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ABSTRACT

This thesis falls under the theme of pseudo-Riemannian geometry in the setting of Lie
groups. Its purpose it to present a number of results on left-invariant Einstein Lorentzian
metrics on nilpotent Lie groups as an extension of the well-known classical Riemannian
case. The content of this thesis fits nicely in the subject literature since most of its results
complete previous works that were initiated by many authors, some of which are even
generalizations of earlier studies into broader contexts. The general outline can be di-
vided into two major parts:

The first part is concerned with the preliminaries of our study of Lorentzian left-invariant
Einstein metrics on nilpotent Lie groups. The main theorem states that if the center of
such a Lie group is degenerate then it must be Ricci-flat and its Lie algebra can be ob-
tained by the double extension process from an abelian Euclidean Lie algebra. We also
show that all nilpotent Lie groups up to dimension 5 endowed with a Lorentzian Ein-
stein left-invariant metric have degenerate center and we use this fact to give a complete
classification of these metrics. We show that if g is the Lie algebra of a nilpotent Lie
group endowed with a Lorentzian left-invariant Einstein metric with non-zero scalar
curvature then the center Z(g) of g is non-degenerate Euclidean, the derived ideal [g, g]
is non-degenerate Lorentzian and Z(g) C [g,g]. We give the first examples of Ricci-flat
Lorentzian nilpotent Lie algebra with non-degenerate center. The results in this part have
been published in [21]. The second part can be seen as a starting point for the study of
Einstein Lorentzian nilpotent Lie groups with non-degenerate center as it carries over the
machinery previously developed in order to treat the case of 3-step nilpotent Lie groups.
The principal theorem of this part is the classification of all Einstein Lorentzian 3-step
nilpotent Lie groups with 1-dimensional non-degenerate center, its proof, while long and
somewhat difficult, gives insight into many different properties and aspects that were
not apparent before, and the techniques used for the proof seem promising for a future

inspection. The material laid out in this part was published in [16].

Keywords: Lorentzian manifolds, Nilpotent Lie groups, Nilpotent Lie algebras, Flat man-

ifolds, Ricci curvature, Einstein metrics...
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REsuME

Cette these se situe dans le cadre des groupes de Lie pseudo-Riemanniens. Son objectif
est de présenter un nombre de résultats autour des métriques Lorentziennes d’Einstein
sur les groupes de Lie nilpotents comme une extension du cas Riemannien classique. Le
contenu de cette theése est bien placé dans la litérature mathématique puisque la majorité
des résultats mis en évidence donnent un contexte plus large a des travaux déja initiés
par plusieurs auteurs. Cette these comporte deux parties majeures :

La premiére partie concerne les préliminaires de notre étude des métriques Lorentzi-
ennes d’Einstein invariantes a gauche sur les groupes de Lie nilpotents. Le théoreme
central affirme que si le centre d’un tel groupe de Lie est dégénéré alors il est forcément
Ricci-plat et son algebre de Lie peut étre obtenue par le procédé de double extension a
partir d’une algebre de Lie Abélienne Euclidienne. On montre aussi que tous les groupes
de Lie dimension inférieure ou égale a 5 munis d’'une métrique Lorentzienne d’Einstein
invariante a gauche possédent un centre dégénéré, nous utilisons ce fait pour donner une
classification complete de ces métriques. On montre que si g est l'algebre de Lie d’un
groupe de Lie nilpotent qui est munit d’'une métrique Lorentzienne d’Einstein invariante
a gauche de courbure scalaire non nulle, alors le centre Z(g) de g est non dégénéré Eu-
clidien, son idéal dérivé [g,g] est non dégénéré Lorentzien et Z(g) C [g,g]. Les résultats
de cette partie ont été publiés dans [21]. La deuxieme partie peut étre vue comme le
début de I’étude des groupes de Lie nilpotents Lorentziens d’Einstein dont le centre est
non dégénéré, nous utilisons ici la méme machine précedemment développée afin de
traiter le cas des groupes de Lie 3-step nilpotents. Le théoréme principal de cette partie
est la classification de tous les groupes de Lie 3-step nilpotents Lorentziens d’Einstein
de centre unidimensionel non dégénéré. La preuve de ce theoreme permet d’éclaircir de
nouveaux aspects de I’étude globale et les techniques utilisés permettent de s’ouvrire sur

de nouvelles perspectives. Le contenu de cette partie a fait 'objet de [16].

Mots-clé : Variétés lorentziennes, Groupes de Lie nilpotents, Algebres de Lie nilpotentes,
Variétés plates, Courbure de Ricci, Métriques d’Einstein...
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INTRODUCTION

1.1 Historical Notes

The study of left-invariant, pseudo-Riemannian Lie groups, and more generally left-
invariant structures on Lie groups, is a central topic of differential geometry that has
attracted the interest of many mathematicians over the past few decades, primarily be-
cause it allows to bring difficult geometric problems into a more approachable setting

allowing to deal with a number of issues from an algebraic standpoint.

A smooth structure on a differentiable manifold is in many instances described by a
tensor field, and so questions concerning the existence of certain structures with specific
properties can be formulated through partial differential equations that must be satisfied
by the coefficients of the corresponding tensor field relatively to some local coordinate
system, however deciding whether a given partial differential equation admits a solution
is not an easy task in general and therefore not much can be said about the situation at
hand. In contrast, when the underlying manifold is a Lie group and the structure is left-
invariant, the problem can be entirely expressed in terms of a system of linear or quadratic
equations at the Lie algebra level. This is especially true for questions concerning the
existence of pseudo-riemannian metrics with certain curvature requirements. This ap-
proach turned out to be very efficient when looking for examples or counter-examples,
and in many situations, it even provided key insights that served to build arguments for

the general case.

1.2 Research Highlights

The purpose of this thesis was to investigate left-invariant Einstein Lorentzian metrics on
nilpotent Lie groups, this was done with the collaboration and supervision of Professor
Boucetta Mohamed and the intent was to develop a set of results that could potentially
lead to the classification of these structures. A classical result in this subject is due to

Milnor and deals with the Riemannian case, it is stated as follows:



CHAPTER 1. INTRODUCTION

Theorem 1.2.1 ([19], Theorem 2.4). Any left-invariant Riemannian metric on a nilpotent
non-abelian connected Lie group has a direction of strictly positive Ricci curvature and a

direction of strictly negative Ricci curvature.

An obvious consequence of this result is that the only nilpotent Lie groups that can be
equipped with a left-invariant, Einstein Riemannian metric are abelian groups. The indefinite
case however, is highly non-trivial with only few known examples (see for instance [6]),
and it is mainly for this reason that we set out to improve on the current state of the art.
The first stage of the inspection was based on papers due to M. Boucetta (see [5]) and M.
Guediri & M. Bin Asfour (see [18]) which settled the case for 2-step nilpotent Lie groups,

the main results in these papers are stated as follows:

Theorem 1.2.2 ([18], Lemma 14). Let (g,[, ],{, )) be a Ricci-flat Lorentzian non abelian
2-step nilpotent Lie algebra. Then Z(g) is degenerate.

Theorem 1.2.3 ([5], Proposition 3.4). Any 2-step nilpotent, pseudo-Euclidean Einstein Lie
algebra must be Ricci-flat.

Theorem 1.2.4 ([18], Theorem 15). Let g be any 2-step nilpotent, non-abelian Lie algebra.
Then g admits a Ricci-flat Lorentzian metric if and only if g = R" @n i.e a direct sum of an
abelian Lie algebra and a nilpotent Lie algebra n such that the Lie brackets of n are expressed

relatively to a basis B ={e,zy,...,2p,¢,€1,..., ¢4} as follows:

p
[e‘,ei]:aie+Zcik2k, lei,ejl=ajje, 1<i,j<q, (1.1)
k=1

q q9 P
with ..Zlaizj =2 Zl kzl cizk. Moreover the basis 9B can be chosen Lorentzian, in particular the
i,j= 1= =
restriction of the metric to [g,g] is degenerate.

It was observed in these works that there was a certain interplay between the Einstein
aspect of the metric and the degeneracy of the center of the Lie group. Following these
steps, the goal of our first paper was to look further into this relationship and its im-
plications in the case of general nilpotent Lie groups, this has led us to give a detailed
description of the structure of Einstein Lorentzian nilpotent Lie groups with degenerate
center, generalizing therefore a central result in [18], and ultimately classifying all Ein-
stein Lorentzian nilpotent Lie groups of dimension less than 5 (see [21] for details).

The second part of our research focused on Einstein Lorentzian nilpotent Lie groups with
non-degenerate center, particularly the 3-step nilpotent case, we gave the first known
example of such Lie groups in [21], disproving in the process a long-standing conjecture
due to M. Boucetta which stated that every Einstein Lorentzian nilpotent Lie group has
a degenerate center. The central result of this part was the classification of all such Lie

groups when the center is 1-dimensional (for details, see [16]).
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1.3. PAPERS OUTLINE

1.3 Papers Outline

Let (I, [, ],{(, )) be a pseudo-Euclidean Lie algebra, i.e, a Lie algebra endowed with a pseudo-
Euclidean product. The Levi-Civita product of I is the bilinear map L : i x i — ki given

by Koszul’s formula
2AL,v,wy = ([u,v]w)y+{w,ul,v)+{(w,v] u). (1.2)

For any u,v e, L, : I — Iy is skew-symmetric and [u,v] =L, v —L,u. The curvature of k
is given by
K(u,v) = L[u,v] - [Lu:Lv]'

The Ricci curvature ric : [y x i — R and its Ricci operator Ric: i — Iy are defined by
(Ric(u),v) =ric(u,v) = tr(w — K(u, w)v).

A pseudo-Euclidean Lie algebra is called flat (resp. Ricci-flat) if K = 0 (resp. ric = 0). It
is called A-Einstein if there exists a constant A € R such that Ric = Aldy,. In the case of

nilpotent Lie algebras, the Ricci curvature is given by:
. 1 o 1
ric(u,v) = —Etr(adu oad;)— Ztr(]” oly), (1.3)

where ], is the skew-symmetric endomorphism given by J,(v) = ad,u. Moreover, if %

and ¥, denote the symmetric endomorphisms given by
(Fru,v) =tr(ad, o ad;), (hou,v) = —tr(Jy o],) =tr(J, o). (1.4)

then the Ricci operator has the following expression

1 1
Ric=—-= - %, 1.5
ic 251+452 (1.5)

On Einstein Lorentzian nilpotent Lie groups [21]. The goal of this work was to give a
description of Einstein Lorentzian nilpotent Lie groups with degenerate center, following
the lines of a study that was initiated by M. Boucetta in [5]. As it is the case for left-
invariant structures in general, the problem can be entirely treated at the Lie algebra
level without any reference to the group in question. The main theorem of this paper
states that any Einstein Lorentzian nilpotent Lie algebra with degenerate center is Ricci-flat
and can be obtained by a double extension from a Euclidean vector space with prescribed
parameters, a rigorous account of the double extension process can be found in [3] and its
adaptation to our situation was discussed in details in [21]. The official statement of the

Theorem is as follows:

Theorem 1.3.1. Let (g,(, )) be an Einstein nilpotent non abelian Lorentzian Lie algebra and

suppose that there exists e € Z(g) a central isotropic vector and denote J = Re. Then:

1. Z(g) is degenerate and A = 0.
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2. F+tisanideal and go = F1/.F is a Euclidean abelian Lie algebra.

3. g is obtained from go by the double extension process with admissible data (K,D,0,b)
and D is nilpotent.

This theorem generalizes a result of M. Guediri & M. Bin Asfour that deals with the 2-step
nilpotent case ([18], Theorem 15). An important stream of thoughts that was dominant
throughout the paper was to bring the influence of the Ricci curvature over the metric
nature of the center and the derived ideal (either degenerate or non-degenerate), first

found in [5], into a broader setting, this set of results can be summarized as follows:
Theorem 1.3.2. Let (g,[, |,{, )) be an Einstein Lorentzian nilpotent non abelian Lie algebra.
1. If [g,9] is non degenerate then it is Lorentzian.
2. If Z(g) is nondegenerate then it is Euclidean.
3. [9,9]N[g,9]* C Z(q) and if [g,g] is degenerate then (g,{, ) is Ricci flat.

The following result, first proved in [18], is obtained as a corollary of the previous theo-

rem:

Corollary 1.3.1. Let (g,[, |,{, )) be an Einstein Lorentzian non abelian 2-step nilpotent Lie
algebra. Then Z(g) is degenerate.

In the same spirit, we were able to prove the following result that can be perceived as
a slight improvement on Corollary 1.3.1, but which turned out to be essential for the

upcoming developement:

Proposition 1.3.1. Let (g,(, )) be a Ricci flat Lorentzian nilpotent non abelian Lie algebra
such that dim[g,g] = dim (Z(g) N [g,9]) + 1. Then Z(g) is degenerate.

By combining Theorems 1.3.2 and 1.3.1 and Proposition 1.3.1, we were rewarded with a
complete classification of Einstein Lorentzian nilpotent Lie algebras of dimension less 5
(see Theorems 2.5.2 and 2.5.3 in Chapter 2 for the exact statement).

Classification of Einstein Lorentzian 3-nilpotent Lie groups with 1-dimensional non-
degenerate center [16]. This work can be considered as a continuation of [21] and is con-
cerned with the study of Einstein Lorentzian nilpotent Lie groups with non-degenerate
center. This class of Lie groups is very large and contains in particular Einstein Lorentzian
nilpotent Lie groups with nonvanishing scalar curvature (Theorem 1.3.1), the minimal
dimension required for this phenomenon to occur is 6 and the first known example of
such Lie groups was given in [21] (see Example 1 in Chapter 2). As a first step towards
a general study, we focus on the 3-step nilpotent setting, the first main theorem of the
paper can be stated as follows:



1.4. FUTURE RESEARCH

Theorem 1.3.3. Let Iy be a A-Einstein Lorentzian 3-step nilpotent Lie algebra with nondegen-
erate center. Then A > 0.

By restricting to the case where the center is 1-dimensional, we were able to give a full
classification of these Lie groups, which surprisingly enough, are shown to only exist in

dimensions 6 and 7, the precise statement is as follows:

Theorem 1.3.4. Let Iy be a 3-step nilpotent Lie algebra with dimZ(ly) = 1. Let (, ) be a
Lorentzian metric on Iy such that Z(h) is non-degenerate, then (, ) is Einstein if and only if it
is Ricci-flat and (Iy, (, )) has one of the following forms :

(i) dimb = 6 and i is isomorphic to Lg 19(—1), i.e., It has a basis (fi)?:1 such that the non
vanishing Lie brackets are

(fi, ol = fu L, 51 = f5, [ o fa] = fo L3, 5] =~ fe

and the metric is given by :

GY=fi®fi+2f0f +2f®@f; +4a*fi @ ff —2a%f; 0 fs, a=0. (1.6)

(ii) dimby = 7 and i is isomorphic to the nilpotent Lie algebras 147E found in the classi-
fication given in [8](p. 57). In precise terms, there exists a basis {fi}i7:1 of  where the non

vanishing Lie bracket are given by :

[fi, 2] = f5, Ufi, 3] = for Lfr 3] = far [fe 2l = (L =1)f7, [ fs, 3l = =717, [fa il = f7, (1.7)

with 0 <r <1, and the metric has the form:

)= Ofi+f0f;+f50fi—af;of; varfi@fe+a(l-r)f;@fc+a’f;®f;, a>0. (1.8)

1.4 Future research

While the results obtained in the course of this thesis may set the ground for any future
inquiry on the subject, there is still room for more elaborate arguments and methods, and
as it is usually the case with research, one ends up with more questions than answers. We
name here a few that we think are relevant for any further developement on the matter

and might even be at the heart of some paper down the line:

QuesTioN 1: Is there a complete classification of Einstein, Lorentzian 3-step nilpotent Lie

algebras with non-degenerate center, similar to Theorem 3.1.1 ?

We think that this is a legitimate question and a natural sequel to the work present
in [16], one reason is because the machinery to proceed has been partially developed so
that one only needs to adapt the methods to this more general setting by dropping the

5



CHAPTER 1. INTRODUCTION

hypothesis about the dimension of the center.

QueEesTION 2: Is there a method that allows the construction of Einstein Lorentzian nilpotent
Lie groups with nonvanishing scalar curvature ?

So far the only known Example in this category of Lie groups is due do D. Conti &
F. Rossi (see [6] and also [16], Example 1), and naturally one needs further examples in

order to make reasonable statements.

QuesTioN 3: Is there a possible classification when one restricts to a specific class of Einstein

Lorentzian nilpotent Lie algebras ?

Although a complete classification is far reaching, certain classes of nilpotent Lie algebras,
for instance filiform or characteristically nilpotent Lie algebras, enjoy special properties
that could make a classification within the realm of possibilities. In any case, these situa-
tions need a careful study.

QuesTioN 4: Can we prove a similar set of results for Einstein nilpotent Lie groups of arbi-

trary signature ?

The Lorentzian case is only an instance of the more general non-degenerate setting, which

lacks its presence in the mathematical litterature.



2

ON EINSTEIN LORENTZIAN NILPOTENT LIE

GROUPS

2.1 Introduction

A pseudo-Riemannian manifold (M, g) is called Einstein if its Ricci tensor Ric : TM — TM
satisfies Ric = Aldt), for some constant A € R. When A =0, (M, g) is called Ricci-flat.
Pseudo-Riemannian Einstein manifolds present a central topic of differential geometry
and an active area of research. The subclass of Lorentzian Einstein manifolds has at-
tracted a particular interest due to its importance in the physics of general relativity
(see [4]). Homogeneous Riemannian manifolds were intensively studied and the Alek-
seevskii’s conjecture (see [4]) has driven a profound exploration of Einstein left invariant
Riemannian metrics on Lie groups leading to some outstanding results (see [10, 13]).
However, the study of left invariant Einstein pseudo-Riemannian metrics on Lie groups
is at beginning. In [1, 14], flat Lorentzian left invariant metrics on Lie groups has been
studied, in [15] flat left invariant metrics of signature (2,7 — 2) on nilpotent Lie groups
has been characterized, Ricci-flat Lorentzian left invariant metrics on 2-step nilpotent
Lie groups has been investigated in [5, 18] and in [7, 2], all four dimensional Lie al-
gebras of Einstein Lorentzian Lie groups were given. The study of pseudo-Riemannian

Einstein left invariant metric with non vanishing scalar curvature has been initiated in [6].

In this chapter, we study Einstein Lorentzian left invariant metrics on nilpotent Lie
groups. As in any study involving left invariant structures on Lie groups, we can consider
the problem at the Lie algebra level. Let (g,[, |,{, )) be a nilpotent Lorentzian Lie algebra
with Ricci operator Ric : g — g satisfying Ric = Ald;. Our main results can be stated as

follows :

1. If the center Z(g) of g is nondegenerate then it is Euclidean and if the derived ideal

[g,g] is nondegenerate then it is Lorentzian.

2. If [g,g] is degenerate then Z(g) is degenerate and the metric is Ricci-flat.

7



CHAPTER 2. ON EINSTEIN LORENTZIAN NILPOTENT LIE GROUPS

3. If the scalar curvature of g is non zero then Z(g) is nondegenerate Euclidean, [g, g]

is nondegenerate Lorentzian and Z(g) C [g, g].

4. If Z(g) is degenerate then g is Ricci-flat and (g,[, |,{, )) is obtained by the pro-
cess of double extension from an abelian Euclidean Lie algebra. The process of
double extension has been introduced by Medina-Revoy [3] in the context of bi-
invariant pseudo-Riemannian metrics on Lie groups and turned out to be efficient
in many other situations. We adapt this process to our case and, in addition to
our main result, we use it to construct a large class of Einstein Lorentzian Lie alge-
bras (not necessarily nilpotent). We also recover the description of 2-step nilpotent

Lorentzian Lie algebras obtained in [18].

5. If g is Ricci-flat non-abelian, and dim[g, g] = dim(Z(g) N [g,9]) + 1 then Z(g) is degen-

erate.

6. If dimg < 5 then the center of g is degenerate. In this case we give a complete

classification of all such Lie algebras.

7. We give the first examples Ricci-flat Lorentzian nilpotent Lie algebras with nonde-
generate center. It is worth to mention that this differs from the flat case. Indeed,
it has been shown (see [14]) that if a nilpotent Lie group G is endowed with a flat
left-invariant metric which is either Lorentzian or of signature (2,n — 2) then its

center must be degenerate.

8. We give another proof of the main result in [6] by using a formula known in the

Euclidean context (see Propositions 2.3.6-2.3.7)

The chapter is organized as follows. In Section 2.2, we establish two lemmas and we
give a useful expression of the Ricci operator involving our main tool : a family of skew-
symmetric endomorphisms which we call structure endomorphisms. In Section 2.3, we
prove some general results on Einstein Lorentzian nilpotent Lie algebras. In Section 2.4,
we describe the process of double extension which permits to construct a large class of
Einstein Lorentzian Lie algebras and we prove our main result (see Theorem 2.4.1), then
we show that Lorentzian Einstein nilpotent Lie algebras up to dimension 5 satisfy the
hypothesis of this theorem and we give the list of such algebras. Finally, we give the first
examples of Ricci-flat Lorentzian nilpotent Lie algebras with nondegenerate center. This

widely opens the door for a future study of this particular class.

2.2 Ricci curvature of pseudo-Euclidean Lie algebras

The purpose of this paragraph is to fix the notations that shall be used throughout the
chapter, this is done by defining several operators related to the metric structure on a
pseudo-Euclidean Lie algebra, particularly its curvature, we then proceed to give many

properties of these operators as well as their basis expression. This step is crucial for the

8
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upcoming development, since the proof of many central results relies on the computa-
tional material introduced in this paragraph. We also introduce some facts concerning
pseudo-Euclidean vector spaces in the form of Lemmas at the end of the paragraph for
later use. A detailed account on pseudo-Euclidean vector spaces is given in Appendix B,
the preliminary notions on pseudo-Euclidean Lie algebras such as the Levi-Civita prod-

uct and the various flavors of curvature are the subject of Appendix C.

Let (g,[, ],{, )) be a pseudo-Euclidean Lie algebra and denote gxg— g, (4,v) — u-v its
Levi-Civita product, we recall the Koszul formula (cf. (C.1))

Au-v,wy = ((u,v]w)y+{(wul,v)+{(w,v]u). (2.1)

For any u € g, we shall denote L,,,R,, : g — g be the corresponding left and right mul-
tiplications i.e R,(#) =L, v = u-v. By Koszul formula (2.1), we get that L,, : g — g is
skew-symmetric and ad,, =L, —R,,. The curvature K : g x g — End(g) of g can then be

expressed in these terms as:

K(uw,v)w = Lpw—[L,L,]w
[Ry, Ly J(v) =Ry o Ry, (v) + Ry (v).

From the last relation, we deduce that the Ricci curvature ric: gxg— Rof (g,[, ],{, )) is

given by:
ric(u,v) = —tr(R,oR,)+tr(R,,). (2.2)

In order to make more use of the Ricci curvature, we introduce H € gand J : g — so(g, {, })

such that for any u,v € g,
(H,u)=tr(ad,) and J,(v)=ad}(u). (2.3)

Note that H € [g,g]* and H = 0 if and only if g is unimodular. In these notations (2.1) can

be rewritten as:
2(Ryu, w) = —(ad, (1), w) = (ady (1), w) = (o (1), w). (2.4)
Proposition 2.2.1. Let g be a pseudo-Euclidean Lie algebra. We have:
. 1 1 1
ric(u,v) = —Etr(adu oad,) - Etr(adu oad,)— Ztr(]” oJ,)
1 1
—E(adHu,w - E(ade,u).

Proof. Itis a consequence of (2.2), the following formula which can be deduced from (2.4)

1 . 1
R, = _5 (adu + adu) - E]w
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and the following computation. For any orthonormal basis (ey,...,e,) of g, with €; = (e;, ¢;):

n

trRyy) = ) eille(u-v),e;)
i=1

@h —Zei([u'%ei]’ei>

i=1
—tr(ad,,)

= —(H,u-v)

1 1
= —E(adHu,v) - E(ade,u).
The result is then a matter of simple calculation. O]

Recall that any nilpotent Lie algebra is unimodular and has vanishing Killing form, this

leads to the following observation:

Proposition 2.2.2. If g is a nilpotent pseudo-Euclidean Lie algebra, then:
ric(u,v) = —%tr(adu oad))— itr(]u of,).
In particular, its Ricci operator Ric : g — g is given by
Ric = —%jl + i}z, (2.5)
where §; and ¥, are the auto-adjoint endomorphisms given by
(Fi(u),v) =tr(ady oad,) and (Fo(u),v)=—tr(J,oJy). (2.6)

Remark 1. The endomorphisms ], are skew-symmetric and J,, = 0 if and only if u € [g,g]*.
As a result, if (, ) is Euclidean then we get for any u € g, (¥;(u),u) >0 (i =1,2), ker §; = Z(g)
and ker J, = [g,g]*.

The operators ¥, and ¥, will play a crucial role in our study so we are going to express
them in a useful way. This is based on the notion of structure endomorphisms we now
introduce. Let (g,[, ],(, )) be a pseudo-Euclidean Lie algebra and (el,...,ep) a basis of g.
For any u,v € g, the Lie bracket can be written as:

p
[u,v]= Z(Siu,v)ei, (2.7)
i=1

where S; : g — g are skew-symmetric endomorphisms with respect to (, ). The family
of operators (Sy,...,S,) will be called structure endomorphisms of g associated to (ey, ..., ep).
Note that Z(g) = ﬂle kerS;, furthermore one can see easily from (2.7) and the definition
of ] in (2.3) that for any u € g,

p
Ju=) (ue)S;. (2.8)
i=1
The following Proposition is of central importance and will be used in many instances.

10
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Proposition 2.2.3. Let g be a pseudo-Euclidean Lie algebra and let (Sy,...,S,) be structure
endomorphisms corresponding to a basis (ey,...,e,) of 9. Then:

p P
—E:@mp&og and %u:—i:@mwm&o%kf (2.9)
i,j=1 1j=1

In particular, tr§; = tr %,.

Proof. The expression of ¥, is an immediate consequence of (2.6) and (2.8). As for §; we
have that :

(ad,oad,)(v) = (ad,oJy)(u)
p
=4 Z(Siur]v”>ei
i=1
28) Z(Siu,sjw(v,ej)ei
ij

= - Z((Sj o 5;)(u), u)Ki v,
ij

where K; jv = (v, ¢;)e;. Clearly tr(K; ;) = (e;, ¢j), thus tr(ad,, 0ad}) Z( (SjoSi)(u),v){ei,e;).
This gives the desired formula of ¥;. O]

We close the paragraph by the following two Lemmas on skew-symmetric operators of

Lorentzian vector spaces:

Lemma 2.2.1. Let (V,(, )) be a Lorentzian vector space, e an isotropic vector and A a skew-
symmetric endomorphism. Then (Ae, Ae) > 0. Moreover, (Ae,Ae) = 0 if and only if Ae = ae
with a € R.

Proof. We choose an isotropic vector ¢ of V such that (e,é) = 1 and we fix an orthonormal
basis (fi,..., f;) of {e,é}*. Since A is skew-symmetric, we have

T

Ae_ae+Z,fl and (AeAe)_Z .

1:1 121

and the result follows. O

Lemma 2.2.2. Let (V,(, )) be a Lorentzian vector space, e an isotropic vector and A a skew-

symmetric endomorphism such that A(e) = 0. Then:
1. tr(A?) <0,

2. tr(A%) = 0 if and only if for any x € et, A(x) = A(x)e and in this case tr(A o B) = 0 for

any skew-symmetric endomorphism satisfying B(e) = 0.

11
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Proof. We choose a Lorentzian basis B = (e,¢, f1,..., f,) of V such that (e, f1,..., f,) is a
basis of {e}*, € is isotropic, {¢,&) = 1 and (f1,..., f,) is an orthonormal basis of {e, &}*. First
observe that the restriction of (, ) to {e}* is nonnegative and for any x € {e}*, (x,x) = 0 if

and only if x = ae. Now Af; € {e}* forany i =1,...,n and so:
tr(A%) = (A%(e), &)+ (A%(@) )= ) (AfuAf)==) (AfuAf)==) (Afif)
i=1 i=1 i,j=1

This shows that tr(A?) < 0 and tr(A?) = 0 if and only if Af; = aje for all i = 1,...,n. In this

case, if B is skew-symmetric and B(e) = 0 then B(f;) = f;e, therefore:
tr(A o B) = ~(B(e), A(é)) ~ (A(e), B(e)) ~ ) (Af;, Bf;) =0.
i=1

This proves the claim. O

2.3 Some results on Einstein Lorentzian nilpotent Lie algebras

The principal goal of this section is to prove a set of results typical to the Lorentzian case,
and which characterizes the signature of the center Z(g) and the derived ideal [g, g] of an
Einstein Lorentzian nilpotent Lie algebra of g. We draw a number of consequences from
these results, for instance we obtain as corollaries some known facts on the Ricci curvature
of Einstein Lorentzian 2-step nilpotent Lie algebras, we also give a slight generalization
of these results that includes some Lorentzian Ricci-flat 3-step nilpotent Lie algebras.
Finally, we use our approach to recover some results first proved in [6].

Before going further, let us first give the following remark which we will use frequently:
Let (g,[, ],{, )) be a pseudo-Euclidean Lie algebra. From the definition of ] in (2.3), one
can easily deduce that ker] = [g,g]* and hence:

Z(g)Ccker$ :=M and [g,g]* Cker% :=N. (2.10)
Since ¥, and ¥, are symmetric with respect to (, ),
Im$ =M+ CcZ(g)t and Im% =N+ cC]lg,g] (2.11)

Proposition 2.3.1. Let (g,[, |,{, )) be an Einstein Lorentzian nilpotent non abelian Lie

algebra. If [g,q] is non-degenerate then it is Lorentzian.

Proof. We reason by contradiction and suppose that [g,g] is non-degenerate Euclidean,
choose an orthonormal basis (ey,...,e;) of [g,g] and denote by (Sy,...,S;) the associated

structure endomorphisms. According to (2.5) and (2.9), we have

d d
1 1
—Sh+ h= Adg, % =- E S? and Hu=- E (u,e)tr(S; 0 S))e;.
i=1 i,j=1

12



2.3. SOME RESULTS ON EINSTEIN LORENTZIAN NILPOTENT LIE ALGEBRAS

Since g is nilpotent then dim[g,g]* > 2 and we can choose a couple (e, é) of isotropic
vectors in [g,g]* such that (¢, &) = 1. By replacing in the relations above and using (2.10),

we get:
1 1 d d
sFie=-Ae, sfie=-)¢ and Z(Sie, Sie) = ;@iey S;e)=0.
- =
By using Lemma 2.2.1, we deduce that for any i € {1,...,d}, Sje = @;e and S;é = —a;€ and
hence:

| —_

d
=3) @z

i=1
Fori=1,...,d, S; is skew-symmetric and leaves invariant span{e, ¢} so it leaves invariant

its orthogonal. We denote by K; the restriction of S; to the Euclidean vector space {e, é}*.
We have tr(Siz) = 20(1-2 + tr(Kf) and tr(Kf) < 0. Now, since tr(¥ ) = tr(¥,), we get:

d d
, 1 2) 1 5
(dimg)A = ——tr (f) = 1 E_l 2a +1r(K7)) = A+ 1 > tr(K;).

This shows that A < 0. By combining the results obtained so far, we deduce that A = 0 and
foralli=1,...,d, tr(Kiz) =0and ozl-z = 0 which implies that S; = 0. Thus g is abelian which

is a contradiction, this proves our claim. O

Proposition 2.3.2. Let (g,{, )) be an Einstein pseudo-Euclidean non-abelian nilpotent Lie
algebra. If Z(g) is non-degenerate then Z(g)* is not Euclidean.

Proof. Denote by (p,q) =(-,...—,+,...,+) the signature of (, ). We reason by contradiction
and assume that Z(g) is non-degenerate and Z(g)* is Euclidean. This implies in particular
that dim Z(g)* < g and therefore dim Z(g) > p. Consequently, we can choose an orthogonal
family (ey,...,ep) in Z(g) such that (e;,¢;) = -1 fori =1,...,p. Write g = span{ey,...,e,}®go,
where gg = {ey,...,e,}*. For any u,v € go, put:

p
[u,v] = Z(Kiu,v)ei +[u,v]o, (2.12)
i=1

where K; : gy — g are skew-symmetric endomorphisms and [u,v]y € go. Let (, )¢ denote
the restriction of (, ) to go. It is obvious that (go, [, ]o,{, )o) is a Euclidean nilpotent Lie
algebra. We claim that if (g,(, )) is Einstein i.e Ric = AId, then we have A = %tr(Kiz) <0
foralli=1,...,p. Moreover if Ric( ) is the Ricci operator of (g, [, Jo,(, )o) then:

P
. 1
RlC(})O = /\Idgo + E Z’Klz (*)
i=1
This implies that the Ricci curvature of (gg,(, )g) is nonpositive. However a non-abelian
nilpotent Euclidean Lie algebra has always a Ricci negative direction and a Ricci positive
direction (see [19, Theorem 2.4]). So the only possibility is K; =0 for i = 1,...,p and gy is
abelian. We get a contradiction in view of (2.12), which completes the proof.

13
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Let us prove our claim. We choose an orthonormal basis By = (fi,..., f;) of go. Then
clearly B = (eq,... p,fl, fq) is an orthonormal basis of g. Denote by (S,..., Sp, Ti,..., Tq)
the structure endomorphisms of (g, (, )) with respect to B and (M, ..., M,) the structure
endomorphisms of (go,(, )o) with respect to By. Every S; and T; vanish on Z(g) and hence

leave g invariant. By using (2.12), one can easily see that, fori=1,...,pand j=1,...,¢:

(Sidg, =Ki and  (Tj)y, = M;.

If g is Einstein then according to (2.9), we have:

p q
1 1 1
-5 § S7+ > § T? + ij = Ald,, )
i=1 i=1

where

Z(el,oﬁr (KioK;) Z(ﬁ,.>tr (MjoM;)fi- Z(f,,o)tr (M;oK)) Z<e,,.>tr (KioM;)f;.

If we evaluate the relation (++) at e;, we get

q
1
+ Z Ztr(Kz- OMj)fj = Ae;.
=1

This is equivalent to A = %tr(Kf) and tr(K;oM;)=0forie{l,...,p}and j€{l,...,q}. This

implies that if we restrict (+) to gy we get the desired relation (). O

Corollary 2.3.1. Let (g,[, |,{, )) be an Einstein Lorentzian non-abelian nilpotent Lie algebra.
If Z(g) is non-degenerate then it is Euclidean.

The following result was first found by Guediri in [18] and served as a key ingredient
in the classification of Einstein Lorentzian 2-step nilpotent Lie algebras. It can also be

deduced from the preceding results.

Corollary 2.3.2. Let (g,[, |,{, )) be an Einstein Lorentzian non abelian 2-step nilpotent Lie
algebra. Then Z(g) is degenerate.

Proof. Suppose that Z(g) is non-degenerate. According to Corollary 2.3.1, Z(g) is non-
degenerate Euclidean. But g is 2-step nilpotent and hence [g,g] € Z(g). Thus [g,g] is

non-degenerate Euclidean which contradicts Proposition 2.3.1. O

Proposition 2.3.3. Let (g,(, )) be an Einstein Lorentzian nilpotent Lie algebra such that (g, g]
is degenerate then [g,9] N (g, 9]+ C Z(g) and (g,(, )) is Ricci flat.

Proof. Let e be a generator of [g,9]N[g,g]*. Then there exists a basis (e, ¢, f1,..., f4,&1,---,<s)
of g such that (e, fi,..., f) is a basis of [g,g], (¢,£1,-..,4;) is basis of [g,g]*, (e, é) are co-
isotropic i.e {e,é) = 1 and (f1,...,f4,41,-.-,8s) is an orthonormal basis of {e,é}*. Next

denote by (A, Sy,...,S4) the associated structure endomorphisms, i.e. for any u,v € g,

d
[u,v] = (Au,v)e+ Z(Siu,v)f,-.

i=1

14



2.3. SOME RESULTS ON EINSTEIN LORENTZIAN NILPOTENT LIE ALGEBRAS

According to (2.5) and (2.9), we have:
11 d
—sht7H=21d; and = -) sk
i=1
Since e € [g,g]* and it is isotropic, we have $,e = 0, —%f}le = Ae, and so Z}’:l(Sje,Se) =0.

Using Lemma 2.2.1, we get Sje = aje for any j = 1,...,d and hence A = %ZL aiz > 0. On
the other hand, since tr(¥;) = tr(¥,), it follows that:

d
(dimg)A = —%tr(}l) = 1 Ztr(S]-z).

Furthermore we have:

,_'.
=
—
|95
©
-
[l

(Ste,e)+(S7e,e) + Z(Sffz,fz) + Z(ngz,go
l I

245 - Z<Sffl’ Sifi) - Z(Sjgbsjgz)
! !

Since S; leaves invariant e, it leaves invariant its orthogonal spanfe, f;, gx}. But the restric-

tion of (, ) to span{e, f;, g} is nonnegative. So (S;f},S;f;) > 0 and (S;g, S;g) > 0. Thus:

(dimg—-1)A==) (Sifi,Sifi)= ) (S;g Sjgn) <0.
Lj Lj

But we have already shown that A > 0. We conclude that A = 0 and Sj(e) =0 forj=1,...,p.
This implies that for any u € g, [e, u] = (A(e), u)e. But ad,, is nilpotent and hence [e,u] =0
which completes the proof. O

Corollary 2.3.3. Let g be a nilpotent Lorentzian Einstein Lie algebra. Suppose that [g,q] is

degenerate, then Z(g) is also degenerate.

Proposition 2.3.4. Let (g,(, )) be a Ricci-flat Lorentzian nilpotent non-abelian Lie algebra
such that dim[g,g] = dim (Z(g) N [g,9]) + 1. Then Z(g) is degenerate.

Proof. Suppose that Z(g) is non-degenerate. According to Propositions 2.3.1 and 2.3.3
and Corollary 2.3.1, Z(g) is Euclidean and [g, g] is Lorentzian and hence there exists an
orthonormal basis (eq,...,e,) of [g,g] such thate; € Z(g) fori =1,...,r— 1 and (e, e,) = —1.
We denote by (Sy,...,S;) the structure endomorphisms associated to (ey,...,e,). We have:

1 1 r—1
—SHit3%=0, Hi=SI-) S} and Hu)=-) (eutr(S;oS)e;.
j=1 L

Since Z(g) C ker #;, we get $5(e;) =0 fori =1,...,r — 1. This is equivalent to tr(S; 0 5;) =0

fori=1,...,rand j=1...,r—1 and hence:
Fou) = (e, utr(S})e;.
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But tr(# ) =tr($) = 0so § = F, = 0. This implies, by virtue of (2.6), that tr(ad, o ad;) =0
for any x,y € g. For x € g, put

ad,(e,) =aje; +... +a,e,.

So for any k €N, ad'fc(er) = afe, + uy with uy € Z(g) but since g is nilpotent and e, ¢ Z(g)

then @, = 0 and hence ad(e,) € Z(g). If (f,..., f;) is an orthonormal basis of [g, g]*, then:

0 = tr(ad, oad;)
r—1 1
= Z(ader(ei ),ad,, (e;)) + Z(ade,(fi)’ ad,, (fi))
i=1 i=1
9
= Z(adﬁ(er),adfi(er))-

i=1

But ad (e;) € Z(g) and Z(g) is Euclidean thus ad(e;) =0 fori =1,...,q an hence ¢, € Z(g)
which is a contradiction. This completes the proof. O

Using our approach, we recover some results obtained in [6].
Proposition 2.3.5. Let (g,[, |,{, )) be a nilpotent pseudo-Euclidean Lie algebra.
1. If (g,[, ),(, )) is Einstein with A # 0 then Z(g) C [g,9].
2. Ifdim Z(g) > dim[g, g] then (g,[, |,{, )) is Einstein if and only if it is Ricci flat.
In particular, if g is 2-nilpotent then (g,[, ],{, )) is Einstein if and only if it is Ricci flat.
Proof. Suppose that (g,[, |,{, )) is nilpotent and Einstein with A = 0, i.e.
—%jl + %52 = AId,.
Put M :=ker(¥;) and N :=ker(¥,). By virtue of (2.10) and (2.11), this implies that:
Z(g) cIm¥, C [g,g].
It also implies that M N N = {0}. But, if dim Z(g) > dim(g, g] then
dimM +dim N > dim Z(g) + dim[g, g]* > dimg
and hence g = M @ N. This contradicts tr(% ) = tr(¥%). O

One of the main results in [6] is that if a pseudo-Euclidean Einstein nilpotent Lie algebra
has a derivation with a non vanishing trace then it is Ricci flat. We give another proof of
this fact based on (2.13). This formula was established in the Euclidean context in [12] by
using the Ricci tensor as a moment map. We prove this formula in the general case by a

direct computation.
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Proposition 2.3.6. Let (g,(, )) be a pseudo-Euclidean Lie algebra and let Q denote the sym-
metric endomorphism Q = —%51 + }152. Then for any orthonormal basis (e, ..., e,) of g and any

endomorphism E of g, we have
tr(QE) = 4Z ej{E(leirej]) = [E(ei) ej] - [er E(e)] [eire]) (213)

where {e;, ;) = €;.

Proof. We denote by (Sy,...,S,) the structures endomorphisms associated to (ey,...,ep).

From (2.8), we get S; = €;J,. and by using (2.9) we get:

1 1
=3 Zei]ez,-E(”) ~1 Z e;€j{e;, E(u)tr(J,, o]e]_)ej.
i=1 ij=1

Let us compute:

P
w(QE) = ) ei(QE(e)ep)
j=1
= 75 ZE €]<]e, e]) ]e e] 1 Ze 6](‘311 e])>tr(]e °]e )
Lj=
1 p
= - Z ejeilei E(e) Je (e)]) + ; eierej ei E(e)Je el )
i,j,l=
1 < 1 &
= -3 ) el aXenEe)al+ 7 ) eeilyenTeee)
i,jl=1 =t
1 P 1 p
= 5 ) gaelelegalleE@hal+ 7 ) aejeillene)eJoee
i,j,l=1 i,j,l=1
1 1 <
= 5 ) el allEe)ab+g ) acede; lanel)les el E;
jl=1 111:1
1 1
= 5 ) cellealEe)ab+g Zelei<[el,ei],E<[el,e,-]>>
ji=1 il=
1 P p
= -7 _cjelleallEG; m——Z ejerllep e e Elen) + 3 ) ereillenei) Elle e,
jl=1 jl=1 i,l=1
and the formula follows. O

From Proposition 2.3.6 we get the following important result:

Proposition 2.3.7. ([6, Theorem 4.1]) Let (g,{, )) be a pseudo-Euclidean nilpotent Lie algebra

having a derivation with non-zero trace. Then (g,(, )) is Einstein if and only if it is Ricci flat.

Proof. Let D € Der(g) such that tr(D) # 0. Write Ric = Ald, using formula (2.5) and (2.13)
we get that Atr(D) = 0 and therefore A = 0. O
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Remark 2. The derivations of nilpotent Lie algebras have been widely studied and computed
(see [17]). It turns out that nilpotent Lie algebras having a derivation with non null trace are
the most common. For instance, any nilpotent Lie algebra up to dimension 6 has this property
and most of the nilpotent Lie algebras of dimension 7 have this property (see [6]).

2.4 Einstein Lorentzian nilpotent Lie algebras with degenerate

center

In this section, we give a complete description of Einstein Lorentzian nilpotent Lie alge-
bras with degenerate center. We will show that these Lie algebras are obtained by a double
extension process of an abelian Euclidean Lie algebra. The double extension process was
introduced by Medina-Revoy in [3] in the context of quadratic Lie algebras. It turned out
to be useful in many other situations. We give here a version of this process adapted to
our study.

Consider a Euclidean vector space (V,(, )¢), b€V, K,D:V — V two endomorphisms
of V such that K is skew-symmetric. We endow the vector space g = Re® V @ Re with the
inner product (, ) which extends (, )( so that span{e,é} and V are orthogonal, e and ¢ are

isotropic and satisfy (e, é) = 1. We also define on g the bracket:
(6,e] =pe, [eu]=D(u)+(b,uyge and [u,v]=(K(u),v)ge, u,veV. (2.14)

Proposition 2.4.1. Suppose that (g,{, ),[, ]) is obtained by a double extension process from a
Euclidean vector space (V,(, )o) with parameters (K, D, u,b) (i.e as in (2.14)), then:

(1) (9,[,]) is a Lie algebra if and only if :
KD +D*K = pK.
In this case (g,[, ]) is nilpotent if and only if y = 0 and D is nilpotent.
(ii) (g,[, 1,{, )) is an Einstein Lorentzian Lie algebra if and only if
KD+D'K =uK and 4utr(D) = tr(K?) + 2tr(D?) + 2tr(DD").
In this case, it is Ricci flat.
Proof. The bracket [, ] is a Lie bracket if and only if for any v,w e V,
(e [v,w]]+[w[év]]+[v,[weé]] ={((uUK =K o D - D" o K)(v), w)ge = 0.

Therefore, (g,[, |) is a Lie algebra if and only if uK = Ko D + D* o K and it is easy to see
that (g, [, ]) is nilpotent if and only if 4 = 0 and D is a nilpotent endomorphism.

We will now compute the Ricci curvature of (g,[, ],{, )) by using the formula
c(1t,0) = —= Bt v) — (54 (), v) + = (Fa (1), v) — =(ad g0, v) — = (ad v, )
ric\u, —2 , 21M, 42M, 2aH, 2aH,,
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where B is the Killing form and H is the vector defined in (2.3).
We choose an orthonormal basis (fi,..., f,) of V and we denote by (K, K, S,...,S,) the
structure endomorphisms of (e, ¢, f1,..., f,). By a direct computation, we get that Band H

are given by
H = (p+tr(D))e, Re®@V CkerB and B(¢e)= yz +tr(D?).
On the other hand, K = 0 and for any u,v € g
(Ko(u),v)=([u,v],é) and (Sj(u),v)=((u,v],f;), u,vegi=1,..,n
This gives that
Ko(e) = —pe, Ko(€) = pe +b, Ko(f;) = K(f3),
Si(e) =0,5i(f;j) =—(D*(fi), fj)e and  S;(é) = D*(f;).

From these relations, one can easily deduce that tr(Kgo S;) =tr(S;05;) =0fori,j=1,...,n

and hence

n
F=— Zsf and  J = —(e, o)tr(K2)e.
i=1
Using these expressions, a careful computation gives
. s s 1 2y 1 .. 2
Re® V Ckerric and ric(é¢é) = —Etr(D )— Etr(DD )— Ztr(K )+ ptr(D).
This completes the proof. O]

Any data (K, D, y, b) satisfying the conditions in Proposition 2.4.1 is called admissible. We
can now state the main theorem of this section, which gives the structure of Einstein

Lorentzian nilpotent Lie algebras with degenerate center.

Theorem 2.4.1. Let (g,(, )) be an Einstein nilpotent non abelian Lorentzian Lie algebra and

suppose that there exists e € Z(g) a central isotropic vector. Then:
1. Z(g) is degenerate and g is Ricci-flat.

2. g is obtained by a double extension process with admissible data (K,D,0,b) and D is
nilpotent from a Euclidean vector space V.

Proof. Let . := Re and choose an orthonormal basis B = (e, ¢, fi,..., f,) of g such that ¢ is
isotropic with {(e,é) =1, (e, fi,..., f,) is a basis of ¥+ and (fj,..., f,) is an orthonormal basis

of {e,é}*. Denote (K,K,Sy,...,S,) the structure endomorphisms of B, i.e. for any u,v € g:

[u,v] = (Ku,v)e+(Ku,v)e+ Z(Siu,v)fi.

i=1
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According to (2.5) and (2.9), we have that:
15 +19 =14y, 1 = -KoK-KoR -},
j=1

i=1 i=1

—(&,0)tr(K o R)e—Y (e, )tr(K 0 S;)f; — Y.(& o)tr(K 0 Si)fi = Y. (f;, o)tx(S; 0 S,)f:.

i=1 i=1 ij=1

B> = — (e, )tr(K2) + Y. tr(K o S;)(f,, .>] e [(a )tr(R2) + Y tr(R o0 S;)(fi, ) |2 — (e, o)tr(K 0 K)&

(2.15)
Since e € Z(g) then K(e) = K(e) = S;(e) = 0 for all i = 1,...,n and thus §;(e) = 0. This
implies that %}2(6) = Ae, which is equivalent to:

1 _ _ _
Ztr(K oK)=-A and tr(K?>)=tr(KoS;)=0fori=1,...,n

According to Lemma 2.2.2, we get that for any x € .¥+, K(x) = a(x)e and -4 = tr(KoK) = 0.
On the other hand, since tr(¥;) = tr(¥,) then from the first relation in system (2.15) we
deduce that tr(#) = -) 1", tr(Siz) = 0. Again, Lemma 2.2.2 along with tr(Siz) = 0 gives
that for any x € J+, S;(x) = s;j(x)e and tr(K 0 S;) = tr(S; 0 Sj) = 0 for i,j € {1,...,n}. By
skew-symmetry, we deduce that, for j=1,...,n

n

R@)=-) alf)f; and Sj@)=-) s;(ffi

i=1 =1

On the other hand, for any u € .7+,

[e,u] =(K(€),u)e—a(u)

N
|
7
=
==

=1

-

But since ad,, is nilpotent then we must have a(u) = 0 for any u € F+ and thus K = 0. To
sum up, if we put V =span({fy,..., f,} and define D : V. — V by D(u) = Y " (S;(é), u) f;,
then:

[u,v] =(Ku,v)e,u,veV,

[6,u] =(K(é),u)ye+D(u), ueV,
¥, = (e, o)tr(K?)e,
“1H+1H=0 % = L 5]2-

This completes the proof. O]

As an application of Theorem 1.3.1 we recover the following results due to Guediri [18,

Lemma 14 and Theorem 15]:

Corollary 2.4.1. Let g be an Einstein Lorentzian 2-step nilpotent Lie algebra. Then Z(g) is
degenerate and g is Ricci-flat.

Theorem 2.4.2. Let g be a 2-step nilpotent, non-abelian Lie algebra. Then g admits a Ricci-
flat Lorentzian metric if and only if g = R" @ n (a direct sum of Lie algebras) such that n is a
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Lie algebra for which the Lie brackets are expressed in a basis B = {e,zy,...,2p,¢,€1,..., €4} as
follows :

(e e]l=aje+ ) cixzr, [enej]l=ajje, 1<i,j<q, (2.16)

1=

k=1

q q9 P
with ..Zlaizj =2 Zl kzl cizk. Moreover the basis 9B can be chosen Lorentzian, in particular the
i,j= 1= =
restriction of the metric to [g,g] is degenerate.

Proof. Suppose that (g,[, |,{, )) is a 2-step nilpotent Lorentzian, Ricci-flat Lie algebra. By
virtue of Corollary 2.4.1, Z(g) is degenerate and Theorem 1.3.1 implies that g is given by a
process of double extension from a Euclidean vector space V with parameters (K, D, 0, b),

i.e g = Re® Vy®Re where ¢, ¢ are isotropic vectors satisfying (¢,e) = 1 and, for any u,v € V),
[6,u] = D(u)+<{b,uye, [u,v]=(K(u)v)e. (2.17)
Moreover, Proposition 2.4.1 implies that D? = 0 and
KoD+D*oK =0, 2tr(DD*)=—-tr(K?). (2.18)
First, we observe that Im(D) C Z(g) N V. Indeed, given w € g and u € V;; we have that :
[w,Du] =[w,Du+(b,u)e] = [w,[e,u]] = 0.

Write Vi = (Vo N Z(g)) é Wy and VyNZ(g) = Im(D) é S, then S is an abelian Lie subalgebra
of g since it is contained in Z(g) and we have that g = R"@®n with n = Re®@RedIm(D)d W,
moreover using (2.17) we can check that n is a Lie subalgebra of g. Next, let {zy,...,z,} be
a Buclidean basis of Im(D) and let {ey,...,e,} be a Euclidean basis of W,. Write :

D(e;) =

=

cikzk, (b.ej)=a;, (K(e)ej) = ajj.
k=1

Then it follows that :

p
[6,ei] =aje+ Zcikzk, lei,ej]l=ajje, 1<i,j<q.

k=1
Now
q 9 P
tr(K?) = - Z aizj =2tr(DD") = ZZC”‘
i,j=1 i=1 k=1

and we conclude by (2.18). Conversely, for any 2-step nilpotent Lie algebra g =R" &n
satisfying (2.16), the equation Ricy = 0 follows from a straightforward calculation. O]
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2.5 Classification of Einstein Lorentzian nilpotent Lie algebras

of dimension <5

In this section, we give a complete description of the Lorentzian Lie algebras associated
to all Einstein Lorentzian nilpotent Lie groups of dimension < 5. This classification is

based on Theorem 1.3.1 and the following result.

Theorem 2.5.1. Let (g,[, |,{, )) be an Einstein Lorentzian nilpotent Lie algebra of dimension

less than 5. Then the center of g is degenerate.

Proof. We use the classification of nilpotent Lie algebras up to dimension 6 given by [9].
We will also use Corollary 2.4.1 and Proposition 2.3.4.

There is a unique nilpotent Lie algebra in dimension 3 which is L3, and it is 2-step
nilpotent hence we can apply Corollary 2.3.1. In dimension 4, there is two nilpotent Lie
algebras namely L3 , ®R whose center is degenerate by Corollary 2.4.1 and L, 3 whose Lie
bracket is given by

[e1,e2] =e3, [eg,e3] = eq.

It is clear that L 5 satisfies the hypothesis of Proposition 2.3.4. Five dimensional nilpo-

tent Lie algebras can be listed as in Table 2.2.

We can see that apart from Ls ¢ and Ls 7 all the other Lie algebras are either 2-step nilpo-
tent or satisfy the hypothesis of Proposition 2.3.4. Let us now study Ls ¢ and Ls ;.
If we denote by g either Ls ¢ or Ls 7, one can see that

Z(g)C g [9,9]] C[g,9], dimZ(g) =1, dim[g,[g,9]] =2 and dim[g,g]=3.  (2.19)

To complete the proof of the theorem, we will show that if a five dimensional nilpotent
Lie algebra g satisfies (2.19) and have an Einstein Lorentzian metric then its center must
be degenerate.

Let g be a five dimensional Einstein Lorentzian nilpotent Lie algebra satisfying (2.19)
such that its center non-degenerate. First note that according to [6, Theorem 4.3], g must
be Ricci flat. According to Corollary 2.3.1 and Propositions 2.3.1 and 2.3.3, Z(g) must be

Euclidean and [g, g] must be non-degenerate Lorentzian. We distinguish three cases:

1. [g,[g,g]] is non-degenerate Euclidean. It is then possible to choose an orthonormal

basis (1, f2, f3, fa, f5) of g such that [g,g] = span{f;, f4, f5}, [9,[9,9]] = span{fy, fs}, Z(g) =Rfs
and (f3, f3) = —1. So:

[fi, ol =afs+bfs+cfs,[fi, 3l =dfa+xfs,[f1, fal = vfs,
[fo 3l =zfa+tfs,[fo fal = ufs, [f3, fal =vfs, a=#0,(zd)=(0,0).

This bracket satisfies the Jacobi identity if and only if v = 0 and yz—du = 0. The Ricci
operator is given by
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a?—b? -2+ d? + x? —y? dz+xt—-yu zb +ct cu 0
dz+xt-yu a?-b? -2+ 22+t —u? —bd —cx —cy 0
1 2 2 2,242
2 —zb—ct bd +cx —a‘+d+x"+z°+t ab+xy +tu ac
cu —cy —ab—xy—tu b2 —d? —y? - 22 —u? bc—dx—zt
0 0 —ac bc—dx—zt 2 —x?+yp?-+?

Since a # 0 then ¢ = 0 and hence the Ricci operator is given by

a?-b?+d*>+x*-y?  dz+xt-yu zb 0 0
dz+xt—yu a?-b>+z22+12-u? -bd 0 0
1
5 —zb bd —a?+d?>+x?+z22+t2 ab+xy+tu 0
0 0 —ab—xy—tu b2 —d?—y? —z2—u? —dx —zt
0 0 —dx—zt ~x2+y2 -t +u

The couple (z,d) = (0,0) otherwise dim[g, g] < 2, hence b = 0. So

a?+d*+x*-y? dz+xt—yu 0
dz+xt—yu a’+z>+t>—u? 0
1
2 0 0 —a?+d? +x? + 2% + 12
0 0 —Xy—tu
0 0

—dx —zt

0 0
0 0
Xy +tu

—dx—zt

—xz+yz—t2+u2

So we must have Ricg 4 = ~-d?-y?-2z>-u?=0and Ricy, = a’ + 2%+t —u? = 0, but this

implies that a = 0 which is impossible.

2. [g,[9,g]] is nondegenerate Lorentzian. As in the previous case, we can choose an or-
thonormal basis (i, fo. f3, fu, f5) such that (fy, fy) = ~1 and Z(g) = Rf;, [3,[3,a]] = span{ i, fs}

and [g, 9] = span{f;, fy, f5}. So

[f1 fol = afs+bfa+cfs,[fi, sl =dfs+xfs,[fi, fal = vfs,

[fo Bl =zfa+tfs,[fo fal = ufs, [f5 ful =vfs,

a=0,(z,d)=(0,0).

The Jacobi identity is given by bv —ud + yz =av = 0, hence v = 0. Thus the Ricci operator

is given by
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cu

—cy
—ab—xy—tu
2

d?+y?-22 +u

—bc—dx—zt

c2

ac
bc+dx+zt

+x2—y2+t2—u

—a?+ b2 -2 +d? - x? +9? dz—xt+yu —zb +ct
dz—xt+yu —a?+b% -2 +22 -2+ u? bd —cx
1
) —zb+ct bd —cx a?+d?—x*+z% -2
—cu cy ab+xy +tu —b? -
0 0 ac
So we get b = ¢ = 0 and hence The Ricci operator is given by
—a?+d?-x*+y? dz-xt+yu 0 0
dz—xt+yu —a’+z>—t>+u? 0 0
1 2,42 _,2,,2 42
) 0 0 a‘+d°—x"+z-—t —xy —tu
0 0 Xy + tu —-d? +y?-z% +u?
0 0 0 —dx—zt

dx +zt

X2 -y +t2—u

2

Now 0 = Ricj 3 + Ricy 4 + Rics 5 = %az and hence a = 0 which is impossible.

3. [9,[9,9]] is degenerate . Then we can choose a basis (fi, f», f3, f1, f5) such that the metric

in this basis is given by

, 0 1
Dlag(l,l,(l 0],1],
and Z(g) = Rfs, [9,[9,9]] = span{fy, fs} and [g,9] = span{f3, f4, f5}. So

[fi, ol =afs+bfs+cfs,[fi, 3l =dfa+xfs,[f1, fal = vfs,

[fo 3l =z2fa+tfs,[fo fal = ufs, [f3, fal = vfs,

a=0,(z,d)=(0,0).

The Jacobi identity is given by bv — ud + yz = av = 0. Hence v = 0. The Ricci operator is

given by
—~2ab-c?-2xy -yt —xu az+ct cu 0
-yt —xu -2ab-c*-2tu  -cx—ad —cy 0
% cu —cy ab-xy—tu a?>-y>-u? ac
az+ct —cx—ad b2—x>—t> ab-xy—tu bc+dy+zu
0 0 bc+dy +zu ac c2+2xy+2tu

So ¢ =d =z =0 which is impossible.

O]

As a consequence of Theorem 1.3.1 and Theorem 2.5.1, we can give the complete classi-

fication of Ricci flat Lorentzian metrics on nilpotent Lie algebras of dimension < 5. We

will also make use of the following Lemma :

24
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Lemma 2.5.1. Let (V,{, )) be a Euclidean vector space and let K and D be two endomorphisms
of V such that K is skew-symmetric. Then KD + D*K = 0 if and only if there exists a vector
subspace F C V and linear maps D : F — F, D, : F* — F, K, S : F+ — F* where Ky is

skew-symmetric invertible, S symmetric and for any u € V,

Dy (u) if uekF, 0 if uekF,
Du = ) ‘ and Ku = ‘
Dy(u)+ Ky S(u) if ueF+ Ko(u) if ueF*

Proof. Suppose that KD+D*K = 0 and put F = ker K. Obviously D(F) C F, K(F+) C F+ and
the restriction Ky of K to F* is skew-symmetric invertible. Denote by D; the restriction
of D to F and put for any u € F+, Du = D,u + D3u where D,u € F and D3u € F+. Then

0= K(Dzu + D31/l) + D*Ko(u) = KOD3u + D;Ko(u)

Thus KoD3 = S where S : F- — F' is a symmetric endomorphism and D; = K;'S. The

converse is obviously true. O
Theorem 2.5.2. Let (g,[, |,{, )) be a Ricci-flat nilpotent Lie algebra of dimension < 4. Then:

(1) If dimg = 3 then g is isomorphic to (L3 ,(, )3,2) such that (, )3, = ae] Oe;+e;,®¢;
and a > 0. This metric is actually flat.

(ii) If dimg = 4 then g is isomorphic to (La,(, )a,2) with
(,Jap=aej0es+e,®@es+ey®e;+aey ey, a=0,al<1,
orto (Lys,(, )a3) with
(, )43 =¢;®e] +ae;0es+(a’+b%)e, @, +be, 0y +ecs Oy +es®es, a,beR, € = +1.
The metric ., )4 is flat and (, )43 is flat if and only if e = —1.

Proof. Let (g,[, ],{, )) be an Einstein Lorentzian nilpotent non abelian Lie algebra of
dimension < 5. According Theorems 1.3.1 and 2.5.1, g =Re® V ®@R¢, where (V,(, )o) is a

Euclidean vector space. The Lie brackets are given by:
[6,u]=Du+(buyge and [u,v]=(Ku,v)ge, u,veV,

such that b € V, K,D : V — V with K skew-symmetric, D is nilpotent, KD + D*K = 0
and tr(K?) = —2tr(D*D) furthermore the metric (, ) satisfies (, )v =<, )0, e and ¢ are
co-isotropic i.e (¢,€) = 1 and are orthogonal to V.

1. Ifdimg=3and dimV = 1. Then K = D = 0 and the Lie algebra (g, (, )) is isomorphic
to (L32,(, )3,2) where (, )3, = ae] ©e; +¢e;®¢}, and a > 0. This metric is flat.

2. dimg=4and dim V = 2. We distinguish two cases:
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* If K =0then D = 0 and there exists a Lorentzian basis (¢, ¢, f1, f,) of g such that:
[6,fil=ae and [gf]=pe, a=0.
Put
(e1,e,03,e4) = (€8, f1,lale, " (f2 - gfl)),

where € is the sign of a and y = ||f, - §f1||. The Lie algebra (g,(, )) is then
isomorphic to (L ,(, )4,) with the metric:
(, ap=ae]Oez+e;Qe5+e,®ey+ae,Oey, a=0

il

e If K # 0 then, according to Lemma 2.5.1, D = K~1S where S is symmetric.

and a = where ] = g. So |a| < 1.

Since D must be nilpotent then the rank of S is equal to 1 and there exists an
orthonormal basis By = (f1, f,) of V such that the matrices of K, S and D are
given by:

0

M(S,By) = Diag(0,s), M(K,By) = [
a

_ 0 -1
“] and M(D,IB%O):(O SO; ],a>0.

Put ¢ = sa~!. The condition tr(K?) = —2tr(D*D) gives ¢ = ea with € = +1. Thus
the Lie brackets are given by:

(e fil=ve [6fi]=eafi +pe and [fi, fo] = ae.

Put

1=
(e1,e2,e3,64) = (f2,—€a™ e+afy +bfy, f1,—ae)

with a = epa? and b = —eya~2. Then (g, [, ],{, )) is isomorphic to (Ly3,{, )43)-
O

Theorem 2.5.3. Let (g,[, |,{, )) be a Ricci-flat nilpotent Lie algebra of dimension 5. Then g is

isomorphic to one of the following Lie algebras:
(a) (Ls,2,(, )5,2) with
(, )52 = @€l Oes+e;®e5+e, ¢, +esQes+ae,Oe;+beyOes+abe,Oes, a = 0,la| < 1,]b| < 1.
This metric is flat.
(b) (Lsg,{, )s,8) with
(ss = €@ +aci 0 -y e 0+ (b-ayx)ey 0. + (4 + b)e; 03
+x2+p2es®ei+ (1+ (px ))es @ e +x%e @€, (x#0,a,b,y €R).
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(c) (Ls,9,(, )5,9) with

(, )59 = (a® + bz)e{ Qe+ (b —ayx_l)e’{ O, +ae] Oe;+ex2+y? +1e] Oes
(1+@x e ey —yxled Oez+ez®e;+ x2e1®ez. (x#0,a,b,y €R).
(d) (Ls3,(, )53) with
()53 = €;®¢€ +ae{(De}+(a2+bz)e§®e§+be§®e§+(-:\/x2+1e§®efl
+(1+x%)es®e; —xel Ok +es®ek, (x,a,b €R).
(e) (Ls5,(, )551) 0r (Ls5,(, )55,2) with
(V551 = (a2 + bz)ei ®e] + ap’lei o +p(b- ax’ly)e’{ Oey++(x2+p2e] Oes
+p 2@y —x lyes o€ +xPp ey @+ pP (1 + (x'y) ey @),
(x=0,p%0,a,b,y €R)
or
(,)s552 = € @€ +bejoes+(a>+b%)e;®es+aes0e,+eVx2+1e,0e

(1+x%)e;®e; +xpes0e; +p’ey®ey, (p#0,x,abeR).
(f) (Ls,6,(, )s,6) with
(56 = (a2+b%)ej®e) +(b+ax1y)e] O+ pae; O+ ep’[x2 +y2 +1e} Oel

+H1+x2y?)es @e; + uxlye, 0+ ples el + utxle ®e),

u=0,y#0,x=0,a,b,y eR.

Proof. According to Theorems 1.3.1 and (2.5.1), g = Re® V @ Ré, where (V,(, )o) is a

3-dimensional Euclidean vector space. The Lie bracket is given by:
[6,u]=Du+(buyge and [u,v]=(Ku,v)ge, u,veV,

withbe V,K,D:V — V with K skew-symmetric, D is nilpotent such that KD+ D*K =0
and tr(K?) = —2tr(D*D) moreover the metric ( , ) satisfies (, Y =<, )o, e and ¢ are
co-isotropic i.e (¢,€) = 1 and are orthogonal to V.

e If K = D = 0 then there exists a Lorentzian basis (¢,¢, f1, f,, f3) such that:

le.fil = ac, [e.f]= e and [e,fs]=ye, a=0.

Put
(evsexes,enes) = (€6 filale s (o~ E i pg (5= L)),

where € is the sign of a, piy = ||f2_§f1|| and p; = ||f; _%fln. Thus (g,[, ., )) is isomorphic
to (L5,2: < ’ >5’2) with:

(,)sp=ae]Qez+e, e, +ey®ey +e5Qe; +ae,Oey +be; Oes +abey Oes,
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whereaiO,azﬁ,b:\/171_}/12,/51=Eandy1:%.So|a|<1and|b|<1.

o If K #0, Lemma 2.5.1 show that there exists and orthonormal basis By = (f1, f,, f3) of V
in which the matrices of K, S and D are given by:

00 O 0 x
M(S,By) = Diag(0,a), M(K,By)=|0 0 -a| and M(D,By)=|0 0 aa'|, a>0.
0 a O 0 0 0

Put ¢ = aa~!. The condition tr(K?) = —2tr(D*D) gives & = y/x2+y2+c2. Thus the Lie
bracket is given by:

(e fil=ve [& il =xfi+pe [6fs]=yfi+cfa+tPe and [fo, f3]=ae

Puta=-Ba!,b=pa™!,z=aeand z=¢+af, + bf;. We have:

[z fl=ya 'z (& fol=xfi, [Zf]1=pf+cfr and [frfi]=z

Case1: y=0,x=0and c = 0. Then:

[z f]l=xfi and [fofs-yx ' f]=z

Put (e, ep,e3,e4,65) = (fr,é+af, +bf3, f3 —yx‘lfz, —-xfi,ae) Thus (g,[, ],(, )) is isomorphic
to (Ls8,(, )5,8)-
Case 2: y =0, x = 0and c# 0. Then:

[z fl=xfi, [Zfs-yx ' fl=cf, and [frfs-px 'fo]l =z

Put
(e, ez, e3,e5,65) = (T (€+afy +bfr), 5—vx"' fo, o, ¢ xfr, —ae)).

After the change of parameters c!(a, b, x,y) to (a,b,x,v), we get that (g,[, ],{, )) is isomor-

phic to (Ls9,{, )5,9)-
Case 3: y=0,x=0, c=0. Put:

(e1,e,e3,e4,65) = (f3,6+af, +bfs,—fr,—vfi,ae).

Thus (g,{, ],(, )) is isomorphic to (Lsg,(, )s,8) with b =0and y = 0.
Case4: y=0,x=0,c=0. Put:

(e, ez, €3, e0,65) = (f3,¢ (E+afr+bf3),—fo—c 'vfi, ae fi).

After the change of parameters c~(a,b,) to (a,b,y) we get that (g,[, ],{, )) is isomorphic

to (Ls,3,(, )5,3)-
Case 5: v #0. Put g =ay~! f;, then:

[Zg1]=2 [z fHl=xa""yg, [&f]l=ya ' ygi+cfr and [f,f3]=z
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y #0and c = 0. Then (x,y) # (0,0) and we can suppose that x # 0. Then:
Z&1]l=2 [ fol=xa""yg, [Z5-x"'9H]=0 and [fo,fs-x"vfr]=z
Put
(1,2, e3,e4,05) = (e+afp+bfs,x 'ay™ fr,ay™ fi,xa  y(fs-x"'yf),ae) and p=xa'y.

Then (g, [, ],(, ))is isomorphic to(Lss,{, )5,51)-
¥ #0,c#0and x =0. Then:

[Za1]l=z [z f]=pa'ygi +cf, and [f, fi]=z

Put
(e1,e2.e3,e0,05) = (—f,c " (@+af, +bf3), fo+c 'ya ygi, e, ae).
After the change of parameters c’l(a, b,y)to (a,b,x)and p = cay’l we get that (g,{, ],(, ))

is isomorphic to (L5,5,< ) >5’5’2).
¥ #0,c#0and x #0. Then:

[c'zegi]=z2 [z pl=c'xayg, ' fs-x"vhl=f and [fofi-x"vH]=2

Put
(617627 €3, €3, 65) = (_C_l(e_+ afZ + bf2)1f3 - x_lnyI _fZl_Cgll 0(6).
Then
[e1,e2] = e3,[e1,e3] = key, [e1,e4] = e5,[ep, €3] = es.

We can always suppose that k > 0 (otherwise replace e; by —e3 and e, by —e;). We then
put ] = pe; and ¢} = pes, e, = pes and p® = 1. After an adequate change of parameters

one can see that (g,[, ],(, )) is isomorphic to (Ls¢,{, )5,)- O

Example 1.

1. Example of a six dimensional Ricci flat Lorentzian nilpotent Lie algebra with nondegen-

erate center.
[e1,e3] = eq, [e1,e5] = eq, [€2,€3] = —e6,[€2,€4] = €6, [e3,e4] = €1,[e3,e5] =€, and [ey, e5] = e;+e,.
B =(eq,...,eq) is an orthonormal basis with {e1,e1) = —1.

2. Example of a seven dimensional Ricci flat Lorentzian nilpotent Lie algebra with nonde-

generate center.
ler, e3] = \667; [e2, 4] = \66% leg, e5] = —e1, [eq, e6] = —e1, [e3,e5] = —ea, [e3,66] = —e,.
B =(eyq,...,e7) is an orthonormal basis with {e1,e1) = —1.
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3. Example of an eight dimensional Einstein Lorentzian nilpotent Lie algebra with non

vanishing scalar curvature. This example was given in [6].

le1,e2] = —4V3e3, [e), 3] = f% [e1, e4] = —2V3e, [e1,e5] =

7
3\/266!;

61,66 = — 67, 62,63 —65, 62,64 = — —66, 62,6 = — ey,
42 3,/Z 5] =-2V3

[e2,€6] = —4V2es, [e3,e4] = —V21e7, [e3,e5] = —V21eg.

B =(eq,...,eg) is an orthonormal basis with (eg, eg) = —
Lie Algebra | Lie brackets Non Trace-free Derivation
L3,2 [61,62]—63 el®el+€3®€3
Lao [e1,e2] =e3 el®e +e3 ey
Lys [e1,ex] =e3, [e1,e3] = ey 2e°®e,—e' Qe+ ey
L5’2 [e 62]—63 €1®€1+€3®€3
Lss [e1,e2] =e3, [e1,e3] = ey 2e’R®e, -l @e; +e° ey
Lsa [e1,e2] =es, [e3,e4] = e5 el@e +e’®es+e ®es
Lss [e1,e2] =e3, [e1,e3] = s, [e2,e4] = 5 e Qes+2e°Qe, +2e°Res—el ®ey
Lse [e1,ex] =e3, [e1,e3] = ea, [e1,ea] = €5, [en,e3] =e5 | el @e; +2e°®e, + 33 @es +4e* @ey +5e° ®es
L5y [e1,ex] = e3, [e1,e3] = ey, [e1,e4] = €5 el®e —2e°Qe, -’ ®ez+e° Qes
Lsg [e1,e2] = ey, [e1,€3] = e5 el®e; —e’®e,+e°®es
Lso [e1,e2] = e3, [e1,e3] = ey, [€2, €3] = €5 2el®e; —e?@e, +e3®es + 3¢t ®ey

Table 2.1: Table of nilpotent Lie algebras of dimension < 5 with non null trace derivation

Lie algebra g Nonzero commutators

Lsp=L3, ®R? [e1,e2] = e3

Ls3=L43@0R [e1,ex] =e3,[e1,e3]=e4
Lsy [e1,ex] =es,[e3,e4] =5
Lss [e1,ea] =e3,[e1,e3] =e5,[ex e4] = €5
Ls [e1,ex] = e3,[e1,e3] = ey, [e1,e4] = e5,[e2, €3] = e5
Lsz [e1,ex] = e3,[e1,e3] = ey, [e,e4] = €5
Lsg [e1,ex] = ey [e1,e3] = e5
Ls, [e1,ex] = e3,[e1,e3] = ey, [e,e3] = €5

Table 2.2: List of five-dimensional nilpotent Lie algebras
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3

EINSTEIN LORENTZIAN 3-NILPOTENT LIE

GROUPS

3.1 Introduction

The study of left-invariant Einstein Riemannian metrics on Lie groups is a research area
that had made huge progress in the last decades (see [10, 12, 13]). However, the indef-
inite case remains unexplored in comparison and only few significant results had been
published in this matter with many questions that are still open (see [18, 6, 21]).

In [21], the authors began an inspection of Einstein Lorentzian nilpotent Lie algebras
following guidelines from previous studies of the 2-step nilpotent case (see [14] and [18]).
The main Theorem of [21] states that Einstein nilpotent Lie algebras with degenerate
center are exactly Ricci-flat and are obtained by a double extension process starting from
a Euclidean vector space (see [21, Theorem 4.1] and [3] for the original definition of the
double extension). This class of Lie algebras includes all Einstein Lorentzian nilpotent Lie
algebras that are either 2-step or of dimension less than 5, in fact as a concrete application
of the main Theorem, the authors were able to give a full classification of the latter.
Dimension 6 however falls outside the context of this result as the authors presented the
first example in this situation of an Einstein nilpotent Lie algebra with non-degenerate
center, which also happens to be 3-step nilpotent. Einstein nilpotent Lie algebras that are
non Ricci-flat has been shown to exist in the Lorentzian setting (see [6]) and according
to [21, Theorem 4.1] these must have non-degenerate center as well. So the study of
Einstein Lorentzian nilpotent Lie algebras with non-degenerate center becomes a natural
and challenging problem and the present chapter can be seen as a first attempt to find
a general pattern for these Lie algebras. We start by the 3-step nilpotent case and we
develop a new approach which can be used later in the general case. Let us give a brief
summary of our method and state our main result.

Let (I, [, ]) be a k-nilpotent Lie algebra and (, ) an Einstein Lorentzian metric on Iy such
that the center of 1 is non-degenerate. Then Z(i) is non-degenerate Euclidean (see [21])
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and, naturally, we get the orthogonal spitting
L
h=Zh)dg.

The Lie bracket on Iy splits accordingly as [u,v] = w(u,v)+[u,v] for any u,v € g, and it can
be shown that [, ]j is a Lie bracket on g and w : g xg — Z(l1) is a 2-cocycle of the Lie alge-
bra (g,[, Jo). It turns out that (g,[, ]Jo,{, )|gxg) is @ Lorentzian (k — 1)-nilpotent Lie algebra
and the Einstein equation on 1 can be expressed entirely by means of the Lie algebra g as
a sort of compatibility condition between w and the Ricci curvature Ricg of (g,{, )g, [, ]o)
(see Proposition 3.2.2). This shift in perspective is especially useful when the Lie alge-
bra ki is 3-step nilpotent since g is 2-nilpotent and, for instance, we can show that every
Einstein Lorentzian 3-step nilpotent Lie algebra with non-degenerate center has positive
scalar curvature (Theorem 3.2.1). It also gives rise to the notion of w-quasi Einstein Lie al-
gebras (see Definition 3.2.2). A careful study of w-quasi Einstein 2-nilpotent Lie algebras
leads to our main result, namely the classification of Einstein Lorentzian 3-step nilpotent
Lie algebras with 1-dimensional non-degenerate center. Surprisingly enough, these are

shown to only exist in dimensions 6 and 7.

Theorem 3.1.1. Let Iy be a 3-step nilpotent Lie algebra with dimZ(h) = 1. Let (, ) be a
Lorentzian metric on Iy such that Z(h) is non-degenerate, then (, ) is Einstein if and only if it
is Ricci-flat and (1, (, )) has one of the following forms :

(i) dimb = 6 and Iy is isomorphic to Lg 19(=1), i.e., it has a basis (fl-)f:1 such that the non

vanishing Lie brackets are

i, fol = fa LS, 3] = fo, [ fo fal = for U f5, f5] = = o

and the metric is given by :

GY=fiofi+2f0f +2f®ff +4a*fi e ff —2a%f; 0 f:, a=0. (3.1)

(ii) dimly = 7 and Iy is isomorphic to the nilpotent Lie algebras 147E found in the classi-
fication given in [8](p. 57). In precise terms, there exists a basis {f;}/_, of h where the non

vanishing Lie brackets are given by :

[f1, 1= 5 [ 3] = foo U2 3] = far [fo 2l = (A =7)f7, [ fs, f3l = =7 f7, [fa il = fr, (3.2)

with 0 <r <1, and the metric has the form:
(Y=fiefi+f;ef;+fiefi-afiefi+arfi@fi+a(l-nfiefi+a’f;®f;, a>0. (3.3)

Outline We shall adopt the notations and results introduced in Chapter 2 as the content
of this chapter is an extension of the previous study. In Section 3.2, we describe an
Einstein Lorentzian nilpotent Lie algebra i with non-degenerate center by means of its

center, a nilpotent Lorentzian Lie algebra g of lower order, and a 2-cocycle w € Z?(g, Z(h)),
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these are called the attributes of Ii (see Definition 3.2.1). The main result of this section
is Theorem 3.2.1 in which we prove that any Einstein Lorentzian 3-step nilpotent Lie
algebra of non-degenerate center has positive scalar curvature, at the end of the section
we introduce the notion of w-quasi Einstein Lie algebra. The remainder of the chapter
i.e Section 3.3 is then devoted for the proof of the central results. As the reader can
see, the proof of Theorem 3.1.1 turns out to be difficult and it is based on a sequence
of Lemmas (Lemma 3.3.1, 3.3.2 and 3.3.3). This suggests that the complete study of
Einstein Lorentzian nilpotent Lie algebras with nondegenerate center is a challenging

mathematical problem.

3.2 Lorentzian nilpotent Einstein Lie algebras with

nondegenerate center

In [21], we studied Lorentzian nilpotent Einstein Lie algebras with degenerate center
and gave the first example of a Lorentzian 3-step nilpotent Ricci-flat Lie algebra with
non-degenerate center. We also showed that an Einstein Lorentzian nilpotent Lie algebra
with non zero scalar curvature must have a non-degenerate center. A first example of
such algebras was given in [6]. A 2-step nilpotent Einstein Lorentzian Lie algebra must
be Ricci-flat with degenerate center so it is natural to start by studying 3-step nilpotent
Einstein Lorentzian Lie algebras with non-degenerate center which must be Euclidean
according to Corollary 2.3.1.

Any nilpotent Lie algebra can be obtained by Skjelbred-Sund’s method, namely, by an
extension from a nilpotent Lie algebra of lower dimension and a 2-cocycle with values in
a vector space (see [9]). We will adapt this method to our study.

Let (I, {, )y) be a Lorentzian k-step nilpotent Lie algebra of dimension n with non-
degenerate Euclidean center Z(l1) of dimension p > 1. The restriction of (, ) to Z(Iy)
is denoted (, ),, we also set g := Z(I1)* and let (, ), be the restriction of (, ) to g. Then:

1
h=g® Z(h),

where (Z(1),(, ),) is a Euclidean vector space and (g,(, )y) is a Lorentzian vector space.
Moreover, for any u,v € g, we have:

[u,v] = [u,v]y + w(u,v), (3.4)

where [u,v]; € g and w(u,v) € Z(l1). The Jacobi identity applied to [, ] is easily seen
equivalent to (g, [, ]5) being a Lie algebra and w : gxg — Z(l1) a 2-cocycle of g with respect
to the trivial representation of g in Z(ly) (see Appendix A), namely for any u,v,w € g,

w([u,v]yw) + w([v,w]g,u) + w([w, u]y,v) = 0.
The following properties can be derived immediately from (3.4):
Z(g)nkerw={0} and €(b):=[6""'(b)b] =€ (0) + (€' (a)w),  (3.5)
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for any £ € N*. As a result (I, [, ]) is k-step nilpotent if and only if (g, [, ]4) is a (k- 1)-step
nilpotent Lie algebra such that €¥?(g) ¢ ker w.

Definition 3.2.1. Let (I, [, |,{, )y) be a Lorentzian nilpotent Lie algebra with nondegenerate
Euclidean center. We call the triple (g, , lg,(, )g), (Z(h),{, );) and w € Z%(g,Z(h)) the
attributes of (I, [, |,{, Ju)-

We can now proceed to the important step, which is to express the Ricci curvature of I
in terms of its attributes (g,(, )g,[, Ig), (Z(1),{, );) and w € Z?(g,Z(y)). For any u € g, we

consider w,, : g — Z(hi), v — w(u,v) and its transpose wj, : Z(l) — g given by:
(wy (%), v)g = (@ (u,v),X)..
For any x € Z(I1), we define S, : g — g by:
Sx(u) = wy(x). (3.6)

It is clear that S, is skew-symmetric. Recall that, for any u € g, we denote by J, : g— g
the skew-symmetric endomorphism given by J,(v) = ad; (#). On the other hand, define

the endomorphism D : g— g by:
(Du,v)y = tr(wj, o wy). (3.7)

It is clear that D is symmetric with respect to (, );. Let (zy,...,2,) be a basis of Z().
Since (, ) is non-degenerate, there exists a unique family (Sy,...,S,) of skew-symmetric

endomorphisms such that, for any u,v € g,

p
w(u,v) = Z(Siu,wgzi. (3.8)
i=1

This family will be called w-structure endomorphisms associated to (zy,...,2,). A direct

computation using (3.7) and (3.8) shows that

D= —Z<zi,zj>zsios]-. (3.9)
7

This operator has an interesting property.

Proposition 3.2.1. Let (I, [, |,{, )) be a Lorentzian nilpotent Lie algebra with Euclidean
center and attributes (g,[, ]g,(, )q) and w € Z2*(g,Z()). Assume that w satisfies:

w(ad;v,w)+ w(v,ad,w)=0 (3.10)
for any u,v,w € g, then D given in (3.7) is a derivation of (g,[, ],)-
Proof. Since w is a 2-cocycle then Wly,p], = Wy © ad, - w, oad,, thus for any u,v,w € g:
(D[u,v]g,w) = tr(wpy,p), © wy)

=tr(w, oad, o w},) — tr(w, oad, o wy,).
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On the other hand, we get in view of (3.10):

<[Du’v]g’w>g + <[”’Dv]grw>g = _tr(a)ad,",w owy,)+ tr(a)ad;w o wy),

=tr(wy o ad} o w;,) —tr(w,, o ad}, o w}),
This proves the claim ]

Proposition 3.2.2. Let (I, [, |,{, )) be a Lorentzian nilpotent Lie algebra with Euclidean
center and attributes (g,[, ]g,(, )q) and w € Z2(g,Z(1)). Its Ricci curvature ricy is given by:

ricy(u,v) = ricg(u,v) — Etr(w; ow,), U,VEQ,
. 1
ricy(x,v) = —Ztr(Sx 0Sy), xy€Z(h),

1
ricy(u, x) = —Ztr(]u 0S,), xe€Zh),ueg,

where ricy is the Ricci curvature of (g,[, lg,(, )g) and Sy : g —> g is the endomorphism defined
in (3.6).

Proof. According to (1.3), for any a,b €,

ricy(a,b) = —%tr(adg o (adg)*) - %tr( b o]{:),

where adg :h— I, b [a,b] and IBh—n b (adg)*(a). The desired formula will be a
consequence of this one and the following relations. For any u € g, x € Z(Iy), with respect
to the splitting Iy = g® Z(h), we have:

g g
adg:(ad” g] g:(fg ‘0)) I:(% 8] and  ad’ = 0.
wM

The claim is then a matter of simple computation. O]

Corollary 3.2.1. (I [, |,(, )y) is A-Einstein if and only if for any u,v € g and x,y € Z(h),
ricg(u,v) = Au,v)g + %tr(w; owy), tr(J,05,) =0 and tr(S;y0Sy) =-4Mx,p),. (3.11)

Let us derive some consequences of Proposition 3.2.2 and Corollary 3.2.1. In what follows
I will be an Einstein Lorentzian nilpotent Lie algebra with nondegenerate center, we
denote [, ] its Lie bracket, (, ), its Lorentzian product and (g,[, |g,{, )g), (Z(h),{, )2)
and w € Z?(g, Z(h)) its attributes.

Recall that a pseudo-Euclidean Lie algebra (g,[, |,{, )) is called Ricci-soliton if there
exists a constant A € R and derivation D of g such that Ricy = Ald; + D. By combining
Corollary 3.2.1 and Proposition 3.2.1 we get the following result.

Proposition 3.2.3. Let i be an Einstein Lorentzian nilpotent Lie algebra with Euclidean

nondegenerate center. If w satisfies (3.10) then (g,[, lg,{, )q) is Ricci-soliton.
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Proposition 3.2.4. Let Iy be a A-Einstein Lorentzian nilpotent Lie algebra with non-degenerate
center, let g and w be its attributes (cf. Definition 3.2.1). If A # 0 then the cohomology class of
the attribute w is non trivial. In particular, H*(g, Z(k)) # {0}.

Proof. Suppose that there exists a € g such that, for any u,v € g, w(u,v) = —a([u,v],). Fix
an orthonormal basis {ey,...,e,} of g with (ey,e;) = —1. For any x € Z(li), we have :

tr(S3) = (Sxle1), Ds
= (@, (%), Su(e1))g - Z<w;<x> Sxle
=2

= ~(ad;, 0 a"(x), Suler))g + Dadz,. o a’(x), Sx(ei))y

= ~(Jar(x)(€1), Sxle1))g + Z(Ia (ei))g
= _tr(]a*(x) 0 Sy).
By virtue of Corollary 3.2.1, we get that A(x,x), = 0 for any x € Z(I1) and hence A =0. [

Proposition 3.2.5. Let Iy be a A-Einstein Lorentzian nilpotent Lie algebra with non-degenerate
center, denote g and w its attributes (cf. Definition 3.2.1). Then [g,9], is a non-degenerate

Lorentzian subspace of g. Moreover, if i is 3-step nilpotent and A > 0 then Z(g) = [g, 9]

Proof. According to Corollary 2.3.3, [I, i] is non-degenerate Lorentzian and one can easily
see that [g,g]3 = [, b]* Ng. Thus [g,g]y is non-degenerate Euclidean and hence [g,g]; is
non-degenerate Lorentzian.

Suppose now that Iy is 3-step nilpotent. Then g is 2-step nilpotent and so [g,g]; C Z(g).
Let x € Z(g) N [g,9]5- Since ad, = 0 and ], = 0, by virtue of (1.3), Ricg(x) = 0. If A > 0, the
first equation of system (3.11) gives that :

1
0< AMx,x) = —Etr(a); owy):=Q.

Since w is a 2-cocycle, w(Z(g),[g,9]5) = 0 and hence
1 m
Q=-3) (wlxf)wxf)<0
i=1

where {fi,..., fu} is an orthonormal basis of [g,g]y. It follows that x € Z(g) N ker w and
hence x = 0 by virtue of (3.5). Thus Z(g) = [g, g],- O

Theorem 3.2.1. Let h be a A-Einstein Lorentzian 3-step nilpotent Lie algebra with nondegen-

erate center. Then A > 0.
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Proof. According to (3.11), since I is A-Einstein then:
1
Ricy = Aldg + ED and tr(S;0S,) = —4Mx,p),, (3.12)

for any x,y € Z(h), where g and w are the attributes of I (cf. Definition 3.2.1) and S, is the
operator defined in (3.6). By virtue of Proposition 3.2.5, [g,g] is nondegenerate Lorentzian
and hence g = [g,9] ®[g,g]*. We choose an orthonormal basis B = (e, ..., e;) of [g,g] such
that (e, e;)g = —1 and an orthonormal basis By = (zy,...,2,) of Z(l1) and we consider the
Lie structure endomorphisms (J,...,Js) associated to By and given by (2.7) and (Sy,...,S;)

the w-structure endomorphisms associated to B; and given by (3.8).

Since g is 2-step nilpotent then [g,g] C Z(g), hence J;([g,g]) = 0 for any i = 1,...,s. Further-
more, J; is skew-symmetric so it must leave [g,g]* invariant, we shall denote its restriction
to [g,g]* by J; as well. Next, since w is a 2-cocycle then w(Z(g),[g,g]) = 0, hence by virtue
of (3.8) we get that S;([g,9]) C [g,9]* forany i =1,...,p, we denote B; : [g,9] — [g,g]* the
resulting linear map. Since S; is skew-symmetric, then for any u € [g,g]*, S;u = -Bju+D;u
where D; : [g,g]* — [g,g]* is skew-symmetric. Using (1.5), (2.9) and (3.9), we deduce
that (3.12) is equivalent to:

p
1, 125 5 12 )
——]1 + = ]z’ +E B B /\Id[g’g]L.
i=2 i=1

Z<ev >tI’ ]1o]] +2ZB*B = 4/\Id[gg]

i,j=
tr(DiD]-)—Ztr(BiB]-) = —4/\61']‘, l,] = 1,...,p.

(3.13)

By taking the trace of the first two equations and using the third one we obtain that:

th(D?) =—4(2s+m+3p)A, m=diml[g,g]".

But [g,g]* is a Euclidean vector space and D; : [g,g]* — [g,g]* is skew-symmetric and
hence tr(D ) < 0 which completes the proof. O]

To sum up the results of this section, we reduced the study of Einstein Lorentzian k-
step nilpotent Lie algebras to the study of a class of Lorentzian (k — 1)-step nilpotent Lie
algebras endowed with a 2-cocycle with values in a Euclidean vector space, which in some

cases can be Ricci-soliton. It is natural to give a name to this class of Lie algebras.

Definition 3.2.2. A pseudo-Euclidean Lie algebra (g, [, lg,{, )q) will be called w-quasi Ein-
stein of type p if there exists A € R and a 2-cocycle w : g x g — V with values in a Euclidean

vector space (V,{, ),) of dimension p such that ker w N Z(g) = {0} and:
. 1
Ricg = Ald + ED' tr(Sy 0 §y) = —4XKx,p),
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where S, : g — g is the w-structure endomorphism corresponding to x € V i.e (3.6) and D is
the linear operator given by:

(Du,v)y = tr(w}, o w,)

such that w, :g— V, v w(u,v).

3.3 Type 1 quasi-Einstein Lorentzian 2-nilpotent Lie algebras

In this section, having in mind Proposition 3.2.5 and Theorem 3.2.1, we give a complete
description of w-quasi Einstein Lorentzian 2-step nilpotent Lie algebras of type 1 with
non-degenerate Lorentzian derived ideal and Einstein constant A > 0 as an important
step towards the determination of Einstein Lorentzian 3-step nilpotent Lie algebras with
nondegenerate 1-dimensional center.

Let (g,[, ]g.{, )g) be a 2-step nilpotent Lie algebra such that Z(g) = [g, g] is non-degenerate
Lorentzian. Put n = dim[g,g] and m = dim|[g, g]*.

Suppose that g is w-quasi Einstein of type 1 with Einstein constant A > 0. Denote S: g — g
the skew-symmetric endomorphism given by w(u,v) = (Su,v),. Since w is a 2-cocycle
and [g,g] C Z(g) then S([g,g]) C [g,9]*, this gives rise to a linear map B: [g,9] — [g,9]*.
The condition Z(g) Nker w = {0} implies that B is injective. On the other hand, the skew-
symmetry of S gives that, for any u € [g,g]*, Su = —B*u + Lu where L is a skew-symmetric
endomorphism of [g,g]*. Now consider the endomorphism D associated to w and given
by formula (3.7). According to (3.9), D = —-S? and hence

B*Bu — LBu if u € [g,g],
B*Lu + BB*u — L?u if u € [g,g]*.

Du =

The fact that g is w-quasi Einstein is equivalent to
15 + 1; Lo, (8?)=—-41 (3.14)
—— -$H-=-D= , tr =—4), .
271747 2 9

where, by virtue of (1.5), Ricy = —%}1 + %32.

Let us proceed now to a crucial step which is not possible to perform when w has its
values in a vector space of dimension > 2.

We consider the symmetric endomorphism on [g, g] given by A = B*B. Since B is injective
and [g,g]* is non-degenerate Euclidean, we have (Au,u); > 0 for any u € g\ {0}. There
are only two categories of nondiagonalizable symmetric endomorphisms on a Lorentzian
vector space (see Appendix B, Theorem B.4.2). Those which have an isotropic eigenvector
or those which have two linearly orthogonal vectors (e, f) such that (e,e) =1, (f, f) =-1
with T(e) =ae—bf and T(f) = be+af. The fact that A is positive definite prevents it to
be of these types and hence A is diagonalizable in an orthonormal basis B; = (ey,...,e;)
of [g,g] such that {(e;,e;)g = 1. Let (Jy,...,],) be the structure endomorphisms associated
to B;. Note that the J; vanishes on [g,g] C Z(g) and hence leaves invariant [g,g]*. We
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denote the restriction of J; to [g,g]* by J; as well. Using (1.5) and (2.9), we get that (3.14)

is equivalent to:

1 2 1 - 2 1 2 *
—SJi+ 5 ) JP+5(L7 ~BB') = Mdjgqp,
j=2

n
—-2B*'B- Z(ei, utr(Ji oJj)ej = 4A1d[g g,
i,j=1
tr(L?) - 2tr(BB*) = -4,

(3.15)

LB=0.

Taking the trace of the first two equations and using the the third equation of (3.15) we
get that :
tr(L?) = —4(2n+m+3)), n=dim[g,g], m = dim[g,g]*.

When m =n, B: [g,g9] — [g,9]* is an isomorphism, therefore LB = 0 leads to L = 0 and by

the previous equation A = O We will show that this fact is still true in the general setting.

Put By = (f1,...,fu) = (|B ey é(g” |) which is obviously an orthonormal basis of Im(B ).

Since LB = 0, L vanishes on Im( ) and leaves invariant Im(B)+ = ker BB*. Thus L(f;) =

and there exists an orthonormal basis B3 = (g1, h1,...,9, Iy P1,--.,ps) of ker BB* such that

L(gi) = pihi, L(h;) = —pigi, L(pj) =

The basis B; consists of eigenvectors of B*B and hence the second relation in (3.15) is

equivalent to
. 1 . .
B*B(e;) = —(2/\+ E(ei,ei>gtr(]i2))ei, tr(JioJ;)=0,4,j=1,...,n,j=i.
On the other hand, we also have,
B(f) = (2/\+ (eirer)gtr(J; )ﬁ, i=1,..,n (3.16)

Summing up the above remarks, if M; denotes the matrix of the restriction of J; to [g,g]*
in the basis B, UBj3 then (3.14) implies that

M2 ZMk _Dlag(——tr(Ml) tr(M2),.. %tr(M,f),—(zmy%),...,—(zmyf),—zA,...,—zA).
k=2
(3.17)

To study this equation, we need matrix analysis of Hermitian square matrices (see [20]).
Let us recall one of the main theorems of this theory. A m x m Hermitian matrix A has

real eigenvalues which can be ordered
A(A) <. < A,(A).
Theorem 3.3.1 ([20]). Let A, B € M,,(C) be two Hermitian matrices. Then forall 1 <k <m:
Ak(A)+ A1 (B) < Ap(A+ B) < A(A) + A,,u(B).
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Based on this theorem, the following lemma is a breakthrough in our study.

Lemma 3.3.1. Let My,..., M, be a family of skew-symmetric m x m matrices with 2 <n <m

and let (vy,...,v,,_,) be a family of nonpositive real numbers such that :

n
. 1 1 1
_ ZMIZ = D1ag(—5tr(M12), Etr(M%),..., Etr(M,%),vl,...,vm_n). (3.18)
1=2

Then

W1y V) = (0,10, 0), Ay [ZMZZ] - ZA1<M,2).

Moreover, for any i € {2,...,n}, rank(M;) < 2.

Proof. Denote by M the right-hand side of equation (3.18). By taking the trace of (3.18)

we get :
m n

Ztr Z”l <0. (3.19)

1:1
Fori=1,...,n, M12 is the square of a skew-symmetric matrix so its eigenvalues are real

non-positive and satisfies:

Mo (M2) = Agy(M2), ke{l[%]} (3.20)

Clearly —%tr(Mlz) is the only non-negative eigenvalue of M and thus A,,(M) = —%tr(Mlz).
Theorem 3.3.1 applied to (3.18) gives that:

A, (M +/\1[ZMI)</\ (M2) < A,y (M) + A (ZW] (3.21)

1=2

a b

and
A (M) + )4 [ZMﬁ] < A1 (M2) € Aoy (M) + Ay, [ZM,Z). (3.22)
1=2

c d

Suppose that m is odd. In this case A,,(M7) = 0 and, by applying Theorem 3.3.1 induc-
tively and using (3.20), we get that :

% ) tr(MP) < % Y (M) + 1 (MP) = Y A (MP) < Ay [ZMf)-
1=2 =2

l:2 l:2

As a consequence of this inequality and the fact that A,,(M) = —%tr(Mlz), we get

3.21)
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This combined with (3.19) gives that (vy,...,v,,_,) = (0,...,0). Suppose now that m is even.
In this case, /\m_l(Mlz) = /\m(Mlz) and it follows from (3.21) and (3.22) that [a,b]N[c,d] = 0.
But, we have obviously that ¢ <a and d < b therefore a < d. Thus

Am(M)+A1[ZMf]s /\m_l(M)+/\m[ZMl2]. (3.23)
=2

1=2
Since A,,(M) = —ltr(M2) then by using (3.19) we get that

+)\1[ZMI]:——Ztr (M) —% +)\1[ng].

On the other hand, Theorem 3.3.1 once more shows that A,,(Y.[", M?) <Y [, A,,(M}) <0,
moreover A, 1(M) <0, so (3.23) implies that:

_Z Ztr (M?) _%mz +/\1[iM12]$0, (3.24)
i=1

m—

i=1

n

n
Theorem 3.3.1 also implies that A; [Z{Ml2 > /\1(M12) and hence:
1=2 1=2

1m n 1 n 1m—n n
2 2 2
RGN Ml[ZMl] s Y oLy ()
i=1 = 1=2 i=1 1=2
1 n m 1”’!—” n
2 2
> —5) ) MMD =3 ) wit) M)
1=2 k=1 -1 1=

3

—n

1
> - /\Zk—l(Mlz)_gZViZ

1=2 k=2 i

o

Il
—_

Again we get that v; = 0 for all 1 <i <m —n. To conclude, without any assumption on m,

equation (3.21) gives:

0> A, +)\1(ZM1]

_%tr(Mf) + A (ZM,Z]

1=2

_ %itr(M?)ul[iMf]
= Al[ZM,]——ZZAk M;)

2 k=1
m

_ AI[ZM,] > noef)- 133 o

2 k=3

As aresult Ay ()}, M ) Y, (M )and A (M ) Oforallk=3,...,mand [ =2,...,n,
which completes the proof. ]
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If we apply this lemma to our study, we get that A =0, L =0 and (J,,...,J,) have rank 2 and
satisfy A;(Y7, ]iz) Y, M 2). The following lemma will give us a precise description
of the endomorphisms (J,,...,],).

Lemma 3.3.2. Let V be an m-dimensional Euclidean vector space and Ky,...,K,,: V — V be

skew-symmetric endomorphisms with n < m. Assume that rank(K;) = 2 and tr(K; o K;) = 0 for

n n
=) A(K?) with K:=) K2
i=1 i=1
Then we can find an orthonormal basis {uy,..., U, v1,...,Vy_p_1} such that forall 1 <i,j <n
andall1<I<m-n-1:

all i # j and that:

Ki(ug) = aju;, Ki(uj) = -o;ja;uq and Kj(v;)=0.

Proof. Consider E :=ker(K — A1 (K)Idy) and denote E; := Im(K;), for all i = 1,...,n. Note
that E; is a 2-plane and there exists a a; € R\ {0} such that for any u € E;, Kl.z(u) = —aizu
and /\1(Ki2) = —aiz. We claim that E ¢ (., E;. Indeed, let u € E and for eachi=1,...,n

choose an orthonormal basis (e;, f;) of E; and write:

u={ueye;+{ufi)fi+v; and v;€E .
Since A (K) = —a? —...— a2, we get

n

=) @l (uuy=(K*(u) u)—Z(K2

i=1
But Kl.z(u) = —aiz((u,ei)ei +(u, f;)f;) and hence
(K7 (u),uy = —a} ((u, e)” +(u, £)?).
So
0= ) a(u =G~ £ = ) a2, =0
i=1 i=1

Thus vy,...,v, = 0 and the claim follows.

Choose uj € E such that (ug,uy) = 1. Then clearly (1, K;(1)) is an orthogonal basis
of E;. Complete this basis in order to get an orthonormal basis (ug,u;, f1,..., fy_2) of V

with u; = K;(ug). We have K;(fy) =0 for k =1,...,m—2 and hence for i,j € {1,...,n}

1
IK; (140)
such that i = j:

0 = tr(K; o Kj) = =(K(up), K (ug)) — (Kj(u;), K (u;))
2

IK( )

a?
= ( m)(K (u9), Ki(up))-

= ~(K;(1t0), Ki(1ug)) + o (K (1), )

So the family (ug, K (ug),...,K,(ug)) is orthogonal, we orthonormalize it and complete it
to get the desired basis. O]
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The relevance of the following lemma will appear later.

Lemma 3.3.3. Consider the following system of matrix equations on R?K :

(3.25)

K2=PlAP+A
aK=AP-P1A

where K is an invertible skew-symmetric matrix, P an orthogonal matrix, A = diag(—a%, e, —agk)

with a; 20 and a = +, /alz +eeet a%k. Then k = 1, in which case we get that :

2 2 2 —

— 0 0 ew/a +a 0

A:( % 2], K = L 2 and Pz( e ], €=+1.
0 —a; —ewlalz+a§ 0

Proof. To prove the Lemma we reason by contradiction and assume that (K,A,P) is a
solution of (3.25) and k > 1. To get a contradiction, we prove first that K> and A commute
and hence A and P~' AP commute as well.

Let A; <... < A, <0 be the different eigenvalues of K? and E,...,E, the corresponding

vector eigenspaces. Since K is skew-symmetric invertible and tr(K?) = —2a?, we have:

.
Rk = Ei®...®E, dimE; =2p; and ZZPi/\i =-2a°. (3.27)
i=1

According to (3.25), P"'AP + A and AP — P! A commutes and hence:
AP +P HA=P AP +PHAP.
Moreover the first equation of system (3.25) implies that:
K*=P'A’P+A%>+ AP"'AP + P"'APA
and the second equation of (3.25) along with the preceding remarks give that:

APAP+P'AP'A-A?2-pP7lA%P

= APAP+P 'APT'A+AP'AP + PT'APA-K*
= (AP+AP Y)AP+P'A(P'A+PA)-K*

= AP+P YHYAP+P'A(P'+P)A-K*

= AP+P HAP+P)-K™

a2K2

Therefore we get that K2(K? + a?Id) = A(P + P~')A(P + P~!) which leads to:
AT'K2(K? +a’1d) = (P+ P HA(P+ P7Y). (3.28)

But P! = P! and the endomorphism at the right hand side of the previous equality is
symmetric. This implies that A~! and therefore A commutes with K?(K? + a?1d).
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We now show that A commutes with K2. If K2 is proportional to Id this is obviously true.
Suppose that K2 has at least two distinct eigenvalues, i.e., r > 2. For any i,j € {1,...,7} and

for any v € E;,w € E;, we have:

(AK*(K? + a?1d)(v), w) = A;(A; + a®)(Av, w)
= (K?*(K? + a’1d)A(v), w)
= (K?*(K? + a’1d)w, A(v))
= Aj(Aj +a®)(Av,w).
Thus (A; = Aj)(A; + A + a?)(Av,w) = 0. But from (3.27), we get:
204+ +a?) = —2(p; — 1)A; —2(p; — 1) — 2 Z piA > 0.
Ii,l]

If k > 2 then the last two relations implies that (A(E;), E;) = 0 for i # j and hence A(E;) = E;
fori=1,...,7. So A commutes with K2.

If k =2 then r = 2, dimE; = dimE, = 2 and A; + A, = —a?. From R* = E; ® E, one can
deduce easily that K?(K? + @%Id) = —1; A,Id and by replacing in (3.28) we get:

AP+P Y =-A A (P+PH 1AL,
Now for any u € R?* we get that:
0= (A(P+P~1)(u), (P+P ") (1)) = Ay Ap((P+P~) LA™ (u), (P+P~1) (1)) = = A1 Ap(A™ (1), u) 2 0,

this means that (A~!(u), u) = 0 which is impossible since A is negative definite.
In conclusion A commutes with K? and hence A commutes with P"'AP so that there
exists an orthonormal basis {vy,..., v} of R* in which both A and P~'AP are diagonal.

For any i € {1,..., 2k} we can therefore write:
AVZ' = —aizvi and P_lAP(vi) = —ag(i)vi
for some permutation o of {1,...,2k}. The second equation of (3.25) gives that:

aK(v;) = AP(v;) - P ' A(v;) = —a?

2P+ a?Pl(v;),

foranyie{l,...,2k}. Thus:
a®(K(v;), K(vy)) = aj ;) + aff =22 a (P (v;), vy). (3.29)

Assume that o (i) = i for some i € {1,...,2k}. It follows from the first equation of (3.25)
that —2ai2 should be an eigenvalue of K? and so it must have multiplicity greater than 2,
but since k > 1 we deduce that tr(K?) < —40(1-2. On the other hand, equation (3.29) and the
first equation of (3.25) imply that:

a*(K(v;),K(v;)) = 2a}(1 = (P*(v;),v;)) and —(K(v;),K(v;)) = (K*(v;),v;) = —2a}.
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Combining these equations we obtain that a? = aiz(l—(Pz(vi), v;)) and the Cauchy-Schwarz
inequality [(P?(v;),v;)| < ||vill [IP?v;||= 1 implies that 0 < 1 —(P?(v;),v;) < 2 which in turn
gives that 0 < a® < 2a-2 Finally using that tr(K?) = —2a? we conclude that —40(1-2 <tr(K?),

and we get a contradiction. Thus o(i) =i foralli=1,...,2k.

From Z(K(Vi):K(Vi» = —tr(K?) = 2a? and equation (3.29) we get:

2a* —2Za —2Za a?(P2(v;),v;).
Now:
ot =) at=(af+..+a) Za
oy

i#]
2k
2.2
=) afalyt ) afa:
i=1 j#i,j=o(i
So we obtain that:
2k
2.2 2 .2 2
0< Z aja;=-) a; ag(i)((P (v;),v;)+1)<0,
j=i,o(i) i=1

the right hand side of the previous equality is negative as a consequence of the Cauchy-
Schwarz inequality [{P?(v;), v;)| < |[v;]| ||P?v;]|= 1 which implies that 0 < (P?(v;),v;)+1 < 2.

Thus Z aiza]z = 0, but this contradicts the fact that A is invertible. We conclude
j#i,0(i)
that k = 1 and in this case we can put:

A —af 0 K 0 B 4= cos(6) —sin(0)
1o —a% ’ B 0 an B sin(@)  cos(6) |

We get that system (3.25) is equivalent to :

0

B2 - af - (af cos?(0) + a% sin%(6))
B2 - a% - (af sin%(0) + a% cos?(0)) =0

cos O'sin 6(0(% - alz) =0

+BJa? + a3 —(a? +a3)sin0 = 0.

By summing over the first two equations in the previous system and replacing in the last

equation we obtain that = €, /a% + a%, sin@ = +¢ and cos 0 = 0 with € = +1, which ends
the proof. O]
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We are now in possession of all the necessary ingredients to characterize w-quasi Einstein
Lorentzian 2-step nilpotent Lie algebras of type 1 as a key step towards the proof of
Theorem 3.1.1.

Theorem 3.3.2. Let (g,[, |,{, )) be a Lorentzian 2-step nilpotent Lie algebra then suppose
that Z(g) = [g,9] is non-degenerate Lorentzian and let w € Z*(g,R). Then g is w-quasi Einstein
of type 1 with positive Einstein constant A if and only if A = 0 and, up to a Lie algebra

isomorphism, (g,[, ],{, ), w) has one of the following forms :

1. dimg = 5 and there exists an orthonormal basis {ey, e, uy, 1y, usz} of g with (ey,e;) = -1

such that the non vanishing Lie brackets and w-products are given by :

[y, ur] = aey, [uy,us] = xaey, w(ey, usz) = €a, wle,u;)=Fea, a=0,e==l1.
(3.30)

2. dimg = 6 and there exists an orthonormal basis {e|, e, e3, 11, uy,usz} of g, {e1,e1) = -1,
such that the non-vanishing Lie brackets and w-products are given by :

Uy, Us] = agey, [ug, uz] = azes, [up, uz] = eaey,
[u1,u2] = azes, [u1,u3] = ases, [up, us3) 1 (3.31)
w(ey, uz) = Feay, wles, uy) = xeas, wley, uy) = +a,

where ay, a3 #0, € = +1 and a = ,/a% + a%.

Proof. We keep the notations from the beginning of section 3.3. The structure endomor-
phisms (/,,...,],) have been shown to satisfy the hypothesis of Lemma 3.3.2, therefore
we can find an orthonormal basis (11, us,..., U,,v1,...,Vy_y) of [g,9]* and (ay,...,a,) € R"
such that, forall 2<i,j<mandall 1 <k <m-—n:

Ji(uy) = aju;, Ji(uj) = =6;jauy, a;#0 and  Ji(vg) = 0.
Put]=)",J? itisclear thatforall2<i<nandall1 <k <m-n:

J(uy) = —(@3+...+al)uy, J(u;) = —atu;, J(vp) = 0, tr(J}) = =2(a3+...+a}) and tr(J?)=-2a7.

(3.32)
Consider B, = (fi,..., fy) := (@—2;',..., éi:; ) By virtue of equation (3.17), we get that for
any i =2,...,nand any v € {fi,..., f,}*:

() =10 - 50D R = 1)+ 500D and B@)-J@)=0.  (333)
Since A¢(J) = %tr(]lz), we deduce that:

Jitf (A ==Jh) fy+ M) <0

and hence:

Ji(fi)=0 and J(f1)=A()fi-
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But (3.32) shows that the multiplicity of A;(]) is equal to one and hence f; = +u;. Let us
show that the restriction of J; to fi" is invertible. We have from (3.15) that:

Jt=]-BB

and from (3.16) the restriction of BB* to f;~ is positive so if u € f{" and J;u = 0 we get:
n
Ui Jiu)+ (BB (), u) = 0
i=2

therefore u € N!_, kerJ; = Z(g) = [g,9] and so u = 0. It follows that J; : f;* — f;* is invert-
ible and thus m must be odd. In view of the last equation of (3.33) along with the fact
that f; = +u;, we obtain that ]f({fl,...,fn}L) C span{uy,...,u,}, the preceding remark then
leadstom—-n<n-1thusm<2n-1.

For convenience we set w; := B(e;) for i = 1,...,n. From (3.16) we get:
1, - .
(w;, w;) = —Etr(]l- ) and (w;w;)=0,i=#]j.

So

BB'(x) = —(a + -+ ap)x up)uy + ) (xwiyw;. (3.34)
i=2

The fact that B defines a 2-cocycle is equivalent to:

n

Z((]i”:v>wi +(wj, u)]jv—(w;,v);u) =0, u,velggl"

i=1
If we apply this equation to u = u; we get:

n

(wy,u)jv=- Z(“i(”irv>wi —a{w;, v)u;).

i=2

From the definition of w; we get that (wy,u;) = £ /a% +---+ a2 and therefore the previous

equation gives that:
1 n
J1 :i—z Zaiui/\wi. (3.35)

as+...+aji=2

Actually this is equivalent to B being a 2-cocycle. The expression of BB* given in (3.34)

leads to:

(ow;w;. (3.36)
2

1

q

2 2 2 2

Ji - E Ji = (a5 +...+ay){xuu; —
i=2

n
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1

Put @ = + ——=—=. Equation (3.35) on the other hand gives that:
Vai+..+al

n
3
Jiwy = aaju;—a Z%(Mi,wz)wi;
i=2

n
Jiuy = —aoqyw; +a Z“i(wi: upu;,
i=2

n
]ﬂ/k = aZai<wi,vk)u,~, (337)
i=2
Now using (3.36) and then (3.37), it is straightforward to check that:

n n n
2 2 2 2 2
Jivive) =— Z(wiww = azai<wi:7’k><]1uiyvk> =-a Z.ai (wi, vi)*.
=2 im2 =2

So we conclude that:
n

Z(l —aa?)w;,v)? = 0.

1=2
Thus either n =2 or n >3 and (w;,vx) =0fori=1,...,nand vy = 1,...,m—n. So we get
that either n =2 or n >3 and m = n.
For n = 2, we have m = 3, (e, e;) is an orthonormal basis of [g,g] such that (e;,e;) = -1

and (uq, u,,v) is an orthonormal basis of g, g]+, moreover B(e;) = auy, B(ey) = bv.

0 —-a O 0 0 0
o=l a 0 0 and Ji=buyAv=|0 0 b and a’>=b?=a>
0 0 O 0 -b 0

This automatically leads to (3.30). For n > 3, we have n = m = 2k + 1. Recall that:

. . 1
] ;UAu),weu woelpal

(B(u),v), wuelgagl velggl*
0, otherwise

0, otherwise

From what have been shown so far, the only Lie brackets of g that do not automatically

vanish are:
[, u;] = (Ji(ur),u;)e; = aje; and [u,ui] = (Ji(u;), ujey := Bijer,

for 2 <i,j < n, furthermore since J; is invertible on u;" it follows that K := (Bij)ij is a
skew-symmetric invertible matrix. On the other hand, put P(f;) := u; for 2 <i < m then
it is clear that P := (Pij)ij is an orthogonal matrix, and a straightforward computation
shows that (B(e;), u;) = (B(ei),P(fj)> = €;pjia; with €; = 1, note that P = (¢;p;;); ; is an
orthogonal matrix as well. Next since f; = u; we get that:

(B(ey),up) = im.
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Finally in these notations notice that J — Y /" ,J? = ~BB" is equivalent to K> = P! AP + A
with A = diag(—a%,...,—a%) and the cocycle condition gg(B([u,v]),w) = 0 is equivalent to
the equation +aK = AP — P"'A where @ = \/a3 +--- + a;. This is exactly the situation of
Lemma 3.3.3 and consequently k = 1, i.e n = m = 3 which means dimg = 6, furthermore
in view of (3.26) we get that the Lie algebra structure of g is given by (3.31). This ends
the proof. O]

Following the discussion of section 3.3 we get as a consequence of the preceding The-
orem that a Lorentzian 3-step nilpotent Lie algebras (I1,( , )) with non-degenerate 1-
dimensional center is Einstein if and only if it is Ricci-flat and has one of the following

forms :

1. Either dimh = 6 in which case dim[f, ] = codim[f, ] = 3 and there exists an or-
thonormal basis {x, e, e;, 1y, up,u3} of I with (e;,e;) = —1 such that the Lie algebra

structure is given by :

[ug,ur] = aey, [up,uz] = +aey, [ep,uz] = ax, [e;, u1]=Fax, a=0. (3.38)

[y, ur] = aey, [up,uz] = +aey, [ey uz]=—-ax, [e;,u1]=+ax, a=0. (3.39)

2. dimf = 7 in which case dim[l, ] = codim[ly, ] + 1 = 4. Moreover there exists an
orthonormal basis {x, eq, e, €3, 11, Uy, U3} of 1 such that {e;,e;) = —1 and in which the

Lie algebra structure is given by :

[u,uz] = azey, [uy,us] = azes, [uy, uz] = eaey, ey, u3] = Feayx,

where a = 1/&% + a%.

Proof of Main Theorem. In case 1, the Lie algebra structure [, | of i has one of the forms
given by either (3.38) or (3.39). It is clear that (3.39) can be obtained from (3.38) by
replacing u3 with —us3, for this reason it suffices to treat the case where 1 is given by (3.38).

[es, up] = xeasx, [eq, u] = xax (3.40)

If we now put:
fi=uy h=us+uy, fs=us—uy, fo = tae; —aey, fs = +ae; +aey, fo=2a’x.
Then we can easily see that:
1,2l = far L1 3] = f5, [f2 fal = foo 130 f51 = e

(f2. 3] =fi, fal = [, 5] = [ fo f5] = [ f3 fal = [fa f5] = [fis 6] = 0.

Thus = Lg 19(—1) and the metric (, ) is represented in the basis {f},..., f¢} of Iy by the
expression (3.1). For case 2, when 1 is given by (3.40) we can put:

/ )
fii=uy, fri=up, fs = us, fa 1= €4Jad + adey, f5 = agey, fo = ases, fr1=+e(as +aj),
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2
then the Lie algebra i is given by (3.2) with r = %. Moreover if we set a = a3 + a2 then

2ta;

we get that (, ) is given by (3.3). O

We end our chapter by some examples of Einstein Lorentzian nilpotent Lie algebras with
non-degenerate center of dimension greater that one, the goal is to illustrate that such
Lie algebras do occur even in the 3-step nilpotent case. This gives motivation for a future

investigation.

Example 2. Let i be the 8-dimensional nilpotent Lie algebra with Lie bracket [, | given in a
basis B = {ey,...,eg} by :

5 7
le1, €] = —4V3e3, [e), 3] = \/;% le1, e4] = —2V/3eg, [e1,e5] = 3\/;6'6'

5 7
[e1,e6] = —4V2e7, [e3, €3] = _\/;ESr [e2,e4] = —3\/;% [e2,e5] = —23e7,
[e2,e6] = —4V2es, [e3,e4] = —V21e7, [e3,e5] = —V21es.

One can define a Lorentzian inner product {, ) on It by requiring B to be an orthonormal basis

with (eg,eq) = —1. Then it is easy to see that Z(Iy) = span{e;, eg} hence non-degenerate with
respect to (, ). Moreover a straightforward computation shows that (Ii,(, )) is Einstein with

nonvanishing scalar curvature. This example was first given in [6].

Example 3. Let (, ) be a Lorentzian metric on R” and {ey,...,e;} an orthonormal basis with
respect to (, ) such that {(ey,e;) = —1. Define the Lie bracket [, | by setting :

le1, e3] = ‘/_37: le2,€4] = ‘/537: les, e5] = —e1, [eq, €6] = —€1,

[es,e5] = —ey, [e3,66] = —€5.

Put r:= (R7,[, ]), then it is straightforward to check that (11, {, )) is a Ricci-flat 3-step nilpotent

Lie algebra with Z(ly) = span{ey, e5 — e}, therefore It has non-degenerate center.

Example 4. Let {, ) be a Lorentzian metric on R'® and {ey,...,e o} an orthonormal basis with
respect to {, ) such that {(es,es) = —1. Choose p,r € R such that p,r = 0 and define on R1° the
Lie bracket [, | given by :

ler,e3] = —/p? +12e5, [e1, e4] = —\/p? +12eq, [er,e4] = —\/p? +1%e5, [e2, €3] = —/p? + 12¢g,
[es,e1] = pey, [es,ex] = peg, [es,e3] =rey, [es,e4] =rejg
[es,e1] = pes, [eq,e2] = pey, [eg e3] =reyq, [eg es] =req.

Put Iy := (R19,[, ]), then it is straightforward to check that (i,{ , )) is a Ricci-flat 3-step

nilpotent Lie algebra with Z(I1) = span{ey, eg, €9, €19}, therefore Ir has non-degenerate center.
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A

GENERALITIES ON LIE ALGEBRAS

A.1 Lie algebras and Lie groups

A.1.1 Lie algebras

Recall that a real Lie algebra is any real vector space g endowed with a skew-symmetric

bilinear map [, |:gxg— g, (4, v) — [u,v] satisfying for any u,v,w € g:
[[w,v],w]+[[w,ul,v]+[[v,w],u] =0 (Jacobi Identity).

We shall use the term Lie algebra in order to refer to real Lie algebras. We say that a Lie

algebra g is finite-dimensional when its underlying vector space is finite-dimensional.

Example 5.

1. Let V be an arbitrary (real) vector space and let End(V') denote the set of all endomor-
phisms of V. Given u,v € End(V), define:

[u,v]:=uov—-vou.

It is then straightforward to check that [, | : End(V)xEnd(V) — End(V) defines a Lie
bracket on End(V). Furthermore (End(V),[, ) is a finite-dimensional Lie algebra if and
only if V is a finite-dimensional vector space. When its Lie algebra structure is taken into
account, the notation gl(V) is used instead of End(V).

2. Let M be a smooth manifold let X (M) be the vector space of smooth vector fields on M. Re-
call that vector fields can be identified with derivations of €*°(M). For any X,Y € X (M),
let [X, Y] be the vector field on M given as a derivation of €*°(M) by the expression:

[X, Y](f) := X(Y(f)) - Y(X(f))

for any f € € (M). One can easily check using local coordinate systems that the oper-
ation [, |: X(M)x X(M) — X (M) defines a Lie bracket on X (M). Moreover, the Lie
algebra (X(M),[, ]) is infinite dimensional whenever dim M > 0.
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Let g be a Lie algebra and consider a vector subspace h C g. We say that Iy is a Lie
subalgebra of g if it satisfies [u,v] € It for any u,v € 1. We say that Iy is an ideal of the Lie
algebra g if for any u € g and any v € i we have that [u,v] € b

Example 6.

1. Let (g,[ , ]|) be any Lie algebra. Denote [g,q] := span{[u,v], u,v € g} i.e the vector
subspace of g spanned by all the Lie brackets. It is easy to see that [g,g] is an ideal of g, it
is called the derived ideal of g. On the other hand, if we set:

Z(g)={ueg, [u,v]=0, forallv e g},

then Z(g) is an ideal of g, called the center of g. Finally any vector subspace of g either
containing [g,q] or contained in Z(g) is itself an ideal of g

2. Let V be a finite-dimensional vector space and (, ): V x V — R be a non-degenerate
inner product (see Appendix B). Let so(V,(, )) be the vector subspace of gl(V') consisting
of all endomorphisms u : V. — V satisfying

<u(x)' y> = —(x, ”(?))y

forall x,y € V i.e u is skew-symmetric with respect to (, ). One can check that so(V,(, ))
is a Lie subalgebra of gl(V).

Let (g1,[, ]1) and (g,,[, ]») be arbitrary Lie algebras. A linear map ¢ : g; — g, is called
a Lie algebra homomorphism if it satisfies that ¢@[u,v]; = [¢(u), @(v)], for any u,v € gy,
when ¢ : g; — g, is bijective, we say that it defines a Lie algebra isomorphism.

For any Lie algebra homomorphism ¢ : g; — g, it is easy to see that ker(¢) is a Lie
subalgebra of g; and Im(¢) is a Lie subalgebra of g;.

Example 7.

1. Let (g,[, |) be a Lie algebra and Iy C g a Lie subalgebra of g. By the definition of a Lie

subalgebra, the natural inclusion 1 : it — g is a Lie algebra homomorphism.

2. Let ¢ : Vi — V) be any vector space isomorphism. The map ¢ : gl(V,) — gl(V;) given
by @(u):= ¢! ou o ¢ is then a Lie algebra isomorphism.

3. Let (g,[, ]) be a Lie algebra and I C g an ideal of g. There exists a unique Lie algebra

structure on the quotient vector space Iy := g/I, denoted [, |,, such that the natural

q}
projection 7t : g — Iy is a Lie algebra homomorphism. In other words, [, ], is defined
such that:

[r(u), 7t(v)], := we[u,v],
and doesn’t depend on the representative elements u,v € g.
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The Lie bracket [, | of a Lie algebra g induces a linear map ad : g — gl(g), # +— ad,, which
is given by the expression ad, (v) = [u,v]. This map is called the adjoint representation

of g, using the Jacobi identity, one can show that:
ady,,) := [ady,ad, ],

this means that ad : g — gl(g) is a Lie algebra homomorphism. A derivation of a Lie

algebra (g,[, ]) is any linear map D : g — g satisfying for any u,v € g:
Dlu,v]=[D(u),v]+[u, D(v)]. (A.1)

The vector space of all derivations of a Lie algebra g is denote Der(g), it is itself a Lie

subalgebra of gl(g). The Jacobi identity of g can be rewritten as:
ad,([v,w]) = [ady(v), w]+[v,ady(w)],

for any u,v, w € g, this shows that in particular ad, € Der(g). In fact, the elements of ad(g)
of this form are called inner derivations of g, and one can check using (A.1) that ad(g) is

an ideal of Der(g).

A.1.2 Lie groups

Recall that a Lie group G is a topological group which is endowed with a structure of a

differentiable manifold such that the multiplication and inversion maps:

mg:GxG—G, (x,y)rxy et ic:G—G, xr>x7!

are smooth. Denote {4, 1, : G — G respectively the left and right multiplications by an

element g € G, i.e {o(x) = gx and r,(x) = xg.
Example 8.
1. The group GL(n,R) of n x n real invertible matrices is a Lie group.

2. Let V be a finite-dimensional vector space and denote GL(V') the group of all automor-
phisms of V with its natural topology. By fixing a basis of V one can show that GL(V)
is isomorphic to GL(n,R) with n := dim(V), and so GL(V') can be given a Lie group
structure using this isomorphism. One also shows that this structure is independent of
the choice of a basis of V.

3. Let V be a finite-dimensional vector space and (, ) : V. x V. — R a non-degenerate
bilinear form. Let O(V,(, )) be the group of all linear isometries of (V,(, )) i.e

O(V,(, ) ={u € GL(V), {u(x), u(y)) = (x,y), for all x,y € V},
One can show that O(V,(, )) is a Lie group.
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A vector field X on a Lie group G is said to be left invariant if for any g € G, we have:

Xor = Tely(Xy).

Recall that for any diffeomorphism f : G — G and any vector field X € X(G), one can
define a vector field £,X on G by the expression (f.X), := (Tf-1(x)f)(X,). This gives rise
to a Lie algebra isomorphism f, : X(G) — X(G), and it is clear that X is a left-invariant
vector field (resp. right-invariant vector field) if and only if for any g € G:

(€)X =X (resp. (ry).X = X). (A.2)

The set of left-invariant vector fields on G is denoted XK(G), moreover (A.2) shows that
it is a Lie subalgebra of X (G). In fact XZ(G) is a finite-dimensional real vector space and

moreover dim X(G) = dim G, this is a consequence of the fact that the evaluation map

¢: XG)—T.G, Xm—X,

is a vector space isomorphism. The isomorphism ¢ allows to transport the Lie algebra
structure of XI(G) on T,G as follows: If we denote for all v € T,G, v’ := ¢ l(v)e XI(G) we
obtain a Lie algebra structure on T,G given by the bracket:

[v,w]:= [v¢, w'],.
We then call it the Lie algebra of G and we denote Lie(G) the couple (T,G,[, ]).
Example 9.
1. The Lie algebra of GL(n,R) is exactly JL,(R) endowed with the Lie bracket [, ] given by:
[A,B]=A-B-B-A,
forany A, B € Jl,(R).
2. Let V be a finite-dimensional vector space, the Lie algebra of GL(V) is exactly gl(V).

3. Consider a finite-dimensional vector space V together with a non-degenerate bilinear
form (., ). One can check that the Lie algebra of O(V,(, )) is so(V,(, )).

As for vector fields, one can define a differential form @ on G to be left invariant (resp.
right invariant) if it satisfies i = w (resp. rzw = w) for any g € G. The set of all left-
invariant forms is denoted Q(G)?, and one can show that it defines a differential subcom-
plex of the de Rham complex ;z(G), i.e it is stable under the de Rham differential and
exterior products. Furthermore, if APg* denotes the vector space of all p-forms on the Lie
algebra g of G, with p €N, and if we set Ag*:= ®,Ag", then we get that:

P QG —>Ag, @+ w,

is a vector space isomorphism. So the study of left-invariant (resp. right-invariant) forms

on a Lie group, reduces to the study of the exterior forms of its Lie algebra.
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A.2 Nilpotent Lie algebras

Let g be a finite-dimensional Lie algebra. The descending central series of g is the family

of ideals (€¥(g)).c of g defined inductively bt the formula:
®%(g)=g and €""'(g):=[5,6"(g)],

for any n € N. Notice that €'(g) = [g,g] is just the derived ideal of the Lie algebra g. We
say that g is nilpotent if 6" (g) = {0} for some interger n € g. The smallest integer k € N for
which €*(g) = {0} is called the nilindex of g or the nilpotency order of g, in which case g is
said to be k-step nilpotent, notice that in this case €*~!(g) c Z(g). Here are some known

properties of nilpotent Lie algebras, one can see [11] for a proof:
Proposition A.2.1. Let g be a nilpotent Lie algebra. Then:
1. If g is non-trivial, then its center Z(g) is also non-trivial.
2. Any Lie subalgebra h C g is nilpotent with nilindex smaller than the nilindex of g.

3. If ¢ : g — § is a Lie algebra homomorphism then ¢(g) is a nilpotent Lie algebra. In
particular, for any ideal I C g, we get that the quotient Lie algebra g/I is nilpotent.

4. The endomorphisms ad, : g —> g are nilpotent for all x € g.

A Lie algebra g is called abelian if [g,g] = {0}, i.e g is 1-step nilpotent, it is then clear that
this is equivalent to stating that g = Z(g).

Example 10.

1. Any vector space V can be given an abelian Lie algebra structure [, | by setting [u,v] =0
forallu,veV.

2. For any Lie algebra g, the quotient Lie algebra g/[g, q] is abelian.

3. The Heisenberg Lie algebra Ir, consists of a 2p + 1-dimensional vector space together with
a Lie bracket [, ] defined in a basis {ey,...,e3p1} by the expression:

[e2i-1,€2i] = €2p+1s

forall i =1,...,p, note that we only write the non-vanishing bracket. It is easy to check

that i, is a 2-step nilpotent Lie algebra.

4. Let g be the n-dimensional Lie algebra whose bracket [, | is defined in a basis {e1,...,e,}

by the expression:

[er,e;] =€ 2<i<n-1.

It is straightforward to check that g is nilpotent with nilindex equal to n— 1.

55



APPENDIX A. GENERALITIES ON LIE ALGEBRAS

5. Let g C gl(n,K) be the set of all strictly upper triangular n x n matrices, namely:
g:={A€gl(nK), A;;=0 forall 1 <i<j<nj
Then one can check that g is a nilpotent Lie subalgebra of gl(n, K).

Here are some further properties of nilpotent Lie algebras that are used throughout Chap-
ter 2 and 3:

Proposition A.2.2. Let g be a finite-dimensional Lie algebra.
1. If g is nilpotent and non-abelian then codimg[g, g] > 2.
2. The Lie algebra g is nilpotent if and only if 9/Z(g) is nilpotent.
3. Let a and b are nilpotent ideals of g, then aNb and a+ b are nilpotent ideals of g as well.

Property 3 in Proposition A.2.2 is especially important because it shows that any finite-
dimensional Lie algebra g has a unique maximal nilpotent ideal n, which can be defined

merely by setting
n:= Za where W :={aCug, aisanilpotent ideal of g},
where the notation simply means that n consists of finite linear combinations of elements

in the reunion of a with a € /. We call n the nilradical of g, it is usually denoted nilrad(g).

In the case where the Lie algebra g is nilpotent, it is obvious that g = nilrad(g).
Let us now state a fundamental Theorem in the theory of nilpotent Lie algebras, which is
the converse of 4 in Proposition A.2.1:

Theorem A.2.1 (Engel’s Theorem). Let g be a finite-dimensional Lie algebra. Then g is
nilpotent if and only if the operator ad, is nilpotent for all x € g.

As a consequence, we get the following important result:

Corollary A.2.1. Let g be a Lie algebra and a an ideal of g. If the quotient Lie algebra g/a is

nilpotent, and if for all x € g, the restriction of ad, to a is nilpotent, then g is also nilpotent.

Corollary A.2.2. Let g be a Lie subalgebra of gl(n, K) whose elements are nilpotent. Then g is

nilpotent.

We close this paragraph with some important classes of nilpotent Lie algebras:

Two-step nilpotent Lie algebras. A nilpotent Lie algebra g is said to be 2-step nilpo-
tent or metabelian if it satisfies %(g) = {0}. It is clear that any abelian Lie algebra is
trivially 2-step nilpotent. Also the Heisenberg Lie algebra b1, defined in Example 10-2. In
fact Iy, is a model for a subclass of 2-step nilpotent Lie algebras, this is summarized by
the following Proposition:
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Proposition A.2.3. Every Lie algebra g satisfying Z(g) = [g,9] and dim Z(g) = 1 is isomorphic
to the Heisenberg Lie algebra.

Filiform Lie algebras. A nilpotent Lie algebra g is said to be filiform if it has maximal
nilindex, in precise terms, it means that if dimg = » then g has nilindex n—1. One can
show that this is equivalent to dimC¥*(g) = n—k -1 for all k = 1,...,n — 1. This gives in
particular that dim[g,g] = n—2 and dimZ(g) = 1. A concrete case of a filiform Lie algebra

was given in Example 10-2, we add two more Examples:
Example 11.

1. Let g be the (n+ 1)-dimensional nilpotent Lie algebra with Lie bracket [, | defined in a
basis {eg,...,e,} as:

leo,eil = €1 and [ej, e, i]=(=1)e,,
foralli=1...,n—1. One can check the Lie algebra g is indeed filiform.

2. Let g be a (n+ 1)-dimensional nilpotent Lie algebra with bracket [, | given in a basis

legs..., ey} by the expression:

leoei] = eip1 and  [er, ej] = ejya,
forall1<i<n-1and2<j<n-1. This algebra is filiform as well.

Characteristically nilpotent Lie algebras. Recall that the vector space Der(g) of deriva-
tions of a finite-dimensional Lie algebra g is a Lie subalgebra of gl(g). If g is nilpotent,
then by Engel’s Theorem its inner derivations are all nilpotent, furthermore in view of
Corollary A.2.2 a necessary condition for Der(g) to be nilpotent is to only consist of nilpo-
tent elements i.e every derivation of g is nilpotent. Nonetheless, there are many cases
where Der(g) cannot be nilpotent, as a matter of fact there is a well-known Theorem due
to Jacobson which states that "A Lie algebra which admits an invertible derivation is auto-
matically nilpotent" and there are concrete examples of such Lie algebras. A Lie algebra g
is said to be characteristically nilpotent if g is nilpotent and every derivation D € Der(g)

is nilpotent.

Example 12. Let g be the 7-dimensional Lie algebra such that its Lie bracket [, | is given in a
basis {eq,...,e7} by:

ler,ex] =3 [er,ec] = €7

leres]=es  [exe3]=e6

lereal =65 [exeq] =[er,e5] =—[e5,e4] = €7

ler,es]=eq

Through a direct computation of Der(g) one can prove that g is characteristically nilpotent.
This example is minimal in the sense that 7 is the smallest dimension where it is possible to

find characteristically nilpotent Lie algebras.
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A.3 Lie algebra representations and cohomology

Let g be a Lie algebra and V a vector space. A representation of the Lie algebra g on V
is a Lie algebra homomorphism p : g — gl(V). Such a representation is called faithful
if it satisfies ker(p) = {0} and it is called trivial if Im(p) = {0}. The couple (V,p) is called
a g-module and we shall say that the g-module (V,p) is faithful or trivial depending

whether the corresponding representation p : g — gl(V) is faithful or trivial.
Example 13.

1. The most straightforward example of Lie algebra representation is perhaps the adjoint

representation ad : g — gl(g).

2. Denote g := X (M) the Lie algebra of all smooth vector fields on a smooth manifold M and
let V :=€>°(M) be the space of all smooth functions on M. Then one obtains a natural
Lie algebra representation p : g — gl(V') by setting p(X)(f) := X(f) i.e the derivative of
the function f in the direction of the vector field X.

Let g be a Lie algebra, p e Nand w : g — V a p-linear map. We say that w is a V-
valued p-cochain if it is alternating. The vector space of all p-cochains on g shall be
denoted 6P(g, V), it is finite-dimensional whenever g and V are finite-dimensional, in
fact if n:= dimg and k := dim V then dim 6P (g, V) := kC}, with the convention that C, = 0
for p > n. We set €%(g,V):= V and 6(g, V) := ®,6P(g, V).

Assume now that p: g — gl(V) is a representation, for any p € N we can define a linear
map dj, : 67 (g, V) — 6P*!(g, V) be the expression:

p
(dhw)(xq,...,xp) = z(—l)ip(xi)(a)(xo,...,xﬁ,...,xp))+Z(—1)i+fw([xi,xj],xo,...,a?i,...,@,...,xp),
=0

i i<j

(A.3)
for all w € 6P(g, V) and all xy,...,x, € g. A simple computation shows that df,“ ) d’é =0,
this gives rise to a linear map d,, : 6(g, V) — 6(g, V) satisfying d,od, = 0, it is called the
Chevalley-Eilenberg differential (relative to the representation p).

We say that w € 6P(g, V) is a p-cocycleif dyw = 0, and if p > 1, we that w is a p-coboundary
of w =d,1 for some 7 € ®|r~1(g, V).

Example 14.

1. Let p : g — gl(1,R) be the trivial representation of a Lie algebra g on R. One can
easily check that €(g,R) := Ag®, i.e the vector space of all alternating linear forms on g.
Moreover, by formula (A.3), the Chevalley-Eilenberg differential df, cAPg* — APHlg* s
given by:

(dbw) (s, %) Z(—l)”fw([x,.,xj],xo,...,fi,...,fj,...,xp), (A.4)

i<j
for all w € APg* and all x,...,x, € g.

58



A.3. LIE ALGEBRA REPRESENTATIONS AND COHOMOLOGY

2. For a smooth manifold M, set g := X(M) and V := €°(M). Let p: g — gl(V) be
the natural Lie algebra representation defined by the action of vector fields on smooth
functions (cf. Example 13-2). Clearly CGg(g, V) := QP (M) i.e the space of all differential
p-forms on M. The Chevalley-Eilenberg differential dg : %g(g, V)— C65“(9, V) in this
case coincides with the de Rham differential d g : QP (M) — QP (M) of M, thus:

p
(dbw)(Xo,..., X :Z Ly, @)(Xor- oo Xipo s Xp)s
i=0
for any w € QP (M) and any Xy, ..., X, € X (M), where Ly : Q(M) — Q(M) denotes the
Lie derivative with respect to the vector field X.

We denote Zg(g, V) the vector space of all p-cocycles with values in the g-module (V,p)
and B’é(g, V) the space of all p-coboundaries with values in the g-module (V, p). It is clear

from their given definitions that:
Zp(g,V) :=ker(d} : 6P(g,V) — 6P (g, V)
and
-1 -
Bh(g, V):=Im(df : 6P} (g,V) — 6(g,V)).

Moreover, the fact that d,, : 6(g, V) — 6(g, V) is a differential operator, i.e dz o df,_l =0
for all p € N* shows that Bg(g, V)c Zg(g, V). As a result, we define the p-th cohomology
group of g, with values in the g-module (V, p) to be the vector space Hg(g, V') consisting
of all p-cocycles modulo p-coboundaries, namely:

ker(d‘;7 6P (g, V) — 6PF(g, V))

Hb(g,V):=Zb(g, V)/Bh(g, V) = :
b b b Im(d}™" - €71(g, V) — 6(g,V))

When (V,p) is a trivial g-module, we shall use the symbol H”(g, V) to denote the p-th
cohomology of g.

Example 15.

1. Let G be a Lie group with Lie algebra g and let p : g — gl(1,R) be the trivial representa-
tion (cf. Example 14-1). The corresponding cohomology H(g,R) is called the cohomology
of left-invariant forms of the Lie group G (see appendix C for more on left-invariant

structures).

2. Let M be a smooth manifold and denote g := X (M) and V := €*°(M). Example 14-2
shows in particular that the cohomology groups Hg(g, V) corresponding to the natural
representation p : g — gl(V), p(X)(f) := X(f) are exactly the de Rham cohomology
groups HgR(M) of the manifold M.
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PseuDpoO-EUCLIDEAN VECTOR SPACES

B.1 Symmetric bilinear forms and scalar products

Throughout this chapter and unless otherwise stated, we shall use E to denote a real

n-dimensional vector space.

Definition B.1.1. Let (, ): E x E — R be a symmetric bilinear form, i.e an inner product. We
say that (, ) is:

(i)- Positive definite. (resp. Negative definite.) if for every v € E\{0} we have (v,v) > 0
(resp. (v,v)<0)

(ii)- Positive semi-definite. (resp. Negative semidefinite.) if (v,v) > 0 (resp. (v,v) < 0)
for every v € E\{0},

(iii)- Indefinite. if it is neither positive semi-definite nor negative semi-definite,

(iv)- Non-degenerate. if the condition (v,w) = 0 for every w € E implies that v = 0. Other-
wise, we say that (, ) is degenerate, the subset N = {v € E : (v,w) = 0,Yw € E} is called
the radical of (, ).

Remark 3. The fact that (, ): E xE — R is non-degenerate implies that the map 6 : E — E*
given by:

O(v)(w) = (v,w)
is one to one, hence a vector space isomorphism. Let B = (eq,...,e,) be a basis of E with dual

basis B* = (e“{,..., ey, ), then (, ) is nondegenerate if and only if det M = 0, where:

M :=Mat(0,B,B") = (<ei’ef>)1si,js:1

Furthermore, if we denote U := (ul,...,un)T and V := (vl,...,vn)T the coordinates of u and v
respectively in the basis B of E, then (u,v) = urmv.

Definition B.1.2. A pseudo-Euclidean vector space is a pair (E,(, )) consisting of a real vector

space E together with a non-degenerate inner product (, ).
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Example 16. Define on RP* the bilinear form (, ), 4 : RPT x RPT1 — R given by:

p p+q
(U, V)p,q = Z”iv" N Z Hivi-
i=1 i=p+1

It is straightforward to check that (RP*9,(, ), ) is a Pseudo-Euclidean vector space.

Example 17. Recall that for any pseudo-euclidean vector space (E,(, )) and for any f € End(E),
there exists a unique endomorphism f* € End(E) satisfying (f (u),v) = (u, f*(v)) for u,v € E,
it is called the adjoint of f with respect to (, ). This allows one to define a symmetric bilinear

form (, )4 on End(E) by the expression:

(f,8):=tr(f og).
It is straightforward to check that (, )4 is a pseudo-Euclidean inner product on End(E).

Let E be a vector space endowed with an inner product (, ). Two subsets A,B C E are
said to be orthogonal (with respect to (, )), if (v,w) = 0 for any v € A and w € B. The
orthogonal of A in E is the vector subspace A+ of E given by:

A+ ={veE,(v,a)=0foranyac A}.

Proposition B.1.1. Let (E,(, )) be a pseudo-Euclidean vector space, and let A C E be any
vector subspace of E, then dim A + dim A+ = dimE.

Denote 9™ the set of vector subspaces A C E such that the restriction (, )jax4 is positive
definite. We also denote ™ the set of vector subspaces A C V such that (, )|a,4 is negative
definite. Put:

p:=maxdimA and ¢:=maxdimA
Aed* Aed~

The couple (p, q) is called the signature of (E,(, )).

Proposition B.1.2. Let (E,(, )) be a pseudo-Euclidean vector space with signature (p,q) and
let A be a vector subspace of E. Then p + q = dimE and dim(A N A1) <min(p, g).

Let (E,(, )) be a pseudo-Euclidean vector space, a vector subspace A C E is said to be
non-degenerate in (E,(, )) if AN A+ = {0}, or equivalently, the restriction (, )jax4 is non-
degenerate. In this case, the property dim A + dim A+ = dim E implies that E = A® AL

We say that A is totally isotropic if (, )jaxa = 0, or equivalently A C AL. If (p, q) denotes
the signature of (, ), the previous Proposition shows that in this case dim A < min(p, gq).

Proposition B.1.3. Let (E,(, )) be a pseudo-Euclidean vector space, and W C V a vector
subspace, then (W+)+ =W and E = W @ W+ if and only if W is non-degenerate.

Proposition B.1.4. Let (E,(, )) be a Pseudo-Euclidean vector space and A a nondegenerate
vector subspace of E. Denote (p1,q1) and (py,q,) the signatures of (, )jaxa and (, )jarxar
respectively. Then (py + p2,q1 + q2) is the signature of (E,(, )).
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We say that two pseudo-Euclidean vector spaces (E1,(, );) and (E,,(, ),) are isometric if

there exists a vector space isomorphism ¢ : E; — E, satisfying for any u,v € E;:

(P(u), p(v))2 = (u, )1

In the case where Ey = E; :=E and (, ); =(, )2 :=(, ), the endomorphism ¢ is then called
an isometry of (E,(, ))

Theorem B.1.1. Two pseudo-Euclidean vector spaces (E{,{, )1) and (E,,{, ),) are isometric if

and only if they have the same signature.

This shows that the signature is the only invariant for Pseudo-Euclidean vector spaces of

the same dimension.

Definition B.1.3. A Pseudo-Euclidean vector space is called Euclidean if its signature is of the

form (n,0). It is called Lorentzian if its signature is of the form (n—1,1).

The class of Lorentzian vector spaces is a very special subclass of pseudo-Euclidean vector

spaces.

Proposition B.1.5. Let (E,(, )) be a Lorentzian vector space and let A be a non-degenerate

vector subspace of E. Then A is either Euclidean or Lorentzian.

Proof. Denote (p,q) the signature of (, )jaxa and (pt,q*) the signature of (, )arxaz,
according to Proposition B.1.4, the signature of (E,(, )) is precisely (p+pt,q+g+t) = (n-1,1)
thus either ¢ = 1, g+ = 0 which gives that A is Lorentzian and A+ is Euclidean, or g = 0

and gt = 1 which gives that A is Euclidean and A+ is Lorentzian. O

B.2 Orthonormal bases and pseudo-Euclidean bases

Let (E,(, )) be a n-dimensional pseudo-Euclidean vector space of signature (p,q) and
assume without loss of generality that p > q. A family (uy,...,us) of vectors in E is called
orthogonal if (u;,u;) = 0 for i # j. It is called orthonormal if furthermore (u;, u;) € {-1,1},

any orthonormal family is automatically linearly independent.

Proposition B.2.1. Let (E,(, )) be a pseudo-Euclidean n-dimensional vector space with signa-

ture (p,q) and choose an orthogonal basis B = (ey,...,e,) of (E,(, )). Then (e;,e;) # 0 and:
p=card{i €{l,...,n}, (ej,e;) >0} and q=card{ie{l,...,n}{e;,e;) <0}.

It is worth to mention that a pseudo-Euclidean vector space (E,(, )) always admits an or-
thogonal basis. This is due to the fact that for any non-degenerate vector subspaces A C E
and B C A+, A® B is non-degenerate, therefore starting from a non-isotropic vector e; € E
one can find a non-isotropic vector e, € e;- and by the previous observation span{e;, e,} is

non-degenerate. Thus by an inductive argument one obtains an orthogonal basis, which
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can be made orthonormal through normalization.

Let (E,(, )) be a Pseudo-Euclidean, non Euclidean vector space. A basis of (E,(, )) is
said to be Pseudo-Euclidean if it has the form & := {fl,fl,...,fr,ﬁ,el,...,es} such that the
only non-vanishing products (u,v) with u,v € & are:

<ﬁ,fi>:1, and <€j,€j>:1,

foranyi=1...r,j=1...s. Observe that the signature of (E,(, )) is in this case (r+s, ), this
is a consequence of Proposition B.1.1 and the fact that A := span{fi, fi,..., f,, f;} is non-
degenerate with signature (r,7) and A+ = span{ey,..., e} is Euclidean and so its signature
is exactly (s,0). We also note that these bases are as important as orthonormal bases
and often play a crucial role in the proof of several results, as they represent a second

generalization of orthonormality in Euclidean spaces.
Proposition B.2.2. Any pseudo-Euclidean vector space admits a Pseudo-Euclidean basis.

Remark 4. On a Pseudo-Euclidean, non-Euclidean vector space (E,( , )), one can always
construct an orthonormal basis starting with a Pseudo-Euclidean basis and conversely.

To see this denote (p,q) the signature of (E,(, )) with p > q and write (p,q) := (r +s,r) such
that r,s > 0, thus if B := {fl,f_l,...,fr,f_r, ey,...,es} is any Pseudo-Euclidean basis of E, set :

1
V2

then one easily checks that {uy,vy,...,u,,v,,eq,...,es} is an orthonormal basis of E.

4y = i2<fi FF) V= = (fi- ),

B.3 Symmetric and skew-Symmetric Endomorphisms

Let (E,(, )) be a pseudo-Euclidean vector space and ¢ € End(E). We say that ¢ is sym-
metric (with respect to (, )) if ¢* = ¢, and we say that ¢ is skew-symmetric if ¢* = —¢.

Proposition B.3.1. Let (E(, )) be a pseudo-Euclidean vector space and let ¢ € End(E). For
any vector subspace F C E, ¢(F) C F if and only if ¢*(FL) C F*. In the case where ¢ is
(skew-)symmetric we get that ¢(F) C F if and only if ¢(F+) C FL.

Definition B.3.1. Let (E,(, )) be a pseudo-Euclidean vector space and ¢ : E — E an endo-
morphism. A vector subspace F C E is said to be ¢-indecomposable if it satisfies the following
properties :

(1) F is nondegenerate.
(ii) F is ¢-invariant, which means that ¢(F) C F.
(iii) The only non-degenerate ¢p-invariant subspaces of F are {0} and F.
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The following lemma is the key to reduce the symmetric and the skew-symmetric endo-

morphisms in a Euclidean or Lorentzian space.

Lemma B.3.1. Let ¢ : E — E be a (skew)-symmetric endomorphism on a pseudo-Euclidean
vector space (E,(, )). There exists a family {Fy,...,F,} of ¢p-indecomposable vector subspaces
such that :

1 1
V=F&..8F,.

Remark 5. Let ¢ : E — E be a (skew)-symmetric endomorphism on a Pseudo-Euclidean
vector space (E,(, )) and let E = F; ®---®F, be an orthogonal decomposition of E into ¢-
indecomposable vector subspaces. If (p;,q;) denotes the signature of (, )r,xr, then by applying
Proposition B.1.4 inductively we get that (E,(, )) has signature (py +---+p,,q1 +---+4,). In
particular, if (E,(, )) is Lorentzian then only one of the subspaces F; is Lorentzian while the

rest are Euclidean.

Let (E,(, )) be a pseudo-Euclidean vector space, denote (p,q) its signature and fix an
orthonormal basis % = (el,...,ep,fl,...,fq) of E such that (e;,e;) = 1 and (f}, fj) = —1. Next

let ¢ : E — E be an endomorphism of E, and write :

Mat((j),%):( Ié g ]

It is clear that A;; =(P(e)) €;), Bij = (P(fj) €i), Cij = —(Ple)), fi) and Di; = —(p(f)), fi)- It
follows that ¢ is symmetric if and only if A’ = A, B' = —C and D' = D. Similarly we get
that ¢ is skew-symmetric if and only if A’ =—-A, B’ = C and D' = -D.

Lemma B.3.2. Let E be a finite dimensional vector space and let ¢ € End(E). There exists a
non-trivial couple of vectors (u,v) € E x E and Ay, A, € R such that :

¢(u)=Au—-Av and ¢@v)=Au+Av.
In particular, there exists a ¢-invariant vector subspace F C E such that 1 <dimF < 2.

Proof. Denote E® = E@iE and ¢* € End(E®) the complexification of E and ¢ € End(E)
respectively, i.e ¢C(x +iy) = ¢(x) + ip(v) for any x,y € E. It is clear that ¢ admits a
nonzero eigenvector w € EC corresponding to some eigenvalue A € C, write w := u + iv
and A := A; +i), for some u,v € E and Ay, A, € R, so that qf)C(u +iv) = (A +idy) (u +1iv),
then

¢(u)=Au—-Av and ¢(v)=Au+ A,

The vector subspace F = span{u, v} is either 1 or 2-dimensional and it is clearly ¢-invariant.
O
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B.3.1 Reduction of skew-symmetric endomorphisms in Lorentzian vector

spaces

We start by stating the well-known result on the reduction of skew-endomorphisms in a

Euclidean vector space.

Theorem B.3.1. Let (E,(, )) be a Euclidean vector space and ¢ : E — E be a skew-symmetric
endomorphism. There exists a family of non-vanishing real numbers Ay < ... < A, and an

orthonormal basis (ey, f1,...,€, f;»§1,---,8s) of E such that

¢le))=Aifi, p(fi)=—Aie; and q[)(g]-) =0, i=1,..,rj=1,..s
Let us now adress the Lorenzian case.

Lemma B.3.3. Let (E,(, )) be a Lorentzian vector space ¢ : E — E a skew-symmetric en-
domorphism. Suppose that there exists e € E such that {(e,e) = 0 and ¢(e) = Ae, E is ¢-
indecomposable and dim E > 3. Then dim E = 3 and there exists a couple of vectors (€, f) such
that (e, e, f) is a Lorentzian basis of E and

Pe)=0, ¢(f)=ae and ¢()=-af
Proof. Denote F :=Re and V := F*/F. Endow V with the inner product (, ), given by
([u],[qu :<u;7}>, M,VGPJ‘

It is straightforward to check that (V,( , )q) is a Euclidean vector space. Since F is a
¢-invariant subspace then F* is ¢-invariant as well and ¢ induces a skew-symmetric
endomorphism ¢ : V — V explicitely given by ¢([u]) = [¢(u)], for any u € FL. Next,
Theorem B.3.1 shows that there exists a family of non zero real numbers A; <... < A, and
an orthonormal basis % := (él,fl,...,ér,ﬁ,gl,...,gs) such that of (V,(, ),) such that :

b)) =Aif, §(fi)=-Ai&; and G(g)=0, i=1,..,rj=1,.,s (B.1)

If we write é; := [¢;], f] :=[f;] and §; := [g;] for some nonzero vectors ¢;, f;, gy € F*, then it
is clear that % := (eq, f1,...,€m f,€1,---, &) is an orthonormal family of F+ and using (B.1)
we get that :

¢(e;)=aje+Aif;, ¢(fi)=bje—Aje; and qb(gj):cje.

Assume that either A # 0 or A; # 0 for some ! € {1,...,r} and set H; := span{e, ¢, f;}, then
clearly ¢(H;) C H; furthermore an easy computation shows that ¢, := ¢y, has character-
istic polynomial

P(X) = ~(X = )X =i A)(X +iA)),

now for any eigenvector v; € Hl(C of qb(lc corresponding to the eigenvalue i A; we have that v
is an eigenvector for the eigenvalue —i\; therefore if we set h; := v; +v; and hy = —i(v;—v))
then we get that h;, i; € H; and ¢(hy) = Aihy, ¢(hy) = =Aghy. If A; = 0 then A # 0 and ker(¢y)
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is non-trivial, it is clearly ¢-invariant, but since e ¢ ker(¢;) then Proposition B.1.5 gives
that ker(¢;) is Euclidean, contradicting the fact that E is ¢-indecomposable.

Thus A; # 0 and {e, v;, v} forms a basis of the C-vector space HE, this gives that {e, 1y, ;)
is a basis of Hj, but this implies that span{h;, ii;} is Euclidean (Proposition B.1.5) and ¢-
invariant, a contradiction. Thus, A; = A =0 for all 1 <i <r and in particular ¢(F+) C Re.
Let W be any Euclidean subspace of F+ such that F- = W @ Re. Since ker(¢py) is a ¢-
invariant subspace of E it follows that ker(¢w) = {0} and since ¢(W) C Re we get that
dim(W) <1,nowdim W =dimE-2>1 and sodim W =1 and ¢(W) = Re, this also shows
that dimE = 3.

Finally if we write W := Rf and set ¢(f) := ae then a # 0, now choose an isotropic vector
¢ e E such that (e,é) =1 and (e, f) = 0, then (e, ¢, f) is a Lorentzian basis of E and it is easy
to see that :

Pe)=0, ¢(f)=ae and ¢(e) =-af,
this ends the proof. O

Theorem B.3.2. Let ¢ : E — E be a skew-symmetric endomorphism on a Lorentzian vector
space (E,(, )). Then E can be written as E = L® V such that V is Euclidean and ¢-invariant

and L is ¢-indecomposable Lorentzian satisfying one of the following properties :
(i). dimL =1 and L C ker ¢

(ii). dimL = 2 and there exists a > 0 and a Lorentzian basis (e, €) of L such that ¢(e) = ae
and ¢(é) = —ae.

(1ii). dimL = 3 and there exists a Lorentzian basis (e, é, f) of L such that

Ple)=0,0()=—af and G(f)=ac

L1
Proof. We know that E can be written E = V; @...® V, as the sum of ¢-indecomposable
subspaces. We also know that exactly one V; is Lorentzian, denote it L and set V := ®;.; V;.
According to Theorem B.3.1 each V; for j # i is either 1 or 2 dimensional, furthermore we

have the following cases :

(1). dimL =1, write L := Rx and ¢(x) = Ax with A € R. Then 0 = (¢(x),x) = A(x,x) and

since L is Lorentzian, {x,x) < 0 and so A = 0.

(i1). dimL = 2. First notice that the restriction ¢, # 0 otherwise L would contain a ¢-
invariant, non-degenerate 1-dimensional subspace which contradicts the assump-
tion that L is ¢-indecomposable. Let (e, &) be a Lorentzian basis of L, then we can

write ¢(e) = ae+ bé and ¢(€) = ce + d¢, since ¢ is skew-symmetric, then:

0=(eple)y=(&Pp(e)) and (e ¢(e))=—(e P(e))
which is equivalenttob=c=0anda=-d =a = 0.

66



B.4. REDUCTION OF SYMMETRIC ENDOMORPHISMS ON LORENTZIAN
VECTOR SPACES

(1ii). dimL > 3. According to Lemma B.3.2, there exists a couple of vectors (u,v) e Lx L
with (u,v) = (0,0) and two real numbers A;, A, such that

¢(u)=Au—-Aw and Pv)=Au+Av

Since ¢ is skew-symmetric, we have
0=C(u,¢(u))=(v,p(v)) and (u,$p(©))=—(v,Pp(u)).
which is equivalent to

/\1 —/\2 0 <M,M>
0 A A || @u |=0 (B.2)
/\2 2/\1 —/\2 <'U,V>

We will show that there exists an isotropic vector e = au + v such that Re is ¢-
invariant and then apply Lemma B.3.3 to draw a conclusion. For this purpose, there

are two cases to consider :

(a). The family {u, v} is linearly dependent, i.e v = au and u = 0. Then :
G(u)=(A —ady)u and ad(u)=(Ay+al;)u

This gives Ay +al; =a(A; —al;) so that (l + az))\z =0, thus A, =0 and ¢(u) = Aqu,
i.e Ru is a proper ¢-invariant subspace of L, and since L is ¢p-decomposable it follows
that Ru is degenerate, therefore (1, u) = 0. We thus take e := u.

(b). The family {u, v} is linearly independent, so the vector subspace span{u, v} can-

not be totally isotropic. Thus the vector ({1, u),{v, u),(v,v)) is non-zero, using (B.2)

we get :
A -1, O
0=| 0 A A |=-24(A]+23)
A 24 —A,

If Ay =0 and A, # 0, then (B.2) gives that (u,v) = 0 and (u,u) = (v,v) # 0. Thus
spanf{u,v} is a ¢-invariant, non-degenerate proper subspace of L, a contradiction.
So necessarily Ay = A, = 0 which means that ¢(x) = 0 for any x € span{u,v}. It
follows that span{u,v} is degenerate and therefore contains an isotropic vector e
such that ¢(e) = 0.

This ends the proof. 0

B.4 Reduction of symmetric endomorphisms on Lorentzian

vector spaces

Let us start with the statement of a classical result on the reduction of symmetric endo-

morphisms in a Euclidean space.
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Theorem B.4.1. Let (E,(, )) be a Euclidean vector space and ¢ : E — E be a symmetric
endomorphism. There exists an orthonormal basis (eq,...,e,) of E and a family Ay <... < A, of

real numbers such that for any i € {1,...,n}, we have ¢ (e;) = Aje;.
We now focus on the Lorentzian case, let us start by a key Lemma:

Lemma B.4.1. Let (E,(, )) be a Lorentzian vector space such that dimE >3 and ¢ : E — E

a symmetric endomorphism. Then ¢ admits a real eigenvalue.

Proof. Lemma B.3.2 shows that there exists a nonzero couple of vectors(u,v) € E x E and
two real numbers Ay, A, such that ¢(u) = A;u — v and ¢(v) = A,u + A, v, there are two

cases to discuss :

1. The family {u, v} is linearly dependent, i.e v = au and u # 0.Then :
¢(u)=(A; —ary)u and ad(u)=(A+al)u,

so Ay +aly =a(Ay —al,), this shows that A, = 0 and ¢(u) = A;u which is the desired

result.

2. The family {u, v} is linearly independent. Since ¢ is symmetric, (¢p(u),v) = (u, p(v))
which is equivalent to
Ar(u,u)+{(v,v)) =0 (B.3)

If A, =0 then ¢(u) = A u and the proof is achieved . Assume that A, = 0, then (B.3)
gives that (u,u) = —(v,v). Denote P := span{u, v}, the matrix of (, )|pp with respect

to {u,v} is given by :

M—( (u,u) {(u,v) ],

- (u,v) —(u,u)

furthermore P is nondegenerate if and only if det M = 0. Now :
detM = —(u, u)2 - (u,V)z,

this means that detM = 0 if and only if P is totally isotropic, which is impossi-
ble as dimP > 1. Therefore P is non-degenerate Lorentzian, so that P* is non-
degenerate Euclidean and since ¢ is symmetric and P is ¢-invariant we get that P+
is ¢-invariant as well. Theorem B.4.1 then shows that the restriction ¢p. admits a

real eigenvalue.
This ends the proof. O

Theorem B.4.2. Let (E,(, )) be a n-dimensional Lorentzian vector space such that n > 3 and
let ¢ : E — E be a symmetric endomorphism. There exists a basis B of E in which ¢ and (, )
have the following form :
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1. Tyre{ p1aG }:

Mat(¢,B) = diag(ay,...,a,), Mat((, ),B) =diag(+1,...,+1,-1)

2. Type{n-2,zz}:

b
Mat (¢, B) = diag(al,...,an_z)ea[ ? ],b =0, Mat((, ),B)=diag(+1,...,+1,-1)

-b a

3. Tyee {n,a2}:

a 1 0 1
Mat(¢,B) = diag(ay,...,a, ) ® ),Mat(( , B =1,,® Lo )
a
4. Type {n,a3}:
a 1 0 0 0 1
Mat((P’ ]B) = dlag(al’ * "ai’l—3) @ 0 (44 1 ’ Mat(< s >;B) = In—3 @ O 1 0
0 0 «a 1 00

Proof. According to Lemma B.3.1, we have the orthogonal decomposition E =V, ®...®V,
of E into ¢-indecomposable subspaces, since E is Lorentzian we can assume that V; is
Lorentzian, denote it L, in which case V := V, ®---® V, is Buclidean. Since ¢y : V — V
is symmetric then by Theorem B.4.1 the subspaces V; are 1-dimensional for all 2 <i <r.

There are only three cases to consider :
1. dimL = 1. Write L := Rx, then ¢(x) = Ax for some A € R. Hence ¢ is of type {p1aG}.

2. dimL = 2. Let (e, &) be a Lorentzian basis of L then set ¢(e) = ae+bé and ¢(€) = ce+aé.
The characteristic polynomial of the restriction ¢y is P(X) = X* - 2aX +a” — bc with
discriminant A = 4bc. So either :

(a). bc >0, hence ¢, admits two distinct real eigenvalues Ay, A, with respective
eigenvectors uy,u; € L. Since ¢y is symmetric and A; # A,, then (uy,uy) = 0.
Now L is non-degenerate and 2-dimensional, therefore (u;,u;) #0 fori=1,2,
in particular Ruy is a non-degenerate ¢-invariant, proper subspace of L, a con-

tradiction.

(b). bc =0, we can suppose without loss of generality that b = 0. If c = 0 as well
then R- (e + ¢) is a non-degenerate, ¢p-invariant proper subspace of L, which is

impossible. Thus ¢ # 0 and by taking {e\/ﬂe,eﬁé} where € is the sign of c,

we can easily see that ¢ is of type {n, a2}.
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1
(c). bc<0, take a = (—%)4, then {ae, a‘lé} is a basis of L and one can check that ¢
is of type {n—2,2zz}.

3. dimL > 3. Lemma B.4.1 shows that the restriction ol admits a real eigenvalue,
since L is ¢-indecomposable, then its corresponding eigenvector e must be isotropic.
Set D := Re then put F := D+ NL and W = F/D. The quotient space W is naturally

endowed with an inner product (, ), given by :

([u],[v])g =(u,v), u,veF

Let ¢ : W — W be the endomorphism induced by ¢ on W. Then (W,( , )q) is Eu-
clidean and ¢ is symmetric, according to Theorem B.4.1 we can find an orthonormal
basis (i3, ...,4,) of W and real numbers A; < A, < --- < A, such that ¢ (i;) = A, ;.
Let u; € F such that [u;] = u;, then we get that :

¢ (u;)=aje+Aju;, i=1,..,r (B.4)

It is clear that the family (uy,...,u,) is orthonormal with (u;, u;) > 0, furthermore
a; # 0 since otherwise Ru; would be non-degenerate and ¢-invariant, which is false.
On the other hand span{a;u; —a; u;} is obviously non-degenerate and ¢-invariant, it
must therefore be 0-dimensional or equivalently u; =0 and a; =0 foralli=2,...,r.
This shows that dimF = 2 and dim L = 3. Choose ¢ € L co-isotropic to e and such
that (e, ¢, 1) is a Lorentzian basis of L. Using (B.4) and the fact that ¢ is symmetric,

we can write :
¢le) = e, p(é) =ae+Aé+aju; and ¢ (uy)=aje+Ajuy, a;=0.

Necessarily we must have A = 1, otherwise we would get that v := %e +up is an

eigenvector of ¢, which is impossible since (v,v) > 0. In summary :

¢(e)=Ae, p(é)=ae+ Aé+ajuy and ¢P(uy)=aje+Auy, a; =0

Thus ¢ is of type {n, a3} with respect to the basis (ale, %e + Uy, al—le') of L.

This ends the proof. O

70



C

PRELIMINARIES ON PSEUDO-RIEMANNIAN

Lie GROUPS

C.1 Pseudo-Euclidean Lie algebras
Let g be a Lie algebra and L : g x g — g be any bilinear map, denote L, := L(u, . ) then let:
Kl:gxg—End(g), Tr:gxg—g

be the bilinear maps given by KX(u,v) = [L,,L,] - Liy,») and TYu,v) = L,v — Lyu —[u,v),
which we shall respectively call the curvature and torsion of L. We say that L is torsion-
freeif TL =0.

Proposition C.1.1. Let L: gx g —> g be a bilinear map on a Lie algebra g with curvature K.
Assume L is torsion-free, then for any u,v,w € g:

1. K(u,v)=—-K(v,u), (Skew-Symmetry).
2. K(u,v)w+ K(w,u)v + K(v,w)u =0, (Bianchi Identity).

A pseudo-Euclidean Lie algebra is a couple (g, (, )) consisting of a Lie algebra g together
with a pseudo-Euclidean inner product (, ): gxg — R. The Levi-Civita product of a
pseudo-Euclidean Lie algebra (g,(, )) is the bilinear map L : g x g — g defined by the

expression:
(Lyv,w):= %(([u,v],w) +{[w,u],v) + ({w,v], u)). (C.1)

It is straightforward to check that the Levi-Civita product L is torsion-free. We shall
define the curvature of a pseudo-Euclidean Lie algebra to be the curvature of its Levi-
Civita product.

Proposition C.1.2. Let (g,(, )) be a pseudo-Euclidean Lie algebra and denote L its Levi-Civita
product and K its curvature. Then for any u,v,w, z € g, we have:

1. (Lyv,w) =—(v,L,w), i.e L, is skew-symmetric with respect to (, ).
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2. (K(u,v)w,z) = —(K(u,v)z, w).
3. (K(u,v)w,z) ={K(w, z)u,v).

The Ricci operator of a pseudo-Euclidean Lie algebra (g, (, ))is the linear map Ric: g— g

given by:

n
(Ric(u),v) := tr(w — K(u, w)v) = Zei(K(u, e, e;), (C.2)
i=1
where {eq,...,e,} is an orthonormal basis of (g,{, }) and €; := {e;,¢;) = £1. The bilinear
form ric: gxg — g given by ric(u,v) := (Ric(u),v) is called the Ricci curvature of (g,(, )).
We say that the pseudo-Euclidean Lie algebra (g,(, )) is Einstein if its Ricci curvature
satisfies ric = A(, ) for some A € Ri.e Ric = Ald,.

C.2 Pseudo-Riemannian Lie groups

Let us now introduce a particular pseudo-Riemannian structure on Lie groups.

Definition C.2.1. Let G be a Lie group. A pseudo-Riemannian metric g on G is left invariant
if for any g € G, we have Izg = g. In other words for any x € G and every v,w € T, G:

ggx(Txlg(v)l Txlg(w)) =gx(v,w).
In the same way g is right invariant if ryg = g.

Let G be a Lie group with Lie algebra g, denote ./(G) the set of left invariant metrics on
the Lie group G and Jll(g) the set of pseudo-Euclidean products on the underlying vector
space of g. The evalution map W : M’(G) —> JM(g), g — g. is a bijection. This shows that
a left invariant metric on a Lie group G can always be obtained by providing an inner

product on the Lie algebra g.

Proposition C.2.1. Let X, Y be left invariant vector fields on the Lie group G and let g be any

left invariant metric on G. Then the map G — R, x — g,(X,, Yy) is constant.

The next result is a consequence of the previous Proposition and is frequently used due

to its practical importance.

Proposition C.2.2. Let g be a left invariant metric on the Lie group G. If {ey,...,e,} is an

orthonormal basis of (Lie(G),g,), then {ef,...,eﬁ} defines a global orthonormal frame on (G, g).

We shall call pseudo-Riemannian Lie group any couple (G, g) consisting of a Lie group G

together with a left invariant Riemannian metric g on G.

Definition C.2.2. Let G be a Lie group with Lie algebra g and V an affine connection on G.
We say that V is a left-invariant connection on G if it satisfies ({;).V =V for any g € G,
which means that for any x € G and any X,Y € X(G):

(VXY)gx = Txgg((v(f

8

). X (gg)*Y)x)'
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It follows that V is left-invariant if and only if forany X, Y € X(G), (Vy Y)ex = Tulo (VX Y)y).
Any left invariant affine connection V on G gives rise to a bilinear map LY : gxg — g
given by LYv := (V,,cv%),, where u’ denotes the (unique) left invariant vector field satisfy-
ing ul := u. In fact if we define €¢(G) to be the set of all left invariant affine connections

on G, then the correspondence €¢(G) — g*®End(g), V > LV is a bijection.

Proposition C.2.3. Let G be a Lie group with Lie algebra g and V a left invariant affine connec-
tion on G. Denote RV and TV respectively the curvature and torsion tensor fields corresponding

to V, and by K and T the curvature and torsion of LY. Then for any u,v,w € g:
(K(u,v)w)l = RV (ul,vOwl  and (T(u,v))" = TV (ub,v0).
Proposition C.2.4. Let (G, g) be a pseudo-Riemannian Lie group with Lie algebra g. Then:

1. The Levi-Civita connection V of (G, g) is left invariant and LV : g x g — g is exactly the
Levi-Civita product of (g, g,)-

2. Let Ric" be the Ricci tensor of (G,g) and ric" its Ricci curvature, and denote by Ric and

ric respectively the Ricci operator and Ricci curvature of (9,8,). Then for any u,v € g:
ricv(ug, v‘)) = ric(u,v) Ricv(u‘;) = Ric(u)’.

3. The scalar curvature s¥ of (G,g) is a constant function, more precisely s¥ = s where s

denotes the scalar curvature of (g,g,) i.e s := tr(Ric).
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