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CONTENTS cela, nous avons utilisé l'approche elliptique des signaux oscillants multivariés, qui a pour avantage de fournir un lien direct entre ses paramètres et le contenu couleur de la texture générée. Un premier objectif était de dénir proprement un modèle de synthèse de texture couleur aléatoire, ce qui a été possible en fusionnant l'approche elliptique et les bruits de Gabor. Il en résultait un controle du contenu fréquentiel de l'image générée, mais aussi des couleurs présentes. L'outil monogène a ensuite été appliqué dans un but à la fois d'analyse et d'évaluation de la synthèse. Nous avons alors montré que le signal monogène fournissait un moyen able de caractériser la richesse du contenu couleur d'une texture stochastique.

Par ailleurs, dans le cadre de la synthèse de texture, la mesure de phase local a permis de dénir un critère de qualité de la texture couleur générée, notamment grâce à sa capacité à détecter les artéfacts.

Mot-clés

Résumé

Résumé en français

La thématique générale de cette thèse était la caractérisation paramétrique et stochastique de textures couleur. En traitement d'image, le terme texture renvoie de façon générale à toutes les propriétés structurelles d'une image, sa régularité, ses motifs, sa granulosité etc. L'objectif de l'analyse de texture est de caractériser numériquement ces propriétés, notamment à l'aide de modélisations déterministes ou stochastiques. Actuellement, on a souvent recours aux statistiques du second ordre pour caractériser les textures, mais cellesci se révèlent souvent insusantes pour décrire leur structure locale. L'objectif de la thèse était donc une caractérisation plus précise des textures, en s'appuyant sur des techniques issues du traitement du signal, des probabilités et de l'identication des systèmes. Une attention particulière a été portée au traitement de la couleur.

Un premier axe de recherche a consisté en l'utilisation d'algorithmes d'identication de modèle an de reconstruire les parties manquantes de textures couleur structurellement homogènes. Les paramètres du modèle étaient extraits des zones connues de la texture, puis un morceau de texture d'aspect similaire mais non directement copié des données disponibles était généré à partir de cette estimation an de combler la zone masquée. Un des atouts essentiels du modèle utilisé était son traitement des trois canaux couleur de l'image comme un vecteur dynamique et non trois signaux scalaires indépendants. En eet, nos résultats ont montré que cette approche vectorielle avait un impact direct sur la qualité de la reconstruction de la couleur.

Si cette approche a fourni des résultats pertinents dans la complétion de texture, elle ne parvenait qu'à capter la dynamique générale de l'image et échouait à en extraire sa structure locale. C'est ce qui a motivé l'utilisation de l'outil monogène, dont les mesures d'énergie, structure et orientation locales avaient déjà fait leurs preuves dans des domaines tels l'interférométrie, la démodulation d'hologramme ou l'imagerie médicale. Avant d'être appliqué à la couleur, le signal monogène a d'abord été étudié dans le cas scalaire, en particulier l'estimation locale de phase et d'orientation qu'il fournit. Nos travaux ont ainsi établi des résultats théoriques garantissant la abilité de l'extraction de ces grandeurs, aussi bien dans le cas de textures déterministes que de champs aléatoires. Le modèle utilisé pour générer des champs aléatoire était le bruit de Gabor, choisi pour le controle direct du contenu fréquentiel de la texture qu'il fournit. Dans les deux cas, déterministe et stochastique, l'application à des textures réelles conrmait les attentes de la théorie, à savoir la qualité de la caractérisation monogène de la structure locale dans le cas de textures contenant des motifs d'oscillation clairs.

Après avoir illustré la pertinence de l'outil monogène dans la caractérisation de la structure locale de textures grises, nous avons généralisé ces résultats à des textures couleur. Pour

Résumé en anglais

The general topic of this thesis was the parametric and stochastic characterization of color textures. In image processing, the term `'texture generally refers to all the structural properties of an image, its regularity, its patterns, its graininess, etc. The objective of texture analysis is to characterize these properties numerically, in particular using deterministic or stochastic models. Currently, second-order statistics are often used to characterize textures, but they often prove insucient to describe their local structure. The objective of the thesis was therefore a more precise characterization of textures, based on techniques from signal processing, probabilities and system identication. Particular attention has been paid to the treatment of color.

A rst line of research consisted in the use of model identication algorithms to reconstruct the missing parts of structurally homogeneous color textures. The model parameters were extracted from known areas of the texture, then a piece of texture that looked similar but not directly copied from the available data was generated from this estimate to ll in the masked area. One of the main advantages of the model used was its treatment of the three color channels of the image as a dynamic vector rather than three independent scalar signals. Indeed, our results showed that this vectorial approach had a direct impact on the quality of color reconstruction.

While this approach provided relevant results in texture completion, it only managed to capture the general dynamics of the image and failed to extract its local structure. This is what motivated the use of the monogenic tool, whose measurements of energy, structure and local orientation had already proved their worth in elds such as interferometry, hologram demodulation or medical imaging. Before being applied to color images, the monogenic signal was rst studied in the scalar case, in particular the local estimation of phase and orientation that it provides. Our work has thus established theoretical results that guarantee the reliability of the extraction of these quantities, both in the case of deterministic textures and random elds. The model used to generate random elds was the Gabor noise, chosen for the direct control of the frequency content of the texture it provides. In both deterministic and stochastic cases, the application to real textures conrmed the expectations of the theory, namely the quality of the monogeneous characterization of the local structure in the case of textures containing clear oscillation patterns.

After illustrating the relevance of the monogenic tool in the characterization of the local

Introduction

The word "texture", borrowed from Middle French, stems from the Latin verb "texere", which means "to weave". It was originally used to describe the feel or shape of a surface or substance, such as smoothness, roughness, softness, etc. The meaning of the word has widened over time, and now includes visual or sound aspects too. This work focuses on the case of color images, and the characterization of their visual properties. Indeed, when we look at an image, our brain is able to detect lots of its features such as an overall regularity, the presence of particular patterns, or the richness of its color content. This is what enables us to distinguish the two color textures displayed in Figure 1 clearly. However, from a numerical point of view, an image is just a table of pixels, with each pixel containing an intensity value. This makes the link between the values at each pixel and the structural information of the texture perceived by the brain dicult to grasp. The main objective of the parametric texture analysis tackled in this thesis is hence to characterize the visual properties of an image with a small number of parameters that quantify features such as the local regularity, the statistical behavior, the directionality, the color content, etc.
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Figure 1: Examples of color textures.

In the recent years, neural-network-based solutions for, e.g., color image denoising [START_REF] Zhang | Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[END_REF], segmentation [START_REF] Zhuang | Multichannel pulse-coupled-neural-networkbased color image segmentation for object detection[END_REF] and classication [START_REF] Yin | Quaternion convolutional neural network for color image classication and forensics[END_REF] have been widely used. These techniques usually give satisfactory results thanks to the ability of the neural networks to handle large data, but the parameters and the underlying process often lack explicitness [START_REF] Hosono | Weighted tensor nuclear norm minimization for color image restoration[END_REF]. Consequently, it is dicult to get numerical descriptors with a clear physical interpretation in terms of visual features from such techniques. This is what has oriented the scope of this thesis towards parametric texture analysis.

Among the parametric solutions available in the literature, the 2D ARMA models are CONTENTS particularly widespread [START_REF] Köppel | On the usage of the 2D-AR-model in texture completion scenarios with causal boundary conditions: A tutorial[END_REF]. The main idea is to model the texture as a dynamic spatial series characterized by a recursive equation and second order statistics. While interesting in many aspects, such solutions have big limits. The rst one is the lack of a proper color formulation. Indeed, 2D ARMA models are usually designed for scalar-valued images, while color images are vector-valued [START_REF] Soulard | Ondelettes analytiques et monogènes pour la représentation des images couleur[END_REF]. When dealing with color images, these models are either marginally applied to each of the three color channels, or applied to the luminance component of the image [START_REF] Köppel | On the usage of the 2D-AR-model in texture completion scenarios with causal boundary conditions: A tutorial[END_REF]. In both cases, the interdependency between the color channels is left unmodeled, which leads to the loss of crucial color information [START_REF] Xu | Vector sparse representation of color image using quaternion matrix analysis[END_REF].

Another limit is that the parameters of 2D ARMA models characterize the statistical behavior and dependency from the past, but fail to extract the local structure of the image. This is already true for 1D signals, as illustrated in Figure 2. The two time series have been generated from the same autoregressive model, but despite their identical statistical behavior (which is reected in their similar autocorrelation values), they have dierent trajectories, which the AR parameters cannot dierentiate. This suggests that the ARMA framework is not well-suited to characterize the local features of a signal, whether 1D or 2D. This thesis aims at bypassing these two limits by merging techniques from the elds of signal processing, probabilities and system identication, respectively. Indeed, all three domains have introduced useful tools to characterize the local features of color images [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF][START_REF] Galerne | Gabor noise by example[END_REF][START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF], but few works in the current literature focus on bridging the gaps between these dierent approaches, according to the authors' knowledge. In the whole study, a particular stress is put on the vectorial treatment of the color information. As said previously, the interdependency between the color channels play an important role in the color content of the texture, which suggests favoring vectorial techniques over marginal ones.

A rst step consists in applying alternatives to 2D ARMA models that are more suitable for vectorial signals. Widely used in the eld of system identication, the Roesser model, introduced in [START_REF] Roesser | A discrete-state-space model for linear image processing[END_REF]), provides a useful representation of 2D systems in general.

Though it was not designed for images specically, its relevance in the eld of image processing has been illustrated in numerous works in the last decades. In the more recent years, ecient algorithms have been introduced to estimate the parameters of the Roesser based on state-space representations [START_REF] Ramos | Image modeling based on a 2-D stochastic subspace system identication algorithm[END_REF][START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF], with a vectorial treatment of the components that makes them particularly interesting for color image processing. However, the current literature rarely emphasizes the advantages of such approaches in terms of color content, especially the role of the color correlations. In the further developments, the 2D system identication and color image processing frameworks are merged by performing a brand-new colorimetric study of the Roesser model and the state-space-based estimation algorithms.

While 2D state-space representations manage to capture the color information of an image, they still fail to extract some of its local features. Works such as [START_REF] Kailath | Linear Estimation[END_REF] have already highlighted the fact that, in both ARMA and Roesser models, the error term contains some structural information, and cannot be fully characterized by its second-order statistics. Additionally, by using spectral analysis, some studies performed in the last 20 years suggest that the information captured by the ARMA and Roesser parameters are linked to the Fourier modulus of the image, while the local structure is encoded in its Fourier phase [START_REF] Oppenheim | The importance of phase in signals[END_REF][START_REF] Leclaire | No-reference image quality assessment and blind deblurring with sharpness metrics exploiting fourier phase information[END_REF].

The main issue with the Fourier phase is that it is dened on the frequency domain, which makes it dicult to connect with the local features of the image. This urges the need to dene a local notion of phase.

In the 1D case, the Hilbert transform and the analytic signal have been widely used since the early 20th century to characterize the instantaneous behavior of a time signal [START_REF] Ville | Théorie et applications de la notion de signal analytique[END_REF][START_REF] Oswald | The theory of analytic band-limited signals applied to carrier systems[END_REF][START_REF] Picinbono | Time-frequency analysis[END_REF]. By extending the signal to the complex domain, the Hilbert transform yields notions of instantaneous amplitude and phase, which can be directly linked with the energy and structure of the signal at each time, respectively. There have been numerous attempts to generalize the analytic signal to 2D images in the 80s and 90s, but it was not until the early 2000s with the introduction of the monogenic signal that this goal was properly reached [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Felsberg | The monogenic signal[END_REF]. Based on the Riesz transform [START_REF] Riesz | Sur les fonctions conjuguées[END_REF], this technique yields notions of local amplitude, phase and orientation, which have since proved their relevance in the characterization of greyscale images in elds such as interferometry [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF], hologram demodulation [START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF], medical imaging [START_REF] Alessandrini | Myocardial motion estimation from medical images using the monogenic signal[END_REF], etc.

Nevertheless, some issues still require further investigations. Despite being used for a wide variety of images, the local measures provided by the monogenic signal are only optimal for 2D unidirectional images. For images with richer content, some works give conditions on the regularity of the amplitude and phase functions to ensure the quality of their respective monogenic estimations, but these conditions often lack precision. Furthermore, because the monogenic signal was originally designed for 2D deterministic oscillating waves, the current literature lacks formal studies of the monogenic extraction of the local features of random textures, according to the authors' knowledge. Finally, the generalization of the monogenic framework to color images is still an open question, though the last CONTENTS 10 years saw the emergence of interesting suggestions [START_REF] Demarcq | The color monogenic signal: application to color edge detection and color optical ow[END_REF][START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF].

In order to introduce new solutions for the aforementioned drawbacks and limits of the solutions available in the literature, this thesis will be divided in 6 chapters. Chapter 1 focuses on the use of the Roesser model to characterize and reconstruct color images.

The structure of the model and its main assumptions are rst discussed, especially the role of the innovation sequence. Its parameters are then estimated thanks to a reliable subspace-based algorithm introduced in [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF]. This step emphasizes the direct implication of the color covariances in the estimation process, which ensures that the color information is captured by the model. The benets of this approach are then illustrated by applying it to color texture completion. The purely vectorial subspacebased technique enables a better reconstruction of the color information when compared to marginal solutions, which conrms the importance of the color channel interdependency already highlighted in [START_REF] Soulard | Ondelettes analytiques et monogènes pour la représentation des images couleur[END_REF][START_REF] Xu | Vector sparse representation of color image using quaternion matrix analysis[END_REF][START_REF] Yin | Quaternion convolutional neural network for color image classication and forensics[END_REF][START_REF] Hosono | Weighted tensor nuclear norm minimization for color image restoration[END_REF] As said previously, the Roesser model fails to extract some of the local features contained in the image, which is left in the innovation sequence. This motivates the use of more suitable tools for local structure characterization, namely, the Riesz transform and the monogenic signal, tackled in Chapter 2. The rst part of the chapter recalls classical results of the 1D case, while pointing out some of the main issues regarding phase extraction. Then, the quality of the local measures provided by the monogenic tool is studied both theoretically and numerically in the case of 2D deterministic greyscale waves. Indeed, because the monogenic signal was originally designed for purely monochromatic waves [START_REF] Felsberg | The monogenic signal[END_REF], the reliability of its estimates is optimal only for such images [START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF]. The main contribution of this chapter is hence the formal study of how the Riesz transform deals with more complex patterns. The monogenic tool is then applied to real interferometric fringes to illustrate these theoretical results.

In practice, real textures may display stochastic features, unlike the purely deterministic images studied in Chapter 2. Consequently, Chapter 3 aims at extending the robustness of the monogenic estimates to random elds, which is a rarely treated subject in the current literature, according to the authors' knowledge. The developments of this chapter provide theoretical conditions to guarantee the quality of the monogenic extraction of both phase and orientation, respectively. The stochastic texture model used in this chapter is the Gabor noise, which is chosen for its ability to generated realistic textures displaying oscillating features [START_REF] Lagae | Filtering solid gabor noise[END_REF][START_REF] Galerne | Gabor noise by example[END_REF][START_REF] Gilet | Local random-phase noise for procedural texturing[END_REF][START_REF] Tricard | Procedural phasor noise[END_REF]. The application of the monogenic tool to real images shows how the underlying oscillating structure, as well the preferred direction of variation, are well extracted. Notice that Chapters 2 and 3 only deal with greyscale images, which is a necessary step before tackling color textures.

A proper color stochastic texture model, the color phasor noise, is introduced in Chapter 4 by merging the elliptic approach of multivariate signals found in [START_REF] Lilly | Modulated oscillations in three dimensions[END_REF][START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF] with the Gabor noise framework. Though works dealing with Gabor and phasor noises such as [START_REF] Galerne | Gabor noise by example[END_REF][START_REF] Tricard | Procedural phasor noise[END_REF]) include color textures, they do not dene any formal color model. The main advantage of color phasor noise introduced in this chapter is that the structural and color features are fully encoded in a small number of explicit parameters. This provides a full control over both the frequency and color content of the synthesized image, respectively. The elliptic representation also enables a useful visualization of color oscillation inside the RGB cube.

Chapter 5 then studies the use of the monogenic signal to characterize both the color and structural information of oscillating color textures. The theoretical and numerical developments show how the monogenic tool manages to extract the elliptic parameters from the image, from which an explicit description of its color content can be obtained. Focusing on the texture synthesis eld, this chapter also tackles the occurrence of singularities in synthesized phasor noises. Though already mentioned in [START_REF] Tricard | Procedural phasor noise[END_REF], this issue was left as an open problem for future works. Thanks to its reliable phase estimation, the monogenic signal successfully detects the singularities in the noise, which yields measures of its quality in terms of local regularity.

The last part of this thesis sums up the main contributions of the previous chapters in the eld of parametric texture analysis, and introduces a list of short term and long term perspectives.

CHAPTER 1

Subspace-based model learning 2D ARMA models have become standard techniques in the elds of image parametrization, image restoration and texture synthesis [START_REF] Ramos | Image modeling based on a 2-D stochastic subspace system identication algorithm[END_REF]. The key idea of this approach is to model each part of the image as a linear combination of surrounding pixels and independent errors occurring at each pixel [START_REF] Kokaram | A statistical framework for picture reconstruction using 2D AR models[END_REF][START_REF] Köppel | On the usage of the 2D-AR-model in texture completion scenarios with causal boundary conditions: A tutorial[END_REF].

The ARMA parameters can then be explicitly linked with the second-order statistics of the texture, which enables the generation of another piece of texture sharing the same statistical behavior as the original image [START_REF] Kokaram | A statistical framework for picture reconstruction using 2D AR models[END_REF].

Interestingly, many of the image modeling techniques available in the literature are designed for scalar signals [START_REF] Xu | Vector sparse representation of color image using quaternion matrix analysis[END_REF], and hence do not handle the vectorial nature of color textures. Some works like e.g., [START_REF] Li | Color-direction patch-sparsitybased image inpainting using multidirection features[END_REF][START_REF] Köppel | On the usage of the 2D-AR-model in texture completion scenarios with causal boundary conditions: A tutorial[END_REF], involve a shift from the RGB encoding to a luminance-chrominance base and apply scalar techniques to the luma and the luminance component, respectively, which puts the color information aside from the model. Other works like [START_REF] Mairal | Sparse representation for color image restoration[END_REF] tackle this problem by putting constraints on the three color components, but again, a signicant part of the color structure is lost [START_REF] Xu | Vector sparse representation of color image using quaternion matrix analysis[END_REF]. In many cases, such scalar approaches lead to the apparition of color artifacts in the synthesized texture, i.e., colors that do not appear in the original texture and damage the visual aspect of the synthesis [START_REF] Soulard | Ondelettes analytiques et monogènes pour la représentation des images couleur[END_REF][START_REF] Xu | Vector sparse representation of color image using quaternion matrix analysis[END_REF]. Though color regularization algorithms exist to eliminate such artifacts, such as in [START_REF] Ono | Color-line regularization for color artifact removal[END_REF], this is an a posteriori treatment, and the color structure of the image is still not included in the model.

Meanwhile, many works such as [START_REF] Chierchia | A nonlocal structure tensor-based approach for multicomponent image recovery problems[END_REF][START_REF] Xu | Vector sparse representation of color image using quaternion matrix analysis[END_REF][START_REF] Yin | Quaternion convolutional neural network for color image classication and forensics[END_REF][START_REF] Hosono | Weighted tensor nuclear norm minimization for color image restoration[END_REF] highlight the benets of a vectorial treatment of the color components in the context of image processing. This is due to the fact that color textures are 3D objects living inside the RGB cube with correlated components rather than three independent scalar signals [START_REF] Xu | Vector sparse representation of color image using quaternion matrix analysis[END_REF]. This is illustrated in Figure 1.1 where a sand texture and its trajectory inside the RGB cube are represented, respectively. The geometrical shape of this trajectory shows that the three color components do not vary independently, which is conrmed by its empirical covariance matrix Λ

given by Λ =   0.0266 0.0118 -0.003 0.0118 0.0084 0.0047 -0.003 0.0047 0.124

  (1.1)
Many of the non-diagonal coecients of Λ have the same order of magnitude as the di-agonal coecients, and neglecting them necessarily implies a loss of information. Such observations explain why treating the color channels marginally implies losing the color structure of the original texture partially, and suggest that a color model has to take these correlations into account in order to be ecient. Of course vectors are usually more dicult to handle than real numbers, which makes the generalization of greyscale techniques to color textures particularly complex. The benets of 2D ARMA-based parametrical representations [START_REF] Köppel | On the usage of the 2D-AR-model in texture completion scenarios with causal boundary conditions: A tutorial[END_REF]) can be extended to vectorial signals by relying on state space representations such as the Roessel model introduced in [START_REF] Roesser | A discrete-state-space model for linear image processing[END_REF]. Though not originally designed for color images specically, this model gives good results in image restoration [START_REF] Ramos | Image modeling based on a 2-D stochastic subspace system identication algorithm[END_REF], and ecient algorithms exist to estimate its parameters [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF]. Furthermore, like the ARMA models handled in [START_REF] Kokaram | A statistical framework for picture reconstruction using 2D AR models[END_REF][START_REF] Köppel | On the usage of the 2D-AR-model in texture completion scenarios with causal boundary conditions: A tutorial[END_REF] in the greyscale case, it provides a direct link between the statistical behavior of the analyzed 2D signal and the parameters [START_REF] Ramos | Image modeling based on a 2-D stochastic subspace system identication algorithm[END_REF][START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF]. Unlike the previously discussed marginal techniques, one of the main advantages of the algorithm introduced in (Ramos & Mercère 2018) is its purely vectorial treatment of multichannel signals, thanks to the use of Hankel matrices. However, most works related to the Roesser model do not interpret its parameters in terms of color structure, and, as a result, the benets of its non-marginal treatment of the color components are not highlighted. This chapter hence introduces a brand new colorimetric study of the Roesser model and the estimation algorithm presented in [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF]. The main purpose is to show how the color structure of the image is fully encoded in the Roesser parameters.

The rest of the chapter is organized as follows. The Roesser model and its parameters are rst presented in Section 1.1. After the introduction of some useful operators in Section 1.2, the algorithm used to estimate the parameters of the model is detailed in Section 1.3.

The colorimetric study of the Roesser model and the estimation algorithm introduced in Section 1.4 then show how the color structure is preserved during the estimation process, which makes this model of particular interest compared to scalar solutions available in the literature. The Roesser model is nally applied to texture completion in Section 1.5, which further illustrates the benets of its vectorial treatment of the color channels.

1.1. SUBSPACE-BASED MODEL IDENT. FOR 2D VECT. SIGNALS

Subspace-based model identication for 2D vectorial signals

This section recalls the basic equations and assumptions of the Roesser model as dened in [START_REF] Roesser | A discrete-state-space model for linear image processing[END_REF]. A brand new colorimetric interpretation of the model is then introduced.

The Roesser model

Let Y denote a stochastic hypermatrix of R M ×N ×ny , with (M, N, n y ) ∈ (N * ) 3 . For all (r, s) ∈ {0, . . . , M -1} × {0, . . . , N -1}, the vectorial components of Y are denoted by y r,s ∈ R ny . In practice, if the data matrix Y is a color image, then n y = 3. The case of n y = 1 corresponds to greyscale images. The 1D state-space model detailed, e.g., in [START_REF] Overschee | Subspace identication for linear systems. Theory, implementation, applications[END_REF][START_REF] Katayama | Subspace methods for system identication[END_REF], can then be generalized to 2D systems by use of the Roesser model introduced in [START_REF] Roesser | A discrete-state-space model for linear image processing[END_REF]). This model is dened for all (r, s) ∈ {0, . . . , M -1} × {0, . . . , N -1}, (M, N ) ∈ N 2 , by

      
x h r+1,s = A 1 x h r,s + A 2 x v r,s + K 1 e r,s , x v r,s+1 = A 3 x h r,s + A 4 x v r,s + K 2 e r,s , y r,s = C 1 x h r,s + C 2 x v r,s + e r,s ,

(1.2a)

(1.2b)

(1.2c) where x h r,s ∈ R n h and x v r,s ∈ R nv are the horizontal and vertical state vectors, respectively, e r,s ∈ R ny is the innovation vector [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF], while A 1 , A 2 , A 3 , A 4 , C 1 , C 2 , K 1 and K 2 are matrices of appropriate dimensions corresponding to the model parameters to be estimated. In this approach, the image Y is hence modeled as the output of a system governed by Eq. (1.2) and excited by the input sequence (e r,s ) r,s (see Figure 1.2). The state variables x h r,s and x v r,s can be seen as the memory of the underlying system at the pixel (r, s), i.e., the impact of the previous pixels on the pixel (r, s) [START_REF] Kailath | Linear Estimation[END_REF].

Figure 1.2: Input, system and output of the Roesser model.

2D Recursion

Unlike the case of 1D recursion, dening notions of previous and following pixels, respectively, is not trivial. A notable feature of the Roesser model given in Eq. (1.2) is that the horizontal and vertical state variables do not share the same pixel order. Indeed, for all (r, s) ∈ {0, . . . , M -1}×{0, . . . , N -1}, the term coming after x h r,s is x h r+1,s , while the term coming after x v r,s is x v r,s+1 . A rst consequence of this feature is that both variables require dierent types of initial conditions. More precisely, the whole rst line of x h , i.e., (x h 0,s ) s , and the whole rst column of x v , i.e., (x v r,0 ) r , must be known to perform the recursion. Assuming that the innovation sequence e is already generated, the state variables are computed as follows. The initial conditions and the innovation terms are displayed in black to distinguish them from the terms calculated during the process, which are displayed in color. Notice however that the colors are chosen randomly and are used to quickly identify the involved terms, but have no link with the color content of the image.

Step 1 :

x h 1,0 = A 1 x h 0,0 + A 2 x v 0,0 + K 1 e 0,0 , x v 0,1 = A 3 x h 0,0 + A 4 x v 0,0 + K 2 e 0,0 , x h 1,1 = A 1 x h 0,1 + A 2 x v 0,1 + K 1 e 0,1 , x v 1,1 = A 3 x h 1,0 + A 4 x v 1,0 + K 2 e 1,0 .
(1.3)

Step 2 :

x h 2,0 = A 1 x h 1,0 + A 2 x v 1,0 + K 1 e 1,0 , x v 0,2 = A 3 x h 0,1 + A 4 x v 0,1 + K 2 e 0,1 , x h 2,1 = A 1 x h 1,1 + A 2 x v 1,1 + K 1 e 1,1 , x v 2,1 = A 3 x h 2,0 + A 4 x v 2,0 + K 2 e 2,0 , x h 1,2 = A 1 x h 0,2 + A 2 x v 0,2 + K 1 e 0,2 , x v 1,2 = A 3 x h 1,1 + A 4 x v 1,1 + K 2 e 1,1 , x h 2,2 = A 1 x h 1,2 + A 2 x v 1,2 + K 1 e 1,2 , x v 2,2 = A 3 x h 2,1 + A 4 x v 2,1 + K 2 e 2,1
.

(1.4)

. . . This process is repeated until the two state variables are fully computed inside the square {0, . . . , min(M, N ) -1} 2 . Assuming for example that M < N , the remaining values of the rectangle {0, . . . , M -1} × {M, . . . , N -1} can nally be calculated.

Stochastic assumptions

The 2D process (y r,s ) r,s is assumed to be stationary. This may seem to be a strong assumption, but in practice, the Roesser model still gives good results when this assumption is mildly violated [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF]. From a more practical point of view, this requires the processed image to display some structural homogeneity [START_REF] Köppel | On the usage of the 2D-AR-model in texture completion scenarios with causal boundary conditions: A tutorial[END_REF].

The innovation process (e r,s ) r,s is assumed to be a zero-mean white noise, with its covariance matrix denoted by R ∈ R ny×ny . Section 1.1.4 details the role of this sequence in the model. Given the fact that e r,s has the same dimension as y r,s (see Eq. (1.2c)), it can also be interpreted as a color image in the special case of n y = 3. The coecients of the matrix R can hence be seen as color covariances that characterize the color content of the innovation term. The horizontal and vertical state processes (x h r,s ) r,s and (x v r,s ) r,s are also assumed to be stationary and zero-mean, with their covariance matrices denoted by Π h and Π v , respectively. In [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF], further assumptions are made on the non-correlation of the state variables, i.e.,

E

x h r,s

x v r ′ ,s ′ x h r,s ⊤ x v r ′ ,s ′ ⊤ = Π h 0 n h ×nv 0 nv×n h Π v (1.5)
for all (r, r ′ , s, s ′ ) ∈ N 4 . As seen in Section 1.3, this condition is crucial for the estimation of the state sequences. Notice that unlike R, the matrices Π h and Π v do not contain color covariances, as the state variables do not necessarily have the same dimension as y r,s (see Eq. (1.2a) and (1.2b), respectively). If the system orders n h and n v are seen as the number of horizontal and vertical inner variables of the image, respectively, the coecients of Π h and Π v then quantify the degree interdependence between these variables.

The innovation sequence

For each (r, s) ∈ {0, . . . , M -1} × {0, . . . , N -1}, the term e r,s is called the innovation because it is the part of y r,s that is not determined by the previous data (see Chapter 4 in [START_REF] Kailath | Linear Estimation[END_REF]). In other words, it is the new information brought at the pixel (r, s).

In many works dealing with ARMA models, the innovation sequence e r,s is only described in terms of second-order statistics [START_REF] Köppel | On the usage of the 2D-AR-model in texture completion scenarios with causal boundary conditions: A tutorial[END_REF]. However, as shown in [START_REF] Kailath | Linear Estimation[END_REF], knowing the variance of e r,s is not enough to fully characterize it. Despite being a white noise, the innovation sequence is directly linked with the available data y r,s , which makes it unique, and thus crucial in the reconstruction of y r,s [START_REF] Kailath | Linear Estimation[END_REF].

Consequently, once the parameters of the Roesser model and the second order statistics of the innovation are estimated, generating a white noise from these estimated statistics and using it as an input sequence in the model cannot yield a satisfactory reconstruction of the output sequence y r,s , which is highlighted in Section 1.3.5 with practical examples.

While this chapter does not provide a full characterization of the innovation, this suggests that subsequent works dealing with parametric image modeling should put more emphasis on the information contained in this sequence. Before detailing the algorithm developed in [START_REF] Ramos | Image modeling based on a 2-D stochastic subspace system identication algorithm[END_REF] to identify the parameters of the Roesser model, some useful matrix operators and their properties are introduced in Section 1.2.

1.2 Matrix operators for subspace-based identication

Matrix stacking and Hankel matrices

In subspace-based identication, the basic equations of the model, given by Eq. (1.2), are rewritten as matrix products through recursion [START_REF] Katayama | Subspace methods for system identication[END_REF][START_REF] Ramos | Image modeling based on a 2-D stochastic subspace system identication algorithm[END_REF]. Similarly to what is done in [START_REF] Ramos | Image modeling based on a 2-D stochastic subspace system identication algorithm[END_REF][START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF], block matrices are introduced to make the equations more compact in the subsequent developments. Let (u r,s ) r,s be a 2D vectorial series, where each u r,s , (r, s) ∈ N 2 , is a column vector of R nu , n u ∈ N * . In the subsequent developments of Section 1.3, u is equal to y, x h ,x v or e, respectively. The nite column stacked vector is dened for all n ∈ N + *

as cstack{u k,ℓ , u k+n-1,ℓ } = u ⊤ k,ℓ • • • u ⊤ k+n-1,ℓ ⊤ ∈ R nnu×1 .
(1.6)

Likewise, the nite row stacked matrix is dened as

CHAPTER 1. SUBSPACE-BASED MODEL LEARNING rstack{u k,ℓ , u k+n-1,ℓ } = u k,ℓ • • • u k+n-1,ℓ ∈ R nu×n .
(1.7)

The Hankel matrix, which is also crucial in subspace-based identication [START_REF] Katayama | Subspace methods for system identication[END_REF][START_REF] Ramos | Image modeling based on a 2-D stochastic subspace system identication algorithm[END_REF], is dened as

hankel{u k,ℓ , u k+n+j-2,ℓ , n, j} =      u k,ℓ u k+1,ℓ • • • u k+j-1,ℓ u k+1,ℓ u k+2,ℓ • • • u k+j,ℓ . . . . . . . . . . . . u k+n-1,ℓ u k+n,ℓ • • • u k+n+j-2,ℓ      ∈ R nnu×j , (1.8)
where n is the number of row blocks and j is the number of columns, respectively. Using matrices A, B, C and D of appropriate dimensions, the extended controllability-like matrix is dened for all ℓ ∈ N + * as crtb{A, B, ℓ}

= A ℓ-1 B • • • AB B ,
(1.9) the extended observability-like matrix as

obsv(A, B, ℓ) =      B BA . . . BA ℓ-1      , (1.10)
and the block lower-triangular Toeplitz matrix as

toep{A, B, C, D, ℓ} =      D 0 • • • 0 CB D • • • 0 . . . . . . . . . . . . CA ℓ-2 B • • • CB D     
.

(1.11)

Oblique projection

Similarly to what is done in the 1D case, oblique projections are at the core of 2D subspacebased identication [START_REF] Katayama | Subspace methods for system identication[END_REF][START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF]. This section aims at presenting some basic properties of oblique projections that are useful in the estimation of the state sequence detailed in Section 1.3.3. Let M, N and P be matrices of appropriate dimensions. The oblique projection of the row space of M on the row space of P along the row space of N, denoted by M/ N P, is dened by [START_REF] Horn | Matrix analysis[END_REF])

M/ N P = MΠ ⊥ N P ⊤ PΠ ⊥ N P ⊤ -1 P, (1.12)
where the orthogonal projection Π ⊥ N is dened by

Π ⊥ N = I -Π N = I -N ⊤ NN ⊤ -1 N.
(1.13)

A rst property is that the projection of N on P along N is the null matrix. Indeed,

NΠ ⊥ N = N I -N ⊤ NN ⊤ -1 N = N -NN ⊤ NN ⊤ -1 I N = 0, (1.14) which implies that N/ N P = NΠ ⊥ N 0 P ⊤ PΠ ⊥ N P ⊤ -1 P = 0.
(1.15)

Another property is that P is invariant with respect to the projection on P. Indeed,

P/ N P = PΠ ⊥ N P ⊤ PΠ ⊥ N P ⊤ -1 I P = P.
(1.16)

Now that the oblique projections are introduced, the subspace-based estimation algorithm presented in [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF]) can be detailed, with a special focus on the treatment of the color content of the original image.

Estimation algorithm 1.3.1 General idea

In practice, only the output sequence y is available, while the state sequences x h and x v , the innovation sequence e, as well as the parameters

A 1 , A 2 , A 3 , A 4 , C 1 , C 2 , K 1 and K 2 ,
have to be estimated. Assuming that the state variables have been estimated, the Roesser model dened in Eq. (1.2) can be seen as a linear regression of the dependent variable y on the regressors x h and x v . In this case, the parameters of the model can be extracted by using ordinary least squares, the innovation sequence being the residuals of this linear model [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF]. For this to be possible, the state sequences are estimated thanks to oblique projections involving available data only, as done in [START_REF] Overschee | Subspace identication for linear systems. Theory, implementation, applications[END_REF][START_REF] Katayama | Subspace methods for system identication[END_REF] in the 1D case and [START_REF] Ramos | Image modeling based on a 2-D stochastic subspace system identication algorithm[END_REF][START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF] in the 2D case. The 2D subspace-based algorithm of [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF] can thus be summed up as follows.

Step 1 : express the state sequences x h and x v as a combination of available data through oblique projections.

Step 2 : estimate the matrices A 1 , A 2 , A 3 , A 4 , C 1 and C 2 by using ordinary least squares.

Step 3 : estimate the innovation sequence e as the residuals of the previous linear model.

Step 4 : estimate the matrices K 1 and K 2 by solving standard Riccati equations [START_REF] Overschee | Subspace identication for linear systems. Theory, implementation, applications[END_REF].

Each of these steps are detailed in the next sections.

Horizontal and vertical data equations

In order to generalize the algorithm of the 1D case (see [START_REF] Katayama | Subspace methods for system identication[END_REF][START_REF] Overschee | Subspace identication for linear systems. Theory, implementation, applications[END_REF]) to 2D images, the same processes are applied to each row and each column of the data matrix Y, respectively. Indeed, if ℓ ∈ {0, . . . , N -1} denotes a xed column index, then the horizontal equations given by

x h r+1,ℓ = A 1 x h r,ℓ + A 2 x v r,ℓ + K 1 e r,ℓ , y r,ℓ = C 1 x h r,ℓ + C 2 x v r,ℓ + e r,ℓ
.

(1.17) can be seen as a 1D state-space representation (with respects to r) with two input vectors x v r,ℓ and K 1 e r,ℓ , one state vector x h r,ℓ , one output vector y r,ℓ and an innovation term e r,ℓ .

From this state-space form, standard recursions encountered in subspace-based identication for 1D models can be applied (see, e.g., [START_REF] Katayama | Subspace methods for system identication[END_REF]). Indeed, by applying Eq.

(1.17) successively, y r,ℓ can be expressed for all r ∈ {1, . . . M -1} as

y r,ℓ = C 1 x h r,ℓ + C 2 x v r,ℓ + e r,ℓ , = C 1 A 1 x h r-1,ℓ + C 1 A 2 x v r-1,ℓ + C 2 x v r,ℓ + C 1 K 1 e r-1,ℓ + e r,ℓ , = C 1 A 2 1 x h r-2,ℓ + C 1 A 1 A 2 x v r-2,ℓ + C 1 A 2 x v r-1,ℓ + C 2 x v r,ℓ + C 1 A 1 K 1 e r-2,ℓ + C 1 K 1 e r-1,ℓ + e r,ℓ , = C 1 A 3 1 x h r-3,ℓ + C 1 A 2 1 A 2 x v r-3,ℓ + C 1 A 1 A 2 x v r-2,ℓ + C 1 A 2 x v r-1,ℓ + C 2 x v r,ℓ + C 1 A 2 1 K 1 e r-3,ℓ + C 1 A 1 K 1 e r-2,ℓ + C 1 K 1 e r-1,ℓ + e r,ℓ , = . . . , = C 1 A r 1 x h 0,ℓ + C 1 r k=1 A k-1 1 A 2 x v r-k,ℓ + C 2 x v r,ℓ + C 1 r k=1 A k-1 1 K 1 e r-k,ℓ + K 1 e r,ℓ
.

(1.18)

The sums can then be rewritten as block matrix products, leading to

y r,ℓ = C 1 A r 1 x h 0,ℓ + C 1 A r-1 1 A 2 . . . C 1 A 1 A 2 C 2    x v 0,ℓ . . . x v r,ℓ    + C 1 A r-1 1 K 1 . . . C 1 A 1 K 1 I ny    e 0,ℓ . . . e r,ℓ    . (1.19)
This is exactly where the block matrices introduced in Section 1.2.1 are involved. Let i and j be two integer indices such that 2i + j -2 = min{M -1, N -1}. This condition is imposed on the indices i and j in order to include the greatest amount of data in the process. This constraint notably implies that the greater i is, the smaller j becomes, and vice-versa. Applying Eq. (1.19) to all r ∈ {0, . . . , 2i + j -2} and stacking all the equations in block matrices leads for all ℓ ∈ {0, . . 

Y h p (ℓ) = Γ h p X h p (ℓ) + G vh p X vh p (ℓ) + H h p E h p (ℓ), Y h f (ℓ) = Γ h f X h f (ℓ) + G vh f X vh f (ℓ) + H h f E h f (ℓ), (1.20)
where

Y h p (ℓ) = hankel{y 0,ℓ , y i+j-2,ℓ , i, j}, X h p (ℓ) = rstack{x h 0,ℓ , x h j-1,ℓ }, X vh p (ℓ) = hankel{x v 0,ℓ , x v i+j-2,ℓ , i, j}, E h p (ℓ) = hankel{e 0,ℓ , e i+j-2,ℓ , i, j}, Y h f (ℓ) = hankel{y i,ℓ , y 2i+j-2,ℓ , i, j}, X h f (ℓ) = rstack{x h i,ℓ , x h i+j-1,ℓ }, X vh f (ℓ) = hankel{x v i,ℓ , x v 2i+j-2,ℓ , i, j}, E h f (ℓ) = hankel{e i,ℓ , e 2i+j-2,ℓ , i, j}, (1.21)
while, for n ∈ {f, p},

Γ h n = obsv{A 1 , C 1 , i}, G vh n = toep{A 1 , A 2 , C 1 , C 2 , i}, H h n = toep{A 1 , K 1 , C 1 , I ny , i}.
(1.22)

Notice that unlike the 1D case where the time variable clearly denes notions of past and future, these notions must be dened arbitrarily in the case of 2D images. Usually, the horizontal space variable is assumed to evolve from top to bottom, while the vertical space variable is assumed to evolve from left to right, which is consistent with the recursive equations that dene of the horizontal and vertical states, respectively. With this convention, the rst and second lines of Eq. (1.20) are called past and future equations, respectively, hence the indices p and f . The parameter i is an integer that corresponds to the maximal order of the recursions performed to obtain the past and future equations. In theory, this tuning parameter must be chosen so that rank conditions like the one given by Eq. (1.45) is satised. In practice, i is chosen large enough to guarantee that i >> {n h , n v }. As shown in Section 1.5, selecting i = 20 for the tested images is sucient to get good results.

Notice that, at this stage, the color components of the data vectors y r,s are only stacked inside block matrices but not mixed yet. Indeed, in the special case of n y = 3, by using Eq. (1.8), the future Hankel matrix Y h f (ℓ) can be written for all ℓ ∈ {0, . . . , N -1} as

Y h f (ℓ) =      y i,ℓ y i+1,ℓ • • • y i+j-1,ℓ y i+1,ℓ y i+2,ℓ • • • y i+j,ℓ . . . . . . . . . . . . y 2i-1,ℓ y 2i,ℓ • • • y 2i+j-2,ℓ      =             y R i,ℓ y R i+1,ℓ • • • y R i+j-1,ℓ y G i,ℓ y G i+1,ℓ • • • y G i+j-1,ℓ y B i,ℓ y B i+1,ℓ • • • y B i+j-1,ℓ . . . . . . . . . . . . y R 2i-1,ℓ y R 2i,ℓ • • • y R 2i+j-2,ℓ y G 2i-1,ℓ y G 2i,ℓ • • • y G 2i+j-2,ℓ y B 2i-1,ℓ y B 2i,ℓ • • • y B 2i+j-2,ℓ             ; (1.23)
where for all r ∈ {i, . . . , 2i + j -2}, the scalars y R r,ℓ , y G r,ℓ and y B r,ℓ denote the red, blue and green components of the vector y r,ℓ , respectively. Figure 1.3 shows an example of how the future Hankel matrix is built for ℓ = 10 and M = N = 180. This process is repeated for all ℓ ∈ {0, . . . , N -1}. In each case, the past Hankel matrix is built from the rectangular zone between the pixels (0, ℓ) and (159, ℓ), while the future Hankel matrix is built from the rectangular zone between the pixels (20, ℓ) and (179, ℓ).

Original image

Stacked image

Hankel matrix of the 10th column The same procedures are now applied to the rows of the data matrix Y. Indeed, if ℓ ∈ {0, . . . , M -1} denotes a xed row index, then the vertical equations given by

x v ℓ,s+1 = A 3 x h ℓ,s + A 4 x v ℓ,s + K 2 e ℓ,s , y ℓ,s = C 1 x h ℓ,s + C 2 x v ℓ,s + e ℓ,s
.

(1.24) can be seen as a 1D state-space representation (with respects to s). 

Y v p (ℓ) = Γ v p X v p (ℓ) + G hv p X hv p (ℓ) + H v p E v p (ℓ), Y v f (ℓ) = Γ v f X v f (ℓ) + G hv f X hv f (ℓ) + H v f E v f (ℓ), (1.25)
where

Y v p (ℓ) = hankel{y ℓ,0 , y ℓ,i+j-2 , i, j}, X v p (ℓ) = rstack{x v ℓ,0 , x v ℓ,j-1 }, X hv p (ℓ) = hankel{x h ℓ,0 , x h ℓ,i+j-2 , i, j}, E v p (ℓ) = hankel{e ℓ,0 , e ℓ,i+j-2 , i, j}, Y v f (ℓ) = hankel{y ℓ,i , y ℓ,2i+j-2 , i, j}, X v f (ℓ) = rstack{x v ℓ,i , x v ℓ,i+j-1 }, X hv f (ℓ) = hankel{x h ℓ,i , x h ℓ,2i+j-2 , i, j}, E v f (ℓ) = hankel{e ℓ,i , e ℓ,2i+j-2 , i, j}, (1.26)
while, for n ∈ {f, p},

Γ v n = obsv{A 4 , C 2 , i}, G hv n = toep{A 4 , A 3 , C 2 , C 1 , i}, H v n = toep{A 4 , K 2 , C 2 , I ny , i}.
(1.27)

State sequence estimation and projection of the future on the past

Focusing on the horizontal data equations given by Eq. (1.20), the key idea of subspacebased algorithms is the projection of the future data on the past data to get an estimation of the state sequence, i.e., the values of x h r,s and x v r,s , for (r, s) ∈ {i, . . . , i + j -1} 2 . To do so, the future state vector X h f (ℓ) is rst expressed as a linear combination of the past state vector X vh p (ℓ) and the past data vector Y h p (ℓ), with ℓ ∈ {0, . . . , N -1}. The rst step consists in expressing the innovation term for all (r, s) ∈ {0, . . . , M -1} × {0, . . . , N -1}

as e r,ℓ = y r,ℓ -C 1 x h r,ℓ -C 2 x v r,ℓ .
(1.28)

Notice how this equation is consistent with the interpretation of the variables given in Section 1.1. Indeed, e r,ℓ is expressed as the dierence between the available data at the pixel (r, ℓ), y r,ℓ , and the memory of the previous pixels represented by the terms C 1 x h r,ℓ and C 2 x v r,ℓ , which illustrates how e r,ℓ contains the new information brought at the pixel (r, ℓ), i.e., the innovation. Focusing again on the estimation algorithm, the horizontal 1D system given by Eq. (1.24) can then be equivalently rewritten for all ℓ ∈ {0, . . . , N -1} as

x h r+1,ℓ = A 1 x h r,ℓ + A 2 x v r,ℓ + K 1 y r,ℓ , y r,ℓ = C 1 x h r,ℓ + C 2 x v r,ℓ + e r,ℓ , (1.29) 
where

A 1 = A 1 -K 1 C 1 and A 2 = A 2 -K 2 C 2 .
(1.30)

By applying standard recursions, as done in, e.g., [START_REF] Peternell | Statistical analysis of novel subspace identication methods[END_REF], x h r,ℓ can be expressed with the past data as

x h r,ℓ = A i 1 x h r-i,ℓ + i k=1 A k-1 1 A 2 x v r-k,ℓ + i k=1 A k-1 1 K 1 y r-k,ℓ , = A i 1 x h r-i,ℓ + Φ vh p x v p (r, ℓ) + L h p y p (r, ℓ), (1.31)
where [START_REF] Horn | Matrix analysis[END_REF]) for details about vector and matrix norms) leads to

Φ vh p = crtb{ A 1 , A 2 , i}, L h p = crtb{ A 1 , K 1 , i}, x v p (r, ℓ) = cstack{x v r-i,ℓ , x v r-1,ℓ }, y p (r, ℓ) = cstack{y r-i,ℓ , y r-1,ℓ }. (1.32) If ∥ • ∥
x h r,ℓ -Φ vh p x v p (r, ℓ) -L h p y p (r, ℓ) 2 = A i 1 x h r-i,ℓ 2 , ≤ A 1 i 2 x h r-i,ℓ 2 , = λ i max x h r-i,ℓ 2 , (1.33)
where λ max denotes the greatest eigenvalue of A 1 . By denition of the Kalman gain K 1 [START_REF] Katayama | Subspace methods for system identication[END_REF], the modulus of the greatest eigenvalue of A 1 is necessarily strictly lower than 1, which implies that the term A i 1 x h r-i,ℓ becomes negligible if i is chosen suciently large. Consequently, the distance between x h r,ℓ and Φ vh p x v p (r, ℓ) + L h p y p (r, ℓ) expressed in Eq. (1.33) becomes negligible for large values of i. The state vector x h r,ℓ can hence be approached for all (r, ℓ) ∈ {0, . . . , M -1} × {0, . . . , N -1} as

x h r,ℓ ≈ Φ vh p x v p (r, ℓ) + L h p y p (r, ℓ).
(1.34)

This can be seen as the optimal linear estimate of x h r,ℓ (in the least-square error sense) given x v p (r, ℓ) and y p (r, ℓ). Combining this linear estimation of x h r,ℓ with the horizontal equation given by Eq. (1.20) leads to

Y h f (ℓ) = Γ h f Φ vh p X vh p (ℓ) + Γ h f L h p Y h p (ℓ) + G vh f X vh f (ℓ) + H h f E h f (ℓ).
(1.35)

Applying this equation to all ℓ ∈ {0, . . . , N -1} and grouping all the obtained equations in block matrices nally leads to

Y h f = Γ h f Φ vh p X vh p + Γ h f L h p Y h p + G vh f X vh f + H h f E h f , (1.36)
where for all n ∈ {f, p} and all matrix M ∈ {Y h n , X vh n , E h n }, M = M(0) . . . M(N -1) .

(1.37) Similar procedures can then be applied to the vertical equations, leading to

Y v f = Γ v f Φ hv p X hv p + Γ v f L v p Y v p + G hv f X hv f + H v f E h f , (1.38) 
where

A 3 = A 3 -K 2 C 1 , A 4 = A 4 -K 2 C 2 , Φ hv p = crtb{ A 4 , A 3 , i}, L v p = crtb{ A 4 , K 2 , i}, (1.39)
and for all n ∈ {f, p} and all matrix M ∈ {Y v n , X hv n , E v n }, M = M(0) . . . M(M -1) .

(1.40) In Eq. (1.36) and (1.38), the future data contained in the Hankel matrices Y

• f , • ∈ {h, v},
involve both available and unavailable data. In order to express them with only available data, an oblique projection of the future on the past is performed. More precisely, focusing on the horizontal equation, the row space of Y h f is projected on the row space Z h p along the row space X vh f (Ramos & Mercère 2018), where

Z h p = X vh p Y h p .
(1.41)

Eq. (1.15) implies that X vh f is projected on the null matrix, while Eq. (1.16) implies that

Z h p is invariant, hence Y h f / X vh f Z h p = Γ h f Φ vh p L h p Z h p + H h f E h f / X vh f Z h p .
(1.42) Similarly,

Y v f / X hv f Z v p = Γ v f Φ hv p L v p Z v p + H v f E v f / X hv f Z v p , (1.43)
where

Z v p = X hv p Y v p .
(1.44)

Because the oblique projection involves the inversion of the matrices Z

h p Π ⊥ X vh f Z h p ⊤ and Z v p Π ⊥ X hv f Z v p ⊤
, respectively (see Eq. (1.13) for the denition of Π ⊥ N ), they must be assumed of full rank if M and N are suciently large, i.e., rank lim

M →+∞ Z h p Π ⊥ X vh f Z h p ⊤ = p(n v + n y ), rank lim N →+∞ Z v p Π ⊥ X hv f Z v p ⊤ = p(n h + n y ).
(1.45) Furthermore, as shown in [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF], given the fact that the future innovation terms are uncorrelated with the past state and data terms, respectively, it can be stated that lim

M →+∞ E h f Π ⊥ X vh f Z h p ⊤ = 0, lim N →+∞ E v f Π ⊥ X hv f Z v p ⊤ = 0,
(1.46) so that Eq. (1.42) and (1.43) simplify as

Y h f / X vh f Z h p = Γ h f Φ vh p L h p Z h p , Y v f / X hv f Z v p = Γ v f Φ hv p L v p Z v p ,
(1.47) respectively. Remember that, for • ∈ {h, v}, the right members correspond to the optimal linear estimates of X • f (see Eq. (1.34)), which implies that these equations can be rewritten as

Y h f / X vh f Z h p = Γ h f X h f , Y v f / X hv f Z v p = Γ v f X v f , (1.48)
where

X h f = X h f (0) . . . X h f (N -1) , X v f = X v f (0) . . . X v f (M -1)
.

(1.49)

Unfortunately, these equations are not directly usable in practice. Indeed, they involve oblique projections along the row spaces of X vh f and X hv f , which contain the unknown vertical and horizontal state variables, respectively. The solution developed in [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF]) is based on the fact that the above-mentioned oblique projections simplify to orthogonal projections of the future data on the past data assuming that the horizontal and vertical states are uncorrelated, i.e., assuming that Eq. (1.5) holds.

If • ∈ {h, v}, this yields Y • f Π Y • p = Γ • f X • f , (1.50)
where, this time, the projections only involve available data. Notice that performing this projection directly involves the color covariances of the image, which is exactly what makes this approach non-marginal. This is discussed in details in Section 1.4.1. Once estimates

of Γ • f X • f , • ∈ {h, v}, are computed from the orthogonal projections Y • f Π Y • p , estimates
of the future horizontal and vertical state variables can be extracted through a singular value decomposition [START_REF] Horn | Matrix analysis[END_REF]) (see Section 1.3.4 for a description of the implementation).

Singular value decomposition and parameter estimation

As done in any subspace-based algorithm, the orthogonal projection of the future on the past is performed through an RQ factorization [START_REF] Horn | Matrix analysis[END_REF], i.e., for • ∈ {h, v},

Γ • f X • f = Y • f Π Y • p , = R • 21 (Q • 1 ) ⊤ , (1.51) with Y • p Y • f = R • 11 0 nyp×nyf R • 21 R • 22 (Q • 1 ) ⊤ (Q • 2 ) ⊤ .
(1.52)

Once the projection is available, the extraction of the state sequences is performed by resorting to a Singular Value Decomposition (SVD) [START_REF] Horn | Matrix analysis[END_REF]), hence,

R • 21 (Q • 1 ) ⊤ = U • U ⊥ • Σ • 0 0 × V ⊤ • U ⊥ • ⊤ .
(1.53)

In theory, the product Γ

• f X • f is of rank n • , • ∈ {h, v}, which implies that the matrix Σ • is of dimension n • × n • ,
• ∈ {h, v}, and only contain non-zero singular values [START_REF] Overschee | Subspace identication for linear systems. Theory, implementation, applications[END_REF]. In practice, due to the innovation e r,s and the nite number of data, the singular values of Γ • f X • f are not exactly zero beyond the order n • , but a quick drop is observed after n • . The orders of the horizontal and vertical systems, denoted by n h and n v , respectively, are then determined as the index of the lowest non-negligible singular value. This process is illustrated in Section 1.5.2. Extracting the non-negligible part of the SVD hence leads to

R • 21 (Q • 1 ) ⊤ = U • Σ • V ⊤ • .
(1.54)

The state sequence is nally extracted as the right part of the SVD, i.e., for • ∈ {h, v},

X • f = Σ 1 2 • V ⊤ • , = Σ -1 2 • U ⊤ • R • 21 (Q • 1 ) ⊤ .
(1.55)

Remark. In practice, the SVD is performed on the matrix

W • 1 R • 21 (Q • 1 ) ⊤ W • 2 rather than merely R • 21 (Q • 1 ) ⊤ , with W •
1 and W • 2 denoting weighting matrices of appropriate dimensions. The choice of these weighting matrices depends on the algorithm chosen to perform the SVD (see [START_REF] Overschee | Subspace identication for linear systems. Theory, implementation, applications[END_REF] for further details).

Remember that by construction of the block matrices X h f and X v f , their common part is restricted to (r, s) ∈ {i, . . . , i + j -1} 2 , which implies that the state variables can only be estimated inside this domain. By dening .58) where I ny denotes the identity matrix of size n y × n y . Consistent estimates of A 1 , A 2 , A 3 , A 4 , C 1 , C 2 can then be computed by using ordinary linear least-squares algorithms [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF]. Finally, the innovation sequence and its covariance matrix are computed as

f y = y i,i:i+j-2 . . . y i+j-2,i:i+j-2 , f h x + = x h i+1,i:i+j-2 . . . x h i+j-1,i:i+j-2 , f v x + = x v i,i+1:i+j-1 . . . x v i+j-2,i+1:i+j-1 , f h x = x h i,i:i+j-2 . . . x h i+j-2,i:i+j-2 , f v x = x v i,i:i+j-2 . . . x v i+j-2,i:i+j-2 , f e = e i
  f h x + f v x + f y   Y =   A 1 A 2 A 3 A 4 C 1 C 2   A f h x f v x X +   K 1 K 2 I ny   f e E , ( 1 
   E = Y -AX, Q S S ⊤ R = EE ⊤ /j, (1.59) with Q = K 1 RK ⊤ 1 K 1 RK ⊤ 2 K 2 RK ⊤ 1 K 2 RK ⊤ 2 , S = K 1 R K 2 R ,
(1.60) from which K 1 and K 2 can be estimated by solving standard Riccati equations (see [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF][START_REF] Overschee | Subspace identication for linear systems. Theory, implementation, applications[END_REF] for details). This concludes the estimation algorithm.

Importance of the innovation sequence

Though not focused on image processing, [START_REF] Kailath | Linear Estimation[END_REF] highlights the importance of the innovation sequence and the fact that it cannot be fully characterized by second order statistics. This section aims at illustrating this statement with real textures. Indeed, Figure 1.6 shows that, after estimating the model through the algorithm described in the previous sections, some information remain in the innovation sequence, even if the horizontal and vertical orders n h and n v are raised beyond 5. In order to highlight the crucial information contained in the innovation sequence, a random i.i.d. Gaussian sequence e ′ of size M × N is generated, with each of the terms being zero-mean and of covariance matrix R. 1.4 Color covariances

Link between the projection and the color covariances

As recalled in the introduction, treating the color components of y marginally requires that the three color channels vary independently, while in practice they are usually correlated [START_REF] Xu | Vector sparse representation of color image using quaternion matrix analysis[END_REF]. This implies that treating them as three independent scalar series may cause a partial loss of the color information contained inside the image [START_REF] Hosono | Weighted tensor nuclear norm minimization for color image restoration[END_REF].

One of the main advantages of the algorithm presented in Section 1.3 is that the color covariances are directly implied in the estimation process, hence its non-marginal nature.

This can be highlighted by rewriting the projection of the future on the past performed in 

Y • f Y • p ⊤ Y • p Y • p ⊤ -1 Y • p = Γ • f X • f .
(1.62)

These matrix products can then be expressed with the color covariance matrices Λ k,m .

Indeed, if (k, m) ∈ {1, . . . i} 2 , the block (k, m) of the matrices Y • p Y • p ⊤ , • ∈ {h, v}, is given by Y h p Y h p ⊤ k,m = N -1 ℓ=0 j-1 ι=0 y k+ι-1,ℓ y ⊤ m+ι-1,ℓ , Y v p Y v p ⊤ k,m = M -1 ℓ=0 j-1 ι=0
y ℓ,k+ι-1 y ⊤ ℓ,m+ι-1 .

(1.63)

If M , N and j are suciently large, these sample covariances provide reliable approximations of the corresponding autocovariance matrices [START_REF] Johnson | Applied multivariate statistical analysis[END_REF], hence

Y h p Y h p ⊤ k,m = jN Λ |k-m|,0 , Y v p Y v p ⊤ k,m
= jM Λ 0,|k-m| .

(1.64)

Similarly, if (k, m) ∈ {1, . . . i} 2 , Y h f Y h p ⊤ k,m = jN Λ i+k-m,0 , Y v f Y v p ⊤ k,m = jM Λ 0,i+k-m .
(1.65)

Eq. (1.62) can hence be rewritten for • ∈ {h, v} as

Λ • f Λ • p -1 Y • p = Γ • f X • f , (1.66)
where

Λ h p =      Λ 0,0 Λ 1,0 . . . Λ i-1,0 Λ 1,0 Λ 0,0 . . . Λ i-2,0 . . . . . . . . . . . . Λ i-1,0 Λ i-2,0 . . . Λ 0,0      , Λ h f =      Λ i,0 Λ p-1,0 . . . Λ 1,0 Λ i+1,0 Λ p,0 . . . Λ 2,0 . . . . . . . . . . . . Λ 2i-1,0 Λ 2i-2,0 . . . Λ i,0      , Λ v p =      Λ 0,0 Λ 0,1 . . . Λ 0,i-1 Λ 0,1 Λ 0,0 . . . Λ 0,i-2 . . . . . . . . . . . . Λ 0,i-1 Λ 0,i-2 . . . Λ 0,0      , Λ v f =      Λ 0,i Λ 0,i-1 . . . Λ 0,1 Λ 0,i+1 Λ 0,i . . . Λ 0,2 . . . . . . . . . . . . Λ 0,2i-1 Λ 0,2i-2 . . . Λ 0,i     
.

(1.67)

Eq. (1.66) hence provides a rewriting of the projection of the future on the past performed in Eq. (1.50) in terms of color channel interdependency. This highlights the explicit involvement of the color covariances of the original image Y in the estimation process and, as a result, the non-marginal nature of the model learning algorithm.

Formal expressions of the color covariances

As shown in [START_REF] Ramos | Image modeling based on a 2-D stochastic subspace system identication algorithm[END_REF], the matrices Λ k,m can be formally expressed with the parameters of the model under the condition given by Eq. (1.5), i.e., if the state variables are assumed to be uncorrelated. Focusing on the matrices involved in Eq. (1.66) only, Λ k,0 and Λ 0,m can be expressed for all (k, m)

∈ (N * ) 2 as    Λ 0,0 = C 1 Π h C ⊤ 1 + C 2 Π v C ⊤ 2 + R, Λ k,0 = C 1 A k-1 1 A 1 Π h C ⊤ 1 + A 2 Π v C ⊤ 2 + K 1 R , Λ 0,m = C 2 A m-1 4 A 3 Π h C ⊤ 1 + A 4 Π v C ⊤ 2 + K 2 R .
(1.68)

Though these formal expressions are taken from [START_REF] Ramos | Image modeling based on a 2-D stochastic subspace system identication algorithm[END_REF][START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF], no interpretation in terms of color content is given therein. Yet, in the specic case of n y = 3, the coecients of these matrices can be understood as color and spatial covariances. Focusing on the color correlations only, the expression of Λ 0,0 illustrates the impact of the parameters of the model on the color content of the image. The matrices C 1 and C 2 color the horizontal and vertical structures characterized by Π h and Π v , respectively, while R corresponds to the color structure of the innovation as seen in Section 1.1.3.

Notice that the color information brought by the model is combined with the original color information contained in the innovation sequence through an addition. Therefore, besides being explicitly involved in the estimation algorithm, the color covariances can be directly linked with the parameters of the model, which further shows how the interdependency between the color channels is fully taken into account. The involvement of the matrix R in Eq. (1.68) also highlights the importance of the innovation process in the color structure of the image, as already mentioned in Sections 1.1.4 and 1.3.5, respectively. Section 1.5

shows how this purely vectorial treatment of the color components of Y is crucial in reliably reconstructing the color structure of a damaged image in the context of texture completion.

Application to texture completion

Many inpainting techniques are developed to handle greyscale images, thus yielding color distortions when they are used with colored images [START_REF] Hosono | Weighted tensor nuclear norm minimization for color image restoration[END_REF]. As explained, e.g., in [START_REF] Xu | Vector sparse representation of color image using quaternion matrix analysis[END_REF], this important issue can be bypassed by developing techniques which take into account the correlations between the RGB channels explicitly instead of using a simple concatenation of the 3 channels composing the image or processing the luminance component only. As shown hereafter, one of the main advantages of the subspace-based technique introduced in this chapter is its ability to deal with multivalued data within the formulation of the parametric 2-D Roesser model. More precisely, the correlation constraint pointed out in [START_REF] Xu | Vector sparse representation of color image using quaternion matrix analysis[END_REF] is satised with the subspace-based algorithm introduced in the previous sections, thanks to the use of Hankel data matrices, or more specically, thanks to the projections involving these Hankel matrices.

General assumptions and issues

Texture completion, or inpainting, consists in reliably reconstructing damaged or missing parts of an image by inferring from a user-dened learning area. More precisely, it aims at generating a piece of texture that looks as similar as possible to the available part of the original image in order to yield a reliable substitute for the missing part. Furthermore, this substitute must not look identical to another part of the image, i.e., copy/paste eects must be limited. Notice that though ecient texture similarity measures exist for greyscale images, extending them to color textures is still a challenge [START_REF] Zujovic | Structural texture similarity metrics for image analysis and retrieval[END_REF]. The purpose of texture completion is illustrated in Figure 1.9.

Damaged image Restored image

? In this section, Y denotes a color image of size M × N , where each pixel y r,s , (r, s) ∈ {0, . . . , M -1} × {0, . . . , N -1}, is a vector of R 3 . The missing part of Y is modeled as a subset of pixels (r, s) ∈ I ⊂ {0, . . . , M -1} × {0, . . . , N -1} where y r,s = 0, while the learning area is the remaining part. Because inpainting heavily relies on inference from available data, it can only create patterns that already exist in the learning area. The solution described in this work hence requires the texture to fulll two main conditions, which are stationarity in the learning area, structural coherency between the available and masked areas.

The rst step of the inpainting process consists in dening a reliable training area. Similarly to what is done for 2D AR models [START_REF] Köppel | On the usage of the 2D-AR-model in texture completion scenarios with causal boundary conditions: A tutorial[END_REF], both causal and anticausal neighborhood structures are used in this work. Remember that, as stated in Section 1.3.2, the horizontal space variable is assumed to evolve from left to right, while the vertical space variable is assumed to evolve from top to bottom. As illustrated in Figure 1.10, a causal neighborhood is hence dened as the region located on the left and at the top of the masked area, while an anticausal neighborhood is dened as the region located on the right and at the bottom of the masked area. In order to avoid border eects and copy/paste eects as much as possible, one possible approach is to combine both causal and anticausal structures. Section 1.5.2 details the application of the subspace-based algorithm presented in Section 1.3 to texture completion, as well as the strategy used to combine causal and anticausal learning.

Subspace-based texture completion

Though parametric techniques usually handle matrices, damaged areas may have irregular shapes in practice. In this case, the border is reshaped as the smallest rectangle that contains the whole damaged area. In subsequent developments, the masked area is hence assumed to be a rectangular domain I dened by 

I = {m 1 , . . . , m 2 } × {n 1 , . . . , n 2 }, (1.69) with 0 < m 1 < m 2 < M -1 and 0 < n 1 < n 2 < N -1.
C Y =           y 0,0 . . . . . . . . . y 0,N -1 . . . . . . . . . . . . . . . y m 1 -1,0 . . . . . . . . . y m 1 -1,N -1 y m 1 ,0 . . . y m 1 ,n 1 -1 ■ ■ . . . . . . . . . ■ ■ y m 2 ,0 . . . y m 2 ,n 1 -1 ■ ■           , A Y =           y M -1,N -1 . . . . . . . . . y M -1,0 . . . . . . . . . . . . . . . y m 2 +1,N -1 . . . . . . . . . y m 2 +1,0 y m 2 ,N -1 . . . y m 2 ,n 2 +1 ■ ■ . . . . . . . . . ■ ■ y m 1 ,N -1 . . . y m 1 ,n 2 +1 ■ ■          
.

( Notice that for all u ∈ {x h , x v , e}, u c ∈ R (m 2 +1)×N and u a ∈ R (M -m 1 )×N . In order to ll the missing part of the original image, two output sequences, denoted by Y c and Y a , respectively, are generated. Let y c r,s and y a r,s denote the values of the causal and anticausal 

A parameters A c 1 , A c 2 , A c 3 , A c 4 A a 1 , A a 2 , A a 3 , A a 4 K parameters K c 1 , K c 2 K a 1 , K a 2 C parameters C c 1 , C c 2 C a 1 , C a 2 state variables x hc , x vc x ha , x va innovation sequence
e c e a

Table 1.1: Parameters estimated from the causal and anticausal learning areas.

outputs at the pixel (r, s) ∈ I, respectively, with I denoting the set of indices of the masked area dened in Eq. (1.69). The main issue in generating these output sequences is that they require knowing the innovation sequence and the initial values of the state variables inside the masked area, which is impossible. In order to bypass this diculty, parts of the sequences extracted from the causal and anticausal model learning are used.

More precisely, the innovation sequences e c r,s , (r, s) ∈ {m 1 , . . . , m 2 } × {n 1 , . . . , n 2 }, and e a , (r, s) ∈ {M -1 -m 2 , . . . , M -1 -m 1 } × {N -1 -n 2 , . . . , N -1 -n 1 }, estimated from the rectangular causal and anticausal training areas, respectively, are re-used to generate the new piece of texture. Therefore, for all (r, s) ∈ {m 1 , . . . , m 2 } × {n 1 , . . . , n 2 }, y c r,s is constructed as

   x hc r+1,s = A c 1 x hc r,s + A c 2 x vc r,s + K c 1 e c r,s , x vc r,s+1 = A c 3 x hc r,s + A c 4 x vc r,s + K c 2 e c r,s , y c r,s = C c 1 x hc r,s + C c 2 x vc r,s + e c r,s , (1.71) 
where x hc and x vc denote the horizontal and vertical reconstructed state variables, respectively, with their initial values taken from x hc and x vc , respectively. Notice that the choice of the innovation could be further discussed and opens interesting perspectives for future works. A possible solution to improve the results is the addition of a random perturbation to the extracted innovation sequence, which could reduce the copy-paste eect. Further tests would be necessary to study the potential benets of this technique.

The state variables are reconstructed at the same time as the image itself by using the recursive equations that dene the Roesser model. Similarly, for all (r, s) ∈ {m 1 , . . . , m 2 }× {n 1 , . . . , n 2 }, y a r,s is constructed as

   x ha r-1,s = A a 1 x ha r,s + A a 2 x va r,s + K a 1 e a r,s , x va r,s-1 = A a 3 x ha r,s + A a 4 x va r,s + K a 2 e a r,s , y a r,s = C a 1 x ha r,s + C a 2
x va r,s + e a r,s .

(1.72)

These estimated causal and anticausal values are then merged into a single output sequence

Y f = y f r,s (r,s)∈I
dened for all (r, s) ∈ I as

y f r,s = (1 -v r,s ) y c r,s + v r,s y a r,s , (1.73) 
where v = (v r,s ) (r,s)∈I is a weighting function that fullls the following conditions :

v m 1 ,n = v m,n 1 = 0 for all (m, n) ∈ I, v m 2 ,n 2 = 1, if (m 3 , n 3 ) ∈ I, then v m 3 ,n 3 ≥ v m,n for all m 1 ≤ m ≤ m 3 and n 1 ≤ n ≤ n 3 .
These conditions ensure that the closer a pixel is from the causal (resp. anticausal) area, the greater the inuence of Y c (resp. Y a ) on the nal value of the pixel is. In the synthetic tests presented in Section 1.5.4, the chosen weighting function v is dened for (r, s)

∈ I as v r,s = sin (r -m 1 ) π 2 (m 2 -m 1 ) sin (s -n 1 ) π 2 (n 2 -n 1 )
.

(1.74) Be careful that although the innovation sequences e c and e a are copied from non-masked areas, the output sequences y c and y a , as well as the resulting inpainted piece of texture y f , are not mere recombinations of available data, but rather generated data through the Roesser recursive model. Notice furthermore that unlike many parametric methods applied on color images, no articial post-treatment is needed to reconstruct the color structure, i.e., the correlations between the color channels. Indeed, as shown in Section 1.4, the link between the color channels is directly involved in the identication process.

The synthetic tests performed in Section 1.5.4 show how the color structure is preserved in the reconstructed areas without the need of any post-treatment, and how this represents a huge advantage over the marginal approaches described in Section 1.5.3.

Comparison with marginal approaches

In order to illustrate the benets of a vectorial treatment of the color content, the approach presented in the previous sections is compared with marginal approaches, i.e., the treatment of the color channels as three independent scalar signals rather than one single vectorial signal with correlated components. This section briey explains the marginal techniques to which the vectorial Roesser model is compared with in Section 1.5.4. Although the colorimetric interpretation of the autocovariance matrices Λ k,m dened by Eq.

(1.61) only holds if n y = 3, the algorithm presented in Section 1.3 can be applied for any n y ∈ N * , including the special case of a greyscale image, i.e, n y = 1. Three separate Roesser models can hence be estimated from the available values of the three color components of (y r,s ) r,s , respectively, yielding three reconstructed signals, one for each color component. Another possible approach is to apply a Principal Component Analysis (PCA)

on the image to decorrelate its components before applying the marginal Roesser procedure. The treatment of the vectorial information is still marginal, but it can be expected that the loss of the color structure is not as important as in the case of a direct marginal approach. However, the synthetic tests performed in Section 1.5.4 show that such marginal approaches, even when reinforced by a PCA, fail to properly reconstruct the color structure of the original image, which highlights the benets of the vectorial treatment presented in this work.

Synthetic tests

The subspace-based texture completion technique is now applied to real images. In all the tests, the images are of size 180 × 180, i.e., M = N = 180, while the masked area is the square {61, . . . , 120} 2 , i.e., m 1 = n 1 = 61 and m 2 = n 2 = 120. As stated in Section 1.3.2, the Hankel parameter i has to be suciently large compared to the horizontal and vertical orders n h and n v , respectively, to fulll the rank conditions given by Eq. (1.45).

In the tested images, the drop of singular values usually occurs between the third and the fth order, similarly to what is observed in Figures 1.11 and 1.12. The parameter i must hence be chosen suciently larger than 5. Furthermore, remember that by denition of the Hankel matrices (see Section 1.3.2), i and j are linked by the constraint 2i + j -2 = min{M -1, N -1}, which implies that if i increases, then j decreases. The parameter j must however stay large enough so that the empirical estimations of the color covariances evoked in Section 1.4.1 remain reliable. Choosing i = 20, and consequently j = 141, ensures that both conditions are fullled. Table 1.2 shows the results obtained on a set of color textures. In each case, after the masked area is removed from the image, three subspace-based reconstruction algorithms are applied : a vectorial algorithm that involves the color covariances, i.e., n y = 3, a marginal algorithm applied on each color component, i.e., n y = 1, a marginal algorithm preceded by a PCA to decorrelate the color components.

In the case of the grass texture, the color remains stable in the whole image, which explains why no dierence is observed between the three approaches. However, when more complex color structures come into play, the vectorial approach manages to produce pixels that always lie in the right color space, which is not the case for the two marginal approaches, especially for the sand and wall textures. Even when preceded by a PCA, the marginal treatment of the color channels fails to restore the original color content of the image, and produces pixels with a clearly dierent tint. This is reected in Figures 1.14, 1.15, 1.16 and 1.17 which compare the areas occupied by the original and inpainted textures inside the RGB cube. Though the four techniques give similar results in the cases of the grass and marble textures, the Roesser-based vectorial inpainted texture appears to be the closest to the original image in terms of color content in the cases of the sand and wall textures.

This illustrates the benets of involving the color covariances in the estimation algorithm, as highlighted in Section 1.4.1.

Conclusion

The main objective of this chapter was to study the application of the parametric representation of multivariate systems provided by the Roesser model to color textures. The results given in Section 1.5.4 conrm the main assertion of the introduction, i.e., that a color texture has to be treated as a dynamic 3D vector rather than three marginal signals. The direct implication of the color covariances in the estimation algorithm is what enables the vectorial Roesser model to reliably extract the color structure of the original image, which is a clear advantage over marginal solutions. Though the relevance of the Roesser model in the eld of image restoration had already been highlighted in previous works [START_REF] Ramos | Image modeling based on a 2-D stochastic subspace system identication algorithm[END_REF], the crucial impact of this non-marginal treatment on its performances is rarely put forward.

The developments performed in this chapter also highlight the importance of the innovation sequence. Though usually described as a white noise [START_REF] Köppel | On the usage of the 2D-AR-model in texture completion scenarios with causal boundary conditions: A tutorial[END_REF], this sequence contains some crucial features of the texture that cannot be extracted by the Roesser parameters. Consequently, as highlighted in Section 1.3.5, the choice of the innovation terms strongly impacts the reconstruction of the image, and only knowing its second order statistics is not enough to fully characterize it. While many works dealing with 2D ARMA models [START_REF] Kokaram | A statistical framework for picture reconstruction using 2D AR models[END_REF][START_REF] Köppel | On the usage of the 2D-AR-model in texture completion scenarios with causal boundary conditions: A tutorial[END_REF] or the Roesser model [START_REF] Ramos | Image modeling based on a 2-D stochastic subspace system identication algorithm[END_REF][START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF] focus mostly on the estimation of the parameters and the statistical behavior of the involved variables, this suggests paying more attention on the innovation sequence in future studies.

One of the main diculties in the Roesser model is that the parameters of the model are dicult to interpret in terms of characterization of the texture. Firstly, the matrices A i , C j and K j , with (i, j) ∈ {1, . . . , 4} × {1, 2}, are only known up to a similarity transformation [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF], which makes it hard to compare them to the parameters extracted from another texture. Additionally, as shown in Figure 1.7, these parameters only describe the global dynamic of the texture, not its local structure at each pixel which is contained in the innovation sequence. Recent works such as [START_REF] Leclaire | No-reference image quality assessment and blind deblurring with sharpness metrics exploiting fourier phase information[END_REF] suggest that this is due to the inner characteristics of the ARMA and Roesser parameters, respectively. More precisely, [START_REF] Leclaire | No-reference image quality assessment and blind deblurring with sharpness metrics exploiting fourier phase information[END_REF] use Fourier analysis to show how the parameters of such models capture the information contained in the Fourier amplitude, but fail to extract what lies in the Fourier phase. Because the structure of an image is encoded in its Fourier phase function [START_REF] Oppenheim | The importance of phase in signals[END_REF], this urges the need to introduce tools that are able to characterize this information. Before focusing on color textures, the next two chapters dene these tools in the greyscale case to highlight their ability to extract local features. The Riesz transform and the monogenic signal

As seen in the previous chapter, the Roesser model focuses on the global dynamics of the texture, but fails to extract its local features, which are left in the innovation term e.

Consequently, this chapter aims at introducing tools to extract these features, from which an accurate description of the local behavior of the texture can be deduced. These tools are rst introduced and studied for greyscale images in Chapters 2 and 3 before being generalized to color images in Chapters 4 and 5.

A rst approach consists in considering the 2D Fourier spectrum of the texture, more precisely the amplitude and phase information it provides. Indeed, it is well known that the structure of an image is contained in its Fourier phase, i.e., the argument of its Fourier transform [START_REF] Oppenheim | The importance of phase in signals[END_REF]. This is illustrated in Figure 2.1, which shows pebble and sand textures before and after their respective Fourier phase signals have been switched. While the Fourier amplitude carries the intensity information, the structure of the texture, including the edges, are contained in the Fourier phase. Other works highlight the importance of the Fourier phase in the perception of the image, such as [START_REF] Field | The roles of polarity and symmetry in the perceptual grouping of contour fragments[END_REF][START_REF] Hansen | The role of spatial phase in texture segmentation and contour integration[END_REF]. However, the fact that the Fourier phase lies in the frequency domain rather than the spatial domain makes it dicult to handle [START_REF] Felsberg | Low-level image processing with the structure multivector[END_REF].

Some works like, e.g., [START_REF] Kovesi | Phase congruency: a low-level image invariant[END_REF][START_REF] Leclaire | No-reference image quality assessment and blind deblurring with sharpness metrics exploiting fourier phase information[END_REF], managed to dene reliable tools to characterize phase coherence and link them some visual aspects, but the local behavior of the image is still left unmodeled in such approaches. Figure 2.2 highlights the chaotic visual aspect of the phase signals, which are hence dicult to directly connect with the local structure of the original texture, hence the need of a localized denition of phase.

In the eld of 1D signal processing, the Hilbert transform and the analytic representation [START_REF] Hilbert | Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen[END_REF][START_REF] Ville | Théorie et applications de la notion de signal analytique[END_REF][START_REF] Oswald | The theory of analytic band-limited signals applied to carrier systems[END_REF]) have proved their relevance in extracting the local properties of a signal [START_REF] Milkereit | Multiattribute processing of seismic data: application to dip displays[END_REF][START_REF] Picinbono | Time-frequency analysis[END_REF][START_REF] Langley | The riesz transform and simultaneous representations of phase, energy and orientation in spatial vision[END_REF]). These tools were originally developed as a way to generalize the embedding of cosine waves into complex exponentials [START_REF] Picinbono | Time-frequency analysis[END_REF]. By extending any real-valued signal to the complex domain, the analytic representation enables the denition of an instantaneous modulus (or amplitude) and an instantaneous argument (or phase), which are to be interpreted as a measure of local energy and local structure of the signal, respectively [START_REF] Felsberg | Low-level image processing with the structure multivector[END_REF]. There have been many attempts to generalize the Hilbert transform to 2D real-valued signals in the 80s and 90s (see [START_REF] Langley | The riesz transform and simultaneous representations of phase, energy and orientation in spatial vision[END_REF] for a good survey of these works), but it was not until the early 2000s with the works of [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF]) and [START_REF] Felsberg | The monogenic signal[END_REF]) that this goal was fully reached.

These works use the Riesz-transform, rst introduced in [START_REF] Riesz | Sur les fonctions conjuguées[END_REF], as a 2D analog of

Original pebble image Original sand image

Sand amplitude + pebble phase Pebble amplitude + sand phase the Hilbert transform, and enable the extension of a 2D real-valued signal to an R 3 -valued signal called the monogenic signal [START_REF] Felsberg | Low-level image processing with the structure multivector[END_REF]. The spherical coordinates of this monogenic signal then give a measure of local energy, structure and orientation of the original image. The characterization of an image by these three quantities has been applied to various domains, including hologram demodulation [START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF], spatial vision [START_REF] Langley | The riesz transform and simultaneous representations of phase, energy and orientation in spatial vision[END_REF], interferometry [START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF]) and medical imaging [START_REF] Alessandrini | Myocardial motion estimation from medical images using the monogenic signal[END_REF]. The particular impact of the phase function on the local texture of the image has also been illustrated in the eld of computer graphics [START_REF] Tricard | Procedural phasor noise[END_REF].

However, the link between the measures given by the monogenic tool and their physical interpretation is not obvious [START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF]. Indeed, because the monogenic signal was originally designed for purely monochromatic waves [START_REF] Felsberg | The monogenic signal[END_REF], the measures of phase and orientation it provides are theoretically optimal only for such images [START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF].

One of the main goals of this chapter is hence to study the reliability of the monogenicbased extraction of the local features of an image when more complex oscillating patterns come into play. While some regularity conditions were given in [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF] to ensure the quality of the monogenic phase extraction, this chapter goes further by formally studying how the Riesz transform deals with patterns displaying more curves than purely monochromatic waves. These mathematical developments are used to establish the asymptotic convergence of the monogenic estimation of both phase and orientation. The monogenic tool is then applied to interferometric fringes to conrm the theoretical results. While the relevance of the monogenic signal to extract the oscillating features of fringe patterns was already highlighted in [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF][START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF], this chapter gives stronger theoretical guarantees to ensure the reliability of this extraction.

The rest of the chapter is organized as follows. Before dealing with 2D images, some of the key results of the 1D case are recalled in Section 2.1, which are then illustrated by synthetic tests in Section 2.2. After recalling the main properties of the 2D Fourier transform in Section 2.3, the 1D results are generalized to the 2D case by use of the Riesz transform in Section 2.4. 2D synthetic tests are then performed in Section 2.5 with a special focus on the discretization process. The Riesz-based monogenic extraction of phase is nally applied to real interferometric fringes in Section 2.6, in which the benets of this approach are highlighted.

2.1 Case of 1D signals: the Hilbert transform and the analytic signal

Denition and rst properties

In the 1D case, a wave signal can be modeled as a function s : R → R dened for all t ∈ R by

s(t) = a(t) cos [φ(t)] , (2.1)
where a(t) denotes the amplitude of s and φ(t) its phase at each instant (or position) t ∈ R [START_REF] Picinbono | Time-frequency analysis[END_REF]). These functions are sometimes called instantaneous amplitude and instantaneous phase, respectively, to distinguish them from the frequency-depending Fourier amplitude and phase functions [START_REF] Picinbono | Time-frequency analysis[END_REF]. In practice, s is the only known function, while a and φ have to be estimated from it. Notice however that there exist an innity of functions a and φ such that for all t ∈ R,

s(t) = a(t) cos [ φ(t)] ,
(2.2)

which complicates the extraction of a and φ from s only (see Chapter 2 of [START_REF] Picinbono | Time-frequency analysis[END_REF] for details). In order to bypass this diculty, the signal s is extended to the complex domain by using the Hilbert transform, rst introduced in Chapter 10 of [START_REF] Hilbert | Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen[END_REF], and extended in [START_REF] Riesz | Sur les fonctions conjuguées[END_REF]. Let h denote the Hilbert kernel dened for t ∈ R * by h(t) = 1 πt .

(2.3)

Then, the Hilbert transform of s, denoted by Hs, is dened for all t ∈ R as the convolution product between s and h, i.e.,

Hs(t) = s * h(t), = 1 π p.v. R s(τ ) t -τ dτ , (2.4) 
where p.v. denotes the Cauchy principal value [START_REF] Hilbert | Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen[END_REF]. Though the convolution product involving an improper integral makes this denition dicult to handle, a much more convenient denition can be formulated in the Fourier domain [START_REF] Bracewell | The Fourier transform and its applications[END_REF].

Indeed, if F denotes the Fourier transform, the Hilbert transform of s can be dened for all ξ ∈ R * as

F [Hs] (ξ) = H(ξ)Fs(ξ), (2.5)
where H denotes the Fourier transform of the Hilbert kernel h, given by

H(ξ) = -i ξ |ξ| .
(2.6)

The complex analytic extension of s is then dened for all t ∈ R * as

A s (t) = s(t) + iHs(t), (2.7)
and is called the analytic signal of f [START_REF] Ville | Théorie et applications de la notion de signal analytique[END_REF]. The modulus and argument of A s , denoted by A(t) and ϕ(t) respectively, give instantaneous measures of amplitude and phase, respectively [START_REF] Picinbono | Time-frequency analysis[END_REF]).

Case of a pure cosine wave

The most canonical class of signals rst considered in works dealing with the Hilbert transform is the class of the pure cosine waves [START_REF] Ville | Théorie et applications de la notion de signal analytique[END_REF][START_REF] Oswald | The theory of analytic band-limited signals applied to carrier systems[END_REF]. A 1D signal is a pure cosine wave if it has a constant amplitude and a linear phase, i.e., for all t ∈ R,

s(t) = a 0 cos(ωt), (2.8)
where a 0 ∈ R * and ω ∈ R * denote the amplitude and frequency of the signal, respectively. As shown in [START_REF] Ville | Théorie et applications de la notion de signal analytique[END_REF], the Hilbert transform of such a signal is given for all t ∈ R by Hs(t) = a 0 sin(ωt).

(2.9) This is due to the Hilbert transform having been purposely designed as a quadrature lter [START_REF] Ville | Théorie et applications de la notion de signal analytique[END_REF][START_REF] Oswald | The theory of analytic band-limited signals applied to carrier systems[END_REF]). Consequently, the analytic signal is given for all t ∈ R by

A s (t) = a 0 [cos(ωt) + i sin(ωt)] ,
= a 0 e iωt .

(2.10)

From an estimation point of view, this also implies that, in the case of an unknown cosine wave signal, the amplitude and phase functions A and ϕ extracted by the Hilbert transform and the analytic signal coincide with their respective physical counterparts, i.e., for all t ∈ R,

A(t) = a 0 , ϕ(t) = φ(t) = ωt [2π] .
(2.11)

Case of a parabolic chirp

As stated in [START_REF] Picinbono | On instantaneous amplitude and phase of signals[END_REF][START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF], the equality between the physical phase φ and the analytic phase ϕ is only true for cosine waves. Outside this ideal case, the analytic measures of amplitude A(t) and phase and ϕ(t) at each time t ∈ R do not match their expected physical values a(t) and φ(t), respectively. However, if the amplitude and phase functions are slowly and smoothly varying, it can be shown that the analytic signal still provides reliable estimations of these functions [START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF]. Other conditions on the phase function are given in [START_REF] Edwards | The form of the general unimodular analytic signal[END_REF][START_REF] Picinbono | On instantaneous amplitude and phase of signals[END_REF].

Chapter 2 of [START_REF] Picinbono | Time-frequency analysis[END_REF] goes further by formally studying the case of a parabolic chirp, dened for all t ∈ R by s(t) = a 0 cos(a 2 t 2 ),

(2.12) with a 0 ∈ R * + and a ∈ R * + . The further developments of this chapter show how the 2D generalization of these results are particularly relevant in the eld of fringe pattern analysis, which explains why they are recalled here. As stated in [START_REF] Picinbono | Time-frequency analysis[END_REF], the Hilbert transform of a 1D parabolic chirp is given for all t ∈ R by

Hs(t) = a 0 2 π [C(at) + S(at)] sin(a 2 t 2 ) + [C(at) -S(at)] cos(a 2 t 2 ) , (2.13) 
where C and S denote the Fresnel integrals dened for all θ ∈ R by

C(θ) = θ 0 cos u 2 du, S(θ) = θ 0 sin u 2 du. (2.14)
In this case, it is obvious that the argument of the analytic signal A s (t) = s(t) + iHs(t) is not equal to a 2 t 2 , which illustrates the fact that the analytic phase does not match its physical counterpart. However, this observation does not imply that the analytic phase fails to extract the local structure of the signal. Indeed, as stated in [START_REF] Picinbono | Time-frequency analysis[END_REF], the Fresnel integrals satisfy

lim θ→+∞ C(θ) = lim θ→+∞ S(θ) = π 8 , (2.15)
which implies that

Hs(t) = a 0 2 π [C(at) + S(at)] sin(a 2 t 2 ) + [C(at) -S(at)] cos(a 2 t 2 ) , = t→+∞ a 0 2 π 2 π 8 sin(a 2 t 2 ) + o(1),
= t→+∞ a 0 sin(a 2 t 2 ) + o(1).

(2.16)

This implies that the analytic signal is asymptotically equal to a 0 e ia 2 t 2

. In this case, the analytic phase, which is dened as the argument of the analytic signal, is asymptotically equal (modulo 2π) to the physical phase φ(t) = a 2 t 2 . Furthermore, notice that C(at) and S(at) also tend towards π 8 when a tends towards +∞. Thus, for any xed t ∈ R,

Hs(t) = a→+∞ a 0 sin(a 2 t 2 ) + o(1).
(2.17)

Consequently, the analytic and physical phases also coincide for large values of a. These results illustrate the ability of the analytic signal to extract the phase function outside the case of pure cosine waves. This stands in line with the conclusion of [START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF] in the case of 1D holograms. Before generalizing to 2D images, synthetic tests are performed in Section 2.2 to give numerical conrmations of these theoretical results.

1D synthetic tests

Though the previous section deals with innite and continuous signals, the signals handled in practice are usually nite and discrete. The main goal of this section is hence to determine whether the discretization aects the theoretical results presented in Section 2.1

or not. In other words, whether the analytic measure of phase remains close to the expected physical phase function as stated in the continuous case. Additionally, comparing estimated and expected values can be eased by the use of numerical criteria of similarity. Before performing synthetic tests, this section details the discretization process and introduces similarity criteria to evaluate the quality of the analytic estimation of phase.

Discretization

Let (t j ) j be a discrete time sequence, with j ∈ {0, . . . , N -1} and N ∈ N * , such that

t j = jT, (2.18)
where T > 0 denotes the sampling period. The corresponding discrete frequency sequence, denotes by (ξ j ) j , is dened for all j ∈ {0, . . . , N -1} by ξ j = j N T .

(2.19)

In the general case, s = (s j ) j∈{0,...,N -1} denotes a discrete signal dened for all j ∈ {0, . . . , N -1} by

s j = a j cos φ j , (2.20)
where a j and φ j denote the physical amplitude and phase of s j , respectively. If S denotes the discrete Fourier transform of s, the discrete Fourier transform of the Hilbert transform of s, denoted by H s , is dened for all j ∈ {1 . . . N -1} as

H j s = -i ξ j |ξ j | S j .
(2.21)

Notice that the Hilbert transform is not dened for j = 0, i.e., for the null frequency.

In practice, a high-pass lter has to be applied to s to eliminate the low frequencies.

The discrete Hilbert transform of s, denoted by h s , is obtained from H s by using the inverse Fourier transform. The discrete analytic signal A s can then be dened for all j ∈ {0, . . . , N -1} as

A j s = s j + ih j s , (2.22)
whose modulus A j and argument ϕ j provide a measure of analytic amplitude and phase, respectively. The analytic phase signal (ϕ j ) j is then compared to the expected physical phase (φ j ) j to determine if the Hilbert transform manages to reliably extract local phase.

The synthetic tests focus on two cases:

the pure cosine wave, dened for all j ∈ {0, . . . , N -1} as s j = a 0 cos(ωt j ),

(2.23)

where a 0 ∈ R * and ω ∈ R * denote the amplitude and frequency of the signal, respectively, the parabolic chirp, dened for all j ∈ {0, . . . , N -1} as

s j = a 0 cos[a 2 t j 2 ],
(2.24) with a 0 ∈ R * + and a ∈ R * + .

In the rst case, the analytic and physical phase signals are expected to coincide perfectly (see Section 2.1.2), while, in the second, they only coincide asymptotically, or if a is large enough (see Section 2.1.3). This would show how the theoretical results of the continuous domain are preserved in the discrete domain. However, because the phase signals consist of angular values, comparing them can be dicult due to the 2π-periodicity. In order to bypass this problem, numerical criteria of similarity between two angular signals are introduced in Section 2.2.2.

Numerical measure of similarity

This section aims at dening numerical criteria that measure the similarity between the analytic and physical phase signals, denoted by (ϕ j ) j and (φ j ) j , j ∈ {0, . . . , N -1}, respectively. Because these two signals contain angles dened modulo 2π, the quality of the estimation cannot be evaluated by simply calculating the dierence between the extracted and expected values. Indeed, values like -π +ϵ and π -ϵ (ϵ being a small positive real number) would be deemed as highly dierent while they hold the same angular information.

A good way to bypass this diculty is to compare their respective cosines, which yields a measure of similarity at each time. A more global comparison between the estimated and expected values of phase is then performed by using the two numerical criteria of similarity dened, e.g., in [START_REF] Tóth | Modeling and identication of linear parameter-varying systems[END_REF], the Best Fit Rate (BFR) and the Variance Accounted For (VAF). If g = g j j∈{0,...,N -1} denotes a real-valued signal, and g j j∈{0,...,N -1} the estimates of g at each point, then the BFR and VAF criteria are calculated as

BFR( g, g) = max{100(1 -∥ g-g∥ 2 ∥g-g∥ 2 ), 0}, VAF( g, g) = max{(100(1 -V ( g-g) V (g) ), 0}, (2.25)
where for all signal h = h j j∈{0,...,N -1}

,

∥h∥ 2 2 = N -1 j=0 h j 2 , h = 1 N N -1 j=0 h j , V (h) = 1 N ∥h∥ 2 2 -h 2 .
(2.26)

The BFR and VAF criteria are to be interpreted as a bias and variance information, respectively, which is very instructive when testing an estimation technique. Note that both BFR and VAF are not dened for constant signals, but the phase functions studied in this work should not be constant. In the subsequent tests, these criteria are applied to g = cos(φ) and g = cos(ϕ). The closer to 100% these criteria are, the better the analytic extraction of the phase is. Applying the same process to cosine waves of dierent frequencies ω ∈ {π(1 + ℓ), ℓ = 0, . . . , 9} yields exactly the same results, i.e., the BFR and VAF criteria remain exactly equal to 100%. This conrms the theoretical results of Section 2.1.2.

Phase extraction of a cosine wave

Phase extraction of a parabolic chirp

Figure 2.4 shows the analytic and physical phase functions of a discrete parabolic chirp generated with N = 1000, T = 0.002, a 0 = 0.5 and a = 3. This time, the phase extrac-tion does not work perfectly, but the two functions remain close to each other, which is conrmed by the high values of BFR and VAF (BFR = 90.07%, VAF = 99.02%). As predicted by Eq. (2.16), the quality of the estimation increases with t, which explains why the initial phase values (t < 0.2) are badly estimated. The previously performed synthetic tests show how the results established in the continuous case remain true when discrete signals come into play. Of course, the relevance of the Hilbert transform in the eld of signal processing is not to be proved anymore [START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF]), but focusing on 1D signals enables the introduction of some of the main issues encountered in the case of 2D structure extraction. Though focusing on parabolic chirps may seem restrictive at rst, generalizing the results presented in this section to 2D images is of particular interest in the eld of interferometry, as highlighted in Sections 2.4 2.5 and 2.6. Before handling 2D images, Section 2.3 properly introduces the 2D Fourier transform and its main properties.
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The 2D Fourier transform

In the 1D case, the Fourier transform is crucial in dening and computing the Hilbert transform, from which a reliable measure of phase is obtained. Generalizing this procedure to 2D images hence requires a proper denition of a 2D Fourier transform. Though it is a commonly used tool in image processing, the available literature generally focuses on computing aspects (as in [START_REF] Smith | Handbook of real-time Fast Fourier Transforms: algorithms to product testing[END_REF]) and lacks the theoretical results of the continuous domain that can be found in the 1D case, according to the authors' knowledge. Consequently, this section aims at introducing the 2D Fourier transform and some of its useful properties properly, a crucial step before dealing with 2D phase extraction.

Denition

Let s : R 2 → R be an integrable function. The 2D Fourier transform of s, denoted by F 2 s, is dened for all ξ ∈ R 2 as

F 2 s(ξ) = R 2 s(x)e -ix ⊤ ξ dx.
(2.27)

In the subsequent developments, the more concise notation s is also used for the Fourier transform of s.

Basic properties Linearity

If s 1 , s 2 : R 2 → R are integrable functions and λ ∈ R, then,

F 2 [λs 1 + s 2 ] = λF 2 s 1 + F 2 s 2 .
(2.28) This is directly deduced from the linearity of the integral.

Dilation

If A is an 2 × 2 invertible dilation matrix, s : R 2 → R an integrable function and s A :

x → s(Ax), then for all ξ ∈ R 2 , F 2 s A (ξ) = 1 | det(A -1 )| F 2 s(A -1 ξ).
(2.29)

Because A is assumed to be invertible, this property is proved by using the substitutions x = Ax.

Convolution theorem

If s 1 , s 2 : R 2 → R are integrable functions, then

F 2 [s 1 * s 2 ] (ξ) = F 2 s 1 (ξ) × F 2 s 2 (ξ),
(2.30)

where s 1 * s 2 denotes the 2D convolution product of s 1 and s 2 dened for all x ∈ R 2 by

s 1 * s 2 (x) = R 2
s 1 (y)s 2 (x -y)dy.

(2.31) This is proved by using Fubini's theorem [START_REF] Fubini | Sugli integrali multipli[END_REF]) and a substitution.

Space domain derivation

Let s : R 2 → R be an integrable and dierentiable function.

For j ∈ {1, 2}, if ∂s ∂x j is integrable, its Fourier transform satises for all ξ ∈ R 2 , F 2 ∂s ∂x j (ξ) = iξ j F 2 s(ξ).
(2.32)

The proof relies on an integration by parts.

Frequency domain derivation

Let s : R 2 → R be an integrable function, and let s j denote the function dened for all

x = (x 1 , x 2 ) ∈ R 2 as s j (x) = x j s(x), (2.33) 
with j ∈ {1, 2}. Assuming that s 1 and s 2 are integrable, then, for all j ∈ {1, 2} and ξ ∈ R 2 ,

F 2 s j (ξ) = i ∂F 2 s ∂ξ j (ξ).
(2.34)

The proof relies on a derivation under the integral sign.

2D Gaussian function

2D Gaussian functions are widely used as window functions in the eld of texture synthesis [START_REF] Lagae | Procedural noise using sparse gabor convolution[END_REF], similarly to their use in 1D signal processing [START_REF] Picinbono | Time-frequency analysis[END_REF]). As a result, they frequently appear in the subsequent developments.

In this section, the Fourier transform of a 2D Gaussian function is formally calculated, a result that, according to the authors' knowledge, is rarely explicitly given in the current literature dealing with signal and image processing. However, it is much more frequently found in the random elds literature (see, e.g., Theorem 3.2.3 in [START_REF] Tong | The multivariate normal distribution[END_REF]). Theorem 1. Let g : R 2 → R be a 2D Gaussian function dened for all

x = (x 1 , x 2 ) ∈ R 2 by g(x) = e -(a 2 1 x 2 1 +a 2 2 x 2 2 ) , (2.35) where (a 1 , a 2 ) ∈ (R * + ) 2 . The Fourier transform of g is given for all ξ = (ξ 1 , ξ 2 ) ∈ R 2 by F 2 g(ξ) = π a 1 a 2 e -1 4 ξ 2 1 a 2 1 + ξ 2 2 a 2 2 .
(2.36)

The proof is given in Appendix A.1. Let (e 1 , e 2 ) denote the canonical basis of R 2 . The 2D Gaussian function g dened in Eq. (2.35) is called anisotropic because its variance is not the same along the two directions e 1 and e 2 of R 2 . The more dierent a 1 and a 2 are, the more anisotropic the Gaussian is. In the special case of a 1 = a 2 , the Gaussian function is isotropic, i.e., the variance does not change with the direction. Because isotropic Gaussian functions frequently appear in the subsequent developments, the 2D Fourier transform of such functions is given in Corollary 1.

Corollary 1. Let g : R 2 → R be a 2D isotropic Gaussian function dened for all x ∈ R 2 by

g(x) = e -a 2 ∥x∥ 2 , (2.37)
where a ∈ R * and ∥.∥ denotes the Euclidian norm of R 2 . The Fourier transform of g is given for all

ξ = (ξ 1 , ξ 2 ) ∈ R 2 by F 2 g(ξ) = π a 2 e -1 4a 2 ∥ξ∥ 2 . (2.38)
This is obviously a particular case of Theorem 1 with a 1 = a 2 = a. Now that some fundamental properties of the 2D Fourier transform are formally expressed, the 1D results about phase estimation given in Section 2.1 can be generalized to 2D images.

2.4 Case of 2D images: the Riesz transform and the monogenic signal

Denition and rst properties

In this section, s denotes a 2D greyscale image modeled as a function s : R 2 → R dened for all x ∈ R 2 by [START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF])

s(x) = a(x) cos [φ(x)] ,
(2.39)

where a(x) denotes the amplitude of s and φ(x) its phase at each pixel x ∈ R 2 . Similarly to the 1D case, these functions give measures of local amplitude and local phase, respectively. In order to extract a and φ from s as done for 1D signals, the Hilbert transform is generalized to the 2D case by using the Riesz transforms

R k , k ∈ {1, 2}, introduced in (Felsberg 2002). For k ∈ {1, 2}, let r k denote the 2D Riesz kernel dened for all x = (x 1 , x 2 ) ∈ (R * ) 2 as r k (x) = x k 2π ∥x∥ 3 2 . (2.40)
Then, the Riesz transforms of s, denoted by R k s, are dened for all x = (x 1 , x 2 ) ∈ R 2 as the 2D improper convolution product between s and r k , i.e.,

R k s(x) = s * r k (x), = 1 2π lim ϵ→0 R 2 \Bϵ(x) (x k -y k ) s(x) ∥x -y∥ 3 2 dy , (2.41)
where B ϵ (x) denotes the open disk of center x and radius ϵ. As in the 1D case, a much more convenient denition can be formulated in the Fourier domain, i.e., for all ξ = (ξ

1 , ξ 2 ) ∈ (R * ) 2 and k ∈ {1, 2} F 2 [R k s] (ξ) = R k (ξ)F 2 s(ξ), (2.42)
where R k denotes the 2D Fourier transform of the Riesz kernel r k , dened by

R k (ξ) = -i ξ k ∥ξ∥ 2 .
(2.43)

The 3D signal whose components are s, R 1 s and R 2 s, respectively, is called the monogenic signal of s [START_REF] Felsberg | The monogenic signal[END_REF]. The spherical coordinates of this 3D signal yield the denition of the monogenic amplitude A(x) and two angular values at each point x, the monogenic phase ϕ(x) and the orientation θ(x), respectively, i.e.,

  s(x) R 1 s(x) R 2 s(x)   = A(x)   cos [ϕ(x)] cos [θ(x)] sin [ϕ(x)] sin [θ(x)] sin [ϕ(x)]   .
(2.44)

The amplitude, phase and orientation of the monogenic signal can be interpreted as a measure of local energy, geometrical structure and main direction of oscillation of the original image, respectively [START_REF] Felsberg | Low-level image processing with the structure multivector[END_REF]. Of course, as in the 1D case, the functions A and ϕ do not necessarily coincide with their physical counterparts a and φ, respectively. However, the next sections show how the monogenic measures given in Eq. (2.44) provide a relevant description of the local behavior of the texture under certain conditions.

Case of a pure cosine wave

As in the 1D case, the rst class of signals to which the Riesz transform is applied is the class of 2D pure cosine waves [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF]. Pure cosine waves are generalized to the 2D case as functions s dened for all x = (x 1 , x 2 ) ∈ R 2 as s(x) = a 0 cos(ωu ⊤ x), (2.45) where ω ∈ R * + , u = (cos α, sin α) ⊤ and α ∈ -π 2 ; π 2 . Visually, such signals correspond to parallel fringes oscillating with a constant frequency. The parameter ω corresponds to the frequency of the fringes, while α denotes their orientation and u their wave vector [START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF]. Figure 2.6 shows an example of such an image.

As stated in [START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF][START_REF] Polisano | Modélisation de textures anisotropes par la transformée en ondelettes monogènes et super-résolution de lignes 2D[END_REF], the Riesz transforms of a pure cosine wave are given for all x ∈ R 2 by

R 1 s(x) = a 0 sin(ωu ⊤ x) cos α, R 2 s(x) = a 0 sin(ωu ⊤ x) sin α.
(2.46)

The monogenic signal of s has thus two spherical representations, which are (a 0 , ωu ⊤ x, α) and the monogenic measures of amplitude, phase and orientation (A(x), ϕ(x), θ(x)) dened in Eq. (2.44), respectively. By identication of the spherical coordinates term by term, the monogenic and physical functions coincide perfectly, i.e., for all x ∈ R 2 ,

   A(x) = a 0 , ϕ(x) = φ(x) = ωu ⊤ x [2π], θ(x) = α [2π].
(2.47) 

Case of a parabolic chirp

Though the monogenic signal is suitable for any oscillating texture [START_REF] Felsberg | The monogenic signal[END_REF], it is often used within an interferometry framework [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF][START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF]. Consequently, the theoretical developments introduced here can nd their motivation in the eld of interferometry, where extracting the phase function is a crucial issue [START_REF] Robin | Phase demodulation method from a single fringe pattern based on correlation with a polynomial form[END_REF].

As in the 1D case, the monogenic measures of amplitude, phase and orientation provided by Eq. (2.44) match their expected physical counterparts only in the case of pure cosine waves. However, assuming that the amplitude and phase functions a and φ are slowly and smoothly varying, the monogenic signal manages to reliably estimate these quantity, as shown in works dealing with interferometric fringe patterns such as [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF]. Because real interferometric fringes often exhibit circular fringes, as can be seen in Figure 2.7, this section aims at further studying how the Riesz transform deals with such patterns, with a special focus on the estimation of the phase and the orientation, respectively.

To do so, one possible approach is to model circular fringes as 2D parabolic chirps. While Sections 2.1 and 2.2 show how the analytic phase function of a 1D parabolic chirp is asymptotically equal to its physical counterpart, no analogous result has been established in the 2D case yet. The parabolic chirp can be generalized to the 2D case as a function s dened for all x = (x 1 , x 2 ) ∈ R 2 as s(x) = a 0 cos(a 2 ∥x∥ 2 ),

(2.48)

where a 0 ∈ R * + and a ∈ R * + . As can be seen in Figure 2.8, parabolic chirps visually corre- spond to circular patterns, which makes them relevant to model interferometric fringes. In order to generalize the asymptotic result of the 1D case, the Riesz transform of a parabolic chirp is rst properly calculated.

Theorem 2 (Riesz transform of a 2D parabolic chirp). If x = (x 1 , x 2 ) ∈ R 2 , let θ x denote the argument of the complex number x 1 + ix 2 . The Riesz transforms of a parabolic chirp s as dened in Eq. (2.48) are given for all x ∈ R 2 by

R 1 s(x) = a 0 a √ π ∥x∥ 2 cos θ x × J 0 a 2 ∥x∥ 2 2 cos π 4 - a 2 ∥x∥ 2 2 +J 1 a 2 ∥x∥ 2 2 sin π 4 - a 2 ∥x∥ 2 2 , (2.49) and R 2 s(x) = a 0 a √ π ∥x∥ 2 sin θ x × J 0 a 2 ∥x∥ 2 2 cos π 4 - a 2 ∥x∥ 2 2 +J 1 a 2 ∥x∥ 2 2 sin π 4 - a 2 ∥x∥ 2 2 , (2.50)
where J n denotes the Bessel functions dened for all n ∈ Z and z ∈ C by [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF])

J n (z) = 1 π π 0 cos(nτ -z sin τ ) dτ.
(2.51)

The proof is given in Appendix A.2. As in the 1D case, the physical and monogenic amplitudes and phases do not match, i.e.,

A(x) ̸ = a 0 and ϕ(x) ̸ = a 2 ∥x∥ 2 .

(2.52) However, by using the asymptotic expressions of the Bessel functions given in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], it is possible to show that the monogenic measure of amplitude and phase are asymptotically close to their physical counterparts. If n ∈ N and u ∈ R, the Bessel functions can be asymptotically expanded for u → +∞ as

J n (u) = 2 πu cos u - nπ 2 - π 4 + O 1 u .
(2.53)

In Eq. (2.49) and (2.50), the argument of the Bessel functions J 0 and

J 1 is u = a 2 ∥x∥ 2 2 .
This expression tends towards innity when ∥x∥ does, i.e., when the signal moves away from its initial point (0, 0). Therefore, it is possible to apply Eq. (2.53) to u = a 2 ∥x∥ 2 2 and n ∈ {0, 1}, which gives

J 0 a 2 ∥x∥ 2 2 = 2 a ∥x∥ √ π cos a 2 ∥x∥ 2 2 - π 4 + O 1 a 2 ∥x∥ 2 , (2.54) J 1 a 2 ∥x∥ 2 2 = 2 a ∥x∥ √ π sin a 2 ∥x∥ 2 2 - π 4 + O 1 a 2 ∥x∥ 2 .
(2.55)

These expressions can then be injected in Eq. (2.49), hence

R 1 s(x) = a 0 cos θ x cos 2 π 4 - a 2 ∥x∥ 2 2 -sin 2 π 4 - a 2 ∥x∥ 2 2 + O 1 a 2 ∥x∥ 2 .
(2.56) Using the equalities cos 2 (θ) -sin 2 (θ) = cos(2θ) and cos π 2 -θ = sin(θ) nally gives the following asymptotic expansion of R 1 s(x),

R 1 s(x) = a 0 cos θ x sin(a 2 ∥x∥ 2 ) + O 1 a 2 ∥x∥ 2 , (2.57) when ∥x∥ → +∞. Similarly, R 2 s(x) = a 0 sin θ x sin(a 2 ∥x∥ 2 ) + O 1 a 2 ∥x∥ 2 ,
(2.58) when ∥x∥ → +∞. Notice that the O term tends towards 0 when ∥x∥ tends towards innity, which yields an asymptotic expression of the monogenic signal associated with s for high values of ∥x∥, i.e.,

  s(x) R 1 s(x) R 2 s(x)   ≈ a 0   cos(a 2 ∥x∥ 2 ) cos θ x sin(a 2 ∥x∥ 2 ) sin θ x sin(a 2 ∥x∥ 2 )   .
(2.59) Because the spherical coordinates are unique (modulo 2π in the case of angular values), the asymptotic expressions of the local amplitude, phase and orientation of the parabolic chip can be deduced from Eq. (2.44) and (2.59), i.e.,

   A(x) ≈ a 0 , ϕ(x) ≈ φ(x) = a 2 ∥x∥ 2 [2π], θ(x) ≈ θ x = arg(x) [2π],
(2.60) when ∥x∥ → +∞. This shows that the amplitude and phase values calculated by the monogenic tool are asymptotically equal to their expected physical values. Furthermore, Eq. (2.60) shows that the monogenic orientation is exactly the argument of x.

It was in fact possible to predict this latter result by using the notion of wave vector presented in (T. D. [START_REF] Carozzi | Instantaneous local wave vector estimation from multi-space craft measurements using few spatial points[END_REF]. Indeed, the wave vector of (T. D. [START_REF] Carozzi | Instantaneous local wave vector estimation from multi-space craft measurements using few spatial points[END_REF]) is dened as the gradient of the phase, which in the case of a parabolic chirp is given for all x ∈ R 2 by ∇φ(x) = 2a 2 x.

(2.61) Because the wave vector gives the local direction of propagation of the wave, the orientation can be calculated as the argument of this vector, which here is exactly equal to θ x because ∇φ(x) and x share the same direction.

Remark (Inuence of the a parameter). The O terms in Eq. (2.57) and (2.58) not only tend towards 0 when ∥x∥ tends towards innity, but also when the a parameter does. This implies that, for high values of a, the monogenic amplitude, phase and orientation converge faster towards their respective asymptotic expressions. This parallels the inuence of a highlighted in Section 2.1.3 in the 1D case. From a physical point of view, this means that the faster the chirp oscillates, the better the monogenic estimation of its local features is.

In the next section, numerical illustrations of these properties are given, with a special attention on the phase and the orientation, respectively. An adaptation of the Shannon-Nyquist theorem to 2D parabolic chirps is also proposed in order to avoid the classical phenomenon of aliasing [START_REF] Marks | Introduction to Shannon sampling and interpolation theory[END_REF].

2D synthetic tests

2.5.1 Discretization Let (t j , t k ) be a 2D discrete grid, with (j, k) ∈ {0, . . . , M -1} × {0, . . . , N -1} and (M, N ) ∈ N 2 such that t j = jT x , t k = kT y , (2.62)
where T x > 0 and T y > 0 denote the horizontal and vertical sampling periods, respectively. Similarly to the 1D case, s = (s j,k ) (j,k)∈{0,...,M -1}×{0,...,N -1} denotes a discrete signal dened for all (j, k) ∈ {0, . . . , M -1} × {0, . . . , N -1} by

s j,k = a j,k cos φ j,k , (2.63)
where a j,k and φ j,k denote the physical amplitude and phase of s j,k , respectively. Using the 2D discrete Fourier transform (see, e.g., [START_REF] Ballard | Computer vision[END_REF][START_REF] Burger | Digital image processing: an algorithmic introduction using Java[END_REF] for details), the Fourier transform of s, denoted by S = (S j,k ) (j,k)∈{0,...,M -1}×{0,...,N -1} , can be computed. The Riesz kernel is then applied to S (see [START_REF] Soulard | Characterization of color images with multiscale monogenic maxima[END_REF] for more details about the way the Riesz kernel is computed), and the discrete Riesz transform of s, a complex-valued signal denoted by Rs, is obtained by reversing the 2D discrete Fourier transform [START_REF] Burger | Digital image processing: an algorithmic introduction using Java[END_REF]. The three components of the discrete monogenic signal of s are then s itself, the real part of Rs and its imaginary part, respectively.

The discrete monogenic amplitude, phase and orientation are nally computed from these three components by using the spherical coordinates. In the subsequent developments, the discrete monogenic measures of phase and orientation at each pixel (j, k) ∈ {0, . . . , M -1} × {0, . . . , N -1} are denoted by ϕ j,k and θ j,k , respectively. These monogenic measures of phase and orientation are then compared with their respective physical counterparts.

As done in Section 2.2 in the 1D case, the synthetic tests focus on two cases: the 2D pure cosine wave, dened for all (j, k) ∈ {0, . . . , M -1} × {0, . . . , N -1} as

s j,k = a 0 cos ω t j cos α + t k sin α , (2.64) where a 0 ∈ R * , ω ∈ R * and α ∈ -π 2 , π
2 denote the amplitude, frequency and orientation of the signal, respectively, the 2D parabolic chirp, dened for all (j, k) ∈ {0, . . . , M -1} × {0, . . . , N -1} as

s j,k = a 0 cos a 2 t j 2 + t k 2 , (2.65) with a 0 ∈ R * + and a ∈ R * + .
Again, the monogenic and physical phase and orientation signals are expected to coincide perfectly in the rst case (see Section 2.4.2), while in the second, they only coincide asymptotically, or if a is large enough (see Section 2.4.3). In order to compare these angular signals, the similarity criteria introduced in Section 2.2.2 in the 1D case are used. Notice however that, contrary to cosine waves, parabolic chirps display accelerating oscillations.

More precisely, at each pixel (jT x , kT y ), (j, k) ∈ {0, . . . , M -1} × {0, . . . , N -1}, the local horizontal and vertical frequencies are respectively equal to a 2 jTx 2π and a 2 kTy 2π . In order to satisfy the Shannon-Nyquist condition [START_REF] Oppenheim | Signals and systems[END_REF], the horizontal and vertical sampling frequencies must be at least twice as high as the maximal horizontal and vertical frequencies of the image, respectively. In both horizontal and vertical cases, the maximal frequency is reached at the last pixel [(M -1)T x , (N -1)T y ], which leads to the following conditions,

a 2 (M -1)T 2 x π < 1, a 2 (N -1)T 2 y π < 1.
(2.66)

In all the subsequent tests involving parabolic chirps, after the size of the image (M × N ) is xed, the sampling periods T x and T y are systematically chosen small enough to satisfy these two conditions and hence avoid aliasing.

Phase extraction of a cosine wave

The discrete transform is rst applied to a 2D cosine wave generated with M = N = 1000, T x = T y = 0.002, a 0 = 0.5, ω = 20π, α = π 6 , respectively. Notice that T x and T y are chosen small enough to t the Shannon-Nyquist bound. The estimated monogenic phase and its expected physical counterpart are represented in the top part of Figure 2.9, as well as their cosine dierence cos(ϕ-φ) (bottom left). As predicted by the theoretical results of Section 2.4.2, the two phase functions look very close to each other, which is conrmed by their high values of BFR and VAF, 99, 96% and 100%, respectively. Additionally, 97.41% of the cosine dierence values cos(ϕ -φ) are higher than 0.999, and 98.56% are higher than 0.99, with the problematic pixels being located exclusively along the top and bottom borders, which further conrms how ϕ and φ are close to each other. Notice furthermore that the orientation, expected to be constantly equal to α, is also well extracted by the monogenic signal. Though the BFR and VAF criteria cannot be applied to constant signals (see Section 2.2.2), the cosine dierence between the monogenic orientation θ and α remains close to 1, as shown in Figure 2.9 (bottom right). This gives a good numerical illustration of the theoretical results found in [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF]) and recalled in Section 2.4.2.

Because the Riesz kernel has a singularity at the null frequency (0, 0) (see Eq. (2.43)), it can be expected that the frequency parameter ω impacts the quality of the phase extraction. In order to conrm this assumption, the Riesz transform is applied to cosine waves of dierent frequencies ω ∈ {2π(1 + ℓ), ℓ = 0, . . . , 9}, from which the monogenic phase function can be extracted and compared to the physical phase through the BFR and VAF criteria. 

Phase and orientation extraction of a parabolic chirp

The Riesz transform is now applied to a discrete parabolic chirp as dened in Eq. (2.5.3), with M = N = 1000, T x = T y = 0.002, a 0 = 0.5 and a = 7. According to Eq. (2.60), the monogenic and physical measures of phase and orientation are expected to get closer and closer to each others as the indices j ∈ {0, . . . , M -1} and k ∈ {0, . . . , N -1} increase. As shown in Figure 2.11, both the monogenic phase and orientation become close to their respective physical counterparts in zones located far enough from the top-left corner. Moreover, the convergence seems fast, as it is not necessary to move very far from the initial pixel (0, 0) to notice the similarity. As stated in Remark 2.4.3, the quality of the monogenic extraction of phase and orientation not only increases with ∥x∥, but also with a. This statement can be conrmed numerically by applying the Riesz transform to parabolic chirps of dierent parameters a ∈ {1 + 0.2ℓ, ℓ = 0, . . . , 35}, from which estimated values of phase and ori-entation can be extracted. The BFR and VAF criteria are then calculated in the area {30, . . . , 970} × {30, . . . , 1000}. Figure 2.12 shows how both criteria increase with a, which highlights the impact of a predicted in the continuous case. 

Phase and orientation extraction of an anisotropic parabolic chirp

In Section 2.4.3, the parabolic chirp is generalized to the 2D case by using the Euclidian norm. The resulting images are isotropic, i.e., they are invariant under rotations around the initial pixel (0, 0). However, such a property is very specic, and in practice most images do not satisfy it [START_REF] Polisano | Modélisation de textures anisotropes par la transformée en ondelettes monogènes et super-résolution de lignes 2D[END_REF]. This is the case of the interferometric fringes displayed in Figure 2.7, whose patterns are not perfectly circular and thus display some degree of anisotropy. By using a weighted square norm instead of the classical Euclidian norm, it is possible to make the parabolic chirp anisotropic, i.e., aected by rotations around the origin, which for all x = (x 1 , x 2 ) ∈ R 2 leads to the following expression,

s(x) = a 0 cos a 2 1 x 2 1 + a 2 2 x 2 2 ,
(2.67) with a 0 ∈ R * + and (a 1 , a 2 ) ∈ (R * + ) 2 . Contrary to the previous case, the phase inside the cosine function now depends on the direction of x. In this case, no analytical expression of the Riesz-transform has been calculated yet, hence no proper asymptotic consideration can be made. If the monogenic tool is well-suited for this type of image, the estimated phase should get close to the expression inside the cosine function in Eq. (2.67) when ∥x∥ tends towards innity. Furthermore, as in the end of Section 2.4.3, the expected physical orientation can be expressed as the argument of the gradient of the phase, i.e., for all

x = (x 1 , x 2 ) ∈ R 2 , θ x = arg a 2 1 x 1 + ia 2 2 x 2 .
(2.68) Though these conjectures are not formally proved yet, they can be conrmed with synthetic tests. Figure 2.14 shows how making a 1 increase (while a 2 stays equal to 6) makes the BFR and VAF criteria get close to 100%. The same observation can be made when a 2 varies while a 1 does not. This further shows that the monogenic estimation of phase and orientation performs well even when dealing with anisotropic images, i.e., images that are not rotation-invariant. and orientation (bottom) functions for anisotropic parabolic chirps of dierent parameters a 1 ∈ {1 + 0.2ℓ, ℓ = 0, . . . , 35}, with a 2 = 6.

Application to interferometry 2.6.1 Framework

Interference is the name of the phenomenon in which the superimposition of two waves results in the formation of a new wave [START_REF] Steel | Interferometry[END_REF]). The term interferometry in turn refers to the various techniques in which interference fringes are used to extract information [START_REF] Steel | Interferometry[END_REF]). Such techniques are of great interest for measuring various dynamical processes like structure deformation because they are purely optical and thus do not require any physical perturbation of the analyzed material [START_REF] Robinson | Interferogram analysis, digital fringe pattern measurement techniques[END_REF][START_REF] Robin | Phase demodulation method from a single fringe pattern based on correlation with a polynomial form[END_REF]. Because the geometrical structure of the fringe network is contained in its phase function and can be directly linked with physical quantities of the studied image (like relief and deformation), its estimation is of great importance [START_REF] Robin | Phase demodulation method from a single fringe pattern based on correlation with a polynomial form[END_REF].

Before the introduction of the monogenic signal in [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Felsberg | The monogenic signal[END_REF], the most widely used techniques to estimate the phase involved the generation of several fringe patterns by moving one of the two networks [START_REF] Bruning | Digital wavefront measuring interferometer for testing optical surfaces and lenses[END_REF]. The phase values were then extracted point by point using these shifted images (see, e.g., [START_REF] Bruning | Digital wavefront measuring interferometer for testing optical surfaces and lenses[END_REF] for further details about phase shifting techniques). The main problem of these techniques is their lack of practical use when dynamic processes come into play, because it would require several phase shifting processes at each time, which is complicated to perform in practice. The application of signal processing tools like the Fourier and Hilbert transforms was originally performed to solve this problem, but these 1D techniques show their limits when dealing with complex 2D patterns [START_REF] Morimoto | Two-dimensional moiré method and grid method using Fourier transform[END_REF]. More recently, a technique requiring only one image, the polynomial Modulated Phase Correlation (pMPC), has been developed in [START_REF] Robin | Phase demodulation method from a single fringe pattern based on correlation with a polynomial form[END_REF] 

Synthesized concentric fringes

In this section, a numerical comparison is performed between the phase computed through the monogenic signal and the one computed through the pMPC technique developed in [START_REF] Robin | Phase demodulation method from a single fringe pattern based on correlation with a polynomial form[END_REF]). In the pMPC procedure, the image is rst divided into patches of equal size and an a priori model is chosen for the amplitude and phase of the fringes located inside the patches. At each patch, several fringe patterns are generated (with dierent parametrizations depending on the chosen model) and the closest to the original fringes according to statistical correlation is selected. The most canonical example treated in [START_REF] Robin | Phase demodulation method from a single fringe pattern based on correlation with a polynomial form[END_REF] is the case of concentric circular fringes. These fringes are modelled by a constant amplitude and a phase function dened for all 

x = (x 1 , x 2 ) ∈ R 2 by φ(x) = 2π p (x 1 -x c 1 ) 2 + (x 2 -x c 2 ) 2 , ( 2 

Application to real 2D fringe patterns

The synthetic tests performed in the previous sections highlight the reliability of the monogenic extraction of phase, even in cases where no theoretical support of its reliability can be provided, apart from the condition of slow and smooth variations given in [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF]. The monogenic tool is now applied to a real fringe pattern, and its phase estimation is then compared to the one given by the pMPC in [START_REF] Robin | Phase demodulation method from a single fringe pattern based on correlation with a polynomial form[END_REF]. This time, the comparison can only be qualitative since the expected physical phase is unknown. As can be seen in Figure 2.19, the lower part of the image is well estimated by the monogenic tool while, in the upper part, it struggles with lower frequencies. The pMPC however works the same way in every part of the image. As seen in Section 2.4.1, the Riesz kernel has a singularity at the null frequency (0, 0), which explains the numerical diculties in dealing with the low frequency fringes on the upper half of the image. However, Figure 2.20 shows that the monogenic-base phase estimation extracts the ner details of the circular fringes better than the pMPC. This conrms that the monogenic tool can provide a precise estimation of the phase, which is totally in line with the conclusions found in [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF]. 
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Conclusion

As said in the introduction, the main purpose of this chapter is the introduction of relevant tools to characterize the local behavior of textures displaying oscillating patterns, though at this stage no color image is considered. This goal is reached by using the monogenic signal introduced in [START_REF] Felsberg | The monogenic signal[END_REF][START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF]. Indeed, even though perfectly identifying the monogenic measures of amplitude, phase and orientation with their physical counterparts is only possible for pure cosine wave, the monogenic tool still manages to extract the local structure of 2D oscillating images, i.e., phase and orientation, outside this ideal case. Though this was already highlighted in [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF][START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF], this chapter goes further by providing a formal proof of the asymptotic convergence of the monogenic estimators in the case of a parabolic chirp, hence generalizing the analogous result of the 1D case. Synthetic tests then show how the monogenic phase and orientation get rapidly close to their expected values, which makes the monogenic tool work almost as perfectly as in the case of pure cosine waves outside the areas near the initial pixel. The same numerical results are also observed for the more general anisotropic parabolic chirps, though no theoretical proof has been provided yet.

Though focusing on parabolic chirps may seem limited at rst, such circular patterns are frequently encountered in the eld of interferometry, as highlighted in Section 2.6 where the monogenic phase estimation is applied to interference fringes. The results obtained by the monogenic tool are substantially better than those obtained with the patch-based pMPC technique, which can be theoretically supported by the asymptotic equivalence between the monogenic and physical phase functions in the case of a parabolic chirp.

Notice that Section 2.5.4 adds anisotropy in the model to cover a wider range of images.

In practice, images not only display anisotropy but may also contain stochastic features. The proof relies heavily on the analogous result of the 1D case, which is recalled before being generalized to the 2D case. Let f : R → R be a 1D Gaussian function dened for all t ∈ R by

f (t) = e -a 2 t 2 , (A.1)
where a ∈ R * . The 1D Fourier transform of f is given for all ξ ∈ R by

Ff (ξ) = √ π a e -ξ 2 4a 2 . (A.2)
This result is now generalized to the case of a 2D Gaussian function g as dened in Eq.

(2.35). Let f 1 and f 2 denote the 1D Gaussian functions dened for all ∈ R by

f 1 (t) = e -a 2 1 t 2 f 2 (t) = e -a 2 2 t 2 , (A.3)
respectively. Then, using the separability of the function g leads for all ξ = (ξ

1 , ξ 2 ) ∈ R 2 to F 2 g(ξ) = R 2 g(ξ)e -ix ⊤ ξ dx, = R 2 e -a 2 1 x 2 1 e -a 2 2 x 2 2 e -ix 1 ξ 1 e -ix 2 ξ 2 dx 1 dx 2 , = R e -a 2 1 x 2 1 e -ix 1 ξ 1 dx 1 × R e -a 2 2 x 2 2 e -ix 2 ξ 2 dx 2 , = Ff 1 (ξ 1 ) × Ff 2 (ξ 2 ). (A.4)
Applying the 1D formula to both f 1 and f 2 nally yields for all ξ = (ξ

1 , ξ 2 ) ∈ R 2 , F 2 g(ξ) = √ π a 1 e -ξ 2 4a 2 1 × √ π a 2 e -ξ 2 4a 2 2 , = π a 1 a 2 e -1 4 ξ 2 1 a 2 1 + ξ 2 2 a 2 2 .
(A.5)

A.2 Proof of Theorem 2

Let ϵ be a strictly positive real number and s ϵ : R 2 → C the function dened for x ∈ R 2 by s ϵ (x) = e -(ϵ+ia 2 )∥x∥ 2 .

(A.6) s ϵ is thus a complex function whose real part is given by ℜs ϵ (x) = e -ϵ∥x∥ 2 cos (a 2 ∥x∥ 2 ).

(A.7)

Hence, for all x ∈ R 2 ,

lim ϵ→0 s ϵ (x) = s(x), (A.8)
where s is a parabolic chirp as dened in Eq. (2.48). The Riesz-transform of s can then be calculated as the limit of the real part of the Riesz transform of s ϵ when ϵ tends to 0, i.e., for k ∈ {1, 2},

R k s = lim ϵ→0 ℜ(R k s ϵ ).
(A.9)

To apply the Riesz operator to s ϵ , a switch to the frequency domain must rst be performed. Since s ϵ is a Gaussian function, its 2D Fourier transform can be expressed by using Theorem 1, hence for all ξ ∈ R 2

F 2 s ϵ (ξ) = π α ϵ e -||ξ|| 2 4αϵ , (A.10)
where α ϵ = ϵ + ia 2 . Applying the Riesz kernel to the Fourier transform of s ϵ then leads for all ξ = (ξ

1 , ξ 2 ) ∈ R 2 to F 2 (R k s ϵ )(ξ) = -i πξ k α ϵ ||ξ|| e -||ξ|| 2 4αϵ .
(A.11)

The Riesz transforms of s ϵ , R k s ϵ (k ∈ {1, 2}), can then be obtained in the space domain by using the inverse Fourier transform, i.e., 

R k s ϵ (x) = 1 (2π) 2 R 2 F 2 (R k s ϵ )(ξ)e ix ⊤ ξ dξ = - 1 (2π) 2 R 2 i πξ k α ϵ ||ξ|| e -||ξ|| 2 4αϵ e ix ⊤ ξ dξ = - i 4πα ϵ R 2 ξ k ||ξ|| e -||ξ|| 2 4αϵ e ix ⊤ ξ dξ.
R k s ϵ (x) = - i 4πα ϵ S 1 + +∞ -∞ Θ k re -r 2 4αϵ e irx ⊤ Θ drdΘ = - i 4πα ϵ S 1 + Θ k +∞ -∞ re -r 2
4αϵ e irx ⊤ Θ dr dΘ.

(A.13) By integrating by parts, the expression inside the square brackets becomes

+∞ -∞ re -r 2 4αϵ e irx ⊤ Θ dr = -2α ϵ e -r 2 4αϵ e irx ⊤ Θ +∞ -∞ + 2α ϵ ix ⊤ Θ +∞ -∞ e -r 2 4αϵ e irx ⊤ Θ dr. (A.14) Because lim |r|→+∞ | -2α ϵ e -r 2 4αϵ e irx ⊤ Θ | = lim |r|→+∞ 2|α ϵ |e -r 2 4αϵ = 0, (A.15) the term [-2α ϵ e -r 2 4αϵ e irx ⊤ Θ ] +∞ -∞ is equal to 0, hence +∞ -∞ re -r 2 4αϵ e irx ⊤ Θ dr = 2α ϵ ix ⊤ Θ +∞ -∞
e -r 2 4αϵ e irx ⊤ Θ dr.

(A.16)

This integral can then be calculated by using the characteristic function of a Gaussian random variable X with mean µ = 0 and variance σ 2 = 2α ϵ . If M R denotes this function, then for all t ∈ R,

M X (t) = E[e itX ] = 1 √ 2πσ 2 +∞ -∞ e -(x-µ) 2 2σ 2 e itx dx = e µit-σ 2 t 2 2 ,
(A.17) by using the expression of the 1D Fourier transform of a Gaussian function recalled in Eq.

A.2. In particular, if µ = 0, σ 2 = 2α ϵ and t = x ⊤ Θ, Eq. (A.17) becomes

1 √ 4πα ϵ +∞ -∞
e -r 2 4αϵ e ix ⊤ Θr dr = e -αϵ(x ⊤ Θ) 2 .

(A.18)

Injecting this expression to Eq. (A.16) then leads to

+∞ -∞ re -r 2 4αϵ e irx ⊤ Θ dr = 4(α ϵ ) 3 2 √ πix ⊤ Θe -αϵ(x ⊤ Θ) 2 . (A.19)
Finally, combining Eq. (A.13) and (A.19) gives

R k s ϵ (x) = - i 4πα ϵ S 1 + Θ k 4(α ϵ ) 3 2 √ πix ⊤ Θe -αϵ(x ⊤ Θ) 2 dΘ = α ϵ π S 1 + Θ k x ⊤ Θe -αϵ(x ⊤ Θ) 2 dΘ. (A.20)
If θ and θ x denote the arguments of Θ and x, respectively, then x ⊤ Θ can be expressed with θ and θ x , i.e.,

x ⊤ Θ = ∥x∥ (cos θ cos θ x + sin θ sin θ x )

= ∥x∥ cos(θ -θ x ) .

(A.21)

Eq. (A.20) then becomes

R 1 s ϵ (x) = αϵ π ∥x∥ π 0 cos θ cos(θ -θ x )e -αϵ∥x∥ 2 cos 2 (θ-θx) dθ, R 2 s ϵ (x) = αϵ π ∥x∥ π 0 sin θ cos(θ -θ x )e -αϵ∥x∥ 2 cos 2 (θ-θx) dθ. (A.22)
The calculation of R 1 s ϵ (x) and R 2 s ϵ (x) are based on the same ideas. In the following lines, only the calculation of R 1 s ϵ (x) is detailed. Using the substitution u = θ -

θ x leads to R 1 s ϵ (x) = α ϵ π ∥x∥ π+θx -θx
cos(θ + θ x ) cos θe -αϵ∥x∥ 2 cos 2 θ dθ.

(A.23)

Notice that the integrated function is π-periodic, which implies that the bounds can be brought back to [0, π], hence

R 1 s ϵ (x) = α ϵ π ∥x∥ π 0 cos(θ + θ x ) cos θe -αϵ∥x∥ 2 cos 2 θ dθ. (A.24)
Using the π-periodicity again then gives

R 1 s ϵ (x) = α ϵ π ∥x∥ 2 π -π cos(θ + θ x ) cos θe -αϵ∥x∥ 2 cos 2 θ dθ. (A.25) cos(θ + θ x ) can then be developed, hence R 1 s ϵ (x) = α ϵ π ∥x∥ 2 π -π
(cos θ cos θ x -sin θ sin θ x ) cos θe -αϵ∥x∥ 2 cos 2 θ dθ.

(A.26)

Because θ → sin θ cos θ is an odd function, Eq. (A.26) becomes

R 1 s ϵ (x) = α ϵ π ∥x∥ 2 cos θ x π -π
cos 2 θe -αϵ∥x∥ 2 cos 2 θ dθ.

(A.27)

This time the integrated functions are even, which leads to

R 1 s ϵ (x) = α ϵ π ∥x∥ cos θ x π 0
cos 2 θe -αϵ∥x∥ 2 cos 2 θ dθ.

(A.28)

The square cosine cos 2 θ can be linearised as 1+cos 2θ 2 , hence (after a substitution u = 2θ) 

R 1 s ϵ (x) = α ϵ π ∥x∥ 4 cos θ x e -
R 1 s ϵ (x) = α ϵ π ∥x∥ 4 cos θ x e -αϵ∥x∥ 2 2 × n∈Z i n J n i α ϵ ∥x∥ 2 2 2π 0
(1 + cos θ)e -inθ dθ. (A.31)

After using the substitution u = -θ and then the 2π-periodicity to switch the interval from [-2π, 0] to [0, 2π], Eq. (A.31) becomes

R 1 s ϵ (x) = α ϵ π ∥x∥ 4 cos θ x e -αϵ∥x∥ 2 2 n∈Z i n J n i α ϵ ∥x∥ 2 2 2π 0
(1 + cos θ)e inθ dθ. (A.32)

By using Euler's formula, the integral can be expressed as 

e i(n-1)θ dθ = 2π(δ 0,n + 1 2 δ 1,n + 1 2 δ -1,n ), (A.33) with δ k,n = 0 if n ̸ = k and δ k,n = 1 if n = k, k ∈ {-1, 0, 1}.
Therefore, all the terms of the sum in Eq. (A.32) are zero except for n = 0, n = 1 and n = -1. Using the equality

J -1 = -J 1 nally leads to R 1 s ϵ (x) = √ α ϵ π ∥x∥ 2 cos θ x e -αϵ∥x∥ 2 2 J 0 i α ϵ ∥x∥ 2 2 + iJ 1 i α ϵ ∥x∥ 2 2 . (A.34) If ϵ → 0, then α ϵ → ia 2 and √ α ϵ → e i π 4 a, hence R 1 s(x) = ℜ a √ π ∥x∥ 2 cos θ x e i π 4 - a 2 ∥x∥ 2 2 J 0 - a 2 ∥x∥ 2 2 + iJ 1 - a 2 ∥x∥ 2 2 . (A.35)
Using the equality J n (-x) = (-1) n J n (x) leads to

R 1 s(x) = ℜ a √ π ∥x∥ 2 cos θ x e i π 4 - a 2 ∥x∥ 2 2 J 0 a 2 ∥x∥ 2 2 -iJ 1 a 2 ∥x∥ 2 2 . (A.36)
Taking the real part of the expression inside the braces nally gives

R 1 s(x) = a √ π ∥x∥ 2 cos θ x J 0 a 2 ∥x∥ 2 2 cos π 4 - a 2 ∥x∥ 2 2 +J 1 a 2 ∥x∥ 2 2 sin π 4 - a 2 ∥x∥ 2 2 . (A.37)
Applying the same operations to R 2 s ϵ (x) also leads to

R 2 s(x) = a √ π ∥x∥ 2 sin θ x J 0 a 2 ∥x∥ 2 2 cos π 4 - a 2 ∥x∥ 2 2 +J 1 a 2 ∥x∥ 2 2 sin π 4 - a 2 ∥x∥ 2 2 . (A.38) CHAPTER 3
Monogenic-based structure extraction of a Gabor noise

Chapter 2 shows how the monogenic tool manages to extract the local phase, i.e., the local structure of oscillating textures, with theoretical guarantees in the case of regular textures. It is worth noting that when applied to real fringe patterns displaying noise, the monogenic tool still works well, though no formal study of how it handles stochastic textures is performed in Chapter 2. This is precisely the subject of this chapter.

According to the authors' knowledge, few works focus on the application of the Riesz operator to stochastic textures in the literature. In [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF], the covariance matrix of the Riesz transform is used as a structure tensor, and yields a measure of global anisotropy, i.e., the existence of a preferred direction of variation. In [START_REF] Polisano | Modélisation de textures anisotropes par la transformée en ondelettes monogènes et super-résolution de lignes 2D[END_REF], the Riesz transform also provides a measure of local anisotropy for Gaussian random elds. However, these works do not tackle the phase estimation issue and focus mainly on orientation. This chapter aims at going further by studying the monogenic extraction of both phase and orientation within a stochastic texture framework. This is motivated by the fact that, in practice, real textures usually display stochastic features, unlike the purely deterministic waves studied in Chapter 2. This step is crucial before tackling color textures in Chapter 4.

Before dealing with real images, the monogenic signal is rst applied to random elds to determine the robustness of its measures. Because the monogenic representation of images aims at describing local oscillating behaviors [START_REF] Felsberg | The monogenic signal[END_REF], this requires the use of a proper random texture model that is well-suited to design realistic oscillating images. Introduced in [START_REF] Lewis | Algorithms for solide noise synthesis[END_REF], sparse convolution noises enable the generation of random textures with prescribed frequency content, which makes them particularly suitable for the monogenic framework. This parallels the sparse representations mentioned in Chapter 1, as sparsity enables the generation of precise texture properties with a limited number of parameters [START_REF] Lagae | Procedural noise using sparse gabor convolution[END_REF]). The subclass of Gabor noises, introduced in [START_REF] Lagae | Procedural noise using sparse gabor convolution[END_REF], provides an even more accurate control on the frequency content of the synthesized image [START_REF] Gilet | Local random-phase noise for procedural texturing[END_REF], and is hence widely used in the eld of texture synthesis [START_REF] Galerne | Gabor noise by example[END_REF]. Another notable work in the eld of oscillating stochastic texture synthesis is the recent introduction of the phasor noise in [START_REF] Tricard | Procedural phasor noise[END_REF], which improves the Gabor noise by removing its local losses of contrast without impacting the control over its frequency content. The proper denition of amplitude and phase provided by [START_REF] Tricard | Procedural phasor noise[END_REF]) is also of great interest when studying how the monogenic signal estimates such functions. Consequently, this chapter aims at showing how the monogenic signal is still able to extract the structure and the orientation in the case of such procedural noises. By doing so, theoretical guarantees can be established before applying the monogenic signal to real textures.

After some crucial properties of sparse convolution noises are recalled in Section 3.1, the Gabor noise and its statistical features are studied in Section 3.2. Section 3.3 then focuses on the estimation of the local phase of a Gabor noise provided by the monogenic signal, while Section 3.4 uses the monogenic-based stochastic structure tensor introduced in [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF] to measure the directionality of the noise. Section 3.5 nally applies these tools to real textures displaying both oscillating and noisy features.

3.1 Sparse convolution noise

Poisson point process and sparse convolution noise with general kernel

Before focusing on the Gabor noise specically, this section gives some basic results about general sparse convolution noises. These results are useful for the further developments involving the monogenic signal and Gabor noises. The key idea of sparse convolution noises is to combine a kernel function that contains the frequency information and overall aspect of the texture with a random process that adds stochastic variation [START_REF] Lagae | Procedural noise using sparse gabor convolution[END_REF]. The rst condition implies that increasing the size of the area A increases the probability of meeting points of the process inside A, while the second condition ensures that the occurrence of points in two disjunct areas is independent. For any y ∈ R 2 , let δ y denote the function dened for all x ∈ R 2 as

δ y (x) = 0 if x ̸ = y, δ y (x) = 1 if x = y. (3.1)
Then, for all kernel function g ∈ L 1 (R 2 ), the sparse convolution noise s is dened for all x ∈ R 2 by

s(x) = i g(x -x i ) = g * Φ(x), (3.2) 
where Φ = i δ x i [START_REF] Lagae | Procedural noise using sparse gabor convolution[END_REF]. In practice, the kernel g is usually chosen such that its support is compact [START_REF] Lagae | Procedural noise using sparse gabor convolution[END_REF]. Under this assumption, the points of the process located far from the considered pixel have a negligible contribution to its value, which ensures that the sum in Eq. (3.2) only contains a small amount of signicant terms. This is exactly why this class of procedural noises are called sparse convolution noises [START_REF] Lagae | Procedural noise using sparse gabor convolution[END_REF]). 

Second-order statistics

A rst approach to study the behavior of the sparse convolution noise s is to express its mean and variance. As said in Section 3.1.1, the frequency content of the synthesized noise, and consequently its power spectrum [START_REF] Lagae | Procedural noise using sparse gabor convolution[END_REF], is prescribed by the kernel g. Given the direct link between the power spectrum and the second order statistics [START_REF] Jahne | Practical handbook on image processing for scientic and technical applications[END_REF], it is not surprising that the mean and variance of the noise s can be linked to g. The result given in Proposition 3.1 of (Galerne 2010) is recalled here with adjusted notations and, for the moment, a restriction to a standard Poisson process. The case of a marked Poisson process as studied in [START_REF] Galerne | Stochastic image models and texture synthesis[END_REF]) is tackled in Section 3.1.3.

Theorem 3. If s is a sparse convolution noise as dened in Eq. (3.2), then for all x ∈ R 2 , s is stationary,

E [s(x)] = µ R 2 g(y)dy, if g ∈ L 2 (R 2 )
, then s is a second order process, and Var [s(x)] = µ R 2 g(y) 2 dy.

The proof is given in Appendix B.1. As for the covariance function, the result found in [START_REF] Galerne | Stochastic image models and texture synthesis[END_REF]) only focuses on the autocovariance of a single sparse convolution noise.

The following theorem is a little more general as it expresses the covariance between two sparse convolution noises induced by the same Poisson point process.

Theorem 4. Let (x i ) i be a homogeneous Poisson point process with intensity µ > 0 as dened in Section 3.1.1, g and h two kernel functions of L 2 (R 2 ). If s g and s h denote the sparse convolution noises induced by g and h, respectively, then for all x ∈ R 2 ,

Cov s g (x), s h (x) = µ R 2
g(y)h(y)dy

(3.3)
The proof is given in Appendix B.2. This theorem can then be applied to express the covariance function of a sparse convolution noise.

Corollary 2. If s is a sparse convolution noise as dened in Eq. (3.2), then the autocovariance function of s, denoted by σ, is given for all

(x, z) ∈ R 2 2 , σ(z) = Cov [s(x), s(x -z)] , = Cov [s(0), s(z)] , = µ R 2
g(y)g(y -z)dy.

(3.4)

These results illustrate how the kernel function fully controls the second order statistics of the noise up to the intensity parameter µ. As highlighted in [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF], the covariance function of a random eld not only determines its spectral behavior, but can also be linked to local directionality, i.e., locally, the existence of a preferred direction of variation. Remember that these procedural noises are introduced to study how the monogenic signal extracts there local features. Fully controlling their directional properties is hence of great interest when studying the robustness of the monogenic extraction of orientation in the case of stochastic oscillating textures. This is further studied in Section 3.4.

Zero-mean sparse convolution noise

Because a lot of the fundamental results found in [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF]) and investigated in the subsequent sections involve zero-mean noises, this section presents some of the techniques given in [START_REF] Lagae | Procedural noise using sparse gabor convolution[END_REF][START_REF] Lagae | Filtering solid gabor noise[END_REF][START_REF] Galerne | Gabor noise by example[END_REF] to make sparse convolution noises zero-mean. A rst approach detailed in [START_REF] Lagae | Procedural noise using sparse gabor convolution[END_REF] is to assign random weights w i to each point of the Poisson process x i such that for all

x ∈ R 2 , s(x) = i w i g(x -x i ), (3.5)
with the w i being i.i.d. realizations of a zero-mean random variable W . These weights are also independent from x i , which ensures that the mean of s is zero. Another approach detailed in [START_REF] Lagae | Filtering solid gabor noise[END_REF][START_REF] Galerne | Gabor noise by example[END_REF][START_REF] Gilet | Local random-phase noise for procedural texturing[END_REF]) and widely used in the case of Gabor noises is the assignment of independent random phase shifts (ψ i ) i uniformly drawn in ] -π, π] and independently assigned to each point of the Poisson point process x i . Considering a kernel function g : R 2 ×] -π, π] → R, the sparse convolution noise can then be dened for all x ∈ R 2 as s(x) = i g(x -x i , ψ i ).

(3.6)

The process from which the pair of realizations (x i , ψ i ) is drawn is called a marked Poisson process [START_REF] Galerne | Stochastic image models and texture synthesis[END_REF]. This second approach is particularly well-suited for Gabor noises [START_REF] Lagae | Filtering solid gabor noise[END_REF], which explains why it is used in the subsequent developments.

The second order statistics given in Section 3.1.2 can then be expressed in this case.

Assuming that the kernel This would not only extend the mathematical background of the monogenic framework, but also provide theoretical guarantees when the monogenic signal is applied to real oscillating textures displaying stochastic features.

g is in L 2 R 2 ×] -π, π] , then for all (x, z) ∈ R 2 2 , Proposition 3.1 in (Galerne 2010) states that s is stationary, E [s(x)] = µ 2π π -π R 2 g(y, ψ)dydψ, Var [s(x)] = µ 2π π -π R 2 g(y, ψ) 2 dydψ, Cov [s(0), s(z)] = µ 2π π -π R 2 g(y, ψ)g(y -z, ψ)dydψ.
3.2 Phase-augmented Gabor noise

Gabor kernel

In [START_REF] Lagae | Procedural noise using sparse gabor convolution[END_REF][START_REF] Gilet | Local random-phase noise for procedural texturing[END_REF][START_REF] Tricard | Procedural phasor noise[END_REF]), the Gabor kernel, from which the Gabor noise is dened, is given for all x ∈ R 2 by g b,ω,α (x, ψ) = e -πb 2 ∥x∥ 2 cos ωu ⊤ x + ψ ,

(3.7)
where b ∈ R * + , ω ∈ R * + , u = (cos α, sin α) ⊤ and α ∈ -π 2 ; π 2 . However, in this thesis, the Gabor kernel is given for all (x,

ψ) ∈ R 2 ×] -π, π] by g b,ω,α (x, ψ) = e -πb 2 ∥x∥ 2 cos bωu ⊤ x + ψ , (3.8) 
In this model, the scale parameter b is explicitly included inside the cosine in order to clearly separate variations in scale and variations in frequency, similarly to how the kernel is parametrized in [START_REF] Guehl | Semi-procedural textures using point process texture basis functions[END_REF]. In order to illustrate the advantages of this approach, let δ denote a strictly positive real number. If the parameter b is multiplied by δ, then for all x ∈ R 2 ,

g δb,ω,α (x, ψ) = e -πδ 2 b 2 ∥x∥ 2 cos ωu ⊤ x + ψ , ⇐⇒ g δb,ω,α ( y δ , ψ) = e -πb 2 ∥y∥ 2 cos ω δ u ⊤ y + ψ , (3.9) 
where y = δx. This means that increasing b is equivalent to decreasing the frequency ω and the scale of the image, respectively. However, for all x ∈ R 2 , g δb,ω,α (x, ψ) = e -πδ 2 b 2 ∥x∥ 2 cos δbωu ⊤ x + ψ , ⇐⇒ g δb,ω,α ( y δ , ψ) = e -πb 2 ∥y∥ 2 cos ωu ⊤ y + ψ .

(3.10)

In this case, increasing b only aects the scale, while the frequency of the wave remains unaected. As shown in Section 3.2.4, this separation between scale and frequency provides a clearer interpretation of the parameters and their respective eects on the visual aspect of the synthesized texture than in the case of the classic Gabor kernel. Notice that the kernel g b,ω,α here dened lies in L 2 R 2 , which is a crucial property for the subsequent developments.

Gabor noise

The Gabor kernel g b,ω,α dened in Eq. (3.8) yields a phase-augmented Gabor noise s :

R 2 → R 3 dened for all x ∈ R 2 as s(x) = i a (x -x i ) cos bωu ⊤ (x -x i ) + ψ i , (3.11) where, 
{(x i , ψ i )} i is a set of realizations of a marked Poisson point process on R 2 ×] -π, π] such that, the points (x i ) i are generated through a homogeneous Poisson point process on R 2 with intensity µ > 0, the marks (ψ i ) i are independent random phase-shifts uniformly drawn in ]-π, π] and independently assigned to each point of the Poisson point process x i ,

a(x) = e -πb 2 ∥x∥ 2 , b ∈ R * + , x ∈ R 2 , ω ∈ R * + , u = (cos α, sin α) ⊤ , α ∈ -π 2 ; π 2 .
Visually, a Gabor noise looks like a set of linear parallel fringes with local perturbations (see the gures in Section 3.2.4). The parameter ω corresponds to the frequency of the fringes, while α corresponds to their orientation and b is a scale parameter. The fact that the three parameters ω, α and b can be directly linked with the visual aspect of the texture is what makes the Gabor noise model so valuable in the eld of texture synthesis [START_REF] Tricard | Procedural phasor noise[END_REF]. As said in Section 3.1.3, the random phase-shifts (ψ i ) i are included in the model to make the Gabor noise s zero-mean, similarly to what is done in [START_REF] Lagae | Filtering solid gabor noise[END_REF][START_REF] Galerne | Gabor noise by example[END_REF]. Notice that, because the Gabor kernel g b,ω,α is a smooth function of L 2 R 2 , i.e., the integral of all its dierentials are nite, the Gabor noise s is a smooth random eld (see Theorem 3 in [START_REF] Biermé | Mean geometry for 2d random elds: level perimeter and level total curvature integrals[END_REF] for further details). This is the subject of Section 3.2.3, which focuses on the second order statistics of the Gabor noise.

Second order statistics of a Gabor noise and interpretation

Theorem 5. The Gabor noise as dened in Eq. (3.11) is stationary, zero-mean, and its covariance function σ(z) = Cov [s(0), s(z)] is given for all z ∈ R 2 by σ(z) = µ 4b 2 cos bωu ⊤ z e -1 2 πb 2 ∥z∥ 2 .

(3.12)

The proof is given in Appendix B.3. It is worth noting that the covariance function of the Gabor noise given in Theorem 5 satises the following properties,

σ(0) = Var(s) = µ 4b 2 , lim ∥z∥→+∞ σ(z) = 0.
The rst property implies that increasing the parameter µ increases the variance of s.

Because µ is the intensity of the Poisson point process, this means that increasing the number of random points occurring in the noise increases its variance. The second property implies that the more distant two points of the noise are, the least correlated they are, which is consistent with the intuition. Notice furthermore that if x ∈ R 2 , r ∈ R * + , and C(x, r) denotes the circle of center x and radius r, then

y M = arg max y∈C(x,r) σ(y -x), ⇐⇒ y M ∈ y ∈ C(x, r)|u ⊤ (y -x) = 0 , ⇐⇒ y M = x ± ru ⊥ , (3.13) 
where u ⊥ = -sin α cos α ⊤ . This means that for delays located at the same distance from the pixel x, the maximum of correlation between s(x) and s(x + z) is reached along the direction orthogonal to u, i.e., along the fringes of the noise. This is consistent with the physical interpretation of α, which is to be understood as the main direction of oscillation of s.

Discretization and synthetic tests

Though the phase-augmented Gabor noise is introduced as a continuous object in the previous sections, it has to be discretized to perform synthetic tests. This section aims at properly presenting the techniques used to generate discrete Gabor noises. Let (t j , t k ) be a discrete grid, with (j, k) ∈ {0 . . . M -1} × {0 . . . N -1} and (M, N ) ∈ N 2 such that

t j = j -M 2 T x , t k = k -N 2 T y , (3.14)
where T x > 0 and T y > 0 denote the horizontal and vertical sampling periods, respectively. In order to simulate a Poisson process on this grid, an independent and identically distributed M × N sampling of a Bernoulli variable of parameter p ∈]0, 1[ is generated for each Gabor noise of the sum. For all l ∈ {1, . . . , n}, let x j,k ∈ {0, 1} denote the Bernoulli number generated at the pixel (t j , t k ) (with (j, k) ∈ {0 . . . M -1}×{0 . . . N -1}). By doing so, the set of pixels (t j , t k ) for which x j,k = 1 form a sample of a Poisson point process with intensity µ = p × S d , where S d denotes the area of the domain on which the noise is generated. Then, an independent and identically distributed M × N sampling of a uniform variable on ] -π, π] is generated at each pixel (t j , t k ). These numbers correspond to the random phase-shifts ψ i dened in Section 3.2.2 in the continuous model, and are denoted by ψ j,k for all (j, k) ∈ {0 . . . M -1} × {0 . . . N -1}. Let h denote the complex-valued M × N discrete signal (h j,k ) j,k such that for all (j, k) ∈ {0 . . . M -1} × {0 . . . N -1}, h j,k = x j,k e i[-bω(t j cos α+t k sin α)+ψ j,k ] ,

(3.15)

where b ∈ R * + , ω ∈ R * + and α ∈ -π 2 ; π 2 . The Gabor noise is nally computed as the real part of the complex random eld h * a, where for all (j, k) ∈ {0 . . . M -1} × {0 . . . N -1}, Unlike what is observed, e.g., in [START_REF] Tricard | Procedural phasor noise[END_REF], increasing the value of the parameter b only aects the scale, a direct consequence of the modication of the Gabor kernel detailed in Section 3.2.1. As expected, increasing the frequency parameter ω yields faster oscillations, while changing α aects the orientation of the fringes. This illustrates how the parameters of the Gabor kernel can be directly linked with the visual aspect of the noise, which is exactly the reason why it is chosen to generate random oscillating textures in this work. However, notice that slow fringes (small value of ω) at a lower resolution (high value Before involving the Riesz transform, the Gabor noise is rst expressed as a single wave signal rather than a sparse convolution by using the phasor approach introduced in [START_REF] Tricard | Procedural phasor noise[END_REF]. The main goal of doing so is to properly dene physical amplitude and phase functions, respectively, and hence tting the Gabor noise into the monogenic framework presented in Chapter 2. For all x ∈ R 2 , [START_REF] Tricard | Procedural phasor noise[END_REF] states that s can be rewritten as

a j,k = e -πb 2 [(t j ) 2 +(t k ) 2 ] .
s(x) = I(x) cos [φ(x)] ,
(3.17)

where

       I(x) = i a(x -x i )e i(-bωu ⊤ x i +ψ i) , φ(x) = bωu ⊤ x + Ψ(x), Ψ(x) = arg i a(x -x i )e i(-bωu ⊤ x i +ψ i) .
(3.18)

The noise s can hence be seen as a cosine wave whose amplitude I and phase φ are random elds rather than deterministic functions unlike the deterministic signals studied in Chapter 2. These functions contain the energetic and structural information of the texture, respectively, similarly to the notion of physical amplitude and phase previously discussed.

Riesz transform and monogenic signal of a Gabor noise

Recall that s is centered, thanks to the inclusion of the phase-shift process (ψ i ) i , which implies that each term of the sum is in L 2 (R 2 ). The Riesz transform of s can then be dened as the sum of the Riesz transforms of each term (see [START_REF] Kallenberg | Foundations of modern probability[END_REF] for further details).

In the purely deterministic case, i.e., I(x) = 1 and Ψ(x) = 0 for all x ∈ R 2 , respectively, the Riesz transform shifts the cosine function into a sine [START_REF] Felsberg | The monogenic signal[END_REF]. This result can be generalized to a Gabor noise as follows.

Theorem 6. Let s be a phase-augmented Gabor noise dened for all x ∈ Ω ⊂ R 2 as

s(x) = i a(x -x i ) cos bωu ⊤ (x -x i ) + ψ i , (3.19)
where all the parameters are dened as in Section 3.2.2. If H s denotes the noise dened for all x ∈ R 2 as

H s (x) = i a(x -x i ) sin bωu ⊤ (x -x i ) + ψ i , (3.20) there exists a constant K ∈ R * + such that for all x ∈ R 2 , E |R 1 s(x) -cos αH s (x)| 2 ≤ K (bω) 2 , E |R 2 s(x) -sin αH s (x)| 2 ≤ K (bω) 2 , (3.21) 
where E denotes the mean operator.

The proof is given in Appendix B.4. Theorem 6 implies that if the product bω is big enough, the cosine is shifted to a sine as in the deterministic case. This condition is fullled if low frequency noises are generated with a low resolution (high value of b), or if noises generated with a high resolution (small value of b) have a high frequency. If both b and ω are small, the oscillations are too slow to be visible at a high resolution, which makes the Riesz transform diverge. In the subsequent developments, bω is assumed to be big enough to apply Theorem 6. In the case of real textures, this condition implies that the oscillating patterns must be visible enough to be captured by the Riesz transform.

Notice that the function H s can be seen as the Hilbert transform of s directed towards the direction α, which is illustrated by the cosine shifted to a sine. This matches the notion of directional Riesz transform mentioned in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF]. The Riesz transform of the Gabor noise s can then be approximated as

Rs(x) ≈ H s (x) cos α sin α . (3.22)
This yields an approximation of the monogenic signal of s, denoted by M s , which can be expressed for all x ∈ R 2 as M s (x) ≈ s(x)e 1 + H s (x)e α , where I and Ψ denote the unied amplitude and phase-shift functions dened in Eq. (4.39), respectively. It can hence be expected that the monogenic phase ϕ(x), dened in Section 2.4.1 as the argument of M s (x) at each pixel x ∈ R 2 , is close to the phase function inside the complex exponential, i.e., for all x ∈ R 2 , ϕ(x) ≈ bωu ⊤ x + Ψ(x) [2π].

(3.25)

Synthetic tests

This section aims at illustrating the previous result with synthetic tests. Let (t j , t k ) denote the discrete grid introduced in Section 3.2.4, with (j, k) ∈ {0 . . . M -1} × {0 . . . N -1} and (M, N ) ∈ N 2 . After the discrete Gabor noise s = (s j,k ) j,k is generated through the technique described in Section 3.2.4, the Riesz transform is applied to the noise in order to extract its monogenic phase signal ϕ = (ϕ j,k ) j,k as done in Section 2.5. Meanwhile, the physical phase signal φ = (φ j,k ) j,k , i.e., the expected values of local phase, is computed for all (j, k) ∈ {0 . . . M -1} × {0 . . . N -1} as φ j,k = bω t j cos α + t k sin α + Ψ j,k [2π],

(3.26) where Ψ j,k denotes the argument of the complex signal h * a dened in Section 3.2.4 at each pixel. Similarly to the deterministic case, both phase signals ϕ and φ are then compared by using the BFR and VAF criteria dened in Section 2.2.2. As said in Section 3.3.2, the phase extraction provided by the monogenic signal is reliable only in the case where the product bω is large enough, a consequence of Theorem 6. It can hence be expected that increasing these parameters increases the quality of the phase estimation, i.e., the values of BFR and VAF between the cosines of the physical and monogenic phases, respectively. Figure 3.4 shows the boxplots of the BFR and VAF criteria calculated for b ∈ {1, . . . , 5}, the other parameters being M = N = 1000, T x = T y = 0.002, ω = 30, α = π 6 and p = 0.1. For each value of b, n = 50 Gabor noises are generated. As expected, increasing the scale parameter b implies a reduction of the variances of the similarity criteria, but their respective means remain stable.

Applying the same procedures with ω = 10 conrms that increasing b alone does not impact the means of the similarity criteria, as shown in Figure 3.5. Again, the variances are reduced when b increases, which implies that the phase estimation is more reliable, while the means stagnate at a lower value than in the case of ω = 30. procedural noises that are widely used in the eld of texture synthesis for their ability to generate realistic oscillating textures [START_REF] Galerne | Gabor noise by example[END_REF]. It can hence be expected that the monogenic measure of phase remains reliable when applied to real textures displaying oscillating patterns. Further developments would then be necessary to characterize the structural information contained in the phase, similarly to what is done for the Fourier phase in [START_REF] Leclaire | No-reference image quality assessment and blind deblurring with sharpness metrics exploiting fourier phase information[END_REF]. While not tackled in this study, this would be an interesting perspective.

As seen in Chapter 2 in the case of deterministic waves, the monogenic signal also provides a measure of orientation. Section 3.4 goes further by studying the monogenic extraction of orientation in the case of random elds.

Monogenic-based stochastic structure tensor

Detecting the directional structures of an image is of great importance in the eld of texture analysis [START_REF] Polisano | Modélisation de textures anisotropes par la transformée en ondelettes monogènes et super-résolution de lignes 2D[END_REF][START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF]). The gradient-based structure tensor, though well-suited for deterministic images, is much less reliable when stochastic elements are added to the image [START_REF] Polisano | Modélisation de textures anisotropes par la transformée en ondelettes monogènes et super-résolution de lignes 2D[END_REF]. Though Sections 2.4 and 2.5 show that the monogenic signal provides a reliable estimation of orientation at each pixel, the resulting orientation signal is of the same size as the original image, which makes it dicult to interpret in terms of global direction of oscillation, especially in the case of stochastic images. The synthetic tests performed in Section 3.2.4 show that Gabor noises display many local perturbations in their orientation, though the global direction of oscillation is still determined by the α parameter. Introduced in [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF]), the monogenic-based measure of directionality provides an interesting extension of the monogenic estimation of orientation to stochastic stationary images. However, though the use of quaternion algebra oers convenient calculation rules, it obscures the more geometric aspects of the paper. In this section, a geometrical study of this technique is performed to give it a more intuitive interpretation. The measure of directionality and the global orientation it provides are then applied to the Gabor noise to illustrate its relevance.

Measure of directionality

Because the measure of directionality introduced in [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF]) is based on a quaternionic approach of the Riesz transform and the monogenic signal, this section makes use of the quaternionic formalism before linking it to more geometric spaces. Let i, j and k denote the fundamental quaternion units [START_REF] Via | Properness and widely linear processing of quaternion random vectors[END_REF]. If s : R 2 → R is a 2D stochastic process in L 2 (R 2 ), the quaternionic monogenic signal of s is dened for all x ∈ R 2 as

M s (x) = s(x) + R 1 s(x)i + R 2 s(x)j + 0k, (3.27)
where R 1 and R 2 denote the Riesz operators. In the case of a phase-augmented Gabor noise, applying the approximation of the monogenic signal given in Section 3.3.2 leads for

all x ∈ R 2 to M s (x) ≈ i a(x -x i ) cos bωu ⊤ (x -x i ) + ψ i + [cos(α)i + sin(α)j] i a(x -x i ) sin bωu ⊤ (x -x i ) + ψ i , ≈ s(x) + u α H s (x), (3.28) 
where u α = cos(α)i + sin(α)j and H s (x) = i a(x -x i ) sin ωu ⊤ (x -x i ) + φ i . As said in Section 3.3.2, H s can be interpreted as a Hilbert transform directed towards u α . The quaternionic monogenic signal of a Gabor noise is hence to be interpreted as the analytic embedding of s in the 2D vector space spanned by the real number 1 and the quaternion u α . The key idea of [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF]) is to notice that the monogenic signal of such a directional signal is invariant with respect to the involution T α : H → H dened for all q ∈ H by T α (q) = -u α qu α .

(3.29) Indeed, let u ⊥ α denote the quaternion -sin(α)i + cos(α)j. Because u α and u ⊥ α are linearly independent elements of the subspace spanned by i and j, the elements 1, u α , u ⊥ α , k form a basis of the quaternion algebra. It can then be easily shown that the elements 1 and u α are invariant with respect to T α , while

T α (u α ) = -u α and T α (k) = -k. Consequently, if η = a + bu α + cu ⊥ α + dk is a quaternion, with (a, b, c, d) ∈ R 4 , then, T α (η) = a + bu α -cu ⊥ α -dk.
(3.30)

This shows that the invariants of T α are exactly the quaternions a + bu α , (a, b) ∈ R 2 . As seen in Eq. (3.28), the monogenic signal of a Gabor noise can be approached by such a quaternion, which implies that it is nearly invariant with respect to T α . For more general noises s that do not have a constant orientation α, this is obviously not true anymore. The preferred direction can then be dened as the angle α ∈ -π 2 , π 2 that minimizes the mean distance between the monogenic signal M s and its involuted form T α (M s ), i.e.,

d s = min θ E 1 2 |M s -T θ (M s )| 2 , α = arg min θ E 1 2 |M s -T θ (M s )| 2 , (3.31)
where | • | denotes the modulus in the quaternion algebra. The minimal distance d s itself provides a measure of directionality. The smallest d s is, the more unidirectional the image is. In the case of a purely unidirectional image (e.g., a Gabor noise), d s = 0.

Geometric interpretation of the measure of directionality

Let x = x 0 +x 1 i+x 2 j be a quaternion of the hyperplane spanned by 1, i and j. The element x could also be seen as a vector of R 3 . The aim of this section is to give a more geometric interpretation of the stochastic structure tensor introduced in [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF]. As stated in [START_REF] Via | Properness and widely linear processing of quaternion random vectors[END_REF], the quaternonic operator T θ used in [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF]) can be expressed as a linear operator on R 3 , i.e., for all x ∈ R 3 ,

T θ (x) =   1 0 0 0 cos (2θ) -sin (2θ) 0 sin (2θ) cos (2θ)     1 0 0 0 1 0 0 0 -1     x 0 x 1 x 2   .
(3.32) Though this result was already given in [START_REF] Via | Properness and widely linear processing of quaternion random vectors[END_REF]), the proof is recalled in Appendix B.5. If (e 1 , e 2 , e 3 ) denotes the canonical basis of R 3 , the operator T θ hence corresponds to a symmetry with respect to the plane vect{e 1 , e 2 } followed by a rotation of angle 2θ around the axis Re 1 . Since the operators T θ leave the x-coordinate unchanged, they could be seen as plane operators. Remember that if s is a Gabor noise with orientation α, its monogenic signal M s (seen as a vector of R 3 ) is invariant with respect to the operator T α , which implies that the estimated preferred direction of oscillation is exactly α. For more general noises s, the preferred direction is chosen as the angle θ + for which the 2D vector formed with the two Riesz components of s changes the least after undergoing a symmetry with respect to the x-axis followed by a rotation of angle 2θ + . Section 3.4.3 gives a more stochastic interpretation of the angle θ + and the measure of directionality d s thanks to the structure tensor framework.

Stochastic structure tensor

Let s be a stationary random process. By using the spectral representation of s [START_REF] Loève | Probability theory II[END_REF], it can be shown that if s is zero-mean, then its Riesz components R 1 s and R 2 s are zero-mean too, and their respective variances are linked by the following equation [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF]), Var(s) = Var(R 1 s) + Var(R 2 s).

(3.33) This equality yields following theorem, in which the measure of directionality of [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF]) is reformulated as dierence of variances.

Theorem 7. Let s be a zero-mean random eld, and let u θ denote the unit vector of R 2 with argument θ ∈ -π 2 , π 2 . Then, the distance d s dened in Eq. (3.31) can be expressed as

d s = 2 Var(s) -2 max θ Var u ⊤ θ Rs , (3.34)
where Rs denotes the Riesz transform of s.

Eq. (3.34) implies that preferred direction of s can be seen as the angle θ + for which the variance of the Riesz transform steered towards the direction θ + is maximal. This is analogous to the gradient-based oriented variation that can be found in [START_REF] Soulard | Ondelettes analytiques et monogènes pour la représentation des images couleur[END_REF] in the deterministic case. Here, the gradient is replaced by the Riesz transform, while the oriented variation is replaced by the variance operator. Eq. (3.34) can then be rewritten as

d s = 2 Var(s) -2 max θ u ⊤ θ T s u θ , (3.35)
where

T s = Var(R 1 s) Cov(R 1 s, R 2 s) Cov(R 1 s, R 2 s)
Var(R 2 s) .

(3.36)

The matrix T s is exactly the covariance matrix of the Riesz transform of s, and can be interpreted as a stochastic structure tensor formed with the Riesz components of s. A similar monogenic-based stochastic structure tensor can be found in [START_REF] Polisano | Modélisation de textures anisotropes par la transformée en ondelettes monogènes et super-résolution de lignes 2D[END_REF] in the case of Gaussian elds. The more classical structure tensor found in [START_REF] Jahne | Practical handbook on image processing for scientic and technical applications[END_REF][START_REF] Soulard | Ondelettes analytiques et monogènes pour la représentation des images couleur[END_REF] is formed with the components of the gradient instead (see [START_REF] Köthe | Riesz-transforms vs. derivatives : on the relationship between the boundary tensor and the energy tensor[END_REF] for more details about the link between the gradient and the Riesz transform). Notice that unlike these deterministic tensors, the components of T s do not need to be convoluted with a smoothing function thanks to the variance operator.

The term u ⊤ θ T s u θ is maximized by using the the eigenvalues of the structure tensor T s , which are given by

       λ + = 1 2 Var(s) + [Var(R 1 s) -Var(R 2 s)] 2 + 4 Cov(R 1 s, R 2 s) 2 , λ -= 1 2 Var(s) -[Var(R 1 s) -Var(R 2 s)] 2 + 4 Cov(R 1 s, R 2 s) 2 , (3.37)
with λ -≤ λ + . Though the determination of the eigenvalues and eigenvectors of a gradientbased structure tensor can be found in, e.g., [START_REF] Soulard | Ondelettes analytiques et monogènes pour la représentation des images couleur[END_REF], the proofs in the case of the stochastic structure tensor are given in Appendix B.5. Then, the term u ⊤ θ T s u θ is maximal when calculated along the eigenvector of T s associated with its greatest eigenvalue, and minimal when calculated along the eigenvector of T s associated with its smallest eigenvalue (see Appendix B.5). Applying this result to Eq. (3.35) implies that the measure of directionality d s can be expressed as

d s = 2 Var(s) -2λ + .
(3.38) Notice that λ + + λ -= Var(s), which yields a direct link between the measure of directionality d s and λ -, i.e.,

d s = 2 Var(s) -2λ + , = 2 (λ + + λ -) -2λ + , = 2λ -. (3.39)
The directionality of the image is hence measured by calculating the lowest eigenvalue of the stochastic structure tensor. In the case of a purely unidirectional image, there is only one preferred direction, which implies λ -= 0. Otherwise, λ -quanties the importance of the second main direction of the image. The normalized measure of directionality, introduced in [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF]) and denoted by U s , is then equivalent to the coherence index often used when dealing with structure tensors (e.g., in [START_REF] Soulard | Ondelettes analytiques et monogènes pour la représentation des images couleur[END_REF][START_REF] Polisano | Modélisation de textures anisotropes par la transformée en ondelettes monogènes et super-résolution de lignes 2D[END_REF])), i.e.,

U s = 2 max θ u ⊤ θ T s u θ Var(s) -1, = 2λ + λ + + λ - -1, = λ + -λ - λ + + λ - .
(3.40)

Furthermore, the preferred direction of oscillation θ + is computed by using Eq. B.84 (see Appendix B.5), hence,

θ + = 1 2 arg [Var(R 1 s) -Var(R 2 s) + 2i Cov(R 1 s, R 2 s)] [2π].
(3.41)

Case of a Gabor noise

This section aims at applying the stochastic structure tensor to the Gabor noise, which is the main focus of this chapter for its ability to model oscillating stochastic textures. Given that the stochastic structure tensor of [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF]) is exactly the covariance matrix of the Riesz transform, the latter must be expressed in the case of a Gabor noise before applying the orientation estimation technique described in the previous sections. Let s be a phase-augmented Gabor noise as dened in Section 3.2.2. Assuming that the product bω is small enough, Theorem 6 ensures that the Riesz transforms of s can be approached by using Eq. 3.22, i.e., for all x ∈ R 2 , Rs(x) ≈ H s (x) cos α sin α ,

(3.42)
where

H s (x) = i a(x -x i ) sin bωu ⊤ (x -x i ) + ψ i .
(3.43)

The phase-shifted noise H s can then be expressed as a sum of cosines, i.e., for all x ∈ R 2 ,

H s (x) = i a(x -x i ) cos bωu ⊤ (x -x i ) + ψ ′ i , (3.44) where ψ ′ i = ψ i -π 2 [2π].
Because the stochastic process (ψ ′ i ) i fullls the same assumptions as (ψ i ) i , H s is a Gabor noise to which Theorem 5 can be applied, hence,

Var (H s ) = µ 4b 2 , (3.45) which yields    Var (R 1 s) = µ 4b 2 cos 2 α, Var (R 2 s) = µ 4b 2 sin 2 α, Cov (R 1 s, R 2 s) = µ 4b 2 cos α sin α. (3.46)
Therefore, in the case of a Gabor noise, the stochastic structure tensor T s expressed in Eq.

(3.36) becomes

T s = µ 4b 2 cos 2 α cos α sin α cos α sin α sin 2 α , (3.47)
The eigenvalues of T s can then be calculated by applying Eq. (B.79) to the case of a Gabor noise, i.e.,

λ + = µ 4b 2 × 1 2 1 + cos 2 α -sin 2 α 2 + 4 cos 2 α sin α 2 , = µ 4b 2 × 1 2 1 + cos 2 α + sin 2 α 2 , = µ 4b 2 . λ -= µ 4b 2 × 1 2 1 - cos 2 α -sin 2 α 2 + 4 cos 2 α sin α 2 , = µ 4b 2 × 1 2 1 - cos 2 α + sin 2 α 2 , = 0. (3.48)
This leads to d s = 0 and U s = 1, which is consistent with the unidirectional nature of s.

As can be expected, the preferred direction of oscillation θ + is exactly α, i.e., by using Eq.

(B.84),

θ + = 1 2 arg [Var(R 1 s) -Var(R 2 s) + 2i Cov(R 1 s), R 2 s)] [2π], = 1 2 arg µ 4b 2 cos 2 α -sin 2 α + 2i cos α sin α [2π], = 1 2 arg cos 2 α -sin 2 α + 2i cos α sin α [2π], = 1 2 arg [cos (2α) + i sin (2α)] [2π], = α [2π].
(3.49)

Synthetic tests are now performed to illustrate the reliability of this orientation extraction technique.

Synthetic tests

The Gabor noises are again synthesized on the discrete grid (t j , t k ), (j, k) ∈ {0 . . . M -1} × {0 . . . N -1}, (M, N ) ∈ N 2 , similarly to what is done in Sections 3.2.4 and 3.3.3, respectively. After the discrete Gabor noise s = (s j,k ) j,k is generated, the Riesz transforms R 1 s and R 2 s are computed, from which the discrete stochastic structure tensor T s , i.e., the empirical covariance matrix of the Riesz transforms, can be deduced. Once the matrix T s is available, its eigenvalues and eigenvectors can be calculated. The argument of the ax of the eigenvector associated with the largest eigenvalue then yields a measure of orientation, which is compared with the expected orientation α. Given the fact that the developments performed in this section rely on Theorem 6, it can be expected that increasing the parameters b and ω increase the reliability of the orientation extraction, similarly to what is observed in Section 3.3.3 when focusing on the phase extraction. Figure 3.7 shows the boxplots of the estimated orientations calculated for b ∈ {1, . . . , 5}, the other parameters being M = N = 1000, T x = T y = 0.002, ω = 30, α = π 6 and p = 0.1. For each value of b, n = 50 Gabor noises are generated. As in the case of phase extraction, increasing the scale parameter b only reduces the variance of the estimated orientation, while the mean remains close to the expected value α, suggesting that the estimation is unbiased. From b = 3 onwards, the orientation becomes highly reliable. Gabor noises generated for each value of ω. again, increasing the frequency parameter ω reduces both the mean and the variance of the estimator. For ω ≥ 30, the orientation estimation becomes highly reliable.

However, as shown in Figure3.9, the value of α does not seem to have any impact on the quality of the estimation. Generating n = 50 Gabor noises for each α ∈ π 12 (1 + k) , k = 0, . . . , 5, with M = N = 1000, T x = T y = 0.002, b = 5, ω = 30 and p = 0.1, yields an unbiased estimation of orientation with a small variance in all cases. This highlights the ability of the monogenic-based stochastic structure tensor to extract the preferred direction of oscillation of a Gabor noise.

These results are consistent with what is observed on the normalized measure of unidirectionality U s . Figures 3.10 and 3.11 show that increasing the scale b and the frequency ω, respectively, yields more unidirectional textures, which is reected by the values of the index U s that tend towards 1, with a decreasing variance. Curiously, the orientation α has some impact on the mean and variance of the directionality U s , though the values remain close to 1 in all cases. A further statistical study could be performed to determine whether these variations are mere random uctuations or not. Overall, these synthetic tests illus- The relevance of the stochastic structure tensor and the index U s , respectively, can be further illustrated by considering a weighted sum of two Gabor noises with dierent orientations. Let s 1 and s 2 denote two independent discrete Gabor noises as dened in Section 3.2.4, generated with the same parameters except for the orientation. The orientations of s 1 and s 2 are denoted by α 1 and α 2 , respectively. If w ∈ [0, 1], let s be the weighted sum of s 1 and s 2 dened for all x ∈ R 2 by s(x) = (1 -w)s 1 (x) + ws 2 (x).

(3.50) Figure 3.13 shows the boxplots of the estimated orientations calculated for w ∈ {0.1k, k = 0, . . . , 10}, the other parameters being M = N = 1000, T x = T y = 0.002, b = 5, ω = 30, α 1 = π 6 , α 2 = π 2 and p = 0.1. For each value of w, n = 50 Gabor noises are generated. As can be expected, the estimated orientation is close to α 1 when w is close to 0, and close to α 2 when w is close to 1. Notice that the shift between these two extremes is smooth, suggesting that in the case of two main directions of oscillation α 1 and α 2 (w ≈ 0.5), the estimated orientation θ + corresponds to a mean between α 1 and α 2 . This shift is also reected in the normalized measure of directionality U s . Indeed, as shown in Figure 3.14, this parameter is close to 1 when one Gabor noise signicantly dominates the other (w ≈ 0 or w ≈ 1). When the two noises equally contribute in the texture (w ≈ 0.5), the index U s oscillates a little above 0.5. Again, this is similar to what is observed with the more classical coherence index in the case of deterministic images [START_REF] Soulard | Ondelettes analytiques et monogènes pour la représentation des images couleur[END_REF], except that the index U s is designed for stochastic texture. Notice that an analogous coherence index is also used in [START_REF] Polisano | Modélisation de textures anisotropes par la transformée en ondelettes monogènes et super-résolution de lignes 2D[END_REF] when dealing with Gaussian elds. 

Application to real textures

Sections 3.3 and 3.4 provide relevant monogenic-based tools to extract phase and orientation, respectively, which is illustrated by the good results they give when applied to Gabor noises. Remember that the Gabor noise framework is originally chosen because it enables the synthesis of stochastic oscillating textures with prescribed frequency content. This section goes further by applying these tools to real textures displaying oscillating patterns.

Table 3.4 shows the results obtained by applying the phase and orientation estimation processes described in the previous sections to grill, sand, metal and sheet textures. The directionality index U s is also given. As was already observed in the case of interference fringes in Chapter 2, the monogenic phase manages to extract the oscillating structures of the images, though it struggles when the patterns are less obvious. This can be linked with Theorem 6, which states that the reliability of the monogenic extraction of phase decreases when bω decreases, i.e., when the oscillating patterns become less visible. Notice that, like in the case of fringe patterns, these tests only tackle the extraction of the phase. Now that the reliability of this extraction is established, further developments would be necessary to characterize the information contained in the phase function.

In all cases, the global orientation extracted from the monogenic structure tensor is consistent with the visual aspect of the texture, i.e., the direction of the oscillating patterns is well extracted. This is also true for the directionality index, which increases as the texture For T > 0, let A T denote the square [-T, T ] 2 ⊂ R 2 , and s T the process dened for all x ∈ R 2 by

s T (x) = i|x i ∈A T g(x -x i ). (B.1) Because (x i ) i is a Poisson process with intensity µ, N (A T ) has a Poisson distribution with parameter µ|A T | = µ(2T ) 2 . Moreover, given N (A T ) = n,
with n ∈ N, the points {y 1 , . . . , y n } inside A T are independent and identically distributed according to a uniform distribution on A T . s T (x) can hence be expressed as

s T (x) = N (A T ) i=1 g(x -y i ). (B.2)
Mean :

The mean of s T can then be calculated as a conditional mean,

E [s T (x)] = E {E [s T (x)|N (A T )]} , = E    E   N (A T ) i=1 g(x -y i ) N (A T )      , = E {N (A T )E [g(x -y 1 )]} because the (y i ) i are i.i.d., = E [N (A T )] × E [g(x -y 1 )
] by linearity of the mean.

(B.3)

Because the random variable N (A T ) has a Poisson distribution with parameter µ(2T ) 2 , its mean is exactly equal to its parameter. As for the mean of g(x -y 1 ), it is calculated by using the uniform density on A T = [-T, T ] 2 , which gives The same method can be used to calculate the second moment of s T (x), with T > 0 and x ∈ R 2 .

E [s T (x)] = µ(2T ) 2 A T g(x -u) du (2T ) 2 , = µ A T g(x -u)du. (B.4) It is obvious that for all x ∈ R 2 , lim T →+∞ s T (x) = s(x).
E s T (x) 2 = E E s T (x) 2 |N (A T ) , = E    E     N (A T ) i=1 g(x -y i )   2 N (A T )      , = E    E   N (A T ) i=1 g(x -y i ) 2 + i̸ =j g(x -y i )g(x -y j ) N (A T )      , = E N (A T )E g(x -y 1 ) 2 + N (A T )(N (A T ) -1)E [g(x -y 1 )g(x -y 2 )] , = E [N (A T )] × E g(x -y 1 ) 2 + E [N (A T )(N (A T ) -1)] × E [g(x -y 1 )] 2 . (B.8)
Because N (A T ) has a Poisson distribution with parameter µ(2T ) 2 , the mean of the random variable N (A T )(N (A T ) -1) can be expressed as follows,

E [N (A T )(N (A T ) -1)] = E N (A T ) 2 -E [N (A T )] , = Var(N (A T )) + E [N (A T )] 2 -E [N (A T )] , = µ(2T ) 2 + µ 2 (2T ) 4 -µ(2T ) 2 , = µ 2 (2T ) 4 . (B.9)
Injecting this expression in the second moment of s T (x) leads to

E[s T (x) 2 ] = µ(2T ) 2 A T g(x -u) 2 du (2T ) 2 + µ 2 (2T ) 4 A T g(x -u) du (2T ) 2 2 , = µ A T g(x -u) 2 du + µ 2 A T g(x -u)du 2 . (B.10) Making T tend towards +∞ gives E s(x) 2 = µ R 2 g(y) 2 dy + µ 2 R 2 g(y)dy 2 . (B.11)
Finally, the variance is obtained as the dierence between the second moment and the square of the previously calculated mean, i.e.,

Var [s(x)] = E s(x) 2 -E [s(x)] 2 , = µ R 2 g(y) 2 dy + µ 2 R 2 g(y)dy 2 -µ 2 R 2 g(y)dy 2 , = µ R 2 g(y) 2 dy. (B.12)

B.2 Proof of Theorem 3

As in the calculation of the variance, the covariance is rst expressed in a square A T = [-T, T ] 2 ⊂ R 2 , T > 0. Let s g T and s h T denote the processes dened for all x ∈ R 2 by

s g T (x) = N (A T ) i=1 g(x -y i ), s h T (x) = N (A T ) i=1 h(x -y i ). (B.13)
The mean of the product s g T (x)s h T (x) is rst calculated

E[s g T (x)s h T (x)] = E{E[s g T (x)s h T (x)|N (A T )]}, = E    E     N (A T ) i=1 g(x -y i )     N (A T ) j=1 h(x -y j )   N (A T )      , = E    E   N (A T ) i=1 g(x -y i )h(x -y i ) + i̸ =j g(x -y i )h(x -y j ) N (A T )      , = E {N (A T )E [g(x -y 1 )h(x -y 1 )] + N (A T )(N (A T ) -1)E [g(x -y 1 )h(x -y 2 )]} , = E [N (A T )] × E [g(x -y 1 )h(x -y 1 )] , + E [N (A T )(N (A T ) -1)] × E [g(x -y 1 )] × E [h(x -y 1 )] , = µ(2T ) 2 A T g(x -u)h(x -u) du (2T ) 2 , + µ 2 (2T ) 4 A T g(x -u) du (2T ) 2 × A T h(x -u) du (2T ) 2 , = µ A T g(x -u)h(x -u)du + µ 2 A T g(x -u)du A T h(x -u)du . (B.14) Making T tend towards +∞ gives E s g (x)s h (x) = µ R 2 g(y)h(y)dy + µ 2 R 2 g(y)dy R 2 h(y)dy . (B.15)
Finally, the covariance is obtained as the dierence between the mean of the product and the product of the means,

Cov s g (x)s h (x) = E s g (x)s h (x) -E [s g (x)] E s h (x) , = µ R 2 g(y)h(y)dy + µ 2 R 2 g(y)dy R 2 h(y)dy -µ 2 R 2 g(y)dy R 2 h(y)dy , = µ R 2 g(y)h(y)dy. (B.16)

B.3 Proof of Theorem 5

The proof basically consists in applying Proposition 3.1 of (Galerne 2010) (recalled in Section 3.1.3) to the gabor kernel g dened in Eq. (3.8).

Mean :

E [s(x)] = µ 2π π -π R 2 g(y, ψ)dydψ, = µ 2π π -π R 2 e -πb 2 ∥y∥ 2 cos bωu ⊤ y + ψ dydψ, = µ 2π ℜ π -π R 2 e -πb 2 ∥y∥ 2 e i(bωu ⊤ y+ψ) dydψ , = µ 2π ℜ π -π e iψ R 2
e -πb 2 ∥y∥ 2 e i(bωu ⊤ y) dydψ ,

= µ 2π ℜ     π -π e iψ dψ =0 R 2
e -πb 2 ∥y∥ 2 e i(bωu ⊤ y) dy     , by using Fubini's theorem = 0.

(B.17)

Covariance function :

Let z ∈ R 2 be a 2D spatial delay. Using the expression of the covariance given at the end of Section 3.1.3 leads to

Cov [s(0), s(z)] = µ 2π π -π R 2 g(y, ψ)g(y -z, ψ)dydψ, = µ 2π π -π R 2 a(y)a(y -z) × cos bωu ⊤ y + ψ cos bωu ⊤ (y -z) + ψ dydψ, = µ 2π π -π R 2 e -πb 2 ∥y∥ 2 e -πb 2 ∥y-z∥ 2 × cos bωu ⊤ y + ψ cos bωu ⊤ (y -z) + ψ dydψ, = µ 4π π -π R 2 e -πb 2 ∥y∥ 2 e -πb 2 ∥y-z∥ 2 × cos bωu ⊤ (2y -z) + 2ψ + cos bωu ⊤ z dydψ. (B.18)
The two terms of the integral are now calculated seperately. The rst term, denoted by I 1 can be expressed in the complex domain, hence

I 1 = µ 4π π -π R 2
e -πb 2 ∥y∥ 2 e -πb 2 ∥y-z∥ 2 cos bωu ⊤ (2y -z) + 2ψ dydψ,

= µ 4π ℜ π -π R 2
e -πb 2 ∥y∥ 2 e -πb 2 ∥y-z∥ 2 e i[bωu ⊤ (2y-z)+2ψ] dydψ .

(B.19)

The integration variables can be separated as is done for the mean, leading to

I 1 = µ 4π ℜ     R 2 e -πb 2 ∥y∥ 2 e -πb 2 ∥y-z∥ 2 e iωu ⊤ (2y-z) dy × π -π e 2iψ dψ =0     , = 0. (B.20)
The second term of Eq. (B.18), denoted by I 2 , can be expressed as the convolution product between the Gaussian function a dened in Section 3.2.2 and itself, i.e.,

I 2 = µ 4π π -π R 2 e -πb 2 ∥y∥ 2 e -πb 2 ∥y-z∥ 2 cos bωu ⊤ z dydψ, = µ 2 cos bωu ⊤ z R 2
e -πb 2 ∥y∥ 2 e -πb 2 ∥y-z∥ 2 dy,

= µ 2 cos bωu ⊤ z a * a(z). (B.21)
This convolution product is rst calculated in the Fourier domain. Let F 2 denote the 2D Fourier transform dened in Section 2.3. Applying the expression of the 2D Fourier transform of a Gaussian function given in Theorem 1 to the convolution product a * a, with

a 1 = a 2 = b √ π, leads for all ξ ∈ R 2 to F 2 (a * a)(ξ) = [F(a)(ξ)] 2 , = 1 b 2 e -1 4πb 2 ∥ξ∥ 2 2 , = 1 b 4 e -1 2πb 2 ∥ξ∥ 2 . (B.22)
This is exactly the Fourier transform of a Gaussian function with where ω ∈ R * + , u = (cos α, sin α) ⊤ and α ∈ -π 2 ; π 2 . Because the Riesz transform is dened in the Fourier domain in Section 2.4.1, a preliminary step consists in calculating the 2D Fourier transform of h, denoted by h. Hence, for all ξ ∈ R 2 ,

a 1 = a 2 = b π 2 , hence, for z ∈ R 2 , a * a(z) = b 2 π 2πb 4 e -1 2 πb 2 ∥z∥ 2 , = 1 2b 2 e -1
h(ξ) = R 2 e -π||x|| 2 e iωu ⊤ x e -iξ ⊤ x dx, = R 2 e -π||x|| 2 e -i(ξ-ωu) ⊤ x dx. (B.26)
This is exactly the 2D Fourier transform of a Gaussian function evaluated at ξ -ωu.

Appliyng the formula given in Theorem 1 with

a 1 = a 2 = √ π leads to h(ξ) = e -1 4π ||ξ-ωu|| 2 . (B.27)
Let S denote the complex Gabor noise dened from the complex Gabor kernel h, i.e., for

all x ∈ R 2 , S(x) = i e iψ i h (x -x i ) , (B.28)
where the random points x i and phase-shifts ψ i are dened as in Section 3.2.2. If the Riesz transform acts as a phase-shift operator, it can be expected that

R 1 h ≈ -i cos (α) h, R 2 h ≈ -i sin (α) h, (B.29)
The proof now focuses only on R 1 , but similar developments can be done for R 2 . The goal is to compare the rst Riesz transform of S, i.e., R 1 S, and the noise dened from the approximated Riesz transform of the Gabor kernel -i cos (α) h in terms of quadratic error. This noise, denoted by S, can be expressed for all x ∈ R 2 as

S(x) = -i cos (α) i e iψ i h (x -x i ) . (B.30)
To do so, the quadratic error is expressed by applying Proposition 3.1 of (Galerne 2010)

recalled in Section 3, i.e., for all x ∈ R 2 , E R 1 S(x) -S(x) 2 = µ R 2 |R 1 h(y) + i cos (α) h(y)| 2 dy, (B.31)
where µ denotes the intensity of the Poisson process from which the points x i are generated. This is enabled by the stationarity of the noise [START_REF] Galerne | Stochastic image models and texture synthesis[END_REF]. According to the Plancherel theorem, the Fourier transform is an isometry, meaning that it preserves the Euclidian norm of L 2 (R 2 ). This implies that the quadratic error of Eq. (B.31), now denoted by D S , can be calculated in the Fourier domain, i.e.,

D S (x) = µ (2π) 2 R 2 R 1 h(ξ) + i cos (α) h(ξ) 2 dξ. (B.32) = µ (2π) 2 R 2 (ξ 1 + ω) u + ξ 2 u ⊥ || (ξ 1 + ω) u + ξ 2 u ⊥ || -u ⊤ e 1 2 e -1 2π (ξ 2 1 +ξ 2 2 ) dξ 1 dξ 2 , (B.36)
where e 1 = 1 0

⊤ . For all (ξ 1 , ξ 2 ) ∈ R 2 , let ∆ ω (ξ 1 , ξ 2 ) denote the vector of R 2 dened as ∆ ω (ξ 1 , ξ 2 ) = (ξ 1 + ω) u + ξ 2 u ⊥ || (ξ 1 + ω) u + ξ 2 u ⊥ || -u. (B.37)
The Pythagorean theorem implies that the square of any of the coordinates of ∆ ω (ξ 1 , ξ 2 ) is necessarily lower than its Euclidian norm, hence,

∆ ω (ξ 1 , ξ 2 ) ⊤ e 1 2 ≤ ||∆ ω (ξ 1 , ξ 2 ) || 2 , = (ξ 1 + ω) u + ξ 2 u ⊥ (ξ 1 + ω) 2 + ξ 2 2 -u 2 , =   ξ 1 + ω (ξ 1 + ω) 2 + ξ 2 2 -1   2 + ξ 2 2 (ξ 1 + ω) 2 + ξ 2 2 , = (ξ 1 + ω) 2 (ξ 1 + ω) 2 + ξ 2 2 -2 ξ 1 + ω (ξ 1 + ω) 2 + ξ 2 2 + 1 + ξ 2 2 (ξ 1 + ω) 2 + ξ 2 2 , = 2   1 - ξ 1 + ω (ξ 1 + ω) 2 + ξ 2 2   . (B.38) Notice that for all (ξ 1 , ξ 2 ) ∈ R 2 , ξ 1 + ω (ξ 1 + ω) 2 + ξ 2 2 ≤ 1, (B.39) which implies that ∆ ω (ξ 1 , ξ 2 ) ⊤ e 1 2 ≤ 4. (B.40) Moreover, if ξ 1 + ω ̸ = 0, then, ξ 1 + ω (ξ 1 + ω) 2 + ξ 2 2 = 1 1 + ξ 2 2 (ξ 1 +ω) 2 . (B.41)
Let r be a real function dened for all t ∈ R + by

r(t) = 1 2 t + 1 √ 1 + t -1. (B.42)
For all t ∈ R + , the derivative of r is well-dened and given by r

′ (t) = 1 2 - 1 2 (1 + t) 3 . (B.43)
This quantity is positive for all t ∈ R + , which implies that r is an increasing function on R + . In particular, for all t ∈ R + ,

r(t) ≥ r(0) ⇐⇒ 1 2 t + 1 √ 1 + t -1 ≥ 0, ⇐⇒ 1 - 1 √ 1 + t ≤ 1 2 t. (B.44)
Applying this inequality to t = ξ 2 2 (ξ 1 +ω) 2 and injecting it in Eq. (B.38) nally leads to

∆ ω (ξ 1 , ξ 2 ) ⊤ e 1 2 ≤ ξ 2 2 (ξ 1 + ω) 2 . (B.45)
The inequalities (B.40) and (B.45) are now used to bound the expression of D S (x) given in Eq. (B.36). Hence, for all x ∈ R 2 ,

D S (x) ≤ µ (2π) 2 R 2 min 4, ξ 2 2 (ξ 1 + ω) 2 e -1 2π (ξ 2 1 +ξ 2 2 ) dξ 1 dξ 2 I . (B.46)
The integral, denoted by I, is now split in two terms that will be bounded independently.

Let I 1 and I 2 denote the integrals respectively dened as

I 1 = µ (2π) 2 R ω 2 -ω 2 min 4, ξ 2 2 (ξ 1 +ω) 2 e -1 2π (ξ 2 1 +ξ 2 2 ) dξ 1 dξ 2 , I 2 = I -I 1 . (B.47) After noticing that for all ξ 1 ∈ -ω 2 , ω 2 , 1 (ξ 1 + ω) 2 ≤ 4 ω 2 , (B.48)
I 1 can be bounded as follows,

I 1 ≤ µ (2π) 2 R ω 2 -ω 2 4ξ 2 2 ω 2 e -1 2π (ξ 2 1 +ξ 2 2 ) dξ 1 dξ 2 , ≤ µ (2π) 2 R 2 4ξ 2 2 ω 2 e -1 2π (ξ 2 1 +ξ 2 2 ) dξ 1 dξ 2 , = K 1 ω 2 , (B.49)
where

K 1 = µ π 2 R 2 ξ 2 2 e -1 2π (ξ 2 1 +ξ 2 2 ) dξ 1 dξ 2 . (B.50)
Notice that K 1 does not depend on ω. 

I 2 ≤ µ π 2 R R\[-ω 2 , ω 2 ] e -1 2π (ξ 2 1 +ξ 2 2 ) dξ 1 dξ 2 , = 2µ π 2 R +∞ ω 2 e -1 2π (ξ 2 1 +ξ 2 2 ) dξ 1 dξ 2 , (B.51)
by using the symmetry of the integrated Gaussian function. This integral can be bounded by using the Lemma 2 sound in [START_REF] Feller | An introduction to probability theory and its applications[END_REF]), which states that for all t ∈ R * 

I 2 ≤ 8µ ω 2 √ π R e -ξ 2 2 2π dξ 2 , = K 2 ω 2 , (B.56)
where

K 2 = 8µ √ π R e -ξ 2 2 2π dξ 2 . (B.57)
Finally, combining Eq. (B.49) and (B.56) yields a uniform bound for the norm of the quadratic error between R 1 S and its expected approximation, i.e., for all

x ∈ R 2 , E R 1 S(x) -S(x) 2 ≤ K ω 2 , (B.58) where K = K 1 + K 2 . A similar bound can be obtained for R 2 S. The scale parameter b is now included in the model. If b ∈ R * + , let h b denote the complex Gabor kernel dened for all x ∈ R 2 , h b (x) = h(bx), = e -πb 2 ||x|| 2 e ibωu ⊤ x . (B.59)
The complex Gabor noise with scale b ∈ R * + is similarly dened for all x ∈ R 2 as

S b (x) = i e iψ i h b (x -x i ) . (B.60)
The goal now is to bound the error between R 1 S b and the noise S b dened for all x ∈ R 2 as

S b (x) = -i cos (α) i e iψ i h b (x -x i ) . (B.61)
It can be easily veried that the Riesz transform commutes with changes of scale. Thus, for all x ∈ R 2 , applying Proposition 3.1 in [START_REF] Galerne | Stochastic image models and texture synthesis[END_REF]) again leads to

E R 1 S b (x) -S b (x) 2 = µ R 2 |R 1 h b (x) + i cos (α) h b (x)| 2 dx, = µ R 2 |R 1 h(bx) + i cos (α) h(bx)| 2 dx, = µ b 2 R 2 |R 1 h(x) + i cos (α) h(x)| 2 dx, = 1 b 2 E R 1 S(x) -S(x) 2 . (B.62)
Applying the inequality given in Eq. (B.58) to bound the integral nally leads to

E R 1 S b (x) -S b (x) 2 ≤ K (bω) 2 . (B.63)
Let s and H s denote the real and imaginary parts of S b , respectively. The complex noise S b can then be expressed by using s and H s , i.e., for all x ∈ R 2 ,

S b (x) = -i cos (α) i e iψ i h b (x -x i ) , = -i cos (α) i e iψ i e -πb 2 ||x-x i || 2 e ibωu ⊤ (x-x i ) , = cos (α) i e iψ i e -πb 2 ||x-x i || 2 e i[bωu ⊤ (x-x i )-π 2 ] , = cos (α) i e -πb 2 ||x-x i || 2 cos bωu ⊤ (x -x i ) + ψ i - π 2 +i sin bωu ⊤ (x -x i ) + ψ i - π 2 , = cos (α) i e -πb 2 ||x-x i || 2 sin bωu ⊤ (x -x i ) + ψ i -i cos bωu ⊤ (x -x i ) + ψ i , = cos (α) [H s (x) -is(x)] . (B.64) Therefore, for all x ∈ R 2 , E |R 1 s(x) -cos (α) H s (x)| 2 = E ℜ R 1 S(x) -S(x) 2 , ≤ E R 1 S(x) -S(x) 2 , ≤ K (bω) 2 . (B.65) Similarly, for all x ∈ R 2 , E |R 2 s(x) -sin (α) H s (x)| 2 ≤ K (bω) 2 . (B.66)
B.5 Proofs of the results given Section 3.4

Rewriting of the quaterionic involution of Section 3.4.2 as a linear operator

T θ (x) = -u θ xu θ = -[cos (θ) i + sin (θ) j] (x 0 + x 1 i + x 2 j) [cos (θ) i + sin (θ) j] , = x 0 cos 2 (θ) + x 0 cos (θ) sin (θ) k + x 1 cos 2 (θ) i + x 1 cos (θ) sin (θ) j -x 2 cos 2 (θ) j + x 2 cos (θ) sin (θ) i -x 0 cos (θ) sin (θ) k + x 0 sin 2 (θ) + x 1 cos (θ) sin (θ) j -x 1 sin 2 (θ) i + x 2 cos (θ) sin (θ) i + x 2 sin 2 (θ) j, = x 0 + x 1 cos 2 (θ) -x 1 sin 2 (θ) + 2x 2 cos (θ) sin (θ) i + -x 2 cos 2 (θ) + x 2 sin 2 (θ) + 2x 1 cos (θ) sin (θ) j, = x 0 + [x 1 cos (2θ) + x 2 sin (2θ)] i + [x 1 sin (2θ) -x 2 cos (2θ)] j. (B.67)
This can be expressed in R 3 as

T θ (x) =   1 0 0 0 cos (2θ) sin (2θ) 0 sin (2θ) -cos (2θ)     x 0 x 1 x 2   , =   1 0 0 0 cos (2θ) -sin (2θ) 0 sin (2θ) cos (2θ)     1 0 0 0 1 0 0 0 -1     x 0 x 1 x 2   . (B.68)

Proof of Theorem 7

If the monogenic signal of s, denoted by M s , is seen as a vector of R 3 , the distance d s dened in Eq. (3.31) can be expressed as

d s = min θ E 1 2 ∥M s -T θ (M s )∥ 2 , (B.69)
where ∥.∥ denotes the Euclidian norm of R 3 . Because T θ is an isometry [START_REF] Via | Properness and widely linear processing of quaternion random vectors[END_REF], the vectors M s and T θ (M s ) both have the same norm. This yields a dierent expression of the Euclidian distance between M s and T θ (M s ), i.e.,

∥M s -T θ (M s )∥ 2 = ∥M s ∥ 2 + ∥T θ (M s )∥ 2 -2M ⊤ s T θ (M s ), = 2∥M s ∥ 2 -2M ⊤ s T θ (M s ). (B.70)
The measure of directionality d s can hence be expressed as

d s = E ∥M s ∥ 2 -max θ E M ⊤ s T θ (M s ) . (B.71)
The term E ∥M s ∥ 2 can be expressed with the variances of s and its two Riesz transforms, i.e.,

E ∥M s ∥ 2 = E s 2 + (R 1 s) 2 + (R 2 s) 2 , = E s 2 + E (R 1 s) 2 + E (R 2 s) 2 , = Var(s) + Var(R 1 s) + Var(R 2 s),
= 2 Var(s) (see Eq. (3.33)).

(B.72)

The scalar product M ⊤ s T θ (M s ) is now expressed as a quadratic form applied to a unit vector of R 2 , i.e.,

M ⊤ s T θ (M s ) = s R 1 s R 2 s   s R 1 s cos (2θ) + R 2 s sin (2θ) R 1 s sin (2θ) -R 2 s cos (2θ)   , = s 2 + R 1 s 2 cos (2θ) + 2R 1 sR 2 s sin (2θ) -R 2 s 2 cos (2θ) , = s 2 -R 1 s 2 -R 2 s 2 + 2R 1 s 2 cos 2 θ + 2R 2 s 2 sin 2 θ + 4R 1 sR 2 s cos θ sin θ, = s 2 + R 1 s 2 -R 2 s 2 cos 2 θ + s 2 -R 1 s 2 + R 2 s 2 sin 2 θ + 4R 1 sR 2 s cos θ sin θ. (B.73)
The mean of M ⊤ s T θ (M s ) is obtained by applying the mean operator E to all its terms.

Because these terms are all zero-mean, this leads to

E M ⊤ s T θ (M s ) = [Var(s) + Var (R 1 s) -Var (R 2 s)] cos 2 θ + [Var(s) -Var (R 1 s) + Var (R 2 s)] sin 2 θ + 4 Cov (R 1 s, R 2 s) cos θ sin θ. (B.74)
Remember that the respective variances of s and its Riesz transforms are linked by Eq.

(3.33), which yields

E M ⊤ s T θ (M s ) = 2 Var (R 1 s) cos 2 θ + 2 Var (R 2 s) sin 2 θ + 4 Cov (R 1 s, R 2 s) cos θ sin θ, = 2 Var (R 1 s cos θ + R 2 s sin θ) , = 2 Var u ⊤ θ Rs . (B.75)
where u θ is the unit vector of R 2 with argument θ. Injecting this expression in Eq. (B.71) then completes the proof.

Eigenvalues and eigenvectors of the stochastic structure tensor dened in Section 3.4.3

From now, the coecients of the structure tensor T s are denoted by

T s = T 11 T 12 T 12 T 22 , (B.76)
To express the eigenvalues of T s , its characteristic polynomial, denoted by P T (X), is rst calculated.

P T (X) = (T 11 -X)(T 22 -X) -T 2 12 = X 2 -(T 11 + T 22 )X + T 11 T 22 -T 2 12 (B.77)
The eigenvalues of T s , denoted by λ + and λ -, respectively, with 0 ≤ λ -≤ λ + are hence given by

       λ + = 1 2 T 11 + T 22 + (T 11 -T 22 ) 2 + 4T 2 12 , λ -= 1 2 T 11 + T 22 -(T 11 -T 22 ) 2 + 4T 2 12 . (B.78)
Applying these formulas to the coecients of T s leads to

       λ + = 1 2 Var(s) + [Var(R 1 s) -Var(R 2 s)] 2 + 4 Cov(R 1 s, R 2 s) 2 , λ -= 1 2 Var(s) -[Var(R 1 s) -Var(R 2 s)] 2 + 4 Cov(R 1 s, R 2 s) 2 . (B.79)
An eigenvector x ∈ R 2 of T s associated with λ + must now be determined.

T x = λ + x ⇐⇒        T 11 x 1 + T 12 x 2 = 1 2 T 11 + T 22 + (T 11 -T 22 ) 2 + 4T 2 12 x 1 T 12 x 1 + T 22 x 2 = 1 2 T 11 + T 22 + (T 11 -T 22 ) 2 + 4T 2 12 x 2 , ⇐⇒        T 22 -T 11 + (T 11 -T 22 ) 2 + 4T 2 12 x 1 -2T 12 x 2 = 0 2T 12 x 1 + T 22 -T 11 -(T 11 -T 22 ) 2 + 4T 2 12 x 1 = 0 , ⇐⇒ x ∈ Ru 1 x ∈ Ru 2 , (B.80) with            u 1 = 2T 12 T 22 -T 11 + (T 11 -T 22 ) 2 + 4T 2 12 , u 2 = T 11 -T 22 + (T 11 -T 22 ) 2 + 4T 2 12 2T 12 . (B.81)
Notice that u 1 and u 2 are colinear, i.e.,

u 2 = T 11 -T 22 + (T 11 -T 22 ) 2 + 4T 2 12 2T 12 u 1 , (B.82)
which implies that Ru 1 and Ru 2 are the same vector space, i.e., the eigenspace of T s associated with λ + , which is of dimension 1. From now, u + denotes the eigenvector u 2 , and z + denotes its ax. Then,

⇐⇒ 2 arg (z + ) = arg (T 11 -T 22 + 2iT 12 ) [2π], ⇐⇒ θ + = 1 2 arg (T 11 -T 22 + 2iT 12 ) [2π]. (B.84)
Because T s is symmetric and positive-denite, its eigenvectors are orthogonal, which implies that θ -= θ + ± π 2 . The eigenvectors u + = (cos θ + , sin θ + ) ⊤ and u -= (cos θ -, sin θ -) ⊤ then yield a new expression for the term u ⊤ θ T s u θ of Eq. (3.35) by diagonalizing T s in the orthonormal basis formed by u + and u -, i.e.,

u ⊤ θ T s u θ = cos θ sin θ H λ + 0 0 λ - H ⊤ Ts cos θ sin θ , (B.85)
where

H = cos θ + cos θ - sin θ + sin θ - (B.86)
is the transformation matrix between the canonical basis and the orthonormal basis (u + , u -).

This expression can be furthered simplied, i.e.,

u ⊤ θ T s u θ = cos θ sin θ H λ + 0 0 λ - H T cos θ sin θ , = λ + cos 2 (θ + ) + λ -cos 2 (θ -) cos 2 θ + 2 [λ + cos (θ + ) sin (θ + ) + λ -cos (θ -) sin (θ -)] cos θ sin θ + λ + sin 2 (θ + ) + λ -sin 2 (θ -) sin 2 θ, = λ + cos 2 (θ + ) cos 2 θ + 2 cos (θ + ) sin θ + cos θ sin θ + sin 2 (θ + ) sin 2 θ + λ -cos 2 (θ -) cos 2 θ + 2 cos (θ -) sin θ -cos θ sin θ + sin 2 (θ -) sin 2 θ , = λ + [cos (θ + ) cos θ + sin (θ + ) sin θ] 2 + λ -[cos (θ -) cos θ + sin (θ -) sin θ] 2 , = λ + cos 2 (θ + -θ) + λ -cos 2 (θ --θ) . (B.87)
As said earlier, the eigenvectors u + and u -are orthogonal, which implies that θ -is equal to θ + ± π 2 (depending on which eigenvector has been chosen). Choosing

θ -= θ + + π 2 or θ -= θ + -π
2 is equivalent because Eq. (B.87) involves square cosines. Hence,

u ⊤ θ T s u θ = λ + cos 2 (θ + -θ) + λ -cos 2 θ + + π 2 -θ , = λ + cos 2 (θ + -θ) + λ -sin 2 (θ + -θ) . (B.88) Remember that λ -≤ λ + , which implies that λ -≤ u ⊤ θ T s u θ ≤ λ + .
Furthermore, the value λ -is reached for θ = θ -, while λ + is reached for θ = θ + . This shows that the term u ⊤ θ T s u θ is maximal when calculated along the eigenvector of T s associated with its greatest eigenvalue, and minimal when calculated along the eigenvector of T s associated with its smallest eigenvalue.

CHAPTER 4

The elliptic color model and the color Gabor noise While Chapters 2 and 3 have established reliable tools to extract the local features of greyscale textures by the use of the monogenic signal, the case of color images has not been tackled yet. Thus, this chapter aims at generalizing these tools to color textures.

A special focus is put on the Gabor and phasor noise models discussed in Section 3, for which no formal color generalization has been introduced yet according to the author's knowledge. To do so, a color oscillating texture model must be introduced. In the case of 1D time signals, numerous works deal with the vectorial extension of the analytic signal and the instantaneous measures of energy, structure and frequency it provides (see, e.g., [START_REF] Lilly | Modulated oscillations in three dimensions[END_REF][START_REF] Olhede | Modulated oscillations in many dimensions[END_REF]). A non-marginal treatment of bivariate time signals was introduced in [START_REF] René | Multicomponent seismic studies using complex trace analysis[END_REF]) and further studied in [START_REF] Diallo | Characterization of polarization attributes of seismic waves using continuous wavelet transforms[END_REF] to handle seismic data, while a similar approach was used in [START_REF] Lilly | Wavelet ridge diagnosis of time-varying elliptical signals with application to an oceanic eddy[END_REF][START_REF] Lilly | Bivariate instantaneous frequency and bandwidth[END_REF] in the eld of oceanography. The underlying idea in these works is the modeling of bivariate time signals as a dynamic 2D ellipse whose geometric parameters are directly linked to the instantaneous features of the signal. Later works such as [START_REF] Lilly | Modulated oscillations in three dimensions[END_REF][START_REF] Olhede | Modulated oscillations in many dimensions[END_REF] have extended this elliptic approach to trivariate time signals.

While these works do not mention any color aspect, their non-marginal treatment of trivariate signals makes them interesting in the perspective of a color extension of oscillating textures. Indeed, the notions of local energy, structure and orientation of a 2D oscillating image play a similar role as the instantaneous features of a 1D time signal [START_REF] Felsberg | The monogenic signal[END_REF]. This observation suggests adapting the elliptic approach to 2D color textures. This is exactly the idea of [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF], where a generalization of the elliptical model to color images s : R 2 → R 3 is introduced. Similarly to the 1D case, one of the main advantages of this approach is its non-marginal treatment of multivariate oscillations. Indeed, the interdependency of the color channels is automatically taken into account by modeling the oscillations as a 3D geometrical trajectory inside the RGB cube rather than three separate univariate signals. The direct link between the color parameters of the image and the shape and position of the ellipse is also what makes this model of great interest in the eld of both color texture analysis and synthesis.

The main contribution of this chapter is hence to extend the elliptic color model of [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF] to stochastic textures, in order to dene a proper color generalization of the Gabor noise that provides a full control over the color content of the synthesized image. Indeed, even though color textures are presented in works dealing with Gabor noises such as [START_REF] Galerne | Gabor noise by example[END_REF][START_REF] Tricard | Procedural phasor noise[END_REF], no color model is formally introduced therein.

In many semi-procedural approaches, scalar Gabor noises are synthesized along the three color axes that maximize either uncorrelation (through a PCA) or independence in the exemplar texture [START_REF] Galerne | Gabor noise by example[END_REF]). With such techniques, the color texture is marginally synthesized in a decorrelated color space extracted from a real texture, which leaves the color covariances unmodeled. This is what motivates the choice of the elliptic approach to introduce a proper color Gabor noise, from which a color phasor noise can be derived.

Following the works of [START_REF] Tricard | Procedural phasor noise[END_REF][START_REF] Tricard | Freely orientable microstructures for designing deformable 3d prints[END_REF] in the greyscale case, not only single Gabor noises are considered but also sums of Gabor noises of dierent wave vectors. Because only unidirectional deterministic color waves are considered in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF], this implies generalizing the elliptic color model to stochastic textures displaying richer frequency contents.

The rest of the chapter is organized as follows. The color wave model and the parametrization of the ellipse are rst detailed in Section 4.1 in the case of deterministic color waves, with a strong emphasis on the direct control over the color content provided by its parameters. This model is then used to introduce the color phasor noise in Section 4.2, which yields a useful tool to generate color textures with prescribed frequency and color content. Section 4.3 further studies the color phasor noise by linking the color covariances to the elliptic parameters and the color information of the synthesized texture.

Color cosine wave and elliptical representation

Color cosine wave

A key step in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF] is to dene a proper monochromatic color wave, from which notions of amplitude and phase can be derived. The 2D cosine wave of the greyscale case can hence be generalized to color images as a function s = s R s G s B ⊤ : R 2 → R 3 where each color component s C , C ∈ {R, G, B}, is a cosine wave with the same wave vector and channel-specic amplitudes and phase-shifts, denoted by A C and φ C , respectively [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF]. However, unlike [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF], the version of the model presented here also includes an oset at each color channel, denoted by s C 0 ∈ [0, 1]. This ensures that the wave s is wholly contained in the RGB cube [0, 1] 3 . If x ∈ R 2 , this can be summed up as

s(x) =   s R 0 + A R cos ωu ⊤ x + φ R s G 0 + A G cos ωu ⊤ x + φ G s B 0 + A B cos ωu ⊤ x + φ B   , (4.1) 
where ω ∈ R * + , u = (cos α, sin α) ⊤ , α ∈ -π 2 ; π 2 , and for all C ∈ {R, G, B}, A C ∈ 0, 1 2 and φ C ∈] -π, π]. Again, in order to ensure that s takes its values in [0, 1] 3 , i.e., inside the RGB cube, the amplitudes A C must lie between 0 and min s C 0 , 1 -s C 0 . At this stage, it is not obvious at all that the set of points s(x), x ∈ R 2 is an ellipse, hence the need of further developments. Indeed, using the trigonometric identity cos(a + b) = cos(a) cos(b) -sin(a) sin(b) leads to

s(x) = s 0 + cos(ωu ⊤ x)v + sin(ωu ⊤ x)w, (4.2) where      s 0 = s R 0 s G 0 s B 0 ⊤ , v = A R cos φ R A G cos φ G A B cos φ B ⊤ , w = -A R sin φ R A G sin φ G A B sin φ B ⊤ . (4.3)
This equation is exactly the parametric representation of an ellipse in R 3 , with u and v directing its two axes and s 0 being its center. However, this representation does not provide any intuitive information about how the color wave oscillates inside the RGB cube, and is hence of little practical interest. Sections 4.1.2 and 4.1.3 detail the more useful parametrization of the ellipse given in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF].

Shape of the ellipse

As stated in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF], the color wave dened by Eq. (4.1) is intrinsically 1D, i.e., it only depends on a 1D variable, which is t = ωu ⊤ x for all x ∈ R 2 . Consequently, in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF], the parameters of the ellipse are expressed by using a 1D variable.

Though this section only aims at recalling the main results of the elliptic model and does not introduce more complex textures yet, the proofs are performed with a 2D variable rather than a 1D variable. This enables a more straightforward generalization when color phasor noises are introduced in Section 4.2. Before localizing the ellipse inside the RGB cube, its shape is rst determined by calculating the length of its axes. The semi-minor axis and semi-major axis values, denoted by r -and r + , respectively, can be expressed by optimizing the Euclidian distance between s and its oset s 0 [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF], i.e., r - 2 = min x ∥s(x) -s 0 ∥ 2 , r + 2 = max x ∥s(x) -s 0 ∥ 2 .

(4.4)

The quantity ∥s(x) -s 0 ∥ 2 is now calculated to get analytic expressions of r -and r + . For the sake of simplicity, the three color components are condensed into one via a sum indexed by the color channel. Thus,

∥s(x) -s 0 ∥ 2 = C∈{R,G,B} A C 2 cos 2 ωu ⊤ x + φ C , = 1 2 C∈{R,G,B} A C 2 cos 2ωu ⊤ x + 2φ C + 1 . (4.5)
Let A 2 denote the sum of the squares of the amplitudes, i.e.,

A 2 = A R 2 + A G 2 + A B 2 . (4.6) Then, ∥s(x) -s 0 ∥ 2 = 1 2 A 2 + 1 2 C∈{R,G,B} A C 2 cos 2ωu ⊤ x + 2φ C , = 1 2 A 2 + 1 2 C∈{R,G,B} A C 2 cos 2ωu ⊤ x cos 2φ C -sin 2ωu ⊤ x sin 2φ C , = 1 2 A 2 + 1 2 cos 2ωu ⊤ x C∈{R,G,B} A C 2 cos 2φ C - 1 2 sin 2ωu ⊤ x C∈{R,G,B} A C 2 sin 2φ C . (4.7)
Let Γ denote the color Fourier atom dened as the complex-valued vector

Γ =    A R e iφ R A G e iφ G A B e iφ B    . (4.8)
Then, it can be easily shown that

Γ ⊤ Γ = C∈{R,G,B} A C 2 cos 2φ C + i C∈{R,G,B} A C 2 sin 2φ C (4.9) 
Combining Eq. (4.7) and Eq. (4.9) leads to ∥s(x) -

s 0 ∥ 2 = 1 2 A 2 + 1 2 cos 2ωu ⊤ x ℜ Γ ⊤ Γ - 1 2 sin 2ωu ⊤ x ℑ Γ ⊤ Γ , = 1 2 A 2 + 1 2 cos 2ωu ⊤ x |Γ ⊤ Γ| cos arg Γ ⊤ Γ - 1 2 sin 2ωu ⊤ x |Γ ⊤ Γ| sin arg Γ ⊤ Γ , = 1 2 A 2 + 1 2 |Γ ⊤ Γ| cos 2ωu ⊤ x + arg Γ ⊤ Γ , = 1 2 A 2 + |Γ ⊤ Γ| cos 2 ωu ⊤ x + 1 2 arg Γ ⊤ Γ - 1 2 |Γ ⊤ Γ|, = A 2 -|Γ ⊤ Γ| 2 + |Γ ⊤ Γ| cos 2 ωu ⊤ x + 1 2 arg Γ ⊤ Γ . (4.10)
This quantity can then be bounded to get its extreme values. Because 0 ≤ cos θ ≤ 1 for all θ ∈ R,

A 2 -|Γ ⊤ Γ| 2 ≤ ∥s(x) -s 0 ∥ 2 ≤ A 2 + |Γ ⊤ Γ| 2 (4.11)
These extreme values are necessarily reached because the linear application x → ωu ⊤ x is surjective. The parameters r -and r + can nally be expressed as

r - 2 = A 2 -|Γ ⊤ Γ| 2 , r + 2 = A 2 +|Γ ⊤ Γ| 2 .
(4.12)

These are exactly the expressions given in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF], except that, in Eq.

(4.10), the distance is expressed for a 2D spatial variable rather than a 1D time variable. Now that the link between the shape of the ellipse and its color parameters is established, its position inside the RGB cube must be determined.

RGB position of the ellipse

In order to localize the ellipse inside the RGB cube, the coordinates of its vertexes must be determined. This is performed by using the unied phase shift introduced in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF]. This phase-shift, denoted by φ, is dened as the half of the argument of the complex number Γ ⊤ Γ, i.e.,

φ = 1 2 arg Γ ⊤ Γ = 1 2 arg A R 2 e 2iφ R + A G 2 e 2iφ G + A B 2 e 2iφ B .
(4.13)

This unied phase can be interpreted as a weighted mean of the three color phases φ R , φ G and φ B . Eq. (4.10) can hence be rewritten as

∥s(x) -s 0 ∥ 2 = r - 2 + r + 2 -r - 2 cos 2 ωu ⊤ x + φ . (4.14)
The coordinates of the vertexes are now expressed. Notice that, in the degenerated case of r + = r -, i.e., if the ellipse is a circle, any point is a vertex, making their determination useless. Therefore, the subsequent developments are made under the assumption r + > r -. Let x + and x -be two vectors of R 2 such that the extreme values of ∥s(x) -s 0 ∥ 2 are reached, i.e.,

∥s(x + ) -s 0 ∥ 2 = r + 2 , ∥s(x -) -s 0 ∥ 2 = r - 2 .
(4.15)

Remember that the surjectivity of the function inside the square cosine ensures the existence of x + and x -. Then, because r + > r -,

∥s(x + ) -s 0 ∥ 2 = r + 2 ⇐⇒ r - 2 + r + 2 -r - 2 cos 2 ωu ⊤ x + φ = r + 2 ⇐⇒ r + 2 -r - 2 cos 2 ωu ⊤ x + φ = r + 2 -r - 2 ⇐⇒ cos 2 ωu ⊤ x + φ = 1 ⇐⇒ ωu ⊤ x = -φ [π]. (4.16) Similarly, ∥s(x -) -s 0 ∥ 2 = r - 2 ⇐⇒ ωu ⊤ x = -φ - π 2 [π].
(4.17)

Of course x + and x -are not unique, but they can be used to localize the vertexes of the ellipse, i.e., the closest and furthest points from the center. Let s + denote one of the two vertexes of the ellipse, and s -one of its two co-vertexes. Injecting Eq. (4.16) and Eq.

(4.17) in Eq. (4.1) leads to

s + = s 0 +   A R cos φ R -φ A G cos φ G -φ A B cos φ B -φ   , (4.18) s -= s 0 +   A R sin φ R -φ A G sin φ G -φ A B sin φ B -φ   . (4.19)
Knowing these two points is enough to fully localize the ellipse inside the RGB cube.

Trigonometric identities also yield an expression of s that only rely on the vertexes s + and s -, as well as the unied phase-shift φ, i.e.,

s(x) = s 0 + cos ωu ⊤ x + φ (s + -s 0 ) -sin ωu ⊤ x + φ (s --s 0 ) . (4.20)

Linearity parameter and color content

The parametric representation of s given in Eq. (4.20) is equivalent to that of Eq. (4.2), but, unlike the latter, it clearly indicates the main axes of the ellipse. Notice that this equation still holds if r + = r -. Furthermore, the shape of the ellipse is directly linked with the color content of the image. If the ellipse is very thin, almost linear, then the color wave oscillates along one color axis only. If the ellipse has a more circular shape, then the color wave oscillates in a much wider range of colors. This can be quantied by the linearity parameter λ dened as

λ = r + 2 -r - 2 r + 2 + r -2 . (4.21)
This parameter was already used for trivariate time signals in [START_REF] Lilly | Modulated oscillations in three dimensions[END_REF]) before being applied to color images in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF]. Because no formal proof of the link between the linearity parameter and the color content of the texture is provided in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF], the following theorem aims at clarifying this link formally.

Theorem 8. Let s be a color wave as dened in Eq. (4.1), and let λ denote its linearity parameter as dened in Eq. (4.21). Then, λ = 1 if and only if one of the three following assertions is true:

A C 1 = A C 2 = 0 for at least two distinct color channels (C 1 , C 2 ) ∈ {R, G, B} 2 , A C 1 = 0 and φ C 2 = φ C 3 [π], with C 1 , C 2 , C 3 being three distinct color channels of {R, G, B}, φ R = φ G = φ B [π],
in which case the ellipse is at. Furthermore, (4.22) in which case the ellipse is a circle.

λ = 0 ⇐⇒ C∈{R,G,B} A C 2 cos 2φ C = 0, C∈{R,G,B} A C 2 sin 2φ C = 0,
The proof is given in Appendix C.1. In the case of λ = 1, if the rst assertion is true, then the texture only oscillates along the color axis for which the color amplitude is not zero.

If the second assertion is true, then 2φ 

C 2 = 2φ C 3 [2π], which yields φ = 1 2 arg A R 2 e 2iφ R + A G 2 e 2iφ G + A B 2 e 2iφ B , = 1 2 arg A C 2 2 e 2iφ C 2 + A C 3 2 e 2iφ C 2 , = φ C 2 [π].
s + = s 0 +   0 A G ±A B   , s -= s 0 . (4.24)
Consequently, the texture oscillates along a color axis directed by the vector

  0 A G ±A B   , (4.25)
with the sign of the third coordinate depending on whether φ G -

φ B = 0 or φ G -φ B = π [π]. Assuming that A G = 0 and φ R = φ B [π] or A B = 0 and φ R = φ G [π] yields similar situations, respectively. Finally, if the third assertion is true, then, 2φ R = 2φ G = 2φ B [2π], which yields φ = 1 2 arg A R 2 e 2iφ R + A G 2 e 2iφ G + A B 2 e 2iφ B , = 1 2 arg A R 2 e 2iφ R + A G 2 e 2iφ R + A B 2 e 2iφ R , = φ R [π].
(4.26)

This time, the vertexes of the ellipse become

s + = s 0 +   ±A R ±A G ±A B   , s -= s 0 . (4.27)
Consequently, the texture oscillates along a color axis directed by the vector

  ±A R ±A G ±A B   , (4.28)
with the signs depending on whether φ

C 1 -φ C 2 = 0 or φ C 1 -φ C 2 = π [π]
. In all three cases, the texture oscillates along one single color axis, which is consistent with the at shape of the ellipse.

The case λ = 0 allows more possibilities, but it can be noticed that, if all three color phase shifts φ C belong to the same quadrant of the unit circle, then the sines of the angles 2φ C are all of the same sign. The second condition in Eq. (4.22) then implies that all the terms of the sum are zero, i.e., for all C ∈ {R, G, B}, A C = 0 or sin 2φ C = 0. with the texture is a circle, i.e., if λ = 0, then the color phase-shifts cannot be located inside the same quadrant. This means that if the ellipse is a circle, then the color channels are signicantly phase-shifted from one another, which implies a richer content.

This illustrates the link between the linearity parameter λ, the shape of the ellipse, the color parameters, and the color content of the texture. If λ is close to 1, the ellipse has a thin shape, and the color content of the texture is reduced to shades of a pair of colors. If

λ is close to 0, the ellipse has a nearly circular shape, and the color content of the texture is richer. This is highlighted with synthetic tests in Section 4.1.5.

Interpretation of the parameters and synthetic tests

This section aims at illustrating how the elliptic color model provides a full control over the color content in the context of texture synthesis. Though a full parametrization of the ellipse associated with a color wave was already given in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF], here the link between the ellipse and the wave is further detailed. Synthetic tests are then performed to give a more physical meaning to the parameters. Let (t j , t k ) be a discrete grid, with (j, k) ∈ {0 . . . M -1} × {0 . . . N -1} and (M, N ) ∈ N 2 such that

t j = j -M 2 T x , t k = k -N 2 T y , (4.30) 
where T x > 0 and T y > 0 denote the horizontal and vertical sampling periods, respectively. A discrete color wave s is generated for all (j, k) ∈ {0 . . . M -1} × {0 . . . N -1} as

s j,k =   s R 0 + A R cos ω(t j cos α + t k sin α) + φ R s G 0 + A G cos ω(t j cos α + t k sin α) + φ G s B 0 + A B cos ω(t j cos α + t k sin α) + φ B   , (4.31) 
where all the parameters are dened as in Section 4.1.1. Because s is generated inside the RGB cube [0, 1] 3 , its coordinates directly give the intensity of each color channel at each pixel. The case where all three components of s j,k are equal to 0 corresponds to the black color, while the case where all three components of s j,k are equal to 1 corresponds to the white color.

The further developments involve some ane space formalism (for more details, see Chapter 2 in [START_REF] Berger | Problems in geometry[END_REF]). In order to avoid confusion, the vectors are denoted by arrows to distinguish them from the points. In synthetic tests, the oset s 0 , i.e., the color point around which s oscillates, is rst xed in the RGB cube [0, 1] 3 . Then, each amplitude A C is chosen between 0 and min s C 0 , 1 -s C 0 , and nally each phase-shift φ C is chosen between -π and π. After the values of r + and r -are calculated by using Eq. (4.12), the ellipse E is drawn in R 2 as the set

E = r + cos θ r -sin θ , θ ∈] -π, π] . (4.32)
This is exactly the parametric equation of E in the ane basis dened by the origin s 0 and the two vectors that direct the main axes of the ellipse. In the ane space R 3 × R 3 , the vertexes s + and s -can be decomposed as the sum of a point of R 3 (here the center of the ellipse) and a vector of R 3 (here the vectors directing the two main axes), i.e., textures with a at ellipse, i.e., λ = 1, each one corresponding to one of the three conditions given in Theorem 8. In order to generate an image that only contains shades of red, all the parameters are chosen equal to 0 except the parameters of the red channel, hence s 1 . If the image is intended to oscillate between red and green, the red and green phase-shifts must be equal modulo π, while the blue amplitude must be 0, hence s 2 . As stated in Theorem 8, if the color phase-shifts are all equal modulo π, then the image oscillates along one single color axis for any values of the color amplitudes, hence s 3 . The choice of a high value for s B

s + = s 0 + ⃗ s + , s -= s 0 + ⃗ s -, ( 
0 is what gives the texture its blue color.

Table 4.2 gives examples of textures for which the ellipse is a circle, with the parameters being chosen to fulll the condition given in Theorem 8. Image s 4 contains all of Newton's primary colors due to its equal amplitudes assigned to each channel and its maximally dierent phase-shifts. Images s 5 and s 6 show other congurations that lead to λ = 0. The respective circles of s 4 , s 5 and s 6 illustrate how these textures cover a wide range of colors.

While the previous tables focus on degenerated cases, Table 4.2 gives examples of color textures with λ ∈]0, 1[. In order to obtain a color wave that oscillates inside the RB plane, i.e., the plane generated by the red and blue axes, the green parameters are all chosen equal to 0, hence image s 7 . Notice that choosing equal amplitudes for the red and blue channels yields λ = 0.5. If the amplitudes are kept equal but the phase-shifts are chosen close to each other, the range of colors is not as complete as in image s 4 , as can be seen in image s 8 . This is reected by the value of the linearity parameter, λ = 0.33. In order to make the image oscillate between shades of green and dark blue, the red parameters are all chosen equal to 0, while the green amplitude is chosen higher than the blue amplitude, hence image s 9 . Unlike in image s 7 , the two channels do not equally contribute, which yields a more linear ellipse reected by λ = 0.72. Notice that if all color parameters are equal (including the coordinates of the oset), then the generated image only contains shades of grey. The dierence between these parameters is what creates a color content.

Section 4.2 shows how this direct link between the parameters and the color content is a key feature when generalizing the Gabor noise framework to color spaces.

Name

s 1 s 2 s 3 s R 0 0.5 0.5 0.3 s G 0 0 0.5 0.6 s B 0 0 0.5 0.7 A R 0.3 0.5 0.1 A G 0 0.5 0.2 A B 0 0 0.3 φ R 0 0 0 φ G 0 π π φ B 0 0 π Image Ellipse Table 4
.1: Examples of color waves with λ = 1, with ω = 30 and α = π 6 .

Color extension of the Gabor and phasor noises

Now that the key features of the elliptic color model of [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF] are recalled, this section aims at introducing a formal color extension of the phase-augmented Gabor noise dened in Section 3.2. As said in the introduction, the aim is to build a purely procedural color model that does not require exemplar textures (unlike, e.g., [START_REF] Galerne | Gabor noise by example[END_REF])), and enables the generation of textures with prescribed color content. The elliptic color model is hence chosen for the direct link between its parameters and the oscillations inside the RGB cube it provides, as highlighted in Section 4.1. From this color extension of the Gabor noise, a proper color phasor can then be introduced.

Set of destination of the Gabor and phasor noises

As shown in [START_REF] Tricard | Procedural phasor noise[END_REF]) and recalled in Section 3.3.1, a greyscale Gabor noise s can be expressed for all x ∈ R 2 as s(x) = I(x) cos [φ(x)] ,

(4.36)

where I and φ denote the random amplitude and phase functions of s, respectively. While the cosine is necessarily bounded between -1 and 1, the amplitude function may take high values, which makes the Gabor noise s vary between -max(I) and max(I). By removing the amplitude function, the phasor noise not only suppresses the local losses of contrast (as highlighted in [START_REF] Tricard | Procedural phasor noise[END_REF]), but also ensures that the synthesized texture lies inside the cube [-1; 1] 3 . Similarly to what is done in Section 4.1.1 in the deterministic case, constraints are then imposed on the color parameters to ensure that the resulting texture lies inside the cube [0; 1] 3 . This makes the phasor more suitable for color image synthesis. As a result, the subsequent developments mainly focus on the color phasor noise after introducing a formal color extension of the Gabor noise.

Color Gabor noise

In this approach, the color Gabor noise is dened as a function s : R 2 → R 3 such that for all x ∈ R 2 ,

s(x) = i a (x -x i )   A R cos bωu ⊤ (x -x i ) + ψ i + φ R A G cos bωu ⊤ (x -x i ) + ψ i + φ G A B cos bωu ⊤ (x -x i ) + ψ i + φ B   , (4.37) 
where

{(x i , ψ i )} i is a set of realizations of a marked Poisson point process on R 2 ×] -π, π]
such that, the points (x i ) i are generated through a homogeneous Poisson point process on R 2 with intensity µ > 0, the marks (ψ i ) i are independent random phase-shifts uniformly drawn in ]-π, π]

and independently assigned to each point of the Poisson point process x i , Similarly to what is done in Section 3.3.1 in the greyscale case, the noise s can then be written as a single color wave rather than a sparse convolution by applying the reformulation of the Gabor noise as a phasor eld (as done in [START_REF] Tricard | Procedural phasor noise[END_REF])) to each color channel. The main reason for this is to dene proper notions of amplitude and phase.

a(x) = e -πb 2 ∥x∥ 2 , b ∈ R * + , x ∈ R 2 ,
Hence, for all x ∈ R 2 ,

s(x) = I(x)   A R cos bωu ⊤ x + Ψ(x) + φ R A G cos bωu ⊤ x + Ψ(x) + φ G A B cos bωu ⊤ x + Ψ(x) + φ B   =   s R (x) s G (x) s B (x)   . (4.38)
where

   I(x) = i a(x -x i )e i(-bωu ⊤ x i +ψ i) , Ψ(x) = arg i a(x -x i )e i(-bωu ⊤ x i +ψ i) .
(4.39) Each color component s C of s, C ∈ {R, G, B}, can hence be seen as a cosine wave whose amplitude I and phase-shift Ψ are random elds rather than deterministic functions. These functions contain the underlying energical and structural information of the texture, respectively, but do not impact its color content. However, this does not imply that the color Gabor noise dened here is an intrinsically greyscale texture that varies along a color axis rather than a grey axis. The next developments show how the generated texture truly oscillates inside the RGB cube in a non-marginal way. This is rst reected in the 

Sum of Gabor noises and phasor noise

The Gabor noise, as dened in the previous section, is unidirectional, i.e., it only has one direction of oscillation, which is determined by the angle α. In order to generate richer patterns containing dierent directions of oscillation, Gabor noises of dierent wave vectors can be combined, as done in [START_REF] Gilet | Local random-phase noise for procedural texturing[END_REF][START_REF] Tricard | Procedural phasor noise[END_REF] in the greyscale case.

Let s 1 , . . . , s n (n ∈ N * ) be n independent Gabor noises that share the same parameter values except for their frequencies and orientations, which are denoted by ω ℓ and α ℓ for all ℓ ∈ {1, . . . , n}, with ω ℓ ∈ R * + and α ℓ ∈] -π 2 , π 2 ]. Their respective wave vectors are denoted by u ℓ = cos α ℓ sin α ℓ ⊤ . Let s denote the sum of the n Gabor noises, i.e., for all x ∈ R 2 , s(x) = (4.42)

Let I(x) and φ(x) denote the modulus and argument of the complex random eld inside the square brackets for all x ∈ R 2 . Then, a unied expression can be dened for s, i.e., for

all x ∈ R 2 , s(x) = I(x)   A R cos φ(x) + φ R A G cos φ(x) + φ G A B cos φ(x) + φ B   .
(4.43)

The color phasor noise Φ is nally dened by removing the amplitude function I, similarly to what was done in [START_REF] Tricard | Procedural phasor noise[END_REF] in the greyscale case. However, the model introduced in this chapter also includes an oset Φ 0 ∈ [0, 1] 3 so that the phasor noise is wholly contained in the RGB cube [0, 1] 3 . Hence, for all x ∈ R 2 , 

Φ(x) = Φ 0 +   A R cos φ(x) + φ R A G cos φ(x) + φ G A B cos φ(x) + φ B   =   Φ R 0 + Φ R (x) Φ G 0 + Φ G (x) Φ B 0 + Φ B (x)   .

Discretization and synthetic tests

Though the color phasor noise is introduced as a continuous object in the previous sections, it has to be discretized to perform synthetic tests. This section aims at properly presenting the techniques used to generate discrete phasor noises. The impact of the Gabor parameters (scale, frequency, orientation) on the texture is then studied, while the impact of the color parameters is left for the next section.

Let (t j , t k ) be a discrete grid, with (j, k) ∈ {0 . . . M -1} × {0 . . . N -1} and (M, N ) ∈ N 2 such that

t j = j -M 2 T x , t k = k -N 2 T y , (4.45) 
where T x > 0 and T y > 0 denote the horizontal and vertical sampling periods, respectively. Before generating a phasor noise, the sum of n Gabor noises s ℓ (ℓ ∈ {1, . . . , n}, n ∈ N * ) dened in Eq. (4.40) and Eq. (4.41) must be properly discretized. In order to simulate a

Poisson process on this grid, an independent and identically distributed M × N sampling of a Bernoulli variable of parameter p ∈]0, 1[ is generated for each Gabor noise of the sum. For all ℓ ∈ {1, . . . , n}, let x j,k ℓ ∈ {0, 1} denote the Bernoulli number generated at the pixel (t j , t k ) (with (j, k) ∈ {0 . . . M -1} × {0 . . . N -1}). Then, an independent and identically distributed M × N sampling of a uniform variable on ] -π, π] is generated at each pixel (t j , t k ) and for Gabor noise of the sum. These numbers correspond to the random phase-shifts ψ i of Eq. (4.37) in the continuous model, and are denoted by ψ j,k ℓ for all (j, k) ∈ {0 . . . M -1} × {0 . . . N -1}, where ℓ denotes the index of the Gabor noise in the sum. Let h ℓ denote the complex-valued M × N discrete signal (h j,k ℓ ) j,k such that for all (j, k) ∈ {0 . . . M -1} × {0 . . . N -1},

h j,k ℓ = x j,k ℓ e i -bω ℓ( t j cos α ℓ +t k sin α ℓ) +ψ j,k ℓ , (4.46) 
where ω ℓ ∈ R * + and α ℓ ∈ -π 2 ; π 2 for all ℓ ∈ {1, . . . , n}. The discrete amplitude and phase functions of each Gabor noise s ℓ , denoted by I ℓ = I j,k ℓ j,k and Ψ ℓ = Ψ j,k ℓ j,k , respectively, are then computed for all (j, k) ∈ {0 . . . M -1} × {0 . . . N -1} as the modulus and argument of the complex random eld h ℓ * a, where * denotes the discrete convolution product, and (4.48)

a j,k = e -πb 2 [(t j ) 2 +(t k ) 2 ] ,
The sum of Gabor noises s is nally constructed for all (j, k) ∈ {0 . . . M -1} ×{0 . . . N -1}

as

s j,k = I j,k   A R cos φ j,k + φ R A G cos φ j,k + φ G A B cos φ j,k + φ B   .
(4.49)

The resulting phasor noise Φ is then obtained by removing the amplitude signal I from the Gabor noise s and adding the remaining signal to a xed oset Φ 0 ∈ [0, 1] 3 , i.e., for Similarly to what was done in [START_REF] Tricard | Procedural phasor noise[END_REF]) in the greyscale case, more complex patterns are now introduced by summing two Gabor noises of dierent orientations α and the generated image only consists of shades of grey, which is consistent with what is said in Section 4.1.5 in the case of deterministic color waves. This implies that the more dierent the color parameters are from each other, the richer the color content of the texture is.

all (j, k) ∈ {0 . . . M -1} × {0 . . . N -1}, Φ j,k = Φ 0 +   A R cos φ j,k + φ R A G cos φ j,k + φ G A B cos φ j,k + φ B   .
The trajectory of the texture inside the color space can be characterized more precisely by applying the elliptic model developed in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF] to the Gabor noise.

Elliptical oscillation inside the RGB cube

As stated in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF] and recalled in Section 4.1, in the special case of a deterministic color cosine wave, i.e., for all x ∈ R 2 ,

Φ(x) = Φ 0 +   A R cos ωu ⊤ x + φ R A G cos ωu ⊤ x + φ G A B cos ωu ⊤ x + φ B   , (4.54)
then the trajectory of Φ inside the RGB cube [0, 1] 3 is an ellipse whose parameters are given in Section 4.1.2 and 4.1.3. This result can be generalized to phasor noises as follows.

Theorem 10. Let Φ be a phasor noise as dened in Eq. (4.44). Then the trajectory of Φ lies inside an ellipse E such that the center of E is Φ 0 , the semi-major and semi-minor axes of E, denoted by r + and r -, respectively, are given by

r 2 + = A 2 +|Γ ⊤ Γ| 2 , r 2 -= A 2 -|Γ ⊤ Γ| 2 , (4.55)
where A denotes the unied color amplitude dened by

A = (A R ) 2 + (A G ) 2 + (A B ) 2 (4.56)
and Γ denotes the color Fourier atom dened by

Γ =    A R e iφ R A G e iφ G A B e iφ B    , (4.57)
the vertexes of E, denoted by Φ + and Φ -, respectively, are given by

Φ + = Φ 0 + A R cos(φ R -φ) A G cos(φ G -φ) A B cos(φ B -φ) , Φ -= Φ 0 + A R sin(φ R -φ) A G sin(φ G -φ) A B sin(φ B -φ) , (4.58)
where φ denotes the unied color phase shift dened by

φ = 1 2 arg Γ ⊤ Γ . (4.59)
This theorem is proved by applying the same procedures as in Sections 4.1.2 and 4.1.3, respectively. The main dierence is that the phase function φ is not necessarily surjective, unlike the linear function x → ωu ⊤ x in the case of a deterministic color wave. Consequently, all the points of the ellipse are not necessarily reached, i.e., the trajectory of Φ inside the RGB cube may be strictly contained in E rather than being equal to E. Despite that, the shape of the ellipse can still be directly linked with the color content of the image as in the deterministic case studied in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF] and Section 4.1. If the ellipse is very thin, almost linear, then the color wave oscillates along one color axis only. If the ellipse has a more circular shape, then the color wave oscillates in a much wider range of colors. This can be quantied by the linearity parameter λ dened in Eq. (4.21). Notice furthermore that the covariance matrix Σ dened in Eq. (4.53) can now be expressed as

Σ = µ 4b 2 ℜ {ΓΓ * } , (4.60)
where Γ * denotes the conjugate transpose of Γ, i.e., Γ ⊤ , with Γ given in Eq. (4.57). However, the underlying oscillating structure, characterized by the phase function φ dened in Section 4.2.3, cannot be extracted by such tools, and constitutes the main subject of Chapter 5.

Synthetic tests

In order to illustrate the elliptic model, ve discrete bidirectional phasor noises Φ 1 , . . . , Φ 5 with dierent color parameters are synthesized with the same technique as in Section 4. As expected, the respective color ranges of these generated phasor noises are the same as those of the corresponding deterministic waves of Section 4.1.5, which illustrates how the elliptic model enables the generation of color stochastic oscillating textures with prescribed color content. Notice that the eect of the color parameters on the richness of the color content is consistent with the interpretation of the color covariances given in Section 4.3.1.

While [START_REF] Tricard | Procedural phasor noise[END_REF]) aims at building a purely procedural noise technique with a direct link between the parameters and the local oscillating behavior, this work goes further in this direction by including the color into the model rather than coloring greyscale textures a posteriori.

Conclusion

The main contribution of this chapter is the extension of the elliptic color model introduced in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF]. Section 4.1 further studies the link between the color parameters, the color shades contained in the image and the shape of the ellipse, with both theoretical results and numerical illustrations. The linearity parameter, deeply investigated in Section 4.1.4, enables a numerical characterization of color richness, and is hence of great interest from a color texture description point of view.

Furthermore, by merging the elliptic color model and the phasor noise, this chapter generalizes both frameworks. Originally designed for deterministic oscillating color images, the elliptic model of [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF] is extended to the stochastic case by being applied to phasor noise introduced in [START_REF] Tricard | Procedural phasor noise[END_REF], which in turn lacked a formal color extension. The direct link between the color parameters of the texture and the shape and position of an ellipse inside the RGB cube still provides a useful visual representation of color oscillations in a stochastic context, while being reinforced by their consistency with the color covariances. This enables a full control over the color content of the synthesized texture, in addition to the control over its frequency content which was already one of the main advantages of the phasor approach.

Because the color information is fully encoded in the parameters of the ellipse, it can be expected that these parameters would provide useful descriptors of the color content of real textures displaying oscillating patterns. In order to investigate this idea, a reliable estimation technique must be introduced to extract these parameters. This is exactly the topic of Chapter 5, which builds on the color phasor noise introduced in this chapter to further study both color texture analysis and synthesis, respectively.

C.2 Proof of Theorem 4.53

The proof uses a similar procedure as the proof of Theorem 5 in the greyscale case. Each of the scalar unidirectional Gabor noises s 

x ∈ R 2 as s C 2 z (x) = A C 2 i a(x -z -x i ) cos bωu ⊤ (x -z -x i ) + ψ i + φ C 2 . (C.4)
In order to calculate the covariance matrix of s, Proposition 3.1 of (Galerne 2010) is applied to the Gabor noises s C 1 and s C 2 z , i.e.,

Cov s C 1 , s C 2 z = µ 2π A C 1 A C 2 π -π R 2 a(y)a(y -z) × cos bωu ⊤ y + ψ + φ C1 cos bωu ⊤ (y -z) + ψ + φ C2 dydψ (C.5)
Using the trigonometric identity cos(a) cos(b) = cos(a+b)+cos(a+b)

2 leads to Cov s C 1 , s C 2 z = µ 4π A C 1 A C 2 (I 1 + I 2 ) , (C.6) 
where

I 1 = π -π R 2 e -πb 2 ||y|| 2 e -πb 2 ||y-z|| 2 × cos bωu ⊤ (2y -z) + 2ψ + φ C 1 + φ C 2 dydψ, (C.7)
and

I 2 = π -π R 2 e -πb 2 ||y|| 2 e -πb 2 ||y-z|| 2 × cos bωu ⊤ z + φ C 1 -φ C 2 dydψ. (C.8)
Applying the same procedures as in the proof of Theorem 5 then yields I 1 = 0 and

I 2 = π b 2 cos bωu ⊤ z + φ C 1 -φ C 2 e -1 2 πb 2 ||z|| 2 . (C.9)
Injecting this expression in Eq. (C.6) nally leads to

Cov s C 1 , s C 2 z = µ 4b 2 A C 1 A C 2 e -1 2 πb 2 ||z|| 2 cos bωu ⊤ z + φ C 1 -φ C 2 , = µ 4b 2 A C 1 A C 2 e -1 2 πb 2 ||z|| 2 × cos bωu ⊤ z cos φ C 1 -φ C 2 -sin bωu ⊤ z sin φ C 1 -φ C 2 , (C.10)
which is exactly what was to be proved.

CHAPTER 5

The color phasor noise

Chapter 3 has extended the scope of the monogenic signal by highlighting its ability to extract the local features of oscillating stochastic textures. However, only greyscale images were considered. A proper color model has then been introduced in Chapter 4 based on the elliptic approach of [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF], which is then used to dene color extensions of the Gabor and phasor noises. The results have pointed out the direct link between the color parameters, the color covariances and the color content of the synthesized textures, which is one the main advantages of this approach. This chapter thus aims at merging the results of Chapters 3 and 4, i.e., extending the monogenic tool to color textures by using the elliptic color model.

Following the works of [START_REF] Felsberg | The monogenic signal[END_REF] in the greyscale case, a color extension has been introduced in [START_REF] Demarcq | The color monogenic signal: application to color edge detection and color optical ow[END_REF]) by use of Cliord algebras. While interesting for its purely vectorial treatment of the color channels, the generalized notion of local color phase lacks a clear physical interpretation, partly due to its use of 5-dimension spaces.

Besides the generalization of the elliptic model to color textures already studied in Chapter 4, [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF] has also introduced a proper color extension of the monogenic signal. This time, the physical interpretation of the dened local features, as well as the analogy with the greyscale case, were clearer. The features extracted by the color monogenic tool have then proved to be particularly useful in the eld of image denoising [START_REF] Gai | Multichannel image denoising using color monogenic curvelet transform[END_REF][START_REF] Gai | Color image denoising via monogenic matrix-based sparse representation[END_REF]. However, as for the elliptic model, these local features were only dened for deterministic color waves. Consequently, this chapter aims at extending them to stochastic textures and study the reliability of their estimations by use of the color phasor noise introduced in Chapter 4. The color monogenic signal is then applied to real color textures displaying oscillating patterns in order to characterize their color dynamics.

Focusing on the texture synthesis eld, this chapter also aims at introducing a monogenicbased measure of local regularity in order to evaluate the quality of a synthesized color phasor noise. In the greyscale case, one of the most signicant contributions of the phasor noise introduced in [START_REF] Tricard | Procedural phasor noise[END_REF]) was the elimination of the local losses of contrast of the Gabor noise without modifying their oscillating behaviors. However, as noticed in Chapters 3 and 4, these synthesized phasor noises display local singularities, i.e., local irregularities caused by abrupt phase jumps or changes of direction. Such singularities make the synthesized texture look articial, hence the need to control their occurrences. While this issue is explicitly evoked in [START_REF] Tricard | Procedural phasor noise[END_REF], it was left as an open problem for future works. Given the fact that the singularities observed in the phasor noise are directly linked with its phase function [START_REF] Tricard | Procedural phasor noise[END_REF], one possible approach to bypass this diculty is to use reliable phase extraction techniques in order to characterize their occurrence. One of the main ideas of this chapter is thus to use the quality of the monogenic estimation of phase highlighted in the previous chapters, as well as in numerous works such as [START_REF] Langley | The riesz transform and simultaneous representations of phase, energy and orientation in spatial vision[END_REF][START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF][START_REF] Alessandrini | Myocardial motion estimation from medical images using the monogenic signal[END_REF][START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF], in order to evaluate the quality of the synthesis in terms of singularity occurrence.

The rest of the chapter is organized as follows. Section 5.1 studies the robustness of the monogenic extraction of the color parameters, with both theoretical and numerical results.

Applications to real color textures are included. The singularity issue is then tackled in Section 5.2, in which the monogenic signal yields a numerical criterion that characterizes the local regularity of synthesized phasor noises. This technique is nally applied in Section 5.3, with a special focus on the inuence of the model parameters on the quality of the synthesis.

Monogenic estimation of the color parameters

Chapter 4.1 has illustrated the benets of the visual representation of color oscillation provided by the color phasor noise, making it a useful color texture synthesis tool. This section tackles the color texture analysis side of the model. This is performed by using the Riesz transform, which has already proved its relevance in extracting the local oscillating features of 2D signals in the previous chapters, as well as in works such as [START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF][START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF][START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF].

Eect of a constant phase-shift on the three color components

Let Φ be a color phasor noise as dened in Eq. (4.44). In order to extract the exact values of the color phase-shifts φ C , C ∈ {R, G, B}, from the three components of Φ, a rst idea consists in applying the Riesz transform to each channels. However, this would yield an estimation of the sum φ(x) + φ C , x ∈ R 2 , with no obvious means to separate the two terms. This implies that the exact values of the color phase-shifts cannot be extracted through this technique. However, this does not prevent the monogenic tool to characterize the color oscillations of the image. Indeed, this section aims at showing how knowing the phase dierences rather than the phase values themselves is enough to characterize the ellipse associated with the texture. For any angular value ψ ∈ ]-π, π[, let Φ ψ denote the phase-shifted image dened for all x ∈ R 2 by

Φ ψ (x) =   Φ R 0 + A R cos φ(x) + φ R + ψ Φ G 0 + A G cos φ(x) + φ G + ψ Φ B 0 + A B cos φ(x) + φ B + ψ   .
(5.1)

Then, the Euclidian distance between each point of the texture and the oset Φ 0 can be expressed by applying the same technique as in Eq. (4.10), i.e, for all x ∈ R 2 ,

∥Φ ψ (x) -Φ 0 ∥ 2 = A 2 -|Γ ⊤ ψ Γ ψ | 2 + |Γ ⊤ ψ Γ ψ | cos 2 φ(x) + 1 2 arg Γ ⊤ ψ Γ ψ , (5.2)
where Γ ψ denotes the ψ-shifted version of the complex vector Γ dened in Eq. (4.8), i.e.,

Γ ψ =    A R e i(φ R +ψ) A G e i(φ G +ψ) A B e i(φ B +ψ)    = Γe iψ .
(5.3) It is clear that the complex numbers Γ ⊤ ψ Γ ψ and Γ ⊤ Γ have the same modulus. Furthermore,

1 2 arg Γ ⊤ ψ Γ ψ = 1 2 arg Γ ⊤ Γe 2iψ [2π], = 1 2 arg Γ ⊤ Γ + 1 2 arg e 2iψ [2π], = φ + ψ [2π],
(5.4)

where φ denoted the unied phase dened in Eq. (4.13). Eq. (5.2) hence becomes

∥Φ ψ (x) -Φ 0 ∥ 2 = A 2 -|Γ ⊤ Γ| 2 + |Γ ⊤ Γ| cos 2 [φ(x) + φ + ψ] .
(5.5)

This expression has the same extreme values as its non-shifted counterpart, which implies that the ellipse associated with the phase-shifted image Φ ψ has the same shape as the original ellipse associated with Φ. Furthermore, if the maximal and minimal values are reached, they correspond to φ(x) = -φ -ψ and φ(x) = -φ -ψ -π 2 , respectively. If Φ ψ + and Φ ψ + denote the vertexes of the shifted ellipse, then, Eq. (4.58) becomes

Φ ψ + = Φ 0 +   A R cos φ R + ψ -φ -ψ A G cos φ G + ψ -φ -ψ A B cos φ B + ψ -φ -ψ   = Φ + , (5.6) 
and

Φ ψ -= Φ 0 +   A R sin φ R + ψ -φ -ψ A G sin φ G + ψ -φ -ψ A B sin φ B + ψ -φ -ψ   = Φ -, (5.7) 
where Φ + and Φ -denote the vertexes of the non-shifted ellipse. This shows that phaseshifting the image with an angle ψ not only preserves the shape of the ellipse, but also the position of its vertexes. In other words, the phase-shift has no impact on the ellipse at all, the only dierence being that the points of the ellipse are not reached at the same pixels.

The impact of ψ is thus analogous to that of the classical phase-shift in the case of 1D signals. This is of particularly great interest when parameter estimation comes into play, which is the subject of Section 5.1.2.

Estimation of the color parameters

Chapter 4 has already illustrated the direct link between the color parameters of the elliptic model and the color content of the synthesized image, with both theoretical and numerical results. The ability of the linearity parameter λ, dened in Eq. (4.21), to characterize the color content of real textures has also been highlighted in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF]. Though the Riesz transform was used to extract the color parameters of the studied images, no formal study of how the Riesz transform deals with stochastic textures has been performed yet. This section aims at studying formally and numerically how the Riesz transform manages to extract the color parameters of a stochastic texture displaying oscillating patterns.

Similarly to what is done in Chapter 3 in the greyscale case, the Riesz transform is rst applied to synthesized color phasor noises. This class of oscillating stochastic textures is used for the direct control over the frequency and color content it provides, respectively.

Let Φ be a color phasor noise as dened in Eq. (4.44), and let Φ C denote the color components of Φ for all C ∈ {R, G, B}. Because each component of Φ is a greyscale phasor noise (up to an oset), the results established in Chapter 3 can be used. Indeed, for all C ∈ {R, G, B}, if A C M and ϕ C denote the monogenic amplitude and phase of the centered color component Φ C -s C 0 as dened in Eq. (2.44), respectively, then for all x ∈ R 2 , it can be expected that

A C M (x) ≈ A C , ϕ C (x) ≈ ωu ⊤ x + φ C [2π].
(5.8)

Because the color components are assumed to share the same wave vector, this implies that, for all x ∈ R 2 and (C

1 , C 2 ) ∈ {R, G, B} 2 , ϕ C 1 (x) -ϕ C 2 (x) ≈ φ C 1 -φ C 2 [2π].
(5.9) Eq. (5.8) and Eq. (5.9) hence provide techniques to extract the color amplitudes and phase dierences of oscillating color textures. Though the exact values of the phase-shifts φ C (C ∈ {R, G, B}) cannot be estimated through this technique, Section 5.1.1 shows that applying a constant shift to all phase values does not aect the shape of the ellipse, i.e., the nature of the color oscillations. As highlighted in the synthetic tests of Section 4.1.5, the dierence between the phase parameters matters more than their proper values. Therefore, xing φ R = 0 and estimating the other two phase values φ G and φ B , respectively, from the phase dierences extracted by Eq. (5.9) implies no loss of information in terms of color oscillations. The ellipse can then be fully parametrized by applying the equations established in Section 4.1. Though the statistical behavior of these estimators has not been formally studied yet, the synthetic tests performed in Section 5.1.3 show that they give consistent results when applied to color phasor noises.

Synthetic tests

The color parameter extraction technique introduced in Section 5.1.2 is now applied on synthesized color phasor noises to study its reliability. A discrete color phasor is rst generated by using the procedure described in Section 4.2.4. After removing the oset, the Riesz transform is applied to each color channel, which yields monogenic measures of amplitude and phase at each pixel and for each channel, respectively. For each color C ∈ {R, G, B}, let A C M and ϕ C denote the discrete amplitude and phase signals extracted from the image, respectively. Focusing on the green channel, the amplitude signal A G M is expected to be constantly equal to A G , while the dierence between the green and red phase signals, ϕ G -ϕ R is expected to be constantly equal to φ G -φ R . Figure 5.1 shows the absolute error at each pixel for both the green amplitude and the green phase-shift, i.e., 

|A G M -A G | and |ϕ G -ϕ R -φ G +φ R | [2π], respectively. The parameters are M = N = 1000, T x = T y = 0.002, b = 2, ω = 30, α = π 6 , n = 1, A R = 0.1, A G = 0.5, A B = 0.25, φ R = 0, φ G = 2π 3 , φ B = -2π 3 
, ω = 30, α = π 6 , n = 1, A R = 0.1, A G = 0.5, A B = 0.25, φ R = 0, φ G = 2π
3 , φ B = -2π 3 and Φ 0 = 0.1 0.5 0.25

⊤ . A C = 1 (M -2m 0 )(N -2n 0 ) M -1-m 0 j=m 0 N -1-n 0 k=n 0 A C M j,k , φ C = 1 (M -2m 0 )(N -2n 0 ) M -1-m 0 j=m 0 N -1-n 0 k=n 0 ϕ C j,k -ϕ R j,k [2π] (C ∈ {G, B}) , (5.10) 
where m 0 and n 0 are integers chosen to avoid the border eect. In the subsequent tests, m 0 = n 0 = 30, which is enough to eliminate the problematic pixels. Thanks to Eq. (4.6) and Eq. (4.13), these estimates can then be used to calculate the unied amplitude A and phase-shift φ, respectively. This yields the reconstruction the ellipse by applying the results established in Sections 4.1.2 and 4.1.3, respectively. Though applying the Riesz transform to each color channel marginally may not be the best solution from a color image processing point of view, it is necessary to extract the parameters of the ellipse, which then provides a non-marginal description of the color oscillations. Table 5.1 gives the results obtained from two color phasor noises generated with dierent sets of color parameters, the other parameters being b = 2, ω = 30, α = π 6 and n = 1 for both images.

The estimated parameters are very close to the real values, which further conrms what was expected in Section 5.1.2. This yields a reconstructed ellipse that looks very close to the real one, which is reected in its linearity parameter as well as its color shades.

Remember that the color phase-shifts are all known up to a translation, as seen in Section 5.1.1.

Focusing on the unied parameters A and φ, as well as the linearity parameter λ, the same technique is applied to m = 50 color phasor noises generated with the same set of parameters as in Figure 5.1. The results are given as boxplots in Figure 5.2. Though a bias is observed for all three parameters A, φ and λ, the estimated values remain close to the corresponding real values (marked with a big black dot). 

Because this estimation technique relies heavily on

Case of a multidirectional phasor noise

In all former examples, the number of Gabor noises, denoted by n, is always equal to 1, which implies that the synthesized phasor noise is unidirectional. However, the color phasor noise introduced in Section 4.2.3 is more general, as it involves a sum of independent Gabor noises rather than a single Gabor noise. In order to increase the degree of complexity of the texture, a second Gabor noise with a dierent orientation can be independently added, yielding a bidirectional phasor noise, similarly to what is done in the greyscale case in [START_REF] Tricard | Procedural phasor noise[END_REF]). The color noise Φ is now assumed to result from the sum of two independent color Gabor noises whose orientations are equal to α and α + θ, respectively, with (α, α + θ) ∈] -π 2 , π 2 ] 2 . The other parameters are assumed to be the same for both Gabor noises. Though no formal study of how the Riesz transform deals with such a noise, it can be expected that increasing the dierence between the two orientations, i.e., increasing θ, damages the estimation of the color parameters. Indeed, as highlighted in Section 4.2.4, if noises of signicantly dierent orientations are combined, the oscillating patterns of the resulting image are obscured due to the conicts between the two underlying waves. 

ω ∈ {10 + 5k, k = 0, . . . , 4}, M = N = 1000, T x = T y = 0.002, b = 5, p = 0.1, α = π 6 , n = 1, A R = 0.1, A G = 0.5, A B = 0.25, φ R = 0, φ G = 2π 3 , φ B = -2π 3 

Application to real color textures

The color parameter estimation technique described in the previous sections is now applied to real color textures. After the parameters are extracted by using the Riesz transform, the ellipse can be drawn, yielding a visual representation of the color oscillation inside the RGB cube. The results are given in Table 5.2. As suggested by the synthetic tests, the most homogenous texture in terms of color content, i.e., the grass texture, yields a at ellipse (λ = 1). The fabric texture displays more color variations, which is reected in the lower value of λ and the shape of the ellipse. In both cases, the color content of the texture is consistent with the color range of the ellipse. The results are less convincing in the case of the sand texture. Though the value of λ is consistent with the color content of the image, which oscillates between light brown and blue, the color range of the ellipse does not contain any shade of blue, suggesting that the estimation does not work well.

In order to further illustrate these results, color phasor noises are generated from the 

, ω = 30, α ℓ ∼ N π 6 , v for each ℓ ∈ {1, . . . , 5}, n = 5, A R = 0.1, A G = 0.5, A B = 0.25, φ R = 0, φ G = 2π 3 , φ B = -2π 3 and Φ 0 = 0.1 0.5 0.25 ⊤ .
in Figure 5.8 conrm the previous observations. Indeed, the color information is well extracted from the grass and the fabric textures, respectively, while it struggles more with the sand texture. As for the orientation, the value obtained from the grass texture is dicult to interpret due to the lack of clear directional patterns. The sand texture is much more suitable for this technique, hence the more intuitive value of α. The stochastic structure tensor seems to struggle with the fabric texture, probably because of the presence of both horizontal and vertical directional patterns. Notice that the synthesis only focuses on reconstructing the color content and the directionality of the image, respectively. A proper reconstruction of the image would require more complex phasor noises involving terms of dierent frequencies and orientations, which should be possible by generalizing existing exemplar approaches such as [START_REF] Galerne | Gabor noise by example[END_REF][START_REF] Guehl | Semi-procedural textures using point process texture basis functions[END_REF]. Another possibility would be to make the color parameters space-dependent in order to add more richness in the color content. This is further discussed in the conclusion.

5.2 Monogenic-based detection of singularities 5.2.1 Phasor noise and singularities Section 5.1 highlights the ability of the monogenic signal to extract the color parameters of an oscillating stochastic texture. This section focuses on the use of the monogenic signal as a tool to evaluate the quality of the synthesized noise. As said in [START_REF] Tricard | Procedural phasor noise[END_REF], though the phasor noise eliminates the local losses of contrast of the Gabor noise, it displays singularities, i.e., local irregularities that make it look articial. They occur randomly in the texture, though Section 5.3 shows that the parameters of the noise directly impact their occurrence. Figure 5.9 shows an example of a greyscale phasor noise displaying singularities. Because these singularities are due to abrupt jumps in the phase function φ of the phasor noise [START_REF] Tricard | Procedural phasor noise[END_REF], it can be expected that these singularities have a measurable impact on the monogenic phase function ϕ. In the next sections, this assumption is investigated by applying the Riesz transform to the color phasor noise, from which a measure of local phase can be extracted. (5.11)

Grass Sand Fabric

Before applying the Riesz transform to Φ, these components are fused to get a single noise involving the color parameters. Similarly to what is done in Section 4.2, the noise Φ can be seen as the real part of a C 3 -valued signal Φ dened for all x ∈ Ω ⊂ R 2 by

Φ(x) =    A R e i[φ(x)+φ R ] A G e i[φ(x)+φ G ] A B e i[φ(x)+φ B ]    .
(5.12)

Then, Φ can be expressed for all x ∈ Ω as Φ(x) = e i[φ(x)] Γ,

( 5.13) where Γ denotes the color Fourier atom dened in Eq. (4.8). The three color channels are now fused to get a unied complex noise Φ u dened for all x ∈ Ω as Φ u (x) = Φ(x) ⊤ Φ(x)

1 2 = |Γ ⊤ Γ|
1 2 e i[φ(x)+ φ] ,

( 5.14) where φ denotes the unied color phase shift dened in Eq. (4.13). The unied noise Φ u is nally obtained by taking the real part of Φ u , hence for all x ∈ Ω, then it can be expected that the monogenic phase ϕ of the signal Φ u is close to the phase function inside the complex exponential, i.e., for all (j, k) ∈ {0 . . . M -1} × {0 . . . N -1}, ϕ j,k ≈ φ j,k + φ [2π].

(5.20)

The two phase functions are then compared by using the discrete mean cosine dierence, (5.21)

Areas where the two phase functions do not coincide should then correspond to singularities. In the next sections, this process is applied to detect the singularities in synthesized phasor noises and illustrate the impact of the parameters on their occurrence. As b increases, more singularities occur, which is reected in an increase of the number of black areas at the corresponding pixels. However, the local rate of singularities do not vary, which is reected in the high values of MCD and the stability of the overall aspect of the image apart from the scale.

Of course, the MCD value varies randomly depending on the underlying Poisson and phase shift processes. Generating m = 50 images for each bandwidth value gives an idea of how the distribution of the MCD values changes when b increases. As can be seen in Figure 5.10, the MCD values may vary greatly for small values of b, but stabilize around 0.98 for higher values of b. This can be explained by the fact that singularities occurring in a zoomed-in image (small value of b) have a higher impact on the overall regularity than singularities occurring in a zoomed-out image (high value of b).

The impact of the frequency parameter ω is now studied. Table 5. Like the scale parameter b, the angular dierence θ not only impacts the MCD values, but also their distribution, as can be seen in Figure 5.12 which displays the boxplots of m = 50 bidirectional phasor noises for each value of θ. As θ increases, the MCD values drop, while their variability strongly increases. This variability implies that even for higher values of θ, 

Conclusion

While Chapter 4 highlights the direct link between the color parameters of the elliptic model and the color content of the generated texture, this chapter goes further by introducing a monogenic-based technique to extract these parameters from a color image.

Though further studies would be necessary to improve this technique, the tests performed on real color texture show that these elliptic color parameters can accurately describe color oscillations. Similarly to the greyscale case tackled in Chapter 3, theoretical conditions on the frequency content of the image are given to ensure the reliability of the monogenic estimation.

Furthermore, this chapter makes substantial progress regarding the issue of local singularities raised in [START_REF] Tricard | Procedural phasor noise[END_REF]) thanks to the Riesz-based monogenic signal introduced in [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF]. While the occurrence of these singularities still cannot be avoided, the monogenic signal provides an ecient tool to measure the local regularity of the synthesized noise, detect the singularities and hence quantify the global regularity of the image.

This technique is essentially based on the reliable estimation of local phase enabled by the Riesz transform, whose relevance is supported both theoretically and numerically. This further illustrates the importance of the phase function in analyzing the local structure of the texture, which was already highlighted in [START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF].

The elliptic color model and monogenic-based detection of irregularities could now be applied to more general procedural noises. In [START_REF] Tricard | Procedural phasor noise[END_REF], sums of Gabor noises with randomly generated frequencies and orientations are considered, which enables a greater array of textures though still displaying singularities. Outside the eld of pure procedural texture synthesis, this technique could also be applied to semi-procedural noises, i.e., data-driven texture synthesis techniques as found in, e.g., [START_REF] Galerne | Gabor noise by example[END_REF][START_REF] Guehl | Semi-procedural textures using point process texture basis functions[END_REF]. The ability of the monogenic signal to extract local features such as phase and orientation would then be used not only after the synthesis as an evaluation tool, but also in the analysis of the exemplar texture.

While this chapter focuses on marked Poisson processes, determinantal point processes have become particularly used in machine learning [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF] and image processing [START_REF] Launay | Determinantal point processes for image processing[END_REF] in the last decade due to the richer interactions between the generated points they oer. It could hence be interesting to generalize the results presented here to noises synthesized through more complex processes, and discuss the impact of the underlying point process on the generated texture.

Finally, this chapter only considers the case of constant color parameters A C and φ C , C ∈ {R, G, B}. However, when dealing with real color textures, such parameters are more likely to evolve along the pixels rather than remaining constant, hence the introduction of dynamic color parameters in both the 1D and the 2D cases [START_REF] Lilly | Modulated oscillations in three dimensions[END_REF][START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF]. Applying the monogenic extraction of the color parameters described in Section 5.1.2 to a real color texture clearly shows that these parameters are space-dependent and cannot be considered constant global descriptors anymore, as can be seen in Figure 

Conclusion and perspectives

Conclusion

The main objective of this thesis was the introduction and extension of numerical descriptors for color images, which can then be directly linked to their visual features. This was done by merging image processing techniques from the elds of signal processing, probabilities and system identication. The developments performed in the previous chapters have studied the reliability of the parameters extracted through these techniques, as well as their interpretation in terms of local feature characterization. Because the color content of a texture is an inherently vectorial information [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF], a particular attention has also been paid on the non-marginal treatment of the color channels.

Widely used in 2D system identication, the Roesser model is deeply studied from a color image modeling point of view in Chapter 1, with a special focus on the subspace-based estimation algorithm of the Roesser parameters introduced in [START_REF] Ramos | A stochastic subspace system identication algorithm for state space systems in the general 2-D Roesser model form[END_REF].

Besides its robustness, this algorithm is noteworthy for its purely vectorial treatment of the color channels of the handled image, which provides a great advantage over marginal techniques. Indeed, many works such as [START_REF] Xu | Vector sparse representation of color image using quaternion matrix analysis[END_REF][START_REF] Hosono | Weighted tensor nuclear norm minimization for color image restoration[END_REF]) highlight the crucial information contained in the correlations between the color channels, hence the need to include them in the estimation process. Chapter 1 provides a brand-new interpretation of the subspace-based estimation in terms of color covariance matrices, which places it more clearly within the color texture framework.

This thesis also distances itself from the 2D ARMA models handled in, e.g., [START_REF] Kokaram | A statistical framework for picture reconstruction using 2D AR models[END_REF][START_REF] Köppel | On the usage of the 2D-AR-model in texture completion scenarios with causal boundary conditions: A tutorial[END_REF] in the way the innovation sequence is treated. As stated in [START_REF] Kailath | Linear Estimation[END_REF], describing the innovation sequence as a white noise characterized by its second-order statistics is not enough to fully describe its structural information. Besides the colorimetric study of the subspace-based estimation algorithm, Chapter 1 shows how some of the structural information of the image subsists in the innovation after the model has been identied. A direct consequence of this fact is that replacing the innovation with a white noise sharing the same second-order statistics implies losing an important part of the original structure in the reconstructed image. Such results suggest that properly characterizing the innovation is as crucial as reliably estimating the parameters of the model.

The limits of the Roesser model in terms of local structure characterization is what has motivated the use of other tools taken from the eld of signal processing in Chapter 2.

Indeed, one of the biggest contributions of the monogenic signal (introduced in [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Felsberg | The monogenic signal[END_REF]) is the proper denition of a local phase function to characterize the structural information of 2D images. Although this information was already extracted by the Fourier phase [START_REF] Oppenheim | The importance of phase in signals[END_REF], the fact that the monogenic phase is dened in the spatial domain rather than the frequency domain makes it easier to connect with the local features of the image. While, in theory, the monogenic measures of phase and orientation are optimal for pure cosine waves only, Chapter 2 goes further by studying the reliability of the monogenic phase and orientation extraction in the case of more complex 2D deterministic waves. The theoretical and numerical results provided in this chapter show how both functions are still well estimated when the oscillations contain more curves, under the condition that the oscillating patterns are explicit enough.

These results are then illustrated by extracting the phase function from real interferometric fringes, which extends the previous works dealing with the use of the Riesz transform in eld of interferometry such as [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF][START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF].

While Chapter 2 focuses on deterministic images only, Chapter 3 generalizes the reliability of the monogenic phase extraction to random elds displaying oscillating patterns, in order to further enlarge its application scope. This extends the application of the monogenic framework to stochastic images performed in [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF], though it focuses on the characterization of directionality only. Because the phase function contains crucial structural information that is not encoded in any other signal extracted by the monogenic signal [START_REF] Felsberg | The monogenic signal[END_REF], this motivates the study of the monogenic phase extraction in the case of random elds. Thus, Chapter 3 shows how the monogenic signal still provides a reliable measure of both phase and orientation in this case, with numerical results to illustrate the theoretical study. Chapter 3 also further studies the use of the Riesz transform to measure directionality. Introduced in [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF]), the Riesz-based stochastic structure tensor provides a reliable technique to extract the preferred orientation from random elds, but its original quaternionic formulation was masking some of its geometrical aspects. In Chapter 3, the quaternionic formalism of [START_REF] Olhede | Detecting directionality in random elds using the monogenic signal[END_REF]) is reformulated in R 3 , which yields a more visual interpretation of the measure of directionality. The link with more classical structure tensors is also made more explicit.

After highlighting the ability of the monogenic tool to extract the local features of greyscale The use of the elliptic parameters as descriptors for oscillating color textures is then investigated in Chapter 5. These parameters are estimated thanks to the monogenic signal, and are then used to characterize the color content of the image. This technique hence provides a fully spatial description of the color oscillations inside the RGB cube with a compact set of parameters. Chapter 5 also tackles the occurrence of singularities in the phasor noise, which was left for further studies in [START_REF] Tricard | Procedural phasor noise[END_REF]. Because the structural information of the noise is contained in its phase function, the key idea is to characterize the singularities as jumps of π between the physical phase function and the estimated phase measured by the monogenic signal. Synthetic tests show how this technique manages to detect the singularities in the synthesized image, which yields a characterization of the quality of its overall appearance. The eect of the parameters on the number of singularities in the image is also deeply studied, which opens the door for a better understanding of their occurrence.

Perspectives

As stated in [START_REF] Felsberg | The monogenic signal[END_REF], the split of information between amplitude and phase provided by the Riesz transform is orthogonal, which implies that the energy and structure of the image are strictly separated. This ensures that the whole structural information is encoded in the phase function, without interference from the energy. This local measure is of particular interest in elds such as interferometry, where the phase value at each pixel can be linked to physical quantities [START_REF] Robin | Phase demodulation method from a single fringe pattern based on correlation with a polynomial form[END_REF][START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF].

However, being a 2D signal of the same size as the original image, the monogenic phase is still dicult to interpret. While this thesis deeply investigates the quality of the phase extraction, no further analysis of the estimated phase is performed. An interesting perspective would hence be the denition of parameters to characterize the phase function, similarly to the various indexes designed for the Fourier phase in [START_REF] Kovesi | Phase congruency: a low-level image invariant[END_REF][START_REF] Leclaire | No-reference image quality assessment and blind deblurring with sharpness metrics exploiting fourier phase information[END_REF]. In these works, the local behavior of the Fourier phase is characterized by a small set of indexes, and is then directly linked to the blurry aspect of the image, as well as the detection of edges. Dening similar tools for the local phase measured by the monogenic signal would constitute an important step in the parametric characterization of images.

Like the phase function in the case of oscillating textures, the innovation sequence of the Roesser model is reliably extracted, and its structural information is heavily emphasized in this thesis, but there still lacks a proper modeling of its content. The texture completion detailed in Chapter 1 provides interesting results, but the innovation in the masked area still has to be copied from available data, which is an important limitation. Future works should hence focus on dening ecient techniques to reconstruct the unknown parts of the innovation sequence without relying on copy-pastes from the available innovation terms.

The use of the monogenic signal to characterize the structural and directional behavior of this sequence could be a particularly interesting perspective.

The monogenic-based color texture analysis described in Chapter 5 also has to be further developed. When applied to phasor noises, the color parameters and the ellipse are well estimated by the monogenic signal, and provide a precise description of the richness of the color content. However, the link between the ellipse and the color content is not as explicit when real color textures are considered. Because such textures contain more complex patterns, a possible solution is to make the color parameters space-dependent, as suggested in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF]. Assuming that the richness of the color content is not constant in the whole image, this would yield an ellipse and a linearity value at each pixel, making it more suitable for complex color patterns.

In the eld of texture synthesis, the monogenic-based detection of singularities in the phasor noise could also be further improved. Though the monogenic signal manages to characterize the occurrence of singularities thanks to its measure of local phase, the overall regularity of the synthesized image is still dicult to quantify. The MCD used in Chapter 5 gives a very partial idea of how the image actually looks, which suggests the introduction of more relevant criteria. In [START_REF] Tricard | Freely orientable microstructures for designing deformable 3d prints[END_REF], the singularities of the phasor noise are classied by using a local measure involving the gradient of the phase function. Given the strong links between the gradient and the Riesz transform [START_REF] Felsberg | The monogenic signal[END_REF], it would hence be interesting to formally compare both approaches.

While the color generalization of the phase is widely discussed in Chapters 4 and 5, respectively, no notion of color orientation is introduced in this work. Because the monogenic signal provides a clear separation between energetical, structural and directional information [START_REF] Felsberg | The monogenic signal[END_REF], this implies that parts of the information contained in the image are still left unmodeled. A color extension of the Riesz-based structure tensor can be found in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF], in which the three tensors of each color channels are summed to form a single tensor, from which a unied notion of orientation is extracted.

However, numerical tests suggest that it is equivalent to converting the color image into a grey image and extracting the orientation from the corresponding scalar structure tensor.

A possible solution is to rely on Cliord algebras, as is done in [START_REF] Demarcq | The color monogenic signal: application to color edge detection and color optical ow[END_REF].

This article goes back to the formal denition of the monogenic signal in [START_REF] Felsberg | The monogenic signal[END_REF], which leads to the introduction of an R 5 -valued monogenic signal designed for color images. A formal generalization of the angular signals such as the local phase can then be performed by using this 5-dimensional vector. As already said in [START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF] and recalled in Chapter 4, the main drawback of this approach is that the local measures that it yields lack a clear physical interpretation. Future works could hence focus on either introducing a proper notion of color orientation, or studying how the 5-dimensional monogenic signal can be used to describe the local features of a color image.

Finally, though this thesis introduces numerical descriptors for color textures, it does not tackle the use of these quantities for image classication. In the eld of greyscale medical imaging, [START_REF] Alessandrini | Myocardial motion estimation from medical images using the monogenic signal[END_REF]) have already used the monogenic signal and the phase extraction that it provdes to analyze heart motion, with convincing results. However, as stated in [START_REF] Badano | Consistency and standardization of color in medical imaging: a consensus report[END_REF], the treatment of color information in medical images is still an open question, and many widely used techniques lack proper standardization. Subsequent works could hence focus on the application of the monogenic-based extraction of structural and color features to medical image analysis. Because color plays a signicant role in elds such as digital microscopy, telemedicine and medical photography [START_REF] Badano | Consistency and standardization of color in medical imaging: a consensus report[END_REF], this would be a particularly interesting perspective.

Figure 2 :

 2 Figure 2: Two examples of times series generated from the same AR(1) model (top), and their respective autocorrelation functions (bottom).

Figure 1

 1 Figure 1.1: A texture (left) and the area where it lies inside the RGB cube (right).

  Figure 1.3: Original image (left), stacked image (middle) and future Hankel matrix built from the 10th column (right), with M = N = 180, i = 20, j = 141.

Figure 1 .

 1 Figure 1.4 illustrates how the past and future data are extracted from the original image to build the horizontal past and future block Hankel matrix Y h p and Y h f , respectively. As in Figure 1.3, the size of the image is 180 × 180, while the tuning parameters are i = 20 and j = 141. Notice that the constraint 2i + j -2 = min{M -1, N -1} xed in Section 1.3.2 ensures that the greatest amount of pixels are involved in the estimation process.

Figure 1 .

 1 Figure 1.5 illustrates how the past and future data are extracted from the original image to build the vertical past and future block Hankel matrix Y h p and Y h f , respectively.

  Figure 1.5: Data used for the vertical past (left) and future (right) block Hankel matrix.

Figure 1

 1 Figure 1.6: A sand texture and its estimated innovation sequence.

Figure 1 . 9 :

 19 Figure 1.9: Example of a damaged image restored through an inpainting technique.
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 1 Figure 1.10: Causal (in blue) and anticausal (in red) training neighborhood.

Figure 1 .

 1 Figure 1.13 shows an example of such a weighting function with I = {61, . . . , 120} 2 .

Figure 1 .

 1 Figure 1.13: Example of a weighting function v with I = {61, . . . , 120} 2 .

Figure 1 .

 1 Figure 1.14: Area occupied by the original (top left) and inpainted grass textures inside the RGB cube in the case of vectorial (top right), marginal (bottom left) and PCA-based (bottom right) inpainting.

Figure 1 .

 1 Figure 1.15: Area occupied by the original (top left) and inpainted sand textures inside the RGB cube in the case of vectorial (top right), marginal (bottom left) and PCA-based (bottom right) inpainting.

Figure 1 .

 1 Figure 1.16: Area occupied by the original (top left) and inpainted marble textures inside the RGB cube in the case of vectorial (top right), marginal (bottom left) and PCA-based (bottom right) inpainting.

Figure 1 .

 1 Figure 1.17: Area occupied by the original (top left) and inpainted wall textures inside the RGB cube in the case of vectorial (top right), marginal (bottom left) and PCA-based (bottom right) inpainting.
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 212 Figure 2.1: Phase switch between pebble and sand textures.

Figure 2 .Figure 2 . 3 :

 223 Figure2.3 shows an analytic phase function ϕ extracted through the Hilbert transform from a discrete cosine wave generated with N = 1000, T = 0.002, a 0 = 0.5 and ω = 10π. The expected physical phase function φ is also represented. As predicted by Eq. (2.11) in the continuous case, both phase functions coincide perfectly, which is conrmed by the BFR and VAF criteria, which are both equal to 100%.
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 24 Figure 2.4: Comparison between the analytic (black circles) and physical (red line) measures of amplitude and phase in the case of a parabolic chirp, N = 1000, T = 0.002, a 0 = 0.5, a = 3, BFR = 90.07%, VAF = 99.02%.

Figure 2 .Figure 2

 22 Figure2.5 illustrates the inuence of the parameter a on the quality of the analytic extraction of phase. As predicted by Eq. (2.17) in the continuous case, increasing a improves the phase extraction, which is reected by the BFR and VAF criteria becoming close to 100% for higher values of a.
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 2 Figure 2.6: Example of a 2D cosine wave with ω = 20π and α = π 6 .

Figure 2

 2 Figure 2.7: Example of a real 2D fringe pattern.

Figure 2

 2 Figure 2.8: Example of a 2D parabolic chirp with a = 7.

Figure 2

 2 Figure 2.9: Monogenic (top left) and physical (top right) measures of phase, cosine dierences between the monogenic and physical values of phase (bottom left) and orientation (bottom right) in the case of a cosine wave, M = N = 1000, T x = T y = 0.002, a 0 = 0.5, ω = 20π, α = π 6 , BFR = 99.96%, VAF = 100%.

Figure 2

 2 Figure 2.11: Monogenic phase (top left), physical phase (top right), monogenic orientation (center left), physical orientation (center right), cosine dierence between the monogenic and physical values of phase (bottom left) and orientation (bottom right) of a parabolic chirp, M = N = 1000, T x = T y = 0.002, a 0 = 0.5, a = 7, BFR = 93.71%, VAF = 99.6% (phase), BFR = 95.99%, VAF = 99.84% (orientation).

  Figure2.12: BFR and VAF criteria between the monogenic and physical phase (top) and orientation (bottom) functions for parabolic chirps of dierent parameters a ∈ {1+0.2ℓ, ℓ = 0, . . . , 35}.

Figure 2

 2 Figure 2.13: Monogenic phase (top left), physical phase (top right), monogenic orientation (center left), physical orientation (center right), cosine dierence between the monogenic and physical values of phase (bottom left) and orientation (bottom right) of an anisotropic parabolic chirp, M = N = 1000, T x = T y = 0.002, a 0 = 0.5, a 1 = 8, a 2 = 5, BFR = 94.14%, VAF = 99.66% (phase), BFR = 92.99%, VAF = 99.51% (orientation).

  Figure 2.14: BFR and VAF criteria between the monogenic and physical phase (top)

  2001), hologram demodulation[START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF]) and phase estimation[START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF]). The quality of the phase and orientation extraction from oscillating textures provided by the Riesz-based monogenic signal has also been highlighted in Sections 2.4 and 2.5, with brand new theoretical and numerical results. In order to further study the benets of the monogenic approach in the eld of interferometry, a collaboration has been led with the Institut Pprime, which is a research laboratory specialized in the elds of physics and engineering sciences based in Poitiers. The institute has provided a data basis of real interferometric fringes (see Figure2.15), from which the phase functions can be extracted by use of the monogenic signal. A numerical comparison with the pMPC technique has also been performed to illustrate the relevance of the monogenic tool in the interferometry framework. This section details the results of this collaboration, which has led to the publication of[START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF]).

Figure 2 .

 2 Figure 2.15: Examples of real interferometric fringes provided by the data basis of the Institut Pprime.

Figure 2 Figure 2

 22 Figure 2.16: Original image (top left), expected phase (top right), pMPC phase (bottom left) and monogenic phase (bottom right) of concentric fringes, BFR = 80.56%, VAF = 96.23% (pMPC), BFR = 90.82%, VAF = 99.16% (monogenic).

Figure 2 .

 2 Figure 2.18: Histograms of the pMPC (left) and monogenic (right) cosine dierences.

Figure 2 .

 2 Figure 2.19: Original image (left), pMPC phase (middle) and monogenic phase (right) of a real fringe pattern.

Figure 2 .

 2 Figure 2.20: Original image (left), pMPC phase (middle) and monogenic phase (right) of a specic area of the fringe pattern.

Figure 2 .

 2 Figure2.21 shows the results obtained from another example of real fringe pattern, this time only involving the monogenic tool. Again, the monogenic phase manages to extract the local structure of the fringes, including the ner details at the center of the circle,

Figure 2 .

 2 Figure 2.21: Original image (left) and monogenic phase (right) of a real fringe pattern.

  2D signals consisting of a deterministic part (either a cosine wave or a parabolic chirp) and a stochastic variable (a Gaussian noise) were numerically studied in[START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF], and it was observed that the variance of the stochastic variable greatly aects the phase estimation. After dealing with purely deterministic oscillating images in this chapter, the next chapter focuses on how the monogenic tool manages to extract the local structure of images containing noise components.

  the polar coordinates ξ = rΘ, with r ∈]-∞, +∞[ and Θ = (Θ 1 , Θ 2 )

  then be developed by using the Jacobi-Anger expansion, i.e., for all z ∈ C and θ ∈ Re iz cos θ = n∈Z i n J n (z)e inθ , (A.30)where J n denotes the Bessel functions dened in Eq. (2.51). Applying Eq. (A.30) with z = i αϵ∥x∥ 2 2 and injecting it in Eq. (A.29) leads to

Following

  the works of[START_REF] Lagae | Procedural noise using sparse gabor convolution[END_REF][START_REF] Lagae | Filtering solid gabor noise[END_REF][START_REF] Galerne | Gabor noise by example[END_REF][START_REF] Gilet | Local random-phase noise for procedural texturing[END_REF][START_REF] Tricard | Procedural phasor noise[END_REF] on procedural noises, this study focuses on homogenous Poisson point processes, whose denition is recalled here. Let (x i ) i be a realization of a homogeneous Poisson point process with intensity µ ∈ R * + (Chiu, Stoyan, Kendall & Mecke 2013), i.e., ∀A ⊂ R 2 , if N (A) denotes the number of points contained in A, i.e., N (A) = #{i|x i ∈ A}, then N (A) ∼ P(µ|A|), where P denotes the Poisson distribution and |.| denotes the Lebesgue measure in R 2 , if A ∩ B = ∅, then N (A) and N (B) are independent random variables.

  Figure 3.1 illustrates the way these noises are generated. At each pixel x ∈ R 2 (in blue), the contributions of the points of the Poisson process x i (in red) are summed, the closest points having the most signicant contribution as illustrated by the varying thickness of the red arrows. The sparseness of the convolution depends on the value of the intensity parameter µ, as well as the decreasing speed of g towards 0 when ∥x∥ tends towards +∞.

Figure 3 . 1 :

 31 Figure 3.1: Illustration of the sparse convolution.

  Now that these general statistical results are given, Section 3.2 focuses on the special class of phase-augmented Gabor noises studied in[START_REF] Lagae | Procedural noise using sparse gabor convolution[END_REF][START_REF] Lagae | Filtering solid gabor noise[END_REF][START_REF] Galerne | Gabor noise by example[END_REF]. The motivation behind this choice is that the Gabor model generates noises with clear oscillating patterns, which makes it particularly relevant to formally study the ability of monogenic tool to extract the local features of oscillating stochastic textures.

  is performed in the frequency domain by using the 2D discrete Fourier transform. Tables 3.1, 3.2 and 3.3 shows examples of Gabor noises synthesized with this technique for dierent values of b, ω and α, respectively. The remaining parameters chosen to synthesize the texture are M = N = 1000, T x = T y = 0.002, p = 0.1, respectively. Notice that the sampling periods T x and T y both satises Shannon's boundary, i.e., 1 Tx > 2bω and 1 Ty > 2bω. Inuence of the scale b on the visual aspect of the Gabor noise, with M = N = 1000, T x = T y = 0.002, p = 0.1, ω = 20, α = π Inuence of the frequency ω on the visual aspect of the Gabor noise, with M = N = 1000, T x = T y = 0.002, p = 0.1, b = 2, α = π 6 .

  Inuence of the orientation α on the visual aspect of the Gabor noise, with M = N = 1000, T x = T y = 0.002, p = 0.1, b = 2, ω = 20.of b) have the same visual aspect as fast fringes (high value of ω) at a higher resolution (low value of b). This suggests that the overall behavior of the fringes is conditioned by the product bω. The question now is to study how the monogenic signal (introduced in Section 2.4 for deterministic oscillating images) manages to handle such stochastic textures in terms of phase and orientation estimation, which is the subject of the next sections. The theoretical and numerical results established in these sections highlight the key role of the product bω already evoked in the previous tests.3.3 Monogenic-based phase estimation of the Gabor noise3.3.1 Unied expression of the Gabor noiseSections 2.4 and 2.5 have highlighted the ability of the monogenic tool to extract the structural information of oscillating textures, modeled by the phase function, even in the case of real fringe patterns displaying noise. However, no formal study of how the Riesz transform deals with stochastic aspects has been performed yet. As said in Section 3.1.3, the Gabor noise provides an interesting point of entry into stochastic textures for the monogenic tool due to its mix of clear oscillating patterns and stochastic perturbations.

⊤

  and e α = 0 cos α sin α ⊤ . Using the isomorphy between C and the 2D vector space spanned by e 1 and e α leads toM s (x) ≈ s(x) + iH s (x), ≈ I(x)e i[bωu ⊤ x+Ψ(x)] ,(3.24)

Figure 3 Figure 3

 33 Figure 3.2: Comparison between the monogenic (left) and physical (right) measures of phase in the case of a Gabor noise, M = N = 1000, T x = T y = 0.002, b = 1, ω = 50, α = π 6 , p = 0.1, BFR = 85.67%, VAF = 97.95%.
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 334 Figure 3.6 now shows the boxplots of the BFR and VAF criteria calculated for ω ∈ {10 + 5k, k = 0, . . . , 4}, the other parameters being M = N = 1000, T x = T y = 0.002, b = 5, α = π 6 and p = 0.1, with n = 50 Gabor noises generated for each value of ω. This time, increasing the frequency parameter ω implies a reduction of both the means and the variances of the similarity criteria. This can be explained by the fact that low frequency images damage both the computation of the Riesz transform and the subsequent monogenic phase extraction.

Figure 3 . 5 :Figure 3

 353 Figure 3.5: Boxplots of the BFR (left) and VAF (right) criteria measured from the cosines of the monogenic and physical phase functions for n = 50 Gabor noises, b ∈ {1, . . . , 5}, M = N = 1000, T x = T y = 0.002, ω = 10, α = π 6 , p = 0.1.
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 37 Figure 3.7: Boxplots of the estimated orientations measured from n = 50 Gabor noises, b ∈ {1, . . . , 5}, M = N = 1000, T x = T y = 0.002, ω = 30, α = π 6 , p = 0.1.

Figure 3 .

 3 Figure3.8 now shows the boxplots of the estimated orientations calculated for ω ∈ {10 + 5k, k = 0, . . . , 4}, the other parameters being M = N = 1000, T x = T y = 0.002, b = 5, α = π 6 , p = 0.1, with n = 50 Gabor noises generated for each value of ω. again, increasing the frequency parameter ω reduces both the mean and the variance of the estimator. For ω ≥ 30, the orientation estimation becomes highly reliable.
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 3833 Figure 3.8: Boxplots of the estimated orientations measured from n = 50 Gabor noises, ω ∈ {10 + 5k, k = 0, . . . , 4}, M = N = 1000, T x = T y = 0.002, b = 5, α = π 6 , p = 0.1.
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 33 Figure 3.11: Boxplots of the normalized measures of directionality U s calculated from n = 50 Gabor noises, ω ∈ {10 + 5k, k = 0, . . . , 4}, M = N = 1000, T x = T y = 0.002, b = 5, α = π 6 , p = 0.1.
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 33 Figure 3.13: Boxplots of the estimated orientations measured from n = 50 sums of two Gabor noises, w ∈ {0.1k, k = 0, . . . , 10}, M = N = 1000, T x = T y = 0.002, b = 5, ω = 30, α 1 = π 6 , α 2 = π 2 , p = 0.1.

  displays more and more unidirectional oscillations. This shows how the monogenic-based tools developed in this chapter not only work for synthesized textures, but also real textures displaying oscillating patterns. Unlike the phase, the directionality information is encoded in a single parameter, which could then be used in texture classication in 4: Monogenic extraction of local phase, global orientation and directionality of real textures 3.6 Conclusion Highlighted in Chapter 2 in the case of deterministic waves, the quality of the monogenic extraction of phase generalizes well to random elds displaying oscillating patterns like Gabor noises, as shown in Section 3.3. This is supported by both theoretical results and synthetic tests. Furthermore, Section 3.4 shows how the monogenic-based stochastic structure tensor introduced in (Olhede et al. 2014) manages to extract the preferred direction of oscillation of a single Gabor noise, as well as evaluating the overall directionality when applied to a sum of Gabor noises. All these results rely on the approximation of the Riesz transform of a Gabor noise provided by Theorem 6, which is therefore one of the most important contributions of this chapter. Though dealing with synthesized images, these results give strong arguments for the robustness of the monogenic extraction of local features. Section 3.5 goes further by successfully extracting the phase and orientation of real oscillating textures by using the monogenic-based tools introduced in the two previous sections, which highlights the ability of these tools to capture the local behavior of such images.Similarly to the case of deterministic waves tackled in Chapter 2, these results imply that the monogenic signal is still able to separate energetical, structural and directional information when stochastic features come into play, as long as the image displays clear oscillating patterns. Unlike the directional features, which can be summed up by the directionality index, the phase function still lacks a concise description. While the developments introduced in this study ensure the reliability of the phase extraction, further work could focus on how the information contained in this signal can be summed up in a small set of descriptors.Notice that though the main topic of this work is the characterization of color textures, Chapter 2 and 3 only deal with greyscale textures. These steps were necessary to introduce the monogenic-based structure extraction techniques and illustrate their relevance for both deterministic and stochastic textures. The subsequent developments aim at extending these results to color textures. To do so, a suitable color model must be dened, which is the main topic of Chapter 4.

  's dominated convergence theorem (see, e.g., Theorem 1.19 in[START_REF] Evans | Measure theory and ne properties of functions[END_REF]), this implies that limT →+∞ E[s T (x)] = E[s(x)]. (B.6)Finally, making T tend towards +∞ and applying the substitution y = xu leads to E[s(x)] = µ

  for example, A R = 0 and φ G = φ B [π], the vertexes of the ellipse given in Eq. (4.18) and Eq. (4.19) become

  amplitudes are non-zero, then sin 2φ C = 0 for all C ∈ {R, G, B}, which necessarily implies that cos 2φ C = ±1 for all C ∈ {R, G, B}. Because the color phase-shifts are assumed to lie inside the same quadrant of the unit circle, the two possibilities are cos 2φ C = 1 for all C ∈ {R, G, B} or cos 2φ C = -1 for all C ∈ {R, G, B}, which automatically violates the rst condition in Eq. (4.22). Consequently, if the ellipse associated

  4.33)Let ⃗ n denote the cross product of ⃗ s + and ⃗ s -. Then B s = ⃗ {s + ,⃗ s -, ⃗ n} forms a basis of R 3for which the vectors of the ellipse have coordinates in the form of point of the ellipse parametrized by θ is determined by using the transfer matrix Π s between the base B s and the canonical base, i.e.,

  the drawing of the ellipse for all images, and hence a better visualization of the color oscillation of the texture inside the RGB cube. Tables 4.1, 4.2 and 5.1 show examples of color waves and their corresponding ellipse synthesized with dierent color parameters, with ω = 30 and α = π 6 for all images.

  Figure 4.1 shows how the maximal value of I highly uctuates and depends on the generated noise. Examples of color waves with λ = 0, with ω = 30 and α = π 6 .

  Link between the color parameters, the color content of the texture and the shape of the corresponding ellipse, with ω = 30 and α = π6 . ω ∈ R * + , u = (cos α, sin α) ⊤ , α ∈ -π 2 ; π 2 ,for all C ∈ {R, G, B}, A C ∈ 0, 1 2 and φ C ∈] -π, π].

Figure 4

 4 Figure 4.1: Four Gabor noises generated with b = 2, ω = 20, α = π 6 , p = 0.1.

  and phase shifts processes, through which the n Gabor noises s ℓ (ℓ ∈ {1, . . . , n}) are generated, are assumed to be independent. Each color channel s C ℓ of each Gabor noise s ℓ (C ∈ {R, G, B} and ℓ ∈ {1, . . . , n}) is now rewritten as a single wave as done in the previous section, i.e., for all x ∈ R 2[START_REF] Tricard | Procedural phasor noise[END_REF], s C ℓ (x) = A C I ℓ (x) cos bω ℓ u ⊤ ℓ x + Ψ ℓ (x) + φ C .

  of the sum of the n Gabor noises s can hence be expressed for all C ∈ {R, G, B} and x ∈ R 2 ass C (x) = A C e iφ C ℜ n ℓ=1 I ℓ (x)e i[bω ℓ u ⊤ ℓ x+Ψ ℓ (x)] .

  each color component range between Φ C 0 -A C and Φ C 0 + A C for all C ∈ {R, G, B}. The parameters Φ C 0 and A C must hence satisfy the constraints Φ C 0 -A C ≥ 0 and Φ C 0 + A C ≤ 1 to ensure that Φ is an actual color image contained in [0, 1] 3 . Suchconstraints are impossible to dene in the case of a Gabor noise as the values at each pixel vary in R 3 rather than the cube [-1; 1] 3 , as highlighted in Section 4.2.1.

  convolution product is performed in the frequency domain by using the discrete Fourier transform. For all (j, k) ∈ {0 . . . M -1} × {0 . . . N -1}, let I j,k and φ j,k denote the modulus and argument of the complex number n ℓ=1 I j,k ℓ e iφ j,k ℓ .

  the discrete version of Eq. (4.44). Notice that Φ already lies inside the RGB cube [0, 1] 3 by construction. This ensures that the images displayed in the subsequent synthetic tests exactly correspond to the model, and are not distorted by normalization.

Figure 4 .

 4 Figure 4.2 shows an example of a color phasor noise synthesized with this technique. The parameters chosen to synthesize the texture areM = N = 1000, T x = T y = 0.002, b = 2, p = 0.1, ω = 30, α = π 6 , n = 1 (one single Gabor noise), A R = 0.2, A G = 0.2, A B = 0.1, φ R = 0, φ G = π 3 , φ B = π2 and Φ 0 = 0.8 0.5 0.1 ⊤ , respectively. Notice that the sampling periods T x and T y both satises Shannon's boundary, i.e., 1Tx > 2bω and

Figure 4 . 2 :

 42 Figure 4.2: Example of a color phasor noise, b =2, ω = 30, α = π 6 , n = 1, A R = 0.2, A G = 0.2, A B = 0.1, φ R = 0, φ G = π 3 , φ B = π2 and Φ 0 = 0.8 0.5 0.1 ⊤ .

  2.4. The other parameter values are M = N = 500, T x = T y = 0.002, b = 2, p = 0.1, ω = 30, α = π 6 , θ = π 12 and n = 2 for all ve noises. The results are given in Table 44: Link between the color parameters, the color content of the texture and the shape of the corresponding ellipse, with b = 2, p = 0.1, ω = 30, α = π 6 , θ = π 12 and n = 2.

Figure 5

 5 Figure 5.1: Original color phasor noise (top left), green channel (top right), absolute error of the green amplitude estimator (bottom left) and absolute error of the green phase-shift estimator (bottom right), with b = 2, p = 0.1, ω = 30, α = π 6 , n = 1, A R = 0.1, A G = 0.5, A B = 0.25, φ R = 0, φ G = 2π 3 , φ B = -2π 3 and Φ 0 = 0.1 0.5 0.25

Figure 5 . 3 :

 53 Figure 5.2: Boxplots of the unied amplitude A (left), unied phase-shift φ (middle) and linearity parameter (right) estimated from m = 50 color phasor noises, with b = 2, p = 0.1, ω = 30, α = π 6 , n = 1, A R = 0.1, A G = 0.5, A B = 0.25, φ R = 0, φ G = 2π 3 , φ B = -2π 3 and

Figure 5 .

 5 Figure5.5 conrms this conjecture by estimating the green phase-shift from m = 50 color phasor noises generated from two Gabor noises of increasingly dierent orientations. As θ increases, the monogenic extraction of amplitude and phase loses quality, which is reected by the loss of reliability of the green phase-shift estimation.
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 555 Figure 5.5: Boxplots of the unied phase-shift measured from m = 50 color phasor noises, θ ∈ { π 12 k, k = 0, . . . , 4}, M = N = 1000, T x = T y = 0.002, b = 5, p = 0.1, ω = 30, α = π 6 , n = 2, A R = 0.1, A G = 0.5, A B = 0.25, φ R = 0, φ G = 2π 3 , φ B = -2π 3 and

  Figure 5.7: Boxplots of the unied phase-shift measured from m = 50 color phasor noises,v ∈ {0.05(1 + k), k = 0, . . . , 4}, M = N = 1000, T x = T y = 0.002, b = 5, p = 0.1, ω = 30, α ℓ ∼ N π 6 , v for each ℓ ∈ {1, . . . , 5}, n = 5, A R = 0.1, A G = 0.5, A B = 0.25, φ R = 0, φ G = 2π 3 , φ B = -2π3 and Φ 0 = 0.1 0.5 0.25
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 58 Figure 5.8: Color phasor noises generated from the color parameters of the grass (left), sand (center) and fabric (right) textures, respectively, with b = 2, p = 0.1, ω = 20, α = π 6 ,

Figure 5

 5 Figure 5.9: Example of a greyscale phasor noise displaying singularities (marked by red circles).

  j,k + φ -ϕ j,k ] .

5. 3 . 2

 32 Impact of the scale and the frequency on the occurrence of singularitiesAs shown in Section 4.2.4, the discrete phase function φ of a single Gabor noise is given for all (j, k) ∈ {0 . . . M -1} × {0 . . . N -1} by φ j,k = bω (t j cos α + t k sin α) + Ψ j,k [2π].

⊤.

  illustrate how comparing the original and monogenic phase functions highlights the singularities occurring when b changes, ve color phasor noises are synthesized with b ∈ {1, . . . , 5}, the other parameters beingM = N = 500, T x = T y = 0.002, p = 0.1, ω = 30, α = π 6 , n = 1, A R = 0.3, A G = 0.2, A B = 0.1, φ R = 0, φ G = π 3 , φ B = π2and Φ 0 = 0.7 0.6 0.3 For each value of b, the synthesized phasor noise, the MCD criterion and the cosine dierence at each pixel are all given in Table5.3. The white areas correspond to cosine dierence values close to 1, i.e., areas where the expected and monogenic phase functions are close, while the black areas correspond to cosine dierence values close to -1, i.e., areas where the expected and monogenic phase functions dier from π.
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 55 Figure 5.10: Boxplots of the MCD values for dierent scale parameters.

  Figure 5.12: Boxplots of the MCD values for dierent angular dierence.

Figure 5 .

 5 Figure 5.13: A bidirectional phasor noise displaying few singularities with θ = π 3 .

5. 14 .

 14 The histograms are only shown for the green channel but the other channels give similar results. This probably explains why the color parameter extraction fails in the case of the sand texture, as seen in Section 5.1.5.

Figure 5 .

 5 Figure 5.14: Original image (left), green amplitude (middle) and green phase-shift (right).

  images in Chapters 2 and 3, Chapter 4 tackles color image characterization. The main contribution of this chapter is the merging of the elliptic color model and the phasor noise frameworks, respectively. While the 2D elliptic model (introduced in[START_REF] Soulard | Elliptical monogenic wavelets for the analysis and processing of color images[END_REF])) provides a useful color generalization of the notions of amplitude and phase, its theoretical developments only deal with deterministic color waves. Meanwhile, the phasor noise (introduced in[START_REF] Tricard | Procedural phasor noise[END_REF])) enables the synthesis of a wide variety of textures with prescribed frequency content, but no color model is included. Chapter 4 generalizes both models by dening a proper color phasor noise based on the elliptic model, which allows the synthesis of stochastic color textures with both prescribed frequency and color content, respectively. The ability of the model to encode the whole color information of the texture in a small set of parameters is of particularly great interest for elds such as parametric texture characterization and texture synthesis.

  

  2 and ||| • ||| 2 denote the vectorial and matricial Euclidian norms, respectively, using the submultiplicativity of ||| • ||| 2 (see

Table 1 .
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	Original				
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2: Comparison between reconstructions performed by the vectorial Roesser model and two marginal approaches, direct and combined with an PCA CHAPTER 2

  and is more suitable to 2D signals than 1D techniques. This method consists in dividing the image into patches, then tting the parameters of a xed model on each patch. Such a procedure can be very time consuming especially when the number of patches is high[START_REF] Robin | Phase demodulation method from a single fringe pattern based on correlation with a polynomial form[END_REF], while a smaller number of patches gives a far less reliable phase estimation. Furthermore, local singularities may appear because of the segmentation, hence the need of a better approach.

As a proper 2D generalization of the Hilbert transform, the Riesz transform, as well as the consistent extraction of phase it provides, opened the door for new solutions when it was introduced

[START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF]

. Since then, its relevance in the eld of interferometry has been illustrated in numerous works dealing with fringe demodulation

(Larkin et al. 

  2 πb 2 ∥z∥ 2 .Let h denote the complex Gabor kernel dened for all x ∈ R 2 , h(x) = e -π||x|| 2 e iωu ⊤ x ,

	B.4 Proof of Theorem 6		
			(B.25)
			(B.23)
	Injecting this expression in Eq. (B.21) nally leads to	
	Cov [s(0), s(z)] =	µ 4b 2 cos bωu ⊤ z e -1 2 πb 2 ∥z∥ 2 .	(B.24)

  In the case of I 2 , the inequality given in Eq. (B.48) does not hold anymore. Instead, the bound 4 given in Eq. (B.40) is used in Eq. (B.46),

	such that

  Table 4.1 gives three examples of

  C , C ∈ {R, G, B}, are stationary and zero-mean as stated in[START_REF] Lagae | Filtering solid gabor noise[END_REF] and recalled in Section 3.2.3. Let z ∈ R 2 be a 2D spatial delay and (C 1 , C 2 ) ∈ {R, G, B} 2 be a pair of colors. The delayed Gabor noise s C 2

	z
	is dened for all

Table 5
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		0.62	Amplitude	
		0.61		
	estimated amplitude	0.58 0.59 0.6		-1.17
		0.57		-1.175
			expected amplitude	
		0.56	1	-1.18	1

.1: Comparison between the real and estimated parameters of a color phasor noise, with b = 2, p = 0.1, ω = 30, α = π 6 and n = 1.

Remerciements

For all ξ = (ξ 1 , ξ 2 ) ∈ R 2 , let θ ξ denote an argument of the complex number ξ 1 + iξ 2 . Then the Riesz transforms of h can be rewritten for all ξ ∈ R 2 as R 1 h(ξ) = -i cos (θ ξ ) h(ξ), R 2 h(ξ) = -i sin (θ ξ ) h(ξ), (B.33) The quadratic error D S (x) can hence be expressed for all x ∈ R 2 as

Using the substitution ξ ′ = ξ -ωu then leads to

[cos (θ ξ+ωu ) -cos (α)] 2 e -1 2π ∥ξ∥ 2 dξ. (B.35) Let u ⊥ denote the vector of R 2 given by u ⊥ = -sin α cos α ⊤ . Because u and u ⊥ form an orthonormal basis of R 2 equipped with the scalar product, any 2D frequency ξ of R 2 can be expressed as a linear combination of u and u ⊥ . Thus, for all x ∈ R 2 , D S (x) can be expressed as

The argument of z + , i.e., the orientation of u + , denoted by θ + , can then be expressed by using this equality. Assuming that T 12 ̸ = 0 (which is the case for non degenerated images [START_REF] Soulard | Ondelettes analytiques et monogènes pour la représentation des images couleur[END_REF])), the factor T 11 -

α + θ, yielding a bidirectional phasor noise. 

Combining two waves with slightly dierent orientations makes the texture content richer.

However, as stated in [START_REF] Tricard | Procedural phasor noise[END_REF], increasing the parameter θ yields a more discontinuous image. This is illustrated in 

Just like in the greyscale case [START_REF] Tricard | Procedural phasor noise[END_REF], singularities occur in the synthesized textures, i.e., abrupt jumps between two wave fronts, though the underlying oscillating structure is still clearly visible. Notice that these singularities and their links with the parameters are tackled in Chapter 5. While these synthetic tests focus only on the Gabor parameters, the color parameters A C and φ C (C ∈ {R, G, B}) and their impact on the color content of the texture are further studied in Section 4.3.

Interpretation of the elliptic color model 4.3.1 Color covariances and interpretation

While the direct link between the color parameters and the color content of the synthesized texture is already highlighted in Section 4.1.5 in the deterministic case, this section aims at studying how these color parameters provide a full control over the color covariances in the case of stochastic textures such as the Gabor noise. In many semi-procedural approaches, scalar Gabor noises are synthesized along the three color axes that maximize either uncorrelation (through a PCA) or independence [START_REF] Galerne | Gabor noise by example[END_REF] in the exemplar texture. Rather than being eliminated, the covariances between the channels are fully modeled in the color extension introduced in this work. These covariances can be analytically expressed with the parameters of the model.

Theorem 9. The color Gabor noise dened in Eq. (4.37) is stationary, zero-mean, and its covariance matrix Σ(z), z ∈ R 2 , is given by

where

In the special case of z = 0, the covariance matrix becomes

The proof is given in Appendix C.2. For the sake of simplicity, the matrix Σ(0) is now denoted by Σ. This covariance matrix makes the link between the color channels explicit. Indeed, if C 1 and C 2 are two colors of {R, G, B}, then,

The amplitude values A R , A G and A B either amplify or attenuate these correlations.

This explicit interpretation of the color parameters enables a complete control over the covariances between the color channels. In the case of an equal contribution of the red, green and blue channels, i.e., if A R = A G = A B and φ R = φ G = φ B , the color content of The rst step consists in expressing |Γ ⊤ Γ| with the color parameters.

The special case λ = 1 is now characterized by using the color parameters.

This condition is fullled in three cases:

which is exactly what was to be proved. The special case λ = 0 is now studied.

(5.15)

In the further developments, the Riesz transform is applied to this unied noise Φ u rather than the three color channels separately. This is done in order to avoid marginal analysis.

Phase comparison and cosine dierence

In the special case of n = 1, i.e., if only one Gabor noise is used to generate the phasor noise, then Theorem 6 implies that the monogenic phase ϕ estimated from Φ u (x) through the Riesz transform is expected to be close to the function inside the cosine in Eq. (5.15).

If n ≥ 2, then no theoretical guarantee has been established so far. However, the literature suggests that, if the original amplitude and phase functions are slowly varying, their respective monogenic estimations are reliable [START_REF] Larkin | Natural demodulation of twodimensional fringe patterns[END_REF][START_REF] Seelamantula | Local demodulation of holograms using the riesz transform with application to microscopy[END_REF][START_REF] Kaseb | Phase estimation of a 2d fringe pattern using a monogenic-based multiscale analysis[END_REF]. Therefore, if Φ u denotes the unied noise obtained from a sum of Gabor noises as dened in Eq. ( 5.15), it can be expected that the phase function inside the cosine, i.e., φ + φ, and the monogenic phase ϕ extracted through the Riesz transform, are close to each other as long as the texture is regular enough. The pixels at which these two phase functions diverge would then correspond to the occurrence of singularities. In order to quantify the similarity between these two phase functions, a rst approach consists in comparing them through the cosine of their dierence at each pixel x ∈ Ω, i.e., cos [φ(x) + φ -ϕ(x)]

(5.16)

The closer to 1 this cosine dierence is, the more regular the texture is at the pixel x.

Conversely, pixels at which the cosine dierence is close to -1 are expected to display visual singularities. Calculating the mean of these cosine dierences in the whole image then yields a quality criterion for the synthesized texture. This mean cosine dierence between φ + φ and ϕ is now denoted by MCD(Φ) and can be expressed as

(5.17)

These tools are now applied to synthesized phasor noise in order to illustrate their relevance in detecting the singularities and evaluate the global regularity of the texture.

5.3 Application of the monogenic-based detection of singularities to synthesized color phasor noises

Discrete mean cosine dierence

Let s be a sum of discrete color Gabor noises as dened in Section 4.2.4, and let Φ denote the associated color phasor noise. The discrete unied noise associated with Φ is denoted by Φ u and is dened for all (j, k) 5.18) where Γ and φ denote the color Fourier atom and unied phase shift dened in Eq. (4.8) and Eq. (4.13), respectively. Assuming that the discrete monogenic signal of Φ u , denoted by M u Φ , can be approximated for all (j, k) ∈ {0 . . . M -1} × {0 . . . N -1} as Generating m = 50 noises for each value of ω conrms these observations. As the frequency ω increases, fewer singularities occur, hence the steady increase of the MCD, as well as a slight decrease of its variability. Notice that, in all these tests, the MCD criterion decreases rapidly when the number of singularities rises. Even for MCD values between 0.9 and 0.95, the image already looks damaged, which makes this criterion dicult to interpret. Future works should focus on bypassing this diculty by introducing a more relevant criterion.