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This thesis is devoted to study the stabilization of some locally coupled systems. First, we study the stability of a one-dimensional coupled wave equations with two interior non smooth viscous dampings where we establish exponential stability. Second, we study the stabilization of a locally coupled wave equations with only one internal viscoelastic damping of Kelvin-Voigt type. Both the damping and the coupling coefficients are non smooth. Using a spectrum approach, we prove the non-uniform stability of the system. Next, using a frequency domain approach, combined with a piecewise multiplier technique and the construction of a new multiplier satisfying some ordinary differential equations, we show that the energy of the smooth solution of the system decays polynomially. Third, we investigate the energy decay of hyperbolic systems of wave-wave, wave-Euler Bernoulli beam and beam-beam types. Indeed, the two equations are coupled through boundary connection with only one localized non smooth fractional Kelvin Voigt damping. By using frequency domain approach, combined with multiplier technique and some interpolation inequalities, we establish different types of polynomial energy decay rate which depend on the order of the fractional derivative and the type of the damped equation in the system. Finally, we study the stability of a multidimensional system of two wave equations coupled by velocities with only one localized non-smooth Kelvin-Voigt damping. By using a spectral analysis, we prove the non uniform stability of the system. Further, using a frequency domain approach combined with a multiplier technique, we establish some polynomial stability results by considering different geometric conditions on the coupling and the damping domains. In addition, in the absence of any geometric condition, we establish two polynomial energy decay rates of the system on a square domain where the damping and the coupling are localized in a vertical strip.

Résumé

Cette thèse est consacrée à l'étude de la stabilisation de certains systèmes localement couplés. Tout d'abord, nous étudions la stabilité d'équations d'onde couplées unidimensionnelles avec deux amortissements visqueux intérieurs non lisses où nous établissons une stabilité exponentielle. Dans un second temps, nous étudions la stabilisation d'équations d'onde localement couplées avec un seul amortissement viscoélastique interne de type Kelvin-Voigt. L'amortissement et les coefficients de couplage ne sont pas lisses. En utilisant une approche spectrale, nous démontrons la stabilité non uniforme du système. Ensuite, en utilisant une approche du domaine fréquentiel, combinée à une technique de multiplicateur par morceaux et à la construction d'un nouveau multiplicateur satisfaisant quelques équations différentielles ordinaires, nous montrons que l'énergie de la solution lisse du système décroît polynomiale. Troisièmement, nous étudions la décroissance énergétique de systèmes hyperboliques de type onde-onde, onde-Euler Bernoulli et faisceau-faisceau. En effet, les deux équations sont couplées par liaison limite avec un seul amortissement fractionnaire Kelvin Voigt localisé non lisse. En utilisant l'approche du domaine fréquentiel, combinée à la technique du multiplicateur et à certaines inégalités d'interpolation, nous établissons différents types de taux de décroissance d'énergie polynomiale qui dépendent de l'ordre de la dérivée fractionnaire et du type de l'équation amortie dans le système. Enfin, nous étudions la stabilité d'un système multidimensionnel de deux équations d'onde couplées par des vitesses avec un seul amortissement Kelvin-Voigt localisé non lisse. En utilisant une analyse spectrale, nous prouvons la stabilité non uniforme du système. De plus, en utilisant une approche du domaine fréquentiel combinée à une technique de multiplicateur, nous établissons des résultats de stabilité polynomiale en considérant différentes conditions géométriques sur les domaines de couplage et d'amortissement. De plus, en l'absence de toute condition géométrique, nous établissons deux taux de décroissance polynomiale de l'énergie du système sur un domaine carré où l'amortissement et le couplage sont localisés dans une bande verticale Mots clés: C 0 -semi-groupe, Stabilité forte, Stabilité exponentielle, Stabilité polynomiale, Méthode du domaine fréquentiel, Méthode du multiplicateur, Analyse spectrale, Condition géométrique
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List of Symbols

R

The set of real numbers. R +

The set of non negative real numbers. R *

The set of non zero real numbers.

N

The set of natural numbers. N *

The set of non zero natural numbers.

Z

The set of integer numbers. Z *

The set of non zero integer numbers.

Q

The set of rational numbers. Q +

The set of non negative rational numbers. Q *

The set of non zero rational numbers.

C

The set of complex numbers. i

The imaginary unit.

Re

The real part.

Im

The imaginary part.

L p

The Lebesgue space.

H m

The sobolev space. C 0 The space of continuous function. C 1 the space of continuously differentiable functions.

|•|

The modulus.

•

The norm. max

The maximum. min

The minimum. sup

The supreme. inf

The infimum.

f y = ∂ y f
The partial derivative of f with respect of y. f y y = ∂ y y f The second partial derivative of f with respect of y. ∂ α,η t

Fractional Derivative. si g n

The sign function or signum function.
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Asymptotic Notation

Let f and g be two functions defined on some subset of the real numbers, we define

• f (x) = O g (x) as x → ∞ to mean that there exists a positive number M and a real numbers x 0 such that f (x) ≤ M g (x) ∀ x ≥ x 0 .

• f (x) = o g (x) as x → ∞ to mean that lim x→∞ f (x) g (x) = 0.

• f ∼ g as x → ∞ to mean that

lim x→∞ f (x) g (x) = 1.

Introduction

The word control has a double meaning. First, controlling a system can be understood simply as testing or checking that its behavior is satisfactory. In a deeper sense, to control is also to act, to put things in order to guarantee that the system behaves as desired. S. Bennett starts the first volume of his book [START_REF] Bennett | A history of control engineering[END_REF] on the history of Control Engineering quoting the following sentence of Chapter 3, Book 1, of the monograph 'politics' by Aristotle: ". . . if every instrument could accomplish its own work, obeying or anticipating the will of others . . . if the shuttle weaved and the pick touched the lyre without a hand to guide them, chief workmen would not need servants, nor masters slaves". This sentence by Aristotle describes in a rather transparent way the guiding goal of Control Theory: the need of automatizing processes to let the human being gain in liberty, freedom, and quality of life. Control theory is applied in a diverse range of scientific and engineering disciplines, such as the reduction of noise, the vibration of structures like seismic waves and earthquakes, the regulation of biological systems like the human cardiovascular system, and the design of robotic systems. Stability and controllability are among the fundamental concepts in modern mathematical control theory. They are qualitative properties of control systems and are of particular importance in control theory.

In this thesis, we study the stabilization of certain problems with different types of damping and by considering different positions of the damping by using the semigroup theory. The thesis is divided into five chapters.

In Chapter 1, we present some results and theorems in semigroup theory. Also, we present some theorems that acknowledge us about the stabilization of some systems of differential equations including some theorems on strong, exponential, polynomial and analytic stability of a C 0 -semigroup. In addition, we present the definition of some geometric conditions. In Chapter 2 , we study the stability of a one-dimensional coupled wave equations Introductionwith two interior viscous dampings. The system is given as follows First, we start by studying the existence, uniqueness and regularity of the solution of the system using the semigroup approach. Let ϕ, ϕ t , ψ, ψ t be a regular solution of (0.0.1)-(0.0.3), its associated total energy is defined by

                     ϕ t t -aϕ xx + 1 (α,β) (x)ϕ t + c(x)ψ t = 0, (x, t ) ∈ (0, L) × R + , ψ t t -ψ xx + 1 (α,β) (x)ψ t -c(x)ϕ t = 0, (x, t ) ∈ (0, L) × R + , ϕ(0, t ) = ϕ(L, t ) = 0, t > 0, ψ(0, t ) = ψ(L, t ) = 0, t > 0.
E a (t ) = 1 2 L 0 ϕ t 2 + a ϕ x 2 + ψ t 2 + ψ x 2 d x
By direct computation, we obtain

d d t E a (t ) = - L 0 1 (α,β) (x) ϕ t 2 d x - L 0 1 (α,β) (x) ψ t 2 d x ≤ 0.
Thus, System (0.0.1)-(0.0.3) is dissipative in the sense that its energy is a non-increasing function with respect to the time variable t . Next, we define the energy space H a by H a = (H 1 0 (0, L) × L 2 (0, L)) 2 .

We denote by η = ϕ t and ξ = ψ t . The energy space H a is endowed with the following norm

Φ 2 H a = η 2 + a ϕ x 2 + ξ 2 + ψ x 2 ,
where • denotes the norm of L 2 (0, L) and Φ = ϕ, η, ψ, ξ in H a . We define the unbounded linear operator A a : D (A a ) ⊂ H a -→ H a by D(A a ) = (H 2 (0, L) ∩ H 1 0 (0, L)) × H 1 0 (0, L) 2 , (0.0.4) and for all Φ = ϕ, η, ψ, ξ ∈ D (A a ),

A a (ϕ, η, ψ, ξ) = η, aϕ xx -1 (α,β) (x)ηc(x)ξ, ξ, ψ xx -1 (α,β) (x)ξ + c(x)η . (0.0.5)
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If Φ = ϕ, η, ψ, ξ is the state of System (0.0.1), then this system is transformed into a first order evolution equation on the Hilbert space H a given by Φ t = A a Φ, Φ(0) = Φ 0 , (0.0.6)

where Φ 0 = ϕ 0 , η 0 , ψ 0 , ξ 0 .

It is easy to prove that the operator A a is m-dissipative on H a and consequently, generates a C 0 -semigroup of contractions e t A a t ≥0 following Lumer-Phillips Theorem 1.2.8 (see in [START_REF] Liu | Semigroups associated with dissipative systems[END_REF] and [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Then, the solution of the evolution Equation (0.0.6) admits the following representation Φ(t ) = e t A a Φ 0 , t ≥ 0, which leads to the well-posedness of (0.0.6). Using the semi-group theory we have the following existence and uniqueness theorem.

Theorem 0.0.1. Let Φ 0 ∈ H a . Then, Problem (0.0.6) admits a unique weak solution Φ that satisfies

Φ(t ) ∈ C 0 R + , H a .
Moreover, if Φ 0 ∈ D(A a ) then, Problem (0.0.6) admits a unique strong solution Φ that satisfies

Φ(t ) ∈ C 1 R + , H a ∩C 0 (R + , D(A a )).
Next, we prove the strong stability of the system by using a general criteria of Arendt and Batty. The result is given by the following theorem Theorem 0.0.2. The C 0 -semigroup of contractions e t A a t ≥0 is strongly stable in H a ; i.e. for all Φ 0 ∈ H a , the solution of (0.0.6) satisfies lim t →+∞ e t A a Φ H a = 0. The proof of this theorem is done by proving that A a has non pure imaginary eigenvalues. Since D(A a ) is compactly embeded in H a , A a is maximal dissipative, A a has no pure imaginary eigenvalues, and A a has a compact resolvent. Then, using Arendt-Batty Theorem 1.3.3, we reach that the C 0 -semigroup (e t A a ) t ≥0 is strongly stable. Now, we prove the energy decay rate by using a frequency domain approach combined with a piecewise multiplier technique. The main result is represented in the following theorem.

Theorem 0.0.3. The C 0 -semigroup of contractions e t A a t ≥0 is exponentially stable, i.e. there exists constants M ≥ 1 and τ > 0 independent of Φ 0 such that

e t A a Φ 0 H a ≤ Me -τt Φ 0 H a , t ≥ 0, ∀ Φ 0 ∈ H a .
The proof of this theorem is done by using the result of Huang and Prüss (see Theorem 1.3.5).
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In Chapter 3, we study the stabilization of a locally coupled wave equations with only one internal viscoelastic damping of Kelvin-Voigt type. Both the damping and the coupling coefficients are non smooth. The system is described by u t t -(au x + b(x)u t x ) x + c(x) y t = 0, (x, t ) ∈ (0, L) × R + , (0.0.7) y t ty xxc(x) u t = 0, (x, t ) ∈ (0, L) × R + , (0.0.8)

with fully Dirichlet boundary conditions, u(0, t ) = u(L, t ) = y(0, t ) = y(L, t ) = 0, ∀ t ∈ R + , (0.0.9) where b(x) = b 0 if x ∈ (α 1 , α 3 ) 0 otherwise and c(x) = c 0 if x ∈ (α 2 , α 4 ) 0 otherwise (0.0.10) and a > 0, b 0 > 0 and c 0 ∈ R * , and where we consider 0 < α 1 < α 2 < α 3 < α 4 < L. This system is considered with the following initial data u(•, 0) = u 0 (•), u t (•, 0) = u 1 (•), y(•, 0) = y 0 (•) and y t (•, 0) = y 1 (•). (0.0.11)

The main novelty in this chapter is that it generalizes the work in [START_REF] Hassine | Stability for coupled waves with locally disturbed Kelvin-Voigt damping[END_REF] by considering the damping and the coupling coefficients to be non-smooth, the damping to be internally localized and by improving the polynomial energy decay rate of the system. First, using a semigroup approach we establish the well posedness of the system (0.0.7)-(0.0.11). The energy of System (0.0.7)-(0.0.11) is given by

E (t ) = 1 2 L 0 |u t | 2 + a|u x | 2 + |y t | 2 + |y x | 2 d x.
Let u, u t , y, y t be a regular solution of (0.0.7)-(0.0.11). Multiplying (0.0.7), (0.0.8) by u t , y t , respectively, then using the boundary conditions in (0.0.9), we get

E (t ) = - L 0 b(x)|u t x | 2 d x,
using the definition of the function b(x), we get that E (t ) ≤ 0. Thus, System (0.0.7)-(0.0.11) is dissipative in the sense that its energy is a non-increasing function with respect to the time variable t . We define the energy space H by H = (H 1 0 (0, L) × L 2 (0, L)) 2 .

The energy space H is equipped with the inner product defined by

〈U ,U 1 〉 H = L 0 v v 1 d x + a L 0 u x (u 1 ) x d x + L 0 zz 1 d x + L 0 y x (y 1 ) x d x,
Introductionfor all U = u, v, y, z and U 1 = u 1 , v 1 , y 1 , z 1 in H . We use U H to denote the corresponding norm. We define the unbounded linear operator A : D (A ) ⊂ H -→ H by

D(A ) =      U = (u, v, y, z) ∈ H ; y ∈ H 2 (0, L) ∩ H 1 0 (0, L) v, z ∈ H 1 0 (0, L), (au x + b(x)v x ) x ∈ L 2 (0, L)     
and for all U = u, v, y, z ∈ D (A ),

A u, v, y, z = v, (au x + b(x)v x ) xc(x)z, z, y xx + c(x)v .

If U = (u, u t , y, y t ) is the state of System (0.0.7)-(0.0.11), then this system is transformed into the first order evolution equation on the Hilbert space H given by U t = A U , U (0) = U 0 , (0.0.12)

where U 0 = (u 0 , u 1 , y 0 , y 1 ).

It is easy to check that the operator A is m-dissipative on H and consequently, it generates a C 0 -semigroup of contractions e t A t ≥0 following Lumer-Phillips Theorem. Then, the solution of the evolution Equation (0.0.12) admits the following representation U (t ) = e t A U 0 , t ≥ 0, which leads to the well-posedness of (0.0.12). Hence, using the semigroup theory we have the following existence and uniqueness result Theorem 0.0.4. Let U 0 ∈ H then, problem (0.0.12) admits a unique weak solution U satisfying U (t ) ∈ C 0 R + , H .

Moreover, if U 0 ∈ D(A ) then, problem (0.0.12) admits a unique strong solution U satisfying U (t ) ∈ C 1 R + , H ∩C 0 (R + , D(A )).

Next, we study the strong stability of system (0.0.7)-(0.0.11) in the sense that its energy converges to zero when t tends to infinity for all initial data in H . It is easy to see that the resolvent of A is not compact, then we use a general criteria of Arendt-Batty Theorem 1.3.3 (see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] ), in which a C 0 -semigroup of contractions (e t A ) t ≥0 in a Banach space is strongly stable, if A has no pure imaginary eigenvalues and σ (A ) ∩ i R contains only a countable number of continuous spectrum of A . We have the following stability result : Theorem 0.0.5. The C 0 -semigroup of contractions e t A t ≥0 is strongly stable in H ; i.e. for all U 0 ∈ H , the solution of (0.0.12) satisfies lim t →+∞ e t A U 0 H = 0.

The proof of this theorem relies on the following two Lemmas

Introduction -Lemma 0.0.6. For λ ∈ R, we have i λI -A is injective i.e. ker (i λI -A ) = {0}, ∀λ ∈ R. Lemma 0.0.7. For all λ ∈ R, we have R(i λI -A ) = H . Using Lemma 0.0.6, we have that A has non pure imaginary eigenvalues. According to Lemmas 0.0.6, 0.0.7 and with the help of the closed graph theorem of Banach, we deduce that σ(A ) ∩ i R = . Thus, we get the result by applying Theorem 1.3.3 of Arendt and Batty. Now, our aim is to prove that the system (0.0.7)-(0.0.11) is not uniformly stable. Here, we prove the lack of uniform stability using two different approaches: The first approach is when the Kelvin-Voigt damping is global and the other approach when the damping is localized. First, we assume that b(x) = b 0 > 0 and c(x) = c 0 ∈ R * , ∀ x ∈ (0, L).

(0.0.13)

Our main result here is the following theorem.

Theorem 0.0.8. Under hypothesis (0.0.13), for ε > 0 small enough, we cannot expect the energy decay rate 1 t 2 2-ε for all initial data U 0 ∈ D(A ) and for all t > 0.

In the second approach, we assume that

a = 1, b(x) = 0 if 0 < x ≤ 1 2 , 1 if 1 2 < x ≤ 1.
, and c(x) = c ∈ R * . (0.0.14)

Our main result here is the following theorem.

Theorem 0.0.9. Under condition (0.0.14). The semigroup of contractions e t A t ≥0 generated by the operator A is not exponentially stable in the energy space H . This result relies on the fact that there exists a subsequence of eigenvalues of A close to the imaginary axis. Thus, under the condition (0.0.14), we prove that there exists n 0 ∈ N sufficiently large and two sequences λ 1,n |n|≥n 0 and λ 2,n |n|≥n 0 satisfying the following asymptotic behavior: Case 1. If sin c 4 = 0, then Now, in the absence of the uniform stability we aim to establish a polynomial decay rate for the system. Using a frequency domain approach, combined with a piecewise multiplier technique and using the exponential stability result of the system in Chapter 2, we establish a polynomial energy decay rate given in the following theorem.

λ 1,n = 2nπi + i π - 2 sin 2 ( c 4 )(1 -i si g n(n)) 3 + cos c
Theorem 0.0.10. There exists a constant C > 0 independent of U 0 , such that the energy of system (0.0.7)-(0.0.11) satisfies the following estimation:

E (t ) ≤ C t U 0 2 D(A ) , ∀t > 0, ∀U 0 ∈ D(A ). (0.0.19)
We prove this theorem using the result of Borichev-Tomilov 1.3.10 (see [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF]), by taking = 2, the polynomial energy decay (0.0.19) holds if the following conditions i R ⊂ ρ(A ), (H1) and lim sup λ∈R,|λ|→∞

1 |λ| 2 (i λI -A ) -1 L (H ) < ∞, (H2) 
are satisfied. Condition (H1) is already proved in Lemma 0.0.6. We prove condition (H2) using an argument of contradiction. For this purpose, we suppose that (H2) is false, then there exists (λ n ,U n = u n , v n , y n , z n ) n≥1 ⊂ R × D (A ) and

λ n → +∞, U n H = 1, (0.0.20) such that λ 2 n ( i λ n U n -A U n ) = f 1,n , g 1,n , f 2,n , g 2,n := F n → 0 in H . (0.0.21)
We check the condition (H2) by finding a contradiction with (0.0.20) by showing that U H = o [START_REF] Achouri | The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type[END_REF]. Hence, we reach that the condition (H2) holds and, consequently, that the polynomial energy decay (0.0.19) holds.

In Chapter 4, the main interest in this chapter is that the results here improve that in

Introduction - [START_REF] Hassine | Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping[END_REF] in the case when the damping acts on the wave equation only. Also, the result, in this chapter, when considering the coupled wave and Euler-Bernoulli beam equations with the damping acting on the beam equation shows that the boundary conditions play a critical role in the energy decay rate of the system (compared to that in [START_REF] Hassine | Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping[END_REF] ).

In this chapter, we investigate the stability results of five models of systems with a non-smooth localized fractional Kelvin-Voigt damping where the coupling is made via boundary connection. In the first model (EBB)-W F K V , we investigate the stability of coupled Euler-Bernoulli beam and wave equations. The coupling is via boundary connections with localized non-regular fractional Kelvin-Voigt damping where the damping acts through the wave equation only. The system that describes this model is as follows

                                   u t t -au x + d (x)∂ α,η
t u x x = 0, (x, t ) ∈ (0, L) × (0, ∞),

y t t + b y xxxx = 0, (x, t ) ∈ (-L, 0) × (0, ∞),
u(L, t ) = y(-L, t ) = y x (-L, t ) = 0, t ∈ (0, ∞), au x (0, t ) + b y xxx (0, t ) = 0, y xx (0, t ) = 0, t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ (0, L), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x),

x ∈ (-L, 0).

((EBB)-W F K V )
The coefficients a, b are strictly positive constant numbers, α ∈ (0, 1) and η ≥ 0. We suppose that there exists 0 < l 0 < l 1 < L and a strictly positive constant d 0 , such that d (x) = d 0 , x ∈ (l 0 , l 1 ), 0, x ∈ (0, l 0 ) ∪ (l 1 , L).

(0.0.22)

The Caputo's fractional derivative ∂ α,η t of order α ∈ (0, 1) with respect to time variable t defined by

[D α,η ω](t ) = ∂ α,η t ω(t ) = 1 Γ(1 -α) t 0 (t -s) -α e -η(t -s) d ω d s (s)d s, (0.0.23)
where Γ denotes the Gamma function. First, we need to reformulate the system into an augmented model. For this purpose, we recall theorem 2 stated in [3,[START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF].

Theorem 0.0.11. Let α ∈ (0, 1), η ≥ 0 and µ(ξ) = |ξ| 2α-1 2

be the function defined almost everywhere on R. The relation between the 'input' V and the 'output' O of the following

Introduction - system ∂ t ω(x, ξ, t ) + (ξ 2 + η)ω(x, ξ, t ) -V (x, t )|ξ| 2α-1 2
= 0, (x, ξ, t ) ∈ (0, L) × R × R * + , (0.0.24) ω(x, ξ, 0) = 0, (x, ξ) ∈ (0, L) × R, (0.0.25)

O(x, t ) -κ(α) R |ξ| 2α-1
2 ω(x, ξ, t )d ξ = 0, (x, t ) ∈ (0, L) × R * + , (0.0.26) is given by O = I 1-α,η V, (0.0.27)

where

[I α,η V ](x, t ) = 1 Γ(α) t 0 (t -s) α-1 e -η(t -s) V (s)d s and κ(α) = sin(απ) π .
By taking the input V (x, t ) = d (x)u xt (x, t ) in Theorem 0.0.11 , we deduce that system ((EBB)-W F K V ) can be recast into the following augmented model

           u t t -au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ x = 0, (x, t ) ∈ (0, L) × R + * , y t t + b y xxxx = 0, (x, t ) ∈ (-L, 0) × ×R + * , ω t (x, ξ, t ) + |ξ| 2 + η ω(x, ξ, t ) -d (x)u xt (x, t )|ξ| 2α-1 2
= 0, (x, ξ, t ) ∈ (0, L) × R × R + * , (0.0.28) with the following transmission and boundary conditions

       u(L, t ) = y(-L, t ) = y x (-L, t ) = 0, t ∈ (0, ∞),
au x (0, t ) + b y xxx (0, t ) = 0, y xx (0, t ) = 0, t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), (0.0.29)

and with the following initial conditions u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), ω(x, ξ, 0) = 0 x ∈ (0, L), ξ ∈ R, y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ (-L, 0).

(0.0.30)

We define the energy of the system (0.0.28)-(0.0.30) by

E 1 (t ) = 1 2 L 0 |u t | 2 + a|u x | 2 d x+ 1 2
Introductiontime variable t . Now, we define the following Hilbert energy space H 1 by

H 1 = (u, v, y, z, ω) ∈ H 1 R (0, L) × L 2 (0, L) × H 2 L (-L, 0) × L 2 (-L, 0) × W ; u(0) = y(0) ,
where W = L 2 ((0, L) × R) and

H 1 R (0, L) = u ∈ H 1 (0, L); u(L) = 0 , H 2
L (-L, 0) = y ∈ H 2 (-L, 0); y(-L) = y x (-L) = 0 .

(0.0.32)

We note that the space H 1 is a closed subspace of

H 1 R (0, L) × L 2 (0, L) × H 2 L (-L, 0) × L 2 (-L, 0) × W .
The energy space H 1 is equipped with the inner product defined by for all U = (u, v, y, z, ω) and U 1 = (u 1 , v 1 , y 1 , z 1 , ω 1 ) in H 1 . We use U H 1 to denote the corresponding norm. We define the unbounded linear operator A 1 : 

〈U ,U 1 〉 H 1 = L 0 v v 1 d x + a
D(A 1 ) ⊂ H 1 → H 1 by D(A 1 ) =                      U = (u, v, y, z, ω) ∈ H 1 ; (v, z) ∈ H 1 R (0, L) × H 2 L (-L, 0), y ∈ H 4 (-L, 0),
                    
, and for all U = (u, v, y, z, ω) ∈ D(A 1 ),

A 1 (u, v, y, z, ω) =             v au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ x z -b y xxxx -|ξ| 2 + η ω(x, ξ) + d (x)v x |ξ| 2α-1 2            
.

If U = (u, u t , y, y t , ω) is a regular solution of system (0.0.28)-(0.0.30), then the system can be rewritten as evolution equation on the Hilbert space H 1 given by

U t = A 1 U , U (0) = U 0 , (0.0.34)
where U 0 = (u 0 , u 1 , y 0 , y 1 , 0). It's easy to prove that the operator A 1 is m-dissipative on H 1 , consequently it generates a C 0 -semigroup of contractions (e t A 1 ) t ≥0 following Lumer-Phillips Theorem 1.2.8 (see in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] and [START_REF] Liu | Semigroups associated with dissipative systems[END_REF]). Then, the solution of the evolution Equation (0.0.34) admits the following representation

U (t ) = e t A 1 U 0 , t ≥ 0,
which leads to the well-posedness of (0.0.34). Hence, we have the following result.

Theorem 0.0.12. Let U 0 ∈ H 1 , then problem (0.0.34) admits a unique weak solution U that satisfies

U (t ) ∈ C 0 R + , H 1 .
Moreover, if U 0 ∈ D(A 1 ), then problem (0.0.34) admits a unique strong solution U that satisfies U (t ) ∈ C 1 R + , H 1 ∩C 0 R + , D(A 1 ) .

Second, we prove the strong stability of the system in the sense that its energy converges to zero when t goes to infinity for all initial data in H 1 . It is easy to see that the resolvent of A 1 is not compact. For this aim, we use a general criteria of Arendt-Batty [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF], in which a C 0 -semigroup of contractions (e t A 1 ) t ≥0 in a Banach space is strongly stable, if A 1 has no pure imaginary eigenvalues and σ (A 1 ) ∩ i R contains only a countable number of continuous spectrum of A 1 . Our main result here is the following theorem. Theorem 0.0.13. Assume that η ≥ 0, then the C 0 -semigroup of contractions e t A 1 is strongly stable on H 1 in the sense that

lim t →+∞ e t A 1 U 0 H 1 = 0 ∀ U 0 ∈ H 1 .
In order to proof Theorem 0.0.13 we need the following Lemmas Lemma 0.0.14. Assume that η ≥ 0. Then, for all λ ∈ R, we have i λI -A 1 is injective, i.e.

ker (i λI -A 1 ) = {0} .

Lemma 0.0.15. Assume that η = 0. Then, the operator -A 1 is not invertible and consequently 0 ∈ σ(A 1 ).

Lemma 0.0.16. If (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R * ), then i λI -A 1 is surjective.

Thus, using Lemma 0.0.14, we directly deduce that A 1 has no pure imaginary eigenvalues. Next, using Lemmas 0.0.15, 0.0.16 and with the help of the closed graph theorem of Banach, we deduce that σ(A 1 )∩i R = { } if η > 0 and σ(A 1 )∩i R = {0} if η = 0. Hence, we get the conclusion by applying Arendt-Batty Theorem 1.3.3. Third, we study the polynomial stability of the system (0.0.28)-(0.0.30) in the case η > 0. For this purpose, we will use a frequency domain approach method, and the result of Borichev-Tomilov in [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF]. Our main result in this part is the following theorem.
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Theorem 0.0.17. Assume that η > 0. The C 0 -semigroup (e t A 1 ) t ≥0 is polynomially stable; i.e. there exists constant C 1 > 0 such that for every U 0 ∈ D(A 1 ), we have

E 1 (t ) ≤ C 1 t 4 2-α U 0 2 D(A 1 ) , t > 0, ∀U 0 ∈ D(A 1 ). (0.0.35)
According to Theorem 1.3.10 of Borichev-Tomilov by taking = 1-α 2 , the polynomial energy decay (0.0.35) holds if the following conditions

i R ⊂ ρ(A 1 ), ( H 1 ) 
and

lim sup λ∈R,|λ|→∞ 1 |λ| 1-α 2 (i λI -A 1 ) -1 L (H 1 ) < ∞, ( H 2 ) 
are satisfied. Since Condition (H 1 ) is already proved in Lemma 0.0.6. We will prove condition (H 2 ) by an argument of contradiction. For this purpose, we suppose that (H 2 ) is false, then there exists

λ n ,U n := (u n , v n , y n , z n , ω n (•, ξ)) ⊂ R * × D(A 1 ) with |λ n | → +∞ and U n H 1 = (u n , v n , y n , z n , ω n (•, ξ)) H 1 = 1, (0.0.36) such that (λ n ) 1-α 2 (i λ n I -A 1 )U n = F n := ( f 1,n , f 2,n , f 3,n , f 4,n , f 5,n (•, ξ)) → 0 in H 1 . (0.0.37)
We check the condition (H 2 ) by finding a contradiction with (0.0.36) by showing that

U H 1 = o(1)
. Hence, we reach that the condition (H 2 ) holds and thus we establish the desired polynomial energy decay rate. Next, in the second part of this chapter we consider the model W-W F K V , which represents the system of two wave equations coupled through boundary connection with a localized non-regular fractional Kelvin-Voigt damping acting through one wave equation only. The system that describes this model is as follows

                                   u t t -au x + d (x)∂ α,η t u x x = 0, (x, t ) ∈ (0, L) × (0, ∞), y t t -b y xx = 0, (x, t ) ∈ (-L, 0) × (0, ∞), u(L, t ) = y(-L, t ) = 0, t ∈ (0, ∞), au x (0, t ) = b y x (0, t ), t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ (0, L), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ (-L, 0). (W-W F K V )
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We reformulate the system (W-W F K V ) into the following augmented model

           u t t -au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ x = 0, (x, t ) ∈ (0, L) × R + * , y t t -b y xx = 0, (x, t ) ∈ (-L, 0) × ×R + * , ω t (x, ξ, t ) + |ξ| 2 + η ω(x, ξ, t ) -d (x)u xt (x, t )|ξ| 2α-1 2 = 0, (x, ξ, t ) ∈ (0, L) × R × R + * , (0.0.38)
with the following transmission and boundary conditions

       u(L, t ) = y(-L, t ) = 0, t ∈ (0, ∞), au x (0, t ) = b y x (0, t ), t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), (0.0.39)
and with the following initial conditions

u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), ω(x, ξ, 0) = 0 x ∈ (0, L), ξ ∈ R, y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ (-L, 0). (0.0.40)
The energy of the system (0.0.38)-(0.0.40) is given by

E 2 (t ) = 1 2 L 0 |u t | 2 + a|u x | 2 d x+ 1 2 0 -L y t 2 + b y x 2 d x+ κ(α) 2 L 0 R |ω(x, ξ, t )| 2 d ξd x.
By doing some computations, we obtain

d d t E 2 (t ) = -κ(α) L 0 R (ξ 2 + η)|ω(x, ξ, t )| 2 d ξd x. (0.0.41)
Since α ∈ (0, 1), then κ(α) > 0, and therefore d d t E 2 (t ) ≤ 0. Thus, system (0.0.38)-(0.0.40) is dissipative in the sense that its energy is a non-increasing function with respect to time variable t . Now, we define the following Hilbert energy space H 2 by
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The energy space H 2 is equipped with the inner product defined by

〈U ,U 1 〉 H 2 = L 0 v v 1 d x + a L 0 u x (u 1 ) x d x + 0 -L zz 1 d x + b 0 -L y x (y 1 ) x d x +κ(α) L 0 R ω(x, ξ)ω 1 (x, ξ)d ξd x, for all U = (u, v, y, z, ω) and U 1 = (u 1 , v 1 , y 1 , z 1 , ω 1 ) in H 2 .
We use U H 2 to denote the corresponding norm. We define the unbounded linear operator

A 2 : D(A 2 ) ⊂ H 2 → H 2 by D(A 2 ) =                      U = (u, v, y, z, ω) ∈ H 2 ; (v, z) ∈ H 1 R (0, L) × H 1 L (-L, 0), y ∈ H 2 (-L, 0), au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ x ∈ L 2 (0, L), -|ξ| 2 + η ω(x, ξ) + d (x)v x |ξ| 2α-1 2 , |ξ|ω(x, ξ) ∈ W, au x (0) = b y x (0), and v(0) = z(0)                     
, and for all

U = (u, v, y, z, ω) ∈ D(A 2 ), A 2 (u, v, y, z, ω) =             v au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ x z b y xx -|ξ| 2 + η ω(x, ξ) + d (x)v x |ξ| 2α-1 2            
.

If U = (u, u t , y, y t , ω) is a regular solution of system (0.0.38)-(0.0.40), then the system can be rewritten as evolution equation on the Hilbert space H 2 given by

U t = A 2 U , U (0) = U 0 , (0.0.43)
where U 0 = (u 0 , u 1 , y 0 , y 1 , 0). It is easy see that the unbounded linear operator A 2 is m-dissipative in the energy space H 2 . Also, the C 0 -semigroup of contractions (e 

E 2 (t ) ≤ C 2 t 4 2-α U 0 2 D(A 2 ) , t > 0, ∀U 0 ∈ D(A 2 ).
(0.0.44)
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Next, in the third part of this chapter we consider the third model W-(EBB) F K V , where we consider a system of coupled Euler-Bernouli beam and wave equations. These two equations are coupled through boundary connection. In this case, the localized non-smooth fractional Kelvin-Voigt damping acts only on the Euler-Bernoulli beam. The system that represents this model is given as follows

                                   u t t -au xx = 0, (x, t ) ∈ (-L, 0) × (0, ∞),
y t t + b y xx + d (x)∂ α,η t y xx xx = 0, (x, t ) ∈ (0, L) × (0, ∞), u(-L, t ) = y(L, t ) = y x (L, t ) = 0, t ∈ (0, ∞), au x (0, t ) + b y xxx (0, t ) = 0, y xx (0, t ) = 0, t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ (-L, 0), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ (0, L). (W-(EBB) F K V )
Firstly, we recast the system into the following augmented model

           u t t -au xx = 0, (x, t ) ∈ (-L, 0) × R + * , y t t + b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ xx = 0, (x, t ) ∈ (0, L) × R + * , ω t (x, ξ, t ) + |ξ| 2 + η ω(x, ξ, t ) -d (x)y xxt (x, t )|ξ| 2α-1 2 = 0, (x, ξ, t ) ∈ (0, L) × R × R + * , (0.0.45)
with the following transmission and boundary conditions

       u(-L, t ) = y(L, t ) = y x (L, t ) = 0, t ∈ (0, ∞), au x (0, t ) + b y xxx (0, t ) = 0, y xx (0, t ) = 0, t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), (0.0.46)
and with the following initial conditions

u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) x ∈ (-L, 0) y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), ω(x, ξ, 0) = 0 x ∈ (0, L), ξ ∈ R. (0.0.47)
We define the energy of the system (0.0.45)-(0.0.47) by

E 3 (t ) = 1 2 0 -L |u t | 2 + a|u x | 2 d x+ 1 2 L 0 y t 2 + b y xx 2 d x+ κ(α) 2 L 0 R |ω(x, ξ, t )| 2 d ξd x.
By doing some computations, it is easy to see that the energy E 3 (t ) satisfies the following estimation

d d t E 3 (t ) = -κ(α) L 0 R (ξ 2 + η)|ω(x, ξ, t )| 2 d ξd x. (0.0.48)
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Since α ∈ (0, 1), then κ(α) > 0, and therefore d d t E 3 (t ) ≤ 0. Thus, system (0.0.45)-(0.0.47) is dissipative in the sense that its energy is a non-increasing function with respect to time variable t . Now, we define the following Hilbert energy space H 3 by

H 3 = (u, v, y, z, ω) ∈ H 1 L (-L, 0) × L 2 (-L, 0) × H 2 R (0, L) × L 2 (0, L) × W ; u(0) = y(0) ,
where W = L 2 ((0, L) × R) and

H 1 L (-L, 0) = u ∈ H 1 (-L, 0); u(-L) = 0 , H 2 R (0, L) = y ∈ H 2 (0, L); y(L) = y x (L) = 0 . (0.0.49)
The energy space H 3 is equipped with the inner product defined by

〈U ,U 1 〉 H 3 = 0 -L v v 1 d x + a 0 -L u x (u 1 ) x d x + L 0 zz 1 d x + b L 0 y xx (y 1 ) xx d x +κ(α) L 0 R ω(x, ξ)ω 1 (x, ξ)d ξd x, for all U = (u, v, y, z, ω) and U 1 = (u 1 , v 1 , y 1 , z 1 , ω 1 ) in H 3 .
We use U H 3 to denote the corresponding norm. We define the unbounded linear operator A 3 :

D(A 3 ) ⊂ H 3 → H 3 by D(A 3 ) =                      U = (u, v, y, z, ω) ∈ H 3 ; (v, z) ∈ H 1 L (-L, 0) × H 2 R (0, L), u ∈ H 2 (-L, 0), b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ xx ∈ L 2 (0, L), -|ξ| 2 + η ω(x, ξ) + d (x)z xx |ξ| 2α-1 2 , |ξ|ω(x, ξ) ∈ W, au x (0) + b y xxx (0) = 0, y xx (0) = 0, and v(0) = z(0)                     
, and for all U = (u, v, y, z, ω) ∈ D(A 3 ),

A 3 (u, v, y, z, ω) =             v au xx z -b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ xx -|ξ| 2 + η ω(x, ξ) + d (x)z xx |ξ| 2α-1 2             . If U = (u, u t , y, y t , ω
) is a regular solution of system (0.0.45)-(0.0.47), then the system can be rewritten as evolution equation on the Hilbert space H 3 given by

U t = A 3 U , U (0) = U 0 , (0.0.50)
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where U 0 = (u 0 , u 1 , y 0 , y 1 , 0). It is easy to prove that the operator A 3 is m-dissipative on H 3 , consequently it generates a C 0 -semigroup of contractions (e t A 3 ) t ≥0 following Lumer-Phillips Theorem 1.2.8 (see in [START_REF] Liu | Semigroups associated with dissipative systems[END_REF] and [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Then, the solution of the evolution Equation (0.0.50) admits the following representation

U (t ) = e t A 3 U 0 , t ≥ 0,
which leads to the well-posedness of (0.0.50). Hence, we have the following result.

Theorem 0.0.19. Let U 0 ∈ H 3 , then problem (0.0.50) admits a unique weak solution U that satisfies

U (t ) ∈ C 0 R + , H 3 .
Moreover, if U 0 ∈ D(A 3 ), then problem (0.0.50) admits a unique strong solution U that satisfies

U (t ) ∈ C 1 R + , H 3 ∩C 0 R + , D(A 3 ) .
Theorem 0.0.20. Assume that η ≥ 0, then the C 0 -semigroup of contractions e t A 3 is strongly stable on H 3 in the sense that lim

t →+∞ e t A 3 U 0 H 3 = 0.
The proof of this result is based on Arendt-Batty Theorem 1.3.3 and similar to that in the first model given in (0.0.28). Now, we study the polynomial stability of system (0.0.45)-(0.0.47) in the case η > 0. This is established by using specific multipliers, some interpolation inequalities and by solving differential equations of order 4. Our main result here is the following theorem. Theorem 0.0.21. Assume that η > 0. The C 0semigroup (e t A 3 ) t ≥0 is polynomially stable; i.e. there exists constant C 3 > 0 such that for every U 0 ∈ D(A 3 ), we have

E 3 (t ) ≤ C 3 t 2 3-α U 0 2 D(A 3 ) , ∀ t > 0, ∀U 0 ∈ D(A 3 ).
(0.0.51)

According to Theorem 1.3.10 of Borichev-Tomilov, by taking = 3 -α, the polynomial energy decay (0.0.51) holds if the following conditions

i R ⊂ ρ(A 3 ), ( R 1 ) 
and lim sup λ∈R,|λ|→∞

1 |λ| 3-α (i λI -A 3 ) -1 L (H 3 ) < ∞, ( R 2 ) 
are satisfied. Since condition (R 1 ) is already proved, we still need to prove condition (R 2 ). For this purpose we will use an argument of contradiction. Suppose that (R 2 ) is false, then there exists

λ n ,U n := (u n , v n , y n , z n , ω n (•, ξ)) ⊂ R * × D(A 3 ) with |λ n | → +∞ and U n H 3 = (u n , v n , y n , z n , ω n (•, ξ)) H 3 = 1, (0.0.52) such that λ 3-α n (i λ n I -A 3 )U n = F n := ( f 1,n , f 2,n , f 3,n , f 4,n , f 5,n (•, ξ)) → 0 in H 3 . (0.0.53)
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Here we will check the condition (R 2 ) by finding a contradiction with (0.0.52) by showing that U H 3 = o(1). Hence, we reach that the condition (R 2 ) holds and that the energy of smooth solution of system (0.0.45)-(0.0.47) decays polynomial to zero as t goes to infinity. Next, in the fourth part of this chapter, we consider the model ((EBB) F K V ) where a system of Euler-Bernoulli beam with a non-regular localized fractional Kelvin-Voigt damping is considered. The system is as follows

         y t t + b y xx + d (x)∂ α,η t y xx xx = 0, (x, t ) ∈ (0, L) × (0, ∞), y(0, t ) = y x (0, t ) = y xx (L, t ) = y xxx (L, t ) = 0, t ∈ (0, ∞), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ (0, L). ((EBB) F K V )
We recast the system into the following augmented model

     y t t + b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ xx = 0, (x, t ) ∈ (0, L) × ×R + * , ω t (x, ξ, t ) + |ξ| 2 + η ω(x, ξ, t ) -d (x)y xxt (x, t )|ξ| 2α-1 2 = 0, (x, ξ, t ) ∈ (0, L) × R × R + * , (0.0.54) with the boundary conditions y(0, t ) = y x (0, t ) = 0, y xx (L, t ) = 0, y xxx (L, t ) = 0, t ∈ (0, ∞), (0.0.55)
and with the following initial conditions

y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), ω(x, ξ, 0) = 0, x ∈ (0, L), ξ ∈ R. (0.0.56)
The energy of the system (0.0.54)-(0.0.56) is given by

E 4 (t ) = 1 2 L 0 y t 2 + b y xx 2 d x + κ(α) 2 L 0 R |ω(x, ξ, t )| 2 d ξd x.
By doing some computations, we get that the energy E 4 (t ) satisfies the following estimation

d d t E 4 (t ) = -κ(α) L 0 R (ξ 2 + η)|ω(x, ξ, t )| 2 d ξd x ≤ 0. (0.0.57)
Now, we define the following Hilbert energy space H 4 by

H 4 = H 2 L (0, L) × L 2 (0, L) × W, where W = L 2 ((0, L) × R) and H 2 L (0, L) = y ∈ H 2 (0, L); y(0) = y x (0) = 0 .
The energy space H 4 is equipped with the inner product defined by

〈U ,U 1 〉 H 4 = L 0 zz 1 d x + b L 0 y xx (y 1 ) xx d x + κ(α) L 0 R ω(x, ξ)ω 1 (x, ξ)d ξd x,
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for all U = (y, z, ω) and U 1 = (y 1 , z 1 , ω 1 ) in H 4 . We use U H 4 to denote the corresponding norm. We define the unbounded linear operator A 4 :

D(A 4 ) ⊂ H 4 → H 4 by D(A 4 ) =                    U = (y, z, ω) ∈ H 4 ; z ∈ H 2 L (0, L), b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ xx ∈ L 2 (0, L), -|ξ| 2 + η ω(x, ξ) + d (x)z xx |ξ| 2α-1 2 , |ξ|ω(x, ξ) ∈ W, y xx (L) = 0, and y xxx (L) = 0.                   
, and for all U = (y, z, ω) ∈ D(A 4 ),

A 4 (y, z, ω) =       z -b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ xx -|ξ| 2 + η ω(x, ξ) + d (x)z xx |ξ| 2α-1 2       . If U = (y, y t , ω
) is a regular solution of system (0.0.54)-(0.0.56), then the system can be rewritten as evolution equation on the Hilbert space H 4 given by

U t = A 4 U , U (0) = U 0 , (0.0.58) 
where U 0 = (y 0 , y 1 , 0). It is easy to see that the unbounded linear operator A 4 is m-dissipative in the energy space H 4 . Also, the C 0 -semigroup of contractions e t A 4 is strongly stable on H 4 in the sense that lim 

E 4 (t ) ≤ C 4 t 2 1-α U 0 2 D(A 4 ) , ∀ t > 0, ∀U 0 ∈ D(A 4 ). (0.0.59)
Finally, we study the stability of the model (EBB)-(EBB) F K V , that represents a system of two Euler-Bernoulli beam equations coupled through boundary connection. The localized non-smooth fractional Kelvin-Voigt damping acts only on one of the two Introductionequations. The system that represents this model is as follows

                                   u t t + au xxxx = 0, (x, t ) ∈ (-L, 0) × (0, ∞),
y t t + b y xx + d (x)∂ α,η t y xx xx = 0, (x, t ) ∈ (0, L) × (0, ∞), u(-L, t ) = u x (-L, t ) = y(L, t ) = y x (L, t ) = 0, t ∈ (0, ∞), au xxx (0, t ) -b y xxx (0, t ) = 0, u xx (0) = y xx (0, t ) = 0, t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ (-L, 0), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ (0, L). ((EBB)-(EBB) F K V )
We recast the system into the following augmented model

           u t t + au xxxx = 0, (x, t ) ∈ (-L, 0) × R + * , y t t + b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ xx = 0, (x, t ) ∈ (0, L) × R + * , ω t (x, ξ, t ) + |ξ| 2 + η ω(x, ξ, t ) -d (x)y xxt (x, t )|ξ| 2α-1 2 = 0, (x, ξ, t ) ∈ (0, L) × R × R + * , (0.0.60)
with the following transmission and boundary conditions

       u(-L, t ) = u x (-L, t ) = y(L, t ) = y x (L, t ) = 0, t ∈ (0, ∞), au xxx (0, t ) -b y xxx (0, t ) = 0, u xx (0, t ) = y xx (0, t ) = 0, t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), (0.0.61)
and with the following initial conditions

u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) x ∈ (-L, 0) y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), ω(x, ξ, 0) = 0 x ∈ (0, L), ξ ∈ R. (0.0.62)
The energy of the system (0.0.60)-(0.0.62) is given by

E 5 (t ) = 1 2 0 -L |u t | 2 + a|u xx | 2 d x+ 1 2 L 0 y t 2 + b y xx 2 d x+ κ(α) 2 L 0 R |ω(x, ξ, t )| 2 d ξd x.
It is easy to see that the energy E 5 (t ) satisfies the following estimation

d d t E 5 (t ) = -κ(α) L 0 R (ξ 2 + η)|ω(x, ξ, t )| 2 d ξd x ≤ 0. (0.0.63)
We define the Hilbert energy space H 5 by

H 5 = (u, v, y, z, ω) ∈ H 2 L (-L, 0) × L 2 (-L, 0) × H 2 R (0, L) × L 2 (0, L) × W ; u(0) = y(0) ,
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where W = L 2 ((0, L) × R) and

H 2 L (-L, 0) = u ∈ H 2 (-L, 0); u(-L) = u x (-L) = 0 , H 2 R (0, L) = y ∈ H 2 (0, L); y(L) = y x (L) = 0 .
The energy space H 5 is equipped with the inner product defined by

〈U ,U 1 〉 H 5 = 0 -L v v 1 d x + a 0 -L u xx (u 1 ) xx d x + L 0 zz 1 d x + b L 0 y xx (y 1 ) xx d x +κ(α) L 0 R ω(x, ξ)ω 1 (x, ξ)d ξd x, for all U = (u, v, y, z, ω) and U 1 = (u 1 , v 1 , y 1 , z 1 , ω 1 ) in H 5 .
We use U H 5 to denote the corresponding norm. We define the unbounded linear operator A 5 :

D(A 5 ) ⊂ H 5 → H 5 by D(A 5 ) =                      U = (u, v, y, z, ω) ∈ H 5 ; (v, z) ∈ H 2 L (-L, 0) × H 2 R (0, L), u ∈ H 4 (-L, 0), b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ xx ∈ L 2 (0, L), -|ξ| 2 + η ω(x, ξ) + d (x)z xx |ξ| 2α-1 2 , |ξ|ω(x, ξ) ∈ W, au xxx (0) -b y xxx (0) = 0, u xx (0) = y xx (0) = 0, and v(0) = z(0)                     
, and for all U = (u, v, y, z, ω) ∈ D(A 5 ),

A 5 (u, v, y, z, ω) =             v -au xxxx z -b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ xx -|ξ| 2 + η ω(x, ξ) + d (x)z xx |ξ| 2α-1 2             . If U = (u, u t , y, y t , ω
) is a regular solution of system (0.0.60)-(0.0.62), then the system can be rewritten as evolution equation on the Hilbert space H 5 given by

U t = A 5 U , U (0) = U 0 , (0.0.64)
where U 0 = (u 0 , u 1 , y 0 , y 1 , 0). The operator A 5 is m-dissipative on H 5 (in a similar way as in the first part of this chapter), consequently it generates a C 0 -semigroup of contractions (e t A 5 ) t ≥0 following Lumer-Phillips Theorem 1.2.8 (see in [START_REF] Liu | Semigroups associated with dissipative systems[END_REF] and [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Then, the solution of the evolution
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Equation (0.0.64) admits the following representation

U (t ) = e t A 5 U 0 , t ≥ 0,
which leads to the well-posedness of (0.0.64). Using the frequency domain approach we have the following polynomial energy decay result.

Theorem 0.0.23. Assume that η > 0. The C 0semigroup (e t A 5 ) t ≥0 is polynomially stable; i.e. there exists constant C 5 > 0 such that for every U 0 ∈ D(A 5 ), we have

E 5 (t ) ≤ C 5 t 2 3-α U 0 2 D(A 5 ) , ∀ t > 0, ∀U 0 ∈ D(A 5 ).
(0.0.65)

In Chapter 5, we study a multidimensional system of coupled wave equations with a localized Kelvin-Voigt damping under different types of geometric conditions. Let Ω ⊂ R N be a bounded open set with Lipschitz boundary Γ. The system is described as follows:

u t t -div(a∇u + b(x)∇u t ) + c(x)y t = 0 in Ω × R + , y t t -∆y -c(x)u t = 0 in Ω × R + , (0.0.66)
with the following initial conditions:

u(•, 0) = u 0 (•) , y(•, 0) = y 0 (•) , u t (•, 0) = u 1 (•) , y t (•, 0) = y 1 (•) in Ω, (0.0.67) 
and the following boundary conditions:

u (x, t ) = y (x, t ) = 0 on Γ × R + . (0.0.68)
The functions b, c ∈ L ∞ (Ω) such that b : Ω → R + is the viscoelastic damping and c : Ω → R * is the coupling function. The constant a is a strictly positive constant.

The main interest in this chapter is that we consider the system of wave equations coupled through velocity with non-smooth coupling and damping coefficients and by considering several geometric conditions (see (H1), (H2), (H3), (H4), and (H5) below). In addition, this chapter is a generalization of the third chapter ( [START_REF] Wehbe | Stability Results of an Elastic/Viscoelastic Transmission Problem of Locally Coupled Waves with Non Smooth Coefficients[END_REF]) in this thesis. Moreover, in the absence of any geometric condition, we study the stability of the system on the 2-dimensional square domain.

First, using semigroup approach we study the existence, uniqueness and regularity of the solution of the system. Let (u, u t , y, y t ) be a regular solution of the system (0.0.66)-(0.0.68). The energy of the System (0.0.66)-(0.0.68) is given by

E (t ) = 1 2 Ω |u t | 2 + |y t | 2 + a|∇u| 2 + |∇y| 2 d x. (0.0.69)
Then, a straightforward computation gives

E (t ) = - Ω b(x)|∇u t | 2 d x ≤ 0.
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Thus, the System (0.0.66)-(0.0.68) is dissipative in the sense that its energy is a non increasing function with respect to the time variable t . We define the energy Hilbert space H by

H = H 1 0 (Ω) × L 2 (Ω) 2
equipped with the following inner product

〈U , U 〉 = Ω a∇u • ∇ ũ + ∇y • ∇ ỹ + v ṽ + z z d x,
for all U = (u, v, y, z) ∈ H and Ũ = ( ũ, ṽ, ỹ, z) ∈ H . Finally, we define the unbounded linear operator A by

D(A ) = U = (u, v, y, z, ω) ∈ H ; div(a(x)∇u + b(x)∇v) ∈ L 2 (Ω), v, z ∈ H 1 0 (0, L), y ∈ H 2 (Ω) ∩ H 1 0 (Ω)
and for all U = (u, v, y, z, ω) ∈ D(A ),

A (u, v, y, z) =        v div(a∇u + b(x)∇v) -c(x)z z ∆y + c(x)v        .
If U = (u, u t , y, y t ) is a regular solution of system (0.0.66)-(0.0.68), then we rewrite this system as the following evolution equation

U t = A U , U (0) = U 0 (0.0.70)
where U 0 = u 0 , u 1 , y 0 , y 1 . It is easy to check that the operator A is m-dissipative on H and consequently, it generates a C 0 -semigroup of contractions e t A t ≥0 following Lumer-Phillips Theorem. Then, the solution of the evolution Equation (0.0.70) admits the following representation

U (t ) = e t A U 0 , t ≥ 0,
which leads to the well-posedness of (0.0.70). Hence, using the semigroup theory we have the following existence and uniqueness result. Theorem 0.0.24. Let U 0 ∈ H then, problem (0.0.70) admits a unique weak solution U that satisfies

U (t ) ∈ C 0 R + , H . Moreover, if U 0 ∈ D(A ) then, problem (0.0.70) admits a unique strong solution U that satisfies U (t ) ∈ C 1 R + , H ∩C 0 (R + , D(A )).
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Second, we study the strong stability of system (0.0.66)-(0.0.68) in the sense that its energy tends to zero when t tends to infinity for all initial data in H . We study the strong stability in the absence of the compactness of the resolvent and without any geometric condition. The proof of the stability result is done by using the unique continuation theorem based on a Carleman estimate and a general criteria of Arendt-Batty Theorem 1. 3.3 ([17]). For this aim, we assume that there exists constants b 0 > 0 and c 0 > 0 and two nonempty open sets ω b ⊂ Ω and

ω c ⊂ Ω, such that b(x) ≥ b 0 > 0, ∀ x ∈ ω b , (0.0.71) c(x) ≥ c 0 > 0, ∀ x ∈ ω c . (0.0.72)
Here, we prove that the energy of the system (0.0.66)-(0.0.68) decays to zero as t tends to infinity if one of the following assumptions hold: We give the strong stability result in the following theorem.

Theorem 0.0.25. Assume that either (A1), (A2), (A3) or (A4) holds. Then, the C 0 -semigroup (e t A ) t ≥0 is strongly stable in H ; i.e, for all U 0 ∈ H , the solution of (0.0.70) satisfies

lim t →∞ e t A U 0 H = 0.
For the proof of Theorem 0.0.25, the resolvent of A is not compact. Then, in order to prove this Theorem we will use a general criteria of Arendt-Batty. We need to prove that the operator A has no pure imaginary eigenvalues and σ (A ) ∩ i R contains only a countable number of continuous spectrum of A . The argument for Theorem 0.0.25 relies on the subsequent lemmas. Lemma 0.0.26. Assume that (A1), (A2), (A3) or (A4) holds. Then, we have

ker (i λI -A ) = {0}, ∀λ ∈ R.
Lemma 0.0.27. Assume that either (A1), (A2), (A3) or (A4) holds. Then, we have

R(i λI -A ) = H , ∀ λ ∈ R.
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Using Lemma 0.0.26, we have that A has non pure imaginary eigenvalues. According to Lemmas 0.0.26, 0.0.27 and with the help of the closed graph theorem of Banach, we deduce that σ(A ) ∩ i R = . Thus, we get the conclusion by applying Arendt Batty Theorem 1.3.3. The proof of the theorem is thus complete. Now, our aim is to prove the non-uniform stability of the system (0.0.66)-(0.0.68). For this aim, assume that

b(x) = b ∈ R + and c(x) = c ∈ R * .
(0.0.73)

Our main result in this part is the following theorem.

Theorem 0.0.28. Under condition (0.0.73). Then, the energy of the system (0.0.66)-(0.0.68) does not decay uniformly in the energy space H .

This result relies on the fact that there exists a subsequence of eigenvalues of A close to the imaginary axis. Thus, we prove that there exists k 0 ∈ N * sufficiently large and two sequences λ 1,k |k|≥k 0 and λ 2,k |k|≥k 0 satisfying the following asymptotic behavior:

λ 1,k = i µ k - c 2 2bµ 2 k + o 1 µ 3 k (0.0.74)
and

λ 2,k = -i µ k - c 2 2bµ 2 k + o 1 µ 3 k . (0.0.75)
where µ k is the sequence of the eigenvalues of the Laplace operator with fully Dirichlet boundary conditions in Ω, i.e,

-∆ϕ k = µ 2 k ϕ k in Ω, ϕ k = 0 on Γ. (0.0.76)
In the absence of exponential stability, we aim to establish a polynomial stability for the system. We study the polynomial stability under several geometric conditions. The geometric assumptions on ω b , ω c and ω = ω b ∩ ω c = are as follows:

( Figure 5.12).

) Assume that Ω = (0, L) × (0, L), ω c ⊂ ω b such that ω b = (x, y) ∈ R 2 ; ε 1 < x < ε 4 and 0 < y < L and ω c = (x, y) ∈ R 2 ; ε 2 < x < ε 3 and 0 < y < L , for 0 < ε 1 < ε 2 < ε 3 < ε 4 < L (see Figure 5.11). (H5) Assume that Ω = (0, L) × (0, L), ω c ⊂ ω b such that ω b = (x, y) ∈ R 2 ; 0 < x < ε 2 and 0 < y < L and ω c = (x, y) ∈ R 2 ; 0 < x < ε 1 and 0 < y < L , for 0 < ε 1 < ε 2 < L (see H4 
In order to study the polynomial stability of the system (0.0.66)-(0.0.68) such that the Introductionassumption (H1) holds and such that c ∈ W 1,∞ (Ω) we need to use the exponential energy decay of the coupled wave equations via velocities with two viscous dampings. We consider the following system

               ϕ t t -a∆ϕ + d (x)ϕ t + c(x)ψ t = 0 in Ω × R + , ψ t t -∆ψ + d (x)ψ t -c(x)ϕ t = 0 in Ω × R + , ϕ(x, t ) = ψ(x, t ) = 0 on Γ × R + , (ϕ(x, 0), ψ(x, 0)) = (ϕ 0 , ψ 0 ) and (ϕ t (x, 0), ψ t (x, 0)) = (ϕ 1 , ψ 1 ) in Ω. (0.0.77) where d ∈ W 1,∞ (Ω) such that d (x) ≥ d 0 > 0 on ω ⊂ ω ⊂ Ω.
The energy of the system (0.0.77) satisfies the following estimate

E aux (t ) ≤ Me -θt E (0), ∀ t > 0.
(0.0.78) such that M ≥ 1 and θ > 0, for all initial data U 0 ∈ H aux . Now, we will state the main theorems in this part.

Theorem 0.0.29. Assume that the boundary Γ is of class C 3 . Also, assume that assumption (H1) holds and that c ∈ W 1,∞ (Ω). Then, for all initial data U 0 ∈ D (A ), there exists a constant C > 0 independent of U 0 , such that the energy of the system (0.0. 

1 |λ| 2 (i λI -A ) -1 L (H ) < ∞, (C2) 
are satisfied. Since Condition (C1) is already given in Lemma 0.0.26. We will prove condition (C2) by an argument of contradiction. For this purpose, suppose that (C2) is false, then there exists

λ n ,U n := (u n , v n , y n , z n ) ⊂ R * × D(A ) with |λ n | → +∞ and U n H = (u n , v n , y n , z n ) H = 1, (0.0.80) such that (λ n ) 2 (i λ n I -A )U n = F n := ( f 1,n , f 2,n , f 3,n , f 4,n ) → 0 in H . (0.0.81)
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By using the exponential stability of the system (0.0.77) and by proving that the solution of the system (0.0.66)-(0.0.68) satisfies several asymptotic behaviors, we reach that U n H = o(1). Hence, we reach that the condition (C2) holds and thus we deduce the polynomial energy decay estimate (0.0.79). Now, one of the main tools to prove the polynomial stability of the system (0.0.66)-(0.0.68) when one of the assumptions (H2), (H3), (H4) or (H5) holds is to use the exponential or polynomial decay of the wave equation with viscous damping. We consider the following system

   ϕ t t -∆ϕ + 1 ω c (x)ϕ t = 0 in Ω × (0, +∞) ϕ = 0 in Γ × (0, +∞) ϕ(•, 0) = ϕ 0 , ϕ t (•, 0) = ϕ 1 .
(0.0.82) Now, we state the polynomial stability results when the assumption (H2), (H3), (H4) or (H5) holds.

Theorem 0.0.30. Assume that assumption (H2) or (H3) holds. Also, assume that the energy of the system (0.0.82) is exponentially stable. Then, for all initial data U 0 ∈ D(A ), there exists a constant C 2 > 0 independent of U 0 , the energy of the system (0.0.66)-(0.0.68) satisfies the following estimation

E (t ,U ) ≤ C 2 t U 0 2 D(A ) , ∀t > 0. (0.0.83)
Theorem 0.0.31. Assume that assumption (H4) or (H5) holds. Then, for all initial data U 0 ∈ D(A ), there exists a constant C 3 > 0 independent of U 0 , the energy of the system (0.0.66)-(0.0.68) satisfies the following estimation

E (t ,U ) ≤ C 3 t 2 2+4β U 0 2 D(A ) , ∀t > 0, (0.0.84)
where

β =        2 if (H5) holds, 3 2 if (H6) holds. (0.0.85)
The proof of these two theorems is based on the frequency domain approach, namely we will use Theorem 1.3.10 combined with a multiplier method and by using the stability results of system (0.0.82).

Preliminaries

As the analysis in this thesis is based on the semigroup and spectral analysis theories, in this chapter we will present some well-known results about semigroups, including some theorems about strong, exponential, and polynomial stability of a C 0 -semigroup. Also, we recall some geometric conditions used in our work . All of the theorems are stated without proofs, but the relevant references are given. The reader may skip this chapter in the first reading, then refer to it as a reference of related. For more details see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF][START_REF] Charles | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF][START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF][START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF][START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF][START_REF] Lun | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF][START_REF] Vasile Ion | Inner Product Structures[END_REF][START_REF] Kato | Perturbation Theory for Linear Operators[END_REF][START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF][START_REF] Luo | Stability and Stabilization of Infinite Dimensional Systems with Applications[END_REF][START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]. 

Bounded and Unbounded linear operators

We start this chapter by giving some well known results about bounded and unbounded operators. We are not trying to give a complete development, but rather review the basic definitions and theorems, mostly without proof ( [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF][START_REF] Vasile Ion | Inner Product Structures[END_REF][START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]).

Let (E , • E ) and (F, • F ) be two Banach spaces over C, and H will always denote a Hilbert space equipped with the scalar product 〈•, •〉 H and the corresponding norm

• H .
A linear operator T : E -→ F is a transformation which maps linearly E in F , that is

T (αu + βv) = αT (u) + βT (v), ∀ u, v ∈ E and α, β ∈ C. Definition 1.1.1. A linear operator T : E → F is said to be bounded if there exists C ≥ 0 such that Tu F ≤ C u E ∀ u ∈ E .
The set of all bounded linear operators from E into F is denoted by L (E , F ). Moreover, the set of all bounded linear operators from E into E is denoted by L (E ). The set of all compact operators from E into F is denoted by K (E , F ). For simplicity one writes

K (E ) = K (E , E ). Definition 1.1.3. Let T ∈ L (E , F ), we define • Range of T by R (T ) = {Tu : u ∈ E } ⊂ F.
• Kernel of T by ker (T ) = {u ∈ E : Tu = 0} ⊂ E .

Theorem 1.1.4. (Fredholm alternative) see Theorem 6.6 in [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]. If T ∈ K (E ), then

• ker (I -T ) is finite dimension I is the identity operator on E .

• R (I -T ) is closed. • The range of T is defined by

• ker (I -T ) = 0 ⇔ R (I -T ) = E .
R (T ) = {Tu : u ∈ D (T )} ⊂ F.
• The Kernel of T is defined by

ker (T ) = {u ∈ D (T ) : Tu = 0} ⊂ E .
• The graph of T is defined by 1 Preliminaries -1.1 Bounded and Unbounded linear operators

G (T ) = {(u, Tu) : u ∈ D (T )} ⊂ E × F.
• The resolvent set of T is defined by

ρ (T ) = λ ∈ C : λI -T is bijective from D (T ) onto F .
• The resolvent of T is defined by

R (λ, T ) = (λI -T ) -1 : λ ∈ ρ (T ) .
• The spectrum set of T is the complement of the resolvent set in C , denoted by

σ (T ) = C/ρ (T ) .
Definition 1.1.9. Let T : D (T ) ⊂ E -→ F be a closed unbounded linear operator. We can split the spectrum σ(T ) of T into three disjoint sets, given by

• The ponctuel spectrum of T is defined by

σ p (T ) = {λ ∈ C : ker(λI -T ) = {0}}
in this case λ is called an eigenvalue of T .

• The continuous spectrum of T is defined by

σ c (T ) = λ ∈ C ker(λI -T ) = 0, R(λI -T ) = F and (λI -T ) -1 is not bounded .
• The residual spectrum of T is defined by We say that T has compact resolvent, if there exist λ 0 ∈ ρ (T ) such that (λ 0 I -T ) -1 is compact.

Theorem 1.1.12. (see [START_REF] Vasile Ion | Inner Product Structures[END_REF]). Let (T, D (T )) be a closed unbounded linear operator on H then the space D (T ) ,

• D(T ) where u D(A) = Tu H + u H ∀ u ∈ D (T ) is Banach space .
Theorem 1.1.13. (see [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]). Let (T, D (T )) be a closed unbounded linear operator on H then, ρ (T ) is an open set of C.

1 Preliminaries -1.2 Semigroups, Existence and uniqueness of solution

Semigroups, Existence and uniqueness of solution

In this section, we introduce some basic concepts concerning the semigroups. The vast majority of the evolution equations can be reduced to the form

U t = AU , t > 0, U (0) = U 0 , (1.2.1)
where A is the infinitesimal generator of a C 0 -semigroup S (t ) over a Hilbert space H . Let's start by basic definitions and theorems (see [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Let (X , • A is a dissipative operator.

• ∃ λ 0 > 0 such that R (λ 0 I -A) = X .
1 Preliminaries -1.3 Stability of semigroup Theorem 1.2.6. (See Theorem 4.5 in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). Let A be a m-dissipative operator, then

• R (λI -A) = X , ∀ λ > 0. • ]0, ∞[ ⊆ ρ (A) .
Theorem 1.2.7. (Hille-Yosida see Theorem 3.1 in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). An unbounded linear operator (A, D (A)) on X , is the infinitesimal generator of a C 0 -semigroup of contractions (S (t )) t ≥0 if and only if

• A is closed and D (A) = X .
• The resolvent set ρ (A ) of A contains R + , and for all λ > 0,

(λI -A) -1 L (X ) ≤ λ -1 .
Theorem 

U (t ) = S(t )U 0 ∈ C 0 R + , D (A) ∩C 1 R + , H .
2. For U 0 ∈ H , the problem (1.2.1) admits a unique weak solution

U (t ) ∈ C 0 R + , H .

Stability of semigroup

In this section, we introduce some definitions about strong, exponential, polynomial and analytic stability of a C 0 -semigroup. Then, we give some results about the stability of C 0 -semigroup. For more details see [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF][START_REF] Charles | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF][START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF][START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF][START_REF] Lun | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF][START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF][START_REF] Luo | Stability and Stabilization of Infinite Dimensional Systems with Applications[END_REF][START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]. Let (X , • X ) be a Banach space, and H be a Hilbert space equipped with the inner product 〈•, •〉 H and the induced norm • H .

1 Preliminaries -1.3 Stability of semigroup Definition 1.3.1. Assume that A is the generator of a strongly continuous semigroup of contractions (S (t )) t ≥0 on X . We say that the C 0 -semigroup (S (t )) t ≥0 is

• Strongly stable if lim t →+∞ S (t ) u X = 0, ∀ u ∈ X . • Uniformly stable if lim t →+∞ S (t ) L (X ) = 0.
• Exponentially stable if there exist two positive constants M and such that

S (t ) u X ≤ Me -t u X , ∀ t > 0, ∀ u ∈ X .
• Polynomially stable if there exist two positive constants C and α such that

S (t ) u X ≤ C t -α u X , ∀ t > 0, ∀ u ∈ X .
The C 0 -semigroup (S(t )) t ≥0 is said to be polynomially stable with optimal decay rate t -α (with α > 0) if it is polynomially stable with decay rate t -α and, for any ε > 0 small enough, the semigroup (S(t )) t ≥0 does not decay at a rate t -(α-ε) .

Proposition 1.3.2. Assume that A is the generator of a strongly continuous semigroup of contractions (S (t )) t ≥0 on X . The following statements are equivalent

• (S (t )) t ≥0 is uniformly stable.

• (S (t )) t ≥0 is exponentially stable.

To show the strong stability of a C 0 -semigroup of contraction (e t A ) t ≥0 we rely on the following result due to Arendt-Batty [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF].

Theorem 1.

Arendt and Batty

Assume that A is the generator of a strongly continuous semigroup of contractions (S (t )) t ≥0 on a reflexive Banach space X . If

• A has no pure imaginary eigenvalues.

• σ (A) ∩ i R is countable.
Then S (t ) is strongly stable.

Remark 1.3.4. If the resolvent (I -T ) -1 of T is compact, then σ (T ) = σ p (T ). Thus, the state of Theorem 1.3.3 lessens to σ p (A ) ∩ i R = .
Next, when the C 0 -semigroup is strongly stable, we look for the necessary and sufficient conditions of exponential stability of a C 0 -semigroup. In fact, exponential stability results are obtained using different methods like: multipliers method, frequency domain approach, Riesz basis approach, Fourier analysis or a combination of them. In this thesis we will review only two methods. The first method is a frequency domain approach method which was obtained by Huang-Prüss (see [START_REF] Lun | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF][START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF]).

Theorem 1.3. 

• i R ⊂ ρ (A) . • sup β∈R i βI -A -1 L (H ) < +∞.
The second one is a classical method based on the spectrum analysis of the operator A (see [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF][START_REF] Luo | Stability and Stabilization of Infinite Dimensional Systems with Applications[END_REF]) .

Definition 1.3.6. Let (A, D (A)) be an unbounded linear operator on H . Assume that A is the infinitesimal generator of a C 0 -semigroup of contractions (S (t )) t ≥0 .

• The growth bound of A is defined by

ω 0 (A) = inf ω ∈ R : ∃ N ω ∈ R such that ∀ t ≥ 0 we have S (t ) ≤ N ω e ωt .
• The spectral bound of A is defined by Corollary 1.3.9. Let (A, D(A)) be an unbounded linear-operator on H . Assume that s (A) = 0, then (S(t )) t ≥0 is not uniformly exponentially stable.

s (A) = sup {Re (λ) : λ ∈ σ (A)} .
In the case when the C 0 -semigroup is not exponentialy stable we look for a polynomial one. In general, polynomial stability results are obtained using different methods like: multipliers method, frequency domain approach, Riesz basis approach, Fourier analysis or a combination of them. In this thesis we will review only one method. The frequency domain approach method which was obtained by Batty [START_REF] Charles | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF], A.Borichev [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] 

S (t )U 0 H ≤ C t 1 U 0 D(A) ∀ t > 0, U 0 ∈ D (A) for some C > 0. (1.3.2)
Also, the analytic property of a C 0 -semigroup of contraction (S (t )) t ≥0 is characterized in the following theorem due to Arendt, Batty and Hieber [START_REF] Arendt | Vector-Valued Laplace Transforms and Cauchy Problems[END_REF]. 

1 |λ| -1 (i λ -A) -1 L (H ) < ∞. (A2)

Geometric Conditions

In this section, we recall some definitions of the geometric conditions that we encounter in our work. Definition 1.4.1. For a subset ω of Ω and T > 0, we shall say that (ω, T ) satisfies the Geometric Control Condition (GCC in short) if there exists T > 0 such that every geodesic traveling at speed one in Ω meets ω in time t < T . Definition 1.4.2. (see [5]) For a subset ω of Ω, we shall say that ω satisfies the Strictly Geometric Control Condition (SGCC in short) if there exists an open subset ω included strictly in ω (i.e. ω ⊂ ω) and satisfying the GCC. • Ω j ⊂ Ω having Lipschitz boundary Γ j .

• x j ∈ R N , j = 1, • • • M . such that 1. Ω j ∩ Ω i = for j = i . 2. ω contains a neighborhood in Ω of the set M j =1 γ j (x j ) ∪ Ω\ M j =1
Ω j where γ j (x j ) = x ∈ Γ j ; (xx j ) • ν j (x) > 0 and ν j is the outward unit normal vector to Γ j . 

Well posedness and strong stability

In this Chapter, we consider a system of coupled wave equations with two interior viscous dampings with fully Dirichlet boundary conditions. The system is given as follows

                     ϕ t t -aϕ xx + 1 (α,β) (x)ϕ t + c(x)ψ t = 0, (x, t ) ∈ (0, L) × R + , ψ t t -ψ xx + 1 (α,β) (x)ψ t -c(x)ϕ t = 0, (x, t ) ∈ (0, L) × R + , ϕ(0, t ) = ϕ(L, t ) = 0, t > 0, ψ(0, t ) = ψ(L, t ) = 0, t > 0. (2.1.1)
where

c(x) = c 0 if x ∈ (α, γ) 0 otherwise (2.1.2)
and 0 < α < β < γ < L. This system is considered with the following initial data 

ϕ(•, 0) = ϕ 0 (•), ϕ t (•, 0) = ϕ 1 (•), ψ(•, 0) = ψ 0 (•) and ψ(•, 0) = ψ 1 (•). ( 2 
E a (t ) = 1 2 L 0 ϕ t 2 + a ϕ x 2 + ψ t 2 + ψ x 2 d x.
Let ϕ, ϕ t , ψ, ψ t be a regular solution of (2.1.1)-(2.1.3). Multiplying the first and the second equations of (2.1.1) by u t , y t , respectively, then using the boundary conditions, we get 

d d t E a (t ) = - L 0 1 (α,β) (x) ϕ t 2 d x - L 0 1 (α,β) (x) ψ t 2 d x ≤ 0.
H a = (H 1 0 (0, L) × L 2 (0, L)) 2 .
We denote by η = ϕ t and ξ = ψ t . The energy space H a is endowed with the following norm

Φ 2 H a = η 2 + a ϕ x 2 + ξ 2 + ψ x 2 ,
where • denotes the norm of L 2 (0, L) and Φ = ϕ, η, ψ, ξ in H a . We define the unbounded linear operator

A a : D (A a ) ⊂ H a -→ H a by D(A a ) = (H 2 (0, L) ∩ H 1 0 (0, L)) × H 1 0 (0, L) 2 , (2.1.4) 
and for all Φ = ϕ, η, ψ, ξ ∈ D (A a ),

A a (ϕ, η, ψ, ξ) = η, aϕ xx -1 (α,β) (x)η -c(x)ξ, ξ, ψ xx -1 (α,β) (x)ξ + c(x)η . (2.1.5)
If Φ = ϕ, η, ψ, ξ is the state of System (2.1.1), then this system is transformed into a first order evolution equation on the Hilbert space H a given by

Φ t = A a Φ, Φ(0) = Φ 0 , (2.1.6) 
where Φ 0 = ϕ 0 , η 0 , ψ 0 , ξ 0 .

Proposition 2.1.1. The unbounded linear operator A a is m-dissipative in the energy space H a .

Proof. For all Φ = ϕ, η, ψ, ξ ∈ D (A a ), we have

Re 〈A a U ,U 〉 H a = - L 0 1 (α,β) (x) ϕ t 2 d x - L 0 1 (α,β) (x) ψ t 2 d x ≤ 0, which implies that A a is dissipative. Now, let F = ( f 1 , f 2 , f 3 , f 4 ), we prove the existence of Φ = ϕ, η, ψ, ξ ∈ D (A a )
, solution of the equation

-A a Φ = F. (2.1.7)
Equivalently, one must consider the system given by -η = f 1 , (2.1.8)

-aϕ xx + 1 (α,β) (x)η + c(x)ξ = f 2 ,
(2.1.9)

-ξ = f 3 , (2.1.10) .11) with the boundary conditions

-ψ xx + 1 (α,β) (x)ξ -c(x)η = f 4 , (2.1 
ϕ(0) = ϕ(L) = 0, and ψ(0) = ψ(L) = 0. (2.1.12)
Let h, g ∈ H 1 0 (0, L) × H 1 0 (0, L). Multiplying Equations (2.1.9) and (2.1.11) by h and g respectively, integrating over (0, L), we obtain 

L 0 aϕ x h x d x + L 0 1 (α,β) (x)ηhd x + L 0 c(x)ξhd x = L 0 f 2 hd x, (2.1.13) L 0 ψ x g x d x + L 0 1 (α,β) (x)ξg d x - L 0 c(x)ηg d x = L 0 f 4 g d x. (2.
L 0 aϕ x h x d x = L 0 f 2 hd x + L 0 1 (α,β) (x) f 1 hd x + L 0 c(x) f 3 hd x, (2.1.15) L 0 ψ x g x d x = L 0 f 4 g d x + L 0 1 (α,β) (x) f 3 g d x - L 0 c(x) f 1 g d x. (2.1.16)
Adding Equations (2.1.15) and (2.1.16), we obtain

a (ϕ, ψ), (h, g ) = L h, g , ∀ (ϕ, ψ) ∈ H 1 0 (0, L) × H 1 0 (0, L), ( 2.1.17) 
where

a (ϕ, ψ), (h, g ) = a L 0 ϕ x h x d x + L 0 ψ x g x d x (2.1.18)
and

L(h, g ) = L 0 f 2 hd x + L 0 1 (α,β) (x) f 1 hd x + L 0 c(x) f 3 hd x + L 0 f 4 g d x+ L 0 1 (α,β) (x) f 3 g d x - L 0 c(x) f 1 g d x.
( 

ker (i λI -

A a ) = {0}, ∀λ ∈ R.
Proof. From Proposition 2.1.1, we have 0 ∈ ρ(A a ). We still need to show the result for λ ∈ R * . Suppose that there exists a real number λ = 0 and Φ = ϕ, η, ψ, ξ ∈ D(A a ), such that A a Φ = i λΦ.

Equivalently, we have

η = i λϕ, (2.1.20) aϕ xx -1 (α,β) (x)η -c(x)ξ = i λη, (2.1.21) ξ = i λψ, (2.1.22) ψ xx -1 (α,β) (x)ξ + c(x)η = i λξ. (2.1.23)
Next, a straightforward computation gives

0 = Re 〈i λΦ, Φ〉 H a = Re 〈A a Φ, Φ〉 H a = - L 0 1 (α,β) (x) η 2 d x- L 0 1 (α,β) (x)|ξ| 2 d x,
consequently, we deduce that 

η = ξ = 0 on (α, β), ( 2 
λ 2 ϕ + aϕ xx -i λ 1 (α,β) (x)ϕ -i λc(x)ψ = 0, in (0, L) (2.1.26) λ 2 ψ + ψ xx -i λ 1 (α,β) (x)ψ + i λc(x)φ = 0, in (0, L) (2.1.27)
with the boundary conditions

ϕ(0) = ϕ(L) = ψ(0) = ψ(L) = 0. (2.1.28)
Our goal is to prove that ϕ = ψ = 0 on (0, L). For simplicity, we divide the proof into three steps.

Step 1. The aim of this step is to show that ϕ = ψ = 0 on (0, α). We have that c(x) = 0 on (0, α), then we obtain the following system

λ 2 ϕ + aϕ xx = 0 over (0, α), λ 2 ψ + ψ xx = 0 over (0, α). ( 2.1.29) 
Since (ϕ, ψ) ∈ C 1 ([0, L]) and the fact that ϕ = ψ = 0 on (α, β), we get

ϕ(α) = ϕ x (α) = ψ(α) = ψ x (α) = 0. (2.1.30)
It is easy to see that System (2.1.29) admits only a trivial solution on (0, α) under the boundary condition (2.1.30).

Step 2. The aim of this step is to show that ϕ = ψ = 0 on (β, γ). Using the Equation (2.1.25) and the fact that (ϕ, ψ) ∈ C 1 ([0, L]), we obtain the boundary conditions

ϕ(β) = ϕ x (β) = ψ(β) = ψ x (β) = 0. (2.1.31)
Using the fact that c(x) = c 0 then, system (2.1.26)-(2.1.27) becomes

λ 2 ϕ + aϕ xx -i λc 0 ψ = 0 over (β, γ) λ 2 ψ + ψ xx + i λc 0 ϕ = 0 over (β, γ). (2.1.32)
Combining the Equations of system (2.1.32), we get

aϕ xxxx + (a + 1)λ 2 ϕ xx + λ 2 λ 2 -c 2 0 ϕ = 0. (2.1.33)
The characteristic equation of system (2.1.33) is

P (r ) := ar 4 + (a + 1)λ 2 r 2 + λ 2 λ 2 -c 2 0 .
2 Stabilization of coupled wave equations with two interior viscous damping -2.1 Well posedness and strong stability Setting P 0 (m) := am 2 + (a + 1)λ 2 m + λ 2 λ 2c 2 0 . The polynomial P 0 has two distinct real roots m 1 and m 2 given by:

m 1 = -λ 2 (a + 1) -λ 4 (a -1) 2 + 4ac 2 0 λ 2 2a
and m 2 = -λ 2 (a + 1) + λ 4 (a -1) 2 + 4ac 2 0 λ 2 2a .

It is clear that m 1 < 0 and the sign of m 2 depends on the value of λ with respect to c 0 . We distinguish the following three cases:

λ 2 < c 2 0 , λ 2 = c 2 0 and λ 2 > c 2 0 . Case 1. If λ 2 < c 2 0 , then m 2 > 0.
Setting

r 1 = -m 1 and r 2 = m 2 .
Then P has four simple roots i r 1 , -i r 1 , r 2 and -r 2 , and hence the general solution of system (2.1.32), is given by

     ϕ(x) = c 1 sin(r 1 x) + c 2 cos(r 1 x) + c 3 cosh(r 2 x) + c 4 sinh(r 2 x), ψ(x) = (λ 2 -ar 2 1 ) i λc 0 (c 1 sin(r 1 x) + c 2 cos(r 1 x)) + (λ 2 + ar 2 2 ) i λc 0 (c 3 cosh(r 2 x) + c 4 sinh(r 2 x)),
where c j ∈ C, j = 1, • • • , 4. In this case, the boundary condition in Equation (2.1.31), can be expressed by

M 1      c 1 c 2 c 3 c 4      = 0,
where

M 1 =           sin r 1 β cos r 1 β cosh r 2 β sinh r 2 β r 1 cos r 1 β -r 1 sin r 1 β r 2 sinh r 2 β r 2 cosh r 2 β (λ 2 -ar 2 1 ) i λc 0 sin r 1 β (λ 2 -ar 2 1 ) i λc 0 cos r 1 β (λ 2 + ar 2 2 ) i λc 0 cosh r 2 β (λ 2 + ar 2 2 ) i λc 0 sinh r 2 β (λ 2 -ar 2 1 ) i λc 0 r 1 cos r 1 β - (λ 2 -ar 2 1 ) i λc 0 r 1 sin r 1 β (λ 2 + ar 2 2 ) i λc 0 r 2 sinh r 2 β (λ 2 + ar 2 2 ) i λc 0 r 2 cosh r 2 β           . The determinant of M 1 is given by det(M 1 ) = r 1 r 2 a 2 r 2 1 + r 2 2 2 λ 2 c 2 0 .
System (2.1.32) with the boundary conditions (2.1.31), admits only a trivial solution

ϕ = ψ = 0 if and only if det(M 1 ) = 0, i.e. M 1 is invertible. Since, r 2 1 + r 2 2 = m 2 -m 1 = 0, then det(M 1 ) = 0. Consequently, if λ 2 < c 2 0 , we obtain ϕ = ψ = 0 on (β, γ).
2 Stabilization of coupled wave equations with two interior viscous damping -2.1 Well posedness and strong stability Case 2. If λ 2 = c 2 0 , then m 2 = 0. Setting

r 1 = -m 1 = (a + 1)c 2 0 a .
Then P has two simple roots i r 1 , -i r 1 and 0 is a double root. Hence the general solution of System (2.1.32) is given by

     ϕ(x) = c 1 sin(r 1 x) + c 2 cos(r 1 x) + c 3 x + c 4 , ψ(x) = (λ 2 -ar 2 1 ) i λc 0 (c 1 sin(r 1 x) + c 2 cos(r 1 x)) + λ i c 0 (c 3 x + c 4 ),
where

c j ∈ C, for j = 1, • • • , 4
. Also, the boundary condition in Equation (2.1.31), can be expressed by

M 2      c 1 c 2 c 3 c 4      = 0,
where 

M 2 =            sin r 1 β cos r 1 β β 1 r 1 cos r 1 β -r 1 sin r 1 β 1 0 (λ 2 -ar 2 1 ) i λc 0 sin r 1 β (λ 2 -ar 2 1 ) i λc 0 cos r 1 β λβ i c 0 λ i c 0 (λ 2 -ar 2 1 ) i λc 0 r 1 cos r 1 β - (λ 2 -ar 2 1 ) i λc 0 r 1 sin r 1 β λ i c 0 0            . The determinant of M 2 is given by det(M 2 ) = -a 2 r 5 1 λ 2 c 2 0 . Since r 1 = -m 1 = 0, then det(M 2 ) = 0.
= ψ = 0 on (β, γ). Case 3. If λ 2 > c 2 0 , then m 2 < 0. Setting r 1 = -m 1 and r 2 = -m 2 .
Then P has four simple roots i r 1 , -i r 1 , i r 2 and -i r 2 , and hence the general solution 

     ϕ(x) = c 1 sin(r 1 x) + c 2 cos(r 1 x) + c 3 sin(r 2 x) + c 4 cos(r 2 x), ψ(x) = (λ 2 -ar 2 1 ) i λc 0 (c 1 sin(r 1 x) + c 2 cos(r 1 x)) + (λ 2 -ar 2 2 ) i λc 0 (c 3 sin(r 2 x) + c 4 cos(r 2 x)),
where c j ∈ C, for j = 1, • • • , 4. Also, the boundary condition in Equation (2.1.31), can be expressed by

M 3      c 1 c 2 c 3 c 4      = 0,
where

M 3 =           sin r 1 β cos r 1 β sin r 2 β cos r 2 β r 1 cos r 1 β -r 1 sin r 1 β r 2 cos r 2 β -r 2 sin r 2 β (λ 2 -ar 2 1 ) i λc 0 sin r 1 β (λ 2 -ar 2 1 ) i λc 0 cos r 1 β (λ 2 -ar 2 2 ) i λc 0 sin r 2 β (λ 2 + ar 2 2 ) i λc 0 cos r 2 β (λ 2 -ar 2 1 ) i λc 0 r 1 cos r 1 β - (λ 2 -ar 2 1 ) i λc 0 r 1 sin r 1 β (λ 2 -ar 2 2 ) i λc 0 r 2 cos r 2 β - (λ 2 -ar 2 2 ) i λc 0 r 2 sin r 2 β           . The determinant of M 3 is given by det(M 3 ) = - r 1 r 2 a 2 (r 2 1 -r 2 2 ) 2 λc 2 0 . Since r 2 1 -r 2 2 = m 2 -m 1 = 0, then det(M 3 ) = 0.
Thus, System (2.1.32) with the boundary condition (2.1.31), admits only a trivial solution ϕ = ψ = on (β, γ). Consequently, we obtain Φ = 0 on (β, γ).

Step 3. The aim of this step is to show that ϕ = ψ = 0 on (γ, L). From Equations (2.1.32) and the fact that c(x) = 0 on (γ, L), we obtain the following system

λ 2 ϕ + aϕ xx = 0 over (γ, L) λ 2 ψ + ψ xx = 0 over (γ, L). (2.1.34) Since (ϕ, ψ) ∈ C 1 ([0, L]
) and the fact that ϕ = ψ = 0 on (β, γ), we get

ϕ(γ) = ϕ x (γ) = ψ(γ) = ψ x (γ) = 0. (2.1.35)
Finally, it is easy to see that System (2.1.34) admits only a trivial solution on (γ, L) under the boundary condition (2.1.35). Consequently, we proved that Φ = 0 on (0, L). The proof is thus complete. A a has no pure imaginary eigenvalues, and A a has a compact resolvent. Then, using Arendt-Batty Theorem 1.3.3, the C 0 -semigroup (e t A a ) t ≥0 is strongly stable.

Proof of Theorem

Exponential Stability

The main result of this section is to show the exponential stability of System (2.1.1).

Theorem 2.2.1. The C 0 -semigroup of contractions e t A a t ≥0 is exponentially stable, i.e. there exists constants M ≥ 1 and τ > 0 independent of Φ 0 such that

e t A a Φ 0 H a ≤ Me -τt Φ 0 H a , ∀ t ≥ 0.
According to Huang [START_REF] Lun | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] and Prüss [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF] result 1.3.10, we have to check if the following conditions hold:

i R ⊆ ρ (A a ) (H1)
and sup

λ∈R (i λI -A a ) -1 L (H a ) = O(1). ( H2 
)
By using the same argument of Lemma 2.1.4, the operator A a has no pure imaginary eigenvalues. Then, condition (H1) holds. We will prove condition (H2) using an argument of contradiction. Indeed, suppose there exists

λ n , Φ n = ϕ n , η n , ψ n , ξ n n≥1 ⊂ R * + × D (A a ) such that λ n → +∞ and Φ n H a = 1 (2.2.1)
and there exists a sequence

F n = f 1,n , f 2,n , f 3,n , f 4,n ∈ H a such that (i λ n I -A a ) Φ n = F n → 0 in H a . (2.2.2)
Detailing (2.2.2), we get the following system

i λϕ n -η n = f 1,n in H 1 0 (0, L), (2.2.3) i λη n -a ϕ n xx + 1 (α,β) (x)η n + c(x)ξ n = f 2,n in L 2 (0, L), (2.2.4) i λψ n -ξ n = f 3,n in H 1 0 (0, L), (2.2.5) i λξ n -ψ n xx + 1 (α,β) (x)ξ n -c(x)η n = f 4,n in L 2 (0, L). (2.2.6)
In what follows, we will check the condition (H2) by finding a contradiction with (2. Proof. Taking the inner product of (2.2.2) with Φ in H a , then using the fact that Φ is uniformly bounded in H a , we get

β α η 2 d x + β α |ξ| 2 d x = -Re 〈A a Φ, Φ〉 H a = Re 〈(i λI -A a ) Φ, Φ〉 = o(1).
Thus, the proof of the Lemma is complete.

Substituting η and ξ by i λϕf 1 and i λψf 3 respectively in (2.2.4) and (2.2.6), we get the following system Proof. First, we define the cut-off function θ ∈ C 1 (0, L) by

λ 2 ϕ + aϕ xx -i λ 1 (α,β) (x)ϕ -i λc(x)ψ = -i λ f 1 -1 (α,β) (x) f 1 -f 2 -c(x) f 3 , (2.2.7) λ 2 ψ + ψ xx -i λ 1 (α,β) (x)ψ + i λc(x)ϕ = -i λ f 3 -1 (α,β) (x) f 3 -f 4 + c(x) f 1 . (2.2.8) Lemma 2.2.3. Let 0 < δ < β-α 2 . The solution ϕ, η, ψ, ξ ∈ D(A a ) of Equations (2.2.3)-(2.2.

6) satisfies the following asymptotic behavior estimations

0 ≤ θ ≤ 1, θ = 1 on (α + δ, β -δ) and θ = 0 on (0, α) ∪ (β, L).
(2.2.9)

Multiplying Equations (2.2.7) and (2.2.8) by θϕ and θψ respectively, integrating over (0, L) and using the fact that λϕ and λψ are uniformly bounded in L 2 (0, L) and F → 0 in H a and taking the real part, we get (2.2.12)

L 0 θ λϕ 2 d x -a L 0 θ ϕ x 2 d x -a L 0 θ ϕϕ x d x -Re i λc 0 β α θψϕd x = o(1) (2.2.10) and L 0 θ λψ 2 d x - L 0 θ ψ x 2 d x - L 0 θ ψψ x d x + Re i λc 0 β α θϕψd x = o(1). ( 2 
On the other hand, using the fact that λϕ, λψ, ϕ x and ψ x are uniformly bounded in L 2 (0, L), 1) on (α+δ, β-δ). In order to complete the proof, we need to show that

Φ H a = o(1) on (α + δ, β -δ) c . Lemma 2.2.4. Let h ∈ C 1 (0, L). The solution ϕ, η, ψ, ξ ∈ D(A a ) of Equations (2.2.3)-(2.2.6)
satisfies the following asymptotic behavior estimation

L 0 h η 2 + a ϕ x 2 + |ξ| 2 + ψ x 2 d x -Re ah ϕ x 2 L 0 -Re h ψ x 2 L 0 +2 Re L 0 c(x)hξϕ x d x -2 Re L 0 c(x)hηψ x d x = 2 L 0 hϕ x f 2 d x +2 L 0 hη( f 1 ) x d x + 2 L 0 hψ x f 4 d x + 2 L 0 hξ( f 3 ) x d x + o(1).
(2.2.15)

Proof. Multiplying Equations (2.2.4) and (2.2.6) by 2hϕ x and 2hψ x respectively, integrate over (0, L) and using the fact that ϕ x , ψ x are uniformly bounded in L 2 (0, L) and F H a → 0 and Lemma 2.2.2, we get

2 L 0 i λhηϕ x d x -2a L 0 hϕ xx ϕ x d x + 2 L 0 c(x)hξϕ x d x = 2 L 0 hϕ x f 2 d x + o(1) (2.2.16) 2 L 0 i λhξψ x d x -2 L 0 hψ xx ψ x d x -2 L 0 c(x)hηψ x d x = 2 L 0 hψ x f 4 d x + o(1). (2.2.17)
From Equations (2.2.3) and (2.2.5), we have

-i λϕ x = η x + f 1 x and -i λψ x = ξ x + f 3 x .
Inserting the above equations in Equations (2.2.16) and (2.2.17) and by taking the real part, we obtain 

- L 0 h η 2 x d x-a L 0 h ϕ x 2 x d x+2 Re L 0 c(x)hξϕ x d x = 2 L 0 hϕ x f 2 d x+2 L 0 hη( f 1 ) x d x+o(1), (2.2.18) - L 0 h|ξ| 2 x d x - L 0 h ψ x 2 x d x -2 Re L 0 c(x)ηhψ x d x = 2 L 0 hψ x f 4 d x +2 L 0 hξ( f 3 ) x d x +o(1). ( 2 
η 2 + a ϕ x 2 + |ξ| 2 + ψ x 2 d x = o(1). Proof. Define the cut-off function θ in C 1 ([0, L]) by 0 ≤ θ ≤ 1, θ = 1 on (0, α + δ), θ = 0 on (β -δ, L). (2.2.20) Take h = x θ(x) in Equation (2.2.15), we get L 0 h η 2 + a ϕ x 2 + |ξ| 2 + ψ x 2 d x + 2c 0 Re β-δ α x θξϕ x d x -2c 0 Re β-δ α x θηψ x d x = o(1).
(2.2.21)

Using Lemma (2.2.2) and that ϕ x and ψ x are uniformly bounded in L 2 (0, L) and in particular in L 2 (α, βδ), we get 1) and 2c 0 Re

2c 0 Re β-δ α x θξϕ x d x = o(
β-δ α x θηψ x d x = o(1).
Inserting the above equations in Equation (2.2.21), and using Lemmas (2.2.2), (2.2.3) and the definition of the function θ, we get the desired result.

From the preceded results of Lemmas 2.2.2, 2.2.3 and 2.2.5 , we deduce that

Φ H a = o(1) on (0, β -δ). Now, our goal is to prove that Φ H a = o(1) on β -δ, L . For this aims, let g ∈ C 1 [β -δ, γ] such that g (γ) = -g (β -δ) = 1, max x∈[β,γ] g (x) = c g and max x∈[β,γ] g (x) = c g
where c g and c g are strictly positive constant numbers.

Remark 2.2.6. It is easy to see the existence of g (x)

. For example, we can take g

(x) = cos (γ -x)π γ -β + δ to get g (γ) = -g (β -δ) = 1, g ∈ C 1 [β -δ, γ] , g (x) ≤ 1 and g (x) ≤ π γ-β+δ . Lemma 2.2.7. Let 0 < δ < β-α 2 . The solution ϕ, η, ψ, ξ ∈ D(A a ) of Equations (2.2.3)-(2.2.

6) satisfies the following asymptotic behavior estimation

η(γ) 2 = O(1), η(β -δ) 2 = O(1), ξ(γ) 2 = O(1) and ξ(β -δ) 2 = O(1).
Proof. From Equations (2.2.4) and (2.2.6), we have

i λϕ x -η x = f 1 x and i λψ x -ξ x = f 3 x . ( 2 

.2.22) Exponential Stability

Multiplying the first equation and the second equation of (2.2.22) respectively by 2g (x)η and 2g (x)ξ, integrating over (β -δ, γ) and using the fact that F H a → 0 and η and ξ are uniformly bounded in

L 2 (0, L) in particular in L 2 (β -δ, γ), we get Re 2i λ γ β-δ g ϕ x ηd x - γ β-δ g (x) η 2 x d x = o(1), (2.2.23) Re 2i λ γ β-δ g ψ x ξd x - γ β-δ g (x) |ξ| 2 x d x = o(1). (2.2.24)
Using integration by parts in Equations (2.2.23) and (2.2.24), we get 

γ β-δ g (x) η 2 d x + Re 2i λ γ β-δ g ϕ x ηd x = η(γ) 2 + η(β -δ) 2 + o(1), (2.2.25) γ β-δ g (x)|ξ| 2 d x + Re 2i λ γ β-δ g ψ x ξd x = ξ(γ) 2 + ξ(β -δ) 2 + o(1
γ β-δ g (x)ηϕ x d x -a γ β-δ g (x) ϕ x 2 x d x + 2 Re c 0 γ β-δ g (x)ξϕ x d x = o(1), Re 2i λ γ β-δ g (x)ξψ x d x - γ β-δ g (x) ψ x 2 x d x -2 Re c 0 γ β-δ g (x)ηψ x d x = o(1).
Using integration by parts in the second terms of the above Equations, we obtain 

Re 2i λ γ β-δ g (x)ηϕ x d x + a γ β-δ g (x) ϕ x 2 d x + 2 Re c 0 γ β-δ g (x)ξϕ x d x = a ϕ x (γ) 2 + a ϕ x (β -δ) 2 + o(1) (2.2.27) and Re 2i γ β-δ g (x)ξψ x d x + γ β-δ g (x) ψ x 2 d x -2 Re c 0 γ β-δ g (x)ηψ x d x = ψ x (γ 2 + ψ x (β -δ) 2 + o(1). ( 2 
M (γ, β -δ) + N (γ, β -δ) = γ β-δ g (x) η 2 + a ϕ x 2 + |ξ| 2 + ψ x 2 d x +2 Re c 0 γ β-δ g (x)ξϕ x d x -2 Re c 0 γ β-δ g (x)ηψ x d x + o(1) (2.2.29)
where

M (γ, β -δ) = η(γ) 2 + η(β -δ) + a ϕ x (γ) 2 + a ϕ x (β -δ) 2 , N (γ, β -δ) = ξ(γ) 2 + ξ(β -δ) 2 + ψ x (γ) 2 + ψ x (β -δ) 2 .
2 Stabilization of coupled wave equations with two interior viscous damping -2.

Exponential Stability

From Equation (2.2.29), we get

M (γ, β -δ) + N (γ, β -δ) ≤ c g γ β-δ η 2 + a ϕ x 2 + |ξ| 2 + ψ x 2 d x +c 0 c g ξ L 2 (0,L) ϕ x L 2 (0,L) + c 0 c g η L 2 (0,L) ψ x L 2 (0,L) + o(1).
Using the fact that Φ is uniformly bounded in H a , we obtain the desired result. The proof of this Lemma has been completed.

Lemma 2.2.8. Let 0 < δ < β-α 2 . The solution ϕ, η, ψ, ξ ∈ D(A a ) of Equations (2.2.3)-(2.2.

6) satisfies the following asymptotic behavior estimation

L β-δ η 2 + a ϕ x 2 + |ξ| 2 + ψ x 2 d x = o(1). Proof. Define the cut-off function θ in C 1 ([0, L]) by 0 ≤ θ ≤ 1, θ = 1 on (β -δ, L)
, and θ = 0 on (0, α + δ).

(2.2.30) 

Take h = (x -L) θ in
L β-δ η 2 + a ϕ x 2 + |ξ| 2 + ψ x 2 d x + 2c 0 Re γ β-δ (x -L) θξϕ x d x -2c 0 Re γ β-δ (x -L) θηψ x d x = o(1).
(2.2.31)

Using the fact that ξ = i λψf 3 and η = i λϕf 1 in the second and third term of Equation (2.2.31) and that ϕ x , ψ x are uniformly bounded in L 2 (0, L) and the fact that F H a → 0, we get

2c 0 Re γ β-δ (x -L) θξϕ x d x -2c 0 Re γ β-δ (x -L) θηψ x d x = 2c 0 Re γ β-δ i λ(x -L) θψϕ x d x -2c 0 Re γ β-δ i λ(x -L) θϕψ x d x + o(1).
Using integration by parts in the first term of the right hand side of the above equation and the fact that λϕ and λψ are uniformly bounded in L 2 (Ω), we obtain 

2c 0 Re γ β-δ (x -L) θξϕ x d x -2c 0 Re γ β-δ (x -L) θηψ x d x = 2c 0 Re i λ(x -L)ψϕ γ β-δ + o(1). ( 2 
L β-δ η 2 + a ϕ x 2 + |ξ| 2 + ψ x 2 d x = A(γ) + B (β -δ) + o(1), (2.2.33)
2 Stabilization of coupled wave equations with two interior viscous damping -2.

Exponential Stability

where

A(γ) = 2c 0 Re i λ(L -γ)ψ(γ)ϕ(γ) , B (β -δ) = 2c 0 Re i λ(β -δ -L)ψ(β -δ)ϕ(β -δ) .
On the other hand, from Equations (2.2.3) and (2.2.5), we have

λϕ(s) ≤ η(s) + f 1 (s) and λψ(s) ≤ |ξ(s)| + f 3 (s) for s ∈ β -δ, γ . (2.2.34) Using the fact that f 1 (s) ≤ s s 0 ( f 1 ) x 2 d x ≤ sa -1 F 2 H a and f 3 (s) ≤ s s 0 ( f 3 ) x 2 d x ≤ s F 2 H a
for all s ∈ βδ, γ , and using Lemma 2.2.7 in Equation (2.2.34), we obtain 

λϕ(s) = O(1) and λψ(s) = O(1), for s ∈ β -δ, γ . Its follow that A(γ) + B (β -δ) = o(1). ( 2 
L β-δ η 2 + a ϕ x 2 + |ξ| 2 + ψ x 2 d x = o(1).
Thus, the proof has been completed. [START_REF] Lun | Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces[END_REF] and Prüss [START_REF] Prüss | On the spectrum of C 0 -semigroups[END_REF] we deduce the exponential stability of the System (2.1.1). 

Proof of

Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients

Introduction

Motivation and aims

There are several mathematical models representing physical damping. The most often encountered type of damping in vibration studies are linear viscous damping and Kelvin-Voigt damping which are special cases of proportional damping. Viscous damping usually models external friction forces such as air resistance acting on the vibrating structures and is thus called "external damping", while Kelvin-Voigt damping originates from the internal friction of the material of the vibrating structures and thus called "internal damping". In 1988, F. Huang in [START_REF] Falun | On the Mathematical Model for Linear Elastic Systems with Analytic Damping[END_REF] considered a wave equation with globally distributed Kelvin-Voigt damping, i.e. the damping coefficient is strictly positive on the entire spatial domain. He proved that the corresponding semigroup is not only exponentially stable, but also is analytic (see Definition 1.3.1, Theorem 1.3.5 and Theorem 1.3.11 below). Thus, Kelvin-Voigt damping is stronger than the viscous damping when globally distributed. Indeed, it was proved that 3 Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.1 Introduction the semigroup corresponding to the system of wave equations with global viscous damping is exponentially stable but not analytic (see [START_REF] Chen | Exponential Decay of Energy of Evolution Equations with Locally Distributed Damping[END_REF] for the one dimensional system and [START_REF] Bardos | Sharp Sufficient Conditions for the Observation, Control, and Stabilization of Waves from the Boundary[END_REF] for the higher dimensional system). However, the exponential stability of a wave equation is still true even if the viscous damping is localized, via a smooth or a non smooth damping coefficient, in a suitable subdomain satisfying some geometric conditions (see [START_REF] Bardos | Sharp Sufficient Conditions for the Observation, Control, and Stabilization of Waves from the Boundary[END_REF]). Nevertheless, when viscoelastic damping is distributed locally, the situation is more delicate and such comparison between viscous and viscoelastic damping is not valid anymore. Indeed, the stabilization of the wave equation with local Kelvin-Voigt damping is greatly influenced by the smoothness of the damping coefficient and the region where the damping is localized (near or faraway from the boundary) even in the one-dimensional case. So, the stabilization of systems (simple or coupled) with local Kelvin-Voigt damping has attracted the attention of many authors (see the Literature below for the history of this kind of damping). From a mathematical point of view, it is important to study the stability of a system coupling a locally damped wave equation with a conservative one. Moreover, the study of this kind of systems is also motivated by several physical considerations and occurs in many applications in engineering and mechanics. In this direction, recently in 2019, Hassine and Souayeh in [START_REF] Hassine | Stability for coupled waves with locally disturbed Kelvin-Voigt damping[END_REF], studied the stabilization of a system of global coupled wave equations with one localized Kelvin-Voigt damping. The system is described by

                               u t t -(u x + b(x)u t x ) x + v t = 0, (x, t ) ∈ (-1, 1) × R + , v t t -cv xx -u t = 0, (x, t ) ∈ (-1, 1) × R + , u(0, t ) = v(0, t ) = 0, u(1, t ) = v(1, t ) = 0, t > 0, u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ (-1, 1), v(x, 0) = v 0 (x), v t (x, 0) = v 1 (x), x ∈ (-1, 1), (3.1.1) 
where c > 0, and b ∈ L ∞ (-1, 1) is a non-negative function. They assumed that the damping coefficient is given by b

(x) = d 1 [0,1] (x)
, where d is a strictly positive constant. The Kelvin-Voigt damping (b(x)u t x ) x is applied at the first equation and the second equation is indirectly damped through the coupling between the two equations. Under the two conditions that the Kelvin-Voigt damping is localized near the boundary and the two waves are globally coupled, they obtained a polynomial energy decay rate of type t -1 6 . Then the stabilization of System (3.1.1) in the case where the Kelvin-Voigt damping is localized in an arbitrary subinterval of (-1, +1) and the two waves are locally coupled has been left as an open problem. In addition, we believe that the energy decay rate obtained in [START_REF] Hassine | Stability for coupled waves with locally disturbed Kelvin-Voigt damping[END_REF] can be improved. So, we are interested in studying this open problem.

The main aim of this chapter is to study the stabilization of a system of localized coupled wave equations with only one Kelvin-Voigt damping localized via non-smooth coefficient in a subinterval of the domain. The system is described by 

u t t -(au x + b(x)u t x ) x + c(x) y t = 0, (x, t ) ∈ (0, L) × R + , (3.1.2)
y t t -y xx -c(x) u t = 0, (x, t ) ∈ (0, L) × R + , ( 3 
u(0, t ) = u(L, t ) = y(0, t ) = y(L, t ) = 0, ∀ t ∈ R + , (3.1.4) where b(x) = b 0 if x ∈ (α 1 , α 3 ) 0 otherwise and c(x) = c 0 if x ∈ (α 2 , α 4 ) 0 otherwise (3.1.5)
and a > 0, b 0 > 0 and c 0 ∈ R * , and where we consider 0 < α 1 < α 2 < α 3 < α 4 < L (see Figure 3.1). This system is considered with the following initial data

u(•, 0) = u 0 (•), u t (•, 0) = u 1 (•), y(•, 0) = y 0 (•) and y t (•, 0) = y 1 (•). (3.1.6) α1 α2 α3 α4 L 0 b0 c0 Figure 3.1 -
The localization of the damping and coupling coefficients

Literature

The wave is created when a vibrating source disturbs the medium. In order to restrain those vibrations, several dampings can be added such as Kelvin-Voigt damping which is originated from the extension or compression of the vibrating particles. This damping is a viscoelastic structure having properties of both elasticity and viscosity. In the recent years, many researchers showed interest in problems involving this kind of damping (local or global) where different types of stability have been showed. In particular, in the one dimensional case, it was proved that the smoothness of the damping coefficient affects critically the studying of the stability and regularity of the solution of the system. Indeed, in the one dimensional case we can consider the following system

             u t t -(u x + b 1 (x)u t x ) x = 0, -1 ≤ x ≤ 1, t > 0, u(1, t ) = u(-1, t ) = 0, t > 0, u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), -1 ≤ x ≤ 1, (3.1.7) with b 1 ∈ L ∞ (-1, 1) and b 1 (x) = 0 if x ∈ (0, 1), a 1 (x) if x ∈ (-1, 0), (3.1.8)
where the function a 1 (x) is non-negative. The case of local Kelvin-Voigt damping was first studied in 1998 [START_REF] Liu | Exponential Decay of Energy of the Euler-Bernoulli Beam with Locally Distributed Kelvin-Voigt Damping[END_REF][START_REF] Kangsheng | Spectrum and Stability for Elastic Systems with Global or Local Kelvin-Voigt Damping[END_REF], it was proved that the semigroup loses exponential stability and [START_REF] Liu | Exponential decay of energy of vibrating strings with local viscoelasticity[END_REF]). Later, in [START_REF] Zhang | Exponential stability of an elastic string with local Kelvin-Voigt damping[END_REF], the smoothness on b 1 was

(.) ∈ C 0,1 ([-1, 1]) (see
weakened to b 1 (•) ∈ C 1 ([-1, 1]
) and a condition on a 1 was taken. In 2004, Renardy's results [START_REF] Renardy | On localized Kelvin-Voigt damping[END_REF] hinted that the solution of the system (3.1.7) may be exponentially stable under smoother conditions on the damping coefficient. This result was confirmed by K. Liu, Z. Liu and Q.

Zhang in [START_REF] Liu | Eventual differentiability of a string with local Kelvin-Voigt damping[END_REF]. On the other hand, Liu and Rao in 2005 (see [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF]) proved that the semigroup corresponding to system (3.1.7) is polynomially stable of order almost 2 if a 1 (.) ∈ C (0, 1) and a 1 (x) ≥ a 1 ≥ 0 on (0,1). The optimality of this order was later proved in [START_REF] Alves | The asymptotic behavior of the linear transmission problem in viscoelasticity[END_REF]. In 2014, Alves and al., in [START_REF] Alves | The Lack of Exponential Stability in Certain Transmission Problems with Localized Kelvin-Voigt Dissipation[END_REF], considered the transmission problem of a material composed of three components; one of them is a Kelvin-Voigt viscoelastic material, the second is an elastic material (no dissipation) and the third is an elastic material inserted with a frictional damping mechanism. They proved that the rate of decay depends on the position of each component. When the viscoelastic component is not in the middle of the material, they proved exponential stability of the solution. However, when the viscoelastic part is in the middle of the material, the solution decays polynomially as t -2 . In 2016, under the assumption that the damping coefficient has a singularity at the interface of the damped and undamped regions and behaves like x α near the interface, it was proven by Liu and Zhang [START_REF] Liu | Stability of a String with Local Kelvin-Voigt Damping and Nonsmooth Coefficient at Interface[END_REF] that the semigroup corresponding to the system is polynomially or exponentially stable and the decay rate depends on the parameter α ∈ (0, 1]. In [START_REF] Ammari | Stability of the wave equations on a tree with local Kelvin-Voigt damping[END_REF], Ammari and al. generalized the cases of single elastic string with local Kelvin-Voigt damping (in [START_REF] Ammari | Spectral analysis and stabilization of a chain of serially Euler-Bernoulli beams and strings[END_REF][START_REF] Liu | Exponential decay of energy of vibrating strings with local viscoelasticity[END_REF]). They studied the stability of a tree of elastic strings with local Kelvin-Voigt damping on some of the edges. They proved exponential/polynomial stability of the system under the compatibility condition of displacement and strain and the continuity condition of damping coefficients at the vertices of the tree.

In [START_REF] Hassine | Stability of elastic transmission systems with a local Kelvin-Voigt damping[END_REF], Hassine considered the longitudinal and transversal vibrations of the transmission Euler-Bernoulli beam with Kelvin-Voigt damping distributed locally on any subinterval of the region occupied by the beam. He proved that the semigroup associated with the equation for the transversal motion of the beam is exponentially stable, although the semigroup associated with the equation for the longitudinal motion of the beam is polynomially stable of type t -2 . In [START_REF] Hassine | Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping[END_REF], Hassine considered a beam and a wave equation coupled on an elastic beam through transmission conditions with locally distributed Kelvin-Voigt damping that acts through one of the two equations only. He proved a polynomial energy decay rate of type t -2 for both cases where the dissipation acts through the beam equation and through the wave equation. In 2016, Oquendo and Sanez studied the wave equation with internal coupled terms where the Kelvin-Voigt damping is global in one equation and the second equation is conservative. They showed that the semigroup loses speed and decays with the rate t -1 4 and they proved that this decay rate is optimal (see [START_REF] Higidio | Optimal decay for coupled waves with Kelvin-Voigt damping[END_REF]).

Description of the chapter

This chapter is organized as follows: In Subsection 3.2.1, we reformulate the system (3.1.2)-(3.1.6) into an evolution system and we prove the well-posedness of our system by semigroup approach. In Subsection 3.2.2, using a general criteria of Arendt and Batty, we show the strong stability of our system in the absence of the compactness of the resolvent. In Section 3.3, we prove that the system lacks exponential stability using two different approaches. The first case is by taking the damping and the coupling terms to be globally defined, i.e b(x) = b 0 > 0 and The second case is by taking only the damping term to be localized and we use the method which was developed by Littman and Markus. In Section 3.4, we look for a polynomial decay rate by applying a frequency domain approach combined with a multiplier method based on the exponential stability of the system in chapter 2 , where we establish a polynomial energy decay for smooth solution of type t -1 .

Well-Posedness and Strong Stability

In this section, we study the strong stability of System (3.1.2)-(3.1.6). First, using a semigroup approach, we establish well-posedness result of our system. 

Well-Posedness

E (t ) = 1 2 L 0 |u t | 2 + a|u x | 2 + |y t | 2 + |y x | 2 d x.
Let u, u t , y, y t be a regular solution of ( 

H = (H 1 0 (0, L) × L 2 (0, L)) 2 .
The energy space H is equipped with the inner product defined by

〈U ,U 1 〉 H = L 0 v v 1 d x + a L 0 u x (u 1 ) x d x + L 0 zz 1 d x + L 0 y x (y 1 ) x d x,
for all U = u, v, y, z and

U 1 = u 1 , v 1 , y 1 , z 1 in H .
We use U H to denote the corresponding norm. We define the unbounded linear operator A : 

D (A ) ⊂ H -→ H by D(A ) =      U = (u, v, y, z) ∈ H ; y ∈ H 2 (0, L) ∩ H 1 0 (0, L) v, z ∈ H 1 0 (0, L), (au x + b(x)v x ) x ∈ L 2 (0, L)      and for all U = u, v, y, z ∈ D (A ), A u, v, y, z = v, (au x + b(x)v x ) x -c(x)z, z, y xx + c(x)v .
U t = A U , U (0) = U 0 , (3.2.1) 
where U 0 = (u 0 , u 1 , y 0 , y 1 ).

Proposition 3.2.1. The unbounded linear operator A is m-dissipative in the energy space H .

Proof. For all U = (u, v, y, z) ∈ D (A ), we have

Re (〈A U ,U 〉 H ) = - L 0 b(x)|v x | 2 d x = - α 3 α 1 b 0 |v x | 2 d x ≤ 0,
which implies that A is dissipative. Here Re is used to denote the real part of a complex number. Now, let

F = ( f 1 , f 2 , f 3 , f 4 ), we prove the existence of U = (u, v, y, z) ∈ D(A ), solution of the equation -A U = F. (3.2.2)
Equivalently, one must consider the system given by

-v = f 1 , (3.2.3) -(au x + b(x)v x ) x + c(x)z = f 2 , (3.2.4) 
-z = f 3 , (3.2.5) 
-y xx -c(x)v = f 4 , (3.2.6) 
with the boundary conditions u(0) = u(L) = 0, and y(0

) = y(L) = 0. (3.2.7)
Let ϕ, ψ ∈ H 1 0 (0, L) × H 1 0 (0, L). Multiplying Equations (3.2.4) and (3.2.6) by ϕ and ψ respectively, integrating over (0, L), we obtain 

L 0 (au x + b(x)v x )ϕ x d x + L 0 c(x)zϕd x = L 0 f 2 ϕd x, (3.2.8) L 0 y x ψ x d x - L 0 c(x)vψd x = L 0 f 4 ψd x. ( 3 
L 0 au x ϕ x d x = L 0 f 2 ϕd x + L 0 b(x)( f 1 ) x ϕ x d x + L 0 c(x) f 3 ϕd x, (3.2.10) L 0 y x ψ x d x = L 0 f 4 ψd x - L 0 c(x) f 1 ψd x. ( 3 
a (u, y), (ϕ, ψ) = L ϕ, ψ , ∀ (ϕ, ψ) ∈ H 1 0 (0, L) × H 1 0 (0, L), (3.2.12)
where

a (u, y), (ϕ, ψ) = a L 0 u x ϕ x d x + L 0 y x ψ x d x (3.2.13)
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L(ϕ, ψ) = L 0 f 2 ϕd x + L 0 b(x)( f 1 ) x ϕ x d x + L 0 c(x) f 3 ϕd x + L 0 f 4 ψd x - L 0 c(x) f 1 ψd x.
(3.2.14) Thanks to (3.2.13), (3.2.14) , we have that a is a bilinear continuous coercive form on (H 1 0 (0, L)× H 1 0 (0, L)) 2 , and L is a linear continuous form on H 1 0 (0, L) × H 1 0 (0, L). Then, using Lax-Milgram theorem, we deduce that there exists (u, y) ∈ H 1 0 (0, L) × H 1 0 (0, L) unique solution of the variational problem (3.2.12). Applying the classical elliptic regularity we deduce that U = (u, v, y, z) ∈ D(A ) is the unique solution of (3.2.2). The proof is thus complete.

From Proposition 3.2.1, the operator A is m-dissipative on H and consequently, generates a C 0 -semigroup of contractions e t A t ≥0 following Lumer-Phillips Theorem (see Theorem 1.2.8). Then the solution of the evolution Equation (3.2.1) admits the following representation

U (t ) = e t A U 0 , t ≥ 0,
which leads to the well-posedness of (3.2.1). Hence, we have the following result.

Theorem 3.2.2. Let U 0 ∈ H then, problem (3.2.1) admits a unique weak solution U that satisfies U (t ) ∈ C 0 R + , H . Moreover, if U 0 ∈ D(A ) then, problem (3.2.1
) admits a unique strong solution U that satisfies

U (t ) ∈ C 1 R + , H ∩C 0 (R + , D(A )).

Strong Stability

This part is devoted for the proof of the strong stability of the C 0 -semigroup e t A t ≥0 . To obtain strong stability of the C 0 -semigroup e t A t ≥0 we use the theorem of Arendt and Batty in [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF] (see Theorem 1.3.3). Theorem 3.2.3. The C 0 -semigroup of contractions e t A t ≥0 is strongly stable in H ; i.e. for all U 0 ∈ H , the solution of (3.2.1)

satisfies lim t →+∞ e t A U 0 H = 0.
For the proof of Theorem 3.2.3, since the condition (u, v, y, z) ∈ D(A ) implies only u ∈ H 1 0 (0, L). Therefore, the embedding from D(A ) into H is not compact and the resolvent (-A ) -1 of the operator A is not compact in general. Then according to Theorem 1.3.3, we need to prove that the operator A has no pure imaginary eigenvalues and σ (A ) ∩ i R contains only a countable number of continuous spectrum of A . The argument for Theorem 3.2.3 relies on the subsequent lemmas. Lemma 3.2.4. For λ ∈ R, we have i λI -A is injective i.e. Proof. From Proposition 3.2.1, we have 0 ∈ ρ(A ). We still need to show the result for λ ∈ R * . Suppose that there exists a real number λ = 0 and U = u, v, y, z ∈ D(A ), such that

ker (i λI

-A ) = {0}, ∀λ ∈ R.
A U = i λU .
Equivalently, we have

v = i λu, (3.2.15) (au x + b(x)v x ) x -c(x)z = i λv, (3.2.16
)

z = i λy, ( 3 
.2.17)

y xx + c(x)v = i λz. (3.2.18)
Next, a straightforward computation gives 

0 = Re 〈i λU ,U 〉 H = Re 〈A U ,U 〉 H = - L 0 b(x)|v x | 2 d x = - α 3 α 1 b 0 |v x | 2 d x, consequently, we deduce that b(x)v x = 0 in (0, L) and v x = 0 in (α 1 , α 3 ). ( 3 
λ 2 u + au xx -i λc(x)y = 0, in (0, L) (3.2.22) λ 2 y + y xx + i λc(x)u = 0, in (0, L) (3.2.23)
with the boundary conditions

u(0) = u(L) = y(0) = y(L) = 0. (3.2.24)
Our goal is to prove that u = y = 0 on (0, L). For simplicity, we divide the proof into three steps.

Step 1. The aim of this step is to show that u = y = 0 on (0, α 3 ). So, using Equation (3.2.20), we have

u x = 0 in (α 1 , α 2 ).
Using the above equation and Equation (3.2.22) and the fact that c(x) = 0 on (α 1 , α 2 ), we obtain 

u = 0 in (α 1 , α 2 ). ( 3 
u = y = 0 in (α 2 , α 3 ). (3.2.30) Since y ∈ C 1 ([0, L]), then y(α 2 ) = y x (α 2 ) = 0. ( 3 
U = 0 in (0, α 3 ).
Step 2. The aim of this step is to show that u = y = 0 on (α 3 , α 4 ). Using Equation (3.2.30), and the fact that (u, y) ∈ C 1 ([0, L]), we obtain the boundary conditions

u(α 3 ) = u x (α 3 ) = y(α 3 ) = y x (α 3 ) = 0. (3.2.34)
Combining Equations (3.2.22), (3.2.23), and the fact that c(x) = c 0 on (α 3 , α 4 ), we get

au xxxx + (a + 1)λ 2 u xx + λ 2 λ 2 -c 2 0 u = 0. (3.2.35)
The characteristic equation of system (3.2.35) is

P (r ) := ar 4 + (a + 1)λ 2 r 2 + λ 2 λ 2 -c 2 0 . Setting P 0 (m) := am 2 + (a + 1)λ 2 m + λ 2 λ 2 -c 2 0 .
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The polynomial P 0 has two distinct real roots m 1 and m 2 given by:

m 1 = -λ 2 (a + 1) -λ 4 (a -1) 2 + 4ac 2 0 λ 2 2a
and

m 2 = -λ 2 (a + 1) + λ 4 (a -1) 2 + 4ac 2 0 λ 2 2a .
It is clear that m 1 < 0 and the sign of m 2 depends on the value of λ with respect to c 0 . We distinguish the following three cases:

λ 2 < c 2 0 , λ 2 = c 2 0 and λ 2 > c 2 0 . Case 1. If λ 2 < c 2 0 , then m 2 > 0.
Setting

r 1 = -m 1 and r 2 = m 2 .
Then P has four simple roots i r 1 , -i r 1 , r 2 and -r 2 , and hence the general solution of system (3.2.22), (3.2.23), is given by

       u(x) = c 1 sin(r 1 x) + c 2 cos(r 1 x) + c 3 cosh(r 2 x) + c 4 sinh(r 2 x), y(x) = (λ 2 -ar 2 1 ) i λc 0 (c 1 sin(r 1 x) + c 2 cos(r 1 x)) + (λ 2 + ar 2 2 ) i λc 0 (c 3 cosh(r 2 x) + c 4 sinh(r 2 x)),
where

c j ∈ C, j = 1, • • • , 4.
In this case, the boundary condition in Equation (3.2.34), can be expressed by

M 1      c 1 c 2 c 3 c 4      = 0,
where 

M 1 =             sin(r 1 α 3 ) cos(r 1 α 3 ) cosh(r 2 α 3 ) sinh(r 2 α 3 ) r 1 cos(r 1 α 3 ) -r 1 sin(r 1 α 3 ) r 2 sinh(r 2 α 3 ) r 2 cosh(r 2 α 3 ) (λ 2 -ar 2 1 ) i λc 0 sin(r 1 α 3 ) (λ 2 -ar 2 1 ) i λc 0 cos(r 1 α 3 ) (λ 2 + ar 2 2 ) i λc 0 cosh(r 2 α 3 ) (λ 2 + ar 2 2 ) i λc 0 sinh(r 2 α 3 ) (λ 2 -ar 2 1 ) i λc 0 r 1 cos(r 1 α 3 ) - (λ 2 -ar 2 1 ) i λc 0 r 1 sin(r 1 α 3 ) (λ 2 + ar 2 2 ) i λc 0 r 2 sinh(r 2 α 3 ) (λ 2 + ar 2 2 ) i λc 0 r 2 cosh(r 2 α 3 )             . The determinant of M 1 is given by det(M 1 ) = r 1 r 2 a 2 r 2 1 + r 2
if det(M 1 ) = 0, i.e. M 1 is invertible. Since, r 2 1 + r 2 2 = m 2 -m 1 = 0, then det(M 1 ) = 0. Consequently, if λ 2 < c 2 0 , we obtain u = y = 0 on (α 3 , α 4 ). Case 2. If λ 2 = c 2 0 , then m 2 = 0. Setting r 1 = -m 1 = (a + 1)c 2 0 a .
Then P has two simple roots i r 1 , -i r 1 and 0 is a double root. Hence the general solution of 

       u(x) = c 1 sin(r 1 x) + c 2 cos(r 1 x) + c 3 x + c 4 , y(x) = (λ 2 -ar 2 1 ) i λc 0 (c 1 sin(r 1 x) + c 2 cos(r 1 x)) + λ i c 0 (c 3 x + c 4 ),
where c j ∈ C, for j = 1, • • • , 4. Also, the boundary condition in Equation (3.2.34), can be expressed by

M 2      c 1 c 2 c 3 c 4      = 0,
where Then P has four simple roots i r 1 , -i r 1 , i r 2 and -i r 2 , and hence the general solution of System (3.2.22), (3.2.23) is given by

M 2 =            sin(r 1 α 3 ) cos(r 1 α 3 ) α 3 1 r 1 cos(r 1 α 3 ) -r 1 sin(r 1 α 3 ) 1 0 (λ 2 -ar 2 1 ) i λc 0 sin(r 1 α 3 ) (λ 2 -ar 2 1 ) i λc 0 cos(r 1 α 3 ) λα 3 i c 0 λ i c 0 (λ 2 -ar 2 1 ) i λc 0 r 1 cos(r 1 α 3 ) - (λ 2 -ar 2 1 ) i λc 0 r 1 sin(r 1 α 3 ) λ i c 0 0            . The determinant of M 2 is given by det(M 2 ) = -a 2
       u(x) = c 1 sin(r 1 x) + c 2 cos(r 1 x) + c 3 sin(r 2 x) + c 4 cos(r 2 x), y(x) = (λ 2 -ar 2 1 ) i λc 0 (c 1 sin(r 1 x) + c 2 cos(r 1 x)) + (λ 2 -ar 2 2 ) i λc 0 (c 3 sin(r 2 x) + c 4 cos(r 2 x)),
where c j ∈ C, for j = 1, • • • , 4. Also, the boundary condition in Equation (3.2.34), can be expressed by where

M 3      c 1 c 2 c 3 c 4      = 0, 3 
M 3 =             sin(r 1 α 3 ) cos(r 1 α 3 ) sin(r 2 α 3 ) cos(r 2 α 3 ) r 1 cos(r 1 α 3 ) -r 1 sin(r 1 α 3 ) r 2 cos(r 2 α 3 ) -r 2 sin(r 2 α 3 ) (λ 2 -ar 2 1 ) i λc 0 sin(r 1 α 3 ) (λ 2 -ar 2 1 ) i λc 0 cos(r 1 α 3 ) (λ 2 -ar 2 2 ) i λc 0 sin(r 2 α 3 ) (λ 2 + ar 2 2 ) i λc 0 cos(r 2 α 3 ) (λ 2 -ar 2 1 ) i λc 0 r 1 cos(r 1 α 3 ) - (λ 2 -ar 2 1 ) i λc 0 r 1 sin(r 1 α 3 ) (λ 2 -ar 2 2 ) i λc 0 r 2 cos(r 2 α 3 ) - (λ 2 -ar 2 2 ) i λc 0 r 2 sin(r 2 α 3 )            
.

The determinant of M 3 is given by

det(M 3 ) = - r 1 r 2 a 2 (r 2 1 -r 2 2 ) 2 λc 2 0 . Since r 2 1 -r 2 2 = m 2 -m 1 = 0, then det(M 3 ) = 0. Thus, System (3.2.22)-(3.2.23
) with the boundary condition (3.2.34), admits only a trivial solution u = y = 0 on (α 3 , α 4 ). Consequently, we obtain U = 0 on (α 3 , α 4 ).

Step 3. The aim of this step is to show that u = y = 0 on (α 4 , L). From Equations (3.2.22), (3.2.23) and the fact that c(x) = 0 on (α 4 , L), we obtain the following system

λ 2 u + au xx = 0 over (α 4 , L) λ 2 y + y xx = 0 over (α 4 , L). (3.2.36) Since (u, y) ∈ C 1 ([0, L]
) and the fact that u = y = 0 on (α 3 , α 4 ), we get

u(α 4 ) = u x (α 4 ) = y(α 4 ) = y x (α 4 ) = 0. (3.2.37)
Finally, it is easy to see that System (3.2.36) admits only a trivial solution on (α 4 , L) under the boundary condition (3.2.37). Consequently, we proved that U = 0 on (0, L). The proof is thus complete.

Lemma 3.2.5. For all λ ∈ R, we have

R(i λI -A ) = H .
Proof. From Proposition 3.2.1, we have 0 ∈ ρ(A ). We still need to show the result for λ

∈ R * . Set F = ( f 1 , f 2 , f 3 , f 4 ) ∈ H , we look for U = (u, v, y, z) ∈ D(A ) solution of (i λI -A )U = F. (3.2.38)
Equivalently, we have 

v = i λu -f 1 , (3.2.39) i λv -(au x + b(x)v x ) x + c(x)z = f 2 , (3.2.40) z = i λy -f 3 , (3.2.41) i λz -y xx -c(x)v = f 4 . (3.2.42) Let ϕ, ψ ∈ H 1 0 (0, L) × H 1 0 (0, L),
L 0 i λvϕd x + L 0 au x ϕ x d x + L 0 b(x)v x ϕ x d x + L 0 c(x)zϕd x = L 0 f 2 ϕd x, (3.2.43) L 0 i λzψd x + L 0 y x ψ x d x - L 0 c(x)vψd x = L 0 f 4 ψd x. ( 3 
a (u, y), (ϕ, ψ) = L(ϕ, ψ), ∀(ϕ, ψ) ∈ H 1 0 (0, L) × H 1 0 (0, L), (3.2.45) where a (u, y), (ϕ, ψ) = a 1 (u, y), (ϕ, ψ) + a 2 (u, y), (ϕ, ψ) with        a 1 (u, y), (ϕ, ψ) = L 0 au x ϕ x + y x ψ x d x + i λ L 0 b(x)u x ϕ x d x, a 2 (u, y), (ϕ, ψ) = -λ 2 L 0 uϕ + yψ d x + i λ L 0 c(x) yϕ -uψ d x,
and

L(ϕ, ψ) = L 0 f 2 + c(x) f 3 + i λ f 1 ϕd x + L 0 f 4 -c(x) f 1 + i λ f 3 ψd x + L 0 b(x) f 1 x ϕ x d x. Let V = H 1 0 (0, L) × H 1 0 (0, L) and V = H -1 (0, L) × H -1 (0, L) the dual space of V . Let us consider the following operators, A : V → V (u, y) → A(u, y) A 1 : V → V (u, y) → A 1 (u, y) A 2 : V → V (u, y) → A 2 (u, y) such that          A(u, y) (ϕ, ψ) = a (u, y), (ϕ, ψ) , ∀(ϕ, ψ) ∈ H 1 0 (0, L) × H 1 0 (0, L), A 1 (u, y) (ϕ, ψ) = a 1 (u, y), (ϕ, ψ) , ∀(ϕ, ψ) ∈ H 1 0 (0, L) × H 1 0 (0, L), A 2 (u, y) (ϕ, ψ) = a 2 (u, y), (ϕ, ψ) , ∀(ϕ, ψ) ∈ H 1 0 (0, L) × H 1 0 (0, L). (3.2.46)
Our goal is to prove that A is an isomorphism operator. For this aim, we divide the proof into three steps.

Step 1. In this step, we prove that the operator A 1 is an isomorphism operator. For this goal, following the second equation of (3.2.46) we can easily verify that a 1 is a bilinear continuous coercive form on H 1 0 (0, L) × H 1 0 (0, L). Then, by Lax-Milgram Lemma, the operator A 1 is an isomorphism.

Step 2. In this step, we prove that the operator A 2 is compact. According to the third equation of (3.2.46), we have

a 2 (u, y), (ϕ, ψ) ≤ C (u, y) L 2 (0,L) (ϕ, ψ) L 2 (0,L) .
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From steps 1 and 2, we get that the operator A = A 1 + A 2 is a Fredholm operator of index zero. Consequently, by Fredholm alternative, to prove that operator A is an isomorphism it is enough to prove that A is injective, i.e. ker {A} = {0}.

Step 3. In this step, we prove that ker{A} = {0}. For this aim, let ũ, ỹ ∈ ker{A}, i.e.

a ( ũ, ỹ), (ϕ, ψ) = 0, ∀ ϕ, ψ ∈ H 1 0 (0, L) × H 1 0 (0, L).
Equivalently, we have

-λ 2 L 0 ũϕ + ỹψ d x + i λ L 0 c(x) ỹϕ -ũψ d x + L 0 a ũx ϕ x + ỹx ψ x d x +i λ L 0 b(x) ũx ϕ x d x = 0. (3.2.47)
Taking ϕ = ũ and ψ = ỹ in equation (3.2.47), we get

-λ 2 L 0 | ũ| 2 d x-λ 2 L 0 ỹ 2 d x+a L 0 | ũx | 2 d x+ L 0 ỹx 2 d x-2λ Im L 0 c(x) ỹ ũd x +i λ L 0 b(x)| ũx | 2 d x = 0.
Taking the imaginary part of the above equality, we get

0 = L 0 b(x)| ũx | 2 d x,
we get, ũx = 0, in (α 1 , α 3 ) .

(3.2.48)

Then, we find that

         -λ 2 ũ -a ũxx + i λc(x) ỹ = 0, in (0, L) -λ 2 ỹ -a ỹxx -i λc(x) ũ = 0, in (0, L) ũx = ỹx = 0. in (α 2 , α 3 )
Therefore, the vector Ũ defined by

Ũ = ũ, i λ ũ, ỹ, i λ ỹ belongs to D(A ) and we have i λ Ũ -A Ũ = 0.
Hence, Ũ ∈ ker (i λI -A ), then by Lemma 3.2.4, we get Ũ = 0, this implies that ũ = ỹ = 0. Consequently, ker {A} = {0}.

Therefore, from step 3 and Fredholm alternative, we get that the operator A is an isomorphism. It is easy to see that the operator L is continuous from V to L 2 (0, L) × L 2 (0, L). Consequently, Equation (3.2.45) admits a unique solution (u, y) 

∈ H 1 0 (L) × H 1 0 (0, L). Thus, using v = i λu -f 1 , 3 

Lack of the exponential Stability

In this section, our goal is to show that system (3.1.2)-(3.1.6) is not exponentially stable.

Lack of exponential stability with global Kelvin-Voigt damping.

In this part, assume that

b(x) = b 0 > 0 and c(x) = c 0 ∈ R * , ∀ x ∈ (0, L). (3.3.1)
We introduce the following theorem. 

F n = 0, 0, 0, sin nπx L ,U n = A n sin nπx L , i λ n A n sin nπx L , B n sin nπx L , i λ n B n sin nπx L ,
where

λ n = nπ L , A n = i L c 0 nπ , B n = - i nb 0 π c 2 0 L - a -1 c 2 0 .
Clearly that U n ∈ D(A ), and

F n is bounded in H . Let us show that (i λ n I -A )U n = F n . Detailing (i λ n I -A )U n , we get (i λ n I -A )U n = 0, D 1,n sin nπx L , 0, D 2,n sin nπx L ,
where

D 1,n = -L 2 λ 2 n -an 2 π 2 -i π 2 b 0 λ n n 2 A n L 2 +i B n c 0 λ n , and D 2,n = -i A n c 0 λ n + B n π 2 n 2 -L 2 λ 2 n L 2 .
Inserting λ n , A n , B n in D 1,n and D 2,n , we get D 1,n = 0 and D 2,n = 1. Hence we obtain

(i λ n I -A )U n = 0, 0, 0, sin nπx L = F n .
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U n 2 H ≥ L 0 i λ n B n sin nπx L 2 d x = Lλ 2 n 2 |B n | 2 ∼ λ 4 n .
Therefore, for ε > 0 small enough, we have

λ -2+ε n U n H ∼ λ ε n → +∞.
Then, we cannot expect the energy decay rate 1

t 2 2-ε .

Lack of exponential stability with Local Kelvin-Voigt damping.

In this part, under the equal speed wave propagation condition (i.e. a = 1), we use the classical method developed by Littman and Markus in [START_REF] Littman | Stabilization of a hybrid system of elasticity by feedback boundary damping[END_REF] (see also [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF]), to show that system (3.1.2)-(3.1.6) with local Kelvin-Voigt damping and global coupling is not exponentially stable. For this aim, assume that

a = 1, b(x) = 0 if 0 < x ≤ 1 2 , 1 if 1 2 < x ≤ 1.
, and

c(x) = c ∈ R * . (3.3.2)
Our main result in this part is following theorem. [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF], one has that s (A 1 ) ≤ ω 0 (A 1 ) .

By the previous results, one clearly has that s (A ) ≤ 0 and the theorem would follow if equality holds in the previous inequality. It therefore amounts to show the existence of a sequence of eigenvalues of A whose real parts tend to zero.

Since A is dissipative, we fix α 0 > 0 small enough and we study the asymptotic behavior of the eigenvalues λ of A in the strip

S = {λ ∈ C : -α 0 ≤ Re(λ) ≤ 0} .
First, we determine the characteristic equation satisfied by the eigenvalues of A . For this aim, let λ ∈ C * be an eigenvalue of A and let U = (u, λu, y, λy) ∈ D(A ) be an associated eigenvector. Then, the eigenvalue problem is given by We define

λ 2 u -(1 + b(x)λ) u xx + cλy = 0, x ∈ (0, 1), (3.3.3) λ 2 y -y xx -cλu = 0, x ∈ (0, 1), ( 3 
u -(x) := u(x), y -(x) := y(x) x ∈ (0, 1 2 ), u + (x) := u(x), y + (x) := y(x) x ∈ [ 1 2 , 1). Then, system (3.3.3)-(3.3.4) becomes λ 2 u --u - xx + cλy -= 0, x ∈ (0, 1/2), (3.3.5) λ 2 y --y - xx -cλu -= 0, x ∈ (0, 1/2), (3.3.6 
)

λ 2 u + -(1 + λ)u + xx + cλy + = 0, x ∈ [1/2, 1), (3.3.7) λ 2 y + -y + xx -cλu + = 0, x ∈ [1/2, 1), (3.3.8)
with the boundary conditions

u -(0) = y -(0) = 0, (3.3.9) u + (1) = y + (1) = 0, (3.3.10)
and the continuity conditions

u -(1/2) = u + (1/2), (3.3.11) u - x (1/2) = (1 + λ)u + x (1/2), (3.3.12 
)

y -(1/2) = y + (1/2), (3.3.13) 
y - x (1/2) = y + x (1/2). (3.3.14) 
Here and below, in order to handle, in the case where z is a non zero non-real number, we denote by z the square root of z; i.e., the unique complex number whose square is equal to z, that is defined by

z = |z| + Re(z) 2 + i sign(Im(z)) |z| -Re(z) 2 .
Our aim is to study the asymptotic behavior of the largest eigenvalues λ of A in S. By taking λ large enough, the general solution of system (3.3.5)-(3.3.6) with boundary condition (3.3.9) is given by

     u -(x) = d 1 λ 2 -r 2 1 c λ sinh(r 1 x) + d 2 λ 2 -r 2 2 c λ sinh(r 2 x), y -(x) = d 1 sinh(r 1 x) + d 2 sinh(r 2 x),
and the general solution of system (3. 

     u + (x) = -D 1 λ 2 -s 2 1 c λ sinh(s 1 (1 -x)) -D 2 λ 2 -s 2 2 c λ sinh(s 2 (1 -x)), y + (x) = -D 1 sinh(s 1 (1 -x)) -D 2 sinh(s 2 (1 -x)),
where

d 1 , d 2 , D 1 , D 2 ∈ C, r 1 = λ 1 + i c λ , r 2 = λ 1 - i c λ (3.3.15)
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s 1 = λ 1 + 2 λ + 1 -4c 2 λ 3 -4c 2 λ 4 2 1 + 1 λ , s 2 = λ λ + 2 -λ 1 -4c 2 λ 3 -4c 2 λ 4 2 1 + 1 λ . ( 3 
M =         sinh r 1 2 sinh r 2 2 sinh s 1 2 sinh s 2 2 r 1 cosh r 1 2 r 2 cosh r 2 2 -s 1 cosh s 1 2 -s 2 cosh s 2 2 r 2 1 sinh r 1 2 r 2 2 sinh r 2 2 s 2 1 sinh s 1 2 s 2 2 sinh s 2 2 r 3 1 cosh r 1 2 r 3 2 cosh r 2 2 -s 1 (s 2 1 -λ(λ 2 -s 2 1 )) cosh s 1 2 -s 2 (s 2 2 -λ(λ 2 -s 2 2 )) cosh s 2 2         . System (3.
M 1 =         sinh r 1 2 sinh r 2 2 sinh s 1 2 1 -e -s 2 r 1 cosh r 1 2 r 2 cosh r 2 2 -s 1 cosh s 1 2 -s 2 (1 + e -s 2 ) r 2 1 sinh r 1 2 r 2 2 sinh r 2 2 s 2 1 sinh s 1 2 s 2 2 (1 -e -s 2 )
r 3 1 cosh r 1 2 r 3 2 cosh r 2 2 -s 1 (s 2 1 -λ(λ 2 -s 2 1 )) cosh s 1 2 -s 2 (s 2 2 -λ(λ 2 -s 2 2 ))(1 + e -s 2 )         . Then, we get d et (M 1 ) = F 1 + F 2 e -s 2 , (3.3.17) 
where

F 1 = -s 1 s 2 r 2 1 -r 2 2 s 2 1 -s 2 2 ( λ + 1) sinh r 1 2 sinh r 2 2 cosh s 1 2 +r 1 s 2 r 2 2 -s 2 1 (λ 2 -s 2 2 ) λ + r 2 1 -s 2 2 cosh r 1 2 sinh r 2 2 sinh s 1 2 -r 2 s 2 r 2 1 -s 2 1 (λ 2 -s 2 2 ) λ + r 2 2 -s 2 2 sinh r 1 2 cosh r 2 2 sinh s 1 2 -r 1 r 2 r 2 1 -r 2 2 s 2 1 -s 2 2 cosh r 1 2 cosh r 2 2 sinh s 1 2 +r 2 s 1 r 2 1 -s 2 2 (λ 2 -s 2 1 ) λ + r 2 2 -s 2 1 sinh r 1 2 cosh r 2 2 cosh s 1 2 -r 1 s 1 r 2 2 -s 2 2 (λ 2 -s 2 1 ) λ + r 2 1 -s 2 1 cosh r 1 2 sinh r 2 2 cosh s 1 2 
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F 2 = -s 1 s 2 r 2 1 -r 2 2 s 2 1 -s 2 2 ( λ + 1) sinh r 1 2 sinh r 2 2 cosh s 1 2 +r 1 s 2 r 2 2 -s 2 1 (λ 2 -s 2 2 ) λ + r 2 1 -s 2 2 cosh r 1 2 sinh r 2 2 sinh s 1 2 -r 2 s 2 r 2 1 -s 2 1 (λ 2 -s 2 2 ) λ + r 2 2 -s 2 2 sinh r 1 2 cosh r 2 2 sinh s 1 2 +r 1 r 2 r 2 1 -r 2 2 s 2 1 -s 2 2 cosh r 1 2 cosh r 2 2 sinh s 1 2 -r 2 s 1 r 2 1 -s 2 2 (λ 2 -s 2 1 ) λ + r 2 2 -s 2 1 sinh r 1 2 cosh r 2 2 cosh s 1 2 +r 1 s 1 r 2 2 -s 2 2 (λ 2 -s 2 1 ) λ + r 2 1 -s 2 1 cosh r 1 2 sinh r 2 2 cosh s 1 2 .
Lemma 3.3.3. Let λ ∈ C be an eigenvalue of A . Then, we have Re(λ) is bounded.

Proof. Multiplying equations (3.3.5)-(3.3.8) by u -, y -, u + , y + respectively, then using the boundary conditions, we get

λu -2 + u - x 2 + λy -2 + y - x 2 + λu + 2 +(1 + Re(λ)) u + x 2 + λy + 2 + y + x 2 = 0. (3.3.18)
Since the operator A is dissipative then the real part of λ is negative. It is easy to see that u + x = 0, hence using the fact that U H = 1 in (3.3.18), we get that Re(λ) is bounded below. Therefore, there exists α > 0, such that -α ≤ Re(λ) < 0. 

λ 1,n = 2nπi + i π - 2 sin 2 ( c 4 )(1 -i si g n(n)) 3 + cos c 2 |n|π + O 1 n (3.3.19)
and 

λ 2,n = 2nπi + i arccos cos 2 c 4 - γ |n|π + i si g n(n)γ |n|π + O 1 n , ( 3 
λ 1,n = 2nπi + i π + i c 2 32πn - ( 4 
+ i π)c 2 64π 2 n 2 + O 1 |n| 5 
F (λ) := f 0 (λ) + f 1 (λ) λ 1/2 + f 2 (λ) 8λ + f 3 (λ) 8λ 3/2 + f 4 (λ) 128λ 2 + O(λ -5/2 ), (3.3.23) 
where 

                                   f 0 (λ) = cosh 3λ 2 -cosh λ 2 cos c 2 , f 1 (λ) = sinh 3λ 2 + sinh λ 2 cos c 2 , f 2 (λ) = c 2 sinh 3λ 2 -4 cosh 3λ 2 + 4 cosh λ 2 cos c 2 + c sinh λ 2 sin c 2 , f 3 (λ) = -8 sinh 3λ 2 + c 2 cosh 3λ 2 -12c cosh λ 2 sin c 2 -8 sinh λ 2 cos c 2 , f 4 (λ) = -40c 2 sinh 3λ 2 + (c 4 + 72c 2 + 48) cosh 3λ 2 + 32c c cos c 2 + 7 sin c 2 sinh λ 2 -8c 2 + 8c 3 sin c 2 + 16(4c 2 + 3) cosh c 2 cosh λ 2 . ( 3 
   r 1 = λ + i c 2 + c 2 8λ -i c 3 16λ 2 + O(λ -3 ), r 2 = λ -i c 2 + c 2 8λ + i c 3 16λ 2 + O(λ -3 ), s 1 = λ -c 2 2λ + O(λ -5 ), s 2 = λ -1 2 λ + 4c 2 +3 8λ 3 2 + O λ -3/2 . (3.3.25)
From (3.3.25), we get 

                                   2i cλs 1 s 2 (s 2 1 -s 2 2 )(λ + 1) = i cλ 11/2 2 -1 λ + 3+4c 2 4λ 2 + O(λ -3 ) , r 1 s 2 (r 2 2 -s 2 1 ) (λ 2 -s 2 2 )λ + r 2 1 -s 2 2 = -i cλ 11/2 1 -1-i c 2λ + 5c 2 +3+14i c 8λ 2 + O(λ -3 ) , r 2 s 2 (r 2 1 -s 2 1 ) (λ 2 -s 2 2 )λ + r 2 2 -s 2 2 = i cλ 11/2 1 -1+i c 2λ + 5c 2 +3-14i c 8λ 2 + O(λ -3 ) , 2i cλr 1 r 2 s 2 1 -s 2 2 = i cλ 11/2 2 λ -2 λ 3/2 + O(λ -5/2 ) , r 2 s 1 (r 2 1 -s 2 2 )((λ 2 -s 2 1 )λ + r 2 2 -s 2 1 ) = -i cλ 11/2 1 λ -2-3i c 2λ 3/2 + O λ -5/2 , r 1 s 1 (r 2 2 -s 2 2 )((λ 2 -s 2 1 )λ + r 2 1 -s 2 1 ) = i cλ 11/2 1 λ -2+3i c 2λ 3/2 + O(λ -5/2
F 1 i cλ 11/2 = -2 - 1 λ + 4c 2 + 3 4λ 2 sinh r 1 2 sinh r 2 2 cosh s 1 2 + 1 - 1 2λ + 5c 2 + 3 8λ 2 cosh r 1 2 sinh r 2 2 + sinh r 1 2 cosh r 2 2 sinh s 1 2 
+ i c 2λ + 7i c 4λ 2 cosh r 1 2 sinh r 2 2 -sinh r 1 2 cosh r 2 2 sinh s 1 2 + 2 λ - 2 λ 3/2 cosh r 1 2 cosh r 2 2 sinh s 1 2 + 1 λ - 1 λ 3/2 sinh r 1 2 cosh r 2 2 + cosh r 1 2 sinh r 2 2 cosh s 1 2 + 3i c 2λ 3/2 sinh r 1 2 cosh r 2 2 -cosh r 1 2 sinh r 2 2 cosh s 1 2 + O λ -5/2 .
(3.3.27) From equation (3.3.26) and using the fact that Re(λ) is bounded, we get where, 

F 2 = -i c λ 11/2 2 sinh r 1 2 sinh r 2 2 cosh s 1 2 + cosh r 1 2 sinh r 2 2 + sinh r 1 2 cosh r 2 2 sinh s 1 2 + O λ -1/2 . ( 3 
F (λ) = 1 - 1 2λ + 4c 2 + 3 8λ 2 cosh r 1 + r 2 2 -cosh r 1 -r 2 2 cosh s 1 2 + 1 - 1 2λ + 5c 2 + 3 8λ 2 sinh r 1 + r 2 2 sinh s 1 2 - i c 2λ + 7i c 4λ 2 sinh r 1 -r 2 2 sinh s 1 2 + 1 λ - 1 λ 3/2 cosh r 1 + r 2 2 + cosh r 1 -r 2 2 sinh s 1 2 + 1 λ - 1 λ 3/2 sinh r 1 + r 2 2 cosh s 1 2 + 3i c 2λ 3/2 sinh r 1 -r 2 2 cosh s 1 2 + O λ -5/2 . ( 3 
                                     cosh r 1 +r 2 2 = cosh(λ) + c 2 sinh(λ) 8 λ + c 4 cosh(λ) 128λ 2 + O(λ -3 ), cosh r 1 -r 2 2 = cos c 2 + c 3 sin c 2 16λ 2 + O(λ -3 ), sinh r 1 +r 2 2 = sinh(λ) + c 2 cosh(λ) 8λ + c 4 sinh(λ) 128λ 2 + O(λ -3 ), sinh r 1 -r 2 2 = i sin c 2 -i c 3 cos c 2 16λ 2 + O(λ -3 ), sinh s 1 2 = sinh λ 2 - c 2 cosh λ 2 4λ 2 + O(λ -4 ), cosh s 1 2 = cosh λ 2 - c 2 sinh λ 2 4λ 2
+ O(λ -4 ).

( Proof. First, we look at the roots of f 0 . From (3.3.24), we deduce that f 0 can be written as

f 0 (λ) = 2 cosh λ 2 cosh(λ) -cos 2 c 4 . (3.3.35)
Then, the roots of f 0 are given by

µ 1,n = 2nπi + i π, n ∈ Z, µ 2,n = 2nπi + i arccos cos 2 c 4 , n ∈ Z.
Now, with the help of Rouché's Theorem, we will show that the roots of F are close to f 0 . Let us start with the first family µ 1,n . Let B n = B ((2n + 1)πi , r n ) be the ball of centrum (2n + 1)πi and radius 

r n = |n| -1 4 and λ ∈ ∂ B n ; i.e. λ n = 2nπi + i π + r n e i θ , θ ∈ [0, 2π[. Then cosh λ 2 = i (-1) n r n e i θ 2 + O(r 2 n ), and cosh(λ) = -1 + O(r 2 n ). ( 3 
f 0 (λ) = -i (-1) n r n e i θ 1 + cos 2 c 4 + O(r 3 n ) .
It follows that there exists a positive constant C such that

∀ λ ∈ ∂ B n , f 0 (λ) ≥ C r n = C |n| -1 4 .
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On the other hand, from (3.3.23), we deduce that

F (λ) -f 0 (λ) = O 1 λ = O 1 |n| .
It follows that, for |n| large enough

∀λ ∈ ∂ B n , F (λ) -f 0 (λ) < f 0 (λ) .
Hence, with the help of Rouché's Theorem, there exists n 0 ∈ N * large enough, such that ∀ |n| ≥ n 0 , the first branch of roots of F denoted by λ 1,n are close to µ 1,n , that is

λ 1,n = µ 1,n + i π + 1,n where lim |n|→+∞ 1,n = 0. (3.3.37)
Passing to the second family µ 2,n . Let Bn = B µ 2,n , r n be the ball of centrum µ 2,n and radius 

r n :=    1 |n| 1 8 if sin c 4 = 0, 1 |n| 1 4 if sin c 4 = 0, such that λ ∈ ∂ Bn ; i.e. λ n = µ 2,n + r n e i θ , θ ∈ [0, 2π[. Then, cosh(λ) -cos 2 c 4 = cosh 2nπi + i arccos cos 2 c 4 + r n e i θ -
f 0 (λ) = R 1 e i θ r n + R 2 e 2i θ r 2 n + O(r 3 n ), (3.3.40) 
where 

     R 1 = i (-1) n 1 -cos 4 c 4 cos arccos cos 2 c
∀λ ∈ ∂ Bn , f 0 (λ) ≥ C r 2 n = C |n| -1 4 .
Case 2. If sin c 4 = 0, then R 1 = 0. It follows that, there exists a positive constant C such that

∀λ ∈ ∂ Bn , f 0 (λ) ≥ C r n = C |n| -1 4 .
On the other hand, from (3.3.23), we deduce that

F (λ) -f 0 (λ) = O 1 λ = O 1 |n| .
In both cases, for |n| large enough, we have

∀ λ ∈ ∂ Bn , F (λ) -f 0 (λ) < f 0 (λ) .
Hence, with the help of Rouché's Theorem, there exists n 0 ∈ N * large enough, such that ∀|n| ≥ n 0 , the second branch of roots of F , denoted by λ 2,n are close to µ 2,n that is defined in equation (3.3.34). The proof is thus complete.

We are now in position to conclude the proof of Proposition 3.3.4.

Proof of Proposition 3.3.4. The proof is divided into two steps.

Calculation of 1,n . From (3.3.37), we have

                                           cosh 3λ 1,n 2 = -i (-1) n sinh 3 1,n 2 , sinh 3λ 1,n 2 = -i (-1) n cosh 3 1,n 2 , cosh λ 1,n 2 = i (-1) n sinh 1,n 2 , sinh λ 1,n 2 = i (-1) n cosh 1,n 2 , 1 λ 1,n = - i 2πn + i 4πn 2 + O 1,n n -2 + O n -3 , 1 λ 2 1,n = - 1 4π 2 n 2 + O n -3 1 λ 1,n = 1 -i sign(n) 2 π|n| + i -sign(n) 8 π|n| 3 + O 1,n |n| -3/2 + O |n| -5/2 , 1 λ 3 1,n = -1 -i sign(n) 4 π 3 |n| 3 + O |n| -5/2 , 1 λ 5 1,n = O |n| -5/2 . (3.3.42)
On the other hand, since lim |n|→+∞ 1,n = 0, we have the asymptotic expansion 

       sinh 3 1,n 2 = 3 1,n 2 + O( 3 1,n ), cosh 3 1,n 2 = 1 + 9 1,n 8 + O( 4 1,n ), sinh 1,n 2 = 1,n 2 + O( 3 1,n ), cosh 1,n 2 = 1 + 1,n 8 + O( 4 1,n ). ( 3 
                                           cosh 3λ 1,n 2 = - 3i (-1) n 1,n 2 + O( 3 1,n ), sinh 3λ 1,n 2 = -i (-1) n - 9i (-1) n 1,n 8 + O( 4 1,n ), cosh λ 1,n 2 = i (-1) n 1,n 2 + O( 3 1,n ), sinh λ 1,n 2 = i (-1) n + i (-1) n 1,n 8 + O( 4 1,n ), 1 λ 1,n = - i 2πn + i 4πn 2 + O 1,n n -2 + O n -3 , 1 λ 2 1,n = - 1 4π 2 n 2 + O n -3 1 λ 1,n = 1 -i sign(n) 2 π|n| + i -sign(n) 8 π|n| 3 + O 1,n |n| -3/2 + O |n| -5/2 , 1 λ 3 1,n = -1 -i sign(n) 4 π 3 |n| 3 + O |n| -5/2 , 1 λ 5 1,n = O |n| -5/2 . ( 3 
3 

+ cos c 2 1 + i 4π n + 1 -i sign(n) 1 -cos c 2 2 π |n| + i c 4 sin c 2 -c 16πn - ( 2 
+ i π) 1 + i sign(n) 1 -cos c 2 8 π 3 |n| 3 + 4c (7 -2i π) sin c 2 + c 2 (2i π + 5 + 4 cos c 2 ) 64π 2 n 2 +O |n| -5/2 + O 1,n |n| -3/2 + O 2 1,n |n| -1/2 + O 3 1,n = 0. ( 3 
+ cos c 2 + sin 2 c 4 (1 -i sign(n)) |n|π + O( 3 1,n ) + O(|n| -1/2 2 1,n ) + O(n -1 ) = 0, hence, we get 1,n = - 2 sin 2 c 4 (1 -i sign(n)) 2 + cos c 2 + O(n -1
= 0, 1 -cos c 2 = 2 sin 2 c 4 = 0, sin c 2 = 2 sin c 4 cos c 4 = 0,
then, from (3.3.45), we get 

2 1,n 1 + i 4πn - i c 2 16πn + c 2 (2i π + 9) 64π 2 n 2 + O |n| -5/2 + O 1,n |n| -3/2 +O 2 1,n |n| -1/2 + O 3 1,n = 0. ( 3 
+ sinh λ 2,n 2 cos c 2 4 |n|π + O(n -1 ) = 0. (3.3.50)
On the other hand, we have 

cosh λ 2,n -cos 2 c 4 = cosh 2nπi + i arccos cos 2 c 4 + 2,n -cos 2 c 4 = cos 2 c 4 cosh 2,n + i 1 -cos 4 c 4 sinh 2,n -cos 2 c 4 = i 2,n 1 -cos 4 c 4 + O( 2 2,n ), (3.3.51) and  
            cosh λ 2,n 2 = (-1) n cos arccos cos 2 c 4 2 + O( 2,n ), sinh λ 2,n 2 = i (-1) n sin arccos cos 2 c 4 2 + O( 2,n ), sinh 3λ 

Polynomial Stability

From Section 3.3, System (3.1.2)-(3.1.6) is not uniformly (exponentially) stable, so we look for a polynomial decay rate. As the condition i R ⊂ ρ(A ) is already checked in Lemma 3.2.4, following Theorem 1.3.10, it remains to prove that condition (1.3.1) holds. This is made with the help of a specific multiplier and by using the exponential decay of the system considered in chapter 2. Our main result in this section is the following theorem.

Theorem 3.4.1. There exists a constant C > 0 independent of U 0 , such that the energy of system (3.1.2)-(3.1.6) satisfies the following estimation: 

E (t ) ≤ C t U 0 2 D(A ) , ∀t > 0, ∀U 0 ∈ D(A ). ( 3 
1 |λ| 2 (i λI -A ) -1 L (H ) < ∞, (H2) 
are satisfied. Condition (H1) is already proved in Lemma 3.2.4. We will prove condition (H2) using an argument of contradiction. For this purpose, suppose that (H2) is false, then there exists (λ n ,U n = u n , v n , y n , z n ) n≥1 ⊂ R × D (A ) and

λ n → +∞, U n H = 1, (3.4.2) such that λ 2 n ( i λ n U n -A U n ) = f 1,n , g 1,n , f 2,n , g 2,n := F n → 0 in H . (3.4.3)
For simplicity, we drop the index n. Detailing Equation (3.4.3), we obtain

i λu -v = λ -2 f 1 in H 1 0 (0, L), (3.4.4) i λv -(au x + b(x)v x ) x + c(x)z = λ -2 g 1 in L 2 (0, L), (3.4.5) i λy -z = λ -2 f 2 in H 1 0 (0, L), (3.4.6) i λz -y xx -c(x)v = λ -2 g 2 in L 2 (0, L). (3.4.7)
Here we will check the condition (H2) by finding a contradiction with (3.4.2) such as U H = o [START_REF] Achouri | The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type[END_REF]. For clarity, we divide the proof into several lemmas. By taking the inner product of (3.4.3) with U in H , we remark that

L 0 b(x) |v x | 2 d x = -Re (〈A U ,U 〉 H ) = Re (〈(i λI -A )U ,U 〉 H ) = o λ -2 .
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α 3 α 1 |v x | 2 d x = o λ -2 . ( 3 
Proof. We define the function ρ ∈ C ∞ 0 (0, L) by

ρ(x) =    1 if x ∈ (α 1 + , α 3 -), 0 if x ∈ (0, α 1 ) ∪ (α 3 , L), 0 ≤ ρ ≤ 1
el sewher e. 

L 0 i ρ |v| 2 d x + 1 λ L 0 (au x + b(x)v x ) ρ v + ρv x d x + 1 λ L 0 c(x)zρvd x = o(λ -3 ). ( 3 
λ 2 u + (au x + b(x)v x ) x -i λc(x)y = F 1 , (3.4 
.17)

λ 2 y + y xx + i λc(x)u = F 2 , (3.4.18) 
where Proof. We define the function ζ ∈ C ∞ 0 (0, L) by

F 1 = -λ -2 g 1 -i λ -1 f 1 -c(x)λ -2 f 2 and F 2 = -λ -2 g 2 -i λ -1 f 2 + c(x)λ -2 f 1 . ( 3 
ζ(x) =    1 if x ∈ (α 1 + 2ε, α 3 -2ε), 0 if x ∈ (0, α 1 + ε) ∪ (α 3 -ε, L), 0 ≤ ζ ≤ 1
el sewher e. 

F H = ( f 1 , g 1 , f 2 , g 2 ) H = o(1), we get L 0 λ 3 ζu yd x - L 0 λ (au x + b(x)v x ) (ζ y + ζy x )d x -i L 0 c(x)ζ(x) λy 2 d x = o(λ -1 ) (3.4.22)
and ) by z, integrating over (α 2 , α 3 -2ε) and using the fact that f 2 H 1 0 (0,L) = o(1) and z is uniformly bounded in L 2 (0, L), in particular in L 2 (α 2 , α 3 -2ε), we get

L 0 λ 3 ζyud x - L 0 λy x ζ u x d x - L 0 λy x ζu x d x + i L 0 c(x)ζ(x) |λu| 2 d x = o(λ -1 ). ( 3 
α 3 -2ε α 2 i λy zd x - α 3 -2ε α 2 |z| 2 d x = o(λ -2 ).
Then, using the first estimation of Equation (3.4.20), we get the second desired estimation of Equation (3.4.20).

Now, we will construct a new multiplier satisfying some ordinary differential systems.

Lemma 3.4.5. Let 0 < α 1 < α 2 < α 3 < α 4 < L and suppose that ε < α 3 -α 1 4 , and c(x) the function defined in Equation (3.1.5). Then, for any λ ∈ R, the solution ϕ, ψ ∈ ((H 2 (0, L) ∩ H 1 0 (0, L)) 2 of system

                     λ 2 ϕ + aϕ xx -i λ 1 (α 2 ,α 3 -2ε) (x)ϕ -i λc(x)ψ = u, x ∈ (0, L) λ 2 ψ + ψ xx -i λ 1 (α 2 ,α 3 -2ε) (x)ψ + i λc(x)ϕ = y, x ∈ (0, L) ϕ(0) = ϕ(L) = 0, ψ(0) = ψ(L) = 0, (3.4.26)
satisfies the following estimation 

λϕ 2 L 2 (0,L) + ϕ x 2 L 2 (0,L) + λψ 2 L 2 (0,L) + ψ x 2 L 2 (0,L) ≤ M u 2 L 2 (0,L) + y 2 L 2 (0,L) . ( 3 
(i λI -A a ) -1 L (H a ) ≤ M < +∞ (3.4.28)
where H a = H 1 0 (0, L) × L 2 (0, L) 2 . Now, since (u, y) ∈ H 1 0 (0, L) × H 1 0 (0, L), then (0, -u, 0, -y) belongs to H a , and from (3.4.28), there exists (ϕ, η, ψ, ξ) ∈ D(A a ) such that (i λI -A a ) (ϕ, η, ψ, ξ) = (0, -u, 0, -y) i .e. 

i λϕ -η = 0, (3.4.29) i λη -aϕ xx + 1 (α 2 ,α 3 -2ε) (x)η + c(x)ξ = -u, (3.4.30) i λψ -ξ = 0, (3.4.31) i λξ -ψ xx + 1 (α 2 ,α 3 -2ε) (x)ξ -c(x)η = -y, (3.4 
λϕ 2 L 2 (0,L) + ϕ x 2 L 2 (0,L) + λψ 2 L 2 (0,L) + ψ x 2 L 2 (0,L) ≤ M u 2 L 2 (0,L) + y 2 L 2 (0,L) .
Then, we get our desired result. Proof. The proof of this Lemma is divided into two steps.

Step 1.

Multiplying equation (3.4.17) by λ 2 ϕ, integrating over (0, L), and using Equation (3.4.27) and the facts that u is uniformly bounded in L 2 (0, L) and From System (3.4.26), we have Step 2.

F H = ( f 1 , g 1 , f 2 , g 2 ) H = o(1), we get L 0 λ 2 ϕ + aϕ xx λ 2 ud x - L 0 λ 2 b(x)v x ϕ x d x - L 0 i λ 3 c(x)yϕd x = o(λ -1 ). ( 3 
λ 2 ϕ + aϕ xx = -i λ 1 (α 2 ,α 3 -2ε) (x)ϕ -i λc(x)ψ + u. ( 3 
L 0 |λu| 2 d x - L 0 i λ 3 1 (α 2 ,α 3 -2ε) (x)uϕd x - L 0 i λ 3 c(x)ψud x - L 0 i λ 3 c(x)yϕd x = o(1). ( 3 
Multiplying equation (3.4.18) by λ 2 ψ, integrating over (0, L), and using Equation (3.4.27) and the facts that y is uniformly bounded in L 2 (0, L) and

F H = ( f 1 , g 1 , f 2 , g 2 ) H = o(1), we get L 0 λ 2 ψ + ψ xx λ 2 yd x + L 0 i λc(x)uψd x = o(λ -1 ). (3.4.43)
From System (3.4.26), we have Proof. Multiplying (3.4.17) by u, integrating over (0, L), using the fact that Hence U H = o(1), which contradicts (3.4.2). Consequently, condition (H2) holds. This implies, from Theorem 1.3.10, the energy decay estimation (3.4.1). The proof is thus complete.

λ 2 ψ + aψ xx = -i λ 1 (α 2 ,α 3 -2ε) (x)ψ + i λc(x)ϕ + y. ( 3 
L 0 i λ 3 1 (α 2 ,α 3 -2ε) (x)yψd x + L 0 i λ 3 c(x)ϕyd x + L 0 i λ 3 c(x)uψd x = o(λ -1 ). ( 3 
F H = ( f 1 , g 1 , f 2 , g 2 ) H = o(1) and u is uniformly bounded in L 2 (0, L), we get L 0 |λu| 2 d x - L 0 a |u x | 2 d x - L 0 b(x)v x u x d x - L 0 i λc(x)yud x = o(λ -2 ). ( 3 

Conclusion

In this chapter, we have studied the stabilization of a system of locally coupled wave equations with only one internal localized Kelvin-Voigt damping via non-smooth coefficients. We proved the strong stability of the system using Arendt-Batty criteria. Lack of exponential stability results has been proved in both cases: The case of global Kelvin-Voigt damping and the case of localized Kelvin-Voigt damping, taking into consideration that the coupling is global. In addition, if both coupling and damping are localized internally via non-smooth coefficients, we established a polynomial energy decay rate of type t -1 . We can conjecture that the energy decay rate t -1 is optimal. However, if the intersection between the supports of the domains of the damping and the coupling coefficients is empty, the nature of the decay rate of the system will be unknown. This question is still an open problem. 

Introduction

Literature

In recent years, many researches showed interest in studying the stability and controllability of certain system. The wave equation with different kinds of damping was studied extensively. The wave is created when a vibrating source disturbs the medium. In order to restrain those vibrations, several dampings can be added such as Kelvin-Voigt damping. Many researchers were interested in problems involving this kind of damping (local or global) where different types of stability have been showed. We refer to [START_REF] Alves | The Lack of Exponential Stability in Certain Transmission Problems with Localized Kelvin-Voigt Dissipation[END_REF][START_REF] Ammari | Stability of the wave equations on a tree with local Kelvin-Voigt damping[END_REF][START_REF] Bardos | Sharp Sufficient Conditions for the Observation, Control, and Stabilization of Waves from the Boundary[END_REF][START_REF] Chen | Exponential Decay of Energy of Evolution Equations with Locally Distributed Damping[END_REF][START_REF] Falun | On the Mathematical Model for Linear Elastic Systems with Analytic Damping[END_REF][START_REF] Liu | Exponential Decay of Energy of the Euler-Bernoulli Beam with Locally Distributed Kelvin-Voigt Damping[END_REF][START_REF] Kangsheng | Spectrum and Stability for Elastic Systems with Global or Local Kelvin-Voigt Damping[END_REF][START_REF] Liu | Stability of a String with Local Kelvin-Voigt Damping and Nonsmooth Coefficient at Interface[END_REF][START_REF] Zhang | Exponential stability of an elastic string with local Kelvin-Voigt damping[END_REF] The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the most interesting facts of mechanics of materials. For beams, there was an extensive studying, since 80's, on the stabilization of the beam equations (see [START_REF] Chen | Modeling, Stabilization and Control of Serially Connected Beams[END_REF][START_REF] Uhn | Boundary Control of the Timoshenko Beam[END_REF] for the one dimensional system, and [START_REF] Bartolomeo | Uniform Energy Decay Rates for Euler-Bernoulli Equations with Feedback Operators in the Dirichlet/Neumann Boundary Conditions[END_REF] for n-dimensional system). Also, the studies considered the linear and nonlinear boundary feedback acting through shear forces and moments [START_REF] Lagnese | Uniform boundary stabilization of homogeneous isotropic plates[END_REF][START_REF] Lasiecka | Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary[END_REF][START_REF] Lasiecka | Asymptotic behavior of solutions to plate equations with nonlinear dissipation occurring through shear forces and bending moments[END_REF] and the case control by moment has been studied in [START_REF] Ji | Nonlinear Boundary Feedback Stabilization for a Semilinear Kirchhoff Plate with Dissipation Acting Only via Moments-Limiting Behavior[END_REF]. The studying of the beam equation with different types of damping was extensively considered. In 1998, the author in [START_REF] Liu | Exponential Decay of Energy of the Euler-Bernoulli Beam with Locally Distributed Kelvin-Voigt Damping[END_REF] considered the longitudinal and transversal vibrations of the Euler-Bernoulli beam with Kelvin-Voigt damping distributed locally on any subinterval of the region occupied by the beam. It was shown that when the viscoelastic damping is distributed only on a subinterval in the interior of the domain, the exponential stability holds for the transversal but not for the longitudinal motion. In [START_REF] Raposo | A Transmission Problem for Euler-Bernoulli beam with Kelvin-Voigt Damping[END_REF], they considered a transmission problem for the longitudinal displacement of a Euler-Bernoulli beam, where one small part of the beam is made of a viscoelastic material with Kelvin-Voigt constitutive relation and they proved that the semigroup associated to the system is exponentially stable.

Another type of damping which was studied extensively in the past few years is the fractional damping. It is widely applied in the domain of science. The fractional-order type is not only important from the theoretical point of view but also for applications. They naturally arise in physical, chemical, biological, and ecological phenomena see for example [START_REF] Matignon | Asymptotic stability of Webster-Lokshin equation[END_REF], and the rich references therein. They are used to describe memory and hereditary properties of various materials and processes. For example, in viscoelasticity, due to the nature of the material microstructure, both elastic solid and viscous fluid-like response qualities are involved. Using Boltzmann's assumption, we end up with a stress strain relationship defined by a time convolution. The viscoelastic response occurs in a variety of materials, such as soils, concrete, rubber, cartilage, biological tissue, glasses, and polymers (see [START_REF] Bagley | A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity[END_REF][START_REF] Bagley | Fractional calculus -A different approach to the analysis of viscoelastically damped structures[END_REF][START_REF] Mainardi | The application of real-order derivatives in linear viscoelasticity[END_REF][START_REF] Torvik | On the Appearance of the Fractional Derivative in the Behavior of Real Materials[END_REF]). Fractional computing in modeling can improve the capturing of the complex dynamics of natural systems, and controls of fractional order type can improve performance not achievable before using controls of integer-order type. For example, systems in many quantum mechanics, nuclear physics and biological phenomena such as fluid flow are indeed fractional (see for example [START_REF] Mainardi | The application of real-order derivatives in linear viscoelasticity[END_REF][START_REF] Podlubny | Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[END_REF][START_REF] Torvik | On the Appearance of the Fractional Derivative in the Behavior of Real Materials[END_REF]).

Fractional calculus includes various extensions of the usual definition of derivative from integer to real order, including the Hadamard, Erdelyi-Kober, Riemann-Liouville, Riesz, Weyl, Grünwald-Letnikov, Jumarie and the Caputo representation. A thorough analysis of fractional dynamical systems is necessary to achieve an appropriate definition of the fractional derivative. For example, the Riemann-Liouville definition entails physically unacceptable initial conditions (fractional order initial conditions); conversely, for the Caputo representation, which is introduced by Michele Caputo [START_REF] Caputo | Linear Models of Dissipation whose Q is almost Frequency Independent-II[END_REF] in 1967, the initial conditions are expressed in terms of integer-order derivatives having direct physical significance; this definition is mainly used to include memory effects. Recently, in [START_REF] Caputo | A new definition of fractional derivative without singular Kernel[END_REF] a new definition of the fractional derivative was presented without a singular kernel; this derivative possesses very interesting properties, for instance the possibility to describe fluctuations and structures with different scales. The case of wave equation with boundary fractional damping have been treated in [START_REF] Mbodje | Boundary fractional derivative control of the wave equation[END_REF][START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF] where they proved the strong stability and the lack of uniform stabilization. However, the case of the plate 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.1 Introduction equation or the beam equation with boundary fractional damping was treated in [START_REF] Achouri | The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type[END_REF] where they showed that the energy is polynomially stable. In [4], they considered a multidimensional wave equation with boundary fractional damping acting on a part of the boundary of the domain. They established a polynomial energy decay rate for smooth solutions, under some geometric conditions. Ammari et al., in [START_REF] Ammari | Fractional-feedback stabilization for a class of evolution systems[END_REF], studied the stabilization for a class of evolution systems with fractional-damping. They proved the polynomial stability of the system. Over the past few years, the coupled systems received a vast attention due to their potential applications. The coupled systems have many applications in the modeling and control of engineering, such as: aircraft, satellite antennas and road traffic(see [START_REF] Saroj | Optimal control of large space structures governed by a coupled system of ordinary and partial differential equations[END_REF] for example). Most of the work in the coupled system considers the stability of the system with various coupling, damping locations, and damping types. Many researches studied coupling systems with a Kelvin-Voigt damping such as wave-wave system, heat-wave system, Timoshinko (see [START_REF] Wehbe | Stability Results of an Elastic/Viscoelastic Transmission Problem of Locally Coupled Waves with Non Smooth Coefficients[END_REF][START_REF] Zhang | Long-Time Behavior of a Coupled Heat-Wave System Arising in Fluid-Structure Interaction[END_REF]).

In 2012, Tebou in [START_REF] Tebou | Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms[END_REF] considered the Euler-Bernoulli equation coupled with a wave equation in a bounded domain. The frictional damping is distributed everywhere in the domain and acts through one of the equations only. For the case where the dissipation acts through the Euler-Bernoulli equation he showed that the system is not exponentially stable and that the energy decays polynomially was proved. For the case where the damping acts through the wave equation polynomial stability was proved. Benaissa et al., in [START_REF] Allouni | On the asymptotic behaviour of two coupled strings through a fractional joint damper[END_REF], considered the large time behavior of one dimensional coupled wave equations with fractional control applied at the coupled point. They showed an optimal decay result.

In [START_REF] Hassine | Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping[END_REF], Hassine considered a beam and a wave equations coupled on an elastic beam through transmission conditions where the locally distributed damping acts through one of the two equations only. The systems are described as follows

                           u t t -(u x + D a u xt ) x = 0, in Ω 1 , y t t + y xxxx = 0, in Ω 2 , u( , t ) = y( , t ), t > 0, y x ( , t ) = 0, t > 0, u x ( , t ) + y xxx ( , t ) = 0, t > 0, u(0, t ) = y(L, t ) = y x (L, t ) = 0, t > 0, u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ (0, ), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ ( , L) and                            y t t + (y xx + D b y xxt ) xx = 0, in Ω 1 , u t t -u xx = 0, in Ω 2 , u( , t ) = y( , t ), t > 0, y x ( , t ) = 0, t > 0, u x ( , t ) + y xxx ( , t ) = 0, t > 0, u(0, t ) = y(L, t ) = y x (L, t ) = 0, t > 0, u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ (0, ), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ ( , L) (4.1.1) where Ω 1 = (0, ) × R + , Ω 2 = ( , L) × R + , D a = a(x)χ (e, f ) and D b = b(x)χ (e, f ) with 0 < e < f < < L and a(x), b(x) ≥ c 0 > 0 in (e, f
). The author proved that for both cases when the dissipation acts through the wave equation or through the beam equation, the energy of this coupled system decays polynomially with a decay rate of type t -2 . The case of a Euller-Bernoulli beam and a wave equations coupled via the interface by transmission conditions was considered by Hassine in [START_REF] Hassine | Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping[END_REF], where he supposed that the beam equation is stabilized by a localized distributed feedback. He reached that sufficiently smooth solutions decay logarithmically at infinity even the feedback dissipation affects an arbitrarily small open subset of the interior. In [START_REF] Fu | Stabilization of the weakly coupled wave-plate system with one internal damping[END_REF], the authors studied the stabilization system of a coupled wave and a Euler-Bernoulli plate equation where only one equation is supposed to be damped with a frictional damping in the multidimensional case. Under some assumption about the damping and the coupling terms, they showed that sufficiently smooth solutions of the system decay logarithmically at 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.1 Introduction infinity without any geometric conditions on the effective damping domain.

In [START_REF] Ammari | Stabilization of a transmission wave/plate equation[END_REF], Ammari and Nicaise, considered the stabilization problem for coupling the damped wave equation with a damped Kirchhoff plate equation. They proved an exponential stability result under some geometric condition. In 2018, the authors considered in [START_REF] Li | Explicit decay rate for coupled string-beam system with localized frictional damping[END_REF], a system of 1-d coupled string-beam. They obtained two kinds of energy decay rates of the string-beam system with different locations of the frictional damping. On one hand, if the frictional damping is only actuated in the beam part, the system lacks exponential decay. Specifically, the optimal polynomial decay rate t -1 is obtained under smooth initial conditions. On the other hand, if the frictional damping is only effective in the string part, the exponential decay of energy is presented. In 2020, the authors in [START_REF] Guo | Energy decay estimates for a two-dimensional coupled wave-plate system with localized frictional damping[END_REF], considered a system of two-dimensional coupled wave-plate with local frictional damping in a bounded domain. The frictional damping is only distributed in the part of the plate's or wave's domain, and the other is stabilized by the transmission through the interface of the plate's and wave's domains. They showed that the energy of the system decays polynomially under some geometric condition when the frictional damping only acts on the part of the plate, and the energy of the system is exponentially stable when the frictional damping acts only on the other part of the wave.

In 2018, Guo and Ren in [START_REF] Guo | Stability and regularity transmission for coupled beam and wave equations through boundary weak connections[END_REF], studied the stabilization for a hyperbolic-hyperbolic coupled system consisting of Euler-Bernoulli beam and wave equations, where the structural damping of the wave equation is taken into account. The coupling is actuated through boundary weak connection. The system is described as follows

                                                 w t t + w xxxx = 0, (x, t ) ∈ (0, 1) × R + , u t t -u xx -su xxt = 0, (x, t ) ∈ (0, 1) × R + , w(1, t ) = w xx (1, t ) = w(0, t ) = 0, t > 0, w xx (0, t ) = r u t (0, t ), u(1, t ) = 0, x ∈ (0, 1), su xt (0, t ) + u x (0, t ) = -r w xt (0, t ), x ∈ (0, 1), w(x, 0) = w 0 (x), w t (x, 0) = w 1 (x), x ∈ (0, 1), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ (0, 1), (4.1.2)
where (w 0 , w 1 , u 0 , u 1 ) is the initial state and r = 0, s > 0 are constants. They concluded the Riesz basis property and the exponential stability of the system. In [START_REF] Ammari | Feedback stabilization of a coupled string-beam system[END_REF], the authors considered a stabilization problem for a coupled string-beam system. They proved some decay results of the energy of the system. Moreover, they proved, for the same model but with two control functions, independently of the length of the beam that the energy decay with a polynomial rate for all regular initial data. In [START_REF] Ammari | Study of the nodal feedback stabilization of a string-beams network[END_REF], the authors considered a stabilization problem for a string-beams network and proved an exponential decay result. In [START_REF] Ammari | Boundary stabilization of the transmission problem for the Bernoulli-Euler plate equation[END_REF], the author considered a boundary stabilization problem for the transmission Bernoulli-Euler plate equation and proved a uniform exponential energy decay under natural conditions. In [START_REF] Rivera | Analytic property of a coupled system of waveplate type with thermal effect[END_REF], a coupled system of wave-plate type with thermal effect was studied and exponentially stability was proved. In [START_REF] Denk | Exponential stability for a coupled system of damped-undamped plate equations[END_REF], the authors considered the transmission problem for a coupled system of undamped and structurally damped plate equations in two sufficiently smooth and bounded subdomains. They showed, independently of the size of the damped part, that the damping is strong enough to produce uniform exponential decay of the energy of the coupled system. In 2019, Liu and Han [START_REF] Han | Regularity and stability of coupled plate equations with indirect structural or Kelvin-Voigt damping[END_REF], considered a system of coupled plate equations where indirect structural or Kelvin-Voigt damping is imposed, i.e., only one equation is directly damped by one of these two damping. They showed that the associated semigroup of the system with indirect structural damping is analytic and exponentially stable. However, with the much stronger indirect Kelvin-Voigt damping, they proved that the semigroup is even not differentiable and that the exponential stability is still maintained.

Physical interpretation of the models

In the first model (EBB)-W F K V , we investigate the stability of coupled Euler-Bernoulli beam and wave equations. The coupling is via boundary connections with localized non-regular fractional Kelvin-Voigt damping, where the damping acts through the wave equation only (see Figure 4.1). The system that describes this model is as follows

                                     u t t -au x + d (x)∂ α,η t u x x = 0, (x, t ) ∈ (0, L) × (0, ∞),
y t t + b y xxxx = 0, (x, t ) ∈ (-L, 0) × (0, ∞), u(L, t ) = y(-L, t ) = y x (-L, t ) = 0, t ∈ (0, ∞), au x (0, t ) + b y xxx (0, t ) = 0, y xx (0, t ) = 0, t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x),
x ∈ (0, L), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x),

x ∈ (-L, 0).

((EBB)-W F K V )
The coefficients a, b are strictly positive constant numbers, α ∈ (0, 1) and η ≥ 0. We suppose that there exists 0 < l 0 < l 1 < L and a strictly positive constant d 0 , such that

d (x) = d 0 , x ∈ (l 0 , l 1 ), 0, x ∈ (0, l 0 ) ∪ (l 1 , L). (4.1.3)
The Caputo's fractional derivative ∂ α,η t of order α ∈ (0, 1) with respect to time variable t is defined by

[D α,η ω](t ) = ∂ α,η t ω(t ) = 1 Γ(1 -α) t 0 (t -s) -α e -η(t -s) d ω d s (s)d s, (4.1.4)
where Γ denotes the Gamma function.
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0 l 1 L l 0 -L FKV-damping Beam Part Wave Part Figure 4.1 -(EBB)-W F K V Model
In the second model W-W F K V , we investigate the stability of two wave equations coupled through boundary connection with localized non-regular fractional Kelvin-Voigt damping acting through one wave equation only (see Figure 4.2). The system that describes this model is as follows

                                     u t t -au x + d (x)∂ α,η t u x x = 0, (x, t ) ∈ (0, L) × (0, ∞),
y t t -b y xx = 0, (x, t ) ∈ (-L, 0) × (0, ∞), u(L, t ) = y(-L, t ) = 0, t ∈ (0, ∞), au x (0, t ) = b y x (0, t ), t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ (0, L), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ (-L, 0). (W-W F K V ) 0 l 1 L l 0 -L FKV-damping Wave Part Wave Part Figure 4.2 -W-W F K V Model
In the third model W-(EBB) F K V , we consider a system of coupled Euler-Bernouli beam and wave equations. These two equations are coupled through boundary connection. In this case the localized non-smooth fractional Kelvin-Voigt damping acts only on the Euler-Bernoulli 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.1 Introduction beam (see Figure 4.3). The system that represents this model is as follows

                                     u t t -au xx = 0, (x, t ) ∈ (-L, 0) × (0, ∞), y t t + b y xx + d (x)∂ α,η t y xx xx = 0, (x, t ) ∈ (0, L) × (0, ∞), u(-L, t ) = y(L, t ) = y x (L, t ) = 0, t ∈ (0, ∞), au x (0, t ) + b y xxx (0, t ) = 0, y xx (0, t ) = 0, t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ (-L, 0), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ (0, L). (W-(EBB) F K V ) 0 l 1 L l 0 -L FKV-damping Wave Part Beam Part Figure 4.3 -W-(EBB) F K V Model
In the fourth model ((EBB) F K V ), we study a system of Euler-Bernoulli beam with a non-regular localized fractional Kelvin-Voigt damping (see Figure 4.4). The system is as follows damping acts only on one of the two equations (see Figure 4.5). The system that represents this model is as follows The way the beam supported is translated into conditions on the function y and its derivatives. These conditions are collectively referred to as boundary conditions. They are meaningful in physics and engineering. The boundary conditions in the model ((EBB) F K V ) signifies the following • y(0, t ) = 0: This signifies that the beam is pinned to its support, which means that the beam cannot experience any deflection at x = 0.

         y t t + b y xx + d (x)∂ α,η t y xx xx = 0, (x, t ) ∈ (0, L) × (0, ∞), y(0, t ) = y x (0, t ) = y xx (L, t ) = y xxx (L, t ) = 0, t ∈ (0, ∞), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ (0, L). ((EBB) F K V ) l 1 L l 0 0 FKV-damping Beam Part
                                                 u t t + au xxxx = 0, (x, t ) ∈ (-L, 0) × (0, ∞), y t t + b y xx + d (x)∂ α,η t y xx xx = 0, (x, t ) ∈ (0, L) × (0, ∞), u(-L, t ) = u x (-L, t ) = 0, t ∈ (0, ∞), y(L, t ) = y x (L, t ) = 0, t ∈ (0, ∞), au xxx (0, t ) -b y xxx (0, t ) = 0, t ∈ (0, ∞), u xx (0, t ) = y xx (0, t ) = 0, t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ (-L, 0), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ (0, L). ((EBB)-(EBB) F K V ) l 1 L 0 l 0 -L FKV-damping Beam Part Beam Part
• y x (0, t ) = 0: It signifies that the rotation at the pinned support is zero.

• y xx (L, t ) = 0: It means that there is no bending moment at the free end of the beam.

• y xxx (L, t ) = 0: This boundary conditions gives the assumption that there is no shearing force acting at the free end of the beam. This kind of models, supported at one end with the other end free, described in the above four 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.1 Introduction conditions can be referred to as a cantilever beam. A good example on the cantilever beam is a balcony, it is supported at one end only, the rest of the beam extends over the open space.

Other examples are a cantilever roof in a bus shelter, car park or railway station. We give some of the advantages and disadvantages of the cantilever beam. Advantages:

-Cantilever beams do not require support on the opposite side.

-The negative bending moment created in cantilever beams helps to counteract the positive bending moments created. -Cantilever beams can be easily constructed.

-These beam enables erection with little disturbance in navigation. Disadvantages:

-Cantilever beams are subjected to large deflections.

-Cantilever beams are subjected to larger moments.

-A strong fixed support or a backspan is necessary to keep the structure stable. In a cantilever beam, the bending moment at the free end always vanishes. In fact, if we connect the beam with a wave (see ((EBB)-W F K V ), (W-(EBB) F K V )) at the free end, the bending moment will be zero and this induces a shear force on the end of the beam. Consequently, the fourth boundary condition above is no longer valid, and it is replaced by au x (0, t )+b y xxx (0, t ) = 0. This condition signifies that the shear force of the beam and the stress force of the wave are such that one cancels the other.

Description of the chapter

In this chapter, we investigate the stability results of five models of systems with a nonsmooth localized fractional Kelvin-Voigt damping where the coupling is made via boundary connection. In the first model ((EBB)-W F K V ) we consider the coupled Euler-Bernoulli beam and wave equation with the damping acts on the wave equation only. In Subsection 4.2.1, we reformulate ((EBB)-W F K V ) into an augmented model and we prove the well-posedness of the system by using semigroup approach. Moreover, using a general criteria of Arendt and Batty, we show the strong stability of our system in the absence of the compactness of the resolvent. In section 4.2.2, using the semigroup theory of linear operators and a result obtained by Borichev and Tomilov we show that the energy of the System ((EBB)-W F K V ) has a polynomial decay rate of type t -4 2-α . In the second model (W-W F K V ), we consider two wave equations coupled through boundary connection with a non-smooth localized fractional Kelvin-Voigt damping acting only on one of the two equations. We establish a polynomial energy decay rate of type t -4 2-α . In the third model (W-(EBB) F K V ), we consider Euler-Bernoulli beam and wave equations coupled through boundary connection with the damping to act through the Euler-Bernoulli beam equation only. For this model, we show that the energy of the System (W-(EBB) F K V ) has a polynomial decay rate of type t -2 3-α . For the model ((EBB) F K V ) we consider the Euler-Bernoulli beam with a non-smooth localized fractional Kelvin-Voigt damping. We prove that the energy of the system decays polynomially with a decay rate t -2 1-α . Finally, for the fifth model ((EBB)-(EBB) F K V ), we study the polynomial stability of two Euler-Bernoulli beam equations coupled through boundary connection with damping acting only on one of the two equation. We establish a polynomial energy decay rate of type t -2 3-α . The table below (Table 4.1) summarizes the decay rate of the energy for the five models. Also, it gives the decay rate of the same five models but with Kelvin-Voigt damping (as α → 1).

4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.2 (EBB)-W F K V Model

Augmented model and Well-Posedness.

In this part, using a semigroup approach, we establish the well-posedness for the system ((EBB)-W F K V ). First, we recall theorem 2 stated in [3,[START_REF] Mbodje | Wave energy decay under fractional derivative controls[END_REF]. be the function defined almost everywhere on R. The relation between the 'input' V and the 'output' O of the following system

∂ t ω(x, ξ, t ) + (ξ 2 + η)ω(x, ξ, t ) -V (x, t )|ξ| 2α-1 2 = 0, (x, ξ, t ) ∈ (0, L) × R × (0, ∞), (4.2.1) ω(x, ξ, 0) = 0, (x, ξ) ∈ (0, L) × R, (4.2.2) O(x, t ) -κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ = 0, (x, t ) ∈ (0, L) × (0, ∞), (4.2.3
)

is given by O = I 1-α,η V, (4.2.4)
where

[I α,η V ](x, t ) = 1 Γ(α) t 0 (t -s) α-1 e -η(t -s) V (s)d s and κ(α) = sin(απ) π .
In the above theorem, taking the input V (x, t ) = d (x)u xt (x, t ), then using Equation (4.1.4), we get that the output O is given by

O(x, t ) = d (x)I 1-α,η u xt (x, t ) = d (x) Γ(1 -α) t 0 (t -s) -α e -η(t -s) ∂ s u x (x, s)d s = d (x)∂ α,η t u x (x, t ).
Therefore, by taking the input V (x, t ) = d (x)u xt (x, t ) in Theorem 4.2.1 and using the above equation, we get

∂ t ω(x, ξ, t ) + (ξ 2 + η)ω(x, ξ, t ) -d (x)u xt (x, t )|ξ| 2α-1 2 = 0, (x, ξ, t ) ∈ (0, L) × R × R + * , ω(x, ξ, 0) = 0, (x, ξ) ∈ (0, L) × R, d (x)∂ α,η t u x (x, t ) -κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ = 0, (x, t ) ∈ (0, L) × R + * .
(4.2.5) From system (4.2.5), we deduce that system ((EBB)-W F K V ) can be recast into the following augmented model

           u t t -au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ x = 0, (x, t ) ∈ (0, L) × R + * , y t t + b y xxxx = 0, (x, t ) ∈ (-L, 0) × ×R + * , ω t (x, ξ, t ) + |ξ| 2 + η ω(x, ξ, t ) -d (x)u xt (x, t )|ξ| 2α-1 2 = 0, (x, ξ, t ) ∈ (0, L) × R × R + * , ( 4 

.2.6) with the following transmission and boundary conditions

         u(L, t ) = y(-L, t ) = y x (-L, t ) = 0, t ∈ (0, ∞), au x (0, t ) + b y xxx (0, t ) = 0, y xx (0, t ) = 0, t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), (4.2.7)
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u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), ω(x, ξ, 0) = 0, x ∈ (0, L), ξ ∈ R, y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ (-L, 0). (4.2.8)
The energy of the system (4.2.6)-(4.2.8) is given by 

E 1 (t ) = 1 2 L 0 |u t | 2 + a|u x | 2 d x + 1 2 0 -L y t 2 + b y xx 2 d x + κ(α) 2 L 0 R |ω(x,
d d t E 1 (t ) = -κ(α) L 0 R (ξ 2 + η)|ω(x, ξ, t )| 2 d ξd x. (4.2.9)
Proof. First, multiplying the first and the second equations of (4.2.6) by u t and y t respectively, integrating over (0, L) and (-L, 0) respectively, using integration by parts with (4.2.7) and taking the real part Re, we get 1 2

d d t L 0 |u t | 2 + a|u x | 2 d x + 1 2 d d t 0 -L y t 2 + b y xx 2 d x + Re κ(α) L 0 d (x)u t x R |ξ| 2α-1 2 ω(x, ξ, t )d ξ d x = 0. (4.2.10)
Now, multiplying the third equation of (4.2.6) by κ(α)ω, integrating over (0, L) × R, then taking the real part, we get 

κ(α) 2 d d t L 0 R |ω(x, ξ, t )| 2 d ξd x + κ(α) L 0 R ξ 2 + η |ω(x, ξ, t )| 2 d ξd x = Re κ(α) L 0 d (x)u xt R |ξ| 2α-1 2 ω(x, ξ, t )d ξ d x . ( 4 
H 1 = (u, v, y, z, ω) ∈ H 1 R (0, L) × L 2 (0, L) × H 2 L (-L, 0) × L 2 (-L, 0) × W ; u(0) = y(0) ,
where W = L 2 ((0, L) × R) and

H 1 R (0, L) = u ∈ H 1 (0, L); u(L) = 0 , H 2 L (-L, 0) = y ∈ H 2 (-L, 0); y(-L) = y x (-L) = 0 . (4.2.12)
We note that the space H 1 is a closed subspace of

H 1 R (0, L)×L 2 (0, L)×H 2 L (-L, 0)×L 2 (-L, 0)×W .
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The energy space H 1 is equipped with the inner product defined by

〈U ,U 1 〉 H 1 = L 0 v v 1 d x + a L 0 u x (u 1 ) x d x + 0 -L zz 1 d x + b 0 -L y xx (y 1 ) xx d x +κ(α) L 0 R ω(x, ξ)ω 1 (x, ξ)d ξd x,
for all U = (u, v, y, z, ω) and

U 1 = (u 1 , v 1 , y 1 , z 1 , ω 1 ) in H 1 .
We use U H 1 to denote the corresponding norm. We define the unbounded linear operator A 1 :

D(A 1 ) ⊂ H 1 → H 1 by D(A 1 ) =                      U = (u, v, y, z, ω) ∈ H 1 ; (v, z) ∈ H 1 R (0, L) × H 2 L (-L, 0), y ∈ H 4 (-L, 0), au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ x ∈ L 2 (0, L), -|ξ| 2 + η ω(x, ξ) + d (x)v x |ξ| 2α-1 2 , |ξ|ω(x, ξ) ∈ W, au x (0) + b y xxx (0) = 0, y xx (0) = 0, and v(0) = z(0)                     
, and for all U = (u, v, y, z, ω) ∈ D(A 1 ), If U = (u, u t , y, y t , ω) is a regular solution of system (4.2.6)-(4.2.8), then the system can be rewritten as evolution equation on the Hilbert space H 1 given by

A 1 (u, v, y, z, ω) =              v au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ x z -b y xxxx -|ξ| 2 + η ω(x, ξ) + d (x)v x |ξ| 2α-1 2              .
U t = A 1 U , U (0) = U 0 , (4.2.13)
where U 0 = (u 0 , u 1 , y 0 , y 1 , 0). Lemma 4.2.4. Let α ∈ (0, 1), η ≥ 0, then the following integrals Proof. First, I 1 (η, α) can be written as 

I 1 (η, α) = κ(α) R |ξ| 2α-1 1 + ξ 2 + η d ξ , I 2 (η, α) = R |ξ| 2α-1 (1 + ξ 2 + η) 2 d ξ and I 3 (η, α) = +∞ 0 ξ 2α+1 (1 + ξ 2 + η) 2 d ξ
I 1 (η, α) = 2 κ(α) 1 + η +∞ 0 ξ 2α-1 1 + ξ 2 1+η d ξ. ( 4 
I 1 (η, α) = κ(α) (1 + η) 1-α +∞ 1 1 y(y -1) 1-α d y.
Using the fact that α ∈ (0, 1), its easy to see that y -1 (y -1) α-1 ∈ L 1 (1, +∞), therefore I 1 (η, α) is well defined. Now, for I 2 (η, α), using η ≥ 0 and α ∈ (0, 1), we get

I 2 (η, α) < R |ξ| 2α-1 1 + ξ 2 + η d ξ = I 1 (η, α) κ(α) < +∞.
Then, I 2 (η, α) is well-defined. Now, for the integral I 3 (η, α), since

ξ 2α+1 (1 + ξ 2 + η) 2 ∼ 0 ξ 2α+1 (1 + η) 2 and ξ 2α+1 (1 + ξ 2 + η) 2 ∼ +∞ 1 ξ 3-2α ,
and the fact that α ∈ (0, 1), we get I 3 (η, α) is well-defined.

The proof is thus complete. Proof. For all U = (u, v, y, z, ω) ∈ D(A 1 ), one has

Re 〈A 1 U ,U 〉 H 1 = -κ(α) L 0 R (ξ 2 + η)|ω(x, ξ)| 2 d ξd x ≤ 0, which implies that A 1 is dissipative. Now, let F = ( f 1 , f 2 , f 3 , f 4 , f 5 ) ∈ H 1 , we prove the existence of U = (u, v, y, z, ω) ∈ D(A 1 )
, solution of the equation

(I -A 1 )U = F.
Equivalently, one must consider the system given by 

u -v = f 1 , (4.2.16) v -au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ x = f 2 , (4.2.17) y -z = f 3 , (4.2.18) z + b y xxxx = f 4 , (4.2.19) (1 + ξ 2 + η)ω(x, ξ) -d (x)v x |ξ| 2α-1 2 = f 5 (x, ξ). ( 4 
ω(x, ξ) = f 5 (x, ξ) 1 + ξ 2 + η + d (x)u x |ξ| 2α-1 2 1 + ξ 2 + η - d (x)( f 1 ) x |ξ| 2α-1 2 1 + ξ 2 + η .
Inserting the above equation and ( 4 where

I 1 (η, α) is defined in Equation (4.2.14), F 1 = f 1 + f 2 , F 2 = f 3 + f 4 , and 
J = d (x)I 1 (η, α)( f 1 ) x -d (x)κ(α) R |ξ| 2α-1 2 f 5 (x, ξ) 1 + ξ 2 + η d ξ,
and with the following boundary conditions

u(L) = y(-L) = y x (-L) = y xx (0) = 0, au x (0) + b y xxx (0) = 0, and u(0) = y(0). (4.2.23) Now, we define V = (ϕ, ψ) ∈ H 1 R (0, L) × H 2 L (-L, 0); ϕ(0) = ψ(0)
. The space V is equipped with the following inner product

〈(ϕ, ψ), (ϕ 1 , ψ 1 )〉 V = a L 0 ϕ x ϕ 1 x d x + b 0 -L ψ xx (ψ 1 ) xx d x.
Let (ϕ, ψ) ∈ V . Multiplying equations (4.2.21) and (4.2.22) by ϕ and ψ, and integrating respectively on (0, L) and (-L, 0), then using by parts integration, we get

a (u, y), (ϕ, ψ) = L(ϕ, ψ) ∀ ϕ, ψ ∈ V, (4.2.24)
where

a (u, y), (ϕ, ψ) = L 0 uϕd x + a L 0 u x ϕ x d x + 0 -L yψd x + b 0 -L y xx ψ xx d x + I 1 (η, α) L 0 d (x)u x ϕ x d x and L(ϕ, ψ) = L 0 F 1 ϕd x + I 1 (η, α) L 0 d (x)( f 1 ) x ϕ x d x -κ(α) L 0 d (x)ϕ x R |ξ| 2α-1 2 f 5 (x, ξ) 1 + ξ 2 + η d ξ d x + 0 -L F 2 ψd x.
Using the fact that I 1 (η, α) > 0, we get that a is a bilinear, continuous, and coercive form on V × V . Next, by using Cauchy-Schwartz inequality and the definition of d (x), we get

L 0 d (x)ϕ x R |ξ| 2α-1 2 f 5 (x, ξ) 1 + ξ 2 + η d ξ d x ≤ d 0 κ(α) I 2 (η, α) ϕ x L 2 (l 0 ,l 1 ) f 5 W , (4.2.25)
where I 2 (η, α) is defined in Equation (4.2.14). Hence, L is a linear continuous form on V .
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Then, using Lax-Milgram theorem, we deduce that there exists unique (u, y) ∈ V solution of the variational problem (4.2.24). Applying the classical elliptic regularity, we deduce that y ∈ H 4 (-L, 0), and

au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ x ∈ L 2 (0, L). Defining      v := u -f 1 , , z := y -f 3 ω(x, ξ) = f 5 (x, ξ) 1 + ξ 2 + η + d (x)u x |ξ| 2α-1 2 1 + ξ 2 + η - d (x)( f 1 ) x |ξ| 2α-1 2 1 + ξ 2 + η . (4.2.26) It is easy to see that (v, z) ∈ H 1 R (0, L) × H 2 L (-L, 0
) and v(0) = z(0). In order to complete the existence of U ∈ D(A 1 ), we need to prove ω(x, ξ) and |ξ|ω(x, ξ) ∈ W . From equation (4.2.26), we obtain

L 0 R |ω(x, ξ)| 2 d x ≤ 3 L 0 R f 5 (x, ξ) 2 (1 + ξ 2 + η) 2 d ξd x + 3d 0 I 2 (η, α) l 1 l 0 |u x | 2 + ( f 1 ) x 2 d x.
Using Lemma 4.2.4, the fact that (u,

f 1 ) ∈ H 1 R (0, L) × H 1 R (0, L), we obtain I 2 (η, α) l 1 l 0 |u x | 2 + ( f 1 ) x 2 d x < ∞.
On the other hand, using the fact that f 5 ∈ W , we get

L 0 R f 5 (x, ξ) 2 (1 + ξ 2 + η) 2 d ξd x ≤ 1 (1 + η) 2 L 0 R f 5 (x, ξ) 2 d ξd x < +∞.
It follows that ω(x, ξ) ∈ W . Next, using equation (4.2.26), we get

L 0 R |ξ ω(x, ξ)| 2 d ξd x ≤ 3 L 0 R ξ 2 f 5 (x, ξ) 2 (1 + ξ 2 + η) 2 d ξd x + 6d 0 I 3 (η, α) l 1 l 0 |u x | 2 + ( f 1 ) x 2 d x ,
where

I 3 (η, α) = +∞ 0 ξ 2α+1 (1 + ξ 2 + η) 2 d ξ.
Using Lemma 4.2.4 we get that I 3 (η, α) is well-defined. Now, using the fact that f 5 (x, ξ) ∈ W and max

ξ∈R ξ 2 (1 + ξ 2 + η) 2 = 1 4 1 + η < 1 4 , we get L 0 R ξ 2 f 5 (x, ξ) 2 (1 + ξ 2 + η) 2 d ξd x ≤ max ξ∈R ξ 2 (1 + ξ 2 + η) 2 L 0 R f 5 (x, ξ) 2 d ξd x < 1 4 L 0 R f 5 (x, ξ) 2 d ξd x < +∞.
It follows that |ξ|ω ∈ W . Finally, since ω, f 5 ∈ W , we get

-|ξ| 2 + η ω(x, ξ) + d (x)v x |ξ| 2α-1 2 = ω(x, ξ) -f 5 (x, ξ) ∈ W.
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Therefore, there exists U := (u, v, y, z, ω) ∈ D(A 1 ) solution of (I -A 1 )U = F . The proof is thus complete.

From proposition 4.2.5, the operator A 1 is m-dissipative on H 1 , consequently it generates a C 0 -semigroup of contractions (e t A 1 ) t ≥0 following Lumer-Phillips Theorem 1.2.8. Then the solution of the evolution Equation (4.2.13) admits the following representation

U (t ) = e t A 1 U 0 , t ≥ 0,
which leads to the well-posedness of (4.2.13). Hence, we have the following result. 

U (t ) ∈ C 1 R + , H 1 ∩C 0 R + , D(A 1 ) .

Strong Stability

This part is devoted to study the strong stability of the system. It is easy to see that the resolvent of A 1 is not compact. Here, we will use Theorem 1.3.3 to obtain the strong stability of the C 0 -semigroup (e t A 1 ) t ≥0 . Our main result in this part is the following theorem.

Theorem 4.2.7. Assume that η ≥ 0, then the C 0 -semigroup of contractions e t A 1 is strongly stable on H 1 in the sense that

lim t →+∞ e t A 1 U 0 H 1 = 0, ∀ U 0 ∈ H 1 .
In order to prove Theorem 4.2.7 we need to prove that the operator A 1 has no pure imaginary eigenvalues and σ(A 1 ) ∩ i R is countable, where σ(A 1 ) denotes the spectrum of A 1 . For clarity, we divide the proof into several lemmas. Lemma 4.2.8. Let α ∈ (0, 1), η ≥ 0, λ ∈ R and f 5 ∈ W . For (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R * ), we have

I 4 (λ, η, α) = i λκ(α) R |ξ| 2α-1 i λ + ξ 2 + η d ξ < ∞, I 5 (λ, η, α) = κ(α) R |ξ| 2α-1 i λ + ξ 2 + η d ξ < ∞, and 
I 6 (x, λ, η, α) := κ(α) R |ξ| 2α-1 2 f 5 (x, ξ) i λ + ξ 2 + η d ξ ∈ L 2 (0, L)
Proof. The integrals I 4 and I 5 can be written in the following form

I 4 (λ, η, α) = λ 2 I 7 (λ, η, α) + i λI 8 (λ, η, α), and I 5 (λ, η, α) = -i λI 7 (λ, η, α) + I 8 (λ, η, α)
where

I 7 (λ, η, α) = κ(α) R |ξ| 2α-1 λ 2 + (ξ 2 + η) 2 d ξ, and I 8 (λ, η, α) = κ(α) R |ξ| 2α-1 ξ 2 + η λ 2 + (ξ 2 + η) 2 d ξ.
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First, we have

I 7 (λ, η, α) = 2κ(α) +∞ 0 ξ 2α-1 λ 2 + (ξ 2 + η) 2 d ξ = 2κ(α) 1 0 ξ 2α-1 λ 2 + (ξ 2 + η) 2 d ξ+2κ(α) +∞ 1 ξ 2α-1 λ 2 + (ξ 2 + η) 2 d ξ.
Hence in the both cases where (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R * ), we have

ξ 2α-1 λ 2 + (ξ 2 + η) 2 ∼ 0 ξ 2α-1 λ 2 + η 2 and ξ 2α-1 λ 2 + (ξ 2 + η) 2 ∼ +∞ 1 ξ 5-2α .
Since 0 < α < 1 then I 7 (λ, η, α) is well-defined. Now, we have

I 8 (λ, η, α) = 2κ(α) +∞ 0 ξ 2α-1 (ξ 2 + η) λ 2 + (ξ 2 + η) 2 d ξ = 2κ(α) 1 0 ξ 2α-1 (ξ 2 + η) λ 2 + (ξ 2 + η) 2 d ξ+2κ(α) +∞ 1 ξ 2α-1 (ξ 2 + η) λ 2 + (ξ 2 + η) 2 d ξ.
Similar to I 7 , in both cases when (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R * ), we have

ξ 2α-1 (ξ 2 + η) λ 2 + (ξ 2 + η) 2 ∼ 0 ξ 2α-1 (ξ 2 + η) λ 2 + η 2 and ξ 2α-1 (ξ 2 + η) λ 2 + (ξ 2 + η) 2 ∼ +∞ 1 ξ 3-2α .
Since 0 < α < 1, then I 8 (λ, η, α) is well-defined. For I 6 , using Cauchy-Schwarz inequality and the fact that f 5 ∈ W and that I 7 < ∞ , we get

L 0 I 6 (x, λ, η, α) 2 d x = κ(α) 2 L 0 R |ξ| 2α-1 2 f 5 (x, ξ) i λ + ξ 2 + η d ξ 2 d x ≤ κ(α) 2 R |ξ| 2α-1 λ 2 + (ξ 2 + η) 2 d ξ L 0 R f 5 (x, ξ) 2 d ξd x < +∞.
The proof is thus complete.

Lemma 4.2.9. Let α ∈ (0, 1), η ≥ 0, λ ∈ R. For (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R * ), we have

I 9 (λ, η, α) = R |ξ| 2α-1 λ 2 + (ξ 2 + η) 2 d ξ and I 10 (λ, η, α) = R |ξ| 2α+1 λ 2 + (ξ 2 + η) 2 d ξ are well-defined.
Proof. We have

I 9 (λ, η, α) = 2 1 0 ξ 2α-1 λ 2 + (ξ 2 + η) 2 d ξ + 2 +∞ 1 ξ 2α-1 λ 2 + (ξ 2 + η) 2 d ξ
Hence in the both cases where (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R * ), we have

ξ 2α-1 λ 2 + (ξ 2 + η) 2 ∼ 0 ξ 2α-1 λ 2 + η 2 and ξ 2α-1 λ 2 + (ξ 2 + η) 2 ∼ +∞ 1 ξ 3-2α .
Since 0 < α < 1 then I 9 (λ, η, α) is well-defined. Using the same argument to show that I 10 (λ, η, α) is well-defined. The proof is thus complete. Proof. Let λ ∈ R, such that i λ be an eigenvalue of the operator A 1 and U = (u, v, y, z, ω) ∈ D(A 1 ) a corresponding eigenvector. Therefore, we have 

A 1 U = i λU . ( 4 
au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ x = i λv, ( 4 
i λ + |ξ| 2 + η ω(x, ξ) = d (x)v x |ξ| 2α-1 2 . (4.2.32)
with the boundary conditions A straightforward calculation gives

u(L) = y(-L) = y x (-L) = 0, y xx (0) = 0,
0 = Re 〈i λU ,U 〉 H 1 = Re 〈A 1 U ,U 〉 H 1 = -κ(α) L 0 R (ξ 2 + η)|ω(x, ξ)| 2 d ξd x.
Consequently, we deduce that 

ω(x, ξ) = 0 a.e. in (0, L) × R. ( 4 
u xx = y xxxx = 0.
Using the boundary conditions in (4.2.33) we can write u and y as

u = c 1 (x -L) and y = c 3 x 3 6 - L 2 2 x - L 3 3
where c 1 , c 3 are constant numbers to be determined. Now, using conditions in (4.2.34) we get Hence, U = 0. In this case the proof is complete. Case 2. If λ = 0: From Equation (4.2.37), we get u x = 0 in (l 0 , l 1 ). ( 4 

     c 1 = L 2 2 c 3 ,
ac 1 = -bc 3 .
             λ 2 y -b y xxxx = 0, over (-L, 0) y(0) = y xx (0) = y (xxx) (0) = 0, y(-L) = y x (-L) = 0. (4.2.44)
It's easy to see that y = 0 is the unique solution of (4.2.44). Hence U = 0. The proof is thus completed.
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Proof. Let F = x 2 -L 2 , 0, -x 4 3L 2 - 4 3
Lx -L 2 , 0, 0 ∈ H 1 and assume that there exists U = (u, v, y, z, ω) ∈

D(A 1 ) such that -A 1 U = F . It follows that v x = 2x in (0, L) and ξ 2 ω(x, ξ) -2x d (x)|ξ| 2α-1 2 = 0.
From the above equation, we deduce that ω(x, ξ) = 2|ξ| 2α-5 2x d (x) ∉ W , therefore the assumption of the existence of U is false and consequently the operator -A 1 is not invertible. The proof is thus complete. Lemma 4.2.12. If (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R * ), then i λI -A 1 is surjective.

Proof. Let F = ( f 1 , f 2 , f 3 , f 4 , f 5 ) ∈ H 1 , we look for U = (u, v, y, z, ω) ∈ D(A 1 ) solution of (i λI -A 1 )U = F. (4.2.45)
Equivalently, we have 

i λu -v = f 1 , (4.2.46) i λv -au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ x = f 2 , ( 4 
i λ + ξ 2 + η ω(x, ξ) -d (x)v x |ξ| 2α-1 2 = f 5 (x, ξ). ( 4 
ω(x, ξ) = f 5 (x, ξ) i λ + ξ 2 + η + d (x)i λu x |ξ| 2α-1 2 i λ + ξ 2 + η - d (x)( f 1 ) x |ξ| 2α-1 2 i λ + ξ 2 + η . ( 4 
λ 2 u + au x + d (x)I 4 (λ, η, α)u x -g x, λ, η, α x = f , (4.2.52) λ 2 y -b y xxxx = F , (4.2.53) such that              f = -f 2 + i λ f 1 ∈ L 2 (0, L), g x, λ, η, α = I 5 (λ, η, α)d (x)( f 1 ) x -d (x)I 6 (x, λ, η, α), F = -f 4 + i λ f 3 ∈ L 2 (-L,
such that G = f + g x (x, λ, η, α).
We first define the linear unbounded operator L :

H := H 1 R (0, L) × H 2 L (-L, 0) -→ H where H is the dual space of H by L U = -au x + d (x)I 4 (λ, η, α)u x x b y xxxx , ∀ U ∈ H.
Thanks to Lax-Milgram Theorem, it is easy to see that L is isomorphism. The system (4.2.54)-(4.2.55) is equivalent to

λ 2 L -1 -I U = L -1 F
, where U = (u, y) and F = (G, F ) . (4.2.56)

Since the operator L -1 is isomorphism and I is a compact operator from H to H . Then, L -1 is compact operator from H to H. Consequently, by Fredholm's alternative, proving the existence of U solution of (4.2.56) reduces to proving ker λ 2 L -1 -I = {0}. Indeed, if ( ũ, ỹ) ∈ ker λ 2 L -1 -I , then λ 2 ( ũ, ỹ) -L ũ, ỹ = 0. It follows that, 

λ 2 ũ + a ũx + d (x)I 4 (λ, η, α) ũx x = 0, (4.2.57) λ 2 ỹ -b ỹxxxx = 0, (4.2.58) ũ(L) = ỹ(-L) = ỹx (-L) = ỹxx (0) = 0, (4.2.59) a ũx (0) + b ỹxxx (0) = 0, ũ(0) = ỹ(0). ( 4 
d 0 Im I 4 (λ, α, η) l 1 l 0 | ũx | 2 d x = 0.
From Lemma 4.2.8 we have Im I 4 (λ, α, η) = λI 8 (λ, η, α) = 0, we get ũx = 0 in (l 0 , l 1 ). It is now easy to see that if ( ũ, ỹ) is a solution of system (4.2.61)-(4.2.63), then the vector U defined by U := ( ũ, i λ ũ, ỹ, i λ ỹ, 0) belongs to D (A 1 ), and i λ U -A 1 U = 0. Therefore, U ∈ ker (i λI -A 1 ), then by using Lemma 4.2.10, we get U = 0. This implies that system (4.2.56) admits a unique solution due to Fredholm's alternative, hence (4.2.56) admits a unique solution in V . Thus, we define v := i λuf 1 , z := i λyf 3 and

ω(x, ξ) = f 5 (x, ξ) i λ + ξ 2 + η + d (x)i λu x |ξ| 2α-1 2 i λ + ξ 2 + η - d (x)( f 1 ) x |ξ| 2α-1 2 i λ + ξ 2 + η . (4.2.64) Since F ∈ H 1 , it is easy to see that v ∈ H 1 R (0, L), z ∈ H 2 L (-L, 0), v(0) = z(0)
and

au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ x ∈ L 2 (0, L).
It is left to prove that ω and |ξ|ω ∈ W (for the both cases). From equation (4.2.64), we get

L 0 R |ω(x, ξ)| 2 d ξd x ≤ 3 L 0 R f 5 (x, ξ) 2 λ 2 + (ξ 2 + η) 2 d ξd x + 3d 0 l 1 l 0 (|λu x | 2 + ( f 1 ) x 2 )d x I 7 (λ, η, α).
Using the fact that f 5 ∈ W and (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R * ), we obtain

L 0 R f 5 (x, ξ) 2 λ 2 + (ξ 2 + η) 2 d ξ ≤ 1 λ 2 + η 2 L 0 R f 5 (x, ξ) 2 d ξd x < +∞.
Using Lemma 4.2.8, it follows that ω ∈ W . Next, using equation (4.2.64), we get

L 0 R |ξω| 2 d ξ ≤ 3 L 0 R ξ 2 f 5 (x, ξ) 2 λ 2 + (ξ 2 + η) 2 d ξd x + 3d 0 L 0 |λu x | 2 + ( f 1 ) x 2 I 10 (λ, η, α),
where

I 10 (λ, η, α) = R |ξ| 2α+1 λ 2 + (ξ 2 + η) 2 d
ξ < +∞ by using Lemma 4.2.9. Now, using the fact that

f 5 ∈ W and max ξ∈R ξ 2 λ 2 + (ξ 2 + η) 2 = η 2 + λ 2 λ 2 + η 2 + λ 2 + η 2 = C (λ, η), we get L 0 R ξ 2 f 5 (x, ξ) 2 λ 2 + (ξ 2 + η) 2 d ξd x ≤ L 0 max ξ∈R ξ 2 λ 2 + (ξ 2 + η) 2 R f 5 (x, ξ) 2 d ξ = C (λ, η) L 0 R f 5 (x, ξ) 2 d ξd x < +∞.
It follows that |ξ|ω ∈ W . Finally, since ω ∈ W , we get

-(ξ 2 + η)ω(x, ξ) + d (x)v x |ξ| 2α-1 2 = i λω(x, ξ) -f 5 (x, ξ) ∈ W.
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Proof of Theorem 4.2.7. First, using Lemma 4.2.10, we directly deduce that A 1 has no pure imaginary eigenvalues. Next, using Lemmas 4.2.11, 4.2.12 and with the help of the closed graph theorem of Banach, we deduce that σ(A 1 )

∩ i R = { } if η > 0 and σ(A 1 ) ∩ i R = {0} if η = 0.
Thus, we get the conclusion by Applying Theorem 1.3.3 of Arendt Batty.

Polynomial Stability in the case η > 0

In this section, we study the polynomial stability of the system (4.2.6)-(4.2.8) in the case η > 0.

For this purpose, we will use a frequency domain approach method, namely we will use Theorem 1.3.10. Our main result in this section is the following theorem.

Theorem 4.2.13. Assume that η > 0. The C 0 -semigroup (e t A 1 ) t ≥0 is polynomially stable; i.e. there exists constant C 1 > 0 such that for every U 0 ∈ D(A 1 ), we have 

E 1 (t ) ≤ C 1 t 4 2-α U 0 2 D(A 1 ) , t > 0, ∀U 0 ∈ D(A 1 ). ( 4 
:= (u n , v n , y n , z n , ω n (•, ξ)) ⊂ R * × D(A 1 ) with |λ n | → +∞ and U n H 1 = (u n , v n , y n , z n , ω n (•, ξ)) H 1 = 1, (4.2.66) such that (λ n ) 1-α 2 (i λ n I -A 1 )U n = F n := ( f 1,n , f 2,n , f 3,n , f 4,n , f 5,n (•, ξ)) → 0 in H 1 . (4.2.67)
For simplicity, we drop the index n. Equivalently, from (4.2.67), we have

i λu -v = f 1 λ 1-α 2 in H 1 R (0, L), (4.2.68) i λv -(S d ) x = f 2 λ 1-α 2 in L 2 (0, L), (4.2.69) i λy -z = f 3 λ 1-α 2 in H 2 L (-L, 0), (4.2.70) i λz + b y xxxx = f 4 λ 1-α 2 in L 2 (-L, 0), (4.2.71) (i λ + ξ 2 + η)ω(x, ξ) -d (x)v x |ξ| 2α-1 2 = f 5 (x, ξ) λ 1-α 2 in W, (4.2.72)
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where

S d = au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ.
Here we will check the condition (H 2 ) by finding a contradiction with (4.2.66) by showing U H 1 = o(1). For clarity, we divide the proof into several Lemmas. Lemma 4.2.14. Let α ∈ (0, 1), η > 0 and λ ∈ R, then

                       I 11 (λ, η, α) = R |ξ| α+ 1 2 |λ| + ξ 2 + η 2 d ξ = c 1 |λ| + η α 2 -5 4 , I 12 (λ, η) = R 1 (|λ| + ξ 2 + η) 2 d ξ 1 2 = π 2 1 (|λ| + η) 3 4 
,

I 13 (λ, η) = R ξ 2 |λ| + ξ 2 + η 4 d ξ 1 2 = π 4 1 (|λ| + η) 5 4
where

c 1 = ∞ 1 y -1 α 2 -1 4 y 2 d y.
Proof. I 11 can be written as 

I 11 (λ, η, α) = 2 λ + η 2 ∞ 0 ξ α+ 1 2 1 + ξ 2 |λ|+η 2 d ξ. ( 4.2.73) Thus, equation (4.2 
I 11 (λ, η, α) = λ + η α 2 -5 4 ∞ 1 y -1 α 2 -1 4 y 2 d y.
Using the fact that α ∈]0, 1[, it is easy to see that y -2 y -

1 α 2 -1 4 ∈ L 1 (1, +∞).
Hence, the last integral in the above equation is well defined. Now, I 12 (λ, η) can be written as

I 12 (λ, η) 2 = 2 (λ + η) 2 ∞ 0 1 1 + ξ λ+η 2 2 d ξ = 2 (λ + η) 3 2 ∞ 0 1 1 + s 2 2 d s = 2 (λ + η) 3 2 × π 4 = π 2(λ + η) 3 2 , Therefore, I 12 (λ, η) = π 2 1 (λ + η) 3 4
. Finally, I 13 (λ, η) can be written as

I 13 (λ, η) 2 = 2 (λ + η) 4 ∞ 0 ξ 2 1 + ξ λ+η 2 4 d ξ = 2 (λ + η) 5 2 ∞ 0 s 2 1 + s 2 4 d s = 2 (λ + η) 5 2 × π 32 .
Then

I 13 (λ, η) = π 4 1 (λ + η) 5 4
. The proof has been completed. 

L 0 R |ξ| 2 + η |ω(x, ξ)| 2 d ξd x = o λ -1+ α 2 , l 1 l 0 |v x | 2 d x = o λ -α 2 and l 1 l 0 |u x | 2 d x = o λ -2-α 2 .
(4.2.74)

Proof. For clarity, we divide the proof into several steps.

Step 1. Taking the inner product of F with U in H 1 , then using (4.2.66) and the fact that U is uniformly bounded in H 1 , we get

κ(α) L 0 R ξ 2 + η |ω(x, ξ)| 2 d ξd x = -Re 〈A 1 U ,U 〉 H 1 = Re 〈(i λI -A 1 )U ,U 〉 H 1 = o λ -1+ α 2 .
Step 2. Our aim here is to prove the second estimation in (4.2.74). From (4.2.72), we get

d (x)|ξ| 2α-1 2 |v x | ≤ |λ| + ξ 2 + η |ω(x, ξ)| + |λ| -1+ α 2 f 5 (x, ξ) .
Multiplying the above inequality by |λ| + ξ 2 + η -2 |ξ|, integrate over R, we get

d (x)I 11 (λ, η, α)|v x | ≤ I 12 (λ, η) R |ξω(x, ξ)| 2 d ξ 1 2 + |λ| -1+ α 2 I 13 (λ, η) R f 5 (x, ξ) 2 d ξ 1 2 , (4.2.75) 
where I 11 (λ, η, α), I 12 (λ, η) and I 13 (λ, η) are defined in Lemma 4.2.14. Using Young's inequality and the definition of the function d (x) in (4.2.75), we get

l 1 l 0 |v x | 2 d x ≤ 2 I 2 12 I 2 11 o(1)
|λ| 1-α 2 + 2 I 2 13 I 2 11 o(1) |λ| 2-α .
It follows from Lemma 4.2.14 that

l 1 l 0 |v x | 2 d x ≤ 1 c 1 (|λ| + η) α-1 o (1)
|λ| 1-α 2 + π 4 1 c 1 |λ| + η α o(1) |λ| 2-α . (4.2.76) 
Since α ∈ (0, 1), we have min( α 2 , 2) = α 2 , hence from the above equation, we get the second desired estimation in (4.2.74).

Step 3. From Equation (4.2.68) we have

i λu x = v x -λ -1+ α 2 ( f 1 ) x .
It follows that

λu x L 2 (l 0 ,l 1 ) ≤ v x L 2 (l 0 ,l 1 ) + |λ| -1+ α 2 ( f 1 ) x L 2 (l 0 ,l 1 ) ≤ o(1) λ α 4 + o(1)
λ 1-α 2 .
Since α ∈ (0, 1), we have min 1 + α 4 , 2 -α 2 = 1 + α 4 , hence from the above equation, we get

l 1 l 0 |u x | 2 d x = o(1) λ 2+ α 2 .
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The proof is thus completed.

Lemma 4.2.16. Let 0 < α < 1 and η > 0. Then, the solution (u, v, y, z, ω) ∈ D(A 1 ) of system (4.2.68)-(4.2.72) satisfies the following asymptotic behavior

l 1 l 0 |S d | 2 d x = o(1)
λ 1-α 2 . (4.2.77)
Proof. Using the fact that |P +Q| 2 ≤ 2P 2 + 2Q 2 , we obtain

l 1 l 0 |S d | 2 d x = l 1 l 0 au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ 2 d x ≤ 2a 2 l 1 l 0 |u x | 2 d x + 2d 0 κ(α) 2 l 1 l 0 R |ξ| 2α-1 2 ξ 2 + η ξ 2 + η ω(x, ξ)d ξ 2 d x ≤ 2a 2 l 1 l 0 |u x | 2 d x + c 2 l 1 l 0 R (ξ 2 + η)|ω(x, ξ)| 2 d ξd x
where c 2 = d 0 κ(α) 2 I 14 (α, η) and

I 14 (α, η) = R |ξ| 2α-1 |ξ| 2 + η d ξ. We have |ξ| 2α-1 |ξ| 2 + η ∼ 0 |ξ| 2α-1 η and |ξ| 2α-1 |ξ| 2 + η ∼ +∞ 1 |ξ| 3-2α .
Since 0 < α < 1 and η > 0, then I 14 (α, η) is well defined. Using the first and the third estimations in (4.2.74), we get our desired result.

Lemma 4.2.17. Assume that η > 0.

Let g ∈ C 1 ([l 0 , l 1 ]) such that g (l 1 ) = -g (l 0 ) = 1, max x∈(l 0 ,l 1 )
g (x) = m g and max x∈(l 0 ,l 1 )

g (x) = m g
where m g and m g are strictly positive constant numbers. Then, the solution (u, v, y, z, ω) ∈ D(A 1 ) of system (4.2.68)-(4.2.72) satisfies the following asymptotic behavior

|v(l 1 )| 2 + |v(l 0 )| 2 ≤ λ 1-α 2 2 + 2m g l 1 0 |v| 2 d x + o(1) λ (4.2.78)
and

|S d (l 1 )| 2 + |S d (l 0 )| 2 ≤ λ 1+ α 2 2 l 1 l 0 |v| 2 d x + o(1). ( 4 

.2.79)

Proof. First we will prove Equation (4.2.78). From Equation (4.2.68), we have

v x = i λu x -λ -1+ α 2 ( f 1 ) x . (4.2.80)
Multiply Equation (4.2.80) by 2g v and integrate over (l 0 , l 1 ), we get

|v(l 1 )| 2 +|v(l 0 )| 2 = l 1 l 0 g |v| 2 d x +Re 2i λ l 1 l 0 u x g vd x -Re 2λ -1+ α 2 l 1 l 0 ( f 1 ) x g vd x . (4.2.81)
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W F K V Model Then, |v(l 1 )| 2 +|v(l 0 )| 2 ≤ m g l 1 l 0 |v| 2 d x +2λm g l 1 l 0 |u x | v d x +2m g λ -1+ α 2 l 1 l 0 ( f 1 ) x v d x. (4.2.82)
Using Young's inequality we have

         2λm g |u x | v ≤ λ 1-α 2 2 |v| 2 + 2λ 1+ α 2 m 2 g |u x | 2 , 2m g λ -1+ α 2 ( f 1 ) x v ≤ m g |v| 2 + m 2 g m g λ -2+α ( f 1 ) x 2 .
(4.2.83)

Using Equation (4.2.83), then Equation (4.2.82) becomes

|v(l 1 )| 2 + |v(l 0 )| 2 ≤ λ 1-α 2 2 + 2m g l 1 l 0 |v| 2 d x + 2λ 1+ α 2 m 2 g l 1 l 0 |u x | 2 d x + m 2 g m g λ -2+α l 1 l 0 ( f 1 ) x 2 .
(4.2.84)

Using the third estimation in Equation (4.2.74) and the fact that ( f 1 ) x L 2 (l 0 ,l 1 ) = o(1), we obtain

|v(l 1 )| 2 + |v(l 0 )| 2 ≤ λ 1-α 2 2 + 2m g l 1 l 0 |v| 2 d x + o(1) λ + o(1) λ 2-α . (4.2.85) 
Since α ∈ (0, 1), hence

|v(l 1 )| 2 + |v(l 0 )| 2 ≤ λ 1-α 2 2 + 2m g l 1 l 0 |v| 2 d x + o(1) λ . ( 4.2.86) 
Now, we will prove (4.2.79). For this aim, multiply Equation (4.2.69) by -2g Sd and integrate over (l 0 , l 1 ), we get

|S d (l 1 )| 2 + |S d (l 0 )| 2 = l 1 l 0 g |S d | 2 d x + Re 2i λ l 1 l 0 v g S d d x -Re 2λ -1+ α 2 l 1 l 0 f 2 g S d d x . (4.2.87) Then, |S d (l 1 )| 2 + |S d (l 0 )| 2 ≤ m g l 1 l 0 |S d | 2 d x + 2λm g l 1 l 0 |v||S d |d x + 2m g λ -1+ α 2 l 1 l 0 f 2 |S d |d x.
(4.2.88) Using Young's inequality and Equation (4.2.77) we obtain

2λm g |v| S d ≤ λ 1+ α 2 2 |v| 2 + 2m 2 g λ 1-α 2 |S d | 2 ≤ λ 1+ α 2 2 |v| 2 + o(1). (4.2.89)
Using Cauchy-Schwarz inequality, Equation (4.2.77) and the fact that f 2 L 2 (l 0 ,l 1 ) = o(1), we obtain Proof. Multiply Equation (4.2.69) by -i λ -1 v and integrate over (l 0 , l 1 ), we get 

2m g λ -1+ α 2 l 1 l 0 f 2 |S d |d x ≤ 1 λ 1-α 2 f 2 L 2 (l 0 ,l 1 ) S d L 2 (l 0 ,l 1 ) = o(1) λ 3 2 -3α 4 . ( 4 
l 1 l 0 |v| 2 d x = Re i λ -1 l 1 l 0 S d v x d x -i λ -1 S d v l 1 l 0 + Re i λ -2+ α 2 l 1 l 0 f 2 vd x . ( 4 
i λ -1 l 1 l 0 S d v x d x ≤ 1 λ l 1 l 0 |S d | 2 d x 1 2 l 1 l 0 |v x | 2 d x 1 2 = o (1) λ 3 2 . (4.2.94) 

Estimation of the term Re

i λ -2+ α 2 l 1 l 0 f 2 vd x . Using Cauchy-Schwarz inequality, v is uni-
formly bounded in L 2 (l 0 , l 1 ) and f 2 L 2 (l 0 ,l 1 ) = o(1), we get

Re i λ -2+ α 2 l 1 l 0 f 2 vd x ≤ λ -2+ α 2 l 1 l 0 f 2 2 d x 1 2 l 1 l 0 |v| 2 d x 1 2 = o(1)
λ 2-α 2 . ( 4.2.95) 
Inserting Equations (4.2.94) and (4.2.95) in (4.2.93), using the fact that min( 3 2 , 2 -α 2 ) = 3 2 , and using Young's inequality on the second term of (4.2.93) we get 

l 1 l 0 |v| 2 d x ≤ λ -1+ α 2 2 |v(l 1 )| 2 + |v(l 0 )| 2 + λ -1-α 2 2 |S d (l 1 )| 2 + |S d (l 0 )| 2 + o(1) λ 3 2 . ( 4 
l 1 l 0 |v| 2 d x ≤ 1 2 + m g λ -1+ α 2 l 1 l 0 |v| 2 d x + o(1) λ 1+ α 2 + o(1)
λ 2-α 2 . ( 4.2.97) 
Since α ∈ (0, 1) then min(1 

+ α 2 , 2 -α 2 ) = 1 + α 2 . Then Equation (4.2.97) becomes 1 2 -m g λ -1+ α 2 l 1 l 0 |v| 2 d x ≤ o(1) λ 1+ α 2 . ( 4 
L 0 h |v| 2 + a -1 |S d | 2 d x + 0 -L ϕ |z| 2 + 3b y xx 2 d x + 2b 0 -L y xx ϕ y x d x +bϕ(-L) y xx (-L) 2 + h(0)|v(0)| 2 -ah(L)|u x (L)| 2 + ah(0)|u x (0)| 2 + Re 2b y xxx (0)ϕ(0)y x (0) -ϕ(0)|z(0)| 2 = o(1). (4.2.99)
Proof. The proof is divided into several steps.

Step 1. Multiplying Equation (4.2.69) by 2a -1 hS d and integrating over (0, L), we get Re 2a

-1 i λ L 0 vhS d d x + a -1 L 0 h |S| 2 d x -a -1 h(L)|S d (L)| 2 +a -1 h(0)|S d (0)| 2 = Re 2a -1 λ -1+ α 2 L 0 f 2 hS d d x .
(4.2.100)

From Equation (4.2.68) we have

i λu x = -v x -λ -1+ α 2 ( f 1 ) x . Then i λa -1 S d = -v x -λ -1+ α 2 ( f 1 ) x + i λa -1 d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ. ( 4.2.101) 
Then, the first term of (4.2.100) becomes Re 2a

-1 i λ L 0 vhS d d x = L 0 h |v| 2 d x -h(L)|v(L)| 2 + h(0)|v(0)| 2 -Re 2λ -1+ α 2 L 0 vh( f 1 ) x d x + Re 2i λa -1 κ(α) L 0 hv d (x) R |ξ| 2α-1 2 ω(x, ξ)d ξ d x .
(4.2.102) Inserting Equation (4.2.102) into (4.2.100), and using the fact that v and S d are uniformly bounded in L 2 (0, L) and

f 2 L 2 (0,L) = o(1) and f 1 H 1 L (0,L) = o(1), we obtain L 0 h |v| 2 + a -1 |S d | 2 d x + h(0)|v(0)| 2 -h(L)|u x (L)| 2 + h(0)a|u x (0)| 2 + Re 2i λa -1 κ(α) L 0 hv d (x) R |ξ| 2α-1 2 ω(x, ξ)d ξ d x = o(1)
λ 1-α 2 . (4.2.103) Estimation of the term Re 2i λa -1 κ(α) L 0 hv d (x) R |ξ| 2α-1 2 ω(x, ξ)d ξ d x .
Using the definition of d (x) and Cauchy-Schwarz inequality, the fact that 0 < α < 1, η > 0, and using the first estimation in (4.2.74) and Equation (4.2.92), we obtain

Re 2i λa -1 κ(α) L 0 hv d (x) R |ξ| 2α-1 2 ω(x, ξ)d ξ d x = o(1). (4.2.104)
4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.2 (EBB)-W F K V Model

Inserting Equation (4.2.104) in Equation (4.2.103), and using the fact that α ∈ (0, 1) we obtain

L 0 h |v| 2 + a -1 |S d | 2 d x + h(0)|v(0)| 2 -ah(L)|u x (L)| 2 + ah(0)|u x (0)| 2 = o(1). (4.2.105)
Step 2. Multiplying Equation (4. 

zϕy x d x + 2b 0 -L ϕ y xx 2 d x + 2b 0 -L y xx ϕ y x d x -2b y xx ϕ y x 0 -L + b 0 -L ϕ y xx 2 d x -bϕ y xx 2 0 -L + Re 2b y xxx (0)ϕ(0)y x (0) = Re 2λ -1+ α 2 0 -L f 4 ϕy x d x . (4.2.107)
From Equation (4.2.70), we have

i λy x = -z x -λ -1+ α 2 ( f 3 ) x . (4.2.108) 
By inserting Equation (4.2.108) into the first term of (4.2.107), we get 

Re 2i λ 0 -L ϕz y x d x = Re -2 0 -L ϕzz x d x -2λ -1+ α 2 0 -L ( f 3 ) x ϕzd x = 0 -L ϕ |z| 2 d x -ϕ(0)|z(0)| 2 -Re 2λ -1+ α 2 0 -L ( f 3 ) x ϕzd x . ( 4 
ϕ |z| 2 + 3b y xx 2 d x + 2b 0 -L ϕ y xx y x d x + bϕ(-L) y xx (-L) 2 + Re 2bϕ(0)y xxx (0)y x (0) -ϕ(0)|z(0)| 2 = Re 2λ -1+ α 2 0 -L ϕ f 4 y x d x + Re 2λ -1+ α 2 0 -L ϕ( f 3 ) x zd x . (4.2.110) Estimation of the term Re 2λ -1+ α 2 0 -L ϕ f 4 y x d x .
Using Poincaré inequality, Cauchy-Schwarz inequality, the definition of ϕ, the fact that y xx is uniformly bounded in L 2 (-L, 0), and that ϕ( f 3 ) x zd x . Using Cauchy-Schwarz inequality, the definition of ϕ, the fact that z is bounded in L 2 (-L, 0), and that ( Proof. The proof of this Lemma is divided into several steps.

f 4 L 2 (-L,0) = o(1), we get Re 2λ -1+ α 2 0 -L ϕ f 4 y x d x ≤ λ -1+ α 2 y x L 2 (0,L) f 4 L 2 (0,L) ≤ λ -1+ α 2 c p y xx L 2 (0,L) f 4 L 2 (0,L) = o(1)
λ 1-α 2 . ( 4 
f 3 ) x L 2 (-L,0) = o(1) we get Re 2λ -1+ α 2 0 -L ϕ( f 3 ) x zd x ≤ λ -1+ α 2 L 0 |z| 2 d x 1 2 L 0 ( f 3 ) x 2 d x 1 2 = o(1)
λ 1-α 2 . ( 4 
ϕ |z| 2 + 3b y xx 2 d x + 2b 0 -L ϕ y xx y x d x + bϕ(-L) y xx (-L) 2 + Re 2bϕ(0)y xxx (0)y x (0) -ϕ(0)|z(0)| 2 = o (1)
λ 1-α 2 . ( 4 
Step 1. In this step we will prove that v L 2 (0,L) = o(1) and

u x L 2 (0,L) = o(1). Taking h(x) = xθ 1 (x) + (x -L)θ 2 (x) and ϕ(x) = 0 in Equation (4.2.99), where θ 1 , θ 2 ∈ C 1 ([0, L])
are defined as follows

θ 1 (x) =    1 if x ∈ [0, l 0 ], 0 if x ∈ [l 1 , L], 0 ≤ θ 1 ≤ 1 el sewher e, (4.2.115) 
and

θ 2 (x) =    1 if x ∈ [l 1 , L], 0 if x ∈ [0, l 0 ], 0 ≤ θ 2 ≤ 1 el sewher e, (4.2.116) 
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L 0 (θ 1 + θ 2 ) |v| 2 + a -1 |S d | 2 d x + L 0 (xθ 1 + (x -L)θ 2 ) |v| 2 + a -1 |S| 2 d x = o(1
L 0 (θ 1 + θ 2 ) |v| 2 + a -1 |S d | 2 d x = o(1). ( 4 
Step 2. Taking h(x) = x -L and ϕ(x) = 0 in Equation (4.2.99), we get 

L 0 |v| 2 + a -1 |S| 2 d x -L|v(0)| 2 -aL|u x (0)| 2 = o(1). ( 4 

W-W F K V Model

In this section, we consider the (W-W F K V ) model, where we study the stability of a system of two wave equations coupled through boundary connection with a localized fractional Kelvin-Voigt damping acting on one equation only.

By taking the input V (x, t ) = d (x)u xt (x, t ) in Theorem 4.2.1, we get that the output O is given by

O(x, t ) = d (x)I 1-α,η u xt (x, t ) = d (x) Γ(1 -α) t 0 (t -s) -α e -η(t -s) ∂ s u x (x, s)d s = d (x)∂ α,η t u x (x, t ).
Then system (W-W F K V ) can be recast into the following augmented model

           u t t -au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ x = 0, (x, t ) ∈ (0, L) × R + * , y t t -b y xx = 0, (x, t ) ∈ (-L, 0) × ×R + * , ω t (x, ξ, t ) + |ξ| 2 + η ω(x, ξ, t ) -d (x)u xt (x, t )|ξ| 2α-1 2
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         u(L, t ) = y(-L, t ) = 0, t ∈ (0, ∞), au x (0, t ) = b y x (0, t ), t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), (4.3.2) 
and with the following initial conditions

u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), ω(x, ξ, 0) = 0, x ∈ (0, L), ξ ∈ R, y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), x ∈ (-L, 0). (4.3.3)
The energy of the system (4.3.1)-(4.3.3) is given by

E 2 (t ) = 1 2 L 0 |u t | 2 + a|u x | 2 d x + 1 2 0 -L y t 2 + b y x 2 d x + κ(α) 2 L 0 R |ω(x, ξ, t )| 2 d ξd x.
Using similar computations as in Lemma 4.2.2, we obtain

d d t E 2 (t ) = -κ(α) L 0 R (ξ 2 + η)|ω(x, ξ, t )| 2 d ξd x. ( 4.3.4) 
Since α ∈ (0, 1), then κ(α) > 0, and therefore

d d t E 2 (t ) ≤ 0. Thus, system (4.3.1)-(4.3.3) 
is dissipative in the sense that its energy is a non-increasing function with respect to time variable t . Now, we define the following Hilbert energy space H 2 by

H 2 = (u, v, y, z, ω) ∈ H 1 R (0, L) × L 2 (0, L) × H 1 L (-L, 0) × L 2 (-L, 0) × W ; u(0) = y(0) ,
where W = L 2 ((0, L) × R) and

H 1 R (0, L) = u ∈ H 1 (0, L); u(L) = 0 , H 1 L (-L, 0) = y ∈ H 1 (-L, 0); y(-L) = 0 . (4.3.5) 
The energy space H 2 is equipped with the inner product defined by

〈U ,U 1 〉 H 2 = L 0 v v 1 d x + a L 0 u x (u 1 ) x d x + 0 -L zz 1 d x + b 0 -L y x (y 1 ) x d x +κ(α) L 0 R ω(x, ξ)ω 1 (x, ξ)d ξd x, for all U = (u, v, y, z, ω) and U 1 = (u 1 , v 1 , y 1 , z 1 , ω 1 ) in H 2 .
We use U H 2 to denote the corresponding norm. We define the unbounded linear operator

A 2 : D(A 2 ) ⊂ H 2 → H 2 by
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3 W-W F K V Model D(A 2 ) =                      U = (u, v, y, z, ω) ∈ H 2 ; (v, z) ∈ H 1 R (0, L) × H 1 L (-L, 0), y ∈ H 2 (-L, 0), au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ x ∈ L 2 (0, L), -|ξ| 2 + η ω(x, ξ) + d (x)v x |ξ| 2α-1 2 , |ξ|ω(x, ξ) ∈ W, au x (0) = b y x (0), and v(0) = z(0)                     
, and for all U = (u, v, y, z, ω) ∈ D(A 2 ),

A 2 (u, v, y, z, ω) =              v au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ x z b y xx -|ξ| 2 + η ω(x, ξ) + d (x)v x |ξ| 2α-1 2              . If U = (u, u t , y, y t , ω
) is a regular solution of system (

, then the system can be rewritten as an evolution equation on the Hilbert space H 2 given by

U t = A 2 U , U (0) = U 0 , (4.3.6) 
where U 0 = (u 0 , u 1 , y 0 , y 1 , 0). In a similar way to Section 4.2.1, we can see that the unbounded linear operator A 2 is mdissipative in the energy space H 2 . Also, the C 0 -semigroup of contractions e t A 2 is strongly stable on H 2 in the sense that lim

t →+∞ e t A 2 U 0 H 2 = 0.
Theorem 4.3.1. Assume that η > 0. The C 0 -semigroup (e t A 2 ) t ≥0 is polynomially stable; i.e. there exists constant C 2 > 0 such that for every U 0 ∈ D(A 2 ), we have

E 2 (t ) ≤ C 1 t 4 2-α U 0 2 D(A 2 ) , ∀ t > 0, ∀U 0 ∈ D(A 2 ). (4.3.7) 
According to Theorem 1.3.10 of Borichev-Tomilov, by taking = 1-α 2 , the polynomial energy decay (4.3.7) holds if the following conditions

i R ⊂ ρ(A 2 ), ( G 1 ) 
and lim sup

λ∈R,|λ|→∞ 1 |λ| 1-α 2 (i λI -A 2 ) -1 L (H 2 ) < ∞, ( G 2 ) 
are satisfied. Since Condition (G 1 ) is satisfied (similar way as in Section 4.2.1). We will prove condition (G 2 ) by an argument of contradiction. For this purpose, suppose that (G 2 ) is false, then there exists

λ n ,U n := (u n , v n , y n , z n , ω n (•, ξ)) ⊂ R * × D(A 2 ) with |λ n | → +∞ and U n H 2 = (u n , v n , y n , z n , ω n (•, ξ)) H 2 = 1, (4.3.8) 
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3 W-W F K V Model such that (λ n ) 1-α 2 (i λ n I -A 2 )U n = F n := ( f 1,n , f 2,n , f 3,n , f 4,n , f 5,n (•, ξ)) → 0 in H 2 . (4.3.9)
For simplicity, we drop the index n. Equivalently, from (4.3.9), we have

i λu -v = f 1 λ 1-α 2 in H 1 R (0, L), (4.3.10) i λv -(S d ) x = f 2 λ 1-α 2 in L 2 (0, L), (4.3.11) i λy -z = f 3 λ 1-α 2 in H 1 L (-L, 0), (4.3.12 
)

i λz -b y xx = f 4 λ 1-α 2 in L 2 (-L, 0), (4.3.13) 
(i λ + ξ 2 + η)ω(x, ξ) -d (x)v x |ξ| 2α-1 2 = f 5 (x, ξ) λ 1-α 2 in W, ( 4.3.14) 
where

S d = au x + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ.
Here we will check the condition (G 2 ) by finding a contradiction with (4.3.8) by showing

U H 2 = o(1)
. In order to get this contradiction, we follow similar arguments as in Section 4.2.2. We get the same results as in Lemmas 4.2.14, 4.2.15, 4.2.16, 4.2.17, 4.2.18. Using the same computations as in Lemma 4.2.19, we get that the solution (u, v, y, z, ω) ∈ D(A 2 ) of system (4.3.10)-(4.3.14) satisfies the following estimation

L 0 h |v| 2 + a -1 |S d | 2 d x + 0 -L ϕ |z| 2 + b y x 2 d x + h(0)|v(0)| 2 -ah(L)|u x (L)| 2 + ah(0)|u x (0)| 2 -ϕ(0)|z(0)| 2 -bϕ(0) y x (0) 2 +bϕ(-L) y x (-L) 2 = o(1). (4.3.15)
Next, we proceed in a similar way to Lemma 4.2.20.

Step 1. Taking h(x) = xθ 1 (x) + (x -L)θ 2 (x) and ϕ(x) = 0 in Equation (4.3.15), where

θ 1 , θ 2 ∈ C 1 ([0, L]) are defined in Lemma 4.2.20, yields v L 2 (0,L) = o(1) and u x L 2 (0,L) = o(1).
Step 2. Taking h(x) = x -L and ϕ(x) = 0 in Equation (4.3.15), we obtain 

L 0 |v| 2 + a -1 |S d | 2 d x -L|v(0)| 2 -aL|u x (0)| 2 = o(1). ( 4 

W-(EBB) F K V Model

This section is devoted to study the stability of the model (W-(EBB) F K V ), where we consider the Euler-Bernoulli beam and wave equations coupled through boundary connection. We take the fractional Kelvin-Voigt damping to be a localized internal damping acting on the Euler-Bernoulli beam only.

Well-Posedness and Strong Stability

In this subsection, we give the strong stability result of the system (W-(EBB) F K V ). First, using a semigroup approach, we establish the well-posedness result of the system (W-(EBB) F K V ). In Theorem 4.2.1, taking the input V (x, t ) = d (x)y xxt (x, t ), then using (4.1.4), we get the output O is given by

O(x, t ) = d (x)I 1-α,η y xxt (x, t ) = d (x) Γ(1 -α) t 0 (t -s) -α e -η(t -s) ∂ s y xx (x, s)d s = d (x)∂ α,η t y xx (x, t ).
Therefore, by taking the input V (x, t ) = d (x)y xxt (x, t ) in Theorem 4.2.1 and using the above equation, we get

∂ t ω(x, ξ, t ) + (ξ 2 + η)ω(x, ξ, t ) -d (x)y xxt (x, t )|ξ| 2α-1 2 = 0, (x, ξ, t ) ∈ (0, L) × R × (0, ∞), ω(ξ, 0) = 0, (x, ξ) ∈ (0, L) × R, d (x)∂ α,η t y xx (x, t ) -κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ = 0, (x, t ) ∈ (0, L) × (0, ∞).
(4.4.1) From system (4.4.1), we deduce that system (W-(EBB) F K V ) can be recast into the following augmented model

           u t t -au xx = 0, (x, t ) ∈ (-L, 0) × R + * , y t t + b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ xx = 0, (x, t ) ∈ (0, L) × R + * , ω t (x, ξ, t ) + |ξ| 2 + η ω(x, ξ, t ) -d (x)y xxt (x, t )|ξ| 2α-1 2
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         u(-L, t ) = y(L, t ) = y x (L, t ) = 0, t ∈ (0, ∞), au x (0, t ) + b y xxx (0, t ) = 0, y xx (0, t ) = 0, t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), (4.4.3) 
and with the following initial conditions

u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) x ∈ (-L, 0) y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), ω(x, ξ, 0) = 0 x ∈ (0, L), ξ ∈ R. (4.4.4) 
The energy of the system (4.4.2)-(4.4.4) is given by

E 3 (t ) = 1 2 0 -L |u t | 2 + a|u x | 2 d x + 1 2 L 0 y t 2 + b y xx 2 d x + κ(α) 2 L 0 R |ω(x, ξ, t )| 2 d ξd x.
By using similar computations as in Lemma 4.2.2, it is easy to see that the energy E 3 (t ) satisfies the following estimation

d d t E 3 (t ) = -κ(α) L 0 R (ξ 2 + η)|ω(x, ξ, t )| 2 d ξd x. ( 4.4.5) 
Since α ∈ (0, 1), then κ(α) > 0, and therefore d d t E 3 (t ) ≤ 0. Thus, system (4.4.2)-(4.4.4) is dissipative in the sense that its energy is a non-increasing function with respect to time variable t . Now, we define the following Hilbert energy space H 3 by

H 3 = (u, v, y, z, ω) ∈ H 1 L (-L, 0) × L 2 (-L, 0) × H 2 R (0, L) × L 2 (0, L) × W ; u(0) = y(0) ,
where W = L 2 ((0, L) × R) and

H 1 L (-L, 0) = u ∈ H 1 (-L, 0); u(-L) = 0 , H 2 R (0, L) = y ∈ H 2 (0, L); y(L) = y x (L) = 0 . (4.4.6)
The energy space H 3 is equipped with the inner product defined by

〈U ,U 1 〉 H 3 = 0 -L v v 1 d x + a 0 -L u x (u 1 ) x d x + L 0 zz 1 d x + b L 0 y xx (y 1 ) xx d x +κ(α) L 0 R ω(x, ξ)ω 1 (x, ξ)d ξd x,
for all U = (u, v, y, z, ω) and U 1 = (u 1 , v 1 , y 1 , z 1 , ω 1 ) in H 3 . We use U H 3 to denote the corresponding norm. We define the unbounded linear operator A 3 :

D(A 3 ) ⊂ H 3 → H 3 by
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F K V Model D(A 3 ) =                      U = (u, v, y, z, ω) ∈ H 3 ; (v, z) ∈ H 1 L (-L, 0) × H 2 R (0, L), u ∈ H 2 (-L, 0), b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ xx ∈ L 2 (0, L), -|ξ| 2 + η ω(x, ξ) + d (x)z xx |ξ| 2α-1 2 , |ξ|ω(x, ξ) ∈ W, au x (0) + b y xxx (0) = 0, y xx (0) = 0, and v(0) = z(0)                     
, and for all U = (u, v, y, z, ω) ∈ D(A 3 ),

A 3 (u, v, y, z, ω) =              v au xx z -b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ xx -|ξ| 2 + η ω(x, ξ) + d (x)z xx |ξ| 2α-1 2             
.

If U = (u, u t , y, y t , ω) is a regular solution of system (4.4.2)-(4.4.4), then the system can be rewritten as evolution equation on the Hilbert space H 3 given by

U t = A 3 U , U (0) = U 0 , (4.4.7) 
where U 0 = (u 0 , u 1 , y 0 , y 1 , 0). Similar to Proposition 4.2.5, the operator A 3 is m-dissipative on H 3 , consequently it generates a C 0 -semigroup of contractions (e t A 3 ) t ≥0 following Lumer-Phillips Theorem 1.2.8. Then, the solution of the evolution Equation (4.4.7) admits the following representation

U (t ) = e t A 3 U 0 , t ≥ 0,
which leads to the well-posedness of (4.4.7). Hence, we have the following result. 

E 3 (t ) ≤ C 2 t 2 3-α U 0 2 D(A 3 ) , ∀ t > 0, ∀U 0 ∈ D(A 3 ). ( 4 
1 |λ| 3-α (i λI -A 3 ) -1 L (H 3 ) < ∞, ( R 2 ) 
are satisfied. Since condition (R 1 ) is already checked (see Subsection 4.4.1), we still need to prove condition (R 2 ). For this purpose we will use an argument of contradiction. Suppose that (R 2 ) is false, then there exists

λ n ,U n := (u n , v n , y n , z n , ω n (•, ξ)) ⊂ R * × D(A 3 ) with |λ n | → +∞ and U n H 3 = (u n , v n , y n , z n , ω n (•, ξ)) H 3 = 1, (4.4.9) 
such that

λ 3-α n (i λ n I -A 3 )U n = F n := ( f 1,n , f 2,n , f 3,n , f 4,n , f 5,n (•, ξ)) → 0 in H 3 . (4.4.10)
For simplicity, we drop the index n. Equivalently, from (4.4.10), we have

i λu -v = f 1 λ 3-α in H 1 L (-L, 0), (4.4.11) 
i λvau xx = f 2 λ 3-α in L 2 (-L, 0), (4.4.12) Proof. For the clarity we divide the proof into several steps.

i λy -z = f 3 λ 3-α in H 2 R (0, L), (4.4.13) i λz + S xx = f 4 λ 3-α in L 2 (0, L), (4.4.14) (i λ + ξ 2 + η)ω(x, ξ) -d (x)z xx |ξ| 2α-1 2 = f 5 (x, ξ) λ 3-α in W, ( 4 
Step 1. Taking the inner product of F with U in H 3 , then using (4.4.9) and the fact that U is uniformly bounded in H 3 , we get

κ(α) L 0 R ξ 2 + η |ω(x, ξ)| 2 d ξd x = -Re 〈A 3 U ,U 〉 H 3 = Re 〈(i λI -A 3 )U ,U 〉 H 3 = o λ -3+α .
Step 2. Our aim here is to prove the second estimation in (4. 

λy xx L 2 (l 0 ,l 1 ) ≤ z xx L 2 (l 0 ,l 1 ) + |λ| -3+α ( f 3 ) xx L 2 (l 0 ,l 1 ) .
Using Step 2, the fact that f 3 H 2 R (0,L) = o(1), and that α ∈ (0, 1), we get the third estimation in (4.4.16).

Step 4. Using the fact that |P +Q| 2 ≤ 2P 2 + 2Q 2 , we obtain

l 1 l 0 |S| 2 d x = l 1 l 0 b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ 2 d x ≤ 2b 2 l 1 l 0 y xx 2 d x + 2d 0 κ(α) 2 l 1 l 0 R |ξ| 2α-1 2 ξ 2 + η ξ 2 + η ω(x, ξ)d ξ 2 d x ≤ 2b 2 l 1 l 0 y xx 2 d x + c 2 l 1 l 0 R (ξ 2 + η)|ω(x, ξ)| 2 d ξd x
where c 2 = d 0 κ(α) 2 I 14 (α, η) is defined in Lemma 4.2.16. Thus, we get the last estimation in (4.4.16). Hence, the proof is complete. Proof. The proof of this Lemma will be divided into two steps.

Step 1. Let 0

< ε < l 1 -l 0 2 . We define h ∈ C ∞ ([0, L]), 0 ≤ h ≤ 1 on [0, L], h = 1 on (l 0 + ε, l 1 -ε),
and h = 0 on (0, l 0 ) ∪ (l 1 , L). Also, we define max ) by -i λ -1 hz and integrate over (l 0 , l 1 ), we get

l 1 l 0 h|z| 2 d x = i λ -1 l 1 l 0 S(h z + 2h z x + hz xx )d x -i λ -4+α l 1 l 0 h f 4 zd x. (4.4.18)
Using Nirenberg inequality Theorem (see [START_REF] Nirenberg | An extended interpolation inequality[END_REF]), Equations (4.4.9) and (4.4.16), we obtain

z x L 2 (l 0 ,l 1 ) ≤ z xx 1/2
L 2 (l 0 ,l 1 ) z 1/2 L 2 (l 0 ,l 1 ) + z L 2 (l 0 ,l 1 ) ≤ O [START_REF] Achouri | The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type[END_REF] Step 2. Applying the interpolation theorem involving compact subdomain ( [START_REF] Adams | Sobolev spaces / Robert A. Adams[END_REF], Theorem 4.23), we obtain z x L 2 (l 0 ,l 1 ) ≤ z xx L 2 (l 0 ,l 1 ) + z L 2 (l 0 +ε,l 1 -ε) .

i λ -1 l 1 l 0 hSz xx d x ≤ m h λ l 1 l 0 |S| 2 d x 1/2 l 1 l 0 |z xx | 2 d x 1/2 = o(1)
Then, by using (4.4.24) and that 0 < α < 1, we get 

z x L 2 (l 0 ,l 1 ) = o(1) λ . ( 4 
y H 2 (l 0 ,l 1 ) ≤ 1 λ z H 2 (l 0 ,l 1 ) + 1 λ 4-α f 3 H 2 (
l 0 ,l 1 ) , using the fact that α ∈ (0, 1), f 3 H 2 (l 0 ,l 1 ) = o [START_REF] Achouri | The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type[END_REF], and the first estimation in Lemma 4.4.5, we obtain the second estimation of Lemma 4.4.5. Using Nirenberg inequality Theorem (see [START_REF] Nirenberg | An extended interpolation inequality[END_REF]), Lemma 4.4.4,(4.4.14) and the first estimation in (4.4.26), we get Now, using the interpolation inequality theorem ( see in [START_REF] Nirenberg | An extended interpolation inequality[END_REF]), and α ∈ (0, 1), we get

S x L 2 (l 0 ,l 1 ) ≤ S xx
X x L 2 (l 0 ,l 1 ) ≤ X xx 1 2
L 2 (l 0 ,l 1 ) X From the interpolation inequality (see Theorem 4.17 in [START_REF] Adams | Sobolev spaces / Robert A. Adams[END_REF]), we have Integrating by parts the last term of Equation (4.4.65) and using (4.4.28) and the fact that 1), we obtain our desired term. For the last term in Equation (4.4.60), we proceed in a similar way as above and thus the proof of the Lemma is complete. Proof. Equation (4.4.64) can be written as On the interval (0, l 0 ):

λ 1/2 X H 2 (l 0 ,l 1 ) λ 1/2 X 1 2 H 4 (l 0 ,l 1 ) • λ 1/2 X 1 2 L 2 (l 0 ,l 1 ) = o(1)
f 3 (l 0 ) f 3 H 2 R (0,L) = o(1), we get Re 2λ -3+α l 0 0 ( f 4 + i λ f 3 )ζy x d x = Re 2λ -3+α l 0 0 f 4 ζy x d x -Re 2i λ -3+α l 0 0 f 3 ζ λyd x -Re 2i λ -3+α l 0 0 ( f 3 ) x ζλyd x + o(1) λ 4-α . ( 4 
U H 3 = 1, y x L 2 (0,L) ≤ c p y xx L 2 (0,L) = O(1) and f 3 H 2 R (0,L) = o(
∂ ∂x -i µ ∂ ∂x + i µ ∂ 2 ∂ 2 x -µ 2 y = 1 b F, on (0, l 0 ) ∪ (l 1 , L).
Let Y 1 l 0 = ∂ ∂x + i µ ∂ 2 ∂x 2 -µ 2 y.
Solving on the interval (0, l 0 ) the following Equation where

∂ ∂x -i µ Y 1 l 0 = 1 b F we get Y 1 l 0 = K 1 e i µ(x-l 0 ) + 1 b x l 0 e i µ(x-z) F(z)d z,
K 1 = y xxx (l - 0 ) -µ 2 y x (l 0 ) + i µy xx (l - 0 ) -i µ 3 y(l 0 ).
4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.4 W-(EBB)

F K V Model Let Y 2 l 0 = ∂ 2 ∂x 2 -µ 2 y.
We will solve the following differential equation Inserting the above Equation in (4.4.73), we get

∂ ∂x + i µ Y 2 l 0 = Y 1 l 0 . ( 4 
Y 2 l 0 = K 2 e -i µ(x-l 0 ) + K 1 µ sin (x -l 0 )µ + 1 bµ x l 0 sin (x -z)µ F(z)d z (4.4.74)
where

K 2 = y xx (l - 0 ) -µ 2 y(l 0 ). Let Y 3 l 0 = ∂ ∂x -µ y.
The solution of the following differential equation

∂ ∂x + µ Y 3 l 0 = Y 2 l 0 (4.4.75)
is given by

Y 3 l 0 = K 3 e -µ(x-l 0 ) + K 2 µ(1-i ) e -i µ(x-l 0 ) -e -µ(x-l 0 ) + 1 bµ x l 0 s l 0 e µ(s-x) sin (s -z)µ F(z)d zd s - K 1 2µ 2 cos (x -l 0 )µ -sin (x -l 0 )µ -e -µ(x-l 0 ) (4.4.76)
where K 3 = y x (l 0 ) -µy(l 0 ). Take x = 0 in (4.4.76) and multiply the equation by µe -µl 0 , we get 5 4 y xx (l - 0 ) ≤ µy x (0) e -µl 0 + µ 2 y(0) e -µl 0 + y x (l 0 ) + µy(l 0 ) 

+ 1 2µ y xxx (l 0 ) 2e -µl 0 + 1 + 1 2 µ 2 y(l 0 ) 2e -µl 0 + 1 + 1 2 µy x (l 0 ) 2e -µl 0 + 1 + 1 2 µ 2 y(l 0 ) e -µl 0 + 1 + 1 + 1 2 y xx (l - 0 ) e -µl 0
y xx (l - 0 ) = o(1) λ .
On the interval (l 1 , L):

Proceeding with a similar computation as on (0, l 0 ), we get

Y 2 l 1 = K 2 e -i µ(x-l 1 ) + K 1 µ sin (x -l 1 )µ + 1 bµ x l 1 sin (x -z)µ F(z)d z (4.4.81)
where

K 1 = y xxx (l + 1 ) -µ 2 y x (l 1 ) + i µy xx (l + 1 ) -i µ 3 y(l 1 )
4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.4 W-(EBB) F K V Model and K 2 = y xx (l + 1 ) -µ 2 y(l 1 ).

We will solve the following differential Equation

∂ ∂x -µ Y 3 l 1 = Y 2 l 1 (4.4.82)
where

Y 3 l 1 = ∂ ∂x + µ y.
The solution of (4.4.82) is

Y 3 l 1 = K 3 e µ(x-l 1 ) - K 1 2µ 2 cos (x -l 1 )µ + sin (x -l 1 )µ -e µ(x-l 1 ) - K 2 1 + i e -i µ(x-l 1 ) -e µ(x-l 1 ) + 1 bµ x l 1 s l 1 e µ(x-s) sin (s -z)µ F(z)d zd s (4.4.83)
where K 3 = y x (l 1 ) + µy(l 1 ).

Taking x = L in Equation (4.4.83) and multiplying by µe -µ(L-l 1 ) , we get

1 2 y xx (l + 1 ) ≤ µy x (l 1 ) + µ 2 y(l 1 ) + e -µ(L-l 1 ) 2 y xx (l + 1 ) + 1 2 µ 2 y x (l 1 ) e -µ(L-l 1 ) + 1 + 1 µ y xxx (l + 1 ) 2e -µ(L-l 1 ) + 1 + µy x (l 1 ) 2e -µ(L-l 1 ) + 1 + 2 y xx (l + 1 ) e -µ(L-l 1 ) + µ 2 y(l 1 ) 2e -µ(L-l 1 ) + 1 + 1 b L l 1 s l 1
e -µ(s-l 1 ) sin (s -z)µ F(z)d zd s . 

y xx (l + 1 ) = o(1) λ .
Thus the proof of this Lemma is complete. 

θ 1 (x) =    1 if x ∈ [0, l 0 ], 0 if x ∈ [l 1 , L], 0 ≤ θ 1 ≤ 1
el sewher e. 

θ 2 (x) =    1 if x ∈ [l 1 , L], 0 if x ∈ [0, l 0 ], 0 ≤ θ 2 ≤ 1
el sewher e. Proof. From the interpolation inequality Theorem (see [START_REF] Nirenberg | An extended interpolation inequality[END_REF]), and using the fact that y ∈ H 4 (0, l 0 ), f 4 L 2 (0,l 0 ) = o(1), Equation (4.4.14) and Lemma 4.4.10, we get • In [START_REF] Hassine | Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping[END_REF], when the damping acts on the beam equation the energy decay rate reached was t -2 (the left system in Equation (4.1.1)), when taking the condition y x ( ) = 0 at the connecting point. However, in this paper, we proved in section 4.4 the polynomial energy decay rate of type t -1 , when taking y xx (0) = 0 at the connecting point. From this comparison, we see that the boundary conditions play a critical role in the energy decay rate for the system (4.4.2).

y xxx L 2 (0,l 0 ) y xxxx 1/2 L 2 (0,l 0 ) • y xx 1/2 L 2 (0,l 0 ) + y xx L 2 (0,l 0 ) ≤ λ 1 2 z 1 2 L 2 (0,l 0 ) + 1 λ 3-α 2 f 4 1 2 L 2 (0,l 0 ) y xx 1 2 L 2 (0,l 0 ) + y xx L 2 (0,l 0 ) = o(1) λ 1 2 . ( 4 

(EBB) F K V Model

In this section, we consider the Euler-Bernoulli beam with localized fractional Kelvin-Voigt damping. We study the polynomial stability of the system ((EBB) F K V ). In Theorem 4.2.1, taking the input V (x, t ) = d (x)y xxt (x, t ), then using (4.1.4), we get the output O is given by

O(x, t ) = d (x)I 1-α,η y xxt (x, t ) = d (x) Γ(1 -α) t 0 (t -s) -α e -η(t -s) ∂ s y xx (x, s)d s = d (x)∂ α,η t y xx (x, t ).
Then, we deduce that system ((EBB) F K V ) can be recast into the following augmented model 

     y t t + b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ xx = 0, (x, t ) ∈ (0, L) × ×R + * , ω t (x, ξ, t ) + |ξ| 2 + η ω(x, ξ, t ) -d (x)y xxt (x, t )|ξ| 2α-1 2 = 0, (x, ξ, t ) ∈ (0, L) × R × R + * , ( 4 
y(0, t ) = y x (0, t ) = 0, y xx (L, t ) = 0, y xxx (L, t ) = 0, t ∈ (0, ∞), (4.5.2) 
and with the following initial conditions y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), ω(x, ξ, 0) = 0, x ∈ (0, L), ξ ∈ R. (4.5.

3)

The energy of the system (4.5.1)-(4.5.3) is given by 

E 4 (t ) = 1 2 L 0 y t 2 + b y xx 2 d x + κ(α) 2 L 0 R |ω(x, ξ, t )| 2 d
H 4 = H 2 L (0, L) × L 2 (0, L) × W,
where W = L 2 ((0, L) × R) and H 2 L (0, L) = y ∈ H 2 (0, L); y(0) = y x (0) = 0 . The energy space H 4 is equipped with the inner product defined by

〈U ,U 1 〉 H 4 = L 0 zz 1 d x + b L 0 y xx (y 1 ) xx d x + κ(α) L 0 R ω(x, ξ)ω 1 (x, ξ)d ξd x,
for all U = (y, z, ω) and U 1 = (y 1 , z 1 , ω 1 ) in H 4 . We use U H 4 to denote the corresponding norm. We define the unbounded linear operator A 4 :

D(A 4 ) ⊂ H 4 → H 4 by D(A 4 ) =                    U = (y, z, ω) ∈ H 4 ; z ∈ H 2 L (0, L), b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ xx ∈ L 2 (0, L), -|ξ| 2 + η ω(x, ξ) + d (x)z xx |ξ| 2α-1 2 , |ξ|ω(x, ξ) ∈ W, y xx (L) = 0, and y xxx (L) = 0.                   
, and for all U = (y, z, ω) ∈ D(A 4 ),

A 4 (y, z, ω) =       z -b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ xx -|ξ| 2 + η ω(x, ξ) + d (x)z xx |ξ| 2α-1 2      
.

If U = (y, y t , ω) is a regular solution of system (4.5.1)-(4.5.3), then the system can be rewritten as evolution equation on the Hilbert space H 4 given by

U t = A 4 U , U (0) = U 0 , (4.5.5) 
where U 0 = (y 0 , y 1 , 0). We can see that (in a smiliar way as in Section 4.2) the unbounded linear operator A 4 is mdissipative in the energy space H 4 . Also, the C 0 -semigroup of contractions e t A 4 is strongly stable on H 4 in the sense that lim

t →+∞ e t A 4 U 0 H 4 = 0, ∀U 0 ∈ H 4 .
Theorem 4.5.2. Assume that η > 0. The C 0 -semigroup (e t A 4 ) t ≥0 is polynomially stable; i.e. there exists constant C 4 > 0 such that for every U 0 ∈ D(A 4 ), we have 

E 4 (t ) ≤ C 4 t 2 1-α U 0 2 D(A 4 ) , ∀ t > 0, ∀U 0 ∈ D(A 4 ). ( 4 
(i λ n I -A 4 )U n = F n := ( f 1,n , f 2,n , f 3,n (•, ξ)) → 0 in H 4 . (4.5.8)
For simplicity, we drop the index n. Equivalently, from (4.5.8), we have

i λy -z = f 1 λ 1-α in H 2 L (0, L), ( 4 
.5.9) In order to reach this contradiction, we proceed in a similar way as in Subsection 4.4.2. We give the estimation results directly considering that the proof of these results can follow using similar computations as in Subsection 4.4.2. Assume that η > 0. Then, the solution (y, z, ω) ∈ D(A 4 ) of system (4.5.1)-(4.5.3) satisfies the asymptotic behavior estimations mentioned below. Similar to Lemma 4.4.4, we obtain

i λz + S xx = f 2 λ 1-α in L 2 (0, L), (4.5.10) (i λ + ξ 2 + η)ω(x, ξ) -d (x)z xx |ξ| 2α-1 2 = f 3 (x, ξ) λ 1-α in W, ( 4 
L 0 R |ξ| 2 + η |ω(x, ξ)| 2 d ξd x = o (1) λ 1-α , l 1 l 0 |z xx | 2 d x = o(1) and l 1 l 0 y xx 2 d x = o (1) λ 2 . ( 4 
.5.12) Similar to Lemma 4.4.4, we obtain 

l 1 l 0 |S| 2 d x = o(1) λ 1-α . ( 4 

(EBB)-(EBB) F K V Model

In this section, we consider a system of two Euler-Bernoulli beam equations coupled via boundary connection with a localized non-regular fractional Kelvin-Voigt damping acting on one of the two equations only. In this part, we study the polynomial stabilty of the system. In Theorem 4.2.1, taking the input V (x, t ) = d (x)y xxt (x, t ), then using (4.1.4), we get the output O is given by

O(x, t ) = d (x)I 1-α,η y xxt (x, t ) = d (x) Γ(1 -α) t 0 (t -s) -α e -η(t -s) ∂ s y xx (x, s)d s = d (x)∂ α,η t y xx (x, t ).
Then, we deduce that system ((EBB)-(EBB) F K V ) can be recast into the following augmented model

           u t t + au xxxx = 0, (x, t ) ∈ (-L, 0) × R + * , y t t + b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ, t )d ξ xx = 0, (x, t ) ∈ (0, L) × R + * , ω t (x, ξ, t ) + |ξ| 2 + η ω(x, ξ, t ) -d (x)y xxt (x, t )|ξ| 2α-1 2 = 0, (x, ξ, t ) ∈ (0, L) × R × R + * , ( 4 
.6.1) with the following transmission and boundary conditions

         u(-L, t ) = u x (-L, t ) = y(L, t ) = y x (L, t ) = 0, t ∈ (0, ∞), au xxx (0, t ) -b y xxx (0, t ) = 0, u xx (0, t ) = y xx (0, t ) = 0, t ∈ (0, ∞), u(0, t ) = y(0, t ), t ∈ (0, ∞), (4.6.2) 
and with the following initial conditions

u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ (-L, 0), y(x, 0) = y 0 (x), y t (x, 0) = y 1 (x), ω(x, ξ, 0) = 0 x ∈ (0, L), ξ ∈ R. (4.6.3)
The energy of the system (4.6.1)-(4.6.3) is given by 

E 5 (t ) = 1 2 0 -L |u t | 2 + a|u xx | 2 d x + 1 2 L 0 y t 2 + b y xx 2 d x + κ(α) 2 L 0 R |ω(x, ξ, t )| 2 d ξd x.
H 5 = (u, v, y, z, ω) ∈ H 2 L (-L, 0) × L 2 (-L, 0) × H 2 R (0, L) × L 2 (0, L) × W ; u(0) = y(0) ,
where W = L 2 ((0, L) × R) and

H 2 L (-L, 0) = u ∈ H 2 (-L, 0); u(-L) = u x (-L) = 0 , H 2 R (0, L) = y ∈ H 2 (0, L); y(L) = y x (L) = 0 .
(4.6.5)

The energy space H 5 is equipped with the inner product defined by

〈U ,U 1 〉 H 5 = 0 -L v v 1 d x + a 0 -L u xx (u 1 ) xx d x + L 0 zz 1 d x + b L 0 y xx (y 1 ) xx d x +κ(α) L 0 R ω(x, ξ)ω 1 (x, ξ)d ξd x, for all U = (u, v, y, z, ω) and U 1 = (u 1 , v 1 , y 1 , z 1 , ω 1 ) in H 5 .
We use U H 5 to denote the corresponding norm. We define the unbounded linear operator A 5 : D(A 5 ) ⊂ H 5 → H 5 by

D(A 5 ) =                      U = (u, v, y, z, ω) ∈ H 5 ; (v, z) ∈ H 2 L (-L, 0) × H 2 R (0, L), u ∈ H 4 (-L, 0), b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ xx ∈ L 2 (0, L), -|ξ| 2 + η ω(x, ξ) + d (x)z xx |ξ| 2α-1 2 , |ξ|ω(x, ξ) ∈ W, au xxx (0) -b y xxx (0) = 0, u xx (0) = y xx (0) = 0, and v(0) = z(0)                     
, and for all U = (u, v, y, z, ω) ∈ D(A 5 ),

A 5 (u, v, y, z, ω) =              v -au xxxx z -b y xx + d (x)κ(α) R |ξ| 2α-1 2 ω(x, ξ)d ξ xx -|ξ| 2 + η ω(x, ξ) + d (x)z xx |ξ| 2α-1 2              .
4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.6 (EBB)-(EBB) F K V Model

If U = (u, u t , y, y t , ω) is a regular solution of system (4.6.1)-(4.6.3), then the system can be rewritten as evolution equation on the Hilbert space H 5 given by

U t = A 5 U , U (0) = U 0 , (4.6.6) 
where U 0 = (u 0 , u 1 , y 0 , y 1 , 0). Similar to Proposition 4.2.5, the operator A 5 is m-dissipative on H 5 , consequently it generates a C 0 -semigroup of contractions (e t A 5 ) t ≥0 following Lumer-Phillips Theorem 1.2.8. Then the solution of the evolution Equation (4.6.6) admits the following representation

U (t ) = e t A 5 U 0 , t ≥ 0,
which leads to the well-posedness of (4.6.6). Hence, we have the following result. 

U (t ) ∈ C 1 R + , H 5 ∩C 0 R + , D(A 5 ) .
Theorem 4.6.2. Assume that η > 0. The C 0semigroup (e t A 5 ) t ≥0 is polynomially stable; i.e. there exists constant C 5 > 0 such that for every U 0 ∈ D(A 5 ), we have 

E 5 (t ) ≤ C 5 t 2 3-α U 0 2 D(A 5 ) , ∀ t > 0, ∀U 0 ∈ D(A 5 ). ( 4 
1 |λ| 3-α (i λI -A 5 ) -1 L (H 5 ) < ∞, ( Q 2 ) 
are satisfied. Since condition (Q 1 ) is satisfied (similar to Subsection 4.4.1), we still need to prove condition (Q 2 ). For this purpose we will use an argument of contradiction. Suppose that (Q 2 ) is false, then there exists For simplicity, we drop the index n. Equivalently, from (4.6.9), we have

λ n ,U n := (u n , v n , y n , z n , ω n (•, ξ)) ⊂ R * × D(A 5 ) with |λ n | → +∞ and U n H 5 = (u n , v n , y n , z n , ω n (•, ξ)) H 5 = 1, (4.6.8) such that λ 3-α n (i λ n I -A 5 )U n = F n := ( f 1,n , f 2,n , f 3,n , f 4,n , f 5,n (•, ξ)) → 0 in H 5 . ( 4 
i λu -v = f 1 λ 3-α in H 2 L (-L, 0), ( 4 
.6.10)

i λv + au xxxx = f 2 λ 3-α in L 2 (-L, 0), (4.6.11) i λy -z = f 3 λ 3-α in H 2 R (0, L), ( 4 
.6.12) 

i λz + S xx = f 4 λ 3-α in L 2 (0, L), (4.6.13) (i λ + ξ 2 + η)ω(x, ξ) -d (x)z xx |ξ| 2α-1 2 = f 5 (x, ξ) λ 3-α in W, ( 4 
L 0 R |ξ| 2 + η |ω(x, ξ)| 2 d ξd x = o (1) λ 3-α , l 1 l 0 |z xx | 2 d x = o (1) λ 2 , l 1 l 0 y xx 2 d x = o (1) λ 4 and l 1 l 0 |S| 2 d x = o(1) λ 3-α . ( 4 
L 0 h |z| 2 d x + 2b L 0 h y xx 2 d x + b l 0 0 h y xx 2 d x + b L l 1 h y xx 2 d x + Re 2 L 0 h S y x d x -Re 2 l 1 l 0 hS x y xx d x -bh(l 0 ) y xx (l - 0 ) 2 + bh(l 1 ) y xx (l + 1 ) 2 = o(1) λ 3-α . ( 4 

Conclusion

We have studied the stabilization of five models of systems. We considered a Euler-Bernoulli beam equation and a wave equation coupled through boundary connection with a localized non-regular fractional Kelvin-Voigt damping that acts through the wave equation only. We proved the strong stability of the system using Arendt-Batty criteria. In addition, we established a polynomial energy decay rate of type t -4 2-α . Also, we considered two wave equations coupled via boundary connections with localized non-smooth fractional Kelvin-Voigt damping. We showed a polynomial energy decay rate of type t -4 2-α . Moreover, we studied the system of Euler-Bernoulli beam and wave equations coupled through boundary connections where the dissipation acts through the beam equation. We proved a polynomial energy decay rate of type t -2 3-α . In addition, we considered the Euler-Bernoulli beam alone with the same localized non-smooth damping. We established a polynomial energy decay rate of type t -2 1-α . In the last model, we studied the polynomial stability of a system of two Euler-Bernoulli beam equations coupled through boundary conditions with a localized non-regular fractional Kelvin-Voigt damping acting only on one of the two equations. We reached a polynomial energy decay rate of type t -2 3-α .

5 A N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.1 Introduction parts: one that is elastic and the other one that is a Kelvin-Voigt type viscoelastic material was studied extensively. This type of material is encountered in real life when one uses patches to suppress vibrations, the modeling aspect of which may be found in [START_REF] Banks | The modeling of piezoceramic patch interactions with shells, plates, and beams[END_REF]. This type of damping was examined in the one-dimensional setting in [START_REF] Liu | Exponential Decay of Energy of the Euler-Bernoulli Beam with Locally Distributed Kelvin-Voigt Damping[END_REF][START_REF] Liu | Exponential decay of energy of vibrating strings with local viscoelasticity[END_REF][START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF]. Later on, the wave equation with Kelvin-Voigt damping in the multidimensional setting was studied. Let us consider the wave equation with Kelvin-Voigt damping given in the following system

         u t t -div(a∇u + b(x)∇u t ) = 0, in Ω × R * + , u(x, t ) = 0, on Γ × R * + , u(•, 0) = u 0 , u t (•, 0) = u 1 , in Ω.
(5.1.4)

In [START_REF] Falun | On the Mathematical Model for Linear Elastic Systems with Analytic Damping[END_REF], the author proved that when the Kelvin-Voigt damping div(b(x)∇u t ) is globally distributed, i.e. b(x) ≥ b 0 > 0 for almost all x ∈ Ω, the wave equation generates an analytic semi-group. In [START_REF] Liu | Exponential stability for the wave equations with local Kelvin-Voigt damping[END_REF], the authors considered the wave equation with local visco-elastic damping distributed around the boundary of Ω. They proved that the energy of the system decays exponentially to zero as t goes to infinity for all usual initial data under the assumption that the damping coefficient satisfies:

b ∈ C 1,1 (Ω), ∆b ∈ L ∞ (Ω) and |∇b(x)| 2 ≤ M 0 b(x)
for almost every x in Ω where M 0 is a positive constant. On the other hand, in [START_REF] Tebou | A constructive method for the stabilization of the wave equation with localized Kelvin-Voigt damping[END_REF], the author studied the stabilization of the wave equation with Kelvin-Voigt damping. He established a polynomial energy decay rate of type t -1 provided that the damping region is localized in a neighborhood of a part of the boundary and verifies certain geometric condition. Also, in [START_REF] Nicaise | Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback[END_REF], under the same assumptions on b, the authors established the exponential stability of the wave equation with local Kelvin-Voigt damping localized around a part of the boundary and an extra boundary with time delay where they added an appropriate geometric condition. Later on, in [START_REF] Ammari | Stabilization for the Wave Equation with Singular Kelvin-Voigt Damping[END_REF], the wave equation with Kelvin-Voigt damping localized in a subdomain ω far away from the boundary without any geometric conditions was considered. The authors established a logarithmic energy decay rate for smooth initial data. In [START_REF] Cavalcanti | Stabilization of the wave equation with localized compensating frictional and kelvinvoigt dissipating mechanisms[END_REF], the authors proved an exponential decay of the energy of a wave equation with two types of locally distributed mechanisms; a frictional damping and a Kelvin-Voigt damping where the location of each damping is such that none of them is able to exponentially stabilize the system. Under an appropriate geometric condition, piecewise multiplier geometric condition in short PMGC introduced by K. Liu in [START_REF] Liu | Locally Distributed Control and Damping for the Conservative Systems[END_REF], on a subset ω of Ω where the dissipation is effective, they proved that the energy of the system decays polynomially of type t -1 in the absence of regularity of the Kelvin-Voigt damping coefficient b. In [4], the authors considered a multidimensional wave equation with boundary fractional damping acting on a part of the boundary of the domain and they proved stability results under geometric control condition (GCC in short, see Definition 1.4.1). In [5], the author established a polynomial energy decay rate of type t -1 for smooth initial data under some geometric conditions. Also, they proved a general polynomial energy decay estimate on a bounded domain where the geometric conditions on the localized viscoelastic damping are violated and they applied it on a square domain where the damping is localized in a vertical strip. Recently, in [START_REF] Robbiano | Logarithmic Decay of Wave Equation with Kelvin-Voigt Damping[END_REF], the authors analyzed the long time behavior of the wave equation with local Kelvin-Voigt damping where they showed the logarithmic decay rate for energy of the system without any geometric assumption on the subdomain on which the damping is effective. Further, in [START_REF] Burq | Decays for Kelvin-Voigt Damped Wave Equations I: The Black Box Perturbative Method[END_REF], the author showed how perturbative approaches and the black box strategy allow to obtain decay rates for Kelvin-Voigt damped wave equations from quite standard resolvent estimates (for example Carleman estimates or geometric control damping and non smooth coefficient at the interface -5.1 Introduction estimates). Recently, in [START_REF] Burq | DECAY FOR THE KELVIN-VOIGT DAMPED WAVE EQUATION: PIECEWISE SMOOTH DAMPING[END_REF], the authors studied the energy decay rate of the Kelvin-Voigt damped wave equation with piecewise smooth damping on the multi-dimensional domain.

Under suitable geometric assumptions on the support of the damping, they obtained an optimal polynomial decay rate. In 2021, in [START_REF] Burq | Decays rates for Kelvin-Voigt damped wave equations II: the geometric control condition[END_REF], they studied the decay rates for Kelvin-Voigt damped wave equations under a geometric control condition. When the damping coefficient is sufficiently smooth they showed that exponential decay follows from geometric control conditions.

Over the past few years, the coupled systems received a vast attention due to their potential applications. The system of coupled wave equations with only one Kelvin-Voigt damping was considered in [START_REF] Higidio | Optimal decay for coupled waves with Kelvin-Voigt damping[END_REF]. The authors considered the damping and the coupling coefficients to be constants and they established a polynomial energy decay rate of type t -1/2 and an optimality result. In [START_REF] Liu | Stabilité exponentielle des équations des ondes avec amortissement local de Kelvin-Voigt[END_REF], exponential stability for the wave equations with local Kelvin-Voigt damping was considered where the local viscoelastic damping distributed around the boundary of the domain. They showed that the energy of the system goes uniformly and exponentially to zero for all initial data of finite energy. In [START_REF] Zhang | Polynomial decay of an elastic/viscoelastic waves interaction system[END_REF], the author considered the wave equation with Kelvin-Voigt damping in a non empty bounded convex domain Ω with partition Ω = Ω 1 ∩ Ω 2 where the viscoelastic damping is localized in Ω 1 , the coupling is through a common interface. Under the condition that the damping coefficient b is non smooth, she established a polynomial energy decay rate of type t -1 for smooth initial data. Also, in [START_REF] Gerbi | Exact Controllability and Stabilization of Locally Coupled Wave Equations: Theoretical Results[END_REF], the authors studied the stability of coupled wave equations under Geometric Control Condition (GCC in short) where they considered one viscous damping. Finally, in [START_REF] Hayek | A transmission problem of a system of weakly coupled wave equations with Kelvin-Voigt dampings and non-smooth coefficient at the interface[END_REF], the authors considered a system of weakly coupled wave equations with one or two locally internal Kelvin-Voigt damping and non-smooth coefficient at the interface. They established some polynomial energy decay estimates under some geometric condition. The stability of wave equations coupled through velocity and with non-smooth coupling and damping coefficients is not considered yet. Also, the study of the coupled wave equations under several geometric condition is not covered. In this work, we consider the coupled system represented in (5.1.1)-(5.1.3) by considering several geometric conditions (H1), (H2), (H3), (H4), and (H5) ( see Section 5.4) where the coupling is made via velocities and with non smooth coupling and damping coefficients. In addition, this work is a generalization of the work in Chapter 3 to a multidimensional case and we study the stability of the system (5.1.1)-(5.1.3) under several geometric control conditions. We establish polynomial stability when there is an intersection between the damping and the coupling regions. Also, when the coupling region is a subset of the damping region and under Geometric Control Condition GCC. Moreover, in the absence of any geometric condition, we study the stability of the system on the 2-dimensional square domain.

The chapter is organized as follows: first, in Section 5.2, we show that the system (5.1.1)-(5.1.3) is well-posed using semi-group approach. Then, using a unique continuation result based on a Carleman estimate and a general criteria of Arendt-Batty, we prove the strong stability of the system in the absence of the compactness of the resolvent and without any geometric condition. In Section 5.3, using a spectral analysis, we prove the non uniform stability of the system in the case where b(x) = b ∈ R + and c(x) = c ∈ R * . In Section 5.4, we establish some polynomial energy decay rates under several geometric conditions by using a frequency domain approach combined with a multiplier method. In addition, we establish two polynomial energy decay rates on a square domain where the damping and the coupling are localized in a vertical strip. 

Well-Posedness and Strong Stability

Well posedness

In this part, using a semigroup approach, we establish the well-posedness result for the system (5.1.1)-(5.1.3). Let (u, u t , y, y t ) be a regular solution of the system (5.1.1)-(5.1.3). The energy of the system is given by

E (t ) = 1 2 Ω |u t | 2 + |y t | 2 + a|∇u| 2 + |∇y| 2 d x.
(5.2.1)

A straightforward computation gives

E (t ) = - Ω b(x)|∇u t | 2 d x ≤ 0.
Thus, the system (5.1.1)-(5.1.3) is dissipative in the sense that its energy is a non increasing function with respect to the time variable t . We define the energy Hilbert space H by

H = H 1 0 (Ω) × L 2 (Ω) 2
equipped with the following inner product

〈U , U 〉 = Ω a∇u • ∇ ũ + ∇y • ∇ ỹ + v ṽ + z z d x,
for all U = (u, v, y, z) ∈ H and Ũ = ( ũ, ṽ, ỹ, z) ∈ H . Finally, we define the unbounded linear operator A by

D(A ) = U = (u, v, y, z, ω) ∈ H : v, z ∈ H 1 0 (Ω), div(a(x)∇u + b(x)∇v) ∈ L 2 (Ω), y ∈ H 2 (Ω) ∩ H 1 0 (Ω)
and for all U = (u, v, y, z, ω) ∈ D(A ), y,y t ) is a regular solution of system (5.1.1)-(5.1.3), then we rewrite this system as the following evolution equation

A (u, v, y, z) =        v div(a∇u + b(x)∇v) -c(x)z z ∆y + c(x)v        . If U = (u, u t ,
U t = A U , U (0) = U 0 (5.2.2)
where U 0 = u 0 , u 1 , y 0 , y 1 .

Proposition 5.2.1. The unbounded linear operator A is m-dissipative in the energy space H .

Proof. For all U = (u, v, y, z) ∈ D(A ), we have 

Re (A U ,U ) H = - Ω b(x)|∇v| 2 d x ≤ 0, ( 5 
U (t ) ∈ C 1 (R + , H ) ∩C 0 (R + , D(A )).

Strong Stability

This subsection is devoted to study the strong stability of System (5.1.1)-(5.1.3) in the sense that its energy converges to zero when t goes to infinity for all initial data in H . The proof will be done using the unique continuation theorem based on a Carleman estimate and a general criteria of Arendt-Batty (see Theorem 1. Before stating the main theorem of this section, we will give the proof of a local unique continuation result for a coupled system of wave equations. We define the following elliptic operator P defined on a product space by

P : H 2 (V ) × H 2 (V ) → L 2 (V ) × L 2 (V )
u, y → ∆u, ∆y (5. Proof. We call W the region x ∈ V ; f (x) ≥ f (x 0 ) . We choose V and V neighborhoods of x 0 such that V ⊆ V ⊆ V , and we choose a function χ ∈ C ∞ c (V ) such that χ = 1 in V . Set ũ = χu and ỹ = χy. Then, ( ũ, ỹ) ∈ H 2 0 (V ) × H 2 0 (V ). Let ψ = f (x) -c|xx 0 | 2 and set ϕ = e ρψ . Then, apply the Carleman estimate of Lemma 5.2.3 to ũ and ỹ respectively, then sum the two inequalities we obtain Step 1. In this step, we prove that the operator A 1 is an isomorphism operator. For this aim, following the second equation of (5.2.57) we can easily verify that a 1 is a bilinear continuous coercive form on H 1 0 (Ω) × H 1 0 (Ω). Then, by Lax-Milgram Lemma, the operator A 1 is an isomorphism.

Step 2. In this step, we prove that the operator A 2 is compact. According to the third equation of (5.2.57), we have a 2 (u, y), (ϕ, ψ) ≤ C (u, y) L 2 (Ω) (ϕ, ψ) L 2 (Ω) .

Finally, using the compactness embedding from H 1 0 (Ω) to L 2 (Ω) and the continuous embedding from L 2 (Ω) into H -1 (Ω) we deduce that A 2 is compact.

From steps 1 and 2, we get that the operator A = A 1 + A 2 is a Fredholm operator of index zero. Consequently, by Fredholm alternative, to prove that operator A is an isomorphism it is enough to prove that A is injective, i.e. ker {A} = {0}.

Step 3. In this step, we prove that ker{A} = {0}. For this aim, let ũ, ỹ ∈ ker{A}, i.e. a ( ũ, ỹ), (ϕ, ψ) = 0, ∀ ϕ, ψ ∈ H 1 0 (Ω) × H 1 0 (Ω).

Equivalently, we have Now, in order to find the eigenvalues of the operator A we need to give the roots of h. For this aim, we will proceed in the following two steps.

Step 1. Let

f (ξ) = b(ξ 3 + ξ) and f 1 (ξ) = aζ k + c 2 ξ 2 ζ 3 k + (1 + a) ξ 2 ζ k + ξ 4 ζ k .
We look for r k sufficiently small such that This implies that

f > h -f = f 1 on ∂D,
f = b(ξ 3 + ξ) ≥ 3br k 4 , if r k ≤ 1 2 .
On the other hand, since ξ is bounded in D and ξ k → 0 we have,

f 1 (ξ) ≤ c ζ k , for some constant c > 0.
So, it is enough to choose r k = 4c 3b ζ k . Similarly, we can find r k sufficiently small such that

f > h -f = f 1 on ∂D = ∂ {ξ ∈ C; |ξ + i | ≤ r k } .
Step 2. By using Step 1. and Rouché's Theorem, there exists k 0 large enough such that for all |k| ≥ k 0 the roots of the polynoimal h are close to the roots of the polynomial f (ξ) = b(ξ 3 + ξ). Then, The proof is thus complete.

ξ + k = i + ε +
Proof of Theorem 5.3.1. From Proposition 5.3.2 the large eigenvalues in (5.3.12)-(5.3.13) approach the imaginary axis and therefore the system (5.1.1)-(5.1.3) is not uniformly stable in the energy space H .

Polynomial Stability

In this section, we will study the polynomial energy decay rate of the system (5. 2. The GCC is an optimal condition, then we need more regularity to the Γ-condition, thus we need to take Γ of class C 3 .

3. In (H1), if Ω is a convex domain. Then, the condition ω satisfies the GCC means that meas ω ∩ Γ > 0 (i.e meas ω b ∩ Γ > 0 and meas ω c ∩ Γ > 0).

In (H1), if

Ω is a non convex domain. When ω satisfies the GCC, we study the case when meas ω b ∩ Γ > 0 and without the condition meas ω c ∩ Γ > 0. For the case when both ω b and ω c are not near the boundary, we didn't study it since the strong stability remains an open problem in this case. 5. In (H4) and (H5), ω b and ω c does not satisfy any geometric condition. One of the main tools to prove the polynomial stability of (5.1.1)-(5.1.3) such that the assumption (H1) holds and such that c ∈ W 1,∞ (Ω) is to use the exponential energy decay of the coupled wave equations via velocities with two viscous dampings. We consider the following system

               ϕ t t -a∆ϕ + d (x)ϕ t + c(x)ψ t = 0 in Ω × R + , ψ t t -∆ψ + d (x)ψ t -c(x)ϕ t = 0 in Ω × R + , ϕ(x) = ψ(x) = 0 on Γ × R + ,
(ϕ(x, 0), ψ(x, 0)) = (ϕ 0 , ψ 0 ) and (ϕ t (x, 0), ψ t (x, 0)) = (ϕ 1 , ψ 1 ) in Ω.

(5.4.1)

where d ∈ W 1,∞ (Ω) such that

d (x) ≥ d 0 > 0 on ω ⊂ ω ⊂ Ω.
The energy of System (5.4.1) is given by

E aux (t ) = 1 2 Ω ϕ t 2 + a ∇ϕ 2 + ψ t 2 + ∇ψ 2 d x
and by a straightforward calculation, we have

d d t E aux (t ) = - Ω d (x) ϕ t 2 d x - Ω d (x) ψ t 2 d x ≤ 0.
Thus, System (5.4.1) is dissipative in the sense that its energy is a non-increasing function with respect to the time variable t . The auxiliary energy Hilbert space of Problem (5.4.1) is given by

H aux = H 1 0 (Ω) × L 2 (Ω) 2 .
We denote by η = ϕ t and ξ = ψ t . The auxiliary energy space H aux is endowed with the following norm Φ 2 H aux = η 2 + a ∇ϕ 2 + ξ 2 + ∇ψ 2 , where • denotes the norm of L 2 (Ω) and Φ = ϕ, ψ, η, ξ in H aux . We define the unbounded linear operator A aux by where Φ 0 = ϕ 0 , η 0 , ψ 0 , ξ 0 . It is easy to see that A aux is m-dissipative and generates a C 0 -semigroup of contractions e t A aux t ≥0 .

D(A aux ) = H 2 (Ω) ∩ H 1 0 (Ω) × H 1 0 (Ω) 2 , ( 5 
Remark 5.4.2. From [START_REF] Gerbi | Exact Controllability and Stabilization of Locally Coupled Wave Equations: Theoretical Results[END_REF], we know that when ω satisfies the GCC condition and under the equality speed condition we have that the system of two wave equations coupled through velocity with one viscous damping is exponentially stable (see Theorem 3.1 in [START_REF] Gerbi | Exact Controllability and Stabilization of Locally Coupled Wave Equations: Theoretical Results[END_REF]). Taking this result into consideration and the fact that our system is considered with two viscous dampings and that d , c ∈ W 1,∞ (Ω), by proceeding with a similar proof with a ∈ R * + as in Theorem 3.1 in [START_REF] Gerbi | Exact Controllability and Stabilization of Locally Coupled Wave Equations: Theoretical Results[END_REF], we can reach that the system (5.4.1) decays exponentially such that there exists M ≥ 1 and θ > 0 such that for all initial data U 0 ∈ H , the energy of the system (5.4.1) satfisies the following estimation E aux (t ) ≤ Me -θt E (0), ∀ t > 0.

Now, we will state the main theorems in this section.

Theorem 5.4.3. Assume that the boundary Γ is of class C 3 . Also, assume that assumption (H1) holds and that c ∈ W 1,∞ (Ω). Then, for all initial data U 0 ∈ D (A ), there exists a constant C > 0 independent of U 0 , such that the energy of the system (5. where ω ε ⊂ ω such that ω ε satisfies the GCC condition.

Proof. First, we define the function

ζ ∈ C ∞ c (R N ) such that ζ(x) =    1 if x ∈ ω ε , 0 if x ∈ Ω\ω, 0 ≤ ζ ≤ 1
el sewher e, (5.4.17) such that ω ε ⊂ ω satisfies the GCC condition. Multiply Equation (5. Now, since (u, y) ∈ H 1 0 (Ω)× H 1 0 (Ω), then (0, -u, 0, -y) belongs to H aux , and from (5.4.27), there exists (ϕ, η, ψ, ξ) ∈ D(A aux ) such that (i λI -A aux ) (ϕ, η, ψ, ξ) = (0, -u, 0, -y) i .e. Proof. For clarity, we will divide the proof of this Lemma into two steps.

Step 1. Multiply (5. Proof. Let a non-empty open subset ωb such that ω c ⊂ ωb ⊂ ω b . Then, we define the function

h 1 ∈ C ∞ c (R N ) such that h 1 (x) =    1 if x ∈ ωb , 0 if x ∈ Ω\ω b , 0 ≤ h 1 ≤ 1
el sewher e. 

  α < β < γ < L, a > 0 and c 0 ∈ R * and with the following initial dataϕ(•, 0) = ϕ 0 (•), ϕ t (•, 0) = ϕ 1 (•), ψ(•, 0) = ψ 0 (•) and ψ(•, 0) = ψ 1 (•).(0.0.3)

2 . 2 .

 22 n = 2nπi + i arccos cos 2 c 4 -Case If sin c 4 = 0, then λ 1,n = 2nπi + i π +

  L 0 u x (u 1 ) x d x + 0 -L zz 1 d x + b 0 -L y xx (y 1 ) xx d x +κ(α) L 0 R ω(x, ξ)ω 1 (x, ξ)d ξd x,(0.0.33)

-|ξ| 2 + 1 2,

 21 au x + d (x)κ(α) η ω(x, ξ) + d (x)v x |ξ| 2α-|ξ|ω(x, ξ) ∈ W, au x (0) + b y xxx (0) = 0, y xx (0) = 0, and v(0) = z(0)

(

  A1) Assume that ω b and ω c are non-empty open subsets of Ω such that ω c ⊂ ω b and meas ω b ∩ Γ > 0 (see Figures 5.1, 5.2, 5.3). (A2) Assume that ω b and ω c are non-empty open subsets of Ω such that ω = ω b ∩ ω c = . Also, assume that ω satisfies meas(ω ∩ Γ) > 0 (see Figures 5.4, 5.5, 5.6). (A3) Assume that ω b and ω c are non-empty open subset of Ω such that ω = ω b ∩ω c = , meas ω b ∩ Γ > 0 and ω c not near the boundary (see Figure 5.7). (A4) Assume that ω b is non-empty open subsets of Ω and c(x) = c 0 ∈ R * in Ω. Also, assume that ω b is not near the boundary (see Figure 5.8).

  H1) The open subset ω verifies the GCC (see Figure 5.6 and Figure 5.9). (H2) Assume that meas(ω c ∩ Γ) > 0 and meas(ω b ∩ Γ) > 0. Also, assume that ω c ⊂ ω b and ω c satisfies the GCC (see Figure 5.3). (H3) Assume that ω b ⊂ Ω, ω c ⊂ ω b such that Ω is a non-convex open set and ω c satisfies GCC (see Figure 5.10). (
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 115116 An unbounded linear operator T from E into F is a pair (T, D (T )), consisting of a subspace D (T ) ⊂ E ( called the domain of T ) and a linear transformation. T : D (T ) ⊂ E -→ F. In the case when E = F then we say (T, D (T )) is an unbounded linear operator on E . If D (T ) = E then T ∈ L (E , F ). Let T : D (T ) ⊂ E -→ F be an unbounded linear operator.
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 117118 A map T is said to be closed if G (T ) is closed in E × F . The closedness of an unbounded linear operator T can be characterized as following if u n ∈ D (T ) such that u n → u in E and Tu n → v in F, then u ∈ D (T ) and Tu = v. Let T : D (T ) ⊂ E -→ F be a closed unbounded linear operator.

σDefinition 1 . 1 . 10 .Definition 1 . 1 . 11 .

 11101111 r (T ) = {λ ∈ C : ker(λI -T ) = 0 and R(λI -T ) is not dense in F } . Let T : D (T ) ⊂ E -→ F be a closed unbounded linear operator and let λ be an eigevalue of A. A non-zero element e ∈ E is called a generalized eigenvector of T associated with the eigenvalue λ, if there exists n ∈ N * such that (λI -T ) n e = 0 and (λI -T ) n-1 e = 0.If n = 1, then e is called an eigenvector. Let T : D (T ) ⊂ E -→ F be a closed unbounded linear operator.
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 143144 Saying that ω satisfies the Γ-condition if it contains a neighborhood in Ω of the set {x ∈ Γ; (xx 0 ) • ν(x) > 0} ,for some x 0 ∈ R n , where ν is the outward unit normal vector to Γ = ∂Ω. A subset ω satisfies the Piecewise Multiplier Geometric Condition (PMGC in short) if there exist:

|ξ| 2

 2 d x = o(1).

.2. 11 )

 11 Using the fact that λϕ and λψ are uniformly bounded in L 2 (0, L), in particular in L 2 α, β , and the definition of θ, we get Re i λc 0 β α θψϕd x = o(1) and Re i λc 0 β α θϕψd x = o(1).
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 33 Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.1 Introduction with fully Dirichlet boundary conditions,
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  Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.1 Introduction smooth property when the damping is local and a 1 = 1 or b 1 (•) is the characteristic function of any subinterval of the domain. This surprising result initiated the study of an elastic system with local Kelvin-Voigt damping. In 2002, K. Liu and Z. Liu proved that system (3.1.7) is exponentially stable if b 1

3

  Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.2 Well-Posedness and Strong Stability c(x) = c 0 ∈ R * and we prove the lack of exponential stability using Borichev-Tomilov results.
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  Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.2 Well-Posedness and Strong Stability

  2.22), (3.2.23) with the boundary conditions (3.2.34), admits only a trivial solution u = y = 0 if and only

r 5 1 λ 2 c 2 0 . 3 .

 103 Since r 1 = -m 1 = 0, then det(M 2 ) = 0. Thus, System (3.2.22), (3.2.23) with the boundary conditions (3.2.34), admits only a trivial solution u = y = 0 on (α 3 , α 4 ). Case If λ 2 > c 2 0 , then m 2 < 0. Setting r 1 = -m 1 and r 2 = -m 2 .

  Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.2 Well-Posedness and Strong Stability

Theorem 3 . 3 . 1 .

 331 Under hypothesis (3.3.1), for ε > 0 small enough, we cannot expect the energy decay rate 1 t 2 2-ε for all initial data U 0 ∈ D(A ) and for all t > 0. Proof. Following Theorem 1.3.5 of Huang and Prüss it is sufficient to show the existence of a real sequences (λ n ) n with λ n → +∞, (U n ) n ∈ D(A ), and (F n ) n ⊂ H such that (i λ n I -A )U n = F n is bounded in H and λ -2+ε n U n → +∞. For this aim, take

  .3.4) with the boundary conditions u(0) = u(1) = y(0) = y(1) = 0. waves with non smooth coefficients -3.3 Lack of the exponential Stability

  3.5)-(3.3.6) with boundary condition (3.3.10) is given by

  .3.16) The boundary conditions in (3.3.11)-(3.3.14), can be expressed by M (d 1 d 2 D 1 D 2 ) = 0, where

  3.5)-(3.3.14) admits a non trivial solution if and only if d et (M ) = 0. Using Gaussian elimination, d et (M ) = 0 is equivalent to d et (M 1 ) = 0, where M 1 is given by

Proposition 3 . 3 . 4 .

 334 Assume that the condition (3.3.2) holds. Then there exists n 0 ∈ N sufficiently large and two sequences λ 1,n |n|≥n 0 and λ 2,n |n|≥n 0 of simple root of d et (M 1 ) satisfying the following asymptotic behavior: Case 1. If sin c 4 = 0, then

2 . 2 .

 22 Case If sin c 4 = 0, then

.3. 24 )

 24 Proof. Let λ be a large eigenvalue of A , then λ is root of d et (M 1 ). In this Lemma, we give an asymptotic development of the function d et (M 1 ) for large λ. First, using the asymptotic expansion in (3.3.15)-(3.3.16), we get

  .3.28) Since the real part of λ is positive, then lim |λ|→∞ λ -5/2 e -λ = 0, hence e -λ = o(λ -5/2 ), (3.3.29) then, F 2 e -s 2 = -i cλ 11/2 o(λ -5/2 ) . (3.3.30) Inserting (3.3.27) and (3.3.30) in (3.3.17), we get det(M 1 ) = -i c λ 11/2 F (λ),

Case 1 .

 1 If sin c 4 = 0, then R 1 = 0 and R 2 = (-1) n = 0. 3 Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.3 Lack of the exponential Stability It follows that there exists a positive constant C such that

Case 1 . 2 = 2

 122 .3.45) We distinguish two cases. If sin c 4 = 0, then 1cos c

2 .

 2 n -1 ).(3.3.54) Inserting(3.3.54) in (3.3.34), we get (3.3.20). Case If sin c 4 = 0, we get 2,n = O(n -1 ). (3.3.55) Inserting (3.3.55) in (3.3.34), we get (3.3.22). Thus, the proof is complete. Proof of Theorem 3.3.2. From Proposition 3.3.4, the operator A has two branches of eigenvalues such that the real parts tending to zero. Then the energy corresponding to the first and second branch of eigenvalues is not exponentially decaying. Then the total energy of the wave waves with non smooth coefficients -3.4 Polynomial Stability equations with local Kelvin-Voigt damping with global coupling are not exponentially stable in the equal speed case.

.4. 8 ) 3 . 4 . 2 . 1 Lemma 3 . 4 . 3 .

 83421343 RemarkSince v and z are uniformly bounded in L 2 (0, L), then from equations (3.4.4) and (3.4.6), the solution (u, v, y, z) ∈ D(A ) of (3.4.4)-(3.4.7) satisfies the following asymptotic behavior |u x | 2 d x = o λ -4 . (3.4.11) Let ε < α 3 -α 1 4 , the solution (u, v, y, z) ∈ D(A ) of the system (3.4.4)-(3.4.7) satisfies the following estimation α 3 -ε α 1 +ε |v| 2 d x = o(1) and α 3 -ε α 1 +ε |λu| 2 d x = o(1).

  integrate over (0, L), using the fact that g 1 L 2 (0,L) = o(1) and v is uniformly bounded in L 2 (Ω), we get

  .4.14) Using Equation(3.4.8), Remark 3.4.2 and the fact that v and z are uniformly bounded inL 2 (x + b(x)v x ) ρ v + ρv x d x = o(λ -2 ) and 1 λ L 0 c(x)zρvd x = o(1). (3.4.15) Inserting Equation (3.4.15) in Equation (3.4.14), we obtain L 0 i ρ |v| 2 d x = o(1). (3.4.16) Hence, we obtain the first estimation in Equation (3.4.12). Now, multiplying Equation (3.4.4) by λρu integrating over (0, L) and using the fact that f 1 H 1 0 (Ω) = o(1) and Remark 3.4.2, we get L 0 i ρ |λu| 2 d x -L 0 ρλvud x = o(λ -2 ).3 Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.4 Polynomial Stability Using Equation (3.4.16), we get L 0 i ρ |λu| 2 d x = o(1). Then, we obtain the desired second estimation in Equation (3.4.12). Inserting equations (3.4.4) and (3.4.6) respectively in equations (3.4.5) and (3.4.7), we get

.4. 19 ) 3 . 4 . 4 . 2 λy 2 3 -2ε α 2 |z| 2

 1934422322 Lemma Let ε < α 3 -α 1 4 , the solution (u, v, y, z) ∈ D(A ) of the system (3.4.4)-(3.4.7) satisfies the following estimation α 3 -2ε α d x = o(1) and α d x = o(1).(3.4.20)

( 3 . 4 . 21 )

 3421 Multiply equations (3.4.17) by λζy and (3.4.18) by λζu respectively, integrate over (0, L), using Remark 3.4.2 and the fact that

.4. 23 )Using Remark 3 . 4 . 2 , 0 λ

 233420 Lemma 3.4.3 and the fact that y x is uniformly bounded in L 2 (0, L), we getL (au x + b(x)v x ) (ζ y+ζy x )d x = o(1), -L 0 λy x ζ u x d x = o(1) and L 0 λy x ζu x d x = o(1).(3.4.24) Using Lemma 3.4.3, we have that L 0 c(x)ζ |λu| 2 d x = o(1). (3.4.25) Inserting Equations (3.4.24) and (3.4.25) in Equations (3.4.22) and (3.4.23), and summing the result by taking the imaginary part, and using the definition of the functions c and ζ, we get 3 Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.4 Polynomial Stability the first estimation of Equation (3.4.20). Now, multiplying equation (3.4.6

.4. 27 )

 27 Proof. Following Theorem 2.2.1 , the exponential stability of System (2.1.1) proved in Chapter 2, and by taking α = α 2 , β = α 3 -2ε and γ = α 4 , implies that the resolvent of the operator A a defined by (2.1.4)-(2.1.5) is uniformly bounded on the imaginary axis i.e. there exists M > 0 such that sup λ∈R

Lemma 3 . 4 . 6 .

 346 Let ε < α 3 -α 1 4 . Then, the solution (u, v, y, z) ∈ D(A ) of (3.4.4)-(3.4.7) satisfies the following asymptotic behavior estimation L 0 |λu| 2 d x = o(1),

.4. 36 ) 0 λ 2 0 λ 2 ϕ

 360202 Using Equations (3.4.8) and (3.4.27), we get L b(x)v x ϕ x d x = o(1). (3.4.37) Combining Equations (3.4.36) and (3.4.37), we obtain L + aϕ xx λ 2 ud x -L 0 i λ 3 c(x)yϕd x = o(1). (3.4.38)

0 i λ 3 1

 01 .4.40) Using Remark 3.4.2, Lemma 3.4.3 and Equation (3.4.27), we obtain L (α 2 ,α 3 -2ε) (x)uϕd x = o(1).

( 3 . 4 . 41 )

 3441 Inserting Equation(3.4.41) in Equation(3.4.40), we getL 0 |λu| 2 d x -L 0 i λ 3 c(x)ψud x -L 0 i λ 3 c(x)yϕd x = o(1).(3.4.42)3 Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.4 Polynomial Stability

  .4.45) Using Remark 3.4.2, Lemma 3.4.4 and Equation (3.4.27), we obtain L 0 i λ 3 1 (α 2 ,α 3 -2ε) (x)yψd x = o(1).

|v| 2 0 |z| 2 Lemma 3 . 4 . 7 . 0 |u x | 2 d x = o( 1

 20234701 d x = o(1) and L d x = o(1). (3.4.48) Then, the proof has been completed. The solution (u, v, y, z) ∈ D(A ) of the (3.4.4)-(3.4.7) satisfies the following asymptotic behavior estimations L

.4. 50 ) 0 |v| 2 +

 5002 Using equations(3.4.8) and(3.4.34), we getL 0 |u x | 2 d x = o(1).3 Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.5 Conclusion Similarly, multiply (3.4.18) by y and integrate, we get L 0 y x 2 d x = o(1). The proof has been completed. Proof of Theorem 3.4.1.. Consequently, from the results of Lemmas 3.4.6 and 3.4.7, we obtain L |z| 2 + a |u x | 2 + |y x | 2 d x = o (1) .

and the rich 4

 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.1 Introduction references therein.

Figure 4 . 4 -

 44 Figure 4.4 -(EBB) F K V Model

Figure 4 . 5 -

 45 Figure 4.5 -(EBB)-(EBB) F K V

Theorem 4 . 2 . 1 .

 421 Let α ∈ (0, 1), η ≥ 0 and µ(ξ) = |ξ| 2α-1 2

Remark 4 . 2 . 3 .

 423 The condition |ξ|ω(x, ξ) ∈ W is imposed to insure the existence of the integral L 0 R (ξ 2 + η)|ω(x, ξ)| 2 d ξd x in (4.2.9) and d (x) x, ξ)d ξ ∈ L 2 (0, L).

( 4 . 2 . 14 )

 4214 are well defined. 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.2 (EBB)-W F K V Model

Proposition 4 . 2 . 5 .

 425 The unbounded linear operator A 1 is m-dissipative in the energy space H 1 .

( 4 . 2 . 33 )

 4233 and with the continuity transmission conditions u(0) = y(0), au x (0) = -b y xxx (0).

( 4 .

 4 2.34) 

( 4 .

 4 2.38) Then, c 3 a L 2 2 + b = 0. Since a, b > 0, we deduce that c 1 = c 3 = 0. Then we get u = y = 0.

2 λ+η . Substituting ξ by y - 1 12 λ + η 1 2

 211 .73) may be simplified by defining a new variable y = 1 + ξ in equation (4.2.73), we get

+ Re 2b y xxx ϕy x 0 -f 4

 04 2.71) by 2ϕy x and integrating over (-L, 0)ϕy x d x .

( 4 .

 4 2.106) Integrating by parts the second and third terms of the above equation we get Re 2i λ 0 -L

  .2.111) 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.2 (EBB)-W F K V Model Estimation of the term Re 2λ -1+ α

1 |v| 2 1 |u x | 2

 1212 d x = o(1) and a L l d x = o(1). (4.2.120) Using (4.2.119), (4.2.120), (4.2.77) and (4.2.92), we get the desired result of Step 1.

Step 3 .-L |z| 2 +

 32 .2.121) By using Step 1, we get |v(0)| 2 = o(1) and |u x (0)| 2 = o(1). (4.2.122) The aim of this step is to prove that z L 2 (-L,0) = o(1) and y xx L 2 (-L,0) = o(1). Taking h(x) = 0 and ϕ(x) = x + L in Equation (4.2.99), we get 0 3b y xx 2 d x + Re 2Lb y xxx (0)y x (0) -L|z(0)| 2 = o(1). (4.2.123) Using (4.2.122) and the transmission conditions, we obtain b y xxx (0) = a|u x (0)| = o (1) and |z(0)| 2 = |v(0)| 2 = o (1) . (4.2.124) Inserting Equation (4.2.124) in Equation (4.2.123) and using the fact that |y x (0)| ≤ L y xx L 2 (-L,0) = O(1) we get 0 -L |z| 2 d x = o(1) and b 0 -L y xx 2 d x = o(1

.3. 16 )Step 3 .

 163 By using Step 1, we get |v(0)| 2 = |u x (0)| 2 = o(1). (4.3.17) Taking h(x) = 0 and ϕ(x) = x + L in Equation (4.3.15), we get 0 -L |z| 2 + b y x 2 d x -L|z(0)| 2 -bL y x (0) 2 = o(1). (4.3.18) 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.4 W-(EBB) F K V Model Using (4.3.17) and the transmission conditions we have b y x (0) = a|u x (0)| = o (1) and |z(0)| 2 = |v(0)| 2 = o (1

Lemma 4 . 4 . 4 .

 444 .4.15) where S = b y xx + d (x)κ(α) x, ξ)d ξ. Here we will check the condition (R 2 ) by finding a contradiction with (4.4.9) by showing U H 3 = o(1). For clarity, we divide the proof into several Lemmas. Assume that η > 0. Then, the solution (u, v, y, z, ω) ∈ D(A 3 ) of system (4.4.11)-4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.4 W-(EBB) F K V Model (4.4.15) satisfies the following asymptotic behavior estimations L 0 R |ξ| 2 + η |ω(x, ξ)| 2 d ξd x = o

Lemma 4 . 4 . 5 .

 445 Assume that η > 0. The solution (u, v, y, z, ω) ∈ D(A 3 ) of system (4.4.11)-(4.4.15) satisfies the following asymptotic behavior z H 2 (l 0 ,l 1 )

  x∈[0,L] h (x) = m h and max x∈[0,L] h (x) = m h , where 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.4 W-(EBB) F K V Model m h and m h are strictly positive constant numbers. Multiply equation (4.4.14

hEstimation of the term i λ -4+α l 1 l 0 h f 4

 104 Sz x d x . Cauchy Schwarz inequality, the last estimation in (4.4.16), Equation (4.4.19) and the fact that 0 < α < 1, we get i λ zd x . Using Cauchy-Schwarz inequality, the fact thatf 4 L 2 (0,L) = o(1) and the fact that z is uniformly bounded in L 2 (0, L), we get i λ

1 2 L 2 L 2 (Lemma 4 . 4 . 6 .

 1222446 2 (l 0 ,l 1 ) S 1 l 0 ,l 1 ) + S L 2 (l 0 ,l 1 ) = Assume that η > 0. The solution (u, v, y, z, ω) ∈ D(A 3 ) of system (4.4.11)-(4.4.15) satisfies the following asymptotic behavior y(l 0 ) = o(1) λ 2 , y x (l 0 ) = For the proof of (4.4.28). Since y, z ∈ H 2 (0, L), Sobolev embedding theorem implies that y, z ∈ C 1 [0, L]. Then, using the second estimation in Lemma 4.4.5 we get (4.4.28). Define J (z)(x) + J ( f 4 )]. (4.4.31) From (4.4.14) and (4.4.31), we get X xx = z. (4.4.32) From (4.4.31), Lemma 4.4.4 and using the fact that f 4 L 2 (0,L) = o(1), we have that λX L 2 (l 0 ,l 1 ) ≤ S L 2 (l 0 ,l 1 ) + J ( f 4 ) L 2 (l 0 ,l 1 ) 32) and Lemma 4.4.5, we getX xx L 2 (l 0 ,l 1 ) = o(1) λ , X xxx L 2 (l 0 ,l 1 ) = o(1) λ ,and X xxxx L 2 (l 0 ,l 1 ) = o(1) λ . (4.4.35) 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.4 W-(EBB) F K V Model

38 )Lemma 4 . 4 . 7 .g |v| 2 + 0 zh y x d x + Re 2 L 0 hS xx y x d x = Re 2λ -3+α L 0 f 4 h 0 hz( f 3 )f 4 2 L 0 hS xx y x d x = Re 2 L 0 h S y x d x + Re 2 L 0 h S y xx d x -Re 2 L 0

 3844720200403420202020 We note that S = b y xx on (0, l 0 ) ∪ (l 1 , L). Also, we have that y ∈ H 4 (0, l 0 ) and y ∈ H 4 (l 1 , L). From (4.4.31), we haveb y xxx (l - 0 ) = J ( f 4 )i λX x (l 0 ) and b y xxx (l + 1 ) = J ( f 4 )i λX x (l 1). (4.4.39) Dividing Equation (4.4.39) by λ 1 2 , and using Equation (4.4.38) and the fact that f 4 L 2 (0,L) = o(1), we get Equation(4.4.29). Thus, the proof of the Lemma is complete. Assume that η > 0. The solution (u, v, y, z, ω) ∈ D(A 3 ) of system (4.4.11)-(4.4.15) satisfies the following asymptotic behavior for every h ∈ C 2 ([0, L]) and h(0) = h(L) = 0, and for every g∈ C 1 [-L, 0] a|u x | 2 d xg (0)|v(0)| 2ag (0)|u x (0)| 2 + ag (-L)|u x (-L)| 2 = o(1) λ 3-α . (4.4.41) Proof. Multiply Equation (4.4.14) by 2h y x and integrate over (0, L), we get Re 2i λ L h y x d x . (4.4.42)From Equation (4.4.13) we havei λy x = -v x -λ -3+α ( f 3 ) |z| 2 d x -Re 2λ -3+α L x d x . (4.4.43) Estimation of the term Re 2λ -3+α L 0 hz( f 3 ) x d x . Using Cauchy-Schwarz inequality, the 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.4 W-(EBB) F K V Model definition of h, the fact that f 3 H 2 (0,L) = o(1), and that z is uniformly bounded in L 2 (0, L), h y x d x . Using Cauchy-Schwarz inequality, the definition of h, the fact that f 4 L 2 (0,L) = o(1), and that y x L 2 (0,L) y xx L 2 (0,L) = O(1), we get Re 2λ -3+α For the second term of Equation (4.4.42), integrating by parts we get Re hS x y xx d x .

  x, ξ)d ξd x . Using Cauchy-Schwarz inequality, the definition of the functions d (x) and h, and using Lemma 4.4.4

( 4 . 4 . 51 ) 4 2 +bh(l 1 ) 54 )ggf 2 +

 4451421542 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.4 W-(EBB) F K V Model Integrating the above Equation by parts, we get -2 d xbh(l 0 ) y xx (l 0 ) l 0 ) y xx (l 0 ) 2 + bh(l 1 ) y xx (Equations (4.4.45), (4.4.46), and (4.4.53) into (4.4.42), we get our desired result. Now, we will prove Equation (4.4.41). For this aim, multiply Equation (4.4.12) by 2g u x and integrate over (-L, 0), we get We havei λu x = -v x -λ -3+α ( f 1 ) x . Then, |v| 2 d xg (0)|v(0)| 2 -Re 2λ -3+α 0 -L v g ( f 1 ) x d x . (4.4.55) Estimation of the term Re 2λ -3+α 0 -L v g ( f 1 ) x d x . Using Cauchy-schwarz inequality, f 1 H 2 L (-L,0) = o(1), and the fact that v is bounded in L 2 (0, L), we get Re 2λ -3+α 0 -L v g ( f 1 ) x d x ≤ o(1) λ 3-α . (4.4.56) Then, using the above equation, (4.4.|u x | 2 d xg (0)|u x (0)| 2 + ag (-L)|u x (-L)g u x d x . Using Cauchy-Schwarz inequality, f 2 L 2 (-L,0) = 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.4 W-(EBB) F K V Model Integrating by parts the second term in Equation (4.4.65), and using Lemma 4.4.6Re 2b y xxx (l - 0 )y x (l 0 )

Lemma 4 . 4 . 9 .

 449 Assume that η > 0. The solution (u, v, y, z, ω) ∈ D(A 3 ) of system (4.4.11)-(4.4.15) satisfies the following asymptotic behavior y xx (l -

.4. 72 ) 1 l 0 ,

 7210 By using the solution Y we obtain the solution of the differential equation (4.4.72)Y 2 l 0 = K 2 e -i µ(x-l 0 ) (2s-x-z) F(z)d zd s.

( 4 . 4 . 73 )

 4473 Integrating by parts the last term of the above Equation,z)µ F(z)d z.

e

  (s-l 0 )µ sin (s -z)µ F(z)d zd s .

( 4 . 4 . 77 ) 4 1 bλ 3 1 bλ 3

 447741313 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.4 W-(EBB) F K V ModelFor the integral in the above Equation, s-l 0 ) sin (s -z)µ F(z)d zd s = s-l 0 ) sin (sz)µ f 4 (z)d zd s + s-l 0 ) sin (sz)µ i λ f 3 (z)d zd s.

( 4 . 4 . 78 ) 1 bλ 3 3 1 bλ 3 e2be µl 0 λ 3

 4478133133 Estimation of the first integral in the right side of Equation (4.4.78), using the fact that f 4 L 2 (0,L) = o(1), we get s-l 0 ) sin (sz)µ f 4 (z)d zd s ≤ l second term in the second side of Equation (4.4.78). Integrating by parts, using the fact thatf 3 (0) ( f 3 ) x L 2 (0,L) = o(1), f 3 (l 0 ) ( f 3 ) x L 2 (0,L) = o(1) and f 3 L 2 (0,L) = o(1), we get µ(s-l 0 ) sin (sz)µ i λ f 3 (z)d zd s = i λe -µl 0 bλ 3µs sin (sz)µ d s f 3 (z)d z = i λe -µl 0 2bµλ 3-α l 0 0 cos µz + sin µze µz f 3 (z)d z ≤ λ s-l 0 ) sin (s -z)µ F(z)d zd s = * + ,and using Lemmas 4.4.6 and 4.4.8, and Equation (4.4.80) in Equation (4.4.77), we get that

1 e

 1 -µ(s-l 1 ) sin (s -z)µ F(z)d zd s = taking ζ = λ(L -l 1 ) 2 , and using Lemmas 4.4.6, 4.4.8, and Equation (4.4.85) in (4.4.84), we get

Lemma 4 . 4 . 10 . 0 |z| 2

 441002 Assume that η > 0. The solution (u, v, y, z, ω) ∈ D(A 3 ) of system (4.4.11)-(4.4.15) satisfies the following asymptotic behavior L Taking h(x) = xθ 1 (x) in Equation (4.4.40), where θ 1 ∈ C 1 ([0, L]) is defined as follows

( 4 . 4 . 87 ) 4

 44874 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.4 W-(EBB) F K V Model Estimation of the term Re 2 L 0 h S y x d x . Using Cauchy-Schwarz inequality, the definition of h, Lemmas 4.4.4 and 4.4.5xx d x . Using Cauchy-Schwarz inequality, the definition of h, Lemmas 4.4.4 and 4.4.5h(x) = xθ 2 (x) in Equation (4.4.40), where θ 2 ∈ C 1 ([0, L]) is defined as follows

Lemma 4 . 4 . 11 .

 4411 the third estimation of (4.4.16), Lemma 4.4.5 and combining Equations (4.4.91), and (4.4.93) we get our desired result. Assume that η > 0. The solution (u, v, y, z, ω) ∈ D(A 3 ) of system (4.4.11)-(4.4.15) satisfies the following asymptotic behavior y xxx (0) = o(1). (4.4.94)

  .5.1) with the boundary conditions

  .5.11) where S = b y xx + d (x)κ(α) x, ξ)d ξ. Here we will check the condition (P 2 ) by finding a contradiction with (4.5.7) by showing U H 4 = o(1).

5 A

 5 N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.2 Well-Posedness and Strong Stability

  3.3). For this aim, we assume that there exists constants b 0 > 0 and c 0 > 0 and two nonempty open sets ω b ⊂ Ω andω c ⊂ Ω, such that b(x) ≥ b 0 > 0, ∀ x ∈ ω b , (5.2.14) c(x) ≥ c 0 > 0, ∀ x ∈ ω c . (5.2.15) In this part, we prove that the energy of the System (5.1.1)-(5.1.3) decays to zero as t tends to infinity if one of the following assumptions hold: (A1) Assume that ω b and ω c are non-empty open subsets of Ω such that ω c ⊂ ω b and meas ω b ∩ Γ > 0 (see Figures 5.1

  , 5.2, 5.3). (A2) Assume that ω b and ω c are non-empty open subsets of Ω such that ω = ω b ∩ ω c . Also, assume that ω satisfies meas(ω ∩ Γ) > 0 (see Figures 5.4, 5.5, 5.6). (A3) Assume that ω b and ω c are non-empty open subsets of Ω such that ω = ω b ∩ ω c , meas ω b ∩ Γ > 0 and ω c not near the boundary (see Figure 5.7). (A4) Assume that ω b is non-empty open subset of Ω and c(x) = c 0 ∈ R * in Ω. Also, assume that ω is not near the boundary (see Figure 5.8).
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 5152535455565758 Figure 5.1 Figure 5.2
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 15217523524 2.16)5 A N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.2 Well-Posedness and Strong Stability and the following function g defined byg : L 2 (V ) × L 2 (V ) → L 2 (V ) × L 2 (V ) u, y → -λ 2 u + c(x)i λy , -λ 2 yc(x)i λuLemma (See[START_REF] Hörmander | Linear Partial Differential Operators[END_REF] also[START_REF] Hayek | A transmission problem of a system of weakly coupled wave equations with Kelvin-Voigt dampings and non-smooth coefficient at the interface[END_REF]) Let V be a bounded open set in R N and let ϕ = e ρψ with ψ ∈ C ∞ (R N , R); ∇ x ψ > 0 and ρ > 0 large enough. Then, there exist τ 0 large enough and C > 0 such thatτ 3 e τϕ u 2 L 2 (V ) + τ e τϕ ∇ x u 2 L 2 (V ) ≤ C e τϕ ∆u 2 L 2 (V ), for all u ∈ H 2 0 (V ) and τ > τ 0 . (5.2.18) Let Ω be a bounded open set in R N and x 0 be a point in Ω. In a neighborhood V of x 0 ∈ Ω, we take a function f such that ∇ f = 0 in V . Moreover, let (u, y) ∈ H 2 (V ) × H 2 (V ) be a solution of P (u, y) = g (u, y). If u = y = 0 in {x ∈ V ; f (x) ≥ f (x 0 )} then u = y = 0 in a neighborhood of x 0 .

τ 3 Ve 3 Ve 3 Ve 3 Ve 3 Ve

 33333 2τϕ | ũ| 2 + ỹ 2 d x + τ V e 2τϕ |∇ ũ| 2 + ∇ ỹ 2 d x ≤ C V e 2τϕ |∆ ũ| 2 + ∆ ỹ 2 d x. As V ⊆ V and χ ∈ C ∞ c (V ) such that χ = 1 in V , we get τ 2τϕ |u| 2 + y 2 d x + τ V e 2τϕ |∇u| 2 + ∇y 2 d x ≤ C V e 2τϕ |∆u| 2 + ∆y 2 d x +C V \V e 2τϕ |∆ ũ| 2 + ∆ ỹ 2 d x.(5.2.19) This implies that,τ 2τϕ |u| 2 + y 2 d x ≤ C V e 2τϕ |∆u| 2 + ∆y 2 d x +C V \V e 2τϕ |∆ ũ| 2 + ∆ ỹ 2 d x.We have that, a∆u = -λ 2 u + c(x)i λy and ∆y = -λ 2 uc(x)i λu. Then, there exists C λ,c,a > 0 such thatτ 3 -C λ,c,a V e 2τϕ |u| 2 + y 2 d x ≤ C V \V e 2τϕ |∆ ũ| 2 + ∆ ỹ 2 d x.(5.2.20)Then, there exists τ > 0 large enough and C > 0 such thatτ 2τϕ |u| 2 + y 2 d x ≤ C V \V e 2τϕ |∆ ũ| 2 + ∆ ỹ 2 d x. (5.2.21) By using that u = y = 0 in W , we obtain τ 2τϕ |u| 2 + y 2 d x ≤ C S e 2τϕ |∆ ũ| 2 + ∆ ỹ 2 d x. (5.2.22) 5 A N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.2 Well-Posedness and Strong Stability three steps.
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 2222539532 ũϕ + ỹψ d x + i λ Ω c(x) ỹϕũψ d x + Ω a∇ ũ∇ϕ + ∇ ỹ∇ψ d x +i λ Ω b(x)∇ ũ∇ϕd x = 0. (5.2.58) Taking ϕ = ũ and ψ = ỹ in equation (5.2.58), we get-λ -2λ Im Ω c(x) ỹ ũd x + i λ Ω b(x)|∇ ũ| 2 d x = 0.Taking the imaginary part of the above equality, we getΩ b(x)|∇ ũ| 2 d x = 0, -a∆u + i λc(x) ỹ = 0, in Ω -λ 2 ỹ -∆yi λc(x) ũNow, it is easy to see that the vector Ũ defined by Ũ = ũ, i λ ũ, ỹ, i λ ỹ belongs to D(A ) and damping and non smooth coefficient at the interface -5.3 Non Uniform Stability Substitute (5.3.8) in (5.3.6), we get   (a + λb)∆ 2 y -(1 + a)λ 2 + bλ 3 ∆y + λ 2 λ 2 + α 2 y = 0, in Ω y = ∆y = 0 on Γ.Now, let (µ k , ϕ k ) be, respectively, the sequence of the eigenvalues and the eigenvectors of the Laplace operator with fully Dirichlet boundary conditions in Ω, i.e,-∆ϕ k = µ 2 k ϕ k in Ω, ϕ k = 0 on Γ. (5.3.10)Then by taking y = ϕ k in (5.3.9), we deduce the following characteristic equationP (λ) = λ 4 + bµ 2 k λ 3 + (1 + a)µ 2 k + c 2 λ 2 + bµ 4 k λ + aµ 4 k = 0. (5.3.11) There exists k 0 ∈ N sufficiently large and two sequences λ 1,k |k|≥k 0 and λ 2,k |k|≥k 0 of simple roots of P satisfying the following asymptotic behavior λ 1,k = i µ k -Set ξ = λ µ k and ζ k = 1 µ k in (5.3.11), we obtain h(ξ) = bξ 3 + bξ + aζ k + c 2 ξ 2 ζ 3 k + (1 + a) ξ 2 ζ k + ξ 4 ζ k = 0. (5.3.14)

2 5

 2 whereD = {ξ ∈ C ; |ξi | ≤ r k }. Let ξ ∈ ∂D(i , r k ), then ξ = i + r k e i θ with 0 ≤ θ ≤ 2π. We have f (ξ) = b(ξ 3 + ξ) = bξr k 2i e i θ + r k e 2i θ . But, if r k ≤ 1 2 then |ξ| ≥ |1r k | ≥ 1 A N-dimensionalelastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.4 Polynomial Stability and 2i e i θ + r k e 2i θ ≥ 2i e i θr k ≥ 3 2 .

k 4 k λ 2 +

 42 and ξ - k = -i + ε - k , with lim |k|→∞ ε ± k = 0. (5.3.15)Inserting Equation(5.3.15) in Equation (5.3.14) and using the fact thatλ ± k = µ k ξ ± k , we get ε ± k = o 1 µ k and λ ± k = ±i µ k + εk ,where lim |k|→+∞ bλ + a = 0. (5.3.17) Inserting Equation (5.3.16) in Equation (5.3.17), we get εk = -

  1.1)-(5.1.3). In order to study the energy decay rate of the system, we consider the following geometric assumptions on ω b , ω c and ω = ω b ∩ ω c = : (H1) The open subset ω verifies the GCC (see Figure 5.6 and Figure 5.9).5 A N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.4 Polynomial Stability (H2) Assume that meas(ω c ∩ Γ) > 0 and meas(ω b ∩ Γ) > 0. Also, assume that ω c ⊂ ω b and ω c satisfies the GCC (see Figure 5.3). (H3) Assume that ω b ⊂ Ω, ω c ⊂ ω b such that Ω is a non-convex open set and ω c satisfies GCC (see Figure 5.10). (H4) Assume that Ω = (0, L)×(0, L), ω c ⊂ ω b such that ωb = (x, y) ∈ R 2 ; ε 1 < x < ε 4 and 0 < y < L , ω c = (x, y) ∈ R 2 ; ε 2 < x < ε 3 and 0 < y < L for 0 < ε 1 < ε 2 < ε 3 < ε 4 < L (seeFigure 5.11). (H5) Assume that Ω = (0, L)×(0, L), ω c ⊂ ω b such that ω b = (x, y) ∈ R 2 ; 0 < x < ε 2 and 0 < y < L and ω c = (x, y) ∈ R 2 ; 0 < x < ε 1 and 0 < y < L for 0 < ε 1 < ε 2 < L (see Figure5.12).
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  a∆ϕd (x)ηc(x)ξ ξ ∆ψd (x)ξ + c(x)η ϕ, ψ, η,ξ is the state of System (5.4.1), then this system is transformed into a first order evolution equation on the auxiliary Hilbert space H aux given byΦ t = A aux Φ, Φ(0) = Φ 0 ,5 A N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.4 Polynomial Stability
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 21222221054412222545 1.1)-(5.1.3) satisfies the following estimation E (t ,U ) ≤ C t (A ) , ∀t > 0. (5.4.3) According to Theorem 1.3.10 of Borichev and Tomilov, by taking = 2, the polynomial energy decay (5.4.3) holds if the following conditionsi R ⊂ ρ(A ), i λI -A ) -1 L (H ) < ∞,(C2)are satisfied. Since Condition (C1) is already proved in Lemmas 5.2.7 and 5.2.8. We will prove condition (C2) by an argument of contradiction. For this purpose, suppose that (C2) is false, then there existsλ n ,U n := (u n , v n , y n , z n ) ⊂ R * × D(A ) with |λ n | → +∞ and U n H = (u n , v n , y n , z n ) H = 1, (5.4.4) such that (λ n ) 2 (i λ n I -A )U n = F n := ( f 1,n , f 2,n , f 3,n , f 4,n ) → 0 in H . (5.4.5)For simplicity, we drop the index n. Equivalently, from (5.4.5), we havei λuv = f λvdiv(a∇u + b(x)∇v) + c(x)z = f λzdiv(∇y)c(x)v = f 4 λ 2 in L 2 (Ω).(5.4.9) 5 A N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.4 Polynomial Stability Here we will check the condition (C2) by finding a contradiction with (5.4.4) such as U H = o(1). From Equations (5.4.4), (5.4.6) and (5.4.8) we obtain u LFor clarity, we will divide the proof into several lemmas. Assume that the assumption (H1) holds. Then, we have that the solution (u, v, y, z) ∈ D(A ) of (5.4.6)-(5.4.9) satisfies the following estimations∇v L 2 (ω b ) = o(1) λ , v L 2 (ω b ) = o(1) λ u L 2 (ω b ) = o(1) λ 2 and ∇u L 2 (ω b ) = o(1) λ 2 . (5.4.11)Proof. Taking the inner product of (5.4.5) with U in H , we getΩ b(x) |∇v| 2 d x = -Re (〈A U ,U 〉 H ) = Re (〈(i λI -A )U ,U 〉 H ) = oinequalityand Equation (5.4.13), we get the second estimation in (5.4.11). From Equation (5.4.6) and the second estimation in (5.4.11), we obtain u L 2 (ω b ) = o(By using (5.4.6) and the first estimation in (5.4.11), we get the last estimation. Inserting Equations (5.4.6) and (5.4.8) into (5.4.7) and (5.4.9), we get λ 2 u + div(a∇u + b(x)∇v)i λc(x)y = -f + ∆y + i λc(x)u = -f 4 λ 2 + c(x) Assume that the assumption (H1) holds. Then, the solution (u, v, y, z) ∈ D(A ) of (5.4.6)-(5.4.9) satisfies the following estimation

3 Ωwe get λ 3 ΩΩLemma 5 . 4 . 6 .λ 2 ϕ

 335462 4.14) by λζy and integrate over Ω and using Green's formula, and using Equation(5.4.10) and the fact thatF H = ( f 1 , f 2 , f 3 , f 4 ) H = o(1), we get 5 A N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.4 Polynomial Stability λ uζyd x -λ Ω (a∇u + b(x)∇v) • (y∇ζ + ζ∇y)d xi first term in (5.4.18). Using Cauchy-Schwarz inequality, (5.4.11) and (5.4.10)uζyd x ≤ λ 3 u L 2 (ω) • y L 2 (ω) = o(1). (5.4.19)Estimation of the second term in(5.4.18). Using Cauchy-Schwarz inequality, (5.4.10),(5.4.11), the fact that supp ζ ⊂ ω, and that U H = 1, we obtain the following estimationsλ Ω a∇u • ∇ζyd x ≤ λ ∇u L 2 (ω) • y L 2 (ω ε ) = oa∇uζ∇yd x ≤ λ ∇u L 2 (ω) • ∇y L 2 (ω) = o(1) λ , (5.4.21) λ Ω b(x)∇vζ∇yd x ≤ λ ∇v L 2 (ω) • ∇y L 2 (ω) = o(1), (5.4.22) λ Ω b(x)∇v • ∇ζyd x ≤ λ ∇v L 2 (ω ε ) • y L 2 (ω ε ) = o5.4.19)-(5.4.23) in Equation (5.4.18), we get that i Ω c(x)ζ λy 2 d x = o(1). (5.4.24)Using the definiton of the function c and ζ, we obtain our desired result. For any λ ∈ R, the solution ϕ, ψ ∈ ((H 2 (Ω) ∩ H 1 0 (Ω)) 2 of the system+ a∆ϕi λd (x)ϕi λc(x)ψ = u, in Ω λ 2 ψ + ∆ψi λd (x)ψ + i λc(x)ϕ = y, in Ω ϕ = ψ = 0, on Γ (5.4.25)satisfies the following estimationλϕ L 2 (Ω) + ∇ϕ L 2 (Ω) + λψ L 2 (Ω) + ∇ψ L 2 (Ω) ≤ M u L 2 (Ω) + y L 2 (Ω) . (5.4.26) Proof. Using Remark 5.4.2, then the resolvent set of the associated operator A aux contains i R and (i λI -A aux ) -1 is uniformly bounded on the imaginary axis. Consequently, there exists M > 0 such that sup λ∈R (i λI -A aux ) -1 L (H aux ) ≤ M < +∞. (5.4.27)
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 5547 N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.4 Polynomial Stability i λϕη = 0, (5.4.28)i λη -a∆ϕ + d (x)η + c(x)ξ = -u,(5.4.29)i λψξ = 0, (5.4.30)i λξ -∆ψ + d (x)ξc(x)η = -y, (5.4.31) such that (ϕ, η, ψ, ξ) H a ≤ M u L 2 (Ω) + y L 2 (Ω) .(5.4.32)From equations (5.4.28)-(5.4.32), we deduce that (ϕ, ψ) is a solution of (5.4.25) and we haveλϕ L 2 (Ω) + ∇ϕ L 2 (Ω) + λψ L 2 (Ω) + ∇ψ L 2 (Ω) ≤ M u L 2 (Ω) + y L 2 (Ω) . (5.4.33) Thus, we get our desired result. Assume that the assumption (H1) holds. Then, the solution (u, v, y, z) ∈ D(A ) of (5.4.6)-(5.4.9) satisfies the following estimations Ω |λu| 2 d x = o(1) and Ω λy 2 d x = o(1). (5.4.34)
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 2333334123232335482225414 4.14) by λ 2 ϕ and integrate over Ω, and using Green's formula, Equation(5.4.26), and the fact thatF H = ( f 1 , f 2 , f 3 , f 4 ) H = o(1), we obtain Ω λ 2 ϕ + a∆ϕ λ 2 ud x -λ 2 Ω b(x)∇v • ∇ϕd x -Ω i λ 3 c(x)yϕd x = ob(x)∇v • ∇ϕd x = o(1). (5.4.36) By using Equation (5.4.36) in (5.4.35), we getΩ λ 2 ϕ + a∆ϕ λ 2 ud x -Ω i λ 3 c(x)yϕd x = o(1). (5.4.37)Now, from System (5.4.25), we have thatλ 2 ϕ + a∆ϕ = -i λd (x)ϕi λc(x)ψ + u. (5.4.38) Inserting Equation (5.4.38) into (5.4.37), we obtain Ω c(x)uψd x -Ω i λ 3 c(x)yϕd x = o(1). (5.4.39) By using (5.4.11) and (5.4.26), we geti λ (x)uϕd x ≤ λ 3 u L 2 (ω ε ) • ϕ L 2 (Ω) = o(1) λ . (5.4.40) 5 A N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.4 Polynomial Stability Now, inserting Equation (5.4.40) into (5.4.39), we get Ω c(x)yϕd x = o(1).(5.4.Step Multiply Equation (5.4.15) by λ 2 ψ, integrate over Ω, using Green's formula, and the fact thatF H = ( f 1 , f 2 , f 3 , f 4 ) H = o(1), we obtain Ω λ 2 ψ + ∆ψ λ 2 yd x + i λ + ∆ψ = -i λd (x)ψ + i λc(x)ϕ + y (5.4.43)Inserting (5.4.43) into (5.4.42), we getΩ λy 2 d xi λ 3 Ω d (x)yψd x + i λ 3 Ω c(x)yϕd x + i λ 3 Ω c(x)uψd x = o(1) λ . (5.4.44) Using Cauchy-Schwarz inequality, Lemma 5.4.5, and Equation (5.4.26) i (x)yψ = o(1). (5.4.45) Inserting (5.4.45)into (5.4.44), we get Ω λy c(x)uψd x = o(1). (5.4.46) Adding Equations (5.4.41) and (5.4.46), we get Ω |λu| 2 d x = o(1) and Ω λy 2 d x = o(1). (5.4.47) Thus, the proof of the Lemma is completed. Assume that the assumption (H1) holds. Then, the solution (u, v, y, z) ∈ D(A ) of (5.4.6)-(5.4.9) satisfies the following estimations Ω |∇u| 2 d x = o(1) and Ω ∇y 2 d x = o(1). (5.4.48) Proof. Multiply Equation (5.4.14) by u, integrating over Ω, Green's formula, Equation (5.4.10) and the fact that F H = ( f 1 , f 2 , f 3 , f 4 ) H = o(1), we obtain Ω |λu| 2 d xa Ω |∇u| 2 d x -Ω b(x)∇v • ∇ud x -11) and Lemma 5.4.7, we obtain Ω |∇u| 2 d x = o(1). (5.4.50) damping and non smooth coefficient at the interface -5.4 Polynomial Stability Inserting Equations (5.4.56) and (5.4.58) into (5.4.57) and (5.4.59), we get λ 2 u + div(a∇u + b(x)∇v)i λc(x)y = -f + ∆y + i λc(x)u = -Assume that assumption (H3) holds. Then, the solution (u, v, y, z) ∈ D(A ) of (5.4.56)-(5.4.59) satisfies the following estimation ωb |λu| 2 d x = o(1).(5.4.67)such that ω c ⊂ ωb ⊂ ω b .
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 554153323232325420335421222 4.68) Multiply(5.4.65) by h 1 u and integrate over Ω, we getΩ h 1 |λu| 2 d x -Ω (a∇u + b(x)∇v) • (h 1 ∇u + ∇h 1 u)d xi λ Ω h 1 c(x)yud x = o(1) λ 2 . (5.4.69) Using (5.4.60) and (5.4.61), we have Ω (a∇u + b(x)∇v) • (h 1 ∇u + ∇h 1 u)d x = ousing Equations (5.4.70) and (5.4.71) in (5.4.69), we obtain Ω h 1 |λu| 2 d x = O(1) λ . (5.4.72) Thus, we reach our desired result. Assume that assumption (H2) or (H3) holds. Then, the solution (u, v, y, z) ∈ D(A ) of (5.4.56)-(5.4.59) satisfies the following estimation ω c λy 2 d x = o(1). (5.4.73)Proof. Case1. Assume that assumption (H2) holds, we define the functionρ ∈ C ∞ c (R N ) such that ρ(x) =    1 if x ∈ ω c , 0 if x ∈ Ω\ω b , 0 ≤ ρ ≤ 1el sewher e.(5.4.74) 5 A N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.4 Polynomial Stability Now, multiplying (5.4.65) by λρy, integrating over Ω and using Green's formula, (5.4.60) and the fact thatF H = ( f 1 , f 2 , f 3 , f 4 ) H = o(1), we get λ uρyd x -λ Ω (a∇u + b(x)∇v) • (∇ρy + ρ∇y)d xi 4.60),(5.4.61) and Cauchy-Schwarz we obtainλ uρyd x ≤ λ 3 u L 2 (ω b ) • y L 2 (ω b ) = o(1) b(x)∇v) • (∇ρy + ρ∇y)d x = o(1).(5.4.77)Thus, using Equations (5.4.76) and (5.4.77) in (5.4.75) we obtain our desired result for the first case. Assume that assumption (H3) holds. Define the functionh 2 ∈ C ∞ c (R N ) such that h 2 (x) =    1 if x ∈ ω c , 0 if x ∈ Ω\ ωb , 0 ≤ h 2 ≤ 1el sewher e.(5.4.78)Multiply (5.4.65) by λh 2 y and integrate over Ω, and using Green's formula, (5.4.60) and the fact thatF H = ( f 1 , f 2 , f 3 , f 4 ) H = o(1), we get λ yd x -λ Ω (a∇u + b(x)∇v) • (∇h 2 y + h 2 ∇y)d xi Ω c(x)h 2 λy 2 d x = o(1) λ . (5.4.79) Using (5.4.60), (5.4.61) and Cauchy-Schwarz, we obtain λ Ω (a∇u + b(x)∇v) • (∇h 2 y + h 2 ∇y)d x = o(1). (5.4.80) By using Equation (5.4.80) in (5.4.79), we obtain λ yd xi Ω c(x)h 2 λy 2 d x = o(1). (5.4.81)Now, multiply (5.4.66) by λh 2 u and integrate over Ω, and using Green's formula, (5.4.60) and the fact thatF H = ( f 1 , f 2 , f 3 , f 4 ) H = o(1), we get λ ud x -λ Ω ∇y(∇h 2 u + h 2 ∇u)d x + i c 0 54), (5.4.60) and Cauchy-Schwarz, we obtain λ Ω ∇y • (∇h 2 u + h 2 ∇u)d x = o(1). (5.4.83) damping and non smooth coefficient at the interface -5.4 Polynomial Stability Inserting Equations (5.4.106) and (5.4.108) into (5.4.107) and (5.4.109), we getλ 2 u + div(a∇u + b(x)∇v)i λc(x)y = -f 2 λ 2+4βc(x) f 3 λ 2+4β -i f 1 λ 1+4β ,(5.4.112)λ 2 y + ∆y + i λc(x)u = -f 4 λ 2+4β + c(x) f 1 λ 2+4β -i f 3 λ 1+4β .(5.4.113) Assume that assumption (H4) or (H5) holds. Then, the solution (u, v, y, z) ∈ D(A ) of (5.4.106)-(5.4.109) satisfies the following estimation Assume that either assumption (H4) or (H5) holds. Define the function ρ∈ C ∞ c (R N ) such that ρ(x) =    1 if x ∈ ω c , 0 if x ∈ Ω\ω b , 0 ≤ ρ ≤ 1el sewher e.(5.4.115) Now, multiply (5.4.112) by λρy, integrate over Ω and using Green's formula,(5.4.110) and the fact thatF H = ( f 1 , f 2 , f 3 , f 4 ) H = o(1), we get λ uρyd x -λ Ω (a∇u + b(x)∇v) • (∇ρy + ρ∇y)d xi Ω c(x)ρ λy 2 d x = o(1) λ 1+4β . (5.4.116) Using (5.4.110), (5.4.111) and Cauchy-Schwarz we obtain λ uρyd x ≤ λ 3 u L 2 (ω b ) • y L 2 (ω b ) = ob(x)∇v) • (∇ρy + ρ∇y)d x = o(1) λ 2β . (5.4.118) Thus, using Equation (5.4.117) and (5.4.118) in (5.4.116) we obtain our desired result. Assume that the assumption (H4) or (H5) holds. Then, the solution (u, v, y, z) ∈ D(A ) of (5.4.106)-(5.4.109) satisfies the following estimations Ω |λu| 2 d x = o(1) and Ω λy 2 d x = o(1). (5.4.119) Proof. Let ϕ, ψ ∈ H 2 (Ω) ∩ H 1 0 (Ω) be the solution of the following system   + a∆ϕi λ1 ω c (x)ϕ = u, in Ω λ 2 ψ + ∆ψi λ1 ω c (x)ψ = y, in Ω ϕ = ψ = 0, on Γ (5.4.120) where (u, v, y, z) is the solution of (5.4.106)-(5.4.109). We suppose that the energy of the System (5.4.52) satisfies the following estimate E (t ,U ) ≤ C t (A ) , ∀t > 0.
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Definition 1.1.2. A

  bounded operator T ∈ L (E , F ) is said to be compact if for each sequence (x n ) n∈N ∈ E with x n E = 1 for each n ∈ N, the sequence (T x n ) n∈N has a subsequence which converges in F .

	1 Preliminaries -1.1 Bounded and Unbounded linear operators

t ≥0 . Proposition 1.2.3. (See Theorem

  • X ) be a Banach space, and H be a Hilbert space equipped with the inner product 〈•, •〉 H and the induced norm • H .

	Definition 1.2.1. A family (S (t )) t ≥0 of bounded linear operators in X is called a strong
	continous semigroup (in short, a C 0 -semigroup) if
	• S (0) = I I is the identity operator on X .	
	Sometimes we also denote S (t ) by e t A .	
	Definition 1.2.2. For a semigroup (S (t )) t ≥0 , we define an linear operator A with do-
	main D (A) consisting of points u such that the limit
	Au := lim t →0 +	S (t ) u -u t	, u ∈ D (A)
	exists. Then A is called the infinitesimal generator of the semigroup (S (t )) 2.2 in [82]). Let (S (t )) t ≥0 be a C 0 -semigroup in X .
	Then there exist a constant M ≥ 1 and ω ≥ 0 such that
	S (t ) L (X ) ≤ Me ωt , ∀t ≥ 0.
	If ω = 0 then the corresponding semigroup is uniformly bounded. Moreover, if M = 1
	then (S (t )) t ≥0 is said to be a C 0 -semigroup of contractions.
	Definition 1.2.4. An unbounded linear operator (A, D (A)) on H , is said to be dissipa-
	tive if		
	Re 〈Au, u〉 H ≤ 0, ∀ u ∈ D (A) .
	Definition 1.2.5. An unbounded linear operator (A, D (A)) on X , is said to be m-
	dissipative if		

• S (t + s) = S (t ) S (s) , ∀ t , s ≥ 0. • For each u ∈ H , S (t ) u is continuous in t on [0, +∞[.

1.2.8. (

  

	Lumer-Phillips see Theorem 4.3 in [82]). Let (A, D (A)) be an un-
	bounded linear operator on X , with dense domain D (A) in X . A is the infinitesimal
	generator of a C 0 -semigroup of contractions if and only if it is a m-dissipative operator.
	Theorem 1.2.9. (see Theorem 4.6 in [82]). Let (A, D (A)) be an unbounded linear oper-
	ator on X . If A is dissipative with R (I -A) = X , and X is reflexive then D (A) = X .
	Corollary 1.2.10. Let (A, D (A)) be an unbounded linear operator on H . A is the
	infinitesimal generator of a C 0 -semigroup of contractions if and only if A is a m-
	dissipative operator.
	Theorem 1.2.11. Let A be a linear operator with dense domain D (A) in a Hilbert
	space H . If A is dissipative and 0 ∈ ρ (A), then A is the infinitesimal generator of a
	C 0 -semigroup of contractions on H .
	Theorem 1.2.12. (Hille-Yosida see Theorem 7.4 in [28]). Let (A, D (A)) be an un-
	bounded linear operator on H . Assume that A is the infinitesimal generator of a
	C 0 -semigroup of contractions (S (t )) t ≥0 .
	1. For U 0 ∈ D (A), the problem (1.2.1) admits a unique strong solution

5. Huang-Prüss Assume

  

	1 Preliminaries -1.3 Stability of semigroup
	that A is the generator of a strongly continuous
	semigroup of contractions (S (t )) t ≥0 on H . S (t ) is uniformly stable if and only if

Theorem 1.3.10. Batty , A.Borichev and Y.Tomilov, Z. Liu and B. Rao. Assume

  and Y.Tomilov, Z. Liu and B. Rao[START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF].

						that
	A is the generator of a strongly continuous semigroup of contractions (S (t )) t ≥0 on H . If
	i R ⊂ ρ (A), then for a fixed > 0 the following conditions are equivalent	
	lim |λ|→+∞	sup	1 λ	(λI -A) -1	L (H ) < +∞	(1.3.1)

2 Stabilization of coupled wave equations with two interior viscous damping Sommaire 2
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2.1.2 Strong Stability Theorem 2.1.3. The

  ) ∈ C 1 R + , H a ∩C 0 (R + , D(A a )). C 0 -semigroup of contractions e t A a t ≥0 is strongly stable in H a ;i.e. for all U 0 ∈ H a , the solution of (2.1.6) satisfies

	From Proposition 2.1.1, the operator A a is m-dissipative on H a and consequently,
	generates a C 0 -semigroup of contractions e t A a	t ≥0 following Lumer-Phillips Theo-
	rem 1.2.8. Then, the solution of the evolution Equation (2.1.6) admits the following
	representation	
	Φ(t ) = e t A a Φ 0 , t ≥ 0,
	which leads to the well-posedness of (2.1.6). Hence, we have the following result.
	Theorem 2.1.2. Let Φ 0 ∈ H a then, problem (2.1.6) admits a unique weak solution Φ
	that satisfies	
	Φ(t ) ∈ C 0 R + , H a .
	Moreover, if Φ 0 ∈ D(A a ) then, problem (2.1.6) admits a unique strong solution Φ that
	satisfies	
	Φ(t lim t →+∞	e t A a Φ H a = 0.
			.1.19)
	Thanks to (2.1.18), (2.1.19), we have that a is a bilinear continuous coercive form on H 1 0 (0, L) × H 1 0 (0, L) 2 , and L is a linear continuous form on H 1 0 (0, L) × H 1 0 (0, L). Then, using Lax-Milgram Theorem, we deduce that there exists (ϕ, ψ) ∈ H 1 0 (0, L) × H 1 0 (0, L)
	unique solution of the variational problem (2.1.17). Applying the classical elliptic
	regularity we deduce that Φ = ϕ, η, ψ, ξ ∈ D (A a ) is the unique solution of (2.1.7). The
	proof is thus complete.	

Lemma 2.1.4. For

  λ ∈ R, we have i λI -A a is injective i.e.

  Inserting Equations (2.2.12)-(2.2.14) in Equations (2.2.10) and (2.2.11), we get the desired results. Thus, the proof of this Lemma is complete . From Lemma 2.2.2 and Lemma 2.2.3, we get Φ H a = o(

							(2.2.13)
	Furthermore, using Lemma 2.2.2, Equations (2.2.3), (2.2.5) and the definition of the function θ
	in Equation (2.2.9), we get					
	L	θ λϕ	2 d x = o(1) and	L	θ λψ	2 d x = o(1).	(2.2.14)
	0		0				

2 Stabilization of coupled wave equations with two interior viscous damping -2.2 Exponential Stability we get a L 0 θ ϕϕ x d x = o(1) and L 0 θ ψψ x d x = o(1).

  .2.19) Using by parts integration in Equations (2.2.18) and (2.2.19), we get the desired results.

	2 Stabilization of coupled wave equations with two interior viscous damping -2.2
	Exponential Stability
	satisfies the following asymptotic behavior estimation
	α+δ
	0

Lemma 2.2.5. Let 0 < δ < β-α 2 . The solution ϕ, η, ψ, ξ ∈ D(A a ) of Equations (2.2.3)-(2.2.6)

3

  Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.2 Well-Posedness and Strong Stability If U = (u, u t , y, y t ) is the state of System (3.1.2)-(3.1.6), then this system is transformed into the first order evolution equation on the Hilbert space H given by

  .2.25) 3 Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.2 Well-Posedness and Strong Stability In fact, system (3.2.22)-(3.2.24) admits a unique solution (u, y) ∈ C 1 ([0, L]), then

	u(α 1 ) = u x (α 1 ) = 0.	(3.2.26)
	Then, from Equations (3.2.22) and (3.2.26) and the fact that c(x) = 0 on (0, α 1 ), we get	
	u = 0 in (0, α 1 ).	(3.2.27)
	Using Equations (3.2.20) and (3.2.25) and the fact that u ∈ C 1 ([0, L]), we get	
	u = 0 in (α 1 , α 3 ).	(3.2.28)
	Now, using Equations (3.2.20), (3.2.21) and the fact that c(x) = c 0 on (α 2 , α 3 ) in Equations
	(3.2.22), (3.2.23) , we obtain			
	u =	i c 0 λ	y in (α 2 , α 3 ).	(3.2.29)
	Using Equation (3.2.28) in Equation (3.2.29), we obtain	

3

  Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.2 Well-Posedness and Strong Stability System (3.2.22), (3.2.23) is given by

  .2.44) Substituting v and z by i λuf 1 and i λyf 3 respectively in Equations (3.2.43)-(3.2.44) and taking the sum, we obtain

  Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.3 Lack of the exponential Stability z = i λyf 3 and using the classical regularity arguments, we conclude that Equation (3.2.38) admits a unique solution U ∈ D (A ). The proof is thus complete. Using Lemma 3.2.4, we have that A has non pure imaginary eigenvalues. According to Lemmas 3.2.4, 3.2.5 and with the help of the closed graph theorem of Banach, we deduce that σ(A ) ∩ i R = . Thus, we get the conclusion by applying Theorem 1.3.3 of Arendt Batty. The proof of the theorem is thus complete.

	Proof of Theorem 3.2.3.

Remark 3.2.6. For the case when supp(b) ∩ supp(c) = it remains as an open problem.

  Assume that condition (3.3.2) holds. Let λ be largest eigenvalue of A , then λ is large root of the following asymptotic behavior estimate

	3 Stability results of an elastic/viscoelastic transmission problem of locally coupled
	waves with non smooth coefficients -3.3 Lack of the exponential Stability
	and	λ 2,n = 2nπi + O	1 n	.	(3.3.22)
	The proof of Proposition 3.3.4, is divided into two lemmas.	
	Lemma 3.3.5.				
					(3.3.21)
				2	

  ) . Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.3 Lack of the exponential Stability From equation (3.3.26) and using the fact that Re(λ) is bounded, we get

	3
	(3.3.26)

  .3.31) Therefore, system (3.3.9)-(3.3.14) admits a non trivial solution if and only if det(M 1 ) = 0, if and 3 Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.3 Lack of the exponential Stability only if the eigenvalues of A are roots of the function F . Next, from (3.3.25) and the fact that real λ is bounded, we get

  .3.43) 3 Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.3 Lack of the exponential Stability Inserting (3.3.43) in (3.3.42), we get

  Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.3 Lack of the exponential Stability Inserting (3.3.48) in (3.3.37), we get (3.3.20).

	3 Calculation of 2,n . From (3.3.34), we have
			1 λ 2,n	=	1 -i sign(n) 2 |n|π	+ O |n| -3/2	and	1 λ 2,n	= O(n -1 ).	(3.3.49)
	Inserting (3.3.34) and (3.3.49) in (3.3.23), we get
	cosh	λ 2,n 2	cosh λ 2,n -cos 2 c 4
	+	(1 -i sign(n)) sinh	3λ 2,n 2		
									.3.47)
	By a straightforward calculation in equation (3.3.47), we get
					1,n =	i c 2 32πn	-	(4 + i π)c 2 64π 2 n 2 + O |n| -5/2 .	(3.3.48)

  Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients -3.4 Polynomial Stability From equations (3.4.29)-(3.4.33), we deduce that (ϕ, ψ) is a solution of (3.4.26) and we have

.32) such that (ϕ, η, ψ, ξ) H a ≤ M u L 2 (0,L) + y L 2 (0,L) . (

3

.4.33) 3
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  ξ, t )| 2 d ξd x.

	Lemma 4.2.2. Let U = (u, u t , y, y t , ω) be a regular solution of the System (4.2.6)-(4.2.8). Then,
	the energy E 1 (t ) satisfies the following estimation

  .2.20) 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.2 (EBB)-W F K V Model Using Equations (4.2.16), (4.2.20) and the fact that η ≥ 0, we get

  Theorem 4.2.6. Let U 0 ∈ H 1 , then problem (4.2.13) admits a unique weak solution U that satisfies U (t ) ∈ C 0 R + , H 1 .

Moreover, if U 0 ∈ D(A 1 ), then problem (4.2.13) admits a unique strong solution U that satisfies

4

  Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.2 (EBB)-W F K V Model Lemma 4.2.10. Assume that η ≥ 0. Then, for all λ ∈ R, we have i λI -A 1 is injective, i.e.

ker (i λI -A 1 ) = {0} .

4

  Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.2 (EBB)-W F K V Model

	Then, system (4.2.57)-(4.2.59) becomes		
	λ 2 ũ + a ũxx = 0 over (0, L),	(4.2.61)
	λ 2 ỹ -b ỹxxxx = 0 over (-L, 0),	(4.2.62)
	ũx = 0	over (l 0 , l 1 ).	(4.2.63)

4

  Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.2 (EBB)-W F K V Model Lemma 4.2.15. Assume that η > 0. Then, the solution (u, v, y, z, ω) ∈ D(A 1 ) of system (4.2.68)-(4.2.72) satisfies the following asymptotic behavior estimations

  .2.90) 123 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.2 (EBB)-W F K V Model Using Equations (4.2.77), (4.2.89) and (4.2.90) in (4.2.88), and using the fact that α ∈ (0, 1) we get

	|S d (l 1 )| 2 + |S d (l 0 )| 2 ≤	λ 1+ α 2 2	l 0 l 1	|v| 2 d x + o(1).	(4.2.91)
	Lemma 4.2.18. Let 0 < α < 1 and η > 0. Then, the solution (u, v, y, z, ω) ∈ D(A 1 ) of system
	(4.2.68)-(4.2.72) satisfies the following asymptotic behavior
	l 1 l 0	|v| 2 d x =	o(1) 2 λ 1+ α	.	(4.2.92)

  , and we get our desired result. The proof is thus complete. 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.2 (EBB)-W F K V Model Lemma 4.2.19. Assume that η > 0. Let h ∈ C 1 ([0, L]) and ϕ ∈ C 2 ([-L, 0]), then the solution (u, v, y, z, ω) ∈ D(A 1 ) of system (4.2.68)-(4.2.72) satisfies the following estimation

	1 2-α m	1 2-α

.2.98) Using the fact that |λ| → +∞, we can take λ ≥ 4 g

  ). (4.2.117) Using Equations (4.2.77), (4.2.92) and the definition of θ 1 and θ 2 , we get

  From Step 1. and Step 3. we deduce that U H 2 = o(1), which contradicts (4.3.8). Consequently, condition (G 2 ) holds. This implies, from Theorem 1.3.10, the energy decay estimation (4.3.7). The proof is thus complete.

					) .	(4.3.19)
	Inserting Equation (4.3.19) in Equation (4.3.18), we get			
	0 -L	|z| 2 d x = o(1) and b	0 -L	y x	2 d x = o(1).	(4.3.20)
	Proof of Theorem 4.3.1.					

Theorem 4.4.1. Let

  U 0 ∈ H 3 , then problem (4.4.7) admits a unique weak solution U that satisfiesU (t ) ∈ C 0 R + , H 3 . ∈ C 1 R + , H 3 ∩C 0 R + , D(A 3 ) .The aim of this part is to study the polynomial stability of system (4.4.2)-(4.4.4) in the case η > 0. As the condition i R ⊂ ρ(A 3 ) is already checked in the subsection 4.4.1, it remains to prove that condition (1.3.1) holds (see Theorem 1.3.10). This is established by using specific multipliers, some interpolation inequalities and by solving differential equations of order 4.Our main result in this part is the following theorem. Assume that η > 0. The C 0semigroup (e t A 3 ) t ≥0 is polynomially stable; i.e. there exists constant C 3 > 0 such that for every U 0 ∈ D(A 3 ), we have

	4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli
	beam with one locally singular fractional Kelvin-Voigt damping -4.4 W-(EBB) F K V
			Model
	4.4.2 Polynomial Stability in the case η > 0
	Theorem 4.4.3.		
	Moreover, if U 0 ∈ D(A 3 ), then problem (4.4.7) admits a unique strong solution U that satisfies
	U (t ) Theorem 4.4.2. Assume that η ≥ 0, then the C 0 -semigroup of contractions e t A 3 is strongly
	stable on H 3 in the sense that lim t →+∞	e t A 3 U 0 H 3	= 0, ∀U 0 ∈ H 3 .
	Proof of Theorem 4.4.2. The proof of this theorem follows by proceeding with similar
	arguments as in Subsection 4.2.1, and using Theorem 1.3.3 of Arendt-Batty.

  |z xx | ≤ |λ| + ξ 2 + η |ω(x, ξ)| + |λ| -3+α f 5 (x, ξ) .

		4.16).
	From (4.4.15), we get	
	2α-1 2 Multiplying the above inequality by |λ| + ξ 2 + η d (x)|ξ|	-2 |ξ|, integrating over R and proceeding in a
	similar way as in Lemma 4.2.15 (Subsection 4.2.2), we get the second desired estimation in
	(4.4.16).	
	Step 3. From Equation (4.4.13) we have that	

  .4.25) 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.4 W-(EBB) F K V Model

	Also, using the same theorem we get that			
	z L 2 (l 0 ,l 1 ) =	o(1) λ	.	(4.4.26)
	Thus, using the first estimation in (4.4.16), (4.4.25) and (4.4.26), we obtain the first estimation
	in Lemma 4.4.5.			
	Now, from Equation (4.4.13) we have i λy -z = λ -3+α f 3 , then	

  .4.[START_REF] Zhang | Exponential stability of an elastic string with local Kelvin-Voigt damping[END_REF] 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.5 (EBB) F K V Model damping is locally distributed and acts on the wave equation, and the rotation vanishes at the connecting point (y x ( ) = 0). The system is given in the left side of Equation (4.1.1). He proved the polynomial stability with energy decay rate of type t -2 . By using similar computations as in Section 4.2 by taking α = 1, and by solving the ordinary differential equations in Section 4.4 we can reach that y xx ( ) = o(1). Thus, with the same technique of the proof of Section 4.2, we can reach that energy of the system (the left system in Equation (4.1.1)) of the mentioned paper satisfies the decay rate t -4 .

  ξd x. Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.5 (EBB) F K V Model dissipative in the sense that its energy is a non-increasing function with respect to time variable t . Now, we define the following Hilbert energy space H 4 by

	Lemma 4.5.1. Let U = (y, y t , ω) be a regular solution of the System (4.5.1)-(4.5.3). Then, the
	energy E 4 (t ) satisfies the following estimation		
	d d t	E 4 (t ) = -κ(α)	0	L	R	(ξ 2 + η)|ω(x, ξ, t )| 2 d ξd x.	(4.5.4)

Since α ∈ (0, 1), then κ(α) > 0, and therefore d d t E 4 (t ) ≤ 0. Thus, system (4.5.1)-(4.5.3) is 4

  From the first estimation in Equation (4.5.12) and Equation (4.5.18), we get that U H 4 = o(1), which contradicts (4.5.7). Consequently, condition (P 2 ) holds. This implies, from Theorem 1.3.10, the energy decay estimation (4.5.6). The proof is thus complete.

	4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli
	beam with one locally singular fractional Kelvin-Voigt damping -4.6 (EBB)-(EBB) F K V
											Model
	Similar to Lemma 4.4.9, we obtain				
					y xx (l -0 ) = o(1) and y xx (l + 1 ) = o(1).	(4.5.17)
	Finally, by proceeding in a similar way as in Lemma 4.4.10, we reach our desired result
			0	L	|z| 2 d x = o(1) and b	0	L	y xx	2 d x = o(1)	(4.5.18)
	Proof of Theorem 4.5.7.								
											.5.13)
	Similar to Lemma 4.4.5, we get				
							z H 2 (l 0 ,l 1 ) = o(1).	(4.5.14)
	Similar to Lemma 4.4.6, we obtain that the solution of the system (4.5.1)-(4.5.3) satisfies the
	following estimations								
		y(l 0 ) =	o(1) λ	, y x (l 0 ) =	o(1) λ	, y(l 1 ) =	o(1) λ	, y x (l 1 ) =	o(1) λ	(4.5.15)
	and	1 λ 1 2	y xxx (l -0 ) =	o(1) λ 1 4 -α 4	and	1 λ 1 2	y xxx (l + 1 ) =	o(1) λ 1 4 4 -α	.	(4.5.16)

4

  Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.6 (EBB)-(EBB) F K V Model By similar computation to Lemma 4.2.2, it is easy to see that the energy E 5 (t ) satisfies the following estimation

	d d t	E 5 (t ) = -κ(α)	0	L	R	(ξ 2 + η)|ω(x, ξ, t )| 2 d ξd x.	(4.6.4)
	Since α ∈ (0, 1), then κ(α) > 0, and therefore dissipative in the sense that its energy is a non-increasing function with respect to time d E 5 (t ) ≤ 0. Thus, system (4.6.1)-(4.6.3) is d t
	variable t . Now, we define the following Hilbert energy space H 5 by	

  .6.9)4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.6 (EBB)-(EBB) F K V Model

  Here we will check the condition (Q 2 ) by finding a contradiction with (4.6.8) by showing U H 5 = o[START_REF] Achouri | The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type[END_REF]. We need to prove several asymptotic behavior estimations for the solution to obtain this contradiction. Here, we give the estimations directly since the proof can be done in a smiliar way as in Subsection 4.4.2. Assume that η > 0. Similar to Lemma 4.4.4, the solution (u, v, y, z, ω) ∈ D(A 5 ) of system (4.6.10)-(4.6.14) satisfies the following asymptotic behavior estimations

			.6.14)
	where S = b y xx + d (x)κ(α)	|ξ|	2α-1 2 ω(x, ξ)d ξ.
	R		

  .6.19) 4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.7 Conclusion is thus complete.

  For any U 0 ∈ H , Problem (5.2.2) admits a unique weak solution U that satisfies U (t ) ∈ C 0 (R + ; H ).
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4 Energy Decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping -4.2 (EBB)- Some significant implications on the energy decay rate are given below:

• From the decay rate of the models ((EBB)-W F K V ) and (W-(EBB) F K V ) we can deduce that if we want to choose the place where the fractional Kelvin-Voigt damping acts it is better to choose the damping on the wave. Since the energy of this model decays faster compared with that of (W-(EBB) F K V ) model.

• For the model ((EBB)-W F K V ), if we replace the condition of the null bending moment (y xx (0) = 0) at the connecting boundary by taking the rotation to be zero (y x (0) = 0), we get the same decay rate. So, this result improves the work in [START_REF] Hassine | Energy decay estimates of elastic transmission wave/beam systems with a local Kelvin-Voigt damping[END_REF] where they reached energy decay rate of type t -2 , however in our work we proved an energy decay rate of type t -4 ( as α → 1)( see Section 4.2).

• For the model ((EBB)-W F K V ), we established an energy decay rate of type t -4 (as α → 1). By comparing this energy decay rate with that in [START_REF] Wehbe | Stability Results of an Elastic/Viscoelastic Transmission Problem of Locally Coupled Waves with Non Smooth Coefficients[END_REF], where the authors considered two wave equations coupled through velocity with localized non smooth Kelvin-Voigt and they established an energy decay rate of type t -1 . We can see that, by comparing the energy decay rate of these two systems that it is better, when considering Kelvin-Voigt damping, to consider the coupling through the boundary connection rather through the velocity.

Remark 4.1.1. We note that in the upcoming sections, the letters used to denote the variables are independent from each other in each section.

(EBB)-W F K V Model

In this section, we consider the ((EBB)-W F K V ) model, where we study the stability of the system of a Euler-Bernoulli and wave equations coupled through boundary connection with a localized fractional Kelvin-Voigt damping acting on the wave equation only.

Well-Posedness and Strong Stability

In this subsection, we study the strong stability of the system ((EBB)-W F K V ) in the absence of the compactness of the resolvent. First, we will study the existence, uniqueness and regularity of the solution of the system. Proof. Take g (x) = x + L in Equation (4.4.41), we get 0 From Equation (4.4.13) we have

Then, using (4.4.62) and the fact that

From the continuity condition (u(0) = y(0)), we deduce that λy(0) = O [START_REF] Achouri | The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type[END_REF]. In order to prove the second term in the Equation (4.4.60) we proceed as follows. From Equation (4.4.13) we have z = i λyλ -3+α f 3 .

Substituting the above Equation into Equation (4.4.14), we get

where

Multiply Equation (4. 

Since H 1 (0, l 0 ) ⊂ C ([0, l 0 ]), then we get the desired result. Thus, the proof is complete. Now, let q ∈ C 2 ([0, l 0 ]) such that q(l 0 ) = q x (l 0 ) = 0, q(0) = 1. Multiply Equation (4.4.64) by q y x and integrate over (0, l 0 ), and using the fact that 

Now, multiply Equation (4.6.27) by 2(x +L)u x and integrate over (-L, 0), and by using boundary conditions and the fact that 

Introduction

Let Ω ⊂ R N be a bounded open set with Lipschitz boundary Γ. We consider the following two wave equations coupled through velocities with a viscoelastic damping:

with the following initial conditions:

and the following boundary conditions:

The functions b, c ∈ L ∞ (Ω) such that b : Ω → R + is the viscoelastic damping coefficient and c : Ω → R * is the coupling function. The constant a is a strictly positive constant.

The stabilization of the wave equation with localized damping has received a special attention since the seventies (see [START_REF] Bardos | Sharp Sufficient Conditions for the Observation, Control, and Stabilization of Waves from the Boundary[END_REF][START_REF] Dafermos | Asymptotic Behavior of Solutions of Evolution Equations[END_REF][START_REF] Enrike | Exponential Decay for The Semilinear Wave Equation with Locally Distributed Damping[END_REF][START_REF] Tebou | A constructive method for the stabilization of the wave equation with localized Kelvin-Voigt damping[END_REF]). The stabilization of a material composed of two 5 A N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.2 Well-Posedness and Strong Stability

unique solution of the equation

Equivalently, we have the following system 

(5.2.9)

. Multiplying (5.2.9) and (5.2.10) by ϕ and ψ respectively, and integrating over Ω, we obtain

where

and

(5.2.13)

Thanks to (5.2.12), (5.2.13), we have that a is a sesquilinear, continuous and coercive form on (H 1 0 (Ω) × H 1 0 (Ω)) 2 , and L is a antilinear continuous form on H 1 0 (Ω) × H 1 0 (Ω). Then, using Lax-Milgram theorem, we deduce that there exists (u, y) ∈ H 1 0 (Ω) × H 1 0 (Ω) unique solution of the variational problem (5.2.11). By using the classical elliptic regularity, we deduce that (5.2.9)-(5.2.10) admits a unique solution (u, y)

is a unique solution of (5.2.4). Then, A is an isomorphism and since ρ(A ) is open set of C (see Theorem 6.7 (Chapter III) in [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]), we easily get R(λI -A ) = H for a sufficiently small λ > 0. This, together with the dissipativeness of A , imply that D(A ) is dense in H and that A is m-dissipative in H (see Theorem 4.5, 4.6 in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]). The proof is thus complete.

According to Lumer-Phillips Theorem 1.2.8, Proposition 5.2.1 implies that the operator A generates a C 0 -semigroup of contractions (e t A ) t ≥0 in H which gives the well-posedness of (5.2.2). Then, we have the following result where

There exists ε such that S ⊂ V ε . Then, choose a ball B 0 with center x 0 such that B 0 ⊂ V ∩ V ε . Hence, using (5.2.22), we have

(5.2.23)

Letting τ tends to infinity, we obtain u = y = 0 in B 0 . Hence, we reached our desired result. 

For the proof of Theorem 5.2.6, the resolvent of A is not compact. Then, in order to prove this Theorem we will use a general criteria Arendt-Batty. We need to prove that the operator A has no pure imaginary eigenvalues and σ (A ) ∩ i R contains only a countable number of continuous spectrum of A . The argument for Theorem 5.2.6 relies on the subsequent lemmas.

Lemma 5.2.7. Assume that (A1) holds. Then, we have

Proof. From Proposition 5.2.1, 0 ∈ ρ(A ). We still need to show the result for λ ∈ R * . Suppose that there exists a real number λ = 0 and U = (u, v, y, z) ∈ D(A ) such that

From (5.2.3) and (5.2.24), we have 

Proof. From Proposition 5.2.1, 0 ∈ ρ(A ). We still need to show the result for λ ∈ R * . Suppose that there exists a real number λ = 0 and U = (u, v, y, z) ∈ D(A ) such that 

Now, we will distinguish between the following three cases: 

(5.2.45)

Then, using Theorem 5.2.5 we get that u = y = 0 in Ω. Thus, we deduce that U = 0 in Ω and we reached our desired result. Case 2. If (A3) holds. Then, by using Poincaré's inequality we get

Proceeding in the same way as in Case 1., we get

(5.2.47)

Then, using Theorem 5.2.5 we get that u = y = 0 in Ω. Thus, we deduce that U = 0 in Ω and we reached our desired result. Case 3. Assume that (A4) holds. By differentiating (5.2.40) and using the fact that c(x) = c 0 in Ω , we obtain

Then, for all j = 1, • • • , N , we have the following system

(5.2.48)

By applying Theorem 5.2.5, we obtain

Using the fact that u = y = 0 on Γ, we get u = y = 0 in Ω. Consequently, U = 0 in Ω.

Lemma 5.2.9. Assume that either (A1), (A2), (A3) or (A4) holds. Then, we have 

(5.2.54) 

where a (u, y), (ϕ, ψ) = a 1 (u, y), (ϕ, ψ) + a 2 (u, y), (ϕ, ψ)

and

(5.2.57)

Our goal is to prove that A is an isomorphism operator. For this aim, we divide the proof into 5 A N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.3 Non Uniform Stability we have i λ Ũ -A Ũ = 0. Therefore, Ũ ∈ ker (i λI -A ), then by Lemmas 5.2.7 and 5.2.8, we get Ũ = 0, this implies that ũ = ỹ = 0. Consequently, ker {A} = {0}. Thus, from step 3 and Fredholm alternative, we get that the operator A is an isomorphism. It is easy to see that the operator L is continuous from V to L 2 (Ω) × L 2 (Ω). Consequently, Equation (5.2.56) admits a unique solution (u, y) ∈ H 1 0 (Ω) × H 1 0 (Ω). Thus, using v = i λuf 1 , z = i λyf 3 and using the classical regularity arguments, we conclude that Equation (5.2.49) admits a unique solution U ∈ D (A ). The proof is thus complete.

Proof of Theorem 5.2.6. Using Lemma 5.2.7 and 5.2.8, we have that A has non pure imaginary eigenvalues. According to Lemmas 5.2.7, 5.2.8, 5.2.9 and with the help of the closed graph theorem of Banach, we deduce that σ(A ) ∩ i R = . Thus, we get the conclusion by applying Arend-Batty Theorem 1.3.3. The proof of the theorem is thus complete.

Non Uniform Stability

In this section, our aim is to prove the non-uniform stability of the system (5.1.1)- (5.1.3). For this aim, we assume that

(5.3.1)

Our main result in this section is the following theorem. Hence U H = o(1), which contradicts (5.4.4). Consequently, condition (C2) holds. This implies that the energy decay estimation (5.4.3). The proof is thus complete.

Remark 5.4.9. In the case when d , c ∈ L ∞ (Ω) such that they are discontinuous functions, we didn't find any result in the literature on the stability of the system (5.4.1). But, we can conjecture that the system (5.4.1) is exponentially stable. Further, we have that the system (5.4.1) with d , c are discontinuous functions is exponentially stable in the dimension 1 (see Chapter 2).

One of the main tools to prove the polynomial stability of the system (5.1.1)-(5.1.3) when one of the assumptions (H2), (H3), (H4) or (H5) holds is to use the exponential or polynomial decay of the wave equation with viscous damping. We consider the following system

(5.4.52) Remark 5.4.10. (About System (5.4.52))

1. If (H2) or (H3) holds, system (5.4.52) is exponentially stable (see [START_REF] Burq | Contrôlabilité exacte des ondes dans des ouverts peu réguliers[END_REF] and Lemma 3.8 in [5]).

2. If (H4) holds, the energy of the wave equation (5.4.52) with local viscous damping decays polynomially as t -1 for smooth initial data (see Example 3 in [71]).

3. If (H5) holds, the energy of the wave equation (5.4.52) with local viscous damping decays polynomially as t -4 3 for smooth initial data (see [START_REF] Stahn | Optimal decay rate for the wave equation on a square with constant damping on a strip[END_REF]).

Theorem 5.4.11. Assume that the boundary Γ is of class C 3 . Also, assume that assumption (H2) or (H3) holds. Also, assume that the energy of the system (5.4.52) is exponentially stable. Then, for all initial data U 0 ∈ D(A ), there exists a constant C 2 > 0 independent of U 0 , the energy of the system (5.1.1)-(5.1.3) satisfies the following estimation 

N-dimensional elastic\viscoelastic transmission problem with Kelvin-Voigt damping and non smooth coefficient at the interface -5.4 Polynomial Stability holds. Since Condition (C1) is already proved (see Lemmas 5.2.7 and 5.2.8). We will prove condition (C3) by an argument of contradiction. For this purpose, suppose that (C3) is false, then there exists

such that

For simplicity, we drop the index n. Equivalently, from (5.4.55), we have

)

)

)

Here we will check the condition (C3) by finding a contradiction with (5.4.54) such as U H = o(1). From Equations (5.4.54), (5.4.56) and (5.4.58) we obtain

Lemma 5.4.12. Assume that the assumption (H2) or (H3) holds. We have that the solution (u, v, y, z) ∈ D(A ) of (5.4.56)-(5.4.59) satisfies the following estimations

(5.4.61)

The proof of this Lemma is similar to that of Lemma 5.4.4. Proof. Let ϕ, ψ ∈ H 2 (Ω) ∩ H 1 0 (Ω) be the solution of the following system

where (u, v, y, z) is the solution of (5.4.56)- (5.4.59). Since either (H2) or (H3) holds, then system (5.4.52) is exponentially stable. Thus, there exists M > 0 such that system (5.4.86) satisfies the following estimation Proof. The proof is similar to the proof of Lemma 5.4.8. 

Proof of

such that

For simplicity, we drop the index n. Equivalently, from (5.4.105), we have When assumption (H4) holds, we have that System (5.4.52) is polynomially stable with an energy decay rate t -1 , i.e β = 2. Howerver, when assumption (H5) holds then we have that System (5.4.52) is polynomially stable with an energy decay rate t -4 3 , i.e β = 3 2 . Thus, there exists M > 0 such that system (5.4.120) satisfies the following estimation λϕ L 2 (Ω) + ∇ϕ L 2 (Ω) + λψ L 2 (Ω) + ∇ψ L 2 (Ω) ≤ M |λ| β u L 2 (Ω) + y L 2 (Ω) .

(5.4.121)

Assuming that (H4) or (H5) holds. Multiply (5.