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This thesis falls under the theme of pseudo-Riemannian geometry in the setting of Lie groups. Its purpose it to present a number of results on left-invariant Einstein Lorentzian metrics on nilpotent Lie groups as an extension of the well-known classical Riemannian case. The content of this thesis fits nicely in the subject literature since most of its results complete previous works that were initiated by many authors, some of which are even generalizations of earlier studies into broader contexts. The general outline can be divided into two major parts:

. The second part can be seen as a starting point for the study of Einstein Lorentzian nilpotent Lie groups with non-degenerate center as it carries over the machinery previously developed in order to treat the case of 3-step nilpotent Lie groups.
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R é s u m é

Cette thèse se situe dans le cadre des groupes de Lie pseudo-Riemanniens. Son objectif est de présenter un nombre de résultats autour des métriques Lorentziennes d'Einstein sur les groupes de Lie nilpotents comme une extension du cas Riemannien classique. Le contenu de cette thèse est bien placé dans la litérature mathématique puisque la majorité des résultats mis en évidence donnent un contexte plus large à des travaux déjà initiés par plusieurs auteurs. Cette thèse comporte deux parties majeures : La première partie concerne les préliminaires de notre étude des métriques Lorentziennes d'Einstein invariantes à gauche sur les groupes de Lie nilpotents. Le théorème central affirme que si le centre d'un tel groupe de Lie est dégénéré alors il est forcément Ricci-plat et son algèbre de Lie peut être obtenue par le procédé de double extension à partir d'une algèbre de Lie Abélienne Euclidienne. On montre aussi que tous les groupes de Lie dimension inférieure ou égale à 5 munis d'une métrique Lorentzienne d'Einstein invariante à gauche possèdent un centre dégénéré, nous utilisons ce fait pour donner une classification complète de ces métriques. On montre que si g est l'algèbre de Lie d'un groupe de Lie nilpotent qui est munit d'une métrique Lorentzienne d'Einstein invariante à gauche de courbure scalaire non nulle, alors le centre Z(g) de g est non dégénéré Euclidien, son idéal dérivé [g, g] est non dégénéré Lorentzien et Z(g) ⊂ [g, g]. Les résultats de cette partie ont été publiés dans [START_REF] Boucetta | On Einstein Lorentzian nilpotent Lie groups[END_REF]. La deuxième partie peut être vue comme le début de l'étude des groupes de Lie nilpotents Lorentziens d'Einstein dont le centre est non dégénéré, nous utilisons ici la même machine précedemment développée afin de traiter le cas des groupes de Lie 3-step nilpotents. Le théorème principal de cette partie est la classification de tous les groupes de Lie 3-step nilpotents Lorentziens d'Einstein de centre unidimensionel non dégénéré. La preuve de ce thèorème permet d'éclaircir de nouveaux aspects de l'étude globale et les techniques utilisés permettent de s'ouvrire sur de nouvelles perspectives. Le contenu de cette partie a fait l'objet de [START_REF] Tibssirte | Classification of Einstein Lorentzian 3-Nilpotent Lie Groups with 1-Dimensional Nondegenerate Center[END_REF]. 

Mots

Historical Notes

The study of left-invariant, pseudo-Riemannian Lie groups, and more generally leftinvariant structures on Lie groups, is a central topic of differential geometry that has attracted the interest of many mathematicians over the past few decades, primarily because it allows to bring difficult geometric problems into a more approachable setting allowing to deal with a number of issues from an algebraic standpoint.

A smooth structure on a differentiable manifold is in many instances described by a tensor field, and so questions concerning the existence of certain structures with specific properties can be formulated through partial differential equations that must be satisfied by the coefficients of the corresponding tensor field relatively to some local coordinate system, however deciding whether a given partial differential equation admits a solution is not an easy task in general and therefore not much can be said about the situation at hand. In contrast, when the underlying manifold is a Lie group and the structure is leftinvariant, the problem can be entirely expressed in terms of a system of linear or quadratic equations at the Lie algebra level. This is especially true for questions concerning the existence of pseudo-riemannian metrics with certain curvature requirements. This approach turned out to be very efficient when looking for examples or counter-examples, and in many situations, it even provided key insights that served to build arguments for the general case.

Research Highlights

The purpose of this thesis was to investigate left-invariant Einstein Lorentzian metrics on nilpotent Lie groups, this was done with the collaboration and supervision of Professor Boucetta Mohamed and the intent was to develop a set of results that could potentially lead to the classification of these structures. A classical result in this subject is due to Milnor and deals with the Riemannian case, it is stated as follows: Theorem 1.2.1 ([19], Theorem 2.4). Any left-invariant Riemannian metric on a nilpotent non-abelian connected Lie group has a direction of strictly positive Ricci curvature and a direction of strictly negative Ricci curvature.

An obvious consequence of this result is that the only nilpotent Lie groups that can be equipped with a left-invariant, Einstein Riemannian metric are abelian groups. The indefinite case however, is highly non-trivial with only few known examples (see for instance [START_REF] Rossi | Einstein nilpotent Lie groups[END_REF]), and it is mainly for this reason that we set out to improve on the current state of the art.

The first stage of the inspection was based on papers due to M. Boucetta (see [START_REF] Boucetta | Ricci flat left invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF]) and M.

Guediri & M. Bin Asfour (see [START_REF] Bin-Asfour | Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF]) which settled the case for 2-step nilpotent Lie groups, the main results in these papers are stated as follows:

Theorem 1.2.2 ( [START_REF] Bin-Asfour | Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF], Lemma 14). Let (g, [ , ], , ) be a Ricci-flat Lorentzian non abelian 2-step nilpotent Lie algebra. Then Z(g) is degenerate.

Theorem 1.2.3 ([5], Proposition 3.4). Any 2-step nilpotent, pseudo-Euclidean Einstein Lie algebra must be Ricci-flat. Theorem 1.2.4 ( [START_REF] Bin-Asfour | Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF], Theorem 15). Let g be any 2-step nilpotent, non-abelian Lie algebra. Then g admits a Ricci-flat Lorentzian metric if and only if g = R n ⊕ n i.e a direct sum of an abelian Lie algebra and a nilpotent Lie algebra n such that the Lie brackets of n are expressed relatively to a basis B = {e, z 1 , . . . , z p , ē, e 1 , . . . , e q } as follows:

[ ē, e i ] = α i e + p k=1 c ik z k , [e i , e j ] = a ij e, 1 ≤ i, j ≤ q,

(1.1)

with q i,j=1 a 2 ij = 2 q i=1 p k=1 c 2 ik .
Moreover the basis B can be chosen Lorentzian, in particular the restriction of the metric to [g, g] is degenerate.

It was observed in these works that there was a certain interplay between the Einstein aspect of the metric and the degeneracy of the center of the Lie group. Following these steps, the goal of our first paper was to look further into this relationship and its implications in the case of general nilpotent Lie groups, this has led us to give a detailed description of the structure of Einstein Lorentzian nilpotent Lie groups with degenerate center, generalizing therefore a central result in [START_REF] Bin-Asfour | Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF], and ultimately classifying all Einstein Lorentzian nilpotent Lie groups of dimension less than 5 (see [START_REF] Boucetta | On Einstein Lorentzian nilpotent Lie groups[END_REF] for details).

The second part of our research focused on Einstein Lorentzian nilpotent Lie groups with non-degenerate center, particularly the 3-step nilpotent case, we gave the first known example of such Lie groups in [START_REF] Boucetta | On Einstein Lorentzian nilpotent Lie groups[END_REF], disproving in the process a long-standing conjecture due to M. Boucetta which stated that every Einstein Lorentzian nilpotent Lie group has a degenerate center. The central result of this part was the classification of all such Lie groups when the center is 1-dimensional (for details, see [START_REF] Tibssirte | Classification of Einstein Lorentzian 3-Nilpotent Lie Groups with 1-Dimensional Nondegenerate Center[END_REF]).

. 3 . PA P E R S O U T L I N E

Papers Outline

Let (h, [ , ], , ) be a pseudo-Euclidean Lie algebra, i.e, a Lie algebra endowed with a pseudo-Euclidean product. The Levi-Civita product of h is the bilinear map L : h × h -→ h given by Koszul's formula

2 L u v, w = [u, v], w + [w, u], v + [w, v], u . (1.2)
For any u, v ∈ h, L u : h -→ h is skew-symmetric and [u, v] = L u v -L v u. The curvature of h is given by

K(u, v) = L [u,v] -[L u , L v ].
The Ricci curvature ric : h × h -→ R and its Ricci operator Ric : h -→ h are defined by Ric(u), v = ric(u, v) = tr (w -→ K(u, w)v) .

A pseudo-Euclidean Lie algebra is called flat (resp. Ricci-flat) if K = 0 (resp. ric = 0). It is called λ-Einstein if there exists a constant λ ∈ R such that Ric = λId h . In the case of nilpotent Lie algebras, the Ricci curvature is given by:

ric(u, v) = - 1 2 tr(ad u • ad * v ) - 1 4 tr(J u • J v ), (1.3) 
where J u is the skew-symmetric endomorphism given by J u (v) = ad * v u. Moreover, if J 1 and J 2 denote the symmetric endomorphisms given by

J 1 u, v = tr(ad u • ad * v ), J 2 u, v = -tr(J u • J v ) = tr(J u • J * v ). (1.4)
then the Ricci operator has the following expression

Ric = - 1 2 J 1 + 1 4 J 2 , ( 1.5) 
On Einstein Lorentzian nilpotent Lie groups [START_REF] Boucetta | On Einstein Lorentzian nilpotent Lie groups[END_REF]. The goal of this work was to give a description of Einstein Lorentzian nilpotent Lie groups with degenerate center, following the lines of a study that was initiated by M. Boucetta in [START_REF] Boucetta | Ricci flat left invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF]. As it is the case for leftinvariant structures in general, the problem can be entirely treated at the Lie algebra level without any reference to the group in question. The main theorem of this paper states that any Einstein Lorentzian nilpotent Lie algebra with degenerate center is Ricci-flat and can be obtained by a double extension from a Euclidean vector space with prescribed parameters, a rigorous account of the double extension process can be found in [3] and its adaptation to our situation was discussed in details in [START_REF] Boucetta | On Einstein Lorentzian nilpotent Lie groups[END_REF]. The official statement of the Theorem is as follows:

Theorem 1.3.1. Let (g, , ) be an Einstein nilpotent non abelian Lorentzian Lie algebra and suppose that there exists e ∈ Z(g) a central isotropic vector and denote I = Re. Then:

1. Z(g) is degenerate and λ = 0.

2. I ⊥ is an ideal and g 0 = I ⊥ / I is a Euclidean abelian Lie algebra.

3. g is obtained from g 0 by the double extension process with admissible data (K, D, 0, b)

and D is nilpotent.

This theorem generalizes a result of M. Guediri & M. Bin Asfour that deals with the 2-step nilpotent case ( [START_REF] Bin-Asfour | Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF], Theorem 15). An important stream of thoughts that was dominant throughout the paper was to bring the influence of the Ricci curvature over the metric nature of the center and the derived ideal (either degenerate or non-degenerate), first found in [START_REF] Boucetta | Ricci flat left invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF], into a broader setting, this set of results can be summarized as follows:

Theorem 1.3.2. Let (g, [ , ],
, ) be an Einstein Lorentzian nilpotent non abelian Lie algebra.

1. If [g, g] is non degenerate then it is Lorentzian. 2. If Z(g) is nondegenerate then it is Euclidean. 3. [g, g] ∩ [g, g] ⊥ ⊂ Z(g) and if [g, g] is degenerate then (g, , ) is Ricci flat.
The following result, first proved in [START_REF] Bin-Asfour | Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF], is obtained as a corollary of the previous theorem:

Corollary 1.3.1. Let (g, [ , ],
, ) be an Einstein Lorentzian non abelian 2-step nilpotent Lie algebra. Then Z(g) is degenerate.

In the same spirit, we were able to prove the following result that can be perceived as a slight improvement on Corollary 1. Classification of Einstein Lorentzian 3-nilpotent Lie groups with 1-dimensional nondegenerate center [START_REF] Tibssirte | Classification of Einstein Lorentzian 3-Nilpotent Lie Groups with 1-Dimensional Nondegenerate Center[END_REF]. This work can be considered as a continuation of [START_REF] Boucetta | On Einstein Lorentzian nilpotent Lie groups[END_REF] and is concerned with the study of Einstein Lorentzian nilpotent Lie groups with non-degenerate center. This class of Lie groups is very large and contains in particular Einstein Lorentzian nilpotent Lie groups with nonvanishing scalar curvature (Theorem 1.3.1), the minimal dimension required for this phenomenon to occur is 6 and the first known example of such Lie groups was given in [START_REF] Boucetta | On Einstein Lorentzian nilpotent Lie groups[END_REF] (see Example 1 in Chapter 2). As a first step towards a general study, we focus on the 3-step nilpotent setting, the first main theorem of the paper can be stated as follows: 

1 . 4 . F U T U R E R E S E A R C H
[f 1 , f 2 ] = f 4 , [f 1 , f 3 ] = f 5 , [f 2 , f 4 ] = f 6 , [f 3 , f 5 ] = -f 6
and the metric is given by :

, := f * 1 ⊗ f * 1 + 2f * 2 ⊗ f * 2 + 2f * 3 ⊗ f * 3 + 4α 4 f * 6 ⊗ f * 6 -2α 2 f * 4 f * 5 , α 0. (1.6) 
(ii) dim h = 7 and h is isomorphic to the nilpotent Lie algebras 147E found in the classification given in [START_REF] Gong | Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Field and R)[END_REF](p. 57). In precise terms, there exists a basis {f i } 7 i=1 of h where the non vanishing Lie bracket are given by :

[f 1 , f 2 ] = f 5 , [f 1 , f 3 ] = f 6 , [f 2 , f 3 ] = f 4 , [f 6 , f 2 ] = (1 -r)f 7 , [f 5 , f 3 ] = -rf 7 , [f 4 , f 1 ] = f 7 , (1.7)
with 0 < r < 1, and the metric has the form:

, = f * 1 ⊗ f * 1 + f * 2 ⊗ f * 2 + f * 3 ⊗ f * 3 -af * 4 ⊗ f * 4 + arf * 5 ⊗ f * 5 + a(1 -r)f * 6 ⊗ f * 6 + a 2 f * 7 ⊗ f * 7 , a > 0. (1.8)

Future research

While the results obtained in the course of this thesis may set the ground for any future inquiry on the subject, there is still room for more elaborate arguments and methods, and as it is usually the case with research, one ends up with more questions than answers. We name here a few that we think are relevant for any further developement on the matter and might even be at the heart of some paper down the line: We think that this is a legitimate question and a natural sequel to the work present in [START_REF] Tibssirte | Classification of Einstein Lorentzian 3-Nilpotent Lie Groups with 1-Dimensional Nondegenerate Center[END_REF], one reason is because the machinery to proceed has been partially developed so that one only needs to adapt the methods to this more general setting by dropping the hypothesis about the dimension of the center.

Q u e s t i
Question 2: Is there a method that allows the construction of Einstein Lorentzian nilpotent Lie groups with nonvanishing scalar curvature ?

So far the only known Example in this category of Lie groups is due do D. Conti & F. Rossi (see [START_REF] Rossi | Einstein nilpotent Lie groups[END_REF] and also [START_REF] Tibssirte | Classification of Einstein Lorentzian 3-Nilpotent Lie Groups with 1-Dimensional Nondegenerate Center[END_REF], Example 1), and naturally one needs further examples in order to make reasonable statements. The Lorentzian case is only an instance of the more general non-degenerate setting, which lacks its presence in the mathematical litterature.
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On Einstein Lorentzian nilpotent Lie g r o u p s

Introduction

A pseudo-Riemannian manifold (M, g) is called Einstein if its Ricci tensor Ric : TM -→ TM satisfies Ric = λId T M for some constant λ ∈ R. When λ = 0, (M, g) is called Ricci-flat.
Pseudo-Riemannian Einstein manifolds present a central topic of differential geometry and an active area of research. The subclass of Lorentzian Einstein manifolds has attracted a particular interest due to its importance in the physics of general relativity (see [START_REF] Besse | Einstein manifolds[END_REF]). Homogeneous Riemannian manifolds were intensively studied and the Alekseevskii's conjecture (see [START_REF] Besse | Einstein manifolds[END_REF]) has driven a profound exploration of Einstein left invariant Riemannian metrics on Lie groups leading to some outstanding results (see [START_REF] Heber | Noncompact Einstein spaces[END_REF][START_REF] Lauret | Einstein solvmanifolds are standard[END_REF]).

However, the study of left invariant Einstein pseudo-Riemannian metrics on Lie groups is at beginning. In [START_REF] Medina | Groupes de Lie Pseudo-riemanniens Plats[END_REF][START_REF] Lebzioui | Left-invariant Lorentzian flat metrics on Lie groups[END_REF], flat Lorentzian left invariant metrics on Lie groups has been studied, in [START_REF] Lebzioui | On flat pseudo-Euclidean nilpotent Lie algebras[END_REF] flat left invariant metrics of signature (2, n -2) on nilpotent Lie groups has been characterized, Ricci-flat Lorentzian left invariant metrics on 2-step nilpotent Lie groups has been investigated in [START_REF] Boucetta | Ricci flat left invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF][START_REF] Bin-Asfour | Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF] and in [START_REF] Zaeim | Four-dimensional homogeneous Lorentzian manifolds[END_REF]2], all four dimensional Lie algebras of Einstein Lorentzian Lie groups were given. The study of pseudo-Riemannian Einstein left invariant metric with non vanishing scalar curvature has been initiated in [START_REF] Rossi | Einstein nilpotent Lie groups[END_REF].

In this chapter, we study Einstein Lorentzian left invariant metrics on nilpotent Lie groups. As in any study involving left invariant structures on Lie groups, we can consider the problem at the Lie algebra level. Let (g, [ , ], , ) be a nilpotent Lorentzian Lie algebra with Ricci operator Ric : g -→ g satisfying Ric = λId g . Our main results can be stated as follows :

1. If the center Z(g) of g is nondegenerate then it is Euclidean and if the derived ideal [g, g] is nondegenerate then it is Lorentzian.

2. If [g, g] is degenerate then Z(g) is degenerate and the metric is Ricci-flat.

C H A P T E R 2 . O N E I N S T E I N LO R E N T Z I A N N I L P O T E N T L I E G R O U P S 3. If the scalar curvature of g is non zero then Z(g) is nondegenerate Euclidean, [g, g]
is nondegenerate Lorentzian and Z(g) ⊂ [g, g].

4. If Z(g) is degenerate then g is Ricci-flat and (g, [ , ], , ) is obtained by the process of double extension from an abelian Euclidean Lie algebra. The process of double extension has been introduced by Medina-Revoy [3] in the context of biinvariant pseudo-Riemannian metrics on Lie groups and turned out to be efficient in many other situations. We adapt this process to our case and, in addition to our main result, we use it to construct a large class of Einstein Lorentzian Lie algebras (not necessarily nilpotent). We also recover the description of 2-step nilpotent Lorentzian Lie algebras obtained in [START_REF] Bin-Asfour | Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF].

5. If g is Ricci-flat non-abelian, and dim[g, g] = dim(Z(g) ∩ [g, g]) + 1 then Z(g) is degenerate.

6. If dim g ≤ 5 then the center of g is degenerate. In this case we give a complete classification of all such Lie algebras.

7. We give the first examples Ricci-flat Lorentzian nilpotent Lie algebras with nondegenerate center. It is worth to mention that this differs from the flat case. Indeed, it has been shown (see [START_REF] Lebzioui | Left-invariant Lorentzian flat metrics on Lie groups[END_REF]) that if a nilpotent Lie group G is endowed with a flat left-invariant metric which is either Lorentzian or of signature (2, n -2) then its center must be degenerate.

8. We give another proof of the main result in [START_REF] Rossi | Einstein nilpotent Lie groups[END_REF] 

Ricci curvature of pseudo-Euclidean Lie algebras

The purpose of this paragraph is to fix the notations that shall be used throughout the chapter, this is done by defining several operators related to the metric structure on a pseudo-Euclidean Lie algebra, particularly its curvature, we then proceed to give many properties of these operators as well as their basis expression. This step is crucial for the

2 . 2 . R I CC I C U RVAT U R E O F P S E U D O -E U C L I D E A N L I E A LG E B R A S
upcoming development, since the proof of many central results relies on the computational material introduced in this paragraph. We also introduce some facts concerning pseudo-Euclidean vector spaces in the form of Lemmas at the end of the paragraph for later use. A detailed account on pseudo-Euclidean vector spaces is given in Appendix B, the preliminary notions on pseudo-Euclidean Lie algebras such as the Levi-Civita product and the various flavors of curvature are the subject of Appendix C.

Let (g, [ , ], , ) be a pseudo-Euclidean Lie algebra and denote g × g -→ g, (u, v) → u • v its

Levi-Civita product, we recall the Koszul formula (cf. (C.1))

2 u • v, w = [u, v], w + [w, u], v + [w, v], u . (2.1)
For any u ∈ g, we shall denote L u , R u : g -→ g be the corresponding left and right mul-

tiplications i.e R v (u) = L u v = u • v.
By Koszul formula (2.1), we get that L u : g -→ g is skew-symmetric and ad u = L u -R u . The curvature K : g × g -→ End(g) of g can then be expressed in these terms as:

K(u, v)w = L [u,v] w -[L u , L v ]w = [R w , L u ](v) -R w • R u (v) + R uw (v).
From the last relation, we deduce that the Ricci curvature ric :

g × g -→ R of (g, [ , ], , ) is
given by:

ric(u, v) = -tr(R u • R v ) + tr(R uv ). (2.2)
In order to make more use of the Ricci curvature, we introduce H ∈ g and J : g -→ so(g, , )

such that for any u, v ∈ g,

H, u = tr(ad u ) and J u (v) = ad * v (u). (2.3) 
Note that H ∈ [g, g] ⊥ and H = 0 if and only if g is unimodular. In these notations (2.1) can be rewritten as:

2 R v u, w = -ad v (u), w -ad * v (u), w -J v (u), w . (2.4)
Proposition 2.2.1. Let g be a pseudo-Euclidean Lie algebra. We have:

ric(u, v) = - 1 2 tr(ad u • ad v ) - 1 2 tr(ad u • ad * v ) - 1 4 tr(J u • J v ) - 1 2 ad H u, v - 1 2 ad H v, u .
Proof. It is a consequence of (2.2), the following formula which can be deduced from (2.4)

R u = - 1 2 (ad u + ad * u ) - 1 2 J u , C H A P T E R 2 . O N E I N S T E I N LO R E N T Z I A N N I L P O T E N T L I E G R O U P S
and the following computation. For any orthonormal basis (e 1 , . . . , e n ) of g, with i = e i , e i :

tr(R uv ) = n i=1 i L e i (u • v), e i (2.1) = - n i=1 i [u • v, e i ], e i = -tr(ad uv ) = -H, u • v = - 1 2 ad H u, v - 1 2 ad H v, u .
The result is then a matter of simple calculation.

Recall that any nilpotent Lie algebra is unimodular and has vanishing Killing form, this leads to the following observation:

Proposition 2.2.2. If g is a nilpotent pseudo-Euclidean Lie algebra, then:

ric(u, v) = - 1 2 tr(ad u • ad * v ) - 1 4 tr(J u • J v ).
In particular, its Ricci operator Ric : g -→ g is given by

Ric = - 1 2 J 1 + 1 4 J 2 , ( 2.5) 
where J 1 and J 2 are the auto-adjoint endomorphisms given by

J 1 (u), v = tr(ad u • ad * v ) and J 2 (u), v = -tr(J u • J v ). (2.6)
Remark 1. The endomorphisms J u are skew-symmetric and J u = 0 if and only if u ∈ [g, g] ⊥ .

As a result, if , is Euclidean then we get for any u ∈ g, J i (u), u ≥ 0 (i = 1, 2), ker J 1 = Z(g)

and ker J 2 = [g, g] ⊥ .
The operators J 1 and J 2 will play a crucial role in our study so we are going to express them in a useful way. This is based on the notion of structure endomorphisms we now introduce. Let (g, [ , ], , ) be a pseudo-Euclidean Lie algebra and (e 1 , . . . , e p ) a basis of g.

For any u, v ∈ g, the Lie bracket can be written as:

[u, v] = p i=1 S i u, v e i , (2.7) 
where S i : g -→ g are skew-symmetric endomorphisms with respect to , . The family of operators (S 1 , . . . , S p ) will be called structure endomorphisms of g associated to (e 1 , . . . , e p ).

Note that Z(g) = ∩ p i=1 ker S i , furthermore one can see easily from (2.7) and the definition of J in (2.3) that for any u ∈ g,

J u = p i=1
u, e i S i .

(2.8)

The following Proposition is of central importance and will be used in many instances.

Proposition 2.2.3. Let g be a pseudo-Euclidean Lie algebra and let (S 1 , . . . , S p ) be structure endomorphisms corresponding to a basis (e 1 , . . . , e p ) of g. Then:

J 1 = - p i,j=1
e i , e j S i • S j and J 2 u = -p i,j=1 e i , u tr(S i • S j )e j .

(2.9)

In particular, trJ 1 = trJ 2 .

Proof. The expression of J 2 is an immediate consequence of (2.6) and (2.8). As for J 1 we have that :

(ad u • ad * u )(v) = (ad u • J v )(u) (2.7) = p i=1 S i u, J v u e i (2.8) = i,j S i u, S j u v, e j e i = - i,j (S j • S i )(u), u K i,j v,
where K i,j v = v, e j e i . Clearly tr(K i,j ) = e i , e j , thus tr(ad

u •ad * v ) = - i,j (S j •S i )(u), v e i , e j .
This gives the desired formula of J 1 .

We close the paragraph by the following two Lemmas on skew-symmetric operators of Lorentzian vector spaces:

Lemma 2.2.1. Let (V , , ) be a Lorentzian vector space, e an isotropic vector and A a skewsymmetric endomorphism. Then Ae, Ae ≥ 0. Moreover, Ae, Ae = 0 if and only if Ae = αe with α ∈ R.

Proof. We choose an isotropic vector ē of V such that e, ē = 1 and we fix an orthonormal basis (f 1 , . . . , f r ) of {e, ē} ⊥ . Since A is skew-symmetric, we have

Ae = αe + r i=1 a i f i and Ae, Ae = r i=1 a 2 i ,
and the result follows.

Lemma 2.2.2. Let (V , , ) be a Lorentzian vector space, e an isotropic vector and A a skewsymmetric endomorphism such that A(e) = 0. Then:

1. tr(A 2 ) ≤ 0, 2. tr(A 2 ) = 0 if and only if for any x ∈ e ⊥ , A(x) = λ(x)e and in this case tr(A • B) = 0 for any skew-symmetric endomorphism satisfying B(e) = 0.
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Proof. We choose a Lorentzian basis B = (e, ē, f 1 , . . . , f n ) of V such that (e, f 1 , . . . , f n ) is a basis of {e} ⊥ , ē is isotropic, e, ē = 1 and (f 1 , . . . , f n ) is an orthonormal basis of {e, ē} ⊥ . First observe that the restriction of , to {e} ⊥ is nonnegative and for any x ∈ {e} ⊥ , x, x = 0 if and only if x = αe. Now Af i ∈ {e} ⊥ for any i = 1, . . . , n and so:

tr(A 2 ) = A 2 (e), ē + A 2 ( ē), e - n i=1 Af i , Af i = - n i=1 Af i , Af i = - n i,j=1 Af i , f j 2 .
This shows that tr(A 2 ) ≤ 0 and tr(A 2 ) = 0 if and only if Af i = α i e for all i = 1, . . . , n. In this case, if B is skew-symmetric and B(e) = 0 then B(f i ) = β i e, therefore:

tr(A • B) = -B(e), A( ē) -A( ē), B(e) - n i=1 Af i , Bf i = 0.
This proves the claim.

Some results on Einstein Lorentzian nilpotent Lie algebras

The principal goal of this section is to prove a set of results typical to the Lorentzian case, and which characterizes the signature of the center Z(g) and the derived ideal [g, g] of an

Einstein Lorentzian nilpotent Lie algebra of g. We draw a number of consequences from these results, for instance we obtain as corollaries some known facts on the Ricci curvature of Einstein Lorentzian 2-step nilpotent Lie algebras, we also give a slight generalization of these results that includes some Lorentzian Ricci-flat 3-step nilpotent Lie algebras.

Finally, we use our approach to recover some results first proved in [START_REF] Rossi | Einstein nilpotent Lie groups[END_REF].

Before going further, let us first give the following remark which we will use frequently:

Let (g, [ , ], , ) be a pseudo-Euclidean Lie algebra. From the definition of J in (2.3), one can easily deduce that ker J = [g, g] ⊥ and hence:

Z(g) ⊂ ker J 1 := M and [g, g] ⊥ ⊂ ker J 2 := N .
(2.10)

Since J 1 and J 2 are symmetric with respect to , , 

ImJ 1 = M ⊥ ⊂ Z(g) ⊥ and ImJ 2 = N ⊥ ⊂ [g, g]. ( 2 
- 1 2 J 1 + 1 4 J 2 = λId g , J 1 = - d i=1 S 2 i and J 2 u = - d i,j=1
u, e i tr(S i • S j )e j .

Since g is nilpotent then dim[g, g] ⊥ ≥ 2 and we can choose a couple (e, ē) of isotropic vectors in [g, g] ⊥ such that e, ē = 1. By replacing in the relations above and using (2.10), we get: By using Lemma 2.2.1, we deduce that for any i ∈ {1, . . . , d}, S i e = α i e and S i ē = -α i ē and hence:

1 2 J 1 e = -λe, 1 2 J 1 ē = -λ ē and
λ = 1 2 d i=1 α 2 i ≥ 0.
For i = 1, . . . , d, S i is skew-symmetric and leaves invariant span{e, ē} so it leaves invariant its orthogonal. We denote by K i the restriction of S i to the Euclidean vector space {e, ē} ⊥ .

We have tr(S 2 i ) = 2α 2 i + tr(K 2 i ) and tr(K 2 i ) ≤ 0. Now, since tr(J 1 ) = tr(J 2 ), we get:

(dim g)λ = - 1 4 tr(J 1 ) = 1 4 d i=1 (2α 2 i + tr(K 2 i )) = λ + 1 4 d i=1 tr(K 2 i ).
This shows that λ ≤ 0. By combining the results obtained so far, we deduce that λ = 0 and for all i = 1, . . . , d, tr(K 2 i ) = 0 and α 2 i = 0 which implies that S i = 0. Thus g is abelian which is a contradiction, this proves our claim. Proposition 2.3.2. Let (g, , ) be an Einstein pseudo-Euclidean non-abelian nilpotent Lie algebra. If Z(g) is non-degenerate then Z(g) ⊥ is not Euclidean.

Proof. Denote by (p, q) = (-, . . . -, +, . . . , +) the signature of , . We reason by contradiction and assume that Z(g) is non-degenerate and Z(g) ⊥ is Euclidean. This implies in particular that dim Z(g) ⊥ ≤ q and therefore dim Z(g) ≥ p. Consequently, we can choose an orthogonal family (e 1 , . . . , e p ) in Z(g) such that e i , e i = -1 for i = 1, . . . , p. Write g = span{e 1 , . . . , e p } ⊕ g 0 , where g 0 = {e 1 , . . . , e p } ⊥ . For any u, v ∈ g 0 , put:

[u, v] = p i=1 K i u, v e i + [u, v] 0 , ( 2.12) 
where K i : g 0 -→ g 0 are skew-symmetric endomorphisms and [u, v] 0 ∈ g 0 . Let , 0 denote the restriction of , to g 0 . It is obvious that (g 0 , [ , ] 0 , , 0 ) is a Euclidean nilpotent Lie algebra. We claim that if (g, , ) is Einstein i.e Ric = λId g then we have λ = 1 4 tr(K 2 i ) ≤ 0 for all i = 1, . . . , p. Moreover if Ric , 0 is the Ricci operator of (g 0 , [ , ] 0 , , 0 ) then:

Ric , 0 = λId g 0 + 1 2 p i=1 K 2 i . ( * )
This implies that the Ricci curvature of (g 0 , , 0 ) is nonpositive. However a non-abelian nilpotent Euclidean Lie algebra has always a Ricci negative direction and a Ricci positive direction (see [START_REF] Milnor | Curvature of left invariant metrics on Lie groups[END_REF]Theorem 2.4]). So the only possibility is K i = 0 for i = 1, . . . , p and g 0 is abelian. We get a contradiction in view of (2.12), which completes the proof.
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Let us prove our claim. We choose an orthonormal basis B 1 = (f 1 , . . . , f q ) of g 0 . Then clearly B = (e 1 , . . . , e p , f 1 , . . . , f q ) is an orthonormal basis of g. Denote by (S 1 , . . . , S p , T 1 , . . . , T q ) the structure endomorphisms of (g, , ) with respect to B and (M 1 , . . . , M q ) the structure endomorphisms of (g 0 , , 0 ) with respect to B 1 . Every S i and T i vanish on Z(g) and hence leave g 0 invariant. By using (2.12), one can easily see that, for i = 1, . . . , p and j = 1, . . . , q:

(S i ) |g 0 = K i and (T j ) |g 0 = M j .
If g is Einstein then according to (2.9), we have:

- 1 2 p i=1 S 2 i + 1 2 q i=1 T 2 i + 1 4 J 2 = λId g , ( * * )
where

J 2 = - i,j e i , • tr(K i •K j )e j - i,j f i , • tr(M i •M j )f j - i,j f i , • tr(M i •K j )e j - i,j e i , • tr(K i •M j )f j .
If we evaluate the relation ( * * ) at e i , we get

1 4 tr(K 2 i )e i + 1 4 q j=1 tr(K i • M j )f j = λe i .
This is equivalent to λ = 1 4 tr(K 2 i ) and tr(K i • M j ) = 0 for i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. This implies that if we restrict ( * * ) to g 0 we get the desired relation ( * ).

Corollary 2.3.1. Let (g, [ , ], , ) be an Einstein Lorentzian non-abelian nilpotent Lie algebra. If Z(g) is non-degenerate then it is Euclidean.

The following result was first found by Guediri in [START_REF] Bin-Asfour | Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF] and served as a key ingredient in the classification of Einstein Lorentzian 2-step nilpotent Lie algebras. It can also be deduced from the preceding results.

Corollary 2.3.2. Let (g, [ , ], , ) be an Einstein Lorentzian non abelian 2-step nilpotent Lie algebra. Then Z(g) is degenerate. Proof. Suppose that Z(g) is non-degenerate. According to Corollary 2.3.1, Z(g) is non- degenerate Euclidean. But g is 2-step nilpotent and hence [g, g] ⊂ Z(g). Thus [g, g] is non-degenerate Euclidean which contradicts Proposition 2.3.1. Proposition 2.3.3. Let (g, , ) be an Einstein Lorentzian nilpotent Lie algebra such that [g, g] is degenerate then [g, g] ∩ [g, g] ⊥ ⊂ Z(g) and (g, , ) is Ricci flat.
Proof. Let e be a generator of [g, g]∩[g, g] ⊥ . Then there exists a basis (e, ē, f 1 , . . . , f d , g 1 , . . . , g s ) of g such that (e, f 1 , . . . , f d ) is a basis of [g, g], (e, g 1 , . . . , g s ) is basis of [g, g] ⊥ , (e, ē) are coisotropic i.e e, ē = 1 and (f 1 , . . . , f d , g 1 , . . . , g s ) is an orthonormal basis of {e, ē} ⊥ . Next denote by (A, S 1 , . . . , S d ) the associated structure endomorphisms, i.e. for any u, v ∈ g,

[u, v] = Au, v e + d i=1 S i u, v f i .
According to (2.5) and (2.9), we have:

- 1 2 J 1 + 1 4 J 2 = λId g and J 1 = - d i=1 S 2 i .
Since e ∈ [g, g] ⊥ and it is isotropic, we have J 2 e = 0, -1 2 J 1 e = λe, and so d j=1 S j e, S j e = 0. Using Lemma 2.2.1, we get S j e = a j e for any j = 1, . . . , d and hence λ = 1 2 d i=1 a2 i ≥ 0. On the other hand, since tr(J 1 ) = tr(J 2 ), it follows that:

(dim g)λ = - 1 4 tr(J 1 ) = 1 4 d j=1 tr(S 2 j ).
Furthermore we have:

tr(S 2 j ) = S 2 j e, ē + S 2 j ē, e + l S 2 j f l , f l + l S 2 j g l , g l = 2a 2 j - l S j f l , S j f l - l S j g l , S j g l .
Since S j leaves invariant e, it leaves invariant its orthogonal span{e, f l , g k }. But the restriction of , to span{e, f l , g k } is nonnegative. So S j f l , S j f l ≥ 0 and S j g l , S j g l ≥ 0. Thus:

(dim g -1)λ = - l,j S j f l , S j f l - l,j
S j g l , S j g l ≤ 0.

But we have already shown that λ ≥ 0. We conclude that λ = 0 and S j (e) = 0 for j = 1, . . . , p.

This implies that for any u ∈ g, [e, u] = A(e), u e. But ad u is nilpotent and hence [e, u] = 0 which completes the proof.

Corollary 2.3.3. Let g be a nilpotent Lorentzian Einstein Lie algebra. Suppose that [g, g] is degenerate, then Z(g) is also degenerate. such that e i ∈ Z(g) for i = 1, . . . , r -1 and e r , e r = -1.

Proposition 2.3.4. Let (g, , ) be a Ricci-flat Lorentzian nilpotent non-abelian Lie algebra such that dim[g, g] = dim (Z(g) ∩ [g, g]) + 1. Then Z(g) is degenerate. Proof. Suppose that Z(g)
We denote by (S 1 , . . . , S r ) the structure endomorphisms associated to (e 1 , . . . , e r ). We have:

- 1 2 J 1 + 1 4 J 2 = 0, J 1 = S 2 r - r-1 j=1 S 2 i and J 2 (u) = - i,j e i , u tr(S i • S j )e j .
Since Z(g) ⊂ ker J 1 , we get J 2 (e i ) = 0 for i = 1, . . . , r -1. This is equivalent to tr(S i • S j ) = 0 for i = 1, . . . , r and j = 1 . . . , r -1 and hence:

J 2 (u) = e r , u tr(S 2 r )e r .
But tr(J 1 ) = tr(J 2 ) = 0 so J 1 = J 2 = 0. This implies, by virtue of (2.6), that tr(ad x • ad * y ) = 0 for any x, y ∈ g. For x ∈ g, put ad x (e r ) = α 1 e 1 + . . . + α r e r .

So for any k ∈ N, ad k

x (e r ) = α k r e r + u k with u k ∈ Z(g) but since g is nilpotent and e r Z(g) then α r = 0 and hence ad x (e r ) ∈ Z(g). If (f 1 , . . . , f q ) is an orthonormal basis of [g, g] ⊥ , then:

0 = tr(ad e r • ad * e r ) = r-1 i=1 ad e r (e i ), ad e r (e i ) + q i=1 ad e r (f i ), ad e r (f i ) = q i=1 ad f i (e r ), ad f i (e r ) .
But ad f i (e r ) ∈ Z(g) and Z(g) is Euclidean thus ad f i (e r ) = 0 for i = 1, . . . , q an hence e r ∈ Z(g) which is a contradiction. This completes the proof.

Using our approach, we recover some results obtained in [START_REF] Rossi | Einstein nilpotent Lie groups[END_REF].

Proposition 2.3.5. Let (g, [ , ], , ) be a nilpotent pseudo-Euclidean Lie algebra. 1. If (g, [ , ], , ) is Einstein with λ 0 then Z(g) ⊂ [g, g]. 2. If dim Z(g) ≥ dim[g, g] then (g, [ , ], , ) is Einstein if and only if it is Ricci flat.
In particular, if g is 2-nilpotent then (g, [ , ], , ) is Einstein if and only if it is Ricci flat.

Proof. Suppose that (g, [ , ], , ) is nilpotent and Einstein with λ 0, i.e.

- 1 2 J 1 + 1 4 J 2 = λId g .
Put M := ker(J 1 ) and N := ker(J 2 ). By virtue of (2.10) and (2.11), this implies that:

Z(g) ⊂ ImJ 2 ⊂ [g, g]. It also implies that M ∩ N = {0}. But, if dim Z(g) ≥ dim[g, g] then dim M + dim N ≥ dim Z(g) + dim[g, g] ⊥ ≥ dim g
and hence g = M ⊕ N . This contradicts tr(J 1 ) = tr(J 2 ).

One of the main results in [START_REF] Rossi | Einstein nilpotent Lie groups[END_REF] is that if a pseudo-Euclidean Einstein nilpotent Lie algebra has a derivation with a non vanishing trace then it is Ricci flat. We give another proof of this fact based on (2.13). This formula was established in the Euclidean context in [START_REF] Lauret | A canonical compatible metric for geometric structures on nilmanifolds[END_REF] by using the Ricci tensor as a moment map. We prove this formula in the general case by a direct computation.

Proposition 2.3.6. Let (g, , ) be a pseudo-Euclidean Lie algebra and let Q denote the sym-

metric endomorphism Q = -1 2 J 1 + 1 4 J 2 .
Then for any orthonormal basis (e 1 , . . . , e p ) of g and any endomorphism E of g, we have

tr(QE) = 1 4 i,j i j E([e i , e j ]) -[E(e i ), e j ] -[e i , E(e j )], [e i , e j ] , (2.13 
) where e i , e i = i .

Proof. We denote by (S 1 , . . . , S p ) the structures endomorphisms associated to (e 1 , . . . , e p ).

From (2.8), we get S i = i J e i and by using (2.9) we get:

QE(u) = 1 2 p i=1 i J 2 e i E(u) - 1 4 p i,j=1
i j e i , E(u) tr(J e i • J e j )e j .

Let us compute:

tr(QE) = p j=1 j QE(e j ), e j = - 1 2 p i,j=1
i j J e i E(e j ), J e i (e j ) -

1 4 p i,j=1
i j e i , E(e j ) tr(J

e i • J e j ) = - 1 2 p i,j=1
j i e i , [E(e j ), J e i (e j )] + Proof. Let D ∈ Der(g) such that tr(D) 0. Write Ric = λId g , using formula (2.5) and (2. [START_REF] Lauret | Einstein solvmanifolds are standard[END_REF] we get that λtr(D) = 0 and therefore λ = 0.
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Remark 2. The derivations of nilpotent Lie algebras have been widely studied and computed (see [START_REF] Khakimdjanov | Nilpotent Lie algebras[END_REF]). It turns out that nilpotent Lie algebras having a derivation with non null trace are the most common. For instance, any nilpotent Lie algebra up to dimension 6 has this property and most of the nilpotent Lie algebras of dimension 7 have this property (see [START_REF] Rossi | Einstein nilpotent Lie groups[END_REF]).

Einstein Lorentzian nilpotent Lie algebras with degenerate center

In this section, we give a complete description of Einstein Lorentzian nilpotent Lie algebras with degenerate center. We will show that these Lie algebras are obtained by a double extension process of an abelian Euclidean Lie algebra. The double extension process was introduced by Medina-Revoy in [3] in the context of quadratic Lie algebras. It turned out to be useful in many other situations. We give here a version of this process adapted to our study.

Consider a Euclidean vector space (V , , 0 ), b ∈ V , K, D : V -→ V two endomorphisms of V such that K is skew-symmetric.
We endow the vector space g = Re ⊕ V ⊕ R ē with the inner product , which extends , 0 so that span{e, ē} and V are orthogonal, e and ē are isotropic and satisfy e, ē = 1. We also define on g the bracket:

[ ē, e] = µe, [ ē, u] = D(u) + b, u 0 e and [u, v] = K(u), v 0 e, u, v ∈ V . (2.14) Proposition 2.4.1. Suppose that (g, , , [ , ]
) is obtained by a double extension process from a Euclidean vector space (V , , 0 ) with parameters (K, D, µ, b) (i.e as in (2.14)), then:

(i) (g, [ , ]
) is a Lie algebra if and only if :

KD + D * K = µK.
In this case (g, [ , ]) is nilpotent if and only if µ = 0 and D is nilpotent.

(ii) (g, [ , ], , ) is an Einstein Lorentzian Lie algebra if and only if

KD + D * K = µK and 4µtr(D) = tr(K 2 ) + 2tr(D 2 ) + 2tr(DD * ).
In this case, it is Ricci flat.

Proof. The bracket [ , ] is a Lie bracket if and only if for any

v, w ∈ V , [ ē, [v, w]] + [w, [ ē, v]] + [v, [w, ē]] = (µK -K • D -D * • K)(v), w 0 e = 0.
Therefore, (g, [ , ]) is a Lie algebra if and only if µK = K • D + D * • K and it is easy to see that (g, [ , ]) is nilpotent if and only if µ = 0 and D is a nilpotent endomorphism.

We will now compute the Ricci curvature of (g, [ , ], , ) by using the formula

ric(u, v) = - 1 2 B(u, v) - 1 2 J 1 (u), v + 1 4 J 2 (u), v - 1 2 ad H u, v - 1 2 ad H v, u , 2 . 4 . E I N S T E I N LO R E N T Z I A N N I L P O T E N T L I E A LG E B R A S W I T H D E G E N E R AT E C E N T E R
where B is the Killing form and H is the vector defined in (2.3).

We choose an orthonormal basis (f 1 , . . . , f n ) of V and we denote by (K 0 , K, S 1 , . . . , S n ) the structure endomorphisms of (e, ē, f 1 , . . . , f n ). By a direct computation, we get that B and H are given by

H = (µ + tr(D))e, Re ⊕ V ⊂ ker B and B( ē, ē) = µ 2 + tr(D 2 ).
On the other hand, K = 0 and for any u, v ∈ g

K 0 (u), v = [u, v], ē and S i (u), v = [u, v], f i , u, v ∈ g, i = 1, . . . , n.
This gives that

         K 0 (e) = -µe, K 0 ( ē) = µ ē + b, K 0 (f i ) = K(f i ), S i (e) = 0, S i (f j ) = -D * (f i ), f j e and S i ( ē) = D * (f i ).
From these relations, one can easily deduce that tr(K 0 • S i ) = tr(S i • S j ) = 0 for i, j = 1, . . . , n and hence

J 1 = - n i=1 S 2 i and J 2 = -e, • tr(K 2 0 )e.

Using these expressions, a careful computation gives

Re ⊕ V ⊂ ker ric and ric( ē, ē) = -1 2 tr(D 

[u, v] = Ku, v e + Ku, v ē + n i=1 S i u, v f i .
According to (2.5) and (2.9), we have that:

                     -1 2 J 1 + 1 4 J 2 = λId g , J 1 = -K • K -K • K - n j=1 S 2 j , J 2 = -e, • tr(K 2 ) + n i=1 tr(K • S i ) f i , • e -ē, • tr( K2 ) + n i=1 tr( K • S i ) f i , • ē -e, • tr(K • K) ē -ē, • tr(K • K)e - n i=1 e, • tr(K • S i )f i - n i=1 ē, • tr( K • S i )f i - n i,j=1 f i , • tr(S i • S j )f j .
(2.15)

Since e ∈ Z(g) then K(e) = K(e) = S i (e) = 0 for all i = 1, . . . , n and thus J 1 (e) = 0. This implies that 1 4 J 2 (e) = λe, which is equivalent to:

1 4 tr(K • K) = -λ and tr( K2 ) = tr( K • S i ) = 0 for i = 1, . . . , n.
According to Lemma 2.2.2, we get that for any x ∈ I ⊥ , K(x) = α(x)e and -4λ = tr( K •K) = 0.

On the other hand, since tr(J 1 ) = tr(J 2 ) then from the first relation in system (2.15) we deduce that tr(J 1 ) = -n i=1 tr(S 2 i ) = 0. Again, Lemma 2.2.2 along with tr(S 2 i ) = 0 gives that for any x ∈ I ⊥ , S i (x) = s i (x)e and tr(K • S i ) = tr(S i • S j ) = 0 for i, j ∈ {1, . . . , n}. By skew-symmetry, we deduce that, for j = 1, . . . , n

K( ē) = - n i=1 α(f i )f i and S j ( ē) = - n i=1 s j (f i )f i .
On the other hand, for any

u ∈ I ⊥ , [ ē, u] = K( ē), u e -α(u) ē - n i=1 s i (u)f i .
But since ad u is nilpotent then we must have α(u) = 0 for any u ∈ I ⊥ and thus K = 0. To sum up, if we put V = span{f 1 , . . . , f n } and define D :

V -→ V by D(u) = n i=1 S i ( ē), u f i , then:                      [u, v] = Ku, v e, u, v ∈ V , [ ē, u] = K( ē), u e + D(u), u ∈ V , J 2 = e, • tr(K 2 )e, -1 2 J 1 + 1 4 J 2 = 0, J 1 = -n j=1 S 2 j .
This completes the proof.

As an application of Theorem 1.3.1 we recover the following results due to Guediri [ 
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Lie algebra for which the Lie brackets are expressed in a basis B = {e, z 1 , . . . , z p , ē, e 1 , . . . , e q } as follows :

[ ē, e i ] = α i e + p k=1 c ik z k , [e i , e j ] = a ij e, 1 ≤ i, j ≤ q, ( 2.16 
) i.e g = Re ⊕V 0 ⊕R ē where e, ē are isotropic vectors satisfying ē, e = 1 and, for any

with q i,j=1 a 2 ij = 2 q i=1 p k=1 c 2 ik .
u, v ∈ V 0 , [ ē, u] = D(u) + b, u e, [u, v] = K(u), v e.
(2.17)

Moreover, Proposition 2.4.1 implies that D 2 = 0 and

K • D + D * • K = 0, 2tr(DD * ) = -tr(K 2 ). (2.18) 
First, we observe that Im(D) ⊂ Z(g) ∩ V 0 . Indeed, given w ∈ g and u ∈ V 0 we have that :

[w, Du] = [w, Du + b, u e] = [w, [ ē, u]] = 0. Write V 0 = (V 0 ∩ Z(g)) ⊥ ⊕ W 0 and V 0 ∩ Z(g) = Im(D)
⊥ ⊕ S, then S is an abelian Lie subalgebra of g since it is contained in Z(g) and we have that

g = R n ⊕ n with n = Re ⊕ R ē ⊕ Im(D) ⊕ W 0 ,
moreover using (2.17) we can check that n is a Lie subalgebra of g. Next, let {z 1 , . . . , z p } be a Euclidean basis of Im(D) and let {e 1 , . . . , e q } be a Euclidean basis of W 0 . Write :

D(e i ) = p k=1 c ik z k , b, e i = α i , K(e i ), e j = a ij .
Then it follows that : Proof. We use the classification of nilpotent Lie algebras up to dimension 6 given by [START_REF] De Graaf | Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2[END_REF].

[ ē, e i ] = α i e + p k=1 c ik z k , [e i , e j ] = a ij e, 1 ≤ i, j ≤ q. Now tr(K 2 ) = - q i,j=1 a 2 ij = 2tr(DD * ) =
We will also use Corollary Euclidean and [g, g] must be non-degenerate Lorentzian. We distinguish three cases:

1. [g, [g, g]] is non-degenerate Euclidean. It is then possible to choose an orthonormal basis (f 1 , f 2 , f 3 , f 4 , f 5 ) of g such that [g, g] = span{f 3 , f 4 , f 5 }, [g, [g, g]] = span{f 4 , f 5 }, Z(g) = Rf 5 and f 3 , f 3 = -1. So:          [f 1 , f 2 ] = af 3 + bf 4 + cf 5 , [f 1 , f 3 ] = df 4 + xf 5 , [f 1 , f 4 ] = yf 5 , [f 2 , f 3 ] = zf 4 + tf 5 , [f 2 , f 4 ] = uf 5 , [f 3 , f 4 ] = vf 5 , a 0, (z, d) (0, 0).
This bracket satisfies the Jacobi identity if and only if v = 0 and yzdu = 0. The Ricci operator is given by

. 5 . C L A S S I F I CAT I O N O F E I N S T E I N LO R E N T Z I A N N I L P O T E N T L I E

A LG E B R A S O F D I M E N S I O N ≤ 5 1 2                                              a 2 -b 2 -c 2 + d 2 + x 2 -y 2 dz + xt -yu zb + ct cu 0 dz + xt -yu a 2 -b 2 -c 2 + z 2 + t 2 -u 2 -bd -cx -cy 0 -zb -ct bd + cx -a 2 + d 2 + x 2 + z 2 + t 2 ab + xy + tu ac cu -cy -ab -xy -tu b 2 -d 2 -y 2 -z 2 -u 2 bc -dx -zt 0 0 -ac bc -dx -zt c 2 -x 2 + y 2 -t 2 + u 2       a 2 -b 2 + d 2 + x 2 -y 2 dz + xt -yu zb 0 0 dz + xt -yu a 2 -b 2 + z 2 + t 2 -u 2 -bd 0 0 -zb bd -a 2 + d 2 + x 2 + z 2 + t 2 ab + xy + tu 0 0 0 -ab -xy -tu b 2 -d 2 -y 2 -z 2 -u 2 -dx -zt 0 0 -dx -zt -x 2 + y 2 -t 2 + u 2                                            . The couple (z, d) (0, 0) otherwise dim[g, g] ≤ 2, hence b = 0. So 1 2                                            a 2 + d 2 + x 2 -y 2 dz + xt -yu 0 0 0 dz + xt -yu a 2 + z 2 + t 2 -u 2 0 0 0 0 0 -a 2 + d 2 + x 2 + z 2 + t 2 xy + tu 0 0 -xy -tu -d 2 -y 2 -z 2 -u 2 -dx -zt 0 0 -dx -zt -x 2 + y 2 -t 2 + u 2                                            . So we must have Ric 4,4 = -d 2 -y 2 -z 2 -u 2 = 0 and Ric 2,2 = a 2 + z 2 + t 2 -u 2 = 0, but this
implies that a = 0 which is impossible.

[g, [g, g]

] is nondegenerate Lorentzian. As in the previous case, we can choose an or-

thonormal basis (f 1 , f 2 , f 3 , f 4 , f 5 ) such that f 4 , f 4 = -1 and Z(g) = Rf 5 , [g, [g, g]] = span{f 4 , f 5 } and [g, g] = span{f 3 , f 4 , f 5 }. So          [f 1 , f 2 ] = af 3 + bf 4 + cf 5 , [f 1 , f 3 ] = df 4 + xf 5 , [f 1 , f 4 ] = yf 5 , [f 2 , f 3 ] = zf 4 + tf 5 , [f 2 , f 4 ] = uf 5 , [f 3 , f 4 ] = vf 5 , a 0, (z, d) (0, 0).
The Jacobi identity is given by bvud + yz = av = 0, hence v = 0. Thus the Ricci operator is given by

C H A P T E R 2 . O N E I N S T E I N LO R E N T Z I A N N I L P O T E N T L I E G R O U P S 1 2                                              -a 2 + b 2 -c 2 + d 2 -x 2 + y 2 dz -xt + yu -zb + ct cu 0 dz -xt + yu -a 2 + b 2 -c 2 + z 2 -t 2 + u 2 bd -cx -cy 0 -zb + ct bd -cx a 2 + d 2 -x 2 + z 2 -t 2 -ab -xy -tu ac -cu cy ab + xy + tu -b 2 -d 2 + y 2 -z 2 + u 2 bc + dx + zt 0 0 ac -bc -dx -zt c 2 + x 2 -y 2 + t 2 -u 2       -a 2 + d 2 -x 2 + y 2 dz -xt + yu 0 0 0 dz -xt + yu -a 2 + z 2 -t 2 + u 2 0 0 0 0 0 a 2 + d 2 -x 2 + z 2 -t 2 -xy -tu 0 0 0 xy + tu -d 2 + y 2 -z 2 + u 2 dx + zt 0 0 0 -dx -zt x 2 -y 2 + t 2 -u 2                                           
Now 0 = Ric 3,3 + Ric 4,4 + Ric 5,5 = 1 2 a 2 and hence a = 0 which is impossible. 3. [g, [g, g]] is degenerate . Then we can choose a basis (f 1 , f 2 , f 3 , f 4 , f 5 ) such that the metric in this basis is given by Diag

      1, 1,       0 1 1 0       , 1       , and Z(g) = Rf 5 , [g, [g, g]] = span{f 4 , f 5 } and [g, g] = span{f 3 , f 4 , f 5 }. So          [f 1 , f 2 ] = af 3 + bf 4 + cf 5 , [f 1 , f 3 ] = df 4 + xf 5 , [f 1 , f 4 ] = yf 5 , [f 2 , f 3 ] = zf 4 + tf 5 , [f 2 , f 4 ] = uf 5 , [f 3 , f 4 ] = vf 5 , a 0, (z, d) (0, 0).
The Jacobi identity is given by bvud + yz = av = 0. Hence v = 0. The Ricci operator is given by

1 2                               -2 ab -c 2 -2 xy -yt -xu az + ct cu 0 -yt -xu -2 ab -c 2 -2 tu -cx -ad -cy 0 cu -cy ab -xy -tu a 2 -y 2 -u 2 ac az + ct -cx -ad b 2 -x 2 -t 2 ab -xy -tu bc + dy + zu 0 0 bc + dy + zu ac c 2 + 2 xy + 2 tu                               . So c = d = z = 0 which is impossible.
As a consequence of Theorem 1.3.1 and Theorem 2.5.1, we can give the complete classification of Ricci flat Lorentzian metrics on nilpotent Lie algebras of dimension ≤ 5. We will also make use of the following Lemma : Lemma 2.5.1. Let (V , , ) be a Euclidean vector space and let K and D be two endomorphisms of V such that K is skew-symmetric. Then KD + D * K = 0 if and only if there exists a vector subspace F ⊂ V and linear maps D 1 : F -→ F, D 2 : F ⊥ -→ F, K 0 , S : F ⊥ -→ F ⊥ where K 0 is skew-symmetric invertible, S symmetric and for any u ∈ V ,

Du =        D 1 (u) if u ∈ F, D 2 (u) + K -1 0 S(u) if u ∈ F ⊥ and Ku =        0 if u ∈ F, K 0 (u) if u ∈ F ⊥ .
Proof. Suppose that KD+D * K = 0 and put

F = ker K. Obviously D(F) ⊂ F, K(F ⊥ ) ⊂ F ⊥ and the restriction K 0 of K to F ⊥ is skew-symmetric invertible. Denote by D 1 the restriction of D to F and put for any u ∈ F ⊥ , Du = D 2 u + D 3 u where D 2 u ∈ F and D 3 u ∈ F ⊥ . Then 0 = K(D 2 u + D 3 u) + D * K 0 (u) = K 0 D 3 u + D * 3 K 0 (u).
Thus K 0 D 3 = S where S : F ⊥ -→ F ⊥ is a symmetric endomorphism and D 3 = K -1 0 S. The converse is obviously true.

Theorem 2.5.2. Let (g, [ , ], , ) be a Ricci-flat nilpotent Lie algebra of dimension ≤ 4. Then: 

(i) If dim g = 3 then g is isomorphic to (L 3,2 , , 3,2 ) such that , 3,2 = αe * 1 e * 3 + e * 2 ⊗
⊕ V ⊕ R ē, where (V , , 0 ) is a
Euclidean vector space. The Lie brackets are given by: 2. dim g = 4 and dim V = 2. We distinguish two cases:

[ ē, u] = Du + b, u 0 e and [u, v] = Ku, v 0 e, u, v ∈ V , such that b ∈ V , K, D : V -→ V with K skew-symmetric, D is nilpotent, KD + D * K =
• If K = 0 then D = 0 and there exists a Lorentzian basis ( ē, e, f 1 , f 2 ) of g such that:

[ ē, f 1 ] = αe and [ ē, f 2 ] = βe, α 0.

Put (e 1 , e 2 , e 3 , e 4 ) = ( ē,

f 1 , |α|e, µ -1 (f 2 - β α f 1 )),
where is the sign of α and µ = ||f 2 - where

β α f 1 ||.
β 1 = β α . So |a| < 1.
• If K 0 then, according to Lemma 2.5.1, D = K -1 S where S is symmetric.

Since D must be nilpotent then the rank of S is equal to 1 and there exists an orthonormal basis B 0 = (f 1 , f 2 ) of V such that the matrices of K, S and D are given by: Proof. According to Theorems 1.3.1 and (2.5.1), g = Re ⊕ V ⊕ R ē, where (V , , 0 ) is a 3-dimensional Euclidean vector space. The Lie bracket is given by:

M(S, B 0 ) = Diag(0, s), M(K, B 0 ) =       0 -α α 0       and M(D, B 0 ) =       0 sα -1 0 0       , α > 0. Put c = sα -1
[ ē, u] = Du + b, u 0 e and [u, v] = Ku, v 0 e, u, v ∈ V , with b ∈ V , K, D : V -→ V with K skew-symmetric, D is nilpotent such that KD + D * K = 0
and tr(K 2 ) = -2tr(D * D) moreover the metric , satisfies , |V = , 0 , e and ē are co-isotropic i.e e, ē = 1 and are orthogonal to V .

• If K = D = 0 then there exists a Lorentzian basis ( ē, e, f 1 , f 2 , f 3 ) such that:

[ ē, f 1 ] = αe, [ ē, f 2 ] = βe and [ ē, f 3 ] = γe, α 0. Put (e 1 , e 2 , e 3 , e 4 , e 5 ) = ( ē, f 1 , |α|e, µ -1 1 (f 2 - β α f 1 ), µ -1 2 (f 3 - γ α f 1 )),
where is the sign of α, where α 0, a =

µ 1 = ||f 2 - β α f 1 || and µ 2 = ||f 3 - γ α f 1 ||. Thus (g, [ , ], , ) is isomorphic to (L 5,2 , ,
β 1 √ 1+β 2 1 , b = γ 1 √ 1+γ 2 1 , β 1 = β α and γ 1 = γ α . So |a| < 1 and |b| < 1. • If K 0, Lemma 2.5.

show that there exists and orthonormal basis

B 0 = (f 1 , f 2 , f 3 ) of V
in which the matrices of K, S and D are given by:

M(S, B 0 ) = Diag(0, a), M(K, B 0 ) =            0 0 0 0 0 -α 0 α 0            and M(D, B 0 ) =            0 x y 0 0 aα -1 0 0 0            , α > 0. Put c = aα -1 . The condition tr(K 2 ) = -2tr(D * D) gives α = x 2 + y 2 + c 2 .
Thus the Lie bracket is given by:

[ ē, f 1 ] = γe, [ ē, f 2 ] = xf 1 + µe, [ ē, f 3 ] = yf 1 + cf 2 + βe and [f 2 , f 3 ] = αe.
Put a = -βα -1 , b = µα -1 , z = αe and z = ē + af 2 + bf 3 . We have:

[z, f 1 ] = γα -1 z, [z, f 2 ] = xf 1 , [z, f 3 ] = yf 1 + cf 2 and [f 2 , f 3 ] = z.
Case 1: γ = 0, x 0 and c = 0. Then:

[z, f 2 ] = xf 1 and [f 2 , f 3 -yx -1 f 2 ] = z.
Put (e 1 , e 2 , e 3 , e 4 , e 5 ) = (f 2 , ē + af

2 + bf 3 , f 3 -yx -1 f 2 , -xf 1 , αe) Thus (g, [ , ],
, ) is isomorphic to (L 5,8 , , 5,8 ).

Case 2: γ = 0, x 0 and c 0. Then:

[z, f 2 ] = xf 1 , [z, f 3 -yx -1 f 2 ] = cf 2 and [f 2 , f 3 -yx -1 f 2 ] = z.
Put (e 1 , e 2 , e 3 , e 4 , e 5 ) = (c -1

( ē + af 1 + bf 2 ), f 3 -yx -1 f 2 , f 2 , c -1 xf 1 , -αe)).
After the change of parameters c -1 (a, b, x, y) to (a, b, x, y), we get that (g, [ , ], , ) is isomorphic to (L 5,9 , , 5,9 ). 

( ē + af 2 + bf 3 ), -f 2 -c -1 yf 1 , αe, f 1 ).
After the change of parameters c -1 (a, b, y) to (a, b, y) we get that (g, [ , ], , ) is isomorphic to (L 5,3 , , 5,3 ).

Case 5: γ 0. Put g 1 = αγ -1 f 1 , then:

[z, g 1 ] = z, [z, f 2 ] = xα -1 γg 1 , [z, f 3 ] = yα -1 γg 1 + cf 2 and [f 2 , f 3 ] = z.
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γ 0 and c = 0. Then (x, y) (0, 0) and we can suppose that x 0. Then:

[z, g 1 ] = z, [z, f 2 ] = xα -1 γg 1 , [z, f 3 -x -1 yf 2 ] = 0 and [f 2 , f 3 -x -1 yf 2 ] = z.
Put (e 1 , e 2 , e 3 , e 4 , e 5 ) = ( ē+af 2 +bf 3 , x -1 αγ -1 f 2 , αγ -1 f 1 , xα -1 γ(f 3 -x -1 yf 2 ), αe) and ρ = xα -1 γ.

Then (g, [ , ], , ) is isomorphic to(L 5,5 , , 5,5,1 ). γ 0, c 0 and x = 0. Then:

[z, g 1 ] = z, [z, f 3 ] = yα -1 γg 1 + cf 2 and [f 2 , f 3 ] = z.
Put (e 1 , e 2 , e 3 , e 4 , e 5 ) = (-f 3 , c -1 ( ē + af 2 + bf 3 ),

f 2 + c -1 yα -1 γg 1 , cg 1 , αe).
After the change of parameters c -1 (a, b, y) to (a, b, x) and ρ = cαγ -1 we get that (g, [ , ], , ) is isomorphic to (L 5,5 , , 5,5,2 ). γ 0, c 0 and x 0. Then:

[c -1 z, cg 1 ] = z, [c -1 z, f 2 ] = c -1 xα -1 γg 1 , [c -1 z, f 3 -x -1 yf 2 ] = f 2 and [f 2 , f 3 -x -1 yf 2 ] = z.
Put (e 1 , e 2 , e 3 , e 3 , e 5 ) = (-c -1 ( ē + af 2 + bf 2 ),

f 3 -x -1 yf 2 , -f 2 , -cg 1 , αe).
Then We can always suppose that k > 0 (otherwise replace e 3 by -e 3 and e 2 by -e 2 ). We then put e 1 = µe 1 and e 3 = µe 3 , e 5 = µe 5 and µ 2 = 1 k . After an adequate change of parameters one can see that (g, [ , ], , ) is isomorphic to (L 5,6 , , 5,6 ).

Example 1. 

Example of a six dimensional Ricci flat Lorentzian nilpotent Lie algebra with nondegenerate center.

Example of a seven dimensional Ricci flat Lorentzian nilpotent Lie algebra with nondegenerate center.

Example of an eight dimensional Einstein Lorentzian nilpotent Lie algebra with non

vanishing scalar curvature. This example was given in [START_REF] Rossi | Einstein nilpotent Lie groups[END_REF]. Einstein Loren t z i a n 3 -n i l p o t e n t L i e g r o u p s

               [e 1 ,

Introduction

The study of left-invariant Einstein Riemannian metrics on Lie groups is a research area that had made huge progress in the last decades (see [START_REF] Heber | Noncompact Einstein spaces[END_REF][START_REF] Lauret | A canonical compatible metric for geometric structures on nilmanifolds[END_REF][START_REF] Lauret | Einstein solvmanifolds are standard[END_REF]). However, the indefinite case remains unexplored in comparison and only few significant results had been published in this matter with many questions that are still open (see [START_REF] Bin-Asfour | Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF][START_REF] Rossi | Einstein nilpotent Lie groups[END_REF][START_REF] Boucetta | On Einstein Lorentzian nilpotent Lie groups[END_REF]).

In [START_REF] Boucetta | On Einstein Lorentzian nilpotent Lie groups[END_REF], the authors began an inspection of Einstein Lorentzian nilpotent Lie algebras following guidelines from previous studies of the 2-step nilpotent case (see [START_REF] Lebzioui | Left-invariant Lorentzian flat metrics on Lie groups[END_REF] and [START_REF] Bin-Asfour | Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF]).

The main Theorem of [START_REF] Boucetta | On Einstein Lorentzian nilpotent Lie groups[END_REF] states that Einstein nilpotent Lie algebras with degenerate center are exactly Ricci-flat and are obtained by a double extension process starting from a Euclidean vector space (see [START_REF] Boucetta | On Einstein Lorentzian nilpotent Lie groups[END_REF]Theorem 4.1] and [3] for the original definition of the double extension). This class of Lie algebras includes all Einstein Lorentzian nilpotent Lie algebras that are either 2-step or of dimension less than 5, in fact as a concrete application of the main Theorem, the authors were able to give a full classification of the latter.

Dimension 6 however falls outside the context of this result as the authors presented the first example in this situation of an Einstein nilpotent Lie algebra with non-degenerate center, which also happens to be 3-step nilpotent. Einstein nilpotent Lie algebras that are non Ricci-flat has been shown to exist in the Lorentzian setting (see [START_REF] Rossi | Einstein nilpotent Lie groups[END_REF]) and according to [21, Theorem 4.1] these must have non-degenerate center as well. So the study of Einstein Lorentzian nilpotent Lie algebras with non-degenerate center becomes a natural and challenging problem and the present chapter can be seen as a first attempt to find a general pattern for these Lie algebras. We start by the 3-step nilpotent case and we develop a new approach which can be used later in the general case. Let us give a brief summary of our method and state our main result.

Let (h, [ , ]) be a k-nilpotent Lie algebra and , an Einstein Lorentzian metric on h such that the center of h is non-degenerate. Then Z(h) is non-degenerate Euclidean (see [START_REF] Boucetta | On Einstein Lorentzian nilpotent Lie groups[END_REF])
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and, naturally, we get the orthogonal spitting

h = Z(h) ⊥ ⊕ g.
The Lie bracket on h splits accordingly as [u, v] = ω(u, v)+ [u, v] 

[f 1 , f 2 ] = f 4 , [f 1 , f 3 ] = f 5 , [f 2 , f 4 ] = f 6 , [f 3 , f 5 ] = -f 6
and the metric is given by :

, := f * 1 ⊗ f * 1 + 2f * 2 ⊗ f * 2 + 2f * 3 ⊗ f * 3 + 4α 4 f * 6 ⊗ f * 6 -2α 2 f * 4 f * 5 , α 0. ( 3.1) 
(ii) dim h = 7 and h is isomorphic to the nilpotent Lie algebras 147E found in the classification given in [START_REF] Gong | Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Field and R)[END_REF](p. 57). In precise terms, there exists a basis {f i } 7 i=1 of h where the non vanishing Lie brackets are given by :

[f 1 , f 2 ] = f 5 , [f 1 , f 3 ] = f 6 , [f 2 , f 3 ] = f 4 , [f 6 , f 2 ] = (1 -r)f 7 , [f 5 , f 3 ] = -rf 7 , [f 4 , f 1 ] = f 7 , (3.2)
with 0 < r < 1, and the metric has the form:

, = f * 1 ⊗ f * 1 + f * 2 ⊗ f * 2 + f * 3 ⊗ f * 3 -af * 4 ⊗ f * 4 + arf * 5 ⊗ f * 5 + a(1 -r)f * 6 ⊗ f * 6 + a 2 f * 7 ⊗ f * 7 , a > 0. (3.3)
Outline We shall adopt the notations and results introduced in Chapter 2 as the content of this chapter is an extension of the previous study. In Section 3.2, we describe an Einstein Lorentzian nilpotent Lie algebra h with non-degenerate center by means of its center, a nilpotent Lorentzian Lie algebra g of lower order, and a 2-cocycle ω ∈ Z 2 (g, Z(h)), Any nilpotent Lie algebra can be obtained by Skjelbred-Sund's method, namely, by an extension from a nilpotent Lie algebra of lower dimension and a 2-cocycle with values in a vector space (see [START_REF] De Graaf | Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2[END_REF]). We will adapt this method to our study.
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N O N D E G E N E R AT E C E N T E
Let (h, , h ) be a Lorentzian k-step nilpotent Lie algebra of dimension n with nondegenerate Euclidean center Z(h) of dimension p ≥ 1. The restriction of , to Z(h) is denoted , z , we also set g := Z(h) ⊥ and let , g be the restriction of , to g. Then:

h = g ⊥ ⊕ Z(h),
where (Z(h), , z ) is a Euclidean vector space and (g, , g ) is a Lorentzian vector space.

Moreover, for any u, v ∈ g, we have:

[u, v] = [u, v] g + ω(u, v), (3.4)
where [u, v] g ∈ g and ω(u, v) ∈ Z(h). The Jacobi identity applied to [ , ] is easily seen equivalent to (g, [ , ] g ) being a Lie algebra and ω : g×g -→ Z(h) a 2-cocycle of g with respect to the trivial representation of g in Z(h) (see Appendix A), namely for any u, v, w ∈ g,

ω([u, v] g , w) + ω([v, w] g , u) + ω([w, u] g , v) = 0.
The following properties can be derived immediately from (3.4):

Z(g) ∩ ker ω = {0} and C (h) := [ C -1 (h), h] = C (g) + ω( C -1 (g), g), (3.5) 
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for any We can now proceed to the important step, which is to express the Ricci curvature of h in terms of its attributes (g, , g , [ , ] g ), (Z(h), , z ) and ω ∈ Z 2 (g, Z(h)). For any u ∈ g, we consider ω u : g -→ Z(h), v -→ ω(u, v) and its transpose ω * u : Z(h) -→ g given by:

ω * u (x), v g = ω(u, v), x z .
For any x ∈ Z(h), we define S x : g -→ g by:

S x (u) = ω * u (x). (3.6)
It is clear that S x is skew-symmetric. Recall that, for any u ∈ g, we denote by J u : g -→ g the skew-symmetric endomorphism given by J u (v) = ad * v (u). On the other hand, define the endomorphism D : g -→ g by:

Du, v g = tr(ω * u • ω v ). (3.7)
It is clear that D is symmetric with respect to , g . Let (z 1 , . . . , z p ) be a basis of Z(h).

Since , is non-degenerate, there exists a unique family (S 1 , . . . , S p ) of skew-symmetric endomorphisms such that, for any u, v ∈ g,

ω(u, v) = p i=1 S i u, v g z i . (3.8)
This family will be called ω-structure endomorphisms associated to (z 1 , . . . , z p ). A direct computation using (3.7) and (3.8) shows that

D = - i,j z i , z j z S i • S j . (3.9)
This operator has an interesting property. 

ω(ad * u v, w) + ω(v, ad * u w) = 0 (3.10)
for any u, v, w ∈ g, then D given in (3.7) is a derivation of (g, [ , ] g ).

Proof. Since ω is a 2-cocycle then ω [u,v] g = ω u • ad v -ω v • ad u , thus for any u, v, w ∈ g: D[u, v] g , w = tr(ω [u,v] g • ω * w ) = tr(ω u • ad v • ω * w ) -tr(ω v • ad u • ω * w ).
On the other hand, we get in view of (3.10):

[Du, v] g , w g + [u, Dv] g , w g = -tr(ω ad * v w • ω * u ) + tr(ω ad * u w • ω * v ), = tr(ω w • ad * v • ω * u ) -tr(ω w • ad * u • ω * v ),
This proves the claim Proposition 3.2.2. Let (h, [ , ], , ) be a Lorentzian nilpotent Lie algebra with Euclidean center and attributes (g, [ , ] g , , g ) and ω ∈ Z 2 (g, Z(h)). Its Ricci curvature ric h is given by:

ric h (u, v) = ric g (u, v) - 1 2 tr(ω * u • ω v ), u, v ∈ g, ric h (x, y) = - 1 4 tr(S x • S y ), x, y ∈ Z(h), ric h (u, x) = - 1 4 tr(J u • S x ), x ∈ Z(h), u ∈ g,
where ric g is the Ricci curvature of (g, [ , ] g , , g ) and S x : g -→ g is the endomorphism defined in (3.6).

Proof. According to (1.3), for any a, b ∈ h,

ric h (a, b) = - 1 2 tr(ad h a • (ad h b ) * ) - 1 4 tr(J h a • J h b ),
where ad h a :

h -→ h, b → [a, b] and J h a : h -→ h, b → (ad h b ) * (a)
. The desired formula will be a consequence of this one and the following relations. For any u ∈ g, x ∈ Z(h), with respect to the splitting h = g ⊕ Z(h), we have:

ad h u =       ad g u 0 ω u 0       , J h u =       J g u 0 0 0       , J h x =       S x 0 0 0       and ad h x = 0.
The claim is then a matter of simple computation.

Corollary 3.2.1. (h, [ , ],

, h ) is λ-Einstein if and only if for any u, v ∈ g and x, y ∈ Z(h), Suppose now that h is 3-step nilpotent. Then g is 2-step nilpotent and so [g, g] g ⊂ Z(g).

ric g (u, v) = λ u, v g + 1 2 tr(ω * u • ω v ), tr(J u • S x ) = 0 and tr(S x • S y ) = -4λ x,
Let x ∈ Z(g) ∩ [g, g] ⊥ g . Since ad x = 0 and J x = 0, by virtue of (1.3) , Ric g (x) = 0. If λ ≥ 0, the first equation of system (3.11) gives that :

0 ≤ λ x, x = - 1 2 tr(ω * x • ω x ) := Q.
Since ω is a 2-cocycle, ω(Z(g), [g, g] g ) = 0 and hence

Q = - 1 2 m i=1 ω(x, f i ), ω(x, f i ) ≤ 0
where {f 1 , . . . , f m } is an orthonormal basis of [g, g] ⊥ g . It follows that x ∈ Z(g) ∩ ker ω and hence x = 0 by virtue of (3.5). Thus Z(g) = [g, g] g .

Theorem 3.2.1. Let h be a λ-Einstein Lorentzian 3-step nilpotent Lie algebra with nondegenerate center. Then λ ≥ 0.
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Proof. According to (3.11), since h is λ-Einstein then:

Ric g = λId g + 1 2
D and tr(S x • S y ) = -4λ x, y z , (3.12)

for any x, y ∈ Z(h), where g and ω are the attributes of h (cf. Definition 3.2.1) and S x is the operator defined in (3.6). By virtue of Proposition 3.2.5, [g, g] is nondegenerate Lorentzian and hence g = [g, g] ⊕ [g, g] ⊥ . We choose an orthonormal basis B 0 = (e 1 , . . . , e s ) of [g, g] such that e 1 , e 1 g = -1 and an orthonormal basis B 1 = (z 1 , . . . , z p ) of Z(h) and we consider the Lie structure endomorphisms (J 1 , . . . , J s ) associated to B 0 and given by (2.7) and (S 1 , . . . , S p )

the ω-structure endomorphisms associated to B 1 and given by (3.8).

Since g is 2-step nilpotent then [g, g] ⊂ Z(g), hence J i ([g, g]) = 0 for any i = 1, . . . , s. Furthermore, J i is skew-symmetric so it must leave [g, g] ⊥ invariant, we shall denote its restriction to [g, g] ⊥ by J i as well. Next, since ω is a 2-cocycle then ω(Z(g), [g, g]) = 0, hence by virtue of (3.8) we get that S i ([g, g]) ⊂ [g, g] ⊥ for any i = 1, . . . , p, we denote B i : [g, g] -→ [g, g] ⊥ the resulting linear map. Since S i is skew-symmetric, then for any u ∈ [g, g] ⊥ , S i u = -B * i u+D i u where D i : [g, g] ⊥ -→ [g, g] ⊥ is skew-symmetric. Using (1.5), (2.9) and (3.9), we deduce that (3.12) is equivalent to:

                         - 1 2 J 2 1 + 1 2 s i=2 J 2 i + 1 2 p i=1 (D 2 i -B i B * i ) = λId [g,g] ⊥ . s i,j=1
e i , . tr(J i • J j )e j + 2

p i=1 B * i B i = -4λId [g,g] .
tr(D i D j ) -2tr(B * i B j ) = -4λδ ij , i, j = 1, . . . , p.

(3.13)

By taking the trace of the first two equations and using the third one we obtain that:

p i=1 tr(D 2 i ) = -4(2s + m + 3p)λ, m = dim[g, g] ⊥ .
But [g, g] ⊥ is a Euclidean vector space and D i : [g, g] ⊥ -→ [g, g] ⊥ is skew-symmetric and hence tr(D 2 i ) ≤ 0 which completes the proof.

To sum up the results of this section, we reduced the study of Einstein Lorentzian kstep nilpotent Lie algebras to the study of a class of Lorentzian (k -1)-step nilpotent Lie algebras endowed with a 2-cocycle with values in a Euclidean vector space, which in some cases can be Ricci-soliton. It is natural to give a name to this class of Lie algebras.

Definition 3.2.2. A pseudo-Euclidean Lie algebra (g, [ , ] g , , g ) will be called ω-quasi Einstein of type p if there exists λ ∈ R and a 2-cocycle ω : g × g -→ V with values in a Euclidean vector space (V , , z ) of dimension p such that ker ω ∩ Z(g) = {0} and:

Ric g = λId g + 1 2 D, tr(S x • S y ) = -4λ x, y z C H A P T E R 3 . E I N S T E I N LO R E N T Z I A N 3 -N I L P O T E N T L I E G R O U P S
where S x : g -→ g is the ω-structure endomorphism corresponding to x ∈ V i.e (3.6) and D is the linear operator given by:

Du, v g = tr(ω * u • ω v ) such that ω u : g -→ V , v → ω(u, v).

Type 1 quasi-Einstein Lorentzian 2-nilpotent Lie algebras

In this section, having in mind Proposition 3. Let (g, [ , ] g , , g ) be a 2-step nilpotent Lie algebra such that

Z(g) = [g, g] is non-degenerate Lorentzian. Put n = dim[g, g] and m = dim[g, g] ⊥ .
Suppose that g is ω-quasi Einstein of type 1 with Einstein constant λ ≥ 0. Denote S : g → g the skew-symmetric endomorphism given by ω

(u, v) = Su, v g . Since ω is a 2-cocycle and [g, g] ⊂ Z(g) then S([g, g]) ⊂ [g, g] ⊥ , this gives rise to a linear map B : [g, g] -→ [g, g] ⊥ .
The condition Z(g) ∩ ker ω = {0} implies that B is injective. On the other hand, the skewsymmetry of S gives that, for any u ∈ [g, g] ⊥ , Su = -B * u + Lu where L is a skew-symmetric endomorphism of [g, g] ⊥ . Now consider the endomorphism D associated to ω and given by formula (3.7). According to (3.9), D = -S 2 and hence

Du =          B * Bu -LBu if u ∈ [g, g], B * Lu + BB * u -L 2 u if u ∈ [g, g] ⊥ .
The fact that g is ω-quasi Einstein is equivalent to

- 1 2 J 1 + 1 4 J 2 - 1 2 D = λId g , tr(S 2 ) = -4λ, (3.14) 
where, by virtue of (1.5), Ric g = -1 2 J 1 + 1 4 J 2 . Let us proceed now to a crucial step which is not possible to perform when ω has its values in a vector space of dimension ≥ 2.

We consider the symmetric endomorphism on [g, g] given by A = B * B. Since B is injective and [g, g] ⊥ is non-degenerate Euclidean, we have Au, u g > 0 for any u ∈ g \ {0}. There are only two categories of nondiagonalizable symmetric endomorphisms on a Lorentzian vector space (see Appendix B, Theorem B.4.2). Those which have an isotropic eigenvector or those which have two linearly orthogonal vectors (e, f ) such that e, e = 1, f , f = -1 with T (e) = aebf and T (f ) = be + af . The fact that A is positive definite prevents it to be of these types and hence A is diagonalizable in an orthonormal basis B 1 = (e 1 , . . . , e n ) of [g, g] such that e 1 , e 1 g = -1. Let (J 1 , . . . , J n ) be the structure endomorphisms associated to B 1 . Note that the J i vanishes on [g, g] ⊂ Z(g) and hence leaves invariant [g, g] ⊥ . We Based on this theorem, the following lemma is a breakthrough in our study. Lemma 3.3.1. Let M 1 , . . . , M n be a family of skew-symmetric m × m matrices with 2 ≤ n ≤ m and let (v 1 , . . . , v m-n ) be a family of nonpositive real numbers such that :

M 2 1 - n l=2 M 2 l = Diag - 1 2 tr(M 2 1 ), 1 2 tr(M 2 2 ), . . . , 1 2 tr(M 2 n ), v 1 , . . . , v m-n . (3.18) Then (v 1 , . . . , v m-n ) = (0, . . . , 0), λ 1         n l=2 M 2 l         = n l=2 λ 1 (M 2 l ).
Moreover, for any i ∈ {2, . . . , n}, rank(M i ) ≤ 2.

Proof. Denote by M the right-hand side of equation (3.18). By taking the trace of (3.18)

we get :

tr(M 2 1 ) - n l=2 tr(M 2 l ) = 2 3 m-n i=1 v i ≤ 0. (3.19) 
For i = 1, . . . , n, M 2 i is the square of a skew-symmetric matrix so its eigenvalues are real non-positive and satisfies:

λ 2k-1 (M 2 i ) = λ 2k (M 2 i ), k ∈ 1, . . . , m 2 . ( 3.20) 
Clearly -1 2 tr(M 2 1 ) is the only non-negative eigenvalue of M and thus λ m (M) = -1 2 tr(M 2 1 ). Theorem 3.3.1 applied to (3.18) gives that:

λ m (M) + λ 1        n l=2 M 2 l        a ≤ λ m (M 2 1 ) ≤ λ m (M) + λ m        n l=2 M 2 l        b . ( 3.21) 
and

λ m-1 (M) + λ 1        n l=2 M 2 l        c ≤ λ m-1 (M 2 1 ) ≤ λ m-1 (M) + λ m        n l=2 M 2 l        d . (3.22)
Suppose that m is odd. In this case λ m (M 2 1 ) = 0 and, by applying Theorem 3.3.1 inductively and using (3.20), we get that :

1 2 n l=2 tr(M 2 l ) ≤ 1 2 n l=2 (λ 1 (M 2 l ) + λ 2 (M 2 l )) = n l=2 λ 1 (M 2 l ) ≤ λ 1        n l=2 M 2 l        .
As a consequence of this inequality and the fact that λ m (M) = -1 2 tr(M 2 1 ), we get

- 1 2 tr(M 2 1 ) + 1 2 n l=2 tr(M 2 l ) ≤ λ m (M) + λ 1        n l=2 M 2 l        (3.21) ≤ λ m (M 2 1 ) ≤ 0,
On the other hand, Theorem 3.3.1 once more shows that λ m

( n l=2 M 2 l ) ≤ n l=2 λ m (M 2 l ) ≤ 0, moreover λ m-1 (M) ≤ 0, so (3.23) implies that: - 1 2 n l=2 tr(M 2 l ) - 1 3 m-n i=1 v i + λ 1        n l=2 M 2 l        ≤ 0, (3.24) 
Theorem 3.3.1 also implies that λ 1

       n l=2 M 2 l        ≥ n l=2 λ 1 (M 2 l
) and hence:

- 1 2 n l=2 tr(M 2 l ) - 1 3 m-n i=1 v i + λ 1        n l=2 M 2 l        ≥ - 1 2 n l=2 tr(M 2 l ) - 1 3 m-n i=1 v i + n l=2 λ 1 M 2 l ≥ - 1 2 n l=2 m k=1 λ k (M 2 l ) - 1 3 m-n i=1 v i + n l=2 λ 1 (M 2 l ) (3.20) ≥ - n l=2 [ m 2 ] k=1 λ 2k-1 (M 2 l ) - 1 3 m-n i=1 v i + n l=2 λ 1 (M 2 l ) ≥ - n l=2 [ m 2 ] k=2 λ 2k-1 (M 2 l ) - 1 3 m-n i=1 v i ≥ 0.
Again we get that v i = 0 for all 1 ≤ i ≤ mn. To conclude, without any assumption on m, equation (3.21) gives:

0 ≥ λ m (M) + λ 1        n l=2 M 2 l        = - 1 2 tr(M 2 1 ) + λ 1        n l=2 M 2 l        = - 1 2 n l=2 tr(M 2 l ) + λ 1        n l=2 M 2 l        = λ 1        n l=2 M 2 l        - 1 2 n l=2 m k=1 λ k (M 2 l ) = λ 1        n l=2 M 2 l        - n l=2 λ 1 (M 2 l ) - 1 2 n l=2 m k=3 λ k (M 2 l ) ≥ 0 As a result λ 1 ( n l=2 M 2 l ) = n l=2 λ 1 (M 2 l
) and λ k (M 2 l ) = 0 for all k = 3, . . . , m and l = 2, . . . , n, which completes the proof.
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If we apply this lemma to our study, we get that λ = 0, L = 0 and (J 2 , . . . , J n ) have rank 2 and

satisfy λ 1 ( n i=2 J 2 i ) = n i=2 λ 1 (J 2 i ).
The following lemma will give us a precise description of the endomorphisms (J 2 , . . . , J n ). Lemma 3.3.2. Let V be an m-dimensional Euclidean vector space and K 1 , . . . , K n : V -→ V be skew-symmetric endomorphisms with n < m. Assume that rank(K i ) = 2 and tr(K i • K j ) = 0 for all i j and that:

λ 1 (K) = n i=1 λ 1 K 2 i with K := n i=1 K 2 i .
Then we can find an orthonormal basis {u 0 , . . . , u n , v 1 , . . . , v m-n-1 } such that for all 1 ≤ i, j ≤ n and all 1 ≤ l ≤ mn -1:

K i (u 0 ) = α i u i , K i (u j ) = -δ ij α i u 0 and K i (v l ) = 0.
Proof. Consider E := ker(Kλ 1 (K)Id V ) and denote E i := Im(K i ), for all i = 1, . . . , n. Note that E i is a 2-plane and there exists a

α i ∈ R \ {0} such that for any u ∈ E i , K 2 i (u) = -α 2 i u and λ 1 (K 2 i ) = -α 2 i . We claim that E ⊂ n i=1 E i .
Indeed, let u ∈ E and for each i = 1, . . . , n choose an orthonormal basis (e i , f i ) of E i and write:

u = u, e i e i + u, f i f i + v i and v i ∈ E ⊥ i . Since λ 1 (K) = -α 2 1 -. . . -α 2 n , we get - n i=1 α 2 i u, u = K 2 (u), u = n i=1 K 2 i (u), u .
But K 2 i (u) = -α 2 i ( u, e i e i + u, f i f i ) and hence

K 2 i (u), u = -α 2 i u, e i 2 + u, f i 2 . So 0 = n i=1 α 2 i ( u, u -u, e i 2 -u, f i 2 ) = n i=1 α 2 i v i , v i = 0.
Thus v 1 , . . . , v n = 0 and the claim follows.

Choose u 0 ∈ E such that u 0 , u 0 = 1. Then clearly (u 0 , K i (u 0 )) is an orthogonal basis of E i . Complete this basis in order to get an orthonormal basis (u 0 , u i , f 1 , . . . , f m-2 ) of V

with u i = 1 |K i (u 0 )| K i (u 0 ). We have K i (f k ) = 0 for k = 1, .
. . , m -2 and hence for i, j ∈ {1, . . . , n} such that i j:

0 = tr(K i • K j ) = -K j (u 0 ), K i (u 0 ) -K j (u i ), K i (u i ) = -K j (u 0 ), K i (u 0 ) + α 2 i |K i (u 0 )| K j (u i ), u 0 = -       1 + α 2 i |K i (u 0 )| 2       K j (u 0 ), K i (u 0 ) .
So the family (u 0 , K 1 (u 0 ), . . . , K n (u 0 )) is orthogonal, we orthonormalize it and complete it to get the desired basis.
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The relevance of the following lemma will appear later.

Lemma 3.3.3. Consider the following system of matrix equations on R 2k :

       K 2 = P -1 AP + A αK = AP -P -1 A (3.25)
where K is an invertible skew-symmetric matrix, P an orthogonal matrix,

A = diag(-α 2 1 , . . . , -α 2 2k ) with α i 0 and α = ± α 2 1 + • • • + α 2 2k
. Then k = 1, in which case we get that :

A =       -α 2 1 0 0 -α 2 2       , K =          0 α 2 1 + α 2 2 -α 2 1 + α 2 2 0          and P =       0 ∓ ± 0       , = ±1. (3.26)
Proof. To prove the Lemma we reason by contradiction and assume that (K, A, P ) is a solution of (3.25) and k > 1. To get a contradiction, we prove first that K 2 and A commute and hence A and P -1 AP commute as well.

Let λ 1 < . . . < λ r < 0 be the different eigenvalues of K 2 and E 1 , . . . , E r the corresponding vector eigenspaces. Since K is skew-symmetric invertible and tr(K 2 ) = -2α 2 , we have:

R 2k = E 1 ⊕ . . . ⊕ E r , dim E i = 2p i and 2 r i=1 p i λ i = -2α 2 . ( 3.27) 
According to (3.25), P -1 AP + A and AP -P -1 A commutes and hence:

A(P + P -1 )A = P -1 A(P + P -1 )AP .

Moreover the first equation of system (3.25) implies that:

K 4 = P -1 A 2 P + A 2 + AP -1 AP + P -1 AP A
and the second equation of (3.25) along with the preceding remarks give that:

α 2 K 2 = AP AP + P -1 AP -1 A -A 2 -P -1 A 2 P = AP AP + P -1 AP -1 A + AP -1 AP + P -1 AP A -K 4
= (AP + AP -1 )AP + P -1 A(P -1 A + P A) -K 4 = A(P + P -1 )AP + P -1 A(P -1 + P )A -K 4 = A(P + P -1 )A(P + P -1 ) -K 4 .

Therefore we get that K 2 (K 2 + α 2 Id) = A(P + P -1 )A(P + P -1 ) which leads to:

A -1 K 2 (K 2 + α 2 Id) = (P + P -1 )A(P + P -1 ).

(3.28) But P -1 = P t and the endomorphism at the right hand side of the previous equality is symmetric. This implies that A -1 and therefore A commutes with K 2 (K 2 + α 2 Id). We now show that A commutes with K 2 . If K 2 is proportional to Id this is obviously true.

Suppose that K 2 has at least two distinct eigenvalues, i.e., r ≥ 2. For any i, j ∈ {1, . . . , r} and for any v ∈ E i , w ∈ E j , we have:

AK 2 (K 2 + α 2 Id)(v), w = λ i (λ i + α 2 ) Av, w = K 2 (K 2 + α 2 Id)A(v), w = K 2 (K 2 + α 2 Id)w, A(v) = λ j (λ j + α 2 ) Av, w .
Thus (λ iλ j )(λ i + λ j + α 2 ) Av, w = 0. But from (3.27), we get:

2(λ i + λ j + α 2 ) = -2(p i -1)λ i -2(p j -1)λ j -2 l i,l j p l λ l ≥ 0.
If k > 2 then the last two relations implies that A(E i ), E j = 0 for i j and hence

A(E i ) = E i for i = 1, . . . , r. So A commutes with K 2 . If k = 2 then r = 2, dim E 1 = dim E 2 = 2 and λ 1 + λ 2 = -α 2 . From R 2k = E 1 ⊕ E 2 one can deduce easily that K 2 (K 2 + α 2 Id) = -λ 1 λ 2 Id
and by replacing in (3.28) we get:

A(P + P -1 ) = -λ 1 λ 2 (P + P -1 ) -1 A -1 .
Now for any u ∈ R 2k we get that: 0 ≥ A(P +P -1 )(u), (P +P -1 )(u) = -λ 1 λ 2 (P +P -1 ) -1 A -1 (u), (P +P -1 )(u) = -λ 1 λ 2 A -1 (u), u ≥ 0, this means that A -1 (u), u = 0 which is impossible since A is negative definite.

In conclusion A commutes with K 2 and hence A commutes with P -1 AP so that there exists an orthonormal basis {v 1 , . . . , v 2k } of R 2k in which both A and P -1 AP are diagonal.

For any i ∈ {1, . . . , 2k} we can therefore write:

Av i = -α 2 i v i and P -1 AP (v i ) = -α 2 σ (i) v i
for some permutation σ of {1, . . . , 2k}. The second equation of (3.25) gives that:

αK(v i ) = AP (v i ) -P -1 A(v i ) = -α 2 σ (i) P (v i ) + α 2 i P -1 (v i ),
for any i ∈ {1, . . . , 2k}. Thus:

α 2 K(v i ), K(v i ) = α 4 σ (i) + α 4 i -2α 2 σ (i) α 2 i P 2 (v i ), v i . (3.29)
Assume that σ (i) = i for some i ∈ {1, . . . , 2k}. It follows from the first equation of (3.25) that -2α 2 i should be an eigenvalue of K 2 and so it must have multiplicity greater than 2, but since k > 1 we deduce that tr(K 2 ) < -4α 2 i . On the other hand, equation (3.29) and the first equation of (3.25) imply that:

α 2 K(v i ), K(v i ) = 2α 4 i (1 -P 2 (v i ), v i ) and -K(v i ), K(v i ) = K 2 (v i ), v i = -2α 2 i .
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Combining these equations we obtain that α 2 = α 2 i (1-P 2 (v i ), v i ) and the Cauchy-Schwarz inequality | P 2 (v i ), v i | ≤ v i P 2 v i = 1 implies that 0 ≤ 1 -P 2 (v i ), v i ≤ 2 which in turn gives that 0 ≤ α 2 ≤ 2α 2 i . Finally using that tr(K 2 ) = -2α 2 we conclude that -4α 2 i ≤ tr(K 2 ), and we get a contradiction. Thus σ (i) i for all i = 1, . . . , 2k. 2 and equation (3.29) we get:

From 2k i=1 K(v i ), K(v i ) = -tr(K 2 ) = 2α
2α 4 = 2 2k i=1 α 4 i -2 2k i=1 α 2 σ (i) α 2 i P 2 (v i ), v i .
Now:

α 4 - 2k i=1 α 4 i = (α 2 1 + . . . + α 2 2k ) 2 - 2k i=1 α 4 i = i j α 2 i α 2 j = 2k i=1 α 2 i α 2 σ (i) + j i,j σ (i) α 2 i α 2 j .
So we obtain that:

0 ≤ j i,σ (i) α 2 i α 2 j = - 2k i=1 α 2 i α 2 σ (i) ( P 2 (v i ), v i + 1) ≤ 0,
the right hand side of the previous equality is negative as a consequence of the Cauchy-

Schwarz inequality | P 2 (v i ), v i | ≤ v i P 2 v i = 1 which implies that 0 ≤ P 2 (v i ), v i + 1 ≤ 2.
Thus

j i,σ (i)
α 2 i α 2 j = 0, but this contradicts the fact that A is invertible. We conclude that k = 1 and in this case we can put:

A =       -α 2 1 0 0 -α 2 2       , K =       0 β -β 0       and P =       cos(θ) -sin(θ) sin(θ) cos(θ)       .
We get that system (3.25) is equivalent to :

                             β 2 -α 2 1 -(α 2 1 cos 2 (θ) + α 2 2 sin 2 (θ)) = 0 β 2 -α 2 2 -(α 2 1 sin 2 (θ) + α 2 2 cos 2 (θ)) = 0 cos θ sin θ(α 2 2 -α 2 1 ) = 0 ±β α 2 1 + α 2 2 -(α 2 1 + α 2 2 ) sin θ = 0.
By summing over the first two equations in the previous system and replacing in the last equation we obtain that β = α 2 1 + α 2 2 , sin θ = ± and cos θ = 0 with = ±1, which ends the proof. 1. dim g = 5 and there exists an orthonormal basis {e 1 , e 2 , u 1 , u 2 , u 3 } of g with e 1 , e 1 = -1 such that the non vanishing Lie brackets and ω-products are given by :

[u 1 , u 2 ] = αe 2 , [u 2 , u 3 ] = ±αe 1 , ω(e 2 , u 3 ) = α, ω(e 1 , u 1 ) = ∓ α, α 0, = ±1.
(3.30) 2. dim g = 6 and there exists an orthonormal basis {e 1 , e 2 , e 3 , u 1 , u 2 , u 3 } of g, e 1 , e 1 = -1, such that the non-vanishing Lie brackets and ω-products are given by :

         [u 1 , u 2 ] = α 2 e 2 , [u 1 , u 3 ] = α 3 e 3 , [u 2 , u 3 ] = αe 1 , ω(e 2 , u 3 ) = ∓ α 2 , ω(e 3 , u 2 ) = ± α 3 , ω(e 1 , u 1 ) = ±α, (3.31)
where α 2 , α 3 0, = ±1 and α = α 2 2 + α 2 3 .

Proof. We keep the notations from the beginning of section 3.3. The structure endomorphisms (J 2 , . . . , J n ) have been shown to satisfy the hypothesis of Lemma 3.3.2, therefore we can find an orthonormal basis (u 1 , u 2 , . . . , u n , v 1 , . . . , v m-n ) of [g, g] ⊥ and (α 2 , . . . , α n ) ∈ R n such that, for all 2 ≤ i, j ≤ n and all 1 ≤ k ≤ mn:

J i (u 1 ) = α i u i , J i (u j ) = -δ ij α i u 1 , α i 0 and J i (v k ) = 0. Put J = n i=2 J 2 i , it is clear that for all 2 ≤ i ≤ n and all 1 ≤ k ≤ m -n: J(u 1 ) = -(α 2 2 +. . .+α 2 n )u 1 , J(u i ) = -α 2 i u i , J(v k ) = 0, tr(J 2 1 ) = -2(α 2 2 +. . .+α 2 n ) and tr(J 2 i ) = -2α 2 i . (3.32) Consider B 2 = (f 1 , . . . , f n ) := B(e 1 )
|B(e 1 )| , . . . ,

B(e n )

|B(e n )| . By virtue of equation (3.17), we get that for any i = 2, . . . , n and any v ∈ {f 1 , . . . , f n } ⊥ :

J 2 1 (f 1 ) = J(f 1 ) - 1 2 tr(J 2 1 )f 1 , J 2 1 (f i ) = J(f i ) + 1 2 tr(J 2 i )f i and J 2 1 (v) -J(v) = 0. (3.33)
Since λ 1 (J) = 1 2 tr(J 2 1 ), we deduce that:

J 1 (f 1 ), J 1 (f 1 ) = -J(f 1 ), f 1 + λ 1 (J) ≤ 0
and hence:

J 1 (f 1 ) = 0 and J(f 1 ) = λ 1 (J)f 1 .
But (3.32) shows that the multiplicity of λ 1 (J) is equal to one and hence f 1 = ±u 1 . Let us show that the restriction of J 1 to f ⊥ 1 is invertible. We have from (3.15) that:

J 2 1 = J -BB *
and from (3.16) the restriction of BB * to f ⊥ 1 is positive so if u ∈ f ⊥ 1 and J 1 u = 0 we get:

n i=2 J i u, J i u + BB * (u), u = 0 therefore u ∈ ∩ n i=1 ker J i = Z(g) = [g, g]
and so u = 0. It follows that J 1 : f ⊥ 1 -→ f ⊥ 1 is invertible and thus m must be odd. In view of the last equation of (3.33) along with the fact that f 1 = ±u 1 , we obtain that J 2 1 ({f 1 , . . . , f n } ⊥ ) ⊂ span{u 2 , . . . , u n }, the preceding remark then leads to mn ≤ n -1 thus m ≤ 2n -1.

For convenience we set w i := B(e i ) for i = 1, . . . , n. From (3.16) we get:

w i , w i = - 1 2
tr(J 2 i ) and w i , w j = 0, i j.

So BB * (x) = -(α 2 2 + • • • + α 2 n ) x, u 1 u 1 + n i=2
x, w i w i .

(3.34)

The fact that B defines a 2-cocycle is equivalent to:

n i=1 ( J i u, v w i + w i , u J i v -w i , v J i u) = 0, u, v ∈ [g, g] ⊥ .
If we apply this equation to u = u 1 we get:

w 1 , u 1 J 1 v = - n i=2 (α i u i , v w i -α i w i , v u i ) .
From the definition of w 1 we get that w 1 , u 1 = ± α 2 2 + • • • + α 2 n and therefore the previous equation gives that:

J 1 = ± 1 α 2 2 + . . . + α 2 n n i=2 α i u i ∧ w i . (3.35)
Actually this is equivalent to B being a 2-cocycle. The expression of BB * given in (3.34) leads to: 

J 2 1 - q i=2 J 2 i = (α 2 2 + . . . + α 2 n ) x, u 1 u 1 - n i=2
J 1 w l = aα 3 l u l -a n i=2 α i u i , w l w i , J 1 u l = -aα l w l + a n i=2 α i w i , u l u i , J 1 v k = a n i=2 α i w i , v k u i , (3.37) 
Now using (3.36) and then (3.37), it is straightforward to check that:

J 2 1 v k , v k = - n l=2 w i , v k 2 = a n i=2 α i w i , v k J 1 u i , v k = -a 2 n l=2 α 2 i w i , v k 2 .
So we conclude that:

n l=2 (1 -a 2 α 2 i ) w i , v k 2 = 0.
Thus either n = 2 or n ≥ 3 and w i , v k = 0 for i = 1, . . . , n and v k = 1, . . . , mn. So we get that either n = 2 or n ≥ 3 and m = n.

For n = 2, we have m = 3, (e 1 , e 2 ) is an orthonormal basis of [g, g] such that e 1 , e 1 = -1 and (u 1 , u 2 , v) is an orthonormal basis of [g, g] ⊥ , moreover B(e 1 ) = au 1 , B(e 2 ) = bv.

J 2 =            0 -α 0 α 0 0 0 0 0            and J 1 = bu 2 ∧ v =            0 0 0 0 0 b 0 -b 0            and a 2 = b 2 = α 2 .
This automatically leads to (3.30). For n ≥ 3, we have n = m = 2k + 1. Recall that:

[u, v] =            n i=1 J i (u), v e i , u, v ∈ [g, g] ⊥ 0, otherwise , ω(u, v) =        B(u), v , u ∈ [g, g], v ∈ [g, g] ⊥

0, otherwise

From what have been shown so far, the only Lie brackets of g that do not automatically vanish are:

[u 1 , u i ] = J i (u 1 ), u i e i = α i e i and [u i , u j ] = J 1 (u i ), u j e 1 := β ij e 1 , for 2 ≤ i, j ≤ n, furthermore since J 1 is invertible on u ⊥ 1 it follows that K := (β ij ) i,j is a skew-symmetric invertible matrix. On the other hand, put P (f i ) := u i for 2 ≤ i ≤ m then it is clear that P := ( pij ) i,j is an orthogonal matrix, and a straightforward computation shows that B(e i ), u j = B(e i ), P (f j ) = i pji α i with i = ±1, note that P = ( j pij ) i,j is an orthogonal matrix as well. Next since f 1 = ±u 1 we get that:

B(e 1 ), u 1 = ± α 2 2 + • • • + α 2 n .
then the Lie algebra h is given by (3.2) with r = . Moreover if we set a = α 2 2 + α 2 3 then we get that , is given by (3.3).

We end our chapter by some examples of Einstein Lorentzian nilpotent Lie algebras with non-degenerate center of dimension greater that one, the goal is to illustrate that such Lie algebras do occur even in the 3-step nilpotent case. This gives motivation for a future investigation.

Example 2. Let h be the 8-dimensional nilpotent Lie algebra with Lie bracket [ , ] given in a basis B = {e 1 , . . . , e 8 } by : 

                       [e 1 , e 2 ] = -4 √ 3e 3 , [e 1 , e 3 ] = 5 
                   [e 1 , e 3 ] = -p 2 +
× g -→ g, (u, v) → [u, v] satisfying for any u, v, w ∈ g: [[u, v], w] + [[w, u], v] + [[v, w], u] = 0 (Jacobi Identity).
We shall use the term Lie algebra in order to refer to real Lie algebras. We say that a Lie algebra g is finite-dimensional when its underlying vector space is finite-dimensional.

Example 5.

1. Let V be an arbitrary (real) vector space and let End(V ) denote the set of all endomorphisms of V . Given u, v ∈ End(V ), define:

[u, v] := u • v -v • u. It is then straightforward to check that [ , ] : End(V ) × End(V ) -→ End(V ) defines a Lie bracket on End(V ). Furthermore (End(V ), [ , ]
) is a finite-dimensional Lie algebra if and only if V is a finite-dimensional vector space. When its Lie algebra structure is taken into account, the notation gl(V ) is used instead of End(V ).

2. Let M be a smooth manifold let χ(M) be the vector space of smooth vector fields on M. Re- call that vector fields can be identified with derivations of C ∞ (M). For any X, Y ∈ χ(M), let [X, Y ] be the vector field on M given as a derivation of C ∞ (M) by the expression:

[X, Y ](f ) := X(Y (f )) -Y (X(f )),
for any f ∈ C ∞ (M). One can easily check using local coordinate systems that the operation [ , ] : χ(M) × χ(M) -→ χ(M) defines a Lie bracket on χ(M). Moreover, the Lie algebra (χ(M), [ , ]) is infinite dimensional whenever dim M > 0.

A vector field X on a Lie group G is said to be left invariant if for any g ∈ G, we have:

X gx = T x g (X x ).
Recall that for any diffeomorphism f : G -→ G and any vector field X ∈ χ(G), one can define a vector field f * X on G by the expression (f * X) x := (T f -1 (x) f )(X x ). This gives rise to a Lie algebra isomorphism f * : χ(G) -→ χ(G), and it is clear that X is a left-invariant vector field (resp. right-invariant vector field) if and only if for any g ∈ G:

( g ) * X = X (resp. (r g ) * X = X). (A.2)
The set of left-invariant vector fields on G is denoted χ (G), moreover (A.2) shows that it is a Lie subalgebra of χ(G). In fact χ (G) is a finite-dimensional real vector space and moreover dim χ (G) = dim G, this is a consequence of the fact that the evaluation map

φ : χ (G) -→ T e G, X → X e
is a vector space isomorphism. The isomorphism φ allows to transport the Lie algebra structure of χ l (G) on T e G as follows: If we denote for all v ∈ T e G, v := φ -1 (v) ∈ χ l (G) we obtain a Lie algebra structure on T e G given by the bracket:

[v, w] := [v , w ] e .
We then call it the Lie algebra of G and we denote Lie(G) the couple (T e G, [ , ]).

Example 9.

1. The Lie algebra of GL(n, R) is exactly M n (R) endowed with the Lie bracket [ , ] given by:

[A, B] = A • B -B • A, for any A, B ∈ M n (R).
2. Let V be a finite-dimensional vector space, the Lie algebra of GL(V ) is exactly gl(V ).

3. Consider a finite-dimensional vector space V together with a non-degenerate bilinear form , . One can check that the Lie algebra of O(V , , ) is so(V , , ).

As for vector fields, one can define a differential form ω on G to be left invariant (resp.

right invariant) if it satisfies * g ω = ω (resp. r * g ω = ω) for any g ∈ G. The set of all leftinvariant forms is denoted Ω(G) , and one can show that it defines a differential subcomplex of the de Rham complex Ω dR (G), i.e it is stable under the de Rham differential and exterior products. Furthermore, if Λ p g * denotes the vector space of all p-forms on the Lie algebra g of G, with p ∈ N, and if we set Λg * := ⊕ p Λ p g * , then we get that:

ψ : Ω(G) -→ Λg * , ω → ω e ,
is a vector space isomorphism. So the study of left-invariant (resp. right-invariant) forms on a Lie group, reduces to the study of the exterior forms of its Lie algebra. 

(d p ρ ω)(X 0 , . . . , X p ) := p i=0 (-1) i (L X i ω)(X 0 , . . . , X i , . . . , X p ),
for any ω ∈ Ω p (M) and any X 0 , . . . , X p ∈ χ(M), where L X : Ω(M) -→ Ω(M) denotes the Lie derivative with respect to the vector field X.

We denote Z p ρ (g, V ) the vector space of all p-cocycles with values in the g-module (V , ρ) and B p ρ (g, V ) the space of all p-coboundaries with values in the g-module (V , ρ). It is clear from their given definitions that:

Z p ρ (g, V ) := ker d p ρ : C p (g, V ) -→ C p+1 (g, V ) and B p ρ (g, V ) := Im d p-1 ρ : C p-1 (g, V ) -→ C p (g, V ) . Moreover, the fact that d ρ : C(g, V ) -→ C(g, V ) is a differential operator, i.e d p ρ • d p-1 ρ = 0 for all p ∈ N * shows that B p ρ (g, V ) ⊂ Z p ρ (g, V )
. As a result, we define the p-th cohomology group of g, with values in the g-module (V , ρ) to be the vector space H p ρ (g, V ) consisting of all p-cocycles modulo p-coboundaries, namely:

H p ρ (g, V ) := Z p ρ (g, V )/B p ρ (g, V ) = ker d p ρ : C p (g, V ) -→ C p+1 (g, V ) Im d p-1 ρ : C p-1 (g, V ) -→ C p (g, V )
. When (V , ρ) is a trivial g-module, we shall use the symbol H p (g, V ) to denote the p-th cohomology of g. 1. Let G be a Lie group with Lie algebra g and let ρ : g -→ gl(1, R) be the trivial representation (cf. Example 14-1). The corresponding cohomology H(g, R) is called the cohomology of left-invariant forms of the Lie group G (see appendix C for more on left-invariant structures).

2. Let M be a smooth manifold and denote g := χ(M) and V := C ∞ (M). Example 14-2 shows in particular that the cohomology groups H p ρ (g, V ) corresponding to the natural representation ρ : g -→ gl(V ), ρ(X)(f ) := X(f ) are exactly the de Rham cohomology groups H p dR (M) of the manifold M.
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Example 16. Define on R p+q the bilinear form , p,q : R p+q × R p+q -→ R given by:

u, v p,q = p i=1 u i v i - p+q i=p+1 u i v i .
It is straightforward to check that (R p+q , , p,q ) is a Pseudo-Euclidean vector space.

Example 17. Recall that for any pseudo-euclidean vector space (E, , ) and for any f ∈ End(E), there exists a unique endomorphism

f * ∈ End(E) satisfying f (u), v = u, f * (v) for u, v ∈ E,
it is called the adjoint of f with respect to , . This allows one to define a symmetric bilinear form , # on End(E) by the expression:

f , g # := tr(f • g * ).
It is straightforward to check that , # is a pseudo-Euclidean inner product on End(E).

Let E be a vector space endowed with an inner product , . Two subsets A, B ⊂ E are said to be orthogonal (with respect to , ), if v, w = 0 for any v ∈ A and w ∈ B. The orthogonal of A in E is the vector subspace A ⊥ of E given by:

A ⊥ = {v ∈ E, v, a = 0 for any a ∈ A}. Proposition B.1.1.
Let (E, , ) be a pseudo-Euclidean vector space, and let A ⊂ E be any vector subspace of E, then dim A + dim A ⊥ = dim E. Denote A + the set of vector subspaces A ⊂ E such that the restriction , |A×A is positive definite. We also denote A -the set of vector subspaces A ⊂ V such that , |A×A is negative definite. Put: p := max A∈A + dim A and q := max A∈A -dim A The couple (p, q) is called the signature of (E, , ). Proposition B.1.2. Let (E, , ) be a pseudo-Euclidean vector space with signature (p, q) and let A be a vector subspace of E. Then p + q = dim E and dim(A ∩ A ⊥ ) ≤ min(p, q).

Let (E, , ) be a pseudo-Euclidean vector space, a vector subspace A ⊂ E is said to be non-degenerate in (E, , ) if A ∩ A ⊥ = {0}, or equivalently, the restriction , |A×A is nondegenerate. In this case, the property dim

A + dim A ⊥ = dim E implies that E = A ⊕ A ⊥ .
We say that A is totally isotropic if , |A×A = 0, or equivalently A ⊂ A ⊥ . If (p, q) denotes the signature of , , the previous Proposition shows that in this case dim A ≤ min(p, q). Proposition B.1.3. Let (E, , ) be a pseudo-Euclidean vector space, and W ⊂ V a vector subspace, then (W ⊥ ) ⊥ = W and E = W ⊕ W ⊥ if and only if W is non-degenerate. Proposition B.1.4. Let (E, , ) be a Pseudo-Euclidean vector space and A a nondegenerate vector subspace of E. Denote (p 1 , q 1 ) and (p 2 , q 2 ) the signatures of , |A×A and , |A ⊥ ×A ⊥ respectively. Then (p 1 + p 2 , q 1 + q 2 ) is the signature of (E, , ).

We say that two pseudo-Euclidean vector spaces (E 1 , , 1 ) and (E 2 , , 2 ) are isometric if there exists a vector space isomorphism φ : E 1 -→ E 2 satisfying for any u, v ∈ E 1 :

φ(u), φ(v) 2 = u, v 1 .
In the case where E 1 = E 2 := E and , 1 = , 2 := , , the endomorphism φ is then called an isometry of (E, , ) Theorem B.1.1. Two pseudo-Euclidean vector spaces (E 1 , , 1 ) and (E 2 , , 2 ) are isometric if and only if they have the same signature.

This shows that the signature is the only invariant for Pseudo-Euclidean vector spaces of the same dimension.

Definition B.1.3. A Pseudo-Euclidean vector space is called Euclidean if its signature is of the form (n, 0). It is called Lorentzian if its signature is of the form (n -1, 1). The class of Lorentzian vector spaces is a very special subclass of pseudo-Euclidean vector spaces.

Proposition B.1.5. Let (E, , ) be a Lorentzian vector space and let A be a non-degenerate vector subspace of E. Then A is either Euclidean or Lorentzian.

Proof. Denote (p, q) the signature of , |A×A and (p ⊥ , q ⊥ ) the signature of , |A ⊥ ×A ⊥ , according to Proposition B.1.4, the signature of (E, , ) is precisely (p+p ⊥ , q+q ⊥ ) = (n-1, 1) thus either q = 1, q ⊥ = 0 which gives that A is Lorentzian and A ⊥ is Euclidean, or q = 0 and q ⊥ = 1 which gives that A is Euclidean and A ⊥ is Lorentzian.

B.2 Orthonormal bases and pseudo-Euclidean bases

Let (E, , ) be a n-dimensional pseudo-Euclidean vector space of signature (p, q) and assume without loss of generality that p ≥ q. A family (u 1 , . . . , u s ) of vectors in E is called orthogonal if u i , u j = 0 for i j. It is called orthonormal if furthermore u i , u i ∈ {-1, 1}, any orthonormal family is automatically linearly independent. Proposition B.2.1. Let (E, , ) be a pseudo-Euclidean n-dimensional vector space with signature (p, q) and choose an orthogonal basis B = (e 1 , . . . , e n ) of (E, , ). Then e i , e i 0 and: p = card{i ∈ {1, . . . , n}, e i , e i > 0} and q = card{i ∈ {1, . . . , n} e i , e i < 0}.

It is worth to mention that a pseudo-Euclidean vector space (E, , ) always admits an orthogonal basis. This is due to the fact that for any non-degenerate vector subspaces A ⊂ E and B ⊂ A ⊥ , A ⊕ B is non-degenerate, therefore starting from a non-isotropic vector e 1 ∈ E one can find a non-isotropic vector e 2 ∈ e ⊥ 1 and by the previous observation span{e 1 , e 2 } is non-degenerate. Thus by an inductive argument one obtains an orthogonal basis, which

The following lemma is the key to reduce the symmetric and the skew-symmetric endomorphisms in a Euclidean or Lorentzian space.

Lemma B.3.1. Let φ : E -→ E be a (skew)-symmetric endomorphism on a pseudo-Euclidean vector space (E, , ). There exists a family {F 1 , . . . , F r } of φ-indecomposable vector subspaces such that :

V = F 1 ⊥ ⊕ . . . ⊥ ⊕ F r .
Remark 5. Let φ : E -→ E be a (skew)-symmetric endomorphism on a Pseudo-Euclidean vector space (E, , ) and let E = F 1 ⊕ • • • ⊕ F r be an orthogonal decomposition of E into φindecomposable vector subspaces. If (p i , q i ) denotes the signature of , F i ×F i then by applying Proposition B.1.4 inductively we get that (E, , ) has signature (p 1 + • • • + p r , q 1 + • • • + q r ). In particular, if (E, , ) is Lorentzian then only one of the subspaces F i is Lorentzian while the rest are Euclidean.

Let (E, , ) be a pseudo-Euclidean vector space, denote (p, q) its signature and fix an orthonormal basis B = e 1 , . . . , e p , f 1 , . . . , f q of E such that e i , e i = 1 and f j , f j = -1. Next let φ : E -→ E be an endomorphism of E, and write :

Mat(φ, B) =       A B C D      
It is clear that A ij = φ(e j ), e i , B ij = φ(f j ), e i , C ij =φ(e j ), f i and D ij =φ(f j ), f i . It follows that φ is symmetric if and only if A t = A, B t = -C and D t = D. Similarly we get that φ is skew-symmetric if and only if A t = -A, B t = C and D t = -D.

Lemma B.3.2. Let E be a finite dimensional vector space and let φ ∈ End(E). There exists a non-trivial couple of vectors (u, v) ∈ E × E and λ 1 , λ 2 ∈ R such that :

φ(u) = λ 1 u -λ 2 v and φ(v) = λ 2 u + λ 1 v.
In particular, there exists a φ-invariant vector subspace F ⊂ E such that 1 ≤ dim F ≤ 2.

Proof. Denote E C = E ⊕ iE and φ C ∈ End(E C ) the complexification of E and φ ∈ End(E) respectively, i.e φ C (x + iy) = φ(x) + iφ(y) for any x, y ∈ E. It is clear that φ C admits a nonzero eigenvector w ∈ E C corresponding to some eigenvalue λ ∈ C, write w := u + iv and λ := λ 1 + iλ 2 for some u, v ∈ E and λ 1 , λ 2 ∈ R, so that φ C (u + iv) = (λ 1 + iλ 2 ) (u + iv), then φ(u) = λ 1 uλ 2 v and φ(v) = λ 2 u + λ 1 v, The vector subspace F = span{u, v} is either 1 or 2-dimensional and it is clearly φ-invariant. is non-trivial, it is clearly φ-invariant, but since e ker(φ l ) then Proposition B.1.5 gives that ker(φ l ) is Euclidean, contradicting the fact that E is φ-indecomposable.

Thus λ l 0 and {e, v l , vl } forms a basis of the C-vector space H C l , this gives that {e, h l , hl } is a basis of H l , but this implies that span{h l , hl } is Euclidean (Proposition B.1.5) and φinvariant, a contradiction. Thus, λ i = λ = 0 for all 1 ≤ i ≤ r and in particular φ(F ⊥ ) ⊂ Re.

Let W be any Euclidean subspace of F ⊥ such that F ⊥ = W ⊕ Re. Since ker(φ |W ) is a φinvariant subspace of E it follows that ker(φ |W ) = {0} and since φ(W ) ⊂ Re we get that dim(W ) ≤ 1, now dim W = dim E -2 ≥ 1 and so dim W = 1 and φ(W ) = Re, this also shows that dim E = 3.

Finally if we write W := Rf and set φ(f ) := αe then α 0, now choose an isotropic vector ē ∈ E such that e, ē = 1 and e, f = 0, then (e, ē, f ) is a Lorentzian basis of E and it is easy to see that : Proof. We know that E can be written E = V 1 ⊥ ⊕ . . . ⊥ ⊕ V r as the sum of φ-indecomposable subspaces. We also know that exactly one V i is Lorentzian, denote it L and set V := ⊕ j i V j .

According to Theorem B.3.1 each V j for j i is either 1 or 2 dimensional, furthermore we have the following cases : This gives λ 2 + aλ 1 = a (λ 1aλ 2 ) so that 1 + a 2 λ 2 = 0, thus λ 2 = 0 and φ(u) = λ 1 u, i.e Ru is a proper φ-invariant subspace of L, and since L is φ-decomposable it follows that Ru is degenerate, therefore u, u = 0. We thus take e := u.

(b). The family {u, v} is linearly independent, so the vector subspace span{u, v} cannot be totally isotropic. Thus the vector ( u, u , v, u , v, v ) is non-zero, using (B.2)

we get :

0 = λ 1 -λ 2 0 0 λ 2 λ 1 λ 2 2λ 1 -λ 2 = -2λ 1 λ 2 1 + λ 2 2
If λ 1 = 0 and λ 2 0, then (B.2) gives that u, v = 0 and u, u = v, v 0. Thus span{u, v} is a φ-invariant, non-degenerate proper subspace of L, a contradiction.

So necessarily λ 1 = λ 2 = 0 which means that φ(x) = 0 for any x ∈ span{u, v}. It follows that span{u, v} is degenerate and therefore contains an isotropic vector e such that φ(e) = 0.

This ends the proof.

B.4 Reduction of symmetric endomorphisms on Lorentzian vector spaces

Let us start with the statement of a classical result on the reduction of symmetric endomorphisms in a Euclidean space.

(c). bc < 0, take α = -c b 1 4 , then αe, α -1 ē is a basis of L and one can check that φ is of type {n -2, z z}.

3. dim L ≥ 3. Lemma B.4.1 shows that the restriction φ |L admits a real eigenvalue, since L is φ-indecomposable, then its corresponding eigenvector e must be isotropic.

Set D := Re then put F := D ⊥ ∩ L and W = F/D. The quotient space W is naturally endowed with an inner product , q given by :

[u], [v] q = u, v , u, v ∈ F Let φ : W -→ W be the endomorphism induced by φ on W . Then W , , q is Euclidean and φ is symmetric, according to Theorem B.4.1 we can find an orthonormal basis ( u 1 , . . . , u r ) of W and real numbers λ 1 ≤ λ 2 ≤ • • • ≤ λ r such that φ ( u i ) = λ i u i .

Let u i ∈ F such that [u i ] = u i , then we get that :

φ (u i ) = a i e + λ i u i , i = 1, . . . , r (B.4)

It is clear that the family (u 1 , . . . , u r ) is orthonormal with u i , u i > 0, furthermore a 1 0 since otherwise Ru 1 would be non-degenerate and φ-invariant, which is false.

On the other hand span {a i u 1a 1 u i } is obviously non-degenerate and φ-invariant, it must therefore be 0-dimensional or equivalently u i = 0 and a i = 0 for all i = 2, . . . , r.

This shows that dim F = 2 and dim L = 3. Choose ē ∈ L co-isotropic to e and such that (e, ē, u 1 ) is a Lorentzian basis of L. Using (B.4) and the fact that φ |L is symmetric, we can write :

φ(e) = λe, φ( ē) = ae + λ ē + a 1 u 1 and φ (u 1 ) = a 1 e + λ 1 u 1 , a 1 0.

Necessarily we must have λ = λ 1 , otherwise we would get that v := a 1 λ 1 -λ e + u 1 is an eigenvector of φ |L which is impossible since v, v > 0. In summary :

φ(e) = λe, φ( ē) = ae + λ ē + a 1 u 1 and φ (u 1 ) = a 1 e + λu 1 , a 1 0 Thus φ is of type {n, α3} with respect to the basis a 1 e, a 
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 2 and we conclude by(2.18). Conversely, for any 2-step nilpotent Lie algebra g = R n ⊕ n satisfying (2.16), the equation Ric g = 0 follows from a straightforward calculation.C H A P T E R 2 . O N E I N S T E I N LO R E N T Z I A N N I L P O T E N T L I E G R O U P S2.5 Classification of Einstein Lorentzian nilpotent Lie algebras of dimension ≤ 5In this section, we give a complete description of the Lorentzian Lie algebras associated to all Einstein Lorentzian nilpotent Lie groups of dimension ≤ 5. This classification is based on Theorem 1.3.1 and the following result.Theorem 2.5.1. Let (g, [ , ], , ) be an Einstein Lorentzian nilpotent Lie algebra of dimension less than 5. Then the center of g is degenerate.
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 5 C L A S S I F I CAT I O N O F E I N S T E I N LO R E N T Z I A N N I L P O T E N T L I E A LG E B R A S O F D I M E N S I O N ≤ 5

  0 and tr(K 2 ) = -2tr(D * D) furthermore the metric , satisfies , |V = , 0 , e and ē are co-isotropic i.e e, ē = 1 and are orthogonal to V . 1. If dim g = 3 and dim V = 1. Then K = D = 0 and the Lie algebra (g, , ) is isomorphic to (L 3,2 , , 3,2 ) where , 3,2 = αe * 1 e * 3 + e * 2 ⊗ e * 2 and α > 0. This metric is flat.

  . The condition tr(K 2 ) = -2tr(D * D) gives c = α with = ±1. Thus the Lie brackets are given by: [ ē, f 1 ] = γe, [ ē, f 2 ] = αf 1 + µe and [f 1 , f 2 ] = αe. Put (e 1 , e 2 , e 3 , e 4 ) = (f 2 ,α -1 ē + af 1 + bf 2 , f 1 , -αe) with a = µα -2 and b =γα -2 . Then (g, [ , ], , ) is isomorphic to (L 4,3 , , 4,3

2 . 5 .

 5 C L A S S I F I CAT I O N O F E I N S T E I N LO R E N T Z I A N N I L P O T E N T L I E A LG E B R A S O F D I M E N S I O N ≤ 5 (c) (L 5,9 , , 5,9 ) with , 5,9 = (a 2 + b 2 )e * 1 ⊗ e * 1 + (bayx -1 )e

Case 3 :

 3 γ = 0, x = 0, c = 0. Put: (e 1 , e 2 , e 3 , e 4 , e 5 ) = (f 3 , ē + af 2 + bf 3 , -f 2 , -yf 1 , αe). Thus (g, [ , ], , ) is isomorphic to (L 5,8 , , 5,8 ) with b = 0 and y = 0. Case 4: γ = 0, x = 0, c 0. Put: (e 1 , e 2 , e 3 , e 4 , e 5 ) = (f 3 , c -1

[e 1 , e 2 ] = e 3 ,

 123 [e 1 , e 3 ] = ke 4 , [e 1 , e 4 ] = e 5 , [e 2 , e 3 ] = e 5 .

[e 1

 1 , e 3 ] = e 6 , [e 1 , e 5 ] = e 6 , [e 2 , e 3 ] = -e 6 , [e 2 , e 4 ] = e 6 , [e 3 , e 4 ] = e 1 , [e 3 , e 5 ] = e 2 and [e 4 , e 5 ] = e 1 +e 2 . B = (e 1 , . . . , e 6 ) is an orthonormal basis with e 1 , e 1 = -1.

[e 1

 1 , e 3 ] = √ 2e 7 , [e 2 , e 4 ] = √ 2e 7 , [e 4 , e 5 ] = -e 1 , [e 4 , e 6 ] = -e 1 , [e 3 , e 5 ] = -e 2 , [e 3 , e 6 ] = -e 2 . B = (e 1 , . . . , e 7 ) is an orthonormal basis with e 1 , e 1 = -1.

e 2 ] = - 4 √ 3e 3 , [e 1 , e 3 ] = 5 2 e 4 , [e 1 , e 4 ] = - 2 √ 3e 8 , 4 √ 2e 7 , [e 2 , e 3 ] = -5 2 e 5 , [e 2 , e 4 ] = -3 7 2 e 6 , [e 2 , e 5 ] = - 2 √ 3e 7 ,[e 2 , e 6 ] = - 4 √ 2e 8 , 1 , e 2 ] = e 3 e 1 ⊗ e 1 + e 3 ⊗ e 3 L 4 , 2 [e 1 , e 2 ] = e 3 e 1 ⊗ 4 Table 2 . 1 :, 9 [e 1 , e 2 ] = e 3 , [e 1 , e 3 ] = e 4 , [e 2 , e 3 ] = e 5 Table 2 . 2 :

 24314142847235246252726481211342121421912313423522 [e 1 , e 5 ] = 3 7 2 e 6 , ; [e 1 , e 6 ] = -[e 3 , e 4 ] = -√ 21e 7 , [e 3 , e 5 ] = -√ 21e 8 . B = (e 1 , . . . , e 8 ) is an orthonormal basis with e 6 , e 6 = -1. e 1 + e 3 ⊗ e 3 L 4,3 [e 1 , e 2 ] = e 3 , [e 1 , e 3 ] = e 4 2e 2 ⊗ e 2e 1 ⊗ e 1 + e 3 ⊗ e 3 L 5,2 [e 1 , e 2 ] = e 3 e 1 ⊗ e 1 + e 3 ⊗ e 3 L 5,3 [e 1 , e 2 ] = e 3 , [e 1 , e 3 ] = e 4 2e 2 ⊗ e 2e 1 ⊗ e 1 + e 3 ⊗ e 3 L 5,4 [e 1 , e 2 ] = e 5 , [e 3 , e 4 ] = e 5 e 1 ⊗ e 1 + e 3 ⊗ e 3 + e 5 ⊗ e 5 L 5,5 [e 1 , e 2 ] = e 3 , [e 1 , e 3 ] = e 4 , [e 2 , e 4 ] = e 5 e 3 ⊗ e 3 + 2e 2 ⊗ e 2 + 2e 5 ⊗ e 5e 1 ⊗ e 1 L 5,6 [e 1 , e 2 ] = e 3 , [e 1 , e 3 ] = e 4 , [e 1 , e 4 ] = e 5 , [e 2 , e 3 ] = e 5 e 1 ⊗ e 1 + 2e 2 ⊗ e 2 + 3e 3 ⊗ e 3 + 4e 4 ⊗ e 4 + 5e 5 ⊗ e 5 L 5,7 [e 1 , e 2 ] = e 3 , [e 1 , e 3 ] = e 4 , [e 1 , e 4 ] = e 5 e 1 ⊗ e 1 -2e 2 ⊗ e 2e 3 ⊗ e 3 + e 5 ⊗ e 5 L 5,8 [e 1 , e 2 ] = e 4 , [e 1 , e 3 ] = e 5 e 1 ⊗ e 1e 2 ⊗ e 2 + e 5 ⊗ e 5 L 5,9 [e 1 , e 2 ] = e 3 , [e 1 , e 3 ] = e 4 , [e 2 , e 3 ] = e 5 2e 1 ⊗ e 1e 2 ⊗ e 2 + e 3 ⊗ e 3 + 3e 4 ⊗ e Table of nilpotent Lie algebras of dimension ≤ 5 with non null trace derivation Lie algebra g Nonzero commutators L 5,2 = L 3,2 ⊕ R 2 [e 1 , e 2 ] = e 3 L 5,3 = L 4,3 ⊕ R [e 1 , e 2 ] = e 3 , [e 1 , e 3 ] = e 4 L 5,4 [e 1 , e 2 ] = e 5 , [e 3 , e 4 ] = e 5 L 5,5 [e 1 , e 2 ] = e 3 , [e 1 , e 3 ] = e 5 , [e 2 , e 4 ] = e 5 L 5,6 [e 1 , e 2 ] = e 3 , [e 1 , e 3 ] = e 4 , [e 1 , e 4 ] = e 5 , [e 2 , e 3 ] = e 5 L 5,7 [e 1 , e 2 ] = e 3 , [e 1 , e 3 ] = e 4 , [e 1 , e 4 ] = e 5 L 5,8 [e 1 , e 2 ] = e 4 , [e 1 , e 3 ] = e 5 L 5List of five-dimensional nilpotent Lie algebras 3

2 . 5 and

 25 Theorem 3.2.1, we give a complete description of ω-quasi Einstein Lorentzian 2-step nilpotent Lie algebras of type 1 with non-degenerate Lorentzian derived ideal and Einstein constant λ ≥ 0 as an important step towards the determination of Einstein Lorentzian 3-step nilpotent Lie algebras with nondegenerate 1-dimensional center.

C

  H A P T E R 3 . E I N S T E I N LO R E N T Z I A N 3 -N I L P O T E N T L I E G R O U P S

C

  H A P T E R 3 . E I N S T E I N LO R E N T Z I A N 3 -N I L P O T E N T L I E G R O U P SWe are now in possession of all the necessary ingredients to characterize ω-quasi Einstein Lorentzian 2-step nilpotent Lie algebras of type 1 as a key step towards the proof of Theorem 3.1.1. Theorem 3.3.2. Let (g, [ , ], , ) be a Lorentzian 2-step nilpotent Lie algebra then suppose that Z(g) = [g, g] is non-degenerate Lorentzian and let ω ∈ Z 2 (g, R). Then g is ω-quasi Einstein of type 1 with positive Einstein constant λ if and only if λ = 0 and, up to a Lie algebra isomorphism, (g, [ , ], , , ω) has one of the following forms :

2 .

 2 For a smooth manifold M, set g := χ(M) and V := C ∞ (M). Let ρ : g -→ gl(V ) be the natural Lie algebra representation defined by the action of vector fields on smooth functions (cf. Example 13-2). Clearly C p ρ (g, V ) := Ω p (M) i.e the space of all differential p-forms on M. The Chevalley-Eilenberg differential d p ρ : C p ρ (g, V ) -→ C p+1 ρ (g, V ) in this case coincides with the de Rham differential d dR : Ω p (M) -→ Ω p+1 (M) of M, thus:

  φ(e) = 0, φ(f ) = αe and φ( ē) = -αf , this ends the proof.Theorem B.3.2. Let φ : E -→ E be a skew-symmetric endomorphism on a Lorentzian vector space (E, , ). Then E can be written as E = L ⊕ V such that V is Euclidean and φ-invariant and L is φ-indecomposable Lorentzian satisfying one of the following properties : (i). dim L = 1 and L ⊂ ker φ (ii). dim L = 2 and there exists α > 0 and a Lorentzian basis (e, ē) of L such that φ(e) = αe and φ( ē) = -α ē. (iii). dim L = 3 and there exists a Lorentzian basis (e, ē, f ) of L such that φ(e) = 0, φ( ē) = -αf and φ(f ) = αe

  (i). dim L = 1, write L := Rx and φ(x) = λx with λ ∈ R. Then 0 = φ(x), x = λ x, x and since L is Lorentzian, x, x < 0 and so λ = 0. (ii). dim L = 2. First notice that the restriction φ |L 0 otherwise L would contain a φinvariant, non-degenerate 1-dimensional subspace which contradicts the assumption that L is φ-indecomposable. Let (e, ē) be a Lorentzian basis of L, then we can write φ(e) = ae + b ē and φ( ē) = ce + d ē, since φ is skew-symmetric, then: 0 = e, φ(e) = ē, φ( ē) and e, φ( ē) = -ē, φ(e) which is equivalent to b = c = 0 and a = -d = α 0. are two cases to consider : (a). The family {u, v} is linearly dependent, i.e v = au and u 0. Then : φ(u) = (λ 1aλ 2 ) u and aφ(u) = (λ 2 + aλ 1 ) u

a 1 e + u 1
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  Corollary 2.4.1. Let g be an Einstein Lorentzian 2-step nilpotent Lie algebra. Then Z(g) is degenerate and g is Ricci-flat.

	18,
	Lemma 14 and Theorem 15] :

Theorem 2.4.2. Let g be a 2-step nilpotent, non-abelian Lie algebra. Then g admits a Ricciflat Lorentzian metric if and only if g = R n ⊕ n (a direct sum of Lie algebras) such that n is a

  Moreover the basis B can be chosen Lorentzian, in particular the restriction of the metric to [g, g] is degenerate.Proof. Suppose that (g, [ , ], , ) is a 2-step nilpotent Lorentzian, Ricci-flat Lie algebra. By virtue of Corollary 2.4.1, Z(g) is degenerate and Theorem 1.3.1 implies that g is given by a process of double extension from a Euclidean vector space V 0 with parameters (K, D, 0, b),

  2.4.1 and Proposition 2.3.4.

There is a unique nilpotent Lie algebra in dimension 3 which is L 3,2 and it is 2-step nilpotent hence we can apply Corollary 2.3.1. In dimension 4, there is two nilpotent Lie algebras namely L 3,2 ⊕ R whose center is degenerate by Corollary 2.4.1 and L 4,3 whose Lie bracket is given by [e 1 , e 2 ] = e 3 , [e 1 , e 3 ] = e 4 . It is clear that L 4,3 satisfies the hypothesis of Proposition 2.3.4. Five dimensional nilpotent Lie algebras can be listed as in Table 2.2. We can see that apart from L 5,6 and L 5,7 all the other Lie algebras are either 2-step nilpotent or satisfy the hypothesis of Proposition 2.3.4. Let us now study L 5,6 and L 5,7 .

If we denote by g either L 5,6 or L 5,7 , one can see that

Z(g) ⊂ [g, [g, g]] ⊂ [g, g], dim Z(g) = 1, dim[g, [g, g]] = 2 and dim[g, g] = 3. (

2

.19) To complete the proof of the theorem, we will show that if a five dimensional nilpotent Lie algebra g satisfies (2.19) and have an Einstein Lorentzian metric then its center must be degenerate. Let g be a five dimensional Einstein Lorentzian nilpotent Lie algebra satisfying (2.19) such that its center non-degenerate. First note that according to [6, Theorem 4.3], g must be Ricci flat. According to Corollary 2.3.1 and Propositions 2.3.1 and 2.3.3, Z(g) must be

  The Lie algebra (g, , ) is then isomorphic to (L 4,2 , , 4,2 ) with the metric:

		, 4,2 = αe * 1 e * 3 + e * 2 ⊗ e * 2 + e * 4 ⊗ e * 4 + ae * 2 e * 4 , α 0
	and a =	β 1 1+β 2 √ 1

  [START_REF] Boucetta | Ricci flat left invariant Lorentzian metrics on 2-step nilpotent Lie groups[END_REF]2 ) with:

	, 5,2 = αe * 1 e * 3 + e * 2 ⊗ e * 2 + e * 4 ⊗ e * 4 + e * 5 ⊗ e * 5 + ae * 2 e * 4 + be * 2 e * 5 + abe * 4 e * 5 ,

  0 for any u, v ∈ g, and it can be shown that[ , ] 0 is a Lie bracket on g and ω : g × g -→ Z(h) is a 2-cocycle of the Lie algebra (g, [ , ] 0 ). It turns out that (g, [ , ] 0 , , |g×g ) is a Lorentzian (k -1)-nilpotent Lie algebra and the Einstein equation on h can be expressed entirely by means of the Lie algebra g as a sort of compatibility condition between ω and the Ricci curvature Ric g of (g, , g , [ , ] 0 ) (see Proposition 3.2.2). This shift in perspective is especially useful when the Lie algebra h is 3-step nilpotent since g is 2-nilpotent and, for instance, we can show that every Einstein Lorentzian 3-step nilpotent Lie algebra with non-degenerate center has positive

scalar curvature (Theorem 3.2.1). It also gives rise to the notion of ω-quasi Einstein Lie algebras (see Definition 3.2.2). A careful study of ω-quasi Einstein 2-nilpotent Lie algebras leads to our main result, namely the classification of Einstein Lorentzian 3-step nilpotent Lie algebras with 1-dimensional non-degenerate center. Surprisingly enough, these are shown to only exist in dimensions 6 and 7. Theorem 3.1.1. Let h be a 3-step nilpotent Lie algebra with dim Z(h) = 1. Let , be a Lorentzian metric on h such that Z(h) is non-degenerate, then , is Einstein if and only if it is Ricci-flat and (h, , ) has one of the following forms :

(i) dim h = 6 and h is isomorphic to L 6,19 (-1), i.e., h has a basis (f i )

6 

i=1 such that the non vanishing Lie brackets are

  Rthese are called the attributes of h (see Definition 3.2.1). The main result of this section is Theorem 3.2.1 in which we prove that any Einstein Lorentzian 3-step nilpotent Lie algebra of non-degenerate center has positive scalar curvature, at the end of the section we introduce the notion of ω-quasi Einstein Lie algebra. The remainder of the chapter i.e Section 3.3 is then devoted for the proof of the central results. As the reader can see, the proof of Theorem 3.1.1 turns out to be difficult and it is based on a sequence

	of Lemmas (Lemma 3.3.1, 3.3.2 and 3.3.3). This suggests that the complete study of
	Einstein Lorentzian nilpotent Lie algebras with nondegenerate center is a challenging
	mathematical problem.
	3.2 Lorentzian nilpotent Einstein Lie algebras with
	nondegenerate center

In

[START_REF] Boucetta | On Einstein Lorentzian nilpotent Lie groups[END_REF]

, we studied Lorentzian nilpotent Einstein Lie algebras with degenerate center and gave the first example of a Lorentzian 3-step nilpotent Ricci-flat Lie algebra with non-degenerate center. We also showed that an Einstein Lorentzian nilpotent Lie algebra with non zero scalar curvature must have a non-degenerate center. A first example of such algebras was given in

[START_REF] Rossi | Einstein nilpotent Lie groups[END_REF]

. A 2-step nilpotent Einstein Lorentzian Lie algebra must be Ricci-flat with degenerate center so it is natural to start by studying 3-step nilpotent Einstein Lorentzian Lie algebras with non-degenerate center which must be Euclidean according to Corollary 2.3.1.

  ∈ N * . As a result (h, [ , ]) is k-step nilpotent if and only if (g, [ , ] g ) is a (k -1)-step nilpotent Lie algebra such that C k-2 (g) ker ω. Definition 3.2.1. Let (h, [ , ], , h ) be a Lorentzian nilpotent Lie algebra with nondegenerate Euclidean center. We call the triple (g, [ , ] g , ,

g ), (Z(h), , z ) and ω ∈ Z 2 (g, Z(h)) the attributes of (h, [ , ], , h ).

  y z .(3.11) Let us derive some consequences of Proposition 3.2.2 and Corollary 3.2.1. In what follows h will be an Einstein Lorentzian nilpotent Lie algebra with nondegenerate center, we denote [ , ] h its Lie bracket, , h its Lorentzian product and (g, [ , ] g , , Proposition 3.2.4. Let h be a λ-Einstein Lorentzian nilpotent Lie algebra with non-degenerate center, let g and ω be its attributes (cf. Definition 3.2.1). If λ 0 then the cohomology class of the attribute ω is non trivial. In particular, H 2 (g, Z(h)) {0}.Proof. Suppose that there exists α ∈ g such that, for any u, v ∈ g, ω(u, v) = -α([u, v] g ). Fix an orthonormal basis {e 1 , . . . , e n } of g with e 1 , e 1 = -1. For any x ∈ Z(h), we have :

		n	
	tr(S 2 x ) = S x (e 1 ), S x (e 1 ) g -		S x (e i ), S x (e i ) g
		i=2	
		n	
	= ω * e 1 (x), S x (e 1 ) g -	i=2	ω * e i (x), S x (e i ) n
			i=2 e i • α n ad *
			J α
			i=2

g ), (Z(h), , z ) and ω ∈ Z 2 (g, Z(h)) its attributes.

Recall that a pseudo-Euclidean Lie algebra (g, [ , ], , ) is called Ricci-soliton if there exists a constant λ ∈ R and derivation D of g such that Ric g = λId g + D. By combining Corollary 3.2.1 and Proposition 3.2.1 we get the following result. Proposition 3.2.3. Let h be an Einstein Lorentzian nilpotent Lie algebra with Euclidean nondegenerate center. If ω satisfies (3.10) then (g, [ , ] g , , g ) is Ricci-soliton. g =ad * e 1 • α * (x), S x (e 1 ) g + * (x), S x (e i ) g = -J α * (x) (e 1 ), S x (e 1 ) g + * (x) (e i ), S x (e i ) g = -tr(J α * (x) • S x ). By virtue of Corollary 3.2.1, we get that λ x, x z = 0 for any x ∈ Z(h) and hence λ = 0. Proposition 3.2.5. Let h be a λ-Einstein Lorentzian nilpotent Lie algebra with non-degenerate center, denote g and ω its attributes (cf. Definition 3.2.1). Then [g, g] g is a non-degenerate Lorentzian subspace of g. Moreover, if h is 3-step nilpotent and λ ≥ 0 then Z(g) = [g, g] g . Proof. According to Corollary 2.3.3, [h, h] is non-degenerate Lorentzian and one can easily see that [g, g] ⊥ g = [h, h] ⊥ ∩ g. Thus [g, g] ⊥ g is non-degenerate Euclidean and hence [g, g] g is non-degenerate Lorentzian.

  Example 4. Let , be a Lorentzian metric on R 10 and {e 1 , . . . , e 10 } an orthonormal basis with respect to , such that e 5 , e 5 = -1. Choose p, r ∈ R such that p, r 0 and define on R 10 the

				2	e 4 , [e 1 , e 4 ] = -2 √	3e 8 , [e 1 , e 5 ] = 3	7 2	e 6 ,
	[e 1 , e 6 ] = -4	√	2e 7 , [e 2 , e 3 ] = -		5 2	e 5 , [e 2 , e 4 ] = -3	7 2	√ e 6 , [e 2 , e 5 ] = -2	3e 7 ,
		√		√			√
	[e 2 , e 6 ] = -4		2e 8 , [e 3 , e 4 ] = -	21e 7 , [e 3 , e 5 ] = -	21e 8 .
			√			√	
	     [e 1 , e 3 ] =	2e 7 , [e 2 , e 4 ] =	2e 7 , [e	
	    							

One can define a Lorentzian inner product , on h by requiring B to be an orthonormal basis with e 6 , e 6 = -1. Then it is easy to see that Z(h) = span{e 7 , e 8 } hence non-degenerate with respect to , . Moreover a straightforward computation shows that (h, , ) is Einstein with nonvanishing scalar curvature. This example was first given in

[START_REF] Rossi | Einstein nilpotent Lie groups[END_REF]

. Example 3. Let , be a Lorentzian metric on R 7 and {e 1 , . . . , e 7 } an orthonormal basis with respect to , such that e 1 , e 1 = -1. Define the Lie bracket [ , ] by setting : 4 , e 5 ] = -e 1 , [e 4 , e 6 ] = -e 1 , [e 3 , e 5 ] = -e 2 , [e 3 , e 6 ] = -e 2 .

Put h := (R 7 , [ , ]), then it is straightforward to check that (h, , ) is a Ricci-flat 3-step nilpotent Lie algebra with Z(h) = span{e 7 , e 5e 6 }, therefore h has non-degenerate center.

Lie bracket

[ , ] 

given by :

  r 2 e 5 , [e 1 , e 4 ] =p 2 + r 2 e 6 , [e 2 , e 4 ] =p 2 + r 2 e 5 , [e 2 , e 3 ] =p 2 + r 2 e 6 , [e 5 , e 1 ] = pe 7 , [e 5 , e 2 ] = pe 8 , [e 5 , e 3 ] = re 9 , [e 5 , e 4 ] = re 10 [e 6 , e 1 ] = pe 8 , [e 6 , e 2 ] = pe 7 , [e 6 , e 3 ] = re 10 , [e 6 , e 4 ] = re 9 .

	A
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Put h := (R 10 , [ , ]), then it is straightforward to check that (h, , ) is a Ricci-flat 3-step nilpotent Lie algebra with Z(h) = span{e 7 , e 8 , e 9 , e 10 }, therefore h has non-degenerate center.

A.1 Lie algebras and Lie groups A.1.1 Lie algebras

Recall that a real Lie algebra is any real vector space g endowed with a skew-symmetric bilinear map [ , ] : g

.

. S OM E R E S U LT S O N E I N S T E I N LO R E N T Z I A N N I L P O T E N T L I E A LG E B R A S

denote the restriction of J i to [g, g] ⊥ by J i as well. Using (1.5) and (2.9), we get that (3.14) is equivalent to:

e i , u tr(J i • J j )e j = 4λId [g,g] ,

tr(L 2 ) -2tr(BB * ) = -4λ, LB = 0.

(3.15)

Taking the trace of the first two equations and using the the third equation of (3.15) we get that : tr(L 2 ) = -4(2n

When m = n, B : [g, g] -→ [g, g] ⊥ is an isomorphism, therefore LB = 0 leads to L = 0 and by the previous equation λ = 0. We will show that this fact is still true in the general setting.

|B(e 1 )| , . . . ,

B(e n )

|B(e n )| which is obviously an orthonormal basis of Im(B). Since LB = 0, L vanishes on Im(B) and leaves invariant Im(B) ⊥ = ker BB * . Thus L(f i ) = 0 and there exists an orthonormal basis B 3 = (g 1 , h 1 , . . . , g r , h r , p 1 , . . . , p s ) of ker BB * such that L(g i ) = µ i h i , L(h i ) = -µ i g i , L(p j ) = 0.

The basis B 1 consists of eigenvectors of B * B and hence the second relation in (3.15) is equivalent to B * B(e i ) = -2λ + 1 2 e i , e i g tr(J 2 i ) e i , tr(J i • J j ) = 0, i, j = 1, . . . , n, j i.

On the other hand, we also have,

e i , e i g tr(J 2 i ) f i , i = 1, . . . , n. (3.16) Summing up the above remarks, if M i denotes the matrix of the restriction of J i to [g, g] ⊥ in the basis B 2 ∪ B 3 then (3.14) implies that (3.17)

To study this equation, we need matrix analysis of Hermitian square matrices (see [START_REF] Johnson | Matrix analysis[END_REF]).

Let us recall one of the main theorems of this theory. A m × m Hermitian matrix A has real eigenvalues which can be ordered λ 1 (A) ≤ . . . ≤ λ m (A).

Theorem 3.3.1 ( [START_REF] Johnson | Matrix analysis[END_REF]). Let A, B ∈ M m (C) be two Hermitian matrices. Then for all 1 ≤ k ≤ m :

Finally in these notations notice that J 2 1 -n i=2 J 2 i = -BB * is equivalent to K 2 = P -1 AP + A with A = diag(-α 2 2 , . . . , -α 2 n ) and the cocycle condition B ([u, v]), w = 0 is equivalent to the equation ±αK = AP -P -1 A where α = α 2 2 + • • • + α 2 n . This is exactly the situation of Lemma 3.3.3 and consequently k = 1, i.e n = m = 3 which means dim g = 6, furthermore in view of (3.26) we get that the Lie algebra structure of g is given by (3.31). This ends the proof.

Following the discussion of section 3.3 we get as a consequence of the preceding Theorem that a Lorentzian 3-step nilpotent Lie algebras (h, , ) with non-degenerate 1dimensional center is Einstein if and only if it is Ricci-flat and has one of the following forms :

1. Either dim h = 6 in which case dim[h, h] = codim[h, h] = 3 and there exists an orthonormal basis {x, e 1 , e 2 , u 1 , u 2 , u 3 } of h with e 1 , e 1 = -1 such that the Lie algebra structure is given by :

Moreover there exists an orthonormal basis {x, e 1 , e 2 , e 3 , u 1 , u 2 , u 3 } of h such that e 1 , e 1 = -1 and in which the Lie algebra structure is given by :

Proof of Main Theorem. In case If we now put:

Then we can easily see that:

Thus h L 6,19 (-1) and the metric , is represented in the basis {f 1 , . . . , f 6 } of h by the expression (3.1). For case 2, when h is given by (3.40) we can put:

Let g be a Lie algebra and consider a vector subspace h ⊂ g. We say that h is a Lie 

then Z(g) is an ideal of g, called the center of g. Finally any vector subspace of g either containing [g, g] or contained in Z(g) is itself an ideal of g 2. Let V be a finite-dimensional vector space and , : V × V -→ R be a non-degenerate inner product (see Appendix B). Let so(V , , ) be the vector subspace of gl(V ) consisting of all endomorphisms u : V -→ V satisfying u(x), y =x, u(y) , for all x, y ∈ V i.e u is skew-symmetric with respect to , . One can check that so(V , , ) is a Lie subalgebra of gl(V ).

Let (g 1 , [ , ] 1 ) and (g 2 , [ , ] 2 ) be arbitrary Lie algebras. A linear map ϕ :

when ϕ : g 1 -→ g 2 is bijective, we say that it defines a Lie algebra isomorphism.

For any Lie algebra homomorphism ϕ : g 1 -→ g 2 , it is easy to see that ker(ϕ) is a Lie subalgebra of g 1 and Im(ϕ) is a Lie subalgebra of g 2 .

Example 7.

1. Let (g, [ , ]) be a Lie algebra and h ⊂ g a Lie subalgebra of g. By the definition of a Lie subalgebra, the natural inclusion ι : h -→ g is a Lie algebra homomorphism.

Let φ

given by ϕ(u) := φ -1 • u • φ is then a Lie algebra isomorphism.

3. Let (g, [ , ]) be a Lie algebra and I ⊂ g an ideal of g. There exists a unique Lie algebra structure on the quotient vector space h := g/I, denoted [ , ] q , such that the natural projection π : g -→ h is a Lie algebra homomorphism. In other words, [ , ] q is defined such that:

and doesn't depend on the representative elements u, v ∈ g.

A . 1 . L I E A LG E B R A S A N D L I E G R O U P S

The Lie bracket [ , ] of a Lie algebra g induces a linear map ad : g -→ gl(g), u → ad u which is given by the expression ad u (v) = [u, v]. This map is called the adjoint representation of g, using the Jacobi identity, one can show that:

this means that ad : g -→ gl(g) is a Lie algebra homomorphism. A derivation of a Lie algebra (g, [ , ]) is any linear map D : g -→ g satisfying for any u, v ∈ g:

The vector space of all derivations of a Lie algebra g is denote Der(g), it is itself a Lie subalgebra of gl(g). The Jacobi identity of g can be rewritten as:

for any u, v, w ∈ g, this shows that in particular ad u ∈ Der(g). In fact, the elements of ad(g) of this form are called inner derivations of g, and one can check using (A.1) that ad(g) is an ideal of Der(g).

A.1.2 Lie groups

Recall that a Lie group G is a topological group which is endowed with a structure of a differentiable manifold such that the multiplication and inversion maps:

are smooth. Denote g , r g : G -→ G respectively the left and right multiplications by an element g ∈ G, i.e g (x) = gx and r g (x) = xg.

Example 8.

1. The group GL(n, R) of n × n real invertible matrices is a Lie group.

2. Let V be a finite-dimensional vector space and denote GL(V ) the group of all automorphisms of V with its natural topology. By fixing a basis of V one can show that GL(V )

, and so GL(V ) can be given a Lie group structure using this isomorphism. One also shows that this structure is independent of the choice of a basis of V .

3. Let V be a finite-dimensional vector space and , : V × V -→ R a non-degenerate bilinear form. Let O(V , , ) be the group of all linear isometries of (V , , ) i.e

A.2 Nilpotent Lie algebras

Let g be a finite-dimensional Lie algebra. The descending central series of g is the family of ideals ( C k (g)) k∈N of g defined inductively bt the formula:

for any n ∈ N. Notice that C 1 (g) = [g, g] is just the derived ideal of the Lie algebra g. We

is called the nilindex of g or the nilpotency order of g, in which case g is said to be k-step nilpotent, notice that in this case C k-1 (g) ⊂ Z(g). Here are some known properties of nilpotent Lie algebras, one can see [START_REF] Neeb | Structure and geometry of Lie groups[END_REF] for a proof:

Let g be a nilpotent Lie algebra. Then:

1. If g is non-trivial, then its center Z(g) is also non-trivial.

Any

Lie subalgebra h ⊂ g is nilpotent with nilindex smaller than the nilindex of g.

3.

If ϕ : g -→ ĝ is a Lie algebra homomorphism then ϕ(g) is a nilpotent Lie algebra. In particular, for any ideal I ⊂ g, we get that the quotient Lie algebra g/I is nilpotent.

4. The endomorphisms ad x : g -→ g are nilpotent for all x ∈ g.

A Lie algebra g is called abelian if [g, g] = {0}, i.e g is 1-step nilpotent, it is then clear that this is equivalent to stating that g = Z(g).

Example 10.

Any vector space V can be given an abelian Lie algebra structure

2. For any Lie algebra g, the quotient Lie algebra g/[g, g] is abelian.

The Heisenberg Lie algebra h p consists of a 2p + 1-dimensional vector space together with

a Lie bracket [ , ] defined in a basis {e 1 , . . . , e 2p+1 } by the expression:

for all i = 1, . . . , p, note that we only write the non-vanishing bracket. It is easy to check that h p is a 2-step nilpotent Lie algebra.

4. Let g be the n-dimensional Lie algebra whose bracket [ , ] is defined in a basis {e 1 , . . . , e n } by the expression:

It is straightforward to check that g is nilpotent with nilindex equal to n -1.

5. Let g ⊂ gl(n, K) be the set of all strictly upper triangular n × n matrices, namely:

Then one can check that g is a nilpotent Lie subalgebra of gl(n, K).

Here are some further properties of nilpotent Lie algebras that are used throughout Chapter 2 and 3:

Proposition A.2.2. Let g be a finite-dimensional Lie algebra.

1. If g is nilpotent and non-abelian then codim g [g, g] ≥ 2. where the notation simply means that n consists of finite linear combinations of elements in the reunion of a with a ∈ N. We call n the nilradical of g, it is usually denoted nilrad(g).

The

In the case where the Lie algebra g is nilpotent, it is obvious that g = nilrad(g).

Let us now state a fundamental Theorem in the theory of nilpotent Lie algebras, which is the converse of 4 in Proposition A.2.1:

Theorem A.2.1 (Engel's Theorem). Let g be a finite-dimensional Lie algebra. Then g is nilpotent if and only if the operator ad x is nilpotent for all x ∈ g.

As a consequence, we get the following important result:

Corollary A.2.1. Let g be a Lie algebra and a an ideal of g. If the quotient Lie algebra g/a is nilpotent, and if for all x ∈ g, the restriction of ad x to a is nilpotent, then g is also nilpotent.

Corollary A.2.2. Let g be a Lie subalgebra of gl(n, K) whose elements are nilpotent. Then g is nilpotent.

We close this paragraph with some important classes of nilpotent Lie algebras: Through a direct computation of Der(g) one can prove that g is characteristically nilpotent.

This example is minimal in the sense that 7 is the smallest dimension where it is possible to find characteristically nilpotent Lie algebras.

A.3 Lie algebra representations and cohomology

Let g be a Lie algebra and V a vector space. A representation of the Lie algebra g on V is a Lie algebra homomorphism ρ : g -→ gl(V ). Such a representation is called faithful if it satisfies ker(ρ) = {0} and it is called trivial if Im(ρ) = {0}. The couple (V , ρ) is called a g-module and we shall say that the g-module (V , ρ) is faithful or trivial depending whether the corresponding representation ρ : g -→ gl(V ) is faithful or trivial.

Example 13.

1. The most straightforward example of Lie algebra representation is perhaps the adjoint representation ad : g -→ gl(g).

2. Denote g := χ(M) the Lie algebra of all smooth vector fields on a smooth manifold M and let V := C ∞ (M) be the space of all smooth functions on M. Then one obtains a natural Lie algebra representation ρ : g -→ gl(V ) by setting ρ(X)(f ) := X(f ) i.e the derivative of the function f in the direction of the vector field X.

Let g be a Lie algebra, p ∈ N and ω : g p -→ V a p-linear map. We say that ω is a Vvalued p-cochain if it is alternating. The vector space of all p-cochains on g shall be denoted C p (g, V ), it is finite-dimensional whenever g and V are finite-dimensional, in fact if n := dim g and k := dim V then dim C p (g, V ) := kC p n with the convention that C p n = 0 for p > n. We set C 0 (g, V ) := V and C(g, V ) := ⊕ p C p (g, V ).

Assume now that ρ : g -→ gl(V ) is a representation, for any p ∈ N we can define a linear map d p ρ : C p (g, V ) -→ C p+1 (g, V ) be the expression:

(-1) i ρ(x i ) ω(x 0 , . . . , x i , . . . , x p ) + i<j (-1) i+j ω([x i , x j ], x 0 , . . . , x i , . . . , x j , . . . , x p ), (A.3) for all ω ∈ C p (g, V ) and all x 0 , . . . , x p ∈ g. A simple computation shows that d

Chevalley-Eilenberg differential (relative to the representation ρ).

We say that ω ∈ C p (g, V ) is a p-cocycle if d ρ ω = 0, and if p > 1, we that ω is a p-coboundary

1. Let ρ : g -→ gl(1, R) be the trivial representation of a Lie algebra g on R. One can easily check that C(g, R) := Λg * , i.e the vector space of all alternating linear forms on g. Moreover, by formula (A.3), the Chevalley-Eilenberg differential d p ρ : Λ p g * -→ Λ p+1 g * is given by: (d p ρ ω)(x 0 , . . . , x p ) i<j (-1) i+j ω([x i , x j ], x 0 , . . . , x i , . . . , x j , . . . , x p ), (A.4) for all ω ∈ Λ p g * and all x 0 , . . . , x p ∈ g. Let , : E × E → R be a symmetric bilinear form, i.e an inner product. We say that , is:

for every v ∈ E\{0}, (iii)-Indefinite. if it is neither positive semi-definite nor negative semi-definite, (iv)-Non-degenerate. if the condition v, w = 0 for every w ∈ E implies that v = 0. Otherwise, we say that , is degenerate, the subset N = {v ∈ E : v, w = 0, ∀w ∈ E} is called the radical of , .

Remark 3. The fact that , : E × E → R is non-degenerate implies that the map θ : E → E * given by: To see this denote (p, q) the signature of (E, , ) with p ≥ q and write (p, q) := (r + s, r) such that r, s > 0, thus if B := {f 1 , f1 , . . . , f r , fr , e 1 , . . . , e s } is any Pseudo-Euclidean basis of E, set :

then one easily checks that {u 1 , v 1 , . . . , u r , v r , e 1 , . . . , e s } is an orthonormal basis of E.

B.3 Symmetric and skew-Symmetric Endomorphisms

Let (E, , ) be a pseudo-Euclidean vector space and φ ∈ End(E). We say that φ is symmetric (with respect to , ) if φ * = φ, and we say that φ is skew-symmetric if φ * = -φ.

Proposition B.3.1. Let (E , ) be a pseudo-Euclidean vector space and let φ ∈ End(E). For any vector subspace

Let (E, , ) be a pseudo-Euclidean vector space and φ : E -→ E an endomorphism. A vector subspace F ⊂ E is said to be φ-indecomposable if it satisfies the following properties :

(iii) The only non-degenerate φ-invariant subspaces of F are {0} and F.

B.3.1 Reduction of skew-symmetric endomorphisms in Lorentzian vector spaces

We start by stating the well-known result on the reduction of skew-endomorphisms in a Euclidean vector space.

Theorem B.3.1. Let (E, , ) be a Euclidean vector space and φ : E -→ E be a skew-symmetric endomorphism. There exists a family of non-vanishing real numbers λ 1 ≤ . . . ≤ λ r and an orthonormal basis (e 1 , f 1 , . . . , e r , f r , g 1 , . . . , g s ) of E such that

. , s

Let us now adress the Lorenzian case.

Lemma B.3.3. Let (E, , ) be a Lorentzian vector space φ : E -→ E a skew-symmetric endomorphism. Suppose that there exists e ∈ E such that e, e = 0 and φ(e) = λe, E is φindecomposable and dim E ≥ 3. Then dim E = 3 and there exists a couple of vectors ( ē, f ) such that (e, ē, f ) is a Lorentzian basis of E and

Proof. Denote F := Re and V := F ⊥ /F. Endow V with the inner product , q given by

It is straightforward to check that V , , q is a Euclidean vector space. Since F is a φ-invariant subspace then F ⊥ is φ-invariant as well and φ induces a skew-symmetric endomorphism φ : V -→ V explicitely given by φ([u]) = [φ(u)], for any u ∈ F ⊥ . Next, Theorem B.3.1 shows that there exists a family of non zero real numbers λ 1 ≤ . . . ≤ λ r and an orthonormal basis B := ê1 , f1 , . . . , êr , fr , ĝ1 , . . . , ĝs such that of (V , , q ) such that : φ ( êi ) = λ i fi , φ fi = -λ i êi and φ ĝj = 0, i = 1, . . . , r, j = 1, . . . , s

If we write êi := [e i ], fj := [f j ] and ĝi := [g i ] for some nonzero vectors e i , f j , g k ∈ F ⊥ , then it is clear that B := (e 1 , f 1 , . . . , e r , f r , g 1 , . . . , g s ) is an orthonormal family of F ⊥ and using (B.1)

we get that :

φ (e i ) = a i e + λ i f i , φ (f i ) = b i eλ i e i and φ g j = c j e.

Assume that either λ 0 or λ l 0 for some l ∈ {1, . . . , r} and set H l := span{e, e l , f l }, then clearly φ(H l ) ⊂ H l furthermore an easy computation shows that φ l := φ |H l has characteristic polynomial

now for any eigenvector v l ∈ H C l of φ C l corresponding to the eigenvalue iλ l we have that vl is an eigenvector for the eigenvalue -iλ l therefore if we set h l := v l + vl and hl := -i(v l -vl ) then we get that h l , hl ∈ H l and φ(h l ) = λ l hl , φ( hl ) = -λ l h l . If λ l = 0 then λ 0 and ker(φ l )

Theorem B.4.1. Let (E, , ) be a Euclidean vector space and φ : E -→ E be a symmetric endomorphism. There exists an orthonormal basis (e 1 , . . . , e n ) of E and a family λ 1 ≤ . . . ≤ λ n of real numbers such that for any i ∈ {1, . . . , n}, we have φ (e i ) = λ i e i .

We now focus on the Lorentzian case, let us start by a key Lemma: Lemma B.4.1. Let (E, , ) be a Lorentzian vector space such that dim E ≥ 3 and φ : E -→ E a symmetric endomorphism. Then φ admits a real eigenvalue.

Proof. Lemma B.3.2 shows that there exists a nonzero couple of vectors(u, v) ∈ E × E and two real numbers λ 1 , λ 2 such that φ(u) = λ 1 uλ 2 v and φ(v) = λ 2 u + λ 1 v, there are two cases to discuss :

1. The family {u, v} is linearly dependent, i.e v = au and u 0.Then : φ(u) = (λ 1aλ 2 ) u and aφ(u) = (λ 2 + aλ 1 ) u, so λ 2 +aλ 1 = a (λ 1aλ 2 ), this shows that λ 2 = 0 and φ(u) = λ 1 u which is the desired result.

2. The family {u, v} is linearly independent. Since φ is symmetric,

which is equivalent to

If λ 2 = 0 then φ(u) = λ 1 u and the proof is achieved . Assume that λ 2 0, then (B.3)

gives that u, u =v, v . Denote P := span{u, v}, the matrix of , |P ×P with respect to {u, v} is given by :

furthermore P is nondegenerate if and only if det M 0. Now :

this means that det M = 0 if and only if P is totally isotropic, which is impossible as dim P > 1. Therefore P is non-degenerate Lorentzian, so that P ⊥ is nondegenerate Euclidean and since φ is symmetric and P is φ-invariant we get that P ⊥ is φ-invariant as well. Theorem B.4.1 then shows that the restriction φ |P ⊥ admits a real eigenvalue.

This ends the proof.

Theorem B.4.2. Let (E, , ) be a n-dimensional Lorentzian vector space such that n ≥ 3 and let φ : E -→ E be a symmetric endomorphism. There exists a basis B of E in which φ and , have the following form :

Lorentzian, denote it L, in which case

is symmetric then by Theorem B.4.1 the subspaces V i are 1-dimensional for all 2 ≤ i ≤ r.

There are only three cases to consider :

1. dim L = 1. Write L := Rx, then φ(x) = λx for some λ ∈ R. Hence φ is of type {d i ag}. Let g be a Lie algebra and L : g × g -→ g be any bilinear map, denote L u := L(u, . ) then let:

be the bilinear maps given by K

which we shall respectively call the curvature and torsion of L. We say that L is torsionfree if T L = 0.

Proposition C.1.1. Let L : g × g -→ g be a bilinear map on a Lie algebra g with curvature K. Assume L is torsion-free, then for any u, v, w ∈ g:

A pseudo-Euclidean Lie algebra is a couple (g, , ) consisting of a Lie algebra g together with a pseudo-Euclidean inner product , : g × g -→ R. The Levi-Civita product of a pseudo-Euclidean Lie algebra (g, , ) is the bilinear map L : g × g -→ g defined by the expression:

It is straightforward to check that the Levi-Civita product L is torsion-free. We shall define the curvature of a pseudo-Euclidean Lie algebra to be the curvature of its Levi-Civita product.

Proposition C.1.2. Let (g, , ) be a pseudo-Euclidean Lie algebra and denote L its Levi-Civita product and K its curvature. Then for any u, v, w, z ∈ g, we have:

1. L u v, w =v, L u w , i.e L u is skew-symmetric with respect to , .

The Ricci operator of a pseudo-Euclidean Lie algebra (g, , ) is the linear map Ric : g -→ g

given by:

where {e 1 , . . . , e n } is an orthonormal basis of (g, , ) and i := e i , e i = ±1. The bilinear form ric : g × g -→ g given by ric(u, v) := Ric(u), v is called the Ricci curvature of (g, , ).

We say that the pseudo-Euclidean Lie algebra (g, , ) is Einstein if its Ricci curvature satisfies ric = λ , for some λ ∈ R i.e Ric = λId g .

C.2 Pseudo-Riemannian Lie groups

Let us now introduce a particular pseudo-Riemannian structure on Lie groups.

Definition C.2.1. Let G be a Lie group. A pseudo-Riemannian metric g on G is left invariant if for any g ∈ G, we have l * g g = g. In other words for any x ∈ G and every v, w ∈ T x G:

g gx (T x l g (v), T x l g (w)) = g x (v, w).

In the same way g is right invariant if r * g g = g.

Let G be a Lie group with Lie algebra g, denote M (G) the set of left invariant metrics on the Lie group G and M(g) the set of pseudo-Euclidean products on the underlying vector space of g. The evalution map Ψ : M (G) -→ M(g), g -→ g e is a bijection. This shows that a left invariant metric on a Lie group G can always be obtained by providing an inner product on the Lie algebra g.

Proposition C.2.1. Let X, Y be left invariant vector fields on the Lie group G and let g be any left invariant metric on G. Then the map G -→ R, x → g x (X x , Y x ) is constant.

The next result is a consequence of the previous Proposition and is frequently used due to its practical importance.

Proposition C.2.2. Let g be a left invariant metric on the Lie group G. If {e 1 , . . . , e n } is an orthonormal basis of (Lie(G), g e ), then {e 1 , . . . , e n } defines a global orthonormal frame on (G, g).

We shall call pseudo-Riemannian Lie group any couple (G, g) consisting of a Lie group G together with a left invariant Riemannian metric g on G.

Definition C.2.2. Let G be a Lie group with Lie algebra g and ∇ an affine connection on G. We say that ∇ is a left-invariant connection on G if it satisfies ( g ) * ∇ = ∇ for any g ∈ G, which means that for any x ∈ G and any X, Y ∈ χ(G):

(∇ X Y ) gx = T x g ((∇ ( g ) * X ( g ) * Y ) x ).

I n d e x