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Allgemeinverständliche Zusammenfassung auf Deutsch
In dieser Arbeit beschäftigen wir uns mit den theoretischen Aspekten vom Maschienellen Lernen. In diesem Gebiet
beschäftigen sich Leute mit den folgenden Problemen: wie man anhand von Daten die Phenomene in der Natur
und im alltäglichen Leben beschreibt und anhand von Daten die Strategien für präzisere Vorhersagen entwickelt.
Ein typisches Beispiel wäre die Vorhersage der Temperatur in einem Gebiet anhand von vorhandenen Messun-
gen. Ein anderes Beispiel wäre die Objekterkennung, bzw. Objektklassifikation von neuen Objekten anhand von
gegebenen Bildern. In solchen Beispielen die Daten können auch komplexere Struktur haben oder von einem
komplizierterem Prozess mit Gedächtnis generiert sein. Im Fokus dieser Arbeit sind die theoretischen Aspekte von
Algorithmen des Maschinelles Lernen die anhand den abhängigen oder arbitrarän Daten konstruiert sind. In einem
Kapitel dieser Arbeit untersuchen wir die sogenannate Regularisierungmethoden des Statistischen Lernens mit den
Werten in hochdimensionalen Räumen, so dass man zwischen beliebigen Elementen dieser Räumen Distanz (Met-
ric) definieren kann. Diese sind die bekannte Methoden, die im Bereich von Lernen aus unabhängigen Beispielen
vorher anwegendet worden sind und in dieser Arbeit unter der Perspective von Lernen aus Daten mit Abhängigkeit
anylisiert sind. Um diese Aufgabe zu verwollständigen, entwickeln wir dafür das notwendige technische Toolbox,
die Konzentrationsungleichungen, die die Kontorolle der Fluktuationen von zufalligen Elementen ermöglichen.
Die Neuheit der Ergebnissen liegt daran, dass man anstatt der stochastischen Unabhängigkeit der Daten die sogen-
nante Annahme der schwachen Abhängigkeit über die Verteilung der Daten betrachtet. Man beobachtet dabei einen
interessanten Effekt, nämlich, dass in manchen Szenarien das Lernen aus abhängigen Daten genauso kompliziert
(im Sinne von theoretischen Komplexität) ist als das Lernen aus unabhängigen Daten.

In einem anderen gros̈s teil der Arbeit betrachten wir das Szenario vom Sequentiellen Lernen. In diesem
Framework das Lernen aus dem Daten kann als ein Spiel zwischen dem Lerner und Gegner (auch "Adversary"
gennant) modelliert werden. Der Hauptunterschied zu dem statistischen Lernen von Beispielen liegt darin, dass
der Lerner die Vorherage (das "Forecaster") aktualisiert sobald das neue Beispiel vorhanden ist. Der Ziel dabei
einen online Forecaster zu entwickeln, der vergleichbar gut zu den besten offline gefundenen Forecaster ist. Die
Stärke des Algorithmus ist nun gemessen als die Differenz zwischen dem Verlust der Sequenz von Vorhersagen und
dem Verlust, die man anhand von einem belibigem konstanten Forecaster aus dem gegebenen Klass von Forecaster
erziehlen kann.

Weiterhin, im Framework von Sequentiellen Lernen beschäftigen wir uns mit dem sogennanten "Multi-Armed-
Bandit" Problem. Dieses Modell kann mithilfe von einem Experiment mit der Medikationsuntersuchung model-
liert werden, in dem jedem der ankommenden Patienten einen (und nur einen) der vorhadenen Medikamenten
vorgeschrieben wird und die Effiezienz ("Reward") der Behandlung gemessen wird. Das Ziel dabei so viel wie
möglich Patienten zu heilen. Das schwieriege an dem Problem ist, dass bei einer Untersuchung nur die Effiezienz
von einem der Medikamenten untersucht werden konnte (und nicht von alle Menge der Elementen). Das Beispiel
fällt unter dem Hut von Sequentielles Lernen mit dem partiellen (oder sogennanten ’Bandit’ feedback). In dieser
Arbeit untersuchen wir das Szenario indem die vorhandene stochastiche rewards Abhängigkeitsstruktur (auch von
schwach-abhängiger Natur) besitzen.

In dem letzten Kapitel untersuchen wir ein Problem der Konzentrationsungleichungen für zufällige Feldern in

Nd. Dieses Problem ist erstmal von Bedeutung, da die alle bekannte Ergebnisse auf die unterliegende Klasse von

schwach-abhängigen realwertigen zufälligen Prozessen nicht zu den optimalen Raten für die Abweichungen der

partiellen Sumenn (entweder in Wahrscheinlichkeit oder in integral norm) führen. Weiterhin, die Ergebnisse kön-

nen auch im Statistischen Online Lernen Setting angewendet und zu Banach-wertigen Zufallsvariablen erweitert

werden. Das Zusammenführen von bekannten Techniken aus Statistik (Chaining method) sowie aus Wahrschein-

lichkeitstheorie (Martingale-difference approach) führt dabei zu den neuen Methode die auch weiter erforscht

werden kann und zu dem tieferen Verständnis von Effekten der schwach-abhängigen Daten auf das Verhalten von

statistichen Risiko von breitem Spektrum von Methoden führen kann.
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Chapter 1

Introduction

Contents
1.1 Machine learning framework and statistical learning . . . . . . . . . . . . . . . . 3

1.1.1 Introduction to the problems of machine learning. . . . . . . . . . . . . . . . . 3
1.1.2 Mathematical aspects of statistical learning theory. . . . . . . . . . . . . . . . 4
1.1.3 Introduction to learning with kernels . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Statistical learning from dependent random observations. . . . . . . . . . . . . . . 12
1.2.1 Introduction to the notion of asymptotic independence (weak-dependence). . . 12
1.2.2 Projective dependence measure. Mixingales . . . . . . . . . . . . . . . . . . . 15
1.2.3 Concentration inequalities for weakly-dependent processes. . . . . . . . . . . 16
1.2.4 Statistical learning with dependent random observations . . . . . . . . . . . . 17

1.3 Online (sequential) learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Online learning with full information. Adversarial online regression . . . . . . 20
1.3.2 Stochastic bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 General thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.1 Machine learning framework and statistical learning

1.1.1 Introduction to the problems of machine learning.

Machine learning is a rapidly developing branch of science which includes applications in many fields.
It is already a well-established part of industry and continues to become part of day-to-day life. It
studies the principles, methods and techniques of devising data-dependent decision rules which enable
intelligent-like decisions.

An important aspect of developing decision rules is being able to provide theoretical guarantees
for the predictions given by an algorithm, and thus, to be able to learn from data. There are different
specific frameworks within the setting of learning from data observations. For example, one framework
is the supervised learning in which a pair of covariate-label (xt, yt) is produced by the environment,
covariate xt is revealed, and the learner aims to predict a hidden label yt based on the information
contained in the covariate xt and all the information which was available before. Another framework
is the unsupervised learning where a learner deals with the set of covariates and the typical task is to
discover the inherent grouping between the sets of available objects. This setting is also named clustering.
A different framework is reinforcement learning where the goal is to learn the dynamic structure of the
environment by interacting with it in a sequential fashion and by obtaining rewards for taking actions
which can influence the dynamics of the environment.
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In this work we mainly focus on the particular aspect of an another major setting: learning from a
given (batch) data sample under certain dependency assumption and sequential (online) learning. In the
batch framework, a learner has access to a set of data D and devises some decision rules based on this
sample. In the sequential setting, the decision rule is devised (or updated) each time a new observation
of the data sample is arrived from the data-stream, and in certain cases it influences the procedure of
how the new output is generated. On a theoretical level, a difference between the settings of online and
batch learning was firstly highlighted in the work of Thompson (1933), where the question of devising
statistically efficient procedures which distinguish between the effects of two medications based on as
few observations as possible was raised. In this setting, the efficiency is based on the average "goodness"
of patients’ treatments. A typical example of the problem which can be considered in both frameworks
is the mail-classification task. In this task a learner (which in this case may be a spam-filter or some
intelligent computer system) either possesses a database of emails or obtains mails in a stream fashion.
Given the text of observed emails, and possibly some additional mail-attributes (like domain names, time
when the email was sent, etc.), a learner aims to devise a decision rule which for a new mail can classify
it as being "spam" or "not spam". This is a typical example of a binary classification problem which
can be generalized for the classification of a larger (but finite) number of classes. A typical example
of multi-class classification problem is the image-recognition problem, where the database consists of
a large number of images, each with a label that characterizes what is actually depicted on the image.
Similarly as in the case of binary classification the goal is to devise a data-dependent decision rule which,
given a new image (typically represented as a multidimensional matrix with each matrix entry being a
3−d vector of intensity measurements on the rgb levels), outputs one of the many available categories. A
standard example of a regression problem is the prediction of housing prices, or the rental price modelling
for the dwelling given information about its location, area, and history of previous changes of price or
rent. In this case, the database is represented as a collection of data which describes an object with a
given label - price of the house or cost of rent. For a new unlabeled item in the database, a decision rule
aims to predict its label, that is the price of the house. Other usage of regression-based machine learning
algorithms can be found in banking, market profit prediction (prediction of the profit of a customer of a
marketing company Schmidt (2019)), and prediction of the forest areas which will be potentially burned
by forest fires (Cortez and Morais (2007)). In most of these cases, the data can be corrupted by noise
which typically has some dynamic.

Notice that in all these concepts the "learning" is not defined rigorously. Informally one can speak of
"learning" as of devising decision rules based on the observations of the environment. Several attempts
have been made to provide proper theoretical foundations and give mathematical justification for the
performance of learning algorithms both in the frameworks of batch learning and online learning (see
ex. Steinwart and Christmann (2008), Shalev-Shwartz (2007) and Cesa-Bianchi (1999a),Smola and
Schölkopf (2002),Bishop (2006)). We first consider the setting of (batch) learning from examples. In
this setting it is assumed that the data sample of n of pairs Dn = (xs, ys)

n
s=1 ∈ (X× Y), where X is

some vector space and Y is subset of real line is available from the beginning and the task is to construct
a data-dependent estimator given x for an unknown (new) label y. The latter pair is assumed to have
distribution ν(x, y) over X × Y while data sample D is supposed to be generated from the n−step
trajectory of some stochastic process (Zt = (Xt, Yt))t≥1. In Chapter 2 of this thesis we consider the
framework of statistical learning from dependent data observations.

1.1.2 Mathematical aspects of statistical learning theory.

In this section we introduce some definitions and probabilistic notations which are standard in the frame-
work of statistical learning. Let (Ω,F,P) be some probability space. Denote Lp(Ω,F,P), 1 ≤ p < ∞
to be the standard space of equivalence classes with respect to measure P of real p−integrable functions
equipped with the norm ‖f‖p = ‖f‖Lp(Ω,A,P) :=

∫
Ω|f |

p(ω)P(dω) and denote for [f ]P ∈ Lp(Ω,F,P)

4



the P−equivalence class of any map f : X 7→ R such that
∫
Ω|f |

p(ω)P(dω) < ∞. Let L∞(Ω,F,P)
be the set of essentially bounded real functions, namely such that ‖f‖∞ := ess supω|f(ω)| = inf{c ∈
R+ : P[|f(ω)| ≥ c] = 0} < ∞. In the case when P is Lebesgue measure over X we use the shorthand
notation Lp(X). Lastly for a Banach space (W, ‖·‖W) we denote BW(R), BW(R) to be the open and the
closed ball of radius R centered in origin of W.

The classical supervised learning scenario is a problem of learning a function from (random) exam-
ples, and in this framework it can be formulated as follows. Let (X,Y) be a pair of vector spaces where
X is assumed to be a normed Polish space, and Y is assumed to be a closed subset of R. X is called
the input space and Y is called the output space. Define B(X), B(Y) to be Borel σ−algebras of open
sets over X,Y, let ν be some probability measure over ((X× Y),B(X× Y)). Consider a X × Y-valued
stationary process (Zt = (Xt, Yy))t∈N such that Zt ∼ ν and distribution of (Zt)t∈N is defined through its

canonical version over a probability space
(
(X× Y)N,B

(
(X× Y)N

)
,P
)
. In the framework of learning

from examples it is always assumed that there is some intristic dependence between the outputs yt and
inputs xt. We write µ for the the X−marginal of ν, and ν(·|x) for the conditional distribution of Yt
over (Y,B(Y)) given xt = x. Notice that probability measure P is known to the learner only through
the sample of size n, Dn = (xt, yt)

n
t=1. In the simplest case where P is a product measure, we have

that pairs Zt = (Xt, Yt)t∈N is the realization of the sequence of i.i.d. random variables (Xt, Yt)
n
t=1,

such that (Xt, Yt) ∼ ν(x, y). In the framework of learning from examples, the goal of the learner is to
construct ("learn") a prediction rule fDn : X 7→ R to predict label y in the forthcoming pair (x, y) based
on the sample Dn = {xt, yt}nt=1. Notice that we don’t restrict of the value fD(x) to the prediction set Y,
however this can be done by considering the so-called clipping procedure (see more details in Steinwart
and Christmann (2008)). We define the following objects which are necessary for smoothness of further
narrative.

Definition 1.1.1. We call a sequence of maps L = (Ln)n≥1 a learning method if for any data-sample
Dn = (xt, yt)

n
t=1 ∈ (X× Y)n, n ≥ 1, Ln associates a prediction rule fDn ∈ RX. We say that learning

method L is measurable if the map Ln : (X× Y)n × X 7→ R, (Dn, x) 7→ fDn(x), is measurable with
respect to the completion of the product σ−algebra on (X× Y)n × X, for every n ∈ N.

To quantify the "goodness" of the prediction f(x) for a label y, we define the concept of loss function
(or simply loss).

Definition 1.1.2. We say that loss L is any measurable function L : X× Y× R 7→ R+.

In statistical learning theory, for a given loss-function L : X×Y×R 7→ R and unknown distribution
ν, one measures the "quality" of the prediction of a decision rule f : X 7→ R by means of the expected
risk, which is defined as follows.

Definition 1.1.3. For a loss function L : X× Y×R 7→ R+ and measure ν over X× Y, the expected risk
of a measurable function f : X 7→ R is defined as:

RL,ν(f) = Eν [L(X,Y, f(X))] =

∫
X

∫
Y

L(x, y, f(x))dν(y|x)dµ(x).

For a given data-sample Dn = (xt, yt)
n
t=1 ∈ (X× Y)n, we denote Pn := 1

n

∑n
i=1 δ(Xi, Yi) to be the

empirical measure associated with Dn. We consider the empirical risk of decision rule f as a risk with
respect to empirical measure Pn and define

RL,Pn(f) :=
1

n

n∑
t=1

L(xt, yt, f(xt)).

For a decision rule fDn , the quantity RL,ν(fDn) depends on the distribution of the data sample Dn.
Furthermore, the loss of decision rule fDn is measured as expected risk with respect to the measure ν
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as if (x, y) where stochastically independent of the sample Dn. This approach is different (while being
widely used in recent works, see for example Yu (1994), Meir (2000), Vidyasagar (2003) and Lozano
et al. (2005)) to the situation when evaluating against Qn+1(·|Dn) (conditional distribution of a next pair
(xn+1, yn+1) given the data-sample Dn under the restriction of the measure P to a finite dimensional
distribution of {Xt, Yt}n+1

t=1 ). The latter can be proven to exist by disintegration, see also discussion in
Remark 1.1.6). This usage can be further justified from the ergodic perspective. Namely, in the setting in
which the learning method L outputs the prediction rule fDn based on the sample Dn, a learner aims to
apply it to predict not only the label yn+1 but also labels in all forthcoming pairs (xs, ys)s>n. If (Zt)t≥1

is a stationary stochastic process as above and loss function ` is bounded, by the Ergodic Theorem
(Theorem 20.14 in Klenke (2010)) the time-averaged loss limm→∞

1
m

∑m
j=1 L(xn+j , yn+j , f̂Dn(xn+j))

is P−almost surely equal to the RL,ν(fDn). That is RL,ν(fDn) is a good proxy for the risk we obtain by
applying a decision rule fDn learned over the n samples when n 7→ ∞.

Definition 1.1.4. For a given loss function L and distribution ν we define the smallest risk a measurable
function can achieve as follows:

R∗
L,ν = inf

f :X 7→R
RL,ν(f). (1.1)

We refer to R∗
L,ν as to the Bayes risk (with respect to measure ν and loss L). In addition, any

measurable function f∗ such that RL,ν(f) = R∗
L,ν is called a Bayes decision function.

In the setting of statistical learning, the distribution P is available to the learner only through the
sample Dn = (Xt, Yt)

n
t=1 from the n−dimensional restriction of the measure P. One consider the

performance of decision rule fDn given by some learning algorithm L by considering its expected risk
RL,ν(fDn) in comparison to RL,ν(f

∗). A fundamental question of learning theory is whether the risk of
the empirical decision rule fDn converges (in probability or in expectation) to the risk minimizer f∗. If
so, one wants to quantify the convergence RL,ν(fDn) to R∗

L,ν as n→ ∞ and to have explicit bounds on

the quantity P
(
RL,ν(fDn)−R∗

L,ν ≥ ε
)

for any ε > 0 (either in the asymptotic regime or for fixed n),

or to control the deviation in expectation, i.e. E
[
RL,ν(fDn)−R∗

L,ν

]
. We give the following standard

definition of the algorithm for which the convergence in probability occurs.

Definition 1.1.5. The algorithm L = (Ln)n≥0, Ln : Dn 7→ YX which produces a measurable decision
rule fDn : X 7→ R based on a data sample Dn of size n is called consistent under distribution P if for all
ε > 0 limn→∞ P

(
RL,ν(fDn) − R∗

L,ν ≥ ε
)
= 0. It is called strongly consistent if RL,ν(fDn) converges

to R∗
L,µ P−almost surely. Similarly, one says that L is consistent in expectation if

lim
n7→∞

E
[
|RL,ν(fDn)−R∗

L,ν |
]
= 0

Remark 1.1.6. Notice that in the latter definition of consistency we always consider the quantities under
original distribution P of stochastic process (Zt)t∈N while distribution of RL,ν(fDn) − R∗

L,ν depends
only on the (Zt = (Xt, Yt))

n
t=1. In the case of of i.i.d. process P is a product measure, thus one can write

P
(
RL,ν(fDn)−R∗

L,ν ≥ ε
)
= Qn

(
RL,ν(fDn)−R∗

L,ν ≥ ε
)

, where Qn = ν⊗n. In the case of general
stochastic process with the given measure P, for every n we can take Qn such that Qn is obtained as
disintegration of the measure P over measure Qn over ((X× Y)n,B((X× Y)n)) and stochastic kernel
k̂n : ((X× Y)n,B((X× Y)n)) 7→

(
(X× Y)N,B

(
(X× Y)N

))
, i.e. P = Qn ⊗ k̂n (see Theorem 1.23

in Kallenberg (2017) to ensure the existence of such Qn and moreover for the proof that we can take
Q(·) = P

(
· × ΩN)). By Fubini’s Theorem (see Klenke (2010), Theorem 14.16 on p. 278) it is easy to

check that in this case it holds P
(
RL,ν(fDn)−R∗

L,ν ≥ ε
)
= Qn

(
RL,ν(fDn)−R∗

L,ν ≥ ε
)

.
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It is easy to observe (by using Markov’s inequality) that consistency in expectation implies consis-
tency in probability. Notice that whether an estimator fDn is (strongly) consistent or not depends on the
underlying distribution P. Thus, in general, a learning algorithm which is (strongly) consistent for one
distribution is not (strongly) consistent for another. Therefore, one is interested in having a decision rule
which is consistent uniformly over all (or at least over some class of) distributions P. The algorithm is
called universally consistent if for all ε > 0, it holds that

lim sup
n→∞

P
(
RL,ν(fDn)−R∗

L,ν ≥ ε
)
= lim sup

n→∞
Qn

(
RL,ν(fDn)−R∗

L,ν ≥ ε
)
= 0

for any distribution P and its sequence of n−dimensional restrictions (Qn)n≥0. Universal consistency
is proven for various methods under the i.i.d. noise assumption (see for example in Christmann and
Steinwart (2007) for the learning problem with arbitrary convex loss) and with dependencies in samples
(see ex. Zou et al. (2009) for consistency of empirical risk minimization procedure under uniformly
ergodic Markov chain assumption on the distribution of the process). However, universal consistency
is purely an asymptotic property of a learning algorithms and does not give information about how fast
RL,ν(fDn) converges toR∗

L,ν . In other words, it does not characterize how well the estimator has learned
data from a fixed sample of size n. The latter notion is characterized by introducing the concept of
learning rate. We give the following definition of the learning rate (w.r.t. to a given probability measure
P).

Definition 1.1.7. For a given confidence τ ∈ [0, 1], measure P, the learning method L : Dn 7→ YX

which outputs the decision rule fDn : X 7→ R based on the sample Dn = {xt, yt}nt=1 from the stochastic
process Zt = (Xt, Yt)t≥1 is said to learn with rate (an)n≥0 if there exists a constant cτ > 0 and number
n0 ∈ N such that:

P
(
RL,ν(fDn) ≤ R∗

L,ν + cτan
)
≥ 1− τ, (1.2)

for all n ≥ n0. If the learning L method learns an optimal decision rule f∗ with rate (an)n≥0, then the
sequence (an)n≥0 is called the learning rate for method L under measure P.

Notice that the deviation bound from Equation (1.2) and the rate depend on the underlying measure
P. Ideally, for a fixed confidence τ , one would like to have a rate (an)n≥0 such that there exists a learning
algorithm for which Equation 1.2 holds for any measure P. However, there is no learning method which
learns over all distributions P over

(
(X× Y)N,B(X× Y)N

)
. This is justified by the following result

(which is called the "no-free-lunch" (see Corollary 6.8 in Steinwart and Christmann (2008) or Theorem
7.2 in Devroye et al. (1996)) Theorem which holds in expectation already in the case when P is a product
measure.

Theorem 1.1.8 (Theorem 7.2 in Devroye et al. (1996); also Theorem 6.6. in Steinwart and Christmann
(2008)). Consider any decreasing sequence (an)n≥0 ∈ [0, 1

16 ] that converges to 0, Y = {−1, 1} and a
probability space (X,B(X), µ) such that µ is atom-free. Let L(x, y, f) = If(x)6=y. For every measurable
learning method L : Dn 7→ YX there exists a distribution ν over (X× Y,B(X× Y)) withX−marginal µ
such that R∗

L,ν = 0 whereas Eν⊗n [RL,ν(fDn)] ≥ an for a decision rule fDn : X 7→ R which is returned
by algorithm L.

The above result informally states that that there exists a measure with zero Bayes risk under zero-
one loss function such that any learning method L may need an arbitrarily large number of observations
to achieve an expected risk smaller than some given value ε < 1

16 , provided the given measure ν is
complicated enough (and depends on the number of observations n). The only way to overcome this issue
and construct learning algorithms which have certain learning rates is by introducing further assumptions
on the data-generating distributions P. From one side this seems to be like an escape from the problem,
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since in practice there is almost no way to check whether underlying marginal distribution possesses the
given assumption. From the other side, by establishing learning rates for some learning method L under
different assumptions on measure P, one can characterize for which distributions some given learning
method learns faster. This may be of interest for a practitioner who, based on the domain knowledge, has
to decide which method would be preferable to use for certain applications. To describe the setting of
convergence of the decision rule to the Bayes decision rule precisely, we assume that P belongs to some
distribution class P of measures over

(
ZN,B

(
ZN)) where we denoted Z := X× Y.

We refer to the class P as the prior class. Taking inspiration from the works Caponetto and De Vito
(2005) and Blanchard and Mücke (2018) we define the following concepts which characterize the con-
vergence rates of learning algorithms over the given prior class P.

Definition 1.1.9. A non-increasing sequence (an)n≥1 is called the strong upper rate of convergence in
probability of a learning algorithm L over the prior class P if, for the decision rule fDn returned by the
algorithm L based on the sample Dn, it holds that:

lim
τ→∞

lim sup
n7→∞

sup
P∈P

P
(
RL,ν(fDn)−R∗

L,ν > τan
)
= 0. (1.3)

The sequence (an)n≥1 is called the lower minimax rate of convergence over the prior class P if

lim inf
n7→∞

inf
Ln

sup
P∈P

P
(
RL,ν

(
fDn

)
−R∗

L,ν > an
)
> 0, (1.4)

where the infimum is taken over all measurable maps Ln : Dn 7→ RY which return decision rule fDn .

Remark 1.1.10. Similarly, taking the p−norm (p ≥ 1) of RL,ν(fDn) − R∗
L,ν under measure P, we

can define the notions of strong upper rate (upper rate and lower minimax rate) of convergence in the
space of p−integrable. Thus, a sequence of positive numbers (an)n≥1 is called a strong upper rate in
Lp(Z

n,B(Zn),P) over prior class P if we have:

lim sup
n→∞

sup
P∈P

∥∥∥RL,ν(fDn)−R∗
L,ν

∥∥∥
p

an
<∞.

A sequence (an)n≥1 is called upper convergence rate in Lp

(
ZN,B

(
ZN),P) if

lim
n→∞

sup
P∈P

∥∥∥RL,ν(fDn)−R∗
L,ν

∥∥∥
p

an
<∞.

Finally, a sequence (an)n≥1 is called minimax (lower) rate of convergence in Lp(Z
n,B(Zn),P) if

lim inf
n→∞

inf
Ln

sup
P∈P

∥∥∥RL,ν(fDn)−R∗
L,ν

∥∥∥
p

an
> 0.

Notice that if (an)n≥1 is a (strong) upper rate over prior class P in expectation, then (by simply applying
Markov’s inequality) (an)n≥1 is a (strong) upper rate over prior class P in probability. Furthermore, if
(an)n>1 is a lower minimax rate in probability then (an)n≥1 is a lower minimax rate in expectation.

Generally, in the setting of statistical learning, we are interested in the algorithms which produce
decision rules fDn whose upper convergence rates given by the Equation (1.3) match minimax lower
convergence rates from Equation (1.4). The latter is assumed to hold either in probability of in p−norm.
Furthermore, as has been done in Blanchard and Mücke (2018), in the learning rates for algorithms one
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can track dependence on the additional parameters which specify the prior class, i.e. when an := an,θ
where θ ∈ Θ is some parameter set which specifies the set of available distributions P. Furthermore,
intuitively one would expect from the data-sample generated by non i.i.d. process with memory to
contain “less” information and in this way lead to the worse rates than in the i.i.d. process scenario.

The first chapter of this thesis is devoted to the problem of statistical learning with least-square loss in
the case where the measure P of random process (Zt = (Xt, Yt))t≥1 satisfies certain weak-dependency
assumption (the so-called τ−mixing assumption see in Wintenberger (2010) also in Dedecker (1991)).
We denote the risk of decision rule f under the squared loss by RLS,ν(f) = Eν

[
(Y − f(X))2

]
. When

considering the problem of risk minimization as a stochastic optimization problem, one can readily check
that a version of conditional expectation fν(x) =

∫
Y
yν(y|x) (provided the distribution ν(·|x) has finite

second moment for µ almost all x ) minimizes RLS,ν(f) over all measurable functions f : X 7→ Y.
Furthermore, direct computation shows that, in this case, for any fixed measurable f : X 7→ R it holds
that

RLS,ν(f)−RLS,ν(fν) = ‖f − fν‖2L2(X,B(X),µ).

Thus, in the case of least-squares loss the excess risk analysis of decision rule fDn reduces to the analysis
of L2 norm deviations of the difference fDn − fν .

Example 1.1.11. A standard model which illustrates the framework of statistical learning with least-
squares loss is the regression problem. Namely, we consider the sequence (Xt)

n
t=1 to be a sequence of

random variables with values in X; assume Yt = f∗(Xt) + εt, as the image of some unknown function
f∗ : X 7→ R corrupted by the noise sequence (εt)

n
t=1. We assume that E[εt] = 0 and Var[εt|x] ≤ σ2 <

∞ for µ− almost all x. In this model, the goal is to find a learning algorithm L : Dn 7→ YX which
produces a measurable decision rule f̂Dn which is a good estimate of f∗. The error of estimation is
typically measured in p−norm (p ≥ 2). It is easy to see that this model is a special case of the statistical
learning scenario with squared loss when f∗ = fν , µ being the distribution of Xt and the conditional
distribution ν(·|x) being defined by the distribution of the noise εt|x. This setting is also sometimes
referred to as random design regression (where the word "random" means that covariates x are generated
from some distribution).

1.1.3 Introduction to learning with kernels

There are many works which are devoted to the problem of statistical learning with random observations
and squared loss. In this short introduction, we focus mainly on the problem of estimating of the re-
gression function fν by means of a decision rule in some reproducing kernel Hilbert space (RKHS). A
Hilbert space of functions H := {f : X 7→ R} equipped with an inner product 〈·, ·〉H is called an RKHS
if for every x ∈ X the evaluation functional δx(f) := f(x) is continuous in f . One can show that the
continuity of the evaluation functional implies that the convergence in the norm of H implies point wise
convergence of the elements f ∈ H. Informally the latter means that if two objects from H are close (in
the sense of norm ‖·‖H), then their values are close whatever the evaluation point is.

From the other end, we say that the function k(·, ·) : X × X 7→ R over domain X is a real-
valued kernel if every matrix Kn := (k(xi, xj))

n
i,j=1 is positive semi-definite. It is known that the

value of the kernel can be represented as an inner product in some Hilbert space H , namely k
(
x, x

′)
=〈

φ(x), φ(x′)
〉
H

. Some of the standard examples of kernels include (we consider here X ⊂ Rd): a linear

kernel k
(
x, x

′
)
=
〈
x, x

′
〉
Rd

; a polynomial kernel of order m ∈ N km
(
x, x

′)
=
(〈
x, x

′
〉
Rd

+ c
)m

;

Gaussian kernel k
(
x, x

′)
= exp

(
− σ−2

∥∥x − x
′∥∥2

2

)
, where σ > 0. In this case we call H a feature

space and φ
(
·
)

a feature map of kernel k. Lastly, we say that the RKHS H is generated by the kernel
k
(
·, ·
)

if for every x it holds: kx := k(x, ·) ∈ H, and f(x) =
〈
f, kx

〉
H

for every f ∈ H, and x ∈ X (i.e.
the so-called reproducing property holds). In this case, we write Hk to denote the RKHS generated by
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kernel k(·, ·), and say that the kernel k(·, ·) is a reproducing kernel of Hk.
It is true (see Chapter 4 in Steinwart and Christmann (2008)) that for any kernel k(·, ·) : X×X 7→ R,

there exists a unique RKHS Hk = {f : X 7→ R} for which k is a reproducing kernel. The RKHS is in a
certain sense, the smallest feature space H of the kernel k. Furthermore usage of kernel computationally
is advantageous, since one does not need to know the feature map explicitly, but only the kernel product
k
(
x, x

′)
. From the other side, if one possesses any feature map φ(x) : X 7→ H then, by the isometry

property between an arbitrary feature space H and RKHS Hk for any f ∈ Hk one can write for f(x) =〈
f, kx

〉
Hk

=
〈
V −1f, φ(x)

〉
H

where V : H 7→ Hk is metric surjection betweenH and Hk which always
exists (see Theorem 4.21 in Steinwart and Christmann (2008)) and is defined as V g = 〈g, φ(·)〉H . In this
case the problem of function evaluation is reformulated in terms of finding the inverse of V . The latter
in general is computationally not easier than computing kx and moreover the inverse is not necessarily
unique; however, in some cases of kernels the map V can be defined explicitly and is an isometric
isomorphism. For example (see Theorem 4.47 in Steinwart and Christmann (2008)) if kσ

(
x, x

′)
=

exp
(
− σ−2

∥∥∥x− x
′
∥∥∥2
2

)
then we have Vσg =

(
2
π

) d
4 1
σd/2

∫
Rd exp

(
− σ2

∥∥x− ·
∥∥2
2

)
g(x)dx for g ∈ L2(X)

(see Proposition 4.46 in Steinwart and Christmann (2008)).
In this thesis we restrict ourselves to the case of bounded and measurable kernels k(·, ·). Furthermore,

for the statistical learning in the framework of non-parametric regression we assume that fν ∈ Hk ⊂
L2(X,B(X), µ) which directly gives

inf
f∈H

RLS,ν(f) = inf
f∈L2(X,B(X),µ)

RLS,ν(f) = RLS,ν(fν).

Recall that in the learning setting we are generally interested in the excess riskRLS,ν(fDn)−inff∈Hk
RLS,ν(f)

control, which under the assumption fν ∈ Hk equals to ‖f − fν‖L2(X,µ)
. Notice that the latter assump-

tion can be weakened by assuming that Hk is dense in L2(X,B(X), µ) while fν /∈ Hk and preserving
the last equality for the excess risk. The assumption fν ∈ Hk is natural from the perspective of inverse
problem theory as it is a necessary if one wants to study the behaviour of fDn − fν in Hk− norm. In
general the minimizer of RLS,ν(f) over H does not necessarily exists. In this case define f+Hk

to be the
inclusion of the projection operator P : L2(X,B(X), µ) 7→ R(I), where R is the closure of the range
of the inclusion operator I : Hk 7→ L2(X,B(X), µ) of the functions in Hk into L2(X,B(X), µ). In the
latter case we have that we can study RLS,ν(fDn)−RLS,ν

(
f+Hk

)
=
∥∥fDn − f+Hk

∥∥2
L2(X,µ)

.
One approach in non-parametric statistical learning which uses the machinery of RKHS and ensures

existence of the solution of the problem of risk minimization is the usage of regularization. For example
one can consider a regularized least-squares problem over the RKHS Hk which is generated by some
measurable kernel k.

Example 1.1.12. Consider the following optimization criterion

min
f∈Hk

RLS,Pn(f) + λ‖f‖2Hk
= min

f∈Hk

1

n

n∑
t=1

(yi − f(xi))
2 + λ‖f‖2Hk

, (1.5)

where λ > 0. This is a known example of kernel ridge-regression problem (see Steinwart (2009),Caponetto
and De Vito (2005) and Smola and Schölkopf (2002)). Let fλDn

be a minimizer of Equation (1.5). Using
the reproducing property and continuity of the evaluation functional, one can deduce the Representer
Theorem (see Kimeldorf and Wahba (1970)). It states that the solution to every penalized optimization
problem in Hilbert space has a unique minimizer which can be represented as a span of the kernel ele-
ments of the data sample. In particular, for the empirical penalized least-squares problem (1.5) one finds
fλDn

=
∑n

t=1 ctkxt , where c ∈ Rn is such that c = (Kn + nλI)−1y, where Kn = (k(xi, xj))
n
i,j=1 is the

kernel matrix and y = (y1, . . . , yn). By the law of large numbers for every fixed f ∈ Hk, RLS,Pn(f)
converges to RLS,ν(f). Therefore, one may consider empirical problem given in Equation (1.5) to be a
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finite-sample estimate of the following population optimization problem

min
f∈Hk

RLS,ν(f) + λ‖f‖2Hk
. (1.6)

We refer to the Chapter 5 of the work Steinwart and Christmann (2008) for the questions of existence
and uniqueness and of the dependence of the solutions to the regularized least-squares problems (1.5),
(1.6) on the parameter λ > 0.

The effect of adding a regularization λ to the inverse of the kernel matrix in the least-squares regres-
sion problem can be seen as a particular way of filtering out the small eigenvalues of the matrix Kn and
thus adding numerical stability to the solution fλDn

. This gives an intuition for a family of methods which
act on the least-squares solution in a similar way (i.e. as a low-pass filter over the eigenvalues of the
inverse of Kn). In the first chapter of this work, we study the properties of the generalized regularized
learning schemes with values in the RKHS Hk which are based on the sample Dn which is generated
by the so-called τ−weakly-mixing process. To introduce them, consider a sample Dn = {xt, yt}nt=1,
reproducing kernel k(·, ·) and the correspondent RKHS Hk. Now define the following operators:

Sn : Hk 7→ Rn, (Snh)j = 〈h, kxj 〉 = h(xj), S∗
x : Rn 7→ Hk, S∗

ny =
1

n

n∑
j=1

yjkxj ,

Tn := S∗
nSn : Hk 7→ Hk, Tnh =

1

n

n∑
j=1

kxj

〈
kxj , h

〉
, Ln := SnS

∗
n : Rn 7→ Rn, Ln = n−1Kn,

where Kn is the kernel matrix as above. Lastly, let S, S∗, T, L be the corresponding population analogs
of the empirical operators, namely:

S : Hk 7→ L2(X,B(X), µ), Sh = [f ]µ, such that 〈h, kx〉 = [f ]µ(x), µ− a.s

T : Hk 7→ Hk, Th =

∫
X

kz〈kz, h〉µ(dz),

L : L2(X,B(X), µ) 7→ L2(X,B(X), µ), Lf(x) =

∫
z
k(x, z)f(z)µ(dz), µ a.s.

Notice that with the above notations, the solutions of both the empirical and population versions of the
least-squares penalized problem given by Equations(1.5) and (1.6) respectively can be written as fλDn

=

(Tn + λI)−1S∗
ny and fλ = (L+ λI)−1Lfν . In Chapter 2 we consider the following decision rules,

which are generated by a family of operator-valued maps gλ : Hk 7→ Hk ( the so-called regularization ):

fλDn
= gλ(Tn)S

∗
ny, (1.7)

where y = (y1, . . . , yn) ∈ Rn. This estimator is also sometimes referred to as the bandpass filter
as its action can be seen as a transformation of the eigenvalues of the covariance operator Tn. For
example, the choice gλ(t) = 1

t+λ corresponds to the solution of the least-squares penalized regularization
problem as given by Equation (1.5) (also called Tikhonov regularization or ridge regression, see for
example in Caponetto and De Vito (2005), and Fischer and Steinwart (2017)); gλ(t) =

∑λ−1
i=0 (1− t)j to

Landweber iteration (also called gradient descent, see ex. Robbins (1952), Pillaud-Vivien et al. (2018));
and gλ(t) = t−1It≥λ corresponds to the spectral cut-off (see Rosasco et al. (2010) and Blanchard et al.
(2007)).

Motivation for the choice of regularization comes from the theory of inverse problems (with fixed ob-
servations) in which, under certain conditions on the regularization function (see Bauer et al. (2009), Engl
et al. (2000)), the population version of Equation (1.7) (i.e. the function which is obtained through the im-
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age of the integral and adjoint to the evaluation operator with respect to measure P over
(
(X× Y)N,B

(
(X× Y)N

))
)

converges to the minimizer of the population optimization problem.
Notice that although in the framework of least-squares regression there are universally consistent

rules for the problem of least-squares regression but, because of the existence of the variant of the
No-free-lunch Theorem (see Corollary 6.8 in Steinwart and Christmann (2008) or Chapter 3 in Ǵyörfi
(2002)), it is impossible to obtain learning rates without additional assumptions on the marginal distri-
bution ν even in the case when P is a product measure. In the regression case, one of the possible as-
sumptions on ν translates into a notion of the complexity of the functional class to which the regression
function fν belongs. One way to obtain such complexity bounds is to introduce smoothness assumptions
on the regression function fν (and thus on the underlying functional class). In Chapter 2 we pose such
assumption on fν in terms of the so-called standard Hölder source condition for the linear embedding
problem. From the perspective of statistical learning with the least-squares loss, the main contribution
of Chapter 2 is establishing strong upper rates of convergence of the general Hilbert-valued learning
algorithms given by Equation 1.7 when training sample Dn comes from a trajectory of some process
with decaying correlation assumptions on the distribution. Depending on the correlations strength we
highlight the scenario in which upper convergences rates are essentially optimal (meaning that up to a
logarithmic term in the number of observations they match the minimax rate convergence rates in the
i.i.d. scenario). We highlight the cases when convergence rates are worse by polynomial factor and point
out that this only the consequence of suboptimal rates in the correspondent deviation inequalities. We
give more details on the framework of statistical learning with dependent random observations in the
next section.

1.2 Statistical learning from dependent random observations.

1.2.1 Introduction to the notion of asymptotic independence (weak-dependence).

To be able to navigate somewhat consciously between the notions of dependence, I introduce a general
framework of dependence measures from somewhat functional perspective. The spirit of this is taken
from the introduction of the book Dedecker and Merlevede (2015) and from the survey of Bradley (2002),
however, to the best on my knowledge, general scope of this presentation seems to be new. We use the
notation EA[·] := E[·|A] to denote conditional expectation under regular conditional probability P(·|A)
for any σ−algebra A ⊂ F. Recall that two σ−algebras A,B ⊂ F are said to be independent if for all
A ∈ A, B ∈ B it holds that P(A ∩B) = P(A)P(B). Alternatively, the last expression can be written as

sup
A∈A,B∈B

CovP[IA, IB] = 0, (1.8)

where IA(ω) = Iω∈A is the standard notation for the indicator random variable. Extending (1.8) by
linearity of the covariance form to the set of simple functions, and using the fact that every bounded r.v.
is a pointwise (in ω) limit of elements of the set of simple random variables, we can write that A, B are
independent iff

sup
f∈L∞(Ω,A,P),h∈L∞(Ω,B,P)

CovP[f, h] = 0.

As we will demonstrate below, this form of covariance condition will be the most convenient in many
cases of usage to control dependence between "past" and "future" of stochastic process which is repre-
sented by the information contained in A and B correspondingly. Informally, it is natural to say that
σ−algebras A,B are "almost independent" if

sup
f∈G,h∈H

|Cov[f, h]| < δ
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for δ → 0 and some apriory chosen classes G ⊂ L∞(Ω,A,P) and H ⊂ L∞(Ω,B,P). For any classes
G,H of (A,B(R)) and (B,B(R)) measurable bounded real maps correspondingly, G = {f : Ω 7→ R},
H = {h : Ω 7→ R} such that point-wise limits of any sequence belong to L∞(Ω,A,P), L∞(Ω,B,P),
the latter condition is equivalent to supf∈L∞(Ω,A,P),h∈L∞(Ω,B,P)|Cov[f, h]| < δ. Varying the functional
classes G,H of A, B measurable functions correspondingly (non necessarily being the subsets of es-
sentially bounded functions), under the additional assumptions that f, h, fh are integrable (which, for
example, is fulfilled if f ∈ Lp(Ω,A,P),h ∈ Lq(Ω,B,P) with p−1 + q−1 ≤ 1) we can define the
following dependence measure

a(G,H,P) := sup
(f,h)∈G×H

|CovP[f, h]|, (1.9)

where we take the supremum over f, g such that f : (Ω,A) 7→ (R,B(R)) and h : (Ω,B) 7→ (R,B(R)).
This notion of dependence measure naturally translates to the case of two random variables. Namely,
if X,Y are random variables over (Ω,F,P) with values in (X,B(X)) and (Y,B(Y)) and their joint
distribution νX,Y over (X× Y,B(X× Y)) then we define the dependence measure between random
variables X ,Y as the dependence measure between corresponding sigma-fields B(X) and B(Y) under
measure vX,Y .

Example 1.2.1 (Mixing coefficients). In what follows we introduce the notion of mixing coefficients.
We deviate a bit from the common way of presenting mixing coefficients ( see Bradley (2002), Dedecker
and Prieur (2005)) as a supremum over the difference between joint probability law and the product of
its marginal over the certain classes of events and propose (in some sense) a more functional-analytic
approach. This corresponds in spirit to the particular cases of dependence measure a(·, ·,P) introduced
in the previous paragraph. We firstly define the following dependence measures between σ−fields as
follows:

α(A,B) = sup
A∈A,B∈B

|Cov[IA, IB]| = sup
f∈L∞(A),h∈L∞(B)
‖f‖∞≤1‖h‖∞≤1

|Cov[f, h]|

ρ(A,B) = sup
f∈L2(A),h∈L2(B)
‖f‖2≤1,‖h‖2≤1

|Cov[f, h]|

φ(A,B) = sup
A∈A,B∈B,P(A)>0

|E[IB|A]− E[IB]| = sup
A∈A,B∈B,P(A)>0

|Cov[IA/‖IA‖1, IB]|

(1.10)

We define the α, ρ, φ−mixing coefficient of the process (Xt)t∈Z over (Ω,A,P) as

α(k) = sup
i∈Z

α
(
Fi
−∞,F

∞
i+k

)
,

ρ(k) = sup
i∈Z

ρ
(
Fi
−∞,F

∞
i+k

)
,

φ(k) = sup
i∈Z

φ
(
Fi
−∞,F

∞
i+k

)
where we define Fb

a = σ(Xt : a ≤ t ≤ b).
Notice that dependence measure of Equation 1.10 can be presented as the bi-linear covariance form

by means of coefficient a as in Equation (1.9). Namely, for σ fields A,B ⊂ F, 1 ≤ p, q ≤ ∞ and
Lp(Ω,A,P), Lq(Ω,B,P), being the standard equivalence classes of p−integrable functions with respect
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to measure P, we can readily check that the following holds

α(k) = sup
i
a
(
B

L∞
(
Ω,Fi

−∞,P
)(1), B

L∞
(
Ω,F∞

i+k,P
)(1),P)

ρ(k) = sup
i
a
(
B

L2

(
Ω,Fi

−∞,P
)(1), B

L2

(
Ω,F∞

i+k,P
)(1),P)

φ(k) = sup
i
a
(
B

L1

(
Ω,Fi

−∞,P
)(1), B

L∞
(
Ω,F∞

i+k,P
)(1),P)

The theory of mixing processes dates back to the works Rosenblatt (1956), Ibragimov (1959) where
the concepts of α and φ− mixing coefficients were introduced. α−mixing coefficients are also some-
times referred to as strong mixing coefficients. The main motivation, which gave rise to its development,
were the needs of statistical inference for the processes which do not have a specific functional structure
(like AR-models or Gaussian processes for instance), but possess a certain kind of decaying correlation
property between past and future which in the limit case (i.e. when the time gap between past and future
goes to infinity) recovers processes with independent noise component processes.

The concept of the ρ−mixing coefficient was introduced in Kolmogorov and Rozanov (1960). Fur-
thermore, notions of α, ρ, φ− mixing were widely studied by Bradley et al. (1987), Dehling and Philipp
(1982), Peligrad (1983),Bradley (2007). Apart from these three examples, in the theory of mixing pro-
cesses there are many other concepts of dependence which characterize the decaying correlations be-
tween whole past and whole future of the process, for example β−mixing (McDonald et al. (2015)) ,
η−mixing (Kontorovich (2006)), ψ−mixing (Bradley (2007) ).

We refer to the survey paper of Bradley (2002) for further notions of mixing, their history and further
properties and relations to the other dependence measures.

Remark 1.2.2. The advantage of this presentation is that for Cov[f, g], one can directly apply techniques
from functional analysis to compare these measures of dependence and derive covariance inequalities.
Furthermore, we notice that if we, say, fix parameter q, then the smaller we choose p−1 , the broader the
functional class (and thus a weaker notion of the mixing coefficient) we obtain.

From the work Andrews (1984) (see p.9 therein) it is known that there exists a stochastic process
with very simply structure which is not α−mixing. Namely, one can consider a simple chain Xn =
1
2(Xn−1 + ε), X0 is independent of (εi)i≥1 and εi = B

(
1
2

)
. One can show that α(σ(X0), σ(Xn)) =

1
2 ,

thus (Xn)n≥1 is not even α−mixing. In this case, a natural idea is to relax the mixing assumption and to
consider the weaker classes of processes obtained by functional transforms.

Example 1.2.3. Functional weak dependence Let C be a Banach space of real bounded functions
{f : X 7→ R} equipped with the norm ‖·‖C = ‖·‖ + C(·), where C(·) is some seminorm over X and
‖·‖ is a standard supremum norm on C. Denote C1 := {f ∈ C, C(f) ≤ 1}. Now, for a stochastic
process (Xt)t∈N, arbitrary i ∈ Z and fixed k ∈ N, consider Ai = σ(Xj : j ≤ i), Bi+k = σ(Xi+k),
G = L1(Ω,Ai,P), H = C1 ◦ L∞(Ω,Bi+k,P) and define the following coefficient :

φC(k) := sup
i
a(G,H,P)

which can be written explicitly written (usingX to denote any (Ai,B(X)) measurable integrable random
variable and Y := Xi+k).

φC(k) := sup
i∈N

{|Cov[X, f(Y )]|, ‖X‖L1(Ω,Ai,P) ≤ 1, f ∈ C1}.

The latter condition is introduced in Maume-Deschamps (2006) and extends the ideas of weak-dependent
coefficients by Dedecker and Prieur (2005), Doukhan and Louhichi (1999). We consider the case of
stochastic process valued in some bounded set X ⊂ R and consider the Lipschitz and total variation
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seminorms:

ΛM := BLip(M)

{
f : X 7→ R, sup

x,y∈X

|f(x)− f(y)|
|x− y|

≤M

}
BVM := BBV (M)

{
f : X 7→ R, ‖f‖TV := sup

x0,...,xn∈∆⊂X

n∑
i=1

|f(xi)− f(xi−1)| ≤M

}
Notice that the notion of Lipschitz semi-norm and Lipschitz functional class can be trivially extended to
the case of general normed spaces. Weakly τ(·), φ(·) coefficients (see Wintenberger (2010), Dedecker
and Merlevede (2015) ) are obtained when considering C1 = Λ1, while if we take C1 = BV1 we obtain
the so-called weak φ−mixing coefficients (see Rio (1996), Dedecker and Merlevede (2015) ).

1.2.2 Projective dependence measure. Mixingales

A stronger approach is to have the control over the conditional expectation of a stochastic process instead
of having control of the covariance. The latter leads to the projective type dependence criterion. LetX,Y
be centered real random variables over the same space (Ω,F,P) with values in (X,B(X)), (Y,B(Y)),
X,Y ⊂ R such that X is (A,B(X))-measurable while Y is (B,B(Y)) -measurable. We have

Cov[X,Y ] = E[XEA[Y ]] = E[Y EB[X]]

from which, by applying Hölder’s inequality, we deduce that

|Cov[X,Y ]| ≤ ‖X‖Lp(Ω,A,P)‖EA[Y ]‖Lq(Ω,B,P) |Cov[X,Y ]| ≤ ‖Y ‖Lq(Ω,B,P)‖EB[X]‖Lp(Ω,A,P).

These inequalities give rise to the following definition of projective weak-dependence measure.

Definition 1.2.4. For any probability space (Ω,F,P), A,B ⊂ F, some value 1 ≤ q ≤ ∞, and some
class F of centered (B,B(R))-measurable and q− integrable random variables we define:

Eq(A, F ) = sup
X∈F

‖EA[X]‖q. (1.11)

For the case of stochastic process (Xt)t∈N we define the following “projective” dependence coeffi-
cients by varying the σ−algebras A,B and classes F . Namely, for i, k ∈ Z we set B = F∞

i+k and define
eq,Lq(k) := supi∈Z Eq

(
Fi
−∞, Lq(Ω,B,P)

)
.

Remark 1.2.5. The intuition behind the notion "projective" dependence is apparent from the definition,
as one considers the variation of the q−norm of the orthogonal projection of the variable X on the
subspace generated by A−measurable functions. Furthermore, from the application of the Hölder’s
inequality above and by considering the notion of dependence coefficient a(·, ·,P), it follows that for
every 1 ≤ p, q ≤ ∞

a
(
BLp(Ω,A,P)(1), BLq(Ω,B,P)(1),P

)
≤ eq(k)

for every k ∈ N.

The following Lemma (see Lemma 1.1.2 in Maume-Deschamps (2006) ) allows one to relate a
projective-type dependence measure (with certain classes F and norm q = ∞) to the notion of func-
tional dependence, and it will be important for further analysis in Chapter 2.

Lemma 1.2.6. For the X−valued stationary stochastic process (Xt)t∈N, the functional class of real-
valued and bounded functions C = {f : X 7→ R} as in Example 1.2.3 such that E[f(Xt)] = 0 for any
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f ∈ C1. Consider σ−field Fa
b , a weak-dependency coefficient φC(k) all being as defined above. It holds:

φC(k) = sup
i∈Z

sup
g∈C1

∥∥E[g(Xi+k)|Fi
−∞
]∥∥

∞. (1.12)

Remark 1.2.7. One can easily see that if in the Definition 1.12 we take q = ∞, A = Fi
−∞, B =

σ(Xi+k), F = C1 ◦ L1(Ω,F,P) then by Lemma 1.2.6 we have φC(k) = e∞,C◦L1(k). The latter
shows that certain projective-type dependence measures (and thus functional weak-dependence mea-
sures) induce the notion of functional weakly-dependent mixing coefficients. Recall notation Λ1, BV1
for the unit balls in the spaces of Lipschitz and functions with bounded variation. For a real-valued
stationary stochastic process (Xt)t≥1,‖Xt‖∞ ≤ 1 consider L0

1(PX) to be a class of functions such that
E[f(X)] = 0, σ−field Fi

−∞ as before, we denote PX = P ◦ Xt (see Dedecker et al. (2007) Dedecker
and Merlevede (2015) for these and another examples) and obtain

α̃(k) = sup
i

sup
f∈BV1∩L0

1(PX)

∥∥E[f(Xi+k)|Fi
−∞
]∥∥

1
= e1,BV1(k)

φ̃(k) = sup
i∈N

sup
f∈BV1∩L0

1(PX)

∥∥E[f(Xi+k)|Fi
−∞
]∥∥

∞ = e∞,BV1(k)

τ̃(k) = sup
i∈N

sup
f∈Λ1∩L0

1(PX)

∥∥E[f(Xi+k)|Fi
−∞
]∥∥

∞ = e∞,Λ1(k).

In this thesis, we mainly work with two types of weak-dependency measures: the functional weak-
dependency coefficient φC(·) in Chapters 2 and 4 and the extension of the projective-dependence measure
ep(·) to the case of random fields (see Chapter 5), which can also be seen as an extension of the concept
of mixingale whose short definition is presented below.

Mixingale In all previous examples, to characterize the dependence we always considered the canoni-
cal filtration generated by the stochastic process (Xt)tN. Following Mc Leish (1975) and Andrews (1988)
(see also the Definition 1.1 in Dedecker and Merlevede (2015) ), consider some increasing sequence of
σ−algebras such that for any n, we have Fn ⊂ F and p ≥ 1. The sequence (Xt,Ft)t≥1 is called an
Lp−mixingale if there exist non-negative sequences (cn)n∈Z and (ψn)n∈Z such that ψn → 0 as n→ ∞,
and for all n ∈ Z we have

‖Xn − E[Xn|Fn+k]‖Lp(Ω) ≤ cnψk+1,

‖E[Xn|Fn−k]‖Lp(Ω) ≤ cnψk.
(1.13)

Notice that when Fn = σ(Xi : i ≤ n), mixingales satisfies the projective-type criterion of Example 1.2.2.
Namely, in this case the first condition in (1.13) is straightforwardly satisfied (as Xn is Fn+k−measur-
able), and the second condition becomes a form of a projective-type dependency condition. Under this
general assumption, many processes (which are non-mixing) can be classified. However, obtaining gen-
eral moment inequalities or limit theorems are typically difficult in this scenario (see (Peligrad et al.,
2006, 2007) for some results for general stochastic processes which have a martingale-like component;
see also Doukhan (1994) for more examples of the processes which are mixingale like).

1.2.3 Concentration inequalities for weakly-dependent processes.

For a random variable Z : Ω 7→ R, the question of establishing inequalities of type P(Z ≥ E[Z] + ε)
(i.e. concentration inequalities) is a fairly general and vast topic of interest both in probability and
statistics. Such a phenomenon is vastly studied in the context of product measure P on the product space
(Ω,F) where Ω =

(
Ω

′)n
,F = B

((
Ω

′)n) ( see Talagrand (1995), Ledoux (2001), McDiarmid (1989))
under quite general assumptions on the "smoothness" properties of the underlying function Z. Most of
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the techniques use either information-theoretic (see ex. Marton (2004)), isoperemetric ((Ledeoux, 1997;
Ledoux, 2001)), or martingale-difference approaches (see Pinelis (1994)), or exploits in a different way
the structure of the underlying variable Z. The situation becomes more complex if the measure P is a
non-product measure, as in this case one needs to quantify the dependency between the marginals of
P. Several works has been done to classify the dependence between the marginals of the distribution of
the stochastic process. These, as it was discussed in the previous section include the notion of mixing
coefficients, the weak-dependency assumption (see (Dedecker, 1991) andvDedecker et al. (2007) ) or the
functional weak-dependency assumption Maume-Deschamps (2006). The problem of establishing even
the asymptotic results for non-product measures is already interesting in the case when Z =

∑
t∈TXt,

T is some subset of some vector space and (Xt)t∈T is a stochastic process with values Banach space
(B, ‖·‖). Standard Hoeffding’s and Bernstein’s inequalities for general norms of sums of i.i.d. random
vectors when T ⊂ N due to Pinelis and Sakhanenko (1986) (which recovers the well-known Hoeffding’s
and Bernstein’s inequalities in the case of bounded real-valued random variables) are extended to the
case of concentration of super-martingales in the work Pinelis (1992) and more general functions with
domain in some Banach space in Pinelis (1994).

Beyond the (super)martingale setting, the need to handle more general processes which have some
"asymptotic independence" assumptions led to the concept of mixing, weakly-dependent processes and
mixingales whose exact definitions were given in the previous section in terms of dependence coefficients
a(·, ·,P) or e(·). In these settings, mostly martingale-like and coupling techniques were used and im-
proved and combined with other methods to obtain concentration inequalities for the sums of real-valued
dependent random variables. Most of the techniques relies on the splitting of the data-sample into blocks
( using some practical way) and considering samples from different blocks as "almost" independent
(up to a contamination term which arises when substituting the joint probability distribution by product
of marginals). In such spirit generalizations of Bernstein’s inequality for φ-mixing random processes
were obtained in Samson (2000); also Bernstein-type inequalities for geometrically α−mixing processes
and moderate deviation principles were derived in Merlevede et al. (2009); deviation inequalities for
real-valued sums of variables from general α−mixing processes were obtained in Bosq (1993). In Kon-
torovich and Ramanan (2008), the martingale difference method is used to establish general McDiarmid-
type concentration inequalities for real-valued Lipschitz functions of dependent random sequences on
a countable state space. Using logarithmic Sobolev inequalities and the contractivity condition related
to Dobrushin and Shlosman’s strong mixing assumptions, general non-product measure concentration
inequalities were obtained in Marton (2004). We relate to a proper discussion on the subject of existing
results on the concentration of weakly-dependent partial sums of random process to Chapter 2.

The goal of the first part of the thesis is to consider the general class of weakly C−mixing processes
and derive new concentration inequalities of Bernstein-type for the deviations of the random sums of
Banach-valued random variables. In the Chapter 5 we extend the projective type-criteria (formulated
in terms of dependency measure Eq(A, F ) ) to the case of weakly dependent random fields and derive
deviation bounds (on the exponential scale in probability and of Burkholder type in p−norm ) for the
partial sums.

1.2.4 Statistical learning with dependent random observations

This part is devoted to a discussion of an extension of the concept of statistical learning from examples
to the case of non i.i.d. data observations. Statistical motivation for investigation of this framework can
be described in various perspectives. Firstly, stochastic independence of random observations in many
cases is an assumption rather than a property which can be inhereted from some empirical experiment
and often hard to verify for data sources with complex structure. Thus in the framework of learning
from observation one wants to extend the dependence notion in order to include processes which which
samples can be seen as "nearly independent" Secondly, in such an extension one wants to consider
different dependence measures, that is to give mathematical classification for the range of processes
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for which the samples are "strongly" or "weakly" dependent. Lastly, having a certain class of such
dependent processes, in the framework of learning from examples one wants to investigate how the
desirable stochastic independence properties (in terms of rates for either excess risk or generalization
error) are preserved or in which way they are contaminated (due to the presence of dependencies) in the
learning rates of the algorithms when using dependent data sample for training.

The setting of statistical learning with weakly-dependent or mixing observations is definitely not
new. In the work by Hang and Steinwart (2017), the authors consider the general notion of C−mixing
processes as given in Equation (1.12). They also develop probabilistic toolbox (in terms of an exponential
Bernstein-type inequality for sums of real-valued random variables) and use it to establish learning rates
for the LS-SVM algorithm (see Steinwart and Christmann (2008)) in the setting of nonparametric least-
squares regression. In particular, when the regression function belongs to the bounded ball in the space
Bt

2s,∞(X) (Besov space of smoothness t, s ≥ 1 ), LS-SVM leads to the essentially (up to a small
polynomial factor) optimal rates when t > d

2 .
When finding the upper bounds for the excess-risk of the data-dependent decision rule fD, one aims

to control the generalization error, i.e. the difference RL,P (f)− RL,Pn(f) uniformly over f ∈ F. Such
control leads to the notion of class complexity (VC dimension, Rademacher complexity or covering
number). For example, the generalization of the bounds for Rademacher complexity to the case of non
i.i.d. random samples (more precisely under the so-called β−mixing assumption which implies α−mix-
ing) is provided in Mohri and Rostamizadeh (2008)); the framework of structured risk minimization and
VC dimension is adapted to the ergodic time series and uniform convergence results (i.e. laws of large
numbers which hold uniformly over the functional class of prediction rules F ) are obtained for the pro-
cesses which fulfill certain algebraic or exponential mixing condition by Meir (2000). In the work of
Vidyasagar (2003), author discusses the sufficient conditions on the underlying data-generating process
which ensures that the uniform convergence results can be transferred from the setting with i.i.d. random
observations to the processes with dependencies (and thus become uniform ergodic theorems). In the
work Adams and Fournier (2003), the uniform law of large numbers is shown for the ergodic processes
with values in complete separable metric spaces and over functional classes with finite VC dimension.

From the stability perspective, learning rates for various classes of learning algorithms are analysed
for the case β− and ϕ− mixing sequences by Mohri and Rostamizadeh (2010). In this framework one
considers the generalization bounds for some algorithm A which depend on the sensitivity to the changes
of the expected risk if one point is being changed in the training sample. This work shows that a "stable"
algorithm provides good generalization results in the case when β−mixing coefficient decays sufficiently
fast. All of the results therein assume that the underlying data generating process satisfies certain mixing
condition and demands the knowledge of the mixing rate (which is not given in practice). In McDonald
et al. (2011), McDonald et al. (2015), the authors try to overcome this issue and study the estimators for
β−mixing coefficients. Furthermore it has been investigated by Agarwahl and Duchi (2012) that in the
setting when the underlying process is ergodic and either β− or ϕ−mixing, performance of the online
decision rules (used in the batch setting) is close to their regret. More precisely, if the loss-function is
convex and the decision rule (after predicting the sequence w1, . . . , wn during time-steps 1 ≤ t ≤ n )
outputs the batch average of the predictors up to time n, it has small generalization error on future sample
which is generated from the process with the same dependency condition.

In this work, in the framework of learning from dependent data observations we study the influence
of (weak-)dependent data sample on the rates for non-parametric statistical learning schemes with values
in reproducing kernel Hilbert spaces. In particular, we are interested in the high-probability control
of the excess risk of the rule fDn which is returned by a general regularization procedure (1.7) based
on the sample Dn of size n generated by some τ−mixing process (see Chapter 2 for the definition of
τ−mixing). To be able to obtain these bounds we develop a general probabilistic toolbox of concentration
inequalities of Bernstein-type for norms of partial sums of Banach-valued random variables. Under
certain assumptions on the smoothness of the underlying regression function (posed in terms of the source
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condition on the co-variance operator) and on the decay rate of the eigenvalues of the integral operator
of the underlying RKHS (see section 4 in Chapter 2 or section 3 in Chapter 4 for more examples), we
obtain that, in the case of geometrical decay of mixing coefficients (which is the case for example in the
finite AR processes or in aperiodic recurrent Markov chains with finite state-space), up to a logarithmic
factor the rates are the same as in the case with i.i.d. data observations.

1.3 Online (sequential) learning.

The second large part of this thesis is devoted to the problem of online (sequential) learning. We will
mainly consider the so-called stochastic bandit problem (or sequential learning problem with partial feed-
back information) and the problem of adversarial online regression (sequential prediction with arbitrary
data sequences). We give the mathematical preliminaries about the online learning problem. Let X be
some convex topological set equipped with a Borel σ−algebra B(X). We refer to X as to the instance
set, and let Θ be some topological space equipped with some σ−field B(Θ) of the open sets. We refer
to Θ as the parameter space or the hypothesis space. Consider also some abstract set of positive real
measurable maps L = {` : Θ 7→ R+} which we refer to as to the set of losses. We present the general
framework of online learning problems as a consecutive game between the learner and the adversary (or,
in the framework with stochastic outputs, environment). The game unfolds as follows. At every round
t ≥ 1 a learner (optionally) observes some context xt ∈ X, and based on it and available feedback up to
time t, chooses an element θt ∈ Θ. Next, the adversary chooses a loss-function `t ∈ L, the loss `t(θt)
is suffered and the game is repeated in the next round. The goal of the learner is to find a sequence of
predictions (θt)t≥1 for which the cumulative loss

∑T
t=1 `t(θt) will be small. To put mathematical details

in this framework, we need to make precise what information is available to each player at every round
of the game. We define the set which we call history available at time t to the learner as

Ht = {(xs, h(θs, `s))s≤t−1},

where h : Θ × L 7→ G is some measurable function, which we refer to as the feedback function and
(G,B(G)) is some measurable space. For a reason, which will be highlighted in Chapter 3 we also define
the (extended) set in which the context information xt at round t is available to the learner:

Ho
t = Ht ∪ {xt}

We say that the learning algorithm A which picks the sequence of decision rules (θt)t≥1 is admissible
if for every t, the map At : (X×Θ× L)t−1 7→ Θ is (σ(Ht),B(Θ))−measurable. The goal of the last
statement is to formalize the intuition that the learning algorithm cannot "see in the future". Furthermore,
we assume that all contexts and losses (xt, `t)t≥1 are fixed before the beginning of the game and do
not depend on the choices of the algorithm At of the learner. Notice that this includes the stochastic
framework as one can consider the sequence {xs, `s}s≥1 as a trajectory of a random process with values
in
(
XN,LN).

Definition 1.3.1. We refer to the online learning problem as the problem with full information if h is the
identity map from Θ×L 7→ Θ×L, i.e. h(θs, `s) = (θs, `s). We refer to the problem as a problem with
bandit feedback if h : Θ× L 7→ R+ and h(θs, `s) = `s(θs).

We describe separately the settings of online adversarial regression and the multi-armed stochastic
bandit under the joint framework of learning from observed context xt and feedback Ht.
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1.3.1 Online learning with full information. Adversarial online regression

In the framework of adversarial online learning, we consider the setting of sequential learning from
arbitrary data sequences with full information and fixed loss function. First we provide some examples
of learning frameworks with full information.

Example 1.3.2. Online binary classification. Let X = Rd, Y = {0, 1} and loss-function `t(θt) :=
`(θt, xt, yt) := ISgn(θ>t xt

)
6=yt

. At each time t ≥ 1 a learner obtains an instance xt ∈ X, makes a
prediction ŷt = Sgn(〈θt, xt〉Rd), where θt ∈ Θ and Θ = B1(0) := {x ∈ Rd : ‖x‖2 ≤ 1}. Given the
learner’s prediction ŷt, the adversary plays the loss function `t(xt, yt, θt) := `(yt, ŷt) : X×Y× Ŷ 7→ R+

such that `t(, yt, ŷt) = Iyt 6=ŷt (i.e. the learner suffers loss 1 when the prediction ŷt is wrong). A typical
example is an online binary classification problem where the task is to correctly classify instances of 2
classes.

Example 1.3.3. Learning with expert advice. Let X be a subset of Rd and Θ an n−dimensional
simplex, i.e. Θ = {p ∈ [0, 1]n : ‖p‖1 = 1}. Consider the linear loss function, i.e. `t(θt) = `(xt, θt) =

〈xt, θt〉. Then the regret is given as RT (Θ) :=
∑T

t=1〈pt, xt〉 − infp∈Θ
∑T

t=1〈p, xt〉. This setting has a
particular name, i.e. "learning with expert advice" which is natural as the prediction rule is essentially a
linear combination of the "votes" of experts (which are represented as corners in the simplex).

An important algorithm which is used in the framework of learning with expert advice (but also can
be extended to the general setting and learning with arbitrary loss functions) is the so-called exponentially
weighted forecaster (see, e.g. in Littlestone and Warmuth (1994) for the introduction in the context of
learning and see Cesa-Bianchi (1999a) for a broad survey).

Example 1.3.4. Online least-squares regression Let X = Rd, Y := [−M,M ] and θ ⊂ YX, i.e. it
is some subset of maps from X to Y. Consider a least-squares loss-function `t : X × Y × Ŷ 7→ R
`(yt, ŷt) = (ŷt − yt)

2, where the learner prediction is ŷt ∈ Y ⊂ R, ŷt = θt(xt) and the environment
outputs yt ∈ Y.

In this thesis (in Chapter 3) we will consider the problem of online sequential regression over arbi-
trary fixed data-sequences. First we specify the framework of online regression below. At the beginning
of a round t ≥ 1, learner observes a context xt ∈ X ⊂ Rd and makes a prediction ŷt := θt(xt) of the
unknown label yt ∈ Y ⊂ R, where element θt ∈ Θ = {θ : X 7→ R} is the value of the algorithm

At :
(
X× Y× Ŷ

)t−1
×X 7→ Θ which is assumed to be σ(Ht)− measurable. Afterwards, the true label

is revealed and loss (yt − ŷt)
2 is suffered. In this setting, at round t ≥ 1 the learner has access to the

history Ht = σ{(xs, θs, ys)s≤t−1} The performance measure of the prediction rule is the loss against
any fixed rule θ ∈ Θ = {θ : X 7→ R} over all fixed sequences of pairs {xt, yt}Tt=1, T ∈ N. This
leads to the notion of regret. We define the regret of admissible algorithm A which returns a sequence of
predictions (ŷt)

T
t=1 over data-sequence DT = {xt, yt}Tt=1 as

RT (A,DT ,Θ) = sup
θ∈Θ

{ T∑
t=1

(yt − ŷt)
2 −

T∑
t=1

(yt − θ(xt))
2

}
.

Because we focus on the complexity of the parameter space Θ, we use shorthand notationRT (Θ) keeping
dependence on DT and A implicit. To characterize the notion of hardness of the problem, we introduce
the concept of minimax regret over arbitrary fixed data-sequence DT , namely we introduce

R̃T (Θ) = inf
(At)t≥1

sup
DT=(xt,yt)

T
t=1

RT (Θ). (1.14)

In the last quantity the infimum is taken over all admissible learning strategies (At)t≥1 with respect to
the history Ht, and the supremum over all fixed data-sequences DT of size T with xt ∈ X, yt ∈ Y. We
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say that algorithm A learns the best rule from the class Θ over any sequences of losses from class L if
limT→∞

RT (Θ,A,L)
T = 0, and that the problem is online learnable over the loss-class L and parameter

domain Θ. In Chapter 3 of this work, we aim to understand the behavior of a certain algorithm (a well-
known nonparametric version of the Azoury-Warmuth-Vovk estimator) over some functional classes Θ
of smooth functions (the so-called Sobolev classes) focusing on the compexity of the latter. Therefore, in
the following we suppress dependence on L and A in the notation of the regret, keeping its dependence
implicit and writing RT (Θ).

Remark 1.3.5. First, notice that in this setting we do not pose any stochastic assumption on the data-
sequence. Also notice that in the definition of the minimax regret, the supremum over all fixed data-
sequences is used. Alternatively (since the learning algorithms are Ht−measurable), we can write it by
switching inf and sup and get (provided the output of the algorithm A on the step t is θ̂t(xt)):

R̃T (Θ) = inf
θ̂1

sup
x1,y1

. . . ... inf
θ̂T

sup
xT ,yT

RT (Θ). (1.15)

The origin of the online (sequential) prediction problem goes back to the work of Robbins (1952)
where composed statistical problems have been considered. Firstly, sequential algorithms were consid-
ered in the works of Blackwell (1956), Hannan (1957). The very first studies of online models in the
framework of learning from expert advice (a special case of learning with full information) are pro-
vided in the works by Littlestone and Warmuth (1994), Cesa-Bianchi et al. (1997) Vovk (1998). The
game-theoretic setting from the perspective of online convex optimization was introduced by Zinkewich
(2003), and since that developed in the thesesHazan (2006) and Shalev-Shwartz (2007). Further connec-
tions between online learning problems and, for example, finding equilibrium for economic systems are
provided in Foster and Vohra (1997),Hart and Mas-Colell (2000). In the full-information framework, in
the case when the decision set is finite (the so-called online learning with prediction of the expert advice
), a survey on the forecaster and their regret analysis can be found in Cesa-Bianchi and Lugosi (2006).

The question of regret control in the problem of adversarial online regression is already interesting
when Θ is a unit `2 norm bounded ball in the euclidean space Rd. Here, the sequence of covariates
(xt)t≥1 is the sequence of vectors in Rd, and the decision rule is a linear model wt ∈ Θ = {w : ‖w‖2 ≤
1}, i.e. the prediction is ŷt = 〈wt, xt〉. The (online) gradient descent algorithm which at time-step
t computes θt+1 = θt − η(yt − 〈θt, xt〉)xt can be seen in the online framework as an application of a
standard gradient descent iterative scheme to the square loss (see Kivinen and Warmuth (1997) ). Further-
more, a standard and general approach in online learning is to apply a variation of the gradient iteration
procedure, the so-called exponentiated gradient descent algorithm (see Kivinen and Warmuth (1997),
Cesa-Bianchi (1999a)). It updates the coordinate i in the output vector by exponentially weighting the
coordinates in which gradient’s coordinates are far away from zero. Applying this general scheme to the
squared-loss, the following update rule follows:

θt+1,i =
θt,i exp(−2η(yt − 〈θt, xt〉)xt,i)∑d
j=1 θt,j exp(−2η(yt − 〈θt, xt〉)xt,j)

.

It can be shown that for bounded covariates xt and yt ∈ [−B,B], the regret upper bound of the so-called
"exponentially weighted average forecaster" ( EWA ) is of order

(
4dB2 ln(T )

)
, which is optimal (with

respect to the number of rounds T ) on the classes of arbitrary balls in Rd and over the problem instances
with bounded labels. An interesting observation is that this iterative update rule is equivalent (through
performing online mirror descent update see Cesa-Bianchi (1999a) ) to the following regularized opti-
mization problem

θt = ArgMin
θ∈Rd

∥∥Yt−1 −Xt−1θ
>∥∥2

2
+ λ‖θ‖22,
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where Xt is a t− 1× d matrix and Yt−1 = (y1, . . . , yt−1) a vector of observed labels.
Furthermore, an improvement in terms of the multiplicative constant is achieved by the nonlinear

ridge forecaster (see Azoury and Warmuth (2001), Vovk (2001) and also Gaillard et al. (2019) ). Namely,
it is shown that the so-called Azoury-Warmuth-Vovk algorithm achieves regret rates with improved lead-
ing constant of order 2B2d ln(T ) over the sets of bounded balls in Rd and furthermore this bound is
optimal (see analysis for matching lower bound in Vovk (2001)) on the class of d−dimensional deci-
sion rules. According to this algorithmic scheme, the decision rule θt is the minimizer of the following
optimization criterion:

θAWV
t = ArgMin

θ∈Rd

∥∥Yt−1 −Xt−1θ
>∥∥2

2
+ λ‖θ‖22 + θ2(xt)

It can be shown that this algorithm is a variation of the so-called Aggregating Algorithm (see Vovk
(1998)), which is used in the more general setting with convex losses. In the latter setting it enjoys
an optimal regret of order

√
TK (here K is the number of experts). Furthermore, in the setting of

online linear regression the competing set Θ can be chosen to be the ball in `1 (Gerchinovitz and Yu
(2013) ), or the parameter space of the problem can change during the game (Hazan and Kale (2006)).
The work Gerchinovitz (2013) deals with the problem of online linear regression with parameter set
Θ = {θ : θ =

∑m
j=1 αjϕj} for some given dictionary of vectors {ϕj}mj=1 in Rd and under some

additional sparsity constraints (in the form of `1 or `0 norm) the minimizer over the set Θ; Langford
et al. (2009) considers the `1− norm penalized regret in the linear case.

The setting becomes much broader when the underlying set Θ is some subset of some functional
class of measurable functions, Θ ⊂ ŶX. One standard idea in this setting is to discretize the space by
means of some ε−net in L∞ norm, obtaining in such a way a finite ε− covering Θε = {f1, . . . , fKε} and
using an exponentially weighted average forecaster on the finite set Θε. In this case the learner is paying
an approximation error ε over duration of the game T . This idea is introduced in Vovk (2006a), where
it is applied to the broad classes of continuous functions over the balls of Besov and Sobolev spaces. It
requires estimates of the metric entropy of the underlying balls. This idea can be further extended (see
Gaillard and Gerchinovitz (2015)) to the case when instead of a fixed ε−net, one considers the successive
refined approximations Θ1,Θ2, . . . ,ΘKε of the underlying parameter space Θ and use an exponentially
weighted average forecaster on the sets of successive differences between elements from consecutive
sets Θi and Θi+1. Using the EWA on the series of consecutive approximations one obtains a "Chaining
EWA" algorithm (see Gaillard and Gerchinovitz (2015)). It is proven to be optimal on the classes of
bounded Hölder balls of smoothness level β ∈ R+.

Another way to characterize the complexity of online non-parametric regression problem is to charac-
terize functional spaces by means of the convexity modulus of the unite sphere of the underlying Banach
space (Clarkson (1936)). In this case, Vovk (2007) provides regret upper bounds in terms of the decay
rate of modulus of convexity. When the competing space is the ball in the reproducing kernel Hilbert
space, a strategy which is based on the approach of defensive forecasting (Vovk (2006b)) ensures regret
of order O

(√
T
)
.

Ideally, in the setting of online non-parametric learning, one would like to come up with an algorithm
which has a small computational cost while being optimal in terms of regret rates (see Rakhlin and
Sridharan (2014),Vovk (2001)).

In Chapter 3, we investigate the online variant of the non-parametric version of the Azoury-Vovk-
Warmuth forecaster (also called Kernel averaging aggregation Regression or KAAR, see Gammerman
et al. (2004)) with values in the RKHS whose kernel k is a Sobolev kernel (see Schaback (2007) for
more information on Sobolev kernels). Namely, for some s > d

2 we consider the Sobolev RKHS Hk :=
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W s
2 (X) and define the prediction rule as:

f̂t,τ = ArgMin
f∈Hk

(
‖Yt−1 − St−1f‖22 + τ‖f‖2Hk

+ f2(xt)

)
,

where τ > 0 is some parameter and St : Hk 7→ Rt is the evaluation operator of function f ∈ Hk as
before. One can easily find that f̂t,τ = (S∗

t St + τI)−1S∗
t−1Yt−1, where S∗

t is the correspondent adjoint
to the operator St, as above we recall that it has the form S∗

t Yt =
∑t

i=1 yskxs .
We show that the performance of the KAAR algorithm on the classes of Sobolev spaces W β

p (X)
is essentially optimal when either β > d

2 and p = ∞ while having the least computational costs in
comparison to the known algorithms which are based on the nested space discretization (see for example
Gaillard and Gerchinovitz (2015) ) or computationally not-tractable (see for example the seminal work
of Rakhlin and Sridharan (2014)).

1.3.2 Stochastic bandits

Finally we consider the so-called (finite) multi-armed bandit (MAB) model. We first provide an informal
description of the model as a game between the environment and the learner in the general setting as
introduced above, and then give mathematical details. Namely, as described above, we consider the
empty context set X, the parameter set Θ to be the finite decision space, i.e. Θ = {1, . . . ,K} and the
feedback function is the evaluation of the loss `t over the action `t(a). The classical learner’s goal is to
minimize his loss, and the performance measure of the learner’s strategy (It)t≥1 is, as in the setting of
online regression, a cumulative regret over T ≥ 1 rounds with respect to any action a ∈ Θ which is fixed
in hindsight:

R(a, I, T ) =

T∑
t=1

`t(It)− `t(a). (1.16)

Usually, in the setting of MAB, instead of losses one considers rewards and instead of a parameter set
one refers to the action set. To simplify somewhat presentation the rewards are assumed to be bounded
with values in [0, 1]. We consider also only bounded action sets and denote Θ = A = {1, . . . ,K} and
denote the reward of action a in round t as the value Xa

t . Notice that for regret analysis in order to
translate from the loss-setting to the reward setting one takes Xa

t := 1− `(a) and defines

R(a, I, T ) =

T∑
t=1

(Xa
t −XIt

t ). (1.17)

The MAB problem of finding the best fixed action a ∈ A in hindsight demonstrates the so-called
exploration-exploitation trade-off for the problem of regret minimization. Namely, in order to find the
best action, an efficient algorithm has to explore between different actions thus increasing regret while
not playing the optimal action. After having obtained some information about the environment, an effi-
cient algorithm exploits it in order to minimize the regret.

The history of the bandit problem goes back to the work Thompson (1933), where William R.
Thompson in the setting of performing medical trials was firstly to raise the question of sequential treat-
ment allocation with adaptation "on the fly" to the drug, which at current moment appears to be the most
effective. Statistical perspective of sequential experiment design was addressed in the work of Robbins
(1952) where the action consisted in the choice of a prescribed treatment, and reward depends on the
efficiency of its application for a patient. Since that work the field of sequential resources allocation has
developed and substantially increased the number of domains where it can be of use. Namely, a variety of
other different application problems can be modeled as a MAB problem. They include hyper-parameter
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optimization, ad placement and applications in the computer games. We refer to the introductions in
the surveys by Bubeck and Cesa-Bianchi (2012), Slivkins (2019) and recently Lattimore and Szepesvari
(2020) for a broad overview of the possible spheres where the MAB can be applied.

Remark 1.3.6. We underline that the main challenge in the MAB problems is that the underlying rewards
(Xa

t )a∈{K} are unknown and available to the learner only through the evaluation at single action It ∈
{K}. Furthermore, the notion of regret is defined for arbitrary sequences of (bounded) rewards without
any stochastic assumptions. In this case one speaks of adversarial bandits (see Bubeck (2010), Cesa-
Bianchi (1999a)). In this thesis, we however concentrate on the stochastic rewards scenario in which
rewards (Xa

t )t∈N,a∈{K} are assumed to be generated from the real-valued stochastic processes over the
space of all possible arm outcomes.

We introduce the setting of stochastic bandits more precisely. Let A = {K} be a finite action set; for
some a ∈ {K} consider an arbitrary probability space (Ω,F,Pa) and a stochastic process (Xa

t )t≥1 with
values in XN ⊂ [0, 1]N defined over (Ω,F,Pa) is assumed to be stationary. Without loss of generality,
we can always consider a canonical version of (Xa

t )t≥1 over (E,B(E), µa) where E = XN, B(·)-Borel
σ−algebra and µ some measure over E. We refer to a bandit instance as the joint distribution of the ran-
dom process (Xa

t )a∈A,t∈N. More formally, for a set {K} let a random process Bt =
(
X1

t , . . . , X
K
t

)
be

defined over (ΩB,A,PB), where ΩB =
(
XN)K , A = B

(
XN)⊗K (i.e. the σ−algebra which is obtained

by product of the cylinder sets) and PB is the probability distribution over A with i−th marginal i ≤ K
being the distribution Pi of the process Xi

t over
(
XN,B

(
XN)). We call a Bandit instance independent

if PK is the product measure. Typical examples of bandit instances are independent Bernoulli bandits
PK
Ber = ν1 ⊗ ν2 ⊗ . . . νK , νi = B⊗N(pi), with pi ∈ [0, 1]; uniform bandits with PK

Uni = U1 ⊗ . . .⊗UK ,
Ui = U((ai, bi))

⊗N, with ai, bi ∈ [0, 1] with ai ≤ bi, subgaussian bandits PK
SG = P1 ⊗ . . . ⊗ PK with

Pi = νi(σi) where νi(σ) is a subgaussian measure over (R,B(R)) with parameter σ > 0, i.e. such
that

∫
R e

λxνi(dx) ≤ exp
(
λ2σ2

2

)
for any λ ∈ R. Notice that the case of subgaussian bandit instance in

general violates the assumption that (Xa
t )t≥1 ∈ [0, 1], however the regret upper bounds (for the particu-

lar algorithms which are based on the confidence bounds analysis) are the same as in the bounded case,
which is the subject to usage of subgaussian concentration inequality. For a bandit instance PB, we will
always assume (if the contrary is not stated) that all expectations and probabilities are taken under PB

and suppress this in the notation. For a ∈ {K} denote νa = E[Xa
t ], a

∗ = ArgMax
a∈A

µa. We refer to the

arm a∗ as to the optimal arm, and for the arm a 6= a∗ we denote its suboptimality gap as the difference
with the highest mean, namely we define ∆a := µ∗−µa. In the case of i.i.d. bandit instance, it becomes
a natural measure of expected (single-round) regret suffered by the learner when pulling an arm a 6= a∗.
Intuitively (∆a)a∈{K} is a good characterization of the hardness of the bandit instance PDT

, since if
there are many (∆a)a∈{K} with ∆a being large, then the mean of µa is far from the mean of the optimal
arm a∗. Therefore, it becomes easier (in the sense it requires less observations from each of the arms)
to distinguish between them with given confidence level. Otherwise, if ∆a is small then to distinguish
between µa and µ∗ one needs more samples, however in this case the difference between payoff of op-
timal arm and arm a is exactly ∆a (thus being small). For the stochastic multi-armed bandit instance
PB, one typically differentiates between the notions of expected regret and pseudo regret. Namely, for
any admissible strategy (It)t≥1 its regret with respect to some action a ∈ {K} over T rounds is defined
as R(a, I, T ) =

∑T
t=1

(
Xa

t − XIt
t

)
. The expected regret under bandit instance PB is defined as the

worst-case expected regret with respect to the best (fixed in hindsight) action under the bandit instance,
i.e.

RPB
(I, T ) = sup

a∈{K}
EPB

[R(a, T )] = max
a∈{K}

EPB
[R(a, T )] = EPB

[R(ã, T )],

where ã = ArgMax
a∈{K}

EPB
[R(a, T )] = a∗. In what follows we simplify the notation and implicitly

assume the dependence of the regret on the learning strategy (It)t≥1, thus focusing on the complexity of
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expected regret in terms of bandit instance PB and number of rounds T . We define the pseudo-regret of
a bandit instance PB as the following quantity:

RPB
(T ) = max

a∈{K}
E
[
R(a, T )

]
:= max

a∈{K}
E

[
T∑
t=1

(Xa
t − µIt)

]
,

which in case of stationary processes simplifies to

RPB
(T ) = Tµ∗ − EPB

[
T∑
t=1

µIt

]
.

Notice that by Jensen’s inequality notice it always holds that E
[
maxa∈{K}R(a, I, T )

]
≥ RPB

(I, T ).
Observe that when the bandit instance PB = P1 ⊗ . . .⊗ PK is a product measure, we have:

RPB
(T ) = Tµ∗ − E

[
T∑
t=1

XIt
t

]
= Tµ∗ −

T∑
t=1

K∑
k=1

E
[
Xk

t IIt=k

]
=

K∑
k=1

µ∗

T∑
t=1

E[IIt=k]−
K∑
k=1

T∑
t=1

E
[
Xk

t

]
E[IIt=k]

=

K∑
k=1

∆kE[Nk(T )],

where Nk(T ) =
∑T

t=1 IIt=k, i.e. expected number of the times, the learner plays arm k and since∑T
t=1

∑K
k=1 IIt=k = T . Furthermore, in this case (since random variable XIt

t given the choice It is
stochastically independent of It) we have RPB

(I, T ) = RPB
(I, T ). In such case the efficient algorithm

(i.e. the one with low regret) will sample the sub-optimal arms (such that ∆a > 0) as small a number
of times as possible. The stochastic bandit problem when P is a product measure was studied in various
different settings. The celebrated UCB-algorithm (see Auer (2002)), which is based on the estimation of
the upper confidence bound for the mean µa of arm a, was first mentioned in Lai (1987) . This procedure
has the following regret upper bound (see Theorem 1 in Auer (2002)) for the stochastic payoff with
values in [0, 1]: R(T ) ≤ 8

∑
i:µa≤µ∗

ln(n)
∆a

+
(
1 + π2

3

∑
a∈A∆a

)
. We refer to the setting where the

regret upper bound is determined in terms of gaps (∆a)a∈A as the problem-dependent bound. The term
problem-dependent is justified as the inverse gaps 1

∆a
characterize the hardness of the problem. In this

setting, it can be shown (see Lai and Robbins (1985) Theorem 1) that for arbitrary ε > 0 there exists no
admissible algorithm such that for any bandit instance PB

RPB
(T ) ≤

∑
a:∆a>0

log(n)

(2 + ε)∆a
,

uniformly over all distributions P = P1 ⊗ . . .⊗ PK with support in [0, 1]K . The latter bound means that
UCB is the optimal policy in the case of problem-dependent regret bounds. In the case when the regret
bounds are required to depend only on the number of arms K and time-horizon T we refer to them as
to problem-independent bounds. In the setting of stochastic i.i.d. bandits it has been shown (see Auer
(2002)) that UCB policy has regret upper bound of order

√
TK log(T ), while the optimal lower bound

is of order
√
TK which is shown to be achieved by the so-called MOSS strategy Audibert and Bubeck

(2009). A variation of the UCB algorithm (the so-called KL-UCB algorithm) is considered in Garivier
and Cappé (2011). That algorithm enjoys uniformly better (in terms of multiplicative constant) regret
upper bound than standard UCB while preserving it’s asymptotic optimality on the class of bounded
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independent bandit instances. Furthermore, a lot of different problems for a given bandit instance with
a different performance measure (i.e. when instead of regret one has a different stochastic criterion
based on the modeling assumption) have been considered in the literature. We mention only the problem
of highest mean identification in a pure exploration framework (Even-Dar et al. (2002),Bubeck et al.
(2009)), thresholding bandit problem (Locatelli et al. (2016)), and PAC-style problem (Evan-Dar et al.
(2006)) where the goal is to find with probability at least 1− δ any arm which is ε−close to the arm with
the highest payoff.

In the setting with arm-dependent pay-offs, we consider the case when the distributions of the arms
are bounded weakly-dependent φC− mixing processes with a given dependence rate. Notice (see also
discussion in Chapter 4) that in the case when the outputs of each arm are stochastically dependent over
time, we have that E

[∑T
t=1X

It
t

]
6= E

[∑T
t=1 µ

It
t

]
. In this situation an algorithm which minimizes the

pseudo-regret (which means finding the arm with the highest stationary pay-off) can be different from
an algorithm which minimizes the expected regret (which in this situation can be much smaller as the
learner can exploit high dependencies between arm outcomes and sample from the arms when they output
highly-correlated rewards). However, as, for example, shown in Grünewälder and Khaleghi (2017), fast
decaying dependencies between past and the future (described by the so-called ϕ− mixing coefficient
therein) imply that the pseudo-regret can be a good proxy for the expected regret.

In Chapter 4 we analyse the pseudo-regret for a version of the so-called Improved-UCB Algorithm
(see Ortner et al. (2014) and also Perchet and Rigollet (2013)) in the setting with weak-dependent ban-
dit instances. We notice that in this scenario the usage of standard UCB-Algorithm (see Auer (2002))
is problematic, as the data samples collected in this scheme have strong couplings with respect to a
first sample and the obtained process will not necessarily satisfy weak-dependency assumption (see dis-
cussion in Example 1 by Grünewälder and Khaleghi (2017)). The Improved-UCB does not have this
disadvantage as the game timeline in this case is divided into epochs and in every epoch s the number
of pulls and the pulls themselves are deterministic given the information to the beginning of the epoch
s. We provide a broad analysis of both problem-dependent and problem-independent bounds for the
pseudo-regret and describe the scenarios when (even in the case of slow decay correlations) the pseudo-
regret bounds matches the scenario with i.i.d. arm’s outcomes. In the case of strong correlations (the
so-called slow-mixing scenario) we support the analysis with the (essentially) matching problem inde-
pendent lower bound over the class of φC−mixing bandit instances.

1.4 General thesis overview

This thesis is organized as follows:

• Chapter 2 presents the results of the work "Concentration inequalities for weakly-dependent Banach-
valued sums and applications to statistical learning methods". This is a joint work with Gilles
Blanchard and is a published paper in Bernoulli 25 (4B) 3421 - 3458, November 2019. https:
//doi.org/10.3150/18-BEJ1095.

• Chapter 3 presents the results of the work "Online nonparametric regression with Sobolev kernels".
This is a joint work with Pierre Gaillard, Sebastién Gerchinovitz and Alessandro Rudi and is
avalaible as a preprint via https://arxiv.org/abs/2102.03594.

• Chapter 4 presents the results of the work "Restless dependent bandits with fading memory". This
is a joint work with Gilles Blanchard and Alexandra Carpentier and is avalaible as a preprint via
https://arxiv.org/abs/1906.10454.

• Chapter 5 presents the results of the work (under preliminary title) "Inequalities for dependent
random fields". This is a joint work with Gilles Blanchard and Alexandra Carpentier which is an
ongoing work in its finishing stage.
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Each chapter is concluded by highlighting several potentially interesting scientific directions or prob-
lems which can be subject for the future work in the given field.
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Chapter 2

Concentration of weakly-dependent
random variables in Banach spaces
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In this chapter we investigate the concentration of the sums of Banach-valued random variables
which posses functional weak-dependency assumption of C−mixing kind (see weak-dependency as-
sumption (1.12)). We obtain a type of Bernstein inequality which is then used in the asymptotic frame-
work to derive learning rates for the regularized learning methods based on a training sample from the
τ−mixing process. We discuss the sub-optimality of the obtained inequalities in certain cases and notice
the interesting fact that, in the case of fast-decaying correlations (exponential weak-mixing), learning
rates match (up to additional log-factor in the number of observations) the i.i.d. learning scenario.

This chapter of the thesis is based on the joint work with Gilles Blanchard, which can be found in
Blanchard and Zadorozhnyi (2019).

2.1 Introduction

Let (Xk)k∈N+ be an integrable and centered stochastic process taking values in a separable Banach space
(B, ‖·‖). Define Sn = X1 +X2 + . . . +Xn. We are interested in the non-asymptotic behaviour of the
deviations of Sn from zero in B; more precisely, we investigate exponential concentration inequalities for
events of the type {‖Sn‖ ≥ t}, for t > 0. In the simplest situation where (X1, X2, . . . , Xn) are mutually
independent and real-valued, the celebrated Hoeffding’s Hoeffding (1963) and Bernstein’s inequalities
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Bernstein (1924) are available. Vector-valued analogues (in finite or infinite dimension) of those con-
centration inequalities for norms of sums of independent random variables were first established for the
case of bounded independent random variables in Hilbert spaces by Yurinskyi Yurinskyi (1970).

However in an arbitrary Banach space the distribution of ‖Sn‖ (in particular its expectation) heavily
depends on the geometry of the underlying Banach norm. In this case moment (Bernstein-like) con-
ditions for the individual variables Xi are not sufficient for the generic control of ‖Sn‖ around zero
(see Yurinskyi (1995), Example 3.0.1). Still, under assumptions on the "smoothness" of the underlying
Banach norm (reflected by boundedness of its first two Gâteaux-derivatives), one can control the devia-
tions of ‖Sn‖ around zero. Corresponding concentration inequalities have been obtained in Pinelis and
Sakhanenko (1986) and Pinelis (1992).

The case where random samples are generated from some stochastic process with possibly infinite
memory are of interest for many applications. We review below some of the existing references on the
topic of concentration of functions of random variables. The generalization of Hoeffding’s inequality
for real-valued martingales and martingale differences, together with its application to least squares
estimators in linear and smooth autoregressive models are presented in van de Geer (2002). An extension
of the Hoeffding-Azuma inequalities for the weighted sum of uniformly bounded martingale differences
can be found in Rio (2013). Generalizations of the exponential inequalities for the case of real-valued
supermartingales were obtained in Freedman (1975) and recently generalized in Fan et al. (2015), where
the authors use change of probability measure techniques, and give applications for estimation in the
general parametric (real-valued) autoregressive model. Extensions of Freedman (1975) for the case of
supermartingales in Banach spaces were obtained in Pinelis (1994).

Beyond the (super)martingale setting, the need to handle more general processes which have some
"asymptotic independence" assumptions led to the concept of mixing. Definitions of (strong) α−, φ−
and ρ− mixing were introduced in Rosenblatt (1956), Ibragimov (1959) and Kolmogorov and Rozanov
(1960), we refer also to Bradley (2005) for a broad survey about the properties and relations between
strong mixing processes. However, there are examples of dynamical systems Dedecker et al. (2007)
generated by uniformly expanding maps that are not α−mixing (which is considered the weakest form
of strong mixing assumptions, see Chapter 1 for comparison between the notions of mixing). Such
types of processes include mixingales Andrews (1988); Mc Leish (1975), associated processes Esary
et al. (1985); Fortuyn et al. (1971), and various more recent notions of weak dependence Bickel and
Buehlmann (1999); Doukhan and Louhichi (1999); Rio (1996). We analyse the inherent dependency
of the random sample by means of a functional weak-dependency assumption 1.12. In this setting,
many techniques which were used in the independent data scenario were improved and combined with
other methods to obtain concentration inequalities for the sums of real-valued random variables. Gen-
eralizations of Bernstein’s inequality for φ-mixing random processes were obtained by making use of
duality argument in the entropy method Samson (2000); using a blocking technique ensuring asymptotic
independence, Bernstein-type inequalities for geometrically α−mixing processes and moderate devia-
tion principles were derived in Merlevede et al. (2009); deviation inequalities for real-valued sums of
variables from general α−mixing processes were obtained in Bosq (1993) through approximation by
independent random sums and the blocking technique. Moreover, the blocking technique together with
majorization of joint distributions by means of the marginals and a general Chernoff’s bounding principle
are used in Hang and Steinwart (2017) to obtain Bernstein-type inequalities for real-valued sums func-
tions of C−mixing processes (see Definition 1.2.3 in Chapter 1). In Kontorovich and Ramanan (2008),
the martingale method is used to establish general McDiarmid-type concentration inequalities for real-
valued Lipschitz functions of dependent random sequences on a countable state space. Using logarithmic
Sobolev inequalities and the contractivity condition related to Dobrushin and Shlosman’s strong mixing
assumptions, general non-product measure concentration inequalities were obtained in Marton (2004).

Most of the above mentioned inequalities characterize the deviations of sums of real-valued random
variables. Concerning Hilbert- or Banach-valued weakly dependent processes, a significant literature
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exists on limit theorems of central limit or Berry-Esseen type, motivated in particular by functional time
series Bosq (2000); Horváth and Kokoszka (2012). We limit ourselves to pointing out the recent refer-
ence Jirak (2018) and the substantial literature review there. This chapter is devoted to the concentration
inequalities for the Banach norms of centered random sums with exponentially decaying deviation prob-
ability tails. A few results concern the concentration of real-valued functional of weakly dependent
variables over general spaces, and can be applied to norms of sums of vector-valued variables. This is
the case for the measure concentration inequalities due to Kontorovich and Ramanan (2008) for so-called
η−mixing (which is implied by φ−mixing) random variables, but a condition called Ψ-dominance Kon-
torovich (2006) must hold (it is satisfied if the underlying variable space is countable, or is a closed
subspace of the real line). This result implies Hoeffding-Azuma type inequalities for norms of sums.
Still, to the best of our knowledge, it is unknown how these mixing assumptions are connected to α−,
β− or φC−mixing, or whether they can be applied to norms in arbitrary Banach spaces. The afore-
mentioned measure concentration results of Marton (2004) for distributions of dependent real variables
with continuous density imply concentration of the norm of their sum (which is a Lipschitz function
in Euclidean distance) in an Euclidean space. However, the question becomes more challenging when
one considers concentration of the norm of random variables in a separable, infinite-dimensional space.
Finally, the recent work Dedecker and Merlevede (2015) establishes a Hoeffding-type bound under as-
sumptions close to what we consider here; we underline that we are interested in sharper Bernstein-type
rather than Hoeffding-type bounds (see also Section 2.3.3 for a more detailed discussion of the latter
works).

This Chapter is constituted as follows: in Section 2.2, we recall the setting for stochastic processes
with values in a Banach space. In Section 2.3, we pose the main assumptions about the structure of
the underlying infinite dimensional Banach space and present, in a general form, the new Bernstein-type
inequalities for C−mixing processes. Furthermore, here we also provide specific corollaries for the cases
of either exponentially (geometrically) or polynomially mixing decay rates. We compare our results to
the former inequalities on the concentration of real-valued C-mixing processes. In Section 2.4 we ap-
ply the obtained concentration inequalities in the statistical framework and analyze (in the asymptotic
regime) the error bounds for reproducing kernel learning algorithms using a general form of spectral reg-
ularization when the sample is drawn from a process which satisfies the so-called τ -mixing assumption.
All proofs can be found in the section 2.5.

2.2 Preliminaries and Notations

Let (Xt)t∈N be a stochastic process defined over a probability space (Ω,F,P) and valued in some
bounded ball X of some separable Banach space (B, ‖·‖). Following Maume-Deschamps (2006), we
give the definition of the weakly-dependent processes with respect to a class a of real-valued functions.
Notice that in the form it is presented below, it is a particular case of dependence coefficient a(·, ·, ·),
introduced in Equation (1.9) or (as an equivalent form) a particular case of projective-dependence coef-
ficient e·,·(k) (see Chapter1). Let Mj = σ(Xi : 1 ≤ i ≤ j), j ∈ N.

Definition 2.2.1. For k ∈ N>0 we consider the C-mixing coefficients as

φC(k) = sup
i≥1

{
CovP[Y, ϕ(Xi+k)], Y ∈ L1(Ω,Fi,P), ‖Y ‖1 ≤ 1, ϕ ∈ C1

}
.

We say that the process (Xi)i≥1 is φC−mixing (or simply C-mixing) if limk→∞ φC(k) = 0. If
φC(k) ≤ c exp(−bkγ) for some constants b, γ > 0, c ≥ 0 and all k ∈ N, then a stochastic process
(Xk)k≥1 is said to be exponentially (or geometrically) C-mixing. If φC(k) ≤ ck−γ for all k ∈ N and for
some constants c ≥ 0, γ > 0, then the stochastic process (Xk)k≥1 is said to be polynomially C-mixing.

As discussed in Maume-Deschamps (2006), C-mixing describes many natural time-evolving systems
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and finds its application for a variety of dynamical systems. Coefficients φC are characterized by the
control over correlations between the past and one moment in the future of the process over the class of
bounded functions f such that f ∈ C1. An important result (Maume-Deschamps (2006), Lemma 1.1.2)
claims that Definition 2.2.1 can be equivalently stated as follows:

Definition 2.2.2 (Equivalent to Definition 2.2.1).

φC(k) = sup
i≥1

{
‖E[ϕ(Xi+k)|Mi]− E[ϕ(Xi+k)]‖∞ | ϕ ∈ C1,

}
,

where ‖·‖∞ is the essential supremum norm as before. In our theoretical analysis we will use Defini-
tion 2.2.2 for processes which are assumed to be C−mixing. We first give some examples of semi-norms
C and thus provide particular types of dependency coefficients.

Example 2.2.3. Let CLip be the set of bounded Lipschitz functions over X. Consider

CLip(f) := ‖f‖Lip(X) = sup

{
|f(s)− f(t)|

‖s− t‖

∣∣∣∣ s, t ∈ X, s 6= t

}
.

It is easy to see thatCLip(f) is a semi-norm over set of bounded functions {f : X 7→ R}. With this choice
of class C and semi-normC(·), we obtain the so-called τ−mixing coefficients (see Dedecker et al. (2007)
and Wintenberger (2010) for the real-valued case), which will be denoted τ(k) := φC(k), k ≥ 1.

Examples of τ−mixing sequences. Consider a Banach-valued auto-regressive process of order 1

Xi = ρ(Xi−1) + ξi, for i ∈ Z,

where (ξi)i∈Z is an i.i.d. sequence such that ‖ξ‖ ≤ 1 almost surely, and ρ : X 7→ X is a linear
operator with ‖ρ‖∗ < 1, where ‖·‖∗ is the operator norm. Due to the linearity of ρ, we can write
Xt+s = Xt,s + ρs(Xt), where Xt,s =

∑s−1
l=0 ρ

l(ξt+s−l). For the τ -mixing coefficients, by using this
decomposition and the independence Xt,s and Xt, we get:

τ(s) = sup
f∈C1

{‖E[f(Xt+s)|Mt]− E[f ](Xt+s)‖∞}

= sup
f∈C1

{‖E[f(Xt,s + ρs(Xt))|Mt]− E[f(Xt,s + ρs(Xt))]‖∞}

= sup
f∈C1

{‖E[f(Xt,s + ρs(Xt))− f(Xt,s)|Mt]

− E[f(Xt,s + ρs(Xt))− f(Xt,s)]‖∞}
≤ 2‖ρs(Xt)‖∞ ≤ ‖ρ‖s∗‖Xt‖∞ → 0,

when s → ∞, as Xt is almost surely bounded. From this we observe that (Xt)t≥1 is exponentially
τ−mixing Banach-valued process. Repeating arguments from Andrews (1984) (in the real-valued case),
one can show that this process is not always α−mixing (in particular when ξi has a discrete distribution).
Similarly as in the real case, it is easy to check that a Hilbert-valued version of the moving-average
process of finite order q <∞

Wi = µ+

q∑
j=0

θi−jψi−j , for i ∈ Z,

where (ψj)j∈Z is an independent and centered noise process and µ is some fixed element in a Hilbert
space, is an exponentially τ−mixing process. Furthermore, one can straightforwardly check that (Wi)i∈Z
is not a martingale in general.
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Remark. We observe that the τ−mixing property of the process (Xt)t≥0 is preserved under a 1-
Lipschitz map. More precisely, let φ : X 7→ H be a 1−Lipschitz mapping of the original process (Xt)t≥0

to some Polish space (H, ‖·‖H). Then, it is straightforward to check that the process (φ(Xt))t≥0 is again
τ−mixing. This conservation property is due to the definition of τ -mixing. The concentration inequality
of Theorem 2.3.5 will allow us in Section 2.4 to obtain qualitative results about the statistical properties
(error bounds) of the estimators of regression function in a reproducing kernel Hilbert space. The key
idea here is that the estimators of the target function are based on a non-linear (but Lipschitz) mapping
of the training data sequence into the Hilbert space where their they constitute a linear learning method.

Example 2.2.4. Assume X ⊂ R to be an interval on the real line, let CBV := BV(X) be the set of
functions over X ( bounded in total variation) and CBV(·) be the total variation seminorm:

CBV(f) := ‖f‖TV = sup
(x0,...,xn)∈4

n∑
i=1

|f(xi)− f(xi−1)|,

where 4 = {(x0, x1, . . . , xn) ∈ Xn | x0 < x1 < . . . < xn}. It is known that BV(X) equipped with the
norm ‖f‖BV = ‖f‖+ CBV(f) is a Banach space. With this choice of (C, C(·)) we obtain the so-called
φ̃-mixing processes, described in Rio (1996).

2.3 Main assumptions and results

2.3.1 Assumptions

Following Pinelis (1992), we introduce suitable hypotheses pertaining to the geometry of the underlying
Banach space (B, ‖·‖), the distribution of the norm of coordinates ‖Xi‖, and additional conditions on
the considered C(·)-semi-norm.

We recall briefly the concept of Gâteaux derivative: for a real-valued function f : X → R we say that
f is Gâteaux differentiable at point x ∈ int(X) in the direction v ∈ B, if t 7→ f(x+ tv) is differentiable
in 0. We then denote

δvf(x) =
d

dt

∣∣∣∣
t=0

f(x+ tv).

We say that the function f is Gâteaux-differentiable at point x if all the directional derivatives exist and
form a bounded linear functional, i.e. an element Dxf in the dual B∗ such that ∀v ∈ B:

lim
t→0

f(x+ tv)− f(x)

t
= 〈Dxf, v〉.

In this case Dxf is called Gâteaux derivative of function f at point x.
Assumption A1. The norm ‖·‖ in the Banach space B is twice Gâteaux differentiable at every

nonzero point in all directions and there exist constants A1 ≥ 1, A2 > 0 such that the following condi-
tions are fulfilled for all x, v ∈ B, x 6= 0:

|δv(‖x‖)| ≤ A1‖v‖, or equivalently
∥∥(Dx‖·‖)

∥∥
∗ ≤ A1;

|δv,v(‖x‖)| ≤ A2
‖v‖2

‖x‖
,

where δv,v denotes the second Gâteaux differential in the direction v and ‖·‖∗ is the norm in the dual
space B∗. We give the following examples of Banach spaces that fulfill the Assumption A1 (see Pinelis
(1992) for the first two examples):
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Example 2.3.1. Let B = H be a separable infinite dimensional Hilbert space with scalar product 〈·, ·〉H
and norm ‖·‖H. Then by triangle inequality, it holds:

δg(‖f‖H) =
d

dt

(√
〈f + tg, f + tg〉

)∣∣∣∣
t=0

≤ ‖g‖H,

and also

δg,g(‖f‖H) =
d

dt

(
〈f, g〉+ t‖g‖2H
‖f + tg‖H

)∣∣∣∣∣
t=0

≤
‖g‖2H
‖f‖H

,

hence H satisfies Assumption A1 with constants A1 = A2 = 1.

Example 2.3.2. Let B = Lp(Ω,F,P), p ≥ 2. Then for any f, g ∈ B such that f 6= 0, it holds:

δg(‖f‖p) =
d

dt

((∫
|f + tg|pdP

) 1
p
)∣∣∣∣

t=0

= ‖f‖1−p
p

∫
|f |p−2fgdP

≤ ‖f‖1−p
p ‖f‖p−1

p ‖g‖p = ‖g‖p,

because of Hölder’s inequality; similarly:

δg,g(‖f‖p) = (p− 1)‖f‖1−2p
p

(
‖f‖p

∫
|f |p−2g2dP−

(∫
|f |p−2fgdP

)2
)

≤ (p− 1)‖f‖1−2p
p

(
‖f‖p

∫
|f |p−2g2dP

)
≤ (p− 1)‖g‖2p‖f‖

−1
p .

Thus for p ≥ 2 an Lp(Ω,F,P)-space satisfies the conditions of Assumption A1 with constants A1 = 1,
A2 = p− 1.

The next example characterizes the behaviour of the space of symmetric matrices equipped with a
p−Shatten norm. It was not present in Pinelis (1992), is apparently new and we present it below for
completeness.

Example 2.3.3. Let p ∈ N, p ≥ 2 be fixed and Bp be the space of real symmetric matrices of dimension

d equipped with the Schatten p−norm ‖X‖p = (Tr(|X|p))
1
p =

(∑d
i=1|λi(X)|p

) 1
p . Then it holds that

for any elements X,H ∈ Bp, X 6= 0:

δH
(
‖X‖p

)
≤ ‖H‖p,

δH,H

(
‖X‖p

)
≤ 3(p− 1)

‖H‖2p
‖X‖p

,

so the conditions of Assumption A1 are satisfied with constantsA1 = 1 andA2 = 3(p−1) (for a detailed
justification, see Appendix 2.3.1).

Proof of the Example 2.3.3 We make use of the following additional notation, which is standard
in functional calculus over symmetric matrices. For a real diagonal matrix W = diag(w1, . . . , wd) of
dimension d, write f(W ) = diag(f(w1), . . . , f(wd)), where f : I ⊂ R → R is a scalar function of
class C1 on I , and I is a finite union of open intervals of R, containing the spectrum {w1, . . . , wd} of
W .

For a symmetric matrix X with the spectral decomposition X = UΛU> =
∑d

i=1 λieie
>
i we con-

sider the matrix-valued maps f(X) = Uf(Λ)U>. Denote the real-valued function g(X) = Tr(f(X)).
Applying the chain rule and using Theorem V.3.3 from Bhatia (1997), we compute the Fréchet (and
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hence Gâteaux) derivative of the function g at point X in the direction of an arbitrary matrix H ∈ B.
Namely, by linearity of the trace as a matrix operator, and from equations (V.9) and (V.12) from Bhatia
(1997) (which are stated there in the case where I is an open interval, but the extension to a finite union
of open intervals is immediate), we deduce:

δH(g(X)) = δH(Tr f(X)) =
d

dt

∣∣∣∣
t=0

Tr f(X + tH) = Tr
d

dt

∣∣∣∣
t=0

f(X + tH)

= Tr δHf(X) = Tr
(
f [1](Λ) ◦ (U>HU)

)
,

where ◦ is used for the Hadamard (i.e. entry-wise) product of matrices; and f [1](Λ) is a matrix whose
(i, j) entry is defined as follows:

(
f [1](Λ)

)
ij
=

{
f(λi)−f(λj)

λi−λj
, if λi 6= λj

f
′
(λi) otherwise.

Thus, denoting H̃ = U>HU , we have:

Tr
(
f [1](Λ) ◦ H̃

)
= Tr

(
f ′(Λ) ◦ H̃

)
= Tr

(
f ′(Λ)H̃

)
= Tr

(
f ′(X)H

)
=
〈
f

′
(X),H

〉
F
,

where the second to last equality follows from the definition of the matrix f
′
(X) and 〈·, ·〉F is the

Frobenius product. This implies

δH(Tr f(X)) =
d

dt

∣∣∣∣
t=0

Tr f(X + tH) =
〈
f

′
(X),H

〉
F
, (2.1)

so that the Fréchet-derivative of Tr(f(X)) is f
′
(X). (This formula is certainly not a novelty and its

justification included here for the sake of completeness.)
First consider the case where X has full rank, therefore has no zero eigenvalue, and apply Equa-

tion (2.1) to the function f : t 7→ |t|p which is of class C1 on I = R \ {0}, together with the chain rule
to obtain that

δH
(
‖X‖p

)
=

d

dt

∣∣∣∣
t=0

‖X + tH‖p =
d

dt

∣∣∣∣
t=0

Tr(f(X + tH))
1
p =

〈
w(X)

‖X‖p−1
p

,H

〉
F

, (2.2)

where we introduced the notation w(x) = sign(x)|x|p−1 on I . From the definition of the Fréchet deriva-
tive, we have DX

(
‖·‖p

)
:= w(X)

‖X‖p−1
p

is the corresponding Fréchet derivative at point X . Furthermore, for

any H 6= 0 we have by the matrix variant of Hölder’s inequality:

δH
(
‖X‖p

)
‖H‖p

=

〈
w(X)

‖X‖p−1
p

,
H

‖H‖p

〉
F

≤ 1,

thus, for any H ∈ B we have that
∣∣δH(‖X‖p

)∣∣ ≤ A1‖H‖p with constant A1 = 1.
For the second Gâteaux differential, using linearity of the differential operator, we obtain:

δH,H

(
‖·‖p

)
= δH

(
δH
(
‖·‖p

))
= δH

(〈
DX

(
‖·‖p

)
,H
〉)

=
〈
δH
(
DX

(
‖·‖p

))
,H
〉
.

Furthermore, for δH
(
DX

(
‖·‖p

))
we have by using the chain rule, (V.9) and (V.12) from Bhatia (1997)
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again, differentiation rules for matrices and Equation (2.2):

δH
(
DX

(
‖·‖p

))
=

d

dt

∣∣∣∣
t=0

DX+tH

(
‖·‖p

)
=

d

dt

∣∣∣∣
t=0

w(X + tH)

‖X + tH‖p−1
p

=
U(w[1](Λ) ◦ H̃)U>

‖X‖p−1
p

− (p− 1)
w(X)〈w(X),H〉

‖X‖2p−1
p

,

where the matrix w[1](X) is defined analogously to f [1](X) before. Therefore, for the second Gâteaux
differential we obtain explicitly:

δH,H

(
‖X‖p

)
=
〈
δH
(
DX

(
‖·‖p

))
,H
〉
=

1

‖X‖p−1
p

〈
w[1](Λ) ◦ H̃, H̃

〉
F
− (p− 1)

〈w(X),H〉2

‖X‖2p−1
p

. (2.3)

For the second term, by the matricial Hölder’s inequality we have:

(p− 1)
〈w(X),H〉2F
‖X‖2p−1

p

≤ (p− 1)
‖X‖2p−2

p ‖H‖2p
‖X‖2p−1

p

=
‖H‖2p
‖X‖p

.

For the first term, from the definition of the Hadamard product, we have〈
w[1](Λ) ◦ H̃, H̃

〉
F
=
∑
i,j

w[1](Λ)ijH̃
2
ij .

Furthermore, taking into account that w′(x) = (p− 1)|x|p−2, by the mean value theorem on the closed
interval [λj , λi] (assuming λi > λj), since p ≥ 2 the maximum of w′ is attained at one of the endpoints
of the interval, we have that

w[1](Λ)ij ≤
w(λi)− w(λj)

λi − λj
≤ (p− 1)max{|λi|p−2, |λj |p−2}.

In the case where λi = λj , by definition w[1](Λ)ij = (p− 1)|λi|p−2. Proceeding from this and using the
symmetry of the matrix H̃ after doing we get:∑

i,j

w[1](Λ)ijH̃
2
ij ≤

∑
i,j

(p− 1)max{|λi|p−2, |λj |p−2}H̃2
ij

≤ (p− 1)
∑
i,j

(
|λi|p−2 + |λj |p−2)H̃2

ij

= 2(p− 1)
∑
i,j

|λi|p−2H̃2
ij

= 2(p− 1)
∑
i

|λi|p−2
∑
j

H̃ijH̃ji

= 2(p− 1)
∑
i

|λi|p−2(H̃2
)
ii

= 2(p− 1)Tr
(
|Λ|p−2H̃2

)
.
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Finally, applying the matricial Hölder’s inequality once again for the last trace we get:

Tr
(
|Λ|p−2H̃2

)
=
〈
|X|p−2,H2

〉
F
≤ ‖X‖p−2

p ‖H‖2p.

Gathering the above estimates, for the first term of (2.3) we obtain the following bound:

1

‖X‖p−1
p

〈
w[1](X) ◦ H̃, H̃

〉
F
≤ 2

(p− 1)‖X‖p−2
p ‖H‖2p

‖X‖p−1
p

= 2(p− 1)
‖H‖2p
‖X‖p

.

The latter implies that
∣∣δH,H

(
‖X‖p

)∣∣ ≤ A2
‖H‖2p
‖X‖p

with A2 = 3(p− 1) for all H ∈ B.
The inequalities required for Assumption A1 are therefore established for all X ∈ B of full rank. To

conclude the argument, it was established in Theorem 1 in Potapov and Sukochev (2014) thatX 7→ ‖X‖p
is of class C[p] for all non-zero X ∈ B. Since full rank matrices are dense in B, p ∈ N, by continuity,
Assumption A1 is satisfied for all non-zero X ∈ B. �

The conditions in Assumption A2 are common in the framework of Bernstein-type inequalities.
Assumption A2. There exist positive real constants c, σ2 so that for all i ∈ N:

‖Xi‖ ≤ c, P-almost surely;

E
[
‖Xi‖2

]
≤ σ2.

Finally, being within the framework of the general weak-dependency assumption of Definition 2.2.2,
we will consider functional classes C with a semi-norm C(·) which satisfies the following assumption.

Assumption A3. LetC(f) be a semi-norm defined on a subspace (C, ‖·‖C) of real bounded functions
{f : X 7→ R}. For every s ∈ B∗ define h1,s : x 7→ 〈s, x〉 for each s ∈ B∗ and h2 : x 7→ ‖x‖2, where B∗

is the dual space of B. Define B(r), B∗(r) to be the closed balls of radius r centered in zero in B and
B∗, respectively.

It is assumed that h1,s ∈ C for all s ∈ B∗;h2 ∈ C, and:

sup
s∈B∗(1)

C(h1,s) ≤ C1,

C(h2) ≤ C2,

for some fixed constants C1, C2 ∈ R+.
We write the constants C1, C2 from Assumption A3 for the Examples 2.2.3, 2.2.4.
Example 2.2.3 (continued). For the Lipschitz class CLip (see Example 2.2.3) we have:

sup
s∈B∗(1)

CLip(h1,s) = sup
s∈B∗(1)

‖h1,s‖Lip(B(c)) = sup
s∈B∗(1)

x1,x2∈B(c)

{
〈s, x1 − x2〉
‖x1 − x2‖

}
≤ 1,

and

CLip(h2) = ‖h2‖Lip(B(c)) = sup
x1,x2∈B(c)

{∣∣‖x1‖2 − ‖x2‖2
∣∣

‖x1 − x2‖

}
≤ 2c.

Example 2.2.4 (continued). For the BV functional class CBV considered in Example 2.2.4, and X =
[−c, c] ⊂ R we get (note that in this case B∗(1) = [−1, 1] and the functional h1,s is just multiplication
by s):

sup
s∈B∗(1)

CBV(h1,s) = sup
|s|≤1

‖h1,s‖BV(B(c)) = sup
|s|≤1

sup
(x0,...,xn)∈4

n∑
i=1

|s(xi − xi−1)| = 2c.
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CBV(h2) = ‖h2‖BV(B(c)) = sup
(x0,...,xn)∈4

n∑
i=1

∣∣x2i − x2i−1

∣∣ ≤ 2c2.

2.3.2 Results

Our main result is a Bernstein-type inequality for norms of the sums of bounded Banach-valued centered
φC−mixing random variables. We begin with a general bound on the deviations of the norm of

∑n
i=1Xi.

Theorem 2.3.4. Let (Ω,F,P) be an arbitrary probability space, (B, ‖·‖) a Banach space such that
Assumption A1 holds and X = B(c). Let (Xi)

n
i≥1 be an X-valued, centered, C-mixing random process

on (Ω,F,P) such that Assumptions A2, A3 are satisfied. Then for each pair of positive integers (`, k),
` ≥ 2, such that n = `k + r, r ∈ {0, · · · , k − 1}, and any ν > 0, it holds:

P

[∥∥∥∥ 1n
n∑

i=1

Xi

∥∥∥∥ ≥ 4A1C1φC(k) + 4

√
B(σ2 + C2φC(k))ν

`
+

4cν

3`

]
≤ 2 exp(−ν), (2.4)

where B = A2
1 +A2 and the constants A1, A2, C1, C2 are given by the assumptions.

The choice of k and ` in the above result is related as k =
⌊
n
`

⌋
; thus one can optimize the obtained

deviation bound over the choice of ` in order to reach the most favorable trade-off between the first term
of order φC(

⌊
n
`

⌋
) which is non-decreasing in `, and the following “Bernstein-like" terms. This trade-off

is a direct consequence of the blocking technique used in the proof of the above result. Namely the
sample is divided into k blocks of size ` or `+ 1, such that the distance between two neighbor points in
the same block is exactly k. The Bernstein-like deviation terms are similar to the ones found in the i.i.d.
case, with respect to sample size n replaced by the block size `. The terms involving φC reflect the lack
of independence inside a block. This trade-off leads us to the notion of effective sample size. For a given
n and constants c, σ2 we define the positive integer number `∗:

`∗ := max
{
1 ≤ ` ≤ n s.t. C1φC

(⌊n
`

⌋)
≤ c

`
∨ σ√

`

}
∪ {1}. (2.5)

Observe that `∗ is a function of n, but we omit this dependence to simplify notation. The following
consequence of Theorem 2.3.4 is formulated in terms of the effective sample size:

Theorem 2.3.5. Assume the conditions of Theorem 2.3.4 are satisfied, and the effective sample size `∗ is
as given by (2.5). Then for any ν ≥ 1:

P
[∥∥∥ 1
n

n∑
i=1

Xi

∥∥∥ ≥ σ(4A1 + 6
√
B
√
ν)√

`∗
+
c(4A1 +M1ν)

`∗

]
≤ 2 exp(−ν), (2.6)

where M1 := 2 + 2
√
B(1 + 2 C2

C1c
).

Remark. Lest the reader should wonder at the apparent lack of multiplicative scaling invariance in
the last result due to the constant C2/(C1c) appearing in M1, we stress that the C-mixing assumption is
not invariant with respect to the rescaling of the value space in general. However, in the particular cases
of τ - and φ̃-mixing (Examples 2.2.3, 2.2.4), the mixing assumption behaves gracefully with respect to
scaling: in both cases it can be checked that the compound quantity C1φC(.) scales linearly with multi-
plicative rescaling of the space X, such that the effective sample size `∗ given by (2.5) remains invariant,
while C2/(C1c) remains constant, so that the deviation inequality (2.6) is unchanged by multiplicative
rescaling, as one would expect.

Furthermore, we can give more explicit rates by lower bounding the effective sample size in the
specific cases of exponentially or polynomially C−mixing processes.
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Proposition 2.3.6. For an exponentially C−mixing centered process on (Ω,F,P) with rate φC(k) :=
χ exp(−(θk)γ) (χ > 0, θ > 0, γ > 0), the effective sample size satisfies

`∗ ≥
⌊n
2
θ
(
1 ∨ log

(
c−1C1χθn

))− 1
γ

⌋
.

For a polynomially C−mixing centered process with rate φC(k) = ρk−γ , the effective sample size
satisfies

`∗ ≥ max

(⌊( σ

C1ρ

) 2
2γ+1

(n
2

) 2γ
2γ+1

⌋
,

⌊( c

C1ρ

) 1
γ+1
(n
2

) γ
γ+1

⌋)
.

In the application section, we will use the obtained concentration framework for sums of Hilbert-
space valued random variables. In this particular case, we have A1 = 1, A2 = 1 and correspondingly
B = 2. Considering the case where the underlying data generating process is τ−mixing (see Exam-
ple 2.2.3) we get C1 = 1 and C2 = 2c. This gives us the following consequence for the concentration of
the norm in the case of a process that satisfies the τ−mixing conditions as in Example 2.2.3.

Corollary 2.3.7 (Concentration result for Hilbert-valued τ−mixing processes). Under the assumptions
of Theorem 2.3.5 with a Hilbert-valued τ−mixing sample {Xi}ni=1, for any 0 ≤ η ≤ 1

2 , with probability
at least 1− η it holds: ∥∥∥∥ 1n

n∑
i=1

Xi

∥∥∥∥ ≤ log

(
2

η

)(
13σ√
`∗

+
21c

`∗

)
, (2.7)

where the choice of `∗ is given by (2.5).

2.3.3 Discussion

We highlight aspects in which our results differ from previous works. We first restrict our attention to
the real-valued case (B = R). We consider the general type of φC−mixing processes as in Hang and
Steinwart (2017), where the authors require the additional assumption on the semi-norm C(·) that the
inequality C(ef ) ≤ ‖f‖∞C(f) should hold for all f ∈ C. Instead, we pose the assumption that the
underlying class C contains linear forms and the function x 7→ ‖x‖2, plus a.s. boundedness. The reason
is that the proof of the main result essentially relies on the representation of the norm by means of its sec-
ond order Taylor expansion. This allows us to recover results analogous to Hang and Steinwart (2017) (in
the sense of the order of the effective sample size) for geometrically φC−mixing processes. As a broad
overview and comparison to existing literature is given in Hang and Steinwart (2017); we omit repro-
ducing this detailed discussion in the chapter and refer the reader to that work. As a further contribution
with respect to Hang and Steinwart (2017), we derive new results for the exponential concentration of
the sum for polynomially φC−mixing processes.

In the general Banach-valued case, the norm can be seen as a particular case of general functionals
of the sample. As mentioned in the introduction to this chapter, while the literature on concentration
of general functionals in the independent case is flourishing, it is rather scarce for the setting of weak
dependence. In the work Kontorovich and Ramanan (2008), the authors obtain general Hoeffding-type
concentration inequalities for functionals of the sample satisfying the bounded difference assumption
(Azuma-McDiarmid type setting) under the so-called η−mixing assumption (which is related to, but
weaker than, φ-mixing). The core proof technique in our results as well as in Kontorovich and Ramanan
(2008) is the martingale difference approach.

Furthermore, in the work Dedecker and Merlevede (2015), the authors establish a MarcinkiewiczZyg-
mund type inequality for dependent random Banach-valued sums under assumptions on the smoothness
of the corresponding norm which are very close to ours. In particular, from Corollary 3.2 in Dedecker and
Merlevede (2015), one can deduce that for a bounded τ−mixing process (Xi)i≥0 (see Example 2.2.3.)
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with values in Lq(Ω,A,P) for q ≥ 2, a Hoeffding-type exponential bound holds for sums with a devia-
tion rate of order 2cbn

√
log(e/δ)/n, where c is as in Assumption A2, and b2n := 1 +

∑n
i=1 τ(i).

Comparing to this last deviation bound, an advantage of our results is that they are of Bernstein-
rather than Hoeffding-type, and valid under a weaker dependence assumption, which includes τ−mixing
as specific case. On the other hand, the deviation scaling in bn above is better than ours (this is relevant
for polynomial mixing conditions). This leaves open for future work the question of scaling in the
framework of Bernstein-type inequalities under the assumptions we consider and their improvement in
terms of dependency on the mixing rate.

The strongest assumption we make (besides those concerning the geometry of B and the class C) is
the a.s. boundedness of the random variable; this assumption was also considered in Pinelis and Sakha-
nenko (1986) and Yurinskyi (1970) (for Bernstein-type inequalities for a Banach-valued independent
process, which is included in the present result) and in Hang and Steinwart (2017) (for Bernstein-type
inequality with weakly dependent real variables). From a technical point of view, our current proof re-
lies significantly on that assumption at several key places; removing this assumption to replace it with a
weaker control of moments (as in the classical independent real-valued Bernstein inequality) is a stimu-
lating question.

We now apply the concentration results to the particular case of random variables with values in a
separable Hilbert space, and use them for the analysis of statistical properties of kernel-based algorithms
in machine learning which are trained on a dependent sample. This analysis will be the cornerstone of
the next section.

Notice however, that using the methods developed in Chapter 5 for the case of random fields the
results can be extended to obtain sharper inequalities (in terms of deviation rates) in the case of Banach-
valued random sums.

2.4 Application to statistical learning

Let X be a closed ball of a Polish space and Y = R. Consider a stationary stochastic process (Zi)i≥1 over
some probability space (Ω,F,P) with values in X×Y, and define ν as the common marginal distribution
of the Zis, and µ as its X-marginal. We denote ν(·|·) a regular conditional probability distribution of Yi
conditional to Xi. In the general framework of learning from examples, the goal is to find a prediction
function f : X 7→ Y such that for a new pair (X,Y ) ∼ ν, the value f(X) is a good predictor for Y .
Let Dn := {xi, yi}ni=1 ∈ (X× Y)n be the observed training sample from the n first coordinates of
the process (Zi)i≥1, and fDn be an estimated prediction function belonging to some model class H.
We will assume (Zi)i≥1 to be a τ−mixing stationary process (as in Example 2.2.3) on (Ω,F,P). We
consider the least squares regression problem where the goal is to minimize the averaged squared loss
RLS,µ(f) := Eν

[
(f(X)− Y )2

]
. Equivalently, we want to find fDn that approximates the regression

function fν(x) = E[Y |X = x] well in the sense of being close to optimal risk E(f) over the considered
model class.

2.4.1 Learning by means of reproducing kernels

We investigate statistical learning methods based on reproducing kernel Hilbert space regularization. As
a set of decision rules we consider a separable real reproducing kernel Hilbert space (RKHS) H = Hk ⊂
L2(X,µ) which is induced by a measurable kernel k over X2. An in depth survey on the kernel methods
can be found in Steinwart and Christmann (2008), Smola and Schölkopf (2002), see also introduction to
the setting of learning with kernels in Chapter 1.

Reproducing kernel Hilbert spaces are of broad usage in the non-parametric learning in particular
because of the linear structure of the solutions to many optimization problems. In the next pages we
recall the setting and notation used in the framework of statistical learning; more details can be found in
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Bauer et al. (2009); Blanchard and Mücke (2018) (for the inverse learning perspective); also in Caponetto
and De Vito (2007); Rosasco et al. (2010) (for the statistical learning perspective).

In our analysis we assume the kernel to be bounded by a positive constant κ = 1, i.e. supx∈X
√
k(x, x) ≤

1. This implies that any f ∈ Hk is measurable and bounded in the supremum norm. As Hk is a subset of
L2(X, µ), let Sk : Hk 7→ L2(X, µ) be the inclusion operator; and S∗

k : L2(X, µ) 7→ Hk its adjoint. Anal-
ogously as in Chapter 1 we define operators T, L and the empirical counterparts Sn, Sn, Tn, Ln := Kn.

We now specify classes of distributions which correspond to a certain regularity of the learning
problem in relation to the RKHS Hk, and on which we establish the error bounds. We start with the
following assumption on the underlying distribution ν and the corresponding regression function fν .

Assumption B1. There exist 0 < R ≤ 1,Σ > 0 such that the distribution ν belongs to the set
D(R,Σ) of distributions satisfying:

i) |Y | ≤ R, ν-almost surely.

ii) The regression function fν belongs to the RKHS Hk, i.e. for µ-almost all x ∈ X it holds

E
[
Y |X = x

]
:=

∫
y∈Y

yν(dy|x) = fν(x), fν ∈ Hk.

iii) For µ−almost all x:

Var
(
Y |X = x

)
=

∫
y∈Y

(y − fν(x))
2ν(dy|x) ≤ Σ2.

Point (i) of the assumption ensures that we can assume Y = [−R,R] without loss of generality. The
two next assumptions are: a decay rate condition for the discrete spectrum (ζi)i≥1 (ordered in decreasing
order) of the covariance operator T , and the so-called Hölder source condition (see e.g. De Vito et al.
(2006)) that describes the smoothness of the regression function fν . Denoting P to be the set of all
probability distributions on X; we will thus assume that the X-marginal distribution µ belongs to

P<(b, β) :=
{
µ ∈ P : ζj ≤ βj−b, ∀j ≥ 1

}
;

secondly, we assume that fν ∈ Ω(r,D), where

Ω(r,D) =
{
f ∈ Hk|f = T rg, ‖g‖Hk

≤ D
}
, (2.8)

for some r ≥ 0, which in the inverse problems literature is called the standard Hölder source condition
for the linear embedding problem. Joining all assumptions, we consider the following class of marginal
generating distributions:

M(R,Σ, r,D, β, b) :=
{
ν(dx, dy) = ν(dy|x)µ(dx) : ν ∈ D(R,Σ), µ ∈ P<(b, β), fν ∈ Ω(r,D)

}
.

(2.9)
For estimation of the target regression function fν , we consider the following class of kernel spec-

tral regularization methods:
fλDn

= Fλ(Tn)S
∗
ny, (2.10)

where Fλ : [0, 1] 7→ R is a family of functions. The expression Fλ(Tn) is to be understood in the
usual sense of (compact, self-adjoint) functional calculus on operators. The family (Fλ)λ∈[0,1] defines
the regularization method (which we also call regularization function), depending on the parameter λ ∈
(0, 1], and for which the following conditions hold:

i) There exists a constant B <∞ such that, for any 0 < λ ≤ 1:
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sup
t∈(0,1]

∣∣tFλ(t)
∣∣ ≤ B.

ii) There exists a constant E <∞ such that

sup
t∈(0,1]

∣∣tFλ(t)
∣∣ ≤ E/λ.

iii) There exists a constant γ0 such that the residual rλ(t) := 1− Fλ(t)t is uniformly bounded, i.e.

sup
t∈(0,1]

∣∣rλ(t)∣∣ ≤ γ0.

iv) For some positive constant γq there exists a maximal q, which is called the qualification of the
regularization such that

sup
t∈(0,1]

∣∣rλ(t)tq∣∣ ≤ γqλ
q.

The above conditions are standard in the framework of inverse problems and in an asymptotic frame-
work are sufficient (see Bauer et al. (2009)) in order to obtain consistent learning algorithms in the case
of independent examples. Many known regularization procedures (including Tikhonov regularization,
spectral cut-off, Landweber iteration) may be obtained as special cases via the appropriate choice of the
regularization function Fλ and satisfy conditions i)−iv) for appropriate parameters. In the work by Engl
et al. (1996), Bauer et al. (2009) and Rosasco et al. (2010) a variety of different examples of regulariza-
tion learning methods as well as the discussion in the context of learning from independent examples are
provided.

2.4.2 Learning from a τ−mixing sample

For the learning part we restrict to the case of τ−mixing processes, see Example 2.2.3.
Obtaining probabilistic results for Hilbert-valued estimators (analogous in spirit to those in Blanchard

and Mücke (2018)), we derive upper bounds on the estimation error of fν by regularized kernel learning
estimators fλDn

; in the case of learning from τ -mixing samples, assuming a polynomial spectrum decay
rate of the covariance operator T , and for a certain range of norms.

A key technical tool used in previous works for the analysis of the i.i.d. case (see Bauer et al. (2009)
and Blanchard and Mücke (2018)) is a quantitative statement for the concentration of the centered (and
possibly suitably rescaled) Hilbert-space valued variables (S∗

xy−Txfν) and (Tn−T ) around 0. Observe
that these variables are empirical sums (of elements kxi(yi − fν(xi)) ∈ Hk and (kxi ⊗ k∗xi

− T ) ∈
HS(Hk), respectively). Thus, a very natural way to proceed in the analysis is to use the concentration
results established in Section 2.3 for Hilbert spaces as replacement for their i.i.d. analogues, and for
other steps to follow the proof strategy of those earlier works.

Assuming the sample Dn = {xi, yi}ni=1 is a realization from a τ−mixing process (Zi)j≥1, in order
to apply the concentration inequality from Section 2.3, we should ensure that the corresponding Hilbert-
valued quantities are forming a τ -mixing sequence themselves. As pointed out earlier, the τ -mixing
property is obviously preserved (up to constant) via a Lipschitz map. Lemma 2.6.1 establishes this Lips-
chitz property for the kernel maps under mild assumptions (uniformly bounded mixed second derivative
of the kernel). Using the inequality from Corollary 2.3.7, in Lemma 2.4.1 we obtain high probability
inequalities for deviations of the corresponding random elements. The proof of the lemma can be found
in Appendix 2.6. To simplify the exposition, we specify the results for the cases of either exponentially
or polynomially mixing process. Further extensions are possible using the same general proof scheme as
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a blueprint, described in Appendix 2.6, together with the result of Theorem 2.3.5 on the effective sample
size.

Lemma 2.4.1. Let X, Y = [−R,R] and Hk be as defined before. Assume that the kernel k satisfies
supx∈X

√
k(x, x) ≤ 1 and admits a mixed partial derivative ∂1,2k : X × X 7→ R which is uniformly

bounded by some positive constant K. Let (Zj = (Xj , Yj))j≥1 be a τ−mixing process with rate τ(k),
satisfying Assumption B1 and such that ‖fν‖ ≤ D.

For any η ∈ (0, 1/2] the probability of each one of the following events is at least 1− η:

∥∥Tnfν − S∗
ny
∥∥
Hk

≤ 21 log
(
2η−1

)( Σ√
`1

+
2R

`1

)
;

∥∥(T + λ)−
1
2 (Tnfν − S∗

ny)
∥∥
Hk

≤ 21 log
(
2η−1

)(Σ
√

N(λ)√
`2

+
2R√
λ`2

)
;

∥∥(T + λ)−1/2(T − Tn)
∥∥
HS(Hk)

≤ 21 log
(
2η−1

)(√N(λ)√
`3

+
2√
λ`3

)
;

∥∥T − Tn
∥∥
HS(Hk)

≤ 42
log
(
2η−1

)
√
`4

,

(2.11)

where the quantity N(λ) := Tr
(
(T + λ)−1T

)
is the so-called effective dimension; `1, `2, `3, `4 are

in each case suitable bounds on the effective sample size. For exponentially and polynomially τ−mixing
rates, corresponding bounds for effective sample sizes are given in Table 2.1.

Table 2.1: Bounds on effective samples sizes for (2.11). Here we set C := 3max(1,KR,KD).

τ(k) = χ exp(−(θk)γ) τ(k) = ρk−γ

`1
 nθ

2
(
1∨log

(
nCχθ

2R

)) 1
γ


⌊(

Σ
Cρ

) 2
2γ+1 (n

2

) 2γ
2γ+1

⌋
`2

⌊(
Σ
√

λN(λ)
Cρ

) 2
2γ+1 (n

2

) 2γ
2γ+1

⌋
`3

⌊
nθ

2(1∨log(nKθχ))
1
γ

⌋ ⌊(√
λN(λ)
2Kρ

) 2
2γ+1 (n

2

) 2γ
2γ+1

⌋
`4

⌊(
1
Kρ

) 2
2γ+1 (n

2

) 2γ
2γ+1

⌋

Remark 2.4.2. The first inequality will not be used in the statistical analysis to follow and is presented
here for completeness. We notice also that the effective dimension is the key quantity in the risk analysis
of the Hilbert-valued regularization scheme. Since operators L and T have the same spectrum, one can
write N(λ) =

∑
j≥1

λj(T )
λj(T )+λ =

∑
j≥1

λj(L)
λj(L)+λ and the analysis of N(λ) boils down to the analysis of

the eigenvalues (in particular their decay rates) of a kernel integral operator.

Armed with the above probabilistic results, we derive upper bounds for the errors of estimation of
fν by means of the general regularized kernel learning estimators (2.10). The main tool is the following
lemma, giving a high probability inequality on the deviation of the estimation error. The gist of this result
and of its proof is to follow the approach of Blanchard and Mücke (2018), wherein the sample size in the
i.i.d. case is replaced by the effective sample size, the rest of the argument being essentially the same.

Lemma 2.4.3. Consider the same assumptions as in Lemma 2.4.1. Assume that fν ∈ Ω(r,D) (defined
by (2.8)) for some positive numbers r,D. Also, let fλDn

be the regularized estimator as in (2.10), with
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a regularization satisfying conditions (i)-(iv) with qualification q ≥ r + s. Fix numbers η ∈ (0, 1] and
λ ∈ (0, 1] and denote:

γ := max(γ0, γq), `0 := 2500λ−1max(N(λ), 1) log2
(
8

η

)
,

where we recall that γ0, γq are the constants from conditions iii)-iv).
Then with probability at least 1− η, the inequality∥∥∥T s
(
fHk

− fλDn

)∥∥∥
Hk

≤ Cr,s,B,E,γ log(8η
−1)λs

(
D

(
λr +

1√
`′

)
+

(
R

`′λ
+

√
Σ2N(λ)

λ`′

))
(2.12)

holds with `
′
= min{`2, `3, `4}, provided that `

′ ≥ `0 and all `i are as in Table 2.1.

We remark that the choice s = 0 corresponds to the estimation error in the space Hk, whereas s = 1
2

corresponds to the prediction error in the space L2(X,B(X), µ).
Finally, we establish asymptotic error bounds for the family of regularized estimators of the type (2.10),

when learning from a stationary τ−mixing sequence whose marginal distribution belongs to the class
M(R,Σ, r,D, β, b), under an appropriate choice of the regularization parameter sequence λn. To sim-
plify somewhat expressions, we will assume from now on, without loss of generality, that D ≥ R ≥ 1
holds. We separate the analysis between the cases of exponentially and polynomially τ−mixing pro-
cesses.

For an exponentially τ−mixing process (Xi, Yi)i≥1 with mixing rate τ(k) = χ exp(−(θk)γ), we
set:

`
′
g(n) :=

⌊
nθ

2(1 ∨ log(3nKDχθR−1))
1
γ

⌋
, λn := min

((
Σ2

D2`′g

) b
2br+b+1

, 1

)
. (2.13)

We observe in particular (by straightforward calculation, using the fact that D ≥ R ≥ 1) that the
constraint `

′
g ≤ min{`2, `3, `4} is fulfilled. We are then able to formulate the next statement.

Theorem 2.4.4. Let distribution ν belong to the class M(R,Σ, r,D, β, b), and fλn
Dn

be a kernel spectral
regularization estimator (2.10) with qualification q ≥ r + s, where λn is given by (2.13). Fix some
η ∈ (0, 1]. Then there exists n0 (depending on all the model parameters and on η) such that for n ≥ n0,
it holds with probability at least 1− η:

∥∥∥T s
(
fν − fλn

Dn

)∥∥∥
Hk

≤ C∗ log(8η
−1)D

 Σ

D
√
`′g


2b(r+s)
2br+b+1

, (2.14)

where C∗ := Cr,s,B,E,γ,b,β is a factor depending on the regularization function and model parameters
(other than D,Σ).

We establish an analogous result for a polynomially τ−mixing process (Xi, Yi)i≥1 with mixing rate
τ(k) = ρk−γ , this time without precisely tracking the effects of the constants (Σ, D). We also only
consider the case of a two-sided controlled spectrum

P≶(b, β−, β+) :=
{
µ ∈ P : β−j

−b ≤ ζj ≤ β+j
−b, ∀j ≥ 1

}
,

and the model M̃(R,Σ, r,D, β±, b) defined as in (2.9) with P< replaced by P≶. The technical reason
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for adding an assumption of lower bounded spectrum is that it implies a lower bound on the effective
dimension N(λ), and in turn a lower bound on the effective sample size, which involves the effective
dimension in the polynomial mixing case (see Table 2.1).

We consider the following parameter sequence:

λn := n
− b

2br+b+1+b(r+1)γ−1 . (2.15)

Similarly to the case of exponential mixing, we use Lemma 2.4.3 with the choice `
′
p = O

(
(λnN(λn))

2
2γ+1n

2γ
2γ+1

)
,

which depends on the regularization and on the effective dimension. Arguing in the same way as in The-
orem 2.4.4 we then obtain:

Theorem 2.4.5. Assume the data distribution ν belongs to the class M̃(R,Σ, r,D, β±, b), and fλn
Dn

is a
kernel spectral regularization estimator (2.10) with qualification q ≥ r+ s, where λn is given by (2.15).

For any fixed η ∈ [0, 1] and all n > n0 (where n0 is such that log(8η−1) ≤ C
′
4n

br
2br+b+1+b(r+1)γ−1

0 , we
have with probability at least 1− η:∥∥∥T s

(
fν − fλn

Dn

)∥∥∥
Hk

≤ C4 log(8η−1)n
− b(r+s)

2br+b+1+b(r+1)γ−1 , (2.16)

where C4, C
′
4 are factors depending on the regularization and smoothness parameters of the model

(R,Σ, D, r, s, B,E, γ, b, β).

Let us briefly discuss the upper bounds for the risk of the general regularization methods, described
in Theorems 2.4.4 and 2.4.5. Asymptotic in nature, these results are based on the concentration in-
equality (2.3.5), which allows the control of an error on the exponential scale. Comparing the result
of Theorem 2.4.4 to risk bounds obtained for an i.i.d. scenario (e.g. in Blanchard and Mücke (2018)),
we observe that in the case of an exponentially mixing process the upper bounds are optimal up to a
logarithmic factor. In the case of a polynomially mixing process with exponent γ, the rate is degraded
by a polynomial term that depends on γ. Naturally, it vanishes as γ → ∞, as one would expect. In the
case of exponential mixing, since we describe the explicit dependence of the sequence λn on Σ and D,
further analysis can be conducted exploring other regimes in which either Σ or D may depend on n.

Remark 2.4.6. We consider a particular case of Sobolev RKHS W s
2 (X) (see Chapter 4 for more details

on Sobolev RKHS) in the case when gν ∈ W s(X). In this case it is known that b = 2s
d . To obtain the

risk bounds in L2−norm we take s = 1
2 and since fν ∈ W s(X) so r = 0. Rates from Theorem (2.4.4)

for the geometrically decaying mixing coefficients imply that with probability at least 1 − η any regu-
larization method which outputs data-dependent decision rule fDn,λn learns regression function fν with

rate (dropping the constant)
(
`
′
g

)− s
2s+d . Since, (up to a logarithmic factor in n) `

′
b(n) = C1n, where C1

is some constant, so we have that the rates are essentially the same as the rates for the excess risk in the
case of i.i.d. non-parametric regression over Sobolev spaces W s

2 (X), s >
d
2 . It is known (see Blanchard

and Mücke (2018) for the i.i.d. data observations) that the rates n−
s

2s+d are optimal over the classes
of Sobolev balls W s

2 (X), thus we observe the logarithmic decay of the rate in the case of τ−mixing
dependency assumption.

2.4.3 Conclusions and perspectives

The results of Theorem 2.4.4 and 2.4.5 are stated in the somewhat standard framework of regularized
learning schemes where the estimator takes values in a Hilbert space, which is generated by some repro-
ducing kernel k.
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Since the concentration results of Theorems 2.3.4 and 2.3.5 are valid in the more general case of
complete normed spaces which satisfy the smoothness assumption A1, a natural extension is to con-
sider the setting of statistical learning whose estimators are prediction functions belonging to a certain
functional Banach space.

A variety of such Banach-valued learning schemes (using a corresponding Banach norm regular-
ization) and theoretical justification of their validity have been proposed by numerous authors over the
years. Seminal works Benett and Bredensteiner (2000) and Zhang (2002) have introduced extensions of
convex risk regularization principles to involve a Banach norm regularizer terms. Further efforts have de-
veloped the mathematical foundations of such methods, in particular concerning properties of so-called
evaluation Banach spaces or reproducing kernel Banach spaces and generalizations of the Representer
theorem Canu et al. (2003), Hein et al. (2005) and Zhang et al. (2009) as well as universal approximation
properties of such spaces, see Micchelli and Pontil (2004).

Furthermore, such approaches have given rise to numerous developments in recent research, for
example extension to the vector-valued kernel setting (see Zhang and Zhang (2013)) with application
for multi-task learning, the notion of orthomonotonicy, which leads to a generalization of representation
theorems by Argyriou and Dinuzzo (2014), or combinations of these approaches with the kernel mean
embedding principle (see Sriperumbudur et al. (2011)).

Concerning statistical properties (such as consistency, learning rates and generalization upper bounds
for the risk) of Banach valued learning algorithms, these were also investigated in Hein et al. (2005),
Steinwart (2009), Song and Zhang (2011) Combettes et al. (2018), albeit only for the case of independent
training data.

Following Combettes et al. (2018),Zhang et al. (2009), as a direction for future work, one can inves-
tigate the geometrical properties of the underlying Banach space norm so as to ensure the possibility of
learning in the normed space on the one hand, and to satisfy the smoothness assumption A1 on the other.
In such a situation the concentration results presented in this chapter will apply and have the potential to
provide a major tool in the analysis of such schemes for weakly dependent data.

In Chapter 5 we investigate the deviation bounds (both in terms of exponential probability deviations
and in Lp−norm, p ≥ 2 norm) for the partial sums of weakly-dependent random fields indexed by the
elements of grid in Nd. Therein we obtain an improvement to the known results for the real-valued
random fields (see Dedecker (1991)) which in particular case d = 1 implies known deviation bounds
(both in Lp− norm and in probability on the exponential scale) obtained in the work Peligrad et al.
(2007). We notice that techniques mentioned in Chapter 5 are based on the multidimensional multi scale
martingale decomposition. They can be extended to the case of Banach-valued random sums and even
in the case when the process is indexed by the elements in N probably lead to the improvement of the
concentration bounds and thus to the algorithmic rates. One drawback is that the results of Chapter 5
are of Hoeffding (and not of Bernstein) type. This is however is due to the fact that we are using the
analysis of sub-gaussian norm of the partial sum therein (which is equivalent to considering subgaussian
deviations or, which is the same, inequalities of Hoeffding-type). The latter can be extended to the
Bernstein’s case by changing the subgaussian norm to a general type of Bernstein-Orlicz (or Benett-
Orlicz) norm by doing the similar analysis and imposing additional weak-dependency assumption of L2

type on the process (Xt)t∈N.

2.5 Proofs of the main probabilistic results

We will exploit the following auxiliary lemmata to give the proof of Theorem 2.3.5. We will use repeat-
edly the shorthand notation π(x) := ex − x− 1.

Lemma 2.5.1. Assume that (Xi)i≥1 is a C−mixing stochastic process with values in the closed subset
X = B(c) of the separable Banach space (B, ‖·‖), such that Assumptions A1, A2, A3 hold. Furthermore,
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let (i1, . . . , ik) be a k-tuple of non-negative integers, such that i1 < i2 . . . < ik, λ ≥ 0 and S̃k :=
Xi1 +Xi2 + . . .+Xik . Then the following holds:

E
[
exp

(
λ
∥∥S̃k∥∥)] ≤ 2

(
1 +Bσ2

π(λc)

c2

) k−1∏
j=1

(1 + p(dj , λ)) ,

where p(k, λ) := λÃ1φC(k) + B
(
C2φC(k) + σ2

)π(λc)
c2

, dj := ij − ij−1 for all j ≥ 2, B := A2
1 + A2,

Ã1 = C1A1 and constants A1, A2, C1, C2 as in assumptions A1, A3.

Lemma 2.5.2. Assume that (Xi)
n
i=1 is a random sample from a X-valued centered φC−mixing process,

such that Assumptions A1, A2, A3 hold. For n = `k + r, where `, k > 1 are some integers and
r ∈ {0, 1, . . . , k − 1}, and any λ ≥ 0, we have:

E
[
exp

(
λ
∥∥∥ 1
n

n∑
i=1

Xi

∥∥∥)] ≤ 2 exp

(
B

c2

(
(`+ 1)σ2 + C2`φC(k)

)
π

(
λc

`

)
+ λÃ1φC(k)

)
. (2.17)

where Ã1 and B are defined as in Lemma 2.5.1.

Lemma 2.5.3. If all the conditions of Lemma 2.5.2 hold then the following (exponential) inequality
holds:

P
( 1
n

∥∥∥ n∑
i=1

Xi

∥∥∥ ≥ t
)
≤ 2 exp

(
−
`
(
t2 − 4m̃t

)
4
(
tc
3 + σ̃2B

)),
where m̃ := Ã1φC(k) and σ̃2 := σ2 + C2φC(k).

Alternatively, for any ν > 0 this can be written as:

P
[∥∥∥ 1
n

n∑
i=1

Xi

∥∥∥ ≥ 4m̃+ 4

√
Bσ̃2ν

`
+

4

3

cν

`

]
≤ 2 exp(−ν).

Proof of Lemma 2.5.1
The backbone of the proof follows the technical approach as in the work Pinelis (1992). Use as a first

step E[exp(λ‖S̃k‖)] ≤ 2E[cosh(λ‖S̃k‖)]. The next step bounds iteratively the norm of S̃k by means of
the norm of S̃k−1 and additional terms which involve conditional expectation. To this end, we first need
some (deterministic) bounds relating cosh(λ‖s+ x‖) to cosh(λ‖s‖).

Let s, x be elements of X. Introduce the following functions for t ∈ [0, 1]:

f(t) := cosh(λh(t)) , h(t) := ‖s+ tx‖ .

For any t ∈ [0, 1] such that h(t) 6= 0, it holds

f ′(t) = λ sinh(λh(t))h′(t) = λ sinh(λh(t))
〈
Ds+tx‖·‖, x

〉
. (2.18)

If for some t0, it holds h(t0) = 0, then h itself may not be differentiable in t0, however f ′(t) exists,
and is equal to 0, in this case. Namely, if x = 0 then h must be identically zero and the claim follows.
Otherwise h(t) 6= 0 for t 6= t0, and Equation (2.18) holds for any t 6= t0, implying by Assumption A1
|f ′(t)| ≤ A1λ‖x‖ sinh(λh(t)); this implies differentiability in t0 since the limit of the derivative exists
(and is equal to 0) as t→ t0, and the functions h(t) and f(t) are continuous. Similarly, for any t ∈ [0, 1]
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with h(t) 6= 0, and using Assumption A1:

f ′′(t) = λ2 cosh(λh(t))h′(t)2 + λ sinh(λh(t))h′′(t)

= λ2 cosh(λh(t))
〈
Ds+tx‖·‖, x

〉2
+ λ sinh(λh(t))δx,x

(∥∥s+ tx
∥∥)

≤ A2
1λ

2‖x‖2 cosh(λh(t)) +A2λ‖x‖2
sinh(λh(t))

h(t)

≤ λ2‖x‖2B cosh(λh(t)) ,

where we have used sinh(x) ≤ x cosh(x). We conclude that f ′(t) is absolutely continuous: unless h(t)
is identically 0, there exists at most a single point t0 ∈ [0, 1] where h(t0) = 0 and where f ′ may not be
differentiable. We can therefore use the Taylor expansion:

f(1) = f(0) + f ′(0) +

∫ 1

0
(1− t)f ′′(t)dt. (2.19)

The integral rest can be bounded using previous inequality on f together with the triangle inequality, the
elementary inequality cosh(a+ b) ≤ cosh(a) exp(b) for b ≥ 0, and recalling that ‖x‖ ≤ c:∫ 1

0
(1− t)f ′′(t)dt ≤ λ2‖x‖2B

∫ 1

0
(1− t) cosh(λ(‖s‖+ t‖x‖))dt

≤ λ2‖x‖2B cosh(λ‖s‖)
∫ 1

0
(1− t) exp(λtc)dt

= ‖x‖2B cosh(λ‖s‖)π(λc)
c2

.

Combining this with (2.19) and (2.18) we get for s 6= 0:

cosh(λ‖s+ x‖) = f(1) ≤ cosh(λ‖s‖)
(
1 + λ〈Ds‖.‖, x〉+ ‖x‖2Bπ(λc)

c2

)
, (2.20)

where we have used sinh a ≤ cosh a in (2.18). The above inequality remains true for s = 0 if we
formally define D0‖.‖ as 0, due to f ′(0) = 0 in this case, as argued earlier.

We now go back to our initial goal of controlling E
[
cosh

(
λ
∥∥S̃k∥∥)]. We use the notation Ej−1[·] :=

E[·|Mij−1 ] where Mij−1 = σ(Xl : 1 ≤ l ≤ ij−1), l ∈ N using s := S̃k−1, x = Xik then taking
conditional expectations in (2.20), we obtain

Ek−1

[
cosh

(
λ
∥∥S̃k∥∥)]

≤ cosh
(
λ
∥∥S̃k−1

∥∥)(1 + λEk−1

[〈
DS̃k−1

‖.‖, Xik

〉]
+ Ek−1

[
‖Xik‖

2]Bπ(λc)
c2

)
. (2.21)

In order to control the conditional expectation of the duality product on the right-hand side of (2.21), we
will need the following measure-theoretical lemma:

Lemma 2.5.4. Assume X,Y,T are three Polish spaces. Let F be a measurable real-valued function
defined on X × T, and let (X,Y ) be a X × Y-valued random variable (where X × Y is assumed to be
equipped with the standard Borel sigma-algebra of open sets B(X× Y)) on an underlying probability
space (Ω,F,P). Denote through B(t, ε) an open ball of radius ε, centered at point t ∈ T. Assume that
F (X, t) is P-integrable for all t ∈ T and that the following holds:

i) For all t ∈ T, ‖E[F (X, t)|Y ]− E[F (X, t)]‖∞ ≤ C <∞ ;

ii) The mapping t 7→ F (x, t) is continuous in t for all x ∈ X;
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iii) There exists ε > 0 and for all t ∈ T a measurable function Lt(x) : X → R+ such that for all
x ∈ X, supt′∈B(t,ε) |F (x, t′)| ≤ Lt(x), and Lt(X) is P-integrable.

Then, there exist a version of the conditional expectations E[F (X, t)|Y ] such that for P-almost all y, we
have:

∀t ∈ T
∣∣E[F (X, t)|Y = y]− E

[
F (X, t)

]∣∣ ≤ C . (2.22)

In particular, if T = Y, under the previous assumptions we conclude that∥∥∥E[F (X,Y )|Y ]− E
[
F (X̃, Y )|Y

]∥∥∥
∞

≤ C , (2.23)

where X̃ is a copy of X which is independent of Y .

Observe that the whole point of this lemma is the inversion of quantificators “for all t, for almost all
y” between its assumption (1) and the conclusion (2.22).

Proof of Lemma 2.5.4
Since X is Polish, there exists a regular conditional probability P(X ∈ ·|Y = ·), and we choose as

a particular version of all conditional expectations the point-wise integral with respect to this stochastic
kernel.

For every t ∈ T using the continuity of F in t, the dominated convergence theorem locally over
a neighbourhood of a point t (Assumptions ii)-iii)) because T is Banach, we deduce that the function
t 7→ E[F (X, t)] is continuous over T. Therefore, replacing F by F̃ (x, t) := F (x, t) − E[F (X, t)]
and Lt by 2Lt, we can assume without loss of generality that E[F (X, t)] = 0 for all t ∈ T. Since
T is assumed to be Polish, in particular it is separable; let T̃ be a countable dense subset of T. From
assumption (1), for each t̃ ∈ T̃ there exists a measurable set At̃ ⊂ Y with P

(
Y ∈ At̃

)
= 1, such that∣∣ ∫

X
F (x, t̃)dP(x|Y = y)

∣∣ ≤ C for all y ∈ At̃. Furthermore, for any t̃ ∈ T̃, since the function Lt̃(X) is
P-integrable, it holds

∫
X
Lt̃(x)dP(x|Y = y) <∞ for all y ∈ Bt̃ ⊂ Y with P

(
Y ∈ Bt̃

)
= 1.

This together with countability implies that the set A :=
⋂

t̃∈T̃(At̃ ∩Bt̃) is such that P
(
Y ∈ A

)
= 1

and for all (y, t̃) ∈ A × T̃, we have
∣∣ ∫

X
F (x, t̃)dP(x|Y = y)

∣∣ ≤ C and x → Lt̃(x) is P(·|Y = y)-
integrable.

For an arbitrary t ∈ T, let t̃n be a sequence of points in T̃ converging to t in T. We can assume
without loss of generality that for all n, d(t̃n, t) < ε/2 (where ε > 0 as in Assumption iii)), so that
d(t̃n, t̃n′) ≤ ε for all n, n′, implying that supn|F (x, tn)| ≤ Lt(x) holds (by Assumption iii)). Now for
all y ∈ A, using continuity (Assumption 2) we have that for the version of conditional expectation under
the regular conditional probability P(·|Y = y) by dominated convergence it holds∫

X

F (x, t)dP(x|Y = y) =

∫
X

lim
n→∞

F (x, t̃n)dP(x|Y = y)

= lim
n→∞

∫
X

F (x, t̃n)dP(x|Y = y) ≤ C .

In the case T = Y, we note that (2.22) implies (2.23) by choosing t = y. �
Returning now to the proof of Lemma 2.5.1, we use Lemma 2.5.4 with Y = X∗, F (x, y) = 〈y, x〉,

and (X,Y ) = (Xik , DS̃k−1
‖·‖). By linearity of scalar product and expectation, and because the process

(Xi)i≥1 is centered, we have for fixed y ∈ X∗: E[〈y,Xik〉] = 0. Obviously F is continuous in its
first argument. Since by Assumption A2, Ds‖·‖ is uniformly bounded and X = B(c), we can restrict
the domain of F to X × B∗(A1), and F is then bounded uniformly, so that conditions (2) and (3) of
Lemma 2.5.4 are satisfied. Because of Assumption A3 it follows that ‖F (y, ·)‖C ≤ C1‖F (y, ·)‖∞ ≤
C1A1. Finally, due to conditions on φC-mixing coefficients, we have that condition (1) is fulfilled with
the constant C = A1C1φC(dk) := Ã1φC(dk), so from (2.23) we conclude, that:
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∣∣∣Ek−1

[〈
DS̃k−1

‖.‖, Xik

〉]∣∣∣ ≤ Ã1φ(dk) . (2.24)

We turn to the control of the second conditional expectation on the right-hand side of (2.21). Using the
φC-mixing assumption and Assumptions A2, A3 again, we have almost surely (recalling dk := ik−ik−1):

Ek−1

[
‖Xik‖

2] ≤ Ek−1

[
‖Xik‖

2]− E
[
‖Xik‖

2]+ E
[
‖Xik‖

2]
≤ C2φC(dk) + σ2,

and since by Assumption A3, the mapping x 7→ ‖x‖2 is bounded in semi-norm C(f) on B(c) by some
constant C2 . Putting this bound together with (2.24) in the inequality (2.21), we get:

Ek−1

[
cosh

(
λ
∥∥S̃k∥∥)] ≤ cosh

(
λ
∥∥S̃k−1

∥∥)(1 + p(dk, λ)) ,

where we recall p(k, λ) := λÃ1φC(k) +B
(
C2φC(k) + σ2

)(π(λc)
c2

)
.

Iteratively repeating the aforementioned argument and considering that the bound on conditional
expectation Ek−1[·] holds almost surely, one obtains:

E
[
cosh

(
λ
∥∥S̃k∥∥)] = E

[
Ek−1

[
cosh

(
λ
∥∥S̃k∥∥)]]

≤ E
[
cosh

(
λ
∥∥S̃k−1

∥∥)](1 + p(dk, λ))

≤ E
[
cosh

(
λ
∥∥Xi1

∥∥)] k∏
j=2

(1 + p(dj , λ)).

For bounding E
[
cosh

(
λ
∥∥Xi1

∥∥)] we use (2.20) with s = 0 and obtain:

E[cosh‖Xi1‖] ≤ E
[
1 + ‖Xi1‖

2B
π(λc)

c2

]
≤ 1 +

σ2

c2
Bπ(λc) ,

which implies the claim. �
To proceed in the proof, we use the classical (see for example in Bosq (1993),Wintenberger (2010)

and Hang and Steinwart (2017)) approach and divide the sample (X1, . . . , Xn) into blocks, such that the
distance between two neighbor elements in a given block will be large enough to ensure small dependence
coefficient. We partition the set {1, 2, . . . , n} into k blocks in the following way. Write n = `k + r, 0 ≤
r ≤ k − 1 and define

Ii =

{
{i, i+ k, . . . , i+ `k}, if 1 ≤ i ≤ r ,

{i, i+ k, . . . , i+ (`− 1)k}, if r + 1 ≤ i ≤ k .

Denote through |Ii| the number of elements in the i−th block; it holds |Ii| = `+1 for 1 ≤ i ≤ r, |Ii| = `
for r + 1 ≤ i ≤ k, and

∑k
i=1 |Ii| = n. We use the notation SIi =

∑
j∈Ii Xj . Now we use Lemma 2.5.1

for each of the constructed blocks Ii, 1 ≤ i ≤ k to prove Lemma 2.5.2.
Proof of Lemma 2.5.2

By the triangle inequality ‖Sn‖ ≤
∑k

j=1

∥∥SIj∥∥, implying for any λ > 0, via the convexity of the
exponential function:

E
[
exp

(λ
n
‖Sn‖

)]
≤ E

[
exp

(
λ

k∑
j=1

rj

∥∥SIj∥∥
|Ij |

)]
≤

k∑
j=1

rjE
[
exp

(
λ

|Ij |
∥∥SIj∥∥)], (2.25)

where rj :=
|Ij |
n , with

∑k
j=1 rj = 1. Now for each summand in the last sum, we apply Lemma 2.5.1 for
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the index tuple given by the ordered elements of Ij , yielding

E
[
exp

( λ

|Ij |
∥∥SIj∥∥)] ≤ 2

(
1 +B

σ2

c2
π
( λc
|Ij |

))(
1 + p

(
k, λ

|Ij |

))|Ij |−1
.

Substituting the last bound into (2.25), we obtain:

E
[
exp

(λ
n
‖Sn‖

)]
≤ 2

k∑
j=1

rj

(
1 +B

σ2

c2
π
( λc
|Ij |

))(
1 + p

(
k, λ

|Ij |

))|Ij |−1

≤ 2

k∑
j=1

rj exp

(
Bσ2

c2
π
(λc
`

))
exp
(
`p
(
k, λ`

))
,

where we used the simple bound 1 + x ≤ exp(x) twice, the condition ` ≤ |Ij | ≤ ` + 1, and the fact
that p(k, ·) is non-decreasing in function for fixed k. The last quantity is equivalent to the claim of the
lemma. �
Proof of Lemma 2.5.3
Using Chernoff’s bound and Lemma 2.5.2, we obtain for any λ > 0:

P
[
1
n‖Sn‖ ≥ t

]
= P

[
exp
(
1
n

∥∥λSn∥∥) ≥ exp(λt)
]

≤ exp(−λt)E
[
exp
(
λ
n‖Sn‖

)]
≤ 2 exp

(
−λ(t− m̃) + σ̃2

(`+ 1)B

c2
π
(λc
`

))
,

(2.26)

where m̃ := Ã1φC(k) and σ̃2 := σ2 + C2φC(k) .
First we get an upper bound on the value of the function π(λcl ). By using the Taylor series decom-

position, simple inequality 2 · 3k−2 ≤ k! for k ∈ N and summing the geometric series we obtain:

π

(
λc

`

)
≤

∞∑
j=2

(
λc

`

)j 1

2 · 3j−2
=

λ2c2

2`2
1

1− λc
3`

,

where we assume that 0 < λ < 3`
c . Inserting this inequality into (2.26) and simplifying the terms we get:

P
[
1
n‖Sn‖ ≥ t

]
≤ 2 exp

(
−λ(t− m̃) + σ̃2λ2

3(`+ 1)B

2`

1

3`− λc

)
. (2.27)

Now we put λ = t`
tc
3
+σ̃2B

. Clearly, by this choice of λ we have:

λ

`
=

t
tc
3 + σ̃2B

≤ 3

c
.

Thus, the choice of λ satisfies the assumption; putting it into the exponent of the right hand side of (2.27)
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we then obtain:

− λ(t− m̃) +
3

2
σ̃2

(`+ 1)B

`
λ2

1

3`− λc

= − t`(t−m)
tc
3 + σ̃2B

+
3

2
σ̃2

(`+ 1)B

`

t2`2(
tc
3 + σ̃2B

)2 1

3`− t`c
tc
3
+σ̃2B

= − t`(t− m̃)
tc
3 + σ̃2B

+
1

2

(`+ 1)t2

tc
3 + σ̃2B

= −(`− 1)t2 − 2`m̃t

2
(
tc
3 + σ̃2B

) .

Putting this into the exponent bound and upper bounding ` with 2(`− 1), for ` ≥ 2, we get the claim of
the lemma. �
Proof of Theorem 2.3.4
From the very last claim of Lemma 2.5.3 we have:

P
[∥∥∥ 1
n

n∑
i=1

Xi

∥∥∥ ≥ t

]
≤ 2 exp

(
−
`
(
t2 − 4m̃t

)
4
(
tc
3 + σ̃2B

)).
Setting `

(
t2−4m̃t

)
4
(
tc
3
+σ̃2B

) := ν and solving the last equation in terms of t, we obtain:

P
[∥∥∥ 1
n

n∑
i=1

Xi

∥∥∥ ≥ 4Ã1φC(k) + 4

√
Bσ̃2ν

`
+

4

3

cν

`

]
≤ 2 exp(−ν), (2.28)

which proves the claim of the theorem. �
Proof of Theorem 2.3.5

From Theorem 2.3.4, assuming the effective sample size `∗ ≥ 2 defined as in Equation (2.5), putting
C∗ = C2/C1, we obtain that with probability at least 1− 2 exp(−ν) it holds:

∥∥∥∥ 1n
n∑

i=1

Xi

∥∥∥∥ ≤ 4A1

(
c

`∗
∨ σ√

`∗

)
+ 4

√√√√B
(
σ2 + C∗

(
c
`∗ ∨ σ√

`∗

))
ν

`∗
+

4

3

cν

`∗
=: L̃. (2.29)

For a, b > 0 using the obvious inequalities a ∨ b ≤ a+ b and
√
ab ≤ (a+ b)/2 we obtain:

L̃ ≤ 4A1

(
c

`∗
+

σ√
`∗

)
+ 4

√
Bνσ√
`∗

+ 4

√
BC∗cν

`∗
+ 4

√
BC∗σν√
`∗
√
`∗

+
4

3

cν

`∗

≤ 4A1

(
c

`∗
+

σ√
`∗

)
+ 4

√
Bνσ√
`∗

+ 2

√
Bν(C∗ + c)

`∗
+ 2

√
Bν

(
C∗
`∗

+
σ√
`∗

)
+

2cν

`∗

≤ σ√
`∗

(
4A1 + 6

√
Bν
)
+

c

`∗

(
2ν + 2

√
Bν + 4A1 + 4

√
Bν

C∗
c

)
.

Finally, we observe that the inequality∥∥∥ 1
n

n∑
i=1

Xi

∥∥∥ ≤ σ√
`∗

(
4A1 + 6

√
Bν
)
+

c

`∗

(
2ν + 2

√
Bν + 4A1 + 4

√
Bν

C∗
c

)
,

trivially holds also for `∗ = 1, since A1 ≥ 1. This implies the statement of the theorem using
√
ν ≤ ν,
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since we assumed ν ≥ 1 here.
�

We are now have all necessary technical tools in order to prove the exponential bounds for different
decay rates of the mixing coefficients.
Proof of Proposition 2.3.6 We choose a reasonable bound `g on the effective sample size `∗ in the case
of geometrical mixing. Since φC(·) (extended to the positive real line as φC(t) = χ exp(−(θt)γ)) is
nonincreasing and n

2` ≤ bn` c, it is sufficient to choose `g such that C1φC
(

n
2`g

)
is smaller than c

`g
∨ σ√

`g
.

Moreover, in the case of geometrical mixing, it is sufficient to choose `g such that C1φC
(

n
2`g

)
< c

`g

(trivially this implies that C1φC
(

n
2`g

)
< c

`g
∨ σ√

`g
). We choose `g =

⌊
nθ

2(1∨log(nθχC1/c))1/γ

⌋
. It is easy to

check that in this case, we get

`gC1φC

(
n

2`g

)
≤ nθχC1 exp

(
−
(
1 ∨ log

χθC1n

c

))
≤ c,

which together with the result of Theorem 2.3.5 implies the first claim of the proposition.
For the case of polynomially mixing process, we have the coefficient decay rate φC(k) = ρk−γ .

Similarly, we choose a bound `p for the effective sample size `∗ so that the conditions of Theorem 2.3.5
are satisfied. Analogously, it is sufficient to choose `p such that C1φC

(
n
2`p

)
≤ σ√

`p
∨ c

`p
. Solving

C1φC
(
n
2`

)
≤ σ√

`
∨ c

` in ` for given n, σ, c, ρ, C1 results in the following choice:

`p = max

{⌊(
σ

C1ρ

) 2
2γ+1(n

2

) 2γ
2γ+1

⌋
,

⌊(
c

C1ρ

) 1
γ+1(n

2

) γ
γ+1

⌋}
, (2.30)

which matches the claim of the Proposition. �

2.6 Proofs of the main statistical learning results.

As mentioned in section 2.4.2, in order to make use of the concentration inequalities for sums of random
variables in HS(Hk) and in Hk, we should ensure that the functions of interest of the original τ−mixing
process Zi = (Xi, Yi) are again τ−mixing. This claim is established by the proof of the Lipschitz
property of the corresponding mappings in the next lemma.

Lemma 2.6.1. Assume Hk is a RKHS over X, which is assumed to be a closed subset of a Polish space.
Let the reproducing kernel k of Hk satisfies supx∈X

√
k(x, x) ≤ 1. Assume that the the kernel admits a

mixed partial derivative (in Gâteaux sense), ∂1,2k : X × X 7→ R which is uniformly bounded on X by
some constant K > 0. Finally, let Y = [−R,R]. Then, the mapping V : X → HS(Hk) : x 7→ kx ⊗ k∗x
is 2K-Lipschitz; for a fixed f ∈ Hk, the mapping Wf : X × Y → Hk : (x, y) 7→ ykx − kx〈kx, f〉 is
3max(KR,K‖f‖, 1)-Lipschitz.

Proof of Lemma 2.6.1 As a starting point, because of the assumption of uniform boundedness of the
(mixed) partial derivative of the kernel k and Lemma 3.3 from Blanchard et al. (2011), we deduce that
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kx is K−Lipschitz as a map X → Hk. Then, for arbitrary x1, x2 we obtain:∥∥kx1 ⊗ k∗x1
− kx2 ⊗ k∗x2

∥∥2
HS(Hk)

=
∥∥kx1 ⊗ k∗x1

− kx1 ⊗ k∗x2
+ kx1 ⊗ k∗x2

− kx2 ⊗ k∗x2

∥∥2
HS

=
∥∥kx1 ⊗

(
k∗x1

− k∗x2

)∥∥2
HS

+
∥∥(kx1 − kx2)⊗ k∗x2

∥∥2
HS

+ 2
〈
kx1 ⊗

(
k∗x1

− k∗x2

)
, (kx1 − kx2)⊗ kx∗

2

〉
≤ ‖kx1‖

2
Hk

∥∥k∗x1
− k∗x2

∥∥2
Hk

+ ‖kx1 − kx2‖
2
Hk

∥∥k∗x2

∥∥2
Hk

+ 2
√
‖kx1‖

2
Hk

‖kx2‖
2
Hk

‖kx1 − kx2‖
2
Hk

≤ 4K2‖x1 − x2‖2,

(2.31)

where we used the properties of the Hilbert-Schmidt norm of tensor product operators, the Cauchy-
Schwartz inequality in the third line, the assumptions about boundedness of the kernel ‖kx‖2Hk

=
k(x, x) ≤ 1 and that fact the map x 7→ kx is K−Lipschitz in the last line.

Thus the map V (x) = kx〈kx, ·〉 is 2K-Lipschitz. Furthermore, we deduce

‖kx1〈kx1 , f〉 − kx2〈kx2 , f〉‖ ≤
∥∥kx1 ⊗ k∗x1

− kx2 ⊗ k∗x2

∥∥
HS

‖f‖ ≤ 2K‖f‖‖x1 − x2‖. (2.32)

Quite analogously, for any (x1, y1), (x2, y2) ∈ X× Y we have:

‖y1kx1 − y2kx2‖Hk
= ‖y1kx1 − y1kx2 + y1kx2 − y2kx2‖Hk

= ‖y1(kx1 − kx2) + kx2(y1 − y2)‖Hk

≤ KR‖x1 − x2‖X + |y1 − y2|
≤ max(KR, 1)(‖x1 − x2‖X + |y1 − y2|).

(2.33)

The latter implies that the map (x, y) 7→ ykx is max(KR, 1)-Lipschitz. By gathering bounds from
(2.32) and (2.33), we deduce that the random variables Wf (x, y) := ykx − kx〈kx, f〉 are Lipschitz with
constant 3max(1,KR,K‖f‖) as a map X× Y → Hk. �
Proof of Lemma 2.4.1

Consider the mapping

ξ1(x, y) := ykx − kx〈kx, fν〉,

with values in Hk. It holds 1
n

∑n
i=1 ξ(xi, yi) = S∗

ny − Txfν , as well as

E[ξ1(X,Y )] = E[kx(y − 〈f, kx〉)] =
∫
X

kx

∫
Y

(y − fν(x))ν(dy|x)µ(dx) = 0

.
By Cauchy-Schwarz, reproducing property and Assumption B1 we have

‖ξ1(x, y)‖ = ‖ykx − kx〈kx, fν〉‖Hk
≤ ‖kx‖|y − fν(x)| ≤ 2R.

Similar, due to Assumption B1 and since supx∈X k(x, x) ≤ 1, we obtain the following bound on the
variance:

E
[
‖ξ1(X,Y )‖2

]
=

∫
X×Y

〈kx(y − fν(x)), kx(y − fν(x))〉dν(x, y)

=

∫
X

dµ(x)k(x, x)

∫
Y
(y − fν(x))

2dν(y|x) ≤ Σ2.
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By Lemma 2.6.1 applied to ξ1(x, y) = Wfν (x, y) we have that if (Xi, Yi)i≥1 is τ−mixing with rate
τ(k), the sequence ξ1(xi, yi)i≥1is τ−mixing with rate τ(k) = 3max(1,KR,KD)τ(k). Using the
result of Corollary 2.3.7 with the aforementioned bounds on the norm, the variance and the multiplicative
correction for the mixing coefficients decay rate, we obtain with probability at least 1− η it holds:

‖Sk∗y − Tfν‖ ≤ 21 log(2η−1)

(
Σ√
`1

+
2R

`1

)
,

where the bound on the effective sample size `1 is obtained by a direct plug-in of the bounds for the norm,
the second moment and the form of mixing coefficients of the sequence ξ1(xi, yi) in the general form

given by Proposition 2.3.6. Namely, we have `1 =
(

Σ
3max(1,KR,KD)))ρ

) 2
2γ+1 (n

2

) 2γ
2γ+1 , for a polynomially

mixing process with rate τ(k) = ρk−γ , and `1 =

⌊
nθ

2
(
1∨log

(
n

3max(1,KR,KD)χθ
2R

)) 1
γ

⌋
for an exponentially

mixing process with rate τ(k) = χ exp(−(θk)γ). The other inequalities will be derived in a similar way.
We introduce the random variable:

ξ2(x, y) = (T + λ)−
1
2 (kxy − kx〈kx, fν〉),

Quite analogously, we can check that E[ξ2(X,Y )] = 0. Repeating similar steps as in the first case, we
get: ∥∥(T + λ)−

1
2 (kxy − kx〈kx, fν〉)

∥∥
Hk

≤
∥∥(T + λ)−

1
2
∥∥‖(kxy − kx〈kx, fν〉)‖Hk

≤ 2λ−
1
2R.

For the second moment of the norm of ξ2(X,Y ), we get:

E
[
‖ξ2(X,Y )‖2

]
=

∫
X×Y

〈
(T + λ)−

1
2kx(y − fν(x)), (T + λ)−

1
2kx(y − fHk

(x))
〉
dν(x, y)

=

∫
X

∥∥∥(T + λ)−
1
2kx

∥∥∥2dµ(x)∫
Y

(y − fν(x))
2dν(y|x)

≤ Σ2

∫
X

Tr
(
(T + λ)−

1
2kx ⊗ k∗x

)
dµ(x)

=
(
Σ
√
N(λ)

)2
.

By Lemma 2.6.1, one has that the function ξ2(x, y) = (T + λ)−
1
2Wfν (x, y) is Lipschitz with constant

3λ−
1
2 max(1,KR,KD), from which we deduce that (ξ2(Xi, Yi))i≥1 is τ−mixing with rate

3λ−
1
2 max(1,KR,KD)τ(k)

. Finally, by using Corollary 2.3.7, we obtain with probability at least 1− η:

∥∥∥(T + λ)−
1
2 (TnfHk

− S∗
ny)
∥∥∥
Hk

≤ 21 log

(
2

η

)
κ−1

(
Σ
√
N(λ)√
`2

+
2R√
λ`2

)
,

where, as before, a bound on `2 is obtained by Proposition 2.3.6 for either a polynomially or exponen-
tially mixing process, through considering bounds on the norm, the second moment and the Lipschitz
norm of the elements of the sequence ξ2(xi, yi).

We define the map ξ3 : X 7→ HS(H) (here, as mentioned before, through HS(H) we denote the
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space of Hilbert-Schmidt operators on Hk) by:

ξ3(x) := (T + λ)−1(Tn − T ),

where we recall the notation Tn := kx ⊗ k∗x for any x ∈ X. Taking the expectation we get:

E[ξ3(X)] = (T + λ)−1
∫
X

(Tn − T )dµ(x) = 0.

So that we have: ∥∥∥(T + λ)−1(T − Tn)
∥∥∥
HS(Hk)

=

∥∥∥∥∥ 1n
n∑

i=1

ξ3(xi)

∥∥∥∥∥
HS(Hk)

.

Verifying the conditions for the uniform bound and variance as above we obtain:

‖ξ3(x)‖HS ≤
∥∥(T + λ)−1

∥∥‖T − Tn‖HS(Hk)
≤ 2λ−1,

where
∥∥∥(T + λ)−1

∥∥∥ is the supremum norm of the operator (T + λ)−1. For the variance we have

E
[
‖ξ3(X)‖2HS

]
=

∫
X

Tr
(
(Tn − T )(T + λ)−2(Tn − T )

)
µ(dx)

=

∫
X

Tr
(
Tn(T + λ)−2Tn

)
µ(dx)− Tr

(
T(T + λ)−2T

)
≤ ‖T + λ‖−1

∫
X

‖Tn‖Tr
(
(T + λ)−1Tn

)
µ(dx)

≤ λ−1N(λ).

By Lemma 2.6.1 ξ3 is Lipschitz with constant 2λ−1K, thus (ξ3(Xi, Yi))i≥1 is τ−mixing with rate
2λ−1Kτ(k).

We apply Theorem 2.3.5 to the quantity
∥∥ 1
n

∑n
i=1 ξ3(xi)

∥∥
HS(Hk)

. With probability at least 1− η we
have: ∥∥∥(T + λ)−1(T − Tn)

∥∥∥
HS(Hk)

≤ 21 log

(
2

η

)(
λ−1/2

√
N(λ)√
`3

+
2λ−1

`3

)
.

where `3 is chosen following the standard "plug-in" scheme as before.
Finally, define ξ4(x) := (kx ⊗ k∗x − T ). Again the random variables ξ4(Xi) are centered and we

have:

Tn − T =
1

n

n∑
i=1

ξ4(xi).

Repeating the scheme we get:

‖ξ4(X)‖HS(H) ≤ 2,

E
[
‖ξ4(X)‖2HS(H)

]
≤ 4,

Also, Lemma 2.6.1 implies that ξ4(Xi)i≥0 is τ−mixing with rate 2Kτ(k), so that using the general
deviation bound from Corollary 2.3.7 and according to the same principle as above, we obtain with
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probability at least 1− η:

‖T − Tn‖HS(Hk)
≤ 21 log

(
2

η

)(
2√
`4

+
2

`4

)
≤

42 log
(
2η−1

)
√
`4

,

where `4 is chosen according to the mixing rate and bounds on the norm, variance term and Lipschitz
constants as above. �

Next we give an auxiliary lemma, in the same spirit as the i.i.d. counterparts in Blanchard and Mücke
(2018).

Lemma 2.6.2. Assume the conditions of Lemma 2.4.1 are satisfied. Let η ∈ (0, 12 ] and λ ∈ (0, 1] be
such that the following is satisfied:

√
`′λ ≥ 50 log(2η−1)

√
max(N(λ), 1),

with `
′

chosen to be the minimum of `2, `3, `4 from Lemma 2.4.1. Then, with probability at least 1 − η,
the following holds: ∥∥∥(Tn + λ)−1(T + λ)

∥∥∥ ≤ 2.

Proof of Lemma 2.6.2 By means of the Neumann series decomposition we write:

(Tn + λ)−1(T + λ) = (I −∆λ)
−1 =

∞∑
j=0

∆j
λ,

with ∆λ := (T + λ)−1(T − Tn). If ‖Tn(λ)‖ < 1, then the last series converges and the norm of
(Tn + λ)−1(T + λ) is bounded by the sum of the series of norms. From Lemma 2.4.1, we have:

‖∆λ‖ ≤ Cη

(√
N(λ)

λ`′
+

2

λ`′

)
,

where we put Cη = 21 log(2η−1) for η ∈ (0, 12 ]. Using the lemma’s assumption and the fact that
Cη > 28 for η ∈ (0, 12 ], we obtain:

√
λ`′ ≥ 2.3Cη

√
max(N(λ), 1) ≥ 2.3Cη ≥ 60.

This implies that

1

λ`′
≤ 1

60
√
λ`′

≤ 1

120Cη
.

Putting these pieces together we obtain:

‖∆λ‖ ≤ Cη

(
1

2.3Cη
+

1

60Cη

)
<

1

2
.

This implies, that with probability at least 1− η:∥∥∥(Tn + λ)−1(T + λ)
∥∥∥ ≤ 2.

�
Proof [Sketch of the proof of Lemma 2.4.3] The proof is analogous in form and spirit to that of Propo-
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sition 5.8 for the i.i.d. case given in Blanchard and Mücke (2018). The main difference is reflected
in the use of the high probability upper bounds from Lemmata 2.4.1 and 2.6.2 instead of their i.i.d.
counterparts, which in each case involve the knowledge of bounds on the effective sample size `

′
. The

appropriate choice of the latter is assured by the two conditions from the theorem statement. Namely,
`
′ ≥ `0 implies the claim of Lemma 2.6.2 (which is the τ−mixing counterpart of the Lemma 5.4 from

Blanchard and Mücke (2018)). On the other hand, the condition `
′ ≤ min{`2, `3, `4} implies that all

inequalities from Lemma 2.4.1 hold for `
′
. We check additionally that the assumption fν ∈ Ω(r,D)

implies ‖fν‖ ≤ D (since ‖T‖ ≤ 1), which was a required condition for applying Lemma 2.4.1. The
remaining reasoning is the same as in Proposition (5.8) from Blanchard and Mücke (2018).

�
Proof [Proof of Theorem 2.4.4 ] The proof of the first part of the Theorem is in essense a direct exten-
sion of the proof of Corollary 5.9 in Blanchard and Mücke (2018) to the case of τ−mixing stationary
sequence.

As the marginal distribution µ belongs to the class P<(b, β) (by assumption), from Proposition 3 in
De Vito et al. (2006), for any choice of parameter λ ∈ (0, 1] we obtain:

N(λ) ≤ C̃b,βλ
− 1

b . (2.34)

For the choice λn and `
′
g given by (2.13) as function of n (the other parameters being fixed) it is easy to

check by straightforward calculation that `
′
g ≥ `0 holds, where `0 is defined as in Lemma 2.4.3, provided

n is larger than some n0 (depending on all the fixed parameters).
Thus, as the given quantity `

′
g fullfills all the requirements of Lemma 2.4.3, from this result we have

with probability at least 1− η:

∥∥∥T s
(
fν − fλn

Dn

)∥∥∥
Hk

≤ C̃ log(8η−1)λsn

(
D
(
λrn +

1√
`′g

)
+

R

`′gλn
+

√√√√Σ2λ
− b+1

b
n

`′g

)
,

where C̃ := Cr,s,b,β,γ,E,B,χ,γ depends potentially on all model and method parameters except for R,D
and Σ.

By direct computation, we check that the choice of regularization parameter sequence λn implies
that

(
`
′
g

)−1/2
= on(λ

r
n). Therefore, for n and `

′
g large enough, we can disregard the term

(
`
′
g

)−1/2 in
the above bound, by multiplying the bound in the front factor by 2. In the same vein, we can check

that (`
′
gλn)

−1 = on
((
`
′
g

)−1/2
λ
− b+1

2b
n

)
and disregard the R

(`′gλn)
term provided n big enough. Finally, the

proposed choice of parameter λn balances precisely the last two terms and leads to the conclusion.
�

Proof [Proof of Theorem 2.4.5] In this proofC4 will denote a factor depending on the model and method
parameters (but not on n or η) whose exact value can change from line to line.

Observe that estimate (2.34) still holds, and additionally due to the assumption of lower bounded
spectrum, a matching lower bound for the effective dimension holds (with a different factor). By
relegating the effects of the constants R,K in the formulas from Table 2.1 in a generic factor, the
choice of the bound for effective sample size `

′
p = C4(λnN(λn))

2
2γ+1n

2γ
2γ+1 ensures that condition

`
′ ≤ min{`2, `3, `4} is fullfilled with `

′
= `

′
p (which can be checked by straightforward computation)

and λn as defined by (2.15). Furthermore, for n > n0, where n0 is as specified in the statement of the
theorem, we obtain :

log η−1 ≤ C4n
br

2br+b+1+b(r+1)γ−1 ,
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which, by plugging in the value for λn and estimate for N(λn), implies that `
′ ≥ `0; therefore we can

apply Lemma 2.4.3. We get with probability at least 1− η:∥∥∥T s
(
fν − fλn

Dn

)∥∥∥
Hk

≤ C4,ηλ
s
n


λrn +

λ
−
(

b−1
2b

)
1

2γ+1
n

n
γ

2γ+1

+
1

λ
1+ 1

2γ+1

(
b−1
b

)
n n

2γ
2γ+1

+ λ
− 1

b
γ(b+1)+b

2γ+1
n n

− γ
2γ+1


where C4,η = C4 log(8η−1). We observe that the choice of regularization parameter λn implies that

λ
−
(

b−1
2b

)
1

2γ+1
n /n

γ
2γ+1 = o(λrn). Therefore, similar to the case of exponentially τ−mixing processes, as-

suming number of observations n large enough and multiplying the front factor with 2, we can disregard

the term λ
−
(

b−1
2b

)
1

2γ+1
n /n

γ
2γ+1 in the above bound. Similarly, one can check that:

1

λ
1+ 1

2γ+1

(
b−1
b

)
n n

2γ
2γ+1

= o

(
λ
− 1

b
γ(b+1)+b

2γ+1
n n

− γ
2γ+1

)
,

so this term can be similarly asymptotically disregarded (again, multiplying the second term by 2). There-

fore, we can concentrate the analysis on the remaining main terms which are λrn and λ
− 1

b
γ(b+1)+b

2γ+1
n n

− γ
2γ+1 .

The choice of λn balances exactly these terms and the computations lead to the conclusion. �

59



60



Chapter 3

Online nonparametric regression with
kernels

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Notation and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Kernels and effective dimension . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.2 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.3 Main Algorithm — KAAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Main results: Upper-bound on the regret of KAAR on the classes of Sobolev balls. 68
3.3.1 Key preliminary result and the upper-bound on the effective dimension. . . . . 69
3.3.2 Regret upper bound for the Sobolev RKHS (β > d/2) . . . . . . . . . . . . . 69
3.3.3 Regret upper bound over Sobolev spaces when d

p < β ≤ d
2 , p ≥ 2. . . . . . . . 70

3.4 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.1 General comparison to the setting of statistical non-parametric regression . . . 72
3.5.2 Comparison in the setting of adversarial nonparametric regression. . . . . . . 74
3.5.3 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Proof of the main results of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6.1 Approximation properties of the Sobolev spaces. . . . . . . . . . . . . . . . . 76
3.6.2 Results from interpolation theory on Sobolev spaces . . . . . . . . . . . . . . 78
3.6.3 Effective dimension upper-bound for the Sobolev RKHS . . . . . . . . . . . . 80
3.6.4 Proof of Theorem 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.6.5 Proof of Theorem 3.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.6.6 Proof of the Theorem 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6.7 Regret rates comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

In this part of the thesis we investigate the variation of the online kernelized ridge regression algo-
rithm in the setting of d−dimensional adversarial nonparametric regression. We derive the regret upper
bounds on the classes of Sobolev spaces W β

p (X), p ≥ 2, β > d
p . The upper bounds are supported by

the minimax regret analysis, which reveals that in the cases β > d
2 or p = ∞ these rates are (essen-

tially) optimal. Finally, we compare the performance of the kernelized ridge regression forecaster to the
known nonparametric forecasters in terms of the regret rates and their computational complexity as well
as to the excess risk rates in the setting of (i.i.d.) nonparametric regression. This chapter is based on
the joint work with Pierre Gaillard, Sebastien Gerschinovitz, Alessandro Rudi, which can be found in
Zadorozhnyi et al. (2021).
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3.1 Introduction

In this chapter, we consider the online least-squares regression framework (Cesa-Bianchi and Lugosi,
2006) as a game between the environment and the learner where the task is to sequentially predict the
environment’s output yt given the current input xt and the observed history {(xi, yi)}t−1

i=1. Specifically,
let X ⊂ Rd be an input space, Y ⊂ R a label space, and Ŷ ⊂ R a target space. Before the game starts,
the environment secretly produces a sequence of input–output pairs (x1, y1), (x2, y2), . . . in X× Y over
some (possibly infinite) time horizon.

At each round t ≥ 1, the environment first reveals an input xt ∈ X; the learner forms the prediction
ŷt ∈ Ŷ of the true label yt ∈ Y based on past information (x1, y1), . . . , (xt−1, yt−1) ∈ X × Y and on
the current input xt. The true label yt is then revealed, the learner suffers the squared loss (yt − ŷt)

2

and round t+ 1 starts. The problem is to design an algorithm which minimizes the learner’s cumulative
regret

Rn(F) := sup
f∈F

Rn(f) , where Rn(f) :=
n∑

t=1

(yt − ŷt)
2 −

n∑
t=1

(yt − f(xt))
2 , (3.1)

over n ≥ 1 rounds with respect to the best prediction rule from some reference functional class F ⊂ RX.
In the setting of adversarial online learning the nature of data can be completely arbitrary, unlike

in the standard statistical learning framework where the data stream is assumed to be generated from
some underlying stochastic process, usually with an independent noise component. The problem of
online learning with arbitrary (adversarial) data goes back to the work of Foster (1991). Much theoretical
research has been done since then for parametric models (e.g. Azoury and Warmuth, 2001; Cesa-Bianchi,
1999b; Vovk, 1998). However, the amount of data and the complexity of current machine learning
problems have led the community to explore the more general problem of online-learning with methods
based on nonparametric decision rules and with the reference classes being bounded functional sets
(see ex. Vovk (2006a), Rakhlin and Sridharan (2014)). Much effort has been devoted to the regret
analysis with respect to functional classes that include Sobolev spaces (Rakhlin and Sridharan, 2014;
Rakhlin et al., 2014; Vovk, 2006a, 2007). Surprisingly, only a few explicit algorithms have been designed
to address the regression problem (Gaillard and Gerchinovitz, 2015; Vovk, 2006a,b, 2007). Although
they have optimal (or close to optimal) regret rates, these algorithms have the disadvantage of either
being computationally intractable or of providing suboptimal regret upper bounds (see Table 3.1 for
computational complexities of some known algorithms). For more details on previous work, we refer the
reader to Section 3.5.

In this work we consider the framework of online adversarial regression where the benchmark class
F, against which the algorithm competes, is a ball in a Sobolev space (see e.g., Adams and Fournier,
2003), denoted by W β

p (X) where β > 0 and p ≥ 2. In other words, F is the space of functions with
p-integrable weak derivatives up to order β (see 3.2.2 for more details).

The problem is of interest since, to date, the optimal regret is achieved only by a computationally
efficient algorithm in the smooth regime when β > d/2 and p = 2.

Overview of the main results and outline of the chapter We provide an in-depth analysis of the regret
achieved by a version of the online kernel ridge regression algorithm, Kernel Aggregating Algorithm
Regression (KAAR) over the classes of bounded balls in W β

p (X). In particular the key contribution
is the analysis of the robustness of the KAAR which returns an element in RKHS while competing
against a function which does not belong to a RKHS. We notice that (on the contrary to many known
nonparametric schemes, see for example Rakhlin and Sridharan (2014), Vovk (2007)) this algorithm is
computationally tractable. Comparison of the performance of KAAR to the known procedures (both in
regret rates and computational efficiency) is summarized in Table 3.1. Furthermore, we also prove lower
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KAAR (3.10) Rakhlin and Sridharan (2014) Chaining EWA Gaillard and Gerchinovitz (2015) EWA by Vovk (2006a)

Regret1 Cost Regret Cost Regret Cost Cost (d = 1, p = ∞)2 Regret Cost

β > d
2 n

1− 2β
2β+d

+ε
n3 + dn2 n

1− 2β
2β+d Non constructive n

1− 2β
2β+d exp(n) poly(n) n

1− β
β+d exp(n) + nd

d
p < β ≤ d

2 n
1−β

d
p−d/β
p−2

+ε
n3 + dn2 n1−

β
d Non constructive n1−

β
d exp(n) n

dβe
(

5β+2
2β+1

)
n
1− β

β+d exp(n) + nd

p = ∞, β ≤ d
2 n1−

β
d
+ε n3 + dn2 n1−

β
d Non constructive n1−

β
d exp(n) n

dβe
(

5β+2
2β+1

)
n
1− β

β+d exp(n) + nd

Table 3.1: Regret rates and time complexity of KAAR (3.10) (new upper-bounds from are highlighted in
blue) and the existing algorithms for online nonparametric regression.

bounds for minimax regret (which is defined as the infimum over all admissible strategies of a supremum
of all data-sequences) reaches optimal or close to optimal (up to a polynomial factor in the number of
rounds) regret rates on bounded balls of Sobolev spaces W β

p (X) with p ≥ 2 and β > d
p (which, up to

a multiplicative constant which depends on the diameter of the set, implies the result for all bounded
subsets of continuous functions in W β

p (X)).
More precisely, the result is threefold. On the one hand, our analysis recovers the classical result for

Sobolev spaces, i.e. when β > d/2 and p ≥ 2. In particular, we show in Theorem 3.3.2 that, choosing
appropriate regularization parameter, on the classes of continuous functions which belong to Sobolev
RKHS of smoothness β, KAAR achieves the optimal regret upper bound3

Rn(F) . n
1− 2β

2β+d log n.

On the other hand, we consider the more challenging scenario when d/2 > β ≥ d/p, which corre-
sponds less smooth benchmark functional classes that cannot be embedded into a RKHS. We will refer
to this case as the hard-learning scenario. In Theorem 3.3.4 we prove that in such a scenario, when
F = B

Wβ
p (X)

(0, R), the regret of KAAR with well-chosen parameters is upper-bounded as

Rn(F) . n
1−β

d

p− d
β

p−2 log n.

In particular, when p = ∞, the regret upper bound is of orderO(n1−
β
d
+ε log n). The latter bound is then

proven to be optimal (up to a constant ε that can be made arbitrary small) by showing the lower bound
for minimax regret in Section 3.4 for the lower bounds. Optimal regret upper bounds on the classes of
bounded Hölder balls were previously derived with polynomial-time algorithms for d = 1 Gaillard and
Gerchinovitz (2015). The case d ≥ 1 and β = 1 was also analyzed for Lipschitz and semi-Lipschitz
losses in Cesa-Bianchi et al. (2017). Notice that throughout the chapter we do not consider the case
of Sobolev spaces with β ≤ d/p. In the latter case, the existence of continuous representatives for
equivalence classes in W β

p (X) is not guaranteed, and the regret of any forecaster will be linear.
In Figure 3.1, we plot the regions of the (1/p, βd )-plane corresponding to the different regret cases

where we obtain either the optimal rate or a suboptimal rate, that nevertheless improved with respect to
classical aggregation algorithms in the nonparametric framework Vovk (2006a). Note that the smaller β

d
and p are, the harder the problem is. Additional graphs comparing the regret of KAAR with the EWA
forecaster are available in Section 3.6.7.

To complete the analysis of online nonparametric regression over Sobolev spaces, we make use of
the general results of Rakhlin and Sridharan (2014), derive upper and lower bound on the fat-shattering

1In terms of its upper bound.
2Gaillard and Gerchinovitz (2015) only provide an efficient version of their algorithm for Sobolev spaces with p = ∞,

d = 1 and β ≥ 1/2. Their efficient algorithm can however be extended for any β ∈ (0, 1/2) with a polynomial time
complexity.

3The notation . denotes an approximate inequality which includes multiplicative constants which depend on F and X.
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Figure 3.1: (Left) Different regions in the (1/p, βd )-plane for which our new regret bound for KAAR:
[light green] is optimal (i.e., β > d/2 or p = ∞); [dark green] improves the bound of EWA by Vovk
(2006b); [blue] is worse than the bound of EWA; [red] is linear in n (i.e, β ≤ d/p). (Right) Hardness of
the problem in the (1/p, βd ) plane

dimension (see Rakhlin and Sridharan (2014) and 3.6.6 for an exact definition ) and establish corre-
sponding lower bounds. We prove that any admissible algorithm ( – the exact definition of which will
be presented in section 3.4) suffers at least the minimax regret of order n1−2β/(2β+d) in the smooth case
β > d/2, and n1−β/d when β ≤ d/2. The latter implies that KAAR (with the proper choice of parame-
ters) achieves optimal regret rates when β > d/2 or p = ∞. The regret analysis of KAAR on the classes
of compact subsets of Sobolev spaces W β

p (X) and p ≥ 2 as well as lower bounds for minimax regret for
the classes of bounded balls in Sobolev spaces W β

p (X) are summarized in Table 3.2.

Upper bound of KAAR Lower bound for minimax regret

β > d
2 n

1− 2β
2β+d

+ε
log(n) n

1− 2β
2β+d

d
p < β ≤ d

2 n
1−β

d
p−d/β
p−2

+ε
log(n) n1−

β
d

p = ∞, β ≤ d
2 n1−

β
d
+ε log(n) n1−

β
d

Table 3.2: Regret upper bounds of KAAR and the corresponding lower bound on the classes of bounded
subsets of W β

p (X), β ∈ R, p ≥ 2. Here ε > 0 is an arbitrary small number.

The outline of the rest of the chapter is constituted as follows. In Section 3.2, we fix the notation
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and recall the definition of Sobolev spaces, reproducing kernel Hilbert spaces (RKHS) and their effective
dimension. Furthermore, we describe KAAR therein. In Section 3.3, we provide our regret upper bounds
for KAAR and in Section 3.4 we present the corresponding lower bounds. Finally, in Section 3.5, we
make more detailed comparisons with existing work both in the adversarial online regression setting
studied in this chapter and in the more standard statistical framework with i.i.d. observations. We discuss
the optimality of the rates and comment on the aspect of computational complexity by showing that
KAAR is superior to the known nonparametric schemes in terms of runtime and storage complexities.
All the proofs as well as technical details on Sobolev spaces and kernels are given in the Appendices.

3.2 Notation and background

3.2.1 Kernels and effective dimension

We recall below some notations on reproducing kernel Hilbert Spaces (RKHS) which is also used in the
Chapter 2 and for the setup of the usage of kernel methods we refer to Chapter1.

We consider a real-valued kernel k : X × X 7→ R and the corresponding reproducing kernel Hilbert
space, which we denote Hk and the (canonical) feature map kx := k(x, ·). The prediction rule ft at round
t then forecasts f̂t(xt) = 〈ft, kxt〉Hk

. We recall the following notations which were used in Chapter 2.
Namely, for t ≥ 1 and a data sample D = {xs, ys}ts=1, RKHS Hk which is generated by a kernel

k, f ∈ Hk and y ∈ Rt we defined St : Hk 7→ Rt, Stf = (f(x1), . . . , f(xt)) ∈ Rt, S∗
t : Rt 7→ Hk,

S∗
t y =

∑t
s=1 yskxs , Tt : Hk 7→ Hk, Ttf =

∑t
s=1 kxs〈f, kxs〉. Lastly, we recall the notion of the

effective dimension.

Definition 3.2.1. Effective dimension For a kernel k : X×X → R, datasample Dn = {xi}1≤i≤n ∈ Xn

and τ > 0 the effective dimension of RKHS Hk associated with the sample Dn on the scale τ is given
as

dneff (τ) := Tr
(
(Kn + τI)−1Kn

)
=

n∑
j=1

λj(Kn)

λj(Kn) + τ
, (3.2)

where I : Rn 7→ Rn is the identity matrix.

In statistical learning, it has been shown (Zhang (2005), Rudi et al. (2015), and Blanchard and Mücke
(2018)) that the effective dimension characterizes the generalization error of kernel-based algorithms.
This is a decreasing function of the scale parameter τ and dneff (τ) → 0 when τ → ∞. On the other side,
as τ → 0, it converges to the rank of Kn, which can be interpreted as the "physical" dimension of the
points (kxi)1≤i≤n.

3.2.2 Sobolev Spaces

Let β ∈ N∗, 2 ≤ p < ∞ and X := [−1, 1]d, where we use standard notation for N∗ := {1, 2 . . . , }. We
denote by Lp(X) the space of equivalence classes of p-integrable functions with respect to the Lebesgue
measure λ on the Borel σ−algebra B(X) and by [f ]λ the λ−equivalence class to some function f :
X 7→ R. We denote by Cm(X) the space of all m-times differentiable functions f with multidimensional
derivative Dγf (|γ|1 ≤ m) that are continuous on X and let C(X) be the standard space of continuous
functions equipped with the norm ‖f‖C(X) = maxx∈X |f(x)| (we write it simply ‖f‖ when no confusion
can arise). For the normed space (G, ‖·‖) we useBG(x,R) andBG(x,R) to denote respectively the open
and the closed ball of radius R centered at the point x.

Definition of Sobolev spaces. We denote |γ|1 :=
∑n

i=1|γi| for γ ∈ Nd
∗ and we write Dγf for the

multidimensional weak derivative (see section 5.2.1, page 242 in ?) of the function f : X 7→ R of order
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γ ∈ Nd
∗. We recall that the Sobolev space (see chapter Adams and Fournier (2003)) W β

p (X) is the space
of all equivalence classes of functions [f ]λ ∈ Lp(X) such that

‖f‖
Wβ

p (X)
:=

{ (∑
|γ|1≤β‖Dγf‖pLp(X)

) 1
p if p <∞

sup|γ|1≤β‖Dγf‖L∞(X) if p = ∞

is finite. The notion of Sobolev spaces is then extended to the case of any real β > 0 by means of the
Gagliardo (semi)norms. In the case p = 2 it can be shown to be equivalent to the known approach of
the definition of fractional Sobolev spaces via Fourier transform. Let X ⊆ Rd, p ∈ [1,∞) and denote
Lp(X) for the equivalence class of p−integrable functions with respect to the Lebesque measure λ on
X. We firstly recall (see Adams and Fournier (2003), chapter 3) the definition of Sobolev spaces with
integer exponent. Denote Lp(X) for the equivalence class of p−integrable functions with respect to the
Lebesque measure λ on X. Classes W r

p (X) and W r
∞(X) are the vector spaces of equivalence classes of

functions defined as:

W r
p (X) :=

{
f : X → R s.t. ‖f‖W r

p (X)
:=
( ∑
|γ|1≤r

‖Dγf‖pLp(X)

) 1
p <∞

}
,

and

W r
∞(X) :=

{
f : X → R s.t. ‖f‖W r

∞(X) := sup
|γ|1≤r

‖Dγf‖L∞(X) <∞
}
.

We also define the Sobolev semi-norm |f |
W j

p (X)
:=
∑

γ:|γ|=j‖Dγf‖Lp(X)
. Now, for β ∈ R+ write

β = r + σ with r ∈ N0 and σ ∈ (0, 1), i.e. r = bβc, σ = β − bβc. Let u : X 7→ R be some fixed
measurable function. We define the map ϕu : X × X 7→ R ∪ {∞} such that for 1 ≤ p < ∞ and all
(x, y) ∈ X× X:

ϕu(x, y) =
|u(x)− u(y)|

‖x− y‖
d
p
+σ

2

,

and denote

W̃ σ
p (X) := {u ∈ Lp(X) : ‖ϕu‖Lp(X×X) <∞}.

The space W̃ σ
p (X) equipped with the norm ‖u‖W̃σ

p (X) :=
(
‖u‖Lp(X)

+ ‖ϕu‖Lp(X×X)

) 1
p can be shown to

be a Banach space. With this notation, Sobolev space W β
p (X), β = r + σ can be defined as

W β
p (X) :=

{
u ∈W r

p (X) : D
γu ∈ W̃ σ

p (X) for any γ such that |γ|1 = r
}
. (3.3)

Equipped with the norm

‖u‖
Wβ

p (X)
:=

(
‖u‖pW r

p (X)
+
∑

γ:|γ|=r

‖Dγu‖p
W̃σ

p (X)

) 1
p

, (3.4)

it becomes Banach space. In the case β = m ∈ N∗, it matches the definition of the Sobolev space
Wm

p (X) (up to a re-scaling of the norm). If m = 0 (i.e. r = σ ∈ [0, 1)), we find that Wm
p (X) = Lp(X)

so that the norm in W σ
p (X) is given by

‖u‖W r
p (X)

= ‖u‖W̃σ
p (X) :=

(
‖u‖Lp(X)

+ ‖ϕu‖Lp(X×X)

) 1
p . (3.5)
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In accordance with the above definition of the class W β
p (X), for any β = r + σ, σ ∈ [0, 1) we set

W̃ σ
∞(X) := {u ∈ L∞(X) : sup

x,y∈X,x 6=y

|u(x)− u(y)|
‖x− y‖σ2

≤ ∞}. (3.6)

Now, for β = r + σ ∈ R the Sobolev space W β
∞(X) can be defined as a functional space

W β
∞(X) :=

{
u ∈Wm

∞(X) : Dγu ∈ W̃ σ
∞(X) for any γ such that |γ|1 = r

}
. (3.7)

equipped with a norm

‖u‖
Wβ

∞(X)
:= max{‖u‖W r

∞(X), max
γ:|γ|1=r

‖Dru‖W̃σ
∞(X)} (3.8)

Sobolev Reproducing Kernel Hilbert Spaces. We recall here known results on embedding character-
istics of fractional Sobolev Hilbert spaces, which are essential in our analysis. Let s ∈ R+, and consider
the Sobolev space W s

2 (X) with X ⊂ Rd. It is a separable Hilbert space (see Chapter 7 in Schaback
(2007)) with the inner product 〈f, g〉 =

∑
‖γ‖1≤s〈Dγf,Dγg〉L2(X). By the Sobolev Embedding Theo-

rem (see Theorem 7.34 in Adams and Fournier (2003) for the case s ∈ R+, s > d/2) we have that
W s

2 (X) ↪→ C(X). The latter embedding is to be understood in the sense that there exists C1 > 0, such
that each λ−equivalence class has a unique element f ∈ C(X) such that ‖f‖C(X) ≤ C1‖f‖W s

2 (X)
. We

refer to the set of continuous representatives of all equivalence classes in W s
2 (X) as to Sobolev RKHS

and denote it as W s(X). It can be shown (see paragraph 7.5 and Theorem 7.13 in Schaback (2007) )
that W s(X) is a RKHS. Furthermore (see part (c) Theorem 7.34 in Adams and Fournier (2003)), when
p ≥ 2, W s

p (X) is embedded into the space of continuous functions C(X) if s > d/p while if s < d
2 is

not (and not embeddable into) a RKHS.
Furthermore, (see chapter 7 in Schaback (2007)), Sobolev RKHS W s(X) is generated by the transla-

tion invariant kernel, which is a restriction to X of the kernel ks of W s
(
Rd
)

(see also Corollary 10.48 on
page 170 in Wendlandt (2005)). It is a continuous, bounded and measurable kernel (see general Lemma
4.28 and 4.25 in Steinwart and Christmann (2008) –) which is defined for all x, x

′ ∈ X by

k
(
x, x′

)
:=

21−s

Γ(s)

∥∥x− x′
∥∥s− d

2
2

K d
2
−s

(∥∥x− x′
∥∥
2

)
, (3.9)

where Kd/2−s(·) is a modified Bessel function of the second kind (see Chapter 5.1 in Wendlandt (2005)
for more details on Bessel function). Alternatively, the kernel function k(·) of Sobolev RKHS W s(X)
can be described by its Fourier transform, which equals F(k)(ω) = (1 + ‖ω‖22)−s. We refer the reader
to Chapters 10–11 in Wendlandt (2005) as well as to Novak et al. (2017) for more details on the kernel
functions of Sobolev RKHS.

3.2.3 Main Algorithm — KAAR

In this part we analyse the regret achieved by KAAR (Gammerman et al. (2004)), over the (Sobolev)
RKHS W s(X). The regret is measured with respect to the benchmark classes of bounded Sobolev balls
W β

p (X) which may have different regularity ( i.e. we consider the case when β 6= s).
KAAR (see Algorithm 1) was introduced in the case of adversarial sequential linear regression by

Vovk (2001) and Azoury and Warmuth (2001); further it was analyzed in Cesa-Bianchi and Lugosi
(2006), Rakhlin and Sridharan (2014), Gaillard et al. (2019) and applied to concrete forecasting problems
including electricity (Devaine et al., 2013), air quality (Mallet et al., 2009) and exchange rate (Amat et al.,
2018) forecasting. It was extended to the case of general reproducing Hilbert spaces in Gammerman
et al. (2004), whereas Jézéquel et al. (2019) provide a variation of the algorithm with the same regret and
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Parameters: d ≥ 1, s > d/2, and τ > 0
Initialization: define k(·, ·) as in (3.9);
while t ≥ 1 do

observe xt ∈ X;
ỹt := (y1, . . . , yt−1, 0)

>;
k̃(xt) :=

(
k(x1, xt), . . . , k(xt−1, xt), k(xt, xt)

)
;

Kt :=
(
k(xi, xj)

)
1≤i,j≤t

;

forecast ŷt := ỹ>t (Kt + τIt)
−1k̃(xt);

observe yt;
end

Algorithm 1: KAAR (Gammerman et al., 2004) on Sobolev RKHS

reduced computational complexity. In the case of Sobolev spaces, KAAR (Alg. 1) reads as follows. Let
τ > 0, s > d/2 at round t ≥ 1 KAAR predicts ŷt := f̂τ,t(xt), where

f̂τ,t := ArgMin
f∈W s(X)

{( t−1∑
j=1

(
yj − f(xj)

)2)
+ τ‖f‖2W s

2 (X)
+ f2(xt)

}
. (3.10)

The prediction ŷt = f̂τ,t(xt) can be computed in the closed form by Algorithm 1 in O(n3 + n2d)
operations (see Section 3.5.3 for details on the computational complexity). This improves computational
complexity over other known nonparametric online regression algorithms, which achieve optimal regret
with respect to Sobolev spaces in dimension d.

Remark 3.2.2. We remark that the right–hand side of (3.10) depends on the input xt, so while f̂ τt ∈
W s(X), the prediction function xt 7→ f̂τ,t(xt) is a measurable function which in general not necessarily
belongs to the spaceW s

2 (X), the prediction map does not necessary belong to the benchmark class against
which the algorithm is competing. This corresponds to the so-called case of improper learning (see
more details in Rakhlin et al. (2015),?). Furthermore, a sequential version of kernel ridge regression was
considered by Zhdanov and Kalnishkan (2010). It removes the term f2(xt) in the r.h.s. of (3.10) and clips
the prediction, by forecasting ŷMt := ŷt := min(max(−M, f̃τ,t(xt)),M), where f̃t is the solution to the
Problem 3.10 without f2(xt) term. Since for every yt ∈ [−M,M ] we have

(
yt − ŷMt

)2 ≤ (yt − ŷt)
2 so

for the clipped version of the KAAR forecaster ŷMt , the upper bound regret analysis for KAAR directly
applies to its clipped version (given the same, i.e. unclipped benchmark class).

We emphasize that throughout the chapter β and p refer to the parameters of the benchmark Sobolev
space and s > d/2 refers to the smoothness parameter of RKHS W s(X) used in KAAR.

3.3 Main results: Upper-bound on the regret of KAAR on the classes of
Sobolev balls.

In this section, we present regret upper bounds of KAAR on the reference classes of bounded balls in
W β

p (X), β > d
p . By the Sobolev embedding Theorem (see Adams and Fournier (2003) Theorem 7.34 or

Equation 10 on page 60 in Edmunds and Triebel (1996)), condition β > d
p implies that every equivalence

class in W β
p (X) has a continuous representative. In our analysis under Rn

(
B

Wβ
p (X)

(0, R)
)

we always
understand regret with respect to the correspondent ball of continuous representatives bounded in the
norm of the space W β

p (X) (Adams and Fournier, 2003).
We consider the framework of online adversarial regression with the label space Y := [−M,M ] real-

valued predictions, the input space X = [−1, 1]d and the reference class F := B
Wβ

p (X)
(0, R) being an
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open ball in Sobolev space W β
p (X) of radius R > 0 with d ∈ N∗, β ∈ R+ and p ≥ 2, where we use

standard notation for N∗ = {1, 2 . . . , }. We remark that the assumption on the input space is given for
simplicity and can be weakened to any bounded domain in Rd with Lipschitz boundary (see Chapter 4
in Adams and Fournier (2003) on more details on Lipschitz boundaries).

3.3.1 Key preliminary result and the upper-bound on the effective dimension.

We start by recalling a general upper bound on the regret of KAAR on the bounded balls of the general
separable RKHS in terms of the effective dimension. It is a direct extension of the upper bound of KAAR
in Vovk (2001) and Azoury and Warmuth (2001) from finite dimensional linear regression to kernel
regression and can be retrieved from Theorem 2 in Gammerman et al. (2004) (see also Proposition 1 and
2 in Jézéquel et al. (2019) for the next statement) for the case of Sobolev RKHS, as the underlying kernel
function is continuous. The regret of KAAR on any f ∈W s

2 (X) is upper-bounded as

Rn(f) ≤ τ‖f‖2W s
2 (X)

+M2

(
1 + log

(
1 +

nκ2

τ

))
dneff (τ), (3.11)

where κ > 0 is such that supx k(x, x) ≤ κ2 and dneff (τ) is the effective dimension as given in Defini-
tion 3.2.1. The regret bound (3.11) will be used as a starting point to prove different upper-bounds in the
next subsection.

Theorem 3.3.1 provides an upper bound on the effective dimension for the Sobolev RKHS W s(X).

Theorem 3.3.1 (Upper bound for the effective dimension of Sobolev RKHS). Let ε ∈ (0, 1/4), d ≥ 1,
n > 1 and s > d/2. Consider the Sobolev RKHSW s(X) with X := [−1, 1]d. For any sequence of inputs
D := {x1, . . . , xn} and τ > 0, the effective dimension deff (τ) is upper-bounded as

dneff (τ) ≤ C

((n
τ

) d
2s

+ε1
+ 1

)
,

where ε1 = dε/s2, and C4 is a constant which depends on d, s,R,K,M,X, ε but is independent of n.
Furthermore, if s ∈ N∗, then ε = 0.

The proof of this statement, is presented in 3.6.3. It is based on some known properties of low rank
projections in Sobolev spaces which are recalled in 3.6.1.

3.3.2 Regret upper bound for the Sobolev RKHS (β > d/2)

Notice that when p ≥ 2 and β ≥ d/2 we have W β
p (X) ⊆ W β

2 (X) and (by the Sobolev embedding
theorem) W β

p (X) 7→ C(X). Because the space of continuous representatives of every equivalence class
W β

p (X) is a closed subspace of W s(X), it is a RKHS. Using KAAR with s = β and putting the upper
bound for the effective dimension of W β(X) into the regret upper bound (3.11) with the proper choice
of the parameter τ := τn, we obtain the following result.

Theorem 3.3.2. Let X := [−1, 1]d, β ∈ (d/2,+∞), p ≥ 2, M > 0, and n > 1, n ∈ N. Then, for any
datasample {xt, yt}nt=1 ∈ (X× Y)n, any ε > 0 regret of the KAAR with

s = β, τn := n
d

2β+d ,

4Throughout the chapter, we refer to constants C,C1, etc which may depend on the properties of the domain X, the func-
tional class F or other quantities (such as ε) but are always independent of n. We refer also to ε, ε1 as to some infinitesimal
numbers (possibly zeros). Their exact values are omitted and may differ from one statement to another, but we will specify this
dependency in case this is necessary for analysis.
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on the benchmark class F := B
Wβ

p (X)
(0, R) satisfies the following upper bound

Rn(F)

n
≤ Cn

− 2β
2β+d

+ε
log(n) ,

where constant C depends on d, s,R,K,M,X, and ε, but not on n.

Proof of Theorem 3.3.2 is given in 3.6.5.

Remark 3.3.3. In the lower-bound section we prove that the upper bound of Theorem 3.3.2 matches the
minimax optimal for β > d/2 on the class of bounded Sobolev balls (modulo a constant ε in the exponent
that can be made arbitrarily small and logarithmic term in the number of observations). This rate was
achieved by Rakhlin and Sridharan (2014) by a non-constructive procedure. An explicit forecaster has
been proposed in Gaillard and Gerchinovitz (2015); it can be calculated efficiently when p = ∞ and
d = 1 and in general has exponential time and storage complexity. We believe that Theorem 3.3.2 is the
first (essentially) optimal regret upper bound for the classes of bounded balls in Sobolev spaces W β

p (X)
with d ≥ 1, β > d

2 , and p ≥ 2 that is achieved by a computationally efficient procedure.

3.3.3 Regret upper bound over Sobolev spaces when d
p
< β ≤ d

2
, p ≥ 2.

In this part we consider KAAR over the benchmark classes of bounded balls W β
p (X) when d

p < β ≤ d
2 ,

p > 2 and refer to this case as a "hard learning" scenario. When β
d ≤ 1

2 the Sobolev space W β
p (X) is

not (and not embedded into) Sobolev RKHS, so, using KAAR in this case, we must control the error
due to using the element f̂ τt ∈ W s(X) when competing against any function from W β

p (X). In this case,
the regret analysis can be decomposed into two parts: approximation of any function f ∈ W β

p (X) by
some element fε ∈W s(X) and regret of KAAR with respect to bounded balls in W s(X). Intuitively, the
smaller the approximation error between f and fε, the larger the norm of the approximation function fε
should be, which implies the larger regret upper bound of KAAR with respect to fε (see bound (3.11)).
Therefore, in this case one has to control a trade-off between the approximation error of f ∈ Wp(X) by
means of some fε ∈ W s(X) and the regret suffered of KAAR with respect to any fε ∈ W s. This is
possible and we have the following result.

Theorem 3.3.4. Let X = [−1, 1]d, p > 2, β ∈ R+, d/p < β ≤ d/2, M > 0, ε > 0, n ≥ 1 and
{(xt, yt)}nt=1 ∈ (X × [−M,M ])n be arbitrary sequence of observations. Then by choosing s = d

2 + ε
and

τn = n
1−

d
(
1−p−1

)
−β

′

d
(
1−2p−1

)

where β
′
= β − ε is sufficiently close to β decision rule 1 of KAAR satisfies the following regret upper-

bound

Rn(F) ≤ Cn
1−β

d

p− d
β

p−2
+εθ

log(n),

where F = B
Wβ

p (X)
(0, R), and R > 0. Constant C depends on d, s,R, β,M,X, and ε, but not on n and

constant θ = p
(p−2)d .

The proof of Theorem 3.3.4 is given in 3.6.5. The theorem and its implications are discussed in
Section 3.5. Here we want just to provide two remarks that help to interpret the results.

Remark 3.3.5. In the proof we provide the regret upper bound for any choice s > d
2 ; however the rate

for d
p ≤ β ≤ d

2 is minimized by the choice s > d
2 as small as possible. Therefore, in this situation, we

choose s := d/2 + ε with an arbitrary small ε > 0. Furthermore, in the result of Theorem 3.3.4, the
constant C has exponential dependence on the underlying dimension d. To the best of our knowledge,
this dependence is unavoidable when using the techniques we use in this work.
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Remark 3.3.6. Notice that in an interesting particular case of Theorem 3.3.4 when p = ∞ and β ∈ R+,
the space W β

∞(X) corresponds to functions with derivatives up to order bβc bounded in supremum norm
and bβc-th derivatives are Hölder continuous of order α ∈ (0, 1) ( see (Adams and Fournier, 2003)).
Then the regret of Theorem 3.3.4 leads to a regret upper bound of order O(n1−

β
d
+ε log n). This upper

bound is optimal on the class W β
∞(X), up to a negligible factor ε that can be chosen arbitrary small (see

Section 3.4 for a lower bound on the minimax regret).

3.4 Lower bounds

In this section, we present lower bounds on the regret of any algorithm with respect to any data sequence
on the bounded closed balls in Sobolev spaces W β

p (X) with β > d/p, p ≥ 2. We define the minimax
regret for the problem of online nonparametric regression on the functional class F as

R̃n(F) := inf
A

sup
(xs,ys)s≤n∈(X×Y)n

Rn(F), (3.12)

where A = (As)s≥1 is any admissible forecasting rule, i.e. such that at time t ∈ N outputs a prediction
ŷt ∈ Ŷ based on past predictions (ŷs)s≤t−1 and data-sample ({xs, ys}s≤t−1 ∪ xt). More formally, we

assume (A)s≥1 is such that for every t ∈ N the map At :
(
Ŷt−1 × (X× Y)t−1 × X

)
7→ Ŷ is measurable

(with respect to the completion of the product σ−algebra over the sets (X× Y)t−1 × X) and call such
algorithm admissible. The most important element of this assumption is that the forecaster cannot use
the future outcomes for making decisions at round t. Notice that in this setting we consider the oblivious
adversary meaning that all outputs (xt, yt)t≥1 are fixed in advance. With this notation being set we have
the following result.

Theorem 3.4.1. Let M > 0, p ≥ 1 and β
d > 1/p. Consider the problem of online adversarial non-

parameteric regression with yt ∈ [−M,M ], xt ∈ X = [−1, 1]d over the benchmark class F := B
Wβ

p (X)
(0,M).

Then, minimax regret 3.12 is lower-bounded as

R̃n(F) ≥

{
C1n

1−β
d if β ≤ d

2

C2n
1− 2β

2β+d if β > d
2

,

where C1 and C2 are constants which depend on M,X, d, β, and p, but are independent of n.

The proof is based on the general minimax lower bounds of Rakhlin and Sridharan (2014) and esti-
mation of the fat-shattering dimension of the class B

Wβ
p (X)

(0,M) and is given in 3.6.6.

Statistical i.i.d. regression Adversarial online nonparametric regression

Best known excess risk upper bound Lower bound Best known upper bound for Rn(F)/n Lower bound

β > d
2 n

− 2β
2β+d n

− 2β
2β+d n

− 2β
2β+d n

− 2β
2β+d

d
p < β ≤ d

2 n
− 2β

2β+d n−
1
2 n−

β
d n−

β
d

p = ∞, β ≤ d
2 n

− 2β
2β+d n

− 2β
2β+d n−

β
d n−

β
d

Table 3.3: Best known regret and excess risk upper and lower bounds on the classes of Sobolev balls.
Results achieved by KAAR are highlighted in blue color.

Remark 3.4.2. In Table (3.3) we compare the best known lower and upper regret bounds on the classes
of Sobolev balls in the settings of adversarial online regression with the correspondent bounds for the
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excess risk in the statistical i.i.d. scenario. Interestingly, on the classes of Sobolev balls in spacesW β
p (X),

β ≥ d
2 and Hölder balls W β

∞(X) rates for the (normalized) regret and for the excess risk are optimal and
archived by the regularized empirical risk minimization procedure (for example by regularized least
squares estimators in the statistical learning scenario, see Fischer and Steinwart (2017) and KAAR in
adversarial regression as shown in this work).

3.5 Discussion

In this part we compare regret rates for KAAR with the existing algorithms in the (adversarial) online
nonparametric regression in the terms of regret bounds and computational complexity. Furthermore we
compare regret analysis with the excess risk bounds for the known algorithmic schemes in the statistical
least-squares regression scenario. We point out on interesting consequences for the gap in the rate which
arises through adversarial data.

3.5.1 General comparison to the setting of statistical non-parametric regression

To unify settings we always consider the normalized regret of class F, Rn(F)
n . In the statistical setting

we assume a sample Dn = (zi = (xi, yi))
n
i=1 to be generated independently from the distribution νx,y

of a pair of random variables X,Y over a probability space (X× Y,B(X× Y),P) and let fDn : X 7→ R
is some (data-dependent) estimator produced by a measurable learning method L on X × Y. Denote
ν(y|x) to be a regular conditional probability distribution of Y conditional on {X = x}, and µ to be
the X−marginal of ν. In the setting of non-parametric regression, for a given class H ⊂ YX, the goal
is to find a function f ∈ H which minimizes the expected squared risk RLS,ν(f) = Eν

[
(Y − f(X))2

]
.

The performance measure of the algorithm which outputs decision rule fDn in this case is the excess
risk, which is RLS,ν(fDn)− inff∈F RLS,ν(f). If F is dense in L2(X, µ), it is well-known that the latter
is equivalent to minimizing the ‖fν − fDn‖L2(X,µ)

, where for µ−almost all x, fν(x) is a version of
conditional expectation of Y under measure ν(·|x). Notice that to compare the statistical learning setting
and the results of our work we do not necessarily assume that fν ∈ H. Furthermore,because fν(·) is
defined only for µ− almost all x, we denote fν for both the version of this conditional expectation and
the correspondent equivalence class with respect to measure µ. We denote W β

p (X, µ) the Sobolev space
on a probability space (X,B(X), µ). To avoid technical difficulties with threatening weak-derivatives
with respect to arbitrary Borel measure, we restrict the space of X−marginal probability measures to the
subset of all measures which have the Radon-Nikodym derivative with respect to the Lebesgue measure
on X. The latter means that the underlying Sobolev space is equivalent toW β

p (X). As before, we consider
X = [−1, 1]d; all the subsequent results in the statistical regression scenario can be reformulated for any
bounded subset of Rd with Lipschitz boundary. We provide comparison to the excess risk upper bounds
in high probability, meaning that under ‖fDn − fν‖L2(X)

≤ ψ(δ, n) we understand inequality which
holds with probability at least 1 − exp(−δ) for some δ > 0, and ψ(·, ·) : [0, 1] × R+ 7→ R+ is some
function.

We start with the easy problem case, in which fν ∈ H and H is the Sobolev RKHS. Theorem 1 in
Caponetto and E.De.Vito (2006) implies (by taking b = 2β

d and c = 1 therein) that for H = W β(X),
β > d

2 , fν ∈W β
2 (X, µ) and fD ∈ H being a regularized least-squares estimator, we obtain (dropping the

constants) that it holds ‖fDn − fν‖L2(X,ν) ≤ Cn
− 2β

2β+d which is known to be optimal in the setting of
non-parametric regression (see Tsybakov (2009) and Ǵyörfi (2002) for matching lower bounds) . Under
the same conditions, optimal excess risk rates on W β

2 (X, µ) can be deduced from Corollary 6 in Lin
and Cevher (2018) using the decision rule based on the spectral kernel algorithms or stochastic gradient
descent. Notice that in the latter works no assumption on the probability measure ν is posed (a-part the
standard in the setting of statistical learning Bernstein condition for ν(y|x) (see Blanchard and Mücke
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(2018), Rudi et al. (2015)) and the variance bound for a random variable Y ). It follows that the regret
rates of KAAR on classes W β

2 (X) match (disregarding the log terms and arbitrary small polynomial
factor) the optimal known rates for the excess risk in the i.i.d. scenario on classes W β

2 (X, µ).
A setting in which the underlying RKHS is a subspace of reference class of regular functions is stud-

ied in several works. In the particular case of H := Hγ(X) being a Gaussian RKHS over X (which
is known to be included in the space of C∞(X) functions and is generated by the kernel kγ(x) =

exp
(
−‖x‖2

γ2

)
) and fν(·) ∈ W β

2 (X) ∩ L∞(X), β ∈ R+ Corollary 2 in Eberts and Steinwart (2011)
implies that the (Gaussian) kernel ridge regression estimator with the proper choice of both regulariza-

tion parameter λ and band-width γ achieves (almost) optimal rates for excess risk of order n−
2β

2β+d
+ε

with β > d
2 , ε > 0. The same rates hold when β ≤ d

2 under additional condition Y = [−M,M ] ( which
implies ν−a.s. boundedness of fν that is not ensured unless β > d

2 ). In the case fν ∈ W β
∞(X) (i.e.,

its bβc− derivative is β − bβc Hölder continuous) and β ≤ d
2 , excess risk rates in the statistical i.i.d.

scenario are optimal (see Chapter 3.2 in Ǵyörfi (2002) for a matching lower bounds and Theorem 14.5
therein). They are better than the normalized regret rates of KAAR in the setting of adversarial regression
(which is of order n−

β
d ), which are (up to a negligible polynomial factor) optimal (see Theorem 3.4.1

for a matching lower bound). This uncovers an interesting consequence, namely that the gap between
the (optimal) rates for regret and excess risk on classes of bounded balls in W β

∞(X) is due purely to the
adversarial nature of the data.

When fν ∈ W β
2 (X, µ) and the algorithm is the kernelized ridge-regression estimator generated by

a kernel of finite smoothness from Corollary 6 in Steinwart (2009) and their discussion afterwards one
deduces that excess risk upper bounds of least–squares regression estimator in the Sobolev RKHSW s(X)
with s ≥ β > d

2 are optimal. Notice that in the latter case we do not need to know the smoothness
parameter β but only the (possibly crude) upper bound s. Similarly, from Theorem 1 and Example 2
in Pillaud-Vivien et al. (2018), the excess risk rates (in expectation) for the stochastic gradient descent
decision rule in Sobolev space W s(X) on the class W β

2 (X, µ), for d
2 < β < s can be deduced. They are

optimal under the additional assumption s−β ≥ d
2 . Corollary 4.4 in ? implies risk upper bound of order

n
− 2ζ

(2ζ+γ)∨1 where parameter ζ is the power of the so-called source condition (see Engl et al. (2000) for
more details on source condition and also see Blanchard et al. (2007) for the statistical perspective) and
γ is the decay rate of the effective dimension. In the case of Sobolev RKHS W s(X) and ball in W β

p (X)
we have ζ = β

2s and γ = d
2s and β ≤ d

2 , s > d
2 ) . If s > d, we have the excess risk upper bound

of order n−
β
s which is worse than n−

2β
2β+d . If d

2 < s ≤ d, the excess risk upper rate is n−
2β

2β+d when

s − d
2 < β ≤ d

2 , and n−
β
s when 0 < β < s − d

2 . In the latter case it is better then the lower bound on

the minimax regret but worth then n−
2β

2β+d achieved, as stated above, by, for example, regularized least
squares estimator with Gaussian kernels. In the worse case scenario (β < d

2 , β+ d
2 < s) one also observe

the gap between upper rates for the excess risk in the statistical learning scenario achieved by general
spectral regularization methods (n−β/s) and the lower bounds for the minimax regret (n−

β
d ) in the online

regression setting. A broader analysis of the difference fDn −fν in the norms of the interpolation Hilbert
spaces (which can be represented as a range of the fractional power of the kernel integral operator),
which range between H and L2(X), is provided in Fischer and Steinwart (2017), where the regularized
kernel least-squares estimator is considered. Corollary 4.1 therein and inclusion between Sobolev spaces

imply excess risk upper bounds of order n−
2β

2β+d
+ε for fν ∈ W β

p (X), β > 0, p ≥ 2. If β
d ∈ (1p ,

1
2 ]

and p ≥ 2, then the aforementioned excess risk rates are better then the regret upper bounds obtained
by KAAR ( Theorem 3.3.4). To the best of our knowledge, the best–known lower bounds in probability
on the excess risk on the classes of balls in the Sobolev spaces are of order n−

1
2 (see Corollary 4.2 in

Fischer and Steinwart (2017) with t = 0, fν ∈W β
p (X) ⊂W β

2 (X) and notice that fν is bounded on X by
Sobolev embedding and the Bolzano-Weierstrass theorem).
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3.5.2 Comparison in the setting of adversarial nonparametric regression.

Previous works on online nonparametric regression and optimal rates. The setting of online re-
gression when competing against a benchmark of nonparametric functional classes is definitely not new.
The standard idea is to use an ε-net of the bounded functional space and exploit the exponential weighted
average (EWA) forecaster for a finite class of experts, which will be the element of the ε−net (see Chap-
ter 1 in the monograph Cesa-Bianchi and Lugosi (2006) for the finite EWA and Vovk (2006a) for its
application in the case of non-parametric functional classes which are contained in C(X) ). Vovk (2006b)
analyzes the regret when competing against a general reproducing kernel Hilbert space defined on an
arbitrary set X ⊂ R and proves in this case the existence of an algorithm (which is based on the so-called
idea of defensive forecasting and requires the knowledge of the feature kernel map) with the regret of
order O(

√
n) over unit balls within the underlying reproducing Hilbert space. Vovk (2007) extends the

analysis to the more general framework of Banach spaces, which is described through the decay rate of
the so-called modulus of convexity (originally introduced by Clarkson (1936)) and includes, as a partic-
ular example, Sobolev spaces with the parameter p of the modulus of convexity being the parameter of
the p−norm from the definition of W p

β (X). All these approaches have the disadvantage of either having
suboptimal regret bounds or having prohibitive computational complexity. Notice that in the framework
of online nonparametric regression, minimax regret analysis in terms of (sequential) entropy growth rates
of the underlying functional classes was provided by Rakhlin and Sridharan (2014). In particular, the
optimal rates of order n

d
2β+d (up to a logarithmic terms) when the reference class is Sobolev RKHS. (

β > d
2 ) and of order n1−

β
d on the classes of Hölder balls (which correspond to classes B

Wβ
∞(X)

(0, R))
can be achieved by using the generic forecaster with Rademacher complexity as a relaxation (for more
details see Example 2, Theorems 2 and 3 and Section 6 in Rakhlin and Sridharan (2014)). Although the
relaxation procedure ensures minimax optimality, it is not constructive in general. An explicit forecaster,
which designs an algorithm based on a multiscale exponential weighted average algorithm (called Chain-
ing EWA), has been provided in Gaillard and Gerchinovitz (2015) . The latter achieves an optimal rate
when competing against functional classes of uniformly bounded functions which have a certain (sharp)
growth condition on the sequential entropy (see Rakhlin and Sridharan (2014)). This condition implies
optimal rates, for example on classes where sequential entropy is of the order of metric entropy (see 3.6.6
for the definition of the notion of the entropy).

Chaining EWA has been shown to be computationally efficient on the class of Hölder balls (p = ∞)
with d = 1. In general, the Chaining EWA forecaster is computationally prohibitive (as it has exponential
time complexity in the number of rounds).

Comparison with Exponential Weighted Average (EWA) forecaster. The idea of using of the EWA
forecaster in the nonparametric setting over bounded benchmark functional class W is to consider the
ε− net Wε of the smallest cardinality:

Wε ⊂ W,Wε = min
K

{f1, f2, . . . , fK : ∀f ∈ W∃i ∈ {K}, s.t. ‖f − fi‖∞ ≤ ε}

and to use the (finite) exponentially weighted average forecaster (see Cesa-Bianchi and Lugosi (2006))
on the set Wε. It was introduced in Vovk (2006a) (see also discussions in Rakhlin and Sridharan (2014)
and Gaillard and Gerchinovitz (2015)) and leads to the composed regret upper bound of order nε +
log(N∞(ε,F)), where the last term is the metric entropy of class F on scale ε. It is known (see Edmunds
and Triebel (1996)) that for the benchmark class of Sobolev spaces W β

p (X) (with p ≥ 2 and β > d/p),

metric entropy is of order ε−
d
β . Balancing the terms by a proper choice of ε, it results in an upper bound

of order nd/(β+d) (see also Corollary 8 in Vovk (2006b)). As is illustrated in Figure 3.1 in the (βd , p
−1)

plane, regret upper-bounds of KAAR are smaller than that of EWA as soon as β
d is large enough. More

precisely, EWA outperforms KAAR when β
d ∈ [1p ,

√
1+4p−1
2p ]. The latter is not surprising since KAAR,
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which outputs prediction rules in Sobolev RKHS (i.e. functions of sufficiently high regularity), performs
worse on the when competing against functions of small regularity. EWA does not have this drawback,
as it acts through the space discretization.

In the case p ≥ 2 and β
d ≤ 1

p it is generally not true that there exists a continuous representative

for each equivalence class in W β
p (X). In the case of additional continuity assumption (i.e. considering

W β
p (X) ∩ C(X) as a benchmark class instead) the best (known) upper bound for minimax regret (and

thus for regret itself) is of order n1−
1
p (see Example 2 in Rakhlin and Sridharan (2014)). It is achieved

by a non-constructive algorithm based on the notion of relaxation of sequential Rademacher complexity.
Notice that EWA can be also applied over classes of bounded balls in W β

p (X) ∩ C(X), β
d ≤ 1

p ; in this

case it provides same rate n
d

β+d which is in this case worth than n1−
1
p .

Comparison with defensive forecaster by Vovk (2007). Vovk (2007) describes the algorithms that
are based on the defensive forecasting schemes in general Banach spaces. The benchmark classes are
irregular but continuous functions, particularly including Sobolev spaces. By transferring the results
given in Equations (6) and (11) in Vovk (2007) to the setting of this work, defensive forecaster BBK29
(see pages 19–20 in Vovk (2007)) achieves for a unit ball F = B

Wβ
p (X)

(0, 1) the following regret bound

Rn(F) ≤

{
Cn1−

β
d
+ε if p = ∞

Cn
1− 1

p if 2 ≤ p <∞ and d
p ≤ β.

.

Therefore, in the first case, which corresponds to Hölder balls in W β
∞(X) and 0 < β ≤ 1, we recover

the same rate as Theorem 3.3.4 but for the range β > 0. The rate is optimal, as stated in Theorem 3.4.1.
In the second case (p ≥ 2 and d

p < β < 1), the upper bounds provided by Theorem 3.3.4 (if β > d
p ) or

Theorem 3.3.2 (if d = 1 and β > 1/2) are always better then the correspondent bounds of Vovk (2007).

3.5.3 Computational complexity

Here we consider an optimal computational scheme for KAAR and compare its costs with those of the
known nonparametric algorithms (in terms of both runtime and storage complexity).

Recall that KAAR for any xt ∈ X, (xs, ys)s≤t−1 ∈ (X× Y)t−1 computes

ŷt = f̂τ,t(xt) =
〈
f̂τ,t, kxt

〉
Hk

=
t∑

s=1

k(xt, xs)cs ,

where c ∈ Rt, c = (Kt + τI)−1ỹt, ỹ>t =
(
Y >
t−1, 0

)
and Kt = (k(xi, xj))i,j≤t is the kernel matrix at

step t. A naive way to compute the value of KAAR at the input xt is by computing the inverse of matrix
Kt + τIt. This requires O

(
t3
)

iterations in round t and implies O
(
n4
)

cumulative time complexity over
n rounds. The letter can be improved by using the Cholesky decomposition and the rank-one update of
the kernel matrix. Namely, we use the approach as in Algorithm 1 (see Rudi et al. (2015)) for general
RKHS. More precisely, at time t we compute the Cholesky decomposition Rt−1R

>
t−1 = Kt + τI; next,

we denote the following quantities

bt := (k(xt, x1), . . . , k(xt, xt−1)) αt := K>
t−1bt + τbt

γt := a>t at + τk(xt, xt) gt :=
√
1 + γt,
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and ut = ( αt
1+gt

, gt),vt = ( αt
1+gt

,−1). Using this, we compute an update of Rt:

Rt :=

(
Rt−1 0
0 0

)
, Rt := CHOLUPDATE(Rt,ut,’+’), Rt := CHOLUPDATE(Rt,vt,’-’)

and calculate the solution’s coefficients ct = R−1
t

(
R>

t

)−1
Ktỹt. Notice that the procedure CHOLUP

(R, a, ” + ”) returns the upper triangular Cholesky factor of R + a>a, whereas CHOLUP (R, a, ” − ”)
returns the upper triangule update of R − a>a. At round t (t ≤ n) its computational cost is at most
O
(
t2
)
. Taking into the account that at the end we compute kernel matrix Kn = (k(xi, xj))i,j≤n for a

d−dimensional input xt, which adds dn2 to the total computational complexity we obtain, that the total
computational costs is of the order of O(n3 + n2d) operations. The latter complexity can be further

improved when β > d/(2
√
2− 2) (which implies β > d/2) to O(n

1+
2d/β

(1−(d/(2β))2) ) by using Nyström
projection (Jézéquel et al., 2019) while retaining the optimal regret. In particular, it converges to linear
runtime complexity when β → ∞. Jézéquel et al. (2019) also provides additional improvements to the
complexity if features xt are revealed to the learner beforehand.

As was mentioned before, most existing work in online nonparametric regression on Sobolev spaces (
in particular (Rakhlin and Sridharan, 2014; Vovk, 2006a,b, 2007)) does not provide efficient (i.e., polyno-
mial in time) algorithms. Work by Rakhlin and Sridharan (2014) provides an optimal minimax analysis;
however, they do not develop constructive procedures. More precisely, they require knowledge of the
(tight) upper bounds for the so-called relaxations. To obtain the latter ones, in general, one must com-
pute the offset Rademacher complexity, which is numerically infeasible. The approach of using EWA in
nonparametric setting (Vovk (2006a)) has non-optimal rates and suffers from prohibitive computational
complexity because it must update the weights of the experts in the ε−net. For Sobolev balls its size is of
order O(exp(n)) (given that the number of experts scales as (N(F)) with logN(F) being the metric en-
tropy of the class F, which is polynomial in the number of rounds) so that the total time complexity will
be O(expn+ nd) (where nd comes from the aggregation of observations xt ∈ X ⊂ Rd over n rounds).
The defensive forecasting approaches by (Vovk, 2006b, 2007) require the knowledge of the so-called
Banach feature map, which is typically inaccessible in the computational design of the algorithm.

To the best of our knowledge, the only algorithm that addresses the problem of computational cost
in online nonparametric regression is the Chaining EWA forecaster ( Gaillard and Gerchinovitz (2015)).
On class W β

∞(X) with β = r + α, α ∈ (0, 1], r ∈ N∗, the Chaining EWA forecaster can be efficiently
implemented through piecewise polynomial approximation —see Lemma 12 and Appendix C in Gaillard
and Gerchinovitz (2015). Its time and storage total complexities are of order:

Storage: O
(
n
2r+4+

β(r−1)+1
2β+1 log(n)

)
, Time: O

(
n
(r+1)(2+ β

2β+1
)
log(n)

)
.

Notice that storage complexity of KAAR is O
(
n2
)

and it is uniformly better for any β = r + α > 0
than of Chaining EWA. Furthermore, its time complexity is better for all β ≥ 1 (and worth for 0 <
β < 1) than that of the efficient implementation of the Chaining EWA. As was mentioned in Gaillard
and Gerchinovitz (2015), in most of the cases the direct implementation of the Chaining EWA forecaster
requires exp(dpoly(n)) time (due to the exponentially many updates of the expert’s coefficients).

3.6 Proof of the main results of Chapter 3

3.6.1 Approximation properties of the Sobolev spaces.

We recall thatW s(X) is a Sobolev RKHS, a space of continuous representatives from equivalence classes
of functions from the Sobolev space W s

2 (X) provided s > d
2 . The goal of this section is to control the

regret with respect to a ball in an arbitrary Sobolev space W β
p (X) with p ≥ 2 and β 6= s. To do so, we
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need to control the approximation error of f ∈ W β
p (X) by the elements from some subset G ⊂ W s

2 (X)
uniformly over f ∈W β

p (X). This can be achieved by considering the subset of the band limited functions
(see ex. Narcowich et al. (2004)), which is in W s

2 (X) for any s > 0. Namely, for σ ∈ R+ \ {0} we
define Bσ to be

Bσ := {f ∈ L2

(
Rd
)
∩ C∞

(
Rd
)
: supp(F(f)) ⊂ B(0, σ)}, (3.13)

where we denote F(f) for the Fourier transform of f and recall that B(0, σ) is an open ball in Rd with
radius σ.

The next result is the consequence of Proposition 3.7 in Narcowich and Ward (2004) (see also the
proof of Lemma 3.7 in Narcowich et al. (2004)). To be able to apply the aforementioned Proposition we
need to extend functions f : X 7→ R, f ∈ W s(X) to functions f̃ : Rd 7→ R such that f̃ ∈ W s

(
Rd
)
.

By Stein’s Extension Theorem (see Stein (1970), page. 181) because X is a bounded Lipschitz domain
there exists a linear operator C :W s(X) 7→W s

(
Rd
)

which is continuous ( i.e. since it is linear we have
‖Cf‖W s

2

(
Rd

) ≤ C̃‖f‖W s
2 (X)

). For this operator C, every f ∈ W s(X) and gσ ∈ Bσ by definition of the
norm inW s

2 (X) we have ‖f − gσ‖W s
2 (X)

≤ ‖Cf − gσ‖W s
2

(
Rd

). Applying Lemma 3.7 in Narcowich et al.

(2004) to Cf ∈ W s
(
Rd
)
, and using the argument as in the proof of Theorem 3.8 in Narcowich et al.

(2004) for gσ given by Lemma 3.7, we have

‖f − gσ‖W r
2

(
Rd

) ≤ cσr−s‖gσ‖W s
2

(
Rd

)
and

‖gσ‖W s
2 (X)

≤ ‖gσ‖W s
2

(
Rd

) ≤ c2‖Cf‖W s
2

(
Rd

) ≤ c3‖f‖W s
2 (X)

.

Thus we obtain the following statement.

Proposition 3.6.1. Let s ≥ r ≥ 0. For every f ∈ W s
2 (X), σ > 0 there exists a function gσ ∈ Bσ and

constants C0 and C1 which are independent of σ such that

‖f − gσ‖W r
2 (X)

≤ C0σ
r−s‖f‖W s

2 (X)
and ‖gσ‖W r

2 (X)
≤ C1σ

r−s‖f‖W s
2 (X)

.

We now state an upper-bound of ‖f‖W r
p (X)

when f belongs to the intermediate Sobolev spaces
W s1

p1 (X) and W s2
p2 (X) for some p1, p2, s1, s2. This result is a Gagliardo-Nirenberg–type inequality and

follows from the result originally stated in Theorem 1 in Brezis and Mironescu (2018).

Proposition 3.6.2 (Theorem 1, Brezis and Mironescu (2018)). Let X ⊆ Rd be a Lipschitz bounded
domain. Let 0 ≤ r, s1, s2 < ∞ and 1 ≤ p1, p2, p ≤ ∞ be real numbers such that there exists θ ∈ (0, 1)
with

r = θs1 + (1− θ)s2 and
1

p
=

θ

p1
+

1− θ

p2
.

Let A :=
{
(s1, s2, p1, p2) s.t. s2 ∈ N∗, p2 = 1, s2 − s1 ≤ 1 − 1

p1

}
. If (s1, s2, p1, p2) /∈ A, then

there exists a constant C > 0 which depends on s1, s2, p1, p2, θ and X such that

‖f‖W r
p (X)

≤ C‖f‖θW s1
p1

(X)‖f‖
1−θ
W

s2
p2

(X)
,

for all f ∈W s1
p1 (X) ∩W

s2
p2 (X).

In the next corollary we state two particular cases of Proposition 3.6.2 that will prove useful.

Corollary 3.6.3. For the domain X = [−1, 1]d and any ε > 0, all p ≥ 2 and β > d/p there exists a
constant C > 0 depending on p, d, ε and β such that

‖g‖
W

d
p+ε

p (X)
≤ C‖g‖

d
βp

+ ε
β

Wβ
p (X)

‖g‖
1− d

βp
− ε

β

Lp(X)
, (3.14)
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for all function g ∈W β
p (X). Furthermore, for all β > 0, p ≥ 2 and ε > 0, there exists a constant C > 0

depending on β, p, d, and ε such that

‖g‖
W

d
2+ε

2 (X)
≤ C‖g‖

d+2ε
βp

W
βp/2
2 (X)

‖g‖
1− d+2ε

βp

L2(X)
, (3.15)

for any function g ∈W β
2 (X).

Proof First, notice that X = [−1, 1]d is a Lipschitz bounded domain. The first inequality is obtained
by choosing p1 = p2 = p ≥ 1, r = d/p + ε, s1 = β, and s2 = 0 in Proposition 3.6.2; check-
ing that (s1, s2, p1, p2) /∈ A; and noting that for any β > 0 we have W β

2 (X) ∩ L2(X) = W β
2 (X).

The second inequality stems from the choice p = p1 = p2 = 2 (note that this is for the p in the
Proposition which is different from the p in the inequality), s2 = 0, s1 = βp

2 and noting the inclusion
W β

2 (X) ⊂W βp
2 (X) ⊆W

βp/2
2 (X) = L2(X) ∩W βp/2

2 (X) which holds true since p ≥ 2. �

3.6.2 Results from interpolation theory on Sobolev spaces

To provide a sharp upper bound on the effective dimension (Proposition 3.3.1), we also need the follow-
ing general interpolation result on Sobolev spaces (stated in Theorem 3.8 in Narcowich et al. (2004)).
Recall (see Wendlandt (2005), p.172 ) that the fill distance of a set of points Z ⊂ X is defined as
hZ,X := supx∈X infz∈Z‖x− z‖2.

Proposition 3.6.4 (Theorem 3.8 in Narcowich et al. (2004)). Suppose Φ : Rd → R to be a positive
definite function such that its Fourier transform F(Φ) satisfies

c1
(
1 + ‖ω‖22

)−q ≤ F(Φ)(ω) ≤ c2
(
1 + ‖ω‖22

)−q (3.16)

where q ≥ s ≥ r ≥ 0 and c1, c2 are some constants. Assume that X ⊂ Rd is bounded domain,
has Lipschitz boundary and satisfies the interior cone condition (see Chapter 4 in Adams and Fournier
(2003)) with parameters (ϕ,R0). Let k = bqc and Z ⊂ X be such that its mesh norm h := hZ,X satisfies

hZ,X ≤ k−2Q(ϕ)R0, where Q(ϕ) :=
sin(ϕ) sin(θ)

8(1 + sin(θ))(1 + sin(ϕ))
(3.17)

and θ = 2arcsin
(
sin(ϕ)/(4(1 + sinϕ))

)
. If f ∈W s

2 (X) then there exists a function v ∈ span{Φ(· − xj), xj ∈
Z} such that for every real 0 ≤ r ≤ s

‖f − v‖W r
2 (X)

≤ Chs−r
Z,X ‖f‖W s

2 (X)
, (3.18)

where C is some constant independent of hZ,X and f .

Let us now instantiate the above Proposition to the specific cases we are interested in by choosing
X,Φ,Z, and r. Let T ∈ N be fixed; set X := [−1, 1]d, Φ being the feature map of Sobolev RKHS
W s
(
Rd
)
. In this case (see 3.1 in Narcowich et al. (2004)) Φ satisfies decay rate from Equation (3.16)

with q = s. Choose Z to be the set of points of size T such that hZ,X . T− 1
d (the latter means that

there exists constant C > 0 such that hZ,X ≤ CT− 1
d ). To control when then condition 3.17 is fulfilled,

we first notice that X is star-shaped (see Definition 11.25 in Wendlandt (2005), also Proposition 2.1 of
Narcowich et al. (2004) ); it includes `2 ball centered at origin with radius r = 1 and can be included
in the `2 ball centered at 0 of radius 2

√
d. Thus, by Proposition 2.1 in Narcowich et al. (2004), we

obtain that X satisfies interior cone condition with the radius R0 = 1 and angle ϕ = 2arcsin 1
2
√
d

. A
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straightforward calculation shows that in this case

Q(ϕ) = Q(u(ϕ)) =
u

8

(
1− 8

8 + u
√
16− u2

)
=
(u
8

)2 √
16− u2

1 + u
8

√
16− u2

,

where u := sinϕ
1+sinϕ =

√
4d−1

2d+
√
4d−1

. Notice that in this case we have that 1
8
√
d
≤ u ≤ 1

2
√
d

. We can easily
check this by simple inequalities:

u =

√
4d− 1

2d+
√
4d− 1

≥ 4d− 1

4d
≥ 1

8
√
d
,

and from the other side

u ≤ 4d− 1√
4d− 1

=
1√

4d− 1
≤ 1

2
√
d
.

From these conditions we deduce Q(u) ≥ 1
212d

. Because hZ,X = supx∈X infz∈Z‖x− z‖2 . T− 1
d , to

satisfy condition (3.17) we need to have T ≥
(

k2

Q(u)

)d
where we take k = bsc and R0 = 1. Notice that

the choice T ≥
(
4096s2d

)d ensures the last condition, therefore in order to satisfy condition (3.17) the

size T of the grid Z should be of order
(
s2d
)d. Recall (see Wendlandt (2005)) that the kernel k(·) of the

Sobolev space W s
(
Rd
)

can be represented by means of Bessel functions of second kind as:

k(x1, x2) =
21−s

Γ(s)
‖x1 − x2‖

s− d
2

2 K d
2
−s(‖x1 − x2‖2) (3.19)

Notice that by Corollary 10.13 in Wendlandt (2005) the norm ‖·‖W s
(
Rd

) is equivalent to ‖·‖W s
2

(
Rd

). By
Theorem 7.13 in Schaback (2007) (see also Corollary 10.48 on p. 170 in Wendlandt (2005) ) a restriction
of RKHS W s

(
Rd
)

to the domain X := [−1, 1]d is itself a RKHS W s(X) such that it is continuously
embedded into W s

2 (X) and its kernel k1 is a restriction of kernel k to the space X. Thus, we can always
consider W s(X) as a RKHS with reproducing kernel k1(·) obtained by the restriction of the kernel k(·)
given by (3.19) to the domain X. Notice that it can be written as k1(x1, x2) = Φ1(x1 − x2) and since
Φ(·) satisfies Assumption 3.16 so also Φ1(·).

Then, applying Proposition 3.6.4 twice, with r = 0 and r = s and the above choices of X, Φ and Z

entails the following corollary.

Corollary 3.6.5. Let X := [−1, 1]d, s > d/2 and Z ⊂ XT be a set of points such that fill distance
hZ,X . T− 1

d , T ≥ T0, T0 =
(
4096s2d

)d. Then, for any f ∈W s(X), there exists f̂ ∈ span{k(x, ·), x ∈
Z}, such that ∥∥f − f̂

∥∥
L2(X)

≤ C1T
− s

d ‖f‖W s
2 (X)

,
∥∥f − f̂

∥∥
W s

2 (X)
≤ C2‖f‖W s

2 (X)
,

and f̂(x) = f(x) for any x ∈ Z, where the constants C1 and C2 depend on d and s but are independent
of the set Z and function f .

The latter proposition together with Gagliardo-Nierenberg inequality yield the following approxima-
tion result of functions f ∈W s(X) by low ranked projections Pf .

Lemma 3.6.6 (Projection approximation). Let X := [−1, 1]d, s > d/2, T > T0, T0 is given as in
Lemma 3.6.5 and Z ⊂ XT be a set of points T points {x1, . . . , xT } such that the fill distance hZ,X . T− 1

d

and PZ : W s(X) → W s(X) be the orthogonal projection on span{kx : x ∈ Z}. Then, for any
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f ∈W s(X) and for any ε > 0

‖f − PZf‖L∞(X) = sup
x∈X

|f(x)− (PZf)(x)| ≤ CT− s−ε
d

+ 1
2 ‖f‖W s(X), (3.20)

where C is a constant independent of f and T . Furthermore, if s ∈ N∗ then Equation (3.20) holds with
ε = 0.

Proof Let f ∈W s(X) and ε > 0. The first inequality follows from inclusion f−PZf ∈W s(X) ⊂ C(X)
when s > d

2 . Define

f̂Z := ArgMin
g∈span{kx,x∈Z}

‖f − g‖2W s(X). (3.21)

Because W s(X) is a Hilbert space, f̂Z = PZf ∈W s(X). Furthermore, through reproducing property in
RKHS W s(X) and from the definition of an orthogonal projector, we have for any x ∈ Z that PZf(x) =
〈PZf, kx〉 = 〈f, PZkx〉 = 〈f, kx〉 = f(x). By using the Sobolev embedding Theorem between the
spaces W d/2+ε

2 (X) and L∞(X) (Equation (9) on page 60 in Edmunds and Triebel (1996), applied with
s1 = d/2 + ε, s2 = 0, n = d, p1 = 2, and p2 = ∞), and by using Gagliardo-Nierenberg Inequality
(3.14), we get

‖f − PZf‖L∞(X) ≤ C1‖f − PZf‖
W

d
2+ε

2 (X)

≤ C2‖f − PZf‖
d
2s

+ ε
s

W s
2 (X)

‖f − PZf‖
1− d

2s
− ε

s

L2(X)

≤ C3

(
‖f − PZf‖W s

2 (X)

) d/2+ε
s T− s

d
+ 1

2
+ ε

d ‖f‖1−
d
2s

− ε
s

W s
2 (X)

≤ C4T
− s

d
+ 1

2
+ ε

d ‖f‖W s
2 (X)

where the constants C1, C2, C3, and C4 are independent of f and T . Finally in the specific case s ∈ N
we directly apply Corollary 11.33 from Wendlandt (2005) with m = 0, τ = s, q = ∞ to f − PZf and
obtain directly bound (3.20) with ε = 0. �

3.6.3 Effective dimension upper-bound for the Sobolev RKHS

Recall that the effective dimension of Hk based on the data sample D can be rewritten as

dneff (τ) = Tr (Tn + τI)−1Tn = Tr (Kn + τI)−1Kn,

where Tn =
∑n

s=1 kxi ⊗ kxi - (empirical) covariance operator and Kn is the kernel matrix.
Below we provide some auxiliary results that control the tail of the trace of the kernel integral opera-

tor. These results are provided in Lemmata 2 and 3 by Pagliana et al. (2020) and are just formulated here
for narrative completeness.

Lemma 3.6.7. Let Hk be some RKHS over domain X ⊆ Rd with continuous reproducing kernel k :
X× X → R. Let A : Hk → Hk be a bounded linear operator and A∗ be its adjoint. Then

sup
x∈X

‖Akx‖2Hk
≤ sup

‖f‖Hk
≤1
‖A∗f‖2L∞(X) .

Lemma 3.6.8. Let Hk be some RKHS over domain X ⊆ Rd with reproducing kernel k : X × X → R
and µ be any σ−finite measure on X. Let ` ∈ N+ and P : Hk 7→ Hk be a projection operator with rank
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less than or equal to ` ∈ N+. Then∑
t>`

λt(L) ≤
∫
X

‖(I − P )kx‖2Hk
dµ(x) ≤ sup

x∈X
‖(I − P )kx‖2Hk

,

where L : L2(X, µ) 7→ L2(X, µ) is the kernel integral operator as defined in Equation (??) and λt(L)
are its t-th eigenvalues.

We are now ready to prove our upper bound of the effective dimension. Notice that it can be also
recovered from a more general result of Lemma 4 in Pagliana et al. (2020) when taking scale γ = n

1
2s−d

therein. We provide the explicit proof for completeness.
Proof of Theorem 3.3.1. Let s > d/2, t ≥ T0. By Lemma 3.6.6 for the orthogonal projector P on the
set of t points Z = {x1, . . . , xt} ∈ Xt such that fill distance hZ,X . t−

1
d for any ε

′ ∈ R+ holds

sup
‖f‖Ws(X)≤1

‖f − Pf‖L∞(X) ≤ Ct−
s′
d
+ 1

2 ,

where s′ = s − ε′ and C is a constant that depends on X, d, s, ε, but not on t. Applying Lemma 3.6.7
with A = I − P we obtain:

sup
x∈X

‖(I − P )kx‖Hk
≤ Ct−

s′
d
+ 1

2 .

Let {xi}ni≥1 be the sequence of inputs in X. Then, with the choice µ := (1/n)
∑n

i=1 δxi , the kernel
integral operator L equals Kn/n; combining Lemma 3.6.8 with the last inequality yields

∑
`>t

λt
(
Kn/n

)
≤ 1

n

n∑
i=1

∥∥(I − P )kxi

∥∥2
Hk

≤ sup
x∈X

∥∥(I − P )kx
∥∥2
Hk

≤ Ct−
2s′
d

+1 . (3.22)

From the definition of the effective dimension (see Def. 3.2.1), we have the following upper bound

dneff (τ) :=

n∑
j=1

λj(Kn)

λj(Kn) + τ
≤

t∑
j=1

λj(Kn)

λj(Kn) + τ
+ τ−1

∑
j≥t

λj(Kn) , (3.23)

where we used that given that Kn is positive semi-definite, λj(Kn) ≥ 0 for all j ≥ 1. Furthermore,
λj(Kn)/(λj(Kn) + τ) ≤ 1 for all j ≥ 1, which implies

t∑
j=1

λj(Kn)

λj(Kn) + τ
≤ t .

By homogeneity of the eigenvalues we have λj(Kn) = nλj(Kn/n), and therefore

τ−1
∑
j≥t

λj(Kn) = nτ−1
∑
j≥t

λj(Kn/n).

Combining the last two inequalities with Inequalities (3.22) and (3.23), we upper-bound the effective
dimension as

dneff (τ) ≤ t+ Cnτ−1t−2s′/d+1.

Choosing t to balance the terms in the above equation (i.e. t = n
d

2s′ τ−
d

2s′ ), we get

dneff (τ) ≤ C1

(n
τ

) d
2s′

= C1

(n
τ

) d
2
(
s−ε′

)
.
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Then, assuming ε′ < s/2, and using 1/(1− x) ≤ 1 + 2x for 0 ≤ x ≤ 1/2, we have

dneff (τ) ≤ C1

(n
τ

) d
2s

1

1− ε′
s ≤ C1

(n
τ

) d
2s

(1+ 2ε′
s
)
= C1

(n
τ

) d
2s

+ d
s2

ε′

≤ C1

(n
τ

) d
2s

+ 2ε′
s
.

For any ε ∈ (0, 1), the choice ε′ = εs/2 concludes the proof in the case s ∈ R.

Finally, to satisfy condition t ≥ T0 it is sufficient to have n, τ such that n
τ ≥ CT

2s
′

d
0 . The latter can

be alleviated by additional additive constant in the final bound and is achievable as (when τn is chosen as
function of n) by an appropriate choice of τ , n

τ is increasing in n. The result for s ∈ R+ follows. Lastly,
the result implies also the particular case with s ∈ N by taking ε = 0. �

3.6.4 Proof of Theorem 3.3.2

Proof Recall that KAAR, when competing against some function f in an arbitrary RKHS Hk with a
bounded reproducing kernel, attains the general regret upper bound as given in Equation (3.11). Plugging
in the bound on the effective dimension of Theorem 3.3.1 with Hk = W s(X) into the regret upper
bound (3.11) gives

Rn(F) ≤ τ‖f‖2Hk
+M2C1

(
1 + log

(
1 +

nκ2

τ

))(
C̃
(
nτ−1

) d
2s

+ε
+ 1
)
, (3.24)

for any ε > 0. Balancing the first and second terms to minimize the right–hand size (by choosing an
appropriate value of τ ), (i.e. by setting τ := n

d
2s+d ), it yields

Rn(F) ≤ Cn
d

2s+d
+ε log(n),

where a constant C depends only on d, s,R,M and X and does not depend on n. �

3.6.5 Proof of Theorem 3.3.4

We start by introducing a general lemma for the regret of KAAR when competing against continous
function and then proceed with the proof of the main theorem.

Lemma 3.6.9. Let f ∈ C(X) and g ∈ Hk. Assume that (xi)
n
i=1 ∈ Xn and yi ∈ [−M,M ], for some

M > 0. Then the regret of algorithm (3.10) when competing against function f is bounded by

Rn(f) ≤ τ‖g‖2Hk
+M2

(
1 + log

(
1 +

n‖k‖2∞
τ

))
dneff (τ) + 2n‖f − g‖L∞(X)

(
M + ‖g‖L∞(X)

)
Proof Let ε ∈ (0, 1) and let g ∈ Hk be some function which is to be chosen later. Denote by v the
vector v = (f(x1), . . . , f(xn)) ∈ Rn and w = Sng = (g(x1), . . . , g(xn)) ∈ Rn. We can decompose
the regret in the following way:

Rn(f) =
∥∥Yn − Ŷn

∥∥2 − ‖Yn − v‖2

=
∥∥Yn − Ŷn

∥∥2 − ‖Yn − w‖2 − ‖v − w‖2 + 2〈Yn − w, v − w〉

≤
∥∥Yn − Ŷn

∥∥
2
− ‖Yn − w‖2 + 2〈Yn − w, v − w〉

= Rn(g) + 2〈Yn − w, v − w〉.

(3.25)
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Applying the regret upper bound (3.11) to the element g we get:

Rn(g) ≤ τ‖g‖2Hk
+M2

(
1 + log

(
1 +

n‖k‖2∞
τ

))
dneff (τ),

where we recall that dneff (τ) is the effective dimension of the RKHS Hk with respect to the sample
D ⊂ Xn. For the second term on the right–hand side in Inequality (3.25) we have:

〈Yn − w, v − w〉 ≤
n∑

t=1

|(yt − g(xt))(f(xt)− g(xt))|

≤
n∑

t=1

(|yt|+ |g(xt)|)|f(xt)− g(xt)|

≤ n‖f − g‖L∞(X)

(
M + ‖g‖L∞(X)

)
(3.26)

Putting together the aforementioned bounds, we obtain our final result. �
Proof of Theorem 3.3.4. Let σ > 0 be some fixed bandwidth. By Proposition 3.6.1 for any function
f ∈W β

p (X) ⊂W β
2 (X), p ≥ 2 and σ > 0 there exists fσ ∈ Bσ such that for 0 ≤ r ≤ β we have:

‖f − fσ‖L2(X)
≤ C1σ

−β‖f‖
Wβ

2 (X)
, ‖fσ‖W r

2 (X)
≤ C2σ

(r−β)‖f‖
Wβ

2 (X)
. (3.27)

Because f ∈ W β
p (X) and p ≥ 2, so the inclusion implies that we have ‖f‖

Wβ
2 (X)

≤ C‖f‖
Wβ

p (X)
with

some constant C. Let ε1 > 0 be any positive number. Applying the Sobolev embedding Theorem
(see Equation (9) on page 60 in Edmunds and Triebel (1996) with s1 = d/2 + ε1, s2 = 0, n = d,
p1 = 2, and p2 = ∞), Proposition 3.6.2 for a function f − fσ ∈ W β

p (X) and the fact that for p ≥ 2

W β
p (X) ⊂W

βp/2
2 (X),W β

p (X) ⊂W β
2 (X), we get

‖f − fσ‖L∞(X) ≤ C1‖f − fσ‖
W

d
2+ε1
2 (X)

≤ C2‖f − fσ‖
d+2ε1

βp

W
βp/2
2 (X)

‖f − fσ‖
1− d+2ε1

βp

L2(X)

≤ C4‖f − fσ‖
d+2ε1

βp

W
βp/2
2 (X)

(
σ−β‖f‖

Wβ
2 (X)

)1− d+2ε1
βp

≤ C5‖f − fσ‖
d+2ε1

βp

Wβ
p (X)

σ
−β+ d

p
+

2ε1
p ‖f‖

1− d+2ε1
βp

Wβ
p (X)

,

(3.28)

with a constant C5, which does not depend on f, fσ or σ. Because fσ satisfies (3.27), we obtain for any
r ∈ R+, r ≥ β:

‖fσ‖W r
2 (X)

≤ C̃1σ
(r−β)‖f‖

Wβ
2 (X)

≤ C̃2σ
(r−β)‖f‖

Wβ
p (X)

, (3.29)

where we obtain the second inequality by inclusion of the Sobolev spaces (W β
p (X) ⊂ W β

2 (X)) and the
constant C̃2 depends only on X, d, β but not σ. Notice that by the triangle inequality and (3.29) with
r = β we have

‖f − fσ‖Wβ
p (X)

≤ ‖f‖
Wβ

p (X)
+ ‖fσ‖Wβ

p (X)
≤
(
1 + C̃

1
p

)
‖f‖

Wβ
p (X)

. (3.30)
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Thus, plugging (3.30) in the Equation (3.28), we deduce:

‖f − fσ‖L∞(X) ≤ C5σ
−β+ d

p
+ε1‖f‖

Wβ
p (X)

. (3.31)

Note also that by using (3.29) with r = s ≥ β we have:

‖fσ‖W s
2 (X)

≤ C2σ
(s−β)‖f‖

Wβ
2 (X)

≤ C3σ
(s−β)‖f‖

Wβ
p (X)

, (3.32)

where the last inequality holds because W β
p (X) ⊂ W β

2 (X). Notice that fσ, as in Proposition (3.6.1), is
of limited bandwidth and is continuous on X; therefore, ‖fσ‖L∞(X) = ‖fσ‖C(X). Now, f ∈W β

p (X) and
β > d

p , so by the Sobolev Embedding Theorem f ∈ C(X); for the fσ chosen as in Proposition (3.6.1),
we have

‖fσ‖L∞(X) ≤ ‖fσ‖Wβ
p (X)

≤ C̃1/p‖f‖
Wβ

p (X)
,

where the last step is true due to (3.29).
Thus, from Lemma 3.6.9 with g = fσ ∈ C(X), Hk = W s(X), we have for the regret of any

f ∈W β
p (X) it holds that:

Rn(f) ≤ τ‖fσ‖2W s
2 (X)

+M2 log

(
e+

en‖k‖2∞
τ

)
dneff (τ)

+ 2n‖f − fσ‖L∞(X)

(
M + ‖fσ‖L∞(X)

)
.

(3.33)

Denote ε = σ−1, s
′
= s− ε1,β

′
= β − ε1, and plugging (3.31), (3.32), and the bound for dneff (τ) from

Theorem 3.3.1 into (3.33) while noticing that s
′ − β

′
= s− β, we obtain for any f :

Rn(f) ≤ C̃1 τε
−2

(
s
′−β

′)
‖f‖2

Wβ
p (X)

+ C̃2M
2
(
1 + log

(
1 +

n‖k‖2∞
τ

))
n

d

2s
′ τ

− d

2s
′

+ C̃3nε
β
′−d/p‖f‖

Wβ
p

(
X
)(M + ‖f‖

Wβ
p (X)

)
where s

′
= s− ε1,β

′
= β − ε1 and C̃1, C̃2, C̃3 are constants depend on d, β, s, d, but not n,M, τ, ε and

f . By setting

ε = n
− 2s

′

2s
′
(β

′
+d−d/p)−d(β

′
+d/p) , τ = nε2s

′−β
′−d/p = n

1− 2s
′
(2s

′
−β

′
−d/p)

2s
′
(β

′
+d−d/p)−d(β

′
+d/p)

and noticing that with such choice of τ, ε for any f ∈ F we have Rn(f) ≤ Cτε−2
(
s
′−β

′)
= nε

β
′− d

p we
obtain for any f ∈ F := {f ∈W β

p (X) : ‖f‖Wβ
p (X)

≤ R}

Rn(F) = sup
f∈F

Rn(f) ≤ Cn
1− 2s

′
(β

′
−d/p)

2s
′
(β

′
+d−d/p)−d(β

′
+d/p) = Cn

1− β
′
p−d(

β
′
p+d

)(
1− d

2s
′

)
+d(p−2)

,

where C depends on d, β, s, d,R,M,X, but not n. Now, to obtain the final claim, we choose s = d
2 +ε1,

thus s
′
= d

2 , and we have: 1− β
′
p−d(

β′p+d
)(

1− d

2s
′

)
+d(p−2)

= 1− β
d

p− d
β

p−2 + ε1p
d(p−2) , from which the final claim

follows. �
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3.6.6 Proof of the Theorem 3.4.1

To prove the lower bounds, we use the notion of the sequential fat-shattering dimension (see Definition 12
in Rakhlin and Sridharan (2014)). Recall (see Rakhlin et al. (2014)) that a Z-valued tree z of depth n is a
complete rooted binary tree with nodes labeled by the elements of the set Z. More rigorously, z is a set of
labeling functions (z1, . . . , zn) such that zt : {−1, 1}t−1 7→ Z for every t ≤ n . For any ε ∈ {−1, 1}n,
we denote {zt(ε) := zt(ε1, . . . , εt−1)} to be the label of the node at the level t, which is obtained by
following the path ε.

Definition 3.6.10 (Fat-shattering dimension, see Definition 7 in Rakhlin et al. (2014) ). Let γ > 0. An
X-valued tree x of depth d is said to be γ-shattered by F = {f : X 7→ R} if there exists an R−valued
tree s of depth d such that

∀ε ∈ {−1, 1}d, ∃f ε ∈ F, s.t. εt(f
ε(xt(ε))− st(ε)) ≥

γ

2
,

for all t ∈ {1, . . . , d}. The tree s is called a witness. The largest d such that there exists a γ-shattered
tree x is called the (sequential) fat-shattering dimension of F and is denoted by fatγ(F).

If the last inequality becomes equality, we say that the tree x is exactly shattered by the elements of F
or (alternatively) that class F exactly shatters the tree x. We recall also the notion of sequential covering
numbers and the sequential entropy of class F.

Definition 3.6.11. A set V of R−valued trees of depth n forms a γ− cover (with respect to the `q norm,
1 ≤ q <∞) of a function class F ⊂ RX on a given X−valued tree x of depth d if

∀f ∈ F,∀ε ∈ {±1}d, ∃v ∈ V, s.t.

(
1

n

d∑
t=1

|f(xt(ε))− vt(ε)|q
)1/q

≤ γ.

In the case q = ∞, we have that |f(xt(ε))− vt(ε)| ≤ γ for all t ∈ {1, . . . , d}. The size of the smallest γ-
cover of a tree x is denoted by Nq(γ,F,x); and Nq(γ,F, d) = supxN(γ,F,x) where the last supremum
is taken over all trees of depth d. Finally, the sequential entropy of class F is supx logNq(γ,F,x).

To derive the main results of Theorem 3.4.1, we use the following consequences of Lemmata 14,15
in Section 5, Rakhlin and Sridharan (2014).

Lemma 3.6.12 (Variant of Lemma 14 in Rakhlin and Sridharan (2014)). Let n ∈ N∗, Y = [−M,M ]
and F ⊆

{
f : X → [−M/4,M/4]

}
for some M > 0. If γ > 0 such that n ≤ fatγ(F) then

R̃n(F) ≥
M

4
nγ.

Proof Since, γ > 0 such that n ≤ fatγ(F), by definition of the fat-shattering dimension there exists
an X−valued tree x of depth n (and a witness of shattering µ), which is shattered by the elements of F.
Further proof follows the same lines as in the original argument of Lemma 14 of Rakhlin and Sridharan
(2014) with the tree x, witness of shattering µ, β := γ and functions (as well as witness of shattering
bounded in [−M

4 ,
M
4 ] instead of [−1, 1]) therein. �

Lemma 3.6.13 (Variant of Lemma 15 in Rakhlin and Sridharan (2014)). Let n ∈ N∗, γ > 0, and F′ be
a class of functions from X to [−M/4,M/4] which exactly γ-shatters some tree x of depth fatγ(F

′) < n.
Then the minimax regret with respect to F′ is lower-bounded as

R̃n

(
F′) ≥ M

4
C
(
2
√
2γ
√
nfatγ(F′)− nγ2

)
. (3.34)
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Proof The lemma is proved in the same way as Lemma 15 in Rakhlin and Sridharan (2014), by noting
that since F′ exactly shatters x, we can consider F = F′ in the original proof. The argument follows then
the same lines by noticing that the target functional class is a subset of {f : X 7→ [−M

4 ,
M
4 ]} (instead of

{f : X 7→ [−1, 1]} as in the original argument). �
To prove the lower bounds, we provide a tight control of fatγ(F) (in terms of the scale γ, while

constants may depend on the range Y,d,β) for F being the bounded ball in Sobolev space W β
p (X).

We recall the notion of sequential Rademacher complexity (see Rakhlin and Sridharan (2014)):

Rn(F) = sup
x

Eε

[
n−1 sup

f∈F

n∑
t=1

εtf(xt(ε))

]
,

where Eε[·] denotes the expectation under the product measure P = (12δ−1 +
1
2δ1)

⊗n, the supremum is
over all X− valued trees of depth n. Firstly we provide an auxiliary Lemma which provides an upper
bound of the fat-shattering dimension of the Sobolev ball B

Wβ
p (X)

(0, 1).

Lemma 3.6.14. Let n ∈ N, n ≥ 1, M > 0 an let F := B
Wβ

p (X)
(0,M/4), p ≥ 2. For the fat-shattering

dimension fatγ(F) on the scale γ > 0 when β 6= d
2 it holds

fatγ(F) ≤ max{C̃1γ
−
(

d
β
∨2

)
, 1},

where C1 is some constant which depends on β, d,M but not on γ. In the case β
d = 1/2 we have

fatγ(F) ≤ max{C̃2

(
γ

log(γ)

)−2

, 1},

where C2 is some constant which depends on β, d,M . but not on γ.

Proof of Lemma 3.6.14 Following from Definition (3.6.10), if x of depth n is γ−shattered by the
elements of F, then n ≤ fatγ(F). For an arbitrary functional class F from the definition of the fat-
shattering dimension for any γ > 0 such that fatγ(F) > n we have that Rn(F) ≥ γ

2 (one read-
ily checks this by considering Rademacher complexity over the set of n shattered points). Therefore,
Rn(F) ≥ sup{γ

2 : fatγ(F) > n}, which is equivalent to fatγ(F) ≤ min{n : Rn(F) ≤ γ
2}. By Propo-

sition 1 and Definition 3 in Rakhlin et al. (2014) for all c ∈ R, we have Rn(cF) = |c|Rn(F), where
cF = {cf : f ∈ F}. Taking c = 4

M , we have for F
′
= B

Wβ
∞(X)

(0, M4 ) that Rn

(
F

′)
= M

4 Rn

(
F
)
,

where F = B
Wβ

∞(X)
(0, 1). From the definition of ‖·‖

Wβ
∞(X)

, it follows that if f ∈ B
Wβ

∞(X)
(0, 1),

then maxx∈X |f(x)| ≤ 1. By Theorem 3 in Rakhlin et al. (2014) we have for any functional class
F ⊂ [−1, 1]X

Rn

(
F
)
≤ sup

x
inf

ρ∈(0,1]

(
4ρ+

12√
n

∫ 1

ρ

√
log2N2(δ,F,x)dδ

)
. (3.35)

It is straightforward to check that for any tree z it holds that

N2(γ,F, z) ≤ N∞(γ,F, z). (3.36)

Furthermore, if N∞(F, γ) is a metric entropy of class F on scale γ > 0, then it is easy to check that
for any tree z of depth d ≥ 1 and any scale γ > 0, N∞(γ,F, z) ≤ N∞(γ,F). Indeed, this follows
trivially by taking for any tree z witness v(·) = g(z(·)), where g(·) is the element of γ−net such that
‖f − g‖∞ ≤ γ. Furthermore, for F = B

Wβ
p (X)

(0, 1), β > d/p the metric entropy of F on the scale

δ is (up to some constant C which does not depend on δ) upper bounded by δ−
d
β . The latter bound is
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a well-known result and it can be deduced from the general result for Besov spaces stated in Theorem
3.5 in Edmunds and Triebel (1996) (see also Equation (38) on page 19 in Vovk (2006b)). Thus, using
Equations (3.35) and (3.36), the fact that metric entropy uniformly bounds sequential entropy, properties
of Rademacher complexity (see Lemma 3 in Rakhlin et al. (2015)) and the upper bound on the metric
entropy of the Sobolev ball F = B

Wβ
∞(X)

(0,M/4), we get

Rn(F) =
M

4
Rn

(
4

M
B

Wβ
∞

(
0,
M

4

))
≤ M

4
Rn

(
B

Wβ
∞(X)

(0, 1)
)

≤ M

4
inf

ρ∈(0,1]

(
4ρ+

12C√
n

∫ 1

ρ
δ
− d

2β dδ

)
≤ C1 inf

ρ∈(0,1]

(
4ρ+

12√
n

∫ 1

ρ
δ
− d

2β dδ

)
,

(3.37)

where we use C1 = M
4 max{1, C} for completeness. Notice that if β > d

2 , then integral
∫ 1
0 t

− d
2β dt is

finite, thus in this case in (3.37) we can take ρ = 0, which implies Rn(F) ≤ 12C1√
n

1
1− d

2β

. When β < d
2 ,

then the choice ρ = ρmin = (9n−1)
β
d leads to the bound Rn(F) ≤ 12C1n

−β
d

1

1− 2β
d

. Finally, in the case

when β = d
2 with the choice ρ = 3√

n
, one gets Rn(F) ≤ 6C1 ln(n)√

n
.

Thus we obtain

Rn

(
F
)
≤ 12C1Kn

−
(

β
d
∧ 1

2

)
, (3.38)

where in Equation (3.38) K = 1

1−( 2β
d
∧ d

2β
)

if β 6= d
2 otherwise K = ln(n)

2 . If β
d 6= 1

2 then we have

fatγ(G) ≤ fatγ(F) ≤ min{n : Rn(F) ≤
γ

2
}

≤ min

{
n : 12C1Kn

−
(

β
d
∧ 1

2

)
≤ γ

2

}

≤ d
(

γ

24C1K

)−
(

d
β
∨2

)
e

≤ max{C2γ
−
(

d
β
∨2

)
, 1}.

with C2 = 2 · (24C1K)
d
β
∨2. In the case, when β

d = 1
2 we have that by any n ≥ d

(
γ/24C1

log(γ/24C1)

)−2
e

ensures that 6C1 ln(n)√
n

≤ γ
2 , from which we deduce fatγ(G) ≤ max{C2

(
γ

log(γ)

)−2
, 1}. �

To derive the first statement of Theorem 3.4.1 we construct a class G ⊂ B
Wβ

p (X)
(0,M) which satisfies

Lemmata 3.6.12 and 3.6.13 and deduce the final bound for the minimax regret R̃n

(
B

Wβ
p (X)

(0,M)
)

by
inclusion argument.

Class construction. We provide a class construction, taking inspiration from the nonparametric re-
gression in the statistical learning scenario (see, for example, Theorem 3.2 in Ǵyörfi (2002)). Recall that
X = [−1, 1]d; for a given n ∈ N denote b := n−

1
d . Consider the following set of half–open intervals

A = {A` = [−1 + `b,−1 + (`+ 1)b), 0 ≤ ` ≤ b2n1/dc − 1},

and let P = Ad be its d−th power. Let I := {0, . . . , b2n
1
d c − 1}d, N = |I| = b2n

1
d cd and π : I 7→

{1, . . . , N} be a function which maps an element k ∈ I to its index in the lexicographic order among the
elements in I . Because lexicographic order is a total order, we have that π(·) is a bijection. For each k ∈
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I := {0, . . . , b2n
1
d c−1}d such that π(k) = j, we denote Bj =

∏d
i=1[−1+kib,−1+(ki+1)b). Notice

that ∪N
j=1Bj ⊂ X and for i 6= j obviouslyBi∩Bj = ∅. For a cubeBt, t ∈ {1, . . . , N} we denote at ∈ Rd

to be its center. One can show explicitly that at =
(
b
(
1
2 +

(
π−1(t)

)
1

)
− 1, . . . , b

(
1
2 +

(
π−1(t)

)
d

)
− 1
)
.

Consider the following set of functions:

Fβ,d,n =

{
f : f(x) =

Mn−
β
d

4‖g‖
Wβ

∞(X)

N∑
t=1

ctgn,t(x), cj ∈ {−1, 1}
}
, (3.39)

where gn,t(x) = g
(
n

1
d (x− at)

)
, and g such that g(x) = 1

2

(
1− σ(

‖x‖22−a2

c2−a2
)
)

, c = 1
2 , a = 1

4 and

σ(t) = h(t)
h(t)+h(1−t) , h(t) = e−1/t2It>0 for t ∈ R, x ∈ Rd. We need the following Lemma, which shows

that the functional class Fβ,d,n defined by Equation (3.39) is included in the ball of the space W β
∞(X).

Lemma 3.6.15. Let β > 0, d ≥ 1, n ∈ N; consider N := b2n
1
d cd and the class Fβ,d,n, as defined in

(3.39). It holds that

Fβ,d,n ⊂ BL∞(X)

(
0,
M

4

)
.

Moreover, a stronger inclusion holds, namely, that

Fβ,d,n ⊂ B
Wβ

∞(X)

(
0,
M

4

)
.

Proof First, notice that g(0) = 1
2

(
1 − σ(− a2

c2−a2
)
)
. Because t0 := − a2

c2−a2
< 0, h(t0) = 0 and

consequently σ(t0) = 0 from which we have g(0) = 1
2(1 − σ(t0)) = 1

2 . For a cube Bj , if x /∈ Bj ,

then we have gn,j(x) = 0. Indeed, as x /∈ Bj , for aj center of Bj holds maxi≤d

∣∣∣x(i) − a
(i)
j

∣∣∣ ≥ n− 1
d

2 .

Therefore, because
∥∥n 1

d

(
x(i) − a

(i)
j

)∥∥
2
≥ n

1
d maxi≤d|x− aj | ≥ 1

2 and because g(·), as constructed

above is a mollifier from Rd to R with non-zero support on BRd(0, 1/2) (see paragraph 13 in Loring
(2011)), we have gn,j(x) = g

(
n

1
d (x− aj)

)
= 0. From the definition of the norm in the functional class

W β
∞(X), it follows that for any x ∈ X we have |g(x)| ≤ ‖g‖L∞(X) ≤ ‖g‖

Wβ
∞(X)

. Furthermore, for any

element f ∈ Fβ,d,n, for any x ∈ X \ ∪N
k=1Bk we have f(x) = 0. If x ∈ ∪N

k=1Bk, then there exists some
cube Bj with x ∈ Bj . Thus we get

|f(x)| =

∣∣∣∣∣ Mn−
β
d

4‖g‖
Wβ

∞(X)

N∑
t=1

cjgn,t(x)

∣∣∣∣∣ ≤ M

4
n−

β
d
|gn,j(x)|
‖g‖

Wβ
∞(X)

≤ M

4
n−

β
d

‖g‖L∞(X)

‖g‖
Wβ

∞(X)

≤ M

4
,

so that Fβ,d,n ⊂ BL∞(X)

(
0, M4

)
and the first part of the claim is proved. Let β = m + σ. For every

r ≤ m, r ∈ N and x ∈ X, we notice that if x ∈ X \ ∪N
k=1Bk, then because it is a finite linear

combination of mollifiers we have Drf(x) = 0. By a chain rule for every f ∈ Fβ,d,n, x ∈ X, k ≤ N
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such that x ∈ Bj :

sup
x∈X

|Drf(x)| = sup
Bj∈P

sup
x∈Bj

|Drf(x)|

= sup
Bj∈P

sup
x∈Bj

M

4‖g‖
Wβ

∞(X)

∣∣∣Drn−
β
d gn,j(x)

∣∣∣
= sup

Bj∈P
sup
x∈Bj

Mn−
β
d

4‖g‖
Wβ

∞(X)

∣∣∣Drg
(
n

1
d (x− aj)

)∣∣∣
=

M

4‖g‖
Wβ

∞(X)

n
r−β
d sup

Bj∈P
sup
x∈Bj

|Drg(x)|

≤ M

4

supx∈X|Drg(x)|
‖g‖

Wβ
∞(X)

=
M

4

‖Drg‖L∞(X)

‖g‖
Wβ

∞(X)

≤ M

4

Consider Dγf of a function f ∈ Fβ,d,n. For some 1 ≤ j ≤ N we have for any x, z,∈ Bj ( here
Bj = Bj ∪ ∂Bj) it holds

|Dγf(x)−Dγf(z)|
‖x− z‖σ

=
Mn−

β
d

4‖g‖
Wβ

∞(X)

|Dγgn,j(x)−Dγgn,j(z)|
‖x− z‖σ

=
Mn−

β
d

4‖g‖
Wβ

∞(X)

∣∣∣Dγg
(
n

1
d (x− aj)

)
−Dγg

(
n

1
d (z − aj)

)∣∣∣
‖x− z‖σ

=
Mn−

β
d

4‖g‖
Wβ

∞(X)

∣∣∣Dγg(x) ∂γ

∂x1...∂xd
n

1
d (x− aj)−Dγg(z) ∂γ

∂z1...∂zd
n

1
d (z − aj)

∣∣∣
n−

σ
d ‖x− z‖σ

≤ Mn−
β
d
+m

d
+σ

d

4‖g‖
Wβ

∞(X)

sup
x,z∈X,x 6=z

|Dγg(x)−Dγg(z)|
‖x− z‖σ

=
M

4

1

‖g‖
Wβ

∞(X)

sup
x,z∈X,x 6=z

|Dγg(x)−Dγg(z)|
‖x− z‖σ

≤ M

4

Furthermore, if Bj , Bk ∈ P are two different cubes then for x ∈ Bj and z ∈ Bk consider elements
x ∈ ∂Bj and z ∈ ∂Bk, which lie on the line between x and z. Notice that if Bj and Bk have common
d − 1 hyperplane (i.e., they are the neighbour cells) then x = z. In all cases, it follows from the
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construction of f ∈ Fβ,d,n that Dγf(x) = Dγf(z) = 0. Therefore, we have

|Dγf(x)−Dγf(z)|
‖x− z‖σ

=
Mn−

β
d

4‖g‖
Wβ

∞(X)

|Dγgn,j(x)−Dγgn,j(x)−Dγgn,k(z) +Dγgn,k(z)|
‖x− z‖σ

≤ Mn−
β
d

4‖g‖
Wβ

∞(X)

|Dγgn,j(x)−Dγgn,j(x)|+ |Dγgn,k(z)−Dγgn,k(z)|
‖x− z‖σ

≤ Mn−
β
d

4‖g‖
Wβ

∞(X)

‖g‖
Wβ

∞(X)
n

β
d (‖x− x‖σ + ‖z − z‖σ)
‖x− z‖σ

≤ M

4
2σ

‖x− x‖σ + ‖z − z‖σ

2‖x− z‖σ

≤ M

4
2σ
(
‖x− x‖+ ‖z − z‖

2

)σ 1

‖z − x‖σ

≤ M

4

‖x− z‖σ

‖x− z‖σ
=
M

4

If for any pair (x, z) ∈ X2, x 6= z one element (without losing of generality let it be z) does not
belong to the union of the cubes ∪B∈PB, then we can substitute this point by the point z, which is the
intersection of the segment [x, z] and the boundary of the closest cube to the point z. Notice that in this
case Dγf(z) = Dγf(z) = 0 by construction of f and ‖x− z‖σ2 ≥ ‖x− z‖σ2 . Applying aforementioned
analysis to a pair (x, z) which lies in some (different) cubes Bj , Bk, we get

|Dγf(x)−Dγf(z)|
‖x− z‖σ

≤ |Dγf(x)−Dγf(z)|
‖x− z‖σ

≤ M

4
.

Finally, case (x, z) ∈ X2, where none of the points belong to the union of the cubes, is trivial.
Considering these cases together we have supx,y∈X,x 6=y

|Dγf(x)−Dγf(y)|
‖x−y‖σ ≤ M

4 for any f ∈ Fβ,d,n.

Therefore, Fβ,d,n ⊂ B
Wβ

∞(X)

(
0, M4

)
.

�
Proof of Theorem 3.4.1. For n ≥ 1 consider the functional class Fβ,d,n as given by Equation 3.39.
Consider a X−valued tree x of depth N := b2n

1
d cd constructed as follows: for any ε ∈ {−1, 1}N , any

t ≤ N we set xt(ε) = at, where at is the center of the correspondent cube. Now, for any ε ∈ {−1, 1}n

consider f ε(·) ∈ Fβ,d,n where Fβ,d,n as in (3.39) and f ε(x) = M
4‖g‖

W
β
∞(X)

∑N
j=1 εjn

−β
d gn,j(x). Then

for the tree x, for every ε ∈ {−1, 1}N , 1 ≤ t ≤ N and a real-valued (witness of shattering) st(·) := 0,
we have

εt(f
ε(xt(ε))− st(ε)) = εtf

ε(xt(ε)) = εtf
ε(at) =

M

4‖g‖
Wβ

∞(X)

εt

N∑
j=1

εjn
−β

d gn,j(at)

=
M

4‖g‖
Wβ

∞(X)

n−
β
d gn,t(at)

=
M

4‖g‖
Wβ

∞(X)

n−
β
d g(0) = CM,g

n−
β
d

2
,

(3.40)

where CM,g := M
4‖g‖

W
β
∞(X)

. Thus, class Fβ,d,n with γ̃ = γ̃(n) := CM,gn
−β

d (exactly) shatters the tree
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x. Notice that N = b2n
1
d cd ≤ 2dn; from the other side we have N ≥

(
n

1
d

)d ≥ n. Thus, from the
definition of fat-shattering dimension, it follows,

fatγ̃

(
Fβ,d,n

)
≥ N ≥ n. (3.41)

All conditions of Lemma 3.6.12 are fulfilled for the class Fβ,d,n; by Lemma 3.6.15 Fβ,d,n ⊂ B
Wβ

∞(X)

(
0, M4

)
.

Applying Lemma 3.6.12 to the class Fβ,d,n, using Lemma 3.6.15 and simple inclusionB
Wβ

∞(X)

(
0, M4

)
⊂

B
Wβ

p (X)

(
0, M4

)
⊂ B

Wβ
p (X)

(0,M), we obtain for the Sobolev ball F := B
Wβ

p (X)
(0,M)

R̃n(F) ≥ R̃n(Fβ,d,n) ≥
M

4
nγ̃ ≥ ·M2

16‖g‖
Wβ

∞(X)

n1−
β
d ,

so that the case d
p < β ≤ d

2 is proved.
To prove the second bound, notice that by Lemma (3.6.15) for any n ∈ N∗, Fβ,d,n ⊂ B

Wβ
∞(X)

(
0, M4

)
,

which implies that fatγ
(
B

Wβ
∞

(
0, M4

))
≥ fatγ(Fβ,d,n). In particular, this holds if we choose n0 :=

b
(

γ
CM,g

)− d
β ∨ 1c, then n0 <

(
γ

CM,g

)− d
β ∨ 1, which is equivalent to CM,gn

−β
d

0 ≤ γ. Notice that if

γ1 < γ2 then fatγ1(F) ≥ fatγ2(F). Applying the first property to the classes
(
B

Wβ
∞

(
0, M4

))
and

Fβ,d,n0 on the scale γ and the second property for the class Fβ,d,no on the scales γ and CM,gn
−β

d
0 we

consequently get

fatγ

(
B

Wβ
∞(X)

(
0,
M

4

))
≥ fatγ(Fβ,d,n0) ≥ fat

CM,gn
−β

d
0

(Fβ,d,n0) ≥ n0. (3.42)

Finally, because n0 ≥ 1, so by using elementary bac ≥ a
2 we have n0 ≥ 1

2

(
γ

CM,g

− d
β ∨ 1

)
; therefore,

fatγ
(
B

Wβ
∞
(0,M/4)

)
≥ fatγ(Fβ,d,n0) ≥

1

2

(( γ

CM,g

)− d
β

∨ 1
)

.

Choose γ := C
d

β+d

M,g n
− β

2β+d , n0 := b
(

γ
CM,g

)− d
β c, where C1 is a constant as in Lemma 3.6.14 and

CM,g is a constant as in Equation (3.40). For β > d
2 , we have by inclusion and by Lemma 3.6.14 that for

any n with the choice of γ as before it holds: fatγ(Fβ,d,n) ≤ fatγ
(
B

Wβ
∞(X)

(
0, M4

))
≤ C̃n

2β
2β+d < C̃n.

Furthermore, as for any n ∈ N, B
Wβ

∞(X)

(
0, M4

)
⊃ Fβ,d,n, so, in particular, B

Wβ
∞(X)

(
0, M4

)
⊃ Fβ,d,n0 ,

which implies Rn

(
B

Wβ
∞(X)

(
0, M4

))
≥ Rn

(
Fβ,d,n0

)
. Thus, applying Lemma 3.6.13 to the class Fβ,d,n0

with any n and γ, n0 as above, we obtain:

R̃n(Fβ,d,n0) ≥ Cγ
√
n
(
2
√
2
√

fatγ(Fβ,d,n0)−
√
nγ
)

≥ Cn
− β

2β+d
√
n

(
2C

d
d+β

M,g n
d

2(2β+d) − C
d

β+d

M,g n
1
2
− β

2β+d

)
≥ C̃1n

− β
2β+d

+ 1
2
+ d

2(2β+d) = C̃1n
d

2β+d ,

91



where C1 is some constant independent of n. Now, the final bound for β < d
2 follows from the inclusion

Fβ,d,n0 ⊂ B
Wβ

∞

(
0, M4

)
⊂ B

Wβ
p (X)

(
0, M4

)
which implies R̃n

(
B

Wβ
∞(X)

(0,M)
)
≥ R̃n

(
B

Wβ
p (X)

(0,M)
)
≥

R̃n

(
Fβ,d,n0

)
. �

3.6.7 Regret rates comparison

Here we provide a short comparison of the exponents of theoretical regret rates between KAAR (3.10)
and EWA (Vovk (2006a)). One can check that when β

d <
√
1+4p−1
2p , EWA provides better rate than

KAAR, given by (3.10) with s = d
2 + ε, ε > 0 and τn chosen as in the Theorem 3.3.4. For a fixed

pair (β, d) this means that with increasing regularity of the function f in terms of its integral p−norm,
KAAR estimates its behaviour better than EWA for a larger range of possible values (β, d). This effect
is illustrated in Figure 3.2.

Figure 3.2: Exponent of the regret in the case W β
p (X), 1

p <
β
d ≤ 1

2 , p = 4, 20, 120.
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Restless stationary bandits with
dependencies
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This chapter is devoted to the study of the multi-armed bandit problem (see Chapter 1) in a case in
which the arm samples were dependent over time and generated from a C−mixing process. In particular,
over the set of all index-based switching arm strategies (i.e. those which concentrate on the choosing
of the best arm with respect to some score function which is updated during the course of the game)
we consider the improved UCB algorithm (see Auer and Ortner (2010) also see Perchet and Rigollet
(2013)) which is based on the sequential arm-elimination policy (see Evan-Dar et al. (2006) for the first
reference). We analyse the regret of this policy (both problem-dependent and problem-independent) in
the settings of different decay rates of mixing coefficients. Materials of this chapter are based on the joint
work with Gilles Blanchard and Alexandra Carpentier, see Zadorozhnyi et al. (2019).
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4.1 Introduction

Recall from the introduction that a multi-armed stochastic bandit problem can be modelled as a sequen-
tial game between learner and environment which evolves as follows. At every round t ≤ T the learner,
based on the decision It = a, selects an action (“pulls an arm”) a ∈ {1, . . . ,K} and observes a (stochas-
tic) version of the payoff of round t based on the observationXa

t from a stochastic process (Xa
t )t≥1. The

general goal of this game is to find a sequence of pulling arms (It)t≥1 that maximizes the (cumulative)
payoff over some time horizon T ,

∑T
t=1X

It
t based on the observed data and decisions. The performance

measure of the strategy is typically (but, as we will discuss later, not exclusively) restricted to the notion
of cumulative regret with respect to pulling of the best action in hindsight. Its formal definition is recalled
and discussed in Section 4.2. In this chapter we assume that the payoffs are generated from the trajectory
of some stochastic process and thus consider the setting of stochastic bandits. Notice that numerous
studies ( see for example Auer (2002), Bubeck (2010), Auer et al. (2002) and Gerchinowitz and Latti-
more (2016)) have been conducted in the so-called setting of adversarial bandits, where no stochastic
assumption on the sequences (Xa

t )t≥1 has been made. Since its emergence (Robbins (1952)) in the liter-
ature, in the setting of stochastic multi-armed bandit problems, it has been commonly assumed that the
outcomes of the arms are stochastically independent. This means that for each round t, the distribution
of Xk

t (outcome of arm k at moment t) is stationary and does not depend on the history {Xk
s , s < t}

of the previous outcomes. From the application perspective, however, many of the real-world problems
in which bandits find their use display an intrinsic dependence between the sequence of future outcomes
and past realizations. For example, in the ad-placement problem, whether a user clicks on a given ad in
the near future depends closely on whether that user has clicked on the ad at the current time. If the user
becomes bored, he will not be willing to choose this ad again immediately; however, as time passes, the
user is more likely to click on the ad once more. In such a scenario, the correlation between previous
and future observations decays as the time gap increases. Additionally, in this example, the decision to
ultimately make a purchase might not be affected by the present minute fluctuations of the user’s interest,
instead depending only on its nominal average level, for which the long-term averaged clicking rate is a
proxy. Another motivating example is the cognitive radio problem (see also Ortner et al. (2014) for the
same motivation) in which each arm of the bandit instance can be seen as a radio channel which at each
time-point can be seen as busy or occupied. At each time point a learner can choose only one channel,
see the state of only one channel and (if the channel is not occupied) send the message via it. It is natural
to assume that whether the channel is available in the moment depends on the past. Furthermore, the
dynamics of all of the processes depends on time and it evolves even if the arm is not pulled. This can be
modelled through the assumption on the decaying correlations between the present and past of stochastic
processes, and through the assumption of restless sample generation on the bandit instance.

Generalization of the stochastic bandits to the setting with dependent outcomes was first considered
by Whittle (1988). If the underlying stochastic processes are Markov chains (which, as we will show
later, satisfy the weak-dependency assumption 4.4) with known dynamics, the regret has been studied
by Guha et al. (2010b) and Ortner et al. (2014). Problem-dependent asymptotic pseudo-regret upper
bounds for the rewards generated from so-called ϕ−mixing processes have been derived by Audiffren
and Ralaivola (2015). In the latter study, authors have devised a UCB-type strategy and considered
scenarios of both fast and slowly mixing arms (this notion will be introduced later and depend on the
correlation decay rate between past and future of the corresponding process). Under the same weak
dependency assumption of ϕ–mixing, the work of Grünewälder and Khaleghi (2017) has extended the
analysis to the different regret concepts (namely for when the possible policies are switching arm poli-
cies), providing an upper bound analysis in the so-called fast ϕ-mixing setting.

Overview of the main results. In this chapter we considered the general notion of weakly dependent
processes under a C−mixing assumption and a version of a known IMPROVED-UCB ALGORITHM (see
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Auer and Ortner (2010) and also Evan-Dar et al. (2006) for a general introduction to the concept of arm-
elimination strategies). To give a short overview of the contribution of the chapter we note that, in the
fast mixing scenario, the obtained upper bounds match (up to a multiplicative constant) the independent
case. The contamination term due to dependency in the regret upper bound comes additively and does not
scale with the number of arms. For the problem-dependent upper bound, it only depends on the choice of
the threshold error level in the bound and on the mixing rate. Namely, in the problem-dependent case we
have that for the regret (see Chapter 1 for the definition) over a C− mixing bandit instance P of C−Mix
UCB the following problem-dependent bound

RP(T ) ≤M
K∑
k=1

(
∆k +

96

∆k
+

32 log
(
T∆2

k

)
∆k

)
+ 64

∑
k∈A0\Aλ

1

λ
+ T max

k∈A0\Aλ

∆k,

and the following problem-independent bound

RP(T ) ≤ C
√
KT log(K),

where λ > 1√
T

is some threshold, Aλ = {k : ∆k ≥ λ} and M,C are some constants which depend on
the mixing rate but are independent of T,K. Furthermore, in the so-called slowly mixing regime (when
φC(t) ∼ t−α, α < 1

2 ) we get

RP(T ) ≤ C1

∑
k∈Aλ

max{
log
(
AT∆2

k

)
∆k

, 1}+C2(∆∗,λ)
1− 1

α
(
C3 log

(
AT∆2

∗,λ
)) 1

2α+
12√
e

∑
k∈A0\Aλ

1

λ
+T max

k:A0\Aλ

∆k,

and for the problem-independent case

RP(T ) ≤ C0

√
T max{

√
K log(T ), T 1/2−α(log(T ))

1
2α },

where ∆∗,λ = mink∈Aλ
∆k and C0, C1, C2, C3 are some constants whose values depend on α but not

on T or K. In the problem-dependent regret upper bounds for the slow mixing scenario the main regret
term (similar in order to the i.i.d. case) comprises a sum over arms of the inverse arm’s gaps; the
contamination term due to dependency remains negligiblein the regime when there is a large number of
suboptimal arms whose expected payoff is close to the chosen threshold level. This can be intuitively
understood, given that the time between two pulls of the same arm will typically remain larger than the
correlation distance in that situation. For the problem-independent upper bound, the additive penalty
resulting from dependency is determined by the relation among the number of arms, the exponent of the
polynomially mixing process, and the time-horizon. In the slow mixing scenario, in the case of problem-
dependent and problem independent bounds, it allows us to derive bounds which (in certain regimes)
match their independent data analogues for the pseudo-regret.

In Section 4.2, we recall the concept of a weak-mixing process (see Chapter 1) and introduce the
corresponding probabilistic toolbox for the real-valued discrete processes. In Section 4.3, we present the
C−MIX UCB learning algorithm and provide the problem–dependent and problem–independent bounds
on its regret. Depending on the correlation decay rates we distinguish between scenarios of slow- and
fast- mixing. In Section 4, we discuss the optimality of the given bounds in the fast mixing scenario and
derive the lower bounds (which are also optimal up to a logarithmic factor of the number of rounds) for
the case of slowly-mixing processes. Finally, in Section 4.5 we discuss the obtained results and show
their advantages over the existing bounds, pointing out the cases of slow mixing processes in which i.i.d.
regret upper bounds can be recovered. All proofs are postponed to the end and are given in Section 4.7.
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4.2 Setting and preliminaries

Let X = [0, 1] and (X, B(X)) – be a measurable space equipped with a Borel σ−algebra B(X). Denote
K,T ∈ N as the number of arms and the number of rounds (time-horizon). We always assume that
T > K. We use the shortcut notation {`} := {1, . . . , `} for any ` ∈ N. Associate to every arm k ∈
{K} a discrete, stationary-time stochastic process

(
Xk

t

)
t∈N that is defined through its canonical version

over the probability space
(
Ωk,Bk,Pk

)
, where, with a slight abuse of notation, we denote Ωk = XN,

Bk := B
(
XN) (i.e. Borel sigma algebra over XN). For the process

(
Xk

t

)
t∈N we denote also the canonical

filtration Fk
i := σ{Xk

j , j ≤ i}. We assume each process to be weakly stationary (i.e., such that E
[
Xk

t

]
does not change with time t). To give a proper probabilistic model for the stochastic bandit problem,
we consider the probability space (Ω,A,P), where Ω = Ω1 × . . . × ΩK ; A is the K−product of Borel
σ−algebras Bk and P is a joint probability measure for which k−th marginal is the measure Pk on
Bk, as defined above. We refer to measure P as a stochastic bandit (or bandit instance). Note that we
do not assume that the measure P is a product measure on A; in general this model includes possible
dependencies between outputs from different arms. We set Fi := σ{X{K}

j : j ≤ i, k ∈ {K}} as the
canonical filtration generated by all stochastic processes (Xa

t )t∈N, a ∈ {K}. Let (It)t∈N : Ω 7→ {K}
be any map. Define F̃I·

t as the filtration that tracks the series of selected arms (It)t≥1 and corresponding

outputs of the process XIt
t , formally F̃I

t = σ
(
I1, X

I1
1 , I2, X

I2
2 , . . . , It−1, X

It−1

t−1

)
. Notice that F̃I

0 =

{0,Ω}. A map It : Ω 7→ {K} is called a strategy if for any t ≥ 1, It is FIt
t−1 measurable. This

technical assumption ensures that the learner’s strategy depends only on the decisions from the observed
history. Notice that from Theorem 3, p.174 in Shirayev (1996), it follows that It can be represented as a
measurable function such that It : {Is, XIs

s }s≤t−1 7→ {K}. For a bandit instance P and strategy (It)t≥1,
let PFI

t
:= P

[
·|FI

t

]
be a regular conditional probability of P given FI

t . We assume all the expectations and
distributional characteristics to be taken under the bandit instance P. Therefore, we denote µk = E

[
Xk

t

]
and also µ∗ := maxk∈{K} µk for the arm with the biggest average reward. We refer to ∗ = ArgMax

k∈{K}
µk

as the arm with the highest stationary mean or the best arm. Define A
′
:= {k ∈ {K}, µk < µ∗} as the

set of suboptimal arms and write ∆k := µ∗−µk for the average regret of playing suboptimal arm k ∈ A
′

in one round.
For each time step t ≤ T , based on their strategy (It)t≥1, the learner chooses the arm It ∈ {K}

and receives an output of the stochastic process XIt
t ∼ PIt

t . As a performance measure of the learner’s
strategy I on the bandit instance P over T rounds, we recall (see 1) that we consider the notion of the
pseudo-regret as

RP(I, T ) = E

[
T∑
t=1

µ∗ − µIt

]
= Tµ∗ −

T∑
t=1

E[µIt ] =
K∑
k=1

∆kE[Nk(T )], (4.1)

where, for every k ∈ {K}, Nk(T ) =
∑T

t=1 1{It = k} denotes the number of times the learner chooses
the arm k over T rounds, and the expectation is taken under bandit instance P. Next, we give the
motivation of the choice of this type of regret in the analysis in particular to the dependent setting.

4.2.1 Different notions of regret

In the classical i.i.d. case, the pseudo-regret of the strategy I = (It)t≥1, RP(I, T ) as defined in Equa-
tion (4.1) coincides with the more standard notion of expected regret, which is defined with respect to
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noise both in the strategy and in the sample. More precisely, the expected regret is defined as

RP(I, T ) := max
a∈{K}

E

[
T∑
t=1

(
Xa

t −XIt
t

)]
=

T∑
t=1

(µ∗ − E
[
XIt

t

]
). (4.2)

In the i.i.d. case Tµ∗ is an upper bound on the expected reward of any strategy. This is attained for
the “oracle” strategy which always pulls the best arm. Neither of these two facts holds in the setting
when the distribution of the arms are non i.i.d. Namely, because both the strategy choice {It = k} at
time t and the outcome of the arm k, Xk

t depend on the past, we have E[XIt
t ] =

∑K
k=1 E

[
IIt=aX

It
t

]
=∑K

k=1 E
[
IIt=kX

k
t

]
6= E[µIt ], and therefore

RP(I, T ) = Tµ∗ −
T∑
t=1

E
[
XIt

t

]
6= RP(I, T ) = Tµ∗ −

T∑
t=1

E[µIt ].

Furthermore, there exist (oracle) “arm switching” strategies exploiting dependencies that have signifi-
cantly higher expected rewards1 than Tµ∗ over the course of T rounds ( see Example 1 and Example 3
in Ortner et al. (2014)).

Bandit instances with non-i.i.d. observations were the object of recent attention, mostly under a
(frozen) Markovian assumption about the underlying stochastic process. In this context, the term "frozen"
means that the distribution Pa of the underlying arm a does not change when the underlying arm has
not been played after round t. A Markovian setting for the pseudo-regret analysis was considered in
Anantharam et al. (1987); a similar setting was recently studied in Ortner et al. (2014). A type of UCB-
strategy for the frozen Markovian rewards was considered in Tekin and Liu (2010). Pseudo-regret upper
bounds for the processes that exhibit a type of weak-dependency condition (namely ϕ–mixing processes)
were analyzed by Audiffren and Ralaivola (2015). However, in the latter work, the relation of pseudo-
regret to the expected regret was not addressed. The last point, as well as the notion of the regret with
respect to a (switching arm) policy, was introduced and discussed by Grünewälder and Khaleghi (2017).
In this work the authors argued that the expected regret with respect to a policy is the more natural notion
if the observed outcomes are direct rewards in the non–i.i.d. scenario. Grünewälder and Khaleghi (2017)
provided a UCB type of algorithm for a highest stationary mean identification in a jointly φ−mixing
bandit instance. They analysed the pseudo-regret (4.1) while pointing out the approximation of the
expected regret by means of the pseudo regret. Furthermore, the approximation bounds are covering both
issues (Propositions 3 resp. 11 of Grünewälder and Khaleghi, 2017): they bound the difference between
µ∗ and the expected reward of the best strategy, with regard to the difference

∣∣RP(I, T )−RP(I, T )
∣∣.

However, the first bound is linear in T and the second is linear in K, so that the approximation bounds
can be of a larger order than the bound on the pseudo-regret itself when K and/or T grows.

The question of interest is to analyze the pseudo-regret in the setting that is described by a weak-
dependency assumption of a general kind. In this setting we want to find the policy that targets the
process with the highest stationary mean with the pseudo-regret as performance measure. Notice that
this problem is easier then finding the optimal policy among all switching arm policies ( see Example 1
in Ortner et al. (2014), which shows that the optimal switching arm policy is in general different from the
optimal highest average mean policy and has smaller regret). In such a scenario the proper performance
measure would be the expected regret RP(I, T ). However, pseudo-regret can be considered a proper
proxy for the regret, and, in some scenarios of fast–decaying correlations (see Grünewälder and Khaleghi
(2017)), the highest mean policy would be a good approximation of the switching arm counterpart.

An example where the use of the pseudo-regret is of interest and is a good proxy for the regret is
the setting of delayed rewards. First, a minor variation of the setting which is considered would be to

1This second issue vanishes if fixed-arm strategies are the only admissible competitors for the regret.
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consider a stochastic process (Yt)t≥1 with Y It
t = XIt

t+τ and τ as a fixed delay. In this scenario, the
delayed reward is still different from the observation but comes from the same stream and is therefore
not independent. However for a very large delay τ we get that E

[
Y It
t |Ft−1

]
= E

[
XIt

t+τ |Ft−1

]
≈ µIt

for a weakly-dependent process with dependencies that vanish over time (see section 4.2.2 for a precise
definition) and admissible policy (It)t≥1. In this case, because of fading correlation assumptions, a
sample average 1

`

∑`
k=1Xt+kτ is a good proxy for the µIt when τ is big. In a different setting the

reward is actually XIt
t but is only observed after a delay τ . In other words the decision It is Ft−τ

measurable.

4.2.2 Weak dependency (mixing) assumption

We use the definition of the functional weak-dependency assumption (as in Chapter 2) with respect to
the collection of {K} stochastic processes. Here we work under same C−weak-dependency assumption
as that given by Definition 2.2.2 in Chapter 2. Note that this notion is similar to a type of mixingale con-
dition (see Dedecker and Merlevede (2015),Mc Leish (1975)) that includes, in particular, the settings of
φ–mixing (Kontorovich and Ramanan (2008)), uniform τ–mixing (Wintenberger (2010)) and ϕ mixing
(Maume-Deschamps (2006)). Below, we give the formal definition of the C–mixing bandit instance.

Definition 4.2.1. Consider a K−armed stochastic bandit instance B as a distribution P of a collection
of K stochastic processes (Xa

t )a∈{K}, t ∈ N and a ∈ {K} over measurable space

(Ω,F) =

((
XN
)K

,A

)
, (4.3)

where A := B
((

XN)⊗K
)

, being the σ−field generated by the cylinder sets over
(
XN)⊗K and measure

P such that it has marginals P(a) over
(
XN,B

(
XN)) that are the distribution of the stochastic process

(Xa
t )a∈{K},t∈N. We say that the K– armed bandit problem is C−weakly mixing (or simply weakly

mixing while posing the dependency on the class C implicit) if, for every a ∈ {K}, the mixing coefficient

φC(k) := sup
i∈N,ϕ∈C1

∥∥E[ϕ(Xa
i+k

)
|Fa

i

]
− E

[
ϕ
(
Xa

i+k

)]∥∥
L∞(P) (4.4)

is such that limk→∞ φC(k) = 0 where Fa
i := σ(Xa

u : u ≤ i) ⊂ A.

Assumption 1. We assume additionally that the identity function I : X 7→ R belongs to the class C1

and use this in the following to derive the upper bounds for the conditional expectation component. For
a bandit instance P, this implies that we have

∥∥E[Xa
i+k|Fa

i

]
− E

[
Xa

i+k

]∥∥
L∞(P) ≤ φC(k) for every a ∈

{K}. We use the latter condition in the probabilistic toolbox for the control of conditional expectations
in the proof.

Remark 4.2.2. It is easy to see that if we consider the past-sigma algebra generated by the observations
of the algorithm (It)t≥1 (i.e. FI

i = σ{I1, XI1
1 , I2, X

I2
2 , . . . , Is−1, X

Ii−1

i−1 } ⊂ A), then for every i, by the
tower property and Jensen’s inequality we have:∥∥E[Xa

i+k − E
[
Xa

i+k

]
|FI

i

]∥∥
∞ ≤

∥∥E[E[Xa
i+k − E

[
Xa

i+k

]
|Fa

i

]
|FI

i

]∥∥
∞

≤
∥∥E[Xa

i+k − E
[
Xa

i+k

]
|Fa

i

]∥∥
∞ ≤ φC(k).

Examples of C weak-mixing processes

Firstly we consider the examples of bandit instances with P being a product measure. That is, the cor-
respondent real-valued processes (Xa

t )t∈N,a∈A are stochastically independent for a ∈ {K}, t ∈ {T}.
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The independent noise process naturally satisfies condition 2.2.2 because φC(k) = 0 for all k ≥ 1. The
auto-regressive process of order 1, Xi = ρXi−1 + ξi, where ξi is some bounded i.i.d. noise process is
geometrically weak-mixing with rate φk = exp

(
−k log (ρ−1)

)
, provided ρ < 1. A moving-average pro-

cess of a finite order q ∈ N, of the form Wi = µ+
∑q

j=0 θjψi−j , for i ∈ Z, where (ψi)i∈Z is a sequence
of bounded i.i.d. random variables and (θj)0≤j≤q is also geometrically weak-mixing (see Dedecker and
Merlevede (2015) for general example of process in Banach spaces), provided a certain assumption on
the sequence (θj)0≤j≤q holds (see for example in Canda (1974), also in Rosenblatt (2000) for a big
overview on the mixing properties of linear processes). Furthermore, every recurrent aperiodic finite-
state Markov chain can be proven as geometrically weak-mixing with rate φ(k) ≤ exp

(
−k log λ−1

)
,

where λ is the second-largest eigenvalue of the transition matrix of the Markov chain. Examples of poly-
nomially weak-mixing processes include several types of Metropolis-Hastings independent samplers in
which the proposal distribution does not have a lower bounded density; for such an example we refer to
Jarner and Roberts (2002).

4.2.3 Concentration toolbox

Our main technical toolbox is a general type of high probability maximal Hoeffding-type concentration
inequality that controls the deviations of the random sum of a real stationary stochastic process (Xt)t∈N.
The result is due to Peligrad et al. (2007), and we provide it below for completeness.

Theorem 4.2.3 (Proposition 2 in Peligrad et al. (2007)). Let (Yt)t∈N be a stationary real-valued centered
process; define Sn :=

∑n
i=1 Yi and S∗

n = maxi≤n|Sn|. For t ≥ 0, we have that the following inequality
holds:

P(S∗
n ≥ t) ≤ 4

√
e exp

(
−t2/2n(‖Y1‖∞ + 80δn)

2
)
,

where δn =
∑n

j=1 j
− 3

2 ‖E[Sj |F0]‖∞ with F0 = σ(Y0). In terms of deviation bounds this is equivalent
to say that for any δ > 0 we have that with probability at least 1− δ, it holds that

S∗
n ≤

√
n(‖Y1‖∞ + 80δn)

√
2 log

(
A

δ

)
,

where A = 4
√
e.

For a stationary weak-mixing process (Xt)t∈N that satisfies assumption 2.2.2, we can apply Theo-
rem 4.2.3 by setting Yt := Xt − E[Xt], using the obvious fact that |Sn| ≤ S∗

n and ‖E[Sj |F0]‖∞ ≤∑j
k=1‖E[Xj |F0]‖∞ ≤

∑j
k=1 φC(k). From the definition (2.2.2) under Assumption 1 we deduce the

following proposition.

Proposition 4.2.4. For a stationary real-valued weak-mixing process (Xt)t∈N with rate φC(·), Sn being
partial sum as above and µ = E[Xt], for any δ ∈ [0, 1) with probability at least 1− δ it holds:

∣∣n−1Sn − µ
∣∣ ≤ (1 + 80

n∑
j=1

j−
3
2

j∑
k=1

φC(k)
)√2 log

(
A
δ

)
n

. (4.5)

Remark 4.2.5. Notice that the statement of Proposition 4.2.4 trivially extends to the case when instead
of (Xt)t∈N, we consider (Xkt)t∈N for k ∈ N (i.e. a sequence of random variables with gaps of fixed
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size). Namely, we have that with probability at least 1− δ:∣∣∣∣∣n−1
n∑

t=1

Xkt − µ

∣∣∣∣∣ ≤ (1 + 80

n∑
j=1

j−
3
2

j∑
`=1

φC(k`)
)√2 log

(
A
δ

)
n

. (4.6)

The latter result enables the deviation control of the estimate of the mean in the scenario when
samples are taken at given sequence of timepoints.

Remark 4.2.6. Theorem 4.2.4 implies that there is a contamination term in the typical Hoeffding’s
concentration bound. If φC(t) ≤ t−α with α > 1/2, then approximating the sum by the integral we get

n∑
j=1

j−
3
2

j∑
k=1

φC(k) ≤ cα

n∑
j=1

j−
1
2
−α,

where cα is some constant that depends only on α. The last partial sum is convergent for all α > 1
2 . Thus,

from Proposition 4.2.4, we have that, for any δ > 0 with probability at least 1− δ w.r.t. distribution P of
stochastic process (Yt)t∈N, it holds:

∣∣n−1Sn − µ
∣∣ ≤ (1 +M)

√
2 log

(
A
δ

)
n

, (4.7)

whereM = 80cα
∑+∞

j=1 j
− 1

2
−α <∞ and cα is a constant that depends only on α. We refer to this type of

weak dependence as to a fast mixing scenario. If 0 < α < 1
2 , then

∑n
j=1 j

− 3
2
∑j

k=1 φC(k) ≤ Cαn
1
2
−α,

which implies that for partial sums Sn for any δ > 0, it holds with probability at least 1− δ that

∣∣n−1Sn − µ
∣∣ ≤

√
2 log A

δ

n
Cα +

√
2 log A

δ

n2α
. (4.8)

4.3 Main Algorithm (C−Mix UCB) and main regret upper bounds

The learning algorithm we present is conceptually based on the celebrated IMPROVED-UCB algorithm
by Auer and Ortner (2010) (see also Evan-Dar et al. (2006) and Perchet and Rigollet (2013) for other
schemes of sequential algorithms which are based on the action-elimination policies). We also distin-
guish an essential difference between the cases in which all arms are polynomially mixing with exponent
smaller than 1/2 (slow C-mixing) and the case which all arms are mixing sufficiently fast, typically
polynomially mixing with exponent larger than 1/2, or exponentially mixing, such that the mixing coef-
ficients for each arm are either summable or such that partial sums of order n diverge at speed not faster
than O(

√
n) (fast C-mixing).

The C−MIX UCB algorithm works as follows. Given the number of rounds T , the algorithm divides
it into the epochs of nearly exponentially increasing number of pulls ts for every epoch s. At the given
epoch s, the samples from each of the active arms are collected during the sequence of times with a
constant gap bs. This gap bs is equal to the number of active arms in the epoch s. At the end of the
epoch, the estimators of the mean and confidence width of each arm are computed, and the arms for
which the lower confidence bound is small (in comparison with the upper confidence bound of the best
arm in the given epoch s) are “eliminated”. That is, no pulls from these arms are considered in the
next epoch. The algorithm then proceeds to the next epoch, and the actions are repeated. For the regret
analysis of C−MiX-UCB, we assume the dependence on the sequence of decision rules which is output
by the algorithm implicit and write RP(T ) skipping the dependence on the strategy (It)t≥1.
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Note that the start τs of epoch s ≥ 1 is random and that an event {τs ≤ t} belongs to the σ−field
FI·
t−1. The sampling scheme of the epoch itself depends on the number of arms not eliminated during

previous epochs (and is therefore random); however, given this information, (mathematically represented
as the σ-algebra FI

τs), the sampling scheme is deterministic. In such a learning scheme, to be able to
use concentration inequalities to estimate the mean of each arm from the samples collected during the
current epoch s, one must ensure that the process X̃a

t :=
(
Xa

τs+t

)
t∈{T} is C–mixing conditionally to Fτs ,

whenever the process Xa
t is C–mixing.

Note that this problem does not arise in the basic i.i.d. bandit instance, as all characteristic properties
of the independent bandit instance P carry over to the distribution of the process X̃a

t conditioned on the
FI
τs . The following statement justifies that the C−mixing property transforms from any bandit instance

P to its conditional measure PFI
τs
[·] with respect to the strategy of C−MIX UCB algorithm.

Proposition 4.3.1. Consider a K−armed stochastic bandit instance P over the space (Ω,F) with Ω =
Ω1× . . .×ΩK and F = B

(
XN)× . . .×B

(
XN) which is C−mixing with rate φC(·) and that Assumption

1 holds. For any s ∈ N, denote τs as the start of epoch s as given in Algorithm 2. Denote FI
τs to be

the σ−algebra generated by the stopping time τs and P[.|Fτs ] to be the regular conditional distribution
of the process X{K}

t conditional to Fτs . Then, for every a ∈ {K}, it holds P−a.s. that the process
X̃a

t = Xa
τs+t is C-mixing with rate bounded by 2φC(t) under P[.|Fτs ].

Remark 4.3.2. It is easy to check that if the marginal processes (Xa
t )t≤T are stochastically independent

over a ∈ {K}, then it is sufficient to prove the above property for arbitrary (one) process (Xa
t )t≤T ,

a ∈ {K}.

In the following, we assume an a priori upper bound on the mixing rate of the mixing bandit instance
P to be φC(t); this rate (more precisely the exponent α) will determine the epoch’s size of the C−MIX

UCB as well as the pseudo-regret upper bounds in the case of slow mixing rates.

Remark 4.3.3. We remark that for our analysis, it is sufficient to choose the upper bound on the last
epoch send := b12 log

(
AT
32

)
c. Indeed, in Algorithm 2 one can check by direct computation that for all s,

Ts,1 > Ts,2 and furthermore log
(
ATθ2s

)
> 1 for all s ≤ send. Taking this into account, by plugging in

send into Ts,1 we obtain that at this epoch Tsend > T.

4.3.1 Fast mixing scenario

In the fast mixing scenario, for which, as mentioned before, φC(t) = t−α with α > 1
2 we make use

of concentration inequality (4.7) from Remark 4.2.6 in the IMPROVED-UCB learning scheme. This
algorithm was originally presented in Auer and Ortner (2010) and rigorously analyzed by Perchet and
Rigollet (2013). The latter considers sequential arm elimination during epochs of increasing lengths, in
which the arm’s pulling sequences in each epoch is an arbitrary deterministic sequence. For example, we
can pull arms in the circular way as represented in the following section of the slow mixing regime. The
latter means that the time-gaps between the two consecutive pulls of one arm equals the number of arms
active in epoch s.

For any epoch s, let τs be its random start. By Proposition 4.3.1, for any arm a ∈ {K}, the samples
from arm a that are collected during the epoch s satisfy (conditionally with respect to the random start
of the epoch s) the C−mixing property with rate 2φC(t). Therefore, conditioned to the random start of
the epoch s, we can directly use the concentration inequality (4.7), replacing its counterpart for the case
of product measure P as in the proof of Theorem 3.1 in Auer and Ortner (2010) for each given epoch s.

We observe that, apart from the multiplicative constant in the concentration inequality, the contami-
nation term has no other influence on the concentration rate. Therefore, the analysis of Auer and Ortner
(2010) can be repeated directly for the fast C–mixing processes. This directly implies the following
problem-dependent regret upper bound.
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Parameters: K and T

Initialization: A = 4e1/2, c0 = ((1− α)(1/2− α))−1, c1 =
(
(1−α)(1/2−α)

80

) 2
1−2α ,

c3 = 12800c0, s = 1, τ0 = 1, B0 = {K}
while t ≤ T do

θs = 2−s, ts :=
(
32c−1

1 θ−2
s log

(
ATθ2s

)) 1−2α
2α ,bs = |Bs|;

Select number of pulls Ts

Ts = Ts,1 :=

⌈
32 log

(
ATθ2s

)
θ2s

⌉
for bs ≥ ts;

Ts = Ts,2 :=

⌈
1

bs

(
c3 log

(
ATθ2s

)
θ2s

) 1
2α
⌉
, for bs < ts.

for ` ∈ {0, . . . , Ts − 1}, i ∈ Bs do
if τs + i+ `bs > T then

BREAK

end
else

choose arm i in Bs at a time point τs + i+ `bs
end

end
Compute

Ω(θs, bs) =
(
1 + 80

Ts∑
j=1

j−
3
2

j∑
`=1

φC(bs`)
)√2 log(ATθ2s)

Ts
,

µ̂i,s = T−1
s

Ts−1∑
t=0

Xi
τs+i+tbs

Bs = Bs \ {i ∈ Bs : µ̂i,s +Ω(θs, bs) ≤ maxj∈Bs µ̂j,s − Ω(θs, bs)}
s = s+ 1
τs = τs−1 + bsTs

end
Algorithm 2: Algorithm C-Mix UCB

Theorem 4.3.4. The pseudo-regret of the C−MIX UCB algorithm for the stochastic bandit instance
P = BφC(·),K , φC(·) in a fast C−mixing bandit scenario is bounded by

RP(T ) ≤ (1 +M)
∑
k∈Aλ

∆k +
96

∆k
+

32 log
(
T∆2

k

)
∆k

+ 64
∑

k∈A0\Aλ

1

λ
+ T max

k∈A0\Aλ

∆k,

where M = 80cα
∑+∞

j=1 j
− 1

2
−α, λ ≥ e

1
4

2
√
T

is chosen arbitrarily and Aλ = {k ∈ {K}s.t.∆k > λ}.

Remark 4.3.5. Notice that for any λ ≥ e1/4

2
√
T

, we have that the following holds. In the first sum, the

term 32 log
(
T∆2

k

)
∆k

dominates the bound. Furthermore, if the set A0 \ Aλ is non-empty, then term 64
λ

majorates T maxk∈A0\Aλ
∆k in the bound. Thus, choosing λ to balance between

∑
k∈Aλ

32 log
(
T∆2

k

)
∆k

and
∑

k∈A0\Aλ

64
λ , we minimize the bound on RP(T ).
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Considering the K−armed bandit instance with ∆k =

√
K log(K)

T for k = 2, . . . ,K and optimizing
over λ, we obtain the problem-independent regret upper bound analogous to Remark 3.3 by Auer and
Ortner (2010).

Theorem 4.3.6. In the fast mixing scenario, the C-MIX UCB policy satisfies the following (problem
independent) pseudo-regret upper bound

RP(T ) ≤ 125
√

(1 +M)KT
log(K log(K))√

log(K)
.

4.3.2 Slow mixing scenario

In this part we consider the slow mixing scenario. In this case, the mixing rate of the stochastic processes
Xa

t for a ∈ {K} is assumed φC(t) = t−α with α ∈ (0, 1/2]. Theorem 4.3.8 provides the problem-
dependent upper bound for the pseudo-regret of the C−MIX UCB learning strategy (Algorithm 2) in the
case of the slow mixing scenario. In every epoch s algorithm pulls all remaining active arms are pulled
cyclically, so that the time gap between two consequent pulls of one arm is equal to the number of active
arms in the given epoch. This sequence is deterministic, given the samples and strategies choices until
τs – the random start of epoch s. Formally this means that random variables τs is FI

τs - measurable. To
estimate the mean in the slow mixing scenario before the epoch s we consider samples collected during
the time length of the epoch s (and not during all the time until the epoch s has started). However, as
the epoch’s length increases geometrically with power larger than 2, which implies that at the time point
of the end of the epoch s, more than the half of the samples of each arm are collected exactly during
the epoch s (and not earlier), up to a multiplicative constant 2; this provides the same confidence term
Ω(θs, bs) as if we were considering all the samples from the beginning.

Remark 4.3.7. We treat the case with α = 1
2 separately. Using Remark 4.2.6 we deduce that

∑T
t=1

1
t .

log(T ), so in this case we can apply the same scheme as in Theorem 4.3.4, with M = log(T ). In this
case we obtain the regret upper bounds as in the i.i.d. scenario with the only contamination factor of
order log(T ).

Theorem 4.3.8 (Pseudo-regret upper bound for the slow mixing scenario). . Consider the C− polynomi-
ally mixing bandit instance P with the rate ΦC(t) ≤ t−α, α ∈ (0, 1/2). Then the C−MIX-UCB, which
returns sequences of decision It, satisfies the following pseudo-regret upper bound:

RP(T ) ≤ 2
∑
k∈Aλ

max{c2∆−1
k max{log

(
AT∆2

k

)
, 1}, 1}+ c̃(∆∗,λ)

1− 1
α
(
c3 log

(
AT∆2

∗,λ
)) 1

2α

+
12√
e

∑
k∈A0\Aλ

1

λ
+ T max

k:k∈A0\Aλ

∆k,

where all numerical constants are defined as A = 4
√
e, c2 = 64c0, c0 = ((1− α)(1/2− α))−1, c1 =(

(1−α)(1/2−α)
80

) 2
1−2α , c3 = 12800c0, c4 = 1

1.2
√
2.4

1
α−2−1

, c̃ = 2−
1
α
+3c4c

1
2α
3 and ∆∗,λ = minj∈Aλ

∆j ,

whereas λ > 0 can be chosen arbitrarily.

Remark 4.3.9. Note that with λ ≥
√

e1−1/e

T for k ∈ Aλ we have 1 ≤ log
(
AT∆2

k

)
≤ log(T ) and

log(T ) > 1. Thus we obtain the following Corollary in terms of the threshold λ and the additive
dependency term.
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Corollary 4.3.10. For any choice of λ that satisfies Remark 4.3.9, one has the following upper bound:

RP(T ) ≤ O

( ∑
k∈A0

log(T )

λ

)
+ O

(
∆

α−1
α

∗,λ log
1
2α (T )

)
+ T max

k:k∈A0\Aλ

∆k, (4.9)

where ∆∗,λ is defined as in Theorem 4.3.8.

Remark 4.3.11. From the definition of ∆∗,λ, it follows that ∆
α−1
α

∗,λ ≤ λ
α−1
α . This implies the following

upper bound for the pseudo-regret in terms of the threshold λ:

RP(T ) ≤
K log(T )

λ
+ λ

α−1
α log

1
2α (T ) + λT.

Furthermore, by straightforward comparison of the first two summands, for any choice λ from Theo-
rem 4.3.8, if λ ≤

(
log(T )

K
α

1−2α

)
, the term λ

α−1
α log

1
2α (T ) dominates the other. Otherwise, if λ >

(
log(T )

K
α

1−2α

)
,

we have that K log(T )
λ is of a larger order.

Analyzing the worst-case scenario for the polynomially weak mixing processes, we obtain the fol-
lowing (problem-independent) upper bound.

Theorem 4.3.12 (Problem-independent upper bound). Assume we have a polynomially weak-mixing in-
stance P such that Theorem 4.3.8 holds. Then, the C-MIX UCB learning algorithm satisfies the following
(instance-independent) pseudo-regret bound:

RP(T ) ≤ C3

√
T max{

√
K log T , T 1/2−α(log T )

1
2α },

where C3 is some absolute numerical constant.

When α→ 0 the regret bound scales almost linearly with the number of rounds T .

4.4 Problem independent lower bounds for regret in dependent bandit
scenario

It is natural to investigate whether the regret upper bounds obtained in the previous section are optimal(
i.e. to search for lower bounds on the pseudo-regret RP(I, T ) with respect to any admissible strategy).
This question can be addressed by classifying bandit instances P according to their decay rate of the
φC(·) mixing coefficient. Firstly, recall that in the fast mixing scenario, upper bounds of Theorems
4.3.4 and 4.3.6 match (up to a multiplicative absolute constant) the corresponding problem-independent
regrets bounds for stochastic i.i.d. bandits. From Bubeck and Cesa-Bianchi (2012), Bubeck (2010) it
is well known that sup inf RP(T ) ≥ c

√
TK, where the infimum is taken over all admissible strategies,

the supremum is taken over all stochastic independent bandit instances, and c is some small numerical
constant. The latter lower bounds imply that in the broader stochastic fast mixing bandits scenario (which
trivially extends independent stochastic bandits), our regret bounds are optimal up to a log(T ) factor and
a multiplicative constant that depends on the `1 norm of the mixing sequence. In the case of problem-
dependent lower bounds, it is known (see Auer (2002)) that the UCB1 type of strategy is optimal in the
stochastic independent bandit case. More precisely, it is known that for any ε > 0, there is no learning
strategy such that it holds RP(I, T ) ≤

∑
k:∆k>0

log(T )
(2+ε)∆k

, uniformly over independent distributions of
arms

(
Xk

t

)
, k ∈ {K}, t ∈ {T}. The latter implies that the C−mix UCB algorithm is optimal in the fast

mixing scenario.
To fill the existing gap, it is interesting to consider the problem of lower bounds for stochastic bandits

when all admissible environments are slow mixing. Audiffren and Ralaivola (2015), Grünewälder and
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Khaleghi (2017) also analyse the setting of dependent bandits. However, the question of regret lower
bounds is not approached there. Below, we provide the problem-independent lower bound that matches
(up to a factor of order log

1
2α (T )) the regret upper bound in the case of a slow–mixing scenario.

Consider the the set BφC,K of all K−armed weak-mixing stochastic bandit instances which satisfy
Definition 2.2.2 with the correlation decay rate φC(k).

Theorem 4.4.1 (Problem independent lower bound for weak-mixing stochastic bandits). For any bandit
instance P ∈ BφC,K , rate function φC(k) = k−α, and 0 < α ≤ 1

2 over all admissible learning strategies,
the following lower bound on the pseudo-regret holds:

inf
(It)t≥1

sup
P∈BφC,K

RP(I, T ) ≥
(√

2− 1
)2

8
T 1−α.

4.5 Discussion

4.5.1 Learning scenarios with independence regime

The upper bounds for the pseudo-regret in the fast mixing case of Theorem 4.3.4 and Theorem 4.3.6,
match the analogous results in the i.i.d. data scenario, up to a multiplicative absolute constant. Even in the
cases where the series

∑∞
t=1 φC(t) diverges, the influence of the penalization term due to dependence can

be bounded by a constant, assuming polynomial rate with 1
2 > α. Moreover, the independence regime

regret upper bound can be recovered even under slow mixing scenario (i.e. with 0 < α ≤ 1/2). Namely,
from the statement of Theorem 4.3.12, it follows that in the case K > T 1−2α, the main contribution
to the regret upper bound in Corollary 4.3.10 is given by the first term, which matches the well-known
upper bound in the independent data scenario for UCB-type algorithms (see, for example, Bubeck and
Cesa-Bianchi (2012); also Auer (2002)). Also, in this scenario, for α → 1/2 we recover the optimal
problem-independent bound (up to a square root of a logarithmic term in the number of rounds). In the
special case α = 1/2 we will have the typical UCB bound, contaminated by a multiplicative term log(T )
(from the influence of the sum of dependent coefficients).

4.5.2 Comparison with the known regret upper bounds

The existing literature on the regret analysis for the problem of stochastic bandits with dependent reward
observations is relatively scarce. Audiffren and Ralaivola (2015) consider a type of weak-dependent
process called a φ̃C−mixing. In the setting of the slow mixing scenario, they obtain an asymptotic regret

upper bound of order Θ̃
(
∆

α−2
α

∗,λ log
1
α (T )

)
, where the notation Θ̃(f) = g means that there exists γ, β > 0

so that |f | logβ(|f |) ≤ |g| and |g| logγ(|g|) ≤ |f |. Comparing the result of the Proposition 1 with the
bound of Audiffren and Ralaivola (2015), we observe an improvement in regret upper bounds in several
regards. First, our upper bound is not asymptotic in nature; it also depends explicitly on the gaps of all
suboptimal arms, while Audiffren and Ralaivola (2015) provide an upper bound in terms of the worst gap
only (which corresponds to the penalty term ∆∗,λ). Second, Corollary 4.3.10 gives an asymptotic bound,

which (in the case when the penalty term ∆
α−1
α

∗,λ log
1
2α (T ) has the largest impact on the bound) is better

by a polynomial factor in terms of the smallest gap and in the power of log-term of the time-horizon.
Also, the additive penalty term due to dependency from Theorem 4.3.8 does not scale with the number of
arms (which improves over the similar results of Audiffren and Ralaivola, 2015 for the particular case of
ϕ−mixing processes). Lastly, our analysis is provided for a broader class of weak-dependent processes,
which, as in its particular case it includes ϕ–mixing.

Furthermore, comparing our pseudo-regret upper bounds with the result by Grünewälder and Khaleghi
(2017) (Theorem 10 therein), we observe that in the fast–mixing scenario the latter scales in the same
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way (with a constant factor that depends on the sum of mixing coefficients) and has the same order of
magnitude in ∆k and T . However, our work contributes to the analysis of the slow–mixing scenario ( and
for a much general class of processes), which was not covered in Grünewälder and Khaleghi (2017) and
provides the matching (up to log terms) upper bound, showing optimality in the slow mixing scenario.

Remark 4.5.1. The pseudo-regret upper bounds from Theorem 4.3.8 cannot be obtained by simply using
the standard Improved-UCB algorithm while plugging-in variations of conditional Hoeffding’s concen-
tration inequalities with "worse" deviation rates (see, e.g., Bubeck et al. (2013) for heavy-tailed bandits).
With such an approach, one gets a penalty term with the worse rate inside the sum over suboptimal
arms, so that the pseudo-regret scales linearly with the number of arms. The surprising effect of addi-
tive contamination is specific to the weak-dependent scenario and the proposed strategy, exploiting the
knowledge of mixing coefficients and the number of arms in each epoch. For comparison, notice that
we can still use the fast mixing results in the slow mixing scenario, because T is finite and we can take
there M =

∑T
t=1 φC(t) (now growing with T ). Comparing the problem-independent upper bound of

Theorem 4.3.6 (standard Improved-UCB) with that of Theorem 4.3.12 (Algorithm 2), we observe that
Algorithm 2 gives better bounds. Namely, applying the standard Improved-UCB learning scheme in the
slow–mixing regime results in the regret upper bound in Theorem 4.3.6 being impacted by a multiplica-
tive scaling factor 1 +M ∼

∑T
t=1 φC(t) ∼ T 1/2−α. Disregarding the influence of the logarithmic terms,

this gives a bound of order T 1−α
√
K. This is worse than the bound of Theorem 4.3.12, which does not

have the scaling factor in the number of arms in the corresponding term.

4.5.3 Dependent setting with delays

We shortly highlight another setting, where the developed theory of pseudo-regret analysis is of interest.
Namely, we consider the case when there is intristic delay between dependent observations and actions.
Let τ > 0 be some integer number. Assume that because of various constraints, the learner makes the
choice It based not on immediate history, but on the outcomes observed up until time t − τ . This is a
specific case of the so-called delayed bandit problem, first studied for independent outcome observations
by Guha et al. (2010a). The effect of the delay in this setting is an additive penalty (depending linearly
on τ ) for the regret (see Joulani et al., 2013; and Desautels et al. (2014) for the case of Gaussian delayed
rewards). If we consider the case of arbitrary data sequences that are fixed in advance (i.e. the adversarial
bandit problem), Neu et al. (2013) showed a regret upper bound increased by a multiplicative factor in τ
with respect to the standard case (see also Joulani et al. (2013) for the more general problem with random
delay times). We present here the intermediate position of the random weakly dependent setting in the
delayed feedback bandit problem by considering the cases when the pseudo-regret is a good proxy for
the regret. Formally, we define an admissible τ−delayed policy I = (It)t≥1 as a function taking values
in {K} as follows:

It =

{
choose arm randomly if t < τ ;

It

(
X

It−τ

t−τ , . . . , X
I1
1 , I1, . . . , Iτ

)
if t ≥ τ.

(4.10)

In other words, by putting Yi := XIi
i for i ≥ 1 and recalling that FI

t := σ{Y1, I1, . . . , Yt, It} we assume
It to be FI

t−τ measurable. We now show that in the delayed feedback setting, the pseudo-regret is a
good approximation of the expected regret if the delay is large. Consider the expectation of the sample
rewards E

[∑T
t=1X

It
t

]
. By using the tower property and the definition of weak-C-mixing bandit instance
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we have:

E

[
T∑
t=1

XIt
t

]
=

T∑
t=1

K∑
k=1

E
[
XIt

t IIt=k

]
≥

T∑
t=1

K∑
k=1

E[(µIt − φC(τ))IIt=k] =

T∑
t=1

E[µIt ]− φC(τ)T.

By symmetry, we can apply the same reasoning and get the reverse bound. By uniting these contributions,
we get the two-sided control over E

[∑T
t=1X

It
t

]
:∣∣∣∣∣E

[ T∑
t=1

XIt
t

]
−

T∑
t=1

E
[
µIt

]∣∣∣∣∣ ≤ φC(τ)T, (4.11)

which, together with the definitions of expected regret and pseudo-regret implies that for any strategy πτ
(i.e., a choice of decision functions It adapted to the filtration Mt−τ )∣∣Rτ,P(πτ )−Rτ,P(πτ )

∣∣ ≤ φC(τ)T, (4.12)

where the index τ indicates the τ -delayed setting.
Thus is the delayed setting, if the coefficient φ(t) is small the pseudo-regret is a good proxy for the

expected regret Rτ,P(πτ , T ). In general, however, the question of true regret measure in the setting with
non-i.i.d. observations remains to be open.

4.6 Conclusions

In this chapter, we have examined the extension of the stochastic bandit problem to the case where the
bandit instance satisfies a weak-dependency assumption of a general kind. It characterizes the decay of
correlations between the past and the future of the process and is measured by φC−mixing coefficients.
Using the C-MIX UCB Algorithm, in many scenarios we recover (i.e., in the “fast mixing” case where
the mixing coefficients have either exponential or polynomial decay with power α > 1

2 ) we (up to an
absolute multiplicative constant which depends on the `1 norm of the sequence of mixing coefficients),
the same pseudo-regret upper bounds as in the independent data scenario.

Furthermore, even in the case where the processes are slowly mixing (i.e., when φC(t) ∼ t−α with
α < 1

2 ), the presented C-Mix UCB algorithm has the regret upper bound incurring only an additive
penalty compared with the independent outcomes scenario for problem-dependent upper bound. Under
certain conditions on the relation between the number of arms, the time horizon, and the mixing rate,
a proper choice of the threshold in the penalty allows recovery of the same regret upper bounds as for
independent data observations. In other regimes, our algorithm highlights the surprising effect that the
worst-case upper bound does not scale with the number of arms.

An interesting and non-trivial question for further study would be to approach directly the notion of
the expected regret in the dependent setting. Despite different attempts (see Grünewälder and Khaleghi
(2017) for the approach of approximation of the regret by means of the pseudo regret, Ortner et al.
(2014) for the analysis of different notions of the regret in the setting of Markovian outputs) to tackle
this problem, the optimal notion of the regret in the setting of dependent arm’s observations remains to
be unclear.
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4.7 Proofs of the main results of Chapter 4

4.7.1 Necessary toolbox for the proof of the main probabilistic result (Theorem 4.3.1)

To prove Proposition 4.3.1, we need an auxiliary probabilistic statement that may be of independent
interest. As in Section 4.2, we consider a stochastic bandit instance P such that for every a ∈ {K},
we have (Xa

t )t∈N is weak-mixing with rate φC(·) and that Assumption 1 holds. If (Xa
t )t∈N satisfies

weak-mixing condition 2.2.2 with rate φC(·), then for any T > 0, T ∈ N stochastic process Za
t :=(

Xa
t It≤T

)
also satisfies weak-mixing condition 2.2.2 with the same rate φC(·). Therefore, we can restrict

our attention to the processes indexed with the set N. Consider any stochastic process(Xt)t∈N via its
canonical version over (Ω,A,P) with Ω,A as in 4.3 and measure P which satisfies Equation (4.4) with
rate φC(·). Let (Ft)t≥1 be its canonical σ−algebra generated by a process

((
X

(a)
t

)
t≥1

, a ∈ {K}
)
. We

consider a sequence of stopping times (τs)s≥1 with respect to some filtration (At)t≥1. We consider also
the natural filtration of the bandit processes Ft = σ{Xa

u , a ∈ {K}, u ≤ t}, and for every a ∈ {K}
we consider Fa

t = σ(Xa
s , s ≤ t). For any s ∈ N, s ≤ send and τs ∈ N we denote the following

random process X̃t := Xτs+t. Consider the case where τs = t0 ∈ {T}, a stopping time. Consider a
regular conditional distribution PAt0

[·] = P[·|At0 ], and denote the corresponding conditional expectation
through EAt0

[·]. Remember that PAt0
:= PAt0 (ω)

is a random measure, and that we would like to
substitute the fixed measure P with this random measure in Definition 2.2.2.

Notice that the start τs of any epoch s is itself random. We show that the mixing property of process
(Xt)t≥1 transfers to the process X̃t.

Define the following set:

Aτs := {A ∈ A : A ∩ {τs ≤ t} ∈ At, ∀t ∈ {T}}. (4.13)

One can readily check that the set in Equation (4.13) is a σ− algebra. Furthermore, we notice that, if τs
is a stopping time and s ∈ N is some fixed number, then we have that τs + q is a stopping time. Define
the corresponding σ algebra as:

Aτs+q := {A ∈ A : A ∩ {τs + q ≤ t} ∈ At, ∀t ∈ {T}}. (4.14)

We make use of the following technical measure-theoretic result which prove is folklore and we
provide it below for completeness of the narrative.

Lemma 4.7.1. Let Z be an integrable real-valued random variable, defined over some probability
space (Ω,A,P) valued in (X,B(X)) ⊂ (R,B(R)) and Aτs ,Aτs+q are σ−algebras as defined in Equa-
tions (4.13) and (4.14). Then P−a.s. it holds that for any ` ∈ {T}

Iτs=`E[Z|Aτs+q] = Iτs=`E[Z|A`+q] (4.15)

Proof Notice that from the definition of the stopping time τs and because τs ∈ N we have {τs = `} ∈
A` ⊂ A`+q. It is also straightforward to check that {τs = `} ∈ Fτs . For any A ∈ A`+q ⊂ A it holds:

E[IAIτs=`E[Z|Aτs+q]] = E[IA∩τs=`E[Z|Aτs+q]]

= E[E[IA∩τs=`Z|Aτs+q]]

= E[IA∩τs=`Z]

= E[IA∩τsE[Z|A`+q]]

= E[IAIτs=`E[Z|A`+q]],

where in the second line we used the fact that IA∩τs is Aτs+q−measurable, in the third the law of total
probability and tower property in the fourth line. The latter equality implies that IAIτs=`E[Z|A`+q] is a
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version of IAIτs=`E[Z|Aτs+q] and the claim follows. �
For all q ∈ N \ {0} we have Aτs ⊂ Aτs+q. We denote by PAτs

:= P(·|Aτs) the regular conditional
distribution of P conditioned by the σ−algebra Aτs and define the conditional mixing coefficients with
respect to the random time τs as

φ
|τs
C (t, ω) = sup

q≥1

{∥∥EAτs
[Xτs+t+q|Aτs+q]− EAτs

[Xτs+t+q]
∥∥
L∞(P),

}
. (4.16)

We show that to control the random quantity φ|sC (t, ω) for P−almost all ω it is sufficient to control the
following non-random quantity

φsC(t) = sup
q≥1

{‖E[Xτs+t+q|Aτs+q]− E[Xτs+t+q|Aτs ]‖L∞(P)|}. (4.17)

We have the following result for the random time τs of the epoch s.

Lemma 4.7.2. Let (Xt)t∈N be an arbitrary stochastic process with distribution P over some measurable
space (Ω,A) and stopping τs with respect to filtration (At)t≥1. Let Aτs be as defined in (4.13); for every
t ∈ N it holds

φ
τs(ω)
C (t, ω) ≤ φsC(t).

Proof First, notice that for q ∈ N and Zq random variable over (Ω,A,P) we have
∥∥supq∈N Zq

∥∥
L∞(P) =

supq∈N‖Zq‖L∞(P). Thus, applying the latter expression toZq := EAτs
[Xτs+t+q|Aτs+q]−EAτs

[Xτs+t+q],
we have that in the expression for the conditional mixing coefficient, we can exchange the sup and ‖.‖∞
operations, which implies that

φ
|τs(ω)
C (t, ω) =

∥∥ sup
q≥1

{∣∣EAτs
[Xτs+t+q|Aτs+q]− EAτs

[Xτs+t+q]
∣∣}∥∥

L∞(P). (4.18)

Consider arbitrary C > 0 and let

A
(
ω, ω

′)
:=

{
sup
q≥1

∣∣EAτs
[Xτs+t+q|Aτs+q]− EAτs

[Xτs+t+q]
∣∣
(ω,ω′)

> C

}
, (4.19)

which is an event from the probability space
(
Ω2,A×Aτs ,P⊗ PAτs

)
. Notice that if P−a.s for every ω,

we have that PAτs (ω)
(A) = 0, then P−a.s. in ω: φ̃|τs(·)C (t, ·) ≤ C. By Fubini’s Theorem it is sufficient

to show that P⊗PAτs

(
A
(
ω

′
, ω
))

= 0. Notice that from the definition of regular conditional distribution
we have:

P⊗ PAτs
(A) = EP⊗PAτs

[
IA
(
ω, ω

′)]
= EP

[
EPAτs

[
IA
(
ω, ω

′)]]
= EP[IA(ω, ω)],

where the last quantity follows from the definition of regular conditional distribution PAτs (ω)
. Finally,

to show that EP[IA(ω, ω)] = 0 we apply the “diagonal extraction" principle for iterated conditional
distributions (see Theorem 6.21 in Kallenberg (2017)). We provide it below for completeness.

Theorem 4.7.3. [Theorem 6.21 of Kallenberg (2017)] For any probability space (Ω,A,P) and Borel-
generated σ−algebras F,G ⊂ A, we have that it holds for (A,P)-almost all ω ∈ Ω:

P(·|F)(·|G)(ω,ω) = P(·|G)(·|F)(ω,ω) = P(·|F ∨ G)(ω), (4.20)

where F ∨ G we define the smallest σ− algebra that contains both F and G.

Applying the result of Theorem 4.7.3 to the σ-algebras Aτs and Aτs+q (note that both of them are
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Borel generated by the canonical version of (Xt)t∈N over (Ω,Aτs) and (Ω,Aτs+q) correspondingly),
and noticing that Aτs ⊂ Aτs+s) we deduce that P-a.s.:

P(·|Aτs)(·|Aτs+q)(ω,ω) = P(·|Aτs+q)(ω),

therefore
EAτs

[Xτs+t+s|Aτs+s](ω,ω) = E[Xτs+t+s|Aτs+s](ω).

The latter implies that P− a.s. we have

A(ω, ω) = {sup
q≥1

|E[Xτs+t+q|Aτs+q]− E[Xτs+t+q|Aτs ]| > C},

and the claim of the Lemma follows by taking C = φ̃sC(t). �

Theorem 4.7.4. Let τs be the stopping time from the Equation (4.13), such that P[τs <∞] = 1. For all
t, q > 0 it holds that

‖E[Xτs+t+q|Aτs+q]− E[Xτs+t+q]‖L∞(P) ≤ φC(t).

Proof Denote Yτs+t+q := Xτs+t+q−E[Xτs+t+q]. Obviously Yτs+t+q is measurable w.r.t. the σ−algebra
Aτs+t+q and is a centered random variable. Because Iτs=` is Aτs−measurable for any ` ∈ {T} and
Aτs ⊂ Aτs+q for any q ≥ 1, we can write

E[Yτs+q+t|Aτs+q] = E

[∑
`∈T

Iτs=`Yτs+q+t|Aτs+q

]
=
∑
`∈T

Iτs=`E[Y`+q+t|Aτs+q].

Applying Lemma 4.7.1 to Z := Yτs+q+t = Xτs+q+t − E[Xτs+q+t], which is real-valued and defined on
the space (Ω,A,P) we have that it holds P−a.s :

E[Yτs+q+t|Aτs+q] =
∑
`∈{T}

E[Iτs=`Yτs+q+t|Aτs+q] =
∑
`∈{T}

Iτs=`E[Y`+q+t|Aτs+q]

=
∑
`∈{T}

Iτs=`E[Y`+q+t|A`+q] ≤
∑
`∈{T}

Iτs=`φC(t) = φC(t).

Therefore, we finally get:∥∥∥EAτs

[
X̃t+q

]
− E

[
X̃t+q

]∥∥∥
L∞(P)

= ‖E[Yτs+q+t|Aτs+q]‖L∞(P) ≤ φC(t),

and the claim is proved. �
Now we have all the ingredients to prove Proposition 4.3.1.

Proof of Proposition 4.3.1 Because the bandit instance P is weakly-mixing with rate φC(·) and As-
sumption 1 holds, we have that every process (Xa

t )t≥1 is C−weakly mixing with rate φC(·). For a

random time τs by Lemma 4.7.2 it holds that φ̃τs(ω)C (t, ω) ≤ φ̃sC(t). Thus, from the bound of Lemma
(4.7.2), triangle inequality, the result of Theorem 4.7.4 we have∥∥∥E[X̃t+q|Aτs+q

]
− E

[
X̃t+q|Aτs

]∥∥∥
L∞(P)

≤
∥∥∥E[X̃t+q|Aτs+q

]
− E

[
X̃t+q

]∥∥∥
L∞(P)

+
∥∥∥E[X̃t+q|Aτs

]
− E

[
X̃t+q

]∥∥∥
L∞(P)

≤ 2φC(t).
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Taking the supremum over all q ≥ 1, we obtain φC
s(t) ≤ 2φC(t), which, together with the bound

φ
τs(ω)
C (t, ω) ≤ φsC(t) from Lemma 4.7.2, implies the claim of the Proposition. �

4.7.2 Proof of Theorem 4.3.8

First, we prove the intermediate result, which ensures the optimal choice of the number of pulls in the
slow–mixing scenario for the given epoch s in the learning scheme of Algorithm 2.

Lemma 4.7.5. Consider any epoch s ∈ N; let θs, δs and Ω(θs, bs) be chosen as in Algorithm 2. Define
Bs as the set of active arms at the epoch s and ςs the corresponding pulling strategy. We assume that the
bandit instance is C−weakly mixing with the rate φC(t) = t−α, and α ∈ (0, 1/2). Furthermore, denote

c0 = ((1− α)(1/2− α))−1, c1 =
(
c0
80

) 2
1−2α , c3 = 12800c0 and send for the last possible epoch. If the

number of pulls Ts of each arm j ∈ Bs at the epoch s is chosen as

Ts = Ts,1 :=

⌈
32 log

(
ATθ2s

)
θ2s

⌉
, for bs ≥

(
32c−1

1 θ−2
s log

(
ATθ2s

)) 1−2α
2α ;

Ts = Ts,2 :=

⌈
1

bs

(
c3 log

(
ATθ2s

)
θ2s

) 1
2α
⌉
, for bs ≤

(
32c−1

1 θ−2
s log

(
ATθ2s

)) 1−2α
2α ;

then it holds that Ω(θs, bs) ≤ θs
2 for s ∈ {0, . . . , send}.

Proof Without loss of generality, we enumerate all arms in Bs as {1, . . . , bs}. For an arm j ∈ Bs we
pull it according to the equispaced schedule ςjs , defined as follows:

ςjs = (j, j + bs, . . . , j + (Ts − 1)bs).

The total number of pulls of every arm j during the epoch is
∣∣∣ςjs ∣∣∣ = Ts for each j ∈ {1, 2, . . . , bs}.

Notice that for 0 < α < 1
2 then we have

Ts∑
j=1

j−
3
2

j∑
`=1

φC(bs`) = b−α
s

Ts∑
j=1

j−
3
2

j∑
`=1

`−α ≤ c0b
−α
s T

1
2
−α

s ,

with c0 = ((1− α)(1/2− α))−1.
Thus, plugging this inequality into the confidence term Ω(θs, bs) from Algorithm 2 in the epoch s,

we deduce:

Ω(θs, bs) ≤ 2max
(
1, 80c0b

−α
s T 1/2−α

s

)√2 log(ATθ2s)

Ts
. (4.21)

Now, if bs >
(
32c−1

1 θ−2
s log

(
ATθ2s

)) 1−2α
2α , then 80c0b

−α
s T

1/2−α
s ≤ 1, so if we choose

Ts :=

⌈
32 log

(
ATθ2s

)
θ2s

⌉
and plug into Equation (4.21), we ensure that Ω(θs, bs) ≤ θ

2 .
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Similarly, if bs ≤
(
32c−1

1 θ−2
s log

(
ATθ2s

)) 1−2α
2α we have that 80c0b−α

s T
1/2−α
s > 1, so by choosing

Ts :=

⌈
1

bs

(
12800 log

(
ATθ2s

)
θ2s

) 1
2α⌉

,

we assure also that Ω(θs, bs) ≤ θ
2 . Therefore, the lemma is proved. �

Combining the choice of the number of pulls Ts given in Lemma 4.7.5, the theoretical argument that
the φC−mixing property of the processes (Xτs+t)t∈{T} is preserved under time-transform (provided that
τs is a stopping time), and making use of concentration bounds (4.6) for mixing samples collected during
each epoch, we now can prove the main result.

Proof of the Theorem 4.3.8. Recall that we denote for λ ≥ 0 the set Aλ as the set of suboptimal arms
i for which {∆i > λ} so that A0 is the overall set of suboptimal arms. Recall that ∆k := µ∗ − µk for
k ∈ A0 and we define ∆∗,λ = minj∈Aλ

∆j . For an epoch s consider confidence bound Ω(θs, bs) as in
Algorithm 2, where bs is the number of active arms during the epoch s. bs is random quantity, which
is FI

τs−measurable for every s, θs = 2−s. For the regret, we keep the dependence on the C−Mix UCB
Algorithm implicit and write RP(Cmix, T ) := RP(T ) = E

[∑
k∈A0

∆kNk(T )
]
=
∑

k∈A0
∆kE[Nk(T )];

the main target is to upper bound the number of pulls of each arm k ∈ A0. We suppress index T in
Nk(T ) for simplicity. For every suboptimal arm i, define mi := min{m ∈ N : θm ≤ ∆i

2 }. From the
definitions of mi and of θi it follows that ∆i

4 ≤ θmi <
∆i
2 ≤ θmi−1. Solving this as the inequality in 1

∆i
,

we get:

1

θmi

≤ 4

∆i
<

1

θmi+1
. (4.22)

We fix some best arm (which we later refer to as ∗) and denote by M∗ the first epoch when this optimal
arm ∗ has been eliminated. Note that it is possible that M∗ = ∞, and that it is enough to consider only
a certain optimal arm for the further analysis. Also, let mλ := min{m|θm < λ

2}, which implies that for
all i ∈ Aλ we have mi ≤ mλ.

For the arm k ∈ Aλ, let Mk be the (random) epoch at which arm k is eliminated. Consider the
following event:

Ek = {τmk+1 ≤ T,Mk ≤ mk} ∪ {τmk+1 > T}.

Notice that Ec
k = {τmk+1 ≤ T,Mk > mk}, which means that the arm k is eliminated after epoch

mk, and mk is finished. Using the definition of event Ek for each k ∈ Ek, and introducing an arbitrary
threshold λ > 0, we decompose the pseudo-regret into the following parts:

RP(T ) = E

∑
k∈A0

∆kNk

 =
∑
k∈A0

E[Nk]∆k

≤
∑
k∈Aλ

E[Nk]∆k + max
k∈A0\Aλ

∆kE

 ∑
k∈A0\Aλ

Nk


=
∑
k∈Aλ

E[Nk1{Ek}]∆k +
∑
k∈Aλ

E[Nk1{Ec
k}]∆k + max

k:A0\Aλ

∆kE

 ∑
k∈A0\Aλ

Nk

.
We analyze the contributions from each of the sums in the last inequality separately. Clearly, the last sum
can be bounded by T maxk:A0\Aλ

∆k.
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For every round k we consider whether the optimal arm is being eliminated before or after round of
“high probability elimination" of arm k (i.e., at mk). We have that first sum can be decomposed in the
following way:∑

k∈Aλ

∆kE[Nk1{Ec
k}] =

∑
k∈Aλ

∆kE[Nk1{Ec
k}1{M∗ < mk}] +

∑
k∈Aλ

∆kE[Nk1{Ec
k}1{M∗ ≥ mk}].

(4.23)

Consider the second sum on the right hand side in Equation (4.23). For a fixed arm k ∈ Aλ, the
confidence level of the epoch s is selected as δs = 1

Tθ2s
. For each k ∈ {K}, s ∈ {0, . . . , send} we

consider events Dk,s and E∗,s, whose complements are given as:

Dc
k,s := {k ∈ Bs, τs+1 ≤ T, µ̂k,s ≤ µk +Ω(θs, bs)},

Ec
∗,s := {∗ ∈ Bs, τs+1 ≤ T, µ̂∗,s ≥ µ∗ − Ω(θs, bs)},

where Ω(θs, bs) is as in Algorithm 2. We remark that conditions {τs+1 ≤ T} and either {k ∈ Bs} or
{∗ ∈ Bs} are added to assure that the computation procedure of Algorithm 2 can be formally completed
in the epoch s. By Proposition 4.3.1, the ordered set of samples that are collected during epoch s from
the process Xk

τs+t, k ∈ Bs satisfy, conditionally to the σ−algebra FI
τs , a weak-mixing assumption with

rate 2φC(t). Thus, we can apply (conditioned on the information given at the beginning of the epoch)
concentration inequality (4.6) for the weak-mixing processXk

τs+t to control the probabilities of the “bad"
events Dc

k,s, E
c
∗,s. The latter implies that we have that P−almost surely holds:

PFτs

[
Dc

k,s

]
≤ δs, PFτs

[
Ec

∗,s
]
≤ δs. (4.24)

For the moment, we are interested in the case where s = mk. Notice that the event 1{Ec
k}1{M∗ ≥ mk}

implies that arm k has not been eliminated until the epoch mk, while arm ∗ belongs to the set of active
arms Bmk

and the epoch mk has been completed. Furthermore, one can readily check that event Ec
k ∩

{M∗ ≥ mk} implies that the eventDc
k,mk

∪Ec
∗,s holds. To prove this, notice that on the event Ec

k∩{M∗ ≥
mk} it holds that τmk+1 ≤ T , ∗ ∈ Bmk

and k ∈ Bmk
. Now, if neither {µ̂k,mk

> µk + Ω(θs, bs)} nor
{µ̂∗,mk

> µ∗+Ω(θs, bs)} holds, then arm k will be eliminated at the end of epoch mk. Indeed, by using

Lemma 4.7.5 and Inequality (4.22), we have that Ω(θmk
, bmk

) ≤
θmk
2 ≤ ∆k

4 . This implies the following
chain of inequalities:

µ̂k,s +Ω(θmk
, kmk

) ≤ µk + 2Ω(θmk
, bmk

)

≤ µk +∆k − 2Ω(θmk
, bmk

)

= µ∗ − 2Ω(θmk
, bmk

) ≤ µ̂∗,s − Ω(θmk
, bmk

),

and the arm k is eliminated because of the scheme of Algorithm 2. Therefore, we have Ec
k ∩ {M∗ ≥

mk} ⊂ Dc
k,mk

∪ Ec
∗,mk

. Furthermore, notice that by conditioning on the σ−algebra Fτmk
of the events

preceding the epoch mk, we get:

E[1{Ec
k}1{M∗ ≥ mk}] = E

[
EFτmk

[1{Ec
k}1{M∗ ≥ mk}]

]
≤ E

[
PFτmk

[
Dc

k,mk
∪ Ec

∗,mk

]]
≤ 2

ATθ2mk

,

where in the last inequality we used the union bound over events Ec
∗,mk

, Dc
k,mk

, their control by means
of (conditional) concentration inequality for the samples collected during the epoch mk. Thus, bounding
the number of pulls Nk trivially by T and plugging in the bound on the E[1{Ec

k}1{M∗ ≥ mk}], we
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obtain for this part of the pseudo-regret the following upper bound:∑
k∈Aλ

∆kE[Nk1{Ec
k}1{M∗ ≥ mk}] ≤

∑
k∈Aλ

∆kT
2

ATθ2mk

≤ 32

A

∑
k∈Aλ

1

∆k
,

where in the last inequality we used the relation (4.22) between θmk
and ∆mk

. We focus now on the first
sum term in the right hand side of Equation (4.23). By changing the order of summation over the epochs
and counting the regret from the active arms in each epoch s (which is at most 2θs for every arm) and
upper bounding the number of rounds by T , we obtain:∑

k∈Aλ

∆kE[Nk1{Ec
k}1{M∗ < mk}] ≤

∑
k∈Aλ

∆k

∑
s<mk

E[Nk1{M∗ = s}1{τmk+1 ≤ T,Mk > mk}]

=

mλ∑
s=0

∑
k:mk>s

∆kE[Nk1{M∗ = s}1{τmk+1 ≤ T,Mk > mk}]

≤
mλ∑
s=0

2θsE

[
1{M∗ = s}1{τs+1 ≤ T}

∑
k:mk>s

Nk

]

≤ 2

mλ∑
s=0

TθsP[M∗ = s, τs+1 ≤ T ].

Recall that through Bs we denote the set of active arms at the epoch s and bs is its cardinality. Because
the event M∗ = s means that the optimal arm was eliminated by some active arm k in the epoch s, we
have

P[M∗ = s, τs+1 ≤ T ] ≤ E

1{∗ ∈ Bs, τs+1 ≤ T}
∑
k∈Bs

1{µ̂k,s > µ̂∗,s + 2Ω(θs, bs)}


≤

∑
k:mk≥s

E
[
1{k ∈ Bs; ∗ ∈ Bs; τs+1 ≤ T, µ̂k,s > µ̂∗,s + 2Ω(θs, bs)}

]

+ E

 ∑
k:mk<s

1{∗ ∈ Bs; k ∈ Bs, τs+1 ≤ T}


≤

∑
k:mk≥s

E
[
EFτs

[
1{k ∈ Bs; ∗ ∈ Bs; τs+1 ≤ T, µ̂k,s > µ̂∗,s + 2Ω(θs, bs)}

]]
+

∑
k:mk<s

E
[
EFτmk

[1{∗ ∈ Bs; k ∈ Bs, τs+1 ≤ T}]
]

≤
∑

k:mk≥s

2

ATθ2s
+

∑
k:mk<s

E
[
PFτmk

[Ec
k ∩ {M∗ ≥ mk}]

]
≤

∑
k:mk≥s

2

ATθ2s
+

∑
k:mk<s

2

ATθ2mk

,

where we used tower property for expectations, and that for conditional probabilities it holds almost
surely

PFτs

[
k ∈ Bs; ∗ ∈ Bs; µ̂k,s > µ̂∗,s + 2Ω(δs, ςs)

]
≤ PFτs

[
Dc

k,s ∪ Ec
∗,s
]
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as well as
PFτmk

[Ec
k ∩ {M∗ ≥ mk}] ≤ PFτmk

[Ec
k] ≤ PFτmk

[
Dc

k,mk
∪ Ec

∗,mk

]
and the control of the event’s probabilities in the epoch s given by Equation (4.24). Plugging this bound
into the previous result and using the definition of the sequence θs, we obtain the following upper bound:

2

mλ∑
s=0

TθsP[M∗ = s, τs+1 ≤ T ] ≤ 4

A

mλ∑
s=0

θs

 ∑
k:mk≥s

1

θ2s
+

∑
k:mk<s

1

θ2mk


≤ 4

A

∑
k∈A0

 ∑
s≤mk∧mλ

1

θs
+

1

θ2mk

mλ∑
s=mk+1

θs


≤ 8

A

∑
k∈A0

(
1

θmk∧mλ

+
1{mk ≤ mλ}

θmk

)

≤ 64

A

∑
k∈Aλ

1

∆k
+

∑
k∈A0\Aλ

1

λ

,
Gathering upper bounds for each sum in Equation (4.23), we obtain:∑

k∈Aλ

∆kE[Nk1{Ec
k}] ≤

96

A

∑
k∈Aλ

1

∆k
+

64

A

∑
k∈A0\Aλ

1

λ
. (4.25)

Finally, for the contribution of E
[∑

k∈Aλ
Nk1{Ek}∆k

]
, we provide the arguments for the quantity

under expectation which holds P− a.s. First, notice that on the event 1{Ek}, each arm is pulled until
it is eliminated at the latest at the epoch mk. Thus, recalling that for any i ∈ Aλ ∆i ≤ λ and using
simply Ts ≤ Ts,1 + Ts,2 (where Ts,1, Ts,2 are given by Lemma 4.7.5), we can write the following chain
of inequalities, which hold almost surely:

∑
k∈Aλ

Nk1{Ek}∆k =
∑
k∈Aλ

send∧mλ∑
s=0

∆kTs1{Ek}1{k ∈ Bs} ≤
∑
k∈Aλ

send∧mλ∑
s=0

∆k(Ts,1 + Ts,2)1{Ek}1{k ∈ Bs}

≤
∑
k∈Aλ

∆k

s end∧mλ∑
s=0

Ts,11{Ek}1{k ∈ Bs}+
send∧mλ∑

s=0

2θsTs,2
∑
k∈Aλ

1{k ∈ Bs}1{Ek}

where in the second sum we exchanged the sums over the arms and over the contribution of each
epoch, used the fact that for the arm k active in the epoch s we have that s ≤ mk and thus we pay
a regret of order at most 2θs by pulling this arm. For the second sum, we observe that the sequence

(θs)
1− 1

α
(
log
(
ATθ2s

)) 1
2α is monotonically increasing for all s ≤ s end with ratio at least 6

5

(√
12
5

) 1
α
−2

and that ∑
k∈Aλ

1{k ∈ Bs}1{Ek} ≤ bs.
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Therefore, we can write:

send∧mλ∑
s=0

2θsTs,2
∑
k∈Aλ

1{k ∈ Bs}1{Ek} ≤ 4

send∧mλ∑
s=0

θs

(
c3 log

(
ATθ2s

)
θ2s

) 1
2α 1

bs

∑
k∈Aλ

1{k ∈ Bs}1{Ek}

≤ 4c3
1
2α

s end∧mλ∑
s=0

θ
1− 1

α
s

(
log
(
ATθ2s

)) 1
2α

≤ 4c3
1
2α c4θ

1− 1
α

s end∧mλ+1

(
log
(
ATθ2s end∧mλ+1

))
≤ 2

1
α
+1c4c

1
2α
3

(
∆∗,λ
4

)1− 1
α
(
log

(
AT

4
∆2

∗,λ

))
,

where we used c3 as in Lemma 4.7.5 set c4 = 1

1.2∗
√
2.4

1
α−2−1

and used the definition of Ts,2 from

Algorithm 2, and that the contribution of the regret of active arm k ∈ Aλ is at most θmλ
≤ ∆∗,λ

4 at the
end. For the first sum, by plugging in the expression for Ts,1 ≥ 1 and using the assumption that in epoch
s we sum up the contributions of the regret of the arms k which have not been eliminated until round
mk, we get:

∑
k∈Aλ

∆k

s end∧mλ∑
s=0

Ts,11{Ek}1{k ∈ Bs} ≤ 2
∑
k∈Aλ

∆k

s end∧mλ∑
s=0

32 log
(
ATθ2s

)
θ2s

1{Ek}1{k ∈ Bs}

≤ 64
∑
k∈Aλ

∆k

s end∧mλ∑
s=0

θ−2
s log

(
ATθ2s

)
1{Ek}1{k ∈ Bs}

≤ 256
∑
k∈Aλ

∆kθ
−2
mk

log
(
ATθ2mk

)
≤ 1024

∑
k∈Aλ

∆−1
k log

(
AT∆2

k

)
,

where in the last line we used the geometrical increase of the series θs log
(
ATθ2s

)
and the relation (4.22)

between θmk
and ∆k.

Summing up all the terms, we have the following upper bound:

∑
k∈Aλ

E[Nk1{Ek}]∆k ≤
∑
k∈Aλ

1024∆−1
k log

(
AT∆2

k

)
+ 2−

1
α
+3c4c

1
2α
3 (∆∗,λ)

1− 1
α

(
log
(AT∆2

∗,λ
4

)) 1
2α
.

(4.26)

Summing up the individual contributions of inequalities (4.26) and (4.25), we obtain

RP(T ) ≤ 2
∑
k∈Aλ

(
∆k +

96

A

1

∆k
+ 512∆−1

k log
(
AT∆2

k

))

+ 2−
1
α
+3c4c

1
2α
3︸ ︷︷ ︸

c̃

(∆∗,λ)
1− 1

α
(
log
(AT∆2

∗,λ
4

)) 1
2α +

64

A

∑
k∈A0\Aλ

1

λ
+ T max

k:A0\Aλ

∆k.

Finally, by noticing that ∆k ≤ 1, we imply the statement of the Theorem. �

4.7.3 Proof of Theorem 4.3.12

Proof We give the main argument while using constants C1, C2 relatively arbitrary. First, for any choice

λ > 1
2

√
e1/2

T , we have that C1
∑

k∈Aλ

log
(
AT∆2

k

)
∆k

+
∑

k∈A0\Aλ

1
λ ≤ C̃K log T

λ (where constants C1 and C̃
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are some numerical constants which are not further precised). Furthermore, from the definition of ∆∗,λ,
because 1− 1

α < 0 we have for any λ > 0

∆
1− 1

α
∗,λ

(
log
(
AT∆2

∗
)) 1

2α < λ1−
1
α (log T )

1
2α .

Thus, we obtain the following worst-case bound:

RP(T ) ≤
K log(AT )

λ
+ λ

α−1
α (log(T ))

1
2α + λT. (4.27)

Now with α ∈ [0, 12) we consider two different scenarios depending on the relation between K and T . If

K < T 1−2α, then, as one can readily check, by setting in this case λ = T−α log
1
2 (T ) > 1

2

√
e1/2

T (which
is an admissible choice according to the Theorem 4.3.8), we obtain:

RP(T ) ≤ C1T
1−α(log T )

1
2α ,

where C1 is some numerical constant.

When K > T 1−2α by setting λ =
√

K
T > 1

2

√
e1/2

T , we get the following bound:

RP(T ) ≤ C2

√
TK log(T ),

as in this case the second term from Equation (4.27) dominates the bound. Combining these results and
taking C3 = max{C1, C2} we obtain the claim of the Theorem. �

4.7.4 Proof of Proposition 4.4.1

Without loss of generality, we suppose that random rewards are bounded in [−1, 1]. Recall that we use
{K} = {1, . . . ,K}. For 0 ≤ i ≤ K, we construct the stochastic bandit environment Bi in the following
way.

For the arm a ∈ {K} we consider the bandit instance Ba = νa1 ⊗ . . . νaK , where we set

νai = m0

(
R

(
1

2

)
Ia6=i + R

(
1

2
+ ε

)
Ia=i

)
,

where R(p) is Rademacher distribution with parameter p, i.e. R(p) = (1 − p)δ−1 + pδ1; ε = 1/8 and
m0 are set to be T−α. In every bandit i for each arm a ∈ {K}, we assume that the sample rewards
are "frozen" from the beginning and drawn from the distribution νai . More precisely, for the process
(Xa

t ) attached to the arm a in bandit Bi we define Xa
t+`(ω) = Xa

t (ω) ∼ νai for every ` ≤ T , i ∈
{0, . . . ,K}, a ∈ {K}. One can readily check that processXa

t satisfies Definition 2.2.2 with rate φC(t) =
2t−α. Furthermore, for a sample Xa

t ∼ νai from arm a in bandit Bi we have E[Xa
t ] = 2εm0 =

1
4T

−α if
a = i, and E[Xa

t ] = 0 otherwise.
For the arm a define the following event:

Ea = {Na ≤ cT},

where c > 0 is some small universal constant and Na =
∑T

t=1 IIt=a. We have that under bandit instance
PB0 :

T = EB0

[
K∑
a=1

Na

]
≥

K∑
a=1

E[Na|Ec
a]PB0 [E

c
a] ≥ cTK min

a∈{K}
PB0 [E

c
a].
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Now since PB0 [E
c
a] = 1− PB0 [Ea], we have that

max
a∈{K}

PB0 [Ea] ≥ 1− 1

cK
≥ 1− 1

2c
,

where the last inequality holds since K ≥ 2.
Denote a0 = ArgMax

a∈{K}
PB0 [Ea]. For the event Ea0 in bandit Ba0 , by using the change of measure

principle between two Rademacher distributions we have:

PBa0
[Ea0 ] = EB0

[
IEa0

exp

(
Xt

2m0
log

(
1 + 2ε

1− 2ε

)
+

1

2
log

(
1 + 2ε

1− 2ε

))]
≥ EB0

[
IEa0

exp

(
−m0

2m0
log

(
1 + 2ε

1− 2ε

)
+

1

2
log

(
1 + 2ε

1− 2ε

))]
= PB0 [Ea0 ] ≥ 1− 1

2c
.

Therefore, for the regret under bandit Ba0 we get

EBa0
[RP(T )] ≥ EBa0

[RP(T )|Ea0 ]PBa0
[Ea0 ] ≥ T (1− c)2εm0PBa0

[Ea0 ]

≥ 1− c

4

(
1− 1

2c

)
T 1−α ≥

(√
2− 1

)
8

T 1−α,

which implies the bound on the minimax regret.
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Chapter 5

Concentration inequalities for
weakly-dependent stationary random
fields

In this chapter we consider the interesting phenomenon of concentration of weakly-dependent random
fields of possibly high dimension. More precisely we posit a general weak-dependency assumption of
a projective kind which can be seen as an extension of the mixingale concept to the case with d ≥ 2.
Based on the martingale-approximation technique and a tree-like ordering of the elements of the integer
grid in high dimension, we develop a toolbox (in terms of exponential concentration inequalities and
type of Burkholder’s inequality). These results extends theoretical results due to Dedecker (1991) for
dependent random fields. The results of this chapter is a joint work with Gilles Blanchard and Alexandra
Carpentier.

5.1 Introduction

The problem of establishing concentration inequalities for the functionals of stochastic process (Xt)t∈T ,
distributed according measure P over its sample space becomes more complicated when the measure P
is not a product measure. In this case one needs to quantify the dependency between the marginals of P.
As mentioned in Chapter 2 several works have been done toward the study of the dependent case - either
through introducing the notion of mixing coefficients Rosenblatt (1956),Ibragimov (1959),Bradley et al.
(1987), or the so-called weak-dependency assumption (Dedecker, 1991; Dedecker et al., 2007). The
problem of establishing even the asymptotic results under dependency conditions is already interesting
for Z :=

∑
t∈TXt, where T is some subset of some vector space and (Xt)t∈T is a stochastic process on

(Ω,F,P), valued in some normed space (B, ‖·‖). When T ⊂ Z we recover the case of partial sums of
stochastic processes, while in case T ⊂ Zd (or more general T ⊂ X, where X is some vector space) we
recover the case of B− valued random fields. We refer to case when T is some general subspace of a
metric space as to the case of B−valued random fields.

In this chapter we study the properties of the deviations of partial sums of real-valued random fields
(Xt)t∈T where T ⊂ Nd, T is a finite rectangle. Many works have been devoted to the study of the
asymptotic properties of functions of random fields, and in particular functional central limit theorems,
and instance of the law of iterated logarithm, were considered when T is a rectangle in Nd. Typically,
existing works either consider the case where the underlying random field is a (non-linear) transformation
of some i.i.d. random field - see Hannan (1973),Wu (2005) - or study the case of a general random
field for which a martingale-type assumption on the structure of the underlying σ−field is used. There
are various ways to define martingales in dimension larger than 1 - see e.g. Nahapetian and Petrosian
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(1992), Cairoli (1969). A common approach is to consider a stationary random field with a so-called
commuting filtration assumption - originally introduced in Fazekas (1983). In this direction, CLT-type
results for random fields which are (nonlinear) transformations of i.i.d. random fields are studied in
Jirak (2016) for the case d = 1 and Giraudo (2018). Furthermore, the weak invariance principle and
the law of iterated logarithm are studied in Giraudo (2020). The CLT type results under the assumption
that the underlying process consists of pairwise mixing martingale differences - which is satisfied under
projective-type of weak-dependency assumption given in this work - is established in Peligrad and Utev
(1997). Among many types of conditions the type of projective Lp−condition (Dedecker (1991)) is,
to the best of our knowledge, the most general type of assumption when the underlying random field
is stationary. Concentration and asymptotic properties of the weighted sums of random fields under
this condition are studied in Theorem 1 and Proposition 2 in Dedecker (1991). In that work, a type of
martingale-approximation principle is used while using reordering of the random field in Zd - which is in
some sense unavoidable for martingales in d > 1. In the case d = 1 a general result (a Burkholder-type
inequality) is obtained for stationary stochastic processes in Peligrad et al. (2006) where the bound is
expressed in terms of conditional expectation of sums with respect to increasing fields of σ−algebras.

To the best of our knowledge, in dimension d > 1 Burkholder’s and Azuma-Hoeffding type in-
equalities of the paper Dedecker (1991) (Proposition 1a) and Corollary 3a) therein) provide the best
known upper bounds in the case of general random fields. We notice that sharp Burkholder’s bounds
and exponential deviation bounds in case d = 1 are established in Theorem 1 and Proposition 2 under
Lp−projective type assumption for conditional expectations in Peligrad et al. (2007). In our work we
consider a stronger projective type assumption than in Dedecker (1991) and under this assumption we
prove sharp exponential deviation inequalities and Lp bounds for partial sums of random fields indexed
by rectangles in Nd.

To specify the setting, let R =
∏d

i=1{0, . . . , ni} be the d−dimensional rectangle with lower left
corner in (0, 0, . . . , 0). We pose the definition of projective weak-dependency assumption below.

Assumption 1. Consider a random field (Xt)t∈Nd R =
∏d

i=1{0, . . . , ni}, p ∈ [2,+∞], ni ∈ N be
defined over probability space (Ω,F,P). We assume that it satisfies the following weak-dependency
assumption :

‖E[Xt|Mt,r]− E[Xt]‖p ≤Mpϕp(r), (5.1)

where Mt,r := σ{Xu : ‖u− t‖d,∞ ≥ r}, r ≥ 0, ϕp(·) is a non-increasing function, ϕp(0) = 1 and
Mp = ‖Xt − E[Xt]‖p. We say that the random field is polynomially weakly-dependent if Equation (5.1)
holds with ϕp(r) = r−αand that it is exponentially weakly-dependent if Equation (5.1) holds with
ϕp(r) = exp(−γr), where γ > 0 is some constant.

Definition 1 defines the dependence coefficient which decays as the distance between Xt and the
information ‘available’ through the conditioning - represented by the σ− field Mt,r) - increases. In the
case of a discrete stochastic process (which can be seen as a the random field in dimension 1) Definition 1
is an extension of a projective type of dependence assumption - see ex. Dedecker and Merlevede (2015)
- for d ≥ 2. Note that the weak-dependency condition 5.1 with p ≥ 2 implies that the field (Xt)t∈D is
bounded in Lp−norm.

5.1.1 Overview of the main results of the chapter

In this chapter we discuss two main contributions. On the one side we provide non-asymptotic high-
probability tail upper bounds for the deviations of partial sums of random fields. On the other side we
derive Burkholder-type inequality for the pnorm, p ≥ 2 of the partial sums SR :=

∑
t∈RXt. In both

cases the bound is expressed as a multi-scale expansion which depends (in terms of a multiplicative
constant) on the weak-dependency coefficient based on the distance between consecutive elements on
every scale. In the case when ϕp(r) = r−α and the random field is defined over the cube D = {n}d0 :=
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{0, . . . , n − 1}d In the case when ϕp(r) = r−α and the random field is defined over the cube D =

{n}d := {0, . . . , n−1}d, weak-dependency assumption 5.1 is satisfied for p = ∞ we have the following
result. For any δ ∈ (0, 1] with probability at least 1− δ it holds∣∣∣∣∣N−1

∑
t∈D

(Xt − E[Xt])

∣∣∣∣∣ ≤ Cα,dM∞N
−
(
1
2
∧α

d

)
KN

√
log(1/δ), (5.2)

where N = nd, Cα,d is some numerical constant and KN = 1 + Iα=d/2 log
d/2
2 (n)(ln(log2(n)))

d/2. If
weak-dependency assumption (5.1) holds with some 2 ≤ p <∞, we have∥∥N−1

∑
t∈D

(Xt − E[Xt])
∥∥
p
≤ Cα,dMp

√
pKNN

−
(
1
2
∧α

d

)
. (5.3)

This chapter is organized as follows. In Section 5.2 we introduce the setting and necessary notation.
Our main results are stated and proved is Section 5.3. In Section 5.4 we compare them to the known
bounds under different dependence measures. The multidimensional hierarchical martingale construc-
tion and proofs of supplementary technical lemmata are postponed to the last section.

5.2 Notations

Let D ⊂ Nd be a finite subset of Nd endowed with the standard supremum norm, i.e. for x, z ∈ D

we write ‖x− y‖d,∞ = max1≤i≤d|xi − yi|. For a stochastic process (Xt)t∈D we consider its canonical
version over the probability space

(
RD,B

(
RD
)
,P
)
; in this case X is the identity map X : RD 7→ RD

and Xt(ω) is a projection RD 7→ R on the coordinate t ∈ D. We refer to the set of all coordinate
projections (Xt)t∈D as to the random field. We denote SD :=

∑
t∈DXt − E[Xt] for the centered partial

sum of (Xt)t∈D. We use w.p. as the short form of "with probability" and a∧ b, a∨ b to denote minimum
and maximum of any real numbers a, b correspondingly. As usual under dae, [a],bac we understand ceil,
integer and floor part of a number a ∈ Z. For any k ∈ N we denote {k}0 := {0, . . . , k − 1} if k ≥ 1
and {k}0 = {∅} if k = 0; denote also {k} := {1, . . . , k} for k ≥ 1. Furthermore, for a d−dimensional
set A ⊂ Nd, we denote its cardinality as |A|. For a set A ⊂ Nd, a ∈ R, b ∈ Nd under aA we understand
the set {ae : e ∈ A} ⊂ Nd and under b + A we understand the set {b + e : e ∈ A} ⊂ Nd. Finally,
for any collection of sets (At)t∈T, At ⊂ Nd for any (i, j) ∈ T⊗2 under Ai + Aj we understand the set
{e1 + e2 : e1 ∈ Ai, e2 ∈ Aj} and if the collection (At)t∈T is disjoint, so under

⊎
t∈TAt we understand

their disjoint union.

5.3 Main results

In this section we prove the main results for the case of random fields indexed by an arbitrary rectangle
in Nd.

Theorem 5.3.1. Let R =
∏d

i=1{Ni}0 be a d-dimensional rectangle of sidelengths Ni ≥ 1, i ∈
{1, . . . , d}, and m(R) := maxi=1,...,dblog2Nic. Let δ = (δk)k≥1 be a fixed sequence of integers such
that

m(R)∑
k=1

δk2
−k ≤ 1

4d2
. (5.4)

Let (Xt)t∈Nd be a random field such that Assumption 1 is satisfied for some p ∈ [2,∞].

• if p ∈ [2,∞), then
‖SR‖p ≤ Cp,dΨp(δ,R),
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with Cp = 4
√
p;

• if p = ∞, then for any δ ∈ (0, 1] with probability at least 1− δ:

|SR| ≤ C∞Ψp(δ,R)

√
log

(
1

δ

)
,

with C∞ := 10,

where (putting δ0 = 0)

Ψp(δ,R) := 2Mp

√
|R|
(
1 + ϕp(1) +

m(R)+1∑
k=1

ϕp

(
δk−1 + 1

)√
|Ck,0 ∩ R|

)
,

with Ck,0 :=
{
2k
}d
0
.

Proof We proof the claim by induction on the size of the rectangle R. We consider the case p <∞ only;
the arguments for the case p = ∞ are the same and follow by exchanging the p−norm by subgaussian
norm (i.e. the quantity which is defined as ‖X‖SG := infc>0{E[exp(λX)] ≤ exp

(
λ2c2

2

)
, λ > 0} ) and

using convertion from subgaussian norm to the exponential probability bound. For R reduced to a single
element 0, the claim obviously holds. Now, assume the claim is established for any rectangle R′ ( R.
We use the following construction to obtain the sharp bound for the deviations of partial sums of the
processes. For any integer δ < 2k let

Λk,δ := 2kN>0 + {δ}0. (5.5)

Let δ = (δk)k≥1 be a fixed sequence of integers with δk ≤ 2k, k ≥ 1. Define

Λδ :=
⋃
k≥1

Λk,δk Fδ := (N \ Λδ)
d; Fc

δ := Nd \ Fδ. (5.6)

We call Fδ the “framed set” and Fc
δ the “frame”. For the set A ⊂ Nd we use the decomposition into

R = R ∩ (Fδ ∪ Fc
δ) and by triangle inequality

‖SR‖p ≤ ‖SR∩Fδ
‖p +

∥∥∥SR∩Fc
δ

∥∥∥
p
.

By Proposition 5.5.5 we have ‖SR∩Fδ
‖p ≤ Cp,d

2 Ψp(δ,R). For the second term, we first decompose Fc
δ

as a disjoint union of product sets, writing Λc
δ := N \ Λδ, as:

Fc
δ = Nd \ (Λc

δ)
d =

d⊎
i=1

∆i, ∆i :=

i−1∏
j=1

Λc
δ × Λδ ×

d∏
j=i+1

N

,
therefore, by the triangle inequality,

∥∥∥SR∩Fc
δ

∥∥∥
p
=

∥∥∥∥ d∑
i=1

SR∩∆i

∥∥∥∥
p

≤
d∑

i=1

‖SR∩∆i
‖p. (5.7)

We introduce the following notation. For a set B ⊂ N, and an integer j ∈ {|B|}0, denote j : B

the (j + 1)-th element of B in increasing order. For a product set A =
∏d

i=1Ai, and a d-tuple t =
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(t1, . . . , td) ∈ K(A) :=
∏d

i=1{|Ai|}0, denote t : A = (t1 : A1, . . . , td : Ad), and the “compressed”
version of the restriction of the process (Xt)t∈Nd to K(A) as

X̃
(A)
t = Xt:A, t ∈ K(A) S̃

(A)
K(A) :=

∑
t∈K(A)

X̃
(A)
t = SA. (5.8)

Since ∆i is a product set, so is R ∩ ∆i, and we can apply the above ’“compression principle”’. Using
assumption (5.4), the side-length of the compressed version of R ∩∆i along direction i is bounded by

|Λδ ∩ {Ni}0| ≤

∣∣∣∣∣ ⋃
k≥1

Λk,δk ∩ {Ni}0

∣∣∣∣∣ ≤
blog2(Ni)c∑

k=1

⌊
Ni

2k

⌋
δk ≤ Ni

m(R)∑
k=1

2−kδk ≤ Ni

4d2
,

while for j 6= i the side-lengths are bounded by Nj , hence

|R ∩∆i| ≤
|R|
4d2

. (5.9)

By Lemma 5.5.6 process
(
X̃

(R∩∆i)
t

)
t∈Nd satisfies weak-dependency condition (5.1). Applying the in-

duction hypothesis to the process
(
X̃

(R∩∆i)
t

)
t∈Nd over the rectangle K(R ∩∆i), we obtain

‖SR∩∆i‖p =
∥∥S̃(R∩∆i)

R∩∆i

∥∥
p
≤ CpΨp(δ,K(R ∩∆i)). (5.10)

We estimate this upper bound using (5.9) and straightforward cardinality bounds via:

Ψp(δ,K(R ∩∆i)) = 2Mp

√
|R ∩∆i|

(
1 + ϕp(1) +

m(K(R∩∆i))+1∑
k=1

ϕp

(
δk−1 + 1

)√
|Ck,0 ∩K(R ∩∆i)|

)

≤ 1

d
Mp

√
|R|
(
1 + ϕ(1) +

m(R)+1∑
k=1

ϕp

(
δk−1 + 1

)√
|Ck,0 ∩ R|

)
=

1

2d
Ψp(δ,R). (5.11)

Finally using ‖SR∩Fδ
‖p ≤

Cp,d

2 Ψp(δ,R), Proposition 5.5.5, (5.7), (5.10), (5.11), we obtain

‖SR‖p ≤
1

2
CpΨ(δ,R) +

d∑
i=1

1

2d
CpΨp(δ,R) ≤ CpΨp(δ,R),

and the induction claim is proved.
�

Now, for a cube D = {n}d0, given the particular weak-dependency rate ϕp(t) we choose the sequence
δ = (δk)k≥1 such that criterion is fulfilled and the value on the rhs of function Ψp(δ,R) is close to its
minimum. This leads to the following result which gives the deviation rates for uniform cubes.

Corollary 5.3.2. Let D = {n}d0 be a d−dimensional cube with the side-length n and m(D) = blog2 nc.
Consider a random field (Xt)t∈Nd which satisfies the weak-dependency Assumption 1 for a given p ∈
[2,+∞] with the rate ϕp(·). Then

• If p ∈ [2,+∞) and rate ϕp(t) = t−α, α > 0,

‖SD‖p ≤ C
(1)
p,dMpn

d−
(

d
2
∧α

)
if α 6= d/2 ‖SD‖p ≤ C

(2)
p,dMpn

d
2 (log2 n)

d
2 if α = d/2, (5.12)

123



where C(1)
p,d := 4

√
p
(
1 + ϕ(1) + 2

d
2 + d2α2d(

1−2
d/2−α
1+α

)1+α

)
, C(2)

p,d := 4
√
p
(
2d/2 +

(
2
√
2
)d)

• If p = ∞ then we have

‖SD‖SG ≤ C
(1)
p,dMpn

d−
(

d
2
∧α

)
if α 6= d/2 ‖SD‖SG ≤ C

(2)
p,dMpn

d
2 (log2 n)

d
2 if α = d/2,

(5.13)

Furthermore, if the decay rate of weakly-dependent coefficients is φp(t) = exp(−γtη) then we have the
rate ‖SD‖p ≤MpCp,d,γ,ηn

d/2, where p ∈ [2,+∞] and some numerical constant Cp,d,γ,η > 0.

Proof Notice that for the cube D = {n}d0 as a direct consequence from Theorem 5.3.1 we have that
for the rate ϕp(t) = tα it is sufficient to choose δ such that constraints 5.4 is fulfilled and Ψp(δ,D) :=

Mp

√
nd
(
1 +

∑blog2 nc+1
k=1 (δk−1 + 1)−α

√
2kd
)

, δ0 = 1 is close to its minimum. Using Lagrange multi-
plier method to solve the constrained optimization problem

min(
δ̃k≥1

)
m∑
k=1

δ̃−α
k 2

kd
2 , s.t.

m∑
k=1

δ̃k
2k

≤ 1

4d2

where m = blog2 nc, we obtain δ̃j = 2
j
d
2+1

1+α

4d2
∑m

k=1 2

k
(
d
2−α

)
1+α

, 1 ≤ j ≤ m. Taking δj := bδ̃jc one readily

checks that Equation (5.4) is satisfied. Furthermore, with this choice of δ = (δj)j≥1 we have

Ψp(δ,D) ≤ 2Mp

√
nd
(
1 + 2

d
2

(
1 +

(
4d2
)α( m∑

k=1

2
k

(
d
2−α

)
1+α

)1+α))

Now if α > d
2 then Ψp(δ,D) ≤ 2Mp

√
nd
(
1 + ϕ(1) + 2

d
2

(
1 + d2α2

d
2(

1−2
d/2−α
1+α

)1+α

))
.

If α < d
2 then

Ψp(δ,D) ≤ 2Mp

√
nd
(
1 + 2

d
2

(
1 + ϕ(1) +

d2α2
d
2
+α(

2
d/2−α
1+α − 1

)1+α
n

d
2
−α
))

≤Mpn
d−αCd,

where Cd :=
(
1 + 2

d
2 (1 + ϕ(1)) + d2α2d+α(

2
d/2−α
1+α −1

)1+α

)
.

Lastly, in the case α = d
2 we get

Ψp(δ,D) ≤ 2Mp2
d
2
(
1 + ϕ(1) + (2d)d

)
n

d
2 (log2(n))

d
2
+1

Finally the calculations for the case p = ∞ are identical and the claim follows. �

5.4 Discussion

In this section we compare bounds from Proposition 5.3.1 to the analogous results for the non i.i.d. real
random fields. In many of such results (see ex. (Dedecker, 1991; Doukhan et al., 1984; Rio, 2000)) expo-
nential inequality for partial sums of bounded random fields is derived from Lp(P) bound by optimizing
over the value p ≥ 2 . In general, the analysis of the properties of the random fields are mostly based
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either on the notion of multidimensional martingale or on the coupling with the (nonlinear) transform
of the i.i.d. random field. In our examples below we discuss methods based on the multidimensional
martingale and provide several references to the works on coupling argument.

Notice that weak-dependency condition (5.1) in the case d = 1 is stronger as the so-called "mixingale
type" condition (see for example Mc Leish (1975)). The former is mentioned in the works Dedecker et al.
(2007), Dehling and Philipp (1982) to characterise fading correlation between the past and the future of
a discrete stochastic process.

Example 5.4.1. Multidimensional martingales and switching filtrations
The notion of the multidimensional martingale is based on the so-called commuting filtration; it was

introduced in Fazekas (1983). We recall it below by introducing the following notation.
For k, ` ∈ Zd we say that k ≤cw ` if ki ≤ `i for every i ≤ d. As before we assume we work over

some probability space (Ω,A,P) and say that the sequence of sigma-fields (F`)`∈Zd ⊂ A is a filtration
if Fk ⊂ F` for k � `. We say that the filtration (F`)`∈Zd is commuting if for every Y ∈ L1(P) it
holds E[E[Y |Fk]|F`] = E[E[Y |F`]|Fk] = E

[
E
[
Y |Fmin(k,`)

]]
, where min(k, `) := (min(ki, `i))i≤d.

Denote n = (n, . . . , n). A collection of random variables (Z`)`∈Zd is called an orthomartingale random
field with respect to a commuting filtration (F`)`∈Zd if Zn is Fn−measurable for every n ∈ Zd and for
any k, ` ∈ Zd such that k � ` we have E[Z`|Fk] = Zk. Lastly, one also defines the orthomartingale
difference field (Y`)`∈Zd if for k � ` holds E[Y`|Fk] = 0.

For orthomartingale difference fields the results of Giraudo (2019) and Fazekas (2005) ensure (tight)
control of the p− norm of partial sums of random fields (Xt)t∈D by means of Burkholder’s type in-
equality. Namely for the cube D = {n}d and orthomartingale difference random field (Zk,Fk)k�n

from Theorem 3.1 in Fazekas (2005) one obtains the following upper bound for p ≥ 2 and martingale
Sn =

∑
k�n Zk

‖Sn‖p ≤
√
pn

d
2 max

i�n
‖Zi‖p.

Notice that a centered orthomartingale-difference random field (Zk,Fk)k∈D satisfies weak-dependence
condition (5.1) as for any t ∈ D, r ∈ N it holds E

[
Zt|FBt,r

]
= 0 which implies weak-dependence with

any rate. Also the constant
√
p is optimal (see Theorem 4.3 in Pinelis (1994)) and thus it can be used

to derive the exponential bounds (by using techniques described in Rio (2000), see also Corollary 3.1 in
Dedecker (1991)) of optimal order from the p−norm inequality. Furthermore, for the orthomartingale
difference random fields with values in an arbitrary Banach space Theorem 1.13 in Giraudo (2019)
provides a deviations type result for norms of random sums. For (Xt,Ft)t∈Zd and Sn =

∑
1�i�nXi,

p ≥ 1 and x > 0 we have that

P
[
‖Sn‖ > xnd/p

]
≤ C

∫ +∞

0
P[‖X1‖ > xu]up−1(1 + |log(u)|)d+1du.

A Burkholder’s inequality is then deduced by multipliying both sides with pxp−1 and integrating with
respect to x from 0 to ∞.

Example 5.4.2. Bernoulli random fields
Similarly, an extension of a Burkholder’s type of inequality to the processes which can be viewed

as a real-valued nonlinear transform of i.i.d. random field is given in El Machkouri et al. (2013). In
this work authors consider the so-called Bernoulli random fields of the form g

(
εk−s, s ∈ Zd

)
, k ∈ Zd

where (εi)i∈Zd are i.i.d. random variables and g is some measurable function. This class of random
fields has been studied recently focusing mainly on the functional central limit theorem framework (see
ex. Biermé and Durieu (2014), Klicnarová et al. (2016)) and large deviation principle (see Sang and
Xiao (2018)). In Giraudo (2020) authors prove a variant of law of Iterated logarithm. Typical examples
which belongs to this class are linear random fields and Volterra random fields (see examples in Sang
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and Xiao (2018) and section 2 in Giraudo (2019)). In this case dependence measure condition is the so-
called physical dependence measure (originally introduced in Wu (2005)). It is defined for the process
(Xt)t∈D, D = {n}d0, Xt such that

∥∥Xt

∥∥
p
< ∞ through coupling coefficient δi,p = ‖Xi −X∗

i ‖p, where

the coupled version X∗
i = g

(
ε∗i−s

)
and ε∗j = εjIj 6=0 + ε

′
0Ij=0, with (ε∗i )i∈Zd being an i.i.d. copy of

random field (εi)i∈Zd . In this framework Proposition 1 in El Machkouri et al. (2013) implies following
Burkholder’s type inequality

‖SD‖p = ‖Sn‖p ≤
√
2pnd/2∆p,

where ∆p =
∑

i∈Zd δi,p < ∞. Although it is strictly speaking incorrect to compare two notions of
dependence, in particular case of linear i.i.d. fields this condition is stronger then weak-dependency
assumption 5.1.

Example 5.4.3. Lp− projective criterion
In the work Dedecker (1991) a Burkholder’s type inequality is obtained under the Lp−projective

dependence criterion. More precisely, for a centered and square-integrable random field (Xt)t∈D and
SD =

∑
t∈DXt one has the following p−norm type of inequality

‖SD‖p ≤
√
2p
∑
t∈D

bt,p/2(D), (5.14)

where bt,β =
∥∥X2

t

∥∥
β
+
∑

k∈V 1
t

∥∥XkE|k−t|[Xt]
∥∥
β

, is finite, β > 0 and V 1
t denotes the set of all el-

ements which preceed t in lexicographic order and E`[Xt]− expectation conditioned with respect to
σ−algebra F`

V 1
t

generated by all the elements from V 1
t at distance at least ` (in terms of `∞ norm) from

t. Notice that firstly with this definition for every ` ∈ N filtration F`
V 1
t

as filtration in t is not com-
muting so that the correspondent results for orthomartingales cannot be applied. Secondly, condition
on the construction of σ− algebra Fr

V t
i

is weaker then FB(t,r), thus weak-dependency coefficient ϕ(r)
is larger than E|k−t|[Xt]. It is easy to see that if (X)t∈D is martingale-difference random fields (w.r.t
lexicographic ordering ) then (5.14) implies a standard Burkholder’s inequality for martingales as in this
case bt,p/2 =

∥∥X2
t

∥∥
p/2

= ‖Xt‖2p. Furthermore, as soon as weak-dependency condition (5.1) holds and
p ≥ 2 we have E|k−t|[Xt]p ≤ Mpϕp(|k|), so that by using Hölders inequality and regrouping same
weak-dependent coefficients ϕp(·) we obtain

bt,p/2 ≤M2
p

(
1 +

∑
k∈V 1

t

ϕp(|k|)
)
=M2

p

(
1 +

∞∑
k=1

kd−1ϕp(k)
)
.

The latter inequality ensures the same upper bound as in the case of martingale differences when ϕp(k) ≤
k−α and α > d. This result is worse in the sense that it provides the optimal bound when α > d, whereas
the bound of Theorem 5.3.2 for cubes is optimal (i.e. of the same order as in the case of martingale
differences fields) when α > d

2 .

5.5 Proofs of the auxiliary results of Chapter 5

The key element of the proof of Theorem 5.3.1 is the tree-like recursive ordering over Nd. To define it we
introduce the following notation. For t = (t1, . . . , td) ∈ Nd define πk(t) :=

(
b2−ktic2k

)
1≤i≤d

∈ 2kNd.
Observe that π0(t) = t, and that πk(t) = 0

¯
for k ≥ log2‖t‖∞. Let ≤lex denote the lexicographical order

on Nd. Denote <lex to be the associated strict order relation. For two elements t, t′ of Nd, define

κ(t, t′) = min{k ∈ N : πk(t) = πk(t
′)} − 1. (5.15)
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Note that κ(t, t′) is always well-defined, since πk(t) = πk(t
′) = 0

¯
for k ≥ max(‖t‖∞, ‖t′‖∞), hence

the minimum in Equation (5.15) is over a non-empty set. Furthermore κ(t, t′) = −1 iff t = t′. We define
the following total order � on Nd

t � t′ iff either κ(t, t′) = −1 or πκ(t,t′)(t) ≤lex πκ(t,t′)(t
′). (5.16)

It is straightforward to check that � is a total order over Nd since ≤lex is a total order over Nd. This
order can be described as the co-lexicographical order for the (one-to-one) sequence representation
(πk(t))k≥0 of t ∈ Nd, where the base order for the elements of the sequence is the usual lexico-
graphical order. Equivalently, this is the co-lexicographical order on the (infinite) binary representation
(bti2−kc mod 2)i=d,...,1)k≥0, where the vectorization is along (reverse) dimension first, then along scale.

For t ∈ Nd, let

Π≺
k (t) := {t′ ∈ Nd : πk(t

′) ≺ πk(t)}, (5.17)

Πk(t) := {t′ ∈ Nd : πk(t
′) � πk(t)}, (5.18)

where t ≺ t′ indicates that t is strictly less than t′ for the order �. Next we need the following Lemma
which describes properties of the order �.

Lemma 5.5.1. Let ordering ≤cw be the partial order on Nd such that for t = (t1, . . . , td) ∈ Nd,
t
′
=
(
t
′
1, . . . , t

′
d

)
∈ Nd we say that t ≤cw t

′
iff ti ≤ t

′
i for all i ∈ {d}. The following statements hold

true:

0) For any k, ` such that k ≤ ` it holds π` ◦ πk = πk ◦ π` = π`.

i) The partial order ≤cw is compatible with both the total orders ≤lex and �, meaning that

t ≤cw t
′ =⇒ t ≤lex t

′ and t � t′.

ii) For any t ∈ Nd and k, ` ∈ N with k ≥ ` it holds πk(t) � π`(t). In particular, in case ` = 0 it
holds πk(t) � t.

iii) All applications πk are monotone nondrecreasing with respect to �:

∀k ∈ N, ∀t, t′ ∈ Nd : t � t′ ⇒ πk(t) � πk(t
′).

iv) For a positive integer k put Ck,0 :=
{
2k
}d
0
, and, for b ∈ 2kNd, put Ck,b := b + Ck,0. For any

t ∈ Ck,b, it holds πk(t) = πk(b) = b, Π≺
k (t) = Π≺

k (b) and Πk(t) = Πk(b).

v) For any t ∈ Nd and k ∈ N, it holds

Π≺
k (t) = {t′ ∈ Nd : t′ ≺ πk(t)}, (5.19)

Πk(t) = Π≺
k (t) ∪ Ck,πk(t). (5.20)

vi) For any k ∈ N>0 and t ∈ Nd, it holds

Π≺
k (t) ⊆ Π≺

k−1(t) ⊆ Πk−1(t) ⊆ Πk(t). (5.21)

Proof 0. The equality πk ◦π` = π` follows directly from the definition of the floor part and since ` ≥ k.

For the second claim notice that from the definition of floor part for any t ∈ N we have b
b t

2k
c2k

2`
c ≤ b t

2`
c

which implies π` ◦ πk(t) ≤ π`(t). The converse inequality follows from simple inequality baxc ≥ abxc
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which is true for a ∈ N, x > 0 applied with x = t
2`

and a = 2`−k.
i) The implication for the lexicographical order is obvious; concerning the order �, note that obviously
all the mappings πk for k ≥ 0 are non-decreasing for the partial order ≤cw, i.e. t ≤cw t′ implies
πk(t) ≤cw πk(t

′), in turn implying πk(t) ≤lex πk(t
′) for all k, which finally entails t � t′ from the

definition.

ii): The second claim follows directly from i) since it follows from the definition that πk(t) ≤cw

π`(t) if k ≥ `.

iii) Assume t ≺ t′ and let κ = κ(t, t′) ≥ 0. Then by definition of π`(·), for all ` > κ it holds
π`(t) = π`(t

′), while πκ(t) <lex πκ(t
′). Thus, for k > κ it holds πk(t) � πk(t

′); for k = κ it holds
πk(t) � πk(t

′) from i); and for k < κ, for any ` ≥ κ we have π` ◦ πk = π`, so the conditions for
πk(t) ≺ πk(t

′) are met. In both cases we have πk(t) � πk(t
′).

iv) For u ∈ 2kN, it holds b2−k(u + v)c = u iff v ∈
{
2k
}
0
. It follows that for t, t′ ∈ Nd,

πk(t) = πk(t
′) iff t′ ∈ Ck,πk(t). The claims follow from the definitions of πk,Π≺

k and Πk.
v) For t, t′ ∈ Nd, if t′ ≺ πk(t) then πk(t′) � t′ ≺ πk(t), from ii). Conversely, if t′ � πk(t), then

πk(t
′) � πk(πk(t)) = πk(t), by iii). Hence t′ ≺ πk(t) iff πk(t′) ≺ πk(t). This establishes (5.19).

Concerning (5.20), we have seen above (see proof of iv)) that {t′ ∈ Nd : πk(t) = πk(t
′)} = Ck,πk(t),

therefore
Πk(t) = Π≺

k (t) ∪ {t′ ∈ Nd : πk(t) = πk(t
′)} = Π≺

k (t) ∪ Ck,πk(t).

vi): It holds πk−1(t) � πk(t) from ii). Then from (5.19), we deduce the inclusion Π≺
k (t) ⊆ Π≺

k−1(t).
The inclusion Π≺

k−1(t) ⊆ Πk−1(t) is immediate from the definitions (5.17), (5.18). Finally, for any
t′ ∈ Πk−1(t), by definition πk−1(t

′) � πk−1(t), so by iii) and πk ◦ πk−1 = πk, it holds πk(t′) � πk(t),
hence t′ ∈ Πk(b), proving the last inclusion. �

Remark 5.5.2. Choice of the lexicographical order in the definition (5.16) is largely arbitrary; any total
order on Nd that is compatible with the coordinate-wise partial order would work, since it would result
in the same properties as above, which are the only ones we will be using in the sequel.

For t ∈ Nd and an integer k, define

F≺
k (t) := S(Xt′ , t

′ ∈ Π≺
k (t)), Fk(t) := S(Xt′ , t

′ ∈ Πk(t)), (5.22)

where Π≺
k ,Πk are as defined in (5.17), (5.18) (and S(∅) is the trivial σ-algebra).

For every element t ∈ Nd, using the fact that Π≺
k (t) = ∅ for k > log2 t, we write the decomposition

Xt − E[Xt] =
(
Xt − E

[
Xt|F≺

0 (t)
])

+

blog2‖t‖∞c+1∑
k=1

(
E
[
Xt|F≺

k (t)
]
− E

[
Xt|F≺

k−1(t)
])
.

For any finite subsetA ⊂ Nd, denoting πk(A) = {πk(t), t ∈ A} ⊂ 2kNd and ‖A‖∞ = maxt∈A‖t‖∞,
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we have A = ]b∈πk(A)(A ∩ Ck,b), hence:

SA =
∑
t∈A

(Xt − E[Xt])

=
∑
t∈A

(
Xt − E

[
Xt|F≺

0 (t)
])

+

blog2‖A‖∞c+1∑
k=1

∑
b∈πk(A)

∑
t∈Ck,b∩A

(
E
[
Xt|F≺

k (t)
]
− E

[
Xt|F≺

k−1(t)
])

=

blog2‖A‖∞c+1∑
k=0

∑
b∈πk(A)

Zb,k(A), (5.23)

where

Zt,0(A) := Xt − E
[
Xt|F≺

0 (t)
]
; (5.24)

and for k ≥ 1 : Zb,k(A) :=
∑

t∈Ck,b∩A

(
E
[
Xt|F≺

k (t)
]
− E

[
Xt|F≺

k−1(t)
])
. (5.25)

Lemma 5.5.3. Let A ⊂ Nd be a finite set. Let k be a fixed integer. Then (Zb,k(A),Fk(b))b∈πk(A) is a
martingale difference, where πk(A) is ordered by the total order � defined by (5.16).

Proof We start with the special case k = 0. In this case, since π0(t) = t, we have F≺
0 (t) = S(Xt′ , t

′ ≺
t), and F0(t) = S(Xt′ , t

′ � t). It is straightforward that Z0,t(A) is F0(t)-measurable, and that for any
t′ ≺ t we have F0(t

′) ⊆ F≺
0 (t) thus E[Z0,t(A)|Ft′ ] = 0; hence the claim. Let k ≥ 1 be a fixed integer.

The claim for (Zb,k) relies on points (4) and (6) of Lemma 5.5.1, which straightforwardly implies for
any t ∈ Ck,b that F≺

k (b) = F≺
k (t) ⊆ F≺

k−1(t) ⊆ Fk(t) = Fk(b). Thus, Zb,k(A) is Fk(b)-measurable, and
for any b′ ≺ b, since Fk,b′ ⊆ F≺

k,b, it holds E
[
Zk,b|Fk,b′

]
= 0, implying the claim.

�
Notice that our proof relies on multi-scale martingale decomposition which is used to obtain control

of the set ‖SA‖p from the control of the martingale increments ‖Zb,k‖p using Burkhölder’s inequality
(or, analogously, using subgaussian norm from the Azuma’s inequality). However, while the control
obtained this way is optimal for segments in dimension 1 (see Peligrad et al. (2006)), it turns out that it
is not the case for rectangles in dimension d ≥ 2. The reason is that there are “too many” elements in
the sum over the cell Ck,b, appearing in the martingale definition (5.25), that are close to the boundary of
the cell and thus to Π≺

k (b), preventing the efficient usage of the weak dependence assumption (1).
To alleviate this issue we exclude from the sum the elements which are close to boundaries of the cell

on every scale (this is described in the set Fδ). The remaining elements are then sufficiently “separated”
from the boundaries. We recall that Λk,δ := 2kNk>0+ δ. Firstly we need the following supporting result
which estimates the distance from any element from the set t to the boundary of the neighbor cell.

Lemma 5.5.4. For any k ∈ N, δ ∈
{
2k
}
0

and t ∈ (N \ Λk,δ)
d, it holds

d∞(t,Π≺
k (t)) ≥ δ + 1.

Proof i) from Lemma 5.5.1 implies that � is compatible with the partial coordinate-wise order ≤cw. This
implies in particular that any t′ such that πk(t) ≤cw t′ satisfies πk(πk(t)) = πk(t) � πk(t

′), and thus
cannot belong to Π≺

k (t). Therefore, for any t′ ∈ Π≺
k (t), there exists a coordinate i such that t′i < πk(ti).

In particular, πk(ti) > 0, hence πk(ti) ∈ 2kN>0. On the other hand, if we assume t ∈ (N \ Λk,δ)
d then

ti ∈ N\ (2kN>0+{δ}0). Since t′i < πk(ti) ≤ ti, it must hold ti− t′i ≥ ti−πk(ti)+1 ≥ δ+1, implying
the claim. �

Proposition 5.5.5. Let R =
∏d

i=1{Ni}0 be a d-dimensional rectangle of side-lengths Ni ≥ 1, i =
1, . . . , d, and m(R) := maxi=1,...,dblog2Nic. Let δ = (δk)k≥1 be a fixed decreasing sequence of
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integers with δk ≤ 2k, k ≥ 1, and put δ0 = 0 and Fδ be as defined in (5.6). If process (Xt)t∈Nd satisfies
weak-dependency assumption 1 with 2 ≤ p <∞ and some rate ϕp(·) then it holds

‖SR∩Fδ
‖p ≤

1

2
CpΨp(δ,R), (5.26)

where Cp := 4
√
p; and if assumption 1 is satisfied for p = ∞, then it holds

‖SR∩Fδ
‖SG ≤ 1

2
C∞Ψp(δ,R), (5.27)

where C∞ := 10, ‖X‖SG := infc>0{E[exp(λX)] ≤ exp
(
λ2c2

2

)
, } subgaussian norm and

Ψp(δ,R) = 2Mp

√
|R|
(
1 + ϕp(1) +

m(R)+1∑
k=1

ϕp

(
δk−1 + 1

)√
|Ck,0 ∩ R|

)
.

Proof We use the decomposition (5.23) with A = R ∩ Fδ, so that by the triangle inequality

‖SR∩Fδ
‖p ≤

m(R)+1∑
k=0

∥∥∥∥∥ ∑
b∈πk(R∩Fδ)

Zb,k(R ∩ Fδ)

∥∥∥∥∥
p

, (5.28)

where Zb,k(R∩ Fδ) is defined in (5.24), (5.25). We now estimate the norm of the martingale increments
Zb,k(R ∩ Fδ) using Assumption 1. We will denote below Zb,k = Zb,k(R ∩ Fδ) and Sk = πk(R ∩ Fδ)
for ease of notation. As a direct consequence of Lemma 5.5.4, for any t ∈ Fδ it holds F≺

k (t) ⊂ Mt,δk+1

(as defined in Assumption 1). Therefore, for k = 0,

‖Zb,0‖p =
∥∥Xb − E

[
Xb|F≺

0 (b)
]∥∥

p

≤
∥∥Xb − E

[
Xb|Mb,1

]∥∥
p

≤ ‖Xb − E[Xb]‖p +
∥∥E[Xb|Mb,1

]
− E[Xb]

∥∥
p

≤Mp(ϕ(0) + ϕ(1)), (5.29)

while for k ≥ 1:

‖Zb,k‖p =

∥∥∥∥∥ ∑
t∈Ck,b∩R∩Fδ

(
E
[
Xt|F≺

k (t)
]
− E

[
Xt|F≺

k−1(t)
])∥∥∥∥∥

p

≤
∑

t∈Ck,b∩R∩Fδ

(∥∥∥E[Xt|F≺
k (t)

]
− E[Xt]

∥∥∥
p
+
∥∥∥E[Xt|F≺

k−1(t)
]
− E[Xt]

∥∥∥
p

)

≤
∑

t∈Ck,b∩R∩Fδ

(∥∥∥E[Xt|Mt,δk+1

]
− E[Xt]

∥∥∥
p
+
∥∥∥E[Xt|Mt,δk−1+1

]
− E[Xt]

∥∥∥
p

)
≤ |Ck,b ∩ R|Mp

(
ϕ(δk + 1) + ϕ(δk−1 + 1)

)
. (5.30)

Note that we can subsume (5.29) into (5.30) by putting formally δ−1 := −1. Since, by Lemma 5.5.3, the
sequence (Zb,k,Fk(b))b∈Sk

is a martingale difference sequence over b for fixed k, if p ∈ [2,∞) we can

130



apply Burkholder’s inequality (Burkholder (1966)). We obtain, after combining with the above estimate:∥∥∥∥ ∑
b∈Ck,b∩R

Zb,k

∥∥∥∥
p

≤ √
p

∥∥∥∥( ∑
b∈Ck,b∩R

Z2
b,k

) 1
2

∥∥∥∥
p

=
√
p

∥∥∥∥ ∑
b∈Ck,b∩R

Z2
b,k

∥∥∥∥ 1
2

p/2

≤ √
p

(∑
b∈Sk

‖Zb,k‖2p

) 1
2

≤ √
pMp

(
ϕ(δk + 1) + ϕ(δk−1 + 1)

)( ∑
b∈πk(R)

|Ck,b ∩ R|2
) 1

2

≤ 2
√
pMpϕp(δk−1 + 1)

( ∑
b∈πk(R)

|Ck,b ∩ R|2
) 1

2

(5.31)

We now concentrate on the estimate for
∑

b∈πk(R)
|Ck,b ∩ R|2. Put qi :=

⌊
Ni

2k

⌋
and ri := Ni − qi2

k, for

i = 1, . . . , d. Observe that πk(R) =
∏d

i=1(2
k{qi + 1}0); for b = (b1, . . . , bd) ∈ πk(R), the set Ck,b ∩ R

is a hyperrectangle with side-lengths:

`k(bi, Ni) :=

{
2k if bi < 2kqi;

ri if bi = 2kqi.

Hence, it holds

∑
b∈πk(R)

|Ck,b ∩ R|2 =
∑

b∈
∏d

i=1(2
k{qi+1}0)

d∏
i=1

`k(bi, Ni)
2 =

d∏
i=1

qi∑
j=0

`k(2
kj,Ni)

2

=

d∏
i=1

(qi2
2k + r2i )

≤
d∏

i=1

(
(Ni − ri)min(2k, Ni) + rimin(2k, Ni)

)
=

d∏
i=1

(
Nimin(2k, Ni)

)
= |R||R ∩ C0,k|. (5.32)

The claimed estimate for 2 ≤ p < ∞ follows by using (5.31) and (5.32) into (5.28) and straightfor-
ward computations. In the case of p = ∞, we can apply the bounded martingale difference inequal-
ity ( Azuma (1967)) stating that the sum

∑
b∈Sk

Zb,k is sub-Gaussian such that
∥∥∥∑b∈Sk

Zb,k

∥∥∥
SG

≤(∥∥∥∑b∈Sk
Z2
b,k

∥∥∥
∞

) 1
2 and using triangle inequality for the sub-gaussian norm∥∥∥∥∥∥

m(R)+1∑
k=0

∑
b∈πk(R∩Fδ)

Zb,k(R ∩ Fδ)

∥∥∥∥∥∥
SG
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over scales k ∈ {m(R) + 2}0. All other arguments are as in the case p <∞. �
The elements from the set R ∩ Fc

δ form a multi-scale “frame” of sufficiently small cardinality which
will be handled by recursive induction. To justify the usage of induction we prove the following general
statement that the random field indexed with the set of excluded elements satisfies the weak-dependence
Assumption (5.1). We recall that if A ⊂ N, and j ∈ {|A|}0 so j : A denotes the (j + 1)-th element of
A in the increasing order; we used t : A := (t1 : A1, . . . , td : Ad), K(A) =

∏d
i=1{|Ai|}0 and

X̃
(A)
t = Xt:A, t ∈ K(A) S̃

(A)
K(A) :=

∑
t∈K(A)

X̃
(A)
t = SA.

The following results states that if the original process (Xt)t∈Nd satisfies Assumption 1, then so does
(X̃A

t )t∈Nd (defined as above, then padded with zeros for t 6∈ K(A)).

Lemma 5.5.6. Let 2 ≤ p ≤ ∞ and the process (Xt)t∈Nd satisfies the weak-dependency assumption 5.1

with rate ϕp(·) and A ⊂ Nd. Then the “compressed” version
(
X̃A

t

)
t∈Nd

as defined by (5.8) satisfies

the weak-dependency assumption 5.1 with the same rate ϕp(·).

Proof Since for every t /∈ K(A) we have by construction that X̃(A)
t = 0, the claim evidently follows

from the definition of weak-dependency assumption 5.1. It is therefore sufficient to prove the property
only for elements t ∈ K(A) . For every t ∈ K(A) for every u ∈ K(A) since ‖u : A− t : A‖d,∞ ≥
‖u− t‖d,∞, by Jensen’s inequality and using Assumption 5.1 we have:∥∥∥E[X̃(A)

t |M̃t,r

]
− E

[
X̃

(A)
t

]∥∥∥
p
=
∥∥∥E[Xt:A|σ

(
Xu:A : ‖u− t‖d,∞ ≥ r

)]
− E[Xt:A]

∥∥∥
p

=
∥∥∥E[E[Xt:A|σ

(
Xu:A : ‖u : A− t : A‖d,∞ ≥ r

)
− E[Xt:A]

]
|σ
(
Xu:A : ‖u− t‖d,∞ ≥ r

)]∥∥∥
p

≤
∥∥∥E[Xt:A|σ

(
Xu:A : ‖u : A− t : A‖d,∞ ≥ r

)
− E[Xt:A]

]∥∥∥
p

≤
∥∥∥E[Xt|σ

(
Xu : ‖u− t‖d,∞ ≥ r

)
− E[Xt]

]∥∥∥
p
≤Mpϕ(r).

�
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