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Résumé

Résumé en français

La thématique générale de cette thèse était la caractérisation paramétrique et stochastique
de textures couleur. En traitement d'image, le terme � texture � renvoie de façon générale
à toutes les propriétés structurelles d'une image, sa régularité, ses motifs, sa granulosité
etc. L'objectif de l'analyse de texture est de caractériser numériquement ces propriétés,
notamment à l'aide de modélisations déterministes ou stochastiques. Actuellement, on a
souvent recours aux statistiques du second ordre pour caractériser les textures, mais celles-
ci se révèlent souvent insu�santes pour décrire leur structure locale. L'objectif de la thèse
était donc une caractérisation plus précise des textures, en s'appuyant sur des techniques
issues du traitement du signal, des probabilités et de l'identi�cation des systèmes. Une
attention particulière a été portée au traitement de la couleur.

Un premier axe de recherche a consisté en l'utilisation d'algorithmes d'identi�cation de
modèle a�n de reconstruire les parties manquantes de textures couleur structurellement
homogènes. Les paramètres du modèle étaient extraits des zones connues de la texture,
puis un morceau de texture d'aspect similaire mais non directement copié des données
disponibles était généré à partir de cette estimation a�n de combler la zone masquée. Un
des atouts essentiels du modèle utilisé était son traitement des trois canaux couleur de
l'image comme un vecteur dynamique et non trois signaux scalaires indépendants. En
e�et, nos résultats ont montré que cette approche vectorielle avait un impact direct sur la
qualité de la reconstruction de la couleur.

Si cette approche a fourni des résultats pertinents dans la complétion de texture, elle
ne parvenait qu'à capter la dynamique générale de l'image et échouait à en extraire sa
structure locale. C'est ce qui a motivé l'utilisation de l'outil monogène, dont les mesures
d'énergie, structure et orientation locales avaient déjà fait leurs preuves dans des domaines
tels l'interférométrie, la démodulation d'hologramme ou l'imagerie médicale. Avant d'être
appliqué à la couleur, le signal monogène a d'abord été étudié dans le cas scalaire, en parti-
culier l'estimation locale de phase et d'orientation qu'il fournit. Nos travaux ont ainsi établi
des résultats théoriques garantissant la �abilité de l'extraction de ces grandeurs, aussi bien
dans le cas de textures déterministes que de champs aléatoires. Le modèle utilisé pour
générer des champs aléatoire était le bruit de Gabor, choisi pour le controle direct du con-
tenu fréquentiel de la texture qu'il fournit. Dans les deux cas, déterministe et stochastique,
l'application à des textures réelles con�rmait les attentes de la théorie, à savoir la qualité
de la caractérisation monogène de la structure locale dans le cas de textures contenant des
motifs d'oscillation clairs.

Après avoir illustré la pertinence de l'outil monogène dans la caractérisation de la structure
locale de textures grises, nous avons généralisé ces résultats à des textures couleur. Pour
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cela, nous avons utilisé l'approche elliptique des signaux oscillants multivariés, qui a pour
avantage de fournir un lien direct entre ses paramètres et le contenu couleur de la texture
générée. Un premier objectif était de dé�nir proprement un modèle de synthèse de texture
couleur aléatoire, ce qui a été possible en fusionnant l'approche elliptique et les bruits de
Gabor. Il en résultait un controle du contenu fréquentiel de l'image générée, mais aussi des
couleurs présentes. L'outil monogène a ensuite été appliqué dans un but à la fois d'analyse
et d'évaluation de la synthèse. Nous avons alors montré que le signal monogène fournissait
un moyen �able de caractériser la richesse du contenu couleur d'une texture stochastique.
Par ailleurs, dans le cadre de la synthèse de texture, la mesure de phase local a permis de
dé�nir un critère de qualité de la texture couleur générée, notamment grâce à sa capacité
à détecter les artéfacts.

Mot-clés:
Analyse de texture couleur, traitement d'image, modèle de Roesser, signal monogène, phase
locale, orientation locale, bruit de Gabor, synthèse de texture couleur, modèle elliptique
couleur, détection de singularités

Résumé en anglais

The general topic of this thesis was the parametric and stochastic characterization of color
textures. In image processing, the term `'texture� generally refers to all the structural prop-
erties of an image, its regularity, its patterns, its graininess, etc. The objective of texture
analysis is to characterize these properties numerically, in particular using deterministic
or stochastic models. Currently, second-order statistics are often used to characterize tex-
tures, but they often prove insu�cient to describe their local structure. The objective of
the thesis was therefore a more precise characterization of textures, based on techniques
from signal processing, probabilities and system identi�cation. Particular attention has
been paid to the treatment of color.
A �rst line of research consisted in the use of model identi�cation algorithms to reconstruct
the missing parts of structurally homogeneous color textures. The model parameters were
extracted from known areas of the texture, then a piece of texture that looked similar but
not directly copied from the available data was generated from this estimate to �ll in the
masked area. One of the main advantages of the model used was its treatment of the
three color channels of the image as a dynamic vector rather than three independent scalar
signals. Indeed, our results showed that this vectorial approach had a direct impact on the
quality of color reconstruction.
While this approach provided relevant results in texture completion, it only managed to
capture the general dynamics of the image and failed to extract its local structure. This
is what motivated the use of the monogenic tool, whose measurements of energy, struc-
ture and local orientation had already proved their worth in �elds such as interferometry,
hologram demodulation or medical imaging. Before being applied to color images, the
monogenic signal was �rst studied in the scalar case, in particular the local estimation of
phase and orientation that it provides. Our work has thus established theoretical results
that guarantee the reliability of the extraction of these quantities, both in the case of de-
terministic textures and random �elds. The model used to generate random �elds was the
Gabor noise, chosen for the direct control of the frequency content of the texture it pro-
vides. In both deterministic and stochastic cases, the application to real textures con�rmed
the expectations of the theory, namely the quality of the monogeneous characterization of
the local structure in the case of textures containing clear oscillation patterns.
After illustrating the relevance of the monogenic tool in the characterization of the local
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structure of greyscale textures, we generalized these results to color textures. To do so,
we used the elliptical approach of multivariate oscillating signals, which has the advantage
of providing a direct link between its parameters and the color content of the generated
texture. A �rst objective was to properly de�ne a random color texture synthesis model,
which was possible by merging the elliptical approach and Gabor noises. This resulted in
a control of the frequency content of the generated image, but also of the colors present.
The monogenic tool was then applied for the purpose of both analysis and evaluation of
the synthesis. We then showed that the monogenic signal provided a reliable means of
characterizing the richness of the color content of a stochastic texture. Moreover, in the
context of texture synthesis, the measure of local phase enabled the de�nition of a quality
criterion for the color texture generated, thanks to its ability to detect artefacts.

Keywords:
Color texture analysis, image processing, Roesser model, monogenic signal, local phase,
local orientation, Gabor noise, color texture synthesis, elliptic color model, singularity
detection
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Introduction

The word "texture", borrowed from Middle French, stems from the Latin verb "texere",
which means "to weave". It was originally used to describe the feel or shape of a surface
or substance, such as smoothness, roughness, softness, etc. The meaning of the word has
widened over time, and now includes visual or sound aspects too. This work focuses on the
case of color images, and the characterization of their visual properties. Indeed, when we
look at an image, our brain is able to detect lots of its features such as an overall regularity,
the presence of particular patterns, or the richness of its color content. This is what en-
ables us to distinguish the two color textures displayed in Figure 1 clearly. However, from
a numerical point of view, an image is just a table of pixels, with each pixel containing an
intensity value. This makes the link between the values at each pixel and the structural
information of the texture perceived by the brain di�cult to grasp. The main objective
of the parametric texture analysis tackled in this thesis is hence to characterize the visual
properties of an image with a small number of parameters that quantify features such as
the local regularity, the statistical behavior, the directionality, the color content, etc.

Grass Sand

Figure 1: Examples of color textures.

In the recent years, neural-network-based solutions for, e.g., color image denoising (Zhang,
Zuo, Chen, Meng & Zhang 2017), segmentation (Zhuang, Low & Yau 2012) and classi�-
cation (Yin, Wang, Luo, Zhai, Jha & Shi 2019) have been widely used. These techniques
usually give satisfactory results thanks to the ability of the neural networks to handle large
data, but the parameters and the underlying process often lack explicitness (Hosono, Ono
& Miyata 2019). Consequently, it is di�cult to get numerical descriptors with a clear
physical interpretation in terms of visual features from such techniques. This is what has
oriented the scope of this thesis towards parametric texture analysis.

Among the parametric solutions available in the literature, the 2D ARMA models are
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particularly widespread (Köppel, Doshkov, Racape, Ndjiki-Nyab & Wiegand 2015). The
main idea is to model the texture as a dynamic spatial series characterized by a recursive
equation and second order statistics. While interesting in many aspects, such solutions
have big limits. The �rst one is the lack of a proper color formulation. Indeed, 2D ARMA
models are usually designed for scalar-valued images, while color images are vector-valued
(Soulard 2012). When dealing with color images, these models are either marginally ap-
plied to each of the three color channels, or applied to the luminance component of the
image (Köppel et al. 2015). In both cases, the interdependency between the color channels
is left unmodeled, which leads to the loss of crucial color information (Xu, Yu, Xu, Zhang
& Nguyen 2015).

Another limit is that the parameters of 2D ARMA models characterize the statistical be-
havior and dependency from the past, but fail to extract the local structure of the image.
This is already true for 1D signals, as illustrated in Figure 2. The two time series have
been generated from the same autoregressive model, but despite their identical statistical
behavior (which is re�ected in their similar autocorrelation values), they have di�erent
trajectories, which the AR parameters cannot di�erentiate. This suggests that the ARMA
framework is not well-suited to characterize the local features of a signal, whether 1D or 2D.
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Figure 2: Two examples of times series generated from the same AR(1) model (top), and
their respective autocorrelation functions (bottom).

This thesis aims at bypassing these two limits by merging techniques from the �elds of signal
processing, probabilities and system identi�cation, respectively. Indeed, all three domains
have introduced useful tools to characterize the local features of color images (Soulard
& Carré 2015, Galerne, Lagae, Lefebvre & Drettakis 2012, Ramos & Mercère 2018), but
few works in the current literature focus on bridging the gaps between these di�erent ap-
proaches, according to the authors' knowledge. In the whole study, a particular stress is
put on the vectorial treatment of the color information. As said previously, the interde-
pendency between the color channels play an important role in the color content of the
texture, which suggests favoring vectorial techniques over marginal ones.

A �rst step consists in applying alternatives to 2D ARMA models that are more suitable
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for vectorial signals. Widely used in the �eld of system identi�cation, the Roesser model,
introduced in (Roesser 1975), provides a useful representation of 2D systems in general.
Though it was not designed for images speci�cally, its relevance in the �eld of image pro-
cessing has been illustrated in numerous works in the last decades. In the more recent
years, e�cient algorithms have been introduced to estimate the parameters of the Roesser
based on state-space representations (Ramos & Mercère 2016, Ramos & Mercère 2018),
with a vectorial treatment of the components that makes them particularly interesting for
color image processing. However, the current literature rarely emphasizes the advantages
of such approaches in terms of color content, especially the role of the color correlations. In
the further developments, the 2D system identi�cation and color image processing frame-
works are merged by performing a brand-new colorimetric study of the Roesser model and
the state-space-based estimation algorithms.

While 2D state-space representations manage to capture the color information of an im-
age, they still fail to extract some of its local features. Works such as (Kailath, Sayed &
Hassibi 2000) have already highlighted the fact that, in both ARMA and Roesser models,
the error term contains some structural information, and cannot be fully characterized
by its second-order statistics. Additionally, by using spectral analysis, some studies per-
formed in the last 20 years suggest that the information captured by the ARMA and
Roesser parameters are linked to the Fourier modulus of the image, while the local struc-
ture is encoded in its Fourier phase (Oppenheim & Lim 1981, Leclaire & Moisan 2015).
The main issue with the Fourier phase is that it is de�ned on the frequency domain, which
makes it di�cult to connect with the local features of the image. This urges the need to
de�ne a local notion of phase.

In the 1D case, the Hilbert transform and the analytic signal have been widely used
since the early 20th century to characterize the instantaneous behavior of a time sig-
nal (Ville 1948, Oswald 1956, Picinbono 2008). By extending the signal to the complex
domain, the Hilbert transform yields notions of instantaneous amplitude and phase, which
can be directly linked with the energy and structure of the signal at each time, respec-
tively. There have been numerous attempts to generalize the analytic signal to 2D images
in the 80s and 90s, but it was not until the early 2000s with the introduction of the mono-
genic signal that this goal was properly reached (Larkin, Bone & Old�eld 2001, Felsberg &
Sommer 2001). Based on the Riesz transform (Riesz 1928), this technique yields notions of
local amplitude, phase and orientation, which have since proved their relevance in the char-
acterization of greyscale images in �elds such as interferometry (Larkin et al. 2001, Kaseb,
Mercère, Biermé, Brémand & Carré 2019), hologram demodulation (Seelamantula, Pavil-
lon, Depeursinge & Unser 2012), medical imaging (Alessandrini, Basarab, Liebgott &
Bernard 2013), etc.

Nevertheless, some issues still require further investigations. Despite being used for a
wide variety of images, the local measures provided by the monogenic signal are only
optimal for 2D unidirectional images. For images with richer content, some works give
conditions on the regularity of the amplitude and phase functions to ensure the quality of
their respective monogenic estimations, but these conditions often lack precision. Further-
more, because the monogenic signal was originally designed for 2D deterministic oscillating
waves, the current literature lacks formal studies of the monogenic extraction of the local
features of random textures, according to the authors' knowledge. Finally, the generaliza-
tion of the monogenic framework to color images is still an open question, though the last
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10 years saw the emergence of interesting suggestions (Demarcq, Mascarilla, Berthier &
Courtellemont 2011, Soulard & Carré 2015).

In order to introduce new solutions for the aforementioned drawbacks and limits of the
solutions available in the literature, this thesis will be divided in 6 chapters. Chapter
1 focuses on the use of the Roesser model to characterize and reconstruct color images.
The structure of the model and its main assumptions are �rst discussed, especially the
role of the innovation sequence. Its parameters are then estimated thanks to a reliable
subspace-based algorithm introduced in (Ramos & Mercère 2018). This step emphasizes
the direct implication of the color covariances in the estimation process, which ensures
that the color information is captured by the model. The bene�ts of this approach are
then illustrated by applying it to color texture completion. The purely vectorial subspace-
based technique enables a better reconstruction of the color information when compared
to marginal solutions, which con�rms the importance of the color channel interdependency
already highlighted in (Soulard 2012, Xu et al. 2015, Yin et al. 2019, Hosono et al. 2019)

As said previously, the Roesser model fails to extract some of the local features contained in
the image, which is left in the innovation sequence. This motivates the use of more suitable
tools for local structure characterization, namely, the Riesz transform and the monogenic
signal, tackled in Chapter 2. The �rst part of the chapter recalls classical results of the
1D case, while pointing out some of the main issues regarding phase extraction. Then,
the quality of the local measures provided by the monogenic tool is studied both theoret-
ically and numerically in the case of 2D deterministic greyscale waves. Indeed, because
the monogenic signal was originally designed for purely monochromatic waves (Felsberg &
Sommer 2001), the reliability of its estimates is optimal only for such images (Seelamantula
et al. 2012). The main contribution of this chapter is hence the formal study of how the
Riesz transform deals with more complex patterns. The monogenic tool is then applied to
real interferometric fringes to illustrate these theoretical results.

In practice, real textures may display stochastic features, unlike the purely deterministic
images studied in Chapter 2. Consequently, Chapter 3 aims at extending the robustness of
the monogenic estimates to random �elds, which is a rarely treated subject in the current
literature, according to the authors' knowledge. The developments of this chapter provide
theoretical conditions to guarantee the quality of the monogenic extraction of both phase
and orientation, respectively. The stochastic texture model used in this chapter is the Ga-
bor noise, which is chosen for its ability to generated realistic textures displaying oscillating
features (Lagae & Drettakis 2011, Galerne et al. 2012, Gilet, Sauvage, Vanhoey, Dischler
& Ghazanfarpour 2014, Tricard, Efremov, Zanni, Neyret, Martinez & Lefebvre 2019). The
application of the monogenic tool to real images shows how the underlying oscillating struc-
ture, as well the preferred direction of variation, are well extracted. Notice that Chapters
2 and 3 only deal with greyscale images, which is a necessary step before tackling color
textures.

A proper color stochastic texture model, the color phasor noise, is introduced in Chapter
4 by merging the elliptic approach of multivariate signals found in (Lilly 2011, Soulard &
Carré 2015) with the Gabor noise framework. Though works dealing with Gabor and pha-
sor noises such as (Galerne et al. 2012, Tricard et al. 2019) include color textures, they do
not de�ne any formal color model. The main advantage of color phasor noise introduced in
this chapter is that the structural and color features are fully encoded in a small number of
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explicit parameters. This provides a full control over both the frequency and color content
of the synthesized image, respectively. The elliptic representation also enables a useful
visualization of color oscillation inside the RGB cube.

Chapter 5 then studies the use of the monogenic signal to characterize both the color and
structural information of oscillating color textures. The theoretical and numerical devel-
opments show how the monogenic tool manages to extract the elliptic parameters from the
image, from which an explicit description of its color content can be obtained. Focusing
on the texture synthesis �eld, this chapter also tackles the occurrence of singularities in
synthesized phasor noises. Though already mentioned in (Tricard et al. 2019), this issue
was left as an open problem for future works. Thanks to its reliable phase estimation, the
monogenic signal successfully detects the singularities in the noise, which yields measures
of its quality in terms of local regularity.

The last part of this thesis sums up the main contributions of the previous chapters in
the �eld of parametric texture analysis, and introduces a list of short term and long term
perspectives.





CHAPTER 1

Subspace-based model learning

2D ARMA models have become standard techniques in the �elds of image parametriza-
tion, image restoration and texture synthesis (Ramos & Mercère 2016). The key idea of
this approach is to model each part of the image as a linear combination of surrounding
pixels and independent errors occurring at each pixel (Kokaram 2004, Köppel et al. 2015).
The ARMA parameters can then be explicitly linked with the second-order statistics of
the texture, which enables the generation of another piece of texture sharing the same
statistical behavior as the original image (Kokaram 2004).

Interestingly, many of the image modeling techniques available in the literature are de-
signed for scalar signals (Xu et al. 2015), and hence do not handle the vectorial nature of
color textures. Some works like e.g., (Li, He, Tai, Yin & Chen 2015, Köppel et al. 2015),
involve a shift from the RGB encoding to a luminance-chrominance base and apply scalar
techniques to the luma and the luminance component, respectively, which puts the color in-
formation aside from the model. Other works like (Mairal, Elad & Sapiro 2008) tackle this
problem by putting constraints on the three color components, but again, a signi�cant part
of the color structure is lost (Xu et al. 2015). In many cases, such scalar approaches lead to
the apparition of color artifacts in the synthesized texture, i.e., colors that do not appear
in the original texture and damage the visual aspect of the synthesis (Soulard 2012, Xu
et al. 2015). Though color regularization algorithms exist to eliminate such artifacts, such
as in (Ono & Yamada 2016), this is an a posteriori treatment, and the color structure of
the image is still not included in the model.

Meanwhile, many works such as (Chierchia, Pustelnik, Pesquet-Popescu & Pesquet 2014,
Xu et al. 2015, Yin et al. 2019, Hosono et al. 2019) highlight the bene�ts of a vectorial
treatment of the color components in the context of image processing. This is due to the
fact that color textures are 3D objects living inside the RGB cube with correlated compo-
nents rather than three independent scalar signals (Xu et al. 2015). This is illustrated in
Figure 1.1 where a sand texture and its trajectory inside the RGB cube are represented,
respectively. The geometrical shape of this trajectory shows that the three color compo-
nents do not vary independently, which is con�rmed by its empirical covariance matrix Λ
given by

Λ =

0.0266 0.0118 −0.003
0.0118 0.0084 0.0047
−0.003 0.0047 0.124

 (1.1)

Many of the non-diagonal coe�cients of Λ have the same order of magnitude as the di-
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agonal coe�cients, and neglecting them necessarily implies a loss of information. Such
observations explain why treating the color channels marginally implies losing the color
structure of the original texture partially, and suggest that a color model has to take these
correlations into account in order to be e�cient. Of course vectors are usually more di�-
cult to handle than real numbers, which makes the generalization of greyscale techniques
to color textures particularly complex.

Figure 1.1: A texture (left) and the area where it lies inside the RGB cube (right).

The bene�ts of 2D ARMA-based parametrical representations (Köppel et al. 2015) can be
extended to vectorial signals by relying on state space representations such as the Roes-
sel model introduced in (Roesser 1975). Though not originally designed for color images
speci�cally, this model gives good results in image restoration (Ramos & Mercère 2016),
and e�cient algorithms exist to estimate its parameters (Ramos & Mercère 2018). Fur-
thermore, like the ARMA models handled in (Kokaram 2004, Köppel et al. 2015) in the
greyscale case, it provides a direct link between the statistical behavior of the analyzed
2D signal and the parameters (Ramos & Mercère 2016, Ramos & Mercère 2018). Unlike
the previously discussed marginal techniques, one of the main advantages of the algorithm
introduced in (Ramos & Mercère 2018) is its purely vectorial treatment of multichannel
signals, thanks to the use of Hankel matrices. However, most works related to the Roesser
model do not interpret its parameters in terms of color structure, and, as a result, the
bene�ts of its non-marginal treatment of the color components are not highlighted. This
chapter hence introduces a brand new colorimetric study of the Roesser model and the
estimation algorithm presented in (Ramos & Mercère 2018). The main purpose is to show
how the color structure of the image is fully encoded in the Roesser parameters.

The rest of the chapter is organized as follows. The Roesser model and its parameters are
�rst presented in Section 1.1. After the introduction of some useful operators in Section
1.2, the algorithm used to estimate the parameters of the model is detailed in Section 1.3.
The colorimetric study of the Roesser model and the estimation algorithm introduced in
Section 1.4 then show how the color structure is preserved during the estimation process,
which makes this model of particular interest compared to scalar solutions available in the
literature. The Roesser model is �nally applied to texture completion in Section 1.5, which
further illustrates the bene�ts of its vectorial treatment of the color channels.
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1.1 Subspace-based model identi�cation for 2D vectorial sig-

nals

This section recalls the basic equations and assumptions of the Roesser model as de�ned in
(Roesser 1975). A brand new colorimetric interpretation of the model is then introduced.

1.1.1 The Roesser model

Let Y denote a stochastic hypermatrix of RM×N×ny , with (M,N, ny) ∈ (N∗)3. For all
(r, s) ∈ {0, . . . ,M − 1} × {0, . . . , N − 1}, the vectorial components of Y are denoted by
yr,s ∈ Rny . In practice, if the data matrix Y is a color image, then ny = 3. The case
of ny = 1 corresponds to greyscale images. The 1D state-space model detailed, e.g., in
(Overschee & Moor 1996, Katayama 2005), can then be generalized to 2D systems by
use of the Roesser model introduced in (Roesser 1975). This model is de�ned for all
(r, s) ∈ {0, . . . ,M − 1} × {0, . . . , N − 1}, (M,N) ∈ N2, by

xhr+1,s = A1x
h
r,s +A2x

v
r,s +K1er,s,

xvr,s+1 = A3x
h
r,s +A4x

v
r,s +K2er,s,

yr,s = C1x
h
r,s +C2x

v
r,s + er,s,

(1.2a)

(1.2b)

(1.2c)

where xhr,s ∈ Rnh and xvr,s ∈ Rnv are the horizontal and vertical state vectors, respectively,
er,s ∈ Rny is the innovation vector (Ramos &Mercère 2018), whileA1,A2,A3,A4,C1,C2,
K1 and K2 are matrices of appropriate dimensions corresponding to the model parameters
to be estimated. In this approach, the image Y is hence modeled as the output of a system
governed by Eq. (1.2) and excited by the input sequence (er,s)r,s (see Figure 1.2). The
state variables xhr,s and xvr,s can be seen as the memory of the underlying system at the
pixel (r, s), i.e., the impact of the previous pixels on the pixel (r, s) (Kailath et al. 2000).

Figure 1.2: Input, system and output of the Roesser model.

1.1.2 2D Recursion

Unlike the case of 1D recursion, de�ning notions of previous and following pixels, respec-
tively, is not trivial. A notable feature of the Roesser model given in Eq. (1.2) is that the
horizontal and vertical state variables do not share the same pixel order. Indeed, for all
(r, s) ∈ {0, . . . ,M−1}×{0, . . . , N−1}, the term coming after xhr,s is x

h
r+1,s, while the term
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coming after xvr,s is x
v
r,s+1. A �rst consequence of this feature is that both variables require

di�erent types of initial conditions. More precisely, the whole �rst line of xh, i.e., (xh0,s)s,
and the whole �rst column of xv, i.e., (xvr,0)r, must be known to perform the recursion.
Assuming that the innovation sequence e is already generated, the state variables are com-
puted as follows. The initial conditions and the innovation terms are displayed in black
to distinguish them from the terms calculated during the process, which are displayed in
color. Notice however that the colors are chosen randomly and are used to quickly identify
the involved terms, but have no link with the color content of the image.

� Step 1 :

xh1,0 = A1x
h
0,0 +A2x

v
0,0 +K1e0,0,

xv0,1 = A3x
h
0,0 +A4x

v
0,0 +K2e0,0,

xh1,1 = A1x
h
0,1 +A2x

v
0,1 +K1e0,1,

xv1,1 = A3x
h
1,0 +A4x

v
1,0 +K2e1,0.

(1.3)

� Step 2 :

xh2,0 = A1x
h
1,0 +A2x

v
1,0 +K1e1,0,

xv0,2 = A3x
h
0,1 +A4x

v
0,1 +K2e0,1,

xh2,1 = A1x
h
1,1 +A2x

v
1,1 +K1e1,1,

xv2,1 = A3x
h
2,0 +A4x

v
2,0 +K2e2,0,

xh1,2 = A1x
h
0,2 +A2x

v
0,2 +K1e0,2,

xv1,2 = A3x
h
1,1 +A4x

v
1,1 +K2e1,1,

xh2,2 = A1x
h
1,2 +A2x

v
1,2 +K1e1,2,

xv2,2 = A3x
h
2,1 +A4x

v
2,1 +K2e2,1.

(1.4)

� . . .

At each step r ∈ {0, . . . ,min(M,N)− 2}, knowing all the values of the square {0, . . . , r}2
enables the calculation of the values x•

r+1,ℓ and x•
ℓ,r+1, • ∈ {h, v}, ℓ ∈ {0, . . . , r + 1}2.

This process is repeated until the two state variables are fully computed inside the square
{0, . . . ,min(M,N)− 1}2. Assuming for example that M < N , the remaining values of the
rectangle {0, . . . ,M − 1} × {M, . . . , N − 1} can �nally be calculated.

1.1.3 Stochastic assumptions

The 2D process (yr,s)r,s is assumed to be stationary. This may seem to be a strong as-
sumption, but in practice, the Roesser model still gives good results when this assumption
is mildly violated (Ramos & Mercère 2018). From a more practical point of view, this
requires the processed image to display some structural homogeneity (Köppel et al. 2015).
The innovation process (er,s)r,s is assumed to be a zero-mean white noise, with its covari-
ance matrix denoted by R ∈ Rny×ny . Section 1.1.4 details the role of this sequence in the
model. Given the fact that er,s has the same dimension as yr,s (see Eq. (1.2c)), it can
also be interpreted as a color image in the special case of ny = 3. The coe�cients of the
matrix R can hence be seen as color covariances that characterize the color content of the
innovation term. The horizontal and vertical state processes (xhr,s)r,s and (xvr,s)r,s are also
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assumed to be stationary and zero-mean, with their covariance matrices denoted by Πh

and Πv, respectively. In (Ramos & Mercère 2018), further assumptions are made on the
non-correlation of the state variables, i.e.,

E
[(

xhr,s
xvr′,s′

)((
xhr,s
)⊤ (

xvr′,s′
)⊤)]

=

(
Πh 0nh×nv

0nv×nh
Πv

)
(1.5)

for all (r, r′, s, s′) ∈ N4. As seen in Section 1.3, this condition is crucial for the estimation
of the state sequences. Notice that unlike R, the matrices Πh and Πv do not contain color
covariances, as the state variables do not necessarily have the same dimension as yr,s (see
Eq. (1.2a) and (1.2b), respectively). If the system orders nh and nv are seen as the number
of horizontal and vertical inner variables of the image, respectively, the coe�cients of Πh

and Πv then quantify the degree interdependence between these variables.

1.1.4 The innovation sequence

For each (r, s) ∈ {0, . . . ,M − 1} × {0, . . . , N − 1}, the term er,s is called the innovation
because it is the part of yr,s that is not determined by the previous data (see Chapter 4 in
(Kailath et al. 2000)). In other words, it is the new information brought at the pixel (r, s).
In many works dealing with ARMA models, the innovation sequence er,s is only described
in terms of second-order statistics (Köppel et al. 2015). However, as shown in (Kailath
et al. 2000), knowing the variance of er,s is not enough to fully characterize it. Despite
being a white noise, the innovation sequence is directly linked with the available data yr,s,
which makes it unique, and thus crucial in the reconstruction of yr,s (Kailath et al. 2000).
Consequently, once the parameters of the Roesser model and the second order statistics
of the innovation are estimated, generating a white noise from these estimated statistics
and using it as an input sequence in the model cannot yield a satisfactory reconstruction
of the output sequence yr,s, which is highlighted in Section 1.3.5 with practical examples.
While this chapter does not provide a full characterization of the innovation, this suggests
that subsequent works dealing with parametric image modeling should put more emphasis
on the information contained in this sequence. Before detailing the algorithm developed
in (Ramos & Mercère 2016) to identify the parameters of the Roesser model, some useful
matrix operators and their properties are introduced in Section 1.2.

1.2 Matrix operators for subspace-based identi�cation

1.2.1 Matrix stacking and Hankel matrices

In subspace-based identi�cation, the basic equations of the model, given by Eq. (1.2),
are rewritten as matrix products through recursion (Katayama 2005, Ramos & Mercère
2016). Similarly to what is done in (Ramos & Mercère 2016, Ramos & Mercère 2018),
block matrices are introduced to make the equations more compact in the subsequent
developments. Let (ur,s)r,s be a 2D vectorial series, where each ur,s, (r, s) ∈ N2, is a
column vector of Rnu , nu ∈ N∗. In the subsequent developments of Section 1.3, u is equal
to y, xh,xv or e, respectively. The �nite column stacked vector is de�ned for all n ∈ N+

∗
as

cstack{uk,ℓ,uk+n−1,ℓ} =
(
u⊤
k,ℓ · · · u⊤

k+n−1,ℓ

)⊤ ∈ Rnnu×1. (1.6)

Likewise, the �nite row stacked matrix is de�ned as
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rstack{uk,ℓ,uk+n−1,ℓ} =
(
uk,ℓ · · · uk+n−1,ℓ

)
∈ Rnu×n. (1.7)

The Hankel matrix, which is also crucial in subspace-based identi�cation (Katayama 2005,
Ramos & Mercère 2016), is de�ned as

hankel{uk,ℓ,uk+n+j−2,ℓ, n, j} =


uk,ℓ uk+1,ℓ · · · uk+j−1,ℓ

uk+1,ℓ uk+2,ℓ · · · uk+j,ℓ
...

...
. . .

...
uk+n−1,ℓ uk+n,ℓ · · · uk+n+j−2,ℓ

 ∈ Rnnu×j , (1.8)

where n is the number of row blocks and j is the number of columns, respectively. Using
matricesA, B, C andD of appropriate dimensions, the extended controllability-like matrix
is de�ned for all ℓ ∈ N+

∗ as

crtb{A,B, ℓ} =
(
Aℓ−1B · · · AB B

)
, (1.9)

the extended observability-like matrix as

obsv(A,B, ℓ) =


B
BA
...

BAℓ−1

 , (1.10)

and the block lower-triangular Toeplitz matrix as

toep{A,B,C,D, ℓ} =


D 0 · · · 0
CB D · · · 0
...

. . . . . .
...

CAℓ−2B · · · CB D

 . (1.11)

1.2.2 Oblique projection

Similarly to what is done in the 1D case, oblique projections are at the core of 2D subspace-
based identi�cation (Katayama 2005, Ramos & Mercère 2018). This section aims at pre-
senting some basic properties of oblique projections that are useful in the estimation of
the state sequence detailed in Section 1.3.3. Let M, N and P be matrices of appropriate
dimensions. The oblique projection of the row space of M on the row space of P along the
row space of N, denoted by M/NP, is de�ned by (Horn & Johnson 1990)

M/NP = MΠ⊥
NP⊤

(
PΠ⊥

NP⊤
)−1

P, (1.12)

where the orthogonal projection Π⊥
N is de�ned by

Π⊥
N = I−ΠN = I−N⊤

(
NN⊤

)−1
N. (1.13)

A �rst property is that the projection of N on P along N is the null matrix. Indeed,

NΠ⊥
N = N

[
I−N⊤

(
NN⊤

)−1
N

]
= N−NN⊤

(
NN⊤

)−1

︸ ︷︷ ︸
I

N = 0, (1.14)
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which implies that

N/NP = NΠ⊥
N︸ ︷︷ ︸

0

P⊤
(
PΠ⊥

NP⊤
)−1

P = 0. (1.15)

Another property is that P is invariant with respect to the projection on P. Indeed,

P/NP = PΠ⊥
NP⊤

(
PΠ⊥

NP⊤
)−1

︸ ︷︷ ︸
I

P = P. (1.16)

Now that the oblique projections are introduced, the subspace-based estimation algorithm
presented in (Ramos & Mercère 2018) can be detailed, with a special focus on the treatment
of the color content of the original image.

1.3 Estimation algorithm

1.3.1 General idea

In practice, only the output sequence y is available, while the state sequences xh and xv,
the innovation sequence e, as well as the parameters A1, A2, A3, A4, C1, C2, K1 and K2,
have to be estimated. Assuming that the state variables have been estimated, the Roesser
model de�ned in Eq. (1.2) can be seen as a linear regression of the dependent variable y
on the regressors xh and xv. In this case, the parameters of the model can be extracted
by using ordinary least squares, the innovation sequence being the residuals of this linear
model (Ramos & Mercère 2018). For this to be possible, the state sequences are estimated
thanks to oblique projections involving available data only, as done in (Overschee & Moor
1996, Katayama 2005) in the 1D case and (Ramos & Mercère 2016, Ramos & Mercère 2018)
in the 2D case. The 2D subspace-based algorithm of (Ramos & Mercère 2018) can thus be
summed up as follows.

� Step 1 : express the state sequences xh and xv as a combination of available data
through oblique projections.

� Step 2 : estimate the matrices A1, A2, A3, A4, C1 and C2 by using ordinary least
squares.

� Step 3 : estimate the innovation sequence e as the residuals of the previous linear
model.

� Step 4 : estimate the matrices K1 and K2 by solving standard Riccati equations
(Overschee & Moor 1996).

Each of these steps are detailed in the next sections.

1.3.2 Horizontal and vertical data equations

In order to generalize the algorithm of the 1D case (see (Katayama 2005, Overschee &
Moor 1996)) to 2D images, the same processes are applied to each row and each column
of the data matrix Y, respectively. Indeed, if ℓ ∈ {0, . . . , N − 1} denotes a �xed column
index, then the horizontal equations given by
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{
xhr+1,ℓ = A1x

h
r,ℓ +A2x

v
r,ℓ +K1er,ℓ,

yr,ℓ = C1x
h
r,ℓ +C2x

v
r,ℓ + er,ℓ.

(1.17)

can be seen as a 1D state-space representation (with respects to r) with two input vectors
xvr,ℓ and K1er,ℓ, one state vector xhr,ℓ, one output vector yr,ℓ and an innovation term er,ℓ.
From this state-space form, standard recursions encountered in subspace-based identi�ca-
tion for 1D models can be applied (see, e.g., (Katayama 2005)). Indeed, by applying Eq.
(1.17) successively, yr,ℓ can be expressed for all r ∈ {1, . . .M − 1} as

yr,ℓ = C1x
h
r,ℓ +C2x

v
r,ℓ + er,ℓ,

= C1A1x
h
r−1,ℓ

+C1A2x
v
r−1,ℓ +C2x

v
r,ℓ

+C1K1er−1,ℓ + er,ℓ,

= C1A
2
1x

h
r−2,ℓ

+C1A1A2x
v
r−2,ℓ +C1A2x

v
r−1,ℓ +C2x

v
r,ℓ

+C1A1K1er−2,ℓ +C1K1er−1,ℓ + er,ℓ,

= C1A
3
1x

h
r−3,ℓ

+C1A
2
1A2x

v
r−3,ℓ +C1A1A2x

v
r−2,ℓ +C1A2x

v
r−1,ℓ +C2x

v
r,ℓ

+C1A
2
1K1er−3,ℓ +C1A1K1er−2,ℓ +C1K1er−1,ℓ + er,ℓ,

= . . . ,

= C1A
r
1x

h
0,ℓ

+C1

r∑
k=1

Ak−1
1 A2x

v
r−k,ℓ +C2x

v
r,ℓ

+C1

r∑
k=1

Ak−1
1 K1er−k,ℓ +K1er,ℓ.

(1.18)

The sums can then be rewritten as block matrix products, leading to

yr,ℓ = C1A
r
1x

h
0,ℓ

+
(
C1A

r−1
1 A2 . . . C1A1A2 C2

)xv0,ℓ
...

xvr,ℓ


+
(
C1A

r−1
1 K1 . . . C1A1K1 Iny

)e0,ℓ
...

er,ℓ

 .

(1.19)

This is exactly where the block matrices introduced in Section 1.2.1 are involved. Let i
and j be two integer indices such that 2i + j − 2 = min{M − 1, N − 1}. This condition
is imposed on the indices i and j in order to include the greatest amount of data in the
process. This constraint notably implies that the greater i is, the smaller j becomes, and
vice-versa. Applying Eq. (1.19) to all r ∈ {0, . . . , 2i+ j−2} and stacking all the equations
in block matrices leads for all ℓ ∈ {0, . . . , N −1} to the following horizontal data equations
(Ramos & Mercère 2016, Ramos & Mercère 2018)
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Yh
p (ℓ) = ΓhpX

h
p(ℓ) +Gvh

p Xvh
p (ℓ) +Hh

pE
h
p(ℓ),

Yh
f (ℓ) = ΓhfX

h
f (ℓ) +Gvh

f Xvh
f (ℓ) +Hh

fE
h
f (ℓ),

(1.20)

where

Yh
p (ℓ) = hankel{y0,ℓ,yi+j−2,ℓ, i, j},

Xh
p(ℓ) = rstack{xh0,ℓ,xhj−1,ℓ},

Xvh
p (ℓ) = hankel{xv0,ℓ,xvi+j−2,ℓ, i, j},
Ehp(ℓ) = hankel{e0,ℓ, ei+j−2,ℓ, i, j},
Yh
f (ℓ) = hankel{yi,ℓ,y2i+j−2,ℓ, i, j},

Xh
f (ℓ) = rstack{xhi,ℓ,xhi+j−1,ℓ},

Xvh
f (ℓ) = hankel{xvi,ℓ,xv2i+j−2,ℓ, i, j},
Ehf (ℓ) = hankel{ei,ℓ, e2i+j−2,ℓ, i, j},

(1.21)

while, for n ∈ {f, p},

Γhn = obsv{A1,C1, i},
Gvh
n = toep{A1,A2,C1,C2, i},

Hh
n = toep{A1,K1,C1, Iny , i}.

(1.22)

Notice that unlike the 1D case where the time variable clearly de�nes notions of past and
future, these notions must be de�ned arbitrarily in the case of 2D images. Usually, the
horizontal space variable is assumed to evolve from top to bottom, while the vertical space
variable is assumed to evolve from left to right, which is consistent with the recursive equa-
tions that de�ne of the horizontal and vertical states, respectively. With this convention,
the �rst and second lines of Eq. (1.20) are called past and future equations, respectively,
hence the indices p and f . The parameter i is an integer that corresponds to the maximal
order of the recursions performed to obtain the past and future equations. In theory, this
tuning parameter must be chosen so that rank conditions like the one given by Eq. (1.45)
is satis�ed. In practice, i is chosen large enough to guarantee that i >> {nh, nv}. As
shown in Section 1.5, selecting i = 20 for the tested images is su�cient to get good results.
Notice that, at this stage, the color components of the data vectors yr,s are only stacked
inside block matrices but not mixed yet. Indeed, in the special case of ny = 3, by using
Eq. (1.8), the future Hankel matrix Yh

f (ℓ) can be written for all ℓ ∈ {0, . . . , N − 1} as
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Yh
f (ℓ) =


yi,ℓ yi+1,ℓ · · · yi+j−1,ℓ

yi+1,ℓ yi+2,ℓ · · · yi+j,ℓ
...

...
. . .

...
y2i−1,ℓ y2i,ℓ · · · y2i+j−2,ℓ



=



yRi,ℓ yRi+1,ℓ · · · yRi+j−1,ℓ

yGi,ℓ yGi+1,ℓ · · · yGi+j−1,ℓ

yBi,ℓ yBi+1,ℓ · · · yBi+j−1,ℓ
...

...
. . .

...
yR2i−1,ℓ yR2i,ℓ · · · yR2i+j−2,ℓ

yG2i−1,ℓ yG2i,ℓ · · · yG2i+j−2,ℓ

yB2i−1,ℓ yB2i,ℓ · · · yB2i+j−2,ℓ


;

(1.23)

where for all r ∈ {i, . . . , 2i+ j − 2}, the scalars yRr,ℓ, yGr,ℓ and yBr,ℓ denote the red, blue and
green components of the vector yr,ℓ, respectively. Figure 1.3 shows an example of how the
future Hankel matrix is built for ℓ = 10 and M = N = 180. This process is repeated for
all ℓ ∈ {0, . . . , N − 1}. In each case, the past Hankel matrix is built from the rectangular
zone between the pixels (0, ℓ) and (159, ℓ), while the future Hankel matrix is built from
the rectangular zone between the pixels (20, ℓ) and (179, ℓ).

Original image

Stacked image

Hankel matrix of the 10th column

10th column

Figure 1.3: Original image (left), stacked image (middle) and future Hankel matrix built
from the 10th column (right), with M = N = 180, i = 20, j = 141.

The same procedures are now applied to the rows of the data matrix Y. Indeed, if ℓ ∈
{0, . . . ,M − 1} denotes a �xed row index, then the vertical equations given by{

xvℓ,s+1 = A3x
h
ℓ,s +A4x

v
ℓ,s +K2eℓ,s,

yℓ,s = C1x
h
ℓ,s +C2x

v
ℓ,s + eℓ,s.

(1.24)

can be seen as a 1D state-space representation (with respects to s). Applying standard
recursions then leads, for all ℓ ∈ {0, . . . ,M − 1}, to the following vertical data equations
(Ramos & Mercère 2016, Ramos & Mercère 2018)
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Yv
p(ℓ) = ΓvpX

v
p(ℓ) +Ghv

p Xhv
p (ℓ) +Hv

pE
v
p(ℓ),

Yv
f (ℓ) = ΓvfX

v
f (ℓ) +Ghv

f Xhv
f (ℓ) +Hv

fE
v
f (ℓ),

(1.25)

where

Yv
p(ℓ) = hankel{yℓ,0,yℓ,i+j−2, i, j},

Xv
p(ℓ) = rstack{xvℓ,0,xvℓ,j−1},

Xhv
p (ℓ) = hankel{xhℓ,0,xhℓ,i+j−2, i, j},
Evp(ℓ) = hankel{eℓ,0, eℓ,i+j−2, i, j},
Yv
f (ℓ) = hankel{yℓ,i,yℓ,2i+j−2, i, j},

Xv
f (ℓ) = rstack{xvℓ,i,xvℓ,i+j−1},

Xhv
f (ℓ) = hankel{xhℓ,i,xhℓ,2i+j−2, i, j},
Evf (ℓ) = hankel{eℓ,i, eℓ,2i+j−2, i, j},

(1.26)

while, for n ∈ {f, p},

Γvn = obsv{A4,C2, i},
Ghv
n = toep{A4,A3,C2,C1, i},

Hv
n = toep{A4,K2,C2, Iny , i}.

(1.27)

1.3.3 State sequence estimation and projection of the future on the past

Focusing on the horizontal data equations given by Eq. (1.20), the key idea of subspace-
based algorithms is the projection of the future data on the past data to get an estimation
of the state sequence, i.e., the values of xhr,s and xvr,s, for (r, s) ∈ {i, . . . , i + j − 1}2. To
do so, the future state vector Xh

f (ℓ) is �rst expressed as a linear combination of the past

state vector Xvh
p (ℓ) and the past data vector Yh

p (ℓ), with ℓ ∈ {0, . . . , N−1}. The �rst step
consists in expressing the innovation term for all (r, s) ∈ {0, . . . ,M − 1} × {0, . . . , N − 1}
as

er,ℓ = yr,ℓ −C1x
h
r,ℓ −C2x

v
r,ℓ. (1.28)

Notice how this equation is consistent with the interpretation of the variables given in
Section 1.1. Indeed, er,ℓ is expressed as the di�erence between the available data at the
pixel (r, ℓ), yr,ℓ, and the memory of the previous pixels represented by the terms C1x

h
r,ℓ

and C2x
v
r,ℓ, which illustrates how er,ℓ contains the new information brought at the pixel

(r, ℓ), i.e., the innovation. Focusing again on the estimation algorithm, the horizontal 1D
system given by Eq. (1.24) can then be equivalently rewritten for all ℓ ∈ {0, . . . , N − 1} as{

xhr+1,ℓ = Ã1x
h
r,ℓ + Ã2x

v
r,ℓ +K1yr,ℓ,

yr,ℓ = C1x
h
r,ℓ +C2x

v
r,ℓ + er,ℓ,

(1.29)

where

Ã1 = A1 −K1C1 and Ã2 = A2 −K2C2. (1.30)
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By applying standard recursions, as done in, e.g., (Peternell, Sherrer & Deistler 1996), xhr,ℓ
can be expressed with the past data as

xhr,ℓ = Ãi
1x

h
r−i,ℓ +

i∑
k=1

Ãk−1
1 Ã2x

v
r−k,ℓ +

i∑
k=1

Ãk−1
1 K1yr−k,ℓ,

= Ãi
1x

h
r−i,ℓ + Φ̃vh

p xvp(r, ℓ) + L̃hpyp(r, ℓ),

(1.31)

where

Φ̃vh
p = crtb{Ã1, Ã2, i},

L̃hp = crtb{Ã1,K1, i},
xvp(r, ℓ) = cstack{xvr−i,ℓ,xvr−1,ℓ},
yp(r, ℓ) = cstack{yr−i,ℓ,yr−1,ℓ}.

(1.32)

If ∥• ∥2 and ||| • |||2 denote the vectorial and matricial Euclidian norms, respectively, using
the submultiplicativity of ||| • |||2 (see (Horn & Johnson 1990) for details about vector and
matrix norms) leads to

∥∥∥xhr,ℓ − Φ̃vh
p xvp(r, ℓ)− L̃hpyp(r, ℓ)

∥∥∥
2
=
∥∥∥Ãi

1x
h
r−i,ℓ

∥∥∥
2
,

≤
∣∣∣∣∣∣∣∣∣Ã1

∣∣∣∣∣∣∣∣∣i
2

∥∥∥xhr−i,ℓ∥∥∥
2
,

= λimax

∥∥∥xhr−i,ℓ∥∥∥
2
,

(1.33)

where λmax denotes the greatest eigenvalue of Ã1. By de�nition of the Kalman gain K1

(Katayama 2005), the modulus of the greatest eigenvalue of Ã1 is necessarily strictly lower
than 1, which implies that the term Ãi

1x
h
r−i,ℓ becomes negligible if i is chosen su�ciently

large. Consequently, the distance between xhr,ℓ and Φ̃vh
p xvp(r, ℓ) + L̃hpyp(r, ℓ) expressed in

Eq. (1.33) becomes negligible for large values of i. The state vector xhr,ℓ can hence be
approached for all (r, ℓ) ∈ {0, . . . ,M − 1} × {0, . . . , N − 1} as

xhr,ℓ ≈ Φ̃vh
p xvp(r, ℓ) + L̃hpyp(r, ℓ). (1.34)

This can be seen as the optimal linear estimate of xhr,ℓ (in the least-square error sense)

given xvp(r, ℓ) and yp(r, ℓ). Combining this linear estimation of xhr,ℓ with the horizontal
equation given by Eq. (1.20) leads to

Yh
f (ℓ) = Γhf Φ̃

vh
p Xvh

p (ℓ) + Γhf L̃
h
pY

h
p (ℓ) +Gvh

f Xvh
f (ℓ) +Hh

fE
h
f (ℓ). (1.35)

Applying this equation to all ℓ ∈ {0, . . . , N − 1} and grouping all the obtained equations
in block matrices �nally leads to

Yh
f = Γhf Φ̃

vh
p Xvh

p + Γhf L̃
h
pY

h
p +Gvh

f Xvh
f +Hh

fE
h
f , (1.36)

where for all n ∈ {f, p} and all matrix M ∈ {Yh
n,X

vh
n ,E

h
n},

M =
(
M(0) . . . M(N − 1)

)
. (1.37)
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Figure 1.4 illustrates how the past and future data are extracted from the original image
to build the horizontal past and future block Hankel matrix Yh

p and Yh
f , respectively. As

in Figure 1.3, the size of the image is 180 × 180, while the tuning parameters are i = 20
and j = 141. Notice that the constraint 2i+ j − 2 = min{M − 1, N − 1} �xed in Section
1.3.2 ensures that the greatest amount of pixels are involved in the estimation process.

Data used for the past Hankel matrix Data used for the future Hankel matrix

Figure 1.4: Data used for the horizontal past (left) and future (right) block Hankel matrix.

Similar procedures can then be applied to the vertical equations, leading to

Yv
f = Γvf Φ̃

hv
p Xhv

p + Γvf L̃
v
pY

v
p +Ghv

f Xhv
f +Hv

fE
h
f , (1.38)

where

Ã3 = A3 −K2C1,

Ã4 = A4 −K2C2,

Φ̃hv
p = crtb{Ã4, Ã3, i},

L̃vp = crtb{Ã4,K2, i},

(1.39)

and for all n ∈ {f, p} and all matrix M ∈ {Yv
n,X

hv
n ,E

v
n},

M =
(
M(0) . . . M(M − 1)

)
. (1.40)

Figure 1.5 illustrates how the past and future data are extracted from the original image
to build the vertical past and future block Hankel matrix Yh

p and Yh
f , respectively.

In Eq. (1.36) and (1.38), the future data contained in the Hankel matrices Y•
f , • ∈ {h, v},

involve both available and unavailable data. In order to express them with only available
data, an oblique projection of the future on the past is performed. More precisely, focusing
on the horizontal equation, the row space of Yh

f is projected on the row space Zhp along

the row space Xvh
f (Ramos & Mercère 2018), where

Zhp =

(
Xvh
p

Yh
p

)
. (1.41)

Eq. (1.15) implies that Xvh
f is projected on the null matrix, while Eq. (1.16) implies that

Zhp is invariant, hence

Yh
f/Xvh

f
Zhp = Γhf

(
Φ̃vh
p L̃hp

)
Zhp +Hh

fE
h
f/Xvh

f
Zhp . (1.42)
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Data used for the past Hankel matrix Data used for the future Hankel matrix

Figure 1.5: Data used for the vertical past (left) and future (right) block Hankel matrix.

Similarly,

Yv
f/Xhv

f
Zvp = Γvf

(
Φ̃hv
p L̃vp

)
Zvp +Hv

fE
v
f/Xhv

f
Zvp, (1.43)

where

Zvp =

(
Xhv
p

Yv
p

)
. (1.44)

Because the oblique projection involves the inversion of the matrices ZhpΠ
⊥
Xvh

f

Zhp
⊤

and

ZvpΠ
⊥
Xhv

f

Zvp
⊤, respectively (see Eq. (1.13) for the de�nition of Π⊥

N), they must be assumed

of full rank if M and N are su�ciently large, i.e.,

rank

(
lim

M→+∞
ZhpΠ

⊥
Xvh

f
Zhp

⊤
)

= p(nv + ny),

rank

(
lim

N→+∞
ZvpΠ

⊥
Xhv

f
Zvp

⊤
)

= p(nh + ny).

(1.45)

Furthermore, as shown in (Ramos & Mercère 2018), given the fact that the future inno-
vation terms are uncorrelated with the past state and data terms, respectively, it can be
stated that

lim
M→+∞

EhfΠ
⊥
Xvh

f
Zhp

⊤
= 0,

lim
N→+∞

EvfΠ
⊥
Xhv

f
Zvp

⊤ = 0,
(1.46)

so that Eq. (1.42) and (1.43) simplify as

Yh
f/Xvh

f
Zhp = Γhf

(
Φ̃vh
p L̃hp

)
Zhp ,

Yv
f/Xhv

f
Zvp = Γvf

(
Φ̃hv
p L̃vp

)
Zvp,

(1.47)

respectively. Remember that, for • ∈ {h, v}, the right members correspond to the optimal
linear estimates ofX•

f (see Eq. (1.34)), which implies that these equations can be rewritten
as



1.3. ESTIMATION ALGORITHM 27

Yh
f/Xvh

f
Zhp = ΓhfX

h
f ,

Yv
f/Xhv

f
Zvp = ΓvfX

v
f ,

(1.48)

where

Xh
f =

(
Xh
f (0) . . . Xh

f (N − 1)
)
,

Xv
f =

(
Xv
f (0) . . . Xv

f (M − 1)
)
.

(1.49)

Unfortunately, these equations are not directly usable in practice. Indeed, they involve
oblique projections along the row spaces of Xvh

f and Xhv
f , which contain the unknown

vertical and horizontal state variables, respectively. The solution developed in (Ramos &
Mercère 2018) is based on the fact that the above-mentioned oblique projections simplify
to orthogonal projections of the future data on the past data assuming that the horizontal
and vertical states are uncorrelated, i.e., assuming that Eq. (1.5) holds. If • ∈ {h, v}, this
yields

Y•
fΠY•

p
= Γ•

fX
•
f , (1.50)

where, this time, the projections only involve available data. Notice that performing this
projection directly involves the color covariances of the image, which is exactly what makes
this approach non-marginal. This is discussed in details in Section 1.4.1. Once estimates
of Γ•

fX
•
f , • ∈ {h, v}, are computed from the orthogonal projections Y•

fΠY•
p
, estimates

of the future horizontal and vertical state variables can be extracted through a singular
value decomposition (Horn & Johnson 1990) (see Section 1.3.4 for a description of the
implementation).

1.3.4 Singular value decomposition and parameter estimation

As done in any subspace-based algorithm, the orthogonal projection of the future on the
past is performed through an RQ factorization (Horn & Johnson 1990), i.e., for • ∈ {h, v},

Γ•
fX

•
f = Y•

fΠY•
p
,

= R•
21 (Q

•
1)

⊤ ,
(1.51)

with (
Y•
p

Y•
f

)
=

(
R•

11 0nyp×nyf

R•
21 R•

22

)(
(Q•

1)
⊤

(Q•
2)

⊤

)
. (1.52)

Once the projection is available, the extraction of the state sequences is performed by
resorting to a Singular Value Decomposition (SVD) (Horn & Johnson 1990), hence,

R•
21 (Q

•
1)

⊤ =
(
U• U⊥

•
)(Σ• 0

0 ×

)(
V⊤

•(
U⊥

•
)⊤) . (1.53)

In theory, the product Γ•
fX

•
f is of rank n•, • ∈ {h, v}, which implies that the matrix Σ•

is of dimension n• × n•, • ∈ {h, v}, and only contain non-zero singular values (Overschee
& Moor 1996). In practice, due to the innovation er,s and the �nite number of data, the
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singular values of Γ•
fX

•
f are not exactly zero beyond the order n•, but a quick drop is

observed after n•. The orders of the horizontal and vertical systems, denoted by nh and
nv, respectively, are then determined as the index of the lowest non-negligible singular
value. This process is illustrated in Section 1.5.2. Extracting the non-negligible part of the
SVD hence leads to

R•
21 (Q

•
1)

⊤ = U•Σ•V
⊤
• . (1.54)

The state sequence is �nally extracted as the right part of the SVD, i.e., for • ∈ {h, v},

X•
f = Σ

1
2•V

⊤
• ,

= Σ
− 1

2• U⊤
• R

•
21 (Q

•
1)

⊤ .
(1.55)

Remark. In practice, the SVD is performed on the matrix W•
1R

•
21 (Q

•
1)

⊤W•
2 rather than

merely R•
21 (Q

•
1)

⊤, with W•
1 and W•

2 denoting weighting matrices of appropriate dimen-

sions. The choice of these weighting matrices depends on the algorithm chosen to perform

the SVD (see (Overschee & Moor 1996) for further details).

Remember that by construction of the block matrices Xh
f and Xv

f , their common part is
restricted to (r, s) ∈ {i, . . . , i+ j − 1}2, which implies that the state variables can only be
estimated inside this domain. By de�ning

fy =
(
yi,i:i+j−2 . . . yi+j−2,i:i+j−2

)
,

fhx+ =
(
xhi+1,i:i+j−2 . . . xhi+j−1,i:i+j−2

)
,

fvx+ =
(
xvi,i+1:i+j−1 . . . xvi+j−2,i+1:i+j−1

)
,

fhx =
(
xhi,i:i+j−2 . . . xhi+j−2,i:i+j−2

)
,

fvx =
(
xvi,i:i+j−2 . . . xvi+j−2,i:i+j−2

)
,

fe =
(
ei,i:i+j−2 . . . ei+j−2,i:i+j−2

)
,

(1.56)

where

pi,j:k =
(
pi,j . . . pi,j+1 . . . pi,k

)
, (1.57)

the basic equations of the Roesser model given by Eq. (1.2) can be rewritten as the
following least-squares regression problemfhx+

fvx+
fy


︸ ︷︷ ︸

Y

=

A1 A2

A3 A4

C1 C2


︸ ︷︷ ︸

A

(
fhx
fvx

)
︸ ︷︷ ︸

X

+

K1

K2

Iny

 fe

︸ ︷︷ ︸
E

, (1.58)

where Iny denotes the identity matrix of size ny × ny. Consistent estimates of A1, A2,
A3, A4, C1, C2 can then be computed by using ordinary linear least-squares algorithms
(Ramos & Mercère 2018). Finally, the innovation sequence and its covariance matrix are
computed as 

E = Y −AX,(
Q S
S⊤ R

)
= EE⊤/j,

(1.59)
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with

Q =

(
K1RK⊤

1 K1RK⊤
2

K2RK⊤
1 K2RK⊤

2

)
,

S =

(
K1R
K2R

)
,

(1.60)

from whichK1 andK2 can be estimated by solving standard Riccati equations (see (Ramos
& Mercère 2018, Overschee & Moor 1996) for details). This concludes the estimation
algorithm.

1.3.5 Importance of the innovation sequence

Though not focused on image processing, (Kailath et al. 2000) highlights the importance of
the innovation sequence and the fact that it cannot be fully characterized by second order
statistics. This section aims at illustrating this statement with real textures. Indeed, Figure
1.6 shows that, after estimating the model through the algorithm described in the previous
sections, some information remain in the innovation sequence, even if the horizontal and
vertical orders nh and nv are raised beyond 5. In order to highlight the crucial information
contained in the innovation sequence, a random i.i.d. Gaussian sequence e′ of size M ×N
is generated, with each of the terms being zero-mean and of covariance matrix R. This
sequence e′ is then used as an input in the Roesser model to generate a new image with
the same parameters and state variables as the original texture. As shown in Figure 1.7,
though the color content and global dynamic are preserved thanks to the reliable parameter
estimations provided by the algorithm, the image looks smoothed and a great amount of
its local variations are lost. If the error estimated from the sand texture is used as an
input to generate the grass texture, then some of the edges of the sand texture appear in
the grass texture, as is shown in Figure 1.8. When the Roesser model is applied to texture
completion in Section 1.5, the choice of the innovation sequence constitutes one of the most
crucial steps, as it is the part of the image that is not captured by the model. Before that,
a colorimetric study of the estimation algorithm is performed in Section 1.4.1 to highlight
its ability to extract the color structure of the processed image.

Original image Innovation sequence

Figure 1.6: A sand texture and its estimated innovation sequence.
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Reconstruction from the estimated error Reconstruction from a random noise

Figure 1.7: Comparison between the sand texture reconstructed from the estimated error
(left) and the image reconstructed from a random Gaussian noise (right).

Reconstruction from the grass error Reconstruction from the sand error

Figure 1.8: Comparison between the grass texture reconstructed from the grass error (left)
and the image reconstructed from the sand error (right).
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1.4 Color covariances

1.4.1 Link between the projection and the color covariances

As recalled in the introduction, treating the color components of y marginally requires that
the three color channels vary independently, while in practice they are usually correlated
(Xu et al. 2015). This implies that treating them as three independent scalar series may
cause a partial loss of the color information contained inside the image (Hosono et al. 2019).
One of the main advantages of the algorithm presented in Section 1.3 is that the color
covariances are directly implied in the estimation process, hence its non-marginal nature.
This can be highlighted by rewriting the projection of the future on the past performed in
Eq. (1.50) as autocovariance matrix products. If k and m are positive integers, let Λk,m

denote the autocovariance matrix of (yr,s)r,s de�ned for all (r, s) ∈ N2 by

Λk,m = E
[
yr+k,s+my

⊤
r,s

]
, (1.61)

where E [·] denotes the mean operator (Papoulis & Pillai 2002). Using Eq. (1.13) to
explicitly express the orthogonal projection ΠY•

p
leads to

Y•
fY

•
p
⊤
(
Y•
pY

•
p
⊤
)−1

Y•
p = Γ•

fX
•
f . (1.62)

These matrix products can then be expressed with the color covariance matrices Λk,m.
Indeed, if (k,m) ∈ {1, . . . i}2, the block (k,m) of the matrices Y•

pY
•
p
⊤, • ∈ {h, v}, is given

by

(
Yh
pY

h
p
⊤)

k,m
=

N−1∑
ℓ=0

j−1∑
ι=0

yk+ι−1,ℓy
⊤
m+ι−1,ℓ,

(
Yv
pY

v
p
⊤
)
k,m

=
M−1∑
ℓ=0

j−1∑
ι=0

yℓ,k+ι−1y
⊤
ℓ,m+ι−1.

(1.63)

If M , N and j are su�ciently large, these sample covariances provide reliable approxima-
tions of the corresponding autocovariance matrices (Johnson & Wichern 2002), hence

(
Yh
pY

h
p
⊤)

k,m
= jNΛ|k−m|,0,(

Yv
pY

v
p
⊤
)
k,m

= jMΛ0,|k−m|.
(1.64)

Similarly, if (k,m) ∈ {1, . . . i}2,

(
Yh
fY

h
p
⊤)

k,m
= jNΛi+k−m,0,(

Yv
fY

v
p
⊤
)
k,m

= jMΛ0,i+k−m.
(1.65)

Eq. (1.62) can hence be rewritten for • ∈ {h, v} as

Λ•
f

(
Λ•
p

)−1
Y•
p = Γ•

fX
•
f , (1.66)

where
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Λh
p =


Λ0,0 Λ1,0 . . . Λi−1,0

Λ1,0 Λ0,0 . . . Λi−2,0
...

...
. . .

...
Λi−1,0 Λi−2,0 . . . Λ0,0

 ,

Λh
f =


Λi,0 Λp−1,0 . . . Λ1,0

Λi+1,0 Λp,0 . . . Λ2,0
...

...
. . .

...
Λ2i−1,0 Λ2i−2,0 . . . Λi,0

 ,

Λv
p =


Λ0,0 Λ0,1 . . . Λ0,i−1

Λ0,1 Λ0,0 . . . Λ0,i−2
...

...
. . .

...
Λ0,i−1 Λ0,i−2 . . . Λ0,0

 ,

Λv
f =


Λ0,i Λ0,i−1 . . . Λ0,1

Λ0,i+1 Λ0,i . . . Λ0,2
...

...
. . .

...
Λ0,2i−1 Λ0,2i−2 . . . Λ0,i

 .

(1.67)

Eq. (1.66) hence provides a rewriting of the projection of the future on the past performed
in Eq. (1.50) in terms of color channel interdependency. This highlights the explicit
involvement of the color covariances of the original image Y in the estimation process and,
as a result, the non-marginal nature of the model learning algorithm.

1.4.2 Formal expressions of the color covariances

As shown in (Ramos & Mercère 2016), the matrices Λk,m can be formally expressed with
the parameters of the model under the condition given by Eq. (1.5), i.e., if the state
variables are assumed to be uncorrelated. Focusing on the matrices involved in Eq. (1.66)
only, Λk,0 and Λ0,m can be expressed for all (k,m) ∈ (N∗)2 as

Λ0,0 = C1ΠhC
⊤
1 +C2ΠvC

⊤
2 +R,

Λk,0 = C1A
k−1
1

(
A1ΠhC

⊤
1 +A2ΠvC

⊤
2 +K1R

)
,

Λ0,m = C2A
m−1
4

(
A3ΠhC

⊤
1 +A4ΠvC

⊤
2 +K2R

)
.

(1.68)

Though these formal expressions are taken from (Ramos & Mercère 2016, Ramos & Mercère
2018), no interpretation in terms of color content is given therein. Yet, in the speci�c case of
ny = 3, the coe�cients of these matrices can be understood as color and spatial covariances.
Focusing on the color correlations only, the expression of Λ0,0 illustrates the impact of the
parameters of the model on the color content of the image. The matrices C1 and C2

color the horizontal and vertical structures characterized by Πh and Πv, respectively,
while R corresponds to the color structure of the innovation as seen in Section 1.1.3.
Notice that the color information brought by the model is combined with the original color
information contained in the innovation sequence through an addition. Therefore, besides
being explicitly involved in the estimation algorithm, the color covariances can be directly
linked with the parameters of the model, which further shows how the interdependency
between the color channels is fully taken into account. The involvement of the matrix R in
Eq. (1.68) also highlights the importance of the innovation process in the color structure
of the image, as already mentioned in Sections 1.1.4 and 1.3.5, respectively. Section 1.5
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shows how this purely vectorial treatment of the color components ofY is crucial in reliably
reconstructing the color structure of a damaged image in the context of texture completion.

1.5 Application to texture completion

Many inpainting techniques are developed to handle greyscale images, thus yielding color
distortions when they are used with colored images (Hosono et al. 2019). As explained, e.g.,
in (Xu et al. 2015), this important issue can be bypassed by developing techniques which
take into account the correlations between the RGB channels explicitly instead of using a
simple concatenation of the 3 channels composing the image or processing the luminance
component only. As shown hereafter, one of the main advantages of the subspace-based
technique introduced in this chapter is its ability to deal with multivalued data within the
formulation of the parametric 2-D Roesser model. More precisely, the correlation constraint
pointed out in (Xu et al. 2015) is satis�ed with the subspace-based algorithm introduced
in the previous sections, thanks to the use of Hankel data matrices, or more speci�cally,
thanks to the projections involving these Hankel matrices.

1.5.1 General assumptions and issues

Texture completion, or inpainting, consists in reliably reconstructing damaged or missing
parts of an image by inferring from a user-de�ned learning area. More precisely, it aims
at generating a piece of texture that looks as similar as possible to the available part of
the original image in order to yield a reliable substitute for the missing part. Furthermore,
this substitute must not look identical to another part of the image, i.e., copy/paste e�ects
must be limited. Notice that though e�cient texture similarity measures exist for greyscale
images, extending them to color textures is still a challenge (Zujovic, Pappas & Neuho�
2013). The purpose of texture completion is illustrated in Figure 1.9.

Damaged image Restored image

?

Figure 1.9: Example of a damaged image restored through an inpainting technique.

In this section, Y denotes a color image of size M × N , where each pixel yr,s, (r, s) ∈
{0, . . . ,M − 1} × {0, . . . , N − 1}, is a vector of R3. The missing part of Y is modeled as
a subset of pixels (r, s) ∈ I ⊂ {0, . . . ,M − 1} × {0, . . . , N − 1} where yr,s = 0, while the
learning area is the remaining part. Because inpainting heavily relies on inference from
available data, it can only create patterns that already exist in the learning area. The
solution described in this work hence requires the texture to ful�ll two main conditions,
which are
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� stationarity in the learning area,

� structural coherency between the available and masked areas.

The �rst step of the inpainting process consists in de�ning a reliable training area. Simi-
larly to what is done for 2D AR models (Köppel et al. 2015), both causal and anticausal
neighborhood structures are used in this work. Remember that, as stated in Section 1.3.2,
the horizontal space variable is assumed to evolve from left to right, while the vertical
space variable is assumed to evolve from top to bottom. As illustrated in Figure 1.10, a
causal neighborhood is hence de�ned as the region located on the left and at the top of
the masked area, while an anticausal neighborhood is de�ned as the region located on the
right and at the bottom of the masked area.

Figure 1.10: Causal (in blue) and anticausal (in red) training neighborhood.

In order to avoid border e�ects and copy/paste e�ects as much as possible, one possible
approach is to combine both causal and anticausal structures. Section 1.5.2 details the
application of the subspace-based algorithm presented in Section 1.3 to texture completion,
as well as the strategy used to combine causal and anticausal learning.

1.5.2 Subspace-based texture completion

Though parametric techniques usually handle matrices, damaged areas may have irregular
shapes in practice. In this case, the border is reshaped as the smallest rectangle that
contains the whole damaged area. In subsequent developments, the masked area is hence
assumed to be a rectangular domain I de�ned by

I = {m1, . . . ,m2} × {n1, . . . , n2}, (1.69)

with 0 < m1 < m2 < M − 1 and 0 < n1 < n2 < N − 1. The causal and anticausal learning
areas are respectively de�ned as
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CY =



y0,0 . . . . . . . . . y0,N−1
... . . . . . . . . .

...
ym1−1,0 . . . . . . . . . ym1−1,N−1

ym1,0 . . . ym1,n1−1 ■ ■
... . . . . . . ■ ■

ym2,0 . . . ym2,n1−1 ■ ■


,

AY =



yM−1,N−1 . . . . . . . . . yM−1,0
... . . . . . . . . .

...
ym2+1,N−1 . . . . . . . . . ym2+1,0

ym2,N−1 . . . ym2,n2+1 ■ ■
... . . . . . . ■ ■

ym1,N−1 . . . ym1,n2+1 ■ ■


.

(1.70)

Because the Roesser model requires at least rectangular matrices, the black squares are
�lled with available data from the areas left and right of the masked zone. The subspace-
based estimation algorithm described in Section 1.3 is then applied to both CY and AY.
Once the Hankel parameter i is �xed, the algorithm can be automatically executed, except
from the choice of the horizontal and vertical orders, i.e., the dimensions of the state vari-
ables xhr,s and xvr,s, denoted by nh and nv, respectively. As with any parametric model, a
good selection of the model orders is essential to guarantee a good trade-o� between com-
plexity and accuracy (Katayama 2005). In this particular approach, these two parameters
correspond to the number of non-zero singular values of the matrices ΓhfX

h
f and ΓvfX

v
f ,

respectively (see Section 1.3.4). More precisely, after the SVD is performed, n• (• ∈ {h, v})
is chosen by the user as the order of the lowest singular value before the expected quick
drop. Figures 1.11 and 1.12 show examples of horizontal and vertical singular values sorted
in descending order, respectively. In both cases, a drop is observed after the third singular
value, from which it can be deduced that nh = nv = 3.

Horizontal Singular Value Plot
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Figure 1.11: Horizontal singular values.

Once the causal and anticausal models are estimated from the learning neighborhoods
CY and AY, two distinct sets of parameters, state variables and innovation sequence are
available, respectively. These are given in Table 1.1.
Notice that for all u ∈ {xh,xv, e}, uc ∈ R(m2+1)×N and ua ∈ R(M−m1)×N . In order to
�ll the missing part of the original image, two output sequences, denoted by Yc and Ya,
respectively, are generated. Let ycr,s and yar,s denote the values of the causal and anticausal
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Vertical Singular Value Plot
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Figure 1.12: Vertical singular values.

Causal Anticausal
A parameters Ac

1, A
c
2, A

c
3, A

c
4 Aa

1, A
a
2, A

a
3, A

a
4

K parameters Kc
1, K

c
2 Ka

1, K
a
2

C parameters Cc
1, C

c
2 Ca

1, C
a
2

state variables xhc, xvc xha, xva

innovation sequence ec ea

Table 1.1: Parameters estimated from the causal and anticausal learning areas.

outputs at the pixel (r, s) ∈ I, respectively, with I denoting the set of indices of the
masked area de�ned in Eq. (1.69). The main issue in generating these output sequences
is that they require knowing the innovation sequence and the initial values of the state
variables inside the masked area, which is impossible. In order to bypass this di�culty,
parts of the sequences extracted from the causal and anticausal model learning are used.
More precisely, the innovation sequences ecr,s, (r, s) ∈ {m1, . . . ,m2}×{n1, . . . , n2}, and ea,
(r, s) ∈ {M − 1 −m2, . . . ,M − 1 −m1} × {N − 1 − n2, . . . , N − 1 − n1}, estimated from
the rectangular causal and anticausal training areas, respectively, are re-used to generate
the new piece of texture. Therefore, for all (r, s) ∈ {m1, . . . ,m2} × {n1, . . . , n2}, ycr,s is
constructed as


x̃hcr+1,s = Ac

1x̃
hc
r,s +Ac

2x̃
vc
r,s +Kc

1e
c
r,s,

x̃vcr,s+1 = Ac
3x̃

hc
r,s +Ac

4x̃
vc
r,s +Kc

2e
c
r,s,

ycr,s = Cc
1x̃

hc
r,s +Cc

2x̃
vc
r,s + ecr,s,

(1.71)

where x̃hc and x̃vc denote the horizontal and vertical reconstructed state variables, respec-
tively, with their initial values taken from xhc and xvc, respectively. Notice that the choice
of the innovation could be further discussed and opens interesting perspectives for future
works. A possible solution to improve the results is the addition of a random perturbation
to the extracted innovation sequence, which could reduce the copy-paste e�ect. Further
tests would be necessary to study the potential bene�ts of this technique.

The state variables are reconstructed at the same time as the image itself by using the
recursive equations that de�ne the Roesser model. Similarly, for all (r, s) ∈ {m1, . . . ,m2}×
{n1, . . . , n2}, yar,s is constructed as
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
x̃har−1,s = Aa

1x̃
ha
r,s +Aa

2x̃
va
r,s +Ka

1e
a
r,s,

x̃var,s−1 = Aa
3x̃

ha
r,s +Aa

4x̃
va
r,s +Ka

2e
a
r,s,

yar,s = Ca
1x̃

ha
r,s +Ca

2x̃
va
r,s + ear,s.

(1.72)

These estimated causal and anticausal values are then merged into a single output sequence

Yf =
(
yfr,s
)
(r,s)∈I

de�ned for all (r, s) ∈ I as

yfr,s = (1− vr,s)y
c
r,s + vr,sy

a
r,s, (1.73)

where v = (vr,s)(r,s)∈I is a weighting function that ful�lls the following conditions :

� vm1,n = vm,n1 = 0 for all (m,n) ∈ I,

� vm2,n2 = 1,

� if (m3, n3) ∈ I, then vm3,n3 ≥ vm,n for all m1 ≤ m ≤ m3 and n1 ≤ n ≤ n3.

These conditions ensure that the closer a pixel is from the causal (resp. anticausal) area,
the greater the in�uence of Yc (resp. Ya) on the �nal value of the pixel is. In the synthetic
tests presented in Section 1.5.4, the chosen weighting function v is de�ned for (r, s) ∈ I as

vr,s = sin

[
(r −m1)π

2 (m2 −m1)

]
sin

[
(s− n1)π

2 (n2 − n1)

]
. (1.74)

Figure 1.13 shows an example of such a weighting function with I = {61, . . . , 120}2.

Figure 1.13: Example of a weighting function v with I = {61, . . . , 120}2.

Be careful that although the innovation sequences ec and ea are copied from non-masked
areas, the output sequences yc and ya, as well as the resulting inpainted piece of texture
yf , are not mere recombinations of available data, but rather generated data through
the Roesser recursive model. Notice furthermore that unlike many parametric methods
applied on color images, no arti�cial post-treatment is needed to reconstruct the color
structure, i.e., the correlations between the color channels. Indeed, as shown in Section
1.4, the link between the color channels is directly involved in the identi�cation process.
The synthetic tests performed in Section 1.5.4 show how the color structure is preserved in
the reconstructed areas without the need of any post-treatment, and how this represents
a huge advantage over the marginal approaches described in Section 1.5.3.
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1.5.3 Comparison with marginal approaches

In order to illustrate the bene�ts of a vectorial treatment of the color content, the ap-
proach presented in the previous sections is compared with marginal approaches, i.e., the
treatment of the color channels as three independent scalar signals rather than one single
vectorial signal with correlated components. This section brie�y explains the marginal
techniques to which the vectorial Roesser model is compared with in Section 1.5.4. Al-
though the colorimetric interpretation of the autocovariance matrices Λk,m de�ned by Eq.
(1.61) only holds if ny = 3, the algorithm presented in Section 1.3 can be applied for
any ny ∈ N∗, including the special case of a greyscale image, i.e, ny = 1. Three sepa-
rate Roesser models can hence be estimated from the available values of the three color
components of (yr,s)r,s, respectively, yielding three reconstructed signals, one for each color
component. Another possible approach is to apply a Principal Component Analysis (PCA)
on the image to decorrelate its components before applying the marginal Roesser proce-
dure. The treatment of the vectorial information is still marginal, but it can be expected
that the loss of the color structure is not as important as in the case of a direct marginal
approach. However, the synthetic tests performed in Section 1.5.4 show that such marginal
approaches, even when reinforced by a PCA, fail to properly reconstruct the color structure
of the original image, which highlights the bene�ts of the vectorial treatment presented in
this work.

1.5.4 Synthetic tests

The subspace-based texture completion technique is now applied to real images. In all
the tests, the images are of size 180 × 180, i.e., M = N = 180, while the masked area is
the square {61, . . . , 120}2, i.e., m1 = n1 = 61 and m2 = n2 = 120. As stated in Section
1.3.2, the Hankel parameter i has to be su�ciently large compared to the horizontal and
vertical orders nh and nv, respectively, to ful�ll the rank conditions given by Eq. (1.45).
In the tested images, the drop of singular values usually occurs between the third and the
�fth order, similarly to what is observed in Figures 1.11 and 1.12. The parameter i must
hence be chosen su�ciently larger than 5. Furthermore, remember that by de�nition of
the Hankel matrices (see Section 1.3.2), i and j are linked by the constraint 2i + j − 2 =
min{M − 1, N − 1}, which implies that if i increases, then j decreases. The parameter j
must however stay large enough so that the empirical estimations of the color covariances
evoked in Section 1.4.1 remain reliable. Choosing i = 20, and consequently j = 141,
ensures that both conditions are ful�lled. Table 1.2 shows the results obtained on a set
of color textures. In each case, after the masked area is removed from the image, three
subspace-based reconstruction algorithms are applied :

� a vectorial algorithm that involves the color covariances, i.e., ny = 3,

� a marginal algorithm applied on each color component, i.e., ny = 1,

� a marginal algorithm preceded by a PCA to decorrelate the color components.

In the case of the grass texture, the color remains stable in the whole image, which explains
why no di�erence is observed between the three approaches. However, when more complex
color structures come into play, the vectorial approach manages to produce pixels that
always lie in the right color space, which is not the case for the two marginal approaches,
especially for the sand and wall textures. Even when preceded by a PCA, the marginal
treatment of the color channels fails to restore the original color content of the image, and
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Figure 1.14: Area occupied by the original (top left) and inpainted grass textures inside
the RGB cube in the case of vectorial (top right), marginal (bottom left) and PCA-based
(bottom right) inpainting.
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Figure 1.15: Area occupied by the original (top left) and inpainted sand textures inside
the RGB cube in the case of vectorial (top right), marginal (bottom left) and PCA-based
(bottom right) inpainting.
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Figure 1.16: Area occupied by the original (top left) and inpainted marble textures inside
the RGB cube in the case of vectorial (top right), marginal (bottom left) and PCA-based
(bottom right) inpainting.
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Figure 1.17: Area occupied by the original (top left) and inpainted wall textures inside
the RGB cube in the case of vectorial (top right), marginal (bottom left) and PCA-based
(bottom right) inpainting.
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produces pixels with a clearly di�erent tint. This is re�ected in Figures 1.14, 1.15, 1.16 and
1.17 which compare the areas occupied by the original and inpainted textures inside the
RGB cube. Though the four techniques give similar results in the cases of the grass and
marble textures, the Roesser-based vectorial inpainted texture appears to be the closest
to the original image in terms of color content in the cases of the sand and wall textures.
This illustrates the bene�ts of involving the color covariances in the estimation algorithm,
as highlighted in Section 1.4.1.

1.6 Conclusion

The main objective of this chapter was to study the application of the parametric repre-
sentation of multivariate systems provided by the Roesser model to color textures. The
results given in Section 1.5.4 con�rm the main assertion of the introduction, i.e., that a
color texture has to be treated as a dynamic 3D vector rather than three marginal sig-
nals. The direct implication of the color covariances in the estimation algorithm is what
enables the vectorial Roesser model to reliably extract the color structure of the original
image, which is a clear advantage over marginal solutions. Though the relevance of the
Roesser model in the �eld of image restoration had already been highlighted in previous
works (Ramos & Mercère 2016), the crucial impact of this non-marginal treatment on its
performances is rarely put forward.

The developments performed in this chapter also highlight the importance of the inno-
vation sequence. Though usually described as a white noise (Köppel et al. 2015), this
sequence contains some crucial features of the texture that cannot be extracted by the
Roesser parameters. Consequently, as highlighted in Section 1.3.5, the choice of the in-
novation terms strongly impacts the reconstruction of the image, and only knowing its
second order statistics is not enough to fully characterize it. While many works dealing
with 2D ARMA models (Kokaram 2004, Köppel et al. 2015) or the Roesser model (Ramos
& Mercère 2016, Ramos & Mercère 2018) focus mostly on the estimation of the parameters
and the statistical behavior of the involved variables, this suggests paying more attention
on the innovation sequence in future studies.

One of the main di�culties in the Roesser model is that the parameters of the model are
di�cult to interpret in terms of characterization of the texture. Firstly, the matrices Ai,
Cj and Kj , with (i, j) ∈ {1, . . . , 4}×{1, 2}, are only known up to a similarity transforma-
tion (Ramos & Mercère 2018), which makes it hard to compare them to the parameters
extracted from another texture. Additionally, as shown in Figure 1.7, these parameters
only describe the global dynamic of the texture, not its local structure at each pixel which
is contained in the innovation sequence. Recent works such as (Leclaire & Moisan 2015)
suggest that this is due to the inner characteristics of the ARMA and Roesser parameters,
respectively. More precisely, (Leclaire & Moisan 2015) use Fourier analysis to show how
the parameters of such models capture the information contained in the Fourier amplitude,
but fail to extract what lies in the Fourier phase. Because the structure of an image is
encoded in its Fourier phase function (Oppenheim & Lim 1981), this urges the need to
introduce tools that are able to characterize this information. Before focusing on color
textures, the next two chapters de�ne these tools in the greyscale case to highlight their
ability to extract local features.
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Texture Grass Sand Marble Wall

Original

Damaged

Vectorial

Marginal

PCA

Table 1.2: Comparison between reconstructions performed by the vectorial Roesser model
and two marginal approaches, direct and combined with an PCA



CHAPTER 2

The Riesz transform and the monogenic signal

As seen in the previous chapter, the Roesser model focuses on the global dynamics of the
texture, but fails to extract its local features, which are left in the innovation term e.
Consequently, this chapter aims at introducing tools to extract these features, from which
an accurate description of the local behavior of the texture can be deduced. These tools
are �rst introduced and studied for greyscale images in Chapters 2 and 3 before being
generalized to color images in Chapters 4 and 5.

A �rst approach consists in considering the 2D Fourier spectrum of the texture, more pre-
cisely the amplitude and phase information it provides. Indeed, it is well known that the
structure of an image is contained in its Fourier phase, i.e., the argument of its Fourier
transform (Oppenheim & Lim 1981). This is illustrated in Figure 2.1, which shows peb-
ble and sand textures before and after their respective Fourier phase signals have been
switched. While the Fourier amplitude carries the intensity information, the structure of
the texture, including the edges, are contained in the Fourier phase. Other works highlight
the importance of the Fourier phase in the perception of the image, such as (Field, Hayes &
Hess 2000, Hansen & Hess 2006). However, the fact that the Fourier phase lies in the fre-
quency domain rather than the spatial domain makes it di�cult to handle (Felsberg 2002).
Some works like, e.g., (Kovesi 2000, Leclaire & Moisan 2015), managed to de�ne reliable
tools to characterize phase coherence and link them some visual aspects, but the local
behavior of the image is still left unmodeled in such approaches. Figure 2.2 highlights the
chaotic visual aspect of the phase signals, which are hence di�cult to directly connect with
the local structure of the original texture, hence the need of a localized de�nition of phase.

In the �eld of 1D signal processing, the Hilbert transform and the analytic representa-
tion (Hilbert 1912, Ville 1948, Oswald 1956) have proved their relevance in extracting
the local properties of a signal (Milkereit & Spencer 1990, Picinbono 2008, Langley &
Anderson 2010). These tools were originally developed as a way to generalize the em-
bedding of cosine waves into complex exponentials (Picinbono 2008). By extending any
real-valued signal to the complex domain, the analytic representation enables the de�nition
of an instantaneous modulus (or amplitude) and an instantaneous argument (or phase),
which are to be interpreted as a measure of local energy and local structure of the signal,
respectively (Felsberg 2002). There have been many attempts to generalize the Hilbert
transform to 2D real-valued signals in the 80s and 90s (see (Langley & Anderson 2010)
for a good survey of these works), but it was not until the early 2000s with the works
of (Larkin et al. 2001) and (Felsberg & Sommer 2001) that this goal was fully reached.
These works use the Riesz-transform, �rst introduced in (Riesz 1928), as a 2D analog of
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Original pebble image Original sand image

Sand amplitude + pebble phase Pebble amplitude + sand phase

Figure 2.1: Phase switch between pebble and sand textures.
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Figure 2.2: Fourier phase signals of the pebble (left) and sand (right) textures.
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the Hilbert transform, and enable the extension of a 2D real-valued signal to an R3-valued
signal called the monogenic signal (Felsberg 2002). The spherical coordinates of this mono-
genic signal then give a measure of local energy, structure and orientation of the original
image. The characterization of an image by these three quantities has been applied to
various domains, including hologram demodulation (Seelamantula et al. 2012), spatial vi-
sion (Langley & Anderson 2010), interferometry (Kaseb et al. 2019) and medical imaging
(Alessandrini et al. 2013). The particular impact of the phase function on the local texture
of the image has also been illustrated in the �eld of computer graphics (Tricard et al. 2019).
However, the link between the measures given by the monogenic tool and their physical
interpretation is not obvious (Kaseb et al. 2019). Indeed, because the monogenic signal
was originally designed for purely monochromatic waves (Felsberg & Sommer 2001), the
measures of phase and orientation it provides are theoretically optimal only for such images
(Seelamantula et al. 2012).

One of the main goals of this chapter is hence to study the reliability of the monogenic-
based extraction of the local features of an image when more complex oscillating patterns
come into play. While some regularity conditions were given in (Larkin et al. 2001, Seela-
mantula et al. 2012) to ensure the quality of the monogenic phase extraction, this chapter
goes further by formally studying how the Riesz transform deals with patterns displaying
more curves than purely monochromatic waves. These mathematical developments are
used to establish the asymptotic convergence of the monogenic estimation of both phase
and orientation. The monogenic tool is then applied to interferometric fringes to con�rm
the theoretical results. While the relevance of the monogenic signal to extract the oscillat-
ing features of fringe patterns was already highlighted in (Larkin et al. 2001, Seelamantula
et al. 2012, Kaseb et al. 2019), this chapter gives stronger theoretical guarantees to ensure
the reliability of this extraction.

The rest of the chapter is organized as follows. Before dealing with 2D images, some of the
key results of the 1D case are recalled in Section 2.1, which are then illustrated by synthetic
tests in Section 2.2. After recalling the main properties of the 2D Fourier transform in
Section 2.3, the 1D results are generalized to the 2D case by use of the Riesz transform
in Section 2.4. 2D synthetic tests are then performed in Section 2.5 with a special focus
on the discretization process. The Riesz-based monogenic extraction of phase is �nally
applied to real interferometric fringes in Section 2.6, in which the bene�ts of this approach
are highlighted.

2.1 Case of 1D signals: the Hilbert transform and the ana-

lytic signal

2.1.1 De�nition and �rst properties

In the 1D case, a wave signal can be modeled as a function s : R → R de�ned for all t ∈ R
by

s(t) = a(t) cos [φ(t)] , (2.1)

where a(t) denotes the amplitude of s and φ(t) its phase at each instant (or position)
t ∈ R (Picinbono 2008). These functions are sometimes called instantaneous amplitude
and instantaneous phase, respectively, to distinguish them from the frequency-depending
Fourier amplitude and phase functions (Picinbono 2008). In practice, s is the only known
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function, while a and φ have to be estimated from it. Notice however that there exist an
in�nity of functions ã and φ̃ such that for all t ∈ R,

s(t) = ã(t) cos [φ̃(t)] , (2.2)

which complicates the extraction of a and φ from s only (see Chapter 2 of (Picinbono 2008)
for details). In order to bypass this di�culty, the signal s is extended to the complex
domain by using the Hilbert transform, �rst introduced in Chapter 10 of (Hilbert 1912),
and extended in (Riesz 1928). Let h denote the Hilbert kernel de�ned for t ∈ R∗ by

h(t) =
1

πt
. (2.3)

Then, the Hilbert transform of s, denoted by Hs, is de�ned for all t ∈ R as the convolution
product between s and h, i.e.,

Hs(t) = s ∗ h(t),

=
1

π
p.v.

(∫
R

s(τ)

t− τ
dτ

)
,

(2.4)

where p.v. denotes the Cauchy principal value (Hilbert 1912). Though the convolution
product involving an improper integral makes this de�nition di�cult to handle, a much
more convenient de�nition can be formulated in the Fourier domain (Bracewell 1965).
Indeed, if F denotes the Fourier transform, the Hilbert transform of s can be de�ned for
all ξ ∈ R∗ as

F [Hs] (ξ) = H(ξ)Fs(ξ), (2.5)

where H denotes the Fourier transform of the Hilbert kernel h, given by

H(ξ) = −i
ξ

|ξ|
. (2.6)

The complex analytic extension of s is then de�ned for all t ∈ R∗ as

As(t) = s(t) + iHs(t), (2.7)

and is called the analytic signal of f (Ville 1948). The modulus and argument of As,
denoted by A(t) and ϕ(t) respectively, give instantaneous measures of amplitude and phase,
respectively (Picinbono 2008).

2.1.2 Case of a pure cosine wave

The most canonical class of signals �rst considered in works dealing with the Hilbert
transform is the class of the pure cosine waves (Ville 1948, Oswald 1956). A 1D signal is
a pure cosine wave if it has a constant amplitude and a linear phase, i.e., for all t ∈ R,

s(t) = a0 cos(ωt), (2.8)

where a0 ∈ R∗ and ω ∈ R∗ denote the amplitude and frequency of the signal, respectively.
As shown in (Ville 1948), the Hilbert transform of such a signal is given for all t ∈ R by

Hs(t) = a0 sin(ωt). (2.9)
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This is due to the Hilbert transform having been purposely designed as a quadrature �lter
(Ville 1948, Oswald 1956). Consequently, the analytic signal is given for all t ∈ R by

As(t) = a0 [cos(ωt) + i sin(ωt)] ,

= a0e
iωt.

(2.10)

From an estimation point of view, this also implies that, in the case of an unknown cosine
wave signal, the amplitude and phase functions A and ϕ extracted by the Hilbert transform
and the analytic signal coincide with their respective physical counterparts, i.e., for all
t ∈ R, {

A(t) = a0,
ϕ(t) = φ(t) = ωt [2π] .

(2.11)

2.1.3 Case of a parabolic chirp

As stated in (Picinbono 1997, Seelamantula et al. 2012), the equality between the physical
phase φ and the analytic phase ϕ is only true for cosine waves. Outside this ideal case, the
analytic measures of amplitude A(t) and phase and ϕ(t) at each time t ∈ R do not match
their expected physical values a(t) and φ(t), respectively. However, if the amplitude and
phase functions are slowly and smoothly varying, it can be shown that the analytic signal
still provides reliable estimations of these functions (Seelamantula et al. 2012). Other
conditions on the phase function are given in (Edwards & Parrent 1959, Picinbono 1997).
Chapter 2 of (Picinbono 2008) goes further by formally studying the case of a parabolic
chirp, de�ned for all t ∈ R by

s(t) = a0 cos(a
2t2), (2.12)

with a0 ∈ R∗
+ and a ∈ R∗

+. The further developments of this chapter show how the
2D generalization of these results are particularly relevant in the �eld of fringe pattern
analysis, which explains why they are recalled here. As stated in (Picinbono 2008), the
Hilbert transform of a 1D parabolic chirp is given for all t ∈ R by

Hs(t) = a0

√
2

π

{
[C(at) + S(at)] sin(a2t2) + [C(at)− S(at)] cos(a2t2)

}
, (2.13)

where C and S denote the Fresnel integrals de�ned for all θ ∈ R by{
C(θ) =

∫ θ
0 cos

(
u2
)
du,

S(θ) =
∫ θ
0 sin

(
u2
)
du.

(2.14)

In this case, it is obvious that the argument of the analytic signal As(t) = s(t) + iHs(t)
is not equal to a2t2, which illustrates the fact that the analytic phase does not match its
physical counterpart. However, this observation does not imply that the analytic phase
fails to extract the local structure of the signal. Indeed, as stated in (Picinbono 2008), the
Fresnel integrals satisfy

lim
θ→+∞

C(θ) = lim
θ→+∞

S(θ) =

√
π

8
, (2.15)

which implies that
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Hs(t) = a0

√
2

π

{
[C(at) + S(at)] sin(a2t2) + [C(at)− S(at)] cos(a2t2)

}
,

=t→+∞ a0

√
2

π

[
2

√
π

8
sin(a2t2)

]
+ o(1),

=t→+∞ a0 sin(a
2t2) + o(1).

(2.16)

This implies that the analytic signal is asymptotically equal to a0eia
2t2 . In this case, the

analytic phase, which is de�ned as the argument of the analytic signal, is asymptotically
equal (modulo 2π) to the physical phase φ(t) = a2t2. Furthermore, notice that C(at) and
S(at) also tend towards

√
π
8 when a tends towards +∞. Thus, for any �xed t ∈ R,

Hs(t) =a→+∞ a0 sin(a
2t2) + o(1). (2.17)

Consequently, the analytic and physical phases also coincide for large values of a. These
results illustrate the ability of the analytic signal to extract the phase function outside
the case of pure cosine waves. This stands in line with the conclusion of (Seelamantula
et al. 2012) in the case of 1D holograms. Before generalizing to 2D images, synthetic tests
are performed in Section 2.2 to give numerical con�rmations of these theoretical results.

2.2 1D synthetic tests

Though the previous section deals with in�nite and continuous signals, the signals handled
in practice are usually �nite and discrete. The main goal of this section is hence to
determine whether the discretization a�ects the theoretical results presented in Section 2.1
or not. In other words, whether the analytic measure of phase remains close to the expected
physical phase function as stated in the continuous case. Additionally, comparing estimated
and expected values can be eased by the use of numerical criteria of similarity. Before
performing synthetic tests, this section details the discretization process and introduces
similarity criteria to evaluate the quality of the analytic estimation of phase.

2.2.1 Discretization

Let (tj)j be a discrete time sequence, with j ∈ {0, . . . , N − 1} and N ∈ N∗, such that

tj = jT, (2.18)

where T > 0 denotes the sampling period. The corresponding discrete frequency sequence,
denotes by (ξj)j , is de�ned for all j ∈ {0, . . . , N − 1} by

ξj =
j

NT
. (2.19)

In the general case, s = (sj)j∈{0,...,N−1} denotes a discrete signal de�ned for all j ∈
{0, . . . , N − 1} by

sj = aj cos
(
φj
)
, (2.20)

where aj and φj denote the physical amplitude and phase of sj , respectively. If S denotes
the discrete Fourier transform of s, the discrete Fourier transform of the Hilbert transform
of s, denoted by Hs, is de�ned for all j ∈ {1 . . . N − 1} as
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Hj
s = −i

ξj

|ξj |
Sj . (2.21)

Notice that the Hilbert transform is not de�ned for j = 0, i.e., for the null frequency.
In practice, a high-pass �lter has to be applied to s to eliminate the low frequencies.
The discrete Hilbert transform of s, denoted by hs, is obtained from Hs by using the
inverse Fourier transform. The discrete analytic signal As can then be de�ned for all
j ∈ {0, . . . , N − 1} as

Ajs = sj + ihjs, (2.22)

whose modulus Aj and argument ϕj provide a measure of analytic amplitude and phase,
respectively. The analytic phase signal (ϕj)j is then compared to the expected physical
phase (φj)j to determine if the Hilbert transform manages to reliably extract local phase.
The synthetic tests focus on two cases:

� the pure cosine wave, de�ned for all j ∈ {0, . . . , N − 1} as

sj = a0 cos(ωt
j), (2.23)

where a0 ∈ R∗ and ω ∈ R∗ denote the amplitude and frequency of the signal, respec-
tively,

� the parabolic chirp, de�ned for all j ∈ {0, . . . , N − 1} as

sj = a0 cos[a
2
(
tj
)2
], (2.24)

with a0 ∈ R∗
+ and a ∈ R∗

+.

In the �rst case, the analytic and physical phase signals are expected to coincide perfectly
(see Section 2.1.2), while, in the second, they only coincide asymptotically, or if a is large
enough (see Section 2.1.3). This would show how the theoretical results of the continuous
domain are preserved in the discrete domain. However, because the phase signals consist
of angular values, comparing them can be di�cult due to the 2π-periodicity. In order
to bypass this problem, numerical criteria of similarity between two angular signals are
introduced in Section 2.2.2.

2.2.2 Numerical measure of similarity

This section aims at de�ning numerical criteria that measure the similarity between the
analytic and physical phase signals, denoted by (ϕj)j and (φj)j , j ∈ {0, . . . , N − 1}, re-
spectively. Because these two signals contain angles de�ned modulo 2π, the quality of the
estimation cannot be evaluated by simply calculating the di�erence between the extracted
and expected values. Indeed, values like −π+ϵ and π−ϵ (ϵ being a small positive real num-
ber) would be deemed as highly di�erent while they hold the same angular information.
A good way to bypass this di�culty is to compare their respective cosines, which yields a
measure of similarity at each time. A more global comparison between the estimated and
expected values of phase is then performed by using the two numerical criteria of similar-
ity de�ned, e.g., in (Tóth 2007), the Best Fit Rate (BFR) and the Variance Accounted
For (VAF). If g =

(
gj
)
j∈{0,...,N−1} denotes a real-valued signal, and

(
ĝj
)
j∈{0,...,N−1} the

estimates of g at each point, then the BFR and VAF criteria are calculated as
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{
BFR(ĝ, g) = max{100(1− ∥ĝ−g∥2

∥g−g∥2 ), 0},
VAF(ĝ, g) = max{(100(1− V (ĝ−g)

V (g) ), 0},
(2.25)

where for all signal h =
(
hj
)
j∈{0,...,N−1},{

∥h∥22 =
∑N−1

j=0

(
hj
)2
, h = 1

N

∑N−1
j=0 hj , V (h) = 1

N ∥h∥22 − h
2
. (2.26)

The BFR and VAF criteria are to be interpreted as a bias and variance information,
respectively, which is very instructive when testing an estimation technique. Note that
both BFR and VAF are not de�ned for constant signals, but the phase functions studied
in this work should not be constant. In the subsequent tests, these criteria are applied to
g = cos(φ) and ĝ = cos(ϕ). The closer to 100% these criteria are, the better the analytic
extraction of the phase is.

2.2.3 Phase extraction of a cosine wave

Figure 2.3 shows an analytic phase function ϕ extracted through the Hilbert transform
from a discrete cosine wave generated with N = 1000, T = 0.002, a0 = 0.5 and ω = 10π.
The expected physical phase function φ is also represented. As predicted by Eq. (2.11)
in the continuous case, both phase functions coincide perfectly, which is con�rmed by the
BFR and VAF criteria, which are both equal to 100%.
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Figure 2.3: Comparison between the analytic (black circles) and physical (red line) mea-
sures of amplitude and phase in the case of a cosine wave, N = 1000, T = 0.002, a0 = 0.5,
ω = 10π, BFR = VAF = 100%.

Applying the same process to cosine waves of di�erent frequencies ω ∈ {π(1 + ℓ), ℓ =
0, . . . , 9} yields exactly the same results, i.e., the BFR and VAF criteria remain exactly
equal to 100%. This con�rms the theoretical results of Section 2.1.2.

2.2.4 Phase extraction of a parabolic chirp

Figure 2.4 shows the analytic and physical phase functions of a discrete parabolic chirp
generated with N = 1000, T = 0.002, a0 = 0.5 and a = 3. This time, the phase extrac-
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tion does not work perfectly, but the two functions remain close to each other, which is
con�rmed by the high values of BFR and VAF (BFR = 90.07%, VAF = 99.02%). As
predicted by Eq. (2.16), the quality of the estimation increases with t, which explains why
the initial phase values (t < 0.2) are badly estimated.
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Figure 2.4: Comparison between the analytic (black circles) and physical (red line) mea-
sures of amplitude and phase in the case of a parabolic chirp, N = 1000, T = 0.002,
a0 = 0.5, a = 3, BFR = 90.07%, VAF = 99.02%.

Figure 2.5 illustrates the in�uence of the parameter a on the quality of the analytic extrac-
tion of phase. As predicted by Eq. (2.17) in the continuous case, increasing a improves
the phase extraction, which is re�ected by the BFR and VAF criteria becoming close to
100% for higher values of a.
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Figure 2.5: Comparison between the physical and analytic phase functions through the
BFR and VAF criteria in the case of a parabolic chirp.



54 CHAPTER 2. THE RIESZ TRANSFORM AND THE MONOGENIC SIGNAL

The previously performed synthetic tests show how the results established in the con-
tinuous case remain true when discrete signals come into play. Of course, the relevance
of the Hilbert transform in the �eld of signal processing is not to be proved anymore
(Seelamantula et al. 2012), but focusing on 1D signals enables the introduction of some
of the main issues encountered in the case of 2D structure extraction. Though focusing
on parabolic chirps may seem restrictive at �rst, generalizing the results presented in this
section to 2D images is of particular interest in the �eld of interferometry, as highlighted
in Sections 2.4 2.5 and 2.6. Before handling 2D images, Section 2.3 properly introduces
the 2D Fourier transform and its main properties.

2.3 The 2D Fourier transform

In the 1D case, the Fourier transform is crucial in de�ning and computing the Hilbert
transform, from which a reliable measure of phase is obtained. Generalizing this procedure
to 2D images hence requires a proper de�nition of a 2D Fourier transform. Though it is
a commonly used tool in image processing, the available literature generally focuses on
computing aspects (as in (Smith 1995)) and lacks the theoretical results of the continuous
domain that can be found in the 1D case, according to the authors' knowledge. Conse-
quently, this section aims at introducing the 2D Fourier transform and some of its useful
properties properly, a crucial step before dealing with 2D phase extraction.

2.3.1 De�nition

Let s : R2 → R be an integrable function. The 2D Fourier transform of s, denoted by F2s,
is de�ned for all ξ ∈ R2 as

F2s(ξ) =

∫
R2

s(x)e−ix⊤ξdx. (2.27)

In the subsequent developments, the more concise notation ŝ is also used for the Fourier
transform of s.

2.3.2 Basic properties

Linearity

If s1, s2 : R2 → R are integrable functions and λ ∈ R, then,

F2 [λs1 + s2] = λF2s1 + F2s2. (2.28)

This is directly deduced from the linearity of the integral.

Dilation

If A is an 2× 2 invertible dilation matrix, s : R2 → R an integrable function and sA : x 7→
s(Ax), then for all ξ ∈ R2,

F2sA(ξ) =
1

| det(A−1)|
F2s(A

−1ξ). (2.29)

Because A is assumed to be invertible, this property is proved by using the substitutions
x = Ax.
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Convolution theorem

If s1, s2 : R2 → R are integrable functions, then

F2 [s1 ∗ s2] (ξ) = F2s1(ξ)×F2s2(ξ), (2.30)

where s1 ∗ s2 denotes the 2D convolution product of s1 and s2 de�ned for all x ∈ R2 by

s1 ∗ s2(x) =
∫
R2

s1(y)s2(x− y)dy. (2.31)

This is proved by using Fubini's theorem (Fubini 1907) and a substitution.

Space domain derivation

Let s : R2 → R be an integrable and di�erentiable function. For j ∈ {1, 2}, if ∂s
∂xj

is

integrable, its Fourier transform satis�es for all ξ ∈ R2,

F2
∂s

∂xj
(ξ) = iξjF2s(ξ). (2.32)

The proof relies on an integration by parts.

Frequency domain derivation

Let s : R2 → R be an integrable function, and let sj denote the function de�ned for all
x = (x1, x2) ∈ R2 as

sj(x) = xjs(x), (2.33)

with j ∈ {1, 2}. Assuming that s1 and s2 are integrable, then, for all j ∈ {1, 2} and ξ ∈ R2,

F2sj(ξ) = i
∂F2s

∂ξj
(ξ). (2.34)

The proof relies on a derivation under the integral sign.

2.3.3 2D Gaussian function

2D Gaussian functions are widely used as window functions in the �eld of texture synthesis
(Lagae, Lefebvre, Drettakis & Dutré 2009), similarly to their use in 1D signal processing
(Picinbono 2008). As a result, they frequently appear in the subsequent developments.
In this section, the Fourier transform of a 2D Gaussian function is formally calculated, a
result that, according to the authors' knowledge, is rarely explicitly given in the current
literature dealing with signal and image processing. However, it is much more frequently
found in the random �elds literature (see, e.g., Theorem 3.2.3 in (Tong 1989)).

Theorem 1. Let g : R2 → R be a 2D Gaussian function de�ned for all x = (x1, x2) ∈ R2

by

g(x) = e−(a21x
2
1+a

2
2x

2
2), (2.35)

where (a1, a2) ∈ (R∗
+)

2. The Fourier transform of g is given for all ξ = (ξ1, ξ2) ∈ R2 by

F2g(ξ) =
π

a1a2
e
− 1

4

(
ξ21
a21

+
ξ22
a22

)
. (2.36)
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The proof is given in Appendix A.1. Let (e1, e2) denote the canonical basis of R2. The 2D
Gaussian function g de�ned in Eq. (2.35) is called anisotropic because its variance is not
the same along the two directions e1 and e2 of R2. The more di�erent a1 and a2 are, the
more anisotropic the Gaussian is. In the special case of a1 = a2, the Gaussian function is
isotropic, i.e., the variance does not change with the direction. Because isotropic Gaussian
functions frequently appear in the subsequent developments, the 2D Fourier transform of
such functions is given in Corollary 1.

Corollary 1. Let g : R2 → R be a 2D isotropic Gaussian function de�ned for all x ∈ R2

by

g(x) = e−a
2∥x∥2 , (2.37)

where a ∈ R∗ and ∥.∥ denotes the Euclidian norm of R2. The Fourier transform of g is

given for all ξ = (ξ1, ξ2) ∈ R2 by

F2g(ξ) =
π

a2
e−

1
4a2

∥ξ∥2 . (2.38)

This is obviously a particular case of Theorem 1 with a1 = a2 = a. Now that some
fundamental properties of the 2D Fourier transform are formally expressed, the 1D results
about phase estimation given in Section 2.1 can be generalized to 2D images.

2.4 Case of 2D images: the Riesz transform and the mono-

genic signal

2.4.1 De�nition and �rst properties

In this section, s denotes a 2D greyscale image modeled as a function s : R2 → R de�ned
for all x ∈ R2 by (Seelamantula et al. 2012)

s(x) = a(x) cos [φ(x)] , (2.39)

where a(x) denotes the amplitude of s and φ(x) its phase at each pixel x ∈ R2. Similarly
to the 1D case, these functions give measures of local amplitude and local phase, respec-
tively. In order to extract a and φ from s as done for 1D signals, the Hilbert transform
is generalized to the 2D case by using the Riesz transforms Rk, k ∈ {1, 2}, introduced
in (Felsberg 2002). For k ∈ {1, 2}, let rk denote the 2D Riesz kernel de�ned for all
x = (x1, x2) ∈ (R∗)2 as

rk(x) =
xk

2π ∥x∥32
. (2.40)

Then, the Riesz transforms of s, denoted by Rks, are de�ned for all x = (x1, x2) ∈ R2 as
the 2D improper convolution product between s and rk, i.e.,

Rks(x) = s ∗ rk(x),

=
1

2π
lim
ϵ→0

(∫
R2\Bϵ(x)

(xk − yk) s(x)

∥x− y∥32
dy

)
,

(2.41)
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where Bϵ (x) denotes the open disk of center x and radius ϵ. As in the 1D case, a much more
convenient de�nition can be formulated in the Fourier domain, i.e., for all ξ = (ξ1, ξ2) ∈
(R∗)2 and k ∈ {1, 2}

F2 [Rks] (ξ) = Rk(ξ)F2s(ξ), (2.42)

where Rk denotes the 2D Fourier transform of the Riesz kernel rk, de�ned by

Rk(ξ) = −i
ξk

∥ξ∥2
. (2.43)

The 3D signal whose components are s, R1s and R2s, respectively, is called the monogenic
signal of s (Felsberg & Sommer 2001). The spherical coordinates of this 3D signal yield
the de�nition of the monogenic amplitude A(x) and two angular values at each point x,
the monogenic phase ϕ(x) and the orientation θ(x), respectively, i.e., s(x)

R1s(x)
R2s(x)

 = A(x)

 cos [ϕ(x)]
cos [θ(x)] sin [ϕ(x)]
sin [θ(x)] sin [ϕ(x)]

 . (2.44)

The amplitude, phase and orientation of the monogenic signal can be interpreted as a
measure of local energy, geometrical structure and main direction of oscillation of the
original image, respectively (Felsberg 2002). Of course, as in the 1D case, the functions A
and ϕ do not necessarily coincide with their physical counterparts a and φ, respectively.
However, the next sections show how the monogenic measures given in Eq. (2.44) provide
a relevant description of the local behavior of the texture under certain conditions.

2.4.2 Case of a pure cosine wave

As in the 1D case, the �rst class of signals to which the Riesz transform is applied is the
class of 2D pure cosine waves (Larkin et al. 2001, Seelamantula et al. 2012). Pure cosine
waves are generalized to the 2D case as functions s de�ned for all x = (x1, x2) ∈ R2 as

s(x) = a0 cos(ωu
⊤x), (2.45)

where ω ∈ R∗
+, u = (cosα, sinα)⊤ and α ∈

]
−π

2 ;
π
2

]
. Visually, such signals correspond to

parallel fringes oscillating with a constant frequency. The parameter ω corresponds to the
frequency of the fringes, while α denotes their orientation and u their wave vector (Kaseb
et al. 2019). Figure 2.6 shows an example of such an image.

As stated in (Seelamantula et al. 2012, Polisano 2017), the Riesz transforms of a pure
cosine wave are given for all x ∈ R2 by{

R1s(x) = a0 sin(ωu
⊤x) cosα,

R2s(x) = a0 sin(ωu
⊤x) sinα.

(2.46)

The monogenic signal of s has thus two spherical representations, which are (a0, ωu⊤x, α)
and the monogenic measures of amplitude, phase and orientation (A(x), ϕ(x), θ(x)) de�ned
in Eq. (2.44), respectively. By identi�cation of the spherical coordinates term by term,
the monogenic and physical functions coincide perfectly, i.e., for all x ∈ R2,

A(x) = a0,
ϕ(x) = φ(x) = ωu⊤x [2π],
θ(x) = α [2π].

(2.47)
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Figure 2.6: Example of a 2D cosine wave with ω = 20π and α = π
6 .

Notice furthermore that, by shifting the cosine to a sine, the Riesz transform operates
as a 2D quadrature �lter, which is exactly what it was designed for (Larkin et al. 2001,
Felsberg & Sommer 2001). This illustrates how the Riesz transform generalizes the Hilbert
transform to 2D signals. While cosine waves are a limited class of images, more complex
patterns are studied in Section 2.4.3.

2.4.3 Case of a parabolic chirp

Though the monogenic signal is suitable for any oscillating texture (Felsberg & Sommer
2001), it is often used within an interferometry framework (Larkin et al. 2001, Seelaman-
tula et al. 2012, Kaseb et al. 2019). Consequently, the theoretical developments introduced
here can �nd their motivation in the �eld of interferometry, where extracting the phase
function is a crucial issue (Robin, Valle & Brémand 2005).

As in the 1D case, the monogenic measures of amplitude, phase and orientation provided
by Eq. (2.44) match their expected physical counterparts only in the case of pure co-
sine waves. However, assuming that the amplitude and phase functions a and φ are slowly
and smoothly varying, the monogenic signal manages to reliably estimate these quantity, as
shown in works dealing with interferometric fringe patterns such as (Larkin et al. 2001, See-
lamantula et al. 2012). Because real interferometric fringes often exhibit circular fringes,
as can be seen in Figure 2.7, this section aims at further studying how the Riesz transform
deals with such patterns, with a special focus on the estimation of the phase and the ori-
entation, respectively.

To do so, one possible approach is to model circular fringes as 2D parabolic chirps. While
Sections 2.1 and 2.2 show how the analytic phase function of a 1D parabolic chirp is
asymptotically equal to its physical counterpart, no analogous result has been established
in the 2D case yet. The parabolic chirp can be generalized to the 2D case as a function s
de�ned for all x = (x1, x2) ∈ R2 as

s(x) = a0 cos(a
2 ∥x∥2), (2.48)

where a0 ∈ R∗
+ and a ∈ R∗

+. As can be seen in Figure 2.8, parabolic chirps visually corre-
spond to circular patterns, which makes them relevant to model interferometric fringes.
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Figure 2.7: Example of a real 2D fringe pattern.

Figure 2.8: Example of a 2D parabolic chirp with a = 7.



60 CHAPTER 2. THE RIESZ TRANSFORM AND THE MONOGENIC SIGNAL

In order to generalize the asymptotic result of the 1D case, the Riesz transform of a
parabolic chirp is �rst properly calculated.

Theorem 2 (Riesz transform of a 2D parabolic chirp). If x = (x1, x2) ∈ R2, let θx denote

the argument of the complex number x1 + ix2. The Riesz transforms of a parabolic chirp s
as de�ned in Eq. (2.48) are given for all x ∈ R2 by

R1s(x) = a0a
√
π
∥x∥
2

cos θx ×

[
J0

(
a2 ∥x∥2

2

)
cos

(
π

4
− a2 ∥x∥2

2

)

+J1

(
a2 ∥x∥2

2

)
sin

(
π

4
− a2 ∥x∥2

2

)]
,

(2.49)

and

R2s(x) = a0a
√
π
∥x∥
2

sin θx ×

[
J0

(
a2 ∥x∥2

2

)
cos

(
π

4
− a2 ∥x∥2

2

)

+J1

(
a2 ∥x∥2

2

)
sin

(
π

4
− a2 ∥x∥2

2

)]
,

(2.50)

where Jn denotes the Bessel functions de�ned for all n ∈ Z and z ∈ C by (Abramowitz &

Segun 1964)

Jn(z) =
1

π

∫ π

0
cos(nτ − z sin τ) dτ. (2.51)

The proof is given in Appendix A.2. As in the 1D case, the physical and monogenic
amplitudes and phases do not match, i.e.,

A(x) ̸= a0 and ϕ(x) ̸= a2 ∥x∥2 . (2.52)

However, by using the asymptotic expressions of the Bessel functions given in (Abramowitz
& Segun 1964), it is possible to show that the monogenic measure of amplitude and phase
are asymptotically close to their physical counterparts. If n ∈ N and u ∈ R, the Bessel
functions can be asymptotically expanded for u→ +∞ as

Jn(u) =

√
2

πu

[
cos
(
u− nπ

2
− π

4

)
+O

(
1

u

)]
. (2.53)

In Eq. (2.49) and (2.50), the argument of the Bessel functions J0 and J1 is u = a2∥x∥2
2 .

This expression tends towards in�nity when ∥x∥ does, i.e., when the signal moves away

from its initial point (0, 0). Therefore, it is possible to apply Eq. (2.53) to u = a2∥x∥2
2 and

n ∈ {0, 1}, which gives

J0

(
a2 ∥x∥2

2

)
=

2

a ∥x∥
√
π

[
cos

(
a2 ∥x∥2

2
− π

4

)
+O

(
1

a2 ∥x∥2

)]
, (2.54)

J1

(
a2 ∥x∥2

2

)
=

2

a ∥x∥
√
π

[
sin

(
a2 ∥x∥2

2
− π

4

)
+O

(
1

a2 ∥x∥2

)]
. (2.55)
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These expressions can then be injected in Eq. (2.49), hence

R1s(x) = a0 cos θx

[
cos2

(
π

4
− a2 ∥x∥2

2

)
− sin2

(
π

4
− a2 ∥x∥2

2

)]

+O

(
1

a2 ∥x∥2

)
.

(2.56)

Using the equalities cos2(θ) − sin2(θ) = cos(2θ) and cos
(
π
2 − θ

)
= sin(θ) �nally gives the

following asymptotic expansion of R1s(x),

R1s(x) = a0 cos θx sin(a
2 ∥x∥2) + O

(
1

a2 ∥x∥2

)
, (2.57)

when ∥x∥ → +∞. Similarly,

R2s(x) = a0 sin θx sin(a
2 ∥x∥2) + O

(
1

a2 ∥x∥2

)
, (2.58)

when ∥x∥ → +∞. Notice that the O term tends towards 0 when ∥x∥ tends towards in�nity,
which yields an asymptotic expression of the monogenic signal associated with s for high
values of ∥x∥, i.e.,  s(x)

R1s(x)
R2s(x)

 ≈ a0

 cos(a2 ∥x∥2)
cos θx sin(a

2 ∥x∥2)
sin θx sin(a

2 ∥x∥2)

 . (2.59)

Because the spherical coordinates are unique (modulo 2π in the case of angular values),
the asymptotic expressions of the local amplitude, phase and orientation of the parabolic
chip can be deduced from Eq. (2.44) and (2.59), i.e.,

A(x) ≈ a0,

ϕ(x) ≈ φ(x) = a2 ∥x∥2 [2π],
θ(x) ≈ θx = arg(x) [2π],

(2.60)

when ∥x∥ → +∞. This shows that the amplitude and phase values calculated by the
monogenic tool are asymptotically equal to their expected physical values. Furthermore,
Eq. (2.60) shows that the monogenic orientation is exactly the argument of x.

It was in fact possible to predict this latter result by using the notion of wave vector
presented in (T. D. Carozzi & Gough 2004). Indeed, the wave vector of (T. D. Carozzi &
Gough 2004) is de�ned as the gradient of the phase, which in the case of a parabolic chirp
is given for all x ∈ R2 by

∇φ(x) = 2a2x. (2.61)

Because the wave vector gives the local direction of propagation of the wave, the orientation
can be calculated as the argument of this vector, which here is exactly equal to θx because
∇φ(x) and x share the same direction.

Remark (In�uence of the a parameter). The O terms in Eq. (2.57) and (2.58) not only
tend towards 0 when ∥x∥ tends towards in�nity, but also when the a parameter does. This

implies that, for high values of a, the monogenic amplitude, phase and orientation converge
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faster towards their respective asymptotic expressions. This parallels the in�uence of a
highlighted in Section 2.1.3 in the 1D case. From a physical point of view, this means that

the faster the chirp oscillates, the better the monogenic estimation of its local features is.

In the next section, numerical illustrations of these properties are given, with a special
attention on the phase and the orientation, respectively. An adaptation of the Shannon-
Nyquist theorem to 2D parabolic chirps is also proposed in order to avoid the classical
phenomenon of aliasing (Marks 1991).

2.5 2D synthetic tests

2.5.1 Discretization

Let (tj , tk) be a 2D discrete grid, with (j, k) ∈ {0, . . . ,M − 1} × {0, . . . , N − 1} and
(M,N) ∈ N2 such that {

tj = jTx,
tk = kTy,

(2.62)

where Tx > 0 and Ty > 0 denote the horizontal and vertical sampling periods, respec-
tively. Similarly to the 1D case, s = (sj,k)(j,k)∈{0,...,M−1}×{0,...,N−1} denotes a discrete
signal de�ned for all (j, k) ∈ {0, . . . ,M − 1} × {0, . . . , N − 1} by

sj,k = aj,k cos
(
φj,k

)
, (2.63)

where aj,k and φj,k denote the physical amplitude and phase of sj,k, respectively. Using the
2D discrete Fourier transform (see, e.g., (Ballard & Brown 1982, Burger & Burge 2008) for
details), the Fourier transform of s, denoted by S = (Sj,k)(j,k)∈{0,...,M−1}×{0,...,N−1}, can
be computed. The Riesz kernel is then applied to S (see (Soulard & Carré 2017) for more
details about the way the Riesz kernel is computed), and the discrete Riesz transform
of s, a complex-valued signal denoted by Rs, is obtained by reversing the 2D discrete
Fourier transform (Burger & Burge 2008). The three components of the discrete monogenic
signal of s are then s itself, the real part of Rs and its imaginary part, respectively.
The discrete monogenic amplitude, phase and orientation are �nally computed from these
three components by using the spherical coordinates. In the subsequent developments, the
discrete monogenic measures of phase and orientation at each pixel (j, k) ∈ {0, . . . ,M −
1} × {0, . . . , N − 1} are denoted by ϕj,k and θj,k, respectively. These monogenic measures
of phase and orientation are then compared with their respective physical counterparts.
As done in Section 2.2 in the 1D case, the synthetic tests focus on two cases:

� the 2D pure cosine wave, de�ned for all (j, k) ∈ {0, . . . ,M − 1} × {0, . . . , N − 1} as

sj,k = a0 cos
[
ω
(
tj cosα+ tk sinα

)]
, (2.64)

where a0 ∈ R∗, ω ∈ R∗ and α ∈
]
−π

2 ,
π
2

]
denote the amplitude, frequency and

orientation of the signal, respectively,

� the 2D parabolic chirp, de�ned for all (j, k) ∈ {0, . . . ,M − 1} × {0, . . . , N − 1} as

sj,k = a0 cos

{
a2
[(
tj
)2

+
(
tk
)2]}

, (2.65)

with a0 ∈ R∗
+ and a ∈ R∗

+.
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Again, the monogenic and physical phase and orientation signals are expected to coin-
cide perfectly in the �rst case (see Section 2.4.2), while in the second, they only coincide
asymptotically, or if a is large enough (see Section 2.4.3). In order to compare these angular
signals, the similarity criteria introduced in Section 2.2.2 in the 1D case are used. Notice
however that, contrary to cosine waves, parabolic chirps display accelerating oscillations.
More precisely, at each pixel (jTx, kTy), (j, k) ∈ {0, . . . ,M − 1} × {0, . . . , N − 1}, the
local horizontal and vertical frequencies are respectively equal to a2jTx

2π and a2kTy
2π . In order

to satisfy the Shannon-Nyquist condition (Oppenheim 1996), the horizontal and vertical
sampling frequencies must be at least twice as high as the maximal horizontal and vertical
frequencies of the image, respectively. In both horizontal and vertical cases, the maximal
frequency is reached at the last pixel [(M − 1)Tx, (N − 1)Ty], which leads to the following
conditions, {

a2(M−1)T 2
x

π < 1,
a2(N−1)T 2

y

π < 1.
(2.66)

In all the subsequent tests involving parabolic chirps, after the size of the image (M ×N)
is �xed, the sampling periods Tx and Ty are systematically chosen small enough to satisfy
these two conditions and hence avoid aliasing.

2.5.2 Phase extraction of a cosine wave

The discrete transform is �rst applied to a 2D cosine wave generated withM = N = 1000,
Tx = Ty = 0.002, a0 = 0.5, ω = 20π, α = π

6 , respectively. Notice that Tx and Ty are chosen
small enough to �t the Shannon-Nyquist bound. The estimated monogenic phase and its
expected physical counterpart are represented in the top part of Figure 2.9, as well as their
cosine di�erence cos(ϕ−φ) (bottom left). As predicted by the theoretical results of Section
2.4.2, the two phase functions look very close to each other, which is con�rmed by their
high values of BFR and VAF, 99, 96% and 100%, respectively. Additionally, 97.41% of the
cosine di�erence values cos(ϕ−φ) are higher than 0.999, and 98.56% are higher than 0.99,
with the problematic pixels being located exclusively along the top and bottom borders,
which further con�rms how ϕ and φ are close to each other. Notice furthermore that the
orientation, expected to be constantly equal to α, is also well extracted by the monogenic
signal. Though the BFR and VAF criteria cannot be applied to constant signals (see Sec-
tion 2.2.2), the cosine di�erence between the monogenic orientation θ and α remains close
to 1, as shown in Figure 2.9 (bottom right). This gives a good numerical illustration of
the theoretical results found in (Larkin et al. 2001, Seelamantula et al. 2012) and recalled
in Section 2.4.2.

Because the Riesz kernel has a singularity at the null frequency (0, 0) (see Eq. (2.43)), it
can be expected that the frequency parameter ω impacts the quality of the phase extrac-
tion. In order to con�rm this assumption, the Riesz transform is applied to cosine waves
of di�erent frequencies ω ∈ {2π(1 + ℓ), ℓ = 0, . . . , 9}, from which the monogenic phase
function can be extracted and compared to the physical phase through the BFR and VAF
criteria. Figure 2.10 con�rms that the monogenic estimation of phase loses quality for low
values of ω. Given the fact that the Riesz transform requires clear oscillating patterns to
work well, it is not surprising that it cannot extract the local structure of an image whose
frequency is too low to complete a full period.
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Figure 2.9: Monogenic (top left) and physical (top right) measures of phase, cosine di�er-
ences between the monogenic and physical values of phase (bottom left) and orientation
(bottom right) in the case of a cosine wave, M = N = 1000, Tx = Ty = 0.002, a0 = 0.5,
ω = 20π, α = π

6 , BFR = 99.96%, VAF = 100%.
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Figure 2.10: BFR and VAF criteria between the monogenic and physical phase functions
for cosine waves of di�erent frequencies ω ∈ {2π(1 + ℓ), ℓ = 0, . . . , 9}.
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2.5.3 Phase and orientation extraction of a parabolic chirp

The Riesz transform is now applied to a discrete parabolic chirp as de�ned in Eq. (2.5.3),
with M = N = 1000, Tx = Ty = 0.002, a0 = 0.5 and a = 7. According to Eq. (2.60),
the monogenic and physical measures of phase and orientation are expected to get closer
and closer to each others as the indices j ∈ {0, . . . ,M − 1} and k ∈ {0, . . . , N − 1} in-
crease. As shown in Figure 2.11, both the monogenic phase and orientation become close
to their respective physical counterparts in zones located far enough from the top-left cor-
ner. Moreover, the convergence seems fast, as it is not necessary to move very far from
the initial pixel (0, 0) to notice the similarity. These observations are con�rmed by the
cosine di�erence signals displayed in the bottom part of Figure 2.11, whose values are
close to 1 outside the top and left borders for both phase and orientation. Calculating the
BFR and VAF criteria in the area {30, . . . , 970} × {30, . . . , 1000} yields BFR = 93.71%
and VAF = 99.6% for the phase, BFR = 95.99% and VAF = 99.84% for the orientation,
which further con�rms the similarity between the monogenic and physical values outside
the initial zone. Notice that the sampling conditions given in Eq. 2.66 are satis�ed with
this choice of parameters.
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Figure 2.11: Monogenic phase (top left), physical phase (top right), monogenic orientation
(center left), physical orientation (center right), cosine di�erence between the monogenic
and physical values of phase (bottom left) and orientation (bottom right) of a parabolic
chirp, M = N = 1000, Tx = Ty = 0.002, a0 = 0.5, a = 7, BFR = 93.71%, VAF = 99.6%
(phase), BFR = 95.99%, VAF = 99.84% (orientation).

As stated in Remark 2.4.3, the quality of the monogenic extraction of phase and ori-
entation not only increases with ∥x∥, but also with a. This statement can be con-
�rmed numerically by applying the Riesz transform to parabolic chirps of di�erent pa-
rameters a ∈ {1 + 0.2ℓ, ℓ = 0, . . . , 35}, from which estimated values of phase and ori-
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entation can be extracted. The BFR and VAF criteria are then calculated in the area
{30, . . . , 970}×{30, . . . , 1000}. Figure 2.12 shows how both criteria increase with a, which
highlights the impact of a predicted in the continuous case.
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Figure 2.12: BFR and VAF criteria between the monogenic and physical phase (top) and
orientation (bottom) functions for parabolic chirps of di�erent parameters a ∈ {1+0.2ℓ, ℓ =
0, . . . , 35}.

2.5.4 Phase and orientation extraction of an anisotropic parabolic chirp

In Section 2.4.3, the parabolic chirp is generalized to the 2D case by using the Euclidian
norm. The resulting images are isotropic, i.e., they are invariant under rotations around
the initial pixel (0, 0). However, such a property is very speci�c, and in practice most
images do not satisfy it (Polisano 2017). This is the case of the interferometric fringes
displayed in Figure 2.7, whose patterns are not perfectly circular and thus display some
degree of anisotropy. By using a weighted square norm instead of the classical Euclidian
norm, it is possible to make the parabolic chirp anisotropic, i.e., a�ected by rotations
around the origin, which for all x = (x1, x2) ∈ R2 leads to the following expression,

s(x) = a0 cos
(
a21x

2
1 + a22x

2
2

)
, (2.67)

with a0 ∈ R∗
+ and (a1, a2) ∈ (R∗

+)
2. Contrary to the previous case, the phase inside the

cosine function now depends on the direction of x. In this case, no analytical expression
of the Riesz-transform has been calculated yet, hence no proper asymptotic consideration
can be made. If the monogenic tool is well-suited for this type of image, the estimated
phase should get close to the expression inside the cosine function in Eq. (2.67) when ∥x∥
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tends towards in�nity. Furthermore, as in the end of Section 2.4.3, the expected physical
orientation can be expressed as the argument of the gradient of the phase, i.e., for all
x = (x1, x2) ∈ R2,

θx = arg
(
a21x1 + ia22x2

)
. (2.68)

Though these conjectures are not formally proved yet, they can be con�rmed with synthetic
tests. Figure 2.13 shows the monogenic and physical measures of phase and orientation of
an anisotropic parabolic chirp generated with M = N = 1000, Tx = Ty = 0.002, a0 = 0.5,
a1 = 8 and a2 = 5. Similarly to what happens in the isotropic case, both the mono-
genic phase and orientation become close to their respective physical counterparts when
moving away from the top-left corner, with the same convergence speed. This is again
con�rmed by the cosine di�erence signals displayed in the bottom part of Figure 2.13 and
the BFR and VAF criteria calculated in the area {30, . . . , 970}×{30, . . . , 1000}, which are
BFR = 94.14% and VAF = 99.66% for the phase, BFR = 92.99% and VAF = 99.51% for
the orientation. This supports the conjecture made in the beginning of this section.
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Figure 2.13: Monogenic phase (top left), physical phase (top right), monogenic orientation
(center left), physical orientation (center right), cosine di�erence between the monogenic
and physical values of phase (bottom left) and orientation (bottom right) of an anisotropic
parabolic chirp, M = N = 1000, Tx = Ty = 0.002, a0 = 0.5, a1 = 8, a2 = 5, BFR =
94.14%, VAF = 99.66% (phase), BFR = 92.99%, VAF = 99.51% (orientation).

Figure 2.14 shows how making a1 increase (while a2 stays equal to 6) makes the BFR
and VAF criteria get close to 100%. The same observation can be made when a2 varies
while a1 does not. This further shows that the monogenic estimation of phase and orien-
tation performs well even when dealing with anisotropic images, i.e., images that are not
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rotation-invariant.

1 2 3 4 5 6 7 8

a1

40

60

80

100

s
im

il
a

r
it
y

Similarity between the expected and monogenic phases (anisotropic parabolic chirp)

BFR

VAF

1 2 3 4 5 6 7 8

a1

0

50

100

s
im

il
a

r
it
y

Similarity between the expected and monogenic orientations (anisotropic parabolic chirp)

BFR

VAF

Figure 2.14: BFR and VAF criteria between the monogenic and physical phase (top)
and orientation (bottom) functions for anisotropic parabolic chirps of di�erent parameters
a1 ∈ {1 + 0.2ℓ, ℓ = 0, . . . , 35}, with a2 = 6.

2.6 Application to interferometry

2.6.1 Framework

Interference is the name of the phenomenon in which the superimposition of two waves
results in the formation of a new wave (Steel 1986). The term interferometry in turn
refers to the various techniques in which interference fringes are used to extract informa-
tion (Steel 1986). Such techniques are of great interest for measuring various dynamical
processes like structure deformation because they are purely optical and thus do not re-
quire any physical perturbation of the analyzed material (Robinson & Reid 1993, Robin
et al. 2005). Because the geometrical structure of the fringe network is contained in its
phase function and can be directly linked with physical quantities of the studied image
(like relief and deformation), its estimation is of great importance (Robin et al. 2005).

Before the introduction of the monogenic signal in (Larkin et al. 2001, Felsberg & Sommer
2001), the most widely used techniques to estimate the phase involved the generation of
several fringe patterns by moving one of the two networks (Bruning, Herriott, Gallagher,
Rosenfeld, White & Bragaccio 1974). The phase values were then extracted point by point
using these shifted images (see, e.g., (Bruning et al. 1974) for further details about phase
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shifting techniques). The main problem of these techniques is their lack of practical use
when dynamic processes come into play, because it would require several phase shifting
processes at each time, which is complicated to perform in practice. The application of
signal processing tools like the Fourier and Hilbert transforms was originally performed to
solve this problem, but these 1D techniques show their limits when dealing with complex
2D patterns (Morimoto, Seguchi & Higashi 1989). More recently, a technique requiring
only one image, the polynomial Modulated Phase Correlation (pMPC), has been devel-
oped in (Robin et al. 2005) and is more suitable to 2D signals than 1D techniques. This
method consists in dividing the image into patches, then �tting the parameters of a �xed
model on each patch. Such a procedure can be very time consuming especially when the
number of patches is high (Robin et al. 2005), while a smaller number of patches gives a
far less reliable phase estimation. Furthermore, local singularities may appear because of
the segmentation, hence the need of a better approach.

As a proper 2D generalization of the Hilbert transform, the Riesz transform, as well as
the consistent extraction of phase it provides, opened the door for new solutions when it
was introduced (Larkin et al. 2001). Since then, its relevance in the �eld of interferometry
has been illustrated in numerous works dealing with fringe demodulation (Larkin et al.
2001), hologram demodulation (Seelamantula et al. 2012) and phase estimation (Kaseb
et al. 2019). The quality of the phase and orientation extraction from oscillating textures
provided by the Riesz-based monogenic signal has also been highlighted in Sections 2.4
and 2.5, with brand new theoretical and numerical results. In order to further study
the bene�ts of the monogenic approach in the �eld of interferometry, a collaboration has
been led with the Institut Pprime, which is a research laboratory specialized in the �elds
of physics and engineering sciences based in Poitiers. The institute has provided a data
basis of real interferometric fringes (see Figure 2.15), from which the phase functions can
be extracted by use of the monogenic signal. A numerical comparison with the pMPC
technique has also been performed to illustrate the relevance of the monogenic tool in the
interferometry framework. This section details the results of this collaboration, which has
led to the publication of (Kaseb et al. 2019).

Figure 2.15: Examples of real interferometric fringes provided by the data basis of the
Institut Pprime.
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2.6.2 Synthesized concentric fringes

In this section, a numerical comparison is performed between the phase computed through
the monogenic signal and the one computed through the pMPC technique developed in
(Robin et al. 2005). In the pMPC procedure, the image is �rst divided into patches of equal
size and an a priori model is chosen for the amplitude and phase of the fringes located
inside the patches. At each patch, several fringe patterns are generated (with di�erent
parametrizations depending on the chosen model) and the closest to the original fringes
according to statistical correlation is selected. The most canonical example treated in
(Robin et al. 2005) is the case of concentric circular fringes. These fringes are modelled by
a constant amplitude and a phase function de�ned for all x = (x1, x2) ∈ R2 by

φ(x) =
2π

p

√
(x1 − xc1)

2 + (x2 − xc2)
2, (2.69)

where p ∈ R∗
+ denotes the interfringe and (xc1, x

c
2) ∈ R2 are the coordinates of the central

pixel of the image. In practice, such fringes may correspond to level sets on a spherical
dome (Robin et al. 2005). Notice that such concentric fringes are not strictly equivalent to
the parabolic chirps studied in Section 2.5 despite their similar appearance. As in the case
of anisotropic parabolic chirps, no theoretical result about the quality of the monogenic
phase extraction has been proved yet. After generating a discrete sample of concentric
circular fringes on the discrete grid de�ned in Section 2.5.1 with M = N = 200, Ts = 1,
2π
p =

√
0.05 and (xc1, x

c
2) = (100, 100), the monogenic tool is applied, from which an esti-

mation of local phase can be computed at each point, and then compared with the phase
obtained by the pMPC in (Robin et al. 2005). The choice of parameters is the same as
in the synthetic tests performed in (Robin et al. 2005) to enable the comparison with the
pMPC technique. The results are given in Figure 2.16. Both techniques perform well,
but the monogenic approaches give better results at the center of the image, which is con-
�rmed by the BFR and VAF criteria, i.e., BFR = 80.56%, VAF = 96.23% for the pMPC,
BFR = 90.82%, VAF = 99.16% for the monogenic tool.
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Figure 2.16: Original image (top left), expected phase (top right), pMPC phase (bottom
left) and monogenic phase (bottom right) of concentric fringes, BFR = 80.56%, VAF =
96.23% (pMPC), BFR = 90.82%, VAF = 99.16% (monogenic).
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These results are further reinforced by the cosine di�erences given in Figure 2.17, as well
as their respective histograms given in Figure 2.18. The values are substantially closer to
1 in the case of the monogenic estimation than in the case of the pMPC.
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Figure 2.17: Cosine di�erence between the expected phase and the pMPC (left) and mono-
genic (right) phase functions.

Figure 2.18: Histograms of the pMPC (left) and monogenic (right) cosine di�erences.

2.6.3 Application to real 2D fringe patterns

The synthetic tests performed in the previous sections highlight the reliability of the mono-
genic extraction of phase, even in cases where no theoretical support of its reliability can
be provided, apart from the condition of slow and smooth variations given in (Larkin
et al. 2001, Seelamantula et al. 2012). The monogenic tool is now applied to a real fringe
pattern, and its phase estimation is then compared to the one given by the pMPC in
(Robin et al. 2005). This time, the comparison can only be qualitative since the expected
physical phase is unknown. As can be seen in Figure 2.19, the lower part of the image
is well estimated by the monogenic tool while, in the upper part, it struggles with lower
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frequencies. The pMPC however works the same way in every part of the image. As
seen in Section 2.4.1, the Riesz kernel has a singularity at the null frequency (0, 0), which
explains the numerical di�culties in dealing with the low frequency fringes on the upper
half of the image. However, Figure 2.20 shows that the monogenic-base phase estimation
extracts the �ner details of the circular fringes better than the pMPC. This con�rms that
the monogenic tool can provide a precise estimation of the phase, which is totally in line
with the conclusions found in (Larkin et al. 2001, Seelamantula et al. 2012).

Original image pMPC phase Monogenic phase

Figure 2.19: Original image (left), pMPC phase (middle) and monogenic phase (right) of
a real fringe pattern.

Original image pMPC phase Monogenic phase

Figure 2.20: Original image (left), pMPC phase (middle) and monogenic phase (right) of
a speci�c area of the fringe pattern.

Figure 2.21 shows the results obtained from another example of real fringe pattern, this
time only involving the monogenic tool. Again, the monogenic phase manages to extract
the local structure of the fringes, including the �ner details at the center of the circle,
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though it still struggles in low frequency areas. Given the fact that such circular fringes
could be modeled by parabolic chirps, the asymptotic equivalence between the monogenic
and physical phase functions proved in Section 2.4.3 provides a theoretical background to
the observed quality of the phase extraction of such patterns.

Original image Monogenic phase

Figure 2.21: Original image (left) and monogenic phase (right) of a real fringe pattern.

Though it is out of the scope of this work, a further step of the phase extraction process
consists in unwrapping the values from [−π, π] to R (Brémand 1994). Indeed, the phase
function measured by the monogenic signal is only known up to a multiple of 2π, while the
physical phase of the interferometric fringes has to be fully known to be linked with other
physical quantities (Robin et al. 2005). While the unwrapping of 2D angular signals is still
an open question, interesting solutions exist in the literature such as (Arevallilo-Herráez,
Burton, Lalor & Gdeisat 2002, Zhao, Zhang, Xiao, Du, Zhuang, Fan & Zhao 2018). Now
that the reliability of the monogenic-based phase estimation has been established, future
works could complete the process by focusing on the unwrapping step.

2.7 Conclusion

As said in the introduction, the main purpose of this chapter is the introduction of relevant
tools to characterize the local behavior of textures displaying oscillating patterns, though
at this stage no color image is considered. This goal is reached by using the monogenic
signal introduced in (Felsberg & Sommer 2001, Larkin et al. 2001). Indeed, even though
perfectly identifying the monogenic measures of amplitude, phase and orientation with
their physical counterparts is only possible for pure cosine wave, the monogenic tool still
manages to extract the local structure of 2D oscillating images, i.e., phase and orientation,
outside this ideal case. Though this was already highlighted in (Larkin et al. 2001, See-
lamantula et al. 2012, Kaseb et al. 2019), this chapter goes further by providing a formal
proof of the asymptotic convergence of the monogenic estimators in the case of a parabolic
chirp, hence generalizing the analogous result of the 1D case. Synthetic tests then show
how the monogenic phase and orientation get rapidly close to their expected values, which
makes the monogenic tool work almost as perfectly as in the case of pure cosine waves out-
side the areas near the initial pixel. The same numerical results are also observed for the
more general anisotropic parabolic chirps, though no theoretical proof has been provided
yet.
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Though focusing on parabolic chirps may seem limited at �rst, such circular patterns are
frequently encountered in the �eld of interferometry, as highlighted in Section 2.6 where the
monogenic phase estimation is applied to interference fringes. The results obtained by the
monogenic tool are substantially better than those obtained with the patch-based pMPC
technique, which can be theoretically supported by the asymptotic equivalence between
the monogenic and physical phase functions in the case of a parabolic chirp.

Notice that Section 2.5.4 adds anisotropy in the model to cover a wider range of images.
In practice, images not only display anisotropy but may also contain stochastic features.
2D signals consisting of a deterministic part (either a cosine wave or a parabolic chirp) and
a stochastic variable (a Gaussian noise) were numerically studied in (Kaseb et al. 2019),
and it was observed that the variance of the stochastic variable greatly a�ects the phase
estimation. After dealing with purely deterministic oscillating images in this chapter, the
next chapter focuses on how the monogenic tool manages to extract the local structure of
images containing noise components.
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Appendices

A.1 Proof of Theorem 1

The proof relies heavily on the analogous result of the 1D case, which is recalled before
being generalized to the 2D case. Let f : R → R be a 1D Gaussian function de�ned for all
t ∈ R by

f(t) = e−a
2t2 , (A.1)

where a ∈ R∗. The 1D Fourier transform of f is given for all ξ ∈ R by

Ff(ξ) =
√
π

a
e−

ξ2

4a2 . (A.2)

This result is now generalized to the case of a 2D Gaussian function g as de�ned in Eq.
(2.35). Let f1 and f2 denote the 1D Gaussian functions de�ned for all ∈ R by

f1(t) = e−a
2
1t

2
f2(t) = e−a

2
2t

2
, (A.3)

respectively. Then, using the separability of the function g leads for all ξ = (ξ1, ξ2) ∈ R2

to

F2g(ξ) =

∫
R2

g(ξ)e−ix⊤ξdx,

=

∫
R2

e−a
2
1x

2
1e−a

2
2x

2
2e−ix1ξ1e−ix2ξ2dx1dx2,

=

∫
R
e−a

2
1x

2
1e−ix1ξ1dx1 ×

∫
R
e−a

2
2x

2
2e−ix2ξ2dx2,

= Ff1(ξ1)×Ff2(ξ2).

(A.4)

Applying the 1D formula to both f1 and f2 �nally yields for all ξ = (ξ1, ξ2) ∈ R2,

F2g(ξ) =

√
π

a1
e
− ξ2

4a21 ×
√
π

a2
e
− ξ2

4a22 ,

=
π

a1a2
e
− 1

4

(
ξ21
a21

+
ξ22
a22

)
.

(A.5)
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A.2 Proof of Theorem 2

Let ϵ be a strictly positive real number and sϵ : R2 → C the function de�ned for x ∈ R2

by

sϵ(x) = e−(ϵ+ia2)∥x∥2 . (A.6)

sϵ is thus a complex function whose real part is given by

ℜsϵ(x) = e−ϵ∥x∥
2

cos (a2 ∥x∥2). (A.7)

Hence, for all x ∈ R2,

lim
ϵ→0

sϵ(x) = s(x), (A.8)

where s is a parabolic chirp as de�ned in Eq. (2.48). The Riesz-transform of s can then
be calculated as the limit of the real part of the Riesz transform of sϵ when ϵ tends to 0,
i.e., for k ∈ {1, 2},

Rks = lim
ϵ→0

ℜ(Rksϵ). (A.9)

To apply the Riesz operator to sϵ, a switch to the frequency domain must �rst be performed.
Since sϵ is a Gaussian function, its 2D Fourier transform can be expressed by using Theorem
1, hence for all ξ ∈ R2

F2sϵ(ξ) =
π

αϵ
e−

||ξ||2
4αϵ , (A.10)

where αϵ = ϵ + ia2. Applying the Riesz kernel to the Fourier transform of sϵ then leads
for all ξ = (ξ1, ξ2) ∈ R2 to

F2(Rksϵ)(ξ) = −i
πξk
αϵ||ξ||

e−
||ξ||2
4αϵ . (A.11)

The Riesz transforms of sϵ, Rksϵ (k ∈ {1, 2}), can then be obtained in the space domain
by using the inverse Fourier transform, i.e.,

Rksϵ(x) =
1

(2π)2

∫
R2

F2(Rksϵ)(ξ)e
ix⊤ξdξ

= − 1

(2π)2

∫
R2

i
πξk
αϵ||ξ||

e−
||ξ||2
4αϵ eix

⊤ξdξ

= − i

4παϵ

∫
R2

ξk
||ξ||

e−
||ξ||2
4αϵ eix

⊤ξdξ.

(A.12)

By switching to the polar coordinates ξ = rΘ, with r ∈]−∞,+∞[ and Θ = (Θ1,Θ2) ∈ S1+,
the Riesz transforms become

Rksϵ(x) = − i

4παϵ

∫
S1+

∫ +∞

−∞
Θkre

− r2

4αϵ eirx
⊤ΘdrdΘ

= − i

4παϵ

∫
S1+

Θk

[∫ +∞

−∞
re−

r2

4αϵ eirx
⊤Θdr

]
dΘ.

(A.13)
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By integrating by parts, the expression inside the square brackets becomes

∫ +∞

−∞
re−

r2

4αϵ eirx
⊤Θdr =

[
−2αϵe

− r2

4αϵ eirx
⊤Θ

]+∞

−∞
+ 2αϵix

⊤Θ

∫ +∞

−∞
e−

r2

4αϵ eirx
⊤Θdr. (A.14)

Because

lim
|r|→+∞

| − 2αϵe
− r2

4αϵ eirx
⊤Θ| = lim

|r|→+∞
2|αϵ|e−

r2

4αϵ = 0, (A.15)

the term [−2αϵe
− r2

4αϵ eirx
⊤Θ]+∞

−∞ is equal to 0, hence∫ +∞

−∞
re−

r2

4αϵ eirx
⊤Θdr = 2αϵix

⊤Θ

∫ +∞

−∞
e−

r2

4αϵ eirx
⊤Θdr. (A.16)

This integral can then be calculated by using the characteristic function of a Gaussian
random variable X with mean µ = 0 and variance σ2 = 2αϵ. If MR denotes this function,
then for all t ∈ R,

MX(t) = E[eitX ]

=
1√
2πσ2

∫ +∞

−∞
e−

(x−µ)2

2σ2 eitxdx

= eµit−
σ2t2

2 ,

(A.17)

by using the expression of the 1D Fourier transform of a Gaussian function recalled in Eq.
A.2. In particular, if µ = 0, σ2 = 2αϵ and t = x⊤Θ, Eq. (A.17) becomes

1√
4παϵ

∫ +∞

−∞
e−

r2

4αϵ eix
⊤Θrdr = e−αϵ(x⊤Θ)2 . (A.18)

Injecting this expression to Eq. (A.16) then leads to∫ +∞

−∞
re−

r2

4αϵ eirx
⊤Θdr = 4(αϵ)

3
2
√
πix⊤Θe−αϵ(x⊤Θ)2 . (A.19)

Finally, combining Eq. (A.13) and (A.19) gives

Rksϵ(x) = − i

4παϵ

∫
S1+

Θk

[
4(αϵ)

3
2
√
πix⊤Θe−αϵ(x⊤Θ)2

]
dΘ

=

√
αϵ
π

∫
S1+

Θkx
⊤Θe−αϵ(x⊤Θ)2dΘ.

(A.20)

If θ and θx denote the arguments of Θ and x, respectively, then x⊤Θ can be expressed
with θ and θx, i.e.,

x⊤Θ = ∥x∥ (cos θ cos θx + sin θ sin θx)

= ∥x∥ cos(θ − θx)
. (A.21)

Eq. (A.20) then becomes
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{
R1sϵ(x) =

√
αϵ
π ∥x∥

∫ π
0 cos θ cos(θ − θx)e

−αϵ∥x∥2 cos2(θ−θx)dθ,

R2sϵ(x) =
√

αϵ
π ∥x∥

∫ π
0 sin θ cos(θ − θx)e

−αϵ∥x∥2 cos2(θ−θx)dθ.
(A.22)

The calculation of R1sϵ(x) and R2sϵ(x) are based on the same ideas. In the following
lines, only the calculation of R1sϵ(x) is detailed. Using the substitution u = θ − θx leads
to

R1sϵ(x) =

√
αϵ
π

∥x∥
∫ π+θx

−θx
cos(θ + θx) cos θe

−αϵ∥x∥2 cos2 θdθ. (A.23)

Notice that the integrated function is π-periodic, which implies that the bounds can be
brought back to [0, π], hence

R1sϵ(x) =

√
αϵ
π

∥x∥
∫ π

0
cos(θ + θx) cos θe

−αϵ∥x∥2 cos2 θdθ. (A.24)

Using the π-periodicity again then gives

R1sϵ(x) =

√
αϵ
π

∥x∥
2

∫ π

−π
cos(θ + θx) cos θe

−αϵ∥x∥2 cos2 θdθ. (A.25)

cos(θ + θx) can then be developed, hence

R1sϵ(x) =

√
αϵ
π

∥x∥
2

∫ π

−π
(cos θ cos θx − sin θ sin θx) cos θe

−αϵ∥x∥2 cos2 θdθ. (A.26)

Because θ 7→ sin θ cos θ is an odd function, Eq. (A.26) becomes

R1sϵ(x) =

√
αϵ
π

∥x∥
2

cos θx

∫ π

−π
cos2 θe−αϵ∥x∥2 cos2 θdθ. (A.27)

This time the integrated functions are even, which leads to

R1sϵ(x) =

√
αϵ
π

∥x∥ cos θx
∫ π

0
cos2 θe−αϵ∥x∥2 cos2 θdθ. (A.28)

The square cosine cos2 θ can be linearised as 1+cos 2θ
2 , hence (after a substitution u = 2θ)

R1sϵ(x) =

√
αϵ
π

∥x∥
4

cos θxe
−αϵ∥x∥2

2

∫ 2π

0
(1 + cos θ)e−

αϵ∥x∥2
2

cos θdθ. (A.29)

e−
αϵ∥x∥2

2
cos θ can then be developed by using the Jacobi-Anger expansion, i.e., for all z ∈ C

and θ ∈ R

eiz cos θ =
∑
n∈Z

inJn(z)e
inθ, (A.30)

where Jn denotes the Bessel functions de�ned in Eq. (2.51). Applying Eq. (A.30) with

z = iαϵ∥x∥2
2 and injecting it in Eq. (A.29) leads to

R1sϵ(x) =

√
αϵ
π

∥x∥
4

cos θxe
−αϵ∥x∥2

2 ×
∑
n∈Z

inJn

(
i
αϵ ∥x∥2

2

)∫ 2π

0
(1+cos θ)e−inθdθ. (A.31)
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After using the substitution u = −θ and then the 2π-periodicity to switch the interval
from [−2π, 0] to [0, 2π], Eq. (A.31) becomes

R1sϵ(x) =

√
αϵ
π

∥x∥
4

cos θxe
−αϵ∥x∥2

2

∑
n∈Z

inJn

(
i
αϵ ∥x∥2

2

)∫ 2π

0
(1 + cos θ)einθdθ. (A.32)

By using Euler's formula, the integral can be expressed as

∫ 2π

0
(1 + cos θ)einθdθ =

∫ 2π

0

(
1 +

eiθ + e−iθ

2

)
einθdθ

=

∫ 2π

0
einθdθ +

1

2

[∫ 2π

0
ei(n+1)θdθ +

∫ 2π

0
ei(n−1)θdθ

]
= 2π(δ0,n +

1

2
δ1,n +

1

2
δ−1,n),

(A.33)

with δk,n = 0 if n ̸= k and δk,n = 1 if n = k, k ∈ {−1, 0, 1}. Therefore, all the terms of
the sum in Eq. (A.32) are zero except for n = 0, n = 1 and n = −1. Using the equality
J−1 = −J1 �nally leads to

R1sϵ(x) =
√
αϵπ

∥x∥
2

cos θxe
−αϵ∥x∥2

2

[
J0

(
i
αϵ ∥x∥2

2

)
+ iJ1

(
i
αϵ ∥x∥2

2

)]
. (A.34)

If ϵ→ 0, then αϵ → ia2 and
√
αϵ → ei

π
4 a, hence

R1s(x) = ℜ

{
a
√
π
∥x∥
2

cos θxe
i

(
π
4
−a2∥x∥2

2

) [
J0

(
−a

2 ∥x∥2

2

)
+ iJ1

(
−a

2 ∥x∥2

2

)]}
.

(A.35)
Using the equality Jn(−x) = (−1)nJn(x) leads to

R1s(x) = ℜ

{
a
√
π
∥x∥
2

cos θxe
i

(
π
4
−a2∥x∥2

2

) [
J0

(
a2 ∥x∥2

2

)
− iJ1

(
a2 ∥x∥2

2

)]}
. (A.36)

Taking the real part of the expression inside the braces �nally gives

R1s(x) = a
√
π
∥x∥
2

cos θx

[
J0

(
a2 ∥x∥2

2

)
cos

(
π

4
− a2 ∥x∥2

2

)

+J1

(
a2 ∥x∥2

2

)
sin

(
π

4
− a2 ∥x∥2

2

)]
.

(A.37)

Applying the same operations to R2sϵ(x) also leads to

R2s(x) = a
√
π
∥x∥
2

sin θx

[
J0

(
a2 ∥x∥2

2

)
cos

(
π

4
− a2 ∥x∥2

2

)

+J1

(
a2 ∥x∥2

2

)
sin

(
π

4
− a2 ∥x∥2

2

)]
.

(A.38)





CHAPTER 3

Monogenic-based structure extraction of a Gabor noise

Chapter 2 shows how the monogenic tool manages to extract the local phase, i.e., the
local structure of oscillating textures, with theoretical guarantees in the case of regular
textures. It is worth noting that when applied to real fringe patterns displaying noise,
the monogenic tool still works well, though no formal study of how it handles stochastic
textures is performed in Chapter 2. This is precisely the subject of this chapter.

According to the authors' knowledge, few works focus on the application of the Riesz
operator to stochastic textures in the literature. In (Olhede, Ramirez & Schreier 2014),
the covariance matrix of the Riesz transform is used as a structure tensor, and yields a
measure of global anisotropy, i.e., the existence of a preferred direction of variation. In
(Polisano 2017), the Riesz transform also provides a measure of local anisotropy for Gaus-
sian random �elds. However, these works do not tackle the phase estimation issue and
focus mainly on orientation. This chapter aims at going further by studying the mono-
genic extraction of both phase and orientation within a stochastic texture framework. This
is motivated by the fact that, in practice, real textures usually display stochastic features,
unlike the purely deterministic waves studied in Chapter 2. This step is crucial before
tackling color textures in Chapter 4.

Before dealing with real images, the monogenic signal is �rst applied to random �elds to
determine the robustness of its measures. Because the monogenic representation of images
aims at describing local oscillating behaviors (Felsberg & Sommer 2001), this requires the
use of a proper random texture model that is well-suited to design realistic oscillating
images. Introduced in (Lewis 1989), sparse convolution noises enable the generation of
random textures with prescribed frequency content, which makes them particularly suit-
able for the monogenic framework. This parallels the sparse representations mentioned in
Chapter 1, as sparsity enables the generation of precise texture properties with a limited
number of parameters (Lagae et al. 2009). The subclass of Gabor noises, introduced in
(Lagae et al. 2009), provides an even more accurate control on the frequency content of
the synthesized image (Gilet et al. 2014), and is hence widely used in the �eld of texture
synthesis (Galerne et al. 2012). Another notable work in the �eld of oscillating stochastic
texture synthesis is the recent introduction of the phasor noise in (Tricard et al. 2019),
which improves the Gabor noise by removing its local losses of contrast without impact-
ing the control over its frequency content. The proper de�nition of amplitude and phase
provided by (Tricard et al. 2019) is also of great interest when studying how the mono-
genic signal estimates such functions. Consequently, this chapter aims at showing how the
monogenic signal is still able to extract the structure and the orientation in the case of such
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procedural noises. By doing so, theoretical guarantees can be established before applying
the monogenic signal to real textures.

After some crucial properties of sparse convolution noises are recalled in Section 3.1, the
Gabor noise and its statistical features are studied in Section 3.2. Section 3.3 then fo-
cuses on the estimation of the local phase of a Gabor noise provided by the monogenic
signal, while Section 3.4 uses the monogenic-based stochastic structure tensor introduced
in (Olhede et al. 2014) to measure the directionality of the noise. Section 3.5 �nally applies
these tools to real textures displaying both oscillating and noisy features.

3.1 Sparse convolution noise

3.1.1 Poisson point process and sparse convolution noise with general

kernel

Before focusing on the Gabor noise speci�cally, this section gives some basic results about
general sparse convolution noises. These results are useful for the further developments
involving the monogenic signal and Gabor noises. The key idea of sparse convolution noises
is to combine a kernel function that contains the frequency information and overall aspect
of the texture with a random process that adds stochastic variation (Lagae et al. 2009).
Following the works of (Lagae et al. 2009, Lagae & Drettakis 2011, Galerne et al. 2012, Gilet
et al. 2014, Tricard et al. 2019) on procedural noises, this study focuses on homogenous
Poisson point processes, whose de�nition is recalled here. Let (xi)i be a realization of
a homogeneous Poisson point process with intensity µ ∈ R∗

+ (Chiu, Stoyan, Kendall &
Mecke 2013), i.e.,

� ∀A ⊂ R2, if N(A) denotes the number of points contained in A, i.e., N(A) =
#{i|xi ∈ A}, then N(A) ∼ P(µ|A|), where P denotes the Poisson distribution and
|.| denotes the Lebesgue measure in R2,

� if A ∩B = ∅, then N(A) and N(B) are independent random variables.

The �rst condition implies that increasing the size of the area A increases the probability
of meeting points of the process inside A, while the second condition ensures that the
occurrence of points in two disjunct areas is independent. For any y ∈ R2, let δy denote
the function de�ned for all x ∈ R2 as{

δy(x) = 0 if x ̸= y,
δy(x) = 1 if x = y.

(3.1)

Then, for all kernel function g ∈ L1(R2), the sparse convolution noise s is de�ned for all
x ∈ R2 by

s(x) =
∑
i

g(x− xi) = g ∗ Φ(x), (3.2)

where Φ =
∑

i δxi (Lagae et al. 2009). In practice, the kernel g is usually chosen such
that its support is compact (Lagae et al. 2009). Under this assumption, the points of the
process located far from the considered pixel have a negligible contribution to its value,
which ensures that the sum in Eq. (3.2) only contains a small amount of signi�cant terms.
This is exactly why this class of procedural noises are called sparse convolution noises
(Lagae et al. 2009). Figure 3.1 illustrates the way these noises are generated. At each
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pixel x ∈ R2 (in blue), the contributions of the points of the Poisson process xi (in red)
are summed, the closest points having the most signi�cant contribution as illustrated by
the varying thickness of the red arrows. The sparseness of the convolution depends on the
value of the intensity parameter µ, as well as the decreasing speed of g towards 0 when
∥x∥ tends towards +∞.

Figure 3.1: Illustration of the sparse convolution.

3.1.2 Second-order statistics

A �rst approach to study the behavior of the sparse convolution noise s is to express its
mean and variance. As said in Section 3.1.1, the frequency content of the synthesized
noise, and consequently its power spectrum (Lagae et al. 2009), is prescribed by the kernel
g. Given the direct link between the power spectrum and the second order statistics
(Jahne 2004), it is not surprising that the mean and variance of the noise s can be linked
to g. The result given in Proposition 3.1 of (Galerne 2010) is recalled here with adjusted
notations and, for the moment, a restriction to a standard Poisson process. The case of a
marked Poisson process as studied in (Galerne 2010) is tackled in Section 3.1.3.

Theorem 3. If s is a sparse convolution noise as de�ned in Eq. (3.2), then for all x ∈ R2,

� s is stationary,

� E [s(x)] = µ
∫
R2 g(y)dy,

� if g ∈ L2(R2), then s is a second order process, and Var [s(x)] = µ
∫
R2 g(y)

2dy.
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The proof is given in Appendix B.1. As for the covariance function, the result found in
(Galerne 2010) only focuses on the autocovariance of a single sparse convolution noise.
The following theorem is a little more general as it expresses the covariance between two
sparse convolution noises induced by the same Poisson point process.

Theorem 4. Let (xi)i be a homogeneous Poisson point process with intensity µ > 0 as

de�ned in Section 3.1.1, g and h two kernel functions of L2(R2). If sg and sh denote the

sparse convolution noises induced by g and h, respectively, then for all x ∈ R2,

Cov
[
sg(x), sh(x)

]
= µ

∫
R2

g(y)h(y)dy (3.3)

The proof is given in Appendix B.2. This theorem can then be applied to express the
covariance function of a sparse convolution noise.

Corollary 2. If s is a sparse convolution noise as de�ned in Eq. (3.2), then the autoco-

variance function of s, denoted by σ, is given for all (x, z) ∈
(
R2
)2
,

σ(z) = Cov [s(x), s(x− z)] ,

= Cov [s(0), s(z)] ,

= µ

∫
R2

g(y)g(y − z)dy.

(3.4)

These results illustrate how the kernel function fully controls the second order statistics
of the noise up to the intensity parameter µ. As highlighted in (Olhede et al. 2014), the
covariance function of a random �eld not only determines its spectral behavior, but can
also be linked to local directionality, i.e., locally, the existence of a preferred direction
of variation. Remember that these procedural noises are introduced to study how the
monogenic signal extracts there local features. Fully controlling their directional properties
is hence of great interest when studying the robustness of the monogenic extraction of
orientation in the case of stochastic oscillating textures. This is further studied in Section
3.4.

3.1.3 Zero-mean sparse convolution noise

Because a lot of the fundamental results found in (Olhede et al. 2014) and investigated
in the subsequent sections involve zero-mean noises, this section presents some of the
techniques given in (Lagae et al. 2009, Lagae & Drettakis 2011, Galerne et al. 2012) to
make sparse convolution noises zero-mean. A �rst approach detailed in (Lagae et al. 2009)
is to assign random weights wi to each point of the Poisson process xi such that for all
x ∈ R2,

s(x) =
∑
i

wig(x− xi), (3.5)

with the wi being i.i.d. realizations of a zero-mean random variable W . These weights
are also independent from xi, which ensures that the mean of s is zero. Another approach
detailed in (Lagae & Drettakis 2011, Galerne et al. 2012, Gilet et al. 2014) and widely used
in the case of Gabor noises is the assignment of independent random phase shifts (ψi)i
uniformly drawn in ]−π, π] and independently assigned to each point of the Poisson point
process xi. Considering a kernel function g : R2×] − π, π] → R, the sparse convolution
noise can then be de�ned for all x ∈ R2 as
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s(x) =
∑
i

g(x− xi, ψi). (3.6)

The process from which the pair of realizations (xi, ψi) is drawn is called a marked Poisson
process (Galerne 2010). This second approach is particularly well-suited for Gabor noises
(Lagae & Drettakis 2011), which explains why it is used in the subsequent developments.
The second order statistics given in Section 3.1.2 can then be expressed in this case.
Assuming that the kernel g is in L2

(
R2×]− π, π]

)
, then for all (x, z) ∈

(
R2
)2
, Proposition

3.1 in (Galerne 2010) states that

� s is stationary,

� E [s(x)] = µ
2π

∫ π
−π
∫
R2 g(y, ψ)dydψ,

� Var [s(x)] = µ
2π

∫ π
−π
∫
R2 g(y, ψ)

2dydψ,

� Cov [s(0), s(z)] = µ
2π

∫ π
−π
∫
R2 g(y, ψ)g(y − z, ψ)dydψ.

Now that these general statistical results are given, Section 3.2 focuses on the special class
of phase-augmented Gabor noises studied in (Lagae et al. 2009, Lagae & Drettakis 2011,
Galerne et al. 2012). The motivation behind this choice is that the Gabor model generates
noises with clear oscillating patterns, which makes it particularly relevant to formally study
the ability of monogenic tool to extract the local features of oscillating stochastic textures.
This would not only extend the mathematical background of the monogenic framework, but
also provide theoretical guarantees when the monogenic signal is applied to real oscillating
textures displaying stochastic features.

3.2 Phase-augmented Gabor noise

3.2.1 Gabor kernel

In (Lagae et al. 2009, Gilet et al. 2014, Tricard et al. 2019), the Gabor kernel, from which
the Gabor noise is de�ned, is given for all x ∈ R2 by

g̃b,ω,α(x, ψ) = e−πb
2∥x∥2 cos

(
ωu⊤x+ ψ

)
, (3.7)

where b ∈ R∗
+, ω ∈ R∗

+, u = (cosα, sinα)⊤ and α ∈
]
−π

2 ;
π
2

]
. However, in this thesis, the

Gabor kernel is given for all (x, ψ) ∈ R2×]− π, π] by

gb,ω,α(x, ψ) = e−πb
2∥x∥2 cos

(
bωu⊤x+ ψ

)
, (3.8)

In this model, the scale parameter b is explicitly included inside the cosine in order to
clearly separate variations in scale and variations in frequency, similarly to how the kernel
is parametrized in (Guehl, Allègre, Dischler, Benes & Galin 2020). In order to illustrate the
advantages of this approach, let δ denote a strictly positive real number. If the parameter
b is multiplied by δ, then for all x ∈ R2,

g̃δb,ω,α(x, ψ) = e−πδ
2b2∥x∥2 cos

(
ωu⊤x+ ψ

)
,

⇐⇒ g̃δb,ω,α(
y

δ
, ψ) = e−πb

2∥y∥2 cos
(ω
δ
u⊤y + ψ

)
,

(3.9)
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where y = δx. This means that increasing b is equivalent to decreasing the frequency ω
and the scale of the image, respectively. However, for all x ∈ R2,

gδb,ω,α(x, ψ) = e−πδ
2b2∥x∥2 cos

(
δbωu⊤x+ ψ

)
,

⇐⇒ gδb,ω,α(
y

δ
, ψ) = e−πb

2∥y∥2 cos
(
ωu⊤y + ψ

)
.

(3.10)

In this case, increasing b only a�ects the scale, while the frequency of the wave remains
una�ected. As shown in Section 3.2.4, this separation between scale and frequency provides
a clearer interpretation of the parameters and their respective e�ects on the visual aspect
of the synthesized texture than in the case of the classic Gabor kernel. Notice that the
kernel gb,ω,α here de�ned lies in L2

(
R2
)
, which is a crucial property for the subsequent

developments.

3.2.2 Gabor noise

The Gabor kernel gb,ω,α de�ned in Eq. (3.8) yields a phase-augmented Gabor noise s :
R2 → R3 de�ned for all x ∈ R2 as

s(x) =
∑
i

a (x− xi) cos
[
bωu⊤ (x− xi) + ψi

]
, (3.11)

where,

� {(xi, ψi)}i is a set of realizations of a marked Poisson point process on R2×]− π, π]
such that,

� the points (xi)i are generated through a homogeneous Poisson point process on
R2 with intensity µ > 0,

� the marks (ψi)i are independent random phase-shifts uniformly drawn in ]−π, π]
and independently assigned to each point of the Poisson point process xi,

� a(x) = e−πb
2∥x∥2 , b ∈ R∗

+, x ∈ R2,

� ω ∈ R∗
+, u = (cosα, sinα)⊤, α ∈

]
−π

2 ;
π
2

]
.

Visually, a Gabor noise looks like a set of linear parallel fringes with local perturbations
(see the �gures in Section 3.2.4). The parameter ω corresponds to the frequency of the
fringes, while α corresponds to their orientation and b is a scale parameter. The fact
that the three parameters ω, α and b can be directly linked with the visual aspect of the
texture is what makes the Gabor noise model so valuable in the �eld of texture synthesis
(Tricard et al. 2019). As said in Section 3.1.3, the random phase-shifts (ψi)i are included
in the model to make the Gabor noise s zero-mean, similarly to what is done in (Lagae
& Drettakis 2011, Galerne et al. 2012). Notice that, because the Gabor kernel gb,ω,α is a
smooth function of L2

(
R2
)
, i.e., the integral of all its di�erentials are �nite, the Gabor

noise s is a smooth random �eld (see Theorem 3 in (Biermé & Desolneux 2020) for further
details). This is the subject of Section 3.2.3, which focuses on the second order statistics
of the Gabor noise.
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3.2.3 Second order statistics of a Gabor noise and interpretation

Theorem 5. The Gabor noise as de�ned in Eq. (3.11) is stationary, zero-mean, and its

covariance function σ(z) = Cov [s(0), s(z)] is given for all z ∈ R2 by

σ(z) =
µ

4b2
cos
(
bωu⊤z

)
e−

1
2
πb2∥z∥2 . (3.12)

The proof is given in Appendix B.3. It is worth noting that the covariance function of the
Gabor noise given in Theorem 5 satis�es the following properties,

� σ(0) = Var(s) = µ
4b2

,

� lim∥z∥→+∞ σ(z) = 0.

The �rst property implies that increasing the parameter µ increases the variance of s.
Because µ is the intensity of the Poisson point process, this means that increasing the
number of random points occurring in the noise increases its variance. The second property
implies that the more distant two points of the noise are, the least correlated they are,
which is consistent with the intuition. Notice furthermore that if x ∈ R2, r ∈ R∗

+, and
C(x, r) denotes the circle of center x and radius r, then

yM = arg max
y∈C(x,r)

σ(y − x),

⇐⇒ yM ∈
{
y ∈ C(x, r)|u⊤ (y − x) = 0

}
,

⇐⇒ yM = x± ru⊥,

(3.13)

where u⊥ =
(
− sinα cosα

)⊤
. This means that for delays located at the same distance

from the pixel x, the maximum of correlation between s(x) and s(x+ z) is reached along
the direction orthogonal to u, i.e., along the fringes of the noise. This is consistent with the
physical interpretation of α, which is to be understood as the main direction of oscillation
of s.

3.2.4 Discretization and synthetic tests

Though the phase-augmented Gabor noise is introduced as a continuous object in the
previous sections, it has to be discretized to perform synthetic tests. This section aims at
properly presenting the techniques used to generate discrete Gabor noises. Let (tj , tk) be
a discrete grid, with (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1} and (M,N) ∈ N2 such that{

tj =
(
j − M

2

)
Tx,

tk =
(
k − N

2

)
Ty,

(3.14)

where Tx > 0 and Ty > 0 denote the horizontal and vertical sampling periods, respec-
tively. In order to simulate a Poisson process on this grid, an independent and identically
distributed M ×N sampling of a Bernoulli variable of parameter p ∈]0, 1[ is generated for
each Gabor noise of the sum. For all l ∈ {1, . . . , n}, let xj,k ∈ {0, 1} denote the Bernoulli
number generated at the pixel (tj , tk) (with (j, k) ∈ {0 . . .M−1}×{0 . . . N−1}). By doing
so, the set of pixels (tj , tk) for which xj,k = 1 form a sample of a Poisson point process
with intensity µ = p× Sd, where Sd denotes the area of the domain on which the noise is
generated. Then, an independent and identically distributedM×N sampling of a uniform



88 CHAPTER 3. MONOG.-BASED STRUCTURE EXTR. OF A GABOR NOISE

variable on ] − π, π] is generated at each pixel (tj , tk). These numbers correspond to the
random phase-shifts ψi de�ned in Section 3.2.2 in the continuous model, and are denoted
by ψj,k for all (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1}. Let h denote the complex-valued
M ×N discrete signal (hj,k)j,k such that for all (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1},

hj,k = xj,kei[−bω(t
j cosα+tk sinα)+ψj,k], (3.15)

where b ∈ R∗
+, ω ∈ R∗

+ and α ∈
]
−π

2 ;
π
2

]
. The Gabor noise is �nally computed as the real

part of the complex random �eld h ∗ a, where for all (j, k) ∈ {0 . . .M − 1}× {0 . . . N − 1},

aj,k = e−πb
2[(tj)2+(tk)2]. (3.16)

This convolution product is performed in the frequency domain by using the 2D discrete
Fourier transform. Tables 3.1, 3.2 and 3.3 shows examples of Gabor noises synthesized with
this technique for di�erent values of b, ω and α, respectively. The remaining parameters
chosen to synthesize the texture areM = N = 1000, Tx = Ty = 0.002, p = 0.1, respectively.
Notice that the sampling periods Tx and Ty both satis�es Shannon's boundary, i.e., 1

Tx
>

2bω and 1
Ty
> 2bω.

b 2 3 4 5

Gabor noise

Table 3.1: In�uence of the scale b on the visual aspect of the Gabor noise, with M = N =
1000, Tx = Ty = 0.002, p = 0.1, ω = 20, α = π

6 .

ω 10 15 20 25

Gabor noise

Table 3.2: In�uence of the frequency ω on the visual aspect of the Gabor noise, with
M = N = 1000, Tx = Ty = 0.002, p = 0.1, b = 2, α = π

6 .

Unlike what is observed, e.g., in (Tricard et al. 2019), increasing the value of the parameter
b only a�ects the scale, a direct consequence of the modi�cation of the Gabor kernel
detailed in Section 3.2.1. As expected, increasing the frequency parameter ω yields faster
oscillations, while changing α a�ects the orientation of the fringes. This illustrates how the
parameters of the Gabor kernel can be directly linked with the visual aspect of the noise,
which is exactly the reason why it is chosen to generate random oscillating textures in this
work. However, notice that slow fringes (small value of ω) at a lower resolution (high value
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α 0 π
6

π
3

π
2

Gabor noise

Table 3.3: In�uence of the orientation α on the visual aspect of the Gabor noise, with
M = N = 1000, Tx = Ty = 0.002, p = 0.1, b = 2, ω = 20.

of b) have the same visual aspect as fast fringes (high value of ω) at a higher resolution
(low value of b). This suggests that the overall behavior of the fringes is conditioned by
the product bω. The question now is to study how the monogenic signal (introduced in
Section 2.4 for deterministic oscillating images) manages to handle such stochastic textures
in terms of phase and orientation estimation, which is the subject of the next sections. The
theoretical and numerical results established in these sections highlight the key role of the
product bω already evoked in the previous tests.

3.3 Monogenic-based phase estimation of the Gabor noise

3.3.1 Uni�ed expression of the Gabor noise

Sections 2.4 and 2.5 have highlighted the ability of the monogenic tool to extract the
structural information of oscillating textures, modeled by the phase function, even in the
case of real fringe patterns displaying noise. However, no formal study of how the Riesz
transform deals with stochastic aspects has been performed yet. As said in Section 3.1.3,
the Gabor noise provides an interesting point of entry into stochastic textures for the
monogenic tool due to its mix of clear oscillating patterns and stochastic perturbations.
Before involving the Riesz transform, the Gabor noise is �rst expressed as a single wave
signal rather than a sparse convolution by using the phasor approach introduced in (Tricard
et al. 2019). The main goal of doing so is to properly de�ne physical amplitude and phase
functions, respectively, and hence �tting the Gabor noise into the monogenic framework
presented in Chapter 2. For all x ∈ R2, (Tricard et al. 2019) states that s can be rewritten
as

s(x) = I(x) cos [φ(x)] , (3.17)

where 
I(x) =

∣∣∣∑i a(x− xi)e
i(−bωu⊤xi+ψi)

∣∣∣ ,
φ(x) = bωu⊤x+Ψ(x),

Ψ(x) = arg
[∑

i a(x− xi)e
i(−bωu⊤xi+ψi)

]
.

(3.18)

The noise s can hence be seen as a cosine wave whose amplitude I and phase φ are
random �elds rather than deterministic functions unlike the deterministic signals studied
in Chapter 2. These functions contain the energetic and structural information of the
texture, respectively, similarly to the notion of physical amplitude and phase previously
discussed.
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3.3.2 Riesz transform and monogenic signal of a Gabor noise

Recall that s is centered, thanks to the inclusion of the phase-shift process (ψi)i, which
implies that each term of the sum is in L2(R2). The Riesz transform of s can then be de�ned
as the sum of the Riesz transforms of each term (see (Kallenberg 2002) for further details).
In the purely deterministic case, i.e., I(x) = 1 and Ψ(x) = 0 for all x ∈ R2, respectively,
the Riesz transform shifts the cosine function into a sine (Felsberg & Sommer 2001). This
result can be generalized to a Gabor noise as follows.

Theorem 6. Let s be a phase-augmented Gabor noise de�ned for all x ∈ Ω ⊂ R2 as

s(x) =
∑
i

a(x− xi) cos
[
bωu⊤(x− xi) + ψi

]
, (3.19)

where all the parameters are de�ned as in Section 3.2.2. If Hs denotes the noise de�ned

for all x ∈ R2 as

Hs(x) =
∑
i

a(x− xi) sin
[
bωu⊤(x− xi) + ψi

]
, (3.20)

there exists a constant K ∈ R∗
+ such that for all x ∈ R2,{

E
[
|R1s(x)− cosαHs(x)|2

]
≤ K

(bω)2
,

E
[
|R2s(x)− sinαHs(x)|2

]
≤ K

(bω)2
,

(3.21)

where E denotes the mean operator.

The proof is given in Appendix B.4. Theorem 6 implies that if the product bω is big
enough, the cosine is shifted to a sine as in the deterministic case. This condition is
ful�lled if low frequency noises are generated with a low resolution (high value of b), or if
noises generated with a high resolution (small value of b) have a high frequency. If both
b and ω are small, the oscillations are too slow to be visible at a high resolution, which
makes the Riesz transform diverge. In the subsequent developments, bω is assumed to be
big enough to apply Theorem 6. In the case of real textures, this condition implies that
the oscillating patterns must be visible enough to be captured by the Riesz transform.
Notice that the function Hs can be seen as the Hilbert transform of s directed towards the
direction α, which is illustrated by the cosine shifted to a sine. This matches the notion
of directional Riesz transform mentioned in (Soulard & Carré 2015). The Riesz transform
of the Gabor noise s can then be approximated as

Rs(x) ≈ Hs(x)

(
cosα
sinα

)
. (3.22)

This yields an approximation of the monogenic signal of s, denoted by Ms, which can be
expressed for all x ∈ R2 as

Ms(x) ≈ s(x)e1 +Hs(x)eα, (3.23)

with e1 =
(
1 0 0

)⊤
and eα =

(
0 cosα sinα

)⊤
. Using the isomorphy between C and

the 2D vector space spanned by e1 and eα leads to

Ms(x) ≈ s(x) + iHs(x),

≈ I(x)ei[bωu
⊤x+Ψ(x)],

(3.24)
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where I and Ψ denote the uni�ed amplitude and phase-shift functions de�ned in Eq. (4.39),
respectively. It can hence be expected that the monogenic phase ϕ(x), de�ned in Section
2.4.1 as the argument of Ms(x) at each pixel x ∈ R2, is close to the phase function inside
the complex exponential, i.e., for all x ∈ R2,

ϕ(x) ≈ bωu⊤x+Ψ(x) [2π]. (3.25)

3.3.3 Synthetic tests

This section aims at illustrating the previous result with synthetic tests. Let (tj , tk) denote
the discrete grid introduced in Section 3.2.4, with (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1}
and (M,N) ∈ N2. After the discrete Gabor noise s = (sj,k)j,k is generated through the
technique described in Section 3.2.4, the Riesz transform is applied to the noise in order
to extract its monogenic phase signal ϕ = (ϕj,k)j,k as done in Section 2.5. Meanwhile, the
physical phase signal φ = (φj,k)j,k, i.e., the expected values of local phase, is computed
for all (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1} as

φj,k = bω
(
tj cosα+ tk sinα

)
+Ψj,k [2π], (3.26)

where Ψj,k denotes the argument of the complex signal h∗a de�ned in Section 3.2.4 at each
pixel. Similarly to the deterministic case, both phase signals ϕ and φ are then compared
by using the BFR and VAF criteria de�ned in Section 2.2.2. Figure 3.2 shows the mono-
genic and physical phases computed from a Gabor noise generated with M = N = 1000,
Tx = Ty = 0.002, b = 1, ω = 50, α = π

6 and p = 0.1. Despite the addition of stochastic
features in the texture, the results are similar those observed in the case of pure cosine
waves in Section 2.5.2. The two phase signals look similar, which is re�ected in the val-
ues of the similarity criteria, i.e., BFR = 85.67%, VAF = 97.95%. The cosine di�erence
displayed in Figure 3.3 con�rms these observations, the values being close to 1 in most
areas. Notice that the small black areas where the monogenic and physical phases di�er
from π correspond to abrupt jumps of phase in the original texture. Such jumps are called
singularities in (Tricard et al. 2019) and are further studied in Chapter 5.

Monogenic phase

-3

-2

-1

0

1

2

3

Physical phase

-3

-2

-1

0

1

2

3

Figure 3.2: Comparison between the monogenic (left) and physical (right) measures of
phase in the case of a Gabor noise, M = N = 1000, Tx = Ty = 0.002, b = 1, ω = 50,
α = π

6 , p = 0.1, BFR = 85.67%, VAF = 97.95%.
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Figure 3.3: Cosine di�erence between the monogenic and physical measures of phase in
the case of a Gabor noise, M = N = 1000, Tx = Ty = 0.002, b = 1, ω = 50, α = π

6 .

As said in Section 3.3.2, the phase extraction provided by the monogenic signal is reliable
only in the case where the product bω is large enough, a consequence of Theorem 6. It can
hence be expected that increasing these parameters increases the quality of the phase esti-
mation, i.e., the values of BFR and VAF between the cosines of the physical and monogenic
phases, respectively. Figure 3.4 shows the boxplots of the BFR and VAF criteria calcu-
lated for b ∈ {1, . . . , 5}, the other parameters being M = N = 1000, Tx = Ty = 0.002,
ω = 30, α = π

6 and p = 0.1. For each value of b, n = 50 Gabor noises are generated.
As expected, increasing the scale parameter b implies a reduction of the variances of the
similarity criteria, but their respective means remain stable.

Applying the same procedures with ω = 10 con�rms that increasing b alone does not im-
pact the means of the similarity criteria, as shown in Figure 3.5. Again, the variances are
reduced when b increases, which implies that the phase estimation is more reliable, while
the means stagnate at a lower value than in the case of ω = 30.

Figure 3.6 now shows the boxplots of the BFR and VAF criteria calculated for ω ∈
{10 + 5k, k = 0, . . . , 4}, the other parameters being M = N = 1000, Tx = Ty = 0.002,
b = 5, α = π

6 and p = 0.1, with n = 50 Gabor noises generated for each value of ω. This
time, increasing the frequency parameter ω implies a reduction of both the means and the
variances of the similarity criteria. This can be explained by the fact that low frequency
images damage both the computation of the Riesz transform and the subsequent mono-
genic phase extraction.

These tests illustrate how the monogenic extraction of phase remains reliable even when
stochastic features come into play, which is consistent with what is observed in the case
of real fringe patterns displaying noise in Section 2.6. While the robustness of the Riesz
transform in the case of noisy textures is already highlighted by synthetic tests in (Kaseb
et al. 2019), Theorem 6 goes further by giving an explicit theoretical argument to support
these numerical observations. Additionally, unlike in (Kaseb et al. 2019), the noise signals
studied in this section are not mere cosine waves with added random values, but proper
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Figure 3.4: Boxplots of the BFR (left) and VAF (right) criteria measured from the cosines
of the monogenic and physical phase functions for n = 50 Gabor noises, b ∈ {1, . . . , 5},
M = N = 1000, Tx = Ty = 0.002, ω = 30, α = π

6 , p = 0.1.
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Figure 3.5: Boxplots of the BFR (left) and VAF (right) criteria measured from the cosines
of the monogenic and physical phase functions for n = 50 Gabor noises, b ∈ {1, . . . , 5},
M = N = 1000, Tx = Ty = 0.002, ω = 10, α = π

6 , p = 0.1.



94 CHAPTER 3. MONOG.-BASED STRUCTURE EXTR. OF A GABOR NOISE

10 15 20 25 30

frequency 

50

55

60

65

70

75

80

85

B
F

R

BFR

10 15 20 25 30

frequency 

75

80

85

90

95

V
A

F

VAF

Figure 3.6: Boxplots of the BFR (left) and VAF (right) criteria measured from the cosines
of the monogenic and physical phase functions for n = 50 Gabor noises, ω ∈ {10+ 5k, k =
0, . . . , 4}, M = N = 1000, Tx = Ty = 0.002, b = 5, α = π

6 , p = 0.1.

procedural noises that are widely used in the �eld of texture synthesis for their ability to
generate realistic oscillating textures (Galerne et al. 2012). It can hence be expected that
the monogenic measure of phase remains reliable when applied to real textures displaying
oscillating patterns. Further developments would then be necessary to characterize the
structural information contained in the phase, similarly to what is done for the Fourier
phase in (Leclaire & Moisan 2015). While not tackled in this study, this would be an
interesting perspective.

As seen in Chapter 2 in the case of deterministic waves, the monogenic signal also provides
a measure of orientation. Section 3.4 goes further by studying the monogenic extraction
of orientation in the case of random �elds.

3.4 Monogenic-based stochastic structure tensor

Detecting the directional structures of an image is of great importance in the �eld of tex-
ture analysis (Polisano 2017, Olhede et al. 2014). The gradient-based structure tensor,
though well-suited for deterministic images, is much less reliable when stochastic elements
are added to the image (Polisano 2017). Though Sections 2.4 and 2.5 show that the
monogenic signal provides a reliable estimation of orientation at each pixel, the resulting
orientation signal is of the same size as the original image, which makes it di�cult to
interpret in terms of global direction of oscillation, especially in the case of stochastic im-
ages. The synthetic tests performed in Section 3.2.4 show that Gabor noises display many
local perturbations in their orientation, though the global direction of oscillation is still
determined by the α parameter. Introduced in (Olhede et al. 2014), the monogenic-based
measure of directionality provides an interesting extension of the monogenic estimation of
orientation to stochastic stationary images. However, though the use of quaternion algebra
o�ers convenient calculation rules, it obscures the more geometric aspects of the paper. In
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this section, a geometrical study of this technique is performed to give it a more intuitive
interpretation. The measure of directionality and the global orientation it provides are
then applied to the Gabor noise to illustrate its relevance.

3.4.1 Measure of directionality

Because the measure of directionality introduced in (Olhede et al. 2014) is based on a
quaternionic approach of the Riesz transform and the monogenic signal, this section makes
use of the quaternionic formalism before linking it to more geometric spaces. Let i, j and k
denote the fundamental quaternion units (Via, Ramirez & Santamaría 2010). If s : R2 → R
is a 2D stochastic process in L2(R2), the quaternionic monogenic signal of s is de�ned for
all x ∈ R2 as

Ms(x) = s(x) +R1s(x)i+R2s(x)j+ 0k, (3.27)

where R1 and R2 denote the Riesz operators. In the case of a phase-augmented Gabor
noise, applying the approximation of the monogenic signal given in Section 3.3.2 leads for
all x ∈ R2 to

Ms(x) ≈
∑
i

a(x− xi) cos
[
bωu⊤(x− xi) + ψi

]
+ [cos(α)i+ sin(α)j]

∑
i

a(x− xi) sin
[
bωu⊤(x− xi) + ψi

]
,

≈ s(x) + uαHs(x),

(3.28)

where uα = cos(α)i + sin(α)j and Hs(x) =
∑

i a(x − xi) sin
[
ωu⊤(x− xi) + φi

]
. As said

in Section 3.3.2, Hs can be interpreted as a Hilbert transform directed towards uα. The
quaternionic monogenic signal of a Gabor noise is hence to be interpreted as the analytic
embedding of s in the 2D vector space spanned by the real number 1 and the quaternion
uα. The key idea of (Olhede et al. 2014) is to notice that the monogenic signal of such
a directional signal is invariant with respect to the involution Tα : H → H de�ned for all
q ∈ H by

Tα(q) = −uαquα. (3.29)

Indeed, let u⊥
α denote the quaternion − sin(α)i+ cos(α)j. Because uα and u⊥

α are linearly
independent elements of the subspace spanned by i and j, the elements

(
1,uα,u

⊥
α ,k

)
form

a basis of the quaternion algebra. It can then be easily shown that the elements 1 and uα
are invariant with respect to Tα, while Tα(uα) = −uα and Tα(k) = −k. Consequently, if
η = a+ buα + cu⊥

α + dk is a quaternion, with (a, b, c, d) ∈ R4, then,

Tα(η) = a+ buα − cu⊥
α − dk. (3.30)

This shows that the invariants of Tα are exactly the quaternions a+ buα, (a, b) ∈ R2. As
seen in Eq. (3.28), the monogenic signal of a Gabor noise can be approached by such a
quaternion, which implies that it is nearly invariant with respect to Tα. For more general
noises s that do not have a constant orientation α, this is obviously not true anymore. The
preferred direction can then be de�ned as the angle α ∈

[
−π

2 ,
π
2

]
that minimizes the mean

distance between the monogenic signal Ms and its involuted form Tα(Ms), i.e.,
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ds = min
θ

{
E
[
1

2
|Ms − Tθ(Ms)|2

]}
,

α = argmin
θ

{
E
[
1

2
|Ms − Tθ(Ms)|2

]}
,

(3.31)

where | · | denotes the modulus in the quaternion algebra. The minimal distance ds itself
provides a measure of directionality. The smallest ds is, the more unidirectional the image
is. In the case of a purely unidirectional image (e.g., a Gabor noise), ds = 0.

3.4.2 Geometric interpretation of the measure of directionality

Let x = x0+x1i+x2j be a quaternion of the hyperplane spanned by 1, i and j. The element
x could also be seen as a vector of R3. The aim of this section is to give a more geometric
interpretation of the stochastic structure tensor introduced in (Olhede et al. 2014). As
stated in (Via et al. 2010), the quaternonic operator Tθ used in (Olhede et al. 2014) can
be expressed as a linear operator on R3, i.e., for all x ∈ R3,

Tθ(x) =

1 0 0
0 cos (2θ) − sin (2θ)
0 sin (2θ) cos (2θ)

1 0 0
0 1 0
0 0 −1

x0x1
x2

 . (3.32)

Though this result was already given in (Via et al. 2010), the proof is recalled in Appendix
B.5. If (e1, e2, e3) denotes the canonical basis of R3, the operator Tθ hence corresponds
to a symmetry with respect to the plane vect{e1, e2} followed by a rotation of angle 2θ
around the axis Re1. Since the operators Tθ leave the x-coordinate unchanged, they could
be seen as plane operators. Remember that if s is a Gabor noise with orientation α, its
monogenic signal Ms (seen as a vector of R3) is invariant with respect to the operator Tα,
which implies that the estimated preferred direction of oscillation is exactly α. For more
general noises s, the preferred direction is chosen as the angle θ+ for which the 2D vector
formed with the two Riesz components of s changes the least after undergoing a symmetry
with respect to the x-axis followed by a rotation of angle 2θ+. Section 3.4.3 gives a more
stochastic interpretation of the angle θ+ and the measure of directionality ds thanks to the
structure tensor framework.

3.4.3 Stochastic structure tensor

Let s be a stationary random process. By using the spectral representation of s (Loève
1978), it can be shown that if s is zero-mean, then its Riesz components R1s and R2s are
zero-mean too, and their respective variances are linked by the following equation (Olhede
et al. 2014),

Var(s) = Var(R1s) + Var(R2s). (3.33)

This equality yields following theorem, in which the measure of directionality of (Olhede
et al. 2014) is reformulated as di�erence of variances.

Theorem 7. Let s be a zero-mean random �eld, and let uθ denote the unit vector of R2

with argument θ ∈
]
−π

2 ,
π
2

]
. Then, the distance ds de�ned in Eq. (3.31) can be expressed

as

ds = 2Var(s)− 2max
θ

Var
(
u⊤
θ Rs

)
, (3.34)
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where Rs denotes the Riesz transform of s.

Eq. (3.34) implies that preferred direction of s can be seen as the angle θ+ for which
the variance of the Riesz transform steered towards the direction θ+ is maximal. This is
analogous to the gradient-based oriented variation that can be found in (Soulard 2012) in
the deterministic case. Here, the gradient is replaced by the Riesz transform, while the
oriented variation is replaced by the variance operator. Eq. (3.34) can then be rewritten
as

ds = 2Var(s)− 2max
θ

(
u⊤
θ Tsuθ

)
, (3.35)

where

Ts =

(
Var(R1s) Cov(R1s,R2s)

Cov(R1s,R2s) Var(R2s)

)
. (3.36)

The matrix Ts is exactly the covariance matrix of the Riesz transform of s, and can be in-
terpreted as a stochastic structure tensor formed with the Riesz components of s. A similar
monogenic-based stochastic structure tensor can be found in (Polisano 2017) in the case of
Gaussian �elds. The more classical structure tensor found in (Jahne 2004, Soulard 2012)
is formed with the components of the gradient instead (see (Köthe & Felsberg 2005) for
more details about the link between the gradient and the Riesz transform). Notice that
unlike these deterministic tensors, the components of Ts do not need to be convoluted with
a smoothing function thanks to the variance operator.

The term u⊤
θ Tsuθ is maximized by using the the eigenvalues of the structure tensor Ts,

which are given by
λ+ = 1

2

(
Var(s) +

√
[Var(R1s)−Var(R2s)]

2 + 4Cov(R1s,R2s)2
)
,

λ− = 1
2

(
Var(s)−

√
[Var(R1s)−Var(R2s)]

2 + 4Cov(R1s,R2s)2
)
,

(3.37)

with λ− ≤ λ+. Though the determination of the eigenvalues and eigenvectors of a gradient-
based structure tensor can be found in, e.g., (Soulard 2012), the proofs in the case of the
stochastic structure tensor are given in Appendix B.5. Then, the term u⊤

θ Tsuθ is maximal
when calculated along the eigenvector of Ts associated with its greatest eigenvalue, and
minimal when calculated along the eigenvector of Ts associated with its smallest eigen-
value (see Appendix B.5). Applying this result to Eq. (3.35) implies that the measure of
directionality ds can be expressed as

ds = 2Var(s)− 2λ+. (3.38)

Notice that λ+ + λ− = Var(s), which yields a direct link between the measure of direc-
tionality ds and λ−, i.e.,

ds = 2Var(s)− 2λ+,

= 2 (λ+ + λ−)− 2λ+,

= 2λ−.

(3.39)

The directionality of the image is hence measured by calculating the lowest eigenvalue of the
stochastic structure tensor. In the case of a purely unidirectional image, there is only one
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preferred direction, which implies λ− = 0. Otherwise, λ− quanti�es the importance of the
second main direction of the image. The normalized measure of directionality, introduced
in (Olhede et al. 2014) and denoted by Us, is then equivalent to the coherence index often
used when dealing with structure tensors (e.g., in (Soulard 2012, Polisano 2017)), i.e.,

Us =
2maxθ

(
u⊤
θ Tsuθ

)
Var(s)

− 1,

=
2λ+

λ+ + λ−
− 1,

=
λ+ − λ−
λ+ + λ−

.

(3.40)

Furthermore, the preferred direction of oscillation θ+ is computed by using Eq. B.84 (see
Appendix B.5), hence,

θ+ =
1

2
arg [Var(R1s)−Var(R2s) + 2iCov(R1s,R2s)] [2π]. (3.41)

3.4.4 Case of a Gabor noise

This section aims at applying the stochastic structure tensor to the Gabor noise, which is
the main focus of this chapter for its ability to model oscillating stochastic textures. Given
that the stochastic structure tensor of (Olhede et al. 2014) is exactly the covariance matrix
of the Riesz transform, the latter must be expressed in the case of a Gabor noise before
applying the orientation estimation technique described in the previous sections. Let s be
a phase-augmented Gabor noise as de�ned in Section 3.2.2. Assuming that the product
bω is small enough, Theorem 6 ensures that the Riesz transforms of s can be approached
by using Eq. 3.22, i.e., for all x ∈ R2,

Rs(x) ≈ Hs(x)

(
cosα
sinα

)
, (3.42)

where

Hs(x) =
∑
i

a(x− xi) sin
[
bωu⊤(x− xi) + ψi

]
. (3.43)

The phase-shifted noise Hs can then be expressed as a sum of cosines, i.e., for all x ∈ R2,

Hs(x) =
∑
i

a(x− xi) cos
[
bωu⊤(x− xi) + ψ′

i

]
, (3.44)

where ψ′
i = ψi − π

2 [2π]. Because the stochastic process (ψ′
i)i ful�lls the same assumptions

as (ψi)i, Hs is a Gabor noise to which Theorem 5 can be applied, hence,

Var (Hs) =
µ

4b2
, (3.45)

which yields 
Var (R1s) =

µ
4b2

cos2 α,
Var (R2s) =

µ
4b2

sin2 α,
Cov (R1s,R2s) =

µ
4b2

cosα sinα.
(3.46)



3.4. MONOGENIC-BASED STOCHASTIC STRUCTURE TENSOR 99

Therefore, in the case of a Gabor noise, the stochastic structure tensor Ts expressed in Eq.
(3.36) becomes

Ts =
µ

4b2

(
cos2 α cosα sinα

cosα sinα sin2 α

)
, (3.47)

The eigenvalues of Ts can then be calculated by applying Eq. (B.79) to the case of a Gabor
noise, i.e.,

λ+ =
µ

4b2
× 1

2

(
1 +

√(
cos2 α− sin2 α

)2
+ 4 cos2 α sinα2

)
,

=
µ

4b2
× 1

2

(
1 +

√(
cos2 α+ sin2 α

)2)
,

=
µ

4b2
.

λ− =
µ

4b2
× 1

2

(
1−

√(
cos2 α− sin2 α

)2
+ 4 cos2 α sinα2

)
,

=
µ

4b2
× 1

2

(
1−

√(
cos2 α+ sin2 α

)2)
,

= 0.

(3.48)

This leads to ds = 0 and Us = 1, which is consistent with the unidirectional nature of s.
As can be expected, the preferred direction of oscillation θ+ is exactly α, i.e., by using Eq.
(B.84),

θ+ =
1

2
arg [Var(R1s)−Var(R2s) + 2iCov(R1s),R2s)] [2π],

=
1

2
arg
[ µ
4b2

(
cos2 α− sin2 α+ 2i cosα sinα

)]
[2π],

=
1

2
arg
[
cos2 α− sin2 α+ 2i cosα sinα

]
[2π],

=
1

2
arg [cos (2α) + i sin (2α)] [2π],

= α [2π].

(3.49)

Synthetic tests are now performed to illustrate the reliability of this orientation extraction
technique.

3.4.5 Synthetic tests

The Gabor noises are again synthesized on the discrete grid (tj , tk), (j, k) ∈ {0 . . .M −
1} × {0 . . . N − 1}, (M,N) ∈ N2, similarly to what is done in Sections 3.2.4 and 3.3.3,
respectively. After the discrete Gabor noise s = (sj,k)j,k is generated, the Riesz transforms
R1s and R2s are computed, from which the discrete stochastic structure tensor Ts, i.e., the
empirical covariance matrix of the Riesz transforms, can be deduced. Once the matrix Ts is
available, its eigenvalues and eigenvectors can be calculated. The argument of the a�x of
the eigenvector associated with the largest eigenvalue then yields a measure of orientation,
which is compared with the expected orientation α. Given the fact that the developments
performed in this section rely on Theorem 6, it can be expected that increasing the pa-
rameters b and ω increase the reliability of the orientation extraction, similarly to what
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is observed in Section 3.3.3 when focusing on the phase extraction. Figure 3.7 shows the
boxplots of the estimated orientations calculated for b ∈ {1, . . . , 5}, the other parameters
being M = N = 1000, Tx = Ty = 0.002, ω = 30, α = π

6 and p = 0.1. For each value of
b, n = 50 Gabor noises are generated. As in the case of phase extraction, increasing the
scale parameter b only reduces the variance of the estimated orientation, while the mean
remains close to the expected value α, suggesting that the estimation is unbiased. From
b = 3 onwards, the orientation becomes highly reliable.
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Figure 3.7: Boxplots of the estimated orientations measured from n = 50 Gabor noises,
b ∈ {1, . . . , 5}, M = N = 1000, Tx = Ty = 0.002, ω = 30, α = π

6 , p = 0.1.

Figure 3.8 now shows the boxplots of the estimated orientations calculated for ω ∈ {10 +
5k, k = 0, . . . , 4}, the other parameters being M = N = 1000, Tx = Ty = 0.002, b = 5,
α = π

6 , p = 0.1, with n = 50 Gabor noises generated for each value of ω. again, increasing
the frequency parameter ω reduces both the mean and the variance of the estimator. For
ω ≥ 30, the orientation estimation becomes highly reliable.

However, as shown in Figure3.9, the value of α does not seem to have any impact on the
quality of the estimation. Generating n = 50 Gabor noises for each α ∈

{
π
12(1 + k)

}
,

k = 0, . . . , 5, with M = N = 1000, Tx = Ty = 0.002, b = 5, ω = 30 and p = 0.1, yields an
unbiased estimation of orientation with a small variance in all cases. This highlights the
ability of the monogenic-based stochastic structure tensor to extract the preferred direction
of oscillation of a Gabor noise.

These results are consistent with what is observed on the normalized measure of unidi-
rectionality Us. Figures 3.10 and 3.11 show that increasing the scale b and the frequency
ω, respectively, yields more unidirectional textures, which is re�ected by the values of the
index Us that tend towards 1, with a decreasing variance. Curiously, the orientation α has
some impact on the mean and variance of the directionality Us, though the values remain
close to 1 in all cases. A further statistical study could be performed to determine whether
these variations are mere random �uctuations or not. Overall, these synthetic tests illus-
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Figure 3.8: Boxplots of the estimated orientations measured from n = 50 Gabor noises,
ω ∈ {10 + 5k, k = 0, . . . , 4}, M = N = 1000, Tx = Ty = 0.002, b = 5, α = π

6 , p = 0.1.
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Figure 3.9: Boxplots of the estimated orientations measured from n = 50 Gabor noises,
α ∈

{
π
12(1 + k), k = 0, . . . , 5

}
, M = N = 1000, Tx = Ty = 0.002, b = 5, ω = 30, p = 0.1.
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trate how the measure of directionality introduced in (Olhede et al. 2014) generalizes the
coherence index used for deterministic oscillating textures to random �elds.
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Figure 3.10: Boxplots of the normalized measures of directionality Us calculated from
n = 50 Gabor noises, b ∈ {1, . . . , 5}, M = N = 1000, Tx = Ty = 0.002, ω = 30, α = π

6 ,
p = 0.1.

The relevance of the stochastic structure tensor and the index Us, respectively, can be
further illustrated by considering a weighted sum of two Gabor noises with di�erent orien-
tations. Let s1 and s2 denote two independent discrete Gabor noises as de�ned in Section
3.2.4, generated with the same parameters except for the orientation. The orientations of
s1 and s2 are denoted by α1 and α2, respectively. If w ∈ [0, 1], let s be the weighted sum
of s1 and s2 de�ned for all x ∈ R2 by

s(x) = (1− w)s1(x) + ws2(x). (3.50)

Figure 3.13 shows the boxplots of the estimated orientations calculated for w ∈ {0.1k, k =
0, . . . , 10}, the other parameters being M = N = 1000, Tx = Ty = 0.002, b = 5, ω = 30,
α1 =

π
6 , α2 =

π
2 and p = 0.1. For each value of w, n = 50 Gabor noises are generated. As

can be expected, the estimated orientation is close to α1 when w is close to 0, and close
to α2 when w is close to 1. Notice that the shift between these two extremes is smooth,
suggesting that in the case of two main directions of oscillation α1 and α2 (w ≈ 0.5), the
estimated orientation θ+ corresponds to a mean between α1 and α2.

This shift is also re�ected in the normalized measure of directionality Us. Indeed, as shown
in Figure 3.14, this parameter is close to 1 when one Gabor noise signi�cantly dominates the
other (w ≈ 0 or w ≈ 1). When the two noises equally contribute in the texture (w ≈ 0.5),
the index Us oscillates a little above 0.5. Again, this is similar to what is observed with the
more classical coherence index in the case of deterministic images (Soulard 2012), except
that the index Us is designed for stochastic texture. Notice that an analogous coherence
index is also used in (Polisano 2017) when dealing with Gaussian �elds.
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Figure 3.11: Boxplots of the normalized measures of directionality Us calculated from
n = 50 Gabor noises, ω ∈ {10+5k, k = 0, . . . , 4}, M = N = 1000, Tx = Ty = 0.002, b = 5,
α = π

6 , p = 0.1.
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Figure 3.12: Boxplots of the normalized measures of directionality Us calculated from
n = 50 Gabor noises, α ∈

{
π
12(1 + k), k = 0, . . . , 5

}
, M = N = 1000, Tx = Ty = 0.002,

b = 5, ω = 30, p = 0.1.
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Figure 3.13: Boxplots of the estimated orientations measured from n = 50 sums of two
Gabor noises, w ∈ {0.1k, k = 0, . . . , 10}, M = N = 1000, Tx = Ty = 0.002, b = 5, ω = 30,
α1 =

π
6 , α2 =

π
2 , p = 0.1.
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Figure 3.14: Boxplots of the normalized directionality indices measured from n = 50 sums
of two Gabor noises, w ∈ {0.1k, k = 0, . . . , 10}, M = N = 1000, Tx = Ty = 0.002, b = 5,
ω = 30, α1 =

π
6 , α2 =

π
2 , p = 0.1.
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3.5 Application to real textures

Sections 3.3 and 3.4 provide relevant monogenic-based tools to extract phase and orienta-
tion, respectively, which is illustrated by the good results they give when applied to Gabor
noises. Remember that the Gabor noise framework is originally chosen because it enables
the synthesis of stochastic oscillating textures with prescribed frequency content. This
section goes further by applying these tools to real textures displaying oscillating patterns.
Table 3.4 shows the results obtained by applying the phase and orientation estimation
processes described in the previous sections to grill, sand, metal and sheet textures. The
directionality index Us is also given. As was already observed in the case of interference
fringes in Chapter 2, the monogenic phase manages to extract the oscillating structures of
the images, though it struggles when the patterns are less obvious. This can be linked with
Theorem 6, which states that the reliability of the monogenic extraction of phase decreases
when bω decreases, i.e., when the oscillating patterns become less visible. Notice that, like
in the case of fringe patterns, these tests only tackle the extraction of the phase. Now that
the reliability of this extraction is established, further developments would be necessary to
characterize the information contained in the phase function.

In all cases, the global orientation extracted from the monogenic structure tensor is con-
sistent with the visual aspect of the texture, i.e., the direction of the oscillating patterns is
well extracted. This is also true for the directionality index, which increases as the texture
displays more and more unidirectional oscillations. This shows how the monogenic-based
tools developed in this chapter not only work for synthesized textures, but also real tex-
tures displaying oscillating patterns. Unlike the phase, the directionality information is
encoded in a single parameter, which could then be used in texture classi�cation in future
works.

Texture Grill Sand Metal Sheet

Original

Phase
Orientation 1.57 ≈ π

2 0.02 −0.44 ≈ −π
7 0.63 ≈ π

5

Directionality 0.99 0.94 0.3 0.12

Table 3.4: Monogenic extraction of local phase, global orientation and directionality of real
textures
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3.6 Conclusion

Highlighted in Chapter 2 in the case of deterministic waves, the quality of the monogenic
extraction of phase generalizes well to random �elds displaying oscillating patterns like
Gabor noises, as shown in Section 3.3. This is supported by both theoretical results and
synthetic tests. Furthermore, Section 3.4 shows how the monogenic-based stochastic struc-
ture tensor introduced in (Olhede et al. 2014) manages to extract the preferred direction
of oscillation of a single Gabor noise, as well as evaluating the overall directionality when
applied to a sum of Gabor noises. All these results rely on the approximation of the Riesz
transform of a Gabor noise provided by Theorem 6, which is therefore one of the most
important contributions of this chapter. Though dealing with synthesized images, these
results give strong arguments for the robustness of the monogenic extraction of local fea-
tures. Section 3.5 goes further by successfully extracting the phase and orientation of real
oscillating textures by using the monogenic-based tools introduced in the two previous sec-
tions, which highlights the ability of these tools to capture the local behavior of such images.

Similarly to the case of deterministic waves tackled in Chapter 2, these results imply that
the monogenic signal is still able to separate energetical, structural and directional informa-
tion when stochastic features come into play, as long as the image displays clear oscillating
patterns. Unlike the directional features, which can be summed up by the directionality
index, the phase function still lacks a concise description. While the developments in-
troduced in this study ensure the reliability of the phase extraction, further work could
focus on how the information contained in this signal can be summed up in a small set of
descriptors.

Notice that though the main topic of this work is the characterization of color textures,
Chapter 2 and 3 only deal with greyscale textures. These steps were necessary to introduce
the monogenic-based structure extraction techniques and illustrate their relevance for both
deterministic and stochastic textures. The subsequent developments aim at extending these
results to color textures. To do so, a suitable color model must be de�ned, which is the
main topic of Chapter 4.
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Appendices

B.1 Proof of Theorem 3

For T > 0, let AT denote the square [−T, T ]2 ⊂ R2, and sT the process de�ned for all
x ∈ R2 by

sT (x) =
∑

i|xi∈AT

g(x− xi). (B.1)

Because (xi)i is a Poisson process with intensity µ, N(AT ) has a Poisson distribution
with parameter µ|AT | = µ(2T )2. Moreover, given N(AT ) = n, with n ∈ N, the points
{y1, . . . ,yn} inside AT are independent and identically distributed according to a uniform
distribution on AT . sT (x) can hence be expressed as

sT (x) =

N(AT )∑
i=1

g(x− yi). (B.2)

Mean :
The mean of sT can then be calculated as a conditional mean,

E [sT (x)] = E {E [sT (x)|N(AT )]} ,

= E

E

N(AT )∑
i=1

g(x− yi)

∣∣∣∣∣N(AT )

 ,

= E {N(AT )E [g(x− y1)]} because the (yi)i are i.i.d.,

= E [N(AT )]× E [g(x− y1)] by linearity of the mean.

(B.3)

Because the random variable N(AT ) has a Poisson distribution with parameter µ(2T )2,
its mean is exactly equal to its parameter. As for the mean of g(x − y1), it is calculated
by using the uniform density on AT = [−T, T ]2, which gives

E [sT (x)] = µ(2T )2
∫
AT

g(x− u)
du

(2T )2
,

= µ

∫
AT

g(x− u)du.

(B.4)

It is obvious that for all x ∈ R2,
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lim
T→+∞

sT (x) = s(x). (B.5)

By using Lebesgue's dominated convergence theorem (see, e.g., Theorem 1.19 in (Evans &
Gariepy 2015)), this implies that

lim
T→+∞

E[sT (x)] = E[s(x)]. (B.6)

Finally, making T tend towards +∞ and applying the substitution y = x− u leads to

E[s(x)] = µ

∫
R2

g(y)dy. (B.7)

Variance :
The same method can be used to calculate the second moment of sT (x), with T > 0 and
x ∈ R2.

E
[
sT (x)

2
]
= E

{
E
[
sT (x)

2|N(AT )
]}
,

= E

E

N(AT )∑
i=1

g(x− yi)

2 ∣∣∣∣∣N(AT )

 ,

= E

E

N(AT )∑
i=1

g(x− yi)
2 +

∑
i ̸=j

g(x− yi)g(x− yj)

∣∣∣∣∣N(AT )

 ,

= E
{
N(AT )E

[
g(x− y1)

2
]
+N(AT )(N(AT )− 1)E [g(x− y1)g(x− y2)]

}
,

= E [N(AT )]× E
[
g(x− y1)

2
]
+ E [N(AT )(N(AT )− 1)]× E [g(x− y1)]

2 .

(B.8)

Because N(AT ) has a Poisson distribution with parameter µ(2T )2, the mean of the random
variable N(AT )(N(AT )− 1) can be expressed as follows,

E [N(AT )(N(AT )− 1)] = E
[
N(AT )

2
]
− E [N(AT )] ,

= Var(N(AT )) + E [N(AT )]
2 − E [N(AT )] ,

= µ(2T )2 + µ2(2T )4 − µ(2T )2,

= µ2(2T )4.

(B.9)

Injecting this expression in the second moment of sT (x) leads to

E[sT (x)2] = µ(2T )2
∫
AT

g(x− u)2
du

(2T )2
+ µ2(2T )4

(∫
AT

g(x− u)
du

(2T )2

)2

,

= µ

∫
AT

g(x− u)2du+ µ2
(∫

AT

g(x− u)du

)2

.

(B.10)

Making T tend towards +∞ gives

E
[
s(x)2

]
= µ

∫
R2

g(y)2dy + µ2
(∫

R2

g(y)dy

)2

. (B.11)
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Finally, the variance is obtained as the di�erence between the second moment and the
square of the previously calculated mean, i.e.,

Var [s(x)] = E
[
s(x)2

]
− E [s(x)]2 ,

= µ

∫
R2

g(y)2dy + µ2
(∫

R2

g(y)dy

)2

− µ2
(∫

R2

g(y)dy

)2

,

= µ

∫
R2

g(y)2dy.

(B.12)



110 APPENDIX B. APPENDICES

B.2 Proof of Theorem 3

As in the calculation of the variance, the covariance is �rst expressed in a square AT =
[−T, T ]2 ⊂ R2, T > 0. Let sgT and shT denote the processes de�ned for all x ∈ R2 by

sgT (x) =

N(AT )∑
i=1

g(x− yi),

shT (x) =

N(AT )∑
i=1

h(x− yi).

(B.13)

The mean of the product sgT (x)s
h
T (x) is �rst calculated

E[sgT (x)s
h
T (x)] = E{E[sgT (x)s

h
T (x)|N(AT )]},

= E

E

N(AT )∑
i=1

g(x− yi)

N(AT )∑
j=1

h(x− yj)

∣∣∣∣∣N(AT )

 ,

= E

E

N(AT )∑
i=1

g(x− yi)h(x− yi) +
∑
i ̸=j

g(x− yi)h(x− yj)

∣∣∣∣∣N(AT )

 ,

= E {N(AT )E [g(x− y1)h(x− y1)] +N(AT )(N(AT )− 1)E [g(x− y1)h(x− y2)]} ,
= E [N(AT )]× E [g(x− y1)h(x− y1)] ,

+ E [N(AT )(N(AT )− 1)]× E [g(x− y1)]× E [h(x− y1)] ,

= µ(2T )2
∫
AT

g(x− u)h(x− u)
du

(2T )2
,

+ µ2(2T )4
(∫

AT

g(x− u)
du

(2T )2

)
×
(∫

AT

h(x− u)
du

(2T )2

)
,

= µ

∫
AT

g(x− u)h(x− u)du+ µ2
(∫

AT

g(x− u)du

)(∫
AT

h(x− u)du

)
.

(B.14)

Making T tend towards +∞ gives

E
[
sg(x)sh(x)

]
= µ

∫
R2

g(y)h(y)dy + µ2
(∫

R2

g(y)dy

)(∫
R2

h(y)dy

)
. (B.15)

Finally, the covariance is obtained as the di�erence between the mean of the product and
the product of the means,

Cov
[
sg(x)sh(x)

]
= E

[
sg(x)sh(x)

]
− E [sg(x)]E

[
sh(x)

]
,

= µ

∫
R2

g(y)h(y)dy + µ2
(∫

R2

g(y)dy

)(∫
R2

h(y)dy

)
− µ2

(∫
R2

g(y)dy

)(∫
R2

h(y)dy

)
,

= µ

∫
R2

g(y)h(y)dy.

(B.16)
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B.3 Proof of Theorem 5

The proof basically consists in applying Proposition 3.1 of (Galerne 2010) (recalled in
Section 3.1.3) to the gabor kernel g de�ned in Eq. (3.8).
Mean :

E [s(x)] =
µ

2π

∫ π

−π

∫
R2

g(y, ψ)dydψ,

=
µ

2π

∫ π

−π

∫
R2

e−πb
2∥y∥2 cos

(
bωu⊤y + ψ

)
dydψ,

=
µ

2π
ℜ
[∫ π

−π

∫
R2

e−πb
2∥y∥2ei(bωu

⊤y+ψ)dydψ

]
,

=
µ

2π
ℜ
[∫ π

−π
eiψ
∫
R2

e−πb
2∥y∥2ei(bωu

⊤y)dydψ

]
,

=
µ

2π
ℜ

∫ π

−π
eiψdψ︸ ︷︷ ︸
=0

∫
R2

e−πb
2∥y∥2ei(bωu

⊤y)dy

 , by using Fubini's theorem

= 0.

(B.17)

Covariance function :

Let z ∈ R2 be a 2D spatial delay. Using the expression of the covariance given at the end
of Section 3.1.3 leads to

Cov [s(0), s(z)] =
µ

2π

∫ π

−π

∫
R2

g(y, ψ)g(y − z, ψ)dydψ,

=
µ

2π

∫ π

−π

∫
R2

a(y)a(y − z)

× cos
(
bωu⊤y + ψ

)
cos
[
bωu⊤(y − z) + ψ

]
dydψ,

=
µ

2π

∫ π

−π

∫
R2

e−πb
2∥y∥2e−πb

2∥y−z∥2

× cos
(
bωu⊤y + ψ

)
cos
[
bωu⊤(y − z) + ψ

]
dydψ,

=
µ

4π

∫ π

−π

∫
R2

e−πb
2∥y∥2e−πb

2∥y−z∥2

×
{
cos
[
bωu⊤(2y − z) + 2ψ

]
+ cos

(
bωu⊤z

)}
dydψ.

(B.18)

The two terms of the integral are now calculated seperately. The �rst term, denoted by I1
can be expressed in the complex domain, hence

I1 =
µ

4π

∫ π

−π

∫
R2

e−πb
2∥y∥2e−πb

2∥y−z∥2 cos
[
bωu⊤(2y − z) + 2ψ

]
dydψ,

=
µ

4π
ℜ
[∫ π

−π

∫
R2

e−πb
2∥y∥2e−πb

2∥y−z∥2ei[bωu
⊤(2y−z)+2ψ]dydψ

]
.

(B.19)
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The integration variables can be separated as is done for the mean, leading to

I1 =
µ

4π
ℜ

∫
R2

e−πb
2∥y∥2e−πb

2∥y−z∥2eiωu
⊤(2y−z)dy ×

∫ π

−π
e2iψdψ︸ ︷︷ ︸
=0

 ,
= 0.

(B.20)

The second term of Eq. (B.18), denoted by I2, can be expressed as the convolution product
between the Gaussian function a de�ned in Section 3.2.2 and itself, i.e.,

I2 =
µ

4π

∫ π

−π

∫
R2

e−πb
2∥y∥2e−πb

2∥y−z∥2 cos
(
bωu⊤z

)
dydψ,

=
µ

2
cos
(
bωu⊤z

)∫
R2

e−πb
2∥y∥2e−πb

2∥y−z∥2dy,

=
µ

2
cos
(
bωu⊤z

)
a ∗ a(z).

(B.21)

This convolution product is �rst calculated in the Fourier domain. Let F2 denote the
2D Fourier transform de�ned in Section 2.3. Applying the expression of the 2D Fourier
transform of a Gaussian function given in Theorem 1 to the convolution product a∗a, with
a1 = a2 = b

√
π, leads for all ξ ∈ R2 to

F2(a ∗ a)(ξ) = [F(a)(ξ)]2 ,

=

[
1

b2
e−

1
4πb2

∥ξ∥2
]2
,

=
1

b4
e−

1
2πb2

∥ξ∥2 .

(B.22)

This is exactly the Fourier transform of a Gaussian function with a1 = a2 = b
√

π
2 , hence,

for z ∈ R2,

a ∗ a(z) = b2π

2πb4
e−

1
2
πb2∥z∥2 ,

=
1

2b2
e−

1
2
πb2∥z∥2 .

(B.23)

Injecting this expression in Eq. (B.21) �nally leads to

Cov [s(0), s(z)] =
µ

4b2
cos
(
bωu⊤z

)
e−

1
2
πb2∥z∥2 . (B.24)
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B.4 Proof of Theorem 6

Let h denote the complex Gabor kernel de�ned for all x ∈ R2,

h(x) = e−π||x||
2
eiωu

⊤x, (B.25)

where ω ∈ R∗
+, u = (cosα, sinα)⊤ and α ∈

]
−π

2 ;
π
2

]
. Because the Riesz transform is

de�ned in the Fourier domain in Section 2.4.1, a preliminary step consists in calculating
the 2D Fourier transform of h, denoted by ĥ. Hence, for all ξ ∈ R2,

ĥ(ξ) =

∫
R2

e−π||x||
2
eiωu

⊤xe−iξ⊤xdx,

=

∫
R2

e−π||x||
2
e−i(ξ−ωu)⊤xdx.

(B.26)

This is exactly the 2D Fourier transform of a Gaussian function evaluated at ξ − ωu.
Appliyng the formula given in Theorem 1 with a1 = a2 =

√
π leads to

ĥ(ξ) = e−
1
4π

||ξ−ωu||2 . (B.27)

Let S denote the complex Gabor noise de�ned from the complex Gabor kernel h, i.e., for
all x ∈ R2,

S(x) =
∑
i

eiψih (x− xi) , (B.28)

where the random points xi and phase-shifts ψi are de�ned as in Section 3.2.2. If the Riesz
transform acts as a phase-shift operator, it can be expected that{

R1h ≈ −i cos (α)h,
R2h ≈ −i sin (α)h,

(B.29)

The proof now focuses only on R1, but similar developments can be done for R2. The
goal is to compare the �rst Riesz transform of S, i.e., R1S, and the noise de�ned from the
approximated Riesz transform of the Gabor kernel −i cos (α)h in terms of quadratic error.
This noise, denoted by S̃, can be expressed for all x ∈ R2 as

S̃(x) = −i cos (α)
∑
i

eiψih (x− xi) . (B.30)

To do so, the quadratic error is expressed by applying Proposition 3.1 of (Galerne 2010)
recalled in Section 3, i.e., for all x ∈ R2,

E
[∣∣∣R1S(x)− S̃(x)

∣∣∣2] = µ

∫
R2

|R1h(y) + i cos (α)h(y)|2 dy, (B.31)

where µ denotes the intensity of the Poisson process from which the points xi are generated.
This is enabled by the stationarity of the noise (Galerne 2010). According to the Plancherel
theorem, the Fourier transform is an isometry, meaning that it preserves the Euclidian norm
of L2(R2). This implies that the quadratic error of Eq. (B.31), now denoted by DS , can
be calculated in the Fourier domain, i.e.,

DS(x) =
µ

(2π)2

∫
R2

∣∣∣R̂1h(ξ) + i cos (α) ĥ(ξ)
∣∣∣2 dξ. (B.32)
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For all ξ = (ξ1, ξ2) ∈ R2, let θξ denote an argument of the complex number ξ1 + iξ2. Then
the Riesz transforms of h can be rewritten for all ξ ∈ R2 as{

R̂1h(ξ) = −i cos (θξ) ĥ(ξ),

R̂2h(ξ) = −i sin (θξ) ĥ(ξ),
(B.33)

The quadratic error DS(x) can hence be expressed for all x ∈ R2 as

DS(x) =
µ

(2π)2

∫
R2

[cos (θξ)− cos (α)]2
∣∣∣ĥ(ξ)∣∣∣2 dξ,

=
µ

(2π)2

∫
R2

[cos (θξ)− cos (α)]2 e−
1
2π

∥ξ−ωu∥2dξ

(B.34)

Using the substitution ξ′ = ξ − ωu then leads to

DS(x) =
µ

(2π)2

∫
R2

[cos (θξ+ωu)− cos (α)]2 e−
1
2π

∥ξ∥2dξ. (B.35)

Let u⊥ denote the vector of R2 given by u⊥ =
(
− sinα cosα

)⊤
. Because u and u⊥ form

an orthonormal basis of R2 equipped with the scalar product, any 2D frequency ξ of R2

can be expressed as a linear combination of u and u⊥. Thus, for all x ∈ R2, DS(x) can be
expressed as

DS(x) =
µ

(2π)2

∫
R2

[
cos
(
θ(ξ1+ω)u+ξ2u⊥

)
− cos (α)

]2
e−

1
2π (ξ

2
1+ξ

2
2)dξ1dξ2,

=
µ

(2π)2

∫
R2

[(
(ξ1 + ω)u+ ξ2u

⊥

|| (ξ1 + ω)u+ ξ2u⊥||
− u

)⊤

e1

]2
e−

1
2π (ξ

2
1+ξ

2
2)dξ1dξ2,

(B.36)

where e1 =
(
1 0

)⊤
. For all (ξ1, ξ2) ∈ R2, let ∆ω (ξ1, ξ2) denote the vector of R2 de�ned

as

∆ω (ξ1, ξ2) =
(ξ1 + ω)u+ ξ2u

⊥

|| (ξ1 + ω)u+ ξ2u⊥||
− u. (B.37)

The Pythagorean theorem implies that the square of any of the coordinates of ∆ω (ξ1, ξ2)
is necessarily lower than its Euclidian norm, hence,

[
∆ω (ξ1, ξ2)

⊤ e1

]2
≤ ||∆ω (ξ1, ξ2) ||2,

=

∣∣∣∣∣∣
∣∣∣∣∣∣(ξ1 + ω)u+ ξ2u

⊥√
(ξ1 + ω)2 + ξ22

− u

∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

=

 ξ1 + ω√
(ξ1 + ω)2 + ξ22

− 1

2

+
ξ22

(ξ1 + ω)2 + ξ22
,

=
(ξ1 + ω)2

(ξ1 + ω)2 + ξ22
− 2

ξ1 + ω√
(ξ1 + ω)2 + ξ22

+ 1 +
ξ22

(ξ1 + ω)2 + ξ22
,

= 2

1− ξ1 + ω√
(ξ1 + ω)2 + ξ22

 .

(B.38)
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Notice that for all (ξ1, ξ2) ∈ R2, ∣∣∣∣∣∣ ξ1 + ω√
(ξ1 + ω)2 + ξ22

∣∣∣∣∣∣ ≤ 1, (B.39)

which implies that [
∆ω (ξ1, ξ2)

⊤ e1

]2
≤ 4. (B.40)

Moreover, if ξ1 + ω ̸= 0, then,

ξ1 + ω√
(ξ1 + ω)2 + ξ22

=
1√

1 +
ξ22

(ξ1+ω)
2

. (B.41)

Let r be a real function de�ned for all t ∈ R+ by

r(t) =
1

2
t+

1√
1 + t

− 1. (B.42)

For all t ∈ R+, the derivative of r is well-de�ned and given by

r′(t) =
1

2
− 1

2
√
(1 + t)3

. (B.43)

This quantity is positive for all t ∈ R+, which implies that r is an increasing function on
R+. In particular, for all t ∈ R+,

r(t) ≥ r(0) ⇐⇒ 1

2
t+

1√
1 + t

− 1 ≥ 0,

⇐⇒ 1− 1√
1 + t

≤ 1

2
t.

(B.44)

Applying this inequality to t = ξ22
(ξ1+ω)

2 and injecting it in Eq. (B.38) �nally leads to[
∆ω (ξ1, ξ2)

⊤ e1

]2
≤ ξ22

(ξ1 + ω)2
. (B.45)

The inequalities (B.40) and (B.45) are now used to bound the expression of DS(x) given
in Eq. (B.36). Hence, for all x ∈ R2,

DS(x) ≤
µ

(2π)2

∫
R2

min

(
4,

ξ22
(ξ1 + ω)2

)
e−

1
2π (ξ

2
1+ξ

2
2)dξ1dξ2︸ ︷︷ ︸

I

. (B.46)

The integral, denoted by I, is now split in two terms that will be bounded independently.
Let I1 and I2 denote the integrals respectively de�ned as{

I1 =
µ

(2π)2

∫
R
∫ ω

2

−ω
2
min

(
4,

ξ22
(ξ1+ω)

2

)
e−

1
2π (ξ

2
1+ξ

2
2)dξ1dξ2,

I2 = I − I1.
(B.47)

After noticing that for all ξ1 ∈
[
−ω

2 ,
ω
2

]
,
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1

(ξ1 + ω)2
≤ 4

ω2
, (B.48)

I1 can be bounded as follows,

I1 ≤
µ

(2π)2

∫
R

∫ ω
2

−ω
2

4ξ22
ω2

e−
1
2π (ξ

2
1+ξ

2
2)dξ1dξ2,

≤ µ

(2π)2

∫
R2

4ξ22
ω2

e−
1
2π (ξ

2
1+ξ

2
2)dξ1dξ2,

=
K1

ω2
,

(B.49)

where

K1 =
µ

π2

∫
R2

ξ22e
− 1

2π (ξ
2
1+ξ

2
2)dξ1dξ2. (B.50)

Notice that K1 does not depend on ω. In the case of I2, the inequality given in Eq. (B.48)
does not hold anymore. Instead, the bound 4 given in Eq. (B.40) is used in Eq. (B.46),
such that

I2 ≤
µ

π2

∫
R

∫
R\[−ω

2
,ω
2 ]
e−

1
2π (ξ

2
1+ξ

2
2)dξ1dξ2,

=
2µ

π2

∫
R

∫ +∞

ω
2

e−
1
2π (ξ

2
1+ξ

2
2)dξ1dξ2,

(B.51)

by using the symmetry of the integrated Gaussian function. This integral can be bounded
by using the Lemma 2 sound in (Feller 1968), which states that for all t ∈ R∗

+,∫ +∞

t
e−

y2

2 dy ≤ 1

t
e−

t2

2 , (B.52)

which can be generalized as ∫ +∞

σt
e−

y2

2σ2 dy ≤ σ
1

t
e−

t2

2 , (B.53)

with σ ∈ R∗
+. This implies in particular that for all t ∈ R∗

+,∫ +∞

σt
e−

y2

2σ2 dy ≤ σ

t2
, (B.54)

by using the fact that, for all t ∈ R∗
+,

e−
t2

2 ≤ 1

t
. (B.55)

Applying this inequality with t = ω
2σ and σ =

√
π leads to

I2 ≤
8µ

ω2
√
π

∫
R
e−

ξ22
2π dξ2,

=
K2

ω2
,

(B.56)
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where

K2 =
8µ√
π

∫
R
e−

ξ22
2π dξ2. (B.57)

Finally, combining Eq. (B.49) and (B.56) yields a uniform bound for the norm of the
quadratic error between R1S and its expected approximation, i.e., for all x ∈ R2,

E
[∣∣∣R1S(x)− S̃(x)

∣∣∣2] ≤ K

ω2
, (B.58)

where K = K1 +K2. A similar bound can be obtained for R2S. The scale parameter b is
now included in the model. If b ∈ R∗

+, let hb denote the complex Gabor kernel de�ned for
all x ∈ R2,

hb(x) = h(bx),

= e−πb
2||x||2eibωu

⊤x.
(B.59)

The complex Gabor noise with scale b ∈ R∗
+ is similarly de�ned for all x ∈ R2 as

Sb(x) =
∑
i

eiψihb (x− xi) . (B.60)

The goal now is to bound the error between R1Sb and the noise S̃b de�ned for all x ∈ R2

as

S̃b(x) = −i cos (α)
∑
i

eiψihb (x− xi) . (B.61)

It can be easily veri�ed that the Riesz transform commutes with changes of scale. Thus,
for all x ∈ R2, applying Proposition 3.1 in (Galerne 2010) again leads to

E
[∣∣∣R1Sb(x)− S̃b(x)

∣∣∣2] = µ

∫
R2

|R1hb(x) + i cos (α)hb(x)|2 dx,

= µ

∫
R2

|R1h(bx) + i cos (α)h(bx)|2 dx,

=
µ

b2

∫
R2

|R1h(x) + i cos (α)h(x)|2 dx,

=
1

b2
E
[∣∣∣R1S(x)− S̃(x)

∣∣∣2] .
(B.62)

Applying the inequality given in Eq. (B.58) to bound the integral �nally leads to

E
[∣∣∣R1Sb(x)− S̃b(x)

∣∣∣2] ≤ K

(bω)2
. (B.63)

Let s and Hs denote the real and imaginary parts of Sb, respectively. The complex noise
S̃b can then be expressed by using s and Hs, i.e., for all x ∈ R2,
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S̃b(x) = −i cos (α)
∑
i

eiψihb (x− xi) ,

= −i cos (α)
∑
i

eiψie−πb
2||x−xi||2eibωu

⊤(x−xi),

= cos (α)
∑
i

eiψie−πb
2||x−xi||2ei[bωu

⊤(x−xi)−π
2 ],

= cos (α)
∑
i

e−πb
2||x−xi||2

{
cos
[
bωu⊤ (x− xi) + ψi −

π

2

]
+i sin

[
bωu⊤ (x− xi) + ψi −

π

2

]}
,

= cos (α)
∑
i

e−πb
2||x−xi||2

{
sin
[
bωu⊤ (x− xi) + ψi

]
−i cos

[
bωu⊤ (x− xi) + ψi

]}
,

= cos (α) [Hs(x)− is(x)] .

(B.64)

Therefore, for all x ∈ R2,

E
[
|R1s(x)− cos (α)Hs(x)|2

]
= E

[∣∣∣ℜ{R1S(x)− S̃(x)
}∣∣∣2] ,

≤ E
[∣∣∣R1S(x)− S̃(x)

∣∣∣2] ,
≤ K

(bω)2
.

(B.65)

Similarly, for all x ∈ R2,

E
[
|R2s(x)− sin (α)Hs(x)|2

]
≤ K

(bω)2
. (B.66)
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B.5 Proofs of the results given Section 3.4

Rewriting of the quaterionic involution of Section 3.4.2 as a linear oper-

ator

Tθ(x) = −uθxuθ

= − [cos (θ) i+ sin (θ) j] (x0 + x1i+ x2j) [cos (θ) i+ sin (θ) j] ,

= x0 cos
2 (θ) + x0 cos (θ) sin (θ)k+ x1 cos

2 (θ) i+ x1 cos (θ) sin (θ) j

− x2 cos
2 (θ) j+ x2 cos (θ) sin (θ) i− x0 cos (θ) sin (θ)k+ x0 sin

2 (θ)

+ x1 cos (θ) sin (θ) j− x1 sin
2 (θ) i+ x2 cos (θ) sin (θ) i+ x2 sin

2 (θ) j,

= x0 +
[
x1 cos

2 (θ)− x1 sin
2 (θ) + 2x2 cos (θ) sin (θ)

]
i

+
[
−x2 cos2 (θ) + x2 sin

2 (θ) + 2x1 cos (θ) sin (θ)
]
j,

= x0 + [x1 cos (2θ) + x2 sin (2θ)] i+ [x1 sin (2θ)− x2 cos (2θ)] j.

(B.67)

This can be expressed in R3 as

Tθ(x) =

1 0 0
0 cos (2θ) sin (2θ)
0 sin (2θ) − cos (2θ)

x0x1
x2

 ,

=

1 0 0
0 cos (2θ) − sin (2θ)
0 sin (2θ) cos (2θ)

1 0 0
0 1 0
0 0 −1

x0x1
x2

 .

(B.68)

Proof of Theorem 7

If the monogenic signal of s, denoted by Ms, is seen as a vector of R3, the distance ds
de�ned in Eq. (3.31) can be expressed as

ds = min
θ

{
E
[
1

2
∥Ms − Tθ(Ms)∥2

]}
, (B.69)

where ∥.∥ denotes the Euclidian norm of R3. Because Tθ is an isometry (Via et al. 2010),
the vectors Ms and Tθ(Ms) both have the same norm. This yields a di�erent expression
of the Euclidian distance between Ms and Tθ(Ms), i.e.,

∥Ms − Tθ(Ms)∥2 = ∥Ms∥2 + ∥Tθ(Ms)∥2 − 2M⊤
s Tθ(Ms),

= 2∥Ms∥2 − 2M⊤
s Tθ(Ms).

(B.70)

The measure of directionality ds can hence be expressed as

ds = E
[
∥Ms∥2

]
−max

θ
E
[
M⊤
s Tθ(Ms)

]
. (B.71)

The term E
[
∥Ms∥2

]
can be expressed with the variances of s and its two Riesz transforms,

i.e.,
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E
[
∥Ms∥2

]
= E

[
s2 + (R1s)

2 + (R2s)
2
]
,

= E
[
s2
]
+ E

[
(R1s)

2
]
+ E

[
(R2s)

2
]
,

= Var(s) + Var(R1s) + Var(R2s),

= 2Var(s) (see Eq. (3.33)).

(B.72)

The scalar product M⊤
s Tθ(Ms) is now expressed as a quadratic form applied to a unit

vector of R2, i.e.,

M⊤
s Tθ(Ms) =

(
s R1s R2s

) s
R1s cos (2θ) +R2s sin (2θ)
R1s sin (2θ)−R2s cos (2θ)

 ,

= s2 +R1s
2 cos (2θ) + 2R1sR2s sin (2θ)−R2s

2 cos (2θ) ,

= s2 −R1s
2 −R2s

2 + 2R1s
2 cos2 θ + 2R2s

2 sin2 θ

+ 4R1sR2s cos θ sin θ,

=
(
s2 +R1s

2 −R2s
2
)
cos2 θ +

(
s2 −R1s

2 +R2s
2
)
sin2 θ

+ 4R1sR2s cos θ sin θ.

(B.73)

The mean of M⊤
s Tθ(Ms) is obtained by applying the mean operator E to all its terms.

Because these terms are all zero-mean, this leads to

E
[
M⊤
s Tθ(Ms)

]
= [Var(s) + Var (R1s)−Var (R2s)] cos

2 θ

+ [Var(s)−Var (R1s) + Var (R2s)] sin
2 θ

+ 4Cov (R1s,R2s) cos θ sin θ.

(B.74)

Remember that the respective variances of s and its Riesz transforms are linked by Eq.
(3.33), which yields

E
[
M⊤
s Tθ(Ms)

]
= 2Var (R1s) cos

2 θ + 2Var (R2s) sin
2 θ

+ 4Cov (R1s,R2s) cos θ sin θ,

= 2Var (R1s cos θ +R2s sin θ) ,

= 2Var
(
u⊤
θ Rs

)
.

(B.75)

where uθ is the unit vector of R2 with argument θ. Injecting this expression in Eq. (B.71)
then completes the proof.

Eigenvalues and eigenvectors of the stochastic structure tensor de�ned in

Section 3.4.3

From now, the coe�cients of the structure tensor Ts are denoted by

Ts =

(
T11 T12
T12 T22

)
, (B.76)
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To express the eigenvalues of Ts, its characteristic polynomial, denoted by PT (X), is �rst
calculated.

PT (X) = (T11 −X)(T22 −X)− T 2
12

= X2 − (T11 + T22)X + T11T22 − T 2
12

(B.77)

The eigenvalues of Ts, denoted by λ+ and λ−, respectively, with 0 ≤ λ− ≤ λ+ are hence
given by 

λ+ = 1
2

(
T11 + T22 +

√
(T11 − T22)

2 + 4T 2
12

)
,

λ− = 1
2

(
T11 + T22 −

√
(T11 − T22)

2 + 4T 2
12

)
.

(B.78)

Applying these formulas to the coe�cients of Ts leads to
λ+ = 1

2

(
Var(s) +

√
[Var(R1s)−Var(R2s)]

2 + 4Cov(R1s,R2s)2
)
,

λ− = 1
2

(
Var(s)−

√
[Var(R1s)−Var(R2s)]

2 + 4Cov(R1s,R2s)2
)
.

(B.79)

An eigenvector x ∈ R2 of Ts associated with λ+ must now be determined.

Tx = λ+x ⇐⇒


T11x1 + T12x2 =

1
2

(
T11 + T22 +

√
(T11 − T22)

2 + 4T 2
12

)
x1

T12x1 + T22x2 =
1
2

(
T11 + T22 +

√
(T11 − T22)

2 + 4T 2
12

)
x2

,

⇐⇒


(
T22 − T11 +

√
(T11 − T22)

2 + 4T 2
12

)
x1 − 2T12x2 = 0

2T12x1 +

(
T22 − T11 −

√
(T11 − T22)

2 + 4T 2
12

)
x1 = 0

,

⇐⇒
{

x ∈ Ru1

x ∈ Ru2
,

(B.80)

with 
u1 =

(
2T12

T22 − T11 +
√
(T11 − T22)

2 + 4T 2
12

)
,

u2 =

(
T11 − T22 +

√
(T11 − T22)

2 + 4T 2
12

2T12

)
.

(B.81)

Notice that u1 and u2 are colinear, i.e.,

u2 =
T11 − T22 +

√
(T11 − T22)

2 + 4T 2
12

2T12
u1,

(B.82)

which implies that Ru1 and Ru2 are the same vector space, i.e., the eigenspace of Ts
associated with λ+, which is of dimension 1. From now, u+ denotes the eigenvector u2,
and z+ denotes its a�x. Then,
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z2+ =

(
T11 − T22 +

√
(T11 − T22)

2 + 4T 2
12 + 2iT12

)2

= (T11 − T22)
2 + (T11 − T22)

2 + 4T 2
12 − 4T 2

12 + 4i (T11 − T22)T12

+ 2 (T11 − T22)

√
(T11 − T22)

2 + 4T 2
12 + 4iT12

√
(T11 − T22)

2 + 4T 2
12

= 2 (T11 − T22)
2 + 2 (T11 − T22)

√
(T11 − T22)

2 + 4T 2
12

+ 4iT12

(
T11 − T22 +

√
(T11 − T22)

2 + 4T 2
12

)
= 2

(
T11 − T22 +

√
(T11 − T22)

2 + 4T 2
12

)
(T11 − T22 + 2iT12)

(B.83)

The argument of z+, i.e., the orientation of u+, denoted by θ+, can then be expressed by
using this equality. Assuming that T12 ̸= 0 (which is the case for non degenerated images

(Soulard 2012)), the factor T11 − T22 +
√

(T11 − T22)
2 + 4T 2

12 is strictly positive, hence,

arg
(
z2+
)
= arg

[
2

(
T11 − T22 +

√
(T11 − T22)

2 + 4T 2
12

)
(T11 − T22 + 2iT12)

]
[2π],

⇐⇒ 2 arg (z+) = arg (T11 − T22 + 2iT12) [2π],

⇐⇒ θ+ =
1

2
arg (T11 − T22 + 2iT12) [2π].

(B.84)

Because Ts is symmetric and positive-de�nite, its eigenvectors are orthogonal, which implies
that θ− = θ+ ± π

2 . The eigenvectors u+ = (cos θ+, sin θ+)
⊤ and u− = (cos θ−, sin θ−)

⊤

then yield a new expression for the term u⊤
θ Tsuθ of Eq. (3.35) by diagonalizing Ts in the

orthonormal basis formed by u+ and u−, i.e.,

u⊤
θ Tsuθ =

(
cos θ sin θ

)
H

(
λ+ 0
0 λ−

)
H⊤︸ ︷︷ ︸

Ts

(
cos θ
sin θ

)
, (B.85)

where

H =

(
cos θ+ cos θ−
sin θ+ sin θ−

)
(B.86)

is the transformation matrix between the canonical basis and the orthonormal basis (u+,u−).
This expression can be furthered simpli�ed, i.e.,



B.5. PROOFS OF THE RESULTS GIVEN SECTION 3.4 123

u⊤
θ Tsuθ =

(
cos θ sin θ

)
H

(
λ+ 0
0 λ−

)
HT

(
cos θ
sin θ

)
,

=
[
λ+ cos2 (θ+) + λ− cos2 (θ−)

]
cos2 θ

+ 2 [λ+ cos (θ+) sin (θ+) + λ− cos (θ−) sin (θ−)] cos θ sin θ

+
[
λ+ sin2 (θ+) + λ− sin2 (θ−)

]
sin2 θ,

= λ+
[
cos2 (θ+) cos

2 θ + 2 cos (θ+) sin θ+ cos θ sin θ + sin2 (θ+) sin
2 θ
]

+ λ−
[
cos2 (θ−) cos

2 θ + 2 cos (θ−) sin θ− cos θ sin θ + sin2 (θ−) sin
2 θ
]
,

= λ+ [cos (θ+) cos θ + sin (θ+) sin θ]
2 + λ− [cos (θ−) cos θ + sin (θ−) sin θ]

2 ,

= λ+ cos2 (θ+ − θ) + λ− cos2 (θ− − θ) .

(B.87)

As said earlier, the eigenvectors u+ and u− are orthogonal, which implies that θ− is equal
to θ+ ± π

2 (depending on which eigenvector has been chosen). Choosing θ− = θ+ + π
2 or

θ− = θ+ − π
2 is equivalent because Eq. (B.87) involves square cosines. Hence,

u⊤
θ Tsuθ = λ+ cos2 (θ+ − θ) + λ− cos2

(
θ+ +

π

2
− θ
)
,

= λ+ cos2 (θ+ − θ) + λ− sin2 (θ+ − θ) .
(B.88)

Remember that λ− ≤ λ+, which implies that λ− ≤ u⊤
θ Tsuθ ≤ λ+. Furthermore, the

value λ− is reached for θ = θ−, while λ+ is reached for θ = θ+. This shows that the term
u⊤
θ Tsuθ is maximal when calculated along the eigenvector of Ts associated with its greatest

eigenvalue, and minimal when calculated along the eigenvector of Ts associated with its
smallest eigenvalue.





CHAPTER 4

The elliptic color model and the color Gabor noise

While Chapters 2 and 3 have established reliable tools to extract the local features of
greyscale textures by the use of the monogenic signal, the case of color images has not
been tackled yet. Thus, this chapter aims at generalizing these tools to color textures.
A special focus is put on the Gabor and phasor noise models discussed in Section 3, for
which no formal color generalization has been introduced yet according to the author's
knowledge. To do so, a color oscillating texture model must be introduced. In the case of
1D time signals, numerous works deal with the vectorial extension of the analytic signal
and the instantaneous measures of energy, structure and frequency it provides (see, e.g.,
(Lilly 2011, Olhede 2013)). A non-marginal treatment of bivariate time signals was intro-
duced in (René, Fitter, Forsyth, Kim, Murray, Walters & Westerman 1986) and further
studied in (Diallo, Kulesh, Holschneider, Scherbaum & Adler 2006) to handle seismic data,
while a similar approach was used in (Lilly & Gascard 2006, Lilly & Olhede 2010) in the
�eld of oceanography. The underlying idea in these works is the modeling of bivariate
time signals as a dynamic 2D ellipse whose geometric parameters are directly linked to the
instantaneous features of the signal. Later works such as (Lilly 2011, Olhede 2013) have
extended this elliptic approach to trivariate time signals.

While these works do not mention any color aspect, their non-marginal treatment of trivari-
ate signals makes them interesting in the perspective of a color extension of oscillating
textures. Indeed, the notions of local energy, structure and orientation of a 2D oscillat-
ing image play a similar role as the instantaneous features of a 1D time signal (Felsberg
& Sommer 2001). This observation suggests adapting the elliptic approach to 2D color
textures. This is exactly the idea of (Soulard & Carré 2015), where a generalization of
the elliptical model to color images s : R2 → R3 is introduced. Similarly to the 1D case,
one of the main advantages of this approach is its non-marginal treatment of multivariate
oscillations. Indeed, the interdependency of the color channels is automatically taken into
account by modeling the oscillations as a 3D geometrical trajectory inside the RGB cube
rather than three separate univariate signals. The direct link between the color parameters
of the image and the shape and position of the ellipse is also what makes this model of
great interest in the �eld of both color texture analysis and synthesis.

The main contribution of this chapter is hence to extend the elliptic color model of (Soulard
& Carré 2015) to stochastic textures, in order to de�ne a proper color generalization of the
Gabor noise that provides a full control over the color content of the synthesized image.
Indeed, even though color textures are presented in works dealing with Gabor noises such
as (Galerne et al. 2012, Tricard et al. 2019), no color model is formally introduced therein.
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In many semi-procedural approaches, scalar Gabor noises are synthesized along the three
color axes that maximize either uncorrelation (through a PCA) or independence in the ex-
emplar texture (Galerne et al. 2012). With such techniques, the color texture is marginally
synthesized in a decorrelated color space extracted from a real texture, which leaves the
color covariances unmodeled. This is what motivates the choice of the elliptic approach
to introduce a proper color Gabor noise, from which a color phasor noise can be derived.
Following the works of (Tricard et al. 2019, Tricard, Tavernier, Zanni, Martinez, Hugron,
Neyret & Lefebvre 2020) in the greyscale case, not only single Gabor noises are considered
but also sums of Gabor noises of di�erent wave vectors. Because only unidirectional de-
terministic color waves are considered in (Soulard & Carré 2015), this implies generalizing
the elliptic color model to stochastic textures displaying richer frequency contents.

The rest of the chapter is organized as follows. The color wave model and the parametriza-
tion of the ellipse are �rst detailed in Section 4.1 in the case of deterministic color waves,
with a strong emphasis on the direct control over the color content provided by its param-
eters. This model is then used to introduce the color phasor noise in Section 4.2, which
yields a useful tool to generate color textures with prescribed frequency and color content.
Section 4.3 further studies the color phasor noise by linking the color covariances to the
elliptic parameters and the color information of the synthesized texture.

4.1 Color cosine wave and elliptical representation

4.1.1 Color cosine wave

A key step in (Soulard & Carré 2015) is to de�ne a proper monochromatic color wave, from
which notions of amplitude and phase can be derived. The 2D cosine wave of the greyscale
case can hence be generalized to color images as a function s =

(
sR sG sB

)⊤
: R2 → R3

where each color component sC , C ∈ {R,G,B}, is a cosine wave with the same wave vector
and channel-speci�c amplitudes and phase-shifts, denoted by AC and φC , respectively
(Soulard & Carré 2015). However, unlike (Soulard & Carré 2015), the version of the model
presented here also includes an o�set at each color channel, denoted by sC0 ∈ [0, 1]. This
ensures that the wave s is wholly contained in the RGB cube [0, 1]3. If x ∈ R2, this can
be summed up as

s(x) =

sR0 +AR cos
(
ωu⊤x+ φR

)
sG0 +AG cos

(
ωu⊤x+ φG

)
sB0 +AB cos

(
ωu⊤x+ φB

)
 , (4.1)

where ω ∈ R∗
+, u = (cosα, sinα)⊤, α ∈

]
−π

2 ;
π
2

]
, and for all C ∈ {R,G,B}, AC ∈

[
0, 12
]

and φC ∈] − π, π]. Again, in order to ensure that s takes its values in [0, 1]3, i.e., inside
the RGB cube, the amplitudes AC must lie between 0 and min

{
sC0 , 1− sC0

}
. At this

stage, it is not obvious at all that the set of points
{
s(x),x ∈ R2

}
is an ellipse, hence

the need of further developments. Indeed, using the trigonometric identity cos(a + b) =
cos(a) cos(b)− sin(a) sin(b) leads to

s(x) = s0 + cos(ωu⊤x)v + sin(ωu⊤x)w, (4.2)

where
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
s0 =

(
sR0 sG0 sB0

)⊤
,

v =
(
AR cos

(
φR
)

AG cos
(
φG
)

AB cos
(
φB
))⊤

,

w = −
(
AR sin

(
φR
)

AG sin
(
φG
)

AB sin
(
φB
))⊤

.

(4.3)

This equation is exactly the parametric representation of an ellipse in R3, with u and
v directing its two axes and s0 being its center. However, this representation does not
provide any intuitive information about how the color wave oscillates inside the RGB
cube, and is hence of little practical interest. Sections 4.1.2 and 4.1.3 detail the more
useful parametrization of the ellipse given in (Soulard & Carré 2015).

4.1.2 Shape of the ellipse

As stated in (Soulard & Carré 2015), the color wave de�ned by Eq. (4.1) is intrinsically 1D,
i.e., it only depends on a 1D variable, which is t = ωu⊤x for all x ∈ R2. Consequently, in
(Soulard & Carré 2015), the parameters of the ellipse are expressed by using a 1D variable.
Though this section only aims at recalling the main results of the elliptic model and does
not introduce more complex textures yet, the proofs are performed with a 2D variable
rather than a 1D variable. This enables a more straightforward generalization when color
phasor noises are introduced in Section 4.2. Before localizing the ellipse inside the RGB
cube, its shape is �rst determined by calculating the length of its axes. The semi-minor
axis and semi-major axis values, denoted by r− and r+, respectively, can be expressed by
optimizing the Euclidian distance between s and its o�set s0 (Soulard & Carré 2015), i.e.,

{
r−

2 = minx ∥s(x)− s0∥2,
r+

2 = maxx ∥s(x)− s0∥2.
(4.4)

The quantity ∥s(x)− s0∥2 is now calculated to get analytic expressions of r− and r+. For
the sake of simplicity, the three color components are condensed into one via a sum indexed
by the color channel. Thus,

∥s(x)− s0∥2 =
∑

C∈{R,G,B}

[(
AC
)2

cos2
(
ωu⊤x+ φC

)]
,

=
1

2

∑
C∈{R,G,B}

{(
AC
)2 [

cos
(
2ωu⊤x+ 2φC

)
+ 1
]}

.
(4.5)

Let A2 denote the sum of the squares of the amplitudes, i.e.,

A2 =
(
AR
)2

+
(
AG
)2

+
(
AB
)2
. (4.6)

Then,
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∥s(x)− s0∥2 =
1

2
A2 +

1

2

∑
C∈{R,G,B}

[(
AC
)2

cos
(
2ωu⊤x+ 2φC

)]
,

=
1

2
A2 +

1

2

∑
C∈{R,G,B}

{(
AC
)2 [

cos
(
2ωu⊤x

)
cos
(
2φC

)
− sin

(
2ωu⊤x

)
sin
(
2φC

)]}
,

=
1

2
A2 +

1

2
cos
(
2ωu⊤x

) ∑
C∈{R,G,B}

[(
AC
)2

cos
(
2φC

)]
− 1

2
sin
(
2ωu⊤x

) ∑
C∈{R,G,B}

[(
AC
)2

sin
(
2φC

)]
.

(4.7)

Let Γ denote the color Fourier atom de�ned as the complex-valued vector

Γ =

AReiφ
R

AGeiφ
G

ABeiφ
B

 . (4.8)

Then, it can be easily shown that

Γ⊤Γ =
∑

C∈{R,G,B}

[(
AC
)2

cos
(
2φC

)]
+ i

∑
C∈{R,G,B}

[(
AC
)2

sin
(
2φC

)]
(4.9)

Combining Eq. (4.7) and Eq. (4.9) leads to

∥s(x)− s0∥2 =
1

2
A2 +

1

2
cos
(
2ωu⊤x

)
ℜ
(
Γ⊤Γ

)
− 1

2
sin
(
2ωu⊤x

)
ℑ
(
Γ⊤Γ

)
,

=
1

2
A2 +

1

2
cos
(
2ωu⊤x

)
|Γ⊤Γ| cos

[
arg
(
Γ⊤Γ

)]
− 1

2
sin
(
2ωu⊤x

)
|Γ⊤Γ| sin

[
arg
(
Γ⊤Γ

)]
,

=
1

2
A2 +

1

2
|Γ⊤Γ| cos

[
2ωu⊤x+ arg

(
Γ⊤Γ

)]
,

=
1

2
A2 + |Γ⊤Γ| cos2

[
ωu⊤x+

1

2
arg
(
Γ⊤Γ

)]
− 1

2
|Γ⊤Γ|,

=
A2 − |Γ⊤Γ|

2
+ |Γ⊤Γ| cos2

[
ωu⊤x+

1

2
arg
(
Γ⊤Γ

)]
.

(4.10)

This quantity can then be bounded to get its extreme values. Because 0 ≤ cos θ ≤ 1 for
all θ ∈ R,

A2 − |Γ⊤Γ|
2

≤ ∥s(x)− s0∥2 ≤
A2 + |Γ⊤Γ|

2
(4.11)

These extreme values are necessarily reached because the linear application x 7→ ωu⊤x is
surjective. The parameters r− and r+ can �nally be expressed as

r−
2 = A2−|Γ⊤Γ|

2 ,

r+
2 = A2+|Γ⊤Γ|

2 .
(4.12)
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These are exactly the expressions given in (Soulard & Carré 2015), except that, in Eq.
(4.10), the distance is expressed for a 2D spatial variable rather than a 1D time variable.
Now that the link between the shape of the ellipse and its color parameters is established,
its position inside the RGB cube must be determined.

4.1.3 RGB position of the ellipse

In order to localize the ellipse inside the RGB cube, the coordinates of its vertexes must
be determined. This is performed by using the uni�ed phase shift introduced in (Soulard
& Carré 2015). This phase-shift, denoted by φ̂, is de�ned as the half of the argument of
the complex number Γ⊤Γ, i.e.,

φ̂ =
1

2
arg
(
Γ⊤Γ

)
=

1

2
arg
[(
AR
)2
e2iφ

R
+
(
AG
)2
e2iφ

G
+
(
AB
)2
e2iφ

B
]
. (4.13)

This uni�ed phase can be interpreted as a weighted mean of the three color phases φR, φG

and φB. Eq. (4.10) can hence be rewritten as

∥s(x)− s0∥2 = r−
2 +

(
r+

2 − r−
2
)
cos2

(
ωu⊤x+ φ̂

)
. (4.14)

The coordinates of the vertexes are now expressed. Notice that, in the degenerated case
of r+ = r−, i.e., if the ellipse is a circle, any point is a vertex, making their determination
useless. Therefore, the subsequent developments are made under the assumption r+ > r−.
Let x+ and x− be two vectors of R2 such that the extreme values of ∥s(x) − s0∥2 are
reached, i.e., {

∥s(x+)− s0∥2 = r+
2,

∥s(x−)− s0∥2 = r−
2.

(4.15)

Remember that the surjectivity of the function inside the square cosine ensures the exis-
tence of x+ and x−. Then, because r+ > r−,

∥s(x+)− s0∥2 = r+
2 ⇐⇒ r−

2 +
(
r+

2 − r−
2
)
cos2

(
ωu⊤x+ φ̂

)
= r+

2

⇐⇒
(
r+

2 − r−
2
)
cos2

(
ωu⊤x+ φ̂

)
= r+

2 − r−
2

⇐⇒ cos2
(
ωu⊤x+ φ̂

)
= 1

⇐⇒ ωu⊤x = −φ̂ [π].

(4.16)

Similarly,

∥s(x−)− s0∥2 = r−
2 ⇐⇒ ωu⊤x = −φ̂− π

2
[π]. (4.17)

Of course x+ and x− are not unique, but they can be used to localize the vertexes of the
ellipse, i.e., the closest and furthest points from the center. Let s+ denote one of the two
vertexes of the ellipse, and s− one of its two co-vertexes. Injecting Eq. (4.16) and Eq.
(4.17) in Eq. (4.1) leads to

s+ = s0 +

AR cos
(
φR − φ̂

)
AG cos

(
φG − φ̂

)
AB cos

(
φB − φ̂

)
 , (4.18)
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and

s− = s0 +

AR sin
(
φR − φ̂

)
AG sin

(
φG − φ̂

)
AB sin

(
φB − φ̂

)
 . (4.19)

Knowing these two points is enough to fully localize the ellipse inside the RGB cube.
Trigonometric identities also yield an expression of s that only rely on the vertexes s+ and
s−, as well as the uni�ed phase-shift φ̂, i.e.,

s(x) = s0 + cos
(
ωu⊤x+ φ̂

)
(s+ − s0)− sin

(
ωu⊤x+ φ̂

)
(s− − s0) . (4.20)

4.1.4 Linearity parameter and color content

The parametric representation of s given in Eq. (4.20) is equivalent to that of Eq. (4.2),
but, unlike the latter, it clearly indicates the main axes of the ellipse. Notice that this
equation still holds if r+ = r−. Furthermore, the shape of the ellipse is directly linked with
the color content of the image. If the ellipse is very thin, almost linear, then the color wave
oscillates along one color axis only. If the ellipse has a more circular shape, then the color
wave oscillates in a much wider range of colors. This can be quanti�ed by the linearity
parameter λ de�ned as

λ =
r+

2 − r−
2

r+2 + r−2
. (4.21)

This parameter was already used for trivariate time signals in (Lilly 2011) before being
applied to color images in (Soulard & Carré 2015). Because no formal proof of the link
between the linearity parameter and the color content of the texture is provided in (Soulard
& Carré 2015), the following theorem aims at clarifying this link formally.

Theorem 8. Let s be a color wave as de�ned in Eq. (4.1), and let λ denote its linearity

parameter as de�ned in Eq. (4.21). Then, λ = 1 if and only if one of the three following

assertions is true:

� AC1 = AC2 = 0 for at least two distinct color channels (C1, C2) ∈ {R,G,B}2,

� AC1 = 0 and φC2 = φC3 [π], with C1, C2, C3 being three distinct color channels of

{R,G,B},

� φR = φG = φB [π],

in which case the ellipse is �at. Furthermore,

λ = 0 ⇐⇒

{ ∑
C∈{R,G,B}

(
AC
)2

cos
(
2φC

)
= 0,∑

C∈{R,G,B}
(
AC
)2

sin
(
2φC

)
= 0,

(4.22)

in which case the ellipse is a circle.

The proof is given in Appendix C.1. In the case of λ = 1, if the �rst assertion is true, then
the texture only oscillates along the color axis for which the color amplitude is not zero.
If the second assertion is true, then 2φC2 = 2φC3 [2π], which yields
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φ̂ =
1

2
arg
[(
AR
)2
e2iφ

R
+
(
AG
)2
e2iφ

G
+
(
AB
)2
e2iφ

B
]
,

=
1

2
arg
[(
AC2

)2
e2iφ

C2
+
(
AC3

)2
e2iφ

C2
]
,

= φC2 [π].

(4.23)

Assuming that, for example, AR = 0 and φG = φB [π], the vertexes of the ellipse given in
Eq. (4.18) and Eq. (4.19) become

s+ = s0 +

 0
AG

±AB

 , s− = s0. (4.24)

Consequently, the texture oscillates along a color axis directed by the vector 0
AG

±AB

 , (4.25)

with the sign of the third coordinate depending on whether φG −φB = 0 or φG −φB = π
[π]. Assuming that AG = 0 and φR = φB [π] or AB = 0 and φR = φG [π] yields similar
situations, respectively. Finally, if the third assertion is true, then, 2φR = 2φG = 2φB

[2π], which yields

φ̂ =
1

2
arg
[(
AR
)2
e2iφ

R
+
(
AG
)2
e2iφ

G
+
(
AB
)2
e2iφ

B
]
,

=
1

2
arg
[(
AR
)2
e2iφ

R
+
(
AG
)2
e2iφ

R
+
(
AB
)2
e2iφ

R
]
,

= φR [π].

(4.26)

This time, the vertexes of the ellipse become

s+ = s0 +

±AR
±AG
±AB

 , s− = s0. (4.27)

Consequently, the texture oscillates along a color axis directed by the vector±AR
±AG
±AB

 , (4.28)

with the signs depending on whether φC1 − φC2 = 0 or φC1 − φC2 = π [π]. In all three
cases, the texture oscillates along one single color axis, which is consistent with the �at
shape of the ellipse.

The case λ = 0 allows more possibilities, but it can be noticed that, if all three color phase
shifts φC belong to the same quadrant of the unit circle, then the sines of the angles 2φC

are all of the same sign. The second condition in Eq. (4.22) then implies that all the terms
of the sum are zero, i.e., for all C ∈ {R,G,B},

AC = 0 or sin
(
2φC

)
= 0. (4.29)
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If all three amplitudes are non-zero, then sin
(
2φC

)
= 0 for all C ∈ {R,G,B}, which nec-

essarily implies that cos
(
2φC

)
= ±1 for all C ∈ {R,G,B}. Because the color phase-shifts

are assumed to lie inside the same quadrant of the unit circle, the two possibilities are
cos
(
2φC

)
= 1 for all C ∈ {R,G,B} or cos

(
2φC

)
= −1 for all C ∈ {R,G,B}, which auto-

matically violates the �rst condition in Eq. (4.22). Consequently, if the ellipse associated
with the texture is a circle, i.e., if λ = 0, then the color phase-shifts cannot be located
inside the same quadrant. This means that if the ellipse is a circle, then the color channels
are signi�cantly phase-shifted from one another, which implies a richer content.

This illustrates the link between the linearity parameter λ, the shape of the ellipse, the
color parameters, and the color content of the texture. If λ is close to 1, the ellipse has a
thin shape, and the color content of the texture is reduced to shades of a pair of colors. If
λ is close to 0, the ellipse has a nearly circular shape, and the color content of the texture
is richer. This is highlighted with synthetic tests in Section 4.1.5.

4.1.5 Interpretation of the parameters and synthetic tests

This section aims at illustrating how the elliptic color model provides a full control over
the color content in the context of texture synthesis. Though a full parametrization of
the ellipse associated with a color wave was already given in (Soulard & Carré 2015), here
the link between the ellipse and the wave is further detailed. Synthetic tests are then
performed to give a more physical meaning to the parameters. Let (tj , tk) be a discrete
grid, with (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1} and (M,N) ∈ N2 such that{

tj =
(
j − M

2

)
Tx,

tk =
(
k − N

2

)
Ty,

(4.30)

where Tx > 0 and Ty > 0 denote the horizontal and vertical sampling periods, respectively.
A discrete color wave s is generated for all (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1} as

sj,k =

sR0 +AR cos
[
ω(tj cosα+ tk sinα) + φR

]
sG0 +AG cos

(
ω(tj cosα+ tk sinα) + φG

)
sB0 +AB cos

(
ω(tj cosα+ tk sinα) + φB

)
 , (4.31)

where all the parameters are de�ned as in Section 4.1.1. Because s is generated inside the
RGB cube [0, 1]3, its coordinates directly give the intensity of each color channel at each
pixel. The case where all three components of sj,k are equal to 0 corresponds to the black
color, while the case where all three components of sj,k are equal to 1 corresponds to the
white color.

The further developments involve some a�ne space formalism (for more details, see Chap-
ter 2 in (Berger, Pansu, Berry & Saint-Raymond 1984)). In order to avoid confusion, the
vectors are denoted by arrows to distinguish them from the points. In synthetic tests, the
o�set s0, i.e., the color point around which s oscillates, is �rst �xed in the RGB cube
[0, 1]3. Then, each amplitude AC is chosen between 0 and min

{
sC0 , 1− sC0

}
, and �nally

each phase-shift φC is chosen between −π and π. After the values of r+ and r− are
calculated by using Eq. (4.12), the ellipse E is drawn in R2 as the set

E =
{(
r+ cos θ r− sin θ

)
, θ ∈]− π, π]

}
. (4.32)

This is exactly the parametric equation of E in the a�ne basis de�ned by the origin s0 and
the two vectors that direct the main axes of the ellipse. In the a�ne space R3 × R3, the
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vertexes s+ and s− can be decomposed as the sum of a point of R3 (here the center of the
ellipse) and a vector of R3 (here the vectors directing the two main axes), i.e.,{

s+ = s0 + s⃗+,
s− = s0 + s⃗−,

(4.33)

Let n⃗ denote the cross product of s⃗+ and s⃗−. Then Bs = {⃗s+, s⃗−, n⃗} forms a basis of R3

for which the vectors of the ellipse have coordinates in the form ofr+ cos θ
r− sin θ

0

 , (4.34)

where θ ∈] − π, π]. The RGB triplet
(
xRθ xGθ xBθ

)⊤
associated with the point of the

ellipse parametrized by θ is determined by using the transfer matrix Πs between the base
Bs and the canonical base, i.e.,xRθxGθ

xBθ

 = s0 +Πs

r+ cos θ
r− sin θ

0

 . (4.35)

This process enables the drawing of the ellipse for all images, and hence a better visual-
ization of the color oscillation of the texture inside the RGB cube. Tables 4.1, 4.2 and
5.1 show examples of color waves and their corresponding ellipse synthesized with di�erent
color parameters, with ω = 30 and α = π

6 for all images. Table 4.1 gives three examples of
textures with a �at ellipse, i.e., λ = 1, each one corresponding to one of the three conditions
given in Theorem 8. In order to generate an image that only contains shades of red, all the
parameters are chosen equal to 0 except the parameters of the red channel, hence s1. If the
image is intended to oscillate between red and green, the red and green phase-shifts must
be equal modulo π, while the blue amplitude must be 0, hence s2. As stated in Theorem 8,
if the color phase-shifts are all equal modulo π, then the image oscillates along one single
color axis for any values of the color amplitudes, hence s3. The choice of a high value for
sB0 is what gives the texture its blue color.

Table 4.2 gives examples of textures for which the ellipse is a circle, with the parameters
being chosen to ful�ll the condition given in Theorem 8. Image s4 contains all of Newton's
primary colors due to its equal amplitudes assigned to each channel and its maximally
di�erent phase-shifts. Images s5 and s6 show other con�gurations that lead to λ = 0. The
respective circles of s4, s5 and s6 illustrate how these textures cover a wide range of colors.

While the previous tables focus on degenerated cases, Table 4.2 gives examples of color
textures with λ ∈]0, 1[. In order to obtain a color wave that oscillates inside the RB plane,
i.e., the plane generated by the red and blue axes, the green parameters are all chosen
equal to 0, hence image s7. Notice that choosing equal amplitudes for the red and blue
channels yields λ = 0.5. If the amplitudes are kept equal but the phase-shifts are chosen
close to each other, the range of colors is not as complete as in image s4, as can be seen in
image s8. This is re�ected by the value of the linearity parameter, λ = 0.33. In order to
make the image oscillate between shades of green and dark blue, the red parameters are
all chosen equal to 0, while the green amplitude is chosen higher than the blue amplitude,
hence image s9. Unlike in image s7, the two channels do not equally contribute, which
yields a more linear ellipse re�ected by λ = 0.72. Notice that if all color parameters are
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equal (including the coordinates of the o�set), then the generated image only contains
shades of grey. The di�erence between these parameters is what creates a color content.
Section 4.2 shows how this direct link between the parameters and the color content is a
key feature when generalizing the Gabor noise framework to color spaces.

Name s1 s2 s3

sR0 0.5 0.5 0.3

sG0 0 0.5 0.6

sB0 0 0.5 0.7

AR 0.3 0.5 0.1

AG 0 0.5 0.2

AB 0 0 0.3

φR 0 0 0

φG 0 π π

φB 0 0 π

Image

Ellipse

Table 4.1: Examples of color waves with λ = 1, with ω = 30 and α = π
6 .

4.2 Color extension of the Gabor and phasor noises

Now that the key features of the elliptic color model of (Soulard & Carré 2015) are recalled,
this section aims at introducing a formal color extension of the phase-augmented Gabor
noise de�ned in Section 3.2. As said in the introduction, the aim is to build a purely
procedural color model that does not require exemplar textures (unlike, e.g., (Galerne
et al. 2012)), and enables the generation of textures with prescribed color content. The
elliptic color model is hence chosen for the direct link between its parameters and the
oscillations inside the RGB cube it provides, as highlighted in Section 4.1. From this color
extension of the Gabor noise, a proper color phasor can then be introduced.

4.2.1 Set of destination of the Gabor and phasor noises

As shown in (Tricard et al. 2019) and recalled in Section 3.3.1, a greyscale Gabor noise s
can be expressed for all x ∈ R2 as

s(x) = I(x) cos [φ(x)] , (4.36)

where I and φ denote the random amplitude and phase functions of s, respectively. While
the cosine is necessarily bounded between −1 and 1, the amplitude function may take high
values, which makes the Gabor noise s vary between −max(I) and max(I). Figure 4.1
shows how the maximal value of I highly �uctuates and depends on the generated noise.
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Name s4 s5 s6

sR0 0.5 0.5 0.5

sG0 0.5 0.5 0.5

sB0 0.5 0.5 0.5

AR 0.5 0.5 0.25

AG 0.5 0 1√
8

AB 0.5 0.5 0.25

φR 0 0 0

φG 2π
3 π π

2

φB −2π
3

π
2 π

Image

Ellipse

Table 4.2: Examples of color waves with λ = 0, with ω = 30 and α = π
6 .

By removing the amplitude function, the phasor noise not only suppresses the local losses
of contrast (as highlighted in (Tricard et al. 2019)), but also ensures that the synthesized
texture lies inside the cube [−1; 1]3. Similarly to what is done in Section 4.1.1 in the
deterministic case, constraints are then imposed on the color parameters to ensure that
the resulting texture lies inside the cube [0; 1]3. This makes the phasor more suitable for
color image synthesis. As a result, the subsequent developments mainly focus on the color
phasor noise after introducing a formal color extension of the Gabor noise.

4.2.2 Color Gabor noise

In this approach, the color Gabor noise is de�ned as a function s : R2 → R3 such that for
all x ∈ R2,

s(x) =
∑
i

a (x− xi)

AR cos
[
bωu⊤ (x− xi) + ψi + φR

]
AG cos

[
bωu⊤ (x− xi) + ψi + φG

]
AB cos

[
bωu⊤ (x− xi) + ψi + φB

]
 , (4.37)

where

� {(xi, ψi)}i is a set of realizations of a marked Poisson point process on R2×]− π, π]
such that,

� the points (xi)i are generated through a homogeneous Poisson point process on
R2 with intensity µ > 0,

� the marks (ψi)i are independent random phase-shifts uniformly drawn in ]−π, π]
and independently assigned to each point of the Poisson point process xi,

� a(x) = e−πb
2∥x∥2 , b ∈ R∗

+, x ∈ R2,
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Name s7 s8 s9

sR0 0.5 0.5 0

sG0 0 0.5 0.5

sB0 0.5 0.5 0.25

AR 0.5 0.5 0

AG 0 0.5 0.5

AB 0.5 0.5 0.25

φR 0 0 0

φG 0 π
3

2π
3

φB 2π
3

π
2 −2π

3

Image

Ellipse
λ 0.5 0.33 0.72

Table 4.3: Link between the color parameters, the color content of the texture and the
shape of the corresponding ellipse, with ω = 30 and α = π

6 .

� ω ∈ R∗
+, u = (cosα, sinα)⊤, α ∈

]
−π

2 ;
π
2

]
,

� for all C ∈ {R,G,B}, AC ∈
[
0, 12
]
and φC ∈]− π, π].

Similarly to what is done in Section 3.3.1 in the greyscale case, the noise s can then be
written as a single color wave rather than a sparse convolution by applying the reformu-
lation of the Gabor noise as a phasor �eld (as done in (Tricard et al. 2019)) to each color
channel. The main reason for this is to de�ne proper notions of amplitude and phase.
Hence, for all x ∈ R2,

s(x) = I(x)

AR cos
[
bωu⊤x+Ψ(x) + φR

]
AG cos

[
bωu⊤x+Ψ(x) + φG

]
AB cos

[
bωu⊤x+Ψ(x) + φB

]
 =

sR(x)sG(x)
sB(x)

 . (4.38)

where  I(x) =
∣∣∣∑i a(x− xi)e

i(−bωu⊤xi+ψi)
∣∣∣ ,

Ψ(x) = arg
[∑

i a(x− xi)e
i(−bωu⊤xi+ψi)

]
.

(4.39)

Each color component sC of s, C ∈ {R,G,B}, can hence be seen as a cosine wave whose
amplitude I and phase-shift Ψ are random �elds rather than deterministic functions. These
functions contain the underlying energical and structural information of the texture, re-
spectively, but do not impact its color content. However, this does not imply that the
color Gabor noise de�ned here is an intrinsically greyscale texture that varies along a color
axis rather than a grey axis. The next developments show how the generated texture
truly oscillates inside the RGB cube in a non-marginal way. This is �rst re�ected in the
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Figure 4.1: Four Gabor noises generated with b = 2, ω = 20, α = π
6 , p = 0.1.

statistic behavior of the color channels, which is the subject of Section 4.3.1. Now that the
basic color Gabor noise has been introduced, more general color procedural noises can be
de�ned.

4.2.3 Sum of Gabor noises and phasor noise

The Gabor noise, as de�ned in the previous section, is unidirectional, i.e., it only has one
direction of oscillation, which is determined by the angle α. In order to generate richer
patterns containing di�erent directions of oscillation, Gabor noises of di�erent wave vectors
can be combined, as done in (Gilet et al. 2014, Tricard et al. 2019) in the greyscale case.
Let s1, . . . , sn (n ∈ N∗) be n independent Gabor noises that share the same parameter
values except for their frequencies and orientations, which are denoted by ωℓ and αℓ for all
ℓ ∈ {1, . . . , n}, with ωℓ ∈ R∗

+ and αℓ ∈]− π
2 ,

π
2 ]. Their respective wave vectors are denoted

by uℓ =
(
cosαℓ sinαℓ

)⊤
. Let s denote the sum of the n Gabor noises, i.e., for all x ∈ R2,

s(x) =
n∑
ℓ=1

sℓ(x). (4.40)

The respective Poisson and phase shifts processes, through which the n Gabor noises sℓ
(ℓ ∈ {1, . . . , n}) are generated, are assumed to be independent. Each color channel sCℓ of
each Gabor noise sℓ (C ∈ {R,G,B} and ℓ ∈ {1, . . . , n}) is now rewritten as a single wave
as done in the previous section, i.e., for all x ∈ R2 (Tricard et al. 2019),

sCℓ (x) = ACIℓ(x) cos
[
bωℓu

⊤
ℓ x+Ψℓ(x) + φC

]
. (4.41)

Each color channel of the sum of the n Gabor noises s can hence be expressed for all
C ∈ {R,G,B} and x ∈ R2 as

sC(x) = ACeiφ
Cℜ

{
n∑
ℓ=1

Iℓ(x)e
i[bωℓu

⊤
ℓ x+Ψℓ(x)]

}
. (4.42)
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Let I(x) and φ(x) denote the modulus and argument of the complex random �eld inside
the square brackets for all x ∈ R2. Then, a uni�ed expression can be de�ned for s, i.e., for
all x ∈ R2,

s(x) = I(x)

AR cos
[
φ(x) + φR

]
AG cos

[
φ(x) + φG

]
AB cos

[
φ(x) + φB

]
 . (4.43)

The color phasor noise Φ is �nally de�ned by removing the amplitude function I, similarly
to what was done in (Tricard et al. 2019) in the greyscale case. However, the model
introduced in this chapter also includes an o�set Φ0 ∈ [0, 1]3 so that the phasor noise is
wholly contained in the RGB cube [0, 1]3. Hence, for all x ∈ R2,

Φ(x) = Φ0 +

AR cos
[
φ(x) + φR

]
AG cos

[
φ(x) + φG

]
AB cos

[
φ(x) + φB

]
 =

ΦR0 +ΦR(x)
ΦG0 +ΦG(x)
ΦB0 +ΦB(x)

 . (4.44)

The values of each color component range between ΦC0 − AC and ΦC0 + AC for all C ∈
{R,G,B}. The parameters ΦC0 and AC must hence satisfy the constraints ΦC0 − AC ≥ 0
and ΦC0 + AC ≤ 1 to ensure that Φ is an actual color image contained in [0, 1]3. Such
constraints are impossible to de�ne in the case of a Gabor noise as the values at each pixel
vary in R3 rather than the cube [−1; 1]3, as highlighted in Section 4.2.1.

4.2.4 Discretization and synthetic tests

Though the color phasor noise is introduced as a continuous object in the previous sec-
tions, it has to be discretized to perform synthetic tests. This section aims at properly
presenting the techniques used to generate discrete phasor noises. The impact of the Gabor
parameters (scale, frequency, orientation) on the texture is then studied, while the impact
of the color parameters is left for the next section.

Let (tj , tk) be a discrete grid, with (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1} and (M,N) ∈ N2

such that {
tj =

(
j − M

2

)
Tx,

tk =
(
k − N

2

)
Ty,

(4.45)

where Tx > 0 and Ty > 0 denote the horizontal and vertical sampling periods, respectively.
Before generating a phasor noise, the sum of n Gabor noises sℓ (ℓ ∈ {1, . . . , n}, n ∈ N∗)
de�ned in Eq. (4.40) and Eq. (4.41) must be properly discretized. In order to simulate a
Poisson process on this grid, an independent and identically distributed M ×N sampling
of a Bernoulli variable of parameter p ∈]0, 1[ is generated for each Gabor noise of the
sum. For all ℓ ∈ {1, . . . , n}, let xj,kℓ ∈ {0, 1} denote the Bernoulli number generated at
the pixel (tj , tk) (with (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1}). Then, an independent and
identically distributed M × N sampling of a uniform variable on ] − π, π] is generated
at each pixel (tj , tk) and for Gabor noise of the sum. These numbers correspond to the
random phase-shifts ψi of Eq. (4.37) in the continuous model, and are denoted by ψj,kℓ for
all (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1}, where ℓ denotes the index of the Gabor noise in
the sum. Let hℓ denote the complex-valued M × N discrete signal (hj,kℓ )j,k such that for
all (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1},

hj,kℓ = xj,kℓ e
i
[
−bωℓ(tj cosαℓ+t

k sinαℓ)+ψj,k
ℓ

]
, (4.46)
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where ωℓ ∈ R∗
+ and αℓ ∈

]
−π

2 ;
π
2

]
for all ℓ ∈ {1, . . . , n}. The discrete amplitude and

phase functions of each Gabor noise sℓ, denoted by Iℓ =
(
Ij,kℓ

)
j,k

and Ψℓ =
(
Ψj,k
ℓ

)
j,k
,

respectively, are then computed for all (j, k) ∈ {0 . . .M−1}×{0 . . . N−1} as the modulus
and argument of the complex random �eld hℓ ∗a, where ∗ denotes the discrete convolution
product, and

aj,k = e−πb
2[(tj)2+(tk)2], (4.47)

with b ∈ R∗
+. This convolution product is performed in the frequency domain by using the

discrete Fourier transform. For all (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1}, let Ij,k and φj,k
denote the modulus and argument of the complex number

n∑
ℓ=1

Ij,kℓ eiφ
j,k
ℓ . (4.48)

The sum of Gabor noises s is �nally constructed for all (j, k) ∈ {0 . . .M−1}×{0 . . . N−1}
as

sj,k = Ij,k

AR cos
[
φj,k + φR

]
AG cos

[
φj,k + φG

]
AB cos

[
φj,k + φB

]
 . (4.49)

The resulting phasor noise Φ is then obtained by removing the amplitude signal I from
the Gabor noise s and adding the remaining signal to a �xed o�set Φ0 ∈ [0, 1]3, i.e., for
all (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1},

Φj,k = Φ0 +

AR cos
[
φj,k + φR

]
AG cos

[
φj,k + φG

]
AB cos

[
φj,k + φB

]
 . (4.50)

This is exactly the discrete version of Eq. (4.44). Notice that Φ already lies inside the
RGB cube [0, 1]3 by construction. This ensures that the images displayed in the subsequent
synthetic tests exactly correspond to the model, and are not distorted by normalization.
Figure 4.2 shows an example of a color phasor noise synthesized with this technique. The
parameters chosen to synthesize the texture are M = N = 1000, Tx = Ty = 0.002,
b = 2, p = 0.1, ω = 30, α = π

6 , n = 1 (one single Gabor noise), AR = 0.2, AG = 0.2,

AB = 0.1, φR = 0, φG = π
3 , φ

B = π
2 and Φ0 =

(
0.8 0.5 0.1

)⊤
, respectively. Notice

that the sampling periods Tx and Ty both satis�es Shannon's boundary, i.e., 1
Tx
> 2bω and

1
Ty
> 2bω.

Unlike what is observed in (Tricard et al. 2019), increasing the value of the parameter b only
a�ects the scale, a direct consequence of the modi�cation of the Gabor kernel detailed in
Section 3.2.1. This is illustrated in Figure 4.3, which shows a phasor noise generated with
b = 5, AR = 0.1, AG = 0.2, AB = 0.3 and Φ0 =

(
0.3 0.6 0.5

)⊤
, the other parameters

being the same as in Figure 4.2. The image looks zoomed out compared to Figure 4.2, but
its overall aspect is not impacted at all.
As expected, decreasing the frequency parameter ω while keeping b constant yields slower
oscillations. This is illustrated in Figure 4.4, which shows a phasor noise generated with
ω = 12, AR = 0.2, AG = 0.3, AB = 0.4 and Φ0 =

(
0.7 0.3 0.6

)⊤
, the other parameters

being the same as in Figure 4.2.
Similarly to what was done in (Tricard et al. 2019) in the greyscale case, more complex
patterns are now introduced by summing two Gabor noises of di�erent orientations α and
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Figure 4.2: Example of a color phasor noise, b = 2, ω = 30, α = π
6 , n = 1, AR = 0.2,

AG = 0.2, AB = 0.1, φR = 0, φG = π
3 , φ

B = π
2 and Φ0 =

(
0.8 0.5 0.1

)⊤
.

Figure 4.3: Example of a color phasor noise at a lower scale, b = 5, ω = 30, α = π
6 , n = 1,

AR = 0.1, AG = 0.2, AB = 0.3, φR = 0, φG = π
3 , φ

B = π
2 and Φ0 =

(
0.3 0.6 0.5

)⊤
.

Figure 4.4: Example of a color phasor noise with a lower frequency, b = 2, ω = 12,
α = π

6 , n = 1, AR = 0.2, AG = 0.3, AB = 0.4, φR = 0, φG = π
3 , φ

B = π
2 and

Φ0 =
(
0.7 0.3 0.6

)⊤
.
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α+ θ, yielding a bidirectional phasor noise. Figure 4.5 shows an example of a color phasor
noise synthesized with this technique. The parameters chosen to synthesize the texture
are M = N = 1000, Tx = Ty = 0.002, b = 1, p = 0.1, ω = 30, α = π

6 , θ = π
12 A

R = 0.3,

AG = 0.1, AB = 0.3, φR = 0, φG = π
4 , φ

B = 3π
4 and Φ0 =

(
0.7 0.1 0.5

)⊤
, respectively.

Figure 4.5: Example of a color bidirectional phasor noise, b = 1, ω = 30, α = π
6 , θ =

π
12 , n =

2, AR = 0.3, AG = 0.1, AB = 0.3, φR = 0, φG = π
3 , φ

B = π
2 and Φ0 =

(
0.7 0.1 0.5

)⊤
.

Combining two waves with slightly di�erent orientations makes the texture content richer.
However, as stated in (Tricard et al. 2019), increasing the parameter θ yields a more discon-
tinuous image. This is illustrated in Figure 4.6, which shows a bidirectional phasor noise
generated with b = 1, θ = π

3 , A
R = 0.1, AG = 0.2, AB = 0.3 and Φ0 =

(
0.3 0.8 0.6

)⊤
,

the other parameter being the same as in Figure 4.5. The con�icts between the two waves
become much more frequent, which is re�ected in sudden changes of orientation.

Figure 4.6: Example of a color bidirectional phasor noise with more distinct directions,
b = 1, ω = 30, α = π

6 , θ = π
3 , n = 2, AR = 0.1, AG = 0.2, AB = 0.3, φR = 0, φG = π

3 ,

φB = π
2 and Φ0 =

(
0.3 0.8 0.6

)⊤
.

Just like in the greyscale case (Tricard et al. 2019), singularities occur in the synthesized
textures, i.e., abrupt jumps between two wave fronts, though the underlying oscillating
structure is still clearly visible. Notice that these singularities and their links with the
parameters are tackled in Chapter 5. While these synthetic tests focus only on the Gabor
parameters, the color parameters AC and φC (C ∈ {R,G,B}) and their impact on the
color content of the texture are further studied in Section 4.3.
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4.3 Interpretation of the elliptic color model

4.3.1 Color covariances and interpretation

While the direct link between the color parameters and the color content of the synthesized
texture is already highlighted in Section 4.1.5 in the deterministic case, this section aims
at studying how these color parameters provide a full control over the color covariances
in the case of stochastic textures such as the Gabor noise. In many semi-procedural ap-
proaches, scalar Gabor noises are synthesized along the three color axes that maximize
either uncorrelation (through a PCA) or independence (Galerne et al. 2012) in the ex-
emplar texture. Rather than being eliminated, the covariances between the channels are
fully modeled in the color extension introduced in this work. These covariances can be
analytically expressed with the parameters of the model.

Theorem 9. The color Gabor noise de�ned in Eq. (4.37) is stationary, zero-mean, and

its covariance matrix Σ(z), z ∈ R2, is given by

Σ(z) = E
[
s(0)s(z)⊤

]
,

=
µ

4b2
e−

1
2
πb2||z||2

[
cos
(
bωu⊤z

)
C − sin

(
bωu⊤z

)
S
]
,

(4.51)

where

C + iS =

 (AR)
2

ARAGe
i(φR−φG) ARABe

i(φR−φB)

ARAGe
i(φG−φR) (AG)

2
AGABe

i(φG−φB)

ARABe
i(φB−φR) AGABe

i(φB−φG) (AB)
2

 . (4.52)

In the special case of z = 0, the covariance matrix becomes

Σ(0) =
µ

4b2
× (AR)

2
ARAG cos(φR−φG) ARAB cos(φR−φB)

ARAG cos(φR−φG) (AG)
2

AGAB cos(φG−φB)
ARAB cos(φR−φB) AGAB cos(φG−φB) (AB)

2

 .
(4.53)

The proof is given in Appendix C.2. For the sake of simplicity, the matrix Σ(0) is now
denoted by Σ. This covariance matrix makes the link between the color channels explicit.
Indeed, if C1 and C2 are two colors of {R,G,B}, then,

� sC1 and sC2 are positively correlated if 0 ≤ |φC1 − φC2 | < π
2 [2π], with a maximal

correlation reached when φC1 = φC2 [2π],

� sC1 and sC2 are negatively correlated if π
2 < |φC1 − φC2 | ≤ π [2π], with a maximal

negative correlation when φC1 = φC2 + π [2π],

� sC1 and sC2 are uncorrelated if φC1 = φC2 + π
2 [π].

The amplitude values AR, AG and AB either amplify or attenuate these correlations.
This explicit interpretation of the color parameters enables a complete control over the
covariances between the color channels. In the case of an equal contribution of the red,
green and blue channels, i.e., if AR = AG = AB and φR = φG = φB, the color content of
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the generated image only consists of shades of grey, which is consistent with what is said in
Section 4.1.5 in the case of deterministic color waves. This implies that the more di�erent
the color parameters are from each other, the richer the color content of the texture is.
The trajectory of the texture inside the color space can be characterized more precisely by
applying the elliptic model developed in (Soulard & Carré 2015) to the Gabor noise.

4.3.2 Elliptical oscillation inside the RGB cube

As stated in (Soulard & Carré 2015) and recalled in Section 4.1, in the special case of a
deterministic color cosine wave, i.e., for all x ∈ R2,

Φ(x) = Φ0 +

AR cos
[
ωu⊤x+ φR

]
AG cos

[
ωu⊤x+ φG

]
AB cos

[
ωu⊤x+ φB

]
 , (4.54)

then the trajectory of Φ inside the RGB cube [0, 1]3 is an ellipse whose parameters are
given in Section 4.1.2 and 4.1.3. This result can be generalized to phasor noises as follows.

Theorem 10. Let Φ be a phasor noise as de�ned in Eq. (4.44). Then the trajectory of Φ
lies inside an ellipse E such that

� the center of E is Φ0,

� the semi-major and semi-minor axes of E, denoted by r+ and r−, respectively, are
given by

r2+ = A2+|Γ⊤Γ|
2 , r2− = A2−|Γ⊤Γ|

2 , (4.55)

where A denotes the uni�ed color amplitude de�ned by

A =

√
(AR)2 + (AG)2 + (AB)2 (4.56)

and Γ denotes the color Fourier atom de�ned by

Γ =

AReiφ
R

AGeiφ
G

ABeiφ
B

 , (4.57)

� the vertexes of E, denoted by Φ+ and Φ−, respectively, are given by

Φ+ = Φ0 +

(
AR cos(φR−φ̂)
AG cos(φG−φ̂)
AB cos(φB−φ̂)

)
, Φ− = Φ0 +

(
AR sin(φR−φ̂)
AG sin(φG−φ̂)
AB sin(φB−φ̂)

)
, (4.58)

where φ̂ denotes the uni�ed color phase shift de�ned by

φ̂ =
1

2
arg
(
Γ⊤Γ

)
. (4.59)
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This theorem is proved by applying the same procedures as in Sections 4.1.2 and 4.1.3,
respectively. The main di�erence is that the phase function φ is not necessarily surjective,
unlike the linear function x 7→ ωu⊤x in the case of a deterministic color wave. Conse-
quently, all the points of the ellipse are not necessarily reached, i.e., the trajectory of Φ
inside the RGB cube may be strictly contained in E rather than being equal to E . Despite
that, the shape of the ellipse can still be directly linked with the color content of the image
as in the deterministic case studied in (Soulard & Carré 2015) and Section 4.1. If the ellipse
is very thin, almost linear, then the color wave oscillates along one color axis only. If the
ellipse has a more circular shape, then the color wave oscillates in a much wider range of
colors. This can be quanti�ed by the linearity parameter λ de�ned in Eq. (4.21). Notice
furthermore that the covariance matrix Σ de�ned in Eq. (4.53) can now be expressed as

Σ =
µ

4b2
ℜ{ΓΓ∗} , (4.60)

where Γ∗ denotes the conjugate transpose of Γ, i.e., Γ
⊤
, with Γ given in Eq. (4.57).

However, the underlying oscillating structure, characterized by the phase function φ de�ned
in Section 4.2.3, cannot be extracted by such tools, and constitutes the main subject of
Chapter 5.

4.3.3 Synthetic tests

In order to illustrate the elliptic model, �ve discrete bidirectional phasor noises Φ1, . . . ,Φ5

with di�erent color parameters are synthesized with the same technique as in Section 4.2.4.
The other parameter values are M = N = 500, Tx = Ty = 0.002, b = 2, p = 0.1, ω = 30,
α = π

6 , θ =
π
12 and n = 2 for all �ve noises. The results are given in Table 4.4.

Phasor Φ1 Φ2 Φ3 Φ4 Φ5

ΦR0 0.5 0.5 0.5 0.5 0

ΦG0 0 0 0.5 0.5 0.5

ΦB0 0 0.5 0.5 0.5 0.25

AR 0.3 0.5 0.5 0.5 0

AG 0 0 0.5 0.5 0.5

AB 0 0.5 0.5 0.5 0.25

φR 0 0 0 0 0

φG 0 0 2π
3

π
2

2π
3

φB 0 2π
3 −2π

3
π
3 −2π

3

phasor

ellipse
λ 1 0.5 0 0.33 0.72

Table 4.4: Link between the color parameters, the color content of the texture and the
shape of the corresponding ellipse, with b = 2, p = 0.1, ω = 30, α = π

6 , θ =
π
12 and n = 2.
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As expected, the respective color ranges of these generated phasor noises are the same as
those of the corresponding deterministic waves of Section 4.1.5, which illustrates how the
elliptic model enables the generation of color stochastic oscillating textures with prescribed
color content. Notice that the e�ect of the color parameters on the richness of the color
content is consistent with the interpretation of the color covariances given in Section 4.3.1.
While (Tricard et al. 2019) aims at building a purely procedural noise technique with
a direct link between the parameters and the local oscillating behavior, this work goes
further in this direction by including the color into the model rather than coloring greyscale
textures a posteriori.

4.4 Conclusion

The main contribution of this chapter is the extension of the elliptic color model intro-
duced in (Soulard & Carré 2015). Section 4.1 further studies the link between the color
parameters, the color shades contained in the image and the shape of the ellipse, with
both theoretical results and numerical illustrations. The linearity parameter, deeply in-
vestigated in Section 4.1.4, enables a numerical characterization of color richness, and is
hence of great interest from a color texture description point of view.

Furthermore, by merging the elliptic color model and the phasor noise, this chapter gener-
alizes both frameworks. Originally designed for deterministic oscillating color images, the
elliptic model of (Soulard & Carré 2015) is extended to the stochastic case by being applied
to phasor noise introduced in (Tricard et al. 2019), which in turn lacked a formal color
extension. The direct link between the color parameters of the texture and the shape and
position of an ellipse inside the RGB cube still provides a useful visual representation of
color oscillations in a stochastic context, while being reinforced by their consistency with
the color covariances. This enables a full control over the color content of the synthesized
texture, in addition to the control over its frequency content which was already one of the
main advantages of the phasor approach.

Because the color information is fully encoded in the parameters of the ellipse, it can be
expected that these parameters would provide useful descriptors of the color content of
real textures displaying oscillating patterns. In order to investigate this idea, a reliable
estimation technique must be introduced to extract these parameters. This is exactly the
topic of Chapter 5, which builds on the color phasor noise introduced in this chapter to
further study both color texture analysis and synthesis, respectively.
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APPENDIXC

Appendices

C.1 Proof of Theorem 8

The �rst step consists in expressing |Γ⊤Γ| with the color parameters.

|Γ⊤Γ|2 =

∣∣∣∣∣∣
∑

C∈{R,G,B}

[(
AC
)2

cos
(
2φC

)]
+ i

∑
C∈{R,G,B}

[(
AC
)2

sin
(
2φC

)]∣∣∣∣∣∣
2

,

=
∑

C∈{R,G,B}

(
AC
)4

+
∑

(C1,C2)∈{R,G,B}2

(
AC1

)2 (
AC2

)2
×
[
cos
(
2φC1

)
cos
(
2φC2

)
+ sin

(
2φC1

)
sin
(
2φC2

)]
,

=

 ∑
C∈{R,G,B}

(
AC
)22

+
∑

(C1,C2)∈{R,G,B}2

(
AC1

)2 (
AC2

)2
×
[
cos
(
2φC1 − 2φC2

)
− 1
]
,

= A4 − 2
∑

(C1,C2)∈{R,G,B}2

(
AC1

)2 (
AC2

)2
sin2

(
φC1 − φC2

)
.

(C.1)

The special case λ = 1 is now characterized by using the color parameters.

λ = 1 ⇐⇒ r2− = 0,

⇐⇒ A2 − |Γ⊤Γ|
2

= 0 (see Eq. (4.12)),

⇐⇒ A2 = |Γ⊤Γ|,
⇐⇒ A4 = |Γ⊤Γ|2,

⇐⇒ A4 = A4 − 2
∑

(C1,C2)∈{R,G,B}2

(
AC1

)2 (
AC2

)2
sin2

(
φC1 − φC2

)
,

⇐⇒
∑

(C1,C2)∈{R,G,B}2

(
AC1

)2 (
AC2

)2
sin2

(
φC1 − φC2

)
= 0,

⇐⇒ ∀(C1, C2) ∈ {R,G,B}2, AC1AC2 sin
(
φC1 − φC2

)
= 0.

(C.2)

This condition is ful�lled in three cases:

� AC1 = AC2 = 0 for at least two distinct color channels (C1, C2) ∈ {R,G,B}2,
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� AC1 = 0 and φC2 = φC3 [π], with C1, C2 and C3 being three distinct color channels
of {R,G,B},

� φR = φG = φB [π],

which is exactly what was to be proved. The special case λ = 0 is now studied.

λ = 0 ⇐⇒ r2− = r2+,

⇐⇒ A2 − |Γ⊤Γ|
2

=
A2 + |Γ⊤Γ|

2
,

⇐⇒ |Γ⊤Γ| = 0,

⇐⇒ Γ⊤Γ = 0,

⇐⇒
∑

C∈{R,G,B}

[(
AC
)2

cos
(
2φC

)]
+ i

∑
C∈{R,G,B}

[(
AC
)2

sin
(
2φC

)]
= 0,

⇐⇒

{ ∑
C∈{R,G,B}

(
AC
)2

cos
(
2φC

)
= 0,∑

C∈{R,G,B}
(
AC
)2

sin
(
2φC

)
= 0.

(C.3)
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C.2 Proof of Theorem 4.53

The proof uses a similar procedure as the proof of Theorem 5 in the greyscale case. Each
of the scalar unidirectional Gabor noises sC , C ∈ {R,G,B}, are stationary and zero-mean
as stated in (Lagae & Drettakis 2011) and recalled in Section 3.2.3. Let z ∈ R2 be a 2D
spatial delay and (C1, C2) ∈ {R,G,B}2 be a pair of colors. The delayed Gabor noise sC2

z

is de�ned for all x ∈ R2 as

sC2
z (x) = AC2

∑
i

a(x− z− xi) cos
[
bωu⊤(x− z− xi) + ψi + φC2

]
. (C.4)

In order to calculate the covariance matrix of s, Proposition 3.1 of (Galerne 2010) is applied
to the Gabor noises sC1 and sC2

z , i.e.,

Cov
(
sC1 , sC2

z

)
=

µ

2π
AC1AC2

∫ π

−π

∫
R2

a(y)a(y − z)

× cos
(
bωu⊤y + ψ + φC1

)
cos
[
bωu⊤(y − z) + ψ + φC2

]
dydψ

(C.5)

Using the trigonometric identity cos(a) cos(b) = cos(a+b)+cos(a+b)
2 leads to

Cov
(
sC1 , sC2

z

)
=

µ

4π
AC1AC2 (I1 + I2) , (C.6)

where

I1 =

∫ π

−π

∫
R2

e−πb
2||y||2e−πb

2||y−z||2

× cos
[
bωu⊤(2y − z) + 2ψ + φC1 + φC2

]
dydψ,

(C.7)

and

I2 =

∫ π

−π

∫
R2

e−πb
2||y||2e−πb

2||y−z||2

× cos
(
bωu⊤z+ φC1 − φC2

)
dydψ.

(C.8)

Applying the same procedures as in the proof of Theorem 5 then yields I1 = 0 and

I2 =
π

b2
cos
(
bωu⊤z+ φC1 − φC2

)
e−

1
2
πb2||z||2 . (C.9)

Injecting this expression in Eq. (C.6) �nally leads to

Cov
(
sC1 , sC2

z

)
=
µ

4b2
AC1AC2e−

1
2
πb2||z||2 cos

(
bωu⊤z+ φC1 − φC2

)
,

=
µ

4b2
AC1AC2e−

1
2
πb2||z||2

×
[
cos
(
bωu⊤z

)
cos
(
φC1 − φC2

)
− sin

(
bωu⊤z

)
sin
(
φC1 − φC2

)]
,

(C.10)

which is exactly what was to be proved.





CHAPTER 5

The color phasor noise

Chapter 3 has extended the scope of the monogenic signal by highlighting its ability to
extract the local features of oscillating stochastic textures. However, only greyscale images
were considered. A proper color model has then been introduced in Chapter 4 based on the
elliptic approach of (Soulard & Carré 2015), which is then used to de�ne color extensions
of the Gabor and phasor noises. The results have pointed out the direct link between the
color parameters, the color covariances and the color content of the synthesized textures,
which is one the main advantages of this approach. This chapter thus aims at merging the
results of Chapters 3 and 4, i.e., extending the monogenic tool to color textures by using
the elliptic color model.

Following the works of (Felsberg & Sommer 2001) in the greyscale case, a color extension
has been introduced in (Demarcq et al. 2011) by use of Cli�ord algebras. While interesting
for its purely vectorial treatment of the color channels, the generalized notion of local color
phase lacks a clear physical interpretation, partly due to its use of 5-dimension spaces.
Besides the generalization of the elliptic model to color textures already studied in Chapter
4, (Soulard & Carré 2015) has also introduced a proper color extension of the monogenic
signal. This time, the physical interpretation of the de�ned local features, as well as
the analogy with the greyscale case, were clearer. The features extracted by the color
monogenic tool have then proved to be particularly useful in the �eld of image denoising
(Gai 2018, Gai 2019). However, as for the elliptic model, these local features were only
de�ned for deterministic color waves. Consequently, this chapter aims at extending them
to stochastic textures and study the reliability of their estimations by use of the color
phasor noise introduced in Chapter 4. The color monogenic signal is then applied to real
color textures displaying oscillating patterns in order to characterize their color dynamics.

Focusing on the texture synthesis �eld, this chapter also aims at introducing a monogenic-
based measure of local regularity in order to evaluate the quality of a synthesized color
phasor noise. In the greyscale case, one of the most signi�cant contributions of the phasor
noise introduced in (Tricard et al. 2019) was the elimination of the local losses of contrast
of the Gabor noise without modifying their oscillating behaviors. However, as noticed in
Chapters 3 and 4, these synthesized phasor noises display local singularities, i.e., local ir-
regularities caused by abrupt phase jumps or changes of direction. Such singularities make
the synthesized texture look arti�cial, hence the need to control their occurrences. While
this issue is explicitly evoked in (Tricard et al. 2019), it was left as an open problem for
future works. Given the fact that the singularities observed in the phasor noise are directly
linked with its phase function (Tricard et al. 2019), one possible approach to bypass this
di�culty is to use reliable phase extraction techniques in order to characterize their occur-
rence. One of the main ideas of this chapter is thus to use the quality of the monogenic
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estimation of phase highlighted in the previous chapters, as well as in numerous works such
as (Langley & Anderson 2010, Seelamantula et al. 2012, Alessandrini et al. 2013, Olhede
et al. 2014), in order to evaluate the quality of the synthesis in terms of singularity occur-
rence.

The rest of the chapter is organized as follows. Section 5.1 studies the robustness of the
monogenic extraction of the color parameters, with both theoretical and numerical results.
Applications to real color textures are included. The singularity issue is then tackled in
Section 5.2, in which the monogenic signal yields a numerical criterion that characterizes
the local regularity of synthesized phasor noises. This technique is �nally applied in Section
5.3, with a special focus on the in�uence of the model parameters on the quality of the
synthesis.

5.1 Monogenic estimation of the color parameters

Chapter 4.1 has illustrated the bene�ts of the visual representation of color oscillation
provided by the color phasor noise, making it a useful color texture synthesis tool. This
section tackles the color texture analysis side of the model. This is performed by using the
Riesz transform, which has already proved its relevance in extracting the local oscillating
features of 2D signals in the previous chapters, as well as in works such as (Seelamantula
et al. 2012, Olhede et al. 2014, Kaseb et al. 2019).

5.1.1 E�ect of a constant phase-shift on the three color components

Let Φ be a color phasor noise as de�ned in Eq. (4.44). In order to extract the exact values
of the color phase-shifts φC , C ∈ {R,G,B}, from the three components of Φ, a �rst idea
consists in applying the Riesz transform to each channels. However, this would yield an
estimation of the sum φ(x) + φC , x ∈ R2, with no obvious means to separate the two
terms. This implies that the exact values of the color phase-shifts cannot be extracted
through this technique. However, this does not prevent the monogenic tool to characterize
the color oscillations of the image. Indeed, this section aims at showing how knowing the
phase di�erences rather than the phase values themselves is enough to characterize the
ellipse associated with the texture. For any angular value ψ ∈ ]−π, π[, let Φψ denote the
phase-shifted image de�ned for all x ∈ R2 by

Φψ(x) =

ΦR0 +AR cos
(
φ(x) + φR + ψ

)
ΦG0 +AG cos

(
φ(x) + φG + ψ

)
ΦB0 +AB cos

(
φ(x) + φB + ψ

)
 . (5.1)

Then, the Euclidian distance between each point of the texture and the o�set Φ0 can be
expressed by applying the same technique as in Eq. (4.10), i.e, for all x ∈ R2,

∥Φψ(x)− Φ0∥2 =
A2 − |Γ⊤

ψΓψ|
2

+ |Γ⊤
ψΓψ| cos2

[
φ(x) +

1

2
arg
(
Γ⊤
ψΓψ

)]
, (5.2)

where Γψ denotes the ψ-shifted version of the complex vector Γ de�ned in Eq. (4.8), i.e.,

Γψ =

ARe
i(φR+ψ)

AGei(φ
G+ψ)

ABei(φ
B+ψ)

 = Γeiψ. (5.3)
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It is clear that the complex numbers Γ⊤
ψΓψ and Γ⊤Γ have the same modulus. Furthermore,

1

2
arg
(
Γ⊤
ψΓψ

)
=

1

2
arg
(
Γ⊤Γe2iψ

)
[2π],

=
1

2
arg
(
Γ⊤Γ

)
+

1

2
arg
(
e2iψ

)
[2π],

= φ̂+ ψ [2π],

(5.4)

where φ̂ denoted the uni�ed phase de�ned in Eq. (4.13). Eq. (5.2) hence becomes

∥Φψ(x)− Φ0∥2 =
A2 − |Γ⊤Γ|

2
+ |Γ⊤Γ| cos2 [φ(x) + φ̂+ ψ] . (5.5)

This expression has the same extreme values as its non-shifted counterpart, which implies
that the ellipse associated with the phase-shifted image Φψ has the same shape as the
original ellipse associated with Φ. Furthermore, if the maximal and minimal values are
reached, they correspond to φ(x) = −φ− ψ and φ(x) = −φ− ψ − π

2 , respectively. If Φ
ψ
+

and Φψ+ denote the vertexes of the shifted ellipse, then, Eq. (4.58) becomes

Φψ+ = Φ0 +

AR cos
(
φR + ψ − φ− ψ

)
AG cos

(
φG + ψ − φ− ψ

)
AB cos

(
φB + ψ − φ− ψ

)
 = Φ+, (5.6)

and

Φψ− = Φ0 +

AR sin
(
φR + ψ − φ− ψ

)
AG sin

(
φG + ψ − φ− ψ

)
AB sin

(
φB + ψ − φ− ψ

)
 = Φ−, (5.7)

where Φ+ and Φ− denote the vertexes of the non-shifted ellipse. This shows that phase-
shifting the image with an angle ψ not only preserves the shape of the ellipse, but also the
position of its vertexes. In other words, the phase-shift has no impact on the ellipse at all,
the only di�erence being that the points of the ellipse are not reached at the same pixels.
The impact of ψ is thus analogous to that of the classical phase-shift in the case of 1D
signals. This is of particularly great interest when parameter estimation comes into play,
which is the subject of Section 5.1.2.

5.1.2 Estimation of the color parameters

Chapter 4 has already illustrated the direct link between the color parameters of the elliptic
model and the color content of the synthesized image, with both theoretical and numerical
results. The ability of the linearity parameter λ, de�ned in Eq. (4.21), to characterize the
color content of real textures has also been highlighted in (Soulard & Carré 2015). Though
the Riesz transform was used to extract the color parameters of the studied images, no
formal study of how the Riesz transform deals with stochastic textures has been performed
yet. This section aims at studying formally and numerically how the Riesz transform man-
ages to extract the color parameters of a stochastic texture displaying oscillating patterns.
Similarly to what is done in Chapter 3 in the greyscale case, the Riesz transform is �rst
applied to synthesized color phasor noises. This class of oscillating stochastic textures is
used for the direct control over the frequency and color content it provides, respectively.
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Let Φ be a color phasor noise as de�ned in Eq. (4.44), and let ΦC denote the color
components of Φ for all C ∈ {R,G,B}. Because each component of Φ is a greyscale
phasor noise (up to an o�set), the results established in Chapter 3 can be used. Indeed,
for all C ∈ {R,G,B}, if ACM and ϕC denote the monogenic amplitude and phase of the
centered color component ΦC − sC0 as de�ned in Eq. (2.44), respectively, then for all
x ∈ R2, it can be expected that{

ACM (x) ≈ AC ,
ϕC(x) ≈ ωu⊤x+ φC [2π].

(5.8)

Because the color components are assumed to share the same wave vector, this implies
that, for all x ∈ R2 and (C1, C2) ∈ {R,G,B}2,

ϕC1(x)− ϕC2(x) ≈ φC1 − φC2 [2π]. (5.9)

Eq. (5.8) and Eq. (5.9) hence provide techniques to extract the color amplitudes and
phase di�erences of oscillating color textures. Though the exact values of the phase-shifts
φC (C ∈ {R,G,B}) cannot be estimated through this technique, Section 5.1.1 shows that
applying a constant shift to all phase values does not a�ect the shape of the ellipse, i.e., the
nature of the color oscillations. As highlighted in the synthetic tests of Section 4.1.5, the
di�erence between the phase parameters matters more than their proper values. Therefore,
�xing φR = 0 and estimating the other two phase values φG and φB, respectively, from
the phase di�erences extracted by Eq. (5.9) implies no loss of information in terms of
color oscillations. The ellipse can then be fully parametrized by applying the equations
established in Section 4.1. Though the statistical behavior of these estimators has not been
formally studied yet, the synthetic tests performed in Section 5.1.3 show that they give
consistent results when applied to color phasor noises.

5.1.3 Synthetic tests

The color parameter extraction technique introduced in Section 5.1.2 is now applied on
synthesized color phasor noises to study its reliability. A discrete color phasor is �rst
generated by using the procedure described in Section 4.2.4. After removing the o�set,
the Riesz transform is applied to each color channel, which yields monogenic measures
of amplitude and phase at each pixel and for each channel, respectively. For each color
C ∈ {R,G,B}, let ACM and ϕC denote the discrete amplitude and phase signals extracted
from the image, respectively. Focusing on the green channel, the amplitude signal AGM
is expected to be constantly equal to AG, while the di�erence between the green and red
phase signals, ϕG−ϕR is expected to be constantly equal to φG−φR. Figure 5.1 shows the
absolute error at each pixel for both the green amplitude and the green phase-shift, i.e.,
|AGM−AG| and |ϕG−ϕR−φG+φR| [2π], respectively. The parameters areM = N = 1000,
Tx = Ty = 0.002, b = 2, ω = 30, α = π

6 , n = 1, AR = 0.1, AG = 0.5, AB = 0.25, φR = 0,

φG = 2π
3 , φ

B = −2π
3 and Φ0 =

(
0.1 0.5 0.25

)⊤
. As expected, aside from border e�ects,

the absolute error is close to 0 in both cases. Focusing on the red or blue channels yields the
same results. Notice that, similarly to what was observed in Section 3.3.2 in the greyscale
case, the estimation diverges where singularities appear, i.e., where abrupt phase jumps
occur. This is further discussed in Section 5.3. This con�rms the theoretical results of
Section 5.1.2, i.e., the color parameters are well extracted by the monogenic signal.

For each color C ∈ {R,G,B}, the estimators of AC and φC , denoted by ÂC and φ̂C ,
respectively, are then computed as
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Original image Green channel

Absolute error (green amplitude)

0

0.5

1
Absolute error (green phase-shift)

0

0.5

1

Figure 5.1: Original color phasor noise (top left), green channel (top right), absolute error
of the green amplitude estimator (bottom left) and absolute error of the green phase-shift
estimator (bottom right), with b = 2, p = 0.1, ω = 30, α = π

6 , n = 1, AR = 0.1, AG = 0.5,

AB = 0.25, φR = 0, φG = 2π
3 , φ

B = −2π
3 and Φ0 =

(
0.1 0.5 0.25

)⊤
.

ÂC = 1
(M−2m0)(N−2n0)

∑M−1−m0
j=m0

∑N−1−n0
k=n0

(
ACM

)
j,k
,

φ̂C = 1
(M−2m0)(N−2n0)

∑M−1−m0
j=m0

∑N−1−n0
k=n0

(
ϕCj,k − ϕRj,k

)
[2π] (C ∈ {G,B}) ,

(5.10)

where m0 and n0 are integers chosen to avoid the border e�ect. In the subsequent tests,
m0 = n0 = 30, which is enough to eliminate the problematic pixels. Thanks to Eq. (4.6)
and Eq. (4.13), these estimates can then be used to calculate the uni�ed amplitude A
and phase-shift φ̂, respectively. This yields the reconstruction the ellipse by applying the
results established in Sections 4.1.2 and 4.1.3, respectively. Though applying the Riesz
transform to each color channel marginally may not be the best solution from a color
image processing point of view, it is necessary to extract the parameters of the ellipse,
which then provides a non-marginal description of the color oscillations. Table 5.1 gives
the results obtained from two color phasor noises generated with di�erent sets of color
parameters, the other parameters being b = 2, ω = 30, α = π

6 and n = 1 for both images.
The estimated parameters are very close to the real values, which further con�rms what
was expected in Section 5.1.2. This yields a reconstructed ellipse that looks very close
to the real one, which is re�ected in its linearity parameter as well as its color shades.
Remember that the color phase-shifts are all known up to a translation, as seen in Section
5.1.1.

Focusing on the uni�ed parameters A and φ̂, as well as the linearity parameter λ, the
same technique is applied to m = 50 color phasor noises generated with the same set of
parameters as in Figure 5.1. The results are given as boxplots in Figure 5.2. Though a
bias is observed for all three parameters A, φ̂ and λ, the estimated values remain close to
the corresponding real values (marked with a big black dot).

Because this estimation technique relies heavily on Theorem 6, it is not surprising that in-
creasing b and ω makes the color parameter extraction more e�cient, as can be seen on the
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Name s1 s2

Real Estimated Real Estimated
sR0 0.5 0.5006 0.1 0.0998

sG0 0.5 0.5003 0.5 0.4995

sB0 0.5 0.5 0.25 0.2506

AR 0.5 0.498 0.1 0.1038

AG 0.5 0.4984 0.5 0.5187

AB 0.5 0.4987 0.25 0.259

A 0.866 0.8632 0.5679 0.589

φR 0 - 0 -
φG π

3 1.0472 2π
3 2.0784

φB π
2 1.5708 −2π

3 −2.0787

φ̂ π
3 1.0484 −2π

3 −1.1706

Ellipse
λ 0.33 0.3338 0.6776 0.6891

Table 5.1: Comparison between the real and estimated parameters of a color phasor noise,
with b = 2, p = 0.1, ω = 30, α = π

6 and n = 1.
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Figure 5.2: Boxplots of the uni�ed amplitude A (left), uni�ed phase-shift φ̂ (middle) and
linearity parameter (right) estimated from m = 50 color phasor noises, with b = 2, p = 0.1,
ω = 30, α = π

6 , n = 1, AR = 0.1, AG = 0.5, AB = 0.25, φR = 0, φG = 2π
3 , φ

B = −2π
3 and

Φ0 =
(
0.1 0.5 0.25

)⊤
.
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boxplots displayed in Figure 5.3 and 5.4 in the case of the uni�ed phase-shift estimation.
Similar results can be observed for the other color parameters. This illustrates how the
monogenic tool requires clear oscillating patterns in the image to yield a relevant measure
of the color dynamic.
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Figure 5.3: Boxplots of the uni�ed phase-shift measured from m = 50 color phasor noises,
b ∈ {1, . . . , 5},M = N = 1000, Tx = Ty = 0.002, p = 0.1, ω = 30, α = π

6 , n = 1, AR = 0.1,

AG = 0.5, AB = 0.25, φR = 0, φG = 2π
3 , φ

B = −2π
3 and Φ0 =

(
0.1 0.5 0.25

)⊤
.

5.1.4 Case of a multidirectional phasor noise

In all former examples, the number of Gabor noises, denoted by n, is always equal to 1,
which implies that the synthesized phasor noise is unidirectional. However, the color pha-
sor noise introduced in Section 4.2.3 is more general, as it involves a sum of independent
Gabor noises rather than a single Gabor noise. In order to increase the degree of complex-
ity of the texture, a second Gabor noise with a di�erent orientation can be independently
added, yielding a bidirectional phasor noise, similarly to what is done in the greyscale case
in (Tricard et al. 2019). The color noise Φ is now assumed to result from the sum of two
independent color Gabor noises whose orientations are equal to α and α+ θ, respectively,
with (α, α + θ) ∈] − π

2 ,
π
2 ]

2. The other parameters are assumed to be the same for both
Gabor noises. Though no formal study of how the Riesz transform deals with such a noise,
it can be expected that increasing the di�erence between the two orientations, i.e., increas-
ing θ, damages the estimation of the color parameters. Indeed, as highlighted in Section
4.2.4, if noises of signi�cantly di�erent orientations are combined, the oscillating patterns
of the resulting image are obscured due to the con�icts between the two underlying waves.
Figure 5.5 con�rms this conjecture by estimating the green phase-shift from m = 50 color
phasor noises generated from two Gabor noises of increasingly di�erent orientations. As θ
increases, the monogenic extraction of amplitude and phase loses quality, which is re�ected
by the loss of reliability of the green phase-shift estimation.
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Figure 5.4: Boxplots of the uni�ed phase-shift measured from m = 50 color phasor noises,
ω ∈ {10 + 5k, k = 0, . . . , 4}, M = N = 1000, Tx = Ty = 0.002, b = 5, p = 0.1,
α = π

6 , n = 1, AR = 0.1, AG = 0.5, AB = 0.25, φR = 0, φG = 2π
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3 and

Φ0 =
(
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)⊤
.
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Figure 5.5: Boxplots of the uni�ed phase-shift measured from m = 50 color phasor noises,
θ ∈ { π

12k, k = 0, . . . , 4}, M = N = 1000, Tx = Ty = 0.002, b = 5, p = 0.1, ω = 30,
α = π

6 , n = 2, AR = 0.1, AG = 0.5, AB = 0.25, φR = 0, φG = 2π
3 , φ

B = −2π
3 and

Φ0 =
(
0.1 0.5 0.25

)⊤
.
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The number of independent Gabor noises in the sum is now raised to n = 5. For
ℓ ∈ {1, . . . , 5}, let αℓ denote the orientation of each Gabor noise sℓ. These orientations
are randomly drawn following a normal distribution with mean π

6 and variance v ∈ R∗
+.

It can then be expected that the variance v has to be small enough to ensure that the
image displays enough local regularity. This is con�rmed by the synthesized noises shown
in Figure 5.6. Increasing the variance v implies the occurring of more singularities, i.e.,
discontinuities in the oscillations, which can then damage the color parameter extraction.

v=0.05 v=0.25

Figure 5.6: Color phasor noises generated from the independent sum of 5 Gabor noises with
random orientations, v = 0.05 (left), v = 0.25 (right), M = N = 1000, Tx = Ty = 0.002,
b = 5, p = 0.1, ω = 30, αℓ ∼ N

(
π
6 , v
)
for each ℓ ∈ {1, . . . , 5}, n = 5, AR = 0.1, AG = 0.5,

AB = 0.25, φR = 0, φG = 2π
3 , φ

B = −2π
3 and Φ0 =

(
0.1 0.5 0.25

)⊤
.

The boxplots displayed in Figure 5.7 further con�rm these expectations. The estimation
of the green phase-shift is more consistent when the orientations of the 5 Gabor noises are
close to each other, i.e., when the image displays more regular oscillating patterns.

5.1.5 Application to real color textures

The color parameter estimation technique described in the previous sections is now applied
to real color textures. After the parameters are extracted by using the Riesz transform,
the ellipse can be drawn, yielding a visual representation of the color oscillation inside the
RGB cube. The results are given in Table 5.2. As suggested by the synthetic tests, the
most homogenous texture in terms of color content, i.e., the grass texture, yields a �at
ellipse (λ = 1). The fabric texture displays more color variations, which is re�ected in
the lower value of λ and the shape of the ellipse. In both cases, the color content of the
texture is consistent with the color range of the ellipse. The results are less convincing in
the case of the sand texture. Though the value of λ is consistent with the color content
of the image, which oscillates between light brown and blue, the color range of the ellipse
does not contain any shade of blue, suggesting that the estimation does not work well.

In order to further illustrate these results, color phasor noises are generated from the
estimated color parameters for each image, while the other parameters are b = 2, p = 0.1,
ω = 20 n = 1. The orientation α is extracted by applying the stochastic structure tensor
described in Section 3.4 to the greyscale version of each image. The results displayed
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Figure 5.7: Boxplots of the uni�ed phase-shift measured from m = 50 color phasor noises,
v ∈ {0.05(1 + k), k = 0, . . . , 4}, M = N = 1000, Tx = Ty = 0.002, b = 5, p = 0.1, ω = 30,
αℓ ∼ N

(
π
6 , v
)
for each ℓ ∈ {1, . . . , 5}, n = 5, AR = 0.1, AG = 0.5, AB = 0.25, φR = 0,

φG = 2π
3 , φ

B = −2π
3 and Φ0 =

(
0.1 0.5 0.25

)⊤
.

in Figure 5.8 con�rm the previous observations. Indeed, the color information is well
extracted from the grass and the fabric textures, respectively, while it struggles more with
the sand texture. As for the orientation, the value obtained from the grass texture is
di�cult to interpret due to the lack of clear directional patterns. The sand texture is
much more suitable for this technique, hence the more intuitive value of α. The stochastic
structure tensor seems to struggle with the fabric texture, probably because of the presence
of both horizontal and vertical directional patterns. Notice that the synthesis only focuses
on reconstructing the color content and the directionality of the image, respectively. A
proper reconstruction of the image would require more complex phasor noises involving
terms of di�erent frequencies and orientations, which should be possible by generalizing
existing exemplar approaches such as (Galerne et al. 2012, Guehl et al. 2020). Another
possibility would be to make the color parameters space-dependent in order to add more
richness in the color content. This is further discussed in the conclusion.

5.2 Monogenic-based detection of singularities

5.2.1 Phasor noise and singularities

Section 5.1 highlights the ability of the monogenic signal to extract the color parameters
of an oscillating stochastic texture. This section focuses on the use of the monogenic signal
as a tool to evaluate the quality of the synthesized noise. As said in (Tricard et al. 2019),
though the phasor noise eliminates the local losses of contrast of the Gabor noise, it displays
singularities, i.e., local irregularities that make it look arti�cial. They occur randomly in
the texture, though Section 5.3 shows that the parameters of the noise directly impact
their occurrence. Figure 5.9 shows an example of a greyscale phasor noise displaying
singularities. Because these singularities are due to abrupt jumps in the phase function
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Texture grass sand fabric

sR0 0.28 0.57 0.54

sG0 0.54 0.51 0.56

sB0 0.09 0.46 0.29

AR 0.09 0.22 0.16

AG 0.09 0.11 0.15

AB 0.09 0.15 0.14

φR 0 0 0

φG 0 0.15 0.24

φB 0.01 0.17 0.22

Image

Ellipse
λ 1 0.99 0.97

Table 5.2: Examples of real color textures and their estimated color parameters.

Grass Sand Fabric

Figure 5.8: Color phasor noises generated from the color parameters of the grass (left),
sand (center) and fabric (right) textures, respectively, with b = 2, p = 0.1, ω = 20, α = π

6 ,
n = 1.
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φ of the phasor noise (Tricard et al. 2019), it can be expected that these singularities
have a measurable impact on the monogenic phase function ϕ. In the next sections, this
assumption is investigated by applying the Riesz transform to the color phasor noise, from
which a measure of local phase can be extracted.

Figure 5.9: Example of a greyscale phasor noise displaying singularities (marked by red
circles).

5.2.2 Fusion of the three color channels

In Section 5.1, the Riesz transform has to be applied to the three color channels marginally
in order to get estimates of the color parameters. When tackling the singularity detection
issue, it is possible to avoid marginal analysis by fusing the color channels before applying
the Riesz transform. Thus, let Φ be a color phasor noise generated from a sum of color
Gabor noises as de�ned in Eq. (4.44), i.e., for all x ∈ Ω ⊂ R2,

s(x) = I(x)

AR cos
[
φ(x) + φR

]
AG cos

[
φ(x) + φG

]
AB cos

[
φ(x) + φB

]
 . (5.11)

Before applying the Riesz transform to Φ, these components are fused to get a single noise
involving the color parameters. Similarly to what is done in Section 4.2, the noise Φ can
be seen as the real part of a C3-valued signal Φ̃ de�ned for all x ∈ Ω ⊂ R2 by

Φ̃(x) =

ARe
i[φ(x)+φR]

AGei[φ(x)+φ
G]

ABei[φ(x)+φ
B]

 . (5.12)

Then, Φ̃ can be expressed for all x ∈ Ω as

Φ̃(x) = ei[φ(x)]Γ, (5.13)

where Γ denotes the color Fourier atom de�ned in Eq. (4.8). The three color channels are
now fused to get a uni�ed complex noise Φ̃u de�ned for all x ∈ Ω as

Φ̃u(x) =
[
Φ̃(x)⊤Φ̃(x)

] 1
2
= |Γ⊤Γ|

1
2 ei[φ(x)+φ̂], (5.14)

where φ̂ denotes the uni�ed color phase shift de�ned in Eq. (4.13). The uni�ed noise Φu

is �nally obtained by taking the real part of Φ̃u, hence for all x ∈ Ω,
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Φu(x) = |Γ⊤Γ|
1
2 cos [φ(x) + φ̂] . (5.15)

In the further developments, the Riesz transform is applied to this uni�ed noise Φu rather
than the three color channels separately. This is done in order to avoid marginal analysis.

5.2.3 Phase comparison and cosine di�erence

In the special case of n = 1, i.e., if only one Gabor noise is used to generate the phasor
noise, then Theorem 6 implies that the monogenic phase ϕ estimated from Φu(x) through
the Riesz transform is expected to be close to the function inside the cosine in Eq. (5.15).
If n ≥ 2, then no theoretical guarantee has been established so far. However, the literature
suggests that, if the original amplitude and phase functions are slowly varying, their respec-
tive monogenic estimations are reliable (Larkin et al. 2001, Seelamantula et al. 2012, Kaseb
et al. 2019). Therefore, if Φu denotes the uni�ed noise obtained from a sum of Gabor noises
as de�ned in Eq. (5.15), it can be expected that the phase function inside the cosine, i.e.,
φ+ φ̂, and the monogenic phase ϕ extracted through the Riesz transform, are close to each
other as long as the texture is regular enough. The pixels at which these two phase func-
tions diverge would then correspond to the occurrence of singularities. In order to quantify
the similarity between these two phase functions, a �rst approach consists in comparing
them through the cosine of their di�erence at each pixel x ∈ Ω, i.e.,

cos [φ(x) + φ̂− ϕ(x)] (5.16)

The closer to 1 this cosine di�erence is, the more regular the texture is at the pixel x.
Conversely, pixels at which the cosine di�erence is close to −1 are expected to display
visual singularities. Calculating the mean of these cosine di�erences in the whole image
then yields a quality criterion for the synthesized texture. This mean cosine di�erence
between φ+ φ̂ and ϕ is now denoted by MCD(Φ) and can be expressed as

MCD(Φ) =
1

|Ω|

∫
x∈Ω

cos [φ(x) + φ̂− ϕ(x)] dx. (5.17)

These tools are now applied to synthesized phasor noise in order to illustrate their relevance
in detecting the singularities and evaluate the global regularity of the texture.

5.3 Application of the monogenic-based detection of singu-

larities to synthesized color phasor noises

5.3.1 Discrete mean cosine di�erence

Let s be a sum of discrete color Gabor noises as de�ned in Section 4.2.4, and let Φ denote
the associated color phasor noise. The discrete uni�ed noise associated with Φ is denoted
by Φu and is de�ned for all (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1} as

Φuj,k = |Γ⊤Γ|
1
2 cos (φj,k + φ̂) , (5.18)

where Γ and φ̂ denote the color Fourier atom and uni�ed phase shift de�ned in Eq. (4.8)
and Eq. (4.13), respectively. Assuming that the discrete monogenic signal of Φu, denoted
by Mu

Φ, can be approximated for all (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1} as

(Mu
Φ)j,k ≈ |Γ⊤Γ|

1
2 ei(φj,k+φ̂), (5.19)
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then it can be expected that the monogenic phase ϕ of the signal Φu is close to the phase
function inside the complex exponential, i.e., for all (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1},

ϕj,k ≈ φj,k + φ̂ [2π]. (5.20)

The two phase functions are then compared by using the discrete mean cosine di�erence,
i.e.,

MCD(Φ) =
1

MN

M−1∑
j=0

N−1∑
k=0

cos [φj,k + φ̂− ϕj,k] . (5.21)

Areas where the two phase functions do not coincide should then correspond to singulari-
ties. In the next sections, this process is applied to detect the singularities in synthesized
phasor noises and illustrate the impact of the parameters on their occurrence.

5.3.2 Impact of the scale and the frequency on the occurrence of singu-

larities

As shown in Section 4.2.4, the discrete phase function φ of a single Gabor noise is given
for all (j, k) ∈ {0 . . .M − 1} × {0 . . . N − 1} by

φj,k = bω (tj cosα+ tk sinα) + Ψj,k [2π]. (5.22)

In order to illustrate how comparing the original and monogenic phase functions highlights
the singularities occurring when b changes, �ve color phasor noises are synthesized with
b ∈ {1, . . . , 5}, the other parameters being M = N = 500, Tx = Ty = 0.002, p = 0.1,
ω = 30, α = π

6 , n = 1, AR = 0.3, AG = 0.2, AB = 0.1, φR = 0, φG = π
3 , φ

B = π
2

and Φ0 =
(
0.7 0.6 0.3

)⊤
. For each value of b, the synthesized phasor noise, the MCD

criterion and the cosine di�erence at each pixel are all given in Table 5.3. The white areas
correspond to cosine di�erence values close to 1, i.e., areas where the expected and mono-
genic phase functions are close, while the black areas correspond to cosine di�erence values
close to −1, i.e., areas where the expected and monogenic phase functions di�er from π.
As b increases, more singularities occur, which is re�ected in an increase of the number
of black areas at the corresponding pixels. However, the local rate of singularities do not
vary, which is re�ected in the high values of MCD and the stability of the overall aspect
of the image apart from the scale.

Of course, the MCD value varies randomly depending on the underlying Poisson and phase
shift processes. Generating m = 50 images for each bandwidth value gives an idea of how
the distribution of the MCD values changes when b increases. As can be seen in Figure
5.10, the MCD values may vary greatly for small values of b, but stabilize around 0.98
for higher values of b. This can be explained by the fact that singularities occurring in
a zoomed-in image (small value of b) have a higher impact on the overall regularity than
singularities occurring in a zoomed-out image (high value of b).

The impact of the frequency parameter ω is now studied. Table 5.4 shows the results ob-
tained from �ve color phasor noises synthesized with ω ∈ {10 + 5m,m ∈ {0, . . . , 4}}, the
other parameters being M = N = 500, Tx = Ty = 0.002, p = 0.1, b = 2, α = π

6 , n = 1,

AR = 0.3, AG = 0.2, AB = 0.4, φR = 0, φG = π
3 , φ

B = π
2 and Φ0 =

(
0.7 0.2 0.6

)⊤
. It

can be observed that singularities are more likely to occur in low frequency images than
in high frequency ones, which is re�ected in the reduction of the number of black areas as
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b 1 2 3 4 5

phasor
MCD 0.99 0.97 0.98 0.98 0.98

cosine di�.

Table 5.3: Link between the occurrence of singularities and the cosine di�erence for in-
creasing values of the scale parameter b, with M = N = 500, Tx = Ty = 0.002, p = 0.1,
ω = 30, α = π

6 , n = 1, AR = 0.3, AG = 0.2, AB = 0.1, φR = 0, φG = π
3 , φ

B = π
2 and

Φ0 =
(
0.7 0.6 0.3

)⊤
.

well as the increase of the MCD parameter. Notice how the reformulation of the Gabor
kernel enables a clear separation of scale and frequency aspects.

ω 10 15 20 25 30

phasor
MCD 0.87 0.92 0.95 0.96 0.98

cosine di�.

Table 5.4: Link between the occurrence of singularities and the cosine di�erence for in-
creasing values of the frequency ω, with M = N = 500, Tx = Ty = 0.002, p = 0.1,
b = 2, α = π

6 , n = 1, AR = 0.3, AG = 0.2, AB = 0.4, φR = 0, φG = π
3 , φ

B = π
2 and

Φ0 =
(
0.7 0.2 0.6

)⊤
.

Generatingm = 50 noises for each value of ω con�rms these observations. As the frequency
ω increases, fewer singularities occur, hence the steady increase of the MCD, as well as a
slight decrease of its variability. Notice that, in all these tests, the MCD criterion decreases
rapidly when the number of singularities rises. Even for MCD values between 0.9 and 0.95,
the image already looks damaged, which makes this criterion di�cult to interpret. Future
works should focus on bypassing this di�culty by introducing a more relevant criterion.



166 CHAPTER 5. THE COLOR PHASOR NOISE
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Influence of the scale parameter on the MCD

Figure 5.10: Boxplots of the MCD values for di�erent scale parameters.
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Influence of the frequency on the MCD

Figure 5.11: Boxplots of the MCD values for di�erent frequencies.

5.3.3 Case of a bidirectional phasor noise

Small values of θ imply fewer singularities occurring in the bidirectional Gabor noise
and a better estimation of the phase function by the monogenic tool, while the regu-
larity of the noise and the monogenic estimation of the phase both lose quality as θ in-
creases. In order to illustrate this, �ve color bidirectional phasor noises are synthesized with
θ ∈

{
m π

12 ,m ∈ {0, . . . , 4}
}
, the other parameters being M = N = 500, Tx = Ty = 0.002,

b = 2, p = 0.1, ω = 30, α = π
6 , n = 2, AR = 0.3, AG = 0.2, AB = 0.1, φR = 0, φG = π

3 ,

φB = π
2 and Φ0 =

(
0.3 0.5 0.7

)⊤
. For each value of θ, the synthesized phasor noise,

the MCD criterion and the cosine di�erence at each pixel are all given in Table 5.5. As
θ increases, the two underlying waves become more and more divergent, which rapidly
increases the number of singularities and makes the MCD drop. Notice that the cosine dif-
ferences only decrease in areas where singularities occur, which further con�rm the direct
link between the occurrence of singularities and the monogenic estimation of the phase
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function.

θ 0 π
12

π
6

π
4

π
3

phasor
MCD 0.98 0.96 0.93 0.84 0.73

cosine di�.

Table 5.5: Link between the occurrence of singularities and the cosine di�erence for in-
creasing values of the angular di�erence θ, with M = N = 500, Tx = Ty = 0.002, b = 2,
p = 0.1, ω = 30, α = π

6 , n = 2, AR = 0.3, AG = 0.2, AB = 0.1, φR = 0, φG = π
3 , φ

B = π
2

and Φ0 =
(
0.3 0.5 0.7

)⊤
.

Like the scale parameter b, the angular di�erence θ not only impacts the MCD values, but
also their distribution, as can be seen in Figure 5.12 which displays the boxplots of m = 50
bidirectional phasor noises for each value of θ. As θ increases, the MCD values drop, while
their variability strongly increases. This variability implies that even for higher values of θ,
the synthesized phasor noise may display few singularities. This is what happens in Figure
5.13. Despite being synthesized with θ = π

3 , this phasor noise has a regular structure,
which is re�ected in the high value of MCD (MCD = 0.98). Therefore, by providing an
e�cient measure of local and global regularity, the monogenic signal can be used to choose
the noise that displays enough local variability to look realistic, with a reduced number of
singularities.

0 0.26 0.52 0.79 1.05 1.31 1.57

angular difference

0.4

0.6

0.8

1

M
C

D

Influence of the angular difference on the MCD

Figure 5.12: Boxplots of the MCD values for di�erent angular di�erence.
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Figure 5.13: A bidirectional phasor noise displaying few singularities with θ = π
3 .

5.4 Conclusion

While Chapter 4 highlights the direct link between the color parameters of the elliptic
model and the color content of the generated texture, this chapter goes further by in-
troducing a monogenic-based technique to extract these parameters from a color image.
Though further studies would be necessary to improve this technique, the tests performed
on real color texture show that these elliptic color parameters can accurately describe color
oscillations. Similarly to the greyscale case tackled in Chapter 3, theoretical conditions on
the frequency content of the image are given to ensure the reliability of the monogenic
estimation.

Furthermore, this chapter makes substantial progress regarding the issue of local singular-
ities raised in (Tricard et al. 2019) thanks to the Riesz-based monogenic signal introduced
in (Larkin et al. 2001). While the occurrence of these singularities still cannot be avoided,
the monogenic signal provides an e�cient tool to measure the local regularity of the synthe-
sized noise, detect the singularities and hence quantify the global regularity of the image.
This technique is essentially based on the reliable estimation of local phase enabled by the
Riesz transform, whose relevance is supported both theoretically and numerically. This
further illustrates the importance of the phase function in analyzing the local structure of
the texture, which was already highlighted in (Kaseb et al. 2019).

The elliptic color model and monogenic-based detection of irregularities could now be ap-
plied to more general procedural noises. In (Tricard et al. 2019), sums of Gabor noises with
randomly generated frequencies and orientations are considered, which enables a greater
array of textures though still displaying singularities. Outside the �eld of pure procedu-
ral texture synthesis, this technique could also be applied to semi-procedural noises, i.e.,
data-driven texture synthesis techniques as found in, e.g., (Galerne et al. 2012, Guehl
et al. 2020). The ability of the monogenic signal to extract local features such as phase
and orientation would then be used not only after the synthesis as an evaluation tool, but
also in the analysis of the exemplar texture.

While this chapter focuses on marked Poisson processes, determinantal point processes
have become particularly used in machine learning (Kulesza & Taskar 2012) and image
processing (Launay, Desolneux & Galerne 2021) in the last decade due to the richer inter-
actions between the generated points they o�er. It could hence be interesting to generalize
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the results presented here to noises synthesized through more complex processes, and dis-
cuss the impact of the underlying point process on the generated texture.

Finally, this chapter only considers the case of constant color parameters AC and φC ,
C ∈ {R,G,B}. However, when dealing with real color textures, such parameters are more
likely to evolve along the pixels rather than remaining constant, hence the introduction
of dynamic color parameters in both the 1D and the 2D cases (Lilly 2011, Soulard &
Carré 2015). Applying the monogenic extraction of the color parameters described in
Section 5.1.2 to a real color texture clearly shows that these parameters are space-dependent
and cannot be considered constant global descriptors anymore, as can be seen in Figure
5.14. The histograms are only shown for the green channel but the other channels give
similar results. This probably explains why the color parameter extraction fails in the case
of the sand texture, as seen in Section 5.1.5.

Figure 5.14: Original image (left), green amplitude (middle) and green phase-shift (right).





Conclusion and perspectives

Conclusion

The main objective of this thesis was the introduction and extension of numerical descrip-
tors for color images, which can then be directly linked to their visual features. This was
done by merging image processing techniques from the �elds of signal processing, proba-
bilities and system identi�cation. The developments performed in the previous chapters
have studied the reliability of the parameters extracted through these techniques, as well
as their interpretation in terms of local feature characterization. Because the color content
of a texture is an inherently vectorial information (Soulard & Carré 2015), a particular
attention has also been paid on the non-marginal treatment of the color channels.

Widely used in 2D system identi�cation, the Roesser model is deeply studied from a color
image modeling point of view in Chapter 1, with a special focus on the subspace-based
estimation algorithm of the Roesser parameters introduced in (Ramos & Mercère 2018).
Besides its robustness, this algorithm is noteworthy for its purely vectorial treatment of
the color channels of the handled image, which provides a great advantage over marginal
techniques. Indeed, many works such as (Xu et al. 2015, Hosono et al. 2019) highlight
the crucial information contained in the correlations between the color channels, hence the
need to include them in the estimation process. Chapter 1 provides a brand-new interpre-
tation of the subspace-based estimation in terms of color covariance matrices, which places
it more clearly within the color texture framework.

This thesis also distances itself from the 2D ARMA models handled in, e.g., (Kokaram
2004, Köppel et al. 2015) in the way the innovation sequence is treated. As stated in
(Kailath et al. 2000), describing the innovation sequence as a white noise characterized by
its second-order statistics is not enough to fully describe its structural information. Besides
the colorimetric study of the subspace-based estimation algorithm, Chapter 1 shows how
some of the structural information of the image subsists in the innovation after the model
has been identi�ed. A direct consequence of this fact is that replacing the innovation with
a white noise sharing the same second-order statistics implies losing an important part of
the original structure in the reconstructed image. Such results suggest that properly char-
acterizing the innovation is as crucial as reliably estimating the parameters of the model.

The limits of the Roesser model in terms of local structure characterization is what has
motivated the use of other tools taken from the �eld of signal processing in Chapter 2.
Indeed, one of the biggest contributions of the monogenic signal (introduced in (Larkin
et al. 2001, Felsberg & Sommer 2001)) is the proper de�nition of a local phase function
to characterize the structural information of 2D images. Although this information was
already extracted by the Fourier phase (Oppenheim & Lim 1981), the fact that the mono-
genic phase is de�ned in the spatial domain rather than the frequency domain makes it
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easier to connect with the local features of the image. While, in theory, the monogenic
measures of phase and orientation are optimal for pure cosine waves only, Chapter 2 goes
further by studying the reliability of the monogenic phase and orientation extraction in the
case of more complex 2D deterministic waves. The theoretical and numerical results pro-
vided in this chapter show how both functions are still well estimated when the oscillations
contain more curves, under the condition that the oscillating patterns are explicit enough.
These results are then illustrated by extracting the phase function from real interferomet-
ric fringes, which extends the previous works dealing with the use of the Riesz transform
in �eld of interferometry such as (Larkin et al. 2001, Seelamantula et al. 2012, Kaseb
et al. 2019).

While Chapter 2 focuses on deterministic images only, Chapter 3 generalizes the reliability
of the monogenic phase extraction to random �elds displaying oscillating patterns, in or-
der to further enlarge its application scope. This extends the application of the monogenic
framework to stochastic images performed in (Olhede et al. 2014), though it focuses on the
characterization of directionality only. Because the phase function contains crucial struc-
tural information that is not encoded in any other signal extracted by the monogenic signal
(Felsberg & Sommer 2001), this motivates the study of the monogenic phase extraction in
the case of random �elds. Thus, Chapter 3 shows how the monogenic signal still provides a
reliable measure of both phase and orientation in this case, with numerical results to illus-
trate the theoretical study. Chapter 3 also further studies the use of the Riesz transform
to measure directionality. Introduced in (Olhede et al. 2014), the Riesz-based stochastic
structure tensor provides a reliable technique to extract the preferred orientation from ran-
dom �elds, but its original quaternionic formulation was masking some of its geometrical
aspects. In Chapter 3, the quaternionic formalism of (Olhede et al. 2014) is reformulated
in R3, which yields a more visual interpretation of the measure of directionality. The link
with more classical structure tensors is also made more explicit.

After highlighting the ability of the monogenic tool to extract the local features of greyscale
images in Chapters 2 and 3, Chapter 4 tackles color image characterization. The main
contribution of this chapter is the merging of the elliptic color model and the phasor
noise frameworks, respectively. While the 2D elliptic model (introduced in (Soulard &
Carré 2015)) provides a useful color generalization of the notions of amplitude and phase,
its theoretical developments only deal with deterministic color waves. Meanwhile, the
phasor noise (introduced in (Tricard et al. 2019)) enables the synthesis of a wide variety
of textures with prescribed frequency content, but no color model is included. Chapter 4
generalizes both models by de�ning a proper color phasor noise based on the elliptic model,
which allows the synthesis of stochastic color textures with both prescribed frequency and
color content, respectively. The ability of the model to encode the whole color information
of the texture in a small set of parameters is of particularly great interest for �elds such
as parametric texture characterization and texture synthesis.

The use of the elliptic parameters as descriptors for oscillating color textures is then inves-
tigated in Chapter 5. These parameters are estimated thanks to the monogenic signal, and
are then used to characterize the color content of the image. This technique hence provides
a fully spatial description of the color oscillations inside the RGB cube with a compact set
of parameters. Chapter 5 also tackles the occurrence of singularities in the phasor noise,
which was left for further studies in (Tricard et al. 2019). Because the structural infor-
mation of the noise is contained in its phase function, the key idea is to characterize the



5.4. CONCLUSION 173

singularities as jumps of π between the physical phase function and the estimated phase
measured by the monogenic signal. Synthetic tests show how this technique manages to
detect the singularities in the synthesized image, which yields a characterization of the
quality of its overall appearance. The e�ect of the parameters on the number of singulari-
ties in the image is also deeply studied, which opens the door for a better understanding
of their occurrence.

Perspectives

As stated in (Felsberg & Sommer 2001), the split of information between amplitude and
phase provided by the Riesz transform is orthogonal, which implies that the energy and
structure of the image are strictly separated. This ensures that the whole structural infor-
mation is encoded in the phase function, without interference from the energy. This local
measure is of particular interest in �elds such as interferometry, where the phase value
at each pixel can be linked to physical quantities (Robin et al. 2005, Kaseb et al. 2019).
However, being a 2D signal of the same size as the original image, the monogenic phase
is still di�cult to interpret. While this thesis deeply investigates the quality of the phase
extraction, no further analysis of the estimated phase is performed. An interesting per-
spective would hence be the de�nition of parameters to characterize the phase function,
similarly to the various indexes designed for the Fourier phase in (Kovesi 2000, Leclaire
& Moisan 2015). In these works, the local behavior of the Fourier phase is characterized
by a small set of indexes, and is then directly linked to the blurry aspect of the image, as
well as the detection of edges. De�ning similar tools for the local phase measured by the
monogenic signal would constitute an important step in the parametric characterization of
images.

Like the phase function in the case of oscillating textures, the innovation sequence of the
Roesser model is reliably extracted, and its structural information is heavily emphasized in
this thesis, but there still lacks a proper modeling of its content. The texture completion
detailed in Chapter 1 provides interesting results, but the innovation in the masked area
still has to be copied from available data, which is an important limitation. Future works
should hence focus on de�ning e�cient techniques to reconstruct the unknown parts of the
innovation sequence without relying on copy-pastes from the available innovation terms.
The use of the monogenic signal to characterize the structural and directional behavior of
this sequence could be a particularly interesting perspective.

The monogenic-based color texture analysis described in Chapter 5 also has to be further
developed. When applied to phasor noises, the color parameters and the ellipse are well
estimated by the monogenic signal, and provide a precise description of the richness of the
color content. However, the link between the ellipse and the color content is not as explicit
when real color textures are considered. Because such textures contain more complex pat-
terns, a possible solution is to make the color parameters space-dependent, as suggested in
(Soulard & Carré 2015). Assuming that the richness of the color content is not constant
in the whole image, this would yield an ellipse and a linearity value at each pixel, making
it more suitable for complex color patterns.

In the �eld of texture synthesis, the monogenic-based detection of singularities in the
phasor noise could also be further improved. Though the monogenic signal manages to
characterize the occurrence of singularities thanks to its measure of local phase, the overall
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regularity of the synthesized image is still di�cult to quantify. The MCD used in Chapter
5 gives a very partial idea of how the image actually looks, which suggests the introduction
of more relevant criteria. In (Tricard et al. 2020), the singularities of the phasor noise are
classi�ed by using a local measure involving the gradient of the phase function. Given the
strong links between the gradient and the Riesz transform (Felsberg & Sommer 2001), it
would hence be interesting to formally compare both approaches.

While the color generalization of the phase is widely discussed in Chapters 4 and 5, respec-
tively, no notion of color orientation is introduced in this work. Because the monogenic
signal provides a clear separation between energetical, structural and directional informa-
tion (Felsberg & Sommer 2001), this implies that parts of the information contained in the
image are still left unmodeled. A color extension of the Riesz-based structure tensor can
be found in (Soulard & Carré 2015), in which the three tensors of each color channels are
summed to form a single tensor, from which a uni�ed notion of orientation is extracted.
However, numerical tests suggest that it is equivalent to converting the color image into a
grey image and extracting the orientation from the corresponding scalar structure tensor.
A possible solution is to rely on Cli�ord algebras, as is done in (Demarcq et al. 2011).
This article goes back to the formal de�nition of the monogenic signal in (Felsberg &
Sommer 2001), which leads to the introduction of an R5-valued monogenic signal designed
for color images. A formal generalization of the angular signals such as the local phase
can then be performed by using this 5-dimensional vector. As already said in (Soulard
& Carré 2015) and recalled in Chapter 4, the main drawback of this approach is that
the local measures that it yields lack a clear physical interpretation. Future works could
hence focus on either introducing a proper notion of color orientation, or studying how the
5-dimensional monogenic signal can be used to describe the local features of a color image.

Finally, though this thesis introduces numerical descriptors for color textures, it does not
tackle the use of these quantities for image classi�cation. In the �eld of greyscale medical
imaging, (Alessandrini et al. 2013) have already used the monogenic signal and the phase
extraction that it provdes to analyze heart motion, with convincing results. However, as
stated in (Badano, Revie & Casertano 2015), the treatment of color information in medical
images is still an open question, and many widely used techniques lack proper standard-
ization. Subsequent works could hence focus on the application of the monogenic-based
extraction of structural and color features to medical image analysis. Because color plays a
signi�cant role in �elds such as digital microscopy, telemedicine and medical photography
(Badano et al. 2015), this would be a particularly interesting perspective.
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