ]0, T] the physical time. Let A (x, t)[
m2] be the flow cross sectional area and Q (x, t)

[
m3/s

]
the discharge such that Q = UA with
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U (x, t) defined as the longitudinal XS averaged velocity [m/s] (see Fig. 1.12(a)). The 1D SWE or
Saint-Venant equations in (A, Q) variables with lateral flows writes as follows (see also Appendix
A):


∂A
∂t

+
∂Q
∂x

= ql

∂Q
∂t + ∂

∂x

(
Q2

A

)
+ gA ∂Z

∂x = −gAS f + Uql

(1.2)

(1) (2) (3) (4) (5)

where Z (x, t) is the WS elevation [m] and Z = (b + h) with b (x) the river bed level [m] and
h (x, t) [m] the water depth, g

[
m/s2] is the gravity magnitude and ql (x, t) is the lineic lateral

discharge
[
m2/s

]
. A description of the five momentum equation terms is made at the end of

this subsection.
The non-linear friction term S f is classically parameterized with the empirical Manning-

Strickler law established for uniform flows:

S f =
|Q|Q

K2A2R4/3
h

(1.3)

with K the Strickler friction coefficient in
[
m1/3/s

]
, Rh (x, t) = A/Ph [m] the hydraulic radius and

Ph (x, t) [m] the wetted perimeter, .
In order to deal with the non conservative term gA ∂b

∂x , as proposed in Vila [1986b], one can
introduce a “relative pressure term” P such that:

P
(
x, S̃, t

)
= g

∫ h(x,t)

0

(
h− h̃

)
w̃dh̃ (1.4)

with S̃ and w̃ respectively corresponding to the flow area and width at depth h̃ ∈ [0, h]. As
done e.g. in Brisset et al. [2018], without lateral flows, the 1D SWE in (A, Q) variables can be
written as:

∂
∂t U + ∂

∂x F (U) = S(U)

U =

[
A
Q

]
, F(U) =

 Q
Q2

A
+ P

 ,

S(U) =

 0

g
∫ h

0

(
h− h̃

)
∂w̃
∂x dh̃− gA ∂b

∂x − gAS f


(1.5)
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As shown in Couderc et al. [2013], the jacobian matrix of F(U) has two eigenvalues U + c and

U − c, with U = Q/S and c =

√
∂P
∂S

. Given that A is also strictly positive, the system Eq. (1.5) is

strictly hyperbolic.
In order to obtain a well-posed problem, it is necessary to add initial and boundary con-

ditions. Upstream, lateral and downstream boundary conditions are imposed on flow state
variables depending on flow regimes and detailed in the following case studies. For the fluvial
flows of interest, inflow hydrographs Qin (t) and ql,d (t) at d ∈ [1..Nd] are classically imposed
respectively upstream of the river domain and at known injection cells along the river domain
using the main channel flow speed. Let us define the Froude number Fr = U/c = Q2w/

√
gA3

comparing the average flow velocity U to wave celerity c. The initial conditions are set as the
steady state backwater curve profile Z0 (x) = Z

(
Qin (t0) , ql,1..Nd (t0)

)

Signification of the momentum conservation equation terms (see e.g. Ancey [2018]):

(1) Local acceleration term: describes velocity change over time.

(2) Convective acceleration term: describes velocity change over space and accounts for hetero-
geneous velocity speeds. It allows to model progressive hydrograph skewness as the flood
wave is propagated in the network and hysteresis behavior in h-Q relations. Nullifying
this term transforms the SWE into the diffusive wave equations.

Terms (1) and (2) constitute the “inertial” term and are omitted in some simplified hydraulic
models.

(3) Pressure gradient term: accounts for heterogeneous water depths and allows to model
wave attenuation as the flood wave is propagated in the network. Nullifying this term
transforms the SWE into a kinematic wave equation.

(4) Friction source term: accounts for momentum loss due to all sources of momentum dis-
sipation (bank and bottom friction, eddies, obstacles, ...). It can be complemented by
additional terms (e.g. a drag force source term).

(5) Injected flow momentum term: this additional term accounts for the momentum added by
the injection of a lateral flow.
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1.2.1.3 2D Shallow Water equations

We consider a 2D river domain Ω2D ⊂ R2 and denote by t ∈ ]0, T] the physical time. The 2D
SWE including the Manning-Strickler friction term in their conservative form write as follows
(see e.g. Guinot [2010]; Ancey [2018] and Appendix A):

∂
∂t U + ∂

∂x F (U) + ∂
∂y G (U) = Sg (U) + S f (U)

U =

 h
hu
hv

 , F (U) =


hu

hu2 +
gh2

2
huv

 , G (U) =


hv

huv

hv2 +
gh2

2

 ,

Sg (U) =

[
0

−gh∇b

]
, S f (U) =

 0

−g
n2 ‖u‖

h1/3 u


(1.6)

with h the water depth [m] and u = (u, v) T the depth-averaged velocity [m/s] being the
flow state variables (see Fig. 1.12(b)). The flow model parameters are g

[
m/s2], the gravity

magnitude, b [m], the bed elevation, and n
[
s/m1/3], the Manning-Strickler friction coefficient.

F (U) is the flux of the variable U, Sg (U) is the gravitational source term, S f (U) is the mass and
friction source term.

1.2.2 Resolution methods

1.2.2.1 1D SW model resolution with DassFlow1D

As a matter of facts, the analytical resolution of the set of non linear partial differential equation
(PDE) Eq. (1.2) or Eq. (1.5) with initial and boundary conditions is not possible. The ap-
proximation of solutions is classically performed using a numerical resolution method based on
spatio-temporal discretization of the river and temporal domain. Classical initial and boundary
conditions adapted to real cases are considered in numerical resolution methods in DassFlow
platform (see Monnier et al. [2016]; Couderc et al. [2013]). In this work, the numerical resolution
of the 1D SW equations (Eq. 1.2) is performed with a classical semi-implicit finite difference
scheme (a Preissmann scheme, see e.g. Cunge et al. [1980]). The 1D SW equations (Eq. 1.5)
are solved with an explicit finite volume scheme (a HLL scheme, for Harten-Lax-van Leer, see
Harten et al. [1983]; Toro [2009]). Solvers are used on a regular grid of spacing ∆x and with a
time step ∆t, either fixed or adaptative. Both are implemented into the computational software
DassFlow (Couderc et al. [2013]; Larnier et al. [2021]). Source terms corresponding to lateral
flows have been implemented in the present work in DassFlow1D, for HLL and Preissmann
schemes. The detailed Preissmann scheme discretization of 1D SW model with lateral flows, is
given in Appendix B. The addition of a lateral inflow source term is not documented here.

1.2.2.2 2D SW model resolution with DassFlow2D

In DassFlow2D (see Couderc et al. [2016]), finite volume Godunov-type schemes (Godunov and
Bohachevsky [1959]) with well-balancing properties are used to solve the SWE. A classical first
order Euler explicit time-stepping and an Implicit-Explicit (IMEX) Runge-Kutta time-stepping
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scheme with global second order accuracy are used with a HLLC Riemann solver. The solver
is an improvement over the HLL scheme from Harten et al. [1983] using a three-wave model
for flux calculation, see Toro [2009]. The second order scheme is notably accurate and robust in
wet/dry front propagation scenarios (see Couderc et al. [2016] for more details).

Remark that given a discretization of the computational domain Ω2D ⊂ R2, finite difference
schemes solve for variables at a spatial point, while finite volume schemes solve for averaged
variables over a cell. Explicit schemes depend on variables at the previous time-step, whereas
implicit schemes depend on current and previous time-steps.

Over a given cell K of area mK, consider the piece-wise constant approximation UK =
1

mK

∫
K UdK. Recall that the finite volume approach applied to the homogeneous part of the

hyperbolic system of equations 1.6 - that is without the source terms Sg and S f - writes as
follows:

Un+1
K = Un

K −
∆tn

mK
∑

e∈∂K
meFe

(
Un

K,i, Un
Ke

, nei ,K
)

(1.7)

where Un
K and Un+1

K are the piece-wise constant approximations of U at time tn and tn+1

(with tn+1 = tn + ∆tn), Fe stands for Riemann fluxes through each edge e of the border ∂K of
the cell K, with each adjacent cell Ke. The length of edge e is me and ne,K is the unit normal to e
oriented from K to Ke.

Source term treatment During a computational time step, the full conservative SW equations
are solved first, independently from non-conservative source terms in S = Sg + S f . Then, source
terms are handled by a two-step splitting algorithm. This can be written as:Ūn+1

i = Un
i − ∆tn Fn

i+1/2 − Fn
i−1/2

∆xi

Un+1
i = Ūn+1

i + ∆tnS f

(
Ūn+1

i

) (1.8)

with Ūn+1
i an intermediate value of the computed variables and ∆t the computational time

step. This time-splitting method is implemented in first and second order schemes in Dass-
Flow2D (see Couderc et al. [2016]). Details on the 2D solver and on friction source term implici-
tation are provided in Subsection 3.A.

1.2.3 Computational hydraulic models

Computational hydraulic models are common tools, that include numerical methods required
to solve the flow models detailed in Subsection 1.2.1. The following paragraphs presents some
widely-used hydraulic models, distinguished between 1D and 2D approaches, numerical schemes
and resolution methods, solved hydraulic equations and applied data assimilation methods.

1D numerical hydraulic models are widely used in river engineering applications but also in
water level forecasting since they require relatively few data and are not computationally costly.
2D models generally require more information, like fine 2D bathymetry, and their computational
cost is higher. They are used for local and detailed hydraulic studies where estimating dynamics
2D flow patterns is part of the modeling goals, e.g. dynamic flood mapping in urban areas.
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Simplified 2D hydraulic models, that are less computationally costly but also have more limited
applicability, are also used for larger scale applications such as regional flood modeling. Some
existing 1D and 2D hydraulic models are presented in Table 3.1 along with a description of
their main features in terms of model, numerical scheme, and in some cases optimization and
assimilation methods. Multi-physics features such as sediment transport and erosion-deposition
in river channels (e.g. Langendoen et al. [2016]; Gibson et al. [2015]) are out of scope here.

1D hydraulic models enable to simulate meaningful spatio-temporal variabilities of flow sec-
tions/lines and discharge, from the reach scale to the river network scale, see e.g. Vozinaki et al.
[2017] with HEC-RAS, Barthélémy et al. [2018] with Mascaret or Pujol et al. [2020]; Malou and
Monnier [2021] with DassFlow1D. Moreover, effective parameterizations enable to account for
the effect of various hydraulic structures (such as frontal or lateral weirs, culverts, ...) or for lat-
eral exchanges of mass with floodplains via “casiers” (see Brunner [1995] and references therein)
or even mass and momentum exchange with effective floodplain flows (e.g. ISM model, Proust
et al. [2009] and references therein, see also Bousmar and Zech [1999]). Among reference 1D
models, one can cite the widely used HEC-RAS (Brunner [1995]) or Mike11 (Havnø et al. [1995])
models. Note that the unsteady solver of HEC-RAS uses a locally inertial simplification (LPI, see
Fread et al. [1996]) and a Preissmann numerical scheme (see Cunge et al. [1980] and references
therein). A full 1D hydraulic model is solved in MAGE (Preissmann scheme, Guertault et al.
[2016]), Mascaret (HLL scheme, see Goutal and Maurel [2002]) and DassFlow1D (Preissmann
and HLL schemes, see Brisset et al. [2018]). Note that in DassFlow1D, an accurate finite volume
scheme is implemented using a “pressure term” pre-balancing in the continuous model (Eq. 1.5)
as proposed by Vila [1986b], next used by Goutal and Maurel [2002].

Full 2D SW numerical models enable to simulate high resolution dynamic flooding of flood-
plains (e.g. Finaud-Guyot [2009]; Galland et al. [1991] and references therein), including complex
urban flooding (SW2D, see Guinot et al. [2017]; Steinstraesser et al. [2021]), but also recently at
the scale of a river network of a medium sized catchment of 808 km2 in Nguyen et al. [2016]. In
Fleischmann et al. [2020] with the MGB model or in Grimaldi et al. [2018]; Uhe et al. [2020] with
LISFLOOD-FP, raster based inundation modeling over very large domains is performed with a
simple 2D storage cell inundation model obtained from 1D inertial model (Bates et al. [2010] fol-
lowing Hunter et al. [2008], recently adapted to unstructured meshes in Sridharan et al. [2021]).
In Hocini et al. [2020], an original 2D hydraulic modeling approach proposed by Davy et al.
[2017] and based on “precipiton” is used to compute steady inundation maps of various return
periods at high resolution (5 m) for river networks and floodplains at catchment scale (several
thousands of square kilometers, up to 5050 km2). In Nguyen et al. [2016], a full unsteady 2D
hydraulic model (BreZo, Begnudelli and Sanders [2006]) is applied at relatively high resolution
(10 or 30 m) in the river network and floodplains on a 808 km2 catchment. One can also cite the
interesting macroscopic approaches inspired by flows in porous media (see Guinot et al. [2017]
and references therein), with a reduced computational cost compared to high resolution full 2D
models, though it is still faced with the issue of sub-grid parameters estimation to approximate
flows physics (either fine 2D or real flows).

In order to combine local accuracy and computational efficiency, a combination of full 1D
and 2D hydraulic models is appropriate for simulating a basin-scale network in a way that is
both practical and adequately accurate. Methods for coupling models of different dimensions
have been developed (Miglio et al. [2005a,b]; Amara et al. [2004]), classically using domain de-
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composition (Gervasio et al. [2001]), or more recently using 2D ’zooms’ overlapping with the 1D
domain, in a variational data assimilation framework (Gejadze and Monnier [2007]; Marin and
Monnier [2009]). An iterative coupling strategy is applied in Barthélémy et al. [2018] between a
1D operational model and a 2D operational model with a sequential assimilation technique for
water level forecasting.

Reaching high resolution accuracy and computational hydraulics efficiency for large scale
applications remains a difficult challenge given multi-scale hydrodynamics and multiple uncer-
tainty sources. The accuracy of high resolution computations may still be affected by complex
dynamics with wet-dry front propagations, uncertain quantities at open boundaries (upstream
inflows but also lateral ones, downstream controls and backwater effects), multi-scale and uncer-
tain topography-structures and flow model parameters (e.g. friction effects), internal in/outflows
in urban areas, and large computational domains (e.g. Monnier et al. [2016]).

In the river hydraulics community, the most employed data assimilation methods are based
on sequential algorithms, using Kalman filters and variants. Let us cite for example Roux and
Dartus [2005, 2006] who estimate flood hydrographs in the 1D Saint-Venant model from dense
water surface width measurements; the bathymetry and friction are given. Variational data as-
similation algorithms based on the adjoint method have been proposed for 2D hydraulic model-
ing (Monnier et al. [2016] and references therein) or 1D hydraulic modeling (Brisset et al. [2018];
Larnier et al. [2021]) and implemented in the DassFlow platform. Using VDA, one can infer
boundary conditions like upstream hydrographs, as in Honnorat et al.; Hostache et al. [2010] in
2D or as in Garambois et al. [2020]; Larnier et al. [2021] in 1D, and distributed bathymetry-friction
parameters, from multi-source data. VDA is particularly adapted to address high dimensional
inverse problems with non-linear dynamic hydraulic models. In the hydraulic community, the
calibration of model friction, usually set as spatially uniform by lack of constraining data, is
often performed manually or with simple optimization methods. Note that Monte Carlo simu-
lations have been applied with full 2D hydraulic models in Aronica et al. [2012] for flood hazard
evaluation or in Chen et al. [2018] for computing Sobol sensitivity indices of a 2D SW model
(Telemac2D) applied for flood modeling over urban street networks, but remain computation-
ally expensive.

The DassFlow5 computational platform is used in this work. This platform allows for the
resolution of 1D and 2D full shallow water equations with finite difference schemes and well
balanced finite volume schemes respectively (more details in Subsection 1.2.2), as well as the
use of variational data assimilation using adjoint code obtained via automatic differentiation
(Tapenade tool, Hascoet and Pascual [2013]). To our knowledge, DassFlow is the first numerical
tool proposing large scale multi-D river network modeling with VDA capabilities.

5http://www.math.univ-toulouse.fr/DassFlow/
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Platform Model
Mathematical

model
Max
order

Coupling
1D-2D SWE

Parallel
computation

DA
Sources
available

HEC-RAS
[40]

1D-2D

(A, Q) and
(h, u, v), both

locally
non-inertial SWE

1
Internal (2

solvers)
No - No

BreZo
[232]

2D (h, u, v), porosity 2 No Yes - No

FullSWOF
[71]

1D and 2D
(h, u, v) for both,

full SWE
1 No Yes - Yes

SW2D-
LEMON
[242; 121]

2D (h, u, v), porosity 1 No No - Yes

Floodos
[68]

2D
(h, u, v),

non-inertial SWE
1 No No - Yes

b-flood
[144]

2D (h, u, v), full SWE 1 No Yes - Yes

Telemac-
Mascaret
[96; 111]

1D and 2D
(A, Q) and

(h, u, v), full SWE
1

External (2
solvers)

Yes EnKF Yes

LISFLOOD-
FP

[23]
1D-2Dlike

(A, Q)

non-inertial SWE
1 No Yes EnKF Yes

DassFlow2D
[179]

2D-1Dlike (h, u, v), full SWE 2
Internal

(same solver)
Yes Var Yes

DassFlow1D
[38]

1D (A, Q), full SWE 1 - No Var Yes

Table 1.5: Some established freeware hydraulic models. The equations resolved are either for-
mulated in (A, Q) (flow section

[
m2] and at-a-section discharge

[
m3/s

]
) or in (h, u, v) (water

depth [m] and 2D depth-integrated flow velocities [m/s]). “Max order” refers to the maximum
demonstrated scheme order.

1.3 Hydrological models

As discussed in Subsection 1.1.4, the measurement of hydraulic variables at the catchment scale
is difficult and data are generally lacking, especially for larger domains. To estimate inflows to
be injected into basin-scale river network hydraulic models, hydrological models can be used
and coupled to them. Hydrological models used in this work were “weakly” coupled, i.e. the
hydrological model generates inputs for the hydraulic model without being influenced by its
parameters or states.

Hydrological models aim to predict how atmospheric forcings translate into catchment re-
sponse, i.e. stream flow at the model outlet (Beven [2000]), especially for forecasting of extremes
(floods and droughts). They generally take into account meteorological inputs in the form of
rain, snow, evaporation and transpiration, as well as some catchment characteristics appropriate
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to the modeling approach. Modeling scales can range from upstream catchments (e.g. Roux
et al. [2011]; Perrin et al. [2007]) to large basins (Collischonn et al. [2007]; Paiva et al. [2013a]).

1.3.1 Modeling approaches

As a matter of facts, hydrological processes are difficult to observe and contrarily to hydraulics,
“first principle” hydrological laws do not exist. Therefore, approaches with a certain degree of
empirism have been proposed in the literature to represent catchment scale hydrological pro-
cesses. So-called downward approaches consider the inputs and outputs first in model design,
while upward approaches start from physically-based relationships.

• Empirical relations can be established from time series of catchments inputs and outflows,
e.g. through frequency analysis (Xu et al. [2017]). Pure data driven models have recently
been proposed using deep learning techniques such as “long short term memory” (LSTM)
neural networks (see Kratzert et al. [2019], study of hydrological regimes in France in
Hashemi et al. [2021]). Although these models can be accurate, they work as a “black box”
and carry no information on the physical catchment itself. Moreover, their extrapolation ca-
pability is still limited outside of the learning set but their “interpolation power”, especially
for tough problems as regionalization (prediction at ungauged locations) is interesting as
shown in Kratzert et al. [2019]; Hashemi et al. [2021].

• Conceptual models separate identified hydrological processes into a series of conceptual
relations. Bucket-type models divide catchment processes into water stores linked by
drainage laws such as in GR4 model (Perrin et al. [2003]; Mathevet [2005]). The latter
consists in a parsimonious and robust model structure, lumped in space, established on
large catchment sets to model their outlet discharges. The conceptual basis of those models
makes internal state variables and parameters difficult to relate to real catchment states
(such as soil moisture) and physiographic characteristics.

• Physical models include physically-based relations for hydrological fluxes (e.g. the Green-
Ampt infiltration model (Green and Ampt [1911])) and for flow calculation (e.g. the kine-
matic wave approximation of SWE in Singh [1997]). Parameters of those models can
be inferred from physiographic data but one is generally faced with scale issues, over-
parameterization and data requirements.

Another distinction can be made between spatially lumped or distributed approaches. The
former handle in-catchment variabilities through sub-catchment discretization and modeling,
for example using lumped models linked by transfer laws. The latter spatially discretize in-
catchment parameters and variables. For example, a version of the GR hydrological model (San-
tos et al. [2018]) is adapted in a semi-distributed version called GRSD, to account for the effect
of rainfall spatial variability Lobligeois [2014], recently adapted to account for rainfall intensity
in Peredo et al. [2022].

Recall that modeling is generally a trade-off between modeling goal(s), data availability and
model complexity as discussed for hydrological models in Grayson and Blöschl [2001] (see Fig.
1.13).
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Figure 1.13: Conceptual trade-off between goals, data availability and model complexity in hy-
drological models (from Grayson and Blöschl [2001]).

Given a 2D-spatial domain Ωrr ⊂ R2 (a basin/catchment/watershed), a hydrological model
can be viewed as a dynamic operatorMrr relating state variables hrr (x, t) , ∀x ∈ Ωrr (e.g. internal
water storage and fluxes) with several observable input fields I (x, t) (precipitation, evaporation,
...), observable outputs Yrr (x, t) (e.g. discharge) and “unobservable” parameters θrr (x). Note
that the number of unobservable parameters and states coupled to their correlated influence on
observable signals renders the inverse problem for hydrological model ill-posed (see Subsection
1.4.1). This means its solution is non-unique since several parameter-and-states set can lead the
same observable signal (so called equifinality problem Bertalanffy et al. [1968]; Beven [2006]). The
calibration of hydrological models is complex and often involves feeding a priori information to
the calibration method such as, for example, proximity constraints in a calibration algorithm
applied to the GRSD hydrological model on a river network De Lavenne et al. [2019]).

In this work, hydraulic models are coupled to spatially distributed conceptual hydrological
models in the context of river network modeling and parameter inference from multi-source
data. First, the large scale MGB model (Collischonn et al. [2007]; Pontes et al. [2017]) is used for
inflowing a large scale 1D hydraulic modeling. Next, the coupling of the GR4H model (Perrin
et al. [2007]), used in a semi-distributed setup, to a 2D hydraulic model is investigated. More
precisely, in view to investigate inverse problems with a hydraulic-hydrological assimilation
chain, the source code of GR4H, in its state-space version (Santos et al. [2018]), is included in the
DassFlow2D source code and differentiated to obtain its adjoint. The GR4H and MGB models
used in this work are detailed after.
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1.3.2 MGB: a large scale hydrological model

MGB is a large scale semi-distributed rainfall-runoff model designed to simulate discharge in
large river basins (Collischonn et al. [2007]; Pontes et al. [2017]) schematized in Fig. 1.14. The
model discretizes basins into “unit catchments”, themselves divided into hydrological response
units (HRUs). It takes into account precipitations, interception, evapotranspiration and infiltra-
tion in order to model surface, sub-surface and groundwater flows, and finally inflows to the
river network.

The hydrological module applied to each unit catchments consists in a soil reservoir where
the partition between surface runoff and infiltration is described with a variable contributing
area (VIC) model (concept from Liang et al. [1994]; Zhao et al. [1980]; Todini [1996]; Ludwig and
Bremicker). Evaporation from soil and vegetation is described with a Penmann-Monteith model
(e.g. Wigmosta et al. [1994]). Subsurface flow is taken from the soil reservoir and described
with a function similar to the Brooks and Corey non-saturated hydraulic conductivity equation
(Rawls et al. [1992]). A linear relation is used to model percolation from the soil reservoir to
the groundwater reservoir. The three lateral fluxes, arising above or from soil reservoir for each
HRU of a unit basin, are simply collected and delayed with one linear reservoir for each. The
river flow routing scheme, a Muskingum Cunge based method (see Paiva et al. [2013b] and
references therein), is expected to represent wave delay and attenuation along the network, but
not backwater controls or loss of mass and momentum in the main channel due to floodplain
exchanges.

MGB exists in 1D and 2D versions that are compared in Fleischmann et al. [2020]. In the
1D version (Collischonn et al. [2007]), large numbers of hydrological catchments are linked by
a routing model based on the inertial flood wave routing method (solving simplified SWEs). In
the hydraulic part of the model, these catchments are considered as storage units. The rout-
ing equations are simplified and aimed at modeling stream flow at a large scale. They allow
taking advantage of altimetric WS observations (e.g. through sequential DA methods in Paiva
et al. [2013c]). In the 2D version, the basin is discretized into a regular Cartesian grid in which
simplified SW equations (locally inertial diffusive formulation) are solved. Floodplain flows are
computed between each orthogonal neighbor based on the LISFLOOF-FP sub-grid model (Neal
et al. [2012]), while channel flows may be further informed by sub-grid DEM and computed
between cells connected by identified channels (Fleischmann et al. [2020]).

In this work, MGB was used in weak coupling to DassFlow1D to compute spatially dis-
tributed hydrological inflows into the river network. This assumption is based on the good
performance at flow gauge of the spatially distributed and regionalized MGB model (Pontes
et al. [2017]).

1.3.3 GR4H: a bucket-type rainfall-runoff model

The GR4H model (Mathevet [2005]) is a lumped continuous model that runs at the hourly time
step. It is based on the GR4J model formulation of Perrin et al. [2003] and uses a robust and
parsimonious production function proposed in (Michel [1989]). This model is widely used and
has been compared to other hydrological models (see e.g. Tian et al. [2013]; Nepal et al. [2017]).
It is used in this work because it is a well established, parsimonious and robust model, based
on Ordinary Differential Equations (ODEs, state-space version only (Santos et al. [2018])) hence
differentiable. This property is interesting in the present work as it is a necessary condition to
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Figure 1.14: MGB model reservoirs and propagation modeling (adapted from Fleischmann et al.
[2020]; Collischonn et al. [2007]). Three linear reservoirs (for surface flow Dsup, subsurface flow
Dint and groundwater reservoir Dbas) link the temporal forcings (over-canopy precipitation PC,
evapotranspiration from the soil reservoir ET and from the canopy and vegetation interception
reservoir EI) to flow in a simplified channel representation (routing model). W and Wm are
respectively the current and maximum soil water storage.

generate an adjoint code for variational data assimilation (see Section 1.4).
Several GR models exist, featuring varying amounts of parameters, stores and time steps (see

Perrin et al. [2007]). The “state-space” version of the GR4H model (see Fig. 1.15) is described by
the following set of ordinary differential equations:

Ṡ
Ṡh,1
Ṡh,2

...
Ṡh,nres

Ṙ


=



Ps − Es − Perc
Pr −QSh,1

QSh,1 −QSh,2
...

QSh,nres−1 −Quh
Q9 −Qr + F


(1.9)

It consists in a production store S, a routing store R and a series of 11 Nash cascade stores
Sh,i, ∀i ∈ [1..11], that replace a unit hydrograph function from the classical GR4H version. The
precipitation input Pn is divided between the production store S and the upper Nash cascade
store Sh,1. The production store R loses water to an evapotranspiration relation and is linked to
the upper Nash cascade store Sh,1 by a discharge law (Perc). The reservoirs of the Nash cascade
are identical and linked in a chain by discharge relations (QSh,i, ∀i ∈ [1..10]). The last cascade
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reservoir outlet Sh,11 is linked to the routing store R and the model output through a 9-1 tenth
repartition. The routing store S and direct routing branch can both exchange water through flux
F which represents an exchange for example with aquifers.

The internal model variables are the 13 store levels. Four parameters ((x1, x2, x3, x4), see
Subsections 3.3.3 and 3.C), rule the draining of the production store, of the routing store, of the 11
identical cascading stores and the non-conservative exchange law. They are given per catchment,
i.e. spatially distributed. Initial store states are given using a 1 year warm-up period. A series
of parameters used in flux calculations are fixed (values and fluxes are given in Subsection 3.C).
A R-based global optimization method for the classical GR4 formulation can be found here6 and
was used for background value estimation in this work.

In this work, the state-space” version of GR4H was integrated to the DassFlow2D assimila-
tion tool-chain. The weakly-coupled hydrological module was used to model semi-distributed
catchments linked to a 2D full SWE hydraulic model. Calibration of hydrological parameters us-
ing WS elevation and discharge observations were carried out using the gradient-based descent
algorithm from the DassFlow framework to reach a local optimum.

1.4 Inverse problems and data assimilation

Given the rising availability, accuracy and resolution of river network monitoring products, the
development of hydraulic-hydrological models should strive to account for their exploitation.
The synergy between models and data can be achieved through data assimilation methods that
enable to solve inverse problems, i.e. methods that use observations of reality to correct model
states and parameters so that they better fit that reality. This section first introduces inverse
problems in hydraulic models, the solving of which is a step toward synergy between hydraulic
models (presented in Section 1.2) and river network observability (presented in Subsection 1.1.4).
Then, data assimilation methods are described. They are linked to a unifying Bayesian approach,
given Gaussian priors and linear models. Finally, the iterative variational data assimilation algo-
rithm used in the following chapters is described summarily (more details can be found in the
following chapters).

1.4.1 Direct and inverse problems

1.4.1.1 Definitions

Determining the cause of a phenomenon occurring in a physical system through its observation
is a key question in various scientific domains. Solving a direct problem means using a cause to
determine an effect, while solving an inverse problem means observing the effect to determine
its cause (see Tarantola [2005] for theory of inverse problems).

Modeling a physical system generally consists in determining state variables that verify a
physical model given parameters and boundary conditions. In the context of hydrodynamic
modeling, the cause is a set of unknown/estimated parameters in the form of spatial fields and
temporal forcings and the effect is composed of heterogeneous water surface observables. This
problem and model are naturally the direct problem, as the hydraulic models describing the

6https://webgr.inrae.fr/logiciels/airgr/
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variability of flow mass and momentum in terms of state variables (A, Q) in 1D (Eq. 1.2) or
(h, u, v) in 2D (Eq. 1.6). Nevertheless, in practice, boundary conditions, initial conditions and
parameters can be uncertain or unknown, because of imperfect modeling and observability of
the physical system of interest (see river network observability in Section 1.1.4). For example, for
river models, bathymetry-friction or lateral exchanges of mass and momentum in SW models
(see Section 1.2) can be poorly-known, which can lead to insufficient accuracy on the simulated
state variables. The inverse problem consists in finding unknown or uncertain model parameters
that enable to fit observations of physical system response (e.g. Tarantola [2005]). Consequently,
the observed quantities have to be calculable from model variables.

One of the main difficulties encountered in inverse problems resolution is ill-posedness. As
defined by the mathematician J. S. Hadamard, a mathematical modeling problem of a physical
phenomenon is a well-posed problem if the solution exists, is unique and depends continuously
on model boundary and initial conditions, and parameters.

1.4.1.2 Inverse problems

This work aims to infer uncertain or unknown parameters of hydraulic and hydrological models
using multi-source river flow observations provided by various in situ or satellite measurements.
In particular, this work focuses on the optimization of control vectors of coupled hydraulic-
hydrological models. The considered datasets are heterogeneous in nature with observations
among WS deformations (WS elevation, width, slope), flow velocity (at the free surface or not),
flow depth or discharge estimates. The unknown or uncertain parameters of the direct hy-
draulic models (Eq. 1.2 or Eq. 1.6) weakly coupled to a hydrological model (Eq. 1.9) are among
bathymetry, friction and lateral exchanges, including inflows from hydrological models. The un-
known or uncertain parameters of the conceptual hydrological model (Eq. 1.9) considered in this
work are among reservoir and sub-catchment exchange parameters. An underlying hypothesis
of hydrological parameter inference in this work is that the conceptual representation of hydro-
logical catchment introduced in GR4 (i.e. reservoir number and connections) is pertinent for
the considered catchments and thus these parameters are not inferred. The correction of model
forcings and reservoir states also represent interesting problems.

In hydraulic models, the inference of at least two type of unknowns among river bathymetry-
friction-inflow discharge from WS signature observations is an ill-posed problem (see Garambois
and Monnier [2015]; Larnier et al. [2021]). Indeed, these flow controls have a correlated influence
on water surface deformations. For example, as remarked in Garambois and Monnier [2015], an
infinity of bathymetry-friction couples can lead to the same local WS elevation.

A supplementary difficulty arises from the spatio-temporal heterogeneity of data and the
relatively sparse sampling they provide of the physical processes of interest. For example, in-
ferrable flood frequency patterns, using sparse altimetric sampling of a relatively short river
reach by a single satellite (SWOT like data), are studied at the river reach scale in Brisset et al.
[2018]. Regarding the spatialization of controls, a higher spatial density of controls than of ob-
servation leads to under-determined inverse problems, as discussed for bathymetry and friction
inference of 1D hydraulic models from satellite data in Garambois and Monnier [2015]; Garam-
bois et al. [2020]; Larnier et al. [2021]. See also bathymetry inferences in Lai and Monnier [2009]
or friction inferences on a 2D hydraulic model from in situ and Synthetic Aperture Radar (SAR)
data in Hostache et al. [2010]. Those studies suggest the combination of sparse satellite data with
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a priori physical knowledge and in situ data to better constrain the inferences.
Given the increasing amount of multi-source observations of river surface deformations, in

combination with ancillary data and physical knowledge, arises the question of information
feedback in integrated hydraulic-hydrological models, from local observation scale to upstream
hydrological modules. Can we “do backward hydrology” (Kirchner [2006])? With which type
and spatio-temporal density of model controls and data? More precisely, the inverse calibra-
tion problem of a distributed hydrological model, from multi-source observations in the river
network, will be studied in this work.

Adapting the complexity of direct models and inverse methods, to both modeling goals,
features and available observations, is necessary in view to progress in the integration of multi-
source information and is studied in this PhD.

1.4.2 Data assimilation

Data assimilation is a mathematical discipline that aims to optimally combine a model with
observations of a physical system in order to exploit the physical informative content of data
(see e.g. Bouttier and Courtier [2002]; Carrassi et al. [2018]; Monnier [2021]). It has been used for
decades in meteorology or oceanography (see e.g. Ghil and Malanotte-Rizzoli [1991]) or more
recently in hydrology (see e.g. Park and Xu [2013]; Seo et al. [2009]).

The prediction of a flow model is generally fitted to observations by adjusting a parameter. In
meteorology, this sought parameter is usually the initial condition of numerical models, which
represents an important challenge for weather forecasting given the chaotic nature and relatively
short relaxation scales of atmospheric flows (Carrassi et al. [2022]). In this work, the parameter,
called control, and denoted c, is composed of boundary conditions and flow models parameters
(see e.g. Larnier et al. [2021] and references therein). Such composite controls, composed of
different types of unknowns, lead to multivariate data assimilation problems. Moreover, the
controls of non-linear hydrodynamic models considered in this work are distributed in space
and time and are of a relatively high dimension.

Schematically, data assimilation has been developing around two families of methods: the
variational approach that stems from the optimal control theory (see e.g. the work of J. L.
Lions on the optimal control of PDE) and the statistical estimation with sequential methods.
In sequential methods, model states are corrected recursively at discrete observation times, only
using previous system state and observations (Carrassi et al. [2018]). Sequential methods notably
include Kalman filters (Swerling [1959]; Kalman [1960]) and smoothers (Carrassi et al. [2018]).
In the former, model states are corrected at observation times only. In the latter, model states
are constrained/smoothed at unobserved times. In variational methods, all observations are
accounted for simultaneously and guide the model trajectory. The Bayesian framework offers a
unifying framework for the two approaches.

In this work, the variational approach is used. It is an adapted approach to deal with non-
linear dynamic models and with heterogeneous observations in space and time, but also to deal
with multivariate data assimilation problems and large control vectors. It is an efficient approach
that is well suited to solve the inverse problems of interest (defined above in Section 1.4.1), as
experienced for hydraulic inferences in satellite observability context (e.g. Brisset et al. [2018];
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Larnier et al. [2021]) or for spatially distributed hydrological calibration problem (Castaings
et al. [2009]; Jay-Allemand et al. [2020]). Moreover, note that global optimization algorithms are
not adapted for the present inverse problems and local descent algorithms will be used in the
variational approach.

1.4.2.1 Problem statement

The mathematical framework used in data assimilation is briefly recalled here (see DA course,
e.g. Carrassi et al. [2018]; Bouttier and Courtier [2002]; Monnier [2021]; Asch et al. [2016]). Let
U be the space of the input variables (controls) of flow models (Eq. 1.2) or (1.6) or (1.6 weakly
coupled to 1.9). Considering c ∈ U , a finite dimension real-valued control vector, Let cb denote
the background control vector, called “prior” in statistics, and ca the analysis that is expected
to best approximate, in a sense to be defined, the true control value ct. Note that because of
uncertainties on the components of c, the prior is the best available guess and writes:

cb = c + εb (1.10)

Let us assume that model state variables are observed in a set Y = H (c) ∈ Y with Y the
observation space and H : X 7→ Y the observation operator from state space X to observation
space Y . The actual observation is Yo = Y + εo with εo the observation uncertainty arising for
example from measurement noise.

In the Bayesian framework, the posterior probability density of c conditioned on observations
Yo can be written with the Bayes formula:

p (c|Yo) =
p (Yo|c) p (c)

p (Yo)
(1.11)

Searching for the mode of the posterior density p (c|Yo), that is maximizing p (c|Yo), is the
essence of data assimilation (see Gejadze and Malaterre [2017]). Assuming Gaussian prior and
observations uncertainties, that is εo ∼ N (0, O) and εb ∼ N (0, B) with B and O respectively the
background and observation covariances, maximizing p (c|Yo) is equivalent to minimizing the
cost function:

j (c) =
1
2

∥∥∥O−1 (H (c)−Yo)
∥∥∥2

+
1
2

∥∥∥B−1
(

Y−Yb
)∥∥∥2

(1.12)

This is a classical definition of the cost function j (c) = jobs + jreg. The first term jobs is
the observation term measuring the misfit between model prediction and observations. The
second term is a Tikhonov regularization term (Tikhonov and Arsenine [1977]; Kaltenbacher et al.
[2008]). The latter helps to add a priori constraint on the sought solution and “convexifying” the
original ill-posed problem with observation term only. As matter of fact, background covariance
is generally not known.

1.4.2.2 The optimization algorithm

The variational data assimilation problem consists in the following optimization problem (Bout-
tier and Courtier [2002]; Larnier et al. [2021]; Monnier et al. [2016], see 1.16):

ca = argminj (c) (1.13)
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The first order optimality condition of this optimization problem reads: ∇j (c) = 0. The
optimization problem (Eq. 1.13) is numerically solved with a Quasi-Newton descent algorithm:
here the classical L-BFGS algorithm or its bounded version L-BFGS-B (see Zhu et al. [1997]).
The iterative process requires, at each iteration, the gradient of the cost function with regards to
control vector components.

The gradient of the cost function is computed with the adjoint state method enabling to con-
sider large control vectors (see e.g. Larnier et al. [2021]; Oubanas et al. [2018a]; Brisset et al.
[2018]). The adjoint code is obtained by applying the automatic differentiation tool Tapenade to
the forward numerical codes: DassFlow1D (Larnier et al. [2021]; Brisset et al. [2018]) or Dass-
Flow2D (Monnier et al. [2016]) in the following. The automatic differentiation tool Tapenade
(Hascoet and Pascual [2013]), based on the derivation rule of composite functions, provides the
tangent and adjoint codes of a forward code. Given a function F : X ∈ Rn 7→ Y ∈ Rn evaluated
over [0, T] in the form of a computer program P, Tapenade provides an adjoint code P′ by com-
puting the analytical derivative of each elementary mathematical operation of P. This adjoint
code evaluates X̄ = Ȳ × F′ (X) over [T, 0] (Hascoet and Pascual [2013]). Detailed know-hows
and historical references can be found for example in courses (Carrassi et al. [2018]; Bouttier and
Courtier [2002]; Monnier [2021]).

Trajectory change during the iterative process can be represented within the parameter space,
that is a N-dimension space (with N the number of components of the control c) within which
the misfit to observations (or cost) is evaluated. In the present VDA method, a single local min-
imum is sought, using a gradient-based descent algorithm, background parameters and initial
conditions.

Mono-objective DA refers to approaches that use a single kind of observable in their cost
function (e.g. WS elevation), while multi-criteria cost functions and multi-objective methods
use multiple (e.g. WS elevation and at-a-section discharge). See Efstratiadis and Koutsoyiannis
[2010] for a review of multi-objective problems in hydrology. Mono-variate DA refers to methods
inferring a single parameter type (potentially discretized in space and time), while multi-variate
methods aim to simultaneously infer composite control vectors (e.g. the upstream inflow and
bathymetry-friction couple in Garambois et al. [2020]).
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Figure 1.16: Complete VDA hydraulic-hydrological tool-chain

1.5 Python Wrapping of DassFlow

Python has become the most used computer language in 2021, overtaking C and Java, according
to the Tiobe index7. Python packages and libraries are freely available and cover uses such as
data representation, scientific computing, global optimization, statistical analysis, Geographic
Information System (GIS) tools and Machine Learning (ML) libraries. Python is easy to use and
is an interpreted language that does not need to be compiled. The DassFlow computational
platform is written in Fortran, a low-level compiled language. Fortran is capable of efficient
matrix computations and high performance computing, but does not have access to numerous
libraries like those for Python and is, in general, less practical to use.

The “wrapping” of a code consists in creating an interface between two programming lan-
guages. Python has emerged as a key language to interface older codes to, thanks to its ease of
use and numerous libraries and toolboxes. The Python wrapping of DassFlow consists of the
interfacing of its Fortran efficient computational core to Python. This allows preserving the core
code and handling the pre- and post-processing, as well as some of the other less computation-
ally costly parts of the code.

The wrapping of the DassFlow Fortran code (see Huynh [2020]; Ma [2021]) has seen the
interfacing of most variables and parameters structures, the launch of both direct and inverse
models through a Python script, and the adding of a Python-based minimizer instead of the
previous Fortran one. Note that the gradient calculation is a computationally costly step, while
the minimization of the cost function, given the gradient, is not.

7https://www.tiobe.com/tiobe-index/



§1.6 Context summary and thesis objectives 45

The wrapping tool is f90wrap, a Python-Fortran interface generator developed by James Ker-
mode Kermode [2020] and that builds on the f2py Python package. The code is open-source and
available at https://github.com/jameskermode/f90wrap. The tool generates modules (.mod
files) and .py and .f90 interfacing files. These files are then used to generate a importable
Python module with f2py. It allows to read and write chosen Fortran variables and routines
from .py files. Multi-thread parallel computation is handled as well. More details on the wrap-
ping methodology and development process are available in Huynh [2020]; Ma [2021], technical
details can be found in Monnier et al. [2022].

1.6 Context summary and thesis objectives

Strong societal issues drive the need for the cartographic representation of hydrological cycle
phenomenons. The corresponding scientific challenges are the improvement of state and fluxes
representation in hydrographic network models and the synergy of these models with new data
sources and data types. Depending on modeling objectives (e.g. river discharge, water depth
or flood extent) and data availability, multiple model scales with different degrees of complex-
ity have been developed. 1D approaches are generally used to model near mono-dimensional
hydraulic phenomenons at local, regional and global scales. 2D models are used to model bi-
dimensional phenomenons at local scale but, due to their higher computational cost, are gener-
ally used with simplified hydraulic equations and rough spatial resolution at regional or global
scales. However, the use of full SW models and adapted numerical schemes is needed for ac-
curate modeling of wet/dry front propagation at the local scale. Over a river network, both
1D and 2D approaches can have their advantages. Coupled 1D-2D modeling approaches the-
oretically allow to use the best of both approaches (e.g. by limiting costly 2D computation to
pertinent regions), but add a layer of difficulty regarding their coupling/interfacing. Hydraulic
network models are generally inflowed by hydrological models to feature complete basin-scale
state-fluxes numerical representations. At such scale the accurate estimation of both hydraulic
and hydrological parameters remains an important difficulty.

Observations of hydrological phenomenons are given by a growing array of sensors, with
increasing accuracy and spatial and temporal resolution. This leads to an increasing number of
multi-scale, multi-sourced heterogeneous data products that contain an often under-exploited
wealth of information, especially for ungauged river network portions. Single data products
are usually integrated in models through data assimilation methods, classically with sequen-
tial DA methods. Variational methods are less common, especially because of the difficulties
related to the obtention of an adjoint model. Yet, they are very pertinent for the inference of
large multi-variate control vectors of hydrodynamic models. Inferences, in SW models, of chan-
nel parameters (the bathymetry-friction couple), initial and boundary conditions and temporal
forcings (inflows) using multi-sourced altimetric measurements of the WS and other flow mea-
surements have been carried out in recent works using data assimilation methods. The resolution
of these ill-posed problems is a current scientific issue in hydraulic modeling at the reach and
catchment scale. In hydraulic-hydrological models, the inference of hydrological parameters and
states from upstream feedback of hydraulic signatures is also a current scientific issue. Given
the growing observation data resolutions and the consequent potential to infer spatially dense
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parameters, this work uses variational data assimilation in the context of remotely-sensed and
multi-sourced observations. It builds on a powerful VDA framework from the DassFlow plat-
form and investigates complex inverse problems with hydrodynamic models from multi-source
flow observations.

This work focuses on the following scientific problems: i) the effective representation of river
networks through multi-D basin-scale hydraulic-hydrological models, ii) the integration of multi-
source multi-scale heterogeneous observations in such models, iii) from this data, the inference
of spatio-temporally distributed river channel parameters and inflows through a variational data
assimilation method and iv) the upstream informational feedback of river network observations
to integrated hydrological models. To answer these questions, the variational data assimilation
platform DassFlow was expanded upon, notably by implementing spatio-temporally distributed
temporal forcings and integrating a conceptual hydrological model to the variational tool-chain.
A new method for 1D-2D modeling of catchment scale river networks was developed using a
single finite volume solver. Numerous inferences of large composite control vectors using multi-
sourced heterogeneous data were carried out on 1D and 1D-2D models coupled with hydrology
with the VDA method.
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Figure 1.15: GR4 state-space conceptual model (Santos et al. [2018])
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This chapter is based on Pujol et al. [2020]. The article’s content is featured with minor layout
and notation adjustments.

2.1 Extended abstract

With the upcoming SWOT satellite mission, which should provide spatially dense river surface
elevation, width and slope observations globally, comes the opportunity to assimilate such data
into hydrodynamic models, from the reach scale to the hydrographic network scale. Based on
the HiVDI (Hierarchical Variational Discharge Inversion) modeling strategy (from Larnier et al.
[2021]), this study tackles the forward and inverse (see runs in Subsection 1.4.1) modeling capa-
bilities of distributed channel parameters and multiple inflows from multi-satellite observations
of river surface. The considered model solves the full 1D (A, Q) SW equations with a lateral
inflow source term (see Subsection 1.2.1). The lateral inflow source term was implemented in the
DassFlow platform in a Preissmann scheme (see Appendix B) and a HLL scheme, for direct and
inverse modeling.

It is shown on synthetic cases that the estimation of both lateral inflows ql (x, t) and the
bathymetry-friction couple (b (x) , K (x)) is achievable with a minimum spatial observability be-
tween inflows as long as their hydraulic signature is sampled. Next, a real case is studied: 871 km
of the Negro river (Amazon basin) including complex multichannel reaches, 21 tributaries and
backwater controls from major confluences. An effective modeling approach is proposed using
(i) WS elevations from Envisat data and dense in situ GPS flow lines (Moreira [2016]), (ii) aver-
age river top widths from optical imagery (Pekel et al. [2016]), (iii) upstream and lateral flows
from the MGB large-scale hydrological model (Paiva et al. [2013a]). The calibrated effective hy-
draulic model closely fits satellite altimetry observations and presents real like spatial variabil-
ities; flood wave propagation and water surface observation frequential features are analyzed
with identifiability maps following Brisset et al. [2018] (see Fig.2.1). Synthetic SWOT observa-
tions are generated from the simulated flow lines and allow to infer model parameters (436
effective bathymetry points, 17 friction patches and 22 upstream and lateral hydrographs) given
hydraulically coherent prior parameter values. The unprecedented spatial coverage provided by
the SWOT wide-swath altimeter enables to infer relatively densely discretized parameters at a
cartographic scale. Inferences of channel parameters carried out on this fine hydraulic model
applied at a large scale give satisfying results using noisy SWOT-like data at reach scale (see
Fig.2.2). Inferences of spatially distributed temporal parameters (lateral inflows) give satisfying
results as well, with even relatively small scale hydrograph variations being inferred accurately
on this long reach. This study brings insights in: (i) the hydraulic visibility of multiple inflows
hydrographs signature at large scale with SWOT; (ii) the simultaneous identifiability of spatially
distributed channel parameters and inflows by assimilation of satellite altimetry data; (iii) the
need for prior information; (iv) the need to further tailor and scale network hydrodynamic mod-
els and assimilation methods to improve the fusion of multi-source information and potential
information feedback to hydrological modules in integrated chains.

Section 2.3 presents the modeling approach with the 1D Saint-Venant flow model and the
inverse computational method. Section 2.4 investigates the capabilities of the inverse method
for identifying spatially distributed inflows with and without unknown channel parameters
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given observation patterns of WS signatures including overlapping backwater effects. Section
2.5 presents the effective modeling approach from multi-satellite data applied to 871 km of the
Negro river (Amazon basin) and the analysis of flow propagation features against SWOT observ-
ability. Section 2.6 proposes inference tests for spatially distributed inflows with and without
unknown parameters on the Negro case in the presence of strong backwater effects. The original
article conclusion is featured in Section 2.7.
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Figure 2.1: Identifiability map of a flood wave on a 871 km reach of the Negro river in a large
scale 1D model.
The red-blue heatmap gives the WS elevation anomaly with regards to the average local WS
elevation Zano (x, t) = Z (x, t) − Z (x), where Z (x) is the average local WS elevation over the
seasonal flood peak (may-june).
The blue line represents the travel of an intumescence traveling through the reach at the modeled
kinematic speed (5/3u) and starting at the upstream BC at the time of the flood peak at this point,
in a base model calibrated with satellite altimetry. Dotted colored lines show the sensitivity of
this travel time estimation to model parameters and forcings: variations of +30% and −30% from
the base model are represented for the Manning friction parameter K (in green), the bathymetry
b (in cyan) and all model inflows (in red).
The vertical bars indicated lateral inflows ql (x, t) for a total of 21 lateral mass and momentum
contributions (bold lines are denote the major tributaries). Horizontal bars represent observabil-
ity given by the SWOT large swath altimeter.
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(a)

(b)

Figure 2.2: Simultaneous inferences of lateral inflows ql (x, t), bathymetry b (x) and friction
patches K (x) in a twin experiment setup on the Negro river 1D model. The control vec-
tor is composed of bathymetry points, friction patches and select lateral inflow hydrographs
and writes cext = (Ql,1 (t) , Ql,2 (t) , Ql,3 (t) , Ql,4 (t) , b (x) , K (x)). Considered observations are
noisy SWOT observations from the SWOT simulator (inferences in orange) and spatially and
temporally dense observations (inferences in green).
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2.2 Introduction

Hydrographic networks represent major flow paths for freshwater in the water cycle and an in-
terface with the space of human societies. It is of prior importance in a context of climate change
to improve the knowledge and representation of continental water fluxes, including river dis-
charge, defined as an essential physical variable (see Global Climate Observing System Organi-
zation, 2011]). However, modeling flows structure in the different compartments of a catchment
remains a hard task (see Schuite et al. [2019] and references therein) especially at poorly gauged
locations. In complement of in situ sensors networks, which are declining in several regions
(e.g. Fekete and Vorosmarty [2002]), new generations of earth observation satellites and sensors
provide increasingly accurate and dense measurements of water surface variabilities.

The Surface Water and Ocean Topography (SWOT) satellite, to be launched in 2021, will
bring observations of water surface (WS) with an unprecedented spatio-temporal coverage Als-
dorf et al. [2007]; Durand et al. [2010]; Rodríguez [2012]; Biancamaria et al. [2016]; Rodríguez
et al. [2018]. This will yield greater hydraulic visibility (see definition in Garambois et al. [2017];
Montazem et al. [2019]; Rodríguez et al. [2020]) of hydrological responses through WS signatures
from the local scale to the hydrographic network scale, hence an opportunity to better character-
ize hydrological fluxes and potentially constrain local to integrated hydrodynamic models and
inverse problems. However, estimating river discharge Q from “geometric” observables of flow
surface (elevation Z, width W and slope S) remains a difficult inverse problem particularly in
case of poor knowledge on river bathymetry and friction (see Garambois and Monnier [2015];
Larnier et al. [2021] and references therein).

Hydraulic inverse problems with various model complexities, data-unknowns types and
amounts are investigated by recent studies in a satellite data context (see Biancamaria et al.
[2016] for a review). A few studies started to test the benefit of assimilating (synthetic) SWOT
WS observations with sequential methods in simplified hydraulic models, for estimating inflow
discharge assuming known river friction and bathymetry Andreadis et al.; BIA [2011] or infer-
ring bathymetry assuming known friction Durand et al. [2008]; Yoon et al. [2012]. Next, methods
based on low-complexity models have been proposed for estimating river discharge from WS
observables in case of unknown bathymetry b and friction K, based on the low Froude model
Durand et al. [2014]; Garambois and Monnier [2015], hydraulic geometries Gleason and Smith
[2014] or empirical algebraic flow models Bjerklie et al. [2018]. The inter-comparison of low
complexity methods in Durand et al. [2016] highlights the difficulty of estimating the so-called
unknown triplet (Q, K, b) from WS observables as well as the importance of good prior guesses
on the sought parameters.

The combined use of dynamic flow models of river systems and optimization methods en-
ables to solve hydraulic inverse problems, as shown for upstream flood hydrograph(s) estimation
by Roux and Dartus [2006] from WS width time series and a 1D Saint-Venant model or by Hon-
norat et al.; Hostache et al. [2010]; Lai and Monnier [2009] using variational assimilation of flow
depth time series in a 2D shallow-water model. The variational data assimilation (VDA) ap-
proach (see e.g. Cacuci et al. [2013] and references therein) is suitable to address the present
hydraulic inverse problem from WS observations (see Gejadze and Malaterre [2017]; Brisset et al.
[2018]; Oubanas et al. [2018b]; Garambois et al. [2020]; Larnier et al. [2021] and references therein
- single upstream hydrographs in all studies except multiple “step-wise” off-takes on synthetic
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and densely observed irrigation-like cases in Gejadze and Malaterre [2017]). It consists in fit-
ting the modeled flow features to observations through the optimization of control parameters
in a variational framework. To be solved efficiently, such an ill-posed inverse problem needs
to be regularized: see Kaltenbacher et al. [2008] for the theory of regularization of such inverse
problems and Gejadze and Malaterre [2017]; Larnier et al. [2021] for the present inverse flow
problem.

Crucial aspects of this difficult inverse problem are (i) the spatio-temporal sparsity of alti-
metric observations regarding flow controls – as analyzed in Brisset et al. [2018] for inferrable
hydrographs frequencies with the introduction of the identifiability maps and in Garambois et al.
[2020] for inferrable channel parameters patterns; (ii) the sensitivity of the triplet inference to
good prior guesses on the sought parameters as highlighted in a SWOT context by Garambois
and Monnier [2015]; Yoon et al. [2016]; Tuozzolo et al. [2019]; Garambois et al. [2020]; Larnier
et al. [2021]. The latest is highlighted by recent discharge estimates (in a triplet setup) from
synthetic SWOT data on the Pô, Garonne and Sacramento Rivers in Larnier et al. [2021] (see
also Oubanas et al. [2018a]), from AirSWOT airborne measurements on the Willamette River in
Tuozzolo et al. [2019] or from Envisat altimetric data on an anabranching portion of the Xingu
River Garambois et al. [2020]. Using a biased prior hydrograph results in a biased estimate of
inflow hydrograph despite a correct temporal variability at observation times - see Larnier et al.
[2021] for detailed analysis. A hierarchical modeling strategy HiVDI (Hierarchical Variational
Discharge Inversion) is proposed in Larnier et al. [2021] including low complexity flow relations
(Low Froude and locally steady-state) for providing robust prior guesses to the VDA process by
taking advantage of databases or regional hydrological models.

Most studies mentioned above tackle the estimation of a single upstream inflow discharge hy-
drograph from WS observations on relatively short river reaches regarding the spatio-temporal
sparsity of (satellite) observations sampling and without complex flow zones - confluences, mul-
tichannel portions (except Garambois et al. [2020]), floodplains. Moreover, few recent studies
address the effective modeling of (ungauged) river channels using multi-satellite data Garam-
bois et al. [2017]; Schneider et al. [2017]; Garambois et al. [2020]; O’Loughlin et al. [2019].

The present study investigates the challenging inference of multiple inflows and channel pa-
rameters patterns from hydraulic signatures in a SWOT context. Particular attention is paid
to the difficult inference of HC with correlated effects on WS signatures including overlapping
backwater effects. Moreover, we present an effective hydraulic modeling approach based on
multi-satellite observations of WS and accounting for hydrological model inputs. It is applied
to a long river reach including confluences with tributaries and strong backwater effects in the
Amazon basin. The computational inverse method, based on the full 1D Saint-Venant equations,
is that presented in Brisset et al. [2018]; Larnier et al. [2021] with a spatially distributed fric-
tion power law in water depth and a simple piece-wise linear channel bathymetry Garambois
et al. [2020]. It is adapted here to account for lateral inflows/off-takes and is weakly coupled
to the large scale MGB hydrological model Collischonn et al. [2007]; Pontes et al. [2017]; Paiva
et al. [2013a]. Numerical investigations of the resulting WS signatures and identifiability tests
are presented along with sensitivity analysis to the parameters of both the (forward) hydraulic
model and the inverse method. The challenging inference of multiple inflows and channel pa-
rameters patterns is investigated with various observations densities including the assimilation
of synthetic SWOT ones.
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2.3 Modeling Approach

2.3.1 The flow model

The Saint-Venant equations (Barré de Saint-Venant [1871]) consist in the unidirectional form of
the shallow water equations and are commonly used to describe open channel flows (see e.g.
Chow [1964]; Ancey [2018]; Guinot [2010] for detailed assumptions including the long wave
one). In what follows, x denotes the curvilinear abscissa from upstream to downstream along
a reach of length L (usual simplifying hypothesis are used) and t ∈ [0, T] denotes the time. In
this representation, let A (x, t)

[
m2] be the flow cross-sectional area and Q (x, t)

[
m3.s−1] the

discharge such that U = Q/A
[
m.s−1] represents the longitudinal XS-averaged velocity . The

Saint-Venant equations in (A, Q) variables at a flow XS read as follows:
∂A
∂t + ∂Q

∂x = klql
∂Q
∂t + ∂

∂x

(
Q2

A

)
+ gA ∂Z

∂x = −gAS f + klUql
(2.1)

where Z (x, t) [m] is the WS elevation and Z = (b + h) [m] with b (x) [m] the river bed level and
h (x, t) [m] the water depth, Rh (x, t) = A/Ph [m] the hydraulic radius , Ph (x, t) [m] the wetted
perimeter, g is the gravity magnitude

[
m.s−2], ql (x, t) is the lineic lateral discharge

[
m2.s−1], and

kl is a lateral discharge coefficient chosen equal to one here since we consider inflows only. In
DassFlow, the friction term S f is classically parameterized with the empirical Manning-Strickler
law established for uniform flows:

S f =
|Q|Q

K2S2R4/3
h

(2.2)

The Strickler friction coefficient K
[
m1/3.s−1] is defined as a power law in h:

K (x, h (x, t)) = α (x) h (x, t) β(x) (2.3)

where α and β are spatially distributed parameters. This spatially distributed friction law enables
a variation of friction effects in function of the flow state (see effective modeling of multichannel
flows in Garambois et al. [2020]).

Inflow hydrographs Qin (t) and ql,d (t) at d ∈ [1..D] are classically imposed respectively up-
stream of the river domain and at known injection cells, that is in-between two computational
XSs along the river channel. Let us recall the Froude number definition Fr = U/c comparing
the average flow velocity U to pressure wave celerity c =

√
gA/W where W is the flow top width

[m]. Considering subcritical flows (Fr < 1) in a satellite observability context (see Garambois and
Monnier [2015]), a boundary condition is imposed at the downstream end of the model using the
Manning-Strickler equation depending on the unknowns (A, Q, K) out. The initial condition is set
as the steady state backwater curve profile Z0 (x) = Z (Qin (t0) , ql,1..D (t0)) for hot-start. This 1D
Saint-Venant model (Eq. (2.1)) is discretized using the classical implicit Preissmann scheme (see
e.g. Cunge et al. [1980]) on a regular grid of spacing ∆x using a double sweep method enabling
to deal with flow regimes changes, ∆t is precised in numerical cases. This is implemented into
the computational software DassFlow Couderc et al. [2013].
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2.3.2 The computational inverse method

The paper studies the estimation of spatially and temporally distributed flow controls from WS
observables using the inverse method presented in Larnier et al. [2021] (see also Brisset et al.
[2018]) with an augmented composite control vector c; the method is detailed in 2.A. The prin-
ciple of the inverse method is to estimate (discrete) flow controls by minimizing the discrepancy
between observed and simulated flow lines, Zobs and Z (c) respectively, the latter depending on
the unknown parameters vector c through the hydrodynamic model (Eq. (2.1)). This discrep-
ancy is classically evaluated with the observation cost function term jobs(c) = 1

2 ‖(Z (c)− Zobs)‖2
O

computed on the observation spatial and temporal grids, see details in 2.A.
The control vector c contains temporally and spatially distributed unknown “input parame-

ters” of the 1D Saint-Venant model: a friction law (Garambois et al. [2020]) and lateral inflows,
unlike in Larnier et al. [2021], where there is a spatially uniform friction law K (h) without lateral
flows. It reads:

c =
(

Q0
in, ..., QP

in ; Q0
l,1, ..., QP

l,1, Q0
l,2, ..., QP

l,D ; b1, ..., bI ; α1, ..., αN ; β1, ..., βN

)T
(2.4)

where Qp
in is the upstream discharge (the superscript p ∈ [1..P] denotes the observation time),

Qp
l,d is the lateral discharges injected in the inflow cell d ∈ [1..D] (note that Ql,d = ql,d∆x), bi the

river bed elevation (i ∈ [1..I] denotes the computational XS index in space) and, for each patch
n ∈ [1..N] with N ≤ I, the spatially distributed parameters αn and βn of the friction law (Eq.
(2.3)) depending on the flow depth.

The inversion consists in solving the following minimization problem: c∗ = argminc j(c)
starting from the so-called prior cprior in the parameter space. This minimization problem is
solved using a first order gradient-based algorithm, more precisely the classical L-BFGS quasi-
Newton algorithm (see 2.A). Note that the sought parameters have a correlated influence on the
modeled flow lines, therefore leading to an ill-posed inverse problem. In order to be solved
efficiently, the optimization problem is “regularized” as detailed in 2.A. The main steps of the
method are illustrated in Fig. 2.3.

2.4 Inference capabilities from WS signatures: synthetic test cases

In order to calibrate the parameters of a hydraulic model (Eq. (2.1)) from WS observables, one
has to identify and understand the influence of these parameters on the observable(s): in our case
the WS profile. Fluvial flows are studied here in the context of satellite altimetry (see Garambois
and Monnier [2015]). Following Montazem et al. [2017], the influence of the parameters on the
modeled flow lines is referred to as their “hydraulic signature” (HC) and a reach is defined in-
between two fluvial HCs. Fluvial HCs can be defined in steady state (see Montazem et al. [2017])
as “local maximal deviations of the flow depth from the normal depth hn (equilibrium), imposing the
upstream variation of the water depth profile h (x) over the so-called control length Samuels [1989]”.
They can stem from a change in either the hydraulic resistance, XS shape, bottom slope or total
flow variation through lateral exchanges.

This section studies the influence of inflows on hydraulic signatures, the capabilities of the
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Figure 2.3: Flowchart of the method using the HiVDI inverse method Larnier et al. [2021] for
variational calibration, adapted from Monnier et al. [2016]; Garambois et al. [2020]; Monnier
[2021].

inverse method described above to infer multiple inflows and channel parameters (either spa-
tially constant or not), with a focus on the influence of the spatial observability of those hydraulic
signatures.

2.4.1 Test case design

Three test cases configurations representing typical hydraulic-observations setup of increasing
complexities involving lateral inflows are presented (see Fig. 2.4). Cases Ch1 and Ch2 are de-
signed to study the effect on the inference of the overlapping signatures triggered by the prop-
agations of, respectively, one or two lateral hydrographs, concomitantly with the one of the
upstream inflow hydrograph. Case Ch3 is a complexification of Ch2 through the introduction of
a non-flat bottom and a variable friction pattern K = α (x) as needed in a real river case in the
next sections (β = 0 in Eq. ((2.3)) - see investigations on spatialized friction laws with multi-scale
bathymetry controls in Garambois et al. [2020]).

For all three channels the boundary conditions (fluvial) consist in: (i) a normal depth (equi-
librium) imposed downstream and (ii) sinusoidal hydrographs (see Tab. 2.1) imposed upstream
and at lateral injection cells. The simulation time step is set to ∆t = 20 s for all cases. They
are set up as twin experiments, where a forward run of the flow model (Eq. (2.1)) is used to
generate perfect WS elevation observations which are then used to infer an unknown parameter
vector c (Eq. (2.4)) with the inverse method described in section 2.3.2 and 2.A. The inferences are
started from erroneous prior guesses c(0) that verify Manning-Strickler law for hydraulic consis-
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Figure 2.4: Spatial hydraulic signature of lateral inflows on an academic test case.
Top: Academic test cases configurations. Rectangular channels of length L = 1000 m and con-
stant XS width W = 300 m, constant bottom slope of 10−3 m/m for Ch1, 2 and varying between
10−4 and 10−2 m/m for Ch3 - the bottom b (x) is defined by linear interpolation between the
4 bathymetry points (diamonds, b = {2, 1.88, 1.28, 1.12} m) - and friction defined by constant
values on 3 patches (α = {30, 12.5, 30} m1/3/s). Upstream inflow at x = 0; for Ch1, 2, 3 re-
spectively lateral injections at abscissae (in m): x = 300, x = {300, 700}, x = {350, 700}, and
observations at {xS1, ..., xS5} = {150, 500, 850, 450, 550}, {xSb1, ..., xSb5} = {150, 325, 450, 600, 800},
{xSc1, ..., xSc4} = {0, 300, 600, 1000}.
Bottom: Sample waterlines with visible upstream and downstream controls and signatures. For
the sake of clarity here, upstream and injected flow are set at 100 m3/s (Fr ∼ 0.12− 0.3). Using
the identifiability index Iident = Twave/∆tobs introduced in Brisset et al. [2018] with Twave = L/ck
and the kinematic wave velocity for a rectangular channel ck = 5/3U (ck = 1.16 m/s consider-
ing average speed U = 0.69 m/s) and a high observation frequency (∆tobs = 20 s), gives a high
identifiability index Iident = 43 for the present flow observation configuration.
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Case
Qin Ql,1 Ql,2 Froude rangeQ0 aQ T Q0 aQ T Q0 aQ T

Ch1 100 0 6300 100 20 6300 - 0.13-0.29
Ch2a

100 20 6300

100 20 6300

100 20 6300

0.12-0.3
Ch2b 400 80 6300 0.05-0.55
Ch2c 100 20 630 0.1-0.33
Ch2d 100 20 6300 0.12-0.3
Ch3 100 20 6300 0.09-0.53

Table 2.1: Parameter values for sinusoidal hydrographs Q (x, t) = Q0 (x) + aQ (x) sin
( 2π

T t
)

used
in synthetic channels and resulting modeled Froude ranges. Flows in m3/s, time T in [s].

tency, that is unbiased priors (see investigations in Garambois et al. [2020]; Larnier et al. [2021]);
hydrograph priors are constant values equal to the average value of the target hydrographs.

Increasingly challenging inverse problems are considered, with increasing number of un-
knowns sought simultaneously and various observations densities. Cases Ch1 and Ch2 are used
to infer temporal parameters only, given a channel of constant slope and friction. Case Ch3 is the
most challenging case with all inflows and non constant channel parameters sought simultane-
ously.

2.4.2 Informative content of hydraulic signatures: inflow inferences

The fluvial signature from a single lateral inflow is divided in two parts (see Ch1 on Fig. 2.4,
bottom): (i) in the reach downstream of the injection point, the cumulative flow (Q = Qin +Qlat,1)
is uniform with a water depth corresponding to the normal depth imposed downstream, (ii)
in the reach upstream of the injection point an M1 backwater curve profile (see Chow [1959],
Montazem [2018]; Montazem et al. [2017] in the present “altimetry context”) is obtained given
the upstream flow Qin and the water depth imposed downstream of this reach as the normal
depth corresponding to the cumulative flow. In the case of two distinct lateral injections (Ch2),
WS signatures overlap in the most upstream reach because of the stronger backwater effect
created by two downstream inflows, which represent a more challenging inference problem.

Inference trials in case Ch1 with control vector c1 =
(

Q0
l,1, ..., QP

l,1

)T
, assuming a known

constant Qin (x = 0, t), show that a single observation point in space with a dense sampling in
time, placed either upstream (S1, in Fig. 2.4, top) or downstream (S2) from the lateral inflow,
is sufficient to infer one lateral inflow hydrograph perfectly - noiseless twin experiments - (not
presented). Indeed, the hydraulic signature of a lateral inflow is visible and fully informative
either upstream from it because of its downstream control on the upstream flow line or down-
stream from it, in the signature of the cumulative flow. This means that as long the river is well
temporally-observed regarding its response time (see Brisset et al. [2018] without lateral inflows)
and that the temporal variations of the observed system stem from a single control, only one
spatial point is needed to infer this parameter.

In the case of two distinct lateral injections (Ch2), WS signatures overlap in the most up-
stream reach because of the stronger backwater effect created downstream by the two inflows,
which represents a more challenging inference problem considering the unknown control vec-
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tor c2 =
(

Q0
in, ..., QP

in ; Q0
l,1, ..., QP

l,1, Q0
l,2, ..., QP

l,2

)T
. Several variants of Ch2 are considered to

study the possible misattribution of flow controls (locations, amplitudes and frequencies) in case
of identical inflow hydrographs (Ch2a), the backwater influence of inflow hydrographs on Qin
downstream signature observed at S1 given 4 times larger inflow amplitude (Ch2b) or 10 times
higher frequency (Ch2c), different observations samplings “mixed” inflows signatures (see Fig.
2.4 and Tab. 2.1).

2.4.2.1 Inference of multiple inflows

For all cases, using perfect and dense observations in space (1 every 10 m) and also in time leads
to quasi perfect inferences. The influence of a sparser sampling and of the observability patterns
of overlapping WS signatures on the identifiability of multiple inflows with the present inverse
method is studied here - without a priori weighting of the parameters in the inverse method,
that is equal and unadjusted σ� values (see 2.A). The inferred hydrographs are summed up in
Fig. 2.5. Scores are given in Tab. 2.2, including cost function values and iterations number at
convergence.

Variant Ch2a Given only one observation station by reach (S1, S2, S3) very satisfying inferences
of the 3 inflows are obtained(Fig. 2.5, red line). Hence sufficient information is provided by
those three stations observing distinct signatures in each reach from upstream to downstream:
(S1) propagation of the inflow Qin(x = 0, t) in presence of the overlapping backwater effects
due to Ql,1 (x = 300, t) and Ql,2 (x = 700, t); (S2) propagation of Qin (x = 0, t) + Ql,1 (x = 300, t)
in presence of the overlapping backwater effect due to Ql,2 (x = 700, t); (S3) the propagation of
the total discharge without downstream control.

Variant Ch2b Assimilation is more difficult than in Ch2a but inferred hydrographs (Fig. 2.5,
red line) are still accurate (Tab. 2.2). This testifies to the ability to discriminate multiple sources
of various amplitudes given observations of hydraulic signatures at higher frequency and at
pertinent locations (S1, S2 and S3).

Interestingly, this case highlights the expected misattribution behavior between inflow sources
as shown by an intermediate iteration (Fig. 2.5, orange line) and remaining to a lesser extent at
convergence (red line): Qin and Ql,1 are respectively over- and underestimated). This may be due
to the relatively higher contribution of Qin to the observed signature (it impacts WS elevation at
S1, S2 and S3) and consequently its contribution in the cost function (observation part).

Note that the final overestimation of Qin in Ch2b is slightly greater than in Ch2a. This is
likely due to greater WS elevation variation at S1 caused by backwater from Ql,1, which is first
attributed to Qin since it has more impact on the cost function. Remember that, with perfect
observations of WS signatures, at the end of the optimization process, nearly perfect hydro-
graphs are inferred. However, the small flow misattributions during this optimization shows
the difficulty of inferring multiple controls using an observation located in a strong backwater
signal.

Variant Ch2c Perfect inferences are obtained. An intermediate iteration (Fig. 2.5, orange line)
shows that the expected misattribution of frequencies for all 3 inflows is present, though it
disappears at convergence (Fig. 2.5, red line). This testifies to the ability to discriminate multiple
sources of various frequencies given observations of hydraulic signatures at higher frequency
and at pertinent locations (S1, S2 and S3).
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Figure 2.5: Inflows inferences from WS observations for all Ch2 variants. Intermediate iteration
in the assimilation process are represented for Ch2b and Ch2c ; they are hand-picked to illustrate
“intermediate” behaviors before convergence (“inferred”).

Variant Ch2d Convergence is achieved but the flow upstream of S4 is misattributed between
Qin and Ql,1. Signatures of Qin and Ql,1 are only observed mixed, downstream of Ql,1 (at S4
and S5) and downstream from both Ql,1 and Ql,2 (at S3). Given that all stations are located
in the downstream influence of both inflows, the distribution of flow between them makes little
difference on the observed WS dynamics. This confirms the need to have at least one observation
station between each sought inflow in order to be able to “separate” them.

2.4.2.2 Synthesis

These first tests showed that for inferring multiple inflows, i.e. spatially distributed temporal
controls, a minimal spatial observability of their WS signature is required with one observa-
tion point between each inflow here. In case of observation stations affected by backwater in-
fluence, the potential difficulty of separating multiple inflows from their “mixed signature” is
highlighted; using a higher spatial density of (simultaneous) observations leads to improved
inferences in the present configuration. Moreover, using observations with high temporal den-
sity (with regards to the response time in the considered river system) and low spatial density,
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Case
Qin Ql,1 Ql,2

Cost Nite
RMSE rRMSE (×10−6) RMSE rRMSE (×10−6) RMSE rRMSE (×10−6)

Ch2a 0.08 2.5 0.15 4.7 0.05 1.6 8.0×10−6 54

Ch2b 0.72 22.9 1.34 10.6 0.08 2.7 9.4×10−6 261

Ch2c 0.06 1.9 0.27 8.7 0.04 1.3 7.7×10−6 78

Ch2d 2.21 70.0 3.31 105.0 0.03 0.9 7.9×10−6 24

Table 2.2: Inferred parameters misfits to the truth for Ch2 variants. The RMSE
[
m3/s

]
and rRMSE

represent the misfit of the inferred parameters, while the cost function used in the assimilation
process represents the misfit of variables.

RMSE =

√
1
n

n
∑

i=1

(
Qi

target −Qi
in f ered

)2
, rRMSE = RMSE/

n
∑

i=1
Qi

target

different frequencies can be correctly attributed to multiple inflows (as highlighted for a single
upstream inflow in Brisset et al. [2018]). Furthermore, note that if a supercritical regime occurs
in a reach between inflows, their hydraulic signatures are disconnected (not shown), effectively
reducing the assimilation problem to that of case Ch1.

2.4.3 Multiple and composite controls inference

In this section multiple inflows are sought simultaneously with channel parameters on case
Ch3. Three friction patches are consistently applied to sub-reaches in-between the 4 sought
bathymetry points. The control vector is:

c3 =
(

Q0
in, ..., QP

in ; Q0
l,1, ..., QP

l,1, Q0
l,2, ..., QP

l,2 ; b1, b2, b2, b4 ; α1, α2, α3

)T
(2.5)

. Searching both inflows and channel parameters creates a configuration (intently) prone to
equifinality problems on the sought parameters having correlated influence in the water surface
signal. Three observation configurations (see Fig. 2.4) are studied: one with a high station
density (Ch3a: 100 stations, 1 every 10 m), another with fewer stations (Ch3b: 9 stations, Sb1..5

and Sc1..4) and a third one with even fewer stations (Ch3c: 4 stations, Sc1..4). Priors for inflows
are those defined for case Ch2 (subsection 2.4.2.1), priors for channel parameter are hydraulically
consistent with flow priors and initial flow line. For this equifinality prone configuration, the σ�
values used in the inverse problem regularization, related to the sought parameters (see section
2.A) and denoted as weights, are given in Tab. 2.3.

Inference results are presented in Fig. 2.6. In red, the final estimate of c3 for Ch3a with
the “default” weights set (see Tab. 2.3). In green, final inferences for variant-specific parameter
weights adjusted through trial and error. In orange, intermediate inferences with the “default”
set of parameter weights. Equal values of 1, corresponding to “no weighting”, were also tested:
they lead to inaccurate inferences (not shown) and thus the “default” weights producing more
interpretable results are preferred. In further iterations, after the ones plotted in orange, behav-
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iors similar to the Ch3a “default” weights inferences (Fig. 2.6, in red) appear (not shown), i.e.
a shift of inferred hydrographs and Strickler coefficients away from the target. Also note that
the inferred flow oscillation in the first time step stems from the influence of the initialization
scheme (see section 2.3.1) in the optimization on this quickly responding channel.

Variant Ch3a Qin is underestimated while the local friction is overestimated, denoting a local
tendency to equifinality. This is linked to a strong backwater influence, created by both Ql,1
and the increase in friction at x = 300 m. This local inflow error leads to compensation in down-
stream hydrographs. By adjusting parameter weights through trial and error, accurate inferences
are obtained (Fig. 2.6, in green). This means that dense observations of the WS elevation are not
sufficient for inferring all flow controls contained in c3 and that spatially distributed regulariza-
tion parameters, acting as weights in the parameter search, are required.

Variant Ch3b and Ch3c With sparse observations, the “default” weight set leads to worse infer-
ences. However, the existence of a set of adjusted weights that lead to good inferences (Fig. 2.6,
in green) is enough to show that the minimum observation spatial density of 1 station between
each inflow can be sufficient to infer the extended control vector c3. Note that adjusted weight
for Ch3b and Ch3c are different from adjusted weights for Ch3a (see Tab. 2.3).

Using less observation points in space, the influence of spatial parameters decreases without
loss of meaningful information and thus the relative influence of inflows increases. This simple
test highlights the weighting influence of the σ� parameters in the regularization method in
the present flow configuration. The spatial distribution and density of WS observations along
with the weights change the hydraulic representativity of spatially distributed parameters in the
optimization process.

The main difficulty uncovered with these academic cases is the challenge presented by simul-
taneous inferences of multiple inflows and channel parameters from their potentially overlapping
hydraulic signatures. However, in the case of unbiased prior parameters and dense WS obser-
vation patterns relatively to those of spatio-temporal controls, satisfying inferences are obtained
with the present inverse method. A real and complex river case is considered hereafter.
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Case σQin

(
m3s−1) σQl,1

(
m3s−1) σQl,2

(
m3s−1) σα

(
m1/3s−1) σb (m) Cost Nite

“Default”

Ch3a

50
50 50 600

2

0.54 180

Ch3b 0.54 97

Ch3c 0.63 54

“Adjusted”

Ch3a 30 30 400 0.23 156

Ch3b
1 0.9 1.2 300

0.25 108

Ch3c 0.26 100

Table 2.3: Parameter weight sets in Ch3 variants

Figure 2.6: Inflow, bathymetry and friction patch inferences from WS observations for all Ch3
variants. In red, final inference with “default” parameter weights (see Tab. 2.3). In green, final
inference with adjusted parameter weights. In orange, intermediate inferences with “default”
parameter weights.
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2.5 Effective hydraulic model of the Negro river

After addressing increasingly challenging hydraulic inverse problems on synthetic test cases in
the previous section, a real complex river flow case is now considered. It consists in 871 km
of the Negro river, including several confluences with tributaries and anabranching flow zones.
The reach is located upstream of the Solimões-Negro confluence which is responsible for signif-
icant backwater effects (see e.g. Montazem et al. [2017]). This section presents the elaboration
of effective flow models in view of performing forward and inverse flow modeling from WS
observations of varying sparsity in the next section.

The modeling approach consists in (i) a 1D hydraulic model (full Saint-Venant equations, see
subsection 2.3.1) (ii) based on effective XSs defined from multi-satellite and in situ data and (iii)
weakly coupled to the large scale hydrological model MGB Collischonn et al. [2007]; Pontes et al.
[2017]; Paiva et al. [2013a]. The idea is to build an effective river flow model both in coherence
with the main hydrological signals (inflows) propagations along with observable flow surface
signatures and HCs (see Montazem et al. [2017]). As shown in what follows, this 1D approach
allows for a fair representation of flow propagation and longitudinal signatures, which are the
core focus of this paper.

2.5.1 Study zone

The study domain corresponds to the main stream of the Negro river, a major “left-bank” Ama-
zon tributary draining the north part of the basin, with an average discharge of 28 400 m3/s
Agência Nacional de Águas e Saneamento Básico (ANA). The reach covers the 871 km upstream
of its confluence with the Solimões and presents singular channel morphologies such as multi-
channel flow zones mainly located in two large grabens (Latrubesse and Franzinelli [2005]). Part
of the reach is strongly influenced by the control imposed by the Solimões river at its confluence
(average discharge of 100 819 m3/s according to ORE HYBAM gauge data Cochonneau et al.
[2006], their confluence gives birth to the Amazon river). This HC is due to higher discharge and
a consequently lower slope of the Negro river in its lower reach when compared to the Solimões
river near to the confluence Filizola et al. [2009]; Callède et al. [2013]. The reach of interest has
been crosscut by 18 Envisat ground tracks every 35 days from 2003 to 2010 (see Da Silva et al.
[2012]), representing 68 to 79 measurements of WS elevations at each of the 18 Virtual Stations
(VS). Note that the measurements are not simultaneous for each station.

2.5.2 Effective models construction

This section presents the elaboration of effective flow models from multi-satellite data. First, a
G1 “sparse” channel geometry is built from effective bottom elevations at Envisat VS resolution.
Next, in view to test the additional constraints brought by spatially dense satellite data (synthetic
SWOT), a more spatially detailed effective channel geometry G2 is built using a high resolution
water mask and an in situ flow line as explained below.

2.5.2.1 Effective geometry G1 from altimetry and optical data

An effective 1D channel with effective rectangular XSs is set up from available multi-satellite
data (altimetry, optical) and a large scale hydrological model following Garambois et al. [2017,
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2020]. According to Latrubesse and Franzinelli [2005], high width to depth ratios make the rect-
angular channel a pertinent effective modeling approach of the true geometry, even in highly
anastomosed reaches - where an error on the actual hydraulic perimeter Ph hence Rh (see Sub-
section 2.3.1) is expected. This is supported by a qualitative analysis of some additional ADCP
measurements of river flow and cross-sectional bathymetry.

• The river centerline from Allen and Pavelsky [2015], formed by 30×30 m pixels, is used to
calculate the river length and to project all spatial objects, such as VS, widths and inflow
points, on a single one-dimensional reference.

• A longitudinal profile of cross-sectional WS width W is calculated from the average river
extent map derived from 31 years (1984-2015) of optic Landsat imagery by Pekel et al.
[2016]. A single width value per centerline point is extracted in order to build a 1D rect-
angular geometry. For multi-channel reaches, the effective width is the sum of the widths
of all channels. This underestimates the actual hydraulic perimeter. Specific hand-filtering
based on hydraulic expertise was necessary in some anabranching parts of the model where
the water extent may include inactive flow zones not accounted for in the present 1D ef-
fective model. Note that Park and Latrubesse [2017] concurs to the necessity of reach-scale
flow zone evaluation in the Amazon river catchment.

• An effective channel bottom elevation benv is obtained at each VS (Fig. 2.8, in red) from
altimetric rating curves (RC) from Paris et al. [2016]. Its slopes range from −7.1×10−5

to 2.0×10−4 m/m with an average of 7.0×10−5 m/m. RCs were obtained by adjusting
the parameters (γ, δ) of a stage discharge relationship Q = γ (Zsat − b)δ S0.5

sat using WS
elevations Zsat and slopes Ssat gained by satellite altimetry and discharge Q simulated with
the large scale hydrological model MGB (Collischonn et al. [2007]; Pontes et al. [2017]; Paiva
et al. [2013a]) on the temporal window of interest.

Effective rectangular XS geometries are defined at the R = 18 VS using the above defined effective
bottom elevations {benv}r∈[1..R] and river widths {W1}r∈[1..R]. The final model geometry (G1 =

{benv, W1} r∈[1..R]) is obtained by linear interpolation between those 18 effective XSs on the model
grid with ∆x = 200 m.

2.5.2.2 Effective geometry G2 at increased spatial resolution

Spatially dense WS elevation data is introduced in the form of an in situ GPS flow line with
G = 579 spatial points. It was collected by survey ship along the whole studied reach over 7 days
during the low-flow period in december 2010 (Moreira [2016]); it provides local WS elevations Z
every 1.4 km on average and WS slopes S for every 25 km reach (ranging between 2.0×10−5 and
8.11×10−5 m/m, averaging at 3.4×10−5 m/m). Under the hypothesis of a wide rectangular XS
and a steady uniform flow, the Manning equation writes:

Q = K (Wh)5/3 (W + 2h)−2/3√S (2.6)

The water depth writes h = (Z− b) and the bottom elevation is sought using (i) the fixed
WS width pattern W2 from imagery, (ii) the WS elevation ZGPS and slope SGPS given by the GPS
profile and (iii) the discharge Q from the hydrological model (see Subsection 2.5.1) on the river
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Figure 2.8: Effective river channel bottom and width for spatially sparse, G1 = {benv, W1} r∈[1..R],
and spatially dense, G2 = {bGPS, W2}G∈[1..G], model geometries and a low-flow GPS waterline
from Moreira [2016].

domain at the corresponding time t∗. We invert an effective bathymetry bGPS using equation 2.6
by minimizing the square sum of misfits to benv at Envisat stations through the modification of
M = 14 friction values ((αm, βm = 0) , m ∈ [1..M], friction law Eq. ((2.3))). They are simply spa-
tialized into M “hydraulic” patches consistent with large scale morphological features classified
as follows: single channels, multiple channels (from 2 to 3), lightly anastomosed and heavily
anastomosed (Fig. 2.8, in purple). The friction coefficient values are coherent with the physical
properties of the classified reaches.

The new bathymetry bGPS is coherent with the best available reference data and its corre-
sponding set of physically distributed Strickler patches. The final model geometry is G2 =

{bGPS, W2}G∈[1..G].

In the following, using either geometry G1 or G2, the hydraulic model is inflowed with time
series at a daily time step upstream of the river domain and at 21 tributaries (both river tributaries
and runoff inflows) corresponding to the 21 catchment cells feeding into the Negro river cells
in the large scale hydrological model MGB (Pontes et al. [2017]; Collischonn et al. [2007]). The
largest of these tributaries is the Branco river at 657 km.
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2.5.3 Effective Models calibration against altimetry

The friction of the hydraulic model (Eq. (2.1)) is calibrated against altimetric WS elevation time

series following Garambois et al. [2020], i.e.
{

Zobs
s,p

}env

S=16,P∈[68..79]
at Envisat VS, the most down-

stream VS being used as BC (see Subsection 2.3.1). The friction law is distributed using N = 17
“Envisat” patches with constant (αn, βn = 0) , n ∈ [1..N] values for each reach between two suc-
cessive VS. This choice is made to avoid spatial “overparameterization” in the calibration process
regarding the spatial sparsity of Envisat observations of WS signatures. The aim of parameter
calibration is to obtain a “real-like” model as close as possible of the sparse observation set. Three
models are considered, to assess the impact of the bathymetry refinement and of the downstream
BC on the modeled hydraulic signatures and on inverse problems: a “sparse” model (M1) using
channel geometry G1 and the WS elevation time series from VS 18 as BC, a refined model (M2a)
with channel geometry G2 including all the spatial variability from multi-source data described
above while keeping the same BC and a further changed refined model (M2b) where the BC is
changed to an altimetric RC which is of interest for “operational-like” applications in other rivers
and basins.

The inverse method presented in Larnier et al. [2021] and described in Subsection 2.3.2 and
2.A is used here, without regularization terms, for friction calibration. Effective Strickler patches,
starting from priors corresponding to average values of the “hydraulic” patches used above (Fig.
2.8, in purple), are calibrated following Garambois et al. [2020] who use observations of the
same nature. Friction patterns c∗G1, c∗G2a and c∗G2b found with the inverse method are shown in
Fig. 2.9. Most differences in calibrated friction from M1 (Fig.2.9, in red) to M2a (Fig. 2.9, in
blue) correspond to their difference in bathymetry at the virtual station point (Fig.2.9, gray line),
i.e. a lower slope in M2a leads to a higher inferred Strickler parameter in order to match WS
observations (e.g. in patch 2 and 6. Inferred parameters for M2b roughly match those of M2a,
with some discrepancies in patch 2, 15 and 17. Using a different BC influences WS sensitivity to
parameters and the relative contribution to the cost function of local WS misfits, which explains
differences in patch 15 and 17 ; the one in patch 2 stems for the high friction values, hence lower
WS sensitivity as analyzed after.

2.5.3.1 Water levels analysis

The following presents a detailed analysis of the effective hydraulic model for configuration M1,
along with an analysis of changes obtained for configurations M2a and M2b.

The simulated WS elevation are compared to observed WS elevation at each Envisat virtual
station in Fig. 2.10 - other time series are available in 2.B. For the 3 models calibrated above, the
modeled WS are fairly close to observed WS given the limited modeling complexity and data
uncertainties. More precisely, the fit to the altimetric WS elevation time series is fairly good, as
shown for M1 in Fig. 2.10, and nearly unbiased as shown in Fig. 2.11(left). The WS elevation
global RMSE is at 0.936 m for M1 ; similar results are found with M2a (see Tab. 2.4). Errors
are greater in low and high flows, with consistent underestimations of flow amplitude upstream
(VS 1− 4) which turns into overestimation downstream (VS 9− 13), before disappearing closer
to the BC (VS 14− 18). VS 5 to 8 are particularly accurate. Error metrics are coherent with those
from current state of the art models using satellite data (see e.g. O’Loughlin et al. [2019] on the
Congo river).
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Figure 2.9: Friction patches after calibration against Envisat WS elevation observations. Inferred
Strickler coefficient values are very close for all configurations for patches 1, 3 to 5 , 9 to 14 and
16. Patches 2, 6 and 15 are especially sensitive to model variations.

The analysis of the time series for M1 gives insight on the 1D model behavior regarding the
real flow physics sampled with the sparse nadir altimetry data and dense in situ low flow line.
Modeling errors can stem from either an (expected) improper representation of the channel and
flow complexity or uncertain (ungauged) inflows and data.

Concerning the hydraulics, from downstream to upstream, relative errors are lower in anabranch-
ing reaches outside of the backwater influence starting at the Branco tributary (x = 657 km up
to around x = 350 km) and in the backwater influence of the (known “perfect”) downstream BC.
Overall, relative errors are higher upstream, in single channeled, low water height reaches and
in the Branco backwater influences. Note that 2D complex lateral flows in floodplains or reten-
tion behaviors from “igarape” rivers may happen in high flow periods (see Fleischmann et al.
[2019]; Fassoni-Andrade et al. [2020]). These unaccounted phenomenons may decrease flood
wave velocities and cause hydrograph skewness (Collischonn et al. [2017]; Alsdorf et al. [2007];
Fleischmann et al. [2016]).

The 1D modeling of water levels compared to altimetry observations (Fig. 2.10) can first be
analyzed as follows:

• Stations 14 to 18 are located in reaches with different morphological properties. Stations 14
and 15 are located in a densely anastomosed reach upstream of the Branco river confluence,
a major tributary. Stations 16 and 17 are in single channel reaches, upstream from the
confluence with the Solimões river. Station 18 is in a densely anastomosed reach at the
location of the BC forcing on WS elevation. Their low relative misfits do not testify to the
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absence of complex hydraulic behaviors in this area but rather to the dominating influence
of the BC.

• Stations 5 to 13 are located in mostly homogeneous anastomosed reaches, with stations 5
to 8 in a less densely anastomosed region than stations 9 to 13. This spatial division corre-
sponds to two trends in relative misfit, where lower misfit is seen in the less anastomosed
reaches. This testifies to the difficulty of modeling potentially 2D hydrodynamics using
1D approach. Indeed, the more channels there are, the further away the simulated wetted
perimeter is from the true wetted perimeter (and so the hydraulic radius). Note that pa-
rameterizing the Strickler coefficient as described in Eq. ((2.3)) and including β (x) in the
control vector during the calibration process, instead of the simpler β (x) = 0 used here,
does not yield a better fit in this complex case modeled with a single rectangular channel.

• Stations 1 to 4 are located on single channel reaches. Although the area seems the most
suitable to be modeled in 1D, it still has the highest relative misfit to Envisat observations.
For stations 1 and 2, this is partly due to effective width estimation errors being more
prevalent in the relatively narrow channel (around 2 km in width). Furthermore, note
that effective channel bottom elevation for these stations are respectively 37.3 m and 36.3 m
while the lowest Envisat WS elevation observation are respectively 36.6 m and 35.8 m. This
corresponds to low-flow water heights of 0.7 m and 0.5 m which do not fit field measure-
ments. Consequently, relatively high friction coefficients are inferred between station pairs
1-2 and 2-3 to fit low water depth. This misfit might be due to data error, including effective
width errors for stations 3 and 4 located in areas of sharp width variations. Note that the
higher the friction values, the less sensitivity of the modeled WS elevation, which explains
the highest spread of Strickler coefficient (K = 40 to 55 m1/3/s) in reach 2 found during
calibration for the 3 models (Fig. 2.9).

The introduction of the refined geometry G2 in M2a, recall for generating spatially distributed
SWOT data and to perform inference tests hereafter, has low impact on WS elevation bias and
errors at Envisat VS (see Fig. 2.11), with only stations 1, 2 and 3 showing significant change.
Using a rating curve as downstream BC in M2b mostly impacts the downstream part of the
model where some misfit to altimetry data appears. Indeed, it is more difficult, using a simple
power law depending on the local flow variables, to capture the influence of the confluence with
the Solimões river - not modeled. The latest having strong discharge variations out of phase with
the one of the Negro river itself (e.g. Montazem et al. [2019]).

Global RMSE (m) Global Average bias (m) Upstream RMSE (m) Upstream Average bias (m)

M1 0.94 −0.02 0.88 −0.08

M2a 0.94 −0.02 0.91 −0.01

M2b 1.72 0.23 0.90 −0.05

Table 2.4: RMSE and bias over 8 years for the M1, M2a and M2b models. Upstream metrics are
calculated for stations 1 to 9 only, which are outside of the BC’s backwater influence. The high
global RMSE for M2b comes from the known dephasing of the Solimões and Negro peak flow,
which is not reproduced by the RC.
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(a)

Figure 2.10: Modeled and observed WS elevation at Envisat VS after friction calibration at all
stations for M1 (1)
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(b)

Figure 2.10: Modeled and observed WS elevation at Envisat VS after friction calibration at all
stations for M1 (2)
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Figure 2.11: Relative misfit between modeled and observed WS elevation at Envisat for M1 (left,
base model) M2a (middle, WS elevation at downstream BC) and M2b (right, rating curve at
downstream BC). Crosses are average values, horizontal bars are median values.

2.5.3.2 Effective model analysis

As a preliminary to hydraulic parameters inference from WS observables, this subsection stud-
ies the spatio-temporal features of the simulated hydraulic signatures, their sensitivity to model
parameters and their observability given a SWOT sampling. First, an analysis of a flood wave
propagation, resulting from multiple inflows, and its hydraulic signature visibility is performed
using identifiability maps following Brisset et al. [2018]. The latter consist in a space-time repre-
sentation of the WS signal and flow propagation features against the observability pattern. These
maps, inspired by the theory of characteristics (see Thual [2010]; Guinot [2010]), enable to read
how the sought upstream discharge information is sampled in the downstream WS deformations
and help to estimate inferrable hydrograph frequencies. Next, a numerical sensitivity evaluation
of the flow model is carried out.
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In the context of regional hydrological modeling including river networks representation, the
sensitivity of the present flow model is studied by using erroneous inputs. These inputs are also
used in Section 2.6 as erroneous priors for various assimilation setups.

• Inflow: two hydrograph sets (containing lateral inflows and the upstream BC inflow) cor-
responding respectively to 70% and 130% of the true hydrographs are used as erroneous
values for sensitivity trials and are referred to as Q−30

FG and Q+30
FG respectively.

• Friction: two Strickler repartitions, with coefficient values worth respectively 70% and 130%
of the truth are used as erroneous values for sensitivity and are referred to as K−30

FG and K+30
FG

respectively.

• Bathymetry: the inflow sets Q−30
FG and Q+30

FG and the true Strickler values are used to dig two
bathymetries as described in Section 2.5.3. The bathymetry derived from underestimated
flows is referred to as b−30

FG (it overestimates the true bathymetry), and the other is referred
to as b+30

FG .

Identifiability map SWOT will provide spatially distributed observations with interesting re-
visit frequencies at the scales of the current river domain and hydrological signal propagations.
Fig. 2.12 shows the evolution of the simulated WS elevation anomaly during the yearly peak flow
(red-blue heatmap) as well as its multiple SWOT observability (in black). Based on the modeled
flow, accounting for several inflows, the propagation of an intumescence corresponding to the
annual flood wave signature is represented along the river through the maximum WS elevation
in time (following Montazem [2018]) (Fig. 2.12, top, blue points). This intumescence propagation
is visible on the upstream 400 km of the river from day 164 to day 173. It is detected by a SWOT
swath at t = 166 d and another one at t = 170 d. It is more difficult to detect this signature
in the downstream part of the river (x > 400 km) affected by the strong downstream control
imposed by high water depths at the Negro-Solimões confluence; a downstream control due to
the Branco tributary also overlaps from x = 657 km to around x = 400 km. This control can be
seen through the tracked WS elevation maximum (Fig. 2.12, top, in gray), where an early rise in
WS elevation originates from x = 657 km, and through the extreme waterlines (Fig. 2.12, bottom,
in blue), which highlights the change in length of this influence in low and high flows. As a
consequence, WS observations on the downstream part may contain combined information due
to the upstream hydrographs propagation but also to the expression of downstream controls.

The maximum WS elevation is tracked for simulations with erroneous parameters as defined
above (Fig. 2.12, top, in red, green and cyan). They are not plotted where the flow displays
“pool behavior” (gray points). They highlight the sensitivity of propagation to model parameters
which is also an important point when they are varied during an optimization process as featured
in Section 2.6. The propagation time from 0 to 400 km can be evaluated to around 10 days, and
is estimated as follows for the rest of the river domain.

The conservative part of the Saint-Venant equations (i.e. without source terms) is hyperbolic:
some quantities depending on the water depth and velocity (known as the Riemann invariants)
are transported by waves at speeds different from the flow speed (see e.g. Thual [2010]; Guinot
[2010]). The wave celerities are U + c and U − c with c =

√
gh for rectangular XSs (see analysis

of propagation features in Brisset et al. [2018]). For the fluvial regime of interest here (Fr =
U/c < 1), information propagates both downstream and upstream and the Riemann invariants
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are modified along the wave due to the source term effects. The wave celerities obtained on the
Negro river model are given by reach in Table 2.5, relatively high wave speeds are obtained hence
propagation of information both upstream and downstream, with spatio-temporal variability.
The WS signature (and the discharge) thus reflects the nonlinear combination of information
coming from both upstream (due to inflows variations) and downstream (due to local HCs
or downstream BC - see the method of characteristic in Guinot [2010]). This highlights the
difficulty of inferring multiple inflows from sparse observations of WS signature, especially given
uncertain channel parameters and backwater effects.

Nevertheless interesting frequential information can be gained from the identifiability map
as introduced in the case of a single inflow. Using the kinematic wave speed 5

3U (Fig. 2.12, top,
dashed blue line) which compares fairly well to the intumescence speed on the upstream part of
the reach (Fig. 2.12, top, x < 400 km). This gives an approximate propagation time Twave = 26 d
on the whole domain, greater than the SWOT observation cycle period of 21 days. This brings the
reach identifiability index to Iident = 1.23 (defined as Iident = Twave/∆tobs, i.e. the average number
of time a wave is observed, see Brisset et al. [2018]). However, in the present case, the notion de-
fined by Brisset et al. [2018] accounts for a single upstream inflow, not spatially distributed lateral
inflows with potential upstream backwater controls. Actual identifiability indices for reaches in
between each lateral inflow would be much lower (estimated identifiabilities in between each
inflow pair are given in Tab. 2.5 considering a fictitious ∆tobs = 1 d full domain observability).
Furthermore, SWOT swaths observations consist in WS snapshots on different parts of the river
domain at given times, hence containing various and mixed signatures (in the sense introduced
in Section 2.4) of both several inflows and channel parameters - the more downstream, the more
aggregated is the inflow information. Inferences of multiple inflows and frequential analysis are
presented in the next section given known or uncertain channel parameters, spatio-temporally
dense or sparse (SWOT) observations.

2.6 Inferences from satellite observables

This section studies the challenging inference of ungauged channel parameters and multiple
inflows on the Negro river case, which represents a real and complex large scale problem. Typical
inverse problems in hydraulic-hydrological modeling are studied here considering SWOT WS
observations. The inference of channel parameters or/and inflows in the 1D Saint-Venant model
is addressed using the inverse method presented in Subsection 2.3.2 (see also Section 2.A). The
downstream BC is set as a known altimetric rating curve. Three observation sets are generated:
spatially and temporally dense (∆t = 600 s) observations (DenseSet), SWOT observations from
the hydraulic model outputs masked by SWOT swaths (SWOTSet) and noisy SWOT observations
using the large scale simulator CNES to add realistic measurement noise (SWOTNoiseSet). We
first present inferences of inflows only, then of channel parameters, and finally of all those spatio-
temporal controls simultaneously.

2.6.1 Multiple hydrographs inferences

Depicting flow structure within a river network and a catchment is a key issue in hydrological
modeling, especially in ungauged basins. Seeking to infer, from distributed WS observations,
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Figure 2.12: Identifiability map, flood wave propagation estimation and spatial variabilities of
the large scale Negro river 1D model.
Top: Identifiability maps and flood wave propagation during the yearly peak flow (may-june)
in the Negro river model. The WS anomaly (heatmap) is given by Zano (x, t) = Z (x, t)− Z (x),
where Z (x) is the average local WS elevation from day 160 to 190. Blue dotted line: tracking of
maximum WS elevation value Zm (x) = maxt∈[0,365] Z (x, t) , ∀x ∈ [0, L]. Gray points: tracking
of maximum WS elevation in the downstream pool. Dashed blue lines: fictitious trajectory at
kinematic speed (sparse dashes) ck = 5/3U and at U + c (dotted dashes), starting at x = 0, at the
time of the local WS elevation peak. The speeds are calculated from the simulated flow speed U
and water height h and updated every ∆x = 200 m, such as tp+1 = tp + ∆x

cp
k

.

Bottom: Extreme flow forcings and flow model variables over a 2 year period. Blue lines: Ex-
treme simulated waterlines. Red lines: corresponding extreme Froude values. Green lines:
corresponding cumulative injected flows.
Vertical black dashes are lateral inflow locations. Bold vertical dashes are inflows inferred in
Subsection 2.6.3.
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flow controls that are both temporally and spatially distributed can represent a very challenging
inverse problem, as previously highlighted on synthetic cases.

Inferences of L = 21 inflow hydrographs from 2 years of SWOT synthetic observations are
studied here. The channel geometry, friction and BCs are assumed to be known, hence the

control vector reduced to c =
(

Q0
l,1, ..., QP

l,1, Q0
l,2, ..., QP

l,D

)T
. The inferences are started from a

prior guess c(0) consisting in true hydrographs affected by uncertainties of ±30%, that is Q+30
FG

and Q−30
FG as defined above. Note that the inference is started from a hydraulically consistent

initial state using an unbiased prior in the first time steps (see investigations in Garambois et al.
[2020]; Larnier et al. [2021]); the prior values of regularization parameters σQl correspond to
inflows magnitudes.

The inferred hydrographs from inflow prior Q−30
FG are presented in Fig. 2.13 for DenseSet

(green lines) and SWOTNoiseSet observations (orange lines). Results from prior Q+30
FG are avail-

able in 2.C. SWOTSet and SWOTNoiseSet give almost identical inferences, therefore only the
SWOTNoiseSet inferences are presented. For under- and overestimated priors, the assimilation
of dense and SWOT observations enables to infer the true hydrographs fairly well. RMSE ranges
from 8.86 m3s−1 at x = 465 km up to 578.31 m3s−1 for the Branco tributary at x = 657 km. RMSE
for all inferences presented in Fig. 2.13 can be found in Section 2.C. Some inferences show global
under- or overestimations (e.g. x = 216 , 388 , 789 km). These biases are linked to the prior bias.
Strong and numerous overlapping backwater signals may also influence flow misattribution, as
discussed in the academic cases (Section 2.4) for a small scale model. As tested in numerical
experiments (not shown), increasing a scalar value σQl,d can give more effective weight to an
hydrograph Ql,d in the inference and it can be found further away from its prior guess, which
highlights the role of the covariance matrix used for regularization.

Note that temporal oscillations appear on the inferred hydrographs when using SWOTNois-
eSet which is “temporally sparse” observation patterns compared to flow propagation, which is
not the case of DenseSet. These oscillations are especially present in downstream inflows, which
may link them to particular hydraulic responses in the BC influence zone, although they can be
seen in upstream inflows as well. They tend to be prevalent in declining limbs of hydrographs
(e.g. in Fig. 2.13, at 789 km, from day 120 to 300).

Note that, regardless of oscillations, inferences tend to be further from the truth in decreasing
hydrographs. These oscillations are not the effect of signal misattribution, as they are present
with any number of inferred hydrographs (not shown), nor are they caused by the prior’s shape,
as filtered priors also lead to oscillations (not shown). Instead, the oscillations seems to stem from
the combination of the low observation frequency compared to the spatially distributed inflow
hydrographs and the nonlinear hydraulic response. Keep in mind that we track flow information
through WS elevation deformations caused by the nonlinear propagation of parameter signatures
(see Subsection 2.5.3.2).

A sample illustration of those oscillations on the simulated WS elevation is presented in Fig.
2.14, at 870 km, downstream for three oscillating inferred hydrographs (at x = 738, 754 and
789 km). The inferred waterline from SWOTNoiseSet is compared to the truth at all simulated
times and at SWOT pass times only. The misfit is logically lowest at SWOT pass times (goal of
the optimization), while unobserved periods exhibit a slightly oscillating (unconstrained) misfit.
Higher frequency observations, such as DenseSet, prevent this behaviors through a more com-
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plete spatio-temporal observability of the WS signatures, hence constrain the spatio-temporal
parameters inference further. Some model configurations where temporal parameters are dis-
cretized at a greater time step than observation one do no exhibit such behaviors (e.g. results
with DenseSet, Garambois et al. [2020]). As already shown in Brisset et al. [2018] for the identi-
fication of a single hydrograph, the identification is possible only in time windows representing
the wave propagation time Twave ∼ 26 days in the present case, yet with multiple inflows and
observation sample (see Subsection 2.5.3.2). As a consequence, outside the “identifiable time
windows”, the inferred values are not necessarily representing reality (see related WS misfit in
Fig. 2.14). They are the optimal solution corresponding to the considered priors of the opti-
mization problem. In practice, this means that introducing an additional regularization term
jreg, like

∫ t
0

∂2h
∂t2 dt at observation points, would smooth (as following a spline curve) between the

identifiable windows instead of the obtained oscillations. This smooth discharge curve would
not be more physical than the present oscillations and we made the choice to not hide this well
understood phenomena. It is a logical consequence of the disparity between the samplings of
observations and parameters and does not impede interpretations of hydraulic signatures and
identifiability.

Seeking to infer a control that is both temporally and spatially distributed represents a chal-
lenging assimilation problem. In the present case: (i) the observation frequency now plays a
role in identifying the hydraulic signature, on top of its spatial density and resulting flow prop-
agation: (ii) varying nonlinear flow propagation, and so WS signatures, can result in different
inferences depending whether they are performed from observations of rising/declining hydro-
graphs propagations (local Q (Z) hysteresis) and (iii) indirect contributions to parameter weight
in the inverse method appear, as successive hydrographs influence the whole downstream water
line (established in Subsection 2.4.2), which gives greater “effective weight” to upstream hydro-
graphs as the cause of the misfit is observed in more stations and thus accounted for multiple
times in the cost function. The inferred flow variations may be compensating for errors made at
upstream stations with different SWOT pass times, impacting their WS elevation either through
backwater control or through the modification of the BC and its own backwater effect.

2.6.2 Spatial parameters inference

The inference of effective channel parameters is studied here considering a control vector com-
posed of all friction coefficient values and bathymetry points. The bathymetry is composed of
I = 436 free points (1 every 2000 m) between each of which it is obtained by linear interpolation.
SWOTSet is used, with a spatial observations sampling (1 point every 200 m), i.e. 10 times greater
than the sought bathymetry for observed reaches. Two inferences from hydraulically consistent
priors are presented, one with the refined bathymetry b−30

FG introduced in Subsection 2.5.3.2 (Fig.
2.15, in green) and another one with b+2.6m

env , a shifted bathymetry from the M1 model in Subsec-
tion 2.5.2.1, in red. The 2.6 m correspond to the spatially averaged shift of b−30

FG compared to benv.
b+2.6m

env does not contain a priori information on target bathymetry shape - such as a coarse DEM
prior. The friction prior is K−30

FG for both inferences.
Using b−30

FG and b+2.6m
env as priors, the inference of channel parameters (friction and bathymetry)

respectively reach a RMSE of
(
4.362 m1/3s−1, 1.231 m

)
and

(
4.762 m1/3s−1, 1.913 m

)
. Upstream

(x = 0 − 110 km), irregularities appear in both inferred bathymetries and correspond to un-
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Figure 2.13: Lateral hydrographs inferences from SWOTNoiseSet and DenseSet, using the Q−30
FG

inflow prior
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Figure 2.14: Difference between target and inferred WS elevation at 870 km, as observed by
DenseSet and SWOTSet. The dotted line represents the inferred waterline inferred from SWOT-
Set (with Q−30

FG as inflow prior), but observed by DenseSet. The difference between this waterline
and the target waterline is the misfit to target. At SWOT pass times, the misfit is low as expected
from an inference from SWOTSet. It only displays WS elevation oscillations at unobserved times.

derestimated Strickler coefficients. The high friction partially hides the hydraulic signature of
the bathymetry and enables inference error inconsequential to the cost function. Downstream
(x = 600− 870 km), in the strong backwater control of the downstream BC, inferences tend to stay
close to their prior values. Furthermore, inferences from the unrefined prior b+2.6m

env are smoother
than those from the refined prior b−30

FG . This testifies to the role of the a priori bathymetry shape
knowledge contained in the prior when the WS elevation sensitivity to bathymetry is low. Strong
backwater effects make the inference of channel parameters more difficult and parameter com-
pensation appears due to the lessened sensitivity of the simulated WS (e.g. in green, at the last
friction patch). The refined bathymetry prior b−30

FG leads to inferred bathymetry and friction that
are closer to the truth. It will be used in the extended control vector inferences below.

2.6.3 Inference of channel parameters and inflows

This section investigates the simultaneous inference of both unknown inflows and channel pa-
rameters on the large scale Negro river case; it combines all previously mentioned difficulties
and corresponds to an ungauged configuration. In the following, the aim is to determine: 1) if
SWOT data are sufficient to infer the extended control vector given unbiased prior parameters;
2) how the added spatial complexity from lateral inflows impacts spatial parameter inference.
In addition, further investigations on the impact of lateral inflow prior shape, representing for
example hydrological modeling uncertainty in a simple manner, are presented. The considered
extended control vector is the following:
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Figure 2.15: Bathymetry and friction pattern inferences using SWOTSet observability
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cext = (Ql,x=65 (t) , Ql,x=502 (t) , Ql,x=657 (t) , Ql,x=754 (t) ; b1, ..., bH ; α1, ..., αN) (2.7)

The inferences are performed from DenseSet and SWOTNoiseSet. The bathymetry and fric-
tion priors are b−30

FG and K−30
FG respectively. Four major lateral inflows located at x = 65, 502, 657

and 754 km (Fig. 2.12, bold dashed bars) are considered. Their reduced number facilitates the
analysis of their spatial impacts. The other inflows are set to their target values. Two inflows
prior types are used: Q f lat

FG , that gives no a priori on hydrograph shapes and Q f ilter
FG , hydrographs

obtained by applying a 80 days moving average filter to the true hydrographs. Prior flow values
in Q f lat

FG are set to the target flow values from the first time step up to 120 days for the sake of
initial hydraulic consistency. Inferences of all parameters for these inflow priors are presented
in Fig. 2.16 and Fig. 2.17. The inferred control vectors are referred to as c∗f lat and c∗f ilter. Inferred
parameter scores can be found in Tab. 2.6.

Inferred spatial parameters patterns are similar to those obtained previously without un-
known inflows in Subsection 2.6.2. c∗f lat features a fair bathymetry fit downstream (x = 600−
870 km) while c∗f ilter stays close to the prior value. This may be due to the different range of the

simulated hydraulic responses in the first iterations: using Q f lat
FG leads to an increase in WS ele-

vation sensibility to bathymetry. Upstream (x = 0− 110 km), increased bathymetry irregularities
in c∗f lat are linked to the erroneous prior Q f lat

FG leading to bathymetry errors in the first iterations,
coupled with lower inferred Strickler coefficients, hence a lessened impact of bathymetry on the
water surface and the inability to correct the “initial” errors.

In terms of temporal behaviors, both priors give fair estimates of HCs for DenseSet. Infer-
ences from SWOTNoiseSet are close to those from DenseSet with the presence of oscillations and
the rising part of hydrographs are better fitted than decreasing ones, as observed in Subsection
2.6.1. In both c∗f ilter and c∗f lat and for both observation sets, a correlation between sought inflows
at x = 502; 657 and 754 km appears. The Branco river flow, at x = 657 km, is better inferred and
its well fitted peaks are also found in the two smaller rivers (e.g. at 520 days), which are in its
upstream and downstream influences zones (see Fig. 2.12, left). In all inferences, the total flow at
the downstream BC closely matches that of the truth, which means that only hydraulic signature
is misattributed across the 4 inferred temporal parameters, not on the total flow. In c∗f ilter, more
accurate inferences are obtained, with a smaller influence of the Branco river on other inflows in
its influence zone and more accurate inference of small scale behaviors. The filtered prior Q f ilter

FG
introduces information on low frequency behaviors of the sought inflows, helping the assimila-
tion process to converge to correct the target inflows. This configuration allows for a better fit of
small scale variation in the controls.
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(a)

(b)

Figure 2.16: Inflow, bathymetry and friction patch inferences from SWOT synthetic data: c∗f lat,
inferred control vector without a priori hydraulic behavior
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(a)

(b)

Figure 2.17: Inflow, bathymetry and friction patch inferences from SWOT synthetic data : c∗f ilter,
inferred control vector with a priori hydraulic behavior
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Obs set Prior
RMSE

[
m3/s

]
(rRMSE [−] ) Nash-Sutcliffe

65 km 502 km 657 km 754 km 65 km 502 km 657 km 754 km

DenseSet
Q f lat

FG

189 (0.12) 329 (0.17) 1472 (0.22) 430 (0.45) 0.84 0.90 0.87 0.10

NoiseSWOTSet 209 (0.14) 360 (0.18) 1719 (0.26) 421 (0.44) 0.81 0.88 0.82 0.10

DenseSet
Q f ilter

FG

101 (0.07) 195 (0.10) 412 (0.06) 158 (0.17) 0.94 0.97 0.99 0.49

NoiseSWOTSet 102 (0.07) 208 (0.11) 503 (0.07) 154 (0.16) 0.94 0.96 0.99 0.51

(a) Hydrograph scores

Obs set Prior RMSEα

[
m1/3/s

]
RMSEb [m]

DenseSet
Q f lat

FG
5.35 1.89

NoiseSWOTSet 5.12 1.64
DenseSet

Q f ilter
FG

5.30 2.06
NoiseSWOTSet 5.13 1.99

(b) Channel parameters scores

Table 2.6: Inferred parameter scores for extended control inferences

2.7 Conclusion

This paper investigated the inference of river channel parameters and multiple inflows from
water surface signatures in the context of satellite altimetry with the forthcoming SWOT mis-
sion and using water extents from optical data as well. The HiVDI inverse method presented
in Larnier et al. [2021], based on the 1D Saint-Venant equations and a variational assimilation
scheme adapted to account for lateral inflows (mass and momentum injections). Given hydrauli-
cally consistent prior guesses and regularization weights, it is successfully applied to synthetic
test cases and a long reach of the anabranching Negro river in the Amazon basin using multi-
satellite data.

Through low Froude synthetic cases, it is shown that the signature of a lateral inflow is visible
downstream from the inflow point through the total flow signature and can be visible upstream
in case of downstream control at the injection. Following this analysis and using the HiVDI vari-
ational assimilation method (global in time and space), a study of the minimum spatial density
of water surface observations necessary to infer lateral inflows from their hydraulic signatures
is carried out. Synthetic twin experiments yield the following results: (i) given high observa-
tion temporal frequency relative to model hydraulic response, perfect inflows inferences can be
obtained; (ii) to correctly attribute signatures between multiple lateral inflows, a minimum of 1
observation point between each injection cell is necessary; (iii) when simultaneously inferring
inflows and/or channel parameters, a sensitivity to parameter weights (see Section 2.A) appears;
(iv) given a priori parameter weights, accurate inferences of inflows and channel parameters is
achievable even with the minimum spatial observability.

A method for building effective river models in coherence with multi-satellite data and in-
cluding realistic spatial variations is introduced based on multi-source data of water surface
elevation, width and slopes. This method makes use of (i) multi-mission altimetric rating curves
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(see Paris et al. [2016]) or equivalently a distributed hydrological model and altimetry data and
(ii) water surface width like those from current databases (see Allen and Pavelsky [2018]); it
should be applicable to rivers from the future SWOT database. It is applied here to build a
simple effective 1D model of the Negro river upstream from its confluence with the Solimões
river. It fits currently available satellite water surfaces signatures and contains real-like spatial
variabilities and flood wave propagation features.

The inference capabilities of spatially distributed channel parameters and inflows from syn-
thetic SWOT observations are highlighted on the Negro river case given hydraulically coherent
priors. The inference of temporal parameters in the form of 21 spatially distributed lateral inflow
hydrographs leads to accurate estimates and low water surface misfit at observation times. High
frequency observations give good inferences, with an expected sensitivity to both prior bias (see
Garambois et al. [2020]; Larnier et al. [2021]) and prior shape.

SWOT-like observations lead to comparable inferences, with slight oscillations due to the fre-
quential disparity between observations temporal controls combined to their spatial distribution
and the resulting nonlinear flow propagation on the domain, as analyzed with identifiability
maps. Those oscillations related to model-observations time scales could be overcome by intro-
ducing additional regularizations - not done here for the sake of hydraulic analysis. Inference of
purely spatial parameters (bathymetry/friction) were carried out as well, leading to some com-
plementary remarks: (i) channel parameters equifinality is most present in the downstream part
of the model, where the waterline is influenced by the strong backwater effect of the boundary
condition (Solimões river) which diminishes water surface sensitivity to other parameters; (ii)
bathymetry prior shape influences the inferred bathymetry. Finally, simultaneous inference of
channel parameters and spatially distributed inflows was achieved with satisfying accuracy. We
show that, with the present method, large scale temporal parameter variations can be found from
synthetic SWOT observations even without a priori knowledge of the shape of the hydrological
response, but that small scale variations can be better inferred with a priori hydrograph shape
knowledge.

Recall that the estimation of discharges and channel parameters from (SWOT) WS observa-
tions is a difficult inverse problem because of the correlated influence of flow controls on the
observable water surface signatures - non uniqueness/equifinality issues. It is therefore neces-
sary to use hydraulically consistent priors as investigated in Tuozzolo et al. [2019]; Garambois
et al. [2020]; Larnier et al. [2021] with HiVDI method that contains low complexity flow rela-
tions for deriving robust prior guesses from databases and hydrological models, or even in situ
depth/discharge data when available (see Larnier et al. [2021]) - not the scope of this paper. As
already discussed in Larnier et al. [2021], the VDA solution depends on the priors which are
the first guess value and the covariances matrices. Ongoing research efforts in the SWOT com-
munity, in view of global discharge estimates, focus on the determination of priors through the
construction of a SWOT a priori database based on Andreadis et al. [2013]; Allen and Pavelsky
[2018] and global/regional model outputs (see Durand et al. [2016]; Larnier et al. [2021]), con-
strained with available in situ gauge measurements. Note that a priori estimations/databases
could be enriched or reprocessed during or after the SWOT mission lifetime and HiVDI would
enable to refining discharge estimates (see Larnier et al. [2021]). Moreover, as shown in Larnier
and Monnier [2020], priors obtained by deep learning can greatly improve global estimation.

More generally, reaching unbiased estimates of discharge, from downstream to upstream of
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river networks with varying densities of in situ discharge data hence ungauged river portion-
s/basins, is a crucial challenge in hydrology that could benefit from the fusion of complemen-
tary in situ and remotely sensed data in integrated models. The present study brings insight
in lateral inflows inference from hydraulic signatures and paves the way for further research
on integrated hydraulic-hydrological assimilation chains for river networks and in coherence
with multi-satellites observables (of local hydrodynamic signatures) to benefit from them in a
regionalization perspective.

Searching for distributed channel parameters and inflows given temporally sparse SWOT
data and a global assimilation method brings the issue of signal attribution to the forefront, es-
pecially at the scale of a river network. Further research should focus on tributaries that could be
amenable to the use of SWOT and multi-satellite observations to better constrain estimates of lat-
eral inflows and next distributed fluxes on network models considering hydraulic-hydrological
couplings. The introduction of pertinent signatures, scales and constrains in the forward-inverse
models (e.g. forward operators, covariance matrices, cost function terms) should help maxi-
mizing the use of various information sources and enable smooth discharge estimates and better
signal attribution, given uneven and heterogeneous satellite data in combination with other com-
plementary databases/knowledge. This could help leveraging better inferences of hydrological
responses and flow structure within a river basin and eventually enable information feedback to
rainfall-runoff modules and ultimately regionalization issues.

2.A The computational inverse method

The computational inverse method is based on Variational Data Assimilation (VDA) applied to
the 1D Saint-Venant model (Eq. (2.1)). The computational inverse method is the one presented
in Brisset et al. [2018]; Larnier et al. [2021] with an augmented composite control vector c (Eq.
(2.4)): c contains a spatially distributed friction coefficient enabling to model complex flow zones
(while it is an uniform friction law K (h) in Larnier et al. [2021]). This definition of K (x, h) enables
to consider more heterogeneous bathymetry controls. c also contains lateral flow hydrographs
Ql,d (t) , d ∈ [1..Nd] to deal with in/off-takes due to tributaries or underground flows. It is
important to point out that the imposed downstream BC is an unknown of the inverse problem.
It is constrained with the observed water elevations and inferred river bottom slope using a
locally uniform flow hypothesis (i.e. Manning equation, see Subsection 2.3.1) - except in the last
real case above. The cost function j (c) is defined as:

j (c) = jobs (c) + γ jreg (c) (2.8)

where γ > 0 is a weighting coefficient of the so-called “regularization term” jreg (c). The term
jobs (c) measures the misfit between observed and modeled WS elevations such that:

jobs (c) =
1
2
‖(Z (c)− Zobs)‖2

O (2.9)

The norm ‖ · ‖O = ‖O1/2 · ‖2 is defined from an a priori positive definite covariance matrix O.
Assuming uncorrelated observations O = diag (σZ). The modeled WS elevations Z depend on c
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through the hydrodynamic model (Eq. (2.3.1)) and the inverse problem reads as

c∗ = argminc j (c) (2.10)

This optimal control problem is solved using a Quasi-Newton descent algorithm: the L-BFGS
algorithm version presented in Gilbert and Lemaréchal [1989]. The cost gradient ∇j (c) is com-
puted by solving the adjoint model; the latter is obtained by automatic differentiation using
Tapenade software Hascoet and Pascual [2013]. Detailed know-hows on VDA may be found e.g.
in the online courses Bouttier and Courtier [2002]; Monnier [2021].

To be solved efficiently this optimization problem needs to be “regularized”. Indeed the
friction and the bathymetry may trigger indiscernible surface signatures therefore leading to an
ill-posed inverse problem; we refer e.g. to Kaltenbacher et al. [2008] for the theory of regulariza-
tion of such inverse problems and to Larnier et al. [2021] for a discussion focused on the present
inverse flow problem.

Following Larnier et al. [2021], the optimization problem (Eq. (2.10)) is regularized as follows.
First the regularization term jreg is added to the cost function (Eq. (2.8)). We simply set: jreg (c) =
1
2 ‖b” (x)‖2

2. Therefore this term imposes (as weak constraints) the inferred bathymetry profile
b (x) to be an elastic interpolating the values of b at the control points (i.e. a cubic spline).

A specificity of the present context is the large inconsistency between the large observation
grid (altimetry points) and the finer model grid. Between the sparse observations points (equiv-
alently the control points), the bathymetry profile b (x) is reconstructed as a piece-wise linear
function. It is worth to point out that the resulting reconstruction is consistent with the phys-
ical analysis presented in Montazem et al. [2017]; Montazem [2018]. This study analyses the
adequacy between the SW model (Eq. (2.3.1)) behavior and the WS signature.

Next and following Lorenc et al. [2000]; Weaver and Courtier [2001]; Larnier et al. [2021], the
following change of control variable is made:

k = B−1/2 (c− cprior
)

(2.11)

where c is the original control vector, cprior is a prior value of c and B is a covariance matrix. The
choice of B is crucial in the VDA formulation; its expression is detailed below. After this change
of variable the new optimization problem reads:

min
k

J (k) with J (k) = j (c) (2.12)

It is easy to show that this leads to the following new optimality condition: B1/2∇j (c) = 0;
somehow a preconditioned optimality condition. For more details and explanations we refer to
Haben et al. [2011a,b] and Larnier et al. [2021] in the present inversion context.

Assuming uncorrelated controls the matrix B is defined as block diagonal such that B =
diag (BQ, BQl,1, . . . , BQl,D, Bb, Bff, Bfi). Still following Larnier et al. [2021], the covariance matrices
BQ, BQl and Bb are set as the classical second order auto-regressive correlation matrices:
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(BQ)i,j = (σQ)
2 exp

(
−
∣∣tj − ti

∣∣
∆tQ

)
,
(

BQl,d

)
i,j= (σQl )

2 exp
(
−|tj−ti|

∆tQ

)
and (Bb)i,j = (σb)

2 exp

(
−
∣∣xj − xi

∣∣
Lb

)
(2.13)

The VDA parameters ∆tQ and Lb represent prior hydraulic scales and act as correlation
lengths. We refer to Brisset et al. [2018] for a thorough analysis of the discharge inference in
terms of frequencies and wave lengths and Larnier et al. [2021] in the present river-observation
context. In the present study, the friction parameters applied to deca-kilometric patches are
assumed to be uncorrelated thus the matrices Bα and Bβ are diagonal:

(Bα)i,i = (σα)
2,
(

Bβ

)
i,i =

(
σβ

) 2 (2.14)

The scalar values σ� may be viewed as variances ; their values are given in the numerical
results section.

Finally, in a noised observation context and to avoid over-fitting noisy data, we denote by δ

the noise level such that ‖Zobs − Ztrue‖2 ≤ δ with Zobs the observed and Ztrue the true WS eleva-
tion profiles. A common technique to avoid over-fitting noisy data, in the context of Tykhonov’s
regularization of ill-posed problems, is Morozov’s discrepancy principle, (see e.g. Kaltenbacher
et al. [2008] and references therein): the regularization parameter γ (see Eq. (2.8)) is chosen a
posteriori such that j does not decrease below the noise level.
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2.B Extended friction calibration results for the Negro river

(a)

Figure 2.18: Envisat WS elevation misfit after friction calibration at all stations for M2a (1)
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(b)

Figure 2.18: Envisat WS elevation misfit after friction calibration at all stations for M2a (2)
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(c)

Figure 2.19: Envisat WS elevation misfit after friction calibration at all stations for M2b (1)
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(d)

Figure 2.19: Envisat WS elevation misfit after friction calibration at all stations for M2b (2)
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2.C Additional graphs and RMSE for lateral hydrograph inferences
on the Negro river

Figure 2.20: Lateral hydrograph inferences from SWOTNoiseSet and DenseSet, using the Q+30
FG

inflow prior
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2.D Technical specifications

Host bridge: Intel Corporation 8th Gen Core Processor Host Bridge/DRAM Registers
PCI bridge: Intel Corporation Xeon E3-1200 v5/E3-1500 v5/6th Gen Core Processor PCIe Con-
troller
Memory: 2x16Gb SODIMM DDR4 Synchronous 2667 MHz (0.4 ns)
Resolution mode: sequential
Resolution method: implicit-explicit Preissmann scheme
Sample run: inference of the full triplet on the Negro model (inferred control vector c∗f ilter in
Subsection 2.6.3)

• Control vector components: 4× 740 flow points, 436 bathymetry points, 17 friction patches
(3413 total sought values)

• Total run time (direct): under 15 min

• Total run time (inverse): 20.8 h

• Number of iterations: 35

• Average iteration time length: 35.8 min
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This chapter is based on Pujol et al. [2022]. The article’s content is featured with minor layout
adjustments.

3.1 Extended abstract

This chapter presents a novel multi-dimensional (multi-D) hydraulic-hydrological model in-
tended to allow modeling of large and complex river network at the appropriate scales and
at a low computational cost, see Fig. 3.1. In turn, this would allow exploring synergies between
spatially distributed flow models and datasets over large domains, combining in situ observa-
tions with high-resolution hydro-meteorology and satellite data.

The multi-D hydraulic model consists in the 2D shallow water equations (Eq. 1.6) solved
with a single finite volume solver (see Subsection 1.2.2). 1Dlike reaches are built through mesh-
ing methods that cause the 2D solver to generate into 1D (see Fig. 3.2). They are connected to 2D
portions that act as local zooms, for modeling complex flow zones such as floodplains and con-
fluences, via 1Dlike-2D interfaces (see Fig. 3.3). An existing parsimonious hydrological model,
GR4H, is implemented and coupled to the hydraulic model. These developments are carried
out within the DassFlow variational data assimilation framework. The adjoint of the whole tool
chain is obtained by automatic code differentiation. The forward-inverse multi-D computational
model is successfully validated on academic and real cases of increasing complexity. Assimi-
lating multiple observations of flow signatures leads to accurate inferences of multi-variate and
spatially distributed parameters among bathymetry-friction, upstream/lateral hydrographs, and
hydrological model parameters. This notably demonstrates the possibility for information feed-
back towards upstream hydrological catchments, that is backward hydrology. A 1Dlike model
of part of the Garonne river is built and accurately reproduces flow lines and propagations of
a 2D reference model. A multi-D model of the complex Adour basin network, inflowed by the
semi-distributed hydrological model, is built. High resolution flow simulations are obtained on
a large domain, including fine zooms on floodplains, with a relatively low computational cost
since the network contains mostly 1Dlike reaches. The current work constitutes an upgrade of
the Dassflow computational platform. The source code and synthetic cases are open source and
available upon request1.

Section 3.3 presents the multi-D modeling approach, the flow model and integrated hydro-
logical module and the inverse computational method. Section 3.4 presents the validation of the
1Dlike modeling strategy using academic and real case and investigation of the VDA capabilities
of the integrated hydraulic-hydrological tool chain. Inferences of hydrological parameters are
carried out on an academic confluence case. Inferences of channel parameters are carried out on
the 1Dlike model of the Garonne river. Inferences of upstream hydrographs are carried out on
the 1Dlike model of the Adour river network. The initial article conclusion is featured in Section
3.5.

1http://www.math.univ-toulouse.fr/DassFlow
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Figure 3.1: Conceptual meshing approach for integrated hydraulic-hydrological and multi-
dimensional modeling of a river network. The computational domain Ω is composed of the
hydrological domain Ωrr connected to the hydraulic domain Ωhy. Ωhy contains 1Dlike meshes
and classical 2D meshes, interfaced frontally at the red points. Inflows injected in Ωhy (blue
points) can come from classic inflowing methods or from the coupling to hydrological catch-
ments from Ωrr.

Figure 3.2: 1Dlike mesh (quadrangular cells linked in a chain, black) overlaid on top of a simu-
lated water extent (water depth heatmap) from a 2D reference model of the Garonne river (see
Subsection 3.4.3.1). The bankfull water extent is used to set lateral 1Dlike cell edges at the banks
(DEM data was also used to determine bank placements, see Subsection 3.4.3.2). Out-of-bank
flows are not modeled in the 1Dlike model.
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Figure 3.3: 1D2D interface implementation.
Left: Interfacing of the cell xKe, part of a 1Dlike mesh, to cells xK,i, i ∈ [1, n]. Flows are calculated
using an adapted 2D solver at each ei, i ∈ [1, n] interface. The flux over the 1Dlike edge e is given
by Fe = ∑

i=1..n
mei Fei

(
Un

K,i, Un
Ke

, nei ,K

)
.

Right: Example of multi-D interfaces. At the top, a “frontal” interfacing of a 1Dlike network to
the channel part of a 2D mesh, featured in the Adour network model (see Subsection 3.4.3.2). At
the bottom, an academic “lateral” interfacing of a 1Dlike river channel to a 2D floodplain. Both
interface are numerically identical, but may be used for different purposes.

3.2 Introduction

The accurate estimation of storage and fluxes in surface hydrology is an essential scientific ques-
tion linked to major socio-economic issues in floods and droughts forecasting, particularly with
regards to the ongoing climate change and potential intensification of the water cycle and hydro-
logical hazard (Masson-Delmotte et al. [2018]; Iturbide et al. [2020]). In this context, advanced
numerical modeling tools are crucially needed to both perform meaningful and detailed repre-
sentations of basin-scale hydrological processes and provide sensible local forecasts. The quanti-
ties of interest range from discharge hydrographs on upstream ungauged parts of the drainage
network to their translation into flow depth, velocities and submersion times on downstream
floodplains. This information is difficult to access, especially for floods over large territories.
Indeed, given the complexity of physical processes involved, their limited observability and the
resulting hydrological responses, hydrological modeling remains a hard task and internal state-
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fluxes are generally tinged with uncertainties (Beven [1993]; Schuite et al. [2019]; Milly [1994]).
Moreover, the accuracy of high resolution hydraulic computations may still be affected by com-
plex dynamics with wet-dry fronts, multi-scale and uncertain topography-structures and flow
model parameters (e.g. friction), uncertain quantities at open boundaries (upstream inflows but
also lateral ones due to sudden local runoff, downstream controls and backwater effects), internal
in/outflows in urban areas, and large computational domains (Monnier et al. [2016]). Thus, in-
tegrated hydrological-hydraulic approaches are required (e.g. Nguyen et al. [2016]; Hocini et al.
[2020]). Such approaches are now enabled by the increasing informative richness of multi-source
datasets provided by high resolution hydrometeorology and satellite remote sensing in comple-
ment to in situ measurements. Nevertheless, reaching high resolution accuracy and computa-
tional efficiency for large scale applications remains a difficult challenge because of multi-scale
non-linear hydrodynamic processes over large computational domains and multiple uncertainty
sources.

These uncertainties could be reduced by the optimal combination of models and multi-source
datasets, including high resolution maps, spatially sparse in situ flow measurements but also the
growing amount of earth observation data provided by new generations of satellites, drones and
sensors (e.g. Biancamaria et al. [2016, 2017]; Schumann and Domeneghetti [2016] among others).
Indeed, remote sensing provides very interesting cartographic observations of the variabilities
of worldwide catchments characteristics (topography, soil occupation, surface moisture, snow
cover, ...), as well as an unprecedented and increasing hydraulic visibility over river networks
(Garambois et al. [2017]; Montazem et al. [2019]; Rodríguez et al. [2020]). This growing wealth of
multi-sensed information is key to the design and improvement of basin-scale models, as shown
for accurate river network 1D hydraulic modeling enabled by recent multi-source altimetric and
optical satellite data in Pujol et al. [2020] and in Malou et al. [2021] (see also references therein) or
accurate 2D local floodplain models with radar sensed flooding extent (Hostache et al. [2010]).
In order to exploit this wealth of hydrological and hydraulic information, the complexity of
integrated models and assimilation methods has to be adapted to these data that are both het-
erogeneous in nature and of varied spatio-temporal resolutions. Moreover, an integrated flood
modeling approach should also be computationally efficient in order to be applicable over entire
catchments that is large computational domains. This study proposes a new integrated hydro-
logical and multi-dimensional hydraulic modeling approach, based on the accurate and robust
2D hydraulic solver presented in Monnier et al. [2016]. It is capable of multi-variate optimization
problems of high dimension using multi-source data.

Cascades of 2D hydrological-hydraulic models have been proposed in recent literature, for
inundation mapping at large scales using worldwide DEM (e.g. Grimaldi et al. [2018]; Fleis-
chmann et al. [2020]; Uhe et al. [2020]) with simplified hydraulic modeling) or at finer scale, e.g.
at catchment scale for flash floods in Nguyen et al. [2016]; Hocini et al. [2020]. In those studies,
conceptual hydrological models of upstream-lateral sub-catchments are used to inflow hydraulic
models of river network and floodplains in a weak coupling approach, mostly performed via
external coupling of numerical models. In Grimaldi et al. [2018]; Fleischmann et al. [2020]; Uhe
et al. [2020], a simple 2D storage cell inundation model obtained from 1D non inertial model
(Bates et al. [2010] following Hunter et al. [2008], implemented in LISFLOOD-FP model), enables
raster based inundation modeling over very large domains at relatively low computational cost
(see also Fleischmann et al. [2020] for coupling of this non inertial model with the large scale
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hydrological model MGB Collischonn et al. [2007]; Pontes et al. [2017]). In Hocini et al. [2020], an
original 2D hydraulic modeling approach, using “precipiton” for the resolution of the full shal-
low water model, proposed by Davy et al. [2017], is used to compute steady inundation maps of
various return periods at high resolution (5 m) for river networks and floodplains at catchment
scale of several thousands of square kilometers (up to 5050 km2). In Nguyen et al. [2016], an
unsteady full 2D shallow water model (see Sanders et al. [2010]) is applied at relatively high
resolution (10 or 30 m) in the river network and floodplains on a 808 km2 catchment. Note that
sequential data assimilation methods based on the Kalmann filter have been carried out exten-
sively for mono-variate data assimilation with such models (see e.g. Brêda et al. [2019] with
simplified hydraulics in a satellite observability context references therein and Table 3.1) at vary-
ing spatio-temporal resolutions. Current model development strives to propose combinations
of high resolution accuracy and fast computation times over large domains and to incorporate
multi-source data assimilation methods for large spatially and temporally distributed controls.
This paper aims at providing an innovative and effective way to achieve these goals.

In order to combine local accuracy and computational efficiency, the association of full 1D and
2D hydraulic models is an appropriate approach for simulating a basin-scale network in a way
that is both practical and adequately accurate. Methods for coupling models of different dimen-
sions have been developed Miglio et al. [2005a,b]; Amara et al. [2004], classically using domain
decomposition Gervasio et al. [2001], or more recently using local 2D ’zooms’ overlapping with
the 1D domain, in a variational data assimilation framework Gejadze and Monnier [2007]; Marin
and Monnier [2009]. An iterative coupling strategy is applied in Barthélémy et al. [2018] between
a 1D Mascaret and a 2D Telemac operational model and a sequential data assimilation technique
is performed for correcting water levels forecasting. A summary of some established 1D and 2D
numerical hydraulic models, external coupling methods and optimization-assimilation meth-
ods is presented in Table 3.1. One can spot DassFlow 2D Monnier et al. [2016] as the only
2D hydraulic model with a second order solver with accurate wet-dry front treatment, parallel
computation and adjoint based variational data assimilation capabilities.

The present study details upgrades to the DassFlow variational data assimilation framework
(Monnier et al. [2016]) in the form of a new multi-D hydraulic computational code and an in-
tegrated hydrological module. The proposed multi-D hydraulic code consists in a single finite
volume solver applied to a 2D river network. The network is discretized into “1Dlike” reaches
connected to high resolution 2D meshes in a single formulation of the SWE. The resulting prod-
uct allows building large 1Dlike river networks, connected to fine local zooms. The method
can lead to low computational costs over large networks and local fine scale accuracy at zooms
where pertinent. The hydraulic model is coupled with a well-established conceptual hydrolog-
ical model (GR4H state-space Santos et al. [2018]) in a semi-distributed setup. The variational
platform can solve high-dimensional optimization problems with descent algorithms and using
gradients computed with the adjoint model obtained via the automatic differentiation tool Tape-
nade (Hascoet and Pascual [2013]). It enables tackling multi-variate, i.e. with composite control
vectors (bathymetry, friction, boundary conditions, hydrological parameters), data assimilation
problems given multi-source dataset, heterogeneous in nature and spatio-temporal resolutions
(see e.g. Brisset et al. [2018]; Pujol et al. [2020]). This integrated tool chain enables information
feedback within the whole computational domain (basin) and especially from downstream to
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upstream. The source code and synthetic cases are available upon simple request 2.
The remainder of this article is organized as follows. In Section 2, the modeling hypothe-

sis, the computational resolution and inverse methods are detailed. In Section 3, the multi-D
coupling scheme is validated on a series of academic cases and several academic and real-like in-
ference setups are investigated. The study is concluded in Section 4, which also outlines potential
applications and improvement perspectives that the proposed method and findings bring.

Platform Model
Mathematical

model
Max
order

Coupling
1D2D SWE

Parallel
computation

DA
Sources
available

HEC-RAS
[40]

1D2D

(A, Q) and
(h, u, v), both

locally
non-inertial SWE

1
Internal (2

solvers)
No - No

BreZo
[232]

2D (h, u, v), porosity 2 No Yes - No

FullSWOF
[71]

1D and 2D
(h, u, v) for both,

full SWE
1 No Yes - Yes

SW2D-
LEMON
[242; 121]

2D (h, u, v), porosity 1 No No - Yes

Floodos
[68]

2D
(h, u, v),

non-inertial SWE
1 No No - Yes

b-flood
[144]

2D (h, u, v), full SWE 1 No Yes - Yes

Telemac-
Mascaret
[96; 111]

1D and 2D
(A, Q) and

(h, u, v), full SWE
1

External (2
solvers)

Yes EnKF Yes

LISFLOOD-
FP

[23]
1D2Dlike

(A, Q)

non-inertial SWE
1 No Yes EnKF Yes

DassFlow2D
[179]

2D-1Dlike (h, u, v), full SWE 2
Internal

(same solver)
Yes Var Yes

DassFlow1D
[38]

1D (A, Q), full SWE 1 - No Var Yes

Table 3.1: Some established freeware hydraulic models. “SWE” stands for Shallow Water Equa-
tions. The equations resolved are either formulated in (A, Q) (flow section

[
m2] and at-a-section

discharge
[
m3/s

]
) or in (h, u, v) (water depth [m] and 2D depth-integrated flow velocities [m/s]).

“Max order” refers to the maximum demonstrated scheme order.

2http://www.math.univ-toulouse.fr/DassFlow
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3.3 The computational hydrological-hydraulic chain

This section presents the integrated and multi-dimensional hydrological-hydraulic model and
the data assimilation approach. The model is designed for simulating spatio-temporal flow
variabilities over an entire river network, from upstream hydrological responses to complex flow
zones (confluences, multi-channel portions, floodplains, ...).

The modeling approach which is detailed below, is based on the following ingredients:

• An integrated multi-D hydraulic model: the 2D shallow water equations (SWE) with finite
volume solvers from Monnier et al. [2016] are applied to “1Dlike”-2D composite meshes of
river networks using a numerical flux splitting method and an effective friction power-law
depending on flow depth.

• A numerically coupled hydrological model, the widely used GR4 model from Perrin et al.
[2003] in its state-space version Santos et al. [2018], for the sake of model differentiability.

• A computational inverse method based on VDA algorithms from Monnier et al. [2016];
Brisset et al. [2018]; Larnier et al. [2021] enabling spatially distributed calibration and vari-
ational data assimilation with the whole chain.

3.3.1 Multi-D hydraulic-hydrological modeling principle

The flow model consists in a spatially-distributed modeling of hydrological responses coupled
to a seamless multi-scale “1Dlike”-2D hydraulic model. The core idea of this work is to apply the
2D SW hydraulic model (Eq. 3.1) on a multi-D discretization Dhy of the computational domain
Ω. The discretization (mesh) Dhy is composed of N mixed unstructured triangular/quadrangu-
lar cells with interfaces between 1Dlike and 2D zones (Fig. 3.6). Ω is composed of a hydrological
domain Ωrr connected to a hydraulic domain Ωhy (Fig. 3.4). Γhy−rr is the border of Ωhy contain-
ing interfaces with Ωrr. The unstructured lattice covering Ω consists in hydrological units for
describing upstream/lateral sub-catchments in Ωrr and mixed unstructured triangular/quad-
rangular elements in Ωhy.
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Figure 3.4: Conceptual meshing approach for integrated hydraulic-hydrological and multi-
dimensional modeling of a river network. The computational domain Ω is composed of the
hydrological domain Ωrr connected to the hydraulic domain Ωhy . Ωhy contains 1Dlike meshes
and classical 2D meshes, interfaced frontally at Γrh. Inflows injected in Ωhy (blue points) can
come from classic inflowing methods or from the coupling to hydrological catchments from Ωrr.

3.3.2 Hydraulic module

Numerical hydraulic models describing open channel flows generally rely on the resolution of
cross-sectionally or depth integrated flow equations, respectively the 1D Saint-Venant or 2D SWE
(see e.g. Guinot [2010]). While 1D hydraulic models enable a physically sound representation of
river flows variabilities in terms of wetted section A and discharge Q for instance, 2D hydraulic
models in flow depth h and depth integrated velocity u = (u, v)T enable to tackle more complex
flow zones such as confluences/diffluences and floodplain flows. The 2D shallow water model
used in the proposed approach is presented here with the adaptation of the finite volume solver
from Monnier et al. [2016] for multi-D modeling. Note that 1D Saint-Venant equations are pre-
sented in appendix (3.B) along with their resolution method in DassFlow 1D (Brisset et al. [2018];
Larnier et al. [2021]) that is used for comparison in this study. Next, this section presents the
hydrological module and the inverse algorithm.
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3.3.2.1 Mathematical flow model

On the hydraulic computational domain Ωhy⊂ R2 and for a time interval ]0, T], the 2D SWE with
the Manning-Strickler friction term, in their conservative form, write as follows:

∂tU + ∂xF(U) + ∂yG(U) = Sg(U) + S f (U)

U =

 h
hu
hv

 , F(U) =


hu

hu2 +
gh2

2
huv

 , G(U) =


hv

huv

hv2 +
gh2

2

 ,

Sg(U) =

[
0

−gh∇b

]
, S f (U) =

 0

−g
n2 ‖u‖

h1/3 u


(3.1)

with h the water depth [m] and u = (u, v) T the depth-averaged velocity [m/s] being the flow
state variables. g is the gravity magnitude

[
m/s2], b the bed elevation [m] and n the Manning-

Strickler friction coefficient
[
s/m1/3] being the flow model parameters. Classical initial and

boundary conditions adapted to real cases are considered (see Monnier et al. [2016]; Couderc
et al. [2013] for details).

An effective friction law consisting in a simple power-law n = αhβ is introduced, as previ-
ously done for 1D SWE for effective modeling with simplified multi-channel river geometry in
Garambois et al. [2017]; Brisset et al. [2018].

3.3.2.2 Building-up equivalencies between 2D and 1D flow states

1Dlike reaches refer to river reaches where the following meshing strategy has been applied:
quadrangular cells are built such that their interfaces are perpendicular to the main flow direction
and span the whole river (bankfull) width as a traditional 1D XS would. Examples can be found
in Fig. 3.9 and Fig. 3.16. This leads to a series of quadrangular cells, each linked to a single
upstream and downstream cell. The 1Dlike approach implicitly assumes a rectangular XS shape
which potentially impacts the representation of: (i) at-a-section hydraulic geometry (Leopold
and Maddock [1953]), (ii) longitudinal hydraulic controls and flow variabilities.

In view to put the multi-D model in coherence with real flow physics, a continuity condition
between 1D and 1Dlike models states and parameters is required. This continuity condition
is enforced at-a-section, in a prismatic channel such that the uniform permanent flows, that is
equilibrium, are preserved.

Let us consider a reference 1D model in (A, Q) variables with the bankfull width value W1D.
The friction term reads: S f ,1D = n2Q|Q|

A2R4/3
h

(Appendix 3.B). In the corresponding 1Dlike model in

(h, u, v) variables, see Section 3.3.2.1, the friction term reads: S f ,1Dlike =
n2||u||

h1/3 u
Considering 1D flow states over an idealized river section (Fig. 3.5, left) the hypothesis of

local flow equilibrium (uniform, steady-state) with identical wetted areas A and WS widths W,
the continuity condition implies that:
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Figure 3.5: Equivalency of 1D and 2D flow states at equilibrium (permanent uniform flows):
effective friction and bathymetry. Left: Equivalency between a 1D idealized XS (purple) and a
2D single-cell rectangular XS (green), with the same flow section A and WS elevation. Right:
Variation of the hydraulic radius Rh (h) for 3 XS shapes (of similar dimensions). This showcases
the potential over- and under-estimation of state variables using “1Dlike equivalent friction”
from Eq. (3.2).

n1Dlike = n1D

√√√√ A
W

h1/3
1Dlike

R4/3
h,1D

(3.2)

where n1Dlike (resp. h1Dlike) is the Manning-Strickler friction coefficient (resp. flow depth) in
the 1Dlike model i.e. the coefficient in the 2D SWE (3.1).

With the additional assumption of a rectangular XS (as it will be assumed in some test cases),

we have h1Dlike = A/W1D, which leads to n1Dlike = n1D

(
h1D

Rh,1D

)2/3
.

This “1Dlike equivalent friction” leads to a perfect fit in WS elevation of 1Dlike model and
1D model in a straight prismatic channel at the given uniform regime (results not shown here
for brevity). Fig. 3.5, right, shows the evolution of the ratio (h/Rh) vs h. For rectangular and
parabolic XS, the ratio n1Dlike/n1D is expected to increase with h. Thus, one can naturally expect an
overestimation (resp. underestimation) of the actual friction coefficient by n1Dlike at lower flows
(resp. greater flows). This would lead to an overestimation (resp. underestimation) of the 1D WS
elevation by the “equivalent” 1Dlike model. However, later it will be considered a power-law in
h to model the friction coefficient (Subsection 3.3.2.1), which provides a better fit to the 1D WS
elevations outside of the considered permanent flow.

Note that longitudinal controls and flow variabilities in 1Dlike models are assessed using
synthetic cases in Subsection 3.4.2.2.

3.3.2.3 Multi-dimensional hydraulic model

Over a given cell K ∈ Ωhy of area mK, the piece-wise constant values UK =
1

mK

∫
K UdK are

approximated. Recall that the finite volume approach applied to the homogeneous part of the
hyperbolic system of Eq. 3.1 (that is without the friction source term S f but including a consistent
discretization of the gravitational source term Sg) writes as follows:
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Ūn+1
K = Un

K −
∆tn

mK
∑

e∈∂K
meFe

(
Un

K,i, Un
Ke

, nei ,K
)

(3.3)

1.7
where Un

K and Un+1
K are the piece-wise constant approximations of U = (h, hu, hv)T at time tn

and tn+1 (with tn+1 = tn + ∆tn), Fe stands for Riemann fluxes through each edge e of the border
∂K of the cell K, with each adjacent cell Ke. The length of edge e is me and ne,K is the unit normal
to e oriented from K to Ke.

The finite volume schemes are those developed in Couderc et al. [2013]; Monnier et al.
[2016].The discretization of the friction source term is described in Appendix 3.A.

Based on the first and second order finite volume solvers of Couderc et al. [2013]; Monnier
et al. [2016], a 1D2D coupling technique is introduced following a similar concept to Finaud-
Guyot et al. [2018] (urban geometries and porosity context) to compute numerical fluxes on each
interface between a 1Dlike quadrangular mesh cell connected to several 2D cells as schematized
in Fig. 3.6.

At the multi-D interfaces, that is in the case of n > 1 cells xK,i i ∈ [1..n] adjacent to the same
interface of another cell Ke (see Fig. 3.6 for notations and e.g. Fig. 3.19 for a real-like example),
a special treatment is applied. It consists in the Riemann fluxes being calculated for each cell Ki
using the state from the same corresponding Ke cell over an interface of length mei . In the end,
the flux crossing the interface e = ∪ei is equal to the sum of the fluxes crossing the ei interfaces:
Fe = ∑

i=1..n
mei Fei

(
Un

Ki
, Un

Ke, nei ,K

)
.

This type of internal interface has been implemented in the numerical solvers from Monnier
et al. [2016] in the DassFlow platform which includes a solver with second order accuracy in
space. This solver, developed in Couderc et al. [2013]; Monnier et al. [2016], is accurate and
robust for wet-dry front propagations and fully applies in the present context. Note that the
lateral distribution of variables across the 1D2D interface is not constrained. The source code
and synthetic cases are available upon simple request.

3.3.3 Hydrological module

In order to simulate the hydrological response of sub-catchments within a river basin, a hydro-
logical module is coupled to the 2D SW flow model. The widely used, parsimonious and robust
conceptual hydrological model GR4 (Perrin et al. [2003]), in its “state-space” version from San-
tos et al. [2018], was chosen. The original lumped hydrological model has been deployed in a
semi-distributed manner in the DassFlow framework.

The model is composed of two non-linear stores for production (soil moisture accounting)
and routing, and a Nash cascade composed of a series of linear stores replacing the unit hy-
drograph from Perrin et al. [2003]. Being a set of ODE with explicit dependency to parameters,
this hydrological model is differentiable. Moreover, the Fortran code is differentiable with the
automatic differentiation tool Tapenade Hascoet and Pascual [2013].

Let us consider a sub-catchment bvi among sub-catchments {bv1, ..., bvC} in the discretized
river basin hydrological domain Ωrr. The hydrological model can be seen as a dynamic operator
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Figure 3.6: Internal multi-D domains interface, general case. At each cell center x, the state vari-
ables U = (h, hu, hv)T and the bathymetry b are defined. The total numerical flux is conserved:
Fe = ∑

i=1..n
mei Fei

(
Un

K,i, Un
Ke, nei ,K

)
.

M relating sub-catchment state variables vector h (xi, t) with observable input of spatially aver-
aged (on sub-catchment xi) rainfall P (xi, t) and potential evapotranspiration E (xi, t), observable
outputs Y (x, t) and “unobservable” parameters θ (x).

Omitting the sub-catchment index i for readability, the hydrological model consists in the
following set of ordinary differential equations:

dh
dt

=



ḣp = Ps − Es − Perc

ḣ1 = Pr −QSh,1

ḣ2 = QSh,1 −QSh,2

... ...

ḣnres = QSh,nres−1 −QSh,nres

ḣr = Q9 + F−Qr

(3.4)

where Ps, Es, Pr, QSh,i, i ∈ [1..nres], Q9, F, Qr are model internal fluxes given in appendix 3.C
along with their internal parameters. The evolution of reservoir states and model outputs and
inputs is presented for a sample rain event in Fig. 3.7.

The input of the hydrological model are the evapotranspiration and precipitation En and Pn,
the output is discharge q (t) = Qr + Qd [mm/h]. En and Pn are classically imposed from data
time series as piece-wise constant on fixed temporal resolution (e.g. hourly). The numerical
resolution is achieved with an implicit Euler algorithm with an adaptative sub-step algorithm
enabling to reduce numerical errors especially for high flows (Santos et al. [2018]). The initial
states of the stores is given by a 1 year warm-up run. The discharge q is injected into Ωhy at a
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Figure 3.7: Evolution of GR4 inputs, output and reservoirs states during a sample rain event.
Top: temporal forcings (rain and evaporation) and modeled output (discharge).
Bottom: hydrological model states (reservoir levels).

sub-interface of Γhy−rr, either as an upstream or lateral flow.
The calibrated parameters will be the classical 4 parameters (ci)i∈1..4 of GR4 (they will con-

stitute the control vector considered in the forthcoming VDA experiments). Other parameters,
such as several drainage law exponents or the number of Nash cascade stores are not optimized
in this study. They are set at values from Santos et al. [2018].

3.3.4 Inverse algorithm: Variational Data Assimilation

Given spatio-temporal flow observables, provided by in situ and airborne sensors for instance,
the inverse algorithm consisting in Variational Data Assimilation (VDA) aims at estimating the
unknown or uncertain “input parameters” of the hydrological-hydraulic chain composed of a
hydraulic model, presented in Section 3.3.2, and a hydrological model, presented in Section
3.3.3.

We consider the following set of spatio-temporal observations of water surface and discharge
over the river domain Ω ⊂ R2:

Zo,k (t) , ∀k ∈ [1..No,Z] , Qo,k (t) , ∀k ∈ [1..No,Q] (3.5)

with Zo the observed WS elevation [m] above reference elevation, Qo the observed discharge[
m3/s

]
, No,Z the number of altimetric observations points and No,Q the number of observed

discharges over Ω.



§3.3 The computational hydrological-hydraulic chain 115

Note that observed discharge Qo may be a value of a hydraulic discharge at a flow XS in Ωhy, or
within the hydrological domain Ωrr and especially at the outlet of a sub-catchment here. Also
note that other water surface observables could be considered, such as water surface velocity
observations or dynamic water masks - not the scope of this study.

Given river stage and/or discharge observations, the aim is here to estimate unknown or un-
certain quantities of the hydrological-hydraulic model among: discharge hydrographs Qi (t) , i ∈
[1, N] on the border of the hydraulic domain, spatially distributed hydraulic parameters (bathymetry
elevation b or friction n) and hydrological models parameter sets (ci)i∈1..4.
The control vector containing the sought quantities is denoted θ in what follows:

θ =
(
θhy , θrr

)
=
((

Q0
1, ..., QT

1 , ..., Q1
N , ..., QT

N , n1, ..., nM , b1, ..., bM

)
, (c1, ..., cP)

)
(3.6)

with θhy and θrr the control vectors of respectively the hydraulic and the hydrological mod-
ules, N the number of inflows points and T the number of inflow values in time, M the number
of modeled cells and P the number of hydrological units.

We consider a cost function jobs aiming at measuring the discrepancy between simulated and
observed flow quantities on the computational domain Ω. This cost function is defined as:

jobs (θ) = jQ (θ) or jobs (θ) = jZ (θ) (3.7)

This cost function contains either misfit to WS elevation, jZ (θ) = 1
2 ‖Zo (t)− Z (θ, t)‖2

OZ , or
misfit to discharge, jQ (θ) = 1

2 ‖Qo (t)−Q (θ, t)‖2
OQ .

The metrics (symmetric positive definite matrices) OZ and OQ are based on the inverse
of the observation error covariances. This enables to regularize the inverse problem, see e.g.
Bouttier and Courtier [2002]; Asch et al. [2016]; Monnier [2021] and references therein for related
discussions.

Moreover, we classically enrich the cost function with a regularization term: j (θ) = jobs (θ) +
γjreg (θ) with jreg a Tikhonov type regularization term. Here we consider a regularization on the

bathymetry only: jreg (θ) =
1
2

M
∑

i=1

(
(∂xbi)

2 +
(
∂ybi

)2
)

with θ defined by (3.6).

The regularization term adds convexity to the cost function. Moreover, it here dampens the
bathymetry highest frequencies. Recall that low Froude flows i.e. subcritical flows naturally act
as a low pass filtering of the bathymetry shape, see Martin and Monnier [2015]; Gudmundsson
[2003].

The total cost function j is minimized starting from a background value θ(0). Following
Lorenc et al. [2000], see also Larnier et al. [2021], the following change of variables is applied:

k = B−1/2
(

θ − θ(0)
)

(3.8)

with B the covariance matrix of the background error.
Then by setting J (k) = j (θ), the optimization problem which is solved is actually the follow-

ing:
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min
k

J (k) (3.9)

The first order optimality condition of this optimization problem (3.9) reads: B1/2∇j (θ) = 0.
The change of variables based on the covariance matrix B acts as a preconditioning of the opti-
mization problem. This optimization problem is solved using a first order gradient-based algo-
rithm, more precisely the classical L-BFGS quasi-Newton algorithm (limited-memory Broyden-
Fletcher-Goldfarb-Shanno bound-constrained, Zhu et al. [1997]) or, in some cases in this study,
its bounded version L-BFGS-B (Zhu et al. [1997]) but without variable change 3.8. Detailed
know-hows on VDA may be found e.g. in online courses (see e.g. Bouttier and Courtier [2002];
Monnier [2021]). The gradient is computed with the help of the adjoint model. The latter is
obtained by automatic differentiation, using Tapenade Hascoet and Pascual [2013].

Figure 3.8: Complete VDA hydraulic-hydrological tool chain

The choice of the covariance matrix B, represents an important a priori and greatly influ-
ences the computed solution of the inverse problem. Assuming the unknown parameters are
independent variables, the matrix B is defined as a block diagonal matrix:

B = blockdiag
(

BΩhy , BΩrr

)
, with BΩhy = blockdiag (BQ, Bn, Bzb) (3.10)

Each block matrix of BΩhy is defined as a covariance matrix (positive definite matrix) using
2D kernels for spatial controls. Here following Larnier et al. [2021], we consider:

(BQ)i,j = (σQ)
2 exp

(
−
∣∣tj − ti

∣∣
LQ

)
(3.11)
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(Bb)i,j = (σb)
2 exp

(
−
∣∣xj − xi

∣∣+ ∣∣yj − yi
∣∣

Lb

)
, (Bn)i,j = (σn)

2 exp

(
−
∣∣xj − xi

∣∣+ ∣∣yj − yi
∣∣

Ln

)
(3.12)

The parameters LQ and (Lb, Ln) act as correlation lengths. These parameters are usually
empirically defined. However the expression of Bb and the correlation lengths can be derived
from physically-based estimations following Malou and Monnier [2021].

The following stopping criterion are used to stop the iterative optimization process if: i)
the cost function does not decrease over a set number of iterations or ii) the current cost gra-
dient, normalized by the initial cost gradient, goes under a set objective value. The multi-D
hydrological-hydraulic tool chain presented above has been implemented in the latest version of
Couderc et al. [2013].

3.4 Results and discussion

3.4.1 Numerical experiments design

Both synthetic and real cases are considered to test the forward and inverse modeling capabil-
ities of the proposed computational chain for river networks and floodplains simulation. First,
the multi-D hydraulic model (Section 3.3.2.3) is validated against reference hydraulic models on
synthetic cases corresponding to typical hydraulic complexities: (i) simple straight channel, (ii)
confluence and (iii) straight, rectangular and parabolic, channels with effective parameteriza-
tion of friction and bathymetry. For fluvial regimes in the context of altimetry, these hydraulic
complexities generate hydraulic controls. Following Montazem et al. [2019], we define hydraulic
controls as characterized by a maximal deviation of the water depth from the normal depth (see
e.g. Chow [1959]; Dingman [2009] for definition) at the reach scale. Next, a series of inference
cases are considered in twin experiment setups. In a twin experiment, a reference model acts as
a synthetic truth and is used to generate observations of model variables (e.g. b + h in Ωhy or Q
in Ωrr). No observation noise is considered in this study. The VDA method is then applied with
these observations on an altered version of the reference model. Inferences of temporal forcings
(inflow hydrographs Qi (t) , i ∈ [1..N]) are presented on a 1D2D confluence case. Inferences of
channels parameters are presented on a straight 1Dlike case. Next, inferences of hydrological pa-
rameters (ci)i∈1..4 are presented using hydraulic observables. Finally, the model is tested on two
real cases: (i) the capability of the 1Dlike model to reproduce real flow lines and propagations,
through effective bathymetry-friction (b (x) , n (x)) inference, is assessed against a reference 2D
model built on fine bathymetry of 75 km of the Garonne river and (ii) the whole multi-D hy-
draulic hydrological tool chain is tested at basin scale on the real complex case of the Adour
River network.

3.4.2 Synthetic cases

First, the proposed multi-D hydraulic solver (Subsection 3.3.2.3) is evaluated and compared to
a fine 2D reference model on two simple configurations, a straight channel and a confluence,
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that feature contain frontal interfaces between 1Dlike and 2D meshes. Next, to investigate the
reproductibility of hydraulic controls using a 1Dlike meshing approach and effective modeling,
this approach is compared to a 1D reference model in three typical channel configurations: (i) a
rectangular prismatic channel, (ii) a rectangular channel with a slope break and (iii) a parabolic
prismatic channel. Finally, inferences of inflow hydrographs Qi (t) , i ∈ [1..N] and of a friction
power-law n = αhβ are carried out using WS observables.

3.4.2.1 Forward multi-D hydraulic cases

Straight channel case
A prismatic rectangular channel and a multi-D mesh are considered (1Dlike to 2D to 1Dlike,

see Fig. 3.9). The channel width is 300 m and its length is 2300 m. A rating curve is imposed
downstream. This multi-D model is compared to a reference 2D model with refined mesh (mesh
not shown, 2400 cells, average edge length v 25 m). The multi-D waterline is validated against
the 2D model at permanent flow

(
Q = 100 m3/s

)
and the modeled downstream discharges are

compared for a flood hydrograph (Fig. 3.9(b)). Both first (not shown) and second order (Fig. 3.9)
numerical solver allow a close fit to the target water line (Fig. 3.9, bottom).

At permanent flow, a slight misfit is observed between the 2D and multi-D WS elevations
with the second order scheme (Fig. 3.9, top, relative misfit < 0.15% at 1000 m). This is due
to approximation error in the multi-D model caused by large spatial steps in 1Dlike reaches
(dx = 200 m). Indeed, this misfit is reduced by reducing the 1Dlike cells length (not shown).
This is confirmed and showcased in the next subsection.

At the interface between 1Dlike and 2D meshes, a slight jump in WS elevations can be ob-
served at all 2D cells (Fig. 3.9, top). This is due to the second order scheme, which is currently
not designed for multi-D interfaces. Recall that no constraint is imposed on the lateral distri-
bution of computed variables. The technical implementation of this reconstruction for 1D2D
interfaces will be done in next version of DassFlow.

During a varied flow event, the outflow of both models is close to identical (Fig. 3.9, middle).
The flow is correctly transmitted at multi-D interfaces and, at this scale, the 1Dlike meshes are
adequate to model a flood wave propagation.

Simple confluence case
A simple symmetrical confluence is modeled using a multi-D mesh. The channel width is

300 m in the downstream reach and 150 m in the upstream reaches. Two inflow hydrographs
are imposed at the two upstream interfaces. The maximum abscissa of the mesh points are 0
and 2075 m. The 2D part (average edge length v 5 m) contains a confluence flow zone (Fig. 3.10)
while the 1Dlike mesh (dx = 100 m) covers the upstream and downstream reaches. At permanent
flow, the multi-D model compares well with the reference 2D fine model (mesh not shown, 15 000
cells, average edge lengthv 5 m) and leads to similar conclusions to that of the above paragraphs.
Using a shorter spatial step in the 1Dlike reaches (10 m) reduces the difference between reference
and multi-D model and allows for a nearly perfect fit to the reference WS elevation at permanent
flow (Fig. 3.10, in green). During a varied flow event, the outflows modeled with the multi-D
model are very close to reference ones - slight differences during rising and falling limbs, same
peak time, NSE = 0.996.
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(a) Top: Waterlines for a permanent flow of 100 m3/s. In red: reference 2D waterline. In blue:
waterline for the mesh (left). The total misfit at the 1D2D upstream interface (at 1000 m) is
around 10−3 m, for a relative misfit < 0.15% of the local depth. Middle: In black: upstream
discharge during sample varied flow event. In red/blue (total overlap): downstream simu-
lated flow for the considered meshes. Bottom: WS elevation observations for the varied flow
event (total overlap).

(b) Station locations are noted as black dots on the mesh (left).

Figure 3.9: Multi-D straight channel case results with second order scheme. The flow is subcriti-
cal with a maximum Froude value of 0.06.
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(a) Top: Waterlines for a permanent flow of 100 m3/s at both upstream boundaries. In red:
reference 2D waterline. In blue: waterline for the mesh (left). In green: waterline for a
denser 1D2D mesh (not shown). Middle: In black: total upstream discharge during sample
varied flow event (evenly distributed between upstream boundaries). In red/green/blue:
downstream simulated flow for the considered meshes. Bottom: WS elevation observations
for the varied flow event.

(b) Station locations, noted as black dots on the mesh.

Figure 3.10: Multi-D confluence case results with second order scheme
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3.4.2.2 Hydraulic controls and effective friction

To investigate the reproductibility of hydraulic controls for fluvial flows, which are characterized
by a maximal deviation of the water depth from the normal depth at the reach scale (see defi-
nition in Montazem et al. [2019]), using a 1Dlike approach, a set of typical channel variabilities
and hydraulic controls are considered. Let us compare 1D and 1Dlike waterlines in a series
of synthetic cases: (i) a straight rectangular channel, (ii) a straight rectangular channel with a
mid-channel slope break and (iii) a straight parabolic channel.

Direct calibration Recall the equivalent friction formulation (Eq. 3.2) designed to make match
the water line at-a-section and at equilibrium. For each 1Dlike case, waterlines with 1D friction
(n = 0.05 s/m1/3) and effective equivalent friction are generated. Effective friction values are
calculated using (Eq. 3.2) and results from the corresponding 1D case. Reference 1D flow lines
are computed with DassFlow solving 1D Saint-Venant equations in (A, Q) state variables with a
Preissmann scheme (see 3.B and also Larnier et al. [2021]).

In a straight rectangular prismatic channel, with the 1D normal water depth imposed down-
stream (Fig. 3.11(a)), a backwater curve is computed by the DassFlow1D model (in red). With
a 1D homogeneous friction (n = 0.05 s/m1/3), the 1Dlike approach yields an underestimated
waterline (in blue). An homogeneous effective friction allows to correct the underestimation and
to better match the 1D normal water depth over the whole domain (in green). The remaining
misfit can be attributed to numerical errors, especially numerical diffusion from the Preissmann
scheme (1D model spatial step is dx1D = 100 m).

A first complexification of this case consists in the introduction of a local hydraulic control
point in the form of a slope break at x = 10 km (Fig. 3.11(b)). In this setup, both 1D and 1Dlike
models generate M2 backwater curves, see e.g. Dingman [2009]. The hydraulic control gener-
ated at the slope break is well represented with a 1Dlike approach, given the aforementioned
numerical errors due to the coarse grid.

Another complexification of the first case consists in changing from a rectangular XS to a
parabolic one (Fig. 3.5). In this case, both equivalent friction - a single homogeneous patch - and
effective bathymetry, in the form of an homogeneous shift δb of the reference bathymetry, are
needed to match the 1D WS elevation. Equivalent friction only allows to model identical wetted
sections at permanent bankfull flow for a given channel width (Section 3.3.2.2). In this case,
matching the 1D wetted section does not equate to matching its WS elevation, thus an effective
bathymetry is used (Fig. 3.5(c)).

According to the above model comparisons, effective parameterization of channel parameters
is sufficient to reproduce 1D behaviors with a 1Dlike approach for permanent bankfull flows in
simple geometries. Outside of the permanent bankfull flow, a friction power-law n = αhβ can
be used (Subsection 3.3.2.1). This friction aims at better 1Dlike representativity when modeled
wetted surfaces (and other XS variables) are different in 1D and 1Dlike models for the same WS
elevation.

Inverse calibration In the following comparison, power-law parameters α and β are obtained
using VDA in a twin experiment setup. Observations are taken at two stations (Fig. 3.12). Prior
values are α = 0.05 s/m1/3 and β = 0.

The classic friction law and a power-law with calibrated parameters are compared in Fig.
3.12 during a varied flow event. A range of water depth higher than the “bankfull” depth used
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(a) (b)

(c)

Figure 3.11: Effective friction analysis for steady waterline in academic cases: (a) rectangular
channel with constant slope, (b) rectangular channel with slope break, (c) parabolic channel
with constant slope. Values of effective friction parameter α

[
s/m1/3]: (a): 5.06 × 10−2, (b):

(5.06× 10−2, 5.04× 10−2), (c): 5.46× 10−2. Bathymetric shift δb [m]: (a): 0 , (b): 0 , (c): 0.591.
1D reference model: fixed time step 5 s spatial step 100 m; average Courant number equals 0.26
1Dlike models: adaptative time step with mean value of 9 s; 1Dlike cell length 100 m; average
Courant number equals 0.48.
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Figure 3.12: Effective friction analysis for an unsteady waterline in case (a). The power-law is
given by n = αhβ, with α = 0.0446 and β = 0.0634. The injected hydrograph is symmetrical.
Observations stations are at x = 2.5 km and x = 7.5 km. Adaptative time step with average value
of 13 s. 1Dlike cell length: 200 m. Average Courant number: 0.33.

to calculate equivalent friction parameters is simulated. This results in an increase in misfit to
the 1D WS elevation at high flow (Fig. 3.12, in blue and red). The calibrated friction power-law
(in orange) somewhat reduces the misfit during high flows in this simple synthetic channel and
within the simulated water depth range.

3.4.2.3 Multi-D hydraulic-hydrological data assimilation

Temporal forcings inference
Simple inference tests are carried on the confluence case from Subsection 3.4.2.1, following

Pujol et al. [2020], in a twin experiment setup. A control vector c = (Q1 (t) , Q2 (t)) is considered,
where Q1 and Q2 are sinusoidal inflow hydrographs injected at the upstream cell of the two
upstream reaches. Pujol et al. [2020] shows that the minimal requirement to infer multiple spa-
tially distributed temporal forcings simultaneously is to observe either (a) both of their unmixed
signatures, at 1 point each, or (b) one of their unmixed signatures at 1 point and their mixed
signatures at a second point. We verify this for configuration (b). Unmixed signatures observa-
tions are generated at a 1Dlike cell of the upstream reaches, mixed signatures observations are
generated at a cell in the 2D part (Fig. 3.13, left, red crosses). Prior values for the inflow hy-
drographs are constant and set to their average value

(
Q1 (t) = Q2 (t) = 100 m3/s

)
. Using sets

of two observations points, we are able to reproduce the results of Pujol et al. [2020] but with
the proposed multi-D hydraulic model: the VDA algorithm enables to infer Q1 and Q2 close to
perfectly from configurations (a) and (b) (Fig. 3.13, right).

Hydrological parameters inference
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Figure 3.13: Inflow hydrographs inference on confluence synthetic case in observation setup
(b) with one station on a reach upstream of the confluence and one observing mixed flows
downstream in the 2D part (see mesh on the left). Given sufficient observability and an unbiased
prior, inferred hydrographs (in blue and orange) are both at target (black, total overlap). The
flow is subcritical with a maximum Froude value of 0.05.

In this second twin experiment, the issue of spatially distributed calibration of a hydrological
model is studied, from multi-source observations of the river network. The confluence case above
is used and this time, the upstream inflows are generated by GR4H module applied on two
upstream catchments inflowing the hydraulic module. For each catchment, synthetic rain and
evaporation time series and a hydrological parameter set θrr = (c1, ..., c4) are used to generate a
discharge time series over a 1-year period (not shown). Mixed observables are used: WS elevation
is observed at a single downstream point and hydrological model discharge is observed at the
outlet of one of the catchments. They provide the same signal observability - mixed and unmixed
signals - as in the above paragraph but with observations of different nature. Since the observed
variables are of different nature and amplitude, we introduce a normalization. The cost function
is here jobs = jZ + jQ, with each term being normalized by the number of observations and by

their range of variation such that: jZ =
No,ZTZ

No,ZTZ+No,QTQ

1
(Zo,max−Zo,min)

2

No,Z

∑
1

TZ

∑
1

(Zo (t)− Z (θ, t))2 and

jQ =
No,QTQ

No,ZTZ+No,QTQ

1
(Qo,max−Qo,min)

2

No,Q

∑
1

TQ

∑
1
(Qo (t)−Q (θ, t))2.

Those correspond to two separate normalized squared RMSE with No,Q and No,Z denoting
the number of observations station and TQ and TZ the number of observation time steps.

The control vector c = (θrr1, θrr2) contains the two sets of 4 hydrological parameters each.
For this synthetic case, an inequality constraint of the control parameters is imposed with the
bounded L-BFGS-B algorithm (Zhu et al. [1997]). Indeed, restricted research intervals are con-
sidered for the three first parameters of each catchment, namely a 5% bracket around their target
values used as prior, while c4 is sought in its expected variation range from an erroneous prior
(Table 3.2). Expected ranges for GR4H parameters are provided in Le Lay [2006], for the classical
GR4 formulation.

In this setup, both jQ and jZ are reduced during the iterative steps and the inferred value for
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Parameters c1 c2 c3 c4
Target

520.01 -3.523 78.75
0.137

Prior 0.167 / 0.107
Inferred 520.00 / 519.46 -3.654 / -3.820 80 / 80 0.136 / 0.137

Table 3.2: Hydrological parameter inference results. Prior values are taken identical to target
values, except for parameter c4, where under- and over-estimated prior value are considered.
Inferred value for all parameters including c4 are very close to the target. The “/” separates
values for the 2 distinct hydrological units.

both c4 parameters are very close to the target value starting from an erroneous prior (Fig. 3.14,
right). Bounded parameters c1 and c2 vary slightly between their bounds, while c3 is locked at
its lower bound from the first iteration.

3.4.3 Real cases

3.4.3.1 Garonne river: 1Dlike effective model of a 2D reference case

A 1Dlike model of a reach of the Garonne river, in southern France, is built from real data and
calibrated here via assimilation of spatially distributed WS observations in a twin experiment
setup. A full 2D model of 75 km of the Garonne river (not shown, 867 500 cells including flood-
plains, average edge length v 25 m) is used to generate real-like observables on this well known
case (Garambois and Monnier [2015]; Brisset et al. [2018]; Larnier et al. [2021]; Monnier et al.
[2016]). First, river extent is derived from the 2D model output at bankfull flow Q = 400 m3/s
with an homogeneous friction n = 0.05 s/m1/3. This extent is in turn used to build a 1Dlike
mesh, over the whole reach: single quadrangular cells cover the whole river width and are
linked sequentially along the river reach (Fig. 3.15). 1Dlike cell interfaces are perpendicular to
the flow direction, as would be XS in a 1D model. Each cell is about 100 m in longitudinal length.
This mesh was generated using the SMS meshing tools. Cell bathymetry is first set using the
lowest bathymetry point at each corresponding 2D XS.

Permanent bankfull flow calibration
A first expectedly imperfect 1Dlike model (Model A1) is built using the 1Dlike coarse mesh

and expectedly underestimated bathymetry elevation, and an homogeneous friction parameter
of 0.05 s/m1/3. The simulated steady WS elevation at bankfull flow is lower than that of the 2D
model (average misfit of 0.858 m), which is expected since the 1D bathymetry is that of the lowest
point of the 2D XS (Fig. 3.5). Furthermore, the 1Dlike friction is underestimated and leads to
an underestimated simulated water depth (and flow surface). The WS elevation misfit does not
seem to follow a significant trend from upstream to downstream, although it varies sharply at
points of width variation (Fig. 3.16, e.g. around cell 410). Recall that the goal of this effective
modeling approach is to accurately reproduce water surface signatures, including WS elevation
and, tangentially, flow section (Subsection 3.3.2.2).
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(a)

(b)

Figure 3.14: Simultaneous inference of GR4H hydrological parameters in two catchments from
multi-source observations: WS elevation and flow observations.
(a) Multi-D hydraulic mesh and modeled hydrological catchments. Hydrological discharge at
the outlet of Ωrr is inflowed upstream in Ωhy. Observation stations (red cross and red line) are
used for inferring hydrological parameters.
(b) Inference of 2 sets of 4 hydrological parameters: normalized costs and parameter values over
the course of the iterative optimum search. The x4 background values are erroneous. x1, x2 and
x4 background values are set to target values.
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Figure 3.15: Garonne 2D model extent and simulated water depths using the 2D model and the
1Dlike model for a non-flooding event
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Calibration by hand
We here propose to reduce the misfit using, on one hand, effective friction and, on another

hand, bathymetry as follows. In Model A2, the introduction of an equivalent friction parameter
(Eq. 3.2), calculated at each 1D cell using observations from 2D XSs, improves the WS elevation
misfit (mean friction of n = 0.062 s/m1/3, average WS elevation misfit of 0.562 m). It reduces
misfit overall, but has no significant local influence (Fig. 3.16). In Model A3, we use the aver-
age WS elevation misfit from Model A2 to create a simple bathymetry shift δb that helps fit the
observations. Equivalent friction parameters from Model A2 are kept and all bathymetry points
are shifted by δb = 0.562 m (the bottom slope is conserved). The average WS elevation misfit at
bankfull flow reaches 0.003 m for Model A3, which is a very satisfying result.

Calibration by VDA
Now, the same calibration problem is addressed with an inference based on the VDA method.

It is applied to the same reference model permanent flow waterline, observed at each cell.
The control vector contains a single homogeneous friction parameter, as before, and spatial-
ized bathymetry b (x) for each cell. To constrain the parameter search, two VDA processes are
performed separately: a bathymetry regularization and a change of variable. Inference with
bathymetry regularization leads to Model B1, with γ = 1 (Subsection 3.3.4). Inference with
change of variable (Eq. 3.8) leads to Model B2, with Lb = 500 m (Eq. 3.12). Both models lead to
average misfits close to that of Model A3: 0.0839 m and 0.0844 m respectively.

Two other inference setups based on Model B1 are considered. The number of observations
is divided by 10: 72 stations, homogeneously distributed at 1 per each 1 km, are considered.
In Model B1a, no regularization term is considered (γ = 0). In Model B1b, a regularization
is added (γ = 1, chosen by trial and error). This weight can be optimally determined using
iterative regularization (Malou and Monnier [2022]). It is dependent on the spatial scales of
observed signals and on the discretization of inferred parameters. As presented in Fig. 3.16
and in Table 3.3, both inferences lead to low misfits of the 2D permanent WS elevation. The
regularization tends to reduce extreme bathymetric variations that tend to appear far from the
observation points. The iterative minimization process can be followed through the cost function
value and the parameter gradients (Fig. 3.17). Values are normalized over their initial (iteration
0) value. For Model B1a, the optimal control is reached after 40 iteration (for a normalized
cost of 8.6 × 10−10), while for Model B1b it is reached in 85 iterations (for a normalized cost
of 5.5 × 10−5). Both models follow the same trajectory up to around iteration 12, where the
regularization term jreg reaches the same order of scale as the WS elevation misfit term jobs.

Variational calibration of channel parameter has allowed to fit a permanent regime water line.
The following paragraphs study the reproduction of propagation in a calibrated models during
a varied flow event.

Variational calibration for a flow event
Let us now consider a varied flow event, without flooding in the 2D model. This event

last 10 days, with a peak discharge of 702 m3/s at the start of day 2, a minimum discharge of
160 m3/s and and average discharge of 382 m3/s. Given our previous inference attempts, we
know that we can find a couple (n, b (x)) or (n, δb) that minimizes the average misfit. For the
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Figure 3.16: Comparison of 7 1Dlike models of 72 km of the Garonne river to a reference 2D SW
fine model for a permanent flow (reference WS elevation in blue lines, bottom).
(Up) Left: WS comparison of 1Dlike models to 2D reference model at each spatial point. Right:
Zoom on 3 km long reach of interest.
(Down) Left: WS elevation and bathymetry for the reference and 1D like models. Right: Zoom
on 3 km long reach of interest.
For models A1, A2 and A3 (in grays), the bathymetry and homogeneous friction are manually
calibrated. For model B1 (yellow), B1a (magenta), B1b (red) and B2 (green), the bathymetry
and friction are calibrated by VDA. For models B1 and B2, inferences are carried out from
observations at each cell (720 total). For models B1a and B1b, inferences are carried out from
observations every 10 cells (i.e. around every 1 km, 72 stations total). Vertical bars indicate these
72 stations.
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Figure 3.17: Normalized cost functions and gradients for inferences of distributed bathymetry
and homogeneous friction, from 72 observation stations, in models B1a and B1b. Top: Total
cost normalized by initial cost j (θ) /j

(
θ(0)
)

vs iterations. Bottom: Cost gradients normalized by
initial gradient for the inferred parameters vs iterations.
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Model

name

Calibrated

parame-

ters

Calibration

method

Flow

regime

Obs.

den-

sity

n or α β δb
Rel. misfit

(PR)

RMSE

(PR)

NSE

(Var-

ied)

2D - - - - 0.5

0

0

--

A1 -

Manual

PR

High

0.5 0 0.858 0.881

A2 n 0.062 0 0.562 0.585

A3 n, δb 0.062 0.562 0.003 0.167

B1

n, b (x, y)

VDA

0.059

-

0.084 0.106

B1a
Low

0.059 0.099 0.157

B1b 0.057 0.099 0.152

B2 High 0.059 0.084 0.157

C n, δb
Varied High

0.054 0.669
- -

0.99

D β, δb 0.054 -0.017 0.099 0.98

Table 3.3: Garonne models parameters and metrics. “PR” stand for Permanent Regime. “High”
observation density corresponds to 720 stations, or 1 station per 100 m. “Low” observation
density corresponds to 72 stations, or 1 station per 1 km.

sake of simplicity, we consider the couple (n, δb). For a varied flow event, this couple would
be an optimal parameterization for the average observed water line. A first inference trial is
carried out for a densely observed (in space and time) varied flow. Using Model A1 as a prior
for bathymetry and friction and observations from the 2D model, we find the following optimal
parameters:

(
n = 0.054 s/m1/3, δb = 0.669 m

)
. The resulting optimal model is Model C.

To allow a better fit during high and low flows, we introduce the friction power-law n = αhβ

(Subsection 3.3.2.1). Using observations from the 2D model during the varied flow event, we
infer the couple (β, δb). The value of α is set to 0.054 s/m1/3, the inferred value from Model D.
Three different β priors are tested: −0.5, 0, 0.5. δb is included in the control vector to allow
modeling of more varied water depths, which may be needed to reach the optimum. All three
inferences lead to the very close optimal control. Their averaging, a slight bathymetric shift
δb = 0.099 m and β = −0.017, leads to Model D. The direct simulation results of Model D is
compared to the reference model. They correspond to an average WS elevation misfit of 0.026 m
at high flow and of 0.11 m at low flow. Compared to Model C (average misfit of 0.086 m and
0.20 m at resp. high and low flow), this is an improvement. Note that NSE values for both model
(Table 3.3) are both extremely close to 1.

The variational calibration of the global bathymetric shift δb and of an homogeneous friction
value n in a 1D-like model has allowed to closely fit WS elevation observations of a 10 days flood
wave over the reference Garonne model. The calibration of depth-dependent friction, in the form
of the β parameter in n = αhβ, has allowed an even closer fit to this reference WS elevation over
the high and low flows, i.e. a better representation of the observed flood wave propagation.

3.4.3.2 Adour basin: multi-D hydrological-hydraulic model

The whole hydrological-multi-D-hydraulic tool chain is now tested in a real context both for
forward and inverse problems resolution. A real and complex basin case is now considered:
the Adour river basin in the South West of France, with a total drained area of 16 890 km2 at
the estuary. It is probably one of the most difficult basins to model in the country, because
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of contrasted hydrological regimes including nival effects in the south, flash floods on small
ungauged catchments, complex river network morphology, anthropized floodplains and tidal
effects from downstream.

In this section, a multi-D model, composed of 1Dlike meshes and 2D zooms over floodplain
area is built from available data (Fig. 3.18, 2D area in green). Then, forward and inverse flow
simulations on the river network are presented.

Figure 3.18: Schematic view of the complete Adour river network and observability. Dimensions
are not respected: total river lengths equal ≈ 180 km, 2D floodplain area equals ≈ 5× 3 km2.
Tidal BC influence (from the downstream BC at Convergent) is observed up to Dax (and further
upstream), Peyrehorade and Villefranque.

Model construction and rainfall to inundation simulation
The following model of the Adour river combines a multi-D hydraulic network model and

several hydrological models of sub-catchments (Fig. 3.18). It encompasses around 180 km of
river reaches and includes the Adour river from its tidal boundary downstream of Bayonne up
to a gauging station around 70 km upstream, and part of its main tributaries: the Nive river
(around 45 km), the Oloron and Pau rivers (around 65 km in total). The river networks contains
mostly single-branch reaches, with some notable flood areas around the city of Bayonne. The
WS is observed in situ at 10 points, 5 of which are used as boundary conditions (Dax, Orthez,
Escos, Cambo and Convergent, red points in Fig. 3.18). Out of the 5 remaining stations kept for
data assimilation, 3 are located on river reaches (Peyrehorade, Urt and Villefranque, blue points
in Fig. 3.18) and 2 are located in the Bayonne area (Pont-Blanc and Lesseps, blue points in Fig.
3.18).

At the 4 upstream points of the modeled river network, 4 sub-catchments are modeled with 4
lumped hydrological models (Subsection 3.3.3). Their drainage areas are respectively about 7811,
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842, 2480 and 2464 km2. The hourly discharge have been extracted from the HYDRO3 database
while the rainfall data from the radar observation reanalysis ANTILOPE J+1, which merges radar
and in situ gauge observations, is provided by Météo France. The interannual temperature data
is provided by the SAFRAN reanalysis, Météo France, and then used to calculate the potential
evapotranspiration using the Oudin formula Oudin et al. [2005]. The rainfall and PET are at a
spatial resolution of 1 km2 square grid, and processed into hourly time step. Spatial averages
of the rainfall and PET computed with SMASH distributed platform (Jay-Allemand et al. [2020];
Colleoni et al. [2021]) over the 4 catchments are used as inputs for the lumped GR4H model.
Lumped parameter sets for the 4 GR4H models are simply obtained here using for each the
airGR global calibration algorithm (Coron et al. [2017]). In this section, inferences are carried
out only for upstream inflow hydrographs, not hydrological parameters. Indeed, the study of
global calibration and regionalization issues of spatially distributed hydrological models is left
for further research.

Our multi-D hydraulic modeling approach (Section 3.3) is applied to this complex case as
follows. First, a “1Dlike-only” model of the whole network is built. Then, a multi-D model is
built based on the “1Dlike-only” model, with the addition of a 2D mesh of a floodplain (Fig.
3.19, left).

On the “1Dlike-only” model, the goal is to analyze 1Dlike signal propagation representation
at a low computational cost. The Adour 1Dlike model is built similarly to the Garonne 1Dlike
model, using DEM data to determine minor bed bank line placement and build the quadrangular
cells. Bathymetry comes from 25 × 25 m DEM data, aggregated from fine LiDAR data from
public databases, extracted at each cell. This rough approximation is sufficient to show the
potential of the DassFlow assimilation tool chain on a large scale river network. This “1Dlike-
only” model contains 1409 cells.

Then, a multi-D model is obtained: the existing 2D mesh from a Telemac model is coupled
to a 1Dlike mesh, similarly to the reference Telemac-Mascaret model from the regional flood
forecast center SPC-GAD. The 1Dlike parts of the mesh are kept identical to the “1Dlike-only”
model, while the 2D part is the mesh extracted from the Telemac-Mascaret model (Fig. 3.19, left)
provided by SPC-GAD. For hydraulic coherence, bathymetry at coupled 1Dlike cells are taken
as the average bathymetry of the linked 2D cells. This “1D2D” model contains 66 982 cells in the
2D area and 1342 cells in 1Dlike reaches. Results for a flooding event in the Bayonne 2D area
are presented in Fig. 3.19, on the right. Modeled variables appear coherent over the 1D2D area
and a high resolution flood map in coherence with flow conditions in the whole river network is
obtained.

A 1 day (physical time) flooding event is computed in around 20 min (computation time)
in the “1D2D” model (with 68 324 total cells, 6 threads in parallel). The same event leads to a
7 s computation time for the “1Dlike-only” model (with 1409 cells, same computational setup).
Remember that computation time may vary depending on the number of wetted cells and on
the adaptative time step calculation. This relatively low computation time, and the potential to
decrease it further by using more threads in parallel, indicate that this multi-D method is suited
to operational use. The code version this work is based on was proven scalable (Couderc et al.
[2013]). Additions made to the current version should not change this, but no numerical testing

3http://www.hydro.eaufrance.fr ; french ministry in charge of environment
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has been done.

Assimilation of WS observables to infer 4 upstream hydrographs

To investigate the 1Dlike effective modeling on a river network, a twin experiment setup is
designed to infer large control vector from a realistic observability on the “1Dlike-only” model.

The considered control vector composed of the 4 upstream hydrographs is:

c = (QDax (t) , QEsc (t) , QOrt (t) , QCam (t)) (3.13)

Observations of WS elevation are generated at Peyrehorade, Urt and Villefranque stations, and
additionally at a virtual station directly downstream from Orthez. These 4 points give theo-
retically sufficient observability to identify the 4 upstream hydrographs. Indeed, they sample
mixed and unmixed signal similarly to the academic setup in Subsection 3.4.2.1). The observa-
tion pattern also corresponds to a reasonable expectation of spatial observability in French river
networks. Prior hydrograph values are classically set to a constant average discharge value.

Simultaneous inference of the 4 hydrographs is satisfying. As shown in Fig. 3.20, left, up-
stream hydrographs injected at Cambo and Orthez are inferred very accurately (NSE > 0.95).
This is due to their WS elevation signature being observed “unmixed” in the respective down-
stream reaches. The Escos hydrograph WS signature is observed at Peyrehorade, mixed with
the Orthez hydrograph WS elevation signature. This leads to partial error of signature attribu-
tion and a less accurate inference (NSE = 0.57). The Dax hydrograph WS elevation signature is
observed only at the Urt station, where its signal is mixed with that of Escos and Orthez. The re-
sulting inference is the less accurate with a NSE of 0.50 and closer in shape to the inferred Escos
and Orthez hydrographs. This hints at correlated influences of these hydrographs at observation
stations and insufficient observability of the Dax hydrograph signal given the model hydrody-
namics. Observed signals at the 4 stations are however all very accurate (Fig. 3.20, right). For
upstream stations (Orthez and Villefranque), this is due to the accurate inference of upstream
hydrographs. For stations under the influence of the tidal BC (Peyrehorade and Urt), this is due
to the backwater influence of the BC, which compensates for the error in inferred hydrographs
(namely at Dax, and less so at Escos).

In conclusion, this experiment shows the capability of the VDA tool chain to infer various
upstream hydrographs on 1Dlike network models. Note that multi-D models are identical to the
investigated 1Dlike model in terms of VDA capabilities. It paves the way towards investigations
on multi-variate inferability of spatially distributed hydraulic-hydrological parameters.

In the future, investigation on the influence of data sparsity, observation weights and ill-posed
problem constraints should be carried out.
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Figure 3.20: Upstream hydrograph inferences from 4 observation stations in twin experiment
setup.
Left: In blue: upstream inflow hydrographs used to generate observations. In green: inferred
hydrographs at 20 iterations. Dotted lines: background hydrograph value given for iteration 0
(mean target inflow over assimilation window). NSE values are given for their informative value
but are not used in the assimilation process.
Right: In blue: target WS elevation. In green: WS elevation generated by the inferred hydro-
graphs. Dotted lines: WS elevation generated by the background hydrographs. Downstream
tidal boundary influence is felt at the two most downstream stations (Urt and Peyrehorade).
RMSE value given are used to calculate cost in the assimilation process (Section 3.3.4).

3.5 Conclusions and perspectives

This article presents a new approach and numerical chain for the multi-D hydrological-hydraulic
modeling of complex river networks with variational data assimilation capabilities. It is based
on the VDA algorithm and the finite volume solvers (including second order one and accurate
treatment of wet/dry front propagation) from Monnier et al. [2016]. The resolution of the full 2D
shallow water equations (3.1) is performed with a single finite volume solver applied on a multi-
D discretization of a river network domain. This lattice consists in “1Dlike” reaches meshed
with irregular quadrangular cells connected, via 1Dlike-2D interfaces, to 2D zooms consisting in
higher resolution unstructured meshes - either triangular or quadrangular. This hydraulic model
is inflowed with a hydrological model enabling to describe upstream/lateral catchments inflow
hydrographs. In this work, the parsimonious GR4 model is integrated (Perrin et al. [2003]),
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in its state space version (Santos et al. [2018]) for the sake of differentiability (for the VDA
computations). This approach is implemented in the platform DassFlow (Couderc et al. [2013]).
The adjoint of the whole tool chain is generated with Tapenade (Hascoet and Pascual [2013]) and
validated. Forward-inverse capabilities with the new components is assessed on several cases of
increasing complexity.

The 1Dlike effective hydraulic modeling approach as well as its coupling with higher reso-
lution 2D zooms was validated, against: 1) reference 1D and 2D hydraulic models, on an array
of academic; 2) complex real cases featuring 1D and 2D flow variabilities in river networks with
confluences and floodplains. Those cases are also employed to test the coupling with the hydro-
logical model implemented in a semi-distributed setup.

Considering single (resp. multiple) type(s) of flow signatures observations in those river net-
works through a single-(resp. multi)-objective observation cost function, the capabilities of the
VDA method for inferring mono/multi-variate control vectors of large dimensions was success-
fully tested.

From the obtained results, the following conclusions can be raised:

1. A complete integrated multi-D model coupled with an hydrological model has been im-
plemented and validated in a parallel environment. Moreover, this complete tool chain
includes VDA capabilities based on the adjoint code.

2. The 1Dlike modeling approach enables to simulate fine physical flow states compared to
reference 1D or 2D SW models; hydrograph propagation remains very close also.

3. The inference, from heterogeneous observations in the river network, of multi-variate con-
trols among multiple inflow discharge hydrographs, bathymetry, friction of the multi-D
hydraulic model but also hydrological model parameters is demonstrated. Very accurate
inferences are obtained when the available information contained in system observability
and priors is sufficient regarding the nature and quantity of unknown parameters (see dis-
cussion in Brisset et al. [2018]; Larnier et al. [2021]; Garambois et al. [2020] and references
therein).

4. Information feedback from the river network to upstream hydrological models of sub-
catchments is shown.

5. Real flows on complex channel geometries can be accurately simulated with the 1Dlike
model, despite its intrinsic rectangular XS, thanks to the calibration of effective geometry-
friction patterns. The depth-dependent friction law helps to reduce misfits across flow
regimes.

6. High resolution simulations of real flows can be obtained on complex river networks in-
cluding floodplains and confluences with reduced simulation costs.

To our knowledge, the present numerical tool is the first one proposing, large scale multi-D river
network modeling with VDA capabilities.

Short term perspectives will aim to taylor the data assimilation algorithm to perform com-
plex data assimilation experiments at basin scale using various multi-source datasets. To be
actually operational, improvements pertaining to the construction of 1Dlike models from global
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public databases are needed to deploy the multi-D approach to a large number of river networks.
Coupling is ongoing with the SMASH spatially distributed hydrological platform (Jay-Allemand
et al. [2020]; Colleoni et al. [2021]) on which is based the French flash flood warning system Vigi-
Crues Flash (Garandeau et al. [2018]). Further work will also test the integrated chain on flash
flood Mediterranean basins as well as on larger basins in a satellite observability context. The
implementation of porosity models (Guinot et al. [2018] and references therein) represents a very
interesting research direction regarding effective floodplains and 1Dlike reaches parameteriza-
tions. This is especially true with depth-dependent porosity (Özgen et al. [2017] and references
therein) applied to complex channel geometries and with spatially distributed calibration.

3.A 2D (h, u, v) Shallow Water scheme

3.A.1 2D solver

Recall the rotational invariance property of the SWE (Eq. 3.1) which simplifies the sum of 2D
problems in Eq. (1.7) to 1D Riemann problems. The fluxes Fe are computed using a Riemann
solver. Each local Riemann problem depends on left and right states at the interface e.

The HLLC approximate Riemann solver is used. This gives the expressions:


[
F̂HLLC

e
]

1,2 =
sKe

[
F
(
ÛK
)]

1,2 − sK
[
F
(
ÛKe

)]
1,2 + sKsKe

([
ÛKe

]
1,2 −

[
ÛK
]

1,2

)
sKe − sK[

F̂HLLC
e

]
3 =

[
F̂HLLC

e
]

1 v̂ ∗ with v̂∗ =
{

v̂K if s∗ ≥ 0
v̂Ke if s∗ < 0

(3.14)

where the wave speed expression is those proposed in Vila [1986a]:

sK = min
(
0, ûK −

√
ghK, ûKe − 2

√
ghKe +

√
ghK

)
sKe = max

(
0, ûKe +

√
ghKe , ûK + 2

√
ghK −

√
ghKe

) (3.15)

It has been demonstrated that this insures L∞ stability, positivity and consistency with en-
tropy condition under a CFL condition.

For the intermediate wave speed estimate, following Toro [2001] we set:

s∗ =
sKhKe ûKe − sKe hKûK − sKsKe (hKe − hK)

hKe (ûKe − sKe)− hK (ûK − sK)
(3.16)

A Courant–Friedrichs–Levy (CFL) condition for the time step ∆tn applies, see e.g. Vila and
Villedieu [2003].

3.A.2 Well-balancing

The numerical scheme must preserve the fluid at rest property, that is the gradient of bathymetry
∇zb must not provide un+1 6= 0 if un = 0. In the presence of topography gradients (in particular
those perpendicular to the streamlines) the basic topography gradient ∇zb discretization in the
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Figure 3.21: Typical situation of desired well-balanced property in presence of a wet/dry front.
The WS elevation is here denoted by η (from Couderc et al. [2016]).

gravity source term Sg(U) generates spurious velocities. There is no discrete balance between

the hydrostatic pressure and the gravity source term anymore: ∇
(

gh
2
/2
)
6= −gh∇zb.

Following Audusse et al. [2004], this issue is solved by considering the following change of
variable.

From now, we consider the water depth h∗e,K defined from the “reconstructed” topography ze

(Fig. 3.21) at edge e as:

h∗e,K = max (0, he,K + ze,K − ze)

with
{

ze,K = ηe,K − he,K
ze = max (ze,K, ze,Ke)

(3.17)

The conservative variable vector Un
e,K in the semi-discrete scheme (Eq. 1.7) is now considered

with the new variable:

U∗e,K =

[
h∗e,K

h∗e,Ku

]
(3.18)

Note that this new variable h∗e,K depends on the bathymetry values (ze,K, ze).
The resulting well-balanced first order scheme reads:

Un+1
K = Un

K −
∆tn

mK
∑

e∈∂K
me

(
Fe(U∗ne,K, U∗ne,Ke

, ne,K) + Sp

(
Un

e,K, U∗ne,K, ne,K

))
(3.19)

with

Sp

(
Un

e,K, U∗ne,K, zK, ze,K, ne,K

)
=

 0
g
2

((
hn∗

e,K

)2
−
(

hn
e,K

)2
)

ne,K

 (3.20)

3.A.3 Prediction-correction time scheme

The friction source term is taken into account in the complete SW system by deriving a prediction-
correction time scheme, see e.g. Toro [2001].
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We denote here by Ūn+1
K the FV solution at time tn+1 of the (well-balanced) scheme, either

first or second order, of the SW system with the gravitational term Sg but without the friction
term S f . Recall that we denote: U = (h, hu)T.

At each time step, from n to n + 1,

• Step 1: computation of Ūn+1, solution of the conservative SW system, i.e. the SW system
without S f , i.e. the FV solution of the following system:

∂tU + ∂xF (U) + ∂yG (U) = Sg (U) (3.21)

• Step 2: given the ”predicted value” Ūn+1, compute Un+1 solution of:

∂tU = S f (U) (3.22)

General schemes (explicit, implicit or semi-implicit ones) including the friction source term S f
in the discretization of the model (Eq. 3.1) can be written as: for all K,

Un+1
K = Ūn+1

K + ∆n
t S f

(
Ūn+1

K , Ūn+1
Ke

)
(3.23)

Note that this splitting scheme is consistent at first order in ∆t with the complete SWE.
Splitting scheme second order in time is possible; it is not detailed later.

In the case of the Manning-Strickler law, the friction term reads: S f = −gn2

[
0
|ū|
h

1
3

ū

]
.

Therefore the equation to be solved (Eq. 3.22) reads:

∂t

(
h

hū

)
= −gn2

(
0
|ū|
h

1
3

ū

)
(3.24)

Since the friction source term S f is zero in the mass conservation equation, we remark that
hn+1 = h̄n+1. As a consequence, we consider the non-zero momentum component only: ∂t (hū) =
−gn2 |ū|

h
1
3

ū

3.A.3.1 First order expression of Un+1

Let us consider the implicit scheme :

hn+1un+1 − hn+1ūn+1

∆tn = −gn2

∣∣un+1
∣∣ un+1

(hn+1)
1
3

(3.25)

This implies that:

∣∣∣un+1
∣∣∣ un+1 +

(
hn+1) 4

3

∆tngn2

(
un+1 − ūn+1

)
= 0 (3.26)

Let us set c =
(hn+1)

4
3

∆tngn2 , c ≥ 0. Note that
∣∣un+1

∣∣ un+1 + cun+1 = cūn+1. Therefore for non
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vanishing velocities, it exists α ∈ ]0, 1] such that: un+1 = αūn+1. Adopting these notations, we
obtain

∣∣ūn+1
∣∣ ūn+1α2 + cūn+1α− cūn+1 = 0. This simplifies to:∣∣∣ūn+1

∣∣∣ α2 + c α− c = 0 (3.27)

Since α ≥ 0, the root of this quadratic equation reads:

α =
−c +

√
c2 + 4c |ūn+1|

2 |ūn+1|
(3.28)

Let us define the function ε = 1
c

∣∣ūn+1
∣∣ = ∆tngn2 |ūn+1|

(hn+1)
4/3 . Observe that ε = O (∆tn), also

ε = O
(
|ūn+1|

(hn+1)
4/3

)
.By adopting this notation, Eq. (3.28) reads: α =

√
1+4ε−1

2ε . After some rear-

rangements, we obtain α = 2
1+
√

1+4ε
. At first order in ε, we get: α ∼

(
1

1 + ε/4

)
∼ 1− ε/4.

Finally, we obtain:

Un+1
K =

(
hn+1

hn+1un+1

)
=


h̄n+1

hn+1ūn+1

 2
(
h̄n+1)2/3(

h̄n+1
)2/3

+

√(
h̄n+1

) 4
3 + 4∆tngn2 |ūn+1|


 (3.29)

with
∣∣ūn+1

∣∣ the solution of Eq. (3.21).

3.A.3.2 Second order scheme

In order to obtain a globally second order scheme, a higher-order time stepping scheme is
needed. Let us briefly describe the ingredients of this second order well-balanced positive
scheme that is strictly the same as the one proposed in Couderc et al. [2013]; Monnier et al.
[2016]. Actual second order accuracy, considering source terms Sg and S f , is achieved through
the combination of a Monotonic Upwind Scheme for Conservation Laws (MUSCL) spatial re-
construction and an IMEX RK time scheme (see Monnier et al. [2016] and references therein), as
well as a spatial discretization of Sg and the semi-implicitation friction source term S f given by
in the subsection above.

A monoslope second order MUSCL scheme is adopted, see e.g. Chévrier and Galley [1993];
Buffard and Clain [2010]. It leads to new expressions of Un

K and Un
Ke

. With this linear recon-
struction, one can expect a scheme with a second-order accuracy in space (for regular solutions
only). In order to prevent large numerical dispersive instabilities, the computed vectorial slopes
are limited by applying a maximum principle. Furthermore, to handle the presence of wet-dry
fronts that can break the Finite Volume mass conservation property, a Barth limiter (Barth [2003])
is employed.
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3.B 1D (A, Q) Saint-Venant equations

A river network Ω1D is described by connected closed line segments. For a flow XS orthog-
onal to the main (longitudinal) flow direction of curvilinear abscissa x ∈ Ω1D (distance from
downstream), at time t ∈ [0, T], let A (x, t) be the flow cross-sectional area

[
m2] and Q (x, t)

the discharge
[
m3/s

]
such that Q = UA with U (x, t) defined as the longitudinal XS averaged

velocity [m/s]. The 1D Saint-Venant equations in (A, Q) variables at a flow XS write as follows:
∂A
∂t + ∂Q

∂x = 0
∂Q
∂t + ∂

∂x

(
Q2

A

)
+ gA ∂Z

∂x = −gA |Q|Q
K2 A2R4/3

h

(3.30)

where Z (x, t) is the WS elevation [m] and Z = (b + h) with b (x) [m] the river bed level
and h (x, t) [m] the water depth , Rh (x, t) = A/Ph [m] the hydraulic radius , Ph (x, t) [m] the
wetted perimeter, g

[
m/s2] is the gravity magnitude. Let us recall the Froude number definition

Fr = U/c comparing the average flow velocity U to pressure wave celerity c =
√

gA
W where W [m]

is the flow top width.
The friction term S f is classically parameterized with the empirical Manning-Strickler law

established for uniform flows
|Q|Q

K2A2R4/3
h

where K
[
m1/3/s

]
is the Strickler coefficient.

The Saint-Venant equations are solved on each segment of the river network and the conti-
nuity of the flow between segments is ensured by applying an equality constrain on water levels
at the confluence between two segments.

Boundary conditions are classically imposed (subcritical flows here) at boundary nodes with
inflow discharges Q (t) at upstream nodes and WS elevation Z (t) at the downstream node;
lateral hydrographs ql (t) at in/outflow nodes. The initial condition is set as the steady state
backwater curve profile Z0 (x) = Z (Qin (t0) , ql,1..L (t0)) for hot-start. This 1D Saint-Venant model
is discretized using the classical implicit Preissmann scheme (see e.g. Cunge et al. [1980]) on a
regular grid of spacing ∆x using a double sweep method enabling to deal with flow regimes
changes with a one-hour time step ∆t. This is implemented into the computational software
DassFlow (Brisset et al. [2018]; Larnier [2010]).

The numerical scheme is a semi-implicit finite difference scheme (generalized Preissmann
scheme) with a double sweep Local Partial Inertial method to minimize the inertial terms (see
documentation in Brisset et al. [2018]; Larnier [2010]).
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3.C GR4 hydrological model operators

The state-space version of the lumped conceptual hydrological model GR4 presented in Santos
et al. [2018] consists in the set of ordinary differential equations (ODE) given in Eq. (3.4) and
recalled here for clarity:

dh
dt

=



ḣp = Ps − Es − Perc

ḣ1 = Pr −QSh,1

ḣ2 = QSh,1 −QSh,2

... ...

ḣnres = QSh,nres−1 −QSh,nres

ḣr = Q9 + F−Qr

(3.31)

They involve the following fluxes:
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QR = 1

(h+R )
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(γ−1)
(h+r )

γ

(3.32)

The following parameter are set following Perrin et al. [2003] and Santos et al. [2018]: α = 2,
β = 5, γ = 5, ω = 3.5, ν = 4/9, Φ = 0.9, nres = 11.

Calibrated parameter for the Adour case were obtained using the airGR global calibration
algorithm (Coron et al. [2017]) from the freely available package4.

4https://webgr.inrae.fr/logiciels/airgr/
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Parameter Adour Oloron Pau Nive
x1 413.744 1844.567 1118.78 982.401
x2 0.148 1.363 1.134 0.696
x3 86.418 117.919 112.168 90.017
x4* 55.466 12.739 11.059 6.980

Table 3.4: Calibrated hydrological parameters of the 4 upstream hydrological catchments from
the Adour multi-D hydrographic network model. *Note that the x4 calibrated parameters corre-
sponds to the non-“state-space” GR4H version (not presented, see Perrin et al. [2003]), for which
the calibration tool is provided. x4 values in the present run with the “state-space” were set at
0.15.
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4.1 Work perspectives

The goal of this work was the hydrodynamic modeling of river basins in the context of their
multi-source observability. In Chapter 2, hydraulic signatures were analyzed and used to infer
parameters of a 1D model applied at large scale. In Chapter 3, a multi-D hydraulic-hydrological
model was developed to allow for the representation of large scale hydrographic networks at
adequate scales and at relatively low computational cost.

The developed code and methodology should be further confronted to operational-like sce-
narios, such as the inference of discharge hydrographs of ungauged tributaries using heteroge-
neous altimetric observations or the fine, space-time accurate, reproduction of flood-inundation
events (e.g. using the unprecedented 2021 Adour floods recorded by the SHPC-GAD). Near
future works will focus on the improvement of the current Adour network models through the
refinement of the a priori bathymetry extracted from fine LiDAR DEM and the calibration of
effective hydraulic and hydrological parameters. Initial investigations into the assimilation of 2D
observation fields are presented in Subsection 4.1.2.

Further work should focus on the integration of more complex distributed or semi-distributed
hydrological models into the DassFlow tool chain and on their optimal synergy with in situ and
satellite data using VDA methods. Given the ill-posedness of the considered inverse problems,
their resolution would benefit from the exploitation of all available data. Furthermore, the in-
ference of channel parameters, temporal forcings and distributed hydrological parameters is
dependent on the spatial and temporal scales of observations, but also on a priori information
fed into the assimilation process through background values and regularizations. These issues
would be studied further in multi-D catchment-scale hydrological-hydraulic models.
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Another perspective would consist in investigating porosity based approaches in 2D SW
solver (Guinot et al. [2017]) for subgrid parameterizations in 1Dlike channels to account for
channel shape variability or in 2D zones with complex topography. Further works on lateral
flood plain modeling (at an appropriate computational cost and scale), hydrological parameter
estimation (see Subsection 3.4.2.3), and on depth-dependent effective porosities (Guinot [2012]),
both in floodplains and 1Dlike reaches, would represent interesting directions.

Finally, future work should also focus on strategies for automatic generation of 1Dlike meshes
on river networks from available data products. This would allow for an easier deployment of
this new modeling approach proposed and facilitate the use of VDA methods in basin scale
modeling with the DassFlow platform.

4.1.1 Inferences on a large scale hydrographic network

General perspectives and goals The current Adour models should be better fitted to available
WS observations. Improved bathymetry extraction from data shared by the SHPC-GAD1 and
overall model calibration is an immediate perspective. The new a priori bathymetry (and friction)
could be further calibrated using available WS observations (see e.g. observabilities in Table 4.1
and Fig. 4.1). Recent extreme events (e.g. the extreme 2021 floods in the Bayonne area) could be
used for calibration of the 2D area of the multi-D model (see Subsection 4.1.2for early trials).

The 1D-like model of the Adour river and its tributaries should be further exploited to ana-
lyze parameter inferability on a regional-scale hydrographic network. This exploitation should
be based on an analysis of signature propagations, linked to hydraulic parameters, to the up-
stream hydrographs and to the downstream tidal boundary, and an analysis of parameter sensi-
tivity across the domain.

The newly developed wrapped version of the Fortran code (see Section 1.5) may ease the
use of Python libraries, including machine/deep learning, which opens plenty of perspectives in
hydrological modeling. In hydrological modeling, Kratzert et al. [2019]; Hashemi et al. [2021] use
LSTM to learn time series and others, e.g. Gao et al. [2020], uses in prediction and forecasting.
In hydraulic modeling, Kabir et al. [2020] uses surrogate models (deep convolutional neural
networks) for real time flood inundation forecasting and Raissi et al. [2019] uses physics informed
deep learning aimed at the synergetic combination of mathematical models and data.

Adour assimilation case In the following paragraph, we propose work perspectives centered
around multi-sourced data exploitation, that can come from in situ, airborne of satellite sensors.
Recall the stated importance of the spatio-temporal coverage contained given by this multi-
sourced cocktail to infer spatio-temporally distributed parameters.

In the area of interest of the Adour basin (see Subsection 3.4.3.2), the majority of river reaches
have a width of 50 m or above, with 100 m reached on most of the Adour river and downstream
from the Pau-Oloron confluence. This means that SWOT wide-swath observations should cover
almost all of the network and that nadir altimetry virtual stations should still cover a significant
portion (see Table 4.1 and Fig. 4.1 for a sample of satellite observability). Given the capabilities
of the variational method for inferring large control vectors, initial calibration of reach-scale
parameters could be carried out from this synthetic remote-sensed data.

1Service d’Hydrométrie et de Prévision des Crues Gironde Adour Dordogne
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Mission Observability Revisit time
Envisat 3 points on 2 tracks 27 days
Jason 2 points on same track 10 days

SWOT
3 swaths, each around 80% of

whole network, all network seen
21 days

Table 4.1: Observability of Adour network WS from satellite sources

The dense temporal sampling of in situ station data (Fig. 4.1) also opens the way toward
inferences of temporally dense hydraulic model forcings, possibly for operational use. The in-
ference of ungauged/unknown/uncertain inflows was achieved in Chapter 3 in a 1D model and
constitutes an achievable and interesting perspective in multi-D large scale models. The study of
lateral fluxes represents an interesting research direction. These fluxes include gains and losses
along river networks (Cholet et al. [2017]; Le Mesnil et al. [2021]), for example via two-ways
couplings with hydrogeological models. At the regional scale, Baratelli et al. [2016] (and refer-
ences therein) links 1D river channels and saturated and unsaturated zones through conceptual
relations. At a finer scale, Jeannot et al. [2018] links overland flows (using 1D and 2D diffusive
wave models) to subsurface flows (using depth-integrated Richards equations) with superposed
meshes and a coupling source term.

A first step towards assimilating this in situ and remotely-sensed data would be the creation
of a twin experiment setup and the generation a synthetic target model. Proposed experimental
setups could include: (i) the inference of temporal forcings from in situ WS elevation data,
(ii) the inference of friction patches from satellite observabilities and (iii) the inference of the
bathymetry-friction couple from satellite observabilities including spatially dense patterns. The
use of a priori information and regularizations is an important component of inverse problem
resolution and should be studied in the multi-D Adour model.
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4.1.2 Inferences from 2D surface observation fields

The integration of new observations, for example from surface velocity fields provided by LSPIV
techniques (see e.g. Dramais et al. [2011]; Fujita and Kunita [2011]; Le Coz et al. [2010]) to con-
strain river network models, should be further explored. Indeed, surface velocity fields may
represent constraining information as shown on simple test cases briefly presented here. In-
ferences from velocity observations are carried out in tandem with similar setups using WS
elevation observations as a mean to compare them to better studied inverse problems (see e.g.
Lai and Monnier [2009]).

A multi-D confluence test case has been used for preliminary tests (mesh first defined in
Subsection 3.4.2.3) and is used here. The three 1Dlike reaches are given a flat bottom and the 2D
confluence mesh is given two anti-symmetrical bathymetry irregularities (a bump (in red) and
a pool (in blue), see Fig. 4.2, right), with the aim of generating complex WS deformations on
par with real-like complexities. The model is inflowed by two known identical varied upstream
hydrographs and a rating curve is imposed downstream.

Two spatial observability patterns are setup to correspond. They are i) a 2D spatial field in the
form of 20× 20 m observation station grid (Fig. 4.2, left, in orange) and ii) local cross-sectional
observation, in the two reaches, upstream from the confluence (Fig. 4.2, left, in green). They
are meant to represent simplified in situ survey results, respectively LSPIV-like and ADCP-like
data products. Both WS elevation and modeled velocities are observed, although they will be
considered separately in the following inferences.

The model considered is the 2D (h, u, v) SW presented in Subsection 3.3.2 and 3.A). The
control vector θ is composed exclusively of bathymetry points at the 2D confluence, i.e. 1Dlike
cells are left out of the control vector. The prior bathymetry is flat over the whole case, which
leads to bathymetry over-estimation (resp. under-estimation) at the north pool (resp. south
bump) and corresponds to the target in the 1Dlike reaches. The following cost functions are
considered, respectively for the assimilation of WS elevations and of flow velocities: jh,obs (θ) =
1
2 ‖Zo (t)− Z (θ, t)‖2

O and juv,obs (θ) = 1
2

(
‖uo (t)− u (θ, t)‖2

O + ‖vo (t)− v (θ, t)‖2
O

)
, with Zo [m]

the observed WS elevation and uo = (uo, vo)
T [m/s] the observed flow velocity. Note that obser-

vation covariance matrices O might differ for altimetric and velocity observations, although this
distinction is not explored in this work, where they are set equal to identity matrices. Also note
that, in the considered twin experiments, no noise is considered and observation locations are
cell centers, hence the observation space corresponds to the state space. The regularizations term

writes jreg = 1
2

M
∑

i=1

((
∂bi
∂x

)2
+
(

∂bi
∂y

)2
)

, with M the number of control cells, and is considered in

the second set of inferences (Fig. 4.4).

Although the below inferences assume that the modeled flow velocity, i.e. depth-averaged
velocity, is directly observable, through twin experiment setups, only the surface flow veloc-
ity is observable in practice. To account for this, observation operators accounting for known
velocity profiles could be used, so as to translate observations into reasonable estimates of mod-
eled depth-averaged velocity. The development of methods for this is outside the scope of this
perspectives part and could be further studied.

Inferences from WS elevation observations with a grid pattern (pattern A, Fig. 4.3(a)) lead
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to accurate inferences at the observation points, with a global overestimation of the required
correction. Outside of the immediate surroundings of the observation points, in the 2D zone,
bathymetry remains mostly unchanged by the assimilation process (this is even more apparent
in cases with lower sensitivity to bathymetry, not shown). Inferences from flow velocity obser-
vations with a grid pattern (pattern A, Fig. 4.3(c)) lead to global inferred bathymetry patterns
in coherence with the target. Inferences are closer to the target at the bottom bathymetry bump,
where flow velocity sensitivity to bathymetry is higher.

Inferences from cross-sectional upstream WS elevation observations (pattern B, Fig. 4.3(b))
lead to a fair inference of the downstream pattern and amplitude of the bathymetry irregularities.
Local erroneous estimations appear, especially near 1Dlike-2D interfaces. This is explained by
the correlated influences of local bathymetry backwater control over pattern B observability.
Inferences from cross-sectional upstream flow velocity observations (pattern B, Fig. 4.3(d)) are
even more subject to this behavior, with bathymetry overestimation at the southern upstream
and the downstream 1D2D interfaces. Note that all inferences lead to low cost function values
and modeled flow velocities close to reference ones.

The introduction of a bathymetry regularization term in the cost function leads to better infer-
ences. For inferences using WS elevation observations, it leads to a smoother inferred bathymetry
in coherence with patterns inferred without regularization, as expected from similar experiments
of inferences in the 1Dlike model (see Subsection 3.4.3.1). Given grid WS elevation observation
(Fig. 4.4(a) and (b)), inference results are unilaterally improved, as inferred bathymetry values
are closer to the target in both cases. For inferences using flow velocity observations, results
are also improved. Although, given pattern B observability, erroneous estimations at the down-
stream 1D2D interface are still present and a significant contribution of the observed bathymetry
backwater control. This could be explained by the incomplete bathymetry reconstruction method
at these interfaces (see Chapter 4).

Overall, these preliminary experimental setups highlight the interest of using 2D field for
local bathymetry estimations. Surface velocity fields could also be used to constrain model flux,
following the idea of local discharge estimation by LSPIV (Dramais et al. [2011]; Le Coz et al.
[2010]). As a matter of facts, a misfit exists between depth averaged modeled flow velocities and
observations of real surface velocities of a 3D turbulent flow. This requires to study adequate ob-
servation operators linking actual surface velocity and depth-averaged modeled velocity, through
a priori knowledge of velocity profile shapes and taking into account measurement errors. Thus,
given known bathymetry-friction over a XS (e.g. over an ADCP transect) and this observation
operator at a a virtual station/XS, upstream discharge estimations could be carried out from
surface velocity fields.
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(a) Target bathymetry and considered observation fields. A: 20 × 20 m grid, B: upstream
cross-sectional measurements at the 2D confluence

(b) Target x-velocity at t = 7 h

(c) Target y-velocity at t = 7 h

Figure 4.2: Confluence twin experiment setup
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(a) Obs A + WSE (b) Obs B + WSE

(c) Obs A + u (d) Obs B + u

Figure 4.3: Bathymetry inference results from 2D fields in the multi-D confluence case, from
observation patterns A and B, from WS elevation and flow velocity observations. (a) From
observability A of WS elevation. (b) From observability B of WS elevation. (c) From observability
A of flow velocity. (d) From observability B of flow velocity.
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(a) Obs A + WSE (b) Obs B + WSE

(c) Obs A + u (d) Obs B + u

Figure 4.4: Bathymetry inference results from 2D fields in the multi-D confluence case, from ob-
servation patterns A and B, from WS elevation and flow velocity observations, with bathymetry
regularization. (a) From observability A of WS elevation. (b) From observability B of WS eleva-
tion. (c) From observability A of flow velocity. (d) From observability B of flow velocity.
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4.2 General conclusion

In this thesis work, flow modeling in complex hydrographic networks is studied in context of
their observability by satellites. Water surface elevations and extents, respectively provided by
radar altimetry (classical nadir or wide-swath) and optical sensors, are considered in comple-
ment of in situ physiographic and flow data. In this context, the work deals with networks of
relatively large rivers and with fluvial flows (Fr < 1). The main issues in fluvial networks mod-
eling pertain to the challenging estimation of unobserved spatio-temporal river discharge and
bathymetry-friction. This works aims to tackle this issue by making the most of observations of
river surface deformations, including satellite and in situ observations.
These goals are related to several issues studied in this work with the aim to put in coherence
model and data, which are (i) the effective hydraulic-hydrological modeling of river networks,
including multi-scale hydraulic controls, (ii) the resolution of ill-posed inverse problems given
heterogeneous and relatively sparse observability, compared to physical flow scales, of WS de-
formations and flows.

First, as synthesized in Chapter 1, this work builds upon previous knowledge and forward-
inverse algorithms aimed at the inference of the bathymetry-friction couple and of a single up-
stream inflow. The difficulty of such inverse problems lies (i) in the correlated influences of the
sought parameters on the observed water surface deformations, (ii) in the relatively sparse ob-
servation sampling when compared to the physical scale of signatures of hydraulic controls and
(iii) in the heterogeneousness, in space, time and nature of observations. This work builds upon
the DassFlow hydraulic modeling framework and its VDA algorithm enabling to tackle high di-
mensional inverse problems. The hydraulic inverse problems of interest, given WS observables,
are even more challenging when considering distributed lateral inflows, which is yet necessary
for modeling large river networks.

The article Pujol et al. [2020], presented in Chapter 2, studies the forward and inverse model-
ing capabilities of distributed channel parameters and multiple inflows in a 1D SW model, from
multi satellite observations of the river surface. Lateral inflows are implemented into the 1D SW
numerical model in the DassFlow framework. Inferences of geometric parameters and multiple
inflow hydrographs of the hydraulic model are carried out on synthetic 1D cases. In particular,
the inference of distributed lateral inflows are studied based on analyses of their hydraulic sig-
nature in WS which also contains the footprint of channel parameters. To better constrain the
considered ill-posed problems, classical regularizations and a change of variables in the param-
eter space are used.
The hydraulic model, built from optical and historical altimetric data (Envisat), is coupled to the
large scale hydrological model MGB and applied to a long portion of the Negro River in the Ama-
zon basin. The effective hydraulic model, calibrated using multi-satellite observations, closely
fits altimetry data and presents real-like spatial variabilities (backwater effects from control sec-
tions and downstream boundaries, lateral inflow influences). Note that this model building
methodology was further applied in the Amazon basin in Malou et al. [2021] with multi-mission
altimetry data (Sentinel, Jason) and used to derive altimetric stage-fall discharge laws based on
simulated WS slopes. The global availability of such data enables the application of the approach
on worldwide rivers.
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Signal propagation and WS deformations are analyzed both on academic cases and on the Negro
river with identifiability maps. In a twin experiment setup using noisy SWOT-like observability,
simultaneous inferences of distributed bathymetry-friction and distributed inflow hydrographs
lead to low misfit to WS observations. The study brings new insight into: (i) the large scale
visibility of the signatures of distributed parameters and temporal forcings, using SWOT ob-
servability, (ii) the identifiability of large hydraulic control vectors using a variational method
and satellite altimetry, (iii) the need to constrain these inferences with prior knowledge and (iv)
the need to further taylor and scale hydrodynamic network models and assimilation methods to
better synergize with rich multi-source observations.
The modeling of large river networks would benefit from (i) multi scale river network hydraulic
modeling (ii) with integrated hydrology model. To model complex flow zones, such as flood-
plains and confluences, local fine scale representations are also needed. This can be achieved
by integrating seamless 2D zooms into complete river network models. These considerations
motivated the modeling methods developed in Chapter 3.

The article Pujol et al. [2022], featured in Chapter 3, presented a new method for the multi-D
hydraulic-hydrological modeling of river networks. The new modeling approach implemented
in DassFlow allows fine hydrodynamic modeling of flow propagation within large river net-
works with zooms over complex flow zones such as floodplains and confluences. It is based
on an existing solver, in the parallel framework of the DassFlow platform. A so-called “1Dlike”
mesh allows for an effective hydrodynamic representation of river reaches under 1D hydraulic
assumptions, while still allowing for a low computational cost over large domains. Fine 2D
meshes of complex flow areas, such as confluences and floodplains, are connected to the 1Dlike
reaches through 1D-2D interfaces, for which the finite volume solver has been adapted. The river
network model is inflowed by the parsimonious hydrological model GR4H, in its state-space ver-
sion, which has been integrated to the assimilation tool chain.
The forward-inverse multi-D computational model is successfully validated on academic and
real cases of increasing complexity, featuring typical 1D and 2D flow variabilities such as respec-
tively channel hydraulic controls and confluences and floodplains. In particular, two hydraulic
models based on real-like cases are built from reference models containing fine scale variabilities:
(i) a 1Dlike model of a reach of the Garonne river, (ii) a large scale multi-D model of the Adour
hydrographic network The 1Dlike modeling approach enables to simulate fine physical flow
states compared to reference 1D or 2D shallow water models, hydrograph propagation remains
very close also. The coupling with the hydrological model implemented in a semi-distributed
setup is also successfully tested.
Inferences of multi-variate controls composed of hydraulic and hydrological parameters are car-
ried out from multi-source observations. Effective bathymetry-friction fields of the multi-D hy-
draulic model are inferred from WS observations and lead to accurate flow simulations as shown
on the Garonne River case with low misfit to observed WS elevations and accurate flood wave
propagation. Inferences of spatially distributed hydrological parameters are successfully car-
ried from WS and discharge observations in the river network, via multi-objective cost function.
This shows the possibility of informational feedback from downstream hydraulic observations
towards upstream hydrological modeling. Inferences of spatially distributed hydraulic temporal
forcings are successfully carried out on the Adour river network model, based on observability



156 Perspectives and general conclusion

of WS elevation at in situ permanent stations. They lead to the successful estimation of poorly-
known inflows.
This work presents a novel multi-dimensional hydraulic-hydrological numerical model with vari-
ational data assimilation in DassFlow framework. It allows multi-scale modeling over large do-
mains and combining in situ observations with high-resolution hydro-meteorology and satellite
data.

Over the course of this work, the synergy between hydraulic models of river networks and
available WS observations is studied. It involves (i) the adaptation of a 1D SW hydraulic model
for coupling with a spatially distributed hydrological model, (ii) the development of a multi-D
hydraulic model , (iii) the integration of a hydrological module into the DassFlow framework
and (iv) the resolution of a series of complex inverse problems using VDA.
The integration of multi-source observations into hydraulic-hydrological network models allows
the inference of spatio-temporal parameters from heterogeneous sets of observed flow signa-
tures.
Development carried out during this PhD lead to better modeling of river networks from alti-
metric and optical satellite data through numerical upgrades of the DassFlow platform. Model
building methodologies are developed for flow simulations over complex river networks.
Further research should focus on coupling the multi-D model with a distributed hydrologi-
cal model and on optimal model synergy with in situ, satellite and high resolution hydro-
meteorological data in view of operational flood forecasting. Numerical model and method im-
provements will rely on pertinent effective modeling of hydrodynamic signatures in the multi-D
model.



Appendix A

Shallow Water equations

This appendix details how the 1D and 2D SWE (Eq. A.4 and A.5 respectively) are obtained from
the Navier-Stokes equations for an incompressible free surface flow of a Newtonian and viscous
fluid - that is liquid water here. Let us consider an infinitesimally small volume of fluid far
from the boundary layer. We assume that momentum loss can be modeled by a friction source
term with the classical Manning formulation. Applying mass and momentum conservation
principles to this volume (see mass fluxes representation on Fig. A.1) leads to the 3D Navier-
Stokes equations that write (see e.g. Ancey [2018]):{

divu = 0
∂u
∂t + u∇u = − 1

ρ∇p + g + gS (u, n)
(A.1)

Or, projected on the (x, y, z) axes:

∂ux
∂x +

∂uy
∂y + ∂uz

∂z = 0
∂ux
∂t + ux

∂ux
∂x + uy

∂ux
∂y + uz

∂ux
∂z = −gsin (θ)− 1

ρ
∂p
∂x − gS f ,x

∂uy
∂t + ux

∂uy
∂x + uy

∂uy
∂y + uz

∂uy
∂z = −gsin (θ)− 1

ρ
∂p
∂x − gS f ,y

∂uz
∂t + ux

∂uz
∂x + uy

∂uz
∂y + uz

∂uz
∂z = −gcos (θ)− 1

ρ
∂p
∂z − gS f ,z

(A.2)

where g
[
m/s2] is the gravitational constant, θ [m/m] the bottom slope (see Fig. A.2), ρ[

kg/m3] is the water volumetric mass, n
[
s/m1/3] is the Manning friction coefficient, h [m] is

the water depth , u =
(
ux, uy, uz

)T
[m/s] is the flow velocity and p (x, y, t) = Patm + ρghcos (θ) is

a pressure with Patm
[
kg/m/s2] the atmospheric pressure at the free surface.

Assuming the SWE hypotheses (recalled in the below box from Section 1.2.1) the mass and
momentum equations of the incompressible Navier-Stokes equations are integrated over depth
in what follows. For the sake of brevity, we will note ui (z = a) , i ∈ [w, y, z] as ui,a.

The BC for a free surface flow are:

BC1: At the river banks, assumed parallel to axis y, the boundary adherence condition
gives uy = 0.

BC2: At the river bottom, the boundary adherence condition gives uz = 0.

BC3: The kinematic boundary condition dictates that fluid velocity directed perpendicular
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to a solid boundary must be 0. Thus, at the free surface we have ∂h
∂t + ux,H

∂h
∂x +

uy,H
∂h
∂y = uz,H.

Shallow Water flow hypotheses, recalled here from Section 1.2:

• The fluid is of constant volumetric mass ρ, which implies it is incompressible and that no
sediment transport is considered.

• The flow is gradually varied, which implies that the flow surface is close to a plane and
varies slowly in space, and that there is no sharp change in the flow section. Thus, flow
lines are parallel to each other and close to parallel to the river bottom, and vertical
velocities are negligible. This is also called the long wave assumption, as it means that
with regards to the water depth, signal wavelength is high (Boussinesq [1871]).

• The bottom slope (and thus the water surface slope) is low, such that the water depth can
be measured as perpendicular to the river bottom.

The following demonstrations makes use of the Leibniz formula which writes:

d
dx

∫ b(x)

a(x)
f (x, t) dz =

∫ b(x)

a(x)

∂ f
∂x

(x, t) dz +
db
dx

(x) f (x, b (x))− da
ds

(x) f (x, a (x)) (A.3)

where f (x, t) and ∂ f
∂x (x, t) are continuous in t and x in a region of the x, t plane, including

where a (x) ≤ t ≤ b (x) and x0 ≤ x ≤ x1, and where a (x) and b (x) are both continuous and
have continuous derivatives for x0 ≤ x ≤ x1.

The complete SWE formulations demonstrated in the following sections of this appendix
write:

1D full SWE


∂A
∂t + ∂Q

∂x = 0
∂Q
∂t

+
∂

∂x

(
Q2

A

)
+ gA

∂H
∂x

= gA
[
− ∂b

∂x − S f

] (A.4)

where u = 1
h(x,t)

∫ h(x,t)
0 ux (x, y, z, t) dz is the depth-averaged velocity, A =

∫ w2
w1

∫ H
b̃ h (x, y, t) dzdy

is the flow section and Q =
∫ w2

w1

∫ H
b̃ ux (x, y, t) dy the mass flux through A and H (x, y, t) is the

water surface elevation. S f is generally given as a nonlinear friction term modeled using the

classical Manning-Strickler’s law S f =
|Q|Q

K2A2R4/3
h

, where K is an effective friction parameter (see

Eq. 1.3). Rh = A/P is the hydraulic radius, with P the wetted perimeter.
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Figure A.1: Microscopic fluid control volume within an open surface flow with mass fluxes (from
Dingman [2009]) .

Figure A.2: Element of fluid in a free surface flow, projected on the flow direction axis. (from
Dingman [2009]). h is the water depth measured perpendicularly to the water surface, Patm is the
atmospheric pressure, θ is the bottom slope in the direction the flow.
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2D full SWE 
∂h
∂t +

∂hu
∂x + ∂hv

∂y = 0
∂hu
∂t

+
∂hu2

∂x
+ gh

∂H
∂x

= −gh
[
− ∂b

∂x − S f ,x

]
∂hv
∂t

+
∂hv2

∂y
+ gh

∂H
∂y

= −gh
[
− ∂b

∂x − S f ,y

] (A.5)

where u = 1
h(x,t)

∫ h(x,t)
0 ux (x, y, z, t) dz and v = 1

h(x,t)

∫ h(x,t)
0 uy (x, y, z, t) dz are the depth-

averaged velocity over axes x and y respectively and H (x, y, t) is the water surface elevation. S f
is generally given as a nonlinear friction term modeled using the classical Manning-Strickler’s

law S f =

(
S f ,x
S f ,y

)
=

n2 ‖u‖
h1/3 u, where n is an effective friction parameter (see Eq. 1.6).

A.1 Continuity equation integration over depth

In this subsection, the 2D formulation of the continuity equation for SW flows is demonstrated.
Let us integrate Eq. A.2.1 over the water depth h:

∫ h(x,t)

0

∂ux

∂x
dz +

∫ h(x,t)

0

∂uy

∂y
dy +

∫ h(x,t)

0

∂uz

∂z
dz = 0 (A.6)

By using the Leibniz formula (Eq. A.3), we get:

∂

∂x

∫ h

0
uxdz− dh

dx
ux,h +

∂

∂y

∫ h

0
uydz− dh

dy
uy,h + [uz]

h
0 = 0 (A.7)

Evaluating Eq. A.7 at the free surface gives the BC3 relation:

∂h
∂t

+ ux,H
∂h
∂x

+ uy,H
∂h
∂y

= uz,H (A.8)

Using the boundary condition at the river bottom (BC2, uz,0 = 0) and Eq. A.8, Eq. A.7 writes:

∂

∂x

∫ h

0
uxdz− dh

dx
ux,h +

∂

∂y

∫ h

0
uydz− dh

dy
uy,h +

∂h
∂x

ux,h + uy
∂h
∂y

(h) +
∂h
∂t

= 0

∂h
∂t

+
∂

∂x

∫ h

0
uxdz +

∂

∂y

∫ h

0
uzdz = 0 (A.9)

Let us define the depth-averaged flow velocity u (x, t) = 1
h(x,t)

∫ h(x,t)
0 ux (x, y, z, t) dz and v (x, t) =

1
h(x,t)

∫ h(x,t)
0 uy (x, y, z, t) dz. Eq. A.9 becomes the 2D formulation of the SWE:

∂h
∂t

+
∂hu
∂x

+
∂hv
∂y

= 0 (A.10)
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By assuming a 1D flow and further integrating by channel width, over a cross-section per-
pendicular to the 1D flow, the 1D SWE are obtained in (A, Q) variables:

∂A
∂t

+
∂Q
∂x

= 0 (A.11)

To model a change in mass (e.g. due to rainfall, seepage or lateral flows), one can introduce
ql =

∂Q
∂x , see e.g. Dingman [2009].

A.2 Momentum equation integration over depth

Let us consider the momentum conservation component of the x axis:

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z
= −gsin (θ)− 1

ρ

∂p
∂x
− gS f ,x (A.12)

Since div (ux) = ux

(
∂ux
∂x +

∂uy
∂y + ∂uz

∂z

)
= 0, we can write:

ux
∂ux

∂x
+ v

∂ux

∂y
+ w

∂ux

∂z
= ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z
+ ux

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

)
= 2ux

∂ux

∂x
+ ux

∂uy

∂y
+ uy

∂ux

∂y
+ ux

∂uz

∂z
+ uz

∂ux

∂z
(A.13)

ux
∂ux

∂x
+ v

∂ux

∂y
+ w

∂ux

∂z
=

∂uxuy

∂y
+

∂uxuz

∂z
+

∂u2
x

∂x
(A.14)

By injecting Eq. A.13 in Eq. A.12, we get:

∂ux

∂t
+

∂uxuy

∂y
+

∂uxuz

∂z
+

∂u2
x

∂x
= −gsin (θ)− 1

ρ

∂p
∂x
− gS f ,x (A.15)

Let us integrate between the river bottom b̃ (x, y) (see Fig. 1.12(a), we noted b (x) = minyb̃ (x, y)
the river bottom used in 1D modeling) and the free surface elevation H (x, y, t) over the z-axis,
and then between the channel banks at w1 and w2 over the y-axis.

∫ w2
w1

[∫ H(x,y,t)
b̃(x,y)

[
∂ux
∂t +

∂uxuy
∂y + ∂uxuz

∂z + ∂u2
x

∂x

]
dz
]

dy

(A) + (B) + (C) + (D)

=
=

∫ w2
w1

∫ H(x,y,t)
b̃(x,y)

[
−gsin (θ)− 1

ρ
∂p
∂x − gS f ,x

]
dzdy

(E) + (F) + (G)
(A.16)

The Leibniz formula (Eq. A.3) is used to integrate each term separately:

Term (A) ∫ H

b̃

∂ux

∂t
dz =

∂

∂t

∫ H

b̃
uxdz− ∂H

∂t
ux,H +

∂H
∂t

ux,b̃ (A.17)

By using BC2 (ux,b̃ = 0), we write:
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∫ H

b̃

∂ux

∂t
dz =

∂

∂t

∫ H

b̃
uxdz− ∂H

∂t
ux,H (A.18)

Let us integrate over width:

∫ w2

w1

∫ H

b̃

∂ux

∂t
dzdy =

∫ w2

w1

[
∂

∂t

∫ H

b̃
uxdz− ∂H

∂t
ux,H

]
dy (A.19)

∫ w2

w1

∫ H

b̃

∂u
∂t

dzdy =

[
∂

∂t

∫ w2

w1

∫ H

b̃
uxdzdy−

[
∂w2

∂t

∫ H

b̃
uxdz

]
(w2) +

[
∂w1

∂t

∫ H

b̃
uxdz

]
(w1)

]
(A.20)

−
∫ w2

w1

∂H
∂t

ux,Hdy

At the channel banks at w1 and w2 the integral over the water depth is 0, thus :

∫ w2

w1

∫ H

b̃

∂ux

∂t
dzdy =

∂

∂t

∫ w2

w1

∫ H

b̃
uxdzdy−

∫ w2

w1

∂H
∂t

ux,Hdy (A.21)

And thus we obtain:

A =
∂Q
∂t
−
∫ w2

w1

∂H
∂t

ux,Hdy (A.22)

Term (B) ∫ H

b̃

∂uxuy

∂y
dz =

∂

∂y

∫ H

b̃
uxuydz−

[
∂H
∂y

uxuy

]
(H) +

[
∂b̃
∂t

uxuy

] (
b̃
)

(A.23)

By using BC2 (ux,b̃ = 0, uy,b̃ = 0), we write:

∫ w2

w1

∫ H

b̃

∂uxuy

∂y
dzdy =

∫ w2

w1

[
∂

∂y

∫ H

b̃
uxuydz−

[
∂H
∂y

uxuy

]
(H)

]
dy (A.24)

=
∫ w2

w1

∂

∂y

∫ H

b̃
uxuydzdy−

∫ w2

w1

∂H
∂y

ux,Huy,Hdy (A.25)

=

[∫ H

b̃
uxuydz

]
(w2)−

[∫ H

b̃
uxuydz

]
(w1)−

∫ w2

w1

∂H
∂y

ux,Huy,Hdy (A.26)

Using BC1 at the river banks, we obtain:

B = −
∫ w2

w1

∂H
∂y

ux,Huy,Hdy (A.27)
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Term (C) ∫ H

b̃

∂uxuz

∂z
dz = [uxuz] (H)− [uxuz]

(
b̃
)

(A.28)

By using BC2 (ux,b̃ = 0), we write:

∫ H

b̃

∂uxuz

∂z
dz = ux,Huz,H (A.29)

And thus we obtain:

C =
∫ w2

w1

ux,Huz,Hdy (A.30)

Term (D) ∫ H

b̃

∂u2
x

∂x
dz =

∂

∂x

∫ H

b̃
u2

xdz− ∂H
∂x

u2
x,H +

∂H
∂t

u2
z (A.31)

=
∂

∂x

∫ H

b̃
u2

xdz− ∂H
∂x

u2
x,H

By using BC3 at the free surface, we know that u (z) = 0, we write:

∫ w2

w1

∫ H

b̃

∂u2

∂x
dzdy =

∫ w2

w1

[(
∂

∂x

∫ H

b̃
u2

xdz− ∂H
∂x

u2
x,H

)]
dy (A.32)

=
∂

∂x

∫ w2

w1

∫ H

b̃
u2

xdzdy−
(

∂w2

∂x

∫ H

b̃
u2

xdz
)
(w2) +

(
∂w1

∂x

∫ H

b̃
u2

xdz
)
(w1) (A.33)

−
∫ w2

w1

∂H
∂x

u2
x,Hdy

At the channel banks at w1 and w2, the integral over the water depth is 0, thus :

D =
∂

∂x

∫ w2

w1

∫ H

b̃
u2

xdzdy−
∫ w2

w1

∂H
∂x

u2
x,Hdy (A.34)

The left side of Eq. A.16 becomes :
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(A)+ (B)+ (C)+ (D) =
∂Q
∂t
−
∫ w2

w1

∂H
∂t

ux,Hdy−
∫ w2

w1

∂H
∂y

ux,Huy,Hdy +
∫ w2

w1

ux,Huz,Hdy (A.35)

+
∂

∂x

∫ w2

w1

∫ H

b̃
u2

xdzdy−
∫ w2

w1

∂H
∂x

u2
x,Hdy

=
∂Q
∂t

+
∂

∂x

∫ w2

w1

∫ H

b̃
u2

xdzdy +
∫ w2

w1

ux,H

(
−∂H

∂t
− ∂H

∂y
uy,H + uz,H −

∂H
∂x

ux,H

)
dy

(A.36)

At the free surface, we have ∂H
∂t + ux

∂H
∂x + uy

∂H
∂y = uz, thus − ∂H

∂t −
∂H
∂y uy,H + uz,H − ∂H

∂x ux,H = 0.
The left term (A) + (B) + (C) + (D) of Eq. A.16 write:

∂Q
∂t

+
∂

∂x

∫ w2

w1

∫ H

b̃
u2

xdzdy =
∂Q
∂t

+
∂

∂x

(
Q2

A

)
(A.37)

The right terms (E) + (F) + (G) of Eq. A.16 write:

∫ w2

w1

∫ H

b̃

(
−gsin (θ)− 1

ρ

∂p
∂x
− gS f ,x

)
dzdy = −

∫ w2

w1

∫ H

b̃

1
ρ

∂ (Patm + ρghcos (θ))
∂x

dzdy (A.38)

− Agsin (θ)− AS f ,x

= −gA
(

sin (θ) + cos (θ)
∂h
∂x

+ S f ,x

)
(A.39)

With the assumption the the bottom slope θ is low, we reach this 1D formulation of the
momentum equations:

∂Q
∂t

+
∂

∂x

(
Q2

A

)
= −gA

(
∂h
∂x

+ S f

)
(A.40)

∂Q
∂t

+
∂

∂x

(
Q2

A

)
+ gA

∂H
∂x

= gA
(
Sg − S f

)
(A.41)

with Q =
∫ w2

w1

∫ H
b̃ uxdzdy, Sg = − ∂b

∂x and S f =
ν
g

∂2ux
∂x2 .

Following Couderc et al. [2013], by projecting on the y-axis following the same method and
omitting integration over the width, we get the 2D formulation:


∂hu
∂t

+
∂hu2

∂x
= −gh

(
Sg,x − S f ,x

)
∂hv
∂t

+
∂hv2

∂y
= −gh

(
Sg,y − S f ,y

) (A.42)

where u = 1
h

∫ H
b̃ uxdz and v = 1

h

∫ H
b̃ uydz.



Appendix B

Preissmann scheme with lateral flows

Let us consider the classical non-conservative form of the 1D Saint-Venant equations in (A, Q)
variables, with added lateral inflow ql (x, t) source terms (see e.g. Roux [2004]; Dingman [2009]).
: 

∂A
∂t

+
∂Q
∂x

= ql

∂Q
∂t + ∂

∂x

(
Q2

A

)
+ gA ∂Z

∂x = −gAS f + qlul

(B.1)

with S f =
|Q|Q

K2A2R4/3
h

the Manning friction term, ql the lateral unit discharge over a spatial

step and ul the inflow velocity.
This appendix details the discretization of the 1D SWE (Eq. B.1) including mass and mo-

mentum source terms due to lateral inflows with the Preissmann scheme. The formulation is
implemented into the DassFlow platform and is adapted from Roux [2004], based on Cunge
et al. [1980].

B.1 Preissmann discretization scheme

The semi-implicit Preissmann discretization scheme enables greater time steps than explicit
schemes, which allows for shorter simulation times, and is useful for simulation of large spatio-
temporal domains.

The generalized Preissmann scheme Cunge et al. [1980] is based on the following discretiza-
tions of a real valued function f at a spatial and temporal point P (x, t), where x ∈ Ω denotes
space in the considered discretization Ω and t ∈ [0, T] denotes time within a time interval T. The
scheme writes:

f |P = θ
[
ψ f n+1

i+1 + (1− ψ) f n+1
i

]
+ (1− θ)

[
ψ f n

i+1 + (1− ψ) f n
i
]

(B.2)

∂ f
∂t

∣∣∣∣
P

= ψ
f n+1
i+1 − f n

i+1

∆t
+ (1− ψ)

f n+1
i − f n

i
∆t

(B.3)

∂ f
∂x

∣∣∣∣
P

= θ
f n+1
i+1 − f n+1

j

∆x
+ (1− θ)

f n
i+1 − f n

j

∆x
(B.4)
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where j ∈ [1, N] is the space index, with N the number of grid points, that locates the cross-
section taken in consideration and n ∈ [1, T] the time index, with N the number of time steps. θ

(0 ≤ θ ≤ 1) and ψ (0 ≤ ψ ≤ 1) are respectively space and time weight. DassFlow1D uses values
advised by Sart et al. [2010]: ψ = 0.5 and θ = 0.55.

The following notations are adopted:

∆Qi+1 = Qn+1
i+1 −Qn

i+1 , ∆Qi = Qn+1
i −Qn

i (B.5)

∆Zi+1 = Zn+1
i+1 − Zn

i+1 , ∆Zi = Zn+1
i − Zn

i (B.6)

The following details the discretization with the Preissmann scheme, of mass conservation
(Eq. B.8) in Subsection B.3.1 and next momentum (Eq. B.10) in section B.3.2.

B.2 Discretization summaries

Below is a short summary of the discretization obtained for the 1D Saint-Venant equations with
the Preissmann scheme.

Continuity equation

For a given cross-section we have
∂A
∂Z

∣∣∣∣
x
= W, so Eq. B.1.1 becomes:

W
∂Z
∂t

+
∂Q
∂x

= ql (B.7)

From Eq. B.7, the following discretization is obtained (see Subsection B.3.1):

CG.∆Qi+1 + CH.∆Zi+1 = CI.∆Qi + CJ.∆Zi + CK (B.8)

where CG, CH, CI, CJ and CK are coefficients which depend on hydraulic and geometrical
parameters, see details below in Subsection B.3.1. Note that only the CK coefficient is impacted
by the lateral inflow term.

Momentum conservation equation

By writing D = Ks AR2/3
h , Eq. B.1.2 can also be written as:

Q |Q|+ D2
[

∂Z
∂x

+
1

gA

(
∂Q
∂t

+
∂QU

∂x
− ulql

)]
= 0 (B.9)

From Eq. B.9, the following discretization is obtained (see Subsection B.3.2):

CL.∆Qi+1 + CM.∆Zi+1 = CN.∆Qi + CO.∆Zi + CP (B.10)

where CL, CM, CN, CO and CP are coefficients that depend on hydraulic and geometric
parameters, see details below in Subsection B.3.2.
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B.3 Detailed SWE discretization

B.3.1 Mass conservation equation

The lateral discharge ql term is considered between the cells j and j + 1 and between the time
steps n and n + 1. It is denotedql |n+1/2

j+1/2 . For the sake of simplicity, its temporal discretization is

chosen identical to that of other terms in the Preissmann scheme such that:ql |n+1/2
j+1/2 = θ ql |n+1

j+1/2 +

(1− θ) ql |nj+1/2. Temporal chronicles of ql |j+1/2 are given by the user.

In a cross-section located at x,
∂A
∂Z

∣∣∣∣
x
= W (h) where h is the water depth and W is the total

width, so
∂A
∂t

+
∂Q
∂x

= ql gives:

W
∂Z
∂t

+
∂Q
∂x

= ql (B.11)

Discretization of Eq. B.11 according to the Preissmann scheme:

(
θ

Wn+1
j+1 −Wn+1

j

2
+ (1− θ)

Wn
j+1 −Wn

j

2

)(
Zn+1

j+1 − Zn
j+1

2∆t
+

Zn+1
j − Zn

j

2∆t

)
(B.12)

+θ

[
Qn+1

j+1 −Qn+1
j

∆x

]
+ (1− θ)

[
Qn

j+1 −Qn
j

∆x

]
= θql

n+1
j+1/2 + (1− θ) ql

n
j+1/2

θ.∆Qj+1 +
∆x
4∆t

(
Wn+1

j+1 + Wn
j

)
∆Hj+1 = θ∆Qj −

∆x
4∆t

(
Wn

j+1 + Wn
j

)
∆Zj −

(
Qn

j+1 −Qn
j

)
(B.13)

+∆x.
(

θql
n+1
j+1/2 + (1− θ) ql

n
j+1/2

)
The discretized mass equation obtained is written as:

CG.∆Qj+1 + CH.∆Zj+1 = CI.∆Qj + CJ.∆Zj + CK (B.14)

With:

CG = θ (B.15)

CH =
∆x
4∆t

(
Wn

j+1 + Wn
j

)
(B.16)

CI = θ (B.17)

CJ = − ∆x
4∆t

(
Wn

j+1 + Wn
j

)
(B.18)

CK = −
(

Qn
j+1 −Qn

j

)
+ ∆x

(
θql

n+1
j+1/2 + (1− θ) ql

n
j+1/2

)
(B.19)
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B.3.2 Momentum conservation equation

Let us recall Eq. B.1.2:

∂Q
∂t

+
∂

∂x

(
Q2

A

)
+ gA

∂Z
∂x

= −gA
|Q|Q

K2A2R4/3
h

+ ulql (B.20)

Multiplying by D2 (D = Ks AR2/3
h ) and dividing by gA leads to:

Q |Q|+ D2
[

∂Z
∂x

+
1

gA

(
∂Q
∂t

+
∂QU

∂x
− ulql

)]
= 0 (B.21)

This appendix focuses on the discretization of the lateral inflow source term. The other terms
are discretized by successive linearizations in Roux [2004].

Discretization of ulql The term ulql corresponds to the momentum injected between sections j
and j + 1. We write its discretization ul |n+1/2

j+1/2 ql |n+1/2
j+1/2 , which means it intervenes between sec-

tions j and j+ 1 and time steps n and n+ 1. For the sake of simplicity, the temporal discretization
of ul |n+1/2

j+1/2 ql |n+1/2
j+1/2 will be identical to that of other terms in the Preissmann scheme. We write:

ul |n+1/2
j+1/2 ql |n+1/2

j+1/2 = θ (ulql)|n+1
j+1/2 + (1− θ) (ulql)|nj+1/2 (B.22)

To avoid the need to provide values for ul |j+1/2, and seeing that the flow velocity on the
tributary depends on the hydrodynamics of the main reach, especially in subcritical regime, the
velocity terms is estimated from calculated velocities in the reach (Uj and Uj+1). This work
is focused on fluvial flow modeling in a context of satellite observability and does not feature
subcritical and critical regimes at lateral inflow injection points.

ul |n+1/2
j+1/2 = α U|n+1/2

j + (1− α) U|n+1/2
j+1 (B.23)

where α is the spatial weight of ul . It is set to 0.5, so that the lateral injection velocity is the
average of computed channel velocities at the upstream and downstream cross-sections.

By introducing (B.23) in the discretization of ulql , we can write:

ul |n+1/2
j+1/2 ql |n+1/2

j+1/2 = θ (ulql)|n+1
j+1/2 + (1− θ) (ulql)|nj+1/2 (B.24)

= θ
(

αU|n+1
j + (1− α)U|n+1

j+1

)
ql |n+1

j+1/2 (B.25)

+ (1− θ)
(

αU|nj + (1− α)U|nj+1

)
ql |nj+1/2
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Rearrangement of αU|n+1
j + (1− α)U|n+1

j+1 Let us rearrange the lateral inflow source term
discretization such that it is expressed by its dependency on ∆Z and ∆Q.

Flow velocity U at time n + 1 writes:

Un+1 = Un +
∂U
∂Z

∣∣∣∣n ∆Z +
∂U
∂Q

∣∣∣∣n ∆Q (B.26)

= Un − QW
A2

∣∣∣∣n ∆Z +
1
A

∣∣∣∣n ∆Q (B.27)

By replacing Eq. B.27 in αU|n+1
j + (1− α)U|n+1

j+1 we get:

αU|n+1
j + (1− α)U|n+1

j+1 = α

(
U|nj −

QW
A2

∣∣∣∣n
j

∆Zj +
1
A

∣∣∣∣n
j

∆Qj

)
(B.28)

+ (1− α)

(
U|nj+1 −

QW
A2

∣∣∣∣n
j+1

∆Zj+1 +
1
A

∣∣∣∣n
j+1

∆Qj+1

)

= αU|nj + (1− α)U|nj+1 + (1− α)
1
A

∣∣∣∣n
j+1

∆Qj+1 (B.29)

+ α
1
A

∣∣∣∣n
j

∆Qj − (1− α)
QW
A2

∣∣∣∣n
j

∆Zj+1 − α
QW
A2

∣∣∣∣n
j

∆Zj

Thus, the discretization of ul |n+1/2
j+1/2 ql |n+1/2

j+1/2 in Eq. B.25 becomes:

ul |n+1/2
j+1/2 ql |n+1/2

j+1/2 = θ

[
αU|nj + (1− α)U|nj+1 + (1− α)

1
A

∣∣∣∣n
j+1

∆Qj+1 (B.30)

+α
1
A

∣∣∣∣n
j

∆Qj − (1− α)
QW
A2

∣∣∣∣n
j

∆Zj+1 − α
QW
A2

∣∣∣∣n
j

∆Zj

]
ql |n+1

j+1/2

+ (1− θ)
(

αU|nj + (1− α) U|nj+1

)
ql |nj+1/2
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This can be written in compact form as:

ul |n+1/2
j+1/2 ql |n+1/2

j+1/2 = CLat1 + CLat2∆Qj+1 + CLat3∆Qj + CLat4∆Zj+1 + CLat5∆Zj (B.31)

With:

CLat1 = θ ql |n+1
j+1/2

(
α U|nj + (1− α) U|nj+1

)
(B.32)

+ (1− θ) ql |nj+1/2

(
α U|nj + (1− α) U|nj+1

)
CLat2 = θ (1− α)

1
A

∣∣∣∣n
j+1

ql |n+1
j+1/2 (B.33)

CLat3 = α
1
A

∣∣∣∣n
j

ql |n+1
j+1/2 (B.34)

CLat4 = −θ (1− α)
QW
A2

∣∣∣∣n
j+1

ql |n+1
j+1/2 (B.35)

CLat5 = −θα
QW
A2

∣∣∣∣n
j

ql |n+1
j+1/2 (B.36)

The discretization of the terms from eq:Conservation of Momentum to Discretize other than
ulql is detailed in Roux [2004]. The current work adapted the method for the lateral source term,
with the CLati, i ∈ [1, 5] terms. By regrouping the discretized terms of Eq. B.21 from Roux [2004]
and the above, we obtain the following discretized momentum conservation equation:

CB1 + CB2∆Qj+1 + CB3∆Qj +
(
CC1 + CC4∆Zj+1 + CC5∆Zj

)
(B.37)

∗
[
CD1 + CD4∆Zj+1 + CD5∆Zj +

(
CH1 + CH4∆Zj+1 + CH5∆Zj

)
∗
(
CE2∆Qj+1 + CE3∆Qj + CF1 + CF2∆Qj+1 + CF3∆Qj + CF4∆Zj+1 + CF5∆Zj

−CLat1 − CLat2∆Qj+1 − CLat3∆Qj − CLat4∆Zj+1 − CLat5∆Zj
)]

= 0

Rearranging the above expression, we can rewrite the above formula as:

CL∆Qj+1 + CM∆Zj+1 = CN∆Qj + CO∆Zj + CP (B.38)

With:

CL = CB2 + CC1CH1 (CE2 + CF2 − CLat2) (B.39)

CM = CC4 (CD1 + CH1 (CF1 − CLat1)) (B.40)

+CC1 (CD5 + CH1 (CF5 − CLat5) + CH5 (CF1 − CLat1))

CN = − [CB3 + CC1CH1 (CE3 + (CF3 − CLat3))] (B.41)

CO = − (CC5 (CD1 + CH1 (CF1 − CLat1)) (B.42)

+CC1 (CD5 + CH1 (CF5 − CLat5) + CH5 (CF1 − CLat1)))

CP = − [CB1 + CC1 (CD1 + CH1 (CF1 − CLat1))] (B.43)
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Léo PUJOL
OPTIMAL SYNERGY OF MULTI-SOURCE DATA AND HYDRAULIC-HYDROLOGICAL
MODELS FOR THE CARTOGRAPHIC MODELING OF COMPLEX HYDROSYSTEMS

Résumé
Cette thèse présente des approches de modélisation hydrauliques-hydrologiques des réseaux
hydrographiques permettant d’exploiter des données multi-sources par assimilation variation-
nelle. Une mise en cohérence est recherchée entre la complexité des modélisations numériques
des grandeurs physiques et leur observabilité hétérogène. Une des difficultés des problèmes
inverses étudiés vient de l’effet corrélé des paramètres sur les signatures hydrodynamiques et de
leur observabilité éparse et hétérogène en espace, temps et nature.
L’inférence de paramètres inconnus ou incertains (friction, bathymétrie, hydrogrammes latéraux)
dans des modèles hydrauliques complets 1D et 2D appliqués à large échelle spatiale, à partir
d’observations altimétriques et optiques est étudiée. Une nouvelle méthode multi-échelle pour
la modélisation et assimilation hydraulique-hydrologique sur de réseaux hydrographiques est
présentée. Des inférences précises sont obtenues quand la quantité d’information contenue dans
les observables et les informations a priori est suffisante au regard des inconnues estimées.

Mots-clés:
Assimilation variationnelle, Modèles hydrauliques-hydrologiques, Equations de Saint-Venant,
Altimétrie satellite, Observations multi-sourcées, Modèle multi-dimensionnel

Abstract
This manuscript presents hydraulic-hydrological modeling approaches for hydrographic net-
works that can exploit the multi-sourced data using variational assimilation. It aims at a synergy
between the complex numerical modeling of physical quantities and the heterogeneous observ-
ability of hydrodynamic signatures. One of the difficulties of the assimilation comes from the
correlated effect of parameters on quantities of interest and from their sparse observability, het-
erogeneous in space, time and nature.
The inference of unknown or uncertain parameters (friction, bathymetry, lateral inflows) in
full shallow water 1D and 2D models applied at a large spatial scale, using altimetric and
optical observations is studied. A new multi-scale method for the modeling and assimilation
on hydraulic-hydrological models of hydrographic networks is presented. Accurate inferences
are obtained when observables and a priori information provide sufficient knowledge of the
inferred unknowns.

Keywords:
Variational Data assimilation, Hydraulic-hydrological models, Shallow Water equations, Satellite
altimetry, Multi-sourced observations, Multi-dimensional model
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