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Resumé

Les travaux présentés dans cette thèse portent sur l’étude de la nature de l’état supra-

conducteur dans les composés UPt3 et PdTe2. A cette fin j’ai entrepris des mesures locales

de champ magnétique la surface des composés à l’aide d’un microscope à SQUID (SSM).

Celui-ci et les échantillons sont situés dans un cryostat, en nous permetant les refroidir

jusqu’à 0.2 K. J’étais amené à explorer des voies pour améliorer la sensibilités des sondes

SQUID déployées dans notre microscope.

Ci-dessous un résumé des différents chapitres.

Chapitre 1: introduction à la supraconductivité

Dans ce chapitre introductive je présente le phénomène de la supraconductivité et en

quelques lignes les modèles théoriques. La supraconductivité est un état quantique macro-

scopique qui se distingue par une résistance électrique nulle et un diamagnétisme parfait en

dessous d’une température critique Tc. Le comportement électromagnétique des supracon-

ducteurs est décrit par les équations des frères London. La théorie BCS (appelée d’après

ses auteurs Bardeen Cooper Schrieffer) décrit à l’échelle microscopique la supraconductivité:

des phonons permettent à deux électrons de spin et moment opposé de former des paires

de Cooper. Leur énergie est abaissée et un gap s’ouvre au niveau de la surface de Fermi.

La théorie de Ginzburg-Landau utilise une fonction d’onde macroscopique pour traiter la

dépendance spatiale du champ magnétique et des courants supraconducteurs. Cet état

macroscopique quantique est à l’origine de la quantification du flux magnétique traversant

un anneau supraconducteur en multiples entiers Φ0 = 2.07 · 10−15 Wb. Ceci est ce qu’on

appelle un vortex.

Il existe deux échelles de longueur characteristiques: profondeur de pénétration (des

champs magnétiques), λ, et longueur de cohérence (des électrons), ξ. Leur ratio définit le

comportement du matériau sous champ magnétique: pour λ/ξ < 1/
√

2 ils expulsent tout

champ magnétique à l’intérieur, ils s’agissent des supraconducteurs type I, et pour λ/ξ >



1/
√

2 ils permettent le flux de pénétrer en forme de vortex, on les appelle supraconducteurs

de type II.

Jusqu’à ici, on a parlé de la supraconductivité qui est bien décrite par la théorie BCS,

on l’appelle supraconductivité conventionnelle. Par contre, il existe des autres supracon-

ducteurs qui ne peuvent pas être décrits par cette théorie. L’interaction électrons-phonons

est remplacé par d’autres mécanismes comme des fluctuations magnétiques et des symétries

additionnelles à celle de la symétrie de jauge peuvent être brisées. On parle dans ce cas d’un

supraconducteur non conventionnel.

Dans la supraconductivité non-conventionelle, les paires de Cooper peuvent avoir des mo-

ments orbitaux no nuls et le spin peuve être singulet ou triplet. Les supraconducteurs à base

de cuprates, les fermions lourds ou pnictides sont quelques familles des supraconducteurs

non-conventionels.

En particulier, UPt3 est un composé à fermions lourds qui s’ordonne antiferromagné-

tiquement avec un faible moment à 5 K avant de transiter à Tc = 550 mK dans l’état

supraconducteur.

Ce composé présente 3 phases supraconductrices différentes dans le diagramme de phase

(T -H). Pour chaque phase le paramètre d’ordre change de symétrie. Le champ critique

supérieur est large comparé avec Tc et montre une large anisotropie. Par contre, il n’y a pas

de consensus sur l’anisotropie du champ critique inférieur. En plus, il présente normalement

une cassure de pente aux alentours de la deuxième transition. Des mesures de susceptibilité

de spin ne montrent pas de changement entre avant et après la transition, ce qui illustre des

paires de Cooper avec spin triplet.

Des mesures de transport (chaleur, son ou électrique) avec une résolution angulaire

montrent différentes symétries du paramètre d’ordre. La symétrie du paramètre d’ordre est

importante pour déduire la représentation théorique. En consequence, plusieurs scénarios

sont proposés avec les cas de spin singulet/triplet ou couplage spin-orbite faible/fort, mais,

il n’y a pas de consensus.



Chapitre 2: dispositif experimental

Ici, je présente les moyens mis en oeuvre pour l’étude des supraconducteurs à très basses

températures. Pour cela, un cryostat à dilution (mélange de 3He et 4He) est utilisé, avec

lequel on peut refroidir jusqu’à 200 mK. La sonde magnetique du microscope est un SQUID

(Superconducting Quantum Interference Device). Ceci est une boucle supraconductrice avec

deux jonctions Josephson en parallèle. La quantification s’applique et le flux à l’intérieur de

la boucle doit être toujours un multiple entier du quantum de flux, donc le courant circulant

a aussi une periodicité de Φ0, ainsi que le courant critique que l’on mesure.

L’imagerie à SQUID est possible grâce à la régulation en champ proche. Elle fait appel à

un résonateur piézoélectrique (un diapason en quartz) portant le SQUID chip et un actuateur

piézoélectrique portant le diapason. Une régulation sur la phase et la fréquence de résonance

du diapason commande le piézo-actuateur en vue de maintenir le contact entre la pointe du

SQUID et la surface de l’échantillon lors de l’imagerie.

Le balayage de l’échantillon sous la boucle du SQUID est fait par un scanner, consistant

en quatre bimorphes piézoélectriques qui fléchissent dans une direction (deux pour l’axe

x et deux pour l’axe y) pour déplacer finement l’échantillon. Le mouvement est de grand

précision ( <1 nm) et d’une portée de l’ordre de 50 micromètres. Le microscope est également

équipé de trois moteurs piézoélectriques (déplacement par une alternance de coller-glisser)

permettant des déplacements grossiers de 5 mm environ. Le champ magnétique appliqué

sur l’échantillon est généré par une bobine résistive située à l’extérieur du cryostat.

Chapitre 3: état intermédiaire en PdTe2

PdTe2 devient supraconducteur à une température de 1.6 K. Des mesures thermody-

namiques et des expériences de rotation de spin de muons proposent une supraconductivité

de type I, qui n’est pas courante pour des composés binaires. Par contre, les mesures de

microscopie tunnel à balayage et de spectroscopie à contact sur point ont montré des vortex,

qui est une signature de supraconductivité de type II.



Le microscope de SQUID à balayage (SSM) a été utilisé pour des mesures de piégeage de

flux et d’imagerie de structures de flux suite à des refroidissements sous champ magnétique

ou à champ nul. La coexistence de régions normales et de régions supraconductrices nous a

permis de mettre en évidence l’état intermédiaire qui est révélateur d’une supraconductivité

de type I. Les régions normales contenaient plusieurs quantum de flux magnétique. En appli-

quant le champ magnétique dans l’état supraconducteur, le flux pénètre d’abord sous forme

de tubes, qui s’arrangent en un réseau régulier de tubes avant de fusionner en laminae. Sous

champ magnétique croissant, les laminae normaux s’élargissent au détriment des laminae

supraconductrices jusqu’à la disparition des dernières lorsque le champ critique est atteint.

On a aussi souvent observé des zones supraconductrices enfermées par zones normales, cela

s’appelle de branchement. Les résultats de nos expériments sur PdTe2 mettent en évidence

de la supraconductivité de type I à travers de l’existence de l’état intermédiaire.

Chapitre 4: supraconductivité chirale en UPt3

Le diagramme de phase d’UPt3, avec multiple phases, est fréquentement comparé au celui

du 3He. Cet élément présente une phase superfluide avec spin triplet et un état fondamental

dégénéré et chiral. Sur UPt3, la phase à basse température et bas champ (phase B) semble

avoir un état fondamental dégénéré par rapport à la chiralité des paires de Cooper.

Sur un matériau, ceci peut être représente comme un domaine chiral, qui occupe tout le

cristal ou plusieurs domaines de chiralités opposées, séparés par des parois. La distribution

des champs magnétiques aux alentours des parois devraient en témoigner par la présence

des structures portant des fractions du quantum de flux, et/ou d’accumulation et l’absence

de flux d’un coté et de l’autre de la paroi.

J’ai utilisé le SSM pour chercher et mettre en évidence ces structures. Au cours de ma

thèse, j’ai imagé les deux phases à bas champ (H ‖ c) sur la face ab du cristal. Dans la

phase B et à très bas champ, j’ai quantifié le flux d’un vortex et analysé la longueur de

pénétration en fonction de la temperature, en comparant avec les valeurs reportés dans la



littérature et avec la valeur estimée à partir de Hc1. La quantification de ce vortex et le

suivi en température m’a permis d’identifier des structures portant la moitié d’un quantum

de flux dans cette phase. La division d’un vortex en ces structures fractionnaires et leur

recombinassion montrent leur proximité énergetique.

Dans cette même phase, des domaines supraconducteurs ont été révélés, avec des parois

de domaines décorés par le flux magnétique. En particulier, on a mis en évidence l’accumulation

et l’absence de flux d’un coté et de l’autre de la paroi. En plus, les domaines semblent se

fermer à plus basses temperatures. L’analyse des courants à l’origine de cette distribution de

flux inusuelle montre qu’il y existe des autres courants que ceux d’écrantage: des courants

chiraux, qui circulent en sens opposés de chaque coté de la paroi. Cela démontre l’état chiral

de cette phase et l’interaction entre les états chiraux des domaines.

Chapitre 5: SQUIDs shuntés

J’ai travaillé sur l’amélioration des sondes SQUID. Les SQUIDs actuels sont hystéré-

tiques à cause d’un échauffement local au niveau des micro-ponts lorsque le courant de

polarisation atteint leur courant critique (Ic). Pour recommencer une mesure le SQUID

doit redevenir supraconducteur. Ceci ralenti la vitesse des mesures et limite la résolution.

Les nouveaux SQUIDs ont une couche métallique en parallèle à la couche supraconductrice:

SQUIDs shuntés. Cela réduit la résistance à la transition et permet une mesure continue.

En partant des résultats antérieurs sur des SQUIDs bicouche Nb/W (dV/dΦ0 |max= 1.5

mV/Φ0), j’ai rendu le dessin compatible avec le SSM. Comme nous avons préservé entière-

ment la couche de W les résistances du shunt étaient faibles et la tension aux bornes du

SQUID basse, la meilleure sensibilité mesuré est dV/dΦ0 |max= 1.5 µV/Φ0. Le bruit en flux

de ces SQUIDs est comparable à celui-ci des SQUIDs hystérétiques en aluminium. Des pos-

sibilités d’amélioration sont la réduction de l’épaisseur du shunt, la polarisation du SQUID

en tension et l’utilisation d’un amplificateur de courant cryogénique.
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Abstract

The work presented in this manuscript focuses on the nature of the superconducting state

realized in the compounds UPt3 and PdTe2. For this objective I employed spatially resolved

local magnetization measurements at the surface of the samples by means of a Scanning

SQUID Microscope (SSM). The microscope and the samples are placed in a cryostat and

they can be cooled down to 200 mK. During my thesis I was also worked in view of improving

the sensitivity of our SQUIDs.

In the following I will present a synopsis of the following chapters.

Chapter 1: introduction to superconductivity

Superconductivity is a macroscopic quantum state distinguished by zero electrical re-

sistance and a perfect diamagnetic behavior below a critical temperature Tc. Microscopi-

cally superconductivity is described by the BCS theory (named after its authors Bardeen,

Cooper and Schrieffer), which considers an attractive electron-phonon interaction to couple

two electrons of opposite spin and momentum to lower their energy. Thus an energy gap in

the density of states forms. The Ginzburg-Landau theory uses a macroscopic wave-function,

breaking the gauge symmetry, to calculate the spatial dependence of magnetization and su-

perconducting currents. Due to the phase coherence of the wavefunction the magnetic flux

threading a superconducting ring is quantized in entire multiples of the quantum of flux:

Φ0 = 2.07 · 10−15 Wb. This is called a vortex.

There are two characteristic length scales: the penetration depth (of magnetic fields), λ,

and the coherence length (of the electrons), ξ. Their ratio defines the magnetic behavior of

the material: for λ/ξ < 1/
√

2 they expel all the magnetic field inside of the superconductor

and are called type-I superconductors, and for λ/ξ > 1/
√

2 they allow the penetration of the

magnetic field in form of vortices above a given field, they are called type-II superconductors.

So far, the presented superconductivity is well described by the BCS theory, this is

called conventional superconductivity, however, there are other superconductors that cannot



be explained by this theory. For example magnetic fluctuations may replace the electron-

phonon interaction and other symmetries in addition to the gauge symmetry may be broken.

These are called unconventional superconductors.

The Cooper pairs of these superconductors may have larger orbital moments, and the

spin is not restricted to the singlet state, but the triplet state is also possible. Cuprate-

based superconductors, heavy fermions or pnictides are some families of unconventional

superconductors.

In particular, UPt3 is a heavy fermion compound that orders weakly antiferromagneti-

cally at TN = 5 K before it becomes superconducting at Tc = 550 mK.

UPt3 presents 3 different superconducting phases in the T -H phase diagram. For each

of these phases, the symmetry of the order parameter changes.

The upper critical field is large compared to the Tc and it shows an important anisotropy.

However, there’s no consensus about the anisotropy of the lower critical field. In addition,

it usually presents a kink around the second transition. Measurements of spin susceptibility

don’t show any change between before and after the transition, supporting spin-triplet

Cooper pairs.

Angle-resolved transport measurements (heat, sound or electric) show different symme-

tries of the order parameter. This symmetry is important in order to choose the right

theoretical representation. Various scenarios have been proposed with spin-singlet/triplet

or strong/weak spin-orbit coupling, however, there’s still no consensus.

Chapter 2: experimental setup

In this chapter I describe the tools employed for the low temperature superconductors

I studied. A dilution refrigerator (mixture of 3He and 4He) was used for cooling down to

200 mK. The SQUID is the probe sensitive to magnetic flux. The Josephson effects and the

quantification of flux are the basis of the SQUIDs (Superconducting Quantum Interference

Device). The SQUIDs used in our microscope have two Josephson junctions in parallel



forming a superconducting loop. The quantification applies thus the flux inside the loop

must be an integer number of Φ0, therefore, the critical current of the SQUID is also Φ0-

periodic.

Scanning is possible thanks to the near-field regulation, consisting of a piezo actuator

carrying the piezo electric resonator (quartz tuning fork) on to which the SQUID chip is

glued, the sample and the regulation loops. A regulation based on frequency and phase of

the tuning fork resonance maintains the contact between chip tip and the sample’s surface

during scanning.

The sample displacement under the SQUID tip is realized by a scanner consisting of 4

bimorph piezoelectric bending elements, two for the x direction and two for the y direction.

The movement is of high precision (< 1 nm) and covers an area of about 50 x 50 micrometers.

The long range movements are carried out with piezoelectric slip stick motors one for each

of the three axis. These displacements are quite irregular but allow us to move up to 5 mm.

A resistive copper coil situated outside of the cryostat applies a homogenous magnetic field

to sample and SQUID.

Chapter 3: intermediate state in PdTe2

PdTe2 becomes superconducting at 1.6 K. Thermodynamic and muon spin rotation

experiments proposed type-I superconductivity, which is unusual for binary compounds.

On the other hand scanning tunnel microscopy and point contact spectroscopy observed

vortices supporting the existence of type-II superconductivity.

The SSM allowed me to undertake flux pinning measurements and to image the different

flux patterns after cooling under (zero) magnetic field. The visualization of coexisting super-

conducting and normal regions is proof of the intermediate state constituting a hallmark of

type-I superconductivity. The normal regions carried more than one quantum of flux. When

the magnetic field enters the sample, the magnetic flux is arranged in more or less tubular

structures that tend to form a lattice. When increasing the applied field, these structures



fuse and form laminae, that increase in size until the superconducting regions disappear.

We observed quite often superconducting regions enclosed by normal regions, the so-called

branching. The results of these experiments show unambiguous type-I superconductivity

with the presence of intermediate state.

Chapter 4: chiral superconductivity in UPt3

The multiple-phase phase diagram of UPt3 is often compared to the one of 3He.

This element presents a superfluid phase with spin triplet and a degenerate ground state. In

UPt3, the low temperature and low field phase (B-phase) is expected to have a degenerate

ground state with respect to the chirality of the Cooper pairs.

In a material, this may be represented as a single chiral domain, which occupies the

whole crystal, or multiple domains with opposed chiralities and separated by domain walls.

The magnetic flux distribution around the domain walls should reveal it by the presence

of flux structures holding a fraction of the quantum of flux, and/or the accumulation and

absence of flux in each side of the domain wall.

I used the SSM for exploring and revealing these structures. I imaged the field distribu-

tion above the ab face of the crystal in the low field phases with H ‖ c. In the B-phase and

at very low fields, I quantified the flux of a vortex and analyzed the penetration depth as a

function of the temperature, comparing it with the values reported in the literature and the

estimate obtained from Hc1. Thanks to them, I was able to identify structures with half a

quantum of flux. I also observed the division of a vortex into two of these structures and

their recombination, deducing a small energy difference between them.

In this same phase, superconducting domains were revealed, with domain walls decorated

by magnetic flux. In particular, I show the accumulation and absence of flux in each side

of the domain wall. Moreover, the domains seem to close up at lower temperatures. The

analysis of the currents at the origin of the unusual flux distribution shows the existence

of other currents than the screening ones: chiral currents, which flow in opposite directions



in each side of the domain wall. These results show the chiral state and the interaction

between the domains of the B-phase in UPt3.

Chapter 5: shunted SQUIDs

I worked on the improvement of the SQUID detector. Our currently SQUIDs are

hysteretic due to the local heating at the narrow microbridges when their critical current (Ic)

is reached. Before the next Ic measurement the SQUID has to be become superconducting

again, which implies a slow measurement cycle. The new SQUIDs have a metallic layer

shunting the superconducting layer. reducing the normal state resistance of the SQUID and

allows for a continuous measurement method. Based on prior results on Nb/W SQUIDs

(dV/dΦ0 |max= 1.5 mV/Φ0) I adapted the layout for the SSM. As we took care to leave the W

layer unetched the shunt resistance was low and the voltage signal weak (dV/dΦ0 |max= 1.5

µV/Φ0). The measured flux noise was comparable to the noise of the present hysteretic

SQUIDs. Possible routes to higher sensitivity are reduction of the shunt thickness, voltage

biasing and the installation of a cryogenic current amplifier.

Keywords

Microscopy, SQUID, superconductivity, UPt3, PdTe2, chiral superconductivity, intermediate

state, fractional vortices.
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Chapter 1

Introduction to superconductivity

In this chapter I will briefly discuss some aspects of conventional superconductivity

which are important for the understanding of the experimental setup and our measurements.

First I will recall the historical key events, then introduce the London model. After a brief

introduction of Landau’s theory of second order phase transitions and the Ginzburg-Landau

theory, I will talk about to some properties of conventional superconductors. I will follow

with the key points of our microscope: superconducting quantum interference devices and

I will conclude with a small introduction to unconventional superconductivity, presenting

some families of unconventional superconductors such as the heavy fermions.

1.1 Discovery of superconductivity

In 1911, Kamerlingh Onnes and Gilles Holst found that the resistance of mercury is zero

below Tc, its critical temperature [1].

In 1933, Meissner and Ochsenfeld discovered the perfect diamagnetism of superconduc-

tors, the Meissner-Ochsenfeld effect [2]. The magnetic field is excluded from the interior of

the superconductor in the two following cases: when the field is applied after cooling below

Tc and when the field is applied before cooling. The Meissner-Ochsenfeld effect demonstrates

that the superconducting state is a thermodynamic ground state.

In 1935, Fritz and Heinz London created a simple model describing the zero resistivity

and perfect diamagnetism of superconductivity [3]. They made the following two assump-
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tions: (i) there is a density ns of electrons moving without resistance and (ii) ns is zero at

Tc and grows steadily as the temperature lowers. In combination with Maxwell’s equations

the London equations establish the electrodynamics of superconductors.

It took another 15 years and Landau’s theory of phase transitions [4] to develop a

phenomenological theory of superconductivity: the Ginzburg-Landau theory [5]. One of

the most famous result is the flux quantification of a vortex and their arrangement in a

lattice, which were first described by Abrikosov in 1957 [6].

By that time, several authors worked on the underlying physics, culminating the BCS

theory, named after its inventors Bardeen, Cooper and Schrieffer [7, 8]. BCS theory considers

an attractive potential between electrons in addition of the Coulomb repulsion. An example

of the origin of an attractive potential are phonons, predicted in 1950 by Fröhlich [9] and

probed experimentally the same year by Maxwell [10] and Reynolds [11]. One of the most

important predictions made by this theory is the relationship between the energy gap, ∆,

and the superconducting temperature: ∆ = 1.76kBTc. The energy gap governs the low

temperature behavior of several physical properties, for example, the specific heat of a BCS

superconductor with isotropic gap diminishes exponentially with lowering temperature.

In 1956, Cooper showed that the attractive interaction, even if arbitrarily weak, would

lead to an instability of the Fermi sea and would create a bound state of two electrons called

Cooper pairs [12].

W. Little and R. Parks measured, 6 years later, a periodicity in the electrical resistance

of an empty and thin-walled superconducting cylinders subjected to a parallel magnetic

field. The period was always Φ0 = ~/2e = 2.07 · 10−15 Wb, the quantum of flux. The

Little-Parks effect is a result of collective quantum behavior of superconducting electrons,

which reflects that flux is quantized in superconductors. This effect also demonstrates that

the magnetic vector potential couples to an observable, such as the superfluid density [13].

In the same year, B. D. Josephson suggested the new effects of superconducting pairs

tunnelling a barrier [14]. The barrier or weak link can consist of a thin insulating barrier
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(known as a superconductor-insulator-superconductor junction, or S-I-S), a short section of

non-superconducting metal (S-N-S), or a physical constriction that weakens the supercon-

ductivity at the point of contact (S-s-S). P. Anderson and J. Rowell succeeded the measure-

ment of Josephson’s effect [15].

In 1979, F. Steglich et al. showed that some compounds with large renormalized electron

masses also presented superconductivity. These are the so-called heavy fermion systems [16].

In 1986, J. Georg Bednorz and K. Alex Mueller discovered superconductivity in a

lanthanum-based cuprate compound, which had a transition temperature of 35 K. This

was the first high-temperature superconductor. Shortly afther, C.-W. Chu found that re-

placing the lanthanum with yttrium, i.e. making YBCO, raised the critical temperature to

92 K, which is above the boiling point of nitrogen at atmospheric pressure. Many other

cuprate superconductors have been discovered since then. The theory of superconductivity

in these materials is one of the major outstanding challenges of theoretical condensed-matter

physics nowadays.

More superconductors and of different kinds were discovered as presented in fig. 1.1.

Recently, highly pressurized compounds such as lanthanum decahydride (LaH10) [18, 19],

carbonaceous sulfur hydride (CH8S) [20] or layered yttrium-palladium-hydron [21], reached

critical temperatures around room temperature.

1.2 Conventional superconductivity

1.2.1 London equations

As mentioned in the historical introduction, the brothers Fritz and Heinz London de-

veloped a simple model to describe the electromagnetic properties of a superconductor [3],

using as starting point the equation of electron’s motion in the Drude model:

m
dv

dt
= qE−mvdrift

τ
(1.1)

with τ being the time between collisions (τ → ∞ for an ideal conductor) and m and q
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Figure 1.1: Overview of superconducting critical temperatures and discovery of var-
ious superconducting materials. Color code: dark green circles are BCS-like, light
green star are heavy-fermions, blue diamonds are cuprates, purple inverted triangles are
Buckminsterfullerene-based (C60-based), red triangles are other carbons-based, and pnictides
are represented in orange squares. Figure reused from ref. [17].

corresponding to the mass and charge of the superconducting particles. They used the

two-fluid model to describe the superconductivity: the total charge density n is the sum of

normal and superconducting charge densities, nn and ns respectively. In the normal state

n = nn and n = ns at T → 0.

Considering τ →∞ and using js = qsnsv, the superconducting current can be rewritten

as the so-called first London equation1:

∂
(

ms

nsq2s

)
js

∂t
= E (1.2)

The Ohm’s law j = σE arises from the same model considering no time dependence and

a finite τ : j = q2nτ/m · E. In a perfect conductor the electric field E is proportional to

the time derivative of the current whereas in a resistive material, it is proportional to the
1 The total derivative becomes partial derivative after solving the system for one solution of the magnetic

field.
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current itself. The physical meaning of eq. 1.2 is the zero resistivity of a superconductor

(τ →∞).

Applying the Maxwell-Faraday equation (∇× E = −∂B
∂t
) to eq. 1.2 yields:

∂

∂t

[
∇× ms

nsq2
s

js + B

]
= 0 (1.3)

These equations apply for all perfect conductors. A superconductor must expel the

magnetic field as sketched in fig. 1.2, i.e. the Meissner-Ochsenfeld effect. For this, the

material spontaneously creates supercurrents so that the corresponding field compensates

the external field well inside of the superconductor (B = 0). Thus, applying the Ampère’s

circuital law to eq. 1.3 leads to the second London equation:

Figure 1.2: Schema of a superconductor and a perfect conductor that are cooled in magnetic
field. The superconductor expels the internal magnetic field but the perfect conductor is
permeable to it. This image comes from Wikipedia.

∇× ms

nsq2
s

js + B = 0 (1.4)

In the case of a superconductor in the x > 0 half space with an applied field B = B0z
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the solution of eq. 1.4 is:

Bz(x) = B0e
−x/λL

js,y(x) = js,0e
−x/λL

where λL is the London penetration depth, given by:

λL =

√
ms

µ0nsq2
s

(1.5)

with µ0 being the vacuum permeability. The decay of the magnetic field that penetrates the

superconductor and the supercurrents that screen it happens exponentially with a charac-

teristic length scale λL.

1.2.2 The Ginzburg-Landau theory

In the previous section, London equations consider that the density of superconducting

carriers is constant in space. This is not the case in the proximity of normal/superconducting

interface, such as at surface of a superconducting sample.

In 1950, Vitaly L. Ginzburg and Lev D. Landau (GL) developed a phenomenological

theory that describes superconductivity and can take into account the spatial dependence

of ns [5]. As the superconducting state is macroscopic and coherent, it can be expressed by

a complex wavefunction, called order parameter [4, 22].

Landau theory

The Landau theory is a phenomenological description of a system, which is based on

the minimization of the energy functional of the system. The functional has one (or more)

parameter, called order parameter, which evolve from one phase (higher symmetry), where

it is zero, to the other phase (lower symmetry), where it is finite.

The free energy functional, F , is written in terms of the order parameter, ψ. This theory

describes successfully continuous and discontinuous phase transitions, like paramagnetic-

ferromagnetic or liquid-gas transitions. The free energy F (ψ) is developed in terms of ψ
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(close to the transition temperature so that ψ is small). The expansion has to preserve the

symmetry of the system (same symmetry that the corresponding Hamiltonian), and thus

some terms of the Taylor expansion won’t appear in the expansion of the free energy.

In a continuous transition, the free energy expansion (in absence of fields) yields:

F = a |ψ|2 +
1

2
b |ψ|4 + constant (1.6)

with ψ being the order parameter of the system and a and b are functions of temperature.

Because of the symmetry of this kind of transition (invariance under ψ → −ψ), only even

power terms appear. By minimizing this free energy with respect to |ψ| we obtain:

2a |ψ0|+ 2b |ψ0|3 = 0 → |ψ0| = 0 or |ψ0|s = ±
√
−a
b

(1.7)

where b must be positive to assure the stability of the system. For a qualitative behavior we

can consider that a is proportional to T − Tc at first-order expansion, therefore the critical

temperature, Tc, is given by the condition |ψ0(Tc)| = 0. Above this temperature, the lowest

free energy state is obtained for ψ0 = 0. As one crosses Tc two absolute minimas appear at

finite values of ψ0.

One example of continuous phase transition is the ferromagnetic/antiferromagnetic. In

this case the order parameter is the magnetization (ψ → M), which is finite in the ferro-

magnetic phase (Ms = ±
√
−a/b) and zero in the antiferromagnetic phase (M0 = 0).

In figure 1.3 the free energy for this case is depicted. Above the transition temperature

the lowest free energy is obtained for zero magnetization. As one crosses the transition

temperature (TCurie) two absolute minima appear at finite magnetization values. These

two values correspond to a spontaneous magnetization (without the influence of an external

magnetic field, the system has the magnetization +Ms or −Ms).

Once the system is in the state −Ms, one has to overcome the local maxima of the free

energy curve in order to drive the system into the Ms state. An external field would add a
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Figure 1.3: The free energy as a function of the magnetization for the paramagnetic (blue
line) and the ferromagnetic state (black line). The ground state (represented by the red
circle)implies a spontaneous magnetization as the transition is crossed. Note that constant
contributions are neglected.

linear offset to this curves. If the magnetic field is strong enough, the system will overcome

the barrier and change of state. This effect is called hysteresis.

Ginzburg-Landau theory

Inspired by the quantum nature of the superconductivity, Ginzburg and Landau proposed

a complex order parameter: ψ → ψ(r) = |ψ(r)| exp(iθ(r)). The density of states is given

by ns(r) = |ψ(r)|2. The order parameter is non-zero in the superconducting state, therefore

it has lower symmetry than the normal state. Normal electrons are totally incoherent and

a phase shift in their wavefunctions does not change the macroscopic state. In the case

of superconducting electrons, they behave coherently, with a common phase, thus, a phase

shift of one electron wavefunction is not possible. This is the gauge symmetry that is broken

in the superconducting state.

Given the macroscopic coherence, the existence of a magnetic field, B, originated by the

vector potential, A, will couple to the order parameter. The resulting GL functional can be
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written as follows:

F = Fn + α |ψ(r)|2 +
1

2
β |ψ(r)|4 +

|B|2

2µ0

+
1

2ms

|(−i~∇− qsA)ψ|2 (1.8)

where ms and qs are the mass and charge of the superconducting particle (we indicate

the subindex s knowing beforehand that the superconducting quasiparticles will be Cooper

pairs). The critical field is given by the condition F (Hc) = Fn, where the superconducting

energy and normal-state energy are equals. When the system crosses the superconducting

transition the former minimum becomes unstable and the system finds another minimum

with a random phase. This rotation symmetry will be important when we will talk about

SQUIDs in sec. 1.2.3. The free energy can be minimized with respect ψ and A, which yields

the first and second Ginzburg-Landau equations respectively:

αψ(r) + β |ψ(r)|2 ψ(r) +
1

2ms

(−i~∇− qsA)2 ψ(r) = 0 (1.9)

js(r) =
i~qs
2ms

(ψ∗(r)∇ψ(r)− ψ(r)∇ψ∗(r)) +
q2
s

ms

|ψ(r)|2 A (1.10)

In the case of homogeneous ns and the absence of magnetic field, the solution to the

first GL equation (eq. 1.9) becomes |ψs|2 = −α/β for the superconducting phase. The

value of α changes of sign depending on the phase, however, α < 0 in the superconducting

phase. Considering that the order parameter has spatial dependence as ψ(r) =
√
nse

iθ(r),

the second GL equation (eq. 1.10) results in:

js(r) =
−qs
ms

|α|
β

[~∇θ(r)− qsA(r)] (1.11)

Characteristic lengths

Comparing this expression with the second London equation (eq. 1.4) yields a charac-

teristic length called penetration depth, which takes the form of

λ =

√
msβ

µ0q2
s |α|

=

√
ms

µ0q2
sns

(1.12)

9



thus the penetration depth for London description and for Ginzburg-Landau theory are

equivalents.

Now, we will consider the spatial dependence of ψ with no magnetic field in an one

spatial dimension for simplicity. Introducing the adimensional function f(x) = ψ(x)/ψ∞

(ψ∞ represents the value of ψ infinitely deep in the superconductor and it’s given by the

non-zero solution of eq. 1.9), the first GL equation can be rewritten as follows:

~2

2msα

d2f(x)

dx2
− f(x) + f 3(x) = 0

By dimensional analysis we find another characteristic length, called coherence length, which

is given by:

ξ =

√
~2

2ms |α|
(1.13)

This length represents the distance over which ψ(r) can vary without importantly modify the

energy. We can also imagine it as the distance between the electrons of a Cooper pair [23].

The ratio of these two characteristic lengths is the Ginzburg-Landau parameter:

κ =
λ

ξ
(1.14)

and it determines the behavior of the superconductivity under magnetic field:

Figure 1.4: T -H phase diagram of type-I and type-II superconductors. In the Meissner
state the magnetic field is totally expelled from inside. In the mixed state, it’s more ener-
getically stable to let the magnetic flux penetrate in form of vortices. In the normal state,
there’s no superconductivity.
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• κ > 1/
√

2: The system gains condensation energy while minimizing the interfaces

between superconducting-normal domains [23]. If the applied field exceeds Hc, the

superconductivity is broken in the whole system. These superconductors are called

type-I superconductors.

• κ < 1/
√

2: The interfaces becomes energetically more favorable. Under magnetic

field, the system maximizes them by creating normal-state tubes, called vortices, each

of them holding a single flux quanta (Φ0). Because of the magnetic field, a vortex

is enclosed by superconducting currents, similarly that the screening currents in the

sample edges. AtHc2 ≈ Φ0/2πµ0ξ
2 the magnetic field will destroy the superconducting

state. These superconductors are the so-called type-II superconductors.

The frontier at κ = 1√
2
arises from taking both lengths into account in the energetic analy-

sis [24].

Flux quantization

A vortex is a magnetic structure in a superconductor containing exactly Φ0 of flux. To

deduce this phenomena, we will suppose that the superconducting density is constant and

the spatial dependence comes only from the phase of the order parameter, as presented in

eq. 1.11. This equation can be related to the particles speed, using the canonical momentum

deduced from the eq. 1.8 by dimensional analysis: p = (~∇θ − qsA):

js(r) =
−qsns
ms

[~∇θ(r)− qsA(r)] = −qsnsvs(r) (1.15)

Let us imagine a superconducting loop. By applying a magnetic field B perpendicular to

the loop, we induce a stationary supercurrent. As the superconducting state is a macroscopic

quantum state, the stationary states are described by quantum numbers, thus we expect

a quantization. By integrating eq. 1.15 along the considered loop and using the Stokes

theorem, we obtain the flux of the system:

Φ =
~
qs

∮
C

∇θ · dl =

∫
A

B · dS−
∮
C

ms

nsq2
s

js · dl (1.16)
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Figure 1.5: Schema of a vortex. The density of superconducting particles, ns, diminishes
inside the vortex. The magnetic field, B, is screened from entering into the superconducting
state by the screening currents, j, indicated in the image [25].

with A being the area inside the closed loop C. The left-term integral has infinite solutions

of the form 2πn as the wavefunction has to be single-valued. Hence, the equation 1.16 can

be rewritten as following:

Φ =
~
qs

2πn = nΦ0 =

∫
A

B · dS−
∮
C

ms

nsqs
js · dl (1.17)

with Φ0 = h/qs = h/2e ≈ 2.07×10−15 Wb being the quantum of flux. As the phase integral

has a quantized solution, the magnetic flux through the sample (term of the magnetic field

minus the term of the shielding field created by the supercurrent) is quantized. This result

is easily seen for a sample with no holes, nevertheless, taking into account the London

equation (eq. 1.4) it follows that this result is still true for any path of integration around a

given hole [23]. Inside the sample the magnetic field is bundled into vortices. In the radial

direction the magnetic field is attenuated by superconducting screening currents around the

vortex, resulting in a magnetic vortex size of the order of the penetration depth, 2λL. This

is schematically shown in the fig. 1.5.

So far, a magnetic structure may contain any integer number of Φ0. From eq. 1.8, we can

easily deduce that the energy of two Φ0 structures is lower than the energy of a 2Φ0 structure,

therefore, a vortex must hold 1Φ0. The type-II superconductors minimize their energy by

allowing the magnetic field in single flux-quantified structures called vortices. Hence, the
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most stable flux distribution for a flux nΦ0 is n vortices (with a single Φ0) distributed, in

general, in a triangular lattice [26].

1.2.3 SQUIDs

In this section I give a brief introduction to direct current Superconducting QUantum

Interference Devices (dc-SQUID). A SQUID (all the SQUIDs in this thesis are dc-SQUIDs,

so I will omit the dc from here on) consists of a superconducting loop with two weak links

called Josephson junctions, as depicted in fig. 1.6. The critical current of this devices depends

on the magnetic flux going through the loop, which is Φ0-periodic.

For introducing this device, I will first introduce the Josephson effect and then the

SQUID itself.

Josephson effect

B. D. Josephson predicted that Cooper pairs could tunnel a energy barrier. In particular,

when this barrier is the junction between two superconductors, the penetrating wavefunc-

tions of the two superconductors interfere defining the critical current of the junction [14]:

j = jc sin (∆ϕ) (1.18)

where jc is the characteristic critical current of the junction and ∆ϕ is the phase difference

between the wavefunctions of the superconductors on either side of the junction. Thus, even

when no voltage V is applied across the junction, the electric current can pass the barrier,

and its magnitude depends on the phase difference between the two superconductors. This

is the so-called DC Josephson effect. If there is a finite and constant voltage difference V

applied across the junction, the phase difference ∆ϕ would follow:

d∆ϕ

dt
=

2eV

~
(1.19)

therefore, the current would oscillate with frequency ω = 2eV/~. This is the so-called AC

Josephson effect.
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The Josephson junction is a weakness in the superconducting density, which can be

achieved in different ways. An insulating layer between the superconductors was originally

proposed, but a normal metal layer weakens the superconductivity too by the so-called

proximity effect2, as it does narrow constriction in the superconducting material [27].

The Josephson junctions have been used in ultrasensitive voltmeters and magnetome-

ters [23].

The SQUID

As already mentioned, a SQUID consists of a superconducting loop with two Josephson

junctions as depicted in figure 1.6. In this schema, the Josephson junctions are constrictions

in the superconductor, like the scanning SQUIDs used in the following chapters. In a

Figure 1.6: Schema of a SQUID: there are two branches (top and bottom), each has a
constriction which acts as Josephson junction with a critical current Ici and an inductance
Li.

SQUID, we have always two branches and each of them has a Josephson junction with a

critical current Ici and an inductance, Li. Therefore, the current going through a Josephson

junction is given by eq. 1.18: Ii = Ici sin (ϕi), where ϕi now means the difference of phase

in each junction. Then we can express the total current as:

Itotal = I1 + I2 = Ic1 sinϕ1 + Ic2 sinϕ2 (1.20)
2 When a superconductor is in contact with a metal layer, Cooper pairs diffuse into the normal metal.
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and the total flux of the device as:

Φ = Φext − L1I1 + L2I2 (1.21)

where Φext = BextSSQUID is the external field through the SQUID loop. Using eq. 1.17, we

obtain the following phase relationship:

ϕ2 − ϕ1︸ ︷︷ ︸
Josephson term

+
2π

Φ0

(Φext + L2I2 − L1I1) = 2πn (1.22)

where we have added the Josephson current term.

Now, we can set a global inductance L = L1 + L2 and consider that both junctions are

identical: Ic1 = Ic2 = Ic0. Plugging this into eq. 1.22 yields

2πn = ϕ2 − ϕ1 + f + g sinϕ2 − h(sinϕ2 + sinϕ1) (1.23)

with f = 2πΦext/Φ0, g = 2πLIc0/Φ0 and h = 2πL1Ic0/Φ0. In the symmetric case (L1 = L2),

h/g = 1/2.

In order to obtain the critical current of our SQUID, eq. 1.23 has to be solved for one

variable. Plugging the result into eq. 1.20 and maximizing the allowed current yields Ic(Φext).

In the case of negligible inductance, we obtain the famous equation:

Ic(Φext) = 2Ic0

∣∣∣∣cosπ
Φext

Φ0

∣∣∣∣ (1.24)

The results for the symmetric case are traced in fig. 1.7 for different g values. The Ic(Φ)

modulation is maximized for a SQUID with no inductance. As we will see later, the scanning

SQUID is asymmetric: L1 6= L2. The arcs are tilted to one side so that one side is longer

than the other one.

In this section I deduced the modulation of the critical current of a SQUID from super-

conducting basics. This shows that Ic(Φ) is periodic and depends on the symmetry of the

SQUID.
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Figure 1.7: Results of the numerical calculations of the Ic over Φ characteristics for sym-
metric SQUIDs (g = 2h), identical junctions Ic1 = Ic2 = Ic0 and g = 2πLIc0/Φ0. Maximal
modulation is achieved for g = 0, when neglecting the inductance of the SQUID.

1.2.4 BCS

Up to now, many aspects of superconductivity have been solely explained by the existence

of a macroscopic wavefunction. This assumes that the superconducting state is coherent,

however in order to understand its origin, a microscopic understanding of the underlying

principles needs to be developed. This was achieved in 1957 by Bardeen, Cooper and

Schrieffer who presented a microscopic theory of superconductivity [7, 8]) in which electron

pairs (Cooper pairs [12]) play the role of the superconducting charge carrier.

The base of this theory is the existence of an attractive potential, which will create an

instability in the Fermi sea. Within the picture of the BCS theory, the electron-phonon

interaction is usually considered as the attractive potential: an electron interacts with the

nearby positive charges of the lattice, which will modify the potential that another electron

feels. Thus, this phonon-mediated interaction couples two electrons: the Cooper pair. This
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pair of electrons will break and reform other pairs with other electrons continuously, so

electrons can be considered permanently paired. The Cooper pair electrons, Ψk,σ, with

opposite momentum and spin couple and create a new state with lower energy than the

Fermi energy [23], separated from the Fermi level by ∆(k) as sketched in fig. 1.8 left:

∆↓↑(k) ∝ 〈Ψk,↓Ψ−k,↑〉 (1.25)

E(k) =
√
ε2(k) + ∆2

↓↑(k) (1.26)

where E(k) is excitation energy for a given k. As this gap interferes with any electron

excitation, several macroscopic physical properties depend on the form of this gap in the

k-space at low temperatures. An exponential behavior of these properties, e.g. the specific

heat and transport measurements (current, sound, heat), indicates an isotropic and non-zero

gap: ∆ = ∆(k) 6= 0 (see fig. 1.8 right). In the weak coupling limit, BCS theory predicts

that ∆(T → 0) = 1.76kBTc.

Figure 1.8: Schema of the particle densities in a superconductor on the left. Between the
occupied states (below the Fermi level, εF ) and the unoccupied states (above εF ), there exits
the superconducting gap, ∆. On the right, a schema of the specific heat of a conventional
superconductor, with exponential behavior at low temperatures and no phonon contribution.

In 1959 Gor’kov showed that the GL theory can be derived from a constrained form of

BCS theory that is well suited for the description of spatial variations [28].

The BCS theory describes many superconductors, however, there are still some that

cannot be explained, such as Pb or Hb, which present ∆(0)/kBTc > 1.76 [29]. This theory
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considers several assumptions, such as a constant electron-phonon interaction, spherical

Fermi surface, etc. Eliashberg considered a more realistic situation with an electron-phonon

spectral function non necessarily small [30]. The original BCS theory only discusses the

situation in which the density of states is fully gapped, also called s-wave, thus, Eliashberg

theory can be considered as an extension of BCS theory. He also extended the BCS theory to

the d-wave case. In 1968, McMillan predicted that for a phonon interaction, the highest Tc is

about 30 K [31], called the McMillan limit. Now materials that display superconductivity as

described by BCS theory or its extensions are called conventional superconductors, otherwise

they are called unconventional superconductors [32].

1.3 Unconventional superconductivity

With the advent of BCS theory, superconductivity was considered understood (conven-

tional superconductivity), but this changed with the discoveries of high-Tc cuprates, heavy

fermion superconductors and other materials which cannot be described with BCS the-

ory. Experimentally, they present the superconducting properties: zero resistivity, Meissner

effect, critical fields Hc1 and Hc2, penetration depth, flux quantification and Josephson ef-

fects. However, the electron-electron coupling is not phonon-mediated. Some material have

a multiple or anisotropic gap [33]; some present coexistence of the superconducting state

with magnetic fluctuations, or even with a magnetically ordered phase [34], two properties

that were considered to be incompatible.

From a theoretical point of view, the Cooper pair remains the fundamental brick. The

pairing is no longer mediated by phonons and several pairing mechanisms have been pro-

posed, including magnetic fluctuations [34], but the nature of the electron-electron interac-

tion is still an open question. These superconductors are called unconventional. They are

defined as superconductors with an order parameter that has lower symmetry than the one

of a conventional superconductor: T
⊗
G (time-reversal symmetry, T , and point group, G,).

BCS theory does not successfully describe unconventional superconductors, therefore it’s an
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important research field.

1.3.1 Order parameter

Previously I introduced conventional superconductivity, where spins where always an-

tiparallel in a singlet state. However, it is possible to consider the scenario where electrons

are not necessarily in this state. For this, we have to take into account that the gap function

of a Cooper pair has an orbital and a spin component:

∆σρ(k) ∝ 〈Ψk,σΨ−k,ρ〉 ∝ Ψσρ(k)†Ψσρ(k) (1.27)

where Ψσρ(k) is the superconducting wavefunction. Due to the fermionic nature of electrons,

it must obey the Pauli’s exclusion principle:

Ψσρ(k) = g(k)χσρ = −g(−k)χρσ (1.28)

where g(k) is the orbital part and χσρ is the spin part. In the case of an even (odd)

orbital momentum, the spin component is antisymmetric (symmetric) under permutation of

particles, thus, with odd orbital moment the spin-triplet is also possible. The BCS theory

considers an angular momentum L = 0, which is called s-wave because of the analogy

with atomic physics. The corresponding gap has a non-zero value all around the Fermi

surface. In the case of higher angular momentum, the gap function has zeros for certain

values of k. These zeros are called nodes. The angular moment number, L, is related to the

symmetry of the order parameter, i.e. the nodes in the gap. This is schematically presented

in fig. 1.9. The existence and type of nodes define how thermodynamic properties behave

at low temperatures, thus, measuring their low temperature behavior is an indirect method

to measure the symmetry and nodes of the gap. The behaviors of some thermodynamic

properties are given in ref. [35].

Most of the known superconductors are spin-singlet, including high-Tc cuprates and

pnictides, however there exist some candidates for spin-triplet superconductivity, but none as

well confirmed as 3He [36]. Among the candidates for triplet pairing some are heavy fermions,
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Figure 1.9: Schemas of the gap functions for symmetries s-wave on the left, p-wave on
the center and d-wave on the right. The s-wave is a conventional superconductor and the
p-wave and d-wave are non-conventional superconductors. The inner rounded square is the
Fermi level. The colors are the sign of the gap.

such as UPt3 or URu2Si2, others are non-centrosymmetric superconductors like Li2Pt3B or

CeIrSi3 and others are ferromagnetic superconductors such as URhGe or UCoGe [37].

In order to take into account the spin singlet and spin triplet cases, we shall rewrite the

gap function in the spin space as:

Ψ2
σρ(k) = Ψ↑↑(k) + Ψ↑↓(k) + Ψ↓↑(k) + Ψ↓↓(k) =

(
g1(k) g3(k)
g4(k) g2(k)

)
(1.29)

where Ψσρ(k) = g(k) |σρ〉. Then, we can simplify using eq. 1.28, so that the spin-singlet

case: g1(k) = g2(k) = 0 and g(k) = g3(k) = −g4(k), results in Ψ(k) = ig(k)σy, where σy is

the Pauli matrix. Otherwise we can rewrite it like:

Ψsinglet(k) = g(k)(|↑↓〉 − |↓↑〉) (1.30)

The corresponding excitation spectra is given by:

Ek =
√
ε2(k) + |(gk)|2 (1.31)

therefore, the orbital function g(k) holds all the information about the gap.
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Using the Pauli exclusion principle (eq. 1.28), the spin-triplet case can be reduced with:

g3(k) = g4(k), which results in:

Ψtriplet(k) = g1(k) |↑↑〉+ g3(k)(|↑↓〉+ |↓↑〉) + g2(k) |↓↓〉 =

(
g1(k) g3(k)
g3(k) g2(k)

)
(1.32)

using Pauli matrices we can rewrite this equation as follows:

Ψtriplet(k) = i(d(k)σ)σy = i(dx(k)σx + dy(k)σy + dz(k)σz)σy

=

(
−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)

)
(1.33)

where σ = (σx, σy, σz) is the vector of Pauli matrices and d(k) is related to the angular

parts through the equalities:

g1 = −dx + idy g2 = dx + idy g3 = dz

This vector points to the direction where the spin projection of the state is zero and the

components contain the information of the orbital contribution.

The gap function from eq. 1.27 can be rewritten in terms of d(k):

∆2
σρ(k) ∝ Ψσρ(k)†Ψσρ(k) = d∗d + i(d× d∗)σ (1.34)

where ∗ indicate the complex conjugate. Now the excitation spectra is

Ek =
√
ε2(k) + |d(k)|2 ± |d∗(k)× d(k)| (1.35)

The term |d(k)|2 holds the information of the energetic gap. A finite value of the term

|d∗(k)× d(k)| means a mixed state and results in two excitation branches. In the A-phase

of superfluid 3He, this term is finite because there is a mixture of |↑↑〉 and |↓↓〉: each pure

state has a different excitation branch. This is the so-called non-unitary superfluidity. On

the other hand, the A1-phase of superfluid 3He is a pure state |↑↑〉, so this term is zero:

unitary superfluidity [38].

The upper critical field Hc2 of a spin-singlet superconductor obeys the Pauli limit. When

the magnetic field is strong enough to flip a spin, spin-singlet superconductivity is broken:
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Hc2(T = 0) = ∆(T = 0)/
√

2µB. If the superconductor does not obey this limit, then it is

probably a triplet superconductor. Another technique, which measures the Pauli suscep-

tibility of electrons, is Nuclear Magnetic Resonance (NMR). The ground state of a singlet

superconductor at zero temperature has all the spins paired anti-parallel and cannot be

polarized, thus the Pauli susceptibility should fall to zero as T → 0 for all field directions.

However, in the triplet case the spin susceptibility would be maximal when the magnetic

field is aligned with the spins and zero when the magnetic field is perpendicular to them. If

there is strong spin-orbit coupling, d(k) is fixed to a crystallographic axis and the suscep-

tibility will depend on the direction of the field, however, if there is no spin-orbit coupling,

spins will align with the field (d(k) ⊥ H) and the susceptibility will be always maximal.

1.3.2 Families of unconventional superconductors

Superconductivity was considered understood by means of the successful BCS theory, at

least until the discovery of unconventional superconductors such as the heavy fermion [16] or

high Tc cuprates [39]. Here, I will present some families of unconventional superconductors.

The superconductivity in CeCu2Si2 was discovered in 1979 [16]. It was the first su-

perconducting material in the heavy fermion family, which will be presented in the next

section.

Before the discovery of superconductivity in LaBaCu04 in 1986 [39], oxides were not con-

sidered candidates for superconductivity. With a Tc = 35 K, it was the first of the so-called

high-temperature superconductors. Shortly after, other cuprates superconductors were dis-

covered with higher critical temperatures, many of them above the boiling temperature of

nitrogen: T = 77 K [40, 41]. From a technological point of view, this was highly significant

since liquid nitrogen is much cheaper than liquid helium, which is required for conventional

superconductivity [40]. Up to date, Hg1−xPbxBa2Ca2Cu3O8+δ holds the record of highest

superconducting temperature superconductor at ambient pressure, with Tc = 138 K [42],

and under high pressure it could go up to 164 K [43].
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Unconventional superconductivity is also present in some organic materials [44]: Bech-

gaard salts [45], fullerenes [46], nanotubes [47], graphene [48] or the first unconventional

triplet superconductor (TMTSF)2PF63 [45] for example.

In 2006 superconductivity was discovered in LaOFeP from the pnictide family [49]. Al-

though their critical temperatures do not surpass 55 K, they present large critical fields [50].

It was very surprising to find that some of them contain magnetic elements, such as the

iron-based superconductors.

The mechanisms leading to superconductivity in these superconductors are not yet un-

derstood, but magnetic fluctuations seem to play a major role.

1.3.3 Heavy fermions

As previously mentioned, Steglich et al. discovered bulk superconductivity in the first

superconducting member of the heavy fermion family: CeCu2Si2. Due to magnetic correla-

tions, the effective mass of the electrons of these materials is about 100 - 1000 times larger

than the free electron mass. For the same Fermi energy, this means that the Fermi velocity

is drastically reduced compared to the one of a free electron. The phonon-mediated interac-

tion of the conventional superconductors is only possible because of a retarded interaction

between the particles and the phonons, therefore heavy fermions are not fast enough for this

interaction. This is why they are unconventional superconductors [23].

The heavy fermions materials are intermetallic compounds formed with heavy elements

such as lanthanides (Ce, Yb, ...) or actinides (U, Pu, Np, ...). In these materials, the

partly filled f -electron shells may be localized and their interaction with other electrons can

be explained by the Kondo model [60]. This model describes the interaction of conduction

electrons with a localized magnetic moment (originally this was an impurity, in our case it is

the f -electron shell). Above the Kondo temperature, TK , the coupling between them is weak

and therefore the impurity is slightly screened giving rise to paramagnetic behaviors, below

TK the conduction electrons are strongly coupled with the localized moment, screening it
3 (TMTSF)2PF6 stands for di-(tetramethyltetraselenafulvalene)-hexafluorophosphate.
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Compound Tc(K) Comment Reference
CeCu2Si2 0.65 [16]
UBe13 0.9 spin triplet, complex phase diagram [51, 52]
UPt3 0.55 3 superconducting phases. AF below 5 K [53]
URu2Si2 1.5 "Hidden order" magnetic phase below 17.5 K. [54]
UPd2Al3 2. AF below 14 K [55]
UNi2Al3 1. AF below 5 K [56]
CeCu2Ge2 0.64 Under pressure. AF at pamb [57]
UCoGe 0.65 F [58]
UGe2 <1 Under pressure. F at pamb [59]

Table 1.1: Some heavy-fermion superconductors with the critical temperatures, a comment
and their references. AF stands for antiferrromagnetic and F for ferromagnetic.

and resulting in antiferromagnetic behaviors [61].

The f -electron states of different atoms can interact directly or indirectly depending on

the overlapping of their wavefunctions (Hill’s limit) [62]. Below this limit (short interatomic

distances), the electronic distributions are spread (delocalized f -electrons) and may lead to

direct interactions. Otherwise, the f -electron shells are well localized and the interaction

may be mediated by conduction electrons. This is the so-called RKKY interaction. The

resulting energy can be positive or negative depending on the value of kFR, where kF

is the Fermi wavevector and R the distance between the f -electron shells, resulting in a

ferromagnetic or antiferromagnetic ground state. Therefore, the chemical doping or the

application of pressure could change the ground state of the material.

The competition of Kondo and RKKY interactions was first described by Doniach [63].

At T = 0, transitions are no longer driven by thermal fluctuation, therefore they must drive

by quantum fluctuations: quantum phase transitions. These new transitions are driven by

modifying other quantities than temperature, such as pressure, magnetic field or chemical

doping. When quantum fluctuations overcome the thermal ones, macroscopic collective

states arise, such as heavy fermion behavior or 3He superfluidity.
3He presents non-conventional superfluidity, which is mediated by magnetic fluctuations.

By applying magnetic field, A-phase (antiferromagnetic state) can transit to the A1-phase
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(ferromagnetic state) [36]. Analogously, the Cooper pairs in heavy-fermion superconductors

are believed to be formed by magnetic fluctuations, as the phase diagram usually contains

magnetic phases in addition of the superconductivity [53–59].

1.3.4 Unconventional superconductivity in UPt3

The unconventional superconductivity of the UPt3 and the underlying physics are a

fascinating challenge for theorists and experimentalists. The normal state of the material

appears to behave as a Fermi liquid with large renormalized effective electron masses (heavy

fermion), attributed to the presence of spin fluctuations. These electrons couple in Cooper-

pairs below the critical temperature Tc = 550 mK [53, 64, 65]. Since the discovery of its

superconducting state in 1984 by Stewart et al. [53], a non-trivial form of the Cooper-pair

wavefunction was postulated [65]. Such a wavefunction leads to a gap function that varies

on the Fermi surface.

Due to the similarity of the phase diagram, the superfluid phases of 3He served as

reference. In the normal state, 3He is paramagnetic and its specific heat has a contribution

due to spin fluctuations. In the p-T phase diagram, there are two superfluid phases: the A

phase (spin triplet with parallel spins) at high temperatures (2 mK) (Anderson, Brinkman

and Morel) and the B-phase (spin triplet) (Balian and Werthamer) at lower temperatures.

In addition, under magnetic fields the A-phase splits into the A and the A1 phase [36].

Superfluid 3He has a rich phase diagram with complex patterns as presented in fig. 1.10(a),

thus, the rich phase diagram of UPt3 (see fig. 1.10(b)) is expected to have its origin in

similar symmetry breaking phenomena.

Theory

The phase diagram of UPt3 in the T -H plane consists of three superconducting phases

(see figure 1.10(b)). The literature agrees that the order parameter must have multiple

components in order to describe the phases [65, 68–71], but there are still open questions,

such as its symmetry or the nature of the nodes. Angled-resolved experiments [72–74]
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(a) (b)

Figure 1.10: In (a), p-T -H phase diagram of 3He. Figure reused from ref. [66]. In
(b), the T -H phase diagram of UPt3 with the three superconducting phases and their order
parameters for H ‖ c as presented by Huxley et al. [67].

and power-law behavior analysis of different properties such as ultrasound attenuation [75],

thermal conductivity [76], heat capacity [77] or nuclear spin relaxation rate [78] shed light

onto these questions, however, no complete consensus of the theoretical description has yet

been achieved.

One of the principal school of thought proposes an order parameter belonging to a

strong spin-orbit coupling two-dimensional representation of the point group D6h
4. Among

the possibilities (see table 1.2), the complex representations E1g (spin singlet) [79–81] and

E2u (spin triplet) [38, 68, 82] are considered. The ground state of these descriptions is

degenerate because the energy for complex conjugates is equal, therefore two possible states

can be realized. As described by a single representation, the two critical temperatures

should coincide, but there are three different phases, thus, the degeneracy should be lifted
4 This representation is characterized by a weighted sum of independent gap functions: ∆(k) = a1∆1(k)+

a2∆2(k). In A-phase, the coefficients (a1, a2)=(1, 0), in the C phase (0, 1) and in the B-phase (1, ±i).
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by a symmetry breaking field [68, 83]. This role is often attributed to the antiferromagnetic

ordering at TN = 5 K [68, 84, 85].
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y)ẑ + bkz[(k

2
x − k2

y)x̂− 2kxkyŷ]
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Table 1.2: Basis functions of even (S=0) and odd (S=1, strong spin-orbit coupling) rep-
resentations of the point group D6h. In two-dimensional states, functions are separated by
commas. Semicolons separate states of the same representation.

Another school proposed a spin-triplet scenario with weak spin-orbit coupling (see ta-

ble 1.3) [74, 86, 87]. The spin vector d can align along any direction and the spatial part can

transform according to any of the odd-parity representations of the point group (one or two

dimensional). As in the strong spin-orbit scenario, the splitting of the zero field transition

is addressed through a coupling of superconductivity and magnetism.

Other hypotheses involving two separate representations were also proposed [88–90].

They share the characteristic features that (i) the two superconducting transitions involve

non-symmetry-related gap functions and (ii) the splitting of the A-, B-phases critical tem-

peratures is due to an accidental degeneracy, not due to the antiferromatic ordering.
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Table 1.3: Basis functions of odd (S=1, weak spin-orbit coupling) representations of the
point group D6h. The vector of these basis functions is not fixed by the crystallographic axis.
In two-dimensional states, functions are separated by commas.

Normal state

UPt3 becomes superconducting at a temperature around 550 mK 5 [53, 64, 65]. Above

this temperature, the specific heat capacity can be described by the spin fluctuation form:

C = γT + βT 3 + δT 3 log(T ) [53, 92]. The cubic term is related to phonons, with a Debye

temperature of ∼ 210 K (close to the one of pure platinum: 230 K) [93]. The logarithmic

term corresponds to the contribution of spin fluctuations. The large coefficient of the linear

term, γ ≈ 430 mJ/K2mol (see fig. 4.2), indicates a large effective electron mass, these are

the so-called heavy-fermions6. UPt3 is a good example: it behaves qualitatively as a Fermi

liquid, but the effective masses are much larger than the free-electron mass [65].

The energy bands of UPt3 are composed of U 5f orbitals hybridized with Pt orbitals [98].

ARPES and de Haas-van Alphen experiments were performed [97–102, 102] and multiple

sheets that cross the Fermi energy were found, some of them due to spin-orbit splitting [98,
5 The superconducting critical temperature, Tc, varies 500 - 550 mK depending on the sample [53, 91],

however the second transition always happens 50 mK below this temperature [65].
6 The effective mass of the electrons of a heavy fermion system amounts to 102-103 times the free electron

mass [94]. This effective mass is present in several thermodynamic variables, such as the specific heat or
magnetic susceptibility [65, 95]. These compounds present a variety of ground states: superconductivity in
CeCu2Si2, UBe13, and UPt3, antiferromagnetic order in U2Zn17, and UCd11, and no order at all in CeAl3
and CeCu6 [96]. They all share heavy elements such as cerium and uranium, which suggests the importance
of the interplay of f-electron bands near the Fermi surface, i.e. a strongly interacting electron system [53, 97]
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103–105]. Theoretical scenarios were proposed to describe them, such as a fully itinerant

5f electron [106] or a partially localized 5f electron states [103], but none of them describes

this compound satisfactorily.

In UPt3, these heavy itinerant electrons carry charge and heat anisotropically, with

conduction along the c axis always higher than perpendicular to it. The electrical resistivity

for currents along each of the two high-symmetry directions, J ‖ c and J ⊥ c, presents

an anisotropy ratio of about 2 for temperatures up to 300 K: ρ⊥ ≈ 2ρ‖ with values of

ρ⊥(300 K) = 240 µΩ cm and ρ‖(300 K) = 120 µΩ cm [101, 107]. The low-temperature

behavior is characterized by a well-defined T2 law for both directions up to a temperature

of about 1.5 K, and for low fields (µ0H < 10 mT and J ‖ c) and low temperatures, resistivity

behaves linearly with the magnetic field: ρ(T,H) = ρ0 + aH + AT 2, which is probably the

first indicator of time-reversal symmetry breaking [65].

The AC susceptibility of this compound was measured by Frings et al. [108] for fields par-

allel and perpendicular to the c axis. The T 3 log(T/T ∗) behavior indicates spin-fluctuation

phenomena. Measuring the spin susceptibility using the Knight shift of NMR, the anisotropy

in the basal plane was later confirmed by Tou et al. [109]. The spin susceptibility main fea-

tures are (i) a large value at T = 0 K, (ii) a weak temperature dependence in the range

(T < 2 K), (iii) an important anisotropy (larger response for field in the basal plane), and

(iv) a peak in χxx at 20 K, which can be explained by van Vleck and Pauli contributions

and energy bands splitting due to the crystal field [65].

The magnetic fluctuations were investigated by Aeppli et al. [64, 110] using elastic and

inelastic neutron scattering. Moments on nearest-neighbour sites become correlated antifer-

romagnetically below about 20 K. Below 5-6 K, an elastic component of the magnetic corre-

lations was found, i.e. a static antiferromagnetic order sets in the basal plane [64, 111–113].

However, low-energy probes, such as NMR or µSR, fail to detect it [67, 70, 78]. Some authors

point out that the antiferromagnetic moments may be fluctuating in time [71, 109, 113, 114].
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Superconducting state

The superconductivity in UPt3 was discovered in 1984 with resistivity, specific heat and

AC susceptibility measurements [53]. As crystal quality was improved Tc rose, though the

superconducting transition remained broad [115], this was recognized to be intrinsic, as it

was later confirmed by resolving the double transition by specific heat and thermal expansion

measurements [84, 94, 116]. Three different superconducting phases were identified based on

specific heat and ultrasonic attenuation measurements and widely confirmed [94, 117–119].

The three phases are referred as A-, B- and C-phase in the following of the manuscript

according to fig. 1.10(b). The multiple superconducting phases in the phase diagram are

only possible if the superconducting order parameter of this compound has unconventional

symmetries. Furthermore, due to the momentum-dependent inter-f-electron potential, the

unconventional symmetry is likely caused by a mechanism different from the electron-phonon

interaction of conventional superconductivity [32, 65]. Moreover, since specific heat behavior

was described by the spin fluctuations form, it is natural to think that the pairing is likely

driven by exchange of spin fluctuations.

The specific heat measurements of Brison et al. on a high quality single crystal [91]

exhibit the fingerprints of the superconductivity: the onset of superconductivity at 500

mK, the appearance of a second transition at a slightly lower temperature and the roughly

linear decrease in C/T with temperature. As the transitions become sharper and sharper

with increasing the sample quality, up to the order of a width of Tc/100. The difference

between the two Tc at zero field, ∆Tc, remains remarkably invariable [65], which indicates

the intrinsic nature of the double transition. Moreover, the T 2 dependence of specific heat

at low temperatures indicates the existence of nodes in the structure of the order parameter.

The curve of Hc2(T ) does not follow the usual BCS behavior. It presents a kink at the

tetracritical point at which the three superconducting phases join the normal phase (see

fig. 1.11(a)). The magnitude of Hc2(0) is large compared to Tc because of the huge effective

masses, however, no model describes Hc2(T ) over the whole range of temperatures [72, 75].

30



The upper critical field Hc2(T) of UPt3 presents an important anisotropy, as measured by

various authors [65, 75, 120]. On the other hand, the anisotropy of the lower critical field

Hc1(T ) is not that well established. It was measured by Zhao et al. and Shivaram et

al. [121, 122], but not detected by Vincent et al. [123]. Most of the measurements present a

sudden increase of the slope at a certain temperature, Tc∗, which varies from 50 to 150 mK

below Tc (see fig. 1.11(a)) [121–123]. This kink evidences an increase of the condensation

energy at this temperature, that may be related to the A-B phase transition [123].

Figure 1.11: In (a), the upper and lower critical fields. In green and red, the upper critical
fields for H ‖ c and H ‖ a respectively obtained by ultrasound measurements carried out
by Adenwalla et al. (Tc = 497 mK) [119]. The transition between A- and B-phases is
also measured by this probe. In light green and yellow, the lower critical field for H ‖ c
and H ‖ a respectively obtained by magnetization measurements carried out by Zhao et al.
(Tc = 542 mK) [122]. In (b), the polar Kerr angle measured by Schemm et al. along with
the susceptibility [124]. In (c), the spin susceptibility (Knight shift) measured by Tou et
al. [125].
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The pressure-temperature phase diagram was studied by a number of groups [126–129]:

the two transition temperatures are suppressed by the application of pressure (more impor-

tantly on the c axis [128]) and they converge into one single line between 3 and 4 kbar.

The phase diagram lines do not cross at that point but merge to a single transition line

thereafter. This degeneracy strongly suggests that the two transitions at ambient pressure

are not close by coincidence [127].

Theoretically it is expected that chiral domains, if they exist, would hold a magnetic

moment and break time-reversal symmetry (TRS). De Roetier et al. [71] did not observe

any change in the µSR signal while crossing the A-B phase transition, thus it was concluded

that the B-phase of UPt3 did not present any magnetic moment. Polar-Kerr effect was also

believed to be sensitive to the breaking of TRS, thus Schemm et al. [124] used this probe

to rexamine UPt3 and showed a shift in the angle of polarization when warming the sample

from the B- to the A-phase (see fig. 1.11(b)). However, a non-zero polar-Kerr angle may

be measured in a compound with broken TRS in presence of an external magnetic field and

in a chiral superconductor without translational symmetry [130]. In vicinity of a DW of

a chiral superconductor, the translation symmetry is not preserved: the order parameter

changes from one domain to the other one and the gap is locally reduced [131]. Therefore,

the non-zero polar-Kerr angle could be measured in UPt3.

Spin susceptibility measurements above and below Tc present an independent or very

weak temperature dependence for all magnetic field orientations7 (see fig. 1.11(c)), which

supports an odd-parity order parameter [109, 125]. Polarized neutron diffraction measured

the magnetic susceptibility and evidences the temperature independence below 1 K, sup-

porting this conclusion [132]. The field isotropy of previous measurements infers a weak
7 In a singlet pairing superconductor, Cooper pairs do not contribute to the spin susceptibility, so the

whole magnetic response is given by the excitations, i.e. normal electrons. Thus, the susceptibility will fall
to 0 as T → 0 because at this temperature all the particles are in the ground state (Pauli susceptibility).
A more mathematical explanation can be found in ref. [38]. In the case of a triplet pairing superconductor,
the d vector points to the k-space direction where the spin projection is zero. If there’s strong spin-orbit
coupling, the susceptibility should fall to zero when the field is applied along the d vector. On the other
hand, if there is a weak spin-orbit coupling, the spins of the Cooper pairs will follow the field direction, i.e.
the susceptibility does not change.
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spin-orbit coupling at low fields, thus, the d vector seems to align freely above a field

around 0.2 T [109, 125, 133, 134].

The symmetry of the order parameter is still an open question. Angle-resolved experi-

ments, such as AC resistivity [72], critical current [73] or thermal conductivity [74], disagree,

claiming 6-fold, 4-fold and 2-fold symmetries respectively. Although the experiments do not

agree in the symmetry of the A- or C-phase order parameter, they do in the existence of

nodes at the poles [72, 74, 135–137]. In the case of the B-phase, the order parameter seems

invariant under azimutal rotations [72–74, 87, 138].
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Chapter 2

Experimental Setup

The Scanning SQUID Microscope (SSM) was designed to scan and image weak magnetic

signals, especially vortices in superconductors at very low temperatures. The high resolution

needed for this task was achieved using microSQUIDs. These probes are relatively easy

to fabricate in comparison to more advanced SQUIDs or Hall probes and the required

electronics were already in the laboratory. In order to operate the microscope at very low

temperatures it is placed in a dilution refrigerator.

The microscope uses a tuning fork for near-field regulation in order to maintain a small

SQUID-sample distance. This is a prerequisite for high spatial resolution. The sample

platform has a scanning range of 71.6 µm x 54.7 µm. For coarse movements in the xy plane

we use Attocube motors and a home-made piezo motor for the z direction.

The present setup was initially developed by D. Hykel and further improved by Z. S.

Wang and myself. To give a small insight I will present it in four sections. In sec. 2.1, I will

explain how a SQUID is fabricated and how we measure the field with our probes and in

sec. 2.2 I will illustrate and briefly explain the cryostat used in the experiences. Then, the

scanning height regulation will be described in sec. 2.3, in particular the tuning fork, the

height regulator and the regulation. Next, I will present the scanner for fine movements in

xy plane in sec. 2.4 and for coarse movement in sec. 2.5. The used electronics are embedded

in the corresponding sections, a schema of the whole electronic setup is presented in fig. 2.9.
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2.1 MicroSQUIDs

One of the crucial parts of the microscope is the microSQUID. Fundamental concepts

of SQUIDs have already been introduced in sec. 1.2.3 so I will focus here on technical

information of the fabrication, measurement and magnetic sensitivity of microSQUIDs.

2.1.1 Fabrication

The aim of the fabrication is to place the SQUID loop as close to the tip of the SQUID

chip as possible. The fabrication of this chip is well mastered. The pattering is undertaken at

the laboratory (T. Crozes at Nanofab, Néel Institut-CNRS) generating hundreds of SQUIDs

on each wafer. Now I present how we achieve our aim:

1. Alignment marks: a silicon wafer is spin-coated with PMMA1, then the electron beam

draws the marks, destroying the polymer chains. After development, gold is evapo-

rated and then the remaining PMMA is lifted-off.

2. SQUID deposition: the marked silicon wafer is spin-coated with PMMA. The electron

beam draws the SQUID pattern. Once developed, 30 nm of aluminum is evaporated.

Then, the remaining PMMA is removed with acetone. See fig. 2.1 left.

3. After a realignment with the gold marks, a Laser writer (Heidelberg Instruments)

patterns the etch mask in a 2.5 µm thick S1818 resist.

4. Inductive Coupling Plasma Etching: 75 µm of Silicium are etched using a Bosch

process at IRAM2 (Saint Martin d’Heres), courtesy of A. Barbier, E. Driessen and

K. Schuster. After the etch the microSQUID is situated at the edge of the chip (see

fig. 2.1 right).

5. Diamond cut for creating individual SQUID chips. This steps is carried out by J.

Goupy, Néel Institut-CNRS and I. Pheng at CIME Minatech.
1 Poly (methyl methacrylate)
2 Institut de Radioastronomie Millimetrique - CNRS(France)/MPG(Germany)/IGN(Spain)
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Figure 2.1: On the left, schematics of the fabrication process. On the right, a SEM image
of a SQUID of 1x1 µm2 of inner loop. Microbridges of 50 nm large and 200 nm long. The
outer light grey region is the deep etched (∼ 50 µm below the SQUID).

2.1.2 Measurement

Critical current measurement

The scanning SQUIDs consist of one aluminium layer, which is one strength in the

fabrication process [139, 140]. However, these SQUIDs are thermally hysteretic (see fig. 2.2

left) [141]. When a current bias reaches the junctions critical current the junctions transit

to normal state and they dissipate enough to turn the whole SQUID normal. The only way

to get back into the superconducting state is to switch off the current bias.

In order to measure this SQUIDs critical current we have to inject a ramping current

in order to reach the critical value and cut it when a voltage is detected. We measure the

time of the ramp from which we deduce the critical current (see fig. 2.2 right). In order to

optimize this measurement method, we can start the ramp at a custom current, Ip.

The flux dependence of the critical current is valid for any temperature below the Tc,

but the critical current depends on the temperature. At temperatures low enough we can
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Figure 2.2: On the left, the voltage-current curve for the Al/Cu/Al (S-N-S) junction [141].
Thermal and voltage hysteresis are represented. On the right, the current ramp is sketched
used to determine the critical current of the microSQUID junction (S-s-S). Each measure
takes about 1.6 ms, a readout frequency of around 600 Hz.

consider that Ic does not depend on T , therefore the SQUID is operated at low temperatures

for minimizing the effect of temperature fluctuations.

A custom-built Digital Direct Synthesizer (DDS) device3 provides the interface between

the computer and the SQUID electronics. The readout electronics consists of two devices

more. One contains the numerical part (computer interface and timing) and the other the

analog part (current source and voltage detection). One of the two leads of the SQUID

is used for current biasing and the other is grounded. Via a room temperature switch we

can permute injection and ground leads. Tightly screwed to the cryostat, the analog device

sends a current ramp into the SQUID and simultaneously arms a trigger for a sudden change

in the voltage increase at the injection lead. Such a change switches off the current. The

duration of the ramp, proportional to the critical current, is stored in the buffer of the

numerical part with a resolution of 25 ns (see fig. 2.2 right).
3 developed by Julien Minet at Néel Institut - CNRS
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From critical current to field

In order to transform critical current images to magnetic images we have to sweep 4

times the magnetic field produced by the room temperature copper solenoid in order to

obtain a calibration curve:

(a) The magnetic field is ramped up and down at a constant rate in order to remove

the Foucault currents effect. This effect implies a shift in the field proportional to

variation rate. By averaging the two Ic(B) curves we obtain a quasi-static Ic(B) curve

corresponding to the scanning situation.

(b) Two similar sweeps are required after having permuted injection and ground lead of the

SQUID. Due to the asymmetry of the SQUID’s inductance we can determine any field

offset thanks to the crossing of both quasi-static curves, at H = 0 (see appendix A).

However, the periodic Ic(B) presents some important disadvantages, that I will discuss using

fig. 2.3:

Figure 2.3: Ic(Φ) modulation curve for the scanning SQUID. Each symbol corresponds to
the same critical current. Circles are the insensitive points and the cross is a sensitive point.

- The circles are points with the least magnetic sensitivity, called insensitive points. Go-

ing through one of these points will give rise to the uncertainty whether the magnetic

field increases or decreases. Although, this is a clear disadvantage while measuring, it

can be useful when making noise analysis.
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- Multi-valuedness: in the figure all the red crosses have the same critical current,

however they correspond to different values of flux. The field corresponding to the

flux value depends on the SQUID size: smaller area, larger field period. Therefore, for

small field ranges we would prefer a larger SQUID loop rather a smaller one because

of the higher field sensitivity (see chapter 4) and for larger field ranges we would use

an smaller loop in order to avoid crossing several modulation arcs (see chapter 3).

In appendix B I detail the process of translating the critical current to field, in particular,

how I worked out the multivaluedness of the measurements. In order to avoid this problem

some groups feedback their SQUIDs to keep the critical current modulation at the optimal

point [139, 142].

Convolution

To attain ultimate resolution in imaging it is in general necessary to take into account

effects of probe sample distance and of convolution between the probe size and the signal

feature. We aim at scanning at a distance less than the SQUID diameter and less then the

typical feature size (λ). We take into account the SQUID size and the scanning height when

we extract quantitative values from our images.

Noise estimation

I will briefly comment on the current noise in the SQUID read-out. However, the noise

of scanning microscope technique was not analyzed exhaustively.

The standard deviation (STD) of the measurement was determined mathematically from

the unaveraged critical current values. We know thanks to the theorem of Shannon [143]

that the noise is obtained by dividing the STD by the bandwidth, which is half of readout

frequency. The lowest noise obtained in the current scanning SQUIDs is 0.2 mΦ0/
√

Hz (for

a SQUID with 1 µm2 of loop, this corresponds to 0.3 µT/
√

Hz). This flux noise corresponds

to a current noise of ∼7 nA/
√

Hz. While scanning, the pixel value is usually the average of

30 individual measurements, then the error per pixel (at this frequency) is ∼ 1 mΦ0 or ∼ 2
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µT for a 1 µm2 SQUID.

We can estimate the contribution of different noise sources. The thermal noise is mainly

given by the room-temperature bias resistor (25 kΩ) SI =
√

4kBT/R = 0.8 pA/
√

Hz. The

current source has 216 bits, which correspond to the time of the current ramp from 30 µA

to 80 µA. Therefore, the current noise due to discretisation is SI = ∆I/Nbits = 25 pA/
√

Hz.

There is also some noise contribution from the shot noise measurement (due to the discrete

charge of electrons), given by SI =
√

2eI = 4 pA in a first order approximation [144].

Thermal noise, shot noise and discrete current source noise together are orders of magnitude

lower than the measured noise.

Other sources of noise are ambient magnetic field fluctuations or due to temperature

instabilities in the refrigerator and the effect in the critical current of the SQUID. In the

latter case and following a GL dependence (Ic(T ) = Ic(0)(1 − T/Tc)
1.5 [23, 145]) for a

scanning SQUID (Tc = 1.2 K and Imaxc = 70 µA), temperature fluctuations of 100 µK at

300 mK results in an error of the critical current of 7.5 nA. Such thermal fluctuations could

explain the measured noise.

2.2 Cryogenics

The scanning microscope has to be cooled down well below the superconducting transi-

tion temperature so that we can consider that the critical current is not affected by small

changes of temperature (TSQUID = 300 mK). In addition, samples need to be cooled down

to 200-300 mK, in particular UPt3 because of its Tc = 500 − 550 mK [64, 71, 124, 146].

For this purpose our experiment uses an inverse dilution cryostat4 (see fig. 2.4 left): the

lowest temperature stage is at its top while the highest temperature stage is at the bottom

(so-called SionLuDi (inverse of DiLuSion)). It was developed at the CRTBT (Centre de

Recherche de Très Basses Températures, today called Néel Institut-CNRS) by A. Benoit,
4 The reader is referred to [147] for a more detailed discussion of cryogenics.
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M. Caussignac and S. Pujol. There are five stages and four gold coated copper cylinders

attached to the stages in order to screen the room-temperature radiation: 80 K, 20 K, 4 K

and 1 K. Everything is contained in a vacuum vessel. Liquid 4He is fed to the 4 K-pot from

a liquid Helium dewar underneath.

The mixture is circulated by a compressor and pumps through the heat exchangers, aux-

iliary still, mixing chamber and main still. The 4He circuit thermalizes the 4 K-pot and the

incoming mixture via a circular counterflow heat exchanger. The different mixture circuits

are designed to precool to different temperatures. One mixture circuit carries relatively

high flow and serves to precool from 300 to 4 K the stills and the mixing chamber. Another

one (1-4 K circuit) cools the dilution part down to 1.2 K. The last circuit (injection) is

thermalized in the 4 K-pot and the main still before injecting the 3He-4He mixture into the

mixing chamber. With all other circuits shut, this one allows to reach base temperature of

150 mK.

The cooling process in more detail:

1. The 4He circuit cools down the 4 K-plate. Typically we use a flow rate of 10-15 l/day

(liquid) or 85-125 ml/sec (gas). This corresponds to 20-30% on the gauge.

2. While the 4He circuit is cooling, we circulate the three mixture circuits with a flow

rate of 40 ml/s, thanks to a compressor before the entry the refrigerator. This gas is

thermalized to 4 K by a 4He counter flow heat exchange. Then, the gas passes through

the auxiliary still, the mixing chamber and main still.

3. Once every stage is well thermalized at 4 K, we close the precooling circuit.

4. Closing the precooling circuit, we need to run two pumps in series at the exit the

cryostat (roots pump and a rotary vane pump) to create a higher pressure difference

between the entry and the exit. If we want to work in the range of 1-4 K, this is the

final step.
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Figure 2.4: On the left, the cryostat used for the scanning SQUID measurements. The
microscope is on the top of the cryostat. We can differentiate the thermalization stages one
of the stills and the wiring for the microscope. On the right, an schema of the microscope
without the wiring.

5. For lower temperatures, we need to close the 1-4 K circuit. The only mixture circuit

is the injection.

6. The cooling effect under a certain temperature (600 - 700 mK in our cryostat) takes

place due to separation of isotopes: one 3He-rich phase and one 4He-rich phase. By

transferring of 3He atoms from the pure 3He phase to the 4He-rich phase, heat is

extracted from the mixing stage, so the lowest temperatures can be achieved [95].

Once we are in the temperature range where we want to work, the sample stage is partly

isolated from the mixing chamber, thus the temperature can be controlled independently.

2.2.1 Thermometry

We have chosen a well-proven thermometry system developed at the laboratory: TRMC2,

CRTBT. Up to 4 cards can be read simultaneously, each card can read up to 4 thermome-
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ters in the 3 wires + ground configuration. One card measures the temperatures of the two

stills (ruthenium oxide resistors) and the 4 K-pot (carbon resistor for lower temperatures

and platinum one for higher ones). Another card measures the temperature of the mixing

chamber, which has 3 different resistors: two carbon and one germanium for the mixing

chamber stage. The fourth resistor is ruthenium oxide placed at the sample stage. One last

card measures the SQUID temperature with a carbon resistor.

The sample’ stage thermometer was calibrated in other SionLuDi refrigerator. The cali-

bration goes down to 50 mK, thanks to a SRD5, a CMN6 and a well calibrated thermometer.

2.3 SQUID-sample height control

We scan the sample at the surface, therefore the regulation serves to follow the topog-

raphy without scratching the probe. The whole regulation consists of the tuning fork, the

lock-in amplifier that compares the response of the tuning fork with the excitation signal,

the Direct Signal Processor (DSP) card that calculates the regulation loops, the DDS de-

vice that produces the excitation signal, the excitation piezo element and the piezo-z stack.

Here, I will present three key elements, which are common in near-field force microscopy:

the tuning fork, the height controller and the regulation.

2.3.1 Tuning Fork

The tuning fork7 is a quartz resonator that is extremely sensitive to external mechanical

forces. For this reason, it is widely used for near-field microscopy. The current that flows

through it and the mechanical vibration are related [149], thus exciting the tuning fork

mechanically (electronically) produces the current (vibration). The frequency spectrum

of the output signal is characterized by a Lorentzian peak and a phase shift between the
5 The Superconducting Reference Device SRD1000 has 13 stable reference superconducting points for

thermometry between about 10 mK and 10 K [148].
6 The CMN1000 is a precision thermometer for the range of 10 mK to 2 K using the temperature

dependence of the susceptibility of powdered Cerium Magnesium Nitrate (CMN) [148].
7 Multicomp Pro MCRJ332768F1220HOW
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excitation signal and the response of the tuning fork (see fig. 2.5). At low temperatures, the

quartz becomes stiffer and the spectrum is modified: the resonant frequency increases and

the peak sharpens (see fig. 2.5). The spectrum is also affected when the tuning fork touches

the sample: the whole spectrum shifts upwards, thus it is possible to measure the contact

with the sample.

Figure 2.5: Typical resonance curves of the tuning fork with SQUID at 300 K and 1 K.
At 300 K, the resonance frequency is 23000 Hz (much lower than 32768 Hz due to gluing,
and the SQUID chip) and the width of the peak is around 100 Hz. At low temperature, the
resonance frequency increases (28323 Hz) and the peak becomes sharper (width of 2.5 Hz).

In our microscope, one of the arms of the tuning fork is glued on a PCB board, and

the SQUID chip is glued on top of the free arm. This naturally increases the effective

mass of the oscillator and decreases the frequency and quality factor of the resonance. The

SQUID chip is electrically connected with a bonding machine that uses aluminum wire of

25 µm of diameter to the SQUID pads by using ultrasound vibrations. This step can also

affect the resonance of the tuning fork. The PCB board that contains the tuning fork is

screwed in direct contact with the piezo element that excites mechanically8 the tuning fork,

so the transmission is maximal without changing the exciting piezo with each new tuning

fork [149].

The quality of the spectra depends on several factors, such as the quality of the glue-
8 The electrical excitation is also possible but many vibration modes would be excited, thus one needs a

more complicated electrical setup
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ing, the electrical connections, the SQUID chip or the temperature. In the worst cases it

becomes quite complicated, with multiple peaks, that may behave differently with temper-

ature (shifting down in the spectra, appearing and disappearing, ...) [150]. In best of cases,

there is a single and sharp peak, with large amplitude. For this reason, we use only tuning

forks with a good spectrum at room temperature.

2.3.2 Piezo-z stack

The contact between the SQUID and the sample is measured by the tuning fork’s reso-

nance change. Thanks to the regulation, the height of the SQUID/tuning fork is controlled

by applying a voltage to a piezo-electric stack9. This element of the microscope is attached

between the coarse motors and the exciting piezo of the tuning fork.

Its length is 3.6 cm and its piezo-electrical expansion coefficient is 0.32 µm/V at room

temperature and 0.067 µm/V at 1 K. This yields a maximal elongation of 35.2 µm at room

temperature and 7.37 µm at 1 K for 110 V. This low expansion coefficient allow us to scan

the surface topography with relatively high precision.

2.3.3 Regulation

The tuning fork creates a current depending on the frequency of excitation and the

contact with the sample. This current is compared with the excitation signal with a lock-in

amplifier (Ametek 7270 DSP). The output is read by the DSP card in order to update the

regulation loops. The card will command in consequence the extension of the piezo-z stack

(through a homemade amplifier) and the excitation frequency (through the DDS device).

There are two proportional-integral (PI) regulation loops: one is phase-locked and the other

one frequency-locked. The first loop varies the excitation frequency in order to keep the

phase at the steepest part and most sensitive point of the spectra. The second loop fixes

the frequency and modifies the voltage applied to the piezo-z stack (the height of the tuning

fork) so that the phase and frequency correspond to the respective set points. Thus, the
9 Piezo Ceramic, Model: P-885.90 in the z direction
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topography is measurable in terms of the voltage of piezo-z stack. The whole regulation

process is presented in fig. 2.6.

Figure 2.6: Schematic of the regulation loops. The tuning fork is excited by a piezo-
electrical actuator which is controlled by the DDS card. The signal of the tuning fork is
amplified then measured by the lock-in, which send the X and Y to the DSP card. Then, the
DSP card regulates the phase of tuning fork and also the piezo-z stack with two PI controllers.

In order to start the regulation, a frequency sweep is measured to establish the frequency

spectrum. Then, we select a frequency range where the phase shifts monotonically with

relatively large amplitude to limit the phase-locked loop (see fig. 2.5). As the spectra will

shift upwards when there is contact with the sample, we choose a set phase that is in the

steepest region of the curve, and on the left of the peak, thus, if we touch the amplitude

will increase. For the frequency-locked loop, we set the frequency fset about 1 - 3 Hz higher

than the non-touching frequency. The regulation will extend the piezo-z stack until the

tuning fork feels the sample and the frequency reaches fset, otherwise the piezo-z stack

will extend out completely. If an important extension or retraction of the piezo-z stack is

executed rapidly, the high applied voltage will heat the SQUID, consequently, a fast and

fine regulation is needed.
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2.4 Scanner

2.4.1 Scanner

A piezoelectric bimorph scanner is used for imaging the surface. The scanner is an

assembly of 4 S-piezos that will bend under voltage application in order to move the sample

over a short range (see fig. 2.7(a)-(b)).

At each cool down an image of the chessy10 (calibration sample) is acquired allowing us

to scale the magnetic field consistently. A calibration image of the scanner can be observed

in fig. 2.7, with a scanning area of 71.6× 54.7 µm2 for a difference of 400 V applied to the

electrodes11.

The DSP card controls also the scanner. The commanding signal coming from the analog

output of the card is amplified with a homemade amplifier before going into the cryostat.

2.4.2 Platform

During the internship of the second year of my Master’s degree, I built a thermally iso-

lated sample stage. Two parallel plates separated by an isolating column. Initally, the plates

were made of saphire and the column of alumina because of their thermal conductivities [95],

however due to thermal stress while cooling we had to change to other materials: copper

plates and a Kapton cylinder as column. On the sample plate, we have attached a RuO2

resistor for measuring the temperature, a 100 Ω resistor for heating and a thermal link to

the mixing chamber (prepared to be around 5 µW/K). The aim was to heat the sample

without perturbing the mixing chamber nor the SQUID (the critical current depends on

the temperature). In the case of UPt3 (Tc = 550 mK), a pulse to heat the sample above

Tc is acceptable for the SQUID, however, scanning at 600 mK slightly perturbs the mixing

chamber. Scanning PdTe2 (Tc ≈ 1.55 K) above Tc or turning normal the chessy (made
10 The sample called chessy is a checker board of Nb on a substrate of Si. The big squares are 20 µm

long and each of these squares is itself a checker board of squares of 2 µm a side. Thanks to this design, the
scanner can be easily calibrated.

11 This area corresponds to measurements in the PdTe2 crystal. Due to some technical modifications, the
scanning area in the UPt3 sample is slightly smaller: 58× 39 µm2.
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Figure 2.7: In (a), the schema of the S-shaped scanner piezos. In (b), schema of the 4
S-shaped piezos forming the scanner. The sample stage is placed in the primary scan stage.
In (c), magnetic image of the calibration sample. We call it chessy, as it is a checker board
of Nb on a Si substrate. The big squares of the checker boards are 20 µm a side and the
small squares are 2 µm a side. Subfigures (a) and (b) reused from ref. [151].

of Nb with Tc ≈ 9.3 K) strongly heats the mixing chamber and consequently the SQUID,

perturbing the measurement and the refrigerator.
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2.5 Coarse motors

The coarse motion can be divided to two systems: the x-y plane motors and the z axis

motor.

The x-y plane motors are used to change the position on the sample or to move to other

samples. In each axis, there is an Attocube motors (AN-Pxyz101LT), which is controlled

via the corresponding Controller (ANC150). At low temperature, the range of these motors

is around 5 mm. The typical measured samples are much smaller than the whole range, so

we can choose a good spot in the sample for imaging or measure several samples within one

cooling down (sample and chessy for example).

The z axis motor is a home-made motor inspired by the design of Sheheng Pan [152].

It consists of 6 shear piezos (EBL Products Inc., PTZ-5A) glued on a titanium base. The

slider (mobile part inside the titatium base) has glued sapphire plates to make the direct

contact with the piezos. A sawtooth voltage generator (Swissprobe Piezo-Motor Controller

SP869) is connected to the shear piezo and can deliver peak-peak voltage of 800 V. At low

temperatures, the capacitances of the piezos and their movements are greatly reduced, so

high voltages are of much importance.

Position read-out

At low temperatures, the x-y Attocube motors and the Z motor do not move steadily:

one single voltage pulse does not necessarily result in a motor movement. Therefore we

read the displacement position using a comb capacitor (depicted in fig. 2.8). One comb

fixed to the mobile part and the two others in immobile part. A 10 V alternating voltage

is applied to one comb of the static part (blue in fig. 2.8) and the same signal but shifted

180◦ to the other comb (red in fig. 2.8). The mobile comb (magenta in fig. 2.8) is connected

to a lock-in amplifier (EG&G Instruments 7220). The capacity between the mobile and

immobile combs is of the order of a few pF. When the slider moves, its comb will alternate

periodically to face the unshifted comb or the shifted comb. The resulting signal is an
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oscillation with the same period that the combs: ∼ 1.5 mm. The capacitance readout

changes much from room temperature to low temperature, but the shape and the relative

positions to the maximum and minimum don’t change. Thanks to a small misalignment of

the combs, the local maxima and minima change from period to period, therefore, we can

find the sample at low temperatures with the room temperature curve.

Figure 2.8: Schematic of the comb capacitor. The two combs of the static part (red and
blue) are excited with the same signal but inverse phase. When the mobile comb (magenta)
moves, it will alternate periodically to face the unshifted comb or the shifted comb. The
signal is measured by a lock-in amplifier. The periodicity of the combs is ∼ 1.5 mm. Figure
reused from ref. [150].

2.6 Field coil

We used one copper coil, which is directly attached to the external vacuum vessel of the

SionLuDi. It can provide 6.8 mT/A in z-direction. The coil is driven by a V -I converter,

which can provide a maximal current of 3 A (∼20 mT). The converter is controlled by an

analog voltage delivered from the DSP card.

In general, Earth field is compensated with the coil, so that we can observe the Meissner

effect. However, as Earth field varies with time, the point of zero field is not exact, but

approximately ± 5 µT the measured value. Thus, zero field cooling will usually present

some remanent flux.
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Figure 2.9: Electronic schema: in gray background the computers that command the elec-
tronics (in blue background), that control the low temperature setup (in green background).

I mastered the setup here presented, with which I imaged the magnetic flux distribution

of two superconductor at low temperatures with a magnetic resolution 0.2 G/
√

Hz and spa-

tial resolution of the order of 1 µm. In the following chapters I will present the measurements

of these superconductors with the microscope and their interpretation.
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Chapter 3

Intermediate state in PdTe2

Finding materials presenting topological superconductivity is an important challenge in

today’s condensed matter research. A wide range of unconventional superconductors are

under scrutiny for signs of topologically protected states [153–155]. One promising family

of materials is the transition metal dichalcogenides, to which PdTe2 belongs. This com-

pound becomes superconducting at a temperature Tc = 1.6 K [156–158]. and angle-resolved

photoemission spectroscopy (ARPES) identified a tilted Dirac cone 1.6 eV below the Fermi

energy (see fig. 3.1(a)), which may be the signature of a topological superconductor. The

Dirac cone presents spin-polarized topological surface states [159–161], classifying this com-

pound as a type-II Dirac semimetal [162]. Thermodynamic and magnetic bulk experiments

report type-I superconductivity, which is unusual for a binary compound, however, surface

probes like Scanning Tunnel Microscopy/Spectroscopy (STM/STS) [163, 164] or Point Con-

tact Spectroscopy (PCS) [165] evidence type-II superconductivity. A magnetic scanning

microscope such as the SSM shall shed light on this question.

3.1 State of the art

PdTe2 has a trigonal crystalline structure similar to the CdI2 [157, 166] formed by in-

serting a packed hexagonal layer of Pd atoms between every other layer of hexagonal close-

packed Te atoms (see fig. 3.1(b)) [167]. The compound belongs to the space group P3̄m1.

The lattice parameters are a = b = 4.024 Å and c = 5.113 Å. The density is 8.4 gcm−3 and
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the molar volume of 71.7 Å3/unit cell.

(a) (b)

Figure 3.1: In (a), PdTe2 electronic structure measured by Noh et al. [168] and the band
calculation for bulk (blue) and surface (red) states. Figure modified from ref. [168]. The
crystalline structure of PdTe2 presented in (b) corresponds to a trigonal structure similar
to the CdI2, formed by inserting a packed hexagonal layer of Pd atoms between every other
layer of hexagonal close-packed Te atoms. Figure modified from ref. [166].

3.1.1 Superconducting state

The superconductivity of PdTe2 was first observed by Guggenheim et al. in 1961 [169].

It wasn’t until the identification of topological surface states by ARPES in 2015 [159] that

it became extensively studied. The superconducting order parameter is fully-gapped [156],

with an amplitude of 215− 326 µeV [160, 163, 164]. Comparing this values with the critical

temperature, ∆BCS/kBTc = 1.55 − 2.36, close to the conventional BCS value of 1.76 [163].

DC magnetization and AC susceptibility measurements show the presence of the differential

paramagnetic effect in applied magnetic fields (1−N)Hc < H < Hc, where µ0Hc = 13.6 mT

is the thermodynamic critical field [170] and N , the demagnetization factor of the single

crystal used in the experiment. This provides strong evidence for the existence of the inter-

mediate state (IS), which is a key property of a type-I superconductor [23]. The supercon-
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ducting IS shall be defined as the coexistence of superconducting (S) and normal-state (N)

regions [171]. Type-I superconductivity is in-line with the reported value of the Ginzburg-

Landau parameter κ = λ/ξ ≈ 0.09 − 0.34 [157, 170]. This value of κ is smaller than the

theoretical boundary value 1/
√

2, above which type-II behavior is expected. On the other

hand, surface probes such as STM/STS [163, 164] and PCS [165] have given rise to an in-

terpretation in terms of a mixed type-I and type-II superconductivity along with a spatial

distribution of critical fields. This was attributed to an intrinsic electronic inhomogene-

ity at the surface already present in the normal phase. Furthermore, another STM/STS

measurement [160] observed a vortex core reporting type-II superconductivity, however, an

Abrikosov vortex lattice, hallmark of type-II superconductivity [23], is yet to be observed.

The electronic behavior of the superconductor under magnetic field (type-I or type-II

superconductivity) is represented by ξ and λ. These characteristic lengths depend on the

derivatives of E(k), as ξ ∝ vF = dE(k)/dk and λ ∝
√
ns/ms =

√
ns(d

2E/dk2)1/2. Note that

they depend on the k-vector, however at the macroscopic scale, they are usually averaged

over the Fermi surface. Therefore, these lengths can be estimated from the band structure

(see fig. 3.1(a)). This can result in different superconducting behaviors in the bulk and at

the surface states [23]. In the case of PdTe2, the bands that cross the Fermi surface are

rather steep, resulting in large Fermi velocities, thus large ξ values. At the surface Dirac

cone (SD), bands are less steep, thus lower ξ values. Furthermore, the density of occupied

states peaks at SD, resulting in larger values of λ. We can qualitatively estimate type-I

superconductivity (large Fermi velocities and low density of states) in the bulk and type-II

superconductivity (smaller Fermi velocities and large density) because of the surface states.

More recently, transverse µSR measurements reveal the presence of normal regions (with

Hc) in the bulk of the sample, which further supports the IS on the microscopic scale [172].

Furthermore, some measurements find superconducting signals above Hc [170, 173], the

T -H phase diagram presents some similarities with those of so-called type-II/1 supercon-

ductors with κ ≈ 1/
√

2 [170].
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3.1.2 Theory

The superconducting nature of PdTe2 has been unclear during recent years due to con-

tradicting conclusions: type-I with IS [170, 172] and mixed type-I and type-II supercon-

ductivity [160, 163–165]. My work presented in ref. [174] show type-I superconductivity by

imaging the magnetic pattern of intermediate state.

The main experimental situation which induces the IS is the application of a magnetic

field, H, to a sample of non-zero demagnetizing factor, N , in the field range (1 − N)Hc <

H < Hc [171]. This factor reflects the tendency of the demagnetizing field to reduce the

total magnetization1. When the dimensions of the superconductor perpendicular to the

applied magnetic field are small enough, the demagnetizing effects can be neglected, and the

superconductor totally expels the magnetic field, which is the so-called Meissner effect [175].

When it cannot be neglected, the magnetic field penetrates the sample aboveH = (1−N)Hc,

and at H = Hc the sample becomes totally normal2.

Other situations where the type-I superconductivity with IS is produced are: in a su-

perconducting wire when the current exceeds the Silsbee current [175, 177] or in special

configurations such as a superconductor enclosed inside another superconductor with higher

Tc and Hc [171].

The IS results from the competition of volumetric magnetic energy and the N-S interface

energy, which depends on the interface width, δ ≈ ξ − λ [22, 178] (see fig. 3.2(a)). The

structures tend to organize in a periodic manner, with a periodicity a and structure size,

R, which both depend on the sample thickness, d, and the interface width as ∼
√
δd.

1 The cases most often treated by theory and experiments are spheres with N = 1
3 , cylinders with traverse

field with N = 1
2 and thin plates in traverse field where the thinner the the more N →1.

2 The penetration field is defined as the field above which the field enters the sample. For an ellipsoid, the
penetration field is the same all over the sample, however, for other shapes, the penetration field depends on
the measurement position (center of the sample is not the same that a corner). The definition of penetration
field as (1−N)Hc is usually taken true for the center of the sample, but a misalignment in the probe position
could lead to important modification of the local demagnetizing factor, N [176].
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(a) (b)

Figure 3.2: In (a), schema of the IS with the different regions (superconducting: S and
normal: N), the magnetic field lines ( ~B), the size (2R) and periodicity (a) of the normal-
state spots and the interface width (δ). In (b), representation of the T -H phase diagram
with the different paths to reach an IS point: (i) increasing the field at constant temperature,
(ii) cool down at constant field, and (iii) decreasing the field at constant temperature.

In the case of superconductors with low κ, the IS pattern will be macroscopic, however,

when κ→ 1/
√

2, δ decreases and the IS structures become smaller. Schematically, we could

imagine a type-II vortex as the limit of a normal-state flux tube as κ goes beyond 1/
√

2 [171].

For example, if we consider a sample in which κ is low and the thickness is thin enough,

the equilibrium structures under traverse field are quantified vortices like those of type-II

superconductivity [179]. Although for κ� 1 the IS cannot exist in equilibrium, Abrikosov

suggested that for κ slightly greater than 1/
√

2, the IS may also exist [26].

The IS regions in the bulk carry Hc, but as the regions approach the sample surface,

the magnetic field spreads, thus, because of conservation of flux, the measured field is no

longer Hc. Landau proposed that in order to avoid regions which don’t carry Hc, the lamina

would split in such a way that they always carry Hc (see fig. 3.3(a)). This is the so-called

branching [178]. Lifschitz and Sharvin [180] reexamined the theory and concluded that

multiple branching only occurs when the sample is extremely thick, whereas for ordinary

experimental sample’s dimensions the magnetic structures split once or twice, if they do.

The critical thickness above which branching occurs was estimated to be dc ∼ 800δ at

H = 0.5Hc [181]. However, the unbranched laminar structure can lower its energy by
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creating corrugations near the surface, so that the interface is increased [182, 183].

The magnetic field measured at the surface of the superconductor is lower than Hc [184],

because of the field broadening and because some of the probes that may be only sensitive

to the perpendicular component of the field (magneto-optical method [184], Hall probe

microscopy [185] or the SSM [186]).

For low flux densities, normal flux tubes structures are more favorable than laminar

structures, and for high flux densities, laminar or superconducting tubes structures are

more favorable [178, 187].

As presented in fig. 3.2(b), a given point in the T -H phase diagram can be reached

by various paths: (i) increasing the field at constant temperature (also known as Zero

Field Cooling), (ii) cooling down at constant field (also known as Field Cooling), and (iii)

decreasing the field at constant temperature. The pattern of equilibrium structures should

not depend on the path taken, however, several authors observe complex maze-like structures

with corrugated interfaces when the (T , H) point is reached by paths (ii) and (iii) [182, 184,

188, 189], and honeycomb structures when reached by path (i) [184, 185, 188, 189].

(a) (b)

Figure 3.3: In (a), the branching of the intermediate state in an Indium sample, replicated
with Cobalt powder: white is the normal-state laminae and the black is the superconducting
regions [190]. In (b), the adimensional free energies of the different ground field distributions:
Φ1 for normal-state tubes, Φ2 for laminae and Φ3 for superconducting tubes [187].
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The IS was further studied by Goren and Tinkham [191], Fortini et al. [192] and more

recently by Clem et al. [187].

Landau studied the continuity of the magnetic field deriving an equilibrium spreading

distance proposing a laminar IS [22]. Goren and Tinkham considered a highly simplified

model in which they compared the energy cost of normal-state spots and normal-state lam-

inae. They took into account the volumetric and interface energies, obtaining the following

equilibrium distances (see fig. 3.2(a)):

aspot(h) =

√
2δd/h(1− h)(1−

√
h) (3.1)

alam(h) =
√
δd/h2(1− h)2 (3.2)

R(h) =
√
ha(h)/2 (3.3)

where a is the periodicity, R is the half-size of the structure (radius of the spot or half-width

of the lamina) and h = H/Hc. The ground state of the spot pattern has an energy slightly

lower that the laminar model, which implies that either flux spots, laminae or both could

exist in the IS.

Further investigation was carried out by Clem et al. [187]. They considered a bulk

system with volumetric magnetic energy and normal-superconducting interface energy. The

energetic balance showed that the ground-state energy of the system depends on the reduced

applied field, h (see fig. 3.3(b)). Moreover, they performed the analysis on three different

flux patterns: (i) normal-state flux tubes, (ii) laminae, and (iii) superconducting tubes,

revealing that the ground-state changes from (i) at low fields, to (ii) a mid fields and to (iii)

at high fields. For the (i) case, the radius of the spot and the lattice periodicity are given

by:

R = h
√
δd/2Φ1 (3.4)

a =

√
2π/
√

3
√
δdh/2Φ1 (3.5)

for the case (ii) the half-width and the laminae periodicity are given by

R = h
√
δd/4Φ2 (3.6)
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a = 2R/h (3.7)

and for the case (iii) the radius of the superconducting spot and the lattice parameter are

R = h
√
δd/2Φ3 (3.8)

a =

√
2π/
√

3
√
δd(1− h)/2Φ3 (3.9)

where Φi is the normalized free energy as defined for each case in ref. [187].

Summarizing, the IS patterns depend on the sample thickness and the path in the phase

diagram. The theories presented above agree on the change of field distribution. These

patterns can be understood from energy balance, where δ is the most significant parameter:

the periodicity of the structures and the size depend on it.

3.2 Results

The single crystal of PdTe2 used in this work was grown by Y. K. Huang by a modified

Bridgman technique and characterized in reference [170]. The layered structure allows exfo-

liation before measurement. It was used for measurements of the London penetration depth,

labeled s1 in ref. [157]. Among the four studied samples, this one had a Tc = 1.66± 0.02 K

and the zero temperature penetration depth λ(0) = 377− 470± 10 nm. The crystal used in

the experiments is slab-shaped with length 0.88 mm, width 0.84 mm and thickness 0.097 mm,

which gives a demagnetization factor of N = 0.788 for the center of the ab face [193]. All

the measurements presented in this section were made above the ab face with the magnetic

field applied along c-axis.

3.2.1 Confirming the phase diagram

In order to investigate the T -H phase diagram I measured the local magnetization,

placing the SQUID at 350 nm above the sample and cooling the sample at zero field (ZFC)

(see path (i) from fig. 3.2(b)). I recorded the SQUID response while increasing the applied
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magnetic field, H, at rate of 50 µT/s for 13 different temperatures. In fig. 3.4(a), the critical

current Ic(H) is presented for three temperatures: T = 1.7 K (black line), 0.9 K (blue line)

and 0.3 K (red line). At T = 1.7 K the sample is in the normal state and the response is the

non-affected modulation (arcs) of the SQUID’s critical current. Each period corresponds to

one additional flux quantum entering the SQUID loop. At 0.9 K and 0.3 K the sample is

in the superconducting state. The data starts off with a flat response, which corresponds

to Meissner screening, up to the penetrating field (1 − N)Hc. Above this field the sample

is in the IS and flux penetrates in a rather abrupt manner, as indicated by the fluctuating

signal. Above Hc non-affected arcs are recorded, the sample is in the normal state. The

field values (1 − N)Hc and Hc measured in this way are indicated by arrows in fig. 3.4(a).

In between these fields we denote a significant change in the SQUID response, from large to

small fluctuations of Ic, at a fusing field, Hf . As we will show in the following, at this field

tubular magnetic structures start fusing into laminar structures.

The values of these fields were collected and plotted in fig. 3.4(b). Hc follows the standard

BCS behavior, Hc(T ) = Hc(0)[1 − (T/Tc)
2], with µ0Hc = 13.62 mT and Tc = 1.57 K. The

first value is in excellent agreement with the Hc(T ) behavior reported in ref. [170], however,

the Tc is slightly lower than the one measured in ref. [157], probably due to the locality of

the measurement. Correspondingly, I obtain µ0(1 − N)Hc(0) = 3.83 mT, which indicates

a demagnetization factor of N = 0.72. This value is smaller than the calculated one,

N = 0.788, which we attribute to an effective value Neff < N , due to the locality of the

probe. The effectiveness of this method for determining the phase diagram is the result of

a very low resistance to flux penetration and weak flux pinning in PdTe2 [174].

3.2.2 Zero Field Cooled

In order to investigate the equilibrium state, the best method is to study how the flux

penetration develops in the IS after ZFC. The magnetic field distribution was measured

at T = 0.9 K (blue dashed line in fig. 3.4(b)) for different fields (see fig. 3.5(a)-(d)). At
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Figure 3.4: (a) The SQUID response after ZFC at three temperatures. In the normal phase
(black solid line) the SQUID response is smooth and periodic. In the superconducting phase
we distinguish three different behaviors: (i) flat response, i.e. screening for H < (1−N)Hc,
(ii) high-dispersion response, i.e. penetration of magnetic flux tubes for (1 −N)Hc < H <
Hf , and (iii) low-dispersion response, i.e. when flux tubes fuse into laminar structures Hf <
H < Hc. The fields (1−N)Hc, Hf and Hc are indicated by arrows. In (b) the phase diagram
is constructed from the gathered characteristic field values. The solid magenta line represents
a BCS-like fit Hc(T ) = Hc(0)[1 − (T/Tc)

2] with µ0Hc(0) = 13.62 mT and Tc = 1.57 K and
the solid cyan line is the equivalent fit with µ0(1−N)Hc(0) = 3.83 mT and Tc = 1.58 K. The
green squares indicate the field values when the flux changes become smoother above which
laminar structures appear. The vertical dashed lines indicate the temperatures of the SQUID
responses in (a). Grey lines represent the surface critical field measured by AC susceptibility,
Hs
c , and the surface critical field found by resistivity measurements, HR

c , referenced in [170].
The red diamond and the blue triangle are the T -H points of scans in fig. 3.10.

the lowest applied field µ0H = 1 mT the Meissner state is expected, which is confirmed

in fig. 3.5(a). Some magnetic structures are observed, but since they do not evolve with

the applied magnetic field (up to the penetrating field (1−N)Hc), they were likely created

by the residual magnetic field upon cooling. The smallest structure is zoomed in the inset

fig. 3.5(a) and the field profile along line A is plotted in the inset of fig. 3.5(e). We note

that this structure is the least intense found.

When the magnetic flux penetrates the sample, magnetic structures fill the space as

observed in the scans acquired at 3, 4.5 and 7.5 mT (see fig. 3.5(b)-(d)). At 3 mT (see
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fig. 3.5(b)), the IS is established in a self-organized lattice of flux tubes. We notice two

types of tubular structures: mountains, see the structures in fig. 3.5(a) and the profile in

inset of fig. 3.5(e), and volcanoes, see fig. 3.5(b) and the profile in fig. 3.5(f). The strong dip

on the center of the profile in fig. 3.5(f), which indicates the presence of a superconducting

region as sketched in the inset, is a strong evidence of branching. The residual magnetic

field above the dip on the center of the volcano is attributed to the overlapping stray fields

of the surrounding normal region. The appearance of branching depends on the size and

flux contained in the structure. Small ones like the one at (x, y) = (15, 25) in fig. 3.5(b), do

not present branching whereas the bigger ones do.

These closed structures should obey flux quantization [23], and the appearance of isolated

single-Φ0 structures, such as reported in refs. [160, 164], is possible. We measured the amount

of flux contained in the weakest flux structure by two methods. One is fitting the flux profile

of a hypothetical Abrikosov vortex to the measured flux profile. As penetration depth and

height above the surface are interdependent parameters of the stray field originated from an

Abrikosov vortex [194], the SQUID height was set to 350 nm and obtained a good agreement

for an effective penetration depth of λeff ≈ 2.1 µm and a total flux of 3Φ0. The large λeff

compared to the λ obtained by Salis et al. [157] indicates that field spreading effect is more

important than in type-II superconductors, in which it’s of the order of λ [139, 195]. The

other method is model-free, based only on the definition of magnetic flux, which is the

integration of magnetic field over an area. Fig. 3.5(e) shows the increase of collected flux

with the increasing area of integration (square area of side L, centered at the flux spot

zoomed in the fig. 3.5(a)). Before integration a linear plane fit was substracted to remove

any field offset. This method tends to indicate 2.75Φ0 for the amount of flux contained in

the flux tube. As magnetic flux in a superconductor is quantized this indicates that the flux

contained in the structure is 3Φ0 and our procedure misses about 10% of the total flux.

The interface width is an important parameter in the energetic analysis of the system [22,

178, 187, 191, 192]. Following the model of Goren and Tinkham [191], it can be deduced
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Figure 3.5: Panels (a) to (d): ZFC magnetic images taken at 900 mK (µ0Hc = 9.1 mT)
and at an applied field of 1 mT (reduced field, h = H/Hc, of 0.11), 3 mT (0.33), 4.5 mT
(0.5) and 7.5 mT (0.82), respectively (all images are from the same cool down). These
images show the magnetic structures in the different regions of the phase diagram: dark blue
regions are superconducting and orange ones are in normal state. The inset in (a) contains
a zoom on the least intense observed flux tube. In panel (e) the inset shows the flux profile
along the line A of the flux tube in the inset of panel (a), the main panel shows the increase
in collected flux as the magnetic field is summed up over areas with increasing lateral length,
L. In (f), the field profile along the line B in (b). The inset in (f) represents the schema of
branching at the surface of the sample, neglecting N-S interface bending.
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either from the flux spot radius, R, or from the lattice parameter between adjacent flux spots,

a, as presented in the sec. 3.1.2. Choosing fig. 3.5(b) to measure the lattice parameter and

sizes of several spots (2R ∼ 13 µm and a ∼ 20 µm), the interface width resulting from

the spot size is 0.24 µm and 0.19 µm based on the lattice parameter, for h = 3/9.1 and

d = 97 µm. A second way to calculate δ is the model derived by Clem et al. [187]. The free

energy of the flux tube pattern is Φ1 = 0.079 for this field. Based on the spot size diameter,

the interface width attains the value of δ = 0.10 µm. Alternatively, Clem et al. estimate δ

from a normalized lattice parameter to be δ = 0.09 µm. Since the model of Clem et al. does

neither take into account the spreading of the flux tubes near the surface nor the branching

of the flux tubes that we observe, the most reliable estimates of the interface width are the

ones based on the lattice parameter, thus δ = 0.09 µm according to the model of Clem et

al. or 0.19 µm according to the model of Goren and Tinkham.

Above a certain threshold field, Hf , the tubular magnetic structures fuse into laminar

domains, as for instance shown in the scan taken at 4.5 mT reported in fig. 3.5(c). The values

Hf (T ) (green squares in fig. 3.4(b)) show a relatively high dispersion which is attributed to

the coexistence and competing effects of tubular and laminar structures. Such coexistence

of shapes has been reported before in the literature [196, 197]. Our results are consistent

with the predictions of Clem et al. considering the small free energy difference between the

flux arrangements [187].

The interface width was also derived from the laminar pattern like the one observed at

4.5 or 7.5 mT (fig. 3.5(c)-(d)) using the model of ref. [187]. The distance between two normal

laminae is a = 15 µm and the width of the laminae is 2R = 8 µm. The normalized free

energy at the reduced field h = 4.5/9.1 is Φ2 = 0.092, which results in a value of δ = 0.09 µm

for the lattice parameter and δ = 0.09 µm derived from the width of the normal laminae.

As the field increases, the normal laminae become wider and occasionally some supercon-

ducting tubular regions are observed, for instance at (x, y) = (5, 22) in the fig. 3.5(d). The

high field equilibrium state in our case is a mixture of tubular and laminar superconducting
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structures at odds with exclusively tubular structures predicted for the high field phase in

the Clem et al.’s model [187].

Measurements report only one single funnel-like branching per normal domain. Branch-

ing patterns similar to those in fig. 3.5(c) were reported [175, 198] in the case of elemental

type-I superconductors. Branching is expected to occur only for a sample thickness larger

Figure 3.6: Scanning SQUID image taken after cooling to 300 mK under 1 mT. Dark blue
regions are superconducting and orange normal.

than the critical thickness dc ≈ 800δ [175]. With our estimate of δ = 0.1 − 0.2 µm, dc

falls in the range 80 − 160 µm, the sample thickness being 97 µm one branch could be

expected [180].

The partial duplication of the structure at x = 15 µm in fig. 3.5(b) and the vertical lines

in fig. 3.5(b)-(d) denote movement of the structures while scanning, which we attribute to

the coupling between the SQUID’s magnetic field and the structure itself. This movement

can only be observed in case of weak flux pinning.

3.2.3 Field Cooled

Above I presented flux structures in the IS after ZFC. Alternatively, one can reach the

IS by field cooling (FC) from the normal phase (see path (ii) from fig. 3.2(b)). In general,

the flux trapped in the sample results in laminar structures [175]. At low fields (such as
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Figure 3.7: Magnetic images taken after field cooling under 3.5 mT (reduced field, h =
H/Hc, of 0.34) and under 8 mT (0.61) in (b), at a temperature of 300 mK, (µ0Hc=13.1 mT).
Points 1 and 2 indicate the maximal measured fields of each scan used to plot fig. 3.8. Dark
blue regions are superconducting and orange normal.

the residual field when ZFC) tubular structures are also found in addition of laminae (see

scan at 0.3 mK and 1 mT in fig. 3.6). The honeycomb pattern appears when the field is

low enough to let the IS structures organize themselves, their junctions tend to form 120◦.

This indicates that the repulsion of the normal-state laminae is stronger than the pinning.

In fig. 3.7(a) (scan at 0.3 K in 3.5 mT), corrugated normal-state laminae are present. As

the field is increased, the laminae get wider and with more corrugation, eventually tubular

superconducting structures are enclosed in the lamina, as observed in the 8 mT scan of

fig. 3.7(b). At higher fields, normal-state laminae get wider until the whole sample becomes

normal.

3.2.4 Field at the surface

According to the theory of the formation of the IS of a type-I superconductor the mag-

netic field in the normal domains should always be equal to µ0Hc in the bulk [23], but at the

surface, it is lower than µ0Hc as measured by two authors [198, 199]. In the case of PdTe2,

µSR measurements [172] verified the magnetic field in the bulk, however, we reported the

first measurements of the magnetic field at the surface. A field lower than Hc is attributed

to the spreading of the flux tubes at the surface. As many other magnetic techniques such

as Hall probes [185, 200] or magneto-optical method [184], the SQUID sensibility depends
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on the direction of the magnetic field. In our case we are sensitive only to the field perpen-

dicular to the SQUID loop. As mentioned in sec. 2.1, our SQUID makes an angle of 3◦ with

the sample surface, thus we consider that we are only sensitive to the normal component of

the magnetic field emanating from the sample.

Figure 3.8: The maximum of the magnetic field above the normal regions in the IS divided
by the critical field, BIS/µ0Hc (triangles) as a function of the applied field divided by the
critical field, H/Hc, for in red, ZFC (900 mK) and, in blue, FC (300 mK) measurements.
The green line represents a linear guide to the eye. The red dashed line traces the reduction
of the maximal field at the surface in case of the Landau laminar model as reported by
Fortini et al. [192]. Points 1 and 2 are references to the corresponding points in the images
of fig. 3.7.

From multiple images, like those ones obtained after ZFC at 900 mK (see fig. 3.5) and

others obtained after FC at 0.3 K (see fig. 3.7), I measured the magnetic field of the sample

at the center of many IS structures, BIS. These measurements (tubes and laminae) were

normalized by the critical field, µ0Hc(T ), and then traced in fig. 3.8 as a function of the

reduced applied field, H/Hc. We observe that BIS/µ0Hc increases linearly as function of the

applied field. For reduced fields H/Hc > 0.5, the measured values align with the Landau’s

prediction for the laminar model as expressed by Fortini et al. [192]. At lower fields, tubular

structures are present in the case of ZFC and laminae in the case of FC, but in both cases
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the field BIS follows the same linear behavior, which could be attributed to field spreading

for both geometries.

The measurements of the magnetic field at the sample surface allow to estimate the

degree of spreading based on conservation of flux. Φspot = µ0HcSbulk ≈ µ0HsurfSsurf , where

Sbulk and Ssurf are the cross sections of the magnetic structure in the bulk and at the

surface respectively. This implies the ratio Hsurf/Hc behaves as Sbulk/Ssurf . Considering

BIS = Bsurf as a first approximation and BIS/µ0Hc ≈ 0.4 at the onset of the IS (see fig. 3.8),

we could estimate that the ratio Sbulk/Ssurf is linear with the applied field. Thus, the Ssurf

at 0 mT would be 2.5 times the Sbulk, whereas at Hc, Ssurf = Sbulk.

The question of how far this spreading effect carries over into the bulk of the super-

conductor was calculated [192] in the framework of the Landau laminar model. The filling

fractions for the fig. 3.7 are 38% and 66% respectively, the characteristic depths of spreading

are predicted to be about 0.25 and 0.4 times a. The typical spacing of the order of a = 20 µm

(see fig. 3.7(a)) would indicate the spreading of the interface at a depth of 5 µm and 8 µm

respectively. This reduction could be observable by bulk probes in very thin samples.

Figure 3.9: Interface width, δ(T ), obtained with the model of Clem et al. [187] in green
and the model of Lifschitz and Sharvin [180] in cyan. The data of Al from Faber [182]
and Sn/In from Sharvin [201, 202] are also represented for comparison. The lines in the
corresponding colors are the corresponding fits with δ = C/

√
1− t.
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3.2.5 Interface width

Further analysis of the interface energy can be carried out from the temperature depen-

dence of δ. Sn and In samples were measured by other authors and a δ ∝ 1/
√

1− t behavior

was found [201, 202], which is in agreement with the ξ(T ) BCS behavior [175]. Faber pro-

posed a dependance of δ ∝ 1/
√

1− t4 based on Landau theory and the corrugations of the

IS regions, however, he found δ ∝ 1/
√

1− t3/2 for Al samples [182]. In fig. 3.9, the δ(T )

of PdTe2 obtained with the model of Clem et al. [187] and with the model of Lifschitz et

Sharvin [180] was plotted along with the data of Al, Sn and In [182, 201, 202]. For each set,

δ ∝ 1/
√

1− t behavior agrees with the data of the four materials. The data of Faber were

taken in the temperature range of t > 0.6. Below t = 0.975, both dependances describe well

the data, above this value data points are scarce.

In the case of PdTe2, there are not many points, but values obtained with both models seem

to follow the behavior δ ∝ 1/
√

1− t, however, more data should be gathered to claim such

behavior.

Figure 3.10: Scans of the same spot of the sample at 300 mK and 15 mT and at 1.5 K
and 3 mT. Both T -H points correspond to bulk normal phase, but the signal is different.
These two points are represented in the phase diagram of fig. 3.4(b) as a red diamond and
a blue triangle respectively.

3.2.6 Signal above Hc

Leng et al. found traces of superconductivity aboveHc with another Tc [170]. Their figure
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of phase diagram presents the bulk Hc(T ) curve, the surface critical field, Hs
c (T ) measured

by susceptibility and also the surface critical field measured by transport measurement,

HR
c (T ). The surface superconductivity only appears when the field is applied perpendicular

to a small dimension of the sample, which would be in the plane ab for our sample. The

fig. 3.10 presents two scans that lay out of the bulk superconducting phase: at 0.3 mK

and H = 15 mT and at 1.5 K and 3 mT, represented in fig. 3.4(b) as a red diamond and

blue triangle respectively. A weak magnetic signal was measured above bulk Hc(T ) for low

temperatures but not at high temperatures, which is consistent with the results of ref. [170].

Pinning effects are usually caused by structural defects and impurities among other

causes. The presented results support small/no pinning effects for bulk superconductivity,

nevertheless, the structure from fig 3.10(a) always sits on the same spot. Although surface

superconductivity as we know it should not happen in our experiment (and if it appeared, it

would have the same Tc), the magnetic signal evidences some screening, which is not present

at higher temperatures.

Recently, a possible explanation based on the stoichiometry was proposed [203], super-

conductivity could survive in a small fraction (10%) of the crystal where the stoichiometry

is slightly different (PdTe2+x) [169]. However, these compounds have generally a higher Tc

than PdTe2 [169, 204, 205]. Energy Dispersive X-Ray Analysis should be carried out to

verify this hypothesis.

3.3 Conclusion and outlook

One of the major results from the present SSM measurements is the direct observa-

tion of the IS on the local scale in a binary compound. The evolution of the different

patterns depending on the phase diagram path was studied in detail in the field range

(1 − N)Hc < H < Hc, revealing the succession of tubular to laminar structures as the

applied field is increased after ZFC. The smallest structure measured was found to hold 3

Φ0, confirming the quantification of flux and therefore, not excluding single-Φ0 structures
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(typical superconducting vortex), which were reported by some authors [163–165]. In the

FC case, laminae were revealed, at low field they tend to form angles of 120◦, creating a

honeycomb pattern. As the field is increased some corrugation appears in order to mini-

mize the energy. At higher field, the corrugations tend to enclose superconducting tubular

structures.

The spreading of magnetic field as the structure approaches the surface of the sample

is well known in the IS literature but the experimental observations are rare. In PdTe2,

the reduced magnetic field of IS regions (tubular or laminae) is proportional to the reduced

applied field for any temperature. At high field it corresponds to the expected behavior for

a laminar pattern, as the ZFC measurements revealed. For any field and any temperature,

this curve represents the spreading given by the ratio Sbulk/Ssurf . The spreading length

of the IS superconductors is larger than the penetration length in type-II superconductors,

therefore, the magnetic profile of an usual vortex is not valid for IS, thus, cannot be used

to quantify the flux.

Further focus lay on the interface width. This parameter rules the energy balance of the

magnetic flux distribution in the compound, dicting the lowest energy pattern. Thanks to

the models of Lifschitz and Sharvin [180], Goren and Tinkham [191] and Clem et al. [187],

this parameter was univocally estimated to be 0.1-0.2 µm. The evolution in temperature

seems to follow the behavior of δ(T)= Cδ/
√

1− t such as other materials, however, further

measurements in PdTe2 are needed to verify this behavior. The branching of magnetic

structures may happen above a critical thickness, which is proportional to the interface

width. The observation of single-funnel branching for tubular and laminar structures are in

agreement with the sample thickness and the critical thickness estimated from the interface

width.

The effectiveness of the method used for determining the phase diagram, the partial

duplication of some structures due to their movement while scanning and the arbitrarity

of the low FC structures orientation can only be observed in the case of weak pinning.

72



Furthermore, an unexpected signal was found pinned above bulk Hc for low temperatures

which wasn’t found at high temperatures.
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Chapter 4

Chiral superconducitivity in UPt3

UPt3 has a crystalline structure of the MgCd3 type, shown in figure 4.1 [65]. The

uranium atoms form a closed-packed hexagonal structure with the platinum atoms between

uranium ones on the planar bonds (see figure 4.1.(a)). The compound belongs to the space

group P63/mmc 1 and the point group D6h
2. The lattice parameters are a=b=5.764 Å and

c=4.899 Å, the distance between uranium’s atoms is 4.132 Å and between Pt and U atoms

2.882 Å. The density is 19.4 gcm−3 and the molar volume of 42.43 cm3/mol U.

Figure 4.1: Crystal structure of UPt3 [65].

The single crystal of UPt3 used in the experiments was grown by D. Aoki using

the Czochralski method, then it was annealed at 900°C. Finally, our sample was spark cut

from the ingot, the scanning face was polished and reannealed again at 900°C for 15 days.
1 P63/mmc is a space group. P refers to primitive lattice. 6 for six-fold symmetry. 3 refers to the

translation vector. /m refers to a mirror perpendicular to the six-fold axis The other m refers to a mirror
which contains the six-fold axis. c refers to a glide translation along half the c-axis lattice vector.

2 D6 means a six-fold rotation axis plus 6 two-fold axis perpendicular to the six-fold axis. The h stands
for a mirror plane with normal on the six-fold axis, and also six mirror planes, each containing the six-fold
axis and one of the two-fold axes.
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The polished face corresponds to the c face. The dimensions of the sample used in the

experiments are 1.5x1x0.65 mm3.

For the following work, the magnetic field is always applied along the c axis and the

scans are carried out above the ab face. Given the dimensions of the sample and the scanned

surface, the sample has a demagnetization factor of N = 0.48 [193].

As mentioned in sec. 2.6, the Earth’s magnetic field is subtracted from the applied field

when the sample is cooled at zero field, thus we observe the Meissner effect. This offset is

calculated when the calibration is made, however, the background field varies slightly with

time, resulting in a small error (<5 µT) in the zero field of each measurement. Because of

this, we always have some magnetic structures present.

Our sample has a residual resistance ratio of 583. The superconducting transition mea-

sured by specific heat measurement on a 3He PPMS system from Quantum Design happens

at 514 mK with 25 mK of width (see fig. 4.2). The transition A-B phase occurs at 460 mK

with also ∼ 25 mK of transition width. In order to calculate the local susceptibility, the

magnetization was measured in response to alternating applied field. The difference of read-

out may be considered as an approximation of the measurement of the module of χ. This

process was carried out for several temperatures, revealing the superconducting transition at

520 mK. In addition, a susceptibility peak appeared at the transition, indicating dissipative

processes (related to Im(χ)) at the onset of superconductivity [206]. These authors also

detected another peak at the A-B phase transition, 300 times smaller than the one at the

superconducting transition.

4.1 Chiral domains: theoretical predictions

In a superconductor with complex order parameter, there are at least two ground states,

each of the them with different chirality. If they coexist, they will form chiral domains

separated by domain walls (DWs). Following the theoretical works on the chiral phase of
3He [207], several authors have studied the effect of chiral domains in superconductors and
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Figure 4.2: Red and blue lines are specific heat measurements of the sample of UPt3 used
in the SSM measurements for two different fields. The critical temperatures at zero fieldare
taken at the middle of the transition, they are marked in green and cyan. This was measured
by K. Hasselbach in a 3He PPMS system from Quantum Design. The black curve is the
local susceptibility of the crystal as a function of the temperature. This last measurement
was measured with the scanning SQUID, alternating measurements at fields of ±50 µT.

the interactions happening at DWs (see fig. 4.3(a)) [35, 69, 208–211].

Due to the complex nature of the chiral order parameter, the phase of a domain winds

within the domain, thus, a chiral domain breaks time-reversal symmetry (TRS). At the DW,

the two chiral domains interact and, due to the winding, the relative of phase between do-

mains can vary along the DW. This was studied by Etter et al. in the case of a chiral p-wave

in a tetragonal system such as Sr2RuO4, deducing that the relative phase was π-periodic

with minima at 0 and π [131] as presented in (see fig. 4.3(b)-(e)). The spatial variation of

the relative phase may produce a spontaneous superconducting current, often called chiral

current, and/or unusual magnetic field distributions [69, 208, 209, 213]. The effect on the

magnetic field distribution is predicted to be quite complex. Among the various magnetic

signatures, I would like to mention a few: (a) the magnetic field peak arises spontaneously

in the DW when approaching the sample side surface (see fig. 4.4) [208], (b) in the vicinity

of the DW, one domain presents a concentration of magnetic flux, whereas the other domain
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Figure 4.3: In panel (a), a schema of the two domains joining at z = 0. The wavefunction
of each domain tunnels into the other one. The order parameters are: η = (|η+|, |η−|eiϕ) =
(|ηx|eiφx + i|ηy|eiφy , |ηx|eiφx − i|ηy|eiφy). The stable φx shift across the transition is either
0 (green line) or π (red line). In the panel (b), the phase difference between ηx and ηy,
which denotes the domain wall. In (c), the modulus of the order parameter, presenting a
depression at the DW. In panel (d), the phase shift between stable values: 0 and π. In panel
(e), the relative phase between domains wavefunctions. Figures (b)-(e) were modified from
ref. [131].

presents a lack of it(see fig. 4.4) [208], (c) if chiral domains coexist, one will be favored by

the applied field (see fig. 4.5) [35, 212], (d) vortices may decay into structures with frac-

tional flux, that would be pinned at the DW. In particular, Etter et al. showed that half-Φ0

structures are favorable in their system and would sit at the DW between relative phases

of 0 and π. However, in the case of UPt3, an analogous analysis shows 2π-periodicity, thus,

single-Φ0 structures.

So far structures containing fractional quantum of flux (Φ0/2) were only observed at

the junction of three YBa2Cu3O7−δ crystals specifically orientated for the symmetry of the

order parameter (d-wave) [214, 215]. In order to explain this experiment, Volovik proposed

a disclination: the orientation of the crystal lattice continuously changes by π around the

structure [210]. Furthermore, he predicted half- and fourth-Φ0 structures in the tetragonal
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Figure 4.4: In panel (a) picture of the currents around the DW when it arrives to the
sample surface: dwc means domain-wall current; sfc, surface current; sc, screening current.
In panel (b), the field distribution at the surface of the sample above a DW (x=0). The chiral
current or domain wall current is indicated with an arrow. Figure modified from ref. [208].

system for d- and chiral p-wave respectively, which is in contradiction with the results of

Etter et al. [131].

At the DW, single-Φ0 vortices may decay into fractional structures. Therefore, they

would be strongly pinned and may form a line on the DW, repelling single-Φ0 vortices. In

this way it acts as an effective barrier for vortex dynamics [208].

The community agrees that domains of chiral superconductors break TRS and that

fractional structures should exist in the frontier between chiral domains. This is only possible

thanks to the interaction of both domains. However, the fractional amount of flux contained

by the structure in a given system is still unclear.

4.2 Measurement of Hc1

In order to investigate the T -H phase diagram the local magnetization was measured

while ramping the applied magnetic field. The SQUID sat 350 nm above the sample, the

crystal was cooled through Tc in zero field and then, a magnetic field (H ‖ c) was ramped

at rate of 50 µT/s to measure the local magnetization (see detailed translation method in

appendix B). The first curve after ZFC (virgin magnetization curve) was measured at 16
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Figure 4.5: Evolution of flux distribution with the applied field for two domains of different
chirality. Figure modified from ref. [212].

different temperatures in order to calculate Hc1(T ). The penetration field, Hp, is defined as

the field at which the susceptibility (slope) of the virgin magnetization curve moves away

from -1, i.e. B = 0 → B 6= 0. This is presented in fig. 4.6(a) for T = 350 mK, where

the magnetization curve and susceptibility (inset) are plotted as a function of the applied

magnetic field. In the same figure, the corresponding Hp is marked with a red star. If

we don’t consider the demagnetizing effects, Hp = Hc1, however, in our experiments the

sample has a non negligible demagnetizing factor, therefore the penetrating field is given by

Hp = (1 − N)Hc1. With the calculated demagnetizing factor N = 0.48, the lower critical

field is about the double of the measured penetrating field.

Previously, magnetization measurements were carried out on polycrystals by Jaccard et

al. [216], and Palstra et al. [217] and on a single crystal (H ⊥ c) by Amann et al. [206]. Their

hysteresis curves are slightly different from ours: smaller maximal magnetization values

and smooth flux penetration (a kink around -6 mT is present in our curve of fig. 4.6(a)).

Qualitatively the virgin curves are in good agreement, although quantitatively Hc1 does not
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agree with them. This difference likely comes from the locality of our probe. However,

complete hysteresis cycles should be measured at different temperatures and at different

domains to confirm the reproducibility.
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Figure 4.6: In panel (a), the local magnetization after ZFC and ramping up the field to
17.5 mT, then down to -17.5 mT and back up to 0 mT at a rate of 50 µT/s at 350 mK. µ0Hp

is the penetration field, at which the slope of M(H) curve after ZFC shifts from -1. This
is presented in the inset with the cyan dashed guidelines and µ0Hp in the red star. After
calculation Hc1 taking into account the demagnetizing factor (N = 0.48), the lower critical
field curve is plotted in panel (b) as a function of the reduced temperature, along with the
results of Zhao et al. [122] and Vincent et al. [123].

The measured values of µ0Hc1 are plotted as a function of the normalized temperature

in fig. 4.6(b), along the data of Zhao et al. [122] and Vincent et al. [123]. Our data are in

good agreement with the results of the latter. In addition, both groups reported a kink at

a certain temperature below Tc (between 50 mK [123] and 150 mK [122]), which should be

related to the A-B phase transition due to a change in the condensation energy. However,

our data are not dense enough to detect it.

4.3 A vortex: quantification and penetration depth
Quantification of flux

In a typical type-II superconductor, the magnetic field induces vortices with one Φ0. I
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studied the temperature dependence of an isolated vortex (see fig. 4.7(a)). At the lowest

temperature (300 mK), the amplitude is the greatest and the spreading of the structure is

the smallest, therefore, the flux contained in the structure could be quantified by integration

of the magnetic field for different circular Region of Interest (ROI) centered at the structure.

The evolution of the flux as function of the size of the ROI is presented in fig. 4.7(b). As the

ROI size increases, the magnetic flux tends to approach asymptotically one Φ0, however, it

does not saturate at this value as the vortex flux extends beyond the range of the image.

Penetration depth

The temperature dependence of the penetration depth can be described by λ(t) =

λ(0)/
√

1− F (t) [218], where t = T/Tc is the normalized temperature, F (t) is a temperature

dependent integral which contains information about gap structure and density of states,

and λ(0) is the extrapolation of the penetration depth at t = 0. In an isotropic BCS case

F (t) = t4 [23, 219, 220], but the presence of zeros in the superconducting gap can result

in behaviors described by other powers F (t) = tn. This dependence is usually measured

at low temperatures (t � 1), where this behavior is approximately described by λ(t) ≈

λ(0)(1+F (t)/2). Some reported low-temperature measurements are collected in tab. 4.1 and

show linear [218, 221, 222], squared [218, 222–225] or close-to-4th/4th order dependence [222,

226, 227]. The linear behavior was likely caused by the gap symmetry in the ab plane while

the squared behavior has unclear origin. The close-to-4th and 4th order dependence was

addressed to the effect of the frequency of the Tunnel Diode Oscillator technique (TDO) [222,

227].

For each temperature, a monopole distribution with near-field correction (see appendix C)

was fitted with the penetration depth as the only free parameter (the flux inside being con-

firmed by flux integration). For instance, the fit of the profile at 300 mK is presented in

the inset of fig. 4.7(b). In our case I measured the magnetic field profiles for temperatures

t > 0.6 (T > 300 mK), which are presented in fig. 4.7(c). The data is well described by

the complete expression with an exponent n = 4.05, Tc = 517 mK and λ(0) = 2.2 µm (see
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Figure 4.7: In panel (a), scans at different temperatures after the same ZFC procedure are
presented in a common color range with a scanning height of 350 nm. In panel (b), the flux
integration of the structure at 300 mK is presented as a function of the radius of the ROI
centered in the structure, RROI . The inset represents the fitting of the 300 mK profile. In
(c), the profiles across the maxima for different temperatures. In (d), the penetration depth,
λ(T ), obtained by fitting the profiles of (c) with the monopole distribution with a near-field
correction [195]: bz(r, T ) = Φ0/2π(z+ 1.27λ(T ))/(r2 + (z+ 1.27λ(T ))2)1.5 (see appendix C).
The red line is the fit of λ(T ) = λ(0)/

√
1− (T/Tc)n, with parameters n = 4.05, Tc = 517

mK and λ(0) = 2.2 µm. In the right axis, the maximal field of the vortex is plotted as a
function of the temperature. A phenomenological fit (Bmax = Bmax(0)(1− tn)) is presented
in cyan with parameters n = 5.97, Tc = 525 mK and Bmax(0) = 38 µT.
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λ(0) (µm) n Technique Ref.
2.3 1<2 Ultrasounds [218]
2 1 Mutual inductance [222]
2 2.5-3.7 Tunnel Diode Oscillator [222]

0.62 2 SQUID-magnetization [223]
1.9 2 DC-magnetization [224]
0.9 4 Tunnel Diode Oscillator [227]
0.6 - Small Angle Neutrons Scattering [228]
0.78 1.3 Neutrons diffraction [229]
0.57 1 Neutrons diffraction [230]

Table 4.1: Penetrations depths at T = 0 and the exponents n measured/estimated by the
respective authors. Some of these authors measure various field directions or several samples,
the values presented in this table correspond to the closest configuration to our experiment.

red line in fig. 4.7(d)). The critical temperature is in good agreement with the the mea-

surements of specific heat and susceptibility presented in fig. 4.2. The measured exponent

is close to the ones reported by Signore et al. and Gannon et al., both measured with the

TDO technique (frequency of the order of MHz).

The literature reports a wide range of penetration depth: 0.6-2.3 µm, which strongly

depends on the technique: 0.6-0.9 µm for µSR or neutron-based techniques [229], and 1.6-

2.3 µm for inductive techniques [218, 222–224, 227]. The extrapolation of λ at T = 0 lays

among the latter. This parameter can be also calculated from the lower critical field with

Hc1 = Φ0/4πλ
2 · log λ/ξ. Using µ0Hc1(0) = 13 mT and ξ(0) = 10 nm from ref. [231], we

estimate λ(0) = 280 nm, which is much lower than any value measured in the literature. This

underestimation of λ(0) was already reported by Vincent et al. [123]. The corresponding

overestimation of Hc1 could be related to strong resistance to vortex penetration due to the

flux pinning at DWs, as it was already mentioned by some authors [206, 209].

4.4 Half-Φ0 structures

Among the multiple scans, some structures with half of the field amplitude of single-Φ0

vortex were detected, as presented in the scan of fig. 4.8(a). The profiles of a single-Φ0
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Figure 4.8: In (a), a very low field cooling scan at 300 mK and a scanning height of 350
nm. We can observe an antivortex, some vortices and a half-Φ0 structure. Lines A and B are
profiles of one vortex and one half-Φ0 structure, which are plotted in (b). They are presented
along with a monopole profile with similar parameters, except for the flux contained in the
structure. In (c) and (d), two histograms of the maximal field of structures at two different
temperatures: 300 mK in (c) and 475 mK in (d). They correspond respectively to B- and
A-phases.
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vortex (line A) and a half-Φ0 structure (line B) are plotted in fig. 4.8(b), along with the

curves of monopoles with the same penetration depth and same height.

In order to study this, some statistics were carried out: alternating scans at 300 mK (B-

phase) and 475 mK (A-phase) after ZFC (field after compensation is∼5 µT). The histograms

collect the amplitude of every structure in the scans, and they are presented in fig. 4.8(c)-(d)

for each temperature respectively. At 300 mK (fig. 4.8(c)), an important peak is present

around 38 µT, which corresponds to the amplitude of single-Φ0 vortices. Above this peak,

we find overlapping vortices, and below there is a smaller group, with half the amplitude of

the main peak (19 µT), i.e. a half-Φ0 structure.

Thanks to the tracking of the maximal field of a vortex with the temperature (presented

in fig. 4.7(d)), the peak centered 17 µT in the histogram at 475 mK (fig. 4.8(d)) corresponds

to single-Φ0 vortices at this temperature. There are some higher values, but no lower. This

result tends to confirm the existence of half-Φ0 structures in the B-phase.

Dynamics

In analogy with the vortex in fig. 4.7, I attempted to isolate one half-Φ0 structure and

Figure 4.9: Scans after very low field cooling. From 325 mK to 350 mK, one vortex splits
into two half-Φ0 structures and then, at 375 mK, they have recombined.

follow the temperature behavior. This structure should not be stable in the A-phase, thus

disappear/mixing into a single-Φ0 vortex when crossing the A-B phase transition. Although

this was not possible, I found the splitting of a vortex into two half-Φ0 structures and the
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later recombination into a single-Φ0 (presented in fig. 4.9). The sample was cooled in zero

field. I measured the evolution increasing the temperature, which was risen in steps of 25 mK

without surpassing the set point more than 1 mK. At 325 mK (see fig. 4.9 left), we only have

some vortices, but at 350 mK (see fig. 4.9 center), one of them is split in two structures, in

addition of the new ones that entered our scanning range. At 375 mK (see fig. 4.9 right), the

half-Φ0 structures have reorganized in single-Φ0 vortices again. Note that half-Φ0 structures

form a single line, and after merging vortices are align in the same line, while the other

vortices didn’t moved. This process of splitting-joining was already predicted by Sigrist et

al. [208]. However, another possible scenario is that both structures are close enough that

our SQUID cannot resolve them, nor detect any deformation of circular symmetry, typical

for a vortex3.

4.5 Measurement of chiral domains

In conventional type-II superconductors, vortices form a regular lattice when the vortex-

vortex interaction is stronger than the vortex pinning. However in a chiral superconductor

the energetic ground state is degenerate as introduced in sec. 4.1, thus, two domains can

be expected. Within a given domain, superconductivity should behave as a typical type-II

superconductor. The global superconducting state can either be formed by only one domain,

or by domains of different chirality coexisting in the superconductor separated by DWs.

Formation of domains

The scans presented in fig. 4.10 were taken while cooling down with an applied field of

-400 µT. In the A-phase, we observe irregular arrangement of flux, probably due to the small

contrast. But as we cool down to the B-phase, the flux spontaneously forms a continuous

line, which we attribute to be placed at the location of a DW. At the lowest temperature, the
3 The simplest representation of a vortex in an isotropic superconductor has cylindrical symmetry,

however, this is no longer true in more complex cases such as materials with anisotropy in the penetration
depth or when the applied field is oblique with the surface [232]. UPt3 shows round vortices.
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DW becomes the best defined. Above and below this line, we identify individual vortices,

small round flux structures which repel each other, as expected for a single ground state

superconductor. On the other hand, in the vicinity of the DW the flux is more concentrated,

forming accumulations and depressions (with respect to the mean field).

In particular, in fig. 4.10(e), we have that the mean field in the whole image and in

the ROI inside the white box correspond to the applied field. This implies that the mean

field in a single phase and in the vicinity of a DW correspond to the applied field, thus,

the accumulation/depression of flux compensate themselves. Within the measurement error

and within our field range, the single domains do not present a finite magnetization as

theoretically expected [208].

From this figure, the currents at the origin of this field distribution could be deduced by

applying the Ampère’s circuital law (∇×B = µ0j). In fig. 4.10(f), j has two bright lobes,

which seem separated by a line with no current. This line seems to define the DW, placing
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Figure 4.10: Scans with -400 µT applied field before cooling down at a scanning height
of 350 nm. The scans were taken decreasing the temperature (from the A-phase to the B-
phase). Between 450 mK and 440 mK, a sinusoidal domain wall appears, which creates an
unusual arrangement of the magnetic flux. At the coldest temperature (250 mK), the mean
field of the whole scan matches the applied field, and the mean field of one of the two chiral
phases (white ROI). 89



one lobe of current density in each domain. This can be easily observed in the jx map of

fig. 4.10(g) and in the jy map of fig. 4.10(h). The current in each lobe flows in a different

direction, diverging from (x, y) = (30, 25). This could be related to the change of relative

phase at the domain wall, indicating that the currents flow depending of the gradient of the

phase: chiral currents.

Most of the scans acquired after cooling in fields between in 0.1-1 mT present DWs and

the domains sizes vary from 20 µm of diameter (see fig. 4.11(a)) to larger than our scanning

range. This implies that the domains can be small enough to sometimes fit completely

within our scanning window, thus, many domains are formed over the entire sample. This is

in contradiction with remarks from several authors, who claim that samples of similar size

are single domain [73, 74, 124, 135, 233]. Theoretically, the field should favor the domain

with parallel magnetization [212], however, in our field range we only observe the magnetic

decoration of the vicinity of the DW when H > Hc1 (see appendix D.1).

Domains at lower temperatures

In fig. 4.10, I show the arrangement of magnetic flux while crossing the A-B phase

transition. However, this transition happens at relatively high temperatures T/Tc ≈ 0.9,

thus, the superconductivity is expected to evolve as the robustness of the superconducting

state increases with decreasing the temperature. This can observed in fig. 4.11, where

the temperature is increased in panels (a)-(b) and decreased in panels (c)-(d). At low

temperatures UPt3 seems to hold the flux in small domains, such as in fig. 4.11(a) and (d),

while at higher temperatures domains may release it as observed in fig. 4.11(b)-(c). Each

set of images (fig. 4.11(a)-(b) for increasing temperature and fig. 4.11(c)-(d) for decreasing

temperature) are from independent cool downs and the presented scans were taken one after

another one (one hour apart).

We could expect this to happen at the A-B phase transition, however, this happens at

lower temperatures, which means that temperature plays an important role in the equilib-

rium between vortex repulsion and pining of vortices on the DW.
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Figure 4.11: Scans measured while warming up (at 350 mK in panel (a) and at 400 mK
in panel (b)) after cooling down in 370 µT applied field . The flux is further reorganized:
circular domain has opened.
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Interaction between domains

Theoretically, the energy of the DW is minimized for certain values of the relative phase

between domains [208, 209]. In superconductivity we have rarely access to the phase of the

order parameter, however, in the B-phase of UPt3, the relative phase has a direct impact on

the magnetic flux distribution, i.e. fractional flux structures. The measurements presented

in fig. 4.12 suggest that the relative phase between domains may further define the flux

organization on the DW.

0 20 40

x (µm)

0

10

20

30

y
(µ
m
)

(a)
250 mK 400 µT

0 20 40

x (µm)

0

10

20

30

y
(µ
m
)

(b)
400 mK 400 µT

0.32

0.36

0.40

0.44

B (mT)

0.36

0.38

0.40

0.42
B (mT)

Figure 4.12: Scans at 250 and 400 mK, after different 400 µT FC.

In the two scans of this figure (the B-phase after different 400 µT FC), we can clearly

observe that the amplitude of the flux decorating the DW oscillates within the DW. This

can also be observed in fig. 4.10(e). This effect may be produced by the interaction of the

domain’s wavefunctions, which is reflected as an oscillation of the relative phase and its

direct magnetic signature. In addition, we observe in the lobe of (x, y) = (55, 13) that the

period is noticeably longer, which may indicate that the oscillation depends on the curvature

of the DW (domain compressibility). The periodicity of this modulation also depends on

the magnetic field and probably on the temperature, however, this needs further study.

Hints for the domain wall

Fractional structures are expected to sit at the DWs, however, this link was not verified.
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On the other hand, antivortices were also often found at very low fields, which sometimes

they arrange with a vortex in a dipole such as the one presented at (x, y) = (8, 31) in

fig. 4.9 left. In fig. 4.9 center, half-Φ0 structures and this dipole seem to form a line. In

appendix D.1, I present the dependence of the field distribution at constant T after ZFC.

These results also could indicate that coupled dipoles may hint the position of DWs at very

low fields.

4.6 Conclusion and outlook

In the case of a superconductor with a complex order parameter, the ground state is

degenerate with two possible states of different chirality, which individually break TRS.

Using the microscope, I confirmed their coexistence in form of domains, revealed by flux

decoration of DWs separating them. In the limit of the SQUID microscope’s resolution, the

flux is conserved in a single phase but also in the vicinity of a DW, this contradicts the

local net magnetization of the domains predicted by some authors [208]. The heterogeneous

distribution of magnetic flux can only be explained by the existence of an unusual current

distribution flowing around domains: chiral currents.

Local magnetization measurements showed that µ0Hc1(T ) is in good agreement with

Vincent et al. [123], however, we could not observe the kink in the A-B phase transition.

The quantification of a single-Φ0 vortex allowed us to study the temperature dependence

of the penetration depth in the range from 300 to 500 mK. It follows the usual behavior

λ(T ) = λ(0)/
√

1− (T/Tc)4 [23, 219]. The extrapolated value of λ(0) lays within the range

of reported values, but is one order of magnitude larger than the one deduced from Hc1.

Thanks to the quantification of a single-Φ0 vortex, half-Φ0 structures were detected in

the B-phase. This confirms the broken TRS in the B-phase [209]. Other fractional values

were not detected, but they’re not excluded. Furthermore, the splitting and recombination

of a single-Φ0 vortex into two half-Φ0 structures were observed to happen spontaneously

or through minimal thermal activation. Fractional magnetic structures are expected to sit
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at the DW, however, this link remains to be confirmed. Instead, the pinning of vortex-

antivortex dipoles may hint the position of a DW.

The anomalous flux distribution around DWs and half-Φ0 structures are first direct ob-

servations of predictions based on the interaction of two degenerate chiral domains in a TRS

breaking superconductor.

In order to gain insight in the anomalous value of Hc1(0), precise local susceptibility

measurements could be performed at different spots of the sample, varying the distance to

the sample’s edge. If the overestimation of this parameter is caused by the magnetic flux

pinning due to DWs, it would be reflected in the local susceptibility.

The measurements presented in this chapter correspond to scans above the ab crystallo-

graphic plane and H ‖ c. A similar analysis above an ac plane would shed light on the open

question of the strength of the spin-orbit coupling of the order parameter. The application

of the magnetic field in a different direction with respect to the crystallographic axis would

also be instructive, as DWs may or may not follow the field. The corresponding results

would be related to the question of pinning of the d vector to a given crystallographic axis,

i.e. strong versus weak spin-orbit coupling.

The size of a domain is presumably very dependent on the quality of the crystal. The

measurement of smaller samples, like whiskers, may be interesting, because they may harbor

a single domain. However, this experiment is quite challenging in our setup.

The injection of electrical current would modify the dynamics of DWs at least due to the

Lorentz force. The injection of currents in a setup such as the one from ref. [73] in addition

of SSM would certainly reveal interesting DW dynamics.

Both STM and phase-sensitive transport measurements could explore the nature of the

DW junction. However, STM experiments rely on the presence of the superconducting con-

densate at the very surface of the crystal and phase-sensitive transport measurements would

need to control the DWs, which makes these experiments difficult. To our knowledge no
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STM experiments have succeeded to image vortices in this compound.
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Chapter 5

Shunted SQUIDs

Hysteretic SQUIDs (current aluminium SQUIDs) become normal whenever the current

exceed the critical current. The current measurement method presented in sec. 2.1 switches

off the current in a time of the order of the tens of ns. In this time, the high resistivity of

the junctions combined with the bias current heat sufficiently to bring the whole SQUID in

the normal state [234]. Therefore, for each measurement, the superconductivity is totally

broken and in order to come back to the superconducting state, the bias current has to be

set to zero. This method is rather ineffective and slow (<1 kHz).

The solution proposed are shunted SQUIDs (shSQUIDs) [235–240]. The general idea

behind is redirecting the current when the junction becomes resistive in order to avoid the

heating of the junction. More precisely, shunting the superconducting layer with a metal

creates an alternative path for the current. When the applied current exceeds the critical

current, it will rather go through the metal layer, which has lower resistance than the junc-

tion itself in the resistive state. This will reduce the heating and the transition will become

smoother, thus, an alternating current (AC) could bias the SQUID in a quasistationary

regime, i.e. each current period allows the SQUID to cool down enough so that the readout

is not distorted from period to period [240]. Finally, the ideal situation would be a transition

smooth enough so that we could bias with a voltage and measure the Josephson current.
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5.1 State of the art

Up to today, only the hysteretic microbridge based Al SQUIDs have been used in our

magnetic microscope. However some other groups succesfully fabricated non-hysteretic Nb

SQUIDs with a restricted temperature range between 5 to 9 K [236–238]. Hao et al. [238]

developped their shunted SQUIDs using Focused Ion Beam (FIB) and reached a noise level

0.2 µΦ0/
√

Hz. Other groups approached the problem by shunting the SQUID inductively,

leading to non-hysteretic behaviors with intrisically hysteretic devices [241].

D. Hazra worked on the developpement of shunted Nb SQUIDs in our group, and

achieved hysteretic SQUIDs but readable with a periodic signal, thus, the readout elec-

tronics can be greatly simplified to the use of a lock-in amplifier.

On a bare Si(100) wafer, a bilayer of 80 nm of W and 25 nm of Nb was deposited in-situ,

using the magneto-sputtering technique. The SQUIDs were shaped using standard Electron

Beam Lithography (EBL) and Reactive Ion Etching (RIE). SF6 gas was used during RIE,

which reacts with Nb and W, therefore, a mask of Al was previously deposited in order to

protect the Nb and W of the SQUID pattern as sketched in fig. 5.1. By controlling the RIE

time, one can control the thickness of the W layer, namely the shunting resistance. The

SQUIDs were hysteretic at low temperatures, nevertheless, a clear and systematic V (Φ)

modulation was found while biased with fixed currents above Ic. The devices could be

operated within the temperature range of 230 mK to 1.5 K, and they modulated up to a

field of at least 20 mT (limited by the power supply of the coil).

Fig. 5.1 shows the respective schematics of the SQUID where the W layer outside the

structure has been etched partially (see fig. 5.1(a)) and where the layer has been completely

etched (see fig. 5.1(b)). The reported devices had an inner size of 2x2 µm2, the length and

width of the bridges were ∼ 50 nm, as presented in fig. 5.1(c). He focused on SQUIDs with

different W thickness, which were studied in a wide range of frequencies (13 Hz to 250 kHz).

However, the data here reported were acquired at a reference frequency of 1117 Hz.

The resistance as function of the temperature were measured below 8 K for three samples
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Figure 5.1: A schema of the bilayer W-Nb SQUIDs with the mask of Al. (a) W layer is
partially etched during RIE, i.e. it has some remanent W film outside the SQUID pattern,
(b) W layer has been completely etched, i.e. it has no remanent W film outside the SQUID
pattern. For simplicity the Si wafer is not shown in the drawing. (c) The Scanning Electron
Microscope (SEM) image of a SQUID. Figure made by D. Hazra.

Figure 5.2: The resistance as a function of the temperature below 8 K for three samples:
partially etched (S1 and S2) and totally etched (S3). Figure is reused from ref. [242].

with a lock-in amplifier and the results are presented in fig. 5.2. The onset of the supercon-

ducting transition for the microbridges occurred around 2 K. Samples with partially etched

W layer (S1 and S2) had a lower resistance than the ones where the W layer was totally

etched (S3). The transitions were quite sharp, but there’s an unexplained peak just before

the transition and a resistance floor of 10−2 Ω, which is not attributed to the noise limit of

the given voltage range of the lock-in amplifier.
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Figure 5.3: (a) The characteristic V (I) curve for S3 at 250 mK. The arrows show the
direction of current sweeps, which confirm hysteresis. (b) The variation of the critical current
as a function of applied magnetic flux. The Φ has been normalized with respect to Φ0. Figure
is reused from ref. [242].

In fig. 5.3(a), we observe the hysteresis in the characteristic V (I) curve of the SQUID

S3 at 250 mK. The hysteresis is detected for every sample at low temperatures. For par-

tially etched SQUIDs, the hysteresis disappears between 1-1.2 K, whereas for totally etched

samples, the hysteresis remains present till 1.5 K. This confirms the role of W layer as good

shunting material.

In fig. 5.3(b), the variation of the critical current of S3, Ic, as a function of magnetic

flux, Φ, is observed. The crossing of the two branches of Ic and the triangular shape of Ic(Φ)

indicate that the overall superconducting properties of the device are controlled by Nb and

not by Al [243].

In shSQUIDs, the voltage output is also periodic in flux. In fig. 5.4(a), the modulation

of S3 is presented for various bias currents at 250 mK. The sensitivity of the SQUID is given

by the derivative of the curve V (Φ). The sensitivity with a bias of 11.2 µA can be observed

in fig. 5.4(b). The maximum field sensitivity is around 1.5 mV/Φ0.

The noise level was estimated using the Fast-Fourier-Transform (FFT) of the output

voltage sequence. The experimental setup reaches the white noise floor at 5 Hz with a value

of SV (f) = 10 nV/
√

Hz, which is probably the limit of the room temperature bias resis-
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Figure 5.4: (a) The voltage modulation as a function of externally applied flux Φ at 250
mK for S3 for three different bias currents. (b) In black (left axis), the curve V (Φ) for 11.2
µA of bias current presented in (a), along with the voltage sensitivity of the latter (blue curve
in right axis). The current and voltage magnitudes referred here are in rms unit. Figure is
reused from ref. [242].

tor. The flux noise of a SQUID can be estimated using the sensitivity, presented in blue in

fig. 5.4(b). With a maximal value of 1.5 mV/Φ0 for the sample S3 at 1 K, the maximal flux

sensitivity that could be reached in these conditions is SΦ(f) = 6.7 µΦ0/
√

Hz, however the

obtained sensitivity is more than one order of magnitude lower: SΦ(f) = 50µΦ0/
√

Hz [242].

To sum up, we shall highlight the following results:

• SQUIDs present hysteresis at low temperatures, however, they are readable with an

AC signal up to 250 kHz at least. This implies faster reading and great simplification

of the electronics.

• The resistance of totally etched SQUIDs is around 100 Ω for his SQUID design. The

sensitivity of the SQUIDs was measured to be 1.5 mV/Φ0.

• The modulation is mainly governed by the Nb SQUID.
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5.2 Points to consider

• Shunting a superconductor with a metal implies several things. (i) The current will

go through the path of least resistance, thus when the superconductivity is broken,

the current will go through the metal. (ii) The possible heat produced by the current

and the non-zero resistance will spread out easier than without the shunting. (iii) Due

to proximity effect, the superconductor electron density increases, which is directly

related with the reduction of the critical superconducting parameters: Ic and Tc [244].

Current Al SQUIDs have a Tc = 1.2 K and Ic(0) = 70 µA, shunting them

would result in a lower Tc and Ic, which is undesired for measuring. Nb

SQUIDs, with a Tc = 9 K and Ic(0) ∼ 1 mA, seem more propitious for being

shunted, usually with tungsten1.

• The high resistance of the junctions cause enough heating to turn the whole hysteretic

SQUID resistive. Current scanning SQUIDs have a junction resistance of 100 Ω. The

goal is shunting the junction to reach 1-10 Ω. However, as the SQUID

is current-biased, a balance has to be determined because the higher the

resistance the higher the voltage difference measured.

• Another important task is to find the limiting factor of the sensitivity. The noise of

the current Al SQUIDs is SI ∼ 8 nA/
√

Hz, which corresponds to a noise of 1 µV/
√

Hz

at the SQUID, whereas the Nb shSQUIDs from previous work were measured in a

setup with a floor noise of SV = 10 nV/
√

Hz. Therefore, the analysis of noise is

mandatory in order to improve the sensibility of our probes.

One of the most ubiquitous noise sources is the Johnson-Nyquist noise. The voltage
1 The critical current depends on the flux going through the loop but also on the temperature. The

lower t = T/Tc, the more insensible the critical current is to temperature variations. For example, given
a Ginzburg-Landau dependence Ic(t) ∝ (1 − t)3/2 [23, 145, 245], a variation of 1 mK at 300 mK in an Al
SQUID would result in a variation in critical current of 0.1% of the modulation. In a Nb SQUID the same
variation of temperature at the same temperature would give a variation in the current of ∼0.02% of the
modulation.
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noise, Sthv , is given by

Sthv =
√

4kBTR (V/
√

Hz) (5.1)

where R is a resistance and T its temperature. In the current scanning SQUIDs, the

main source of thermal noise is the room temperature bias resistor (Rbias = 25 kΩ):

Sthv = 20 nV/
√

Hz, which gives a current noise of SthI = 0.8 pA/
√

Hz. Another known

source of noise comes from discretization of the charge, called shot noise:

SsI =
√

2eI (A/
√

Hz) (5.2)

where e is the electron charge and I the current. In our SQUIDs, this source con-

tributes with SsI = 5 pA/
√

Hz. Another source comes from temperature instabilities

of the refrigerator, which impact the critical current of SQUID. Fluctuations of the

order of 100 µK/
√

Hz at 300 mK gives an error of critical current of 7.5 nA/
√

Hz

2, which seems of the order of magnitude of the current noise found in the scanning

SQUIDs. In order to fully take advantage of the low intrinsic noise of the SQUIDs,

the temperature must be stabilized.

In order to transform it to flux noise we have to take into account the self-induction

of the SQUID and the sensitivity of the SQUID (slope of the Ic modulation arcs).

For the current scanning SQUIDs (see fig. 2.1 right), the self-induction is L = 2 pH

and the slope is ∂Ic/∂Φ = 43− 125 µA/Φ0. Therefore, considering a current noise of

SI = 8 nA/
√

Hz, the noise in flux due to the self-induction is SsiΦ = 8 µΦ0/
√

Hz and

due to the sensitivity of the SQUID is SsensΦ = 0.2 − 0.6 mΦ0/
√

Hz. The first one is

negligible in front of the second one, which limits the whole sensitivity of the device.

One last noise source to consider is the magnetic noise, SB, which comes from different

sources such as bad-screened electronics, radio-frequency devices, coil driving current,

etc. Although I didn’t measure this noise in detail, the dispersion of measurements
2 This value was estimated from a Ginzburg-Landau behavior: Ic(T ) = Ic(0)(1−T/Tc)1.5 [23, 145, 245].

With the conditions mentioned, the obtained error is 0.01%, which for Ic(0) = 70 µA results in a noise of
SI = 7.5 nA/

√
Hz.
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above a superconductor and above a no superconductor are similar. Thus, magnetic

noise is not an important contribution to the measured noise, at least in the low

frequency regime. To transform it into SΦ we would need to multiply SB by the

effective area of the SQUID loop.

5.3 Methods

5.3.1 Fabrication

Shunted SQUID samples consist of a bilayer of 80 nm of W and 25 nm of Nb, with an

Al mask of 20 nm. The bilayer was grown in-situ by E. André (Néel Institut - CNRS, now

LP3 - CNRS) using the magnetron sputtering technique. At a pressure of 10−3 mbar and

390◦C, the tungsten was deposited at a rate of 1.1 Å/s and the niobium at 1.7 Å/s in the

same vacuum.

The SQUID patterns were shaped using standard EBL and thermal evaporation for the

deposition of the Al mask. Then, the RIE was applied to the trilayer and it was stopped at

the beginning of the W layer. T. Crozes heavily worked in the analysis of the effects (etching

speed, anisotropy, ...) of the different RIE programs (SF6 with or without alternance of SiN,

use or not of O2 plasma, ...), which affect directly to the sizes and quality of the microbridges

and the thickness of tungsten layer. The smallest microbrigdes were 25 - 30 nm large and

the W layer thickness ∼75 nm. The rest of the lithography work was also done by T. Crozes

(Néel Institut - CNRS).

Finally, in order to be closest to the scanning configuration, the SQUIDs were as deep

etched as the scanning SQUIDs by A. Barbier (IRAM - Grenoble).

5.3.2 Measurements

Cryostat

Measurement of these SQUIDs were made in other cryostat than the one presented in

sec. 2.2. The SQUIDs can be cooled down to 200 mK. The temperature is measured and
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controlled by a TRMC2.

Figure 5.5: The voltage sources are the NI-USB 6259 for the direct current (DC) and
the Signal Recovery 7265 DSP lock-in amplifier for the AC signal. Each signal has a bias
resistor before entering in the cryostat. There is also a switch for every wire before they go
down to the SQUID chip. Samples are measured with the 4-point resistance method. The
EPC1-B amplifies differentially the output signal before the lock-in amplifier. The control
and read-out of both devices are made through the computer. Another output of the NI-USB
drives the current source for the resistive coil.

Electronics

There are 12 twisted pairs of wires for measurements with π filters [246] just before the

connection to the sample holder. The sample holder has 24 golden pins to microbond the

SQUID samples.

The field is applied by an external resistive coil controlled by a homemade current source,

commanded with the NI-USB 6259. All the samples are placed on the center of the coil, so
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Figure 5.6: Schema of the three AC methods: (a) DC is zero, and the AC covers the
Ic > 0 and the Ic < 0 transitions resulting in a symmetric modulation. In (b) IDC sits on
the middle the Ic(B) modulation, with an AC signal that covers the whole Ic(B) modulation.
In (c), IDC sits just above the maximal Ic(B) with an small AC, which results in the RAC

measurement.

that they all see the same field.

All the measurements presented in this chapter were carried out in current bias, with

the bias resistors at room temperature. The measurement circuit is presented in fig. 5.5:

1. The AC signal was created by the internal oscillator of the Signal Recovery 7265 DSP

lock-in amplifier.

2. A direct current (DC) signal can be added, which is created by NI-USB 6259. This

device also creates the voltage to control the current source driving the coil.

3. Room-temperature bias resistors convert the voltage signals into current.

4. The signal goes through the SQUIDs.

5. The output is connected to the ground and to the amplifier EPC1-B, which makes a

differential amplification as sketched in fig. 5.5. For the first experiments the 4-point

measurement is carried out at the microbonding pads level, and for the presented

results, it is carried out within the chip.

6. The output of the amplifier enters the lock-in amplifier.
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The lock-in, NI-USB and TRMC2 are controlled and read with the computer.

Depending on the DC and AC injected in the SQUID, we could imagine three different

regimes sketched in fig. 5.6. The first method (a) consists of measuring with only an AC

(see fig. 5.6(a)), the signal oscillates from negative to positive voltage and viceversa. As

presented in appendix A, the Ic(Φ) arcs of these SQUIDs are tilted to one side (asymmetric

modulation) and by permuting the injection and ground pads, the modulation curve tilts to

the other side. In this case, the lock-in integrates the values of the critical current when is

positive and when it’s negative, therefore the asymmetry of the SQUID’s modulation curve

is averaged and the corresponding amplitude is reduced.

When IDC is injected along with an IAC , we have two scenarios. The method (b) consists

of IDC sitting on the middle the Ic(B) modulation, with an AC signal that covers the whole

Ic(Φ) modulation as sketched in fig. 5.6(b). This method preserves the asymmetry of the

Ic(Φ) curve and is more sensitive than the method (a). In the method (c), IDC sits just

above the maximal Ic(Φ), with a small AC signal. The result is the slope of the V (I) curve

at IDC , namely the resistance. It would be really sensitive at the transition, however, the

modulation amplitude decreases rapidly when we move away from the transition. Further-

more, as the amplitude is proportional to the input signal, the output will be much smaller

than previous methods.

The temperature dependence of the critical current was measured with AC amplitude of

1 µA. The measurements of R(T ) were done with IDC = 0. The V (I) curves presented in

the sec. 5.4 were measured with IAC = 0 and the modulation curves RAC(H) were measured

with method (c). All of them were measured with a 4-point resistance method, in particular,

for the results presented in next section the 4-point measurement happens within the chip.
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5.4 Results

All the samples used in the following experiments have the same initial thicknesses of

the recipe of D. Hazra: 80 nm W, 25 nm Nb and 20 nm Al. However, the W layer was left

mainly untouched (70 - 80 nm of thickness).

Figure 5.7: First set of shSQUIDs measured after they were RIEed and some of them
FIBed. The clearest parts is the Al mask, the darker grey is the W layer. Even darker grey
(all around Al masks in the left and right images) is the Si wafer. The size of each image
is 120x90 µm2.

First shSQUIDs that I measured had a Tc around 7 K, but also a parasitic resistance in

the superconducting state (∼ 0.1 Ω) and very low sensitivity (∼ 0.1 µV/Φ0). A large shunt

was suspected to be the reason. To resolve this problem, the shunting between the current

lines in the chip was cut: the unshunting lines were fabricated with RIE until ∼15 µm from

the SQUID loop and some of them were also continued with FIB until 300 nm of the SQUID

loop. Results confirmed the hypothesis but FIBed SQUIDs couldn’t be compared due to

technical problems3 (see fig. 5.7).

Next set of measurements were done with a new design of SQUID (see fig. 5.8). In pre-

vious measurements, the 4-point measurement was done in the microbonding pads, whereas

now it is done in the device itself, at ∼450 µm of the loop (indicated with an arrow in

fig. 5.8(a)). The goal of this modification is to remove the parasitic superconducting resis-

tance, because we remove the microbonding resistance and the circuit between the 4 points
3 The RIEed and FIBed SQUIDs were the same SQUIDs as previous measurements. The edges of

the deep etching prevented the lithography resist to spread uniformly, which is directly related to the low
controllability of the RIE. In next SQUID fabrication, the separation of the current lines with RIE was
carried out before the deep etching step.
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(a)

(b)

(c)

Figure 5.8: The two versions of a chip of shSQUID with inner loop surface of 1 µm2. In
(a) we observe the 4 pads (blue) to measure with the 4-point probes method. They joint into
2 current lines at ∼ 450 µm of the loop (indicated with an arrow). Brown lines are the paths
of the RIE for unshunting the current lines. White is the W layer. The light grey is the Si
wafer after deep etching. In (b), the pattern of the parallel current lines (PaCL) and in (c)
the pattern of perpendicular current lines (PeCL). They differ only in the part presented in
(b) and (c), the rest of the chip is similar. In (a), the width of the W layer is 640 µm and
the length of the same is 2.25 mm. In (b) and (c), the W layer width is 50 µm and length
to the contact-tip 39 µm.

is superconducting. Furthermore, in order to gain insight into the shunting behavior close

to the loop, two different patterns for the current lines were studied: parallel current lines

(PaCL) sketched in fig. 5.8(b) and perpendicular current lines (PeCL) sketched in fig. 5.8(c).

For these new patterns, the unshunting lines etch with RIE (see brown zones in fig. 5.8)

were carried out after the Nb etching and before the deep etching.

Numerical analysis performed on COMSOL Multiphysics4 show the importance of the
4 The electrodynamics equations were solved in the stationary state for the SQUID geometries presented

in fig. 5.8(b)-(c). Blue paths were considered superconducting (square resistance of 1 mΩ for sake of the
simulation) and white regions had a square resistance of 3 Ω. In the simulation I took the situation where
the junction already transited, thus the resistance of the normal state is extremely large compared with
the W layer resistance that was not considered in the simulation. I examined the case with and without
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current lines separation, by comparing the cases with and without shunting lines. The

resistance of the latter is half the one with shunting lines (see figs. 5.9(a)-(d)). Therefore,

we can infer that the lack of unshunting lines in the whole chip has shunted excessively the

SQUID.

(a) PeCL separated with RIE. (b) PeCL not separated with RIE.

(c) PaCL separated with RIE. (d) PaCL not separated with RIE.

Figure 5.9: Stationary simulations in COMSOL Multiphysics of the voltage decay in the
two different configurations with or without unshunting lines. The square resistance of the
W layer was taken as 3 Ω. The superconducting layer square resistance was taken as 1 mΩ
for numerical sake. The dimensions are the same of the real SQUIDs. The input current is
1 A.

The resistive transition as a function of the temperature presents a very large transition

(1 K) in several steps as we can observe in fig. 5.10. This probably corresponds to inhomo-

unshunting lines (brown lines in fig. 5.8(b)-(c)) for each geometry. As the parameters are constant in the
simulation, an ampere of current was injected in one superconducting path and the other one was connected
to ground. I considered a realistic square resistance of 3 Ω for the W layer (at room temperature it is 5 Ω
and previous experiments measured a RRR of 1-2 for similar layers).
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Figure 5.10: Dynamic resistance as a function of the temperature for two shSQUIDs of
different geometry. IAC = 1 µA was applied while the samples were cooled with no applied
field.

geneities in the shunting layer or due to anisotropy of the etching below the Al mask. At

high temperatures the resistance is similar in both devices (∼65 Ω), at lower temperatures

(around 5.4 K) a plateau of resistance is measured with values of 0.4 and 0.3 Ω for the

PeCL and PaCL devices respectively. At lower temperatures, a last transition to the super-

conducting state happens, which is attributed to the microbridge transition. The residual

resistance of 40 mΩ probably corresponds to the thermal noise level of the room temper-

ature bias resistor (100 kΩ, however it is close to the digital noise of the lock-in amplifier

(10mΩ). Furthermore, the width of the transition is well reproducible as all the studied

samples (with different patterns and from different wafers) present the same smooth transi-

tion in several steps, however, the microbridges transition temperature varies from SQUID

to SQUID without relation to the geometry nor the wafer.

The characteristic V (I) curve of each SQUID was measured with a DC signal for different

fields5. One example of each geometry is presented: PeCL in fig. 5.11(a) and for PaCL

in fig. 5.11(b). For each SQUID, the V (I) curve is plotted for 4 different fields, which

correspond to the maximal and minimal critical current for positive and negative currents.
5 The amplifier for DC add itself an offset and a slope to the measured signal. For the results presented

in fig. 5.11, the offset and slope were subtracted so that the resistance is zero when superconducting.
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The critical currents lay between 100-200 µA and the results don’t show any Ic difference

between the geometries. Furthermore, both devices show small hysteresis of ∼2 µA. On

the other hand, the resistance in the normal state (0.45 Ω for PeCL and 0.25 Ω for PaCL)

distinguishes both geometries. These values are in good agreement with the simulations

presented in fig. 5.9. This confirms that the resistance measured in the SQUID is mainly

due to the W layer and it can be easily controlled by the proximity of the unshunting line

to the SQUID loop.

From the V (I) curves, we can estimate the modulation amplitude for current and voltage

bias. For the PeCL device, a DC bias at 210 µA results in voltage oscillation with amplitude

of 10 µV, and a direct voltage bias of 10 µV would result in current oscillation of amplitude

25 µA. For the PaCL device, a current bias of 155 µA results in voltage oscillations of 5 µV

and a direct voltage bias of 5 µV would result in current oscillations of amplitude 20 µA.

If they were measured with the method (c) (see fig. 5.6(c)), the amplitude in voltage

is the difference of dynamic resistances between the maximal and minimal Ic(B) times the

IAC : ∆V = IACbias∆R
AC . For the device with PeCL with bias currents of IDC = 210 µA and

IAC = 1 µA, the resistance varies from 0.9 Ω to 0.35 Ω, resulting in a voltage amplitude of

∆V = 550 nV. Similarly for SQUIDs with PaCL: with IDC = 155 µA and IAC = 1 µA, the

resistance varies from 0.6 Ω to 0.25 Ω, resulting in a voltage amplitude of ∆V = 350 nV.

The field modulation, RAC(H), of both geometries is presented in fig. 5.12 for different

DC bias, along with the respective sensitivities. The AC amplitude was fixed at 1 µA 6.

For the device with PeCL presented in fig. 5.12(a), the field modulation has an amplitude

of 270 nV for IDC = 220 µA 7. We observe that the amplitude and sensitivity (see right of

fig. 5.12(a)) importantly decrease as increasing the IDC bias. The maximal sensitivity for

this SQUID is 1.6 µV/Φ0 for 220 µA, three orders of magnitude smaller than the results of
6 The IAC bias is relatively large, however, I verified that the value of RAC(B) does not change for AC

values from 100 nA to 1 µA. As the signal is proportional to the IAC , I measured with 1 µA.
7 The amplitude of modulation depends on the proximity of the bias current to the maximal critical

current, which for this device is 208 µA. The estimation of the amplitude made in the previous paragraph
was 550 nV for 210 µA of DC bias. The same estimation for a bias of 220 µA is ∆V = IAC

bias∆R
AC ≈

1000 · (0.65− 0.35) = 650− 350 = 300 nV, which correspond with upper and lower limit of the modulation.
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(a) Perpendicular current lines (PeCL). (b) Parallel current lines (PaCL).

Figure 5.11: Characteristic V (I) curves measured with a DC bias at 250 mK for different
fields and for both geometries. The fields were chosen in order to minimize and maximize
the critical current for Ic > 0 and Ic < 0.

D. Hazra.

For the device with PaCL presented in fig. 5.12(b), 160 µA bias results in a modulation

with amplitude of 235 nV 8. For this SQUID, the maximal sensitivity is 0.9 µV/Φ0 for a

bias of 160 µA as we can observe on the right of fig. 5.12(b).

5.5 Conclusion

In the first place we identified the excessive shunting between the current lines. Conse-

quently I designed the new configuration where the 4-point measurement occurs in the chip

and all the current lines are separated with RIE grooves. Two geometries of current lines

were fabricated in order to modify the shunting resistance with the same W layer thickness.

Measurements have shown that the normal resistance of the microbridges is 0.25-0.45

Ω depending on the pattern of the current lines. These values were reproduced with sim-
8 The amplitude of modulation depends on the proximity of the bias current to the maximal critical

current, which for this device is 154 µA. The estimation of the amplitude made in the previous paragraph
was 350 nV for 155 µA of DC bias. The same estimation for a bias of 160 µA is ∆V = IAC

bias∆R
AC ≈

1000 · (0.45− 0.225) = 450− 200 = 250 nV, which correspond with upper and lower limit of the modulation.
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(a) Perpendicular current lines (PeCL).

(b) Parallel current lines (PaCL).

Figure 5.12: Characteristic V AC(H) curves measured with IAC = 1 µA and for different
IDC bias at 250 mK for both geometries. The minimal IDC was chosen as the first one to
modulate measuring every 10 µA.

ulations. Without fine-tuning the bias IDC , the maximal sensitivities achieved with these

SQUIDs are 0.9 and 1.6 µV/Φ0 respectively. Hazra’s SQUIDs had shorter junctions and

totally etched W layer. He measured a normal-state resistance of 100 Ω (200 times our

SQUID’s resistance), obtaining a sensitivity of more than two orders of magnitude. Fur-

thermore, V (I) characteristic curves present critical current of 100 - 200 µA, with a small

hysteresis, however, he had critical currents of 10 - 20 µA but larger hysteresis. These results
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compare SQUIDs with fully-etched and almost-not-etched W layers, which encourage the

further study of these devices in order to maximize the sensibility as a function of the shunt.

5.6 Outlook
Development of SQUIDs

The modulation amplitude of the measured devices (method (c)) is rather small, and

it’s directly related to the difference between the normal-state resistances of the maximal

and minimal Ic(B). A normal-state resistance of ∼ 10 - 100 Ω should be fabricated so as

to obtain a sensitivity of 100-1000 µV/Φ0. This resistance can be easily increased by more

etching of the W layer. Previous work of D. Hazra [242] support this hypothesis, however,

a balance between sensitivity and dissipation must be found.

Right now, some hysteresis is present as observed in V (I) curves from fig. 5.11, however,

we are able to measure quasistatically with current bias at f ≈ 1 kHz. Faster signals should

be studied to find the high-frequency limit for reading these SQUIDs.

Another important modification that must be done in Nb SQUIDs is shortening the

junctions. The modulation amplitude strongly depends on the ratio length of the micro-

bridge, S, over coherence length, ξ. As this ratio approaches 1, the modulation amplitude

increases [243]. Aluminium has a clean (dirty) limit coherence length of 1.2 (0.1) µm and

the Nb’s respective is 39 (17) nm [243, 247, 248]. As indicated in sec. 2.1, our microbridges

are 200 nm long and the ratios S/ξ are 0.5 for Al and 10 for the Nb, resulting in modulations

∆Ic/2I0 of 44% for Al and 5% for Nb. Another possibility of reducing this ratio is to grow

thicker Nb films, however, the critical current would increase too. A balance of sensibility

and dissipation should be studied, nonetheless, the latter shall not be examined right away.

Measurement of SQUIDs

In fig. 5.6 we have seen 3 differents methods to measure the SQUID. They should be

compared as they have advantages and inconveniences.
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• Method (a) loses the asymmetry of the SQUID’s modulation, the setup is the simplest

as we don’t need a DC source, but the amplitude of modulation depends strongly on

Ic.

• Method (b) keeps the asymmetry of the SQUID’s modulation and the amplitude of

modulation does not depend on the critical current.

• Method (c) keeps the asymmetry of the SQUID’s modulation and the amplitude of

modulation does not depend on the critical current. This method tries to exploit the

sharpness of the RAC(I) transition, however, the readout signal is proportional to the

IAC , usually small.

Another open question is whether to use current or voltage for biasing the SQUIDs. So

far, the current bias works fine for testing. If this bias is chosen for the scanning setup, the

implementation of a low temperature bias resistors should be considered in order to reduce

the thermal voltage noise at least S300K
v /S1K

v =
√

300 ∼ 17 times.

In order to bias in voltage, a small bias resistor should be placed in parallel with the

measuring shSQUID. The current amplifier should be put in series with the SQUID but

in parallel with the bias resistor as sketched in fig. 5.13. As current amplifier, a SQUID

array amplifier (SAA) is often used [238, 249, 250], because of the low impedance input and

low current noise (<10 pA/
√

Hz at 4 K [251]). A SAA consists of an array of SQUIDs in

series which are magnetically coupled to a coil, through which the current-to-amplify flows,

in our case the SQUID current (see fig. 5.13). The SQUID series can also be coupled to a

compensating coil, which forces the SQUID array to work in the most effective point of the

modulation curve. However, they must placed at a low temperatures and the control of the

device depends on several parameters (compensation coils, bias currents, ...), on which the

gain depends [251]. In order to reach the best sensitivity and being able to measure the

actual intrinsic noise of the SQUIDs, a direct coupling of the SQUID with low temperature

flux transformer like the SAA is essential [237, 238].

115



A quick estimation of signal-to-noise ratio shall shed light in this question. In the

sec. 5.4, the PaCL SQUID had an amplitude of 5 µV for 155 µA of bias. The EPC1-B

voltage amplifier has a floor noise around 0.6 nV/
√

Hz, which gives a signal-to-noise ratio of

5 µV/0.5 nV = 104. The estimation for 5 µV of voltage bias was 20 µA, which gives a ratio

of 20 µA/10 pA = 2 · 106. Furthermore, with voltage bias, the dissipation power is limited

(P = V 2
bias/R). Thus, from these estimations voltage biased SQUIDs seem promising.

Figure 5.13: Electric circuit proposed for voltage bias the measuring SQUID. The single
SQUID (left) is the scanning SQUID, which is shunted with the bias resistor. In series with
the scanning SQUID and inside the SAA device (dashed line), there is the input coil. This
coil is magnetically coupled to the SQUID array, which is current biased. The SQUID array
is also coupled to a compensation coil in order to operate always in the most effective point
of the SQUID’s modulation. The output is the voltage drop in the SQUID array. Such
amplifiers are used in several groups [238, 249–251].
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Chapter 6

Conclusion

In this manuscript I have described the new results of my work. I used a scanning

SQUID microscope to shed light on the nature of the superconducting state of UPt3 and

PdTe2 measuring the magnetic field distribution with a sub-micron spatial resolution and a

sub mΦ0/
√

Hz magnetic resolution.

I used micro SQUIDs as probe of the magnetic flux. These SQUIDs are very simple and

robust, they consists of a monolayer of aluminum structured using high resolution e-beam

lithography. Current biased they show thermal hysteresis which results in a slow read-out.

For this reason I made progress in the development and characterization of shunted SQUIDs.

These new SQUIDs are composed of a bilayer of W-Nb which show small or no hysteresis.

These probes can be read continuously with an AC drive using a low noise preamplifier and

a lock-in amplifier.

PdTe2 is a type-I superconductor presenting intermediate state. We measured the field

distribution and the temperature and field dependence, revealing magnetic tubes at low

field and laminae at higher fields. We also observed superconducting tubes enclosed in

intermediate state regions. These observations were compared with the model of Clem et

al. and Goren and Tinkham, which allowed us to deduce the interface width, an important

parameter of the energetic description of this state. The results here presented support

type-I superconductivity and give a possible explanation for the observation of vortices,

claimed by some groups.
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UPt3 is a type-II superconductor well known for his three superconducting phases. After

having acquired a substantial set data I analyzed the magnetic field distribution in UPt3

when it is cooled to the low field region of the phase diagram. Thus I could reveal the

magnetic decoration of the chiral domains in the B-phase. The currents generating the

magnetic field distribution at the domain walls flow in different directions depending on the

domain, confirming the chiral currents. Furthermore, I was able to identify spontaneous half-

Φ0 structures in a monocrystal, the first observed in these conditions. Due to the interaction

between domains, these structures were expected to appear at the domain walls. Vortex

seem to decay to half-Φ0 structures and the corresponding recombination seem to happen

with minimal thermal activation. Further evidence of the interaction between domains is

the modulation of amplitude of the field pinned at the domain wall. The results presented in

this manuscript reveal important features of the chiral superconductor UPt3, most of them

predicted by theory but never observed before. My observations and analysis open a new

field for the study of chiral superconductivity.
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Appendix A

RCSJ model

SQUIDs are superconducting loops with two Josephson junctions as already presented in

sec. 1.2.3. The weakening of the superconductivity in the Josephson junction can be achieved

with an insulating layer, a normal metal layer and a constriction of the superconducting

layer.

The first two junctions present an intrinsic capacitance due to the geometry of the

junction. In addition, these junctions are intrinsically hysteretic, which means that once

I is greater than Ic, I has to be reduced to a value much lower than Ic [27]. In order to

reduce the hysteresis of the SQUIDs, they are often shunted with a resistor. This is the

approach taken in ch. 5. The current-voltage characteristics of such junctions are well-

explained by the resistively- and capacitively-shunted junction (RCSJ) model. It assumes

point-like junctions, with no spatial dependence.

Within this model a Josephson junction shunted with a capacitance C and a resistance

R is described by:

CU̇ + U/R + I0 sinϕ = I + IN(t) (A.1)

where ϕ is the phase difference across the junction and IN(t) is a noise that I’ll neglect in

the following. Using the phase-voltage relation deduced by Josephson (eq. 1.19), we find:

Φ0

2π
Cϕ̈+

Φ0

2π

1

R
ϕ̇ = I − I0 sinϕ = −2π

Φ0

∂UJ
∂ϕ

(A.2)

where UJ is the so-called titled washboard potential of the Josephson junction.
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Figure A.1: In (a), the schema on a SQUID. The input current is I, the voltage difference
is V . There are two branches, each has a part of the input current Ik and the screening
current J . A magnetic field is applied perpendicular to the SQUID loop. In (b), the electronic
schema of a SQUID according to the RCSJ model. Each branch has an inductance Lk, a
capacitance Ck, a resistance, Rk, the junction with critical current Ick and a noise source
INk for completeness. Figure modified from ref. [27].

A SQUID has two branches as sketched in fig. A.1(a), with an inductance Lk and a

RCSJ junction with parameters: ϕk, I0k, Rk and Ck. The schema of the whole SQUID

is presented in fig. A.1(b). With an input current I, the dynamics of the phase in each

junction are described by:

I

2
± J = I0k sinϕk +

Φ0

2πRk

ϕ̇k +
Φ0

2π
Ckϕ̈k (A.3)

for each of the junctions: k = 1, 2. As already presented in sec. 1.2.3, the phases are related

by:

ϕ2 − ϕ1 =
2π

Φ0

(Φext + L1I1 − L2I2) =
2π

Φ0

ΦT (A.4)

where L = L1 +L2, Φext = Bext ·SSQUID and ΦT is the total flux going through the SQUID

including the external flux and the circulating current.

We shall introduce the following factors: the average critical current, I0 = (I01 + I02)/2,

(twice) the equivalent resistance R = 2R1R2/(R1 + R2), (half) the equivalent capacitance
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C = (C1 +C2)/2 and characteristic time τ = Φ0/2πI0R, so that the currents are normalized

to I0, resistances to R, capacitances to C, time to τ and magnetic flux to Φ0. Adimension-

alizing eq. A.3, we obtain:

i

2
+ j = (1− αI) sinϕ1 + (1− αR)ϕ̇1 + βc(1− αC)ϕ̈1 (A.5)

i

2
− j = (1 + αI) sinϕ2 + (1 + αR)ϕ̇2 + βc(1 + αC)ϕ̈2 (A.6)

and

ϕ2 − ϕ1 = 2π(φext +
1

2
βLj −

1

4
αLβLi) (A.7)

where αL, αI , αR and αC represent respectively the asymmetry of the inductance, of the

junction critical current, of the resistance and of the capacitance, which are defined as

αL = (L2 − L1)/(L1 + L2), αI = (I02 − I01)/(I01 + I02), αR = (R2 − R1)/(R1 + R2) and

αC = (C2 − C1)/(C1 + C2). Currents I and J are normalized to i and j. The flux Φext is

normalized to φext. Two new parameters were introduced: βc = 2πI0R
2C/Φ0 is the Stewart-

McCumber parameter [253] and βL = 2LI0/Φ0 is the screening parameter (proportional to

g in eq. 1.23).

The static solution of the SQUID with negligible inductance gives the already known

eq. 1.24:

Ic(Φext) = 2I0

∣∣∣∣cosπ
Φext

Φ0

∣∣∣∣ (A.8)

In the case of non negligible inductance, the modulation is reduced as showed in fig. 1.7. At

βL = 1, the modulation ∆Ic/2Ic0 modulates only 50%, for βL � 1, the modulation decreases

as 1/βL [27]. For low βC values, this models show no hysteresis in the I-V characteristics,

however, for larger values (βC > 0.8) small hysteresis is present, which depends on βL and

φext [254].

The scanning SQUID

Here, I will briefly analyze the scanning SQUID modulation in terms of the RCSJ model

in order to estimate the asymmetries and the inductance. The Josephson junctions of the
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SQUIDs consists of constrictions in the superconductor, therefore, for their description we

will consider that they have no capacitance (C1 = C2 = 0). The lithography of the SQUIDs

is well controlled thus I assume that the junctions of the same SQUID are reproducible

and with no asymmetry of the critical currents (αI = 0). Furthermore, the junction of Al

SQUIDs are deposed directly over the Si wafer, thus, the shunting resistance (in parallel to

the junction) is large enough to not consider the resistive term (R1 = R2 →∞). After this

three assumptions, the system of equations coincides to the static case:

i
2

+ j = (1− aI) sinϕ1 (A.9)

i
2
− j = (1 + aI) sinϕ2 (A.10)

ϕ2 − ϕ1 = 2π(φext +
1

2
βLj −

1

4
αLβLi) (A.11)

thus, cleaning the currents the system becomes:

i = sinϕ1 + sinϕ2 − aI(sinϕ1 − sinϕ2) (A.12)

j =
1

2
(sinϕ1 − sinϕ2)− 1

2
aI(sinϕ1 + sinϕ2) (A.13)

ϕ2 − ϕ1 = 2π(φext +
1

2
βLj −

1

4
αLβLi) (A.14)

Now, we shall resolve the phase equation for every value of flux, and from the possible

solutions (ϕ1, ϕ2), find the ones that maximizes the current: the critical current. As a free

parameters for the fitting we have βL and αL.

The parameters βL and αL describe the reduction of modulation (∆Ic) and the tilt of

the arc respectively. For the scanning SQUIDs, βL = 1.2 and aL = 0.46 describe well the

modulation. The curve of the RCSJ model with these parameters is presented in fig. A.2

along with an experimental modulation curve. The effective inductance of the SQUID is

L = 35 pH, with L1 = 9.5 pH and L2 = 25.5 pH. These inductances include the kinetic and

geometrical contributions. The RCSJ model allows us to fit the modultion curves of the

micro-SQUIDs, however, it does not take into account the physics in the microbridges [243].

Furthermore, we can deduce that changing permuting the injection and ground lead can

be described by permutation of junctions 1 and 2. This causes that the modulation arcs
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Figure A.2: On the left, the scanning SQUID made of aluminium. The inner square is
1 µm2, the width of the current lines are 200 nm and junctions are 200 nm long and 50
nm width. On the right the Ic(Φ) modulation arcs of the previous SQUID. In black, the
experimental Ic(Φ) curve. Top axis is the corresponding applied field and bottom axis to the
magnetic flux (Φ = µ0HSeff , where Seff is the effective SQUID loop size). The red line
represents the modulation curve of a SQUID according to the RCSJ model with the following
parameters: I0 = 35 µA, βL = 1.2, aL = 0.46, aI = C1 = C2 = 0, R1 = R2 →∞.

tilt to the other side. At H = 0, the solution of eqs. A.12 does not depend on the labeling,

because the flux going through the loop is also zero. Therefore, the modulation arcs of both

current injection possibilities must cross at H = 0. This means that if we have a field offset

due to the calibration of the coil or due to other field such as the Earth one, the crossing

of modulations won’t happen at the H = 0 but shifted to the field offset. This allows us to

find the zero field. This is represented in fig. A.2. The green curve corresponds to the same

SQUID but with permuted current injection: it is tilted to the other side and it crosses the

red curve in H = 0. For this reason, SQUID calibration needs of permuting the injection

and ground leads.
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Appendix B

Translation: Ic to H

The critical current of the SQUID is periodic with the magnetic flux going through the

loop (see sec. 1.2.3). As I already mentioned, for a measured Ic multiple values of flux are

possible, therefore, it is essential knowing in which modulation arc and in which side of the

arc we are. During my thesis I analyzed the field distribution of two samples: UPt3 and

PdTe2. The study of the first one was carried out at low fields and the measured fields are

of the order of 0.1 mT while the images of PdTe2 have fields of the order of 5 mT. This

difference of fields leads to some differences in the setup and in the data analysis.

UPt3

For the measurement of this compound we have used SQUIDs of 1 µm2 of inner loop.

The Ic(B) modulation has a periodicity of 1.5 mT, which corresponds to an effective area

around 1.3 µm2. Compared to the period, the usual field variations of the measured data

(∼ 0.1 mT) are small enough to consider that it will happen in a single side (branch) of a

single arc (see fig. B.1). In this figure I represent the critical current measurement of fig. 4.9

left and the calibration curve for this scan. This curve is the modulation of critical current

of the SQUID when is not affected by the superconductivity of the sample (Tsample > Tc). As

we know that we are close to zero field, we are sure in which arc and branch we are working:

the thick line represents the range of critical currents of the scan. This line falls in a single

branch of the arc, around zero field. A 4th order polynomial fit, B(Ic), is locally calculated
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Figure B.1: On the left, the critical current image of a UPt3 measurement at 325 mK
after ∼5 µT field cooling. It the same data than in fig. 4.9 left. On the right, a part of
the modulation arc of the SQUID when non affected by the superconductivity of the sample.
The thick line is the critical current range of the scan presented in left (the maximum and
minimum of the color bar of this scan are marked with dashed lines).

in order to translate the whole scan. This method can be used because we are sure that the

magnetic field of the scan does not pass through insensitive points (see fig. 2.3).

Magnetization measurements

Figure B.2: Translation one magnetization curve of UPt3. In red the calibration curve
and in blue the magnetization one. The insensitive points of respective curves are marked
with stars and are labeled according to the correspondence between the curves.
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Magnetization measurements are sweeps of magnetic field that usually cross several

modulation arcs (see fig. B.2). When in the SQUID response we can clearly identify the

insensitive points (marked stars), we may be able to translate the SQUID critical current

to field.

In the case of UPt3, the Ic(H) curves are quite smooth (not large jumps) and we can

detect the insensitive points. In fig. B.2, I have marked the insensitive points as stars

for the calibration curve (in red) and for the magnetization one (in blue). We need to

identify the initial point and know in what side of what modulation arc it is. In the curve

presented in the figure (virgin magnetization curve at 350 mK) the initial point is around

zero (because it is measured after ZFC). In order to translate the curve, we only have to

interpolate the magnetization curve between insensitive points of the calibration one, making

the correspondence between the insensitive points (range of values between insensitive points

1 and 2 corresponds to the calibration and to the magnetization curve). For this reason, the

insensitive point 1 in the calibration curve at µ0H = 0.55 mT corresponds to the insensitive

point 1 of the magnetization curve at µ0H = 5 mT: B(5) = 0.55 mT. To convert it to

magnetization we just have make the subtraction: µ0M = B − µ0H = −4.45 mT. In the

case of continuing sweeping (up or down), the new initial point would correspond to the

latest value of the precedent sweep.

Otherwise, if the Ic(H) curves are not smooth, like those of PdTe2, the identification of

insensitive points may not be evident and the translation may not be possible.

PdTe2

PdTe2 fields are much greater than UPt3, therefore it’s natural to use a smaller SQUID.

However the smallest available scanning SQUID is 0.25 µm2 of inner loop. Its periodicity is

about 4 times the one of the 1 µm2 SQUID: 6.2 mT, which corresponds to an effective area

around 0.33 µm2.

In fig. B.3, I present the critical current scan of this compound corresponding to fig. 3.5(a),
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the calibration curve of this scan and the Ic → H translation of one line of the scan. We

are sure that the blue part of fig. B.3 top left is B = 0 (Meissner effect), therefore, we know

in which arc and in which branch we are working. In fig. B.3 top right, the thick line in the

calibration curve represents the range of critical currents of the scan. Now we observe that

they do not fall in a single branch, but they pass through an insensitive point. For making

possible the translation we have to notice the insensitive point and fit B(Ic) for each branch

around the insensitive point. Like this we know that each branch of each arc has a possible

field translation. As example, this method is applied to the line y = 6.4 µm of the scan,

which is represented for the branch 0 (around the zero field) and branch 1 (next branch) in

the bottom of fig. B.3. The translation difficulty here is to choose the modulation branch

for a given pixel. In the example presented in the figure, we are sure that for x < 30 µm

the field is around zero, i.e. the branch 0. In the tip of the structure, we go through the

maxima of the modulation arc: we change to branch 1. Because of coherence of the scan,

the field for x > 45 µm must come back to zero, i.e. the branch 0. The chosen field for each

pixel is marked by the dotted red line, forming a more usual field distribution.

In order to translate the data using this method we have to know at least the approxi-

mated field value of a pixel, that constitutes the starting point for the coherent translation.

For this reason we have to take into account the magnetic history of the sample for each scan.

Therefore we know what critical current value corresponds to the superconducting state and

which are superconducting/IS domains, which will shrink/grow respectively with increasing

the field. It happens that the field value may not vary much around the insensitive point,

in this case, we may not be able to translate this measurement.

In the case of the superconducting islands inside the IS domains (see fig. 3.5.(b)), we

detected them because the change of the slope of the critical current between the outside

and the inside of the dip happens smoothly and far from the insensitive points.
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Figure B.3: In the top left, the critical current image of a PdTe2 measurement at 300 mK
and 1 mT after zero field cooling. It is the same data than in fig. 3.5.(a). In the top right,
a part of the calibration arc of the SQUID when non affected by the superconductivity of the
sample. The thick line is the critical currents of the scan presented in top left (the maximum
and minimum of the colorbar are marked with dashed lines). We notice that we go through
the maxima, marked with the red dashed line. In the bottom, the field profile for branches 0
and 1 of the line y = 6.4 µm of the scan in the top left (line marked with an arrow). The
field translation of the profile is marked with a dotted red line.
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Appendix C

Vortex: field distribution

The field distribution of a vortex at the surface is a question of matter for our studies.

The description comes from combining the solution of F. London for a vortex [255] and the

concept of core of quantum vortex by Onsager [256]. The supercurrents circulate around the

core of the vortex, which is in the normal state. The core has a size of the superconducting

coherence length, ξ and far from the core the supercurrents decay exponentially with the

penetration depth, λ. The field in the z-axis is described by

Bz(r) =
Φ0

2πλ2
K0

( r
λ

)
(C.1)

where K0(x) is th zeorth-order modified Bessel function [23]. At small distances from the

core, the field diverges logarithmic however in reality the field at the core is approximately

given by B(0) ≈ Φ0 log κ/2πλ2 where κ = λ/ξ. Far from the core, B(r) ∝
√
λ/r exp (r/λ).

The materials we study usually have λ � ξ, therefore the core is never observed with

magnetic measurements. Furthermore, the study of this structures happens at a given

scanning height z above the surface, so spreading due to the scanning height must be also

taken into account. I will present the two models that are often presented in vortex analysis:

magnetic monopole and the Pearl’s description.

The first description consists of a magnetic monopole placed at a certain distance below

the surface. This distance is usually taken as the penetration depth resulting in:

Bz(r) =
Φ0

2π

z + λ

(r2 + (z + λ)2)3/2
(C.2)
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Figure C.1: In (a) the field distribution of a vortex considering the spreading of magnetic
field below the surface and in (b) the field distribution but without considering the spreading.
Figure modified from ref. [232].

where r is the radius centered at the vortex core. However, some authors remark that the

near-field distribution of superconducting vortices may be better described by a monopole

depth of 1.27λ [195]:

Bz(r) =
Φ0

2π

z + 1.27λ

(r2 + (z + 1.27λ)2)3/2
(C.3)

Pearl [257] described the magnetic field of a vortex for an isotropic material. It was

later extended to layered materials by Kirtley et al. [258]. Pearl considered that (i) the

field distribution well inside of the superconductor was described by the critical field at the

core and the supercurrents screening and that (ii) the field well outside of the sample is

homogeneous and equal to the applied field. He then deduced the vortex field distribution

from Maxwell equations. The model was later improved taking into account the thickness

of the sample, d [258]:

Bz(r) =
Φ0

(2πλ)2

∫
d2k exp (ik · r)

e−kz

α(α + kcoth(αd/2))
(C.4)

where k is the 2D Fourier vector, r = (x, y) is the 2D space vector, k is the modulus of k

and α =
√
k2 + λ−2.
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In addition to the field spreading due to the scanning height, the monopole description

and the Pearl model consider that the magnetic field starts spreading below the sample

surface (see fig. C.1). Furthermore, the field distribution is further modified by our probe.

The field going through the loop of the SQUID is not necessarily homogeneous, but we

measure the averaged field going through the SQUID. Therefore, our measurement is a

convolution of the real field distribution. This tends to make the vortex larger than they

really are but it does not change total flux.

Another important detail is that field distribution of every model is proportional to the

flux contained by the vortex. Therefore, the field distribution of a half-Φ0 structure is given

by half of the previous expressions.

154



Appendix D

Further data of UPt3

The amount of data gathered is considerable and the translation of critical current to

field is not always evident. Here, I present some scans that were not translated to field units.

The problem for Ic-B translation is the periodicity of the critical current, which becomes

troublesome close to the insensitive points (see sec. 2.1).

D.1 Field distribution at T fixed

I have already introduced the magnetic distribution at low fields, that we can observe

again at fig. D.1(a) (300 mK and 5 µT FC), in which some vortices and antivortices are

present. In the same cool down, the 3 mT were applied (see fig. D.1(b)), the antivortex that

was at (x, y) = (6, 12) is no longer coupled to the vortex in a dipole form, but we have a

new dipole at (x, y) = (46, 15). At higher field (4 mT in fig. D.1(c)), many more structures

have entered the scanning range and some are aligned with the latter dipole, which seems

pinned at the same position. When further applying field, µ0Hc1 is crossed and the flux

easily penetrates the sample (see fig. D.1(d)). Now, the DW is well decorated with flux1.

The DW is thus revealed at the same position as the dipole. This may indicate that the DW

is defined when cooled down and the magnetic field only decorates it. Furthermore, vortices

sitting at DWs do not seem to be distorted due to chiral currents as could be expected [208].
1 The critical current goes through the minimal Ic at (x, y) = (43, 36), the light blue region enclosed by

the dark blue region corresponds to another modulation arc.
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Figure D.1: Scans (a)-(d) were measured at 300 mK and magnetic fields of 0, 3, 4, 6 mT
applied after ZFC.

D.2 Extraneous magnetic signals

Some scans revealed extraneous magnetic signals above Tc. In fig. D.2(a), a magnetic

image of the sample at 550 mK (above Tc). The yellow spot at (19, 23) presents an ampli-

tude of around 100 µT with respect to the background. Images obtained scanning at lower

temperatures show that the spot persists at 500 mK (see fig. D.2(b)), but we don’t longer

see it at 490 mK or lower temperatures (see fig. D.2(c)-(d)). Below 500 mK, the supercon-

ductivity is robust enough to overcome the pinning effects. Furthermore, the placement of

DWs is unaffected by these impurities (see top right of fig. D.2(d)).

In order to study the quality of the sample surface, it was observed with Scanning Elec-
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Figure D.2: Magnetic images after cooling down at low field. The (a) scan (at 550 mK)
presents an unexpected magnetic signal. As we lower the temperature, we observe that the
effect of this impurity disappears around 490 mK, in scan (c). The DW placement doesn’t
seem affected by this defect.

tron Microscope (SEM), revealing needles inserted in the face and crystallographic defaults

as shown in fig. D.3 left. This has already been reported in other groups [132]. Further Elec-

tron Backscattering diffraction (EBSD) and Energy-dispersive X-ray spectroscopy (EDXS)

measurements were carried out on the scanning face. EBSD revealed a poor surface quality,

with a lot of scratches and a possible amorphous layer at the surface. These results were

likely caused by the polishing of the sample. EDXS confirmed the global composition of the

sample, however, the needles inserted on the surface layer presented lower concentrations

of platinum (30% of U and 70% of Pt in atomic percentages) [259–261], which strongly

suggests the presence of UPt2 (see fig. D.3 right). However, this compound is paramagnetic
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below ∼ 10 K [262, 263] and the observed signals are ferromagnetic as they don’t follow

the applied field. SEM, EBSD and EDXS techniques were performed by S. Pairis in the

laboratory.

Figure D.3: In (a), a SEM image of the scanning surface of the sample. Some whiskers are
inserted on the ab plane. The EDXS analysis in three crystallographic defaults is presented
in (b), with the atomic percentage of each element. Work by S. Pairis.

In order to verify the quality of the crystal at the scanning face, Laue diffraction was

also measured (see fig. D.4). The hexagonal symmetry was well observed, however, spots

were doubled, which means that two ab planes are present in the sample, slightly tilted with

respect to each other. This effect was not observed at the bottom of the sample (unpolished).

Thus, it is likely caused by the polishing and reannealing of the sample. Furthermore,

polycrystalline rings can be observed in polished and unpolished faces, which cannot be

explained by the amorphization induced by polishing. Laue diffraction was performed by P.

Lejay in the laboratory.

For any further magnetic work, a crystal of even higher quality should be studied, with

no impurities on the surface, with sharper specific heat transitions and a critical temperature

closer to 550 mK. D. Aoki prepared us such a crystal, showing perfect Laue pattern, but

was lost while polishing.
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Figure D.4: Laue diffraction of the polished surface that was imaged. Work by P. Lejay.
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