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Abstract

F ifth Generation (5G) is envisioned by Telecom operators as the next mobile net-

work generation which brings solutions to massive customers who are more and

more demanding for both cost-efficient services as well as high satisfaction. Machine
to machine (M2M) communication is an important component of the future 5G, which
enables the ubiquitous connectivity between a myriad of machines without or with lim-
ited human intervention. Thus, the autonomous connection of devices facilitates the
emergence of a wide range of intelligent M2M applications. These latter have exhibited
a strong potential to improve human life in different fields such as eHealth, smart grids,
smart home/cities, intelligent transportation and surveillance, enabling partially the in-
ternet of things (IoT). By 2020, the number of connected devices is expected to reach
50 billions. To meet these huge demands, the network autonomic mechanisms, named
as “Autonomic Networking”, are considered as good candidates to provide intelligent
networking solutions for M2M communication in 5G networks. The objective of this
thesis is to improve the self-organization and autonomic networking approaches with
the integration of machine learning and data analytics for M2M communication. This
approach based on machine learning and data analysis will be used to customize the

QoS for users through the customization of Autonomic Networking.






Résumé

I a cinquieme génération (5G) est envisagée par les opérateurs de télécommunica-

tions comme la prochaine génération de réseaux mobiles qui apporte des solutions

a des clients massifs qui sont de plus en plus exigeants a la fois pour des services rentables
et pour une grande satisfaction. La communication de machine a machine (M2M) est un
élément important de la future 5G, qui permet la connectivité omniprésente entre une
myriade de machines sans ou avec une intervention humaine limitée. Ainsi, la connexion
autonome des appareils facilite ’émergence d’une large gamme d’applications M2M in-
telligentes. Ces derniers ont montré un fort potentiel pour améliorer la vie humaine dans
différents domaines tels que la cybersanté, les réseaux intelligents, la maison/Les villes
intelligentes, les transports intelligents et la surveillance, permettant 'Internet des objets
(IoT). D’ici 2020, le nombre d’appareils connectés devrait atteindre 50 milliards. Pour
répondre a ces énormes demandes, les mécanismes autonomes de réseau, appelés « Auto-
nomic Networking», sont considérés comme de bons candidats pour fournir des solutions
de réseau intelligentes pour la communication M2M dans les réseaux 5G. L’objectif de
cette these est d’améliorer les approches d’auto-organisation et de réseautage autonome
avec I'intégration de 'apprentissage automatique et de ’analyse de données pour la com-
munication M2M. Cette approche basée sur 'apprentissage automatique et ’analyse des
données sera utilisée pour personnaliser la qualité de service (QdS) pour les utilisateurs

grace a la personnalisation du réseau autonome.
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Introduction Générale

g. vee le développement des réscaux sans fil de cinquieme génération (5G), on
s’attend d’ici 2022 a voir s’établir une connexion efficace entre les humains et

les machines afin de garantir la flexibilité nécessaire pour gérer des réseaux avec des
besoins en qualité de service hétérogenes. Actuellement, les opérateurs font face a divers
défis et challenges lors du déploiement des communications IoT a travers les réseaux
existants. Inévitablement, 'augmentation du nombre de dispositifs IoT connectés pose
des problemes de charge et de congestion et auront un impact important sur les systemes
de communication sans fil. Les dispositifs IoT nécessitent principalement une batterie
de longue durée de vie, une portée étendue, une capacité plus grande pour prendre en
charge des millions de dispositifs avec un cofit de déploiement faible. Pour répondre a
ces caractéristiques, plusieurs technologies ont été proposées et développées pour assurer

la meilleure efficacité des réseaux étendus a faible consommation énergétique (LPWAN).

L’objectif du chapitre I est de présenter les technologies LPWAN existant actuelle-
ment. Une partie de ces technologies fonctionne dans un spectre de fréquences libre
LoRa et Sigfox. Nous avons commencé par évaluer la performance deces technologies en
se basant sur des études de littératures. En se basant sur cette evaluation, nous avons
choisi exploiter la technology LoRaWAN qui supporte un réseau IoT plus condensé (des
milliers de dispositifs IoT peuvent étre simulés dans une seule cellule). LoRa commence
a étre de plus en plus répandu vu son accessibilité basée sur un code source ouvert con-
trairement a Sigfox qui est plutét une technologie propriétaire. Ensuite, nous mettons
I’accent sur les derniers travaux de recherche visant a optimiser les communications IoT
et la gestion des ressources a ’aide des nouvelles technologies qui assurent la virtuali-
sation et la programmabilité des réseaux IoT. Cependant, en partant de 1’état de lart,
il y a eu peu de travaux de recherche qui se sont focalisés sur la QdS des communica-
tions IoT en termes de respect des délais critiques, de garantie d’un certain débit, et
d’un taux de réception des paquets élevé. Ces différents réseaux logiques sont appelés
des slices du réseau dont chaque slice correspond & un réseau virtuel de bout en bout

entre un noeud IoT et un service réseau en s’appuyant sur la méme infrastructure réseau
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physique. Etant donné que le nombre de périphériques IoT connectés augmente rapi-
dement avec le temps, une solution efficace pour garantir la qualité de service consiste
a apporter de la flexibilité et une virtualisation des réseaux IoT & l'aide de SDN et du
découpage en slices. Cette QdS sera garantie en favorisant les communications urgentes,
et une gestion flexible du réseau divisé en plusieurs réseaux virtuels configurés et gérés
séparément. Pour chaque slice, une partie des ressources physiques est réservée de bout
en bout sur toutes les couches (acces réseau, cocur et cloud) pour répondre aux besoins
QdS des applications urgentes et fiables. Meanwhile, dans ce chapitre, nous mettons
laccent sur l'intelligence artificielle et I'industrie de IoT, et leur combinaison qui vise
a améliorer la mise en réseaux et a augmenter la fiabilité tout en augmentant la QdS.
Dans cette theése, afin de pouvoir garantir cette QdS pour les communications IoT, nous

devrons d’abord répondre aux questions suivantes::

Comment affecter les noeuds IoT aux slices et comment classifier ces slices dans le

réseau 7

o Comment réserver les ressources physiques de réseau pour chaque slice et a I'intérieur

de chaque slice, comment assurer une allocation optimisée des canaux ?

e Quels sont les parametres qui impactent la QdS de chaque dispositif connecté et
comment optimiser la configuration sans augmenter la complexité du réseau et

sans impacter sa performance ?

e Les architectures centralisées actuelle sera-elle capable de supporter I'utilisation a
grande échelle des communications, et comment pourra t-elle suivre les avancées a

venir 7

Dans le chapitre II, le découpage du réseau est implémenté et son efficacité est étudiée
sur diverses stratégies de découpage. La premiere étape consiste a associer et a détacher
un nceeud IoT d’une tranche de réseau pendant chaque intervalle de temps. Nous pro-
posons de réaliser dynamiquement ce mécanisme avec une méthode basée sur I’algorithme
OGMMC qui regroupe les nceuds en fonction du taux d’urgence calculé comme le rapport
entre le délai de paquet instantané et le seuil de délai maximum a ne pas dépasser.

Le résultat de cette premiére partie est un groupe de nceuds associés aux tranches de
réseau virtuel. La deuxiéme étape consiste a trouver une stratégie optimale de réservation
de ressources qui réserve des canaux physiques sur chaque passerelle en supposant que
le SDN a une vue globale du réseau et des besoins de chaque nceud en termes de débit.
Ici, deux stratégies de découpage dynamique sont proposées basées sur la descente de
gradient de mini-batch (MBGD) basée sur l'erreur quadratique moyenne (MSE) qui
s’adaptent dynamiquement aux exigences de débit de chaque membre de tranche. Apres
cela, la troisieme et derniere étape consiste a allouer des ressources de canal & 'intérieur

de chaque tranche virtuelle en classant les appareils IoT en fonction de la valeur d’utilité
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calculée en fonction de I'urgence du retard et du taux de congestion. Enfin, le serveur
alloue chaque périphérique au canal fournissant la valeur d’utilité la plus élevée (Max-
Utility). Les résultats ont montré 'utilité de l'isolation du réseau virtuel pour éviter la
dégradation des performances du réseau due au nombre croissant d’appareils loT dans
une tranche plutoét qu’une autre.

Bien que le découpage du réseau améliore les résultats de la qualité de service, il est
encore possible d’améliorer les résultats de fiabilité des tranches de réseau. Cependant,
la nature de ’acces aléatoire dans le réseau IoT incite a optimiser le découpage du réseau
avec une configuration de parametres basée sur des tranches qui traite chaque tranche
virtuelle différemment sans considérer tous les appareils IoT comme des appareils ap-
partenant au méme réseau LoRa. L’objectif du Chapitre III est d’améliorer la qualité
de service des appareils IoT et de limiter les interférences et les collisions dans chaque
réseau virtuel LoRa. Ce chapitre prolonge les contributions précédentes en évaluant en
profondeur diverses stratégies de découpage dans des scénarios industriels 4.0 réalistes
a grande échelle.

Plus précisément, une comparaison sera faite entre I'estimation dynamique et les al-
gorithmes basés sur la prédiction. Le premier considere de descente de gradient en
mini-lot (MBGD) pour la prédiction dynamique et le second est basé sur I’algorithme
I'estimation du maximum de vraisemblance (MLE). Nous incluons la QoS dans la méth-
ode d’optimisation multi-objectifs LoRa, qui était auparavant considérée comme une
technologie au meilleur effort, dans le but de tester la flexibilité que le découpage de
réseau offre en termes de gestion du trafic et d’intégration de QoS. Ensuite, nous ap-
pliquons la meilleure stratégie de découpage trouvée dans le chapitre 7?7, ou la bande
passante est efficacement réservée sur chaque LoRa GW séparément en fonction de la
prédiction MBGD.

Le but ici est d’éviter la famine des canaux tout en considérant dynamiquement le be-
soin exact de chaque tranche en commencant par celle avec la priorité de découpage la
plus élevée. Cette stratégie sera ensuite comparée au schéma MLE. Nous adaptons le
TOPG comme un schéma d’optimisation de découpage basé sur la technique pour I'ordre
de préférence par similarité a solution idéale (TOPSIS) et la méthode de la moyenne
géométrique (GMM). La méthode proposée configure efficacement les parametres LoRa
SF et TP et améliore les performances de chaque tranche en termes de QoS, de fiabil-
ité et de consommation d’énergie. Ce dernier prend en compte les exigences de QoS
de chaque appareil et configure ses parameétres en conséquence. Dans chaque tranche,
I’algorithme recherche la combinaison optimale des configurations SF et TP pour chaque
périphérique LoRa au lieu d’utiliser le mécanisme ADR qui force la configuration d’un
neeud par 'une des distributions répertorié dans Table. 1.3. La configuration choisie
pour un appareil évite les interférences et augmente la probabilité de réussir & recevoir
et a décoder le paquet au niveau de la passerelle tout en prenant en compte les autres

paquets regus simultanément.
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Les résultats montrent une amélioration majeure en termes de qualité de service et de
consommation d’énergie cependant, il est prévu que le nombre d’appareils augmentera
avec le temps et dépassera la capacité maximale qui peut actuellement étre prise en
charge par une passerelle qui, a son tour, augmentera le taux de perte de paquets dans
différentes tranches de réseau. Ce défi nous a motivés a chercher une réponse et a trou-
ver une solution pour relever les défis d’évolutivité et garantir la qualité de service et

Pefficacité énergétique des appareils ToT.

Malgré 'amélioration des résultats obtenus grace aux contributions précédentes et
sachant que plus de 30 milliards d’appareils IoT sont estimés étre connectés dans les
réseaux loT de la future génération d’ici 2022, I’évolutivité est restée un défi important
pour les réseaux IoT de nouvelle génération. Dans un scénario de découpage de réseau
LoRa, ’architecture centralisée actuelle de ’état de ’art ne sera pas en mesure de relever
les défis de la gestion des ressources réseau a venir dans les futurs déploiements IoT a
grande échelle. Par conséquent, dans le Chapitre IV, nous proposons une architecture
basée sur SDN fédéré (DFQL) qui répond aux défis d’évolutivité en traitant les données
et la prise de décision aux multi-agents LoRa (MAQL) (basés sur l'apprentissage par
renforcement) & la périphérie du réseau. Le role de découpage de la prise de décision
et de la configuration du réseau est mis a profit & la passerelle qui définit la stratégie
de découpage et les ressources locales qui doivent étre réservées apres une phase de
fédération avec les autres passerelles proches (agents) via 'orchestrateur fédéré global.
En se rapprochant de la périphérie du réseau, la combinaison du découpage du réseau
avec les avantages du SDN, l'outil de fédération et la technique d’apprentissage par
renforcement améliore la fiabilité des communications dans un réseau a grande échelle
grace a son adaptation rapide aux changements dans un environnement IoT industriel

encombré.
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General Introduction

W ith the development of fifth-generation wireless networks (5G), it is expected

by 2022 to see an efficient connection between humans and machines to en-

sure the flexibility needed to manage networks. with heterogeneous quality of service
needs. Currently, operators face various challenges and challenges when deploying IoT
communications across existing networks. Inevitably, the increase in the number of
connected IoT devices poses load and congestion issues and will have a big impact on
wireless communication systems. IoT devices mainly require long battery life, extended
range, the larger capacity to support millions of devices with low deployment cost. To
meet these characteristics, several technologies have been proposed and developed to en-

sure the best efficiency of wide-area networks with low energy consumption (LPWAN).

The objective of chapter I is to present the LPWAN technologies currently existing.
Some of these technologies operate in a free LoRa and Sigfox frequency spectrum. We
started by evaluating the performance of these technologies based on literature stud-
ies. Based on this evaluation, we have chosen to exploit LoRaWAN technology which
supports a more condensed IoT network (thousands of IoT devices can be simulated in
a single cell). LoRa is starting to be more and more widespread given its accessibility
based on open source code, unlike Sigfox which is rather a proprietary technology. Next,
we focus on the latest research aimed at optimizing IoT communications and resource
management using new technologies that provide virtualization and programmability of

IoT networks.
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However, starting from the state of the art, there has been little research that has
focused on the QoS of IoT communications in terms of meeting critical deadlines, en-
suring a certain throughput, and a high packet reception rate. These different logical
networks are called network slices, each slice of which corresponds to an end-to-end vir-
tual network between an IoT node and a network service relying on the same physical
network infrastructure. Since the number of connected loT devices grows rapidly over
time, an effective solution to ensure the QoS is to provide flexibility and virtualization
of IoT networks using SDN and slicing.

The QoS will be guaranteed by promoting urgent communications, and flexible man-
agement of the network divided into several virtual networks configured and modified
separately. For each slice, part of the physical resources is reserved from end to end
on all layers (network access, core, and cloud) to meet the QoS needs of urgent and
reliable applications. Meanwhile, in this chapter, we focus on artificial intelligence and
the IoT industry, and their combination which aims to improve networking and increase
reliability while increasing QoS. In this thesis, in order to be able to guarantee this QoS

for IoT communications, we will first have to answer the following questions:

e How to assign IoT nodes to slices and how to classify these slices in the network?

o How to reserve the physical network resources for each slice and inside each slice,

how to ensure an optimized allocation of the channels?

e What are the parameters that impact the QoS of each connected device and how
to optimize the configuration without increasing the complexity of the network

and without impacting its performance?

o Will the current centralized architectures are able to support the large-scale use of

communications, and how will it be able to keep up with future advances?

In Chapter II, network slicing is implemented and its efficiency is investigated over
various slicing strategies. The first step involves associating and detaching an IoT node

from a network slice during each time interval. We propose to dynamically realize this

XX
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mechanism with a method based on OGMMC algorithm which groups the nodes based
on the urgency rate computed as the ratio between the instantaneous packet delay and
the maximum delay threshold that should not be exceeded.

The result of this first part is a group of nodes associated with the virtual network
slices. The second step is to find an optimal resource reservation strategy which reserves
physical channels on each gateways assuming that SDN has a global view of the network
and the need of each node in terms of throughput. Here, two dynamic slicing strategy
are proposed based on Mini-Batch Gradient Descent (MBGD) based on Mean Square
Error (MSE) which dynamically adapt to throughput requirements of each slice mem-
bers. After that, the third and final step is to allocate channel resources inside each
virtual slice by classifying IoT devices according to the utility value computed based
on delay urgency and congestion rate. Finally, the server allocates each device to the
channel providing the highest utility value (Max-Utility). Results have shown the utility
of virtual network isolation to avoid network performance degradation that comes from

the increasing number of IoT devices in a slice over another.

Although network slicing improved QoS results, there was still a room for improving
reliability results in network slices. However, the random-based access nature in IoT
network gives the motivation to optimize network slicing with a slice-based parameter
configuration that treats each virtual slice differently without considering all IoT devices
as devices belonging to the same LoRa network. The goal behind in Chapter III, is to
improve QoS of IoT devices and limit interference and collisions in each LoRa virtual
network. This chapter extends the previous contributions by in-depth evaluating var-
ious slicing strategies in large scale realistic industry 4.0 scenarios. More precisely, a
comparison will be made between the dynamic prediction, and estimation-based algo-
rithms. The former considers Maximum Likelihood Estimation ( MLE) and the latter
is based on Mini-batch Gradient Descent (MBGD) algorithm. We include QoS in LoRa
multi-objective optimization method, which was previously considered as a best-effort
technology, with the goal to test the flexibility that network slicing provides in terms of

traffic management and QoS integration. Then, we apply the best slicing strategy found
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in Chapter II, where the bandwidth is efficiently reserved on each LoRa GW separately
based on MBGD prediction. The goal here is to avoid channels starvation while con-
sidering dynamically the exact need of each slice starting by the one with the highest
slicing priority. This, strategy will be after compared to the MLE scheme. We adapt
the TOPG as a slicing optimization scheme based on Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) and Geometric Mean Method (GMM). The
proposed method efficiently configures LoRa SF and TP parameters and improves the
performance of each slice in terms of QoS, reliability and energy consumption. The
latter takes into account QoS requirements of each device and configures its parameters
accordingly. In each slice, the algorithm searches for the optimal combination of SF and
TP configuration for each LoRa device instead of using the ADR mechanism which forces
the configuration of a node by one of the distributions listed in Table. I.3. The chosen
configuration for a device avoids interference and increases the probability of successfully
receiving and decoding the packet at the gateway while taking into consideration the
other packets received simultaneously.

The results show a major improvement in terms of QoS and energy consumption
however, it is expected that the number of devices will increase over time and will ex-
ceed the maximum capacity that can be currently supported by a gateway which will,
in turn, increase the rate of loss of packets in different network slice. This challenge
motivated us to look for an answer and find a solution to meet scalability challenges and

guarantee QoS and energy efficiency for LoRa devices.

Despite the improvement achieved in the results obtained using previous contribu-
tions and knowing that more than 30 billion IoT devices are estimated to be connected
in future generation IoT networks by 2022, scalability remained an important challenge
for next generation IoT networks. In a LoRa network slicing scenario, the current cen-
tralized architecture of the state of the art will not be able to handle the challenges
of network resource management coming ahead in large scale future IoT deployments.
Therefore, in Chapter IV, we propose a Federated SDN-based (DFQL) architecture that

addresses scalability challenges by processing data and decision-making to the multi

xxii



General Introduction

LoRa agents (MAQL) (based on reinforcement learning) at the edge of the network.
The role of slicing decision making and network configuration is leveraged to the gate-
way which defines the slicing strategy and the local resources that must be reserved after
a federation phase with the other nearby gateways (agents) via the global federated or-
chestrator. By getting closer to the network edge, combining network slicing with SDN
advantages, federation tool, and Reinforcement learning technique improve the reliabil-
ity of communications in a large scale network due its rapid adaptation to changes in a

crowded Industrial IoT environment.
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1.1 Introduction

F or the last couple of years, operators needed to address various challenges and

complexities in deploying IoT communications within legacy networks. In-

evitably, the expected increase in the number of IoT devices causes saturation problems
and will have a large impact on current wireless communication systems. loT devices
mainly require long battery life, extended coverage, larger capacity to support billions of
devices with low device and deployment cost. Driven from these requirements, various
technologies appeared as potential solutions for IoT network deployment. These tech-
nologies are combined with artificial intelligence (AI) tools to overcome challenges and
exploiting them to support this technological outbreak which will be one of the most
crucial tasks of modern world. In the recent years, the development of Al led to the
emergence of Machine Learning (ML) which has become the key enabler to figure out
solutions and learning models in an attempt to enhance the QoS parameters of IoT.
The purpose of this chapter is to introduce the most emerging technologies nowadays
for low power wide area networks LPWAN and Sigfox. We especially focus on the lat-
est research efforts that optimized IoT communications and resource management using

emerging technologies that provides virtualization and network softwarization. Mean-
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while, we introduce the recent advancements in machine learning models and categories.
After that, we shed light on the forth industrial revolution and the Industrial IoT. Fi-

nally, we summarizes the critical issues in IoT based on machine learning.

1.2 Communication Technologies

Using its low-cost access to the airwaves, tech innovators took advantage of the unlicensed
spectrum to propose promising technologies to support IoT communications. In this
section, the focus will be on SigFox and LoRaWAN (Unlicensed technologies) technical

overview and their performance in real IoT scenarios.

I.2.1 Sigfox

Sigfox [117] is an ultra narrow-band (UNB) Differential Binary Phase Shift Keying
(DBPSK) modulation technology operating on a very small channel bandwidth i.e, 100
Hz in Europe (on a band between 868 and 868.2 MHz) and 600 Hz in USA (on a band
between 902 and 928 MHz). Sigfox uses 192KHz of the publicly available band by send-
ing 3 messages using a random frequency to exchange messages over the air. For every
transmission, a Sigfox device randomly uses one of the multiple channels available in
a bandwidth with a packet duration that goes up to 2 ms [95]. This small bandwidth
usage in Sigfox provides the opportunity to concentrate the energy in a very small chan-
nel making it very robust against interference. IoT devices transmit short messages in
uplink as well as downlink with a throughput that varies between 100 to 600 bits per
second depending on the region.

The architecture of Sigfox network is illustrated in Figure I.1. It adopts a star
topology where IoT devices transmit their messages to the Sigfox network when the
radio signal sent reaches the BS within the range. A message can be received by multiple
BSs deployed by Sigfox network operators which detect, demodulate and report the
messages to the Sigfox Cloud using point-to-point (P2P) links. The Sigfox cloud then
pushes the messages to many customer servers and IT platforms. The time on air

of a packet is 6 seconds [124] where 6 messages can be transmitted per hour with a
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Figure. I.1: SigFox architecture [34]

payload of 4, 8, or 12 bytes. However, in this thesis we are looking towards simulating a
larger variety of applications with higher throughput requirements than the one provided
by Sigfox. In addition, Sigfox protocol is proprietary which prevented scientists from
working on this technology in their research studies. Therefore, we preferred to look
towards the possibility of working in LoRa wide area networks (LoRaWAN) for this

thesis contributions.

1.2.2 LoRaWAN

LoRa is a shortcut name for Long Range and a proprietary spread spectrum physical
layer that derives from Chirp Spread Spectrum (CSS) modulation as described in the
IEEE standard 802.15.4 [51]. CSS modulation transmits symbols by encoding them into
multiple signals of increasing or decreasing radio frequencies making signals more robust
to multi-path interference, Doppler shifts and fading [15]. Moreover, Forward Error Cor-
rection (FEC) and Cyclic Redundancy Check (CRC) techniques are also implemented in
LoRa to improve receiver’s sensitivity and the robustness of communications. Knowing
that LoRa is proprietary and capable of communicating with any other Mediaum Access
Control (MAC) layer, LoRa Alliance defines LoRaWAN MAC as an open source protocol
built on top of LoRa physical layer. The former defines the communication protocol and
system architecture for the network, whereas the latter enables the long-range commu-

nication link. LoRaWAN supports low-power and long-range communications where a
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set of I = {1,2,...,7} IoT devices transmit directly to K = {1,2,...,k} LoRa GWs in a
star of stars topology before forwarding data to a backbone infrastructure. LoRa archi-
tecture is shown in Figure I.2 where low throughput traffic is uploaded by each IoT
device (thing) to the cloud application servers via IP networks. Within the backbone
network, operators servers perform authentication, validation, and forward the packets
to the application servers. The latter connects to the backbone network to receive the

data and send back the packets in downlink via LoRa GWs.

. Factory ..
Automation

, \ o0
A {3 % B
£ o 1

G;teway |
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BELF = <>—€\ —r
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Figure. .2: LoRaWAN architecture (Industrial applications) [15]

IoT communications are bidirectional where each LoRa device ¢ € I is characterized
with specific parameters that needs to be optimized to meet the requirements of each
application in terms of coverage, achieved throughput and energy consumption. In the

following we expound LoRa settings and their impact on network performance:

o Spreading Factor (SF): SF parameter is by definition the logarithm, in base

2, of the number of chips per symbol and impacts the duration of a Lora chip.
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Fach device ¢ adopts specific SF configuration for information transmission. LoRa
spreads each symbol in a rate of 29 chips per symbol with SF = {7,...,12}

resulting a data rate computed as written in Eq. 1.1 below:

Repi .
rie = SF. 2SFp bits/s (L.1)

where R.pip denotes the chip rate and r; . the data rate achieved by a device ¢ on
channel ¢ of LoRa GW m. Depending on the transceiver model, SF configuration
varies from 7 to 12 in a way that higher SF values correspond to more robust
communications but lower data rates whercas lower SF values increase the rate
and reduce the a active time on air. Some research works ([18] and [17]) claim
that SFs are orthogonal to each other, whereas others [31] show that unperfect
orthogonality happens between SFs leading to interference between packets. In
this thesis, interference in LoRaWAN is considered and will be described in more

details later in the interference section below.

o Transmission Delay: Transmission delay parameter d; . denotes the transmission
delay of a packet with a length of L bits uploaded by device i to one of the channels
c that belongs to GW k.

di .= L seconds (L.2)

Tic

o Transmission Power (TP): Transmission power parameter defines the energy
consumed by an IoT device and can be set between -4 and 20 dBm with a step of

1 dB, however in LoRa configuration, TP values vary between 2 and 14 dBm.

o Carrier Frequency (CaF): Three different radio bands are available for Lo-
RaWAN (137-175 MHz, 410-525 MHz and 820-1020 MHz). In this thesis, we
work on European frequency bands where operators work in in the 863-870 MHz
frequency band. Here, specific duty cycles are imposed on IoT devices by the Eu-
ropean frequency regulations where each device transmits on a certain frequency in
a way respected by both GWs and devices. LoRaWAN channels have a duty-cycle

as low as 1% which means that during the last 3600 seconds, a device must never
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have transmitted more than 36 seconds in total.

Table I.1: List of parameters

Spreading Factor | Sensitivity (dBm)
SE7 -130.0
SEF8 -132.5
SE9 -135.0
SF10 -137.5
SF11 -140.0
SF12 -142.5

« Radio Bandwidth (BW): Based on the transceiver model, operators may choose
one of the 10 available bandwidth values that varies from 7.8 kHz to 500 kHz. Eu-
ropean frequency regulations imposes that the bandwidth adopted for each channel
is 125 kHz. Increasing this bandwidth improves the data rate of LoRa device on
the expanse of sensitivity. Moreover, increasing the SF value configured on IoT
device also reduces the transmitted data rate, increases the strength of the signal

and offers a better sensitivity at the GW receiver as shown in Table I.1.

¢ Co-SF and inter-SF Interference: LoRa GWs are unable to decode two pack-
ets if both are received on the same channel with the same SF configuration. This
mechanism leads to packet loss of both packets due to co-SF interference. On the
other hand, inter-SF collisions happen between two packets if they were simulta-
neously received on the same channel with different SFs and are shown to cause
packet loss [31]. Signal to Interference Noise Ratio (SINR) varies based on SF
configuration on each device. The assumptions in [86] are followed where a packet
should survive interference that comes from other LoRa transmissions. Each device

configured with SF = i experiences a SINR value computed based on Eq. 1.3:

pre
INR;; = i I.
5 RZ.’] o? + Zneﬁj P;;T ( 3)

where P/ is the power of the packet ¢ under consideration sent by device with
SF =i, 02 the lognormal shadowing component and P’? the power of one inter-
fering packet n € 0; configured with SF = j. Each element in the Table I.2 [49]

denotes the minimum signal power margin threshold V;;, with ,j € {7,...,12},
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that a packet sent with SF = ¢ must have in order to be decoded successfully over
every interfering packet with SF = j. Hence, packet survives interference with all
interfering packets if, considering all combinations of SF, a higher power margin
value (dB) is satisfied than the corresponding co-channel rejection value. One thing
to note is that values in below matrix are not symmetric because the power needed
to decode a packet is higher when a packet intercepts another one configured with
smaller SF. This is because the smaller SF configuration, the stronger the signal
power. Taking for example SF8 and SF10, a higher power is needed to decode
packets if a packet configured with SF8 intercepts another configured with SF10
(30 dB). However, if the opposite case happened, a smaller power margin value

(22 dB) will be needed to decode the SF8 packet intercepted by SF10 packet.

Table 1.2: Cochannel rejection (dB) for all combinations of spreading factor for the
desired and interferer packets

Desired Pt:crlizzer ft SFp | SFs | SFy | SFo | SFu | Sk
SF; -6 16 18 19 19 20
SFg 24 -6 20 22 22 22
SFy 27 27 -6 23 25 25
SFi 30 30 30 -6 26 28
SFy 33 33 33 33 -6 29
SFio 36 36 36 36 36 -6

e Propagation Loss model: The log-distance propagation loss model is adopted to
evaluate the performance of LoRa devices in a dense environment and is expressed

following to the Eq. 1.4 below:
d
L = LO + 10 . F . log10 (d) (14)
0

where L denotes the path Loss (dB), d the length of the path in meters (m), T
represents the path loss distance exponent, dy the reference distance in meters (m)

and Lo the path loss at reference distance (dB).

o Coding Rate (CR): CR is computed based on Eq. 1.5 in which the redundancy
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of the error correction (EC) code is determined and varies between 1 and 4.

4

CR=1TFc

with EC =1,2,3,4 (L5)

o Adaptive Data Rate (ADR): ADR is a mechanism for optimizing throughput,
energy consumption and time on air (TOA) in LoRaWAN and is generally more
efficient for static devices having stable radio frequency (RF') conditions. Depend-
ing on the conditions of the environment between the IoT device and the GW,
network sever will determine SF and TP values to work on between one of the

combinations shown in Table ITI.2 below. ADR is highly efficient and very ef-

Table 1.3: ADR parameters configurations

Spreading Factor | Transmission Power (dBm)
SE 7 TP 2
SF 8 TP 5
SF 9 TP 8
SF 10 TP 11
SF 11 TP 14
SF 12 TP 14

fective in LoRa parameters configuration to maximize battery lifetime, range and
overall network capacity. LoRa network server can manage the achieved through-
put and the output transmission power used for the communication for each LoRa
device individually. The better the coverage the lower the SF and TP configura-
tion. ADR computes the median SNR value of the last 10 received uplink packets,
compares it against the SNR limit for each SF and decides afterwards the best

configuration.

Multiple research works in the literature evaluated LoRa networks performance [132]
[79] [123]. Other research studies focused on evaluating LoRa scalability [90] while
considering co-SF interference that comes from collisions when using the same SF con-
figuration on the same channel [47] whereas others assumed that SFs on a channel are
perfectly orthogonal [18] [17]. SF represents the ratio between the chirp rate and the
data symbol rate and affects directly the data rate and the range that a LoRa device

can reach away from a LoRaWAN GW. Moreover, co-SF interference directly impacts
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communication reliability, reduces the packet delivery ratio (PDR) successfully decoded
at the GW [32] and limits the scalability of a LoRa network when increasing the num-
ber of devices [129]. Therefore, scalability should be considered in any upcoming study
related to SF configuration strategies and network deployments. Some study examples
focused on finding the optimal transmitter parameter settings that satisfy performance
requirements using a developed link probing regime [16]. In [83], the authors analyze
several SF configuration strategies where a group of LoRa devices can be configured with
similar or heterogeneous SFs based on their position from the GW. The goal is to find
the scheme that gives the best PDR. However, the impact of SF and TP configuration

on network slicing has not been previously tested by the research community.

1.3 Towards enabling programmability in IoT networks

In traditional IoT networks, each equipment requires to be configured separately. This
makes maintaining, configuring and adapting network devices to the changes that hap-
pen in the device, an expensive and time consuming task [14]. To tackle this problem,
Software Defined Networking (SDN) emerged as a promising solution towards enabling
programmability, flexibility and virtualization. Nowadays, including various IoT use
cases in a single network is not straightforward due to their heterogeneous QoS require-
ments. Hence, it is hard for operators to guarantee QoS requirements of each service.
Network slicing (NS) provides for each use case isolated network resources based on its
specific needs. This section defines both SDN and NS paradigms and explores research

works that integrates virtualization in IoT networks.

I1.3.1 Software Defined Networking

SDN is an approach for network management that enables programmability and decou-
ples the data plane from the control plane without one restricting the growth of other.
In a network that requires fast adaptation due to the increasing number of connected
devices, managing these elements becomes complex especially in IoT where each de-

vice may install various IoT applications and settings. To counter this problem, SDN

10



CHAPTER 1. INTERNET OF THINGS (IOTS), MACHINE
LEARNING, AND LOW POWER WIDE AREA NETWORKS
BACKGROUNDS

emerged as new paradigm [107] that brings the ability to dynamically control the network

programmatically through software applications [54].

Application Layer

Network  |g, Network ost
Application Application
1 Northbound Interface
Control Layer i
Control Plane )
( ) Network Services

Southbound Interface
(OpenFlow, ForCES, etc.)

Infrasturcture Layer
(Data Plane)

Figure. I.3: SDN architecture [20]

The network architecture illustrated in Figure I.3 shows how SDN decouples the
control plane from the data plane [14] by moving the control logic into the SDN control
layer. The control plane programmatically control network resources through a logically
abstracted view of the network and expose this view to the application plane where oper-
ators configure IoT applications through northbound application programming interfaces
(API). This facilitates the task for operators to monitor each softwarized network and to
define the forwarding rules based on the traffic and the requirements of devices. Open-
Flow [88], is a multi-vendor protocol which defines the interface between the control
plane and SDN switches to instruct each switch on how to handle incoming data packets
through the southbound API. Hence, the data plane of the network will be only re-
sponsible for monitoring local information, gathering statistic and forwarding the traffic

according to rules received from the centralized controllers.
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1.3.2 Network Slicing

Softwarized and virtualized networks enabled the ability to support heterogeneous ser-
vices running on top of the same physical infrastructure with each having isolated slice
created and managed in an "on demand" manner. Network slicing is an E2E concept
covering all network layers and segments. This means that slicing, performed on access,
core and transport networks, will provide specific hardware requirements (bandwidth,

radio resources, processing power, storage, etc.) across multiple operators [52].

Mobile Broadband /

\l J 5G Network

MI‘-‘-IV( loT X
Automotiv Med

ﬁv

==

Critical loT

Figure. I.4: Network Slicing architecture

By isolating virtual resources with network slicing, various use cases illustrated in
Figure I.4, can be served with specific QoS requirements in terms of urgency, through-
put and reliability, in a way that removes the impact that may come from a slice over
another. However, managing each slice and finding the appropriate amount of resources
that should be allocated to each slice, remains an important challenge due to physical
resources limitation and the various amount of services required in IoT scenarios. If the
requirements for those virtual networks were properly instantiated on physical network
infrastructure through orchestrated SDN and carefully designed, network may consume
more resources than anticipated, becomes slower, unreliable and impacts other network
slices performance. To tackle this challenge, multiple solutions were proposed by the
research community to optimize network management in IoT networks and will be listed

in detail in the following section.
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1.3.3 Network Slicing and SDN integration in IoT

In large scale IoT networks, the cloud-based server should be able to acknowledge more
messages as the number of IoT devices in the network increases. Hence, network flex-
ibility is required and potentially reached using network slicing and SDN to provide
heterogeneous QoS requirements through isolated E2E virtual networks controlled with
SDN to facilitate the task for operators to manage IoT networks. The latter is composed
of multi-networks supporting applications with various QoS requirements in terms of
reliable delivery and minimum delay [139]. Therefore, authors proposed in [101] a multi-
layered IoT architecture involving SDN that is able to cope with various identified IoT
challenges, i.e. designing a system able to cope with numerous use cases, ensuring QoS
for IoT, controlling congestion and avoiding side effects on legacy services. Moreover,
various research works highlighted the efficiency of SDN in IoT networks in terms of
security [42], improving transmission quality [119] and scalability through cloud-based
solutions [121]. In [127], authors proposed a novel IoT network slicing creation system
based on SDN and NFV emerging technologies which provides management flexibility in
a centralized fashion. However, all previous solutions are not effective enough to be de-
ployed in upcoming IoT challenges. Therefore, new slicing strategies should be adopted
to cope with the fast changes in a more congested [oT environment and to create network

slices and allocate physical resources accordingly.

1.3.4 Defining IoT Virtual Slices

In all contributions of this thesis, the first challenge was to propose a classification
of TIoT devices based on which each service will have isolated and virtualized network
resources. Based on the IoT QoS requirements [7] [41], one can note that IoT devices

can be classified into three categories proposed in Table IV.1 below:

Table 1.4: Key QoS Requirements of IIoT Network Slices

Slice Name|Packet Delay Budget (ms)|Reliability |Packet Size|Priority Applications
UCLE 50 1-10~* 24B 1 Emergency action and safeguarding systems
HCLE 100 1-10~4 512B 2 Scale reading applications
LCLE 500 1-1076 250B 3 Delay tolerant, metering
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Ultra high Critical of Latency and Efficiency (UCLE) slice: requires the highest slic-
ing priority due to urgency and reliability requirements of its members. Some examples
of these applications are: surveillance and alarm monitoring. Based on Eq. 1.6, Uycrg
is computed to define the utility for critical communications with wjq and w, the weights
of load and reliability, x,, = SINR; j1./SIN Rpq. the rate of reliability of SINR that a
device i achieves on a flow f; ;1 over the highest flow reliability that can be achieved
through slice j.

UvcrLe = zr(wedr), 2 € {0,1} (1.6)

High Critical of Latency and Efficiency (HCLE) slice: requires lower priority consid-
eration and are less critical in terms of delay. This slice presents a trade-off between

reliability and load, i.e: health sensors and home security systems.

Ubncre = Yrw, + 91qwig (L.7)

Low Critical of Latency and Efficiency (LCLE) slice: requires the lowest priority due to
their non-guaranteed data rate and delay-tolerant QoS requirements, i.e: smart metering
applications.

Urcre = Y1awid (L8)

1.4 The Era of Change: IoT and Machine Learning Trends

in Industry for 2020

The Internet of Things (IoT) continues to solidify its position as one of the defining
technologies of our time and 2020 could prove its most auspicious year yet. That’s be-
cause it promises to be the year when 5G goes mainstream, with all the implications
that for IoT systems that rely on superior connectivity. But there will be more than 5G
to define the upcoming year for the loT. Many trends likely to characterize the IoT’s
development throughout the year. Among these trends we note the sustainability will
lead the conversation and provide help in several contexts as well as the consciousness

of the growing environmental crisis, the merging of IoT, 5G, and Artificial Intelligent
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(AI) technologies will give rise to digital manufacturing, especially the fourth IoT in-
dustrial revolution (IIoT 4.0), and product hyper-customization will follow, Healthcare
will continue to lead the pack, according to the prosper of the “medical IoT”, machine
learning-based predictive maintenance will energize the IIoT, Edge computing’s growth
will make security an acute issue, however, Blockchain-based Al and IoT will offer the
solution, etc.

In this section we provide an overview of the existing machine learning categories

and their applicability in the new generation of IIoT 4.0.

1.4.1 Machine learning categories

The learning activity is essential for the human beings in order to understand and recog-
nize various parameters such as a voice, a person, an object, and others. One generally
distinguishes the learning which consists of memorizing information [12] [114], and the
learning by generalization [131] [102] in which we usually build a model from learning
examples to recognize new examples and scenarios. For the machines, it is easy to handle
a large amount of data but difficult to build a good model which is able to effectively
recognize new objects in a new test. ML is an attempt to understand and reproduce this
learning facility in an artificial system. It therefore seems appropriate to use techniques
from this field to discover and model knowledge and reduce the semantic gap [92]. ML
is at the crossroads of various fields such as artificial intelligence, statistics, cognitive
science, probability theory, optimization, signal and information, and so on [21] [113]
[43]. It is therefore very difficult to give taxonomy of machine learning categories. After
giving some concepts (section II), we briefly present in this section the four main types of
machine learning techniques [33]: Supervised Learning [73], Unsupervised Learning [58],
Semi-supervised Learning [29], and Reinforcement Learning [65]. Table I.5 summarizes
the most basic concepts of each ML category and clarifies the differences between them.

For more details on categories, readers are invited to read the subsections below.
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1.4.2 Future IoT Industry: IIoT 4.0

Due to successive technological advancements, developments, and innovations, the global
industrial landscape has drastically transformed over the last years. The Industry 4.0
aims at transforming traditional industries into intelligent ones by incorporating innova-
tive technologies. It enhances and upgrades the current manufacturing facilities, man-
ages systems and technologies to an intelligent level by utilizing key technologies such as
IoT, Internet of Services (IoT), cyber-physical systems (CPSs), autonomous, flexible and
cooperative robotics, simulations that leverage real-time data and mirror real world into
a virtual model, big data analytics, augmented reality (AR), additive manufacturing,
information and communication technologies (ICT) and advanced networking technolo-
gies. Therefore, industry 4.0 enables physical assets to be integrated into intertwined
digital and physical processes thus creating smart factories and intelligent manufacturing

environments.

Table 1.5: Difference between ML categories

IoT is a rapidly growing technology that has drastically contributed to the Industry
4.0 realization. IoT pursues to pervade our everyday environment and its objects, linking
the physical to the digital world and allowing people and “things” to be connected
anytime, anywhere, with anything and anyone ideally using any network and service.
IoT is regarded as a dynamic and global network of interconnected “things” uniquely
addressable, based on standard and interoperable communication protocols and with
self-configuring capabilities. Despite still being at the early development, adoption, and
implementation stage, Industry 4.0 and IoT can provide a multitude of contemporary
solutions, applications, and services. Hence, they can improve life quality and yield
significant personal, professional, and economic opportunities and benefits in the near
future.

In this context, IToT is defined as a specific category of IoT which focuses on its appli-
cations and use cases in modern industries and intelligent manufacturing. IIoT, which is
used in the context of Industry 4.0, can be considered to be a complex system of diverse
systems and devices. Through the use of appropriate services, networking technologies,

applications, sensors, software, middleware, and storage systems, IloT provides solu-
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ML categories Input/Output Purpose Advantages Drawbacks
Supervised Labeled
Learning Data/Known
Output = Learn More accuracy W More
parameters for 1 Ability to computation
making determine the time in
predictions classes number training phase
B Does not takes
place in real
time
Unsupervised Unlabeled
Learning DatafUnknown
Output « lNustrate the Less B Less accuracy
distribution of complexity W Analysis

Semi-supervised
Learning

Few labeled data+

More unlabeled
data/ Few Known

data without
discriminating
between the
observed
variables and
the variables
to be predicted

= Learn

1 Takes place in

real time

Does not
require a large

results cannot
be ascertained

B Labelled data
is hard to get

Output parameters for
making labeled data W More
predictions set computation
Illustrate the @ High level of time in
distribution of accuracy training phase
data without

discriminating

between the

observed

variables and

the variables

to be predicted

Reinforcement
Learning

Rewards/Actions

Learning focus @ No human W More

on experiences intervention computation
driven 4 High level of time in
sequential accuracy training phase
decision-

making by

using rewards

where

feedback is

actions

tions and functions which develop insight and improve the potential and capability of

monitoring and controlling enterprise processes and assets.

1.4.3 Machine learning-based IoT scenarios

Initially, scientists described ML techniques as a tool to generate predictive models for
TIoT systems. However, wide applications proved ML as a rich domain, which should be
understood by those who want to apply it to IoT to get maximum benefits. Application
of ML techniques IoT aims to solve numerous issues and offers huge advantages in terms

of flexibility and precision.
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The designing a network needs to consider various vital issues like topological changes,
communication link failures, memory constraints of sensor nodes, computational capa-
bilities, and decentralized management. In fact, ML methods have been successfully
adopted to solve several challenges in IoTs scenario such as, localization, Clustering and
data aggregation, Event disclosure and Query processing, real-time routing, Medium
Access Control, Data Integrity and Fault Detection. Table 1.6 summarizes in a general

way, the different [oT challenges, which are solved using ML techniques.

Table 1.6: Research work using ML to solve some [oT’s challenges

IoT Challenges Used ML Techniques
Quality of Service (QoS) [130] [85] [133]

Security and privacy requirement [116] [104] [13] [125]
Interoperability and heterogeneity [39] [136] [135]

Network congestion and Overload [57][108] [142]

Network Mobility and Coverage [71] [134] [97] [28]

1.5 Open issue and future works in machine learning-based

IoT

In this section we highlights some IoT’s challenges needs to be concerned in the future

5G and IIoT.

1.5.1 Lightweight machine learning approaches for IoT

The large scale deployment of IoTs especially in smart cities environment generate large
amount of data. The present machine learning schemes are unable to cope with large
amount of dynamic data in real time environment hence much data is wasted without
information extraction [2]. The large amount of unlabeled data can be mixed with small
amount of labeled data for better convergence of machine learning schemes. In this
context, lightweight machine learning approaches can be developed which are suitable
to handle large amount of data generated by IoT devices [10]. The concept of data
analytics can be used in this regard where sensor location, type and data can help to

develop the lightweight models [93].
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1.5.2 Distributed machine learning for IoT

The machine learning applications for IoT have to cope with large amount of data. The
real data sets for industrial machine learning applications can be thousands of GBs [105].
In such a scenario, the machine learning models which are normally complex and power
intensive cannot be run on a single machine. The overall workload can be divided using
distribute machine learning with worker machines but it also opens certain challenges to
be met [87] [61]. Bandwidth is one of the crucial issues to be faced by powerful worker
machines. The worker machines have to frequent exchange data between them at a high
transfer rate but such high bandwidth is usually not available which creates a bottleneck
[64]. The machines should also need to synchronize them to perform sequential tasks
[53]. In realistic scenario, all worker machines are not exactly of identical processing

power which slows down the learning and optimization process.

1.5.3 Federated machine learning for IoT

The IoT machine learning applications have to overcome the traditional centralized
learning networks that face an increasing challenges in term of privacy preservation,
communication overheads, and scalability. In such scenario, the machine learning mod-
els which are complex and numerous with heterogeneous gathered data cannot be run in
a centralized manner and meet users’ QoS [68]. Federated learning networks have been
proposed as a promising alternative paradigm to support the training of machine learn-
ing models [82]. In contrast to the centralized data storage and processing in centralized
learning, federated learning exploits a number of edge devices to store data and perform
training distributively [75]. By the way, the edge devices in federated learning networks
can keep training data locally, which preserves privacy and reduces communication over-
heads. However, since the model training within federated learning networks relies on
all the edge devices’ contributions, the training process can be disrupted if some of the

edge devices upload incorrect or falsified training results [69].
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1.5.4 Machine learning at the edge for IoT

The huge amount of connected devices has switched the whole network community in
a new era called Internet of Things (IoTs) [50]. The concept of IoT has facilitated the
community at one end but the delay sensitive and context aware applications have put
certain challenges on the performance of lightweight IoT devices [126]. To meet the
demand of real time data computing, edge computing has provided promising solutions
by executing the data computing requests of IoT devices by some nearby devices [137].
The conventional machine learning may become confuse with the data generated by edge
devices due to the fact that it is more complex to identify the real data from complex
and noisy environment [63]. Deep learning can play its role in edge devices for better
learning and also for keeping the privacy of data preserved during intermediate data

transmission [78].

1.5.5 Privacy and security concerns in machine learning approaches for

IoT

Machine learning approaches for IoT can be attacked by malicious data which breaches
the trust of IoT users [30]. The user data privacy is a fundamental concern of any
machine learning scheme which should be taken care of while classification and machine
learning [11]. The intrusion detection or malicious data detection can be done with the
help of machine learning but they should be light weight to be applicable for IoT based

applications [8].

1.5.6 Data Munging for IoT machine Learning

The data collected from IoT devices, which are massive, heterogeneous, inconsistent, and
riddled with typos, cannot be used as input for sophisticated machine learning applica-
tions [46]. To overcome this issue and get the trends of the data by making it uniform,
data gathered from IoTs has to go through a cleansing process [45]. The process is also
called as data munging, which commonly includes data exploration, transformation, en-
richment exploiting metadata, cleaning or scrubbing the data, i.c. inputting the missing

values, removing the unnecessary or invalid data which are not required for getting the
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underlying trends of data, and then data validation [91]. This conventional method has
several limitations, especially when huge loads of generating data daily from IoT In-
dustry 4.0 and smart cities. For those, the need for accurate and trustworthy analytics
in real-time remains crucial, in order to immediately cope with sudden problems, and

occurred issues [62].

1.5.7 Adaptive data rate transmission for IoT

IoT devices are generally operated with limited energy batteries hence power consump-
tion is an issue for these devices [115] [96]. To conserve energy, low power consuming
protocols to transmit data are famous in [oT. Recently, low power wide area network
(LPWAN) has gain attention of researchers to provide low bit rate communication be-
tween IoT devices at a long range [4]. Although high data rate infrastructures are
also present for IoT e.g. Wi-Fi but they consume large power when connected for a
long time. However, depending upon the user requirement, the adaptive scheme can be
adopted [23]. Machine learning schemes can be used in this regard to learn the data

pattern to decide the data rate requirement for IoT devices [74] [9] [22].

1.6 Problem statement and contributions

After presenting LPWAN technologies summarized in Table 1.7, we have chosen to
work in this thesis on LoRaWAN because its a more scalable technology operating in
unlicensed spectrum. Unlike cellular [oT where only hundreds of IoT devices can be
simulated in a single cell, Lora is able to serve thousands of IoT devices while also being
an alliance with an open approach (instead of the proprietary one SigFox). However, in
the state of the art, there’s an obvious lack in providing QoS in IoT communications,
which till now is limited to just reliability, meaning it’s limited to just guaranteeing
the delivery of a packet to the base station without considering throughput and delay
constraints of the running application. Since the number of connected IoT devices is
rapidly growing in the 5G era, an efficient solution to guarantee QoS is by bringing

virtualization to IoT networks using SDN and network slicing. The motivation behind it
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is to improve server level from end to end across multiple network layers. This guarantees
QoS requirements for IoT devices running urgent and reliable applications. We mainly

answer the following questions:

o How to assign [oT devices to virtual slices and how to classify these slices?

e How to reserve physical resources for each slice and inside each slice, how to effi-

ciently allocate each device to the appropriate channel ?

e What are the parameters that impact QoS of each device and how to optimize
this configuration in a way that doesn’t increase network complexity and without

impacting network performance 7

o Is current architectures (centralized) capable of supporting IoT communications in

large scale IoT deployments and how to efficiently meet the upcoming challenges?

Table 1.7: LPWAN technologies comparison for IoT communications

\ Features [LTE Cat-1| LTE-M | NB-IOT | SIGFOX | LORAWAN |
Spectrum Licensed Licensed Licensed Unlicensed Unlicensed
Modulation OFDMA OFDMA OFDMA UNB/GFSK/BPSK CSS
Rx Bandwidth 20 MHz 1.4 MHz 200 KHz 100 Hz 125-500 KHz
Data Rate 10Mbps 200Kbps-1Mbps 20Kbps 100bps 290bps-50Kbps
Max nb of Msgs/day Unlimited Unlimited Unlimited 140 msgs/day Unlimited
Max Output Power 23-46 dBm 20 dBm 20 dBm 20 dBm 20 dBm
Link Budget 130 dB 146 dB 150 dB 151 dB 154 dB
Power Efficiency Low Medium Medium High Very High Very High
Interference Immunity Medium Medium Low Low Very High
Coexistence Yes Yes No No Yes
Security Yes Yes Yes No Yes
Mobility /localization | Mobility Mobility Limited Mobility, | - Limited Mobility, Yes
No localization No localization

1.7 Conclusion

LPWAN technologies are being more deployed nowadays in IoT networks due to their
efficiency in meeting QoS and energy constraints. However, this proliferation of IoT
technologies poses co-existence challenges as they differ in their settings where ones op-
erate in licensed frequency spectrum and others have the ability to communicate via free
frequencies spectrum. In this chapter, we presented LPWAN technologies specifications

and we listed the latest research work that evaluates their performance and optimization
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efforts in improving IoT communications. Moreover, the recent the vital roles of IoT
in the recent industry 4.0 are surveyed. Finally, the deployed machine learning model
and their issues are highlighted. In the next chapter, we answer the first two questions
by first proposing a new methods for assigning IoT devices to the three virtual slices
that we have previously defined for IoT communications. Next, we implement network
slicing where virtual networks share the same physical infrastructure and we evaluate
their performance over different configurations. We show the impact of traditional ToT
networks on energy consumption and how the proposed new dynamic slicing and re-
source allocation strategy contributes in efficiently allocate resources and prioritizing

urgent communications over delay tolerant IoT applications.
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II.1 Introduction

I n Chapter II, the problem of providing QoS and flexible resource management for

IoT communications is clearly stated. More specifically, three main issues should

be tackled towards achieving this goal in Industrial IoT (ITIoT) networks:

o Finding the best way to assign IoT devices to the appropriate virtual slice that
meets their specific QoS requirements, represents the first challenge in this contri-

bution.

o Finding the best way to reserve inter-slice resources, is the second challenge in
this contribution. However, due to capacity constraints and the limited number
of channels on LoRa GWs, it is not straightforward to decide on how the amount
of resources should be reserved while avoiding resource starvation for any of LoRa

virtual slices.

e Defining the best strategy, inside each slice, and allocate intra-slice channels ac-

cordingly.

These three issues are directly related in a way that inter-slice resource reservation
and intra-slice resource allocation impact not only reliability and QoS, but also the en-
ergy consumption of IloT devices. Great research works recently tackled network slicing
in IoT and focused on machine critical communications over various wireless networks.
The work in [98] introduced a slicing infrastructure for 5G mobile networking and sum-
marized research efforts to enable E2E NS between 5G use cases. Furthermore, authors
in [44] and [111] adopted NS in LTE mobile wireless networks. The former proposed
a dynamic resource reservation for M2M communications whereas the latter presents a
slice optimizer component with a common objective in both papers to improve QoS in
terms of delay and link reliability. In a 5G wearable network, the authors took advan-
tage of slicing technology to enhance the network resource sharing and energy-efficient
utilization [55]. Moreover in [37], the authors perform slicing in virtual wireless sensor
networks to improve lease management of physical resources with multiple concurrent

application providers. In [66], authors proposed several slicing methods for URLLC
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scenarios which require strong latency and reliability guarantees. Authors in [77] have
proposed an industrial network based on SDN mechanism in order to support dynamic
production processes. Unlike traditional industrial networks, remarkable energy saving
is achieved. A resource allocation method with consideration of interference management
was proposed in [140], where different QoS requirements were guaranteed by optimizing
jointly power and sub-channel allocation. Authors in [138] have discussed a 5G network
architecture scheme based on SDN to allocate physical resources to virtual slices within
a local area and to perform scheduling among slices. An end-to-end network slicing
methodology was proposed by authors of [80] in order to share horizontally physical
resources whose main purpose is to create multiple virtual networks that can support
industry applications. Nowadays, guaranteeing service requirements in many technolo-
gies such as LoRaWAN with traffic slicing remains as open research issues [1]. Our main

contributions with respect to the surveyed literature are stated as follows:

1. Network slicing is implemented based on LoRaWAN (as a communication protocol)
where virtual slices are created and each I1oT devices are assigned to one slice, using
a Online Gaussian Mixture Model Clustering (OGMMC) technique, that meet its

QoS requirements.

2. A dynamic inter-slicing algorithm is proposed where the bandwidth will be sim-
ilarly reserved on all gateways based on adopted Mini-Batch Gradient Descent
(MBGD). Then the latter is improved and compared to a straightforward static

strategy.

3. An energy model is integrated in NS3 simulator to analyze the energy consumed in
each slice and an intra-slicing algorithm (Max-Utility) is adopted that meets the

QoS requirements of each IToT device on each slice in an isolated manner.

The remainder of this chapter is organized as follows. Section II.2 presents the
proposed network slicing architecture, the system model and the problem formulation
established in this paper. In Section II.3, the proposed slicing framework is proposed

and well clarified. After the proposed approach is implemented over NS3 simulator. The
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framework performance evaluation and simulation results are analyzed and carried out

through various scenarios in Section 11.4. Finally, Section II.5 concludes this chapter.

I1.2 Proposed Architecture and Problem Formulation

In industrial LoRa networks, the general control plane and resource management module
are centralized and moved to a management and control entity (MCE) in the cloud to
ensure an efficient coordination of resources. Hence, industrial LoRa servers will be
the final decision maker in assigning the devices to the appropriate slice and defining
the gateway that will transmit the packet. This section will introduce the proposed

slicing-based architecture then, the multi-objective problem formulation.

I1.2.1 Proposed Network Slicing Architecture

The 5G network architecture design should be built on deep consideration of hardware
infrastructure, software control, and the inter-connectivity between them. The network
slicing, which can satisfy multiple service requirements based on the unified physical
infrastructure and sharing the same physical resources, is considered as a critical chal-
lenge by providing multiple instances that operate independently for specific network

functions.
The network slicing-based 5G system architecture is given in Figure II.1. The aim

of this architecture is to support the creation, control, and management of multiple
network slices over factory infrastructures in order to provide high levels of flexibility
and scalability and meet QoS requirements for robots, sensors, and actuators in industrial
networks. The infrastructure layer contains all the physical resources needed to perform
virtualized industrial process. We emphasize that the involved resources go beyond
traditional data centers. It includes industrial equipment with sensing and actuation
capabilities in addition to the physical computing, storage and network components.
The virtualization layer includes the tools and the technologies required to provide a
virtualization environment for hosting (VNF) instances. While the slicing layer refers

to the deployed industrial slices in order to accommodate specific industrial machinery’s

QoS.
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Figure. I1.1: Network Slicing Architecture for Industry 4.0

At this level, we define a set of L = {l;,...,11} slices based on throughput R (with
bandwidth ), transmission delay D, and urgency factor 0. Each slice is responsible for
serving a set of N = {n;,...,ny} assigned IoT devices through a set of G = {gg, ..., 96}
gateways. Where 0; ;. denote the binary value that represent the assignment success of
devices 7 to the slice j through gateway k. All these layers interact with the general ad-
ministrative control unit represented in the SDN controller, which can control industrial
network in a centralized fashion. By interacting with the NFV MANO (Management
and Orchestration), SDN controller is in charge of guaranteeing several industrial QoS
constraints. However, SDN is defined as a network concept that enables centralized and
intelligent control and management that can on-demand modify traffic flows according

to industrial application requirements by decoupling data and control traffic. While
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NFV is the technology that allows the virtual representation and deployment of logi-
cal network functions as Virtual Network Functions (VNFs). When these technologies
associated with cloud computing, it can provide better solutions to support reliability
and latency requirements, which still represents a major challenge of industrial 4.0 ap-
plications. Therefore, it can acquire and allocate virtual resources for slices and enable
industrial network reconfigurability, by exploiting the generated virtual flows from de-
vices, in order to meet dynamically industrial devices QoS changes. Assume that the
assigned device i to the slice j generate a virtual flow f; ;; that goes from the gateway
k to the SDN controller and is characterized by a utility metrics U; ;. SDN controller
must define also the slice’s request, compute the available resources, and serve slices
requirements, in a way that avoids resources starvation. At this level, we denote by
Cj k. the requested physical resources for the slice j on gateway k, while ¢ is the total
gateway capacity.

In this work, we aim to jointly optimize industrial machinery QoS and network energy

efficiency by providing dynamically slice members with the requested physical resources.

11.2.2 Multi-Objective Optimization Model Formulation

The purpose of this work is to optimize the performance of the industrial network in
term of QoS and energy consumption. Toward this goal, the network slicing optimiza-
tion concept consists of two main steps. Firstly, is to find the best inter-slicing resource
reservation strategy. This will impose challenges in aggregating necessary parameters,
re-configuring slices, and updating reserved resources. Secondly, is to establish the
best intra-slicing resource allocation strategy. This will bring other challenges in re-
configuring devices and updating resource allocation. Before these two phases, IIoT
devices need to be assigned to the slice that meets their QoS requirements. These all

problems are formulated into multi-objective functions as follows.

I1.2.2.1 Quality of Service (QoS) Model for IoT

We define the QoS type in each slice based on the Data Rate R and the Transmission

Delay D. The Data Rate model defined in II.1 is denote by the ratio between the peak
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rate x and the slice members n;. The peak rate of each IoT device depends on many
factors such as the received power P, the transmit power P;, and the received SINR,

which are written in I1.2, I1.3, and II.4 respectively [5] [6].

X
k= 1.1
R,J,k n; ( )
P s
P, =>tdn 1.2
W = T (11.2)
SINR(P; + P
P, = ( LI N) (I1.3)
P,
INRi,j=——"— 11.4

R; ;i represents the Data Rate for an industrial IoT device ¢ assigned to the slice
j on gateway k. Where P;r and L are respectively the receiver noise and the path loss.
Lg is a constant, in which depends on the antenna gains and transmission frequency. h
denotes the random variable that represents the channel fading. Finally, d and ¢ denotes
respectively the distance between the trans-receiver and the path loss exponent.

Moreover, the Transmission Delay D; ;5 of a device i assigned to the slice j, is

formulated as in IL.5. Where M; ; is the packet length that is trans-received from a

device 1.
MA ik
Di,j, k= =4 IL.5
Risn (IL5)
Based on what was previously mentioned, the QoS cost is modeled by II.6.
QoSi,j,k =R jr + (1 — Diji) — maz »_ QoS Vj € L,k € G, (I1.6)

1EN

where QoS; ;1 is the reimbursements that should be maximized at each slice j and on

each gateway k. In addition, R;;; and D; ;, are adopted as a normalized values that
denotes the Throughput and the Transmission Delay achieved by industrial connected

device respectively.
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11.2.2.2 Energy Consumption Model for IoT

The energy consumption model is considered as the required power to trans-received a
data packet, which depends on the received power and the transmitted power given in
11.2 and II.7 respectively. In addition, the connected device consumes a Py power by the
communication module. In this context, the active and the sleep mode, as in I1.8, are

the two energy states of an IoT device that need to be considered [5] [6].
P, Lo

Py =375

(IL.7)

Eijk = 0P, + PolTuctive + NPr,, + PolTsicep — min' Y _ E; j1,Vj € Lk € G, (IL8)
1EN

where 7 denotes the electric-to-RF power conversion factor. E; ; represents the energy
consumption for the device assigned to the slice that should be minimized for each slice.

Addition to the energy and QoS factors, the Packet Error Rate (PER), formulated
in I1.9, is an interesting factor which reflects the efficiency and reliability of the devices

in each slice.

S
PER; j; = ﬁ x 100 — min Yy PER; j;,Vj € L.k € G, (I1.9)
iEN

where S}, denotes the number of successful packets and T}, is the number of the total
packet sent. PER is the other cost function that should be minimized in order to

guaranteed efficiency and reliability in each slice.

11.2.2.3 Network Slicing Problem Formulation

In this contribution, network slicing optimization problem consists of three steps. The
first one involves the admission and the assignment of devices to the desired slice. The
second stage is the dynamic inter-slicing resources reservation. Although the intra-
slice resource allocations are the third stage. Firstly, we define slices based on urgency
factor, delay, and throughput, and then we look to assign devices to the slice that meets
its QoS requirements. It is noteworthy that the urgency factor, the delay, and the

throughput are the key clues for defining the device priority. In addition, other factors
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must be considered such as PFER, reliability, and the huge load rate of devices to the
network. Secondly, we look to estimate the needed inter-slice capacity C; ; based on the
required throughput. The purpose of the last step is to optimize the intra-slice resources
allocation for each slice members. The Multi-Objective Optimization for the slicing and

the resources allocation problem is therefore formulated in I1.10.

mm;veiﬁjﬁk Qfsf’;kv] €L keG (11.10)
subject to the following constraints:
> 0ijkRijr < RIMENjeLkeG (IL.11a)
Arjx DAy, = @, 5, j' e L \Vk € G, (IT.11b)
0< Py, < Pt:'f;f:,w € N,Vj e L,Vk € G, (IT.11c)
0;5x € {0,1},Vi € N,Vj € L,Vk € G, (I1.11d)

where constraint I1.11a guarantees that the sum of transferred traffic by a devices i
assigned to the slice j should not exceed the maximum allocated data rate capacity.
Moreover, without violating the non-interference principle between slices, constraint
II.11b ensures a perfect isolation between them. In other words, each slice has its own
bandwidth, whether it was reserved on the same gateway or on different gateways. In
addition, each device consumes a transmission power to transfer its traffic data, which
should not exceed the maximum transmission power; this is provided by constraint I1.11c.
Furthermore, the binary assignment value of a device to the slice on the gateway k, is

assured by constraint 11.11d.

1I.3 The Proposed Slicing Approach

The proposed industrial network slicing-based resource allocation scheme, consists of
three main steps. Firstly, by using the Online Gaussian Mixture Model Clustering
(OGMMC), each device is assigned to the slice that meets its QoS requirements. At
the end of this step, the mean throughput for each slice will be estimated. Secondly,

radio resources will be dynamically reserved for each slice based on the dynamic and
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adaptive Mini-Batch Gradient Descent Algorithm (MBGD). Finally, the preserved radio
channels for each slice will be dynamically allocated to the slice members based on the

Max-Utility Intra-Slice Resource Allocation algorithm.

II1.3.1 IoT devices Assignment: Online GMM Clustering Algorithm

Due to the ultra-diversity of industrial 4.0 services, slices are defined based on urgency,
energy and efficiency requirements to meet their objectives. Our proposed architecture
is composed of three virtual industrial slices. The first slice called “Ultra-high Critical of
Latency and Efficiency (UCLE)” which has the most interest slicing priority and gives
more importance to the QoS, efficiency, and reliability. This makes it required by several
industrial IoT applications for safety such as emergency action and safeguarding systems.
Where “High Critical of Latency and Efficiency (HCLE)” slice gives a less prominence
to the latency and considers reliability as a first target. This service is required by the
scale readings applications. The last slice is the “Low Critical of Latency and Efficiency
(LCLE)”, which has the lowest slice priority with non-guaranteed QoS and efficiency.
TABLE II.1 outlines the key QoS specifications of the slice in terms of latency, reliability,
packet size, and priority factor [67] [84] [66].

Table II.1: Key QoS Requirements of [IoT Network Slices

Slice Name|Packet Delay Budget (ms)|Reliability|Packet Size|Priority
UCLE 50 1-1074 24B 1
HCLE 100 1-107* 512B 2
LCLE 500 1-1076 250B 3

After specifying each slice requirements, IoT devices will be assigned to the corre-
sponding slices. In this context, GMM is adopted as a dynamic and online clustering
method (OGMMC) to assign devices to the desired slice, by checking its QoS demands
and estimating the mean throughput for slices [27]. Considering a set of J mixture mul-
tivariate Gaussian Distributions, indexed by the set of parameters © = {«a;,0;}, where
0; = {u;, Zj} denotes the Gaussian distribution parameters, in which the mean is de-
noted by f5, >; is the covariance, and a; € {0,1} is the mixing probabilities. Assume

that all devices data point {n,i,...,ny} are independently and identically distributed
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according to the mixture probability density function P(n;|0;). © is the parameter that
will be estimated to clusters using the Maximum Likelihood Estimation (MLE) process,

as in 11.12. While the log-likelihood is formulated in II.13.

L(O|N) = ;enP(nsi|0;) = Ilien Za] n,|,u],Zj (I1.12)
JjeJ
log(OIN) = 3 loglas Ps(nilus, 7)) (11.13)
€N

In view of the structural complexity of I1.13, the optimal O cannot be obtained by setting
the derivatives to zero. Expectation Maximization (EM) process [94], is a powerful
method used to maximize the log-likelihood function and find the optimal parameters.
The latter updates iteratively the parameters of individual Gaussian distributions. The
given data are considered as incomplete data. This allows defining M latent variables
M = {m;,...,mpr} where each m; indicates which Gaussian component generates the

data vector n;. The new function that should be maximized is formulated in I1.14.

= > > log(a; Pi(nilpg, > 3)) = D0 D wiy log(wiy), (IL14)

iEN jeJ iEN jeJ

where ¢ = {w;;} is the assignment of data vectors (devices) to the clusters. In the
expectation step, EM process tends to calculate the probability of a device ¢ belongs
to the cluster (slice), by maximizing the W function over the assignment ¢ and by

considering the posterior probability w; ; formulated in II.15.

bj(nil0;)

g = Pl =00 = S o

(IL.15)

After that, a maximization of ¥ function over the parameter © will be in the maxi-
mization step. As a maximization result, the parameters will be estimated and updated
iteratively until the convergence. However,the mean, mixing probabilities, and covari-

ance will be tuned accordingly, as presented respectively in 11.16, I1.17, and II.18.

. DieN WiyiTy
fnew = SHEN Fhj T (1L.16)
I EieN Wi, j
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N 1
a?ew — % Z Wi j (1117)
1EN
—new _ Y ien wij(ni — a?ew)(ni B a}zew)T (I1.18)
j DieN Wi

The optimal slicing strategy for a limited physical capacity, is to virtually reserve re-
sources for each slice based on the mean throughput R]T of its members. After the
assignment step, OGMMC calculates R;fp for slices, as in I11.19, with respect to the ur-

gency factor

ien Bijike .
R} = W,w €LVYked (I1.19)
]

However, each new device sends a connection request to the server that will set up the flag

H, in which the Online GMMC algorithm, as in Pseudo-code 1, will be re-executed.

Pseudo-code 1 Adaptive OGMMC Algorithm
Input : Set of IoT devices N, Set of Clusters .J;
Prameters ©, H = 1, Convergence Criterion ¢;
Output: The posterior probability w; ;, the Tuned parameters ©;
The Mean Throughput for each slice RjT

1 begin
2 while H=1 do
3 Define clusters with initialized parameters ©
while convergence=false do
4 for each cluster j do
for each IoT device I do
Assign devices to clusters (slices): 11.15
Maximize the log-likelihood function: 11.16
Update the parameters: 11.17 1I1.18 11.19
7 end
end
if (¥ -V, <e¢)then
10 ‘ Convergence <— True
11 else
12 ‘ Convergence <— False
13 end
14 end
15 end
16 for each slice j do
17 Compute the mean throughput R;‘F: 11.19
18 end
19 end

35



CHAPTER II. ONLINE GMM CLUSTERING AND MINI-BATCH
GRADIENT DESCENT-BASED OPTIMIZATION FOR INDUSTRIAL
10T 4.0

I1.3.2 Inter-Slicing Resources Reservation: Dynamic MBGD Algo-

rithm

After assigning IoT devices to the slice that meets its QoS requirements and estimating
the mean throughput for slices, we seek in this section to reserve dynamically inter-slices
channel resources. To reach this goal, MBGD [112] learning algorithm is adopted as
a powerful scheme to improve QoS and minimize cost, in 11.10, by finding the optimal
throughput parameter needed to split channel resources between slices. In the context
of Industrial IoT (IIoT), we assume that slices should be ready to support and serve
IoT devices. The global idea is to reserve a minimum capacity level Cj; for slices .
Then, by checking slices requirements and learning dynamically devices throughput,
more radio resources will be reserved for slices. The adopted MBGD scheme consists of
two phases; pre-learning phase and learning phase. In the pre-learning phase (line 1 to
7 in the Pseudo-Code 2), MBGD splits physical resources between slices, by reserving
a minimum radio channels based on the estimated mean throughput, even there is no
assigned devices (line 4 to 6). With respect to the slice urgency factor, it starts by
computing the slice rate 7, based on R]T, as in I1.20. This is for defining an appropriate
and optimal resource distribution strategy and for not exceeding the maximum gateway
capacity. Then, the defined level of physical resources will be reserved, as in 11.21. At
the end of this phase, the process computes the unserved capacity & on each gateway,

as formulated in I1.22.

RT
7 .
V= e v ELVkeG (11.20)
T YL RY
Cje =" Xk, Vj € LVk€G (I1.21)
e=s— Y, Cix,Vji€LVkEG (11.22)
JjeEL

Noting that the slice capacity C} do not exceed the maximum capacity ¢ provided by
each gateway. That is to say, that the mean throughput R;fp should not exceed the sum

of requested throughput for all IoT devices. Therefore, formulas 11.19 and I1.20 must
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satisfy constraints 11.23b and I1.23a respectively.

0<y; <1, (I1.23a)
0<R] <) Rj. (I1.23b)
jeL
After defining a minimum capacity level for each slice, MBGD acts as a brain in
each gateway. It learns QoS and energy consumption properties in order to find the
best configuration parameter that meets slice demands. This can be done by tracking
dynamically slices member’s throughput requirements and updates its radio resources
capacity.
The common selected parameter in the learning phase (line 8 to 17), is R; ;5 that can in-
teract with QoS, energy consumption and PER. However, when the throughput increase,
QoS will be maximized. This refer to the capacity that will be increased according to
R; ;1. that decrease the transmission delay as denoted in II1.5. On the other hand, the
activation time Tytipe Of the IoT device will decrease because of the higher speed trans-
mission packets in a large bandwidth. The latter has an effect on energy consumption
by decreasing the transmission power and give more chance to increase the percentage
of successful transmitted packet. This parameter will be tuned and configured online,
using the Mean Square Error (MSE) process, based on the other discussed parameters
(training set). In this context, let denote by I' the current observation values and I"
is the trained output value formulated in I1.24, where is the learning rate. The MSE

function is defined in II1.25. Where J; is the Mini-Batch size and b; j, = 1 — D; j 1.

’ E,L g,k
= 7 11.24
QoS j ( )
1 : 1 Ei,j k
MSE — — T-1')2=_— (—2" T2 (I1.25)
20; §J 20; g;j Rijk+biji

The adopted MBGD repeatedly iterates through the training set (power, throughput,

and delay) and update the parameter R; ;. according to the gradient error respectively
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in I1.27 and II.26.

1 Ei,j k Ei,j k
VR= 5= Z - 5 * (5= —1T)
j (Rijk+bijk)? "Rijk+bijk

. ’L—)(Sj

RY% =Rijk—0 VR

(11.26)

(11.27)

Thereafter, MBGD checks resources demands for each slice and updates slice rate and

requested capacity, formulated respectively in I1.28 and I1.29. Then, it updates reserved

Pseudo-code 2 Dynamic and Adaptive MBGD
Input : Set of IoT devices IV, Set of Slices L, MBGD datasets;
Set of R;-F, Stop Criterion ¢;

new new new .

Output: Unserved capacity ok , allocated capacity AN

1 begin
2 Sorts slices in decreasing order based on urgency factor 0
for each Gateway k do
for each slice j do
if (R;jr =0)then

‘ Define a minimum R; ;5 = RTmin

(N
end
Define slice rate: 11.20
Define and reserve capacity: 11.21
Compute unserved capacity: 11.22
for each Mini-Batch slice j do
8 while convergence=false do
Compute the gradient: 11.26
Update the throughput: 11.27
if | Vr— vl <ethen

N O oA W

10 if RS < ZR??‘,’; & &k > 0 then
11 Define slice rate: I1.28

Define and reserve capacity:11.29 and 11.30
Compute unserved capacity: 11.31
Convergence <— False

i= i+1; //next iteration

12 else
13 ‘ Convergence «— True
14 end

15 end
16 end
17 end

18 end
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and unserved capacity presented respectively by formulas I1.30 and I1.31. As summarized
in Pseudo-code 2, the learning phase will be repeated (line 8 to 17) until it serves all
slices requirements and stops when there are no more resources to serve it or convergence

is reached. We note that, notations with inewj means the predicted value by the proposed

new

learning process. 77" is denoted as the new slice rate. C"-l%d denotes the new requested

new

capacity to be allocated, el is the total reserved capacity,

£ is the new unserved

capacity, while R; ; denote the current observation parameter.

v = M,W € L,VkedG (T1.28)
Cot = e 5 g, Vj € L,Vk € G (I1.29)
T =Cir+ CiNVj e LVEEG (IL.30)

Gl = —Y Ci“VjeLVkeG (11.31)

jEL

11.3.3 Intra-Slicing Resources Allocation: Max-Utility algorithm

After inter-slice resources reservation, we seek in this stage to improve and optimize
intra-slice resources allocation. The latter is reached by maximizing utility metric Uj ;
for IToT devices, in each slice and on each gateway. Utility metric is modeled based on
reliability weight (w,) and load weight (w;q). As mentioned previously in TABLE II.1,

slices are different in term of QoS. However, utility metrics can be expressed as follow:

SINR; 1

UvcrLe = xr(wrﬁr)v Ty = SINRmax7 Ty € {0, 1} (11.32)
Uncre = w0y +wigdig (I1.33)
Urcre = wiadid (11.34)

where the highest required reliability and urgency for UCLE slice, is denoted by 11.32. =z,
is considered as a minimum threshold guaranteed during search for the highest reliable
link. ¥4 and ¢, are respectively the load rate and the reliability rate. The algorithm

summarized in Pseudo-code 3 based on the Analytical and Hierarchy Process (AHP),
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searches for the efficient and reliable link that gives the highest utility metric and allocate
resources accordingly [35]. Formula I1.33 represents the trade-off between reliability
and load which explains the less critical latency and priority of HCLE slice and the
massive number of connected IoT devices. However, increasing the number of devices will
decrease the reliability of links due to congestion. It happens sometimes for devices that
are more tolerant to delay, the most reliable link may be overloaded due to the increasing
number of devices and should not be taken into consideration. In this case, the process
goes to find the optimal link that gives a perfect reliability with minimum load. While
LCLE slice modeled by I1.34, shows the non-guaranteed latency and QoS requirements.

Here, the adopted algorithm seeks to find the virtual link without considering reliability.

Pseudo-code 3 Max-Utility Intra-Slice Resource Allocation
Input : N IoT devices Set, L Set Slices, G Gateways Set;
Output: Max-Utility flows allocation for IoT-device;

1 begin
2 for each Gateway k do
3 Sorts slices in decreasing order based on urgency factor 0
Initialize flow utilities to zero
4 end
5 for each slice j do
6 for each IoT devices do
7 Find path with the highest utility U; ; x
Allocate IoT device i to f;
8 end
9 end
10 end

In general case, we consider a set on IoT device denoted as a source node assigned to
slice 7, uploads traffic through gateways k. The goal is to find the efficient virtual flow
fi,jx that maximize device utility metric U; ; x, as in I1.35, in order to allocate efficiently
resources.

Uijk = U] j o+ Ul (T1.35)

where Ué ;i and U{” ;% are the utilities provided by each gateway, in which depends on

reliability and load.
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II.4 Simulation and Results Analysis

In this section, we study the performance of the proposed approach and deeply ana-
lyze results. The suggested scheme is implemented in NS3 simulator [25]. TABLE.II.2

summarizes simulation parameters.

Table I1.2: Simulation parameters

Parameters Values

Simulation area Lkm?
Power consumption Tx/Rx 25mw
Battery capacity 230mAh
Number of Nodes 1000
Number of gateways (GWs) 1

Used protocol LoRaWAN
Number of channels 8 per GW
Bandwidth 125 kHz

European ISM sub-band 863-870 MHz

We consider a set of [oT devices initialized with 100 devices, in which increased till
it reaches 1000 in a single gateway. They are distributed randomly in an industrial area
of one square kilometer. We implement firstly the Slicing Methodology Configuration
(SMC). Then, Static Configuration (SC) will be implemented. The latter has the
same simulation parameters to the SMC, but it does not contain the QoS constraint.
The objective is to study the QoS profitability for slicing strategy results and make a
comparison with the traditional configuration in term of Energy Consumption (EC),

Transmission Delay (TD), and PER.

11.4.1 Energy Consumption Analysis

We assume that the sleep power for IoT devices is set to zero. As presented in Figure
I1.2a, the total energy consumption for each slice depends on the number of assigned
devices and QoS configuration. As in TABLE II.1, LCLE slice is configured with the

lowest priority and nonguaranteed QoS with considering load only. As results, a large
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number of devices, will be assigned to this slice, in which activation time will be increased
proportionally. These leads to increase the power consumption. While HCLE slice scored
less power consumption. The latter is configured with a less critical latency but also
with a guaranteed reliability and efficiency. As result, a little set of devices will respect
this constraint and assigned to HCLE. The tradeoff between reliability and less critical
latency leads to minimizing energy consumption compared to the previous slice. While
configuration in UCLE slice leads to the most efficient power consumption compared
to the others. This return to the inter and intra process that gives higher importance
and priority for QoS configuration, and reliability in Utility calculation. It allows the
little set of assigned devices to take the most reliable gateway with smaller duration of
spectrum occupation time.

For more evaluation, the mean EC for proposed scheme was compared to the EC for
the SC. As denoted in Figure I1.2b, the EC for static method increases exponentially
while number of deployed devices increases. This because that all IoT devices are as-
signed to the same network without respecting reliability, QoS, and efficiency constraint.

This prove the efficiency of the proposed slicing method.
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Figure. I11.2: Energy Consumption evaluation
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11.4.2 Delay Variation Analysis

Relying on QoS class in TABLE II.1, each slice is configured with packet size constraint.
It is noteworthy that HCLE has the highest packet size than LCLE and UCLE slices.
While UCLE slice is configured with the highest reliability and efficiency. This will give
mores chance to UCLE slice to serves its members, by maximizing utility metrics and
allocating more radio channels. As results, throughput will be increased, allowing delay
to be reduced to a minimum. This increases the percentage of devices that have not
violated their delay threshold. This is not the case for HCLE, which is configured with
medium priority, large packet size, and a utility depending on reliability and load. As
the number of deployed devices increases, delay will increase exponentially, even if the
learning process reserves more resources. Thus, increase the percentage of IoT devices
that violated its delay threshold. Instead, delay in LCLE will be increased according
to the increase of its member but it remains less than HCLE. This refers to the QoS
constraint that configure LCLE with a little packet size than HCLE and consider the
load only. Figure II.3a demonstrates the delay variation for slices, while Figure I1.3b

demonstrates the percentage of served devices in delay.
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Figure. I1.3: Delay variation and Percentage of Served devices

More performances evaluations were conducted, and the proposed slicing method was
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compared to the static method in term of delay variation and percentage of unserved
devices in delay. As seen in Figure I11.5¢ and I1.4b, SC had the worst results with highest
delay varies exponentially with the increase of deployed devices number. Also 88% of
devices did not respect their delay thresholds on 1000 deployed devices compared to 32%
of the SMC. This refers to the random configuration that did not take into consideration
QoS requirements of devices.

3

=
[

Mean Delay : SMC
Mean Delay : SC

[ Unserved devices : SMC
K Unserved devices : SC

N
W

0
=
1

s =
T T
T

N AN AN A

~
]

1
N

FANY . N |
NN N A

Mean Delay
=

o
=
1

Unserved devices in Delay(%o) _,

0
400 . 800 1000 200 400 60 800 1000
Deploye%)(c)le\flces Deployed devices
(a) Mean Delay variation: SMC vs. SC (b) Percentage of Unserved device in delay:
SMC vs. SC

Figure. I1.4: Mean Delay variation and percentage of Unserved devices

11.4.3 Packet Error Rate Analysis

Figure I1.5a, shows the evolution of PER in each slice. As described previously, the
proposed process gives more importance to the UCLE slice, by checking its QoS demands
and serve it. Then, it moves to the HCLE slice, and later if there are unserved resources
it can reserve some to LCLE slice. As results, UCLE slice will be frequently served,
and may therefore limit PER of its members. It is remarkable that PER in UCLE
increase when devices increase at 200 and 300, then PER decrease at 400 devices, etc.
This returns to the learning tools that try to avoid resource starvation in each slice
and dynamically reserves channels following throughput demands. As the deployment
device increases, congestion increases, and reserved resources will no longer be sufficient

to support devices requirements. At this stage, PER will be increase until process serve
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its demand in future iteration. In fact, it is the same thing for the other two slices,
but with considering less QoS constraint to HCLE and no QoS constraint to the LCLE
slice. This implies that fewer radio channels will be reserved, in which congestion will
be increased, while PER will also increase. By the other hand, with static configuration,
PER was highly increased. This refers to the continuously increased congestion with the
increase of deployment devices. This because the QoS configuration is not considered.
Results in Figure I1.5b prove the efficiency of the optimization process in reducing PER,

with 40% compared to 20% of the SC.
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Figure. I1.5: Percentage of PER evaluation for both configurations

I1.5 Conclusion

The ever-increasing exploitation of smart devices with improved capabilities, is lead-
ing to a radical change in the industrial landscape. However, low latency, reliability,
and efficiency are required to support new Industrial 4.0 challenges. Network slicing
paradigm benefits can be extended to address out-range performance requirements. In
this chapter, network slicing is implemented and investigated in centralized standard
industrial network architecture in which inter-slice resource reservation and intra-slice
resource allocation methods are both proposed and optimized with respect to the QoS

requirements of each slice members. Firstly, OGMMC was proposed to assign devices
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to the desired slice that meet its QoS demands and to estimate mean throughput slices
requirements. Secondly, Mini-Batch based slicing scheme was proposed to reserve dy-
namically radio channels to slices. Finally, Max-Utility algorithm was adopted in order
to efficient allocate the gateway resources to the slice’s members. Various evaluation
results are provided and analyzed after proving the isolation concept between virtual
slices. Although, a comparison is provided between the static and the proposed slicing
strategies. However, the dynamic network slicing appears to be the best slicing method
compared the static one in this chapter. Simulations results show and prove the effi-
ciency of the proposed framework in saving energy consumption, reducing delay, and
PER.

We believe that these results can still be improved if IoT devices’ parameters were effi-
ciently optimized to improve network performance in each slice. In the following chapter,
instead of considering the dynamic slicing mechanism which jointly increases or decreases
both spreading factor and transmission power (LoRa technology) of an IoT device, we
propose to deeply evaluate our slicing-based optimization scheme in multiple industrial
scenarios exploiting LoRa technology in a way that maximizes network performance of

each slice in smart Industrial LoORaWAN scenario.

46






Chapter III

In-Depth Performance Evaluation of
Network Slicing Strategies in Large Scale

Industry 4.0

Summary

III.1 Introduction . . . . . . . . @ i @ i i i i i i it it e e e e e e e 48

IT1.2 Network slicing Architecture Modeling and Problem For-

mulation . . . . ... oL s e e 50
I11.2.1 Network Slicing in LoRa-based Industrial Network Modeling . 50
II1.2.2 Problem Formulation . . . ... ... ... ... ....... 54

II1.3 The proposed Slicing strategies: Dynamic MBGD predic-

tion, MLE estimation, and Static configuration .. ... ... 56
II1.3.1 Dynamic MBGD prediction-base Inter-slicing . . . . . . . . .. 57
I11.3.2 MLE Estimation-base Inter-slicing . . . . .. ... ... .. .. 59
I11.3.3 The Proposed TOPG Optimization Algorithm . .. ... ... 62
I11.3.4 Static vs Slicing Strategies . . . . . . .. ... ... ... ... 64

ITI.4 Simulation Results . . . . . ... ... ... 0000000 66
IIT1.4.1 LoRa Configurations Impact . . . . . . .. .. ... ... ... 66
I11.4.2 Applications Periodicity Impact . . . . . . . .. .. ... .. .. 67

47



CHAPTER III. IN-DEPTH PERFORMANCE EVALUATION OF
NETWORK SLICING STRATEGIES IN LARGE SCALE INDUSTRY 4.0

II1.4.3 Gateways Number and Positioning Impact . . . . . . . .. . .. 68
1I1.4.4 Load impact on IIoT Network performance . . ... ... ... 69
ITI.5 Conclusion . . . . . . .. v v v i i v it ettt e wu 71

II1.1 Introduction

T he solution that we proposed in Chapter II using network slicing, has shown

its worthiness in providing urgency and reliability in LoRa networks. In this

context, an urgent packet will always have a part of LoRa resources reserved to guar-
antee its arrival to the gateway. However, after analyzing in depth reliability results,
we have noticed that there is still room for improvement to reduce the percentage of
packets lost in the network. Hence, we decided to investigate more in depth on how
LoRa parameters impact QoS of an IoT device and how to configure the latter properly

in a network slicing scenario.

Reliability in LoRa does not depend only on just successfully delivering a packet to a
channel above sensitivity, it also depends on the configuration of other packets received
at the same time on a LoRa channel which may cause significant packet losses due to
co-SF and intra-SF interference. The former happens when two packets configured with
same SF are simultaneously received at the same channel whereas the latter happens
when the interfere packet is decoded with different SF configuration. Many research
studies focused on proposing various SF configurations and distribution strategies over
multiple network deployments [100] with the goal to overcome capacity limits [122] and
to provide a trade-off solution that minimizes energy consumption while maximizing
reliability [76]. However, SF is not the only parameter that should be taken into consid-

eration when optimizing LoRa configuration.

Increasing TP of a device is also important to increase SNR and the chance of de-
coding one of the packets upon interference. However, one should also not forget on

battery constraints that should be respected to avoid depleting the battery lifetime of
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IoT devices. In some works, authors showed the importance of configuring IoT devices
with a proper combination between SF and TP parameters to improve scalability of
LoRaWAN [103] and to avoid performance degradation and unfairness that happens in
LoRa network if IoT devices configure SF and TP locally [109]. LoRa originally includes
a link-based adaptation of SF and TP configurations using the ADR mechanism. Many
works tried to propose modified and improved ADR algorithms with the goal to in-
crease reliability and energy-efficiency without taking into consideration the possibility
of intra-SF and inter-SF collisions [70] [118] [110]. The latter can be decreased with the
knowledge of the entire network or by finding the optimum configuration after testing all
combinations of LoRa parameters that respects specific thresholds [16]. However, this
method is considered as time consuming because sometimes, achieving multi-objectives
in terms of reliability and energy-efficiency do not always require tuning parameters, es-
pecially on IoT devices placed at the edge of their communication range [26]. In [81], the
performance of the official ADR mechanism proposed by LoRa is evaluated and shows
the impact of different configurable parameters in terms of slow convergence rate which

introduces higher energy consumption and packet losses.

All works previously mentioned from the literature improved LoRaWAN performance
using various optimization strategies. However, the random-based access nature in [oT
network gives the motivation to optimize network slicing with a slice-based parameters
configuration that treats each virtual slice differently without considering all IoT devices
as devices belonging to the same LoRa network. The goal behind this proposition
is to improve QoS of IoT devices and limit interference and collisions in each LoRa
virtual network. This chapter contributions extend the previous one by considering
smart industrial 4.0 application belonging to different QoS classes and are stated as

follows:

1. We include QoS in LoRa, which was previously considered as a best-effort tech-
nology, with the goal to test the flexibility that network slicing provides in terms

of traffic management and QoS integration.
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2. We apply the best slicing strategy found in Chapter II, where the bandwidth is
efficiently reserved on each LoRa GW separately based on MBGD prediction, MLE
estimation, and Static configuration. The goal of this scheme is to avoid channels
starvation while considering dynamically the exact need of each slice starting by

the one with the highest slicing priority.

3. We adapt the TOPG, proposed by [36], as a slicing optimization scheme based
on Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
and Geometric Mean Method (GMM). The proposed method efficiently configures
LoRa SF and TP parameters and improves the performance of each slice in terms

of QoS, reliability and energy consumption.

The remainder of this chapter is organized as follows. We devote Section II1.2 to
describe the network slicing system model in a smart industrial scenario and the multi-
objective optimization problem established in this chapter. Section III.3 presents the
proposed slicing and optimization algorithms implemented over the LoRa module of
NS3 simulator [86]. The performance evaluation of the algorithm and simulation results
are analyzed and carried out through various scenarios in Section II1.4. Finally, Section

II1.5 concludes the chapter.

II1.2 Network slicing Architecture Modeling and Problem

Formulation

111.2.1 Network Slicing in LoRa-based Industrial Network Modeling

In a smart industry network deployed with LoRa, heterogeneous use cases are enabled
for connected machines in terms of robotics mobility, supply chain management and op-
timization, asset tracking and optimization, quality management, smart communication,
and high data transfer speed, etc. However, due to the heterogeneity of these applica-
tions, a single smart industry network is unable to support all of these traffic types
within a network without compromising QoS for any of them. In case of an accident,

a connected robots and machines should immediately communicate the information to
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the global server responsible for emergency situations. However, this information could
be lost or arrived without respecting the required delay in industry area. Hence, the
focus here is on applying traffic slicing in smart industrial scenarios, virtually isolated,
and with specific QoS thresholds. In Table III.1, the key QoS requirements of UCLE,
HCLE and LCLE slices were previously defined in Chapter I with each having running
various IoT applications illustrated in Figure I'V.1. One of the listed use cases is smart
mobility, where, an increase in communication delay between two machines or between
a machine and its gateway may result a dangerous problem and should be provided with
the highest levels of urgency and reliability. On the other hand, some smart industry
applications only require best-effort behavior like metering and actuating to measure the
consumption data of different resources like product parts presence, heating power, etc.

The major challenge in IToT communications is to support various applications hav-
ing heterogeneous QoS requirements in terms of latency, reliability, packet size, and
slicing priority. The key QoS requirements of IIoT virtual slices in the new 5G genera-

tion are summarized in Table II1.1.

Table I11.1: Key QoS Requirements of IloT Network Slices

Slice Name|Packet Delay Budget (ms)|Reliability|Packet Size|Priority
UCLE 50 1-1074 24B 1
HCLE 100 1-1074 512B 2
LCLE 500 1-1076 2508 3

We consider an industrial network slicing architecture based on SDN, LoRa tech-
nology, and virtual IToT slices, as illustrated in Figure. IV.1. The first slice called
“Ultra-high Critical of Latency and Efficiency” (UCLE) is characterized with the high-
est slicing priority due to its most critical urgency and the highest degree of importance
given to the QoS, efficiency, and reliability. Some UCLE applications are required to
ensure safety, such as emergency action and safeguarding systems. The second slice is
denoted as “High Critical of Latency and Efficiency” (HCLE) which gives less promi-
nence to latency but still considers reliability and efficiency in [IoT communications.
An example of HCLE applications are scale readings. The last slice is named as “Low

Critical of Latency and Efficiency” (LCLE), which has the lowest slicing priority and

o1



CHAPTER III. IN-DEPTH PERFORMANCE EVALUATION OF
NETWORK SLICING STRATEGIES IN LARGE SCALE INDUSTRY 4.0

the highest packet delay budget with non-guaranteed QoS and efficiency [67][84].
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Figure. III.1: Network Slicing-based LoRaWAN Architecture.

Figure. II1.2 illustrates how IoT devices are connected to a LoRa GW in the actual

standard architecture (Figure. ITI.2a) and configured with one of the SF-TP combina-
tions, listed in Table III.2.

Table I11.2: ADR parameters configurations

Spreading Factor | Transmission Power (dBm)
SF 7 TP 2
SE 8 TP 5
SF 9 TP 8
SF 10 TP 11
SF 11 TP 14
SF 12 TP 14

While Adaptive Data Rate (ADR) is a mechanism for optimizing throughput, en-

ergy consumption and time on air (TOA) in LoRaWAN and is generally more efficient

for static devices having stable radio frequency (RF) conditions. Depending on the
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conditions of the environment between the IoT device and the GW, network sever will
determine SF and TP values to work on between one of the combinations shown in Ta-
ble III.2 below. However, the server, in our industrial scenario, aims to increase both
SE and TP values simultaneously to increase signal robustness and decode packets at
larger distance from the GW. Nevertheless, when network slicing is applied on a Lora
gateway (Figure IIL.2b), ADR mechanism becomes inefficient specially if the device in
question belongs to a slice having specific QoS thresholds that needs to be respected be-
fore reaching external LoRa servers through the internet. With traffic slicing, the receipt
of urgent communications is now guaranteed at the GW level. However, overestimating
SF and TP configurations leads to an increase in energy consumption due to the longer
activity time for an IoT device when uploading a packet with high SF configuration.
Moreover, if a high SF is configured, achieved throughput may be lower than the one
that needs to be guaranteed in the corresponding slice. Hence, for each slice, one should
not be limited to discrete SF and TP values proposed by LoRa ADR mechanism. This
work enables the possibility to define specific slice-based SF and TP combination to be
configured on an IoT device in a way that respects its QoS thresholds.

(b) LoRa communications with
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Figure. III.2: (a) Standard LoRa and (b) LoRa network slicing with parameters opti-
mization

In this Smart industrial scenario network, we assume that centralized LoRa servers

are aware of the QoS required by each device in terms of delay, throughput and reliability.

53



CHAPTER III. IN-DEPTH PERFORMANCE EVALUATION OF
NETWORK SLICING STRATEGIES IN LARGE SCALE INDUSTRY 4.0

Moreover, LoRa servers are responsible for defining resource reservation strategies on
LoRa gateways (GWs) and on configuring the devices with SF and TP parameters. It is
noteworthy that to improve communications in an IoT environment, multiple objectives
should be reached. More precisely, we jointly consider in this chapter QoS, energy,
and reliability requirements as major key factors and objectives to optimize parameters
configuration of an IoT device belonging to a slice with a specific slicing priority 9. On
each LoRa gateway, a slicing rate is estimated based on the throughput required by the
devices active in each slice [ € L = {l;,...,I}, based on throughput R (with bandwidth
7r), transmission delay D, in order to define capacity Cj; that needs to be reserved.
Each slice is responsible for serving a set of N = {n;,...,ny} assigned IIoT devices
through a set of G = {gs, ..., gc} gateways. We denote by Cjj the requested physical
resources for the slice j on gateway k, while (; being the total gateway capacity. Let
©;;k be the binary value that represents the assignment success of devices i to the slice
j through gateway k. We search to jointly optimize QoS and network slicing energy
efficiency by assigning slice members with the proper SF and TP configurations and
dynamically providing the requested physical resources to these members. However,
solving this multi-objective problem is challenging. Therefore, the goal in this chapter

is to optimize parameters selection after evaluating the cost and benefits in each slice.

I11.2.2 Problem Formulation

As the main contribution is to improve QoS and energy consumption for IToT devices in
Industry 4.0, we formulate in (II1.1) the multi-objective function into an optimization
model which should be minimized at each slice and for each device.

Miny_ O o 5’2 - Vi€ LVke G, (I11.1)
2

where E; ; ;. represents the energy consumption of devices 7 assigned to the slice j through
gateway k. In addition, the energy consumption depends on other factors like the trans-
mit and the received power, and devices mode (active or sleep), etc. [5] [6]. Whereas,

Qi j,x denotes the quality of service of devices i assigned to the slice j through gateway

54



CHAPTER III. IN-DEPTH PERFORMANCE EVALUATION OF
NETWORK SLICING STRATEGIES IN LARGE SCALE INDUSTRY 4.0

k that denote the reimbursements that should be maximized at each slice and for each
gateway. The QoS, as in (II1.2), is defined in each slice based on the Data Rate R and

the transmission delay D, as in (I11.3), for each device i assigned to the slice j through

gateway k.
QoSijr = Rijr + (1 — Dj k), (IIL.2)
M;
D = —288 I11.3
jk Ri,j,k ( )

where M; j i, is the packet length that is trans-received from a device i. In addition, R; ;5
and m are adopted as a normalized values that respectively denote the throughput
and the delay achieved by an IIoT connected device.

Due to the multi-objectivity of the problem, we search to find the optimum slicing
strategy with the proper SF and TP configurations that simultaneously maximize QoS
benefits of each slice and minimize energy and reliability costs without under optimizing
a function over another. This multi-objective problem is formulated subject to the

constraints below:

> Oy =1YkeG (I11.4a)
leL
Yik N vjre = 0,Y5,5 € LVk € G (I11.4b)
0< P <P VieNVjeL (IIL4c)
> OurRix < R Vi€ LVEkeG (11L.4d)
ieN
Oik € {0,1},Vie N,Vj € LVk € G (IIL4e)

The first constraint (III.4a) ensures that each device should always choose exactly

one and only network slice even if the latter was implemented on different physical
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gateways. Moreover, a perfect isolation is guaranteed in (I11.4b) between two bandwidth
parts assigned for two different slices regardless if the latter was reserved on the same or
on two different gateways. The transmission power of each device is limited in constraint
(IT1.4c). Furthermore, constraint (II1.4d) guarantees the sum of uplink traffic sent by
slice members which do not exceed the maximum data rate capacity of the slice that
can be sent through each gateway. Constraint (III.4e) ensures binary association values

of device k to slice .

III.3 The proposed Slicing strategies: Dynamic MBGD

prediction, MLE estimation, and Static configuration

In this section, we focus on the inter-slicing radio resource reservation based on both
schemes MBGD prediction and MLE. While for the intra-slicing resource reservation we
adopt the TOPG, proposed by [36], to find the best SF and TP parameters configurations
in a way that meets best the requirements of the corresponding slice member. Fig. IT1.3
illustrates the proposed slicing mechanism contribution in this chapter. Meanwhile, the
IoT devices to the virtual slice admission and assignment is well described in [89] and [36]
respectively. Next, the main difference between these techniques and the static strategy

will be clarified. Although the adopted TOPG will be explained in this section.
Inter-Slicing Intra-Slicing

SF and TP parameters
configurations

SF and TP parameters
configurations

END

TOPG

SF and TP parameters
configurations

Figure. I11.3: The proposed slicing mechanism
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II1.3.1 Dynamic MBGD prediction-base Inter-slicing

The dynamic MBGD inter-slicing radio resource reservation method is proposed by [89]
in Chapter II to reserve radio channels based on MBGD learning algorithm and Mean
Square Error Process (MSE) process [112]. MBGD (Pseudo-code 4) is considered as an
efficient machine learning scheme adopted to find the optimal amount of radio channels,
that should be reserved for each IIoT network slice, by predicting the optimal required
throughput based on the MSE kernel.

Pseudo-code 4 Dynamic and Adaptive MBGD-based slicing

strategy

Input : Set of IoT devices IV, Set of Slices L, MBGD datasets;
Set of RJT, Stop Criterion ¢;

Output: Unserved capacity ;f‘z,w, allocated capacity J’-fzw, ?jlz,

1 begin
2 Sorts slices in decreasing order based on urgency factor 0
for each Gateway k do
for each slice j do
if (Ri,j,k = 0) then

‘ Define a minimum R; j; = RI7n

1,5,k
end
Define slice rate: 11.20
Define and reserve capacity: 11.21
Compute unserved capacity: 11.22
for each Mini-Batch slice j do
8 while convergence=false do
Compute the gradient: 11.26
Update the throughput: 11.27
if |VR—vg1|<€then

N O ot @

10 if Rﬁj’;ﬂ’ < ZR?;”,‘; & &k > 0 then
11 Define slice rate: 11.28

Define and reserve capacity:11.29 and 11.30
Compute unserved capacity: 11.31
Convergence <— False

i= i+1; //next iteration

12 else

13 ‘ Convergence «— True
14 end

15 end

16 end

17 end

18 end
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In this context, the global idea is to attribute a minimum capacity level for slices
in order to make slices ready to serve its members. Then, by investigating slice online
requirement, and dynamic QoS learning, MBGD reserves appropriate radio channels
number for each slice on each GW. Following this strategy, the proposed technique
consists of pre-learning phase and learning phases. In the former, MBGD serves a
minimum capacity level to each slice based on the mean throughput even there is no
assigned devices to. It starts by computing the defined slice rate, as in (I11.5), in which
the maximum gateway capacity dx has been respected. Then, as denoted in (II1.6),
the defined resources will be reserved. At the end of this phase, MBGD updates the

unserved capacity Y following the formula (IIL.7).

RT
J
Vi = = o7 (IIL.5)
7 YjeL BT
Cir =" *0k,Vj € LVkeEG (I11.6)
Y = 0p — Z Cik, Vi€ LVkeG (I1L.7)
jEL

MBGD acts as a brain in each gateway, after defining a minimum capacity level for each
slice. It defines the best slicing configuration, meeting each virtual slice demands, by
checking dynamically slices member’s throughput. In this regard, the transmission rate
parameter is defined as a dedicated instructional parameter that will affect the QoS and
energy consumption when changing its behavior. However, by increasing the through-
put, the slice’ reserved channels number will be increased while the transmission delay
of a transmitted packet will be decreased. Hence, at its turn, the IIoT device activation
time will decrease due to the higher transmission rate of packets in a larger bandwidth.
Furthermore, the configured transmitted power remains constant, the decrease in delay
impacts energy consumption of a device, which will decrease when packets occupy the
spectrum for a smaller amount of time without negatively decreasing the percentage of
received packets. This parameter will be tuned online, using MSE and MBGD tech-
niques, as illustrated in Pseudo-code 4. At this stage, ) is defined to be the current

observation value and ' is the trained output value, as in (IT1.8). We define the MSE
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cost as illustrated in (II1.9). Noting that Z; is the mini-batch size for each slice.

Ql — El>]7k

Dot (IIL8)
7’7]7

MSE_— Bijrh gy
7 GZZ:( Bt bk ) (I11.9)

At each iteration, MBGD has repeatedly set and update, through the training set (power,
throughput, and delay), the parameter R; ;) according to the gradient error, which

respectively defined in (II1.11) and (II1.10). Where v is the learning rate.

-1 Ei?jvk E17j7k
VR =7~ a5 5 ¥ U :
Zj iz, (Rijn+b1)% (R + biyi k)

- Q)? (I11.10)

RiSY = Rijk = vVr (I1L.11)

Based on the updated throughput, MBGD learns resources demands, for each slice,
and updates the slicing rate (y;) and the requested capacity ( C;f,fdd). Then, it computes
the new reserved and unserved capacity which respectively denoted by C’;f,‘iw and Y75

More details is provided in [89].

1I1.3.2 MLE Estimation-base Inter-slicing

The dynamic MLE inter-slicing radio resource reservation method is proposed by [36]
to estimate and reserve the appropriate resources for slices by finding the maximum
likelihood buffer demands for each slice j starting by the one with the highest slicing
priority. However, the traffic that needs to be uploaded follows a Poisson distribution
and LoRa servers are aware of the amount of data stored in the buffer B; of each slice
member.

Int This context, R; is denoted as the throughput observed by each device ¢,Vi € N
captured at each slicing interval time and identified by a corresponding probability dis-
tribution. For a fixed physical capacity, the optimum slicing strategy is to virtually
reserve resources for each slice based on the mean throughput of its members. There-

fore, R; follows a Poisson distribution P(\) where A denotes the throughput needed by
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device 7 assigned to slice j,Vj € L. Meanwhile, f(R;|)) is defined as the probability den-
sity function similar to L(A|R;) that represents the likelihood of A given the observed

throughput.

L(A[Ry, Ry, ..., Ry) = f(R1|A) f(Ra|A).... f(Rn[A)

N e~ M\
L(A|Ry, Ry, ... Ry) =]

N e—/\)\Ri
logL(/\|R1,R2,...,RN)=l0g[H : ]

i=1 RZ'
N e—)\)\RZ‘
logL(MRth,---?RN)=Zlogl R ]
i=1 v

logL(A|Ry, Rz, ..., RN) = [log(e™) 4 log(A\T) — log(R:!)]

N

To find the maximum likelihood parameter, we apply the first derivative and solve it to

Zero. N
8logL(>\|R1,R2, ...,RN) o Ri
) =2 [-1+5]
N
> R
—-N+EL_—9
TN
N
> R
= szl\/' Vie{l,..,N}

To prove that the )\ is the maximum value, we apply a second derivative as follows:

N
&logL(A|R1, Ry, ..., Ry) _El " Vi€l

The obtained result is always a negative number which indicates that )\ is maximum and
the optimal parameter to consider. Hence, the best slicing decision is to consider the
mean throughput )Tl of slice 7 members Vj € L. However, slices are not equal in terms of
priority. Therefore, GW resources will be dynamically allocated to the most urgent slice

~ L
starting by the channel with the highest reliability. Let v; = X;/ > X; be the slicing rate
=1
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based on which the algorithm reserves for each slice a capacity c;y = .7}, Vj € L.

Pseudo-code 5 Dynamic MLE-based Inter-Slicing Strategy

Input : Capacities cy;

Number of slices j;
Set of Throughput Requirements Ry

1 begin
2 Put slices in decreasing order based on priority sp;
if method=Dynamic — Sicing(DS) : all__slice then
for each GW m do
Apply MLE Estimation based on the throughput re-
quired by all slice j members
Define Slicing Rate «; and Reserve capacity c;

5 end

6 else if method=Adaptive — DS(ADS) : each__slice then

7 for each GW k do

8 for each slice j € L do

9 Apply MLE Estimation based on the throughput re-

quired by slice 7 members in the range of GW k
Define Slicing Rate v; and Reserve capacity c;

10 end
11 end
12 else
13 ‘ Reserve capacity c; equally between slices
14 end
15 end

Output: Set of resources reserved for each slice [

Pseudo-code 5 summarizes the inter-slicing algorithm and starts with the most

critical slice (line 2). Depending on the slicing strategy, the algorithm equally reserves

the bandwidth between slices based on a straightforward "Fized Slicing” (line 14-16)

or estimates the needed throughput A; of all slice | members in the case of "Dynamic

Slicing" strategy, defines ©; for channels reservation and reserve a part of the bandwidth

on all LoRa GWs in a similar manner (line 3-7). If the "Adaptive Dynamic Slicing

n

was adopted, slicing rate of each slice ©; varies from a GW to another because in this

case, MLE estimates throughput of each slice members deployed in the range of the

corresponding GW m (line 8-14). The algorithm moves next to the following slice,

repeats the process and stops when no resources are left for reservation.
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111.3.3 The Proposed TOPG Optimization Algorithm

After defining slicing objectives, next we need to adapt the weight of every objective
before optimizing SF and TP parameters configurations in a way that meets best the
requirements of the corresponding slice. To do this, we propose an optimization algo-

rithm based on GMM and TOPSIS methods.

For this step, Aj=(a;j j)nxn denoted as the judgment matrix where a;; ; > 0 and
aij, 7 X aj; ;7 = 1. Each value a;; ; measures the importance of an objective ¢ over another
objective j for each slice J. Based on the importance values in each slice, a priority
vector is derived and denoted as v = (¥1,7,%2,7, s V(n-1),7 ¥n,s), Where ¢ > 0 and
i ¥; = 1, from the decision matrix A;. With GMM, weight configuration for each

i=1
objective is defined as an objective function of the following optimization problem:

Minimize zn:l > [In(aij.g) — (In(wig) — In(w;,))]?
1=17>2

n
wi g >0, > wiy =1,
=

7

which have a unique solution and can be simply solved by the geometric means of the

rows of each slice’s decision matrix A4;:

T, aii
Vo= (I11.12)
:1(\"/ =1 Qi)

7

Wi,j =

After finding the objective weights for each slice, we import the weight vector of each
slice into a decision matrix Dj, which consists of a set of possible alternatives A, as

shown in the below matrix:

Alternatives w1,y .. Wp_1J WnJ
Aq a1 -1  Gln

D; =
Ay am,1 -+ Amup—1 Amn
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where each value a,, represents a parameter configuration of a device with y €
{1,2,...,n} defines the objective and x € {1,2,...,m} denotes a combination of SF i €
{7,...,12} and TP discrete values j € {2, ..., 14} in dBm among which LoRa servers need
to assign the device with the best configuration based on Wy, the set of objectives weight
values of the corresponding slice. TOPSIS method requires normalized values a4 in D
with the goal is to find the alternative with the shortest distance from positive ideal

solution and the one with the largest distance from the negative ideal solution.

Azy

Qgy = - )
2
X
x?
=1 Y

In other terms, the goal is to find the best configuration that maximizes QoS benefits

with xe€{l,...,m},y € {l,..,n} (IT1.13a)

and minimizes the costs in terms of PLR and energy consumption. For each positive
ideal solution A" and negative ideal solution A~, normalized weight rating v,, can be

determined using the following equations:

Vpy = Wg,jlzy, with ze€{l,..,m},ye{l, .. n} (II1.13b)
At = (v, vg, o)) (I11.13c¢)
A7 = (v ,v5,..,0y) (I11.13d)

where V,, value results using equations

v,n = {mgx Vry,y € Yiiminugy,y € Yz} (1IL.13e)
V;/_ = {Hlxln Vpy, Y € Y1; max v y, Yy e YQ} (I11.13f)

where Y7 and Y5 respectively respect benefit and cost criteria. We calculate next the

euclidean distance from the positive ideal solution and negative ideal solution of each
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alternative; respectively as follows:

+_ +
af = | > (d)? (I11.13g)
j=1
n
di = | > (di;)? (I11.13h)
V&
where d,, = V" — vy, with = 1,....,m and d;, = V7 — vay, with z = 1,...,m.
d-
=z I11.13i
Ca T ( i)

Finally, the configurations are ranked according to the relative closeness previously cal-
culated, and each device will be assigned with the configuration that provides the highest

value (, due to its closest position to the positive ideal solution.

II1.3.4  Static vs Slicing Strategies

The proposed scheme based prediction process will be evaluated and compared to the
other approach cited before in large scale LoRa in realistic Industry 4.0 scenario. The

main difference between these schemes is summarized in Fig. I11.4.

. S
t=0 Config=C1 3\
MBGD t=t+p Config=C2 p#plz..=p3
Prediction t=t+p1 Config=C3
~— U,
) S
MLE t=0 Config=C1
Estimation lﬁ[ t=t+p Config=C2 “ 1 p=pl=...=p3
t=t+p1 Config=C3
~— )
)
Static t=0 Conf|g=C1 p= p1 == p3
Configuration t=t+p Config=C1 Or
t=t+p1 Config=C1 p # pl#...# p3
~—

Figure. I11.4: Main difference between strategies.

In Static scheme the number of radio channel reserved are fixed statically and man-
ually at the beginning. This means that every t with all the periods p are similar

to each other or different, the network keeps the same resource’s configuration all the
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time. Unlike MLE estimation strategy, the process updates every period p its configu-
ration on the resource reservation knowing that these periods are similar to each other
p—1=p—2=. =p,. While MBGD prediction strategy update its configuration every
time and every period, which depends directly to the tracking of QoS performance. Thus
means that all time periods are not similar to each other p # p; # ps # ... # Dn.

Thus, the main algorithm that will be used in our industrial scenario to provide an

in-depth evaluation of our scheme, is provided in Pseudo-code 6.

Pseudo-code 6 Slicing SF-TP Configuration
Input : GW Capacities; Set of slices L;
Set of Throughput Requirements R; ;

1 begin
2 Put slices in decreasing order based on priority 9;
for each GW k do

3 for each slice j € L do

4 if predict=true then

5 Apply MBGD based on slice required throughput.

else
Apply MLE based on slice required throughput.

8 end

9 end
10 end
11 for each GW k do
12 for each slice j € L do

13 ‘ Apply GMM to define W, of each objective.
14 end
15 end
16 Sort devices in i;, based on urgency factor 9;.

for each device i € nj; do
17 Apply TOPSIS to define (SF-TP) parameters:
SF;, TP,=TOPSIS(wj1,..,w;n)
Configure the device with SF; and TF;.

18 end
19 end

Output: Set of resources reserved for each slice j.
(SEF-TP) parameters configuration for each device i.
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I11.4 Simulation Results

In this section, we present the extensive performance comparison between static, estimation-
based and prediction-based slicing strategies. For this job we used the open source NS3
simulator due to its strong tracing architecture and the ability to implement realistic
industrial [oT scenario. Table I11.3 gives a brief of LoRa parameters implemented in this
work. We assume that devices are defining a random time for transmission but period-
ically uploading small packet payloads of 18 Bytes. We consider a large industrial area
in which IoT devices and LoRa gateways LoRa devices and gateways are both placed
over a cell of 10 KM radius following to a uniform random distribution. Each device
is configured with spreading factors that varies from 7 to 12 when uploading traffic to
LoRa GWs. Each GW is characterized by 8 receiving channels wih each channel having
a bandwidth of 125 kHz in the 867-868 MHz european sub-band.

Simulation Parameters

Cell Radius 10 KM
LoRa devices and GWs distribution | Random Uniform
Propagation loss model Log-distance
Bandwidth 125 kHz
Spreading Factor {7,8,9,10,11,12}
Furopean ISM sub-band 863-870 MHz

Power Consumption Parameters [15] [19]
Battery Maximum Capacity 950 mAh
LoRa Supply Voltage 3.3V
Amplifier Power’s added Efficiency | 10%
Connected (Tx/Rx-SF7 to SF12) 1.58 to 25.11 mW
Standby 0.09 mW
Sleep 0 mW

Table II1.3: Simulation Prameters

111.4.1 LoRa Configurations Impact

In the first study, we fix the number of devices to 2500 devices and we evaluate the

performance of each slicing strategy with multiple LoRa configurations. The spreading

66



CHAPTER III. IN-DEPTH PERFORMANCE EVALUATION OF
NETWORK SLICING STRATEGIES IN LARGE SCALE INDUSTRY 4.0

factor (SF) and transmission power (TP) are two main parameters for any transmission
to avoid interference and guarantee the receipt of all packets. The following static
configurations are tested (SF7—TP2, SF8—TP5, SF9—TP8, SF10—TP11, SF11—
TP14, SF12 — TP14) as well as RAND configuration in which the spreading factor
and the transmission power are configured randomly and finally ADR which is the
adaptive data rate configuration currently adopted by LoRa. Following to the Table
IT1.4 illustrates PLR percentage for each category in each slice, it is noteworthy that
packets lost when the gateway is saturated due to the load in the network, due to co-
channel rejection or to lack of sensitivity when the packet is out of range or it does not
reach the gateway due to an appropriate SF configuration. It is remarkable that the

ADR is the best configuration which will be used for the rest of the simulation.

Slice Static Dynamic

Mean PLR %
Name | g7 \ SF8 \ SF9 \ SF10 \ SF11 \ SF12 | Random | ADR

UCLE | 17.99 | 17.90 | 17.99 | 19.74 | 25.37 | 31.24 | 18.73 14.29
HCLE | 26.98 | 26.91 | 25.97 | 24.21 | 25.98 | 27.36 | 27.75 18.75
LCLE | 55.03 | 55.20 | 56.04 | 56.05 | 57.27 | 59.18 | 53.52 32.17

Static and Fixed Reservation

UCLE | 0.12 | 0.62 |291 |6.91 | 11.08| 159 | 899 3.12
HCLE | 041 | 1.75 | 9.42 | 30.65 | 46.75 | 49.76 | 36.28 23.86
LCLE | 99.47 | 97.63 | 87.66 | 62.44 | 42.17 | 34.34 | 54.73 23.09

Maximum Likelihood Estimation

UCLE | 4.29 | 11.85 | 13.35 | 15.33 | 16.44 | 20.05 | 19.71 14.93
HCLE | 10.11 | 42.21 | 40.01 | 35.88 | 30.08 | 28.01 | 13.46 13.52
LCLE | 35.59 | 45.83 | 46.64 | 48.78 | 53.48 | 51.95 | 16.82 21.54

MBGD Prediction

Table II1.4: Packet Loss Rate Variation with various SF configurations

II1.4.2 Applications Periodicity Impact

We study in this section the impact of load metric when fixe the number of LoRa de-
vices assigned to each slice at 2500 devices. In this scenario, we focused on evaluating
performance metrics in terms mean packet loss rate considering load in utilities com-
putation. As showing in Table IIL.5, IoT device may have interests with the same
gateway regardless of the slice that they occupy. However, these devices try to have
the same bandwidth on this gateway, which lead to congestion case that affect decod-

ing packet successfully. Therefore, in would be better decrease the load by distributing
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and forwarding, less packet to another slice which less loaded on another gateway. In
our simulation results summarized in the cited table, the 100 ms load configuration is

reached the best performance. However, our simulation is continued by 100 ms.

Qlice | Applications Periodicity

Mean PLR %
Name 50 100 150 |200 [250 ]300

UCLE | 28.36 | 18.95 | 35.58 | 16.66 | 16.66 | 16.66
HCLE | 11.07]29.236.53 |4.18 [3.33 |0
LCLE | 27.22|51.80 | 24.54 |0 0 0

Static and Fixed Reservation

UCLE | 7.28 |3.12 |15.20|0 0 0
HCLE | 16.09 | 23.86 | 3.67 |0 0 0
LCLE | 99.47 | 97.63 | 87.66 | 62.44 | 42.17 | 34.34

Maximum Likelihood Estimation

UCLE |0 3.70 |13.35]0 0 0
HCLE | 13.88 | 5.55 |40.01|28.70 | 6 18.75
LCLE |19.44|24.07|46.64 | 33.77 | 7.33 | 14.58

MBGD Prediction

Table I11.5: Packet Loss Rate Variation with multiple Applications Periodicity

II1.4.3 Gateways Number and Positioning Impact

In Table III.6, we evaluate the impact of number of gateways deployed on each slice
reliability with both estimation-based and prediction-based slicing algorithms. We eval-
uated the percentage of packet loss rate with 1, 4, and 16 GWs and we studied the result
when we randomly placed the gateways. The result is next compared to a static posi-
tioning in which spaces between the gateways are all equal. With static positioning and
when the number of gateways increase in the network, more channels are available for
reservation for each virtual slice, this explains the observed improvement in reliability
regardless of the adopted slicing strategies. Gateways positioning in an industry area is
also very important, static positioning also had a better impact on reliability compared
to the random positioning. However, there is still room for improvement because PLR

was still high for LCLE slices and should be optimized with smart positioning algorithms.
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Qlice |Random Positioning |Static Positioning

Mean PLR %
Name |1 Gw|4 GWs|16 GWs|1 GW|4 GWs|16 GWs

UCLE|24.23 |20.21 [18.99 |18.17 |15.99 |32.49
HCLE|27.85 |27.46 |25.97 |35.88 |30.08 |28.01
LCLE |47.91 |52.32 [50.04 |48.78 |53.48 |51.95

Static and Fixed Reservation

UCLE|0.12 ]0.62 [2.91 6.91 [11.08 |15.9
HCLE|0.41 |1.75 ]9.42 30.65 |46.75 [49.76
LCLE|99.47 |97.63 |87.66 |62.44 |42.17 |34.34

Maximum Likelihood Estimation

UCLE|7.45 |11.85 |13.35 |15.33 |0 0
HCLE|42.40 |42.21 |40.01 |15.99 [13.90 |0
LCLE|50.15 |45.83 [46.64 |32.49 |16.44 |20.05

MBGD Prediction

Table II1.6: Packet Loss Rate Variation with multiple GW positioning configurations

II1.4.4 Load impact on IIoT Network performance

After evaluating the performance of static and dynamic slicing strategies in terms of
configuration, applications periodicity and gateway positioning, we evaluate the perfor-
mance of slicing strategies in congested IloT deployments. We consider a large area of
10 KM radius and we increase the number of devices from 1000 to 10000 IoT objects
(machine, robot). We evaluate how the performance varies in terms of QoS and energy
consumption. The percentage of devices that respected delay and throughput thresh-
olds are illustrated in (Fig. IIL.5b) and (Fig. III.5c) respectively. We also studied
the impact on energy consumption in (Fig. ITI1.5a) when the load in the area increases.
On one hand, in an [ToT environment, devices were consuming more energy with esti-
mation method when the number of devices increased in the network due to the slicing
interval time between each optimization. It appears more beneficial to apply prediction
to save more time when changing resource reservation for each virtual slice. A faster
modification leaves a larger room to serve more devices and hence reduces the possibil-
ity of retransmiting packets and consumes less energy. On another hand, both MBGD
prediction and MLE estimation slicing methods were quit efficient. However, MGBD

had better performance than MLE and was less impacted in large scale IIoT deploy-
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Figure. I11.5: Performance Evaluation with large scale I1oT Deployments

ments. This result is illustrated in (Fig. II1.5b) which shows that when by passing

5000 devices in 10 KM square area, MLE estimation suffered from meeting throughput

thresholds of LoRa virtual slices with a rate that nearly reached 50% for 10000 devices.

This result is due to congestion when applied to a non-proper resource reservation. The

latter is applied in a more efficient manner with MGBD prediction compared to the MLE

estimation. In (Fig. III.5c), the same analysis also goes for delay performance. Here,

MBGD had the upper hand but both methods were impacted with congestion. MLE

estimation was more impacted in large congestion and scored 60% for 10000 devices.
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I11.5 Conclusion

This chapter evaluates the dynamic prediction and estimation slicing strategies in large
scale IToT scenarios due to the rapid development of Industry 4.0. Meanwhile, it high-
lights the utility of supporting the adaptive dynamic slicing strategy with a slice-based
parameters optimization that seeks for the best SF and TP configuration for each device
depending on the slice that it belongs to. We compare a prediction-based slicing strategy
to other estimation-based algorithm for inter slicing resource reservation. Both methods
were deployed over a realistic IIoT scenario using NS3 simulator. MBGD prediction
algorithm scored better results and was more efficient because it applies slicing decisions
when considering QoS requirements of each slice. Results show the efficiency of MBGD
in decreasing energy consumption and improving QoS, reliability when each device is
configured with the proper SF and TP combination. Therefore, higher percentage of
devices that respected delay and throughput thresholds. However, there is still room for
improvement by optimizing the number of GWs and finding optimal positioning in an
industry to provide more reliable communications for each LoRa virtual slice.
LoRaWAN will suffer from congestion when the number of devices increase in the
network. Hence, we believe that centralized servers will practically face major difficulties
in managing and properly isolating Lora slices as well as configuring each IoT devices
with the proper parameters configuration. Hence, the goal in the next chapter is to
propose a distributed strategy supported by SDN which should meet scalability and

capacity requirements of LoORaWAN in large scale IoT deployments.
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IV.1 Introduction

SI fter evaluating in Chapter 11 the assets and the usability of network slicing in

guaranteeing QoS for IIoT devices in terms of urgency and reliability, we have

shown next, in Chapter III, that further improvement can be reached if an optimized SF
and TP distribution is taken into consideration. However, due to the vast popularity that
IoT is gaining, estimations forecast that 20 to 30 billion IoT devices will be connected
by 2022 [40]. There is some doubts about how to deal with the rapid development of
LoRaWAN knowing that the current LoRa architecture won’t be capable of supporting
upcoming scalability challenges in large scale LoRa deployments despite the advantages
brought to LoRaWAN with our previous contributions.

Motivated by the IoT random access nature, network slicing is being investigated over
LoRa technology in order to provide better isolation for multiple slice created on the
unified physical LoRa devices. Therefore, these virtual slices are specified by their own
QoS which will be independently and dynamically managed. However, due to the limited
shared channel resources, slices implemented on LoRa devices suffer from performances
degradation and resource starvation [36]. In this context, improving QoS for virtual
LoRa slice requires an efficient and dynamic resource management scheme-based TP,
SF, and bandwidth configuration. This remains as an open research issue.

Over the last years, network slicing has received increasing attention from the re-
search community due to its several benefits in meeting QoS demands for slice’s mem-
bers. The authors in [89] proposed a framework based on Mini Batch GD and GMM
to allocate channel resources for the slice member. This approach attempts to dynam-
ically manage the QoS requirements, at the central SDN level, by checking the slice’s
throughput revenues. Authors in[36] proposed a LoRa network slicing scheme based
on Maximum Likelihood Estimation to provide slice’s resource reservation in inter and
intra mode. This approach seeks to find the best Spreading Factor and Transmission
Power configuration that provides an optimal decision on the channels number to be re-
served. Authors in [56] proposed a hierarchical controller framework based on SDSense

and defined the network component requirements, as well as deriving an algorithm to
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optimise resource allocation across the network. In this approach, a logically centralised
controller manages topology control, resource scheduling, while congestion control and
data-rate reallocation modules react to the state of local controllers employed on each
SDSense node. Authors in [128] proposed the adaptive control of the training itera-
tions number under the resource-constrained edge environment. Moreover, in [120] the
federated learning scheme over wireless networks context, was proposed, by formulat-
ing an optimization problem that find the optimal trade-off between computation and
communication cost.

The ultra high density of IloT network raises challenges in optimal wireless resource
allocation which has been addressed by heuristic approaches because of its non-convex
property [24]. Recently, deep learning approach-based resource allocation techniques are
also proposed to provide efficient resource management, but the training data is either
unavailable or the training process is computationally expensive and therefore are not
suitable for large-scale system and cannot meet dynamic slice’s QoS demands [48, 3, 60].

Reinforcement learning (RL) technique is able to adapt to the changes in dynamic
environments. Therefore, it has been applied for resource scheduling [106], assignment
optimization [141], etc. A RL agent is able to improve its policies by continuously
interacting with the environment which can be formulated as a Markov Decision Process
(MDP) [59]. Therefore, building high quality of policies in a centralized way is confronted
with a great challenge when the state’s features space are limited, the data privacy
context, and the propagation delay [38]. To cope with these issues, Federated Learning
(FL) has been proposed as a decentralized machine learning scheme. However, FL is
designed to be a global-learning system. Therefore, local agent Q-network policy can
utilize the agent’s local computation capacity and share learning experience with other
agents to train a global neural network model [72].

Unlike our previous contributions in Chapter II and Chapter III where we tackled
resource reservation problem in centralized architecture. In this chapter, we will try
to prevent potential challenges that may appear due to the increasing congestion in
large scale IoT deployments by leveraging computational intelligence to LoRa gateways

and moving closer to the edge. This should improve network performance and reduce
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computational complexity in next generation IoT networks. Our main contributions

with respect to the surveyed literature are stated as follows:

1. We propose a network slicing architecture based on SDN and NFV for [1oT 4.0 to

meet multitude slice services requirements with guaranteed QoS for its members.

2. We formulate the LoRa slicing optimization model to be used in the proposed

Framework.

3. We propose a Multi-Agent deep Q-learning (MAQL) based on network slicing

paradigm to maximize self-QoS requirements.

4. We propose a Deep Federated Q-Learning (DFQL) scheme to federatively build
global model that maximise slice’s rewards (QoS), by improving action decision

(TP and SF) and exploiting Agents self experiences.

The remainder of this chapter is organized as follow; section 1V.2 provides the pro-
posed slicing architecture, the system model, and the problem formulation. After that,
we introduce, in section 1V.3.1, our Deep federated Q-Learning framework in detail.
Then we evaluate our scheme in section IV.4. Finally, section IV.5 concludes the chap-

ter.

IV.2 Network Slicing Architecture-based System Model
for IoT

In this section, we introduce the proposed architecture based on SDN and NFV to
provide more flexibility in the management of IIoT networks and then we provide a deep

overview of the slicing system model and the problem formulation.

IV.2.1 Network Slicing Architecture based SDN and NFV technologies

The design of the 5G network architecture is focused on careful consideration of the
hardware infrastructure, software control and interconnectivity between them to ensure

optimum slice management of the resources. In this context, we consider a network
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slicing architecture that consists of a set of J = {1,...,j} IIoT network slices, where j
represent the slice number. These slices are built on the unified physical infrastructure

and share the same resources which consist of edge network and core networks.

| e: Slices
! |i> Tenants

i i Global Deep Federated
Learning Model

Slices Resources (
h Revenues Orchestrator>

etworl

e

G)

£

[

c

=3 A

2”‘ lﬁ> Slices QoS

2 _ Requirements — — —

] @ SDN-Enabled Switch — = =

8 7> SDN-NFV Enabled m— Ol (=

= U Switch andwidth)] | channet
A 7 St Nnd

RS LT T TP PR R PTEITTTEOPPPPPPR PP .
* GWs (Agents) F Resources

NFV MANO

b=

Self Q
learning
Models

between Slices

Resource Allocation

Multi Agents Environment Aware-Network Connections

Figure. IV.1: Network Slicing Architecture.

Without loss of generality, the considered network slicing architecture, which is de-
noted in Figure. IV.1, consists of three virtual ITIoT slices classified as follows; the
most urgent slice denoted as the “Ultra high Critical of Latency and Efficiency (UCLE)”
which yields more significance to the QoS, the reliability, and the efficiency. This explains
the high demand for this slice by multitude industrial IoT safety applications such as
emergency action and safeguarding systems. Thereafter, the “High Critical of Latency
and Efficiency (HCLE)” slice donates less importance to the latency while maintaining
reliability as a first target. This slice is required by the industrial scale reading applica-
tions. The last one is defined as the “Low Critical of Latency and Efficiency (LCLE)”
which has the lowest slice priorities with unsecured QoS and performance. Table IV.1
outlines the key QoS specifications of the slice in terms of latency, reliability, packet size,

and priority factor [89].
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These virtual IIoT slices are built on the top of the unified physical infrastructure
layer that consist of a set of K = {1, ..., k} gateways, where k is the number of gateways
that will be considered as agents in our architecture. We emphasize that the involved re-
sources go further than conventional equipment used. In addition to physical centralized
and edge computing, it involves more manufacturing equipment with high sensing and
actuation capacities, and network storage components. These agents play a key role, in
the architecture, in providing resources to the substrate network layer, which contains a
set of I = {1, ...,i} IIoT devices, affected to the slices (virtual environment) that meet its
QoS requirements. We consider the substrate network, in this contribution, as the real
environment, in which agents play. All these agents interact with the SDN control unit,
in which federated actions are provided based on their hierarchical learning experiences,
to the local played model in order to equitably reserve physical resources between slices.
While MANO is NFV’s management and orchestration model which consist of a virtual-
ized infrastructure manager, virtual network function management and orchestrator. It
aims to provide a dynamic functions and network reconfigurability of the entire network.

Table IV.1: Key QoS Requirements of IToT Network Slices

Slice Name|Packet Delay Budget (ms)|Reliability|Packet Size|Priority
UCLE 50 1-107* 24B 1
HCLE 100 1-107* 512B 2
LCLE 500 1-107° 250B 3

IV.2.2 Slicing System Model

This section provides the problem formulation and the system model of the slicing strat-
egy in LoRa-based network. Two main components are considered in the proposed
architecture. The distributed LoRa-gateways (agents) in the environment which pro-
vide self learning model and the SDN-based orchestrator which federatively manages
the agent’s resources based on their local model. The IIoT slices are integrated virtually
on the top of these Gateways (GWs). However, GW’s physical resources that include
a set of C' = {1,...,¢} channcls with cach having a bandwidth b € B = {1,...,b} on

each GW k € K, are virtually divided and reserved for each slice j € J. To boost 11oT
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communications, QoS requirements and conscious energy consumption must be consid-
ered for each slice member. Therefore, multi-objective optimization formulation that
considers resource allocation in network slicing LoRa-based scenario is required.

The ultimate goal of this work is to provide dynamic channel allocation, based on
TP and SF configuration, for IToT slices member connected to a GW. We denote by
a; € {0,1} the binary variable to indicate the admission and the assignment success of
device i € I to slice j on GW k. Therefore, we define the Throughput and Delay as
in (IV.1) and (IV.2) respectively, based on SF and TP constraint for each device i;y,
assigned to slice j on GW £ [36].

R. b; ,
¢i = SF. g CR = SF.o¢p CR, Vi € Iy, (IV.1)
L:
di=—", Vi€ Ly, (IV.2)

i
where R, b; j, CR, and L; denote respectively the chip rate, the bandwidth assigned for
slice j on LoRa GW k, the coding rate, and the packet size. Where ¢; and d; denote,
respectively, the throughput, and the delay achieved by a device i assigned to slice j
on GW k. Based on these formulas, we define in (IV.3) the QoS model that should be

maximized for each slice on each LoRa GW.

max uéﬁs = Z (i + (1 —dy)), Vi € L, (IV.3)
i€l g

where uJQ]; g is denoted as a metric that yields indication about the slice’s QoS satisfaction
rate over a LoRa GW k, while ¢; and d; are denoted as a normalized value for throughput
and delay respectively. Since the main objective is to meet slice’s QoS requirements by
improving resource demands, energy efficiency (EE) constitutes a second objective which
must be maximized for slice members on each GW. However, EE aims to maximize the
total communication rate within a unit energy. Let denote by pf the power allocated
for each device 7 assigned to slice j on GW k. Therefore, we define the EE system as a

ratio of the slice’s throughput sum to the total power consumption, which can be given
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by (IV.4).
maquE— Z aZPT P VZEIJI/H (IV4)

ZEIJ k

where uZE'fE denotes the EE metric that measures the slice’s energy efficiency, P. and
PyT = ic i p! denote the circuit power consumption and the TP respectively. However,
best configuration on TP for devices leads to achieve better EE which improves the slice
throughput. Increasing the SF also decreases the transmitted data rate, improves signal

strength and gives the receiver a better sensitivity as stated in (IV.5).

t ot T
pr = DPi % 9i &, Vi € I, (IV.5)

where p! is the received power with g7 channel antenna gain, while gf denote the channel
antenna gain for the transmit power pt. L is designated as the path loss depends on the
distance between the transmitter and the receiver where €¢ is the log-normal shadowing
component with & ~ N(0,02). On the other hand, lower TP and SF configurations
may cause packet reception failure consequent to the inter and intra-SF interference.
The former presented as the Packet Loss Rate (PLR!) resulting from collisions between
two device configured with same SF. While the latter, denoted as binary value (PLRY)
that stipulates, by following the hypothesis provided in [86], that the packet can survive
interference from other LoRa GW transmissions. Thus, the devices undergo an estimated

SINR value on the basis of (IV.6).

p’f
INR j= P
S R 7 o? + Zneaj p:z (IV6)

where p} denotes the received power for packet n under consideration sent by device with
SF =i which 0; is the set of interfering packets with a common SF = j. Each element
of the matrix downstairs designates the minimum signal power margin threshold V; ;
with 4,5 € {7,...,12}. It must be available for each packet to be sent, with SF = i, to
be successfully decoded on each interfering packet with SF' = j. Therefore, if a higher
power margin (dB) value is achieved than the corresponding co-channel rejection value,

the packet will outperform any interference packets, considering all SF combinations.
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Therefore, we denote by (PLR/") the binary value that gives status whether the
packet comes at the GW above or below sensitivity. In this context, we define Packet
Success Rate (PSR;), formulated in (IV.7), as the reliability (REL) objective that should

be maximized for each slice on each GW.

SF, SFy SFy SFig SFi1 SFiy
SF, —6 16 18 19 19 20
SF, 24 -6 20 22 22 22
Vij=1|SFy 27 27 -6 23 25 25
SF 30 30 30 -6 26 28
SF; 33 33 33 33 -6 29

SFip 36 36 36 36 36 —6

/k .
maz ufg; = ZaiPSRi, Vi€ I,
j?k

=Y a;((1 - PLR}) + PLR] + PLR"),
7,k

(IV.7)

where /) R 71, denoted as the reliability metric that should be maximized for slices member
on each LoRa GW.

At this stage and based on previously model mentioned, we define the multi-objective
optimization problem, as in (IV.8), with the aim is to maximize the global slice utility

revenues metric UJE.

7.k
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subject to the following constraint;

Y oy =1Yi€ L, Vj€ JVk €K, (IV.9a)
ijp Ny =0,Vi€1,Vj,j € JVk € K, (IV.9b)
ijkNijw =,V € ILVj € JVk, k' € K, (IV.9¢)
0< > aip! < pl < ppree i € L, (IV.9d)
> s < QTR Vi€ Ly, Vi € J,Vk € K. (IV.9e)

Since all defined IIoT slices are built on a common physical infrastructure and share
the same resources, constraint IV.9a ensures that every i device is always admitted
and allocated exactly to one and the only slice of the network that satisfies its QoS
requirements, even if it has been built on different physical gateways. Additionally,
constraints IV.9b and IV.9c ensure a perfect coalitions upon IloT devices admission and
association into virtual slices. However, IV.9b guarantees isolation between slices, in
which the sets of two device assigned to the slice j and to the slice j/, respectively, do
not share common IIoT devices in the GW k range. While constraint IV.9¢ encloses
a perfect isolation between LoRa GWs, in which devices that are assigned to slice j
cannot be shared between two LoRa GWs k, k" € K. Constraint IV.9d ensures that
the transmission power 3 a;p! allocated to all members for each slice does not exceed
the maximum transmission power pf allocated for slice in turn does not exceed the
maximum transmission power pi** provided by the GW k. Finally, IV.9¢e guarantees
that the uplink traffic sum > a;¢;, sent through each gateway by slice members, do not
exceed the maximum throughput capacity ;”,éw allocated for each slice.

Due to information deficiency between LoRa GWs in a large scale, a Deep Federated
Q-learning (DFQL) is proposed to maximize the utility function revenues, based on TP

and SF adjustment, on each GW and for each slice. Table. IV.2 summarizes all key

parameters used in this framework.
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Table IV.2: Key Parameters Meaning

‘Notation Meaning

J=A{1,...,7} IToT network slices set

K ={1,..k} LoRa Gateways (Agents) set

I=A{1,..i} IToT devices set associated to each slice
c=A{1,..c¢} LoRa-GW’s channels set

B={1,..,b} Channel Bandwidth set

a; € {0,1},Vi € I, Device’s admission and association index to slice
Vi € Iy Device i assigned to slice j on Gateway k

SF LoRa Spreading Factor

TP LoRa Transmission Power

i, V1 € Ljg Throughput of device ¢

d;,Vi € Iy Delay of device 7

uég]f)s Quality of Service metric for slice j on GW k
pi Vi€ Iy, The power allocated for each device ¢

u]E]fE Energy Efficiency metric for slice j on GW k
Dy The received power

Vij, Vi, j €{7,...,12} SF-Power Margin Matrix

uﬂ% I Reliability metric for slice j on GW k

Uﬂgqli, Vk € K,¥j € J The global slice utility revenues metric

{§, A, T, R} State, Action, Transition function , Reward
« and Agent o and Agent

~ Discount factor

0,03 DQL Network parameters (weights)

by DNN Network parameters (weights)

D.,Dg Reply memories to store transitions

IV.3 The proposed DFQL-based Network Slicing Frame-

work

The proposed federated resource allocation-based SEF and TP configurations are related
to Multi-Agent deep Q-Learning (MAQL) which involves a set of agents (each one im-
plements Deep Q-learning model) in a shared environment and a Global Deep Federated
Learning (DFL) model plays an orchestrator role (SDN) for MAQL, as shown in Figure.
IV.2. In this section, we provide, at the first stage, the problem formulation for the

local resource allocation (for each GW) based on deep Q-learning (DQL) model. Then,
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at the second stage, the deep federated Q-learning framework, for resource allocation,

will be introduced.
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Figure. IV.2: Deep Federated RL Brain Architecture.

IV.3.1 Local DQL-based Slice’s TP and SF Configurations

We propose to implement for each GW loRa a DQL-based slice’s TP and SF configura-
tions, as shown in Figure. IV.3. In this context, we define the local resource allocation
based on DQL brain, that aims at maximizing slices profit, as a Markov Decision Pro-
cess (MDP) [99]. However, MDP is defined on the basis of 4-tuple as {S, A, 7, R}. S is
denoted as the state space indicating the virtual IoT slices state (EE, slice members), A
is the set of action (TP and SF), R is the reward set indicating slices revenues in term of
QoS. Where T represents the transition function, in which 7 (s,a,s’) = P(s'|s,a) with
s’ € S is the next state, s € S given the current State, and a € A denotes the action.
We adopt, then, the relationship between {S,.4, R} and the slicing metrics, in order to

correlate network slicing optimization with DQL model, as follows:

EE, L TP, SF
s€cS=|FEE, |, a€A=|TP, SF,|,and
EFE; I, TPy SF3
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o1 dq
reR= ¢y dy|,¥i€ I

¢3 d3

Where the numerations 1, 2 and 3 denote respectively UCLE, HCLE, and LCLE slices

following its urgency factor.

Reward(g;, d;)

Agent  ryjly Connected
DNN

Policy
II(s,a) Action

p® : (TP, SA) Environment
®(EE, I) OY .

Parameters 0

State (EE, |)

Figure. IV.3: Local DQL Model for resource allocation at LoRa GW level.

Therefore, two main equations in MDP process are defined as follow:

Vi (s) )+ > T sV (s'), (IV.10)
s'eS
Qf 1(s,a) =1(s)+ Z T(s,a,s)V7(s), (IV.11)
s'eS

the former (V7(s)) denotes the function value, where 7 : A — S is the policy that
represents the strategy used to select actions. The latter (Q™(s,a)) is defined as Q-
function value. However, solving the MDP problem means that choose the optimal policy
value 7* by considering V™ (s) = maz,V™(s,7*(s)) or Q™ (s) = maz,Q(s,n(s)).
While the Q-function value, for DQL model, in which the transition 7 is considered as

unknown, is given by Q-network Q(s,a;6), as in (IV.12).
Qi+1(s,a;0) =Eg{r(s) + Y max Qi(s',d;0)s,al, (IV.12)
a/

where 0 is denoted as the network parameter and +y is the discount factor. In this context,

we define the replay memory D to store transitions {s,a,s’,r} which is used to learn

84



CHAPTER IV. DEEP FEDERATED Q-LEARNING-BASED NETWORK
SLICING FOR INDUSTRIAL 10T

the network parameter by exploiting the Mini-Batch Gradient Descent process [89] that
regularly update 6. Once the learning phase reaches the convergence, the optimal 7*

policy is performed as in (IV.13).
7 (s) = arg max Q*(s,a;0) (IV.13)

IV.3.2 The proposed DFQL framework

In this section, we present our DFQL framework in details. An overview of DFQL is
shown in Figure. IV.2, in which the lower part constitutes the Multi-Agent deep
Q-Learning (MAQL) and the upper part includes the Global Deep Federated Learning
(DFL) model. Where the former (MAQL) assumes that agents do not share their partial
observations but rather collaborate to receive global rewards, by sharing its local model
based on Q-network experiences to the DFL orchestrator, rather than considering agent
observations are shareable. While the latter (DFL) indicates that the orchestrator ag-
gregates agent’s self models and build a global deep network model to provide optimal

action that maximize slices QoS revenues.

e mme e at=argmax Qf  D----eeeeeeeeees .

Qf
DFL DNN 8 :
1 [
cp Qu QB Cq
MAQL 0q OB
rm—T tSu Sp g
Agent o .Agent B

Figure. IV.4: Q-network Agents.

We assume that the MAQL consists of two agents, denoted by a and 3, as shown
in Figure. IV.4. However, we consider Dy = {Sa, Ga, Su:Ta} and Dg = {sg, ap, s, 75}
as two reply memories to store transitions parameters which will be collected to build
federatively optimal policy (7, and 73) for Agents (LoRa GWs) a and § respectively.

Respecting to agents o and 3, the notations of Q-functions, states, actions, and policy
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are denoted, respectively, as {Qa, Sa € S,aq € Aq, 7} and {Qp, s € S,ap € Ag, T3}
Thereby, assuming that states spaces (s, and sg), Transitions parameters (D, and Dg),
and the Q-network functions (Q, and Qg) are different for the defined agents o and f.
Each agent (a or /) builds its own model based on self Q-network (Q, or Q3), and 6
(0o or 63) parameters, as in Figure. IV.4.

These agents (MAQL part) interacts with the DFL global model (with Q-network
Qg and 0, parameters) with the goal is to build a global federated model that satisfy
dynamic slice’s QoS requirements exploiting local agents experiences which are defined
as Qu(Sa, a; 0a) from o and Qg(ss, ag; §5) from [. In this context and based on MAQL
Q-networks models, we define, in (IV.14), the DFL (based on DNN) Q-network output

as Qf(ea,eg; 99).

Q1 (0as05;05) = DNN([Qa(5a; aa; 0a)Qp(58, ag; 05)]; 04), (IV.14)

where [.|.] denotes the concatenation notation and 6 is the DNN (DFL) parameter which
can be shared between agents.

Regarding the interaction with the DFL model, each agent contributes to build the
global model, as well as federated Q-networks Q¢(6q,03;0,), by viewing the Q-network
model of the other agent as a constant when updating its parameters and sending its
local model to the global DFL orchestrator. Therefore, agent « sends its local model
Qo (Sas aq; 0y) to the DFL to build the federated output Qf, asin (IV.15), by considering
agent’s 3 model Qg(sg,ap;03) as a constant Cz. On the other hand, at its turn agent
B sends its local model Qg(sg,ag;fg) to build a global model Q?, as in (IV.16), by

considering agent’s « local model Q,(Sq, @a;0a) as a fixed constant C,,.
Q}Y(Sav 7o) CB§ O 99) = DNN([Q&(~§ ea)|Cﬁ]§ 99)7 (IV'15)

Q7(s8, a8, Ca; 035 65) = DNN(1Qp(;85)|Cal: by), (IV.16)

where Cy = Qa(Sa,aa;ba) and Cg = Qs(s8,ag; 03) noted as the defined constants used

to update global Q-network model for agent S and « respectively.
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At this stage, we define for agents o and  the Mean Square Error (MSE) Loss
function denoted respectively in (IV.17) and (IV.18) [89]. These formulas are used to
train our framework and update parameters (6,,63,63) to build federated model and
find an optimal action decision on TP and SF that maximize slice’s QoS rewards then

slice’s metric (formulated in (IV.8)).
MSE! (0, 0,) = BI(Y" = Q3 (sh, b, s 00, 0))°) (1v.17)

MSE}(03,0q) = E[(Y" — Q (s}, af, Ca; 03,64))7), (IV.18)

ws Qo> O304, 0,) is considered for agent o only and then

t_ it t gt
where YV —T(S)—F’YI;lEaj(Q?c‘(S a

shared with agent f.
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Figure. IV.5: Deep federated learning framework.

An overview of the training and testing phases of the DFQL framework is shown in
Figure. IV.5. In the training phase, agent «, as a master, it begins by computing
Y? and sends it to agent 3. This is accumulated as a first iteration to be used after in
updating parameters. Agent 3 updates 63 and 6, and computes, then, Cg. After that,
it sends 6, and Cg to agent a. Subsequently, agent o updates 6, and 6,, computes Cl,
and sends 0, and C, to agent . Figure. IV.5a presents these training steps. In the
testing phase, both agents compute C, and Cjs and send it to each other in order to
compute federated output Q;‘i and Qﬁ , as provided in Figure. IV.5b.

We provide in Pseudo-code 7 and Pseudo-code 8 the detailed training phase for agent
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Pseudo-code 7 Agent o Training Phase
Input : Slice State S, Action A,, Reward R.;
Output: 0,, 0,:
1 begin
2 Initialize: Qn,Qf based on random 04,0, Memory D,
for Epoch=1:EP do
while MSE convergence=False do
Collect s!, € S,
Compute C3=ALG2.Compute()s
Select a!, € A, with probability € policy
Otherwise af, = arg max Q‘}‘(sg, at,, Cp;0a,04)
Apply af,, get rf and si!
Store st al,, rl, st in Dg
Collect Batch-sample (s/,,a’, ), sI+1) of D,
Compute Cg=ALG2.ComputeQs(j)
Y(,{ = Té + yarg I;leaj( Q?(%? aZw O,B§ Ou, 99)
Update 64,8, following formulas (IV.17) and (IV.18)
Compute Cy = Qu (s, al;04,0,)
Computef,=(ALG2.UpdateQ(Y”), Cq; 0,)

5 end
6 end
7 end

a and § and DFL (DNN). Firstly, these algorithms initialize memories (D,,Ds) and
network parameters (6,,03,6,) (line 2 in both algorithms). Then, in Pseudo-code 7 we
collect state s!, and we call Compute@ s function in Pseudo-code 8 to calculate the agent
B Q-network output, obtain stﬁ, and select optimal a% (line 2 to 9 in Pseudo-code 8).
Therefore, from line 6 to 9 (Pseudo-code 7), the e-greedy is performed for agent «, then
transitions are stored in the memory. In steps 10 to 13 of Pseudo-code 7, the stored
parameters are sampled and the ComputeQg(j) is called, from Pseudo-code 8 line 11,
to calculate C'z output based on the index j. Thereafter, the lines 12 to 14 in Pseudo-
code 7, agent « calculates Y;, updates the parameters ¢, and 6,4, and computes C,, and
send it to agent 3. While in line 15 (Pseudo-code 7) the UpdateQ(Y?, Cy;0,) function
of agent 3 is called to update 63 ,0,, compute Cg as in line 16 to 19 in Pseudo-code 8.
These steps will be repeated until convergence.

After the training phase, each agent («a, agents /3) has its own model and network

parameters, while the federated model (DFL) is now created. Over the test phase, the
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Pseudo-code 8 Agent S Training Phase
Input : Slice State Sg, Action Ag, Reward Rg;
Output: 63, 0;
begin
Initialize: Qg based on random 63, Memory Dg
Function: Compute(s
for Epoch=1:FEP do
3 Collect s} € Sp
Select a},, € Ag with probability e policy
Otherwise aj = arg iffé‘ﬁ Q% (sh, aj;05)

N =

Apply af, get r[t@ and S%H

Store s%,a%, r%, 5?1 in Dg

return Cs=Qp(s},a%;05)

4 end
5 End Function

6 Function: ComputeQ3(j)

for Epoch=1:j do S

7 Collect Batch-sample (s7,a%,75 sf;rl) from Dg
return Cs=Qp(s5,a5:05)

8 end
9 End Function

10 | Function: UpdateQ(Y’,Cy;0,)

for Epoch=1:j do

11 Collect Batch-sample (s%,ag) from Dg

Update 63,0, following formulas (IV.17) and (IV.18)

12 end
13 End Function
14 end

agents a and [ are now able to calculate and exchange C, and Cg with each other
through the global DFL in order to obtain federative outputs Qé and Qé, as shown
in Figure. IV.5b. Thus, it will be exploited to find an optimal action decision on
TP and SF configuration aimed at maximizing the slice’s QoS rewards. As provided in
Pseudo-code 9, federative communication done between agents via DFL model. From
line 6 to 15 in this algorithm, agent o computes its own Q-network output (C,) then
sends it to the other agent through DFL. After that, based on Cj aggregated from agent

B via DFL, it calculates its federative Qgi that will be used to find the optimal action
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(on TP and SF) following slice’s current states and rewards. While agent 3 does the

same steps as a based on C,, provided in line 16 in Pseudo-code 9.

Pseudo-code 9 DFQL Scheme for Resources Allocation
Input : s € S,, stﬁ € SE, af, € Ao, ay € Ag, 7l € Ra, Ttﬁ € Rg;
Output: Agents Q/, Qé, Slice alt, a%“, ritt rf;rl;

1 begin

2 Load Models: 0,, 03, 0,

Initialize: Q(J;, Qg, Memory D, and Dg

for Epoch=1:EP do

while Interaction="True do

Function:Agent-a to Agent-5 via DFL (Cj)
Store Cg in D,
Collect s, € S, @}, € Aa, 1, € Ry
Compute C, following formula (IV.12)
Compute Q/, following formula (IV.15)
Select: alf! € A, with probability € policy
Otherwise: alf! = arg max Q5 (., Cpi 0a,04)

t+1

Apply a'*!, get vt and s
Store a'tl, st and r!, in memory D,

return C,,

Function:Agent-3 to Agent-a via DFL (C,)
Similar to Function:Agent-a. to Agent-f, (o must be

replaced by [3)

return Cy
5 end
6 end
7 end

IV.4 Experiment Results

This section provides the simulation results of the proposed DFQL framework for re-
source allocation. The parameters used in this simulation are summarized in Table.
IV.3. Note that the proposed framework has been implemented in Python language
using TensorFlow-gpu package on Intel Xeon E5-2620 v4 2x 8-Core with 64 GB RAM.
Also, the NVIDIA GK110BGL [Tesla K40c]| is used to improve speed during the training
phase. In order to evaluate the proposed scheme, we examine firstly the training phase
by analyzing MSE loss function and the success rate. Secondly, we analyze the energy

consumption (EC) for slices. Then, we provide an evaluation of the slice’s delay, the
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percentage of served devices, throughput, and the packet loss rate (PLR). Meanwhile,
our framework will be compared with the centralized approach [89], given that it has

the same [IoT context and the same QoS parameters used for the slices.

IV.4.1 Training and Loss Function (MSE) Evaluation

We study in this section the training phase performance of the proposed scheme. Loss
function evaluation and the success rate are two ways to judge that the model is well
trained. The former indicates, as shown in Figure. IV.6a, that the mini-batch gradient
descent optimizer reach the convergence by tending to zero the loss function used to track
the gradient error defined in IV.17 and 1V.18. However, it indicates that model’s weights
(O, 03, ,) are well tuned and ready to predict optimal outputs. While the success rate
is defined as number of times (trials) the agent reached the end of path without colliding
or reaching the time limit, to the total runs number because both timeouts and collisions
are defined as failures. Where the trial is considered successful when s moves to a goal
state within a defined time frame. The success rate result, shown in Figure. IV.6b,
demonstrates that the learned policy is very efficient and powerful, attaining a success

rate of almost 99.99%. This proves the robustness of the DFQL framework.

Table IV.3: Simulation parameters

‘Simulation Parameters

LoRa GWs distribution Constant position
Number of slice on each GWs 3

Number 10T device Assigned to each slice 100 to 1000

Max Number of Channels per GWs 8

Channel Bandwidth 125KHz

Initial channel selection model Uniformly distributed
European ISM sub-band 863 to 870 MHz
Spreading Factor set {7,8,9,10,11,12}
Transmit power (TP) values set 2 to 14 dBm
Maximum Battery Capacity 950 mAh

DNN layers (DFL) {Input ;Hidden Layer; Output} {2 ; 3,4,3,2 ; 1}
DNN layers (DQL) {Input ;Hidden Layer; Output} {4 ; 5,4,3 ; 2}

Learning rate 0.001
Discount factor 0.05
Mini batch size 8
Epoch number 200
Iteration number per epoch 1000
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Figure. IV.6: Performances Evaluation

IV.4.2 Slices Energy Consumption Evaluation

This section provides the EC evaluation for each slices on each GW LoRa. However,
derived from equation (IV.4), we define the energy consumption model, implemented
for this framework, as in formula (IV.19). Where T is denoted as the active time

where the LoRa GWs interact in environment.

EC = ) ai(P} + P)T""" Vi € L (IV.19)
i€l

The EC in DFQL scheme is denoted as the mean EC for the same slice’s type on agent
«a and 8 at many TP and SF configurations. As denoted in Figure. IV.7, EC metric is
evaluated for DFQL and compared at the same time to the centralized approach based on
machine learning tool (MBGD) provided in [89]. As noticed in Figure. IV.7a, Figure
IV.7b, and Figure. IV.7c, the mean EC for UCLE, HCLE, and LCLE slice in DFQL
approach increases when the number of deployed devices increase. However, always
UCLE slice consumes less EC to the others even the IIoT devices reach a maximum
number on GW k. It could be explained by the effect of SF and TP adjustments.
When SF increases, the TP and the EC will increase subsequently for slices member.
Therefore, following consideration of Energy Efficiency (EE) in-utility as a slice’s State
(s), agents will changes actions (a) on these parameters, applied on slices, to take the

lowest SF and TP values which will drive device’s delay-sensitivity to occupy the path
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Figure. IV.7: Slices Energy Consumption Evaluation: DFQL VS. MBGD

with highest reliability compared to HCLE and LCLE slices. On the other hand, DFQL
slices consume less EC than MBGD slices. This returns to the impact of the centralized
approach compared to the federated scheme. Where, the former slice’s requests are
transferred to the centralized server and wait, to be served, a considerable time (LoRa
GW active) that increases the slice’s EC. While, for the latter approach, slices are served

dynamically and federatively, on each Agent.

IV.4.3 Slice’s Delay Evaluation

We analyse, in this section, the slice’s delay of the proposed DFQL framework, as pre-
sented in Figure. IV.8, and then provides a comparison with the centralized approach
provided in [89].

As denoted in Table. TV.1, slices are defined based QoS constraints. Among them,
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Figure. IV.8: Slices Delay variation Evaluation: DFQL VS. MBGD

delay plays an important role depending on the packet size parameter. Unlike LCLE,
UCLE and HCLE slices are configured with the highest reliability and efficiency that
expected to support the highest packet size transmission. It is remarkable, in Figure.
IV.8a, Figure. IV.8b, and Figure. IV.8c, that the delay metric increases when
increasing the number of devices assigned to each slice. However, always slice’s UCLE
delay slightly increases than the others, even if the IIoT devices reach a maximum num-
ber on GW k. This returns to the agent (« or ) that consider QoS slice’s revenues as
an important parameters to provide better action on SF and TP that maximizes, after
some interaction, the rewards. Therefore, increasing the number of channel served to
this slice that leads to maximize the throughput of slice’s member that minimizes the
mean delay. Noting that the slice’s delay provided in the Figure. IV.8 denotes the

mean delay between the same slice’s type of agent « and 5. On the other hand, our
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scheme outperforms the centralized approach that attempts to give much attention to
the UCLE slice when the others wait a period of time to treat its requirements that in-
creases congestion while the last devices were not served again. This impacts the mean
served devices in delay, it increases the number of served devices in delay in our approach

much than the MBGD scheme, as denoted in Figure IV.9.

Mean served devices in delay (%)

0
100 200 300 400 500 600 700 800 900 1000

lloT devices

Figure. IV.9: Mean served devices in Delay: DFQL VS. MBGD.

IV.4.4 Slices Throughput Evaluation

In this section we evaluate the mean throughput for slice’s member, as denoted in
Figure. 1IV.10, and compare them to the slice’s throughput implemented within
MBGD approach. Noting that the measure of throughput in DFQL denoted as the
mean throughput for slice’s members that have the same type (of agent (a, and 3). It
is remarkable that when increasing the number of deployed devices in each slice, the
throughput decreases slightly. However, it returns to the augmented congestion in each
slice. Regardless congestion effect, slices in DFQL framework have always the upper
hand in throughput than the MBGD scheme, as provided in Figure. IV.10a, Fig-
ure. IV.10b, and Figure. IV.10c. While the UCLE slice outperforms all the coexist
slices in throughput (DFQL). This due to the dynamic action provided by the federated
framework that chooses a lowest SF action to configure slice’s members when choosing

the highest reliable paths between the ones available on each LoRa GW, which is not
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the case of the centralized approach that attempts to meet requirements in the central

server.
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Figure. IV.10: Slices Throughput Evaluation: DFQL VS. MBGD

IV.4.5 Packet Loss Rate Evaluation

In this section we evaluate the mean percentage of PLR for slice’s member, as denoted
in Figure. IV.11, and compare them to the PLR of slices implemented within MBGD
approach. Noting that the measure of PLR in DFQL denoted as the mean PLR for
slices that have the same type (of agent («, and ). As shown in Figure. IV.11, by
increasing the IIoT devices, PLR will increase subsequently. This depends directly on
throughput, that when increase it for devices much packet will be successfully trans-
ferred while it is not the case when throughput is low. We remark also, in Figure.

IV.11a, Figure. IV.11b, and Figure. IV.11lc, that UCLE and HCLE slices have
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a reduced PLR compared to LCLE. However, this due to the reliability and efficiency
consideration in this slice which is not the case in LCLE slice that consider only the load
constraint. Compared the PLR slices result of DFQL to PLR slice results of MBGD,
we could obviously note the efficiency of our proposed scheme in supporting dynamic
slicing strategy by reducing PLR over than 9%. This improvement return to the shared
federated learning and experience between agents that can improve the action decision

making on TP and SF to slices.
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Figure. IV.11: Slices PLR Evaluation: DFQL VS. MBGD
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IV.5 Conclusion

LoRa is becoming a promising technology meeting IIoT network service requirements.
With SDN, NFV | network slicing, and advanced deep reinforcement learning techniques,
LoRaWAN enables flexible resource management and improves network performance
in terms of energy consumption, reliability, and QoS. In this chapter, we proposed a
novel federated network slicing based on deep reinforcement learning techniques for
channels and bandwidth allocation. Each LoRa GW plays a role of an Agent in the
environment and based on the learning experience provided by the other coexist agents
via the global model, it virtually isolates and reserves its physical channels based on
TP and SF adjustments in order to improve QoS rewards of each slice members. The
numerical results obtained demonstrate the efficacy of our proposed framework, which
outperforms other centralized slicing strategies because of its speed and its dynamism
in serving slice’s QoS requirements. Our future work is to explore the advantages of the

proposed scheme in realistic testbed implementations.
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General Conclusion and Perspectives

To support efficient IoT communications with guaranteed QoS requirements, new contri-
butions are needed to provide flexible resource management in the network and optimize
its configuration dynamically. In this thesis, we proposed new ideas that improve spec-
trum management, QoS consideration and energy efficiency in IoT networks using net-
work slicing and software defined networking. The proposed solutions are implemented
over LoRaWAN due its low power, wide area, open alliance and its potential to support

large scale IoT deployments.

After dividing IoT services into three class of services based on urgency and reli-
ability, network slicing is first implemented in the centralized SDN architecture where
each class of services belongs to a network slice. The latter are proved to be completely
isolated to protect urgent and critical IoT communications from being impacted by less
prioritized IoT devices. Compared to the static configuration, results show that the
dynamic-based prediction slicing was the best strategy in terms of QoS, reliability, and
energy consumption. With this strategy, the centralized server defines, for each GW,
how channels are reserved for the virtual slices configured on that GW based on devices

throughput requirements estimation (using MBGD and MSE).
To improve these results, we extended the previous work (in chapter IT) and made an

in-depth performance evaluation and comparison with MLE-based prediction strategy.

We adopted TOPG-based optimization that improves spreading factor and transmission

99



power parameters configuration at the physical layer for slice members. While respecting
QoS thresholds of each slice, IoT devices are configured with TO PG to find the best TP
and SF. Results show a major improvement in terms of QoS and energy consumption
however, it is expected that the number of devices will increase over time and will ex-
ceed the maximum capacity that can be currently supported by a gateway which will,
in turn, increase the rate of loss of packets in the different network slice. This challenge
motivated us to look for an answer and find a solution to meet scalability challenges and

guarantee QoS and energy efficiency LoRa devices.

Despite improving network performance with the previous contributions, LoRaWAN
will still come up short in meeting scalability challenges in next generation large scale
IoT networks. Therefore, we finally proposed an Deep SDN-based Federated LoRaWAN
architecture (DFQL) based on multi-agent LoRa (MAQL) and slicing strategy improved
reliability performance for [oT devices deployed in the network. When slicing and con-
figuration decisions are leveraged to the edge (Agents), LoRa GWs will be able to apply

the needed optimization faster instead of just sending all information to the server.

For future works, the focus should go towards investigating the findings of this the-
sis and implementing network slicing in real test-bed implementations. We will work
on practically proving the slicing concept in all LoRa architecture layers. Moreover,
some further improvements could be also realized by exploiting FPGA implementations
to enable rapid analysis, prediction, and decision making. Finally, we also intend to
work on other big challenges in IoT such as improving security measures and ensuring

interoperability in next generation IoT networks.
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