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Abstract

In the context of the security assessment of electronic devices, evaluators can perform
attacks on cryptographic algorithm implemented in secure cryptoprocessor. In our
case, we are interested in side-channel attacks which use electrical consumption
or electromagnetic signals from the device to recover sensitive information such as
cryptographic keys. The leakage model, which depends on the software and the
device, is generally not accessible and difficult to derive. Moreover, the evaluators
also have to take into account the various conditions in which the attacks could in
theory be performed and look for the best attack to anticipate attackers. Last but
not least, the manufacturers can add countermeasures which will have an impact
either on the hardware itself or the algorithm. Consequently, the evaluators have
to continuously improve their attack methods in order to deal with complex, noisy
and desynchronized signals. Actual attack methods analyze signals in the temporal
domain to recover sensitive information. But the analysis in the time-frequency
domain usually presents better capabilities for identifying patterns linked with the
algorithm instructions. In particular, wavelet transforms provide detailed time-
frequency (time-scale) maps that can be used to recover the different events linked
with the cryptographic algorithm. The goal of this thesis is to develop new attack
methods based on wavelet transforms, with a focus on handling jitter effects from
countermeasures.

We start by presenting some tools of wavelet analysis for the visualization and
extraction of patterns linked to algorithmic operations. After resynthesis in the time
domain, these patterns are used as adapted filters in a simple realignment method.
Next, we study the estimation of wavelet frames adapted to patterns. Without
analytical properties in the signals that could help in the choice of a particular
wavelet family, we drive the estimation in the superfamily of Generalized Morse
Wavelets. The learned frame is then used to carry out side-channel attacks. We
also study, in a subsequent work, a more direct approach that does not rely on a
prior realignment of signals, for this we use the scattering transform to reduce the
effect of jitter countermeasures in side-channel signals. Along with the proposed
preprocessing, we study an ensemble method for the approximation of a leakage
model. In a last work, we build a general statistical model for side-channel signals.
We take into account a model of the algorithm, of the jitter countermeasure and
of pattern generation through wavelet frames. It will be used for the generation of
artificial side-channels signals and for the estimation of the time of occurrence of
algorithmic operations useful for the realignment.
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Résumé

Dans le cadre de l’évaluation de la sécurité de systèmes d’informations, des évalua-
teurs réalisent des attaques sur des algorithmes cryptographiques implémentés sur
des composants sécurisés afin d’évaluer leur vulnérabilité face aux fuites d’informa-
tion sensible. Dans notre cas, nous nous intéressons aux attaques par canaux-cachés,
qui consistent à récupérer de l’information (la valeur d’une clé de chiffrement par
exemple) en analysant des signaux de consommation électrique ou de rayonnement
électromagnétique. Le modèle de fuite est généralement inaccessible et difficile à
estimer. De plus, l’évaluateur doit prendre en compte les différentes conditions dans
laquelle l’attaque peut être effectuée et chercher la meilleure attaque afin d’anticiper
les attaquants. Enfin, le fabricant du composant peut installer des contre-mesures,
qui peuvent se traduire par une modification de la structure algorithmique du logiciel
ou par une altération physique du composant. Ainsi l’évaluateur doit constamment
chercher de nouvelles attaques afin de pouvoir traiter des signaux de plus en plus
complexes, bruités et désynchronisés. Actuellement les méthodes pour exploiter
ces signaux et extraire des éléments secrets reposent usuellement sur l’analyse et
l’exploitation du signal dans le domaine temporel. Or, l’analyse dans un espace
temps-fréquence permet en général d’identifier plus facilement les motifs liés aux in-
structions algorithmiques et l’influence des contre-mesures. En particulier, les trans-
formées en ondelettes permettent d’avoir une analyse fine des signaux et d’identifier
dans l’espace temps-fréquence les différents événements liés à l’algorithme de chiffre-
ment. L’objectif de cette thèse est de développer de nouvelles méthodes d’attaques
basées sur les transformées en ondelettes. En particulier, nous nous focaliserons sur
le traitement de la désynchronisation des signaux.

Nous commencerons avec la présentation d’outils d’analyse en ondelettes per-
mettant la visualization et l’extraction des motifs présents dans les signaux et liés
aux opérations algorithmiques. Ces motifs pourront être transformés en filtres adap-
tés pour une méthode simple de réalignement. Ensuite, nous étudions l’estimation
de trames d’ondelettes adaptées aux motifs. En l’absence de propriétés analytiques
dans les signaux pouvant motiver un choix particulier de famille d’ondelettes, nous
emploierons la superfamille des ondelettes de Morse généralisées. La trame apprise
sera ensuite utilisée pour effectuer des attaques. Dans un deuxième temps, nous lais-
serons momentanément les approches se basant sur des techniques de réalignement
pour étudier la transformation en scattering qui permet de réduire directement des
bruits de désynchronisation et de déformations dans les signaux. La méthode pro-
posée sera couplée avec une méthode d’ensemble pour l’approximation du modèle de
fuite des informations sensibles. Enfin, dans un dernier chaptitre, nous établirons
un modèle statistique génératif pour les signaux par canaux cachés, construit de
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manière à prendre en compte la partie algorithmique, les phénomènes de désynchro-
nisation et la génération de motifs via une trame d’ondelettes. Il sera utilisé pour la
génération de signaux par canaux-cachés et on en déduira une méthode d’estimation
des temps d’apparition des opérations pour le réalignement.
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Nomenclature

N Set of positive integers

Z Set of positive and negative integers

R Set of real numbers

C Set of complex numbers

K Either R or C

Cn Set of vectors in R+n summing to one, i.e. a n-simplex

C (K) Set of continuous functions on K

L1(R) Set of absolute integrable functions on R

L2(R) Set of square integrable functions on R

`2(Z) Set of finite energy sequences

A×B Cartesian product of sets A and B

|A| Cardinality of set A

i Imaginary number

<(z) Real part of z

=(z) Imaginary part of z

z Conjugate of z

f ∗ g Convolution of functions or vectors f and g

f ~ g Circular convolution of functions f and g

〈u, v〉 Inner product of vectors u and v

vec (A) Vectorize operator transforming matrix A into a column vector
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A∗ Adjoint of linear operator A

AT Transpose of matrix or vector A

A† Conjugate transpose of matrix A, i.e. AT

∇xf Jacobian of f according to variable x

tr (A) Trace of matrix A

F Fourier transform operator

f̂ Fourier transform of f

STFT Short-Time Fourier Transform operator

δτ Dirac distribution centered at τ

1b(x) Indicator function evaluated to 1 if the condition b(x) is true, 0 otherwise

Lτ Translation operator parametrized with translation τ

Sa Scaling operator parametrized with scale a

f− Time reversal and conjugate version of a function f , i.e. f−(t) = f(−t)

EX [f(x)] Expectation of f according to the probability measure of X

8



Contents

Nomenclature 7

List of Figures 13

List of Tables 14

1 Time-Frequency Analysis of Signals 20
1.1 Spaces of signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Some tools of signal analysis . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.2 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Time and Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 The Short-Time Fourier Transform . . . . . . . . . . . . . . . 26
1.3.2 Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.3 Analysis in a Frame . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.4 Paving the time-frequency space . . . . . . . . . . . . . . . . 29

1.4 Time-Frequency Localization . . . . . . . . . . . . . . . . . . . . . . 30
1.4.1 Analysis in a time-frequency box . . . . . . . . . . . . . . . . 32
1.4.2 Analysis in a time-frequency disk . . . . . . . . . . . . . . . . 33
1.4.3 Analysis in a time-scale disk . . . . . . . . . . . . . . . . . . . 34
1.4.4 Analytic Wavelet Transforms with Generalized Morse Wavelets 36

2 Elements of probability and information theory 39
2.1 Notations and basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Elements of Information Theory . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Entropy and Mutual Information . . . . . . . . . . . . . . . . 41
2.2.2 Cross-entropy and Divergence between distributions . . . . . . 42

2.3 Maximum likelihood estimator . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Some Distribution Laws . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.1 Quadratic Discriminant Analysis . . . . . . . . . . . . . . . . 47

9



2.6 Expectation Maximization . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7 Metropolis Hastings . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Side Channel Analysis 51
3.1 Information Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.2 Guessing Entropy . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.3 Classification of attacks . . . . . . . . . . . . . . . . . . . . . 55
3.1.4 The Advanced Encryption Standard (AES) . . . . . . . . . . 56

3.2 Smart-Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.2 CMOS circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.3 Electromagnetic scattering . . . . . . . . . . . . . . . . . . . . 60

3.3 Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.3 Side-channel attack against AES . . . . . . . . . . . . . . . . 63
3.3.4 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Static Approach 69
4.1 Characteristics of Electromagnetic Signals . . . . . . . . . . . . . . . 70

4.1.1 A variety of signals . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.2 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.3 Information localization in time and frequency . . . . . . . . . 72

4.2 A Wavelet Analysis of SCA signals . . . . . . . . . . . . . . . . . . . 75
4.2.1 Multiscale analysis and pattern identification . . . . . . . . . 75
4.2.2 Pattern extraction and Denoising . . . . . . . . . . . . . . . . 75
4.2.3 Resynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.4 Automatic Detection of Patterns for Realignment . . . . . . . 79
4.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Generalized Morse Wavelet frame Estimation . . . . . . . . . . . . . 85
4.3.1 Analysis in a Frame of Generalized Morse Wavelets . . . . . . 85
4.3.2 Maximum Likelihood estimation . . . . . . . . . . . . . . . . 87
4.3.3 Information Retrieval in Side-Channel Signals . . . . . . . . . 92

4.4 Wavelet Scattering Transform and Ensemble Methods for Side-Channel
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.1 Translation invariance and stability under diffeomorphism . . 99
4.4.2 The Wavelet Scattering Transform . . . . . . . . . . . . . . . 101
4.4.3 A Combination Procedure for Ensemble Methods in SCA . . . 102
4.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10



4.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Generative model for Side-Channel Analysis 113
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.1 Filter model for SCA . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 A model for the algorithm . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3 Jitter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.1 Jitter as a Poisson point process model . . . . . . . . . . . . . 117
5.3.2 Gamma point process model . . . . . . . . . . . . . . . . . . . 118

5.4 Gaussian Mixture Model for patterns with GMW factorized covariances121
5.5 Simulation of side-channel signals . . . . . . . . . . . . . . . . . . . . 123
5.6 Learning the parameters of the generative

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.6.1 Learning strategy . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Time occurrence estimation . . . . . . . . . . . . . . . . . . . . . . . 129
5.7.1 Estimation using a Metropolis Hasting algorithm with true

generation parameters . . . . . . . . . . . . . . . . . . . . . . 129
5.7.2 Estimation with unknown parameters . . . . . . . . . . . . . 130

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography 139

Appendix
A.1 ML for the estimation of Generalized Morse Wavelets . . . . . . . . . 152
A.2 Poisson point process . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

11



12



List of Figures

1.1 Illustration of the Heisenberg areas covered by Wavelet and Short-
Time Fourier transforms. . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2 Illustration of the projection region of operator LT,W . . . . . . . . . . 32
1.3 Illustration of the projection region of operator PS. . . . . . . . . . . 33
1.4 Projection on a time-scale disk and its time-frequency mapping . . . 36
1.5 Some examples of Generalized Morse Wavelets with varying param-

eters β and γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Illustration of the certification procedure before commercializing a
system on chip (SoC). . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Architecture of a smart card . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Circuit diagram for a CMOS inverter . . . . . . . . . . . . . . . . . . 59
3.4 Side-channel analysis with electromagnetic signals. . . . . . . . . . . 62

4.1 Visualisation of some side-channel signals . . . . . . . . . . . . . . . . 71
4.2 A sample of the noise encountered in EM signals. . . . . . . . . . . . 73
4.3 Leakage visualization in time and frequency domains . . . . . . . . . 74
4.4 Side-channel signals from CHAXA and JIT and their scalograms. . . 76
4.5 Extraction of patterns from a scalogram and resynthesis . . . . . . . 82
4.6 Evolution of the log of the residual norm during the iterations of a

conjugate gradient method. . . . . . . . . . . . . . . . . . . . . . . . 83
4.7 Detection of patterns in side-channel signals with adapted filters . . . 83
4.8 Localisation of patterns in signals . . . . . . . . . . . . . . . . . . . . 84
4.9 Preprocessing with realignment and dimension reduction. . . . . . . . 93
4.10 Example of the realignment of a signal and its continuous wavelet

transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.11 Visualisation of dimension reduction techniques. . . . . . . . . . . . . 94
4.12 Evolution of the log likelihood during training. . . . . . . . . . . . . . 94
4.13 Comparison between initial and learned frame of Generalized Morse

Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.15 Scatter plots of features acquired through PCA, GMW-MLE and

UMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

13



4.16 Evolution of the guessing entropy (GE) with different dimension re-
duction techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.17 Jitter effect and deformation in JIT signals . . . . . . . . . . . . . . . 100
4.18 Effect of deformations in frequency for STFT and WT. . . . . . . . . 100
4.19 A two-level wavelet scattering transform . . . . . . . . . . . . . . . . 102
4.20 Example of partition functions for the approximation of the leakage

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.21 Illustration for the global method with the scattering transform and

the ensemble method . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.22 Evolution of the Guessing entropy with the number of ASCAD signals109
4.23 Guessing Entropy as a function of the number of JIT signals . . . . . 110
4.24 Information Leakage visualization in JIT signals . . . . . . . . . . . . 111

5.1 Evolution of the energy consumption integrated over time of jitter
protected signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Filter-based model for side-channel signals . . . . . . . . . . . . . . . 115
5.3 Jitter countermeasure as a Gamma point process. . . . . . . . . . . . 120
5.4 Simulation of side-channel signals. . . . . . . . . . . . . . . . . . . . . 126
5.5 Sampling the times of occurrence of operations with Metropolis Hast-

ings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.6 Evolution of the error of estimation as a function of the variance of

the jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.7 Evaluation of the log proposal for the localization of patterns . . . . . 133

14



List of Tables

4.1 Results of attack against AES with various preprocessing transform
and the ensemble method . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 Errors in the estimation of the times of occurrence. . . . . . . . . . . 130

15



16



Introduction

The invention of silicon based metal-oxide-semiconductor at the beginning of the
20th century by the Bell Labs has been one of the most important breakthroughs in
technology and science. It was the first semiconductor to be massively produced and
greatly revolutionized the field of electrical engineering. It led to the development
and industrialization of modern computers which in turn transformed our life and
culture.

The use of computers is now widespread and rules our daily lives. Over time,
these devices have grown in complexity and functionality, and today the knowledge
required to fully understand the physical theory and computer science behind them
is unreachable for a single person. Thus, in our daily use of any computer device,
we trust engineers and computer scientists to make sure it meets our expectations.

However, for some applications such as information security, it is important that
tiers verify that the device meets its specifications. Indeed, the development of in-
formation technology also led to new scam and fraud techniques that threatens the
use we can make of these devices and the trust we placed in them. Nowadays, gov-
ernment agencies and independent information security laboratories act as trusted
third parties who can verify the security of the devices handling our personal and
secret information.

This thesis was held in an Information Technology Security Evaluation Facility
(ITSEF) located at Grenoble in France at the CEA, specialized in the evaluation
of the security of information processing devices. In order to assess the security
of a device, information security evaluators ensure first that the product meets its
specifications and that the system has no design flaws, next he may perform high-
level attacks, including physical attacks, to test its security. In consequence, and
with the development of new countermeasures by manufacturers and developers to
meet security standards, their attack methods have to be continuously improved to
anticipate attackers.

In this context, many types of attacks may pose a threat on a cryptographic
device responsible for storing or ciphering sensible information. As an important
type of attack, side-channel analysis may monitor indirect information about the
functioning of the device to break its security and recover sensible information such
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as cryptographic keys.
In particular, as the cost of frauds on smart cards has increased in recent years,

the security assessment of those devices is of importance. To do so, evaluators wish to
measure the leak of cryptographic keys in electrical consumption or electromagnetic
signals emitted by smart cards during operation. They can rely on statistical models
such as Gaussian templates [21] or statistical tests [66] to test the leak of the key. In
response to those security tests, manufacturers and developers have been designing
efficient countermeasures to decrease the leak of information in signals, such as
masking countermeasures [58] that share the secret about the key across variables in
the algorithm, and jitter countermeasures [26] that desynchronize signals to perturb
their statistical analysis. The introduction of deep learning methods in recent years
[78, 28] has produced new state-of-the-art attack results that pose a threat against
those countermeasures. At the same time, however, the absence of an explicit model
of the side-channel signal in deep learning methods makes it difficult for the evaluator
to fully grasp the nature of the leak and propose a more detailed security analysis
to the manufacturers and developers.

In this thesis, we will adopt a signal processing approach in the analysis of
side-channel signals. In particular, we will study the use of wavelet transforms for
analyzing signals. Its use is not widespread in the side-channel community although
it has been fruitfully employed as a preprocessing step in other fields presenting the
same kind of problems such as for example in audio [6] or heart-rate analysis [2].
Wavelet transforms provide detailed time-frequency maps by projecting signals on
a specific sequence of elementary signals. It provides multiresolution representation
that helps in the identification of different components in the signal. We will study
their use in the context of side-channel analysis and propose new attacks methods.

Outline

We wish this manuscript to be readable by people not particularly initiated to
signal processing or probability theory. Thus, we devote the first two chapters to
some elements of those fields that will be used throughout this manuscript. A third
chapter will present the context of application of this thesis, namely information
security and side-channel analysis. The fourth and fifth chapters are dedicated to
our contributions to the field through the lens of wavelet analysis.

We present in the first chapter some concepts and tools in signal processing
with a focus on time-frequency analysis. We recall the definitions of Fourier, Short-
Time Fourier and Wavelet transforms. To understand the difference between various
time-frequency transforms we detail the topic of time-frequency localization via the
paving of the time-frequency space with Heisenberg areas or by the introduction of
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time-frequency localization operators. In particular, we recall in this last case the
construction of the superfamily of Generalized Morse Wavelets that will be used in
this thesis for analyzing signals.

The second chapter is dedicated to information and probability theory. We
present our notations and recall the definition of the Shannon entropy and the
mutual information. Next, we introduce all the underlying statistical elements that
will be used in our methods. We present in particular the learning algorithm behind
the template attacks of [21].

In a third chapter, we detail some background on information security and side-
channel analysis. It is an important chapter as it depicts the context in which this
thesis has been carried out. We present the problem of evaluating the security of
implemented cryptosystems on smart-cards and the goal of side-channel analysis.
We will end by the literature in side-channel analysis and the positioning of the
works of this thesis.

In a fourth chapter, we present different methods developed during this thesis
where we did not consider a dynamical structure for the signals. We start with simple
tools in wavelet analysis to visualize side-channel signals and extract patterns for
realignment. We propose a novel method for the estimation of an adapted frame of
Generalized Morse Wavelets which is applied in the context of side-channel analysis
for analyzing extracted patterns from side-channel signals. It has been published in
[37]. The chapter ends with the method published in [38] for reducing the impact
of jitter countermeasures with the scattering transform, and for approximating a
leakage model with an ensemble method.

In a fifth chapter, we present a generative and dynamical model for side-channel
signals. In comparison with the fourth chapter, we do assume in this part a dynami-
cal structure to side-channel signals and propose a model for it. More specifically, we
model the jitter by a point process model and use our previous work on the estima-
tion of an adapted frame to model the generation of patterns related to algorithmic
operations.
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Chapter 1

Time-Frequency Analysis of
Signals

In this chapter, we introduce important concepts and tools in time-frequency anal-
ysis. Since the subject of this thesis is at the crossroad between signal processing,
machine learning and cryptanalysis, our goal in this part is to provide essential
elements of time-frequency analysis to readers less familiar with the field.

We start by giving some general mathematical properties to our signals which are
seen as functions or vectors. Then we go through essential recalls on Fourier analysis
in order to introduce in a subsequent section time-frequency analysis and wavelet
analysis. Next, a section is dedicated to the topic of time-frequency localization as
it gives, in its way, some theoretical arguments for choosing a wavelet basis.

For more details on the foundations of signal processing we refer the reader to
[96] or [116], and elements of function analysis can be found in [104].

1.1 Spaces of signals

Signals are represented as functions f on Rk taking values in K where K designates
either the set of real numbers R or complex numbers C. For example, a temporal
signal is represented by a function f : R → R, while its wavelet transform Wf ,
which we still consider as a signal, can be defined as Wf : R2 → C.

After discretization, signals are internally represented in computer memory as
n-multidimensional vectors y in Kn. To continue the previous example, the sampling
and discretization of a temporal signal f can result in a vector Rn where n is the
number of samples acquired.

We use a different notation to index functions and vectors: we note f(x) the
value of f at the continuous index x with x defined in an uncountable space Rk and
y[u] the value taken by the vector y at the discrete index u in a countable space.
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In particular, if we have an indexed sequence {va ∈ K}a∈A with A countable, we
can define a function f that maps the indices to the values of the sequence, i.e.
f : A→ K , a 7→ f [a] = va. For example, A can be a countable subspace of Rn.

In practice, the observation of signals and consequently the analysis is limited in a
time and frequency domain of observation. It results that we can safely consider our
signals of finite energy. Hence, we introduce the two following spaces of functions.

The Lebesgue space of integrable functions is defined by

L1(R) =
{
f : R→ K

∣∣∣∣ ∫
R
|f(x)|dx <∞

}
,

and for the Lebesgue space of square integrable functions we write

L2(R) =
{
f : R→ K

∣∣∣∣ ∫
R
|f(x)|2dx <∞

}
.

Later on, to introduce some analysis tools we will need a discrete version of the
L1(R). The space of finite energy sequences writes

`2(Z) =

{
y : Z→ K

∣∣∣∣∣∑
u∈Z

|y[u]|2 <∞

}
.

L2(R) and `2(Z) are Hilbert spaces. We have the canonical inner product on
L2(R)

f, g ∈ L2(R) , 〈f, g〉 =
∫
R
f(x)g(x)dx ,

with · the complex conjugation. It induces the norm

‖f‖ =
√
〈f, f〉 .

On `2(Z), the inner product is written

y, z ∈ `2(Z) , 〈y, z〉2` =
∑
u∈Z

y[u]z[u] ,

and the norm is written in the same way.
As said previously, all our methods ultimately manipulate signals in the form of

n-dimensional vectors in Kn that can be seen as continuous signals acquired over a
time range [−T/2, T/2] with T = n/Fs and Fs the sampling frequency. Thus, as
the continuous counterpart of Kn, we will use L2([−T/2, T/2]) as the space of finite
energy signals on [−T/2, T/2].

The space of continuous functions over a domain R is noted C (R). In addition
to the continuity property, the k-th derivative of a signal f , if it exists, is noted f (k)
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and we note Ck(R) the space of k-differentiable functions on R.

1.2 Some tools of signal analysis

1.2.1 Operations

Integration with the Dirac distribution We define the Dirac distribution δ as
the distribution on R fulfilling the property

∀f ∈ L2(R) , τ ∈ R,
∫ +∞

−∞
f(t)δ(t− τ)dt = f(τ) (1.1)

We note δτ (t) = δ(t− τ) the τ -delayed Dirac distribution.

Convolutional operator The convolution operator is particularly useful to rep-
resent how a system (physical or idealized) acts on input signals. Let g ∈ L2(R) a
function that characterizes the action of the system and f ∈ L2(R) an input signal,
the effect of the system on f is the result of the convolution operator

f ∗ g(τ) =
∫ +∞

−∞
f(t)g(τ − t)dt . (1.2)

Now for time-limited signals f, g ∈ L2([−T/2, T/2]), we introduce the circular con-
volution operator

f ~ g(τ) =

∫ +T/2

−T/2
f(t)g(τ − t)dt , (1.3)

where it is implicitly assumed that the functions f, g are periodized with period T ,
i.e. g(t) = g(t− kT ) with k ∈ Z, thus f ~ g is a T -periodic function.

The definition of convolution operators for discrete sequences comes naturally
by discretizing the integrals in previous definitions.

For sequences y, z ∈ `2(Z) we keep the notation y ∗ x

y ∗ z[k] =
∑
p∈Z

y[p]z[k − p] . (1.4)

For finite vectors y, z ∈ Cn, n ∈ N, the convolution is circular

y ~ z[k] =
n−1∑
p=0

y[p]z[k − p] , (1.5)

where it is implicitly understood that z[p] = z[pmodn] making y and z circular
vectors of period n.
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Translation With these definitions, we define translations Lτ of length τ on L2(R)
as the convolution with a τ delayed Dirac distribution: ∀f ∈ L2(R) , τ ∈ R,

Lτf(t) = f ∗ δτ (t) =
∫ +∞

−∞
f(u)δ(t− τ − u)du = f(t− τ) . (1.6)

Now for time-bounded signals f on L2([−T/2, T/2]), the action of Lτ is the circular
convolution with the delayed Dirac distribution, the resulting signal is circularly
shifted around [−T/2, T/2].

We have the same definitions for discrete sequences or vectors by considering
translations with integer values.

1.2.2 Fourier Analysis

In this section, we recall some elements of Fourier analysis.

1.2.2.1 The Fourier Transform

For f ∈ L2(R) ∩ L1(R) the Fourier Transform Ff is defined as

∀w ∈ R, Ff(w) =
∫ +∞

−∞
f(t)e−iwtdt . (1.7)

To ease the reading, we note f̂ = Ff the Fourier Transform of f .
For f̂ ∈ L2(R) ∩ L1(R), the Inverse Fourier Transform f of f̂ is given by

∀t ∈ R, f(t) =
1

2π

∫ +∞

−∞
f̂(w)eiwtdw . (1.8)

The Fourier transform (and its inverse) can be extended to L2(R) and is an isometry
of L2(R), see [17, Chap. C3].

As it is an isometry, the Fourier Transform preserves the scalar product on L2(R),
this is known as the Parseval’s identity

f, g ∈ L2(R) , 〈f, g〉 = 1

2π
〈Ff,Fg〉 . (1.9)

1.2.2.2 Fourier Series

We also recall here the definition of Fourier series for T -periodic signals in L2([−T/2, T/2]).
For all f such that ∀t ∈ R, f(T + t) = f(t), the Fourier series of f is defined as

∀k ∈ Z, wk = 2πk/T, Ff [wk] =
1

T

∫ +T/2

−T/2
f(t)e−iwktdt , (1.10)
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with the Fourier Series inversion formula given by

t ∈ R, f(t) =
∑
k∈Z

f̂ [wk]e
iwkt . (1.11)

where the equality is taken almost everywhere, see [17, Chap. C4].
We also have the Parseval identity

f, g ∈ L2([−T/2, T/2]) , 〈f, g〉 = T 〈Ff,Fg〉 . (1.12)

1.2.2.3 Discrete Fourier Transform

For a n-dimensional vector f in Rn, the Discrete Fourier Transform of f is defined
as

∀k ∈ {0, . . . , n− 1}, wk = 2πk/n, Ff [wk] =
n−1∑
p=0

f [p]e−iwkp , (1.13)

The definition is restricted to {0, . . . , n− 1}, since for k ∈ Z we have Ff [wk+n] =
Ff [wk]. Its inversion formula is given by

∀p ∈ {0, . . . , n− 1}, f [p] = 1

N

n−1∑
k=0

f̂ [wk]e
iwkp . (1.14)

The Parseval’s identity gives

〈f, g〉 = 1

N
〈Ff,Fg〉 . (1.15)

Properties

Convolution For f, g ∈ L2(R), we have the useful identity

∀w ∈ R,F(f ∗ g)(w) = f̂(w)ĝ(w) (1.16)

On bounded domains or for finite dimensional vectors, i.e. for f, g in L2([−T/2, T/2])
or CN with n = TFs, Fs the sampling frequency, we have

∀k ∈ Z, wk = 2πkFs/n, F(f ~ g)[wk] = f̂ [wk]ĝ[wk] . (1.17)

Scaling and Translation Let Lu a translation operator such that for f ∈
L2(R), Luf(t) = f(t− u), we have

FLuf(w) = e−iwuf̂(w) . (1.18)
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Now, noting Sa, a ∈ R∗ the scaling operator such that for f ∈ L2(R), Saf(t) =

f(t/a). The Fourier transform of a scaled function is

FSaf(w) = |a|f̂(aw) . (1.19)

Composing the two previous transformations such that SaLuf(t) = f
(
t−u
a

)
and

taking the Fourier transform we obtain:

FSaLuf(w) = |a|e−iwuf̂(aw) . (1.20)

Note that, if we commute Sa and Lu we get a different result. We have LuSaf(t) =
f(t/a− b) and the Fourier transform gives

FLuSaf(w) = |a|e−iwuaf̂(aw) . (1.21)

1.3 Time and Frequency Analysis

In previous section, we introduced the Fourier transform which can be represented
as the projection of functions on the Fourier Basis

{t→ eiwt}w∈R .

However, it is not always practical to manipulate and interpret the representation
of a signal in the Fourier Basis. The complex exponentials of the Fourier transform
capture information on the whole time-domain and it is only by the weighted com-
bination of many elements of the Fourier basis that we are able to reproduce local
variations. In other terms, if we wish to properly analyze an event in a bounded and
small time domain, we will have to extract information from a lot of Fourier coeffi-
cients. In this thesis, it will be of particular importance to analyze non-stationary
signals with random transients, it requires adapted tools to extract information from
restricted domain of time and frequency.

Thus, the rest of this chapter is dedicated to time-frequency transformations.
They are more adapted to the analysis of transients in bounded time-frequency
domains. We will first start with the Short-Time Fourier transform (STFT), which
historically is the first time-frequency transform presented by D. Gabor in [43]. Then
we introduce the wavelet transform, proposed by J. Morlet in the 80s and whose
mathematical foundations are laid in [47]. A small section will be dedicated to the
topic of frame analysis, which is convenient to summarize both previous transforms.

More details on time-frequency analysis can be found in the books of Meyer
[123], Daubechies [31] and Mallat [80].
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1.3.1 The Short-Time Fourier Transform

We define the Short-Time Fourier Transform (STFT) of a signal f as the projection
on a family of Gabor atoms

{
φw,u : t→ g(t− u)eiwt

∣∣ w, u ∈ R
}
,

where g is a function, called the window, generally chosen real, symmetric and
vanishing outside a bounded time domain.

The STFT of f is thus defined by

∀u,w ∈ R, STFTf(u,w) = 〈f, φw,u〉 . (1.22)

In practice, a common approach is to compute the inner products by moving the
window g along the time domain and by taking Fourier transforms. We can show
that

〈f, φw,u〉 = F(fgu)(w) , (1.23)

with · the complex conjugation and gu : t→ g(t− u).
Alternatively, the STFT can be computed by convoluting f with

φ−
w(t) = φw(−t)

for each w ∈ R with φw = φw,0, and by sampling each convolution.
Indeed, we have

f ∗ φ−
w(u) =

∫
f(t)φ−

w(u− t)dt (1.24)

=

∫
f(t)φw(t− u)dt (1.25)

= eiwu〈f, φw,u〉 . (1.26)

Thus by sampling the convolutions at each u ∈ R and by compensating the phase
term we are able to form the STFT of our signal.

The STFT is commonly computed on a discrete and regular time-frequency grid

{(uk, wp) | k, p ∈ Z, uk = u0 + kcu, wp = w0 + pcw} ,

with uo, wo ∈ R and cu, cw ∈ R+.
In our case, we prefer computing the STFT through convolutions as it allows

the processing of large signals with a convolution operator implemented with the
overlap-add algorithm [116, Sec. 3.9]. Moreover, the convolutions can be computed
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only for pre-selected frequencies of interest. It is a procedure that will be used later
for computing continuous wavelet transforms.

Generalizations of the STFT on non-regular time-frequency grid are given in
[10]. But, it is generally difficult to deal with true non regular time-frequency grids
as a fast algorithm to perform the calculations is missing and the grid must be
adapted to the signal. Frame analysis, which will be introduced later, provides a
mathematical framework to deal with such ideas.

1.3.2 Wavelet Transform

We previously defined the short-time Fourier transform as the projection of a signal
on a family of shifted and modulated time-window. The main limitation of this
transformation is that the time-window of analysis is fixed. The wavelet transform
uses elementary signals called wavelets whose scales are adapted in order to capture
fast or slow variations in signals.

1.3.2.1 Wavelet Bases

A wavelet is a function ψa,u with a ∈ R+
∗ and u ∈ R such that

∀t ∈ R, ψa,u(t) =
1√
a
ψ

(
t− u
a

)
(1.27)

ψ ∈ L2(R) is called the mother wavelet as it generates all translated and scaled
variants {ψa,u}a,u. For increasing values of a, ψ is dilated in time, and conversely it
is contracted for decreasing values. It has zero mean∫ +∞

−∞
ψa,u(t) = 0 or equivalently ψ̂a,u(0) = 0 (1.28)

And we say that a wavelet ψ is admissible if ψ is real or analytic complex (i.e.
ψ̂ = 0 on R−) and

Cψ =

∫ +∞

0

|ψ̂(w)|2

w
dw < +∞ . (1.29)

1.3.2.2 Wavelet Transform

The wavelet transform Ψf of a signal f ∈ L2(R) is defined as the set of inner
products with scaled and dilated wavelets ψa,u

(Ψf)(a, u) =

∫
R
f(t)ψa,u(t) = 〈f, ψa,u〉 . (1.30)
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The criteria of admissibility (1.29) ensures that (Ψf) can be used to recover f using

f =
1

Cψ

∫ +∞

0

∫ ∞

−∞
(Ψf) (a, u)ψa,u

da

a2
du . (1.31)

The continuous wavelet transform is made of the convolutions {t→ (f ∗ψ−
a )(t)}a

with ψ−
a (t) = 1√

a
ψ(−t

a
) for each scale a ∈ R+. The algorithm for computing the

continuous wavelet transform is easy to implement, and with it we can get continuous
representations of signals in the time-scale space.

Discrete wavelet transforms are optimized to compute wavelet transforms. The
parameters {a, u} are carefully chosen such that for a signal f ∈ Rn, at least n scalar
products 〈f, ψa,u〉 are required to reconstruct the signal f . For a suitable choice of
the mother wavelet ψ, it requires that the chosen set of parameters {a, u} makes
{ψa,u} a basis of Rn.

For real signals, a fast wavelet transform presented in [79] cascades quadrature
mirror filters and 1/2-subsampling to rapidly compute a discrete wavelet transform
on an orthogonal wavelet basis. It requires a low and high pass filters mirrored at
pulsation π/2 in the frequency domain.

1.3.3 Analysis in a Frame

Short-Time Fourier and Wavelet transforms are projections on particular sequences
of functions. These sequences generally constitute a basis of the space of analysis
which requires its elements to be chosen linearly independent and orthogonal to each
other. This constraint can be dropped by considering frames of functions which are
overcomplete or redundant bases that can still represent each element of the space
of analysis. Frame theory has been first introduced in [39] for reconstructing signals
from non harmonic Fourier series representations. Further details on frame theory
can be found in [25] and [80].

1.3.3.1 Frame operator

Let H an Hilbert space, f a signal in H and Ψ an operator parametrized with a
sequence of functions {ψξ}ξ∈Ξ with the index set Ξ countable. The action of Ψ on
f gives the projections Ψf [ξ] = 〈f, ψξ〉 , ξ ∈ Ξ. Its adjoint Ψ∗ is defined as

∀x ∈ `2(Ξ) , Ψ∗x =
∑
ξ∈Ξ

x[ξ]ψξ . (1.32)

In general, the sequence {ψξ}ξ∈Ξ does not necessarily span the whole space H. Thus
the operator Ψ is not invertible on H but only on a subspace V = span({ψξ | ξ ∈ Ξ}).
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We say that Ψ is a frame operator on a subspace V if there exist 0 < A ≤ B

such that [80, Def. 5.1]:

∀f ∈ V, A‖f‖2 ≤
∑
ξ∈Ξ

|〈f, ψξ〉|2 ≤ B‖f‖2 (1.33)

The bound A (B) can be found by taking the infimum (supremum) of the spec-
trum of the self-adjoint operator Ψ∗Ψ. If A and B are finite positive, then Ψ∗Ψ

is invertible and we can look for the dual operator Ψ̃ defined by the dual frame
{ψ̃ξ = (Ψ∗Ψ)−1ψξ}, see [80, Th. 5.5]. This dual operator is also a frame op-
erator with bounds 0 < B−1 ≤ A−1 and its adjoint is the pseudo-inverse of Ψ,
Ψ̃∗ = (Ψ∗Ψ)−1Ψ∗.

The dual operator is useful to get a reconstruction identity on V , we have IdV =

Ψ̃∗Ψ = Ψ∗Ψ̃. For a signal f in H, its projection fV on V can be computed with
fV = Ψ̃∗Ψf

The set of indices Ξ of the frame operator allows us to uniquely identify each
element of the frame. For example, the Short-Time Fourier transform can be seen
as the action of a frame operator with a frame of modulated and shifted window
functions {g(t − u)eiwt}(u,w)∈Ξ, and where we can choose Ξ as the discrete time-
frequency grid

Ξ = [0, . . . , n− 1]× [0, . . . , 2πk/n, . . . , 2π(n− 1)/n], n ∈ N .

Wavelet transforms are also represented this way by considering frames of scaled
and shifted versions of a mother wavelet.

In the discrete setting, the adjoint of the frame operator will be written Ψ† with
·† the conjugate transpose operation for matrices. Each column of Ψ† will contain
the elements of the frame.

1.3.4 Paving the time-frequency space

To understand why wavelet transforms are adapted for analyzing fast varying signals
on short time scales, we can look at the first and second-order energy moments of a
family of wavelets. For an arbitrary signal f ∈ L2(R) with Fourier transform f̂ , its
first and second energy moments in time µt, σt, and frequency µf , σf are given by:

µt(f) =
1

‖f‖2

∫
R
t|f(t)|2dt µf (f) =

1

‖f‖2

∫
R
w|f̂(w)|2dw

σt(f)
2 =

1

‖f‖2

∫
R
(t− µt(f))2|f(t)|2dt σf (f)

2 =
1

‖f‖2

∫
R
(w − µf (f))2|f(w)|2dw
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With these quantities, we can form the Heisenberg area σtσf , centered at (µt, µf ),
where most of the energy of f is localized.

Let ψ a mother wavelet and

ψa(t) =
1√
a
ψ

(
t

a

)
the a-scaled versions, we assume that all wavelets here are centered at t = 0, i.e.
∀a ∈ R+, µt(ψa) = 0. The first and second energy moments for ψa can be expressed
in terms of the mother wavelet’s, we get:

µt(ψa) = µt(ψ) µf (ψa) =
1

|a|
µf (ψ)

σt(ψa) = |a|σt(ψ) σf (ψa) =
1

|a|
σf (ψ)

For the wavelet transform, the time-frequency box for ψa of time length and fre-
quency length σt(ψa) and σf (ψa) respectively has a constant area A(ψ) = σt(ψ)σf (ψ)

and centered at (µt(ψ),
1
|a|µf (ψ)). As a increases the Heisenberg area is elongated

along the frequency axis and simultaneously shrunk along time. Wavelet transforms
are thus particularly adapted to capture high variations over short period of times.

For the short time Fourier transform, the modulated Gabor atoms {φw(t) =

g(t)eiwt}w have the following relation between the energy moments of φ0 and φw:

µt(φw) = µt(φ0) µf (φw) = w + µf (φ0)

σt(φw) = σt(φ0) σf (φw) = σf (φ0)

The time-frequency area covered in energy by both transformations are different.
In comparison with wavelet transforms, the second-energy moments of Gabor atoms
stay the same as the modulation w varies. We illustrate Fig. 1.1 the variation of the
Heisenberg areas in the time-frequency domain for Wavelet and Short-Time Fourier
transforms.

The topic of this section is related to the problem of localizing information in
the time-frequency space. In Sec. 1.4, we go a bit further by considering projection
operators restricting signals in bounded time-frequency regions.

1.4 Time-Frequency Localization

In previous sections, we explored ways to analyze signals through the use of a se-
quence of elementary functions. The projection of the signal on one of those functions
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Figure 1.1: Illustration of the Heisenberg areas covered by Wavelet and
Short-Time Fourier transforms. We represented the stability of both

transformations under time and frequency translations by the displacement of the
black dot. At high-frequency the wavelet transform is more sensitive to time

translations, while the STFT is sensitive to frequency translations.

capture the energy of the signal in a time-frequency region. Instead of characteriz-
ing the signal through this sequence only, we present here a generalisation of this
approach using a sequence of linear operators instead. Each operator will be local-
ized in the time-frequency domain. In this section, we give some elements on the
topic of time-frequency localization and how it led to the finding of a superfamily
of wavelets, namely the Generalized Morse Wavelets, that will be used in our work.
This problem has been initiated and studied in a series of articles [59, 109, 108].

The general idea is as follow. In order to analyze a signal f inside a time-
frequency region S, we define an operator PS such that the projection PSf is ”lo-
calized” in S. If PS is symmetric and positive semi-definite then we can look for the
remaining energy 〈f, PSf〉 ≥ 0 after projection which gives:

〈f, PSf〉 =
+∞∑
k=0

λk|〈f, hk〉|2 (1.34)

where λk are the eigenvalues sorted in decreasing order and hk the eigenvectors
associated. In particular, the eigenvectors and eigenvalues will depend on the region
S considered.

Depending on the shape of the region S and the operator PS, we will see that it is
possible to get general expressions for the eigenvectors hk. As a direct consequence, it
allows us for example to use the first eigenvector h0 for each region S as a elementary
signal for analyzing f , i.e. for each S we may compute 〈f, h0〉. We will be able to
form a family of elementary signals to analyze f in many different regions S across
the time-frequency space.
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1.4.1 Analysis in a time-frequency box

Let PT and QW the operators respectively truncating signals f ∈ L2(R) on a time
support [−T, T ] and a frequency bandwidth [−W,W ] such that:

(QTf)(t) =

f(t) if |t| ≤ T

0 if |t| ≥ T
(1.35)

(PWf)(t) =

∫ +∞

−∞

sin(W (t− t′))
π(t− u)

f(u)du (1.36)

An operator LT,W = QTPW can then be defined to model the analysis of f below
a frequency W and during a time T . This operator will be bounded, positive semi-
definite and symmetric for the inner product defined on L2(R). Its time-frequency
region S = [−T, T ]× [−W,W ] is shown on Fig. 1.2.

Figure 1.2: Illustration of the projection region of operator LT,W .

Although we cannot restrict a function f ∈ L2(R) on a compact time-frequency
domain, we can still search for the eigenvectors hk of the operator, on the time region
[−T, T ] we have

LT,Whk = λkhk , (1.37)

The equality is true only in the time region [−T, T ], the eigenvectors hk do not have
a compact time support. The eigenvalue λk is the ratio of energy remaining after
the projection by LT,W .

Unfortunately, in this case, no analytic formula are available for hk and λk. In
the next two sections, the problem is reformulated by defining new operators acting
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on different shapes of the time-frequency space.

1.4.2 Analysis in a time-frequency disk

In [32], a new operator PS is constructed to project signals onto a spherical region
in the time-frequency domain S = {(u,w) | u0 + u0 ≤ R2} and through the use of a
basis {φu,w : t→ eiwtg(t− u)} with g a gaussian envelop g : t→ 2π−1/2e−t

2/2.

The projection of a signal f by PS results in the operation

PSf(t) =

∫
(u,w)∈S

〈φu,w, f〉φu,w(t)dwdu . (1.38)

The resolution of identity, i.e. PSf = f , is satisfied when S = R2. For bounded sets
S, if we take φu∗,w∗ with (u∗, w∗) /∈ S then 〈φu∗,w∗ , PSf〉 does not totally vanish and
decreases rapidly as (w∗, u∗) moves away from S. In comparison with the previous
approach, we perform a soft slicing of the time-frequency space. Most of the energy
of PSf is concentrated in S but a small amount of energy also leaks outside S. On
Fig. 1.3, we show the time-frequency region of projection.

Figure 1.3: Illustration of the projection region of operator PS.

We can check that this operator is positive definite, self-adjoint and bounded.
The eigenvectors and eigenvalues of the operator indicate what types of signals
”fit” inside S and how concentrated they are. In [32], the authors show that the
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eigenvalues are given by

λk =
1

k!

∫ R2/2

0

ske−sds =
1

k!
γ(k + 1, R2/2) , (1.39)

where γ(k, a) =
∫ a
0
xk−1e−xdx is the incomplete gamma function. The eigenvalues

are ordered by decreasing values, we have λk > λk+1,∀k ∈ N.
The eigenvectors have the following closed-form expression

hk(t) = akHk(t)e
−t2/2 , (1.40)

with ak a normalization constant, and Hk are the Hermite polynomials given by the
formula [1, p. 22.11]:

Hk(t) = (−1)ket2/2 d
k

dtk
e−t

2/2

The eigenvalues measure what remains of the eigenvectors in term of energy after
applying PS. Noting ρ(S) the ratio of energy with the operator restricted to S, we
have for f = hk:

ρhk(S) =
‖PShk‖
‖hk‖

= λk

This ratio is maximized when k = 0, i.e. when the eigenvector is a Gaussian
hk = h0 = a0e

−t2/2.
We presented the case when S is a spherical region centered at the origin. But

generalizations are given in [32] for disk regions arbitrarily centered and of elliptical
form. The authors show that the eigenvectors have the same form up to a frequency
modulation and a time shift of hk when the region is not centered at the origin, and
up to a scaling term in hk for elliptical regions.

If the same time-frequency disk is positioned at each point of a regular grid of
the time-frequency domain, we can extract the first eigenvectors of all the associated
projectors to construct the basis of the Gabor transform, i.e. when the window of the
STFT is chosen Gaussian. The problem of localizing information in time-frequency
regions of disk shape is closely related to the STFT. The next section shows that the
problem can again be reformulated so that general forms of wavelet bases appear.

1.4.3 Analysis in a time-scale disk

The previous work has been adapted to time-scale regions in [33] and further detailed
in [94] and [72]. In order to define the operator, the authors in [94] start with a two
parameter generalization of the Cauchy wavelets with Fourier transform

ψ̂+1

a,u,β,γ(w) = A1w>0|w|βe−(a+iu)w|w|γ−1

, a ∈ R+, u ∈ R , (1.41)
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with A a normalizing constant such that ‖ψ̂+1

a,u,β,γ‖ = 1 and with γ ≥ 1,β > (γ−1)/2.

ψ̂+1 is analytic, i.e. it vanishes for w < 0. In order to represent signals with
positive and negative frequency components, an anti-analytic variant ψ̂−1 is needed,
it is defined by ψ̂−1(w) = ψ̂+1(−w) for w < 0.

The parameters a and b are respectively the scaling and translation parameters.
It is demonstrated in [94] that the resolution of identity holds for this choice and
fixed β, γ.

Let PS the operator that projects signals on a set {ψa,u,β,γ}a,u∈S with

S =
{
(a, u) ∈ R+ × R

∣∣ (a− C)2 + u2 ≤ C2 − 1
}
,

which is a disk of radius C2 − 1 centered at (C, 0) with C > 1. The action of the
operator PS on f is

PSf(t) =
∑

ε=−1 or +1

∫
a,u∈S

ψεa,u,β,γ(t)〈ψεa,u,β,γ, f〉
da

a2
du .

A time-frequency region Dβ,γ can be associated to PS by looking at the time and
frequency moments of ψεa,u,β,γ. Noting them u and w, we have [33]:

b =

∫
t|ψεa,u,β,γ(t)|2dt = C2ua

1/γ−1 (1.42)

w =

∫
ν|ψ̂εa,u,β,γ(ν)|2dν = sign(ε)C1a

−1/γ (1.43)

with C1, C2 two constants depending on β, γ. The associated time-frequency region
Dβ,γ is given by

Dβ,γ =

{
(b, w) ∈ R2

∣∣∣∣∣
((

C1

|w|

)γ
− C

)2

+

(
b

C2

)2(
C1

|w|

)2γ−2

≤ C2 − 1

}

The operator projects the signal on a set of wavelets which have their time and
frequency moments in the region Dβ,γ. This region gets a particular shape that can
be changed by varying the parameters β, γ and extended by increasing the radius C.
We illustrate the time-scale region and its mapping in the time-frequency domain
on Fig. 1.4.

The authors in [94] show that the eigenvalues of this operator are given by:

λk,β,γ = B ((C − 1)/(C + 1), k, r − 1) (1.44)

with r = (2β+1)/γ and B(y, a, b) = Γ(a+b)
Γ(a)Γ(b)

∫ y
0
xa−1(1−x)b−1dx the incomplete Beta

function.
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Figure 1.4: On the left the time-scale region S, on the right the mapping in the
time-frequency space for parameters (β = 1/3, γ = 1) and (β = 1, γ = 3). For the
same time-scale disk of fixed radius C, the time-frequency regions covered by the

operators change drastically with their parameters. In particular, the D1,3 region is
much more concentrated.

The eigenvalues have a multiplicity of two; the expression of the eigenvectors are
given in the Fourier domain [94, 33]. We have for w > 0:

h+1

k;β,γ(w) = nk;β,γw
βe−w

γ

Lck(2w
γ) (1.45)

For w < 0:
h−1

k;β,γ(w) = nk;β,γ|w|βe−|w|γLck(2|w|γ) (1.46)

where nk;β,γ =
√

πγ2r+1Γ(k+1)
Γ(k+r)

, c = r − 1 and Lck are the generalized Laguerre Poly-
nomials:

Lck(x) =
k∑
i=0

(−1)i Γ(k + c+ 1)

Γ(k − i+ 1)Γ(c+ k + 1)

xi

i!
(1.47)

Unfortunately, for general β, γ no closed-form expressions exist in the temporal
domain.

As previously, if we look at the ratio of energy remaining after the projection,
the first-order eigenvectors for k = 0 maximizes it, i.e. for h+1

0;β,γ and h−1

0,β,γ.

1.4.4 Analytic Wavelet Transforms with Generalized Morse
Wavelets

In this thesis, we will generally compute wavelet transform with the Generalized
Morse Wavelets (GMW) of previous sections. We will use the first-order and ana-
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lytical eigenvector h+1

0;β,γ of the projecting operator of Sec. 1.4.3 to define a mother
wavelet and its offsprings. We fix the parameters β ∈ R+, γ ∈ R+ and note ψ the
mother wavelet, and we have for w > 0:

ψ̂β,γ(w) = cβ,γw
βe−w

γ

. (1.48)

with c2β,γ = πγ 2r/Γ(r) where r = (2β + 1)/γ. The mother wavelet is analytic and
vanishes for w ≤ 0.

Note that as in [73], we extended the domain of validity of the (β, γ) parameters
of the Generalized Morse Wavelet to β > 0 and γ > 0, instead of γ ≥ 1,β > (γ−1)/2
in the original works of [94, 33]. For β > 0, γ > 0, they are called Generalized Morse
Filters in [73], in our case we will keep the name Generalized Morse Wavelets for
simplicity.

The basis is naturally obtained by shifting and scaling the mother wavelet with
parameters a ∈ R+ and u ∈ R. Their expression in frequency is given by:

ψ̂a,u,β,γ(w) =
√
acβ,γ(aw)

βe−(aw)γe−iwu . (1.49)

Frequency peak and duration. It is useful to associate the scale of a wavelet
to a frequency. There are various ways to do so, see in particular [72, Sec. II.D]. In
our case, we are interested in the frequency peak wψ of the wavelet, it is given by:

wψa;β,γ = argmax
w
|ψ̂a,u,β,γ(w)| =

1

a

(
β

γ

)1/γ

(1.50)

and can be found by setting to zero the first derivative of (1.49). This quantity
is helpful to position the maximum of amplitude of the wavelet at some frequency
bands.

We are also interested in the spread of the wavelet in frequency to more or
less cover a band of frequency. For that, we can compute the duration dβ,γ of the
wavelet. With wψ and ψ̂ the short notations for the frequency peak and the GMW
considered, the duration is computed using [72]:

dβ,γ =

∣∣∣∣∣ w2
ψ

ψ̂(wψ)

∂2ψ̂

∂w2

∣∣∣∣
w=wψ

∣∣∣∣∣ =√βγ . (1.51)

With increasing values of dβ,γ the wavelet shrinks in frequency and broadens in time.
These two quantities are helpful in practice to get an idea of how the wavelet

behaves by varying β and γ. Other quantities are given in [72] to characterize the
asymmetry and the shape around the frequency peak, they are related to skewness
and kurtosis measures in statistics.
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Figure 1.5: Some examples of Generalized Morse Wavelets with varying
parameters β and γ.

We plot on Fig. 1.5 examples of first-order Generalized Morse Wavelets with
varying parameters β and γ. We note that by varying the parameters (β, γ) the
peak of frequency, the duration and the asymmetry around the peak change.

We will use this family for the estimation of a frame of wavelets in Sec. 4.3 and
for modeling patterns in side-channel signals in Chap. 5.
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Chapter 2

Elements of probability and
information theory

The side-channel analysis field could not come up with attack methods without
heavily relying on probability and information theory. As many other engineering
domains, we have to deal with the unpredictable aspect of the physical world and its
processes. It is successful at building stochastic models of the world and measuring
their fitness to real data. The engineering community can rely on this framework to
work on a common ground and compare their models. We introduce in this chapter
the main tools of probability and information theory that are used in the field of
machine learning and side-channel analysis.

We start with some basics and introduce our notations, then we move on to
information theoretic tools which are of importance in the security domain. Next,
we recall the maximum likelihood and a posteriori estimators. We then recapitulate
some distribution laws used in this manuscript and present in particular the Gaus-
sian Mixture Model. We also present the Expectation Maximization algorithm for
learning in an unsupervised manner a GMM. Finally, we conclude on the Metropolis
Hastings algorithm for sampling random variables.

2.1 Notations and basics

We note uppercase a random variable X that gets values x in a space X. A measur-
able space is noted (X,X ) with X a σ-algebra, we note PX the probability measure
of X on X and pX its density with respect to an underlying measure µ (e.g. the
Lebesgue measure on Rn or a counting measure for X countable). For a stochastic
process X, we note X(t) the random variable at time t and x(t) the observed values
∀t ∈ R.

To lighten the notations and if it is clear from the context, the underscript
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for probability measure and densities will sometimes be dropped, and we will note
pX(X = x) = p(x).

For X,Y two random variables, the joint and conditional probability densities of
X and Y are noted pX,Y (X = x, Y = y) = p(x, y) and pX|Y (X = x|Y = y) = p(x|y)
respectively.

Let f an arbitrary function from X to Y and X a random variable, the expec-
tation of the random variable Y = f(X) according to the probability measure of X
is given in the discrete case by:

EX [f(X)] =
∑
x∈X

p(x)f(x) (2.1)

In the continuous case, for f a measurable function, we have:

EX [f(X)] =

∫
X

f(x)p(x)dx (2.2)

In our case, we will always assume that X ⊂ Rn for some n ∈ N and that dx
indicates the use of the Lebesgue measure on Rn as a base measure to compute the
integral.

In the discrete case, we have the following relation between the probability den-
sities of Y and X with a function f : X 7→ Y :

p(y) =
∑
x∈X

1x∈f−1(y)p(x) (2.3)

Finally, we have the Bayes rule for two random variables X,Y :

p(x|y) = p(x, y)

p(y)
(2.4)

=
p(y|x)p(x)

p(y)
(2.5)

This formula has a particular interpretation when one variable represents some
parameters to estimate and the other the available data. Let X the random variable
coming as observations data {xi}i and θ a variable (possibly random) representing
some parameters. Assuming a model for the joint distribution p(x, θ), p(θ) is called
the prior distribution on the parameters, it models our belief about θ and indicates
where it is likely to lie in the space Θ. p(θ|x) is called the posterior or a posteriori
distribution as it quantifies our belief about θ after the acquisition of observations
x. Finally, p(x|θ) measures the likelihood of x with supposed θ.
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2.2 Elements of Information Theory

2.2.1 Entropy and Mutual Information

For a random variable X taking discrete values in X, the Shannon entropy of X is
noted HX and given by:

HX = −
∑
x∈X

p(x) log p(x) (2.6)

This quantity is positive or null for discrete random variables since ∀x ∈X, p(x) ∈
[0, 1]. HX vanishes when X is completely determined by an observation x∗ ∈ X

such that p(x) = 1 if x = x∗, 0 otherwise. It is maximized when X follows an
uniform distribution on X, i.e. when p(x) = 1/|X|.

For a random variable X taking continuous values in X, the differential entropy
HX of X is given by:

HX = −
∫
X

p(x) log p(x)dx (2.7)

It is not necessarily positive and can take values in R.

We have the following relation for the entropy of a pair of random variables
(X,Y ) ∈X × Y , expressed in the continuous case here without loss of generality:

HX,Y = −
∫
X

∫
Y

p(x, y) log p(x, y)dxdy (2.8)

= −
∫
X

p(x) log p(x)dx−
∫
X

∫
Y

p(x, y) log p(y|x)dxdy (2.9)

= HX +HY |X (2.10)

Where HY |X is the conditional entropy of Y given X.

The conditional entropy of two random variables is of importance since it mea-
sures how the knowledge of one variable can influence the entropy of the other. If
the knowledge of one variable decreases the entropy of the other, then intuitively
we can assume that both variables are linked in some ways and that it could be
possible to retrieve information about the unknown variable given the observed one.
In consequence, we are interested in the difference:

HY −HY |X = HY,X −HX|Y −HY |X (2.11)

= HX −HX|Y (2.12)

= IX,Y (2.13)

41



Where IX,Y is the mutual information given by:

IX,Y =

∫
X

∫
Y

p(x, y) log

[
p(x, y)

p(x)p(y)

]
dxdy (2.14)

We intuitively guess this quantity positive or null, since if HX gives a measure of
the unpredictability of a random variable X then the knowledge of Y can’t increase
its entropy, thus HX −HX|Y stays positive or null.

Actually, we will show in next section that the mutual information can be cast
as a measure of dissimilarity between the joint distribution pX,Y and the product
of marginal distributions pXpY . It gives another interpretation of IX,Y : if X and Y
are independent then pX,Y = pXpY and the dissimilarity between both distribution
vanishes.

2.2.2 Cross-entropy and Divergence between distributions

Given a set of observations {xi}i, it is natural to think of an idealized system that
produced them according to a probability distribution pX . Since this mathematical
function pX is never known, we can propose an approximate model with distribution
q. To measure how well q matches the target distribution pX , we can use the
Kullback-Leibler divergence which is based on the Shannon’s entropy of Sec. 2.2.1.

For two probability distributions p, q on a space X, the Kullback-Leibler diver-
gence is given by:

DKL [p||q] =
∫
X

p(x) log

[
p(x)

q(x)

]
dx (2.15)

It is used as a measure of the dissimilarity between two distributions. It is positive
and not symmetric, i.e. DKL [p||q] 6= DKL [q||p] in general.

It is sometimes useful to decompose this divergence into two terms:

DKL [p||q] =
∫
X

p(x) log p(x)dx−
∫
X

p(x) log q(x)dx (2.16)

= −H(p) + C(p, q) (2.17)

where C(p, q) = −
∫
X
p(x) log q(x)dx is called the cross-entropy between p and q.

The cross-entropy is not positive but can be used as an alternative way to mea-
sure the dissimilarity between p and q when the target distribution to adjust is q.
This function is commonly used in machine learning as a loss function to fit statis-
tical models. Suppose that q is a parametrized distribution, i.e. that there exists a
space of parameters Θ such that {qθ(X|θ)}θ∈Θ is a set of proposal distributions, if
we want to find the closest distribution qθ∗ to p according to DKL [p||q] then we can
optimize C(p, q) instead of DKL [p||q] since H(p) is constant.
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The alternative version DKL [q||p] can also be used as an optimization criterion
for q. In that case it is necessary to perform the optimization on DKL [qθ||p] and not
solely on the cross-entropy. It is used for example in variational inference methods
and for training variational encoders in the field of deep learning.

This divergence presents particular properties when the distributions p, q belong
to the exponential family, i.e. when probability distributions can be written p(x) =
1

A(θ)
e〈θ,h(x)〉 with θ the distribution parameters, A(θ) a normalization factor and h

a function of x also called the sufficient statistics of X. In these conditions it is
possible to derive optimal gradients that will take into account the metric induced
by the divergence on the space of parameters Θ [4, 118, 52].

In the literature on side-channel analysis, the cross-entropy criterion has been
used to train neural networks in a supervised manner to classify signals according
to cryptographic keys, see for example [85]. The cross-entropy is also encountered
in the Expectation Maximization (EM) algorithm of Sec. 2.6 that we envisage to
use for learning the parameters of the generative model of Chap. 5.

2.3 Maximum likelihood estimator

Let X a random variable and {x→ p(x|θ)}θ∈Θ a set of parametrized distributions.
Given a set of N observations {xi}1≤i≤N , the maximum likelihood estimator θMLE

is the best parameters in Θ maximizing the likelihood:

θMLE = argmax
θ∈Θ

N∏
i=1

p(xi|θ) (2.18)

= argmax
θ∈Θ

N∑
i=1

log p(xi|θ) (2.19)

The second form is usually preferred for computational reason and feasibility.
We note LMLE the log-likelihood loss and write for a batch of data {xi}1≤i≤N :

LMLE(θ) = −
1

N

N∑
i=1

log p(xi|θ) (2.20)

We can think of the maximum of likelihood as the minimization of the Kullback-
Leibler divergence between an empirical distribution

p̃(x) =
1

N

N∑
i=1

δ(x− xi) , (2.21)
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and a parametrized distribution pθ, see [4, Sec. 2.8.3], we can write:

LMLE(θ) = C(p̃, pθ) (2.22)

= DKL [p̃||pθ] +H(p̃) (2.23)

using (2.17), thus we have:

argmin
θ∈Θ

DKL [p̃||pθ] = argmin
θ∈Θ

LMLE(θ) . (2.24)

The maximum likelihood estimation method is used in Sec. 4.3 for estimating a
frame of wavelet adapted to patterns in side-channel signals.

2.4 Some Distribution Laws

In this section we list some distributions laws that will be used throughout this
manuscript. These distributions laws will be used in particular in the Chap. 5 for
initializing the parameters of a generative model for side-channel signals.

Multivariate Gaussian Distribution. Let X a random variable in Rn. We note
X ∼ N (µ,Σ) to state that X follows a multivariate Gaussian distribution with mean
µ ∈ Rn and covariances Σ ∈ Rn×n. It is equivalent to use the following expression
to evaluate the probability density at x ∈ Rn:

p(x) =
1

(2π)n/2 det(Σ)1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2.25)

Instead of writing the density p(x|µ,Σ) we sometimes employ N (x|µ,Σ) to recall
the use of a multivariate Gaussian model for X in the equations.

Complex Multivariate Gaussian Distribution. Let X a random variable in
Cn distributed according to a complex Gaussian distribution. We use X ∼ CN (µ,Σ)

to whenX follows a complex Gaussian distribution with mean µ ∈ Cn and covariance
Σ ∈ Cn×n. It has the following density ∀x ∈ Cn:

p(x) =
1

(π)n/2 det(Σ)1/2
exp

(
−1

2
(x− µ)†Σ−1(x− µ)

)
(2.26)

Depending on the applications other forms exist for this density, we used the
convention of [46].

We do not introduce the univariate case for the Gaussian distribution as it can
naturally be deduced by reducing to 1 the dimension of the distributions parameters
µ,Σ in the previous identities.
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Gamma Distribution. LetX a random variable on R+, we noteX ∼ Gamma(α, β)

when X follows a gamma distribution with shape α > 0 and rate β > 0. The density
is expressed:

p(x) =
1

βαΓ(α)
xα−1 exp(−βx) (2.27)

where Γ(a) =
∫∞
0
xa−1e−xdx is the gamma function.

This distribution is useful to model the distribution of a random variable on R+.
For example, the variance of univariate Gaussian random variable can be modeled
using Gamma distributions.

We saw a generalized form of this expression in the Sec.1.4.3 on Generalized
Morse Wavelets. The generalized form is known as the Generalized Gamma dis-
tribution [111] and enjoys an extra parameter that allows a better control on the
moments of the distribution.

Wishart Distribution. Let X a random matrix variable on the set of positive
definite matrices S+

n ⊂ Rn×n. We note X ∼ W(m,Σ) when X follows a Wishart
distribution with degree of freedom m and mean mΣ. The distribution is defined
on S+

n when m > n− 1. Its density has the following expression ∀x ∈ S+
n [92]:

p(x) =
1

2mn/2Γm(n/2) det(Σ)n/2
det(x)

n−m−1
2 exp(−1

2
tr
(
Σ−1x

)
) (2.28)

with Γm(x) the multivariate gamma function.
This distribution can be used to draw covariances to initialize the parameters

of multivariate Gaussian models. This distribution has been extended to the set of
positive semidefinite matrices S+

n,m of rank m < n in [115].

Exponential Distribution. As a particular case of the Gamma distribution, X
follows an exponential distribution when X ∼ Gamma(0, β) with β > 0. In this
case, we note X ∼ Exp(β) and β is still called the rate of the distribution.

Dirichlet Distribution. We use X ∼ Dir(α) to indicate that the random variable
X on the n-simplex

Cn = {(x1, . . . , xn) ∈ Rn | ∀i, xi ≥ 0,
n∑
i=1

xi = 1}

follows a Dirichlet distribution with concentration vector α ∈ Rn, ∀k αk > 0. Its
density is given by:

∀x ∈ Cn, p(x) = 1

B(α)

n∏
i=1

xαi−1
i , (2.29)
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where B(α) is the multivariate Beta function:

B(α) =

∏n
i=1 Γ (αi)

Γ (
∑n

i=1 αi)
.

This distribution is typically used to generate probability vectors x ∈ Cn.

Categorical Distribution. The random variable X ∈ [1, . . . , n] follows a cate-
gorical distribution with probability vector w ∈ Cn if:

p(x) =
n∏
i=1

w1x=i
i , (2.30)

or equivalently
p(x = i) = wi , (2.31)

and we note X ∼ Cat(w).

2.5 Gaussian Mixture Model

Let X a random variable in Rn, we note X ∼ GMM(w, {µi}Ki=1, {Σi}Ki=1) when X

follows a Gaussian mixture model. The probability density of X is the weighted
sum of K Gaussian densities with parameters {µi ∈ Rn,Σi ∈ Rn×n}Ki=1 and weight
vector w ∈ CK . The overall density is expressed:

p(x) =
K∑
i=1

wiN (x|µi,Σi) . (2.32)

On top of X, a latent state vector O ∈ [1, . . . , K] such that O ∼ Cat(w) with
w ∈ CK can be instantiated to control which Gaussian density is activated.

The joint distribution of (X,O) is given by:

p(x, o) =
K∏
i=1

w1o=i
i N (x|µi,Σi)

1o=i , (2.33)

or equivalently
p(x, o = i) = wiN (x|µi,Σi) . (2.34)

Given an observation x, the likelihood that o is responsible for the observation x

evaluates to:
p(x|o = i) = N (x|µi,Σi) , (2.35)
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while the posterior distribution is:

p(o = i|x) = wiN (x|µi,Σi)∑K
i=1wiN (x|µi,Σi)

. (2.36)

This model can be used to approximate arbitrary complex distribution with
increasing K or in the context of classification by considering the state vector O as
the label for the random variable X.

2.5.1 Quadratic Discriminant Analysis

In the context of supervised learning where the latent variable O ∈ [1, . . . , K] is
considered as the label for a random variable X ∈ Rn, a Gaussian mixture model
can be fitted to a labeled dataset {xi, oi}Ni=1. It amounts to find the parameters of
the model, i.e. the mean and covariances {µj ∈ Rn,Σj ∈ Rn×n}Kj=1 of each Gaussian
densities. We note these parameters θ.1 To this end, we employ the principle of
maximum likelihood of Sec. 2.3 to find an estimate of θ with the likelihood p(x, o|θ).
The MLE estimator for θ is given by [49, Sec. 4.3]:

θMLE = argmin
θ
−

N∑
i=1

log p(xi, oi|θ) (2.37)

= argmin
θ
LMLE(θ) (2.38)

(2.39)

where

LMLE(θ) = −
N∑
i=1

log

[
K∏
j=1

w
1oi=j
j N (xi|µj,Σj)

1oi=j

]
(2.40)

= −
N∑
i=1

K∑
j=1

1oi=j logN (xi|µj,Σj) + c (2.41)

= −
K∑
j=1

∑
(xi,oi)| oi=j

logN (xi|µj,Σj) + c (2.42)

=
K∑
j=1

Lj(µj,Σj) + c (2.43)

1To simplify here, we suppose that the probability weights {wi = p(o = i)} are known or
directly estimated from the training dataset.
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where c is a constant capturing the empirical estimate of the entropy of O. We
introduced subsidiary losses Lj with expression

Lj = −
∑

(xi,oi) | oi=j

logN (xi|µj,Σj) . (2.44)

We see that the initial loss LMLE is divided into K losses Lj which are function of
the parameters of each individual Gaussian distributions. We can show by studying
the gradient of Lj(µj,Σj) according to µj and Σj that a minimum is reached for the
empirical mean:

µ̃j =
1

Nj

∑
(xi,oi=j)

xi

and for the covariances

Σ̃j =
1

Nj

∑
(xi,oi=j)

(xi − µ̃j)(xi − µ̃j)†

where we noted Nj =
∑

(xi,oi)
1oi=j.

In conclusion, the MLE estimator is reached for θMLE = {µ̃j, Σ̃j}Kj=1.

In side-channel analysis, this method is used in template attacks [21] to learn
the parameters of Gaussian Mixture Model and classify signals according to cryp-
tographic keys.

In the next section, we introduce a method that can be used to fit a Gaussian
mixture model in the unsupervised case where the labels {oi}i are unknown.

2.6 Expectation Maximization

Let X a random variable, from which we get observations in practice. We suppose
a hidden latent structure onto X represented by a random variable O, such that the
probability density of X has the following expression:

p(x) =

∫
O

p(x, o)do , (2.45)

here in the continuous case and without loss of generality for the discrete case.

The latent variable O is characterized as hidden since it is not directly observed
in practice. The latent structure can for example be assumed of lower dimensionality
such as to compress the information about X into a latent variable O.

This requires a model for p(x, o) that will be chosen among a family of parametrized
distribution {p(x, o|θ)}θ∈Θ. Given a dataset of observations {xi}Ni=1, we want to min-
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imize

L(θ) = −
N∑
i=1

log p(xi|θ) , (2.46)

according to θ. In some cases an analytical expression for p(x|θ) is not accessible or
the optimization of L(θ) according to θ is not possible. In these cases, we can take
into account the latent model on X and use (2.45) such that (2.46) can be rewritten:

L(θ) = −
N∑
i=1

log

∫
O

p(xi, o|θ)do (2.47)

Starting from this equation, an upper bound depending on θ is found for the loss:

L(θ) = Ep̃X
[
− log pX|θ

]
(2.48)

= Ep̃X
[
− logEpO|X,θ

[
pX|θ

]]
(2.49)

= Ep̃X
[
− logEpO|X,θ0

[
pX,O|θ

pO|X,θ0

]]
(2.50)

≤ Ep̃X
[
EpO|X,θ0

[
− log

[
pX,O|θ

pO|X,θ0

]]]
(2.51)

where we used the Jensen inequality in (2.50)

= C(p̃XpO|X,θ0 , pX,O|θ) + c (2.52)

= L̃(θ0, θ) + c . (2.53)

We introduced in (2.50) a referential distribution for p(O|X, θ0) with parameters
θ0. It serves as a referential point on the set of parametrized distribution to drive
an iterative optimization algorithm. The constant c absorbs the expectation with
parameter θ0, i.e. EpO|X,θ0

[
log pO|X,θ0

]
.

In the literature, the Expectation-Maximization algorithm [36] iteratively max-
imizes the negative loss -L̃(θ0, θ). At step t, L̃(θt, θ) is computed with the previous
estimate θt, this is the Expectation step (E-step), then the maximum is searched
according to θ, called the Maximization step (M-step). The parameters are updated
such that at t+1, θt+1 = θ∗ with θ∗ the optimal parameters found. The procedure is
repeated until convergence, a proof of convergence is shown in [36]. A generalisation
of this approach by the introduction of distributions of a different family of the true
posterior pO|X,θ0 is termed variational inference and is presented for example in [118,
105].

The expectation maximization algorithm is proposed as a learning algorithm in
the learning strategy of Sec. 5.6.
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2.7 Metropolis Hastings

Markov Chain Monte Carlo methods can be used to draw samples from probability
distributions. Among these methods, the Metropolis-Hastings method [77, p. 365]
uses a proposal distribution q to draw a sequence of samples {xt}t such that for t
sufficiently large, xt can be assumed drawn from the true distribution pX , which
might be known up to a normalisation factor. The procedure goes as follows:

1. Start with an initial random sample x0

2. At t+ 1, draw a new sample x∗ from the proposal distribution q(x|xt) condi-
tioned on the previous sample xt

• Compute

r = min

[
1,
p(x∗)q(x∗|xt)
p(xt)q(xt|x∗)

]
• Update xt+1 = x∗ with probability r

• otherwise, xt+1 = xt.

This step is repeated until a maximum number of iterations is reached.

The advantage of such method is that the proposal distribution for sampling
can be chosen simple. Often, the proposal distribution for q(x∗|xt) is a Gaussian
distribution centered at xt where the variance (or covariance in higher dimension)
is properly adapted.

This method will be of particular importance to estimate the times of occurrence
of operations in the generative model of Sec. 5.7.

50



Chapter 3

Side Channel Analysis

According to David Kahn in its book The Codebreakers the first recorded use of
cryptography dates back to the Ancient Egypt around 1900 B.C. Afterwards, many
civilizations, such as the Mesopotamian civilization or Ancient Greece, demonstrated
uses of cryptography in military and politics. After a stagnation during the Middle
age, the development of cryptology restarted during the Renaissance and rushed
during the World Wars. Now, the use of cryptography is pervasive in most commu-
nicating devices and has been democratized to the point that anyone can secretly
convey messages.

But such a level of sophistication could not have been reached without the con-
current development of cryptanalysis and cryptography. As introduced at the be-
ginning of this manuscript, many different types of attacks have been developed to
test the security of cryptosystems. We will focus here on side-channel attacks.

To start with, we will introduce some elements of information security to under-
stand the test objectives of the security of cryptosystems. The side-channel attacks
methods presented in this thesis can be used for different electronic devices, but we
chose to present smart-cards in this section as they are widely used in cryptographic-
related applications and make a good example of devices that can be targeted by
attackers. We will summarize some of their characteristics and their functioning.
Finally, we will introduce side-channel analysis and discuss on its historical devel-
opment and recent advances.
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3.1 Information Security

3.1.1 Cryptosystem

The secure communication of messages between two parties can be represented by
a cryptosystem. It is mathematically defined as a 5-tuple (E,Z,K,C,D) where
E and Z are finite sets of plaintexts and ciphertexts, and K is a set of keys such
that each key k ∈K uniquely identifies a ciphering rule ck ∈ C, ck : E → Z and a
deciphering rule dk ∈D, dk : Z → E which satisfy for all e ∈ E, e = dk(ck(e)).

In the literature on cryptography, it is common to consider the following objec-
tives that cryptosystem should address:

• Confidentiality: The ciphertext is unreadable by potential eavesdroppers.

• Data Integrity: Any alteration of the ciphertext can be detected by the re-
ceiver.

• Authentication: The ability to verify the identity of a person or an entity.

• Non-Repudiation: After enciphering a message, the responsible cannot deny
he is the author.

In modern cryptology, a cryptosystem is always assumed publicly known. This
principle, attributed to Kerckhoff (1839-1903), implies that the security of commu-
nication relies solely on the secrecy of the key and not on the knowledge of the cryp-
tosystem’s design. Thus, the security of a cryptosystem depends on its reliability at
keeping secret the key against an attacker trying to decipher the communication.

The best way to test the security of a cryptosystem, according to Kerckhoff
and some of its predecessors, is to put ourselves in the place of an attacker. It is
reminiscent of the ”scientific method” which consists in verifying a hypothesis by
conducting experiences. Here, the assumption that the cryptosystem is secure needs
to be tested by carrying out attacks on the system. If it resists to all known attacks
and until an attack is found, the cryptosystem is assumed secure.

There are various ways to characterize the security of a cryptosystem. In our
case, we are interested in the computational security of a cryptosystem, i.e. the
amount of computations that is required to perform an attack. Under this definition,
a cryptosystem is computationally secure against an attacker if current technologies
do not provide enough resources to carry out the attack. In theory, an exhaustive
search of the key, also called a bruteforce attack, is possible given a pair of plaintext
and ciphertext. It consists in testing all the keys until a ciphering or deciphering
rule makes the pair match.
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Figure 3.1: Illustration of the certification procedure before commercializing a
system on chip (SoC).

The evaluation of the security of cybersecurity products is crucial to this day.
Developers and manufacturers of cybersecurity solutions may obtain security visas
from third-party bodies to demonstrate the security of their product. For that,
many countries agreed on the elaboration of the Common Criteria certification that
permits comparability between the results of independent security evaluations. The
Common Criteria certification classifies the security of a product according to an
increasing scale matching the attack potential of attackers. We can see this as an
extension of the concept of computational security by considering other factors such
as the availability of design documents on products or by the cost and feasibility
of attacks. In France, the evaluations are provided by independent laboratories
accredited by the French accreditation committee, the certificate is then obtained
from the French National Cybersecurity agency. We resumed Fig. 3.1 the certifica-
tion procedure with the example of a SoC, but the same procedure is applied for
each evaluated product (component, smart card, etc.).

To illustrate how much resources are required to perform attacks we consider the
two following examples. The Caesar cipher, which replaces each letter of a plaintext
with the letter positioned k-steps (the offset number playing the role of the key)
before in the alphabet, can be attacked by anyone using pen and paper and by
testing the 25 deciphering rules for an alphabet of 26 letters. In comparison, an
attack on the 12-round DES cipher, presented in an article [86] from 1993, required
knowledge in statistics and cryptology, and 50 hours of computations on a rather
powerful computer at that time.

In order to make an exhaustive key search impossible, the cardinality of key
space is made very large. The Advance Standard Encryption (AES) cipher can
use keys of length 256-bits, for this version an exhaustive key search will require
testing 2256 ≈ 1077 keys which is practically unfeasible. The computational security
of a cryptosystem will be undermined if, in one way or another, the amount of
computational work to get the key is noticeably decreased.

A naive evaluator performing an exhaustive key search will assume that the
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entropy of the key is maximal, i.e. that keys are equiprobable. Consequently, he
will also assume that the computational cost of his attack will be maximal. We
understand intuitively that any gathered information that can reduce the entropy
of the key is welcome as it transforms the evaluator’s distribution on the keys into
a distribution with a lower entropy. In the later case, the evaluator would be able
to test each key according to its likeliness and consequently reduce in average the
cost of a bruteforce attack.

For example, if it is known that French is used to write the plaintexts, then we
could theoretically lower the entropy on the keys if we know the ciphertexts. Let
|Z| = |E|, if HE < log|E|, it is shown that[113, Th. 2.10]:

IK,Z = HZ −HE (3.1)

= HK −HK|Z (3.2)

> 0 (3.3)

where HX is the Shannon entropy of a random variable X introduced in Sec. 2.2.1.
HE < log|E| reflects that plaintexts are written in French.

This implies that HK|Z < HK , i.e. that pK|Z has a lower entropy than pK .

Of course, in practice the evaluator usually cannot compute the probability den-
sity pK|Z , but it illustrates that some acquired knowledge related to the cryptosystem
or the communication can be used to reduce the entropy of the key. This will be
of importance later in the context of side-channel attacks, we will use the knowl-
edge related to some physical signals, emitted by the electronic implementation of
a cryptosystem.

3.1.2 Guessing Entropy

We note D some knowledge acquired by the evaluator, this could be for example,
a set of power consumption signals in the form of real data vectors. Let pK|D the
probability of the keys given that knowledge. The guessing entropy [83] is used in
cryptanalysis to measure the average number of keys an evaluator has to test before
finding the correct one. It is expressed as:

GEth(pK|D) =
N∑
i=1

σp(i)pK|D(i) , (3.4)

where we numbered here for convenience the keys from 1 to the total number of
keys N and σp is a permutation of {1, . . . , N}, depending on pK|D, such that the
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probabilities are sorted in decreasing order

∀i, j ∈ {1, . . . , N}, σp(i) < σp(j) if pK|D(i) > pK|D(j) .

In [83], it is shown for a distribution pK|D with entropy HK|D > 2 log 2, that its
guessing entropy is lower bounded by

GEth(pK|D) >
1

4
eHK|D + 1 , (3.5)

it confirms the intuition that the average number of attempts to guess the key
increases with the entropy of the key given the available knowledge. But, it is also
proven in [83] that no upper bounds on GEth exists, so even if we know HK|D for
example, we cannot tell how many key attempts are needed to hope to find the key.

As stated before, it is not always possible to derive the true conditional distri-
bution pK|D. In practice, we may only be able to get an approximation of pK|D,
noted p̃K|D. Hence, in this case, we cannot use the previous definition (3.4) of the
guessing entropy.

Alternatively, in the process of evaluating the security of a cryptosystem against
an attack model with guessing probability p̃K|D, the key k∗ is fixed, and we define
the guessing entropy as the rank of this key in the sorted sequence of probabilities:

GE(p̃K|D) = σp̃(k
∗) , (3.6)

with σp̃ the permutation for sorting the probability density p̃K|D on {1, . . . , N}.
This is the definition of the Guessing Entropy that we will use throughout this

thesis. It requires that we have access to the device in order to fix the key k∗.

3.1.3 Classification of attacks

We can classify attacks according to the way the knowledge D about the cryp-
tosystem is gathered. For a time, let’s consider a cryptosystem implemented on a
smart-card, that we will introduce in the next section.

An attack can be either considered active or passive 1. It is considered active if
the evaluator tampers with the functioning of the card, either on hardware or soft-
ware. Each tampering action of the evaluator is aimed at disclosing new information.
These attacks have to be carried out with caution as some installed countermeasures
may react and lock or kill the chip. If the evaluator only monitors the functioning
of the card to gather information, the attack is considered passive.

1It reminds the distinction made in machine learning between reinforcement learning and un-
supervised/supervised learning.
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The other criterion is whether the attack is invasive or non-invasive. For an
invasive attack, the evaluator has full access to the device’s material and can plug
for example measuring instruments or tampering tools directly on the chip’s wires.
In the case of a non-invasive attack, the evaluator relies solely on available external
information.

More details on the classification of attacks can be found in [48].

3.1.4 The Advanced Encryption Standard (AES)

In this thesis we will perform attacks on the Advanced Encryption Standard. It
is a widely used cipher algorithm. It is based on the Rijndael algorithm [30]. It
processes plaintexts of 128 bits using keys of length 128, 192 or 256 bits. The data
is arranged in a 4× 4 array of bytes (8-bit vectors). We give below the pseudocode
of the AES:

Algorithm 1: Pseudo code for the AES. The variable are indexed done
relative to bytes.

Input: 128-bit Plaintext e, 128/192/256-bit Cryptographic key k
Output: 128-bit Ciphertext z
k ← KeyExpansion(k)
z ← e

z ← AddRoundKey(z, k[0, 3])
for r ← 1 to N − 1 do

z ← SubBytes(z)
z ← ShiftRows(z)
z ← MixColumns(z)
z ← AddRoundKey(z, k[4r, 4(r + 1)])

end
z ← SubBytes(z)
z ← ShiftRows(z)
z ← AddRoundKey(z, k[4N, 4(N + 1)])
return z

• KeyExpansion transforms a cryptographic key of size 128/192/256-bit into an
expanded key of size 128(N + 1)-bit where the number of rounds N is 10, 12

or 14 depending on the key size.

• AddRoundKey performs a bitwise xor operation between the state variable z
and the expanded subkey of size 128-bit. The state variable z is flattened
column-wise before.

• SubBytes is a nonlinear operation on each byte of z.
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• ShiftRows cyclically shifts each row of z respectively of 0, 1, 2 and 3 bytes.

• MixColumns multiplies each column of z by a fixed matrix.
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Figure 3.2: General architecture for a smart card. It is made of an Input/Ouput
interface in charge of exchanging data with the exterior, a central processing unit
(CPU), an Electronic Erasable Programmable Read Only Memory (EEPROM)
that stores user related information such as cryptographic key, a ROM memory
containing the software and a RAM memory used to store intermediate results

during the algorithm execution. This diagram is inspired from [107]

3.2 Smart-Cards

3.2.1 History

A smart-card is a device with an integrated circuit chip, we usually picture it as a
plastic card with a small chip on it. The idea of smart-cards emerged around 1970 in
Germany, Japan and France. They were first produced by Motorola Semiconductor
in conjunction with Bull in 1977, and first tested in French cities in 1980. Now,
smart-cards are widely used worldwide, especially in Europe, North-America and
Asia-Pacific. They are present in various applications such as user authentication,
finance, healthcare and transportation, to name a few.

Between 2013 and 2019, the cost of fraud on credit cards doubled from 13.70

to 28.65 billions of dollars [103]. Thus, the study of smart-card security is of par-
ticular importance. Side-channel attacks, introduced in the next section, present a
prominent threat to these devices.

We present Fig. 3.2 a general architecture for smart-cards. It is not represen-
tative of all encountered smart cards, but it gives a general understanding of their
functioning.

To properly understand why side-channel attacks can be performed on smart-
card, we present roughly in the next section the physical characteristics of integrated
chips and why information relative to computations can leak into electromagnetic
signals.
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Figure 3.3: A CMOS inverter and its representation with switches for high/low
voltage input values. To simplify, on righthand switch-models, we omitted the

switching resistance and oxide capacitance of both transistors.

3.2.2 CMOS circuits

Metal Oxide Semiconductor Field Effect Transistors (MOSFET) are the elementary
building blocks of the smart-card’s chip circuit. They exist in two types, those
that are positively doped (pMOS) and those that are negatively doped (nMOS). In
digital circuits, they are controlled by logic signals oscillating between two voltage
values that represents logic states, 1 at high potential and 0 at low potential. Under
control of logical signals, they act as switches that pass or cut the current between
two regions of different potentials. A voltage output can be placed to measure if the
switch is on or off, such that the MOSFET becomes a system processing input logic
signals. For example, the nMOS can be used as an inverter to transform low voltage
levels into high and vice-versa, while the pMOS works in the opposite way and let
logic signals pass. More complex logical functions can be implemented by combining
these two types of MOSFET into an electronic circuit. The Complementary Metal
Oxide Semiconductor (CMOS) is a widely used circuit design that combines both
MOSFET. To illustrate this, we depict Fig. 3.3 an example of a CMOS inverter
composed of a nMOS and a pMOS.

Many other devices can be constructed using MOSFETs such as memory com-
ponents or oscillators to generate clock signals. The book [9] is a good reference on
the physical properties of MOSFET and on the design of modern CMOS circuits.

The chip from a smart-card is formed by many basic CMOS circuits that are in-
terconnected to perform calculations and store results. These circuits are controlled
by a clock signal in order to organize and run a step-by-step computational algo-
rithm. We understand then that each time a logic signal, such as the clock, changes
from one logic state to the other, it is likely to switch many MOSFETs that will
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trigger in the chip a flow of electrons between supply and ground voltage regions.
This current can be observed by monitoring the power consumption of the device,
or alternatively by measuring the scattered electromagnetic field.

3.2.3 Electromagnetic scattering

If a current of electrons flows through the chip, a magnetic field is scattered, this
is modelled by the Maxwell-Ampère’s law (the 4th Maxwell’s equation). If an elec-
tromagnetic probe made of a looped wire is placed close to the chip, the temporal
variation of the magnetic flux through the looped wire will induce a difference of
potential in the wire, this is the Faraday’s law of induction (the 3rd Maxwell’s equa-
tion). By measuring the potential in the looped wire, we can deduce the variation
of the magnetic field enclosed by the looped wire and consequently a variation of a
current in the chip. In practice, the magnetic field scattered by the chip is complex
and hard to evaluate analytically.

Although we cannot predict how the magnetic field scattered by a functioning
chip behaves, the observation of electromagnetic signals has some advantages since
the measuring probe can be placed around specific areas of the chip in order to
measure the variation of current in this region. For example, we might be interested
in measuring the activity of a region dedicated to cryptographic computations, such
as a cryptoprocessor.
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3.3 Side-Channel Attacks

At the end of Sec. 3.1, we classified attacks according to the knowledge acquired by
the evaluator. We can go a bit further and form the family of side-channel analysis.
Side-channel analysis relies on the unintentional dissemination of information in the
form of physical signals, and whose leakage depends on the design of the electronic
devices.

3.3.1 History

As an academic field, side-channel analysis is mainly focused on the security analysis
of cryptographic devices and started around the 90s with founding papers [67, 64].
However, we have some historical examples that remind us of side-channel analysis
as they rely on the acquisition of information from compromising signals of electrical
origin.

The first example dates back to the first World War, where German and Al-
lied soldiers used wireless equipments on the field to gather intelligence from enemy
telephone lines. This led A. C. Fuller, a senior British officer at the time, to in-
vent a current DC signalling phone (the Fullerphone) that limited the emanation
of induced currents and thus potential eavesdropping on telephonic lines. This is a
good historical example of the design of a countermeasure in response to eavesdrop-
per taking advantage of how the information, in the form of electrical signals, were
relayed on the field.

After the second World War, the U.S. Government started in the mid-50s the
TEMPEST program for the investigation and study of compromising emanations.
This was in response of many examples at the time of spying techniques relying on
compromising emanations. A famous example is the spying equipment ”The Thing”
that was installed by Russian intelligence in a US embassy in Moscow until it was
discovered in 1950. Its functioning puzzled the Americans who turned to British
officials and in particular Peter Wright, scientific officer at the time, to understand
the device. Many years later in the 60s, he participated to operation STOCKADE
whose goal was to decipher secured communications to and from the French em-
bassy in London. In our case, it is an interesting example as it is one of the first
recorded and declassified use of side-channel (or TEMPEST, using military termi-
nology) techniques for analyzing signals from cipher machines. Many other details
on the last two examples can be found in Peter Wright’s book ”the Spycatcher”
[120], and declassified information on the TEMPEST program along with a timeline
of TEMPEST attacks can be found in [29].
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3.3.2 Goal

The goal of a side-channel analysis is to reduce the entropy of a cryptosystem’s
key by the analysis of a set of signals acquired during the working of an electronic
device implementing the cryptosystem. We illustrate Fig. 3.4 the relation between
electromagnetic signals and cryptographic keys.

Cryptographic Key 

Electromagnetic Signals

Plaintext CiphertextAES, RSA, ...

Figure 3.4: Side-channel analysis with electromagnetic signals.

It can be seen as a decision-making process, enlightened by some knowledge
D, and relying on a model distribution p̃K|D. Although, in practice, we are not
restricted to the sole approach of approximating pK|D. In general, the decision can
be made according to an arbitrary function or algorithm, called a distinguisher,
designed or fed with the gathered knowledge D, and outputting decision scores in
R, e.g. a statistical test based on a leakage model.

We could draw comparisons with classification tasks in machine learning. But,
we identify two reasons for which it slightly differs from a pure classification task.

In a pure classification task, if we are given a signal s and its label o then we
impose naturally that the true distribution pO|S is a Dirac at o2. In side-channel
analysis, we have reasons to think that the true distribution pK|S, where K plays the
role of the label here, may not be a Dirac at the true key k∗, i.e. all the information
about the key may not leak in signals such that the entropy of pK|S does not vanish.

The other reason is that we may not be able to directly get enough information
about the key in signals, or that we cannot or do not want to change the crypto-
graphic key on the electronic device. Thus, we may try to get the value of subsidiary
variables, called sensitive variables whose value depends on the cryptographic key
and the inputs. In that case, the information recovered on the sensitive variables
from the cryptographic algorithm are recovered and propagated back through the
algorithm towards the key. In complex situations, with many sensitive variables, it
can be done for example with a Belief Propagation algorithm on the factor graph rep-

2For the classification of everyday images in supervised learning, it seems reasonable to assume
that pO|S is a Dirac since we have examples of systems (us) that have labeled these images as such.
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resentation of the cryptographic algorithm, see [117, 70]. If more than one sensitive
variable must be recovered to retrieve the key, the side-channel attack is considered
of higher-order.

In the following of this thesis, we are interested in the recovery of sensitive
variable instead of the direct recovery of the key in signals. For example, we will
perform attacks with known plaintexts on the output of the SubBytes() operations
in AES, see Sec. 3.1.4.

3.3.3 Side-channel attack against AES

We detail here the attack procedure on the SubBytes() operations in AES. We note
g the SubBytes() operation in AES that is computing a sensitive variable Z with a
plaintext E and a key K. During its execution, the procedure is leaking signals S,
or traces, e.g. electromagnetic or current consumption signals. Traces are acquired
in the form of real d-dimensional vectors. From the perspective of the evaluator, all
of these variables are considered as random and written uppercase.

The procedure g( . , K) : E → Z is here bijective and maps the set of plaintexts
E to the set of sensitive variables Z. A profiled attack consists of training a classifier
h on signals S to recover Z, which gives clues on K given E. The training requires
a set of observations labeled with their associated sensitive variable. The training
set Dt is made of tuples Dt= {(s1, z1), ... , (sNt , zNt)} with Nt being the size of the
training set. An attack set Da={s1, ... , sNa} of size Na has a fixed key k∗ and allows
us to evaluate the performance of the attack. Here it is assumed that plaintexts are
always known, thus for each realization (si, zi) ∈ Dt or si ∈ Da a plaintext ei is
associated, i.e. zi = g(ei, k). A classifier, noted h here, is trained on Dt in order to
have an approximation of p(Z|S). During an attack, we can get an estimation of
the target key k∗ with a realization si ∈ Da:

p(K=k|S=si) = p(Z=g(ei, k)|S=si) (3.7)

However, if the quality of estimations are too poor, one-shot estimation of the
key k is in general not enough, i.e. given an observation si,

k∗ 6= argmax
k

p(K=k|S=si) .

Thus the evaluator has to use many observations to obtain better predictions:

p(K=k|Da) =
Na∏
i=1

p(Z=g(ei, k)|S=si) (3.8)

After sorting {p(K=kj|Da)}kj∈K in decreasing order, the rank is defined as the
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position of p(K= k∗|Da) in the sorted list p(K= ki|Da) > ... > p(K= kj|Da). The
Guessing Entropy of Sec. 3.1.2 is estimated by taking the empirical mean of rank
values obtained for many attacks. Note that the less attack data Na is required to
have a low rank, the better is the attack. The attack involves the task of estimating
the posterior p(Z|S) or the likelihood p(S|Z) from the data.

In our attack methods, we will use this canonical procedure to recover keys from
AES implementations.

3.3.4 Literature

We distinguish three main categories in Side-Channel Analysis (SCA):

• Timing Analysis is based on the relative time it takes for instructions and
more generally algorithms to execute, e.g. the recent Meltdown and Spectre
attacks on CPUs [65, 75].

• Power analysis monitors the electrical power consumption of devices, by an-
alyzing the waveform of signals we may deduce what type of operations are
executed.

• Electromagnetic analysis differs from Power analysis by the fact that it does
not require a direct access to the wires of the system, instead it uses magnetic
probes to measure the variation of the consumed electrical current.

In our presentation of the literature, we will focus on Power and Electromagnetic
analysis. The literature has been shaped by the concomitant development of attacks
and countermeasures. We find best to start by presenting the countermeasures.

Countermeasures. In order to perturb the analysis of side-channel signals, it has
been early suggested that signals should be desynchronized between instructions to
undermine their statistical analysis, such as the computation of their first and second
order statistical moments. We called them jitter countermeasures. One of the first
jitter countermeasure is the Random Process Interrupts [26] method that randomly
adds dummy instructions between legitimate instructions from the cryptographic
algorithm. This method has then been improved to produce random delay between
instructions in [16, 27]. In particular, the distribution of the delay is aimed to be
uniform over a bounded region of time. More sophisticated hardware techniques,
such as the employ of non-deterministic processors has been envisaged in [57, 87],
and asynchronous logic has been studied in this context in [89, 90].

As an important and efficient category of countermeasure, masking countermea-
sures are software based methods that split the secret about the key into multiple
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sensitive variables. Hence it requires a careful analysis of the cryptographic algo-
rithm to identify leaking instructions and to recombine information to get the key.
This is the type of countermeasure that led to the establishment of higher-order
side-channel attacks. It has been first presented in [58] with a security proof in
[102].

Single and Differential Power analysis. The analysis of the power consump-
tion of implemented cryptosystems has been first published in [66]. Two types of
attacks based on the analysis of power consumption are considered and differ in the
key decision process: Simple Power Analysis (SPA) can infer the key directly given
one power signal but requires specific knowledge about the device; Differential Power
Analysis (PDA) uses many power signals to infer the key, but the decision is based
on general assumptions about the device. Both attacks do not require the same type
of knowledge during the key decision process. When using electromagnetic signals
(also named EM signals), both attacks are termed Simple Electromagnetic Attacks
(SEMA) and Differential Electromagnetic Attacks (DEMA).

Leakage Model. Kelsey et al. early proposed in 1998 in [64] that if a bit-vector
is manipulated through a CMOS circuit then the amount of energy consumed is
proportional to the Hamming Weight of the vector, i.e. to the amount of bits equals
to one. Brier et al. in [18] go further by proposing the Hamming distance which
generalizes the Hamming weight, it assumes that the power is proportional to the
number of flipped bits between the output and the input of a targeted logical opera-
tion. Later, some works have shown that bits are actually leaking dissymmetrically,
suggesting that the leak is of complex nature, for example Suzuki et al. in [114]
proposed leakage models that consider operations on bits in CMOS logic circuits
to explain biases in power consumption. Schindler et al. in [106] make a linear
regression of the leakage model by assuming that the power consumption can be
approximated by a weighted sum of a basis of functions defined on the logical oper-
ation. The optimality of distinguishers for partially known linear models has been
studied in [50]. The derivation of a general leakage model is particularly difficult as
it depends on the device, electrical wiring and the installed countermeasures.

Statistical tests. Originally in [66, 64] the key decision process has been based
on the difference of means between two datasets separated according to a key hy-
pothesis. It laid the ground for many other statistical test based methods. We refer
to the theses of Y. Linge and T. Le [74, 69] on this topic. More recently, the Welsch
t-test has been used in several work as a rapid test for the security of an imple-
mented cryptosystem, see [112] and references therein. A statistical test based on
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the mutual information has early been considered as a potential statistical test for
distinguishing keys, see for example [12], but the inherent difficulties first for mod-
elling the distributions pK,S, pK and pS, and to perform the calculations, actually
undermined its use in comparison with other tests. Recently, the method proposed
by [28] which rely on the Mutual Information Neural Network of [14] makes the
use of Mutual Information viable again. The absence of strong assumptions on the
leakage model and its ability to model and evaluate the mutual information, makes
it a strong candidate for evaluating leakage in SCA.

Machine learning models. In 2002, Chari et al. [22] proposed Template Attacks
modeling side-channel signals with multivariate Gaussian models. It is a popular
method based on the construction of ”templates” (assimilated to a learning) for each
value of the sensitive variable. The underlying method and its learning algorithm is
presented in Sec. 2.5.1. This approach has been completed with the use of kernel
functions through Kernel Discriminant Analysis for classification and dimension
reduction in [19, 124]. As popular machine learning techniques, Support Vector
Machine (SVM) and Random Forest has been studied for side-channel analysis in
machine learning focused articles [54, 71].

Deep learning models has been used with success in side-channel analysis for
both treating the problem of jitter and masking countermeasures. Multi-layer per-
ceptrons has been used in [82] and convolutional neural networks in [78, 20, 15]. The
leakage model is learned in a black-box manner through the training of a deep net-
work. This allows the establishment of higher-orders attacks against masking coun-
termeasures by automatically drawing relations between different regions in signals.
Convolutional neural networks are particularly efficient in the acquisition of sen-
sitive information in jitter protected signals without requiring specific realignment
of signals. We refer to [84] on the topic of deep-learning methods for side-channel
analysis.

Hidden Markov models has early been considered in the context of side-channel
analysis to model the underlying cryptographic algorithm [63, 41, 40] and drive a
more general approach in the treatment of side-channel signals. The operations are
considered as states that leak in signals through a generative model. This approach
has been extended to more general probabilistic graph in [117, 70]. Such approaches
are interesting as they readily take into account a representation of the algorithm
in the side-channel analysis of signals. Inductive reasoning on probabilistic graphs
is a major field of study in machine learning and artificial intelligence[99, 68, 118],
and the recent coupling with deep learning methods in time-series analysis presents
interesting direction for the automatic analysis of side-channel signals.
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Time-Frequency Analysis for Side-Channel Analysis.

Fourier analysis. It has been early shown by [3] that EM signals of various
cryptographic implementations can be analyzed in the Fourier domain and that
DEMA can be successfully carried with carefully chosen frequency bands. Differen-
tial power analysis, usually carried with temporal signals, has been transposed in
the frequency domain in [44, 100, 13]. The use of Fourier transforms in side-channel
presents the advantage of being robust, to some extent, against small jitter in signals
and as long as the signal is not too much parasitized by other patterns. The use
of spectrograms as been proposed as a preprocessing step in convolutional neural
networks in [122], they obtain the same efficiency of CNN-based attacks with raw
traces.

Wavelet analysis. Discrete Wavelet transforms has first been used in [23]
to realign side-channel signals with a simulated annealing method. In [35], the
authors employ template attacks with discrete wavelet transforms of signals. They
demonstrate that for synchronized signals, discrete wavelet transforms present better
results in comparison with attacks using raw temporal signals. They also show
that attack results get better by increasing the level of frequency resolution of the
wavelet transform. More recently, [91] present a realignment algorithm based on
the extraction of features through wavelet transforms with block wavelets. To this
day, no CNN-based side-channel attacks with scalograms has been proposed in the
literature. However, as part of the supervision of the internship of P. Afro at the
ITSEF, we showed that in the context of side-channel analysis CNN-based attacks
with scalograms and spectrograms presented similar results.

Waveform analysis. If we are able to acquire waveforms related to targeted
operations, we can use them as a basis of analysis. It can be seen as a particular
time-frequency analysis where the elements of the basis are learned a priori. This
method has been used in [53, 41] in order to detect operations in signals.

Position of this thesis. Generally speaking, the use of time-frequency analysis is
rather timid in the community of side-channel analysis and not perceived as a useful
step for preprocessing signals. We will try in this thesis to show some advantages
brought by wavelet analysis. While masking countermeasures are currently being
tackled by deep learning methods or probabilistic graph learning algorithms, we aim
in this thesis at proposing ways of handling jitter countermeasures through wavelet
analysis. We will adopt two different approaches; either we try to suppress the jitter
noise by mapping the signals to representations stable under small translations; or
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we detect and extract each individual patterns in signals to completely suppress the
jitter. We will show that in both approaches wavelet analysis can play an important
role.

The first approach is developed in Sec. 4.4. We study the use of the scattering
transform of S. Mallat [81] to reduce the effect of the jitter present in side-channel sig-
nals. The scattering transform average scalograms obtained with continuous wavelet
transforms along the time domain to make it robust against small translations. With
the scattering transform, we show that we efficiently improve template attacks on
desynchronized signals.

To deal with the second approach, we start by presenting in Sec. 4.2 a sim-
ple wavelet-based method for extracting patterns from scalograms and resynthesize
them as waveforms for realignment, thus extending the previous works on waveform
analysis for side-channel signals. Actual works in the side-channel literature making
use of wavelet transforms for analyzing side-channel signals have been comparing
many different wavelet bases for discrete wavelet transforms. Usually, the choice of
a wavelet basis is motivated by some analytical properties of signals. In our case, we
do not have analytical arguments that may motivate a particular choice of wavelet
basis, in other words the patterns encountered in side-channel signals greatly vary
according to the acquisition conditions, and a particular choice of wavelet basis for
a specific experience may not work in other conditions. Thus, we propose to work
with a superfamily of wavelets, namely the Generalized Morse Wavelets, that present
some flexibility in their design such that this family of wavelets may be adapted for
each particular dataset of side-channel signals. In Sec. 4.3, we study the learning of
a frame of Generalized Morse Wavelets given a set of extracted patterns, and we use
it to carry out side-channel attacks. Last, in Chap. 5, we argue that we cannot solely
rely on the correlation-based technique that is behind waveform analysis to detect
patterns in signals. We have to consider the underlying dynamical structure of side-
channel signals to efficiently locate patterns. This amounts to consider the effect
that the jitter and the algorithm can have on the dynamics of the signal. Thus, we
propose a point process model for modeling a continuous jitter and rely on previous
work in the literature to model the algorithm with Hidden Markov Models (HMM).
This allows the construction of a statistical generative model for side-channel sig-
nals. We envisage a learning algorithm to fit the model to side-channel signals and
a method to efficiently detect the patterns in signals. In addition, this model can be
used to simulate side-channel signals to test side-channel attack methods and design
countermeasures.
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Chapter 4

Static Approach

The main motivation for pushing time-frequency preprocessing is to consider bases of
analysis in which side-channel signals are represented in terms of elementary signals
whose characteristics are closer to emanations from physical phenomena. In the
case of side-channel analysis, we do not know a priori neither what form the signals
leaking sensitive information have, nor at which time scales the sensitive variable
are manipulated. However, we know that the physical processes involved are non-
stationary and lasting in time, e.g. the current consumption of a CMOS during a
switch. Thus, it seems reasonable to analyze signals with a basis of functions which
at least respect these properties. As presented in Sec. 1.3.2, wavelets are oscillating
elementary signals whose time scales can be adapted to capture information at
different resolution. We will demonstrate in this chapter that the analysis with
wavelets presents advantages that will led to the design of new side-channel attack
methods.

We will present in this chapter different tools of wavelet analysis for processing
side-channel signals, but first we will show some side-channel signals and present
their time-frequency properties. We will then propose a simple realignement method
based on the extraction, denoising and resynthesis of patterns from scalograms.
Next, we will study the estimation of a frame of wavelets for the analysis of patterns
in side-channel signals. Finally, we will propose an attack method based on the
scattering transform to compensate the effect of jitter countermeasures, and we will
derive an ensemble method for the approximation of a leakage model.
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4.1 Characteristics of Electromagnetic Signals

In this section, we study electromagnetic signals (EM signals) from different datasets
and present their characteristics.

4.1.1 A variety of signals

We present Fig. 4.1 electromagnetic signals and their periodogram (spectral density)
from four different datasets. The ASCAD [15] and DPAv4 [93] datasets are publicly
available, they contain signals from an AES implementation with masking counter-
measures. The CHAXA dataset contains signals from an AES implementation with
an implemented noise emission countermeasure that is activated upon perturbation
of the near electromagnetic field around the device (it can be activated for example
by a probe). The JIT dataset contains signals from an AES implementation with
an implemented jitter countermeasure with random delays between operations.

The datasets JIT and ASCAD will be extensively used for side-channel attacks.
We detail below some quantities about each dataset. The ASCAD dataset is com-
posed of EM signals emitted from a device running a masked AES implementation,
an artificial jitter is simulated by randomly translating signals with an uniformly
distributed random variable δN ∼ U{0, N}. Three sets of signals are available, the
first one ASCAD0 is composed of aligned signals while ASCAD50 and ASCAD100 are
desynchronized respectively with δ50 and δ100. Each set consists of 60, 000 signals of
700 points.

The JIT is composed of EM signals acquired from an AES hardware implemen-
tation on a modern secure smartcard with a strong jitter of unknown nature. The
SubBytes() are processed sequentially and all signals are desynchronized and start
shortly before the processing of the first byte. In total 160, 000 signals of 400, 000
points are acquired, 150, 000 signals have random keys and 10, 000 signals with a fix
key are used to test the attack.

Acquisition conditions We remark on Fig. 4.1 that all datasets present differ-
ent time and frequency properties. The operations are clearly identified in signals
by relatively high variations over bounded periods of time. We will zoom on the
properties of these patterns later but for now we note that their forms vary between
each dataset. Moreover, in the case of the acquisition of EM signals using magnetic
probe, the form of these patterns will vary with the orientation and position of the
probe.

The decrease of amplitude at low and high frequency in the periodograms is due
to the combination of the bandpass effect of the electromagnetic probe and by low
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Figure 4.1: On the left: temporal signals. On the right: periodograms. From top
to bottom, the signals come from the datasets: ASCAD, DPAv4,CHAXA and JIT.
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pass filters before digital conversion. The presence of high frequency harmonics may
be caused by distortions induced by amplifiers.

The sampling frequency (Fs) in these examples is of the order of 1GHz. Thus,
we could expect to get frequency content up to the Shannon frequency (Fs/2), but
the bandpass effect of magnetic probes and the use of low pass filters limit the
acquisition of information below 1MHz and after 200MHz (roughly).

Jitter countermeasure The presence of Dirac combs in the spectral density of
signals indicates a periodicity of patterns. By measuring the spacing of the comb, we
can deduce the frequency operation of the device. In these examples, the frequency
operation is of the order of 10Mhz.

A jitter countermeasure reduces the amplitude of the Dirac comb. We see the
effect of the jitter in the JIT dataset by the low amplitude of the Dirac comb when
compared with the periodograms of other datasets.

4.1.2 Noise

The power of the noise in the presented examples of Fig. 4.1 is pretty low in com-
parison with the amplitude of patterns. With the acquisition conditions of these
datasets, the noise does not present a veritable challenge in comparison with mask-
ing or jitter countermeasures.

During the acquisition of EM signals using magnetic probe, the noise may come
from multiple sources. Signals can be contaminated with signals that come from
other areas on the chip. For example if an oscillator is positioned too close to a
monitored area or if other computations unrelated to the cryptographic algorithm
are performed in parallel and in the vicinity.

When observing electrical signals, it is expected to observe ”natural” noises such
as thermal noise which is approximately white, shot noise characterized by random
spikes or flicker noise with a spectral density following 1/|w|α, α ∈ R+. In our
case, the lowpass filtering of the probe does not allow us to observe flicker noise but
instead a thermal noise such as the one depicted Fig. 4.2.

Finally, the amplitude of signals is usually encoded on 8-bit values thus a quan-
tization noise assumed white is also present in signals.

4.1.3 Information localization in time and frequency

We understand intuitively that the algorithmic operations that may leak information
about the key will be localized in time, and that the physical signal related to these
leaks will have a bounded frequency spectrum upon observation.
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Figure 4.2: A sample of the noise encountered in EM signals, taken between two
patterns of instructions in JIT signals.

In simple situations, i.e. without strong countermeasures, we can measure the
leak of information by computing a Signal to Noise Ratio (SNR) metric commonly
used in the side-channel analysis community. To illustrate the use of this metric,
we take the ASCAD dataset as an example, and we compute the SNR in the time
and frequency domains. We note Z the sensitive variable, which is the output of
the SubBytes() operation of the AES, we write S for the acquired signals and Ŝ

their Fourier density spectrum. The SNR in time and frequency are noted SNRt

and SNRf , they are given by:

SNRt =
VarZ

[
ES|Z [S]

]
EZ
[
VarS|Z [S]

] , (4.1)

SNRf =
VarZ

[
ES|Z

[
|Ŝ|2

]]
EZ
[
VarS|Z

[
|Ŝ|2

]] . (4.2)

We plot on Fig. 4.3 the evaluation of the two metrics in presence of jitter and
masking countermeasures. We first remark that, without countermeasures, the SNR
metric efficiently localizes time regions and frequency bands that are correlated to
the value of the sensitive variable. The jitter countermeasure, here an artificial
desynchronisation, makes the SNR vanish in the time domain and slightly modify
the leakage in frequency. However, it does not mean that a Fourier analysis is robust
against jitter countermeasure, if the jitter is strong enough the SNR also vanishes
in frequency. The masking countermeasure is particularly strong against both time
and frequency SNR leakages.
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(a) No countermeasure.

(b) Jitter countermeasure.

(c) Masking countermeasure.

Figure 4.3: Leakage localization in time and frequency domains for the ASCAD
dataset. On the left the leakage in time, on the right in frequency. From top to

bottom, the leakage varies with the countermeasure in place.
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4.2 A Wavelet Analysis of SCA signals

In this section, we present wavelet analysis tools for the comprehension of SCA
signals in the presence of additive noise and jitter. We present pattern extraction
and denoising techniques in the aim of constructing adapted filters for the automatic
extraction and realignment of signals.

4.2.1 Multiscale analysis and pattern identification

Continuous wavelets transforms of Sec. 1.3.2 provide alternative representations that
help to identify structures in signals. In comparison with the Short-Time Fourier
transform, the analysis with wavelets is more sparse and requires fewer coefficients
to represent transients.

We take two signals from the JIT and DPAv4 datasets of previous sections
and plot Fig. 4.4 their scalograms. The scalograms are computed with a wavelet
family {ψa,u,1,3}a∈R+,u∈R made of Generalized Morse Wavelets of the form given
in (?? in Sec. 1.4.4 and with parameters (β = 1, γ = 3). The frequency peak
of a reference wavelet with scale a0 is positioned at the highest frequency band
we wish to analyze. Starting from this reference other scales are computed with
aj = a02

j/Q, 0 ≤ j ≤ JQ − 1 where J is the number of dyadic scales and Q the
number of inter scales. In total, JQ wavelets with different scales are constructed.
The scalogram is made by convolving the signal with each wavelet and by taking
the absolute value. The scalogram at time u and scale aj is equal to:

|s ∗ ψaj ,β,γ(u)| . (4.3)

The scalograms presented on Fig. 4.4 help to visualise the patterns and distin-
guish them. In both datasets, we are able to discern different types of patterns and
to localize their occurrence in time. We remark on the scalogram of the JIT signal
that the noise is particularly present at low scales and confirms the presence of a
thermal type of noise.

4.2.2 Pattern extraction and Denoising

The information gathered through the visualization of scalograms helps in the design
of a side-channel attack adapted to a particular dataset of signals. In particular, the
patterns can be used to construct a set of adapted filters. These filters will be used
for the automatic extraction of patterns and for realignment in the next section.

Patterns are extracted from scalograms by simply cropping them into rectangular
patches. Given the extracted portions of the scalograms, we can apply a threshold
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Figure 4.4: Side-channel signals from CHAXA and JIT and their scalograms.

76



based denoising technique [80, Sec. 11.2.2] to remove the noise with low energy
coefficients. Finally, this reduced set of coefficients is used to reconstruct a denoised
signal in the time domain.

We use the framework of frame theory of Sec. 1.3.3 to reinterpret our scalogram
as a set of coefficients acquired with a frame operator ΨΞ with sequence of wavelets
{ψa,u}(a,u)∈Ξ. In particular, we recall that the sampling of a convolution product is
related to the inner product via:

〈ψa,u, s〉 = ψ−
a ∗ s(u) , (4.4)

with ψ−(t) = ψ(−t). Thus, the sampling of the convolution products to form the
scalogram is equivalent to the computation of inner products with a frame where
we adjusted each element of the frame with ·− : f → f−.

Let s denote our signal, the original coefficients x = ΨΞs are obtained with

∀(a, u) ∈ Ξ , x [a, u] = 〈ψa,u, s〉 . (4.5)

The tuples (a, u) are the elements of the index set Ξ and play the role of the scaling
and time translation parameters of each wavelet, see Sec.1.3.3.

The cropping and threshold-based denoising amounts to reduce the index set to

Ξ̃ = {(a, u) | (a, u) ∈ R, |〈ψa,u, s〉| < δ} , (4.6)

with R ⊂ R+ × R the region outlined during the cropping and δ the denoising
threshold. The new set of wavelet parameters Ξ̃ will depend on the signal s. Here,
we used a hard type of thresholding, but other strategies presented in [80, Sec.
11.2.2] may be used.

This reduced set is associated to a reduced frame {ψa,u}(a,u)∈Ξ̃ and hence to
a new frame operator ΨΞ̃. The original coefficients have been reduced to x̃ =

{〈ψa,u, s〉}(a,u)∈Ξ̃. With these coefficients, we can search for a denoised signal s̃ such
that x̃ = ΨΞ̃s̃.

4.2.3 Resynthesis

In order to obtain the denoised signal in the new space spanned by the reduced
frame, we search solution of the linear system

Ψ†
Ξ̃
ΨΞ̃y = Ψ†

Ξ̃
x̃ , (4.7)

with y the unknown signal we wish to recover. Noting G = Ψ†
Ξ̃
ΨΞ̃ and b = Ψ†

Ξ̃
x̃, this

linear system is written Gy = b. We remark that G is a positive semidefinite matrix
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and that b is clearly in the image of G, therefore the system accepts solutions.

By reducing the size of the frame, we take the risk of making G singular, and
in consequence the linear system will accept an infinite number of solutions, of the
form y + y⊥ with y in the image space of G satisfying Gy = b and y⊥ in the kernel
space of G.

In any case, as long as b remains in the image of G, an approximate solution
of (4.7) can be found by using an iterative method, such as a conjugate gradient
method. We refer to [80, Sec. 5.1.3] on the use of conjugate gradient for linear
system solving in the context of wavelet frame analysis and to [62] and references
therein on the conjugate gradient method in general.

Computation Cost In order to apply the conjugate gradient method, it is re-
quired to compute the matrix G and vector b. If the patterns are extracted from
a redundant wavelet transform, which is the case for continuous wavelet transform
of finite length vectors, the number of coefficients obtained after extraction and de-
noising can stay high. Thus, the frame remains large and the cost of computation
of G and b is high. To circumvent this problem we propose different methods.

First, the convolutions at high scales (low frequency) can be subsampled to
decrease the number of extracted coefficients. Second, if possible, the matrix G can
be decomposed into a block diagonal matrix

G =


G1 0 0

0 G2 0

0 0
. . .

 ,

with b = [b1, b2, . . . ], and the conjugate gradient method can be applied in parallel
on the CPU/GPU for solving each linear block Giyi = bi, the results {xi}i are
then concatenated to form the approximate solution. This case is encountered when
denoised time-scale patterns present regions that are sufficiently separated in time
and with null coefficients in-between.

Finally, the construction of G can be performed in parallel and by using the
BLAS1 rank-k update of Hermitian matrix, indeed G = Ψ†

Ξ̃
ΨΞ̃ can be written as the

1Basic Linear Algebra Subprograms
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sum

G =
∑

(a,u)∈Ξ̃

ψa,uψ
†
a,u (4.8)

=

p∑
i=1

∑
(a,u)∈Ξ̃i

ψa,uψ
†
a,u (4.9)

=

p∑
i=1

Gi (4.10)

with p the number of processes and Ξ̃i, 1 ≤ i ≤ p are the partitions of Ξ̃ dispatched
to each process.

As a final note, we remark that the computation cost is drastically reduced if
the wavelet transform is computed using an orthogonal basis since in that case the
solution is given by y = Ψ†

Ξ̃
x̃. Unfortunately, it constraints the construction of the

frame and we lose the advantages in terms of visualization of continuous wavelet
transforms.

Results We plot on Fig. 4.5 an example of the extraction of a pattern in the
time-scale domain and its denoising with different thresholds. We show examples
of the signals obtained with the conjugate gradient method. We used the conjugate
gradient method implementation in Julia of IterativeSolvers [61]. Since, the solutions
are obtained in Cn, n being the size of the pattern, we show the real part of the
solutions.

We also show in Fig. 4.6 the evolution of the residual norm ‖Gxt − b‖ for the
solution xt at iteration step t in the conjugate gradient method. During iterations,
round-off errors may accumulate in the kernel space of G and make the solution
diverges, the residual norm ‖Gxt− b‖ does not account for the divergence since Gxt
is in the image space of G. Thus, we can have a decreasing residual norm with
a diverging solution. This is the case for example on Fig. 4.6 where we stopped
the iterations early as the residual norm was low enough (around 20 iterations). In
particular, divergence happens when b do not exactly belong to the image space of
G, see [62].

4.2.4 Automatic Detection of Patterns for Realignment

We can now derive a method based on the resynthesis of extracted patterns in scalo-
grams to automatically detect in the temporal domain the other patterns present in
the signal. We propose the following procedure:

1. With a family of Generalized Morse Wavelets {ψa,u,β,γ}(a,u)∈Ξ with β, γ fixed,
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we compute the wavelet transform x = {〈ψa,u,β,γ, s1〉}(a,u)∈Ξ of a given signal
s1. For a continuous wavelet transform, it can be computed using convolutions.

2. By visualizing the scalogram {|〈ψa,u,β,γ, s1〉|}(a,u)∈Ξ, we crop an interesting
region outlining a pattern in the scalogram and denoise it using (4.6) with
an appropriate threshold. It gives a reduced set of wavelet parameters Ξ̃

associated to coefficients x̃.

3. We construct the frame operator associated ΨΞ̃. To resynthesize the denoised
pattern ỹ, we get linear system Gỹ = b with G = Ψ†

Ξ̃
ΨΞ̃ and b = Ψ†

Ξ̃
x̃. The

linear system is solved using a conjugate gradient method, see Sec. 4.2.3.

4. To detect the presence of other patterns in a signal s2, we use ỹ as an adapted
filter and compute the correlation:

|ỹ− ∗ s2| (4.11)

The position of the peaks in (4.11) indicate the presence of portions of the
signal that are correlated with the denoised pattern ỹ. We apply a threshold on
the peaks and a minimum time criterion between peaks to filter false positives
and extract the position of the detected patterns.

5. We extract the detected patterns {yi}i in the signal s2 around the peaks of
|ỹ− ∗ s2|. They are then concatenated into a new signal s∗2 containing the
detected patterns. It gives a realigned signal s∗2 with a constant delay between
detected patterns.

We show Fig. 4.7 the results obtained for each adapted filters computed in the
previous section. We notice that the threshold efficiently reduce the noise and the
amount of false positive peaks.

We plot on Fig. 4.8 an example of the detection of the patterns in the signal using
|s∗g| with g the adapted filter of Fig. 4.7 with a high threshold. Given the temporal
locations of each pattern, we can extract the detected pattern and concatenate them
to form a new synchronized signal.

Application in side-channel Once the patterns are located in the temporal
signal, they can be concatenated to form new signals in which the algorithm in-
structions will be synchronized. The method presented in this section is useful to
remove natural clock jitter from oscillators or nop operations (”do nothing” opera-
tion). A pattern is related to the consumption of energy in some frequency bands
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and over a short period of time. Thus, we cannot handle with this method coun-
termeasures that repeat operations or introduce fake ones, as these operations will
also be detected and mixed with other pertinent operations.

This method will be used in Sec. 4.3 to automatically extract a set of patterns
for estimating an adapted frame of wavelets.

4.2.5 Conclusion

By the visualization of side-channel signals with continuous wavelet transform, the
knowledge of an evaluator can easily be involved in order to identify patterns related
to the cryptographic algorithm. We presented a method to extract the wavelet
coefficients of those patterns in the time-scale domain, a threshold-based denoising
procedure for the removal of noise and an inversion scheme of the coefficients for
the resynthesis of time-domain signals. These resynthesized signals are then used as
adapted filters for the automatic detection and extraction of patterns which are in
turn concatenated to form resynchronized signals.

The intervention of the evaluator in the identification of patterns led to the
construction of a matrix G that was used in the resynthesis context. This matrix
G can also be seen as a metric, assuming that G is made positive definite, e.g. by
the addition of a rank-k update matrix, and we can define the following distance
between two signals s0, s:

‖s0 − s‖2G = (s0 − s)†G−1(s0 − s) . (4.12)

This new distance will shape the space of signals according to G. For signals equally
distant in the ‖·‖ sense, they will be seen closer or farther with ‖·‖G. Since G carries
the information about the shape of the patterns, signals that do not ”look like” true
patterns will be pushed away by ‖·‖G.

In the next section, we study the estimation of a frame operator ΨΞ by proposing
a statistical model. It will allow the construction of G where it will play the role of
the covariance of patterns.

81



Figure 4.5: Example of the extraction of a pattern from a continuous wavelet
transform, of the application of threshold-based denoising, and of the resynthesis

of denoised signals in the time domain. At the top, signal in the time domain
containing the pattern to extract. For the three bottom lines: on the left a

heatmap resulting from the application of three different thresholds (null, low and
high) on the extracted time-scale pattern, and on the right the resynthesized signal

in the time domain.
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Figure 4.6: Evolution of the log of the residual norm during the conjugate gradient
method. It has been obtained during the resynthesis of the cropped pattern of Fig.

4.5 without threshold.

Figure 4.7: Pattern detection using the adapted filters obtained on Fig. 4.5. From
top to bottom, the adapted filters obtained after the threshold-based denoising

with: a null threshold, low threshold and high threshold
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Figure 4.8: Illustration of the use of |s ∗ g|, with g the resynthesized pattern
obtained with a high threshold, for peak detection and pattern extraction. We

represent at the bottom the corresponding signal in the time domain with arrows
indicating the detected patterns in the signal. To filter peaks that are too close in

time, we use a minimum time criterion between peaks.
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4.3 Generalized Morse Wavelet frame Estimation

As discussed at the end of Sec. 4.2, we were able to design a simple realignment
method based on a frame operator found with the help of an evaluator’s knowledge.
In this section we study the learning of an adapted frame directly from a set of
extracted patterns. We adopt a maximum likelihood approach for estimating a
frame operator that best explains in the statistical sense the patterns encountered
in a given dataset of side-channel signals. In particular, we choose to work in the
superfamily of Generalized Morse Wavelets presented in Sec. 1.4.4 to build frames.
This way, we answer the need to embed prior information on the time-frequency
properties of signals while keeping some flexibility in the optimisation and estimation
of the frame.

To derive such a frame, we suppose a multivariate Gaussian prior distribution
on signals and optimise a maximum likelihood loss through gradient descent. Ul-
timately, we aim with this work to facilitate the use of wavelet frames in larger
statistical models with optimisation methods based on gradient descent.

4.3.1 Analysis in a Frame of Generalized Morse Wavelets

4.3.1.1 Problem Formulation

We wish to extract from a noisy signal y a signal of interest y∗ which has been
generated with coefficients x∗ via a frame {ψξ}ξ∈Ξ∗ with index set Ξ∗. In the context
of Sec. 4.2, the coefficients x∗ play the role of the coefficients that have been carefully
selected by the evaluator, but in our situation we suppose that we do not have access
to those. We suppose that our pattern writes:

y = y∗ + es = Ψ†
Ξ∗
x∗ + es , (4.13)

where es is a statistical noise and Ψ†
Ξ is a matrix with a frame of Generalized Morse

Wavelets as column entries and with ·† the adjoint operator for matrices.
Let Ξ be the estimated index set assumed to be of same size as the true index

set Ξ∗, ΨΞ the corresponding operator, and x some coefficients, equation (4.13) can
be rewritten as:

y = Ψ†
Ξx+ es , (4.14)

where Ψ†
Ξ = Ψ†

Ξ∗
T and x = T−1x∗, with T an invertible transformation.

We recognize a factor analysis problem where our goal is to estimate both the set
of wavelet parameters Ξ that defines the frame operator and the coefficients x (in
comparison with a regression analysis where only the coefficients x are unknown).

Additionaly, we remark that the problem can be formulated either in the time
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domain or in the frequency domain. Since the Fourier Transform is an isometry,
i.e. by Parseval theorem the scalar products are conserved with Fourier Transform,
the properties of our operator Ψ with wavelets in the time domain {ψξ}ξ∈Ξ can
be transferred into the frequency domain by redefining the operator with a frame
of wavelets in the frequency domain {ψ̂ξ}ξ∈Ξ. In the following we choose to use
the frame operator in the frequency domain as the generalized Morse Wavelets
are analytically given in the frequency domain. In comparison with driving the
estimation in the time domain, it will saves inverse Fourier Transforms during the
gradient descentthat will be required to transpose back the updated frame in the
time domain. Consequently, in our experiments, we will work with signals in the
Fourier domain.

We recall here the expression for the Generalized Morse Wavelet that we will
use for building the frame. For ξ = (a, u, β, γ), the wavelet in the Fourier domain is
expressed:

ψ̂a,u;β,γ =
√
acβ,γ(aw)

βe−(aw)γe−iwu . (4.15)

with c2β,γ = πγ 2r/Γ(r) and r = (2β + 1)/γ.

Model To answer our problem, we adopt a probabilistic approach and reformulate
(4.14) as a factor analysis problem [101, 110] with stochastic variables:

Y = Ψ†
ΞX + E + µ . (4.16)

Where we assume the following prior distributions for the random coefficients X,
the random noise E and patterns Y :

X ∼ CN (0,Σx) (4.17)

E|Λ ∼ CN (0,Λ) (4.18)

Y |µ,Ξ,Λ,Σx ∼ CN (µ,Σy), Σy = Ψ†
ΞΣxΨΞ + Λ (4.19)

with CN the complex multivariate distribution introduced in Sec. 2.4. In the follow-
ing, we reserve the notation Σx for the covariance of the m-dimensional coefficients
X and note Σy for the covariance of random n-dimensional signals Y .

The goal is to estimate the unknown variables of the model (4.16) are µ ∈ Cn,Λ ∈
Cn×n,Σx ∈ Cm×m and Ξ ⊂ R4. To do so, we derive in the next section a maximum
likelihood approach to estimate the parameters.
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4.3.2 Maximum Likelihood estimation

We present now the method to learn the frame of Generalized Morse Wavelets and
the remaining parameters of the statistical model (4.16). We propose to optimise a
likelihood loss through a gradient descent algorithm whose derivatives according to
the parameters are given.

4.3.2.1 The Likelihood Loss

Given a set of data D = {y1, . . . , yL} of size L, a point estimation of the parameters
of the model can be found by optimising the following likelihood loss:

LMLE(µ,Ξ,Λ,Σx) = − log
L∏
i=1

p(yi|µ,Ξ,Λ,Σx) (4.20)

where we have noted p(yi|µ,Ξ,Λ,Σx) = p(yi|µ,Σy) to emphasize that the distribu-
tion of Y actually depends on Ξ and Λ through Σy. We search for µ∗,Ξ∗,Λ∗,Σ∗

x

minimizing LMLE:

(µ∗,Ξ∗,Λ∗,Σ∗
x) = argmin

µ,Ξ,Λ,Σx

LMLE(µ,Ξ,Λ,Σx) (4.21)

4.3.2.2 Derivatives

In order to minimize (4.21) we study its derivatives. Using formula (2.26) for n-
multivariate Gaussian distribution, we develop (4.20) to get:

1

L
LMLE(µ,Ξ,Λ,Σx) = n log π + log detΣy

+
1

L

L∑
j=1

(yj − µ)† Σy
−1 (yj − µ) (4.22)

recalling that ·† is the conjugate transpose and that Σy = Ψ†
ΞΣxΨΞ + Λ.

Using matrix calculus identities we get the differential form [76, Eq. (15.60)]:

1

L
dLMLE = tr

(
Σy

−1dΣy

)
− 1

L
tr

(
Σy

−1

(
L∑
j=1

(yj − µ) (yj − µ)†
)
Σy

−1dΣy

)
+ 2<

(
(µ− µe)†Σy

−1dµ
)
, (4.23)

with µe = 1
L

∑L
j=1 yj the empirical mean, and tr () denotes the trace operator. This
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is rewritten after some manipulations:

1

L
dLMLE = tr (h[Σy, S]dΣy)

+ 2<
(
(µ− µe)†Σy

−1dµ
)

(4.24)

where we have introduced the notations

h[A,B] = A−1(A−B)A−1 , S =
1

L

L∑
j=1

(yj − µ)(yj − µ)†

Clearly, dLMLE/dµ vanishes for µ = µe the empirical mean, and dLMLE/dΣy for
Σy = S the (biased) covariance matrix. Remark that the data in S is not properly
centered with the empirical mean µe thus the stationary point for Σy will vary with
µ. We also note that the optimisation becomes ill-posed when Σy is not full rank
definite since we can find an infinite number of stationary points by choosing an
update µ̃ making µe − µ̃ orthogonal to the eigenspace of Σy. In practice, we make
Σy strictly positive by choosing a positive diagonal matrix for Λ. To avoid dealing
with degenerate complex Gaussian distributions we aim Σx to always stay strictly
positive definite, this way it is convenient to search for a lower complex triangular
matrix with strictly positive diagonal values C such that the Cholesky decomposition
of Σx is Σx = CC†. We note Ψ/

Ξ = C†ΨΞ.

The differential form of Σy now gives:

dΣy = dΛ + dΨ/
Ξ
† Ψ/

Ξ +Ψ/
Ξ
† dΨ/

Ξ , (4.25)

with dΨ/
Ξ = dC†ΨΞ + C† dΨΞ.

Using (4.25) in (4.24) and with the previous notations, we find the following
Jacobians for µ,Ψ,Λ, C:

∇µLMLE =(µ− µe)†Σ−1
y (4.26)

∇ΨΞ
LMLE =vec (C h[Σy, S]Ψ

/
Ξ)

† (4.27)

∇ΛLMLE =vec (h[Σy, S])
† (4.28)

∇CLMLE =vec
(
Ψ†

Ξ h[Σy, S]Ψ
/
Ξ

)†
(4.29)

where vec (·) is the vectorize operator, i.e. vec

([
a b

c d

])
= [a c b d]T ∈ R4. We

used the differentiation conventions of [51], i.e. if f is a real valued function of
complex matrix arguments Z and Z (Z being the complex conjugate of Z) then its
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derivatives are defined by

∇Zf =
∂vec

(
f(Z,Z)

)
∂vec (Z)T

=



∂f1,1
∂Z1,1

· · · ∂f1,1
∂Zn,1

· · · ∂f1,1
∂Zn,p

...
∂fm,1
∂Z1,1

· · · ∂fm,1
∂Zn,1

· · · ∂fm,1
∂Zn,p

...
∂fm,k
∂Z1,1

· · · ∂fm,k
∂Zn,1

· · · ∂fm,k
∂Zn,p


with f(Z,Z) ∈ Rm×k and Z ∈ Cn×p.

Additionally, given a differential form df(Z,Z) = tr
(
ATdZ +BTdZ

)
with arbi-

trary matrices A,B, we have

∇Zf = vec (A)T (4.30)

∇Zf = vec (B)T . (4.31)

Also, if f is real-valued, we have: ∇Zf = (∇Zf) [51, Theorem 3]; thus in our case
we have for example ∇ΨΞ

LMLE =
(
∇ΨΞ
LMLE

)
. In consequence, we do not write here

the derivatives for the conjugate variables.
We are in particular interested in the derivatives according to the wavelet pa-

rameters ξ ∈ Ξ. Using (4.27) and the chain rule [51, Theorem 1] we find:

∇ξiLMLE = 2<
(
∇ΨΞ
LMLE∇ψ̂ξ

ΨΞ∇ξψ̂ξ

)
(4.32)

where

∇ψ̂ξi
ΨΞ = ∂vec



ψ̂ξ1
...

ψ̂ξK


/∂vec

(
ψ̂ξi

)T

with the property that∇ψ̂ξi
ΨΞ

Tvec (dΨΞ)=vec
(
dψ̂ξi

)
. And∇ξψ̂ξ =

[
∂ψ̂ξ
∂a

∂ψ̂ξ
∂u

∂ψ̂ξ
∂β

∂ψ̂ξ
∂γ

]
is computed by deriving (4.15) according to a, u, β and γ (given in Appendix A.1).

Now that we have all the derivates according to each parameters in equations
(4.26), (4.32), (4.28) and (4.29), we optimise the likelihood loss (4.20) via gradient
descent.

4.3.2.3 Overview of the estimation method proposed

We give below an overview of the method for estimating the parameters of the
statistical model proposed in (4.16). From now on, the statistical model and the
method to optimise it is noted GMW-MLE.

1. Given a dataset of patterns {yi}i, compute the empirical mean µe, the empiri-
cal covariance S, and initiliaze the parameters of the model (4.16), i.e. µ,Ξ,Λ
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and Σx (more precisely for the latter its Cholesky factor C).

2. Optimise the likelihood loss (4.20) by updating through gradient descent the
parameters Ξ,Λ and Σx using respectively the expressions for the jacobians
(4.32), (4.28) and (4.29). µ can directly be set to µe as ∇µLMLE

∣∣
µ=µe

= 0. The
gradient updates are iterated until convergence.

3. Obtain the estimates µ,Ξ,Λ and Σx. As an important and direct side result,
we also get an estimate of the covariance of the patterns Σy expressed

Σy = Ψ†
ΞΣxΨΞ + Λ ,

where Ψ†
ΞΣxΨΞ is the covariance of the signal of interest we wish to analyze,

and Λ is the covariance of the noise. We discuss further on the form obtained
for Σy with our model in Sec. 4.3.2.5.

4.3.2.4 Parameters Initialization and Learning

The parameters need to be properly initialized to ensure fast convergence and sta-
bility. For Ξ, we always start with a stationary frame of Generalized Morse Wavelets
logarithmically spaced in frequency and linearly spaced in time, with parameters β
and γ initially fixed to (1, 3). The time-frequency domain covered by the frame can
be chosen such that it covers the domain of interest, it is particularly useful if it is
known that some frequency bands do not carry our signal of interest.

We restrict Λ to be strictly diagonal positive and C to be triangular inferior with
positive diagonals.

During gradient updates, it is a common problem to keep parameters into a pre-
defined subspace, e.g. a noisy update of C can make some of its diagonal elements
negative or noisy updates of β, γ can make them negative for which no Generalized
Morse Wavelets are defined. In consequence the learning is regularized by using
softplus rectifier functions [45] SP : x 7→ log(1 + ex) to keep parameters into pos-
itive domains when needed. It amounts to append the Jacobian of SP into the
differentiation chain rules.

In practice, we perform gradient updates through pullback differentiation [42].
It is programmed in Julia using Zygote [55] as automatic differentiation tool, with
the machine learning library Flux [56] and with custom pullback rules written with
ChainRules [119].

4.3.2.5 Further optimising the learned frame for dimension reduction

It has been proven efficient to reduce the size of the data before performing side-
channel attacks [24], and more generally in machine learning it is always welcome to
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reduce the dimensionality of the data beforehand. To do so, with the estimates of the
parameters of the model (4.16), we can use the frame as a dimension reduction tool.
As discussed in the end of Sec. 4.3.2.3, we also get an estimate of the covariance of the
pattern in function of the parameters of the model. With the SVD of Σx = UxDxU

†
x

with D ∈ Rm×m a positive diagonal matrix containing the eigenvalues of Σx sorted
in decreasing order along the diagonal, and Ux ∈ Cm×m a unitary matrix with the
eigenvectors of Σx, we have:

Σy = Ψ†
ΞΣxΨΞ + Λ (4.33)

= Ψ†
ΞUxDxU

†
xΨΞ + Λ (4.34)

= Φ†DxΦ + Λ (4.35)

with Φ = U †
xΨΞ a new frame operator which is function of the estimates Σx and Ξ.

The size of the new frame Φ can be further reduced by selecting the eigenvectors of Σx

with high eigenvalues (as we would do with a PCA but here on the coefficients). Let
p the number of eigenvectors selected, we can write Ux = [Ux,i Ux,e] with Ux,i ∈ Cm×p

the selected eigenvectors and Ux,e ∈ Cm×m−p the remaining ones, and

Dx =

[
Dx,i 0

0 Dx,e

]

with the diagonal matrices containing the corresponding eigenvalues Dx,i ∈ R+p×p

and Dx,e ∈ R+m−p×m−p. Let Φi = U †
x,iΨΞ and Φe = U †

x,eΨΞ, we can reinterpret Σy

as
Σy = Φ†

iDx,iΦi︸ ︷︷ ︸
Cov. signal

+Φ†
eDx,eΦe + Λ︸ ︷︷ ︸

Cov. noise

(4.36)

where we put in the new covariance of the noise some part of the previous covariance
of the signal of interest, i.e. Ψ†

ΞΣxΨΞ or equivalently Φ†DxΦΞ.

Now, to compress the patterns into p-dimensional vectors, we can use the dual
of Φi:

Φ̃i = Φ†
i (ΦiΦ

†
i )

−1 . (4.37)

The Principal Component Analysis (PCA) method uses the covariance of the pat-
terns to identify the subspace of the signal of interest, here the SVD is performed
on the covariance of the coefficients and the selected eigenvectors are projected back
into the signal space through the frame. In comparison with the eigenvectors ac-
quired by a PCA, the components of Φ are restricted to a space of signal with the
time-frequency properties of the learned frame of Generalized Morse Wavelets.
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4.3.3 Information Retrieval in Side-Channel Signals

Our goal in this section will be to use the previous model to analyze patterns in
side-channel signals. The model (noted GMW-MLE) is used as an analysis and
dimension reduction tool to facilitate side-channel attacks. It is also compared with
other methods of compression such as the Principal Components Analysis (PCA)
and UMAP [88].

4.3.3.1 Dataset and Experiment

We use 10, 000 electromagnetic signals from the JIT dataset (see Sec. 4.1.1), we recall
that these signals were acquired during an AES encryption algorithm. The sensitive
variable Z targeted is the output of the SubBytes() operation of the second round.
We recall, see Sec. 3.3.3, that this step outputs a sensitive variable computed with
a plaintext e and a key k∗. To assess the security of the device, we want to estimate
z knowing the plaintexts e in order to get information about the cipher key k∗. We
use the attack method presented in Sec. 3.3.3, we use 8, 000 traces for the train set
and 2, 000 for the test set.

We display on Fig. 4.10 an example of a signal representing the first three rounds
of AES. We use the automatic detection of patterns of Sec. 4.2.4 with a wavelet
as the adapted filter to extract a set of patterns from signal in the JIT dataset.
In particular, we remark that the wavelet corresponding to the frequency band
around 5.5e − 4 matches with many patterns in the continuous wavelet transform
in Fig. 4.10. From the filtered signals, we look at their energy through time and
extract 16 patterns of size 512 samples around the peaks.

We train our model GMW-MLE on this set of patterns to learn a frame of 25
wavelets along with the covariance of coefficients Σx. We follow the procedure in
4.3.2.4 to initialize the parameters. We then compute the pseudo-inverse (4.37) and
compress our patterns into a set of wavelet coefficients (called features). We compare
our model with other dimension reduction techniques such as the PCA [60] and a
more recent technique UMAP [88] which is based on manifold learning techniques.
These methods are trained on all individual patterns and used to compute features
that are concatenated back to reform compressed version of our original signals. The
dimension of reduction is fixed to 10 for all experiments. The 16 extracted patterns
from each signals are compressed into 10-dimensional feature vectors, thus leading
to compressed signals of size 160.

Finally, we use this new dataset of features to perform template attacks [21],
whose learning procedure, named Quadratic Discriminant Analysis (QDA), is pre-
sented in Sec. 2.5.1. This step amounts to train a QDA model on compressed signals
to get probability predictions on keys p(k|DR(y)) = p(k|x) for a key hypothesis k,
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Figure 4.9: Diagram showing the consecutive steps to carry out the side-channel
attack. The technique for extracting the patterns is introduced in Sec. 4.2.4, the

reduction of dimension with the GMW-MLE method corresponds to the method in
Sec. 4.3.2.5, the supervised attack is performed using the QDA presented in

Sec. 2.5.1.

Figure 4.10: Top: One EM signal from JIT. Middle: Continuous Wavelet
Transform with a basis of Generalized Morse Wavelets (β = 2, γ = 3), the y-axis
units are the normalized central frequency of each wavelet in log scale. Bottom:

concatenated extracted patterns from the top signal. 16 patterns are displayed and
originally lay between couples of vertical lines.

a pattern y and its vector of concatenated features x and where DR is the com-
pression technique used (PCA,GMW-MLE or UMAP). The performance of attacks
are evaluated using the Guessing Entropy metric [83], see Sec. 3.3.3. To properly
evaluate the results of the models, we use a 10-fold Monte Carlo cross-validation,
i.e. models are re-trained and evaluated on randomly drawn train and test sets 10

times.
The full experiment is resumed in Fig. 4.9.

4.3.3.2 Results

In Fig. 4.11, we show the components learned by the PCA and our method. We
notice that both methods led to components that are mainly centered in time.
We also illustrate on Fig. 4.13 the time-frequency properties of the frame after
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Figure 4.11: Visualisation of the first three main components of the PCA (left), of
Φ in (4.37) for GMW-MLE (right). For GMW-MLE we took the real part of the

components.

Figure 4.12: Evolution of the log likelihood loss during the GMW-MLE training of
Sec. 4.3.2.3.

convergence and on Fig. ?? the Fourier spectrum of some PCA components (bottom)
and wavelets from the frame (top). We display in Fig. 4.12 the loss during the
training the GMW-MLE method.

We represent in Fig. 4.15 some plots of the features learned by the different
methods. We choose the first three dimensions of features and plot each dimension
versus the other. We want to see if some patterns can be isolated from the others by
looking at their features. Only the UMAP dimension reduction method leads to a
representation that could help at differentiating patterns. The PCA and the GMW-
MLE methods do not help to visually identify group of points. The results of attacks
with each dimension reduction technique are displayed Fig. 4.16. GMW-MLE and
UMAP lead to the fastest decreasing guessing entropy. GMW-MLE can be seen as
a PCA with a restriction on the time-frequency properties of its components. This
restriction in our case allows to focus the learning on a subspace that is most likely
to contain the signal of interest. While UMAP presents very interesting properties
and provides good results here, its main drawback is that it is not straightforward
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to inverse the features and regenerate patterns, and it is difficult to integrate into
statistical models.

Conclusion and Perspectives

In this section, we presented a novel technique for estimating a frame of General-
ized Morse Wavelets from a given dataset of signals. We formulated our problem
as a statistical model for which a likelihood loss is derived and whose derivatives
according to the parameters are calculated.

The model is used in the context of unsupervised dimension reduction for com-
pressing patterns from side-channel signals and improve template attacks. More
generally, we think that this model could be used as a potential building block for
other statistical models such as state-space models, MLP and CNN. In particular,
a regularisation constraint can be added to the loss to restrict the duration or the
frequency peak of the Generalized Morse Wavelets such that the learning focuses on
particular time-frequency properties of the data.

We also envisage the following potential improvements:

• Since the parameters of the frame are updated in the Fourier domain, any
update of the phase of a wavelet makes it loops around its time domain. We
suspect that it has some impact on the learning. A thorough study is required
in this direction. If we allow wavelets to ”disappear” on the border of the time
domain occupied by the signal, it requires to consider the alternative model:

y =MΨ†
Ξx+ es (4.38)

with M = [0n/2 In 0n/2−1] a masking matrix of size n × 2n − 1, where the
size of the wavelets are increased to 2n− 1 and patterns y stay of size n. The
covariance of the model becomes Σy =MΨ†

ΞΣxΨΞM
†+Λ. The masking matrix

needs to be added to the jacobians, alongside with the Fourier transform
matrix2 to pass the derivatives of the Generalized Morse wavelets into the
time domain.

• Although the optimisation converge rapidly, the method remains computation-
ally intensive in comparison with a simple PCA. To increase the convergence
rate a study of the sensibility of the likelihood loss according to the wavelet
parameters is required. It amounts to study the Fisher information matrix
[97, Chap. 8] of (4.20). For that, some already implemented work in Julia has
been initiated and the in-depth study is reserved for further work.

2In practice we do not have to explicitly construct the Fourier transform matrix as we would
use the fast Fourier transform in the differentiation chain rules.
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Figure 4.13: Comparison between an initial and a learned frame of Generalized
Morse Wavelets (GMW). We show the contours of the average scalogram of

patterns {yi}i. Error bars along the x-axis show the duration (1.51) of Sec. 1.4.4 of
the GMW. Time and frequency axis are normalized.
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(a) Ondelettes ψΞ en Fourier

(b) Composantes PCA en Fourier
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Figure 4.15: From left to right: Scatter plots of features for each of their first three
components. Form Top to Bottom: PCA features, GMW-MLE features, UMAP

features.

Figure 4.16: Evolution of the guessing entropy (GE) of the true key with
increasing number of signals and for each compression method. The faster it

decreases the better.
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4.4 Wavelet Scattering Transform and Ensemble
Methods for Side-Channel Analysis

In previous sections, we relied on the realignment of signals to perform side-channel
attacks. Here, we explore a wavelet-based preprocessing method that do not neces-
sarily require a realignment of signals. We study the use of the Wavelet Scattering
Transform, proposed by S. Mallat in [81] to produce robust representations against
time and frequency translations.

Also, we saw in Sec. 3.3.4, that the leakage model of sensitive variables is gen-
erally unknown. In the literature, we often admit a leakage model and evaluate its
relevance on a dataset of signals through the evaluation of the Guessing Entropy.
We propose in this section an ensemble method that combines the prediction of
different leakage models to form a more robust and general model.

4.4.1 Translation invariance and stability under diffeomor-
phism

As explained in the beginning of this chapter, signals in side-channel analysis are
generally desynchronized by jitter countermeasures. Additionally, we remark that
patterns are sometimes distorted resulting in some displacements of the frequency
content in the Fourier domain. Thus, to facilitate the learning of statistical models
in side-channel analysis, a good representation Φs of signals s with an operator Φ

should be stable to some extent against translation and deformation.
Let x1, x2 be two acquired signals, we say that x1 is a deformed version of x2 if

there exists a diffeomorphism τ(t) such that x1(t)=x2(τ(t)).
A practical example in SCA is given Figure 4.17 where two patterns from EM

signals are plotted. Although both signals contain the same cryptographic infor-
mation, we notice translations in the time and frequency domain. We presented in
Sec. 1.3.4 and in particular in Fig. 1.1 the time-frequency domains covered by the
STFT and wavelet transforms bases. We remark that in the case of the STFT we
can adapt the size of the window to allow some robustness against time translation,
while for the wavelet transform (WT) the representation will be unstable against
time translation at high frequency. Alternatively, in the frequency space, WT rep-
resentations are robust against small frequency shifts and STFT representations are
unstable, we illustrated this in Fig. 4.18.

In [81], the problem is tackled by searching for an operator Φ that limits the
distance between a signal and its deformed version, in the sense that Φx ≈ ΦLτx

where Lτ denotes the deformation operator induced by the diffeomorphism τ . Ac-
cording to [81], the operator Φ should be designed with respect to the two following
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Figure 4.17: Jitter effect and deformation taken from JIT signals (see Section
4.1.1). Two temporal patterns are plotted at the top with their associated Fourier
Transform at the bottom. The deformation between these patterns is characterized

here by a frequency shift of some components (e.g. at frequency=0.026) in the
Fourier spectrum.
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Figure 4.18: Effect of deformations in frequency for STFT and WT. We generate a
modulated Gaussian pulse x1(t) at a low and high frequency along with its

deformed version x2(t) = x1(1.05t). We plot two elements of the basis of a STFT
and WT basis such that it captures the original signal. We remark that under

deformation the WT still capture the deformed signal.
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properties:

• Φ is translation invariant, i.e. for c ∈ R and Lcx(t)=x(t− c):

Φx = ΦLcx

• Moreover, Φ is stable by diffeomorphism, i.e. it is Lipschitz continuous to the
action of a C2-diffeomorphism τ . For τ ∈ C2(R), Lτx(t) = x(t − τ(t)) and
C ∈ R+:

‖Φx− ΦLτx‖ ≤ C‖x‖( ‖∂τ
∂t
‖∞ + ‖∂

2τ

∂t2
‖∞ ) (4.39)

The scattering transform proposed in [81] respects these properties and is pre-
sented hereafter.

4.4.2 The Wavelet Scattering Transform

In order to have such properties, Mallat proposes in [81, 7] cascading continuous
wavelet transforms. Let s a signal and ψ a mother wavelet, we here write the
continuous wavelet transform at scale a:

W [a]s = s ∗ ψa =
∫
s(t)

1√
a
ψ

(
u− t
a

)
dt (4.40)

Each convolution with a wavelet ψa is followed by the absolute value | . | and averaged
on a time domain of 2J samples with AJx=x ∗ φ2J , with J the maximum number
of dyadic scales and φ2J a low pass filter. This procedure is then repeated along
multiple paths of scales p=(a1, ..., am) with ai > 2−J . For a path p, we have:

S[p]x = |||x ∗ ψa1| ∗ ψa2|... ∗ ψam | ∗ φ2J

= |W [am] ... |W [a2] |W [a1]x||| ∗ φ2J

= AJ |W [am] ... |W [a2] |W [a1]x|||

= AJU [am] ... U [a2]U [a1]x (4.41)

with U [a]x= |W [a]x|= |x∗ψa| and AJx=x∗φ2J . In practice the scattering transform
is calculated on a path subset ΩJ,m for which a maximum length m of paths p ∈ ΩJ,m

is set and with scales a > 2−J . We illustrate Fig. 4.19 the scattering network.
While wavelet transforms provide stability under the action of small frequency

translation, the nonlinear operation and the integration over time guarantees trans-
lation invariance. Cascading wavelet transforms allows recovering high frequencies
lost after averaging the absolute value of the continuous wavelets transforms of lower
levels. We refer to [81] for further details.
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Figure 4.19: A two-level wavelet scattering transform. The scale here is noted λ
instead of a.

We can adapt the number of scales depending on the spectral richness of signals,
we have aj = 2−j/Q, 0≤j<JQ where J is the number of dyadic scales and Q defines the
number of inter-scales. The whole transform is characterized by three parameters:
J,Q and the number of levels m ∈ {1, 2}.

To tune the parameters of the scattering transform, we propose the following
rules of thumb: choose J proportionally to the amount of translation (i.e. jitter)
present in signals and Q according to the desired discrimination in frequency. If J
is set too high, a second level m=2 is required to retrieve the information lost by the
low-pass filter.

The scattering transform is computed using the python implementation of [8].
In our case, Morlet wavelets are used for the continuous wavelet transform, we recall
here their definition:

ψ(t) = cσe
− 1

2

(
t
σ

)2
(eiwt − b0) (4.42)

with b0 such that ψ is made admissible, see Sec. 1.3.2, cσ is a normalisation constant
such that ‖ψ‖ = 1. σ and w are fixed parameters chosen such that the mother
wavelet covers the highest frequency band desired.

Before presenting some results on the use of the scattering transform, we present
our combination procedure for approximating the leakage model.

4.4.3 A Combination Procedure for Ensemble Methods in
SCA

For the task of classification in SCA, one label is usually considered to provide
an estimation of a sensitive variable Z. Here we focus on the space of targeted
class values with multiple classifiers trained on L different labelings {Cl}1≤l≤L, each
labeling giving clues on the sensitive variable z with a probability p(Z=z|Cl=cl).

Classification of the sensitive variables considered in SCA lends itself well to
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Figure 4.20: Example of partition functions for the approximation of the leakage
model. The first eight rows are the partitioning according to single bit values. The

second last-one is the Hamming weight partitioning and finally we have the
identity at the last row. The x-axis is the value of the byte from 0 to 255.

partition our target space Z ∈ Z in complementary regions. We denote βl the
partition function that associates each z to a label cl ∈ Cl, such that βl(z)= cl and
β(z)= (c1, ..., cL)= c ∈ C. For example, if z is the byte 0x12 and β is composed of
labelings respectively: identity over Z8, Hamming weight and the first big-endian bit
value; then β(0x12)= (0x12, 2, 0). We represent Fig. 4.20, an example of partition
functions.

Here we impose the labelings Cl to be conditionally independent such that

p(C=c|S=s)=
∏
l

p(Cl=cl|S=s) .

We also assume here that β is made bijective. Given a signal s, an estimation
for z is given by:

log(p(Z=z|S=s)) = log(p(C=β(z)|S=s)) (4.43)

=
∑
l

log p(Cl=βl(z)|S=s)) (4.44)

A set of L classifiers {y1, . . . , yL} is trained accordingly to partitions βl and gives
predictions p(Cl=βl(z)|S=s). Once each classifier is trained, their predictions can
be naively summed, in which case a soft voting (SV) is performed; or a classifier-
specific weight can be applied to each classifier depending on its performance, that
is a weighted soft voting (WSV). Remark that SV is a particular case of WSV where
weights are all equal. If we note yl(z, s)=log(p(Cl=βl(z)|S=s)) the vote accorded
to the classifier l for the value z of Z, and y(z, s)=

∑
l wlyl(z, s) the weighted vote

with wl ∈ R. We can iteratively find a weight vector w ∈ RL,
∑L

i=1wi = 1, such
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that the following cross-entropy loss is minimized:

Lwsv(X,Z) = −
1

Nt

∑
(si,zi)∈Dt

p(Z=zi)y(zi, si) (4.45)

= − 1

Nt

∑
(si,zi)∈Dt

L∑
l=1

wlp(Z=zi) log(p(Cl=βl(zi)|s=si)) (4.46)

where Dt = {(si, zi)} is the training dataset.
To illustrate our approach, we consider the case where signals s are Gaussian

distributed with the same covariance matrix. This is equivalent to choosing Linear
Discriminant Analysis as classifiers [49], we have:

yl(z, s)=log

(
1

R
e(s−µl(z))

tΣ(s−µl(z))
)

With R the normalization factor, µl(z) the mean value of signals for the labeling l
and the label value z, and Σ the inverse covariance matrix. We assume a balanced
dataset, i.e. p(Z= zi) = p is constant, and constraint weights such that

∑
l wl=1,

we get:

Lwsv(X,Z) =−
p

Nt

∑
(si,zi)∈Dt

∑
l

wl
(
(xi−µl(zi))tΣ(xi−µl(zi))−log(R)

)
(4.47)

=− p

Nt

∑
(si,zi)∈Dt

(
(xi−µ∗(zi))

tΣ(xi−µ∗(zi))+cµ(zi)−log(R)
)

(4.48)

∝ log(
∏

(si,zi)∈Dt

1

R
e(−(xi−µ∗(zi))tΣ(xi−µ∗(zi)))) (4.49)

Where µ∗ =
∑

l wlµl and cµ =
∑

l wlµ
t
lΣµl −

∑
l,k wlwkµ

t
lΣµk that depends on esti-

mated means µl, on weights wl and on the inverse covariance matrix Σ. In the Gaus-
sian distributed case with a fixed covariance matrix, we can see that the minimization
of Lwsv(X,Z) is equivalent to minimizing (xi−

∑
l wlµl(zi))

tΣ(xi−
∑

l wlµl(zi)) which
is a simple linear regression with parameters w.

Our combination procedure can be seen as a generalization of the Linear Regres-
sion Analysis of Schindler et al [106] where no assumption is made on the linearity
of the leakage model. Arbitrary complex classifiers can be used to draw relations
between signals and labels and the relevance of such relation can be evaluated by
minimizing the cross-entropy criterion, i.e. classifiers with the highest weights are
the most relevant. To obtain the overall estimation, log probabilities are linearly
summed according to a simple Bayes rule, in case classifiers output scores, a logistic
regression layer [49] can be added and trained to get probabilities.

As remarked Zhou in [125, Chap 4.3.5.2] the global score obtained after minimiza-
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tion can be worse than considering the best classifier in the model. This procedure
is interesting when no knowledge about the leakage model is available and can be
iteratively improved by removing bad classifiers, i.e. when their weights are too low.

In practice, classifiers are individually trained on their associated labeling Cl and
their predictions are combined after minimizing (4.46) with the weight vector w. To
automatize this process and to ensure reproducibility of the experiments, a specific
library featuring automatic labelling and in parallel training of classifiers has been
implemented in Julia.

4.4.4 Experiments

In this section, we integrate the two previous methods presented Sections 4.4.1
and 4.4.3 to perform attacks on desynchronized signals from the JIT and ASCAD

datasets presented in Sec. 4.1.1. Attack results are compared with other types of
preprocessing: raw temporal signals and STFT of signals. We also study the effect
of optimizing the weights of the combination procedure (4.46) on attack results.

4.4.4.1 Overall model

We propose the method displayed on Figure 4.21. First, signals are preprocessed
with the scattering transform (WST), then a PCA is applied to reduce the dimension
and finally QDA classifiers trained on predefined labelings Cl outputs predictions
which are merged with a Weighted Soft Voting (WSV) (4.46).

The set of classifiers is trained on canonical partitions, i.e. identity on z, Ham-
ming weight and bit values:

{Id : z → z, HW : z → HW(z), Biti : z → (z � i) & 1 ∀i ∈ {0, 1, . . . , 7}}

where� is the shift right operation for bit-vectors and & the bitwise AND operation.

4.4.4.2 Choosing the Parameters

Hyperparameters for the preprocessing with scattering transforms and STFT are
chosen accordingly to the dataset and attack results.

For ASCAD, we used 54, 000 signals for the training set and 6, 000 signals for
the attack set. For the scattering transform, signals are first upsampled to 1, 024

points, we fixed Q=1 since a fine resolution between high frequency bands is not
required. We obtained good results with time scales J=3 and J=7, and limited the
scattering transform to one layer m=1. For STFT preprocessing, signals are also
upsampled to 1, 024. The best result in terms of guessing entropy is obtained with a
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Figure 4.21: Illustration of the global method in black with the Wavelet Scattering
Transform (WST) and the Weighted Soft Voting (WSV) from Sections 4.19 and
4.4.3. We also depicted in green a standard Template Attack (QDA) with PCA.
We replace the WST with the modulus of a Short-Time Fourier Transform when

comparing with STFT preprocessing.

sliding window of 128 points which corresponds to a time scale of 88 in the original
signals, the overlap was set to 64.

For JIT, we considered a restrained dataset of 75, 000 signals since STFT and
raw representation had too many features to fit the whole dataset in memory and
to perform the PCA based dimension reduction. We managed to fit signals pre-
processed with WST in memory when considering the whole training set of size
150, 000. For WST, we expected the JIT dataset to have a strong jitter so we set
the following parameters J=10, Q=8, m=2 which gave preprocessed signals of size
2, 992. For STFT, we used a sliding window of size 1, 024 with an overlap of 512
which gave STFT of 7, 680 features.

For each dataset we limited the PCA to 50 components which corresponds to
the number of components used for SoA template attack combined with a PCA on
aligned temporal signals. When minimizing the loss function (4.46), we stopped the
gradient descent after 200 iterations.

4.4.5 Results

In order to evaluate our model, we performed our attack on three folds. For each
fold an intermediate guessing entropy (GE) measure [83] is calculated by averaging
100 rank curves obtained by shuffling the order of signals in equation (3.8). The
final guessing entropy is obtained by averaging the guessing entropy of the three
folds.

In the following we use the following notations: SV and WSV (4.46) when re-
spectively a soft voting and weighted soft voting is applied with all the classifiers,
SumBits a soft voting with the classifiers on bits, Z when considering only the
classification on the byte and HW with the hamming weight. ”Temp”,”Spec” and
”Scat” respectively denote the raw temporal representation, the STFT preprocess-

106



ing and the Wavelet Scattering Transform. Attack results on SumBits, Z, HW and
SV are used to characterize the performance of each preprocessing. The rank gap
between SV and WSV indicates the efficiency of the combination procedure (4.46)
for merging prediction of differently performing classifiers. We displayed on Table
4.1, the weights obtained after optimizing the WSV and the number of attack sig-
nals required to have a guessing entropy of 40 (NGE40) when considering classifier
individually (Z and HW), with SumBits, SV and WSV.

Results for ASCAD are displayed Figure 4.22 and on Table 4.1. When no desyn-
chronization is present, preprocessing with a small time scale of analysis performs
the best: attack results on SumBits are almost identical when considering WST
with J=3, spectrograms and raw temporal signals; the same WST performs slightly
better for Z and SV. Intriguingly the effect of desynchronization on attack results in
ASCAD100 strongly varies with labelings. The large scale WST with J=7 performs
the best on Z and SV and shows its robustness to desynchronization; the attack on
SumBits is better with spectograms and might be due to the overlap between frames
of analysis. The combination procedure resulted differently: it decreased the rank
of SV of 2, 000 with spectograms preprocessing and of only 5 with WST. Globally,
as expected the WSV is better than SV and makes all models converge to rank 1

except for temporal attacks on ASCAD100.
In presence of a strong jitter and deformations in JIT, spectrogram and temporal

attacks fail for any classifier while preprocessing with WST provides better attack
results and becomes possible on SumBits (see Figure 4.23 and Table 4.1). On JIT,
the WSV performed well and decreased the rank of SV for WST of approximately
1, 600.

The weights of the WSV seem to be correlated with the guessing entropy of
classifiers, e.g. when considering temporal attacks we see that weights on bits are
higher than weights on H or Z. On ASCAD, the weights for the WST seem to be
more distributed among classifiers and could explain why the weighted soft voting
did not converged as well as for STFT preprocessing where the classifier over Z
was heavily penalized. In other words, the iterative optimization of WSV seems
to be facilitated with classifiers of unbalanced performance. We also notice the
fact that bits are leaking dissymmetrically as proposed by Suzuki et al. in [114],
e.g. on ASCAD the classifier on bit0 has a higher weight than the average on bits
(SumBits), while on JIT the weight on bit7 is higher when considering successful
models (Scattering with JIT 75k and 150k).

From our results on these datasets and given QDAs as classification models, Z
and HW leakage models are globally disadvantaged when looking at the guessing
entropy and the weights associated. The WSV has approximated a leakage model
that relies more on individual bits. The difference of performance between Sumbits,
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Dataset Preprocessing Z H Bit0 Bit4 Bit7 SumBits SV WSV

ASCAD100

Temp w <0.01 <0.01 0.29 0.18 0.19 0.19
NGE40 ∞ ∞ - - - 485 ∞ 1465

Spec w 0.02 0.22 0.39 0.31 0.32 0.31
NGE40 3527 3392 - - - 57 2126 242

Scat w 0.29 0.15 0.32 0.23 0.21 0.20
NGE40 676 675 - - - 70 428 423

JIT 75k

Temp w <0.01 0.15 0.34 0.43 0.34 0.39
NGE40 ∞ ∞ - - - ∞ ∞ ∞

Spec w 0.08 0.17 0.20 0.27 0.25 0.24
NGE40 ∞ ∞ - - - ∞ ∞ ∞

Scat w 0.19 0.18 0.42 0.48 0.48 0.47
NGE40 9371 8851 - - - 1561 6102 4513

JIT 150k Scat w 0.11 0.12 0.41 0.41 0.48 0.45
NGE40 7837 8023 - - - 884 3770 2149

Table 4.1: For each preprocessing (Temp for raw temporal signal, Spec for STFT
and Scat for WST): the required number of signals to get a guessing entropy of 40
(NGE40) when considering individual classifiers with labeling over Z and H, with a
soft voting over bits noted SumBits, with the overall Soft Voting SV and finally
with the Weighted Soft Voting. We also indicated the weights of the classifiers

obtained after optimizing the WSV for classifiers over Z, H, some individual bits
and their average for SumBits. For ASCAD100: we displayed the results obtained
with a WST with J=7 and Q=1. For JIT: results with training on 75, 000 and

150, 000 signals.

Z and HW is also explained by the number of samples required to estimate the
parameters of QDAs, which makes attacks on individual bits more stable since less
parameters are required. Thus a trade-off has to be made on the number of com-
ponents for the PCA: while a high number of components increases the number
of parameters to estimate, the attack results can be improved by selecting more
eigenvectors with lower eigenvalues and better discriminating power.
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Figure 4.22: Guessing entropy as a function of the number of attack signals on
ASCAD with classifiers trained on Sumbits, Z, SV and WSV, after different

preprocessings (Temp for raw temporal signal, Spec for STFT and Scat for WST)
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Figure 4.23: Guessing entropy as a function of the number of attack signals on JIT
with classifiers for Z, SumBits, with naive combination of prediction (SV) and

with WSV. Nt is the number of signals used for training.
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Figure 4.24: Leakage visualization on Jit. On top the second level of the WST.
Below the first level of the WST. We selected the top 10 frequency bands (and
frequency paths for the second level) that contains the highest values of SNR.

Amplitudes are scaled between 0 and 1.

4.4.5.1 Visualizing leakages

We previously showed results in terms of guessing entropy. We propose here an easy
computation of a SNR score on the preprocessed signals by taking into account the
covariances and means estimated during training. For each classifier l we compute a
SNR score in the subspace induced by the PCA with a projection P ∈ Rd×p, where
p is the number of components chosen for the PCA and d is the original dimension.3

Each QDA classifier is defined by means µl,i ∈ Rp and covariances matrices Σl,i ∈
Rp×p for each label values cl,i, ∀i. We note SNRs

l ∈ Rp and SNRo
l ∈ Rd respectively

the SNR in the subspace and in the original space before the PCA, we have:

SNRs
l [r] =

Vari
[
µl,i[r]

]
Ei
[
Diag(Σl,i)[r]

] , r = 1, . . . , p

SNRo
l = (P SNRs

l ).ˆ2 (4.50)

Where .ˆ defines the entry-wise power. This score (4.50) gives some indication on the
temporal and frequency aspects of the leakage. We computed some visualizations of
this score for attacks on JIT respectively in Figure 4.24. Remark that these analyzes
can be perturbed by the subspace induced by the PCA’s eigenvectors. When the
SNR is high we suppose that it gives some indication about how signals are leaking
information. For SumBits we summed the SNR scores.

3After preprocessing, wavelet scattering transform and spectrogram representations are vector-
ized before the PCA.
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On Fig. 4.24, the SNR visualization with the scattering transform positions the
leakage around time index 2,000 when considering SumBits and Z. The two-level
scattering transform has proven useful, the SNR score indicates for bits that the
frequency band 1.0e-01 is leaking. For Z the 1.1e0-1 frequency path gives clues
about a leakage around time index 8,000, which is also shown but more discreetly
at the first level for z or for both level with SumBits.

4.4.6 Conclusion

Independently of choosing a classification model, we proposed two ways of inject-
ing prior information in preprocessing and classification in order to increase the
performance of Side-Channel attacks.

In this section, we adressed the problem of desynchronization and deformation
encountered in side-channel analysis by using the scattering transform as a prepro-
cessing step. In contrast with other time-frequency representations, such as STFT
and Wavelet Transforms, the scattering transform provides robust representations
that prooves useful against jitter protected signals.

Secondly, based on the fact that in general the leakage model is an unknown
function of the sensitive variable, we proposed an approximation method by con-
sidering various labelings of the sensitive variable. For that, we train classifiers on
different partitions of the sensitive variable‘s values and combine their predictions.
Our combination method involves finding a weight vector which assesses the contri-
bution of each classifier in the global prediction. To this end, the weights are found
by iteratively minimizing a cross-entropy criterion.

These two propositions have been evaluated by integrating them in a new attack
method, which successfully increased the performance of Template Attacks on ar-
tificially desynchronized signals and signals from a jitter-protected implementation.
The wavelet scattering transform improves the performance of Template Attacks
when jitter effects and distortion are present in signals. Although, we restricted
ourself to Template Attacks as classification models, this preprocessing could be
particularly interesting when followed by more complex classifiers, e.g. a convolu-
tional neural network. We argue that it could reduce the amount of data required
to normally make any classifier robust under small translation and deformations.
The experimental results showed that the combination procedure makes attacks
successful as long as some classifiers manage to get information from partitions of
the sensitive variable. While specifying a fixed leakage model constraints the classi-
fier to a given goal, the proposed combination procedure allows an evaluator to test
various leakage models and quickly evaluate which ones he should focus on.
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Chapter 5

Generative model for
Side-Channel Analysis

In order to tackle jitter countermeasures in side-channels, we derived in the pre-
vious chapter a technique to realign signals with patterns extracted from wavelet
representations in Sec. 4.2.4 and a preprocessing to compensate desynchronisation
in side-channel signals in Sec. 4.4.

In this section, we adopt a different point of view, we will propose a generative
model for side-channel signals in order to model the algorithm, the jitter counter-
measure and the generation of patterns. We will present a method to simulate
side-channel signals and preliminary results of a method to efficiently recover the
time of occurrence of operations. We will see that the use of wavelet frames presents
interesting capabilities to generate patterns and to initialize parameters for the es-
timation of the times of occurrence.
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Figure 5.1: Evolution of the energy consumption integrated over time for 20
side-channel signals with jitter countermeasure. The jitter countermeasure appears
around time 0.2 for the AES encryption algorithm. In bold, the average integrated
energy consumption. We clearly see the effect of the jitter countermeasure as the

trajectories evolve: the time between ”jumps” of energy is clearly random. We
denoised the original signals with a wavelet transform to highlight the jumps of

energy.

5.1 Motivation

The patterns present in side-channel signals are related to physical processes on
the chip that are paced by the clock. Each switch of the clock triggers a flux of
electrons on the chip that induces a relatively high amount of energy consumed over
a short period of time and creates a pattern in the signal. To illustrate this, we show
Fig. 5.1 the evolution of the energy integrated over time for jitter protected signals
in the JIT dataset. We remark that the trajectories evolve randomly and almost
step by step. If the increase of energy was instantaneous and constant each time
an operation is executed, the trajectories would look like those of point processes
in the field of stochastic processes. Point process models are used to model random
time arrivals in queues, and has been employed to estimate heart rate variability in
electrocardiogram signals in [11].

In this chapter, we take inspiration from the field of stochastic processes and
in particular of point processes to model the jitter. The use of a model for the
jitter to locate more efficiently the patterns in side-channel signals has yet not been
proposed in the literature, we think that it may be a good direction to improve
side-channel attacks, as it allow the evaluator to incorporate information about the
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Figure 5.2: A filter-based model for side-channel analysis. We assume that a
sequence of machine states {oi} and of time points {ti} forming an impulse train

are chosen randomly. At each impulse passing through the system yo, a filter yoi is
chosen according to the first value oi in the ordered sequence {oi}i representing the

successive operations that occur on the device.

jitter. Furthermore it could allow an analytical study of the entropy of the jitter on
the security of the device.

5.1.1 Filter model for SCA

We introduce here the general model before going into some details. We assume
that a side-channel signal s observed over a time range [0, T0] satisfy:

s(t) =
∑
i≥1

yoi(t− ti) + e(t) , ∀t ∈ [0, T0] (5.1)

where {oi}i is an ordered sequence of operations, {ti}i the times of occurrence, {yoi}i
the patterns produced by each operations seen here as functions of the time, and e

a statistical noise.
We present a filter-based model in Fig. 5.2. The jitter is represented by a shot

noise, a Dirac impulse train, entering a filter that changes at each operation. Each
time a Dirac impulse enters the system, the filter outputs an impulse response
corresponding to the first operation in the remaining ordered list of operations,
called the stack. The jitter is represented by the random delay between each Dirac
impulse in the shot noise. If the delay is constant, no jitter is present.

In this model, the times of occurrence and the machine events play the role of
hidden variables that control the dynamic of the signal. In the following, we will
specify a model for the operations and the jitter. For the generation of patterns, we
will extend the model based on wavelet frames of Sec. 4.3.
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5.2 A model for the algorithm

An operation designates either a legitimate operation from the developer or a fake
one randomly injected by a countermeasure installed by the fabricator of the hard-
ware. The execution of an operation can be thought as a state in which the machine
enters. The state of the machine is characterized by the type of operations and by
the values of the variables being manipulated.

We assume a finite amount of possible machine operations, say No ∈ N, such
that |O| = No with O the space of operations. The operation at step t is noted ot.
We assume that random machine events O have a simple categorical distribution:

O ∼ Cat(α) with α ∈ R+No ,

No∑
i=1

αi = 1 , p(O = i) = αi (5.2)

The global dynamic of a side-channel signal is characterized by the transitions
between different operations. One approach is to model the transitions with Markov
Chains [63, 41, 40], thus if we note M ∈ RNo×No the transition matrix of an algo-
rithm, Mi,j contains the probability to go from ot−1 = i to ot = j. To form ordered
sequences, we introduce the space of k finite length sequence

Ak = {a = (o1, . . . , ok)|oi ∈ O}

. With this model, the probability of the k-length sequence a ∈ Ak is:

pA(A = a) = p(o1)
k∏
i=2

p(oi|oi−1) = α1

∏
i=2

Mi,i−1 (5.3)

A natural extension of the Markov Chain model is to directly consider the prob-
abilistic graph of the cryptographic algorithm, this approach is presented in [117,
70].

While this model allows to take into account the type of operations executed at
each cycle of the clock, the jitter model introduced in the next section models the
delay between each operations.

5.3 Jitter model

We now present a model for the jitter encountered in side-channel signals. We distin-
guish continuous and discrete models. Continuous models can be used to represent
jitter countermeasures with unstable clock, while discrete models will represent soft-
ware based jitter countermeasures with the introduction of dummy (nop) operations
with a fixed delay. Here we will focus on the continuous models, and we will consider
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the jitter independent of the sequence of operations.

5.3.1 Jitter as a Poisson point process model

We start by a simple model with exponential delay. This model introduces some
quantities that will be used in a subsequent model. With τi = ti − ti−1 the delay
between operations oi and oi−1, and ∆Ti its random variable, the model is given by:

λ > 0, ∀i ∈ N,∆Ti ∼ Exp(λ), (5.4)

i.e. p∆Ti(∆Ti = τ) = 1τ>0λe
−λτ

With t0 = 0 and Ti the random times of occurrence such that

Ti =
i∑

j=1

∆Tj

and we note:

pTi|Ti−1
(Ti = ti|Ti−1 = ti−1) = p∆Ti(∆Ti = ti − ti−1) (5.5)

In practice, we will observe signals over a bounded region of time. We are then
interested in the random event exactly k operations occurred before t noted Nt = k.
Thus, we introduce the space T k

t of times of occurrence

T k
t =

{
(t1, . . . , tk+1) ∈ Rk+1

∣∣ 0 < t1 < · · · < tk ≤ t < tk+1

}
(5.6)

which can equivalently be written

T k
t =

{
(τ1, . . . , τk+1) ∈ Rk+1

∣∣∣∣∣
k∑
i=1

τi < t, τk+1 > t−
k∑
i=1

τi

}
. (5.7)

The probability of Nt = k is given by

p(Nt = k) = p(tk ≤ t, tk+1 > t) (5.8)

=

∫
T kt

k+1∏
i=1

p(ti|ti−1)dt1 ...dtk+1 (5.9)

=
1

k!
(λt)ke−λt (5.10)

The last identity can be found in various textbooks on Poisson processes [97, 34]
or by direct calculation using the convolution property for sums of independent
variables, i.e. p(

∑k
i=1∆Ti = t) = (~k

i=1 p∆Ti)(t).
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Additionally, the probability of the event at least k operations occurred before t
noted Nt ≥ k is

p(Nt ≥ k) =
1

(k − 1)!
γ(k, λt) , (5.11)

where γ(a, t) =
∫ t
0
ua−1e−udu, a > 0 is the lower incomplete gamma function. It will

be useful in the next model. We give further details in Appendix. A.2.

Under this model, the average number of operations before a time t is:

E [Nt] = tλ . (5.12)

The model presented here however does not characterise well a clock jitter as
the probability that two operations get arbitrary close in time is non-negligible. As
these events are very unlikely to happen in reality, we consider a natural extension
of this model in the following.

5.3.2 Gamma point process model

The previous model can be extended to construct the Gamma point process model.
We will say that a Gamma step occurs if k Poisson steps has occurred. Thus, a
Gamma distributed delay ∆Ti, with parameters k ∈ N, λ ∈ R+

∗ follows [98, Chap.5̃,
p.174]:

p(∆Ti = τ) = 1τ>0
λ

(k − 1)!
(λτ)k−1e−λτ . (5.13)

With k integer, we interpret τ as the time it took for k elementary Poisson steps to
occur between two Gamma steps.

Let Nt ≥ n the event at least n operations occurred before t, its probability is
given by:

p(Nt ≥ n) = p(Np
t ≥ nk) (5.14)

=
1

(nk − 1)!
γ(nk, λt) (5.15)

where Np
t ≥ nk is the event at least nk Poisson steps occurred before t given by

(5.11). In other words, nk elementary Poisson steps are needed before t to account
for n Gamma steps.

We can now derive the probability for the event exactly n operations before t, we
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have:

p(Nt = n) = p(Nt ≥ n)− p(Nt ≥ n+ 1) (5.16)

= p(Np
t ≥ nk)− p(Np

t ≥ (n+ 1)k) (5.17)

=

(n+1)k−1∑
m=nk

p(Np
t = m) (5.18)

=

(n+1)k−1∑
m=nk

1

m!
(λt)me−λt (5.19)

where Np
t is the Poisson event, with the use of (5.10) in (5.18).

To compute p(Nt = n) in practice we will use the implementation of some
mathematical libraries of the lower incomplete gamma function as with (5.15) we
can write p(Nt = n) as:

p(Nt = n) =
1

(nk − 1)!
γ(nk, λt)− 1

((n+ 1)k − 1)!
γ((n+ 1)k, λt) . (5.20)

We do not formally derive here the average number of Gamma steps, but since
a Gamma step corresponds to the realisation of k Poisson steps, we evaluate the
average number of Gamma events before t to be λt/k.

For simplicity here, we presented the probability of Nt ≥ n and Nt = n with k

integer, but by continuity of γ(nk, λt) the model can be used with k ∈ R+
∗ .

We present on Fig. 5.3 some simulations with this model. We also verify on
Fig. 5.3c that the probability of Nt = n in (5.19) is correct. In particular, we
remark similarities between the integrated energy of signals from Fig. 5.1 and the
evolution of point processes of Fig. 5.3.

In the following we will use the Gamma point process to represent continuous
jitter countermeasures.
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(a) Probability distribution of a Gamma distributed delay.

(b) Trajectories of Gamma point processes.

(c) Probability of exactly k operations before T=100.

Figure 5.3: Jitter countermeasure as a Gamma point process. We compare two
Gamma point processes with parameters k = 2, λ = 1/2 and k = 3, λ = 1/3.
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5.4 Gaussian Mixture Model for patterns with GMW
factorized covariances

We employ in this section the model presented in Sec. 4.3 to generate patterns with
a frame of wavelets. It allows the generation of smooth signals and the inclusion of
prior information on the time-frequency properties of patterns.

We will extend this model by assuming a Gaussian Mixture Model (GMM) on
the synthesis coefficients of the patterns. With the GMM, the synthesis coefficients
will be conditioned on the operations. It permits the generation of specific patterns
given the value of some operations.

For simplicity here, we will work with continuous signals and consider the gen-
eration of patterns in L2(R). Let ΨΞ the frame operator (Sec. 1.3.3) with a basis
of real Generalized Morse Wavelets (GMW) {ψξ}ξ∈Ξ with a finite size index set
|Ξ| = m. To generate patterns in L2(R), we will use the GMW in the real domain,
i.e. we take the real part of the complex GMW with parameters ξ.

Let o ∈ O an operation, noting its synthesis coefficients xo ∈ Rm, its pattern
yo ∈ L2(R) is generated using the frame Ψ∗

Ξ by:

yo = Ψ∗
Ξxo , (5.21)

with Ψ∗
Ξ the adjoint of ΨΞ.

At t ∈ R, we can express the pattern in function of each wavelet ψξ, ξ ∈ Ξ of the
frame, we have:

yo(t) =
∑
ξ∈Ξ

ψξ(t)xo[ξ] , (5.22)

where xo[ξ] ∈ R is the synthesis wavelet coefficient for the wavelet ψξ and for the
machine event o.

To introduce the influence of the operations on the synthesis coefficients, we note
X the random variable for the synthesis coefficients, and assume that it follows a
Gaussian Mixture Model (Sec. 2.5):

pX(X = x) =
∑
o∈O

p(o)N (x|µo,Σo) . (5.23)

Each operation o ∈ O is associated to a mean µo ∈ Rm and a covariance Σo ∈ Rm×m.

We can now deduce the probability distribution of the random pattern Y (t) at
t ∈ R. Since ΨΞ is a linear operator, Y (t) also follows a Gaussian Mixture model:

pY (t)(Y (t) = y(t)) =
∑
o∈O

p(o)N (y(t)|(Ψ∗
Ξµo)(t), (Ψ

∗
ΞΣoΨΞ)(t, t)) , (5.24)
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with respectively mean and variance given by

µy,o(t) = (Ψ∗
Ξµo)(t) =

∑
ξ∈Ξ

µo[ξ]ψξ(t) (5.25)

Σy,o(t, t
′) = (Ψ∗

ΞΣoΨΞ)(t, t
′) =

∑
ξ1∈Ξ

∑
ξ2∈Ξ

Σo[ξ1, ξ2]ψξ1(t)ψξ2(t
′) , (5.26)

where Σo[ξ1, ξ2] ∈ R is the covariance coefficient between wavelets ψξ1 and ψξ2 .
Finally, we recall that with the GMMs on Y and X, and given the value of an

operation o, the probability distribution of the synthesis coefficients follows

p(X = x|O = o) = N (x|µo,Σo) , (5.27)

and the probability distribution of the pattern at t ∈ R is

p(Y (t) = y(t)|O = o) = N (y(t)|(Ψ∗
Ξµo)(t), (Ψ

∗
ΞΣoΨΞ)(t, t)) . (5.28)

We presented the probability distribution of Y (t) for a single value of time t.
However, in practice, as our patterns are structured in the time domain, we will get
a more meaningful estimation of the probability of an observed pattern if we sample
it n times, e.g. at time indices u1, . . . , un, thus forming a vector of sampled values
[Y (u1), . . . , Y (un)].

The probability distribution of Y (t) can naturally be extended to a vector of
random values Y (u1, . . . , un) = [Y (u1), . . . , Y (un)]

T ∈ Rn. Given an operation o ∈
O, the random vector Y (u1, . . . , un) follows a multivariate Gaussian distribution
with mean and covariance given by

µu1:uny,o = [µy,o(u1), . . . , µy,o(un)]
T ∈ Rn (5.29)

Σu1:un
y,o =


Σy,o(u1, u1) · · · Σy,o(u1, un)

... . . . ...
Σy,o(un, u1) · · · Σy,o(un, un)

 ∈ Rn×n (5.30)

We have now all the elements to build our generative model for side-channel
signals. But before, we present next an algorithm to simulate signals.
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5.5 Simulation of side-channel signals

With the model of the algorithm, of the jitter and of the patterns presented in
previous sections, we propose the simulation algorithm in Algorithm 2 to generate
artificial signals.

Its functioning is as follow: at t0 = 0 an initial dummy operation o0 is randomly
drawn for which no pattern is generated, it serves as a starting operation for the
Markov Chain; at iteration i it samples the current operation oi given oi−1 and the
delay of the next clock cycle τi+1. A writing buffer of size [0, . . . , T0] is updated
with a pattern positioned at ti and associated with the current operation oi. The
simulation stops and no pattern is generated when the next clock cycle is out of the
region of simulation, i.e. when ti > T0.

The simulation is parametrized by a set of parameters. We explain below their
use and how we initialize them:

• The transition matrix M ∈ RNo×No and the vector α ∈ RNo are used to
characterize the transitions between operations in the model of Sec. 5.2. We
choose them using

α ∼ Dir(r0), M [o] ∼ Dir(r0), o ∈ O, r0 ∈ R+No ,

with Dir the Dirichlet distribution (Sec. 2.4) and where we noted M [o] the
row of probability for the operation o.

• The parameters k, λ ∈ R+
∗ of the Gamma distributed delay of Sec. 5.3.2 are

chosen explicitly to study the influence of the jitter.

• The means and covariances µo,Σo, o ∈ O for the GMM on the synthesis coef-
ficients are randomly chosen for each operations o ∈ O using

Σo ∼ W(m,A), A ∈ Rm×m pos. def.

µo ∼ N (0, εΣ−1
o ) ε ∈ R+

with A positive definite and where W is the Wishart distribution (Sec. 2.4)
for sampling covariance matrices and m the number of wavelets. We choose
the identity for A and epsilon low typically 0.01. It is a common practice
to use these distributions to sample the parameters of a Gaussian distribu-
tion. The combination of these prior distributions forms the Normal-Wishart
distribution.

• And finally, the frame of Generalized Morse Wavelets ΨΞ ∈ Rn×m with ξ =

(a, u, β, γ) ∈ Ξ are initialized by fixing β, γ and by sampling translation and
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scaling parameters with:

a ∼ G(αa, ka), u ∼ N (µu, σu) ,

with αa, ka, µu, σu appropriately chosen in R+. Additionally, some (a, u) pa-
rameters can be rejected if they do not respect some predefined criteria or if
they do not led to well defined wavelets. As an example, since our wavelets
are normalized to 1 we can check their norm and reject bad (a, u) samples if
the norm of ψa,u,β,γ is not equal to 1. We choose a Gamma distribution (see
Sec. 2.4) to sample the scaling because it is distributed on R+ and that we can
modify its mean and variance easily with αa, ka. For the translation parame-
ter, we simply choose a Normal distribution centered in the time region of the
pattern, and with a low variance to reduce the chance of sampling translation
parameters that will position the wavelets on the border of the time region.

Algorithm 2: Algorithm for the generation of side-channel signals
Input: ΨΞ,{µi}i,{Σi}i,Σe,α,M ,k,λ
Y ← [0 . . . 0] //Size T0;
S ← [0 . . . 0] //Size T0;
t0 ← 0;
o0 ∼ Cat(α);
while True do

τ ∼ G(k, λ);
ti ← τ + ti−1;
if ti > T0 then

break;
end
oi ∼ Cat(M [oi−1]);
xi ∼ N (µoi ,Σoi);
Y ← Ψ†

Ξxi;
Y ← shift(Y, ti);
S ← S + Y ;

end
E ∼ N (0,Σe);
S ← S + E;
return S,{ti}i,{oi}i;

This procedure may be used to simulate side-channel signals and test beforehand
the ability of some side-channel methods in the recovery of the states of a Markov
Chain. We can think of the states as the value of a sequence of algorithmic opera-
tions. The goal of a side-channel attack in this context will be to recover all or part
of the states of the Markov Chain to get information on some sensitive variables.
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By varying the variance of the Gamma delay or the noise we may test the limit of
some side-channel methods against jitter countermeasures.

The use of wavelet frames in this context allows the generation of ”smooth”
signals and with particular time-frequency properties that can be chosen via the
parameters of the frame of Generalized Morse Wavelets. Here, we presented a ran-
dom initialisation of the translation and scaling parameters of the frame, but β, γ
parameters could also be randomly initialized.

We present on Fig. 5.4 some examples of artificial side-channel signals. The
range of simulation is fixed to T0 = 215 and the hyper-parameters for initialising
the parameters of the model are r0 = [1, . . . , 1], A = I, ε = 0.01, αa = 2.5, ka =

1.6, µu = 210, σu = 25. The patterns yo are generated with size 2048. By modifying
the variance of the Gamma point process through the hyper-parameters (k, λ), we
modify the influence of the jitter. In these simulations, the average delay is constant
equal to 210 and we modify the variance by a factor 210.
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(a) Two examples of generated patterns without noise.

(b) Two generated side-channel signals with high jitter. The variance of the random
delay is k/λ2 = 220.

(c) Two generated side-channel signals with low jitter. The variance of the random delay
is k/λ2 = 210.

Figure 5.4: Simulation of side-channel signals.
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5.6 Learning the parameters of the generative
model

With the prior models introduced in previous sections on the times of occurrence
{ti}i, on the algorithm operations {oi} and on the patterns, we can now construct
the full generative model on the signals. The full model will be parametrized by
a frame of wavelets Ξ, the means and covariances of the GMM on the synthesis
coefficients {µo,Σo}o∈O, the parameters of the Gamma point process model for the
jitter k, λ, and finally the transition matrix and the prior distribution M,α of the
Markov Chain model for characterizing sequences of operations .

Given a dataset of signals {si}i, the goal is to fit the model to the data and
learn the parameters Ξ, {µo,Σo}o, k, λ, α and M . The fitness of the model will be
measured during testing by its ability to recover the true times of occurrence {ti}i
and operations {oi}i.

We assume that the parameters of the jitter k and λ are fixed a priori as we do not
know yet how to learn those parameters. For the remaining ones, i.e. Ξ, {µo,Σo}o, α
and M , we propose to modify a Hidden Markov Model [121] learning algorithm
based on the Expectation Maximization algorithm of Sec. 2.6 that would take into
account the gradient descent method for learning a frame proposed in Sec. 4.3.

To be able to recover the times of occurrence {ti}i and operations {oi}i, we
need first to have a look at the prior distribution p(t1:l+1, o1:l) and the likelihood
p(s(t)|t1:l+1, o1:l) to see if they are readily usable.

We will suppose that the number of operations occuring on [0, T0] is known
equal to l ∈ N. The joint prior distribution of the algorithm and the jitter models
is p(t1:l+1, o1:l), and by assuming that the jitter is independent of the algorithm, it
can be expressed:

p(t1:l+1, o1:l) = p(o1)p(t1)
l∏

i=2

p(oi|oi−1)p(ti|ti−1)p(tk+1|tk) , (5.31)

while the likelihood of s(t), with (5.1) is expressed:

p(s(t)|o1:l, t1:l+1) = p(
l∑

i=1

yoi(t− ti) + e(t)|o1:l, t1:l+1) (5.32)

=
(
pY (t−t1)|o1 ~ · · ·~ pY (t−tl)|ol ~ pE(t)

)
(s(t)) (5.33)

with pY (t−ti) given by (5.24) and pE(t) the probability of the additive noise E at time
t ∈ R.

We notice that all patterns involved follow Gaussian distributions, by assum-
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ing that the noise E(t) is also Gaussian, we get that S(t) is also Gaussian as the
convolution of Gaussian distributions stay Gaussian. Given {oi, ti}i, its mean and
covariance are given by:

µs(t) =
l∑

i=1

(Ψ∗µoi)(t− ti) (5.34)

Σs(t, t) =
l∑

i=1

(Ψ∗ΣoiΨ)(t− ti, t− ti) + C(t, t) (5.35)

with C(t, t) the covariance of the noise e. For the case l = 0, i.e. when no operation
occurs before T0, we have s(t) = e(t). We also remark that the likelihood does
not depend on the last time of occurrence tl+1 occuring after T0, thus we have
p(s(t)|o1:l, t1:l+1) = p(s(t)|o1:l, t1:l).

Now, we consider that to be able to properly estimate the operations o1:l, we
first need to estimate the most likely times of occurrence t1:l given a signal s. We
are then interested in the posterior p(t1:l+1|s(t)) given by:

p(t1:l+1|s(t)) =
p(s(t)|t1:l)p(t1:l+1)∫

T lT0
p(s(t), t1:l+1)dt1 . . . dtl+1

(5.36)

but we remark that both the numerator and denominator are intractable. Thus,
we need to come up with a sampling strategy to get estimation of the times of
occurrence t1:l. This will be the goal of Sec. 5.7.

But before, we resume next the learning strategy for estimating the parameters
Ξ, {µo,Σo}o, α and M of the model.

5.6.1 Learning strategy

Assuming for simplicity here that the number of operations is fixed, we consider the
following strategy to learn the model given a dataset of signals {si}i acquired over
a range [0, T0].

1. Initialize the parameters of the generative model using the same initialisation
procedure as in Sec. 5.5, i.e. Ξ, {µo,Σo}o, α,M . The parameters of the jitter
are assumed known k, λ.

2. For each signal si, get samples of the times of occurrence (t1, . . . , tl) and extract
a sequence of patterns (yi1, . . . , y

i
l).

3. Given {(yi1, . . . , yil)}i, update Ξ, {µo,Σo}o, α,M with a modified Hidden Markov
Model learning algorithm based on the Expectation Maximization (EM) algo-
rithm of Sec. 2.6, and with the learning method for the frame of Sec. 4.3. At it-
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eration j, The goal is to minimize the cross-entropy C(p̃Y1:lpO1:l|Y1:l,θj−1
, pY1:l,O1:l|θ),

with Y1:l the random sequence of patterns, O1:l the random sequence of op-
erations, θ the parameters of the model, i.e. Ξ, {µo,Σo}o, α,M , and θj−1 the
estimate of the parameters at previous iteration.

4. Repeat 2-3 until convergence of the loss of the EM algorithm.

5.7 Time occurrence estimation

For simplicity here, we will assume that we already know the number of operations
that occurred before T0. Given the signal s acquired over a period [0, T0], we propose
the following proposal for the posterior distribution to successively sample the times
of occurrence t1:l:

qTi|S,Ti−1
(t|s, ti−1) ∝

∑
oi

p(oi)p(Y (0) + E(t) = s(t)|oi)pTi|Ti−1
(t|ti−1) . (5.37)

with t0 = 0, the times of occurrence can be successively sampled, starting with t1,
then t2 given t1, and so on until tk.

This proposal distribution makes the underlying assumption that the patterns
are far enough such that S(t) ∼ Y (t− ti)+E(t) when t is close enough to ti. Under
this assumption, we should get a maximum with our proposal distribution when
t = ti.

We verify if the sampling strategy is viable by generating side-channel signals
with the simulation algorithm of previous section and proceed to the sampling of the
proposal (5.37) parametrized with the true parameters of the model on the patterns,
i.e. Ξ, {µy,o,Σy,o}o∈O. Then, in the blind case, we discuss on the initialisation of
those parameters for learning the model.

In practice, the probability (5.37) is at a time t with a vector of values [s(t −
u(n− 1)/2), . . . , s(t+ un/2)]T ∈ Rn, u > 0. In that case the proposal distribution is
simply extended using the ending remark of Sec. 5.4.

5.7.1 Estimation using a Metropolis Hasting algorithm with
true generation parameters

Using the Metropolis Hasting algorithm of Sec. 2.7, we get estimations of {ti}li=1 by
successively sampling (5.37) and by taking the candidate with the highest relative
probability. The estimates are noted t∗1, t

∗
2, . . . , t

∗
l . The performance of the method

is evaluated with an increasing jitter. With the Gamma point process of Sec. 5.3.2
with parameters k and λ, we fix the mean of the delay to µ0 = k/λ and increase its
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log2(σ/µ0) 2 4 8 10
|t− t∗|/µ0 1.02e-2±8.2e-3 1.32e-2±1.5e-2 6.80e-1±5.1e-1 1.53±1.5

Table 5.1: Errors in the estimation of the times of occurrence. We keep the mean
µ0 of the Gamma distributed delay constant and increase its variance σ.

variance σ = k/λ2. In our experiments, µ0 is fixed to 211 and we vary λ from 1 to
2−10. We use a Normal distribution with a variance of 500 for the sampling prior
distribution in the Metropolis Hastings algorithm. We simulate 100 signals of size
T0 = 215. With the average delay being µ0 = 211, it gives 16 patterns in average by
signal, and thus to approximately 1600 times of occurrence to estimate.

If we note t∗ the estimation of the time of occurrence t, the error is evaluated
using

|t− t∗|
µ0

, (5.38)

it measures the error of estimation in proportion to the average delay µ0.
The frequency operation of the system is 1/µ0, an error of 1 in (5.38) thus means

that we completely missed a cycle of operation.
We show results in Tab. 5.1 and on Fig. 5.6. We remark that the method is

robust up to a jitter of normalized variance σ/µ0 = 24. After this, the error quickly
diverges. This is explained by the fact that with a high jitter, two operations may
get close enough and the proposal distribution is no more valid. In that case, the
proposal should take into account colliding patterns. However, in the context of
side-channel analysis this method presents promising results as patterns should be
far enough.

We illustrate on Fig.5.5 how the Metropolis Hastings algorithm converges to
estimates of times of occurrence.

The proposal was parametrized with the true parameters used for generating
the signals. We see that the times of occurrence can be recovered using the method
proposed when the jitter is not too high. We study next in which condition this
procedure can be employed when the parameters are unknown.

5.7.2 Estimation with unknown parameters

We discuss here how to initialize the parameters of the proposal in order to get
good samples when using the learning strategy presented in previous section. The
proposal (5.37) depends on the parameters of the GMM {µy,o,Σy,o}o∈O and how
they are initialized. We show in Fig. 5.7 the evolution of

log q(t1|s)− log p(t1|t0) = log

[∑
oi

p(oi)p(Y (0) + E(t1) = s(t1)|oi)

]
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(a) Noise at −5dB .

(b) Noise at −1dB.

Figure 5.5: Sampling the times of occurrence of operations with Metropolis
Hastings.
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Figure 5.6: Evolution of the error of estimation as a function of the variance of the
jitter.

for two different initialisations of the parameters.

We can adopt a naive approach and initialize the covariances of the GMM with a
Wishart distributions or we can use the initialisation strategy of Sec. 5.5 employing
wavelet frames to factorize the covariance matrices. For both approaches, the means
are fixed to null vectors, as in practice we do not assume beforehand a specific
polarity to signals.

We remark that with the naive approach we do not detect any bumps corre-
sponding to the presence of patterns while the initialisation with wavelet frames
allows a better chance of sampling ”good” times of occurrence using the Metropolis
Hastings algorithm. It suggests first that the learning strategy may be viable if the
sampling succeeds to get correct time of occurrence values. Also, for the fitting of
this model with real side-channel signals it indicates how to initialize those param-
eters to ensure the success of the learning strategy. This approach is reserved for
further work, we aim at studying the strategy exposed here for the analysis of real
side-channel signals.

We assume that these preliminary results on artificial signals can be transposed
on real side-channel signals. The next important work is to verify in the blind case
if the learning strategy is correct on artificial signals, and then to test it with real
signals.

132



Figure 5.7: Evaluation of the log proposal for the localization of patterns. We
removed the weight of the prior distribution on τ to observe the log probability of

the GMM model. At the top a simulated signal using the method presented
Sec. 5.5. Below the log probability of the GMM using the true parameters. Third

row, the log probability with a GMM with randomly initialized covariance
matrices using Wishart distributions. At the bottom, the log probability with of a

GMM with randomly initialized covariance matrices factorized with random
frames of Generalized Morse Wavelets.

133



5.8 Conclusion

We presented a generative model for side-channel signals that includes a model of
the algorithm in the form of a Hidden Markov Model, and a model of the jitter as
a Gamma point process. For generating patterns we use the model presented in
Sec. 4.3 which employs wavelet frames to encode particular time-frequency proper-
ties, and with the synthesis coefficients modeled using a Gaussian Mixture Model.

We apply this model first for simulating side-channel signals. We are able to
simulate artificial signals with controllable properties such as; the parameters of
the Markov Chain to change the most likely sequences of operations; the jitter to
perturb the localization of information; and the time-frequency properties of the
patterns. We envisage the simulation of side-channel signals to test the limit of
state-of-the-art side-channel attacks, and anticipate new countermeasures without
requiring an actual implementation.

We presented a learning strategy for the model in which an estimation of the
times of occurrence is required. Thus, we derived a method with a Metropolis
Hastings algorithm to sample the times of occurrence of the operations (states of
the Markov Chain). Given the true parameters of the GMM, the method is efficient
to recover the times of occurrence up to a very high variance of the jitter. In the
blind case preliminary results suggest that for good parameter initialisation with
frames of wavelets the method could also be used. We plan in a further work to test
the learning strategy in the blind case with artificial signals and then implement
this strategy to fit the model to real side-channel signals. After convergence of the
model on a training set of side-channels signals, it could be used to estimate the
times of occurrence and the value of the operations.
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Conclusion

In this thesis we presented different uses of wavelet analysis for improving side-
channel attacks.

From a practical point of view first, the visualization of side-channel signals
through wavelet transforms allows a better understanding of the signal structure.
It provides a multiresolution time-frequency map that can be used to distinguish
the patterns related to the algorithmic operations. The evaluator can use these
new representations to see the signal from another perspective and identify the
different operations related to the cryptographic algorithm. In Sec. 4.2, we pre-
sented a method for allowing an evaluator to extract time-frequency patterns from
scalograms, perform a denoising, and resynthesize them into adapted filters. By
intercorrelating the signal with those patterns, the evaluator is able to recover in
the signal similar patterns in the time domain. This simple approach allows the
evaluator to perform an on-the-fly study and quickly realign signals before using
more advanced methods.

A wavelet basis is often chosen such as to grasp most of any type of signals.
Thus, a large part of the basis is generally not used. The study of methods for
the estimation of adapted frames for the analysis of signals is an ongoing topic
that is well worth investigating. We have studied this approach in the context of
side-channel analysis, and presented in Sec. 4.3 a method for estimating a frame
of Generalized Morse Wavelets adapted to a dataset of patterns. We formulated
our problem as factor analysis problem and solved it via a Maximum Likelihood
approach. By iteratively optimising the likelihood loss through gradient descent, we
are able to continuously learn an adapted frame of wavelets. We next applied this
frame as a dimension reduction technique for compressing patterns before canonical
template attacks. This work has been published in [37].

Next, we presented an attack method with a more direct approach for tackling
jitter countermeasures in signals. Instead of performing realignment, we presented
an attack method using the scattering transform [81] for mapping signals to repre-
sentations stable under small translation and deformation. This way, we may use
simple attack methods such as template attacks against jitter protected devices.
This technique has no particular cost of implementation and preserves the informa-
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tion. It can be used as a preprocessing step for any type of classification method.
In a secondary work, we also presented an ensemble method for approximating the
leakage model of a sensitive variable. Instead of considering one particular leakage
model, such as the Hamming weight of a sensitive variable, a set of classifiers are
trained in parallel with new labelings of the sensitive variable, and we proposed a
method to merge their results to produce a global a posteriori probability. This
technique allows a better understanding of what part of the sensitive variable is
leaking. The use of the scattering transform and the ensemble method has been
published in [38].

Finally, in an opening chapter we presented a novel model for side-channel sig-
nals. The main motivation behind this is to provide an end-to-end framework for
assessing the security of the device and identify the source of the leak. The model is
built around three main parts; a model of the algorithm, a model of the jitter, and
a generating model for patterns related to algorithmic operations. In particular, we
propose to model the jitter as a Gamma point process, it allows to represent a con-
tinuous random delay between operations. We reemployed the model used for the
estimation of frames of wavelets from Chap. 4. The patterns are generated through
a frame of wavelets and with synthesis coefficients following a Gaussian Mixture
Model. The overall model allows the simulation of side-channel signals that may be
used to test the limit of some side-channel attacks or to design countermeasures with-
out requiring an actual implementation. The use of wavelet frames in this context
allows the generation of patterns with specific time-frequency properties. Finally, in
a last part, we study the fitting of the model to real data. We envisage a learning
strategy based on Expectation Maximization that requires a proper estimation of
the times of occurrence beforehand. For that reason, we focused in a last part on a
sampling strategy for the recovery of the times of occurrence of the operations.

Perspectives

The proposed work on the estimation of frames of Generalized Morse Wavelets
may be improved by studying the Fisher information matrix. The study of the
sensibility of the Maximum likelihood loss according to the parameters of the frame
could provide ways to improve the gradient updates during the optimisation of the
loss. We also envisage in a further work to transpose the problem in the time
domain to take into account the non-continuity at the border of cropped patterns
in side-channel signals. The direct control we have over the parameters of the frame
allows us to easily add regularisation terms in the loss. This approach could be
studied to incorporate additional prior information on the time-frequency properties
of patterns.
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The scattering transform has been used with deep neural networks in hybrid ar-
chitectures in [95] for visual recognition task. A similar approach could be envisaged
in side-channel attacks as a preprocessing step for convolutional neural networks.
Also, an extension of the scattering transform, namely the Joint Time-Frequency
scattering transform, has been proposed in [5] for audio classification tasks, its study
could be proposed for the analysis of side-channel signals. Finally, our work on the
estimation of a frame could be coupled with the scattering transform. Indeed, since
the scattering transform is based on a fixed basis, we could use our work on Gen-
eralized Morse Wavelet frame estimation to learn an adapted frame of wavelet for
the scattering transform. This approach could be compared with traditional convo-
lutional neural network to see if it allows us to gain some performance or learning
stability.

The generative model of last chapter is still an important ongoing work. It is
at the crossroad of wavelet analysis, state-space models and stochastic processes.
Further readings on the latter field may bring us new ideas to model the jitter and
drive a better estimation method of the times of occurrence. We are aware that
other types of point process model exist in the literature on stochastic process. The
underlying methods to study point processes and their models wait to be applied in
the side-channel analysis context. As a direct improvement of the generative model,
a study of the dependence between the cryptographic algorithm and the jitter could
be carried. In practice, some jitter countermeasures only activate upon the execution
of a critical part of the algorithm. Thus, to properly understand a side-channel signal
as a whole we have to take this dependence into account. This may require to drop
the Hidden Markov Model to represent the algorithm and use its Factor Graph
representation. Also, in our work, we proposed a model for a continuous jitter. A
discrete type of jitter with a fixed delay for representing dummy operations could be
considered. Finally, we think that this model could be further improved to test the
limit of state-of-the-art side-channel methods by providing quantitative measures
of their performance against the generation parameters of the model, with the aim
that new software or hardware countermeasures may be developed to anticipate
attackers.
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A.1 ML for the estimation of Generalized Morse
Wavelets

We recall the loss and the optimisation problem of Sec. 4.3. Given a set of data
D = {y1, . . . , yL} of size L, we aim at optimising the following likelihood loss:

LMLE(µ,Ξ,Λ,Σ) = − log
L∏
i=1

p(yi|µ,Ξ,Λ,Σ) . (39)

We search for µ∗,Ξ∗,Λ∗,Σ∗ minimizing LMLE:

(µ∗,Ξ∗,Λ∗,Σ∗) = argmin
µ,Ξ,Λ,Σ

LMLE(µ,Ξ,Λ,Σ) (40)

The differential form is given by:

1

L
dLMLE = tr (h[Σy, S]dΣy)

+ 2<
(
(µ− µe)†Σy

−1dµ
)
. (41)

with

h[A,B] = A−1(A−B)A−1 , S =
1

L

L∑
j=1

(yj − µ)(yj − µ)† .

Starting from:

1

L
dLMLE = tr (h[Σy, S]dΣy)

+ (µ− µe)†Σ−1
y dµ+ (µ− µe)TΣ−1

y dµ
(42)

For µ:

∇µLMLE = (∇µLMLE) (43)

= (µ− µe)†Σ−1
y (44)
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Now developing tr (h[Σy, S]dΣy) using (4.25) with Σ = CC† and Ψ/ = C†Ψ:

tr (h[Σy, S]dΣy) = tr (h[Σy, S]dΛ) + tr
(
h[Σy, S]Ψ

†
ΞdCΨ

/
Ξ

)
+ tr

(
h[Σy, S]Ψ

/
Ξ
†dC†ΨΞ

)
+ tr

(
h[Σy, S]Ψ

/
Ξ
†C†dΨΞ

)
+ tr

(
h[Σy, S]dΨ

†
ΞCΨ

/
Ξ

) (45)

= tr (h[Σy, S]dΛ) + tr
(
(ΨΞh[Σy, S]Ψ

/
Ξ
†)†dC

)
+ tr

(
(ΨΞh[Σy, S]Ψ

/
Ξ
†)TdC

)
+ tr

(
(CΨ/

Ξh[Σy, S])
†dΨΞ

)
+ tr

(
(CΨ/

Ξh[Σy, S])
TdΨΞ

) (46)

= vec (h[Σy, S])
†vec (dΛ) + vec

(
ΨΞh[Σy, S]Ψ

/
Ξ
†
)†
vec (dC)

+ vec
(
ΨΞh[Σy, S]Ψ

/
Ξ
†
)T

vec
(
dC
)

+ vec (CΨ/
Ξh[Σy, S])

†vec (dΨΞ)

+ vec (CΨ/
Ξh[Σy, S])

Tvec
(
dΨΞ

)
(47)

We recognize:

∇ΨΞ
LMLE =(∇ΨΞ

LMLE)

=vec ((CΨ/
Ξh[Σy, S]))

† (48)

∇CLMLE =(∇CLMLE)

=vec
(
(ΨΞh[Σy, S]Ψ

/
Ξ
†)
)†

(49)

∇ΛLMLE =vec (h[Σy, S])
† (50)

The chain rules for ξ ∈ Ξ give the jacobian:

∇ξLMLE = ∇ΨΞ
LMLE∇ψ̂ξ

ΨΞ∇ξψ̂ξ

+∇ΨΞ
LMLE∇ψ̂ξ

ΨΞ∇ξψ̂ξ
(51)

= 2<
(
∇ΨΞ
LMLE∇ψ̂ξ

ΨΞ∇ξψ̂ξ

)
(52)

Where we used that ∇ΨΞ
LMLE = (∇ΨΞ

LMLE),∇ψ̂ξ
ΨΞ = ∇

ψ̂ξ
ΨΞ and ∇ξψ̂ξ = (∇ξψ̂ξ)

Recalling the expression of ψξ with ξ = (a, u, β, γ)

ψ̂a,u;β,γ =
√
acβ,γ(aw)

βe−(aw)γe−iwu . (53)

with c2β,γ = πγ 2r/Γ(r) and r = (2β + 1)/γ. The jacobian of ∇ξψ̂ξ writes

∇ξψ̂ξ =
[
∂ψ̂ξ
∂a

∂ψ̂ξ
∂u

∂ψ̂ξ
∂β

∂ψ̂ξ
∂γ

]
, (54)
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with:

∂ψ̂ξ
∂a

(w) =
γ

2

(r
2
− eγ log(aw)

)
ψ̂ξ(w) (55)

∂ψ̂ξ
∂u

(w) =iwψ̂ξ(w) (56)

∂ψ̂ξ
∂β

(w) =

(
1

γ
(log(2)− dig(r)) + log(aw)

)
ψ̂ξ(w) (57)

∂ψ̂ξ
∂γ

(w) =

(
1

2γ
(1− r(log(2)− dig(r))

− log(aw)(aw)γ
)
ψ̂ξ(w)

(58)

where dig(x) = ∂ log Γ(z)
∂z
|z=x is the digamma function.

A.2 Poisson point process

For a Poisson point process with rate λ ∈ R+, the times of occurrence ti, i ∈ N
follow the relation

ti+1 − ti = τi (59)

with τi ∼ Exp(λ)

The random variables are noted Ti for the times of occurrence and ∆Ti = Ti − Ti−1

for the delays.

Let Nt ≥ k be the event at least k instructions are executed before t, for k ≥ 1

with t0 = 0 we have:

p(NT ≥ k) = p(Tk < t) (60)

= p(
k∑
i=1

∆Ti < t) (61)

=

∫ t

0

p(
k∑
i=1

∆Ti = u)du (62)
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For p(
∑k

i=1∆Ti = t),∀t ∈ R+, we get:

p(
k∑
i=1

∆Ti = u) =

∫
∑k
i=1 ∆Ti=u

k∏
i=1

p(τi)dτ1 . . . dτk (63)

=

∫ t

τ1=0

p(τ1)

∫
∑k
i=2 ∆Ti=t−τ1

k∏
i=2

p(τi)dτ2 . . . dτk︸ ︷︷ ︸
p(
∑k
i=2 ∆Ti=t−τ1)

dτ1 (64)

=

∫ t

0

p(τ1)p(
k∑
i=2

∆Ti = t− τ1)dτ1 (65)

Since p(τ1 = t) = p(
k∑
i=2

∆Ti = t) = 0 for t < 0 we get

=

∫ +∞

−∞
p(τ1)p(

k∑
i=2

∆Ti = t− τ1)dτ1 (66)

=
(
p∆T1 ∗ p∑k

i=2 ∆Ti

)
(t) (67)

= p∆T1 ∗ . . . ∗ p∆Tk︸ ︷︷ ︸
k

(t) (68)

= F−1

(
k∏
i=1

p̂∆Ti

)
(t) (69)

= F−1
(
p̂∆T

k
)
(t) (70)

with p∆T the general probability distribution for the delay, F−1 the inverse Fourier
Transform and p̂∆T the Fourier Transform of p∆T .

In our case, the delay follows an exponential distribution, p∆T (τ) = 1τ>0λe
−λτ ,

we thus get the result:

p̂(τ)(w) =

∫ +∞

−∞
1τ>0λe

−λτe−iωτdτ =
λ

iω + λ
, w ∈ R (71)

Now, with

Ik(t) = F−1
(
p̂∆T

k
)
(t) (72)

I1(t) = F−1 (p̂∆T ) (t) = 1t>0λe
−λt (73)

We get the recurrence relation:

Ik(t) =
λt

(k − 1)
Ik−1(t) , (74)
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giving

Ik(t) = 1t>0
λk

(k − 1)!
tk−1e−λt , (75)

and thus

p(
k∑
i=1

∆Ti = t) = Ik(t) = 1t>0
λk

(k − 1)!
tk−1e−λt . (76)

We recognize a Gamma distribution with shape and rate parameters k and λ. Using
(76) in (62), the probability distribution of the event Nt ≥ k is given by:

p(Nt ≥ k) =

∫ t

0

p(
k∑
i=1

∆Ti = t)dτ1 . . . dτk (77)

=

∫ t

0

1u>0
λk

(k − 1)!
uk−1e−λudu (78)

=
1

Γ(k)
γ(k, λt) (79)

where γ(a, t) =
∫ t
0
ua−1e−udu, a > 0 is the lower incomplete gamma function, con-

verging to the gamma function Γ(k) =
∫ +∞
0

ua−1e−udu when t→∞.

We retrieve the intuition that for t → ∞ it is almost certain that at least k
operations will occur

lim
t→∞

p(Nt ≥ k) =
1

Γ(k)
lim
t→∞

γ(k, λt) = Γ(k)/Γ(k) = 1 .

Now, we can derive the probability of the event exactly k operations are executed
before t noted Nt = k, using (79) we have:

p(Nt = k) = p(Nt ≥ k)− p(Nt ≥ k + 1) (80)

=

∫ λt

0

1

Γ(k)
uk−1e−u − 1

Γ(k + 1)
uke−udu (81)

=

∫ λt

0

d

du

(
1

Γ(k + 1)
uke−u

)
du (82)

=
1

Γ(k + 1)
(λt)ke−λt (83)

we recognize a Poisson distribution with rate λt.

By introducing the survival distribution SX of a continuous univariate random
variable X defined by

SX(t) =

∫ +∞

t

pX(u)du ,
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, we also remark that p(Nt = k) can be written as a convolution

p(Nt = k) = p(
k∑
i=1

∆Ti < t,∆Tk+1 > t−
k∑
i=1

∆Ti) (84)

=

∫ t

0

p(
k∑
i=1

∆Ti = u)

∫ +∞

t−u
p(∆Tk+1 = x)dxdu (85)

= p∑k
i=1 ∆Ti

∗ S∆Tk+1
(t) (86)

= p∆T1 ∗ . . . ∗ p∆Tk ∗ S∆Tk+1
(t) (87)

and gives the same result as (83).
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