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Abstract

This thesis falls under the theme of pseudo-Riemannian geometry in the setting of Lie

groups. Its purpose it to present a number of results on left-invariant Einstein Lorentzian

metrics on nilpotent Lie groups as an extension of the well-known classical Riemannian

case. The content of this thesis fits nicely in the subject literature since most of its results

complete previous works that were initiated by many authors, some of which are even

generalizations of earlier studies into broader contexts. The general outline can be di-

vided into two major parts:

The first part is concerned with the preliminaries of our study of Lorentzian left-invariant

Einstein metrics on nilpotent Lie groups. The main theorem states that if the center of

such a Lie group is degenerate then it must be Ricci-flat and its Lie algebra can be ob-

tained by the double extension process from an abelian Euclidean Lie algebra. We also

show that all nilpotent Lie groups up to dimension 5 endowed with a Lorentzian Ein-

stein left-invariant metric have degenerate center and we use this fact to give a complete

classification of these metrics. We show that if g is the Lie algebra of a nilpotent Lie

group endowed with a Lorentzian left-invariant Einstein metric with non-zero scalar

curvature then the center Z(g) of g is non-degenerate Euclidean, the derived ideal [g,g]

is non-degenerate Lorentzian and Z(g) ⊂ [g,g]. We give the first examples of Ricci-flat

Lorentzian nilpotent Lie algebra with non-degenerate center. The results in this part have

been published in [21]. The second part can be seen as a starting point for the study of

Einstein Lorentzian nilpotent Lie groups with non-degenerate center as it carries over the

machinery previously developed in order to treat the case of 3-step nilpotent Lie groups.

The principal theorem of this part is the classification of all Einstein Lorentzian 3-step

nilpotent Lie groups with 1-dimensional non-degenerate center, its proof, while long and

somewhat difficult, gives insight into many different properties and aspects that were

not apparent before, and the techniques used for the proof seem promising for a future

inspection. The material laid out in this part was published in [16].

Keywords: Lorentzian manifolds, Nilpotent Lie groups, Nilpotent Lie algebras, Flat man-

ifolds, Ricci curvature, Einstein metrics...
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Résumé

Cette thèse se situe dans le cadre des groupes de Lie pseudo-Riemanniens. Son objectif

est de présenter un nombre de résultats autour des métriques Lorentziennes d’Einstein

sur les groupes de Lie nilpotents comme une extension du cas Riemannien classique. Le

contenu de cette thèse est bien placé dans la litérature mathématique puisque la majorité

des résultats mis en évidence donnent un contexte plus large à des travaux déjà initiés

par plusieurs auteurs. Cette thèse comporte deux parties majeures :

La première partie concerne les préliminaires de notre étude des métriques Lorentzi-

ennes d’Einstein invariantes à gauche sur les groupes de Lie nilpotents. Le théorème

central affirme que si le centre d’un tel groupe de Lie est dégénéré alors il est forcément

Ricci-plat et son algèbre de Lie peut être obtenue par le procédé de double extension à

partir d’une algèbre de Lie Abélienne Euclidienne. On montre aussi que tous les groupes

de Lie dimension inférieure ou égale à 5 munis d’une métrique Lorentzienne d’Einstein

invariante à gauche possèdent un centre dégénéré, nous utilisons ce fait pour donner une

classification complète de ces métriques. On montre que si g est l’algèbre de Lie d’un

groupe de Lie nilpotent qui est munit d’une métrique Lorentzienne d’Einstein invariante

à gauche de courbure scalaire non nulle, alors le centre Z(g) de g est non dégénéré Eu-

clidien, son idéal dérivé [g,g] est non dégénéré Lorentzien et Z(g) ⊂ [g,g]. Les résultats

de cette partie ont été publiés dans [21]. La deuxième partie peut être vue comme le

début de l’étude des groupes de Lie nilpotents Lorentziens d’Einstein dont le centre est

non dégénéré, nous utilisons ici la même machine précedemment développée afin de

traiter le cas des groupes de Lie 3-step nilpotents. Le théorème principal de cette partie

est la classification de tous les groupes de Lie 3-step nilpotents Lorentziens d’Einstein

de centre unidimensionel non dégénéré. La preuve de ce thèorème permet d’éclaircir de

nouveaux aspects de l’étude globale et les techniques utilisés permettent de s’ouvrire sur

de nouvelles perspectives. Le contenu de cette partie a fait l’objet de [16].

Mots-clé : Variétés lorentziennes, Groupes de Lie nilpotents, Algèbres de Lie nilpotentes,

Variétés plates, Courbure de Ricci, Métriques d’Einstein...
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الرسالة  ملخص الرسالة

         . اللورنزية       المقاييس اللورنزية حول المقاييس اللورنزية النتائج حول المقاييس اللورنزية من النتائج حول المقاييس اللورنزية عدد من النتائج حول المقاييس اللورنزية تقديم عدد من النتائج حول المقاييس اللورنزية هو هدفها الريمانية المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية إطار في إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية الأطروحة هذه الأطروحة في إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية تندرج هذه الأطروحة في إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية

. الكلاسيكية         الريمانية لي إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية لنظرية كامتداد من النتائج حول المقاييس اللورنزية لي إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية مجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية على مجموعات لي كامتداد لنظرية لي الريمانية الكلاسيكية. لإينشتاين النتائج حول المقاييس اللورنزية

تكملة                   تعد و مميزة و تعد تكملة عليها المحصل عليها مميزة و تعد تكملة النتائج حول المقاييس اللورنزية لأن النتائج المحصل عليها مميزة و تعد تكملة الرياضي إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية الأد من النتائج حول المقاييس اللورنزيةب الرياضي لأن النتائج المحصل عليها مميزة و تعد تكملة في إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية جيدة و تعد تكملة مكانة الأطروحة هذه الأطروحة في إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية محتوى هذه  الأطروحة  مكانة جيدة في الأدب الرياضي لأن النتائج المحصل عليها مميزة و تعد تكملة يتبوأ محتوى هذه  الأطروحة  مكانة جيدة في الأدب الرياضي لأن النتائج المحصل عليها مميزة و تعد تكملة

:       . رئيسيين النتائج حول المقاييس اللورنزية     جزئين النتائج حول المقاييس اللورنزية من النتائج حول المقاييس اللورنزية الأطروحة هذه الأطروحة في إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية تتكون النتائج المحصل عليها مميزة و تعد تكملة الرياضيين النتائج حول المقاييس اللورنزية من النتائج حول المقاييس اللورنزية للعديد السابقة للأبحاث السابقة للعديد من الرياضيين. تتكون هذه الأطروحة من جزئين رئيسيين:

أ محتوى هذه  الأطروحة  مكانة جيدة في الأدب الرياضي لأن النتائج المحصل عليها مميزة و تعد تكملةينشتاين النتائج حول المقاييس اللورنزية              معاد من النتائج حول المقاييس اللورنزيةلات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية و اللورنزية للمقاييس اللورنزية لدراستنا والتمهيدية الأساسية والخصائص الأساسية والتمهيدية لدراستنا للمقاييس اللورنزية و معادلات أينشتاين المباد من النتائج حول المقاييس اللورنزيةئ والخصائص الأساسية والتمهيدية لدراستنا للمقاييس اللورنزية و معادلات أينشتاين نقدم المبادئ والخصائص الأساسية والتمهيدية لدراستنا للمقاييس اللورنزية و معادلات أينشتاين الأول المقاييس اللورنزية الجزء الأول نقدم المبادئ والخصائص الأساسية والتمهيدية لدراستنا للمقاييس اللورنزية و معادلات أينشتاين في إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية

. لي إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية      مجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية في إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية اليسار على مجموعات لي كامتداد لنظرية لي الريمانية الكلاسيكية. الثابتة

 . الهدف              البعد احاد من النتائج حول المقاييس اللورنزيةي البعد. الهدف مركزهم عدد من النتائج حول المقاييس اللورنزية الذين النتائج حول المقاييس اللورنزية أ محتوى هذه  الأطروحة  مكانة جيدة في الأدب الرياضي لأن النتائج المحصل عليها مميزة و تعد تكملةينشتاين النتائج حول المقاييس اللورنزية من النتائج حول المقاييس اللورنزية لورينتزيان النتائج المحصل عليها مميزة و تعد تكملة مجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية د من النتائج حول المقاييس اللورنزيةراسة بداية الثاني إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية الجزء الأول نقدم المبادئ والخصائص الأساسية والتمهيدية لدراستنا للمقاييس اللورنزية و معادلات أينشتاين اعتبار يمكن النتائج حول المقاييس اللورنزية

. المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية       هذه الأطروحة في إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية تصنيف هذه المجموعات. هو الجزء الأول نقدم المبادئ والخصائص الأساسية والتمهيدية لدراستنا للمقاييس اللورنزية و معادلات أينشتاين لهذا الرئيسي إطار المجموعات الريمانية. هدفها هو تقديم عدد من النتائج حول المقاييس اللورنزية
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1

Introduction

1.1 Historical Notes

The study of left-invariant, pseudo-Riemannian Lie groups, and more generally left-

invariant structures on Lie groups, is a central topic of differential geometry that has

attracted the interest of many mathematicians over the past few decades, primarily be-

cause it allows to bring difficult geometric problems into a more approachable setting

allowing to deal with a number of issues from an algebraic standpoint.

A smooth structure on a differentiable manifold is in many instances described by a

tensor field, and so questions concerning the existence of certain structures with specific

properties can be formulated through partial differential equations that must be satisfied

by the coefficients of the corresponding tensor field relatively to some local coordinate

system, however deciding whether a given partial differential equation admits a solution

is not an easy task in general and therefore not much can be said about the situation at

hand. In contrast, when the underlying manifold is a Lie group and the structure is left-

invariant, the problem can be entirely expressed in terms of a system of linear or quadratic

equations at the Lie algebra level. This is especially true for questions concerning the

existence of pseudo-riemannian metrics with certain curvature requirements. This ap-

proach turned out to be very efficient when looking for examples or counter-examples,

and in many situations, it even provided key insights that served to build arguments for

the general case.

1.2 Research Highlights

The purpose of this thesis was to investigate left-invariant Einstein Lorentzian metrics on

nilpotent Lie groups, this was done with the collaboration and supervision of Professor

Boucetta Mohamed and the intent was to develop a set of results that could potentially

lead to the classification of these structures. A classical result in this subject is due to

Milnor and deals with the Riemannian case, it is stated as follows:

1



CHAPTER 1. INTRODUCTION

Theorem 1.2.1 ([19], Theorem 2.4). Any left-invariant Riemannian metric on a nilpotent
non-abelian connected Lie group has a direction of strictly positive Ricci curvature and a
direction of strictly negative Ricci curvature.

An obvious consequence of this result is that the only nilpotent Lie groups that can be
equipped with a left-invariant, Einstein Riemannian metric are abelian groups. The indefinite

case however, is highly non-trivial with only few known examples (see for instance [6]),

and it is mainly for this reason that we set out to improve on the current state of the art.

The first stage of the inspection was based on papers due to M. Boucetta (see [5]) and M.

Guediri & M. Bin Asfour (see [18]) which settled the case for 2-step nilpotent Lie groups,

the main results in these papers are stated as follows:

Theorem 1.2.2 ([18], Lemma 14). Let (g, [ , ],〈 , 〉) be a Ricci-flat Lorentzian non abelian
2-step nilpotent Lie algebra. Then Z(g) is degenerate.

Theorem 1.2.3 ([5], Proposition 3.4). Any 2-step nilpotent, pseudo-Euclidean Einstein Lie
algebra must be Ricci-flat.

Theorem 1.2.4 ([18], Theorem 15). Let g be any 2-step nilpotent, non-abelian Lie algebra.
Then g admits a Ricci-flat Lorentzian metric if and only if g = Rn ⊕ n i.e a direct sum of an
abelian Lie algebra and a nilpotent Lie algebra n such that the Lie brackets of n are expressed
relatively to a basis B= {e,z1, . . . , zp, ē, e1, . . . , eq} as follows:

[ē, ei] = αie+
p∑
k=1

cikzk , [ei , ej ] = aije, 1 ≤ i, j ≤ q, (1.1)

with
q∑

i,j=1
a2
ij = 2

q∑
i=1

p∑
k=1

c2
ik . Moreover the basis B can be chosen Lorentzian, in particular the

restriction of the metric to [g,g] is degenerate.

It was observed in these works that there was a certain interplay between the Einstein

aspect of the metric and the degeneracy of the center of the Lie group. Following these

steps, the goal of our first paper was to look further into this relationship and its im-

plications in the case of general nilpotent Lie groups, this has led us to give a detailed

description of the structure of Einstein Lorentzian nilpotent Lie groups with degenerate

center, generalizing therefore a central result in [18], and ultimately classifying all Ein-

stein Lorentzian nilpotent Lie groups of dimension less than 5 (see [21] for details).

The second part of our research focused on Einstein Lorentzian nilpotent Lie groups with

non-degenerate center, particularly the 3-step nilpotent case, we gave the first known

example of such Lie groups in [21], disproving in the process a long-standing conjecture

due to M. Boucetta which stated that every Einstein Lorentzian nilpotent Lie group has
a degenerate center. The central result of this part was the classification of all such Lie

groups when the center is 1-dimensional (for details, see [16]).
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1.3. PAPERS OUTLINE

1.3 Papers Outline

Let (h, [ , ],〈 , 〉) be a pseudo-Euclidean Lie algebra, i.e, a Lie algebra endowed with a pseudo-

Euclidean product. The Levi-Civita product of h is the bilinear map L : h× h −→ h given

by Koszul’s formula

2〈Luv,w〉 = 〈[u,v],w〉+ 〈[w,u],v〉+ 〈[w,v],u〉. (1.2)

For any u,v ∈ h, Lu : h −→ h is skew-symmetric and [u,v] = Luv −Lvu. The curvature of h

is given by

K(u,v) = L[u,v] − [Lu ,Lv].

The Ricci curvature ric : h× h −→ R and its Ricci operator Ric : h −→ h are defined by

〈Ric(u),v〉 = ric(u,v) = tr(w −→ K(u,w)v) .

A pseudo-Euclidean Lie algebra is called flat (resp. Ricci-flat) if K = 0 (resp. ric = 0). It

is called λ-Einstein if there exists a constant λ ∈ R such that Ric = λIdh. In the case of

nilpotent Lie algebras, the Ricci curvature is given by:

ric(u,v) = −1
2

tr(adu ◦ ad∗v)− 1
4

tr(Ju ◦ Jv), (1.3)

where Ju is the skew-symmetric endomorphism given by Ju(v) = ad∗vu. Moreover, if J1

and J2 denote the symmetric endomorphisms given by

〈J1u,v〉 = tr(adu ◦ ad∗v), 〈J2u,v〉 = −tr(Ju ◦ Jv) = tr(Ju ◦ J∗v). (1.4)

then the Ricci operator has the following expression

Ric = −1
2
J1 +

1
4
J2, (1.5)

On Einstein Lorentzian nilpotent Lie groups [21]. The goal of this work was to give a

description of Einstein Lorentzian nilpotent Lie groups with degenerate center, following

the lines of a study that was initiated by M. Boucetta in [5]. As it is the case for left-

invariant structures in general, the problem can be entirely treated at the Lie algebra

level without any reference to the group in question. The main theorem of this paper

states that any Einstein Lorentzian nilpotent Lie algebra with degenerate center is Ricci-flat
and can be obtained by a double extension from a Euclidean vector space with prescribed
parameters, a rigorous account of the double extension process can be found in [3] and its

adaptation to our situation was discussed in details in [21]. The official statement of the

Theorem is as follows:

Theorem 1.3.1. Let (g,〈 , 〉) be an Einstein nilpotent non abelian Lorentzian Lie algebra and
suppose that there exists e ∈ Z(g) a central isotropic vector and denote I= Re. Then:

1. Z(g) is degenerate and λ = 0.

3



CHAPTER 1. INTRODUCTION

2. I⊥ is an ideal and g0 = I⊥/I is a Euclidean abelian Lie algebra.

3. g is obtained from g0 by the double extension process with admissible data (K,D,0,b)

and D is nilpotent.

This theorem generalizes a result of M. Guediri & M. Bin Asfour that deals with the 2-step

nilpotent case ([18], Theorem 15). An important stream of thoughts that was dominant

throughout the paper was to bring the influence of the Ricci curvature over the metric

nature of the center and the derived ideal (either degenerate or non-degenerate), first

found in [5], into a broader setting, this set of results can be summarized as follows:

Theorem 1.3.2. Let (g, [ , ],〈 , 〉) be an Einstein Lorentzian nilpotent non abelian Lie algebra.

1. If [g,g] is non degenerate then it is Lorentzian.

2. If Z(g) is nondegenerate then it is Euclidean.

3. [g,g]∩ [g,g]⊥ ⊂ Z(g) and if [g,g] is degenerate then (g,〈 , 〉) is Ricci flat.

The following result, first proved in [18], is obtained as a corollary of the previous theo-

rem:

Corollary 1.3.1. Let (g, [ , ],〈 , 〉) be an Einstein Lorentzian non abelian 2-step nilpotent Lie
algebra. Then Z(g) is degenerate.

In the same spirit, we were able to prove the following result that can be perceived as

a slight improvement on Corollary 1.3.1, but which turned out to be essential for the

upcoming developement:

Proposition 1.3.1. Let (g,〈 , 〉) be a Ricci flat Lorentzian nilpotent non abelian Lie algebra
such that dim[g,g] = dim(Z(g)∩ [g,g]) + 1. Then Z(g) is degenerate.

By combining Theorems 1.3.2 and 1.3.1 and Proposition 1.3.1, we were rewarded with a

complete classification of Einstein Lorentzian nilpotent Lie algebras of dimension less 5

(see Theorems 2.5.2 and 2.5.3 in Chapter 2 for the exact statement).

Classification of Einstein Lorentzian 3-nilpotent Lie groups with 1-dimensional non-

degenerate center [16]. This work can be considered as a continuation of [21] and is con-

cerned with the study of Einstein Lorentzian nilpotent Lie groups with non-degenerate

center. This class of Lie groups is very large and contains in particular Einstein Lorentzian

nilpotent Lie groups with nonvanishing scalar curvature (Theorem 1.3.1), the minimal

dimension required for this phenomenon to occur is 6 and the first known example of

such Lie groups was given in [21] (see Example 1 in Chapter 2). As a first step towards

a general study, we focus on the 3-step nilpotent setting, the first main theorem of the

paper can be stated as follows:
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Theorem 1.3.3. Let h be a λ-Einstein Lorentzian 3-step nilpotent Lie algebra with nondegen-
erate center. Then λ ≥ 0.

By restricting to the case where the center is 1-dimensional, we were able to give a full

classification of these Lie groups, which surprisingly enough, are shown to only exist in

dimensions 6 and 7, the precise statement is as follows:

Theorem 1.3.4. Let h be a 3-step nilpotent Lie algebra with dimZ(h) = 1. Let 〈 , 〉 be a
Lorentzian metric on h such that Z(h) is non-degenerate, then 〈 , 〉 is Einstein if and only if it
is Ricci-flat and (h,〈 , 〉) has one of the following forms :

(i) dimh = 6 and h is isomorphic to L6,19(−1), i.e., h has a basis (fi)
6
i=1 such that the non

vanishing Lie brackets are

[f1, f2] = f4, [f1, f3] = f5, [f2, f4] = f6, [f3, f5] = −f6

and the metric is given by :

〈 , 〉 := f ∗1 ⊗ f
∗

1 + 2f ∗2 ⊗ f
∗

2 + 2f ∗3 ⊗ f
∗

3 + 4α4f ∗6 ⊗ f
∗

6 − 2α2f ∗4 � f
∗

5 , α , 0. (1.6)

(ii) dimh = 7 and h is isomorphic to the nilpotent Lie algebras 147E found in the classi-
fication given in [8](p. 57). In precise terms, there exists a basis {fi}7i=1 of h where the non
vanishing Lie bracket are given by :

[f1, f2] = f5, [f1, f3] = f6, [f2, f3] = f4, [f6, f2] = (1− r)f7, [f5, f3] = −rf7, [f4, f1] = f7, (1.7)

with 0 < r < 1, and the metric has the form:

〈 , 〉 = f ∗1 ⊗f
∗

1 +f ∗2 ⊗f
∗

2 +f ∗3 ⊗f
∗

3 −af
∗

4 ⊗f
∗

4 +arf ∗5 ⊗f
∗

5 +a(1−r)f ∗6 ⊗f
∗

6 +a2f ∗7 ⊗f
∗

7 , a > 0. (1.8)

1.4 Future research

While the results obtained in the course of this thesis may set the ground for any future

inquiry on the subject, there is still room for more elaborate arguments and methods, and

as it is usually the case with research, one ends up with more questions than answers. We

name here a few that we think are relevant for any further developement on the matter

and might even be at the heart of some paper down the line:

Question 1: Is there a complete classification of Einstein, Lorentzian 3-step nilpotent Lie
algebras with non-degenerate center, similar to Theorem 3.1.1 ?

We think that this is a legitimate question and a natural sequel to the work present

in [16], one reason is because the machinery to proceed has been partially developed so

that one only needs to adapt the methods to this more general setting by dropping the

5
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hypothesis about the dimension of the center.

Question 2: Is there a method that allows the construction of Einstein Lorentzian nilpotent
Lie groups with nonvanishing scalar curvature ?

So far the only known Example in this category of Lie groups is due do D. Conti &

F. Rossi (see [6] and also [16], Example 1), and naturally one needs further examples in

order to make reasonable statements.

Question 3: Is there a possible classification when one restricts to a specific class of Einstein
Lorentzian nilpotent Lie algebras ?

Although a complete classification is far reaching, certain classes of nilpotent Lie algebras,

for instance filiform or characteristically nilpotent Lie algebras, enjoy special properties

that could make a classification within the realm of possibilities. In any case, these situa-

tions need a careful study.

Question 4: Can we prove a similar set of results for Einstein nilpotent Lie groups of arbi-
trary signature ?

The Lorentzian case is only an instance of the more general non-degenerate setting, which

lacks its presence in the mathematical litterature.

6



2

On Einstein Lorentzian nilpotent Lie

groups

2.1 Introduction

A pseudo-Riemannian manifold (M,g) is called Einstein if its Ricci tensor Ric : TM −→ TM

satisfies Ric = λIdTM for some constant λ ∈ R. When λ = 0, (M,g) is called Ricci-flat.

Pseudo-Riemannian Einstein manifolds present a central topic of differential geometry

and an active area of research. The subclass of Lorentzian Einstein manifolds has at-

tracted a particular interest due to its importance in the physics of general relativity

(see [4]). Homogeneous Riemannian manifolds were intensively studied and the Alek-

seevskii’s conjecture (see [4]) has driven a profound exploration of Einstein left invariant

Riemannian metrics on Lie groups leading to some outstanding results (see [10, 13]).

However, the study of left invariant Einstein pseudo-Riemannian metrics on Lie groups

is at beginning. In [1, 14], flat Lorentzian left invariant metrics on Lie groups has been

studied, in [15] flat left invariant metrics of signature (2,n − 2) on nilpotent Lie groups

has been characterized, Ricci-flat Lorentzian left invariant metrics on 2-step nilpotent

Lie groups has been investigated in [5, 18] and in [7, 2], all four dimensional Lie al-

gebras of Einstein Lorentzian Lie groups were given. The study of pseudo-Riemannian

Einstein left invariant metric with non vanishing scalar curvature has been initiated in [6].

In this chapter, we study Einstein Lorentzian left invariant metrics on nilpotent Lie

groups. As in any study involving left invariant structures on Lie groups, we can consider

the problem at the Lie algebra level. Let (g, [ , ],〈 , 〉) be a nilpotent Lorentzian Lie algebra

with Ricci operator Ric : g −→ g satisfying Ric = λIdg. Our main results can be stated as

follows :

1. If the center Z(g) of g is nondegenerate then it is Euclidean and if the derived ideal

[g,g] is nondegenerate then it is Lorentzian.

2. If [g,g] is degenerate then Z(g) is degenerate and the metric is Ricci-flat.
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3. If the scalar curvature of g is non zero then Z(g) is nondegenerate Euclidean, [g,g]

is nondegenerate Lorentzian and Z(g) ⊂ [g,g].

4. If Z(g) is degenerate then g is Ricci-flat and (g, [ , ],〈 , 〉) is obtained by the pro-

cess of double extension from an abelian Euclidean Lie algebra. The process of

double extension has been introduced by Medina-Revoy [3] in the context of bi-

invariant pseudo-Riemannian metrics on Lie groups and turned out to be efficient

in many other situations. We adapt this process to our case and, in addition to

our main result, we use it to construct a large class of Einstein Lorentzian Lie alge-

bras (not necessarily nilpotent). We also recover the description of 2-step nilpotent

Lorentzian Lie algebras obtained in [18].

5. If g is Ricci-flat non-abelian, and dim[g,g] = dim(Z(g)∩ [g,g]) + 1 then Z(g) is degen-

erate.

6. If dimg ≤ 5 then the center of g is degenerate. In this case we give a complete

classification of all such Lie algebras.

7. We give the first examples Ricci-flat Lorentzian nilpotent Lie algebras with nonde-

generate center. It is worth to mention that this differs from the flat case. Indeed,

it has been shown (see [14]) that if a nilpotent Lie group G is endowed with a flat

left-invariant metric which is either Lorentzian or of signature (2,n − 2) then its

center must be degenerate.

8. We give another proof of the main result in [6] by using a formula known in the

Euclidean context (see Propositions 2.3.6-2.3.7)

The chapter is organized as follows. In Section 2.2, we establish two lemmas and we

give a useful expression of the Ricci operator involving our main tool : a family of skew-

symmetric endomorphisms which we call structure endomorphisms. In Section 2.3, we

prove some general results on Einstein Lorentzian nilpotent Lie algebras. In Section 2.4,

we describe the process of double extension which permits to construct a large class of

Einstein Lorentzian Lie algebras and we prove our main result (see Theorem 2.4.1), then

we show that Lorentzian Einstein nilpotent Lie algebras up to dimension 5 satisfy the

hypothesis of this theorem and we give the list of such algebras. Finally, we give the first

examples of Ricci-flat Lorentzian nilpotent Lie algebras with nondegenerate center. This

widely opens the door for a future study of this particular class.

2.2 Ricci curvature of pseudo-Euclidean Lie algebras

The purpose of this paragraph is to fix the notations that shall be used throughout the

chapter, this is done by defining several operators related to the metric structure on a

pseudo-Euclidean Lie algebra, particularly its curvature, we then proceed to give many

properties of these operators as well as their basis expression. This step is crucial for the
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upcoming development, since the proof of many central results relies on the computa-

tional material introduced in this paragraph. We also introduce some facts concerning

pseudo-Euclidean vector spaces in the form of Lemmas at the end of the paragraph for

later use. A detailed account on pseudo-Euclidean vector spaces is given in Appendix B,

the preliminary notions on pseudo-Euclidean Lie algebras such as the Levi-Civita prod-

uct and the various flavors of curvature are the subject of Appendix C.

Let (g, [ , ],〈 , 〉) be a pseudo-Euclidean Lie algebra and denote g× g −→ g, (u,v) 7→ u · v its

Levi-Civita product, we recall the Koszul formula (cf. (C.1))

2〈u · v,w〉 = 〈[u,v],w〉+ 〈[w,u],v〉+ 〈[w,v],u〉. (2.1)

For any u ∈ g, we shall denote Lu ,Ru : g −→ g be the corresponding left and right mul-

tiplications i.e Rv(u) = Luv = u · v. By Koszul formula (2.1), we get that Lu : g −→ g is

skew-symmetric and adu = Lu −Ru . The curvature K : g × g −→ End(g) of g can then be

expressed in these terms as:

K(u,v)w = L[u,v]w − [Lu ,Lv]w

= [Rw,Lu](v)−Rw ◦Ru(v) + Ruw(v).

From the last relation, we deduce that the Ricci curvature ric : g× g −→ R of (g, [ , ],〈 , 〉) is

given by:

ric(u,v) = −tr(Ru ◦Rv) + tr(Ruv). (2.2)

In order to make more use of the Ricci curvature, we introduceH ∈ g and J : g −→ so(g,〈 , 〉)
such that for any u,v ∈ g,

〈H,u〉 = tr(adu) and Ju(v) = ad∗v(u). (2.3)

Note that H ∈ [g,g]⊥ and H = 0 if and only if g is unimodular. In these notations (2.1) can

be rewritten as:

2〈Rvu,w〉 = −〈adv(u),w〉 − 〈ad∗v(u),w〉 − 〈Jv(u),w〉. (2.4)

Proposition 2.2.1. Let g be a pseudo-Euclidean Lie algebra. We have:

ric(u,v) = −1
2

tr(adu ◦ adv)− 1
2

tr(adu ◦ ad∗v)− 1
4

tr(Ju ◦ Jv)

−1
2
〈adHu,v〉 −

1
2
〈adHv,u〉.

Proof. It is a consequence of (2.2), the following formula which can be deduced from (2.4)

Ru = −1
2

(adu + ad∗u)− 1
2
Ju ,
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and the following computation. For any orthonormal basis (e1, . . . , en) of g, with εi = 〈ei , ei〉:

tr(Ruv) =
n∑
i=1

εi〈Lei (u · v), ei〉

(2.1)
= −

n∑
i=1

εi〈[u · v,ei], ei〉

= −tr(aduv)

= −〈H,u · v〉

= −1
2
〈adHu,v〉 −

1
2
〈adHv,u〉.

The result is then a matter of simple calculation.

Recall that any nilpotent Lie algebra is unimodular and has vanishing Killing form, this

leads to the following observation:

Proposition 2.2.2. If g is a nilpotent pseudo-Euclidean Lie algebra, then:

ric(u,v) = −1
2

tr(adu ◦ ad∗v)− 1
4

tr(Ju ◦ Jv).

In particular, its Ricci operator Ric : g −→ g is given by

Ric = −1
2
J1 +

1
4
J2, (2.5)

where J1 and J2 are the auto-adjoint endomorphisms given by

〈J1(u),v〉 = tr(adu ◦ ad∗v) and 〈J2(u),v〉 = −tr(Ju ◦ Jv). (2.6)

Remark 1. The endomorphisms Ju are skew-symmetric and Ju = 0 if and only if u ∈ [g,g]⊥.
As a result, if 〈 , 〉 is Euclidean then we get for any u ∈ g, 〈Ji(u),u〉 ≥ 0 (i = 1,2), kerJ1 = Z(g)

and kerJ2 = [g,g]⊥.

The operators J1 and J2 will play a crucial role in our study so we are going to express

them in a useful way. This is based on the notion of structure endomorphisms we now

introduce. Let (g, [ , ],〈 , 〉) be a pseudo-Euclidean Lie algebra and (e1, . . . , ep) a basis of g.

For any u,v ∈ g, the Lie bracket can be written as:

[u,v] =
p∑
i=1

〈Siu,v〉ei , (2.7)

where Si : g −→ g are skew-symmetric endomorphisms with respect to 〈 , 〉. The family

of operators (S1, . . . ,Sp) will be called structure endomorphisms of g associated to (e1, . . . , ep).

Note that Z(g) = ∩pi=1 kerSi , furthermore one can see easily from (2.7) and the definition

of J in (2.3) that for any u ∈ g,

Ju =
p∑
i=1

〈u,ei〉Si . (2.8)

The following Proposition is of central importance and will be used in many instances.
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Proposition 2.2.3. Let g be a pseudo-Euclidean Lie algebra and let (S1, . . . ,Sp) be structure
endomorphisms corresponding to a basis (e1, . . . , ep) of g. Then:

J1 = −
p∑

i,j=1

〈ei , ej〉Si ◦ Sj and J2u = −
p∑

i,j=1

〈ei ,u〉tr(Si ◦ Sj )ej . (2.9)

In particular, trJ1 = trJ2.

Proof. The expression of J2 is an immediate consequence of (2.6) and (2.8). As for J1 we

have that :

(adu ◦ ad∗u)(v) = (adu ◦ Jv)(u)

(2.7)
=

p∑
i=1

〈Siu,Jvu〉ei

(2.8)
=

∑
i,j

〈Siu,Sju〉〈v,ej〉ei

= −
∑
i,j

〈(Sj ◦ Si)(u),u〉Ki,jv,

whereKi,jv = 〈v,ej〉ei . Clearly tr(Ki,j ) = 〈ei , ej〉, thus tr(adu◦ad∗v) = −
∑
i,j

〈(Sj◦Si)(u),v〉〈ei , ej〉.

This gives the desired formula of J1.

We close the paragraph by the following two Lemmas on skew-symmetric operators of

Lorentzian vector spaces:

Lemma 2.2.1. Let (V ,〈 , 〉) be a Lorentzian vector space, e an isotropic vector and A a skew-
symmetric endomorphism. Then 〈Ae,Ae〉 ≥ 0. Moreover, 〈Ae,Ae〉 = 0 if and only if Ae = αe

with α ∈ R.

Proof. We choose an isotropic vector ē of V such that 〈e, ē〉 = 1 and we fix an orthonormal

basis (f1, . . . , fr ) of {e, ē}⊥. Since A is skew-symmetric, we have

Ae = αe+
r∑
i=1

aifi and 〈Ae,Ae〉 =
r∑
i=1

a2
i ,

and the result follows.

Lemma 2.2.2. Let (V ,〈 , 〉) be a Lorentzian vector space, e an isotropic vector and A a skew-
symmetric endomorphism such that A(e) = 0. Then:

1. tr(A2) ≤ 0,

2. tr(A2) = 0 if and only if for any x ∈ e⊥, A(x) = λ(x)e and in this case tr(A ◦ B) = 0 for
any skew-symmetric endomorphism satisfying B(e) = 0.
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Proof. We choose a Lorentzian basis B = (e, ē, f1, . . . , fn) of V such that (e, f1, . . . , fn) is a

basis of {e}⊥, ē is isotropic, 〈e, ē〉 = 1 and (f1, . . . , fn) is an orthonormal basis of {e, ē}⊥. First

observe that the restriction of 〈 , 〉 to {e}⊥ is nonnegative and for any x ∈ {e}⊥, 〈x,x〉 = 0 if

and only if x = αe. Now Afi ∈ {e}⊥ for any i = 1, . . . ,n and so:

tr(A2) = 〈A2(e), ē〉+ 〈A2(ē), e〉 −
n∑
i=1

〈Afi ,Afi〉 = −
n∑
i=1

〈Afi ,Afi〉 = −
n∑

i,j=1

〈Afi , fj〉2.

This shows that tr(A2) ≤ 0 and tr(A2) = 0 if and only if Afi = αie for all i = 1, . . . ,n. In this

case, if B is skew-symmetric and B(e) = 0 then B(fi) = βie, therefore:

tr(A ◦B) = −〈B(e),A(ē)〉 − 〈A(ē),B(e)〉 −
n∑
i=1

〈Afi ,Bfi〉 = 0.

This proves the claim.

2.3 Some results on Einstein Lorentzian nilpotent Lie algebras

The principal goal of this section is to prove a set of results typical to the Lorentzian case,

and which characterizes the signature of the center Z(g) and the derived ideal [g,g] of an

Einstein Lorentzian nilpotent Lie algebra of g. We draw a number of consequences from

these results, for instance we obtain as corollaries some known facts on the Ricci curvature

of Einstein Lorentzian 2-step nilpotent Lie algebras, we also give a slight generalization

of these results that includes some Lorentzian Ricci-flat 3-step nilpotent Lie algebras.

Finally, we use our approach to recover some results first proved in [6].

Before going further, let us first give the following remark which we will use frequently:

Let (g, [ , ],〈 , 〉) be a pseudo-Euclidean Lie algebra. From the definition of J in (2.3), one

can easily deduce that ker J = [g,g]⊥ and hence:

Z(g) ⊂ kerJ1 :=M and [g,g]⊥ ⊂ kerJ2 :=N. (2.10)

Since J1 and J2 are symmetric with respect to 〈 , 〉,

ImJ1 =M⊥ ⊂ Z(g)⊥ and ImJ2 =N⊥ ⊂ [g,g]. (2.11)

Proposition 2.3.1. Let (g, [ , ],〈 , 〉) be an Einstein Lorentzian nilpotent non abelian Lie
algebra. If [g,g] is non-degenerate then it is Lorentzian.

Proof. We reason by contradiction and suppose that [g,g] is non-degenerate Euclidean,

choose an orthonormal basis (e1, . . . , ed) of [g,g] and denote by (S1, . . . ,Sd) the associated

structure endomorphisms. According to (2.5) and (2.9), we have

−1
2
J1 +

1
4
J2 = λIdg, J1 = −

d∑
i=1

S2
i and J2u = −

d∑
i,j=1

〈u,ei〉tr(Si ◦ Sj )ej .
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Since g is nilpotent then dim[g,g]⊥ ≥ 2 and we can choose a couple (e, ē) of isotropic

vectors in [g,g]⊥ such that 〈e, ē〉 = 1. By replacing in the relations above and using (2.10),

we get:

1
2
J1e = −λe, 1

2
J1ē = −λē and

d∑
i=1

〈Sie,Sie〉 =
d∑
i=1

〈Si ē,Si ē〉 = 0.

By using Lemma 2.2.1, we deduce that for any i ∈ {1, . . . ,d}, Sie = αie and Si ē = −αi ē and

hence:

λ =
1
2

d∑
i=1

α2
i ≥ 0.

For i = 1, . . . ,d, Si is skew-symmetric and leaves invariant span{e, ē} so it leaves invariant

its orthogonal. We denote by Ki the restriction of Si to the Euclidean vector space {e, ē}⊥.

We have tr(S2
i ) = 2α2

i + tr(K2
i ) and tr(K2

i ) ≤ 0. Now, since tr(J1) = tr(J2), we get:

(dimg)λ = −1
4

tr(J1) =
1
4

d∑
i=1

(2α2
i + tr(K2

i )) = λ+
1
4

d∑
i=1

tr(K2
i ).

This shows that λ ≤ 0. By combining the results obtained so far, we deduce that λ = 0 and

for all i = 1, . . . ,d, tr(K2
i ) = 0 and α2

i = 0 which implies that Si = 0. Thus g is abelian which

is a contradiction, this proves our claim.

Proposition 2.3.2. Let (g,〈 , 〉) be an Einstein pseudo-Euclidean non-abelian nilpotent Lie
algebra. If Z(g) is non-degenerate then Z(g)⊥ is not Euclidean.

Proof. Denote by (p,q) = (−, . . .−,+, . . . ,+) the signature of 〈 , 〉. We reason by contradiction

and assume that Z(g) is non-degenerate and Z(g)⊥ is Euclidean. This implies in particular

that dimZ(g)⊥ ≤ q and therefore dimZ(g) ≥ p. Consequently, we can choose an orthogonal

family (e1, . . . , ep) in Z(g) such that 〈ei , ei〉 = −1 for i = 1, . . . ,p. Write g = span{e1, . . . , ep}⊕g0,

where g0 = {e1, . . . , ep}⊥. For any u,v ∈ g0, put:

[u,v] =
p∑
i=1

〈Kiu,v〉ei + [u,v]0, (2.12)

where Ki : g0 −→ g0 are skew-symmetric endomorphisms and [u,v]0 ∈ g0. Let 〈 , 〉0 denote

the restriction of 〈 , 〉 to g0. It is obvious that (g0, [ , ]0,〈 , 〉0) is a Euclidean nilpotent Lie

algebra. We claim that if (g,〈 , 〉) is Einstein i.e Ric = λIdg then we have λ = 1
4 tr(K2

i ) ≤ 0

for all i = 1, . . . ,p. Moreover if Ric〈 , 〉0 is the Ricci operator of (g0, [ , ]0,〈 , 〉0) then:

Ric〈 , 〉0 = λIdg0
+

1
2

p∑
i=1

K2
i . (∗)

This implies that the Ricci curvature of (g0,〈 , 〉0) is nonpositive. However a non-abelian

nilpotent Euclidean Lie algebra has always a Ricci negative direction and a Ricci positive

direction (see [19, Theorem 2.4]). So the only possibility is Ki = 0 for i = 1, . . . ,p and g0 is

abelian. We get a contradiction in view of (2.12), which completes the proof.

13



CHAPTER 2. ON EINSTEIN LORENTZIAN NILPOTENT LIE GROUPS

Let us prove our claim. We choose an orthonormal basis B1 = (f1, . . . , fq) of g0. Then

clearly B = (e1, . . . , ep, f1, . . . , fq) is an orthonormal basis of g. Denote by (S1, . . . ,Sp,T1, . . . ,Tq)

the structure endomorphisms of (g,〈 , 〉) with respect to B and (M1, . . . ,Mq) the structure

endomorphisms of (g0,〈 , 〉0) with respect to B1. Every Si and Ti vanish on Z(g) and hence

leave g0 invariant. By using (2.12), one can easily see that, for i = 1, . . . ,p and j = 1, . . . , q:

(Si)|g0
= Ki and (Tj )|g0

=Mj .

If g is Einstein then according to (2.9), we have:

−1
2

p∑
i=1

S2
i +

1
2

q∑
i=1

T 2
i +

1
4
J2 = λIdg, (∗∗)

where

J2 = −
∑
i,j

〈ei ,•〉tr(Ki◦Kj )ej−
∑
i,j

〈fi ,•〉tr(Mi◦Mj )fj−
∑
i,j

〈fi ,•〉tr(Mi◦Kj )ej−
∑
i,j

〈ei ,•〉tr(Ki◦Mj )fj .

If we evaluate the relation (∗∗) at ei , we get

1
4

tr(K2
i )ei +

1
4

q∑
j=1

tr(Ki ◦Mj )fj = λei .

This is equivalent to λ = 1
4 tr(K2

i ) and tr(Ki ◦Mj ) = 0 for i ∈ {1, . . . ,p} and j ∈ {1, . . . , q}. This

implies that if we restrict (∗∗) to g0 we get the desired relation (∗).

Corollary 2.3.1. Let (g, [ , ],〈 , 〉) be an Einstein Lorentzian non-abelian nilpotent Lie algebra.
If Z(g) is non-degenerate then it is Euclidean.

The following result was first found by Guediri in [18] and served as a key ingredient

in the classification of Einstein Lorentzian 2-step nilpotent Lie algebras. It can also be

deduced from the preceding results.

Corollary 2.3.2. Let (g, [ , ],〈 , 〉) be an Einstein Lorentzian non abelian 2-step nilpotent Lie
algebra. Then Z(g) is degenerate.

Proof. Suppose that Z(g) is non-degenerate. According to Corollary 2.3.1, Z(g) is non-

degenerate Euclidean. But g is 2-step nilpotent and hence [g,g] ⊂ Z(g). Thus [g,g] is

non-degenerate Euclidean which contradicts Proposition 2.3.1.

Proposition 2.3.3. Let (g,〈 , 〉) be an Einstein Lorentzian nilpotent Lie algebra such that [g,g]

is degenerate then [g,g]∩ [g,g]⊥ ⊂ Z(g) and (g,〈 , 〉) is Ricci flat.

Proof. Let e be a generator of [g,g]∩[g,g]⊥. Then there exists a basis (e, ē, f1, . . . , fd , g1, . . . , gs)

of g such that (e, f1, . . . , fd) is a basis of [g,g], (e,g1, . . . , gs) is basis of [g,g]⊥, (e, ē) are co-

isotropic i.e 〈e, ē〉 = 1 and (f1, . . . , fd , g1, . . . , gs) is an orthonormal basis of {e, ē}⊥. Next

denote by (A,S1, . . . ,Sd) the associated structure endomorphisms, i.e. for any u,v ∈ g,

[u,v] = 〈Au,v〉e+
d∑
i=1

〈Siu,v〉fi .

14
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According to (2.5) and (2.9), we have:

−1
2
J1 +

1
4
J2 = λIdg and J1 = −

d∑
i=1

S2
i .

Since e ∈ [g,g]⊥ and it is isotropic, we have J2e = 0, −1
2J1e = λe, and so

∑d
j=1〈Sje,Sje〉 = 0.

Using Lemma 2.2.1, we get Sje = aje for any j = 1, . . . ,d and hence λ = 1
2
∑d

i=1 a
2
i ≥ 0. On

the other hand, since tr(J1) = tr(J2), it follows that:

(dimg)λ = −1
4

tr(J1) =
1
4

d∑
j=1

tr(S2
j ).

Furthermore we have:

tr(S2
j ) = 〈S2

j e, ē〉+ 〈S
2
j ē, e〉+

∑
l

〈S2
j fl , fl〉+

∑
l

〈S2
j gl , gl〉

= 2a2
j −

∑
l

〈Sjfl ,Sjfl〉 −
∑
l

〈Sjgl ,Sjgl〉.

Since Sj leaves invariant e, it leaves invariant its orthogonal span{e, fl , gk}. But the restric-

tion of 〈 , 〉 to span{e, fl , gk} is nonnegative. So 〈Sjfl ,Sjfl〉 ≥ 0 and 〈Sjgl ,Sjgl〉 ≥ 0. Thus:

(dimg− 1)λ = −
∑
l,j

〈Sjfl ,Sjfl〉 −
∑
l,j

〈Sjgl ,Sjgl〉 ≤ 0.

But we have already shown that λ ≥ 0. We conclude that λ = 0 and Sj(e) = 0 for j = 1, . . . ,p.

This implies that for any u ∈ g, [e,u] = 〈A(e),u〉e. But adu is nilpotent and hence [e,u] = 0

which completes the proof.

Corollary 2.3.3. Let g be a nilpotent Lorentzian Einstein Lie algebra. Suppose that [g,g] is
degenerate, then Z(g) is also degenerate.

Proposition 2.3.4. Let (g,〈 , 〉) be a Ricci-flat Lorentzian nilpotent non-abelian Lie algebra
such that dim[g,g] = dim(Z(g)∩ [g,g]) + 1. Then Z(g) is degenerate.

Proof. Suppose that Z(g) is non-degenerate. According to Propositions 2.3.1 and 2.3.3

and Corollary 2.3.1, Z(g) is Euclidean and [g,g] is Lorentzian and hence there exists an

orthonormal basis (e1, . . . , er ) of [g,g] such that ei ∈ Z(g) for i = 1, . . . , r − 1 and 〈er , er〉 = −1.

We denote by (S1, . . . ,Sr ) the structure endomorphisms associated to (e1, . . . , er ). We have:

−1
2
J1 +

1
4
J2 = 0, J1 = S2

r −
r−1∑
j=1

S2
i and J2(u) = −

∑
i,j

〈ei ,u〉tr(Si ◦ Sj )ej .

Since Z(g) ⊂ kerJ1, we get J2(ei) = 0 for i = 1, . . . , r − 1. This is equivalent to tr(Si ◦ Sj ) = 0

for i = 1, . . . , r and j = 1 . . . , r − 1 and hence:

J2(u) = 〈er ,u〉tr(S2
r )er .

15
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But tr(J1) = tr(J2) = 0 so J1 = J2 = 0. This implies, by virtue of (2.6), that tr(adx ◦ ad∗y) = 0

for any x,y ∈ g. For x ∈ g, put

adx(er ) = α1e1 + . . .+αrer .

So for any k ∈ N, adkx(er) = αkr er + uk with uk ∈ Z(g) but since g is nilpotent and er < Z(g)

then αr = 0 and hence adx(er ) ∈ Z(g). If (f1, . . . , fq) is an orthonormal basis of [g,g]⊥, then:

0 = tr(ader ◦ ad∗er )

=
r−1∑
i=1

〈ader (ei),ader (ei)〉+
q∑
i=1

〈ader (fi),ader (fi)〉

=
q∑
i=1

〈adfi (er ),adfi (er )〉.

But adfi (er ) ∈ Z(g) and Z(g) is Euclidean thus adfi (er ) = 0 for i = 1, . . . , q an hence er ∈ Z(g)

which is a contradiction. This completes the proof.

Using our approach, we recover some results obtained in [6].

Proposition 2.3.5. Let (g, [ , ],〈 , 〉) be a nilpotent pseudo-Euclidean Lie algebra.

1. If (g, [ , ],〈 , 〉) is Einstein with λ , 0 then Z(g) ⊂ [g,g].

2. If dimZ(g) ≥ dim[g,g] then (g, [ , ],〈 , 〉) is Einstein if and only if it is Ricci flat.

In particular, if g is 2-nilpotent then (g, [ , ],〈 , 〉) is Einstein if and only if it is Ricci flat.

Proof. Suppose that (g, [ , ],〈 , 〉) is nilpotent and Einstein with λ , 0, i.e.

−1
2
J1 +

1
4
J2 = λIdg.

Put M := ker(J1) and N := ker(J2). By virtue of (2.10) and (2.11), this implies that:

Z(g) ⊂ ImJ2 ⊂ [g,g].

It also implies that M ∩N = {0}. But, if dimZ(g) ≥ dim[g,g] then

dimM + dimN ≥ dimZ(g) + dim[g,g]⊥ ≥ dimg

and hence g =M ⊕N . This contradicts tr(J1) = tr(J2).

One of the main results in [6] is that if a pseudo-Euclidean Einstein nilpotent Lie algebra

has a derivation with a non vanishing trace then it is Ricci flat. We give another proof of

this fact based on (2.13). This formula was established in the Euclidean context in [12] by

using the Ricci tensor as a moment map. We prove this formula in the general case by a

direct computation.
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Proposition 2.3.6. Let (g,〈 , 〉) be a pseudo-Euclidean Lie algebra and let Q denote the sym-
metric endomorphismQ = −1

2J1 + 1
4J2. Then for any orthonormal basis (e1, . . . , ep) of g and any

endomorphism E of g, we have

tr(QE) =
1
4

∑
i,j

εiεj〈E([ei , ej ])− [E(ei), ej ]− [ei ,E(ej )], [ei , ej ]〉, (2.13)

where 〈ei , ei〉 = εi .

Proof. We denote by (S1, . . . ,Sp) the structures endomorphisms associated to (e1, . . . , ep).

From (2.8), we get Si = εiJei and by using (2.9) we get:

QE(u) =
1
2

p∑
i=1

εiJ
2
eiE(u)− 1

4

p∑
i,j=1

εiεj〈ei ,E(u)〉tr(Jei ◦ Jej )ej .

Let us compute:

tr(QE) =
p∑
j=1

εj〈QE(ej ), ej〉

= −1
2

p∑
i,j=1

εiεj〈JeiE(ej ), Jei (ej )〉 −
1
4

p∑
i,j=1

εiεj〈ei ,E(ej )〉tr(Jei ◦ Jej )

= −1
2

p∑
i,j=1

εjεi〈ei , [E(ej ), Jei (ej )]〉+
1
4

p∑
i,j,l=1

εiεlεj〈ei ,E(ej )〉〈Jej el , Jeiel〉

= −1
2

p∑
i,j,l=1

εjεiεl〈Jei (ej ), el〉〈ei , [E(ej ), el]〉+
1
4

p∑
j,l=1

εlεj〈Jej el , JE(ej )el〉

= −1
2

p∑
i,j,l=1

εjεiεl〈ei , [ej , el]〉〈ei , [E(ej ), el]〉+
1
4

p∑
i,j,l=1

εlεjεi〈Jej el , ei〉〈ei , JE(ej )el〉

= −1
2

p∑
j,l=1

εjεl〈[ej , el], [E(ej ), el]〉+
1
4

p∑
i,j,l=1

εlεjεi〈ej , [el , ei]〉〈[el , ei],E(ej )〉

= −1
2

p∑
j,l=1

εjεl〈[ej , el], [E(ej ), el]〉+
1
4

p∑
i,l=1

εlεi〈[el , ei],E([el , ei])〉

= −1
4

p∑
j,l=1

εjεl〈[ej , el], [E(ej ), el]〉 −
1
4

p∑
j,l=1

εjεl〈[ej , el], [ej ,E(el)]〉+
1
4

p∑
i,l=1

εlεi〈[el , ei],E([el , ei])〉,

and the formula follows.

From Proposition 2.3.6 we get the following important result:

Proposition 2.3.7. ([6, Theorem 4.1]) Let (g,〈 , 〉) be a pseudo-Euclidean nilpotent Lie algebra
having a derivation with non-zero trace. Then (g,〈 , 〉) is Einstein if and only if it is Ricci flat.

Proof. Let D ∈Der(g) such that tr(D) , 0. Write Ric = λIdg, using formula (2.5) and (2.13)

we get that λtr(D) = 0 and therefore λ = 0.

17
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Remark 2. The derivations of nilpotent Lie algebras have been widely studied and computed
(see [17]). It turns out that nilpotent Lie algebras having a derivation with non null trace are
the most common. For instance, any nilpotent Lie algebra up to dimension 6 has this property
and most of the nilpotent Lie algebras of dimension 7 have this property (see [6]).

2.4 Einstein Lorentzian nilpotent Lie algebras with degenerate

center

In this section, we give a complete description of Einstein Lorentzian nilpotent Lie alge-

bras with degenerate center. We will show that these Lie algebras are obtained by a double

extension process of an abelian Euclidean Lie algebra. The double extension process was

introduced by Medina-Revoy in [3] in the context of quadratic Lie algebras. It turned out

to be useful in many other situations. We give here a version of this process adapted to

our study.

Consider a Euclidean vector space (V ,〈 , 〉0), b ∈ V , K,D : V −→ V two endomorphisms

of V such that K is skew-symmetric. We endow the vector space g = Re⊕V ⊕Rē with the

inner product 〈 , 〉 which extends 〈 , 〉0 so that span{e, ē} and V are orthogonal, e and ē are

isotropic and satisfy 〈e, ē〉 = 1. We also define on g the bracket:

[ē, e] = µe, [ē,u] =D(u) + 〈b,u〉0e and [u,v] = 〈K(u),v〉0e, u,v ∈ V . (2.14)

Proposition 2.4.1. Suppose that (g,〈 , 〉, [ , ]) is obtained by a double extension process from a
Euclidean vector space (V ,〈 , 〉0) with parameters (K,D,µ,b) (i.e as in (2.14)), then:

(i) (g, [ , ]) is a Lie algebra if and only if :

KD +D∗K = µK.

In this case (g, [ , ]) is nilpotent if and only if µ = 0 and D is nilpotent.

(ii) (g, [ , ],〈 , 〉) is an Einstein Lorentzian Lie algebra if and only if

KD +D∗K = µK and 4µtr(D) = tr(K2) + 2tr(D2) + 2tr(DD∗).

In this case, it is Ricci flat.

Proof. The bracket [ , ] is a Lie bracket if and only if for any v,w ∈ V ,

[ē, [v,w]] + [w, [ē, v]] + [v, [w, ē]] = 〈(µK −K ◦D −D∗ ◦K)(v),w〉0e = 0.

Therefore, (g, [ , ]) is a Lie algebra if and only if µK = K ◦D +D∗ ◦K and it is easy to see

that (g, [ , ]) is nilpotent if and only if µ = 0 and D is a nilpotent endomorphism.

We will now compute the Ricci curvature of (g, [ , ],〈 , 〉) by using the formula

ric(u,v) = −1
2
B(u,v)− 1

2
〈J1(u),v〉+ 1

4
〈J2(u),v〉 − 1

2
〈adHu,v〉 −

1
2
〈adHv,u〉,

18
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where B is the Killing form and H is the vector defined in (2.3).

We choose an orthonormal basis (f1, . . . , fn) of V and we denote by (K0, K̄ ,S1, . . . ,Sn) the

structure endomorphisms of (e, ē, f1, . . . , fn). By a direct computation, we get that B and H

are given by

H = (µ+ tr(D))e, Re⊕V ⊂ kerB and B(ē, ē) = µ2 + tr(D2).

On the other hand, K̄ = 0 and for any u,v ∈ g

〈K0(u),v〉 = 〈[u,v], ē〉 and 〈Si(u),v〉 = 〈[u,v], fi〉, u,v ∈ g, i = 1, . . . ,n.

This gives that K0(e) = −µe,K0(ē) = µē+ b, K0(fi) = K(fi),

Si(e) = 0,Si(fj ) = −〈D∗(fi), fj〉e and Si(ē) =D∗(fi).

From these relations, one can easily deduce that tr(K0 ◦Si) = tr(Si ◦Sj ) = 0 for i, j = 1, . . . ,n

and hence

J1 = −
n∑
i=1

S2
i and J2 = −〈e,•〉tr(K2

0 )e.

Using these expressions, a careful computation gives

Re⊕V ⊂ kerric and ric(ē, ē) = −1
2

tr(D2)− 1
2

tr(DD∗)− 1
4

tr(K2) +µtr(D).

This completes the proof.

Any data (K,D,µ,b) satisfying the conditions in Proposition 2.4.1 is called admissible. We

can now state the main theorem of this section, which gives the structure of Einstein

Lorentzian nilpotent Lie algebras with degenerate center.

Theorem 2.4.1. Let (g,〈 , 〉) be an Einstein nilpotent non abelian Lorentzian Lie algebra and
suppose that there exists e ∈ Z(g) a central isotropic vector. Then:

1. Z(g) is degenerate and g is Ricci-flat.

2. g is obtained by a double extension process with admissible data (K,D,0,b) and D is
nilpotent from a Euclidean vector space V .

Proof. Let I := Re and choose an orthonormal basis B = (e, ē, f1, . . . , fn) of g such that ē is

isotropic with 〈e, ē〉 = 1, (e, f1, . . . , fn) is a basis of I⊥ and (f1, . . . , fn) is an orthonormal basis

of {e, ē}⊥. Denote (K,K̄,S1, . . . ,Sn) the structure endomorphisms of B, i.e. for any u,v ∈ g:

[u,v] = 〈Ku,v〉e+ 〈K̄u,v〉ē+
n∑
i=1

〈Siu,v〉fi .
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According to (2.5) and (2.9), we have that:

−1
2J1 + 1

4J2 = λIdg, J1 = −K̄ ◦K −K ◦ K̄ −
n∑
j=1

S2
j ,

J2 = −
[
〈e,•〉tr(K2) +

n∑
i=1

tr(K ◦ Si)〈fi ,•〉
]
e −

[
〈ē,•〉tr(K̄2) +

n∑
i=1

tr(K̄ ◦ Si)〈fi ,•〉
]
ē − 〈e,•〉tr(K ◦ K̄)ē

−〈ē,•〉tr(K ◦ K̄)e −
n∑
i=1

〈e,•〉tr(K ◦ Si)fi −
n∑
i=1

〈ē,•〉tr(K̄ ◦ Si)fi −
n∑

i,j=1

〈fi ,•〉tr(Si ◦ Sj )fj .

(2.15)

Since e ∈ Z(g) then K(e) = K̄(e) = Si(e) = 0 for all i = 1, . . . ,n and thus J1(e) = 0. This

implies that 1
4J2(e) = λe, which is equivalent to:

1
4

tr(K ◦ K̄) = −λ and tr(K̄2) = tr(K̄ ◦ Si) = 0 for i = 1, . . . ,n.

According to Lemma 2.2.2, we get that for any x ∈I⊥, K̄(x) = α(x)e and −4λ = tr(K̄◦K) = 0.

On the other hand, since tr(J1) = tr(J2) then from the first relation in system (2.15) we

deduce that tr(J1) = −
∑n
i=1 tr(S2

i ) = 0. Again, Lemma 2.2.2 along with tr(S2
i ) = 0 gives

that for any x ∈ I⊥, Si(x) = si(x)e and tr(K ◦ Si) = tr(Si ◦ Sj) = 0 for i, j ∈ {1, . . . ,n}. By

skew-symmetry, we deduce that, for j = 1, . . . ,n

K̄(ē) = −
n∑
i=1

α(fi)fi and Sj(ē) = −
n∑
i=1

sj(fi)fi .

On the other hand, for any u ∈I⊥,

[ē,u] = 〈K(ē),u〉e −α(u)ē −
n∑
i=1

si(u)fi .

But since adu is nilpotent then we must have α(u) = 0 for any u ∈I⊥ and thus K̄ = 0. To

sum up, if we put V = span{f1, . . . , fn} and define D : V −→ V by D(u) =
∑n
i=1〈Si(ē),u〉fi ,

then: 

[u,v] = 〈Ku,v〉e,u,v ∈ V ,

[ē,u] = 〈K(ē),u〉e+D(u), u ∈ V ,

J2 = 〈e,•〉tr(K2)e,

−1
2J1 + 1

4J2 = 0, J1 = −
∑n
j=1S

2
j .

This completes the proof.

As an application of Theorem 1.3.1 we recover the following results due to Guediri [18,

Lemma 14 and Theorem 15] :

Corollary 2.4.1. Let g be an Einstein Lorentzian 2-step nilpotent Lie algebra. Then Z(g) is
degenerate and g is Ricci-flat.

Theorem 2.4.2. Let g be a 2-step nilpotent, non-abelian Lie algebra. Then g admits a Ricci-
flat Lorentzian metric if and only if g = Rn ⊕ n (a direct sum of Lie algebras) such that n is a
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Lie algebra for which the Lie brackets are expressed in a basis B= {e,z1, . . . , zp, ē, e1, . . . , eq} as
follows :

[ē, ei] = αie+
p∑
k=1

cikzk , [ei , ej ] = aije, 1 ≤ i, j ≤ q, (2.16)

with
q∑

i,j=1
a2
ij = 2

q∑
i=1

p∑
k=1

c2
ik . Moreover the basis B can be chosen Lorentzian, in particular the

restriction of the metric to [g,g] is degenerate.

Proof. Suppose that (g, [ , ],〈 , 〉) is a 2-step nilpotent Lorentzian, Ricci-flat Lie algebra. By

virtue of Corollary 2.4.1, Z(g) is degenerate and Theorem 1.3.1 implies that g is given by a

process of double extension from a Euclidean vector space V0 with parameters (K,D,0,b),

i.e g = Re⊕V0⊕Rē where e, ē are isotropic vectors satisfying 〈ē, e〉 = 1 and, for any u,v ∈ V0,

[ē,u] =D(u) + 〈b,u〉e, [u,v] = 〈K(u),v〉e. (2.17)

Moreover, Proposition 2.4.1 implies that D2 = 0 and

K ◦D +D∗ ◦K = 0, 2tr(DD∗) = −tr(K2). (2.18)

First, we observe that Im(D) ⊂ Z(g)∩V0. Indeed, given w ∈ g and u ∈ V0 we have that :

[w,Du] = [w,Du + 〈b,u〉e] = [w, [ē,u]] = 0.

Write V0 = (V0∩Z(g))
⊥
⊕W0 and V0∩Z(g) = Im(D)

⊥
⊕S, then S is an abelian Lie subalgebra

of g since it is contained in Z(g) and we have that g = Rn⊕n with n = Re⊕Rē⊕ Im(D)⊕W0,

moreover using (2.17) we can check that n is a Lie subalgebra of g. Next, let {z1, . . . , zp} be

a Euclidean basis of Im(D) and let {e1, . . . , eq} be a Euclidean basis of W0. Write :

D(ei) =
p∑
k=1

cikzk , 〈b,ei〉 = αi , 〈K(ei), ej〉 = aij .

Then it follows that :

[ē, ei] = αie+
p∑
k=1

cikzk , [ei , ej ] = aije, 1 ≤ i, j ≤ q.

Now

tr(K2) = −
q∑

i,j=1

a2
ij = 2tr(DD∗) =

q∑
i=1

p∑
k=1

c2
ik

and we conclude by (2.18). Conversely, for any 2-step nilpotent Lie algebra g = Rn ⊕ n
satisfying (2.16), the equation Ricg = 0 follows from a straightforward calculation.
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2.5 Classification of Einstein Lorentzian nilpotent Lie algebras

of dimension ≤ 5

In this section, we give a complete description of the Lorentzian Lie algebras associated

to all Einstein Lorentzian nilpotent Lie groups of dimension ≤ 5. This classification is

based on Theorem 1.3.1 and the following result.

Theorem 2.5.1. Let (g, [ , ],〈 , 〉) be an Einstein Lorentzian nilpotent Lie algebra of dimension
less than 5. Then the center of g is degenerate.

Proof. We use the classification of nilpotent Lie algebras up to dimension 6 given by [9].

We will also use Corollary 2.4.1 and Proposition 2.3.4.

There is a unique nilpotent Lie algebra in dimension 3 which is L3,2 and it is 2-step

nilpotent hence we can apply Corollary 2.3.1. In dimension 4, there is two nilpotent Lie

algebras namely L3,2⊕R whose center is degenerate by Corollary 2.4.1 and L4,3 whose Lie

bracket is given by

[e1, e2] = e3, [e1, e3] = e4.

It is clear that L4,3 satisfies the hypothesis of Proposition 2.3.4. Five dimensional nilpo-

tent Lie algebras can be listed as in Table 2.2.

We can see that apart from L5,6 and L5,7 all the other Lie algebras are either 2-step nilpo-

tent or satisfy the hypothesis of Proposition 2.3.4. Let us now study L5,6 and L5,7.

If we denote by g either L5,6 or L5,7, one can see that

Z(g) ⊂ [g, [g,g]] ⊂ [g,g], dimZ(g) = 1, dim[g, [g,g]] = 2 and dim[g,g] = 3. (2.19)

To complete the proof of the theorem, we will show that if a five dimensional nilpotent

Lie algebra g satisfies (2.19) and have an Einstein Lorentzian metric then its center must

be degenerate.

Let g be a five dimensional Einstein Lorentzian nilpotent Lie algebra satisfying (2.19)

such that its center non-degenerate. First note that according to [6, Theorem 4.3], g must

be Ricci flat. According to Corollary 2.3.1 and Propositions 2.3.1 and 2.3.3, Z(g) must be

Euclidean and [g,g] must be non-degenerate Lorentzian. We distinguish three cases:

1. [g, [g,g]] is non-degenerate Euclidean. It is then possible to choose an orthonormal

basis (f1, f2, f3, f4, f5) of g such that [g,g] = span{f3, f4, f5}, [g, [g,g]] = span{f4, f5}, Z(g) = Rf5
and 〈f3, f3〉 = −1. So:[f1, f2] = af3 + bf4 + cf5, [f1, f3] = df4 + xf5, [f1, f4] = yf5,

[f2, f3] = zf4 + tf5, [f2, f4] = uf5, [f3, f4] = vf5, a , 0, (z,d) , (0,0).

This bracket satisfies the Jacobi identity if and only if v = 0 and yz − du = 0. The Ricci
operator is given by
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1
2



a2 − b2 − c2 + d2 + x2 − y2 dz+ xt − yu zb+ ct cu 0

dz+ xt − yu a2 − b2 − c2 + z2 + t2 −u2 −bd − cx −cy 0

−zb − ct bd + cx −a2 + d2 + x2 + z2 + t2 ab+ xy + tu ac

cu −cy −ab − xy − tu b2 − d2 − y2 − z2 −u2 bc − dx − zt

0 0 −ac bc − dx − zt c2 − x2 + y2 − t2 +u2



.

Since a , 0 then c = 0 and hence the Ricci operator is given by

1
2



a2 − b2 + d2 + x2 − y2 dz+ xt − yu zb 0 0

dz+ xt − yu a2 − b2 + z2 + t2 −u2 −bd 0 0

−zb bd −a2 + d2 + x2 + z2 + t2 ab+ xy + tu 0

0 0 −ab − xy − tu b2 − d2 − y2 − z2 −u2 −dx − zt

0 0 −dx − zt −x2 + y2 − t2 +u2



.

The couple (z,d) , (0,0) otherwise dim[g,g] ≤ 2, hence b = 0. So

1
2



a2 + d2 + x2 − y2 dz+ xt − yu 0 0 0

dz+ xt − yu a2 + z2 + t2 −u2 0 0 0

0 0 −a2 + d2 + x2 + z2 + t2 xy + tu

0 0 −xy − tu −d2 − y2 − z2 −u2 −dx − zt

0 0 −dx − zt −x2 + y2 − t2 +u2



.

So we must have Ric4,4 = −d2 − y2 − z2 −u2 = 0 and Ric2,2 = a2 + z2 + t2 −u2 = 0, but this

implies that a = 0 which is impossible.

2. [g, [g,g]] is nondegenerate Lorentzian. As in the previous case, we can choose an or-

thonormal basis (f1, f2, f3, f4, f5) such that 〈f4, f4〉 = −1 andZ(g) = Rf5, [g, [g,g]] = span{f4, f5}
and [g,g] = span{f3, f4, f5}. So[f1, f2] = af3 + bf4 + cf5, [f1, f3] = df4 + xf5, [f1, f4] = yf5,

[f2, f3] = zf4 + tf5, [f2, f4] = uf5, [f3, f4] = vf5, a , 0, (z,d) , (0,0).

The Jacobi identity is given by bv −ud + yz = av = 0, hence v = 0. Thus the Ricci operator
is given by
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1
2



−a2 + b2 − c2 + d2 − x2 + y2 dz − xt + yu −zb+ ct cu 0

dz − xt + yu −a2 + b2 − c2 + z2 − t2 +u2 bd − cx −cy 0

−zb+ ct bd − cx a2 + d2 − x2 + z2 − t2 −ab − xy − tu ac

−cu cy ab+ xy + tu −b2 − d2 + y2 − z2 +u2 bc+ dx+ zt

0 0 ac −bc − dx − zt c2 + x2 − y2 + t2 −u2


So we get b = c = 0 and hence The Ricci operator is given by

1
2



−a2 + d2 − x2 + y2 dz − xt + yu 0 0 0

dz − xt + yu −a2 + z2 − t2 +u2 0 0 0

0 0 a2 + d2 − x2 + z2 − t2 −xy − tu 0

0 0 xy + tu −d2 + y2 − z2 +u2 dx+ zt

0 0 0 −dx − zt x2 − y2 + t2 −u2


Now 0 = Ric3,3 + Ric4,4 + Ric5,5 = 1

2a
2 and hence a = 0 which is impossible.

3. [g, [g,g]] is degenerate . Then we can choose a basis (f1, f2, f3, f4, f5) such that the metric

in this basis is given by

Diag

1,1,

0 1

1 0

 ,1 ,
and Z(g) = Rf5, [g, [g,g]] = span{f4, f5} and [g,g] = span{f3, f4, f5}. So[f1, f2] = af3 + bf4 + cf5, [f1, f3] = df4 + xf5, [f1, f4] = yf5,

[f2, f3] = zf4 + tf5, [f2, f4] = uf5, [f3, f4] = vf5, a , 0, (z,d) , (0,0).

The Jacobi identity is given by bv − ud + yz = av = 0. Hence v = 0. The Ricci operator is

given by

1
2



−2ab − c2 − 2xy −yt − xu az+ ct cu 0

−yt − xu −2ab − c2 − 2 tu −cx − ad −cy 0

cu −cy ab − xy − tu a2 − y2 −u2 ac

az+ ct −cx − ad b2 − x2 − t2 ab − xy − tu bc+ dy + zu

0 0 bc+ dy + zu ac c2 + 2xy + 2 tu


.

So c = d = z = 0 which is impossible.

As a consequence of Theorem 1.3.1 and Theorem 2.5.1, we can give the complete classi-

fication of Ricci flat Lorentzian metrics on nilpotent Lie algebras of dimension ≤ 5. We

will also make use of the following Lemma :
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Lemma 2.5.1. Let (V ,〈 , 〉) be a Euclidean vector space and let K andD be two endomorphisms
of V such that K is skew-symmetric. Then KD +D∗K = 0 if and only if there exists a vector
subspace F ⊂ V and linear maps D1 : F −→ F, D2 : F⊥ −→ F, K0,S : F⊥ −→ F⊥ where K0 is
skew-symmetric invertible, S symmetric and for any u ∈ V ,

Du =

 D1(u) if u ∈ F,
D2(u) +K−1

0 S(u) if u ∈ F⊥
and Ku =

 0 if u ∈ F,
K0(u) if u ∈ F⊥.

Proof. Suppose thatKD+D∗K = 0 and put F = kerK . ObviouslyD(F) ⊂ F, K(F⊥) ⊂ F⊥ and

the restriction K0 of K to F⊥ is skew-symmetric invertible. Denote by D1 the restriction

of D to F and put for any u ∈ F⊥, Du =D2u +D3u where D2u ∈ F and D3u ∈ F⊥. Then

0 = K(D2u +D3u) +D∗K0(u) = K0D3u +D∗3K0(u).

Thus K0D3 = S where S : F⊥ −→ F⊥ is a symmetric endomorphism and D3 = K−1
0 S. The

converse is obviously true.

Theorem 2.5.2. Let (g, [ , ],〈 , 〉) be a Ricci-flat nilpotent Lie algebra of dimension ≤ 4. Then:

(i) If dimg = 3 then g is isomorphic to (L3,2,〈 , 〉3,2) such that 〈 , 〉3,2 = αe∗1 � e
∗
3 + e∗2 ⊗ e

∗
2

and α > 0. This metric is actually flat.

(ii) If dimg = 4 then g is isomorphic to (L4,2,〈 , 〉4,2) with

〈 , 〉4,2 = αe∗1 � e
∗
3 + e∗2 ⊗ e

∗
2 + e∗4 ⊗ e

∗
4 + ae∗2 � e

∗
4, α , 0, |a| < 1,

or to (L4,3,〈 , 〉4,3) with

〈 , 〉4,3 = e∗1⊗ e
∗
1 +ae∗1� e

∗
2 + (a2 +b2)e∗2⊗ e

∗
2 +be∗2� e

∗
3 +εe∗2� e

∗
4 + e∗3⊗ e

∗
3, a,b ∈ R,ε = ±1.

The metric 〈 , 〉4,2 is flat and 〈 , 〉4,3 is flat if and only if ε = −1.

Proof. Let (g, [ , ],〈 , 〉) be an Einstein Lorentzian nilpotent non abelian Lie algebra of

dimension ≤ 5. According Theorems 1.3.1 and 2.5.1, g = Re⊕V ⊕Rē, where (V ,〈 , 〉0) is a

Euclidean vector space. The Lie brackets are given by:

[ē,u] =Du + 〈b,u〉0e and [u,v] = 〈Ku,v〉0e, u,v ∈ V ,

such that b ∈ V , K,D : V −→ V with K skew-symmetric, D is nilpotent, KD +D∗K = 0

and tr(K2) = −2tr(D∗D) furthermore the metric 〈 , 〉 satisfies 〈 , 〉|V = 〈 , 〉0, e and ē are

co-isotropic i.e 〈e, ē〉 = 1 and are orthogonal to V .

1. If dimg = 3 and dimV = 1. Then K =D = 0 and the Lie algebra (g,〈 , 〉) is isomorphic

to (L3,2,〈 , 〉3,2) where 〈 , 〉3,2 = αe∗1 � e
∗
3 + e∗2 ⊗ e

∗
2 and α > 0. This metric is flat.

2. dimg = 4 and dimV = 2. We distinguish two cases:
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• If K = 0 then D = 0 and there exists a Lorentzian basis (ē, e, f1, f2) of g such that:

[ē, f1] = αe and [ē, f2] = βe, α , 0.

Put

(e1, e2, e3, e4) = (εē, f1, |α|e,µ−1(f2 −
β

α
f1)),

where ε is the sign of α and µ = ||f2 −
β
α f1||. The Lie algebra (g,〈 , 〉) is then

isomorphic to (L4,2,〈 , 〉4,2) with the metric:

〈 , 〉4,2 = αe∗1 � e
∗
3 + e∗2 ⊗ e

∗
2 + e∗4 ⊗ e

∗
4 + ae∗2 � e

∗
4, α , 0

and a = β1√
1+β2

1

where β1 = β
α . So |a| < 1.

• If K , 0 then, according to Lemma 2.5.1, D = K−1S where S is symmetric.

Since D must be nilpotent then the rank of S is equal to 1 and there exists an

orthonormal basis B0 = (f1, f2) of V such that the matrices of K , S and D are

given by:

M(S,B0) = Diag(0, s), M(K,B0) =

0 −α
α 0

 and M(D,B0) =

0 sα−1

0 0

 , α > 0.

Put c = sα−1. The condition tr(K2) = −2tr(D∗D) gives c = εα with ε = ±1. Thus

the Lie brackets are given by:

[ē, f1] = γe, [ē, f2] = εαf1 +µe and [f1, f2] = αe.

Put

(e1, e2, e3, e4) = (f2,−εα−1ē+ af1 + bf2, f1,−αe)

with a = εµα−2 and b = −εγα−2. Then (g, [ , ],〈 , 〉) is isomorphic to (L4,3,〈 , 〉4,3).

Theorem 2.5.3. Let (g, [ , ],〈 , 〉) be a Ricci-flat nilpotent Lie algebra of dimension 5. Then g is
isomorphic to one of the following Lie algebras:

(a) (L5,2,〈 , 〉5,2) with

〈 , 〉5,2 = αe∗1�e
∗
3+e∗2⊗e

∗
2+e∗4⊗e

∗
4+e∗5⊗e

∗
5+ae∗2�e

∗
4+be∗2�e

∗
5+abe∗4�e

∗
5, α , 0, |a| < 1, |b| < 1.

This metric is flat.

(b) (L5,8,〈 , 〉5,8) with

〈 , 〉5,8 = e∗1 ⊗ e
∗
1 + ae∗1 � e

∗
2 − yx

−1e∗1 � e
∗
3 + (b − ayx−1)e∗2 � e

∗
3 + (a2 + b2)e∗2 � e

∗
2

+
√
x2 + y2e∗2 ⊗ e

∗
5 + (1 + (yx−1)2)e∗3 ⊗ e

∗
3 + x2e∗4 ⊗ e

∗
4, (x , 0, a,b,y ∈ R).
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(c) (L5,9,〈 , 〉5,9) with

〈 , 〉5,9 = (a2 + b2)e∗1 ⊗ e
∗
1 + (b − ayx−1)e∗1 � e

∗
2 + ae∗1 � e

∗
3 + ε

√
x2 + y2 + 1e∗1 � e

∗
5

(1 + (yx−1)2)e∗2 ⊗ e
∗
2 − yx

−1e∗2 � e
∗
3 + e∗3 ⊗ e

∗
3 + x2e∗4 ⊗ e

∗
4. (x , 0, a,b,y ∈ R).

(d) (L5,3,〈 , 〉5,3) with

〈 , 〉5,3 = e∗1 ⊗ e
∗
1 + ae∗1 � e

∗
2 + (a2 + b2)e∗2 ⊗ e

∗
2 + be∗2 � e

∗
3 + ε
√
x2 + 1e∗2 � e

∗
4

+(1 + x2)e∗3 ⊗ e
∗
3 − xe

∗
3 � e

∗
5 + e∗5 ⊗ e

∗
5, (x,a,b ∈ R).

(e) (L5,5,〈 , 〉5,5,1) or (L5,5,〈 , 〉5,5,2) with

〈 , 〉5,5,1 = (a2 + b2)e∗1 ⊗ e
∗
1 + aρ−1e∗1 � e

∗
2 + ρ(b − ax−1y)e∗1 � e

∗
4 +

√
x2 + y2e∗1 � e

∗
5

+ρ−2e∗2 ⊗ e
∗
2 − x

−1ye∗2 � e
∗
4 + x2ρ−2e∗3 ⊗ e

∗
3 + ρ2(1 + (x−1y)2)e∗4 ⊗ e

∗
4,

(x , 0,ρ , 0, a,b,y ∈ R)

or

〈 , 〉5,5,2 = e∗1 ⊗ e
∗
1 + be∗1 � e

∗
2 + (a2 + b2)e∗2 ⊗ e

∗
2 + ae∗2 � e

∗
3 + ε
√
x2 + 1e∗2 � e

∗
5

(1 + x2)e∗3 ⊗ e
∗
3 + xρe∗3 � e

∗
4 + ρ2e∗4 ⊗ e

∗
4, (ρ , 0,x,a,b ∈ R).

(f ) (L5,6,〈 , 〉5,6) with

〈 , 〉5,6 = (a2 + b2)e∗1 ⊗ e
∗
1 + (b+ ax−1y)e∗1 � e

∗
2 +µae∗1 � e

∗
3 + εµ2

√
x2 + y2 + 1e∗1 � e

∗
5

+(1 + x−2y2)e∗2 ⊗ e
∗
2 +µx−1ye∗2 � e

∗
3 +µ2e∗3 ⊗ e

∗
3 +µ4x2e∗4 ⊗ e

∗
4,

µ , 0,γ , 0,x , 0, a,b,y ∈ R.

Proof. According to Theorems 1.3.1 and (2.5.1), g = Re ⊕ V ⊕ Rē, where (V ,〈 , 〉0) is a

3-dimensional Euclidean vector space. The Lie bracket is given by:

[ē,u] =Du + 〈b,u〉0e and [u,v] = 〈Ku,v〉0e, u,v ∈ V ,

with b ∈ V , K,D : V −→ V with K skew-symmetric, D is nilpotent such that KD +D∗K = 0

and tr(K2) = −2tr(D∗D) moreover the metric 〈 , 〉 satisfies 〈 , 〉|V = 〈 , 〉0, e and ē are

co-isotropic i.e 〈e, ē〉 = 1 and are orthogonal to V .

• If K =D = 0 then there exists a Lorentzian basis (ē, e, f1, f2, f3) such that:

[ē, f1] = αe, [ē, f2] = βe and [ē, f3] = γe, α , 0.

Put

(e1, e2, e3, e4, e5) = (εē, f1, |α|e,µ−1
1 (f2 −

β

α
f1),µ−1

2 (f3 −
γ

α
f1)),

where ε is the sign of α, µ1 = ||f2−
β
α f1|| and µ2 = ||f3−

γ
α f1||. Thus (g, [ , ],〈 , 〉) is isomorphic

to (L5,2,〈 , 〉5,2) with:

〈 , 〉5,2 = αe∗1 � e
∗
3 + e∗2 ⊗ e

∗
2 + e∗4 ⊗ e

∗
4 + e∗5 ⊗ e

∗
5 + ae∗2 � e

∗
4 + be∗2 � e

∗
5 + abe∗4 � e

∗
5,
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where α , 0, a = β1√
1+β2

1

, b = γ1√
1+γ2

1

, β1 = β
α and γ1 = γ

α . So |a| < 1 and |b| < 1.

• If K , 0, Lemma 2.5.1 show that there exists and orthonormal basis B0 = (f1, f2, f3) of V

in which the matrices of K , S and D are given by:

M(S,B0) = Diag(0, a), M(K,B0) =


0 0 0

0 0 −α
0 α 0

 and M(D,B0) =


0 x y

0 0 aα−1

0 0 0

 , α > 0.

Put c = aα−1. The condition tr(K2) = −2tr(D∗D) gives α =
√
x2 + y2 + c2. Thus the Lie

bracket is given by:

[ē, f1] = γe, [ē, f2] = xf1 +µe, [ē, f3] = yf1 + cf2 + βe and [f2, f3] = αe.

Put a = −βα−1, b = µα−1, z = αe and z̄ = ē+ af2 + bf3. We have:

[z̄, f1] = γα−1z, [z̄, f2] = xf1, [z̄, f3] = yf1 + cf2 and [f2, f3] = z.

Case 1: γ = 0, x , 0 and c = 0. Then:

[z̄, f2] = xf1 and [f2, f3 − yx−1f2] = z.

Put (e1, e2, e3, e4, e5) = (f2, ē+ af2 + bf3, f3 − yx−1f2,−xf1,αe) Thus (g, [ , ],〈 , 〉) is isomorphic

to (L5,8,〈 , 〉5,8).

Case 2: γ = 0, x , 0 and c , 0. Then:

[z̄, f2] = xf1, [z̄, f3 − yx−1f2] = cf2 and [f2, f3 − yx−1f2] = z.

Put

(e1, e2, e3, e4, e5) = (c−1(ē+ af1 + bf2), f3 − yx−1f2, f2, c
−1xf1,−αe)).

After the change of parameters c−1(a,b,x,y) to (a,b,x,y), we get that (g, [ , ],〈 , 〉) is isomor-

phic to (L5,9,〈 , 〉5,9).

Case 3: γ = 0, x = 0, c = 0. Put:

(e1, e2, e3, e4, e5) = (f3, ē+ af2 + bf3,−f2,−yf1,αe).

Thus (g, [ , ],〈 , 〉) is isomorphic to (L5,8,〈 , 〉5,8) with b = 0 and y = 0.

Case 4: γ = 0, x = 0, c , 0. Put:

(e1, e2, e3, e4, e5) = (f3, c
−1(ē+ af2 + bf3),−f2 − c−1yf1,αe, f1).

After the change of parameters c−1(a,b,y) to (a,b,y) we get that (g, [ , ],〈 , 〉) is isomorphic

to (L5,3,〈 , 〉5,3).

Case 5: γ , 0. Put g1 = αγ−1f1, then:

[z̄, g1] = z, [z̄, f2] = xα−1γg1, [z̄, f3] = yα−1γg1 + cf2 and [f2, f3] = z.
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γ , 0 and c = 0. Then (x,y) , (0,0) and we can suppose that x , 0. Then:

[z̄, g1] = z, [z̄, f2] = xα−1γg1, [z̄, f3 − x−1yf2] = 0 and [f2, f3 − x−1yf2] = z.

Put

(e1, e2, e3, e4, e5) = (ē+af2+bf3,x
−1αγ−1f2,αγ

−1f1,xα
−1γ(f3−x−1yf2),αe) and ρ = xα−1γ.

Then (g, [ , ],〈 , 〉) is isomorphic to(L5,5,〈 , 〉5,5,1).

γ , 0, c , 0 and x = 0. Then:

[z̄, g1] = z, [z̄, f3] = yα−1γg1 + cf2 and [f2, f3] = z.

Put

(e1, e2, e3, e4, e5) = (−f3, c−1(ē+ af2 + bf3), f2 + c−1yα−1γg1, cg1,αe).

After the change of parameters c−1(a,b,y) to (a,b,x) and ρ = cαγ−1 we get that (g, [ , ],〈 , 〉)
is isomorphic to (L5,5,〈 , 〉5,5,2).

γ , 0, c , 0 and x , 0. Then:

[c−1z̄, cg1] = z, [c−1z̄, f2] = c−1xα−1γg1, [c−1z̄, f3 − x−1yf2] = f2 and [f2, f3 − x−1yf2] = z.

Put

(e1, e2, e3, e3, e5) = (−c−1(ē+ af2 + bf2), f3 − x−1yf2,−f2,−cg1,αe).

Then

[e1, e2] = e3, [e1, e3] = ke4, [e1, e4] = e5, [e2, e3] = e5.

We can always suppose that k > 0 (otherwise replace e3 by −e3 and e2 by −e2). We then

put e′1 = µe1 and e′3 = µe3, e′5 = µe5 and µ2 = 1
k . After an adequate change of parameters

one can see that (g, [ , ],〈 , 〉) is isomorphic to (L5,6,〈 , 〉5,6).

Example 1.

1. Example of a six dimensional Ricci flat Lorentzian nilpotent Lie algebra with nondegen-
erate center.

[e1, e3] = e6, [e1, e5] = e6, [e2, e3] = −e6, [e2, e4] = e6, [e3, e4] = e1, [e3, e5] = e2 and [e4, e5] = e1+e2.

B = (e1, . . . , e6) is an orthonormal basis with 〈e1, e1〉 = −1.

2. Example of a seven dimensional Ricci flat Lorentzian nilpotent Lie algebra with nonde-
generate center.

[e1, e3] =
√

2e7, [e2, e4] =
√

2e7, [e4, e5] = −e1, [e4, e6] = −e1, [e3, e5] = −e2, [e3, e6] = −e2.

B = (e1, . . . , e7) is an orthonormal basis with 〈e1, e1〉 = −1.
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3. Example of an eight dimensional Einstein Lorentzian nilpotent Lie algebra with non
vanishing scalar curvature. This example was given in [6].

[e1, e2] = −4
√

3e3, [e1, e3] =
√

5
2e4, [e1, e4] = −2

√
3e8, [e1, e5] = 3

√
7
2e6, ;

[e1, e6] = −4
√

2e7, [e2, e3] = −
√

5
2e5, [e2, e4] = −3

√
7
2e6, [e2, e5] = −2

√
3e7,

[e2, e6] = −4
√

2e8, [e3, e4] = −
√

21e7, [e3, e5] = −
√

21e8.

B = (e1, . . . , e8) is an orthonormal basis with 〈e6, e6〉 = −1.

Lie Algebra Lie brackets Non Trace-free Derivation
L3,2 [e1, e2] = e3 e1 ⊗ e1 + e3 ⊗ e3
L4,2 [e1, e2] = e3 e1 ⊗ e1 + e3 ⊗ e3
L4,3 [e1, e2] = e3, [e1, e3] = e4 2e2 ⊗ e2 − e1 ⊗ e1 + e3 ⊗ e3
L5,2 [e1, e2] = e3 e1 ⊗ e1 + e3 ⊗ e3
L5,3 [e1, e2] = e3, [e1, e3] = e4 2e2 ⊗ e2 − e1 ⊗ e1 + e3 ⊗ e3
L5,4 [e1, e2] = e5, [e3, e4] = e5 e1 ⊗ e1 + e3 ⊗ e3 + e5 ⊗ e5
L5,5 [e1, e2] = e3, [e1, e3] = e4, [e2, e4] = e5 e3 ⊗ e3 + 2e2 ⊗ e2 + 2e5 ⊗ e5 − e1 ⊗ e1
L5,6 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5 e1 ⊗ e1 + 2e2 ⊗ e2 + 3e3 ⊗ e3 + 4e4 ⊗ e4 + 5e5 ⊗ e5
L5,7 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5 e1 ⊗ e1 − 2e2 ⊗ e2 − e3 ⊗ e3 + e5 ⊗ e5
L5,8 [e1, e2] = e4, [e1, e3] = e5 e1 ⊗ e1 − e2 ⊗ e2 + e5 ⊗ e5
L5,9 [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5 2e1 ⊗ e1 − e2 ⊗ e2 + e3 ⊗ e3 + 3e4 ⊗ e4

Table 2.1: Table of nilpotent Lie algebras of dimension ≤ 5 with non null trace derivation

Lie algebra g Nonzero commutators
L5,2 = L3,2 ⊕R2 [e1, e2] = e3
L5,3 = L4,3 ⊕R [e1, e2] = e3, [e1, e3] = e4

L5,4 [e1, e2] = e5, [e3, e4] = e5
L5,5 [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5
L5,6 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5
L5,7 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5
L5,8 [e1, e2] = e4, [e1, e3] = e5
L5,9 [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5

Table 2.2: List of five-dimensional nilpotent Lie algebras
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3

Einstein Lorentzian 3-nilpotent Lie

groups

3.1 Introduction

The study of left-invariant Einstein Riemannian metrics on Lie groups is a research area

that had made huge progress in the last decades (see [10, 12, 13]). However, the indef-

inite case remains unexplored in comparison and only few significant results had been

published in this matter with many questions that are still open (see [18, 6, 21]).

In [21], the authors began an inspection of Einstein Lorentzian nilpotent Lie algebras

following guidelines from previous studies of the 2-step nilpotent case (see [14] and [18]).

The main Theorem of [21] states that Einstein nilpotent Lie algebras with degenerate

center are exactly Ricci-flat and are obtained by a double extension process starting from

a Euclidean vector space (see [21, Theorem 4.1] and [3] for the original definition of the

double extension). This class of Lie algebras includes all Einstein Lorentzian nilpotent Lie

algebras that are either 2-step or of dimension less than 5, in fact as a concrete application

of the main Theorem, the authors were able to give a full classification of the latter.

Dimension 6 however falls outside the context of this result as the authors presented the

first example in this situation of an Einstein nilpotent Lie algebra with non-degenerate

center, which also happens to be 3-step nilpotent. Einstein nilpotent Lie algebras that are

non Ricci-flat has been shown to exist in the Lorentzian setting (see [6]) and according

to [21, Theorem 4.1] these must have non-degenerate center as well. So the study of

Einstein Lorentzian nilpotent Lie algebras with non-degenerate center becomes a natural

and challenging problem and the present chapter can be seen as a first attempt to find

a general pattern for these Lie algebras. We start by the 3-step nilpotent case and we

develop a new approach which can be used later in the general case. Let us give a brief

summary of our method and state our main result.

Let (h, [ , ]) be a k-nilpotent Lie algebra and 〈 , 〉 an Einstein Lorentzian metric on h such

that the center of h is non-degenerate. Then Z(h) is non-degenerate Euclidean (see [21])
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and, naturally, we get the orthogonal spitting

h = Z(h)
⊥
⊕ g.

The Lie bracket on h splits accordingly as [u,v] = ω(u,v)+[u,v]0 for any u,v ∈ g, and it can

be shown that [ , ]0 is a Lie bracket on g and ω : g×g −→ Z(h) is a 2-cocycle of the Lie alge-

bra (g, [ , ]0). It turns out that (g, [ , ]0,〈 , 〉|g×g) is a Lorentzian (k − 1)-nilpotent Lie algebra

and the Einstein equation on h can be expressed entirely by means of the Lie algebra g as

a sort of compatibility condition between ω and the Ricci curvature Ricg of (g,〈 , 〉g, [ , ]0)

(see Proposition 3.2.2). This shift in perspective is especially useful when the Lie alge-

bra h is 3-step nilpotent since g is 2-nilpotent and, for instance, we can show that every

Einstein Lorentzian 3-step nilpotent Lie algebra with non-degenerate center has positive

scalar curvature (Theorem 3.2.1). It also gives rise to the notion of ω-quasi Einstein Lie al-

gebras (see Definition 3.2.2). A careful study of ω-quasi Einstein 2-nilpotent Lie algebras

leads to our main result, namely the classification of Einstein Lorentzian 3-step nilpotent

Lie algebras with 1-dimensional non-degenerate center. Surprisingly enough, these are

shown to only exist in dimensions 6 and 7.

Theorem 3.1.1. Let h be a 3-step nilpotent Lie algebra with dimZ(h) = 1. Let 〈 , 〉 be a
Lorentzian metric on h such that Z(h) is non-degenerate, then 〈 , 〉 is Einstein if and only if it
is Ricci-flat and (h,〈 , 〉) has one of the following forms :

(i) dimh = 6 and h is isomorphic to L6,19(−1), i.e., h has a basis (fi)
6
i=1 such that the non

vanishing Lie brackets are

[f1, f2] = f4, [f1, f3] = f5, [f2, f4] = f6, [f3, f5] = −f6

and the metric is given by :

〈 , 〉 := f ∗1 ⊗ f
∗

1 + 2f ∗2 ⊗ f
∗

2 + 2f ∗3 ⊗ f
∗

3 + 4α4f ∗6 ⊗ f
∗

6 − 2α2f ∗4 � f
∗

5 , α , 0. (3.1)

(ii) dimh = 7 and h is isomorphic to the nilpotent Lie algebras 147E found in the classi-
fication given in [8](p. 57). In precise terms, there exists a basis {fi}7i=1 of h where the non
vanishing Lie brackets are given by :

[f1, f2] = f5, [f1, f3] = f6, [f2, f3] = f4, [f6, f2] = (1− r)f7, [f5, f3] = −rf7, [f4, f1] = f7, (3.2)

with 0 < r < 1, and the metric has the form:

〈 , 〉 = f ∗1 ⊗f
∗

1 +f ∗2 ⊗f
∗

2 +f ∗3 ⊗f
∗

3 −af
∗

4 ⊗f
∗

4 +arf ∗5 ⊗f
∗

5 +a(1−r)f ∗6 ⊗f
∗

6 +a2f ∗7 ⊗f
∗

7 , a > 0. (3.3)

Outline We shall adopt the notations and results introduced in Chapter 2 as the content

of this chapter is an extension of the previous study. In Section 3.2, we describe an

Einstein Lorentzian nilpotent Lie algebra h with non-degenerate center by means of its

center, a nilpotent Lorentzian Lie algebra g of lower order, and a 2-cocycle ω ∈ Z2(g,Z(h)),
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NONDEGENERATE CENTER

these are called the attributes of h (see Definition 3.2.1). The main result of this section

is Theorem 3.2.1 in which we prove that any Einstein Lorentzian 3-step nilpotent Lie

algebra of non-degenerate center has positive scalar curvature, at the end of the section

we introduce the notion of ω-quasi Einstein Lie algebra. The remainder of the chapter

i.e Section 3.3 is then devoted for the proof of the central results. As the reader can

see, the proof of Theorem 3.1.1 turns out to be difficult and it is based on a sequence

of Lemmas (Lemma 3.3.1, 3.3.2 and 3.3.3). This suggests that the complete study of

Einstein Lorentzian nilpotent Lie algebras with nondegenerate center is a challenging

mathematical problem.

3.2 Lorentzian nilpotent Einstein Lie algebras with

nondegenerate center

In [21], we studied Lorentzian nilpotent Einstein Lie algebras with degenerate center

and gave the first example of a Lorentzian 3-step nilpotent Ricci-flat Lie algebra with

non-degenerate center. We also showed that an Einstein Lorentzian nilpotent Lie algebra

with non zero scalar curvature must have a non-degenerate center. A first example of

such algebras was given in [6]. A 2-step nilpotent Einstein Lorentzian Lie algebra must

be Ricci-flat with degenerate center so it is natural to start by studying 3-step nilpotent

Einstein Lorentzian Lie algebras with non-degenerate center which must be Euclidean

according to Corollary 2.3.1.

Any nilpotent Lie algebra can be obtained by Skjelbred-Sund’s method, namely, by an

extension from a nilpotent Lie algebra of lower dimension and a 2-cocycle with values in

a vector space (see [9]). We will adapt this method to our study.

Let (h,〈 , 〉h) be a Lorentzian k-step nilpotent Lie algebra of dimension n with non-

degenerate Euclidean center Z(h) of dimension p ≥ 1. The restriction of 〈 , 〉 to Z(h)

is denoted 〈 , 〉z, we also set g := Z(h)⊥ and let 〈 , 〉g be the restriction of 〈 , 〉 to g. Then:

h = g
⊥
⊕ Z(h),

where (Z(h),〈 , 〉z) is a Euclidean vector space and (g,〈 , 〉g) is a Lorentzian vector space.

Moreover, for any u,v ∈ g, we have:

[u,v] = [u,v]g +ω(u,v), (3.4)

where [u,v]g ∈ g and ω(u,v) ∈ Z(h). The Jacobi identity applied to [ , ] is easily seen

equivalent to (g, [ , ]g) being a Lie algebra andω : g×g −→ Z(h) a 2-cocycle of gwith respect

to the trivial representation of g in Z(h) (see Appendix A), namely for any u,v,w ∈ g,

ω([u,v]g,w) +ω([v,w]g,u) +ω([w,u]g,v) = 0.

The following properties can be derived immediately from (3.4):

Z(g)∩kerω = {0} and C`(h) := [C`−1(h),h] = C`(g) +ω(C`−1(g),g), (3.5)
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for any ` ∈ N∗. As a result (h, [ , ]) is k-step nilpotent if and only if (g, [ , ]g) is a (k − 1)-step

nilpotent Lie algebra such that Ck−2(g) 1 kerω.

Definition 3.2.1. Let (h, [ , ],〈 , 〉h) be a Lorentzian nilpotent Lie algebra with nondegenerate
Euclidean center. We call the triple (g, [ , ]g,〈 , 〉g), (Z(h),〈 , 〉z) and ω ∈ Z2(g,Z(h)) the
attributes of (h, [ , ],〈 , 〉h).

We can now proceed to the important step, which is to express the Ricci curvature of h

in terms of its attributes (g,〈 , 〉g, [ , ]g), (Z(h),〈 , 〉z) and ω ∈ Z2(g,Z(h)). For any u ∈ g, we

consider ωu : g −→ Z(h), v −→ ω(u,v) and its transpose ω∗u : Z(h) −→ g given by:

〈ω∗u(x),v〉g = 〈ω(u,v),x〉z.

For any x ∈ Z(h), we define Sx : g −→ g by:

Sx(u) = ω∗u(x). (3.6)

It is clear that Sx is skew-symmetric. Recall that, for any u ∈ g, we denote by Ju : g −→ g

the skew-symmetric endomorphism given by Ju(v) = ad∗v(u). On the other hand, define

the endomorphism D : g −→ g by:

〈Du,v〉g = tr(ω∗u ◦ωv). (3.7)

It is clear that D is symmetric with respect to 〈 , 〉g. Let (z1, . . . , zp) be a basis of Z(h).

Since 〈 , 〉 is non-degenerate, there exists a unique family (S1, . . . ,Sp) of skew-symmetric

endomorphisms such that, for any u,v ∈ g,

ω(u,v) =
p∑
i=1

〈Siu,v〉gzi . (3.8)

This family will be called ω-structure endomorphisms associated to (z1, . . . , zp). A direct

computation using (3.7) and (3.8) shows that

D = −
∑
i,j

〈zi , zj〉zSi ◦ Sj . (3.9)

This operator has an interesting property.

Proposition 3.2.1. Let (h, [ , ],〈 , 〉) be a Lorentzian nilpotent Lie algebra with Euclidean
center and attributes (g, [ , ]g,〈 , 〉g) and ω ∈ Z2(g,Z(h)). Assume that ω satisfies:

ω(ad∗uv,w) +ω(v,ad∗uw) = 0 (3.10)

for any u,v,w ∈ g, then D given in (3.7) is a derivation of (g, [ , ]g).

Proof. Since ω is a 2-cocycle then ω[u,v]g =ωu ◦ adv −ωv ◦ adu , thus for any u,v,w ∈ g:

〈D[u,v]g,w〉 = tr(ω[u,v]g ◦ω
∗
w)

= tr(ωu ◦ adv ◦ω∗w)− tr(ωv ◦ adu ◦ω∗w).
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On the other hand, we get in view of (3.10):

〈[Du,v]g,w〉g + 〈[u,Dv]g,w〉g = −tr(ωad∗vw ◦ω
∗
u) + tr(ωad∗uw ◦ω

∗
v),

= tr(ωw ◦ ad∗v ◦ω∗u)− tr(ωw ◦ ad∗u ◦ω∗v),

This proves the claim

Proposition 3.2.2. Let (h, [ , ],〈 , 〉) be a Lorentzian nilpotent Lie algebra with Euclidean
center and attributes (g, [ , ]g,〈 , 〉g) and ω ∈ Z2(g,Z(h)). Its Ricci curvature rich is given by:

rich(u,v) = ricg(u,v)− 1
2

tr(ω∗u ◦ωv), u,v ∈ g,

rich(x,y) = −1
4

tr(Sx ◦ Sy), x,y ∈ Z(h),

rich(u,x) = −1
4

tr(Ju ◦ Sx), x ∈ Z(h),u ∈ g,

where ricg is the Ricci curvature of (g, [ , ]g,〈 , 〉g) and Sx : g −→ g is the endomorphism defined
in (3.6).

Proof. According to (1.3), for any a,b ∈ h,

rich(a,b) = −1
2

tr(adha ◦ (adhb)
∗)− 1

4
tr(Jha ◦ Jhb ),

where adha : h −→ h, b 7→ [a,b] and Jha : h −→ h, b 7→ (adhb)
∗(a). The desired formula will be a

consequence of this one and the following relations. For any u ∈ g, x ∈ Z(h), with respect

to the splitting h = g⊕Z(h), we have:

adhu =

 adgu 0

ωu 0

 , Jhu =

 Jgu 0

0 0

 , Jhx =

 Sx 0

0 0

 and adhx = 0.

The claim is then a matter of simple computation.

Corollary 3.2.1. (h, [ , ],〈 , 〉h) is λ-Einstein if and only if for any u,v ∈ g and x,y ∈ Z(h),

ricg(u,v) = λ〈u,v〉g +
1
2

tr(ω∗u ◦ωv), tr(Ju ◦ Sx) = 0 and tr(Sx ◦ Sy) = −4λ〈x,y〉z. (3.11)

Let us derive some consequences of Proposition 3.2.2 and Corollary 3.2.1. In what follows

h will be an Einstein Lorentzian nilpotent Lie algebra with nondegenerate center, we

denote [ , ]h its Lie bracket, 〈 , 〉h its Lorentzian product and (g, [ , ]g,〈 , 〉g), (Z(h),〈 , 〉z)
and ω ∈ Z2(g,Z(h)) its attributes.

Recall that a pseudo-Euclidean Lie algebra (g, [ , ],〈 , 〉) is called Ricci-soliton if there

exists a constant λ ∈ R and derivation D of g such that Ricg = λIdg +D. By combining

Corollary 3.2.1 and Proposition 3.2.1 we get the following result.

Proposition 3.2.3. Let h be an Einstein Lorentzian nilpotent Lie algebra with Euclidean
nondegenerate center. If ω satisfies (3.10) then (g, [ , ]g,〈 , 〉g) is Ricci-soliton.

35



CHAPTER 3. EINSTEIN LORENTZIAN 3-NILPOTENT LIE GROUPS

Proposition 3.2.4. Let h be a λ-Einstein Lorentzian nilpotent Lie algebra with non-degenerate
center, let g and ω be its attributes (cf. Definition 3.2.1). If λ , 0 then the cohomology class of
the attribute ω is non trivial. In particular, H2(g,Z(h)) , {0}.

Proof. Suppose that there exists α ∈ g such that, for any u,v ∈ g, ω(u,v) = −α([u,v]g). Fix

an orthonormal basis {e1, . . . , en} of g with 〈e1, e1〉 = −1. For any x ∈ Z(h), we have :

tr(S2
x ) = 〈Sx(e1),Sx(e1)〉g −

n∑
i=2

〈Sx(ei),Sx(ei)〉g

= 〈ω∗e1
(x),Sx(e1)〉g −

n∑
i=2

〈ω∗ei (x),Sx(ei)〉g

= −〈ad∗e1
◦α∗(x),Sx(e1)〉g +

n∑
i=2

〈ad∗ei ◦α
∗(x),Sx(ei)〉g

= −〈Jα∗(x)(e1),Sx(e1)〉g +
n∑
i=2

〈Jα∗(x)(ei),Sx(ei)〉g

= −tr(Jα∗(x) ◦ Sx).

By virtue of Corollary 3.2.1, we get that λ〈x,x〉z = 0 for any x ∈ Z(h) and hence λ = 0.

Proposition 3.2.5. Let h be a λ-Einstein Lorentzian nilpotent Lie algebra with non-degenerate
center, denote g and ω its attributes (cf. Definition 3.2.1). Then [g,g]g is a non-degenerate
Lorentzian subspace of g. Moreover, if h is 3-step nilpotent and λ ≥ 0 then Z(g) = [g,g]g.

Proof. According to Corollary 2.3.3, [h,h] is non-degenerate Lorentzian and one can easily

see that [g,g]⊥g = [h,h]⊥ ∩ g. Thus [g,g]⊥g is non-degenerate Euclidean and hence [g,g]g is

non-degenerate Lorentzian.

Suppose now that h is 3-step nilpotent. Then g is 2-step nilpotent and so [g,g]g ⊂ Z(g).

Let x ∈ Z(g)∩ [g,g]⊥g . Since adx = 0 and Jx = 0, by virtue of (1.3) , Ricg(x) = 0. If λ ≥ 0, the

first equation of system (3.11) gives that :

0 ≤ λ〈x,x〉 = −1
2

tr(ω∗x ◦ωx) :=Q.

Since ω is a 2-cocycle, ω(Z(g), [g,g]g) = 0 and hence

Q = −1
2

m∑
i=1

〈ω(x,fi),ω(x,fi)〉 ≤ 0

where {f1, . . . , fm} is an orthonormal basis of [g,g]⊥g . It follows that x ∈ Z(g)∩ kerω and

hence x = 0 by virtue of (3.5). Thus Z(g) = [g,g]g.

Theorem 3.2.1. Let h be a λ-Einstein Lorentzian 3-step nilpotent Lie algebra with nondegen-
erate center. Then λ ≥ 0.
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Proof. According to (3.11), since h is λ-Einstein then:

Ricg = λIdg +
1
2
D and tr(Sx ◦ Sy) = −4λ〈x,y〉z, (3.12)

for any x,y ∈ Z(h), where g and ω are the attributes of h (cf. Definition 3.2.1) and Sx is the

operator defined in (3.6). By virtue of Proposition 3.2.5, [g,g] is nondegenerate Lorentzian

and hence g = [g,g]⊕ [g,g]⊥. We choose an orthonormal basis B0 = (e1, . . . , es) of [g,g] such

that 〈e1, e1〉g = −1 and an orthonormal basis B1 = (z1, . . . , zp) of Z(h) and we consider the

Lie structure endomorphisms (J1, . . . , Js) associated to B0 and given by (2.7) and (S1, . . . ,Sp)

the ω-structure endomorphisms associated to B1 and given by (3.8).

Since g is 2-step nilpotent then [g,g] ⊂ Z(g), hence Ji([g,g]) = 0 for any i = 1, . . . , s. Further-

more, Ji is skew-symmetric so it must leave [g,g]⊥ invariant, we shall denote its restriction

to [g,g]⊥ by Ji as well. Next, since ω is a 2-cocycle then ω(Z(g), [g,g]) = 0, hence by virtue

of (3.8) we get that Si([g,g]) ⊂ [g,g]⊥ for any i = 1, . . . ,p, we denote Bi : [g,g] −→ [g,g]⊥ the

resulting linear map. Since Si is skew-symmetric, then for any u ∈ [g,g]⊥, Siu = −B∗iu+Diu

where Di : [g,g]⊥ −→ [g,g]⊥ is skew-symmetric. Using (1.5), (2.9) and (3.9), we deduce

that (3.12) is equivalent to:

−1
2
J2
1 +

1
2

s∑
i=2

J2
i +

1
2

p∑
i=1

(D2
i −BiB

∗
i ) = λId[g,g]⊥ .

s∑
i,j=1

〈ei , . 〉tr(Ji ◦ Jj )ej + 2
p∑
i=1

B∗iBi = −4λId[g,g].

tr(DiDj )− 2tr(B∗iBj ) = −4λδij , i, j = 1, . . . ,p.

(3.13)

By taking the trace of the first two equations and using the third one we obtain that:

p∑
i=1

tr(D2
i ) = −4(2s+m+ 3p)λ, m = dim[g,g]⊥.

But [g,g]⊥ is a Euclidean vector space and Di : [g,g]⊥ −→ [g,g]⊥ is skew-symmetric and

hence tr(D2
i ) ≤ 0 which completes the proof.

To sum up the results of this section, we reduced the study of Einstein Lorentzian k-

step nilpotent Lie algebras to the study of a class of Lorentzian (k − 1)-step nilpotent Lie

algebras endowed with a 2-cocycle with values in a Euclidean vector space, which in some

cases can be Ricci-soliton. It is natural to give a name to this class of Lie algebras.

Definition 3.2.2. A pseudo-Euclidean Lie algebra (g, [ , ]g,〈 , 〉g) will be called ω-quasi Ein-
stein of type p if there exists λ ∈ R and a 2-cocycle ω : g× g −→ V with values in a Euclidean
vector space (V ,〈 , 〉z) of dimension p such that kerω∩Z(g) = {0} and:

Ricg = λIdg +
1
2
D, tr(Sx ◦ Sy) = −4λ〈x,y〉z
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where Sx : g −→ g is the ω-structure endomorphism corresponding to x ∈ V i.e (3.6) and D is
the linear operator given by:

〈Du,v〉g = tr(ω∗u ◦ωv)

such that ωu : g −→ V , v 7→ω(u,v).

3.3 Type 1 quasi-Einstein Lorentzian 2-nilpotent Lie algebras

In this section, having in mind Proposition 3.2.5 and Theorem 3.2.1, we give a complete

description of ω-quasi Einstein Lorentzian 2-step nilpotent Lie algebras of type 1 with

non-degenerate Lorentzian derived ideal and Einstein constant λ ≥ 0 as an important

step towards the determination of Einstein Lorentzian 3-step nilpotent Lie algebras with

nondegenerate 1-dimensional center.

Let (g, [ , ]g,〈 , 〉g) be a 2-step nilpotent Lie algebra such that Z(g) = [g,g] is non-degenerate

Lorentzian. Put n = dim[g,g] and m = dim[g,g]⊥.

Suppose that g isω-quasi Einstein of type 1 with Einstein constant λ ≥ 0. Denote S : g→ g

the skew-symmetric endomorphism given by ω(u,v) = 〈Su,v〉g. Since ω is a 2-cocycle

and [g,g] ⊂ Z(g) then S([g,g]) ⊂ [g,g]⊥, this gives rise to a linear map B : [g,g] −→ [g,g]⊥.

The condition Z(g)∩kerω = {0} implies that B is injective. On the other hand, the skew-

symmetry of S gives that, for any u ∈ [g,g]⊥, Su = −B∗u +Lu where L is a skew-symmetric

endomorphism of [g,g]⊥. Now consider the endomorphism D associated to ω and given

by formula (3.7). According to (3.9), D = −S2 and hence

Du =

B
∗Bu −LBu if u ∈ [g,g],

B∗Lu +BB∗u −L2u if u ∈ [g,g]⊥.

The fact that g is ω-quasi Einstein is equivalent to

−1
2
J1 +

1
4
J2 −

1
2
D = λIdg, tr(S2) = −4λ, (3.14)

where, by virtue of (1.5), Ricg = −1
2J1 + 1

4J2.

Let us proceed now to a crucial step which is not possible to perform when ω has its

values in a vector space of dimension ≥ 2.

We consider the symmetric endomorphism on [g,g] given by A = B∗B. Since B is injective

and [g,g]⊥ is non-degenerate Euclidean, we have 〈Au,u〉g > 0 for any u ∈ g \ {0}. There

are only two categories of nondiagonalizable symmetric endomorphisms on a Lorentzian

vector space (see Appendix B, Theorem B.4.2). Those which have an isotropic eigenvector

or those which have two linearly orthogonal vectors (e, f ) such that 〈e,e〉 = 1, 〈f , f 〉 = −1

with T (e) = ae − bf and T (f ) = be + af . The fact that A is positive definite prevents it to

be of these types and hence A is diagonalizable in an orthonormal basis B1 = (e1, . . . , en)

of [g,g] such that 〈e1, e1〉g = −1. Let (J1, . . . , Jn) be the structure endomorphisms associated

to B1. Note that the Ji vanishes on [g,g] ⊂ Z(g) and hence leaves invariant [g,g]⊥. We
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denote the restriction of Ji to [g,g]⊥ by Ji as well. Using (1.5) and (2.9), we get that (3.14)

is equivalent to: 

−1
2
J2
1 +

1
2

n∑
j=2

J2
j +

1
2

(L2 −BB∗) = λId[g,g]⊥ ,

−2B∗B−
n∑

i,j=1

〈ei ,u〉tr(Ji ◦ Jj )ej = 4λId[g,g],

tr(L2)− 2tr(BB∗) = −4λ,

LB = 0.

(3.15)

Taking the trace of the first two equations and using the the third equation of (3.15) we

get that :

tr(L2) = −4(2n+m+ 3)λ, n = dim[g,g], m = dim[g,g]⊥.

When m = n, B : [g,g] −→ [g,g]⊥ is an isomorphism, therefore LB = 0 leads to L = 0 and by

the previous equation λ = 0. We will show that this fact is still true in the general setting.

Put B2 = (f1, . . . , fn) =
(
B(e1)
|B(e1)| , . . . ,

B(en)
|B(en)|

)
which is obviously an orthonormal basis of Im(B).

Since LB = 0, L vanishes on Im(B) and leaves invariant Im(B)⊥ = kerBB∗. Thus L(fi) = 0

and there exists an orthonormal basis B3 = (g1,h1, . . . , gr ,hr ,p1, . . . ,ps) of kerBB∗ such that

L(gi) = µihi , L(hi) = −µigi ,L(pj ) = 0.

The basis B1 consists of eigenvectors of B∗B and hence the second relation in (3.15) is

equivalent to

B∗B(ei) = −
(
2λ+

1
2
〈ei , ei〉gtr(J2

i )
)
ei , tr(Ji ◦ Jj ) = 0, i, j = 1, . . . ,n, j , i.

On the other hand, we also have,

BB∗(fi) = −
(
2λ+

1
2
〈ei , ei〉gtr(J2

i )
)
fi , i = 1, . . . ,n. (3.16)

Summing up the above remarks, if Mi denotes the matrix of the restriction of Ji to [g,g]⊥

in the basis B2 ∪B3 then (3.14) implies that

M2
1−

n∑
k=2

M2
k = Diag

(
−1

2
tr(M2

1 ),
1
2

tr(M2
2 ), . . . ,

1
2

tr(M2
n),−(2λ+µ2

1), . . . ,−(2λ+µ2
r ),−2λ, . . . ,−2λ

)
.

(3.17)

To study this equation, we need matrix analysis of Hermitian square matrices (see [20]).

Let us recall one of the main theorems of this theory. A m ×m Hermitian matrix A has

real eigenvalues which can be ordered

λ1(A) ≤ . . . ≤ λm(A).

Theorem 3.3.1 ([20]). Let A,B ∈Mm(C) be two Hermitian matrices. Then for all 1 ≤ k ≤m :

λk(A) +λ1(B) ≤ λk(A+B) ≤ λk(A) +λm(B).
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Based on this theorem, the following lemma is a breakthrough in our study.

Lemma 3.3.1. Let M1, . . . ,Mn be a family of skew-symmetric m×m matrices with 2 ≤ n ≤m
and let (v1, . . . , vm−n) be a family of nonpositive real numbers such that :

M2
1 −

n∑
l=2

M2
l = Diag

(
−1

2
tr(M2

1 ),
1
2

tr(M2
2 ), . . . ,

1
2

tr(M2
n),v1, . . . , vm−n

)
. (3.18)

Then

(v1, . . . , vm−n) = (0, . . . ,0), λ1


n∑
l=2

M2
l

 =

n∑
l=2

λ1(M2
l ).

Moreover, for any i ∈ {2, . . . ,n}, rank(Mi) ≤ 2.

Proof. Denote by M the right-hand side of equation (3.18). By taking the trace of (3.18)

we get :

tr(M2
1 )−

n∑
l=2

tr(M2
l ) =

2
3

m−n∑
i=1

vi ≤ 0. (3.19)

For i = 1, . . . ,n, M2
i is the square of a skew-symmetric matrix so its eigenvalues are real

non-positive and satisfies:

λ2k−1(M2
i ) = λ2k(M

2
i ), k ∈

{
1, . . . ,

[m
2

]}
. (3.20)

Clearly −1
2 tr(M2

1 ) is the only non-negative eigenvalue of M and thus λm(M) = −1
2 tr(M2

1 ).

Theorem 3.3.1 applied to (3.18) gives that:

λm(M) +λ1

 n∑
l=2

M2
l

︸                     ︷︷                     ︸
a

≤ λm(M2
1 ) ≤ λm(M) +λm

 n∑
l=2

M2
l

︸                     ︷︷                     ︸
b

. (3.21)

and

λm−1(M) +λ1

 n∑
l=2

M2
l

︸                        ︷︷                        ︸
c

≤ λm−1(M2
1 ) ≤ λm−1(M) +λm

 n∑
l=2

M2
l

︸                        ︷︷                        ︸
d

. (3.22)

Suppose that m is odd. In this case λm(M2
1 ) = 0 and, by applying Theorem 3.3.1 induc-

tively and using (3.20), we get that :

1
2

n∑
l=2

tr(M2
l ) ≤ 1

2

n∑
l=2

(λ1(M2
l ) +λ2(M2

l )) =
n∑
l=2

λ1(M2
l ) ≤ λ1

 n∑
l=2

M2
l

 .
As a consequence of this inequality and the fact that λm(M) = −1

2 tr(M2
1 ), we get

−1
2

tr(M2
1 ) +

1
2

n∑
l=2

tr(M2
l ) ≤ λm(M) +λ1

 n∑
l=2

M2
l

 (3.21)
≤ λm(M2

1 ) ≤ 0,
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This combined with (3.19) gives that (v1, . . . , vm−n) = (0, . . . ,0). Suppose now thatm is even.

In this case, λm−1(M2
1 ) = λm(M2

1 ) and it follows from (3.21) and (3.22) that [a,b]∩ [c,d] , ∅.
But, we have obviously that c ≤ a and d ≤ b therefore a ≤ d. Thus

λm(M) +λ1

 n∑
l=2

M2
l

 ≤ λm−1(M) +λm

 n∑
l=2

M2
l

 . (3.23)

Since λm(M) = −1
2 tr(M2

1 ) then by using (3.19) we get that

λm(M) +λ1

 n∑
l=2

M2
l

 = −1
2

n∑
l=2

tr(M2
l )− 1

3

m−n∑
i=1

vi +λ1

 n∑
l=2

M2
l

 .
On the other hand, Theorem 3.3.1 once more shows that λm(

∑n
l=2M

2
l ) ≤

∑n
l=2λm(M2

l ) ≤ 0,

moreover λm−1(M) ≤ 0, so (3.23) implies that:

−1
2

n∑
l=2

tr(M2
l )− 1

3

m−n∑
i=1

vi +λ1

 n∑
l=2

M2
l

 ≤ 0, (3.24)

Theorem 3.3.1 also implies that λ1

 n∑
l=2

M2
l

 ≥ n∑
l=2

λ1(M2
l ) and hence:

−1
2

n∑
l=2

tr(M2
l )− 1

3

m−n∑
i=1

vi +λ1

 n∑
l=2

M2
l

 ≥ −1
2

n∑
l=2

tr(M2
l )− 1

3

m−n∑
i=1

vi +
n∑
l=2

λ1

(
M2
l

)
≥ −1

2

n∑
l=2

m∑
k=1

λk(M
2
l )− 1

3

m−n∑
i=1

vi +
n∑
l=2

λ1(M2
l )

(3.20)
≥ −

n∑
l=2

[m2 ]∑
k=1

λ2k−1(M2
l )− 1

3

m−n∑
i=1

vi +
n∑
l=2

λ1(M2
l )

≥ −
n∑
l=2

[m2 ]∑
k=2

λ2k−1(M2
l )− 1

3

m−n∑
i=1

vi ≥ 0.

Again we get that vi = 0 for all 1 ≤ i ≤m−n. To conclude, without any assumption on m,

equation (3.21) gives:

0 ≥ λm(M) +λ1

 n∑
l=2

M2
l

 = −1
2

tr(M2
1 ) +λ1

 n∑
l=2

M2
l


= −1

2

n∑
l=2

tr(M2
l ) +λ1

 n∑
l=2

M2
l


= λ1

 n∑
l=2

M2
l

− 1
2

n∑
l=2

m∑
k=1

λk(M
2
l )

= λ1

 n∑
l=2

M2
l

− n∑
l=2

λ1(M2
l )− 1

2

n∑
l=2

m∑
k=3

λk(M
2
l ) ≥ 0

As a result λ1(
∑n
l=2M

2
l ) =

∑n
l=2λ1(M2

l ) and λk(M
2
l ) = 0 for all k = 3, . . . ,m and l = 2, . . . ,n,

which completes the proof.
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If we apply this lemma to our study, we get that λ = 0, L = 0 and (J2, . . . , Jn) have rank 2 and

satisfy λ1(
∑n
i=2 J

2
i ) =

∑n
i=2λ1(J2

i ). The following lemma will give us a precise description

of the endomorphisms (J2, . . . , Jn).

Lemma 3.3.2. Let V be an m-dimensional Euclidean vector space and K1, . . . ,Kn : V −→ V be
skew-symmetric endomorphisms with n < m. Assume that rank(Ki) = 2 and tr(Ki ◦Kj ) = 0 for
all i , j and that:

λ1 (K) =
n∑
i=1

λ1

(
K2
i

)
with K :=

n∑
i=1

K2
i .

Then we can find an orthonormal basis {u0, . . . ,un,v1, . . . , vm−n−1} such that for all 1 ≤ i, j ≤ n
and all 1 ≤ l ≤m−n− 1:

Ki(u0) = αiui , Ki(uj ) = −δijαiu0 and Ki(vl) = 0.

Proof. Consider E := ker(K −λ1(K)IdV ) and denote Ei := Im(Ki), for all i = 1, . . . ,n. Note

that Ei is a 2-plane and there exists a αi ∈ R \ {0} such that for any u ∈ Ei , K2
i (u) = −α2

i u

and λ1(K2
i ) = −α2

i . We claim that E ⊂
⋂n
i=1Ei . Indeed, let u ∈ E and for each i = 1, . . . ,n

choose an orthonormal basis (ei , fi) of Ei and write:

u = 〈u,ei〉ei + 〈u,fi〉fi + vi and vi ∈ E⊥i .

Since λ1(K) = −α2
1 − . . .−α2

n, we get

−
n∑
i=1

α2
i 〈u,u〉 = 〈K2(u),u〉 =

n∑
i=1

〈K2
i (u),u〉.

But K2
i (u) = −α2

i (〈u,ei〉ei + 〈u,fi〉fi) and hence

〈K2
i (u),u〉 = −α2

i

(
〈u,ei〉2 + 〈u,fi〉2

)
.

So

0 =
n∑
i=1

α2
i (〈u,u〉 − 〈u,ei〉2 − 〈u,fi〉2) =

n∑
i=1

α2
i 〈vi ,vi〉 = 0.

Thus v1, . . . , vn = 0 and the claim follows.

Choose u0 ∈ E such that 〈u0,u0〉 = 1. Then clearly (u0,Ki(u0)) is an orthogonal basis

of Ei . Complete this basis in order to get an orthonormal basis (u0,ui , f1, . . . , fm−2) of V

with ui = 1
|Ki (u0)|Ki(u0). We have Ki(fk) = 0 for k = 1, . . . ,m− 2 and hence for i, j ∈ {1, . . . ,n}

such that i , j:

0 = tr(Ki ◦Kj ) = −〈Kj(u0),Ki(u0)〉 − 〈Kj(ui),Ki(ui)〉

= −〈Kj(u0),Ki(u0)〉+
α2
i

|Ki(u0)|
〈Kj(ui),u0〉

= −
1 +

α2
i

|Ki(u0)|2

〈Kj(u0),Ki(u0)〉.

So the family (u0,K1(u0), . . . ,Kn(u0)) is orthogonal, we orthonormalize it and complete it

to get the desired basis.
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The relevance of the following lemma will appear later.

Lemma 3.3.3. Consider the following system of matrix equations on R2k : K2 = P −1AP +A

αK = AP − P −1A
(3.25)

whereK is an invertible skew-symmetric matrix, P an orthogonal matrix,A = diag(−α2
1 , . . . ,−α

2
2k)

with αi , 0 and α = ±
√
α2

1 + · · ·+α2
2k . Then k = 1, in which case we get that :

A =

 −α2
1 0

0 −α2
2

 , K =

 0 ε
√
α2

1 +α2
2

−ε
√
α2

1 +α2
2 0

 and P =

 0 ∓ε
±ε 0

 , ε = ±1.

(3.26)

Proof. To prove the Lemma we reason by contradiction and assume that (K,A,P ) is a

solution of (3.25) and k > 1. To get a contradiction, we prove first that K2 and A commute

and hence A and P −1AP commute as well.

Let λ1 < . . . < λr < 0 be the different eigenvalues of K2 and E1, . . . ,Er the corresponding

vector eigenspaces. Since K is skew-symmetric invertible and tr(K2) = −2α2, we have:

R2k = E1 ⊕ . . .⊕Er ,dimEi = 2pi and 2
r∑
i=1

piλi = −2α2. (3.27)

According to (3.25), P −1AP +A and AP − P −1A commutes and hence:

A(P + P −1)A = P −1A(P + P −1)AP .

Moreover the first equation of system (3.25) implies that:

K4 = P −1A2P +A2 +AP −1AP + P −1APA

and the second equation of (3.25) along with the preceding remarks give that:

α2K2 = APAP + P −1AP −1A−A2 − P −1A2P

= APAP + P −1AP −1A+AP −1AP + P −1APA−K4

= (AP +AP −1)AP + P −1A(P −1A+ PA)−K4

= A(P + P −1)AP + P −1A(P −1 + P )A−K4

= A(P + P −1)A(P + P −1)−K4.

Therefore we get that K2(K2 +α2Id) = A(P + P −1)A(P + P −1) which leads to:

A−1K2(K2 +α2Id) = (P + P −1)A(P + P −1). (3.28)

But P −1 = P t and the endomorphism at the right hand side of the previous equality is

symmetric. This implies that A−1 and therefore A commutes with K2(K2 +α2Id).
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We now show that A commutes with K2. If K2 is proportional to Id this is obviously true.

Suppose that K2 has at least two distinct eigenvalues, i.e., r ≥ 2. For any i, j ∈ {1, . . . , r} and

for any v ∈ Ei ,w ∈ Ej , we have:

〈AK2(K2 +α2Id)(v),w〉 = λi(λi +α2)〈Av,w〉

= 〈K2(K2 +α2Id)A(v),w〉

= 〈K2(K2 +α2Id)w,A(v)〉

= λj(λj +α2)〈Av,w〉.

Thus (λi −λj )(λi +λj +α2)〈Av,w〉 = 0. But from (3.27), we get:

2(λi +λj +α2) = −2(pi − 1)λi − 2(pj − 1)λj − 2
∑
l,i,l,j

plλl ≥ 0.

If k > 2 then the last two relations implies that 〈A(Ei),Ej〉 = 0 for i , j and hence A(Ei) = Ei
for i = 1, . . . , r. So A commutes with K2.

If k = 2 then r = 2, dimE1 = dimE2 = 2 and λ1 + λ2 = −α2. From R2k = E1 ⊕ E2 one can

deduce easily that K2(K2 +α2Id) = −λ1λ2Id and by replacing in (3.28) we get:

A(P + P −1) = −λ1λ2(P + P −1)−1A−1.

Now for any u ∈ R2k we get that:

0 ≥ 〈A(P+P −1)(u), (P+P −1)(u)〉 = −λ1λ2〈(P+P −1)−1A−1(u), (P+P −1)(u)〉 = −λ1λ2〈A−1(u),u〉 ≥ 0,

this means that 〈A−1(u),u〉 = 0 which is impossible since A is negative definite.

In conclusion A commutes with K2 and hence A commutes with P −1AP so that there

exists an orthonormal basis {v1, . . . , v2k} of R2k in which both A and P −1AP are diagonal.

For any i ∈ {1, . . . ,2k} we can therefore write:

Avi = −α2
i vi and P −1AP (vi) = −α2

σ (i)vi

for some permutation σ of {1, . . . ,2k}. The second equation of (3.25) gives that:

αK(vi) = AP (vi)− P −1A(vi) = −α2
σ (i)P (vi) +α2

i P
−1(vi),

for any i ∈ {1, . . . ,2k}. Thus:

α2〈K(vi),K(vi)〉 = α4
σ (i) +α4

i − 2α2
σ (i)α

2
i 〈P

2(vi),vi〉. (3.29)

Assume that σ (i) = i for some i ∈ {1, . . . ,2k}. It follows from the first equation of (3.25)

that −2α2
i should be an eigenvalue of K2 and so it must have multiplicity greater than 2,

but since k > 1 we deduce that tr(K2) < −4α2
i . On the other hand, equation (3.29) and the

first equation of (3.25) imply that:

α2〈K(vi),K(vi)〉 = 2α4
i (1− 〈P 2(vi),vi〉) and − 〈K(vi),K(vi)〉 = 〈K2(vi),vi〉 = −2α2

i .
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Combining these equations we obtain thatα2 = α2
i (1−〈P 2(vi),vi〉) and the Cauchy-Schwarz

inequality |〈P 2(vi),vi〉| ≤ ‖vi‖ ‖P 2vi‖= 1 implies that 0 ≤ 1− 〈P 2(vi),vi〉 ≤ 2 which in turn

gives that 0 ≤ α2 ≤ 2α2
i . Finally using that tr(K2) = −2α2 we conclude that −4α2

i ≤ tr(K2),

and we get a contradiction. Thus σ (i) , i for all i = 1, . . . ,2k.

From
2k∑
i=1

〈K(vi),K(vi)〉 = −tr(K2) = 2α2 and equation (3.29) we get:

2α4 = 2
2k∑
i=1

α4
i − 2

2k∑
i=1

α2
σ (i)α

2
i 〈P

2(vi),vi〉.

Now:

α4 −
2k∑
i=1

α4
i = (α2

1 + . . .+α2
2k)

2 −
2k∑
i=1

α4
i

=
∑
i,j

α2
i α

2
j

=
2k∑
i=1

α2
i α

2
σ (i) +

∑
j,i,j,σ (i)

α2
i α

2
j .

So we obtain that:

0 ≤
∑

j,i,σ (i)

α2
i α

2
j = −

2k∑
i=1

α2
i α

2
σ (i)(〈P

2(vi),vi〉+ 1) ≤ 0,

the right hand side of the previous equality is negative as a consequence of the Cauchy-

Schwarz inequality |〈P 2(vi),vi〉| ≤ ‖vi‖ ‖P 2vi‖= 1 which implies that 0 ≤ 〈P 2(vi),vi〉+1 ≤ 2.

Thus
∑

j,i,σ (i)

α2
i α

2
j = 0, but this contradicts the fact that A is invertible. We conclude

that k = 1 and in this case we can put:

A =

 −α2
1 0

0 −α2
2

 , K =

 0 β

−β 0

 and P =

 cos(θ) −sin(θ)

sin(θ) cos(θ)

 .
We get that system (3.25) is equivalent to :

β2 −α2
1 − (α2

1 cos2(θ) +α2
2 sin2(θ)) = 0

β2 −α2
2 − (α2

1 sin2(θ) +α2
2 cos2(θ)) = 0

cosθ sinθ(α2
2 −α

2
1) = 0

±β
√
α2

1 +α2
2 − (α2

1 +α2
2)sinθ = 0.

By summing over the first two equations in the previous system and replacing in the last

equation we obtain that β = ε
√
α2

1 +α2
2 , sinθ = ±ε and cosθ = 0 with ε = ±1, which ends

the proof.
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We are now in possession of all the necessary ingredients to characterize ω-quasi Einstein

Lorentzian 2-step nilpotent Lie algebras of type 1 as a key step towards the proof of

Theorem 3.1.1.

Theorem 3.3.2. Let (g, [ , ],〈 , 〉) be a Lorentzian 2-step nilpotent Lie algebra then suppose
that Z(g) = [g,g] is non-degenerate Lorentzian and let ω ∈ Z2(g,R). Then g is ω-quasi Einstein
of type 1 with positive Einstein constant λ if and only if λ = 0 and, up to a Lie algebra
isomorphism, (g, [ , ],〈 , 〉,ω) has one of the following forms :

1. dimg = 5 and there exists an orthonormal basis {e1, e2,u1,u2,u3} of g with 〈e1, e1〉 = −1

such that the non vanishing Lie brackets and ω-products are given by :

[u1,u2] = αe2, [u2,u3] = ±αe1, ω(e2,u3) = εα, ω(e1,u1) = ∓εα, α , 0,ε = ±1.

(3.30)

2. dimg = 6 and there exists an orthonormal basis {e1, e2, e3,u1,u2,u3} of g, 〈e1, e1〉 = −1,
such that the non-vanishing Lie brackets and ω-products are given by :[u1,u2] = α2e2, [u1,u3] = α3e3, [u2,u3] = εαe1,

ω(e2,u3) = ∓εα2, ω(e3,u2) = ±εα3, ω(e1,u1) = ±α,
(3.31)

where α2,α3 , 0, ε = ±1 and α =
√
α2

2 +α2
3 .

Proof. We keep the notations from the beginning of section 3.3. The structure endomor-

phisms (J2, . . . , Jn) have been shown to satisfy the hypothesis of Lemma 3.3.2, therefore

we can find an orthonormal basis (u1,u2, . . . ,un,v1, . . . , vm−n) of [g,g]⊥ and (α2, . . . ,αn) ∈ Rn

such that, for all 2 ≤ i, j ≤ n and all 1 ≤ k ≤m−n:

Ji(u1) = αiui , Ji(uj ) = −δijαiu1, αi , 0 and Ji(vk) = 0.

Put J =
∑n
i=2 J

2
i , it is clear that for all 2 ≤ i ≤ n and all 1 ≤ k ≤m−n:

J(u1) = −(α2
2+. . .+α2

n)u1, J(ui) = −α2
i ui , J(vk) = 0, tr(J2

1 ) = −2(α2
2+. . .+α2

n) and tr(J2
i ) = −2α2

i .

(3.32)

Consider B2 = (f1, . . . , fn) :=
(
B(e1)
|B(e1)| , . . . ,

B(en)
|B(en)|

)
. By virtue of equation (3.17), we get that for

any i = 2, . . . ,n and any v ∈ {f1, . . . , fn}⊥:

J2
1 (f1) = J(f1)− 1

2
tr(J2

1 )f1, J
2
1 (fi) = J(fi) +

1
2

tr(J2
i )fi and J2

1 (v)− J(v) = 0. (3.33)

Since λ1(J) = 1
2 tr(J2

1 ), we deduce that:

〈J1(f1), J1(f1)〉 = −〈J(f1), f1〉+λ1(J) ≤ 0

and hence:

J1(f1) = 0 and J(f1) = λ1(J)f1.
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But (3.32) shows that the multiplicity of λ1(J) is equal to one and hence f1 = ±u1. Let us

show that the restriction of J1 to f ⊥1 is invertible. We have from (3.15) that:

J2
1 = J −BB∗

and from (3.16) the restriction of BB∗ to f ⊥1 is positive so if u ∈ f ⊥1 and J1u = 0 we get:

n∑
i=2

〈Jiu,Jiu〉+ 〈BB∗(u),u〉 = 0

therefore u ∈ ∩ni=1 ker Ji = Z(g) = [g,g] and so u = 0. It follows that J1 : f ⊥1 −→ f ⊥1 is invert-

ible and thus m must be odd. In view of the last equation of (3.33) along with the fact

that f1 = ±u1, we obtain that J2
1 ({f1, . . . , fn}⊥) ⊂ span{u2, . . . ,un}, the preceding remark then

leads to m−n ≤ n− 1 thus m ≤ 2n− 1.

For convenience we set wi := B(ei) for i = 1, . . . ,n. From (3.16) we get:

〈wi ,wi〉 = −1
2

tr(J2
i ) and 〈wi ,wj〉 = 0, i , j.

So

BB∗(x) = −(α2
2 + · · ·+α2

n)〈x,u1〉u1 +
n∑
i=2

〈x,wi〉wi . (3.34)

The fact that B defines a 2-cocycle is equivalent to:

n∑
i=1

(〈Jiu,v〉wi + 〈wi ,u〉Jiv − 〈wi ,v〉Jiu) = 0, u,v ∈ [g,g]⊥.

If we apply this equation to u = u1 we get:

〈w1,u1〉J1v = −
n∑
i=2

(αi〈ui ,v〉wi −αi〈wi ,v〉ui) .

From the definition ofw1 we get that 〈w1,u1〉 = ±
√
α2

2 + · · ·+α2
n and therefore the previous

equation gives that:

J1 = ± 1√
α2

2 + . . .+α2
n

n∑
i=2

αiui ∧wi . (3.35)

Actually this is equivalent to B being a 2-cocycle. The expression of BB∗ given in (3.34)

leads to:

J2
1 −

q∑
i=2

J2
i = (α2

2 + . . .+α2
n)〈x,u1〉u1 −

n∑
i=2

〈.,wi〉wi . (3.36)
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Put a = ± 1√
α2

2+...+α2
n

. Equation (3.35) on the other hand gives that:

J1wl = aα3
l ul − a

n∑
i=2

αi〈ui ,wl〉wi ,

J1ul = −aαlwl + a
n∑
i=2

αi〈wi ,ul〉ui ,

J1vk = a
n∑
i=2

αi〈wi ,vk〉ui , (3.37)

Now using (3.36) and then (3.37), it is straightforward to check that:

〈J2
1vk ,vk〉 = −

n∑
l=2

〈wi ,vk〉2 = a
n∑
i=2

αi〈wi ,vk〉〈J1ui ,vk〉 = −a2
n∑
l=2

α2
i 〈wi ,vk〉

2.

So we conclude that:
n∑
l=2

(1− a2α2
i )〈wi ,vk〉2 = 0.

Thus either n = 2 or n ≥ 3 and 〈wi ,vk〉 = 0 for i = 1, . . . ,n and vk = 1, . . . ,m − n. So we get

that either n = 2 or n ≥ 3 and m = n.

For n = 2, we have m = 3, (e1, e2) is an orthonormal basis of [g,g] such that 〈e1, e1〉 = −1

and (u1,u2,v) is an orthonormal basis of [g,g]⊥, moreover B(e1) = au1, B(e2) = bv.

J2 =


0 −α 0

α 0 0

0 0 0

 and J1 = bu2 ∧ v =


0 0 0

0 0 b

0 −b 0

 and a2 = b2 = α2.

This automatically leads to (3.30). For n ≥ 3, we have n =m = 2k + 1. Recall that:

[u,v] =


n∑
i=1

〈Ji(u),v〉ei , u,v ∈ [g,g]⊥

0, otherwise

, ω(u,v) =

 〈B(u),v〉, u ∈ [g,g], v ∈ [g,g]⊥

0, otherwise

From what have been shown so far, the only Lie brackets of g that do not automatically

vanish are:

[u1,ui] = 〈Ji(u1),ui〉ei = αiei and [ui ,uj ] = 〈J1(ui),uj〉e1 := βije1,

for 2 ≤ i, j ≤ n, furthermore since J1 is invertible on u⊥1 it follows that K := (βij)i,j is a

skew-symmetric invertible matrix. On the other hand, put P̂ (fi) := ui for 2 ≤ i ≤m then

it is clear that P̂ := (p̂ij)i,j is an orthogonal matrix, and a straightforward computation

shows that 〈B(ei),uj〉 = 〈B(ei), P̂ (fj)〉 = εi p̂jiαi with εi = ±1, note that P = (εj p̂ij)i,j is an

orthogonal matrix as well. Next since f1 = ±u1 we get that:

〈B(e1),u1〉 = ±
√
α2

2 + · · ·+α2
n.
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Finally in these notations notice that J2
1 −

∑n
i=2 J

2
i = −BB∗ is equivalent to K2 = P −1AP +A

with A = diag(−α2
2 , . . . ,−α2

n) and the cocycle condition
∮
〈B([u,v]),w〉 = 0 is equivalent to

the equation ±αK = AP − P −1A where α =
√
α2

2 + · · ·+α2
n. This is exactly the situation of

Lemma 3.3.3 and consequently k = 1, i.e n =m = 3 which means dimg = 6, furthermore

in view of (3.26) we get that the Lie algebra structure of g is given by (3.31). This ends

the proof.

Following the discussion of section 3.3 we get as a consequence of the preceding The-

orem that a Lorentzian 3-step nilpotent Lie algebras (h,〈 , 〉) with non-degenerate 1-

dimensional center is Einstein if and only if it is Ricci-flat and has one of the following

forms :

1. Either dimh = 6 in which case dim[h,h] = codim[h,h] = 3 and there exists an or-

thonormal basis {x,e1, e2,u1,u2,u3} of h with 〈e1, e1〉 = −1 such that the Lie algebra

structure is given by :

[u1,u2] = αe2, [u2,u3] = ±αe1, [e2,u3] = αx, [e1,u1] = ∓αx, α , 0. (3.38)

[u1,u2] = αe2, [u2,u3] = ±αe1, [e2,u3] = −αx, [e1,u1] = ±αx, α , 0. (3.39)

2. dimh = 7 in which case dim[h,h] = codim[h,h] + 1 = 4. Moreover there exists an

orthonormal basis {x,e1, e2, e3,u1,u2,u3} of h such that 〈e1, e1〉 = −1 and in which the

Lie algebra structure is given by :

[u1,u2] = α2e2, [u1,u3] = α3e3, [u2,u3] = εαe1, [e2,u3] = ∓εα2x,

[e3,u2] = ±εα3x, [e1,u1] = ±αx (3.40)

where α =
√
α2

2 +α2
3 .

Proof of Main Theorem. In case 1, the Lie algebra structure [ , ] of h has one of the forms

given by either (3.38) or (3.39). It is clear that (3.39) can be obtained from (3.38) by

replacing u3 with −u3, for this reason it suffices to treat the case where h is given by (3.38).

If we now put:

f1 = u2, f2 = u3 +u1, f3 = u3 −u1, f4 = ±αe1 −αe2, f5 = ±αe1 +αe2, f6 = 2α2x.

Then we can easily see that:

[f1, f2] = f4, [f1, f3] = f5, [f2, f4] = f6, [f3, f5] = −f6,

[f2, f3] = [f1, f4] = [f1, f5] = [f2, f5] = [f3, f4] = [f4, f5] = [fi , f6] = 0.

Thus h ' L6,19(−1) and the metric 〈 , 〉 is represented in the basis {f1, . . . , f6} of h by the

expression (3.1). For case 2, when h is given by (3.40) we can put:

f1 := u1, f2 := u2, f3 := u3, f4 := ε
√
α2

2 +α2
3e1, f5 := α2e2, f6 = α3e3, f7 := ±ε(α2

2 +α2
3),

49



CHAPTER 3. EINSTEIN LORENTZIAN 3-NILPOTENT LIE GROUPS

then the Lie algebra h is given by (3.2) with r = α2
2

α2
2+α2

3
. Moreover if we set a = α2

2 +α2
3 then

we get that 〈 , 〉 is given by (3.3).

We end our chapter by some examples of Einstein Lorentzian nilpotent Lie algebras with

non-degenerate center of dimension greater that one, the goal is to illustrate that such

Lie algebras do occur even in the 3-step nilpotent case. This gives motivation for a future

investigation.

Example 2. Let h be the 8-dimensional nilpotent Lie algebra with Lie bracket [ , ] given in a
basis B = {e1, . . . , e8} by :

[e1, e2] = −4
√

3e3, [e1, e3] =

√
5
2
e4, [e1, e4] = −2

√
3e8, [e1, e5] = 3

√
7
2
e6,

[e1, e6] = −4
√

2e7, [e2, e3] = −
√

5
2
e5, [e2, e4] = −3

√
7
2
e6, [e2, e5] = −2

√
3e7,

[e2, e6] = −4
√

2e8, [e3, e4] = −
√

21e7, [e3, e5] = −
√

21e8.

One can define a Lorentzian inner product 〈 , 〉 on h by requiring B to be an orthonormal basis
with 〈e6, e6〉 = −1. Then it is easy to see that Z(h) = span{e7, e8} hence non-degenerate with
respect to 〈 , 〉. Moreover a straightforward computation shows that (h,〈 , 〉) is Einstein with
nonvanishing scalar curvature. This example was first given in [6].

Example 3. Let 〈 , 〉 be a Lorentzian metric on R7 and {e1, . . . , e7} an orthonormal basis with
respect to 〈 , 〉 such that 〈e1, e1〉 = −1. Define the Lie bracket [ , ] by setting :

[e1, e3] =
√

2e7, [e2, e4] =
√

2e7, [e4, e5] = −e1, [e4, e6] = −e1,

[e3, e5] = −e2, [e3, e6] = −e2.

Put h := (R7, [ , ]), then it is straightforward to check that (h,〈 , 〉) is a Ricci-flat 3-step nilpotent
Lie algebra with Z(h) = span{e7, e5 − e6}, therefore h has non-degenerate center.

Example 4. Let 〈 , 〉 be a Lorentzian metric on R10 and {e1, . . . , e10} an orthonormal basis with
respect to 〈 , 〉 such that 〈e5, e5〉 = −1. Choose p,r ∈ R such that p,r , 0 and define on R10 the
Lie bracket [ , ] given by :

[e1, e3] = −
√
p2 + r2e5, [e1, e4] = −

√
p2 + r2e6, [e2, e4] = −

√
p2 + r2e5, [e2, e3] = −

√
p2 + r2e6,

[e5, e1] = pe7, [e5, e2] = pe8, [e5, e3] = re9, [e5, e4] = re10

[e6, e1] = pe8, [e6, e2] = pe7, [e6, e3] = re10, [e6, e4] = re9.

Put h := (R10, [ , ]), then it is straightforward to check that (h,〈 , 〉) is a Ricci-flat 3-step
nilpotent Lie algebra with Z(h) = span{e7, e8, e9, e10}, therefore h has non-degenerate center.
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A

Generalities on Lie algebras

A.1 Lie algebras and Lie groups

A.1.1 Lie algebras

Recall that a real Lie algebra is any real vector space g endowed with a skew-symmetric

bilinear map [ , ] : g× g −→ g, (u,v) 7→ [u,v] satisfying for any u,v,w ∈ g:

[[u,v],w] + [[w,u],v] + [[v,w],u] = 0 (Jacobi Identity).

We shall use the term Lie algebra in order to refer to real Lie algebras. We say that a Lie

algebra g is finite-dimensional when its underlying vector space is finite-dimensional.

Example 5.

1. Let V be an arbitrary (real) vector space and let End(V ) denote the set of all endomor-
phisms of V . Given u,v ∈ End(V ), define:

[u,v] := u ◦ v − v ◦u.

It is then straightforward to check that [ , ] : End(V )×End(V ) −→ End(V ) defines a Lie
bracket on End(V ). Furthermore (End(V ), [ , ]) is a finite-dimensional Lie algebra if and
only if V is a finite-dimensional vector space. When its Lie algebra structure is taken into
account, the notation gl(V ) is used instead of End(V ).

2. LetM be a smooth manifold letχ(M) be the vector space of smooth vector fields onM. Re-
call that vector fields can be identified with derivations of C∞(M). For any X,Y ∈χ(M),
let [X,Y ] be the vector field on M given as a derivation of C∞(M) by the expression:

[X,Y ](f ) := X(Y (f ))−Y (X(f )),

for any f ∈ C∞(M). One can easily check using local coordinate systems that the oper-
ation [ , ] :χ(M)×χ(M) −→χ(M) defines a Lie bracket on χ(M). Moreover, the Lie
algebra (χ(M), [ , ]) is infinite dimensional whenever dimM > 0.
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Let g be a Lie algebra and consider a vector subspace h ⊂ g. We say that h is a Lie

subalgebra of g if it satisfies [u,v] ∈ h for any u,v ∈ h. We say that h is an ideal of the Lie

algebra g if for any u ∈ g and any v ∈ h we have that [u,v] ∈ h.

Example 6.

1. Let (g, [ , ]) be any Lie algebra. Denote [g,g] := span{[u,v], u,v ∈ g} i.e the vector
subspace of g spanned by all the Lie brackets. It is easy to see that [g,g] is an ideal of g, it
is called the derived ideal of g. On the other hand, if we set:

Z(g) = {u ∈ g, [u,v] = 0, for all v ∈ g},

then Z(g) is an ideal of g, called the center of g. Finally any vector subspace of g either
containing [g,g] or contained in Z(g) is itself an ideal of g

2. Let V be a finite-dimensional vector space and 〈 , 〉 : V ×V −→ R be a non-degenerate
inner product (see Appendix B). Let so(V ,〈 , 〉) be the vector subspace of gl(V ) consisting
of all endomorphisms u : V −→ V satisfying

〈u(x), y〉 = −〈x,u(y)〉,

for all x,y ∈ V i.e u is skew-symmetric with respect to 〈 , 〉. One can check that so(V ,〈 , 〉)
is a Lie subalgebra of gl(V ).

Let (g1, [ , ]1) and (g2, [ , ]2) be arbitrary Lie algebras. A linear map ϕ : g1 −→ g2 is called

a Lie algebra homomorphism if it satisfies that ϕ[u,v]1 = [ϕ(u),ϕ(v)]2 for any u,v ∈ g1,

when ϕ : g1 −→ g2 is bijective, we say that it defines a Lie algebra isomorphism.

For any Lie algebra homomorphism ϕ : g1 −→ g2, it is easy to see that ker(ϕ) is a Lie

subalgebra of g1 and Im(ϕ) is a Lie subalgebra of g2.

Example 7.

1. Let (g, [ , ]) be a Lie algebra and h ⊂ g a Lie subalgebra of g. By the definition of a Lie
subalgebra, the natural inclusion ι : h −→ g is a Lie algebra homomorphism.

2. Let φ : V1 −→ V2 be any vector space isomorphism. The map ϕ : gl(V2) −→ gl(V1) given
by ϕ(u) := φ−1 ◦u ◦φ is then a Lie algebra isomorphism.

3. Let (g, [ , ]) be a Lie algebra and I ⊂ g an ideal of g. There exists a unique Lie algebra
structure on the quotient vector space h := g/I , denoted [ , ]q, such that the natural
projection π : g −→ h is a Lie algebra homomorphism. In other words, [ , ]q is defined
such that:

[π(u),π(v)]q := π[u,v],

and doesn’t depend on the representative elements u,v ∈ g.
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The Lie bracket [ , ] of a Lie algebra g induces a linear map ad : g −→ gl(g), u 7→ adu which

is given by the expression adu(v) = [u,v]. This map is called the adjoint representation

of g, using the Jacobi identity, one can show that:

ad[u,v] := [adu ,adv],

this means that ad : g −→ gl(g) is a Lie algebra homomorphism. A derivation of a Lie

algebra (g, [ , ]) is any linear map D : g −→ g satisfying for any u,v ∈ g:

D[u,v] = [D(u),v] + [u,D(v)]. (A.1)

The vector space of all derivations of a Lie algebra g is denote Der(g), it is itself a Lie

subalgebra of gl(g). The Jacobi identity of g can be rewritten as:

adu([v,w]) = [adu(v),w] + [v,adu(w)],

for any u,v,w ∈ g, this shows that in particular adu ∈Der(g). In fact, the elements of ad(g)

of this form are called inner derivations of g, and one can check using (A.1) that ad(g) is

an ideal of Der(g).

A.1.2 Lie groups

Recall that a Lie group G is a topological group which is endowed with a structure of a

differentiable manifold such that the multiplication and inversion maps:

mG : G ×G −→ G, (x,y) 7→ xy et iG : G −→ G, x 7→ x−1

are smooth. Denote `g , rg : G −→ G respectively the left and right multiplications by an

element g ∈ G, i.e `g(x) = gx and rg(x) = xg.

Example 8.

1. The group GL(n,R) of n×n real invertible matrices is a Lie group.

2. Let V be a finite-dimensional vector space and denote GL(V ) the group of all automor-
phisms of V with its natural topology. By fixing a basis of V one can show that GL(V )

is isomorphic to GL(n,R) with n := dim(V ), and so GL(V ) can be given a Lie group
structure using this isomorphism. One also shows that this structure is independent of
the choice of a basis of V .

3. Let V be a finite-dimensional vector space and 〈 , 〉 : V × V −→ R a non-degenerate
bilinear form. Let O(V ,〈 , 〉) be the group of all linear isometries of (V ,〈 , 〉) i.e

O(V ,〈 , 〉) = {u ∈GL(V ), 〈u(x),u(y)〉 = 〈x,y〉, for all x,y ∈ V },

One can show that O(V ,〈 , 〉) is a Lie group.
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A vector field X on a Lie group G is said to be left invariant if for any g ∈ G, we have:

Xgx = Tx`g(Xx).

Recall that for any diffeomorphism f : G −→ G and any vector field X ∈ χ(G), one can

define a vector field f∗X on G by the expression (f∗X)x := (Tf −1(x)f )(Xx). This gives rise

to a Lie algebra isomorphism f∗ :χ(G)−→χ(G), and it is clear that X is a left-invariant

vector field (resp. right-invariant vector field) if and only if for any g ∈ G:

(`g )∗X = X (resp. (rg )∗X = X). (A.2)

The set of left-invariant vector fields on G is denoted χ`(G), moreover (A.2) shows that

it is a Lie subalgebra of χ(G). In fact χ`(G) is a finite-dimensional real vector space and

moreover dimχ`(G) = dimG, this is a consequence of the fact that the evaluation map

φ :χ`(G)−→ TeG, X 7→ Xe

is a vector space isomorphism. The isomorphism φ allows to transport the Lie algebra

structure ofχl(G) on TeG as follows: If we denote for all v ∈ TeG, v` := φ−1(v) ∈χl(G) we

obtain a Lie algebra structure on TeG given by the bracket:

[v,w] := [v`,w`]e.

We then call it the Lie algebra of G and we denote Lie(G) the couple (TeG, [ , ]).

Example 9.

1. The Lie algebra of GL(n,R) is exactly Mn(R) endowed with the Lie bracket [ , ] given by:

[A,B] = A ·B−B ·A,

for any A,B ∈Mn(R).

2. Let V be a finite-dimensional vector space, the Lie algebra of GL(V ) is exactly gl(V ).

3. Consider a finite-dimensional vector space V together with a non-degenerate bilinear
form 〈 , 〉. One can check that the Lie algebra of O(V ,〈 , 〉) is so(V ,〈 , 〉).

As for vector fields, one can define a differential form ω on G to be left invariant (resp.

right invariant) if it satisfies `∗gω = ω (resp. r∗gω = ω) for any g ∈ G. The set of all left-

invariant forms is denoted Ω(G)`, and one can show that it defines a differential subcom-

plex of the de Rham complex ΩdR(G), i.e it is stable under the de Rham differential and

exterior products. Furthermore, if Λpg∗ denotes the vector space of all p-forms on the Lie

algebra g of G, with p ∈ N, and if we set Λg∗ := ⊕pΛpg∗, then we get that:

ψ :Ω(G)` −→Λg∗, ω 7→ωe,

is a vector space isomorphism. So the study of left-invariant (resp. right-invariant) forms

on a Lie group, reduces to the study of the exterior forms of its Lie algebra.
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A.2 Nilpotent Lie algebras

Let g be a finite-dimensional Lie algebra. The descending central series of g is the family

of ideals (Ck(g))k∈N of g defined inductively bt the formula:

C0(g) = g and Cn+1(g) := [g, Cn(g)],

for any n ∈ N. Notice that C1(g) = [g,g] is just the derived ideal of the Lie algebra g. We

say that g is nilpotent if Cn(g) = {0} for some interger n ∈ g. The smallest integer k ∈ N for

which Ck(g) = {0} is called the nilindex of g or the nilpotency order of g, in which case g is

said to be k-step nilpotent, notice that in this case Ck−1(g) ⊂ Z(g). Here are some known

properties of nilpotent Lie algebras, one can see [11] for a proof:

Proposition A.2.1. Let g be a nilpotent Lie algebra. Then:

1. If g is non-trivial, then its center Z(g) is also non-trivial.

2. Any Lie subalgebra h ⊂ g is nilpotent with nilindex smaller than the nilindex of g.

3. If ϕ : g −→ ĝ is a Lie algebra homomorphism then ϕ(g) is a nilpotent Lie algebra. In
particular, for any ideal I ⊂ g, we get that the quotient Lie algebra g/I is nilpotent.

4. The endomorphisms adx : g −→ g are nilpotent for all x ∈ g.

A Lie algebra g is called abelian if [g,g] = {0}, i.e g is 1-step nilpotent, it is then clear that

this is equivalent to stating that g = Z(g).

Example 10.

1. Any vector space V can be given an abelian Lie algebra structure [ , ] by setting [u,v] = 0

for all u,v ∈ V .

2. For any Lie algebra g, the quotient Lie algebra g/[g,g] is abelian.

3. The Heisenberg Lie algebra hp consists of a 2p+1-dimensional vector space together with
a Lie bracket [ , ] defined in a basis {e1, . . . , e2p+1} by the expression:

[e2i−1, e2i] = e2p+1,

for all i = 1, . . . ,p, note that we only write the non-vanishing bracket. It is easy to check
that hp is a 2-step nilpotent Lie algebra.

4. Let g be the n-dimensional Lie algebra whose bracket [ , ] is defined in a basis {e1, . . . , en}
by the expression:

[e1, ei] = ei+1 2 ≤ i ≤ n− 1.

It is straightforward to check that g is nilpotent with nilindex equal to n− 1.
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5. Let g ⊂ gl(n,K) be the set of all strictly upper triangular n×n matrices, namely:

g := {A ∈ gl(n,K), Aij = 0 for all 1 ≤ i ≤ j ≤ n}.

Then one can check that g is a nilpotent Lie subalgebra of gl(n,K).

Here are some further properties of nilpotent Lie algebras that are used throughout Chap-

ter 2 and 3:

Proposition A.2.2. Let g be a finite-dimensional Lie algebra.

1. If g is nilpotent and non-abelian then codimg[g,g] ≥ 2.

2. The Lie algebra g is nilpotent if and only if g/Z(g) is nilpotent.

3. Let a and b are nilpotent ideals of g, then a∩ b and a+ b are nilpotent ideals of g as well.

Property 3 in Proposition A.2.2 is especially important because it shows that any finite-

dimensional Lie algebra g has a unique maximal nilpotent ideal n, which can be defined

merely by setting

n :=
∑
a∈N

a where N := {a ⊂ g, a is a nilpotent ideal of g},

where the notation simply means that n consists of finite linear combinations of elements

in the reunion of awith a ∈N. We call n the nilradical of g, it is usually denoted nilrad(g).

In the case where the Lie algebra g is nilpotent, it is obvious that g = nilrad(g).

Let us now state a fundamental Theorem in the theory of nilpotent Lie algebras, which is

the converse of 4 in Proposition A.2.1:

Theorem A.2.1 (Engel’s Theorem). Let g be a finite-dimensional Lie algebra. Then g is
nilpotent if and only if the operator adx is nilpotent for all x ∈ g.

As a consequence, we get the following important result:

Corollary A.2.1. Let g be a Lie algebra and a an ideal of g. If the quotient Lie algebra g/a is
nilpotent, and if for all x ∈ g, the restriction of adx to a is nilpotent, then g is also nilpotent.

Corollary A.2.2. Let g be a Lie subalgebra of gl(n,K) whose elements are nilpotent. Then g is
nilpotent.

We close this paragraph with some important classes of nilpotent Lie algebras:

Two-step nilpotent Lie algebras. A nilpotent Lie algebra g is said to be 2-step nilpo-

tent or metabelian if it satisfies C2(g) = {0}. It is clear that any abelian Lie algebra is

trivially 2-step nilpotent. Also the Heisenberg Lie algebra hp defined in Example 10-2. In

fact hp is a model for a subclass of 2-step nilpotent Lie algebras, this is summarized by

the following Proposition:
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Proposition A.2.3. Every Lie algebra g satisfying Z(g) = [g,g] and dimZ(g) = 1 is isomorphic
to the Heisenberg Lie algebra.

Filiform Lie algebras. A nilpotent Lie algebra g is said to be filiform if it has maximal

nilindex, in precise terms, it means that if dimg = n then g has nilindex n − 1. One can

show that this is equivalent to dimCk(g) = n − k − 1 for all k = 1, . . . ,n − 1. This gives in

particular that dim[g,g] = n−2 and dimZ(g) = 1. A concrete case of a filiform Lie algebra

was given in Example 10-2, we add two more Examples:

Example 11.

1. Let g be the (n+ 1)-dimensional nilpotent Lie algebra with Lie bracket [ , ] defined in a
basis {e0, . . . , en} as:

[e0, ei] = ei+1 and [ei , en−i] = (−1)ien,

for all i = 1 . . . ,n− 1. One can check the Lie algebra g is indeed filiform.

2. Let g be a (n + 1)-dimensional nilpotent Lie algebra with bracket [ , ] given in a basis
{e0, . . . , en} by the expression:

[e0, ei] = ei+1 and [e1, ej ] = ej+2,

for all 1 ≤ i ≤ n− 1 and 2 ≤ j ≤ n− 1. This algebra is filiform as well.

Characteristically nilpotent Lie algebras. Recall that the vector space Der(g) of deriva-

tions of a finite-dimensional Lie algebra g is a Lie subalgebra of gl(g). If g is nilpotent,

then by Engel’s Theorem its inner derivations are all nilpotent, furthermore in view of

Corollary A.2.2 a necessary condition for Der(g) to be nilpotent is to only consist of nilpo-

tent elements i.e every derivation of g is nilpotent. Nonetheless, there are many cases

where Der(g) cannot be nilpotent, as a matter of fact there is a well-known Theorem due

to Jacobson which states that "A Lie algebra which admits an invertible derivation is auto-
matically nilpotent" and there are concrete examples of such Lie algebras. A Lie algebra g

is said to be characteristically nilpotent if g is nilpotent and every derivation D ∈Der(g)

is nilpotent.

Example 12. Let g be the 7-dimensional Lie algebra such that its Lie bracket [ , ] is given in a
basis {e1, . . . , e7} by:

[e1, e2] = e3 [e1, e6] = e7

[e1, e3] = e4 [e2, e3] = e6

[e1, e4] = e5 [e2, e4] = [e2, e5] = −[e3, e4] = e7

[e1, e5] = e6

Through a direct computation of Der(g) one can prove that g is characteristically nilpotent.
This example is minimal in the sense that 7 is the smallest dimension where it is possible to
find characteristically nilpotent Lie algebras.
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A.3 Lie algebra representations and cohomology

Let g be a Lie algebra and V a vector space. A representation of the Lie algebra g on V

is a Lie algebra homomorphism ρ : g −→ gl(V ). Such a representation is called faithful

if it satisfies ker(ρ) = {0} and it is called trivial if Im(ρ) = {0}. The couple (V ,ρ) is called

a g-module and we shall say that the g-module (V ,ρ) is faithful or trivial depending

whether the corresponding representation ρ : g −→ gl(V ) is faithful or trivial.

Example 13.

1. The most straightforward example of Lie algebra representation is perhaps the adjoint
representation ad : g −→ gl(g).

2. Denote g :=χ(M) the Lie algebra of all smooth vector fields on a smooth manifoldM and
let V := C∞(M) be the space of all smooth functions on M. Then one obtains a natural
Lie algebra representation ρ : g −→ gl(V ) by setting ρ(X)(f ) := X(f ) i.e the derivative of
the function f in the direction of the vector field X.

Let g be a Lie algebra, p ∈ N and ω : gp −→ V a p-linear map. We say that ω is a V -

valued p-cochain if it is alternating. The vector space of all p-cochains on g shall be

denoted Cp(g,V ), it is finite-dimensional whenever g and V are finite-dimensional, in

fact if n := dimg and k := dimV then dim Cp(g,V ) := kCpn with the convention that Cpn = 0

for p > n. We set C0(g,V ) := V and C(g,V ) := ⊕pCp(g,V ).

Assume now that ρ : g −→ gl(V ) is a representation, for any p ∈ N we can define a linear

map dpρ : Cp(g,V ) −→ Cp+1(g,V ) be the expression:

(dpρω)(x0, . . . ,xp) =
p∑
i=0

(−1)iρ(xi)
(
ω(x0, . . . , x̂i , . . . ,xp)

)
+
∑
i<j

(−1)i+jω([xi ,xj ],x0, . . . , x̂i , . . . , x̂j , . . . ,xp),

(A.3)

for all ω ∈ Cp(g,V ) and all x0, . . . ,xp ∈ g. A simple computation shows that dp+1
ρ ◦dpρ = 0,

this gives rise to a linear map dρ : C(g,V ) −→ C(g,V ) satisfying dρ ◦dρ = 0, it is called the

Chevalley-Eilenberg differential (relative to the representation ρ).

We say thatω ∈ Cp(g,V ) is a p-cocycle if dρω = 0, and if p > 1, we thatω is a p-coboundary

of ω = dρη for some η ∈ Cp−1(g,V ).

Example 14.

1. Let ρ : g −→ gl(1,R) be the trivial representation of a Lie algebra g on R. One can
easily check that C(g,R) :=Λg∗, i.e the vector space of all alternating linear forms on g.
Moreover, by formula (A.3), the Chevalley-Eilenberg differential dpρ :Λpg∗ −→Λp+1g∗ is
given by:

(dpρω)(x0, . . . ,xp)
∑
i<j

(−1)i+jω([xi ,xj ],x0, . . . , x̂i , . . . , x̂j , . . . ,xp), (A.4)

for all ω ∈Λpg∗ and all x0, . . . ,xp ∈ g.
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2. For a smooth manifold M, set g := χ(M) and V := C∞(M). Let ρ : g −→ gl(V ) be
the natural Lie algebra representation defined by the action of vector fields on smooth
functions (cf. Example 13-2). Clearly C

p
ρ (g,V ) :=Ωp(M) i.e the space of all differential

p-forms on M. The Chevalley-Eilenberg differential dpρ : Cpρ (g,V ) −→ C
p+1
ρ (g,V ) in this

case coincides with the de Rham differential ddR :Ωp(M) −→Ωp+1(M) of M, thus:

(dpρω)(X0, . . . ,Xp) :=
p∑
i=0

(−1)i(LXiω)(X0, . . . , X̂i , . . . ,Xp),

for any ω ∈Ωp(M) and any X0, . . . ,Xp ∈χ(M), where LX :Ω(M) −→Ω(M) denotes the
Lie derivative with respect to the vector field X.

We denote Zpρ(g,V ) the vector space of all p-cocycles with values in the g-module (V ,ρ)

and Bpρ(g,V ) the space of all p-coboundaries with values in the g-module (V ,ρ). It is clear

from their given definitions that:

Zpρ(g,V ) := ker
(
d
p
ρ : Cp(g,V ) −→ Cp+1(g,V )

)
and

Bpρ(g,V ) := Im
(
d
p−1
ρ : Cp−1(g,V ) −→ Cp(g,V )

)
.

Moreover, the fact that dρ : C(g,V ) −→ C(g,V ) is a differential operator, i.e dpρ ◦dp−1
ρ = 0

for all p ∈ N∗ shows that Bpρ(g,V ) ⊂ Zpρ(g,V ). As a result, we define the p-th cohomology

group of g, with values in the g-module (V ,ρ) to be the vector space Hp
ρ(g,V ) consisting

of all p-cocycles modulo p-coboundaries, namely:

Hp
ρ(g,V ) := Zpρ(g,V )/Bpρ(g,V ) =

ker
(
d
p
ρ : Cp(g,V ) −→ Cp+1(g,V )

)
Im

(
d
p−1
ρ : Cp−1(g,V ) −→ Cp(g,V )

) .
When (V ,ρ) is a trivial g-module, we shall use the symbol Hp(g,V ) to denote the p-th

cohomology of g.

Example 15.

1. Let G be a Lie group with Lie algebra g and let ρ : g −→ gl(1,R) be the trivial representa-
tion (cf. Example 14-1). The corresponding cohomology H(g,R) is called the cohomology
of left-invariant forms of the Lie group G (see appendix C for more on left-invariant
structures).

2. Let M be a smooth manifold and denote g := χ(M) and V := C∞(M). Example 14-2
shows in particular that the cohomology groups Hp

ρ(g,V ) corresponding to the natural
representation ρ : g −→ gl(V ), ρ(X)(f ) := X(f ) are exactly the de Rham cohomology
groups Hp

dR(M) of the manifold M.
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B

Pseudo-Euclidean vector spaces

B.1 Symmetric bilinear forms and scalar products

Throughout this chapter and unless otherwise stated, we shall use E to denote a real

n-dimensional vector space.

Definition B.1.1. Let 〈 , 〉 : E ×E→ R be a symmetric bilinear form, i.e an inner product. We
say that 〈 , 〉 is:

(i)- Positive definite. (resp. Negative definite.) if for every v ∈ E\{0} we have 〈v,v〉 > 0

(resp. 〈v,v〉 < 0)

(ii)- Positive semi-definite. (resp. Negative semidefinite.) if 〈v,v〉 ≥ 0 (resp. 〈v,v〉 ≤ 0)
for every v ∈ E\{0},

(iii)- Indefinite. if it is neither positive semi-definite nor negative semi-definite,

(iv)- Non-degenerate. if the condition 〈v,w〉 = 0 for every w ∈ E implies that v = 0. Other-
wise, we say that 〈 , 〉 is degenerate, the subset N = {v ∈ E : 〈v,w〉 = 0,∀w ∈ E} is called
the radical of 〈 , 〉.

Remark 3. The fact that 〈 , 〉 : E ×E→ R is non-degenerate implies that the map θ : E→ E∗

given by:
θ(v)(w) = 〈v,w〉

is one to one, hence a vector space isomorphism. Let B = (e1, . . . , en) be a basis of E with dual
basis B∗ =

(
e∗1, . . . , e

∗
n

)
, then 〈 , 〉 is nondegenerate if and only if detM , 0, where:

M := Mat(θ,B,B∗) =
(〈
ei , ej

〉)
1≤i,j≤n

Furthermore, if we denote U := (u1, . . . ,un)T and V := (v1, . . . , vn)T the coordinates of u and v
respectively in the basis B of E, then 〈u,v〉 =UTMV .

Definition B.1.2. A pseudo-Euclidean vector space is a pair (E,〈 , 〉) consisting of a real vector
space E together with a non-degenerate inner product 〈 , 〉.
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Example 16. Define on Rp+q the bilinear form 〈 , 〉p,q : Rp+q ×Rp+q −→ R given by:

〈u,v〉p,q =
p∑
i=1

uivi −
p+q∑
i=p+1

uivi .

It is straightforward to check that (Rp+q,〈 , 〉p,q) is a Pseudo-Euclidean vector space.

Example 17. Recall that for any pseudo-euclidean vector space (E,〈 , 〉) and for any f ∈ End(E),
there exists a unique endomorphism f ∗ ∈ End(E) satisfying 〈f (u),v〉 = 〈u,f ∗(v)〉 for u,v ∈ E,
it is called the adjoint of f with respect to 〈 , 〉. This allows one to define a symmetric bilinear
form 〈 , 〉# on End(E) by the expression:

〈f ,g〉# := tr(f ◦ g∗).

It is straightforward to check that 〈 , 〉# is a pseudo-Euclidean inner product on End(E).

Let E be a vector space endowed with an inner product 〈 , 〉. Two subsets A,B ⊂ E are

said to be orthogonal (with respect to 〈 , 〉), if 〈v,w〉 = 0 for any v ∈ A and w ∈ B. The

orthogonal of A in E is the vector subspace A⊥ of E given by:

A⊥ = {v ∈ E,〈v,a〉 = 0 for any a ∈ A}.

Proposition B.1.1. Let (E,〈 , 〉) be a pseudo-Euclidean vector space, and let A ⊂ E be any
vector subspace of E, then dimA+ dimA⊥ = dimE.

Denote A+ the set of vector subspaces A ⊂ E such that the restriction 〈 , 〉|A×A is positive

definite. We also denote A− the set of vector subspaces A ⊂ V such that 〈 , 〉|A×A is negative

definite. Put:

p := max
A∈A+

dimA and q := max
A∈A−

dimA

The couple (p,q) is called the signature of (E,〈 , 〉).

Proposition B.1.2. Let (E,〈 , 〉) be a pseudo-Euclidean vector space with signature (p,q) and
let A be a vector subspace of E. Then p+ q = dimE and dim(A∩A⊥) ≤min(p,q).

Let (E,〈 , 〉) be a pseudo-Euclidean vector space, a vector subspace A ⊂ E is said to be

non-degenerate in (E,〈 , 〉) if A∩A⊥ = {0}, or equivalently, the restriction 〈 , 〉|A×A is non-

degenerate. In this case, the property dimA+ dimA⊥ = dimE implies that E = A⊕A⊥.

We say that A is totally isotropic if 〈 , 〉|A×A = 0, or equivalently A ⊂ A⊥. If (p,q) denotes

the signature of 〈 , 〉, the previous Proposition shows that in this case dimA ≤min(p,q).

Proposition B.1.3. Let (E,〈 , 〉) be a pseudo-Euclidean vector space, and W ⊂ V a vector
subspace, then (W⊥)⊥ =W and E =W ⊕W⊥ if and only if W is non-degenerate.

Proposition B.1.4. Let (E,〈 , 〉) be a Pseudo-Euclidean vector space and A a nondegenerate
vector subspace of E. Denote (p1,q1) and (p2,q2) the signatures of 〈 , 〉|A×A and 〈 , 〉|A⊥×A⊥
respectively. Then (p1 + p2,q1 + q2) is the signature of (E,〈 , 〉).
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We say that two pseudo-Euclidean vector spaces (E1,〈 , 〉1) and (E2,〈 , 〉2) are isometric if

there exists a vector space isomorphism φ : E1 −→ E2 satisfying for any u,v ∈ E1:

〈φ(u),φ(v)〉2 = 〈u,v〉1.

In the case where E1 = E2 := E and 〈 , 〉1 = 〈 , 〉2 := 〈 , 〉, the endomorphism φ is then called

an isometry of (E,〈 , 〉)

Theorem B.1.1. Two pseudo-Euclidean vector spaces (E1,〈 , 〉1) and (E2,〈 , 〉2) are isometric if
and only if they have the same signature.

This shows that the signature is the only invariant for Pseudo-Euclidean vector spaces of

the same dimension.

Definition B.1.3. A Pseudo-Euclidean vector space is called Euclidean if its signature is of the
form (n,0). It is called Lorentzian if its signature is of the form (n− 1,1).

The class of Lorentzian vector spaces is a very special subclass of pseudo-Euclidean vector

spaces.

Proposition B.1.5. Let (E,〈 , 〉) be a Lorentzian vector space and let A be a non-degenerate
vector subspace of E. Then A is either Euclidean or Lorentzian.

Proof. Denote (p,q) the signature of 〈 , 〉|A×A and (p⊥,q⊥) the signature of 〈 , 〉|A⊥×A⊥ ,

according to Proposition B.1.4, the signature of (E,〈 , 〉) is precisely (p+p⊥,q+q⊥) = (n−1,1)

thus either q = 1, q⊥ = 0 which gives that A is Lorentzian and A⊥ is Euclidean, or q = 0

and q⊥ = 1 which gives that A is Euclidean and A⊥ is Lorentzian.

B.2 Orthonormal bases and pseudo-Euclidean bases

Let (E,〈 , 〉) be a n-dimensional pseudo-Euclidean vector space of signature (p,q) and

assume without loss of generality that p ≥ q. A family (u1, . . . ,us) of vectors in E is called

orthogonal if 〈ui ,uj〉 = 0 for i , j. It is called orthonormal if furthermore 〈ui ,ui〉 ∈ {−1,1},
any orthonormal family is automatically linearly independent.

Proposition B.2.1. Let (E,〈 , 〉) be a pseudo-Euclidean n-dimensional vector space with signa-
ture (p,q) and choose an orthogonal basis B = (e1, . . . , en) of (E,〈 , 〉). Then 〈ei , ei〉 , 0 and:

p = card{i ∈ {1, . . . ,n}, 〈ei , ei〉 > 0} and q = card{i ∈ {1, . . . ,n} 〈ei , ei〉 < 0}.

It is worth to mention that a pseudo-Euclidean vector space (E,〈 , 〉) always admits an or-

thogonal basis. This is due to the fact that for any non-degenerate vector subspaces A ⊂ E
and B ⊂ A⊥, A⊕B is non-degenerate, therefore starting from a non-isotropic vector e1 ∈ E
one can find a non-isotropic vector e2 ∈ e⊥1 and by the previous observation span{e1, e2} is

non-degenerate. Thus by an inductive argument one obtains an orthogonal basis, which
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can be made orthonormal through normalization.

Let (E,〈 , 〉) be a Pseudo-Euclidean, non Euclidean vector space. A basis of (E,〈 , 〉) is

said to be Pseudo-Euclidean if it has the form B := {f1, f̄1, . . . , fr , f̄r , e1, . . . , es} such that the

only non-vanishing products 〈u,v〉 with u,v ∈B are:

〈fi , f̄i〉 = 1, and 〈ej , ej〉 = 1,

for any i = 1 . . . r, j = 1 . . . s. Observe that the signature of (E,〈 , 〉) is in this case (r+s, r), this

is a consequence of Proposition B.1.1 and the fact that A := span{f1, f̄1, . . . , fr , f̄r} is non-

degenerate with signature (r, r) and A⊥ = span{e1, . . . , es} is Euclidean and so its signature

is exactly (s,0). We also note that these bases are as important as orthonormal bases

and often play a crucial role in the proof of several results, as they represent a second

generalization of orthonormality in Euclidean spaces.

Proposition B.2.2. Any pseudo-Euclidean vector space admits a Pseudo-Euclidean basis.

Remark 4. On a Pseudo-Euclidean, non-Euclidean vector space (E,〈 , 〉), one can always
construct an orthonormal basis starting with a Pseudo-Euclidean basis and conversely.
To see this denote (p,q) the signature of (E,〈 , 〉) with p ≥ q and write (p,q) := (r + s, r) such
that r, s > 0, thus if B := {f1, f̄1, . . . , fr , f̄r , e1, . . . , es} is any Pseudo-Euclidean basis of E, set :

ui :=
1
√

2
(fi + f̄i), vi :=

1
√

2
(fi − f̄i),

then one easily checks that {u1,v1, . . . ,ur ,vr , e1, . . . , es} is an orthonormal basis of E.

B.3 Symmetric and skew-Symmetric Endomorphisms

Let (E,〈 , 〉) be a pseudo-Euclidean vector space and φ ∈ End(E). We say that φ is sym-

metric (with respect to 〈 , 〉) if φ∗ = φ, and we say that φ is skew-symmetric if φ∗ = −φ.

Proposition B.3.1. Let (E〈 , 〉) be a pseudo-Euclidean vector space and let φ ∈ End(E). For
any vector subspace F ⊂ E, φ(F) ⊂ F if and only if φ∗(F⊥) ⊂ F⊥. In the case where φ is
(skew-)symmetric we get that φ(F) ⊂ F if and only if φ(F⊥) ⊂ F⊥.

Definition B.3.1. Let (E,〈 , 〉) be a pseudo-Euclidean vector space and φ : E −→ E an endo-
morphism. A vector subspace F ⊂ E is said to be φ-indecomposable if it satisfies the following
properties :

(i) F is nondegenerate.

(ii) F is φ-invariant, which means that φ(F) ⊂ F.

(iii) The only non-degenerate φ-invariant subspaces of F are {0} and F.
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The following lemma is the key to reduce the symmetric and the skew-symmetric endo-

morphisms in a Euclidean or Lorentzian space.

Lemma B.3.1. Let φ : E −→ E be a (skew)-symmetric endomorphism on a pseudo-Euclidean
vector space (E,〈 , 〉). There exists a family {F1, . . . ,Fr} of φ-indecomposable vector subspaces
such that :

V = F1
⊥
⊕ . . .

⊥
⊕Fr .

Remark 5. Let φ : E −→ E be a (skew)-symmetric endomorphism on a Pseudo-Euclidean
vector space (E,〈 , 〉) and let E = F1 ⊕ · · · ⊕ Fr be an orthogonal decomposition of E into φ-
indecomposable vector subspaces. If (pi ,qi) denotes the signature of 〈 , 〉Fi×Fi then by applying
Proposition B.1.4 inductively we get that (E,〈 , 〉) has signature (p1 + · · ·+ pr ,q1 + · · ·+ qr ). In
particular, if (E,〈 , 〉) is Lorentzian then only one of the subspaces Fi is Lorentzian while the
rest are Euclidean.

Let (E,〈 , 〉) be a pseudo-Euclidean vector space, denote (p,q) its signature and fix an

orthonormal basis B=
(
e1, . . . , ep, f1, . . . , fq

)
of E such that 〈ei , ei〉 = 1 and 〈fj , fj〉 = −1. Next

let φ : E −→ E be an endomorphism of E, and write :

Mat(φ,B) =

 A B

C D


It is clear that Aij = 〈φ(ej), ei〉, Bij = 〈φ(fj), ei〉, Cij = −〈φ(ej), fi〉 and Dij = −〈φ(fj), fi〉. It

follows that φ is symmetric if and only if At = A, Bt = −C and Dt = D. Similarly we get

that φ is skew-symmetric if and only if At = −A, Bt = C and Dt = −D.

Lemma B.3.2. Let E be a finite dimensional vector space and let φ ∈ End(E). There exists a
non-trivial couple of vectors (u,v) ∈ E ×E and λ1,λ2 ∈ R such that :

φ(u) = λ1u −λ2v and φ(v) = λ2u +λ1v.

In particular, there exists a φ-invariant vector subspace F ⊂ E such that 1 ≤ dimF ≤ 2.

Proof. Denote EC = E ⊕ iE and φC ∈ End(EC) the complexification of E and φ ∈ End(E)

respectively, i.e φC(x + iy) = φ(x) + iφ(y) for any x,y ∈ E. It is clear that φC admits a

nonzero eigenvector w ∈ EC corresponding to some eigenvalue λ ∈ C, write w := u + iv

and λ := λ1 + iλ2 for some u,v ∈ E and λ1,λ2 ∈ R, so that φC(u + iv) = (λ1 + iλ2) (u + iv),

then

φ(u) = λ1u −λ2v and φ(v) = λ2u +λ1v,

The vector subspace F = span{u,v} is either 1 or 2-dimensional and it is clearlyφ-invariant.
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B.3.1 Reduction of skew-symmetric endomorphisms in Lorentzian vector
spaces

We start by stating the well-known result on the reduction of skew-endomorphisms in a

Euclidean vector space.

Theorem B.3.1. Let (E,〈 , 〉) be a Euclidean vector space and φ : E −→ E be a skew-symmetric
endomorphism. There exists a family of non-vanishing real numbers λ1 ≤ . . . ≤ λr and an
orthonormal basis (e1, f1, . . . , er , fr , g1, . . . , gs) of E such that

φ (ei) = λifi , φ (fi) = −λiei and φ
(
gj
)

= 0, i = 1, . . . , r, j = 1, . . . , s

Let us now adress the Lorenzian case.

Lemma B.3.3. Let (E,〈 , 〉) be a Lorentzian vector space φ : E −→ E a skew-symmetric en-
domorphism. Suppose that there exists e ∈ E such that 〈e,e〉 = 0 and φ(e) = λe, E is φ-
indecomposable and dimE ≥ 3. Then dimE = 3 and there exists a couple of vectors (ē, f ) such
that (e, ē, f ) is a Lorentzian basis of E and

φ(e) = 0, φ(f ) = αe and φ(ē) = −αf

Proof. Denote F := Re and V := F⊥/F. Endow V with the inner product 〈 , 〉q given by

〈[u], [v]〉q = 〈u,v〉, u,v ∈ F⊥

It is straightforward to check that
(
V ,〈 , 〉q

)
is a Euclidean vector space. Since F is a

φ-invariant subspace then F⊥ is φ-invariant as well and φ induces a skew-symmetric

endomorphism φ̄ : V −→ V explicitely given by φ̄([u]) = [φ(u)], for any u ∈ F⊥. Next,

Theorem B.3.1 shows that there exists a family of non zero real numbers λ1 ≤ . . . ≤ λr and

an orthonormal basis B̂ :=
(
ê1, f̂1, . . . , êr , f̂r , ĝ1, . . . , ĝs

)
such that of (V ,〈 , 〉q) such that :

φ̄ (êi) = λi f̂i , φ̄
(
f̂i
)

= −λi êi and φ̄
(
ĝj
)

= 0, i = 1, . . . , r, j = 1, . . . , s (B.1)

If we write êi := [ei], f̂j := [fj ] and ĝi := [gi] for some nonzero vectors ei , fj , gk ∈ F⊥, then it

is clear that B := (e1, f1, . . . , er , fr , g1, . . . , gs) is an orthonormal family of F⊥ and using (B.1)

we get that :

φ (ei) = aie+λifi , φ (fi) = bie −λiei and φ
(
gj
)

= cje.

Assume that either λ , 0 or λl , 0 for some l ∈ {1, . . . , r} and set Hl := span{e,el , fl}, then

clearly φ(Hl) ⊂Hl furthermore an easy computation shows that φl := φ|Hl has character-

istic polynomial

P (X) = −(X −λ)(X − iλl)(X + iλl),

now for any eigenvector vl ∈HC
l of φC

l corresponding to the eigenvalue iλl we have that v̄l
is an eigenvector for the eigenvalue −iλl therefore if we set hl := vl + v̄l and h̃l := −i(vl − v̄l)
then we get that hl , h̃l ∈Hl and φ(hl) = λl h̃l , φ(h̃l) = −λlhl . If λl = 0 then λ , 0 and ker(φl)
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is non-trivial, it is clearly φ-invariant, but since e < ker(φl) then Proposition B.1.5 gives

that ker(φl) is Euclidean, contradicting the fact that E is φ-indecomposable.

Thus λl , 0 and {e,vl , v̄l} forms a basis of the C-vector space HC
l , this gives that {e,hl , h̃l}

is a basis of Hl , but this implies that span{hl , h̃l} is Euclidean (Proposition B.1.5) and φ-

invariant, a contradiction. Thus, λi = λ = 0 for all 1 ≤ i ≤ r and in particular φ(F⊥) ⊂ Re.
Let W be any Euclidean subspace of F⊥ such that F⊥ = W ⊕ Re. Since ker(φ|W ) is a φ-

invariant subspace of E it follows that ker(φ|W ) = {0} and since φ(W ) ⊂ Re we get that

dim(W ) ≤ 1, now dimW = dimE−2 ≥ 1 and so dimW = 1 and φ(W ) = Re, this also shows

that dimE = 3.

Finally if we write W := Rf and set φ(f ) := αe then α , 0, now choose an isotropic vector

ē ∈ E such that 〈e, ē〉 = 1 and 〈e, f 〉 = 0, then (e, ē, f ) is a Lorentzian basis of E and it is easy

to see that :

φ(e) = 0, φ(f ) = αe and φ(ē) = −αf ,

this ends the proof.

Theorem B.3.2. Let φ : E −→ E be a skew-symmetric endomorphism on a Lorentzian vector
space (E,〈 , 〉). Then E can be written as E = L⊕V such that V is Euclidean and φ-invariant
and L is φ-indecomposable Lorentzian satisfying one of the following properties :

(i). dimL = 1 and L ⊂ kerφ

(ii). dimL = 2 and there exists α > 0 and a Lorentzian basis (e, ē) of L such that φ(e) = αe

and φ(ē) = −αē.

(iii). dimL = 3 and there exists a Lorentzian basis (e, ē, f ) of L such that

φ(e) = 0,φ(ē) = −αf and φ(f ) = αe

Proof. We know that E can be written E = V1
⊥
⊕ . . .

⊥
⊕Vr as the sum of φ-indecomposable

subspaces. We also know that exactly one Vi is Lorentzian, denote it L and set V := ⊕j,iVj .
According to Theorem B.3.1 each Vj for j , i is either 1 or 2 dimensional, furthermore we

have the following cases :

(i). dimL = 1, write L := Rx and φ(x) = λx with λ ∈ R. Then 0 = 〈φ(x),x〉 = λ〈x,x〉 and

since L is Lorentzian, 〈x,x〉 < 0 and so λ = 0.

(ii). dimL = 2. First notice that the restriction φ|L , 0 otherwise L would contain a φ-

invariant, non-degenerate 1-dimensional subspace which contradicts the assump-

tion that L is φ-indecomposable. Let (e, ē) be a Lorentzian basis of L, then we can

write φ(e) = ae+ bē and φ(ē) = ce+ dē, since φ is skew-symmetric, then:

0 = 〈e,φ(e)〉 = 〈ē,φ(ē)〉 and 〈e,φ(ē)〉 = −〈ē,φ(e)〉

which is equivalent to b = c = 0 and a = −d = α , 0.
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(iii). dimL ≥ 3. According to Lemma B.3.2, there exists a couple of vectors (u,v) ∈ L×L
with (u,v) , (0,0) and two real numbers λ1,λ2 such that

φ(u) = λ1u −λ2v and φ(v) = λ2u +λ1v

Since φ is skew-symmetric, we have

0 = 〈u,φ(u)〉 = 〈v,φ(v)〉 and 〈u,φ(v)〉 = −〈v,φ(u)〉.

which is equivalent to 
λ1 −λ2 0

0 λ2 λ1

λ2 2λ1 −λ2



〈u,u〉
〈v,u〉
〈v,v〉

 = 0 (B.2)

We will show that there exists an isotropic vector e = αu + βv such that Re is φ-

invariant and then apply Lemma B.3.3 to draw a conclusion. For this purpose, there

are two cases to consider :

(a). The family {u,v} is linearly dependent, i.e v = au and u , 0. Then :

φ(u) = (λ1 − aλ2)u and aφ(u) = (λ2 + aλ1)u

This gives λ2 + aλ1 = a (λ1 − aλ2) so that
(
1 + a2

)
λ2 = 0, thus λ2 = 0 and φ(u) = λ1u,

i.e Ru is a properφ-invariant subspace of L, and since L isφ-decomposable it follows

that Ru is degenerate, therefore 〈u,u〉 = 0. We thus take e := u.

(b). The family {u,v} is linearly independent, so the vector subspace span{u,v} can-

not be totally isotropic. Thus the vector (〈u,u〉,〈v,u〉,〈v,v〉) is non-zero, using (B.2)

we get :

0 =

∣∣∣∣∣∣∣∣∣∣
λ1 −λ2 0

0 λ2 λ1

λ2 2λ1 −λ2

∣∣∣∣∣∣∣∣∣∣ = −2λ1

(
λ2

1 +λ2
2

)
If λ1 = 0 and λ2 , 0, then (B.2) gives that 〈u,v〉 = 0 and 〈u,u〉 = 〈v,v〉 , 0. Thus

span{u,v} is a φ-invariant, non-degenerate proper subspace of L, a contradiction.

So necessarily λ1 = λ2 = 0 which means that φ(x) = 0 for any x ∈ span{u,v}. It

follows that span{u,v} is degenerate and therefore contains an isotropic vector e

such that φ(e) = 0.

This ends the proof.

B.4 Reduction of symmetric endomorphisms on Lorentzian

vector spaces

Let us start with the statement of a classical result on the reduction of symmetric endo-

morphisms in a Euclidean space.
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Theorem B.4.1. Let (E,〈 , 〉) be a Euclidean vector space and φ : E −→ E be a symmetric
endomorphism. There exists an orthonormal basis (e1, . . . , en) of E and a family λ1 ≤ . . . ≤ λn of
real numbers such that for any i ∈ {1, . . . ,n}, we have φ (ei) = λiei .

We now focus on the Lorentzian case, let us start by a key Lemma:

Lemma B.4.1. Let (E,〈 , 〉) be a Lorentzian vector space such that dimE ≥ 3 and φ : E −→ E

a symmetric endomorphism. Then φ admits a real eigenvalue.

Proof. Lemma B.3.2 shows that there exists a nonzero couple of vectors(u,v) ∈ E ×E and

two real numbers λ1,λ2 such that φ(u) = λ1u −λ2v and φ(v) = λ2u +λ1v, there are two

cases to discuss :

1. The family {u,v} is linearly dependent, i.e v = au and u , 0.Then :

φ(u) = (λ1 − aλ2)u and aφ(u) = (λ2 + aλ1)u,

so λ2 +aλ1 = a (λ1 − aλ2), this shows that λ2 = 0 and φ(u) = λ1u which is the desired

result.

2. The family {u,v} is linearly independent. Since φ is symmetric, 〈φ(u),v〉 = 〈u,φ(v)〉
which is equivalent to

λ2(〈u,u〉+ 〈v,v〉) = 0 (B.3)

If λ2 = 0 then φ(u) = λ1u and the proof is achieved . Assume that λ2 , 0, then (B.3)

gives that 〈u,u〉 = −〈v,v〉. Denote P := span{u,v}, the matrix of 〈 , 〉|P×P with respect

to {u,v} is given by :

M =

 〈u,u〉 〈u,v〉
〈u,v〉 −〈u,u〉

 ,
furthermore P is nondegenerate if and only if detM , 0. Now :

detM = −〈u,u〉2 − 〈u,v〉2,

this means that detM = 0 if and only if P is totally isotropic, which is impossi-

ble as dimP > 1. Therefore P is non-degenerate Lorentzian, so that P ⊥ is non-

degenerate Euclidean and since φ is symmetric and P is φ-invariant we get that P ⊥

is φ-invariant as well. Theorem B.4.1 then shows that the restriction φ|P ⊥ admits a

real eigenvalue.

This ends the proof.

Theorem B.4.2. Let (E,〈 , 〉) be a n-dimensional Lorentzian vector space such that n ≥ 3 and
let φ : E −→ E be a symmetric endomorphism. There exists a basis B of E in which φ and 〈 , 〉
have the following form :
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1. Type { diag } :

Mat(φ,B) = diag(α1, . . . ,αn) , Mat(〈 , 〉,B) = diag(+1, . . . ,+1,−1)

2. Type {n− 2, zz̄} :

Mat(φ,B) = diag(α1, . . . ,αn−2)⊕
 a b

−b a

 ,b , 0, Mat(〈 , 〉,B) = diag(+1, . . . ,+1,−1)

3. Type {n,α2} :

Mat(φ,B) = diag(α1, . . . ,αn−2)⊕
 α 1

0 α

 ,Mat(〈 , 〉,B) = In−2 ⊕
 0 1

1 0


4. Type {n,α3} :

Mat(φ,B) = diag(α1, . . . ,αn−3)⊕


α 1 0

0 α 1

0 0 α

 , Mat(〈 , 〉,B) = In−3 ⊕


0 0 1

0 1 0

1 0 0


Proof. According to Lemma B.3.1, we have the orthogonal decomposition E = V1⊕ . . .⊕Vr
of E into φ-indecomposable subspaces, since E is Lorentzian we can assume that V1 is

Lorentzian, denote it L, in which case V := V2 ⊕ · · · ⊕Vr is Euclidean. Since φ|V : V −→ V

is symmetric then by Theorem B.4.1 the subspaces Vi are 1-dimensional for all 2 ≤ i ≤ r.
There are only three cases to consider :

1. dimL = 1. Write L := Rx, then φ(x) = λx for some λ ∈ R. Hence φ is of type {diag}.

2. dimL = 2. Let (e, ē) be a Lorentzian basis of L then set φ(e) = ae+bē and φ(ē) = ce+aē.

The characteristic polynomial of the restriction φ|L is P (X) = X2 −2aX +a2 −bc with

discriminant ∆ = 4bc. So either :

(a). bc > 0, hence φ|L admits two distinct real eigenvalues λ1,λ2 with respective

eigenvectors u1,u2 ∈ L. Since φ|L is symmetric and λ1 , λ2, then 〈u1,u2〉 = 0.

Now L is non-degenerate and 2-dimensional, therefore 〈ui ,ui〉 , 0 for i = 1,2,

in particular Ru1 is a non-degenerate φ-invariant, proper subspace of L, a con-

tradiction.

(b). bc = 0, we can suppose without loss of generality that b = 0. If c = 0 as well

then R · (e+ ē) is a non-degenerate, φ-invariant proper subspace of L, which is

impossible. Thus c , 0 and by taking
{
ε
√
|c|e,ε 1√

|c| ē
}

where ε is the sign of c,

we can easily see that φ is of type {n, α2}.
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(c). bc < 0, take α =
(
− cb

) 1
4 , then

{
αe,α−1ē

}
is a basis of L and one can check that φ

is of type {n− 2, zz̄}.

3. dimL ≥ 3. Lemma B.4.1 shows that the restriction φ|L admits a real eigenvalue,

since L is φ-indecomposable, then its corresponding eigenvector e must be isotropic.

Set D := Re then put F := D⊥ ∩ L and W = F/D. The quotient space W is naturally

endowed with an inner product 〈 , 〉q given by :

〈[u], [v]〉q = 〈u,v〉, u,v ∈ F

Let φ̄ : W −→W be the endomorphism induced by φ on W . Then
(
W,〈 , 〉q

)
is Eu-

clidean and φ̄ is symmetric, according to Theorem B.4.1 we can find an orthonormal

basis (ũ1, . . . , ũr ) of W and real numbers λ1 ≤ λ2 ≤ · · · ≤ λr such that φ̄ (ũi) = λi ũi .

Let ui ∈ F such that [ui] = ũi , then we get that :

φ (ui) = aie+λiui , i = 1, . . . , r (B.4)

It is clear that the family (u1, . . . ,ur ) is orthonormal with 〈ui ,ui〉 > 0, furthermore

a1 , 0 since otherwise Ru1 would be non-degenerate and φ-invariant, which is false.

On the other hand span {aiu1 − a1ui} is obviously non-degenerate and φ-invariant, it

must therefore be 0-dimensional or equivalently ui = 0 and ai = 0 for all i = 2, . . . , r.

This shows that dimF = 2 and dimL = 3. Choose ē ∈ L co-isotropic to e and such

that (e, ē,u1) is a Lorentzian basis of L. Using (B.4) and the fact that φ|L is symmetric,

we can write :

φ(e) = λe, φ(ē) = ae+λē+ a1u1 and φ (u1) = a1e+λ1u1, a1 , 0.

Necessarily we must have λ = λ1, otherwise we would get that v := a1
λ1−λe+u1 is an

eigenvector of φ|L which is impossible since 〈v,v〉 > 0. In summary :

φ(e) = λe, φ(ē) = ae+λē+ a1u1 and φ (u1) = a1e+λu1, a1 , 0

Thus φ is of type {n, α3} with respect to the basis
(
a1e,

a
a1
e+u1,

1
a1
ē
)

of L.

This ends the proof.
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C

Preliminaries on Pseudo-Riemannian

Lie Groups

C.1 Pseudo-Euclidean Lie algebras

Let g be a Lie algebra and L : g× g −→ g be any bilinear map, denote Lu := L(u, . ) then let:

KL : g× g −→ End(g), T L : g× g −→ g

be the bilinear maps given by KL(u,v) = [Lu ,Lv] − L[u,v] and T L(u,v) = Luv − Lvu − [u,v],

which we shall respectively call the curvature and torsion of L. We say that L is torsion-

free if T L = 0.

Proposition C.1.1. Let L : g× g −→ g be a bilinear map on a Lie algebra g with curvature K .
Assume L is torsion-free, then for any u,v,w ∈ g:

1. K(u,v) = −K(v,u), (Skew-Symmetry).

2. K(u,v)w+K(w,u)v +K(v,w)u = 0, (Bianchi Identity).

A pseudo-Euclidean Lie algebra is a couple (g,〈 , 〉) consisting of a Lie algebra g together

with a pseudo-Euclidean inner product 〈 , 〉 : g × g −→ R. The Levi-Civita product of a

pseudo-Euclidean Lie algebra (g,〈 , 〉) is the bilinear map L : g × g −→ g defined by the

expression:

〈Luv,w〉 :=
1
2

(〈[u,v],w〉+ 〈[w,u],v〉+ 〈[w,v],u〉). (C.1)

It is straightforward to check that the Levi-Civita product L is torsion-free. We shall

define the curvature of a pseudo-Euclidean Lie algebra to be the curvature of its Levi-

Civita product.

Proposition C.1.2. Let (g,〈 , 〉) be a pseudo-Euclidean Lie algebra and denote L its Levi-Civita
product and K its curvature. Then for any u,v,w,z ∈ g, we have:

1. 〈Luv,w〉 = −〈v,Luw〉, i.e Lu is skew-symmetric with respect to 〈 , 〉.
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2. 〈K(u,v)w,z〉 = −〈K(u,v)z,w〉.

3. 〈K(u,v)w,z〉 = 〈K(w,z)u,v〉.

The Ricci operator of a pseudo-Euclidean Lie algebra (g,〈 , 〉) is the linear map Ric : g −→ g

given by:

〈Ric(u),v〉 := tr(w 7→ K(u,w)v) =
n∑
i=1

εi〈K(u,ei)v,ei〉, (C.2)

where {e1, . . . , en} is an orthonormal basis of (g,〈 , 〉) and εi := 〈ei , ei〉 = ±1. The bilinear

form ric : g× g −→ g given by ric(u,v) := 〈Ric(u),v〉 is called the Ricci curvature of (g,〈 , 〉).
We say that the pseudo-Euclidean Lie algebra (g,〈 , 〉) is Einstein if its Ricci curvature

satisfies ric = λ〈 , 〉 for some λ ∈ R i.e Ric = λIdg.

C.2 Pseudo-Riemannian Lie groups

Let us now introduce a particular pseudo-Riemannian structure on Lie groups.

Definition C.2.1. LetG be a Lie group. A pseudo-Riemannian metric g on G is left invariant

if for any g ∈ G, we have l∗gg = g. In other words for any x ∈ G and every v,w ∈ TxG:

ggx(Txlg(v),Txlg(w)) = gx(v,w).

In the same way g is right invariant if r∗gg = g.

Let G be a Lie group with Lie algebra g, denote M`(G) the set of left invariant metrics on

the Lie group G and M(g) the set of pseudo-Euclidean products on the underlying vector

space of g. The evalution map Ψ : M`(G) −→M(g), g −→ ge is a bijection. This shows that

a left invariant metric on a Lie group G can always be obtained by providing an inner

product on the Lie algebra g.

Proposition C.2.1. Let X,Y be left invariant vector fields on the Lie group G and let g be any
left invariant metric on G. Then the map G −→ R, x 7→ gx(Xx,Yx) is constant.

The next result is a consequence of the previous Proposition and is frequently used due

to its practical importance.

Proposition C.2.2. Let g be a left invariant metric on the Lie group G. If {e1, . . . , en} is an
orthonormal basis of (Lie(G),ge), then {e`1, . . . , e`n} defines a global orthonormal frame on (G,g).

We shall call pseudo-Riemannian Lie group any couple (G,g) consisting of a Lie group G

together with a left invariant Riemannian metric g on G.

Definition C.2.2. Let G be a Lie group with Lie algebra g and ∇ an affine connection on G.
We say that ∇ is a left-invariant connection on G if it satisfies (`g )∗∇ = ∇ for any g ∈ G,
which means that for any x ∈ G and any X,Y ∈χ(G):

(∇XY )gx = Tx`g((∇(`g )∗X(`g )∗Y )x).
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It follows that∇ is left-invariant if and only if for anyX,Y ∈χ`(G), (∇XY )gx = Tx`g((∇XY )x).

Any left invariant affine connection ∇ on G gives rise to a bilinear map L∇ : g × g −→ g

given by L∇uv := (∇u`v`)e, where u` denotes the (unique) left invariant vector field satisfy-

ing u`e := u. In fact if we define È (G) to be the set of all left invariant affine connections

on G, then the correspondence È (G) −→ g∗ ⊗End(g), ∇ 7→ L∇ is a bijection.

Proposition C.2.3. LetG be a Lie group with Lie algebra g and ∇ a left invariant affine connec-
tion on G. Denote R∇ and T ∇ respectively the curvature and torsion tensor fields corresponding
to ∇, and by K and T the curvature and torsion of L∇. Then for any u,v,w ∈ g:

(K(u,v)w)` = R∇(u`,v`)w` and (T (u,v))` = T ∇(u`,v`).

Proposition C.2.4. Let (G,g) be a pseudo-Riemannian Lie group with Lie algebra g. Then:

1. The Levi-Civita connection ∇ of (G,g) is left invariant and L∇ : g× g −→ g is exactly the
Levi-Civita product of (g,ge).

2. Let Ric∇ be the Ricci tensor of (G,g) and ric∇ its Ricci curvature, and denote by Ric and
ric respectively the Ricci operator and Ricci curvature of (g,ge). Then for any u,v ∈ g:

ric∇(u`,v`) = ric(u,v) Ric∇(u`) = Ric(u)`.

3. The scalar curvature s∇ of (G,g) is a constant function, more precisely s∇ = s where s
denotes the scalar curvature of (g,ge) i.e s := tr(Ric).
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