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My journey in academia began as a Master student a the — back then —
Université de Lille 1, when I had the opportunity to join the Dolphin research
group for my Master thesis. After graduating, I pursued my research as a
PhD student in the same group for three years, and I obtained my PhD degree
in 2009. In 2010, I was a Postdoctoral Researcher with the University of
Coimbra in Portugal. The same year, I was recruited as a Maître de Con-
férences (Associate Professor) with the — now — University of Lille. I am
currently a member of the Bonus research group at the CRIStAL research
center (Univ. Lille, CNRS, Centrale Lille, UMR 9189) and the Inria Lille-
Nord Europe research center. In 2020, I benefited from a six-month CNRS
sabbatical at the Japanese-French Laboratory for Informatics (JFLI, CNRS,
IRL 3527), and I was an Invited Professor with the University of Tokyo
in Japan. After a history of about ten years of collaboration and numerous
exchanges and visits, I have also been appointed as a Collaborative Professor
(honorary position) with Shinshu University in Japan since 2021.

This habilitation thesis provides a survey of my scientific work since the
end of my PhD thesis. My research activities deal with the foundations, the
design and the analysis of stochastic local search heuristic algorithms, with a
particular interest on multi-objective optimization and landscape analysis.

1.1 Context

Solving an optimization problem consists in finding the best solution(s)
with respect to one or multiple objectives. In multi-objective optimiza-
tion, two or more objectives are to be optimized simultaneously. Such
problems may occur in many real-world applications as common as
finding the optimal path between two geographic locations, where one
may aim at reducing the travel time while minimizing the travel cost.
In this context, a decision maker might be interested in identifying the
set of optimal trade-offs between the objectives, among which they
could then select the solution that best fits their preferences. Such a set
is known as the Pareto set.

Identifying the (exact) Pareto set is, however, not always feasible due
the computational complexity of the underlying problem, or to the
black-box nature of the objectives. Indeed, when no assumption or
additional information about the objectives are known or provided,
the optimization method faces a black-box problem. The algorithm can
only make a series of requests to an evaluation function that solely
returns the objective-values of a solution provided as input, without
any further information. On top of that, the conflicting nature of the
objectives often severely impact the number of optimal trade-offs, and
therefore the cardinality of the Pareto set to be identified. For these
reasons, one must generally settle with a Pareto set approximation,
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for which evolutionary algorithms and other search heuristics are
a method of choice, although it remains impossible to recommend a
priori which algorithm to select from the plethora of available methods
for solving a given problem. This is precisely the context in which the
research work presented in this manuscript lies.

1.2 Overview

The activities presented in this manuscript are articulated along three
complementary research lines. Firstly, being interested in understand-
ing more precisely the foundations and behavior of search heuristics,
this led us to consider landscape analysis as a central concept in the
first set of contributions. The main goal of landscape analysis is to in-
form about the structure of the search space, from the point of view of
search algorithms. As such, a number of general-purpose features are
proposed and analyzed for characterizing the landscape of black-box
multi-objective combinatorial optimization problems. These landscape
features allow us to better understand the difficulties that algorithms
have to face depending on the problem being solved. Not only this,
they subsequently allow us to predict algorithm performance, and to
automate the tedious task of selecting the algorithm which is most
likely to efficiently solve a previously-unseen problem.

Secondly, starting from the observation that multi-objective optimiza-
tion aims at identifying a set of solutions, it becomes relevant to con-
sider the search space as the collection of all sets of solutions. This is
the principle of set-based multi-objective search. Originally proposed for
performance assessment, a number of set preference relations from the
literature can therefore naturally be considered as selection criteria for
set-based multi-objective search. In this line, we start by clarifying the
differences and similarities between sets for different set preference
relations. We further specify local search components in such a setting,
and we investigate the search difficulty as a function of the problem
characteristics and the considered set preference relation.

In addition to investigating the fundamental issues presented above,
we have thirdly contributed to the design and the improvement of
efficient optimization approaches. This research line mainly aims at
accelerating the convergence of multi-objective search algorithms, and
thus improving their anytime performance profile; i.e., achieving a
better approximation quality in a lower runtime. To this end, we rely
heavily on the concept of decomposition, that consists in decomposing
the considered multi-objective optimization problem into a number
of scalar (single-objective) sub-problems that are solved concurrently
and cooperatively. This allows us to propose a number of distributed
approaches that incorporate a high level of parallelism, and that can be
deployed on modern computing environments. In a complementary
way, we consider surrogate models to the evaluation function, and we
investigate their integration into the multi-objective search process in
order to address particularly expensive optimization problems.
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1.3 Supervision

The research presented in this manuscript is a result of joint works with
a number of national and international students and young researchers.
First of all, several contributions come from co-supervised PhD theses
with the University of Lille:

I The PhD thesis of Geoffrey Pruvost was defended at the Uni-
versity of Lille in 2021. It contributes to the improvement of
decomposition approaches for efficient multi-objective search,
and is presented in Chapter 5.

I The PhD thesis of Alexandre D. Jesus will be defended in 2022,
and was conducted in cotutelle between the University of Lille
and the University of Coimbra in Portugal. Algorithm selection
approaches for multi-objective search are presented in Chapter 3,
and anytime performance models are presented in Chapter 4.

I The PhD thesis of Nicolas Berveglieri is conducted at the Uni-
versity of Lille and will also be defended in 2022. It deals with
surrogate-assisted search for expensive multi-objective optimiza-
tion, and is presented in Chapter 5.

I The PhD thesis of Raphaël Cosson is conducted at the University
of Lille since 2019. It deals with landscape analysis and algorithm
selection for decomposition approaches, and is presented in
Chapter 3.

The research work of external co-supervised PhD students is presented
in this manuscript as well:

I The PhD thesis of Miyako Sagawa was defended at Shinshu
University in Japan in 2018. We present in Chapter 5 how discov-
ering the importance of variables can positively guide the search
process and accelerate multi-objective algorithms.

I The PhD thesis of Hugo Monzón was defended at Shinshu Uni-
versity in Japan in 2020. Empirical models are designed in Chap-
ter 3 to capture the dynamics of evolving solutions in multi-
objective search.

The collaborative work of co-supervised Postdoctoral researchers is
also summarized below:

I Fabio Daolio conducted Postdoctoral research with the Univer-
sity of Lille and Shinshu University in Japan from 2014 to 2016.
Together, we analyzed landscape features and performance pre-
diction models that are presented in Chapter 3.

I Saúl Zapotecas Martínez also conducted Postdoctoral research
with the University of Lille and Shinshu University in Japan from
2014 to 2016. We jointly contributed to multi-objective search
decomposition, as presented in Chapter 5.

1.4 Collaborations

The work considered here is the outcome of a teamwork that would not
have been made possible without the fruitful collaboration of a number
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Figure 1.1: Main institutions and collaborations.

of senior researchers from national and international institutions, as
summarized in Figure 1.1.

At the national level, we have a close collaboration with the University
of the Littoral Opal Coast on almost all the subjects covered in this
manuscript. The University of Angers is also an important collaborator,
in particular on set- and indicator-based multi-objective search (Chap-
ter 4), but also on the solving of problems from quadratic optimization
and scheduling (Chapter 2).

At the European level, we have a sustained collaboration with the
University of Coimbra in Portugal since 2010, both on the foundations
of multi-objective search (Chapter 3) and on set- and indicator-based
multi-objective search (Chapter 4). On the latter topic, we also collab-
orate regularly with the University of Manchester in the UK and the
University of Málaga in Spain. More recently, we initiated collabora-
tions with the University of the Basque Country in Spain, and with the
University of Exeter and Robert Gordon University in the UK.

On the other continents, our main collaborators are located in Japan,
notably at Shinshu University. Since 2012, our joint work focuses on
landscape analysis (Chapter 3) and on the study and improvement of
multi-objective search approaches (Chapter 5), in the context of the
MODŌ international associated laboratory. In addition, a joint research
project on decomposition-based multi-objective search (Chapter 5) was
conducted with the City University of Hong Kong from 2016 to 2021.
We also have more occasional collaborations with the University of
Melbourne in Australia, Colorado State University in the USA, and
Cinvestav in Mexico.
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1.5 Outline

The manuscript is divided into six chapters, of which the remaining
ones are organized as follows:

I In Chapter 2, we provide the necessary background on multi-
objective optimization, we present the considered benchmark
problems and state-of-the-art multi-objective search algorithms,
and we discuss performance assessment in multi-objective search.

I In Chapter 3, we present our contributions on the foundations of
multi-objective search and landscape analysis. We introduce and
analyze multi-objective landscape features for small and large
landscapes, we investigate feature-based prediction models for
algorithm performance and automated algorithm selection, and
we summarize some contributions related to these topics.

I In Chapter 4, we present our contributions on set- and indicator-
based multi-objective search. We review a selection of quality
indicators and we statistically analyze their degree of agreement.
Then, we define set-based multi-objective landscapes and local
search, and we study the number and properties of local optimal
sets. We also review related contributions to this research line.

I In Chapter 5, we present our contributions on efficient multi-
objective search. After introducing the core concept of decompo-
sition, we propose a number of decentralized approaches and
analyze their parallel efficiency. Besides, we investigate the inte-
gration of surrogate models in multi-objective search to acceler-
ate convergence, and briefly discuss related contributions.

I In Chapter 6, we conclude the manuscript by presenting our
future research plan on landscape-aware massive optimization,
and by discussing a number of perspectives that go beyond those
presented in previous chapters.

Before moving on to the next chapter, let us highlight that references
to papers I co-authored appear in light blue. For instance, Verel et al.
(2013) is a self-citation whereas Zitzler et al. (2003) refers to a paper of
which I am not a co-author.
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In this chapter, we introduce the basic notions related to multi-objective opti-
mization, with a particular focus on black-box multi-objective combinatorial
optimization problems. We start by giving the definitions related to Pareto
dominance and Pareto optimality. Then, we present some multi-objective
optimization problems considered in the manuscript. Finally, we give an
overview of the considered multi-objective optimization approaches, and we
discuss how to assess algorithm performance.

2.1 Definitions

Let us consider an arbitrary multi-objective optimization problem
f : X 7! Z , with X being the variable space, Z ✓ Rm the objective space,
and f = ( f1, . . . , fi , . . . , fm) an objective function vector such that each
objective fi is to be maximized, i 2 {1, . . . , m}. As illustrated in Fig-
ure 2.1, each solution x 2 X is associated with an objective vector z 2 Z
such that z = f (x). In the combinatorial case, the variable space X is a
discrete set. The Pareto dominance relation, whose concept is named after
Vilfredo Pareto (Figure 2.2), is defined as follows. Given two objective
vectors z, z0 2 Z , z is (weakly) dominated by z0 (denoted as z � z0) if
zi 6 z0i for all i 2 {1, . . . , m}. They are mutually non-dominated if z 6� z0

and z0 6� z. They are equivalent if z � z0 and z0 � z. As illustrated in
Figure 2.3, an objective vector z? 2 Z is Pareto optimal or non-dominated
if there does not exist any z 2 Z , z , z?, such that z? � z. Correspond-
ing definitions can be formalized for solutions x 2 X by using their
objective vector z 2 Z such that z = f (x). In particular, a solution
x? 2 X is Pareto optimal or non-dominated if f (x?) is non-dominated.
The Pareto front Z? ✓ Z is the set of non-dominated objective vectors.
The Pareto set X? ✓ X is a set of solutions that maps to the Pareto front,
i.e. f (X?) = Z?. The Pareto set and its corresponding Pareto front are
illustrated in Figure 2.4.

Unfortunately, identifying the Pareto set of a multi-objective combi-
natorial optimization problem is often infeasible for two main rea-
sons (Ehrgott, 2005). Firstly, most problems are intractable, in the sense
that the number of Pareto optimal solutions typically grows exponen-
tially with the problem size. Secondly, deciding if a solution belongs
to the Pareto set may be NP-complete. Therefore, the decision maker
often has to rely on a Pareto set approximation. This naturally excludes
the applicability of exact methods (Ehrgott, 2005). There also exist a
number of approximation methods with provable guarantee, which
assume that a sequence of single-objective auxiliary problems can be
solved in polynomial time (Herzel et al., 2021). In order to alleviate
this hypothesis, our work mostly focuses on heuristics. Evolution-
ary multi-objective optimization algorithms and other multi-objective

https://upload.wikimedia.org/wikipedia/commons/f/fd/Vilfredo_Pareto_1870s2.jpg
https://upload.wikimedia.org/wikipedia/commons/f/fd/Vilfredo_Pareto_1870s2.jpg
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Figure 2.5: Objective space of ⇢mnk-
landscapes with a negative (⇢ = �0.9),
a null (⇢ = 0), and a positive (⇢ = 0.9)
correlation among the objectives. Green
points correspond to a sample (10%) of
random objective vectors, blue and red
points are supported and unsupported
non-dominated objective vectors, respec-
tively. The problem size is n = 18, the
variable interaction degree is k = 4, and
the number of objectives is m = 2.

search heuristics aim at identifying an approximation set of limited
cardinality, ideally a subset of the Pareto set, that is to be presented
to the decision maker for further consideration (Branke et al., 2008;
Coello Coello et al., 2007; Deb, 2001). Such methods also have the ad-
vantage of not requiring any particular knowledge about the problem
to be solved, the objective function vector being seen as a black-box that
solely returns the objective values of solutions given as input.

2.2 Problems

Let us now introduce some multi-objective combinatorial optimization
problems considered for benchmarking in the following chapters. We
contributed a number of benchmark problem formulations, by paying
a particular attention to the correlation among the objectives. In order
to automate the design of a wide range of problems and thus increase
their uptake within the community, we also proposed configurable
benchmark problem generators. The source code of the generators,
together with instance datasets and their corresponding reference
fronts (either the Pareto fronts or best-known approximations) are
made available at the following URL: http://mocobench.sf.net.

⇢mnk-Landscapes

A large part of our investigations consider ⇢mnk-landscapes as a con-
figurable benchmark for multi-objective combinatorial optimization.
We proposed ⇢mnk-landscapes as a problem-independent model for
constructing multi-objective multimodal landscapes with objective cor-
relation (Verel et al., 2013). They extend single-objective nk-landscapes
(Kauffman, 1993) and multi-objective nk-landscapes with independent
objectives (Aguirre and Tanaka, 2007). Solutions are binary strings
of size n. The objective function vector f = ( f1, . . . , fi , . . . , fm) is de-
fined as f : {0, 1}n 7! [0, 1]m such that each objective fi is to be max-
imized. As in the single-objective case, the objective value fi(x) of
a solution x = (x1, . . . , xj , . . . , xn) is an average value of the individ-
ual contributions associated with each variable xj . Given objective fi ,
i 2 {1, . . . , m}, and variable xj , j 2 {1, . . . , n}, a component function
fi j : {0, 1}k+1 7! [0, 1] assigns a real-valued contribution for every com-
bination of xj and its k variable interactions {xj1 , . . . , xjk }. These fi j-
values are uniformly distributed in [0, 1]. Thus, the individual contri-
bution of a variable xj depends on its own value, and on the values
of k < n variables other than xj . The problem can be formalized as
follows:

max fi(x) =
1
n

n’
j=1

fi j(xj | xj1 , . . . , xjk ) i 2 {1, . . . , m}

s.t. xj 2 {0, 1} j 2 {1, . . . , n}

The variable interactions, non-linearity, or epistasis, i.e. the k vari-
ables that influence the contribution of xj , are set uniformly at random

http://mocobench.sf.net
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Figure 2.6: Spearman rank correla-
tion among objective vectors for ⇢mnk-
landscapes with respect to ⇢. The prob-
lem size is n = 18, the variable interac-
tion degree is k 2 {2, 4, 6, 8, 10} and the
number of objectives is m = 3 (top) and
m = 5 (bottom).

among the (n � 1) variables other than xj , following the random neigh-
borhood model from Kauffman (1993). By increasing the number of
interactions k per variable from 0 to (n � 1), problem instances can be
gradually tuned from smooth to rugged. In ⇢mnk-landscapes, fi j-values
additionally follow a multivariate uniform distribution of dimension m,
defined by an m⇥ m positive-definite symmetric covariance matrix (cpq)
such that cpp = 1 and cpq = ⇢ for all p, q 2 {1, . . . , m} with p , q, where
⇢ > �1

m�1 defines the correlation among the objectives; see Verel et al.
(2013) for details. As illustrated in Figure 2.5, the positive (respectively,
negative) objective correlation ⇢ decreases (respectively, increases) the
degree of conflict among the objectives. By default, the same correla-
tion coefficient ⇢ is used among all pairs of objectives, and the same
variable interactions are set for all the objectives. Notice that general
nk-landscapes are NP-hard in the single-objective case (Hoos and Stüt-
zle, 2005). Moreover, we empirically show in Verel et al. (2013) that
the number of Pareto optimal solutions grows exponentially with the
problem size, so that ⇢mnk-landscapes are intractable as well.

Objective Correlation

Although the greatest challenge of multi-objective optimization is
often believed to be the number of objectives, we argue that the corre-
lation among them is also crucially important. As already illustrated
in Figure 2.5, a negative objective correlation substantially increases
the number of Pareto optimal solutions for two-objective instances.
Additional properties will also be discussed in view of objective cor-
relation in the next chapters. Notice that there exists an earlier at-
tempt to partially tune the objective correlation for multi-objective nk-
landscapes (Knowles and Corne, 2007) and multi-objective quadratic
assignment problems (Knowles and Corne, 2003a), where correlation
is generated between the first and any other objective. By contrast, our
methodology, based on a multivariate distribution, enables to finely
tune the correlation for each pair of objectives, as reported in Fig-
ure 2.6. With this in mind, we employed a similar method to define or
generalize other classes of multi-objective combinatorial optimization
benchmark problems with a tunable objective correlation, including
different variants from the binary knapsack problem (Liefooghe et al.,
2013a), the multi-objective unconstrained binary quadratic program-
ing problem (Liefooghe et al., 2014, 2015b) and the multi-objective
traveling salesperson problem (Derbel et al., 2016).

Even when not explicitly defined by a benchmark parameter, practi-
cal multi-objective optimization problems might exhibit different de-
grees of conflict among the objectives. This is the case, for instance, of
multi-objective permutation flowshop scheduling problems (Liefooghe
et al., 2017a). The objectives are defined based on different mathe-
matical expressions, ranging from the maximum completion time or
makespan (Cmax), to the sum of completion times (Csum), the maximum
tardiness (Tmax), the sum of tardiness (Tsum), or the number of late
jobs (Tcard). The correlation among each pair of objectives is reported
in Figure 2.7. We show in Liefooghe et al. (2017a) that this correlation
influences instance properties and algorithm performance.



10 2 Multi-objective Optimization

Figure 2.7: Spearman rank correla-
tion among objective vectors for two-
objective permutation flowshop schedul-
ing problems with 8 jobs and 8 machines
for different pairs of objectives (x-axis)
and instance types (color).
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Figure 2.8: The Paradiseo modules.
J. Dréo, CC-BY-SA, https://nojhan.github.io/paradiseo

A Glimpse on Other Problems

In addition to ⇢mnk-landscapes, we investigated other multi-objective
optimization problems. Apart from the knapsack (Liefooghe et al.,
2013a), the unconstrained binary quadratic programing (Liefooghe
et al., 2014, 2015b), the traveling salesperson (Derbel et al., 2016), and
the permutation flowshop scheduling (Liefooghe et al., 2017a) prob-
lems mentioned above, it is worth mentioning the multi-objective
quadratic assignment problem (Knowles and Corne, 2003a) as well
standard benchmark test suites from multi-objective continuous opti-
mization (Brockhoff et al., 2019; Deb et al., 2005; Huband et al., 2006;
Zhang et al., 2009)1

1: Although not considered later in this
document, we mention here our work
on bi-objective pairwise sequence align-
ment in bioinformatics, for which we
proposed extensions of dynamic program-
ming algorithms for several problem vari-
ants with a novel pruning technique that
efficiently reduces the number of states
to be processed (Abbasi et al., 2013). The
corresponding MOSAL software is avail-
able at: http://mosal.dei.uc.pt.

. This provides a large spectrum of multi-objective
optimization problems spanning a diversified range in terms of vari-
able types and representations (binary strings, permutations, real-
values), variable interactions (from linear to highly multimodal prob-
lems), number of objectives (from bi- to multi- and many-objective
problems) and the correlations among them.

2.3 Algorithms

We describe below a number of general-purpose randomized search
heuristics (or stochastic local search algorithms, evolutionary algo-
rithms, metaheuristics) for multi-objective optimization. We start by ex-
emplifying the difference between local and evolutionary multi-objective
search, and then we focus on representative state-of-the-art multi-
objective evolutionary algorithms, covering the classes of dominance-,
indicator-, and decomposition-based approaches.

The source code of some algorithms and components developed in
this work are made available in the Paradiseo open-source software
framework (Cahon et al., 2004; Keijzer et al., 2001), currently available
at the following URL: https://nojhan.github.io/paradiseo. As il-
lustrated in Figure 2.8, Paradiseo is based on a modular design. We
significantly contributed to the module for multi-objective optimiza-
tion Paradiseo-MOEO (Liefooghe et al., 2011), and to the module for lo-
cal search and landscape analysis Paradiseo-MO (Humeau et al., 2013).
A recent summary of the features from the Paradiseo framework can
be found in Dréo et al. (2021).

https://nojhan.github.io/paradiseo
http://mosal.dei.uc.pt
https://nojhan.github.io/paradiseo
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Local vs. Evolutionary Multi-objective Search

Let us assume that we are given a multi-objective optimization prob-
lem with n binary variables. We describe below two randomized multi-
objective search heuristics based on dominance: (i) the Global Simple
Evolutionary Multi-objective Optimizer (G-SEMO) from Laumanns
et al. (2004a), a simple elitist steady-state global multi-objective evo-
lutionary algorithm; and (ii) Pareto local search (PLS) from Paquete
et al. (2007), a multi-objective local search. Both algorithms maintain an
unbounded archive A of mutually non-dominated solutions. This archive
is initialized with one random solution from the solution space. At
each iteration, one solution is selected at random from the archive
x 2 A. In G-SEMO, each binary variable from x is independently
flipped with a rate of 1/n in order to produce an offspring solution x 0.
The archive is then updated by keeping the non-dominated solutions
from A[ {x 0}. In PLS, the solutions located in the neighborhood of x
are evaluated. Let N(x) be the set of solutions located at a Hamming
distance 1. The non-dominated solutions from A[N(x) are stored in
the archive, and the current solution x is tagged as visited in order to
avoid unnecessary re-evaluation of its neighborhood in subsequent
iterations. This process is iterated until a stopping condition is satis-
fied. While G-SEMO does not have any explicit stopping rule, PLS
naturally stops once all solutions from the archive are tagged as visited.
When necessary, we consider a simple iterated version of PLS (I-PLS),
that restarts from a solution randomly chosen from the archive and
perturbed by stochastic mutation (Drugan and Thierens, 2012). While
PLS is based on the exploration of the whole 1-bit-flip neighborhood
from x, G-SEMO rather uses an ergodic operator, i.e. an independent
bit-flip mutation. Hence, every iteration has a non-zero probability of
reaching any solution from the solution space. This makes G-SEMO a
global (evolutionary) search, as opposed to a local search like PLS.

Multi-objective Evolutionary Algorithms

By contrast with G-SEMO and PLS presented above, most multi-
objective evolutionary algorithms uses a fixed-size population, although
an external archive can be used to store all non-dominated solutions
found so far during the search process. Selection in multi-objective
evolutionary computation can be classified into the following classes;
see, e.g., Coello Coello et al. (2007) or Liefooghe et al. (2011):

I Dominance-based approaches, where the Pareto dominance re-
lation is used as the main criterion to rank solutions from the
population.

I Indicator-based approaches, where solutions are compared on
the basis of a quality indicator, which thus represents the overall
goal of the search process.

I Decomposition-based approaches, where the multi-objective
optimization is decomposed into a number of (single-objective)
sub-problems based on a scalarizing function, the sub-problems
being optimized simultaneously and cooperatively.
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We describe below three exemplary multi-objective evolutionary algo-
rithms, namely NSGA-II (Deb et al., 2002), IBEA (Zitzler and Künzli,
2004), and MOEA/D (Zhang and Li, 2007). They were selected as
representatives of the state-of-the-art in evolutionary multi-objective
optimization, covering dominance-, indicator-, and decomposition-
based approaches, respectively.

NSGA-II (Deb et al., 2002) is an elitist dominance-based multi-objective
evolutionary algorithm using Pareto dominance for survival and
parent selections. At a given iteration, the current population Pt is
merged with its offspring Qt , and is divided into non-dominated
fronts F = {F1, F2, . . . } based on the non-dominated sorting pro-
cedure (Goldberg, 1989). The front in which a given solution belongs
to gives its rank within the population. Crowding distance is also cal-
culated within each front. Selection is based on ranking, and crowding
distance is used as a tie breaker. Survival selection consists in filling the
new population Pt+1 with solutions having the best (smallest) ranks.
In case a front Fi overfills the population size, the required number of
solutions from Fi are chosen based on their crowding distance. Parent
selection for reproduction consists of binary tournaments between
randomly-chosen solutions, following the lexicographic order induced
by ranks first, and crowding distance next.

IBEA (Zitzler and Künzli, 2004) introduces a total order between so-
lutions by means of a binary quality indicator I. Its selection mecha-
nisms is based on a pairwise comparison of solutions from the current
population Pt with respect to I. A fitness value is assigned to each
solution x 2 Pt , measuring the “loss in quality” if x was removed from
the current population:

Fitness (x) :=
’

x0 2P\{x }
(�e�I (x

0,x)/) (2.1)

where  > 0 is a user-defined scaling factor. The survival selection
mechanism is based on an elitist strategy that combines the current
population Pt with its offspring Qt . It iteratively removes the worst
solution until the required population size is reached, and assigns
the resulting population into Pt+1. Each time a solution is deleted, the
fitness values of the remaining solutions are updated. Parent selection
for reproduction consists of binary tournaments between randomly
chosen solutions. Different indicators can be used within IBEA. The
binary additive "-indicator (I"+) is defined as follows by Zitzler and
Künzli (2004):

I"+(x, x 0) := max
i2{1,...,m}

{ fi(x) � fi(x 0)} (2.2)

It gives the minimum value by which a solution x 2 Pt has to, or
can be, translated in the objective space in order to weakly dominate
another solution x 0 2 Pt . Indicator-based multi-objective search will
be discussed in more details in Chapter 4.
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MOEA/D (Zhang and Li, 2007) is a decomposition-based multi-objective
evolutionary algorithm that seek a high-quality solution in multiple
regions of the objective space by decomposing the original (multi-
objective) problem into a number of scalar (single-objective) sub-
problems. Let µ be the population size. A set (�1, . . . , �i , . . . , �µ) of
uniformly-distributed weighting coefficient vectors defines the scalar
sub-problems, and a population P = (x1, . . . , xi , . . . , xµ) is maintained
such that each solution xi maps to the sub-problem defined by �i .
Different scalarizing functions can be used within MOEA/D. For in-
stance, the weighted Chebyshev scalarizing function (Miettinen, 1999)
is defined as follows:

g(x | �) := max
i2{1,...,m}

�i ·
��z?i � fi(x)

�� (2.3)

such that x is a solution, � is a weighting coefficient vector and z? is a
reference point. In addition, a neighboring relation is defined among
sub-problems, based on the assumption that a given sub-problem is
likely to benefit from the solution maintained in neighboring sub-
problems. The neighborhood B(i) is defined by considering the T
closest weighting coefficient vectors for each sub-problem i. At each
iteration, the population evolves with respect to a given sub-problem.
Two solutions are selected at random from B(i) and an offspring is
produced by means of variation operators. Then, for each sub-problem
j 2 B(i), the offspring is used to replace the current solution x j if
there is an improvement in terms of the scalarizing function. The algo-
rithm iterates over sub-problems until a stopping condition is satisfied.
Further considerations about MOEA/D and decomposition-based
multi-objective search will be discussed in Chapter 5.

2.4 Performance

When benchmarking heuristic search algorithms, performance is typi-
cally measured in terms of (Hoos and Stützle, 2005):

I Runtime; i.e. how fast an algorithm hits a given target.
I Approximation quality; i.e. which quality level is achieved after

an algorithm is run for a given budget.
I Success rate; i.e. how frequently an algorithm reaches a given

target under a given budget.

Given that search heuristics are anytime algorithms (Dean and Boddy,
1988; Zilberstein, 1996), i.e. they have the ability to return valid solu-
tions when interrupted at any time of the search process, considering
different targets or budgets is important for assessing their anytime
behavior. In addition, due to the stochastic nature of algorithms and
problem instances, multiple runs are typically performed. Empirical
results can then be summarized using graphical plots, descriptive
statistics and statistical tests, for which we mostly rely on the R statis-
tical computing and graphics environment (R Core Team, 2020), and
the ggplot2 package (Wickham, 2016). Whenever appropriate, we also
consider multiple instances to render the robustness of an algorithm
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when solving a given problem class, or on the contrary to show that
an algorithm performs differently for different problems or instance
types.

As in single-objective optimization, the budget can be measured in
terms of CPU time, or in terms of calls to the evaluation function —
the objective function vector. However, in multi-objective optimiza-
tion, approximation quality needs to take into account that a whole
approximation set is sought. A number of quality indicators have been
proposed to measure the quality of multi-objective algorithms. Qual-
ity indicators are mathematically defined and presented in details in
Chapter 4, where we also analyze their correlation and properties. For
now, we simply give a brief description of the indicators considered
in the next chapter. The resolution gives the proportional number of
Pareto optimal solutions that have been identified. It is then assumed
that the (optimal) Pareto set is known, which limits its use to small-size
problems, or artificial problems for which this information is avail-
able. By contrast, the hypervolume (Zitzler and Thiele, 1998) gives the
multi-dimensional area of the objective space dominated by an approx-
imation set, with respect to a user-given reference point. The epsilon
indicator (Zitzler et al., 2003) gives the minimum factor by which an
approximation set has to be translated in the objective space in order
to (weakly) dominate a reference set.
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In this chapter, we expose and contrast the impact of landscape characteristics
on the performance of search algorithms for multi-objective optimization prob-
lems. A sound and concise summary of features characterizing the structure
of an arbitrary problem instance are identified and related to the expected
performance of global and local dominance-based multi-objective search algo-
rithms. We provide a critical review of existing features for multi-objective
optimization, and we propose additional ones that do not require any global
knowledge from the landscape, making them suitable for large-size black-box
problem instances. Their intercorrelation and their association with algorithm
performance are also analyzed. This allows us to assess the individual and the
joint effect of landscape features on algorithm performance, and to highlight
the main difficulties encountered by such search heuristics. By providing ef-
fective tools for multi-objective landscape analysis, we highlight that multiple
features are required to capture problem difficulty, and we provide further
insights into the importance of ruggedness and multimodality to characterize
multi-objective landscapes. We further illustrate how these multi-objective
landscape features can be used for automated algorithm selection. The main
focus of the chapter is thus given to the research work presented in Liefooghe
et al. (2020a), which builds upon an incremental series of publications in
this line (Daolio et al., 2015, 2017; Liefooghe et al., 2013b, 2015a; Verel
et al., 2013). Nevertheless, we conclude the chapter with a summary of related
contributions, together with further considerations.

3.1 Motivations

In single-objective optimization, landscape analysis has emerged as a
valuable set of tools to characterize problem difficulty; see Richter and
Engelbrecht (2014) or Humeau et al. (2013). An example of a single-
objective landscape with two variables and one objective is given in
Figure 3.1. Contrary to problem-specific structural properties such as
the average vertex degree in the minimum vertex cover problem (Wag-
ner et al., 2017) or the maximum cost between two cities in the traveling
salesperson problem (Mersmann et al., 2013), landscape analysis aims
at designing general-purpose features that do not depend on a spe-
cific problem class or problem domain. Instead, it tries to characterize
the topology of black-box problems in the eye of the challenges that
stochastic local search algorithms have to face when tackling them. Of
particular interest is the number and distribution of local optima in the
landscape, i.e. multimodality and ruggedness (Kauffman, 1993; Ker-
schke et al., 2016; Merz, 2004; Preuss, 2015; Weinberger, 1990). These
features are empirically related to instance hardness and algorithm
efficiency, and provide significant insights into the interplay between
the problem structure and the behavior of search algorithms and their
working components. Pioneering works on multi-objective landscape

http://www-lisic.univ-littoral.fr/~verel/pictures/multimodalFitnessLandscape.jpg
http://www-lisic.univ-littoral.fr/~verel/pictures/multimodalFitnessLandscape.jpg
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Figure 3.2: Algorithm selection model
from Rice (1976).

analysis include Aguirre and Tanaka (2007), Garrett and Dasgupta
(2008, 2009), Knowles and Corne (2003a, 2007), Paquete et al. (2007),
and Paquete and Stützle (2009). We build upon those by consider-
ing general-purpose problem features defined therein. In addition,
we derive new landscape features that our analysis reveals as highly
impactful for multi-objective search.

The purpose of designing features to characterize search difficulty is
two-fold: (i) gathering a fundamental understanding of optimization
problems and algorithms, eventually leading to a better algorithm
design, and (ii) automatically predicting performance or selecting al-
gorithm based on relevant features. More particularly, feature-based
performance prediction consists of modeling the expected runtime
or solution quality of a given algorithm applied to a problem in-
stance exhibiting particular features. This, in turn, might also lead
to algorithm selection (Kerschke et al., 2019; Smith-Miles, 2008) and
configuration (Belkhir et al., 2017; Kadioglu et al., 2010), where the
best-performing algorithm or configuration is to be selected from a set
of competitors. As illustrated in Figure 3.2, this issue is not specific
to optimization, and is known as the algorithm selection problem (Rice,
1976), which is one of the core concept of autonomous search (Hamadi et
al., 2012). A statistical or machine learning regression or classification
model is constructed by means of extensive experiments on a training
set of instances, and this model is later used to predict the performance
or to select between algorithms for previously-unseen instances. This
research area has received a growing attention in recent years, mainly
by relying on features that require a specific domain knowledge from
the target combinatorial optimization problem; see e.g. Hutter et al.
(2014), Mersmann et al. (2013), and Smith-Miles et al. (2014). Few ex-
ceptions can be found in Beham et al. (2018), Daolio et al. (2012), and
Hutter et al. (2011). where the selection among an algorithm portfolio
is performed using general-purpose landscape features related to local
optimality, ruggedness and multimodality. Research in this line can
also be found for continuous single-objective optimization (Bischl et al.,
2012; Kerschke and Trautmann, 2019; Malan and Engelbrecht, 2014).
However, to our knowledge, black-box landscape features have never
been used for performance prediction or algorithm recommendation
in the context of multi-objective combinatorial optimization. Although
the statistical and machine learning models used in the single-objective
case can be applied, multi-objective landscape features need to be care-
fully designed and analyzed, since existing single-objective features
are not relevant for multi-objective optimization.

This is precisely the purpose of the current study. Particularly, we
first review and extend general-purpose features to characterize the
different facets of difficulty encountered in multi-objective combinato-
rial optimization. Features include problem descriptors, such as the
variable and objective space dimensions, global measures, that require
the knowledge of all or part of the solution space, and local measures,
that are computed from an affordable sample of solutions. Then, we
analyze features correlation as well as their impact on the performance
of two canonical multi-objective search algorithms, namely the global
simple evolutionary multi-objective optimizer (Laumanns et al., 2004a)
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and Pareto local search (Paquete et al., 2007) introduced in Section 2.3.
We selected a global and a local elitist dominance-based algorithm,
respectively, for the sake of clarifying our understanding of core multi-
objective search components. Experiments are conducted on a family
of multimodal pseudo-boolean optimization problems known as ⇢mnk-
landscapes (Verel et al., 2013), and described in Section 2.2. By paying
a particular attention to the computational cost induced by these fea-
tures, we finally analyze their ability to predict algorithm performance
and to select among a small algorithm portfolio. A sound statistical
analysis allows us to highlight the main difficulties that dominance-
based algorithms have to face, as well as the main differences induced
by multi-objective search approaches.

The chapter is organized as follows. In Section 3.2, we identify a sub-
stantial number of existing and original features that characterize
black-box multi-objective landscapes. In Section 3.3, based on small-
size ⇢mnk-landscapes, we analyze the correlation among features, and
we measure their ability to predict algorithm performance as well as
their impact on search efficiency. In Section 3.4, we extend our analysis
to large-size instances by focusing on local features, i.e. features that
can be computed efficiently. In Section 3.5, we experiment with feature-
based automated algorithm selection. In Section 3.6, we complement
the discussion by briefly summarizing tightly related research issues
that we had the opportunity to study. In the last section, we conclude
the chapter and discuss further research.

3.2 Features to Characterize Multi-objective
Landscapes

In this section, we present the set of multi-objective landscape features
considered in our analysis. We start with global features from Daolio
et al. (2015, 2017) and Liefooghe et al. (2013b, 2015a). Since they require
the knowledge of all and/or Pareto optimal solutions in order to be
computed, this makes them impractical for performance prediction
and algorithm selection. However, we decided to include them in order
to measure and understand their impact on search performance. Next,
we introduce a number of local features from Liefooghe et al. (2020a),
which are based on a reasonable subset of solutions sampled during
random and adaptive walks, making them affordable in practice for
performance prediction. The whole set of features is listed in Table 3.1,
together with the ⇢mnk-landscape parameters described in Section 2.2,
i.e. ⇢, m, n, and k.

Definition 3.2.1 As in single-objective optimization, we define a multi-
objective landscape as a triplet (X ,N, f ) such that:

I X is a variable space,
I N: X 7! 2X is a neighborhood relation,
I f : X 7! Z is a (black-box) objective function vector.
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Figure 3.3: Illustration of global features
extracted from the Pareto set, the Pareto
front, and the solution space.

Global Features

Let us start with the subset of global features illustrated in Figure 3.3.
In multi-objective combinatorial optimization, the number of Pareto
optimal solutions is considered as an important aspect of difficulty.
Generally speaking, the larger the Pareto set, the smaller the chance
to identify all Pareto optimal solutions in an efficient manner. In that
sense, most multi-objective combinatorial optimization problems are
known to be intractable, i.e. the number of Pareto optimal solutions
typically grows exponentially with the problem size (Ehrgott, 2005).
As such, the proportion of Pareto optimal solutions in the solution
space (#po) is one of the most obvious facet to characterize problem
difficulty; see, e.g., Aguirre and Tanaka (2007), Bazgan et al. (2013),
Garrett and Dasgupta (2008), and Knowles and Corne (2003a, 2007). As
illustrated in Figure 3.4, for ⇢mnk-landscapes, #po grows exponentially
with the number of objectives and with their degree of conflict, while
the number of variable interaction has a low influence (Verel et al.,
2013). As such, when we have many and conflicting objectives, we
expect the Pareto set cardinality to be very large, and to quickly become
intractable. Pareto optimal solutions can further be classified into
two categories: supported and non-supported solutions. A supported
solution is an optimal solution of a weighted sum aggregation of the
objectives, and is mapping to an objective vector that is located on the
convex hull of the Pareto front (Ehrgott, 2005). As such, the proportion
of supported solutions in the Pareto set (#supp) might impact the
general convexity of the Pareto front, as illustrated by previous studies
on multi-objective landscape analysis (Knowles and Corne, 2003a).
Similarly, the hypervolume (hv) covered by the (exact) Pareto front is
shown to relate to the expected performance of multi-objective search
algorithms (Aguirre and Tanaka, 2007). As discussed in Section 2.4, the
hypervolume is one of the few recommended indicators for comparing
solution sets in multi-objective optimization (Zitzler et al., 2003).

Figure 3.4: Average proportion of Pareto
optimal solutions (#po) with respect
to objective correlation ⇢ for different
k-values (top left m = 2, right m = 5),
and with respect to the number of
variable interactions k for different
m-values (bottom left ⇢ = �0.2, right
⇢ = 0.9). The problem size is n = 18, thus
allowing Pareto optimal solutions to be
exhaustively enumerated.
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ƒ1

ƒ2

Figure 3.5: Illustration of global features
extracted from the connectedness prop-
erties of the Pareto set.

Other relevant characteristics from the Pareto set deal with the dis-
tance and connectedness between Pareto optimal solutions. Knowles
and Corne (2003a) study the maximal distance, in the variable space,
between any pair of Pareto optimal solutions (podist_max). They de-
note this as the diameter of the Pareto set. For ⇢mnk-landscapes, the
distance measure is taken as the Hamming distance between binary
strings, which is directly related to the bit-flip neighborhood oper-
ator. Similarly, the average distance between Pareto optimal solu-
tions (podist_avg) can also be taken into account (Liefooghe et al.,
2013b). Another measure capturing the dispersion of solutions is the
entropy of the Pareto set (Knowles and Corne, 2003a), here measured
as the entropy of (binary) variables from Pareto optimal solutions
(po_ent). Extensions of the fitness-distance correlation, a widely ac-
knowledged landscape measure (Jones and Forrest, 1995), to multi-
objective optimization is discussed by Garrett and Dasgupta (2008) and
Knowles and Corne (2003a). We here consider the correlation between
the (Hamming) distance between Pareto optimal solutions and their
Manhattan distance in the objective space (Knowles and Corne, 2003a).
Another important property of the Pareto set topology is connected-
ness (Ehrgott and Klamroth, 1997; Gorski et al., 2011). The Pareto set is
connected if all Pareto optimal solutions are connected with respect to
a given neighborhood structure. This makes it possible for local search
to identify the whole Pareto set by starting with one Pareto optimal
solution. Let us define a graph such that each node corresponds to a
Pareto optimal solution, and there is an edge between two nodes if the
corresponding solutions are neighbors in the landscape. As shown by
Paquete and Stützle (2009) and Liefooghe et al. (2013b), the degree of
connectedness impacts the performance of multi-objective local search.
We here consider the following related landscape features, illustrated
in Figure 3.5: the proportion of connected components in this Pareto
graph (#cc) (Paquete and Stützle, 2009), the proportion of isolated
nodes (#sing) (Paquete and Stützle, 2009), the proportional size of
the largest connected component (#lcc) (Liefooghe et al., 2013b; Verel
et al., 2013), as well as the average distance between pairs of nodes
(lcc_dist) and the proportion of hypervolume covered by the largest
connected component from the Pareto graph (lcc_hv) (Liefooghe et al.,
2020a).

The characteristics of the Pareto set and the Pareto front are, however,
not the sole factors that impact the performance of multi-objective
search algorithms. Aguirre and Tanaka (2007), Garrett and Dasgupta
(2009), and Knowles and Corne (2007) analyze how the landscape
affects the number of non-dominated fronts, and how this relates to
search performance. As illustrated in Figure 3.3, the whole set of solu-
tions from the search space is divided into different layers of mutually
non-dominated solutions, following the principles of non-dominated
sorting (Goldberg, 1989) used, e.g., in NSGA-II (Deb et al., 2002). To
cater for this, we measure both the proportion of non-dominated fronts
in the solution space (#fronts) (Aguirre and Tanaka, 2007; Garrett and
Dasgupta, 2009; Knowles and Corne, 2007), and the entropy of the
non-dominated front’s size distribution (front_ent) (Liefooghe et al.,
2020a). Finally, one of the main landscape features in single-objective
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Figure 3.6: Average proportion of Pareto
local optimal solutions (#plo) with
respect to objective correlation ⇢ for
different k-values (top left m = 2, right
m = 5), and with respect to the number
of variable interactions k for different
m-values (bottom left ⇢ = �0.2, right
⇢ = 0.9). The problem size is n = 18,
thus allowing Pareto local optimal
solutions to be exhaustively enumerated.
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Figure 3.7: Illustration of Pareto local
optimal solutions (PLO) and of single-
objective local optimal solutions (SLO).

optimization is the number of local optima (Kauffman, 1993). Although
multimodality is still largely overlooked in the multi-objective opti-
mization literature, where the number of objectives is seen as the main
source of difficulty, few recent studies have revealed its impact on
multi-objective search performance (Kerschke et al., 2016; Paquete
et al., 2007), including ours (Daolio et al., 2017; Verel et al., 2013). A
Pareto local optimal solution is defined as follows by Paquete et al.
(2007).

Definition 3.2.2 A Pareto local optimal solution is a solution x 2 X for
which there does not exist any neighboring solution x 0 2 N(x) such that x
is dominated by x 0.

We measure the proportion of Pareto local optimal solutions in the so-
lution space (#plo). Additionally, we also consider the average number
of single-objective local optima with respect to each separate objective
function, proportional to the size of the solution space (#slo_avg). In
other words, #slo_avg corresponds to the proportion of local optima
per objective, all m values (i.e. one per objective) being averaged. We
expect #slo_avg to increase with the number of variable interactions k,
as with single-objective nk-landscapes (Kauffman, 1993). We show in
Figure 3.6 that #plo increases with k, but also with the number of objec-
tives and their degree of conflict. Both features then capture different
facets of multi-objective multimodality. The definitions of a Pareto
local optimal solution and of a single-objective local optimal solution
are illustrated in Figure 3.7.

Local Features

Unfortunately, computing the global features introduced above re-
quires the solution space, or the Pareto set, to be exhaustively enumer-
ated, which makes them impractical for large-size problems. There-
fore, we consider local features, computed from the neighborhood of
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ƒ1

ƒ2

Figure 3.8: Illustration of a multi-
objective random walk in the objective
space. In this example, the walk length
is set to ` = 7.

ƒ1

ƒ2

Figure 3.9: Illustration of a multi-
objective adaptive walk in the objective
space. In this example, the walk per-
forms ` = 5 steps until it falls into a
Pareto local optimal solution.
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dominating 
neighbors

dominated 
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locally 
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non-supported

supported

Figure 3.10: Illustration of local domi-
nance measures collected along random
and adaptive walks.

a sample of solutions, which makes them relevant for performance
prediction. In the following, we introduce two sampling strategies
and a number of landscape measures. We consider a local feature as a
combination of both.

Sampling. In single-objective landscape analysis, sampling is often
performed by means of a walk over the landscape. A walk is an ordered
sequence of solutions (x0, x1, . . . , x`) such that x0 2 X , and xt 2 N(xt�1)
for all t 2 {1, . . . , `} (Kauffman, 1993; Weinberger, 1990).

During a random walk, there is no particular criterion to pick the neigh-
boring solution at each step; i.e. a random neighbor is selected. In
the single-objective case, the first autocorrelation coefficient of (scalar)
fitness values encountered during the random walk characterizes the
ruggedness of the landscape (Moser et al., 2017; Weinberger, 1990): the
larger this coefficient, the smoother the landscape. To accommodate
the multi-objective nature of the landscape, different autocorrelation
measures will be discussed below. In the case of a random walk, the
length of the walk ` is a parameter that must be provided beforehand.
The longer the length, the better the estimation.

By contrast, during an adaptive walk, an improving neighbor is selected
at each step, as with a conventional hill climber. In this case, the length
` is the number of steps performed until the walk falls into a local
optimum. This length is used as an estimator of the diameter of local
optima’s basins of attraction: assuming isotropy in the solution space,
the longer the length, the larger the basins size, hence the lower the
number of local optima (Kauffman, 1993). Multiple adaptive walks are
typically performed to improve the estimation.

A random walk does not require any adaptation to the multi-objective
case, except for the measure used to estimate the correlation coefficient,
detailed next. As for the adaptive walk, we consider a very basic single
solution-based multi-objective Pareto hill climber (Verel et al., 2013).
The Pareto hill climber is initialized with a random solution. At each
iteration, the current solution is replaced by a random dominating
neighbor until it falls into a Pareto local optimal solution. The number
of iterations of the Pareto hill climber is the length of the adaptive
walk. The considered random and adaptive walks are illustrated in
Figures 3.8 and 3.9, respectively.

Measures. Given an ordered sequence of solutions collected along
a walk, we consider the following measures. For each solution from
the sample, we explore its neighborhood, and we measure the propor-
tion of dominated (#inf), dominating (#sup), and incomparable (#inc)
neighbors, as illustrated in Figure 3.10. We also consider the proportion
of non-dominated solutions in its neighborhood (#lnd), as well as the
proportion of supported solutions therein (#lsupp). In Figure 3.11, we
illustrate some measures based on hypervolume: the average hyper-
volume covered by each neighbor (hv), the average difference between
the hypervolume covered by each neighbor and the one covered by
the current solution (hvd), and the hypervolume covered by the whole
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hvd
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ƒ1
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Figure 3.11: Illustration of local hyper-
volume measures collected along ran-
dom and adaptive walks.
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Figure 3.12: Scatter plot of the average
proportion of Pareto local optimal so-
lutions (#plo) vs. the average length of
1 000 independent multi-objective adap-
tive walks (length_aws) for different
n-values. The correlation is 0.997, and
the regression is: #plo = c · 2↵`aws , where
`aws is the average length of adaptive
walks, c = 0.97 and ↵ = �1.60.

neighborhood (nhv). The notions of dominance and hypervolume im-
provement that can be reached by a solution’s neighborhood can be
seen as measures of evolvability (Smith et al., 2002) for multi-objective
optimization.

For samples collected by means of a random walk, we compute both
the average value as well as the first autocorrelation coefficient of the
measures reported above. Let us consider, for instance, the hv measure.
When there is a strong correlation between the hypervolume of neigh-
boring solutions observed at two consecutive steps of the random
walk, we argue that it tends to be easier to improve locally by means
of neighborhood exploration. On the contrary, when there is no corre-
lation between the hypervolume of neighboring solutions, it is likely
harder to improve locally. As such, the corresponding feature might
characterize a facet of difficulty for multi-objective landscapes. We
also use the random walk sample to estimate the degree of correlation
between the objectives (f_cor_rws). The latter is expected to estimate ⇢
for ⇢mnk-landscapes. For adaptive walks, we simply compute average
values for each measure, as well as walks length (length_aws). In Fig-
ure 3.12, length_aws is shown to be a sharp estimator for #plo. When
the adaptive length is short, the diameter of the basin of attraction
associated with a Pareto local optimal solution is short. Assuming that
the volume of this basin is proportional to a power of its diameter,
the number of Pareto local optimal solutions increases exponentially
when the adaptive length decreases. This generalizes known results
from single-objective nk-landscapes (Kauffman, 1993).

Summary

The ⇢mnk-landscape parameters as well as global and local features pre-
sented above are summarized in Table 3.1. All benchmark parameters
are considered in our analysis, although only the problem size (n) and
the number of objectives (m) are available in a black-box scenario. In
terms of calls to the evaluation function, the computational complexity
for global features from enumeration is |X | = 2n. Given a random walk
of length `rws and a neighborhood size ⌘neig, the computational com-
plexity for random walk features is: 1+ (1+ `rws) · ⌘neig = ⇥(`rws · ⌘neig).
Similarly, the computational complexity for adaptive walk features
is: ⌘aws

�
(1 + `aws) · ⌘neig + eaws

�
= ⇥

�
⌘aws(`aws · ⌘neig + eaws)

�
, where ⌘aws

is the number of adaptive walks, `aws is the number of steps before
the adaptive walk falls into a Pareto local optimal solution, and eaws is
the total number of evaluations performed for the walk to progress.
However, we remark that length_aws alone is cheaper to compute,
as it does not require any neighborhood exploration apart from the
evaluations performed for the walk to progress. Its complexity is just:
⌘aws · eaws = ⇥(⌘aws · eaws). Similarly, the complexity of f_cor_rws alone
is: 1 + `rws = ⇥(`rws). We also remark that `rws, ⌘aws and ⌘neig must be
defined by the user for feature estimation, whereas `aws and eaws are
relative to the landscape being considered. We relate these features
with the performance of multi-objective search algorithms below.
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Table 3.1: State-of-the-art and proposed multi-objective landscape features considered in our analysis. Features #po, #supp, podist_max,
po_ent and fdc come from Knowles and Corne (2003a); #po and #fronts come from Knowles and Corne (2007); hv and #fronts come
from Aguirre and Tanaka (2007); #po and fdc come from Garrett and Dasgupta (2008); #fronts comes from Garrett and Dasgupta
(2009); #plo comes from Paquete et al. (2007); #cc and #sing come from Paquete and Stützle (2009); #lcc and length_aws come from
Verel et al. (2013); podist_avg, hv_r1_rws and hvd_r1_rws come from Daolio et al. (2015, 2017) and Liefooghe et al. (2013b); others
come from Liefooghe et al. (2020a).

benchmark parameters (4)

n number of (binary) variables
k_n proportional number of variable interactions (epistatic links) : k/n
m number of objectives
⇢ correlation between the objective values

global features from full enumeration (16)

#po proportion of Pareto optimal solutions
#supp proportion of supported Pareto optimal solutions
hv hypervolume-value of the (exact) Pareto front
podist_avg average Hamming distance between Pareto optimal solutions
podist_max maximal Hamming distance between Pareto optimal solutions (diameter of the Pareto set)
po_ent entropy of binary variables from Pareto optimal solutions
fdc fitness-distance correlation in the Pareto set (Hamming dist. in var. space vs. Manhattan dist. in obj. space)
#cc proportion of connected components in the Pareto graph
#sing proportion of isolated Pareto optimal solutions (singletons) in the Pareto graph
#lcc proportional size of the largest connected component in the Pareto graph
lcc_dist average Hamming distance between solutions from the largest connected component
lcc_hv proportion of hypervolume covered by the largest connected component
#fronts proportion of non-dominated fronts
front_ent entropy of the non-dominated front’s size distribution
#plo proportion of Pareto local optimal solutions
#slo_avg average proportion of single-objective local optimal solutions per objective

local features from random walk sampling (17)

#inf_avg_rws average proportion of neighbors dominated by the current solution
#inf_r1_rws first autocorrelation coefficient of the proportion of neighbors dominated by the current solution
#sup_avg_rws average proportion of neighbors dominating the current solution
#sup_r1_rws first autocorrelation coefficient of the proportion of neighbors dominating the current solution
#inc_avg_rws average proportion of neighbors incomparable to the current solution
#inc_r1_rws first autocorrelation coefficient of the proportion of neighbors incomparable to the current solution
#lnd_avg_rws average proportion of locally non-dominated solutions in the neighborhood
#lnd_r1_rws first autocorrelation coefficient of the proportion of locally non-dominated solutions in the neighborhood
#lsupp_avg_rws average proportion of supported locally non-dominated solutions in the neighborhood
#lsupp_r1_rws first autocorrelation coefficient of the prop. of supported locally non-dominated solutions in the neighborhood
hv_avg_rws average (single) solution’s hypervolume-value
hv_r1_rws first autocorrelation coefficient of (single) solution’s hypervolume-values
hvd_avg_rws average (single) solution’s hypervolume difference-value
hvd_r1_rws first autocorrelation coefficient of (single) solution’s hypervolume difference-values
nhv_avg_rws average neighborhood’s hypervolume-value
nhv_r1_rws first autocorrelation coefficient of neighborhood’s hypervolume-value
f_cor_rws estimated correlation between the objective values

local features from adaptive walk sampling (9)

#inf_avg_aws average proportion of neighbors dominated by the current solution
#sup_avg_aws average proportion of neighbors dominating the current solution
#inc_avg_aws average proportion of neighbors incomparable to the current solution
#lnd_avg_aws average proportion of locally non-dominated solutions in the neighborhood
#lsupp_avg_aws average proportion of supported locally non-dominated solutions in the neighborhood
hv_avg_aws average (single) solution’s hypervolume-value
hvd_avg_aws average (single) solution’s hypervolume difference-value
nhv_avg_aws average neighborhood’s hypervolume-value
length_aws average length of adaptive walks
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Table 3.2: Benchmark parameter values
for the set of small ⇢mnk-landscape in-
stances. 30 instances are independently
generated for each setting. A total of
60 480 problem instances is considered.

par. values

n {10, 11, 12, 13, 14, 15, 16}
k {0, 1, 2, 3, 4, 5, 6, 7, 8}
m {2, 3, 4, 5}
⇢ {�0.8,�0.6,�0.4,�0.2, 0.0, 0.2,

0.4, 0.6, 0.8, 1.0} s.t. ⇢ > �1
m�1

3.3 Landscape Features vs. Search
Performance on Small Landscapes

Experimental Setup

As detailed in Table 3.2, we consider small-size ⇢mnk-landscapes with
a problem size n 2 {10, 11, 12, 13, 14, 15, 16} in order to enumerate
the solution space exhaustively, as required by the computation of
global features; a number of variable interactions (epistatic degree) k 2
{0, 1, 2, 3, 4, 5, 6, 7, 8}, from linear to highly rugged landscapes; a num-
ber of objectives m 2 {2, 3, 4, 5}, from bi-, to multi- and many-objective
instances; and an objective correlation ⇢ 2 {�0.8,�0.6,�0.4,�0.2, 0.0,
0.2, 0.4, 0.6, 0.8, 1.0} such that ⇢ > �1/(m� 1). We generate 30 landscapes
independently at random for each combination of instance settings.
This represents a dataset of 60 480 small-size landscapes in total, ex-
hibiting a large span of problem characteristics. For local features, we
perform one random walk of length ` = 1 000, and ⌘aws = 100 indepen-
dent adaptive walks, per instance. As in single-objective landscape
analysis (Kauffman, 1993), multiple adaptive walks are performed
to account for the stochasticity observed in their length, whereas a
single long random walk is performed to obtain a large sample to
better estimate the autocorrelation coefficients. For features based on
hypervolume, given that all ⇢mnk-landscape’s objectives have a similar
range and take their values in [0, 1], we set the reference point to the
origin. In terms of algorithms, we perform 30 independent runs of
both G-SEMO and I-PLS on each instance. We are interested in the
approximation quality found by each algorithm after reaching a max-
imum budget, here defined as a number of calls to the evaluation
function. The stopping condition is set to a fixed budget of 10% of
the solution space size, i.e.

⌃
0.1 · |X |

⌥
=
⌃
0.1 · 2n

⌥
calls of the evaluation

function. This represents a budget of 103 evaluations for n = 10, up to
6 554 evaluations for n = 16. Performance quality is measured in terms
of the multiplicative epsilon indicator (Zitzler et al., 2003), that is the
epsilon approximation ratio to the exact Pareto front.

Correlation among Landscape Features

Figure 3.13 reports the correlation matrix and a hierarchical cluster-
ing of all features, as measured on the complete dataset of small-size
instances. This highlights the similarities between features and their
main association with either benchmark parameters: it is worth notic-
ing that each cluster contains a benchmark parameter, as well as both
global and local features.

Cluster associated with ruggedness (violet). All of the eight land-
scape features from the first autocorrelation coefficient of random
walks measures strongly correlate with the proportional number of
variable interactions (epistatic links) of ⇢mnk-landscapes (k_n = k/n).
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Figure 3.13: Features clustering (left) and features association (right) computed over the whole set of small instances. The strength
of monotonic association between each pair of features is measured by the Kendall coefficient ⌧, which is a rank-based non-linear
correlation measure. The distance between each pair of features is defined as 1 � |⌧ |. Ward’s hierarchical clustering (Murtagh and
Legendre, 2014) is performed according to such distance (left figure, y-axis): the lower the split, the closer the features. Clustering is
also used to reorder rows and columns of the symmetrical correlation matrix (Warnes et al., 2016) (right figure, see color legend in the
middle): the darker the color, the higher the strength of association between the corresponding features. By cutting the clustering tree,
we can group together the features that are more associated with each one of the benchmark parameters {⇢, m, n, k_n}; see branches and
row label colors: green for ⇢, violet for k_n, and orange for m.

Intuitively, those features are related to the ruggedness of the multi-
objective landscape, which generalizes known results from single-
objective landscape analysis (Weinberger, 1990): the ruggedness of
the landscape increases with k_n. As in single-objective optimization,
the average number of local optima per objective #slo_avg also cor-
relates to k_n. All the features related with connectedness (#cc, #sing,
#lcc, lcc_dist, lcc_hv) belong to this same cluster, together with
other features related to the distance between Pareto optimal solutions
(podist_avg, po_ent, fdc), although the correlation with k_n is lower
in this case.

Cluster associated with the number of objectives (orange). The fea-
tures related to hypervolume that do not belong to the previous cluster
(associated with ruggedness) are all negatively correlated with the
number of objectives (m). Interestingly, features based on average hy-
pervolume measures (hv, hvd, nhv) are closely related to one another,
for samples from both random and adaptive walks. This means that
the landscape evolvability, in terms of hypervolume, decreases with
the objective space dimension, and so does the Pareto front hypervol-
ume.

Cluster associated with objective correlation (green). This last clus-
ter contains the highest number of features, all related to the correla-
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tion among the objective values (⇢). We note that f_cor_rws is shown
to highly correlate with ⇢, and can thus be used as an estimator for
black-box instances, for which ⇢ is typically unknown. Objective corre-
lation seems to impact both the shape and the cardinality of the Pareto
front (#po, #supp, podist_max). Similarly, local features based on dom-
inance (#inf, #inc, #sup) are close to one another, both for random
and adaptive walks. More interestingly, the proportion of Pareto local
optimal solutions (#plo) and its estimator length_aws both belong to
this cluster. Although #slo_avg belongs to the first cluster associated
with ruggedness (see above), #plo seems to increase with the degree
of conflicts between the objectives. Indeed, the objective correlation
directly impacts the probability of dominance: the larger ⇢, the smaller
the chance to have a dominated or dominating neighbor, and the larger
the chance to have an incomparable one, which directly impacts the
number of Pareto local optimal solutions. The problem size n is also
contained in this cluster, although it is only slightly correlated to other
features, except for the proportional number of fronts (#fronts).

Feature-based Performance Prediction

To investigate the association between landscape features and empiri-
cal problem hardness, we build a regression model that predicts search
performance based on different subsets of input features. More pre-
cisely, we predict the expected multiplicative epsilon indicator value
reached by G-SEMO and I-PLS based on: all features, global features,
local features, local features based on random walk, local features
based on adaptive walk, benchmark parameters, and problem parame-
ters available in a black-box scenario. Given the non-linearity observed
in the data, we chose a tree-based regression model: an ensemble of
extremely randomized trees (Geurts et al., 2006). It is a variant of the
popular random forest model (Breiman, 2001) that differs in the way
individual trees are built. While splitting a node, we do not only ran-
domize the choice of input variable, but also the cut-point. Moreover,
each tree uses the entire training data, rather than bootstrap replicas.
In our experiments, we employ ensembles of 500 unpruned regression
trees (Pedregosa et al., 2011). The prediction target is the approxima-
tion ratio to the exact Pareto front, measured every tenth of the total
evaluations budget. That is, we model the search convergence curve
with a multi-output regression. The mean square error (MSE), mean
absolute error (MAE), coefficient of determination (R2) and adjusted R2

of the regression model for different sets of predictors are reported in
Table 3.3. A score is the average score over the multiple outputs of a
model. The closer MSE and MAE are to 0.0, the better. Conversely, R2

reaches 1.0 when the predictions are perfect, and would be 0.0 for a
constant model that always predicts the global average of the target
value, irrespective of the input features. For each measure of accuracy,
we report the average value on test and its standard deviation over a
10-fold cross-validation.

A general observation is that the MAE and the MSE are in accordance
with each other, as shown by the relative ranking of each subset of
features. The rank reflects any significant statistical difference on MAE
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Table 3.3: 10-fold cross-validated regression accuracy obtained on small instances for different input features.

algo. set of features MAE MSE R2 adjusted R2
rankavg std avg std avg std avg std

G
-S

EM
O

all features 0.007781 0.000055 0.000118 0.000002 0.951609 0.001463 0.951238 0.001474 1
global features 0.008411 0.000064 0.000142 0.000003 0.943046 0.001665 0.942876 0.001670 2
local features 0.009113 0.000072 0.000161 0.000003 0.932975 0.001555 0.932663 0.001562 3
local features (random walk) 0.009284 0.000081 0.000167 0.000003 0.930728 0.001605 0.930510 0.001610 4
local features (adaptive walk) 0.010241 0.000106 0.000195 0.000004 0.917563 0.002260 0.917399 0.002264 5
{⇢, m, n, k_n} 0.010609 0.000110 0.000215 0.000004 0.911350 0.002436 0.911292 0.002372 6
{m, n} 0.032150 0.000309 0.001545 0.000025 0.340715 0.011217 0.340497 0.011220 7

I-
PL

S

all features 0.008043 0.000052 0.000127 0.000002 0.944367 0.001429 0.943940 0.001440 1
global features 0.008613 0.000054 0.000149 0.000002 0.936046 0.001479 0.935856 0.001484 2
local features 0.009297 0.000081 0.000167 0.000003 0.925610 0.001900 0.925264 0.001909 3
local features (random walk) 0.009485 0.000089 0.000173 0.000004 0.923032 0.001863 0.922789 0.001869 4
local features (adaptive walk) 0.010336 0.000098 0.000198 0.000004 0.910670 0.002455 0.910493 0.002459 5
{⇢, m, n, k_n} 0.010817 0.000122 0.000223 0.000005 0.901888 0.002803 0.901823 0.002882 6
{m, n} 0.030523 0.000286 0.001423 0.000023 0.351707 0.009822 0.351493 0.009826 7

and MSE over the holdouts of each cross-validation iteration, with
respect to a Mann-Whitney statistical test at a significance level of 0.05
with Bonferroni correction for multiple comparisons (Conover, 1999).
In addition, when comparing G-SEMO and I-PLS, we observe almost
no difference in the models accuracy. When analyzing the impact of the
different subset of features, we can observe a poor performance when
using solely m and n as input variables. This means that the problem
input provided in a black-box scenario, i.e. the variable and objec-
tive space dimensions, is not sufficient to explain the performance
of G-SEMO or I-PLS. Once we take the objective correlation ⇢ into
account, and more importantly the proportional number of variable
interactions k_n, we observe a significant increase in the model ac-
curacy. For both algorithms, the R2 exceeds 0.9: more than 90% of
the variance in search performance between instances is explained
by the ⇢mnk-landscape parameters. This is not a surprise since these
four parameters define the way ⇢mnk-landscapes are constructed; see
Section 2.2. However, let us remind that ⇢ and k_n are unknown in prac-
tice when solving a black-box problem instance. More interestingly,
however, we see that the proposed local features, based on sampling,
allow the model to obtain a better prediction accuracy than benchmark
parameters. We attribute this to the fact that they are able to capture
the variations between instances with the same parameters; i.e. the ran-
domness in the construction of ⇢mnk-landscapes. This is particularly
true for local features based on random walk, which contain more
insightful information for search performance than the ones based
on adaptive walk. Indeed, the regression accuracy obtained with the
former subset of local features is almost as good as the combination
of both. At last, we observe that global features, based on the enu-
meration of the solution space, obtain a better ranking, although the
addition of local features seems to increase the predictive power of the
regression model even more, as illustrated by the results obtained by
the model using all features as input variables.

Importance of Features for Search Performance

Tree-based models also allow for the identification of which input
features are the most important to make accurate predictions, which
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Figure 3.14: Relative importance of fea-
tures (mean decrease in node impurity)
from totally-randomized regression trees
for small landscapes.

provides insight into the process being modeled (Louppe et al., 2013).
In particular, we consider the measure of importance that relates to
the decrease in node impurity after each split on a given predictor;
the larger the decrease, the more important the predictor. Note that,
in the regression case, node impurity is measured by variance. We
derive our estimates from a large ensemble of 50 000 shallow and
totally-randomized regression trees. Choosing the input variable to
split on totally at random prevents correlated variables to mask one
another, which would result in underestimating their relative impor-
tance (Louppe et al., 2013). Then, by using small trees, we strive to
minimize the effect of having a finite sample set, which introduces
noise in the node impurities as trees grow. The relative importance
of features thus extracted, is depicted in Figure 3.14. For a given al-
gorithm, features are sorted in decreasing order of importance, from
top to bottom. Although the regression accuracy is similar for both
algorithms, the most important features are different for G-SEMO and
I-PLS.

For G-SEMO, the six most important features are all related to the
ruggedness of the landscape (in violet). Apart from the proportional
number of variable interactions k_n in ⇢mnk-landscapes, the others cor-
respond to the first autocorrelation coefficient of the proportional num-
ber of dominated (#inf), dominating (#sup), and incomparable (#inc)
neighbors, the proportional number of non-dominated solutions in
the neighborhood (#lnd), and the hypervolume covered by the neigh-
borhood (nhv) encountered along a random walk. Next in the ranking
are those associated with objective correlation and dominance (in
green), such as the diameter of the Pareto set (podist_max), which also
correspond to the most important global feature. For I-PLS, features
related to the ruggedness (in violet) and to the objective correlation
(in green) seem equally important, and the features listed above also
appear to be impactful. Most notably, the proportion of Pareto local
optimal solutions (#plo) seems of high importance; it appears in the
3rd place for I-PLS and only in the 12th place for G-SEMO. By con-
trast, the features associated with the number of objectives (in orange)
are of low importance for the two algorithms. Interestingly, for both
G-SEMO and I-PLS, the most important benchmark parameter is the
proportional number of variable interactions k_n, followed by the
problem size n, the objective correlation ⇢, and only finally the number
of objectives m.

3.4 Scaling to Large Landscapes

In this section, we extend our analysis to large instances. Since global
features cannot be computed anymore, we investigate the ability of
local features to explain algorithm performance for large dimensions.
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Table 3.4: Benchmark parameter values
for the set of large ⇢mnk-landscape in-
stances. One random instance is gener-
ated for each setting. A total of 1 000
problem instances is considered.

parameter values

n n64, 256o
k n0, 8o
m n2, 5o
⇢

i
�1
m�1 , 1

i

Experimental Setup

As given in Table 3.4, we generate large-size ⇢mnk-landscapes by
means of a design of experiments based on random latin hypercube
sampling (Carnell, 2020). We consider problem sizes in the range
n 2 n64, 256o, numbers of variable interactions k 2 n0, 8o, numbers
of objectives m 2 n2, 5o, and objective correlations ⇢ 2 ]�1, 1] such
that ⇢ > �1/(m � 1). A total of 1 000 problem instances is considered, a
single instance being generated for each parameter setting provided
by the design of experiments. We consider all local features as well as
benchmark parameters, and the same two multi-objective algorithms.
We perform 30 independent runs per instance and per algorithm, with
a fixed budget of 100 000 calls to the evaluation function. The per-
formance quality is measured in terms of the multiplicative epsilon
indicator to the best-known non-dominated set.

Correlation among Landscape Features

As performed in the previous section for small instances, we report the
correlation between each pair of features and the corresponding clus-
tering in Figure 3.15. Similar to our previous results, we obtain three
clusters, each one being associated with one benchmark parameter.

The local features related to the first autocorrelation coefficient mea-
sured on random walks remain in the cluster associated to ruggedness
(in violet), as it was with small instances. In addition, both features
measuring the average difference between the hypervolume covered
by each neighbor and the one covered by the current solution (hvd)

0.0

0.5

1.0

1.5

2.0

2.5

W
ar

d'
s 

di
ss

im
ila

rit
y 

be
tw

ee
n 

cl
us

te
rs

nh
v_

av
g_

aw
s

nh
v_

av
g_

rw
s

m
hv

_a
vg

_r
w

s
hv

_a
vg

_a
w

s
hv

d_
av

g_
aw

s
hv

d_
av

g_
rw

s
n

#l
su

pp
_r

1_
rw

s
k_

n
#i

nc
_r

1_
rw

s
hv

d_
r1

_r
w

s
nh

v_
r1

_r
w

s
#l

nd
_r

1_
rw

s
#i

nf
_r

1_
rw

s
#s

up
_r

1_
rw

s
hv

_r
1_

rw
s

#i
nf

_a
vg

_a
w

s
#i

nc
_a

vg
_a

w
s

#i
nf

_a
vg

_r
w

s
#i

nc
_a

vg
_r

w
s

#s
up

_a
vg

_r
w

s
#s

up
_a

vg
_a

w
s

le
ng

th
_a

w
s

#l
nd

_a
vg

_a
w

s
#l

nd
_a

vg
_r

w
s

#l
su

pp
_a

vg
_a

w
s

#l
su

pp
_a

vg
_r

w
s rh

o
f_

co
r_

rw
s

f_
co
r_
rw
s

rh
o

#l
su
pp
_a
vg
_r
w
s

#l
su
pp
_a
vg
_a
w
s

#l
nd
_a
vg
_r
w
s

#l
nd
_a
vg
_a
w
s

le
ng
th
_a
w
s

#s
up
_a
vg
_a
w
s

#s
up
_a
vg
_r
w
s

#i
nc
_a
vg
_r
w
s

#i
nf
_a
vg
_r
w
s

#i
nc
_a
vg
_a
w
s

#i
nf
_a
vg
_a
w
s

hv
_r
1_
rw
s

#s
up
_r
1_
rw
s

#i
nf
_r
1_
rw
s

#l
nd
_r
1_
rw
s

nh
v_
r1
_r
w
s

hv
d_
r1
_r
w
s

#i
nc
_r
1_
rw
s

k_
n

#l
su
pp
_r
1_
rw
s n

hv
d_
av
g_
rw
s

hv
d_
av
g_
aw
s

hv
_a
vg
_a
w
s

hv
_a
vg
_r
w
s m

nh
v_
av
g_
rw
s

nh
v_
av
g_
aw
s

nhv_avg_aws
nhv_avg_rws
m
hv_avg_rws
hv_avg_aws
hvd_avg_aws
hvd_avg_rws
n
#lsupp_r1_rws
k_n
#inc_r1_rws
hvd_r1_rws
nhv_r1_rws
#lnd_r1_rws
#inf_r1_rws
#sup_r1_rws
hv_r1_rws
#inf_avg_aws
#inc_avg_aws
#inf_avg_rws
#inc_avg_rws
#sup_avg_rws
#sup_avg_aws
length_aws
#lnd_avg_aws
#lnd_avg_rws
#lsupp_avg_aws
#lsupp_avg_rws
rho
f_cor_rws

−1 0 1
Value

0
40

Kendall's tau

C
ou
nt

Figure 3.15: Features clustering (left) and features association (right) computed over the whole set of large instances; see Figure 3.13 for
details.
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Table 3.5: Random subsampling cross-validated regression accuracy obtained on large instances (50 iterations, 90/10 split).

algo. set of features MAE MSE R2 adjusted R2
rankavg std avg std avg std avg std

G
-S

EM
O

all features 0.003049 0.000285 0.000017 0.000004 0.891227 0.024584 0.843934 0.035273 1
local features 0.003152 0.000295 0.000018 0.000004 0.883909 0.026863 0.838126 0.037457 1
local features (random walk) 0.003220 0.000314 0.000019 0.000004 0.878212 0.028956 0.849287 0.035833 1.5
local features (adaptive walk) 0.003525 0.000329 0.000023 0.000006 0.854199 0.032339 0.834089 0.036799 5
{⇢, m, n, k_n} 0.003084 0.000270 0.000017 0.000003 0.892947 0.020658 0.888440 0.021528 1
{m, n} 0.010813 0.000830 0.000206 0.000030 -0.303336 0.188046 -0.330209 0.191923 6

I-
PL

S

all features 0.004290 0.000430 0.000034 0.000008 0.886568 0.026980 0.837249 0.038710 1
local features 0.004359 0.000423 0.000035 0.000008 0.883323 0.027274 0.837309 0.038030 1
local features (random walk) 0.004449 0.000394 0.000036 0.000008 0.879936 0.026335 0.851421 0.032589 1
local features (adaptive walk) 0.004663 0.000403 0.000039 0.000008 0.871011 0.025903 0.853219 0.029476 3.5
{⇢, m, n, k_n} 0.004353 0.000320 0.000033 0.000006 0.889872 0.024505 0.885235 0.025537 1
{m, n} 0.016959 0.001473 0.000472 0.000077 -0.568495 0.228629 -0.600836 0.233343 6

moved to this cluster, but their correlation with the other features
in the cluster is low. Similar observations can be made for the prob-
lem size n. We attribute this to the design of experiments of this new
dataset for large instances. Once again, the features related to dom-
inance (in green) are all very close to one another. They relate very
much to the objective correlation (⇢) and to the proportion of Pareto
local optimal solutions (#plo). As with small instances, features related
to hypervolume are correlated with the number of objectives (m, in or-
ange). Overall, there are no major changes with respect to the previous
dataset, which validates our study on small instances.

Feature-based Performance Prediction

The prediction accuracy of regression models predicting search perfor-
mance for different subsets of input variables is reported in Table 3.5.
Overall, the fitting quality is lower than for small instances. We at-
tribute this to the smaller number of observations contained in the
dataset for large instances (1 000 large instances, against 60 480 small
instances). Once again, the results for G-SEMO and I-PLS are quite
similar. As before, the objective correlation ⇢ and the proportional
number of variable interactions k_n, which are unknown in a black-
box scenario, are essential to understand search performance and to
reach a good prediction accuracy. Surprisingly, the model using solely
the variable space and objective space dimensions, n and m, has a
negative R2, and performs worse than a model that always predict
the average performance value. In this case, observed and predicted
values can actually be far from each other, in particular for instances
where algorithms are efficient. All other models obtain an R2 larger
than 0.8. This means that more than 80% of the variance in the algo-
rithm’s performance is explained by local features. The set of all local
features has a similar predictive power than (known and unknown)
benchmark parameters. Let us remind that in this dataset, a single
instance is generated per instance setting, so that there is no variance
between instances with the same parameters. As with small instances,
the local features based on random walks have a higher predictive
power than those based on adaptive walks, although the combination
of both is always more accurate. Ultimately, local features allow the
regression model to obtain a satisfying prediction accuracy. We ana-
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Figure 3.16: Relative importance of fea-
tures (mean decrease in node impurity)
from totally-randomized regression trees
for large landscapes.

lyze the importance of local features below, and then we study their
relevance in the context of automated algorithm selection.

Importance of Features for Search Performance

The importance of features for both algorithms is reported in Fig-
ure 3.16. For G-SEMO, features related to ruggedness (in violet) are
more relevant than others, followed by features related to objective
correlation, such as the estimator of the proportion of Pareto local
optimal solutions (length_aws), and to a smaller extent, to features
that are associated with the number of objectives (m). Interestingly,
for I-PLS, features related to dominance and objective correlation (in
green) are clearly much more informative. Indeed, the average rank of
those features is 7 for I-PLS, whereas it is only 19.08 for G-SEMO. Con-
versely, the average rank of features related to ruggedness (in violet) is
10.33 for G-SEMO, against 23.67 for I-PLS. For both algorithms, the av-
erage rank of features related to the number of objectives (in orange) is
about the same, and the second most important one (16.6 for G-SEMO,
against 18 for I-PLS). This highlights that landscape features impact
local and global dominance-based multi-objective search algorithms
differently.

3.5 Landscape-aware Automated Algorithm
Selection

We conclude our analysis with a feature-based automated algorithm
selection for large-size ⇢mnk-landscapes using a portfolio of three
multi-objective search algorithms, namely NSGA-II (Deb et al., 2002),
IBEA (Zitzler and Künzli, 2004) and MOEA/D (Zhang and Li, 2007),
as described in Section 2.3. They were chosen as representatives of
the state-of-the-art in the field, covering dominance-, indicator- and
decomposition-based approaches, respectively. We rely on an out-
of-the-box implementation with default parameters, as provided in
jMetal 4.5 (Durillo and Nebro, 2011).

All three algorithms use a population of size 100, a 1-point crossover
with a rate of 0.9, and a bit-flip mutation with a rate of 1/n, under a
fixed budget of 1 000 000 evaluations. Notice that the dataset contains
999 observations: one instance was discarded as there was no distinc-
tion among the algorithms. In order to predict the best-performing
algorithm for solving a given instance, we build an ensemble of 500
extremely randomized classification trees, in contrast to the regres-
sion models discussed so far. The output class is simply whether
(i) NSGA-II, (ii) IBEA, or (iii) MOEA/D performs better, on average,
for a given instance, in terms of hypervolume. The classification ac-
curacy, measured in terms of a cross-validated error rate, is reported
in Table 3.6. In fact, we report two error rates. In the error rate of best
average performance, an error is taken into account if the predicted
algorithm differs from the best performing algorithm on average. Com-
plementarily, in the error rate of best statistical rank, an error is taken
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Table 3.6: Random subsampling cross-validated classification accuracy obtained on large ⇢mnk-landscapes (50 iterations, 90/10% split).

set of features error rate of best average performance rank error rate of best statistical rank rankmean std mean std

all features 0.122222 0.031033 1 0.012727 0.014110 1
local features 0.123030 0.030521 1 0.013737 0.014103 1
local features (random walk) 0.118788 0.029187 1 0.013333 0.012149 1
local features (adaptive walk) 0.130303 0.029308 1 0.015354 0.014026 1
{⇢, m, n, k_n} 0.125859 0.028875 1 0.014141 0.013382 1
{m, n} 0.413333 0.045533 6 0.197374 0.043778 6

into account only if the predicted algorithm is significantly outper-
formed by any other according to a Mann-Whitney statistical test at a
significance level of 0.05 with Bonferroni correction.

Overall, the feature-based classification models are able to reach an
error rate below 0.131 for the best average performance and below
0.016 for the best statistical rank. As such, one of the significantly best-
performing algorithms is predicted in more than 98.4% of the cases.
That is significantly more accurate than the basic approach based on
the variable and objective space dimensions (n and m), which has an er-
ror rate of about 41.3% for the best average performance, and of 19.7%
for the best statistical rank. Notice that a naive approach that always
chooses the best algorithm on average (in our case, NSGA-II) has an
error rate of more than 50%, while always selecting the algorithm with
the best statistical rank (in our case, MOEA/D) would result in more
than 12% of errors. We did not find any statistical difference between
all other classification models, although the model with the lowest
error always uses local features. Note that models built on features
from random walks only are almost as good as any other model: this
might provide a viable option to reduce the computational cost of the
portfolio without altering much the prediction accuracy.

For the sake of providing a model that is easier to interpret, we con-
struct another classifier based on a simple decision tree (Breiman et
al., 1984; Therneau and Atkinson, 2018), as illustrated in Figure 3.17.
Even with such a simple decision tree of depth three, the proposed
features are able to distinguish between the algorithms with a cross-
validated error rate on best average performance of 12.61%. The root
of the decision tree is a feature related to the objective correlation
(#lnd_avg_aws), measured in terms of the proportion of locally non-
dominated neighbors encountered along an adaptive walk. When
there are few non-dominated solutions in the neighborhood, NSGA-II
has more chances of being selected. This typically happens when the
objectives are correlated. Indeed, on the left-hand side of the tree,
NSGA-II outperforms IBEA and MOEA/D on 469 instances, whereas
it is outperformed only 196 times. On the contrary, when there are
more non-dominated solutions, MOEA/D shall be selected, as it per-
forms better on 308 instances, against 26 for the other algorithms. In
order to reduce the error rate on the left-hand side of the decision tree,
two features are considered (hvd_avg_rws and #lnd_avg_rws), both
related to ruggedness. Roughly speaking, MOEA/D shall be preferred
over NSGA-II for correlated objectives only when the landscape is
relatively smooth. Overall, this emphasizes that a single feature is
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Figure 3.17: CART decision tree for auto-
mated algorithm selection on large land-
scapes. The nodes report the number
of instances where NSGA-II, IBEA, and
MOEA/D performs better on average,
from left to right, respectively.

Table 3.7: Benchmark parameter val-
ues for the set of (large-size) mQAP in-
stances. One random instance is gener-
ated for each setting. A total of 1 000
mQAP instances is considered.

parameter values

n n30, 100o
m n2, 5o
⇢ [�1, 1]

type {uni, rl}

not enough to distinguish between the different algorithms, and that
multiple features, in this case related to ruggedness and objective cor-
relation, are required to design an accurate portfolio approach. This
simple example illustrates the potential of automated algorithm selec-
tion based on multi-objective landscape features for large dimensions.
Additional results on large-size multi-objective quadratic assignment
problem instances are discussed in the next section.

In Yap et al. (2020), a complementary study conducted on the same
dataset of large-size ⇢mnk-landscapes further visualizes the relation-
ship between landscape features and algorithm performance, follow-
ing the instance space analysis methodology from Smith-Miles et al.
(2014). An algorithm selection model based on support vector ma-
chines reaches a similar level of accuracy.

3.6 A Glimpse on Further Contributions

In this section, we give a brief overview of contributions related to land-
scape analysis and automated algorithm selection for multi-objective
optimization.

Landscape Analysis and Automated Algorithm
Selection for other Problem Classes

Under the general methodology defined above, we investigate the
properties of large-size multi-objective quadratic assignment problems
(mQAP) and how they impact the performance of multi-objective
search algorithms (Liefooghe et al., 2020b). The mQAP differs from
⇢mnk-landscapes in multiple aspects, most notably the solution rep-
resentation which is based on permutations and not binary strings.
The landscape of a diversified dataset of mQAP instances is character-
ized by means of the previously-identified local features. As detailed
in Table 3.7, we generate 1 000 large-size mQAP instances with the
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Table 3.8: Classification error obtained
with different subset of features, mea-
sured on random subsampling cross-
validation (100 repetitions, 80/20% split).
Two values are reported: the error rate
in predicting the algorithm with the best
performance on average, and the error
rate in predicting an algorithm that is not
statistically outperformed by any other,
according to a Mann-Whitney test at a
significance level of 0.05 with Bonferroni
correction. The dummy classifier always
returns the most frequent best (in this
case, MOEA/D).

set of features classification error error predicting stat. best

all features .1078 .0063
local features .1077 .0063
local features (adaptive walk) .1125 .0065
local features (random walk) .1114 .0062
{type, n, m, ⇢} .1197 .0072
{n, m} .1962 .0332

random classifier .6667 .3810
dummy classifier .4200 .1040

generator from Knowles and Corne (2003a), following a design of ex-
periments based on random latin hypercube sampling (Carnell, 2020).
We consider a problem size in the range n 2 n30, 100o, a number of
objectives m 2 n2, 5o, an objective correlation ⇢ 2 [�1, 1], and two in-
stance types: uniform (uni) and real-like (rl). We notice that, although
the problem size and the number of objectives are given, the type and
the objective correlation are unknown in practice for unseen mQAP
instances. The strengths and weaknesses of multi-objective search algo-
rithms are then highlighted by relating their expected performance in
view of landscape features. We consider the same algorithms (NSGA-II,
IBEA and MOEA/D) with a population of size 100, an exchange muta-
tion with a rate of 0.2, and a partially-mapped crossover (Goldberg,
1989) with a rate of 0.95. Each algorithm stops after 1 000 000 evalua-
tions, and is executed 20 times per instance. We measure algorithm
performance in terms of hypervolume relative deviation. Once again,
our study on mQAP highlights that algorithms are not only impacted
by the number of objectives, but that the ruggedness and multimodal-
ity of the multi-objective landscape are also crucially important to
properly explain multi-objective search performance.

We also investigate the performance of a feature-based automated algo-
rithm selection approach. Table 3.8 reports the error rates obtained by
a random forest classification model (Breiman, 2001; Liaw and Wiener,
2002) based on different subsets of features. The feature-based models
can predict the algorithm with the best average performance in about
90% of the cases, and an algorithm which is not statistically outper-
formed by any other in more than 99% of the cases. This is significantly

Figure 3.18: CART decision tree for
automated algorithm selection on
mQAP. The nodes report the number
of instances where NSGA-II, IBEA, and
MOEA/D performs better on average,
from left to right, respectively.
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Figure 3.19: Performance of automated
algorithm selection (AUTO-EMOA) com-
pared against other algorithms for
mQAP.

more accurate than a random classifier, a dummy classifier that always
predicts the most-frequent best algorithm (here, MOEA/D), and a clas-
sifier based on benchmark parameters only. A simple decision tree for
mQAP is also provided in Figure 3.18, with an error rate of 17.5%.

By paying a particular attention to the cost of features, and by rely-
ing on low-cost features, we now deduce the budget allocated to the
computation of features from the budget allocated to multi-objective
search algorithms. As reported in Figure 3.19, the statistical rank of a
feature-based automated evolutionary multi-objective optimization
algorithm selection method (AUTO-EMOA for short) is 0.09, more
than three times lower than the best standalone approach (MOEA/D,
with 0.29). Among all instances seen during cross-validation, it was
not significantly outperformed by any other approaches on 92% of
the cases (82% for MOEA/D). As such, deducing a small part of the
budget allocated to the search process for feature computation proves
to be beneficial in order to gain knowledge about the tackled problem,
and make a better-informed recommandation about the appropriate
multi-objective search strategy to apply for solving it.

Regarding other problem classes, let us comment that preliminary
studies about landscape analysis and algorithm design and selection
for small-size bi-objective flowshop scheduling and unconstrained
binary quadratic programming problems are reported in Liefooghe
et al. (2017a, 2015b).

Connectedness of the Pareto Set

As mentioned in Section 3.2, connectedness is a particular multi-objective
landscape property that relates to the Pareto set structure and to the
neighborhood relation (Ehrgott and Klamroth, 1997; Gorski et al., 2011).
For a given multi-objective landscape, a graph can be constructed such
that each node represents a Pareto optimal solution, and an edge con-
nects two nodes if the corresponding solutions are neighbors. The
Pareto set is connected if the underlying graph is also connected,
i.e. there is a path between any pair of nodes. As such, when connect-
edness holds, a simple local search such as Pareto local search (Paquete
et al., 2007) is able to identify the whole Pareto set by starting with at
least one Pareto optimal solution, albeit its computational performance
is obviously impacted by the tractability of the Pareto set — and of
the neighborhood relation. Theoretical and empirical results about the
intractability and the connectedness of the Pareto set for some multi-
objective combinatorial optimization problem classes are reported in
Table 3.9.

In Liefooghe et al. (2013a), we investigate the connectedness of three
bi-objective knapsack problem variants with respect to simple neigh-
borhood structures. Based on this property, a Pareto local search (PLS)
algorithm is proposed and its performance is compared against exact
algorithms in terms of runtime and approximation quality. Our experi-
ments indicate that PLS is able to find a representative set of Pareto
optimal solutions on most cases, and in much less time than exact dy-
namic programming algorithms. A summary of results is reported in
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Table 3.9: Intractability and connectedness properties for some multi-objective combinatorial optimization problems. Given a property,
either it is theoretically proven as true (3) or false (7), or there is empirical evidence that it is true (+) or false (–). When a ‘+’ is used for
connectedness, it means that Pareto optimal solutions are highly clustered. For the knapsack problem with binary weights, the Pareto
front is tractable, but the (complete) Pareto set is not.

problem class intractable connected

shortest path problem 3 Hansen (1979) 7 Gorski et al. (2011)
spanning tree problem 3 Hamacher and Ruhe (1994) 7 Gorski et al. (2011)
assignment problem 3 Ehrgott (2005) 7 Gorski et al. (2011)
travelling salesperson problem 3 Emelichev and Perepelitsa (1992) + Paquete and Stützle (2009)
quadratic assignment problem + Knowles and Corne (2003a) – Paquete and Stützle (2009)
conventional knapsack + Bazgan et al. (2009) + Paquete et al. (2008)
knapsack with binary weights 7 Gorski et al. (2012) 3 Gorski et al. (2012)
unconstrained knapsack 3 Ehrgott (2005) + Liefooghe et al. (2013a)
knapsack with bounded cardinality + Liefooghe et al. (2013a) + Liefooghe et al. (2013a)
knapsack with fixed cardinality + Liefooghe et al. (2013a) + Liefooghe et al. (2013a)
unconstrained binary quadratic programming 3 Liefooghe et al. (2014) + Liefooghe et al. (2015b)
long k-path problem 3 Verel et al. (2011b) 3 Verel et al. (2011b)
multiple k-path problem 3 Verel et al. (2011b) 7 Verel et al. (2011b)

Table 3.10: Proportional size of the
largest connected component in the
Pareto graph (%larg) for three bi-
objective knapsack problems, and pro-
portion of Pareto optimal solutions
(%reso) as well as multiplicative epsilon
indicator value (eps) obtained by PLS.

knapsack %larg %reso eps

unconstrained 99.9 99.9 1.00
bounded card. 67.5 63.6 1.18
fixed card. 100.0 100.0 1.00

Table 3.10. For the unconstrained knapsack problem, more than 99.9%
of Pareto optimal solutions belong to the same graph component for
all the instances we investigated. Very few solutions are missing on
average, and at most three out of 89 851 in the worst case (with n = 500,
and ⇢ = 0.8). By starting with one Pareto optimal solution, PLS is able
to identify the Pareto set in many cases. For other instances, it leads
to the identification of more than 99.9% of the Pareto set. The number
of missing non-dominated solutions is negligible compared to the
cardinality of the Pareto set. Furthermore, as reported in Figure 3.20,
PLS performs very efficiently compared against an exact dynamic pro-
gramming (DP) approach in terms of computational time. Indeed, the
larger the instance size, the larger the gap between both algorithms in
terms of CPU time. However, PLS appears to be slightly more efficient
for correlated objectives (⇢ = �0.4). When considering bi-objective
knapsack problems with a bounded or a fixed cardinality constraint,
our experiments suggest that small-sized neighborhood structures
give rise to connected Pareto sets quite frequently, and independently
of the size and of the structure of input data. This is particularly true
for the knapsack with fixed cardinality, where the exact Pareto set was
always found by PLS for all the instances we experimented.

We also analyze the connectedness of bi-objective unconstrained bi-
nary quadratic programming problems in Liefooghe et al. (2015b). We
show that 50 to 95% of the Pareto set belongs the same connected com-
ponent. This allows us to propose a state-of-the-art algorithm for this
problem class: a number of (approximate) supported non-dominated
solutions are first identified by means of a scalarizing approach, and

Figure 3.20: CPU time of dynamic pro-
gramming (DP) and Pareto local search
(PLS) for bi-objective unconstrained
knapsack problem instances.
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Figure 3.21: Objective space of the bi-
objective long 2-path problem (left) and
of the bi-objective multiple 2-path prob-
lem (right) of dimension n = 7. The
points on the bottom-left correspond to
dominated solutions.
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Figure 3.22: Number of evaluations re-
quired by PLS and G-SEMO to reach
a hypervolume approximation ratio of
0.98 for bi-objective long 2-path and mul-
tiple 2-path problems. The approxima-
tion set cardinality is bounded by 128.

this set is further improved by exploring its neighborhood and by
maintaining non-dominated solutions with PLS. This two-phase local
search significantly surpasses other considered algorithms over all the
instances we experimented.

The performance of Pareto local search (Paquete et al., 2007) is often
argued to relate to the connectedness property of the Pareto set. In
order to study the joint effect of intractability and connectedness on
Pareto local search (PLS), we introduce two illustrative bi-objective bi-
nary benchmark problems (Verel et al., 2011b). They extend the single-
objective long path problem (Horn et al., 1994), and they are pictured in
Figure 3.21. In the bi-objective long path problem (left), the Pareto set is
intractable and connected. We theoretically and empirically show that
the runtime required by PLS to find an approximation set of a given
cardinality is exponential, whereas it is polynomial for G-SEMO (Lau-
manns et al., 2004a), a dominance-based evolutionary algorithm based
on a stochastic bit-flip mutation operator. In the bi-objective multiple
path problem (right), the Pareto set is also intractable, but it is not
connected anymore. However, a number of shortcuts are incorporated
by means of dominated solutions that lead to non-dominated ones.
We empirically show that PLS outperforms G-SEMO in this case. The
corresponding results are reported in Figure 3.22. As such, we argue
that connectedness is not the only structural property that explains
the success of Pareto local search, and that additional landscape fea-
tures are to be taken into account in order to characterize the ability of
multi-objective local search algorithms to identify a good Pareto set
approximation.

Visualizing Multi-objective Landscapes with the Pareto
Local Optima Network

By going further into the graph representation of solutions in multi-
objective landscapes, let us now consider not only Pareto optimal solu-
tions, but all local optima. As detailed in our previous multi-objective
landscape analysis, Pareto local optimal solutions are known to highly
influence the dynamics and the performance of multi-objective search
algorithms, especially those based on local search and Pareto domi-
nance. Our study so far has investigated their impact on the difficulty
of searching the landscape underlying a problem instance. However,
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Table 3.11: Variance explained by the
performance prediction regression
model for different subset of features.

{⇢
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PLS 70.31% 83.84% 84.77%
G-SEMO 67.01% 80.07% 81.37%

the community still lacks knowledge on the structure of Pareto local
optimal solutions and the way it impacts the effectiveness of multi-
objective search. Inspired by existing works on single-objective local
optima networks (Daolio et al., 2012; Ochoa et al., 2008, 2014), we in-
troduce the first multi-objective local optima network model as a step
toward the visualization and fundamental understanding of multi-
objective landscapes (Liefooghe et al., 2018a).

Given a multi-objective landscape (X ,N, f ), the Pareto local optimal
solutions network (PLO-net) is constructed as follows.

Definition 3.6.1 A Pareto local optimal solutions network (PLO-net) is
an undirected unweighted simple graph G = (N , E) such that the set of
vertices N are Pareto local optimal solutions, and there is an edge ei j 2 E
between two nodes xi and x j iff they are neighbors, i.e. xi 2 N(x j) or
x j 2 N(xi).

Two solutions connected by an edge in the PLO-net are necessarily
mutually non-dominated. Moreover, Pareto (global) optimal solutions
are particular nodes of the PLO-net.

A visual inspection of the PLO-net is provided in Figure 3.23 for se-
lected problem instances. PLO-nets are constructed by full enumera-
tion of (small) ⇢mnk-landscapes. By extracting a number of features
from network analysis, we are also able to measure the predictive
power of PLO-net features with respect to the approximation quality,
in terms of Pareto front resolution, of PLS (Paquete et al., 2007) and
G-SEMO (Laumanns et al., 2004a) using random forest as a regres-
sion model (Breiman, 2001; Liaw and Wiener, 2002). As reported in
Table 3.11, the addition of PLO-net features largely improves the pre-
diction accuracy over simply considering ⇢mnk-landscape benchmark
parameters. Some of the proposed PLO-net features appear to have a
high impact on search performance. In particular, our results suggest
that the number of Pareto local optimal solutions, and more critically
their connections in the PLO-net, actually have a larger influence than
the number of objectives and their degree of conflict (Liefooghe et al.,
2018a).

Automated Algorithm Selection of Anytime
Algorithms

Our contributions so far mostly measure algorithm performance as the
approximation quality reached for a fixed budget, or as the required
runtime to reach a fixed target. However, a trademark of most heuristic
search methods is that they identify solutions iteratively, so that they
can potentially be interrupted at any time. The relative performance
of different algorithms may yield different results depending on the
budget or target, and these so-called anytime algorithms (Dean and
Boddy, 1988; Dubois-Lacoste et al., 2015; Zilberstein, 1996) actually
offer different trade-offs among runtime and approximation quality.

In Jesus et al. (2020), we define the performance profile P of an anytime
algorithm as the proportion of runs in which a given approximation
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Figure 3.23: Exemplary PLO-nets. For
m = 3 (bottom), a two-dimensional pro-
jection is displayed, the darker the node
color, the higher the f3�value. Notice the
different scales of axes.

quality q 2 Q is achieved at time t 2 T . Figure 3.24 shows the per-
formance traces for three runs of a hypothetical anytime algorithm,
and its corresponding performance profile. In order to compare two
performance profiles, we introduce a partial order with respect to a
utility function w that denotes the anytime preferences of a decision
maker.

Definition 3.6.2 Given two performance profiles P and P0, and a utility
function w : T ⇥Q 7! R+0 , we define the relation P 6w P0 iff P(t, q) 6
P0(t, q) for all t 2 T , q 2 Q such that w(t, q) > 0.

We then introduce a number of scalar performance measures to differ-
entiate between incomparable performance profiles, assuming that the
utility function w is restricted to a bounded region of time and quality.
These measures are order-preserving with respect to 6w and can re-
turn distinct values when applied to incomparable profiles. Based on
this empirical model, we develop an automated selection methodology
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Figure 3.24: Performance traces of
three runs (left) and corresponding
performance profile (right).
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for anytime algorithms. It assumes that the preferences of the decision
maker with respect to when an algorithm is going to be interrupted is
given in terms of a utility function w. By gathering the performance
traces of anytime algorithms on a set of training instances, and by
mapping the features of a test instance to similar training instances,
we are able to build an approximate performance profile for each al-
gorithm. This allows the automated algorithm selection mechanism
to make a decision on which algorithm to select for different budgets
and targets.

We conduct experiments on the selection between an exact dynamic
programming (DP) algorithm (Figueira et al., 2013) and a Pareto local
search (PLS) approach (Paquete et al., 2007) for bi-objective binary
knapsack problems with four instance types, as described by Bazgan
et al. (2009). We consider fixed bounds for quality and varying upper

Figure 3.25: Relative performance
measure for the “real” performance
profiles (continuous lines) and for the
performance profile predicted by our
selection methodology (discontinuous
lines) for knapsack problems with
different instance types.
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Table 3.12: Prediction accuracy of any-
time selection scenarios for for knapsack
problems with different instance types.

A B C D

Proposed .969 .969 .971 .989
Random .498 .501 .502 .503
DP .479 .814 .453 .378
PLS .521 .186 .547 .622
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Figure 3.26: Principles of offline auto-
mated algorithm configuration.

bounds on time in order to study the methodology over varying any-
time preferences. Figure 3.25 shows the performance profile predicted
by our proposed methodology against the actual performance profile
of the considered algorithms for a given instance. This suggests that
the predicted performance profile is often close to the real performance
profile for both algorithms. In Table 3.12, we report the proportion of
selection scenarios with the right selection; a greater value is better. We
report the results for (i) our proposed methodology, (ii) a methodology
that selects at random between both algorithms, (iii) a methodology
that always selects the DP algorithm, and (iv) a methodology that
always selects the PLS algorithm. The results indicate that the pro-
posed selection methodology for anytime algorithms is significantly
better than the other considered methodologies, achieving an accuracy
greater than 96% in the considered scenarios, independently of the
instance type.

Landscape-aware Automated Algorithm Configuration

In addition to automated algorithm selection, we are interested in
automated algorithm configuration. Given a number of algorithm pa-
rameters, including categorical, ordinal and numerical parameters,
offline automated algorithm configuration methods seek a good con-
figuration, that is a particular choice of the parameter values that best
suits the solving of some a priori unknown problem instances (Birattari,
2009; Hamadi et al., 2012; López-Ibáñez et al., 2016). The motivation
is not only to get rid from the burden and bias of manual calibration,
but more importantly to set up a principled approach for algorithm
design, by systematically exploring the strengths and weaknesses of
existing configurations when solving a whole family of optimization
problems. A number of automated algorithm configuration or parame-
ter tuning approaches have been proposed, ranging from experimental
design (Adenso-Diaz and Laguna, 2006), to statistics (Bartz-Beielstein,
2006), heuristic search (Hutter et al., 2009), and racing (Birattari, 2009;
Birattari et al., 2002; López-Ibáñez et al., 2016). As illustrated in Fig-
ure 3.26, based on a set of training instances, a good configuration, that
is expected to generalize well on unseen instances, is identified. As
such, the properties of the training set is a key issue in order to obtain
a high accuracy of the selected configuration. For example, the hetero-
geneity of training instances was recently found to be a challenging
issue when using racing in the context of SAT (López-Ibáñez et al.,
2016). In fact, we argue that a single algorithm configuration might not
be suitable to best suit a whole set of heterogeneous instances exhibit-
ing different properties. Following Hutter et al. (2011), Kadioglu et al.
(2010), and Xu et al. (2010), we advocate for the discovery of multiple
configurations that can then be mapped accurately with respect to the
features characterizing a problem instance (Liefooghe et al., 2017b).
However, in contrast with previous works, we are concerned with
black-box optimization problems. We then rely on low-cost landscape
features to be automatically extracted and injected into the algorithm
configuration process.
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Figure 3.27: Number of test instances
where the landscape-aware configura-
tion with respect to each feature is sig-
nificantly better, tied or worse than the
baseline configuration.
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By partitioning the set of training instances into different groups based
on the value of landscape features, we conduct an independent train-
ing phase in parallel for each group, thus ending up with multiple
algorithm configurations, one per group. During the test phase, the
appropriate configuration is selected based on the feature value of the
considered instance. As a byproduct, we are able to derive a novel
landscape-aware methodology that complement existing automated
algorithm configuration techniques. By fairly taking the extra compu-
tational cost induced by our methodology into account, we investigate
the gain of deciding which parameter configuration to choose for an
unseen instance based on general-purpose low-cost landscape fea-
tures. We conducted preliminary experiments on (single-objective)
nk-landscapes by considering heterogeneous instances in terms of vari-
able interaction and neutrality, and a conventional memetic algorithm
with tunable population size, variation operators, crossover and mu-
tation rates. As reported in Figure 3.27, our empirical findings reveal
that a landscape-aware iterated racing method considering one feature
at a time is able to identify significantly better configurations than stan-
dard iterated racing (López-Ibáñez et al., 2016). Our work can actually
be viewed as a first step towards the setting up of more powerful and
finely tuned landscape-aware approach. We expect that such a simple
high-level algorithm portfolio builder would serve as a basic template
for the design of a more advanced and principled approach for solving
heterogeneous optimization problems.

Compartmental Models to Capture the Dynamics of
Multi-objective Populations

In Monzón et al. (2017, 2020), we track the dynamics of the popula-
tion handled by evolutionary multi-objective optimization algorithms,
i.e. the set of solutions with fixed cardinality that is maintained and
evolved by the search process. More particularly, the population’s
dynamics is captured by means of a compartmental model (God-
frey, 1983). A compartmental model stratifies the population into non-
overlapping compartments according to the status of each individual.
In the case of multi-objective optimization, we use Pareto dominance
to separate solutions into groups. By learning the changes in these
groups throughout the iterations, the model captures the evolution
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name abbrv formula

non-dominated solutions ND {x | x 2 NDt }
new non-dominated solutions NDnew {x | x 2 NDt ^ x < [t�1

i=1NDi }
old non-dominated solutions NDold {x | x 2 NDt ^ x 2 [t�1

i=1NDi }
dominated solutions DOM {x | x 2 P^ x < NDt }
Pareto optimal solutions PO {x | x 2 NDt ^ x 2 PO}
non-dominated non-PO solutions NDNP {x | x 2 NDt ^ x < PO}

Table 3.13: Generational search-
assessment indices with respect to
non-dominated population at iteration t
NDt with respect to NDt�1 and/or
Pareto optimal (PO) solutions.

xt
ND

yt
DOM

�↵

zt
DOM

yt
NDNP

xt
PO

�̄

�

�̄ � ↵̄↵

Figure 3.28: An exemplary two-
compartment model (top) and
three-compartment model (bottom).

of the population, and therefore the dynamics of the considered al-
gorithm. The model parameters offer a compact representation that
can further be used for algorithm comparison and to explain their
behavior, while the model itself is able to estimate the state of future
iterations, provided that the initial conditions are given.

To observe the changes in the population, we introduce a number of
generational search assessment indices (Aguirre et al., 2014). Some
of them are listed in Table 3.13. Based on these indices, we are able
to derive two- and three-compartment models that describe the re-
lationship between solutions from the population. For instance, Fig-
ure 3.28 (top) illustrates a two-compartment model that uses the Pareto
dominance relation to split the population into dominated (DOM) and
non-dominated (ND) solutions. Figure 3.28 (bottom) illustrates a three-
compartment model that further splits the population into Pareto
optimal solutions (PO), dominated solutions (DOM), and currently
non-dominated solutions that are not Pareto optimal (NDNP). Given
the values in each compartment at iteration t and the model parame-
ters (↵, ↵̄, �, �̄, �, �̄) for a given algorithm, we can estimate the values
of the compartments at future iterations. Model parameters can be esti-
mated for a particular configuration based on a set of training instances.
This way, we are able to characterize the population’s dynamics of sev-
eral evolutionary algorithms for small multi-objective nk-landscapes
with different number of objectives (Monzón et al., 2017). Some ex-
amples are provided in Figures 3.29–3.30. They provide a valuable
information to the algorithm designer, either to verify the working
mechanisms of the considered algorithms, or to discover unforeseen
behavior triggered by algorithm design choices.

We extend our analysis to large-size multi-objective nk-landscapes by
considering generational search assessment indices that do not rely on
the knowledge of the Pareto set (Monzón et al., 2020). They are based
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Figure 3.29: Three-compartment model of NSGA-II, IBEA and MOEA/D for a population size of 200 and 3 objectives.
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Figure 3.30: Three-compartment model of NSGA-II, IBEA and MOEA/D for a population size of 200 and 5 objectives.

on non-dominated solutions, and when they appear in the population.
More particularly, we differentiate between non-dominated solutions
that were recently found (NDnew in Table 3.13), non-dominated so-
lutions that were found previsouly (NDold) and dominated solutions
(DOM). They provide some information about the discovery of new
non-dominated solutions, and then about the rate of progress of the
algorithm. This, in turn, was shown to correlate with search perfor-
mance, in terms of the hypervolume covered by all the solutions found
so far by the algorithm, for different population sizes and numbers of
objectives (Monzón et al., 2020).

3.7 Outlook and Current Investigations

In this chapter, we investigated the potential of landscape analysis to
explain and predict the performance of search heuristics for black-box
multi-objective combinatorial optimization problems. We reviewed
the state-of-the-art of multi-objective landscape analysis, and we pro-
posed new general-purpose features characterizing the landscape, which
are affordable for high-dimensional problems thanks to their local
nature. By analyzing their association and relevance to search per-
formance, we highlighted the insightful information they are able to
capture regarding problem difficulty. In the context of performance
prediction, our data-driven analysis revealed the crucial importance
of considering multiple features in order to reach a good prediction
accuracy. In fact, this appears to be the case even when measuring
the effect of landscape features within instances from the same class;
i.e. instances with the same benchmark parameters (Daolio et al., 2015,
2017). From a benchmarking point-of-view, we showed that not only
the number of objectives, but also their degree of conflict, are jointly
important for search performance. Even more notably, ruggedness and
multimodality, which are often overlooked in the multi-objective opti-
mization literature, constitute crucial dimensions that complements
the portrait of multi-objective landscapes. By extending results from
single-objective landscape analysis, we were able to design affordable
walk-based features to characterize the ruggedness and multimodality
of multi-objective landscapes. Interestingly, relevant features are not
the same for the considered algorithms, which allows us to understand
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what makes an instance more difficult to solve for a given algorithm.
Ultimately, a number of automated algorithm selection scenarios from
an algorithm portfolio allowed us to emphasize that, by leveraging the
proposed landscape features, one can automatically select the most
appropriate algorithm for unseen (large-size) instances from different
problem classes with a high accuracy.

In terms of features and problem understanding, we further explored
the impact of connectedness on Pareto local search. Although con-
nectedness certainly does not capture all facets of search difficulty,
it allowed us to propose particularly efficient approaches for some
problem classes. We also extended the concept of local optima net-
work to multi-objective optimization by means of Pareto local optimal
solutions. The proposed PLO-net provides a way to visualize multi-
objective landscapes, and features extracted from the network were
shown to strongly correlate with search performance. However, we
believe that PLO-nets are too large, and we are currently investigating
different ways of building compressed networks (Ochoa et al., 2017) in
order to improve the visualization while maintaining a high level of
information. We also devised a number of metrics to characterize the
population dynamics of multi-objective heuristics, and we showed
how compartmental models could provide a compact representation
of the search dynamics for different algorithms, population sizes, and
number of objectives. In terms of prediction methodologies, we first
extended existing frameworks for automatically selecting from a set
of anytime algorithms, assuming that the runtime-vs-approximation
quality preferences are only known at the time of algorithm selection.
We further extended the automated algorithm configuration frame-
work for constructing an ensemble of configurations, in order to deal
with heterogeneous problem instances. Overall, we contributed to
defining a new standard for benchmarking multi-objective optimiza-
tion approaches. Following a recent survey from Bartz-Beielstein et al.
(2020), our contributions are concerned with the following goals of
benchmarking activities in optimization: (i) the visualization and basic
assessment of algorithms and problems, especially by illustrating the
search behavior; (ii) the sensitivity of performance in algorithm design
and problem characteristics, most notably by characterizing algorithm
performance by problem features and vice versa; and (iii) performance
extrapolation, whether being on performance regression or on auto-
mated algorithm design, selection, and configuration.

We are currently working on making the proposed multi-objective
landscape features publicly available, together with data from bench-
marking analyses, by extending our previous work on single-objective
landscape analysis in Paradiseo-MO (Humeau et al., 2013). We ac-
knowledge that the features considered in this chapter certainly do
not reflect the full portrait of multi-objective problems and algorithms.
For instance, they mostly deal with dominance- and indicator-based
search, and a recent study reveals that new features based on decompo-
sition can complement existing ones quite well (Cosson et al., 2021). We
also recently extended the landscape features to the continuous domain,
on the basis of a fixed-size sampling of the search space, thus allowing
for a fine control over cost when aiming for an efficient application of
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automated performance prediction and algorithm selection (Liefooghe
et al., 2021). Our experiments reveal that the landscape features deliver
a similar prediction accuracy than benchmark parameters for multi-
objective interpolated continuous optimization problems. Whether in
the continuous or in the combinatorial domain, the underlying feature
parameters in terms of sampling and sample size also need to be care-
fully considered in order to reach the best prediction accuracy (Cosson
et al., 2022; Liefooghe et al., 2021). One research line is to allow the
algorithms to benefit from the solutions sampled during the computa-
tion of features, rather than starting their search process from scratch.
At the moment, we are also investigating how features can assist the
construction of the set of training instances, and the allocation of the
budget in terms of running algorithms on training instances.

In terms of general problem characteristics, whereas this chapter con-
centrates on problems with up to five objectives, in a late study we
closely investigated the influence of the number of objectives — up to
twenty — on many-objective landscapes, and the practical behavior
of common procedures and algorithms for coping with many objec-
tives (Allmendinger et al., 2021). We then make use of our theoretical
and empirical findings to derive practical recommendations to support
algorithm design. Although the influence of the number of objectives
is a preponderant issue in multi-objective optimization, this chapters
highlights that it should not be overshadowed by the multimodality of
multi-objective combinatorial landscapes. On a recent survey, Grimme
et al. (2021) make a similar observation for continuous multi-objective
optimization, but also point out that the perspective is inherently dif-
ferent from the combinatorial domain. Integrating ideas and concepts
from both continuous and combinatorial domains is surely a challeng-
ing but important task for the future of multi-objective landscapes and
search. In addition, this chapter considers problems whose objectives
are homogeneous. By contrast, problems with heterogeneous objectives
are those where the objectives differ in one or several aspects, such as
scaling, landscape, evaluation time, or theoretical and practical diffi-
culty (Eichfelder et al., 2015). Previous research focused on problems
where the heterogeneity arises in evaluation times or latencies, that
is, when each objective takes a different amount of time to be eval-
uated (Allmendinger et al., 2015; Allmendinger and Knowles, 2021).
In Santana et al. (2022), we investigate problems with heterogeneous
objectives in terms of multimodality. We show that a solution net-
work and features extracted from heterogeneous objectives thoroughly
characterize multi-objective landscapes with a different level of hetero-
geneity among the objectives. We are currently analyzing how hetero-
geneous objectives influence the difficulty of scalarizing sub-problems,
and how to cope with them in decomposition-based multi-objective
search. Additionally, problems under constraints, which are not con-
sidered in this manuscript, have recently been studied by means of
landscape analysis. A current topic is to use landscape features in order
to guide constraint handling in heuristic search (Malan and Moser,
2019). In fact, two recent independent studies employ and adapt our
landscape features in order to characterize constrained multi-objective
optimization problems (Alsouly et al., 2022; Vodopija et al., 2021).
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Extending and analyzing our feature-based automated performance
prediction and algorithm selection methodology by considering more
practical scenarios would allow us to increase our understanding of the
landscape structure exhibited by black-box multi-objective optimiza-
tion problems. Consequently, we plan to consider other multi-objective
problem and algorithm classes, to study how algorithm component
choices impact search performance over different multi-objective land-
scapes, and how this could help improving the design and configura-
tion of multi-objective search algorithms. More generally, we believe
that landscape features are valuable tools for automated algorithm
selection, but also for building the portfolio of algorithms to choose
from through automated algorithm configuration. Not only this, we ar-
gue they also have a great potential to provide the algorithm designer
with insights into the relationships between problems and algorithms,
and also to assist them at identifying areas of the problem space in
which efficient algorithms are still lacking, and where algorithm design
requires improvement. In the next chapter, we pursue our investiga-
tions on the foundations of a more recent paradigm for multi-objective
optimization, namely set-based multi-objective search.
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A large spectrum of quality indicators have been proposed so far to assess
the performance of Pareto set approximations. Such indicators assign a real
value to a given solution set that reflects an aspect of its approximation
quality. This is an important issue in multi-objective optimization, not only
to compare the performance of different algorithms, but also to improve their
internal selection mechanisms. This chapter first reviews a selection of state-
of-the-art indicators, and statistically analyzes their degree of agreement —
or disagreement — one another. Afterwards, we consider multi-objective
optimization as a set problem, in which the search space consists of all sets
of solutions. By leveraging a neighborhood and a preference relation among
sets, we define set-based multi-objective landscapes. We further formalize
a set-based local search paradigm by combining set-based multi-objective
optimization with neighborhood search. As such, a set-based local search seeks
a whole set of solutions that jointly optimizes a set preference relation, such
as set dominance, hypervolume or epsilon indicator. This allows us to adapt
and enhance the comprehensive design of set-based multi-objective search.
Indeed, local search has shown good performance for several multi-objective
combinatorial optimization problems. However, it naturally stops in a local
optimal set, and the question remains open as to how local optimal sets under
different set preference relations relate to each other. We thus report an in-
depth experimental analysis on local optimal sets under different settings.
Our results reveal important implications for multi-objective local search.
This chapter gives a particular focus on the works presented in Liefooghe
and Derbel (2016) and Liefooghe et al. (2018b), the latter being based on
preliminary publications (Basseur et al., 2013; López-Ibáñez et al., 2014;
Verel et al., 2011a). We then briefly present related contributions to this
research topic and discuss further research.

4.1 Motivations

A number of set quality indicators have been proposed since the late
1990s, and are still refined today for comparing the output of multi-
objective optimization approaches. By defining a total order on Pareto
set approximations, they are particularly relevant when the partial
order induced by the Pareto dominance relation is not sufficient to
discriminate among approximations sets. However, given their differ-
ent background, structural properties and focus in terms of quality, it
is with no surprise that the order obtained with respect to different
indicators are sometimes contradictory. For instance, it might be the
case that an approximation set obtained by an Algorithm A is pictured
to be better than the one from Algorithm B with respect to some indica-
tor, while the opposite is true for another indicator; see, e.g., Knowles
and Corne (2002). In addition, quality indicators can be seen as a sup-
port for multi-criteria decision making, in the sense that they can be
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used to provide the decision maker with a representative subset of
a potentially very large set of trade-offs, and thus for presenting a
compact and reliable representation of the Pareto set. In that respect,
any indicator actually makes some assumptions about the decision
maker preferences (Zitzler et al., 2008).

The properties of state-of-the-art quality indicators have been stud-
ied in terms of computational complexity, parameter dependency,
scaling invariance, and monotonicity with respect to set dominance
relations (Knowles et al., 2006; Talbi, 2009; Zitzler et al., 2008, 2003).
For instance, the proportion of results from indicators that are not com-
pliant with the Pareto dominance relation is experimented by Knowles
et al. (2006). However, the relation between any two indicators is far
from being well understood, and it remains unclear what differences
in quality or interpretation each indicator is able to provide. Intuitively,
this also depends on many factors, such as the shape of the Pareto
front, the distribution of solutions in the objective space, or even the
underlying indicator parameters. For instance, the hypervolume is
known to be affected by the choice of its reference point (Auger et al.,
2012; Knowles and Corne, 2003b), to favor convex regions over con-
cave regions (Zitzler and Thiele, 1998), and to place more emphasis on
knee points (Auger et al., 2012; Beume et al., 2007). Similarly, the opti-
mal distribution of solutions for the epsilon indicator depends on the
shape of the Pareto front (Bringmann et al., 2015). For all these reasons,
it might be interesting to measure the agreements and disagreements
that these quality indicators have when assessing one approximation
set better than another, depending on the problem characteristics, and
given different levels of approximation quality. In this chapter, we
adopt a statistical analysis in order to experimentally investigate to
what extent indicators agree with each other on the induced rank-
ing of approximation sets (Liefooghe and Derbel, 2016). This analysis
gives a first step towards a better understanding of the connection
between quality indicators, and might provide important implications
for performance assessment, algorithm design and decision making.

More recently, those quality indicators have been plugged onto the
design principles of multi-objective search algorithms. Such indicator-
based approaches seek an approximation set that optimizes the indi-
cator value; see, e.g., Bader and Zitzler (2011), Beume et al. (2007),
Brockhoff et al. (2015), Knowles (2002), Zitzler et al. (2007), and Zit-
zler and Künzli (2004). As such, the goal of the search process can be
explicitly formalized as a set problem (Zitzler et al., 2010): the search
space is made of sets of solutions, and not single solutions. Unlike the
previous chapter, where the definition of multi-objective landscapes
was based at the solution level — being solutions from the Pareto set
or from the whole solution set — we here propose to define a set-based
multi-objective landscape in order to deal with the search space prop-
erties at the set level (Verel et al., 2011a). This definition is based on
a search space made of feasible sets, a neighborhood relation among
sets, and a preference relation among sets, such as a set dominance
relation or a quality indicator. Following this view, we further extend
the concept of set-based multi-objective optimization with the aim of
formalizing a set-based local search (Basseur et al., 2013). The purpose is
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not to introduce a novel algorithm, since existing approaches already
share similar principles (Beume et al., 2007; Knowles, 2002; Laumanns
et al., 2004b; Paquete et al., 2007). Instead, this paradigm synthesizes,
abstracts and extends a large class of multi-objective approaches by
formulating or re-formulating them in terms of local search algorithms.
Moreover, it provides a unified framework for the design, analysis and
comparison of different approaches from a common terminology and
classification.

As in the single-objective case, the components from the landscape
play an important role on the design of local search. The behavior and
performance of the search process and the landscape characteristics
are, to a large extent, induced by the definition of these components.
However, although the concept of local optimality is well-studied in
single-objective optimization, its extension and properties in multi-
objective optimization are much less understood. The implications of
these different aspects are still open to investigation and may guide
the design of new multi-objective algorithms. In fact, even global
search methods, such as multi-objective evolutionary algorithms, can
be seen as iteratively identifying better-quality local optima, without
any guarantee of finding a global optimum. However, so far, no work
has examined how various definitions of local optimality relate to each
other. In this chapter, we extend previous work on local optimal sets
by considering various types of local optima induced by different set
preference relations, and by analyzing their properties (Liefooghe et al.,
2018b). This allows us to report important findings for multi-objective
landscapes with direct implications for multi-objective search.

The chapter is organized as follows. In Section 4.2, we describe the
quality indicators under consideration in our study, and we provide
a correlation analysis among them on a number of benchmarks. In
Section 4.3, we define set-based multi-objective landscapes, together
with the concept local optimality in a way the matches the single-
objective case but allows the use of set preference relations based on
dominance or indicators. In addition, we describe an adaptive walk
that follows the set-based local search paradigm for sampling local
optimal sets, and we report and discuss experiments with respect to
different set preference relations for problems with a varying number
of variable interactions and objectives. In Section 4.4, we give a brief
summary of complementary contributions on indicator-based multi-
objective search. in Section 4.5, we finally summarize our main findings
and list remaining open questions.

4.2 Quality Indicators

Definitions

Let us recall that we consider an arbitrary multi-objective optimization
problem f : X 7! Z , such that X is the variable space, and Z ✓ Rm is
the objective space. A (unary) quality indicator is a function 2X ! R

that assigns each approximation set to a (scalar) value reflecting its
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quality (Zitzler et al., 2008). In the following, we introduce a number of
conventional quality indicators from the multi-objective optimization
literature. The reader is referred to Knowles and Corne (2002), Knowles
et al. (2006), and Zitzler et al. (2008, 2003) for broader reviews. Let
A ✓ X be a set of mutually non-dominated solutions; i.e. a Pareto set
approximation, or approximation set. Let R ✓ Z be a reference set,
ideally the exact Pareto front when it is discrete. In the following, we
assume that any solution in A is weakly dominated by an objective
vector in R; i.e. 8a 2 A, 9r 2 R, such that f (a) � r . In other words, any
approximation set A is weakly dominated by the reference set R (Zitzler
et al., 2003).

Inverted generational distance (igd). The inverted generational dis-
tance (Coello Coello and Reyes-Sierra, 2004) is an inverted version
of the generational distance (Van Veldhuizen and Lamont, 1998); see
also Schütze et al. (2012) for a detailed explanation. It gives the average
distance between any point from the reference set R and its closest
point from the approximation set A:

igd(A) :=
1
|R|

s’
r 2R

min
a2A

| | f (a) � r | |22

The euclidean distance (L2-norm) in the objective space is typically
used for distance calculation. Obviously, the smaller the igd value, the
closer the approximation set from the reference set. An indicator value
of igd(A) = 0 actually implies R ✓ f (A).

Epsilon indicators (eps). The epsilon indicator family (Zitzler et al.,
2003) gives the minimum factor by which the approximation set has
to be translated in the objective space in order to (weakly) dominate
the reference set. The additive epsilon indicator (eps+) is based on an
additive factor:

eps+(A) := max
r 2R

min
a2A

max
i2{1,...,m}

(ri � fi(a))

The multiplicative version (eps⇥) is based on a multiplicative factor, and
assumes that all objective values are strictly positives:

eps⇥(A) := max
r 2R

min
a2A

max
i2{1,...,m}

(ri / fi(a))

Both epsilon indicator versions are to be minimized, and eps+(A) = 0
or eps⇥(A) = 1 implies that R ✓ f (A).

R-metrics (r). The family of R-metrics (Hansen and Jaszkiewicz,
1998) are based on a set of scalarizing functions. A scalarizing function
g : X ! R maps a solution to a scalar value based on specified pa-
rameters. A typical example is the (weighted) Chebyshev scalarizing
function:

g(x | �) := max
i2{1,...,m}

�i ·
��z?i � fi(x)

��
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Figure 4.1: hypervolume (hv, top) and
hypervolume relative deviation (rhv,
bottom).

where x 2 X is a solution, z? 2 Rm is the ideal point such that z?i =
minx2X fi(x), i 2 {1, . . . , m}, and � 2 Rm is a weighting coefficient
vector. By defining a set of uniformly-defined weighting coefficient
vectors ⇤ such that for all � 2 ⇤, � = (�1, . . . , �i , . . . , �m), �i � 0 andÕm

i=1 �i = 1, the r2 and r3 indicators can be defined as follows:

r2(A) :=
1
|⇤|

’
�2⇤

⇣
min
r 2R

g(r | �) �min
a2A

g(a | �)
⌘

r3(A) :=
1
|⇤|

’
�2⇤

minr 2R g(r | �) �mina2A g(a | �)
minr 2R g(r | �)

Once again, both r2 and r3 indicators are to be minimized, and r2(A) = 0
or r3(A) = 0 implies R ✓ f (A).

Relative hypervolume (rhv). The hypervolume indicator (Zitzler
and Thiele, 1998; Zitzler et al., 2003) gives the multidimensional vol-
ume of the portion of the objective space that is weakly dominated by
an approximation set:

hv(A) :=
π zmax

zmin
↵A(z)dz

such that:

↵A(z) :=

(
1 if 9a 2 A such that z � f (a)
0 otherwise

In practice, only the lower-bound vector zmin 2 Rm is required to
compute the hypervolume; this parameter is the hypervolume reference
point. In the following, we are interested in the relative hypervolume
indicator (rhv), that is the relative deviation of the approximation set’s
hypervolume to the reference set’s hypervolume:

rhv(A) :=
hv(R) � hv(A)

hv(R)

This allows us to consider minimizing indicator values as well, such
that rhv(A) = 0 means that R ✓ f (A). The hypervolume and relative
hypervolume deviation are illustrated in Figure 4.1.

Properties

We summarize below some properties of quality indicators in terms
of monotonicity, scaling invariance, parameter setting, and computa-
tional complexity (Knowles et al., 2006; Zitzler et al., 2008, 2003).

Monotonicity. Given two approximation sets A, B 2 2X , we recall
that A is weakly dominated by B (A 4dom B), if for all b 2 B there exists
an a 2 A such that a � b. A quality indicator is order-preserving or
monotonic4 4: Pareto-compliant in Knowles et al. (2006)

and Zitzler et al. (2003).
if it does not disagree with the (partial) order induced by

the dominance relation.
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Definition 4.2.1 An indicator I : 2X ! R is order-preserving with re-
spect to the weak-dominance set preference relation iff:

A 4dom B =) I(B) 6 I(A) (4.1)

Definition 4.2.2 An indicatorI : 2X ! R is strictly order-preserving
with respect to the weak-dominance set preference relation iff:

(A 4dom B)^ ¬(B 4dom A) =) I(B) < I(A) (4.2)

All the indicators presented above are order-preserving, with the excep-
tion of igd, despite being regularly used for performance assessment.
However, the hypervolume is the only known indicator that is strictly
order-preserving (Zitzler et al., 2003); i.e., any approximation A that
is dominated by an approximation B always have a strictly lower hy-
pervolume value. Notice that an empirical analysis of the degree of
monotonicity for some non-order-preserving indicators are reported
by Ishibuchi et al. (2015) and Knowles et al. (2006).

Scaling invariance. An indicator is scaling invariant if the order
among approximation sets induced by the indicator values remains
the same when applying a monotonic transformation of the objective
function values. However, as the indicators under consideration all
explicitly make use of the objective function values, none of them
actually satisfies this scaling invariance property, except when the
hypervolume reference point is transformed accordingly.

Parameters. In our definitions of quality indicators, a reference set R
is always required, although the hypervolume (hv) could be used
without any reference set. In addition, the definition of r2 and r3 is
based on the ideal point and on a user-given number of weighting
coefficient vectors, while the definition of hv and rhv is based on a
reference point. In fact, the ordering of the approximation sets induced
by the hypervolume is known to be affected by the setting of this
reference point (Auger et al., 2012; Ishibuchi et al., 2017; Zitzler et al.,
2008).

Computational complexity. Since an in-depth experimental analysis
may require the comparison of a large number of approximation sets,
and given that an indicator can potentially be integrated into the search
process of multi-objective algorithms, the computational resources
required to compute an indicator value is an important feature of its
characteristics. The computational complexity for igd, eps and the r

metrics is polynomial in the number of objectives, the approximation
set cardinality and the reference set cardinality (as well as the number
of weighting coefficient vectors for r2 and r3), whereas it is exponential
in the number of objectives for the hypervolume (Zitzler et al., 2008).
Although efficient algorithms exist for m = 3 (Beume et al., 2009) and
m = 4 (Guerreiro and Fonseca, 2018), the best-known algorithm for
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computing the hypervolume in the general case has an exponential
complexity with respect to m (Chan, 2013).

Correlation Analysis

In Liefooghe and Derbel (2016), we measure the agreements and dis-
agreements among quality indicators when assessing the quality of
approximation sets. We adopt a statistical analysis in order to experi-
mentally investigate by how much quality indicators agree with each
other on the induced ranking of approximation sets. Our analysis ex-
tends results from Jiang et al. (2014) and Wessing and Naujoks (2010)
by systematically analyzing the non-parametric rank correlations be-
tween quality indicators, and by contrasting their association across a
large spectrum of approximation quality and problem classes.

We compute the indicator values of a sample of approximation sets
over well-established multi-objective continuous functions from the
CEC 2009 special session and competition (Zhang et al., 2009). They
have been specifically designed to resemble complicated real-life opti-
mization problems, and they present different properties in terms of
dimension, separability, multi-modality, and shapes of the Pareto front
such as convexity, concavity, discontinuities, or gaps. We consider the
following strategies for sampling a subset of approximation sets, each
one being repeated 1 000 times for every problem:

I low-Q: non-dominated solutions from a sample of 100 solutions
generated uniformly at random;

I med-Q: the approximation set obtained by NSGA-II (Deb et
al., 2002) after 1 000 generations, using default settings and a
population of size 100;

I high-Q: a sample of 100 solutions selected at random from the
reference set.

In order to measure the association between the indicator values, we
consider the Kendall rank correlation coefficient ⌧ (Kendall, 1948),
which is a rank-based non-linear correlation coefficient measure. This
allows us to focus on the ranking of approximation sets obtained
within each indicator, i.e. by how much do the indicators rank the
approximation sets similarly. In other words, we are not interested
in the correlation between the values obtained by each indicator,
but rather on the underlying ranking they obtain within the sam-
ple of approximation sets. Given two indicators I1 and I2 and a pair
of approximation sets A and B, the pair is said to be concordant if
I1(A) > I1(B) ^ I2(A) > I2(B), or if I1(A) < I1(B) ^ I2(A) < I2(B). On the
contrary, the pair is said to be discordant if I1(A) > I1(B)^ I2(A) < I2(B),
or if I1(A) < I1(B) ^ I2(A) > I2(B). If I1(A) = I1(B) or I2(A) = I2(B), the
pair is neither concordant nor discordant. The Kendall coefficient ⌧
quantifies the difference between the proportion of concordant and
discordant pairs among all possible pairs:

⌧ =
(% concordant pairs) � (% discordant pairs)

% pairs
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The coefficient ⌧ ranges in [�1, 1], from complete disagreement (⌧ = �1)
to perfect agreement (⌧ = 1). When ⌧ is approximately zero, the indica-
tor values are uncorrelated.

Figure 4.2 reports the Kendall rank correlation coefficient between all
pairs of indicators for each problem and each sampling strategy. We
split the correlation values into different groups, from a very high
negative correlation (⌧ < �0.75) to a very high positive correlation
(⌧ > 0.75), as well as an additional group containing test cases which
were reported to be non-significant by the Kendall coefficient test, with
a p-value of 0.05. The figure provides the correlation between any pair
of indicators (on the x� and y�axes) for each problem (from top to
bottom) and each sampling strategy (from left to right). The higher
the correlation degree, the higher the agreement between the two
corresponding indicators, the darker the corresponding area on the
heat-map. It is worth noting that we investigate two settings for the hy-
pervolume’s reference point: (i) zmax

i = f max, and (ii) zmax
i = 1.1 · f worst

for all i 2 {1, . . . , m}, such that f max is the maximum objective function
value for the problem under consideration, and f worst is the worst ob-
jective function value found for a given problem and a given sampling
strategy. The corresponding indicator is denoted by rhv (max) and
rhv (worst), respectively.

Overall, we observe that the indicators under consideration are never
in conflict with each other, as there is never a significant amount of
negative correlation. However, there does not exist any two indicators
that fully agree with each other on any of the problems; i.e., ⌧ is always
strictly lower than 1.00. The few test cases where the ⌧ value is larger
than 0.98 actually correspond to indicators from the same family. This
confirms that the performance of multi-objective optimizers cannot be
assessed universally with a single indicator, and that each indicator
actually measures a different facet of approximation quality. Interest-
ingly, the correlation of epsilon indicators with the others is overall
very low. This means that eps+ and eps⇥ actually focus on complemen-
tary aspects with respect to other indicators, but also that they do not
capture all facets of approximation quality. The same reasoning applies
for igd. For this reason, it would be worth revisiting the data from the
CEC 2009 competition, where igd was the only considered indicator, in
order to enhance our knowledge and understandings of the competing
algorithms by means of supplementary indicators. By contrast, rhv
shows a high correlation with r2 and r3 for low- and medium-quality
approximations. As a consequence, it would be worth investigating
more thoroughly the estimation of the computationally-prohibitive
hypervolume indicator with r2 or r3 in order to speed-up the selection
process of hypervolume-based approaches, a research line that was
investigated by Brockhoff et al. (2015) and Shang et al. (2020). For
hypervolume, we also remark that the reference point is particularly
impactful for high-quality approximation sets, the agreement between
both settings being particularly low in this case.
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Figure 4.2: Heat-map Kendall rank correlation ⌧ for each pair of set quality indicators (displayed on both axes), each sampling strategy
(low-Q, med-Q, high-Q) and each problem function (UF01–UF10).
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4.3 Local Optimal Sets

Let us now investigate the difficulty of searching for high-quality ap-
proximation sets with respect to dominance and quality indicators, and
the properties of local optima for set-based multi-objective search. The
concept of local optimality is not well understood in multi-objective
optimization. The difficulties arise from the fact that the search space
is actually the set of all mutually non-dominated sets of solutions, pos-
sibly bounded in size, thus the neighborhood can be seen as operating
on sets. Moreover, the preference relation is usually defined in terms
of Pareto dominance, but it may also be any other quality indicator
that induces a pre-order, such as the hypervolume.

Paquete et al. (2007) provide definitions of local optimality with re-
spect to solution- and set-dominance, i.e. Pareto local optimal solutions
(PLO-solutions) considered in Chapter 3 and Pareto local optimal sets
(PLO-sets). They also relate them to the convergence point of Pareto
local search. We later introduced the notion of set-based landscape, and
we measured ruggedness and non-linearity for fixed-size sets of solu-
tions, using the hypervolume as the preference relation (Verel et al.,
2011a). That study was further extended to the quality of local opti-
mal sets (LO-sets) and the convergence profile of hypervolume-based
local search under different notions of set neighborhoods (Basseur
et al., 2013). More recently, we showed that the estimated number
of PLO-sets is correlated with the number of objectives or their de-
gree of conflict (López-Ibáñez et al., 2014). It is also known that the
number of PLO-solutions increases linearly with the problem non-
linearity (Verel et al., 2013), but that the number of unbounded PLO-
sets decreases (López-Ibáñez et al., 2014). Finally, we observed that
bounding the sets in cardinality does not change these trends, but in-
creases the number of bounded PLO-sets significantly by a factor that
depends on the cardinality of the unbounded PLO-sets. We examine
below how various definitions of local optimality relate to each other
by considering various types of local optima, induced by different
set preference relations (dominance, epsilon, hypervolume), and by
analyzing their properties. This section is based on Liefooghe et al.
(2018b).

Definitions

Set-based multi-objective landscape. In set-based multi-objective
optimization, the search space is defined as the collection of sets of
solutions (Zitzler et al., 2010). In Verel et al. (2011a), we define a set-
based landscape as follows.

Definition 4.3.1 A set-based multi-objective landscape is defined as a
triplet (⌃, N, 4) such that:

I ⌃ ⇢ 2X is a collection of feasible sets,
I N : ⌃ 7! 2⌃ is a neighborhood relation between sets,
I 4 is a pre-order (preference relation) between sets.
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Different examples for the definition of the search space for popula-
tions, unbounded and bounded archives are discussed in Basseur et al.
(2013) and Verel et al. (2011a). In the following, we restrict the search
space to sets of mutually non-dominated solutions and we consider
that the cardinality of the sets is bounded by µ 2 N+, that is:

⌃ := {A 2 2X : |A| 6 µ ^ 8x, x 0 2 A, x , x 0 =) ¬(x � x 0)}

Let A, B 2 ⌃ be two approximation sets. We consider the additive
epsilon indicator (eps+) and the hypervolume (hv), and we define the
corresponding set preference relations:

A 4eps B () eps+(A) 6 eps+(B)

A 4hv B () hv(A) > hv(B)

We recall that eps+ (respectively, hv) is order-preserving (respectively,
strictly order-preserving) with respect to the weak-dominance set
preference relation (4dom). We define the strict partial order (�) of a
given partial order (4) as:

A � B () (A 4 B)^ ¬(B 4 A)

Sets A and B are incomparable if neither A � B nor B � A holds.

Local optimal sets. Given a set-based landscape (⌃, N, 4), the defini-
tion of local optima can be adapted as follows.

Definition 4.3.2 (Local optimal set, LO-set (⌃, 4, N)) A set A 2 ⌃ is a
local optimal set iff 8B 2 N(A) \ A, ¬(B 4 A).

Definition 4.3.3 (Strict LO-set, sLO-set (⌃, 4, N)) A set A 2 ⌃ is a
strict local optimal set iff 8B 2 N(A) \ A, A � B.

Under the definitions above, a Pareto local optimum set (Paquete et
al., 2007) is an LO-set where the pre-order is the set-dominance re-
lation 4dom. It would be a strict LO-set under the same definitions if
there is no B 2 N(A) such that A and B are incomparable. As another
example, a multi-objective local search based on hypervolume (4hv)
stops on an LO-set A 2 ⌃ if there exists no neighboring set B 2 N(A)
that has a larger hypervolume value. It stops on a strict LO-set if all
neighboring sets have a (strictly) smaller hypervolume value than the
current set. Therefore, the proposed definitions allow us to compare
various types of LO-sets under a common terminology.

An adaptive walk to sample local optimal sets. Following the defi-
nitions of strict and non-strict LO-sets, we define a set-based adaptive
walk in Algorithm 1, where the first improving neighboring set encoun-
tered during neighborhood exploration is accepted. This set-based lo-
cal search is analogous to a classical single-objective first-improvement
local search (or hill-climber), known as adaptive walk in landscape anal-
ysis. In Algorithm 1, µ initial solutions are randomly generated and
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Algorithm 1: Set-based adaptive walk
Input : Set cardinality bound µ 2 N+, neutral 2 {TRUE, FALSE},

partial order 42 {4dom, 4eps, 4hv}
Output : Approximation set A

1 A ;
2 for i  1 to µ do
3 x  RandomSolution()

4 A FilterDominated(A[ {x})
5 repeat // main loop
6 for each x 0 2 {N(x) \ A | x 2 A} do // random order
7 A0  FilterDominated(A[ {x 0})
8 if |A0 | 6 µ then
9 A A0

10 goto line 19
11 for each x 00 2 A do // random order
12 A0  {A[ x 0} \ {x 00}
13 if A0 � A then // A0 better than A
14 A A0
15 goto line 19
16 else if neutral ^ A0 4 A then // A0 not worse than A
17 A A0
18 goto line 19

19 until A is a (s)LO-set or no budget left or cutoff reached

added to a non-dominated archive A, which represents the current
solution-set. Then, a main loop explores each neighboring solution x 0

of each element in A in a random order without replacement. If this
neighbor x 0 is non-dominated with respect to any solution in A and
the cardinality of A is smaller than µ, then A can be trivially improved
by adding solution x 0. Otherwise, the algorithm explores all sets that
are constructed by replacing one solution from A with x 0. If the re-
sulting set improves over A, it is accepted. In the case of a neutral
walk, the solution is also accepted if the resulting set is incomparable
with A. Otherwise, the procedure explores the next neighboring set.
The main loop stops once all neighbors have been explored, returning
a (possibly strict) LO-set, when a budget of solution evaluations has
been consumed, or when there is a number of steps without any strict
improvement. A step is here defined as a change in the current set, i.e.
an iteration of the main loop (lines 5–19).

The proposed adaptive walk shares similarities with existing multi-
objective local search methods. Compared against PLS (Paquete et al.,
2007) and SEMO (Laumanns et al., 2004a), we consider mutually non-
dominated sets of bounded cardinality. The neighbors of a set are the
same as those in SEMO (Laumanns et al., 2004a); i.e., given A 2 ⌃:

B 2 N(A) () |B \ A| 6 1 ^ 8b 2 B \ A,9a 2 A such that b 2 N(a)

The main difference is that we explore neighboring sets without replace-
ment, which allow us to detect when the walk falls into a (possibly
strict) LO-set. Other set neighborhood relations are defined and in-
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Table 4.1: Benchmark parameter values.

parameter values

n 16
k {0, 1, 2, 4, 8}
m {2, 3, 5}
⇢ 0.0

vestigated in Basseur et al. (2013). As in single-objective local search,
the proposed non-neutral adaptive walk always falls into an LO-set,
whereas a neutral walk may either eventually fall into a strict LO-set,
or terminate without reaching any type of LO-set. By using this adap-
tive walk, we can experimentally estimate the number, quality, and
dissimilarity of various types of LO-sets, as shown below.

Experimental Analysis

Experimental setup. We consider 15 ⇢mnk-landscapes with the fol-
lowing settings: a problem size n = 16, a number of variable inter-
actions (epistatic degree) k 2 {0, 1, 2, 4, 8}, a number of objectives
m 2 {2, 3, 5}, and no objective correlation ⇢ = 0. We generate one
instance at random for each combination of instance settings. We run
the adaptive walk (Algorithm 1) with respect to the set preference
relations {4dom, 4hv, 4eps} and with various set cardinality bounds
µ 2 {2, 4, 8, 16, 32}. The reference set for computing eps is the (exact)
Pareto front. The reference point for computing hv is set to the origin.
We experiment with both neutral and non-neutral walks. In order to
ensure a reasonable runtime for neutral walks, we set a maximum bud-
get of 107 evaluations and a cutoff of 30 consecutive iterations of the
main loop without improvement. The neighborhood relation among
solutions (N) is defined by the 1-bit-flip operator; i.e., two solutions are
neighbors if the Hamming distance between them is one. We replicate
each experiment 30 times with different random seeds.

Number of local optimal sets. We start by investigating the number
of LO-sets of each type, that is, for each set preference relation (4dom,
4hv, and 4eps) and either strict or non-strict definition (LO and sLO).
After running the adaptive walk as described in the previous section,
we simply count how many of the sets returned at the end of the
runs satisfy the definition of each type of LO-set. Results are shown in
Figure 4.3 for selected settings.

The first observation is that non-neutral walks using a particular set
preference relation always find a non-strict LO-set according to the
same relation, in every run. That is, a walk based on 4dom (respectively,
4eps, 4hv) always falls into an LO4dom (respectively, LO4eps , LO4hv).
Moreover, the LO-set where a given walk falls into might be the same
at different executions, as observed, for instance m = 2, k = 0 with
µ = 32. This suggests that there is a single LO-set in this case, which is
not a surprise because the corresponding landscape is linear (k = 0)
and its Pareto set cardinality is lower than µ = 32.

We did not notice any difference between neutral or non-neutral walks
with 4hv, which suggests that neighboring LO-sets with the same
hypervolume value are rare, and therfore there is no neutrality in
the corresponding landscapes. By contrast, we observe a large neu-
trality for 4dom and 4eps, as shown by the large differences between
neutral and non-neutral walks in such cases. In fact, the neutral walk
using 4dom is only able to find a sLO4dom when µ is large, and when
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Figure 4.3: Number of each type of LO-set found by each type of LS walk (by column) for different instances (by row), depending on
the set cardinality bound (µ). Results for neutral walk (hv) are not reported because they are the same as for walk (hv).

there are few objectives, e.g., for m = 2 and k = 8. We attribute this to
a large non-linearity in the objective values in such cases, with many
incomparable neighboring sets, which seem to increase the number
of strict LO-sets. By contrast, the neutral-walk using 4eps is only able
to find a sLO4epswhen µ is small and/or when the problem is linear
(k = 0), whereas the neutral-walk using 4hv is always able to find a
sLO4hv , as already reported above. The probable reason is that there
are more neighboring sets with the same epsilon value and/or that
the hypervolume gradient is easier to optimize than that of epsilon.
Interestingly, when there are many objectives, and when µ is especially
small relative to the size of the exact Pareto set, it appears to be difficult
to obtain a LO4hvwith any method besides a walk based on 4hv.

To summarize, by comparing LO-sets under 4dom and 4hv, we conjec-
ture that:

sLO4dom =) sLO4hv =) LO4hv =) LO4dom

Although we do not obtain any clear trend by comparing LO-sets
under 4dom and 4hv with LO-sets under 4eps, we conjecture that:

sLO4dom =) LO4eps

We also suspect that there are slightly more LO4eps than LO4hv , given
that the walk based on 4dom consistently finds more of those, but the
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difference seems to be rather small.

Finally, a general observation is that, whatever the set preference rela-
tion, the adaptive walk gets more easily trapped into a LO-set as the
problem non-linearity k increases, and as the number of objectives m
decreases. As a consequence, there are more local optimal sets for
non-linear problems and/or problems with few objectives, whereas
there are fewer local optimal sets for linear and/or many-objective
problems.

Length of adaptive walks. As in single-objective optimization, the
length of adaptive walks provides an estimation of the number of
LO-sets. The number of steps performed by the algorithm defines
the length of the adaptive walk. This length is an estimator of the
diameter of local optima’s basins of attraction. Roughly speaking and
assuming isotropy in the search space, the longer the walk, the larger
the basins size, and the lower the number of local optima (Kauffman,
1993); see also Section 3.2. Figure 4.4 reports the number of steps
performed by each type of adaptive walk. In our experiments, the
variable space has the same size for all instances; i.e. |X | = 2n = 216,
whatever k and m. However, the number of candidate sets depends on
the set cardinality bound µ and on the dominance relations between
solutions. For a given µ, the number of candidate sets is bounded

by
Õµ

i=1
� |2X |

i

�
=
Õµ

i=1
�2(216)�1

i

�
. Therefore, for a given instance, a larger

value of µ induces an exponentially larger number of candidate sets.
Of course, depending on the dominance relations between solutions,
many candidate sets might be equivalent once dominated solutions
are discarded.

We observe in Figure 4.4 that the length of adaptive walks typically
increases with µ. Therefore, a local search is more easily stuck when
µ is small. This means that the absolute number of LO-sets decreases
with µ. When relating that to the number of candidate sets, we argue
that the proportional number of LO-sets is larger when µ is small,
whatever the set preference relation. As expected, the length of adap-
tive walks decreases with the problem non-linearity k. As for single-
objective nk-landscapes, the larger k, the larger the number of local
optima (Kauffman, 1993). When considering the number of objec-
tives m, we observe that adaptive walks runs longer as m increases,
especially when µ is relatively large. A local search has a larger proba-
bility of getting stuck for two-objective landscapes than for three- and
five-objective landscapes. This suggests that the number of LO-sets
decreases with the number of objectives.

When comparing neutral and non-neutral walks for a given set pref-
erence relation, we observe that neutral walks typically run longer.
There are two potential explanations for this result: (i) a neutral walk
may fail to identify a strict LO-set simply because it does not exist, ex-
plaining why the number of steps reaches the overall budget limit for
some settings; and (ii) every strict LO-set under a given set preference
relation is also an LO-set under the same relation, thus the number
of sLO-sets is smaller or equal than the number of LO-sets. This is
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Figure 4.4: Number of steps performed by each walk (colors) for different instances (non-linearity k and number of objectives m, by
column), depending on the set cardinality bound.

the case for 4dom and 4eps. Interestingly, the gap between the num-
ber of strict and non-strict LO-sets seems to decrease with µ for 4dom,
whereas it increases for 4eps. In fact, for large sets, almost all LO4dom

are sLO4dom , as also noticed in Figure 4.3. We attribute this to the fact
that it is more unlikely to come across a neighboring solution that is
not dominated by the set when this set is larger. As already mentioned
above, in the case of 4hv, there is no distinction between neutral and
non-neutral walks for the considered instances: an LO4hv is always
a sLO4hv .

Let us now compare non-neutral walks and non-strict LO-sets for
different set preference relations. For m = 2 and µ 2 {16, 32}, the
length of the adaptive walk is roughly the same for all relations. In fact,
they are the sole settings where the cardinality of LO-sets is actually
smaller than the bound µ, which is explained by the fact that µ is
larger than the Pareto set in those cases. This suggests that there is no
distinction between LO-sets under the different set preference relations
when µ has the same order of magnitude than the Pareto set, as also
observed in Figure 4.3. By contrast, for other instances, the length of
the adaptive walk for 4dom is typically smaller than for 4eps, which
is itself typically smaller than for 4hv. This gives us more evidence
that, when µ is smaller than the Pareto set, we have more LO4dom than
LO4eps , and more LO4eps than LO4hv . A multi-objective local search
with bounded archive is then expected to get more easily trapped
when comparing sets in terms of dominance rather than in terms of
epsilon or hypervolume. On the contrary, a hypervolume-based local
search is expected to perform more steps before getting stuck.

Distance between local optimal sets. At last, we go deeper into
the comparison of LO-sets under different set preference relations by
investigating their dissimilarity in the space of sets. In particular, we
want to know how much different is a LO4eps or a LO4hv from a LO4dom .
We do not consider strict LO-sets in this section, since they do not
necessarily exist for all settings, and since the corresponding neutral
walks are not always successful.
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Figure 4.5: Number of steps performed by the walk to go from a LO4dom to a LO4eps and LO4hv for different instances (non-linearity k
and number of objectives m, by column), depending on the set cardinality bound.

Let us define the distance between a LO4dom and a LO4eps as the length
(number of steps) required by a walk based on 4eps to reach a LO4eps

while starting from a LO4dom as an initial set. To do so, (i) we simply
start by running a walk under 4dom until it falls into a LO4dom , and
then (ii) we run a walk under 4eps starting from the obtained LO4dom .
Only the steps performed in the second phase are taken into account
to measure the distance. The distance between a LO4dom and a LO4hv

follows the same reasoning, but using a walk under 4hv. This notion
of distance gives how many 1-bit-flips, performed on any solution from
the initial set, separates a set A from a set B. Thus, if dist(A, B) = d,
then A may differ from B in d solutions, all connected at Hamming
distance 1, or they may differ in a single solution with Hamming
distance d.

The obtained distances are reported in Figure 4.5. When compared
against the walks that start from a random set, as reported in Figure 4.4,
the number of steps performed from a LO4dom is lower by an order
of magnitude. This means that a LO4dom is much closer to a LO4eps

or a LO4hv than a random set is with any of the three. The distance
between a LO4dom and a LO4eps is often larger for medium µ values
than for small and large values. When considering the hypervolume,
the distances from a LO4dom to a LO4hv are always larger than to a
LO4eps . When m = 2, these distances roughly follow the same trend as
for LO4eps . However, when m > 3, they seem to increase with µ, with
the exception of µ = 32 and m = 3 where the distance is close to 1.
For m = 5, the gap relative to the distances corresponding to LO4eps

increases by several orders of magnitude.

Summary

In this section, we empirically studied the properties of various types
of LO-sets. We observed that the number of LO-sets of any type in-
creases with the increase in the number of variable interactions, and
with the decrease in the number of objectives and the cardinality
bound. When comparing LO-sets under different set preference re-
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This means that there are more LO4dom than LO4hv , but more sLO4hv

than sLO4dom , as illustrated in Figure 4.6. In addition to the implica-
tions above, we also observed that there are many more LO4dom than
LO4eps , and slightly more LO4eps than LO4hv , the latter being perhaps
the most surprising conclusion. Notice that additional results on the
quality of LO-sets and the convergence profile of adaptive walks are
reported in Liefooghe et al. (2018b). They confirm previous findings
and observations in multi-objective optimization, such as the fact that
algorithms relying solely on dominance tend to perform worse for
more than three objectives.

4.4 A Glimpse on Further Contributions

In this section, we summarize additional contributions related to
indicator-based search for multi-objective optimization.

Hypervolume-based Anytime Algorithm Performance

As pointed out in Section 3.6, anytime algorithms allow a practitioner
to trade-off runtime for approximation quality (Dean and Boddy, 1988;
Dubois-Lacoste et al., 2015; Zilberstein, 1996). This is of particular in-
terest in multi-objective optimization, since it might be infeasible to
identify all Pareto optimal solutions in a reasonable amount of time.
In Jesus et al. (2021b), we present a theoretical model that, under some
mild assumptions, characterizes the “optimal” trade-off between run-
time and relative hypervolume of anytime algorithms for bi-objective
optimization. In particular, we assume that Pareto optimal solutions
are collected sequentially, such that the collected solution at each itera-
tion maximizes the hypervolume indicator. In addition, we propose a
hypervolume-based "-constraint algorithm, and show that our model
can be used to drive the search and improve its anytime behavior.
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Figure 4.7: Example of a super-ellipse
curve (continuous line) and the corre-
sponding piecewise linear approxima-
tion (dashed line) for ` = 2 segments.

Our theoretical model is based on a piecewise linear approximation of
the Pareto front with ` segments. We assume that the objective values
of the lexicographic optimal solutions are known, and that the Pareto
front can be well approximated by the quadrant of a super-ellipse.
This is illustrated in Figure 4.7 for ` = 2 segments. Although it is not
expected that the Pareto front matches the quadrant of a super-ellipse
exactly, our findings suggest that this gives a good approximation in
practice for many multi-objective combinatorial optimization prob-
lems. We also define an oracle that, at each call, returns a point of
the piecewise linear approximation that maximizes the hypervolume
contribution. This oracle is expected to reproduce the behavior of an
anytime algorithm which sequentially collects Pareto optimal solutions
that maximize the hypervolume contribution. We present two formula-
tions of the model: (i) an analytical formulation for the particular case
where the piecewise linear approximation consists of ` = 2 segments
and is convex, and (ii) a more general algorithm that works for both
the convex and non-convex cases for a piecewise linear approximation
defined by any number of linear segments.

We compare the relative hypervolume obtained from our model with
an “optimal” model that has complete knowledge of the Pareto front
and selects at each iteration a point such that the hypervolume is
maximized. We also show the anytime behavior of two variants of an
"-constraint approach that collect Pareto optimal solutions by solving
a sequence of constrained single-objective problems, where one of
the variants is guided by our theoretical model, based on hypervol-
ume. We perform this study on different unconstrained bi-objective
knapsack problem variants. In Figure 4.8, we report the relative hy-
pervolume deviation over runtime on exemplary problem instances,
where runtime corresponds to the number of calls to the oracle for the
theoretical and optimal models, and to the number of iterations for the
"-constraint algorithms. We consider ` = 2 and ` = 10 linear segments
of the piecewise linear approximation of the Pareto front.

Our empirical results suggest that the theoretical model approximates
the behavior of the optimal model quite well. In particular, for ` = 10
linear segments, the theoretical model is very close to the optimal
model. For ` = 2 linear segments, there is a larger difference during
the first few steps due to the difference between the maximal hyper-
volume of the Pareto front and of the piecewise linear approximation.

Figure 4.8: Results for the unconstrained bi-objective knapsack problem with a problem size n = 100, a reference point r = (0, 0), and a
varying correlation among the objectives ⇢ 2 {�0.8, 0.0, 0.8}, from left to right.
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Furthermore, the results show that the basic "-constraint algorithm
has a good anytime behavior for some instances, but that its behavior
deteriorates for other instances. By contrast, the variant guided by
our theoretical model shows very good anytime behavior on all the
experiments. We note that these results are coherent for instances with
different characteristics, and we expect the results to generalize for
other problems where the Pareto front can be approximated by the
quadrant of a super-ellipse.

Indicator-based Branch and Bound

In Jesus et al. (2021a), we propose a branch and bound approach for
multi-objective combinatorial optimization whose selection is driven
by a quality indicator. Multi-objective branch and bound recursively
divides the solution space into several sub-problems at each branching
step (Przybylski and Gandibleux, 2017; Visée et al., 1998). For each
node of the search tree, we maintain (i) an upper bound set of objective
vectors that weakly dominates all solutions to the sub-problem, and
(ii) a lower bound set of mutually non-dominated solutions to the sub-
problem (Ehrgott and Gandibleux, 2001; Przybylski and Gandibleux,
2017). We additionally keep an archive of the best non-dominated solu-
tions from the lower bound sets of each node. The proposed indicator-
based branch and bound uses a binary indicator in order to select
the next node to be processed, by measuring the quality of its upper
bound with respect to the archive. Although the branch and bound
algorithm will eventually identify the whole Pareto set, we are partic-
ularly interested in analyzing its anytime behavior.

We compare two indicator-based branch and bound variants against
the conventional depth-first (DFS) and breadth-first (BFS) node selec-
tion strategies (Visée et al., 1998). The best-first selection (BeFS) variant
selects the most promising node with respect to the quality indicator,
whereas the best-depth-first selection (BeDFS) variant only evaluates
the nodes that are at the deepest level of the search tree. For BeFS and
BeDFS, we consider the hypervolume and the epsilon indicator. We
conduct experiments on a multi-objective knapsack problem with 2
to 7 objectives, by considering a random branching order (“default”)
and a problem-specific branching order — the rank sum order from
Bazgan et al. (2009). Figure 4.9 shows the anytime performance profile
of the considered approaches with respect to the normalized hyper-
volume and CPU time. The results suggest that the indicator-based
branch and bound outperforms the naive depth-first and breadth-first
search strategies. The improvement is especially significant when the
branching order is random, which suggests that the approach is partic-
ularly relevant when no favorable problem-specific branching order
is available (Cerqueus et al., 2017). Moreover, the results indicate that
the hypervolume-based branch and bound has a good anytime per-
formance for a small number of objectives, whereas the branch and
bound based on the epsilon indicator shows better performance for a
larger number of objectives.
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Figure 4.9: Anytime performance profile of the branch and bound approaches for multi-objective knapsack problem instances with a
varying number of objectives and a problem size n = 100.

Hypervolume Subset Selection

Subset selection is an important stage of any (evolutionary) multi-
objective optimization algorithm when truncating the current approxi-
mation set for the next iteration (Coello Coello et al., 2007; Deb, 2001).
In particular, indicator-based selection has been intensively used in
recent years for that purpose (Beume et al., 2007; Zitzler and Künzli,
2004). Subset selection is also relevant for post-processing all solutions
returned by a multi-objective optimizer and presenting a represen-
tative subset to the decision maker (Bringmann et al., 2014a). This
problem appears to be particularly challenging when the number of
solutions to be removed is large, and when the approximation set
contains many mutually non-dominating solutions. Most approaches
for the indicator-based subset selection problem are based on a simple
greedy backward elimination (GBE) strategy, that removes the worst
solution with respect to the considered indicator, and iterates until
the considered set shrinks to the target size (Beume et al., 2007; Zit-
zler et al., 2010). The subset returned by such a heuristic is generally
not optimal, and alternative heuristics (Bradstreet et al., 2007), exact
methods (Bringmann et al., 2014b; Kuhn et al., 2016; Vaz et al., 2015)
and approximation algorithms with performance guarantee (Guerreiro
et al., 2015) have also been proposed.

In Basseur et al. (2016), we investigate additional heuristics that in-
clude a greedy sequential insertion (GSI) and a greedy forward selec-
tion (GFS) policy, a first-improvement hill-climbing local search (LS),
together with combinations of those. We evaluate their performance
when maximizing the hypervolume of candidate subsets for different
numbers of objectives, numbers of solutions, and subset sizes. We con-
sider both random instances (i.e. randomly-generated sets of mutually
non-dominated solutions) and structured instances (i.e. known Pareto
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Figure 4.10: Approximation quality of hypervolume subset selection heuristics for random instances.
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Figure 4.11: Approximation quality of hypervolume subset selection heuristics for structured instances.
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fronts from Zhang et al. (2009)). Figure 4.10 reports the hypervolume
relative deviation to the best-found subset for each heuristic on ran-
dom instances. Figure 4.11 is the counterpart for structured instances.
Our experimental findings reveal that the default greedy backward
elimination (GBE) heuristic is outperformed by a local search, that
does not necessarily require more computational resources. Similarly,
GBE is outperformed by a greedy sequential insertion (GSI) heuris-
tic with immediate truncation, especially on two-objective structured
instances. This has important implications for hypervolume-based
algorithms: instead of merging the parent and offspring populations
and then iteratively removing the less contributing solution, it might
actually be more efficient to iteratively insert offspring solutions to
the population, and to immediately remove the worst-contributing
solution after each insertion. Moreover, running a simple local search
from the solution obtained by a greedy heuristic constantly leads to an
improvement in terms of hypervolume, independently of the greedy
heuristic, and with a minor computational overhead. This suggests
that more efficient indicator-based algorithms could be designed, for
which it would be worth measuring the cumulative improvement as
the search progresses.

An Ensemble Indicator-based Selection Approach

Indicator-based (evolutionary) multi-objective optimization algorithms
make use of an indicator in order to guide the selection of their search
process (Beume et al., 2007; Zitzler and Künzli, 2004). As such, it is
well understood that an indicator-based approach targets an approxi-
mation set exhibiting the preferences of its underlying indicator, and
that different algorithms yield different results in terms of the distri-
bution of solutions in the approximation set, due to the underlying
properties of the indicator being used. Moreover, a specific indicator-
based algorithm might perform well on some problems, but there
might exist others on which it does not. As a consequence, it remains
unclear which indicator to consider beforehand, and an open question
is whether a set of indicator-based selection mechanisms can reach a
consensus that outperforms existing ones.

In machine learning, ensemble methods aim at improving predictive
performance by combining multiple stand-alone models (Zhou, 2021).
In Falcón-Cardona et al. (2020), we consider an ensemble of indicators,
and we propose an ensemble indicator-based selection approach for
multi-objective optimization. We rely on adaptive boosting (Freund
and Schapire, 1997) to combine the features of multiple indicators, and
we experiment with the hypervolume hv (Zitzler and Thiele, 1998), the
r2 (Hansen and Jaszkiewicz, 1998), the inverted generational distance
plus igd+ (Ishibuchi et al., 2015), the additive epsilon eps+ (Zitzler
et al., 2003), and the averaged Hausdorff distance �p (Schütze et al.,
2012) indicators. At each iteration, the ensemble mechanism adaptively
selects solutions by using a learning process that takes the preferences
of the underlying indicators into account. We employ a number of
multi-objective continuous benchmark functions, and we compare
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Figure 4.12: Statistical ranks obtained by each algorithm over all benchmark functions with respect to each considered indicator.

the ensemble approach against SMS-EMOA (Beume et al., 2007), R2-
EMOA (Brockhoff et al., 2015), and three other variants which use the
hv, r2, igd+, eps+, and �p indicators, respectively. Figure 4.12 shows
the statistical ranks obtained by each algorithm over all considered
benchmark functions with respect to each indicator. The rank corre-
sponds to the number of algorithms that significantly outperform the
one under consideration (a lower rank is better). Our experimental
results show that an adaptive ensemble indicator-based algorithm (EIB-
MOEA) outperforms an average-ranking ensemble approach (avgEIB-
MOEA) that sets all indicators as equally important throughout the
search process. When comparing the ensemble approach against ex-
isting algorithms, we see that it maintains a strong performance with
respect to the different indicators. Therefore, we argue that such a strat-
egy positively influences the robustness of selection in multi-objective
search.

4.5 Outlook and Current Investigations

This chapter focused on a recent paradigm for multi-objective opti-
mization: set- and indicator-based search. We first reviewed selected
quality indicators, and experimentally investigated the degree of agree-
ment and contradiction in the order they induce among approximation
sets. Our analysis highlights important insights regarding performance
evaluation, preference interpretation, and algorithm design. First, there
is no single indicator that captures all facets of approximation quality,
although none of them vigorously conflict with others. Second, the
correlation of the epsilon indicator and of the inverted generational
distance with other considered indicators is particularly low, which
suggests that they seem to focus on complementary aspects of ap-
proximation quality. For this reason, it seems relevant to revisit some
benchmarking analyses, such as those of the CEC 2009 competition
where the inverted generational distance was the only performance
measure considered, in order to enhance our knowledge and under-
standing of competing algorithms by means of complementary indica-
tors. Moreover, the hypervolume shows a strong correlation with the
R-metrics for sub-optimal approximation sets. This suggests that the
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latter could be used as a substitute of the former to speed up the com-
putations while providing a satisfying accuracy in those cases. This
seems particularly appropriate for procedures that require many calls
to the indicator, such as hypervolume-based search approaches (Bader
and Zitzler, 2011; Beume et al., 2007).

Next, we extended the idea of set-based multi-objective optimization
to set-based landscapes and local search by introducing a neighbor-
hood relation among sets. Such a framework formalizes and shares
similarities with state-of-the-art multi-objective approaches, but also
enables the design and analysis of original methodologies. Different
definitions of a set-based multi-objective landscape, in terms of set
space, set neighborhood relation, or set preference relation, lead to
different dynamics of the search process. Of particular interest is the
characterization of the local optimal sets in which set-based search
algorithms fall into for different set preference relations, such as set
dominance, hypervolume or epsilon indicator. Our experimental re-
sults reveal that, whatever the set preference relation, the number of
local optimal sets typically increases with the number of variable inter-
actions, and decreases with the number of objectives. We observe that
strict local optimal sets of bounded cardinality under set dominance
are local optimal sets under both epsilon and hypervolume, and that
local optimal sets under hypervolume are local optimal sets under
set dominance. Nonetheless, local optimal sets under set dominance
are more similar to those under epsilon than hypervolume. These
findings have important implications for multi-objective local search,
and shed some light about a number of open research questions. In
particular, set-based multi-objective landscapes with fewer objectives
and/or fewer solutions appear to be more multimodal, suggesting
that it might be harder for multi-objective local search to find a good
approximation set in these cases. In addition, set-based multi-objective
landscapes under dominance seem to be more multimodal — although
they are more strictly multimodal under indicators. As such, we argue
that a dominance-based approach with bounded archive gets more eas-
ily trapped and might experience difficulty to identify a local optimal
set under epsilon or hypervolume. On the contrary, a hypervolume-
based approach is expected to perform more steps before converging
to better approximations.

On the same line, we introduced a theoretical model of performance
for bi-objective optimization approaches that collect, at each iteration,
a solution that maximizes the hypervolume. We show that such an
analytical model is able to finely predict the anytime performance of
"-constraint algorithms for previously unseen instances, and that it
can be further generalized to an algorithmic model that requires less
assumptions. After that, we proposed three different approaches for
improving the selection of indicator-based search. The first one is an
indicator-based branch-and-bound framework that makes use of a
quality indicator for selecting the best node to be explored at each
iteration. By thoroughly investigating its components, our empirical
results show promising results in terms of anytime performance, es-
pecially when no favorable (problem-dependent) branching order is
available, although we might consider alternative branching strategies
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from Cerqueus et al. (2017). The second one looks into the subset selec-
tion problem to identify the subset of solutions that jointly optimize
a quality indicator, such as hypervolume. We report that the conven-
tional heuristic is in most cases outperformed, and can be further
improved by means of a simple local search, without a significant com-
putational overhead. We argue that such a strategy could improve the
selection mechanism of multi-objective search. The last contribution
is based on the observation that different indicators are not neces-
sarily consistent about the solutions to retain during indicator-based
selection. For this, we adopt an ensemble method which scores the
solutions on the basis of multiple indicators, so as to offer a good com-
promise among them. Following a recent survey on quality indicators
in multi-objective optimization (Li and Yao, 2019), our contributions
are concerned with the following open challenges: (i) indicator selec-
tion, especially with respect to the use of an ensemble of indicators;
(ii) connection between indicators, for which we measure the degree
of agreement; (iii) optimal distribution, that directly relates to subset
selection; and (iv) indicator-based search. Another survey on indicator-
based multi-objective evolutionary algorithms by Falcón-Cardona and
Coello Coello (2020) lists the design of multi-indicator-based (i.e. en-
semble) approaches, and the theoretical speed of convergence and
distribution of solutions as important future research directions.

Apart from considering complementary benchmarks with additional,
potentially evolving samplings of sets, we plan to expand our correla-
tion analysis with further quality indicators. They include the modified
inverted generational distance (Ishibuchi et al., 2015), a variant which
in turn is order-preserving with respect to set dominance, and also the
average Hausdorff distance (Schütze et al., 2012), which generalizes
several indicators. For the latter, we anticipate that different parameter
settings will exhibit different degrees of correlation with other indica-
tors. In addition, it also seems relevant to visually inspect the optimal
(or close to optimal) distribution of solutions in the objective space
with respect to different indicators, as well as the potential compro-
mises among them. All together, we expect this will strengthen our
knowledge on the relation among indicators and on the underlying
mechanisms that explain their differences. Not only this, this might
eventually lead to a more efficient indicator-based search.

Regarding local optimal sets, we conjecture that our findings regarding
the epsilon indicator (respectively, the hypervolume) generalize to any
order-preserving (respectively, strictly order-preserving) quality indi-
cator. In fact, we are currently polishing the formal proof of some of our
conjectures, thus increasing our theoretical understanding of set-based
multi-objective landscapes. Furthermore, we are extending our exper-
imental analysis to additional problems, neighborhoods and order-
preserving indicators, in order to corroborate that our conjectures
indeed generalize as expected. Of particular interest is the extension
of our work to local optimal sets for continuous problems (Grimme
et al., 2021; Kerschke et al., 2016). In terms of set neighborhood, the re-
lations introduced in our work can be extended with higher degrees of
reduction or expansion over the set cardinality, and with more general
operators over populations like recombination. However, one of the
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main computational issue within such very-large set neighborhood
structures deals with their efficient exploration (Basseur et al., 2013). To
analyze set-based landscapes induced by the continuous domain and
by large set neighborhoods, we plan to explore sampling techniques
by discretization of the solution space (Liefooghe et al., 2021), as well
as landscape techniques for stochastic search operators (Aboutaib et
al., 2020). Moreover, a similar research plan will allow us to make a
stronger connection with the previous chapter, by designing set-based
landscape features through sampling, thus promoting the uptake of
feature-based prediction tasks for the set-based view of multi-objective
search. We believe our findings could also allow deriving practical
recommendations to support the design of new multi-objective search
heuristics. For instance, an epsilon-based local search does not nec-
essarily converge to better epsilon values than a hypervolume-based
local search, unless it explicitly handles sets that are equivalent in
terms of epsilon.

In terms of problem solving, the main challenge facing set-based (local)
search is the large cardinality induced by some set neighborhoods, as
already pointed out for landscape analysis. We see two complementary
ways of approaching this. First, at the solution level, it deals with
benefiting from any fast (incremental) neighborhood or recombination
exploration, although this breaks the black-box nature of the problem,
at least partially; see, e.g., Whitley et al. (2016) or Abdelkafi et al. (2020).
Second, at the set level, we see subset selection as a way to identify or
approximate the best neighboring set. In fact, indicator-based subset
selection can be formulated as a pseudo-boolean (single-objective)
optimization problem, for which an efficient surrogate meta-model
has recently been proposed (Verel et al., 2018), as also discussed in the
next chapter. In a complementary way, we aim at exploring indicators
for which multiple solutions could be identified independently, either
to parallelize the search process or to evaluate the set quality (i.e. the
indicator value) incrementally. For instance, we believe the r2 and r3

indicators could be good candidates for this, given their satisfying
properties (not strictly order-preserving, but close to the hypervolume)
and their conceptual connection with other multi-objective search
paradigms such as the decomposition approaches considered in the
next chapter.
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In this last chapter before concluding, we describe our research work on effi-
cient multi-objective search. By relying on the core concept of decomposition,
we precisely aim at improving the anytime behavior of algorithms, that is at
identifying better solutions in a shorter amount of time. The main challenge
deals with the design and analysis of advanced algorithm components in order
to improve the search ability. To do so, we first make the most of the high-
level parallelism enabled by decomposition-based methods. This allows us to
propose three distributed approaches by revisiting the design of sequential
decomposition-based search, so as to provide a good balance between parallel
runtime and approximation quality (Derbel et al., 2014b, 2015; Shi et al.,
2017b). Secondly, we consider the integration of surrogate meta-models to
accelerate multi-objective search. This is relevant in the context where the
evaluation of the objectives turns out to be particularly expensive. We present
a taxonomy and a comparative study of existing methods for expensive multi-
objective continuous optimization (Berveglieri et al., 2019, 2022), and we
propose a surrogate-assisted approach for expensive multi-objective combina-
torial optimization (Pruvost et al., 2020b, 2021). We conclude the chapter
by summarizing contributions related to population, selection and variation,
and by discussing further considerations.

5.1 Motivations

In this chapter, we are interested in the foundations of computationally
efficient multi-objective search, with a particular focus on decomposi-
tion (Zhang and Li, 2007). Decomposition-based multi-objective search
consists in transforming the original multi-objective optimization prob-
lem into a number of scalar sub-problems that are being solved si-
multaneously and cooperatively. Due to its simplicity and flexibility,
the decomposition framework has recently gained in popularity and
received a renewed interest from the community. In particular, the
so-called multi-objective evolutionary algorithm based on decompo-
sition (MOEA/D) from Zhang and Li (2007) and its many variants is
now considered as a reference in the field. On top of offering a high effi-
ciency compared against existing algorithms, our interest in MOEA/D
stems from its ability to leverage existing single-objective search pro-
cedures and components, while also enabling parallelism in a rather
natural way. The origins of MOEA/D can be traced back to Murata
et al. (2001) in evolutionary computation, and even earlier than this
in multi-criteria decision analysis and traditional optimization, where
similar principles date from the late 1970s (Ehrgott, 2005; Miettinen,
1999). The main differences with MOEA/D lie in the fact that (i) the
search process benefits from solving the sub-problems concurrently
and cooperatively, the solution from one sub-problem contributing to
the solution from neighboring sub-problems and vice versa, and (ii) it
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emphasizes in a comprehensive way the importance of the scalariz-
ing functions being used to define the sub-problems and to drive the
search accordingly. Based on these two aspects, and motivated by the
success and effectiveness of this framework, a number of other inves-
tigations followed and continue to be actively developed today (Li,
2021; Trivedi et al., 2017). In order to accelerate the convergence of
(black-box) multi-objective search by identifying high-quality solu-
tions earlier, and thus improve its anytime behavior, we address three
main challenges in our work, which are summarized below.

Given that its search process is in essence distributed among the dif-
ferent sub-problems, the decomposition also implies the distribution
of the underlying computations over a possibly large-scale computing
environment. Two interrelated issues are typically addressed in parallel
multi-objective search: (i) how to reduce the computational complex-
ity of a specific multi-objective algorithm, and (ii) how to make the
parallel processes cooperate in order to improve the quality of the
approximation set (Coello Coello et al., 2007; Talbi et al., 2008). When
decomposing the search process into parallel sub-processes targeting
different regions of the Pareto front, the challenge is to maintain the
search ability of the algorithm while attempting to break down the
dependencies in the computational flow of its original sequential im-
plementation (Nebro and Durillo, 2010). On top of that, it remains
unclear how to deal with the fine-grained parallelism encountered
when effectively deploying the parallel search in a large-scale dis-
tributed environment. In this chapter, we attempt to address these
challenges while gaining more insight into the best practices one has
to follow when adopting a parallel decomposition approach. We derive
parallel approaches that exhibit a good balance between approxima-
tion quality and acceleration in the context of large-scale parallelism,
where a fine-grained workload may drastically prevents good per-
formance, especially in the scenario where the communication cost
is non-negligible compared to the cost of evaluating the objectives.
First, we deal with the adaptive and distributed setting of the weight
vectors used by the decomposition (Derbel et al., 2014b). We show
that using highly local distributed rules to define the search direc-
tions in an adaptive way leads to a high approximation quality and
parallel efficiency. Second, we design a fine-grained message-passing
parallel MOEA/D approach, which is to our knowledge the first to
achieve parallel scalability while offering a good balance between ap-
proximation and acceleration (Derbel et al., 2015). Third, we propose
a decomposition-driven parallel strategy for Pareto local search (Shi
et al., 2018, 2017b). We show that decomposition allows the parallel
variant to significantly speed up the search process while maintaining
about the same approximation quality.

The second challenge that we address in this chapter deals with the use
of meta-models to assist the search process when creating improving
candidate solutions, based on an efficient estimation of their objective
values. This turns out to be of particular interest when evaluating
the objectives has a high computational cost; e.g., when optimizing
expensive black-box simulations. This also relates to multi-fidelity
optimization, where the evaluation of objective(s) involves several
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models with different levels of fidelity, and therefore more or less
expensive (Forrester et al., 2007). The issue is thus to find the right
balance for the calls of the fast but unreliable model, or of the slow
but more accurate one. We here consider that the meta-model acts as a
surrogate for the expensive objectives. As such, we argue that meta-
models could be wisely coupled with the search process to boost its
performance, and thus to ease the solving of expensive multi-objective
optimization problems (Bartz-Beielstein and Zaefferer, 2017; Jin, 2011).
However, no systematic investigation has been carried out on how the
cooperation and synchronization between search and learning could
be managed, while carefully accounting for the additional phases of
training and predicting. Moreover, the effective integration of a meta-
model as a substitute for the expensive evaluation function can only be
the result of a proper choice of its inputs-outputs, and of its parameters.
In this chapter, we conduct a systematic investigation on the integra-
tion of meta-models within multi-objective search (Berveglieri et al.,
2019, 2022). We focus on the choice of the dataset from which the meta-
model is trained, on the output to be predicted by the meta-model,
and on how the meta-model is used to generate candidate solutions
among which a selected subset will undergo the real, expensive eval-
uation. This allows us not only to highlight the main components to
consider for successfully solving expensive optimization problems,
but also to provide a taxonomy and to define a common ground for
existing surrogate-assisted multi-objective search approaches. On the
same line, we point out the lack of suitable meta-models for discrete
problems, even when dealing with expensive single-objective optimiza-
tion. By relying on Walsh functions as a surrogate for pseudo-boolean
functions (Verel et al., 2018), we design a surrogate-assisted modu-
lar approach based on decomposition for expensive multi-objective
combinatorial optimization (Pruvost et al., 2020b, 2021). To the best
of our knowledge, this constitutes the first study on the subject, and
our experiments show the clear benefit of the method to accelerate the
convergence of decomposition-based search.

Finally, and in complement to the aforementioned considerations,
setting up an effective multi-objective search approach relies on the
design and the integration of algorithm components that can be config-
ured in different ways. As with any general-purpose search heuristic,
the specification of these components and their combination is of
crucial importance. In our case, they deal with the decomposition
of the initial problem into sub-problems and the specification of re-
gions where promising solutions are to be identified, together with the
solving of these sub-problems and the guidance of the search process
within the so-defined regions. We investigate the coordination of these
components, their joint setting, and the interaction between the com-
putations from the different regions defined by decomposition, with
the aim of reducing the computational cost of the underlying global
search procedure while improving its efficiency. More specifically, we
are interested in the specification of the population, in how the selec-
tion mechanism and the scalarizing functions approach the regions of
interest, and in the intelligent design of effective variation operators
for producing good-quality candidate solutions.
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Figure 5.1: Schematic view of the decom-
position principles from MOEA/D.

The chapter is organized as follows. In Section 5.2, we provide a brief
overview of decomposition-based multi-objective search, while stating
our general scientific interest in the MOEA/D framework. In Sec-
tion 5.3, we present our contributions on the design of distributed
search methods, which provide a high level of parallel scalability while
revealing non-trivial trade-offs in terms of approximation quality and
acceleration. In Section 5.4, we discuss the integration of meta-models
within multi-objective approaches in order to speed-up the search and
thus to address computationally expensive problems from continu-
ous and combinatorial multi-objective optimization. In Section 5.5, we
summarize complementary contributions for efficient multi-objective
search in terms of population, selection and variation. In the last sec-
tion, we conclude the chapter and we identify a number of open issues
on these research topics.

5.2 Decomposition

Most of the contributions covered in this chapter rely on the concept
of decomposition, briefly introduced in Section 2.3. We start by giving
more details on its principles below. Let us remind that we aim at
finding a Pareto set approximation for a multi-objective optimization
problem f : X 7! Z , such that X is the variable space and Z is the
objective space, and such that each objective fi , i 2 {1, . . . , m}, is to be
maximized.

MOEA/D (multi-objective evolutionary algorithm based on decomposition)
from Zhang and Li (2007) has become one of the most popular al-
gorithm among decomposition-based heuristics. It decomposes the
original multi-objective optimization problem into a number of scalar
(single-objective) sub-problems that target different regions of the
Pareto front. Each sub-problem is defined by a particular weight vector
for the considered scalarizing function. Different scalarizing functions
can be used (Miettinen, 1999), and popular examples are the weighted
sum (gws) and the weighted Chebyshev (gcheb) functions:

gws(x | �) :=
m’
i=1

�i · fi(x) ; gcheb(x | �) := max
i2{1,...,m}

�i ·
��z?i � fi(x)

��

where x 2 X is a solution, � = (�1, . . . , �m) is a weighting coefficient
vector such that �i > 0 for all i 2 {1, . . . , m}, and z? = (z?1 , . . . , z?m) is a
reference point such that z?i > fi(x) for all x 2 X and i 2 {1, . . . , m}.

A set of uniformly-generated weight vectors (�1, . . . , �µ) defines the
scalar sub-problems, for which one solution is maintained and evolved
in the population. This principle is illustrated in Figure 5.1. More par-
ticularly, given a scalarizing function g : X 7! R, MOEA/D seeks a
solution x 2 X with the best scalarizing function value g(x | �i) for
each sub-problem i 2 {1, . . . , µ}. To this end, it maintains a population
P = (x1, . . . , xµ) such that each individual is the current solution for
the corresponding sub-problem. Therefore, the population size exactly
matches the number of weight vectors µ 2 N+. Moreover, for each
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sub-problem i 2 {1, . . . , µ}, a set of neighboring sub-problems B(i) is de-
fined with the T closest weight vectors, itself included. The population
evolves such that sub-problems are optimized iteratively and coop-
eratively based on this neighborhood relation. At a given iteration,
and for a given sub-problem i 2 {1, . . . , µ}, some solutions are selected
from B(i) and an offspring y is created by means of variation oper-
ators. Next, for every sub-problem j 2 B(i), the offspring y replaces
the current solution x j if there is an improvement with respect to the
scalarizing function; i.e. if g(y | � j) is better than g(x j | � j). The algo-
rithm loops over sub-problems, attempting to improve them one after
the other, until a stopping condition is satisfied.

The MOEA/D algorithm is now considered as the state of the art in
decomposition-based multi-objective search approaches. Numerous
versions and extensions have been proposed6 6: The MOEA/D website provides a repos-

itory of the state-of-the-art developments
on decomposition-based multi-objective
optimization: https://sites.google.com/
view/moead/.

covering a wide range
of optimization problems and scenarios (Li, 2021; Trivedi et al., 2017).
Our contributions are concerned with different research lines, some
of which some are presented in the rest of this chapter. We give a
particular focus to algorithm efficiency by making the most of the
underlying parallelism offered by decomposition, and by exploring
the integration of meta-models to assist the search process.

5.3 Parallel Multi-objective Search

Quite naturally, the decentralized nature induced by decomposition
enables parallelism, in the sense that the computations inherent to
the different sub-problems could be intuitively distributed over a
parallel computing environment. As such, the distributed nature of
decomposition-based algorithms offers new opportunities for design-
ing parallel approaches that can be deployed over a massively parallel
platform when dealing with large-scale or computationally-intensive
problems. Nevertheless, considering a computational platform sim-
ply as a physical medium to be used in a straightforward manner
can unavoidably result in incompatibility issues when deploying the
designed algorithm in a parallel environment. A more appropriate
approach is thus to design the distribution of the computational flow
till the beginning, at the time the different algorithm components are
specified. This constitutes the challenge we address below. We begin
with the design of novel adaptive and local rules that can dynamically
adjust the weight vectors (Derbel et al., 2014b). We continue with the
design of a parallel MOEA/D approach and we analyze its poten-
tial in solving large-size optimization problems (Derbel et al., 2015).
We finish with the design of a parallel Pareto local search driven by
decomposition (Shi et al., 2018, 2017b).

Adaptive Distributed Localized Search

We start by presenting an adaptive distributed mechanism for setting
the weight vectors used in decomposition (Derbel et al., 2014b). We
remark that this is in line with a prior contribution where weight

https://sites.google.com/view/moead/
https://sites.google.com/view/moead/
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Algorithm 2: DLBS — High-level algorithm to be executed by every
computing node i 2 {1, . . . , µ}.

1 xi  initial solution corresponding to node i;
2 repeat

// communicate positions
3 zi  (zi1, zi2) the position of solution xi in the bi-objective space

(i.e. zi = f (xi));
4 send zi to neighboring nodes;
5 (zi�1, zi+1) receive neighboring positions;

// variation
6 x  mutation(xi);

// replacement
7 if f`(x) better than f`(xi) then
8 xi  x;

9 until a stopping condition is satisfied;

Figure 5.2: Communication graph and
expected evolution of nodes guided by
the localized fitness function.

vectors are dynamically set with respect to the position of the whole
population in the objective space (Derbel et al., 2013). A singularity of
our proposal is the design of a cooperative and distributed approach
which is inherently local, meaning that it is thought to be independent
of any global knowledge, thus making it particularly suitable for a
large-scale distributed environment. The proposed distributed local-
ized bi-objective search (DLBS) algorithm is specifically designed for
two-objective optimization problems, and is given in Algorithm 2.

Given a number of distributed computing nodes, our aim is to self-
coordinate them locally, in order to cooperatively and adaptively cover
different regions of the Pareto front. For clarity, we consider the setting
where each processing unit evolves a single solution; i.e. there is a
one-to-one mapping between the processing units and the solutions
from the population. As illustrated in Figure 5.2, communication is
organized following a line graph, where each node exactly has two
neighbors, except those being at the extremes of the line. This is some-
how similar to an island model (Candan et al., 2013) with a particular
structure and inherently different migration mechanism. Based on this
line graph, we design local rules relying solely on the relative position
of neighboring solutions in the objective space. Each node thus simply
communicates the objective values of its incumbent solution to its
neighboring nodes, and reciprocally receives their positions, at each
round. The rules are based on a localized (scalar) fitness function f` to
be optimized locally, based on the position of its neighbors, such that
every node focuses on a different region of the objective space.

We consider two alternatives for the localized fitness function, such
that the search process focuses on the sub-region being orthogonal to
the current position of the node’s neighbors. This is with the exception
of the two extreme nodes, that are respectively guided by one objec-
tive, independently of the other. The first localized fitness function
is based on a weighted sum, and is inspired by the orthogonal direc-
tion of dichotomic search (Aneja and Nair, 1979). Given a candidate
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LFOD (left) and LFH (right). All solutions i � {2, · · ·n � 1} concurrently adopt the
same strategy with respect to their relative neighbors. The crosses without circle are the
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with zref � Z a reference point and �(·) the Lebesgue measure. The hyper-
volume contribution of a point z � Z with respect to a non-dominated set A
is then given as follows (Beume et al., 2007).

�H(z, A) = IH(A) � IH(A \ {z}) (3)

Dominated points do not contribute to the hypervolume. In the two-objective
case, if we assume that the elements of the non-dominated set A are sorted in
the increasing order with respect to f1-values, the hypervolume contribution
can be reduced as follows.

�H(zi, A) = (zi
1 � zi�1

1 ) · (zi
2 � zi+1

2 ) (4)

In our distributed approach, a node does not have a global view of the current
population of solutions being processed in parallel by other nodes. The only
information a node vi can use is the position of its two neighboring solutions
in objective space, i.e. Z i. Without loss of generality, let us assume that
zi�1
1 6 zi+1

1 . Our second hybrid hypervolume-based localized fitness function
is defined as follows.

LFZi

H (x) =

�
(f1(x) � zi�1

1 ) · (f2(x) � zi+1
2 ) if f1(x) > zi�1

1 and f2(x) > zi+1
2

0 otherwise
(5)
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Figure 5.3: Illustration of the selection
mechanism using the localized fitness
function f od

` (top) and f hv` (bottom).
The crosses without circle correspond
to candidate solutions, and the arrow
shows the selected candidate solution
which is to replace the current one.

solution x 2 X and a distributed node i 2 {1, . . . , µ}, the score is:

f od` (x) := (zi�1
2 � zi+1

2 ) · f1(x) + (zi+1
1 � zi�1

1 ) · f2(x)

where (zi�1, zi+1) is the current objective vectors of the two neighbors.
The second localized fitness function is based on hypervolume:

f hv` (x) :=
⇢
( f1(x) � zi�1

1 ) · ( f2(x) � zi+1
2 ) if f1(x) > zi�1

1 ^ f2(x) > zi+1
2

0 otherwise

With this second function, we argue that selecting candidate solutions
maximizing the local hypervolume contribution at each node will
improve the global hypervolume of the whole population. The two
previously-defined localized fitness functions are illustrated in Fig-
ure 5.3. They both aim at distributing each solution at best in-between
its two neighbors. They are to be maximized locally at each node using
a standard evolutionary algorithm.

We experiment the proposed DBLS approach with both localized fit-
ness functions on two-objective ⇢mnk-landscapes. We also investigate
its scalability when using a different number of processing units, corre-
sponding to the population size µ, on a computer cluster of hundreds
of cores. The dynamics of the search process, as captured by the trajec-
tory of solutions in the objective space, is reported in Figure 5.4. Our
results reveal that the variant based on weighted sum obtains better
results than the one based on hypervolume. We attribute this to their
underlying contour lines, something we later investigated for static
scalarizing functions (Derbel et al., 2014a); see Section 5.5. In addition,
we report that both variants perform significantly better than a dis-
tributed approach that uses a static set of uniformly-defined weight
vectors. This suggests that the local information exchanged in our coop-
erative strategies is relevant for adapting the weight vectors, and leads
to an effective and scalable decomposition-based parallel search.

In Figure 5.5, we report the parallel performance of DLBS using a
message passing parallel implementation. Given that only the position
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Figure 5.5: Parallel efficiency and scal-
ability of DLBS: ratio of computational
time over execution time with respect to
the problem size (left), and acceleration
ratio of DLBS with respect to the number
of processing units (right).
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of solutions in the objective space is communicated among neighbor-
ing nodes, the size of messages used to effectively implement DLBS
does not depend on the solution encoding, nor on the variable space
dimension. This is an advantageous feature of our approach to scale
particularly efficiently and to obtain a substantial speed-up depend-
ing on the problem size, which is tightly related to the cost of the
evaluation function. The parallel efficiency, that is the computation
vs. communication cost, is around 90% for instances of size n = 512,
and reaches more than 95% for large instances with n = 2 048. We
also obtain a linear acceleration factor when comparing our message
passing implementation to a sequential implementation of DLBS using
a single processing unit. From a parallel computation perspective, this
suggests that DLBS is able to scale efficiently, both as a function of the
problem dimension and of computational resources.

A Parallel Message-Passing Decomposition Approach

In contrast with the previous approach, the selection and replacement
steps of MOEA/D are performed using solutions from neighboring
sub-problems. This creates a dependency when evolving the popu-
lation in parallel. Although it would offer an obvious parallelism,
breaking this dependency by optimizing each sub-problem indepen-
dently in one processing unit is not accurate for multi-objective search.
Consequently, some works investigate the intuitive idea that non-
overlapping sub-problems could be processed in parallel (Durillo et
al., 2011; Nebro and Durillo, 2010). In particular, Nebro and Durillo
(2010) show that good speed-ups can be obtained at the price of sig-
nificantly deteriorating the approximation quality of the sequential
version of MOEA/D. Mambrini and Izzo (2014) propose a parallel
variant of MOEA/D based on the island model (Candan et al., 2013).
Every island evolves a sub-population of solutions corresponding to
a subset of sub-problems, and selected solutions are communicated
to other islands during a migration phase. However, their approach
relies an a specific thread-based implementation, and is experimented
on an 8-core shared-memory computer. As such, its scalability is ques-
tionable, given the increase of communications and of shared-memory
read and write operations. Our work departs from previous studies
in several aspects, but also retain insightful lessons learnt from those.
Following Nebro and Durillo (2010), we believe that handling over-
lapping neighboring sub-problems is a key issue to achieve a high
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scalability and approximation quality. Moreover, as in Mambrini and
Izzo (2014), we get inspiration from the island model, although we do
not explicitly rely on the conventional concept of migration, thus finely
optimizing our approach when facing a fine-grained parallelism.

More particularly, we propose a parallel message-passing version of
MOEA/D (MP-MOEA/D), which is summarized in Algorithm 3 (Der-
bel et al., 2015). In fact, MP-MOEA/D is based on a (sequential) gener-
ational variant of MOEA/D, as detailed in a prior study (Marquet et al.,
2014). The algorithm is to be executed in parallel by every processing
unit; i.e. the memory is local and not shared in any way. We consider
a one-to-one mapping between sub-problems and processing units,
while assuming seemingly the standard neighborhood relation among
sub-problems. We notice this is a particularly harsh assumption, but
this allows us to fairly analyze the scalability of our scheme with a fine-
grained level of parallelism. The parallel process is divided into two
stages. The first one is performed locally without any communication,
whereas the second one requires sub-problems, and thus processing
units, to communicate with their neighbors. Each processing unit aims
at identifying an improving solution for its own sub-problem, while
also sending improving solutions to neighboring sub-problems and
receiving improving solutions from neighboring sub-problems. As
such, each processing unit maintains a local copy of the solution from
its neighbors. Based on this, it performs the selection and variation
mechanisms from vanilla MOEA/D with essentially three main modifi-
cations: (i) the current solution of the considered sub-problem is always
selected for reproduction, as in the selfish selection from Marquet et al.
(2014), (ii) offspring solutions are generated for tmax iterations, and
(iii) since the current remote solutions from neighbors are not available
locally, the algorithm simply checks whether each newly-generated
offspring improves over any of the local copies maintained for every
neighbor. Improving offspring solutions are temporarily saved locally
in order to be sent to neighbors at the communication stage, as ex-
plained below, with the aim of updating and synchronizing solutions
within the population.

The second stage deals with the update of local copies by means of
communication. In case an improving solution with respect to the
processing unit’s own sub-problem is identified, the processing unit
notifies its neighbors so that they can update their local copies with
the improving offspring. In case an improving solution for one or
more neighboring sub-problems is identified, the processing unit also
notifies the corresponding neighbors so that they can update their own
solution with the improving offspring. Symmetrically, a processing
unit checks whether these situations occur by receiving information
from its neighbors before resuming a new round of local computations.
This communication phase needs to be handle with care, since this
fine-grained parallelism can prevent scalability. Indeed, on one hand,
the fastest the solutions of a processing unit are updated with the latest
information from its neighbors, the better the improvement in terms
of approximation quality. On the other hand, synchronizing process-
ing units often implies a non-negligible communication cost. This is
precisely the reason for introducing the tmax parameter, which allows
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Algorithm 3: MP-MOEA/D — High-level algorithm to be executed
by every computing node i 2 {1, . . . , µ}.

1 initialize x j for all j 2 B(i);
2 repeat
3 flag 0;

// stage #1: local computations
4 for j 2 B(i) \ {i} do
5 y j  x j ;
6 repeat tmax times:

// selection and variation
7 `  rand(B(i) \ {i});
8 y  variation(xi , x`);

// local replacement
9 if g(y, �i) better than g(xi , �i) then

10 xi  y; flag 1;
// check for neighbors’ improvements

11 for j 2 B(i) \ {i} do
12 if g(y, � j) better than g(y j , � j) then
13 y j  y

// stage #2: communication
14 communicate_local_copies (flag);
15 until a stopping condition is satisfied;

us to control the relative cost of local computations by setting the fre-
quency of communication. Moreover, we consider both a synchronous
and an asynchronous message passing implementation, where the
information of local copies is aggregated into a single message in or-
der to reduce the number of transmissions over the network. In the
synchronous MP-MOEA/D, each processing unit sends a message
with its current information to its neighbors, and then waits to receive
the message from its neighbors. This ensures that the most up-to-date
information is used by all processing units, although an acknowledge-
ment has to be issued even when there is no improvement, in order to
avoid deadlocks. By contrast, the asynchronous MP-MOEA/D reduces
the idle time by removing the remote synchronization cost. However,
we loose the guarantee that local copies are up-to-date. This might
thus lead to the situation where the search process is resumed for
several rounds with outdated information, which constitutes a penalty
in terms of approximation quality.

We deploy a message passing implementation of MP-MOEA/D on
Grid’500077: The French national experimental grid:

https://www.grid5000.fr/.
using 128 computing cores. Our experimental results re-

veal that MP-MOEA/D achieves a non-trivial trade-off in terms of
approximation quality and parallel efficiency, as reported in Figure 5.6.
Acceleration is here measured as the ratio between the runtime of the
sequential MOEA/D and the parallel runtime of MP-MOEA/D. Each
point corresponds to one update frequency parameter setting tmax,
and the horizontal line corresponds to the approximation quality ob-
tained by the sequential MOEA/D. As such, the points below this
line indicate that MP-MOEA/D outperforms MOEA/D in terms of
approximation quality, and the points further on the right indicate a

https://www.grid5000.fr/
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Figure 5.6: Acceleration vs. approx-
imation quality with respect to the
update frequency tmax for different
⇢mnk-landscapes with k = 4 and m = 2.

good parallel efficiency. Overall, the approximation quality seems to
drop with higher tmax values, while acceleration gets better. Interest-
ingly, there are communication frequencies for which approximation
quality is very competitive compared against the sequential MOEA/D,
while achieving a substantial acceleration. For smaller instances, where
the evaluation cost is lower, the impact of tmax on quality is less pro-
nounced, and larger values offer a significant acceleration without a
substantial drop in terms of quality. For larger instances, we observe
a similar trend for conflicting objectives, whereas it seems harder to
obtain a high acceleration without a significant drop in quality for cor-
related objectives. We attribute this to the probability that improving
solutions for one sub-problem is more likely to improve neighboring
sub-problems as the objective correlation increases, such that commu-
nicating right away becomes more critical. This relates to the impact
of replacement in MOEA/D, as analyzed in Marquet et al. (2014).
This is less likely to happen with conflicting objectives, where the
Pareto front is larger, and where the underlying diversity among sub-
problems balances this side-effect. Finally, we remark that the gap
between the synchronous and asynchronous MP-MOEA/D increases
in favor of the asynchronous implementation as the problem size or
the degree of conflict among the objectives increases. Interestingly, for
large-size instances with many non-dominated solutions, the asyn-
chronous MP-MOEA/D obtains a close to linear acceleration, while
being as good as MOEA/D in terms of approximation quality.

A Parallel Pareto Local Search based on Decomposition

As presented in Chapter 2, Pareto Local Search (PLS) is a multi-objective
local search based on dominance, that maintains an unbounded archive
of non-dominated solutions found so far. At each iteration, it selects
a solution from the archive, explores its neighborhood, and updates
the archive with neighboring solutions. This process is iterated until
the neighborhood of all solutions from the archive has been examined,
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Figure 5.7: Illustration of search regions
decomposition in Parallel PLS. On top,
six processes are executed independently
in parallel. At the bottom, four processes
are executed independently in parallel,
with overlapping sub-regions based on
an opening angle ✓.

and PLS naturally stops on a Pareto local optimal set (Paquete et al.,
2007), as analyzed in Chapter 4. Although the basic PLS algorithm is
able to achieve a high-quality approximation, it is well known that its
convergence is slow, and several strategies have been proposed to over-
come this issue; see, e.g., Drugan and Thierens (2012), Dubois-Lacoste
et al. (2015), and Geiger (2011). PLS has three main components that
are crucially important for its performance (Liefooghe et al., 2012):
(i) the selection of the solution to choose next from the archive, (ii) the
neighborhood exploration strategy, and (iii) the update of the archive
with respect to newly-explored neighboring solutions. We remark that,
with the exception of the neighborhood exploration, the two other
components require the full knowledge of the archive, which makes it
rather challenging to derive a high-level parallel version of PLS. In Shi
et al. (2018, 2017b), we get inspiration from decomposition-based tech-
niques in order to design a parallel PLS for bi-objective optimization. It
extends a preliminary work on parallel local search for single-objective
optimization (Shi et al., 2017a).

More particularly, we decompose the objective space evenly into mul-
tiple regions based on a number of weight vectors, similar to Liu et al.
(2014). This consists in delimiting a sub-region of the objective space
by means of a reference point and two consecutive lines, as illustrated
in Figure 5.7. Based on this, multiple PLS processes are executed in
parallel, each one operating in one of the sub-regions. In case a so-
lution is located outside the boundaries, it is simply ignored, unless
there is currently no solution inside the boundaries in the archive. In
addition, the selection and update phases are revised accordingly. In
particular, as illustrated in Figure 5.7, each parallel process is assigned
a weight vector corresponding to the region where it operates, and
uses a weighted sum in order to select solutions from the archive and
to guide the neighborhood exploration. This does not only allow us
to coordinate the parallel processes locally by using different weight
vectors, but also to drastically reduce the archive size. In Shi et al.
(2017b), we experiment such a parallel PLS on a number of bi-objective
unconstrained binary quadratic programming instances, for which the
sequential PLS is known as the state of the art (Liefooghe et al., 2015b).
We report that the parallel PLS significantly accelerates the sequential
PLS while obtaining a similar level of approximation quality.

In Shi et al. (2018), we further refine the parallel PLS approach by
addressing the load imbalance and scalability issues caused by the
definition of sub-regions. In particular, we improve the setting of the
reference point for unknown Pareto front shapes, and we slightly
enlarge the partitions obtained by decomposition by a small factor ✓,
hence allowing two neighboring regions to overlap, as illustrated in
Figure 5.7 (bottom). The trajectory of solutions from the parallel PLS
is illustrated in Figure 5.8 for exemplary executions, which provides
visual evidence on the accuracy of decomposition. In Figure 5.9, we
report the trade-offs obtained by parallel PLS for different settings of ✓.
Our results suggest that, when scaling the number of parallel processes,
there exists an optimal setting of the opening angle ✓ such that parallel
PLS performs at best, in terms of anytime behavior. This shows that
bringing decomposition into PLS is beneficial to improve convergence,
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Figure 5.8: Parallel PLS trajectory in the
objective space on bi-objective uncon-
strained binary quadratic programing
instances with n = 100 variables, and a
varying objective correlation (⇢).

while enabling a very efficient high-level parallel design that was
unexplored until now. This opens the door to further investigations
on improving the anytime behavior of PLS and on deploying PLS into
large-scale parallel environments.

Figure 5.9: Runtime vs. approximation
quality of parallel PLS with respect
to the opening angle ✓ for different
number of parallel processes (N ) on
bi-objective unconstrained binary
quadratic programing instances with
no objective correlation, and a varying
number of variables (n).

5.4 Surrogate-assisted Multi-objective Search

In this section, we are interested in the use of meta-models to speed up
the search process, and thus improve algorithm performance when
the search budget is particularly tight. More precisely, we consider
expensive multi-objective optimization problems, for which evaluating
the quality of each and every solution is particularly demanding in
terms of computational time. This is typically the case in different
application domains that require heavy and costly simulation efforts.
In this context, one has to deal with the multi-objective nature of
the problem by identifying a high-quality approximation set, while
minimizing as much as possible the computational effort in terms
of calls to the expensive evaluation function. Surrogate-assisted search
approaches have received intensive research in this regard over the last
decade; see, e.g., Bartz-Beielstein and Zaefferer (2017) and Jin (2011).

Surrogate-assisted techniques rely on a meta-model as a substitute
for the expensive function. The meta-model is used to efficiently sam-
ple or pre-screen candidate solutions, from which a subset is then
evaluated for real, using the real evaluation function. Leveraging sur-
rogates for multi-objective optimization is facing difficult challenges
from different perspectives (Chugh et al., 2019), such as the nature
of the meta-model being used as a surrogate, or the multi-objective
selection paradigm being used at the core of the underlying search
process. Interestingly, there exist a number of well-established meta-
models for continuous functions, so that the main effort to deal with
expensive continuous multi-objective optimization is on articulating
the meta-model with the multi-objective search process. Unfortunately,
such an issue has not be addressed in the context of combinatorial
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optimization. Of particular interest is the design of meta-models for
discrete functions, that would make it possible to deal with expensive
combinatorial multi-objective optimization problems. This constitutes
the two complementary goals that we address below: (i) a taxonomy
and comparative study of surrogate-assisted algorithms for continuous
multi-objective optimization, and (ii) the design of a surrogate-assisted
approach for combinatorial multi-objective optimization.

A Comparative Analysis of Surrogate-assisted
Multi-objective Evolutionary Algorithms

A substantial number of surrogate-assisted search approaches have
been developed to solve expensive problems from continuous multi-
objective optimization. The extent of techniques and their combination
makes it particularly difficult to assess the effectiveness, implication,
drawback and robustness of their internal components, and therefore
makes it a tedious task to make a thorough design choice. In Berveg-
lieri et al. (2019, 2022), we propose a refined and fine-grained clas-
sification covering existing approaches from the literature, ranging
from decomposition- to dominance- and indicator-based selection. The
resulting taxonomy of surrogate-assisted multi-objective search algo-
rithms is presented in Figure 5.10. The search process is divided into
five components discussed below:

I. Initialization. As with any search heuristic, the initialization
phase aims at generating the first batch of solutions, with the
difference that these solutions will not only be used by the search
process, but they will also take part in the construction of the
training set for fitting the considered meta-model(s). In order to
cover a large part of the variable space, and thus expect to im-
prove the model accuracy, a latin hypercube sampling (Carnell,
2020) of the variable space is typically used.

II. Model training set. We thus enter the outer loop of the algo-
rithm with the construction of the training set. This step is usually
performed at each iteration. The aim here is thus to find a good
trade-off between fitting accuracy and training time. Rather than
selecting the whole set of solutions evaluated so far, existing
strategies tend to opt for (i) either a single meta-model trained
with a smaller training set using subset selection, or (ii) a combi-
nation of target-specific meta-models constructed by means of
clustering. In the first case, this ranges from a random subset, to
the most recent solutions, or even the best solutions according to
the selection paradigm under consideration. In the second case,
the idea is to build a different meta-model per cluster of solutions,
the clustering being applied in the variable space, in the objec-
tive space, or even in the weight space for decomposition-based
search.

III. Model fitting and response. On the basis of the training set
constructed at the previous step, one or multiple meta-models
are trained, sometimes even ensemble meta-models that could
be trained in parallel (Berveglieri et al., 2020). In addition to
selecting a statistical or machine learning model type and its
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Figure 5.10: A taxonomy of surrogate-assisted multi-objective search algorithms. In blue are strategies tailored to dominance-based
selection, in red to decomposition-based selection, and in green to indicator-based selection.

parameters, one must also decide on the model response. A usual
approach is to predict the objective values; that is, to construct
a meta-model independently for each objective function. How-
ever, some alternatives depend on the peculiarities of the con-
sidered selection paradigm. For instance, some indicator-based
approaches choose to predict the indicator contributions, while
some decomposition-based approaches choose to fit a meta-
model per sub-problem’s scalarizing function.

VI. Candidate solution(s). Based on the trained meta-models, sev-
eral options open up in order to generate candidate solutions.
Perhaps the simplest one, denoted as filter, consists in using the
meta-models to pre-screen new candidate solutions. These solu-
tions are, for instance, generated by random variation. Based on
their predicted values, only a subset of solutions will undergo
an expensive evaluation in the next step. Alternatively, substi-
tute approaches temporarily rely on the meta-models in order to
evolve solutions that are predicted to be of higher quality. The
idea is to use an internal multi-objective search procedure as an
inner optimizer of the meta-models in order to identify improv-
ing solutions according to the surrogates, all this without using
the real evaluation function. Thus, unlike filter, several rounds
of candidate solution generations are performed before resort-
ing to the expensive objectives. At last, bayesian and efficient
global optimization (EGO) approaches are tailored to gaussian
processes-based meta-models, whose response is used to build
an acquisition function, such as expected improvement or proba-
bility of improvement (Bartz-Beielstein and Zaefferer, 2017; Jones
et al., 1998). This allows the algorithm, not to optimize the objec-
tive function directly, but rather the acquisition function, thus
balancing the exploration-vs-exploitation trade-off when select-
ing which solution to sample next. In the multi-objective case,
the EGO meta-models are either based on indicator contributions
or on scalarizing functions.
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V. Selection for Evaluation. Based on the pool of solutions gener-
ated at the previous step, one or multiple solutions are to be
selected to undergo the true evaluation function. Once again,
the meta-models are used to rank candidate solutions based on
the algorithm’s internal selection process, being based on domi-
nance, decomposition, or indicator. Selecting multiple solutions
at this stage is particularly relevant for processing batch eval-
uation in parallel (Berveglieri et al., 2020). Selected solutions
are evaluated using the expensive objectives, and the algorithm
iterates to Step II. Newly evaluated solutions can thus take part
in the pool of solutions from which the training set is built at the
next round.

In light of the taxonomy discussed above, we can not only instantiate
existing algorithms from the literature, but also design new ones by
simply selecting a different strategy for each component; see Berveg-
lieri et al. (2019, 2022) for a more detailed discussion.

We further provide a comprehensive comparative analysis of selected
approaches and their components under a common ground, each
one being represented by state-of-the-art and/or baseline cleaned-
up surrogate-assisted algorithms. State-of-the-art algorithms include
ParEGO (Knowles, 2006), SMS-EGO (Ponweiser et al., 2008), MOEA/D-
EGO (Zhang et al., 2010), MOEA/D-RBF (Zapotecas-Martínez and
Coello Coello, 2013), M-EGO (Hussein and Deb, 2016) and K-RVEA
(Chugh et al., 2018), among others. This gives us the chance to improve
our understanding of surrogate approaches as well as their impact
on the different classes of multi-objective search paradigms. Besides
comparing and evaluating the influence of different strategies for con-
structing the training set (II), for model fitting and response (III), for
the generation of candidate solutions (IV), as well as their selection
for an expensive evaluation (V), our experiments reveal that the best-
performing approach strongly depends on the budget allocated to the
search process in terms of calls to the expensive evaluation function.
From our analysis, the most impactful component appears to be the
way new candidate solutions are generated by means of the meta-
models. This is illustrated in Figure 5.11 for a subset of algorithms
on selected problems from the bbob-biobj bi-objective black-box con-
tinuous benchmark functions test suite (Brockhoff et al., 2019). Three
selection paradigms are considered: MOEA/D for decomposition-
based search, SMS-EMOA for indicator-based search, and NSGA-II
for dominance-based search. They are combined with three surrogate
strategies for the generation of candidate solutions (IV): filter, sub-
stitute and EGO — by design there is no obvious way to configure
an EGO-like NSGA-II. Filter and substitute approaches are based on
support vector regression, whereas EGO approaches are based on
Gaussian processes. Although our results suggest that decomposition-
based approaches often lead to better approximations than other multi-
objective selection paradigms, the gain is significantly less substantial
than using a suitable surrogate strategy. Indeed, EGO approaches such
as SMS-EGO (Ponweiser et al., 2008) and MOEA/D-EGO (Zhang et al.,
2010) quickly converge to a reasonable approximation quality, but do
not seem to be able to improve after reaching a plateau. By contrast,
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Figure 5.11: Performance of surrogate-
assisted algorithms for selected prob-
lems from the bbob-biobj test suite with
20 variables: double Sphere (left), double
Rastrigin (middle), and double Schwe-
fel (right) functions.

filter and substitute approaches converge less abruptly, but end up out-
performing the former when the budget gets large enough. There does
not seem to be a significant difference between filter and substitute
approaches, regardless of the selection paradigm. Subsequently, these
findings allowed us to develop a simple adaptive approach to switch
from one strategy to another at the right time (Berveglieri et al., 2022).
As illustrated in Figure 5.12, the proposed approach improves the
anytime behavior of surrogate-assisted multi-objective search and out-
performs approaches from the literature on the considered problems
under most optimization scenarios in terms of search budget.

SMS-EGO MSPOTMOEA/D-RBF
adaptive S-MOEAM-EGO IC-SA-NSGA-II

MOEA/D-EGO K-RVEA

Figure 5.12: Adaptive vs. state-of-the-
art surrogate-assisted algorithms for se-
lected problems from the bbob-biobj
test suite with 20 variables: double
Sphere (left), double Rastrigin (middle),
and double Schwefel (right) functions.

A Surrogate-assisted Approach for Multi-objective
Combinatorial Optimization

Let us now take a step towards the development of a surrogate-assisted
methodology for expensive optimization problems having both a
multi-objective and a combinatorial nature. The first challenge con-
cerns the meta-model to be used for discrete functions. Looking at the
specialized literature, one can find a handful of recent studies on surro-
gates for single-objective black-box combinatorial optimization (Bartz-
Beielstein and Zaefferer, 2017). In fact, there are three general-purpose
meta-models for discrete functions, namely bayesian models, radial
basis functions, and kriging (Baptista and Poloczek, 2018; Moraglio
and Kattan, 2011; Zaefferer et al., 2014). All of them are adaptations of
their well-established counterparts from the continuous case. By con-
trast, in Verel et al. (2018), we rely on the mathematical foundations of
discrete Walsh functions to derive a meta-model for discrete problems.
Unlike existing distance- and similarity-based discrete surrogates, the
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Figure 5.13: Mean absolute error of
function values on a test set of 1 000
solutions with respect to the size of
the training set for (single-objective)
nk-landscapes with n 2 {10, 15, 20, 25}
variables (by rows), k 2 {0, 1, 2}
variable interactions (by columns), and
an order of k+ 1 for the Walsh expansion.
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Walsh model is based on a deterministic approximation. More specifi-
cally, we consider pseudo-boolean functions for dealing with combi-
natorial optimization problems with binary variables. Walsh functions
form a complete orthogonal set of functions, and can be considered as a
discrete counterpart of the trigonometric Fourier series. We model our
surrogate by means of a Walsh expansion, and we propose to represent
any pseudo-boolean function as a discrete Walsh decomposition. The
model coefficients can thus be approximated by means of sparse linear
regression. Figure 5.13 reports experimental results comparing the
prediction accuracy of the proposed Walsh surrogate against discrete
kriging on a comprehensive set of (single-objective) nk-landscapes. We
observe that the Walsh meta-model provides a highly accurate approx-
imation, substantially outperforming kriging on non-linear instances.
On top of that, training the Walsh surrogate turns out to be extremely
fast compared against kriging.

In Pruvost et al. (2020b, 2021), we hence focus our investigations on
such an optimization domain, and we consider to leverage Walsh sur-
rogates to deal with multi-objective pseudo-boolean problems. To the
best of our knowledge, this is the first proposal in this line, aiming
at dealing with expensive multi-objective combinatorial optimization
problems. The proposed decomposition-based modular framework
is presented in Algorithm 4. At each iteration, a Walsh meta-model is
trained independently for each objective. A set of candidate solutions
is thus generated on the basis of the Walsh surrogates, considered as
substitutes of the real objectives, following the substitute approach
discussed above. Among those, one solution is finally selected in order
to be evaluated using the real, expensive objectives. The framework
integrates three main configurable components: (i) the inner optimizer
used for producing promising candidate solutions by (temporarily)
relying on the previously-trained Walsh surrogates, (ii) the selection
strategy to decide which solution is to be evaluated by the expensive
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Algorithm 4: S-MCO — Surrogate-assisted framework for multi-
objective combinatorial optimization.

1 P {x1, . . . , xµ} : initial population of size µ;
2 D {(x1, f (x1)), . . . , (xµ, f (xµ))}: training data;
3 A initialize external archive (optional);
4 z? initialize reference point;
5 while global budget is not exhausted do
6 for i 2 {1, . . . , µ} do

// choose Walsh order
7 o choose_walsh_order (history, d);

// train Walsh models

8 ef := (ef1, . . . , efm) train_walsh_models (D, o);
// copy reference point for optimizer and selection

9 z?? z?;
// run optimizer for surrogate models

10 S  optimizer (P, ef , z??);
// select solution for true evaluation

11 x 0  select_for_evaluation (S, �i , ef , z??);
12 f (x 0) evaluate (x 0);
13 A update external archive using x 0 (optional);
14 z? update reference point using f (x 0);

// replacement in the population
15 for j 2 {1, . . . , µ} do
16 if g(x 0, � j) better than g(x j , � j) then
17 x j  x 0;

// update training data
18 D D [ {(x 0, f (x 0))};

objectives, and (iii) the strategy used to setup the order of the Walsh
expansion, that is, the hyper-parameter of Walsh meta-models. Based
on a thorough empirical analysis on bi-objective ⇢mnk-landscapes and
unconstrained binary quadratic programing problems, we show that
local search provides an accurate inner optimizer for Walsh surrogates,
while a selection strategy based on the predicted improvement of
candidate solutions with respect to decomposition is highly effective.
We also highlight the importance of using a proper Walsh order by
means of a simple dynamic strategy. Additionally, our experiments
reveal the effectiveness of the proposed approach with respect to the
available budget in terms of calls to the evaluation function. This is
illustrated in Figure 5.14 on exemplary instances, by comparing the
surrogate-assisted method against a surrogate-less variant of three
multi-objective search strategies, namely MOEA/D, multi-start lo-
cal search (MLS) and Pareto local search (PLS). We clearly see that
surrogate-assisted approaches obtain substantially better approxima-
tions, independently of the considered optimizer, instance and budget.
More importantly, our empirical findings shed more lights on the com-
bined effects of the investigated components on search performance,
thus providing a better understanding of the key challenges for de-
signing a successful surrogate-assisted search process for expensive
multi-objective combinatorial optimization.
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Figure 5.14: Surrogate-less vs. surrogate-assisted approaches based on the Walsh meta-model for two-objective ⇢mnk-landscapes with a
varying number of variables (n) and variable interactions (k), and for bi-objective unconstrained binary quadratic programing (UBQP)
instances with a varying number of variables (n).

5.5 A Glimpse on Further Contributions

We give below a brief overview of contributions related to other al-
gorithm components which aim at improving the anytime behavior
of multi-objective search. In particular, we study components related
to population, selection and variation, with a particular emphasis on
decomposition-based approaches.

Population

A critical aspect of any evolutionary algorithm and multi-objective
search approach deals with the configuration of its population, that
is the set of solutions maintained and evolved by the algorithm and
ultimately returned as the resulting approximation set. Setting the
population size is a well-known issue in evolutionary computation
to prevent from premature convergence (Leung et al., 1997). On top
of that, the population size in multi-objective optimization directly
influences the cardinality, and therefore the quality of the resulting
approximation set (Coello Coello et al., 2007; Deb, 2001). In Aguirre
et al. (2013), we investigate the impact of the population size on the
dynamics of state-of-the-art multi-objective evolutionary algorithms.
Our experiments reveal that Pareto optimal solutions might be dis-
carded from the population in favor of sub-optimal solutions that are
temporarily non-dominated. This selection lapse also affects the dis-
covery of new Pareto optimal solutions. We show that selection makes
fewer mistakes with larger populations, and when the distribution
of solutions is better controlled by the search process. As such, we
argue that not only the size of the population, but also its structure
strongly influences the search process. Compared against other algo-
rithm classes, this is something that can be handled more explicitly in
decomposition-based search, since each individual maps to a given
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scalar sub-problem. For instance, in Derbel et al. (2018), we propose to
re-design the working principles of MOEA/D by adopting a many-to-
one mapping between sub-problems and solutions, thus allowing the
structured population to have a varying, but bounded size. This leads
to a significant improvement in the approximation quality, especially
when dealing with a large number of objectives.

More recently, we investigated the impact of the population in decom-
position-based search more thoroughly (Pruvost et al., 2020a). Firstly,
our results confirm that a larger population tends to be better when a
sufficient budget is allocated to the search process for the algorithm to
converge, especially when there are many objectives to optimize. Not
only this, we also carefully considered both the number of solutions
that survive, and the number of new candidate solutions generated, at
each iteration. In its default setting, both parameters are the same in
vanilla MOEA/D — roughly speaking one solution is maintained and
generated per-sub problem at each iteration. As such, we revise the
design of MOEA/D by explicitly dissociating three components: (i) the
number of solutions maintained in the population (µ), (ii) the number
of new candidate solutions generated at each iteration (�) — gener-
ally denoted as offspring in evolutionary computation — and (iii) the
strategy adopted to select the solutions involved in the creation of
new candidate solutions — the parents. In fact, in decomposition-based
search, selecting solutions amounts to selecting sub-problems. This
is the reason why we denote the latter as sps, for sub-problem selec-
tion. Although some strategies to distribute the computational effort
allocated to sub-problems were integrated in decomposition-based
search (Lavinas et al., 2019; Wang et al., 2019; Zhou and Zhang, 2016),
to the best of our knowledge the individual impact of such compo-
nents were loosely studied in the past. We denote the revised algorithm
as MOEA/D–(µ, �, sps), and we conduct a comprehensive analysis
about the impact of those three components on the convergence profile
of the search process on a broad range of ⇢mnk-landscapes. Surpris-
ingly, we find that generating one single candidate solution (i.e., � = 1
offspring) per iteration seems to be a reasonable setting for the con-
sidered approaches. Notice, however, that additionally selecting the
boundary sub-problems was found to be beneficial, as this directly
impacts the coordinates of the reference point required by the scalariz-
ing functions (Wang et al., 2019). Moreover, we analyze whether the
sub-problem selection strategy has any impact on search performance.
In addition to the conventional MOEA/D setting with � = µ, we con-
sider a state-of-the-art approach when dealing with the distribution
of the computational effort over sub-problems, known as dynamical
resource allocation (DRA) and proposed by Zhou and Zhang (2016).
In DRA, a utility function is defined for each sub-problem relative to
its current state in terms of progress over several iterations. We also
consider a simple baseline sub-problem selection strategy, which is
to select sub-problems uniformly at random. Results are reported in
Figure 5.15 for a selection of instances. There are two settings for DRA:
� = 1, but also � = µ/5 to follow the recommendations from Zhou and
Zhang (2016). Interestingly, we observe that a simple random strat-
egy outperforms existing, sophisticated ones from the literature, even
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Figure 5.15: Convergence profile of
MOEA/D–(µ, �, sps) with respect to the
sub-problem selection strategy: µ = 500,
and � = 500 for sps = all, � 2 {1,µ/5}
for sps = dra, and � = 1 for sps = rnd.

k = 0 k = 1 k = 2 k = 4
m

 = 2
m

 = 3
m

 = 4
m

 = 5

1e+03 1e+05 1e+07 1e+03 1e+05 1e+07 1e+03 1e+05 1e+07 1e+03 1e+05 1e+07

0.1

0.3

0.5

0.1

0.3

0.5

0.1

0.3

0.5

0.1

0.3

0.5

# evaluations

hy
pe

rv
ol

um
e 
re

la
tiv

e 
de

vi
at

io
n

all rnd dra dra μ/5

when properly configured. Our results also suggest that the number
of sub-problems selected at each iteration plays a more important role
than the way sub-problems are actually selected.

In Figure 5.16, we complement our analysis by studying the sensitivity
of this simple strategy with respect to the population size µ. We observe
that its anytime behavior is more stable than that of default MOEA/D.
We also observe that when using small µ-values, convergence occurs
much faster for linear instances compared against non-linear ones. This
means that a larger population size µ, combined with a small value
of �, shall be preferred. This observation suggests that, by increasing
the number of weight vectors in decomposition, one can obtain a high-
level structure of the population, possibly of very large size. Notice also
that such a data structure can be maintained very efficiently in terms
of computational complexity, given the scalar nature of decomposition.
This is to contrast with dominance- and indicator-based search, where
maintaining a large population may be computationally intensive,
particularly for many-objective problems. Having such an efficient
structure, the issue turns out to select the sub-problems from which the
population is updated. A random strategy for sub-problem selection
with a small � value is found to work arguably well. This observation
was later confirmed for continuous multi-objective optimization as
well (Lavinas et al., 2020).

Selection (Scalarizing Function)

Not only the setting of the population, but also the survival selection
mechanism has a direct impact on the distribution of solutions in the
approximation set identified by multi-objective search. As pointed
out in Section 5.2, in the decomposition framework there are different
ways of decomposing the original problem by means of a scalarizing
function, such as the weighted sum and Chebyshev functions (Trivedi
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Figure 5.16: Convergence profile of
MOEA/D–(µ, � = 1, sps = rnd) with
respect to the population size (µ).

et al., 2017; Zhang and Li, 2007). These scalarizing functions exhibit
different properties with respect to the optimal solution they target,
and its position on the Pareto front (Miettinen, 1999). However, their
properties in terms of evolutionary and local search are not well under-
stood. In the context of MOEA/D, scalarizing functions were mostly
compared with respect to their ability to provide a good approximation
set (Ishibuchi et al., 2013; Sato, 2015). In Derbel et al. (2014a), we show
that the search dynamics depends on the underlying contour lines
induced by the function, rather than the actual choice of a particular
scalarizing function or its setting.

We restrict ourselves to the two-objective case, and we define a generic
scalarizing function that covers and generalizes existing, commonly-
used functions. A crucially important property turns out to be the
shape of its contour lines, i.e. the curve in the objective space where
all points on the curve share the same scalar value for the considered
setting. These lines are given by two straight lines characterized by
the opening angles they form with each objective axis, as illustrated
in Figure 5.17. We observe that, for a given scalarizing function, the
search trajectory in the objective space is a joint effect of the distribu-
tion of neighboring solutions obtained by means of variation, and of
the gradient direction of the scalarizing function, which is orthogonal
to its contour lines. The resulting solution corresponds to the inter-
section of the ‘highest’ contour line in the gradient direction and the
feasible region of the objective space. Interestingly, although the search
direction is different, the position of the final solution is similar in
the middle and in the right-hand side of of Figure 5.17. Additional
results suggest that, independently of the scalarizing function, the final
solution is strongly correlated with the opening angles of its contour
lines, and not to a particular scalarizing function. As such, the open-
ing angles explicitly drive the search towards a specific region of the
objective space.
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Figure 5.17: Exemplary run of a (1 + �) evolutionary algorithm on a ⇢mnk-landscape with an objective correlation ⇢ = �0.7 for different
settings of the generalized scalarizing function. Shown are the best-known Pareto front approximation, the solutions generated at differ-
ent iterations, the search direction and the contour lines for Chebyshev (left), weighted sum (middle), and augmented Chebyshev (right).

While these results considering simple search procedures seem natural
and intuitive, they constitute a fundamental step towards a better
understanding of the properties and dynamics of decomposition-based
search. By raising considerations that were until now hidden by the
complex design of well-established algorithms, they certainly make
it possible to reconsider some algorithm design choices, in particular
with regard to the way in which the initial problem is decomposed
into scalar sub-problems.

Variation

As revealed in the previous section, a critical aspect of any search
heuristic is the creation of new candidate solutions at each iteration. In
a more conventional way than with surrogate models, this is typically
done by means of variation operators. Within decomposition-based
search in particular, there is in this regard a number of studies aimed
both at incorporating widely-used operators and techniques from lo-
cal search, differential evolution or particle swarm optimization, but
also at designing improved variants that benefit from the coopera-
tive process of solving neighboring sub-problems (Trivedi et al., 2017).
The important observation here is that the design of intelligent vari-
ation operators and their combination is essential in order to solve
problems with different characteristics or from different domains. In
connection with other algorithm components, they all together aim
at effectively improving the population, and thus the quality of the
resulting approximation set.

Our contributions in this line first deal with decomposition-based
local search, and the influence of a number of strategies for the lo-
cal search moves that are concurrently applied to the different sub-
problems on the overall anytime performance (Derbel et al., 2016).
We investigate the efficiency of a number of algorithm variants for
multi-objective traveling salesperson problems (TSP) with tunable ob-
jective correlations. This work can be seen as an alternative approach
to decomposition-based local search for the multi-objective TSP pro-
posed by Cornu et al. (2017). Secondly, in Zapotecas-Martínez et al.
(2015b), we took advantage of the opportunities offered by the flexibil-
ity of the decomposition framework to incorporate the well-established
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Figure 5.18: Convergence profile of the
algorithm with and without machine
learning-enhanced variation on DTLZ3
problems with respect to generational
distance (top) and inverted generational
distance (bottom).

covariance matrix adaptation evolution strategy (CMA-ES), a state-
of-the-art method for black-box single-objective continuous optimiza-
tion (Hansen and Ostermeier, 2001). Besides being able to obtain com-
petitive results compared against the multi-objective indicator-based
CMA-ES (Igel et al., 2007), our investigations highlight novel promis-
ing alternatives for leveraging existing single-objective CMA-ES in-
gredients by means of injection (Hansen, 2011). Considerations on
differential evolution (Das and Suganthan, 2011) for continuous and
combinatorial multi-objective search are further presented in Drozdik
et al. (2014) and Zapotecas-Martínez et al. (2015a).

An alternative way to CMA-ES for exploiting the information collected
so far by the search process in order to adapt and control the genera-
tion of new candidate solutions is presented in Sagawa et al. (2016).
More particularly, we consider the idea of learning, in an online fash-
ion based on statistical modeling, which problem variables affect the
convergence of the population towards the Pareto front. The rationale
is that different variables might influence convergence while some
might influence diversity — and others might have no influence at
all. At each iteration, we use the ranking obtained by the considered
multi-objective selection paradigm in order to score the quality of so-
lutions with respect to convergence. We then bias standard variation
operators accordingly, in order to help finding high-quality solutions
as early as possible, and thus improving algorithm convergence. To do
so, we train a random forest regression model (Breiman, 2001) in order
to predict the rank of solutions from the current population based
on the value of their variables. After training, we extract the impor-
tance of variables from the obtained model to select which variables
will undergo variation. Selected experimental results are reported in
Figure 5.18 on four problems from continuous multi-objective opti-
mization with a varying number of objectives as well as convergence
and diversity variables — DTLZ3 from Deb et al. (2005). Three ap-
proaches are considered: a conventional evolutionary approach (org),
the proposed approach based on variable importance (var-imp), and a
cheating approach with perfect knowledge of convergence and diver-
sity variables (ideal). Generational distance (top) is used to account for
convergence, while inverted generational distance (bottom) accounts
for diversity. Besides showing that the proposed approach achieves
a significantly better convergence on some well-established continu-
ous benchmark functions, our investigations suggest that the design
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Figure 5.19: Convergence profile of the
algorithm with and without enhanced
variation on the vibrating beam problem
with respect to hypervolume.

of machine learning-enhanced variation operators is a promising re-
search direction that might help catching the underlying difficulty of
multi-objective optimization problems.

In Ito et al. (2019), we further improve the proposed methodology
by classifying the variables as influential or non-influential, this by
mutating one variable at a time on random solutions among the best
solutions found so far. The method estimates that influential variables
affect the convergence of the population, and increases their recom-
bination rate. We also experiment the effectiveness of the proposed
approach on a real-world bi-objective vibrating beam problem. The ex-
perimental results reported in Figure 5.19 show that different settings
of the method contribute to achieve faster and better convergence.

5.6 Outlook and Current Investigations

This chapter provided an overview of our research contributions on
efficient multi-objective optimization, with a particular focus on the
decomposition-based search paradigm. They can be considered along
three interconnected axes. Firstly, by considering the decomposition in
a very local way, we paid a particular attention to the design of cooper-
ative rules in order to improve approximation quality while enabling
parallelism to take full benefit from large-scale distributed computa-
tional resources. In this regard, we argue that the high level of paral-
lelism offered by the decomposition framework is a strong feature for
designing more powerful search procedures, and for solving increas-
ingly complex optimization problems. Secondly, we were interested
in the design of search methods that integrate meta-models for solv-
ing expensive multi-objective optimization problems. A fine-grained
taxonomy allowed us to instantiate existing approaches and new alter-
natives under a common framework, and to systematically highlight
their main design choices and components, thus revealing a number of
important considerations for surrogate-assisted multi-objective search.
They include the construction of the training set and of an ensemble of
local meta-models clustered in different regions of the objective space,
together with the computationally-intensive evaluation of a diverse
batch of solutions under the real, expensive objectives. This is certainly
of high importance in terms of computational complexity: not only
does this reduce the number of computationally-demanding model
training tasks, but this also enables the costly evaluation of multiple
solutions in parallel. Our investigations also pointed out the critical
importance of design components with respect to the available search
budget. We then presented a surrogate-assisted modular approach
for expensive multi-objective combinatorial optimization, based on
a Walsh meta-model. We found that there is a non-trivial interaction
between the inner optimizer of the surrogates — used as substitutes
of the objectives — and the way the next solution to be evaluated is
selected. At last, we addressed important complementary algorithm
components for efficient (decomposition-based) multi-objective search.
By analyzing the impact of the population and of the formulation
of scalar sub-problems, by proposing new mechanisms for variation



5.6 Outlook 103

as well parent and survival selection, and most importantly by con-
ducting extensive empirical investigations to analyze and compare
their search dynamics and anytime performance, we were able to
make a step towards a more fundamental understanding of what
multi-objective search in general, and the decomposition framework
in particular, is able to achieve.

Following a recent survey on decomposition-based multi-objective
search (Trivedi et al., 2017), our contributions are mainly concerned
with the following research lines: (i) the specification of weight vectors,
(ii) the mating selection and replacement mechanisms, (iii) the com-
putational effort underlying decomposition-based search, and (iv) the
design and integration of variation operators. Even more recently, Li
(2021) reviews major developments on decomposition, among which
our contributions address all the considered components, namely:
(i) the weight vector setting, in particular with adaptation methods,
(ii) the scalar sub-problems formulation, with the fundamental study of
scalarizing functions’ contour lines and improvement regions, (iii) the
selection mechanisms, with new strategies for both parent and sur-
vival selection, and (iv) variation, with local search and model-based
operators. Li (2021) further discusses advanced and emerging topics.
Of special interest to our work are surrogate-assisted approaches for
expensive optimization, and parallel computing.

Regarding the decomposition framework, we are currently working
on making a stronger connection with landscape analysis, as discussed
in Chapter 3. For instance, we recently studied the “aggregated” land-
scape of multiple scalar sub-problems as a whole, showing that it helps
explain and predict decomposition-based search (Cosson et al., 2021).
We are also considering using tools and features from single-objective
landscape analysis to characterize the different scalar sub-problems
defined by decomposition. This is certainly of great interest for the
study of sub-problems with an heterogeneous level of difficulty, that
is, problems with heterogeneous objectives (Santana et al., 2022), for
which the scalarizing function corresponding to each weight vector
is expected to have a different complexity. Informing about the het-
erogeneity of sub-problems might lead to a better distribution of the
search effort among the sub-problems. Related to this, we have seen
that the setting of the scalarizing function, and more importantly its
contour lines, directly impact the trajectory, the dynamics and the per-
formance of sub-problem solving. This suggests that some algorithm
design choices could be reconsidered, including the formulation of
heterogeneous scalarizing functions for the different weight vectors
in order to balance the difficulty of sub-problems and the distribu-
tion of target solutions. To do so, we plan to analyze the landscape
of sub-problems and to investigate the configuration of scalarizing
functions’ opening angles, thus abstracting away from any particular
closed-form scalarizing function. In a complementary way, we believe
that some quality indicators from Chapter 4 — see also Hansen and
Jaszkiewicz (1998) — have a strong connection with the way in which
decomposition is defined, and might actually be relevant to clarify the
distribution of solutions within the population from decomposition-
based search. Not only this, we anticipate it might also help to gain
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a better understanding of the differences and similarities between
these two selection paradigms from multi-objective search. We would
not be complete without mentioning that the cooperation among sub-
problems certainly helps the overall search procedure. Investigating
whether cooperation actually implies a better search behavior could
allow us to better understand why solving sub-problems cooperatively
appears to be fundamentally more efficient than solving them inde-
pendently. To do so, we would need to capture the evolvability of
solutions from one sub-problem to another.

Another obvious perspective to our work is to leverage the decentral-
ized nature of decomposition and the computational power provided
by modern parallel platforms. The aim is to achieve a high efficiency
and a high scalability without deteriorating search performance. A
first step is to identify the different sources of parallelism induced
by the decomposition, both in the objective space and in the variable
space, independently of its effective parallelization. Our work on the
learning of variable importance could serve as a basis for variable
space decomposition, in order to study the effect of linkage among
variables (Pelikan et al., 2000), especially when variable interactions are
intricate. However, scalability often implies unbalanced computations.
As pointed out above, different sub-problems might require a varying
computational effort. To our knowledge, no distributed approach tak-
ing into account the cooperation among multiple parallel processes has
been studied so far for solving heterogeneous sub-problems. We argue
that decomposition provides a framework in which online adaptation
could help balance the search effort among sub-problems, but also the
algorithm components and parameters used by the cooperative and
distributed search process. Finally, we believe that surrogate-assisted
search may prove relevant for multi-fidelity and/or simulation opti-
mization (Branke, 2019; Forrester et al., 2007); e.g., when evaluating the
objective(s) involve expensive simulations (Rifki et al., 2020). In this
line, we plan to address other discrete optimization domains, such as
permutation problems. In principle, the proposed surrogate-assisted
multi-objective search approach is compatible with any accurate meta-
model. However, studying the combined effects of algorithm compo-
nents from surrogate-assisted search can only be a function of a target
optimization problem. More generally, we advocate for a more system-
atic benchmarking analysis of such considerations for improving our
fundamental understanding on the design of multi-objective search,
on the key differences among algorithm classes, and on their success in
solving challenging problems from multi-objective optimization. In the
next chapter, we conclude the manuscript with general considerations
and a research plan for massive optimization.



Towards Landscape-aware
Massive Optimization 6
Optimization is now ubiquitous to countless modern engineering
and scientific applications. Problems and algorithms are increasingly
large-scale and heterogeneous, requiring to deal with a huge number
of variables and conflicting objectives of different nature. From the
application point of view, fields of particular interest relate to sustain-
able systems, complex scheduling or multidisciplinary engineering
design and innovation, for which many optimization models are in-
creasingly complex and involve large-size instances, cross-domain for-
mulations and heterogeneous objectives. Such characteristics lead to
massive optimization problems, and raise new important and difficult
scientific challenges for researchers and practitioners, that traditional
approaches will hardly succeed when facing them. Those techniques
shall be taken to the next level for solving heterogeneous problem
classes, with a large number of variables and objectives. We must
therefore push the boundaries of existing approaches, in order to go
beyond the problem scale investigated so far in the literature, and
to design innovative flexible general-purpose computational intelli-
gence methods able to efficiently and effectively tackle such massive
optimization problems.

Challenges

Although some research dealing with the aforementioned character-
istics can be found, we target a unified integrated approach tackling
the issues from today’s complex application domains in engineering
design and sustainable systems. In particular, we are interested in
setting up the foundations and developing cutting-edge autonomous
solvers able to globally and jointly address the challenges encountered
in problems from massive optimization:

1. Large-scale optimization problems, which commonly involve
hundreds of variables that induce a large increase in the space
where the search algorithm operates.

2. Any-objective optimization problems, where one, multiple, or
many criteria are to be simultaneously optimized, typically lead-
ing to a significant increase in the number of optimal trade-offs
to be identified.

3. Cross-domain optimization problems, dealing with continu-
ous, integer, categorical variables, or even more complex struc-
tures such as permutations, strings, trees, or graphs, that may be
mixed among themselves.

4. Expensive optimization problems, where the propagation of
environmental parameters, the requirement of heavy simula-
tions, or simply the black-box nature of the objectives makes it
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Figure 6.1: Challenges from massive
optimization.
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already computationally demanding to obtain the quality of one
single candidate solution at the evaluation stage.

The general goal is to foster the next generation of search algorithms
for solving such problems by precisely investigating the modeling, the
resolution and the fundamental and experimental analysis of massive
optimization problems, with a clear emphasis on their multi-objective
nature. As illustrated in Figure 6.1, such massive optimization prob-
lems raise new challenges, in particular because of (a) their dimension-
ality in terms of variables, (b) of objectives, (c) their heterogeneity, and
(d) their black-box and expensive nature, our research program aims at
jointly addressing them, and is organized following three intercon-
nected scientific goals described below. Obviously, other important
challenges that are not considered below relate to the number of con-
straints involved in the problem formulation and how to handle them,
as well as the different sources of uncertainty that an application can
face and how to take them into account during its resolution.

Landscape-aware Search

The class of optimization problems encountered in real-life complex
application domains is wide and heterogeneous. This explains the
plethora of ad-hoc optimization techniques specialized in solving a
particular problem formulation. On the contrary, general-purpose
methods such as branch and bound or search heuristics constitute
upper-level methodologies that can be used as guiding strategies in
designing underlying search algorithms. One of our goal precisely lies
in the foundation, analysis and intelligent design of enhanced general-
purpose algorithms, search paradigms and their design principles, as
well as innovative ways of combining them. However, being effective
and efficient in solving the target problem always requires a proper
configuration and adaptation. However, most algorithms continue to
be designed on the basis of intuition, and require an intensive phase
of trials and errors for parameter setting. One way of addressing this
in practice is to rely on automated algorithm configuration in order to
automatically configure an algorithm by finding the most appropriate
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parameter setting, specialized for a given set of problem instances.
Complementarily, we aim at avoiding hyper-specialized approaches,
and at improving the way we develop algorithms by incorporating
a more fundamental approach in their design process. Our goal is to
understand the difficulties a given optimization approach has to face,
and what makes it efficient, independently of the target application,
by deriving high-level and relevant features able to capture prob-
lem difficulty by means of tools from landscape analysis, as well as
statistics and machine learning data analysis. Such an analytics-driven
methodology, based on landscape analysis and extensive benchmark-
ing efforts, would allow us, not only to understand what makes a
problem difficult or an optimization approach efficient, but also to
predict the algorithm performance, to select the most appropriate con-
figuration from an algorithm portfolio, and to adapt and improve the
algorithm design for unknown optimization domain and problem
instances. Such a cross-domain autonomous solver would adaptively
adjust its internal mechanisms in order to fully take advantage of the
opportunities offered by the target massive optimization problem.

Model-assisted Search

In expensive optimization, evaluating the quality of a candidate so-
lution is particularly demanding computationally speaking. This is
typically the case when this evaluation step corresponds to the re-
sult of a (black-box) complex system simulation, or because of the
large number of environmental parameters encountered in multidis-
ciplinary engineering design and innovation, as well as sustainable
systems. In this context, existing algorithms from optimization and
computational intelligence suffer from slow convergence, and their
scalability raises new scientific challenges. To overcome this, we will
rely on surrogate models and machine learning algorithms in order to
predict the approximation quality without systematically computing
their (expensive) objective value(s). The goal here is to accelerate the
convergence of the optimization process and to improve the quality
of final solutions. More particularly, we will focus on the suitability
of advanced statistical and machine learning meta-models for large-
scale optimization, the choice of the output to be predicted by these
meta-models, their prediction accuracy and their parameter sensibility,
the uncertainties and inaccuracies occurring in their responses, the
choice of the data set from which the meta-model learns from, and the
integration of the learning phase within the search process. Because of
the target application context, the computational cost of designed ap-
proaches is prohibitive. As a consequence, we will attach a particular
attention to distributed approaches for addressing these different is-
sues, with an effective parallelization on high performance computing
platforms. Complementarily, we will investigate model-assisted com-
putational intelligence algorithms, that consist in explicitly modeling
the key features — such as variable interactions — that impact approx-
imation quality, and to use this model as an algorithm component in
order to produce new candidate solutions with an expected improved
quality.
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Decomposition-based Decentralized Search

Given the large-scale nature of the target applications and the un-
derlying optimization problems, in terms of the number of variables
and objectives, a natural answer is to decompose the original mas-
sive optimization problem to be solved into several sub-problems for
which solutions are computed and aggregated taking inspiration from
the “divide and conquer” paradigm. However, setting up an effective
decomposition-based approach relies on the design and integration of
several components that are to be configured accurately. Firstly, we will
address the definition of the set of sub-problems to be solved coopera-
tively, by decomposing the original problem into a set of sub-problems
within a smaller region of the variable space and/or the objective
space, so as to increase the efficiency of the search process. Secondly,
we will design cooperative computational intelligence algorithms and
mechanisms in order to solve each sub-problem, and to specify the
local rules of interaction and cooperation governing the global search
process. The idea is to view the solving of an optimization problem as
a complex system operating at different local parts so that the overall
global computational power is eventually larger than the sum of its
parts. At last, we will take advantage from the decentralized nature of
decomposition-based approaches in order to deploy them efficiently
on large-scale distributed and parallel platforms. On the one hand,
the power of modern and massively parallel computing platforms is
becoming both huge and increasingly available for the community. On
the other hand, and following the evolution of modern computational
science, the characteristics of massive optimization give rise to difficult
challenges, beyond the ability of commonly-used algorithms. In this
respect, there is evidence that decentralized computation will play a
crucially important role in order to foster the next generation of opti-
mization techniques, and to accelerate their widespread uptake. One
main issue we will tackle is to consider the cooperation rules within
the different search procedures operating at every sub-problem. This
can in fact constitute a bottleneck towards the design of highly scalable
parallel decomposition for massive optimization.

All in all, we argue that considering the combined design of landscape-
aware, model-assisted, and decentralized decomposition-based search
algorithms will allow for an efficient and effective approach for solving
upcoming problems from massive optimization.



Bibliography

Self-citations appear in color.

Abbasi, M., Paquete, L., Liefooghe, A., Pinheiro, M., and Matias, P. (2013). ‘Improvements on Bicriteria
Pairwise Sequence Alignment: Algorithms and Applications’. In: Bioinformatics 29 (8), pp. 996–1003.

Abdelkafi, O., Derbel, B., Liefooghe, A., and Whitley, D. (2020). ‘On the Design of a Partition Crossover for
the Quadratic Assignment Problem’. In: Parallel Problem Solving from Nature, PPSN XVI. Ed. by T. Bäck,
M. Preuss, A. H. Deutz, H. Wang, C. Doerr, M. T. M. Emmerich, and H. Trautmann. Vol. 12270. Lecture
Notes in Computer Science. Leiden, The Netherlands: Springer, pp. 303–316.

Aboutaib, B., Verel, S., Fonlupt, C., Derbel, B., Liefooghe, A., and Ahiod, B. (2020). ‘On Stochastic Fitness
Landscapes: Local Optimality and Fitness Landscape Analysis for Stochastic Search Operators’. In:
Parallel Problem Solving from Nature, PPSN XVI. Ed. by T. Bäck, M. Preuss, A. H. Deutz, H. Wang, C.
Doerr, M. T. M. Emmerich, and H. Trautmann. Vol. 12270. Lecture Notes in Computer Science. Leiden,
The Netherlands: Springer, pp. 97–110.

Adenso-Diaz, B. and Laguna, M. (2006). ‘Fine-Tuning of Algorithms Using Fractional Experimental
Design and Local Search’. In: Operations Research 54 (1), pp. 99–114.

Aguirre, H. E., Liefooghe, A., Verel, S., and Tanaka, K. (2013). ‘A Study on Population Size and Selection
Lapse in Many-objective Optimization’. In: Proceedings of the 2013 Congress on Evolutionary Computation
(CEC 2013). Cancún, Mexico: IEEE Press, pp. 1507–1514.

– (2014). ‘An Analysis on Selection for High-Resolution Approximations in Many-Objective Optimization’.
In: Parallel Problem Solving from Nature, PPSN XIII. Ed. by T. Bartz-Beielstein, J. Branke, B. Filipič, and
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