1. Another way of defining peakons and multi-peakons as weak solutions of the Novikov equations is by rewriting (3.1.1) in a derivative form.

Résumé

Cette thèse est composée de deux parties indépendantes. Dans la première partie, nous étudions la stabilité orbitale et asymptotique de certaines ondes solitaires pointues (peakons) de l'équation de Novikov. Dans la seconde partie, nous étudions le caractère bien posé local et global pour certaines équations de type Korteweg-de Vries en dimension un et deux, lorsqu'on pose le problème autour d'une fonction bornée sans décroissance spatiale particulière. L'équation de Novikov est une généralisation d'ordre supérieur de l'équation de Camassa-Holm. Elle possède une non-linéarité cubique, est complètement intégrable et conserve toutes les propriétés intéressantes (physiquement pertinentes) de l'équation de Camassa-Holm. Pour cette équation nous commençons par revisiter les résultats déjà connus de stabilité orbitale des peakons et nous établissons celle des multi-peakons. Puis, motivé par l'approche développée pour l'équation de Camassa-Holm, nous montrons la stabilité asymptotique des peakons et des multi-peakons de l'équation de Novikov. Pour cela nous introduisons en particulier une nouvelle fonctionnelle de Lyapunov qui peut être adaptée à une large variété de généralisations de l'équation de Camassa-Holm.

Les équations Korteweg-de Vries généralisées et l'équation de Zakharov-Kuznetsov sont des modèles asymptotiques classiques respectivement uni et bi-dimensionels pour la propagation d'ondes longues dans un milieu dispersif ayant une réponse non linéaire. Nous étudions le caractère bien posé local et global dans "l'espace d'énergie" de ces équations dans un contexte assez général, où nous permettons à la solution d'évoluer autour d'une fonction bornée ψ. Cela nous permet de fournir un cadre pour étudier l'évolution temporelle des perturbations localisées de kinks, ainsi que des perturbations localisées des solutions périodiques de chacune de ces équations. Les approches classiques basées sur une utilisation du théorème du point fixe de Banach ne peuvent pas aboutir dans cette configuration du fait de la perte d'une dérivée due à l'introduction de la fonction Ψ. Nous sommes donc amenés à nous tourner vers des raffinements de la méthode d'énergie. Nous utilisons deux approches différentes selon le cas unidimensionnel ou bidimensionnel. La première approche repose sur une méthode introduite par Molinet-Vento qui utilise le caractère fortement non résonant de l'équation de Kortewegde Vries classique. Elle est de ce fait moins bien adaptée aux dimensions supérieures mais à l'avantage de donner en plus l'unicité inconditionnelle (unicité des solutions faibles). La deuxième approche repose sur l'utilisation des espaces Bourgain en temps courts, développée en particulier par Ionescu, Kenig et Tataru. Ici un choix approprié du rapport entre la longueur des petits intervalles de temps et l'inverse de la fréquence spatiale permet entre autre de rattraper la perte de dérivée.

Mots clés : Equations dispersives, Equation de type Camassa-Holm, Ondes solitaires, Stabilité, Asymptotique, Peakons, Kinks, Caractère bien posé.
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Stabilité orbitale et asymptotique peakons et multi-peakons pour l'équation de Novikov

L'équation de Novikov est donnée par

u t -u txx + 4u 2 u x = 3uu x u xx + u 2 u xxx , (t, x) ∈ R 2 , (1.1.1)
où u(t, x) est une fonction à valeurs réelles. Cette équation a été obtenue par Novikov [START_REF] Novikov | Generalizations of the Camassa-Holm type equation[END_REF] en travaillant sur une classification des symétries d'équations aux dérivées partielles non locales avec non-linéarité cubique. En utilisant l'approche de symétrie perturbative [START_REF] Mikhailov | Perturbative symmetry approach[END_REF], qui donne les conditions nécessaires pour qu'une EDP admette une infinité de symétries, Novikov a pu isoler l'équation (1.1.1) et obtenir ses premières symétries. Plus tard, il a pu trouver une paire de Lax scalaire associée, prouvant ainsi l'intégrabilité de l'équation. De plus, il a été récemment montré dans [START_REF] Chen | The integrable shallow-water models with cubic nonlinearity[END_REF] que l'équation de Novikov apparaît dans la modélisation de la propagation des vagues en eaux peu profondes où les vagues sont supposées être d'amplitude modérément grande, ce qui contraste fortement avec l'équation classique de Korteweg-de Vries.

L'équation de Novikov possède une infinité de lois de conservation, parmi lesquelles les plus importantes sont données par

E(u) := ˆR u 2 (t, x) + u 2 x (t, x) dx et F (u) := ˆ u 4 + 2u 2 u 2 x - 1 3 u 4 x dx. (1.1.2)
L'une des caractéristiques les plus importantes de l'équation de Novikov est l'existence de solutions peakon et antipeakon [START_REF] Hone | Integrable peakon equations with cubic nonlinearity[END_REF] qui sont des ondes progressives pointues avec une dérivée discontinue à la crête. Ils sont donnés explicitement par

±ϕ c (x -ct) = ± √ cϕ(x -ct) := ± √ ce -|x-ct| , c > 0.
De plus, l'équation de Novikov présente également des solutions multi-peakons-antipeakons.

Plus précisément, pour tout nombre naturel donné n ∈ N, notons q = (q 1 , ..., q n ) et p = (p 1 , ..., p n ) les vecteurs de position et de quantité de mouvement. Alors, la solution composée de n ondes progressives pointues est donnée par u(t, x) = n i=1 p i (t) exp(-|x -q i (t)|), où p i et q i satisfont le système suivant de 2n équations différentielles

           dq i dt = u 2 (q i ) = n j,k=1
p j p k e -|q i -q j |-|q i -q k | , dp i dt = -p i u(q i )u x (q i ) = p i n j,k=1

p j p k sgn(q i -q j )e -|q i -q j |-|q i -q k | .

(

D'un autre côté, l'équation (1.1.1) peut être réécrite sous une forme compacte en fonction de sa densité de quantité de mouvement comme y t + u 2 y x + 3uu x y = 0, où y := u -u xx , (1. 1.4) qui peut être considérée comme une généralisation cubique non linéaire de la célèbre équation de Camassa-Holm (CH) [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Fuchssteiner | Symplectic structures, their Bäcklund transformations and hereditary symmetries[END_REF],

u t -u txx = uu xxx + 2u x u xx -3uu x de manière équivalente y t + uy x + 2u x y = 0, (1.1.5)

Il convient de noter que les deux dernières équations en termes de densités de quantité de mouvement correspondent à des équations de transport pour y(t). C'est l'un des points clés pour prouver que des données initiales régulières et décroissant assez rapidement avec densité de quantité de mouvement initiale signée donnent lieu à des solutions globales.

De plus, l'équation de Novikov, ainsi que l'équation CH, peuvent également être écrites sous une forme non locale de la manière suivante. Dans la suite on notera p(x) la solution fondamentale de 1 -∂ 2 x dans R, c'est-à-dire p := 1 2 e -|x| . Alors, on peut réécrire (1.1.1) comme

u t + u 2 u x = -p * 3uu x u xx + 2u 3 x + 3u 2 u x , (1.1.6) 
qui peut être vue comme une perturbation non locale des équations de type Burgers u t + 1 3 (u 3 ) x = 0, ou plus généralement comme une équation de transport non local non linéaire. Ce dernier fait a de nombreuses implications, par exemple, à partir des critères d'explosion pour les équations de transport, nous obtenons que les singularités sont causées par la focalisation des caractéristiques.

À ce stade, il est clair que l'équation de Novikov partage bon nombre de ses propriétés analytiques remarquables avec l'équation CH, comme l'existence d'une paire de Lax, l'intégrabilité et la structure bi-hamiltonienne [START_REF] Degasperis | Asymptotic integrability[END_REF][START_REF] Hone | Integrable peakon equations with cubic nonlinearity[END_REF], mais aussi tous présentent le phénomène de "vagues déferlantes" [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Chen | Analysis on the blow-up of solutions to a class of integrable peakon equations[END_REF][START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi Equations[END_REF][START_REF] Degasperis | Asymptotic integrability[END_REF][START_REF] Novikov | Generalizations of the Camassa-Holm type equation[END_REF]. Ce dernier signifie que le profil d'onde reste borné alors que sa pente devient illimitée.

À propos de la stabilité de ces ondes solitaires pointues, la première preuve de stabilité orbitale a été donnée par Constantin et Molinet dans le cas de Camassa-Holm pour les perturbations H 1 en supposant que leur densité de quantité de mouvement associée définit une mesure de Radon non négative [START_REF] Constantin | Orbital stability of solitary waves for a shallow water equation[END_REF]. La stabilité orbitale pour des perturbations dans tout l'espace d'énergie H 1 (R) a été prouvée par une approche directe par Constantin et Strauss dans [START_REF] Constantin | Stability of peakons[END_REF]. Plus tard, suivant les idées de [START_REF] Constantin | Stability of peakons[END_REF][START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF], Liu et al. ont prouvé la stabilité orbitale d'ondes solitaires pointues de Novikov sur les solutions sous les hypothèses supplémentaires d'une densité de quantité de mouvement initiale non négative partout et d'une donnée initiale à H 3 (R) [START_REF] Liu | Stability of peakons for the Novikov equation[END_REF]. Dans ce travail, nous prouverons que nous pouvons abandonner ces hypothèses (voir théorème 1.1.1 ci-dessous).

Espace des données initiales

Avant d'énoncer nos résultats, nous devons introduire quelques notations et les espaces fonctionnels pour nos données initiales. Suivant les idées de [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF][START_REF] El Dika | Exponential decay of H1-localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation[END_REF][START_REF] El Dika | Stability of multipeakons[END_REF][START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF] 

Résultats principaux

Comme nous l'avons déjà mentionné, dans ce travail, nous cherchons à aborder à la fois les problèmes de stabilité orbitale et asymptotique pour un seul peakon et des trains de peakons.

Stabilité orbitale dans l'espace d'énergie

Notre première contribution concerne une amélioration du résultat de stabilité orbitale du peakon obtenu dans [START_REF] Liu | Stability of peakons for the Novikov equation[END_REF] . En effet, en modifiant quelque peu la preuve de [START_REF] Liu | Stability of peakons for the Novikov equation[END_REF], nous montrons que l'hypothèse de signe sur la densité de quantité de mouvement et l'utilisation de la norme H 3 sont artificielles, par conséquent, ces hypothèses peuvent être supprimées. L'hypothèse H 1 (R) ∩ W 1,4 (R) sur la solution est l'hypothèse minimale pour que les deux lois de conservation dans (1.2.8) soient bien définies.

Une fois que nous avons prouvé la stabilité orbitale d'un seul peakon dans l'espace fonctionnel adéquate, nous suivons l'approche développée dans [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] (voir aussi [START_REF] El Dika | Stability of multipeakons[END_REF] pour une adaptation à l'équation de Camassa-Holm) afin d'établir la stabilité orbitale d'un train de peakons sous la même hypothèse.

Theorem 1.1.2 (Stabilité orbitale d'un train de peakons dans l'espace d'énergie). Soient c 1 , ..., c n , n nombres réels tels que 0 < c 1 < ... < c n . Il existe ε > 0 assez petit, L 0 > 0 et une constante universelle C > 0 telle que si pour un certain 0 < T ≤ +∞,

u ∈ C([0, T ), H 1 (R)) ∩ L ∞ ([0, T ), W 1,4 (R))
est une solution de l'équation de Novikov (1.1.6) émanant d'une donnée initiale u 0 ∈ H 1 (R)∩ W 1,4 (R) telle que E(•) et F (•) sont conservés le long de la trajectoire et satisfont

u 0 - n i=1 ϕ c i (• -z i ) H 1 + u 0,x - n i=1 ϕ c i (• -z i ) L 4 ≤ ε 4 , avec 0 < ε < ε , (1.1.7) 
pour un certain tableau de nombres {z i } n i=1 ⊂ R avec z i+1 -z i ≥ L où L ≥ L 0 , alors ce qui suit est vrai : Il existe des fonctions x 1 (t), ..., x n (t) : [0, T ) → R de classe C 1 , tel que

sup t∈[0,T ) u(t, •) - n i=1 ϕ c i (• -x i (t)) H 1 ε + L -1/8 .
(1.1.8)

De plus, nous avons x i+1 (t) -x i (t) > L 2 pour tout t ∈ [0, T ).

Résultats de stabilité asymptotique

Le théorème suivant est le résultat principal de cette section et nous donne la stabilité asymptotique des peakons pour l'équation de Novikov. L'ingrédient principal de la preuve du théorème 1.1.3 est une propriété de rigidité de l'équation de Novikov assurant que toute solution H1 -presque localisée (nous donnerons un énoncé précis de cette définition) de l'équation de Novikov (1.1.6) est en fait un peakon. Cette dernière propriété a été prouvée en introduisant une nouvelle fonctionnelle de Lyapunov non liée à la quantité de mouvement (non conservée) de l'équation.

Theorem 1.1.4. Supposons que u ∈ C(R, H 1 (R)) avec u -u xx ∈ C ti (R, M + b ) soit une solution H 1 -presque localisée de (1.1.1) qui n'est pas identiquement nulle. Alors, il existe c * > 0 et x 0 ∈ R tels que

u(t) = √ c * ϕ(• -x 0 -c * t), ∀t ∈ R.
Les principaux ingrédients de la preuve du théorème 1.1.4 sont la quasi-monotonie de l'énergie, la vitesse finie de propagation de la densité de quantité de mouvement, l'existence d'une fonctionnelle de Lyapunov et des résultats de continuité par rapport aux données initiales pour la topologie faible H 1 .

Comme précédemment, ayant conclu le cas d'un peakon individuel, on peut s'attaquer au problème d'un train de peakons.

Theorem 1.1.5 (Stabilité asymptotique d'un train de peakons). Soient c 1 , ...c n , n nombres réels positifs qui satisfont c 1 < ... < c n et β ∈ (0, c 1 4 ). Il existe L 0 > 0 suffisamment grand et ε > 0 suffisamment petit tel que si une solution u ∈ C ti (R, Y + (R)) de l'équation de Novikov associée à une donnée initiale u 0 ∈ Y + (R) satisfait

u 0 - n i=1 ϕ c i (• -z i ) H 1 ≤ ε 4 , avec 0 < ε < ε , (1.1.11)
pour certains {z i } n i=1 ⊂ R satisfaisant z i+1 -z i ≥ L pour certains L ≥ L 0 alors ce qui suit est vrai : Il existe n nombres réels positifs c 1 < ... < c n et des fonctions x 1 , ..., x n : R → R de classe C 1 tel que pour tout i = 1, ..., n, on a que

ẋ i (t) → c i as t → +∞ et u t, • + x i (t) ϕ c i dans H 1 lorsque t → +∞.
De plus, pour tout z ∈ R, la convergence forte suivante est vérifiée :

lim t→+∞ u(t) - n i=1 ϕ c i • -x i (t) H 1 (At)
= 0, avec A t := (-∞, z) ∪ (βt, +∞) (1.1.12)

Encore une fois, les idées principales pour généraliser le résultat d'un seul peakon à un train de peakons viennent de [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF].

Principe de la preuve

Le principe de notre preuve est clairement motivé par [START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF] pour le cas Camassa-Holm (voir aussi [START_REF] Molinet | A rigidity result for the Holm-Staley b-family of equations with application to the asymptotic stability of the Degasperis-Procesi peakon[END_REF][START_REF] Molinet | Asymptotic stability for some non positive perturbations of the Camassa-Holm peakon with application to the antipeakon-peakon profile[END_REF]) et suit dans bien des points la démarche introduite dans les travaux de Martel-Merle ( [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF], [START_REF] Martel | Asymptotic stability of solitons for subcritical generalized KdV equations[END_REF]). Cependant, comme nous le verrons, en raison de l'absence de conservation de la quantité de mouvement, l'équation de Novikov présente plusieurs difficultés nouvelles que nous aurons à résoudre. Par exemple, étant donné une solution u(t), puisque le caractère bien posé globale nécessite que la densité de quantité de mouvement ait une masse totale finie sur R, a priori nous ne sommes pas autorisés à étudier les solutions limites globales associées à u(t), puisque dans la limite y(t) pourrait ne pas avoir une masse totale finie. Néanmoins, en utilisant un résultat de quasi monotonie pour la norme H 1 à droite de certaines courbes, nous allons prouver que pour des solutions restant suffisamment proches de la trajectoire d'un peakon, les objets limites associés décroissent uniformément de façon exponentielle et appartiennent à Y + . Un autre apport de notre approche est l'introduction d'une nouvelle fonctionnelle de Lyapunov qui est plus simple que celle utilisée dans [START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF] et semble fonctionner pour une classe plus large d'équations de type CH. Nous soulignons que cette nouvelle preuve donne une simplification du résultat de rigidité, qui peut être utile pour plusieurs types d'équations CH avec des solutions peakons.

Nous esquissons ici la preuve du théorème de rigidité. Nous commençons par étudier les propriétés des solutions H 1 -presque localisées à densité de quantité de mouvement à support compact. En particulier, nous prouvons que pour cette classe de solutions il existe une fonctionnelle de Lyapunov, qui est liée au dernier point sur le support de la densité de quantité de mouvement. Plus précisément, la fonctionnelle de Lyapunov est donnée par l'application t → u(t, m(t)), où m(t) est le dernier point (à droite) sur le support de la densité de quantité de mouvement y(t). Il est intéressant de noter que dans le cas du peakon non perturbé, m(t) est donné par la position du pic à l'instant t. Ensuite, nous prouvons qu'en effet toute solution H 1 presque localisée a une densité de moment à support compact, et donc toutes les propriétés démontrées ci-dessus sont valides, en particulier que m(t) est bien défini. Ce sera une conséquence de la vitesse finie de propagation de la densité de quantité de mouvement et de la décroissance exponentielle (uniforme dans le temps) des solutions H 1 -presque localisées. Ensuite, nous prouverons que u(t) évaluée à la ligne intégrale associée au dernier point du support de la densité de quantité de mouvement est constant dans le temps. Enfin, nous montrons que ce dernier fait force u(t) à être un peakon.

Nous esquissons maintenant la preuve de la stabilité asymptotique d'un seul peakon. Une fois que nous avons démontré le théorème de rigidité, nous commençons par étudier les objets limites associés à u(t, • + x(t)) où u(t) correspond à notre solution originale, et x(t) est un paramètre de modulation convenablement choisi. Nous allons montrer que ces objets limites jouissent de meilleures propriétés que la solution elle-même. En particulier, nous prouverons que les solutions associées à cette classe de fonctions limites choisies comme données initiales, correspondent à des solutions H 1 -presque localisées, et donc qu'elles sont des peakons. La principale difficulté ici par rapport aux équations de Camassa-Holm et de Degasperis-Procesi est que notre suite u(t n , • + x(t n )) associée à notre solution originale ne sera pas bornée dans Y + du fait de la non-conservation de la quantité de mouvement. En conséquence, nous ne pourrons pas utiliser un résultat général de continuité de l'application flot par rapport à la topologie faible pour des séquences bornées dans Y + , comme c'était le cas pour ces dernières équations. Au lieu de cela, nous profiterons du résultat de quasi-monotonicité pour prouver que pour une solution u(t) restant suffisamment proche d'un peakon, les objets limites associés à t → u(t n +t, •+x(t n +t)) décroît exponentiellement uniformément dans le temps et ont donc une quantité de mouvement finie. Cela suffira à assurer la faible continuité de l'application de flot par rapport à notre séquence. Une fois que nous savons que l'objet limite correspond à un peakon, nous pourrons légèrement améliorer notre précédent résultat de convergence forte dans H 1 - loc en convergence forte dans H 1 loc . Enfin, avec cette dernière propriété, ainsi que le lemme de modulation et la convergence faible dans tout l'espace H 1 (R), nous conclurons la preuve du théorème 1.1.3.

Sur le caractère bien posé des équations dispersives autour d'une fonction bornée

Le problème de Cauchy pour l'équation k-Korteweg-de Vries (k-KdV)

∂ t u + ∂ 3 x u ± u k ∂ x u = 0, t ∈ R, x ∈ R, k ∈ Z + , u(0, x) = u 0 (x), (1.2.1) 
a été largement étudiée au cours des cinq dernières décennies et est l'une des équations les plus célèbres dans le contexte des EDP dispersives. Cette famille d'équations comprend la célèbre équation de Korteweg-de Vries (KdV) (cas k = 1), qui a été obtenue comme modèle pour la propagation unidirectionnelle d'ondes longues dispersives non linéaires [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF], et retrouvée par la suite dans l'étude des ondes hydro-magnétiques sans collision [START_REF] Gardner | Similarity in the asymptotic behavior of collision-free hydromagnetic waves and water waves[END_REF].

Dans le cas où k = 2 on retrouve une autre équation assez célèbre, l'équation de KdV modifiée, qui modélise également la propagation des ondes dispersives faiblement non linéaires. À cet égard, une grande classe de modèles hyperboliques a été réduite aux deux dernières équations.

Ces deux cas (k = 1, 2) correspondent à des systèmes complètement intégrables, en termes d'existence d'une paire de Lax, et les deux ont été résolus par la méthode d'inverse scattering. Une propriété intéressante de (1.2.1) est que ce sont les deux seuls cas où cette équation correspond à un système complètement intégrable (voir [START_REF] Gardner | A method for solving the Korteweg-de Vries equation[END_REF][START_REF] Gardner | The Korteweg-de Vries equation and generalizations. VI. Method for exact solutions[END_REF]).

De plus, dans cette section, nous cherchons également à étudier le problème de Cauchy associé à l'équation de Zakharov-Kuznetsov (ZK) en deux dimensions d'espace, à savoir

∂ t v + ∂ x ∆v + 1 2 ∂ x (v 2 ) = 0, v(0, x, y) = v 0 (x, y), (1.2.2) 
où v = v(t, x, y) est une fonction à valeurs réelles, ∆ est l'opérateur laplacien et(t, x, y) ∈ R 3 . L'équation (1.2.2) a été formellement obtenue par Zakharov et Kuznetsov dans [START_REF] Zakharov | On three-dimensional solitons[END_REF] en tant que modèle asymptotique (ondes longues) pour décrire la propagation des ondes acoustiques ioniques non linéaires dans un plasma magnétisé. L'équation (1.2.2) a également été obtenue par Lannes, Linares et Saut dans [START_REF] Lannes | The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation[END_REF] à partir du système d'Euler-Poisson avec un champ magnétique, comme limite onde longue pour la propagation d'ondes de petite amplitude (voir aussi [START_REF] Linares | The Cauchy problem for the 3D Zakharov-Kuznetsov equation[END_REF] pour une dérivation formelle). De plus, l'équation de Zakharov-Kuznetsov peut également être considérée comme une généralisation bidimensionnelle naturelle de la célèbre équation de KdV.

Contrairement à l'équation de Korteweg-de Vries, ou l'équation de Kadomtsev-Petviashvili

∂ t v + ∂ 3 x v ± ∂ -1 x ∂ 2 y v + 1 2 ∂ x (v 2 ) = 0,
qui est une autre généralisation de dimension supérieure de l'équation KdV (1.2.1), l'équation de Zakharov-Kuznetsov (1.2.2) n'est pas complètement intégrable. Néanmoins, elle garde une structure hamiltonienne et possède plusieurs lois de conservation (c.f. (1.2.8)).

Equations posées autour d'une fonction bornée

Motivés par l'étude des solutions de Kink 2 , nous considérons ici quelques légères généralisations des problèmes de Cauchy introduits précédemment. Plus précisément, nous considérons ici les problèmes de Cauchy suivants (gKdV)

∂ t v + ∂ x (∂ 2 x v + f (v)) = 0, v(0, x) = Φ(x), (1.2.3) (ZK) ∂ t v + ∂ x ∆v + 1 2 ∂ x (v 2 ) = 0, v(0, x, y) = Φ(x, y), (1.2.4) 
où v = v(t, x) ou v = (t, x, y) représente une fonction à valeur réelle, la non-linéarité f est également à valeur réelle et t, x, y ∈ R. Le point clé ici est que nous ne supposons aucune décroissance spatiale des données initiales Φ(x), respectivement Φ(x, y), mais, pour le moment, seulement que Φ ∈ L ∞ (R), respectivement Φ ∈ L ∞ (R 2 ). Au lieu de cela, nous décomposons la solution v(t) de la manière suivante v(t, x) = u(t, x) + Ψ(t, x), respectivement v(t, x, y) = u(t, x, y) + Ψ(t, x, y) (1.2.5) où on suppose que Ψ ∈ L ∞ est une fonction donnée (voir (1.2.9) et (1.2.10) ci-dessous pour les hypothèses spécifiques sur Ψ) et on cherche u(t) ∈ H s . Ensuite, il est naturel de réécrire l'IVP ci-dessus en termes de problèmes de Cauchy (Ψ-gKdV)

∂ t u + ∂ t Ψ + ∂ x ∂ 2 x u + ∂ 2 x Ψ + f (u + Ψ) = 0, u(0, x) = u 0 (x) ∈ H s (R), (1.2.6) 
(Ψ-ZK)

∂ t u + ∂ t Ψ + ∂ x ∆u + ∂ x ∆Ψ + 1 2 ∂ x (u + Ψ) 2 = 0, u(0, x, y) = u 0 (x, y) ∈ H s (R 2 ).
(1.2.7)

Nous soulignons que les équations (1.2.6) et (1.2.7) sont simplement les équations (1.2.3) et (1.2.4) une fois la substitution (1.2.5) opérée. À ce stade, il convient de mentionner que l'équation gKdV (1.2.3) et l'équation de ZK (1.2.4) jouissent (au moins formellement) de plusieurs lois de conservation, telles que les conservations de moyenne, de masse et d'énergie, qui sont données par (respectivement)

I 1 (v(t)) := ˆv(t) = I 1 (v 0 ),
2. Dans ce travail, par cela nous nous référons, en dimension 1, aux ondes progressives K(x -ct) tel que K(•) est une fonction monotone non identiquement nulle, avec K ∈ L ∞ (R). En dimension supérieure on demandera simplement que la fonction K, en au moins une de ses variables (avec les autres fixes), corresponde à la définition d'un Kink unidimensionnel ci-dessus. 

I 3 (v(t)) := ˆ|∇v| 2 (t) -F v(t) = I 3 (v 0 ),
où F (•) représente une primitive de la non-linéarité (f (•) dans le cas de (1.2.3) et 1 2 (•) 2 dans le cas de (1.2.4)). Par conséquent, L 2 et H 1 sont deux espaces naturels pour étudier le caractère bien posé de ces équations. Cependant, en raison de la présence de Ψ(t), aucune de ces quantités n'est bien définie pour les solutions des équations (1.2.6) et (1.2.7) respectivement. Cependant, une modification appropriée de la fonctionnelle énergétique I 3 jouera un rôle clé dans la démonstration du caractère global des solutions dans l'espace de l'énergie H 1 lorsque la non-linéarité croît au plus quadratiquement (voir les théorèmes 1.2.3 et 1.2.4 ci-dessous).

Il convient de remarquer que, puisque l'équation Ψ-gKdV (1.2.6) peut être considérée comme une perturbation de l'équation de gKdV (1.2.3) avec une donnée initiale v(0, •) ∈ H s (R), on pourrait penser que, pour prouver le caractère bien posé local de l'équation (1.2.6), il est raisonnable de procéder en utilisant le principe de contraction comme dans [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF][START_REF] Kenig | A bilinear estimate with applications to the KdV equation[END_REF]. Cependant, il semble que cela ne soit même pas vrai dans le cas où f (x) = x 2 , en raison de l'occurrence du terme Ψ∂ x u avec Ψ non intégrable, ce qui semble indiquer que ce problème est plus complexe même pour le cas KdV. Par le même raisonnement, exactement le même terme devrait exclure une preuve par un principe de contraction dans le cas ZK (voir [START_REF] Linares | Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation[END_REF] pour une preuve en utilisant le principe de contraction dans le cas ZK).

Hypothèse sur la fonction de non-linéarité pour le cas de gKdV :

Dans ce travail, nous supposons seulement que f : R → R est une fonction analytique réelle satisfaisant que son développement de Taylor autour de zéro a un rayon de convergence infini. Notez que tout polynôme p(x) satisfait l'hypothèse ci-dessus, ainsi que exp(x), sinh(x), cosh(x), sin(x), cos(x), p(sin(x)), etc.

Comme mentionné précédemment, l'une de nos principales motivations vient de l'étude des solutions Kink. Cependant, en même temps, nous cherchons également à donner un cadre pour étudier les perturbations localisées non périodiques des solutions périodiques.

Hypothèse sur la fonction en arrière plan dans le cas de gKdV :

Dans la suite nous supposerons toujours que la fonction donnée Ψ(t, x) dans le cas gKdV vérifie les hypothèses suivantes :

     ∂ t Ψ ∈ L ∞ (R 2 ), Ψ ∈ L ∞ (R, W s+1 + ,∞ (R)), (∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ)) ∈ L ∞ (R, H s + (R)).
(1.2.9)

Remark 1.2.1. Notez que toute fonction Ψ = Ψ(x) ∈ L ∞ (R) telle que Ψ ∈ H ∞ (R), par exemple Ψ étant un Kink, satisfait toutes les conditions dans (1.2.9). De plus, si Ψ = Ψ(t, x) résout l'équation gKdV (1.2.3), alors la dernière expression dans (1.2.9) est identiquement nulle, et donc la troisième hypothèse est immédiatement satisfaite. En particulier, on peut considérer Ψ(t, x) comme une solution périodique de l'équation gKdV.

Hypothèse sur la fonction en arrière plan dans le cas de ZK :

Dans ce cas nous supposerons toujours que la fonction donnée Ψ(t, x, y) dans le cas ZK vérifie les hypothèses suivantes :

Ψ ∈ L ∞ (R, W 3 + ,∞ xy (R 2 )), ∂ t Ψ + ∂ x ∆Ψ + 1 2 ∂ x (Ψ 2 ) ∈ L ∞ (R, H 2 + (R 2 )).
(1.2.10)

Remark 1.2.2. Notez que si Ψ résout l'équation (1.2.4), alors la dernière hypothèse dans (1.2.10) est immédiatement satisfaite. Cette observation nous permettra de travailler autour de Kinks et de solutions périodiques.

Principaux résultats

Dans la suite nous nous concentrons sur l'étude du problème de Cauchy associé aux problèmes de conditions initiales (1.2.6) et (1.2.7). Les deux théorèmes suivants sont les principaux résultats de cette section et nous fournissent le caractère bien posé locale pour les deux équations.

Theorem 1.2.1 (Caractère bien posé locale pour Ψ-gKdV). Sous les hypothèses ci-dessus, le problème de Cauchy (1.2.6) est inconditionnellement localement bien posé dans H s (R), pour s > 1/2.

Remark 1.2.3. L'ajout du terme "inconditionnellement" signifie que l'unicité de la solution est obtenue parmi l'ensemble des solutions qui appartiennent à L ∞ (0, T ; H s (R)) pour un certain T > 0.

Theorem 1.2.2 (Caractère bien posé locale pour Ψ-ZK). Sous les hypothèses ci-dessus, le problème de valeur initiale (1.2.7) est localement bien posé dans H s (R 2 ), pour s ≥ 1.

Sous certaines conditions supplémentaires sur la croissance de f (x), nous prouvons le caractère bien posé globale pour l'équation (1.2.6).

Theorem 1.2.3 (Caractère bien posé gloable pour Ψ-gKdV). Supposons en outre que f vérifie que |f (x)| 1, ∀x ∈ R.

Si la donnée initiale u 0 ∈ H s (R), avec s ≥ 1, alors la solution locale u(t) fournie par le Théorème 1.2.1 peut être prolongé pour tout T > 0.

Remark 1.2.4. Notez que le théorème précédent nous donne le caractère bien posé globale, en particulier, pour f (x) = x 2 mais aussi pour f (x) = sin(x) comme non-linéarités.

Theorem 1.2.4 (Caractère bien posé gloable pour Ψ-ZK). Si la donnée initiale u 0 ∈ H 1 (R 2 ), alors la solution locale u(t) fournie par le théorème 1.2.2 peut être étendue pour tout T > 0. 

Résultats existants

(R 2 ) pour s > -1/4 et L 2 (R 2
) respectivement [START_REF] Kinoshita | Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D[END_REF]. Ce dernier résultat de LWP est presque optimal, du moins du point de vue de l'approche d'itération de Picard, puisque l'application données-solution u 0 → u(t) n'est pas C 2 pour s < -1/4.

Principe de la preuve

Nous allons maintenant décrire brièvement les techniques utilisées dans la preuve de chacun des théorèmes précédents.

Caractère bien posé local dans le cas gKdV

Notre preuve repose sur les améliorations de la méthode de l'énergie, récemment développée dans [START_REF] Molinet | Improvement of the energy method for strongly nonresonant dispersive equations and applications[END_REF][START_REF] Molinet | Unconditional uniqueness for the modified Korteweg-de Vries equation on the line[END_REF][START_REF] Molinet | On well-posedness for some dispersive perturbations of Burgers' equation[END_REF], ainsi que sur des arguments de symétrisation précédemment utilisés dans [START_REF] Colliander | Sharp global well-posedness for KdV and modified KdV on R and T[END_REF], par exemple. Cependant, en raison de la présence de Ψ(t, x) (qui brise la symétrie) et de la non-linéarité générale, l'analyse présente sera plus délicate que les cas précédents.

Caractère bien posé local dans le cas ZK

Nous discutons maintenant des principaux ingrédients de la preuve du théorème 1.2.2. Nous adapterons la méthode introduite par Ionescu, Kenig et Tataru dans [START_REF] Ionescu | Global well-posedness of the KP-I initial-value problem in the energy space[END_REF], dans le cadre de l'équation KP-I, qui consiste en une méthode d'énergie, basée sur l'introduction des espaces de Bourgain dyadiques de temps court F s β et leurs duaux N s β . Depuis lors, ces idées ont été adaptées pour faire face à plusieurs autres modèles. Nous nous référons à [START_REF] Molinet | Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications[END_REF] et [START_REF] Ribaud | Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation[END_REF] pour des travaux existants utilisant des idées similaires dans le cadre des équations de type ZK.

Les espaces F s β (T ) jouissent d'une structure de type X s,1/2 , avec une localisation dans de petits intervalles temporels, où la taille de ces intervalles est dépendante de la taille de la fréquence. Plus précisément, dont la longueur est de l'ordre H -β , pour un certain β > 0 à choisir (dans notre cas on prend β = 1/2), lorsque la fréquence spatiale (ξ, µ) de la fonction est localisé autour de ξ 2 + µ 2 ∼ H. Cela permet en quelques sortes de ne considérer que les modulations |τ -ω(ξ, µ)| H β . Naturellement, le choix de β sera l'un des points clés de ces définitions. En fait, le principal obstacle à la preuve du caractère bien posé locale dans notre cas, par une méthode de point fixe, provient de l'occurrence de ∂ x (uΨ) dans la non-linéarité. On choisit β afin de pouvoir traiter le terme ∂ x (uΨ) N s β (T ) , où la définition de N s β (T ) il est également basé sur de petits intervalles de temps dépendant de la fréquence, avec des longueurs de l'ordre de H -β . Les termes de la forme ∂ x P H (P ∼H u • P H Ψ) seront particulièrement nocifs. Ces types de termes nous amènent à considérer β = 1/2. Enfin, nous adaptons la méthode de Bona-Smith [START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF] pour prouver la continuité du flot dans l'espace H s .

Chapitre 2

Aymptotic stability of peakons for the Novikov equation

Introduction

The model

This paper is concerned with the Novikov equation

u t -u txx + 4u 2 u x = 3uu x u xx + u 2 u xxx , (t, x) ∈ R 2 , (2.1.1) 
where u(t, x) is a real-valued function. This equation was derived by Novikov [START_REF] Novikov | Generalizations of the Camassa-Holm type equation[END_REF] in a symmetry classification of nonlocal partial differential equations with cubic nonlinearity. By using the perturbative symmetry approach [START_REF] Mikhailov | Perturbative symmetry approach[END_REF], which yields necessary conditions for a PDE to admit infinitely many symmetries, Novikov was able to isolate equation (3.1.1) and derive its first few symmetries. Later, he was able to find an associated scalar Lax-pair, proving the integrability of the equation. On the other hand, Hone and Wang recently found a matrix Lax-pair representation of the Novikov equation, specifically, they showed that (3.1.1) arises as a zero curvature equation F t -G x + [F, G] = 0 which is the compatibility condition for the linear system [START_REF] Hone | Integrable peakon equations with cubic nonlinearity[END_REF] Ψ

x = F (y, λ)Ψ and Ψ t = G(y, λ)Ψ,
where y = u -u xx and the matrices F and G are defined by

F =   0 λy 1 0 0 λy 1 0 0   , G =   1 3λ 2 -uu x 1 λ u x -λu 2 y u 2 x 1 λ u -2 3λ 2 -1 λ u x -λu 2 y -u 2 1 λ u 1 3λ 2 + uu x   .
Moreover, by using this matrix Lax-pair representation, Hone and Wang showed how the Novikov equation is related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierarchy.

The Novikov equation possesses infinitely many conservation laws, among which, the most important ones are given by

E(u) := ˆR u 2 (t, x) + u 2 x (t, x) dx and F (u) := ˆ u 4 + 2u 2 u 2 x - 1 3 u 4 x dx. (2.1.2)
Solutions of (3.1.1) are known to satisfy several symmetry properties : shifts in space and time, i.e. the mapping u(t, x) → u(t + t 0 , x + x 0 ) among solutions to (3.1.1) is preserved, as well as space-time invertion, i.e. if u(t, x) is a solution of (3.1.1), then u(-t, -x) is another solution.

One of the most important features of the Novikov equations is the existence of peakon and antipeakon solutions [START_REF] Hone | Integrable peakon equations with cubic nonlinearity[END_REF] which are peaked traveling waves with a discontinuous derivative at the crest. They are explicitly given by

±ϕ c (x -ct) = ± √ cϕ(x -ct) := ± √ ce -|x-ct| , c > 0.
Moreover, the Novikov equation also exhibit multi-peakons solutions. More precisely, for any given natural number n ∈ N, let us denote by q = (q 1 , ..., q n ) and p = (p 1 , ..., p n ) the position and momenta vectors. Then, the n-peaked traveling wave solution on the line is given by

u(t, x) = n i=1 p i (t) exp(-|x -q i (t)|)
, where p i and q i satisfy the following system of 2ndifferential equations

           dq i dt = u 2 (q i ) = n j,k=1 p j p k e -|q i -q j |-|q i -q k | , dp i dt = -p i u(q i )u x (q i ) = p i n j,k=1
p j p k sgn(q i -q j )e -|q i -q j |-|q i -q k | .

(

There exists some similar expressions for periodic peakons and multipeakon solutions but we do not intend to deepen in this direction. On the other hand, equation (3.1.1) can be rewritten in a compact form in terms of its momentum density as y t + u 2 y x + 3uu x y = 0, where y := u -u xx , (2. 1.4) which can be regarded as a cubic nonlinear generalization of the celebrated Camassa-Holm (CH) equation [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Fuchssteiner | Symplectic structures, their Bäcklund transformations and hereditary symmetries[END_REF],

u t -u txx = uu xxx + 2u x u xx -3uu x equivalently y t + uy x + 2u x y = 0, (2.1.5) 
or the Degasperis-Procesi (DP) equation [START_REF] Degasperis | Asymptotic integrability[END_REF],

u t -u txx = uu xxx + 3u x u xx -4uu x equivalently y t + uy x + 3u x y = 0. (2.1.6)
It is worth noticing that the last three equations in terms of the momentum densities correspond to transport equations for y(t). As a consequence, initial data with signed initial momentum density give rise to solutions with the same property. This is one of the key points to prove that smooth and decaying initial data with signed initial momentum density give rise to global solutions.

Regarding the CH and the DP equations, both can be derived as a model for the propagation of unidirectional shallow water waves over a flat bottom by writing the Green-Naghdi equations in Lie-Poisson Hamiltonian form and then making an asymptotic expansion which keeps the Hamiltonian structure [START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF][START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi Equations[END_REF][START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF]. Moreover, both of them can be written in Hamiltonian form

∂ t E (u) = -∂ x F (u),
where for the Camassa-Holm equation E(u) and F (u) are given by

E(u) := ˆu2 + u 2
x and F (u) := ˆu3 + uu 2

x while for the Degasperis-Procesi equation they are given by

E(u) := ˆyv = ˆ5v 2 + 4v 2 x + v 2 xx and F (u) := ˆu3 ,
where v := (4 -∂ 2 x ) -1 u. Moreover, both of them belongs to the so-called b-family introduced by Degasperis, Holm and Hones in [START_REF] Degasperis | A new integrable equation with peakon solution[END_REF],

u t -u txx = bu x u xx + uu xxx -(b + 1)uu x .
In [START_REF] Mikhailov | Perturbative symmetry approach[END_REF] it was shown that the b-family corresponds to an integrable equation only when b = 2, 3, which corresponds exactly to the CH and the DP equations respectively.

On the other hand, the Novikov equation, as well as the CH and the DP equations, can also be written in a nonlocal form in the following way. From now on we shall denote by p(x) the fundamental solution of 1 -∂ 2

x in R, that is p := 1 2 e -|x| . Then, we can rewrite (3.1.1) as

u t + u 2 u x = -p * 3uu x u xx + 2u 3 x + 3u 2 u x , (2.1.7) 
which can be understood as a nonlocal perturbation of Burgers-type equations

u t + 1 3 (u 3 ) x = 0,
or more generally as a nonlinear nonlocal transport equation. This latter fact has many implications, for instance, from the blow-up criteria for transport equations we obtain that singularities are caused by the focusing of characteristics.

At this point it is clear that the Novikov equation shares many of its remarkable analytic properties with both the CH and the DP equations, as the existence of a Lax-pair, the completely integrability and the bi-Hamiltonian structure [START_REF] Degasperis | Asymptotic integrability[END_REF][START_REF] Hone | Integrable peakon equations with cubic nonlinearity[END_REF], but also all of them exhibit both existence of peaked traveling waves as well as the phenomenon of wave breaking [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Chen | Analysis on the blow-up of solutions to a class of integrable peakon equations[END_REF][START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi Equations[END_REF][START_REF] Degasperis | Asymptotic integrability[END_REF][START_REF] Novikov | Generalizations of the Camassa-Holm type equation[END_REF]. This latter one means that the wave profile remains bounded while its slope becomes unbounded. As the authors explain in [START_REF] Chen | Analysis on the blow-up of solutions to a class of integrable peakon equations[END_REF], understanding the wave-breaking mechanism not only presents fundamental importance from a mathematical point of view but also a great physical interest since it would help to provide a key-mechanism for localizing energy in conservative systems by forming one or several small-scale spots. Finally, we remark that, unlike the Novikov equation, peakon solutions for the CH and the DP equations have a slightly different form, which is given by

ϕ c (x -ct) = cϕ(x -ct) := ce -|x-x 0 -ct| , c ∈ R \ {0}, x 0 ∈ R.
It is worth noticing that in sharp contrast with the Novikov equation, CH and DP peakons can move in both directions, left and right, just by changing the sign of c, while all Novikov peakons and anti-peakons move to the right.

About the stability of these peaked solitary waves, the first proof of orbital stability was given in the Camassa-Holm case for H 1 -perturbations assuming that their associated momentum density defines a non-negative Radon measure [START_REF] Constantin | Orbital stability of solitary waves for a shallow water equation[END_REF]. The orbital stability for perturbations in the whole energy space H 1 (R) was proved by Constantin and Strauss in [START_REF] Constantin | Stability of peakons[END_REF] (see also [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] for a proof in the Degasperis-Procesi case). Later, following the ideas in [START_REF] Constantin | Stability of peakons[END_REF][START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] Liu et al. proved the orbital stability for peakons in the Novikov case under the additional assumption of non-negative initial momentum density [START_REF] Liu | Stability of peakons for the Novikov equation[END_REF].

From a physical point of view, these peakons, as well as the ones for the Novikov equation, reveal some similarities to the well-known Stokes waves of greatest height, i.e. traveling waves of maximum possible amplitude that are solutions to the governing equations for irrotational water waves [START_REF] Constantin | The trajectories of particles in Stokes waves[END_REF][START_REF] Toland | Stokes waves[END_REF]. These traveling waves (Stokes waves) are smooth everywhere except at the crest, where the lateral tangents differ.

Initial data space

Before stating our results we need to introduce some functional spaces and notation. Following the ideas of [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF][START_REF] El Dika | Exponential decay of H1-localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation[END_REF][START_REF] El Dika | Stability of multipeakons[END_REF][START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF] we define

Y := u ∈ H 1 (R) : u -u xx ∈ M b ,
where M b denotes the space of Radon measures with finite total mass on R. Moreover, from now on we shall denote by Y + the subspace defined by

Y + := {u ∈ Y : u -u xx ∈ M + b }, where M + b denotes the space of non-negative finite Radon measures on R. A crucial remark in what follows is that, for any function v ∈ C ∞ 0 (R) we have v(x) = 1 2 ˆx -∞ e x -x (v -v xx )(x )dx + 1 2 ˆ∞ x e x-x (v -v xx )(x )dx (2.1.8) and v x (x) = - 1 2 ˆx -∞ e x -x (v -v xx )(x )dx + 1 2 ˆ∞ x e x-x (v -v xx )(x )dx (2.1.9) Therefore, if v -v xx ≥ 0 on R we conclude that |v x | ≤ v.
Thus, by density of C ∞ 0 (R) in Y , we deduce the same property for functions v ∈ Y + .

Remark 2.1.1. We recall the following standard estimate which shall be useful in the sequel :

u W 1,1 = p * (u -u xx ) W 1,1 u -u xx M ,
and hence it also holds that

u xx M ≤ u L 1 + u -u xx M .
Thus, we have

Y (R) → u ∈ W 1,1 (R) : u x ∈ BV(R)
, where BV(R) denotes the space of functions with bounded variation.

With all of these definitions at hand we are able to introduce the most important definition throughout this paper.

Definition 2.1.1 (H 1 -almost localized solution). We say that a solution

u ∈ C(R, H 1 (R)) of equation (3.1.8) satifying u -u xx ∈ C ti (R, M + b ) is H 1 -almost localized if there existe a C 1 -function x(•)
such that the following holds : For any ε > 0, there exists R ε > 0 such that for all t ∈ R we have ˆ|x|>Rε 

u 2 + u 2 x (t, • + x(t))dx ≤ ε. ( 2 
(t) + u 2 x (t) Φ(• -x(t))dx + u(t) -u xx (t), Φ(• -x(t)) ≤ ε, (2.1.11) 
and

u(t) -u xx (t), Φ(• -x(t)) ≤ ε, (2.1.12)
for the Camassa-Holm and the b-family respectively, where Φ corresponds to any continuous function 0

≤ Φ ≤ 1 satisfying supp Φ ⊂ [-R ε , R ε ] c
. This change is related to the fact that the CH equation conserve both, the energy and the momentum, while the b-family conserve the momentum. Nevertheless, in the case of the CH, DP and Novikov equations, since we can prove that H1 -almost localized solutions are uniformly exponentially decaying, all of these characterizations are actually equivalent (see [START_REF] Molinet | A rigidity result for the Holm-Staley b-family of equations with application to the asymptotic stability of the Degasperis-Procesi peakon[END_REF] for the equivalence between (2.1.11) and (2.1.12)).

Main results

The following theorem is the main result of this paper and give us the asymptotic stability of peakon solutions for the Novikov equation.

Theorem 2.1.2. Let c > 0 be fixed. There exists an universal constant 1 ε > 0 such that for any β ∈ (0, c) and any initial data 

u 0 ∈ Y + satisfying u 0 -ϕ c H 1 ≤ ε β c 8 , ( 2 
: R → R satisfying ẋ(t) → c * as t → +∞ u(t, • + x(t)) ϕ c * in H 1 (R).
where

1 u ∈ C ti (R, Y + )
is the global weak solution to equation (3.1.8) associated to u 0 . Moreover, for any z ∈ R the following strong convergence holds

lim t→+∞ u(t) -ϕ c * (• -x(t)) H 1 ((-∞,z)∪(βt,+∞)) = 0. (2.1.14)
The main ingredient in the proof of Theorem 2.1.2 is a rigidity property of the Novikov equation.

Theorem 2.1.3. Let us suppose that u ∈ C(R, H 1 (R)) with u -u xx ∈ C ti (R, M + b ) is an H 1 -
almost localized solution of (3.1.1) that is not identically zero. Then, there exists c * > 0 and

x 0 ∈ R such that u(t) = √ c * ϕ(• -x 0 -c * t), ∀t ∈ R.
The main ingredients in the proof of Theorem 2.1.3 are the almost monotonicity of the energy, the finite speed of propagation of the momentum density, the existence of a Lyapunov functional and some continuity results with respect to the initial data for the H 1 -topology.

Remark 2.1.3. This theorem implies, in particular, that an H 1 -almost localized solution with non-negative momentun density cannot be smooth for any time. More precisely, if

u ∈ C(R, H 1 (R)) with u -u xx ∈ C ti (R, M + b ) is a H 1 -
almost localized solution of the Novikov equation that belongs to H 3/2 (R) for some t ∈ R, then u must to be the trivial solution. Our method of proof is certainly strongly motivated by the remarkable work of Molinet in [START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF] for the Camassa-Holm case (see also [START_REF] Molinet | A rigidity result for the Holm-Staley b-family of equations with application to the asymptotic stability of the Degasperis-Procesi peakon[END_REF][START_REF] Molinet | Asymptotic stability for some non positive perturbations of the Camassa-Holm peakon with application to the antipeakon-peakon profile[END_REF]). However, as we shall see, due to the lack of conservation of momentum, the Novikov equation presents several new difficulties that we shall have to address. For instance, given a solution u(t), since the global wellposedness requires the momentum density to have finite total mass on R, apriori we are not allowed to study global limit solutions associated to u(t). Nevertheless, by using an almost monotonicity result for the H 1 -norm at the right of some curves, we shall be able to prove that for solutions staying close enough to peakon's trajectory, the associated limit objects are uniformly exponentially decaying and belong to Y + for all times. Another new difficulty is that the Lyapunov functional in [START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF] was related to the conservation of the momentum. Here we introduce a new Lyapunov functional that is simpler and seems to work for a wider class of CH-type equations. We point out that this new proof gives a simplification of Molinet's approach for the rigidity result, which can be useful for several types of CH-equations with peakon solutions.

It is important to point out that all of these results, as well as the ones obtained in [START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF][START_REF] Molinet | A rigidity result for the Holm-Staley b-family of equations with application to the asymptotic stability of the Degasperis-Procesi peakon[END_REF], come from a series of remarkable previous works in the context of KdV-type equations. The interested reader can consult [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF][START_REF] Martel | Asymptotic stability of solitons for subcritical generalized KdV equations[END_REF][START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] for these previous results. Remark 2.1.4. From now on we shall focus on the peakon case ϕ c . Nevertheless, notice that by using the invariance u(t, x) → -u(t, x) we also deduce the asymptotic stability of the antipeakon profile -ϕ c where c > 0, with perturbations in the class of H 1 functions with momentum density belonging to M - b (R).

Organization of this chapter

This paper is organized as follow. In Section 5.2 we introduce some definitions and state a series of results needed in our analysis, for instance, the well-posedness result in the class of solutions we shall work with. In section 3.4 we prove the rigidity result for the Novikov equation. Finally, in section 2.4 we prove the asymptotic stability of peakon solutions.

Preliminaries

Preliminaries and definitions

In the sequel we shall need the following family of functions. Let {ρ n } n∈N be a mollifiers family definied by

ρ n (x) := n ˆR ρ(ξ)dξ -1 ρ(nx), where ρ(x) := e 1 x 2 -1 for |x| < 1 0 for |x| ≥ 1.
(2.2.1)

Notice that for any n ∈ N we have ρ n L 1 = 1. On the other hand, for any p ∈ [1, ∞] and any T > 0 we shall denote by f L p T H 1

x the norm given by

f p L p T H 1 x := ˆT -T ˆR f 2 + f 2 x (t, x)dx p/2
dt.

From now on we shall also denote by C b (R) the set of bounded continuous functions on R, and by C c (R) the set of compactly supported continuous functions on R. Throughout this paper we shall also need the following definitions.

Definition 2.2.1 (Weakly convergence of measures). We say that a sequence {ν n } ⊆ M converge weakly towards ν ∈ M, which we shall denote by ν n ν, if

ν n , φ → ν, φ , for any φ ∈ C c (R).
Remark 2.2.1. Notice that we are adopting the standard Measure Theory's notation for the weak convergence of a measure. Nevertheless, we recall that from a Functional Analysis point of view this convergence corresponds to the weak-* convergence on Banach spaces.

Definition 2.2.2 (Tightly and weak continuity of measure-valued functions). Let I ⊆ R be an interval. 1. We say that a function

f ∈ C ti (I, M b ) if for any φ ∈ C b (R) the map t → f (t)φ is continuous on I. 2. We say that a function f ∈ C w (I, M) if for any φ ∈ C c (R) the map t → f (t)φ is continuous in I. Definition 2.2.3 (Weak convergence in C ti (I)). Let I ⊆ R be an interval. We say that a sequence f n f in C ti (I, M b ) if for any φ ∈ C b (R) we have f n (•)φ → f (•)φ in C(I).
Let us finish this section by recalling a standard Measure Theory lemma (see for instance [START_REF] Mattila | Geometry of sets and measures in Euclidean spaces[END_REF], Theorem 1.24 

µ(V ) ≤ lim inf n→+∞ µ n (V ).
This weak-lower semicontinuity property shall be useful in our proof and shall enable us to approximate the momentum density associated to solutions of equation (3.1.8) by smooth solutions and pass to the limit.

Well-posedness

In the proofs of Theorems 

u ∈ C(R, H s (R)) ∩ C 1 (R, H s-1 (R)).
Moreover, denoting by y(t) := u(t) -u xx (t) we have that E(u) and y(t) L 2/3 are two conservation laws. Additionally, we have that y(t) and u(t) are non-negative for all times t ∈ R and

|u x (t, •)| ≤ u(t, •) on R.
Unfortunately, since peakon profiles do not belong 2 to H 3/2 (R), they do not enter into this framework either, and hence this theorem is not useful for our purposes. Nevertheless, by following the work of Constantin and Molinet [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF], in the same work Wu and Yin also proved a global well-posedness theorem for a class of functions containing peakons. This result shall be crucial in our analysis. However, we shall need a slightly improved version of this theorem, which we state below.

Theorem 2.2.6 ([109]). Let u 0 ∈ H 1 (R) be a function satisfying y 0 := (u 0 -u 0,xx ) ∈ M + b (R).
Then, the following properties hold :

1. Uniqueness and global existence : There exists a global weak solution

u ∈ C(R, H 1 (R)) ∩ C 1 (R, L 2 (R)),
associated to the initial data u(0) = u 0 such that its momentum density

y(t, •) := u(t, •) -u xx (t, •) ∈ C ti (R, M + b (R)). Additionally I(u) and E(u) are conservation laws. Moreover, the solution is unique in the class {f ∈ C(R, H 1 (R))} ∩ {f -f xx ∈ L ∞ (R, M + b )}. 2. Continuity with respect to the initial data H 1 (R) : For any sequence {u 0,n } n∈N bounded in Y + (R) such that u 0,n → u 0 in H 1 (R)
, the following holds : For any T > 0, the family of solutions {u n } to equation (3.1.8) associated to {u 0,n } satisfies

u n → u in C([-T, T ], H 1 (R)) and y n y in C ti ([-T, T ], M). (2.2.2)
Démonstration. We refer to [START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF][START_REF] Molinet | A rigidity result for the Holm-Staley b-family of equations with application to the asymptotic stability of the Degasperis-Procesi peakon[END_REF], Propositions 2.2, for a proof of this theorem in both the Camassa-Holm and the b-family case. Notice that the same proof applies to the Novikov equation, provided Theorem 3.2.4 and the fact that the first point of the statement was proven in [START_REF] Wu Xinglong | Global weak solutions for the Novikov equation[END_REF], except for the fact that y ∈ C ti (R, M + b ), which can be proven in exactly the same fashion as in [START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF].

Liouville property for the Novikov equation

Preliminary properties of almost localized solutions and almost monotonicity lemma

This subsection aims to state some preliminary properties regarding the decay of almost localized solutions that shall be useful in the sequel. Since the proof of these properties plays no role in the study of Theorems 2.1.2 and 2.1.3, we postpone them to the appendix.

Proposition 2.3.1 (Time-uniform exponential decay). Let u ∈ C(R, H 1 (R)) be an H 1 -almost localized solution to (3.1.8). Then, there exists a constant C > 0 only depending on u 0 H 1 and the mapping ε → R ε (see Definition 2.1.1), and K ≥ 1 such that for all t ∈ R, all R > 0 and all |x| > R we have

|u t, x + x(t) | + ˆ|x|>R u 2 + u 2 x (t, • + x(t))dx ≤ Ce -R K . (2.3.1)
2. Actually, they do not belong to any W

1+ 1
p ,p (R) for any p ∈ [1, +∞). However, peakon profiles do belong to W 1,∞ (R), where W 1,∞ (R) denotes the space of Lipschitz functions.

The previous proposition, whose proof is found in Section 2.5.2, is actually a classical consequence of an almost-monotonicity property of the energy (see Lemma 3.5.1) which, together with the H 1 -almost localized hypothesis, implies the uniform exponential decay of the solution. To prove this theorem and both Theorem 2.1.2 and 2.1.3 let us introduce some useful notation. From now on we shall denote by Ψ the weight function defined by

Ψ := 2 π arctan exp x 6 , (2.3.2) 
The idea of introducing this weight function is to measure u(t, x) at the right side of space.

Notice that as a direct consequence of the definition we have that Ψ(x) → 1 as x → +∞ and

0 ≤ Ψ ≤ 1, |Ψ | ≤ 1 10 Ψ and ∀x ≤ 0, |Ψ(x)| + |Ψ (x)| e x 6 .
(2.3.3)

Finally, for any modulation variable z : R → R and any point x 0 ∈ R we define the modified energy functional

I t 0 (t) := ˆR u 2 (t) + u 2 x (t) Ψ • -x 0 -z(t) + z(t 0 ) dx
A key point in our analysis is the fact that I t 0 (t) approximates the energy of u(t) at the right of x(t) = x 0 + z(t) -z(t 0 ). Moreover, by using the definition of Ψ in (2.3.2) we deduce that for all t 0 ∈ R,

I t 0 (t 0 ) > 1 2 u(t 0 , •) H 1 (x 0 ,+∞) . (2.3.4) 
The next technical lemma states the almost monotonicity result of the energy at the right. This lemma shall be crucial in the proofs of Theorems 2.1.2-2.1.3, and we shall use it repeatedly.

Lemma 2.3.2 (Almost-monotonicity of the energy at the right). Let c > 0 and δ ∈ (0, 1) be two fixed parameters. Assume that

u ∈ C(R, H 1 (R)) with y ∈ C ti (R, M + b ) is a solution to equation (3.1.1) such that there exists R 0 > 0 and a C 1 function x : R → R with inf R ẋ(t) ≥ c satisfying for all t ∈ R, u(t) L ∞ (|x-x(t)|>R 0 ) ≤ (1 -δ)c b , where b := 2 6 max{1, u 0 H 1 }. (2.3.5)
Then, for R > R 0 sufficiently large, γ ∈ (0, δ) and any C 1 function z : R → R satisfying

(1 -δ) ẋ(t) ≤ ż(t) ≤ (1 -γ) ẋ(t), for all t ∈ R, (2.3.6) 
the following property holds : Let t 0 ∈ R be a fixed time. Define the energy functionals

I ±R t 0 (t) := ˆR u 2 (t) + u 2 x (t) Ψ • -z ±R t 0 ) dx where z ±R t 0 (t) := x(t 0 ) ± R + z(t) -z(t 0 ).
Then we have

∀t ≤ t 0 , I R t 0 (t 0 ) -I R t 0 (t) ≤ Ce -R/6 and ∀t ≥ t 0 , I -R t 0 (t) -I -R t 0 (t 0 ) ≤ Ce -R/6 , (2.3.7)
for some constant C > 0 only depending on δ, γ, c, R 0 and E(u).

Remark 2.3.1. Notice that we are not assuming that u(t) is an H 1 -almost localized solution.

This shall be important to study limit objects in Section 2.4, where hypothesis (2.3.5)-(2.3.6) shall be guaranteed by a modulation argument.

Démonstration. See the appendix, Section 2.5.1.

Comments on the method of proof of Theorem 2.1.3

Before going further, for the sake of clarity, let us sketch the ideas of the proof of Theorem 2.1.3. We shall proceed as follows : First, we start by studying properties of solutions with compactly supported momentum density. In particular, we shall prove that for this class of solutions there exists a Lyapunov functional, which is related to the last point on the support of the momentum density. Then, in the next section, we shall prove that every H 1 -almost localized solution of equation (3.1.8) has compactly supported momentum density, and hence all the properties proved in the previous section hold. This shall be a consequence of the finite speed of propagation of the momentum density and the time-uniform exponential decay of H 1 -almost localized solutions. Then, by using the Lyapunov functional we shall prove that u(t) evaluated at the integral line associated to the last point of the support of the momentum density is constant in time. Finally, we show that the latter fact forces u(t) to be a peakon.

A Lyapunov functional for solutions with compactly supported momentum density

In this section we shall assume that we are working with a solution of equation (3.1.8) such that the support of its momentum density is bounded from above. In the next sections we shall prove that almost localized solutions enjoy this property.

Before going further, we need to introduce the flow q associated with u 2 , which is defined by q t (t, x) = u 2 t, q(t, x) , q(0, x) = x.

(2.3.8)

From [START_REF] Wu | Well-posedness and global existence for the Novikov equation[END_REF] we know that the solutions associated to this ODE satisfy, for every t ∈ R, y (t, q(t, x)) q x (t, x)

3 2 = y 0 (x) (2.3.9)
Moreover, by differentiating (2.3.8) with respect to x ∈ R we also obtain q x (t, x) = exp 2 ˆt 0 u s, q(s, x) u x s, q(s, x) ds .

(2.3.10)

Now we intend to study what consequences the existence of this last point on the support of y(t) has. In this regard, we shall need the following definition

x + (t) := inf {x ∈ R : supp y(t) ⊆ (-∞, x(t) + x]} .
We emphasize that during this section we are assuming that x + (•) is well-defined. The following lemma show us that under these assumptions the map t → x(t) + x + (t) is actually an integral line of u 2 (t).

Lemma 2.3.3. Suppose that u ∈ C(R, H 1 (R)) is an H 1 -almost localized solution of (3.1.8) with inf R ẋ ≥ c > 0.
Moreover, assume that there exists r ∈ R such that for all t ∈ R it holds

supp y t, • + x(t) ⊂ (-∞, r]. (2.3.11)
Then, for all t ∈ R, we have

x(t) + x + (t) = q t, x(0) + x + (0) , (2.3.12)
where q(•, •) is defined by

q t (t, x) = u 2 t, q(t, x) , (t, x) ∈ R 2 , q(0, x) = x, x ∈ R. (2.3.13)
Additionally, for all t ∈ R and z ≥ x + (t) we have

u t, x(t) + z = -u x t, x(t) + z . (2.3.14)
Démonstration. See the appendix, Section 2.5.3.

In the sequel we shall need the following definitions associated to the operator (1 -∂ 2 x ) -1 . From now on we denote by p + and p -the following operators

p + * f (x) := e -x 2 ˆx -∞ e z f (z)dz and p - * f (x) := e x 2 ˆ∞ x e -z f (z)dz.
Note that p = p + + p -. The following crucial lemma give us the existence of a Lyapunov functional for solutions with compactly supported momentum density.

Lemma 2.3.4. Under the hypothesis of Lemma 2.3.3, the map t → u t, x(t) + x + (t) defines a bounded increasing function on R.

Démonstration. The proof follows from some direct computation together with a regularization argument and (2.3.14). We point out that the computation of the time derivative along characteristics has already been made in [START_REF] Chen | Analysis on the blow-up of solutions to a class of integrable peakon equations[END_REF].

Let ε > 0 small enough. We set the point x ε = x(0) + x + (0) + ε. Now, we define the integral line associated to x ε , that is, x ε (t) = q(t, x ε ), where q(•, •) is defined in (2.3.13).

Now, notice that u x (t) L ∞ ≤ C, and hence u(t) is Lipschitz continuous with respect to the space variable. Therefore, by using Cauchy-Lipschitz's Theorem for ODEs we deduce that

x ε (•) → x(•) + x + (•) in C(R) as ε → 0.
Moreover, since u(t) is continuous the latter convergence result implies that

u(•, x ε (•)) → u(•, x(•) + x + (•)) in C(R) as ε → 0. (2.3.15)
Notice that by using (2.3.14) together with the previous convergence result we also obtain that

u x (•, x ε (•)) → -u(•, x(•) + x + (•)) in C(R) as ε → 0.
On the other hand, since supp y(t) ⊆ (-∞, x(t) + x + (t)], we deduce that u(t) is H 3 in a neighborhood of x ε (t). Therefore, by using the equation and recalling that (p * •) : L 2 → H 2 , we conclude that u t (t) is differentiable with respect to x in a neighborhood of x ε (t).

Now we intend to compute the time-derivative of u along the integral line x ε (t). For the sake of simplicity we shall actually compute the time-derivative of the map t → u x (t, x ε (t)), which turns out to be easier. In fact, using Lemma 2.3.3 we get

d dt u x t, x ε (t) = u tx + u 2 u xx = - 1 2 uu 2 x + u 3 -p * 3 2 uu 2 x + u 3 - 1 2 p x * u 3
x Thus, after integration by parts and by using the operators p ± we obtain

d dt u x (t, x ε (t)) = 1 2 u(u 2 -u 2 x ) - 1 2 (p + * (u -u x ) 3 + p - * (u + u x ) 3 ), (2.3.16)
where all the right-hand side is evaluated at x = x ε (t). Hence, by using (2. Moreover, these are C 1 and C 0 functions respectively and there exists c ± ≥ 0 such that

lim t→±∞ ẋ(t) + ẋ+ (t) = lim t→±∞ u 2 (t, x(t) + x + (t)) → c ± .
Démonstration. This is just a consequence of Lemma 2.3.3 and the fact that u(t, x(t) + x + (t)) is monotone on R and bounded, and hence we immediately conclude the existence of both limits at ±∞.

Almost localized solutions have momentum density with compact support

The following property ensures that the momentum density associated with an H 1 -almost localized solution is compactly supported. This is the key fact of our proof. Notice that once we prove this property, all the results in Section 2.3.3 hold for y(t) = (u -u xx )(t).

Proposition 2.3.6. Suppose that u ∈ C(R, Y + ) is an H 1 -almost localized solution to equation (3.1.8). Then, there exists r ∈ R such that for all t ∈ R it holds

supp y(t, • + x(t)) ⊂ (-∞, r]. (2.3.17)
Démonstration. First of all notice that it is enought to prove the result for t = 0. Moreover, notice that due to the fact that y ∈ M + b , it is enough to prove the following property : Let φ ∈ C ∞ (R) any function satisfying

φ(x) ≡ 0 for x ∈ R -, φ(x) ≡ 1 for x ∈ [1, ∞) and φ (x) ≥ 0 ∀x ∈ R.
Then, there exists r ∈ R sufficiently large such that the following equality holds

y(0), φ(• -x(0) -r ) = 0. (2.3.18)
Now, in order to prove (2.3.18) we start by approximating u 0 by a sequence of smooth functions

u 0,n := ρ n * u 0 ∈ H ∞ (R) ∩ Y + (R) and y 0,n y 0 in M, so that (3.2.
2) holds for any T > 0. We emphasize that the latter weak convergence is in the sense of Definition 3.2.1. Notice that by Theorem 3.2.4 we obtain that the solution u n (t) associated to u 0,n belongs to C(R, H ∞ (R)) and its momentum density

y n ∈ C ti (R, L 1 (R)).
On the other hand, notice also that for all n ∈ N, the solution u n (t) is also H 1 -almost localized with the same localizing function x → x(t) and a radius R n ε that converges to R ε as n → +∞. Moreover, since the mollifier family ρ n have compact supports, by adding an universal constant to the one in front of the exponential in (2.3.1) we conclude that all the sequence u n (t) have the same time-uniform exponential decay, i.e.,

u n (t, • + x(t)) ≤ C * exp(-|x|/K), for all n ∈ N,
for some constant C * > C and some K ≥ 1.

On the other hand, notice that for any fixed T > 0, there exists n 0 ∈ N such that for all n ≥ n 0 the following inequalities holds

u n -u L ∞ T H 1 x < 1 10 min{ √ c, u 0 H 1 }. (2.3.19)
Moreover, by the H 1 -almost localized hypothesis we deduce that there existe r > 1 sufficiently large such that

u(t) H 1 (|x-x(t)|>r-1) ≤ 1 10 min c 2 6 , √ c, u 0 H 1 , for all t ∈ R. (2.3.20) 
Notice that due to Sobolev's embedding, inequality (2.3.19) implies that for all n ≥ n 0 we have

u n (t, x + x(t)) ≤ 1 5 min{ √ c, u 0 H 1 } for all (|x|, t) ∈ [r -1, +∞) × [-T, T ]. (2.3.21)
Finally, we need to introduce the flow q n associated to our approximate solution u 2 n ,

q t,n (t, x) = u n t, q n (t, x) 2 , q n (0, x) = x. (2.3.22)
We recall that (see [START_REF] Wu | Well-posedness and global existence for the Novikov equation[END_REF]) the solutions associated to this ODE satisfy, for every t ∈ R, y n t, q n (t, x) q x,n (t, x)

3 2 = y n (0, x) (2.3.23)
Moreover, by differentiating (2.3.22) with respect to x ∈ R we also obtain q x,n (t, x) = exp 2 ˆt 0 u n s, q n (s, x) u x,n s, q n (s, x) ds .

(2.3.24)

Now we claim that due to the H 1 -almost localization of u(t) we have

q n t, x(0) + r -x(t) ≥ r + c|t| 2 and 1 C 0 ≤ q x,n t, x(0) + r + x ≤ C 0 , (2.3.25) 
for some C 0 > 0. For the sake of simplicity we shall show this fact at the end of the proof. Thus, assuming the previous inequalities and by using (2.3.23) we deduce ˆ∞ x(0)+r-1 y n (0, x)dx =

ˆ+∞

x(0)+r-1

y n t, q n (t, x) q 3/2 x,n (t, x)dx ≤ C 1/2 0

ˆ+∞

x(0)+r-1 y n t, q n (t, x) q x,n (t, x)dx Now, by using (2.3.25) together with the uniform exponential decay of both u n (t, x + x(t)) and u n,x (t, x + x(t)) (see Proposition 2.3.1) we obtain ˆ+∞

x(0)+r-1

y n t, q n (t, x) q x,n (t, x)dx ≤ ˆ+∞ r-1+ c 2 |t| y n (t, x + x(t))dx e (r-1+c|t|/2)/K + ˆ+∞ r-1+ c 2 |t| e -|x| K dx t→-∞ ----→ 0.
Therefore, due to the sequential weak-lower semicontinuity given in Lemma 2.2.4 and the positivity of y 0 and y n for all n ∈ N, we have that

y(0), φ(• -x(0) -r) ≤ lim inf n→+∞ ˆ+∞ x(0)+r-1
y n (0, x)dx = 0, and hence, up to the proof of both inequalities in (2.3.25), we conclude the proof of the proposition.

Proof of (2.3.25) : The proof is straightforward in some sense and only requires to integrate.

In fact, it is enough to notice that due to (2.3.20) and Sobolev's embedding we have

u n (t, q n (t, x(0) + r)) ≤ √ c 4 .
Hence, by plugging the latter inequality into (2.3.22) and using the fact that inf R ẋ(t) ≥ c we infer that for all t < 0 we have

d dt q n (t, x(0) + r) ≤ c 16 which implies q n (t, x(0) + r) -x(t) ≥ r + c 2 |t|,
what finish the proof of the first inequality in (2.3.25).

Finally, let us prove the boundedness of q x (t). Recall that due to the H 1 -almost localization hypothesis and by using Proposition 2.3.1 we have, in particular, that u n (t) has time-uniform exponential decay. Thus, by using the exponential decay of u n (t), the almost monotonicity of the energy, Sobolev's embedding and inequality (2.3.25) we deduce that for any s ∈ R it holds

u 2 n s, q(s, x(0) + r) ≤ sup x≥x(s)+r+ 1 2 c|s| u 2 n (s, x) exp - 2r + c|s| K .
Hence, due to the latter inequality and the fact that |v x | ≤ v for any v ∈ Y + we obtain ˆ+∞ 0 u n s, q n (s, x(0) + r) u x,n s, q n (s, x(0) + r) ds ≤ C.

Therefore, by plugging the latter inequality into formula (2.3.24) we deduce the existence of a constant C 0 > 0 such that 1 C ≤ q x,n t, x(0) + r ≤ C for all t ∈ R, what ends the proof.

Proof of Theorem 2.1.3

In this section we assume that we are under the hypothesis of Theorem 2.1.3.

Motivated by the study made in Section 2.3.3, we define x + the corresponding quantity which give us the position of the last point on the support of y(t), that is,

x + (t) := inf {x ∈ R : supp y(t) ⊆ (-∞, x(t) + x]} .
Note that Proposition 2.3.6 ensures that the map t → x + (t) is well-defined and bounded from above.

Before getting into the details, let us start by explaining the idea of the proof : We shall proceed in two steps : First, we intend to prove that u(t, x(t) + x + (t)) does not depend on time, i.e. it is constant. Then, we shall prove that this property forces u to achieve an equality only achievable by peakons.

The following technical (but straightforward) lemma shall be crucial in the proof of Proposition 2.3.8 below. We postpone their proofs for the Appendix.

Lemma 2.3.7. Let v ∈ Y + . Then, the following inequality holds Then, u(t) must to be a peakon.

p * 3vv 2 x + 5v 3 ≥ 2v 3 (x), ∀x ∈ R. ( 2 
Démonstration. First of all, we recall that by space-time reflection invariance we know that if u(t, x) is a solution to (3.1.8), then so is v(t, x) := u(-t, -x). Moreover, notice that from the definition of v(t) it is direct to check that 

v ∈ C(R, H 1 (R)) and v -v xx ∈ C ti (R, M + b ),
u t, x(t) -x + (-t) = c ± .
Step 1 : We claim that this implies c + = c -= c + = c -. Indeed, first of all notice that from the monotonicity of t → u(t, x(t) + x + (t)) we have c -≤ c + and c -≤ c + . Now, let us prove by contradiction that c + ≤ c -. In fact, if this were not true, then there would exists t 0 ∈ R such that for all t ≥ t 0 we would have

u t, x(t) -x + (-t) < u t, x(t) + x + (t) -ε, (2.3.27) 
for some ε > 0. On the other hand, notice that by Lemma 2.3.3 it holds x(t) + x + (t) = q(t -t 0 , x(t 0 ) + x + (t 0 )), and x(t) -x + (-t) = q(t -t 0 , x(t 0 ) -x + (-t 0 )).

Thus, by using (2.3.13) and (2.3.27) we obtain

x + (t) + x + (-t) = x + (t 0 ) + x + (-t 0 ) + ˆt t 0 q t (τ -t 0 , x(t 0 ) + x + (t 0 ))dτ - ˆt t 0 q t (τ -t 0 , x(t 0 ) -x + (-t 0 ))dτ ≥ ε(t -t 0 ) + x + (t 0 ) + x + (-t 0 ).
Since the right-hand side goes to +∞ as t → +∞, this contradicts the fact that, by Proposition 2.3.17, both x + (t) and x + (t) are bounded from above. Notice that in the same fashion we also obtain that c + ≤ c -, what ends the proof of the claim. Therefore, we conclude that

u t, x(t) + x + (t) ≡ √ c + ∀t ∈ R.
Step 2 : Now, we claim that this forces u(t) to be a peakon. We proceed by contradiction, that is, let us assume that u(t) is not a peakon, and hence by Lemma 2.3.7, inequality (2.3.26) is strictly satisfied. We claim that this forces the following strict inequality to hold at x = x(t) + x + (t)

- 1 2 uu 2 x + u 3 -p * 3 2 uu 2 x + u 3 - 1 2 p x * u 3 x < -2p * u 3 , ∀t ∈ R. (2.3.28)
In fact, by using Lemma 2.3.7 we know that for all t ∈ R it holds

u 3 t, x(t) + x + (t) -p * 3 2 uu 2 x + 5 2 u 3 t, x(t) + x + (t) < 0.
On the other hand, since |v x | ≤ v for any v ∈ Y + we have

- 1 2 uu 2 x + 1 2 p * u 3 + 1 2 p x * u 3 x ≤ 0.
Hence, gathering the last two inequalities we conclude the claim.

Step 3 : Now we intend to use the latter two steps to conclude that u(t) must to be a peakon.

We recall that we are still in the contradiction argument of Step 2, so inequality (2.3.28) holds.

In fact, by using (2. In the sequel we shall closely follow the approach made by Molinet in [START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF] (see also [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF][START_REF] Martel | Asymptotic stability of solitons for subcritical generalized KdV equations[END_REF][START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] for previous results using this approach for different equations). From now on we assume we are in the context of Theorem 2.1.2, that is, from now on let us assume that there exists c > 0 and u 0 ∈ Y + such that

u 0 - √ cϕ H 1 ≤ √ cε 8 , for some 0 < ε < c. (2.4.1)
Then, according to the orbital stability result for peakon soltuions (see [START_REF] Liu | Stability of peakons for the Novikov equation[END_REF]), there exists a function ξ : R → R such that the global solution u(t) to equation (3.1.8) associated to u 0 satisfies

sup t∈R u(t) - √ cϕ(• -ξ(t)) H 1 cε 2 , c := min{ √ c, 8 √ c}, (2.4.2) 
where ξ(t) ∈ R corresponds to any maximum point of u(t, •) and the implicit constant only depends on3 u 0 H 1 . Before going further we shall need a modulation lemma for solutions close to a peakon.

Lemma 2.4.1. There exists

ε 0 > 0 small enough, C > 1, σ > 0 and n 0 ∈ N such that if a solution u ∈ C ti (R, Y + (R)) to equation (3.1.8) satisfies sup t∈R u(t) - √ cϕ(• -z(t)) H 1 ≤ √ cε 0 , (2.4.3) 
for some function z : R → R then the following properties hold : There exists a unique C 1 function x : R → R such that

sup t∈R |x(t) -z(t)| < σ and ˆR u(t) ρ n 0 * ϕ (• -x(t)) = 0, ∀t ∈ R, (2.4.4) 
where ρ n is defined in (3.2.1) and n 0 ∈ N satisfies :

For all -1 2 ≤ y ≤ 1 2 , ˆR ϕ(• -y)(ρ n 0 * ϕ ) = 0 ⇐⇒ y = 0. (2.4.5)
Moreover, the function satisfies

sup t∈R | ẋ(t) -c| < c 8 (2.4.6)
Additionally, let 0 < ε < cε 0 , then the following property holds :

if sup t∈R u(t) - √ cϕ(• -z(t)) H 1 < ε 2 c 3/2 then sup t∈R u(t) - √ cϕ(• -x(t)) H 1 ≤ Cε.
(2.4.7)

Démonstration. The existence and regularity of x(t) is a standard application of the Implicit Function Theorem. We postpone this proof for the appendix (see Section 2.5.5).

At this point, let us consider β ∈ (0, c) fixed. We define d := max{c 3/2 , c -3/2 } and 

ε * := 1 2C min β 2 8 , √ cε 0 , 1 2 8 d , (2.4 

Comments on the proof of Theorem 2.1.2

Before going further let us sketch the ideas of the proof of Theorem 2.1.2. We shall proceed as follows : First, we start by studying limiting objects associated to u(t, • + x(t)) where u(t) corresponds to our original solution. We shall prove that these limit objects enjoy better properties than the solution itself. In particular, we shall prove that solutions associated to this class of limit functions corresponds to H 1 -almost localized solutions, and hence they are peakons.

The main difficulty here in comparison with the Camassa-Holm and the Degasperis-Procesi equations is that our sequence u(t n , • + x(t n )) associated to our original solution shall not be bounded in Y + due to the non-conservation of the momentum. In consequence, we shall not be able to use a general continuity result of the flow-map with respect to the weak topology for bounded sequences in Y + , as it was the case for these last equations. Instead, we shall take advantage of the almost monotonicity result to prove that for a solution u staying close enough to a peakon, the limit objects associated to t → u(t n + t, • + x(t n + t)) is uniformly exponentially decaying, and thus has a finite momentum. This shall be enough to ensure the weak continuity of the flow-map with respect to our sequence.

Once we know that the limit object corresponds to a peakon, we shall be able to slightly improve our previous strong convergence result in H 1 - loc to strong convergence in H 1 loc . Finally, with this latter property, together with the modulation lemma and the weak convergence in the whole space H 1 , we shall conclude the proof of Theorem 2.1.2.

Study of limit solutions

In the rest of this paper we shall need to explicitly study the behavior of the solution u(t) on both, the left and right part of the space. Let us start recalling the definition of the weight function Ψ given in (2.3.2) :

Ψ(x) = 2 π arctan exp( x 6 
) , so that Ψ(x) → 1 as x → +∞.

(2.4.9)

Before going further we shall need to introduce some additional notation. For v ∈ Y and R > 0 we define the functionals J R l and J R r given by

J R r = v 2 + v 2 x , Ψ(• -R) and J R l = v 2 + v 2 x , 1 -Ψ(• + R) .
Now we fix t 0 ∈ R and let γ = 1 3 . Considering z(t) = 2 3 x(t) we have that z(t) satisfies condition (2.3.6) and hence we obtain

J R r u(t, • + x(t)) ≥ I R t 0 (t), ∀t ≤ t 0 ,
where I R t 0 (t) is the functional defined in Lemma 3.5.1. Moreover, notice that in particular we have J R r u(t 0 , • + x(t 0 )) = I R t 0 (t 0 ). Thus, by using (2.3.7) we deduce

J R r u(t 0 , • + x(t 0 )) ≤ J R r u(t, • + x(t)) + Ce -R 6 , ∀t ≤ t 0 , (2.4.10) 
where C > 0 is the constant appearing in (2.3.7). On the other hand, for the sake of notation we also introduce the functional I R t 0 (t) given by

I R t 0 (t) := u 2 + u 2 x , 1 -Ψ • -1 3 x(t 0 ) + R -2 3 x(t) = E(u) -I -R t 0 (t).
Notice that due to the energy conservation together with inequality (2.3.7) it holds

I R t 0 (t) ≥ I R t 0 (t 0 ) -Ce -R/6 . (2.4.11) 
Therefore, for all t ≥ t 0 we have

J R l u(t, • + x(t)) ≥ J R l u(t 0 , • + x(t 0 )) -Ce -R 6 .
(2.4.12)

With these definitions at hand, we can get into the proof of the main theorem of this paper. As we already discussed, the proof of theorem 2.1.2 consists of studying limiting objects which enjoy better properties than the solution itself. The following property ensures that the ωlimit set for the weak H 1 -topology of the orbit of u 0 consists of initial data that give rise to H 1 -almost localized solutions. 

u t σ(n) , • + x(t σ(n) ) u 0 in H 1 and u t σ(n) , • + x(t σ(n) ) → u 0 in H 1 - loc . ( 2 
x(t n k + •) -x(t n k ) → x (•) in C([-T, T ]). ( 2 
u ∈ L ∞ (R, H 1 (R)) with (1 -∂ 2 x )u ∈ L ∞ (R, M + loc ),
and a subsequence {u n k , y n k } such that

u n k u in L ∞ (R, H 1 (R)) and y n k (1 -∂ 2 x )u in L ∞ (R, M + )
On the other hand, since {∂ t u n k } defines a bounded sequence in L ∞ (R, L 2 (R)), Aubin-Lions' compactness Theorem ensures us that, up to a subsequence, we have

u n k → u a.e. in R 2 .
Moreover, recalling that for all t ∈ R, {∂ x u n k (t)} is bounded in BV loc , from Helly's selection Theorem we deduce

∂ x u n k → u x a.e. in R 2 .
Since {u n k } and {∂ x u n k } are uniformly bounded on R we can pass to the limit on the Novikov equation (3.1.8) to deduce that u also satisfies the equation in the distributional sense. In particular, we deduce

u t ∈ L ∞ (R, L 2 (R)) and therefore u ∈ C(R, L 2 (R)).
Finally, notice that {∂ t u n k } defines a bounded sequence in L ∞ (R, L 2 (R)), and hence we have that for any φ ∈ C ∞ c (R), the map t → u k , φ defines a bounded uniformly equicontinuous sequence of continuous functions. Thus, by Arzela-Ascoli's Theorem and by density of C ∞ c (R) in H 1 (R) we obtain that for any T > 0

u n k u in C ti ([-T, T ], H 1 (R)), (2.4.15) 
in particular, u n k (0) u (0). Now, for the sake of simplicity we split the proof in two steps. The first of them is devoted to prove the time-uniform exponential decay of u (t), while in the second one we intend to prove that (1

-∂ 2 x )u ∈ L ∞ (R, M + b )
. Notice that once we prove the latter property, and due to the fact that

Y + (R) → H 3/2 -(R), we immediately conclude that u ∈ L ∞ (R, H 3 2 - (R)), which, combined with u ∈ C(R, L 2 (R)), ensures us that u ∈ C(R, H 1 (R))
. Therefore, u (t) belongs to the uniqueness class given in Theorem 3.2.5, and hence u (t) is the solution of the Novikov equation given by Theorem 3.2.5 associated to u (0).

Step 1 : We claim that the limit function u (t) has time-uniform exponential decay. First of all, notice that since by (2.4.15) for all t ∈ R we have

u(t n k + t, • + x(t n k + t)) u (t, • + x (t)) in H 1 (R),
we deduce that it is enough to prove the claim at time t = 0. On the other hand, since we have uniform bounds at the right (see Lemma 3.5.1), we immediately obtain the exponential decay of u 0 at the right. In fact, let us consider the time sequence t 0,n k = t n k given by the convergence results at the beginning of this proof. Then, it is enough to notice that, by using the definition of Ψ in (2.3.2) and due to the fact that ẋ(t) > (1 + ) ż(t) for t ∈ R for some > 0, by taking the limit t 0 → +∞ we infer I R t 0 (0) → 0 as t 0 → +∞, and hence lim sup

k→+∞ I R t 0,n k (t 0,n k ) ≤ e -R/K .
On the other hand, notice that by weak convergence in H 1 we deduce that for all R 1 sufficiently large so that (2.3.5) holds, we have

ˆ (u 0 ) 2 + (u 0,x ) 2 (• -x (0))Ψ(• -R)dx ≤ lim inf k→+∞ I R t 0,n k (t 0,n k ) ≤ e -R/K .
Therefore, by Sobolev's embedding we conclude the exponential decay of u 0 at the right of x (0).

It only remains to prove the decay of u 0 on the left. In fact, we shall prove the following property : There exist some constants C > 0, c > 0 and R 1 such that for all A ≥ r ≥ R we have

u 0 H 1 ((-A,-r)) ≤ Ce -cr .
Notice that the latter inequality together with Sobolev's embedding implies the exponential decay of u 0 . We proceed by contradiction, that is, let us suppose that for all C, c > 0 and all R 1 there exist A ≥ r ≥ R sufficiently large such that u 0 H 1 ((-A,-r)) ≥ Ce -cr + ε, for some ε > 0.

Thus, let us consider 1 c > 0 small enough and C > 0 to be specified later. Notice that by the weak convergence result (2.4.15) and due to the sequentially weakly lower-semicontinuity of the H 1 -norm we have

lim inf k→+∞ u(t n k , • + x(t n k )) H 1 ((-A,-r)) ≥ u 0 H 1 ((-A,-r)) .
Therefore, there exists T 1 and k 0 ≥ 1 sufficiently large such that for all k ≥ k 0 we have

t n k ≥ T and u(t n k , • + x(t n k )) H 1 ((-A,-r)) ≥ Ce -cr + 1 2 ε.
Now we consider a refinement of this subsequence which, for the sake of simplicity, we shall denote it by {t n } n∈N , satisfying t n ≥ T for all n ∈ N and such that x(t n+1 ) -x(t n ) ≥ 5(A + r).

Then, by the almost monotonicity of the energy at the left (see (3.5.7)) we obtain

u(t n+1 , • + x(t n+1 )) H 1 ((-∞,-r)) ≥ ≥ u(t n+1 , • + x(t n+1 )) H 1 ((-A,-r)) + u(t n , • + x(t n )) H 1 ((-∞,-r)) -Ce -r/6 ≥ Ce -cr + 1 2 ε + Ce -cr + ε 2 -Ce -r/6 ≥ 19 10 Ce -cr + ε, (2.4.16) 
where we are considering c and C such that Ce -r/6 < 1 10 Ce -cr . Notice that repeating the argument above, due to the fact that x(t n+2 ) -x(t n+1 ) ≥ 5(A + r), we can bound from below the H 1 -norm on (-∞, -r) at time t n+2 by the H 1 -norm on (-A, -r) at the same time plus the H 1 -norm at time t n+1 on (-∞, -r), plus some small error term. Therefore, by an iterative argument we conclude that u(t n , • + x(t n )) H 1 → +∞ as n → +∞, contradicting the energy conservation of the equation. Hence, we obtain that u 0 has exponential decay.

Step 2 : For the sake of simplicity, from now on we denote by y (t) := (1 -∂ 2

x )u (t). Now, we intend to prove that y ∈ L ∞ (R, M + b ). First of all, notice that in the same fashion as in the proof of Step 1, since for any φ ∈ C c (R) and any t ∈ R we have

y(t n k + t, • + x(t n k + t)), φ → y (t, • + x (t)), φ ,
we deduce that it is enough to prove the claim at t = 0. On the other hand, notice that for every compact set K ⊂ R and any k ∈ N we have

y(t n k , • + x(t n k )) M(K) ≤ C,
where the constant C > 0 only depends on K and u 0 H 1 . Therefore, by using Helly's selection Theorem we obtain that u 0,x ∈ BV loc and hence y 0 is a positive Radon measure (locally finite possibly with infinite total mass on R). Now, we intend to take advantage of Lemma 2.2.4 so that we shall be able to estimate y 0 by approximating u 0 by a sequence of smooth functions. Hence, we define the approximating sequence

u 0,m := ρ m * u 0 ∈ H ∞ (R) ∩ Y + (R), so that y 0,m y 0 in M.
We emphasize again that the previous weak convergence is in the sense of Definition 3.2.1. Now, notice that due to the positivity of y 0,m on R and by using Young's inequality, recalling that ρ m L 1 = 1, we infer that for all m ∈ N we have ˆy

0,m = ˆu 0,m ≤ u 0 L 1 .
Hence, by the sequential weak lower semicontinuity given in Lemma 2.2.4 we conclude

y 0 M ≤ lim inf m→+∞ y 0,m L 1 ≤ u 0 L 1 .
Therefore, y 0 belongs to the space of finite Radon measures M + b . The proof is complete.

Proof of Theorem 2.1.2

Let {t n } n∈N be any strictly increasing time sequence satisfying that t n → +∞. Then, by the previous property we have that there exists a subsequence {t n k } k∈N and an element u 0 ∈ Y + such that the solution associated to u 0 is H 1 -almost localized, and hence by Theorem 2.1.3 we infer the existence of x 0 ∈ R and c > 0 such that

u 0 = ϕ c (• -x 0 ).
Step 1 : Now, as we discussed before, once we know that the asymptotic object corresponds to a peakon, we are able to improve our local strong convergence result. In fact, due to the local strong L 2 convergence we deduce that for all K ⊂ R compact we have

lim k→+∞ u(t n k , • + x(t n k )) -ϕ c L 2 (K) = 0.
On the other hand, due to the fact that |v x | ≤ v for any v ∈ Y + we deduce lim sup

k→+∞ u x (t n k , • + x(t n k )) L 2 (K) ≤ lim k→+∞ u(t n k , • + x(t n k )) L 2 (K) = ϕ c L 2 (K)
Hence, by using again that ϕ

L 2 (K) = ϕ L 2 (K) we obtain lim sup k→+∞ u(t n k , • + x(t n k )) 2 H 1 (K) ≤ 2 ϕ c 2 L 2 (K) = ϕ c 2 H 1 (K) ,
Thus, by a standard result in Functional Analysis we know that the weak convergence result together with the previous inequality implies that

u(t n k , • + x(t n k )) -ϕ c → 0 in H 1 loc as k → +∞.
(2.4.17)

Step 2 : Our aim now is to prove strong H 1 convergence in (-A, ∞) for any fixed A > 0. In fact, first of all, notice that the weak convergence result (2.4.13) together with the uniform estimate (2.4.7) and the definition of ε * implies that

ϕ c (• -x 0 ) -ϕ c H 1 ≤ Cε * and |c -c | ≤ Cε * ≤ c 2 9 ,
and hence, by using the local strong convergence (3.5.13) we infer that |x 0 | 1. On the other hand, notice that the weak convergence result (2.4.13) forces u 0 to satisfy the orthogonality condition (2.4.4). Therefore, by using (3.4.6) we obtain that x 0 has to be equal to zero. Finally, notice that the convergence result (3.5.13) together with (2.4.7) implies that

√ c = lim k→+∞ max R u(t n k ).
Thus, defining ρ(t) = max R u(t) we deduce that as k → +∞ we have

u(t n k , • + x(t n k )) -ρ(t n k )ϕ 0 in H 1 .
Since this is the only possible limit we conclude that as t → +∞ we have

u(t, • + x(t)) -ρ(t)ϕ 0 in H 1 and u(t, • + x(t)) -ρ(t)ϕ → 0 in H 1 loc . (2.4.18)
Now, we claim that the latter convergence result implies that for any fixed A > 0, as t → +∞, the following convergence holds :

u(t, • + x(t)) -ρ(t)ϕ → 0 in H 1 ((-A, ∞)). (2.4.19)
In fact, let δ > 0 be fixed and consider R 1 sufficiently large such that

J R r u(0, • + x(0) < δ and Ce -R/6 < δ,
where C > 0 is the constant involved in (3.5.6). Then, from the almost decay of the energy at the right (3.5.6) we infer that

J R r u(t, • + x(t)) < 2δ, for all t ∈ R.
Nevertheless, the latter inequality together with the local strong convergence in H 1 given in (3.5.15) immediately implies that, for any A > 0 we have

u(t, • + x(t)) -ρ(t)ϕ t→+∞ ----→ 0 in H 1 ((-A, ∞)).
(2.4.20)

Step 3 : Now we intend to prove that ρ(t) → √ c as t → +∞. In fact, let > 0 arbitrarily small but fixed and consider R 1 sufficiently large such that Ce -R/6 < . Then, by using (3.5.8) as well as the energy conservation we obtain that for all t > t we have

ˆ u 2 + u 2 x (t)Ψ(x -x(t) + R) ≤ + ˆ u 2 + u 2 x (t )Ψ(x -x(t ) + R).
On the other hand, due to the strong convergence result (3.5.15) and the exponential localization of both ϕ and Ψ, we infer that there exists t 0 1 sufficiently large such that for all t ≥ t 0 we have

ˆ u 2 + u 2 x (t)Ψ(x -x(t) + R) -ρ 2 (t)E(ϕ) ≤ .
Plugging the last two inequalities together we conclude that for any pair of times (t, t ) ∈ R 2 satisfying t > t > T we have

ρ 2 (t)E(ϕ) ≤ ρ 2 (t )E(ϕ) + 3 .
Since > 0 was arbitrary, the latter inequality forces ρ(t) to have a limit at +∞ and thus to converge to lim

t→+∞ ρ(t) = √ c .
Step 4 : Now let us prove that ẋ(t) → c as t → +∞. For the sake of readability let start by introducing some notation. Let v, w, w n 0 : R → R the functions given by

v(t) := u - √ c ϕ(• -x(t)), w := √ c ϕ(• -x(t)) and w n 0 := √ c (ρ n 0 * ϕ)(• -x(t)).
Then, by differentiating the orthogonality condition in (2.4.4) and recalling that ϕ satisfies the equation ϕ -ϕ = 2δ we obtain ˆvt w n 0 ,x = ẋ ˆv(t, x)w n 0 (t, x)dx -2 ẋ√ c ˆv(t, x)ρ n 0 (x -x(t))dx.

On the other hand, by using that ϕ solves (3.1.8) we infer that w(t, x) satisfy the following equation :

w t + ( ẋ -c )w x + w 2 w x = p x w 3 + 3 2 ww 2 x - 1 2 p * w 3
x Therefore, by using that u(t) also solves (3.1.8), by replacing u = v + w and then using the equation satisfied by w we obtain

v t -( ẋ -c )w x = -(v + w) 2 v x -(v 2 + 2vw)w x - 1 2 p * v 3 x + 3v 2 x w x + 3v x w 2 x (2.4.21) + p x * v 3 + 3v 2 w + 3vw 2 + 3 2 v(v x + w x ) 2 + 3 2 v 2 x w + 2v x ww x .
Now, notice that due to (3.5.16) and the exponential decay of w and w n 0 we infer that

v 2 w n 0 ,x L 1 + v 2 x w n 0 ,x L 1 + ˆ|vw n 0 |dx + ˆ|v(t, x)ρ n 0 (x -x(t))|dx → 0 as t → +∞.
Therefore, by taking the L 2 -inner product from equation (2.4.21) against w n 0 ,x and noticing that w x (t), w n 0 ,x (t) L 2 ,L 2 ≡ constant > 0 for all times t ∈ R we conclude ẋ -c → 0 as t → +∞.

Step 5 : Now we intend to prove the strong H 1 convergence on (βt, +∞). In fact, let us start by recalling that from (3.5.16) we have that as t → +∞ the following convergence holds

u(t, •) -ϕ c (• -x(t)) 0 in H 1 (R) and u(t, • + x(t)) -ϕ c (•) → 0 in H 1 ((-A, ∞)).
Now, let η > 0 arbitrarily small but fixed. Let us consider R 1 sufficiently large such that

ϕ 2 H 1 ((-∞,-R 2 )) < η and Ψ -1 L ∞ (( R 2 ,+∞)) < η, (2.4.22) 
Thus, by the previous convergence results we infer the existence of a time point t 0 > 0 sufficiently large for which x(t 0 ) > R and such that for all t ≥ t 0 we have

u(t, • + x(t)) -ϕ c H 1 ((-R 2 ,+∞)) < η.
On the other hand, by using (2.4.22) and the latter inequality we deduce that for all r ≥ R and all t ≥ t 0 we have

E(ϕ c ) - ˆ u(t, • + x(t))ϕ c + u x (t, • + x(t))ϕ c Ψ(• + r) η.
(2.4.23)

From now on we consider z(t) = 1 2 βt. Notice that with this choice of z(t) and due to the fact that x(t) satisfies (2.4.6), by straightforward computations we deduce that z(t) satisfies the hypothesis of Lemma 3.5.1 with 1 -δ = β 4c and γ = 1 4 . Moreover, as we discussed at the beginning of this section, u(t) satisfies the corresponding hypothesis of Lemma 3.5.1 for such choice of δ. Hence, by using inequality (2.3.7) we obtain that for all t ≥ t 0 we have

ˆ u 2 + u 2 x (t, •)Ψ • -x(t 0 ) -β 2 (t -t 0 ) + R ≤ Ce -R/6 + ˆ u 2 + u 2 x (t 0 , •)Ψ (• -x(t 0 ) + R) ,
where the constant C now depends on δ. Now, we define the variable v(t)

:= u(t) - √ c ϕ(• - x(t)) and notice that ˆ(v 2 + v 2 x )(t, •)Ψ • -x(t 0 ) -β 2 (t -t 0 ) + R = ˆ u 2 + u 2 x (t, •)Ψ • -x(t 0 ) -β 2 (t -t 0 ) + R + c ˆ ϕ 2 + ϕ 2 x (t, • -x(t))Ψ • -x(t 0 ) -β 2 (t -t 0 ) + R -2 √ c ˆ u(t)ϕ(• -x(t)) + u x (t)ϕ (• -x(t)) Ψ • -x(t 0 ) -β 2 (t -t 0 ) + R =: I + II + III.
On the other hand, notice that for all t ≥ t 0 we have

x(t) -x(t 0 ) -β 2 (t -t 0 ) + R ≥ R.
Hence, by using inequality (3.5.24) and then the exponential decay of ϕ we infer that

I + II + III ≤ ˆ u 2 + u 2 x (t 0 , •)Ψ (• -x(t 0 ) + R) + Ce -R/6 + c ˆ ϕ 2 + ϕ 2 x (t 0 , • -x(t 0 ))Ψ (• -x(t 0 ) + R) + Ce -R/6 -2 √ c ˆ u(t 0 )ϕ(• -x(t 0 )) + u x (t 0 )ϕ (• -x(t 0 )) Ψ (• -x(t 0 ) + R) + Cη ˆ v 2 + v 2 x )(t 0 , •)Ψ(• -x(t 0 ) + R) + e -R/6 + η η + e -R/6 ,
where we have used the exponential decay of ϕ to obtain the latter inequality. Therefore, by taking R 1 sufficiently large and t 1 > t 0 such that βt 1 ≥ x(t 0 ) + β 2 (t 1 -t 0 ) -R, we conclude that for all t ≥ t 1 we have

ˆ(v 2 + v 2 x )(t, •)Ψ (• -δt) η,
which completes the proof the claim.

Step 6 : Finally, it only remains to prove the convergence in (-∞, z) for any z ∈ R. This is a consequence of a more general property, noticed by Molinet in [START_REF] Molinet | Asymptotic stability for some non positive perturbations of the Camassa-Holm peakon with application to the antipeakon-peakon profile[END_REF], ensuring that all the energy of solutions associated to initial data in Y + is traveling to the right. In fact, we shall prove the following lemma which immediately conclude the proof of the theorem. Proof of Lemma 3.5.6. First of all notice that, for Ψ defined in (3.5.1), for any time t ∈ R fixed the map

z → ˆ u 2 + u 2 x (t, x)Ψ(• -z)dx,
defines a decreasing continuous bijection from R into (0, u 0 2 H 1 ). Therefore, by setting any 0 < γ < u 0 2 H 1 , we deduce that the map x γ : R → R defined by the equation

ˆ u 2 + u 2 x (t, x)Ψ(• -x γ (t))dx = γ, (2.4.24) 
is well-defined. Moreover, recalling that u ∈ C(R, H 1 (R)) we infer from (3.5.25) that x γ is a continuous function. Now, notice that in order to conclude the proof of the lemma it is enough to show that for any γ ∈ (0, u 0 2 H 1 ) we have For the sake of readability we split the proof of the latter property in two steps.

Step 1 : First we claim that for any ∆ > 0 and any t ∈ R we have

x γ (t + ∆) -x γ (t) ≥ 2 5 ˆt+∆ t ˆu2 (t, x)Ψ (• -x γ (t))dx > 0. (2.4.26)
First of all, notice that by continuity with respect to the initial data it is enough to prove the claim for solutions

u ∈ C ∞ (R, H ∞ (R)) ∩ L ∞ (R, H 1 (R)).
On the other hand, as an application of the Implicit Function Theorem we obtain that x γ (t) is of class C 1 . In fact, let us define the functional ψ(v, z)

:= ˆ v 2 + v 2 x Ψ(• -z)dx.
Notice that ψ clearly defines a C 1 function on H 1 (R) × R. Moreover, notice that since any function v ∈ Y + \ {0} cannot vanish at any point x ∈ R, we deduce that for any function v ∈ H ∞ ∩ Y + and any z ∈ R we have

∂ψ ∂z = ˆ v 2 + v 2 x Ψ (• -z) > 0.
Recalling equation (3.6.7) from the proof of Lemma 3.5.1, we obtain ẋγ x + 5u 3 ) ≥ 2u 3 in particular p * (2uu

ˆ u 2 + u 2 x Ψ (• -x γ ) = ˆu2 u 2 x Ψ + ˆ{p * (3uu
2 x + 2u 3 ) ≥ 4 5 u 3 .
Hence, by using again that |v x | ≤ v for any v ∈ Y + and the previous inequalities we infer that

2 ẋγ ˆu2 Ψ (• -x γ ) ≥ ˆu2 u 2 x Ψ + 4 5 ˆu4 Ψ .
Therefore, due to the fact that Ψ is a non-negative function with Ψ L 1 = 1, by using Hölder's inequality we obtain

ẋγ (t) ≥ 2 5 ˆu2 Ψ (• -x γ (t))dx.
Integrating in time between t and t + ∆ we conclude the claim.

Step 2 : Finally, in this last step we intend to conclude the proof of (3.5.26). First of all notice that from the claim of the previous step we deduce, in particular, that x γ (•) is increasing and hence it has a limit

x ∞ γ ∈ R ∪ {+∞}, i.e. lim t→+∞ x γ (t) = x ∞ γ .
Therefore, the proof of (3.5.26) is equivalent to prove that x ∞ γ = +∞. We proceed by contradiction, i.e. let us suppose that x ∞ γ ∈ R. Thus, this fact together with inequality (3.5.25) and the fact that

|u x | ≤ u ≤ u 0 H 1 for all (t, x) ∈ R 2 implies lim t→+∞ ˆ u 2 + u 2 x (t, x)Ψ(• -x γ (t)) = lim t→+∞ ˆ u 2 + u 2 x (t, x)Ψ(• -x ∞ γ ) = γ. (2.4.27)
On the other hand, by taking ∆ = 1, from (3.5.27) and the convergence of x γ (t) we obtain lim

t→+∞ ˆt+1 t ˆu2 Ψ (• -x γ (t)) = lim t→+∞ ˆt+1 t ˆu2 Ψ (• -x ∞ γ ) = 0.
Notice that the latter equality together with the fact that |v x | ≤ v for any v ∈ Y + implies, in particular, that there exists a sequence of times t n → +∞ such that for any compact set K ⊂ R the following holds :

lim n→+∞ u(t n ) L ∞ (K) = 0. (2.4.28)
Now we choose any γ < γ < u 0 H 1 , arbitrary but fixed. Then, we consider the compact set

K := [x ∞ γ -M, x ∞ γ + M ],
with M 1 sufficiently large such that x ∞ γ -M < x γ (0). Hence, by using (3.5.29), the monotonicity of t → x γ (t) and recalling that x γ (0) < x γ (0) we conclude

lim n→+∞ ˆ u 2 + u 2 x (t n , x)Ψ(• -x ∞ γ ) = γ .
However, this contradicts hypothesis (3.5.28) and hence the proof is complete. The following computations can be made rigorously by standard approximation and density arguments by considering, for instance, the convolution of u 0 with the mollifiers family ρ n defined in (3.2.1) and by using the second statement in Theorem 3.2.5. We refer to [START_REF] El Dika | Exponential decay of H1-localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation[END_REF] for a complete justification of this argument.

Appendix

Our aim is to prove the first inequality in (2.3.7) by integrating its time derivative. In fact, by direct differentiation from the definition of I t 0 (t) we obtain

d dt I R t 0 (t) = 2 ˆ uu t + u x u xt Ψ -ż(t) ˆ(u 2 (t) + u 2 x (t) Ψ =: J -ż(t) ˆ(u 2 (t) + u 2 x (t) Ψ . (2.5.1)
On the other hand, by using both equations (3.1.1) and (3.1.8), after integration by parts we get

J = 2 ˆ u t -u txx uΨ -2 ˆuu tx Ψ = 2 ˆ 3uu x u xx + u 2 u xxx -4u 2 u x uΨ + 2 ˆ(u 2 u xx + 2uu 2 x + p x * (3uu x u xx + 2u 3 x + 3u 2 u x ))uΨ = 4 ˆu2 u 2 x Ψ + 2 ˆu4 Ψ + 2 ˆ{p x * (3uu x u xx + 2u 3 x + 3u 2 u x )}uΨ .
On the other hand, recalling that for any L 2 function f : R → R we have p * f x = p x * f , and by using that p is the fundamental solution of (1 -∂ 2 x ), we obtain

2p x * (3uu x u xx + 2u 3 x + 3u 2 u x ) = -2u 3 -3uu 2 x + 3p * uu 2 x + 2p * u 3 + p x * u 3 x .
Hence, by plugging this into (3.6.6) we get

d dt I R t 0 (t) = -ż(t) ˆ u 2 + u 2 x Ψ + ˆu2 u 2 x Ψ + ˆ{p * (3uu 2 x + 2u 3 )}uΨ + ˆ{p x * u 3 x }uΨ = -ż(t) ˆ u 2 + u 2 x Ψ + J 1 + J 2 + J 3 . (2.5.2)
In order to bound J i , for i = 1, 2, 3, we split R into two complementary regions related to the size of u(t). In fact, we start by rewriting J 1 as

J 1 = ˆ|x-x(t)|<R 0 u 2 u 2 x Ψ + ˆ|x-x(t)|>R 0 u 2 u 2 x Ψ =: J 1 1 + J 2 1
Now notice that (2.3.6) ensures that ẋ(t) -ż(t) ≥ γc for all t ∈ R, and hence by using the definition of z R t 0 (t) we deduce that for |x -x(t)| < R 0 we have

x -z R t 0 (t) = x -x(t 0 ) -R -z(t) + z(t 0 ) ≤ R 0 -R -γc(t 0 -t). (2.5.3)
Therefore, due to the decay property of Ψ , Hölder's inequality and by using Sobolev's embedding together with the conservation of the H 1 -norm we obtain

J 1 1 u 0 4 H 1 e 1 6 (R 0 -R-γc(t 0 -t)) .
On the other hand, by using (2.3.5) we infer that for all t ≤ t 0 we have

J 2 1 u 2 L ∞ ({|x-x(t)|≥R 0 }) ˆu2 x Ψ (1 -δ)c 2 6 ˆu2 x Ψ .
Thus, the latter integral can be absorbed by the first integral term of (3.6.7). Now, in order to bound J 2 we proceed similarly by decomposing the space into two regions related to the size of u(t). In fact, rewriting J 2 as

J 2 = ˆ|x-x(t)|<R 0 {p * (3uu 2 x + 2u 3 )}uΨ + ˆ|x-x(t)|>R 0 {p * (3uu 2 x + 2u 3 )}uΨ =: J 1 2 + J 2 2 .
Now, we recall that by standard Fourier analysis the operator (1

-∂ 2 x ) -1 : L 2 (R) → H 2 (
R) is continuous. Thus, due to the decay property of Ψ , by using Sobolev's embedding together with the conservation of the H 1 -norm we obtain

J 1 2 = ˆ|x-x(t)|<R 0 {p * (3uu 2 x + 2u 3 )}uΨ u 0 4 H 1 e 1 6 (R 0 -R-γc(t 0 -t)) .
On the other hand, notice that since Ψ is positive and due to (2.3.3) we have

(1 -∂ 2 x )Ψ ≥ 1 2 Ψ , what implies that (1 -∂ 2 x ) -1 Ψ ≤ 2Ψ , (2.5.4) 
and hence, by using the previous inequality together with (2.3.5), we infer that

J 2 2 u 0 H 1 (|x-x(t)|>R 0 ) u 0 H 1 ˆu2 Ψ (1 -δ)c 2 6 ˆu2 Ψ .
Therefore, we can absorb this term by the first integral on the right-hand side of (3.6.7), and hence it only remains to bound J 3 . Now, in order to bound it we proceed again by decomposing the space into two regions

J 3 = ˆ|x-x(t)|<R 0 {p x * u 3 x }uΨ + ˆ|x-x(t)|>R 0 {p x * u 3 x }uΨ =: J 1 3 + J 2 3 .
Thus, due to the decay property of Ψ , by using Sobolev's embedding together with the conservation of the H 1 -norm we obtain

J 1 3 := 2 ˆ|x-x(t)|<R 0 {p x * u 3 x }uΨ u 0 4 H 1 e 1 6 (R 0 -R-γc(t 0 -t)) .
On the other hand, by using (2.5.4) and (2.3.5) again, we obtain

J 2 3 = 2 ˆ|x-x(t)|>R 0 {p x * u 3 x }uΨ u 0 H 1 (|x-x(t)|>R 0 ) u 0 H 1 ˆu2 x Ψ (1 -δ)c 2 6 ˆu2 x Ψ .
Thus we can absorb this term by the first integral on the right-hand side of (3.6.7). Therefore, gathering all of these inequalities we infer that for R > R 0 there exists C > 0 only depending on δ, γ, c, R 0 and u 0 H 1 such that for all t ≤ t 0 it holds

d dt I t 0 (t) ≤ Ce -1 6 (R+γc(t 0 -t)) - ż(t) 2 ˆ u 2 + u 2 x Ψ .
Finally, integrating between t and t 0 we deduce that for all t ≤ t 0

I t 0 (t 0 ) -I t 0 (t) ≤ Ce -R 6 .
Notice that the second inequality in (2.3.7) is obtained in exactly the same fashion, except for obvious modifications, so we omit it. The proof is complete.

Proof of Proposition 2.3.1

First of all notice that in order to conclude the proof it is enough to show that I t 0 (t) → 0 as t → -∞. In fact, by plugging this limit property into the first inequality in (2.3.7) we obtain

I t 0 (t 0 ) ≤ Ce -R 6 .
(2.5.5)

Hence, let us prove that the limit equality holds. In fact, we start by spliting the space as before. In concrete, for R ε 1 to be specified later, we decompose I t 0 (t) into

I t 0 (t) = ˆ|x-x(t)|<Rε u 2 + u 2 x Ψ + ˆ|x-x(t)|>Rε u 2 + u 2 x Ψ = I 1 + I 2 .
Now, on the one-hand, by the H 1 -almost localized hypothesis, for any ε > 0 we can choose R ε sufficiently large such that I 2 < ε 2 . On the other hand, by monotonicity of Ψ and by Sobolev's embedding we get

I 1 u 0 2 H 1 Ψ R ε + x(t) -x(t 0 ) -R -z(t) + z(t 0 ) . (2.5.6)
Finally, recalling that ẋ(t) -ż(t) ≥ γc for all t ∈ R, we deduce that for |x -x(t)| < R ε we have

x -z R t 0 (t) = x -x(t 0 ) -R -z(t) + z(t 0 ) ≤ R ε -R -γc(t 0 -t).
Thus, by plugging the latter inequality into (2.5.6) and due to the fact that Ψ(x) → 0 as x → -∞ we obtain that I 1 → 0 as t → -∞. Finally, notice that gathering (2.3.4) with (2.5.5) we infer that for any x 0 1 sufficiently large and all t ∈ R it holds

u(t, • + x(t)) H 1 (x 0 ,+∞) ≤ Ce -x 0 6 .
On the other hand, since the Novikov equation is invariant under space-time inversion, that is, invariant under the transformation (t, x) → (-t, -x), the latter inequality also leads us to

u(t, • + x(t)) H 1 (-∞,x 0 ) ≤ Ce -x 0 6 .
Therefore, we conclude the proof by using Sobolev's embedding. The proof is complete.

Proof of Lemma 2.3.3

First of all notice that (2.3.14) follows directly from combining formulas (3.1.10)-(3.1.11) with (2.3.11). On the other hand, notice that the remaining part of the Lemma would follow directly from the definition of x + (•) and q(•, •) if the initial data were in H 3 (R), and hence we shall proceed by approximating the solution at some convenient time by smooth functions as before. Moreover, the proof follows by contradiction, i.e., from now on we assume that there exists t * ∈ R such that

q(t * , x(0) + x + (0)) = x(t * ) + x + (t * ) + ε,
for some ε = 0. Notice also that without loss of generality we can assume that t * ∈ (0, 1). We split the proof in two cases regarding the sign of ε.

1. Case ε < 0 : In this case we approximate the initial data u 0 by the family of smooth functions

u 0,n := ρ n * u 0 ∈ H ∞ (R) ∩ Y + (R).
Now, by continuity and monotonicity of the map x → q(t, x) we deduce that there exists δ > 0 such that q(t * , x(0) + x + (0) + δ) < x(t * ) + x + (t * ) + 1 2 ε, On the other hand, notice that by definition of ρ n , there exists n 0 ∈ N sufficiently large such that for all n ≥ n 0 we have

y 0,n ≡ 0 on [x(0) + x + (0) + δ, ∞).
Thus, denoting by u n (t) the solution to (3.1.8) associated to u 0,n , we consider the characteristic q n : R → R defined by

d dt q n (t) = u 2 n t, q n (t, x) , t ∈ R, q n (0) = x(0) + x + (0) + δ.
It is clear from the definition that y n (0, •) ≡ 0 on [q n (0), +∞). Therefore, by using formula (2.3.9) we obtain that

y n (t * , •) ≡ 0 on [q n (t * ), +∞). Finally, since q n (•) → q(•, x(0) + x + (0) + δ) in C([0, 1]
) and by using (3.2.2) we conclude that, for n ∈ N sufficiently large,

y(t * , •) ≡ 0 on [x(t * ) + x + (t * ) + 1 4 ε, +∞),
what contradicts the definition of x + (t * ) due to the fact that ε < 0. The proof of this case is complete.

2. Case ε > 0 : In this case we approximate the solution at time t * by the family of smooth functions

u * n := ρ n * u(t * ) ∈ H ∞ (R) ∩ Y + (R)
. Now, by continuity and monotonicity of the map x → q(t, x) we deduce that there exists δ > 0 such that q(t * , x(0)

+ x + (0) -δ) > x(t * ) + x + (t * ) + 1 2 ε, On the other hand, by denoting u n (t) the solution to (3.1.8) such that u n (t * ) = u *
n , we deduce by definition of ρ n that there exists n 0 ∈ N sufficiently large such that, for all n ≥ n 0 we have y n (t * ) ≡ 0 on q t * , x(0)

+ x + (0) -δ , ∞ .
Thus, as before, we consider the characteristic q n : R → R defined by

d dt q n (t) = u 2 n t, q n (t, x) , t ∈ R, q n (t * ) = q(t * , x(0) + x + (0) -δ).
It is clear from the definition that y n (t * , •) ≡ 0 on [q n (t * ), +∞). Hence, by using formula (2.3.9) we obtain that y n (0, •) ≡ 0 on [q n (0), +∞).

In the same fashion as before, by using (3.2.2) we conclude that, for n ∈ N sufficiently large we have

y(0, •) ≡ 0 on [x(0) + x + (0) -1 4 δ, +∞)
, what contradicts the definition of x + (0). The proof of this case is complete.

Therefore, the proof is complete.

Proof of Lemma 2.3.7

Step 1 : Let us first prove inequality (2.3.26). In fact, let x ∈ R arbitrary but fixed. Then, on the one-hand, by using a 2 + b 2 ≥ 2ab we have

e -x ˆx -∞ e η vv 2 x (η) + v 3 (η) dη ≥ 2e -x ˆx -∞ e η v 2 (η)v x (η)dη = 2 3 v 3 (x) - 2e -x 3 ˆx -∞ e η v 3 (η)dη,
and hence,

e -x ˆx -∞ e η vv 2 x (η) + 5 3 v 3 (η) dη ≥ 2 3 v 3 (x).
On the other hand, by using a 2 + b 2 ≥ -2ab we obtain

e x ˆ+∞ x e -η vv 2 x (η) + v 3 (η) dη ≥ 2e x ˆ+∞ x e -η v 2 (η)v x (η)dη = 2 3 v 3 (x) - 2e x 3 ˆ+∞ x e -η v 3 (η)dη,
and hence

e x ˆ+∞ x e -η vv 2 x (η) + 5 3 v 3 (η) dη ≥ 2 3 v 3 (x).
Gathering both inequalities we conclude (2.3.26).

Step 2 : Let us prove now the second part of the statement. In fact, from the proof of the first step we see that equality holds if and only if

vv 2 x + v 3 = 2v 2 v x a.e. on (-∞, x 0 ) or equivalently v x = v a.e. on (-∞, x 0 ).
By solving the ODE and by continuity of v this forces it to be v(z) = Ce z on (-∞, x 0 ). In the same fashion, equality holds in (2.3.26) if and only if

vv 2 x + v 3 = -2v 2 v
x a.e. on (x 0 , +∞) or equivalently v x = v a.e. on (x 0 , ∞).

Thus, by solving the ODE we obtain that v(z) = Be -z on (x 0 , +∞). Therefore, by continuity of v in R we conclude that v(x) = Ce -|x-x 0 | . The proof is complete.

Proof of Lemma 2.4.1

We shall follow Molinet's proof [START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF]. Let n 0 ∈ N to be specified. Consider the functional given by the ortogonality condition we are looking for, that is, consider the functional given by

Y z (u, y) := ˆu(ρ n 0 * ϕ) (x -y -z). Notice that Y z : H 1 (R) × R → R defines a C 1 functional
in a neighborhood of (ε, 0). Moreover, since by definition both ρ n 0 and ϕ are even functions, we have Y z (0, ϕ(• -z)) ≡ 0. On the other hand, notice that by direct computations we have

∂Y z ∂y ϕ(• -z), 0 = ˆϕ (ρ n 0 * ϕ ) = ϕ 2 L 2 -ε(n 0 ) = 1 -ε(n 0 ), (2.5.7) 
where ε(•) satisfy ε(n) → 0 as n → +∞. Hence, we are able to take

n 0 ∈ N large enough such that ∂Y z ∂y ϕ(• -z), 0 ≥ 1 2 .
Thus, from the Implicit Function Theorem we deduce the existence of > 0, δ > 0 small enough and a

C 1 function y z (•) : B(ϕ(• -z), ) → (-δ, δ) such that Y z (u, y z (u)) = 0, for all u ∈ B(ϕ(• -z), ),
where B(ϕ(• -z), ) denotes the H 1 -ball of radius centered at ϕ(• -z). In particular, as a consequence of the Implicit Function Theorem we deduce the existence of a constant C 0 > 0 such that for any ≤ we have

if u ∈ B(ϕ(• -z), ) then |y z (u)| ≤ C 0 . (2.5.8)
Notice that by a translation invariance argument, the constants , δ and C 0 are independent of z ∈ R. Therefore, by uniqueness we can define a C 1 map

x :

z∈R B ϕ(• -z), ε 0 → (-δ, δ) given by x := z + y z (u) for u ∈ B(ϕ(• -z), ).
On the other hand, notice that Y z is also of class C 1 viewed as a functional

Y z : L 2 (R)×R → R.
Moreover, by the same computations as before we have

∂Y z ∂y (ϕ(• -z), y) = ˆϕ(x)(ρ n 0 * ϕ)(x -z -y)dx
Hence, arguing in the same fashion as before we deduce the existence of a constant > 0 and a C 1 function

x : z∈R B(ϕ(• -z), η) → (-κ, κ), (2.5.9) 
such that for all u ∈ B we have Y z (ϕ(• -z-), y z (u)) = 0 if and only if y z (u) = x(u), where the set B is given by

B := z∈R B(ϕ(• -z), η).
Notice that in both (2.5.9) and the definition of B we are denoting by B(ϕ(• -z), η) the L 2 -ball centered at ϕ(• -z). Thus, by setting ε * := min{ , η}, due to the uniqueness given by the Implicit Function Theorem we conclude that

x = x on B H 1 (ϕ(• -z), ε * ). Hence, x(•) is also a C 1 function on ∪ z∈R B H 1 (ϕ(• -z), ε *
) endowed with the L 2 norm. This fact shall be important in the sequel. Now, for the sake of readability we split the proof in several steps.

Step 1 : Our first aim is to prove (2.4.4). In fact, notice that as a direct consequence of (2.4.3) we have

1 √ c u(t, •) : t ∈ R ⊆ z∈R B ϕ(• -z), ε 0
Therefore, by making ε 0 smaller if necessary, we can define x(t) := x(u(t)), and hence x(•) satisfies both conditions in (2.4.4) by construction.

Step 2 : Now we intend to prove (2.4.7). In fact, it is enough to notice that from the hypothesis given in (2.4.7) together with (2.5.8) we conclude that for any c > 0 and any 0 < ε < cε 0 we have

1 √ c u(t) -ϕ(• -z(t)) H 1 ≤ ε c 2 + sup |z|≤C 0( ε c ) 2 ϕ -ϕ(• -z) H 1 ε 2 + C 1/2 0 ε.
Step 3 : Our aim now is to prove (2.4.6). For the sake of simplicity let us start by defining some new variables :

v(t) := u - √ cϕ(• -x(t)), w := √ cϕ(• -x(t)) and w n 0 := √ c(ρ n 0 * ϕ)(• -x(t)).
Now we recall that in view of (3.1.8) we know that any solution u ∈ C(R, H 1 (R)) of the Novikov equation satisfies

u t ∈ C(R, L 2 (R)) and hence u ∈ C 1 (R, L 2 (R)).
This ensures that the mapping t → x(t) = x(u(t)) is of class C 1 on R. Thus, by differentiating the orthogonality condition (2.4.4) we obtain

ˆvt w n 0 ,x = ẋ ˆv(t, x)w n 0 ,xx (t, x)dx = - ẋ ˆvx (t, x)w n 0 ,x (t, x)dx
On the other hand, by using ϕ -ϕ = 2δ we infer that w satisfies the following equation

w t + ( ẋ -c)w x + w 2 w x = p x w 3 + 3 2 ww 2 x - 1 2 p * w 3 x .
Replacing the latter equation together with u = v + w into (3.1.8) we obtain that v satisfies

v t -( ẋ -c)w x = -(v + w) 2 v x -(v 2 + 2vw)w x - 1 2 p * v 3 x + 3v 2 x w x + 3v x w 2 x + p x * v 3 + 3v 2 w + 3vw 2 + 3 2 v(v x + w x ) 2 + 3 2 v 2 x w + 2v x ww x .
Taking the L 2 -inner product on the latter equation against w n 0 ,x and by using (2.4.7) we get

( ẋ -c) ˆwx w n 0 ,x dx + cO( v H 1 ) ≤ O( v H 1 ) cCε 0 .
Therefore, by using (2.5.7), considering n 0 ∈ N sufficiently large and ε 0 sufficiently small so that Cε 0 1, we conclude (2.4.6).

Step 4 : Finally, it only remains to prove (3.4.6) for n 0 ∈ N large enough. In fact, it is enough to notice that ˆϕ

(x)ϕ(x -y)dx = (1 -y)e -y .
Hence, for n 0 ∈ N large enough we have

d dy ˆϕ(ρ n 0 * ϕ) (• -y) = ˆϕ (ρ n 0 * ϕ )(• -y) ≥ 1 4 e -1/2 on -1 2 , 1 2 .
Therefore, the mapping y → ´R ϕ(ρ

n 0 * ϕ) (• -y) is increasing on [-1 2 , 1 2 ].
The proof is complete.

Chapitre 3

Orbital and Aymptotic stability of a train of peakons for the Novikov equation

Introduction

The model

This paper is concerned with the Novikov equation

u t -u txx + 4u 2 u x = 3uu x u xx + u 2 u xxx , t ∈ R, x ∈ R, (3.1.1) 
where u(t) is a real-valued function. This equation was derived by Novikov [START_REF] Novikov | Generalizations of the Camassa-Holm type equation[END_REF] in a symmetry classification of nonlocal partial differential equations with cubic nonlinearity. By using the perturbative symmetry approach [START_REF] Mikhailov | Perturbative symmetry approach[END_REF], which yields necessary conditions for a PDE to admit infinitely many symmetries, Novikov was able to isolate equation (3.1.1) and derive its first few symmetries. Later, he was able to find an associated scalar Lax-pair, proving the integrability of the equation. Moreover, Hone and Wang have recently found a matrix Laxpair representation of the Novikov equation, more specifically, they have shown that equation (3.1.1) arises as the zero curvature equation

F t -G x + [F, G] = 0 which is the compatibility condition for the linear system [46] Ψ x = F (y, λ)Ψ and Ψ t = G(y, λ)Ψ,
where y = u -u xx and the matrices F and G are defined by

F =   0 λy 1 0 0 λy 1 0 0   , G =   1 3λ 2 -uu x 1 λ u x -λu 2 y u 2 x 1 λ u -2 3λ 2 -1 λ u x -λu 2 y -u 2 1 λ u 1 3λ 2 + uu x   .
Moreover, by using this matrix Lax-pair representation, Hone and Wang showed how the Novikov equation is related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierarchy.

The Novikov equation possesses infinitely many conservation laws, among which, the most important ones are given by

E(u) := ˆR u 2 (t, x) + u 2 x (t, x) dx and F (u) := ˆ u 4 + 2u 2 u 2 x - 1 3 u 4 x dx. (3.1.2)
Solutions of (3.1.1) are known to satisfy several symmetry properties : shifts in space and time, i.e. if u(t, x) is a solution to equation (3.1.1) then so is u(t + t 0 , x + x 0 ), as well as space-time invertion, i.e. if u(t, x) is a solution of (3.1.1), then u(-t, -x) is another solution.

One of the most important features of the Novikov equations is the existence of peakon and antipeakon solutions [START_REF] Hone | Integrable peakon equations with cubic nonlinearity[END_REF] which are peaked traveling waves with a discontinuous derivative at the crest. In this case, for any c > 0 they are explicitly given by

±ϕ c (x -ct) = ± √ cϕ(x -ct) := ± √ ce -|x-ct| . (3.1.3)
Moreover, the Novikov equation also exhibit multi-peakons-antipeakons solutions. More precisely, for any given natural number n ∈ N, let us denote by q = (q 1 , ..., q n ) and p = (p 1 , ..., p n ) the position and momenta vectors respectively. Then, the n-peaked traveling wave solution on the line is given by u(t, x) = n i=1 p i (t) exp(-|x -q i (t)|), where p i and q i satisfy the following system of 2n-differential equations

           dq i dt = u 2 t, q i (t) = n j,k=1 p j p k e -|q i -q j |-|q i -q k | , dp i dt = -p i (t)u t, q i (t) u x t, q i (t) = p i n j,k=1 p j p k sgn(q i -q j )e -|q i -q j |-|q i -q k | . (3.1.4) 
There exist some similar expressions for periodic peakons and multipeakons solutions but we do not intend to deepen into this direction in this work. On the other hand, equation (3.1.1) can be rewritten in a compact form in terms of its momentum density as

y t + u 2 y x + 3uu x y = 0, where y := u -u xx , (3.1.5) 
which can be regarded as a cubic nonlinear generalization of the celebrated Camassa-Holm (CH) equation [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Fuchssteiner | Symplectic structures, their Bäcklund transformations and hereditary symmetries[END_REF],

u t -u txx = uu xxx + 2u x u xx -3uu x , equivalently y t + uy x + 2u x y = 0, (3.1.6) 
or the Degasperis-Procesi (DP) equation [START_REF] Degasperis | Asymptotic integrability[END_REF],

u t -u txx = uu xxx + 3u x u xx -4uu x , equivalently y t + uy x + 3u x y = 0. (3.1.7)
It is worth noticing that the last three equations in terms of their momentum densities correspond to transport equations for y(t). As a consequence, initial data with signed initial momentum density give rise to solutions with the same property. This is one of the key points to prove that smooth and sufficiently fast decaying initial data with signed initial momentum density give rise to global solutions.

Regarding the CH and the DP equations, both can be derived as a model for the propagation of unidirectional shallow water waves over a flat bottom by writing the Green-Naghdi equations in Lie-Poisson Hamiltonian form and then making an asymptotic expansion which keeps the Hamiltonian structure [START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF][START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi Equations[END_REF][START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF]. Moreover, both of them can be written in Hamiltonian form as

∂ t E (u) = -∂ x F (u),
where for the Camassa-Holm equation E(u) and F (u) are given by

E CH (u) := ˆu2 + u 2
x and F CH (u) := ˆu3 + uu 2

x while for the Degasperis-Procesi equation they are given by

E DP (u) := ˆyv = ˆ5v 2 + 4v 2 x + v 2 xx and F DP (u) := ˆu3 , where v := (4 -∂ 2 x ) -1 u.
Moreover, both of them belongs to the so-called b-family introduced by Degasperis, Holm and Hones in [START_REF] Degasperis | A new integrable equation with peakon solution[END_REF],

u t -u txx = bu x u xx + uu xxx -(b + 1)uu x .
In [START_REF] Mikhailov | Perturbative symmetry approach[END_REF] it was shown that the b-family corresponds to an integrable equation only when b = 2, 3, which corresponds exactly to the CH and the DP equations respectively.

On the other hand, the Novikov equation, as well as the CH and the DP equations, can also be written in a nonlocal form in the following way. From now on we shall denote by p(x) the fundamental solution of 1 -∂ 2

x in R, that is p := 1 2 e -|x| . Then, we can rewrite (3.1.1) as

u t + u 2 u x = -p * 3uu x u xx + 2u 3 x + 3u 2 u x , (3.1.8) 
which can be understood as a nonlocal perturbation of Burgers-type equations

u t + 1 3 (u 3 ) x = 0,
or more generally as a nonlinear nonlocal transport equation. This latter fact has many implications, for instance, from the blow-up criteria for transport equations we obtain that singularities are caused by the focusing of characteristics. It is worth noticing that, in order to give peakons and multi-peakons a precise meaning as (weak) solutions of the Novikov equation, it is necessary to rewrite equation (3.1.1) in the non-local form as in (3.1.8). In fact, due to their non-smoothness they can not be understood as strong solutions of the equation 1 .

At this point it is clear that the Novikov equation shares many of its remarkable analytic properties with both the CH and the DP equations, as the existence of a Lax-pair, the completely integrability and the bi-Hamiltonian structure [START_REF] Degasperis | Asymptotic integrability[END_REF][START_REF] Hone | Integrable peakon equations with cubic nonlinearity[END_REF], but also all of them exhibit both existence of peaked traveling waves as well as the phenomenon of wave breaking [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF][START_REF] Chen | Analysis on the blow-up of solutions to a class of integrable peakon equations[END_REF][START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi Equations[END_REF][START_REF] Degasperis | Asymptotic integrability[END_REF][START_REF] Novikov | Generalizations of the Camassa-Holm type equation[END_REF]. This latter one means that the wave profile remains bounded while its slope becomes unbounded. As the authors explain in [START_REF] Chen | Analysis on the blow-up of solutions to a class of integrable peakon equations[END_REF], understanding the wave-breaking mechanism not only presents fundamental importance from a mathematical point of view but also a great physical interest since it would help to provide a key-mechanism for localizing energy in conservative systems by forming one or several small-scale spots. Finally, we remark that, unlike the Novikov equation, peakon solutions for the CH and the DP equations have a slightly different form, which is given by

ϕ c (x -ct) = cϕ(x -ct) := ce -|x-x 0 -ct| , c ∈ R \ {0}, x 0 ∈ R. (3.1.9)
It is worth noticing that in sharp contrast with the Novikov equation, CH and DP peakons can move in both directions, left and right, just by changing the sign of c, while all Novikov peakons and anti-peakons move to the right.

About the stability of these peaked solitary waves, the first proof of orbital stability was given in the Camassa-Holm case for H 1 -perturbations assuming that their associated momentum density defines a non-negative Radon measure [START_REF] Constantin | Orbital stability of solitary waves for a shallow water equation[END_REF]. The orbital stability for perturbations in the whole energy space H 1 (R) was proved by a direct approach by Constantin and Strauss in [START_REF] Constantin | Stability of peakons[END_REF] (see also [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] for a proof in the Degasperis-Procesi case). Later, following the ideas in [START_REF] Constantin | Stability of peakons[END_REF][START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] Liu et al. proved the orbital stability for Novikov's peakon solutions under the additional assumption of non-negative initial momentum density [START_REF] Liu | Stability of peakons for the Novikov equation[END_REF]. In this work we shall prove that we can drop this latter hypothesis (see Theorem 3.1.1 below).

From a physical point of view, all of these peakon solutions (3.1.3) and (3.1.9) reveal some similarities to the well-known Stokes waves of greatest height, i.e. traveling waves of maximum possible amplitude that are solutions to the governing equations for irrotational water waves [START_REF] Constantin | The trajectories of particles in Stokes waves[END_REF][START_REF] Toland | Stokes waves[END_REF]. These traveling waves (Stokes waves) are smooth everywhere except at the crest, where the lateral tangents differ. Then, it is important from both a physical and a mathematical point of view to study these types of solutions.

Initial data space

Before stating our main results we need to introduce the functional spaces where our initial data shall belong. Following the ideas of [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF][START_REF] El Dika | Exponential decay of H1-localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation[END_REF][START_REF] El Dika | Stability of multipeakons[END_REF][START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF][START_REF] Palacios | Orbital and asymptotic stability of peakon trains for the Novikov equation[END_REF] we define

Y := u ∈ H 1 (R) : u -u xx ∈ M b ,
where M b denotes the space of Radon measures with finite total variation on R. Moreover, from now on we shall denote by Y + the subspace defined by

Y + := {u ∈ Y : u -u xx ∈ M + b }, where M + b denotes the space of non-negative finite Radon measures on R. A crucial remark in what follows is that, for any function v ∈ C ∞ 0 (R) we have v(x) = 1 2 ˆx -∞ e x -x (v -v xx )(x )dx + 1 2 ˆ∞ x e x-x (v -v xx )(x )dx (3.1.10) and v x (x) = - 1 2 ˆx -∞ e x -x (v -v xx )(x )dx + 1 2 ˆ∞ x e x-x (v -v xx )(x )dx (3.1.11) Therefore, if v -v xx ≥ 0 on R we conclude that |v x | ≤ v.
Thus, by density of C ∞ 0 (R) in Y , we deduce the same property for functions v ∈ Y + .

Remark 3.1.1. We recall the following standard estimate which shall be useful in the sequel :

u W 1,1 = p * (u -u xx ) W 1,1 u -u xx M ,
and hence it also holds that

u xx M ≤ u L 1 + u -u xx M .
Thus, we have

Y (R) → u ∈ W 1,1 (R) : u x ∈ BV(R)
, where BV(R) denotes the space of functions with bounded variation.

Main results

As we mentioned before, in this work we intend to address both, the orbital and asymptotic stability problems for a train of peakons.

Orbital stability in the energy space

Our first result is an improvement of the orbital stability property for the single peakon solution. Indeed, by some slight improvements and modifications of the proof in [START_REF] Liu | Stability of peakons for the Novikov equation[END_REF], we shall show that the sign assumption on the momentum density is artificial, and hence it can be removed. This is rather an observation regarding the fact that the proof follows the one in [START_REF] Constantin | Stability of peakons[END_REF] for the Camassa-Holm equation.

Theorem 3.1.1 (Orbital stability of peakons in the energy space). Let c > 0 be fixed. There

exists 0 < ε min{1, √ c} small enough such that if u ∈ L ∞ ((-T, T ), H 1 (R) ∩ W 1,4 (R)), is a solution to the Novikov equation (3.1.8) emanating from an initial data u 0 ∈ H 1 (R) ∩ W 1,4 (R) satisfying u 0 -ϕ c H 1 + u 0,x -ϕ c L 4 ≤ ε 4 , for some 0 < ε < ε , (3.1.12) 
such that E(•) and F (•) are conserved along the trajectory, then, the following estimate holds :

sup t∈[-T,T ] u(t) -ϕ c (• -ξ(t)) H 1 ≤ 2c 3/8 4 + c ε, c := max{1, c 3/8 },
where ξ(t) ∈ R is any point where the function u(t, •) attains its maximum.

Remark 3.1.2. It is worth noticing that continuity with respect to time of the solution is not needed here. Specifically, we only need the quantities E(•) and F (•) to be conserved. Indeed,

for any v ∈ H 1 ∩ W 1,4 , it holds that v -ϕ H 1 → 0 as |E(v) -E(ϕ)| + |F (v) -F (ϕ)| → 0.
Once we have proved the orbital stability of a single peakon in some functional space we may consider the orbital stability problem for a train of peakons under the same hypothesis. In this regard, we obtain the analogous result to the last theorem for peakon train solutions of the Novikov equation.

Theorem 3.1.2 (Orbital stability of a train of peakons in the energy space). Let c 1 , ...c n be n real numbers such that 0 < c 1 < ... < c n . There exists ε > 0 small enough, L 0 > 0 and an universal constant C > 0 such that if for some 0 < T ≤ +∞,

u ∈ C([0, T ), H 1 (R)) ∩ L ∞ ([0, T ), W 1,4 (R))
is a solution to the Novikov equation (3.1.8) emanating from an initial data

u 0 ∈ H 1 (R) ∩ W 1,4 (R)
such that E(•) and F (•) are conserved along the trajectory and satisfying

u 0 - n i=1 ϕ c i (• -z i ) H 1 + u 0,x - n i=1 ϕ c i (• -z i ) L 4 ≤ ε 4 , with 0 < ε < ε , (3.1.13)
for some array of numbers {z i } n i=1 ⊂ R with z i+1 -z i ≥ L where L ≥ L 0 , then the following holds : There exist On the other hand, in [START_REF] Hone | Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm type equation[END_REF] Hones et al. studied the asymptotic behavior of multipeakon solutions in the case when no antipeakons are allow. In particular, the limits of p i (t) and qi (t) in (3.1.4) as t goes to +∞ are determined. As a corollary of the previous theorem together with the study made in [START_REF] Hone | Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm type equation[END_REF] we obtain the orbital stability of the whole manifold

C 1 functions x 1 (t), ..., x n (t) : [0, T ) → R such that sup t∈[0,T ) u(t, •) - n i=1 ϕ c i (• -x i (t)) H 1 ε + L -1/8 . (3.1.14) Additionally, we have x i+1 (t) -x i (t) > L 2 for all t ∈ [0, T ).
N := v(x) = n i=1 p i e -|x-q i | : p 1 , ..., p n ∈ R + , q 1 < ... < q n .
In concrete, we have the following result :

Corollary 3.1.3 (Orbital stability of not-well ordered multi-peakons). Let p 0 1 , ..., p 0 n be n positive real numbers and q 0 1 < ... < q 0 n . For any α > 0 and any δ > 0 there exists ε > 0 such that for any initial data

u 0 ∈ Y + (R) satisfying u 0 - n i=1 p 0 i exp -| • -q 0 i | H 1 ≤ ε with y 0 M ≤ α, (3.1.15)
then the following holds : For all time t ∈ R we have

inf q∈R n , p∈R n + u(t, •) - n i=1 p i exp -| • -q i | H 1 ≤ δ. (3.1.16)
Moreover, there exists T > 0 sufficiently large such that

for all t ≥ T, inf q∈G u(t, •) - n i=1 λ i exp -| • -q i | H 1 ≤ δ, and 
for all t ≤ -T, inf q∈G u(t, •) - n i=1 λ n+1-i exp -| • -q i | H 1 ≤ δ.
where G := { q ∈ R n : q 1 < ... < q n } and the parameters 0 < λ 1 < ... < λ n are the square roots of the eigenvalues of the matrix T P EP , where :

P := diag p 0 1 , ..., p 0 n , E := e -|q i -q j | n i,j=1
and T := (1 + sgn(j -k)) n i,j=1 .

Asymptotic stability results

About the asymptotic stability of peaked traveling waves, the case of a single peakon have recently been addressed and proved by the author by a proof based in a rigidity property of the Novikov equation (see [START_REF] Palacios | Orbital and asymptotic stability of peakon trains for the Novikov equation[END_REF] Theorems 1.2 and 1.3).

Theorem 3. 1.4 ([100]). Let c > 0 be fixed. There exists an universal constant 1 ε > 0 such that for any β ∈ (0, c) and initial data u 0 ∈ Y + satisfying

u 0 -ϕ c H 1 ≤ ε β c 8 , (3.1.17)
then the following property holds : There exists

c * > 0 with |c -c * | c and a C 1 function x : R → R satisfying ẋ(t) → c * as t → +∞ u(t, • + x(t)) ϕ c * in H 1 (R).
where

2 u ∈ C ti (R, Y + )
is the global weak solution to equation (3.1.8) associated to u 0 . Moreover, for any z ∈ R the following strong convergence holds

lim t→+∞ u(t) -ϕ c * (• -x(t)) H 1 ((-∞,z)∪(βt,+∞)) = 0. (3.1.18)
As we mentioned before, the main ingredient in the proof of Theorem 3.1.4 is a rigidity property of the Novikov equation ensuring that every H 1 -almost localized solution (c.f. Definition 1.1 in [START_REF] Palacios | Orbital and asymptotic stability of peakon trains for the Novikov equation[END_REF]) to equation (3.1.8) is actually a peakon. This latter property has been proved by introducing a new Lyapunov functional not related to the (not conserved) momentum of the equation. The main result of the present work is the asymptotic stability for peakon train solutions.

Theorem 3.1.5 (Asymptotic stability of a train of peakons). Let c 1 , ...c n be n positive real number satisfying c 1 < ... < c n and β ∈ (0, c 1 4 ). There exists L 0 > 0 sufficiently large and

ε > 0 small enough such that if a solution u ∈ C ti (R, Y + (R)) to the Novikov equation associated to some initial data u 0 ∈ Y + (R) satisfies u 0 - n i=1 ϕ c i (• -z i ) H 1 ≤ ε 4 , with 0 < ε < ε , (3.1.19)
for some {z i } n i=1 ⊂ R satisfying z i+1 -z i ≥ L for some L ≥ L 0 then the following holds : There exists n positive real numbers c 1 < ... < c n and C 1 functions x 1 , ..., x n : R → R such that for all i = 1, ..., n,

ẋ i (t) → c i as t → +∞ and u t, • + x i (t) ϕ c i in H 1 as t → +∞.
Moreover, for any z ∈ R the following strong convergence holds :

lim t→+∞ u(t) - n i=1 ϕ c i • -x i (t) H 1 (At) = 0, with A t := (-∞, z) ∪ (βt, +∞) (3.1.20)
Finally, gathering the latter theorem with the asymptotic obtained by Hone et al in [START_REF] Hone | Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm type equation[END_REF] we obtain the following asymptotic stability result for the whole manifold N .

Corollary 3.1.6 (Asymptotic stability of not-well ordered multi-peakons). Let p 0 1 , ..., p 0 n be n positive real numbers, q 0 1 , ..., q 0 n any sequence of real numbers satisfying q 0 1 < ... < q 0 n and let us consider 0 < λ 1 < ... < λ n defined as in Corollary 3.1.3. For any α > 0, any δ > 0 there exists ε > 0 sufficiently small such that if

u 0 ∈ Y + (R) satisfies u 0 - n i=1 p 0 i exp -| • -q 0 i | H 1 ≤ ε with y 0 M ≤ α,
then the following holds : There exists 0 < p 1 < ... < p n and C 1 functions q 1 , ..., q n : R → R

satisfying |p i -λ i | ≤ δ and lim t→+∞ qi (t) = p 2 i , for all i = 1, ..., n, such that u(t) - n i=1 ϕ p i (• -q i (t)) t→+∞ ----→ 0 in H 1 λ 1 4 t, +∞ . Remark 3.1.4.
Notice that due to the fact that the Novikov equation (3.1.8) is invariant under the transformation u(t, x) → -u(t, x), we also deduce the orbital and asymptotic stability result for a train of antipeakon profiles with perturbations in the class of H 1 functions with momentum density belonging to M - b (R).

Organization of this chapter

This paper is organized as follows. In Section 5.2 we introduce some definitions and state a series of results needed in our analysis, for instance, the local and global well-posedness results in the class of solutions we shall work with. In section 3.3 we prove the orbital stability result for a single peakon solution. In section 3.4, following the ideas of the latter section we prove the orbital stability of a train of peakons. Finally, in section 3.5 we prove the asymptotic stability of peakon trains for Y + (R) perturbations.

Preliminaries

Preliminaries and definitions

In order to make regularization arguments, in the sequel we shall need the following family of functions : Let {ρ n } n∈N be a mollifiers family definied by

ρ n (x) := n ˆR ρ(ξ)dξ -1 ρ(nx), where ρ(x) := e 1 x 2 -1 for |x| < 1 0 for |x| ≥ 1. (3.2.1)
It worth to notice that for any n ∈ N we have ρ n L 1 = 1. On the other hand, from now on we shall denote by C b (R) the set of bounded continuous functions on R, and by C c (R) the set of compactly supported continuous functions on R. Throughout this paper we shall also need the following definitions.

Definition 3.2.1 (Weakly convergence of measures). We say that a sequence {ν n } ⊆ M converge weakly towards ν ∈ M, which we shall denote by ν n ν, if

ν n , φ → ν, φ , for any φ ∈ C c (R).
Remark 3.2.1. Notice that we are adopting the standard Measure Theory's notation for the weak convergence of a measure. Nevertheless, we recall that from a Functional Analysis point of view this convergence corresponds to the weak-* convergence on Banach spaces.

Definition 3.2.2 (Tightly and weak continuity of measure-valued functions). Let I ⊆ R be an interval.

1. We say that a function

f ∈ C ti (I, M b ) if for any φ ∈ C b (R) the map t → f (t)φ is continuous on I.
2. We say that a function

f ∈ C w (I, M) if for any φ ∈ C c (R) the map t → f (t)φ is continuous in I. Definition 3.2.3 (Weak convergence in C ti (I)). Let I ⊆ R be an interval. We say that a sequence f n f in C ti (I, M b ) if for any φ ∈ C b (R) we have f n (•)φ → f (•)φ in C(I).

Global well-posedness

In the proofs of Theorem 3.1.5 we shall need to approximate non-smooth solutions of equation (3.1.8) by sequences of smooth solutions. In this regard, we shall need a global well-posedness result on a class of smooth solutions. In [START_REF] Wu Xinglong | Global weak solutions for the Novikov equation[END_REF], following the ideas of the seminal work of Constantin and Escher [START_REF] Constantin | Global existence and blow-up for a shallow water equation[END_REF] on the Camassa-Holm equation, Wu and Yin proved the smooth global well-posedness for initial data with non-negative momentum density.

Theorem 3.2.4 ([109]

). Let u 0 ∈ H s for s ≥ 3, with non-negative momentum density y 0 belonging to L 1 (R). Then, equation (3.1.1) has a unique global strong solution

u ∈ C(R, H s (R)) ∩ C 1 (R, H s-1 (R)).
Moreover, we have that E(u) and F (u) are two conservation laws. Additionally, denoting by y(t) := u(t) -u xx (t) the momentum density, we have that y(t) and u(t) are non-negative for all times t ∈ R and

|u x (t, •)| ≤ u(t, •) on R.
Unfortunately, since peakon profiles do not belong 3 to H 3/2 (R), they do not enter into this framework either, and hence this theorem is not useful for our purposes. Nevertheless, by following the work of Constantin and Molinet [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF], in the same work Wu and Yin also proved a global well-posedness theorem for a class of functions containing peakons. This result shall be crucial in our analysis. However, we shall need a slightly improved version of this theorem, which we state below.

Theorem 3.2.5 ([109]). Let u 0 ∈ H 1 (R) be a function satisfying y 0 := (u 0 -u 0,xx ) ∈ M + b (R).
Then, the following properties hold :

3. Actually, they do not belong to any W 1+ 1 p ,p (R) for any p ∈ [1, +∞). However, peakon profiles do belong to W 1,∞ (R), where W 1,∞ (R) denotes the space of Lipschitz functions.

Uniqueness and global existence :

There exists a global weak solution

u ∈ C(R, H 1 (R)) ∩ C 1 (R, L 2 (R)),
associated to the initial data u(0) = u 0 such that its momentum density

y(t, •) := u(t, •) -u xx (t, •) ∈ C ti (R, M + b (R)).
Additionally E(u) and F (u) are conservation laws. Moreover, the solution is unique in the class

{f ∈ C(R, H 1 (R))} ∩ {f -f xx ∈ L ∞ (R, M + b )}.
2. Continuity with respect to the initial data H 1 (R) : For any sequence {u 0,n } n∈N bounded in Y + (R) such that u 0,n → u 0 in H 1 (R), the following holds : For any T > 0, the family of solutions {u n } to equation (3.1.8) associated to {u 0,n } satisfies

u n → u in C([-T, T ], H 1 (R)) and y 0,n y in C ti ([-T, T ], M). (3.2.2)
Démonstration. We refer to [START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF][START_REF] Molinet | A rigidity result for the Holm-Staley b-family of equations with application to the asymptotic stability of the Degasperis-Procesi peakon[END_REF], Propositions 2.2, for a proof of this theorem in both the Camassa-Holm and the b-family case. Notice that the same proof applies to the Novikov equation, provided Theorem 3.2.4 and the fact that the first point of the statement was proven in [START_REF] Wu Xinglong | Global weak solutions for the Novikov equation[END_REF], except for the fact that y ∈ C ti (R, M + b ), which can be proven in exactly the same fashion as in [START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF].

Local well-posedness

To study the orbital stability of a train of peakons, since we are not assuming positivity of the momentum density we shall need a suitable well-posedness theorem. In this regard, in [START_REF] Himonas | The Cauchy problem for the Novikov equation[END_REF] the following local well-posedness for smooth solutions was derived. Theorem 3.2.6 ( [START_REF] Himonas | The Cauchy problem for the Novikov equation[END_REF]). Let u 0 ∈ H s with s > 3 2 . Then, there exists T > 0 and a unique solution u ∈ C([0, T ], H s (R)) to equation (3.1.8) associated to u 0 . Moreover, the data-tosolution map depends continuously on u 0 .

Nevertheless, as we discussed before, neither peakons nor peakon trains belong to this class of initial data. However, in [START_REF] Danchin | A few remarks on the Camassa-Holm equation[END_REF] Danchin noticed that, in the Camassa-Holm case, the maximal existence time of a solution u ∈ H s (R) for s > 3 2 is bounded from below by a positive real number, which allowed him to obtain local weak solutions without the positivity assumption on the initial momentum density. The following theorem states the analogous result for the Novikov equation. Démonstration. As we discussed before, the proof of local existence for weak solutions is mainly contained in [START_REF] Danchin | A few remarks on the Camassa-Holm equation[END_REF] for the Camassa-Holm case. Nevertheless, for the sake of completeness, since it has not been shown for the Novikov equation we sketch the prove of it. The idea is to combine the smooth global well-posedness theorem 3.2.6 with an apriori estimate of the total variation of the momentum density. In fact, let us fix T < 2 y 0 -2 M and consider the family of smooth initial data u n,0 := ρ n * u 0 ∈ H ∞ . Notice that by Young's inequality we have y n,0 L 1 ≤ y 0 M . Then, by Theorem 3.2.6 there exists a unique solution

u ∈ C(R, H ∞ (R)) such that u t=0 = u 0 .
On the other hand, by (3.1.5) we know that y n := u n -u n,xx solves

y n,t + u 2 n y n,x + 3u n u n,x y n = 0 and hence ∂ t |y n | + ∂ x (u 2 n |y n |) = -|y n |u n u n,x .
Thus, after integration in the space variable and by using that

u x L ∞ ≤ 1 2 y L 1 we deduce d dt y n (t) L 1 ≤ 1 4 y n (t) 3 L 1 ,
which leads us to,

y n (t) L 1 ≤ 2 y 0 2 M 2 -t y 0 2 M 1/2 .
Finally, notice that the previous estimate give us an uniform bound on u n,x L ∞ for t ≤ min{T n , 2 y 0 M . Therefore, we conclude the apriori estimate which leads us to the local existence. The remaining part of the proof follows from standard compactness arguments to justify the pass to the limit. We refer to [START_REF] Danchin | A few remarks on the Camassa-Holm equation[END_REF] Theorem 5 for a detailed proof of this last part (the interested reader may also consult to [START_REF] Molinet | On well-posedness results for Camassa-Holm equation on the line : a survey[END_REF], Theorem 4 for a proof of this last part).

Orbital stability of peakons in the energy space

In this section we show that under some slight improvements and modifications of the proof in [START_REF] Liu | Stability of peakons for the Novikov equation[END_REF] we are able to obtain Theorem 3.1.1. For the sake of simplicity we split the proof in several lemmas, which we shall state and prove in the next subsection.

General estimates

In this subsection we shall prove some general formulas and estimates holding for any function belonging to H 1 (R) ∩ W 1,4 (R), which are the minimum requirements for E(u) and F (u) to be well-defined. Lemma 3.3.1. For any v ∈ H 1 (R) and any z ∈ R we have

E(v) -E(ϕ c ) = v -ϕ c (• -z) 2 H 1 + 4 √ c(v(z) - √ c). (3.3.1)
Remark 3.3.1. Notice that the previous lemma ensures us that the minimum of the H 1 (R)distance between v and the set {ϕ c (• -ξ) : ξ ∈ R} is reached exactly at any point ξ ∈ R where v(•) attains its maximum.

Démonstration. The proof follows from direct computations. In fact, recalling that ϕ c = ϕ -2δ, after integration by parts we obtain

v -ϕ c (• -z) 2 H 1 = E(v) + E(ϕ c ) -2 ˆv(x)ϕ c (• -z)dx -2 ˆvx (x)ϕ c (• -z)dx = E(v) + E(ϕ c ) -4 √ cv(z) = E(v) -E(ϕ c ) -4 √ c(v(z) - √ c).
The proof is complete.

Lemma 3.3.2. Let v ∈ H 1 (R) ∩ W 1,4 (R) and let ξ ∈ R be any point where v(•) attains it maximum, that is, v(ξ) = max R v(x).
Then, denoting this quantity by M := v(ξ) we have,

F (v) ≤ 4 3 M 2 E(v) - 4 3 M 4 .
Démonstration. First of all let us start by introducing some notation. From now on we denote by g and h the functions given by

g(x) := v(x) -v x (x), x < ξ, v(x) + v x (x), x > ξ, h(x) := v 2 -2 3 vv x -1 3 v 2 x , x < ξ, v 2 + 2 3 vv x -1 3 v 2 x , x > ξ.
Then, on the one-hand, by direct computations we have

ˆh(x)g 2 (x)dx = ˆξ -∞ v 2 -2 3 vv x -1 3 v 2 x (v -v x ) 2 dx + ˆ+∞ ξ v 2 + 2 3 vv x -1 3 v 2 x (v + v x ) 2 =: I + II.
Thus, rearranging and simplifying terms we obtain

I = ˆxi -∞ v 4 + 2v 2 v 2 x -1 3 v 4 x -8 3 v 3 v x dx = ˆxi -∞ v 4 + 2v 2 v 2 x -1 3 v 4 x dx - 2 3 M 4
Similarly, rearranging and simplifying terms we get

II = ˆ+∞ ξ v 4 + 2v 2 v 2 x -1 3 v 4 x dx - 2 3 M 4 .
Plugging the last two formulas together we obtain ˆh(x)

g 2 (x)dx = F (v) - 4 3 M 4 . (3.3.2)
On the other hand, by using a 2 + b 2 ≥ 2ab we have

v 2 ± 2 3 vv x - 1 3 v 2 x ≤ 4 3 v 2 .
Therefore, by using the latter inequality we deduce h(x)

≤ 4 3 v 2 and hence ˆh(x)g 2 (x)dx ≤ 4 3 ˆv2 (x)g 2 (x) = 4 3 ˆξ -∞ v 2 (v -v x ) 2 dx + 4 3 ˆ+∞ ξ v 2 (v + v x ) 2 ≤ 4 3 M 2 ˆξ -∞ v 2 + v 2 x -2vv x dx + 4 3 M 2 ˆ+∞ ξ v 2 + v 2 x -2vv x dx = 4 3 M 2 E(v) - 8 3 M 4 . (3.3.3) Gathering (3.3.2) with (3.3.
3) we obtain the desired result.

The following lemma gives us an estimate of the distances between the evaluations of E and F at u and ϕ c in terms of the distance of u 0 and ϕ c in

H 1 ∩ W 1,4 . Lemma 3.3.3. Let v ∈ H 1 (R)∩W 1,4 (R) any function satisfying v -ϕ c H 1 + v x -ϕ c L 4 < for some min{1, c} > 0. Then, |E(v) -E(ϕ c )| ≤ 4 √ c and |F (v) -F (ϕ c )| ≤ 120c 3/2 .
Démonstration. Let us start estimating the difference of the energies. First of all notice we recall that

E(ϕ c ) = 2c and F (ϕ c ) = 4 3 c 2 . (3.3.4)
Hence, by using the hypothesis, triangular inequality and the previous identities we obtain

v H 1 ≤ ϕ c H 1 + ≤ 2 √ c and v x L 4 ≤ ϕ c L 4 + ≤ √ c.
Then, by using the reverse triangular inequality we get

|E(v) -E(ϕ c )| ≤ v H 1 + ϕ c H 1 v H 1 -ϕ c H 1 ≤ 4 √ c v -ϕ c H 1 ≤ 4 √ c .
For the second estimate let us start by rearranging the integral terms involved in F (•). In fact, it easy to see that

|F (v) -F (ϕ)| = ˆ v 4 + 2v 2 v 2 x -1 3 v 4 x - ˆ ϕ 4 c + 2ϕ c ϕ 2 c -1 3 ϕ 4 c ≤ ˆ v 2 + v 2 x 2 -ϕ 2 c + ϕ 2 c 2 + 4 3 ˆ v 4 x -ϕ 4 c =: I + II.
Now notice that, on the one hand, by using Hölder's and triangular inequalities, together with Sobolev's embedding H 1 → L 4 we obtain

I = ˆ v 2 + v 2 x + ϕ 2 c + ϕ 2 c v 2 + v 2 x -ϕ 2 c -ϕ 2 c = ˆ v 2 + v 2 x + ϕ 2 c + ϕ 2 c (v 2 -ϕ 2 c ) + (v 2 x -ϕ 2 c ) ≤ 2 v 2 W 1,4 + ϕ c 2 W 1,4 v + ϕ c L 4 v -ϕ c L 4 + v x + ϕ c L 4 v x -ϕ c L 4 ≤ 100c 3/2 .
On the other hand, by using Hölder's and triangular inequality again we get

II = 4 3 ˆ(v 4 x -ϕ 4 c ) = 4 3 ˆ(v 2 x + ϕ 2 c )(v 2 x -ϕ 2 c ) = 4 3 
ˆ(v 2 x + ϕ 2 c )(v x + ϕ c )(v x -ϕ c ) ≤ 2 v x + ϕ c 3 L 4 v x -ϕ c L 4 ≤ 20c 3/2 .
Gathering both estimates we obtain the desired result. The proof is complete.

We finish this section by estimating the remaining term in formula (3.3.1) when choosing ξ ∈ R to be the natural candidate to study the orbital stability of ϕ c .

Lemma 3.3.4. Let v ∈ H 1 (R) ∩ W 1,4 (R) arbitrary and let us denote by M := max R v(•).
Assume that for some 0 < min{1, c} the following estimates are satisfied

|E(v) -E(ϕ c )| ≤ 4 √ c and |F (v) -F (ϕ c )| ≤ 120c 3/2 . (3.3.5)
Then, the following estimate holds

|M - √ c| ≤ 10c 3/4 1/2 .
Démonstration. First of all we recall that, by Lemma 3.3.3 we have

F (v) - 4 3 M 2 E(v) + 4 3 M 4 ≤ 0 and hence M 4 -M 2 E(v) + 3 4 F (v) ≤ 0.
Now, let us introduce the fourth-order polynomials P (q) and P (q) which are given by

P (q) := q 4 -E(v)q 2 + 3 4 F (v) and P (q) := q 4 -E(ϕ c )q 2 + 3 4 F (ϕ c ).
By evaluating the latter polynomial in M and rearranging terms we have

P (M ) = P (M ) + E(v) -E(ϕ c ) M 2 - 3 4 F (v) -F (ϕ c ) .
At this point it is worth noticing that, due to both identities in (3.3.4), we can rewrite P (q) as :

P (q) = q + √ c 2 q - √ c 2 .
Noticing that M ≥ 0 and due to the fact that (by Lemma 3.3.3) P (M ) ≤ 0, we deduce that

c(M - √ c) 2 ≤ (M + √ c) 2 (M - √ c) 2 ≤ E(v) -E(ϕ c ) M 2 - 3 4 F (v) -F (ϕ c ) . (3.3.6)
Now, for small enough, from the first inequality in (3.3.5), Sobolev's embedding and the fact that E(ϕ c ) = 2c, it follows that M ≤ 2 √ c. Therefore, by plugging this latter inequality as well as both hypothesis in (3.3.5) into (3.3.6), we conclude

√ c|M - √ c| ≤ 10c 3/4 1/2 .
The proof is complete.

Proof of Theorem 3.1.1

With all the previous lemmas we are able to conclude the proof of Theorem 3.1.1. First of all, we recall that since E(•) and F (•) are conserved along the trajectory, for any t ∈ [0, T ) we have

E(u(t)) = E(u 0 ) and F (u(t)) = F (u 0 ). (3.3.7)
Now, notice that by applying Lemma 3.3.1, for any time t ∈ [0, T ) we have

u(t) -ϕ c (• -ξ(t)) 2 H 1 = E(u 0 ) -E(ϕ c ) -4 √ c v(t, ξ(t)) - √ c , (3.3.8) 
where ξ(t) denotes any space-point where v(t, •) attains its maximum, i.e. 

M (t) = v(t, ξ(t)) = max R v(t,
|M (t) - √ c| ≤ 10c 1/4 ε 2 .
Therefore, plugging the latter inequality into (3.3.8) we conclude

u(t) -ϕ c (• -ξ(t)) 2 H 1 ≤ 4 √ cε 4 + 40c 3/4 ε 2 .
The proof is complete.

Orbital stability of a train of peakons

The proof of the orbital stability for peakon trains follows similar ideas to those shown for the single peakon. Thus, as in the previous section, for the sake of simplicity we shall split the proof of Theorem 3.1.2 in several lemmas which we shall state and prove in the next subsection.

On the other hand, in order to make the computations more understandable we shall need to introduce some extra notation for the sum of peakons. From now on, for any choice of speeds (c 1 , ..., c n ) ∈ R n + and any vector z := (z 1 , ..., z n ) ∈ R n we shall denote by R z the sum of n peakons with speeds c 1 , ..., c n centered at z 1 , ..., z n respectively, that is

R z (x) := n i=1 ϕ c i (x -z i ) = n i=1 √ c i e -|x-z i | .
Now, before getting into the proof we shall need a modulation lemma in order to ensure that no strong interactions between different peakons happen.

Modulation around multipeakons

Let α and L any pair of positive real numbers. We consider the neighborhood of radius α around the sum of all well-ordered n peakons with speeds c 1 , ..., c n separated by at least L, i.e,

U(α, L) := u ∈ H 1 (R) : inf x j -x j-1 >L u - n i=1 ϕ c i (• -x i ) H 1 < α . (3.4.1)
By a bootstrapping argument and due to the continuity of the map t → u(t) from [0, T ) into H 1 (R), in order to conclude Theorem 3.1.2 it is sufficient to prove that the following holds : There exist C > 0, ε > 0 and L 0 > 0 such that for all L ≥ L 0 and ε

∈ (0, ε ), if a solution u ∈ C([0, T ), H 1 (R)) ∩ L ∞ ([0, T ), W 1,4 (R))
to the Novikov equation (3.1.8) satisfying the hypothesis of Theorem 3.1.2 is such that there exists t * ∈ (0, T ) with the property :

u(t) ∈ U C(ε + L -1/8 ), 1 2 L , for all t ∈ [0, t * ], (3.4.2) 
then, at t = t * we have

u(t * ) ∈ U C 2 (ε + L -1/8 ), 2 3 L . (3.4.3)
Therefore, in the rest of this section we shall assume that (3.4.2) holds for some ε ∈ (0, ε ) and some L > L 0 and we shall prove that under these hypothesis we have (3.4.3).

The next lemma ensure us that the different bumps of u(t) that are individually close to a peakon get away of each other as time evolves. This shall be crucial in the sequel.

Lemma 3.4.1. Let u ∈ C([0, T ), H 1 (R)) ∩ L ∞ ([0, T ), W 1,4 (R)
) be a solution to the Novikov equation (3.1.8) satisfying the assumptions of Theorem 3.1.2. There exists α 0 > 0 small enough and L 0 > 0 sufficiently large such that for any 0 < α < α 0 the following holds : If for some t * ∈ (0, T ) the solution u(t) satisfies

u(t) ∈ U(α, 1 2 L) for all t ∈ [0, t * ], (3.4.4) 
then there exist

C 1 functions x 1 , ..., x n : [0, t * ] → R such that u(t, x) = n i=1 ϕ c i x -x i (t) + v(t, x),
where { x i } n i=1 are chosen in such a way that for all t ∈ [0, t * ] the following orthogonality conditions hold

ˆR v(t, x) ρ n 0 * ϕ c i (• -x i (t))dx = 0, for all i = 1, ..., n, (3.4.5) 
where ρ n is defined in (3.2.1) and n 0 ∈ N satisfies :

For all -1 2 ≤ y ≤ 1 2 , ˆϕ(• -y) ρ n 0 * ϕ = 0 ⇐⇒ y = 0. (3.4.6)
Moreover, with this election of shifts we have that there exists C > 0 such that for all t ∈ [0, t * ] we have :

u(t) - n i=1 ϕ c i • -x i (t) H 1 ≤ Cα 1/2 . (3.4.7)
Furthermore, for all i = 1, ...n (n -1 respectively) and all t ∈ [0, t * ] the following estimates hold :

˙ x i (t) -c i ≤ Cα 1/2 and x i (t) -x i-1 (t) ≥ 3 4 L + 1 2 (c i -c i-1 )t. (3.4.8)
Additionally, by setting the family of time-dependent intervals J i (t) := [y i (t), y i+1 (t)], where

y 1 = -∞, y n+1 = +∞, and y i (t) = 1 2 x i-1 (t) + x i (t) , (3.4.9) 
then, for all t ∈ [0, t * ] there exists x i (t) ∈ J i (t) for i = 1, ..., n, such that

u t, x i (t) = max x∈J i (t) u(t, •) and x i (t) -x i (t) ≤ 1 12 L.
Démonstration. See the appendix, Section 3.6.1.

Almost monotonicity property

By using the previous lemma we shall define the modified energy functionals measuring the energy at the right of each bump of u(t). In fact, from Lemma 3.4.1 we deduce the existence of C 1 functions x 1 , ..., x n satisfying (3.4.5)- (3.4.8). From now on we shall denote by Ψ i,K the family of weight functions given by

Ψ i,K = Ψ x -y i (t) K where Ψ(x) := 2 π arctan (e x ) , (3.4.10) 
where the family {y i } n i=1 is defined in (3.4.9). Now, for each i = 1, ..., n and K > 1, we define the modified energy functional

I i,K (t) = I i,K u(t) := ˆ u 2 + u 2 x (t, x)Ψ i,K (t, x)dx.
As we discussed before, the idea of defining these functionals is to be able to measure the energy of u(t) at the right of each bump. In particular, for all times t ∈ [0, T ) we have

I i,K (t) ≥ 1 2 u(t) H 1 (y i (t),+∞) .
Finally, let us fix

σ 0 := 1 4 min{c 1 , c 2 -c 1 , ..., c n -c n-1 }.
The following lemma give us the almost monotonicity property of the energy at the right.

Lemma 3.4.2. Let u ∈ C([0, T ), H 1 (R)) ∩ L ∞ ([0, T ), W 1,4 (R)) be a solution to the Novikov equation (3.1.8) satisfying (3.4.7) on [0, t * ].
Then, there exists α 0 > 0 small enough and L 0 > 0, only depending on c 1 , such that if α < α 0 and L ≥ L 0 then, for any 4 ≤ K L 1/2 the following holds

I i,K (t) -I i,K (0) ≤ O e -L/8K
, for all i = 2, ..., n, and all t ∈ [0, t * ].

(3.4.11)

Démonstration. See the appendix, Section 3.6.2.

General estimates

In this subsection we shall prove some general formulas and estimates holding for any function belonging to H 1 (R) ∩ W 1,4 (R). All of these formulas and estimates are just the localized versions of the ones in Section 3.3.1. In this regard we shall need the following definitions. Let us consider the family of functions Φ i (t, x) given by

Φ 1 (t, x) := 1 -Ψ 2,K (t, x), Φ n (t, x) := Ψ n,K (t, x) and Φ i (t, x) := Ψ i,K -Ψ i+1,K (t, x).
It is important to point out that this family of functions satisfies n i=1 Φ i,K ≡ 1. On the other hand, notice that for L, K > 0 large enough and every i = j we have

|1 -Φ i,K | ≤ 4e -L/4K and |Φ j,K | ≤ 4e -L/4K on x i -L 4 , x i + L 4
In the sequel we shall need localized versions of the conservation laws in (3.1.2). In this regard, from now on we denote by E i and F i the localized functionals given by

E i (u) := ˆ u 2 + u 2 x (t, x)Φ i (t, x)dx, F i (u) := ˆ u 4 + 2u 2 u 2 x - 1 3 u 4 x (t, x)Φ i (t, x)dx.
The next lemma give us a global identity which shall be crucial in the sequel.

Lemma 3.4.3. For any vector z ∈ R n satisfying z i -z i-1 > 1 2 L and any function v ∈ H 1 (R) we have E(v) - n i=1 E(ϕ c i ) = v -R z 2 H 1 + 4 n i=1 √ c i v(z i ) - √ c i + O e -L/4 . (3.4.12)
Démonstration. The proof follows from direct computations. In fact, recalling that ϕ c i (x) = -sgn(x)ϕ c i (x) and by integrating by parts we obtain

E v -R z = E(v) + E(R z ) -2 n i=1 ˆv(x)ϕ c i (• -z i ) + v x (x)ϕ c i (• -z i )dx = E(v) + E(R z ) -2 n i=1 ˆv(x)ϕ c i (• -z i )dx -2 n i=1 ˆzi -∞ v x (x)ϕ c i (• -z i )dx + 2 n i=1 ˆ+∞ z i v x ϕ c i (• -z i )dx = E(v) + E(R z ) -4 n i=1 √ c i v(z i )
On the other hand, notice that since

z i -z i-1 ≥ 1 2 L we have E(R z ) = n i=1 E(ϕ c i ) + O e -L/4 = 2 n i=1 c i + O e -L/4 .
Gathering the last two formulas we obtain the desired result. Notice that the implicit constant involved in O e -L/4 only depends on c 1 , ..., c n . The proof is complete.

Important : From now on we fix K = 1 8 L 1/2 . The following lemma is the localized version of Lemma 3.3.2 and shall be crucial in the sequel. Then, for all t ∈ [0, t * ] the following inequality holds :

F i (u) ≤ 4 3 M 2 i E i (u) - 4 3 M 4 i + u 0 4 H 1 O L -1/2 , (3.4.13)
where M i denotes the local maximum

M i := max{u(t, x) : x ∈ J i (t)}.
Démonstration. First of all let us start by introducing some notation. For each i = 1, ..., n we define g i and h i the functions given by

g i (t, x) := u -u x , x < x i (t), u + u x , x > x i (t), h i (t, x) := u 2 -2 3 uu x -1 3 u 2 x , x < x i (t), u 2 + 2 3 uu x -1 3 u 2 x , x > x i (t).
Then, on the one-hand, by direct computations we have

ˆhi (t, x)g 2 i (t, x)Φ i (t, x)dx = ˆxi -∞ u 2 -2 3 uu x -1 3 u 2 x (u -u x ) 2 Φ i (t, x) + ˆ+∞ x i u 2 + 2 3 uu x -1 3 u 2 x (u + u x ) 2 Φ i (t, x) =: I + II,
Now, by integration by parts we obtain

I = ˆxi -∞ u 4 + 2u 2 u 2 x -1 3 u 4 x -8 3 u 3 u x Φ i (t, x)dx = ˆxi -∞ u 4 + 2u 2 u 2 x -1 3 u 4 x Φ i (t, x)dx + 2 3 ˆxi -∞ u 4 Φ i (t, x)dx - 2 3 M 4 i Φ i (t, x i ).
Similarly, by integration by parts again we get

II = ˆ+∞ x i u 4 + 2u 2 u 2 x -1 3 u 4 x Φ i (t, x)dx - 2 3 ˆ+∞ x i u 4 Φ i (t, x)dx - 2 3 M 4 i Φ i (t, x i ).
Plugging the last two formulas together we deduce ˆhi (t, x)g

2 i (t, x)Φ i (t, x)dx = F i (u) - 4 3 M 4 i Φ i (x i ) + 2 3 ˆxi -∞ u 4 Φ i dx - 2 3 ˆ+∞ x i u 4 Φ i dx. (3.4.14)
On the other hand, notice that by using a 2 + b 2 ≥ 2ab we have

u(t, x) 2 ± 2 3 u(t, x)u x (t, x) - 1 3 u 2 x (t, x) ≤ 4 3 u 2 (t, x)
Thus, by using the latter inequality deduce h i (x) ≤ 4 3 u 2 and hence, by using (3.4.2) we get ˆhi 

g 2 i Φ i ≤ 4 3 ˆu2 g 2 i Φ i ≤ 4 3 M 2 i ˆg2 i Φ i + O e -L 1/2 = 4 3 M 2 i E i (u) - 8 3 M 4 i Φ i (x i ) + 4 3 M 2 i ˆxi -∞ u 2 Φ i - 4 3 M 2 i ˆ+∞ x i u 2 Φ i + O e -L 1/2 . Now it is important to notice that, since |x i -z i | ≤ 1 20 L, we deduce that Φ i (x i ) = 1+O e -L
F i (u) ≤ 4 3 M 2 i E i (u) - 4 3 M 4 i + 4 3 M 2 i ˆxi -∞ u 2 Φ i - 4 3 M 2 i ˆ+∞ x i u 2 Φ i - 2 3 ˆxi -∞ u 4 Φ i + 2 3 ˆ+∞ x i u 4 Φ i + O e -L 1/2 . (3.4.15)
Finally, we recall that since

K = 1 8 L 1/2 we have |Φ i | ≤ C K = O(L -1/2
). Therefore, we conclude the proof of (3.4.13) by plugging the latter estimate for Φ i on R into (3.4.15).

As a consequence of the previous lemmas we obtain the following corollary. Lemma 3.4.5. Under the hypothesis of Lemma 3.4.1 and by considering x 1 (t), ..., x n (t) the functions constructed in such lemma, the following holds : For all t ∈ [0, t * ] we have

u(t) - n i=1 ϕ c i (• -x i (t)) H 1 ≤ O( √ α) + e -L/8 . (3.4.16)
Démonstration. In fact, recalling that by hypothesis we have u(t) ∈ U(α, 1 2 L) for all t ∈ [0, t * ], on account of Lemma 3.4.1 there exists x 1 (t), ..., x n (t) such that x i (t) ∈ J i (t) and

u(t) - n i=1 ϕ c i (• -x i (t)) H 1 = O( √ α).
Finally, recalling that u t, x i (t) = max J i (t) u(t, •), by applying Lemma 3.4.3 we conclude

u(t) - n i=1 ϕ c i (• -x i (t)) 2 H 1 = u(t) - n i=1 ϕ c i (• -x i (t)) 2 H 1 -4 n i=1 √ c i u(t, x i (t)) -u(t, x i (t)) + O e -L/4
≤ O(α) + O e -L/4 , which lead us to the desired result.

Finally, the next lemma gives us a more accurate estimate of the last non-negligible term in formula (3.4.12) once we choose {z i } n i=1 to be the natural candidate to study the orbital stability of a train of peakons, that is, the family of local maxima {x i } n i=1 given by Lemma 3.4.1. Lemma 3.4.6. Let u(t, x) be the solution of the Novikov equation (3.1.8) associated to u 0 ∈ H 1 (R) ∩ W 1,4 (R), satisfying the hypothesis of Lemma 3.4.1 on [0, t * ] with α given by (3.4.2). Then, for all t ∈ [0, t * ] we have

n i=1 √ c i |M i - √ c i | ≤ O(ε 2 ) + O L -1/4 . (3.4.17)
Démonstration. In fact, first of all we recall that for every i = 1, ..., n the associated peakon profile satisfies

E(ϕ c i ) = 2c i and F (ϕ c i ) = 4 3 c 2 i .
Hence, due to the fact that M i is positive and by using Lemma 3.4.4, we have

c i M i - √ c i 2 ≤ M i + √ c i 2 M i - √ c i 2 = M 4 i -M 2 i E(ϕ c i ) + 3 4 F (ϕ c i ) ≤ M 2 i E i (u(t)) -M 2 i E(ϕ c i ) -
Therefore, by adding-up all the inequalities for i = 1, ..., n and rearranging terms we obtain

n i=1 c i (M i - √ c i ) 2 ≤ n i=1 M 2 i E i (u(t)) -E i (u 0 ) - n i=1 M 2 i E(ϕ c i ) -E i (u 0 ) - 3 4 n i=1 F i (u(t)) -F (ϕ c i ) + O L -1/2 =: I + II + III + O(L -1/2 ).
Now for the sake of readability we split the proof into three step, each of which is devoted to bound each sum.

Step 1 : In this first step we are devoted to bound I. First of all notice that by (3.4.16) and the continuous embedding

H 1 (R) → L ∞ (R) we immediately conclude for all t ∈ [0, t * ], M i (t) = c i + O( √ α) + O e -L/8
and hence 0 < M 1 < ... < M n .

On the other hand, by using Abel's transformation, the almost monotonicity Lemma 3.4.2 and the above estimate, we conclude

I = M 2 n (t) n i=1 E i (u(t)) -E i (u 0 ) - n-1 j=1 (M 2 j+1 (t) -M 2 j (t)) j i=1 E i (u(t)) -E i (u 0 ) = n-1 i=1 M 2 i+1 (t) -M 2 i (t) I i+1 (t) -I i+1 (0) ≤ O e - √ L ,
which gives us an admissible estimate.

Step 2 : Now we intend to bound II. In fact, by using the exponential decay of each ϕ c i and each Φ i , due to hypothesis (3.1.13) and by using the reverse triangular inequality we obtain

n i=1 E i (u 0 ) -E(ϕ c i ) ≤ n i=1 u 0 2 H 1 (J i (0)) -ϕ c i (• -x i (0)) 2 H 1 (J i (0)) + O e - √ L ≤ n i=1 u 0 H 1 (J i (0)) + ϕ c i (• -x i (0)) H 1 (J i (0)) • • u 0 -ϕ c i (• -x i (0)) H 1 (J i (0)) + O e - √ L ≤ O(ε 4 ) + O e - √ L , Therefore, recalling that M i ≤ u 0 L ∞ ≤ u 0 H 1 we conclude II = - n i=1 M 2 i E(ϕ c i ) -E i (u 0 ) ≤ O(ε 4 ) + O e - √ L .
Step 3 : Finally, to estimate the last term we start by rearranging terms. In fact, notice that each term in III can be rewritten as

F i (u 0 ) -F (ϕ c i ) = ˆ u 4 0 + 2u 2 0 u 2 0,x - 1 3 u 4 0,x (x)Φ i (0, x)dx - ˆ ϕ 4 c i + 2ϕ 2 c i ϕ 2 c i - 1 3 ϕ 4 c i (• -x i (0))dx ≤ ˆ(u 2 0 + u 2 0,x ) 2 Φ i (0, x) -(ϕ 2 c i + ϕ 2 c i ) 2 (• -x i (0))dx + 4 3 ˆ u 4 0,x Φ i (0, x) -ϕ 4 c i (• -x i (0)) dx =: III 1 + III 2 .
For the sake of readability from now on we shall denote by

ϕ c i = ϕ c i (• -x i (0)
). That being said, notice that by using the exponential decay of both ϕ c i and Φ i , Hölder's and triangular inequalities together with Sobolev's embedding H 1 → L 4 we obtain

III 1 ≤ ˆJi (0) u 2 0 + u 2 0,x + ϕ 2 c i + ϕ 2 c i u 2 0 + u 2 0,x -ϕ 2 c i -ϕ 2 c i dx + O e - √ L ≤ 2 u 2 0 + u 2 0,x + ϕ 2 c i + ϕ 2 c i L 2 (J i (0)) u 0 + ϕ c i L 4 (J i (0)) u 0 -ϕ c i L 4 (J i (0)) + + u 0,x + ϕ c i L 4 (J i (0)) u 0,x -ϕ c i L 4 (J i (0)) + O e - √ L ≤ O u 0 -ϕ c i H 1 (J i (0)) + u 0,x -ϕ c i L 4 (J i (0)) + O e - √ L ≤ O ε 4 + O e - √ L .
Similarly, due to the exponential decay of ϕ c i and Φ i , by using Hölder's and triangular inequalities we get

III 2 ≤ 4 3 ˆJi (0) u 4 0,x -ϕ 4 c i dx + O e - √ L = 4 3 ˆJi (0) u 2 0,x + ϕ 2 c i u 0,x + ϕ c i u 0,x -ϕ c i dx + O e - √ L ≤ 2 u 0,x -ϕ c i 3 L 4 (J i (0)) u 0,x -ϕ c i L 4 (J i (0)) + O e - √ L ≤ O(ε 4 ) + O e - √ L .
Adding-up all the previous estimates we conclude the proof of the lemma.

Proof of Theorem 3.1.2

First of all, notice that by using (3.1.13) and the reverse triangular inequality we deduce

|E(u 0 ) -E (R z 0 )| = ( u 0 H 1 + R z 0 H 1 ) u 0 H 1 -R z H 1 ≤ ( u 0 H 1 + R z 0 H 1 ) u 0 -R z H 1 = O(ε 4 ).
On the other hand, by using Lemma 3.4.3 together with Lemma 3.4.6 as well as the previous estimate, recalling that E R z 0 = n i=1 E(ϕ c i ) + O(exp(-L/4)), we obtain

u(t * ) - n i=1 ϕ c i • -x i (t * ) 2 H 1 = E(u 0 ) - n i=1 E(ϕ c i ) n i=1 √ c i M i (t * ) - √ c i + O e - √ L = O ε 4 + O ε 2 + O L -1/4 = O ε 2 + O L -1/4 .
In other words, there exists C > 0 such that

u(t * ) - n i=1 ϕ c i • -x i (t * ) 2 H 1 ≤ C ε 2 + L -1/4 .
Therefore, by taking C, the constant appearing in (3.4.2), so that C 2 = 4 C we conclude the proof of the theorem.

Proof of Corollary 3.1.3

As we mentioned in the introduction, the Novikov equation (3.1.8) possesses multi-peakonantipeakon solutions given by

u(t, x) = n i=1 p i (t)e -|x-q i (t)| , n ∈ N
where the pairs (p i , q i ) ∈ R 2 satisfy the Hamiltonian system of ODEs :

           dq i dt = u 2 (q i ) = n j,k=1 p j p k e -|q i -q j |-|q i -q k | , dp i dt = -p i u(q i )u x (q i ) = p i n j,k=1
p j p k sgn(q i -q j )e -|q i -q j |-|q i -q k | .

It is easy to check that the local solutions of this differential system can be uniquely extended as long as the q i 's remain different from each other. In fact, if for some time t * and some i = j we have q i (t * ) = q j (t * ), then uniqueness fails and this breakdown leads to the usually subtle question regarding continuation of solutions beyond the collision. In the Camassa-Holm case this latter question is rather well-understood (see for instance [START_REF] Bressan | Global dissipative solutions of the Camassa-Holm equation[END_REF][START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF][START_REF] Holden | Global conservative multipeakon solutions of the Camassa-Holm equation[END_REF][START_REF] Holden | Global conservative multipeakon solutions of the Camassa-Holm equation[END_REF]). However, in [START_REF] Hone | Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm type equation[END_REF] Theorem 4.5, Hones et al. proved that if at the initial time all p i 's are positives, i.e. there are only peakons, then all q i 's stay different from each other for all times. Of course, the case where there are only antipeakons also holds, however this is not longer true if we allow the existence of peakons and antipeakons simultaneously. More precisely, Hones et. al. proved that if at the initial time p 0 1 , ..., p 0 n > 0 and q 0 1 < ... < q 0 n , (3.4.18) then, (3.4.18) holds for all times t ∈ R. In particular, under these hypothesis the different peakons never overlaps each other. For example, if a large peak follows a smaller one, due to its different speeds, they shall eventually get close enough so that the larger one shall transfer part of its energy to the smaller one. Then, the smallest shall become the largest and both peakons shall be well ordered.

Regarding the asymptotics of (p i , q i )(t), in [START_REF] Hone | Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm type equation[END_REF] Hones et al. also proved that under these hypotheses the following equalities hold :

lim t→+∞ p 2 i (t) = lim t→+∞ qi (t) = λ 2 i and lim t→-∞ p 2 i (t) = lim t→-∞ qi (t) = λ 2 n+1-i , (3.4.19) 
where we recall that the values λ i correspond to the square roots of the eigenvalues of the matrix T P EP defined in the statement of Corollary 3.1.3. Now, let δ > 0 small but fixed and let us consider p i (0), q i (0)) satisfying (3.4.18). Hence, from the asymptotics of p i (t) and q i (t) we deduce the existence of a time T 1 sufficiently large such that for all i = 2, ...n we have

q i (T ) -q i-1 (T ) ≥ L and q i-1 (-T ) -q i (-T ) ≥ L,
with L being any positive number satisfying L > 2 max L 0 , δ A -8 , where A = 2 max{1, A} and A > 0 is the implicit constant involved in (3.1.14). Thus, by using the second item in Theorem 3.2.5 we deduce that there exists ε > 0 small enough only depending on T and δ such that for any initial data u 0 ∈ Y + (R) satisfying (3.1.15) the following holds : For all t ∈ [-T, T ] we have

u(t) - n i=1 p i (t)e -|x-q i (t)| H 1 ≤ δ 2A 4 . (3.4.20) 
On the other hand, due to the fact that the Novikov equation (3.1.8) is invariant under the transformation (t, x) → (-t, -x), Theorem 3.1.2 also holds when replacing t by -t, z i by -z i and x i (t) by -x i (-t). This give us the same stability result backwards in time for a train of peakons that are ordered in the inverse order than in the statement of Theorem 

|p i (T ) -λ i | ≤ 1 100n δ A 4 and |p i (-T ) -λ n+1-i | ≤ 1 100n δ A 4 .
Thus, by using (3.4.20) we obtain that

u(T, •) - n i=1 λ i e -|x-q i (T )| H 1 + u(-T, •) - n i=1 λ n+1-i e -|x-q i (-T )| H 1 ≤ δ A 4 .
Hence, we conclude by using Theorem 3.1.2. The proof is complete.

Asymptotic stability of a train of peakons

In this section we aim to prove Theorem 3.1.5. Notice that gathering this latter result with the asymptotics for multipeakons stated in subsection 3.4.5 and Corollary 3.1.3, we immediately obtain Corollary 3.1.6.

From now on we shall follow Molinet's ideas (see [START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF]) for the Camassa-Holm equation, which are based on the proof of asymptotic stability for the sum of n-solitons for the gKdV equation (see [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF]).

Almost monotonicity lemma

In the rest of this paper we shall need to explicitly study the behavior of the solution u(t) on both, the left and right part of the space. We recall that the weight function Ψ is given by

Ψ(x) := 2 π arctan exp( x 6 ) , so that Ψ(x) → 1 as x → +∞. (3.5.1)
Now, let us fix (for the rest of this paper) some parameters : Lemma 3.5.1 (Almost monotonicity of the energy). Assume that we are under the hypothesis and notations of Theorem 3.1.5 and Lemma 3.4.1. Additionally, set δ 1 , ..., δ n ∈ (0, 1) and define the family of differentiable functions z 1 , ..., z n : R → R as follows

ε := min{1, σ} 2 18 8 , L 0 := 2 18 max{1, σ -1 } 32 , ( 3 
δ 1 := 1 -β 4c 1 , z 1 (t) := β 2 t and δ i := 5 8 c i -c i-1 c i , z i (t) := (1 -δ i ) x i (t).
Then, there exists R 0 > 0 sufficiently large such that for all t ∈ R it holds

u(t) L ∞ (x-xn(t)>R 0 ) ≤ (1 -δ n )c n b
, where b := 2 6 max{1, u 0 H 1 }.

(3.5.3)

Moreover, for any R > R 0 the following property holds : For each i = 1, ..., n there exists t i R > 0 only depending on R such that for any t i 0 ≥ t i R , defining the modified energy functionals

I ±R i,t i 0 := ˆ u 2 + u 2 x (t, x)Ψ • -z ±R i (t) dx where z ±R i (t) := x i (t i 0 ) ± R + z i (t) -z i (t i 0 ),
the following estimates hold :

∀t ≤ t n 0 , I R n,t n 0 (t n 0 ) -I R n,t n 0 (t) ≤ Ce -R/6 , and ∀t ≥ t n 0 , I -R n,t n 0 (t) -I -R n,t n 0 (t n 0 ) ≤ Ce -R/6 . (3.5.4)
Moreover, for any i = 1, ..., n -1 we have

I -R i,t i 0 (t) -I -R i,t i 0 (t i 0 ) ≤ Ce -R/24
, for all t ≥ t i 0 .

(3.5.5)

Démonstration. The proof is somehow contained in the proof of Lemma 3.4.2, which at the same time is somehow contained in the proof of Lemma 3.2 in [START_REF] Palacios | Orbital and asymptotic stability of peakon trains for the Novikov equation[END_REF]. However, for the sake of completeness we show a sketch of the proof in the appendix. See Section 3.6.3. Now, before going further we shall need to introduce some additional notation. For v ∈ Y and R > 0 we define the functionals J R l and J R r given by

J R r := v 2 + v 2 x , Ψ(• -R) and J R l := v 2 + v 2 x , 1 -Ψ(• + R) .
Now, under the notations of the previous lemma notice that, for this choice of parameters and from the definitions of J R r and I R i we immediately obtain that

J R n,r (t) := J R r u(t, • + x n (t)) ≥ I R n (t), ∀t ≤ t n 0 ,
where I R n (t) is the functional defined in Lemma 3.5.1. Moreover, notice that in particular we have J R n,r t n 0 = I R n (t n 0 ). Thus, by using (3.5.4) we obtain

J R r u(t n 0 , • + x n (t n 0 )) ≤ J R r u(t, • + x n (t)) + Ce -R 6 , ∀t ≤ t n 0 , (3.5.6) 
where C > 0 is the constant appearing in (3.5.4). On the other hand, for the sake of notation we also introduce the functional I R i (t) given by

I R i (t) := u 2 + u 2 x , 1 -Ψ • -δ i x i (t i 0 ) + R -(1 -δ i ) x i (t) = E(u) -I -R i (t),
where the parameter δ i > 0 is defined in Lemma 3.5.1. Notice that due to the energy conservation together with inequality (3.5.4) we deduce

I R i (t) ≥ I R i (t i 0 ) -Ce -R/6 . (3.5.7)
Therefore, from the energy conservation and the previous inequality we deduce that for all i = 1, ..., n and all t ≥ t i 0 we have

J R l u(t, • + x i (t)) ≥ J R l u t i 0 , • + x i (t i 0 ) -Ce -R 6 . (3.5.8) 
The case of J R i,r is more subtle and its proof is the aim of the following lemma. Lemma 3.5.2. Assume we are under the hypothesis and notations of Lemma 3.5.1. For i = 1, ..., n -1 define the following modified energy functionals

J R i,r (t) := ˆ u 2 + u 2 x (t, x)Ψ • -x i (t) -R dx.
Then, for any R > 0 and all pair (t, t 0 ) satisfying t i+1 R ≤ t ≤ t 0 the following inequality holds :

J R i,r (t 0 ) ≤ J R i,r (t) + Ce -R/24 , (3.5.9) 
where {t i R } n i=1 are defined in the proof of Lemma 3.5.1 (see (3.6.11)). Démonstration. See the appendix, Section 3.6.4.

End of the proof of Theorem 3.1.5

The following property is the analogous convergence result for a single peakon in the case of a train of peakons. Lemma 3.5.3. For every i = 1, ..., n the following strong convergence holds :

u t, • + x i (t) -ρ i (t)ϕ → 0 in H 1 loc (R) as t → +∞, (3.5.10) 
where ρ i (t) := u t, x i (t) , i.e. the maximum of u(t) over the sets J i (t) defined in Lemma 3.4.1. Moreover, in the case i = n the following holds : For every A > 0 we have

u t, • + x n (t) -ρ n (t)ϕ → 0 in H 1 (-A, +∞) as t → +∞. (3.5.11)
Démonstration. This is a consequence of Proposition 4.2 in [START_REF] Palacios | Orbital and asymptotic stability of peakon trains for the Novikov equation[END_REF] and the second inequality in (3.4.8). In fact, notice that the proof of that proposition only requires Lemmas 3.5.1 and 3.5.2 of the present work to hold. Since the proof follows exactly the same lines as the ones in Proposition 4.2 in [START_REF] Palacios | Orbital and asymptotic stability of peakon trains for the Novikov equation[END_REF], we only sketch it for the case i = n. In fact, following exactly the same lines it is possible to show that for any increasing sequence t n → +∞ there exists a subsequence {t n k } and a function u 0 ∈ Y + such that as k → +∞ we have

u t n k , • + x n (t n k ) u 0 in H 1 (R) and u t n k , • + x n (t n k ) → u 0 in H 1 - loc (R). (3.5.12)
Then, by using the almost monotonicity inequalities (3.5.6) and (3.5.8) we can prove that the weak solution to equation (3.1.8) associated to u 0 is actually an H 1 -almost localized solution, and hence it is a peakon (c.f. Theorem 1.3 in [START_REF] Palacios | Orbital and asymptotic stability of peakon trains for the Novikov equation[END_REF]). Therefore, there exists x 0 ∈ R and c * n > 0 such that u 0 = ϕ c * n (• -x 0 ). On the other hand, notice that due to the local strong L 2 convergence we deduce that for all

K ⊂ R compact we have lim k→+∞ u(t n k , • + x n (t n k )) -ϕ c * n L 2 (K) = 0.
On the other hand, due to the fact that

|v x | ≤ v for any v ∈ Y + we deduce lim inf k→+∞ u x (t n k , • + x n (t n k )) L 2 (K) ≤ lim k→+∞ u(t n k , • + x n (t n k )) L 2 (K) = ϕ c * n L 2 (K)
Hence, by using again that ϕ

L 2 (K) = ϕ L 2 (K) we obtain lim inf k→+∞ u(t n k , • + x n (t n k )) 2 H 1 (K) ≤ 2 ϕ c * n 2 L 2 (K) = ϕ c * n 2 H 1 (K) ,
Thus, by a standard result in Functional Analysis we know that the weak convergence result together with the previous inequality implies that

u(t n k , • + x n (t n k )) -ϕ c * n → 0 in H 1 loc as k → +∞. (3.5.13)
Finally, let us prove the strong H 1 convergence in (-A, ∞) for any fixed A > 0. In fact, first of all, notice that the weak convergence result (3.5.12) together with the uniform estimate (3.4.7) and the definition of ε implies that

ϕ c n (• -x 0 ) -ϕ cn H 1 ≤ Cε and |c n -c * n | σ,
and hence, by using the local strong convergence (3.5.13) we infer that |x 0 | 1. On the other hand, notice that the weak convergence result (3.5.12) forces u 0 to satisfy the n-th orthogonality condition (3.4.5). Therefore, by using (3.4.6) we obtain that x 0 has to be equal to zero. Finally, notice that the convergence result (3.5.13) together with (3.4.7) implies that

c * n = lim k→+∞ max Jn(tn k ) u(t n k ).
Thus, defining ρ n (t) := max{u(t, •) : x ∈ J n (t)} we deduce that as k → +∞ we have

u(t n k , • + x n (t n k )) -ρ n (t n k )ϕ 0 in H 1 .
Since this is the only possible limit we conclude that as t → +∞ we have

u(t, • + x n (t)) -ρ n (t)ϕ 0 in H 1 and u(t, • + x n (t)) -ρ n (t)ϕ → 0 in H 1 loc . (3.5.14)
Now, we claim that the latter convergence result implies that for any fixed A > 0, as t → +∞, the following convergence holds :

u(t, • + x n (t)) -ρ n (t)ϕ → 0 in H 1 ((-A, ∞)). (3.5.15)
In fact, let δ > 0 be fixed and consider R 1 sufficiently large such that

J R r u(0, • + x n (0) < δ and Ce -R/6 < δ,
where C > 0 is the constant involved in (3.5.6). Then, from the almost decay of the energy at the right (3.5.6) we infer that

J R r u(t, • + x n (t)) < 2δ, for all t ∈ R.
Nevertheless, the latter inequality together with the local strong convergence in H 1 given in (3.5.15) immediately implies that, for any A > 0 we have

u(t, • + x n (t)) -ρ n (t)ϕ t→+∞ ----→ 0 in H 1 ((-A, ∞)). (3.5.16) 
The sketch of the proof is complete.

Important : Notice that in the same fashion as in (3.5.12), following the same lines in Proposition 4.2 in [START_REF] Palacios | Orbital and asymptotic stability of peakon trains for the Novikov equation[END_REF] and by using the rigidity Theorem we deduce that for any increasing sequence t n → +∞ the exists a subsequence t n k and positive numbers c * 1 , ..., c * n such that

u t n k , • + x i (t n k ) -ϕ c * i → 0 in H 1 loc (R) as k → +∞, (3.5.17) 
Now, before going further let us introduce some notation. From now on and for i = 1, ..., n we shall denote by W i and w i the functions defined by

W i := n j=i c * j ϕ(• -x j (t)) and w i := u -W i . (3.5.18)
Additionally, we define the following modified energy functional 

I(t) := ˆ u 2 + u 2 x (t, •)Ψ • -y n (t)
(t n R ) -y n (t n R ) ≥ R ≥ R 0 ,
and hence, by the same proof as in Lemma 3.5.1 we deduce that I is almost non-increasing for t ≥ t R .

The following two lemmas about the convergences of ρ i (t) and ˙

x i (t) in the case of the fastest peakon (i.e. i = n) follow the same lines as the ones for the single peakon case (c.f. [START_REF] Palacios | Orbital and asymptotic stability of peakon trains for the Novikov equation[END_REF], see also [START_REF] Molinet | A Liouville property with application to asymptotic stability for the Camassa-Holm equation[END_REF]). However, for the sake of completeness we prove it anyway. Lemma 3.5.4. As t goes to +∞ the following convergence holds :

ρ n (t) → c * n .
In particular, as a consequence of the previous convergence, as t goes to +∞ we also have :

ˆ u 2 -c * n ϕ(• -x n (t)) 2 + u 2 x -c * n ϕ (• -x n (t)) 2 Ψ • -y n (t) → 0.
Démonstration. In fact, let > 0 arbitrarily small but fixed and consider R 1 sufficiently large such that Ce -R/6 < . Then, by using (3.5.8) as well as the energy conservation we obtain that for all t > t > t n 0 we have

ˆ u 2 + u 2 x (t)Ψ x -x n (t) + R ≤ + ˆ u 2 + u 2 x (t )Ψ x -x n (t ) + R .
On the other hand, due to the strong convergence result (3.5.11) and the exponential localization of both ϕ and Ψ, we infer that there exists t 0 1 sufficiently large such that for all t ≥ t 0 we have

ˆ u 2 + u 2 x (t)Ψ(x -x n (t) + R) -ρ 2 n (t)E(ϕ) ≤ .
Plugging the last two inequalities together we conclude that for any pair of times (t, t ) ∈ R 2 satisfying t > t > max{t 0 , t n 0 } we have

ρ 2 n (t)E(ϕ) ≤ ρ 2 n (t )E(ϕ) + 3 .
Since > 0 was arbitrary, the latter inequality forces ρ(t) to have a limit at +∞ and thus to converge to lim

t→+∞ ρ n (t) = c * n
what finish the proof of the lemma.

Lemma 3.5.5. As t goes to +∞ the following convergence holds ˙ x n (t) → c * n .

Démonstration. First of all, let us start by recalling and introducing some notation :

w 1 (t) = u - n j=1 ϕ c * j (• -x j (t)), ω i := ϕ c * i (• -x i (t)) and ω i n 0 := (ρ n 0 * ϕ c * i )(• -x i (t)).
Now, on the one-hand, by differentiating the n-th equation in (3.4.5) with respect to time and by using that ϕ satisfies the equation ϕ -ϕ = 2δ we obtain ˆw1,t ω n

n 0 ,x = ˙ x n ˆw1 (t, x)ω n n 0 (t, x)dx -2 c * n ˙ x n ˆw1 (t, x)ρ n 0 x -x n (t) dx.
On the other hand, by using that ϕ solves (3.1.8) we infer that each ω i (t, x) satisfy the following equation :

ω i,t + ( ˙ x i -c * i )ω i,x + ω 2 i ω i,x = p x * ω 3 i + 3 2 ω i ω 2 i,x - 1 2 p * ω 3 i,x
Therefore, using that u(t) also solves (3.1.8), by replacing u = w 1 + n i=1 ω i and then using the equation satisfied by each ω i we obtain

w 1,t - n j=1 ( ˙ x j -c * j )ω j,x = -   w 1 + n j=1 ω j   2 w 1,x -w 2 1 n j=1 ω j,x -2w 1 n j,k=1 ω j ω k,x - n j,k, =1 (k, ) =(j,j) ω j ω k ω ,x -p x * w 3 1 -3 n j=1 p x * (w 2 1 ω j ) -3 n j,k=1 p x * w 1 ω j ω k - n j,k, =1 (k, ) =(j,j) p x * ω j ω k ω - 3 2 p x w 1 w 2 1,x -3 n j=1 p * w 1 w 1,x ω j,x - 3 2 n j,k=1 p * w 1 ω j,x ω k,x - 3 2 n j=1 p * w 2 1,x ω j -3 n j,k=1 p * w 1,x ω j ω k,x - 3 2 n j,k, =1 (k, ) =(j,j) p x * ω j ω k,x ω ,x - 1 2 p * w 3 1,x - 3 2 n j=1 p * w 2 1,x ω j,x - 3 2 n j,k=1 p * w 1,x ω j,x ω k,x - 1 2 n j,k, =1 (k, ) =(j,j) p * ω j,x ω k,x ω ,x . (3.5.19)
On the other hand, notice that due to (3.5.11), inequality (3.4.8) and the exponential decay of both ω i and ω n n 0 we deduce that ω i ω n n 0 L 1 + ω i,x ω n n 0 L 1 → 0 as t → +∞ for i = n and

w 2 1 ω n n 0 ,x L 1 + w 2 1,x ω n n 0 ,x L 1 + ˆ|w 1 ω n n 0 |dx + ˆ|w 1 ρ n 0 (x -x(t))|dx → 0 as t → +∞.
Therefore, by taking the L 2 -inner product from equation (3.5.19) against ω n n 0 ,x and noticing that ω n,x (t),

ω n n 0 ,x (t) L 2 ,L 2 ≡ constant > 0 for all times t ∈ R we conclude ˙ x n -c * n → 0 as t → +∞.
The proof is complete.

Finally, it only remains to prove the analogous properties to Lemmas 3.5.4 and 3.5.5 for the cases i = 1, ..., n -1. This is the aim of the remaining part of this subsection.

Inductive argument : Now we proceed by an inductive argument, that is, from now on we assume that for some i ∈ {1, ..., n -2} it holds that

ˆ  u 2 - n j=i +1 c * j ϕ(• -x j (t))   2 Ψ • -y i +1 (t) dx + ˆ  u 2 x - n j=i +1 c * j ϕ (• -x j (t))   2 Ψ • -y i +1 (t) dx → 0 (3.5.20)
and we intend to prove that, as t goes to +∞, this implies that ˙

x i (t) → c * i , ρ i (t) → c * i and ˆ  u 2 - n j=i c * j ϕ(• -x j (t))   2 Ψ • -y i (t) dx + ˆ  u 2 x - n j=i c * j ϕ (• -x j (t))   2 Ψ • -y i (t) dx → 0. (3.5.21)
For the sake of simplicity we split the proof into 6 steps where only the first five of them are devoted to prove the inductive argument. First, we start by proving some extra monotonicity property. The second step intends to state the analogous to the convergence result (3.5.11) in the case i = n. Then, we prove the convergences of the scaling and velocity parameters.

In step five we intend to conclude the inductive argument by proving (3.5.21). Finally, in the last step we are devoted to conclude the convergence result (3.1.20) on the first set in A t . For the sake of simplicity from now on we drop the superindex in i and hence we just denote it by i.

Step 1 : Let w i+1 := u -W i+1 (see (3.5.18) for the definition of {W i } n i=1 ). We claim that both functionals J R l w i+1 (t, •+ x i (t) and J R r w i+1 (t, •+ x i (t) enjoy the almost monotonicity properties (3.5.8)-(3.5.9) for t ≥ τ R i ≥ t R i where τ R i is a sufficiently large parameter to be fixed. In fact, first of all notice that due to (3.4.8) and (3.5.20) we deduce that for every > 0 there exists t i 1 sufficiently large such that for all t ≥ t i we have

J R l u t, • + x i (t) -J R l w i+1 t, • + x i (t) ≤ ,
what proves the assertion for J R l . Now, in order to deal with the second case we start by rewriting J R r as

J R r u(t, • + x i (t)) = ˆ u 2 + u 2 x Ψ • -x i (t) -R 1 -Ψ • -y i+1 (t) + ˆ u 2 + u 2 x Ψ • -x i (t) -R Ψ • -y i+1 (t) =: I + II.
Thus, on the one-hand, by using (3.4.8) again we have

I(t) - ˆ w 2 i+1 + w 2 i+1,x Ψ • -x i (t) -R 1 -Ψ • -y i+1 (t) → 0 as t → +∞,
while on the other hand, by using the inductive hypothesis (3.5.20) together with (3.4.8) we deduce that as t goes to +∞ we have

II(t) - ˆ w 2 i+1 + w 2 i+1,x Ψ • -x i (t) -R Ψ • -y i+1 (t) → n j=i+1 E(ϕ c * j ).
Therefore, by gathering both convergences we conclude the claim for τ i R t i sufficiently large.

Step 2 : Now we claim that for all A > 0 the following strong convergence holds :

u t, • + x i (t) -ρ i (t)ϕ -W i+1 t, • + x i (t) → 0 in H 1 (-A, +∞) as t → +∞.
In fact, it is enough to recall that due to the inductive hypothesis (3.5.20) we have that for any > 0 arbitrarily small, there exists t i 1 sufficiently large such that for all t ≥ t i we have

ˆ w 2 i+1 + w 2 i+1,x t, x Ψ • -y i+1 (t) < 3 .
Moreover, due to (3.4.8), by making t i bigger if necessary we can also assume that for any t ≥ t i it holds :

ˆ ϕ 2 + ϕ 2 x t, x Ψ • -y i+1 (t) < 3 .
Therefore, by gathering the above inequalities together with the almost monotonicity result for J R r w i+1 (t, •+ x i (t)) with R = y i+1 (t i )+ x i (t i ) and the strong convergence result (3.5.10), we conclude that for all A > 0 fixed we have

u t, • + x i (t) -ρ i (t)ϕ -W i+1 t, • + x i (t) → 0 in H 1 (-A, +∞) as t → +∞,
which proves the claim.

Step 3 : Our aim now is to prove the convergence of the scaling parameter ρ i (t). In fact, first of all notice that due to (3.4.8), the exponential decay of ϕ, ϕ and Ψ and the latter strong convergence result in H 1 ((-A, ∞)) we deduce that for any δ > 0 there exists R δ > 1 and

t i δ > 1 sufficiently larges such that ˆ w 2 i+1 + w 2 i+1,x (t, x)Ψ x -x i (t) + R δ dx -ρ i (t)E ϕ ≤ δ for all t ≥ t i δ .
Then, the almost monotonicity of J R δ l (•) implies that ρ i (t) → c * i as t → +∞ for some c * i close to c i . In fact, from the almost monotonicity of J R δ l w i+1 (t, • + x i (t)) and the latter inequality it follows that

ρ i (t)E(ϕ) ≤ ρ i (t )E(ϕ) + 3δ, for all t ≥ t ≥ t i δ .
Since δ > 0 is arbritary, this forces ρ(•) to have a limit at +∞, what ends the proof. Notice that, in particular, the following convergence holds

u t, • + x i (t) -c * i ϕ -W i+1 t, • + x i (t) → 0 in H 1 (-A, +∞) as t → +∞. (3.5.22)
Step 4 : Now we intend to prove that ˙ x i (t) → c * i as t → +∞. We point out that the proof is somehow contained in the proof of Lemma 3.5.5. In fact, notice that by differentiating the i-th equation in (3.4.5) with respect to time and recalling that ϕ satisfies ϕ -ϕ = 2δ we obtain ˆw1,t ω i

On the other hand, notice that due to (3.5.22), inequality (3.4.8) and the exponential decay of both ω i and ω i n 0 we deduce that ω j ω i n 0 L 1 + ω j,x ω i n 0 L 1 → 0 as t → +∞ for j = i and

w 2 1 ω i n 0 ,x L 1 + w 2 1,x ω i n 0 ,x L 1 + w 1 ω i n 0 L 1 + w 1 ρ n 0 (• -x i (t)) L 1 → 0 as t → +∞.
Therefore, by taking the L 2 -inner product from equation (3.5.19) against ω i n 0 ,x and noticing that ω i,x (t), ω i n 0 ,x (t) L 2 ,L 2 ≡ constant > 0 for all times t ∈ R, we conclude

˙ x i -c * i → 0 as t → +∞.
Step 5 : Now we intend to conclude the inductive proof, which at the same time proves the convergence result (3.1.20) on the second set in A t . In fact, first of all let us recall that from the previous steps we know that for any A > 0 we have that as t → +∞ the following holds :

u t, • + x i (t) -ϕ c * i -W i+1 t, • + x i (t) → 0 in H 1 ((-A, ∞)).
Now, let η > 0 arbitrarily small but fixed. Let us consider R 1 sufficiently large such that

ϕ 2 H 1 ((-∞,-R 2 )) < η and Ψ -1 L ∞ (( R 2 ,+∞)) < η, (3.5.23) 
Hence, by the previous convergence results we deduce the existence of a time point t 0 > 0 sufficiently large for which x i (t 0 ) > R and such that for all t ≥ t 0 we have

u t, • + x i (t) -ϕ c * i -W i+1 t, • + x i (t) H 1 ((-R 2 ,+∞)) < η.
Moreover, by making both R and t 0 bigger if necessary we can also assume that for all y ≥ R and all t ≥ t 0 it holds

n j=i E(ϕ c * j ) - ˆ W 2 i + W 2 i,x Ψ • -x i (t) + y dx < η
On the other hand, by using (3.5.23), inequality (3.4.8) and the previous inequalities we deduce that for all y ≥ R and all t ≥ t 0 we have

n j=i E(ϕ c * j ) -ˆ(u(t, • + x i (t))W i + u x (t, • + x i (t))W i,x ) Ψ(• + y) η. (3.5.24)
Now, for j = 2, ..., n -1, we consider the following velocities z 1 (t) := β 2 t and z j (t) := 3 4 x j-1 (t) + 1 4 x j (t). Now notice that, with this specific choice of velocities z i , the functional I -R i,t 0 defined in Lemma 3.5.1 satisfies the almost monotonicity property. Thus, by using inequality (3.5.5) we obtain that for all t ≥ t 0 it holds

ˆ u 2 + u 2 x (t, •)Ψ • -z -R i (t) ≤ Ce -R/24 + ˆ u 2 + u 2 x (t 0 , •)Ψ • -z -R i (t 0 ) ,
where z -R i (t) = x i (t 0 )-R+z i (t)-z i (t 0 ). On the other hand, by straightforward computations we have ˆ(w

2 i + w 2 i,x )(t, •)Ψ • -z -R i (t) = ˆ u 2 + u 2 x (t, •)Ψ • -z -R i (t) + ˆ W 2 i + W 2 i,x (t, •)Ψ • -z -R i (t) -2 ˆ(uW i + u x W i,x ) (t, •)Ψ • -z -R i (t) =: I + II + III.
Moreover, notice that due to (3.4.8) and the definition of {z j } n-1 j=1 we deduce that for all t ≥ t 0 we have

x i (t) -x i (t 0 ) -z i (t) + z i (t 0 ) + R ≥ R.
Hence, by using inequality (3.5.24) and then the exponential decay of ϕ we get 24 , where we have used the exponential decay of ϕ to obtain the latter inequality. Finally, notice that by taking R 1 sufficiently large and t 1 > t 0 such that for all i = 2, ..., n -1 and all

I + II + III ≤ ˆ u 2 + u 2 x (t 0 , •)Ψ (• -x i (t 0 ) + R) + Ce -R/24 + ˆ W 2 i + W 2 i,x (t 0 , •)Ψ (• -x i (t 0 ) + R) + Ce -R/24 -2 ˆ(uW i + u x W i,x ) (t 0 , •)Ψ (• -x i (t 0 ) + R) + Cη ˆ w 2 i + w 2 i,x )(t 0 , •)Ψ (• -x i (t 0 ) + R) + e -R/24 + η η + e -R/
t ≥ t 1 it holds z -R 1 (t) ≤ β 2 and z -R i (t) ≤ y i (t).
Therefore, recalling that if i = 1 we defined y 1 (t) := β 2 (see the beginning of this section), we conclude that for all t ≥ t 1 we have ˆ(w

2 i + w 2 i,x )(t, •)Ψ (• -y i (t)) η,
which completes the proof the claim.

Step 6 : Finally, it only remains to prove the convergence in (-∞, z) for any fixed z ∈ R. This is a consequence of a more general property, noticed by Molinet in [START_REF] Molinet | Asymptotic stability for some non positive perturbations of the Camassa-Holm peakon with application to the antipeakon-peakon profile[END_REF], ensuring that all the energy of solutions associated to initial data in Y + is traveling to the right. In fact, we shall prove the following lemma which immediately conclude the proof of Theorem 3.1.5. Proof of Lemma 3.5.6. This lemma has already been proved for the Novikov equation in [START_REF] Palacios | Orbital and asymptotic stability of peakon trains for the Novikov equation[END_REF]. However, for the sake of completeness we prove it again. First of all notice that, for Ψ defined in (3.5.1), for any time t ∈ R fixed the map

z → ˆ u 2 + u 2 x (t, x)Ψ(• -z)dx,
defines a decreasing continuous bijection from R into (0, u 0 2 H 1 ). Hence, by setting any 0 < γ < u 0 2 H 1 , we deduce that the map x γ : R → R defined by the equation

ˆ u 2 + u 2 x (t, x)Ψ(• -x γ (t))dx = γ, (3.5.25) 
is well-defined. Moreover, since u ∈ C(R, H 1 (R)) we deduce that x γ is a continuous function. Now, notice that in order to conclude the proof of the lemma it is enough to show that for any γ ∈ (0, u 0 2

H 1 ) we have lim t→+∞ x γ (t) = +∞. (3.5.26)
For the sake of readability we split the proof of the latter property in two steps.

Step 1 : First we claim that for any ∆ > 0 and any t ∈ R we have

x γ (t + ∆) -x γ (t) ≥ 2 5 ˆt+∆ t ˆu2 (t, x)Ψ (• -x γ (t))dx > 0. (3.5.27) 
In fact, notice that by continuity with respect to the initial data it is enough to prove the claim for solutions

u ∈ C ∞ (R, H ∞ (R)) ∩ L ∞ (R, H 1 (R)).
On the other hand, as an application of the Implicit Function Theorem we deduce that x γ (t) is of class C 1 . In fact, let us define the functional

ψ(v, z) := ˆ v 2 + v 2 x Ψ(• -z)dx.
Notice that ψ clearly defines a C 1 function on H 1 (R) × R. Moreover, notice that since any function v ∈ Y + \ {0} cannot vanish at any point x ∈ R, we deduce that for any function v ∈ H ∞ ∩ Y + and any z ∈ R we have

∂ψ ∂z = ˆ v 2 + v 2 x Ψ (• -z) > 0.
Thus, recalling equation (3.6.7) from the proof of Lemma 3.5.1, we obtain ẋγ

ˆ u 2 + u 2 x Ψ (• -x γ ) = ˆu2 u 2 x Ψ + ˆ{p * (3uu 2 x + 2u 3 )}uΨ + ˆ{p x * u 3 x }uΨ .
Now, due to the fact that |v x | ≤ v for any v ∈ Y + we deduce p * uu 2 x + p x * u 3 x ≥ 0. On the other hand, since u(t) is positive, from Lemma 3.7 in [START_REF] Palacios | Orbital and asymptotic stability of peakon trains for the Novikov equation[END_REF] we deduce p * (3uu 2

x + 5u 3 ) ≥ 2u 3 in particular p * (2uu

2 x + 2u 3 ) ≥ 4 5 u 3 .
Hence, by using again that |v x | ≤ v for any v ∈ Y + and the previous inequalities we get

2 ẋγ ˆu2 Ψ (• -x γ ) ≥ ˆu2 u 2 x Ψ + 4 5 ˆu4 Ψ .
Therefore, due to the non-negativity of Ψ together with the fact that Ψ L 1 = 1 and by using Hölder's inequality we get

ẋγ (t) ≥ 2 5 ˆu2 Ψ (• -x γ (t))dx.
Integrating in time between t and t + ∆ we conclude the claim.

Step 2 : Now we intend to conclude the proof of (3.5.26). First of all notice that from the claim of the previous step we obtain, in particular, that x γ (•) is increasing and hence it has a limit

x ∞ γ ∈ R ∪ {+∞}, i.e. lim t→+∞ x γ (t) = x ∞ γ .
Thus, the proof of (3.5.26) is equivalent to prove that x ∞ γ = +∞. In fact, let us proceed by contradiction, i.e. let us suppose that x ∞ γ ∈ R. Then, notice that the latter hypothesis together with inequality (3.5.25) and the fact that

|u x | ≤ u ≤ u 0 H 1 for all (t, x) ∈ R 2 implies lim t→+∞ ˆ u 2 + u 2 x (t, x)Ψ(• -x γ (t)) = lim t→+∞ ˆ u 2 + u 2 x (t, x)Ψ(• -x ∞ γ ) = γ. (3.5.28) 
On the other hand, by taking ∆ = 1, from (3.5.27) and the convergence of x γ (t) we deduce lim

t→+∞ ˆt+1 t ˆu2 Ψ (• -x γ (t)) = lim t→+∞ ˆt+1 t ˆu2 Ψ (• -x ∞ γ ) = 0.
Notice that the latter equality together with the fact that |v x | ≤ v for all v ∈ Y + implies, in particular, that there exists a sequence of times t n → +∞ such that for any compact set K ⊂ R the following holds :

lim n→+∞ u(t n ) L ∞ (K) = 0. (3.5.29)
Now we choose any γ < γ < u 0 H 1 , arbitrary but fixed. Then, we consider the compact set

K := [x ∞ γ -M, x ∞ γ + M ],
with M 1 sufficiently large such that x ∞ γ -M < x γ (0). Thus, by using (3.5.29), the monotonicity of t → x γ (t) and recalling that x γ (0) < x γ (0) we conclude

lim n→+∞ ˆ u 2 + u 2 x (t n , x)Ψ(• -x ∞ γ ) = γ .
However, this contradicts hypothesis (3.5.28) what ends the proof of the lemma.

Appendix

3.6.1 Proof of Lemma 3.4.1

Let z = (z 1 , ..., z n ) ∈ R n be fixed and satisfying z i -z i-1 > L. Consider the functionals given by the orthogonality conditions we are looking for, i.e., for each i = 1, ..., n consider the functional given by

Y i (y 1 , ..., y n , u) := ˆ u -R z-x ∂ x (ρ m * ϕ c i )(• -z i -y i )dx.
Notice that each Y i : R n × H 1 → R defines a C 1 functional in a neighborhood of (0, ..., 0, R z ). Moreover, for any z ∈ R n we have Y i (0, ..., 0, R z ) = 0. For the sake of simplicity, from now on we denote by Y the functional given by Y (y 1 , ..., y n , u) := Y 1 (y 1 , ..., y n , u), ..., Y n (y 1 , ..., y n , u) . Now, notice that for each i = 1, ..., n we have

∂Y i ∂y i = ˆ u x - n j =i ∂ x ϕ c j (• -z j -y j ) ∂ x (ρ m * ϕ c i )(• -z i -y i )dx,
and for each j = 1, ..., n with j = i we have

∂Y i ∂y j = ˆ∂x ϕ c j (• -z j -y j )∂ x (ρ m * ϕ c i )(• -z i -y i )dx.
In particular, notice that there exists a constant C > 0 depending only on m ∈ N such that for all i = 1, ..., n and all z ∈ R n we have

∂Y i ∂y i (0, ..., 0, R z ) = ˆϕ c i (• -z i )(ρ m * ϕ c i )(• -z i ) = Cc i ≥ Cc 1 .
On the other hand, by using the exponential decay of ϕ and due to the fact that z i -z j > L whenever i = j, we infer that for L 0 large enough we have

∂Y i ∂y j (0, ..., 0, R z ) = ˆϕc j (• -z j )(ρ m * ϕ c i )(• -z i ) ≤ ˆϕc j (• -z j )(ρ m * ϕ c i )(• -z i ) + ˆϕc j (• -z j )ρ m (• -z i ) = O e -L/4 .
Hence, for L 1 large enough we deduce that D x Y (0, ..., 0, R z ) = D + P , where D is an invertible diagonal matrix and

D -1 ≤ 1 Cc 1 and P ≤ O e -L/4 .
Thus, there exists L 0 > 1 such that for all L > L 0 and all z ∈ R n satisfying z i -z i-1 > L, the jacobian D x Y (0, ..., 0, R z ) defines an invertible matrix. Hence, by using the Implicit Function Theorem we infer the existence of positive constants δ > 0, C 0 > 0 and C 1 functions (y 1 , ..., y n ) defined in a H 1 -neighborhood of R z with values in a neighborhood of zero, i.e.

y 1 , ..., y n : B H 1 (R z , δ) → B R (0, C 0 δ),
which are uniquely determined by the equation

Y y 1 (u), ..., y n (u), u = 0 for any u ∈ B H 1 R z , δ .
In particular, there exists a constant

K 0 > 0 such that if u ∈ B H 1 (R z , δ * ) for some 0 < δ * ≤ δ, then n i=1 |y i (u)| ≤ K 0 δ * . (3.6.1)
It is worth noticing that δ and K 0 only depend on c 1 and L 0 but not on the point z ∈ R. Thus, for u ∈ B H 1 (R z , δ) we can set x i (u) := z i + y i (u). Hence, assuming that δ ≤ L 0 8K 0 , we infer that x 1 , ..., x n are C 1 functions on B H 1 (R z , δ * ) and satisfy

x i (u) -x i-1 (u) = z i -z i-1 + y i (u) -y i-1 (u) > L 2 -2K 0 δ * > L 4 . (3.6.2) 
Now we intend to define the modulation of u. In fact, let us consider α 0 < 1 2 δ to be chosen later. Then, for all L ≥ L 0 and any 0 < α < α 0 , we define the modulation of u in the following way : We cover the trajectory of u by a finite number of open balls by :

{u(t) : t ∈ [0, t 0 ]} ⊂ k=1,...,N B H 1 R z k , 2α
It is important to notice that, since 0 < α < α 0 < 1 2 δ, the functions x i (u) are uniquely determined for

u ∈ B R z k , 2α ∩ B R z k , 2α .
Therefore, we can define the functions t → x i (t) on [0, t 0 ] by settin x i (t) := x i (u(t)). Thus, by construction

ˆ u(t, •) - n j=1 ϕ c j • -x j (t) ∂ x (ρ m * ϕ i ) • -x i (t) dx = 0. (3.6.3)
On the other hand, where k is such that at time t we have u(t) ∈ B(R z k , 2α), by direct computation we get

u(t) - n i=1 ϕ c i • -x i (t) H 1 ≤ u(t) - n i=1 ϕ c i • -z i,k H 1 + n i=1 ϕ c i • -x i (t) -ϕ c i • -z i,k H 1 ≤ 2α + 2 n i=1 E(ϕ c i ) -2 n i=1 ˆϕc i (• -x i (t))ϕ c i (• -z i,k ) -2 n i=1 ˆϕ c i (• -x i (t))ϕ c i (• -z i,k ) 1/2
=: 2α + II by using (3.6.1) , E(ϕ c i ) = 2c i by integration by parts and recalling that ϕ = ϕ -2δ we obtain

II = 2 n i=1 c i -ϕ c i (z i,k -x i (t) 1/2 = 2 n i=1 √ c i 1 -e -|z i,k -x i (t)| 1/2 ≤ 2 n i=1 √ c i 1 -e -2K 0 α 1/2 ≤ 2 2K 0 α n i=1 √ c i = O √ α
Therefore, for α 1 small enough we conclude that for all t ∈ [0, t 0 ] it holds

u(t) - n i=1 ϕ c i • -x i (t) H 1 = O √ α . (3.6.4)
Now, we split the prove of the remaining inequalities into four steps.

Step 1 : Now we intend to prove the first inequality in (3.4.8). For the sake of simplicity let us start by defining some auxiliary variables : For each i = 1, ..., n we define the functions v, w i , w i m as

v(t) := u(t) - n i=1 ϕ c i (• -x i (t)), w i := ϕ c i • -x i (t) and w i m (t) := (ρ m * ϕ c i ) • -x i (t) .
Then, by differentiating (3.6.3) and recalling that ϕ -ϕ = 2δ we obtain

ˆvt (t, x)w i m,x (t, x)dx = ˙ x i (t) w i m,xx , v H -1 ,H 1 ≤ ˙ x i (t) O v(t) H 1 ≤ ˙ x i (t) -c i O v(t) H 1 + O v(t) H 1 .
On the other hand, by using that ϕ solves (3.1.8) we infer that each w i satisfies the following equation :

w i,t + ˙ x i -c i w i,x + w 2 i w i,x = p x w 3 i + 3 2 w i w 2 i,x - 1 2 p * w 3 i,x
Thus, by using that u(t) also solves (3.1.8), replacing u = v + w 1 + ... + w n and then using the equation satisfied by each w i we get

v t - n j=1 ( ˙ x j -c j )w j,x = -   v + n j=1 w j   2 v x -v 2 n j=1 w j,x -2v n j,k=1 w j w k,x - n j,k, =1 (k, ) =(j,j) w j w k w ,x -p x * v 3 -3 n j=1 p x * (v 2 w j ) -3 n j,k=1 p x * vw j w k - n j,k, =1 (k, ) =(j,j) p x * w j w k w - 3 2 p x vv 2 x -3 n j=1 p * vv x w j,x - 3 2 n j,k=1 p * vw j,x w k,x - 3 2 n j=1 p * v 2 x w j -3 n j,k=1 p * v x w j w k,x - 3 2 n j,k, =1 (k, ) =(j,j) p x * w j w k,x w ,x - 1 2 p * v 3 x - 3 2 n j=1 p * v 2 x w j,x - 3 2 n j,k=1 p * v x w j,x w k,x - 1 2 n j,k, =1 (k, ) =(j,j)
p * w j,x w k,x w ,x .

(3.6.5)

On the other hand, notice that due to (3.6.4), inequality (3.6.2) and the exponential decay of both w i and w i n 0 we deduce that w j w i m L 1 + w j,x w i m L 1 = O (exp(-L/4)) for j = i and

v 2 w i m,x L 1 + v 2 x w i m,x L 1 + vw i m L 1 + vρ m (• -x i (t)) L 1 = O √ α + O e -L/4 .
Hence, by taking the L 2 -inner product from equation (3.6.5) against w i m,x and noticing that there exists a constant a > 0 such that w i,x (t),

w i m,x (t) L 2 ,L 2 ≡ ac i > 0 for all times t ∈ [0, t 0 ], we obtain ˙ x i -c i ac i + O √ α = O √ α + O e -L/4 .
Therefore, by taking 0 < α 0 1 small enough and L 0 1 sufficiently large we conclude the first inequality in (3.4.8).

Step 2 : Now we intend to prove the second inequality in (3.4.8). In fact, it is enough to notice that from what we proved in the last step, by using (3.1.13) and (3.6.1), after integration in time we obtain

x i (t) -x i-1 (t) ≥ L -2K 0 α 0 + c i -c i-1 2 t ≥ 3 4 L + c i -c i-1 2 t,
what finish the proof of (3.4.8).

Step 3 : In this step we are devoted to prove last part of the statement. In fact, notice that by using (3.6.4) together with Sobolev's embedding we infer that for any time t ∈ [0,

t 0 ] we have u(t, x) = R x(t) (x) + O √ α .
Now, on the one-hand notice that by applying the previous formula with x(t) := max J i u(t) and by using the second inequality in (3.4.8) we obtain

u(t, x i ) = √ c i + O √ α + O e -L/4 ≥ 2 3 √ c i .
On the other hand, notice that for any x

∈ J i \ [ x i (t) -1 12 L, x i (t) + 1 12 L] we have u(t, x) ≤ √ c i e -L/12 + O √ α + O e -L/4 ≤ 1 2 √ c i .
Therefore, the previous two inequalities ensures that

x i (t) ∈ [ x i (t) -1 12 L, x i (t) + 1 12 L],
what concludes the proof of the lemma.

Step 4 : Finally, it only remains to prove (3.4.6) for n 0 ∈ N large enough. In fact, it is enough to notice that ˆϕ (x)ϕ(x -y)dx = (1 -y)e -y .

Thus, for n 0 ∈ N large enough we have

d dy ˆϕ(ρ n 0 * ϕ) (• -y) = ˆϕ (ρ n 0 * ϕ )(• -y) ≥ 1 4 e -1/2 on -1 2 , 1 2 .
Therefore, the mapping y → ´R ϕ(ρ

n 0 * ϕ) (• -y) is increasing on [-1 2 , 1 2 
], and hence there exists n 0 ∈ N satisfying (3.4.6). Then, we conclude the proof by choosing m = n 0 .

Proof of Lemma 3.4.2

The following computations can be rigorized by standard approximation and density arguments by considering, for instance, the convolution of u 0 with the mollifiers family ρ n defined in (3.2.1) and by using the second statement in Theorem 3.2.7. We refer to [START_REF] El Dika | Exponential decay of H1-localized solutions and stability of the train of N solitary waves for the Camassa-Holm equation[END_REF] for a complete justification of this argument. Now, our aim is to prove inequality (3.4.11) by integrating its time derivative. Hence, by taking the time derivative directly from the definition of I i,K (t) we obtain 

d dt I i,K (t) = 2 ˆ uu t + u x u xt Ψ i,K -ẏi (t) ˆ(u 2 (t) + u 2 x (t) Ψ i,K =: J -ẏi (t) ˆ(u 2 (t) + u 2 x (t) Ψ i,K . ( 3 
ˆ u t -u txx uΨ i,K -2 ˆuu tx Ψ i,K = 2 ˆ 3uu x u xx + u 2 u xxx -4u 2 u x uΨ i,K + 2 ˆ(u 2 u xx + 2uu 2 x + p x * (3uu x u xx + 2u 3 x + 3u 2 u x ))uΨ i,K = 4 ˆu2 u 2 x Ψ i,K + 2 ˆu4 Ψ i,K + 2 ˆ{p x * (3uu x u xx + 2u 3 x + 3u 2 u x )}uΨ i,K
On the other hand, recalling that for any L 2 function f : R → R we have p * f x = p x * f , and by using that p is the fundamental solution of (1 -∂ 2 x ), we obtain

2p x * (3uu x u xx + 2u 3 x + 3u 2 u x ) = -2u 3 -3uu 2 x + 3p * uu 2 x + 2p * u 3 + p x * u 3 x .
Thus, by plugging this into (3.6.6) we get

d dt I i,K (t) = -ẏi (t) ˆ u 2 + u 2 x Ψ i,K + ˆu2 u 2 x Ψ i,K + ˆ{p * (3uu 2 x + 2u 3 )}uΨ i,K + ˆ{p x * u 3 x }uΨ i,K = -ẏi (t) ˆ u 2 + u 2 x Ψ i,K + J 1 + J 2 + J 3 . (3.6.7)
In order to bound J i , for i = 1, 2, 3, we split R into two complementary regions related to the size of u(t). In fact, for i = 2, ..., n let us consider the family of time-dependent intervals

D i D i (t) := x i-1 (t) + L 4 , x i (t) -L 4 .
Hence, with these definitions, by splitting the space into D i and D c i we can rewrite J 1 as

J 1 = ˆDi u 2 u 2 x Ψ i,K + ˆDc i u 2 u 2 x Ψ i,K =: J 1 1 + J 2 1 .
Now notice that, on the one-hand, by using (3.4.7) we deduce that for all t ∈ [0, t * ] we have

u(t) L ∞ (D i ) ≤ n i=1 ϕ c i • -x i (t) L ∞ (D i ) + u(t) - n i=1 ϕ c i • -x i (t) L ∞ (D i ) ≤ Ce -L/8 + O √ α .
Thus, for α > 0 small enough we can absorb J 1 1 by the first integral term in (3.6.7). Now, on the other hand, by using the definition of the family y i in (3.4.9) and by using inequality (3.4.8), we deduce for any x ∈ D c i we have |x -

y i (t)| ≥ 1 2 x i (t) -x i-1 (t) -L 4 ≥ 1 2 (c i -c i-1 )t + L 8 .
Therefore, by using the exponential decay of Ψ i,K , we deduce that for all t ∈ [0, t * ] we have

J 2 1 = ˆDc i u 2 u 2 x Ψ i,K ≤ C K u 0 4 H 1 e -1 K (σ 0 t+L/8) . (3.6.8)
Now in order to deal with J 2 we proceed in a similar fashion. First, we split J 2 into two different integrals by using the definition of D i . In concrete, we define

J 2 = ˆDi {p * (3uu 2 x + 2u 3 )}uΨ i,K + ˆDc i {p * (3uu 2 x + 2u 3 )}uΨ i,K =: J 1 2 + J 2 2 .
Now notice that in order to follow the previous procedure we need to deal with the self-adjoint operator (p * •). However, it is enough to notice that for K > 4, by using the definition of Ψ i,K in (3.4.10) we immediately obtain

(1 -∂ 2 x )Ψ i,K ≥ 1 - 10 K 2 Ψ i,K , and hence (1 -∂ 2 x ) -1 Ψ i,K ≤ 1 - 10 K 2 -1 Ψ i,K .
Thus, by using the previous estimate and proceeding in a similar fashion as before we obtain

J 1 2 u(t) 2 L ∞ (D i ) ˆDi u 2 + u 2 x (1 -∂ 2 x ) -1 Ψ i,K u(t) 2 L ∞ (D i ) ˆ u 2 + u 2 x Ψ i,K .
Hence, for α > 0 small enough this term can be absorb by the first integral term in (3.6.7). Finally, by using the exponential decay of Ψ i,K and the definition of D i we get

J 2 2 = ˆDc i {p * (3uu 2 x + 2u 3 )}uΨ i,K ≤ C K u 0 4 H 1 e -1 K (σ 0 t+L/8) .
The remaining term can be bound in exactly the same fashion. Therefore, gathering all the previous estimates we get

d dt I i,K (t) ≤ - c 1 4 ˆ u 2 + u 2 x Ψ i,K + C K u 0 4 H 1 e -1 K (σ 0 t+L/8) .
Integrating the previous inequality between 0 and t we conclude. The proof is complete.

3.6.3 Proof of Lemma 3.5.1

For the sake of simplicity, we split the proof into three steps. The first of them is devoted to proof inequality (3.5.4) while the other two aim to prove (3.5.5).

Step 1 : First of all notice that by considering R 0 > 0 sufficiently large so that

nc n e -R 0 < σ 2 18 , (3.6.9) 
and combining this inequality together with (3.1.14) and the definitions in (3.5.2), we immediately deduce that (3.5.3) is satisfied. Now, we set t n R to be

t n R := max {0} ∪ t ∈ t ≥ 0 : x n (t) -x n-1 (t) = 2R .
On the other hand, recall that from the proof of Lemma 3.4.2 (c.f. (3.6.7)) we have

d dt I R n,t n 0 = -żR n (t) ˆ u 2 + u 2 x Ψ (• -z R n (t))dx + J 1 + J 2 + J 3 .
(3.6.10) Thus, by splitting the space into two regions :

R = -∞, x n (t) + R 0 ∪ x n (t) + R 0 , +∞) =: D 1 ∪ D 2 ,
we deduce that for any x ≤ x n (t) + R 0 and any t ≤ t n 0 we have

x -z R n (t) ≤ R 0 -R -δ n (t n 0 -t), and hence J 1 1 ≤ u 0 4 H 1 e 1 6 R 0 -1 6 R-1 6 δn(t n 0 -t) ,
where J 1 1 is the portion of J 1 associated to D 1 . On the other hand, by using (3.5.3) and proceeding in the same fashion as in the proof of Lemma 3.4.2 we deduce that J 2 1 can be absorbed by the first integral term in (3.6.10). The remaining terms can be treated in exactly the same fashion. Therefore, by integration in time we conclude the first inequality in (3.5.4). Now we intend to prove the second inequality in (3.5.4). In fact, by using the first inequality in (3.4.8) we deduce that for all R ≥ R 0 we have

|c n -˙ x n (t)| + |c n-1 -˙ x n-1 (t)| ≤ 1 12 (c n -c n-1
), for all t ≥ 0.

Moreover, defining the time-dependent interval Π n (t) := ( 5 6 x n-1 (t) + 1 6 x n (t), x n (t) -R 0 ) we deduce from this choice of parameters that

u(t) L ∞ (Πn(t)) ≤ (1 -δ i )c n b , for all t ≥ t n R .
Thus, gathering the above information we deduce that for x ≤ 5 6 x n-1 (t) + 1 6 x n (t) and all t n 0 ≥ t n R we have

x -z -R n (t) = x -x n (t) + R + ( x n (t) -z n (t)) -x n (t n 0 ) -z n (t n 0 ) ≤ -5 6 x n (t) -x n-1 (t) + R + δ n c n (t -t n 0 ) ≤ -5 3 R -11 12 (c n -c n-1 )(t -t n 0 ) + R + 5 8 (c n -c n-1 )(t -t n 0 ) ≤ - 2 3 R - 1 4 (c n -c n-1 )(t -t n 0 ).
Hence, proceeding in the same fashion as before, splitting the space into three regions

R = -∞, 5 6 x n-1 (t) + 1 6 x n (t) ∪ Π n (t) ∪ x n (t) -R 0 , +∞ =: D 1 ∪ D 2 ∪ D 3 ,
we deduce that for any x ≤ 5 6 x n-1 (t) + 1 6 x n (t) and all t ≥ t n 0 we have

Ψ x -z -R n (t) exp -R 9 -1 48 (c n -c n-1 )(t -t n 0 ) .
Therefore, proceeding exactly in the same fashion as before, for k = 1, 2, 3 we can bound

J 1 k u 0 4 H 1 e -R 9 -1 48 (cn-c n-1 )(t-t n 0 ) and J 2 k ≤ c n 2 6 ˆ u 2 + u 2 x Ψ (• -z R n )dx.
Finally, notice that the integral over D 3 can be bounded in exactly the same fashion as the one associated to D 1 by noticing that, for any x ≥ x n (t) -R 0 and all t ≥ t n 0 we have

x -z -R n (t) = x -x n (t) + R + x n (t) -z n (t) -x n (t n 0 ) -z n (t n 0 ) ≥ R -R 0 + 1 2 δ n c n (t -t n 0 ) = R -R 0 + 1 2 (c n -c n-1 )(t -t n 0 ).
Then, integrating in time we obtain the desired result. The proof is complete.

Step 2 : Our aim now is to prove (3.5.5) in the case i = 2, ..., n. In fact, it is enough to notice that, by defining t R i to be

t R i := max {0} ∪ t ≥ 0 : x i (t) -x i-1 (t) = 2R , (3.6.11) 
we deduce that for all

t ≥ t R i u(t) L ∞ (Π i (t)) ≤ (1 -δ i )c i 2 6
, where Π i (t) :

= 5 6 x i-1 (t) + 1 6 x i (t), x i (t) -R 0 ,
what in light of step 1 is enough to prove the desired result.

Step 3 : Finally, in the case i = 1 it is enough to notice that for all t ∈ R we have

u(t) L ∞ ((-∞, x 1 (t)-R 0 )) ≤ (1 -δ 1 )c 1 2 6 .
Again, in light of step 1 we conclude the desired result by following the same procedure. The proof is complete.

Proof of Lemma 3.5.2

Let R be any positive real number and consider any t 0 ∈ R satisfying t 0 > t i+1 R . Now we set t 0 being

t 0 := max t i+1 R ∪ t ∈ [t i+1 R , t 0 ] : x i (t 0 ) + R + 3 4 x i (t) -x i (t 0 ) = y i+1 (t) .
Hence, by definition of {y i } n i=1 in (3.4.9) and the definition of t 0 above, we immediately obtain that on t 0 , t 0 it holds

x i (t 0 ) + R + 3 4 x i (t) -x i (t 0 ) ≤ y i+1 (t). Now we set z R i (t) := x i (t 0 ) + R + 3 4 x i (t) -x i (t 0
) . Thus, by the above inequality and by using (3.4.8) we obtain that for any t ≥ t 0 and any x ≥ 3 8 x i (t)

+ 5 8 x i+1 (t) it holds x -z R i (t) ≥ x -y i+1 (t) ≥ 1 8 x i+1 (t) -1 8 x i (t) ≥ R 4 + 1 2 4 (c i+1 -c i ) t -t 0 .
As before, notice that the latter inequality lead us to

Ψ x -z R i (t) ≤ exp - R 24 - (c i+1 -c i ) t -t 0 2 7 ,
which give us the main information needed to obtain (3.6.8). Now, for the sake of simplicity let us define Π i (t) := x i (t) + R, 3 8 x i (t) + 5 8 x i+1 (t) . Hence, by the definition of both ε 0 and σ in (3.5.2) and by using (3.1.14) we obtain

u(t) L ∞ (Π i (t)) < c i 2 7
for all t ≥ t 0 . Thus, by defining the modified energy functional

I R i (t) := ˆ u 2 + u 2 x (t, x)Ψ • -z R i (t) dx, (3.6.12) 
and proceeding as in Lemmas 3.4.2 and 3.5.1, we deduce that for all t ∈ [ t 0 , t 0 ] 24 . Therefore, by the same arguments as those at the middle of Section 3.5.1 we conclude

I R i (t 0 ) -I R i (t) ≤ Ce -R/
J R i,r (t 0 ) ≤ J R i,r (t) + Ce -R/24
, for all t 0 ≤ t ≤ t 0 . Hence, it only remains to prove that the latter inequality holds for t i+1 R ≤ t ≤ t 0 . First of all, notice that if t 0 = t i+1 R we are done. Otherwise, by definition of t 0 and z R i we must have z R i t 0 = y i+1 t 0 . Then, if this is the case, it is enough to notice that

x i+1 (t i+1 R ) -y i+1 (t i+1 R ) = 1 2 x i+1 (t i+1 R ) -1 2 x i (t i+1 R ) ≥ R. Thus, by replacing x i+1 (t i+1 R ) -y i+1 (t i+1 R ) instead of R in (3.6.
12) and by redefining z i to be equals to z i (t) = y i+1 (t) we obtain that for all t ∈ [t i+1 R , t 0 ] it holds :

ˆ u 2 + u 2 x Ψ(• -y i+1 ( t 0 ) ≤ ˆ u 2 + u 2 x Ψ(• -y i+1 (t) + Ce -R/10 .
Finally, since t ≥ t i+1 R , we have 

ˆ u 2 + u 2 x Ψ(• -y i+1 (t) ≤ J R i,r (t) 
∂ t u + ∂ 3 x u ± u k ∂ x u = 0, t ∈ R, x ∈ R, k ∈ Z + , u(0, x) = u 0 (x), (4.1.1)
has been extensively studied in the last five decades and is one of the most famous equations in the context of dispersive PDEs. This family of equations includes the celebrated Kortewegde Vries (KdV) equation (case k = 1), which was derived as a model for the unidirectional propagation of nonlinear dispersive long waves [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF], and subsequently found in the study of collision-free hydro-magnetic waves [START_REF] Gardner | Similarity in the asymptotic behavior of collision-free hydromagnetic waves and water waves[END_REF]. Nowadays, the KdV equation has shown applications to several physical situations, such as for example, in plasma physics, for the study of ionacoustic waves in cold plasma [START_REF] Berezin | Nonlinear evolution of disturbances in plasma and other dispersive media[END_REF][START_REF] Washimi | Propagation of ion-acoustic solitary waves of small amplitude[END_REF], as well as some relationships with the Fermi-Pasta-Ulam problem [START_REF]Asymptotology in numerical computation : Progress and plans on the Fermi-Pasta-Ulam problem[END_REF][START_REF] Zabusky | Phenomena associated with the oscillations of a nonlinear model string. The problem of Fermi[END_REF][START_REF] Zabusky | A synergetic approach to problems of nonlinear dispersive wave propagation and interaction[END_REF][START_REF] Zabusky | Nonlinear lattice dynamics and energy sharing[END_REF]. Moreover, some connections with algebraic geometry were given in [START_REF] Dubrovin | Nonlinear equations of Korteweg-de Vries type, finite-band linear operators and Abelian varieties[END_REF] (see also [START_REF] Miura | The Korteweg-de Vries equation : a survey of results[END_REF] and the references therein). On the other hand, in [START_REF] Van Wijngaarden | On the equations of motion for mixtures of liquid and gas bubbles[END_REF] it has been shown that this equation also describes pressure waves in a liquid-gas bubble mixture, as well as waves in elastic rods (see [START_REF] Nariboli | Nonlinear longitudinal dispersive waves in elastic rods[END_REF]). We refer to [START_REF] Miura | The Korteweg-de Vries equation : a survey of results[END_REF] for a more extensive description of all of these (and more) physical applications.

In the case where k = 2 we find another fairly celebrated equation, the so-called modified KdV equation, which also models the propagation of weak nonlinear dispersive waves. In this regard, a large class of hyperbolic models has been reduced to the latter two equations. It is worth to notice that there is a deep relationship between these two models given by the Miura transformation [START_REF] Miura | Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation[END_REF].

These two cases (k = 1, 2) correspond to completely integrable systems, in terms of the existence of a Lax-pair, and both of them have been solved via inverse scattering. An interesting property of (5.1.2) is that these are the only two cases on which this equation corresponds to a completely integrable system (see [START_REF] Gardner | A method for solving the Korteweg-de Vries equation[END_REF][START_REF] Gardner | The Korteweg-de Vries equation and generalizations. VI. Method for exact solutions[END_REF]).

One of the most important features of equation (5.1.2) is the existence of solitary wave solutions of both types, localized solitary waves and kink solutions. In the completely integrable cases, these solutions correspond to soliton solutions, that is, they preserve their shape and speed after collision with objects of the same type.

In this work we seek to study the initial value problem associated with the following generalization of the k-KdV equation (5.1.2),

∂ t v + ∂ x (∂ 2 x v + f (v)) = 0, v(0, x) = Φ(x), (4.1.2) 
where v = v(t, x) stands for a real-valued function, the nonlinearity f is also real-valued, and t, x ∈ R. Motivated by the study of Kink solutions, here we do not intend to assume any decay of the initial data Φ(x) but, for the moment, only that Φ ∈ L ∞ (R). Instead, we decompose the solution v(t, x) in the following fashion

v(t, x) = u(t, x) + Ψ(t, x), (4.1.3) 
where we assume that Ψ ∈ L ∞ (R 2 ; R) is a given function (see (4.1.7) below for the specific hypotheses on Ψ) and we seek for u(t) ∈ H s (R). Then, it is natural to rewrite the above IVP in terms of the Cauchy problem associated with the following generalized Korteweg-de Vries (gKdV) equation

∂ t u + ∂ t Ψ + ∂ x ∂ 2 x u + ∂ 2 x Ψ + f (u + Ψ) = 0, u(0, x) = u 0 (x) ∈ H s (R). (4.1.4)
We stress that equation (4.1.4) is nothing else that equation (4.1.2) once replacing the decomposition given in (4.1.3). In the case where f (x) = x 2 and Ψ = Ψ(x) is a time-independent function belonging to the so-called Zhidkov class

Z(R) := Ψ ∈ D (R) : Ψ ∈ L ∞ (R), Ψ ∈ H ∞ (R) ,
this equations has been used to model the evolution of bores on the surface of a channel, incorporating nonlinear and dispersive effects intrinsic to such propagation [START_REF] Bona | Models for propagation of bores I : Twodimensional theory[END_REF].

Important : In this work we only assume that f : R → R is a real-analytic function satisfying that its Taylor expansion around zero has infinite radius of convergence, that is, there exists a family {a k } k∈N ⊂ R such that, for all x ∈ R, the nonlinearity f (x) can be represented as

f (x) = ∞ k=0 a k x k , with lim sup k→+∞ k |a k | = 0. (4.1.5)
Notice that any polynomial p(x) satisfies the previous hypothesis, as well as exp(x), sinh(x), cosh(x), sin(x), cos(x), p(sin(x)), etc.

It is worth to notice that, since equation (4.1.4) can be regarded as a perturbation of the gKdV equation (4.1.2) with initial data v(0, •) ∈ H s (R), one might think that, in order to prove local well-posedness for equation (4.1.4), it is reasonable to proceed by using the contraction principle as in [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF]. However, it seems that this does not even hold in the case where f (x) = x 2 , due to the occurrence of the term Ψ∂ x u since Ψ is not integrable, which makes this problem more involved even for the KdV case.

As mentioned before, one of our main motivations comes from studying Kink solutions. For instance, we can consider the defocusing modified Korteweg-de Vried (mKdV) equation, that is f (u) = -u 3 , as well as the Gardner equation, that is f (u) = u 2 -βu 3 . Both equations are well-known to have Kink solutions given by (respectively, see [START_REF] Hereman | Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method[END_REF]) :

Ψ mKdV,c (t, x) = ± √ c tanh c 2 (x + ct) , c > 0, and 
Ψ Gardner,c (t, x) = 1 3β ± 1 √ β Φ mKdV,c (t, x -t 3β ), β > 0.
Moreover, at the same time we also seek to give a framework to study localized non-periodic perturbations of periodic solutions for the generalized model (4.1.4), such as for example, the famous cnoidal and dnoidal wave solutions of the KdV and the mKdV equations (respectively)

Ψ cn,c (t, x) := α + βcn 2 γ(x -ct), κ , Ψ dn,c (t, x) := βdn γ(x -ct), κ , (4.1.6) 
with c > 0 and (α, β, γ, κ) ∈ R 4 satisfying some suitable conditions, where cn(•, •) and dn(•, •) stand for the Jacobi elliptic cnoidal and dnoidal functions respectively (see [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF]).

It important to mention that, the gKdV equation (4.1.2) enjoys (at least formally) several conservation laws, such as the conservations of the mean, the mass and the energy, which are given by (respectively)

I 1 (v(t)) := ˆR v(t, x)dx = I 1 (v 0 ), I 2 (v(t)) := ˆR v 2 (t, x)dx = I 2 (v 0 ), I 3 (v(t)) := ˆR v 2 x (t, x) -F v(t, x) dx = I 3 (v 0 ),
where F (•) stands for a primitive of f (•). However, due to the presence of Ψ(t, x), none of these quantities are well-defined for solutions of equation (4.1.4). Although, a suitable modification of the energy functional I 3 shall play a key role in proving global well-posedness in H 1 (R) when f (x) grows at most as x 2 (see Theorem 5.1.2 below).

Important : In the sequel we shall always assume that the given function Ψ(t, x) satisfies the following hypotheses : Notice that this function does not have symmetries (neither odd nor even), nor well-defined limits at ±∞, also, none of its derivatives has exponential decay. Clearly, it does not solve the equation either, whereas it satisfies all the conditions in (4.1.7) for any s > 1/2 (for example).

     ∂ t Ψ ∈ L ∞ (R 2 ), Ψ ∈ L ∞ (R, W s+1 + ,∞ (R)), (∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ)) ∈ L ∞ (R, H s + (R)). ( 4 

Unconditional uniqueness

The generalized Korteweg-de Vries equation (4.1.2) has been proven to be locally well-posed (LWP) for regular localized initial data in [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF][START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF][START_REF] Kato | On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies In[END_REF][START_REF] Saut | Sur quelques généralisations de l'équation de Korteweg-de Vries[END_REF]. Since then, considerable effort has been devoted to understand the Cauchy problem (5.1.2) with rough data. In the seminal work of Kenig, Ponce and Vega, LWP for equation (5.1.2) has been established in H s -spaces, for all k ∈ Z + , with s moving in a range that depends on k. In the case where k ≥ 4 these results are sharp, in the sense that they reach the critical index given by the scaling invariance [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF]. This proof relies on Strichartz estimates, along with local smoothing effect and maximal estimates. Then, a normed functional space is constructed based on these estimates, which allows them to solve (5.1.2) via a fixed point argument. The solutions obtained in this way are obviously unique in such a resolution space. However, as explained in [START_REF] Molinet | Improvement of the energy method for strongly nonresonant dispersive equations and applications[END_REF], the question of whether this uniqueness holds for solutions that do not belong to these resolution spaces turns out to be far from trivial at this level of regularity. This type of question was first raised by Kato in [START_REF] Kato | On nonlinear Schrödinger equations II. H s -solutions and unconditional wellposedness[END_REF] in the context of Schrödinger equations. We refer to such uniqueness in L ∞ ((0, T ), H s (R)), without intersecting with any other auxiliary functional space as unconditional uniqueness. This type of uniqueness has been shown to be useful, for example, to pass to the limit in perturbative analyzes, when one of the coefficients of the equation tends to zero (see [START_REF] Molinet | A note on the inviscid limit of the Benjamin-Ono-Burgers equation in the energy space[END_REF] for instance).

Main results

In the remainder of this work we focus on studying the Cauchy problem associated with We say that u(t, x) is a solution to (4.1.4) emanating from the initial data u 0 ∈ H s (R) if u(t, x) satisfies (4.1.4) in the distributional sense, that is, for any test function

φ ∈ C ∞ 0 ((-T, T ) × R) we have ˆ∞ 0 ˆR φ t + φ xxx u + φ x f (u + Ψ) -f (Ψ) dxdt + ˆR φ(0, x)u 0 (x)dx (4.1.8) = - ˆ∞ 0 ˆR φ t + φ xxx Ψ + φ x f (Ψ) dxdt -ˆR φ(0, x)Ψ(0, x)dx.
Remark 4.1.2. Notice that, for u ∈ L ∞ ((0, T ), H s (R)) with s > 1/2, we have that u p is well defined for all p ∈ N, which along with (4.1.5) and (4.1.7) implies that

f (u + Ψ) -f (Ψ) ∈ L ∞ (0, T ), H s (R) .
Therefore, relation (4.1.8) and the hypotheses in (4.1.7) forces that u t ∈ L ∞ ((0, T ), H s-3 (R)), and hence (4.1.4) is satisfied in L ∞ ((0, T ), H s-3 (R)). In particular, we infer that

u ∈ C([0, T ], H s-3 (R)). (4.1.9)
Moreover, from hypotheses (4.1.7) we infer that Ψ ∈ C([0, T ], L ∞ (R)), which in turn, together with (4.1.8) and (4.1.9), forces the initial condition u(0) = u 0 . On the other hand, notice that we also have that u ∈ C w ([0, T ], H s (R)), and that u ∈ C([0, T ], H θ (R)) for all θ < s. Finally, we stress that the above relations also ensure that u satisfies the Duhamel formula associated with (4.1.4) in C([0, T ], H s-3 (R)).

Our first main result give us the (unconditional) local well-posedness for (4.1.4).

Theorem 4.1.2 (Local well-posedness). Let s > 1/2 fixed. Consider f : R → R to be any realanalytic function such that its Taylor expansion around zero has infinite radius of convergence. Consider also Ψ(t, x) satisfying the conditions in (4.1.7). Then, for any u 0 ∈ H s (R) there exists T = T ( u 0 H s ) > 0 and a solution to the IVP (4.1.4) such that

u ∈ C([0, T ], H s (R)) ∩ L 2 T W s -,∞ x ∩ X s-1,1 T .
Furthermore, the solution is unique in the class

u ∈ L ∞ ((0, T ), H s (R)).
Moreover, the data-to-solution map Φ :

u 0 → u is continuous from H s (R) into C([0, T ], H s (R)).
Remark 4.1.3. We refer to the next section for a definition of Bourgain spaces X s,b and their corresponding time-restricted versions X s,b T . Remark 4.1.4. Notice that the previous Theorem allows us both to take f (x) being any polynomial but also to consider f (x) = e x . In particular, if f (x) = x 2 or f (x) = x 3 , the previous theorem allows us to take Ψ(t, x) being, for instance, a periodic solution such as the cnoidal or dnoidal wave solutions (or any other traveling wave solution) given in (4.1.6), respectively.

As a direct corollary of the previous theorem, by considering Ψ ≡ 0, we infer the unconditional uniqueness for the gKdV equation (4.1.2), for initial data v 0 ∈ H s (R) with s > 1/2. Finally, under some extra conditions on the growth of f (x), we prove global well-posedness for equation (4.1.4). Theorem 4.1.4 (GWP in H 1 (R)). Assume further that f : R → R satisfies that

|f (x)| 1, ∀x ∈ R.
If the initial data u 0 ∈ H s (R), with s ≥ 1, then the local solution u(t) provided by Theorem 5.1.1 can be extended for any T > 0.

Remark 4.1.5. Notice that the previous theorem give us the GWP, in particular, for f (x) = x 2 but also for f (x) = sin(x) or f (x) = cos(x) as nonlinearities.

Remark 4.1.6. We stress that Theorems 5.1.1 and 5.1.2 give us the local and global wellposedness for H s (R)-perturbations, s > 1/2 and s ≥ 1 respectively, of regular periodic solutions of the KdV equation, in particular, for H s (R)-perturbations of periodic traveling waves solutions.

From the above results we are able to deduce local well-posedness for equation (4.1.2) on Zhidkov spaces. To this end, we introduce Z s (R) as the function space given by

Z s (R) := {Ψ ∈ D (R) : Ψ ∈ L ∞ (R), Ψ ∈ H s-1 (R)}, endowed with the natural norm Ψ Z s := Ψ L ∞ + Ψ H s-1 .
Theorem 4.1.5. Let s > 1/2. Consider f : R → R to be any real-analytic function such that its Taylor expansion around zero has infinite radius of convergence. Then, for any v 0 ∈ Z s (R) there exists T = T ( v 0 Z s ) > 0 and a solution to the IVP (4.1.2), such that

v ∈ C([0, T ], Z s (R)) ∩ L 2 T W s -,∞ x and v -v 0 ∈ C([0, T ], H s (R)).
Furthermore, the solution is unique in the class

v(t) -v 0 ∈ L ∞ ((0, T ), H s (R)).
Also, the data-to-solution map Φ :

v 0 → v(t) is continuous from Z s (R) into C([0, T ], Z s (R)).
Moreover, if s ≥ 1 and f (x) satisfies that |f (x)| 1 for all x ∈ R, then the solution v(t) can be extended for all times T > 0.

Our method of proof relies in the improvements of the energy method, recently developed in [START_REF] Molinet | Improvement of the energy method for strongly nonresonant dispersive equations and applications[END_REF][START_REF] Molinet | Unconditional uniqueness for the modified Korteweg-de Vries equation on the line[END_REF][START_REF] Molinet | On well-posedness for some dispersive perturbations of Burgers' equation[END_REF], along with symmetrization arguments previously used in [START_REF] Colliander | Sharp global well-posedness for KdV and modified KdV on R and T[END_REF], for example. However, due to the presence of Ψ(t, x) (which breaks the symmetry) and the general nonlinearity, the present analysis shall be more involved that the previous cases.

At this point it is important to remark that local well-posedness in such a general framework has never been established for equation (4.1.4) before. However, the smooth case is by no mean a new result, but rather a suitable rewriting of the previous proofs (see [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF][START_REF] Iorio | KdV and BO equations with bore-like data[END_REF] for example). For the sake of completeness, we prefer to state this theorem and give a brief proof of its most important parts though (see Section 4.5). In fact, the key point to prove LWP for equation (4.1.2) in the smooth case are the commutator estimates which, in the case of equation (4.1.4), can be performed with almost no changes (with respect to [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF][START_REF] Iorio | KdV and BO equations with bore-like data[END_REF]) thanks to our hypothesis on Ψ.

Previous literature

Concerning the local well-posedness of equation (5.1.2) there exists a vast literature for each case of k ∈ Z + . In the case where k = 1, Kenig, Ponce and Vega [START_REF] Kenig | A bilinear estimate with applications to the KdV equation[END_REF] showed the LWP in H s (R) for s > -3/4 via the contraction principle. Later, Guo and Kishimoto independently proved GWP for s = -3/4 (see [START_REF] Guo | Global well-posedness of Korteweg-de Vries equation in H -3/4 (R)[END_REF][START_REF] Kishimoto | Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity[END_REF]). This result is sharp [START_REF] Christ | Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations[END_REF], in the sense that the flow map fails to be uniformly continuous in H s (R) for s < -3/4. Then, global well-posedness (GWP) was proved for s > -3/4 by using the I-method [START_REF] Colliander | Sharp global well-posedness for KdV and modified KdV on R and T[END_REF]. Without asking for the uniform continuity but just continuity of the data-to-solution map, by using the complete integrability of the equation, Killip and Visan [START_REF] Killip | KdV is well-posed in H -1[END_REF] showed GWP in H -1 (R), which is the lowest index one can obtain due to the result of Molinet [START_REF] Molinet | A note on ill posedness for the KdV equation[END_REF] which ensures that this map cannot be continuous below H -1 (R). On the other hand, in [START_REF] Zhou | Uniqueness of weak solution of the KdV equation[END_REF] Zhou demonstrated the unconditional uniqueness in L 2 (R). In the periodic case, LWP was proved in H s (T) for s ≥ -1/2 by Kenig, Ponce and Vega [START_REF] Kenig | A bilinear estimate with applications to the KdV equation[END_REF]. These local-in-time solutions are also shown to exist on an arbitrary time interval. Moreover, the unconditional uniqueness in L 2 (T) was established in [START_REF] Babin | On the regularization mechanism for the periodic Korteweg-de Vries equation[END_REF]. In this case the best result is due to Kappeler and Topalov [START_REF] Kappeler | Global well-posedness of KdV in H -1 (T, R)[END_REF] in H -1 (T).

Concerning the mKdV case, that is when k = 2, the result of Kenig-Ponce-Vega ensures the LWP for s ≥ 1/4 on the line [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF]. It has been proven that this result is sharp in the sense that the flow map fails to be uniformly continuous in H s (R) as soon as s < 1/4, for both, the focusing mKdV [START_REF] Kenig | On the ill-posedness of some canonical dispersive equations[END_REF] and the defocusing one [START_REF] Christ | Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations[END_REF]. Then, GWP was shown for s > 1/4 in [START_REF] Colliander | Sharp global well-posedness for KdV and modified KdV on R and T[END_REF] by using the I-method (see also [START_REF] Fonseca | Global well-posedness for the modified Korteweg-de Vries equation[END_REF]). Moreover, unconditional uniqueness in H s (R) for s > 1/3 was established by Molinet et al. in [START_REF] Molinet | Unconditional uniqueness for the modified Korteweg-de Vries equation on the line[END_REF], and recently improved for s > 1/4 by Kwon et al. in [START_REF] Kwon | Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line[END_REF]. On the other hand, in the periodic case, unconditional LWP for s ≥ 1/3 was proved by Molinet et al. in [START_REF] Molinet | On unconditional well-posedness for the periodic modified Korteweg-de Vries equation[END_REF], by using the improved energy method developed in [START_REF] Molinet | Improvement of the energy method for strongly nonresonant dispersive equations and applications[END_REF] together with the construction of modified energies (see also [START_REF] Nakanishi | Local well-posedness in low regularity of the mKdV equation with periodic boundary condition[END_REF]). Furthermore, global well-posedness has been shown in H s (T) for s ≥ 1/2 in [START_REF] Colliander | Sharp global well-posedness for KdV and modified KdV on R and T[END_REF].

In the case where k = 3, we refer to [START_REF] Grünrock | A bilinear Airy-estimate with application to gKdV-3[END_REF] for the LWP in H s (R) for s ≥ -1/6, and to [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF] for the local well-posedness in the case where k ≥ 4, up to the critical index given by the scaling invariance (inclusive). These results do not refer about the unconditional uniqueness.

Regarding equation (4.1.4), as far as we know this equation has never been treated in such a general framework, and hence there is no abundant specific literature for it. However, in the case of the KdV equation, i.e. f (x) = x 2 , with Ψ = Ψ(x) being a time-independent function belonging to the Zhidkov class, we find the result of Iorio et al. [START_REF] Iorio | KdV and BO equations with bore-like data[END_REF] for regular data (see also [START_REF] Bona | Models for propagation of bores I : Twodimensional theory[END_REF]). To the best of our knowledge, the best result to date (in the previously mentioned framework) is given by Gallo [START_REF] Gallo | Korteweg-de Vries and Benjamin-Ono equations on Zhidkov spaces[END_REF] where LWP was established for the KdV case for s > 1 under the same hypothesis on Ψ(x) as in the work of Iorio et al [START_REF] Iorio | KdV and BO equations with bore-like data[END_REF]. Note that Theorem 4.1.5 extend both results [START_REF] Gallo | Korteweg-de Vries and Benjamin-Ono equations on Zhidkov spaces[END_REF][START_REF] Iorio | KdV and BO equations with bore-like data[END_REF] to the whole range s ∈ (1/2, 1] and also provides the GWP in the case s ≥ 1. On the other hand, in the case of general nonlinearity f (x), under some extra conditions concerning the values of Ψ(x) at ±∞ and the value of the integral of f (x) on the region [Ψ(-∞), Ψ(+∞)], Zhidkov [START_REF] Zhidkov | Korteweg-de Vries and nonlinear Schrödinger equations : qualitative theory[END_REF] established local well-posedness for data in H 2 (R).

In the same work, he also proved the H 1 (R) orbital stability of Kinks of equation (4.1.4) for H 2 solutions. Then, by using this stability property, he showed the global existence of H 2 solutions for small H 1 -perturbations of such Kinks. In order to prove these results, Zhidkov assumed, among other hypotheses, that Ψ (x) > 0 for all x ∈ R, and that Ψ(x) converges exponentially fast to its limits at ±∞. As we already mentioned, Theorem 5.1.1 contains (and improves) the results in [START_REF] Bona | Models for propagation of bores I : Twodimensional theory[END_REF][START_REF] Gallo | Korteweg-de Vries and Benjamin-Ono equations on Zhidkov spaces[END_REF][START_REF] Iorio | KdV and BO equations with bore-like data[END_REF][START_REF] Zhidkov | Korteweg-de Vries and nonlinear Schrödinger equations : qualitative theory[END_REF]. In particular, notice that Theorem 4.1.5 allows us to extend the existence and the stability result of Zhidkov by only considering H 1 -solutions which are H 1 -close to those Kinks. Finally, we point out that, in the case f (x) = x 2 , Theorem 5.1.1 is related to the existence problem for the KdV equation with variable coefficients, which has recently been treated by a similar approach in [START_REF] Molinet | On well-posedness for some Korteweg-de Vries type equations with variable coefficients[END_REF].

During the review process of this work the author found out that, simultaneously, in the specific case of the KdV equation, T. Laurens proved global well-posedness in H -1 (R) on the background of a smooth step-like function (see [START_REF] Laurens | KdV on an incoming tide[END_REF][START_REF] Laurens | Global well-posedness for H -1 (R) perturbations of KdV with exotic spatial asymptotics[END_REF]).

Organization of this chapter

This paper is organized as follows. In Section 5.2 we introduce all the notations that we shall use in the sequel, and then we state a series of preliminary results needed in our analysis. In Section 4.3 we prove the main apriori energy estimates for solutions and for the difference of solutions. In Section 4.4 we establish Theorem 5.1.1. Then, in Section 4.5 we sketch the proof of the LWP in the smooth case (see Theorem 3.1.2 below). Finally, in Section 4.6 we prove the global well-posedness result, i.e. Theorem 5.1.2.

Preliminaries

Basic notations

For any pair of positive numbers a and b, the notation a b means that there exists a positive constant c such that a ≤ cb. We also denote by a ∼ b when a b and b a. Moreover, for α ∈ R, we denote by α + , respectively α -, a number slightly greater, respectively lesser, than α. Furthermore, we shall occasionally use the notation F (x) to denote a primitive of the nonlinearity f (x), that is, F (s) = ´s 0 f (s )ds . Now, for u(t, x) ∈ S (R 2 ), Fu = û shall denote its space Fourier transform, whereas F t u, respectively F t,x u, shall denote its time Fourier transform, respectively space-time Fourier transform. Additionally, for s ∈ R, we introduce the Bessel and Riesz potentials of order -s, namely J s x and D s x , by (respectively)

J s x u := F -1 (1 + |ξ| 2 ) s/2 Fu and D s x u := F -1 |ξ| s Fu .

We also denote by U (t) the unitary group associated with the linear part of (5.1.2), that is, the Airy group, U (t)g := e -∂ 3 x g = F -1 e itξ 3 Fg .

On the other hand, throughout this work we consider a fixed smooth cutoff function η satisfying

η ∈ C ∞ 0 (R), 0 ≤ η ≤ 1, η [-1,1] = 1 and supp η ⊂ [-2, 2]. (4.2.1)
We define φ(ξ) := η(ξ) -η(2ξ) and, for ∈ Z, we denote by φ 2 the function given by

φ 2 (ξ) := φ 2 -ξ .
Additionally, we shall denote by ψ 2 the function given by

ψ 2 (τ, ξ) := φ 2 τ -ξ 3 for ∈ N \ {0} and ψ 1 (τ, ξ) := η(τ -ξ 3 ).
Any summations over capitalized variables such as N , L, K or M are presumed to be dyadic. Unless stated otherwise, we work with homogeneous dyadic decomposition for the spacefrequency and time-frequency variables, and nonhomogeneous decompositions for modulation variables, i.e., these variables range over numbers of the form {2 : ∈ Z} and {2 : ∈ N}, respectively. We denote these sets by D and D nh respectively. Then, with the previous notations and definitions, we have that

N ∈D φ N (ξ) = 1 for all ξ ∈ R \ {0} and supp φ N ⊂ { 1 2 N ≤ |ξ| ≤ 2N }.
In the same fashion, it also follows that

L∈D nh ψ L (τ, ξ) = 1 for all (τ, ξ) ∈ R 2 .
We define the Littlewood-Paley multipliers by the following identities

P N u := F -1 x φ N Fu , R K u := F -1 t φ K F t u Q L u := F -1 t,x ψ L F t,x u . (4.2.2)
With these definitions at hand, we introduce the operators

P ≥N := M ≥N P M , P ≤N := M ≤N P M , Q ≥L := L≥L Q L, Q ≤ L := L≤L Q L.
In addition, we borrow some notations from [START_REF] Tao | Multilinear weighted convolution of L 2 functions and applications to nonlinear dispersive equations[END_REF]. For k ≥ 2 natural number and ξ ∈ R, we denote by Γ k (ξ) the (k -1)-dimensional affine-hyperplane of R k given by

Γ k (ξ) := {(ξ 1 , ..., ξ k ) ∈ R k : ξ 1 + ... + ξ k = ξ},
endowed with the natural measure

ˆΓk (ξ) F (ξ 1 , ..., ξ k )dΓ k (ξ) := ˆRk F (ξ 1 , ..., ξ k-1 , ξ -ξ 1 -... -ξ k-1 )dξ 1 ...dξ k-1 ,
for any function F : Γ k (ξ) → C. Moreover, when ξ = 0 we shall simply denote by Γ k = Γ k (0) with the obvious modifications.

To finish this first subsection, we introduce the notation for the pseudoproduct operator that we shall repeatedly use in the sequel. Let χ be a (possibly complex-valued) measurable bounded function on R 2 . We define the operator Π = Π χ on S(R) 2 by the expression

F Π(f, g) (ξ) := ˆR f (ξ 1 )ĝ(ξ -ξ 1 )χ(ξ, ξ 1 )dξ 1 . (4.2.3) 
This bilinear operator behaves as a product operator in the sense that it satisfies the following properties

Π(f, g) = f g when χ ≡ 1, and ˆΠχ (f, g)h = ˆf Π χ 1 (g, h) = ˆΠχ 2 (f, h)g,
where χ 1 (ξ, ξ 1 ) = χ(ξ 1 , ξ) and χ 2 (ξ, ξ 1 ) = χ(ξ -ξ 1 , ξ) for all trio of functions f, g, h ∈ S(R).

Throughout this paper we shall also use pseudoproduct operators with k-entries, which are defined as in (4.2.3) with the obvious modifications.

Function spaces

For s, b ∈ R we define the Bourgain space X s,b associated with the linear part of (5.1.2) as the completion of the Schwartz space S(R 2 ) under the norm

u 2 X s,b := ˆR2 (1 + |τ -ξ 3 |) 2b (1 + |ξ|) 2s |F t,x [u](τ, ξ)| 2 dξdτ.
We recall that these spaces satisfy

u X s,b ∼ U (-t)u H s,b t,x
, where

u H s,b t,x := J s x J b t u L 2 t,x
.

Additionally, we define the frequency-enveloped spaces associated with H s (R) as follows : Let s ∈ R and κ > 1 fixed. Consider a sequence {ω N } N ∈D of positive real numbers satisfying that ω N ≤ ω 2N ≤ 2 ε ω N , for some ε > 0 such that ε < min{δ 1 , δ 2 }, where δ 1 and δ 2 are the small numbers associated with the choices we make in the hypotheses

Ψ ∈ L ∞ t W s+1 + ,∞ x and (∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ)) ∈ L ∞ t H s + x .
In other words, if we suppose

Ψ ∈ L ∞ t W s+1+δ 1 ,∞ x and (∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ)) ∈ L ∞ t H s+δ 2 x
, for some δ 1 , δ 2 > 0 small, then we assume, in particular, that ω N satisfies

ω N N δ * N →+∞ -----→ 0, δ * := min{δ 1 , δ 2 }.
Furthermore, we also assume that ω N → 1 as N → 0. Then, we define the space H s ω (R) associated with {ω N } as the completion of the Schwarz space S(R) under the norm

f 2 H s ω := N ω 2 N P N f 2 H s ∼ N ω 2 N N 2s P N f 2 L 2 .
Of course, by definition we have H s ω (R) ⊆ H s (R). Moreover, if ω N = 1 for all N ∈ D, then H s ω = H s . The goal we seek by introducing these frequency-enveloped spaces is to be able to prove the continuity part in Theorem 5.1.1.

Finally, we define the restriction-in-time version of all of the above spaces. Let T > 0 fixed, and consider F to be any normed space of space-time functions. We define its restriction in time version F T as the space of functions u :

[0, T ] × R → R satisfying u F T := inf ũ F : ũ : R × R → R, with ũ = u on [0, T ] × R < +∞.

Extension operator

In this subsection we introduce the extension operator that we shall use in the sequel. We borrow this definition from [START_REF] Molinet | Unconditional uniqueness for the modified Korteweg-de Vries equation on the line[END_REF]. The key property of this operator is that it defines a bounded operator from

L ∞ T H s ω ∩ X s-1,1 T ∩ L 2 T W r,∞ x into L ∞ t H s ω ∩ X s-1,1 ∩ L 2 t W r,∞
x with r < s.

Definition 4.2.1. Let T ∈ (0, 2) and u : [0, T ] × R → R given. We define the extension operator ρ T by the following identity

ρ T [u](t) := U (t)η(t)U (-µ T (t))u(µ T (t)), ( 4 

.2.4)

where η corresponds to the function given in (5.2.1) and µ T is the following continuous function

µ T (t) :=      0 if t ≤ 0, t if t ∈ (0, T ), T if t ≥ T.
Remark 4.2.1. Notice that, directly from the definition, we have ρ T [u](t, x) = u(t, x) for all (t, x) ∈ [0, T ] × R.

The next lemma give us the main properties of this operator (see [START_REF] Molinet | Unconditional uniqueness for the modified Korteweg-de Vries equation on the line[END_REF]). Then, the following holds :

ρ T : L ∞ T H s ω ∩ X θ,b T ∩ L 2 T W r,∞ x → L ∞ t H s ω ∩ X θ,b ∩ L 2 t W r,∞ x .
In other words, we have the following inequality

ρ T [u] L ∞ t H s ω + ρ T [u] X θ,b + ρ T [u] L 2 t W r,∞ x u L ∞ T H s ω + u X θ,b T + u L 2 T W r,∞ x .
Moreover, the implicit constant involved in the latter inequality can be chosen independent of (T, s, r, θ, b).

Resolution space

From now on, for any s ∈ R and any sequence {ω N } N ∈D satisfying the hypotheses in Section 4.2.2, we define the resolution space M s ω being

M s ω := L ∞ t H s ω ∩ X s-1,1 ,
endowed with the natural norm

u M s ω := u L ∞ t H s ω + u X s-1,1 . (4.2.5)
When ω N ≡ 1 we simply write M s = M s ω . Before going further we recall the following basic lemma concerning Sobolev spaces. Lemma 4.2.3 (See [START_REF] Adams | Sobolev spaces[END_REF], for example). Let a, b, c ∈ R a triplet of real numbers satisfying

a ≥ c, b ≥ c a + b ≥ 0 and a + b -c > n 2 . Then, the map (f, g) → f •g is a continuous bilinear form from H a (R n )×H b (R n ) into H c (R n ).
The following lemma ensures us that L ∞ T H s ω -solutions also belong to M s ω,T , whereas the difference of two solutions in L ∞ T H s x take place in M s-1 T . Lemma 4.2.4. Let s > 1/2 and T ∈ (0, 2) given. Let u ∈ L ∞ ((0, T ), H s ω (R)) be a solution to equation (4.1.4) with initial data u 0 ∈ H s ω (R). Then, u ∈ M s ω,T and the following inequality holds

u M s ω,T 1 + T 1/2 F 1 u L ∞ T H s x , Ψ L ∞ T W s + ,∞ x u L ∞ T H s ω + T 1/2 ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) L ∞ T H s-1 x , (4.2 

.6)

where F 1 : R 2 → R + is a smooth function. Moreover, for any pair u, v ∈ L ∞ ((0, T ), H s (R)) solutions to equation (4.1.4) associated with initial data u 0 , v 0 ∈ H s (R), the following holds :

u -v M s-1 T 1 + T 1/2 F 2 u L ∞ T H s x , v L ∞ T H s x , Ψ L ∞ T W s + ,∞ x u -v L ∞ T H s-1 x , (4.2.7) 
for some smooth function F 2 : R 3 → R + .

Démonstration. First of all, we have to extend the functions u(t) and v(t) from (0, T ) to the whole line R. Hence, we benefit from the extension operator ρ T defined in (4.2.4), which we use to take extensions ũ := ρ T [u], ṽ := ρ T [v] defined on R 2 , both supported in (-2, 2). For the sake of notation, we drop the tilde in the sequel.

Once we have extended (in time) both solutions, comparing inequality (4.2.6) with the definition of the M s T norm in (4.2.5), it is clear that it is enough to estimate the X s-1,1 -norm. In fact, let us start out by writing the solution in its Duhamel form

u(t) = U (t)u 0 + c ˆt 0 U (t -t ) ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (u + Ψ) dt .
Then by using standard linear estimates in Bourgain spaces we obtain

u X s-1,1 T u L ∞ T H s-1 x + ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) X s-1,0 T + ∂ x (f (u + Ψ) -f (Ψ)) X s-1,0 T u L ∞ T H s-1 x + T 1/2 ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) L ∞ T H s-1 x (4.2.8) + T 1/2 f (u + Ψ) -f (Ψ) L ∞ T H s
x . Now, from classical Sobolev estimates for products it is not difficult to see that, there exists a constant c > 0 such that, for k, m ∈ N, with k ≥ m,

g k-m h m H s ≤ c k g k-m H s h m W s + ,∞ , s > 1/2. ( 4.2.9) 
Then, to control the contribution of the latter term in (4.2.8), it is enough to use Taylor expansion, from where we get

f (u + Ψ) -f (Ψ) L ∞ T H s x ∞ k=1 k-1 m=0 c k |a k | k m u k-m L ∞ T H s x Ψ m L ∞ T W s + ,∞ x u L ∞ T H s x ∞ k=1 kc k |a k | u L ∞ T H s x + Ψ L ∞ T W s + ,∞ x k-1 .
This concludes inequality (4.2.6) thanks to the hypothesis on the coefficients a k in (4.1.5). Now we turn to show (4.2.7). In order to do so, let us define w := u -v. Notice that w(t, x) solves the following equation

∂ t w + ∂ x ∂ 2 x w + f (u + Ψ) -f (v + Ψ) = 0.
Thus, writing w(t, x) in its Duhamel form, and then using standard linear estimates for Bourgain spaces, we get

w X s-2,1 T w L ∞ T H s-2 x + T 1/2 f (u + Ψ) -f (v + Ψ) L ∞ T H s-1 x .
Then, by using Taylor expansion, proceeding in a similar fashion as above, it is not difficult to see that

f (u + Ψ) -f (v + Ψ) L ∞ T H s-1 x w L ∞ T H s-1 x ∞ k=1 kc k |a k | u L ∞ T H s x + v L ∞ T H s x + Ψ L ∞ T W s + ,∞ x k-1 ,
where we have used again (4.2.9), as well as Lemma 4.2.3. The proof is complete.

Preliminary lemmas

For T > 0 fixed, we consider 1 T (t), the characteristic function on [0, T ]. Then, for η given in (5.2.1), and R > 0, we decompose 1 T (t) as

1 T (t) = 1 low T,R (t) + 1 high T,R (t), where F t 1 low T,R (τ ) = η τ R F t (1 T )(τ ). (4.2.10)
The following lemma gives us some basic estimates that shall be particularly convenient to take advantage of the above decomposition along with Bourgain spaces.

Lemma 4.2.5 (See [START_REF] Molinet | Improvement of the energy method for strongly nonresonant dispersive equations and applications[END_REF]). For any R > 0, T > 0 and q ≥ 1 the following bounds hold :

1 high T,R L q min{T, R -1 } 1/q and 1 low T,R L ∞ 1. (4.2.11)
Moreover, if L R, then for all u ∈ L 2 (R 2 ), the following inequality holds :

Q L 1 low T,R u L 2 Q ∼L u L 2 .
Furthermore, for any s ∈ R and any

p ∈ [1, ∞], the operator Q ≤L is bounded in L p t H s x uniformly in L.
Démonstration. We point out that the only part which is not strictly contained in [START_REF] Molinet | Improvement of the energy method for strongly nonresonant dispersive equations and applications[END_REF] is given by the first inequality in (4.2.11). However, this proof follows very similar lines, except for one straightforward step, and hence we shall be brief. In fact, a direct computation yields

1 high T,R L q = ˆR ˆR 1 T (t) -1 T t -s R F -1 η(s)ds q dt 1/q ≤ ˆR ˆR 1 T (t) -1 T t -s R q F -1 η(s) q dt 1/q ds ˆR min T, |s| R 1/q F -1 η(s) ds min T, R -1 1/q ,
where to obtain the first inequality we have used Minkowski integral inequality. The proof is complete.

Lemma 4.2.6 ([96]

). Let k ≥ 3 be a fixed parameter. Consider L 1 , ..., L k ≥ 1 and N 1 , ..., N k > 0 to be a list of 2k dyadic numbers. Consider {u i } k i=1 ⊂ S (R 2 ) all of them being real-valued, and let χ ∈ L ∞ (R 2 ; C). Additionally, assume that

1 N 1 ≥ N 2 ≥ N 3 ≥ 2 9 k max{N 4 , ..., N k }.
Then, the following identity holds

ˆR2 Π χ Q L 1 P N 1 u 1 , Q L 2 P N 2 u k i=3 Q L i P N i u = 0, unless L max ≥ (2 9 k) -1 N 1 N 2 N 3 , where L max := max{L 1 , ..., L k }.
Finally, we prove some basic lemmas concerning the application of Hölder inequality with some particular instances of pseudo-product operators that shall appear in the next section.

Lemma 4.2.7. Let k ≥ 2 be a fixed natural number. Consider k functions u 1 , ..., u k ∈ L 2 (R), such that each of them is supported in the annulus {|ξ i | ∼ N i }. Additionally consider a continuous function a ∈ C(R k ). Then, the following inequality holds

ˆΓk a(ξ 1 , ..., ξ k )u 1 (ξ 1 )...u k (ξ k )dΓ k (N 3 ...N k ) 1/2 a L ∞ (Ω k ) k i=1 u i L 2 ,
where Ω k stands for the set

Ω k := (ξ 1 , ...ξ k ) ∈ Γ k : ∀i = 1, ..., k, ξ i ∈ supp u i .
Démonstration. Let us start by assuming that k ≥ 3, since the case k = 2 is direct. In fact, first of all we get rid of a(ξ 1 , ..., ξ k ) simply by bounding as follows

ˆΓk a(ξ 1 , ..., ξ k )u 1 (ξ 1 )...u k (ξ k )dΓ k ≤ a L ∞ (Ω k ) ˆΓk |u 1 (ξ 1 )...u k (ξ k )|dΓ k .
Then, it is enough notice that we can bound the latter integral in the above inequality by

ˆΓk |u 1 (ξ 1 )...u k (ξ k )|dΓ k ≤ sup ξ 3 ,...,ξ k ˆR |u 1 (-ξ 2 -... -ξ k )u 2 (ξ 2 )|dξ 2 × k i=3 ˆR |u i (ξ)|dξ
Finally, noticing that, by Cauchy-Schwarz inequality and the supports hypotheses, we have

ˆR |u i (ξ)|dξ N 1/2 i u i L 2 and ˆR u 1 (-ξ 2 -.... -ξ k )u 2 (ξ 2 )dξ 2 u 1 L 2 u 2 L 2 .
The proof is complete.

Lemma 4.2.8. Let k ≥ 2 and m ∈ [2, k + 1] two fixed natural numbers. Additionally, consider a family of dyadic numbers {N i } k+2 i=1 , all of them being fixed. Let u 1 , ..., u k+1 ∈ L 2 (R) such that each of them has Fourier transform supported on the ball {|ξ i | ≤ N i }, respectively. Furthermore, assume that M = max{N 3 , ..., N k+1 }. Then, the following holds

ˆΓk+1 a(ξ 1 , ..., ξ k )û 1 (ξ 1 )...û k+1 (ξ k+1 )dΓ k+1 M u 1 L 2 u 2 L 2 k+1 i=3 u i L ∞ ,
where the implicit constant depends polynomially on k and a(ξ 1 , ..., ξ k ) stands for the following quantity

a(ξ 1 , ..., ξ k ) := m i=1 φ 2 N k+2 (ξ i )ξ i , where ξ k+1 = -ξ 1 -... -ξ k . ( 4 

.2.12)

Démonstration. In fact, first of all notice that, except for the terms associated with i = 1, 2 in the definition of a(ξ 1 , ..., ξ k ), the proof follows directly from Plancherel Theorem and Hölder inequality. Indeed, going back to physical-variables and then using Hölder inequality as well as Bernstein inequalities, we obtain

ˆΓk+1 a(ξ 1 , ..., ξ k ) -φ 2 N k+2 (ξ 1 )ξ 1 -φ 2 N k+2 (ξ 2 )ξ 2 û1 (ξ 1 )...û k+1 (ξ k+1 )dΓ k+1 u 1 L 2 u 2 L 2 m j=3 ∂ x P 2 N k+2 u j L ∞ k+1 i=3,i =j u i L ∞ M u 1 L 2 u 2 L 2 k+1 i=3 u i L ∞ .
Therefore, we can restrict ourselves to study the above integral when replacing a(ξ 1 , ..., ξ k ) by the following symbol

a(ξ 1 , ..., ξ k ) := φ 2 N k+2 (ξ 1 )ξ 1 + φ 2 N k+2 (ξ 2 )ξ 2 .
Next, we split this symbol into two parts as follows

a(ξ 1 , ..., ξ k ) = φ 2 N k+2 (ξ 1 ) ξ 1 + ξ 2 -φ 2 N k+2 (ξ 1 ) -φ 2 N k+2 (ξ 2 ) ξ 2 =: a 1 (ξ 1 , ..., ξ k ) + a 2 (ξ 1 , ..., ξ k ).
Notice now that due to the additional restriction imposed by Γ k+1 (that is ξ 1 + ... + ξ k+1 = 0), in this domain we can rewrite a 1 (ξ 1 , ..., ξ k ) as

a 1 (ξ 1 , ..., ξ k ) = -φ 2 N k+2 (ξ 1 )(ξ 3 + ... + ξ k+1 ).
Hence, this case also follows from the above analysis. Therefore, it only remains to consider the case of a 2 . For the sake of clarity we shall assume now that k = 2, the proof for the general case shall be clear from this one. In fact, by using Plancherel Theorem, integration by parts and then Hölder inequality we immediately obtain that

ˆΓ3 a 2 (ξ 1 , ξ 2 )û 1 (ξ 1 )û 2 (ξ 2 )û 3 (ξ 3 )dΓ 3 = ˆR u 2,x P 2 N k+2 u 1 -u 1 P 2 N k+2 u 2,x u 3 dx = ˆR u 2 ∂ x u 3 P 2 N k+2 u 1 -P 2 N k+2 (u 1 u 3 ) dx u 1 L 2 u 2 L 2 ∂ x u 3 L ∞ + u 2 L 2 [P 2 N k+2 ∂ x , u 3 ]u 1 L 2 .
Then, since ∂ x u 3 L ∞ M u 3 L ∞ , it only remains to control the latter factor of the above inequality. In order to do that, first notice that by direct computations we can write

[P 2 N k+2 ∂ x , u 3 ]u 1 (x) = ˆR K(x, y)u 1 (y)dy,
where the kernel K(x, y) can be written as

K(x, y) = icN k+2 2 ˆR e iN k+2 (x-y)η ηφ 2 (η) u 3 (y) -u 3 (x) dη,
for some constant c ∈ R. Thus, as an application of the Mean Value Theorem it is not difficult to see that there exists a function g ∈ L 1 (R) such that

K(x, y) N k+2 ∂ x u 3 L ∞ g N k+2 (x -y) .
Notice that the latter inequality implies, in particular, the following uniform bound

sup y∈R ˆR K(x, y) dx + sup x∈R ˆR K(x, y) dy ∂ x u 3 L ∞ ,
where the implicit constant does not depends on N k+2 . Therefore, applying Schur lemma, and then Bernstein inequality in the resulting right-hand side, we obtain that

[P 2 N k+2 ∂ x , u 3 ]u 1 L 2 u 1 L 2 ∂ x u 3 L ∞ M u 1 L 2 u 3 L ∞ ,
what concludes the proof of the lemma.

Strichartz estimates

In this sub-section we seek to prove a refined Strichartz estimate for solutions to the linear Airy equation with a general source term. The proof we present here is just a slight modification of the arguments already shown in [START_REF] Koch | On the local well-posedness of the Benjamin-Ono equation in H s (R)[END_REF][START_REF] Molinet | Unconditional uniqueness for the modified Korteweg-de Vries equation on the line[END_REF][START_REF] Molinet | On well-posedness for some dispersive perturbations of Burgers' equation[END_REF]. Before getting into the details, let us recall the classical smoothing effect derived in [START_REF] Kenig | Oscillatory integrals and regularity of dispersive equations[END_REF] that shall be useful in the sequel

e -t∂ 3 x D 1/4 x u 0 L 4 t L ∞ x u 0 L 2 x . (4.2.13)
Now we are ready to state our refined Strichartz estimate.

Lemma 4.2.9. Let T ∈ (0, 1] and consider δ ≥ 0 to be a fixed parameter. Let u(t, x) to be any solution defined on [0, T ] to the following linear equation

∂ t u + ∂ 3 x u = F. (4.2.14)
Then, there exists κ 1 , κ 2 > 0 such that, for any θ > 0, the following inequality holds

u L 2 T L ∞ x T κ 1 J -1 4 (1-δ)+θ x u L ∞ T L 2 x + T κ 2 J -1 4 (1+3δ)+θ x F L 2 T L 2 x .
(4.2.15)

Démonstration. Let u(t, x) be a solution to equation (4.2.14) defined on [0, T ]. We use a nonhomogeneous Littlewood-Paley decomposition for the solution, that is, we write u = N u N , where u N = P N u, and N is a nonhomogeneous dyadic number. In the sequel we shall also use the notation F N for P N F . At this point it is important to notice that, on the one-hand, from Minkowski inequality we know that

u L 2 T L ∞ x ≤ N u N L 2 T L ∞ x sup N N θ u N L 2 T L ∞ x ,
for any θ > 0. While on the other hand, by using the low-frequency projector P ≤1 , from Hölder and Bernstein inequalities we see that

P ≤1 u L 2 T L ∞ x T 1/2 P ≤1 u L ∞ T L 2 x .
Then, from the inequalities above we infer that it is enough to show that, for any δ > 0 and any N > 1 dyadic number, the following holds

u N L 2 T L ∞ x T κ 1 D -1 4 (1-δ) x u N L ∞ T L 2 x + T κ 2 D -1 4 (1+3δ) x F N L 2 T L 2 x . (4.2.16)
Now, in order to prove (4.2.16), we chop the time-interval [0, T ] into several pieces of length T κ N -δ , where κ ∈ [1, 2) stands for a small number that shall be fixed later. In other words, we have [0, T ] = ∪ j∈J I j , where

I j := [a j , b j ], |I j | ∼ T κ N -δ , and #J ∼ T 1-κ N δ .
On the other hand, notice that u N (t) solves the integral equation

u N (t) = e -(t-a j )∂ 3 x u N (a j ) + ˆt a j e -(t-t )∂ 3 x F N (t )dt ,
for all t ∈ I j . Therefore, by using the classical Strichartz estimate (4.2.13), as well as Hölder and Bernstein inequalites, we obtain

u N L 2 T L ∞ x =   j u N 2 L 2 I j L ∞ x   1/2 ≤ T κ N -δ 1/4   j u N 2 L 4 I j L ∞ x   1/2 T κ N -δ 1/4   j D -1/4 x u N (a j ) 2 L 2 x   1/2 + T κ N -δ 1/4   j ˆt a j e -(t-t )∂ 3 x F N (t )dt 2 L 4 I j L ∞ x   1/2 T κ N -δ ) 1/4 (T 1-κ N δ ) 1/2 D -1/4 x u N L ∞ T L 2 x + T κ N -δ 1/4   j T κ N -δ ˆIj D -1/4 x F N 2 L 2 x dt   1/2 T 1/2-κ/4 D -1/4+δ/4 x u N L ∞ T L 2 x + T 3κ/4 D -1/4-3δ/4 x F N L 2 T L 2 x ,
what concludes the proof of (4.2.15) by choosing, for example, κ = 1.

Energy estimates 4.3.1 A priori estimates for solutions

The goal of this section is to prove the following proposition that give us the key improved energy estimate for smooth solutions of (4.1.4).

Proposition 4.3.1. Let s > 1/2 and T ∈ (0, 2) both fixed. Consider u ∈ L ∞ ((0, T ), H s ω (R)) to be a solution to equation (4.1.4) associated with an initial data u 0 ∈ H s ω (R). Then, the following inequality holds :

u 2 L ∞ T H s ω u 0 2 H s ω + T u L ∞ T H s ω ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) L ∞ T H s + x + T 1/4 u 2 L ∞ T H s ω × (4.3.1) × Q * u L ∞ T H 1/2 + x , Ψ L ∞ T W s+1 + ,∞ x , ∂ t Ψ L ∞ t,x , ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) L ∞ T H -1/2 + x
, where Q * : R 4 → R + is a smooth function.

Démonstration. First of all, in order to take advantage of Bourgain spaces, we have to extend the function u(t) from (0, T ) to the whole line R. Hence, we benefit from the extension operator ρ T defined in (4.2.4), which we use to take an extension ũ := ρ T [u] defined on R 2 , such that ũ M ≤ 2 u M T . For the sake of notation, we drop the tilde in the sequel. Now we seek to prove (4.3.1). We begin by applying the frequency projector P N to equation (4.1.4), with N > 0 dyadic but arbitrary. Notice that, on account of Remark 4.1.2, we have

P N u ∈ C([0, T ], H ∞ ) and ∂ t P N u ∈ L ∞ ((0, T ), H ∞ ).
Therefore, taking the L 2

x -scalar product of the resulting equation against P N u, multiplying the result by ω 2 N N 2s and then integrating on (0, t) with 0 < t < T , we obtain

ω 2 N N 2s P N u(t) 2 L 2 = ω 2 N N 2s P N u 0 2 L 2 -ω 2 N N 2s ˆt 0 ˆR P N ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (u + Ψ) P N u.
Thus, by applying Bernstein inequality we are lead to

P N u(t) 2 H s ω P N u 0 2 H s ω + ω 2 N N 2s sup t∈(0,T ) ˆt 0 ˆR P N ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (u + Ψ) P N u .
Thus, from the previous computation we infer that, in order to conclude the proof of the proposition, we need to control the sum over all N > 0 dyadic of the second term in the latter inequality. We divide the analysis into several steps, each of which dedicated to bound one of the following integrals :

I := N >0 ω 2 N N 2s sup t∈(0,T ) ˆt 0 ˆR ∂ x P N (f (u + Ψ) -f (Ψ))P N u , (4.3.2) 
II := N >0 ω 2 N N 2s sup t∈(0,T ) ˆt 0 ˆR P N (∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ))P N u .
Before going further we recall that due to the analyticity hypothesis (4.1.5) we can write

f u(t, x) + Ψ(t, x) = ∞ k=0 a k u(t, x) + Ψ(t, x) k and f Ψ(t, x) = ∞ k=0 a k Ψ k (t, x).
With this in mind, from now on, for any n, m ∈ N, we shall denote by I u n and I u n Ψ m the quantity I above once f (u + Ψ) is replaced by u k and u k Ψ m respectively, that is,

I u k := N >0 ω 2 N N 2s sup t∈(0,T ) ˆt 0 ˆR ∂ x P N (u k )P N u , (4.3.3) I u k Ψ m := N >0 ω 2 N N 2s sup t∈(0,T ) ˆt 0 ˆR ∂ x P N (u k Ψ m )P N u . (4.3.4)
We point out that, in the sequel, we shall systematically omit most of the factors depending on k by hiding them in a k -sign. This sign is defined exactly as " " in Section 5.2 but allowing the constant c to depend on k. Notice that, in order to make sense of the sum (in k) of all the following bounds, we only need to be careful that the final implicit constant depends at most as c k for some constant c > 0.

Step 1 : We begin by controlling II right away. In fact, by using hypothesis (4.1.7), we infer that it is enough to use Cauchy-Schwarz and Bernstein inequalities, from where we obtain

II ˆT 0 N >0 ω 2 N N 2s P N ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) L 2 x P N u(s, •) L 2 x ds T u L ∞ T H s ω ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) L ∞ T H s + x ,
where we have used the hypotheses made on ω N in Section 4.2.2. This concludes the proof of the first case.

Step 2 : Now we aim to control the general case for I u k in (5.5.7) for all k ≥ 1, that is, we aim to control the following quantity

I u k = N >0 ω 2 N N 2s sup t∈(0,T ) ˆt 0 ˆΓk+1 a k (ξ 1 , ..., ξ k+1 )û(s, ξ 1 )...û(s, ξ k+1 )dΓ k+1 ds , (4.3.5)
where the symbol a k (ξ 1 , ..., ξ k+1 ) is explicitly given by

a k ξ 1 , ..., ξ k+1 := iφ 2 N (ξ k+1 )ξ k+1 .
We point out that in the previous identity (4.3.5) we have used both, the fact that u(t, •) is real-valued as well as the fact that φ N is even. Then, in order to deal with this case, we symmetrize the multiplier a(ξ 1 , ..., ξ k+1 ), that is, from now on we consider

a k (ξ 1 , ..., ξ k+1 ) := a k (ξ 1 , ..., ξ k+1 ) sym = i k + 1 k+1 i=1 φ 2 N (ξ i )ξ i . Notice that, since φ 2 N (ξ 1 )ξ 1 + φ 2 N (ξ 2 )ξ 2 ≡ 0 on Γ 2
, the case k = 1 immediately vanishes, and hence, from now on we can assume that k ≥ 2. Thus, by using frequency decomposition and the above symmetrization, the problem of bounding (4.3.5) is reduced to control the following quantity

N >0 ω 2 N N 2s sup t∈(0,T ) ˆt 0 N 1 ,...,N k+1 ˆΓk+1 a k (ξ 1 , ..., ξ k+1 ) k+1 i=1 φ N i (ξ i )û(t , ξ i )dΓ k+1 dt . (4.3.6)
Moreover, by symmetry, without loss of generality we can always assume that2 

N 1 ≥ N 2 ≥ N 3 ≥ N 4 = max{N 4 , ..., N k+1 }.
Before going further, note that the case N 1 can be treated right away. In fact, from Lemma 5.5.3 and Bernstein inequality we see that3 

N 1 ω 2 N N 2s sup t∈(0,T ) ˆt 0 N 1 ,...,N k+1 ˆΓk+1 a k (ξ 1 , ..., ξ k+1 ) k+1 i=1 φ N i (ξ i )û(t , ξ i )dΓ k+1 dt k ˆT 0 N 1 ω 2 N N 2s N 1 ,...,N k+1 ˆΓk+1 a k (ξ 1 , ..., ξ k+1 ) k+1 i=1 φ N i (ξ i )û(t , ξ i )dΓ k+1 dt k ˆT 0 N 1 ,...,N k+1 ω 2 N N 3 P N 1 u(t , •) L 2 x P N 2 u(t , •) L 2 x k+1 i=3 N 1/2 i P N i u(t , •) L 2 x dt k ˆT 0 u(t , •) 2 H s ω u(t , •) k-1 H 1/2 + x dt k T u 2 L ∞ T H s ω u k-1 L ∞ T H 1/2 + x .
Therefore, in the sequel we just need to consider the sum over frequencies N 1. More precisely, from now on we assume that N ≥ 8 8 k. On the other hand, from the explicit form of a k , it is not difficult to see that a k ≡ 0, unless N 1 ≥ 1 2 N . Furthermore, due to the additional constraint 4 imposed by Γ k+1 , we must also have that N 2 ≥ 1 2k N 1 . Therefore, roughly (up to a constant involving k), we have that N 1 ∼ N 2 with 5 N 1 ≥ 1 2 N . Then, we split the analysis into three possible cases. First, we divide the space into two regions, namely either N 3 ≥ 2 9 kN 4 or N 3 < 2 9 kN 4 .

(4.3.7)

Then, only for the second case, we split the space again into two regions, namely

N 1 < 8kN and N 1 ≥ 8kN. (4.3.8)
The only reason why we separate both cases in (4.3.8) is to be able to justify how we sum over the set N 1, they can certainly be treated simultaneously though. We choose to separate them for the sake of clarity.

Before getting into the details, let us introduce some notation for each of the regions under study. From now on we denote by 6 Notice that all of the above regions require that k ≥ 3 to be well-defined. However, we point out that the case k = 2 shall follow directly from the analysis that we shall carry out to deal with the first region above, that is, the region 8 N 1 .

Step 2.1 : In this first sub-step we seek to deal with the first case in (5.5.12), that is, to control the contribution of the region N 3 ≥ 2 9 kN 4 . We aim to take advantage of classical Bourgain estimates. In order to do so, we begin using the decomposition given in (5.1.4), from where we infer that it is enough to control the following quantities

G high 1,R := N 1 N 1 ω 2 N N 2s sup t∈(0,T ) ˆR2 Π a k 1 high t,R P N 1 u, 1 t P N 2 u, ..., P N k u P N k+1 u , 4 
. By this we mean the condition ξ1 + .... + ξ k+1 = 0. In the sequel, each time we mention "the constraint imposed by Γ k " we refer to the previous condition with k frequencies.

5. Notice that, in the sequel, we shall repeatedly use these relations to absorb factors like N s with PN 2 u L 2 , in the sense that we shall write N s PN 2 u L 2 k PN 2 u H s . Due to the above relations, in the worst case this type of bounds shall involve a factor k s due to the use of N2 ∼ N .

6. Recall that we are also assuming that N1 ≥ N2 ≥ N3 ≥ N4 = max{N4, ..., N k+1 }. 7. That is, the quantity obtained once restricting the inner sum in (5.5.14) to N 1 and N 2 , respectively. 8. In other words, roughly speaking, when k = 2 we could think of N4 as being equal to 0, and hence the relation that defines N 1 is always satisfied. Hence, if k = 2, we only have one case, which corresponds to

N 1 . G low,high 1,R := N 1 N 1 ω 2 N N 2s sup t∈(0,T ) ˆR2 Π a k 1 low t,R P N 1 u, 1 high t,R P N 2 u, P N 3 u, ..., P N k u P N k+1 u , G low,low 1,R := N 1 N 1 ω 2 N N 2s sup t∈(0,T ) ˆR2 Π a k 1 low t,R P N 1 u, 1 low t,R P N 2 u, P N 3 u, ..., P N k u P N k+1 u ,
where R stands for a large real number that shall be fixed later. For the sake of clarity we split the analysis into two steps. Before getting into it, let us recall the definition of the resonant relation for (k + 1)-terms, which is given by

Ω k (ξ 1 , ..., ξ k+1 ) = ξ 3 1 + ... + ξ 3 k+1 .
We emphasize that, as an abuse of notation, sometimes we also write Ω k with only k entries. However, in that case, Ω k is given by ξ

3 1 + ... + ξ 3 k -(ξ 1 + ... + ξ k ) 3 .
Notice that both definition are equivalent due to the constraint imposed by Γ k .

Step 2.1.1 : We begin by considering the case of G high 1,R . The idea is to take advantage of the operator 1 high t,R by using Lemma 4.2.5. In fact, by choosing

R(N, N 1 , ..., N k+1 ) := N 1 N 3 , (4.3.9) 
we can bound G high 1,R by using the first inequality in Lemma 4.2.5, Lemma 5.5.3, as well as Sobolev's embedding, in the following fashion

G high 1,R k N 1 N 1 T 1/4 ω 2 N N 2s 1 high T,R L 4/3 ˆR Π a k P N 1 u, ..., P N k u P N k+1 u L ∞ k N 1 N 1 T 1/4 ω 2 N N 2s N 3 R -3/4 P N 1 u L ∞ t L 2 x P N 2 u L ∞ t L 2 x k+1 i=3 P N i u L ∞ t,x k N 1 N 1 T 1/4 N -1/2 1 P N 1 u L ∞ t H s ω P N 2 u L ∞ t H s ω k+1 i=3 min N 1 2 i , N -(0 + ) i P N i u L ∞ t H 1/2 + x k T 1/4 u 2 L ∞ t H s ω u k-1 L ∞ t H 1/2 + x
, where we have used the fact that, thanks to the hypothesis on ω N in Section 4.2.2, we have the inequality ω N /ω N i 1, i = 1, 2. To finish this first case, we point out that, thanks to the operator 1 high t,R acting on the factor P N 2 u, the same estimates also hold for G low,high 1,R .

Step 2.1.2 : Now we consider the last term in the decomposition, that is, G low,low 1,R

. In fact, first of all, for the sake of notation let us define the following functional

I u 1 , ..., u k+1 ) := N 1 N 1 ω 2 N N 2s sup t∈(0,T ) ˆR2 Π a k u 1 , ..., u k u k+1 .
Then, we claim that, due to the relationship between the frequencies belonging to N 1 , the resonant relation satisfies

Ω k (ξ 1 , ..., ξ k ) ∼ N 1 N 2 N 3 .
In fact, let us start by recalling that, due to the additional constraint imposed by Γ k+1 , we have the relation ξ 1 + ... + ξ k+1 = 0. Then, by using the bound N 3 > 2 9 kN 4 , we deduce with respect to modulation variables in the following fashion

Ω k (ξ 1 , ..., ξ k ) = ξ 3 1 + ξ 3 2 + ξ 3 3 + ... + ξ 3 k+1 = ξ 3 2 + ξ 3 3 -(ξ 2 + ξ 3 + ... + ξ k+1 ) 3 + O(N 3 4 ) = 3 (ξ 2 + ξ 3 )ξ 2 ξ 3 + O(N 2 1 N 4 ) = 3 ξ 1 ξ 2 ξ 3 + O(N 2 1 N 4 ) ∼ N 1 N 2 N 3 . ( 4 
G low,low 1,R ≤ I Q N * 1 low t,R P N 1 u, 1 low t,R P N 2 u, P N 3 u, ..., P N k+1 u + I Q N * 1 low t,R P N 1 u, Q N * 1 low t,R P N 2 u, P N 3 u, ..., P N k+1 u + I Q N * 1 low t,R P N 1 u, Q N * 1 low t,R P N 2 u, Q N * P N 3 u, ..., P N k+1 u + ... + I Q N * 1 low t,R P N 1 u, Q N * 1 low t,R P N 2 u, Q N * P N 3 u, ..., Q N * P N k+1 u =: I 1 + ... + I k+1 ,
where N * stands for N * := N 1 N 2 N 3 . At this point it is important to notice that, since in this case we have N 2 ≥ 1 8 N 1 , then we must also have that N * N 1 N 3 = R, what allows us to use the last inequality in Lemma 4.2.5. Thus, bounding in a similar fashion as before, by using Hölder and Bernstein inequalities, as well as Lemma 4.2.5, Lemma 5.5.3 and classical Bourgain estimates, we obtain

I 1 k N 1 N 1 ω 2 N N 2s N 3 Q N * 1 low T,R P N 1 u L 2 t L 2 x 1 low T,R P N 2 u L 2 t L 2 x k+1 i=3 P N i u L ∞ t L ∞ x k N 1 N 1 N (-1) + 2 Q N * 1 low T,R P N 1 u X s-1,1 1 low T,R L 2 × × P N 2 u L ∞ t H s x k+1 i=3 min{N 1/2 i , N -(0 + ) i } P N i u L ∞ t H 1/2 + x k T 1/2 u X s-1,1 u L ∞ t H s x u k-1 L ∞ t H 1/2 + x .
Notice that, we have absorbed ω N with N -ε 2 thanks to the assumptions made in Section 4.2.2. Moreover, it is not difficult to see that, by following the same lines (up to trivial modifications), we can also bound I 2 , from where we obtain the same bound. On the other hand, to control I 3 we use again both Lemma 4.2.5 and 5.5.3, as well as Hölder and Bernstein inequalities, from where we obtain

I 3 k N 1 N 1 ω 2 N N 2s N 3 Q N * 1 low T,R P N 1 u L 2 t L 2 x × × Q N * 1 low T,R P N 2 u L ∞ t L 2 x Q N * P N 3 u L 2 t L ∞ x k+1 i=4 P N i u L ∞ t L ∞ x k N 1 N 1 N (-1) + 2 1 low T,R L 2 P N 1 u L ∞ t H s x P N 2 u L ∞ t H s x min{N 1 - 3 N -1 1 , N -(0 + ) 3 }× × Q N * P N 3 u X (-1/2) + ,1 k+1 i=4 min{N 1/2 i , N -(0 + ) i } P N i u L ∞ t H 1/2 + x k T 1/2 u 2 L ∞ t H s x u X (-1/2) + ,1 u k-2 L ∞ t H 1/2 + x .
Notice that all the remaining cases I i , i = 4, ..., k + 1, follow very similar lines to the latter case (up to trivial modifications), and they provide exactly the same bound. We omit the proof of these cases.

Step 2.2 : Now we aim to deal with the region N 1 < 8kN . In fact, in this case it is enough to notice that, combining both, the hypotheses and the additional constraint imposed by Γ k+1 , we can write 9

N 1 ∈ [ 1 2 N, 4kN ] and N 2 ∈ [ 1 2k N 1 , N 1 ]
. Therefore, up to a factor k, we deduce that N 1 ∼ N and N 2 ∼ N . Hence, by using Hölder and Bernstein inequalities, as well as Lemma 5.5.3, we get that

|G 2 | k ˆT 0 N 1 N 2 ω 2 N N 2s ˆΓk+1 a k (ξ 1 , ..., ξ k+1 ) k+1 i=1 φ N i (ξ i )û(s, ξ i )dΓ k+1 ds k ˆT 0 N 1 N 2 min{N 3 , N -(0 + ) 3 } P N 1 u(s, •) H s ω P N 2 u(s, •) H s ω J 1/2 + x P N 3 u(s, •) L ∞ x × × J 1/2 + x P N 4 u(s, •) L ∞ x k+1 i=5 min N 1/2 i , N -(0 + ) i P N i u(s, •) H 1/2 + x ds k u 2 L ∞ T H s ω J 1/2 + x u 2 L 2 T L ∞ x u k-3 L ∞ T H 1/2 + x .
We emphasize that, in this case, to sum over N 1 we have used the fact that, for any function f ∈ H s ω (R), the sequence { P 2 n f H s ω } n∈Z belongs to 2 (Z).

Step 2.3 : Finally, it only remains to consider the case where N 1 ≥ 8kN . In fact, in this case, note that inequality N 1 ≥ 8kN implies in particular that N 2 ≥ 4N , and hence, we must also have N 3 ≥ 1 2 N , otherwise a k ≡ 0. Then, we can proceed similarly as in the latter step but using the factor N - 3 to sum over N 1. Note that, in this case, we also have to use the fact that P N 1 u(s, •) H s ω and P N 2 u(s, •) H s ω are both square summable. The proof of Step 3 is finished.

Step 3 : Finally, we consider the general case I u k Ψ m , where k, m ≥ 1. As we have mentioned before, for small frequencies N 1 we can directly bound the sum by simply using Hölder inequality as follows

N 1 ω 2 N N 2s sup t∈(0,T ) ˆt 0 ˆR ∂ x P N (u k Ψ m )P N u k T u 2 L ∞ t H s ω u k-1 L ∞ t H 1/2 + x Ψ m L ∞ . (4.3.11)
Therefore, in the sequel we only consider the case where 10 N k. On the other hand, notice that, by using Plancherel Theorem we can rewrite the remaining quantity as

N 1 ω 2 N N 2s sup t∈(0,T ) ˆt 0 ˆΓk+2
a k (ξ 1 , ..., ξ k+2 )û(ξ 1 )...û(ξ k+1 ) Ψ m (ξ k+2 )dΓ k+2 , (4.3.12)

9. Notice that this shall introduce a factor k into the following estimates. 10. Notice that this introduces another factor k into inequality (4.3.11) comming from the use of N 1 when controlling the operator ∂x.

where the symbol a k (ξ 1 , ..., ξ k+2 ) is explicitly given by a k (ξ 1 , ..., ξ k+2 ) := iφ 2 N (ξ k+1 )ξ k+1 . In a similar spirit as for Steps 2, in order to deal with this case we perform a symmetrization argument. Indeed, by symmetrizing the symbol we are lead to consider ãk (ξ 1 , ..., ξ k+2 ) = a k (ξ 1 , ..., ξ k+2 ) sym :=

i k + 1 k+1 i=1 φ 2 N (ξ i )ξ i .
Then, by using frequency decomposition, the problem of bounding (4.3.12) is reduced to control the following quantity

N 1 ω 2 N N 2s sup t∈(0,T ) ˆt 0 N 1 ,...,N k+2 ˆΓk+2 ãk (ξ 1 , ..., ξ k+2 )φ N k+2 (ξ k+2 ) Ψ m (ξ k+2 ) k+1 i=1 φ N i (ξ i )û(ξ i ) . (4.3.13)
Hence, by symmetry, without loss of generality from now on we assume 11 that N 1 ≥ N 2 ≥ N 3 ≥ N 4 = max{N 4 , ..., N k+1 }. We point out that, in this case, we consider 12 N k+2 ∈ D nh . Before going further notice that there is an important case that can be treated without any further decomposition. In fact, let us consider the region 8 9 kN k+2 ≥ N . We begin by restricting ourselves to the case N 2 ≥ 1. Let us denote the set of indexes associated with all the above constraints by N k+2 . Then, by using Plancherel Theorem to go back to physical variables, taking advantage of the fact that Ψ ∈ W

(s+1) + ,∞ x
, we can control I u k Ψ m , in this region, by 13

N 1 ω 2 N N 2s sup t∈(0,T ) ˆt 0 N k+2 ˆΓk+2 ãk (ξ 1 , ..., ξ k+2 )φ N k+2 (ξ k+2 ) Ψ m (ξ k+2 ) k+1 i=1 φ N i (ξ i )û(ξ i ) k ˆT 0 N 1 N k+2 ω 2 N N 2s N N -(s+1) + k+2 P N 1 u(t , •) L 2 x × × P N 2 u(t , •) L 2 x P N k+2 Ψ m (t , •) W (s+1) + ,∞ x k+1 i=3 P N i u(t , •) L ∞ x dt k T u 2 L ∞ T H s ω u k-1 L ∞ T H 1/2 + x Ψ m L ∞ T W (s+1) + ,∞ x
.

Here, we have absorbed one of the factors ω N with N -ε k+1 , thanks to the hypotheses made in Section 4.2.2. Notice that, to deal with the case N 2 ≤ 1, it is enough to sum over N 2 inside the absolute value (before using Hölder inequality), so that we obtain a factor P 1 u L 2 in the right-hand side (without any series in N 2 ). Therefore, in the sequel we can assume that 8 9 kN k+2 < N . Moreover, in this region we have φ N (ξ k+2 ) ≡ 0, and hence we can write

ãk (ξ 1 , ..., ξ k+2 ) = i k + 1 k+2 i=1 φ 2 N (ξ i )ξ i .
11. For the cases k = 1, 2 we only assume that N1 ≥ N2 and N1 ≥ N2 ≥ N3, respectively. Once again, notice that these assumptions introduces a factor k 4 into the following estimates.

12. Since N k+2 ∈ D nh , when N k+2 = 1 we consider η(ξ k+2 ) instead of φN k+2 (ξ k+2 ) in (4.3.13), where η(•) is defined in (5.2.1).

13. Notice that here we obtain another factor k s+1+ comming from the relation 8 Before getting into the details, let us introduce the notation for each of these regions. From now on we denote by N 1 , N 2 and N 3 the set of indexes associated with each of these regions 14 , and by G 1 , G 2 and G 3 , the corresponding contribution of (4.3.13) associated with each of them, respectively.

In the same spirit as in Step 2, notice that all of the above regions require that k ≥ 3 to be well-defined. However, the case k = 1 shall follows directly from the analysis we shall carry out to deal with the first region above, that is, the region N 1 . On the other hand, the case k = 2 shall follow from the analysis associated with 15 cases (1) and ( 2) above.

Step 3.1 : We begin by studying the contribution of I u k Ψ m in the region N 1 . In fact, notice that, in this case, due to the hypotheses Ψ ∈ W (s+1) + ,∞ as well as the fact that N k+2 N 3 ≥ max{N 4 , ..., N k+1 }, we can control the whole sum G 1 directly from Lemma 5.5.3 and then using Bernstein inequalities, from where we get the bound

|G 1 | k ˆT 0 N 1 N 1 ω 2 N N 2s N k+2 (N 3 ....N k+1 ) 1/2 P N 1 u(t , •) L 2 x × × P N 2 u(t , •) L 2 x P N k+2 (Ψ m (t , •)) L ∞ x k+1 i=3 P N i u(t , •) L 2 x dt k ˆT 0 N 1 N 1 N -(0 + ) k+2 P N 1 u(t , •) H s ω P N 2 u(t , •) H s ω × × P N k+2 (Ψ m (t , •)) W 1 + ,∞ x k+1 i=3 min{N 1/2 i , N -(0 + ) i } P N i u(t , •) H 1/2 + x dt k T u 2 L ∞ T H s ω u k-1 L ∞ T H 1/2 + x Ψ m L ∞ t W 1 + ,∞ x .
We point out that, in the estimates above, to sum over the indexes N , N 1 and N 2 , we have used the fact that 16 

N 1 ∈ [ 1 2 N, 4kN ] and N 2 ∈ [ 1 2k N 1 , N 1 ].
Step 3.2 : Now we seek to control the contribution of (4.3.13) in the region N 2 . We aim to take advantage of classical Bourgain estimates. Similarly as in the previous steps, we begin using the decomposition given in (5.1.4), from where we infer that it is enough to control the following quantities

G high 2,R := N 1 N 2 ω 2 N N 2s sup t∈(0,T ) ˆR2
Π ãk 1 high t,R P N 1 u, 1 t P N 2 u, P N 3 u, ..., P N k+1 u P N k+2 Ψ ,

14. Recall we are also assuming that N1 ≥ N2 ≥ N3 ≥ N4 = max{N4, ..., N k+1 } and 9 9 kN k+2 < N . 15. In other words, roughly speaking, when k = 1 we could think of N3 as being equal to 0, and hence the inequality of the first case is always satisfied, while when k = 2 we could think of N4 being zero, and hence we still have two cases, namely, (1) and (2).

16. Once again, this introduces a factor k into the previous estimates. We stress that to avoid over repeated arguments, in the sequel we shall no longer point out these dependencies.

G low,high 2,R := N 1 N 2 ω 2 N N 2s sup t∈(0,T ) ˆR2 Π ãk 1 low t,R P N 1 u, 1 high t,R P N 2 u, P N 3 u, ..., P N k+1 u P N k+2 Ψ , G low,low 2,R := N 1 N 2 ω 2 N N 2s sup t∈(0,T ) ˆR2 Π ãk 1 low t,R P N 1 u, 1 low t,R P N 2 u, P N 3 u, ..., P N k+1 u P N k+2 Ψ ,
where R stands for a large real number to be fixed. We split the analysis into two steps.

Step 3.2.1 : We start by bounding G high 2,R . We shall proceed in a similar fashion as in Step 2.1.1. In fact, we define again R(N, N 1 , ..., N k+2 ) := N 1 N 3 . Then, by using the first inequality in Lemma 4.2.5, Lemma 5.5.3, as well as Sobolev embedding, we obtain

G high 2,R k N 1 N 2 T 1/4 ω 2 N N 2s 1 high T,R L 4/3 ˆR Π ãk P N 1 u, ..., P N k+1 u P N k+2 Ψ L ∞ k N 1 N 2 T 1/4 ω 2 N N 2s N -1/2 2 P N 1 u L ∞ t L 2 x P N 2 u L ∞ t L 2 x P N k+2 Ψ L ∞ k+1 i=3 P N i u L ∞ t,x k T 1/4 u 2 L ∞ t H s ω u k-1 L ∞ t H 1/2 + x Ψ L ∞ T L ∞ x .
To finish this first case, we point out that, thanks to the operator 1 high t,R acting on the factor P N 2 u, the same estimates also hold for G low,high . As before, we begin by introducing some useful notation. We denote by I the functional given by

I u 1 , ..., u k+2 ) := N 1 N 2 ω 2 N N 2s sup t∈(0,T ) ˆR2
Π ãk u 1 , ..., u k+1 u k+2 .

Now notice that, proceeding in the exact same fashion as in (4.3.10), together with the fact that, in this case, N 3 ≥ max{8 8 kN k+2 , 2 9 kN 4 }, provides the relation

Ω k+1 (ξ 1 , ..., ξ k+2 ) ∼ N 1 N 2 N 3 .
Thus, in order to take advantage of the above relation, we decompose G low,low 2,R with respect to modulation variables in the following fashion

G low,low 2,R ≤ I Q N * 1 low t,R P N 1 u, 1 low t,R P N 2 u, P N 3 u, ..., P N k+1 u, P N k+2 Ψ + I Q N * 1 low t,R P N 1 u, Q N * 1 low t,R P N 2 u, P N 3 u, ..., P N k+1 u, P N k+2 Ψ + I Q N * 1 low t,R P N 1 u, Q N * 1 low t,R P N 2 u, Q N * P N 3 u, ..., P N k+1 u, P N k+2 Ψ + ... + I Q N * 1 low t,R P N 1 u, Q N * 1 low t,R P N 2 u, Q N * P N 3 u, ..., Q N * P N k+1 u, P N k+2 Ψ + I Q N * 1 low t,R P N 1 u, Q N * 1 low t,R P N 2 u, Q N * P N 3 u, ..., Q N * P N k+1 u, P N k+2 Ψ =: I 1 + ... + I k+2 ,
where once again we are denoting by N * := N 1 N 2 N 3 . At this point it is important to notice that, since in this case we have N 2 ≥ 1 8 N 1, then we must also have

N * N 1 N 3 = R,
what allows us to use the last inequality in Lemma 4.2.5. Thus, bounding in a similar fashion as before, by using Hölder and Bernstein inequalities, as well as Lemma 4.2.5, Lemma 5.5.3 and classical Bourgain estimates, we obtain

I 1 k N 1 N 2 ω 2 N N 2s N 3 Q N * 1 low T,R P N 1 u L 2 t L 2 x 1 low T,R P N 2 u L 2 t L 2 x × × P N k+2 (Ψ m ) L ∞ t,x k+1 i=3 P N i u L ∞ t,x k N 1 N 2 N (-1) + 2 Q N * 1 low T,R P N 1 u X s-1,1 1 low T,R L 2 P N 2 u L ∞ t H s x × × P N k+2 (Ψ m ) L ∞ t,x k+1 i=3 min{N 1/2 i , N -(0 + ) i } P N i u L ∞ t H 1/2 + x k T 1/2 u X s-1,1 u L ∞ t H s x u k-1 L ∞ t H 1/2 + x Ψ m L ∞ t,x .
It is not difficult to see that, by following the same lines (up to trivial modifications), we can also bound I 2 , from where we obtain the same bound. On the other hand, to control I 3 we use again both Lemma 4.2.5 and 5.5.3, as well as Hölder and Bernstein inequalities, from where we obtain

I 3 k N 1 N 2 ω 2 N N 2s N 3 Q N * 1 low T,R P N 1 u L 2 t L 2 x Q N * 1 low T,R P N 2 u L ∞ t L 2 x × × Q N * P N 3 u L 2 t L ∞ x P N k+2 (Ψ m ) L ∞ t,x k+1 i=4 P N i u L ∞ t L ∞ x k N 1 N 2 N (-1) + 2 1 low T,R L 2 P N 1 u L ∞ t H s x P N 2 u L ∞ t H s x min{N 1 - 3 N -1 1 , N -(0 + ) 3 }× × Q N * P N 3 u X (-1/2) + ,1 P N k+2 (Ψ m ) L ∞ t,x k+1 i=4 min{N 1/2 i , N -(0 + ) i } P N i u L ∞ t H 1/2 + x k T 1/2 u 2 L ∞ t H s x u X (-1/2) + ,1 u k-2 L ∞ t H 1/2 + x Ψ m L ∞ t,x .
Notice that all the remaining cases I i , i = 4, ..., k+1, follow very similar lines to the latter case (up to trivial modifications), and hence we omit them. Finally, to control I k+2 notice that, since all factors P N i u have an operator Q N * in front of them, then the factor P N k+2 (Ψ m ) is forced to be resonant, and hence in this case we can write Q N * P N k+2 (Ψ m ) = P N k+2 (Ψ m ), otherwise I k+2 = 0 thanks to Lemma 4.2.6. Moreover, notice also that, in the region N 2 we have in particular that N 1 N 2 N 3 N 3 k+2 , and hence we infer that |τ k+2 -ξ 3 k+2 | ∼ |τ k+2 |, and hence, we actually have P N k+2 (Ψ m ) = R N * P N k+2 (Ψ m ). Therefore, by using Lemmas 4.2.5, 5.5.3 as well as Bernstein inequality and the above properties, we obtain

I k+2 k N 1 N 2 (N 1 N 2 ) (-1) + 1 low T,R 2 
L 2 P N 1 u L ∞ t H s x P N 2 u L ∞ t H s x × × ∂ t R N * P N k+2 (Ψ m ) L ∞ t,x k+1 i=3 min{N 1/2 i , N -(0 + ) i } P N i u L ∞ t H 1/2 + x k T u 2 L ∞ t H s x u k-1 L ∞ t H 1/2 + x ∂ t Ψ L ∞ t,x Ψ m-1 L ∞ t,x
.

Step 3.3 : To finish this step it only remains to consider G 3 . In this case it is enough to proceed in the same fashion as in Steps 2.2 and 2.3. In fact, noticing that, since

N 3 ≥ 8 8 (k + 1)N k+2 , then we have N 2 ∈ [ 1 2k N 1 , N 1 ].
Therefore, by using Hölder and Bernstein inequalities, as well as Lemma 5.5.3, we get that

|G 3 | k ˆT 0 N 1 N 3 N 2s (N 1 N 2 ) -s min{N 3 , N -(0 + ) 3 } P N 1 u(t , •) H s ω × × P N 2 u(t , •) H s ω J 1/2 + x P N 3 u(t , •) L ∞ x J 1/2 + x P N 4 u(t , •) L ∞ x × × P N k+2 (Ψ m (t , •)) L ∞ x k+1 i=5 min N 1/2 i , N -(0 + ) i P N i u(t , •) H 1/2 + x dt k u 2 L ∞ T H s ω J 1/2 + x u 2 L 2 T L ∞ x u k-3 L ∞ T H 1/2 + x Ψ m L ∞ t,x .
We emphasize that, to sum over the indexes N , N 1 , N 2 and N 3 in the case N 3 N 2 , we have used the fact that P N 1 u(s, •) H s and P N 2 u(s, •) H s are both square summable, as well as the factor N - 3 , as in the proof of Steps 2.2 and 2.3. The proof of Step 3 is complete. Now we explain how we control the contribution of the L 2 T L ∞ x terms. With this aim we use the Strichartz estimate (4.2.15) with δ = 1, from where we obtain

J 1/2 + x u L 2 T L ∞ x T 1/4 u L ∞ T H 1/2 + x + T 3/4 ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) L ∞ T H -1/2 + x + T 3/4 u L ∞ T H 1/2 + x ∞ k=1 kc k |a k | u L ∞ T H 1/2 + x + Ψ L ∞ T W 1/2 + ,∞ x k-1 .
Gathering all the above estimate, and then using Lemma 4.2.4, we conclude the proof of the proposition.

A priori estimates for the difference of two solutions

In this subsection we seek to establish the key a priori estimate at the regularity level s -1 for the difference of two solutions. In the sequel we explicitly consider ω N = 1 for all N ∈ D, and hence

H s ω (R) = H s (R). Proposition 4.3.2. Let s > 1/2 and T ∈ (0, 2) both fixed. Consider u, v ∈ L ∞ ((0, T ), H s (R))
being two solutions to equation (4.1.4) associated with an initial data u 0 , v 0 ∈ H s (R). Then, the following inequality holds :

u -v 2 L ∞ T H s-1 x u 0 -v 0 2 H s-1 + T 1/4 u -v 2 L ∞ T H s-1 x Q * u L ∞ T H s x , v L ∞ T H s x , Ψ L ∞ t W s+1,∞ x , ∂ t Ψ L ∞ t,x ,
where Q * : R 4 → R + is a smooth function.

Démonstration. As before, in order to take advantage of Bourgain spaces, we have to extend the functions u and v from (0, T ) to the whole line R. Hence, by using the extension operator we take extensions ũ := ρ T [u] and ṽ := ρ T [v], supported in (-2, 2). For the sake of notation, we drop the tilde in the sequel. On the other hand, we point out that in the sequel we assume that s ∈ (1/2, 1]. The case s > 1 is simpler and follows very similar arguments. Now, let us denote by w := u -v. Then w(t, x) satisfies the equation

∂ t w + ∂ x ∂ 2 x w + f (u + Ψ) -f (v + Ψ) = 0. (4.3.14)
Now, we proceed as in the previous Proposition, taking the frequency projector P N to (5.6.21) with N > 0 dyadic, then taking the L 2

x -scalar product of the resulting equation against P N w and multiplying the result by N 2s-2 . Finally, integrating in time on (0, t) for 0 < t < T , and then applying Berstein inequality we are lead to

P N w(t) 2 H s-1 x P N w 0 2 H s-1 + N 2s-2 sup t∈(0,T ) ˆt 0 ˆR P N f (u + Ψ) -f (v + Ψ) ∂ x P N w .
As before, we split the analysis in several steps, each of which, devoted to different ranges of (k, i). Notice that the philosophy behind the estimates below, is the same one from the proof of the last proposition. However, since in this case we have more (different) functions, we must have several more cases as well, since we cannot order all the frequencies appearing in P N (u k-i v i-1 Ψw), as we did in the previous proposition when there was only u k .

As we shall see, the estimates above do not depend of how many u k-i or v i-1 we have. Thus, to simplify the notation we shall write

N >0 N 2s-2 sup t∈(0,T ) ˆt 0 ˆR P N (z 3 ...z k Ψ m w)∂ x P N w ,
for some k ≥ 3 and m ≥ 0, where each z i denotes either u or v (not necessarily all being the same).

Step 1 : Let us start by considering the case where we only have products of z i , that is, where no power of Ψ is involved. In other words, we seek to bound the following quantity

N >0 N 2s-2 sup t∈(0,T ) ˆt 0 ˆR P N (z 3 ...z k w)∂ x P N w , (4.3.15) 
where k ≥ 3. Before going further, we emphasize once again that in the sequel we assume s ∈ (1/2, 1]. Then, in the same fashion as in the previous proposition, we begin by symmetrizing the underlying symbol in (4.3.15), which allows us to reduce the problem to study the symbol

d k (ξ 1 , ..., ξ k ) := i 2 φ 2 N (ξ 1 )ξ 1 + i 2 φ 2 N (ξ 2 )ξ 2 , (4.3.16) 
where ξ 1 and ξ 2 denote the frequencies of each of the occurrences of w in (4.3.15) respectively. Hence, by frequency decomposition, it is enough to control the following quantity

N >0 N 2s-2 sup t∈(0,T ) ˆt 0 N 1 ,...,N k ˆΓk d k (ξ 1 , ..., ξ k ) 2 i=1 φ N i (ξ i ) ŵ(ξ i ) k j=3 φ N j (ξ j )ẑ j (ξ j ) . (4.3.17)
Notice that, by symmetry, we can always assume N 1 ≥ N 2 and N 3 ≥ N 4 = max{N 4 , ..., N k+1 }. Now, for the sake of simplicity, let us denote by I the following functional

I(N 1 , ..., N k , u 1 , ..., u k ) := ˆΓk d k (ξ 1 , ..., ξ k )φ N 1 (ξ 1 )u 1 (ξ 1 )...φ N k (ξ k )u k (ξ k )dΓ k .
Then, with this notation at hand, we define the set of admissible indexes

N k := D k \ (N 1 , ..., N k ) ∈ D k : ∀(u 1 , ..., u k ) ∈ H 1 (R) k , I(N 1 , ..., N k , u 1 , ..., u k ) = 0 . (4.3.18) 
Before going further let us rule out right away the case N 2 1. In fact, denoting by N 2 k := N k ∩ {N 2 < 8 8 k}, then, from Lemma 5.5.3, Plancherel Theorem and Hölder and Bernstein inequalities we obtain

N >0 N 2s-2 sup t∈(0,T ) ˆt 0 N 2 k ˆΓk d k (ξ 1 , ..., ξ k ) 2 i=1 φ N i (ξ i ) ŵ(t , ξ i ) k j=3 φ N j (ξ j )ẑ j (t , ξ j ) k ˆT 0 N >0 N 2 k N 2s-2 ˆΓk d k (ξ 1 , ..., ξ k ) 2 i=1 φ N i (ξ i ) ŵ(t , ξ i ) k j=3 φ N j (ξ j )ẑ j (t , ξ j ) k ˆT 0 N >0 N 2 k N 2s-2 min{N, N 3 } P N 1 w 1 (t , •) L 2 x × × P N 2 w 2 (t , •) L ∞ x P N 3 z 3 (t , •) L 2 x k j=4 P N j z j (t , •) L ∞ x dt k ˆT 0 N >0 N 2 k N 2s-2 N 1 1-s N 3 -s N 1/2 2 min{N, N 3 } P N 1 w 1 (t , •) H s-1 x × × P N 2 w 2 (t , •) H s-1 x P N 3 z 3 (t , •) H s x k j=4 min{N 1/2 j , N - j } P N j z j (t , •) H 1/2 + x dt k T w 2 L ∞ T H s-1 x z 3 L ∞ T H s x k i=4 z i L ∞ T H 1/2 + x .
Here, we have used the fact that, either N 1, and then there is nothing to proof, or N 1 and then, roughly speaking, we have {N 1 ∼ N and N 3 N 1 }. In fact, if N ≥ 8 9 k, then, thanks to both facts, the explicit form of the symbol d k and the definition of Γ k , we must have that

N 1 ∈ [ 1 2 N, 2N ] and N 3 ≥ 1 2k N 1 .
Besides, in the case N 4 N 3 we have used the fact that P N 1 w(t, •) H s-1 x and P N 3 z 3 (t, •) H s x are both square summable. Notice lastly that, in particular, the previous computations allows us to rules out the case N ≤ 8 7 k. Now, in order to deal with the remaining region, we split the analysis into three cases, namely,

N 1 := (N 1 , ..., N k ) ∈ D k : N 2 ≥ 8 8 k, N 3 < 2 9 kN 4 ∩ N k , N 2 := (N 1 , ..., N k ) ∈ D k : N 2 ≥ 8 8 k, N 3 ≥ 2 9 kN 4 , N 2 < 2 9 kN 4 ∩ N k (4.3.19) N 3 := (N 1 , ..., N k ) ∈ D k : N 2 ≥ 8 8 k, N 3 ≥ 2 9 kN 4 , N 2 ≥ 2 9 kN 4 ∩ N k .
We denote the contribution of (4.3.15) associated with each of these regions by D 1 , D 2 , D 3 , respectively. Notice that the case k = 3 shall follow directly from the bound exposed for N 3 , while N 1 and N 2 only concern the cases k ≥ 4.

Step 1.1 : Let us begin by considering the contribution of (4.3.17) associated with N 1 . We recall once again that N > 8 7 k. In fact, in this case we can proceed directly from Lemma 5.5.3, Plancherel Theorem as well as Hölder and Bernstein inequalites, from where we obtain

D 1 k ˆT 0 N 1 N 1 N 2s-2 ˆΓk d k (ξ 1 , ..., ξ k ) 2 i=1 φ N i (ξ i ) ŵ(t , ξ i ) k j=3 φ N j (ξ j )ẑ j (t , ξ j ) dt k ˆT 0 N 1 N 1 N 2s-2 min{N, N 3 } P N 1 w(t , •) L 2 x P N 2 w(t , •) L 2 x × × P N 3 z 3 (t , •) L ∞ x P N 4 z 4 (t , •) L ∞ x k j=5 P N j z j (t , •) L ∞ x dt k ˆT 0 N 1 N 1 N s-1 N 1 1-s min N, N 3 P N 1 w(t , •) H s-1 x P N 2 w(t , •) H s-1 x × × N 3 -(1 + ) J 1/2 + x P N 3 z 3 (t , •) L ∞ x J 1/2 + x P N 4 z 4 (t , •) L ∞ x k j=5 P N j z j (t , •) L ∞ x dt k w 2 L ∞ T H s-1 x J 1/2 + x z 3 L 2 T L ∞ x J 1/2 + x z 4 L 2 T L ∞ x k j=5 z j L ∞ T H 1/2 + x .
Here, we have used the fact that s ∈ (1/2, 1] so that N s-1 N 2 1-s 1, and that, on N 1 , the following inequalities hold :

N s N 1 -s 1 and N -1 N 1 min{N, N 3 } k N 3 .
Step 1.2 : Now we consider the case of N 2 . Indeed, in a similar fashion as above, recalling that s ∈ (1/2, 1] and that N > 8 7 k, then, by using Lemma 5.5.3, Plancherel Theorem as well as Hölder and Bernstein inequalites we infer that

D 2 k ˆT 0 N 1 N 2 N 2s-2 ˆΓk d k (ξ 1 , ..., ξ k ) 2 i=1 φ N i (ξ i ) ŵ(t , ξ i ) k j=3 φ N j (ξ j )ẑ j (t , ξ j ) dt k ˆT 0 N 1 N 2 N 2s-2 min{N, N 3 } P N 1 w(t , •) L 2 x P N 2 w(t , •) L ∞ x × × P N 3 z 3 (t , •) L 2 x P N 4 z 4 (t , •) L ∞ x k j=5 P N j z j (t , •) L ∞ x dt k ˆT 0 N 1 N 2 N 2s-2 N 1 1-s N 3 -s N - 2 N - 4 min N, N 3 P N 1 w H s-1 x × × J (-1/2) + x P N 2 w L ∞ x P N 3 z 3 H s x J 1/2 + x P N 4 z 4 L ∞ x k j=5 P N j z j L ∞ x dt k w L ∞ T H s-1 x J (-1/2) + x w L 2 T L ∞ x z 3 L ∞ T H s x J 1/2 + x z 4 L 2 T L ∞ x k j=5 z j L ∞ T H 1/2 + x
Here we have used that, due to our current hypotheses, we always have that N 3 N . In fact, if N 2 ≤ 1 16 N , and since N 4 N 3 , due to the explicit form of d k and the definition of Γ k , we infer that

N 1 ∈ [ 1 2 N, 2N ] and N 3 ∈ [ 1 4 N 1 , 4N 1 ]. On the other hand, if N 2 ≥ 1
8 N , then due to the fact that N 3 ≥ N 4 N 2 , we obtain the desired relation.

Step 1.3 : Finally, we are ready to treat the remaining case in (4.3.19), that is, we now deal with the region N 3 . In order to do so, we begin using the decomposition given in (5.1.4), from where we infer that it is enough to control the following quantities

D high 3,R := N 1 N 3 N 2s-2 sup t∈(0,T ) ˆR2 Π d k 1 high t,R P N 1 w, 1 t P N 2 w P N 3 z 3 ...P N k z k , D low,high 3,R := N 1 N 3 N 2s-2 sup t∈(0,T ) ˆR2 Π d k 1 low t,R P N 1 w, 1 high t,R P N 2 w P N 3 z 3 ...P N k z k , D low,low 3,R := N 1 N 3 N 2s-2 sup t∈(0,T ) ˆR2 Π d k 1 low t,R P N 1 w, 1 low t,R P N 2 w P N 3 z 3 ...P N k z k ,
where R stands for a large real number that shall be fixed later. For the sake of clarity we split the analysis into two steps.

Step 1.3.1 : We begin by considering the case of D high 3,R . Once again, the idea is to take advantage of the operator 1 high t,R by using Lemma 4.2.5. In fact, thanks to our current hypothesis, we see that we can choose once again R being equal to R := N 1 N 3 . Moreover, due to the definition of Γ k again, since min{N 2 , N 3 } ≥ 2 9 kN 4 , we infer that N 3 ≤ 8N 1 , and hence, either we have

N 1 ≥ 16N and N 3 ∈ [ 1 2 N 1 , 2N 1 ] or N 1 ∈ [ 1 2 N, 8N ] and N 3 ≤ 8N 1 . (4.3.20) 
Therefore, we can then bound G high 3,R by using the first inequality in Lemma 4.2.5, Lemmas 4.2.7 and 5.5.3, as well as Sobolev's embedding in the following fashion

D high 3,R k N 1 N 3 T 1/4 N 2s-2 1 high T,R L 4/3 ˆR Π d k 1 high t,R P N 1 w, 1 t P N 2 w P N 3 z 3 ...P N k z k L ∞ t k N 1 N 3 T 1/4 N 2s-2 min{N, N 3 }R -3/4 × × P N 1 w L ∞ t L 2 x P N 2 w L ∞ t L 2 x k j=3 N 1/2 j P N j z j L ∞ t L 2 x k N 1 N 3 T 1/4 N s-1 N 1 1-s (N 1 N 3 ) -3/4 min{N, N 3 }× × P N 1 u L ∞ t H s-1 x P N 2 w L ∞ t H s-1 x k j=3 min N 1/2 j , N -(0 + ) j P N j z j L ∞ t H 1/2 + x k T 1/4 w 2 L ∞ t H s-1 x k j=3 z j L ∞ t H 1/2 + x .
As before, notice that we have used the fact that s ∈ (1/2, 1] so that we have the following inequality N s-1 N 2 1-s 1. To finish this first case, we point out that, thanks to the operator 1 high t,R acting on the factor P N 2 w, the same estimates also hold for D low,high 3,R .

Step 1.3.2 : Now we consider the last term in the decomposition, that is, D low,low 3,R

. In fact, first of all, let us recall the notation introduced in the proof of the previous proposition (adapted to the current symbol)

I k u 1 , ..., u k ) := N 1 N 3 N 2s-2 sup t∈(0,T ) ˆR2 Π d k (u 1 , u 2 )u 3 ...u k .
Then, by using the the hypothesis min{N 2 , N 3 } ≥ 2 9 kN 4 , following the same computations as in (4.3.10), we infer that the resonant relation satisfies

Ω k (ξ 1 , ..., ξ k ) ∼ N 1 N 2 N 3 .
Thus, we are in a proper setting to take advantage of Bourgain spaces. In order to do so, we decompose D low,low 3,R with respect to modulation variables in the following fashion

D low,low 3,R ≤ I Q N * 1 low t,R P N 1 w, 1 low t,R P N 2 w, P N 3 z 3 , ..., P N k z k + I Q N * 1 low t,R P N 1 w, Q N * 1 low t,R P N 2 w, P N 3 z 3 , ..., P N k z k + I Q N * 1 low t,R P N 1 w, Q N * 1 low t,R P N 2 w, Q N * P N 3 z 3 , ..., P N k z k + ... + I Q N * 1 low t,R P N 1 w, Q N * 1 low t,R P N 2 w, Q N * P N 3 z 3 , ..., Q N * P N k z k =: I 1 + ... + I k ,
where N * stands for N * := N 1 N 2 N 3 . At this point it is important to recall that, since N 2 ≥ 8 9 k, then we also have that N * N 1 N 3 = R, what allows us to use the last inequality in Lemma 4.2.5. Thus, bounding in a similar fashion as before, by using Hölder and Bernstein inequalities, as well as Lemmas 4.2.5, 4.2.7 and 5.5.3, and classical Bourgain estimates, we obtain

I k k N 1 N 3 N 2s-2 min{N, N 3 } Q N * 1 low T,R P N 1 w L 2 t L 2 x × × 1 low T,R P N 2 w L 2 t L 2 x k j=3 N 1/2 j P N j z j L ∞ t L 2 x k N 1 N 3 N s-1 N 1 1-s N -1 2 N -1 3 min{N, N 3 } Q N * 1 low T,R P N 1 w X s-2,1 × × 1 low T,R L 2 P N 2 w L ∞ t H s-1 x k+1 j=3 min{N 1/2 j , N -(0 + ) j } P N j z j L ∞ t H 1/2 + x k T 1/2 w X s-2,1 w L ∞ t H s-1 x k j=3 z j L ∞ t H 1/2 + x
, where we have used again (4.3.20), the fact that N > 8 7 k and that s ∈ (1/2, 1], so that we have17 N s-1 N 2 1-s

1. Moreover, it is not difficult to see that, by following the same lines (up to trivial modifications), we can also bound I 2 , from where we obtain exactly the same bound. On the other hand, to control I 3 we use again Lemmas 4.2.5, 4.2.7 and 5.5.3, as well as Hölder and Bernstein inequalities, from where we obtain

I 3 k N 1 N 3 N 2s-2 N 1/2 3 min{N, N 3 } Q N * 1 low T,R P N 1 w L 2 t L 2 x × × Q N * 1 low T,R P N 2 w L ∞ t L 2 x Q N * P N 3 z 3 L 2 t L 2 x k j=4 N 1/2 j P N j z j L ∞ t L 2 x k N 1 N 3 N s-1 N 1 -s N 3 1/2 -N -1 2 N -1/2 3 min{N, N 3 } 1 low T,R L 2 P N 1 w L ∞ t H s-1 x × × P N 2 w L ∞ t H s-1 x Q N * P N 3 z 3 X (-1/2) + ,1 k+1 j=4 min{N 1/2 j , N -(0 + ) j } P N j z j L ∞ t H 1/2 + x k T 1/2 w 2 L ∞ t H s-1 x z 3 X (-1/2) + ,1 k j=4 z j L ∞ t H 1/2 + x .
Notice that all the remaining cases I i , i = 4, ..., k, follow very similar lines to the latter case above (up to trivial modifications), and they provide exactly the same bound. Hence, in order to avoid over-repeated computations, we omit the proof of these cases.

Step 2 : Now we seek to bound the case where we only have powers of Ψ. In particular, no z i is involved. More concretely, in this step we seek to study the following quantity

N >0 N 2s-2 sup t∈(0,T ) ˆt 0 N 1 ,N 2 ,N 3 ˆR Π d 3 P N 1 w, P N 2 w P N 3 (Ψ m ) , (4.3.21) 
where d 3 (ξ 1 , ξ 2 , ξ 3 ) stands for the symbol given in (4.3.16), where ξ 1 and ξ 2 denote the frequencies of each of the occurrences of w in (4.3.21) respectively. Now notice that, by symmetry, we can always assume N 1 ≥ N 2 . Moreover, it is not difficult to see that, due to the additional constraint 18 given by Γ 3 , in this case we have that max{N 2 , N 3 } ≥ 1 4 N 1 and N 3 ≤ 8N 1 , and hence, either we have

N 2 ∼ N 1 or N 3 ∼ N 1 , or both. By similar reasons, if N 3 ≥ 16N , then we must have N 1 ∈ [ 1 4 N 3 , 4N 3 ],
otherwise the inner integral in (4.3.21) vanishes.

On the other hand, following the same lines of the previous step, we can directly bound the case N 2 3 := N 3 ∩ {N 2 1}, where N 3 is the set defined in (4.3.18). In fact, from Lemma 5.5.3, Plancherel Theorem and Hölder inequality we obtain

N >0 N 2s-2 sup t∈(0,T ) ˆt 0 N 2 3 ˆΓ3 d(ξ 1 , ξ 2 , ξ 3 )φ N 1 (ξ 1 ) ŵ(ξ 1 )φ N 2 (ξ 2 ) ŵ(ξ 2 )φ N 3 (ξ 3 ) Ψ m (ξ 3 ) k T w 2 L ∞ T H s-1 x Ψ m L ∞ T W 1 + ,∞ x ,
and hence in the sequel we can assume that N 2 ≥ 8 8 k. Now, let us consider the region N := N 3 ∩{N 3 ≥ 16N }. Then, by using Plancherel Theorem and then Hölder and Bernstein inequalities we get

N 1 N 2s-2 sup t∈(0,T ) ˆt 0 N ˆΓ3 d(ξ 1 , ξ 2 , ξ 3 )φ N 1 (ξ 1 ) ŵ(ξ 1 )φ N 2 (ξ 2 ) ŵ(ξ 2 )φ N 3 (ξ 3 ) Ψ m (ξ 3 ) k ˆT 0 N 1 N N 3 -(0 + ) P N 1 w(t , •) H s-1 x P N 2 w(t , •) H s-1 x P N 3 (Ψ m (t , •)) W 1 + ,∞ x dt k T w 2 L ∞ T H s-1 x Ψ m L ∞ T W 1 + ,∞ x .
Hence, from now on we assume that N 3 ≤ 8N , which in turn forces N 1 ∈ [ 1 4 N, 32N ] thanks to the additional constraint given by Γ 3 . Then, denoting this remaining region by N ≤ , recalling that max{N 2 , N 3 } ≥ 1 4 N 1 , we can bound the remaining portion of (4.3.21) from Lemma 5.5.3 and Bernstein inequality as follows

N 1 N 2s-2 sup t∈(0,T ) ˆt 0 N ≤ ˆΓ3 d(ξ 1 , ξ 2 , ξ 3 )φ N 1 (ξ 1 ) ŵ(ξ 1 )φ N 2 (ξ 2 ) ŵ(ξ 2 )φ N 3 (ξ 3 ) Ψ m (ξ 3 ) k ˆT 0 N 1 N ≤ min{N 3 , N -(0 + ) 3 } P N 1 w H s-1 x P N 2 w H s-1 x P N 3 (Ψ m ) W 1 + ,∞ x k T w 2 L ∞ T H s-1 x Ψ m L ∞ T W 1 + ,∞
x where in this case, to sum over the region N 3 N , we have used the fact that P N 1 w(t, •) H s-1

x and P N 2 w(t, •) H s-1

x are both square summable.

Step 3 : Finally, it only remains to bound the "crossed terms". More specifically, in this step we aim to estimate the contribution of the following quantity

N >0 N 2s-2 sup t∈(0,T ) ˆt 0 N 1 ,...,N k+1 ˆR Π d k+1 P N 1 w, P N 2 w P N 3 z 3 ...P N k z k P N k+1 (Ψ m ) , (4.3.22) 
where we assume k ≥ 3 and d k+1 is the symbol given in (4.3.16). We emphasize that, as in the previous proposition, we consider 19 N k+1 ∈ D nh . Now notice that, by symmetry, we can always assume that N 1 ≥ N 2 and N 3 ≥ N 4 = max{N 4 , ..., N k }. Moreover, in contrast with

Step 1, in this case, by using either Lemma 5.5.3 or Plancherel Theorem together with Hölder inequality, the factor coming from the symbol d k+1 shall be of order min N, N max instead of min{N, N 3 }, as in the previous case, where we have adopted the notation N max := max{N 3 , N k+1 }. On the other hand, due to the definition of Γ k+1 we infer that,

max N 2 , N 3 , N k+1 ≥ 1 2k N 1 .
19. Hence, when N k+1 = 1 we consider η(ξ k+1 ) instead of φN k+1 (ξ k+1 ) in (4.3.22).

In fact, more generally we have,

max N 1 , N 2 , N 3 , N 4 , N k+1 \ {max{N 1 , N 3 , N k+1 }} ≥ 1 2k max{N 1 , N 3 , N k+1 }.
Therefore, roughly speaking, the two largest frequencies are always equivalent (up to a factor depending on k). Now, let us start by ruling out the case N 2 < 9 9 k. Indeed, denoting by N k := N k+1 ∩ {N 2 1}, from Lemma 5.5.3, Plancherel Theorem and Hölder inequality we get

N >0 N 2s-2 sup t∈(0,T ) ˆt 0 N k ˆR Π d k+1 P N 1 w, P N 2 w P N 3 z 3 ...P N k z k P N k+1 (Ψ m ) k ˆT 0 N >0 N k N 2s-2 N 1 1-s N 3 -s N 1/2 2 N -(1 + ) k+1 min{N, N max } P N 1 w H s-1 x × × P N 2 w H s-1 x P N 3 z 3 H s x P N k+1 (Ψ m ) W 1 + ,∞ x k j=4 min{N 1/2 j , N - j } P N j z j H 1/2 + x dt k T w 2 L ∞ T H s-1 x z 3 L ∞ T H s x Ψ m L ∞ T W 1 + ,∞ x k j=4 z j L ∞ T H 1/2 + x
, where we have used the fact that, if N 1, then N 1 ∈ [ 1 2 N, 2N ], as well as the fact that

P N 1 w(t, •) H s-1 x and P N 3 z 3 (t, •) H s
x are both square summable. Once again, notice that the previous bound allows us to assume in the sequel that N ≥ 9 8 k. Now, it is not difficult to see that, in the remaining region, we can further assume that N 3 ≥ 8 8 k. In fact, let us assume that if N 3 < 8 8 k. Then, in this case, either we have N k+1 ∼ N 1 or {N k+1 N 1 and N 1 ∼ N 2 ∼ N }. Hence, denoting this region by N k,3 ≤ , then, by using Hölder and Bernstein inequalities we have

N >0 N 2s-2 sup t∈(0,T ) ˆt 0 N k,3 ≤ ˆR Π d k+1 P N 1 w, P N 2 w P N 3 z 3 ...P N k z k P N k+1 (Ψ m ) k ˆT 0 N >0 N k,3 ≤ N 2s-2 N 1 1-s N 2 1-s N -(1 + ) k+1 min{N, N max } P N 1 w H s-1 x × × P N 2 w H s-1 x P N k+1 (Ψ m ) W 1 + ,∞ x k j=3 min{N 1/2 j , N - j } P N j z j H 1/2 + x dt k T w 2 L ∞ T H s-1 x Ψ m L ∞ T W 1 + ,∞ x k j=3 z j L ∞ T H 1/2 + x
, where, to sum over the region {N k+1 N and N 1 ∼ N 2 ∼ N }, we have used the fact that

P N 1 w(s, •) H s-1 x and P N 2 w(s, •) H s-1
x are both square summable. Moreover, there is another important case that can be directly treated. Let us define the set

N k,1 := N k+1 ∩ {N 2 ≥ 9 9 k} ∩ {N 3 ≥ 8 8 k} ∩ 2 9 kN k+1 > min{N 1 , N 3 } .
The latter constraint implies, up to a factor k, that min{N 1 , N 3 } k N k+1 . Then, proceeding in a similar fashion as above, noticing that min{N, N max } k min{N, N k+1 }, from Hölder and Bernstein inequalities we obtain

N 1 N 2s-2 sup t∈(0,T ) ˆt 0 N k,1 ˆR Π d k+1 P N 1 w, P N 2 w P N 3 z 3 ...P N k z k P N k+1 (Ψ m ) k ˆT 0 N 1 N k,1 N 2s-2 N 1 1-s N 2 1-s N -(0 + ) 3 N -(1 + ) k+1 min{N, N max } P N 1 w H s-1 x × × P N 2 w H s-1 x P N 3 z 3 H 1/2 + x P N k+1 (Ψ m ) W 1 + ,∞ x k j=4 min{N 1/2 j , N - j } P N j z j H 1/2 + x dt k T w 2 L ∞ T H s-1 x Ψ m L ∞ T W 1 + ,∞ x k j=3 z j L ∞ T H 1/2 + x .
Having dealt with the above cases, we can now easily deal with the region 2 9 kN k+1 > N 2 . Indeed, denoting this region by N k,2 , from Hölder and Bernstein inequalities we see that

N 1 N 2s-2 sup t∈(0,T ) ˆt 0 N k,2 ˆR Π d k+1 P N 1 w, P N 2 w P N 3 z 3 ...P N k z k P N k+1 (Ψ m ) k ˆT 0 N 1 N k,2 N 2s-2 N 1 1-s N 2 1-s N 1/2 2 N -s 3 N -(1 + ) k+1 min{N, N 3 } P N 1 w H s-1 x × × P N 2 w H s-1 x P N 3 z 3 H s x P N k+1 (Ψ m ) W 1 + ,∞ x k j=4 min{N 1/2 j , N - j } P N j z j H 1/2 + x dt k T w 2 L ∞ T H s-1 x z 3 L ∞ T H s x Ψ m L ∞ T W 1 + ,∞ x k j=4 z j L ∞ T H 1/2 + x .
Here, we have used the fact that P N 1 w(s, •) H s-1

x and P N 3 z 3 (s, •) H s x are both square summable, so that we are able to re-sum in the region N 1 ∼ N 3 max{N 2 , N 4 , N k+1 }. Therefore, in the sequel we can assume that min{N 1 , N 2 , N 3 } ≥ 2 9 kN k+1 . This concludes all the straightforward cases. Now, in order to deal with the remaining region, we split the analysis into three cases, namely,

N 1 k := (N 1 , ..., N k+1 ) ∈ D k × D nh : N 2 ≥ 9 9 k, N 3 ≥ 8 8 k, min{N 1 , N 2 , N 3 } ≥ 2 9 kN k+1 , N 3 < 2 9 kN 4 ∩ N k+1 , N 2 k := (N 1 , ..., N k+1 ) ∈ D k × D nh : N 2 ≥ 9 9 k, N 3 ≥ 8 8 k, min{N 1 , N 2 , N 3 } ≥ 2 9 kN k+1 , N 3 ≥ 2 9 kN 4 , N 2 < 2 9 kN 4 ∩ N k+1 , N 3 k := (N 1 , ..., N k+1 ) ∈ D k × D nh : N 2 ≥ 9 9 k, N 3 ≥ 8 8 k, min{N 1 , N 2 , N 3 } ≥ 2 9 kN k+1 , N 3 ≥ 2 9 kN 4 , N 2 ≥ 2 9 kN 4 ∩ N k+1 .
We denote by D 1 , D 2 , D 3 the contribution of (4.3.22) associated with each of these regions, respectively. Notice that the case k = 3 shall follow directly from the bound exposed for N 3 k , while N 1 k and N 2 k only concern the cases k ≥ 4.

Step 3.1 : Let us begin by considering the case of N 1 k . In fact, in this case, by using Lemma 5.5.3, Plancherel Theorem as well as Hölder and Bernstein inequalities we get

D 1 k ˆT 0 N 1 N 1 k N 2s-2 ˆR Π d k+1 P N 1 w, P N 2 w P N 3 z 3 ...P N k z k P N k+1 (Ψ m ) dt k ˆT 0 N 1 N 1 k N 2s-2 N 1 1-s N 2 1-s N -(1 + ) 3 N -(1 + ) k+1 min N, N 3 P N 1 w H s-1 x × × P N 2 w H s-1 x J 1/2 + x P N 3 z 3 L ∞ x J 1/2 + x P N 4 z 4 L ∞ x P N k+1 (Ψ m ) W 1 + ,∞ x k j=5 P N j z j L ∞ x k w 2 L ∞ T H s-1 x J 1/2 + x z 3 L 2 T L ∞ x J 1/2 + x z 4 L 2 T L ∞ x Ψ m W 1 + ,∞ x k j=5 z j L ∞ T H 1/2 + x
, where, to sum over the region {N 3 N and N 1 ∼ N 2 ∼ N }, we have used the fact that

P N 1 w(s, •) H s-1 x and P N 2 w(s, •) H s-1
x are both square summable, while the case N 3 N follows directly thanks to the factor N - 3 .

Step 3.2 : Now we consider the contribution of (4.3.22) associated with N 2 k . Indeed, proceeding similarly as above, by using Lemma 5.5.3, Plancherel Theorem as well as Hölder and Bernstein inequalites we infer that

D 2 k ˆT 0 N 1 N 2 k N 2s-2 ˆR Π d k+1 P N 1 w, P N 2 w P N 3 z 3 ...P N k z k P N k+1 (Ψ m ) dt k ˆT 0 N 1 N 2 k N 2s-2 min{N, N 3 } P N 1 w(t , •) L 2 x P N 2 w(t , •) L ∞ x × × P N 3 z 3 (t , •) L 2 x P N 4 z 4 (t , •) L ∞ x P N k+1 (Ψ m ) L ∞ t,x k j=5 P N j z j (t , •) L ∞ x dt k ˆT 0 N 1 N 2 k N 2s-2 N 1 1-s N 3 -s N - 2 N - 4 N -1 k+1 min N, N 3 P N 1 w H s-1 x × × J (-1/2) + x P N 2 w L ∞ x P N 3 z 3 H s x J 1/2 + x P N 4 z 4 L ∞ x P N k+1 (Ψ m ) W 1,∞ x k j=5 P N j z j L ∞ x dt k w L ∞ T H s-1 x J (-1/2) + x w L 2 T L ∞ x z 3 L ∞ T H s x J 1/2 + x z 4 L 2 T L ∞ x Ψ m L ∞ t W 1,∞ x k j=5 z j L ∞ T H 1/2 + x .
Here we have used the fact that, due to our current hypotheses, we always have that N 3 N . In fact, if N 2 ≤ 1 16 N , since N 4 N 3 and N k+1 min{N 1 , N 2 , N 3 }, by using the explicit form of d k+1 we infer that

N 1 ∈ [ 1 2 N, 2N ] and N 3 ∈ [ 1 4 N 1 , 4N 1 ].
On the other hand, if

N 2 ≥ 1 8 N , then, since N 3 ≥ N 4 N 2 ,
we obtain the desired relation.

Step 3.3 : Finally, we are ready to treat the remaining case, that is, we now deal with the region N 3 k . In order to do so, we begin using the decomposition given in (5.1.4), from where we infer that it is enough to control the following quantities

D high 3,R := N 1 N 3 k N 2s-2 sup t∈(0,T ) ˆR2 Π d k+1 1 high t,R P N 1 w, 1 t P N 2 w P N k+1 (Ψ m ) k j=3 P N j z j , D low,high 3,R := N 1 N 3 k N 2s-2 sup t∈(0,T ) ˆR2 Π d k+1 1 low t,R P N 1 w, 1 high t,R P N 2 w P N k+1 (Ψ m ) k j=3 P N j z j , D low,low 3,R := N 1 N 3 k N 2s-2 sup t∈(0,T ) ˆR2 Π d k 1 low t,R P N 1 w, 1 low t,R P N 2 w P N k+1 (Ψ m ) k j=3 P N j z j ,
where R stands for R := N 1 N 3 , as in the previous cases. For the sake of clarity we split the analysis into two steps.

Step 3.3.1 : We begin by considering the case of D high 3,R . Once again, the idea is to take advantage of the operator 1 high t,R by using Lemma 4.2.5. Notice that, since in this case we have N 3 ≤ 8N 1 , then, roughly speaking, either we have

{N 1 N, N 2 ∼ N and N 1 ∼ N 3 } or {N 1 ∼ N and max{N 2 , N 3 } ∼ N 1 }. (4.3.23) 
We can then bound G high 3,R by using the first inequality in Lemma 4.2.5, Lemma 5.5.3, as well as Sobolev's embedding, in the following fashion

D high 3,R k N 1 N 3 k T 1/4 N 2s-2 1 high T,R L 4/3 ˆR Π d k+1 1 high t,R P N 1 w, 1 t P N 2 w P N k+1 (Ψ m ) k j=3 P N j z j L ∞ t k N 1 N 3 k T 1/4 N 2s-2 N 1 1-s N 2 1-s (N 1 N 3 ) -3/4 min{N, N 3 } P N 1 w L ∞ t H s-1 x × × P N 2 w L ∞ t H s-1 x P N k+1 (Ψ m ) L ∞ x k j=3 min N 1/2 j , N -(0 + ) j P N j z j L ∞ t H 1/2 + x k T 1/4 w 2 L ∞ t H s-1 x Ψ m L ∞ t,x k j=3 z j L ∞ t H 1/2 + x .
Once again, notice that thanks to the operator 1 high t,R acting on the factor P N 2 w, the same estimates also hold for D low,high 3,R .

Step 3.3.2 : Now we consider the last term in the decomposition, that is, D low,low 3,R . In fact, first of all, let us recall the notation introduced in the proof of the previous proposition (adapted to the current symbol)

I k u 1 , ..., u k+1 ) := N 1 N 3 k N 2s-2 sup t∈(0,T ) ˆR2 Π d k+1 (u 1 , u 2 )u 3 ...u k+1 .
Then, by using the the hypothesis min{N 2 , N 3 } ≥ 2 9 kN 4 , following the same computations as in (4.3.10), we infer that the resonant relation satisfies

Ω k (ξ 1 , ..., ξ k ) ∼ N 1 N 2 N 3 .
Therefore, taking advantage of the above relation, we can now decompose D low,low 3,R with respect to modulation variables in the following fashion

D low,low 3,R ≤ I Q N * 1 low t,R P N 1 w, 1 low t,R P N 2 w, P N 3 z 3 , ..., P N k z k , P N k+1 (Ψ m ) + I Q N * 1 low t,R P N 1 w, Q N * 1 low t,R P N 2 w, P N 3 z 3 , ..., P N k z k , P N k+1 (Ψ m ) + I Q N * 1 low t,R P N 1 w, Q N * 1 low t,R P N 2 w, Q N * P N 3 z 3 , ..., P N k z k , P N k+1 (Ψ m ) + ... + I Q N * 1 low t,R P N 1 w, Q N * 1 low t,R P N 2 w, Q N * P N 3 z 3 , ..., Q N * P N k z k , P N k+1 (Ψ m ) + I Q N * 1 low t,R P N 1 w, Q N * 1 low t,R P N 2 w, Q N * P N 3 z 3 , ..., Q N * P N k z k , P N k+1 (Ψ m ) =: I 1 + ... + I k+1 ,
where N * stands for N * := N 1 N 2 N 3 . At this point it is important to recall that, since N 2 ≥ 9 9 k, then we also have that N * N 1 N 3 = R, what allows us to use the last inequality in Lemma 4.2.5. Thus, bounding in a similar fashion as before, by using Hölder and Bernstein inequalities, as well as Lemmas 4.2.5 and 5.5.3, and classical Bourgain estimates, we obtain

I 1 k N 1 N 3 k N 2s-2 min{N, N 3 } Q N * 1 low T,R P N 1 w L 2 t L 2 x × × 1 low T,R P N 2 w L 2 t L 2 x P N k+1 (Ψ m ) L ∞ t,x k j=3 N 1/2 j P N j z j L ∞ t L 2 x k N 1 N 3 k N 2s-2 N 1 1-s N 2 1-s N -1 2 N -1 3 min{N, N 3 } Q N * 1 low T,R P N 1 w X s-2,1 × × 1 low T,R L 2 P N 2 w L ∞ t H s-1 x P N k+1 (Ψ m ) L ∞ t,x k+1 j=3 min{N 1/2 j , N - j } P N j z j L ∞ t H 1/2 + x k T 1/2 w X s-2,1 w L ∞ t H s-1 x Ψ m L ∞ t,x k j=3 z j L ∞ t H 1/2 + x
, where we have used again (4.3.23). Moreover, it is not difficult to see that, by following the same lines (up to trivial modifications), we can also bound I 2 , from where we obtain the same bound. On the other hand, to control I 3 we use again Lemmas 4.2.5 and 5.5.3, as well as Hölder and Bernstein inequalities, from where we get that

I 3 k N 1 N 3 k N 2s-2 N 1/2 3 min{N, N 3 } Q N * 1 low T,R P N 1 w L 2 t L 2 x Q N * 1 low T,R P N 2 w L ∞ t L 2 x × × Q N * P N 3 z 3 L 2 t L 2 x P N k+1 (Ψ m ) L ∞ t,x k j=4 N 1/2 j P N j z j L ∞ t L 2 x k N 1 N 3 k T 1/2 N 2s-2 N 1 -s N 2 -s N 3 + min{N, N 3 } P N 1 w L ∞ t H s-1 x P N 2 w L ∞ t H s-1 x × × Q N * P N 3 z 3 X (-1/2) + ,1 P N k+1 (Ψ m ) L ∞ t,x k+1 j=4 min{N 1/2 j , N -(0 + ) j } P N j z j L ∞ t H 1/2 + x k T 1/2 w 2 L ∞ t H s-1 x z 3 X (-1/2) + ,1 Ψ m L ∞ t,x k j=4 z j L ∞ t H 1/2 + x .
Notice that all the remaining cases I i , i = 4, ..., k, follow very similar lines to the latter case (up to trivial modifications), and they provide exactly the same bound as above, and hence we omit their proof. Finally, to control I k+1 notice that, since all factors P N i u have an operator Q N * in front of them, then the factor P N k+1 (Ψ m ) is forced to be resonant, and hence in this case we can write Q N * P N k+1 (Ψ m ) = P N k+1 (Ψ m ), otherwise I k+1 = 0 thanks to Lemma 4.2.6. Moreover, notice also that, in the region N 3 k we have in particular that N 1 N 2 N 3 N 3 k+1 , and hence we infer that |τ k+1 -ξ 3 k+1 | ∼ |τ k+1 |, and hence, we can write P N k+2 (Ψ m ) = R N * P N k+2 (Ψ m ). Therefore, by using Lemmas 4.2.5 and 5.5.3, as well as Bernstein inequality and the above properties, we infer that

I k+1 k N 1 N 3 k N 2s-2 N 1 -s N 2 -s N -1 3 min{N, N 3 } 1 low T,R 2 
L 2 P N 1 w L ∞ t H s-1 x × × P N 2 w L ∞ t H s-1 x ∂ t R N * P N k+2 (Ψ m ) L ∞ t,x k+1 i=3 min{N 1/2 i , N -(0 + ) i } P N i u L ∞ t H 1/2 + x k T w 2 L ∞ t H s-1 x ∂ t Ψ L ∞ t,x Ψ m-1 L ∞ t,x k j=3 z j L ∞ t H 1/2 + x .
Now we explain how we control the contribution of the L 2 T L ∞ x terms. With this aim, recalling the equation solved by w(t, x), we use the Strichartz estimate (4.2.15) with δ = 1, from where we obtain

J (-1/2) + x w L 2 T L ∞ x T 1/4 w L ∞ T H (-1/2) + x + T 3/4 w L ∞ T H (-1/2) + x × × ∞ k=1 kc k |a k | |u L ∞ T H 1/2 + x + v L ∞ T H 1/2 + x + Ψ L ∞ T W 1/2 + ,∞ x k-1 .
Thus, gathering all the above estimate, and then using Lemma 4.2.4, we conclude the proof of the proposition. The proof is complete.

4.4 Unconditional well-posedness in H s for s > 1/2

Existence and unconditional uniqueness

In this section we shall assume Theorem 4.5.1 hold, that is, we assume equation (4.1.4) is locally well-posed in H 3/2 + (R). In the next section we shall sketch the main ideas of its proof (see [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF] for further details, for example).

Before going further, for the sake of simplicity and by abusing notation, recalling that Ψ is a given function, from now on let us denote by

|||Ψ||| r := ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) L ∞ t H r
x , and by

Q * u L ∞ T H 1/2 + x := Q * u L ∞ T H 1/2 + x , Ψ L ∞ t W s+1 + ,∞ x , ∂ t Ψ L ∞ t,x , |||Ψ||| s + . Now, consider a sequence {Ψ n } n∈N ⊂ L ∞ (R 2 ) satisyfing the hypotheses in (4.1.7) with s = 3 2 +
for all n ∈ N, such that

∂ t Ψ n -∂ t Ψ L ∞ t,x + Ψ n -Ψ L ∞ t W s+1 + ,∞ x + |||Ψ n -Ψ||| s + n→+∞ -----→ 0. Let u ∈ C([0, T 0 ], H ∞ (R)
) be a smooth solution to equation (4.1.4) associated with Ψ n , with minimal existence time

T = T ( u 0 H 3/2 + , |||Ψ n ||| 3/2 + , Ψ n L ∞ t W 5/2,∞ x ) > 0,
emanating from an initial data u 0 ∈ H ∞ (R). Then, according to Proposition 4.3.1, there exist a constant c > 0 such that, after an application of Cauchy-Schwarz inequality, we have

u 2 L ∞ T H s ω ≤ u 0 2 H s ω + cT u 2 L ∞ T H s ω + cT |||Ψ n ||| 2 s + + cT 1/4 u 2 L ∞ T H s ω Q * u L ∞ T H 1/2 + x , (4.4.1) 
for all 0 < T ≤ min{1, T 0 }. We stress that Q * only involves norms of Ψ n associated with s and not with s = 3/2 + . Notice also that they do not depend on T either. Thus, we can consider the function

F (T ) := cT + cT 1/4 Q * u L ∞ T H 1/2 + x , T ∈ [0, T 0 ].
At this point it is important to recall that u L ∞ T H s ω → u 0 H s ω as T → 0. Moreover, notice that F (0) = 0, and hence, thanks to the continuity of T → F (T ), we infer the existence of T * = T * ( u 0 H s ω ) > 0 small enough, such that F (T ) < 1/2 for all T < T * .

In particular, the above inequality along with (4.4.1) implies that

u L ∞ T H s ω u 0 H s ω + |||Ψ||| s + for all T < T * . (4.4.2)
Note that, from (4.4.2) we infer that the minimal existence time20 can be chosen only depending on u 0 H s ω and |||Ψ||| s + . On the other hand, by using Proposition 4.3.2 we have that

u -v 2 L ∞ T H s-1 x u 0 -v 0 2 H s-1 + T 1/4 u -v 2 L ∞ T H s-1 x Q * u L ∞ T H s x , v L ∞ T H s x ,
where, as above, by an abuse of notation we are denoting by

Q * u L ∞ T H s x , v L ∞ T H s x := Q * u L ∞ T H s x , v L ∞ T H s x , Ψ L ∞ t W s+1,∞ x , ∂ t Ψ L ∞ t,x .
Therefore, a similar continuity argument as before yield us to the existence of a positive time , and hence, we can extract a subsequence (which we still denote by u n ) converging in the weaktopology of L ∞ T * H s x to some limit u. Moreover, from this latter convergence we also infer that ∂ x f (u n + Ψ n ) converges in a distributional sense to ∂ x f (u + Ψ). Therefore, the limit object u solves equation (4.1.4) with Ψ, in a distributional sense. Furthermore, from (4.4.3) we get that {u n } defines a Cauchy sequence in C([0, T * ], H s-1 (R)), and hence {u n } n∈N strongly converges to u in L ∞ ((0, T * ), H s-1 (R)). By the same reasons, from estimate (4.4.3) we conclude that this solution is the only one in the class L ∞ ((0, T ), H s (R)). On the other hand, the above results ensure that the map [0,

T * = T * ( u 0 H s , v 0 H s ) > 0 such that u -v L ∞ T H s-1 u 0 -v 0 H s-
T * ] t → u(t) ∈ H s (R)
is weakly continuous. In fact, let ϕ ∈ H s arbitrary, and consider φ ∈ H s+1 to be any function satisfying ϕ -φ

H s ≤ ε/ u L ∞ T * H s x .
Then, for all t, t ∈ (0, T * ) we have

| u(t) -u(t ), ϕ | H s ≤ ε + | J s-1 x (u(t) -u(t )), J s+1 φ H s | ≤ ε + 2 u n -u L ∞ T H s-1 x φ H s+1 + u n (t) -u n (t ) H s-1 x φ H s+1 .
Then, choosing n sufficiently large, using the strong convergence result in H s-1 , we deduce that we can control the right-hand side of the above inequality by 3ε, and hence u(t) is weakly continuous from [0, T * ] into H s (R). Moreover recalling that, due to (4.4.3), {u n } defines a Cauchy sequence in C([0, T * ], H s-1 (R)), we infer in particular that u ∈ C([0, T * ], H s-1 (R)).

Continuity of the flow map

We are finally ready to prove both, the continuity of the flow map and the continuity of u(t) with values in H s (R). Before getting into the details, let us recall the following standard lemma. 

such that sup n∈N N >0 ω 2 N N 2s P N f n 2 L 2 < ∞.
With this in mind, let {u n } n∈N be a sequence of solutions in L ∞ ([0, T ], H s (R)) associated with an initial datum u n (0) satisfying u n (0) → u(0) in H s (R). Now, we use the previous lemma with f n = u n (0) and f = u(0). Consider {ω N } N ∈D given by the previous lemma. Note that the strong continuity in C([0, T ], H s-1 (R)), together with the boundedness in H s ω implies, in particular, the strong continuity of the map [0, T ] t → u(t) in H s (R). In fact, first notice that it is enough to prove the continuity at t = 0. Thus, interpolating 21 the H s (R)-norm we obtain that

u(t) -u(0) H s (R) u(t) -u(0) θ H s-1 (R) u(t) -u(0) 1-θ H s ω (R) ,
for some θ ∈ (0, 1). Then, noticing that the first term on the right-hand side of the latter inequality goes to zero as t goes to zero, and since the second term is bounded on [0, T ], we conclude the strong continuity of the map [0, T ] t → u(t) in H s (R).

Finally, to complete the proof of Theorem 5.1.1 it only remains to show the continuity of the flow map. Consider {u n } and u as above. We intend to control u n -u L ∞ T H s

x . First of all, by using triangular inequality we have

u n -u L ∞ T H s x ≤ u n -P ≤N u n L ∞ T H s x + P ≤N u n -P ≤N u L ∞ T H s x + P ≤N u -u L ∞ T H s x ,
for any N ∈ D. Then, take ε ∈ (0, 1) arbitrary but fixed. We claim that, as a particular consequence of (4.4.4) 

1 ω N * N >N * ω 2 N N 2s u n (t) 2 L 2 x + u(t) 2 L 2 x 1/2 .
Therefore, since ω N +∞ as N → +∞, we conclude the proof of the claim. On the other hand, from the strong convergence in C([0, T ], H s-1 (R)) deduced in the previous subsection, we infer the existence of n * such that, for all n ≥ n * and all t ∈ (0, T ), we have

P ≤N * u n (t) -P ≤N * u(t) H s x ≤ 2N * P ≤N * u n (t) -P ≤N * u(t) H s-1 x < 1 2 ε.
Gathering the last two estimates, we conclude the proof of the continuity of the flow map, and hence, the proof of Theorem 5.1.1.

Proof of Theorem 4.1.5

The proof of Theorem 4.1.5 is a direct consequence of Theorem 5.1.1 along with the following lemma, proved in [START_REF] Gallo | Korteweg-de Vries and Benjamin-Ono equations on Zhidkov spaces[END_REF][START_REF] Iorio | KdV and BO equations with bore-like data[END_REF].

Lemma 4.4.2. Let Φ ∈ Z s (R) for s > 1 2 . Then, there exists Ψ ∈ C ∞ b and v ∈ H s such that

Φ = u + Ψ, with Ψ ∈ H ∞ (R).
Moreover, the maps Φ → Ψ and Φ → u can be defined as linear maps such that for every s > 1 2 the following holds : The map Φ → Ψ is continuous from Z s into Z s, whereas the map

Φ → v is continuous from Z s into H s .
Démonstration. As we already mentioned, the proof follows almost the same lines as the corresponding versions in [START_REF] Gallo | Korteweg-de Vries and Benjamin-Ono equations on Zhidkov spaces[END_REF][START_REF] Iorio | KdV and BO equations with bore-like data[END_REF]. However, due to the hypothesis s > 1/2 we need a slight modification of the argument. In fact, we shall actually explicitly define the function Ψ. Indeed, let us consider

Ψ(x) := (k * Φ)(x) where k(x) := 1 (4π) 1/2 e -x 2 /4 .
Then, it immediately follows that Ψ ∈ C ∞ b (R) and that Ψ ∈ H ∞ (R). Therefore, Φ -Ψ ∈ L ∞ ⊂ S . Now, by direct computations we obtain

F Φ -Ψ) = (1 -e -ξ 2 ) Φ(ξ) = (1 + |ξ| 2 ) 1/4 1-e -ξ 2 ξ × ξ(1 + |ξ| 2 ) -1/4 Φ(ξ) =: I × II.
Then, it is enough to notice that I ∈ L ∞ and that, due to hypothesis Φ ∈ Z s (R), we get II ∈ L 2 . It is not difficult to see that from the above computation we have u := Φ -Ψ ∈ H s . Finally, to obtain the continuity part of the statement, it is enough to notice that

Ψ 2 H s-1 ≤ Φ 2 H s-1 sup ξ∈R (1 + ξ 2 ) s-s e -2ξ 2 Φ 2 H s-1 .
On the other hand, by straightforward computations from the definition of Ψ, we also obtain that Ψ L ∞ ≤ Φ L ∞ , what give us the continuity of the map Φ → Ψ from Z s into Z s. Furthermore, proceeding similarly as above we also get that

u 2 H s ≤ Φ 2 H s-1 sup ξ∈R (1 + ξ 2 )(1 -e -ξ 2 ) 2 ξ 2 Φ 2 H s-1 ,
what give us the continuity of Φ → u from Z s (R) into H s (R). The proof is complete.

Therefore, by using the above lemma, we can decompose the initial data v(0, •) associated with the IVP (4.1.2) into two functions u 0 ∈ H s (R) and Ψ ∈ Z ∞ (R). Hence, it is enough to write (4.1.2) in terms of the Cauchy problem (4.1.4) with Ψ = Ψ(x) being a time-independent function belonging to Ψ ∈ Z ∞ (R). Notice that Ψ satisfies all the hypotheses in (4.1.7). Thus, Theorem 4.1.5 follows by using Theorem 5.1.1 with the above decomposition. given by the previous lemma, with initial data u 0 ∈ H s (R) with s > 3/2. Then, u µ (t) can be extended to an interval T = T ( u 0 H s ) > 0 independent of µ. Moreover, there exists a continuous function ρ : [0, T ] → R such that

u µ (t) 2 H s x ≤ ρ(t) with ρ(0) = u 0 2 H s .
Démonstration. In fact, directly taking the derivative of the H s -norm, using (4.5.1), after suitable integration by parts, we obtain

d dt u µ (t) 2 H s x ≤ -2 u µ , ∂ x (f (u + Ψ) -f (Ψ)) H s x -2 u µ , ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) H s x (4.5.2)
For the latter term above, from Cauchy-Schwarz we can see that

| u µ , ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) H s x | ≤ u µ (t) 2 H s x + ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) 2 L ∞ t H s x .
On the other hand, to estimate the first term in the right-hand side of (4.5.2) we write

∂ x f (u µ + Ψ) -f (Ψ) = u µ,x ∞ k=1 k-1 m=0 a k (k -m) k m u k-m-1 µ Ψ m + Ψ x ∞ k=1 k-1 m=1 a k m k m u k-m µ Ψ m-1 =: I + II.
Then, by classical Sobolev estimates for products as well as Lemma 4.5.4 we infer that there exists a constant c 1 > 0 such that

| u µ , I | H s x u µ 2 H s x ∞ k=1 k|a k |c k 1 u µ H s x + Ψ L ∞ t W s + ,∞ x k-1 .
In a similar fashion, there exists another constant c 2 > 0 such that

| u µ , II H s x | u µ 2 H s x ∞ k=1 k 2 |a k |c k 2 u µ H s x + Ψ L ∞ t W s+1 + ,∞ x k-1 .
Therefore, gathering the above estimates, recalling that Ψ is given, we infer that, there exists a smooth function F * : R → R + such that

d dt u µ (t) 2 H s x ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) 2 L ∞ t H s x + u µ (t) 2 H s x F * u µ (t) H s x .
Then, denoting by C Ψ the first term in the right-hand side above, it is enough to consider ρ(t) to be the solution of the equation

ρ(t) = C Ψ + ρ(t)F * (ρ 1/2 (t)), ρ(0) = u 0 2 H s .
Notice that the solution exists thanks to Cauchy-Lipschitz Theorem. Taking T * > 0 to be the maximal existence time of ρ(t), we conclude u µ (t) By using the latter lemma we can now take a sequence of initial data u 0,µ ∈ H s (R) strongly converging to some u 0 in H s (R). Then, by the uniform (in µ) bound we infer that, up to a subsequence, we can pass to the limit in the sequence of solutions u µ (t), which converge in the weak-topology of L ∞ ((0, T ), H s (R)) to some limit object u(t). It is not difficult to see, reasoning similarly as in the previous section, that u(t) solves the equation in the distributional sense and the map [0, T ] t → u(t) ∈ H s (R) is weakly continuous. Let us now consider the uniqueness of the solution. With this aim, let us consider w := u -v, with u and v solutions of the equation. Recall that then w solves

∂ t w + ∂ x ∂ 2 x w + f (u + Ψ) -f (v + Ψ) = 0.
Then, taking the L 2 -scalar product of the above equation with against w, we obtain

d dt w 2 L 2 x = -w, ∂ x (f (u + Ψ) -f (v + Ψ)) L 2 x w 2 L 2 x ∞ k=1 c k |a k | u H 1 x + v H 1 x + Ψ L ∞ t W 1 + ,∞ x k-1 .
Therefore, a direct application of Grönwall inequality, recalling that u(t) 2

H s x + v(t) 2 H s
x ≤ 2ρ(t), implies the uniqueness.

The strong continuity of the solution with values in H s (R), as well as the continuity of the flow-map can be proven by classical Bona-Smith arguments. We omit this proof.

Proof of Theorem 5.1.2

In this section we seek to prove the global well-posedness theorem 5.1.2. We recall that in this case we assume that

|f (x)| 1, ∀x ∈ R, (4.6.1) 
what shall allow us to use Gronwall inequality. We emphasize once again that, due to the presence of Ψ(t, x), equation (4.1.4) has no evident conservation laws. Our first lemma states that the L 2 -norm of the solution grows at most exponentially fast in time.

Lemma 4.6.1. Let u(t) ∈ C([0, T ], H 1 (R)) be a solution to equation (4.1.4) emanating from an initial data u 0 ∈ H 1 (R). Then, for all t ∈ [0, T ] we have

u(t) 2 L 2 x ≤ C u 0 ,Ψ exp(C Ψ t), (4.6.2) 
where C Ψ > 0 is a positive constants that only depends on Ψ, while C u 0 ,Ψ > 0 depends on Ψ and u 0 .

Démonstration. In fact, multiplying equation (4.1.4) by u(t) and then integrating in space we obtain 1 2

d dt ˆR u 2 (t, x)dx = -ˆu∂ x f (u + Ψ) -f (Ψ) - ˆu ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) =: I + II.
Notice that, thanks to our hypotheses on Ψ, we can immediately bound II by using Young inequality for products, from where we get

|II| ≤ u(t) 2 L 2 x + ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) 2 L ∞ t L 2
x . Now, the estimate for I is more delicate since we require to integrate by parts. Also, we must be careful while splitting the integral into several integrals since there might be terms that do not integrate (due to Ψ). Hence, in this case we can proceed as follows

|I| = lim R 1 ,R 2 →+∞ ˆR1 -R 2 u x f (u + Ψ) -f (Ψ) = lim R 1 ,R 2 →+∞ ˆR1 -R 2 (u x + Ψ x )f (u + Ψ) -Ψ x f (u + Ψ) -Ψ x f (Ψ) + Ψ x f (Ψ) -u x f (Ψ) -Ψ x uf (Ψ) + Ψ x uf (Ψ) ≤ lim sup R 1 ,R 2 →+∞ ˆR1 -R 2 (u x + Ψ x )f (u + Ψ) -Ψ x f (Ψ) + lim sup R 1 ,R 2 →+∞ ˆR1 -R 2 u x f (Ψ) + Ψ x uf (Ψ) + lim sup R 1 ,R 2 →+∞ ˆR1 -R 2 Ψ x f (u + Ψ) -Ψ x f (Ψ) -Ψ x uf (Ψ) =: I 1 + I 2 + I 3 .
Now, for I 1 notice that we can write the integrand as a full derivative, and hence we have

I 1 = lim sup R 1 ,R 2 →+∞ ˆR1 -R 2 ∂ x F (u + Ψ) -F (Ψ) ≤ lim sup R 1 →+∞ F (u + Ψ) -F (Ψ) (R 1 ) + lim sup R 2 →+∞ F (u + Ψ) -F (Ψ) (-R 2 ) = 0,
where in the last equality we have used the fact that F is smooth and that u(t) ∈ H 1 (R), so in particular u(t) → 0 as x → ±∞ for all t ∈ [0, T ]. On the other hand, for I 2 we integrate by parts, from where we obtain

I 2 ≤ lim sup R 1 →+∞ |uf (Ψ)|(R 1 ) + lim sup R 2 →+∞ |uf (Ψ)|(-R 2 ) = 0, since u(t) ∈ H 1 (R), Ψ ∈ L ∞ (R 2
) and f is smooth. Then, gathering all the above estimates, and then using Hölder inequality along with hypothesis (4.6.1), we deduce that

|I| ˆR Ψ x f (u + Ψ) -f (Ψ) -uf (Ψ) Ψ x L ∞ t,x u(t) 2 L 2 x .
Therefore, Gronwall inequality provides (5.7.1). The proof is complete. Now, in order to control the H 1 -norm, we consider the following modified energy functional

E u(t) := 1 2 ˆR u 2 x (t, x)dx - ˆR F u(t, x) + Ψ(t, x) -F Ψ(t, x) -u(t, x)f Ψ(t, x) dx.
It is worth to notice that the previous functional is well defined for all times t ∈ [0, T ]. The following lemma give us the desired control on the growth of the H 1 -norm of the solution u(t), and hence, it finishes the proof of Theorem 5.1.2.

Lemma 4.6.2. Let u(t) ∈ C([0, T ], H 1 (R)) be a solution to equation (4.1.4) emanating from an initial data u 0 ∈ H 1 (R). Then, for all t ∈ [0, T ] we have

u(t) H 1 x C * u 0 ,Ψ exp(C * Ψ t).
where C * Ψ > 0 is a positive constants that only depends on Ψ, while C * u 0 ,Ψ > 0 depends on Ψ and u 0 .

Démonstration. First of all, by using the continuity of the flow with respect to the initial data, given by Theorem 5.1.1, we can assume u(t) is sufficiently smooth so that all the following computations hold. Now, let us begin by explicitly computing the time derivative of the energy functional. In fact, by using equation (4.1.4), after suitable integration by parts we obtain

d dt E = -ˆuxx u t -ˆut f (u + Ψ) -f (Ψ) -ˆΨt f (u + Ψ) -f (Ψ) -uf (Ψ) = ˆuxx ∂ x f (u + Ψ) -f (Ψ) + ˆu∂ 2 x Ψ t + ∂ 3 x Ψ + ∂ x f (Ψ) + ˆuxxx f (u + Ψ) -f (Ψ) + ˆ f (u + Ψ) -f (Ψ) ∂ x f (u + Ψ) -f (Ψ) + ˆ f (u + Ψ) -f (Ψ) Ψ t + ∂ 3 x Ψ + ∂ x f (Ψ) -ˆΨt f (u + Ψ) -f (Ψ) -uf (Ψ) = ˆu∂ 2 x Ψ t + ∂ 3 x Ψ + ∂ x f (Ψ) + ˆ f (u + Ψ) -f (Ψ) Ψ t + ∂ 3 x Ψ + ∂ x f (Ψ) -ˆΨt f (u + Ψ) -f (Ψ) -uf (Ψ) 1 + Ψ t L ∞ t,x + Ψ 2 L ∞ t,x + ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) L ∞ t,x u(t) 2 L 2 x (4.6.3) + Ψ t + ∂ 3 x Ψ + ∂ x f (Ψ) 2 L ∞ t H 2
x . On the other hand, by using Gagliardo-Nirenberg interpolation inequality, and then applying Young inequality for products, we have

ˆR u 3 (t, x)dx ≤ C u x 1/2 L 2 x u(t) 5/2 L 2 x ≤ ε 4 4 u x (t) 2 L 2 x + 3 4ε 4/3 u(t) 10/3 L 2 x .
Thus, by using the above inequality together with our current hypothesis on f (x), we deduce

ˆ F (u + Ψ) -F (Ψ) -uf (Ψ) Ψ L ∞ t,x u(t) 2 L 2 x + u(t) 3 L 3 x Ψ L ∞ t,x u(t) 2 L 2 x + ε 4 4 u x (t) 2 L 2 x + 3 4ε 4/3 + u(t) 10/3 L 2 x .
Therefore, integrating (5.7.3) on [0, T ], and then plugging the latter inequality in the resulting right-hand side, together with the conclusion of Lemma 5.7.1, denoting by C ε := 1 -1 4 ε 4 , we infer that

C ε ˆR u 2 x (t, x)dx ˆu2 0,x - ˆ F (u 0 + Ψ 0 ) -F (Ψ 0 ) -u 0 f (Ψ 0 ) + C u 0 ,Ψ 1 + Ψ t L ∞ t,x + Ψ 2 L ∞ t,x + ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) L ∞ t,x e 10C Ψ t/3 ,
where C u 0 ,Ψ and C Ψ are the constants founded in the previous lemma. Then, choosing ε > 0 small, we conclude the proof of the lemma.

Chapitre 5

Local well-posedness for the Zakharov-Kuznetsov equation on the background of a bounded function 5.1 Introduction

The classical model

In this work we seek to study the initial value problem associated with the Zakharov-Kuznetsov (ZK) equation in two space dimensions, namely

∂ t v + ∂ x ∆v + 1 2 ∂ x (v 2 ) = 0, v(0, x, y) = v 0 (x, y), (5.1.1) 
where v = v(t, x, y) is a real-valued function, ∆ is the Laplacian operator and (t, x, y) ∈ R 3 . Equation (5.1.1) was formally derived by Zakharov and Kuznetsov in [START_REF] Zakharov | On three-dimensional solitons[END_REF] as an asymptotic model to describe the propagation of nonlinear ion-acoustic waves in a magnetized plasma. Equation (5.1.1) has also been derived by Lannes, Linares and Saut in [START_REF] Lannes | The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation[END_REF] from the Euler-Poisson system with magnetic field as a long-wave and small-amplitude limit (see also [START_REF] Linares | The Cauchy problem for the 3D Zakharov-Kuznetsov equation[END_REF] for a formal derivation). Moreover, the Zakharov-Kuznetsov equation may also be seen as a natural two-dimensional generalization of the celebrated Korteweg-de Vries (KdV) equation

∂ t v + ∂ 3 x v + 1 2 ∂ x (v 2 ) = 0. (5.1.2)
One of the most interesting features of equation (5.1.1) is the existence of solitary wave solutions. Indeed, the Zakharov-Kuznetsov equation has solitary waves solutions of many different types, namely, localized traveling waves solutions, kink solutions as well as periodic traveling waves solutions. Moreover, as a generalization of the KdV equation, a basic method to obtain solitary waves solutions for the ZK equation is simply by taking the solutions of the KdV equation and considering them as y-independent functions.

Contrary to the Korteweg-de Vries equation, or the Kadomtsev-Petviashvili equation

∂ t v + ∂ 3 x v ± ∂ -1 x ∂ 2 y v + 1 2 ∂ x (v 2 ) = 0,
which is another higher-dimensional generalization of the KdV equation (5.1.2), the Zakharov-Kuznetsov equation (5.1.1) is not completely integrable. Nevertheless, it keeps a Hamiltonian structure and possesses at least three different quantities that are formally conserved by the ZK flow, namely, the mean, the mass and the energy (respectively)

I 1 (v(t)) := ˆR2 v(t, x, y)dxdy = I 1 (v 0 ), I 2 (v(t)) := ˆR2 v 2 (t, x, y)dxdy = I 2 (v 0 ), I 3 (v(t)) := 1 2 ˆR2 ∇v(t, x, y) 2 - 1 3 v(t, x, y) 3 = I 3 (v 0 ).
Therefore, L 2 and H 1 are two natural spaces to study well-posedness for the ZK equation. As a consequence of these conservation laws, global well-posedness has been proved in L 2 (R 2 ) and H 1 (R 2 ) in [START_REF] Kishimoto | Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity[END_REF][START_REF] Faminskii | The Cauchy problem for the Zakharov-Kuznetsov equation[END_REF] respectively.

Model in the background of a bounded function

Motivated by the study of Kink solutions, in this work we seek to study a slight generalization of the initial value problem (5.1.1). More specifically, here we consider the problem

∂ t v + ∂ x ∆v + 1 2 ∂ x (v 2 ) = 0, v(0, x, y) = Φ(x, y), (5.1.3) 
where, for the moment, we do not intend to assume any decay property of the initial data Φ(x, y) in any spacial direction, but only that Φ ∈ L ∞ (R 2 ). Instead, we decompose the solution v(t, x, y) in the following fashion v(t, x, y) = u(t, x, y) + Ψ(t, x, y), (5.1.4) where we assume that Ψ ∈ L ∞ (R 3 ; R) is a given function (see (5.1.6) below for the specific hypotheses on Ψ) and we seek for u(t) belonging to some Sobolev space. Then, it is natural to rewrite the above initial value problem in terms of the following Cauchy problem

∂ t u + ∂ t Ψ + ∂ x ∆u + ∂ x ∆Ψ + 1 2 ∂ x (u + Ψ) 2 = 0, u(0, x, y) = u 0 (x, y) ∈ H s (R 2 ).
(5.1.5)

We stress that equation (5.1.5) is nothing but equation (5.1.3) once replacing the decomposition given in (5.1.4).

At this point it is worth to mention that, due to the presence of the background function Ψ, which is not integrable, none of the conservation laws presented in the previous subsection is well-defined, and there seems to be no evident well-defined conservation law for (5.1.5).

Although, a suitable modification of the energy functional I 3 shall play a key role in proving global well-posedness for (5.1.5) in H 1 (R 2 ).

As mentioned before, one of our main motivations comes from studying Kink solutions. However, at the same time we also seek to give a framework to study localized non-periodic perturbations of periodic solutions of (5.1.1), such as for example, the famous cnoidal wave solutions of the KdV equaiton Ψ cn (t, x, y) := 2 + βcn 2 γ(x -ct); κ , where c > 0 and (2, β, γ, κ) ∈ R 4 satisfying some suitable conditions, and where cn(•, •) stands for the Jacobi elliptic cnoidal function (see [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF]).

Hypotheses on the background function : In the sequel we shall always assume that the given function Ψ(t, x, y) satisfies the following hypotheses :

Ψ ∈ L ∞ (R, W 4 + ,∞ xy (R 2 )), ∂ t Ψ + ∂ x ∆Ψ + 1 2 ∂ x (Ψ 2 ) ∈ L ∞ (R, H 3 + (R 2 )).
( for initial data in H s (R 2 ), with s > 3/4. With this aim, they adapted the method developed by Kenig, Ponce and Vega in [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF] (to deal with the generalized KdV equation), which combines smoothing effects, Strichartz estimates, and a maximal function estimate, along with the Banach contraction principle. Thus, since equation (5.1.5) can be regarded as a perturbation of the classical ZK equation (5.1.1), one might think that, in order to prove local well-posedness for equation (5.1.5), it is reasonable to proceed by using the contraction principle just as Linares and Pastor did in [START_REF] Linares | Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation[END_REF]. However, it seems that this is not possible, due to the occurrence of the term Ψ∂ x u, since Ψ is not integrable, which shows us that this problem is more involved.

Main results

In the rest of this work, we focus on studying the Cauchy problem associated with (5.1.5).

Our main goal is to prove global well-posedness for (5. 

u ∈ C([-T, T ], H s (R s )) ∩ B s (T ) ∩ F s (T ).
Moreover, the data-to-solution map Φ :

u 0 → u is continuous from H s (R 2 ) into C([-T, T ], H s (R 2 )).
Remark 5.1.2. The short-time Bourgain spaces F s (T ) := F s 1/2 (T ) and B s (T ) := B s 1/2 (T ) shall be defined in Section 5.2. Finally, by using some modification of the energy functional we prove global well-posedness for equation (5.1.5) in the energy space.

Theorem 5.1.2 (Global well-posedness). The local solution u(t) provided by the previous theorem can be extended for all times T > 0.

Remark 5.1.3. The local well-posedness Theorem 5.1.1 only requires the regularity hypotheses in (5.1.6) to hold with exponents 7/2 + and 5/2 + , respectively. The fact that we assume regularity 4 + and 3 + , respectively, is just to have a wider range of LWP in the regular case (c.f. Theorem 5.6.1), so that we can easily justify all our computations while integrating by parts, using the continuity of the data-to-solution map, hence assuming that the solution is regular enough.

We now discuss the main ingredients in the proof of Theorem 5.1.1. We shall adapt the method introduced by Ionescu, Kenig and Tataru in [START_REF] Ionescu | Global well-posedness of the KP-I initial-value problem in the energy space[END_REF], in the context of the KP-I equation, which consists in an energy method, based on the introduction of the dyadic short-time Bourgain spaces F s β and their dual N s β , defined in the following section. Generally speaking, from a perturbative point of view, for an equation of the form

∂ t u + ∂ x ∆u = f, u(0, x, y) = u 0 (x, y),
one would like to prove a linear estimate for solutions of the above IVP, of the form

u F s (T ) u 0 H s + f N s (T ) , (5.1.7) 
for some suitable spaces F s (T ) and N s (T ), along with matching nonlinear estimates

∂ x (u 2 ) N s (T ) u 2 F s (T ) and ∂ x (uΨ) N s (T ) u F s (T ) Ψ L ∞ t W 4 + ,∞
x,y .

However, due to the presence of Ψ, it is not clear whether such a choice of spaces F s (T ) and N s (T ) exist, which forces us to approach the problem in a less perturbative way.

Instead, the key idea of Ionescu, Kenig and Tataru in [START_REF] Ionescu | Global well-posedness of the KP-I initial-value problem in the energy space[END_REF], was to introduce some normed functional spaces F s (T ), N s (T ), and a semi-normed space B s (T ) so that, for smooth solutions of the equation, the following inequalities (reformulated in our present context, adding Ψ into the equation) hold

             u F s (T ) u B s (T ) + ∂ x (u 2 ) N s (T ) + ∂ x (uΨ) N s (T ) + |||Ψ||| s , ∂ x (u 2 ) N s (T ) u 2 F s (T ) , ∂ x (uΨ) N s (T ) u F s (T ) Ψ L ∞ t W 4 + ,∞ xy u 2 B s (T ) u 0 H s + u F s (T ) |||Ψ||| 3 + + u 2 F s (T ) Ψ L ∞ t W 4 + ,∞ xy + u 3 F s (T ) , (5.1.8) 
where the norm ||| • ||| s is defined in (5.6.1). Then, the above inequality along with a simple continuity argument suffices to control u F s (T ) , provided that u 0 H s 1 and

Ψ L ∞ t W 4 + xy + ∂ t Ψ + ∂ x ∆Ψ + 1 2 ∂ x (Ψ 2 ) L ∞ t H 3 + xy 1,
which can be arranged by scaling considerations. The first inequality in (5.1.8) is the analogue of the linear estimate (5.1.7), while the second and the third one correspond to the bilinear estimates. Finally, the last inequality in (5.1.8) is an energy-type estimate. The main issue in (5.1.8) is the appearance of the energy norm u B s (T ) in the first inequality of (5.1.8), taking the place of the usual H s -norm of the initial data u 0 H s , which is introduced to control the small time localization appearing in the F s -structure.

The F s (T ) spaces enjoy a X s,1/2,1 -type structure, but with a localization in small, frequency dependent time intervals, whose length is of order H -β , for some β > 0 to be chosen (in our present case we take β = 1/2), when the spatial frequency (ξ, µ) of the function is localized around ξ 2 + µ 2 ∼ H. This shall allow us, in a certain way, to work only with modulations of size |τ -ω(ξ, µ)| H β , thus neglecting the contribution in the cases where the modulation variable is too small. Of course, the choice of β shall be one of the key points in these definitions. As mentioned before, one of the main obstruction in proving local well-posedness, by a fixed point argument, in our present case is coming from the occurrence of ∂ x (uΨ) in the nonlinearity. More precisely, we choose β in order to be able to deal with the norm ∂ x (uΨ) N s (T ) , whose definition is also based on frequency dependent time intervals of length of order H -β . Particularly harmful shall be terms of the form ∂ x P H (P ∼H u • P H Ψ). These types of terms lead us to consider β = 1/2. Finally, we adapt the Bona-Smith method [START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF] to prove the continuity of the flow in the H s space.

Previous results

The Cauchy problem associated with the Zakharov-Kuznetsov equation (5.1.1) has been extensively studied in the last years. In the two-dimensional case, the first result goes back to Faminskii [START_REF] Faminskii | The Cauchy problem for the Zakharov-Kuznetsov equation[END_REF], where he proved the local and global well-posedness in the energy space H 1 (R 2 ) by adapting the prove of Kenig, Ponce and Vega to deal with the KdV equation [START_REF] Kenig | A bilinear estimate with applications to the KdV equation[END_REF]. This result was later improved by Linares and Pastor in [START_REF] Linares | Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation[END_REF]. They showed the LWP of (5.1.1) in H s (R 2 ) for s > 3/4. This latter result was proved by using a fixed point argument, taking advantage of the dispersive smoothing effects associated to the linear part of the ZK equation (5.1.1), in a similar fashion as Kenig, Ponce and Vega did for the generalized KdV equation [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF]. Then, Grünrock and Herr [START_REF] Grünrock | The Fourier restriction norm method for the Zakharov-Kuznetsov equation[END_REF] and Molinet and Pilod [START_REF] Molinet | Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications[END_REF] independently proved local well-posedness for s > 1/2. This was done by using the Fourier restriction norm method. On the other hand, Shinya Kinoshita has recently proved the local and global well-posedness of equation (5.1.1) in H s (R 2 ) for s > -1/4 and L 2 (R 2 ) respectively [START_REF] Kishimoto | Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity[END_REF]. This latter LWP result is almost optimal, at least from a Picard iteration approach point of view, since the data-to-solution map u 0 → u(t) fails to be C 2 for s < -1/4.

Concerning the method of proof of Theorem 5.1.1, as we mentioned before this technique was first introduced by Ionescu, Kenig and Tataru in [START_REF] Ionescu | Global well-posedness of the KP-I initial-value problem in the energy space[END_REF]. Since then, these ideas have been adapted to deal with several other models. We refer to [START_REF] Molinet | Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications[END_REF] and [START_REF] Ribaud | Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation[END_REF] for previous works using some similar ideas in the context of the ZK-type equation. Also, see [START_REF] Guo | Local well-posedness for dispersion generalized Benjamin-Ono equations in Sobolev spaces[END_REF] and [START_REF] Kenig | Well-posedness for the fifth-order KdV equation in the energy space[END_REF] for some adaptations of these ideas in the context of KdV-type equations. Finally, we refer to [START_REF] Christ | A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order[END_REF] and [START_REF] Koch | A priori bounds for the 1D cubic NLS in negative Sobolev spaces[END_REF] for some previous works using some similar spaces to prove a priori bounds for the 1D cubic NLS at low regularity.

Finally, we believe that the technique employed here may be useful to prove LWP in the background of a bounded function for a broad class of higher dimensional models, as for the KP-II equation, for example. We plan to address this issue in a forthcoming paper. For a method to treat one-dimensional models we refer to [101].

Organization of this chapter

This paper is organized as follows. In Section 5.2 we provide the definition of the shorttime Bourgain spaces and prove several of their basic properties. In Section 5.3 we prove the main L 2 -bilinear estimates. Then, we establish the main energy estimates for solutions and difference of solutions in Section 5.5. Finally, we prove the local and global well-posedness theorems in sections 5.6 and 5.7 respectively.

Preliminaries

Basic notations

For any pair of positive numbers a and b, the notation a b means that there exists a positive constant c such that a ≤ cb. We also denote by a ∼ b when a b and b a. Moreover, for 2 ∈ R, we denote by 2 + , respectively 2 -, a number slightly greater, respectively lesser, than 2. In the sequel we denote by D := {2 : ∈ N}. Also, in this article we shall use an adapted (to dyadic numbers) version of the floor function • in the following sense : for x ∈ R we define the floor function x as follows

x := max{L ∈ D : L ≤ x < 2L}.
For a 1 , a 2 , a 3 ∈ R we define the quantities a max ≥ a med ≥ a min to be the maximum, median and minimum of a 1 , a 2 and a 3 respectively. Furthermore, we shall occasionally use the notation F (x) to denote a primitive of the nonlinearity f (x), that is, F (s) = ´s 0 f (s )ds . Now, for u(t, x, y) ∈ S (R 3 ), Fu = û shall denote its space-time Fourier transform, whereas F t u, respectively F x,y u, shall denote its time Fourier transform, respectively space Fourier transform. Additionally, for s ∈ R, we introduce the Bessel and Riesz potentials of order -s, namely J s x and D s x , by (respectively)

J s u := F -1 xy (1 + |(ξ, µ)| 2 ) s/2 Fu and D s u := F -1 xy |(ξ, µ)| s Fu .
We also denote by U (t) the unitary group associated with the linear part of (5.1.1), that is, the unitary group e -t∂x∆ associated with the linear dispersive equation

∂ t u + ∂ x ∆u = 0,
which is defined via the Fourier transform as

U (t)u 0 = F -1 e itξ(ξ 2 +µ 2 ) Fu 0 .
Moreover, from now on ω(ξ, µ) shall denote the symbol associated with (5.1.1), that is, we set ω(ξ, µ) := ξ(|ξ| 2 + µ 2 ) and the resonant relation

Ω(ξ 1 , µ 1 , ξ 2 , µ 2 ) := ω(ξ 1 + ξ 2 , µ 1 + µ 2 ) -ω(ξ 1 , µ 1 ) -ω(ξ 2 , µ 2 ).
We shall also need to study the group velocity of the equation, in particular its first component, that is, the function h(ξ, µ)

:= ∂ ξ ω(ξ, µ) = 3ξ 2 + µ 2 .
Throughout this work we consider a fixed smooth cutoff function η satisfying

η ∈ C ∞ 0 (R), 0 ≤ η ≤ 1, η [-1,1] = 1 and supp η ⊂ [-2, 2]. (5.2.1)
We define φ(ξ) := η(ξ) -η(2ξ) and, for ∈ N, we denote by η 2 the function given by η 2 (ξ) := φ 2 -ξ and η 0 (ξ) := η(ξ).

Similarly, we define ψ 2 (ξ, µ) and ψ 0 (ξ, µ) as follows

ψ 2 (ξ, µ) := η 2 (ξ 2 + µ 2 ) and ψ 0 (ξ, µ) := φ 0 (ξ 2 + µ 2 ).
Additionally, write a tilde above these functions to denote another cutoff function, in the same variables, but associated with a slightly larger region. Concretely, we define (η 2 ) ≥0 to be another nonhomogeneous dyadic partition of the unity satisfying that supp η2 ⊂ [2 -1 , 2 +1 ], ≥ 1, and such that η2 ≡ 1 on supp η 2 . We proceed in the same fashion for ψ 2 .

Any summations over capitalized variables such as N , M , H or L are presumed to be dyadic. Unless stated otherwise, we work with non-homogeneous dyadic decompositions for the spacefrequency, time-frequency and modulation variables, i.e., these variables range over numbers of the form D = {2 : ∈ N}. Then, with the previous notations we have that

N ∈D η N (ξ) = 1 for all ξ ∈ R \ {0} and supp η N ⊂ { 1 2 N ≤ |ξ| ≤ 2N }.
We define the Littlewood-Paley multipliers by the following identities and similarly for P x N . Occasionally, for A ⊂ R 2 we shall denote by P A = F -1 xy 1 A F xy , that is, the Fourier projection on A. We also define the set associated with the above decompositions. More precisely, for N, H ∈ D we define

P x N u := F -1 x η N (ξ)
I N := ξ ∈ R : 1 2 N ≤ |ξ|2N and ∆ H := (ξ, µ) ∈ R 2 : h(ξ, µ) ∈ I H .
We borrow some notations from [START_REF] Tao | Multilinear weighted convolution of L 2 functions and applications to nonlinear dispersive equations[END_REF] as well. For k ≥ 2 natural number and ξ ∈ R, we denote by Γ k (ξ, µ) the (2k -2)-dimensional affine-hyperplane of R 2k given by

Γ k (ξ, µ) := {(ξ 1 , µ 1 , ..., ξ k , µ k ) ∈ R 2k : ξ 1 + ... + ξ k = ξ, µ 1 + ... + µ k = µ}.
endowed with the natural measure ˆΓk (ξ,µ)

F (ξ 1 , µ 1 , ..., ξ k , µ k )dΓ k (ξ, µ) = ˆR2k-2 F (ξ 1 , µ 1 , ..., ξ k-1 , µ k-1 , ξ -ξ 1 -... -ξ k-1 , µ -µ 1 -... -µ k-1 )dξ 1 dµ 1 ...dξ k-1 dµ k-1 .
for any function F : Γ k (ξ, µ) → C. Moreover, when ξ = µ = 0 we shall simply denote by Γ k = Γ k (0) with the obvious modifications.

Function spaces

We shall work with short-time localized Bourgain spaces, introduced by Ionescu, Kenig and Tataru in [START_REF] Ionescu | Global well-posedness of the KP-I initial-value problem in the energy space[END_REF]. First, for H ∈ D fixed, we introduce the frequency localized 1 -Besov type space X H of regularity 1/2 with respect to modulations

X H := φ ∈ L 2 (R 3 ) : supp φ ⊂ R × I H and φ X H < +∞ ,
where the X H -norm is defined as

φ X H := L∈D L 1/2 η L τ -ω(ξ, µ) φ(τ, ξ, µ) L 2 (R 3 ) . (5.2.3)
This type of structures were previously used in [START_REF] Tataru | Local and global results for wavemaps[END_REF], and are useful to prevent high frequency losses in bilinear and trilinear estimates. Now, for β ≥ 0 to be chosen and H ∈ D fixed, we define the Bourgain spaces F H,β localized in short-time intervals of length H -β ,

F H,β := f ∈ L ∞ (R, L 2 (R 2 )) : supp F(f ) ⊂ R × I H and f F H,β < +∞ ,
where the F H,β -norm is given by

f F H,β := sup t H ∈R F η 0 (H β (• -t H ))f X H .
Its dual version N H,β is defined by

N H,β := f ∈ L ∞ (R, L 2 (R 2 )) : supp F(f ) ⊂ R × I H and f N H,β < +∞ ,
where in this case the N H,β -norm is given by

f N H,β := sup t H ∈R τ -ω(ξ, ω) + iH β -1 F η 0 (H β (• -t H ))f X H .
Then, for s ≥ 0, we define the global F s β and N s β spaces from their frequency localized versions F H,β and N H,β by using a nonhomogeneous Littlewood-Paley decomposition as follows

F s β := f ∈ L ∞ (R, L 2 (R 2 )) : f 2 F s β := H∈D H s P H f 2 F H,β < +∞ , (5.2.4 
)

N s β := f ∈ L ∞ (R, L 2 (R 2 )) : f 2 N s β := H∈D H s P H f 2 N H,β < +∞ . ( 5 

.2.5)

The reason why we define the above norms with an H s weight instead of H 2s comes from the fact that the localization already has a square power H ∼ ξ 2 + µ 2 . Hence, defining them with a H s weight makes them related to an H s (R 2 ) level of regularity.

The bounds we obtain for solutions of equation (5.1.5) are on a fixed time interval, while the above function spaces are not. To remedy this, we also define the localized (in time) version of these spaces. For any time T ∈ (0, 1], let Y denote either F s β or N s β . Then, we define

f Y (T ) := inf f Y : f : R 3 → R and f [-T,T ]×R 2 = f . Then, F s β (T ) := f ∈ L ∞ ([-T, T ], L 2 (R 2 )) : f F s β (T ) < +∞ , (5.2.6 
)

N s β (T ) := f ∈ L ∞ ([-T, T ], L 2 (R 2 )) : f N s β (T ) < +∞ . (5.2.7)
Finally, we define the energy space B s (T ) as follows, for s ≥ 0 and T ∈ (0, 1] we set

f 2 B s (T ) := P 1 f (0, •, •) 2 L 2 x,y + H∈D\{1} H s sup t H ∈[-T,T ] P H f (t H , •, •) 2 L 2
x,y .

Then, the energy space B s (T ) is given by

B s (T ) := f ∈ L ∞ ([-T, T ], L 2 (R 2 ) : f B s (T ) < +∞ .

Properties of the function spaces

In this subsection we show some basic but important properties concerning the short-time function spaces introduced in the previous subsection. They all have been proved in different contexts (see [START_REF] Ionescu | Global well-posedness of the KP-I initial-value problem in the energy space[END_REF][START_REF] Kenig | Well-posedness for the fifth-order KdV equation in the energy space[END_REF]).

The following lemma gives us that

F s β (T ) → L ∞ ([-T, T ], H s (R 2 )). Lemma 5.2.1. Let T > 0, s ≥ 0 and β ≥ 0. Then, for all f ∈ F s β (T ), the following holds f L ∞ T H s f F s β (T ) . ( 5 

.2.8)

Démonstration. In fact, let us consider f ∈ F s β (T ). Now, we choose an extension f ∈

F s β such that f [-T,T ] = f and f F s β ≤ 2 f F s β (T ) . Then, it follows from the definition that f (t, •, •) 2 H s = f (t, •, •) 2 H s H∈D H s P H f (t, •, •) 2 L 2
x,y .

(5.2.9)

Now, for t ∈ [-T, T ] and H ∈ D fixed, using the Fourier Inversion formula we have that

F x,y (P H f )(t, ξ, µ) = c ˆR2 e itτ F x,y η 0 H β (• -t) P H f dτ. ( 5 

.2.10)

On the other hand, by using Cauchy-Schwarz inequality in τ along with the definition of X H we infer that ˆR |f (τ, ξ, µ)|dτ 

L 2 ξ,µ f X H , ( 5 
P H f (t, •, •) L 2 x,y P H f F H,β ,
for all H ∈ D. Then, plugging the latter estimate into (5.2.9) and then taking the supreme over t ∈ [-T, T ], we conclude the proof of the lemma.

Lemma 5.2.2. Let I ⊂ R be a bounded interval and consider H ∈ D fixed. Then, the following inequality holds

sup L∈D L 1/2 η L τ -ω(ξ, µ) F(1 I (t)f ) L 2 F(f ) X H , (5.2.12) 
for all f such that F(f ) ∈ X H .

Démonstration. Let L ∈ D be fixed. First, by frequency decomposition we write

f = L∈D F -1 η L (τ -ω(ξ, µ))F(f ) =: L∈D f L .
Then, plugging the above decomposition into the left-hand side of (5.2.12) we obtain that

L 1/2 η L τ -ω(ξ, µ) F(1 I (t)f ) L 2 L 1/2 L∈D η L τ -ω(ξ, µ) F(1 I (t)f L ) L 2 .
Now we split the sum over L ∈ D into two sums, one over {L ∈ D : L L} and the remaining one over {L ∈ D : L L}. For the former, we observe that by using Plancharel identity we immediately obtain that

L 1/2 L L η L τ -ω(ξ, µ) F(1 I (t)f L ) L 2 L L L 1/2 η L τ -ω(ξ, µ) F(f ) L 2 .
On the other hand, for the latter, since I ⊂ R is a bounded interval, it is not difficult to see that F t (1 I )(τ ) 1/|τ |. Thus, expanding the Fourier Transform and then applying Cauchy-Schwarz inequality along with the previous observation we infer that

L 1/2 L L η L τ -ω(ξ, µ) F(1 I (t)f L ) L 2 L 1/2 L L η L τ -ω(ξ, µ) ˆR F(f )(τ , ξ, µ) • η L (τ -ω(ξ, µ)) |τ -τ | dτ L 2 τ,ξ,µ L L L 1/2 η L τ -ω(ξ, µ) F(f ) L 2 ,
where we have used that, due to the presence of η L • η L and since in this case we have that L L, then it holds

|τ -τ | ≤ |τ -ω(ξ, µ)| + |τ -ω(ξ, µ)| ∼ L.
Therefore, gathering the above estimates and taking the supreme in L, we conclude the proof of the lemma.

The following technical lemma provides a crucial property of the X H spaces.

Lemma 5.2.3. Let L, H ∈ D be fixed. Then, for all f ∈ X H the following inequalities hold

L β/2 η ≤ L β (τ -ω(ξ, µ)) ˆR |f (τ , ξ, µ)| • L -β 1 + L -β |τ -τ | -4 dτ L 2 f X H , (5.2.13) ∈D: ≥L β 1/2 η (τ -ω(ξ, µ)) ˆR |f (τ , ξ, µ)| • L -β 1 + L -β |τ -τ | -4 dτ L 2 f X H , (5.2 

.14)

where L β denotes the largest dyadic number d ∈ D satisfying that d ≤ L β .

Démonstration. First we seek to prove (5.2.13). In fact, by using Cauchy-Schwarz inequality we see that

I := L β/2 η ≤ L β (τ -ω(ξ, µ)) ˆR |f (τ , ξ, µ)| • L -β 1 + L -β |τ -τ | -4 dτ L 2 τ,ξ,µ = L -β/2 η ≤ L β (τ -ω(ξ, µ)) L∈D ˆR η L (τ -ω(ξ, µ))|f (τ , ξ, µ)| 1 + L -β |τ -τ | -4 dτ L 2 ≤ L -β/2 η ≤ L β (τ -ω(ξ, µ)) L∈D I L • L 1/2 η L (τ -ω(ξ, µ))f (τ , ξ, µ) L 2 τ L 2 τ,ξ,µ
, where I L is defined as

I L := η L (τ -ω(ξ, µ)) 1 + L -β |τ -τ | -4 τ -ω(ξ, µ) -1/2 L 2 τ . Now notice that, bounding (1 + L -β |τ -τ |) -4 ≤ 1, we trivially get that I L L 1/2 L -1/2 1,
which, plugging into the former estimate, and then recalling the definition of X H , concludes the proof of (5.2.13).

We now seek to prove (5.2.14). In fact, first of all notice that by the Mean Value Theorem we have that η

(τ -ω(ξ, µ)) -η (τ -ω(ξ, µ)) -1 |τ -τ |.
Then, plugging the latter estimate into the left-hand side of (5.2.14) we infer that

∈D: ≥L β 1/2 η (τ -ω(ξ, µ)) ˆR |f (τ , ξ, µ)| • L -β 1 + L -β |τ -τ | -4 dτ L 2 ≤ J 1 + J 2 ,
where

J 1 := ∈D: ≥L β 1/2 η (• -ω(ξ, µ))f (•, ξ, µ) * L -β (1 + L -β | • |) -4 (τ ) L 2 τ,ξ,µ , J 2 := ∈D: ≥L β -1/2 η (τ -ω(ξ, µ)) ˆR |f (τ , ξ, µ)|L -β |τ -τ | 1 + L -β |τ -τ | -4 dτ L 2 τ,ξ,µ . 
Now, on the one-hand, notice that by basic computations we have

L -β (1+L -β |•|) -4 L 1
1. Thus, applying Young convolution inequality (in τ ) we obtain

J 1 ∈D: ≥L β 1/2 η (τ -ω(ξ, µ))f (τ, ξ, µ) L 2 ≤ f X H .
Démonstration. In fact, first of all, by estimating as follows we can split the analysis into two cases

(τ -ω(ξ, µ) + iH β ) -1 F γ(H β (• -t H ))f X H H -β L∈D: L≤H β L 1/2 η L (τ -ω(ξ, µ))F γ(H β (• -t H ))f L 2 τ,ξ,µ + L∈D: L>H β L -1/2 η L (τ -ω(ξ, µ))F[γ(H β (• -t H ))f ] L 2 τ,ξ,µ .
For the first term in the right-hand side of the previous inequality, we proceed as in the proof of estimate (5.2.15). We write the Fourier transform of γ(H β (• -t H ))f as the convolution of the Fourier transforms. Then, expanding the convolution, we use estimate (5.2.13) to conclude this case. Similarly, to deal with the second term we expand the Fourier transform as before and then proceed as in the proof of (5.2.14). Thus, gathering both estimates we obtain (5.2.16).

More generally, for any H ∈ D and any β ≥ 0 fixed, we define the set of H-acceptable time multiplication factors S H,β as follows

S H,β := m H : R → R : m H S H,β := 10 j=0 H -jβ ∂ j m H L ∞ < +∞ . Lemma 5.2.6. Let β ≥ 0, H ∈ D and consider m H ∈ S H,β . Then, it holds that m H (t)f F H,β m H S H,β f F H,β , and m H (t)f N H,β m H S H,β f N H,β .
Démonstration. We shall only prove the first estimate since the second one follows very similar lines. In fact, notice that arguing as in the proof of Corollary 5.2.4 we infer that it suffices to prove that

F t m H (•)η 0 (H β • -t ) (τ ) H -β 1 + H -β |τ | -4 m H S H,β , (5.2.17) 
for all τ, t ∈ R. Then, in order to prove inequality (5.2.17), first observe that, using the fact that the Fourier transform is a bounded operator from L 1 to L ∞ , we obtain that

F t m H (•)η 0 H β (• -t) L ∞ m H (•)η 0 H β (• -t) L 1 H -β m H L ∞ η 0 L 1 .
On the other hand, from basic properties of the Fourier transform we see that

H -4β |τ | 4 F t m H (•)η 0 H β (• -t) (τ ) H -4β ∂ t m H (•)η 0 H β (• -t) L 1 H -4β 4 j=0 ∂ j t m H L ∞ H (4-j)β H -β ∂ 4-j t η 0 L 1 .
Therefore, gathering the above estimates, along with the definition of S H,β , we obtain inequality (5.2.17), which concludes the proof of the lemma.

The next corollary shall be useful in the proof of the bilinear and energy estimates.

Hence, taking the X H -norm to the previous identity, and then using Plancharel Theorem, it follows that

F η 0 (H β t)e t∂x(D 2 x -∂ 2 y ) u 0 X H ≤ L∈D L 1/2 η L (•)H -β η 0 (H -β •) L 2 u 0 L 2 .
On the other hand, using the fact that η 0 ∈ S(R), it is not difficult to see that

η L (•)H -β η 0 (H -β •) L 2 H -β η L (•)(1 + H -β | • |) -4 L 2 H -β L 1/2 min{1, H 4β L -4 }.
Gathering the above estimates we conclude the proof of the lemma.

Now we seek to study the non-homogeneous case.

Lemma 5.2.10. Let β ≥ 0 and consider H ∈ D. Then, it holds that

F η 0 (H β t) ˆt 0 e (t-s)∂x(D 2 x -∂ 2 y ) f (s, •, •)ds X H (τ -ω(ξ, µ) + iH β ) -1 F(f ) X H , (5.2 

.23)

for all functions f such that supp F(f

) ∈ R × ∆ H .
Démonstration. In fact, by direct computations, using Plancharel Theorem and standard properties of the Fourier transform, we obtain that

F η 0 (H β t) ˆt 0 e (t-s)∂x(D 2 x -∂ 2 y ) f (s, •, •)ds = F t η 0 (H β t) ˆR e itτ -e itω(ξ,µ) i(τ -ω(ξ, µ)) F(f )dτ (τ ) = H -β η 0 (H -β •) * F(f )(•, ξ, µ) i(• -ω(ξ, µ)) (τ ) -F t η 0 (H β t)e itω(ξ,µ) (τ ) ˆR F(f )(τ , ξ, µ) i(τ -ω(ξ, µ)) dτ = H -β ˆR η 0 H -β (τ -τ ) -η 0 H -β (τ -ω(ξ, µ)) i(τ -ω(ξ, µ)) F(f )(τ , ξ, µ)dτ = H -β ˆR η 0 H -β (τ -τ ) -η 0 H -β (τ -ω(ξ, µ)) i(τ -ω(ξ, µ)) • τ -ω(ξ, µ) + iH β τ -ω(ξ, µ) + iH β F(f )(τ , ξ, µ)dτ .
Now, we claim that the following inequality holds

η 0 H -β (τ -τ ) -η 0 H -β (τ -ω(ξ, µ)) i(τ -ω(ξ, µ)) • τ -ω(ξ, µ) + iH β 1 + H -β |τ -τ | -4 + 1 + H -β |τ -ω(ξ, µ)| -4 . (5.2.24)
We divide the analysis of the latter claim into two cases. First, notice that if |τ -ω(ξ, µ)| ≥ H β , then it immediately follows that τ -ω(ξ, µ)

+ iH β |τ -ω(ξ, µ)|.
Therefore, in this case, the claim follows immediately from the above inequality along with the fact that η 0 ∈ S(R). Hence, from now on we assume that |τ -ω(ξ, µ)| < H β . In this case, by using the Mean Value Theorem we deduce that

η 0 H -β (τ -τ ) -η 0 H -β (τ -ω(ξ, µ)) ≤ H -β η 0 H -β θ • τ -ω(ξ, µ) ,
and ũH (t

) = P H u(t) for t ∈ [-T, T ]. Now we claim that ũH F H,β sup t H ∈[-T,T ] F η 0 H β (t -t H ) ũH X H . (5.2.25)
In fact, first of all notice that, from the definition of ũH it follows that

supp ũH ⊆ [-T -2 -5 H -β , T + 2 -5 H -β ] × R 2 .
Therefore, for any t H > T and any tH ∈ [T -H -β , T ], we have that

η 0 H β (t -t H ) ũH = η 0 H β (t -t H ) η 0 H β (t -tH ) ũH ,
and hence, the latter identity along with Lemma 5.2.4 imply that sup

t H >T F η 0 H β (• -t H ) ũH X H sup tH ∈[-T,T ] F η 0 H β (• -t H ) ũH X H .
Arguing similarly we obtain the same estimate for t H < -T , which concludes the proof of (5.2.25). Next, we fix t H ∈ [-T, T ] and observe that

F η 0 (H β (• -t H ))ũ H X H = F η 0 H β • ũH (• + t H ) X H .
On the other hand, from Duhamel principle we get that

η 0 H β t ũH (t + t H ) = m H (t)η 0 H β t e it∂x(D 2 x -∂ 2 y ) P H u(t H ) + m H (t)η 0 H β t ˆt 0 e i(t-s)∂x(D 2 x -∂ 2 y ) η 0 H β s fH (s + t H )ds,
where m H ∈ S H,β . Thus, we deduce from Lemmas 5.2.6, 5.2.9 and 5.2.10 that

F η 0 H β • ũH (• + t H ) X H P H u(t -H) L 2 + τ -ω(ξ, µ) + iH β -1 F η 0 H β • fH (• + t H ) X H .
Now we define ũ = H∈D ũH . Notice that ũ extends u outside of the interval [-T, T ]. Finally, it is not difficult to see, by direct computations, that

P H ũ F H H ∼H ũH F H .
Thus, gathering the above estimates, taking the supreme in t H ∈ [-T, T ] and then summing over H ∈ D we conclude the proof of the proposition.

Strichartz estimates

In this sub-section we seek to prove some Strichartz estimates that shall be particularly useful while working outside the curves µ 2 = 3ξ 2 . In [START_REF] Carbery | Restriction for homogeneous polynomial surfaces in R 3[END_REF], Carbery, Kenig and Ziesler proved an optimal L 4 -restriction theorem for homogeneous polynomial hypersurfaces in R 3 .

Theorem 5.2.11 ([11]). Let Γ(ξ, µ) := ξ, µ, ω(ξ, µ) , where ω(ξ, µ) is an homogeneous polynomial of degree greater or equal than 2. Then, there exists a positive constant C > 0

(depending on ω) such that ˆR2 F[f ] Γ(ξ, µ) 2 K ω (ξ, µ) 1/4 dξdµ 1/2 ≤ C f L 4/3 , for all f ∈ L 4/3 (R 3 ), where |K ω (ξ, µ)| = |det Hess ω(ξ, µ)|.
As a direct consequence of the previous Theorem, we have the following general Strichartz estimate.

Corollary 5.2.12. Let e itω(D) and |K ω (D)| 1/8 be the Fourier multipliers associated with e itω(ξ,µ) and |K ω (ξ, µ)| 1/8 , that is,

F xy e itω(D) f (ξ, µ) = e itω(ξ,µ) F xy [f ](ξ, µ), and 
F xy |K ω (D)| 1/8 f (ξ, µ) = |K ω (ξ, µ)| 1/8 F xy [f ](ξ, µ),
where K ω (ξ, µ) is defined as above. Then, under the hypotheses of the previous theorem, the following inequality holds

|K ω (D)| 1/8 e itω(D) f L 4 txy f L 2 xy , for all f ∈ L 2 (R 2 ).
Démonstration. In fact, by duality we infer that it suffices to prove that ˆR3 |K ω (D)| However, by direct computations we see that

F xy ˆR |K ω (D)| 1/8 e -itω(D) g(t, x, y)dt (ξ, µ) = c K ω (ξ, µ) 1/8 F txy [f ] ω(ξ, µ), ξ, µ .
Therefore, estimate (5.2.26) follows directly from the previous identity along with an application of Theorem 5.2.11. The proof is complete.

In the particular case of the Zakharov-Kuznetsov equation, that is, in the case where ω

(D) = -∂ x ∆, we have that |K ω (ξ, µ)| = |3ξ 2 -µ 2 |.
Then, the previous Corollary translates into the following property. 

2 := (ξ 1 , µ 1 , ξ 2 , µ 2 ) ∈ R 4 : min i∈{1,2,3} |ξ i µ i | max i∈{1,2,3} |ξ i µ i | \ R 1 , R 3 := R 4 \ (R 1 ∪ R 2 ).
We also define the quantities I i being the restriction of I, given by identity (5.3.10), to the domain R i , for i = 1, 2, 3 respectively. We split the analysis into several cases.

Estimate for I 1 : In fact, first of all notice that, in view of the symmetry (5.3.9), we can always assume that L 3 = L max . On the other hand, gathering the hypothesis H min ∼ H max along with µ 2 i |ξ i | 2 for all i ∈ {1, 2, 3}, we infer that we must also have that N min ∼ N max . Therefore, in this region we obtain that

|Ω(ξ 1 , µ 1 , ξ 2 , µ 2 )| = ξ 3 |ξ 3 | 2 -ξ 1 |ξ 1 | 2 -ξ 2 |ξ 2 | 2 + ξ 1 µ 2 µ 3 + ξ 2 µ 1 µ 3 + ξ 3 µ 1 µ 2 ∼ N 2+1 max .
Then, proceeding exactly as for the proof of item (a), we obtain that

I 1 N 1/2 min H 1/4 min L 1/2 min f # 1 L 2 f # 2 L 2 f # 3 L 2 .
(5.3.13) Thus, using that L max N 2+1 max and observing that N 2 max ∼ H max , we conclude that

I 1 H -1/4 min L 1/2 min L 1/2 max f 1 L 2 f 2 L 2 f 3 L 2 ,
which is acceptable for our purposes since N Moreover, due to the definition of R 2 , we also have that there exists i ∈ {1, 2, 3} such that ξ 2 i µ 2

i . We infer that for any j ∈ {1, 2, 3} it holds that ξ 2 j H j ∼ H i ∼ µ 2 i , and hence we conclude that N 2 max max 1≤j≤3 µ 2 j . Moreover, from the symmetry properties of I in (5.3.9) we can always assume that min 1≤j≤3 |ξ j µ

j | = |ξ 1 µ 1 | and max 1≤j≤3 |ξ j µ j | = |ξ 2 µ 2 |. Therefore, performing the change of variables (ξ 1 , µ 1 , ξ 2 , µ 2 ) = (ξ 1 + ξ 2 , µ 1 + µ 2 , ξ 2 , µ 2 ) we obtain that ∂ ∂µ 2 Ω ξ 1 -ξ 2 , µ 1 -µ 2 , ξ 2 , µ 2 = 2 ξ 1 µ 1 -ξ 2 µ 2 N max H 1/2 max .
Thus, changing variables once again (ξ

1 , µ 1 , ξ 2 , µ 2 ) = (ξ 1 , µ 1 , ξ 2 , Ω(ξ 1 -ξ 2 , µ 1 -µ 2 , ξ 2 , µ 2 )) we infer that J 2 (g 1 , g 2 , g) N -1/2 max H -1/4 max g 1 L 2 g 2 L 2 ˆR2 ×I N 2 ×R g 2 (µ 2 , ξ 1 , µ 1 )dξ 1 dµ 1 dξ 2 dµ 2 1/2
, where J 2 is the restriction of the integral J defined in (5.3.11) to the domain R 2 . Then, applying Cauchy-Schwarz inequality, the latter estimate leads us to

I 2 H -1/4 max L 1/2 med L 1/2 max f 1 L 2 f 2 L 2 f 3 L 2 , which is compatible with (5.3.6) since N 1/2 max H 1/4 max ∼ H 1/4 min .
Démonstration. In fact, first of all, notice that expanding the N H norm we have that

P H ∂ x (u H 1 v H 2 ) N H sup t H ∈R (τ -ω(ξ, µ) + iH 1/2 ) -1 H 1/2 1 ∆ H • (f H 1 * f H 2 ) X H , (5.4.4) 
where f H 1 and f H 2 are defined by

f H 1 := F η 0 (H 1/2 (• -t H ))u H 1 and f H 2 := F η 0 (H 1/2 (• -t H ))v H 2 .
For the sake of notation now we set

f H i , H 1/2 (τ, ξ, µ) := η ≤ H 1/2 (τ -ω(ξ, µ))f H i (τ, ξ, µ), and 
(5.4.5)

f H i ,L i (τ, ξ, µ) := η L i (τ -ω(ξ, µ))f H i (τ, ξ, µ), for L i > H 1/2 .
Therefore, expanding the X H -norm and then decomposing into frequencies, from (5.4.4) we deduce that

P H ∂ x (u H 1 v H 2 ) N H sup t H ∈R H 1/2 L,L 1 ,L 2 ≥H 1/2 L -1/2 1 D ∞,H,L • (f H 1 ,L 1 * f H 2 ,L 2 ) L 2 . (5.4.6)
Notice that, in the latter estimate, to bound the terms corresponding to L < H 1/2 appearing implicitly on the right-hand side of (5.4.4), we have used the fact that (τ -ω(ξ, µ) + iH 1/2 ) -1 H -1/2 to control them by the term corresponding to L = H β on the right-hand side of (5.4.6). Thus, according to Corollary 5.2.7 and estimate (5.4.6), we infer that it suffices to prove that

H 1/2 L≥H 1/2 L -1/2 1 ∞,H,L • (f H 1 ,L 1 * f H 2 ,L 2 ) L 2 H -1/4 H 1/4 1 L 1/2 1 f H 1 ,L 1 L 2 L 1/2 2 f H 2 ,L 2 L 2 , (5.4.7) 
for all L 1 , L 2 ≥ H 1/2 , in order to prove estimate (5.4.8). On the other hand, by using (5.3.17) and (5.3.18) we obtain that

H 1/2 L≥H 1/2 L -1/2 1 ∞,H,L • (f H 1 ,L 1 * f H 2 ,L 2 ) L 2 H 1/2 L≥H 1/2 L -1/2 H -1/2 H 1/4 1 L 1/2 1 f H 1 ,L 1 L 2 L 1/2 2 f H 2 ,L 2 L 2 ,
which implies estimate (5.4.7) after summing over L. The proof is complete.

Lemma 5.4.3 (high × high → high). Let H, H 1 , H 2 ∈ D satisfying that H ∼ H 1 ∼ H 2 1. Then, it holds that P H ∂ x (u H 1 v H 2 ) N H H 0 + u H 1 F H 1 v H 2 F H 2 , (5.4.8 
)

for all u H 1 ∈ F H 1 and v H 2 ∈ F H 2 .
Démonstration. In fact, arguing as in the proof of the previous lemma, along with an additional decomposition into frequencies in the ξ variable, we infer that it is enough to prove that

N L≥H 1/2 L -1/2 1 N,H,L • (f N 1 ,H 1 ,L 1 * f N 2 ,H 2 ,L 2 ) L 2 H 0 + L 1/2 1 f N 1 ,H 1 ,L 1 L 2 L 1/2 2 f N 2 ,H 2 ,L 2 L 2 , (5.4.9) 
where 

f N i ,H i ,L i is localized in D N i ,H i ,L i and L 1 , L 2 ≥ H 1/2
N L≥H 1/2 L -1/2 1 N,H,L • (f N 1 ,H 1 ,L 1 * f N 2 ,H 2 ,L 2 ) L 2 N L≥H 1/2 L -1/2 N -1 max H 1/4 L 1/2 med L 1/2 max f N 1 ,H 1 ,L 1 L 2 f N 2 ,H 2 ,L 2 L 2 L 1/2 1 f N 1 ,H 1 ,L 1 L 2 L 1/2 2 f N 2 ,H 2 ,L 2 L 2 .
On the other hand, if neither of the previous cases holds, then L max ∼ |Ω| H 3/2 , and hence the sum over L is bounded by H 0 + . Therefore, estimate (5.4.9) still holds, which concludes the proof of the lemma. 

P H ∂ x (u H 1 v H 2 ) N H H 1/4 H (-1/4) + 1 u H 1 F H 1 v H 2 F H 2 , (5.4.10 
)

for all u H 1 ∈ F H 1 and v H 2 ∈ F H 2 .
Démonstration. Indeed, first of all let us consider a smooth function γ : R →

[0, 1] supported in [-1, 1] satisfying that m∈Z γ 2 (x -m) = 1, ∀x ∈ R.
Then, expanding the N H -norm in the right-hand side of (5.4.4) and then using the definition of γ, we obtain that

P H ∂ x (u H 1 v H 2 ) N H sup t H ∈R τ -ω(ξ, µ) + iH 1/2 -1 H 1/2 1 ∆ H |m| (H 1 /H) 1/2 f m H 1 * f m H 2 X H , (5.4.11) 
where f m H 1 and f m H 2 are defined by

f m H 1 := F η 0 H 1/2 (• -t H ) γ H 1/2 1 (• -t H ) -m u H 1 , f m H 2 := F η 0 H 1/2 (• -t H ) γ H 1/2 1 (• -t H ) -m v H 2 .
In the same fashion as before, for the sake of simplicity we define

f m H i , H 1/2 1 (τ, ξ, µ) := η ≤ H 1/2 1 (τ -ω(ξ, µ))f m H i (τ, ξ, µ), and 
f m H i ,L i (τ, ξ, µ) := η ≤L i (τ -ω(ξ, µ))f m H i (τ, ξ, µ), for L i > H 1/2 1 .
From the above definitions, estimate (5.4.11), the definition of the X H -norm, arguing as in the proof of Lemma 5.4.2, we infer that

P H ∂ x (u H 1 v H 2 ) N H H 1/2 sup t H ∈R, m∈Z H 1/2 1 H -1/2 L∈D L 1 ,L 2 ≥H 1/2 1 L -1/2 1 D ∞,H,L • f m H 1 ,L 1 * f m H 2 ,L 2 L 2 .
Therefore, according to Lemma 5.2.3 and the latter estimate, it suffices to prove that

H 1/2 1 L∈D L -1/2 1 D ∞,H,L • f m H 1 ,L 1 * f m H 2 ,L 2 L 2 H (-1/4) + 1 H 1/4 L 1/2 1 f m H 1 ,L 1 L 2 L 1/2 2 f m H 2 ,L 2 L 2 , (5.4.12) 
for all L 1 , L 2 ≥ H 1/2
1 , in order to prove estimate (5.4.10). Now, on the one-hand, if L max = L 1 or L max = L 2 , say for example L max = L 1 , then, we deduce from estimate (5.3.18) that

H 1/2 1 L∈D L -1/2 1 D ∞,H,L • f m H 1 ,L 1 * f m H 2 ,L 2 L 2 H 1/2-1/2 1 H 1/4 L∈D L -1/2 L 1/2 f m H 1 ,L 1 L 2 L 1/2 2 f m H 2 ,L 2 L 2 H (-1/4) + 1 H 1/4 L 1/2 1 f m H 1 ,L 1 L 2 L 1/2 2 f m H 2 ,L 2 L 2 + H 1/2-1/2 1 H 1/4 L≥H 1/2 1 L -1/2 L 1/2 1 f m H 1 ,L 1 L 2 L 1/2 2 f m H 2 ,L 2 L 2 .
On the other hand, if L max = L we have that L ∼ max{L med , |Ω|}, where Ω is defined in (5.3.1). Notice that, if L ∼ L med , then we are in one of the above cases, whereas in the case L ∼ |Ω| we have that L ∼ |Ω| H 3/2 1 , and hence the sum over L is bounded by H 0 + 1 . Therefore, estimate (5.4.12) still holds, which concludes the proof of the lemma.

Lemma 5.4.5 (low × low → low). Let H, H 1 , H 2 ∈ D satisfying that H, H 1 , H 2 1.
Then, the following inequality holds

P H ∂ x (u H 1 v H 2 ) N H u H 1 F H 1 v H 2 F H 2 , (5.4.13) for all u H 1 ∈ F H 1 and v H 2 ∈ F H 2 .
Démonstration. Once again, arguing as in the proof of the previous lemmas, we infer that it is enough to prove that

L∈D L -1/2 1 D ∞,H,L • (f H 1 ,L 1 * f H 2 ,L 2 ) L 2 L 1/2 1 f H 1 ,L 1 L 2 L 1/2 2 f H 2 ,L 2 L 2 ,
where L 1 , L 2 ∈ D are fixed dyadic numbers and f H i ,L i are supported in D ∞,H i ,L i . However, this is a direct consequence of estimate (5.3.16) along with the fact that H, H 1 , H 2 1. The proof is complete.

Finally, we are in position to prove Proposition 5.4.1.

Proof of Proposition 5.4.1. First of all, since estimates (5.4.1) and (5.4.2) follow very similar lines, we shall only prove (5.4.1) and we omit the proof of the second case. In fact, in order to take advantage of the previous estimates, we take two extensions ũ and ṽ, of u and v respectively, satisfying that

ũ F s ≤ 2 u F s (T ) and ṽ F s ≤ 2 v F s (T ) .
On the other hand notice that, from the definition of the N s (T ) norm in (5.2.7), after an application of Minkowski inequality we infer that

∂ x (uv) N s (T ) H∈D H s H 1 ,H 2 ∈D ∂ x P H (P H 1 ũP H 2 ṽ) N H 2 1/2
. Now, for H ∈ D fixed, we split the analysis into several regions, namely

H 1 := (H 1 , H 2 ) ∈ D 2 : H H 1 ∼ H 2 , H 2 := (H 1 , H 2 ) ∈ D 2 : H 1 H 2 ∼ H , H 3 := (H 1 , H 2 ) ∈ D 2 : H 2 H 1 ∼ H , H 4 := (H 1 , H 2 ) ∈ D 2 : H ∼ H 1 ∼ H 2 1 , H 5 := (H 1 , H 2 ) ∈ D 2 : H, H 1 , H 2 1 .
Therefore, due to the frequency localization we conclude that

∂ x (uv) N s (T ) 5 j=1 H∈D H s (H 1 ,H 2 )∈H j ∂ x P H (P H 1 ũP H 2 ṽ) N H 2 1/2 =: 5 j=1 N j .
Then, in order to deal with N 1 it suffices to use estimate (5.4.10), from where we get

N 1 H∈D H s H 1 H H 0 + 1 P H 1 ũ F H 1 P H 1 ṽ F H 1 2 1/2 ũ F 0 + ṽ F s .
In a similar fashion, by using estimate (5.4.3) we obtain that

N 2 H∈D H s H 1 H P H 1 ũ F H 1 P H ṽ F H 2 1/2 ũ F 0 + ṽ F s .
Notice that, by symmetry, the exact same bound holds for N 3 , exchanging the roles of ũ and ṽ. Next, to handle N 4 we use estimate (5.4.8), along with Cauchy-Schwarz, which leads us to

N 4 H∈D H s H 0 + P H ũ 2 F H P H ṽ 2 F H 1/2 ũ F 0 + ṽ F s .
Finally, by using (5.4.13) we conclude that

N 5 ũ F 0 ṽ F 0 .
Therefore, gathering the above estimates we conclude the proof of the proposition.

Short time estimates on the background of Ψ

Here we state an alternative version of the lemmas in the previous subsection when one of the functions has no decay properties, but boundedness.

Proposition 5.4.6. Let s ≥ 0 and T ∈ (0, 1] both be fixed. Then, for any u ∈ F s (T ) and any

V ∈ L ∞ t W 1/2 + ,∞ xy
, the following inequality hold

∂ x (uV ) N s (T ) u F s (T ) V L ∞ t W 1/2 + ,∞ xy + u F 0 (T ) V L ∞ t W s + ,∞ xy . ( 5 

.4.14)

Démonstration. First of all, since estimates (5.4.1) and (5.4.2) follow very similar lines, we shall only prove (5.4.1) and we omit the proof of the second case. In fact, in order to take advantage of the previous estimates, we take two extensions ũ and ṽ, of u and v respectively, satisfying that ũ F s ≤ 2 u F s (T ) and ṽ F s ≤ 2 v F s (T ) .

On the other hand notice that, from the definition of the N s (T ) norm in (5.2.7), after an application of Minkowski inequality we infer that

∂ x (uV ) N s (T ) H∈D H s H 1 ,H 2 ∈D ∂ x P H (P H 1 ũP H 2 V ) N H 2 1/2
. Now, for H ∈ D fixed, we split the analysis into several regions, namely

H 1 := (H 1 , H 2 ) ∈ D 2 : H 1 H 2 ∼ H , H 2 := (H 1 , H 2 ) ∈ D 2 : H 2 H 1 ∼ H , H 3 := (H 1 , H 2 ) ∈ D 2 : H H 1 ∼ H 2 , H 4 := (H 1 , H 2 ) ∈ D 2 : H ∼ H 1 ∼ H 2 1 , H 5 := (H 1 , H 2 ) ∈ D 2 : H, H 1 , H 2 1 .
Therefore, due to the frequency localization we conclude that

∂ x (uv) N s (T ) 5 j=1 H∈D H s (H 1 ,H 2 )∈H j ∂ x P H (P H 1 ũP H 2 V ) N H 2 1/2 =: 5 j=1 N j .
Now, in the same fashion as before, except for the high × high → low case N 3 , we simply expand the N H norm, from where we obtain that, for each of these cases

P H ∂ x (ũ H 1 V H 2 ) N H sup t H ∈R (τ -ω(ξ, µ) + iH 1/2 ) -1 H 1/2 1 ∆ H • (f H 1 * f H 2 ) X H , (5.4.15) 
where f H 1 and f H 2 are defined by

f H 1 := F(η 0 (H 1/2 (• -t H ))ũ H 1 ) and f H 2 := F( η 0 (H 1/2 (• -t H ))V H 2 ).
Notice that f H 2 is well defined. For the sake of notation now we set

f H 1 , H 1/2 (τ, ξ, µ) := η ≤ H 1/2 (τ -ω(ξ, µ))f H 1 (τ, ξ, µ), and 
f H 1 ,L 1 (τ, ξ, µ) := η L 1 (τ -ω(ξ, µ))f H 1 (τ, ξ, µ), for L 1 > H 1/2 .
Therefore, expanding the X H -norm in (5.4.15), an application of Plancherel Theorem along with Hölder inequality leads us to

P H ∂ x (ũ H 1 V H 2 ) N H sup t H ∈R H 1/2 L,L 1 ≥H 1/2 L -1/2 1 D ∞,H,L • (f H 1 ,L 1 * f H 2 ) L 2 P H 1 ũ F H 1 P H 2 V L ∞ .
(5.4.16)

Then, plugging estimate (5.4.16) into the definition of N 1 , by direct computations we see that

N 1 H∈D H s H 1 H P H 1 ũ F H 1 P H V L ∞ 2 1/2 ũ F 0 V L ∞ t W s + ,∞ xy .
In a similar fashion we get that

N 2 H∈D H s H 2 H P H ũ F H P H 2 V L ∞ 2 1/2 ũ F s V L ∞ t W 0 + ,∞ xy .
Notice that the same bound also holds for N 4 . In the case of N 5 we immediately obtain that

N 5 ũ F 0 V L ∞ txy .
Finally, as in the previous case, in order to treat the high × high → low case N 3 we need to introduce the γ(•) function, as in the proof of Lemma 5.4.4. In the same fashion as before, for the sake of simplicity we define

f m H i , H 1/2 1 (τ, ξ, µ) := η ≤ H 1/2 1 (τ -ω(ξ, µ))f m H i (τ, ξ, µ), and 
f m H i ,L i (τ, ξ, µ) := η ≤L i (τ -ω(ξ, µ))f m H i (τ, ξ, µ), for L i > H 1/2 1 .
From the above definitions, expanding the N H and the X H -norm, arguing as in the proof of (5.4.16), we obtain that

P H ∂ x (ũ H 1 V H 2 ) N H H 1/2 sup t H ∈R, m∈Z H 1/2 1 H -1/2 L∈D L 1 ≥H 1/2 1 L -1/2 1 D ∞,H,L • f m H 1 ,L 1 * f m H 2 L 2 H 1/4 P H 1 ũ F H 1 P H 2 V L ∞ .
It is not difficult to see that the latter estimate leads us to

N 3 H∈D H s H 1 H H 1/4 1 P H 1 ũ F H 1 P H 1 V L ∞ 2 1/2 ũ F s V L ∞ t W 1/2 + ,∞ xy .
Therefore, gathering the above estimates we conclude the proof of the proposition.

B := m ∈ Z : γ H 1/2 3 t -m 1 [0,T ] = γ H 1/2 3 t -m and γ H 1/2 3 t -m 1 [0,T ] = 0 .
Roughly speaking, A is the set of m ∈ Z such that the support of γ contained in [0, T ], while for m ∈ B the support of γ intersects the boundary of [0, T ].

We start by analyzing the case m ∈ A. For the sake of notation, for i = 1, 2, 3 we define

f m H i ,H 1/2 3 := η ≤ H 1/2 3 (τ -ω(ξ, µ)) F γ H 1/2 3 t -m u i ,
and, for L ∈ D such that L > H

1/2 3 , we set f m H i ,L := η L τ -ω(ξ, µ) F γ H 1/2 3 t -m u i .
Therefore, by using Plancharel identity as well as estimates (5.3.4) and (5.3.5) we obtain that

m∈A ˆR3 3 i=1 γ H 1/2 3 t -m 1 [0,T ] u i sup m∈A T H 1/2 3 L 1 ,L 2 ,L 3 ≥H 1/2 3 ˆR3 f m H 1 ,L 1 * f m H 2 ,L 2 • f m H 3 ,L 3 sup m∈A T H 1/4-1/2 3 H 1/4 1 L 1 ,L 2 ,L 3 ≥H 1/2 3 3 i=1 L 1/2 i f m H i ,L i L 2 .
The latter estimate along with Corollary 5.2.7 implies that m∈A ˆR3

3 i=1 γ H 1/2 3 t -m 1 [0,T ] u i T H 1/4-1/2 3 H 1/4 1 3 i=1 u i F H i ,
which concludes the proof for m ∈ A. Now we seek to bound the case where m ∈ B. Similarly as before, for the sake of notation we define

g m H i ,L := η L τ -ω(ξ, µ) F γ H 1/2 3 t -m 1 [0,T ] u i ,
for i = 1, 2, 3, L ∈ D and m ∈ B. Also, it is not difficult to notice that #B ≤ 4. Then, using once again estimates (5.3.4) and (5.3.5) along with Lemma 5.2.2 we infer that

m∈B ˆR3 3 i=1 γ H 1/2 3 t -m 1 [0,T ] u i sup m∈B L 1 ,L 2 ,L 3 ∈D ˆR3 g m H 1 ,L 1 * g m H 2 ,L 2 • g m H 3 ,L 3 dξdµdτ sup m∈B H -1/2 3 H 1/4 1 L 1 ,L 2 ,L 3 ∈D L -1/2 med i=1 sup L i ∈D L 1/2 i g m H i ,L i L 2 H -(1/2) + 3 H 1/4 1 3 i=1 u i F H i .
Note that in the last step of the previous estimate we have used the fact that L max ∼ max{L med , |Ω|} to control the sum over L max . Indeed, the case L max ∼ L med follows directly, whereas in the case L max ∼ |Ω| the sum over L max is bounded by H 0 + 3 . Finally, we give an sketch of the proof of estimate (5.5.3) since it follows very similar lines to the proof of estimate (5.5.2). In fact, in this case we use again the decomposition in (5.5.4).

H 1/2 3 u 1 L 2 u 2 L 2 u 3 L ∞ .
Therefore, we can restrict ourselves to study I but replacing a(ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) in its definition by the following symbol

a(ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) := ψ 2 H (ξ 1 , µ 1 )ξ 1 + ψ 2 H (ξ 2 , µ 2 )ξ 2 .
Next, we split this symbol into two parts as follows

a(ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) = ψ 2 H (ξ 1 , µ 1 ) ξ 1 + ξ 2 -ψ 2 H (ξ 1 , µ 1 ) -ψ 2 H (ξ 2 , µ 2 ) ξ 2 =: a 1 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) + a 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ).
Now notice that, due to the additional restriction imposed by Γ 3 (that is ξ 1 + ξ 2 + ξ 3 = 0), in this integration domain we can rewrite a 1 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) as

a 1 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) = -ψ 2 H (ξ 1 , µ 1 )ξ 3 .
Hence, this case also follows from the above analysis. Therefore, it only remains to consider the symbol a 2 . In fact, by using Plancherel Theorem, integration by parts and then Hölder inequality we immediately obtain that

ˆΓ3 a 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 )û 1 (ξ 1 , µ 1 )û 2 (ξ 2 , µ 2 )û 3 (ξ 3 , µ 3 )dΓ 3 = ˆR2 u 2,x P 2 H u 1 -u 1 P 2 H u 2,x u 3 dxdy = ˆR2 u 2 ∂ x u 3 P 2 H u 1 -P 2 H (u 1 u 3 ) dxdy u 1 L 2 u 2 L 2 ∂ x u 3 L ∞ + u 2 L 2 [P 2 H ∂ x , u 3 ]u 1 L 2 .
Then, since

∂ x u 3 L ∞ H 1/2 3
u 3 L ∞ , it only remains to control the latter factor of the above inequality. In order to do that, first notice that by direct computations we can write

[P 2 H ∂ x , u 3 ]u 1 (x, y) = icF -1 ξ,µ ξψ 2 H (ξ, µ) u 1 * u 3 -ξψ 2 H (ξ, µ) u 1 * u 3 (x, y) = c ˆR2 F -1 ξ,µ iξψ 2 H (ξ, µ) (x -x, y -ỹ) u 3 (x, y) -u 3 (x, ỹ) u 1 (x, ỹ)dxdỹ,
for some constant c ∈ R. Now we define K(x, y, x, ỹ) as the above kernel, that is,

K(x, y, x, ỹ) := F -1 iξψ 2 H (ξ, µ) (x -x, y -ỹ) u 3 (x, y) -u 3 (x, ỹ
) . Then, a direct application of the Mean Value Theorem along with some basic properties of the Fourier Transform, lead us to the following uniform bound sup

(x,ỹ)∈R 2 ˆR2 K(x, y, x, ỹ) dxdy + sup (x,y)∈R 2 ˆR2 K(x, y, x, ỹ) dxdỹ ∇u 3 L ∞ ,
where the implicit constant does not depends of H k+2 . Therefore, applying Schur lemma, and then Bernstein inequality in the resulting right-hand side, we conclude that

[P 2 H ∂ x , u 3 ]u 1 L 2 u 1 L 2 ∇u 3 L ∞ H 1/2 3 u 1 L 2 u 3 L ∞ ,
which concludes the proof of the lemma.

Proof of Proposition 5.5.1. First of all in order to take advantage of the short-time Bourgain spaces, we extend the solution from [-T, T ] to the whole line R. Indeed, let u ∈ C([-T, T ], E ∞ ) be a solution to equaiton (5.1.5). Then, we choose an extension u of u on R 2 satisfying that u [-T,T ]×R 2 ≡ u and u F s ≤ 2 u F s (T ) .

For the sake of notation, from now on we drop the tilde and simply write u to denote the previous function. Moreover, we denote by f (x) := 1 2 x 2 the nonlinearity function. Now, we apply the frequency projector P H to equation (5.1.5), with H > 0 dyadic but arbitrary. Then, taking the L 2 xy -scalar product of the resulting equation against P H u and then integrating on (0, t) with 0 < t < T , we obtain

P H u(t) 2 L 2 = P H u 0 2 L 2 - ˆt 0 ˆR2 P H ∂ t Ψ -D 2 x ∂ x Ψ + ∂ x ∂ 2 y Ψ + ∂ x f (u + Ψ) P H u.
Thus, taking the supremum in time and then multiplying the resulting inequality by H s we are lead to

P H u 2 B s (T ) P H u 0 2 H s + H s sup t∈(0,T ) ˆt 0 ˆR2 P H ∂ t Ψ -D 2 x ∂ x Ψ + ∂ x ∂ 2 y Ψ + ∂ x f (u + Ψ) P H u .
Therefore, in order to conclude the proof of the proposition, we need to control the sum over all H ∈ D of the second term in the right-hand side of the latter inequality. We divide the analysis into several steps, each of which dedicated to bound one of the following integrals : (5.5.8)

Step 1 : We begin by controlling II right away. In fact, by using hypothesis (5.1.6), we infer that it is enough to use Cauchy-Schwarz and Bernstein inequalities, from where we obtain

II T u F s (T ) ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) L ∞ T H s
xy . This concludes the proof of the first case.

Step 2 : Now we aim to control I u 2 , that is, by Plancherel Theorem, we aim to control the following quantity I u 2 = H>0 H s sup t∈(0,T ) ˆt 0 ˆΓ3 a 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 )û(s, ξ 1 , µ 1 )...û(s, ξ 3 , µ 3 )dΓ 3 ds , (5.5.9)

where the symbol a 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) is explicitly given by a 2 ξ 1 , µ 1 , ..., ξ 3 , µ 3 := iψ2 H (ξ 3 , µ 3 )ξ 3 .

We point out that in the previous identity (5.5.9) we have used both, the fact that u(t, •, •) is real-valued as well as the fact that ψ H (ξ, •) and ψ H (•, µ) are both even. Then, in order to deal with this case, we symmetrize the symbol a 2 , that is, from now on we consider a 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) := a 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) sym = i 3

3 i=1 ψ 2 H (ξ i , µ i )ξ i .
Thus, by using frequency decomposition and the above symmetrization, the problem of bounding (5.5.9) is reduced to control the following quantity On the other hand, from the explicit form of a 2 , it is not difficult to see that a 2 ≡ 0, unless H 3 ≥1 2 H. Furthermore, due to the additional constraint 1 imposed by Γ 3 , we must also have that H 2 ≥ 1 4 H 1 . Therefore, we have that H 1 ∼ H 2 with H 1 ≥ 1 2 H. Before going further, it is important to observe that we can split the symbol a 2 as the sum of the following symbols a 1 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) := ψ 2 H (ξ 3 , µ 3 )(ξ 2 + ξ 3 ), a 2 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) := ψ 2 H (ξ 2 , µ 2 ) -ψ 2 H (ξ 3 , µ 3 ) ξ 2 , a 3 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) := a 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) -ψ 2 H (ξ 2 , µ 2 )ξ 2 -ψ 2 H (ξ 3 , µ 3 )ξ 3 .

We claim that, due to frequency localization along with the definition of Γ 2 , the following inequality holds a 1 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) + a 2 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) + a 3 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) H 1/2 1 .

(5.5.11)

In fact, the bound for a 3 2 follows directly. Then, on the one-hand, to bound a 1 2 it is enough to use that ξ 2 + ξ 3 = -ξ 1 , while on the other hand, in order to estimate a 2 2 we use the Mean Value Theorem, which leads us to a 2 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 )

|ξ 1 | + |µ 1 |.
what concludes the proof of the claim. Now, with these estimates at hand, we split the analysis into two possible cases, namely either H 1 H 3 or H 1 ∼ H 3 .

(5.5.12)

From now on we denote by 

P H i u F H i u F 1 (T ) u 2 F s (T ) ,
where we have used that we can sum over H min first, so that we do not loose an H + min factor. In fact, this latter observation comes from the fact that

H -1/4 max H min Hmax H 1/4 min 1,
uniformly in H max . Then, we sum over H max using that H s/2 P H f F H defines a square summable sequence, provided that f ∈ F s . On the other hand, in order to treat G 2 , first of all notice that, due to the factor P H coming from the symbol a 2 , in this case we actually have

H 1 ∼ H 2 ∼ H 3 ∼ H.
Now we decompose into frequencies again, using the P x N projectors as follows

P H 1 uP H 2 uP H 3 u = N 1 ,N 2 ,N 3 P H 1 P x N 1 uP H 2 P x N 2 uP H 3 P x N 3 u.
Notice that, by frequency localization, we must have N max ∼ N med , otherwise G 2 = 0. Hence, by symmetry, we infer that it is enough to bound the contribution of the following quantity since all the remaining cases are equivalent to the latter one. We denote by G 1 2 and G 2 2 the restriction of G 2 to each of these sums respectively. Then, in order to bound G 2 2 , we use the second part of Lemma 5.5.2, but instead of using estimate (5.5.11) Once again, here we have used the fact that both P H u F H and P N u L 2 are square summable under the current hypotheses, and hence, using that H min ∼ H max and N min ∼ N max we bound one of the three factors above by its corresponding whole series, and for the other two we use the summability property. Notice that the estimate for G 1 2 follows the exact same lines. For this latter case the important point is to not expand P N u into a sum, otherwise we might loose a N 0+ factor, while written in the above fashion it suffices to use the continuity of the operator P N in L 2 . Therefore, we conclude that G 2 u F 1 (T ) u 2 F s (T ) .

Step 3 : Now we aim to control I uΨ , that is, we aim to control the following quantity

I uΨ = H>0
H s sup t∈(0,T ) ˆt 0 ˆΓ3 a p (ξ 1 , µ 1 , ..., ξ 3 , µ 3 )û(s, ξ 1 , µ 1 )û(s, ξ 2 , µ 2 ) Ψ(s, ξ 3 , µ 3 ) , (5.5.13) where the symbol a 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) is explicitly given by a p ξ 1 , µ 1 , ..., ξ 3 , µ 3 := iψ 2 H (ξ 1 , µ 1 )ξ 1 .

As before, in the previous identity (5.5.13) we have used both, the fact that u(t, •, •) and Ψ(t, •, •) are real-valued as well as the fact that ψ H (ξ, •) and ψ H (•, µ) are both even. Then, in order to deal with this case, we symmetrize the symbol a p , that is, from now on we consider a p (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) := a p (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) sym = i 2

2 i=1 ψ 2 H (ξ i , µ i )ξ i .
Hence, by using frequency decomposition and the above symmetrization, the problem of bounding (5.5.13) is reduced to control the following quantity H>0 H s sup t∈(0,T ) ˆt 0 H 1 ,...,H 3 ˆΓ3 a p (ξ 1 , µ 1 , ..., ξ 3 , µ 3 )ψ H 3 (ξ 3 , µ 3 ) Ψ(s, ξ 3 , µ 3 )

2 i=1
ψ H i (ξ i , µ i )û .

(5.5.14)

Moreover, by symmetry, without loss of generality we can always assume that H 1 ≤ H 2 . On the other hand, from the explicit form of a p , it is not difficult to see that a p ≡ 0, unless H 2 ≥ 1 2 H. Besides, due to the additional constraint imposed by Γ 3 , we must also have that Thus, proceeding similarly as at the beginning of the proof4 of Lemma 5.5.2, and then using Lemma 5.5. . The proof is complete.

A priori estimates for the difference of two solutions

In this subsection we seek to establish the key a priori estimate for the difference of two solutions. Démonstration. We only prove the first inequality since (5.5.16) follows almost the same lines (and is in fact easier to prove). In a similar fashion as before, in order to take advantage of the short-time Bourgain estimates, we extend the solutions from [0, T ] to the whole real line R. For the sake of notation, we keep denoting these extensions by u and v. Now, let us denote by w := u -v the difference of both solutions. Then, w(t, x) satisfies the equation

∂ t w + ∂ 3 x w + ∂ x ∂ 2 y w + ∂ x f (u + Ψ) -f (v + Ψ) = 0.
Then, we apply the frequency projector P H to the latter equation, take the L 2 xy -scalar product of the resulting equation against P H w and multiply the result by H s . Finally, integrating on (0, t) with 0 < t < T and taking the supremum in time we are lead to

P H w 2 B s (T ) P H w 0 2 H s + H s sup t∈(0,T ) ˆt 0 ˆR2 P H f (u + Ψ) -f (v + Ψ) ∂ x P H w .
Before getting into the details, let us comment that, the ideas behind the estimates we shall prove below are the same as those of the proof of the latter proposition. However, since in this case we have more (different) functions, we shall have more cases as well, since we cannot order all the frequencies appearing in P H (u i v 1-i Ψw), i = 0, 1, as we did in the previous proposition where there was only u.

As we shall see, the estimates below are symmetric with respect to u and v, and hence it suffices to bound the contribution of for z ∈ F s (T ), where we have used the fact that f (u + Ψ) -f (v + Ψ) = w u + v + 2Ψ . Notice that, in the same fashion as in the previous proposition, in this case we begin by symmetrizing the underlying symbol in both above cases, which leads us to study the symbol a(ξ 1 , µ 1 , ..., ξ 3 , µ 3

) := i 2 ψ 2 H (ξ 1 , µ 1 )ξ 1 + i 2 ψ 2 H (ξ 2 , µ 2 )ξ 2 ,
where (ξ 1 , µ 1 ) and (ξ 2 , µ 2 ) denote (respectively) the frequencies of each of the occurrences of w in (5.5.17) and (5.5.18). Hence, by using frequency decomposition and the above symmetrization, the is reduced to control the following quantity where Φ(t, ξ 3 , µ 3 ) is either ψ H 3 (ξ 3 , µ 3 )ẑ(t , ξ 3 , µ 3 ) or ψ H 3 (ξ 3 , µ 3 ) Ψ(t , ξ 3 , µ 3 ). Then, by symmetry, without loss of generality we can always assume that H 1 ≥ H 2 . Also, from the explicit form of a(ξ 1 , µ 1 , ..., ξ 3 , µ 3 ), it is not difficult to see that a ≡ 0, unless H 1 ≥ 1 2 H. Moreover, due to the additional constraint imposed by Γ 2 , we must also have that H 1 ∼ max{H 2 , H 3 }.

I
Step 1 : We seek to estimate the contribution of (5.5.19) in the case where Φ(t , ξ 3 , µ 3 ) = ψ H 3 (ξ 3 , µ 3 )ẑ(t , ξ 3 , µ 3 ). We split the analysis into three possible cases, namely 

H 1 := (H
H 3 := (H 1 , H 2 , H 3 ) ∈ D 3 : H 1 ∼ H 2 ∼ H 3 .
As before, let us denote by G 1 , G 2 and G 3 the corresponding contribution of (5.5.19) associated with each of these regions, respectively. Then, in order to bound G 1 first notice that, due to the explicit form of the symbol, we infer htat H 1 ∼ H 2 ∼ H. On the other hand, it is not difficult to see, as an application of the Mean Value Theorem, that a(ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) H

1/2 3 .

(5.5.21)

Then, as a consequence of Lemma 5.5.2, along with the estimate for the symbol above, we obtain that

G 1 H∈D H 1 H s H -1/4 H 3/4 3 P H 3 z F H 3 2 i=1 P H i w F H i z F 1 (T ) w 2 F s (T ) .
On the other hand, in order to deal with G 2 , we proceed similarly as in the latter estimate, except that in this case we cannot control the symbol by H 1/2 2 , which is the minimum frequency (as in the previous case). Therefore, using Lemma 5.5.2, using the trivial bound H and G 3 3 the restriction of G 3 to each of these sums respectively. Then, in order to bound G 1 3 , arguing exactly as in the corresponding case in the proof of the previous proposition, we use the second part of Lemma 5.5.2, but instead of using estimate (5.5.21) and we bound the contribution of the symbol directly from its explicit definition, from where we obtain

G 1 3 H∈D H s H 1/2 P H 1 w F H 1 P H 2 w P H 2 P H 3 z P H 3 z F 1 (T ) w 2 F s (T ) .
Notice that, proceeding in a similar fashion, we obtain that the exact same bound holds for the remaining two cases G 2 3 and G 3 3 , and hence we conclude that G 3 z F 1 (T ) w 2 F s (T ) .

Step 2 : We seek now to estimate the contribution of (5.5.19) in the case where Φ(t , ξ 3 , µ 3 ) = ψ H 3 (ξ 3 , µ 3 ) Ψ(t , ξ 3 , µ 3 ). This case follows very similar lines as the corresponding case in the proof of the previous proposition. In fact, introducing the γ function γ : R → [0, 1] as at the beginning of the proof of Lemma 5.5.2, and then using Lemma 5.5. with z instead of splitting it between z and w.

Local well-posedness

In this section we seek to prove Theorem 5.1.1. Our starting point is a local well-posedness result for smooth solutions of the generalized model (5.1.5). The proof is standard and follows classical estimates that can be found in [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF][START_REF] Iorio | On the cauchy problem for the Benjamin-Ono equation[END_REF], for instance. The main idea comes from introducing a parabolic regularizing term -ε∆u to the equation, and then passing to the limit ε → 0. Let us recall that Ψ ∈ L ∞ (R, W 4+ε ,∞ xy (R 2 )). This latter hypothesis allows us to perform the main commutator estimates involved in the proof of the smooth LWP Theorem without additional problems.

Theorem 5.6.1. For all u 0 ∈ H s (R 2 ) with s ∈ (2, 3 + 1 2 ε ), there exist a positive time T > 0 and a unique solution u ∈ C([-T, T ], H s (R 2 )) to the initial value problem (5.1.5). Moreover, the minimal existence time satisfies that

T = T u 0 H s , Ψ L ∞ t W 4+ε ,∞ xy , ∂ t Ψ + ∂ x ∆Ψ + 1 2 ∂ x (Ψ 2 ) L ∞ t H 3+ε xy > 0,
and it can be chosen as a nonincreasing function of its arguments. Moreover, the data-tosolution map Φ : u 0 → u is continuous from H s (R 2 ) into C([-T, T ], H s (R 2 )).

A priori estimates for smooth solutions

The following proposition is the main result of this subsection. It ensures us that the minimal existence time for smooth solutions can be chosen only depending on some rougher norms.

For the sake of simplicity, from now on we shall denote by In order to prove the previous proposition we shall need the following technical Lemma. First we assume Lemma 5.6.3 holds and we prove Proposition 5.6.2, then we prove Lemma 5.6.3 which is much more technical.

Proof of Proposition 5.6.2. In fact, let us consider ε = min{ε 1 , ε 2 } > 0, where ε 1 and ε 2 are given by the regularity hypothesis (5.1.6) on Ψ, namely Ψ ∈ L ∞ (R, W 4+ε 1 ,∞ (R 2 )) and

∂ t Ψ + ∂ x ∆Ψ + 1 2 ∂ x (Ψ 2 ) ∈ L ∞ (R, H 3+ε 2 (R 2 
)). (5.6.3)

Now, consider u 0 ∈ H σ (R 2 ), with σ ∈ (2, 3 + 1 2 ε ). We denote by u ∈ C([-T, T ], H σ (R 2 )) the solution of (5.1.5) emanating from u 0 ∈ H σ (R 2 ), given by Theorem 5.6.1. On the other hand, consider s ∈ [1, σ] fixed. We claim that, by a scaling argument on u and Ψ, without loss of generality we can always assume that the initial data u 0 has a small H s -norm. Indeed, if u(t, x, y) solves equation (5.1.5) on the time interval [0, T ], then, we define u λ and Ψ λ as follows u λ (t, x, y) := λu λ 3/2 t, λ 1/2 x, λ 1/2 y and Ψ λ (t, x, y) := λΨ λ 3/2 t, λ 1/2 x, λ 1/2 y .

It is not difficult to see that u λ solves equation (5.1.5) in the background of Ψ λ , i.e., equation (5.1.5) with Ψ λ taking the role of Ψ, with initial data u λ (0, x, y) := λu 0 (x, y), on the time interval [-λ -3/2 T, λ -3/2 T ]. On the other hand, by direct computations we check that u λ (0, x, y) H s λ 1/2 (1 + λ s ) u 0 H s ,

Ψ λ L ∞ t W r,∞ xy λ(1 + λ r ) Ψ L ∞ t W r,∞ xy , (5.6.4) 
and

∂ t Ψ λ + ∂ x ∆Ψ λ + 1 2 ∂ x (Ψ 2 λ ) L ∞ t H r xy λ 2 (1 + λ r ) ∂ t Ψ + ∂ x ∆Ψ + 1 2 ∂ x (Ψ 2 ) L ∞ t H r
xy , (5.6.5)

for any s, r > 0. Thus, for δ > 0 as small as desired, it suffices to choose λ of the form λ ∼ δ 2 min 1, u 0 -2 H s , and hence u λ (0, x, y) H s δ.

(5.6.6)

Notice that this procedure makes the norms in (5.6.4)-(5.6.5) small as well. In fact, without loss of generality we can assume both norms associated with (5.6.3) are smaller than δ, simply modifying the choice of λ as follows

λ ∼ δ 2 min 1, u 0 -2 H s , Ψ -1 L ∞ t W 4+ε 1 ,∞ xy , |||Ψ||| -1/2 3+ε 2 .
Notice that, this choice of λ is independent σ and T since Ψ is given and fixed. Therefore, denoting by B s (δ) the H s (R 2 )-ball with radius δ centered at the origin, we conclude that it is enough to prove that, if u 0 ∈ B s (δ), then Proposition 5.6.2 holds with T = 1. Notice that this would in fact imply that Proposition 5.6.2 holds for arbitrarily large initial data in H s (R 2 ), with an existence time T ∼ u 0 -3 H s . In view of the above analysis, now we consider u 0 ∈ H σ (R 2 ) ∩ B s (δ), and denote by u ∈ C([-T, T ], H σ (R 2 )), the solution to (5.1.5) given by Theorem 5.6.1, with T ∈ (0, 1], with background function 5 Ψ λ . Before going further notice that, from the linear estimate (5.2.20) we get u F s (T ) u B s (T ) + ∂ x (u 2 ) N s (T ) + ∂ x (uΨ λ ) N s (T )

+ ∂ t Ψ λ + ∂ x ∆Ψ λ + 1 2 ∂ x (Ψ 2 λ ) N s (T ) .
5. Notice that we keep denoting the background function Ψ λ , while the solution simply by u.

On the other hand, from the definition of the N s (T ) norm in (5.2.7), and the hypotheses on Ψ, it is not difficult to see that

∂ t Ψ λ + ∂ x ∆Ψ λ + 1 2 ∂ x (Ψ 2 λ ) N s (T ) T 1/2 ∂ t Ψ λ + ∂ x ∆Ψ λ + 1 2 ∂ x (Ψ 2 λ ) L ∞ t H s xy .
(5.6.7)

At this point it is worth to notice that, thanks to estimate (5.6.5) and the choice of λ in (5.6.6), along with Cauchy-Schwarz inequality, the second term appearing in the right-hand side of the energy estimate (5.5.1) can be bounded as follows

u F s (T ) |||Ψ λ ||| s δ 2 u 2 F s (T ) + δ 2 |||Ψ||| 2 s .
Being able to recover the δ factor in the above estimate shall be important in the sequel. Therefore, gathering the above estimates, the energy estimate (5.5.1), the linear estimate (5.2.20) along with the L 2 bilinear estimates (5.4.1) and (5.4.14), plugging them into the definition of Λ s T (u), several applications of Cauchy-Schwarz inequality for T ∈ (0, 1) yield us to

Λ β T (u) 2 u 0 2 H β + δ 2 |||Ψ||| 2 β + |||Ψ λ ||| 3 β + Ψ λ L ∞ T W (β+1) + ,∞ xy |||Ψ λ ||| 2 β + δ 4 |||Ψ||| 4 β + Ψ λ 2 L ∞ T W (β+1) + ,∞ xy |||Ψ λ ||| 2 β + Λ s T (u) + Λ s T (u) 2 Λ β T (u) 2
(5.6.8)

+ δ 2 + Ψ λ L ∞ T W (β+1) + ,∞ xy + Ψ λ 2 L ∞ T W (β+1) + ,∞ xy + |||Ψ λ ||| β + |||Ψ λ ||| 2 β Λ β T (u) 2 ,
for any β ∈ [s, σ]. Therefore, using inequality (5.6.8) with β = s we conclude that Λ s T (u) δ provided that u 0 H s δ. Now we define Γ s T (u) := max u B s T , u F s T . Thus, inequality (5.6.8) with β = s, the linear estimate (5.2.20) along with inequality (5.6.7) and estimate (5.2.8) in particular ensures, by a continuity argument, the existence of δ s > 0 and C s > 0 such that Γ s T (u) ≤ C s δ, provided that u 0 H s ≤ δ ≤ δ s . Hence, gathering inequality (5.2.8), the linear estimate (5.2.20) along with estimate (5.6.8) yield us to

u L ∞ T H β xy Γ β T (u) u 0 H β , (5.6.9) 
for all β ∈ [s, σ], provided that u 0 H s ≤ δ ≤ δ s , with s ∈ [1, σ]. Therefore, taking advantage of estimate (5.6.9), we can reapply Theorem 5.6.1 a finite number of times so that we extend the solution u to the whole time interval [-1, 1]. This concludes the proof of the Proposition.

Proof of Lemma 5.6.3. First of all notice that, from the definition of B s (T ) it immediately follows that T → u B s (T ) defines a nondecreasing continuous map on [0, T ] provided that u ∈ C([-T, T ], H ∞ (R 2 )). Moreover, it is not difficult to see that lim

T →0 u B s (T ) u(0) H s .
Thus, in order to conclude the proof, it only remains to deal with ∂ x (u 2 ) N s (T ) . In fact, in this case we shall prove a more general property. Let f ∈ C([-T, T ], H ∞ (R 2 )), we claim that the following holds T ∈ [0, T ) → f N s (T ) is nondecreasing and continuous, and lim

T →0 f N s (T ) = 0.
Indeed, first notice that, from the definition of N s in (5.2. ---→ 0.

(5.6.10)

Hence, the second part of the claim follows. Now, on the one-hand, the nondecreasing property of the claim follows directly from the definition of N s (T ). On the other hand, in order to prove the continuity of the map at some point, let us say, T 0 ∈ (0, T ) fixed, we define the scaling operator D r [f ](t, x, y) := f t/r, x/r 3 , y/r 3 .

Therefore, by using inequality (5.6.10), along with the triangle inequality and the fact that f ∈ C([-T, T ], H ∞ (R 2 )), we infer that

f N s (T ) -D T /T 0 [f ] N s (T ) f -D T /T 0 [f ] N s (T ) T 1/2 f -D T /T 0 [f ] L ∞ T H s xy T →T 0 ----→ 0.
Thus, in order to conclude the proof of the claim, it only remains to prove tat

lim r→1 D r [f ] N s (rT 0 ) = f N s (T 0 ) .
In order to prove the latter property, we shall show the following two inequalities (5.6.12)

Now observe that D r [f ] N s (rT 0 ) < M for a positive constant M ∈ R independent of r, since f ∈ C([-T, T ], H ∞ (R 2 )). Also, notice that D 1/r [f r ] is an extension of f outside the interval [-T 0 , T 0 ], and hence

f N s (T 0 ) ≤ D 1/r [f r ] N s .
(5.6.13)

Finally, in order to prove the latter property, we shall prove the existence of a continuous function φ(r), defined on a neighborhood of r = 1, satisfying that φ(1) = 1, and such that

D 1/r [f r ] N s ≤ φ(r) f r N s .
(5.6.14)

Notice that the first estimate in (5.6.11) would follow from the above claim, along with (5.6.12) and (5.6.13). Now, in order to prove the latter inequality, let us fix some H ∈ D dyadic. Then, by definition of the N H norm we have that

P H D 1/r [f r ] N H = sup t H ∈R τ -ω(ξ, µ) + iH β -1 F η 0 (H β (• -t H ))P H D 1/r [f r ] X H .
Then, by explicit computations we obtain that

η 0 H β (• -t H ) D 1/r [f r ] = D 1/r η 0,r (H β (• -rt H ))f r ,
and that η 0 (H/2) β (• -t H ) ≡ 1 on the support of η 0 H β (• -t H ) .

The last two observation along with an application of Lemma 5.2.5 imply that sup t H ∈R τ -ω(ξ, µ) + iH β -1 η H/2 (ξ, µ)F η 0 (H β (t -t H ))f r H/2 P H/2 f r N H/2 . (5.6.18)

Then, we conclude the proof of the claim (5.6.14) by plugging estimates (5.6.17), (5.6.18) into (5.6.16) and then summing over H ∈ D. The proof for the second estimate in (5.6.14) follows very similar lines, and hence we omit it. The proof is complete.

5.6.2 L 2 -Lipschitz bound for the difference of two solutions and uniqueness

Let us consider u 1 and u 2 two solutions of equation (5.1.5) defined on a time interval [-T, T ] for some T ∈ (0, 1], with initial data u 1 (0, x, y) := u 1,0 (x, y) and u 2 (0, x, y) := u 2,0 (x, y) respectively. Furthermore, we also assume that u 1,0 , u 2,0 ∈ B s (δ) and Γ s T (u i ) δ, i = 1, 2.

(5.6.19)

Additionally, we make an smallness assumption on Ψ, namely, we assume that

Ψ L ∞ t W 4 + xy + ∂ t Ψ + ∂ x ∆Ψ + 1 2 ∂ x (Ψ 2 ) L ∞ t H 3 + xy δ.
(5.6.20)

From now on we denote by w := u 1 -u 2 and by v := u 1 + u 2 . Then, observe that w solves the equation ∂ t w + ∂ x ∆w + 1 2 ∂ x w(v + 2Ψ) = 0 (5.6.21)

Then, we conclude by gathering the linear estimate (5.2.20), the bilinear estimates (5.4.2) and (5.4.14), the energy estimate (5.5.16), and the smallness assumptions (5.6.19)-(5.6.20), that there exists δ > 0 sufficiently small such that Γ 0 T (w) w 0 L 2 , (5. 6.22) provided that u 1 and u 2 satisfy (5.6.19), with δ ∈ (0, δ ). With the above L 2 -bound, we are now in position to prove our uniqueness result. Démonstration. In fact, for the sake of simplicity let us denote by K := max Γ s T (u 1 ), Γ s T (u 2 ) . In the same fashion as before, we consider the same dilations u i,λ of u i for i = 1, 2 and λ > 0, which are also solutions to the equation (5.1.5) on the time interval [-T , T ], with T = λ -3/2 T , with initial data and background function given by (respectively) u i,λ (0, x, y) = λu 0, λ 1/2 x, λ 1/2 y) and Ψ λ (t, x, y) = λ λ 3/2 t, λ 1/2 x, λ 1/2 y), as in the proof on Proposition 5.6.2. The above dilations imply that

u i,λ L ∞ T H s xy + u i,λ B s (T ) λ 1/2 1 + λ s u i L ∞ T H s xy + u i B s (T )
Kλ 1/2 1 + λ s , for i = 1, 2. Thus, we can always choose λ = λ(K) sufficiently small such that u i,λ L ∞ T H s δ, and u i,λ B s (T ) δ.

(5.6.23)

Moreover, by making λ smaller if necessary, we can also force the following inequality to hold

Ψ λ L ∞ t W 4 + xy + ∂ t Ψ λ + ∂ x ∆Ψ λ + 1 2 ∂ x (Ψ 2 λ ) L ∞ t H 3 + xy δ.
(5.6.24)

Next, we prove that, for T < T sufficiently small, we also have that u i,λ F s (T ) δ.

(5.6.25)

In fact, first of all notice that, since u i,λ F s (T ) < ∞, we infer the existence of an H ∈ D such that P ≥H u i,λ F s (T ) ≤ P ≥H u i,λ F s (T ) ≤ δ, i = 1, 2.

(5.6.26)

On the other hand, recalling that u N s (T ) u L 2 T H s xy , we deduce from the linear estimate (5.2.20), along with Hölder inequality, the Sobolev embedding H 1/2 (R 2 ) → L 4 (R 2 ) and the smallness condition (5.6.23) 

+ ∂ x ∆Ψ λ + 1 2 ∂ x (Ψ 2 λ )) L ∞ t L 2 xy δ + T 1/2 H s/2+1/2 1 + u i,λ L ∞ T H s xy 2 δ,
for T sufficiently small. Therefore, by choosing T = T (K) sufficiently small, we deduce from the latter estimate, along with (5.6.23), (5.6.24) and (5.6.26) that both u 1,λ and u 2,λ satisfy the smallness condition (5.6.19) on [-T , T ], that is, Γ s T (u i,λ ) δ for i = 1, 2.

Then, the latter inequality along with (5.6.22) implies that u 1,λ ≡ u 2,λ on [-T , T ], and hence, by applying this argument a finite number of times, we infer that the equality in fact holds in the whole interval [-T , T ], and so in [-T, T ] by dilation. The proof is complete.

Démonstration. First of all, by using the continuity of the flow with respect to the initial data, given by Theorem 5.1.1, we can assume u(t) is sufficiently smooth so that all the following computations hold. Now, by taking the time derivative of the mass functional, using equation (5.1.5), after suitable integration by parts we obtain 1 2

d dt ˆR u 2 (t, x)dx = - 1 2 ˆu∂ x uΨ - ˆu ∂ t Ψ + ∂ 3 x Ψ + 1 2 ∂ x (Ψ 2 ) =: I + II.
Notice that, thanks to our hypotheses on Ψ, we can immediately bound II by using Young inequality for products, from where we get

|II| ≤ u(t) 2 L 2 xy + ∂ t Ψ + ∂ 3 x Ψ + ∂ x f (Ψ) 2 L ∞ t L 2 xy .
Similarly, after suitable integration by parts and a direct use of Hölder inequality we obtain

|I| ≤ 2 Ψ x L ∞ txy u(t) 2 L 2 xy .
Therefore, Gronwall inequality provides (5.7.1). The proof is complete. It is worth to notice that the previous functional is well defined for all times t ∈ [0, T ], however, it is clearly not conserved by the ZK-flow. The following lemma give us the desired control on the growth of the H 1 -norm of the solution u(t), and hence, it finishes the proof of Theorem 5.1.2.

Lemma 5.7.2. Let u(t) ∈ C([0, T ], H 1 (R 2 )) be a solution to equation (5.1.5) emanating from an initial data u 0 ∈ H 1 (R 2 ). Then, for all t ∈ [0, T ] we have

u(t) H 1 xy C * u 0 ,Ψ exp(C * Ψ t).
where C * Ψ > 0 is a positive constants that only depends on Ψ, while C * u 0 ,Ψ > 0 depends on Ψ and u 0 H 1 . Démonstration. By using the continuity of the flow with respect to the initial data given by Theorem 5.1.1, we can assume u(t) is sufficiently smooth so that all the following computations hold. Now, let us begin by explicitly computing the time derivative of the modified energy functional E(u(t)). Indeed, by using equation (5.1.5) Therefore, integrating (5.7.3) in time on [0, T ], plugging the latter inequality into the resulting right-hand side, choosing ε ∈ (0, 1) sufficiently small, and then using the L 2 -bound found in Lemma 5.7.1, we infer that ˆR |∇u| 2 (t, x, y)dxdy ˆ|∇u 0 | 2 dxdy -ˆu2

0 u 0 + 3Ψ dxdy + C u 0 ,Ψ exp(C Ψ t),
where C Ψ only depend on the above norms of Ψ and C u 0 ,Ψ only depends on norms of Ψ and u 0 L 2 . The proof is complete.
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  nous définissons Y := u ∈ H 1 (R) : u -u xx ∈ M b , où M b désigne l'espace des mesures de Radon de masse totale finie sur R. De plus, on notera désormais par Y + le sous-espace défini par Y + := {u ∈ Y : u -u xx ∈ M + b }, où M + b désigne l'espace des mesures de Radon finies non négatives sur R. Une remarque cruciale dans ce qui suit est que v -v xx ≥ 0 sur R implique |v x | ≤ v sur R.

Theorem 1 . 1 . 1 (

 111 Stabilité orbitale des peakons dans l'espace d'énergie). Soit c > 0 fixé. Il existe 0 < ε min{1, √ c} suffisamment petit tel que si u ∈ L ∞ ((-T, T ), H 1 (R) ∩ W 1,4 (R)),est une solution de l'équation de Novikov (1.1.6) émanant d'une donnée initialeu 0 ∈ H 1 (R)∩ W 1,4 (R) vérifiant u 0 -ϕ c H 1 + u 0,x -ϕ c L 4 ≤ ε 4, pour un certain 0 < ε < ε , de sorte que E(•) et F (•) soient conservés le long de la trajectoire, alors, l'estimation suivante est satisfaite :sup t∈[-T,T ] u(t) -ϕ c (• -ξ(t)) H 1 ≤ 2c 3/8 4 + c ε, c := max{1, c 3/8}, où ξ(t) ∈ R est un point quelconque où la fonction u(t, •) atteint son maximum.

Theorem 1 . 1 . 3 . 8 , ( 1 . 1 . 9 )

 1138119 Soit c > 0 fixé. Il existe une constante universelle 1 ε > 0 telle que pour tout β ∈ (0, c) et toute donnée initialeu 0 ∈ Y + satisfaisant u 0 -ϕ c H 1 ≤ ε β c la propriété suivante est vérifiée : il existe c * > 0 avec |c -c * | c et une fonction x : R → R de classe C 1 satisfaisant que ẋ(t) → c * lorsque t → +∞, et tel que u(t, • + x(t)) ϕ c * dans H 1 (R).où 1 u ∈ C ti (R, Y + ) est la solution faible globale de l'équation (1.1.6) associée à u 0 . De plus, pour tout z ∈ R, la convergence forte suivante est vérifiée lim t→+∞ u(t) -ϕ c * (• -x(t)) H 1 ((-∞,z)∪(βt,+∞)) = 0. (1.1.10)

I 2

 2 (v(t)) := ˆv2 (t) = I 2 (v 0 ), (1.2.8)

.1. 13 )

 13 the following property holds : There exists c * > 0 with |c-c * | c and a C 1 function x

Lemma 2 . 4 . 3 .

 243 For any u 0 ∈ Y + and any z ∈ R, the corresponding solution u ∈ C(R, H 1 (R)) to equation (3.1.8) associated u 0 satisfies lim t→+∞ u(t) H 1 ((-∞,z)) = 0.
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 51 Proof of Lemma 3.5.1

Remark 3 . 1 . 3 .

 313 Notice that the local existence assumptions of Theorems 3.1.1 and 3.1.2 are satisfied, in particular, for initial data in Y (R) (see Theorem 3.2.7 below).

Theorem 3 . 2 . 7 .

 327 Let u 0 ∈ H 1 (R) be a function satisfying y 0 := (u 0 -u 0,xx ) ∈ M b (R). Then, there exists a function T = T ( y 0 M ) > 0 and a unique solution u ∈ C ti ([-T, T ], Y (R)) to equation (3.1.8) associated to the initial data u 0 . Moreover, the functionals E(•) and F (•) are conserved along the trajectory. Additionally, if y 0 ∈ M b defines a signed Radon measure, then the solution u(t) is global in time. Furthermore, if {u 0,n } is a sequence in Y (R) satisfying u 0,n → u 0 in Y (R), then the corresponding sequence of solutions {u n } to the Novikov equation emanating from u 0,n satisfy u n → u in C([-T, T ], H 1 (R)).

- 2 M 2 M

 22 }, where T n denotes the maximal existence time of u n (t). Hence, due to the blow-up criteria, for all n ∈ N this uniform bound leads us to ˆTy 0 0 u n,x (t) L ∞ dt < +∞, and hence T n ≥ 2 y 0 -≥ T, where we are denoting by T y 0 := 2 y 0 -2

Lemma 3 . 4 . 4 .

 344 Let u(t, x) be the solution of the Novikov equation (3.1.8) associated to u 0 ∈ H 1 (R) ∩ W 1,4 (R), satisfying the hypothesis of Lemma 3.4.1 on [0, t * ] with α given by (3.4.2).

  .5.2) and σ := C min{c 2 -c 1 , ..., c n -c n-1 , β}, where C := min{1, C -1 } and C > 0 is the implicit constant involved in (3.1.14).

Lemma 3 .

 3 5.6 ([100]). For any u 0 ∈ Y + and any z ∈ R, the solution u ∈ C(R, H 1 (R)) to equation (3.1.8) associated u 0 satisfies lim t→+∞ u(t) H 1 ((-∞,z)) = 0.

.6. 6 )

 6 By using both equations (3.1.1) and (3.1.8) and by integrating by parts we get J = 2

  The initial value problem for the k-Korteweg-de Vries equation (k-KdV)

( 4 . 1 . 4 )Definition 4 . 1 . 1 .

 414411 . Before going further, let us give a precise definition of what we mean by a solution. Let T > 0 and s > 1/2, both being fixed. Consider u ∈ L ∞ ((0, T ), H s (R)).

Theorem 4 . 1 . 3 .

 413 The Cauchy problem associated with (4.1.2) is unconditionally locally wellposed in H s (R) for s > 1/2.

Lemma 4 . 2 . 2 .

 422 Let T ∈ (0, 2) fixed. Consider (s, r, θ, b) ∈ R 4 satisfying r < s and b ∈ (1/2, 1].

N 1 :

 1 = (N 1 , ..., N k+1 ) ∈ D k+1 : N 3 ≥ 2 9 kN 4 , N 2 := (N 1 , ..., N k+1 ) ∈ D k+1 : N 1 < 8kN and N 3 < 2 9 kN 4 , N 3 := (N 1 , ..., N k+1 ) ∈ D k+1 : N 1 ≥ 8kN and N 3 < 2 9 kN 4 ,and by G 1 , G 2 and G 3 , the corresponding contribution of (5.5.14) associated with each of these regions 7 , respectively.

.3. 10 )

 10 Therefore, taking advantage of the above relation, we can now decompose G low,low 1,R

2 :

 2 To conclude the proof of Step 3.2 it only remains to consider G low,low 1,R

Lemma 4 . 4 . 1 .

 441 [START_REF] Koch | On the local well-posedness of the Benjamin-Ono equation in H s (R)[END_REF]] Let {f n } n∈N ⊂ H s (R) satisfying f n → f in H s (R). Then, there exists an increasing sequence {ω N } N ∈D ⊂ R of positive numbers satisfying ω N ≤ ω 2N ≤ 2 + ω N , with {ω N+∞ as N → +∞} and {ω N → 1 as N → 0},

Lemma 4 . 5 . 5 .

 455 Let µ > 0 fixed. Let u µ ∈ C([0, T ], H s (R)) be the solution to equation (4.5.1)

4. 5 . 1

 51 Proof of Theorem 4.5.1

.1. 6 )

 6 Remark 5.1.1. Notice that if Ψ solves equation (5.1.1), then the latter hypothesis in (5.1.6) is immediately satisfied. This observation shall allow us to work in the background of kink and periodic solutions. About proving local well-posedness for model(5.1.5), it is interesting to notice that, in[START_REF] Linares | Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation[END_REF], Linares and Pastor showed the local well-posedness of the Zakharov-Kuznetsov equation(5.1.1) 

1 . 5 )Theorem 5 . 1 . 1 (

 15511 in the energy space. The following theorem is our main result and provide us the local well-posedness in Sobolev spaces for s ∈[START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF][START_REF] Adams | Sobolev spaces[END_REF]. Local well-posedness). Let s ∈ [1, 2] fixed. Consider a fixed background function Ψ(t, x, y) satisfying the conditions in (5.1.6). Then, for any initial data u 0 ∈ H s (R 2 ) there exists a positive time of existence T = T ( u 0 H s ) > 0 and a unique solution to the equation (5.1.5), emanating from u 0 , such that

R

  

I 2 :

 2 In this case observe that, due to frequency localization, we must have that N max ∼ N med and max 1≤j≤3 |µ j | ∼ med 1≤j≤3 |µ j |. From these relations it follows that max 1≤j≤3 |ξ j µ j | ∼ max 1≤j≤3 |ξ j | max 1≤j≤3 |µ j |.

  t∈(0,T ) ˆt 0 ˆR2∂ x P H (f (u + Ψ) -f (Ψ))P H u , t∈(0,T ) ˆt 0 ˆR2 P H ∂ t Ψ -D 2 x ∂ x Ψ + ∂ x ∂ 2 y Ψ + ∂ x f (Ψ) P H u .For the sake of simplicity, from now on we denote by I u 2 and I uΨ the quantities given byI u 2 := H>0 H s sup t∈(0,T ) ˆt 0 ˆR2 ∂ x P H (u 2 )P H u ,(5.5.7)I uΨ := H>0 H s sup t∈(0,T ) ˆt 0 ˆR2 ∂ x P H (uΨ)P H u .

H 2 ∼

 2 max{H 1 , H 3 }. Now, we introduce a smooth function γ : R → [0, 1], supported on [-1, 1], satisfying that m∈Z γ 2 (x -m) = 1, ∀x ∈ R.

Proposition 5 . 5 . 4 . 2 H 2 E s + z F 1 (T ) w 2 F

 5542212 Let T ∈ (0, 1] and s ≥ 1, both fixed. Consider u, v ∈ C([-T, T ] :H ∞ (R 2 )) to be a smooth solution of the IVP (5.1.5). Denote by w := u -v and by z := u + v.Then, s + z F 1 (T ) w 2 F s (T ) + z F s+1/2 (T ) w F 1/2 + (T ) w F s (T ) + Ψ L ∞ t W s+1 + ,∞ xy w F 0 (T ) w F s (T )

I

  z := H>0 H s sup t∈(0,T ) ˆt 0 ˆR2 ∂ x P H (zw)P H w , (5.5.17) I Ψ := H>0 H s sup t∈(0,T ) ˆt 0 ˆR2 ∂ x P H (Ψw)P H w , (5.5.18)

Remark 5 . 5 . 1 . 2 B 2 H 2 F

 551222 For the existence Theorem we shall actually use a slight modification of inequality (5.5.15), namely w s (T )w 0 s + z F 1 (T ) w 2 F s (T ) + z F s+1 (T ) w F 0 (T ) w F s (T ) + Ψ L ∞ t W s+1 + ,∞ xy w F 0 (T ) w F s (T ) + Ψ L ∞ t W 1 + ,∞ xy w s (T ) ,(5.5.22)which follows exactly the same lines as before, but when bounding G 2 we absorb H

Proposition 5 . 6 . 2 .

 562 |||Ψ||| s := ∂ t Ψ + ∂ x ∆Ψ + 1 2 ∂ x (Ψ 2 ) L ∞ Let σ ∈ (2, 3 + 1 2 ε) and s ∈ [1, σ] both be fixed. Then, for any M > 0 there exists a positive existence time T = T (M ) such that, for any initial data u 0 ∈ H σ (R 2 ) satisfying u 0 H s ≤ M , the smooth solution u(t) given by Theorem 5.6.1 is defined on [-T, T ]. Moreover, the solution u(t) satisfies thatu ∈ C([-T, T ], H σ (R 2 )) and u L ∞ T H s xy u 0 H s .(5.6.2)

Lemma 5 . 6 . 3 .

 563 Let s ∈ R + and T > 0 both fixed. Consider u ∈ C([-T, T ], H ∞ (R 2 )). Define Λ s T (u) := max u B s (T ) , ∂ x (u 2 ) N s (T ) , ∂ x (uΨ) N s (T ) ,for 0 ≤ T ≤ T . Then, the map T → Λ s T (u) defines a nondecreasing continuous function on [0, T ). Morover, we have that lim T →0 Λ s T (u) u(0) H s .

f

  N s (T 0 ) ≤ lim inf r→1 D r [f ] N s (rT 0 ) and lim sup r→1 D r [f ] N s (rT 0 ) ≤ f N s (T 0 ) . (5.6.11)In fact, let us begin with the first of them. Let ε > 0 be an arbitrarily small number. For r > 0 close to 1, we choose an extension f r of D r [f ] outside the interval [-rT 0 , rT 0 ] satisfyingf r [-rT 0 ,rT 0 ] ≡ D r [f ] and f r N s ≤ D r [f ] N s (rT 0 ) + ε.

Proposition 5 . 6 . 4 .

 564 Let s ∈ [1, 2] be fixed. Consider two solutions u 1 and u 2 to equation(5.1.5) in the class C([-T, T ], H s ) ∩ B s (T ) ∩ F s (T ) for some T > 0, emanating from initial datum satisfying that u 1 (0, •, •) = u 2 (0, •, •) =: u 0 (x, y). Then, u 1 = u 2 on the time interval [-T, T ].

  Now, in order to control the H 1 -norm, we consider the following modified energy functional E u(t)
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  Iorio et al. [48] pour des données régulières. A notre connaissance, le meilleur résultat à ce jour (dans le cadre mentionné précédemment) est donné par Gallo[START_REF] Gallo | Korteweg-de Vries and Benjamin-Ono equations on Zhidkov spaces[END_REF] où le caractère localement bien posé a été établi pour le cas KdV pour s > 1 sous la même hypothèse sur Ψ(x) que dans les travaux de Iorio et al[START_REF] Iorio | KdV and BO equations with bore-like data[END_REF]. D'autre part, dans le cas d'une non-linéarité générale f (x), sous certaines conditions supplémentaires, comme Ψ (x) > 0 pour tout x ∈ R, et que Ψ (x) a une décroissance exponentielle à ±∞, ainsi qu'une relation explicite entre les valeurs de Ψ(x) à ±∞ et la valeur de l'intégrale de la non-linéarité f (x) sur la région [Ψ(-∞), Ψ(+∞)], Zhidkov[START_REF] Zhidkov | Korteweg-de Vries and nonlinear Schrödinger equations : qualitative theory[END_REF] a établi le caractère bien posé local pour des données dans H 2 (R). D'autre part, le problème de Cauchy associé à l'équation de Zakharov-Kuznetsov (1.2.2) a été largement étudié ces dernières années. Dans le cas bidimensionnel, le premier résultat remonte

Concernant l'équation Ψ-gKdV (1.2.6), à notre connaissance, cette équation n'a jamais été traitée dans un cadre aussi général. Cependant, dans le cas quadratique, i.e. f (x) = x 2 , Ψ = Ψ(x) étant une fonction bornée indépendante du temps telle que Ψ ∈ H ∞ (R), il retrouve le résultat de à Faminskii

[START_REF] Faminskii | The Cauchy problem for the Zakharov-Kuznetsov equation[END_REF]

, où il a prouvé le caractère bien posé local et global de l'équation dans l'espace d'énergie H 1 (R 2 ). Ensuite, Grünrock et Herr

[START_REF] Grünrock | The Fourier restriction norm method for the Zakharov-Kuznetsov equation[END_REF] 

et Molinet et Pilod

[START_REF] Molinet | Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications[END_REF] 

ont indépendamment prouvé le caractère bien posé local pour s > 1/2. Cela a été fait en utilisant la méthode de la norme de restriction de Fourier. Enfin, Shinya Kinoshita a récemment prouvé le caractère bien posé local et global de l'équation (1.2.2) dans H s

  Remark 2.1.2. In [85]-[86], instead of using Definition 2.1.1, the author used what he called Y -almost localization, i.e. he replaced the functional in (2.1.10) by ˆ u 2

.

1.10) 

  2.1.2 and 2.1.3 we shall need to approximate non-smooth solutions of equation(3.1.8) by sequences of smooth solutions. In this regard, we shall need a global well-posedness result on a class of smooth solutions. In[START_REF] Wu Xinglong | Global weak solutions for the Novikov equation[END_REF], following the ideas of the seminal work of Constantin and Escher[START_REF] Constantin | Global existence and blow-up for a shallow water equation[END_REF] on the Camassa-Holm equation, Wu and Yin proved the smooth global well-posedness for initial data with non-negative momentum density.

Theorem 2.2.5

([109]

). Let u 0 ∈ H s for s ≥ 3, with non-negative momentum density y 0 belonging to L 1 (R). Then, equation (3.1.1) has a unique global strong solution

  3.14) and due to the fact that the kernels of p + and p -are both positive and that |v x | ≤ v for any v ∈ Y + , we deduce

	d dt	u x (t, x ε (t)) ≤ 0, and therefore	d dt	u(t, x ε (t)) ≥ 0.
	Thus, u(t, x			

ε (t)) is increasing, and hence, by using the convergence result (2.3.15) we conclude that u(t, x(t) + x + (t)) is increasing, what finish the proof of the lemma.

As a corollary of the previous analysis we obtain the following key property.

Corollary 2.3.5. Both maps x(t) + x + (t) and ẋ(t) + ẋ+ (t) define non-decreasing functions.

  .4.[START_REF] Chen | The integrable shallow-water models with cubic nonlinearity[END_REF] Now we set u n (t) := u(t n + t, • + x(t n + t)). Notice that u n (t) defines a bounded sequence in C(R, H 1 (R)) with {y n } n∈N bounded 4 in L ∞ (R, M + loc ) and hence there exists a function

  2 x + 2u 3 )}uΨ + ˆ{p x * u 3 x }uΨ . Now, due to the fact that |v x | ≤ v for any v ∈ Y + we deduce p * uu 2

	x + p x * u 3 x ≥ 0. On the
	other hand, since u(t) is positive, from Lemma 2.3.7 we infer
	p * (3uu 2

  •). On the other hand, by using Lemma 3.3.3 with u 0 and = ε 4 together with the conservation laws(3.3.

[START_REF] Bona | Models for propagation of bores I : Twodimensional theory[END_REF] 

we deduce that u(t) satisfies the hypothesis of Lemma 3.3.4 for all times t ∈ [0, T ). Finally, notice that the right-hand side of estimate (3.3.6) only depends conserved quantities, and hence we obtain

  However, we do not require that Ψ(t, x) has well-defined limits at ±∞ as in those previous works. For instance, if Ψ = Ψ(t, x) solves the gKdV equation (4.1.2), then the latter expression in (4.1.7) is identically zero, and hence the third hypothesis is immediately satisfied. In particular, we can consider Ψ(t, x) being a periodic solution of the gKdV equation. Nevertheless, Ψ(t, x) does not need to be a solution, neither to have a small H s+ -norm once replaced in the equation. For example, we can solve equation (4.1.4) with Ψ being Ψ(t, x) = 1 + 4 tanh(x + t) + cos log(1 + x 2 + t 2 ) .

.1.7) Remark 4.1.1. Note that any function Ψ = Ψ(x) ∈ L ∞ (R) such that Ψ ∈ H ∞ (R), for example Ψ being a Kink, satisfies all the conditions in (4.1.7). Hence, equation (4.1.4) together with conditions (4.1.7) contain as particular cases all the frameworks considered in

[START_REF] Bona | Models for propagation of bores I : Twodimensional theory[END_REF][START_REF] Gallo | Korteweg-de Vries and Benjamin-Ono equations on Zhidkov spaces[END_REF][START_REF] Iorio | KdV and BO equations with bore-like data[END_REF][START_REF] Zhidkov | Korteweg-de Vries and nonlinear Schrödinger equations : qualitative theory[END_REF]

.

  This is somehow important since it shall allow us to use Lemma 5.5.3 with no problems. Now, in the same spirit as in Step 2, we split the analysis into several cases, namely 1) N 3 < 8 8 kN k+2 , 2) N 3 ≥ 8 8 kN k+2 and N 3 ≥ 2 9 kN 4 , 3) N 3 ≥ 8 8 kN k+2 and N 3 < 2 9 kN 4 .
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kN k+2 ≥ N .

  1 for all T < T * .(4.4.3) Now, let us consider an initial data u 0 ∈ H s (R) with s > 1/2. Consider a smooth sequence of functions {u 0,n } n∈N strongly converging to u 0 in H s (R). Let u n (t) be the solution to equation (4.1.4) associated with Ψ n , with initial data u 0,n . Note that the above analysis assures us that we can define the whole family of solutions {u n } in a common existence time interval [0, T * ], for some T * > 0 only depending on u 0 H s and |||Ψ||| s + . Then, thanks to estimate (4.4.2) with ω N ≡ 1, {u n } n∈N defines a bounded sequence in C([0, T * ], H s (R))

  . Notice that the decomposition in N, N 1 , N 2 is harmless in the sense that, once we prove the above estimate, we can control f N i ,H i ,L i with f H i ,L i since the sums over N, N 1 and N 2 are controlled by log(H 1/2 ) H 0 + . Thus, we can directly sum over N, N 1 and N 2 . Now we split the analysis into two cases. First we assume that either L = L min or L med ∼ L max . Then, by using estimate(5.3.19), we immediately obtain that

  H>0H s sup t∈(0,T) ˆt 0 H 1 ,H 2 ,H 3 ˆΓ3 a 2 (ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) H i (ξ i , µ i )û(t , ξ i , µ i )dΓ 3 dt . (5.5.10)Moreover, by symmetry, without loss of generality we can always assume that H 1 ≤ H 2 ≤ H 3 .

	3
	ψ
	i=1

2

  H 1 := (H 1 , H 2 , H 3 ) ∈ D 3 : H 1 H 3 and H 2 := (H 1 , H 2 , H 3 ) ∈ D 3 : H 1 ∼ H 3 ,and by G 1 and G 2 , the corresponding contribution of (5.5.14) associated with each of these regions 3 , respectively. Then, to bound G 1 it is enough to notice that, by Lemma 5.5.2, along with estimate (5.5.11), we have that

		3
	G 1	H s H -1/4 max H min 3/4
	H∈D H 1	i=1

N

  ∈D P H 1 P x N uP H 2 P x ∼N u (P H 3 P x N u + P H 3 P x ∼N u) =: Σ 1 + Σ 2 ,

  (which would lead us to a factor H ), we bound the contribution of the symbol directly from its explicit definition (that only involves N i ), from where we obtainH 1 P x N u F H 1 P H 2 P x ∼N u F H 2 P H 3 P x ∼N u F H 3 H 1 u F H 1 P H 2 u F H 2 P H 3 u F H 3 u F 1 (T ) u 2 F s (T ) .

	1/2 min ∼ H	1/2
	G 2 2	H∈D H 2 N ∈D min P H∈D H 2 H s H 1/2 H s H 1/2 min P

max

  3, it is not difficult to see thatI uΨ H∈D H 1 ,H 2 ,H 3 P H 1 u F H 1 P H 2 u F H 2 P H 3 Ψ L ∞Notice that in order to sum over (H, H 1 , H 2 , H 3 ) we have used the fact thatH 2 ∼ max{H 1 , H 3 }. In fact, if H 2 ∼ H 3 , with H 1H, then it is enough to absorb the factor H s/2+1/2 + with the L ∞ norm of Ψ, so that we can easily sum overH 2 . While if H 2 ∼ H 3 with H 1 ∼ H we absorb H 1/2 +max with Ψ. The case where H 1 ∼ H 2 follows directly from the square summability property of P H i u F H i , i = 1, 2. In this latter case we use Ψ to absorb the factor H

	1/2 +
	3
	1/2 3 H s H

txy Ψ L ∞ t W s+1 + ,∞ xy u F 0 (T ) u F s (T ) + Ψ L ∞ t W 1 + ,∞ xy u 2 F s (T ) .

  ) ˆt 0 H 1 ,H 2 ,H 3 ˆΓ2 a(ξ 1 , µ 1 , ..., ξ 3 , µ 3 )Φ(t ξ 3 , µ 3 ) H i (ξ i , µ i ) ŵ(t , ξ i , µ i )dΓ 2 dt ,

	:=	H s ×	(5.5.19)
	H>0		
	× sup t∈(0,T 2 i=1	ψ

  1 , H 2 , H 3 ) ∈ D 3 : H 1 ∼ H 2 and H 1 H 3 , H 2 := (H 1 , H 2 , H 3 ) ∈ D 3 : H 1 ∼ H 3 and H 1 H 2 ,(5.5.20) 

  Finally, in order to treat G 3 , we decompose into frequencies again, using the P x N projectors as before, that is, we writeP H 1 wP H 2 wP H 3 z = N 1 ,N 2 ,N 3 P H 1 P x N 1 wP H 2 P x N 2 wP H 3 P x N 3 z.Then, by frequency localization, we must have that N max ∼ N med , otherwise G 3 = 0. Hence, by symmetry, we infer that it is enough to bound the contribution of the following quantityN ∈D P H 1 P x N wP H 2 P x ∼N w (P H 3 P x N z + P H 3 P x ∼N z) + N ∈D P H 1 P x N wP H 2 P x N wP H 3 P x ∼N z =: Σ 1 + Σ 2 + Σ 3 ,since all the remaining cases are equivalent to one of the above cases. We denote by G 1 3 , G 2 3

		1/2 1	for the
	symbol, we obtain that
	G 2	H s H 1 H 1/4 2 1/4
	H∈D H 1	

P H 3 z F H 3 2 i=1 P H i w F H i z F s+1/2 (T ) w F 1/2 + (T ) w F s (T ) .

  3, we conclude that |I| H∈D H 1 ,H 2 ,H 3P H 1 w F H 1 P H 2 w F H 2 P H 3 Ψ L ∞Once again, in order to sum over (H, H 1 , H 2 , H 3 ) we have used the fact thatH 1 ∼ max{H 2 , H 3 } and that either H 1 ∼ H or H 2 ∼ H, otherwise the symbol a ≡ 0. In fact, if H 1 ∼ H 3 with H 2H, then it is enough to absorb the factor H s/2+1/2 + with the L ∞ norm of Ψ so that we can then sum overH 1 . While if H 1 ∼ H 3 with H 2 ∼ H we absorb H 1/2 +max with Ψ. The case where H 1 ∼ H 2 follows directly from the square summability property of P H i w F H i , i = 1, 2. The proof is complete.

		1/2 3 H s H		txy
	Ψ	L ∞ t W s+1 + ,∞	L ∞ t W 1 + ,∞ xy	w 2 F

xy w F 0 (T ) w F s (T ) + Ψ s (T ) .

  for all g ∈ L 2 t H s xy . Then, taking g = 1 [-T ,T ] (t)f (t, x, y) we conclude that

	f N s (T )	g N s	g L 2 t H s xy	T 1/2 f L ∞ T H s xy	T →0

[START_REF] Berezin | Nonlinear evolution of disturbances in plasma and other dispersive media[END_REF] 

we see that

g N s g L 2 t H s xy ,

  , thatP ≤H u i,λ F s (T ) u i,λ B s (T ) + P ≤H ∂ x (u 2 i,λ ) N s (T ) + P ≤H ∂ x (u i,λ Ψ λ ) N s (T ) + P ≤H (∂ t Ψ λ + ∂ x ∆Ψ λ + 1 2 ∂ x (Ψ 2 λ )) N s (T ) u i,λ B s (T ) + T 1/2 H s/2+1/2 P ≤H (u 2 i,λ ) L ∞ ≤H (∂ t Ψ λ + ∂ x ∆Ψ λ + 1 2 ∂ x (Ψ 2 λ )) L ∞ ≤H (∂ t Ψ λ + ∂ x ∆Ψ λ + 1 2 ∂ x (Ψ 2 λ )) L ∞

		T L 2 xy
	δ + T 1/2 H s/2+1/2 u i,λ	2 L ∞ T L 4
		t L 2 xy
	δ + T 1/2 H s/2+1/2 u i,λ	2 L ∞ T H s

T L 2 xy + P ≤H (u i,λ Ψ λ ) L ∞ T L 2 xy + T 1/2 H s/2 P xy + T 1/2 H s/2+1/2 u i,λ L ∞ T L 2 xy Ψ λ L ∞ txy + T 1/2 H s/2 P xy + T 1/2 H s/2+1/2 u i,λ L ∞ T H s xy Ψ λ L ∞ txy + T 1/2 H s/2 P ≤H (∂ t Ψ λ

  , after suitable integration by parts we obtain thatd dt E = -2 ˆ(u xx + u yy )u t -ˆut u 2 + 2uΨ -ˆu2 Ψ ˆ u 2 + 2uΨ Ψ t + ∂ 3 x Ψ + 1 2 ∂ x (Ψ 2 ) -ˆu2 Ψ t = 2 ˆu∆ Ψ t + ∂ 3 x Ψ + 1 2 ∂ x (Ψ 2 ) -ˆu2 Ψ tOn the other hand, by using Gagliardo-Nirenberg interpolation inequality along with Young inequality for products, we have thatˆR2 u 3 (t, x, y)dxdy ≤ C u(t) H 1 xy u(t) 2where ε > 0 is a small parameter. Thus, by plugging the latter inequality into the second integral in the definition of the modified energy functional (5.7.2), we get that ˆu2 u + 3Ψ u(t)3 

	ˆ			
	+	u 2 + 2uΨ Ψ t + ∂ 3 x Ψ + 1 2 ∂ x (Ψ 2 )		
	1 + Ψ t L ∞ txy + Ψ 2 L ∞ txy + ∂ t Ψ + ∂ 3 x Ψ + 1 2 ∂ x (Ψ 2 ) L ∞ txy	u(t) 2 L 2 xy	(5.7.3)
	+ Ψ t + ∂ 3 x Ψ + 1 2 ∂ x (Ψ 2 ) 2 L ∞ t H 2 xy .		
		L 2 xy	ε u(t) 2 H 1 xy +	1 ε	u(t) 4 L 2 xy ,
		L 3 xy + Ψ L ∞ txy u(t) 2 L 2 xy	
		ε u(t) 2 H 1 xy + ε -1 u(t) 4 L 2 xy + Ψ L ∞ txy u(t) 2 L 2 xy .

t = ˆ(∆u)∂ x u 2 + 2uΨ + 2 ˆu∆ Ψ t + ∂ x ∆Ψ + 1 2 ∂ x (Ψ 2 ) + ˆ(∂ x ∆u) u 2 + 2uΨ + 1 2 ˆ u 2 + 2uΨ ∂ x u 2 + 2uΨ +

Par cela, nous entendons u ∈ C(R, H 1 (R)) avec y ∈ Cti(R, M + b (R)).

Plus concrètement, notre méthode combine des estimations d'énergie classiques avec des estimations de type Bourgain qui mesurent la localisation de la transformée de Fourier spatiotemporelle de la solution autour de la courbe donnée par le symbole de Fourier de l'équation dispersive linéaire associée. Dans notre approche, nous combinons cela avec des estimations de Strichartz améliorées et des arguments de symétrisation. La stratégie principale consiste à utiliser des arguments de symétrie pour distribuer la dérivée perdue à plusieurs fonctions, puis à la récupérer soit par des estimations de Strichartz améliorées, soit par des estimations de type Bourgain selon que les interactions non linéaires sont résonnantes ou non. Puisque l'équation de la différence de deux solutions bénéficie de moins de symétries, cette différence sera estimée dans un espace de régularité inférieur à la solution elle-même et nous utiliserons la méthodes des l'enveloppes fréquentielles pour récupérer le résultat de continuité par rapport aux données initiales.

By this we mean u ∈ C(R, H 1 (R)) with y ∈ Cti(R, M + b (R)).

In[START_REF] Liu | Stability of peakons for the Novikov equation[END_REF] the implicit constant appearing in (2.4.2) does depends on u0 H 3 . Nevertheless, it is easy to check that it can actually be sharpened to depend only on u0,x L ∞ . Here, since u0 ∈ Y+ we have u0,xL ∞ ≤ u0 L ∞ ≤ u0 H 1 .The interested reader can consult to[START_REF] Palacios | Orbital and asymptotic stability of peakon trains for the Novikov equation[END_REF] for a simplification of this proof without the sign assumption of the momentum density.

This is a consequence of the fact that for all t ∈ R the momentum density belongs to y(t) ∈ M + b together with the fact that u, ux ∈ L ∞ (R, L ∞ (R)).

By this we mean thatu ∈ C(R, H 1 (R)) with y ∈ Cti(R, M b (R)). See definition

3.2.2 below.

F i (u(t)) -F (ϕ c i ) + O L -1/2 .

n 0 ,x = ˙ x i ˆw1 (t, x)ω i n 0 (t, x)dx -2 ˙ x i c * i ˆw1 (t, x)ρ n 0 x -x i (t) dx.

If k = 3 we omit the last inequality.

If k = 2, we only assume N1 ≥ N2 ≥ N3. Notice also that this assumption shall introduce a factor k 4 into the following estimates

Notice that here, and in all of the bounds below, we obtain a constant c k-1 comming from using Sobolev's embedding k -1 times.

We point out that, in order to avoid over-repeated sentences, in what follows we shall no longer emphasize that s ∈ (1/2, 1] and that N > 8 7 k.

We recall that, with this phrase we are referring to the condition ξ1 + ξ2 + ξ3 = 0.

By this we mean the quantity T < T * , that we can choose, with which we know that the solution must exist at least on the interval [0, T]. That is, the solution is guaranteed to exist at least up to time T.

Recall that, due to Lemma 4.4.1, we know that {ωN }N is a non-trivial weight, in the sense that ωN +∞.

By this we mean the condition ξ1 + ξ2 + ξ3 = 0. In the sequel, each time we mention "the constraint imposed by Γ k " we refer to the previous condition with k frequencies.

Recall that we are also assuming that H1 ≤ H2 ≤ H3.

That is, the quantity obtained once restricting the inner sum in (5.5.14) to H 1 and H 2 , respectively.

By this we are only referring to the fashion we chop the time interval, introducing the functions f m H i ,L and so on, but not to the use of the bilinear estimates, since they are not useful here.

Remerciements

Local well-posedness in

This section is devoted to show the following result, that gives us the LWP for smooth initial data.

Theorem 4.5.1 (LWP for smooth data). The Cauchy problem associated with (4.1.4) is locally well-posed in H s (R) for s > 3/2, with minimal existence time

To establish the existence and uniqueness of smooth solutions to the IVP (4.1.4), we use the parabolic regularization method, that is, we consider solutions to the following equation

for µ > 0. Roughly, the idea is to start by showing LWP of the above equation, and then take the limit µ → 0. Since these ideas are (nowadays) fairly standard and have been used multiple times in many different contexts, we shall be brief and only sketch their main estimates. We refer to [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF] and [START_REF] Iorio | KdV and BO equations with bore-like data[END_REF] for further details.

Before going further let us recall some preliminary lemmas needed to prove Theorem 5.1.2.

The following lemma give us the main estimate to prove the LWP of (4.5.1) (see [START_REF] Iorio | BO and friends in weighted Sobolev Spaces, Functional-Analytic Methods for PDE[END_REF]).

Lemma 4.5.2. Let µ > 0 fixed. Let W µ (t) to be the free group associated with the linear part of (4.5.1), that is W µ (t) := exp((µ∂ 2 x -∂ 3 x )t). Then, for all s ∈ R, r ≥ 0 and all f ∈ H s (R) the following holds

As a direct consequence of the previous property, we have the following result. Lemma 4.5.3. Let µ > 0 fixed. Consider u 0 ∈ H s (R) with s > 3/2. Then, there exists T = T ( u 0 H s , µ) > 0 and a unique solution u µ (t) to equation (4.5.1) satisfying

The previous lemma can be proven by writing u µ (t) in its equivalent Duhamel form, and then proceeding by standard fixed point arguments, using Lemma 4.5.2. We omit its proof.

In the sequel we shall need the following lemma that combines commutator estimates with Sobolev inequalities. Lemma 4.5.4 ([54]). Let s > 3/2 and r > 1. Then, for all f, g ∈ S(R) the following holds

where the implicit constant only depends on s and r.

The next step is to show that the previously found solution u µ (t) can be extended to an interval of existence independent of µ > 0.

On the other hand, to deal with J 2 we can proceed similarly as we did for (5.2.13). In fact, decomposing into frequencies and then using Cauchy-Schwarz inequality we obtain that J 2 L -β ∈D: ≥L β -1/2 η (τ -ω(ξ, µ))

, where in this case J L is given by

Now we split the analysis into two cases. First, assume that L. Then, direct computations yield us to

On the other hand, due to frequency localization, on the region L we have that |τ -τ | ∼ . Hence, we have that

Plugging both estimates of J L for each of the previous cases into J 2 , we conclude that

The proof is complete.

As a consequence of the previous lemma we derive several important properties.

Corollary 5.2.4. Let β ≥ 0, H ∈ D, t H ∈ R and consider γ ∈ S(R). The, the following holds

for all f such that F(f ) ∈ X H .

Démonstration. In fact, it is enough to notice that, by standard properties of the Fourier transform along with the fact that F(γ) ∈ S(R 3 ), we have that

Therefore, taking the X H -norm on both sides of the previous inequality, and then using (5.2.13)-(5.2.14) we conclude the proof the corollary.

Corollary 5.2.5. Let β ≥ 0, H ∈ D, t H ∈ R and consider γ ∈ S(R). Then, it holds that

for all f such that F(f ) ∈ X H . Corollary 5.2.7. Let β ≥ 0, t ∈ R be fixed and consider H, H 1 ∈ D satisfying that H 1 ≥ 2 5 H. Then, the following inequalities hold

and

)

Démonstration. In fact it is enough to notice that, on the one-hand, due to the hypothesis on H and H 1 , we have that

On the other hand, it follows from Lemma 5.2.6 that

Therefore, using estimates (5.2.13) and (5.2.14) and arguing exactly as in the proof of Corollary 5.2.4 we conclude the proof of the lemma.

Linear estimates

In this subsection we derive the linear properties enjoyed by the short-time function spaces introduced at the beginning of this section (see [START_REF] Ionescu | Global well-posedness of the KP-I initial-value problem in the energy space[END_REF][START_REF] Kenig | Well-posedness for the fifth-order KdV equation in the energy space[END_REF]).

Proposition 5.2.8. Let s ≥ 0, β > 0 and consider T ∈ (0, 1]. Then, the following holds

for all u ∈ B s (T ) and f ∈ N s β (T ) satisfying that

(5.2.21)

In order to prove the previous proposition, we split the analysis into two simpler lemma. First we treat the homogeneous case.

Lemma 5.2.9. Let β ≥ 0 and H ∈ D. Then, the following inequality holds

Démonstration. In fact, first of all notice that, by direct computations, using the standard properties of the Fourier transform, we can see that

Then, notice that, since η 0 ∈ S(R), we have the bound

Thus, plugging the latter two inequalities into the left-hand side of (5.2.24), recalling that

we conclude the proof of the claim. Now notice that with the previous claim we can reduce the analysis to the study of the following two quantities

In fact, for the first quantity, by directly using Lemma 5.2.3 we obtain that

On the other hand, expanding the X H -norm and then using (5.2.11) we get that

Gathering the above estimates we conclude the proof of the lemma. Now we are in position to prove our main linear estimate.

Proof of Proposition 5.2.8. In fact, let u, f : [-T, T ]×R 2 → R satisfying (5.2.21). We consider f an extension of f on R 3 satisfying that

) satisfying that ρ(t) ≡ 1 for all t ≥ 1 and that ρ(t) ≡ 0 for all t ≤ 0. Then, for H ∈ D we define

Then, from these definitions and Corollary (5.2.6) it follows that

and that supp fH

Now we extend P H u on R 3 . To this end, for all H ∈ D we define ũH (t) as follows

x -∂ 

for all u 0 ∈ L 2 (R 2 ). Moreover, for all u ∈ X 0,1/2 + , it also holds that

(5.2.27)

Remark 5.2.1. In the previous statement, the X 0,1/2,1 space denotes the 1 -Besov version of the classical Bourgain space of regularity 1/2 associated with the linear part of the Zakharov-Kuznetsov equation (5.1.1).

L 2 bilinear estimates

Before going further let us recall that ω(ξ, µ) = ξ(ξ 2 + µ 2 ) and The main result of this subsection are the following bilinear estimates, which shall be useful throughout the rest of this article. We refer to [START_REF] Molinet | Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications[END_REF][START_REF] Ribaud | Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation[END_REF] for some similar bilinear estimates.

Lemma 5.3.1. Let N i , H i , L i ∈ D be dyadic numbers and assume that f i :

a. Then, the following bound holds

Otherwise we have that

In order to prove Lemma 5.3.1 we shall the following definitions. For δ ∈ (0, 1) sufficiently small, we define the sets

] and ρ(ξ) ≡ 1 for all |ξ| ≥ 1. We also denote by ρ δ the function given by ρ δ (ξ) := ρ(ξ/δ). Notice that with these definitions we have that

as well as

From the last two identities we infer that we can see

The following technical lemma will be important in proving the above bilinear estimates.

Then, it holds that

where f is a continuous function on [0, 1] satisfying that lim δ→0 + f (δ) = 0.

Démonstration. Indeed, first of all notice that without loss of generality we can assume that h(ξ 1 , µ 1 ) ≥ h(ξ 2 , µ 2 ). Therefore, by using the definition of h(•, •) we infer that it is enough to prove that 3 (

(5.3.8)

Then, using the latter inequality, the fact that µ 1 µ 2 < 0 and (ξ i , µ i ) ∈ A δ , we get that

where f 1 (δ) is given by

. Now on the one-hand, by using inequality (5.3.8) and the fact that ξ 1 ξ 2 < 0, we infer that, if

where

On the other hand, if

Gathering the above computations we conclude the proof of the lemma.

Proof of Lemma 5.3.1. In fact, let us start by proving estimate (5.3.3). First of all notice that

where

Then, in view of the above symmetry, without loss of generality we can assume that

Also, due to the assumptions on f i , it follows that the functions f # i are supported in the sets

Then, expanding the convolution, changing variables and using the above definitions, we rewrite the left-hand side of (5.3.9) as

where Ω(ξ 1 , µ 1 , ξ 2 , µ 2 ) is the resonant function defined in (5.3.1). Now, for i = 1, 2, 3 we define F i (ξ, µ) as follows

. Therefore, by using the Cauchy-Schwarz inequality along with Young inequalities in the θ variable, we obtain that

Then, estimate (5.3.3) follows from the latter inequality by applying the same argument in the ξ and µ variables, recalling that 1

min . We now seek to prove inequality (5.3.5). Once again, in view of (5.3.9), without loss of generality we assume that L max = L 3 and H min = H 2 . Notice that, it suffices to prove that,

(5.3.12)

Indeed, if estimate (5.3.12) holds, then we can define

for θ 1 and θ 2 fixed. Hence, by applying (5.3.12) along with Cauchy-Schwarz inequality to (5.3.10) we would deduce that

which is exactly estimate (5.3.5). Now, to prove estimate (5.3.12), we begin by applying twice the Cauchy-Schwarz inequality to obtain that

We make the following change of variables (ξ

Thus, performing the change of variables (ξ

, for some harmless constant c ∼ 1, which leads us to (5.3.12) after integrating in µ 2 . Notice that inequality (5.3.4) follows the same lines, however, in that case we assume that L 3 = L med and L 2 = L max (and hence we also have that H 2 = H min ).

It only remains to prove estimate (5.3.6). As before, our starting point is identity (5.3.10).

For the sake of simplicity, from now on we denote by ξ 3 = ξ 1 + ξ 2 and µ 3 = µ 1 + µ 2 . Then, we decompose the integration domain into the following regions :

Estimate for I 3 : First of all notice that, due to frequency localization and the definition of R 3 we have that

i for some i ∈ {1, 2, 3}, which, along with H min ∼ H max , implies that

Now we split the integration domain into several subregions as follows

where 0 < δ 1 denotes a sufficiently small number to be chosen. Then, we denote by I j 3 the restriction of the integral I 3 to the domain R j 3 . As we shall see, all the previous integrals I j 3 , but I 4 3 , follows exactly the same proof, and hence we focus only on I 1 3 . Case {ξ 1 ξ 2 > 0 and µ 1 µ 2 > 0} : Let us denote by R 1, 1 3 the integration domain R 1 3 under the additional constraints ξ 1 ξ 2 > 0 and µ 1 µ 2 > 0. Then, it is enough to notice that, in this region, we have that

Therefore, once again, it follows arguing exactly as for (5.3.13) that

where we have denoted by I 1,1 3 the restriction of I 1 3 to the integration domain R 1,1 3 . Case {ξ 1 ξ 2 > 0 and µ 1 µ 2 < 0} or {ξ 1 ξ 2 < 0 and µ 1 µ 2 > 0} : Let us denote by R 1,2 3 the integration domain R 1 3 under the additional current constraint, and by I 1,2 3 the restriction of I 1 3 to the domain R 1,2 3 . Then, performing the change of variables (ξ 1 , µ 1 , ξ 2 , µ 2 ) = (ξ 1 +ξ 2 , µ 1 + µ 2 , ξ 2 , µ 2 ) and then noticing that

Thus, arguing exactly as in the proof of estimate (5.3.12), we infer that

, where we have denoted by J 1,2 3 the restriction of J defined by (5.3.11) to the integration domain R 1,2 3 . Finally, observe that the latter estimate leads us to

Case {ξ 1 ξ 2 < 0 and µ 1 µ 2 < 0} : Let us denote by R 1,3 3 the integration domain R 1 3 restricted to the additional constraint {ξ 1 ξ 2 < 0 and µ 1 µ 2 < 0}, and by I 1, 3 3 the corresponding restriction of I 1 3 to the integration domain R 1,3 3 . Now we claim that, due to frequency localization, along with the fact that H min ∼ H max we infer that, there exists a sufficiently small constant 0 < γ 1 such that

for all (ξ 1 , µ 1 , ξ 2 , µ 2 ) ∈ R 1,3 1 . In fact, by contradiction, if the latter inequality does not hold for any γ ∈ (0, 10 -4 ), then Lemma 5.3.2 with f (δ) = 10 -4 would imply that

However, this contradicts the fact that H min ∼ H max , and hence inequality (5.3.14) holds. Thus, we can now proceed as for estimate (5.3.12), performing the change of variables (ξ 1 , µ 1 , ξ 2 , µ 2 ) := (ξ 1 + ξ 2 , µ 1 + µ 2 , ξ 2 , µ 2 ). In fact, it is enough to notice that, from (5.3.14) we get that

Then, following the same arguments as in the proof of (5.3.12) we are lead to

which concludes the proof for I 1,3 3 . Therefore, gathering the above three cases we conclude the estimate for I 1 3 . As we mentioned before, notice that I 2 3 and I 3 3 can be bounded in the exact same fashion, and hence it only remains to control I 4 3 .

Contribution of I 4

3 : In this case we take advantage of the improved Strichartz estimates derived in Proposition 5.2.13. In fact, it is not difficult to see that, as a direct consequence of this corollary we have that, if supp f ⊆ D N,H,L , then

Now, without loss of generality let us assume that (ξ 1 , µ 1 ), (ξ 2 , µ 2 ) ∈ R 2 \ A δ . Then, notice that Hölder inequality along with Plancharel identity lead us to

Therefore, by plugging estimate (5.3.15) into the right-hand side of the latter inequality we conclude that

which is an acceptable estimate since N

min . The proof is complete.

To finish this subsection we restate the previous lemma in a form that is suitable for the bilinear estimates in the next section.

Corollary 5.3.3. For i = 1, 2, 3, let N i , H i , L i ∈ D and assume that f i : R 3 → R + are L 2 (R 3 ) functions supported in D ∞,H i ,L i . Then, the following inequality holds

(5.3.16)

Moreover, we have the following cases :

1. Assume that H min H max . If there exists i ∈ {1, 2, 3} such that (H i , L i ) = (H min , L max ), then it follows that

(5.3.17)

Otherwise, we have that

(5.3.18)

2. Assume that H min ∼ H max , and suppose additionally that f i are supported in D N i ,H i ,L i for i = 1, 2, 3. Then, the following bound holds

Démonstration. The proof follows directly from Lemma 5.3.1 by using a duality argument.

Short time bilinear estimates

The main results of this section are the following bilinear estimates in the F s β (T ) spaces. Note that, in the classical case, namely Ψ ≡ 0, to overcome the high-low frequency interaction problem, the "optimal" choice of β would be β 0 = 0 (we do not need to chop the time interval in this case). It is worth to notice that the method for β 0 = 0 corresponds to a fixed point argument in classical Bourgain spaces. However, due to the presence of Ψ, we shall need to fix β = 1/2 ≥ β 0 to control terms of the form P H ∂ x (P ∼H u • P H Ψ) F s β (T ) . The price to pay for this "non optimal" choice of β is not being able to go beyond the energy space H 1 (R 2 ) in our local well-posedness theorem, while in the classical case (without the background function Ψ), by choosing β = 0, the present method would allow us to obtain LWP in H 1/2 + (R 2 ).

Since β = 1/2 is fixed now, in the rest of the paper we denote F s β (T ), N s β (t), F s β , N s β , F H,β and N H,β simply by F s (T ), N s (t), F s , N s , F H and N H respectively. The main results of this section are the following bilinear estimates at the H s and L 2 level. We refer to [START_REF] Kenig | Well-posedness for the fifth-order KdV equation in the energy space[END_REF][START_REF] Ribaud | Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation[END_REF] for similar bilinear estimates in different contexts.

Proposition 5.4.1. Let s ≥ 1 and T ∈ (0, 1] both be fixed. Then, the following holds

Moreover, for any s > 0, if u ∈ F 0 (T ) and v ∈ F s (T ), then it holds that

In order to prove the above proposition, we split the analysis into several technical lemmas.

Then, the following inequality holds

5.5 Energy estimates

A priori estimates for solutions

The main goal of this section is to prove the following key energy estimate for smooth solutions of (5.1.5). We recall that, due to the linear estimate (5.2.20), we need to control the B s (T )norm of a solution u(t) to equation (5.1.5), solely as a function of u 0 E s and u F s (T ) . Moreover, recall also that, due to the short-time bilinear estimates derived in the last section, we need to work with β = 1/2 in the definition of the spaces F s β , F s β (T ) and F H,β , and hence we shall omit the index β to simplify the notation. Proposition 5.5.1. Let T ∈ (0, 1] and assume that s ≥ 1.

) to be a smooth solution of the IVP (5.1.5). Then,

In order to prove the previous proposition, we first show the following technical lemma, which is a consequence of Lemma 5.3.1.

Lemma 5.5.2. Let s ∈ [1, 2) and T ∈ (0, 1] be fixed. Consider N i , H i ∈ D and suppose that u i ∈ F H i for i = 1, 2, 3. Then the following holds :

Démonstration. First of all, without loss of generality we can always assume that

Notice that due to frequency localization and the previous inequalities we must also have that H 2 ∼ H 3 . We seek now to prove estimate (5.5.2). Let γ : R → [0, 1] be a smooth function supported on [-1, 1] with the following property

Then, from the above property it follows that

Now observe that the right-hand side of the above inequality can be split into the following two disjoints sets

Then, we split the problem into two cases, the case where the summation domain is given by A or B. The former case follows exactly the same lines as above, using estimate (5.3.6) instead of (5.3.4) and (5.3.5) as before, from where we obtain

However, the latter case m ∈ B is slightly more complicated since we cannot directly sum in L max due to the fact that estimate (5.3.6) has the factor L

max in the right-hand side. Instead, in this case we interpolate inequality (5.3.3) with (5.3.6) to obtain

for ε ∈ (0, 1). This is enough to sum over L max and L med following the same ideas as before. Therefore, in this case we have that

which is compatible with (5.5.3). The proof is complete.

The following lemma allow us to treat the case where one of the functions belongs to L ∞ (R 3 ).

Lemma 5.5.3. Let H i ∈ D be a dyadic number, for i = 1, 2, 3, satisfying that

) such that the Fourier transform of each of them is supported on ∆ H i , respectively. Let H ∈ D fixed and set the functional I as follows

where the symbol a(ξ 1 , µ 1 , ..., ξ 3 , µ 3 ) stands for the function

(5.5.5)

Then, the following holds

Démonstration. In fact, notice that, except for the terms associated with i = 1, 2 in the definition of a(ξ 1 , µ 1 , ..., ξ k+1 , µ k+1 ), the proof follows directly from Plancherel Theorem and Hölder inequality. Indeed, going back to physical variables, and then using Hölder and Bernstein inequalities, we obtain that ˆΓk+1 ψ 2 H (ξ 3 , µ 3 )ξ 3 û1 (ξ 1 , µ 1 )...û k+1 (ξ k+1 , µ k+1 )dΓ k+1

where η 0,r (•) := η 0 (•/r). Therefore, we have the following identity

Hence, by plugging the latter identity into the definition of the X H norm in (5.2.3), we infer that the right-hand side of (5.6.14) is equal to

. Now, observe that for any a ∈ R and any r ∈ [ 1 2 , 2] we have that

Thus, we infer from the latter inequality that, for each H ∈ D fixed, it holds that

.

On the other hand, by using the Mean Value Theorem in the r variable we infer that

provided that r ∈ [ 3 4 , 5 4 ], which in turn trivially implies that

Therefore, gathering the above estimates we conclude that

where φ is a continuous function defined in a neighborhood of 1, satisfying that φ(1) = 1. Finally, in order to treat the η 0,r appearing on the right-hand side of the latter inequality, we proceed similarly fashion as before. Indeed, by using the Fundamental Theorem of Calculus we get that

where θ s (t) := tη 0 (st). On the other hand, it is not difficult to see that, on the support of the latter integral above, the following holds

Hence, plugging the latter identities into (5.6.15) and then using Minkowski inequality along with Lemma 5.2.5 yields us to

where φ is a continuous function defined in a neighborhood of 1, satisfying that φ(1) = 1. Now notice that, proceeding similarly as before, using the Mean Value Theorem, we get that

for r ∈ [3/4, 5/4]. Thus, gathering the last two inequalities we obtain that P H D 1/r f r N H (5.6.16)

The first term in the right-hand side of the latter inequality is compatible with our claim. In order to deal with the second term, it is enough to notice that

and that, via a trivial change of variables, we have that

Therefore, from the above observations along with Minkowski inequality and an application of Lemma 5.2.5 we conclude that sup

(5.6.17)

Similarly, to deal with the third term in (5.6.16), it is enough to notice that

Existence

Let s ∈ [1, 2] be fixed and consider u 0 ∈ H s (R 2 ). By using a scaling argument as before, without loss of generality we can assume that u 0 ∈ B s (δ) and

We seek to use the Bona-Smith argument (c.f. [START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF]) to obtain the existence of a solution u(t) emanating from the initial data u 0 . We shall follow the proofs in [START_REF] Kenig | Well-posedness for the fifth-order KdV equation in the energy space[END_REF][START_REF] Ribaud | Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation[END_REF]. Before getting into the details, let us set a function ρ ∈ S(R 2 ) satisfying that ˆρ(x, y)dxdy = 1 and ˆxi y j ρ(x, y)dxdy = 0, for 0 ≤ i ≤ [s] + 1 and 0 ≤ j ≤ [s] + 1, with i + j ≥ 1. Moreover, from now on we denote by ρ λ the function given by ρ λ (x, y) := λ -2 ρ(x/λ, y/λ). We shall need the following technical lemma as well, whose proof can be found in [START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF][START_REF] Kato | On nonstationary flows of viscous and ideal fluids in L p s (R 2 )[END_REF].

Lemma 5.6.5. Let s ≥ 0, φ ∈ H s (R 2 ), and for any λ > 0, set φ λ := ρ λ * φ. Then, it holds that

and

With this lemma in hand, now we regularize the initial data. More specifically, we consider u 0,λ := ρ λ * u 0 . Then, since u 0,λ ∈ H ∞ (R 2 ) for all λ > 0, Theorem 5.6.1 provide us the existence of a positive time T λ and a unique solution

to equation (5.1.5) satisfying that u λ (0, •, •) = u 0,λ . We observe that, from Young convolution inequality, we have that u 0,λ H s ≤ u 0 H s ≤ δ. It follows then, from the proof of Proposition 5.6.2 and estimate (5.6.27) that the sequence of solutions {u λ } can be extended to the whole time interval [-1, 1]. Moreover, we have that

for all λ > 0. Then, we infer from (5.6.22) and (5.6.28) that, for any λ ∈ (0, λ) it holds that

(5.6.30)

On the other hand, from the linear estimate (5.2.20), the L 2 -bilinear estimates (5.4.1) and (5.4.14), along with the energy estimate (5.5.22) and (5.6.29), choosing δ small enough, we infer that

since s ≥ 1. Thus, combining (5.6.28), (5.6.29) and (5.6.30) with the latter estimate, we get that

Γ s 1 (u λ -u λ ) → 0 as λ → 0.

(5.6.31)

Therefore, we conclude that the sequence {u λ } converges in the Γ s 1 -norm to a solution u(t) of (5.1.5) in the class C([-T, T ], H s (R 2 )) ∩ F s (T ) ∩ B s (T ). The proof is complete.

Continuity of the flow map

Let s ∈ [1, 2] and u 0 ∈ H s (R 2 ) both be fixed. In the same fashion as in the previous subsections, by a scaling argument, without loss of generality we can assume that u 0 ∈ B s (δ) and Ψ L ∞

for δ > 0 sufficiently small. Then, the solution u(t) emanating from u 0 is defined on the whole time interval [-1, 1] and belongs to the class u ∈ C([-1, 1], H s (R 2 )). Now, let ε ∈ (0, 1) fixed. Thus, it suffices to prove that, for any initial data v 0 ∈ B s (δ) such that u 0 -v 0 H s ≤ ˜ , with ˜ = ˜ (ε) > 0 small enough to be fixed, the solution v ∈ C([-1, 1], H s (R 2 )) emanating from v 0 satisfies that

(5.6.32)

Next, as in the previous subsection, we regularize the initial datum u 0 and v 0 by defining u 0,λ = ρ λ * u 0 and v 0,λ = ρ λ * v 0 , for λ > 0, and consider the associated smooth solutions u λ , v λ ∈ C([-1, 1], H σ (R 2 )) with σ ∈ (2, 3 + 1 2 ε ). Then, from the triangle inequality it follows that

(5.6.33)

Now notice that, from (5.6.31) it follows that we can choose λ * > 0 sufficiently small such that u -u λ * L ∞ Therefore, by using the continuity result of the flow map for regular initial data (see Theorem 5.6.1), we obtain the existence of an ˜ > 0 small enough such that

3 ε. Thus, gathering the above estimates we conclude the proof.

Global well-posedness

In this section we seek to prove the global well-posedness Theorem 5.1.2. We emphasize once again that, due to the presence of Ψ(t, x, y), equation (5.1.5) has no evident well-defined conservation laws. However, a slight modification of the energy functional along with Grönwall inequality shall be enough to conclude the proof of our GWP Theorem 5.1.2. Our first lemma states that the L 2 -norm of the solution can grows at most exponentially fast in time. where C Ψ > 0 is a positive constants that only depends on Ψ, while C u 0 ,Ψ > 0 depends on Ψ and u 0 L 2 .