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Introduction en francais

Soient I' un groupe de type fini et G un groupe de Lie semi-simple. L’espace des représentations
Hom(T', G) est 'ensemble de tous les homomorphismes I' — G que nous munissons de la topologie
compact-ouverte.

Le groupe G agit par conjugaison sur Hom(I', G). En effet, pour ¢ € G et p : m>¥ — G, nous
définissons la représentation g-p comme étant le morphisme v — gp(v)g~!. Le quotient de Hom(T', G)
par I'action de G n’est généralement pas séparé.

La variété des caractéres est le quotient Hausdorff Hom(I', G) //G et sera notée par X' (I',G). Dans
le cas plus général ou G est un groupe algébrique complexe, nous pourrions définir la variété des
caractéres comme le quotient GIT de 'espace des représentations par ’action de . Cependant, si
G est un groupe réductif, le quotient GIT et le quotient Hausdorff coincident. Dans cette thése, G
est supposé étre un groupe de Lie réel semi-simple, cette question n’intervient pas. La variété des

caractéres contient des points singuliers :

Définition 1. Une représentation est réguliére si son centralisateur, qui est le stabilisateur pour

l’action par conjugaison de G, est discret.

Soit Rep(I', G) le sous-ensemble de X (I', G) formé des classes de conjugaison de représentations
réguliéres. C’est un sous-espace dense, ouvert et lisse. Dans Goldman 1, lorsque I' est le groupe
fondamental d’une surface ¥ orientée, compacte, connexe et de genre g > 2, Goldman construit une
structure symplectique sur Rep(m2, G) issue de la forme de Killing sur G. La forme symplectique de
Goldman induit une mesure de Radon A sur Rep(m X, G). Cette mesure s’étend naturellement en une
mesure de Radon sur X'(m X, G), que nous noterons encore \, telle que Rep(m X, G) est de mesure
pleine pour A. Cette mesure a de plus le bon gotit d’étre dans la classe de Lebesgue de X (m %, G).

La variété des caractéres encodent des structures géométriques et est I'espace des modules d’objets

géométriques :

Exemple 1. Supposons que I est un groupe de surface et que G = PSLy(R), c’est a dire que G est
le groupe d’isométrie du demi-plan de Poincaré. D’apres les travaur de Goldman, le second point du
théoréme 5 précisément, la variété des caractéres X (m %, PSLy(R)) contient alors deux composantes
connexes formées de classes de conjugaison d’holonomies de structures hyperboliques sur . FEn

particulier, ces composantes sont toutes deux homéomorphes a l’espace de Teichmiiller de Y.

Exemple 2. Supposons que I' est le groupe fondamental d’une surface de Riemann X et que G =
SU(n). Le théoréeme de Narasimhan-Seshadri assure Uezistence d’une bijection entre Rep(m3, SU(n))
et 'espace des modules de fibrés vectoriels holomorphes de rang n, semi-stables et de degré O sur 3,
voir Donaldson 2018.

Ces deux exemples suggérent la richesse géométrique de I'étude des variétés de caractéres.



Dans une direction plus dynamique, le groupe des automorphismes de I' agit par pré-composition
sur l'espace des représentations. Précisément, pour ¢ € Aut(T') et p € Hom(T', G), nous définissons
Y - p comme la représentation v — p(¥»"'(7)). De plus, 'action du groupe des automorphismes

intérieurs de I' est contenue dans I’action par conjugaison de G sur Hom(I', G). En effet, soit 1, :
1

v + zyz~! un automorphisme intérieur et p € Hom(T', G), alors ¢, - p : v — p(z71)p(7)p(z) est
conjuguée a p. Nous obtenons ainsi une action de Out(I'), défini comme le quotient ?nu;((rr)) , sur la

variété des caractéres via la formule

Cette action préserve la mesure de Goldman et implique une dynamique mesurable sur la variété des
caractéres. L’objet de cette thése est d’étudier les propriétés dynamiques de cette action.

Dans les travaux que cette thése présente, I' est le groupe fondamental d’une surface fermée,
connexe et compacte Y. Le théoreme de Dehn-Nielsen-Baer, voir Farb and Margalit 2011, nous
assure alors de l'existence d’un isomorphisme entre Out(X) et le groupe modulaire de X, que nous
noterons par Mod(X). Ce groupe est le groupe des diffécomorphismes de ¥ & isotopie prés. Nous
noterons par Mod™ (X)) le sous-groupe des classes d’isotopies de difféomorphismes directs de ¥. Ce
point de vue permet une description topologique de Out(X) et nous procure une approche géométrique

de son action. Introduisons certains sous-groupes particuliers du groupe modulaire :

e Le groupe de Torelli est le noyau de I’action de Mod™ (%) sur le premier groupe d’homologie de

S, Hy(3, Z).

e Le premier sous-groupes de Johnson est le sous-groupe de Mod™ (X) engendré par les twists de

Dehn le long de courbes séparantes.

Remarquons que le premier sous-groupe de Johnson est inclus dans le groupe de Torelli.

Cas compact

Une action d’un groupe H sur un espace mesuré (X, p), dont nous supposons la H—invariance de
1, est ergodique si tout sous-ensemble mesurable et H-invariant de X est de mesure nulle ou a un
complémentaire de mesure nulle (nous dirons que ’ensemble est de mesure pleine si cette condition
est vérifiée). En particulier, si H' est un sous-groupe de H et si H agit sur un espace mesuré en
préservant la mesure, I'ergodicité de 'action de H' implique I'ergodicité de I'action de H. L’exemple
classique d’une action ergodique est celui d’une translation irrationnelle du tore T™ = R"/Z". Le
groupe engendré par le vecteur (aq, ..., a,) € R™ agit par translation sur T™ et préserve sa mesure de
Haar. L’action de ((aq,...,a,)) sur T™ est ergodique par rapport a la mesure de Haar si et seulement

si les réels aq, ..., a,,1 sont linéairement indépendants sur Q.

Théoréme 1. (Goldman, Pickrell-Xia) Soit G un groupe de Lie compact et soit T = mX% un groupe
de surface. Le groupe modulaire Mod ™t (X) agit ergodiquemment sur les composantes connezes de la

variété des caracteres X(m %, G) par rapport a la mesure symplectique de Goldman.



Ce théoréme a été démontré pour la premiére fois par Goldman dans Goldman 1 lorsque G
est localement isomorphe a SU(2) puis Pickrell et Xia ont traité le cas général dans Pickrell-Xia 1.
Certaines questions peuvent étre posées a partir de I’ergodicité, en particulier la possibilité d’avoir des
propriétés plus précises : trouver des sous-groupes propres de Mod™ (X)) qui agissent ergodiquement
sur les variétés de caractéres.

Funar et Marché ont prouvé dans Funar-Marche le résultat suivant :

Théoréme 2. (Funar-Marché) Le premier sous-groupe de Johnson agit ergodiquement sur la variété

de caractéres X (m %, SU(2)) par rapport a la mesure de Goldman.
En particulier :

Théoréme 3. Le sous-groupe de Torelli agit ergodiquement sur la variété de caractéres X (m %, SU(2))

par rapport & la mesure de Goldman.

La preuve utilise des développements de Taylor des fonctions de traces associées aux courbes
séparantes en la représentation triviale.
Nous proposons une nouvelle preuve du théoréme 3 et généralisons celle-ci au cas des groupes de

Lie semi-simples et compacts :

Théoréme A. Soient une surface fermée, compacte, connexe et orientée ¥ de genre g > 3 et G
un groupe de Lie connexe, semi-simple et compact. Le groupe de Torelli agit ergodiquement sur les

composantes connezxes de la variété de caractéres X (w3, G) par rapport & la mesure de Goldman.

Pour prouver le théoréme A, nous montrons que toute fonction mesurable f : X(mX,G) - R
qui est invariante par ’action du groupe de Torelli est presque partout invariante par le groupe
modulaire. Pour ce faire, nous introduisons pour chaque paire de courbes co-bordantes, un sous-
ensemble de X (mX,G) pour lequel nous prouvons qu’il est de mesure pleine. Sur cet ensemble,
chaque fonction invariante (sous Iaction du groupe de Torelli) est presque partout invariante sous
I’action des twists de Dehn des courbes de la paire. Il suffit donc de restreindre une fonction qui est
invariante par le groupe de Torelli & une intersection dénombrable de ces sous-ensembles pour qu’elle
soit presque partout invariante par le groupe modulaire.

En corollaire, quitte & remplacer G' par un produit fini G x --- x G et identifier X (m X, G*) a

X (m %, G)*, nous obtenons :

Théoréme B. Soient ¥ et G respectivement une surface et un groupe vérifiant [’hypothése du
théoréme A. Alors, pour tout k > 1, le groupe de Torelli Tor(X) agit ergodiquement sur chaque
composante connexe du produit X (T, G)*. En particulier, sur les composantes de X(m %, G), action

du groupe de Torelli est faiblement mélangeante.



Cas de PSLy(R)

Soit 3 une surface connexe, orientée et fermée de genre g > 2. Son groupe fondamental admet la

présentation finie :

g
<ala b17 cee 7a97b9 | H[al?bl]>
=1

Figure 1

Composantes connexes pour les surfaces fermées

Dans ce paragraphe, nous introduisons la classe d’Euler. C’est un invariant associé a chaque représen-
tation et qui permet de classifier les composantes connexes de X (m %, PSLa(R)) (que nous noterons
désormais par X dans le cas de PSLy(R) pour éviter des notations trop lourdes).

Soit p : m ¥ — PSLy(R) une représentation. Pour/c\h/aque générateur « € {aq,by,..., a4, by}, on

choisit un relevé p(z) dans le revétement universel PSLy(R) de PSLy(R). Le produit

se projette sur I'identité. On en déduit que Hle[,;(\ai/),;(\bi/)} est un élément de m (PSLy(R)) =2 Z.
Cet entier ne dépend que de p et en aucun cas du choix des relevés. Nous le noterons donc eu(p).
L’application eu : Hom(mZ,PSLg(R)) — Z est de plus invariante par l'action de PSLy(R) par

conjugaison et descend donc comme une application
eu: X = Z.

Dans Milnor 1957/58, Milnor montre que cet invariant est borné :



Théoréme 4. (Milnor 1957/58) Pour tous les [p] € X :

leu([pD)] < IX(X)].

Une représentation dont la classe d’Euler est égale a £|x(X)] est appelée mazimale.
Dans W. M. Goldman 1988, Goldman a classifié les composantes connexes par la classe d’Euler et

dans W. M. Goldman 1982 il a donné une caractérisation des représentations maximales :
Théoréme 5. (W. M. Goldman 1988 et W. M. Goldman 1982, Goldman)

1. Pourtout k € ZN[x(X2), —x(2)], le sous-espace eu ' (k) est non vide et les composantes connezes
de X sont exactement les eu ' (k) pour k € ZN[x (%), —x(X)]. Nous les noterons par X* et par

Rep” leurs intersections avec Rep.

2. Une représentation p : m % — PSLao(R) est mazimale si et seulement si c’est ’holonomie d’une

structure hyperbolique sur ..

Le deuxiéme point de ce théoréme montre que XX est homéomorphe a I’espace de Teichmiiller
de X.

Action du groupe modulaire pour les surfaces fermées

Il est bien connu que 'action du groupe modulaire sur I'espace de Teichmiiller de ¥ est proprement

discontinue : pour tout sous-ensemble compact K de l'espace de Teichmiiller de X, I’ensemble
{16] € Out(m¥) | [¢] - K N K #0)

est fini.

Le comportement de cette action sur les composantes non-maximales est diamétralement différent.
L’existence d’éléments v € m> qui sont envoyés sur des isométries non-hyperboliques permet de
s’approcher des arguments utilisés dans le cas compact, voir Goldman and Xia 2011. Dans W.

Goldman 2006, Goldman a conjecturé :

Conjecture 1. (Conjecture 3.1, W. Goldman 2006) Soit k € Zﬂ]x(E), —x(2) [ Le groupe modulaire

agit ergodiquement sur X* par rapport & la mesure \.

En reliant cette conjecture a la condition de Bowditch, voir Bowditch 1998, et dans la voie de cette
conjecture, Marché et Wolff introduisent dans Marché and Wolff 2016, pour k € Z N ] x(2), —x(X2) [,
le sous-espace

NHY .= {[p] € Rep” | Iy € m X simple, tr(p(v)) € [-2,2]}.

Ils ont prouvé ce qui suit :

Théoréme 6. (Théoréme 1.5 et Théoréme 1.6, Marché and Wolff 2016)



1. Supposons que Y est de genre 2. Alors laction de Mod™ (X) sur X*! est ergodique par rapport
a M.

2. Supposons que g > 3 et soit k un entier tel que |k| < |x(X)|, alors laction de Mod™(X) sur
NHF est ergodique par rapport a \.

En genre 2 et pour la classe d’Euler 0, la composante X° se décompose en deux sous-espaces
disjoints X et X? de mesures non nulles et sur lesquels le groupe modulaire agit ergodiquement par
rapport & A\, Marché and Wolff 2016 et Marché and Wolff 2015.

Cas des variétés de caractéres relatives dans PSL,(R)

Soit ¥ une surface connexe, orientée et compacte de genre g > 1 et an > 0 composantes de bord,

telle que X(Z) —2—2g9 —n < 0. Le groupe fondamental m Y de X est le groupe libre :
g

<a1>bla cee 7a/gvbg>cla s Cn‘ H[ai? bl] ch = 1>
j=1

i=1

ol ¢y, ..., c, sont des courbes sur > qui sont homotopes a un cercle autour de chaque composante de

bord.

Figure 2

Définition 2. La variété de caractéres X (X) est le quotient Hausdorff
Hom (%, PSLy(R)) //PSLa(R).

Une représentation p : my — PSLy(R) est appelée Zariski-dense si son image est Zariski-dense

dans PSLy(R). En particulier, une représentation Zariski-dense est réguliére. Le sous-espace Rep(2)

des classes de représentations Zariski-denses est un sous-ensemble de mesure pleine, ouvert et dense



de X(X). Cet espace est partitionné par le comportement sur les composantes de bord. Précisément,
soient Cy,...,C, des classes de conjugaison dans PSLy(R) et C := (Cy,...,C,), on définit I'espace
Hom(z, PSLQ(R),Q) des représentations p : m Y — PSLy(R) telles que pour tout i € {1,...,n},

p(cz) € CZ

Le groupe PSLy(R) agit sur 'espace Hom(Z, PSLQ(R),Q) par conjugaison.

Définition 3. La variété de caractéres relative associée a C, notée X(Z,Q), est le quotient Hausdorff
Hom (X, PSLy(R),C) //PSLy(R).

Notons Rep(ﬁ],g) le sous-espace des classes de représentations Zariski-denses de X (E,Q). Cet

ensemble est une variété lisse de dimension 6g — 6 + 2n, voir Mondello 2017.

—_——

Définition 4. Soit p : m>% — PSLy(R) et fizons une relevé p : m>% — PSLy(R). Pour chaque
i€ {1,...,n}, notons r; le nombre de translation de p(c;). La classe d’Euler de p est le nombre eu(p)

défini par
n
3o
i=1

La classe d’Euler d’une représentation ne dépend pas des choix des relevés et est constant sur sa
classe de conjugaison. On définit ainsi la classe d’Euler d’'une classe de représentations [p| par la

classe d’Euler d’un représentant de cette classe. Cela donne une application

eu: X(X)—R

qui induit par restriction
eug : X(2,0) = R

qui vérifie la propriété euc([p]) + [[{r}|]1 € Z ou {r} est le vecteur des parties fractionnaires des r;.
La préimage de eu, L(e), pour e € R, sera notée X¢(3,C). Dans Mondello 2017, Gabriele Mondello

explicite les composantes connexes de X (2, C).

Théoréme 7. (Théoréme 2.20, Mondello 2017)

1. L’image de en : X(X) — R est Uintervalle [X(E),—X(Z)]. Si eu(p) = —x(X), alors tous les
p(c;) sont hyperboliques et p est la monodromie d’une structure hyperbolique sur > avee des

composantes de bord géodésiques.

2. Supposons e > 0. Alors [’espace Xe(Z,Q) est non vide si et seulement si

e+ |[{r}i +s0o+s_ € ZO]O, —X(Z)},



ou so est le cardinal de {i € {1,...,n}| C; =id} et s_ est le cardinal de

{i € {1,...,n}|C; unipotent negatif}

-1
ou une matrice unipotente négative est conjuguée a la matrice (0 ) ) . Dans ce cas, [’espace
Xe(%,C) est connexe et lisse.

Le groupe modulaire pur de 3, noté PMod(E) est le groupe des classes d’isotopies de difféomor-
phismes de ¥ qui agissent trivialement sur 9%. Il agit naturellement sur les variétés de caractéres
relatives de maniére similaire a celle décrite pour ’action du groupe modulaire dans le cas des surfaces

fermées et préserve les composantes connexes de la variété des caractéres relative ainsi que la mesure

de Goldman.

Résultats

Nous démontrons un analogue du théoréme 6 de Marché-Wolff pour les surfaces & bord : soient
Ci,...,C, des classes de conjugaison d’isométries elliptiques et soit e = £(k — |[{r}||1) avec k €
ZN [|[{r}H], —x(®) [. Alors le sous-espace

NH(3,0),

des classes de représentations [p] qui admettent une courbe simple v C > non homotope & une

composante de 9%, telle que p(7y) est non-hyperbolique et telle que p(¢;) € C;, est non-vide. De plus :

Théoréme C. Le groupe modulaire pur PMod(Y) agit ergodiquement sur lespace NHE(X,C) par

rapport a la mesure de Goldman.

La preuve de ce théoréme utilise essentiellement la méme stratégie que la preuve du théoréme 6.6
de Marché and Wolff 2016.
Nous conjecturons que le résultat dynamique du théoréme 6 peut étre renforcé par I'existence d’'un

sous-groupe propre agissant ergodiquement sur N4

Conjecture A. Si g > 3 et k est un entier tel que |k| < 2g — 5, alors le groupe Tor(¥) agit

ergodiquement sur les sous-espaces N'H® par rapport a .

Ce résultat serait une version non-compacte du théoréme A. Nous developpons une stratégie en
section 7?7 et expliquons en quoi notre proposition est reliée & un analogue de la conjecture de Gold-

mai.

Dynamique topologique

L’exemple de I'action des translations sur les tores nous donne une intuition dynamique des orbites.

Dans le cas du cercle, on voit facilement que l'action d’une rotation d’angle irrationnel n’a que des



orbites denses. Ce phénomeéne chaotique peut étre vu en dimension supérieure et est un résultat

général provenant de I'ergodicité :

Proposition 1. Soit H un groupe topologique agissant sur un espace borélien (X, p) et qui préserve
la mesure j. Supposons que chaque ouvert non-vide a une mesure non nulle et que la topologie de X
est engendrée par une base dénombrable d’ouverts. Si l'action de H sur (X,pu) est ergodique, alors

presque toutes les orbites sont denses.

Malheureusement, ce fait est un résultat probabiliste et aucune description des points de X pour
lesquels l'orbite est dense n’est donnée en général.

Dans W. Goldman 2006, Goldman pose la question suivante :

Question 1. Pourrait-on trouver une condition sur une représentation p : w3 — SU(2) pour que

son orbite pour l'action de Mod™ (X)) soit dense ?

Dans Previte and Xia 2000 et dans Previte and Xia 2002, Previte et Xia donnent une condition

nécessaire et suffisante :

Théoréme 8. Une représentation p : m% — SU(2) a une Mod™ (X)—orbite dense si et seulement si

p a une image dense dans SU(2).

Avec Gianluca Faraco, nous traitons le cas abélien. Un groupe de Lie compact, abélien et connexe
est isomorphe a un tore de dimension n. En utilisant le théoréme de Ratner, voir Ratner 1991, nous

prouvons dans Bouilly and Faraco 2021 :

Théoréme D. (Bouilly and Faraco 2021) Une représentation p : m¥% — T" a une orbite dense sous

Uaction de Mod™ (X)) si et seulement si p a une image dense dans T".

Nous conjecturons qu’un tel résultat est vrai lorsque G = SU(3) et X est un tore troué.

Lien avec le théoréme d’approximation de Kronecker

Le résultat dynamique fourni par le théoréme D trouve une application en théorie géométrique
des nombres. Un théoréme important de cette théorie est le théoréme de Kronecker concernant

I’approximation diophantienne inhomogéne.

Théoréme E. Pour g > 1. Soit b9 = (bgi), e ,bgg)), avec i = 1,...,n, des vecteurs de R?9 tel
que bV .. 6™ ey, ... , Tea, sont linéairement indépendants sur Q dans lespace vectoriel R*9. Soit
A€ M(n,2g;R) une matrice réelle et € un nombre positif. Alors il existe un élément K € Spgg(Z)
tel que

|4 - BKH < Ce mod 27. (1)

ot C' est une constante ne dépendant que de m et n, {eq, ..., ez} est la base canonique de R* et la

norme est n’importe quelle norme sur M(n, 2g;R).
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Introduction

Let I' be a finitely-generated group and G be a semi-simple Lie group. The representation space
Hom(T', G) is the set of all homomorphisms I' — G we endow with the compact-open topology.

The group G acts by conjugation on the set Hom(I", G). Precisely, for g € G and p: m¥X — G, we
define by g - p the representation v + gp(v)g~*. The quotient of Hom(T', G) by the action of G, is
generally not Hausdorff.

The character variety is the Hausdorff quotient Hom(I', G)//G and will be denoted by X(I',G). In
the more general case when G is a complex algebraic group, we could define the character variety as
the GIT quotient of the representation space by G. However, if GG is reductive the GI'T quotient and
the Hausdorff quotient coincide. In this thesis, G is assumed to be a semi-simple real Lie group. The

character variety may be singular at some points.

Definition 1. A representation is regular if its centralizer, which is its stabilizer under the conjuga-

tion action of G, is discrete.

Let Rep(I', G) be the subset of X(I', G) of classes of regular representations. It is a dense and
open subset of the character variety. This subspace is moreover smooth. In Goldman 1, when I'
is the fundamental group of a connected, compact and oriented surface ¥ of genus g > 2, Goldman
constructs a symplectic structure on Rep(I', G) which comes from the Killing form on G. The
Goldman symplectic form gives rise to a Radon measure A on Rep(I', G), which we extend naturally
to a Radon measure on X (I', G), we will denote by A too, and such that Rep(I', G) has full measure.
This measure lies in the Lebesgue class of X(I', G).

Geometrically, character varieties often encode structures and are moduli spaces of geometric

objects. The two following examples explain this geometric point of view.

Example 1. Assume that I' = w3 for a closed, connected and oriented surface ¥ of genus g > 2 and
that G = PSLy(R). Goldman works and precisely second point of Theorem & imply that the character
variety X (m X, PSLa(R)) contains two connected components of classes of representations which are
holonomies of hyperbolic structures on . In particular, these components are both isomorphic to the

Teichmiiller space of 3.

Example 2. Assume that I is the fundamental group of a Riemann surface ¥ and that G = SU(n).
Then, by Narasimhan-Seshadri theorem, the character variety X (m3, SU(n)) is in bijection with the
moduli space of holomorphic vector bundles of rank n, semi-stable and of degree 0 on Y2, see Donaldson
2018.

These two examples explain the geometric richness of the study of character varieties and the
reasons of this point of view.

The automorphisms group of I' acts by pre-composition on the representation space: precisely, for
v € Aut(T") and p € Hom(T', G), we define 1) - p as the representation v — p(¢p~'(v)). Moreover the

action of the group of inner automorphisms of I" is contained in the action by conjugation of G on
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Hom(T', G) in the following sense: let 1, : v — zyz~! be an inner automorphism and p € Hom(T', G),

then ¥, - p: v+~ p(x~ 1) p(v)p(x) which is in the conjugacy class of p. We hence have an action of the
Aut(T")

Ton (D 7 Ol the character variety via the formula

group Out(I"), which is the quotient

This action preserves the Goldman measure and define a measurable dynamic on the character
varieties.

In a lot of case we treat in these works, I' is the fundamental group of a closed, connected and
oriented surface 3. The Dehn-Nielsen-Baer theorem ensures of an isomorphism between Out(¥) and
the mapping class group of ¥, we will denote by Mod™ (), see Farb and Margalit 2011. This group
is the quotient of the group of positive diffeomorphisms of 3 by the equivalence relation of isotopy.
This point of view allows to describe the group Out(X) well and to have a geometric approach of this
action.

We introduce briefly two remarkable subgroups of the mapping class group:

e The Torelli subgroup of Mod™(X) is the kernel of the action of Mod™(2) on the homological
subspace H; (X, Z).

e The first Johnson subgroups is the subgroup of Mod™(X) generated by Dehn twists along sep-

arating and simple curves.

Denoting by tw. € Mod™*(X) the Dehn twist along ¢, the Torelli group is generated by the mapping
classes of the form twctwgl, for two cohomologuous curves ¢ and ¢ and by the Dehn twists along

separating simples curves.

Compact case

An action of a group H on a measurable space (X, u), where we assume the measure p to be
H—invariant, is ergodic if every measurable and H—invariant subset of X has null measure or is
of full measure, this means that its complement has null measure. In particular, if H' is a subgroup
of H and if H acts on a measurable set, preserving the measure, then, if the action of H' is ergodic,
the action of H is ergodic. The most classical example of an ergodic action is the case of the n—torus
T" = R"/Z". The group generated by a vector (ai,...,a,) € R" acts by translation of T™ and
preserve the Haar measure. The action of ((ay,...,a,)) on T" is ergodic with respect to the Haar

measure if and only if the real numbers aq, ..., a,, 1 are linearly independent over Q.

Theorem 1. (Goldman, Pickrell-Xia) Let G be a compact Lie group and let I' = w3 be the funda-
mental group of a closed, connected and oriented surface ¥2. Then the modular group Mod™ (X)) acts

ergodically on the character variety X (m 3, G) with respect to the Goldman measure.

This theorem was first proved by Goldman in Goldman 1 when G is locally isomorphic to SU(2)

and Pickrell-Xia treated the general case in Pickrell-Xia 1. Some questions can be asked from the
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ergodicity, especially the possibility to have stronger properties: find proper subgroups of Mod™ (%)
which acts ergodically on character varieties.

Funar and Marché proved in Funar-Marche the following:

Theorem 2. (Funar-Marché) The first Johnson subgroup act ergodically on the character variety
X (m13,SU(2)) with respect to the Goldman measure.

From this theorem and the inclusion of the first Johnson subgroup in the Torelli subgroup, we can

prove directly the following corollary:

Theorem 3. The Torelli subgroup acts ergodically on the character variety X (m %, SU(2)) with respect

to the Goldman measure.

The proof use Taylor series at the trivial representation of traces functions associated to separating
curves.
We propose a new proof of theorem 3 and generalize this one for semi-simple and compact Lie

groups:

Theorem A. Let Y be a closed, compact, connected and oriented surface of genus g > 3 and let G
be a connected, semi-simple and compact Lie group. Then the Torelli group acts ergodically on each

connected component of the character variety X(m X, G) w.r.t Goldman measure.

To prove Theorem A, we show that any measurable function f : X' (73, G) — R which is invariant
by the Torelli subgroup is almost everywhere invariant by the mapping class group. To do that we
introduce for each bounding pair, a subset of X'(m X, G) for which we prove that it has full measure.
On this full measure set, every invariant function (under the Torelli group action) is almost-everywhere
invariant under the action of the Dehn twists of the curves of the pair. It is so sufficient to restrict
a function which is invariant by Torelli group to an intersection of enough of these subsets to be
mapping class group invariant.

As corollary, replacing G by a finite product G' x --- x G and identifying X (m 3, G*) with
X (m %, G)*, we obtain:

Theorem B. Let ¥ and G be a surface and a group verifying the hypothesis of theorem A. Then,
for all k > 1, the Torelli group Tor(X) acts ergodically on each connected component of the product

X (m%, G)*. In particular on these components, the action of the Torelli group is weakly mizing.

Non-compact Lie group case

Let X be a closed surface of genus g > 2. Its fundamental group is finitely generated and admits the

classical presentation

g
71'12 = <a17b1, R ,Clg,bg | H[az;bz] = ]‘>
=1
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Figure 3

The character variety has singular points but contains a dense and open subset of regular points.
Precisely, a representation p : m % — PSLo(R) is Zariski-dense if its image is a Zariski-dense subgroup
of PSLy(R). Let Homyp (3, PSLy(R)) be the subset of Hom (X, PSLy(R)) of Zariski-dense represen-
tations and let Rep be its projection in the character variety. In W. M. Goldman 1984, Goldman
proved that Rep is a smooth manifold of dimension 6g — 6. Goldman constructed a symplectic form
on Rep, we will denote by w. This symplectic structure gives rise to a Radon measure, which will
be denoted by A. We extend this Radon measure to a Radon measure X', we will denote again by A,
such that:

AMX \ Rep) = 0.

Connected components for the closed case

In this paragraph, we introduce the Fuler class. It is an invariant associated to each representation
and which is known to classify the connected components of X.

Let p: m¥ — PSLy(R) be a representation. For each generator = € {ay,b1,...,a4,b,}, we choose
a lift p/(;:/) in the universal cover PS/\LQE%) of PSLy(R). Hence the product

projects on the identity. We hence deduce that Hle[p/(gs ,;(E/)] lies in m (PSLy(R)) = Z. This
integer only depends on p and not on the choice of the lifts. We hence will denote it by eu(p). The
map eu : Hom(E, PSLg(R)) — Z is moreover invariant by the action of PSLy(R) by conjugation and

thus descends to a map
eu: X — 7.

In Milnor 1957/58, Milnor shows that this invariant is bounded:
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Theorem 4. (Milnor 1957/58) For all [p] € X:

leu([pD)] < IX(X)].

A representation whose Euler class is equal to &|x(X)] is called mazimal.
In W. M. Goldman 1988, Goldman classified the connected components by Euler class and in W. M.

Goldman 1982 he gave a characterisation of maximal representations:
Theorem 5. (W. M. Goldman 1988 and W. M. Goldman 1982)

1. Forallk € ZN[x(X), —x(2)], the subspace eu™ (k) is non-empty and the connected components
of X are exactly the eu™' (k) for k € ZN [x(X),—x(X)]. We will denote them by X* and by

Rep” their intersections with Rep.

2. A representation p : m % — PSLa(R) is maximal if and only if it is the holonomy of a hyperbolic

structure on .
The second point of Theorem 5 implies that X*X() is homeomorphic to the Teichmiiller space of
3.
Action of the modular group in the closed surface case

The modular group of ¥ is the quotient group of positive diffeomorphisms of ¥ up to isotopy. Dehn-
Nielsen-Baer Theorem (Theorem 8.1, Farb and Margalit 2011) gives an isomorphism between the

modular group of the surface ¥ and the outer automorphisms group:

Aut(m X
Out(mX) = ﬁ

It is well known that the action of the modular group on the Teichmiiller space of ¥ is properly

discontinuous: for all compact subset K of the Teichmiiller space of ¥, the set
{l¢] € Out(m %) | [¢] - K N K # 0}

is finite.
The behavior of this action on non-maximal components seems completely opposite. In W. Gold-

man 2006, Goldman conjectured:

Conjecture 1. (Conjecture 5.1, W. Goldman 2006) Let k € Z N | x(X), —x(X)[. Then the modular

group acts ergodically on X* with respect to the measure \.

Related to the Bowditch condition Bowditch 1998 and in the way of this conjecture, Marché and
Wolff introduced in Marché and Wolff 2016, for & € Z N (X(E), —X(E)), the subspace

NHY = {lp] € Rep® | Iy € ;2 simple , tr(p(v)) € [-2,2]}.
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They proved the following:
Theorem 6. (Theorem 1.5 and Theorem 1.6, Marché and Wolff 2016)
1. Assume ¥ has genus 2. Then the action Mod™ () on X*! is ergodic with respect to .

2. Assume g > 3 and k is an integer such that |k| < |x(Z)|, then the action of Mod™ (%) on N'H"

18 ergodic with respect to .

In genus 2 and for Euler class 0, the component X° decomposes in two disjoint subspaces X°

and X of non-zero measure and on which the modular group acts ergodically with respect to A, see
Marché and Wolff 2016 and Marché and Wolff 2015.

Relative PSLy(R)-character varieties

Let ¥ be a connected, oriented and compact surface of genus g > 1 and with n > 0 punctures, such

that x(X) =2—29g —n < 0. Fix ¢,...,¢, be curves on > which are homotopic to a circle around

each puncture.

Figure 4

The fundamental group mz is the free group:
(a1,by, ..., ag,bg,c1, ... Cy H[am bi] ch =1).

The representation space Hom(i], PSL,(R)) is the space of morphisms p : 7% — PSLy(R). The

group PSLy(R) acts on the representation space by conjugation.

Definition 2. The character variety X (X) is the Hausdorff quotient
Hom (%, PSLy(R)) //PSLa(R).

A representation p : mY — PSLy(R) is called Zariski-dense if its image is Zariski-dense in

PSLy(R). The subspace Rep(X) of classes of Zariski-dense representations is a dense, open and
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full measure subset of X(3). This space is partitioned by behavior on the boundary components.
Precisely we impose conditions on the boundary: for Cy,...,C, be n conjugacy classes in PSLy(R) and
C := (Cy,...,C,), we define the space Hom(z,PSLQ(R),Q) of representations p : mY — PSLy(R)
such that for all i € {1,...,n},

p(c;) € C;.

The groupe PSLy(R) acts on the space Hom(z, PSLQ(R),Q) by conjugation.

Definition 3. The relative character variety associated with C, denoted by X (2, C), is the Hausdorff
quotient

Hom (3, PSLy(R),C) //PSLy(R).

Let us denote by Rep(X,C) the subspace of classes of Zariski-dense representations of X'(3,C).
This set is a smooth manifold of dimension 6g — 6 + 2n.

For each C; € PSLy(R), we choose a lift 61 € PS/\LgE{), we denote by r; the translation number
of C; and by r the vector (rq,...,r,). We define, for the vector r € R", the vector {r} of fractional

parts of the coordinates of r. This means that {r} = ({ri},...,{r,}) with for each i € {1,...,n},
{ri} =ri—[ri.

Definition 4. Let p: m> — PSLy(R) and fix a lift p: % — PS/L:ﬁ{) For eachi € {1,...,n}, let
r; be the translation number of any lift p(c;). The Euler number of p is the number eu(p) defined by

n
— E Ti.
=1

The Euler number of a representation does not depend of the choices of the lifts and is constant
on each conjugacy class of it. We thus define the Euler number of a class of representations [p] by

the Euler number of a representative of this class. This gives a map

eu: X(X)— R

which induces the restriction map
euc : X(X,C) - R

such that euc([p]) + |[{r}|}1 € Z with {r} be the vector of fractionnal parts of the r;. The preimage of
eug'(e), for e € R, will be denoted by X ¢(3,C). In Mondello 2017, Mondello described the topology
of X(%,C).

Theorem 7. (Theorem 2.20, Mondello 2017)

1. The image of eu : X(X) — R is the interval [X(E),—X(E)}. If eu(p) = —x(X), then all the
p(c;) are hyperbolic and p is the holonomy of a hyperbolic structure on S with geodesic boundary

components.
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2. Assume e > 0. Then the space X(3,C) is non-empty if and only if e + I{r}|l + so + s- €
ZnN o, —X(E'])}, where sq is the cardinal of {i € {1,...,n} | C; =id} and s_ is the cardinal of

{i € {1,...,n}|C; negative unipotent}

) ) . In this case,

where a matriz is negative unipotent if it is conjugated to the matriz (
the space X¢(3,C) is connected and smooth.

This work will always consider conjugacy classes of elliptic isometries. In this situation the number
sp and s_ are both zero.

The pure mapping class group of ¥, denoted by Pl\/[od(f])7 is the group of isotopy classes of
diffeomorphisms of ¥ whose action on dY is trivial. It acts naturally on the relative character
varieties with an action which is similar than the one of mapping class group on character varieties
in closed case and preserves the connected components of relative character varieties and Goldman

measure.

Statements

Fix C = (Cy,...,C,) with each C; be a conjugacy class of an elliptic isometry of angle v; in PSLy(R).
The number [[{r}||; = >, |v; — [vi]| depends only of the C;.

We will denote by N/ 7—[(2, C) the space we define to be the subspace of Rep(z, Q) whose elements
are the classes of representations [p] for which there existes a simple and closed curve v C 3\ 8% such

that p(7) is a non-hyperbolic isometry of H2. For e € R, we denote by N'H®(%, C) the intersection
NH(Z,C) [ Rep®(2,C).

We prove the theorem:

Theorem C. For e = +(k — ||{r}|:) with k € ]||{r}|, —X(E)[ﬂ Z, the pure mapping class group
acts ergodically on NH(%,C).

The proof of Theorem C is an adaptation to the case of surfaces with boundaries of the proof of
Theorem 1.6 of Marché and Wolff 2016.
We conjecture the dynamic of the modular group can be ensured, stating that a proper subgroup

acts ergodically for the case of closed surfaces:

Conjecture A. Let 3 be a closed surface of genus g > 3. If k is an integer such that |k| < 2g — 5,
then the group Tor(X) acts ergodically on the subspaces NHF.

The section 77 is devoted to explain a strategy and a large part of proofs in the way of this conjec-
ture. A positive answer to a question which is analogue to the Goldman conjecture, see Conjecture

77?7, could prove Conjecture A.
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Topological dynamic

The example of translations on torus gives us a dynamical intuition of the orbits. In the case of the
circle, we easily see that the action of a rotation of irrational angle has only dense orbits. This chaotic

phenomena can be seen in higher dimension and is a general result coming from ergodicity:

Proposition 1. Let H be a topological group acting on an Borelian space (X, p) and which preserves
the measure . Assume that each non-empty and open subset has mon-zero measure and that the
topology of X is countably generated. If the action of H on (X, u) is ergodic, then almost every orbit

1s dense.

Unfortunately, this fact is a probabilistical result and no description of point of X for which the
orbit is dense is given in general.

In W. Goldman 2006, Goldman ask the following:

Question 1. Could we find a condition on a representation p : m> — SU(2) to have that its
Mod™* (X)-orbit is dense ¢

In Previte and Xia 2000 and in Previte and Xia 2002, Previte-Xia gives a necessary and sufficient

condition:

Theorem 8. A representation p : m% — SU(2) has a dense Mod™ (X)-orbit if and only if p has a

dense image in SU(2).

We start to prove a similar statement with the Abelian case. A compact, Abelian and connected

Lie group is isomorphic to a n—dimensional torus. Using Ratner theorem, see Morris 2005, we prove:

Theorem D. A representation p : 1% — T" has a dense Mod™* (X)—orbit if and only if p has a

dense image in T".

We conjecture such a result is true when G = SU(3) and X is a one-holded torus.

Connection with the Kronecker’s Approximation Theorem

The dynamical result provided by Theorem D finds an application on the theory of geometry of
numbers. An important theorem in this topic is the Kronecker’s theorem concerning inhomogeneous

Diophantine approximation, see section 4 below for the precise statement.

Theorem E. Let ¢ > 1. Let b = (bﬁi),...,bg"g)), with i = 1,...,n, be vectors of R* such
that b ... b ey, ... , Teag are linearly independent over Q in the vector space R™. Let A &
M(n, 2g;R) be a real matriz and let € be a positive number. Then there is an element K € SpQg(Z)
such that

HA y KH < Ce mod 27. 2)

where C is a constant depending only on 2g and n, {e1, ..., e} is the canonical basis of R* and the

norm is any norm on M(n, 2g;R).
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1 Background

Let X be a connected, oriented closed surface of genus g > 2

1.1 The Torelli group

For more details on this part, see Farb and Margalit 2011. The group Mod™ () is generated by the

3g — 1 Dehn twists twg,, twy, ..., twg,, twy,, twg,, ..., twg,_, where, for i = 1,..., g, the curves a;, ;

g—1

on Y are given by the presentation of the fundamental group of ¥ :

mX = (a1, by, ..., a4,by | [a1,b1] -+ - [ag, by = 1)
and, for j =1,...,9 — 1, the curves d; are the products a]-’lajﬂ. See Figure 2.
The first homology group H; (X, Z) = Z* is freely generated by the curves [aq], [b1], ..., [ag], [b,] and

is a lattice in the real homology group H; (3, R).

Definition 1.1. The Torelli group Tor(X) is the kernel of the action of the mapping class group on
Hi(X,Z).

An explicit generating set of the Torelli group is the set

{tw., tw,tw, ! | ¢ separating, a, bcohomologous}.

a, L C’aflca:\;aagoas

Figure 5

1.2 Borel cross sections

Let X be a topological set on which a topological group H acts. The set X is endowed with its
Borelian c-algebra and a Borelian measure pu. A function X; — X, between two measured sets is

called bimeasurable if it is measurable, invertible and has a measurable inverse. If such a function

21



exists, we then say that X; and X, are bimeasurable. The quotient set X/H carries the quotient
topology such that the canonical projection X — X/H is continuous. A Borel cross section is a
subset & C X which intersects exactly once the orbit H.z, for every element x € X. The following
theorem is proven by Edward Effros in Effros 1965. For our purposes we shall need the following

partial statement:

Theorem 1.2. (Theorem 2.1, Effros 1965) If X is a separable, complete, metrizable and locally
compact topological space and if H is a topological group acting continuously on X, then the following

conditions are equivalent :
e Fvery orbit H.x is locally closed.
e Fvery orbit H.x is locally compact.
e There exists a Borel cross section S for the orbits of H in X.
A key corollary of this result is given by James Bondar in Bondar 1976:

Theorem 1.3. (Theorem 2, Bondar 1976) If X and H wverify the hypothesis of the previous theorem
and if furthermore the action of H on X 1is free and one of the conditions of the previous statement
holds, then the Borel cross section S is bimeasurable to the quotient space X/H and there exists a

Borelian measure ps on S such that for every measurable function f : X — R one has:

[ gau= [ ([ stsriunth) st

where py is the Haar-measure on H.

1.3 The mapping class group action on the SU(2)-characters

In the compact case and in rank 1 case we consider, the Lie algebra of SU(2) is the Lie algebra su(2)
of traceless skew-Hermitian complex 2 x 2-matrices. Let f : SU(2) — [ — 2,2] denote the trace
function. Its variation function F is defined as the unique function F': SU(2) — su(2) such that, for
all z € SU(2) and X € su(2),

d

altzof(x cexp(tX)) = (F(z), X).

Goldman proved, in W. M. Goldman 1986, that:

Following Goldman and Xia 2011, we let:

¢t SU(2) — SU(2)
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defined as the map sending zz € SU(2) on exp(t - F'(z)) For z € SU(2), the map t — (*(z) is a

one-parameter subgroup of SU(2).

1.3.1 Separating curve

If a curve  on X is separating, then > \ « can be written as the disjoint union ¥; U ¥y and the

fundamental group 7% is the amalgamated product
7121 <*> 7T122.
The data of two representations p; : m%; — SU(2) and ps : m X9 — SU(2), such that

p1(a) = pa(a),

allows us to construct by amalgamation a unique representation p : m¥ — SU(2) defined by pj,», =

P1 and PlmiTe = P2-
Let & : X (mX,SU(2)) — X(mX,SU(2)) be the twist flow defined, for v € m %, by

o) = { p(7) if v € m(24)
: Cp(@)p(v)¢ (p(a)) if v € m ()

This flow is well defined since (*(p(«)) is the exponential of a polynomial in p(«) and thus commutes
with p(«).

1.3.2 Non-separating curve

If a curve v on ¥ is non-separating, the fundamental group 72 is the HNN-extension:

(ma(sta) (9)) /g5 @)
where o represent the boundary components of ¥\ . Hence the data of a representation
po : m(X]a) = SU(2)
and a matrix B € SU(2) such that

Bpo(a™)B™" = po(a™)
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defines a unique representation p : mX — SU(2) such that piz (sja) = po and p(f) = B. Let
& X (mX,SU(2)) = X(mX,SU(2)) be the twist flow defined, for v € m %, by

; ) op(y) if v € m(2la)
farlt) = { Clola)olB) ity = 5

This flow is well defined since the relation

Ep(B)ELp(a)Ep(B)~ = Epla™)

is satisfied.

1.3.3 The Dehn twists and the flows

For a simple and closed curve «, consider the trace function f, : X (m %, SU(2)) — [—2, 2] associated

with the curve «, that is:

fa([p]) = tr(p(a)).

In W. M. Goldman 1986, Goldman proved that the flow &, is the Hamiltonian flow of the trace

function f,, that means:

d
df X = — &.X
4 WG(dttO “ )

for all X € TX(mX,SU(2)) and where wg is the symplectic form constructed by Goldman in W. M.
Goldman 1984.

6 0
If 2 € SU(2), then there exists g € SU(2) such that z = g <60 _A9> g~ with 6 = cos™! (£2).
e 7

2

We then compute F(z) =z — @id which we can write:

and so, by definition
it sin(6) 0
teoy € -1
¢z) =g ( 0 e—itsin(@)) g -

In particular, if x = +id, then for all ¢ € R we have (*(z) = id and for z # +id, we have the equality
C*(x) =1id, if and only if ¢ € Sh%z. Thus we state the following (see Katok and Hasselblatt 1995):

Lemma 1.4. If x # +id, then x belongs to the one-parameter subgroup {C'(z)}ier and more precisely,
x = @ (z) for:

 sin(9)
For x € SU(2) such that 0 ¢ ©Q, the subgroup (x) is dense in the circle {C*(z)|t € R} = S and acts

ergodically on it with respect to the Lebesque measure.
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Furthermore, the Dehn twist tw, acts on p via the relation
twa.p = §Z(”(a))p.

Thus, if cos™! (W) x L is irrational, then the orbit (tw,).p is dense in the circle defined by the
orbit {¢! p}ier. The Hamiltonian flow gives an action of the circle U, := S' on the character variety

and a free action on the subspace consisting of classes of representations [p] such that p(«) # +id.

1.4 Action of the modular group on PSLy(R)-character varieties and

Hamiltonian flows

Similarly to the previous part, the Lie algebra sly(R) of PSLy(R) is the space of traceless real 2 x 2
matrices. Let exp = slo(R) — PSLy(R) be the exponential map. The Lie algebra sly(R) is endowed
with its Killing form we will denote by K(., .). Let f: PSLy(R) — R be a smooth function. Then
there exists a unique map F': PSLy(R) — sl(R), called the variation function associated to f, such
that for all ¢ € PSLy(R) and all X € sly(R),

d

altzof(g ~exp(tX)) = K(F(g), X).

In W. M. Goldman 1986, Goldman computed that the variation function of the trace function f := tr
is given, for all g € PSLy(R), by the formula F(g) = g — @id. We introduce the flow

¢" : PSLy(R) — PSLy(R)
g = exp(tF(g))

Let g € PSLy(R) be an elliptic isometry and let 6 its angle. We assume sin(f) # 0. The isometry
cos(f) —sin(6)
sin(f)  cos(0)

We directly compute that
0 — sin(0
Fg)=h ) e
sin(6) 0

. cos(tsin(f)) —sin(tsin(9))\ ,
= h "
¢'(9) <Sin(tsin(9)) cos(t sin(0)) )

g has the form g = h ( ) h~! for some h € PSLy(R).

and hence that

In particular, ¢!(g) = id if and only if t € 2% Z and the matrix g is contained in the flow {¢'(g)}ier.

sin 0
More precisely g = (*19)(g) for
0

sin @

s(g) =

and moreover:
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Lemma 1.5. If g is an elliptic isometry of infinite order then the subgroup (g) is dense in the circle

{C'(g) [t eR} =SS!
and acts ergodically on it.

1.4.1 Non-separating curve

If a curve « is non-separating, the fundamental group 7% is the HNN-extension:

(me\ 0 IT9 ) /(557 =a)

+

where o are the boundary components of ¥\ a. Hence the data of a representation

Lo : ’/'Tl(E \ Oé) — PSLQ(R)
and a matrix B € PSLy(R) such that
Bpo(a™)B™" = po(a™)

allows to construct a representation p : m 3 — PSLy(R) defined by pjr, (o) = po and p(3) = B.
We define the flow & : Rep* — Rep” by:

tmw:{pw> ifyem(S\a)
" ¢H(pla)p(B) ify =15

This flow is well defined since the relation
Lp(B)ELp(a)ELp(B) T = ELp(a).
is satisfied.

1.4.2 Separating curve

If o is separating, then ¥ \ « is the disjoint union ¥; [] ¥, and its fundamental group T' is the

amalgamated product:

7121 <>I<> 7T122

Similarly to the HNN-extension, the data of two representations p; : m3; — PSLy(R) and py :
m e — PSLy(R) such that
p1(0%1) = pa2(0%5)
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allows to construct the representation p : ¥ — PSLy(R) defined by pjss, = p1 and pjos, = p2.
We let the twist flow &, : Rep® — Rep”* by :

to(y) = { p(7) ?f v € m(Zh)
¢'(pla)p()C (pla)) if v € m(32)
This flow is well defined because *(p(«)) commutes with p(«) as the exponential of a polynomial in
pla).
In W. M. Goldman 1986, Goldman proved that the flow {&} we defined is the Hamiltonian flow
of the trace function

fa i prtr(p()).

Theses flows defines action of the circle U, := S! on the subspace of classes of representations which

send « on an elliptic element. A corollary of Lemma 1.5 is the following:

Lemma 1.6. Let p: m> — PSLy(R) and let o be a simple closed curve such that p(«) is elliptic of
infinite order. Then the action of (T,) on the circle U, - [p| is ergodic with respect to the Lebesque

measure.
Remark 1.7. If ay,...,ap are simple curves and if we assume there are pairewise disjoint, then the
flows &1, . .. ,f};‘; commute. Their action on p give a topological torus orbit Uy, X --- x Uy, - p.
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2 Torelli group action on compact character varieties

In this section, we prove Theorem A.

2.1 Ergodicity for the case of SU(2)

The strategy in proving the ergodicity of the Torelli group action is to find a full measure subset of
the character variety on which every measurable and Tor(X)-invariant function is almost everywhere

invariant by the mapping class group action.

2.1.1 Ergodicity of translation actions

In this subsection, we generalize Lemma 1.4. We remark that if two simple curves c¢; and ¢y are
disjoint, then the associated flows 521 and &7, commute. Hence, under this assumption, the actions of
these flows on a representation p give a topological torus orbit {£ .£3, p}iscr obtained by the action

of U, x U, on the characters which are not £id evaluated in ¢, cs.

Lemma 2.1. Let [p| be a class of representations in X(m%,SU(2)) and suppose that there exist

simple closed curves cy,...,co on X which are pairwise disjoint and such that
6, = Cos_l M 6, = COS_l f(p(cé)) -
1 9 , ...y Up _2 ,

are linearly independent over Q. Then the action of h = tw, ...tw., on the orbit (Uc1 X+ X Uce) [0l

18 ergodic with respect to the Lebesque measure on this torus orbit.

In particular, every orbit for the action of h is dense in the topological torus

(U01 Ko X UC@) - [ol.

Remark 2.2. With the notation of the Lemma 2.1 and if [p] satisfies the hypothesis of this lemma,
then for all i = 1,...,¢, the matriz p(c;) is not £id and the torus orbit U, x --- x U, - [p] is the

torus obtained as the quotient:

RY/A

where A is the lattice 22-7.®- - -® =2=-7. By definition of the torus R*/A, the action of U, x---x Uy,

sin 01 sin 0,

on the character variety s free.

The following is a classical result needed for proving Lemma 2.1 and for which a proof may be find
in Katok and Hasselblatt 1995. We denote by T the torus R/27Z. we precise that T is isomorphic

to a maximal torus of SU(2).
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Lemma 2.3. Let t = (t1,...,t;) € R* such that ty,. .. t;,m are linearly independent over Q and let
fi : T — T be the translation of vector t. Then the action of {f;) on T is ergodic with respect to

the Lebesgue measure.

Proof of the lemma 2.1. The Dehn twists tw,, act as a translation of the torus orbit U, x---xU,,-[p].
The orbit h? - [p] is the orbit (&It ... &%) - [p] with for all k € {1,...,(}:

Or

ty = ————.
"7 2sin(6))

For such a tj, the action of fé: is given by the multiplication by a matrix conjugated to

e
0 e )’

We deduce from this that the action of h on U., x --- x U, - [p] is given by the translation of the
vector (61, ...,0y). Then the lemma 2.3 shows that this action is ergodic with respect to the Lebesgue

measure since 7,01, ..., 0, are linearly independent over Q. m

2.1.2 A full measure set

A multicurve m is the union of a finite number of simple, closed and pairwise disjoint curves. Let us
denote by MC(X) the set of multicurves m whose curves are simple, closed and non-separating and
such that m is the boundary of a subsurface of 3. By MCg(X) we will denote its subset of bounding
pair of X.

Definition 2.4. Let m = ¢, U--- U ¢ € MC(X) be a mutlicurve. We say that a class [p] €
X (m13,SU(2)) satisfies the condition (M,,) if the real numbers :

7,0y = cos”! (W) R ——— (M)

are linearly independent over Q.

Following the previous definition, for m € MCy(X), we now consider the set :
M, (m3,8U(2)) = {[p] € X(m%,SU(2)) | [p] statisfies the condition (M,,)}

The aim of this section is to prove the proposition :
Proposition 2.5. For m € MCy(X), the set M,,(m%,SU(2)) has full measure in X (m 2, SU(2)).

Before to prove this proposition, we note that for a curve ~, the angle of p(v), expressed by the
o5~ (f(PQ(’Y)))’
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defines a function 6, : X(m%,SU(2)) — S'. To simplify notation, as previously, for a multicurve
m = c;Ucy € MCy(X), we will denote by 6, and 6 the functions 6., and 6.,. Moreover, ¢; Ucy separate
Y in two subsurface 31 and Y of respective genus g; and g, and with two boundary components. Let
¥} and X be the two subsurfaces of ¥; and ¥, which have genus ¢; and go and with one boundary

component which for a pair of pant with ¢; and c;. See next picture.

Figure 6

Let N, be the subset of X (mX,SU(2)) of conjugacy classes of representations p such that the
centralizers Zguyz) (p‘mg/l ) and Zgu(2) (p‘mgé) are discrete in SU(2). This subspace has full measure
because if one of the centralizers is non discrete, the image of at least one restriction is contained in
a parabolic subgroup. Hence the complement of N, is a finite union of submanifolds and hence has

measure zero.
The complement of M,,(m 2, SU(2)) is the set:

U {[P] € X(m3,SU(2)) | 16 (p) + a202(p) = q(ﬂr}.

(90,91,92) €Z3\{0}

Let ¢ denote the vector (q1,¢q2). If go # 0 and ¢ = 0, the relation ¢101(p) + ¢202(p) = o7 is empty.
Thus, we only have to consider the case ¢ # 0. The proposition will be hence proved if for every
(40, 41, 42) € Z°\{0} with g # 0zz, the set:

{lp] € X(m%,SU(2)) | 0101(p) + q262(p) = qr} =¥, (qom)

-~

:@Z)m,q([p])

has null measure. Fix (qo, q1,q2) € Z*\{0} with q # 0z:.
Lemma 2.6. The map 1y, , is a submersion on every class of representation [p] € Ny,.
By Goldman work W. M. Goldman 1984 part 3.7, the map & : SU(2)? ™! — SU(2)? defined by :
91

Ei(Ar,.... By, C) = ([[I4), Bj].C)

J=1
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is a submersion at the point {4, ..., By, } if the centralizer Zgy(y) ({Al, - ,Bgl}) is discrete. For the
same reasons, the map & : SU(2)*2"! — SU(2)? defined by:

92

E(Ar, ... By, C) = ([[I4;, B;].C)

j=1

is a submersion at the point {A;,..., By,} if the centralizer Zgye) ({A1,..., By, }) is discrete.
Hence the evaluation Evy, : Hom(m 3y, SU(2)) — SU(2)? defined by:

Evs, (p) = (p(c1), ple2))

is a submersion at every p such that the centralizer Zgy o) (,0|7r1211 ) is discrete since Evy, is the com-

position of £ with the diffeomorphism:

SU(2)2 —  SU(2)?
(A,B) — (B 'AB)

Since the trace function tr : SU(2) — [ — 2,2} is a submersion at each matrix A # =id, the
application (f,, fe,) : Hom (7?12, SU(Z)) — [— 2, 2] X [— 2, 2} is a submersion at each representation
p such that both Zgy(g) (P\mz'l ) and Zgy2) (,0|7r12/2) are discrete. In particular, under this condition,

the linear form dj, f., and dj, f., are non-colinear.

Proof of Lemma 2.6. Let p such that p(c;) and p(cy) are not equal to +id. We then have that both
sin(f1(p)) and sin(f2(p)) are non-zero. We hence compute that:

—q2
sin(62(p))

—q1
sin(6:(p))

If {)¥m,q = 0, then we deduce that dj, f., and dj, f., are colinear. But it is impossible if [p] € N,,.

Al Ym,q = dig) fer + dip) fes-

Then ), , is a submersion at each point of N,. O

2.1.3 Proof of the ergodicity

In order to prove Theorem A for SU(2), we will consider a measurable function which is Tor(X)-
invariant and prove that, up to a restrict this function to a full measure subset, it is invariant under
the action of the Dehn twists which generate the mapping class group.

Let F: X(mX,SU(2)) — R be a measurable function and assume that F' is Tor(X)-invariant. Let
x €{ay,by,...,a, by dy,...,dy_1} be a curve of the generating set of the mapping class group, fix a

bounding pair m, = xUcy in MCq(X) and denote by h the product of Dehn twists tw, - tw,,. The set

M, (m132,5U(2))
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has full measure by Proposition 2.5. As the orbits U, x U,, - [p] are tori and so are compact in
X (m%,SU(2)), Theorem 1.2 ensures the existence of a Borel cross section of X (m %, SU(2)) for the
action of U, x U,, = T3. We will denote this section by S. Since T? and X (7%, SU(2)) verify the

assumption of Theorem 1.3, then the section S is bimeasurable to the quotient
X (m%,SU(2)/T?

and the measure A decomposes, for all function f : X(m X, SU(2)) — R, by the formula :

/ fin= [ ( f(ts)duw(ﬂ)dus(s)
X(m1%,8U(2)) s \Jr2

where jp2 is the Haar measure on the tori T? given by Theorem 1.3 and jus is a measure on S given
by the same theorem.
The function F induces a measurable function F : S x T2 — R defined by :
F(s,t) = F(t-s).

Fix [p] € My, (m2,SU(2)), denote by [p] its projection in S and let F e : T? — R. Such a
function is measurable and invariant by the action of (h) since F'is. Since [p] € M,,, (m%,SU(2)), the
action of the translation (h) on T? is ergodic with respect to pp2. It implies that Fv‘ (T2 is almost
everywhere constant and hence that the restriction Fjp2., is almost everywhere constant. Since the
Dehn twist tw, acts as a translation of the torus on U, x U, - [p], we deduce that on a full measure
subset of U, x U, - [p] the function F' and F' o tw, are equal. This fact is true for almost every
[p] € M,y (11X, SU(2)) which has full measure by Proposition 2.5. It follows that Fiu,,. (rxsu() 18
almost everywhere invariant by the Dehn twist tw,.

We then deduce that on the space

N M, (75,5U(2)),

xz€{a1,b1,...,aq,bg,d1,....,dg_1}

which has full measure in X(m %, SU(2)), the function F' is almost everywhere invariant by the Dehn
twists tw,, for all € {ai,...,by,d1,...,dy—1}. It implies that F' is almost everywhere invariant
under the action of Mod(X), which is known to be ergodic from Theorem 1. Hence F' is almost

everywhere constant and this proves the ergodicity of the Torelli group action on X (m X, SU(2)).

2.2 Ergodicity for G = SU(n)

This part is devoted to the proof of Theorem A in the more general case G = SU(n), for n > 2.
We apply the same strategy as in the previous section, adapting the tools developed there. Let us

introduce the notation we are going to use.
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2.2.1 Torus actions on M*"*8(m3 SU(n))

For a matrix A € SU(n) with distinct eigenvalues, denote by A;(A),..., \,(A) its eigenvalues and
01(A),...,0,(A) their arguments which can be expressed up to the sign as

- (/\i(A) + Ai(A)—l)

2

with the normalisation 0 < 6;(A) < --- < 6,(A) < 27. The group SU(n) has rank n — 1 and every

maximal torus is conjugate to the group :

e 0 ... 0
0 e .. 0 no
{ . - ) ><917---79n)€[0,27r[and Hewkzl}
. : . : P
0 0 ... ¢bn

which is isomorphic to T"1.

A matrix A € SU(n) is called regular if its eigenvalues are simple. Similarly, for a curve «, a
character [p| € X(m3,SU(n)) is called a—regular if the matrix p(a) is regular. We will denote
by M™8(m %5, SU(n)) the subsets of a—regular SU(n)-characters. For any curve «, the subset
M8 (32, SU(n)) is an open subset of X'(m13, SU(n)) and has full measure. We will define actions
of T"~! on the character variety X (7%, SU(n)). Let z = (21, ..., 2,_1) € T" ! and h. be the associated
diagonal matrix :

diag(zl, e Zne1s ;) € SU(n).

Z]_ DY Z’n—l
Let A € SU(n) be a regular matrix. There exists a unique decomposition [e;] & --- @ [e,] of C" in

lines such that:

Ae,; = >\z (A)ei,

for all : € {1,...,n}.
Let a be a simple and closed curve and let [p] € M*™&(m3, SU(n)). With the same notation as
in part 1.3 and with respect to the unique basis of C™ in which p(a) = h(x, (p()),An_1(p(a))), We define

for 2 € T and for a non-separating, the representation z - p by:

z-pm—{ ply)  ifyem(E\a)
h.p(B) ify=p

In the case when « is separating, the representation z - p by:

2 o) = { p(7) if v €m(¥)
hop(y)h;' iy € m ()
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Therefore, the action of the torus U, := T" ! on the subspace of a—regular characters depends on

a. Moreover the action of Dehn twists along o on M*"8(7;3,SU(n)) is given by:

where A(p(a)) = (M (p(@)), ..., A_1(p(a))). A direct computation shows that if @ and 5 are disjoint
curves, then the actions of the tori U, and Ug on M8 (73, SU(n))NMP8(1, 3, SU(n)) commute.
This hence defines an action of U, X Ug on the space of a—regular and S—regular characters. We

thus obtain an analogue of Lemma 2.1:

Lemma 2.7. Let [p] € X (m13,SU(n)) and suppose that there exist ¢y, . . ., ¢, pairwise disjoints, simple

and closed curves on > such that:

el(p(cl)>’ s 70n—1(p(cl))> s ,Ql(p(Cg)), s ,Qn_l(p(Cg)), m

are linearly independent over Q. Then the action of h = tw,, - - -tw., on the orbit U., x --- x U, - [p]

18 ergodic with respect to the Lebesque measure on this torus orbit.

Proof. As in the proof of Lemma 2.1, the action of the Dehn twists tw,, is an action by translation
on the torus. The flows commute on the character variety because the curves are disjoint and the

orbit is given by the formula

W - lp] = (Mlp(en)®s - Aua(ple)®s - Aalp(ce)®, - Aua(p(ce))®) - Lol

Hence the condition on the 6;(p(cx)) implies the desired ergodicity by the lemma 2.3. O

2.2.2 A full measure set and the ergodicity

In this subsection, we define a full measure subspace of the character variety with the conditions of

the previous lemma and conclude with the ergodicity of the Torelli group action.

Definition 2.8. Let m = ¢; U --- U ¢y be a multicurve of simple closed and non-separating curves.
We say that a class of a representation [p| € X (w13, SU(n)) satisfies the condition (M,,) if

01(p(c1)) - Ona(p(cr))s - Ou(plee)), - Ona(ple)), m

are linearly independent over Q.

Remark 2.9. If a class of a representation [p] satisfies the condition (M,,) for some m = ¢; U
U, € MC(X) then [p] is ¢;-reqular for all i € {1,...,¢}. To simplify notation, for a multicurve
m=c, U---Ucy, we will denote by M™8(m 5, SU(n)) the intersection

¢

(Y M5 (15, SU(n))

i=1
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which has full measure.

We define, for m € MCy(X), the set:
M, (mE,8U(n)) = {[p] € X(mX,SU(n)) | [p] statisfies the condition (M,,)}.

Note that Remark 2.9 assures that M,,(m%,SU(n)) is contained in M™8(m; 3, SU(n)).
Proposition 2.10. For all m = ¢; Ucy € MCy(X), the set M,,(m%,SU(n)) has full measure in the

character variety.

A previously, ¢; Ucy separate X in two subsurface ¥; and Y, of respective genus g; and g, and with
two boundary components. Let ¥} and >, be the two subsurfaces of ¥; and ¥ which have genus ¢,
and ¢go and with one boundary component which for a pair of pant with ¢; and ¢,. See Figure 6.

We can write its complement as the set:

2 n—

U {[p]e)c'mESU 0y > 6. (o _W}.

a=(a},...at_1,-a3,.q2_1)€Z2("=D\{0},q0€Z k=1 i=1

We will show next that each set in the previous union is a codimension 1 submanifold and hence
this union has null measure.

Let ¥y, 4 : M™78(m3,SU(n)) — R be defined by the formula :

—_

n—

2
Umallo) =D ) o

k=1 i=1

For ¥ = [p] = Ni(p(cr)) + Ni(p(ex)) ™!, we may write 0;(p(cr)) = cos‘%@) up to the sign. The
differential of v, , is the computed to be

—_

n—

k

2
k=1 i=1

d[ﬂ]¢mq Z QSID ZP(Ck)))dwﬂ-l

Let N, be the subset of X (m X, SU(n)) of conjugacy classes of representations p such that the
centralizers Zsy(n) (p|ﬂ-12/1 ) and Zsy(n) (p|ﬂ-12/2 ) are discrete in SU(n). By the same reason we explained
for the case of SU(2), we have:

Lemma 2.11. The subset N, has full measure in X (m%,SU(n))
We will show the next Lemma as for SU(2).
Lemma 2.12. The map ¢y, is a submersion on every class of representation [p] € Ni,.

By Goldman work W. M. Goldman 1984 part 3.7, the map &; : SU(n)?*** — SU(n)? defined by :

&(Ay, ..., B,,,C) = (lg_l[[Aj,Bj],C)

J=1
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is a submersion at the point {A;, ..., By, } if the centralizer Zguyy,) ({Al, . ,Bgl}) is discrete. For the
same reasons, the map & : SU(n)?2*"! — SU(n)? defined by:

92

E(Ar, ... By, C) = ([[I4;, Bj].C)

j=1

is a submersion at the point {A,..., By, } if the centralizer Zguy,) ({Al, ce Bgz}) is discrete.
Hence the evaluation Evy, : Hom(m 3y, SU(n)) — SU(n)? defined by:

Evs, (p) = (p(c1), plea))

is a submersion at every p such that the centralizer Zgy) (P\mz’l ) is discrete since Evy, is the com-

position of £ with the diffeomorphism:

SU(n)2 —  SU(n)?
(A,B) +— (B'A,B)

Since the functions A\; + A; ' : SU(n) — [— 2,2} are submersions at each regular matrix A,

~~~~~

representation p such that both Zgy (p|7r12/1 ) and Zsy(n) (,0|7r12/2) are discrete. In particular, for the
first qfoo = 0, there exists a vector field X such that d[p]ﬂfX = (52)0. For such a vector fiel:

i) thm,g X = diymiy X # 0.

sin (0, (p(cko )))
This concludes the proof of Lemma 2.12 and thus of Proposition 2.10.

The proof of the ergodicity uses the same arguments as in case of SU(2).

Let F': X(mX,SU(n)) — R be a measurable and Tor(X)-invariant function. For each curve z in
the set {a1,b1,...,a4,by,d1,...,dy—1}, we fix a bounding pair m, = z U c,.

Replacing the torus T? we used for the case SU(2) by the torus T2, we conclude using the

same methods that on the space

N M, (m%,8U(n)),

xe{al,...,bg,dl,...,dg_l}

which has full measure from Proposition 2.10, the function F' is almost everywhere invariant by the
Dehn twists tw, for all z € {a1,b1,...,a4,by,d1,...,d,—1}. This implies that it is almost everywhere
invariant by the mapping class group. Theorem 1 now shows that F' is constant on a full measure
subset of X(mX,SU(n)). This proves the ergodicity of the Torelli group action on X (%, SU(n)).

36



2.3 Ergodicity for semi-simple, connected and compact Lie groups

In this section we generalize the proofs of the ergodicity of the Torelli group on character varieties
with values in a semi-simple, connected and compact Lie group. We will use the same strategy as for
compact Lie groups SU(n) but need to replace the tools we used by their appropriate analogues in a

more general sense.

2.3.1 Preliminaries on compact Lie group theory

Let G be a semi-simple, connected and compact Lie group with Lie algebra g. A maximal torus is a
connected and abelian subgroup of G which is maximal in these properties. Such a subgroup exists,
so fix T" < G be a maximal torus and let t be its Lie algebra. It is an abelian subalgebra of g. The
subgroup 7' is isomorphic to an r-dimensional torus T" and its Lie algebra t is isomorphic to the
commutative Lie algebra R". We will so use the existence of coordinates on t via this isomorphism.
Precisely, for i € {1,...,r} and t € T, we denote by \;(t) the projection on the i-th factor of
teT =T Itisa well known fact that every element of G is contained in a maximal torus. We

have however the more precise result (see Brocker and tom Dieck 1995 for more details):

Theorem 2.13. Fvery k € G is conjugated to an element of T'. Moreover, all the mazimal tori are

conjugated and hence are isomorphic to T".

Remark that a maximal torus can contain two conjugated elements. The integer r is called the
rank of the group G. The Weyl group associated to T is the group Ng(7T')/T, where the subgroup
N¢(T') is the normalizer of T in G.

Proposition 2.14. (Bourbaki 1981) The Weyl group associated to a mazimal torus T < G is finite.

A weight of T is a real and irreducible representation. Let w be a weight of T"and 0 : G — Aut(V)
be a representation. The sum of all invariant subspaces of o|r isomorphic to w is called the weight

space associated to w of o. Define, for n = (ny,...,n,) € Z", the linear form:

o; t — R
(X1,..., %) a4+ -+ nex,

where we use the coordinates on t given by the isomorphism t = R" coming from
T~ (R/Z)".

It is then well known that the weights of T" are either the trivial one-dimensional representation or
the representations 0, : T'= T" — SOy(R), for n = (n4,...,n,) € Z"\{0}, defined by :

cos(2mO%(z1,...,x,)) —sin(2mO%(xy, ..., x,))
sin(270% (21, ..., 2,))  cos(2mO%(21,...,2,)) )

On([z1,...,2.]) = (
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Definition 2.15. A linear form a € t* is a root of G if there ezxists n = (ny,...,n,) € Z"\{0} such
that o = ©% and if the weight space of the adjoint representation Ad : G — GL(g) associated to ©,

18 non-trivial.

We denote by A the set of roots of G. Since G is a semi-simple Lie group, the Killing form (.,.) is
a scalar product and the subspace t < g becomes a Euclidean space. Using the induced isomorphism

t = t*, we can see A as a subset of t and for @ € A, we define the reflection

2(8,0)

(@, q)

To:0B— 0 —
It is well known that the Weyl group associated to T is isomorphic to the subgroup of GL(t):
(ro|a € A).
The alcoves of t are the connected components of

t\ U ker(r, — nid).

aEANEN

The Weyl group acts simply transitively on the images of the alcoves in T'.
Definition 2.16. An element k € G is called regular, if it is contained in a unique mazximal torus.

Let M be the image by the exponential map t — T of an alcove of t. Such M will be called an
alcove of T" and let k € G be a regular element. There exists a unique class gy of G/Z¢(k), with
Z¢(k) the centralizer of k in G, such that

gkkgk’1 e M.

Example 2.17. For G = SU(n) and T the set of diagonal matrices, the roots of G are given by
Ni — A forik € {1,...,n} such that i # k and where the \; are the eigenvalues. The Weyl group is

then the symmetric group G,,.

2.3.2 Density of some orbits

Let G be a semi-simple, connected and compact Lie group of rank r, let T" be a maximal torus and
M be an alcove of T'.

Let o € m X be a simple curve. A character [p] € X(m3, G) is called a—regular if p(«a) is regular.
Then there exists a unique class g, in the quotient G/Z¢g(p(a)), such that

() P(@) Gy € M.

The set of a—regular characters is an open subset of X (73, G) and has full measure. The maximal

torus T acts on the space Hom® "®(m X, G) of a—regular representations via the action, defined as

38



follows:
if v is non-separating, for t € T' and p € Hom* "¢(m X, G),
_ gp(a)/)(”Y)g;(L) if v € m(3]a)
t-p(y) = @
t9(0)P(B) Gy iy =B
and if « is separating:
t- p('7> _ gP(a)p(,Y)gp_(;) if Y € 7T1(El)
tGo()P(V) Gyt i ¥ € T (3a).

Since this action commutes with the conjugation action of G' on the representations, we thus
defined an action of the maximal torus U, := T on the a—regular characters, which only depends on
the curve a.. As for the case of SU(n), we have an expression of the tw, action on the subspace of

a—regular characters, via the formula

tWa + [0] = (o) P(0) gy + o).

We then note the important fact that for two disjoint curves a and 3, the actions of the maximal tori
U, and Ug on M ™8(m 3, G) N MP~™8(m; 3, G) commute. It hence implies an action of the product
U, x Ug on the previous intersection. We define the map ¢, : Hom* "¥(m X, G) — M by

ta(p) = Gp(a) (@) e

For every i € {1,...,r}, the projection )\; induces a function on the space Hom® & (73, G) which
we will denote by A; . If we conjugate p by g € G, we obtain by the uniqueness of g,) up to the
centralizer of p(«), that there exists z € Zg(p(«)) such that

9gp(a)g=19 = Gp(e)*

and hence we obtain that ¢, is invariant under the conjugation action of G on the representation

variety Hom® "¢ (m %, G) and descends to a map
MeTT(m YN G) — M,

which we will denote by t, again.

An element k € G is said to be generic if (g kg, ') is dense in 7.

Claim 2.18. An element k € G is generic if and only if for all non-trivial character x : T — S,

X(grkgp ) # 1.
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Proof. Let ¢ : T — T" be an isomorphism which identifies 7" with the r—torus. Then the map x(¢~!)
is a non-trivial character of the torus T”. Since a character of T" is induced by a linear form of R"
which maps Z" on Z, it as the form (zq,...,2,) — nyzy + - - + n,x, with the n; € Z. An element

k € T is generic if and only if ¢(k) is generic, that means if it generates a dense subgroup in T". We
then have that ¢(k) is generic, if and only if (¢~ 1) (¢(k)) # 1. O

In particular, a generic element of k is regular.

Lemma 2.19. Let p : ;X — G be a representation and o be a simple closed curve such that p(a) is

generic. Then the orbit
<twa> ’ [p]

is dense in the torus orbit U, - [p|. Moreover, the action of (tw,) on U, - [p| is ergodic with respect to

the Lebesgue measure.

Definition 2.20. Let m = ¢; U --- U ¢, be a multicurve on X. A class of a representation [p] €
X (m13, G) is called m—regular, if the elements p(c1), ..., p(ce) are regular and we denote by M™"8(m 5, G)

the set all of m—reqular characters. Precisely, we set
¢
M (8, G) = (| METE (S, G).
i=1

Since the curves ¢y, ...,¢, are disjoint, the actions of the tori U,..., U, on M™ (1 ¥ G)

commute. In this general setting and similarly to Lemmas 2.1 and 2.7, we state:

Lemma 2.21. Let [p] € X (mX,G) and suppose that there exist ¢y, ..., cy pairwise disjoint, simple

and closed curves of ¥ such that for all non-trivial characters x : T* — S! :

X(te ([0]); - - ’tCe([p])) # 1.

Then, if we set h = twy, - - - tw,,, the action of (h) on U, x --- x Ug, - [p] is ergodic with respect to

the Lebesgue measure.
To simplify notation we shall denote by T* the product U, x --- x U,,.

Proof of the lemma 2.21. Let ¢ be the isomorphism 7' = T" and let y : T* — S! be a non-trivial
character. Then the composition x o (¢71,...,¢~1) is a non-trivial character of T", which we may
identify with R™/Z". The action of h is then given by the translation of the vector

(1(p(c1)) - 0,(p(c1)), -, B1(p(cc)), -, Br(plce))):

where 0;(p(ck)) is the argument of A;(p(cx)). Then, by Lemma 2.3, the action of A is ergodic on the

torus orbit U, x --- x Uy, - [p] with respect to the Lebesgue measure if and only if

01(p(c1)), ..., 0.(p(c1)), ..., 01(p(ce)),- -, 0-(p(ce)) and 1
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are linearly independent over Q. As a character of a torus is given by a linear form of R™ with integer

coefficients, this condition is equivalent to the fact that for all non-trivial characters y’ of T7?,

X' (61(p(c1)), - 0n(p(cr)), - - Bu(plce)), - -, On(p(ce))) # 1.

The proof of the lemma is then complete. O

2.3.3 Proof of the ergodicity

We will adapt the previous proofs of ergodicity with the condition of Lemma 2.21.

Definition 2.22. A class of a representations [p] € X(mX,G) satisfies the condition (M,,), if for

all non-trivial characters x : T* — S,

x(te, ([p]), - - te, ([0]) # 1.

We thus introduce
M (mE, G) = {[p] € X(mX,G) | [p] satisfies condition (M,,)}.

Remark 2.23. The set M,,(m %, Q) is contained in M™8(m 2, G).
We hence prove the following;:

Proposition 2.24. For all m = ¢; U ¢y € MCy(X), the space M, (m %, G) has full measure in the

character variety.

As in the previous cases, we prove that the set M,,(mX, @) is the complement of a countable
union of submanifolds of codimension 1. The strategy we use is the same as in Propositions 2.5
and 2.10. For m = ¢; U ¢y U cz3 € MCy(X), we write the complement of the set of characters which

satisfy condition (M,,) as the union:

U {1 2w 6) o () tali) = 1}

x:T2—81

non-trivial character

We will hence prove that for all non-trivial characters y : T2 — S!, the set

{i € 23,6 | 1ttt el = 1]

has null measure, being the preimage of 1 by the map v, ., = x(tc,(+),te, () on M™78(m 3, G)
which we will show to be a submersion. This is the goal of the following lemmas.

Let NV, be the subset of X'(m X, G) of conjugacy classes of representations p such that the central-
izers Zg (pmg/l) and Zg (leEé) are discrete in G.

With the same explanation than in the case of SU(2), we have the following fact:
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Lemma 2.25. The subset N, has full measure in X(m%, Q)
We will hence prove that N,, N M,,(m X, G) has full measure.

Lemma 2.26. For all non-trivial characters x : T? — S', the map 1y, is a submersion at each
point of N,.

Proof. It suffices, for [p] € X (m X, G), to find a vector X € Tj, X (m 3, G) such that

dipy,mX # 0.

Write
Ay mX = dx(dte, X, dt.,X)

where d,t., X is
-1
APt (101 (dWLCkX oo Al Are, X ) )

for ¢ be the isomorphism 7" = T" we use in the proof of Lemma 2.21.
With the same notations as the cases of SU(n), by Goldman work W. M. Goldman 1984 part 3.7,
the map &; : G9! — G? defined by :

91

gl(Ala e 739170) = (H[AJ,BJ],C)

i=1

is a submersion at the point {Ay,..., By} if the centralizer Zg({41,..., B, }) is discrete. For the

same reasons, the map & : G*2T1 — G? defined by:

g2

52<A17 e 739270) = (H[Aj7Bj]vC)

j=1

is a submersion at the point {A;,..., By,} if the centralizer Zg({A, ..., By,}) is discrete.
Hence the evaluation Evy, : Hom(le, G) — G2 defined by:

Evs, (p) = (p(c1), plc2))

is a submersion at every p such that the centralizer Zg (p‘mgfl ) is discrete since Evy, is the composition
of & with the diffeomorphism:
G - G*
(A,B) — (B 'A,B)
Since the functions \; : M — R are submersions at each regular matrix point, the application

.....

Zc (p‘mgxl) and Zg (p|ﬂ-12/2) are discrete. In particular, for the first indexes ky and ¢ such that dyxe;,,
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with (e;); is the ko-th copy of R”, there exists a vector field X such that dt., X = 8} e;,. This allows

to conclude that v, ,, is a submersion. O]

The set of characters T? — S! is countable because such a character is given by a linear form

Y:R” = R,

such that ¥(Z?") C Z. Hence there is a countable number of possibilities to obtain characters of the
2r-torus, looking the image by X of the canonical basis. Since the complement of M,,(m %, G) is a
countable union of codimension 1 submanifolds and hence a countable union of null measure sets, we
conclude to the statement of Proposition 2.24.

The proof of the ergodicity is completed using the same arguments as in the previous cases. We
thus prove that all Tor(X)-invariant and measurable functions X' (73, G) — R can be restricted to
a full measure set on which it will be invariant under the generators of the mapping class group and
then Theorem 1 allows to conclude that such a function is almost everywhere constant, that is the

Torelli group action on X (w3, G) is ergodic. Therefore, we derived the Theorem A.
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3 Modular action on relative PSLy(R)-character varieties

This section is devoted to the proof of Theorem C. We adapt the strategy and the tools which was
used by Marché and Wolff 2016.

We denote by £Z°(3,C) the subspace of NH(X,C) of classes of representations which admit a
simple, closed and non-separating curve v C > which is not homotopic to a component of 9% and
such that the isometry p(7) is elliptic with infinite order.

The next results are steps in order to prove Theorem C. The proofs of these proposition will be

found in the next pages.

Proposition 3.1. Fore € R+, the subset EIE(Z,Q) 1s non-empty if and only if the integer k verifies

the inequality |[{r}||x < |k| < —x(2)—1.

Proposition 3.1 use Mondello Theorem 7. Indeed, fixing a curve « verifying the assumptions asking
in the definition of EIC(Z, C) and a conjugacy class of a elliptic isometry of infinite order, we study

the existence of representations of ¥ \ v with conditions on boundaries.

Figure 7

Following Proposition 3.1, fix definitively k € ]|[{r}|l;, —x(X)[ N Z and hence e = k — ||{r}}:.
Proposition 3.2. The subspace SIE(Z,Q) is connected and has full measure in NHe(Z,Q).

Recall for v € 7,3, we denote by f, : Repe(z,(_?) — R the trace function [p] — tr(p(7)). Such a
function admits a Hamiltonian vector field denoted by X,.

Let 24¢(3,C) be the open subset of classes of representations [p] for which there is N = 6g — 6+ 2n
curves 7y, ...,y € mY such that for all i € {1,..., N} the isometry p(~;) is elliptic and:

(dfy, |i=1,...,N) =T;Rep"(2,C)

Proposition 3.3. The space E1°(3,C) is contained in U(X,C).

Assuming the Propositions 3.1, 3.2 and 3.3, we prove the ergodicity of the pure mapping class
group:
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Proposition 3.4. Let f : U¢(X,C) — R be a measurable and Mod(X)-invariant. Then each [p] €
L{e(il,(_f) is contained in a neighborhood V|, such that the restriction of f to Vi, is almost everywhere

constant.
The proof is essentially the same than the one of Proposition 6.5 of Marché and Wolff 2016.

Proof. Let [p] € U¢(X,C) and let vy, ...vx be the curves given by the definition of 24¢(3,C). Let us
denote by ¢; its Hamiltonian flow of the vector field X,,. This flow is 27-periodic and the action of
tw,, is given by:

tw,, - [o] = & - [¢].

We deduce that for every [p] such that p(v;) elliptic, if 0.,([¢]) ¢ 7Q, an invariant function f :
U(3,C) — R satisfies the equality f(¢? - [¢]) = f([¢]), for almost-every 6 € S'. Let V), be an open

neighborhood such that every [¢] € V), sends the v; on elliptic isometries and satisfies the condition:
(Xopse o, X)) = T Rep®(2,C).

Up to reducing V), we can assume that the flows ¢; act transitively on V|, and such that fy,  is
almost-everywhere constant on almost of their orbits. We hence deduce that f‘v[p] is almost-everywhere

constant. OJ

The ergodicity of PMod (%) on NH¢(X,C) comes from Proposition 3.4 and the fact that 24¢(3,C)
has full measure in N'H¢(2, C) and is connected since it is open and since it contains the full measure
and connected subset EZ°(3, C).

3.1 Condition on e to have £7¢(3,C) # 0

We already now from Mondello 2017 that the set X¢(3,C) is non-empty if and only if e = k — ||{r}|1
with k € ZN]||{r}|1, —X(Z)}. Consider 3’ a connected, compact and oriented surface of genus g — 1
and with n+ 2 boundary components, denoted by ¢y, ..., ¢,, di, ds. Let A C PSLy(R) be a conjugacy
class of an elliptic isometry of angle vy ¢ Z U mQ and hence of translation number 4. Denote by
C' = (C,...,Chy A, A7Y) and by Rep(X',C’) the relative character variety associated to ¥’ and C'.
Since |[%4 — [%A]| +| -4 — |-%4]| =1 and x(2) = x(¥'), Theorem 7 shows that for e € Ry, the
pre-image

Repe<2/7 Ql)

is non-empty if and only if e = k — 1 — ||{r}||; with k — 1 € ZN]o0, —X(E)]. In other words if and
only if e = k — ||{r}||; with k € Z N [0, —x(2) [. The assumption e > 0 imposes k > |[{r}||;. Under
this condition, Rep®(X’,C’) is connected and smooth.

The fundamental group m ¥ is the HNN-extension

(115 % (B)]/(bdi b~ = dy).
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Let [p'] € Rep®(X',C"). Since p'(d;) € A and p'(dy) € A7, there exists B € PSLy(R) which satisfies
the relation

Bp/(d)B™ = p/(d2) ™"

The data of such a p/ and such a B gives a representation p : m > — PSLy(R) which send the curve
obtained by gluing d; and d,' into the conjugacy class A. We thus have that for e > 0:

ET(5,0) 0 < e =k — [{r}ywith [{r} < k < —x(£) — 1

which is the sought for condition in Proposition 3.1.

3.2 Arc-connectedness of relative character varieties
Let us consider some arc-connectedness properties for relative character varieties.

Proposition 3.5. Let ¥ be a compact, connected and oriented surface of genus g — 1 and with n+ 1
boundary components denoted by cy,. .., cy,c. Let € be a real number such that Rep*(X') and the next
boundary conditions are non-empty. Let A : [0, 1} — PSLy(R) be a continuous path whose image is
contained in the subset of hyperbolic isometries and let p : m%' — PSLy(R) be a representation of
FEuler class £ such that p(¢;) € C; for alli=1,...,n and p(c) = A(0). Then there ezists a continuous
path A : [07 1} — Hom(X', PSLy(R)) such that E(O) = p and for all t € [(), 1], eu(g(t)) =/{ and

Ai(c) = A(t), Acr) €Cu, ..., Acn) € Cy.

We use a pairs of pants decomposition of >’. The proposition 3.5 will hence follow from the three
next lemmas.
The first one was proved by Goldman in W. M. Goldman 1988:

Lemma 3.6. Let Y be a one-holded torus. Letk = —1,0 or1, A: [O, 1} — PSLy(R) be a continuous
path whose image is contained in the subset of hyperbolic isometries and fix p : m %9 — PSLa(R) of

Euler class k and such that p(0X) = A(0). Then there exists a continuous path of representations
A: [0,1] — Hom(m %o, PSLy(R)) such that A(0) = p and for all t € [0,1], cu(A(t)) = k and

At(aE(J) = A(t)-

Such an extension by representations is true for pair of pants and for n + 1-punctured sphere with

elliptic conditions on some boundaries. It is the aims of next lemmas:

Lemma 3.7. Let P be a pair of pants with as boundary components the curves d,dy,ds. Let A :
[0, 1} — PSLy(R) be a continuous path whose image is contained in the subset of hyperbolic isometries.
Then there exists a continuous path of representations A : [0, 1} — Hom(mP,PSLy(R)) such that
for allt € [0, 1} ,

Ay(d) = A(t) and foralli € {1,2}, A,(d;) hyperbolic.
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Proof. We can easily find for all ¢ € [0,1], an isometry Dy(t) € PSLy(R) such that A(t)D:(t)
is hyperbolic and such that the map ¢ — D;(t) is continuous. We hence choose Ds(t) to be the
isometry D;(t)"'A(t)~". Hence we define the expected path A : [0,1] — Hom(m P, PSLy(R)) by the
data

A(t)(c) = A(t), A(t)(dy) = D;(t) and A(t)(dy) = Da(2).

[]

As it is state previously, fixing a representation p of the pair of pant P with Euler class +1 and
with p(d) = A(0) corresponds to fix Dy, Dy two hyperbolic isometries such that A(0)DyDy = id.
Hence we the same reasoning than the proof of Lemma 3.7, fixing D;1(0) = D;, we can extend the

path A in a path of representations A as expected in the lemma with the condition E(O) = p.

Lemma 3.8. Let S,.1 be a n + 1-sphere with as boundary components the curves s,cy,...,c,. Let
7 be a real number such that Rep™(Sn41) and the next boundary conditions are non-empty. Let
A [0, 1} — PSLy(R) be a continuous path whose image is contained in the subset of hyperbolic
isometries and fix p : mSpt1 — PSLa(R) such that eu(p) = 7 and A(0) = p(s). Then there exists a
continuous path of representations A : [0, 1} — Hom(m S, 41, PSLa(R)) such that E(O) = p and for
all t € [0,1], eu(p) =7

A(s) = A(t), Ay(cr) €Cu, ..., Alcy) € C.

Fix p with the hypothesis of the Lemma 3.8 is equivalent to fix C; € C; for all i € {1,...,n}
with A(0)C;...C, = id. We hence fix these isometries. Up to restrict our reasoning to a Zariski-
open subset of the representation space, we can assume that the commutator [Cy, C;] # id for all
¢,i € {l,...,n} distinct.

Proof. We are looking for continuous paths g; : [0, 1} — PSLy(R) such that for all ¢ € [O, 1} , we have
A(t) x i (£)Crgn(t) ™ X -+ X ga(t)Cagn(t) ' =id.
Let K : PSLy(R)™ — PSLy(R) be the map defined by
K(g1,- - 9n) = 1C1g7 " X -+ X gnChgy,

We will prove the claim.

Claim 3.9. The map K is a submersion at the point (g1, ..., gn) such that each g, does not send the
fix point of Cp on the fix points of the other C;.

As in W. M. Goldman 1984, for j € {1,...,g — 1}, let II; the product

J
[T 9:Crai!
k=1
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and by convention we let Il = id. By Fox calculus, we compute that for all £ =1,... n:

0 . _
8—K(91, oy gn) =11 (id — g,Crg, )
e

We refer to Fox 1953 and W. M. Goldman 1984, for basics on Fox calculus. Since:

digy,...gn) K = ZAd(a_ggK@h e 7gn))dge7

we have that the orthogonal space d(g,

.....

Py (5[2(R)”)L is the intersection:

ﬂ Ker <1d —Ad (Hg_lggngZIH;_ll)> .
=1

Each kernel of the intersection is the centralizer in sly(R) of the element IT,_; ggngf_lH[_ll. Up to

change the representative in the conjugacy class of C;, we can assume that g; = id. Hence we deduce

-----

ﬂ Zoty () (Te-19¢Cegy 'T1 ).
¢=1

Finally, since {g:C1g; ", ..., 1,-19,Crg'TI. |} generates the same subgroup than

{glclgl_l) s 79710719771}7

we conclude that if for all ¢, g, does not send the fix point of C on the fix point of a C;, the orthogonal
gn)K(slg(R)”)L is trivial. Then the rank of K at the point (g1, ..., g,) for which each g,

does not send the fix point of C, on the fix point of another C;, is maximal. This proves the claim.

space d(g,

.....

In particular K is a submersion at the point (id, ... ,id).
Then for each ¢t € [0,1], the preimage K '(A(t)™"!) is a codimension 1 submanifold of PSLy(R)".

There exists then a finite covering

0,1] = Uj—o,.. 1 [ts, tjs1]

with tg = 0 and ¢, = 1 such that on each [tj,tj+1], by Claim 3.9, there is paths gz : [tj,tjﬂ} —
PSLy(R), for £ = 1,...,n such that for all ¢ € [tj, tj+1], the relation

A(t) x gl()Crgl(t) " x -+ x gh(H)Cgl(t) " = id

is verified. In addition we have that for all £ € {1,...,n}, ¢?(0) = id.
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At each t;, since Ky, is a submersion, there is a path which connect g (t; — ) and g)(t; + €).
So up to a reparametrization, there exists continuous paths gy : [O, 1} — PSILy(R) for £ =1,...,n
verifying the expected condition.

We hence define A, as the representation m S, 11 — PSLa(R) defined by Kt(s) = A(t), gt(cl) =
g1 (OCig1 ()7L, Aylen) = ga(t)Cogn(t) . O

To conclude Proposition 3.5, we decompose Y by pair of pants P; with i = 1,...,p and ¢ C 0P,
g one-holded tori and a n + 1-sphere. By Lemma 3.7 we can find a path of representations of the
g + l-sphere by restricting p to each P; and gluing the extension we obtain. We extend this path
extend to one-holded tori glued to g — 1 boundary components by Lemma 3.6 and to the n + 1-sphere
by Lemma 3.8. This gives a paths of representations of ¥’ which extend the path A and with initial

condition p.

L

Figure 8

3.3 Connectedness of £7¢(3,C)

We will follow the same strategy than Marché and Wolff 2016, section 6. We denote by S; the set of
pairs of simple, closed and non-separating curves (a, b) with geometric intersection number i(a, b) = 1.
As in Marché and Wolff 2016, we introduce, for (a,b) € S;, the set SIfayb)(X'),Q) define as the set:

{Ip] € EZ°(S,C) | pla), p(b) elliptic, Ba(p) or B4(p) ¢ Q. [p(a), p(b)] # id}.

In particular, if [p] € EIfa’b)(Z,Q), then [p(a), p(b)] is an hyperbolic isometry.

Lemma 3.10. (Lemma 6.8, Marché and Wolff 2016) Let A € PSLy(R) an elliptic isometry of infinite
order and B € PSLy(R). Then there exists an integer n € Z such that A"B is an elliptic isometry.
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We refer to Marché and Wolff 2016 for a proof of Lemma 3.10.
Lemma 3.11. We have the equality E1°(%,C) = Upyes: EIfmb)(Z,Q)

Proof. Let [p] € £T°(%,C). There is a simple, closed and non-separating curve a such that p(a) is
an elliptic isometry of infinite order. Since [p] is Zariski-dense, we can find a non-separating curve
b such that i(a,b,) = 1 and [p(a), p(b)] # id. Lemma 3.10 implies that there is an integer n € Z
such that p(a™b) is elliptic. Moreover we compute [p(a), p(a™)] = p(a™)[p(a), p(b)]p(a™)~* # id. Then
[p] € Ezfa,anb)(2> C). The other inclusion is trivial. O

Lemma 3.12. For all (a,b) € Sy, the set SIfa’b)(X‘],Q) is connected.

Proof. Let (a,b) € S; and let ¥y be a one-holded torus containing both a and b and let ¥’ be the
surface of genus g — 1 and with n + 1 boundary components ¢, cy, ..., ¢, such that the surface 3 is

the connected sum
o>,

Let My be the set of classes of representations m ¥y — PSLy(R) sending a and b both on elliptic
isometries which do not commute. We will denote by ,(,) the fix point of p(c) for o € {a,b}. The
map My — (0,27) x (0,27) x (0,+00) defined by:

0] = (0a(p), 00(p), dpz (T p(ays Tor)))

is a homeomorphism. Let M be the subset of M, of classes of representations which send a or b
on an elliptic isometry of infinite order. Since in (0,27) x (0,27), the pairs (z,y) such that z ¢ 7Q
or y ¢ mQ form a connected space, the subspace M is connected. We now prove the connectedness
of EI‘Ea’b)(Z'),Q). Let [p], [¢] € EIfa’b)(E,Q) and let py and pj be the restrictions to m %, of p and
p'. The classes [pg] and [pf] lie in M{. Then, by connectedness of My, there exists a continuous
path Ay : [0,1] — My such that Ag(0) = [po] and Ag(1) = [pj]. this path induces a continuous
path A : [0,1] — PSLy(R), defined by A(t) = Ay(t)([a,b]), whose image is included in the set of
hyperbolic isometries. Proposition 3.5 allows to conclude to the existence of a continuous path A in
SIfayb)(Z,Q) such that A(0) = [p] and A(1)([a,b]) = ¢/([a,b]). In other words, Z(l)hlg/ and p__ v, lie
in the same relative character variety and have the same Euler class. By Mondello Theorem 7, there
exists a continuous path joining ﬁ(l)‘mg/ and [p{ w]and thus there is a path joining A(1) and [p].
We then found a path joining [p] and [p] in EZ7, ;) (3,C), which conclude the connectedness of this
space. ]

We introduce now the equivalence relation on §; generated by the relation
(a,b) ~ (a', V) = EI{,,)(5,C) NEL(, 4)(8,C) # 0.

Lemma 3.13. Let (a,b) € S;. For alln € Z, (a,b) ~ (a,a™).
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Proof. Let ¥y and ¥ as in the previous proof. We will construct a class of representations in
EIfa’b)(i],Q) N 5Ifa’anb)(§'],g) starting by construct it on ¥y and extend it by Proposition 3.5 to
1
1—-¢ ¢
then compute that A"B is elliptic. Up to change ¢, we can assume that [A, B] is hyperbolic. We
construct pg : (a,b) — PSLy(R) defined by po(a) = A and pg(b) = B. Apply Proposition 3.5 to the
constant path ¢ — [A, B] allows to construct a class of representations [p] such that pj 5, = po and
then

. 0 —1
Y (and thus to X). Let A and B be the matrices (1 0 ) and for e € [0,1]. We

(] € EZ,4)(3.0) N ETy 4y (2,€)-

The two following lemmas come from Marché and Wolff 2016 (Lemmas 6.10 and 6.11).

Lemma 3.14. (Marché and Wolff 2016, Lemma 6.10) Let (a,b) € S and ¢ be a simple, closed and
non-separating which is disjoint of b such that (a,c) € Sy. Then (a,b) ~ (a,c).

Proof. Let [p] € SZfa’b)(E'J,Q) and assume that p(a) has infinite order. By lemma 3.10, there exists
an integer n € Z such that p(a™c) is elliptic. We necessarily have that tw? - p (a) = p(a) is an elliptic
isometry of infinite order and the isometries tw” - p (a="b) = p(b) and tw? - p(c) are elliptic isometry.

We hence have that tw” - [p] € EZ7 )(E,Q) ﬂEIfa7C)(§'],Q) and so (a,a™"b) ~ (a,c). By Lemma 3.13

(a,a=mb

we conclude that (a,b) ~ (a,c). O

Lemma 3.15. (Marché and Wolff 2016,Lemma 6.11) Let b be a simple, closed and non-separating

curve and let a and ' be two curves such that (a,b) and (a’,b) are both in S;. Then (a,b) ~ (da’,b).

Proof. 1f a' lies in the one-holded torus obtained by thickening aUb, we apply Lemma 3.14 to concude.

If not, we process by induction on i(a, a’):
e If i(a,a’) =0, we apply Lemma 3.14.

e If i(a,a’) = n > 0, starting from the lower intersection point of a’ and b, we follow a’ until the
upper line of a’ and go directly to hit b. This constructs a new curve a” which do not intersect
a’. Then (a”,b) ~ (a’,b) and by induction hypothesis, (a,b) ~ (a”,b).

]

The conclusion of the connectedness of £Z¢(3,C) of Proposition 2.5 use the connectedness of 1-

skeleton of curves complex. Let (a,b), (a’,b') € S;. There exists non-separating curves by = b, ..., b, =
b' such that for i € {0,...,n}, the curves b; and b;;; are disjoint. In addition, we can find non-
separating curves ag = a, . ..,a, = a' such that (a;,b;) and (a;,b;11) are in ;. Lemma 3.14 assures

that (a;, b;) ~ (a;,bi11) and hence Lemma 3.15 that (a;,b;) ~ (a;41,b41) for all i € {0,...,n — 1}.
By Lemmas 3.11 and 3.12 we conclude that £Z¢(X, C) is connected.
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3.4 EI°(%,C) C UY(B,0)

Let [p] € EZ°(%,C) and take a non-separating curve + such that p(7) is an elliptic isometry of infinite
order and of angle #. We will denote by F|, the vector subspace of Tf‘p]Rep(Z,Q) spanned by the
linear forms df, for o all the non-separating curves which are send on a elliptic isometry by p. The

following lemmas will use the well-known relation which holds for all A, B € SLy(R):
tr(AB) + tr(AB™') = tr(A)tr(B).

These lemmas and their proofs are done in Marché and Wolff 2016 and we will reproduce the proofs

for the reader’s convenience.
Lemma 3.16. Let 0 be a non-separating curve such that i(vy, ) = 1. Then dfs € Fy).

Proof. We will denote by 6, the curve 46 = tw’(d). The trace relation gives directly that for all
n € Z, the equality
Sonir + Jous = f5 15,

holds. We deduce from this equality the relation

df5n+1 + den—l = f’Ydf5n + f5n+1df7 = f’Ydflsn mOdF[P]'

Then, modulo Fj,, the sequence of linear forms (dfén)n satisfies the order two recursive equation
Upt1+Un_1 = 2cos(f)u, and there hence exists linear forms A, © in the cotangent space T, Rep(i], C)
such that for all n > 0:

dfs, = cos(nd)A + sin(nf)© mod Fi,.

By Lemma 3.10, there exists infinitly many integers n € Z such that p(d,) is elliptic. For these n,
the linear form df5, is null up to Fi,;. We hence deduce, since § ¢ 7Q, that A and © are both the
trivial linear form modulo Fi,. Then, for all integer n € Z, dfs, € F|,. In particular forn =0. [

Lemma 3.17. Let § be a curve such that i(y,0) = 0. Then dfs € Fi.

Proof. If § is homotopic to v, that is clear that dfs € F|,. If not, assume first that J is non-separating.

Then there is a curve o, such that i(y,0) = i(d,0) = 1. We have the formula

fJJ + f60*1 = f5fa

whose we deduce
dfse + dfso-1 = fsdf, + fodfs.

Moreover, Lemma 3.16 ensures that dfs,, dfs,-1, and df, € F,). We hence conclude that dfs € F,.
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If we now assume that 0 is separating, fix a base point on . then there is a curve ¢ such that
i(y,0) =1 and i(d,0) = 2. We can decompose o as a product oy09 with i(7y,07) = 1. We hence have
that

fo‘f6 = f0'102f5 = fo‘lfogé - fo'16710'2_1 + f02f015—1 - fglgz_l(S*l'

Since the curves oy and 0.0 are non-separating and do not intersect v, by the non-separating case,
we have that df,,,df,,s € F,. Since the curves oy, 010 105", 01071, 070507 and 010, are non-
separating and intersect v once, Lemma 3.16 ensures that the differential of traces corresponding to

these curves are in JFj,;. We hence prove, by derivation, that dfs € F,. n

Lemma 3.18. There exists a curve 6 such that i(y,0) = 1 and such that the Poisson bracket
{fy, fs} = df\Xs # 0. In particular, the map f, is a submersion at each class of representation

of Repe(z,g) which send v on elliptic isometry of infinite order and the subset
J 1 (2c0s0)(C)° = Rep®(%,C) N J 1 (2cos0)

is a codimension 1-submanifold of Repe(z,g).

Proof. Let p(y) = A(f) and p(d) = B. Then for all n € Z, the Poisson bracket {f,, f5s.} = 0 if and
only if tr(A'(0)A(nf)B) = 0. This is impossible since § ¢ 7Q. O

We will denote by A the conjugacy class corresponding to the matrices of trace 2cos6f and by
C'=(Cy,...,Ch, ALATY).

We show now that Fj, coincides with the space Tfp]Repe(X'],Q). Let X € T[p}Repe(Z'],Q) be a
vector orthogonal to F,. We have df, X = 0 whose we deduce that X is tangent to f ! (2 cos 9) (C)e.
Let r: f71(2cos0)(C)* — Rep®(X \ 7,C') be the restriction map. It is well defined since the image
by r of a Zariski-dense representation is Zariski-dense. Since the cotangent space of Rep®(X \ v, C’)
is generated by all the linear form df, with ¢ disjoint from ~ and 9%, Lemma 3.17 implies that
drX = 0 whose we deduce that X € (X,). There exists u € R such that X = uX,. Let o
be a curve given by Lemma 3.18. Lemma 3.16 show that dfs € JFj, and hence dfsX = 0. But
dfs X =u x dfs X, = —u x {f,, fs}. Since {f,, f5} # 0, we have u = 0. This proves Proposition 3.3.

3.5 £7°(%,C) has full measure in NH(X,C)

The proof of Marché and Wolff 2016 holds in our case and we write these to explain how to adapt the
proof to boundary case. Let N¢(3,C) be the subset of X¢(3,C) of classes of representations which
send simple and closed curves, not homotopic to a boundary component, either on elliptic isometries

of infinite order or hyperbolic isometries. It is clearly a full measure subset because its complementary

J U #'e

7 te2cos(mQ)

subset is the union:

which is a countable union of subset of measure zero.
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We will then show that £Z¢(3,C) N N*¢(%,C) has full measure in NH(X,C) NN¢(X,C). If [p] €
NHE(E,C)NNC(X,C) then there exists a simple and closed curve v ¢ ¥\ 9% such that p(7) is elliptic
of infinite order. If 7 is freely homotopic to a non-separating curve, then [p] € EZ¢(X,C) NN(2,C).

It is so sufficient to treat the case of ~ is freely homotopic to a separating curve.

Lemma 3.19. Let X' be a compact, connected and oriented surface of genus g > 1 and with k €
{1,...,n+ 1} boundary components denoted by c,cy,...,cx_1. Let p:m% — PSLy(R) such that:

e The condition p(c;) € C; holds.

e No simple and closed curve other than c,cy, ..., ck_1 1s send by p to an elliptic isometry of finite

order, or on a parabolic isometry or on the identity.
e p(c) is an elliptic isometry of infinite order of fized point xo € H?.
e FEvery non-separating curve of X'\ 0% is sent on an hyperbolic isometry.

Then there exists a real number D > 0 and a sequence of non-separating and simple loops (Vn)n

such that p(7,) is hyperbolic with displacement X(p(v,)) = D and azis A,, such that

dHZ (l’o, An) — +00.

n—oo

For f € PSLy(R), we will denote by Ay its invariant axis if f is hyperbolic and by xz; its fixed
point if f is elliptic.

Proof. o If g > 2, we refer to the proof of Lemma 6.16 inMarché and Wolff 2016.

o If g =1, let a,b as on the next picture. By assumption, p(a) and p(b) are hyperbolic. If A,
and A, are disjoint, then the sequence (7,), := (a"ba™"), satisfies the conclusion of Lemma
3.19. If Ay, and A, intersect, then, by assumption on p, [p(a), p(b)] is either elliptic of
infinite order or hyperbolic. In the first case, we can apply the case of disjoint axes to p(a) and
p([a,b]* -b-[a,b] ") for a suitable k € Z. In the second one, p(a) and p([a,b]) have disjoint axes.
We so apply the corresponding case to p(a) and p([a, b]).

[

As in Marché and Wolff 2016, a triplet (z,y,z) € (RZO)3 satisfies the condition (Hex), if there

exists a right-angled hexagon H C H? with three consecutive sides of respective lengths z,y and z.

Remark 3.20. For all sequences (Tp)n, (Yn)n, (Zn)n € (RZO)N which do not accumulate on zero and
such that either y, —— +00 or x,, z, — 400, then for all n enough large, (x,, Yn, 2n) satisfies
n—00 n—00

(Hex). Moreover, (Hex) is an open condition and if (z,y, z) satisfies (Hex), then for allz’ > z,y >y
and z' > z, (2',y, 2') satisfies (Hex).

Lemma 3.21. Let [p] € Xe(i],g) such that p send a separating curve ¢ on an elliptic isometry of
infinite order. Assume p € Ne(z,g). Then there exists a non-separating curve which is send by p on

an elliptic element.
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Figure 9

Proof. Let ¥; and 5 be the tow connected components of 3 \ ¢. One of them, ¥; for example,
verifies the hypothesis of Lemma 3.19. This Lemma guarantees the existence of two non-separating
curves a C ¥y and b C ¥, such that (A(p(a)),|Da — Dy, A(p(a))) satisfies (Hex), where A(p(a)) =
inf,cme dge (35, p(a):v) and D, = dg2 (xg, Ap(a)). Indeed, by Remark 3.20, we fix b arbitrarily and we
choose a = 7y for N enough large, with the ~, are given by Lemma 3.19. We may assume, up
to switch b by b~!, that ab is non-separating. Denote A = p(a), B = p(b) and C = p(c). Up to
conjugate b by a good power of ¢, we may assume that zq is close to the perpendicular common
line to A,,) and A,4). Either the orientations of A,y and A, agree or not. If they agree, since
(Mp(a)),|Da — Do|, M(p(a))) satisfies (Hex), as in Marché and Wolff 2016, the element ACY BC—V
is elliptic for a suitable N € Z. If they disagree, we apply the case where the orientations agree to
the isometries A and CYBC~" for a suitable N and we hence conclude.

]

The Lemma 3.21 allows to conclude that £Z¢(X,C) has full measure in NH¢(X,C). Indeed,
N*(3,C) has full measure in the character variety and we showed that £Z°(3,C) NN¢(%,C) is equal
to NH(2,C) NN(S,C).
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4 Toplogical dynamic for modular action on representation

spaces in Abelian compact Lie groups; with Gianluca Faraco

The proof of Theorem D strongly relies on the explicit knowledge of the objects involved. In fact,
the n-torus has a well-known description and, thanks to the abelian property, the character variety
coincides with the representation space since the action of T™ by conjugation is trivial. Even better,
the representation space can be identified with a torus of suitable dimension, hence the description of
the representation space — and then of the character variety — is very explicit. The main difficulties

in the abelian case concern questions coming from number theory and ergodic theory.

4.1 Strategy of the proof and related results

Each given representation p : w3 — T™ induces a homological representation p: Hy(3,Z) — T".
The map associating to any representation p its homological representation defines a bijection between
the representation space and the homological representation space. This essentially follows because
the commutator group [mX, w3 is trivially a subgroup of kerp in the abelian case, and such a
property is no longer true for a generic non-abelian Lie group. There is also a well-defined action of the
symplectic group Spy,(Z) on the space Hom(H1 (3,72), T”) by precomposition. Given a representation
p:mE — T™ and its induced representation p : Hy(3,Z) — T™, the Mod(X)-orbit of p coincides
with the Sp,,(Z)-orbit of p. As an immediate consequence we obtain an equivalent version of the

main theorem D, namely we have the following.

Theorem F. Let ¥ be a surface of genus g > 1 and let p : Hi(X,Z) — T™ be a representation.
Then the image of p is dense in T™ if and only if the symplectic group orbit Spy,(Z) - p is dense in

the homological representation space.

Along the way of our investigation we shall remark that the action of the Torelli group Tor(X) on
the representation space Hom (7r12, T") is trivial which contrasts with Theorem A.
Given a representation, we are then reduced to consider its SpQQ(Z)—orbit of instead of its modular
orbits. This makes the study of orbits more understandable because the symplectic group is linear.
We shall make the action even more explicit by identifying a representation with a matrix in the
space M(n, 29, T). After these reductions, we shall see that we are in the position to apply Ratner’s

Theorem for studying orbit closures. In particular, we shall derive Theorem D.

Remark 4.1. When the genus of ¥ is 1, the reader may notice that theorems D and F' are not only
equivalent but actually the same statement in the strict sense. Indeed, in this very particular case the
following equalities ™% = Hy(3,Z) and Mod(X) = SLy(Z) = Spy,(Z) holds.

The strategy we propose for Theorem D is different to the one developed by Previte-Xia to show their

main theorem Previte and Xia 2000. Let us briefly give some more details. Given a representation
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p: mY% — SU(2) with a dense image - Previte-Xia defined such a representation generic (see Previte
and Xia 2000) - they firstly found a handle ¥y, namely a one-holed torus, such that the restriction
of p to m X is dense. After obtaining a dense handle, they proceed to demonstrate the base den-
sity theorem for the (n + 2g — 2)-holed torus. A similar process in the abelian case is not possible
because dense handles do not always exist, see Example 4.24. In the light of Proposition 4.10, we

shall bypass this issue by looking at the SpQQ(Z)—action on the representation space as described above.

The present section is organised as follow. In subsection 4.2 we begin with a description of the T"-
character variety and then subsequently introduce the homological representation space and show the
identification with the character variety. We finally describe the action of the symplectic group Spy,(Z)
on the homological representation space. As a consequence, we shall derive the Proposition 4.10 and
the equivalence of Theorems D and F. In subsection 4.7 we shall give a complete characterisation of
dense representations in the n-dimensional torus by proving Theorem 4.21. In subsection 4.8 we shall
finally derive our main Theorem D. In the last section, we prove Proposition 4.9 and indeed Theorem
E establishing the connection of our dynamical result with the Kronecker’s Approximation Theorem.
We finally conclude with a serie of appendix on which we shall discuss some further aspects related
to our project. Appendix 4.10 we discuss about a direct approach to our problem which works for
a fairly general class of representations. In Appendix 4.10.3 we digress a little by providing a brief
description of the relative T"-character variety for surfaces with one puncture and then we claim that

our main results extend to one-punctured surfaces.

4.2 T"-character variety

In this work we are interested in characterising the orbits of the Mod(X)-action on Hom(m ¥, G)/G
where G is a compact, connected and abelian Lie group. It is classical to see that any such a group
is isomorphic to the n-dimensional torus T". The specific interest for the abelian case comes from
its connection with abstract harmonic analysis, the geometry of numbers and the theory of group

actions on homogeneous spaces (connections with Ratner’s Theorem, see section 4.8).

In the introduction we have given a very brief view of the character variety for a generic compact
Lie group . In this section we specialise the discussion for compact and connected abelian Lie
groups. From the Lie theory, any such a group is known to be a n-dimensional torus, namely the
product of n copies of the unit circle S'. In the present work S! is seen as {ew |6 € [0, 2%[} where
[0, 27?[ carries the quotient topology obtained identifying the boundary points of the closed interval
[0, 27]. Consequently, the n-torus T™ is defined as { (', ..., e) [6; € [0,27[, for any i =1,...,n}
endowed with the product topology.

Let ¥ be a closed surface and let ai,b1,...,a4,b, be any standard generating system of the fun-

damental group. The choice of a representation p : m> — T" amounts to choose for each gen-
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erator an element of T™ such that these elements satisfy the condition imposed by the presenta-
tion of the fundamental group of>). However, the abelian property of T" implies that the condition
[Ay, By]---[A,, B,y = 1is automatically satisfied for any choice of 2g elements in (A4, By, ..., Ay, B,) €
T". Thus, the representation space can be identified with the group (T”)Qg ~ T2n9  Even more,
thanks again to the abelian property, the action of T™ on Hom (7r12, T”) by post-composition with
inner automorphisms of T" is trivial. As a consequence, the T"-character variety coincides with the

representation space.

Remark 4.2. Let ¥ be any surface of genus g > 2. The representation space Hom(mE, T”) splits as
the direct sum of g copies of Hom(mT, T") where T' denote the 2-torus. The basis {al, bi,...,ay, bg}
of Mm% we fized satisfies moreover to the equalities i(ai,aj) = i(bz-,bj) = 0, and i(ai,bj) = 0, for
all i,7 with 1 < 4,5 < g. We may associate to any representation p : m> — T" the g-tuple of
representations (pl, e ,pg) where p; is the restriction of p to the handle generated by a;,b;. Such a

mapping defines then an isomorphism
Hom 7r12 T” @Hom a;, b; T")

which depends on the basis chosen. This decomposition is a consequence of the fact that a surface of
genus g 1s the connected sum of a surface of genus g — 1 and a torus T along with the property that
each representation p sends all simple closed separating curves to the identity. A recursive arqgument

leads to the desire conclusion.

4.3 Homological representations

Let Hy(X,Z) be the first homology group. The close connection between the objects m Y and
Hy(X,Z) is well-known, indeed the latter is known to be isomorphic to the abelianization of 7.
As we have seen above, the representation space Hom (7r12, T”) naturally identifies with the 2¢gn-
dimensional torus assigning to any representation p the 2g-tuple (p(al), p(b1), ..., play), p(bg)), where
ai, by, ..., a4, b, is a basis for mX. Every representation p fails to be injective and its kernel ker(p)
always contains the subgroup generated by the commutators since the target is abelian. Therefore, p

boils down to a representation

7T12
[71'12, le]

12

p:Hi(2,Z) — T B([v]) = p(y).

In fact, let v € m 2 and let [’y] be its image via the canonical projection p : m> — Hi(3,Z). Let

7[01, 02] be a representative of [ﬂ Since the following chain of equalities holds

p(v]or,02]) = p(v)p([o1, 02]) = (7).
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the representation p is well-defined and the image does not depend on the choice of the representative.

Furthermore, the image of p agrees with the image p by contruction.

Definition 4.3. We define the homological representation space as the set Hom(Hl(Z, Z),T”) of
representations of Hy(X,Z) in T™ endowed with the compact-open topology.

Lemma 4.4. The homological representation space Hom (Hl(Z, Z), T”) identifies with the 2gn-dimensional

torus T297,

Proof. To any representation p we can assign the 2g-tuple (p([a1]), p([b1]), - .., (lag]), p([by])), Where
the collection [ai} , [bz] , 1 <i < gis a fixed basis of the homology group H; (X, Z). Conversely, given a
2g-tuple (vl, Wi, ..., Vg, wg) € (T”)2g, as T"™ is abelian, the universal property of free abelian groups
implies the existence of a unique group homomorphism from H;(3,Z) into the n-torus T™ which

sends [a;] to v; and [b;] to w;, for every i =1,...,¢. O

The implications of this lemma are quite simple, but of crucial importance. Upon choosing a standard
generating system for m;3; the representation space Hom(mE, T") identifies with the homological
representation space Hom(Hl(Z, Z), T") and the identification is explicitely given by the association

p +— p. According to this property, we derive the following lemma.
Lemma 4.5. Let py, py : m3 — T" be two representations. Then py = po if and only if p; = ps.

Proof. This is just a matter of definitions given so far. The necessary condition follows trivially. The

sufficient condition follows from ﬁ([ﬂ) = p(y) for any v € m X. O

4.4 Actions of the symplectic group Sp,,(Z)

In this section we are going to describe the action of the symplectic group Sp,,(Z) both on the

representation space and on the homological representation space.

4.4.1 The symplectic group Sp,,(Z).

We begin with recalling some standard notions. The algebraic intersection number
N:H{(X,Z) x Hy(X,Z) — Z

extends uniquely to a nondegenerate, alternating bilinear map
N:H; (X, R) xH;(3,R) — R

which realises H; (X, R) as a symplectic vector space.
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Definition 4.6. A collection of elements [ai], [bi}, 1<i<gofHi(X,Z) < Hi(X,R) such that
lai] N [a] = [b:] N [b;] =0, [ai] 0 [b5] =y

for all i,j with 1 < 4,j < g is called a symplectic basis of the group H;(X,Z) or a basis for the
symplectic vector space (Hi(3,Z), N). We define a collection of curves a;,b; such that {|a;], [b;]} is

a symplectic basis as geometric symplectic basis for m .

The matrix associated to the antisymmetric bilinear form N on the basis [ai}, [bz} is the 2g x 2¢g

blockwise diagonal matrix

Jo

, 0 1
J = with  J, = )
-1 0
J,

o

The symplectic linear group Sp,,(R) is defined as the group of invertible matrices A satisfying the
relation AJA! = J and we denote by SPy,(Z) the subgroup of those matrices with integer coefficients.

Remark 4.7. Here, the symplectic group Sp,,(R) is the subgroup of SLog(R) of matrices preserving
the alternating 2-form w = ey A eg + -+ + ezg—1 A eag. By Remark 4.2, Sp2g(R) contains the g-times
product SLy(R) X - - - X SLy(R) as a proper subgroup. In turns, the group Spy,(R) contains the g-times
product Sliy(Z) x - -+ X SLia(Z) as a proper subgroup. This property will be useful in the sequel.

An orientation preserving homeomorphism induces an isomorphism in homology which preserves the
intersection form N defined above. Since isotopic homeomorphisms induce the same map in homology,

there is a representation
o Mod(X) — Aut™ (Hy(X, Z)) =2 SLyy(Z).

As each homeomorphism preserves the intersection form N, the image of u lies also inside SpQQ(R).
Therefore the image of p lies inside SLyy(Z) N Spy, (R). The representation v : Mod(X) — Spy,(Z)
— usually called symplectic representation of Mod(3). The Torelli group is the kernel of p.

Remark 4.8. In the genus one case the Torelli subgroup is trivial. Indeed, Mod(T') = SLy(Z) =
Spy(Z).

4.4.2 Comparison of the Mod(X)-orbits with the Sp,, (Z)-orbits.

We now consider the effect of changing the basis of H;(X,Z) pre-composing any homological rep-
resentation with an automorphism ¢ € Aut™ (Hl(E, Z)) such that any representation p is sent to
po¢ . We can, therefore, consider SLy,(Z)-action on the space Hom(Hl(Z7 Z), T”). Of course, this

action restricts to an action of the symplectic group SpQg(Z) on the same space. We are interested in
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studying the Sp,,(Z)-orbits in the homological representation space. The main goal of this section is

proving the following claim.

Proposition 4.9. Let py, py : 1% — T™ be two representations and let py, py : H1 (X, Z) — T™ be
the induced representations. Suppose there is ¢ € Mod(X) such that ps = pyo¢. Then py = py o (),
where p is the symplectic representation of Mod(2).

Proof. Let ¢ : m ¥ — m ¥ be any element of Out(mX). As the image of any commutator is also a
commutator, the mapping ¢ boils down to a isomorphism in homology () : Hy(2,Z) — Hy (X%, Z).
Two mappings ¢; and ¢, boil down to the same isomorphism in homology if and only if ¢, o ¢;*
descends to the identity map in homology, that is ¢ o ¢ ' is an element of the Torelli subgroup.
Therefore, the association ¢ — pu(¢) defines the symplectic representation p seen above. Look at

now the following commutative diagram

HI(E, Z) Pa=p10¢ s Tn
p]\ id
7T12 ¢ > 7T12 o > T (3)

p lid

Hi(2,Z) 2% w1z, 2) 2 T

where p is the canonical projection. As py = pj0¢ by assumption, it turns out py, = p; 0 ¢ = p, o u(P)
as desired. O

4.4.3 Direct consequences.

Proposition 4.9 leads to some interesting consequences that we are going to show. The first one

concerns the action of the Torelli subgroup Tor(3) on the representation space Hom (7T12, T").

Proposition 4.10. The action of the Torelli group Tor(X) on the representation space Hom (mZ, T”)

18 trivial.

Proof. Let py € Hom(mE, T”) be any representation and let ¢ € Tor(X). Set py = ¢+ p; = p1 o~ L.
Proposition 4.9 implies that p; = p, because u(¢) = 1. We now invoke Lemma 4.5 to conclude

p1 = p2, namely the action of ¢ is trivial. O]

The n-torus T" is a compact and connected Lie group and hence mapping class group Mod(X)
acts ergodically on the representation space - see Theorem 1 in the introduction. As the action of
the Torelli subgroup Tor(X) is trivial, the action of the quotient group is also well-defined and the
following holds.

Mod(X)

Proposition 4.11. The action of Spy,(Z) = T—(E)
or

on Hom(mZ,T") 15 ergodic with respect to

the Haar measure.
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As the homological representation spaces identifies with the representation space, it also carries a finite
measure. Calling ¢ the identifying map, this finite measure can be seen as the pull-back measure +* sy,

where py is the finite measure carried by the representation space.

Corollary 4.12. The action of the symplectic group Spy,(Z) on the space Hom(Hl(Z,Z),T") is

ergodic with respect to the finite measure v* .
As a final consequence we have the following characterisation.

Proposition 4.13. Let p : m2 — T" be a representation and let p : Hy(X,Z) — T™ the homolog-
ical representation induced by p. Then the mapping class group orbit Mod(X) - p is dense if and only
if the symplectic group orbit Spy,(Z) - p is dense.

Proof. Proposition 4.9 implies that the mapping class group orbit of p coincides with the symplectic
group orbit of p via the identification p — p. Therefore, one orbit is dense if and only if the other is
dense. O]

Corollary 4.14. Let X be a surface of genus g > 1. Then Theorem D holds if and only if Theorem
F holds.

4.5 The matrix presentation

The n-torus T" can be seen also as the quotient of R™ by the standard action of the lattice 277",
indeed the exponential map provides an identification between R™/27Z" and the n-torus described

above. We shall define the map
exp: R" — T" (81,...,9n) — (ewl,...,ew") (4)

as the canonical projection. We define 2wZ"™ as the the standard lattice — notice that this lattice is

27 times the usual standard lattice.

Fix a set of generators {al, bi,...,aq, bg} and let us consider T" as the quotient of R™ by the action

of the standard lattice. Let p: m> — T™ be any representations and set
p(%) _ (€i91,2i71 ei9n,2i71)

p(b;) = (eiemi, e ew”’zi)

for any i = 1,...,n. The elements p(a1), p(b1), ..., p(ay), p(b,) generate the image of the representa-

tion p. Any element v € ;3% may be seen as a word in the letters a;, b; for i = 1,...,2¢g. Hence, by the
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Abelian property, p(v) = p(w(aq, by, . .. ag, b)) is equal to p(ar ) - - - p(by)*2s for some ki, . .., koy € Z.

In particular, the element p(v) can be computed with the following matrix multiplication

k1
Oig - Oy oo o :
: : ki
Ous o+ Ong o Onsg :
g

Definition 4.15. Let ©, be the matriz having as entries the values 0; j € [0, 27?[ withi =1,...,n and
= 1,...,29. We define ©, as the matrix associated to p with respect the basis {al,bl, e ,ag,bg}
and the standard lattice 2wZ™.

In what follows, we shall often identify a representation p with its associated matrix. Let us briefly
see the reason why we are legitimated to do that. Consider the topological vector space M(n, 2g; R)
and introduce an equivalence relation where A ~ B if and only if A— B =27 H € M(n, 2g; 27TZ). The
mapping 2 associating to any p its associated matrix ©, provides an homeomorphism between the rep-
resentation space Hom (7?12, T") and the quotient space M (n, 29, T). Moreover, the post-composition
of the mapping p — p with +=! defines a homeomorphism between the spaces Hom(Hl(E, Z), T")
and M(n, 29, T).

Given a representation p, the matrix ©, depends on the choice of a set of generators for m % and
also on the choice of a lattice A < R"™. Let us see how these choices affect definition 4.15. We begin
describing the effect of changing the set of generators of 3.

4.5.1 The effect of changing basis.

Given two basis B = {al, by, ... ,ag,bg} and B = {a’l, 1o s Gy b’g} of m %, we define ©, and ©/, the
matrices associated to p : m3 — T™ with respect to B and B’ respectively. Every generator a; and
by is a finite word in the letters aq, by, ..., a,4, by, so there are integers a;; with ¢, j € {1, cee 2g} such

that
p(ag) — p(al)azz—u .. .p(bg>azz—1zg and p(b;) — p(al)azu .. ‘p(bg)GQZgg.

Setting A as the integral matrix (aij) with 7,7 € {1, ceey 29}, a direct computation shows that @;

equals ©, - A. Likewise, a;, by are also finite words in the letters ay, b}, ..., ay,b;. Hence, there exist

integers b;; such that

plar) = play)™=2* - p(0))*=*20and  p(br) = play)™ -~ - p(b)"™2s.
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Setting B as the integral matrix (bij) with i, 5 € {1, ey 2g}, the same computation implies ©, equals
e - B.

It is worth noticing ©, = ©,- AB and the matrices A, B satisfy the equation AB = I, implying that
A, B are unimodular. As the matrix ©, can be singular we cannot directly deduce that AB = I,

hence let us give a glimpse of why this is true.

Instead of working in 7% we are going to look at the situation in the first homology group Hy (X, Z) =

Z%. Let a; = w(a’l, Vs ooy ay, b;), in particular

1] = [aﬂb“ [bﬂb” . [alg}bl%—l [b;]blzg

where by; with j = 1,...,2¢g are as above. On the other hand, any [a;] and [bﬂ is of the form
[aﬂ _ [al} a21—11 [bl}dm—u . [ag:| a21—12g—1 [bg} a2l—12g’

[bﬂ — |:a1:| a1 [b1i|CL2l2 L. [ag] a212g—1 |:bg:| azq 29‘

where a;; are as above. Replacing each [a;] and [b;] inside [w] = [al}, forany [ =1,..., g, we obtain

] = [or] ")+ [o] 7 0]

As 7% is torsion-free, we may deduce that k;y = 1 and ky = -+ - = ksg = 0. On the other hand, it is
straightforward to see that k,, = Zzg: 1 bir@ym,. Applying the same reasoning to any other generator

we get the desire conclusion.

Remark 4.16. The matrices A and B found above may not have any geometrical meaning. Indeed,
for closed surfaces the action of Aut(mS) is not transitive on the set of basis of m% and then two
different basis may not be related by any automorphisms of mX. This means that not all matrices in
SLoy(Z) have a geometrical interpretation. As we shall see, a matriz has a geometrical meaning, that

1s induced by a homeomorphism of 3, if and only if it is symplectic - see Proposition 4.11 above.

4.5.2 The effect of changing the basis of the lattice.

We begin noticing that the j-th column of the matrix ©, corresponds to the vector of coordinates of
a lift of the j-th generator of p(mE) with respect to the standard lattice. Given any lattice A with
basis {v,...,v,} there is a matrix g € GL,(R) such that A = g- (2rZ"). In particular g(e;) = v;.
Change the basis means to change the coordinates of the vectors forming the columns of the matrix
©,. Therefore, with respect to the lattice A, the matrix associated to p has the following form ¢©,.
In the sequel we shall need to consider the matrix ©, with respect to a lattice A different to the
standard one. We therefore extend the notation in the following way: We denote by ©,(A) the
matrix associated to with respect to A. We shall use again the notation ©, when the lattice is the

standard one.
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4.5.3 The Z-row rank of the associated matrix.

We now introduce the following numerical invariant concerning the associated matrix ©,. As we shall

see, such an invariant give us a way to characterise dense representations in T™ completely.

Definition 4.17. Let M € M(n,m;R). We define the Z-row rank of M as the dimension of the
Z-module generated by the rows of M. We shall denote it as rkyg, (M)

We remark that the Z-row rank is not invariant by transposition.

Lemma 4.18. Let M € M(n, m; R). The Z-row rank rky, (M) of M s invariant under the left-action
of SL,(Z). Similarly, tkz (M) is invariant under the right-action of SLy,(Z).

Proof. We begin showing the first claim. Let k = rkg (M) < n. Define Z as the subset of Z" of those
vectors v such that vM = 0. Notice that Z is a Z-module of rank n — k. Let A be any matrix in
SL,(Z) and compute AM. It is easy to check that the j-th row is given by the linear combination
Yo aji (mil, e ,mim). Suppose there is a vector p = (,ul, e ,un) such that pAM = 0, then a
straightforward computation shows that uA € Z, that is u = vA~! for some v € Z. The subset
Z - A7! of Z" is thence the set of vectors p such that pAM = 0 and it has dimension n — k over
Z. Therefore rkyg (AM ) = k. Since the Z-module generated by the rows of M does not change by
the action of SL,,(Z), we obtain the invariance by the right-action of SL,,(Z) of the Z-row rank of

M. ]

Given a representation p : w2 — T", the following claims are direct consequences of the lemma

above applied to the matrix ©,,.

Corollary 4.19. Let p : m>X — T" be a representation and let ©, be the matriz associated to p
with respect to some basis of mX. The Z-row rank of ©, is well-defined and it does not depend on

any choice of a basis for m % either on the choice of any lattice.

Let vy ..., v, be vectors in R". In the sequel, we shall say that a Z-module generated by vy ..., vy is
7Q-free if and only if (vy,..., vx)z N TQ" = {(O, o ,0)}. Keeping this definition in mind we finally

state the following consequence.

Proposition 4.20. Let p : mX — T" be a representation and let ©, be the matriz associated to
p with respect to some basis of mX. The Z-module (©; | j = 1,...,n)z generated by the rows of
0, is TQ-free if and only if the Z-module <(A®p)j | 5 =1,...,n)z generated by the rows of AO, is
mQ-free, where A € SL,(Z). Similarly, for B € SLoy(Z), (©; | j=1,...,n)z is 7Q-free if and only

if the Z-module <(@pB)j | j=1,...,n)z is TQ-free since the tow Z-modules are equal.

Proof of Proposition 4.20. Look at the matrix A©, and suppose there are Ay,...,\, € Z, not all

zero, such that

Z )‘j ( Z A j; (9171, ce 76)1',29)) S 7TQ2g.
j=1 1

1=

65



A simple manipulation of the formula above shows that

S (S s 120)) = 3 (SN (e 612).
j=1 i=1 =1

implying the existence of some 1, ..., 1, € Z, not all zero, such that Z 1 (Qi,l, e ,91‘,29) e 1QY.

j=1
The proof of the second claim works similarly: Suppose there are A,..., A\, € Z, not all zero, such
that
n 29
Z A ( Z 0i.; (bjla R bj29)> € TQY.
i=1 j=1

The same manipulation shows that

iAi(Zg%(bﬂ, o bﬂg)) - 229 (i Aiei,j) (it -, bizg),
i=1 j=1 i=1

J=1

implying that Z il j € mQ for any j =1,...,2g. That is ()\1, o ,)\n)@p € 1Q%. m

=1
4.6 Remarks and comments on the modular action

In this section we collect a couple of final remarks about the Sp,,(Z)-action.

4.6.1 Explicit description of the modular action

The action of the mapping class group on the representation space is defined by pre-composition
of any representation with an automorphism ¢ € Out(mX) such that any representation p is sent
to po ¢~t. Since the Torelli subgroup acts trivially on the representation space by our Proposition
4.10, the action of mapping class group boils down to an action of the group szg(Z) which agrees
with the Sp,,(Z)-action on Hom (H; (2, Z), T"). In section 4.5, we have identified the representation
space with M(n, 24; T) by using the mapping 2 associating to any representation p its matrix ©,. We
use such a mapping to transfer the action of Mod(3) on Hom (mZ, T”) to an action of Spy,(Z) on
M(n, 2g; T). Since any ¢ € Tor(X) leaves p fixed, the matrix associated to p' = ¢-p = po ¢! agrees
with ©,, this is a consequence of Proposition 4.10. Any coset ¢ Tor(X) defines a unique matrix A in
Spy,(Z). In the light of the discussion given at subsection 4.5.1, the matrix associated to p' = ¢ - p
is ©, = ©, A~!. Therefore, the action of Spy,(Z) on M(n,2¢; T) is defined as A-©, = ©,A™'. As
the mapping ¢ is a homeomorphism, it is clear that Mod(X)-orbit of p is dense in the representation
space if and only if the Sp,,(Z)-orbit of ©, is dense in M(n, 29; T).
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4.6.2 The modular action commutes with the change of lattice

Given a representation p : m> — T, the main goal of the present paper is to study its orbit under
the action of the mapping class group. This reduces to study the orbit of the matrix ©, naturally
attached to p in the space M(n, 2¢; T). However the matrix ©, depends on the lattice chosen and
hence the orbit also. The aim of this paragraph is to point out that this is not the case; indeed the
change of lattice commutes with the modular action. Each element © in the space M(n, 24; T) can
be thought as the datum of n vectors ©; € T?9 corresponding to the rows of ©. By adopting this
point of view, the space M(n, 2g; T) identifies with T?9 x - - - x T?9. There is a left action of the group

A
G = t A € Spyy(Z) ¢ = Spyy(Z) < SLagn(Z)
A

on the 2¢gn-dimensional torus induced by the natural right action of the symplectic group in the
matrix space M(n, 2g; T). Using this new perspective, one can easily verify that any change of lattice
commutes with the Sp,,(Z) action. Indeed, any change of lattice h € SL,(Z) can be seen as an

element of the group H defined as

hIIIQg h1n12g hll hln
S : where | : : | €SL.(Z) } = SL,(Z) < SLayu(Z)

H = : . :
hn112g hnnIQQ hnl hnn

Since H commutes with the group G defined above, the Sp,,(Z) action commutes with the change of

lattice.

4.7 Characterising dense representations

In this section we provide a complete characterisation of representations with dense image by providing
necessary and sufficient conditions. We have seen in the previous section that, upon choosing a basis
of the fundamental group and a lattice, each representation is represented by a well-define matrix
©,. Along this section we fix an arbitrary basis for the fundamental group and we consider T" as the
quotient of R"™ with the standard lattice.

Theorem 4.21. Let p: m> — T™ be a representation. Then p has dense image in T™ if and only
if kg (@p) =n and the rows of ©, generate a TQ-free Z-module.
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Notice that the necessary condition means that the Z-module generated by the rows of the matrix

O, does not intersect 7Q* and is equivalent to say that row rank over Z of the matrix

61,1 e 01,2g
@p _ en 1 9n,2g (5)
- Iy, T 0
0 T

is maximal, namely 2g + n. Before proving the Theorem, we need a preliminar Lemma.

Lemma 4.22. Suppose that p : m>% — T" is dense. Then each representation pp = m o p, where

7, s the projection to k' factor, is dense.

Proof of Lemma 4.22. Suppose there is k for which the representation py is not dense. Then there is
an open subset A C S! such that AN py (7?12) = (). Suppose without loss of generality that & = 1.
Then (A X T”_l) N p(mE) = (). In particular p is not dense, hence a contradiction. O

Proof of Theorem 4.21. Assume p has a dense image and suppose the Z-module generated by the

S}
rows intersect Q29 that is rkg i’ > < 2g + n. Thus, there is a row O; of © such that:
- lag

Z —\;0; + (>\n+17T7 . 7)\n+2g7T) = \6;
7

with \; different to zero. Such a summation can be rewritten as:
n
Z /\j@j = ()\n—i-lﬂ-» ceey /\n+2g7r) (6)
j=1

for some \; € Z and not all zero. Consider the matrix M € M(n,Z) N GL,(R) defined as:

0 0
0
M=1I,+\—-1)E; — N B =
; I S U U V. N
7 P | 0
0 0 0
where the E;; = (ekl) are the matrices with coefficients ey = 0p;0;;. The matrix M defines a

linear homeomorphism, say f,; of R" with respect to the canonical basis because det M = \; which

is different to zero. The mapping fy; sends Z" to itself and descends to a finite-degree covering
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fu i T" — T™ - in fact the degree coincides with the determinant of M. In particular the following
equation holds: 7o fy; = f,,; 0exp, where exp : R” — T denotes as usual the canonical projection.
Consider now the Z-module (©; | j = 1,...,n)z generated by the rows of ©,. By Equation 6, a
straightforward computation shows that its image via the mapping fj; is the Z-module generated by

the vectors

91,1 61,29

< /\n+17r [ /\n+297T >
oo o o. . Z
en,l 9n,2g

Let us point out the following fact: As p is assumed to be dense in the torus, the image via the
canonical projection in T" of Z-module generated by the rows of ©, fills a dense subset of T",
namely the image of p. As M commutes with the action of 27Z" and pass through to the quotient
as a finite-degree covering map of the T", the Z-module M - (©; | j = 1,...,n)z is mapped on a
dense subset of the torus. On the other hand, the projection of the i-th factor is discrete. Lemma
4.22 implies the desire contradiction.

We now prove the opposite implication and again we argue by contradiction. Suppose p does not have
a dense image in the n-torus, then its closure is a k-dimensional sub-manifold, say Sy, of dimension

k < n. We note that Sy may not be connected in general. Indeed any closed subgroup of T" is

Z
My gL’

homeomorphic to T¢ x milz X - X Assume first Sy be connected; we shall deduce the general
case later on. The subspace Sy lifts to a linear subspace 50 of R™ which of course contains the

Z-module (67 | j =1, ...,2¢g)z generated by the columns of ©,. We now invoke the following lemma.

Lemma 4.23. There is g € SLog(Z) such that :

g<@] |j:17‘--729>z<<€1,~--7€kz>R

where the e;’s are the vectors of the canonical basis of R™.

Assume the lemma holds. The Z-module g - (67 | j = 1,...,2g)z is contained in the first factor of
T" = T% x T and then ©, cannot have maximal row rank over Z. As a consequence the matrix
given in the equation 5 cannot have maximal row rank over Z. The general case follows by applying
the same reasoning to the component S§ of Sy containing the identity which contains a finite-index

Z-module of (67 | j = 1,...,2g)z. In the general case, g - (&7 | 7 = 1,...,2g)z is contained in

T" = T* x F, where F is isomorphic to the finite group milz Xooee X — ZZ' Let us proceed with the
proof of Lemma 4.23.
Proof of Lemma 4.23. 1f §00 is contained in <eg(1), e eo(k)>R for some o € G,, then it is sufficient to

rename the coordinates. This corresponds to a matrix g obtained by product of elementary matrices.
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Assume goo is not contained in any such a space. Let z; be the intersection of §00 with the affine

space e; + R"* and let d; its Euclidean distance to R*¥. Then z; has the following form:
zi=(0,...,1,...,0,t1,...,thy)

where t; € Q. In fact, if this had been not true then S§ would have been a dense subspace of
dimension k + 1 in the torus. As a consequence d? € Q for any i = 1,...,k and §Oo is described by
n — k equations with integer coefficients. Look at the set §00 N Z". This is a lattice in goo and there
is a basis vy, ..., v made of integer vectors. We invoke Cassels 1997, Corollary 3, pag.14 to claim the
existence of n — k vectors vg,1, ..., v, such that the vectors v, ..., v, gathered together form a basis

for Z™. Since SLy,(Z) acts transitively on the space of lattices, there is g such that
g<®j|]:17 2gZ<g 5(0 <617"-7ek>R~

This concludes the proof of Lemma 4.23 and indeed the proof of Theorem 4.21. m

From the proof we deduce that the row rank of the matrix ©, has a very explicit geometric interpre-
tation, in fact it coincides with the dimension of the subspace containing the image of p. Of course,
the proof does not depend on the presentation of w2 either on the lattice chosen. Let us prove these

facts.

Independence on the chosen basis. Let (67 | j = 1,...,2g)z be the Z-module generated by the
columns of ©,. In section 4.5.1 we have seen that the change of basis corresponds to multiply on the
right the matrix ©, with a matrix A € SLyy(Z). Since the row rank of ©, is invariant under the action
by right-multiplication of SLy,(Z), the matrices ©, and ©,A have the same row rank. Furthermore,
in the light of Proposition 4.20, 7Q-freedom is also invariant under the right action of SLoy(Z). On
the other hand, let = be the closure of the subspace of T" generated by the columns of ©,. Its lift
S is a linear subspace of R" described by n — k equations. As the columns of ©,A satisfy the same
equations, the image of unaffected by the change of basis. This proves the independence on the basis

chosen. O

Independence on the lattice chosen. Given two lattices Ay and Ay = A - Ay for some element A €
SL,(Z). Such a map A descends to a homeomorphism of the n-torus and hence the Z-module
(@7 | j=1,...,29)z projects to a dense subset of the torus if and only if its image via A projects
to dense subset as well. On the other hand, the row rank of the associated matrix ©,(A;) equals the
one of O©,(Ay) because the row rank is invariant under the action by left-multiplication of SL,,(Z).
Again, Proposition 4.20 implies 7Q-freedom is invariant under the left action of SL,(Z). Hence the

conclusion. O

We finally provide a couple of explicit examples.
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Example 4.24. Let Y be a surface of genus 2, and let p : m ¥ — T2 =2 St x St be the representation
such that p(a1) = p(az) = (€', €?), where ¢ € R\ 7Q, and p(bi) = p(b) = (1,1).

p 0 ¢ 0

p 0 ¢ 0
Ify € m¥, then p(v) = play)® p(b)*2p(as)*s p(by)* with k; € Z. Consider the vector v = (ky, ko, k3, k4),
then © - v = ((k1 + k3), (k1 + ks)p). The image of p is densely contained the main diagonal. Both

The matriz © has the following form

projections are dense in S, but the image does not fill T?. Notice that the row rank of © over Z is

1 as the dimension of the smallest subspace containing p(mE).

Example 4.25. Let Y be a surface of genus 2, and let p : m % — T2 =2 S x St be the representation
such that p(a1) = plaz) = (¢, 1) and p(by) = p(b2) = (1,€*) with ¢ € R\ 7Q.

e 0 ¢ 0
0 o 0 ¢

Ify € m%, then p(v) = p(ay)™ p(b)*2p(ag)* p(be)* with k; € Z. Consider the vector v = (ky, ko, k3, k4),
then © - v = ((lﬁ + k3)p, (ko + k4)<p). The image of p densely fills the torus. Notice that the rank of

O is 2 in this case and both projections are dense.

The matriz © has the following form

4.8 Spy,(Z)-action and orbit closures

The symplectic group Sp,,(Z) acts on the homological representation space Hom (Hi(2,Z), T") by
precomposition. We have seen in section 4.5 that, up to a choice of a symplectic basis, this latter
space identifies with the space M(n, 24, T). In this section we would like to study the orbit closures
of an element of M(n, 24; T) under the action of Spy,(Z). The first thing we notice is that a subset
Q C M(n,2¢;R) is invariant under the action Spay(Z) X M(n,2g; 27Z) if and only if its projection
onto M(n, 2g; T) is Spy,(Z)-invariant. This simple remark legitimates us to study the orbit closures
on the universal cover, that is M(n, 24; R).

Let us consider the group G = Sp,,(R) x M(n,2¢; R). Given two elements (A, a) and (B, b), their
product is defined as follows (A, a) - (B, b) = (AB, bA™! 4+ a). The group G acts transitively on
the space M(n, Qg;R) with the action being defined as p - (A4, a) = pA~' + a — indeed a point
p € M(n, 2g; R) may be regarded as the couple (I,p). The space M(n, Qg;R) naturally identifies
with the G/P, where P is the stabiliser of any point. It is straighforward to check that the stabiliser
of the zero matrix is nothing but Sp,,(R). The subgroup I' = Sp,,(Z) x M(n, 29; 27TZ) is a lattice in
G and acts in the obvious way on G/S. Under these conditions we are in the right position to apply

Ratner’s Theorem, see RM, which we state as follows according to our setting.
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Ratner’s Theorem. Let G, P,I" as above, let p € M(n, 29;R) = G/P and let v € G such that
p =y P. Then there is a closed and connected subgroup H., such that the following holds.

o P,Y:fyp’)/_l §H,y,
o I' N H, is a lattice in H, and
e I''p=1H,p.

Notice that « can be taken as (I, p). Since our goal here is to classify the closures of I'-orbits of any
point in the space M(n, 24; R), we just need to figure out which subgroups of G may be provided by
Ratner’s Theorem. To this purpose, let us consider the projection ® : Sp, (R) x M(n,?g;R) —
Spy,(R). Given a point p in M(n, 29; R), the group H, is isomorphic to the semidirect product
H, = P, x K,, where K, is defined as ker® N H,, that is the kernel of the mapping ® restricted
to H,. Notice that the image of H, under the mapping ® is the whole group Sp,,(R) because

H, > P, = Sp,,(R). In particular, /, = Sp,,(R) x K,.

Let us proceed on understanding K,. The first thing we notice is that any change of lattice h €
SLyy(Z) extends to a homeomorphism ¢, of G defined as

¢h G — Ga ¢h(A7 a) = (Avha)

This is an automorphism of G and its restriction to ker @, where ® is the projection just defined

above, is linear and corresponds to a change of lattice in M(n, 24; R). In particular, the relation

- (hp) = én(l-p) (7)

holds for any p € M(n, 24; R). As a consequence of Lemma 4.23, there is an element h € SLoy(Z)
such that h - p is of the following form

011 ce 91,29
0 e 0 0,
Tqk+1,1 ° T dr+1,29 TQ
7T Qn,l e m Qn,29

where
e O, € M(k, 29, R) for some 0 < k < n,
o () € M(n —k, QQ;WQ),

. <(9i,1, coybing) ti=1,.. ., k;> is mQ-free, and thus
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e the vectors {(92-,1, e ’9i729)}i:1 . are linearly independent over Z;

.....

and hence it is sufficient to study K, for v = (I, p) and p is a matrix given in Equation 8. Furthermore,
it will be sufficient to study the closures of I'-orbits for matrices in these form. The second thing we
notice is that K, is a linear subspace of M(n, 24; R) invariant under the action of P, by conjugation.
Indeed, suppose v = (I, p), let ¢ = (I, q) € K, be any point and let (A,p — pA™'), we can write as
the element (I,p) - (A,id) - (I, —p), be a generic element of P,. Then

(Ap—pA™)-(I,q)- (A ,p—pA)=(I,qA™") € K,

as claimed. The following Lemma implies Theorem D for representations of closed surface groups

into the unit circle S'.

Lemma 4.26. Let = (91, . ,029) c R¥. If0 € 1Q%, then (SpQg(Z) X 27rZ29) -0 is discrete in
R?. Otherwise, if 0 € R* \ wQ, then Spy,(Z) - 0 is dense in T2 and hence (Spy,(Z) x 2wZ) - 0

is dense in R?9.

Proof. Let A be the subgroup of R generated by the entries of § and consider A%, The first claim is
easy to establish. In this case A% is a lattice in R?Y containing 27Z2¢ and preserved by Spy,(Z). Now
observe that the Sp,,(Z)-orbit of 0 is contained in A?. Suppose § € R? \ 7Q%, hence there exists
0; € R\ mQ. There is an element in Sp,,(R) such that all the entries are R \ 7Q. We may assume
0; € [O 27r[ for all i = 1,...,2g. Let §* € T% be any point. For each couple (0o _1, 62;), where
t=1,...,9, there are two integers k;, h; such that the couple (k: Oi—1 + 02, (ki hi — 1)051 + h; 92,)
is closed to (63;_y, 63;). Therefore the Sp,,(R)-orbit of # is dense in T? and hence Sp,,(Z) x 27Z% -

[
is dense in R% as desired. m

Before proving the general case we need the following proposition on which we describe the group
K

-

Proposition 4.27. Let p € X be any point in the form given in the equation (8) and let k the number
of lines not in 7Q?. Let H., be the group provided by Ratner’s Theorem, where v = (I, p). Then K.,
is trivial or K, = M(k:, 2g; R).

Proof of Proposition 4.27. Let p be any point in M(n, 29, R). Assume p be different from the zero
matrix for which the claim trivially holds. Let us begin with the case p = 7Q) € M(n7 2g; WQ), that
means k = 0. We claim K, to be trivial. Let v = (I, p) and let H.,, be the group provided by Ratner’s
Theorem. The orbit I'-p lies in the subgroup of M(n, 2g; R) generated by the matrices mq;; F;;, where
mq;; are the entries of p, which is discrete and closed. This means that T'-p=T"pand implies H., is
the stabiliser of p. Therefore H, = P, and hence K, is trivial. Notice that this argument generalises
the first case of the previous Lemma 4.26. Let us now assume k > 0. The linear space K, is completely
determined by ©,, indeed the block 7() does not give any contribution. In this case, the orbit I - p
is no longer closed and the Spy,(Z)-orbit of p is contained in some linear subspace of M(k:, 29, R) of
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dimension 2¢ [, where [ is the dimension of the linear space generated by the rows of ©,. Hence K,
contains V' as a proper subspace. We can notice that V' is Sp,,(Z)-invariant but V' N M(k:, 2g; 27TZ)
is not a lattice because the Z-module generated by the rows of O, is 7Q-free. For the same reason,
the minimal linear space containing V' and a lattice is M(kz, 2g; R), hence K, = M(kz, 2g; R). O

From the proof of Proposition 4.27 we can deduce the following corollary.

Corollary 4.28. Letp € M(n, 29; R) be any point in the form given in the equation (8) and let k the
number of lines not in mQ?9. There exists a closed connected subgroup H < T™ of dimension k such
that T - p projects to a finite union of inhomogeneous torii of dimension k corresponding to cosets of
H. In particular, the modular orbit of a dense representation p : Hy(X,Z) — T" is dense in the

representation space.

This corollary implies Theorem F and indeed Theorem D. In the appendix, we shall study the mod-
ular orbits by applying a direct approch without rely on Ratner’s Theory.

4.9 An application: Approximation result

The aim of this final section consists in showing Proposition 4.9 and indeed Theorem E. Let us
begin by recalling the statement of Kronecker’s Theorem as formulated in Hewitt and Ross 1963,
Section 26.19(e). The reader may also consult Bekka and Mayer 2000, Section 1.12(iii) for another

one-dimensional version of Kronecker’s theorem.

Kronecker’s Approximation Theorem. Let b)) = (bgi), e ,bgi)), with © = 1,...,n, be vectors
of R™ such that bV, ... b, wey, ... wen are linearly independent over Q in the vector space R™
(where the e;’s form the canonical basis of R™). Let ay,...,a, be any real numbers and let € be a
positive number. Then there is an element (kl, cee k:m) € Z™ such that

ai— > kb
=1

<& mod 27 (9)

for everyi=1,...,n.

For a real a, the expression |a| < € mod 27 means that |a — 2kw| < € for some integer k. From the

equation (9) above, one can easily infer the equivalent estimate

[(@rva) =2, ) = B (R, k)| < C (10)
where (hl, cee hn) € Z", B is the matrix having b’s as rows, C is a real constant depending only
on n and H : H is any norm on R". Kronecker’s theorem generalises to simultaneous approximation of
[ given real vectors a¥) = (alj, e ,anj)t where 7 = 1,...,[. Indeed, for any ¢ > 0 there is a matrix

K e M(m,l; Z) such that
HA—QWH—BKH < Ce (11)
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where A is the matrix having aV)’s as columns, H € M(n, l; Z) and C'is a constant depending only
on [,n. That is
HA—BK mod 27TH <e. (12)

Let ¥ be a closed surface of genus greater than zero, let p : m¥ — T™ be a representation and let

©, be the associated matrix in the sense of Definition 4.15.
Proposition 4.9. The following are equivalent.

1. Mod(X) - p is dense in the representation space.

2. For any matriz A € M(n, 2g; R) and any € > 0 there is a matriz g € Spy,(R) such that

HA — 0,9 mod 27rH <e.

Proof of Proposition 4.9. Each representation is identified with its associated matrix and the repre-
sentation space with M(n, 24, T). Suppose Mod(X) -0, is not dense in the representation space. Then
there is an open set U such that Mod(X) - ©, N U = ¢. Let A be any matrix in U and ¢ a strictly
positive real number such that the open ball B.(A) C U. Then, for any g € Mod(S) the following
estimate HA -0, gH > ¢ mod 27 holds. As the action of the Torelli subgroup is trivial by Proposition
4.10, the action of the mapping class group coincides with the action of Spy,(Z). Therefore, Theorem
E implies Theorem D.

Suppose Mod(X) - ©, dense in the representation space. Then, for any A € M(n, 2g; T) and for any
¢ > 0 the mapping class group orbit intersects the open set B.(A) C M(n,2g;T), i.e. there is an
element g € Mod(S) such that g7'-©, = 0,9 € B.(A). In particular,
again, by Proposition 4.10, the matrix g can be taken in Sp,,(R) and so Theorem D implies Theorem
E as desired. [

|A—@pg mod 27TH < €. Once

4.10 Dense Orbits and further discussion

In this subsection we are going to prove Theorem D for almost every representation without relying on
Ratner’s Theorem. We begin consider the genus one case and we shall use it to extend the discussion

to surfaces of arbitrary genus.
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4.10.1 Direct proof of Theorem F for almost every representations

The set of matrices M(n, 24, T) contains, as a proper subset, the space D of all of those matrices of

the following form

0 Oy - By O -+ Bogq Oag
Aol Aably -+ Aablaiq Aablay -+ Aallyy 1 Aablyy
: : : : : : (13)
Ajel Ajeg s )\j92i—1 )‘j02i s /\j02g—1 /\j02g
)\nel )\n92 e A'rLQQi—l A'rLQQi e )\n029—1 )\n929
where (01, 0o, ..., 025_1,05) € R? \ mQ% is the lift of (e, €2, ... 201, ¢i20) € T% contained
in [0, 2 [29 and the reals {1, A2, ..., A\,} C R are linearly independent over Q.
Lemma 4.29. D s dense in M(n,Zg;T).
Proof. Let A, ..., A\, real numbers such that 1, Ay, ..., A, are linearly independent over Q. Consider

the mapping ¢ : R?%9 — T%" defined as

i0 i0 iAa0 iAa0 iAn0 iAn0
(91,92,...,92971,9%) > <(e L.o..,e 2g),(e Wooe 229),...,(6 e "29)>.

This mapping factors through a mapping @ : R% — R2" such that ¢ = exp op and exp is the
exponential mapping thought as in equation (4) introduced in section 4.5. The image of @ is a 2g-
dimensional linear subspace. As 1, s, ..., \, are linearly independent over Q, then the projection via
the exponential mapping is dense in T29". The space D is defined as the union of the images for each
possible subset {\a, ..., A\,} C R such that 1, \s, ..., \, are linearly independent over Q. Therefore
D is dense. O

The following lemma is easy to establish.
Lemma 4.30. D is Spy,(Z)-invariant.

Let us consider first surfaces of genus one. Let T be the torus, let p : mT" — T" be a
dense representation and let ©, be its associated matrix with respect to some basis {a, b} and the
standard lattice of R". Let Q, be the SLy(Z)-orbit of ©, in M(n,2; T). The associated matrix O,

has the following form:

th 0
@p — )\201 )\192 (14)
At Anbs
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where (91, 92) € R?is the lift of (eial, 6192) € T? contained in [0, 2T [2 and \; € R, foranyi =2,...,n,

are linearly independent over Q. Set

— ©
0, = !
P (71"12.)

Since the representation p is assumed to have a dense image, the matrix ©, has maximal row rank,

that is rkz = n + 2. This implies the following properties of the matrix ©, above.

14.1

14.ii

14.111

The real numbers 0, and 65 cannot be both elements of 7Q. If this were the case, the row rank
of the matrix @p would fail to be maximal, contradicting our assumptions. In the case one of
them is an element of 7Q, we can change the basis in such a way they are both elements of
R\ 7Q. Indeed, assume without loss of generality that 6, € 7Q. The Dehn twist tw, along a
maps the curve b to ab and hence p(b) is mapped to p(ab). The second column of ©, changes
accordingly and the element of place (1,2) of Oyy,., is nothing else that ¢, + 6. As 0; ¢ 1Q

the same necessarily holds for 6; + 6. In what follows, we shall assume both 6y, 6, ¢ 7Q.

The real numbers 7,61, ...,\;01, ..., \,0; are linearly independent over Q. Indeed, if this were
not the case then one can easily check that @p has not maximal rank. This implies that the
subgroup of T" generated by the vector (91, o NB, ,)\n91) is dense in T", see Bekka and
Mayer 2000, Exercise 1.13. The same holds also for the real numbers m, 05, ..., X0, ..., \,05.

The real numbers 1, \s, ..., A, are linearly independent over Q. If this were not the case, then
there would be aq,...,a, € Q such that a; + asAy + - -+ 4+ a, A\, = 0. In particular,

> aidi(61,62) =0,
=1

with A\ = 1. That is the rows of ©, are linearly dependent over Q. Therefore the row rank
cannot be maximal, a contradiction. In particular, \; ¢ Q for every i = 2,...,n. In what

follows, we shall sometimes refer to 1 as A; for simplify the formulas.

We begin with considering the SLy(Z) action on the space M(n, 2; R) seen as the universal cover

of M(n, 2; T), see also Remark 4.15. Given the matrix ©, as in 14, there is a unique lift, say ©(p), in

M(n, 2; R) which is still of the form of Equation 14. Notice that such a matrix is the unique one who
has all the entries in the interval [0, 27). Let us finally denote with (p) the SLy(Z)-orbit of ©(p) in
M(n, 2; R).

Since O(p) is of the form of Equation 14, an easy computation shows that the matrix A-O(p) € Q(p)
is still of the form 14 for any A € SLy(Z), that is the i-th row of A - ©(p) is A\;-times (01, HQ)A_l.
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Therefore, we can deduce that 2(p) is contained in some proper linear subspace S of R?". In fact, the

coefficients of any matrix A-O(p) = (0;;):; € Q(p) satisfy the following homogeneous linear system

)
01—t =0

en,l_)\nel,l =0
00—t o =0

L 9n,2_>\n91,2 =0

in 2n —2 equations and 2n variables. Hence, S is defined as the full space of solutions of the linear sys-
tem S. Let us consider then the subspace S. Since each of the J\; is taken as an element of R\ Q, the
subspace S meets the lattice M(n, 2; 27TZ) only at the origin. Therefore, the projection of the subspace
S into the space M(n, 2; T) densely fills a closed subspace K of M(n, 2; T). We finally claim that K
cannot be a proper subspace. To this end, we begin with noting that, due to the nature of the linear
system S, the subspace S splits as the direct product V; x V5 inside the space R" x R" = M(n, 2; R).
Therefore, the image of S into the space M(n, 2; T) lies inside a closed subgroup of the form H; x Hs,
where H; < M(n, 1; T) = T" for i = 1,2. Notice that K is a proper subgroup of M(n, 2;T) if and
only if H; is a proper subgroup of M(n, 1; T). Therefore the proof of the final claim boils down to
show that H; cannot be a proper subgroup for both ¢ = 1,2. As the group H; contains the vector
exp (01, Aoy, ..., )\nﬁl), then it contains also the subgroup {exp (t(@l, Aoy, ... ,)\né’l)) |t € Z} and
thus its closure which we know to be equal to the full space T™. In the same fashion, we can prove
H, = T". Therefore K = M(n,2; T) and the SLy(Z)-orbit of ©,, is dense in M(n, 2; T) as desired.

The general case for surfaces of genus greater than one works similarly. Given any
matrix of the form as in equation (13), up to change the matrix with any element of Spy,(Z) we may
assume, without loss of generality, that at least one of 0y;_1, 02; ¢ mQ. Under this condition all the

observations of subsection 5.10.1 hold for each pair of columns

021’—1 021’

Al AjOo; (16)

)\n92i— 1 )\n92z

Therefore the action of the g-times product SLy(Z) X - -+ x SLy(Z) < Spy,(Z) provides a dense orbit
inside the space M(n, 2¢; T) as desired.
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4.10.2 Finding curve generating dense subgroups

All the representations p considered in subsection 4.10.1 above are characterized by the following
property: each column of the associated matrix ©, generates a dense subgroup of T". Actually, for
any such a representation one can find infinitely many curves whose image generates a dense subgroup
in T". This lead us to ask: given a dense representation p : m ¥ — T", can we find a simple closed
curve v such that (p(7)) is dense in T"? Remind that a vector (e, ..., ¢») € T" generates a
dense subgroup if and only if 7,64, ..., 6, are linearly independent over Q. As a corollary of Lemma

we deduce the following Lemma.

Lemma 4.31. Let p : ;X — St be a dense representation. Then there always exists a simple closed

curve v such that {p(vy)) = S'.

However, for n > 2, the scenario changes completely. Indeed, for any n we can find examples of dense

representations which do not have any curve generating a dense subgroup in T".

Example 4.32. Let ¥ be a surface of genus g and p : m 3 — T? be the representation associated
to the matrix ©, € M(2, 2g; T) defines as follow.

110000 -~ 00
coo11o00 - --00

) € M(2,2¢;T).
One can show that @p has maximal rank and hence p is a dense representation. However, no curve

is applied by p to a vector generating a dense subgroup.

Example 4.33. Let X be a surface of genus g and p : m ¥ — T" be the representation associated
to the matrix ©, € M(n, 24; T) defines as follow.

1 0 0
0
f5 00 0 00 -~ --- 0 0] €M(n,2¢;7T),
6. 0 0 000 --- --- 00
where 1,05, ...,0, are linearly independent over Q. One can show that @p has maximal rank and

hence p is a dense representation. However, no curve is applied by p to a vector generating a dense

subgroup.

4.10.3 Surfaces with one puncture

Let us now discuss the case of the one-holed torus ¥. We shall denote m3 = (a,b) the fundamental

group of 3. Also in this case the choice of a representation consists in choosing for each generator an
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element of T™. The representation space Hom (mE, T”) trivially identifies with the space T™ x T".
For each choice of an element c, the relative representation variety Hom, (WlE,T") is defined as
the preimage of ¢ via the commutator map k : T" x T™ — T". Thus, as a consequence of the
abelian property, the relative representation space is empty for any ¢ # (1,...,1) and coincides
with the full representation variety when ¢ = (1,...,1). Once again, the action of T" by inner
automorphisms is trivial and hence the character variety trivially coincides with the representation
space. As a consequence, the space Hom (mz, T”) naturally identifies with the space Hom (7‘[’1T, T”).
The equalities Mod(7T") = Mod(X) = SL(2, Z) are well-known and the actions of Mod(7") and Mod(X)
on the representation spaces associated to 17" and X respectively coincide. Therefore, we have the

following proposition.

Proposition 4.34. Theorem D and Theorem F hold for the torus T if and only if they hold for the

one-holed torus X.

More generally, the main results of the present work extend to surfaces of higher genus and with
one boundary component. Indeed, let ¥ ,; be a surface a surface of genus g and one boundary
component. We have already seen above that this is true for the one-holed torus I, Proposition 4.34.
The general claim follows because, as a consequence of the abelian property of T", one can establish
an identification between the representations spaces Hom (7?12, T”) and Hom(m (ZgJ),T”). Since
the mapping class group coincides with the pure mapping class group for one-puncture surfaces the

following proposition also holds.

Proposition 4.35. Theorem D and Theorem F' hold for a closed surface of genus g if and only if
they hold for the one-holed surface of genus g.
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