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Géométries riemanniennes et stratifiées des matrices de covariance et de corréla-
tion

Dans de nombreuses applications, les données sont des matrices de covariance ou de corrélation entre
plusieurs signaux (EEG, MEG, fMRI), grandeurs physiques (cellules, gènes) ou instants (autocor-
rélation). L’ensemble des matrices de covariance est un cône convexe qui est un espace stratifié non
euclidien : il a un bord qui est lui-même un espace stratifié de dimension inférieure. Ses strates sont
les variétés de matrices de covariance de rang fixé et la strate principale des matrices Symétriques
Définies Positives (SPD) est dense dans l’espace total. L’ensemble des matrices de corrélations
admet une structure similaire.

Les concepts géométriques comme les géodésiques, le transport parallèle ou la moyenne de
Fréchet permettent de généraliser les opérations classiques (interpolation, extrapolation, recalage)
et statistiques (moyenne, analyse en composantes principales, classification, régression) à ces espaces
non linéaires. Cependant, ces généralisations reposent sur le choix d’une géométrie supposée connue
à l’avance, c’est-à-dire d’un opérateur de base tel qu’une distance, une connexion affine, une métrique
riemannienne, une divergence. En général il n’existe pas une unique géométrie adaptée à une
application mais plutôt une famille de géométries à explorer pour faire ce choix.

D’abord, la géométrie doit correspondre au problème. Par exemple, si les matrices de covariance
doivent être inversibles, les matrices dégénérées doivent être rejetées à l’infini. Ensuite, elle doit
satisfaire aux invariances naturelles du problème par des groupes de transformations : si multiplier
chaque variable par un facteur indépendant n’a pas d’influence, alors il faut une métrique invariante
par le groupe des matrices diagonales strictement positives, par exemple une métrique produit qui
découple les échelles et les corrélations. Enfin, de bonnes propriétés numériques (formes closes,
algorithmes efficaces) sont essentielles pour utiliser cette géométrie en pratique.

Dans ma thèse, j’étudie des géométries sur les matrices de covariance et de corrélation suivant
ces principes. En particulier, je fournis les opérations géométriques associées qui sont les briques
élémentaires pour calculer avec ces matrices.

Sur les matrices SPD, je m’inspire de la caractérisation des métriques affine-invariantes pour
caractériser les métriques continues invariantes par O(n) au moyen de trois fonctions multivariées
continues. Je construis ainsi une classification de métriques : les contraintes imposées sur ces
fonctions définissent des classes emboîtées vérifiant des propriétés de stabilité. En particulier, je
réinterprète la classe des “kernel metrics”, j’introduis la famille des métriques “mixed-Euclidean”
dont je calcule la courbure, et je résume et complète les connaissances sur les métriques classiques
(log-euclidien, Bures-Wasserstein, BKM, power-Euclidean).

Sur les matrices de corrélation de rang plein, je calcule les opérations riemanniennes de la
métrique quotient-affine et je montre que, malgré sa construction intéressante et son invariance par
permutations, sa courbure est non majorée et de signe non constant, ce qui rend sa géométrie très
complexe en pratique. Pour pallier ce défaut majeur, j’introduis des métriques Hadamard ou même
log-euclidiennes ainsi que leurs opérations géométriques. Pour retrouver l’invariance par permu-
tations perdue, je définis deux nouvelles métriques log-euclidiennes invariantes par permutations,
l’une d’elle étant invariante par une involution naturelle de l’espace. Je fournis aussi un algorithme
efficace pour calculer les opérations géométriques associées, qui s’appuie sur le “scaling” de matrices
SPD.

Enfin, j’étudie la structure riemannienne stratifiée de la distance de Bures-Wasserstein sur les
matrices de covariance. Je calcule le domaine de définition des géodésiques et le domaine d’injection
dans chaque strate, puis je caractérise les courbes minimisant la longueur entre toutes les strates.

Mots clés: Géométrie riemannienne, Matrices de covariance, Matrices de corrélation, Familles
de métriques, Géodésiques, Espaces stratifiés.
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Riemannian and stratified geometries of covariance and correlation matrices

In many applications, the data can be represented by covariance matrices or correlation matrices
between several signals (EEG, MEG, fMRI), physical quantities (cells, genes), or within a time
window (autocorrelation). The set of covariance matrices forms a convex cone that is not a Euclidean
space but a stratified space: it has a boundary which is itself a stratified space of lower dimension.
The strata are the manifolds of covariance matrices of fixed rank and the main stratum of Symmetric
Positive Definite (SPD) matrices is dense in the total space. The set of correlation matrices can be
described similarly.

Geometric concepts such as geodesics, parallel transport, Fréchet mean were proposed for gen-
eralizing classical computations (interpolation, extrapolation, registration) and statistical analyses
(mean, principal component analysis, classification, regression) to these non-linear spaces. However,
these generalizations rely on the choice of a geometry, that is a basic operator such as a distance, an
affine connection, a Riemannian metric, a divergence, which is assumed to be known beforehand.
But in practice there is often not a unique natural geometry that suits the application. Thus, one
should explore more general families of geometries that exploit the data properties.

First, the geometry must match the problem. For instance, degenerate matrices must be rejected
to infinity whenever covariance matrices must be non-degenerate. Second, we should identify the
invariance of the data under natural group transformations: if scaling each variable independently
has no impact, then one needs a metric invariant under the positive diagonal group, for instance
a product metric that decouples scales and correlations. Third, good numerical properties (closed-
form formulae, efficient algorithms) are essential to use the geometry in practice.

In my thesis, I study geometries on covariance and correlation matrices following these princi-
ples. In particular, I provide the associated geometric operations which are the building blocks for
computing with such matrices.

On SPD matrices, by analogy with the characterization of affine-invariant metrics, I characterize
the continuous metrics invariant by O(n) by means of three multivariate continuous functions. Thus,
I build a classification of metrics: the constraints imposed on these functions define nested classes
satisfying stability properties. In particular, I reinterpret the class of kernel metrics, I introduce the
family of mixed-Euclidean metrics for which I compute the curvature, and I survey and complete
the knowledge on the classical metrics (log-Euclidean, Bures-Wasserstein, BKM, power-Euclidean).

On full-rank correlation matrices, I compute the Riemannian operations of the quotient-affine
metric. Despite its appealing construction and its invariance under permutations, I show that its
curvature is of non-constant sign and unbounded from above, which makes this geometry practi-
cally very complex. I introduce computationally more convenient Hadamard or even log-Euclidean
metrics, along with their geometric operations. To recover the lost invariance under permutations,
I define two new permutation-invariant log-Euclidean metrics, one of them being invariant under a
natural involution on full-rank correlation matrices. I also provide an efficient algorithm to compute
the associated geometric operations based on the scaling of SPD matrices.

Finally, I study the stratified Riemannian structure of the Bures-Wasserstein distance on covari-
ance matrices. I compute the domain of definition of geodesics and the injectivity domain within
each stratum and I characterize the length-minimizing curves between all the strata.

Keywords: Riemannian geometry, Covariance matrices, Correlation matrices, Families of met-
rics, Geodesics, Stratified spaces.
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Chapter 1

Introduction

1.1 Which geometric structure for non-linear data?

1.1.1 Riemannian manifolds
Data science consists in extracting knowledge from the data collected in a broad variety of
contexts. The data may take multiple forms such as signals (brain activity, radar), images
(MRI, scanner), videos, shapes (organs, bones, proteins, cells), networks, etc. These data
are generally modelled by mathematical objects such as structured matrices, trees, graphs,
meshes, shapes, curves, diffeomorphisms. To analyze the data, one needs to compute with
this kind of objects. However, these mathematical objects often live in non-linear spaces
where the classical statistical operations are not defined. Indeed, without a vector space
structure, it seems impossible to compute means, to perform principal component analyses,
to do interpolations or extrapolations for example.

Therefore, a natural idea that became popular in data science over the last 20 years is to
consider that the data live in a Riemannian manifold, that is a locally Euclidean space. It
allows to generalize a lot of Euclidean operations, in particular statistical operations. Firstly,
thanks to the differential structure, one can differentiate curves, functions and define the
gradient. If the manifold is oriented, which is often the case in practice, there is a canonical
volume form which defines the Riemannian measure. Thus, absolutely continuous measures
and especially densities of probability measures can be defined. Secondly, the Riemannian
metric defines a canonical affine connection called the Levi-Civita connection. Thus, the
Riemannian manifold inherits the notions of geodesics (or self-parallel curves), exponential
map, parallel transport and Riemann curvature. Other notions of curvature may be defined
such as the scalar curvature, the Ricci curvature and especially the sectional curvature which
characterizes the Riemann curvature. Thirdly, the Riemannian metric defines a notion of
length and an intrinsic distance called the Riemannian distance on each connected compo-
nent of the manifold. The locally minimizing geodesics of the Riemannian distance coincide
with the geodesics of the Levi-Civita connection. Moreover, the distance allows to define
(globally) minimizing geodesics and Riemannian logarithms. In addition, the Hopf-Rinow
theorem ensures that the metric space is complete if and only if the Riemannian manifold is
geodesically complete. All this is summarized on the left part of Table 1.1.

This very rich set of geometric tools led to generalize many statistical concepts and
algorithms from Euclidean spaces to Riemannian manifolds. In a metric space (M, d), a
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Fréchet mean [Fréchet, 1948] of the points x1, ..., xk ∈ M is a minimizer of the continuous
map f : x ∈ M 7−→ ∑k

i=1 ai d(x, xi)p with p = 2 and a1 = ... = ak = 1. More generally,
this defines the notion of Riemannian Lp center of mass for any p > 1 and the notion
of Riemannian barycenter for any coefficients a1, ..., ak. Thus, these notions are defined
in Riemannian manifolds via the Riemannian distance. Moreover, precise conditions were
derived to ensure their local existence, uniqueness and convexity [Karcher, 1977, Buser and
Karcher, 1981, Kendall, 1990, Le, 2004, Yang, 2010, Afsari, 2011, Arnaudon and Miclo, 2014]
and the consistence and robustness of empirical estimators [Bhattacharya and Patrangenaru,
2003, Arnaudon et al., 2013]. In addition, several gradient descent algorithms were proposed
to compute them [Pennec, 2006, Arnaudon et al., 2012, Arnaudon et al., 2013, Afsari et al.,
2013, Bonnabel, 2013]. More generally, many optimization algorithms (Riemannian Newton
methods, line-search methods, trust-region methods) based on the concept of retraction were
developed on matrix manifolds to tackle classical problems such as the eigenvalue problem
[Absil et al., 2009, Boumal et al., 2014]. Other main statistical operations were defined
such as the covariance of a sample, the Mahalanobis distance, the normal law or the χ2 law
[Pennec, 2006]. A central limit theorem was established [Bhattacharya and Patrangenaru,
2005] and several generalizations of Principal Component Analysis (PCA) were imagined:
tangent PCA, Principal Geodesic Analysis [Fletcher and Joshi, 2004, Sommer et al., 2014],
Geodesic PCA [Huckemann et al., 2010]. Approximated parallel transport such as Schild’s
ladder [Lorenzi et al., 2011] and pole ladder [Lorenzi and Pennec, 2013, Guigui and Pennec,
2021a] were also proposed for registration purposes. This is summarized on the right part of
Table 1.1.

Geometric operations Statistical operations, results, algorithms
• Manifold Fréchet mean, p-mean, barycenters [Fréchet, 1948]
Coordinate charts From [Karcher, 1977] to [Arnaudon and Miclo, 2014]
Tangent space, tangent vector Gradient descent algorithms [Pennec, 2006, Bonnabel, 2013]
Derivative, speed vector [Arnaudon et al., 2013, Afsari et al., 2013]
• Riemannian metric Optimization algorithms [Absil et al., 2009, Boumal et al., 2014]
Gradient Covariance matrix, Mahalanobis distance,
(If oriented) Volume form Normal law, χ2 law [Pennec, 2006]
Riemannian measure (If compact) Uniform law
Probability measures Central limit theorem
• Levi-Civita connection [Bhattacharya and Patrangenaru, 2005]
Geodesics, exponential map Tangent PCA
Parallel transport Principal Geodesic Analysis [Fletcher and Joshi, 2004]
Curvature [Sommer et al., 2014]
+ sectional/Ricci/scalar Geodesic PCA [Huckemann et al., 2010]
• Riemannian distance Geodesic regression [Fletcher, 2013]
Length, length space Schild’s ladder [Lorenzi et al., 2011]
Minimizing geodesics Pole ladder [Lorenzi and Pennec, 2013]
Logarithm map [Guigui and Pennec, 2021a]

Table 1.1: Main geometric and statistical operations in Riemannian manifolds.

In other words, the framework of Riemannian manifolds is very rich. It offers many geo-
metric operations that were used to build efficient algorithms and adapt the usual statistical
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operations to non-linear spaces. However, it is not always possible to equip a space with a
differential structure so the hypothesis of working in a Riemannian manifold may be a bit
restrictive. A more general framework is given by metric spaces.

1.1.2 Metric spaces
Spaces of trees and graphs are typical examples of spaces that are too complex to admit a
manifold structure. We can cite the BHV space of phylogenetic trees [Billera et al., 2001],
the QED space of unlabeled trees [Feragen et al., 2010] or more recently the Graph space
[Calissano et al., 2020] and the Wald space of forests [Garba et al., 2021]. The three first
spaces are complete length spaces and even geodesic spaces. A length space is a metric
space such that the distance between any two points coincides with the infimum of lengths of
curves between them. A geodesic space is a metric space such that between any two points,
there exists a (globally minimizing) geodesic. Beware that in the context of metric spaces, a
geodesic often designates a globally minimizing geodesic whereas in Riemannian manifolds,
it rather stands for a locally minimizing geodesic, or equivalently a self-parallel curve. The
Hopf-Rinow theorem ensures that any complete and locally compact length space is a geodesic
space. A notion of curvature due to Aleksandrov also exists in metric spaces [Aleksandrov
et al., 1986, Alexander et al., 2019, Feragen and Nye, 2020]. It consists in comparing the
areas of triangles with the model spaces of constant curvature: the sphere, the Euclidean
space and the hyperbolic space. It defines upper or lower bounds for the curvature of the
metric space.

The notions of minimizing geodesics, Fréchet means and its variants are defined in a
metric space (M, d). The consistency of the Fréchet mean and median empirical estimators
still holds [Bhattacharya and Patrangenaru, 2003, Arnaudon et al., 2013]. More generally,
a distance defines a measure of dissimilarity between points, which can be taken as a loss
function. Thus, one can define least square models [Feragen and Nye, 2020] and therefore
geodesic regression or principal geodesics. However, the main difference with Riemannian
manifolds is the scarce quantity of available tools to compute these statistical operations. The
tools for metric spaces are more specific to a given space, such as the computation of geodesics
in the BHV space [Kupczok et al., 2008, Owen and Provan, 2011], the phylogenetic PCA
[Nye, 2011, Nye et al., 2017] or the computation of Fréchet means for persistence diagrams
[Turner et al., 2014] for example.

Fortunately, there are subclasses of metric spaces where we retrieve generic results and
methods. For instance, there exist many references on non-positively curved spaces [Brid-
son and Haefliger, 1999], results on their probability measures [Sturm, 2003] and algorithms
to compute medians and means in Hadamard spaces [Bacák, 2014]. Hadamard spaces are
complete non-positively curved geodesic spaces, they are generalizations of Hadamard man-
ifolds and satisfy analogous properties. For example, there exists a unique geodesic segment
between any two points. In contrast, it seems that few tools exist on non-negatively curved
spaces. Another example of notable metric spaces is given by quotients of metric spaces by
isometric group actions. When the total space is a Riemannian manifold, Geodesic PCA
is still defined [Huckemann et al., 2010], potentially with generalized geodesics. When the
group is finite like for the Graph space, there exist algorithms of type “Align All and Com-
pute” to compute the Fréchet mean or the geodesic components [Calissano et al., 2020]. They
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converge in finite time since the group is finite.
Thus, the framework of metric spaces is much more limited than the one of Riemannian

manifolds. However, there exist subclasses of convenient spaces and examples such as spaces
of trees that were extensively studied. Most of examples of metric spaces that are not
Riemannian manifolds actually convey more structure than a simple distance: they are often
stratified spaces.

1.1.3 Stratified spaces
Stratified spaces were defined and studied by Hassler Whitney, René Thom and John Mather
[Thom, 1969, Mather, 1970]. A Cp stratification of a closed set X in a manifold M is
a sequence of nested spaces X = Xk ⊃ Xk−1 ⊃ ... ⊃ X0 ⊇ X−1 := ∅ such that for all
i ∈ {0, ..., k}, the setMi = Xi\Xi−1 is a Cp manifold and the map i ∈ {0, ..., k} 7−→ dimMi

is increasing. (As in [Trotman, 2020], we can always impose dimMi = i by adding copies
of Xi’s and by allowing thatMi might be empty.) The connected components of theMi’s
are called the strata. Therefore Mi can be split into strata Sji for 1 6 j 6 αi where αi
is the number of connected components of Mi = ⊔

16j6αi S
j
i . Thus the space X is split

into connected manifolds, X = ⊔k
i=0

⊔αi
j=1 S

j
i . We say that the stratum S is adjacent to the

stratum T and we write T < S when T ⊂ S̄\S. This defines the partial order of adjacency
on the set of strata. We can represent the adjacency by the Hasse diagram of this partial
order.

We say that a pair of strata (S, T ) satisfies Whitney’s condition (b) at t ∈ T when for all
sequences (sn) ∈ SN and (tn) ∈ T N tending to t, if in a chart ofM around t, the sequence
of tangent spaces (TsnS) tends to a space τ in the Grassmannian Gr(dimM, dimS) and the
sequence of lines (sntn) tends to a line λ in the Grassmannian Gr(dimM, 1), then λ ⊆ τ .
A Whitney stratification is a C1 stratification such that the number of strata is locally finite
(each point has a neighborhood that meets a finite number of strata) and such that for all
strata T < S, the pair (S, T ) satisfies the Whitney’s condition (b) at all t ∈ T . Therefore,
one can show that T < S implies dim T < dimS [Trotman, 2020], so if T ⊆ Mi and
S ⊆ Mi′ , then i < i′. In other words, the map S ⊆ Mi 7−→ i ∈ {0, ..., k} is increasing. Let
us illustrate the definition on examples.

A manifold with boundaryM (that is locally diffeomorphic to an open set of a half-space
Rn−1 × [0,+∞)) is a stratified space with X0 = ∂M (the boundary) and X1 = M (the
manifold without boundary). For example, the closed ball of Rn for the Euclidean norm
B̄n2 (0, 1) = {x ∈ Rn|‖x‖2 6 1} is composed of the sphere M0 = Sn2 (0, 1) and the open ball
M1 = Bn2 (0, 1). The dimensions are dim(M0) = n − 1 and dim(M1) = n. The closed ball
of R3 for the infinite norm B̄3

∞(0, 1) = {x ∈ R3|‖x‖∞ = max |xi| 6 1} is a cube where the
strata are the 8 verticesM0, the 12 edgesM1, the 6 facesM2 and the open cubeM3. The
dimensions are dim(Mi) = i. The Hasse diagram of adjacency of the closed unit square of
R2 is represented on Figure 1.1. Note that when the strata are connected manifolds, the
diagram is a trivial line M0 → ... → Mk. Other popular examples are the spider and the
open book exposed in [Feragen and Nye, 2020]. The spider is a set of half-lines connected
at their finite extremity. The open book is the Cartesian product of R and the spider, that
is a set of half-planes sharing their boundary line. Their Hasse diagrams of adjacency are
represented on Figure 1.2.
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Vertices M0 (1, 1)

�� $$

(1,−1)

zz %%
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yy %%
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Edges M1 (1, y)

**

(x, 1)

%%

(x,−1)

��

(−1, y)

yy

Face M2 (x, y)

Figure 1.1: Hasse diagram of adjacency of the canonical stratification of the closed unit
square B̄2

∞(0, 1) = {(x, y) ∈ [−1; 1]2|max(|x|, |y|) 6 1}. This is an upper semi-lattice. On
the diagram, the free variables x and y stand for all the interval (−1; 1).

Point

xx &&

M0 Line

xx &&

Half line 1 · · · Half line k M1 Half plane 1 · · · Half plane k

Figure 1.2: Hasse diagrams of adjacency of the spider (left) and the open book (right). These
are lower semi-lattices.

Metric stratified spaces are stratified spaces endowed with a distance inducing the same
topology. The BHV space [Billera et al., 2001] and orthant spaces [Barden and Le, 2018], the
QED space [Feragen et al., 2010], the Graph space [Calissano et al., 2020], the Wald space
[Garba et al., 2021] are important examples of metric stratified spaces used in applications.
They offer more structure than simple metric spaces. For example, the BHV space is a
collection of Euclidean orthants in which the topology of the tree is preserved. They are
glued together so that the intersection between two orthants corresponds to the shrinking
of an edge in the tree. Therefore, minimizing geodesics are piecewise Euclidean [Billera
et al., 2001, Nye, 2011, Feragen and Nye, 2020]. A logarithm, generalizing the Riemannian
logarithm, is defined and the Fréchet mean and its limiting distribution can be precisely
characterized [Barden and Le, 2018]. We would like to go beyond spaces of trees and graphs
where methods seem to be mainly ad hoc. Thus, we promote an interesting subclass of
metric stratified spaces with more structure which is the class of Riemannian orbit spaces
[Alekseevsky et al., 2001].

1.1.4 Riemannian orbit spaces
In this thesis, we choose to work with a particular type of metric stratified spaces that we
call Riemannian orbit spaces. A Riemannian orbit space is the quotient of a Riemannian
manifold by a proper and isometric Lie group action [Alekseevsky et al., 2001, Huckemann
et al., 2010]. (Note that the condition of a proper group action is classical to get a Hausdorff
separated quotient space.) When the action is free in addition, the quotient space has a
unique structure of smooth manifold such that the canonical projection is a submersion
[Lee, 2012]. It can be turned into a Riemannian submersion by descending the Riemannian
metric. The theory of Riemannian submersions apply so the geodesics and the curvature can
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be deduced from the ones of the total space [O’Neill, 1966]. When the action is not free, the
isotropy group is not reduced to identity: the points can be grouped by conjugation class of
isotropy group, this creates strata in the total space and in the quotient space, called orbit
space [Alekseevsky et al., 2001, Michor, 2008]. The canonical projection becomes a stratified
Riemannian submersion in a sense. Moreover, the Riemannian distance of the total space
descends to a quotient distance on the orbit space so we get a metric stratified space. The
strata are proved to be Riemannian manifolds [Alekseevsky et al., 2001, Michor, 2008].

Riemannian orbit spaces can be seen as the stratified generalization of quotients of Rie-
mannian manifolds by a free, proper, isometric Lie group action. Some results on complete
Riemannian quotient manifolds still hold in complete Riemannian orbit spaces. For example,
any minimizing geodesic segment of the orbit space is the projection of a horizontal geodesic
segment, called a horizontal lift [Alekseevsky et al., 2001]. More precisely, the length of a
horizontal curve coincides with the length of its projection as long as it does not meet an
orbit of more singular type [Michor, 2008]. Moreover, all the horizontal lifts of a geodesic
differ by the action of an element in the Lie group [Alekseevsky et al., 2001]. These nice
properties allow to characterize the geodesics in a complete Riemannian orbit space. Hence,
they are a particularly convenient type of metric stratified spaces.

1.1.5 How to choose the geometry
After detailing these possible choices of geometric structures, how can we choose between
them? Moreover, even within one of these classes of structures, does there exist a canonical
geometric structure to use? Otherwise, how can we choose it? In Euclidean spaces, the
notions of straight line or mean do not depend on the choice of the inner product because
they all share the same canonical affine connection. In non-linear spaces, all these notions
strongly depend on the choice of the geometric structure, should it be a Riemannian metric
or a distance. We identify three principles to choose the geometric structure for non-linear
data.

1.1.5.1 First principle: adequacy of the model to the data

The first principle is the adequacy of the model to the data. Do they live in a manifold or are
there singularities to take into account in a more complex model such as a stratified space?
For example, in the set of covariance matrices, rank-deficient matrices may correspond to
a non-physical reality. For instance, in diffusion tensor imaging or electro-encephalography,
these matrices are often considered as degenerate and there exist tricks to make them positive
definite such as adding εIn to the dataset. In this case, the model should be the manifold
of symmetric positive definite (SPD) matrices with a Riemannian metric that rejects rank-
deficient matrices to infinity. However, in other contexts, rank-deficient matrices should be
kept at finite distance because they correspond to a physical reality. It occurs when covariance
matrices are of the type Σ = XX> with X ∈ Rn×k with n > k, i.e. empirical covariance
matrices between many features with few data points. So the treatment of singularities
depends on the application. Another example of singularity on SPD matrices is given by
matrices with two equal eigenvalues. For instance, in diffusion tensor imaging (DTI), they
may indicate the crossing of two fibers. Therefore, considering this space as stratified by
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eigenvalue multiplicity is more suited to this kind of problem [Groisser et al., 2017].
Another important element is the notion of invariance under the action of a group of

transformations or under a set of symmetries of the space. Being invariant under a trans-
formation means that if it is applied jointly to all the dataset, then the results of geometric
operations such as the Fréchet mean will be transformed accordingly. Therefore, if the in-
verse transformation is applied at the end, the result will be the same as the one without
any transformation so the statistical analysis will be unchanged. Let us take the example
of permuting the nodes in an undirected graph with vertices {A,B,C} for three types of
electronic device which exchange information. The attribute of an edge is the quantity of
information exchanged between the two types of device, allowing self loops. The adjacency
matrix of the graphs is built by associating A,B,C to 1, 2, 3 respectively. A distance on
adjacency matrices with non-negative coefficients M ∈ Sym>0(3) is invariant under permu-
tations if and only if the coefficients M11,M22,M33 (resp. M12,M23,M31) are treated equally.
For example, d(M,M ′) = ∑

i |Mii −M ′
ii| + 3∑i 6=j |Mij −M ′

ij| is permutation-invariant but
d′(M,M ′) = ∑

i,j i|Mij − M ′
ij| is not. Moreover, the choice of associating A to 1, B to 2

and C to 3 is arbitrary so we probably want the statistical analysis to be independent from
this choice. That is exactly what a permutation-invariant distance allows to do. If the same
permutation is applied to the whole dataset, then the Fréchet mean will be affected by the
same permutation so we will be able to retrieve the information on A,B,C respectively since
we know how they are associated to 1, 2, 3. Thus, a permutation-invariant distance preserves
the difference between A, B and C, despite what one could think.

Invariance is not independence. Being independent from a transformation is much stronger:
it means that if a set of different transformations is applied independently to each data within
the dataset, then the result of the geometric operations will not even be affected. It means
that the geometry has to be defined on the quotient of the space by this group of transfor-
mations. Here, the distance does not distinguish anymore between A, B and C. Actually,
the graph itself is defined up to permutation, the vertices have no label here. For example,
the Graph space is defined as the quotient of graphs by the permutation of nodes [Calissano
et al., 2020].

In addition to singularities, invariance or independence under natural transformations of
the space, another type of hypothesis consists in decoupling variables and turning the space
into a Cartesian product endowed with a product metric or a product distance. This can
come from the observation that two variables seem to be unrelated. This can also be a
refinement of the assumption of independence under one of the two variables. Indeed, the
respective weights in the product metric can give more or less importance to each variable.

In general, these assumptions lead to families of admissible structures rather than one
unique structure. Thus, we need other principles to discriminate between them.

1.1.5.2 Second principle: good theoretical properties

We saw that for metric spaces, some hypotheses such as completeness, non-positive curvature
or quotient structure, lead to important theoretical results of existence and uniqueness. We
also argued that Riemannian manifolds convey many more geometric tools and results which
allow to generically perform some statistical operations. Let us specify some particular types
of Riemannian manifolds where there are even more tools and results to use.
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When a manifoldM is embedded in a Riemannian manifold (M0, g0), the ambiant Rie-
mannian metric g0 induces a Riemannian metric g on the submanifold. Gauss-Codazzi equa-
tions provide the Levi-Civita connection and the curvature in (M, g) in function of those in
the embedding space (M0, g0).

Another typical situation is when a submersion π :M0 −→M is given. The submersion
π and the metric g0 allow to define a vertical distribution V = ker dπ, a horizontal distribution
H = V⊥, a horizontal lift #x = (dxπ)−1

|Hx : Tπ(x)M−→ Hx at each point x ∈M0, and finally
an induced metric gπ(x) = g0

x ◦ (#x,#x) onM. The map π : (M0, g0) −→ (M, g) is called
a Riemannian submersion and O’Neill’s equations provide the Levi-Civita connection, the
curvature and the exponential map in (M, g) in function of those in the total space (M0, g0)
[O’Neill, 1966]. More precisely, the geodesics inM are the projections of horizontal geodesics
inM0 so the exponential map writes Expπ(x) = π ◦ Exp0

x ◦#x. In particular, if (M0, g0) is
geodesically complete, then (M, g) is geodesically complete.

Many particular cases of Riemannian submersions can be met such as Riemannian quo-
tient manifolds, Riemannian homogeneous manifolds, naturally reductive homogeneous man-
ifolds or Riemannian symmetric spaces. Each of these classes is included in the previous one
and brings more properties to the space. They are summarized along with the embedded
spaces in Table 1.2.

Riemannian manifold Theoretical properties
Embedded Levi-Civita connection, curvature (if known in embedding space)
Submersed/quotient + exponential map (if known in the total space)
Homogeneous + completeness, transitive isometric group action
Naturally reductive + geodesics at identity are one-parameter subgroups
Symmetric + ∇R = 0, parallel transport is a composition of two symmetries
Euclidean + everything in closed form

Table 1.2: Theoretical properties of Riemannian manifolds implying practical properties.

Apart from Lie group actions that are compatible with the Riemannian metric, Rieman-
nian manifolds may also carry other compatible structures such as a pair of dual connections
or a divergence, or it may be seen as the parameter space of a statistical model. This is well
studied in information geometry [Amari and Nagaoka, 2000, Amari, 2016, Nielsen, 2022].
Two connections ∇,∇∗ are dual with respect to the metric g if they satisfy X(g(Y, Z)) =
g(∇XY, Z) + g(Y,∇∗XZ) for all vector fields X, Y, Z. A divergence is a distance-like function
D : M2 −→ [0,+∞) satisfying separation and which induces by differentiation a dualistic
structure (g,∇,∇∗), that is a Riemannian metric g with dual connections ∇,∇∗ [Amari and
Nagaoka, 2000].

A statistical model, or family of probability densities, induces by differentiation a Rie-
mannian metric called the Fisher-Rao metric g. Then, the natural gradient is defined as the
gradient associated to the Fisher-Rao metric. A statistical model also induces a pair of dual
connections (∇(1),∇(−1)), or more generally the one-parameter family of Amari-Chentsov
α-connections (∇(α))α∈R [Amari and Nagaoka, 2000]. The dualistic structure (g,∇(α),∇(−α))
can also be viewed as emanating from a divergence. If the statistical model is an exponen-
tial family or a mixture family, then ∇(1) and ∇(−1) are flat [Amari and Nagaoka, 2000].
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Information-geometric tools are used in many algorithms for parameter estimation [Amari,
1995], computing centroids [Nielsen and Nock, 2009], clustering [Liu et al., 2012] or function
optimization [Ollivier et al., 2017], to cite a few.

To summarize, the Riemannian geometry can be enriched with other compatible geometric
structures that provide more tools to compute on the manifold.

1.1.5.3 Third principle: good practical properties

Our third principle is the ability of the geometry to be implemented efficiently, for example
with closed-form formulae or fast algorithms to compute the geometric operations such as
the Fréchet mean, the geodesics or the parallel transport. As we argued earlier, this ability is
often a consequence of a rich geometry. As shown in Table 1.2, the simpler is the richer. Note
that it does not mean that the simplest geometry is the best suited for the application at
hand. Application constraints and practical constraints might be in conflict so one might need
to find a trade-off between them. This supports the idea of defining families of Riemannian
metrics encompassing different geometries to be able to go continuously from one to the
other.

This principle also pushes us to give a particular attention to numerical questions. The
python package geomstats [Miolane et al., 2020a, Miolane et al., 2020b] aims at offering
generic implementations for certain classes of manifolds such as Riemannian quotient spaces,
Lie groups, or more generally Riemannian manifolds and manifolds equipped with an affine
connection. For example, the exponential map of an affine connection is computed by inte-
grating the Hamiltonian flow. These generic methods can be overridden by specific methods,
for example when one has closed-form formulae or more efficient algorithms. This encourages
us to push the theoretical computations as far as possible because we often get formulae that
can be computed faster and with more precision than the generic implementations. The
geometric operations being the building blocks of more complex algorithms, it is crucial to
simplify their implementation when it is possible.

1.2 Spaces of covariance and correlation matrices
We now focus on the spaces studied in this thesis: the spaces of covariance and correlation
matrices.

1.2.1 Two stratified spaces
In many applications, data are modelled by covariance matrices or correlation matrices for
example between signals, physical quantities or within a time window (auto-correlation). The
application domains are electro-encephalography (EEG) [Barachant et al., 2012, Barachant
et al., 2013], magneto-encephalography (MEG), functional Magnetic Resonance Imaging
(fMRI) [Marrelec et al., 2006, Varoquaux et al., 2010], diffusion tensor imaging (DTI) [Pen-
nec et al., 2006, Lenglet et al., 2006, Fletcher and Joshi, 2007, Moakher, 2005, Batchelor
et al., 2005], trees and graphs [Journée et al., 2010, Severn et al., 2019, Garba et al., 2021],
signal processing, radar [Barbaresco, 2013], computer vision, genomics [de la Fuente et al.,

https://geomstats.github.io/
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2004, Peng et al., 2009], etc. Covariance matrices are symmetric positive semi-definite ma-
trices. They don’t form a manifold but a stratified space whose strata are the manifolds of
symmetric positive semi-definite matrices of fixed rank. Since these manifolds are connected,
the Hasse diagram of adjacency is trivial. The principal stratum is the manifold of Symmetric
Positive Definite (SPD) matrices, it is dense in the set of covariance matrices. Covariance
matrices form a convex cone in the vector space of symmetric matrices.

Correlation matrices are covariance matrices with unit diagonal. The correlation coeffi-
cient between two variables is the quotient of their covariance by the product of their standard
deviations: Cor(Xi, Xj) = Cov(Xi,Xj)√

Cov(Xi,Xi)
√

Cov(Xj ,Xj)
. Thus correlation matrices C = Cor(X)

are built from covariance matrices Σ = Cov(X) with non-zero variances by dividing each
entry by the product of square-roots of the diagonal elements on its row and its column:
Cij = Σij√

Σii
√

Σjj
or C = Diag(Σ)−1/2 Σ Diag(Σ)−1/2. Correlation matrices form a convex space

called the elliptope. They admit a similar stratified structure where the strata are also the
manifolds of correlation matrices of fixed rank. In terms of strata, a first difference with
covariance matrices is that the null matrix is not a correlation matrix. A second difference
is that the correlation matrices of rank one form a discrete manifold corresponding to the
corners of the elliptope [Tropp, 2018].

Back to the difference explained earlier between invariance and independence, let us
consider the action of the Lie group of positive diagonal matrices on SPD matrices. We
can decompose the space of SPD matrices into the Cartesian product of positive diagonal
matrices and full-rank correlation matrices. Therefore, the action of the positive diagonal
group only acts on the diagonal component. If an experiment with covariance matrices as
data is very weakly sensitive to the scales of variables, it means that the correct model to
use should be correlation matrices instead of covariance matrices.

To study the geometry of these stratified spaces, it seems natural to proceed step by step
by studying firstly the principal stratum, secondly the other strata, thirdly the whole space.
Since the principal stratum is dense in the whole space, it is worth spending some time
studying it because it is a good approximation of the whole space. In other words, random
generic covariance matrices are almost surely SPD. However, covariance matrices may not
be generic in many practical problems. For example, when empirical covariance matrices are
computed with less data than the number of features, they are mandatorily degenerate and
the previous statement fails. That is precisely why it is also important to have theoretical
tools on the boundary.

1.2.2 The many geometries of SPD and PSD matrices
Many Riemannian metrics were proposed on the manifold of SPD matrices, emanating from
different contexts from algebra to information geometry or quantum information geome-
try: affine-invariant [Siegel, 1943, Skovgaard, 1984, Pennec et al., 2006, Lenglet et al.,
2006, Fletcher and Joshi, 2007, Moakher, 2005], log-Euclidean [Arsigny et al., 2006, Fillard
et al., 2007, Hà Quang et al., 2014], Bures-Wasserstein [Dowson and Landau, 1982, Olkin
and Pukelsheim, 1982, Takatsu, 2010, Takatsu, 2011, Malagò et al., 2018, Bhatia et al.,
2019], Bogoliubov-Kubo-Mori [Petz and Toth, 1993, Michor et al., 2000], power-Euclidean
[Hiai and Petz, 2009, Dryden et al., 2010], alpha-Procrustes [Hà Quang, 2022], power-affine
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[Thanwerdas and Pennec, 2019b], Cholesky [Wang et al., 2004], log-Euclidean-Cholesky [Li
et al., 2017] log-Cholesky [Pinheiro and Bates, 1996, Lin, 2019], etc. We generically call them
the noted metrics. Let us follow the general method we sketched to choose a Riemannian
metric. On the manifold of SPD matrices, the singularities are the degenerate matrices, those
which have at least one null eigenvalue and which are located on the boundary. Therefore,
depending on the problem, we may either want these degenerate matrices to be at finite or
infinite distance of SPD matrices.

One natural transformation of the space of SPD matrices is given by the invertible affine
transformation of the feature vector X 7−→ AX + X0 with A ∈ GL(n). It is well known
that the new covariance matrix is congruent to the original one via the linear part A of
the transformation: Cov(AX +X0) = ACov(X)A>. Therefore, choosing an affine-invariant
metric means that the geometry (and the associated geometric operations) will not change
if we apply jointly an affine transformation to the whole set of data. For example, in brain-
computer interfaces, we may assume that between two different sessions, the electrode cap is
not positioned at the same location and that this induces a linear transformation in the signals
acquired at first order. In contrast, within a session, we may assume that the transformation
remains the same for all the experiments. Then, under this hypothesis, an affine-invariant
metric seems to be a good choice to analyze experiments within a session but there should be
an alignment step or a change of reference across different sessions [Barachant et al., 2013].

Furthermore, all the subgroups of the general linear group define a notion of invariance
that may be of interest or not depending on the application: orthogonal transformations (or-
thogonal group), independent positive scalings of variables (positive diagonal group), permu-
tations between variables (permutation group) or global positive scaling (positive real group)
for instance. All the metrics cited above are invariant under orthogonal transformations,
except those named after Cholesky. Their quantity suggests to propose other theoretical
properties to classify and distinguish them.

On singular PSD matrices of fixed rank, it seems that four Riemannian metrics were
proposed [Bonnabel and Sepulchre, 2010, Vandereycken et al., 2009, Vandereycken et al.,
2013, Massart and Absil, 2020]. These spaces are a bit more difficult to handle since they are
not open sets of vector spaces. On PSD matrices, the invariance under affine transformations
or even under the positive diagonal group is impossible to get for any distance [Bonnabel and
Sepulchre, 2010]. However, it might be quite difficult to glue these Riemannian manifolds
together to form a global interesting geometry on covariance matrices of any rank. Therefore,
it appears that it is important to think to a geometry on the whole space before studying it
on each stratum separately.

The only distance defined on the whole space of covariance matrices that we are aware
of is the Bures-Wasserstein distance [Dowson and Landau, 1982, Olkin and Pukelsheim,
1982]. The stratified topology was described in [Takatsu, 2011] as well as the tangent cone
(which replaces the notion of tangent space at singular points). It was also shown to be an
Aleksandrov space of non-negative curvature. There seems to be no other work on stratified
geometries of covariance matrices so far.
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1.2.3 The few geometries of correlation matrices
In contrast, very few Riemannian metrics or more general geometric structures were proposed
in the literature on the manifold of correlation matrices. The oldest geometry seems to be
the quotient by the orthogonal group of a product of n spheres Sn−1 of dimension n − 1.
It was used to simulate correlation matrices in [Rebonato and Jaeckel, 2001]. The quotient
topology was later described in [Kercheval, 2008]. However, a complete description of the
geometry does not exist neither on strata nor on the whole space of correlation matrices so
far. Cholesky parametrizations were used to compute the nearest low-rank correlation matrix
[Grubišić and Pietersz, 2007].

On full-rank correlation matrices, we can cite the Hilbert projective geometry, which is a
distance on any open bounded convex subset of Rn. It was applied to the open elliptope of
full-rank correlation matrices for clustering [Nielsen and Sun, 2019]. A Riemannian metric
was proposed by taking the quotient of the affine-invariant metric on SPD matrices by the
action of positive diagonal matrices [David and Gu, 2019, David, 2019]. More recently,
a Euclidean bijective parametrization of the open elliptope was proposed via the matrix
exponential [Archakov and Hansen, 2021].

The same remark as for SPD matrices can be made about singularities. If one wants to
avoid singular matrices, then the open elliptope should be considered without its boundary.
Since it is an open set of an affine space, the simplest Riemannian geometry should be
diffeomorphic to a Euclidean geometry. Therefore, one should find natural diffeomorphisms
between the open elliptope and Euclidean spaces. The recent bijective parametrization of
[Archakov and Hansen, 2021] could be a nice tool to do so.

About the natural group transformations of the space, the situation is very different than
the one of SPD matrices. Indeed, the affine transformation of the feature vector does not
induce a group action on correlation matrices. Correlation matrices were often treated as
covariance matrices in the applications. However, their structure is completely different.
Indeed, among the groups cited above for covariance matrices, only the permutation group
stabilizes the manifold of full-rank correlation matrices. Following the discussion on invari-
ance and independence, it seems natural to use permutation-invariant Riemannian metrics
when the features of the feature vector should be treated equally, for example for electrodes,
brain regions, cells or genes.

One could also require the weaker invariance by groups of features, that is by block
permutation matrices with fixed sizes of blocks. However, the invariance under permutation
might not be relevant for features such as times in auto-correlation matrices because contrarily
to the previous cases, the order between times is probably a key element of the analysis.

1.3 Comprehensive presentation of the contributions

1.3.1 Purposes and methodology
Our purposes follow the analysis we made of theoretical and practical tools available on
covariance and correlation matrices. On SPD matrices, there is a need of classification
to understand the common points and the differences between all the Riemannian metrics
proposed in the literature. In particular, the invariance under orthogonal transformations
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seems to be a key classification criterion to study. In other words, the identified need is
essentially theoretical since there exist already many tools to compute with SPD matrices.

On the contrary, there is an obvious lack of intrinsic and efficient tools even to interpolate
between two full-rank correlation matrices. Our goal is to define several types of geometries
with different properties so that people have the choice in function of their application.
Furthermore, proposing families of metrics rather than isolated metrics is a leitmotiv to offer
more flexibility and allow optimizing the parameters of the family under other constraints for
example. In practice, the goal is to get simple formulae of geodesics or parallel transport to
perform the basic geometric and statistical operations on the manifold of full-rank correlation
matrices.

About the stratified spaces of covariance and correlation matrices, we aim at proposing a
first example of stratified structure with a Riemannian metric on each stratum and a global
distance between any two points of the space. This structural description should be enriched
by some practical tools such as the geodesics between any two points.

Our methodology is the following. From the literature on applications using covariance
and correlation matrices, we extract some assumptions that may be relevant in different con-
texts such as invariances, symmetries, singularities, independent variables. Then, we abstract
these considerations and enrich them with other theoretical constraints on the algebraic or
topological structure of the space, on the groups acting on it, on the relevant functions that
were used in other domains for example. After that, we try to define new structures by ma-
nipulating all these concepts together. A crucial element of our methodology is to push the
computations as far as they can be. We noticed that in several works, calculations were left
with implicit formulae that are difficult to grasp and implement. Moreover from a computa-
tional point of view, a closed-form formula often offers faster and more precise results than
a composition of generic functions that may propagate numerical errors. Following these
guidelines, we got several results from theorems of classification, characterization or stabil-
ity to practical formulae (geodesics, curvature, parallel transport, etc.) or algorithms. The
package geomstats offers a place to gather all these tools on manifolds. Our methodology
is schematized on Figure 1.3.

Theoretical considerations −→ Research −→ Results
Topology Computations Classification

Group actions Characterization
Structure Stability, regularity
Functions Invariance, symmetry
↑ Structure

Assumptions from applications Closed-form formulae
Invariances (geodesics, parallel transport,
Symmetries connection, curvature)
Singularities Algorithms

Independent variables Implementation

Figure 1.3: The methodology followed in this thesis.

https://geomstats.github.io/
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1.3.2 Classification of Riemannian metrics on SPD matrices

In order to classify Riemannian metrics on SPD matrices, we first characterize the continu-
ous O(n)-invariant Riemannian metrics by means of three continuous multivariate functions
α, β, γ : Rn −→ R satisfying three conditions of symmetry, compatibility and positivity (The-
orem 4.20). This shows that the class of O(n)-invariant metrics is much wider than the class
of affine-invariant metrics, which is indexed by only two real parameters. Secondly, in light of
this characterization, we reinterpret the classes of kernel and mean kernel metrics introduced
in [Hiai and Petz, 2009, Hiai and Petz, 2012] and we propose intermediate classes of metrics
with stability properties. The smaller the class is, the more properties are shared by all the
metrics of the class. So we propose a sequence of nested classes defined by conditions on
the three functions α, β, γ ranging from the noted metrics (affine-invariant, log-Euclidean,
Bures-Wasserstein, BKM, etc.) to the whole class of O(n)-invariant metrics. Notable classes
are the families of Mixed-Power-Euclidean and Mixed-Euclidean metrics (Section 5.5) which
encompass with few parameters most of the noted metrics. This is represented on Figure
1.4 and on Figure 4.1 in Chapter 4. Thirdly, we also show that affine-invariant metrics are
characterized by the pairs of invariance under R+ and SL(n), or Diag+(n) and O(n), and
less evidently under LT+(n) (lower triangular matrices with positive diagonal) and S(n)
(permutation matrices). This is shown on Figure 1.5. We characterize LT+(n)-invariant
metrics as pullbacks by the Cholesky map of left-invariant metrics on the Lie group LT+(n)
(Theorem 7.4). This gives a Lie group structure to the manifold of SPD matrices for which
the affine-invariant metrics are left-invariant metrics. This is an unexpected result since this
Riemannian manifold has only been considered so far as a Riemannian symmetric space.

To prove the continuity of the O(n)-invariant metric defined by the three continuous maps
α, β, γ, we were brought to answer the following question: given two symmetric matrices, how
can we choose their matrices of eigenvectors so that they are the closest possible? Indeed,
the matrix of eigenvectors is not unique. We can reduce the degrees of freedom by imposing
the order of the eigenvalues but we are left with rotations and symmetries in the eigenspaces.
We answer this question in Chapter 2 as a mathematical preliminary.

These theoretical results came with additional practical results. We provide the com-
plete formula of the sectional curvature of the affine-invariant metrics in Table 4.5 (one term
was forgotten in [Skovgaard, 1984]). We give new formulae for the Bures-Wasserstein met-
ric, especially an explicit equation for the parallel transport which allowed to implement it
in geomstats (Table 4.7 and Proposition 4.12). We derived the curvature of the Mixed-
Euclidean metrics (Theorem 5.25) based on the derivation of the BKM curvature in [Michor
et al., 2000]. In addition, we prove that all these curvatures take negative values and we show
numerically that all the Mixed-Power-Euclidean metrics but the Euclidean, log-Euclidean and
affine-invariant metrics also have positive curvature. We show that the necessary and suffi-
cient condition for geodesic completeness on mean kernel metrics [Hiai and Petz, 2009] is still
valid for the wider class of extended mean kernel metrics. We also show that the classes of
kernel metrics and extended kernel metrics are stable by taking the cometric (if we identify
the vector space of symmetric matrices and its dual via the Frobenius inner product). This
is an important advantage to compute the geodesics by integration of the Hamiltonian equa-
tions of geodesics since they require to compute the cometric. These results can be found in
Chapters 4 and 5 in Part III.

https://geomstats.github.io/
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Figure 1.4: Elements of classification of Riemannian metrics on SPD matrices.
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Figure 1.5: Invariance under subgroups of GL(n). Each color represents a class of Riemannian
metrics that are invariant under the associated group. Affine-invariant metrics belong to all
other classes. Some pairs of other invariances (O(n) and Diag(n); S(n) and LT+(n)) imply
affine-invariance. This is explained in Chapter 7.

1.3.3 New families of Hadamard metrics on full-rank correlation
matrices

We started by studying the recently introduced quotient-affine metric on full-rank correlation
matrices [David and Gu, 2019, David, 2019]. It relies on the quotient space structure of
the open elliptope. Indeed, the orbits of the action of positive diagonal matrices on SPD
matrices are in bijection with correlation matrices so it suffices to find a metric invariant
under the positive diagonal group to define a metric on the open elliptope, for example the
affine-invariant metric [David and Gu, 2019]. Thanks to O’Neill’s fundamental equations of
Riemannian submersions, we compute the quotient geometry, the Riemannian metric, the
geodesics, the Levi-Civita connection and the curvature in Chapter 6. We also show that
Riemannian logarithms exist but the uniqueness remains an open question as well as closed-
form formulae. Furthermore, we show that the curvature is not of constant sign and that it is
unbounded from above (Theorem 7.1). This argues for the definition of other metrics with a
better behavior, for example Hadamard or even flat since the open elliptope is diffeomorphic
to a Euclidean space. We show that the construction of quotient-affine metrics generalize
to LT+(n)-invariant metrics (Section 7.3), which unfortunately suffer the same drawbacks.
However, this generalization puts in light the interesting idea of transforming correlation
matrices by the Cholesky map. This was done for SPD matrices but not precisely for full-
rank correlation matrices. This allows us to define very convenient geometries by pullback via
the Cholesky map in Section 7.4: one Riemannian symmetric space called poly-hyperbolic-
Cholesky, two Euclidean spaces called Euclidean-Cholesky and log-Euclidean-Cholesky, and
one Lie group structure called Lie-Cholesky. All the operations associated to the Riemannian
metrics are given in closed form. Of course, each metric can be extended into a family with
the same properties.
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Although these Riemannian metrics are very practical, they miss an ingredient that could
be useful in some applications: the invariance by permutations. Therefore, we propose two
permutation-invariant metrics defined completely differently in Chapter 8. The first one
relies on a bijective parametrization recently proposed thanks to the matrix exponential
map [Archakov and Hansen, 2021]. The authors proved that given a symmetric matrix,
there exists a unique diagonal matrix such that the exponential of their sum is a correlation
matrix. This defines a bijection between symmetric hollow (with null diagonal) matrices
and full-rank correlation matrices. We prove that this bijection is a smooth diffeomorphism
(Theorem 8.6), therefore it allows to push permutation-invariant inner products forward to
the open elliptope. We call these Riemannian metrics off-log metrics and, as a log-Euclidean
metric, all the geometric operations are known in closed form modulo the computation of the
bijection. It is proved in [Archakov and Hansen, 2021] that the bijection can be computed
in logarithmic time complexity.

To find all the permutation-invariant inner products on the vector space of symmetric
hollow matrices, we were brought to answer the more general question of finding all the G-
invariant inner products on a vector space, knowing one of them. Although this seems to be
a well-known result in representation theory, we were not able to find this result in reference
books. Therefore, we answer this question and we present some examples in Chapter 3 as
another mathematical preliminary.

In parallel, we explored an analogous idea which is somehow the symmetric or the dual of
the previous one. We showed that given a correlation matrix there exists a unique positive
diagonal matrix such that the logarithm of their composition by congruence belongs to a
vector space, namely the vector space of symmetric matrices with null row sums (Theorem
8.15). This defines a bijection between full-rank correlation matrices and symmetric matrices
with null row sums. Analogously, we show that it is a diffeomorphism (Theorem 8.19)
and thus, permutation-invariant inner products can be pulled back to the elliptope. We
call these pullback metrics log-scaled metrics because our result is based on the well-known
concept of “scaling” of an SPD matrix [Marshall and Olkin, 1968]. These metrics have an
additional characteristic that only the quotient-affine metric has: they are inverse-consistent
(Theorem 8.18). Correlation matrices are not stable by inversion but the correlation matrix
of the inverse is of course a correlation matrix. This leads to a map that we call the cor-
inversion and that is closely related to the notion of partial correlation, well known in signal
processing or Gaussian graphical networks. Indeed, the opposite off-diagonal coefficients of
the cor-inversion are exactly the partial correlation coefficients (or parcors). This important
map defines notions of intrinsic inversion of correlation matrices and inverse-consistency of
Riemannian metrics, that are satisfied by the log-scaled metrics. Quotient-affine metrics and
log-scaled metrics intrinsically satisfy this property because their construction relies on the
action of positive diagonal matrices. The properties of all these metrics are summarized on
Table 1.3.

All the geometric operations of log-scaled metrics are known in closed form modulo the
computation of the bijection, that is the computation of the scaling of an SPD matrix. Many
algorithms exist to compute the scaling. However, most of them are not specific to SPD
matrices. Surprisingly, the specific algorithms seem not to rely on the proof of existence
of the scaling [Marshall and Olkin, 1968] although it involves the minimization of a strictly
convex map. We show that the optimization problem amounts to minimize this even strongly
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Reference Riemannian metric Comp. Structure Curvature S(n)- Inv.-
inv. cons.

[D19] & Ch. 6 Quotient-affine

Yes

Quotient space [−1
2 ,+∞) Yes Yes

Ch. 7 Quotient-Lie-Chol. Quotient space ? Yes No
Ch. 7 Poly-hyperbolic-Chol. Symmetric space 6 0 No No
Ch. 7 Euclidean-Chol. Vector space Flat No No
Ch. 7 Log-Euclidean-Chol. Vector space Flat No No

[A21] & Ch. 8 Off-log Vector space Flat Yes No
Ch. 8 Log-scaled Vector space Flat Yes Yes

Table 1.3: Properties of Riemannian metrics on the open elliptope of full-rank correlation
matrices. Abbreviations: [D19] is [David and Gu, 2019], [A21] is [Archakov and Hansen,
2021], Ch. is Chapter, Comp. is Complete, S(n)-inv. is S(n)-invariant, Inv.-cons. is
Inverse-consistent.

convex map on a convex set. Thus we propose in Section 8.5 a method relying of the well-
known Projected Gradient Descent (PGD) algorithm. Since the projection is not known
in closed form, we contribute a simple algorithm to compute the projection that we plug
in the PGD algorithm. We prove the convergence of our approximated PGD algorithm in
logarithmic time and we argue that its total complexity and precision is competitive with
respect to SPD-specific and unspecific algorithms.

Finally, we show that all these metrics split in two groups in dimension 2, that is with
only one correlation coefficient (Theorem 8.23). This provides two different interpolations
of the correlation coefficient, including one closely related to the Fisher z-transformation.
There results are presented in Chapters 6, 7 and 8 in Part IV.

1.3.4 Bures-Wasserstein geodesics in the orbit space of covariance
matrices

Before studying the geometry of stratified spaces, it is important to notice that it seems
unrealistic to build a distance on the whole space that coincides with a complete Riemannian
distance on the principal stratum. Indeed, the boundary is considered as a singularity rejected
infinitely far so these viewpoints seem irreconcilable. Therefore, we are now more interested
in non-complete metrics on SPD matrices that should be completed thanks to the stratified
boundary of singular matrices. Many Riemannian metrics on SPD matrices such as the
Euclidean or the power-Euclidean metrics have geodesics that leave the space of covariance
matrices. We know only one metric whose geodesics bounce on the boundary and come back
into SPD matrices: this is the Bures-Wasserstein metric. Thus we study the same metric
stratified space as in [Takatsu, 2011].

We propose to apply the richer framework of Riemannian orbit spaces [Alekseevsky et al.,
2001] to the quotient of the Euclidean space of square matrices equipped with the Frobenius
inner product by the right action of the orthogonal group. With this viewpoint, covariance
matrices form a stratified space whose strata are the manifolds of covariance matrices of
fixed rank, as explained in Section 9.3. It is well known that the quotient distance is exactly
the Bures-Wasserstein distance. The geodesics were studied in the principal stratum of SPD
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matrices [Malagò et al., 2018, Bhatia et al., 2019] and in other strata [Massart and Absil,
2020]. However, we noticed that several questions were still open on the injectivity domain
of the exponential map, the set of preimages or the set of logarithms. We answer precisely
all these questions in Sections 9.4 and 9.5. We also compute the horizontal lift, which allows
us to give explicit formulae of the Riemannian metric and the exponential map.

Furthermore, we characterize precisely the minimizing geodesics of the total metric space
between any two covariance matrices (Theorem 9.31). We prove that they are of constant
rank on the interior of the segment. We show that the minimizing geodesic segments between
two covariance matrices Σ and Λ are parametrized by the closed unit ball or R(k−r)×(l−r) for
the spectral norm, where k, l, r are the respective ranks of Σ,Λ,ΣΛ (Theorem 9.34). We give
their expression in function of this parameter. In particular, we show that there is either
exactly one or an infinity of geodesics between two covariance matrices, depending on the
rank of their product. We also give the number of geodesics of minimal rank and we give
a simple formula of the minimizing geodesic when it is unique. Finally, we show that this
formula actually defines a minimizing geodesic between any two matrices so we call it the
canonical geodesic. These results are presented in Chapter 9.

1.4 Organization of the thesis

1.4.1 Overview
This thesis is organized in parts divided in chapters. In Part II, we give two mathematical
preliminaries. They result from the resolution of two problems that came naturally through-
out our research and that revealed to be non-trivial. We put them aside to ensure subject
homogeneity within chapters. Chapter 2 tackles the problem of regularity of eigenvalues and
eigenvectors of symmetric matrices. It allows us to show the continuity of a Riemannian
metric defined via eigenvalue decomposition in Chapter 4. Chapter 3 answers the question
of finding all G-invariant inner products on a vector space, based on representation theory.
We use this result to build families of permutation-invariant metrics in Chapter 8.

Part III focuses on the geometries of the open cone of SPD matrices, that is full-rank
covariance matrices. Since many geometries were previously defined on this manifold, we
survey the literature in Chapter 4 and we complete it wherever needed with new formulae.
Since these geometries were essentially O(n)-invariant, we characterize this general family
and we show that it is much wider than the family of affne-invariant metrics. We promote
the idea of defining families of Riemannian metrics encompassing existing ones and having
nice stability properties. Thus, we rely on the previous work on kernel metrics of [Hiai and
Petz, 2009] to define new subclasses and super-classes of metrics. In particular in Chapter 5,
we explore the information geometry and the Riemannian geometry of the families of Mixed-
Power-Euclidean and Mixed-Euclidean metrics, which encompass many noted metrics with
few parameters.

We identified in the introduction the need to define geometric tools on correlation matri-
ces for intrinsic computation and also to endow covariance matrices with product metrics.
Therefore in Part IV, we define new geometries on the open elliptope of full-rank correlation
matrices. After computing the Riemannian operations of the recently introduced quotient-
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affine metric [David and Gu, 2019] in Chapter 6 and generalizing it to quotient-Lie-Cholesky
metrics, we show that their geometry is quite complex. Since the manifold is diffeomorphic
to Rn(n−1)/2, we argue that there should exist simpler Hadamard or flat metrics on this man-
ifold. Therefore, we define three new geometries satisfying these requirements in Chapter
7 and two flat geometries that are additionally invariant under permutations in Chapter 8.
The geometric operations of the former metrics can be computed in closed form modulo
Cholesky decomposition, as well as the geometric operations of the latter metrics modulo the
computation in logarithmic time complexity of the diffemorphisms towards the Euclidean
spaces.

Beyond Riemannian geometry, we study the Bures-Wasserstein stratified geometry of
covariance matrices in Part V. We complete the work of [Takatsu, 2011] by viewing this
space as the Riemannian orbit space [Alekseevsky et al., 2001] of square matrices quotiented
by the right action of the orthogonal group. After giving complements on the geometry of
each stratum following [Bhatia et al., 2019] and [Massart and Absil, 2020], we characterize
all the minimizing geodesic segments between two covariance matrices of any rank.

We conclude the thesis in Part VI and we identify some perspectives for future works on
correlation matrices, stratification by eigenvalue multiplicity or spaces of matrices of different
sizes.

Part VII is an appendix composed of Chapter 11, which gathers all the proofs of the
results of the thesis. We decided to defer to this chapter almost all the proofs for the sake of
brevity and readability of the other chapters. Only the very short proofs or the ones that we
considered as essential to understand the chapter were kept in their original place. Chapter
11 is self-contained, all the results are recalled before their proofs. For readers interested in
reading the proof immediately, it suffices to click on “Y ” in the sentence “See the proof of
Result X in Section Y.” below the result. Then it suffices to click on the number “X” of the
result to come back to the result within the concerned chapter.

1.4.2 Summary of contributions by chapter

Part II. Mathematical preliminaries
Chapter 2. Regularity of eigenvalues and eigenvectors. On the set of symmetric
matrices with distinct eigenvalues Sym 6=(n), we prove that the function of ordered eigenvalues
val : Sym 6=(n) −→ Diag(n) is smooth and that there exist local smooth maps vec : U ⊂
Sym 6=(n) −→ O(n) satisfying vec(Σ)val(Σ)vec(Σ)> = Σ for all Σ ∈ Sym 6=(n) that cannot be
extended globally to Sym 6=(n) in a continuous way. We show an inequality on Sym(n) that is
weaker than a continuity result but that allows us to prove the continuity of our Riemannian
metrics in Chapter 4.

Chapter 3. Characterization of invariant inner products. We give a general charac-
terization of invariant inner products on a completely reducible Euclidean space. We apply it
to the congruence action on square matrices of the orthogonal group O(n), the permutation
group S(n) and the block-orthogonal group O(I) where I = {k1, ..., kp} is a partition of n,
i.e. ki ∈ {1, ..., n} such that ∑p

i=1 ki = n. We use the characterization of S(n)-invariant inner
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products on the vector space of symmetric hollow matrices Hol(n) in Chapter 8.

Part III. Covariance matrices of full rank: the open cone of sym-
metric positive definite matrices
Chapter 4. O(n)-invariant Riemannian metrics. We characterize the continuous
O(n)-invariant Riemannian metrics on SPD matrices by means of three continuous multi-
variate maps α, β, γ : Rn −→ R. We build a sequence of nested classes between mean kernel
metrics and O(n)-invariant metrics by imposing constraints on these functions and we ex-
tend some results to these super-classes. We also summarize and complete the knowledge on
five noted Riemannian metrics: Euclidean, log-Euclidean, affine-invariant, Bures-Wasserstein
and Bogoliubov-Kubo-Mori.

This chapter was resubmitted in January 2022 to the journal Linear Algebra and its
Applications after minor revisions [Thanwerdas and Pennec, 2022b].

Chapter 5. Geometry of Mixed-Euclidean metrics. We formalize two principles of
construction of Riemannian metrics: the principle of deformed metrics and the principle
of balanced metrics. With the former, we define the new family of deformed-Wasserstein
metrics and we give a sufficient condition under which the power-Wasserstein (or alpha-
Procrustes) metric is a mean kernel metric. With the latter, we define the new family
of Mixed-Euclidean metrics encompassing the Mixed-Power-Euclidean metrics. We unveal
their relation with (u, v)-divergences and (α, β)-divergences in information geometry and we
compute their Riemann curvature.

This chapter was published in the journal Differential Geometry and its Applications in
April 2022 under the title “The geometry of mixed-Euclidean metrics on symmetric positive
definite matrices” [Thanwerdas and Pennec, 2022a].

Part IV. Correlation matrices of full rank: the open elliptope
Chapter 6. Geometry of Quotient-affine metrics. We compute several Riemannian
operations of the quotient-affine metric on full-rank correlation matrices: vertical and hori-
zontal distributions, vertical and horizontal lifts, Riemannian metric, geodesics, Levi-Civita
connection and sectional curvature. We also prove that there exists a Riemannian logarithm.
We give explicit formulae of the geodesics, the logarithm and the distance in dimension 2 and
we compare product metrics on SPD matrices with classical ones. In particular, we show that
the correlation coefficient is interpolated monotonically in contrast with the affine-invariant
and the log-Euclidean metrics.

This chapter was presented and published in the proceedings of the conference Geometric
Science of Information 2021 under the title “Geodesics and Curvature of the Quotient-Affine
Metrics on Full-Rank Correlation Matrices” [Thanwerdas and Pennec, 2021].

Chapter 7. Theoretically and computationally convenient Cholesky-based geome-
tries. We show that the sectional curvature of the quotient-affine metric is of non-constant
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sign and is unbounded from above. We show that the manifold of SPD matrices can be
endowed via the Cholesky map with a Lie group structure under which the affine-invariant
metric is a left-invariant metric. This allows us to generalize the construction of quotient-
affine metrics. However, unsatisfied by these complex geometries, we propose three families
of much more convenient Hadamard metrics on full-rank correlation matrices by pullback via
the Cholesky map.

This chapter was submitted to the SIAM Journal on Matrix Analysis and its Applications
in January 2022 under the title “Theoretically and computationally convenient geometries on
full-rank correlation matrices” [Thanwerdas and Pennec, 2022c].

Chapter 8. Permutation-invariant Log-Euclidean metrics. We define two new fam-
ilies of permutation-invariant log-Euclidean metrics on full-rank correlation matrices called
the off-log metrics and the log-scaled metrics. We define a natural involution called the
cor-inversion and we show that the log-scaled metrics are inverse-consistent. We provide all
the Riemannian operations in closed form modulo the computation of the bijections between
the open elliptope and the vector spaces in consideration. We propose a new algorithm to
compute the scaling of an SPD matrix and thus the log-scaled bijection.

Part V. Stratified spaces of covariance and correlation matrices
Chapter 9. Bures-Wasserstein stratified geometry of covariance matrices. We ex-
plain the global stratified geometry of covariance matrices endowed with the Bures-Wasserstein
distance relying on the theory of Riemannian orbit spaces. We complete the literature on
geodesics in the strata of covariance matrices of fixed rank, specifying the injectivity domain
of the exponential map, the set of preimages, the set of logarithms and giving explicit ex-
pressions based on the expression of the horizontal lift. We contribute the expression of all
minimizing geodesics between two covariance matrices of any rank, we give the exact number
of geodesics and we provide the expression of a canonical geodesic between any two covari-
ance matrices.

Part VI. Conclusion
Chapter 10. Conclusion and perspectives. We conclude the thesis and we propose
some perspectives for future works.

Part VII. Appendix
Chapter 11. Proofs. For readability, we decided to defer to this chapter almost all the
proofs that were not essential to the comprehension of the chapters, that is most of them.
After each result, a sentence “See the proof of Result X in Section Y.” invites the reader to
click on “Y ” to see the proof. The result is restated there with the complete proof. It suffices
to click on “X” there to go back to the result in the chapter.



36

Part II

Mathematical preliminaries
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Chapter 2

Regularity of eigenvalues and eigenvectors

Abstract
Some functions on symmetric matrices are defined via an eigenvalue decomposition. In this context,
it is important to know the regularity of eigenvalues and eigenvectors to infer the regularity of
such functions. In this work, we recall and show several results on this topic with an elementary
approach. We show that there is no global continuous map of eigenvectors on the subspace of
symmetric matrices with distinct eigenvalues. However, we show that there exist a global smooth
map of eigenvalues and local smooth maps of eigenvectors on this subspace. We explain how it
completes the literature. We also show an inequality on the whole space of symmetric matrices
involving their eigenvector matrices, chosen to satisfy a condition of proximity. This inequality
allows us to prove the continuity of a map defined via an eigenvalue decomposition, which seems to
be new.

Following our policy on when to keep or to defer proofs, we kept the majority of the proofs
within this chapter because they help understand the results.

2.1 Introduction
In the context of differential geometry on subspaces of symmetric matrices such as Symmetric
Positive Definite (SPD) matrices or correlation matrices, one may want to define objects that
depend on the eigenvalues or the eigenvectors of a symmetric matrix. For example, let F be a
generic space, e.g. a topological space or a smooth manifold, and let f : O(n)×Diag(n) −→ F
be a function with some regularity, e.g. continuous or smooth. We assume that f is invariant
under the choice of an eigenvalue decomposition: for all P,Q ∈ O(n), for all D,∆ ∈ Diag(n),
if PDP> = Q∆Q>, then f(P,D) = f(Q,∆). We say that f is a spectral map. Therefore,
one can define the quotient map f̃ : Σ = PDP> ∈ Sym(n) 7−→ f(P,D) ∈ F . To study the
regularity of f̃ in function of the regularity of f , it seems useful to study the regularity of
eigenvalues and eigenvectors.

However, eigenvalues and eigenvectors are a priori multi-valued functions. Indeed, al-
though symmetric matrices are diagonalizable in an orthonormal basis and their eigenvalues
are real which are very nice properties, one symmetric matrix has several vectors of eigen-
values (up to permutation) and several bases of eigenvectors (up to symmetry and rotation
in the eigenspaces). Thus it is worth formalizing eigenvalues and eigenvectors in terms of
functions before studying their regularity.
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The eigenvalues of symmetric matrices are real so it suffices to order them to neu-
tralize the degree of freedom, that is the permutation. Therefore, we can define the map
val : Sym(n) −→ Diag(n) which associates the diagonal matrix of non-decreasingly ordered
eigenvalues to any symmetric matrix. It is well known that this map is 1-Lipschitz [Bhatia,
1997, Theorem III.4.4, Equation IV.62], in particular it is continuous.

Now we can call “map of eigenvectors” any map vec : U ⊆ Sym(n) −→ O(n) satisfying
vec(Σ)val(Σ)vec(Σ)> = Σ for all Σ ∈ U , where U is an open subset of symmetric matrices.
By analogy with eigenvalues, one could also neutralize the degree of freedom to define a
map of eigenvectors vec : Sym(n) −→ O(n). However, such a map cannot be continuous
at any Σ ∈ Sym(n) having two equal eigenvalues [Katō, 1995]. Denoting Diag 6=(n) and
Sym 6=(n) = val−1(Diag 6=(n)) the open subsets of diagonal matrices and symmetric matrices
with n distinct eigenvalues, we show in this work that there is no continuous map of eigenvec-
tors on Sym 6=(n) either. Nevertheless, we show that for all Σ ∈ Sym 6=(n), there exists an open
neighborhood U ⊂ Sym 6=(n) of Σ and a continuous map of eigenvectors vec : U −→ O(n)
which is even smooth. In other words, we show that there exist local smooth maps of eigen-
vectors on Sym 6=(n). This also allows us to show that the global map of increasingly ordered
eigenvalues is smooth on Sym 6=(n).

Going back to our initial problem with the spectral map f : O(n)×Diag(n) −→ F and the
quotient map f̃ : Σ = PDP> ∈ Sym(n) 7−→ f(P,D) ∈ F , the above results show that if f is
smooth, then f̃ is smooth on Sym 6=(n). Stating properties on the whole vector space Sym(n)
seems much more difficult. We propose the beginning of an answer by showing a result on
eigenvectors of any pair of symmetric matrices, including those with repeated eigenvalues.
Given two symmetric matrices Σ,Λ ∈ Sym(n), given a matrix of eigenvectors Q ∈ O(n) of Λ,
the result essentially explains how to choose the matrix of eigenvectors P ∈ O(n) of Σ that
is the closest to Q. For example, if Σ = In, the closest-to-Q matrix of eigenvalues P ∈ O(n)
of Σ is clearly P = Q. These matrices P and Q satisfy an inequality that is useful to study
the regularity of f̃ on Sym(n). In particular, we show that if f is continuous, then f̃ is
continuous.

These results are close to already known results. In perturbation theory [Katō, 1995,
Chapter II], these results are often formulated in function of a real parameter t ∈ R which
captures the perturbation of the matrix Σ ∈ Sym(n) into Σ(t) = Σ + tX ∈ Sym(n). For
example in [Katō, 1995, Theorem II.6.8] and in [Serre, 2010, Section 6.2, Comment 3], it is
stated that if a curve on symmetric matrices t ∈ I 7−→ Σ(t) ∈ Sym(n) is of class Ck, then
there exists a map of (non necessarily ordered) eigenvalues (λ1, ..., λn) : I −→ Rn of class
Ck. It is also stated that this does not generalize to two parameters or to eigenvectors. This
is probably why we did not manage to use this kind of results to prove the continuity of f̃ .
Here in contrast, we prove regularity results depending directly on the matrix Σ (not on a
real parameter), using differential calculus.

Besides perturbation theory, the book of Denis Serre [Serre, 2010] summarizes some results
on eigenvalues and eigenvectors of complex/real matrices in general and more specifically of
Hermitian/symmetric matrices. In [Serre, 2010, Theorem 5.3], it is stated that given a matrix
M0 with complex coefficients, given an algebraically simple eigenvalue λ0 ∈ C of M0, there
exist a neighborhood U of M0 and analytic functions λ : U −→ C and x : U −→ Cn such
that λ(M) is an eigenvalue of M , x(M) is an eigenvector of M associated to λ(M), and
λ(M0) = λ0. When M0 ∈ Sym 6=(n), all eigenvalues are algebraically simple so we prove in
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this specific case that the map λ can even be defined globally. Another difference is that
we don’t use the implicit function theorem to define the map x. On the contrary, we give
a semi-constructive approach in the sense that once chosen an x0 = x(M0), we explain how
to build the neighborhood U and how to make a consistent choice of sign for the eigenvector
x(M) so that x : U −→ Cn is smooth.

Thus, our main contribution is probably the inequality we mentioned on the whole space
Sym(n) allowing to show the continuity of f̃ . The other results bring complements to known
results with an elementary point of view. In the remainder of this section, we introduce
some notations. In Section 2.2, we prove that there is no continuous map of eigenvectors
vec : Sym 6=(n) −→ O(n). In Section 2.3, we prove that there exist local Lipschitz maps
of eigenvectors on Sym 6=(n). In Section 2.4, we prove that the map of ordered eigenvalues
on Sym 6=(n) and the local maps of eigenvectors are not only Lipschitz but also smooth. In
Section 2.5, we prove that f̃ is continuous if f is continuous. We conclude in Section 2.6.

Notations and preliminary notions We denote R+ (resp. R∗) the set of positive (resp.
non null) real numbers. We denote Mat(n) the vector space of real square matrices of size n,
Sym(n) the vector subspace or real symmetric matrices, Diag(n) the vector subspace of real
diagonal matrices. We denote Diag : Mat(n) −→ Diag(n) the linear operator pinching the
diagonal of a matrix. The Frobenius norm is denoted ‖ · ‖ on Mat(n) and on subspaces. We
denote O(n) the orthogonal group.

Definition 2.1 (Spectral map, quotient map) Let F be a set. We say that f : O(n) ×
Diag(n) −→ F is a spectral map if for all P,Q ∈ O(n), for all D,∆ ∈ Diag(n), if PDP> =
Q∆Q>, then f(P,D) = f(Q,∆). This automatically defines the quotient map f̃ : Sym(n) −→
F .

We denote Diag 6=(n) the subset of diagonal matrices with n distinct eigenvalues, Diag<(n)
the subset of diagonal matrices with n distinct eigenvalues ordered increasingly, Diag6(n)
the subset of diagonal matrices with non-decreasingly ordered eigenvalues, and Diag=(n) =
(Diag 6=(n))c the subset of diagonal matrices with repeated eigenvalues. In other words, if
D ∈ Diag=(n), then there exist i 6= j ∈ {1, ..., n} such that di = dj. Note that Diag 6=(n)
and Diag<(n) are open in Diag(n) since they are the respective preimages of the open sets
(R∗)n−1 and (R+)n−1 by the continuous map D ∈ Diag(n) 7−→ (d2−d1, ..., dn−dn−1) ∈ Rn−1.

We denote analogously Sym 6=(n) the subset of symmetric matrices with n distinct eigen-
values, Sym=(n) = (Sym 6=(n))c the subset of symmetric matrices with repeated eigenvalues.

We introduce the map val : Sym(n) −→ Diag6(n) associating to a matrix Σ ∈ Sym(n)
the diagonal matrix D = val(Σ) = Diag(d1, ..., dn) of its (real) eigenvalues (with multiplicity)
ordered non-decreasingly, i.e. d1 6 ... 6 dn. We recall that val is a 1-Lipschitz map.

Theorem 2.2 (val is 1-Lipschitz) [Bhatia, 1997, Theorem III.4.4, Equation IV.62] For all
Σ,Λ ∈ Sym(n), ‖val(Σ) − val(Λ)‖ 6 ‖Σ − Λ‖. In other words, the map val : Sym(n) −→
Diag6(n) is 1-Lipschitz.

In particular, val is continuous so the set of symmetric matrices with n distinct eigenvalues
Sym 6=(n) = val−1(Diag<(n)) = val−1(Diag 6=(n)) is open in Sym(n).
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For Σ ∈ Sym(n), we denote sp(Σ) the set of (real) eigenvalues of Σ.

Definition 2.3 (Partition of n) A partition of n is a vector I = (k1, ..., kp) ∈ {1, ..., n}p such
that k1 + · · · + kp = n, for some p ∈ {1, ..., n}. We say that I = (k1, ..., kp) is finer than
(or is a subdivision of) J = (l1, ..., lq) and we denote I < J when there exists a partition of
p denoted (m1, ...,mq) such that li = km1+···+mi−1+1 + · · · + km1+···+mi for all i ∈ {1, ..., q},
denoting m0 = 0. It is a partial order on the set of partitions of n. The finest partition of n
is (1, ..., 1) ∈ Rn and the coarsest is (n).

Note that our notion of partition of n slightly differs from the ones in [Groisser et al.,
2017] because our diagonal matrices are ordered while they also want to handle matrices such
as Diag(0, 1, 0).

Definition 2.4 (Signature) The signature of a symmetric matrix Σ ∈ Sym(n) is the vector
of multiplicities of the ordered eigenvalues in val(Σ) ∈ Diag6(n). It is a partition of n.
Signatures inherit the order of partitions of n.

Definition 2.5 (Maximal radius to coarser signature) The maximal radius to coarser sig-
nature is the map defined by ρ : Σ ∈ Sym(n) 7−→ 1√

2 minλ 6=µ∈sp(Σ) |λ − µ| ∈ (0,+∞]. It
is the largest number r such that the symmetric matrices in the open ball of Sym(n) cen-
tered on Σ of radius r have a finer signature than Σ. The closed ball of radius ρ(Σ) con-
tains a symmetric matrix of strictly coarser signature. For all Σ ∈ Sym 6=(n), it means that
d(Σ, Sym=(n)) = ρ(Σ) [Breiding et al., 2018]. Note that ρ(λIn) = +∞.

More precisely, the open ball of center Σ ∈ Sym 6=(n) and radius r > 0:

· is included in Sym 6=(n) if and only if r 6 ρ(Σ),

· is adherent to Sym=(n) without intersecting it if and only if r = ρ(Σ),

· intersects Sym=(n) if and only if r > ρ(Σ).

2.2 No continuous map of eigenvectors on Sym 6=(n)
We start with a lemma that we use several times in the chapter.

Lemma 2.6 Let P,Q ∈ O(n) such that ‖P −Q‖ <
√

2. Then Diag(P>Q) > 0.

Proof. We denote P = [p1 · · · pn] and Q = [q1 · · · qn] with pi, qi ∈ Rn. Since ‖pi − qi‖2 =
‖pi‖2 + ‖qi‖2− 2〈pi|qi〉 = 2− 2〈pi|qi〉 and ‖pi− qi‖ 6 ‖P −Q‖ <

√
2, we have 1− 〈pi|qi〉 < 1

so [P>Q]ii = p>i qi = 〈pi|qi〉 > 0. Hence Diag(P>Q) ∈ Diag+(n).

Theorem 2.7 (No continuous map of eigenvectors on Sym 6=(n)) Let n > 2. There exists no
continuous map vec : Sym 6=(n) −→ O(n) such that for all Σ ∈ Sym 6=(n), vec(Σ)val(Σ)vec(Σ)> =
Σ.
See the proof of Theorem 2.7 in Section 11.1.
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This forces to define maps of eigenvectors only locally around symmetric matrices with n
distinct eigenvalues. We use the distance from Σ ∈ Sym 6=(n) to Sym=(n) to define appropri-
ate neighborhoods around symmetric matrices with n distinct eigenvalues and local Lipschitz
maps of eigenvectors in Sym 6=(n).

2.3 Local Lipschitz maps of eigenvectors in Sym 6=(n)
Given Σ ∈ Sym 6=(n), we would like to define a Lipschitz map of eigenvectors vec : U ⊂
Sym 6=(n) −→ O(n) on a neighborhood U around Σ. In particular, for all Λ ∈ U , we would
like to have an equality of the form ‖vec(Σ) − vec(Λ)‖ 6 cU‖Σ − Λ‖. First, we find a
majoration of this type. Second, we show how it helps define a map of eigenvectors around
Σ.

2.3.1 Majoration of the distance between eigenvector matrices in
Sym 6=(n)

Theorem 2.8 (Majoration of the distance between eigenvector matrices in Sym 6=(n)) For
all Σ ∈ Sym 6=(n), for all Λ ∈ Sym(n), for all matrices of eigenvectors P,Q ∈ O(n) such that
Σ = P val(Σ)P> and Λ = Qval(Λ)Q>, if the matrix U = P>Q has non-negative diagonal
entries, then ‖P −Q‖ 6 2

ρ(Σ)‖Σ− Λ‖.

Corollary 2.9 (Existence of eigenvector matrices satisfying the majoration in Sym 6=(n))
Given Σ ∈ Sym+(n), Λ ∈ Sym(n) and P ∈ O(n) (resp. Q ∈ O(n)) satisfying Σ = P val(Σ)P>
(resp. Λ = Qval(Λ)Q>), there exists Q = QΛ,P ∈ O(n) (resp. P = PΣ,Q ∈ O(n)) such that
Λ = Qval(Λ)Q> (resp. Σ = P val(Σ)P>) and ‖P −Q‖ 6 2

ρ(Σ)‖Σ− Λ‖.

Proof of Corollary 2.9. Given Σ,Λ and P = [p1 · · · pn], take Q = [q1 · · · qn] ∈ O(n) such that
Λ = Qval(Λ)Q> and change the signs of the qi’s such that for all i ∈ {1, ..., n}, p>i qi > 0. If
Q is given instead, choose the signs of pi’s the same way.

Proof of Theorem 2.8. We denote D = val(Σ) and ∆ = val(Λ). On the one hand, using
Theorem 2.2 at line (2.1) and triangular inequality at line (2.2):

2‖Σ− Λ‖ > ‖Σ− Λ‖+ ‖D −∆‖ = ‖PDP> −Q∆Q>‖+ ‖Q(D −∆)Q>‖ (2.1)
> ‖PDP> −QDQ>‖ = ‖P>(PDP> −QDQ>)Q‖ = ‖DU − UD‖. (2.2)

Hence:

4‖Σ− Λ‖2 > ‖DU − UD‖2 =
∑
i,j

[DU − UD]2ij =
∑
i,j

(di − dj)2U2
ij (2.3)

=
∑
i 6=j

(di − dj)2U2
ij (2.4)

> 2ρ(Σ)2∑
i 6=j

U2
ij = 2ρ(Σ)2

Ç∑
i,j

U2
ij −

∑
i

U2
ii

å
= 2ρ(Σ)2 tr(In −Diag(U)2). (2.5)



42 Part II. Mathematical preliminaries

On the other hand:

‖P −Q‖2 = ‖P>(P −Q)‖2 = ‖In − U‖2 = 2tr(In − U) (2.6)

Since U ∈ O(n), each column of U is of norm 1 so all entries belong to [−1, 1]. The hypothesis
ensures that for all i ∈ {1, ..., n}, Uii > 0 so Uii ∈ [0, 1]. Hence U2

ii 6 Uii so tr(Diag(U)2) =∑
i U

2
ii 6

∑
i Uii = tr(U). Finally:

4
ρ(Σ)2‖Σ− Λ‖2 > 2tr(In −Diag(U)2) > 2tr(In − U) = ‖P −Q‖2, (2.7)

so ‖P −Q‖ 6 2
ρ(Σ)‖Σ− Λ‖.

Remark 2.10 Note that these results are valid for Λ ∈ Sym(n), not only for Λ ∈ Sym 6=(n).

2.3.2 Existence of local Lipschitz maps of eigenvectors in Sym 6=(n)
Theorem 2.11 (Existence of local Lipschitz maps of eigenvectors in Sym 6=(n)) For all
Σ ∈ Sym 6=(n), there exists an open ball U = B(Σ, ρ(Σ)

2
√

2 ) ⊂ Sym 6=(n) around Σ on which
there exists a Lipschitz map of eigenvectors vec = vecU : U −→ O(n), i.e. for all Λ ∈ U ,
vec(Λ)val(Λ)vec(Λ)> = Λ. In other words, there exists a constant cU ∈ R+ such that for all
Λ,Λ′ ∈ U , ‖vec(Λ)− vec(Λ′)‖ 6 cU‖Λ− Λ′‖.

Proof. Let Σ ∈ Sym 6=(n). Let U be the open ball centered on Σ of radius ε = ρ(Σ)
2
√

2 . Since
ε 6 ρ(Σ), U ⊂ Sym 6= by Definition 2.5. We choose P = [p1 · · · pn] ∈ O(n) such that
Σ = P val(Σ)P>. There are 2n such matrices because each pi can be multiplied by −1: for
example, we can choose the one for which on each column, the first non null coefficient is
positive.

Let Λ ∈ U . Among the 2n matrices Q = [q1 · · · qn] ∈ O(n) such that Λ = Qval(Λ)Q>,
there is only one such that Diag(P>Q) > 0. Indeed by Corollary 2.9, such a matrix Q exists
and by Theorem 2.8, it satisfies ‖P−Q‖ 6 2

ρ(Σ)‖Σ−Λ‖ < 2
ρ(Σ)ε = 1√

2 <
√

2 so by Lemma 2.6,
Diag(P>Q) > 0. In other words, p>i qi cannot be null (because Λ ∈ U) so the signs of qi’s are
imposed by P . Thus we can define the map of eigenvectors vec = vecU : Λ ∈ U 7−→ Q ∈ O(n)
where Q is the unique orthogonal matrix such that Λ = Qval(Λ)Q>and Diag(P>Q) > 0.

Let us show that vec is Lipschitz. Let Λ,Λ′ ∈ U and Q = vec(Λ), Q′ = vec(Λ′) ∈ O(n).
By triangular inequality and by Theorem 2.8 applied to (Σ,Λ, P,Q) and (Σ,Λ′, P,Q′), we
have:

‖Q−Q′‖ 6 ‖P −Q‖+ ‖P −Q′‖ 6 2
ρ(Σ)(‖Σ− Λ‖+ ‖Σ− Λ′‖) < 4ε

ρ(Σ) =
√

2. (2.8)

Hence, by Lemma 2.6, for all i ∈ {1, ..., n}, 〈qi|q′i〉 > 0. Therefore, by Theorem 2.8 applied to
(Λ,Λ′, Q,Q′), we have ‖Q−Q′‖ 6 2

ρ(Λ)‖Λ−Λ′‖. Finally, infΛ∈U ρ(Λ) = infΛ∈U d(Λ, Sym=(n)) =
ρ(Σ)−ε = 2

√
2−1

2
√

2 ρ(Σ) > 0 so we can define cU = supΛ∈U
2

ρ(Λ) = 4
√

2
2
√

2−1
1

ρ(Σ) < +∞ and conclude
that the map vec : U −→ O(n) is cU -Lipschitz. Note that cU > 2

ρ(Σ) tends to +∞ when Σ
tends to a matrix in Sym=(n) since ρ(Σ) tends to 0.
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2.4 Smoothness of eigenvalues and local eigenvectors
on Sym 6=(n)

In this section, we prove the smoothness of the map of eigenvalues on symmetric matrices
with distinct eigenvalues, val|Sym 6=(n) : Sym 6=(n) −→ Diag<(n), and the smoothness of the
local maps of eigenvectors vec : U = B(Σ, ρ(Σ)

2
√

2 ) ⊂ Sym 6=(n) −→ O(n).

Theorem 2.12 (Smoothness of the map val on Sym 6=(n) and smoothness of the maps
vec) The maps val|Sym 6=(n) : Sym 6=(n) −→ Diag<(n) and vec : U = B(Σ, ρ(Σ)

2
√

2 ) −→ O(n)
are smooth. Their differentials at Σ ∈ U ⊂ Sym 6=(n) are for all X ∈ Sym(n), denoting
D = val(Σ) = diag(d1, ..., dn) and P = vec(Σ):

dΣval(X) = Diag(P>XP ), (2.9)
dΣvec(X) = PA, (2.10)

where A ∈ Skew(n) is defined by Aij = [P>XP ]ij
dj−di for all i 6= j (and Aii = 0).

Proof. Let us show that if val|Sym 6=(n) and vec are differentiable, then necessarily their differen-
tials satisfy Equations (2.9) and (2.10). We differentiate the equality Σ = vec(Σ) val(Σ) vec(Σ)>
in the direction X ∈ Sym(n), denoting Ṗ = dΣvec(X) ∈ TPO(n) = P Skew(n) and Ḋ =
dΣval(X) ∈ TDDiag(n) = Diag(n):

X = ṖDP> + PDṖ> + PḊP>, (2.11)
P>XP = P>ṖD +DṖ>P + Ḋ. (2.12)

We denote A = P>Ṗ ∈ Skew(n). Then P>XP = AD −DA + Ḋ so Ḋ is the diagonal part
of P>XP and AD −DA = [Aij(dj − di)]16i,j6n is the off-diagonal part, as expected.

Let us show that val|Sym 6=(n) and vec are differentiable. Let Σ ∈ U and X ∈ Sym(n). Now
we denote Ḋ = Diag(P>XP ) and Ṗ = PA with A ∈ Skew(n) defined by Aij = [P>XP ]ij

dj−di for
all i 6= j. Let us show that:

val(Σ + tX) = D + tḊ + o(t), (2.13)
vec(Σ + tX) = P + tṖ + o(t). (2.14)

Since it is difficult to see what are val(Σ+ tX) and vec(Σ+ tX), let us define a smooth curve
Σ(t) ∈ U for t sufficiently small such that val(Σ(t)) and vec(Σ(t)) are easier to determine and
such that Σ(0) = Σ and Σ̇ = X so that Σ(t) = Σ+ tX+o(t). Since val and vec are Lipschitz
on U , we will have val(Σ(t)) = val(Σ + tX) + o(t) and vec(Σ(t)) = vec(Σ + tX) + o(t). To
do so, it suffices to define Σ(t) = P (t)D(t)P (t)> with P (0) = P , D(0) = D, Ṗ (0) = Ṗ = PA
and Ḋ(0) = Ḋ. For example, let P (t) = P exp(tA) and D(t) = D + tḊ. For t sufficiently
small, D(t) ∈ Diag<(n) since Diag<(n) is open so D(t) = val(Σ(t)). For t sufficiently small,
P>P (t) = exp(tA) has positive diagonal since exp(tA) = In + o(1), so P (t) = vec(Σ(t)).
Hence:

val(Σ + tX) = val(Σ(t)) + o(t) = D(t) + o(t) = D + tḊ + o(t), (2.15)
vec(Σ + tX) = vec(Σ(t)) + o(t) = P (t) + o(t) = P + tṖ + o(t) (2.16)
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So val and vec are differentiable on U .
Let us assume that val and vec are differentiable k times on U . We denote L(E,F )

the vector space of linear maps from the vector space E to the vector space F . Then for
all i 6= j, the map Aij : Σ ∈ U 7−→

Ä
X ∈ Sym(n) 7−→ [vec(Σ)>Xvec(Σ)]ij

[val(Σ)]jj−[val(Σ)]ii

ä
∈ L(Sym(n),R)

is differentiable k times so A : U −→ L(Sym(n), Skew(n)) is differentiable k times. Since
dΣval(X) = Diag(vec(Σ)>Xvec(Σ)) and dΣvec(X) = vec(Σ)A(Σ, X), the maps d val : U −→
L(Sym(n),Diag(n)) and d vec : U −→ L(Sym(n),Mat(n)) are differentiable k times, so val
and vec are differentiable k+1 times. Since val and vec are differentiable on U , by recurrence
they are smooth on U . Since val|Sym 6=(n) is locally smooth, it is globally smooth.

We have the following immediate corollary.

Corollary 2.13 (Smoothness of a spectral map) Let M be a smooth manifold, let f :
O(n) × Diag(n) −→ M be a smooth spectral map and let f̃ : Sym(n) −→ M be the
associated quotient map. Then f̃|Sym6=(n) is smooth.

Proof. It suffices to write f̃|U = f ◦ (vecU , val|U).

Note that Corollary 2.13 could already be deduced from [Serre, 2010, Theorem 5.3]. The
notable results up to now are the existence of a global smooth map of eigenvalues on Sym 6=(n)
and the fact that the choice of the neighborhood and the definition of the smooth map of
eigenvectors rely on the assumption Diag(vec(Σ)>vec(Λ)) > 0. In the next section, we
generalize Theorem 2.8 to symmetric matrices with repeated eigenvalues, that is we give an
analogous inequality with a more general condition.

2.5 Majoration of the distance between eigenvector ma-
trices in Sym(n)

Back to our initial problem, when one wants to prove regularity properties on objects defined
via eigenvalue decomposition, it is important to know how to choose the decomposition. The
answer is now rather clear on Sym 6=(n). However, the regularity on the whole vector space
Sym(n) is more difficult to handle than on the open set Sym 6=(n). Although there is no local
continuous map of eigenvectors around Σ ∈ Sym=(n), given a symmetric matrix Λ close to
Σ, there is a way of choosing matrices of eigenvectors P,Q that are the closest possible. We
explain this choice in the following result. It allows us to give the beginning of an answer
to our initial problem. Indeed, we further prove that if the spectral map is continuous, then
the corresponding function defined on symmetric matrices is continuous on Sym(n).

Theorem 2.14 (Majoration of the distance between eigenvector matrices in Sym(n)) Let
Σ,Λ ∈ Sym(n), let P,Q ∈ O(n) such that Σ = P val(Σ)P> and Λ = Qval(Λ)Q>. We
denote p = card(sp(Σ)), λ1 < ... < λp the eigenvalues of Σ without multiplicity and n1, ..., np
their respective multiplicity, with n1 + ... + np = n. Let U = P>Q ∈ O(n) and let U1 ∈
Mat(n1), ..., Up ∈ Mat(np) the diagonal blocks of U . If the Ui’s are symmetric positive semi-
definite matrices, then ‖P −Q‖ 6 2

ρ(Σ)‖Σ− Λ‖.
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This condition generalizes Diag(P>Q) > 0. The following corollary ensures that given Q,
there exists P satisfying this condition.

Corollary 2.15 (Existence of eigenvector matrices satisfying the majoration in Sym(n))
Given such Σ,Λ ∈ Sym(n) and Q ∈ O(n) such that Λ = Qvec(Λ)Q>, there exists P =
PΣ,Q ∈ O(n) such that Σ = P val(Σ)P> and ‖P −Q‖ 6 2

ρ(Σ)‖Σ− Λ‖.

The proofs consist in replacing Diag(U) = diag(U11, ..., Unn) in the proof of Theorem 2.8
by the block-diagonal matrix W = Diag(U1, ..., Up) pinched from U .

Proof of Corollary 2.15. Given Σ,Λ, Q, take P such that Σ = P val(Σ)P>. Let S ∈ Sym+(n)
and R ∈ O(n) be block diagonal matrices of same signature as W such that W> = SR>.
Hence Rval(Σ)R> = val(Σ) so P can be replaced by PR. Since R>W = S, the diagonal
blocks of the new U ′ := (PR)>Q = R>U are the diagonal blocks of R>W . Hence PR satisfies
the hypothesis of Theorem 2.14.

Remark 2.16 Beware that it is not true that given Σ,Λ ∈ Sym(n) and P ∈ O(n) such
that Σ = P val(Σ)P>, there always exists an appropriate Q. This is because the symmetry
between Σ and Λ is broken by the (arbitrary) choice of ρ(Σ) rather than ρ(Λ). Therefore,
the condition on P>Q relies on the signature (n1, ..., np) of Σ (see proof of Theorem 2.14).
Since the signature of Λ can be completely different, once any eigenvector matrices P and Q
of Σ and Λ are respectively chosen, we can only modify P in general so that P>Q satisfies
the condition of positivity (see proof of Corollary 2.15).

A counter-example of the existence of Q = QΛ,P is Σ = 0 (hence ρ(Σ) = +∞), Λ =

diag(t,−t) with t 6= 0 and P =
Å

cos θ ± sin θ
sin θ ∓ cos θ

ã
with θ ∈ R\π2Z.

However, if the signature of Σ is finer than the signature of Λ, then Q can be adapted
so that P>Q satisfies the condition. Hence in this case, it is true that given Σ,Λ, P , there
exists an appropriate Q. This was the case in Theorem 2.8 because Σ ∈ Sym 6=(n), i.e. the
signature of Σ was (1, ..., 1) which is the finest signature. This allows to explain Remark 2.10.

Proof of Theorem 2.14. Lines (2.1) to (2.3) of the previous proof are still valid. Hence:

4‖Σ− Λ‖2 >
∑

i,j|di 6=dj

(di − dj)2U2
ij (2.17)

> 2ρ(Σ)2 ∑
i,j|di 6=dj

U2
ij = 2ρ(Σ)2

(∑
i,j

U2
ij −

∑
λ∈sp(Σ)

∑
i,j|di=dj=λ

U2
ij

)
(2.18)

= 2ρ(Σ)2 tr
Ç
UU> −

p∑
k=1

UkU
>
k

å
= 2ρ(Σ)2 tr(In −WW>). (2.19)

Moreover, line (2.6) is still valid so ‖P −Q‖2 = 2tr(In − U) = 2tr(In −W ).
The equality UU> = In ensures that for all k ∈ {1, ..., p}, 0 6 UkU

>
k 6 Ink for the Loewner

order. Indeed, for k = 1 for example, if we write U =
Å
U1 A
B C

ã
with A,B,C of appropriate

sizes, then In = UU> =
Å
U1U

>
1 + AA> ∗
∗ ∗

ã
so U1U

>
1 + AA> = In1 . Hence U1U

>
1 > 0
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and In1 − U1U
>
1 > 0 as claimed. Otherwise said, 0 6 WW> 6 In, i.e. the eigenvalues of

WW> are in [0, 1]. Hence WW> 6
√
WW>. The hypothesis ensures that W is symmetric

positive semi-definite so W =
√
WW>. Finally, tr(W ) = tr(

√
WW>) > tr(WW>) so

4
ρ(Σ)2‖Σ− Λ‖2 > 2tr(In −WW>) > 2tr(In −W ) = ‖P −Q‖2 as expected.

Remark 2.17 Theorem 2.14 is not a continuity result. Let Q(t) be a curve on O(n) for
t ∈ (0, 1] and D(t) be a curve on Diag(n) for t ∈ [0, 1] with D = D(0) ∈ Diag=(n). Assume
that Λ(t) = Q(t)D(t)Q(t)> converges to Σ ∈ Sym=(n) when t tends to 0. The result does
not mean that Q(t) converges. It only states that for all t ∈ (0, 1], one can find P ∈ O(n)
such that Σ = PDP> and ‖P − Q(t)‖ 6 2

ρ(Σ)‖Σ − Λ(t)‖. So the choice of P depends on
t! Thus, this does not contradict the fact that eigenvectors are not continuous at symmetric
matrices with repeated eigenvalues Σ ∈ Sym=(n).

Theorem 2.18 (Continuity of a spectral function) Let F be a topological space, let f :
O(n) × Diag(n) −→ F be a continuous spectral map and let f̃ : Sym(n) −→ F be the
associated quotient map. Then f̃ is continuous.

Proof. Let Σ ∈ Sym(n) and let ε > 0. By Heine’s theorem, f is uniformly continuous on
O(n) × B(val(Σ), 1) where B is a closed ball in Diag(n). Hence, let δ > 0 such that if
‖(P,D)− (Q,∆)‖ =

√
‖P −Q‖2 + ‖D −∆‖2 < δ, then ‖f(P,D)− f(Q,∆)‖ < ε.

Let η = min(1, ρ(Σ)
2 ) δ√

2 . Let Λ ∈ Sym(n) such that ‖Σ − Λ‖ < η. By Corollary 2.15, let
P,Q ∈ O(n) such that Σ = P val(Σ)P>, Λ = Qval(Λ)Q> and ‖P −Q‖ 6 2

ρ(Σ)‖Σ−Λ‖. Then
‖P − Q‖ 6 δ√

2 and ‖val(Σ) − val(Λ)‖ 6 ‖Σ − Λ‖ 6 δ√
2 . Therefore, ‖(P,D) − (Q,∆)‖ =√

‖P −Q‖2 + ‖D −∆‖2 < δ so ‖f(P,D)− f(Q,∆)‖ < ε.
For all Λ ∈ Sym(n), if ‖Σ−Λ‖ < η, then ‖f̃(Σ)− f̃(Λ)‖ < ε so f̃ is continuous at Σ. So

f̃ is continuous.

We said that Theorem 2.14 only gives the beginning of an answer because it would
be interesting to know sufficient conditions on f so that f̃ is of class Ck on Sym(n). We
think that there must be conditions on the limit on the differential of f at points (P,D) ∈
O(n)×Diag=(n).

2.6 Conclusion
We proved that increasingly ordered eigenvalues are smooth on the open subset of symmetric
matrices with distinct eigenvalues Sym 6=(n). We showed that there is no global continuous
map of eigenvectors but there exist local smooth maps of eigenvectors. This allowed to show
that the quotient map of a smooth spectral map is smooth on Sym 6=(n). We also proved
an inequality on the whole vector space of symmetric matrices, allowing to show that the
quotient map of a continuous spectral map is continuous. We will use these results in Chapter
4. A more difficult problem is to find conditions on the smooth spectral map f and on its
successive differentials for the associated spectral map f̃ to be smooth. Such a result would
be very appealing.
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Chapter 3

Characterization of invariant inner products

Abstract
In several situations in differential geometry, one can be interested in determining all inner prod-
ucts on a vector space that are invariant under a given group action. For example, bi-invariant
Riemannian metrics on a Lie group G are characterized by Ad(G)-invariant inner products on the
Lie algebra g. Analogously, G-invariant Riemannian metrics on a homogeneous space M = G/H

are characterized by Ad(H)-invariant inner products on the tangent space THM. In addition, given
a G-equivariant diffeomorphism between a manifoldM and a Euclidean space V , G-invariant log-
Euclidean metrics can be defined on M by pullback of G-invariant inner products on V . There
exists a general procedure based on representation theory to find all invariant inner products on a
completely reducible Euclidean space. It consists in changing the viewpoint from invariant inner
products to equivariant automorphisms. The goal of this work is to diffuse this method to commu-
nities of applied mathematics which use differential geometry. Therefore, in this work, we recall this
general method that we did not find elsewhere, along with an elementary presentation of the basics
of representation theory. Besides, we illustrate the method on several examples that can be useful
in further works, notably on the congruence action of orthogonal matrices, permutation matrices
and block orthogonal matrices on squared matrices.

3.1 Introduction
When one looks for appropriate metrics on a given space representing some data, it is natural
to require them to be invariant under a certain group action. For example, when data
are represented by Symmetric Positive Definite (SPD) matrices, one can use Riemannian
metrics that are invariant under the congruence action of the general linear group (affine-
invariant metrics [Skovgaard, 1984, Pennec et al., 2006, Lenglet et al., 2006, Fletcher and
Joshi, 2007, Moakher, 2005, Batchelor et al., 2005]), the orthogonal group [Thanwerdas and
Pennec, 2022b] (e.g. log-Euclidean [Arsigny et al., 2006], Bures-Wasserstein [Bhatia et al.,
2019, Dryden et al., 2009, Takatsu, 2011, Malagò et al., 2018], Bogoliubov-Kubo-Mori metrics
[Petz and Toth, 1993, Michor et al., 2000]), the group of positive diagonal matrices [David and
Gu, 2019, David, 2019, Thanwerdas and Pennec, 2021], the permutation group. In several
situations, the question of finding all G-invariant Riemannian metrics on a manifold reduces
to finding all H-invariant inner products on a vector space where H is a Lie subgroup of
G. For example, bi-invariant metrics (or pseudo-metrics) on a Lie group G are characterized
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by Ad(G)-invariant inner products (or non-degenerate symmetric bilinear forms) on its Lie
algebra g. On a homogeneous space M = G/H, G-invariant metrics are characterized by
Ad(H)-invariant inner products on the tangent space m = THM at the equivalence class
H ∈ G/H.

Another frequent case is when the manifoldM is diffeomorphic to a vector space V . For
example, the cone of SPD matrices is diffeomorphic to the vector space of symmetric matrices
by the symmetric matrix logarithm log : Sym+(n) −→ Sym(n). Similarly, the elliptope of
full-rank correlation matrices Cor+(n) is diffeomorphic to a vector space of dimension n(n−1)

2 .
Hence, given a G-equivariant diffeomorphism φ : M −→ V between the manifold M and
a vector space V , the G-invariant inner products on V provide natural flat G-invariant
Riemannian metrics on M by pullback. These three examples of bi-invariant metrics on
Lie groups, Riemannian homogeneous manifolds and “Euclideanized” manifolds motivate to
find all G-invariant inner products on a vector space V . Indeed, if one wants to impose
an invariance on a space, this requirement defines a family of metrics in general, rarely a
unique metric. Therefore, there is no reason a priori to distinguish between all the metrics
that satisfy this requirement. Then, it is possible to reduce the choice by requiring other
invariance or constraints, or to optimize within the family in function of the data for example.

To answer this question, the central notion is the reducibility or irreducibility of a vector
space under a group action. We say that V is G-irreducible when there is no other subvector
space than {0} and V that is stable under the action of G. It can easily be proved that
inner products on an irreducible space are positive scalings of one another. Hence, when V
is completely reducible, i.e. V can be expressed into a direct sum of irreducible subspaces,
then any positive linear combination of inner products on each irreducible subspace is an
invariant inner product. For example, if G = {−1, 1} × {−1, 1} acts on V = R2 = R ⊕ R
component by component, then one can easily check that all G-invariant inner products are
given by ϕ((x, y), (x, y)) = αx2 + βy2 with α, β > 0.

However, there are other invariant inner products in general. Take another example where
G = {−1, 1} acts on V = R2 = R ⊕ R globally. It is clear that all the G-invariant inner
products are given by ϕ((x, y), (x, y)) = αx2 + 2γxy + βx2 with α, β > 0 and αβ > γ2. In
the first example, G acts differently on each copy of R: for example (1,−1) · (x, y) = (x,−y).
In the second example, G acts identically on each copy of R, they are indistinguishable with
respect to the action. This is why another coefficient is allowed between the two components.
Therefore, in the irreducible decomposition, one has to group all the irreducible spaces on
which G acts the same way to find all G-invariant inner products. That is what we explain
in Section 3.2 and what is summarized in Theorem 3.4.

In this work, we assume that we know a G-invariant inner product on V and that V is
completely reducible, i.e. there exists an irreducible decomposition of V . This is the case
when G is finite [Artin, 2011, Maschke’s Theorem 10.2.10] and also when the group action
is unitary and continuous [Artin, 2011, Corollary 10.3.5]. In particular, when G is finite
or compact, it is well known that one can find one G-invariant inner product by taking
any inner product and averaging over G with the counting measure or the Haar measure
µ: 〈x|y〉 := 1

|G|
∑
a∈G ax · ay or

∫
G(ax · ay)µ(da). So the two hypotheses are automatically

satisfied when G is finite or when G is compact and the action is continuous. The examples
we give all belong to one of these two situations although the method we give applies more
generally as soon as the two mentioned hypotheses are satisfied together.
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Our method relies on basic representation theory. Indeed, any G-invariant inner product
on V is characterized, via the given inner product 〈·|·〉, by a G-invariant automorphism of
V . Then, representation theory allows to find the general form of this automorphism, hence
the general form of G-invariant inner products on V . Note that this characterization of
invariant inner products is well known in algebra although we could not find it explicitly in
the references we read. Yet, it seems to be much less known in the communities of applied
mathematics which use differential geometry, although it seems quite useful. That is why
we present it with the fewest details on representation theory and why we study thoroughly
some examples.

The general method is exposed in Section 3.2. In the examples, we focus on the actions
of the orthogonal group, the block orthogonal group and the permutation group. In Section
3.3, we apply this method to several examples. In Section 3.3.1 we recall the general form of
invariant inner products on Rn under these three group actions. In Section 3.3.2, we recall
the general form of invariant inner products on square matrices under the congruence action
of the orthogonal group. Then in Section 3.3.3, we characterize invariant inner products on
square matrices under the block orthogonal group. In particular, this allows to characterize
O(n)-invariant metrics on the homogeneous space of flags Flag(I) = O(n)/O(I) where I
is a partition of n, which is new. Finally in Section 3.3.4, we characterize permutation-
invariant inner products on square matrices. We give a natural instantiation of the irreducible
decomposition with coordinate-free orthogonal projections. This allows to define Euclidean
metrics on SPD matrices and correlation matrices. We summarize and conclude in Section
3.4.

3.2 Characterization of invariant inner products of a
Euclidean space using representation theory

A representation of a group G on a vector space V is a group homomorphism ρ : G −→
GL(V ). It is equivalent to a linear group action of G on V , i.e. a map ρ : G× V −→ V such
that for all a, b ∈ G and all x ∈ V , ρ(a, ρ(b, x)) = ρ(ab, x), ρ(e, x) = x (where e is the neutral
element of G) and ρa : x ∈ V 7−→ ρ(a, x) ∈ V is linear.

Let (V, 〈·|·〉) be a Euclidean space (i.e. a real vector space of finite dimension endowed
with an inner product), V 6= {0}. We denote ‖ ·‖ the associated norm. The set O(V ) = {f ∈
GL(V )|∀x ∈ V, ‖f(x)‖ = ‖x‖} is the subgroup of isometries of GL(V ). Let ρ : G −→ O(V )
be a representation of a group G acting isometrically on V .

3.2.1 Preliminaries
3.2.1.1 Vocabulary of representation theory

The following terminology is neither unique in representation theory nor exclusive to this
branch of mathematics. We use the term “module” for simplicity, in reference to “G-module”
which is frequent. (In particular, a “module” here does not designate an abelian group (M,+)
endowed with a monoid action (R, ·) ×M −→ M that is distributive on additions, given a
ring (R,+, ·).)
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Definition 3.1 (Vocabulary of representation theory)
· A (G-)module is a vector space W on which G acts continuously. For instance, the
vector space V introduced above is a G-module. We omit the group G when it is clear
from the context.
· A submodule of W is a G-stable subvector space of W .
· A module homomorphism (resp. endomorphism, isomorphism, automorphism) is a ρ-
equivariant linear map (resp. endormorphism, isomorphism, automorphism) between
modules. Given modules W,W ′, we denote W ' W ′ when there exists a module
isomorphism from W to W ′ and we say that W and W ′ are isomorphic modules.
· A module W is irreducible if it has no other submodules than {0} and W . Otherwise,
it is reducible.
· A module W is completely reducible if it is the direct sum of irreducible modules.

From now on, we assume that V is completely reducible. For example, this is the case
whenG is finite [Artin, 2011, Maschke’s Theorem 10.2.10] or when ρ is unitary and continuous
[Artin, 2011, Corollary 10.3.5].

Note that if W is a submodule of V , then W⊥ (where orthogonality refers to the inner
product 〈·|·〉) is also a submodule of V . Indeed, if x ∈ W⊥ and a ∈ G, then for all y ∈ W ,
ρ(a−1)(y) ∈ W because W is a module so 〈ρ(a)(x)|y〉 = 〈x|ρ(a−1)(y)〉 = 0, so ρ(a)(x) ∈
W⊥. Therefore, we can assume that the decomposition of V into irreducible submodules is
orthogonal.

3.2.1.2 The big picture

We split the method into three steps:

1. Transform the problem of finding all ρ-invariant inner products on V into finding all
ρ-equivariant automorphisms of V .

2. Find all ρ-equivariant automorphisms of V using representation theory.
3. Go back to the initial problem.

Before the general case (V completely reducible), it is natural to start with the particular
case where V is irreducible (Section 3.2.3.1). Then, we explain why the general case does not
reduce to the irreducible case but only to an intermediate case (Section 3.2.3.2). Therefore, we
treat this intermediate case (Section 3.2.3.3) and we conclude with the general case (Section
3.2.3.4). So we do the 1st step globally (Section 3.2.2), then we do the 2nd and 3rd steps for
each case (Section 3.2.3).

3.2.2 Step 1: from invariant inner products to equivariant auto-
morphisms

Let ϕ be an inner product on V . We introduce the musical isomorphisms of ϕ:

· “Flat” [ϕ : x ∈ V 7−→ ϕ(x, ·) ∈ V ∗ which is a linear isomorphism by the Riesz
representation theorem,
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· “Sharp” #ϕ = [−1
ϕ : V ∗ −→ V the inverse linear isomorphism.

We denote [ = [〈·|·〉 and # = #〈·|·〉. Then ϕ is a ρ-invariant inner product on V if and
only if fϕ := # ◦ [ϕ : V −→ V is a ρ-equivariant automorphism of V . We retrieve ϕ from
f := fϕ by ϕ(x, y) = 〈f(x)|y〉 for all x, y ∈ V .

The core of the method is to determine the general form of f .

3.2.3 Steps 2 and 3: find all equivariant automorphisms and all
invariant inner products

3.2.3.1 The particular case: V irreducible

We start with the simplest case where V is irreducible. The key result to characterize all
ρ-equivariant automorphisms of V is Schur’s lemma.

Lemma 3.2 [Artin, 2011, Schur’s Lemma 10.7.6] Let V,W be irreducible modules.

1. A module homomorphism f : V −→ W is either null or a module isomorphism.
2. A module endomorphism f : V −→ V is a scaling, i.e. there exists α ∈ R such that
f = α IdV .

Indeed, the first statement holds because f(V ) is a submodule of W so f(V ) = {0} or W
and ker(f) is a submodule of V so ker(f) = V or {0}. The second statement holds because
if α ∈ C is an eigenvalue of f , then f − α IdV is not a module isomorphism so it is null by
the first statement. Since V is a real vector space and V 6= {0}, α has to be in R.

As a consequence, if V is an irreducible module, then:

· Module automorphisms on V are the non null scalings.
· Module isomorphisms between V and an irreducible moduleW are unique up to scaling.
Indeed, if f, f0 : V −→ W are module isomorphisms, then f−1

0 ◦f : V −→ V is a scaling,
i.e. there exists α ∈ R∗ such that f = αf0.
· The ρ-invariant inner products on V are positive multiples of 〈·|·〉.

3.2.3.2 The general case does not reduce to the previous case

We continue with the case where V is completely reducible. Therefore, let V1, ..., Vm be
irreducible submodules of V such that V = V1

⊥
⊕ · · ·

⊥
⊕ Vm. From the previous case, it is clear

that the map f : x = x1 + · · · + xm ∈ V 7−→ α1x1 + · · · + αmxm ∈ V with α1, ..., αm ∈ R∗
is a module automorphism of V . The question is: are they the only ones? The answer is no
and the following consequence of Schur’s lemma allows to explain precisely why.

Lemma 3.3 (Consequence of Schur’s lemma on the irreducible decomposition) We group
V1, ..., Vm by classes C1, ..., Cp of isomorphic irreducible modules. Each class Ck is of the
form C(W ) = {j ∈ {1, ..., k}|Vj ' W} for W ∈ {V1, ..., Vm}. The decomposition becomes
V = V1 ⊥⊕ · · ·

⊥
⊕ Vp with Vk =

⊥⊕
i∈CkVi. Let f : V −→ V be a module automorphism. Then

f(Vk) = Vk for all k ∈ {1, ..., p}.
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Proof. For i, j ∈ {1, ...,m}, let fij = projVj ◦ f|Vi : Vi −→ Vj. Let k ∈ {1, ..., p} and let
i ∈ {1, ..., n} such that Vi ∈ Ck. By Schur’s lemma, for all j ∈ {1, ..., n}, fij is null or it is an
isomorphism. Since f is an isomorphism, there exists j ∈ {1, ...,m} such that fij is non null,
thus an isomorphism. Hence Vj ∈ Ck so Vj ⊆ Vk. Therefore, f(Vi) = Vj ⊆ Vk. This inclusion
is valid for all Vi ∈ Ck so f(Vk) ⊆ Vk and f(Vk) = Vk by equality of dimensions because f is
bijective.

In other words, the study of ρ-invariant automorphisms of V cannot be reduced to the
Vi’s but only to the Vk’s: there is no reason that f(Vi) = Vi for all i ∈ {1, ...,m} (unless
all classes are singletons). So we need to study the case V = V ' mW with W irreducible,
where mW is a notation for the direct sum of m irreducible modules isomorphic to W .

3.2.3.3 The intermediate case: V ' mW with W irreducible

We assume that V = V1
⊥
⊕ · · ·

⊥
⊕Vm where V1 ' · · · ' Vm are isomorphic irreducible modules.

Let W be an irreducible module isomorphic to them, endowed with a G-invariant inner
product (·|·). Let ψi : Vi −→ W be the unique module isomorphism which is an isometry.
Indeed, the module isomorphism is unique up to scaling and the pullback of the inner product
(·|·) onto Vi is necessarily a scaling of the restriction of 〈·|·〉 to Vi so there is a unique choice
of ψi such that it is an isometry. For example, W can be taken as one of the Vi’s.

Let f be a module automorphism of V . We define the module endomorphisms fij =
ψj ◦ projVj ◦ f ◦ ψ

−1
i : W −→ W . By Schur’s lemma, they are scalings: there exists Sij ∈ R

such that fij = SijIdW . This defines a matrix S = (Sij)16i,j6m ∈ Mat(m). Then, f writes:

f(x) = (IdV ◦ f)(x)

=
Ç

m∑
j=1

projVj

å
◦ f
Ç

m∑
i=1

xi

å
=

m∑
i=1

m∑
j=1

(projVj ◦ f)(xi)

=
m∑
i=1

m∑
j=1

(ψ−1
j ◦ fij ◦ ψi)(xi)

=
m∑
i=1

m∑
j=1

Sij ψ
−1
j ◦ ψi(xi). (3.1)

When f comes from an inner product ϕ as explained in Section 3.2.2, we have for all
x, y ∈ V :

ϕ(x, y) = 〈f(x)|y〉

=
m∑
i=1

m∑
j=1

Sij〈ψ−1
j ◦ ψi(xi)|yj〉

=
m∑
i=1

m∑
j=1

Sij(ψi(xi)|ψj(yj)),
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because the Vi’s are orthogonal and ψj : (Vj, 〈·|·〉) −→ (W, (·|·)) is an isometry. This implies
that S is symmetric and positive definite. Indeed, let w ∈ W\{0}, a ∈ Rm and x =∑k
i=1 aiψ

−1
i (w). Then:

· if a = (1, ..., 1), then ϕ(xi, xj) = Sij‖w‖2 and by symmetry of ϕ, we have ϕ(xi, xj) =
ϕ(xj, xi) = Sji‖w‖2 so Sij = Sji,
· we have ϕ(x, x) = ∑

i,j Sijaiaj‖w‖2 so for all a ∈ Rm\{0}, we have ∑i,j Sijaiaj > 0.

Conversely, if S ∈ Sym+(m), then ϕ(x, y) = 〈f(x)|y〉 defines an inner product. It is
clearly symmetric and if x 6= 0, there exists w ∈ W\{0} and a ∈ Rm\{0} such that
x = ∑k

i=1 aiψ
−1
i (w) so the equality above proves that ϕ(x, x) > 0 (for the existence of w

and a, take i ∈ {1, ..., p} such that xi 6= 0 and define w = ψi(xi) and aj = ψj(xj)
ψi(xi) for

j ∈ {1, ...,m}).
So f is a module isomorphism of V = V1

⊥
⊕· · ·

⊥
⊕Vm if and only if there exists S ∈ Sym+(m)

such that f writes as in Equation (3.1). Now we have all the ingredients to state the global
result.

3.2.3.4 The general case: V completely reducible

Theorem 3.4 (General form of a ρ-invariant inner product on V ) Let V = ⊕p
k=1 Vk, with

Vk = ⊕mk
i=1 V

k
i , be an orthogonal decomposition where V k

1 ' · · · ' V k
mk

are irreducible
modules. For all k ∈ {1, ..., p}, let (W k, (·|·)k) be a Euclidean space and ψki : V k

i −→ W k

be the unique module isomorphism which is an isometry. Then, an inner product ϕ on V is
ρ-invariant if and only if there exist p SPD matrices Sk ∈ Sym+(mk) for k ∈ {1, ..., p} such
that for all x = ∑p

k=1
∑mk
i=1 x

k
i ∈ V and y = ∑p

k=1
∑mk
i=1 y

k
i ∈ V :

ϕ(x, y) =
p∑

k=1

∑
16i,j6mk

Skij(ψki (xki )|ψkj (ykj ))k. (3.2)

The number of parameters is ∑p
k=1

mk(mk+1)
2 and the number of positivity constraints is∑p

k=1mk.

Proof. We assemble the pieces of demonstration of the previous sections together. Let ϕ
be a ρ-invariant inner product on V . Then, the map f = # ◦ [ϕ : V −→ V is a module
automorphism (Section 3.2.2). Hence for all k ∈ {1, ..., p}, f(Vk) = Vk (Section 3.2.3.2).
Therefore, there exists a matrix Sk ∈ Sym+(mk) such that for all xk, yk ∈ Vk, 〈f(xk)|yk〉 =∑mk
i=1

∑mk
j=1 S

k
ij(ψki (xki )|ψkj (ykj ))k (Section 3.2.3.3). Hence, the inner product ϕ writes:

ϕ(x, y) = 〈f(x)|y〉

=
p∑

k=1
〈f(xk)|yk〉

=
p∑

k=1

mk∑
i=1

mk∑
j=1

Skij(ψki (xki )|ψkj (ykj ))k. (3.3)

Conversely, this bilinear form is an inner product since it is the sum of inner products on
the Vk’s (Section 3.2.3.3) which are supplementary. It is ρ-invariant because the orthogonal
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projections are equivariant (because 〈·|·〉 is invariant), the ψi’s are equivariant and the inner
products (·|·)k are invariant. So this bilinear form is a ρ-invariant inner product on V .

Note that the choice of the inner product (·|·)k onW k instead of λ(·|·)k with λ > 0 does not
affect the general form of the inner product: it suffices to replace Sk ∈ Sym+(mk) by λSk ∈
Sym+(mk). Neither does the choice of the isometric parameterization ψki : (V k

i , 〈·|·〉) −→
(W k, (·|·)k) instead of λiψki with λi > 0 for all i ∈ {1, ...,mk}: it suffices to replace Sk ∈
Sym+(mk) by ΛSkΛ ∈ Sym+(mk) where Λ = Diag(λ1, ..., λmk).

3.3 Examples
We recall that this theorem is based on the complete reducibility of V . To be applied on
examples, it means that we have to find explicit irreducible decompositions. This is our main
task in this section. From now on, we apply the previous theorem to several situations. The
groups we focus on are:

· the orthogonal group O(n) = {U ∈ Mat(n)|UU> = In}, which is a compact subgroup
of the real general linear group GL(n),
· the block orthogonal group:

O(I) =


Ö
R1 0

. . .
0 Rp

è
∈ O(n)|∀i ∈ {1, ..., p}, Ri ∈ O(ki)

 ' O(k1)× · · · ×O(kp),

which is a subgroup of O(n) where I = (k1, ..., kp) is a “partition of n”, i.e. such that
k1 + ...+ kp = n with k1, ..., kp ∈ N∗,
· the permutation group S(n), which is a finite subgroup of O(n) denoting either the
set of permutations σ of {1, ..., n} or the set of permutation matrices Pσ defined by
[Pσ]ij = δi,σ(j). (Beware thatS(n) * SO(n), especially transpositions are not in SO(n).)

The Euclidean modules we focus on are:

· Rn with the canonical inner product and the isometric action (R, x) ∈ O(n)× Rn 7−→
Rx ∈ Rn,
· the vector space Mat(n) of n×n squared real matrices endowed with the Frobenius inner
product and the isometric congruence action (R,X) ∈ O(n) ×Mat(n) 7−→ RMR> ∈
Mat(n), which is also the tangent space of the general linear group GL(n),
· the Euclidean submodule Skew(n) = {X ∈ Mat(n)|X> = −X} of skew-symmetric
matrices, which is the tangent space at In of the orthogonal group O(n),
· the Euclidean submodule Sym(n) = {X ∈ Mat(n)|X> = X} of symmetric matri-
ces, which is the tangent space of the manifold of Symmetric Positive Definite (SPD)
matrices Sym+(n) = {X ∈ Sym(n)|X > 0} (where > denotes the strict Löwner order),
· (only for the action of the permutation group) the Euclidean submodule Hol(n) =
{X ∈ Sym(n) |Diag(X) = 0}, which is the tangent space of the manifold of full-rank
correlation matrices Cor+(n) = {Σ ∈ Sym+(n)|Diag(Σ) = In}
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We denote (e1, ..., en) the canonical basis of Rn and Eij = eie
>
j + eje

>
i ∈ Sym(n) which

form a basis of Sym(n) for 1 6 i 6 j 6 n. These examples being trivial for n = 1, we
consider n > 2. We structure each example as follows:
· Find the Direct sum and compute the projections,
· Prove the stability and Irreducibility of the terms in the decomposition,
· Determine classes of Isomorphic modules,
· Write the General form of invariant inner product/quadratic form.
For readibility, some proofs are moved in appendix of the thesis.

3.3.1 Invariant inner products on Rn

In this section, we illustrate the previous theorem on simple examples. The irreducible
orthogonal decompositions of Rn with respect to the action of O(n), S(n) and O(I) are
given in Table 3.1 for I = (k1, ..., kp). The following notations are used:
· 1 ∈ Rn is the vector with all entries equal to one,
· Rn

0 = span(1)⊥ = {x ∈ Rn| sum(x) := ∑n
i=1 xi = x>1 = 0},

· Rki abusively denotes the subspace of Rn where the (k1 + ... + ki−1) first entries and
the (ki+1 + ...+ kp) last entries are null,
· pki : Rn −→ Rki denotes the canonical projection,
· On(ki) ' O(ki) denotes the subgroup of O(I) acting on Rki .

Group Decomposition
O(n) Rn

O(I) ⊕p
i=1 Rki

S(n) Rn
0
⊕ span(1)

Table 3.1: Irreducible orthogonal decompositions of Rn with respect to several groups.

Direct sum The decompositions are clearly direct orthogonal sums. The orthogonal pro-
jections on Rn

0 and span(1) are x ∈ Rn 7−→ x− 〈x|1〉
n
1 ∈ Rn

0 and x ∈ Rn 7−→ 〈x|1〉
n
1 ∈ span(1).

Irreducibility The action of O(n) on Rn is transitive so Rn is stable and irreducible with
respect to the action of O(n). Therefore, Rki is stable and irreducible with respect to On(ki),
thus to O(I).

Regarding the action of S(n), the vector spaces Rn
0 and span(1) are stable and span(1)

is irreducible because of dimension 1. Moreover, let W ⊆ Rn
0 be a submodule such that

W 6= {0}. Let x ∈ W , then there exist i < j such that xi 6= xj. Hence, applying the
permutation σ = (i, j), the vector eij = ei − ej = 1

xi−xj (x − σ · x) ∈ W . Hence with a
permutation τ ∈ S(n) such that τ(i) = k and τ(j) = k + 1, we have ek,k+1 = τ · eij ∈ W for
all k ∈ {1, ..., n− 1}. As (ek,k+1)k∈{1,...,n−1} is a basis of Rn

0 , we have Rn
0 ⊆ W so W = Rn

0 and
Rn

0 is irreducible.
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Isomorphic modules Regarding S(n), the two modules are clearly not isomorphic for
n > 3 because they have different dimensions. For n = 2, R2

0 = span
( 1
−1
)
and the permutation

(1, 2) does not act the same way on
( 1
−1
)
and 1. Indeed, (1, 2)·1 = 1 and (1, 2)·

( 1
−1
)

= −
( 1
−1
)
.

So R2
0 and span(1) are not isomorphic as modules even if they are isomorphic as vector spaces.

Analogously, even if ki = kj with i 6= j, the group O(I) does not act the same way on Rki

and Rkj . Thus, the modules are not isomorphic.

General form Thus, the O(n)-invariant inner products on Rn are positive scalings of the
canonical one. The O(I)-invariant and S(n)-invariant inner products on Rn are respectively
given for all x ∈ Rn by:

ϕ(x, x) =
p∑
i=1

αki‖pki(x)‖2, (3.4)

ϕ(x, x) = α1

∥∥∥∥∥x− 〈x|1〉n 1

∥∥∥∥∥
2

+ α2
〈x|1〉2

n
= α‖x‖2 + β〈x|1〉2, (3.5)

with αk1 , ..., αkp > 0, α1 = α > 0 and α2 = α + nβ > 0.

3.3.2 O(n)-invariant inner products on Mat(n)
In this section, we illustrate the theorem with the congruence action of the orthogonal group
O(n) on squared matrices Mat(n). This example is also well known although we did not find
a reference book containing it. It allows us to prepare the following sections.

3.3.2.1 O(n)-invariant inner products on Sym(n)

The irreducible decomposition of Sym(n) with respect to the congruence action of O(n) (and
SO(n)) is Sym(n) = Sym0(n)

⊥
⊕ span(In) where Sym0(n) = Sym(n) ∩ ker tr.

Direct sum The decomposition is clearly a direct irreducible sum. The orthogonal projec-
tions are X ∈ Sym(n) 7−→ X − tr(X)

n
In ∈ Sym0(n) and X ∈ Sym(n) 7−→ tr(X)

n
In ∈ span(In).

Irreducibility Firstly, Sym0(n) and span(In) are stable and span(In) is irreducible because
of dimension 1. Secondly, letW ⊆ Sym0(n) be a submodule such thatW 6= {0}. Let X ∈ W ,
X 6= 0. Then there exist P ∈ SO(n) and D ∈ Diag(n) ∩ ker tr such that X = PDP> so
D ∈ W\{0}. If n = 2, then d1 6= 0 and E11 − E22 = 2

d1
D ∈ W . By applying the rotationÅ

0 1
−1 0

ã
∈ SO(2), we get E12 ∈ W so Sym0(2) = W and Sym0(2) is irreducible. Let us

prove it for n > 3.
There exist i < j such that di 6= dj because tr(D) = 0 and D 6= 0. It is tempting to apply

the same method as in the example of S(n) acting on Rn to conclude that Diag(n)∩ker tr ⊆
W . However, permutations are not all in SO(n), especially transpositions do not belong
to SO(n). So we need to find another way. We define the matrix R = Rij(θ) ∈ SO(n)
by Rii = Rjj = cos θ, Rij = −Rji = sin θ, Rkk = 1 for k /∈ {i, j} and zero elsewhere.
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With θ = π
4 , the submatrix

Å
di 0
0 dj

ã
is transformed into 1

2

Å
di + dj dj − di
dj − di di + dj

ã
. Hence D1 =

1
dj−di (D − RDR

>) = 1
2(eie>i + eie

>
j + eje

>
i − eje>j ) ∈ W . Since n > 3, we can take a third

index k 6= i, j and act by the diagonal matrix diag(1, ..., 1,−1, 1, ..., 1,−1, 1, ..., 1) ∈ SO(n)
where the −1 are at indexes i and k. We obtain D2 = 1

2(eie>i − eie>j − eje>i − eje>j ). Hence
eie
>
i −eje>j = D1+D2 ∈ W . Then for all k ∈ {1, ..., n−1}, it is easy to find even permutations

sending i on k and j on k+1 so that eke>k −ek+1e
>
k+1 ∈ W and Diag(n)∩ker tr ⊆ W . Moreover,

Eij = D1 −D2 ∈ W so with appropriate even permutations, we can prove that all Ekl with
k 6= l belongs to W . Hence, Sym0(n) ⊆ W and Sym0(n) is irreducible.

Isomorphic modules The two modules are clearly not isomorphic because they have
different dimensions: dim(Sym0(n)) = n(n+1)

2 − 1 > 1 = dim span(In) for n > 2.

General form Thus, the O(n)-invariant (and SO(n)-invariant) inner products on Sym(n)
are given for all X ∈ Sym(n) by:

ϕ(X,X) = α1

∥∥∥∥∥X − tr(X)
n

In

∥∥∥∥∥
2

+ α2
tr(X)2

n
= α tr(X2) + β tr(X)2, (3.6)

with α1 = α and α2 = α + nβ > 0.

3.3.2.2 O(n)-invariant inner products on Mat(n)

The irreducible decomposition of Mat(n) with respect to the congruence action of O(n) is
Mat(n) = Sym0(n)

⊥
⊕ Skew(n)︸ ︷︷ ︸

ker tr

⊥
⊕ span(In).

Direct sum The decomposition is clearly a direct orthogonal sum. The orthogonal pro-
jections are X ∈ Mat(n) 7−→ X+X>

2 − tr(X)
n
In ∈ Sym0(n), X ∈ Mat(n) 7−→ X−X>

2 ∈ Skew(n)
and X ∈ Mat(n) 7−→ tr(X)

n
In ∈ span(In).

Irreducibility Let us prove that Skew(n) is O(n)-irreducible. Indeed, let W 6= {0} be a
submodule of Skew(n) and let M ∈ Skew(n), M 6= 0. Then, M is orthogonally congruent

to B =

á
Bλ1 0

. . .
Bλp

0 0n−2p

ë
∈ Skew(n) where ±iλ1, ...,±iλp ∈ iR∗ (and 0 if n 6= 2p)

are its complex eigenvalues and Bλ =
Å

0 λ
−λ 0

ã
∈ Skew(2). Applying the permutation

σ = (1, 2), we get e1e
>
2 − e2e

>
1 =

Å
B1 0
0 0

ã
= 1

2λ1
(M − PσMP>σ ) ∈ W . With appropriate

permutations, all eie>j − eje>i ∈ W so W = Skew(n) and Skew(n) is O(n)-irreducible.
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Isomorphic modules For n > 3, the modules have different dimensions: dim(Sym0(n)) =
n(n+1)

2 − 1 > dim Skew(n) = n(n−1)
2 > dim span(In) = 1. So they are clearly not isomorphic.

For n = 2, dim(Sym0(2)) = 2 > 1 = dim Skew(2) = dim span(I2), but the permutation (1, 2)
acts differently on e1e

>
2 − e2e

>
1 and I2 so the modules are not isomorphic either.

General form Thus, the O(n)-invariant inner products on Mat(n) are given for all X ∈
Mat(n) by:

ϕ(X,X) = α1

∥∥∥∥∥X +X>

2 − tr(X)
n

In

∥∥∥∥∥
2

+ α2

∥∥∥∥∥X −X>2

∥∥∥∥∥
2

+ α3
tr(X)2

n

= α1tr
Å
X2 + (X>)2 + 2XX>

4 + tr(X)2

n2 In −
tr(X)
n

(X +X>)
ã

+ α2

4 tr(XX> +X>X −X2 − (X>)2) + α3
tr(X)2

n
= α tr(XX>) + β tr(X2) + γ tr(X)2,

with α = α1+α2
2 , β = α1−α2

2 and γ = α3−α1
n

. The inverse relations are α1 = α + β > 0,
α2 = α− β > 0 and α3 = α + β + nγ > 0, as expected.

3.3.3 O(I)-invariant inner products on Mat(n)
In this section, we consider the congruence action of the block orthogonal group O(I) on skew-
symmetric matrices Skew(n), on symmetric matrices Sym(n) and finally on squared matrices
Mat(n). In particular, O(I)-invariant inner products on Skew(n) = TInO(n) characterize
O(n)-invariant Riemannian metrics on the homogeneous space of flags of signature I denoted
Flag(I) = O(n)/O(I). In this context, the signature is sometimes called the nationality of
the flag.

We recall that I = (k1, ..., kp) is a partition of n, i.e. k1, ..., kp ∈ N∗ with k1 + · · ·+kp = n.
We consider the group of block orthogonal matrices of signature I:

O(I) =


Ö
R1 0

. . .
0 Rp

è
∈ O(n)|∀i ∈ {1, ..., p}, Ri ∈ O(ki)

 ' O(k1)× ...×O(kp).

We denote On(k1) =
ßÅ

R 0
0 In−k1

ã
∈ O(I)|R ∈ O(k1)

™
' O(k1) and analogously On(ki) for

i ∈ {1, ..., p}. They are subgroups of O(I). In the same block-wise spirit, we also denote for
i 6= j:

· Matn(k1) =
ßÅ

X 0
0 0

ã
∈ Mat(n)|R ∈ Mat(k1)

™
with appropriate sizes of null matrices,

and analogously Matn(ki) ' Mat(ki) for i ∈ {1, ..., p},

· Matn(k1, k2) =
ßÅ

0 X 0
0 0 0

ã
∈ Mat(n)|X ∈ Mat(k1, k2)

™
again with appropriate sizes

of null matrices, and analogously Matn(ki, kj) ' Mat(ki, kj) for i, j ∈ {1, ..., p},
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· Skewn(ki) = Skew(n) ∩Matn(ki) ' Skew(ki),
· Skewn(ki, kj) = Skew(n) ∩ (Matn(ki, kj)⊕Matn(kj, ki)) ' Matn(ki, kj),
· Symn(ki) = Sym(n) ∩Matn(ki),
· Symn(ki, kj) = Sym(n) ∩ (Matn(ki, kj)⊕Matn(kj, ki)) ' Matn(ki, kj),
· Sym0

n(ki) = Symn(ki) ∩ ker tr,
· Sym0

n(ki, kj) = Symn(ki, kj) ∩ ker tr.

Whenever i = j, we also denote Matn(ki, ki) = Matn(ki), Symn(ki, ki) = Symn(ki) and
Skewn(ki, ki) = Skewn(ki).

3.3.3.1 O(I)-invariant inner products on Skew(n)

We denote X ∈ Skew(n) 7−→ X ij ∈ Skewn(ki, kj) the canonical projection for i, j ∈ {1, ..., p}.

Example 3.5 (O(I)-invariant inner products on Skew(n)) The irreducible decomposition of
Skew(n) with respect to the congruence action of O(I) is Skew(n) = ⊕

16i6p
ki>2

Skewn(ki) ⊕⊕
16i<j6p Skewn(ki, kj). The decomposition is orthogonal for the Frobenius inner product.

The O(I)-invariant inner products on Skew(n) are given for all X ∈ Skew(n) by:

ϕ(X,X) =
∑

16i6p
ki>2

αii‖X ii‖2 +
∑

16i<j6p
αij‖X ij‖2, (3.7)

where αij > 0 for all 1 6 i 6 j 6 p.
See the proof of Example 3.5 in Section 11.2.

3.3.3.2 O(n)-invariant Riemannian metrics on Flag(I)

The homogeneous manifold of flags of signature I is Flag(I) = O(n)/O(I) = {UO(I), U ∈
O(n)}. Since TInO(n) = Skew(n) and TInO(I) = Skew(I) := ⊕

16i6p Skewn(ki) = ⊕
16i6p
ki>2

Skewn(ki),
the tangent space TO(I)Flag(I) can be identified to m := ⊕

16i<j6p Skewn(ki, kj). Therefore,
a Riemannian metric g on Flag(I) is O(n)-invariant if and only if gO(I) : TO(I)Flag(I) ×
TO(I)Flag(I) −→ R is O(I)-invariant. Such inner products are characterized by the p(p−1)/2
positive coefficients αij > 0 for 1 6 i < j 6 p. From Equation (3.7), the general O(n)-
invariant Riemannian metric on Flag(I) is given for all X ∈ TUO(I)Flag(I) ' Um by:

gUO(I)(X,X) =
∑

16i<j6p
αij‖(U−1X)ij‖2. (3.8)

The manifold of flags Flag(I) endowed with one of these Riemannian metrics is a Riemannian
symmetric space. They all share the same Levi-Civita connection, thus the same geodesics.

We retrieve a result on Grassmannians Gr(n, k) = Flag(k, n−k) = O(n)/(O(k)×O(n−k))
(for which p = 2): there exists a unique O(n)-invariant Riemannian metric on Gr(n, k) up
to a scaling factor α12 > 0.
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3.3.3.3 O(I)-invariant inner products on Sym(n)

We denote X ∈ Sym(n) 7−→ X ij ∈ Symn(ki, kj) the canonical projection for i, j ∈ {1, ..., p}.

Example 3.6 (O(I)-invariant inner products on Sym(n)) The irreducible decomposition
of Sym(n) with respect to the congruence action of O(I) is Sym(n) = ⊕p

i=1 span(I iin ) ⊕⊕
16i6p
ki>2

Sym0
n(ki)⊕

⊕
16i<j6p Symn(ki, kj). The decomposition is orthogonal for the Frobenius

inner product and V . The O(I)-invariant inner products on Sym(n) are given for all X ∈
Sym(n) by:

ϕ(X,X) =
∑

16i,j6p
Sij

tr(X ii)tr(Xjj)√
kikj

+
∑

16i6p
ki>2

αii

∥∥∥∥∥X ii − tr(X ii)
ki

I iin

∥∥∥∥∥
2

+
∑

16i<j6p
αij‖X ij‖2,

(3.9)

where S ∈ Sym+(p) and αij > 0 for all 1 6 i 6 j 6 p.
See the proof of Example 3.6 in Section 11.2.

3.3.3.4 O(I)-invariant inner products on Mat(n)

To distinguish between the projections X 7−→ X ij onto symmetric matrices and skew-
symmetric matrices for 1 6 i 6 j 6 p, we denote:

· X ∈ Mat(n) 7−→ X ij
sym = 1

2(X +X>)ij ∈ Symn(ki, kj),

· X ∈ Mat(n) 7−→ X ij
skew = 1

2(X −X>)ij ∈ Skewn(ki, kj).

Example 3.7 (O(I)-invariant inner products on Mat(n)) The irreducible decomposition of
Mat(n) with respect to the congruence action of O(I) is:

Mat(n) =
p⊕
i=1

span(I iin )⊕
⊕

16i<j6p
(Skewn(ki, kj)⊕ Symn(ki, kj))

⊕
⊕

16i6p
ki>2

Skewn(ki)⊕
⊕

16i6p
ki>2

Sym0
n(ki) (3.10)

Direct sum It is the direct sum of the two previous decompositions.

Irreducibility We already know that all the terms are stable and irreducible.

Isomorphic modules We grouped Skewn(ki, kj) and Symn(ki, kj) because they are isomor-
phic modules. According to the previous study of the action of O(n) and O(I) on Skew(n)
and Sym(n), it is clear that there is no module isomorphism between other terms in the
direct sum.
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General form Hence, the O(I)-invariant inner products on Mat(n) are given for all X ∈
Mat(n) by:

ϕ(X,X) =
∑

16i,j6p
Sij

tr(X ii)tr(Xjj)√
kikj

+
∑

16i6p
ki>2

Ç
αii

∥∥∥∥∥X ii
sym −

tr(X ii)
ki

I iin

∥∥∥∥∥
2

+ βii‖X ii
skew‖2

å
+

∑
16i<j6p

Ä
αij‖X ij

sym‖2 + βij‖X ij
skew‖2 + γij〈X ij

sym|X
ij
skew〉

ä
, (3.11)

where S ∈ Sym+(p), αii, βii > 0 for all i ∈ {1, ..., p} such that ki > 2, αij > 0 and αijβij−γ2
ij >

0 for all 1 6 i < j 6 p.

3.3.4 S(n)-invariant inner products on Mat(n)
In this section, we consider the congruence action of the group of permutation matrices
S(n) ≡ {Pσ = (δi,σ(j))16i,j6n ∈ O(n), σ ∈ S(n)} on squared matrices Mat(n). We especially
focus on the action on symmetric hollow matrices Hol(n) = Sym(n) ∩ ker Diag (without
isomorphic irreducible submodules) and symmetric matrices Sym(n) (with isomorphic ir-
reducible submodules). Since Hol(n) and Sym(n) are respectively the tangent spaces of
full-rank correlation matrices Cor+(n) = {Σ ∈ Sym+(n)|Diag(Σ) = In} and SPD matrices
Sym+(n), this provides permutation-invariant Euclidean metrics on full-rank correlation and
covariance matrices.

The case n = 2 is degenerate so we treat it here. We have:

Mat(2) = span(I2)
⊥
⊕ span

Å
0 1
1 0

ã
⊥
⊕ span

Å
1 0
0 −1

ã
⊥
⊕ span

Å
0 1
−1 0

ã
. (3.12)

The two first terms are isomorphic modules with isotropy group S(2), the two last terms
are isomorphic modules with isotropy group {Id}. So the S(2)-invariant inner products on

Mat(2) are given for all X =
Å
x y
z t

ã
∈ Mat(2) by:

ϕ(X,X) = α (x+ t)2 + β (y + z)2 + 2γ (x+ t)(y + z)
+ α′(x− t)2 + β′(y − z)2 + 2γ′(x− t)(y − z), (3.13)

where
Å
α γ
γ β

ã
∈ Sym+(2) and

Å
α′ γ′

γ′ β′

ã
∈ Sym+(2).

In the following, we assume that n > 3.

3.3.4.1 S(n)-invariant inner products on Hol(n), n > 3

We denote sum(X) = 1>X1 = ∑
i,j Xij the sum of entries of X ∈ Mat(n) and analogously

sum(µ) = 1>µ for µ ∈ Rn.

Example 3.8 (S(n)-invariant inner products on Hol(n)) The irreducible decomposition
of Hol(n) with respect to the congruence action of S(n), i.e. of permutation matrices, is
Hol(n) = kerφ1

⊥
⊕ imψ2

⊥
⊕ imψ3 where:
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1. φ1 : X ∈ Hol(n) 7−→ X1 ∈ Rn,
2. ψ2 : µ ∈ Rn

0 7−→ 1
n−2(µ1> + 1µ> − 2diag(µ)) ∈ Hol(n),

3. ψ3 : x ∈ R 7−→ x
n(n−1)(11

> − In) ∈ Hol(n),

with φ1 surjective, ψ2 and ψ3 injective. The corresponding orthogonal projections are:

· p3 : X ∈ Hol(n) 7−→ X3 = ψ3(sum(X)) ∈ imψ3,
· p2 : X ∈ Hol(n) 7−→ X2 = ψ2((X −X3)1) ∈ imψ2,
· p1 : X ∈ Hol(n) 7−→ X1 = X −X2 −X3 ∈ kerφ1.

The S(n)-invariant inner products on Hol(n) are given for all X ∈ Hol(n) by:

ϕ(X,X) = α1tr(X2
1 ) + α2tr(X2

2 ) + α3tr(X2
3 ) (3.14)

= α tr(X2) + β sum(X2) + γ sum(X)2, (3.15)

where α1 = α > 0, α2 = α + n−2
2 β and α3 = α + (n− 1)(β + nγ) > 0.

See the proof of Example 3.8 in Section 11.2.

Remark 3.9 The case n = 3 is also degenerate because kerφ1 = {0}. The inner product
writes ϕ(X,X) = β sum(X2) + γ sum(X)2 with β > 0 and β + 3γ > 0.

3.3.4.2 S(n)-invariant inner products on Sym(n), n > 3

Example 3.10 (S(n)-invariant inner products on Sym(n)) The irreducible decomposition
of Sym(n) with respect to the congruence action of S(n), i.e. of permutation matrices, is
Sym(n) = kerφ1

⊥
⊕ imψ2

⊥
⊕ imψ3︸ ︷︷ ︸

Hol(n)

⊥
⊕ imψ4

⊥
⊕ imψ5︸ ︷︷ ︸

Diag(n)

' kerφ1 ⊕ 2Rn
0 ⊕ 2R where φ1, ψ2, ψ3 were

defined in the previous section and:

4. ψ4 : λ ∈ Rn
0 7−→ diag(λ) ∈ Diag(n),

5. ψ5 : y ∈ R 7−→ y
n
In ∈ Diag(n),

with ψ4, ψ5 injective. The corresponding orthogonal projections are:

· π5 : X ∈ Sym(n) 7−→ X5 = ψ5(tr(X)) ∈ imψ5,
· π4 : X ∈ Sym(n) 7−→ X4 = Diag(X −X5) ∈ imψ4,
· π3 : X ∈ Sym(n) 7−→ X3 = p3(X −Diag(X)) ∈ imψ3,
· π2 : X ∈ Sym(n) 7−→ X2 = p2(X −Diag(X)) ∈ imψ2,
· π1 : X ∈ Sym(n) 7−→ X1 = p1(X −Diag(X)) ∈ kerφ1.

The S(n)-invariant inner products on Sym(n) are given for all X = X1 +ψ2(µ) +ψ3(x) +
ψ4(λ) + ψ5(y) ∈ Sym(n) by:

ϕ(X,X) = α1tr(X2
1 ) + S11‖µ‖2 + Σ11x

2 + S22‖λ‖2 + Σ22y
2 + 2S12λ

>µ+ 2Σ12xy (3.16)
= α tr(X2) + β sum(X2) + γ sum(X)2 + δ tr(Diag(X)2)

+ ε sum(Diag(X)X) + ζ tr(X)2 + η tr(X) sum(X), (3.17)
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where α1 = α > 0 and the SPD matrices are S =
Å 2
n−2α + β β + ε

2
β + ε

2 α + β + δ + ε

ã
∈ Sym+(2)

and Σ = 1
n

Å 1
n−1α + β + nγ β + ε

2 + n(γ + η
2)

β + ε
2 + n(γ + η

2) α + β + δ + ε+ n(γ + ζ + η)

ã
∈ Sym+(2). See the proof of

Example 3.10 in Section 11.2.

Remark 3.11 The case n = 3 is degenerate because kerφ1 = {0}. In this case, one has to
replace α1 and α by 0 (and n by 3) in the previous formulae.

3.3.4.3 S(n)-invariant inner products on Mat(n), n > 3

Example 3.12 (S(n)-invariant inner products on Mat(n)) The irreducible decomposition
of Mat(n) with respect to the congruence action of S(n), i.e. of permutation matrices, is:

Mat(n) = kerφ1
⊥
⊕ imψ2

⊥
⊕ imψ3︸ ︷︷ ︸

Hol(n)

⊥
⊕ imψ4

⊥
⊕ imψ5︸ ︷︷ ︸

Diag(n)︸ ︷︷ ︸
Sym(n)

⊥
⊕ kerφ6

⊥
⊕ imψ7︸ ︷︷ ︸

Skew(n)

(3.18)

' kerφ1 ⊕ kerφ6 ⊕ 3Rn
0 ⊕ 2R, (3.19)

where φ1, ψ2, ψ3, ψ4, ψ5 were defined in the previous sections and:

6. φ6 : X ∈ Skew(n) 7−→ X1 ∈ Rn
0 ,

7. ψ7 : ν ∈ Rn
0 7−→ 1

n
(ν1> − 1ν>) ∈ Skew(n),

with φ6 surjective and ψ7 injective. The corresponding orthogonal projections are:

· Π7 : X ∈ Mat(n) 7−→ X7 = ψ7
Ä
X−X>

2 1
ä
∈ imψ7,

· Π6 : X ∈ Mat(n) 7−→ X6 = X−X>
2 −X7 ∈ kerφ6,

· Π5 : X ∈ Mat(n) 7−→ X5 = π5
Ä
X+X>

2

ä
= ψ5(tr(X)) ∈ imψ5,

· Π4 : X ∈ Mat(n) 7−→ X4 = π4
Ä
X+X>

2

ä
= Diag(X −X5) ∈ imψ4,

· Π3 : X ∈ Mat(n) 7−→ X3 = π3
Ä
X+X>

2

ä
∈ imψ3,

· Π2 : X ∈ Mat(n) 7−→ X2 = π2
Ä
X+X>

2

ä
∈ imψ2,

· Π1 : X ∈ Mat(n) 7−→ X1 = π1
Ä
X+X>

2

ä
∈ kerφ1.

The S(n)-invariant inner products on Mat(n) are given for all X = X1 + ψ2(µ) + ψ3(x) +
ψ4(λ) + ψ5(y) +X6 + ψ7(ν) ∈ Mat(n) by:

ϕ(X,X) = α1tr(X2
1 ) + S11‖µ‖2 + Σ11x

2 + S22‖λ‖2 + Σ22y
2 + α2tr(X2

6 ) + S33‖ν‖2

+ 2S12λ
>µ+ 2S23ν

>λ+ 2S13µ
>ν + 2Σ12xy (3.20)

= α tr(XX>) + α′ tr(X2) + β sum(X2) + β′ sum(XX>) + β′′ sum(X>X)
+ γ sum(X)2 + δ tr(Diag(X)2) + ζ tr(X)2 + η tr(X) sum(X)
+ ε sum(Diag(X)X) + ε′sum(Diag(X)X>), (3.21)
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where α1 = α+α′
2 > 0, α2 = α−α′

2 > 0 and the SPD matrices are:

S =

Ñ 2
n−2

α+α′
2 + β + β′ + β′′ β + β′ + β′′ + 1

2(ε+ ε′) β′′−β′
4

β + β′ + β′′ + 1
2(ε+ ε′) α+α′

2 + β + β′ + β′′ + δ + ε+ ε′ β′′−β′
4 + ε′−ε

2
β′′−β′

4
β′′−β′

4 + ε′−ε
2 2α + β − β′ − β′′

é
∈ Sym+(3),

Σ = 1
n

Ç
1

n−1
α+α′

2 + β + β′ + β′′ + nγ β + β′ + β′′ + 1
2(ε+ ε′) + n(γ + η

2)
β + 1

2(ε+ ε′) + n(γ + η
2) α+α′

2 + β + β′ + β′′ + δ + ε+ ε′ + n(γ + ζ + η)

å
∈ Sym+(2).

See the proof of Example 3.12 in Section 11.2.

Remark 3.13 The case n = 3 is degenerate because kerφ1 = {0}. In this case, one has to
replace α1 and α by 0 (and n by 3) in the previous formulae.

Remark 3.14 Equation (3.19) can be found in [Ramgoolam, 2019]. It gives the irreducible
decomposition of Mat(n) up to module isomorphism. Our Equation (3.18) instantiates an
irreducible decomposition by choosing specific spaces. The advantage is that it allows to
manipulate coordinate-free equations and explicit spaces. Moreover, it puts the light on
interesting spaces that are stable by permutations.

3.4 Conclusion
We formalized a general method to determine all G-invariant inner products on a completely
reducible Euclidean space V . We gave the general form of inner products on Rn and Mat(n)
that are invariant under the orthogonal group O(n), the block orthogonal group O(I) and
the permutation group S(n). They are summarized in Table 3.2.

Beyond linear algebra, this characterization is interesting when one wants to characterize
invariant Riemannian metrics on Lie groups and homogeneous spaces. It is well known that
the O(n)-invariant inner product on Grassmannians Gr(n, k) = O(n)/(O(k) × O(n − k))
is unique up to scaling. More generally, our method allowed us to characterize all O(n)-
invariant metrics on the homogeneous manifold Flag(I) = O(n)/O(I) of flags of signature
I (see Equation (3.8)). The characterization is also interesting when there exists a global
diffeomorphism from a manifold to a vector space, such as for symmetric positive definite
matrices or full-rank correlation matrices.

This method is based on representation theory. It would be interesting to investigate
non-linear methods to characterize invariant Riemannian metrics on manifolds when this
problem does not reduce to a linear problem.
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Table 3.2: General form of invariant inner products, where x ∈ Rn and X ∈ Mat(n).



66

Part III

Covariance matrices of full rank:
the open cone of symmetric
positive definite matrices



67

Chapter 4

O(n)-invariant Riemannian metrics

Abstract
Symmetric Positive Definite (SPD) matrices are ubiquitous in data analysis under the form of co-
variance matrices or correlation matrices. Several O(n)-invariant Riemannian metrics were defined
on the SPD cone, in particular the kernel metrics introduced by Hiai and Petz. The class of kernel
metrics interpolates between many classical O(n)-invariant metrics and it satisfies key results of
stability and completeness. However, it does not contain all the classical O(n)-invariant metrics.
Therefore in this work, we investigate super-classes of kernel metrics and we study which key results
remain true. We also introduce an additional key result called cometric-stability, a crucial prop-
erty to implement geodesics with a Hamiltonian formulation. Our method to build intermediate
embedded classes between O(n)-invariant metrics and kernel metrics is to give a characterization of
the whole class of O(n)-invariant metrics on SPD matrices and to specify requirements on metrics
one by one until we reach kernel metrics. As a secondary contribution, we synthesize the literature
on the main O(n)-invariant metrics, we provide the complete formula of the sectional curvature of
the affine-invariant metric and the formula of the geodesic parallel transport between commuting
matrices for the Bures-Wasserstein metric.

This chapter was resubmitted in January 2022 to the journal Linear Algebra and its
Applications after minor revisions [Thanwerdas and Pennec, 2022b]. Here is the revised
version with an additional modification specific to this manuscript. Indeed, our proof of
continuity of the O(n)-invariant metrics in Section 4.5.2 is trivialized by our Theorem 2.18
in Chapter 2 so we replace the sequence of majorations that proved the continuity by a simple
reference to this Theorem 2.18.

4.1 Introduction
Symmetric Positive Definite (SPD) matrices are ubiquitous in data analysis because in many
situations, the data (signals, images, diffusion coefficients...) can be represented by their
covariance matrices. This is the case in the domains of Brain-Computer Interfaces, diffusion
and functional MRI, Computer Vision, Diffusion Tensor Imaging (DTI), etc. SPD matrices
form a cone in the vector space of symmetric matrices so a first idea to compute with SPD
matrices could be to perform Euclidean computations on symmetric matrices. However, this
method has several drawbacks. As geodesics are straight lines, they leave the SPD cone
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at finite time so extrapolation methods could lead to non admissible matrices, namely with
negative eigenvalues. Moreover, the trace is linearly interpolated but other invariants such
as the determinant are not monotonically interpolated along geodesics. For example in DTI,
where SPD matrices are represented by 3D ellipsoids, the ellipsoids along the geodesic can
have a larger volume than the two ellipsoids at extremities, which leads to non realistic
predictions in fiber tracking (swelling effect).

Hence, other Riemannian metrics were used in applications to solve these problems. The
affine-invariant/Fisher-Rao metric [Skovgaard, 1984, Pennec et al., 2006, Lenglet et al.,
2006, Fletcher and Joshi, 2007, Moakher, 2005, Batchelor et al., 2005, Varoquaux et al.,
2010, Barachant et al., 2013] provides a Riemannian symmetric structure to the SPD man-
ifold: it is negatively curved, geodesically complete (matrices with null eigenvalues are re-
jected to infinity), it is invariant under the congruence action (which, in the context of
covariance matrices, corresponds to the invariance of the feature vector under affine trans-
formations) and it is inverse-consistent. The log-Euclidean metric [Arsigny et al., 2006]
is diffeomorphic to a Euclidean inner product: it also provides a Riemannian symmetric
space, it is geodesically complete and inverse-consistent. It is not curved and it is not
affine-invariant although it is still invariant under orthogonal transformations and dilations.
The Bures-Wasserstein/Procrustes metric [Bhatia et al., 2019, Dryden et al., 2009, Takatsu,
2011, Malagò et al., 2018] is a positively curved quotient metric which is also invariant un-
der orthogonal transformations. It is not geodesically complete but geodesics remain in the
cone with boundaries: this means that this metric is suited for computing with Positive
Semi-Definite (PSD) matrices. Many other interesting metrics exist with different proper-
ties: Bogoliubov-Kubo-Mori [Petz and Toth, 1993, Michor et al., 2000], polar-affine [Su et al.,
2012], Euclidean-Cholesky [Wang et al., 2004], log-Euclidean-Cholesky [Li et al., 2017], log-
Cholesky [Pinheiro and Bates, 1996, Lin, 2019], power-Euclidean [Dryden et al., 2010], and
more recently power-affine [Thanwerdas and Pennec, 2019b], alpha-Procrustes [Hà Quang,
2019], mixed-power-Euclidean [Thanwerdas and Pennec, 2019a].

Except those named after Cholesky, all the other Riemannian metrics cited above are
invariant under orthogonal transformations. If we consider SPD matrices as covariance ma-
trices, this transformation corresponds to a rigid-body transformation of the feature vector
X ∈ Rn 7−→ RX + X0 where R is an orthogonal matrix. In 2009, Hiai and Petz introduced
the subclass of kernel metrics [Hiai and Petz, 2009], which are O(n)-invariant metrics indexed
by smooth symmetric maps φ : (R+)2 −→ R+. This class satisfies key results: it contains
most of the cited O(n)-invariant metrics, it is stable under a certain class of diffeomorphisms
and it provides a sufficient condition for geodesic completeness. This sufficient condition
becomes necessary if we restrict the class to the subclass of mean kernel metrics which is
indexed by kernel maps of the form φ = mθ where m : (R+)2 −→ R+ is a symmetric homo-
geneous mean and θ ∈ R is a power. However, the class of kernel metrics does not contain
all the aforementioned O(n)-invariant metrics. The main goal of this chapter is to study the
super-classes of kernel metrics, especially the whole class of O(n)-invariant metrics for which
we give a characterization. More precisely, our objective is to determine which key results
on kernel metrics can be generalized and thus to understand better the specificity of kernel
metrics within these super-classes.
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4.1.1 Results and organization of the chapter

In the remainder of the Introduction, we give the notations and conventions used in the
chapter. In Section 4.2, we introduce two preliminary concepts and one result. The first
concept is the notion of O(n)-equivariant map on symmetric matrices. We especially explain
how to build them from a map defined on diagonal matrices via the spectral theorem because
this is a procedure we need several times in the chapter. Then the second concept is a
particular case of the previous one, called univariate map. These are maps characterized by
a map on positive real numbers. They are particularly interesting because their differential
is known in closed form modulo eigenvalue decomposition and because the class of kernel
metrics is stable under univariate diffeomorphisms. Finally the result is the characterization
of O(n)-invariant inner products on symmetric matrices. These inner products are composed
of two terms, the Frobenius term and the trace term, which have different weights so they
form a two-parameter family. In the proof, we give elementary tools that we reuse when we
characterize O(n)-invariant metrics on SPD matrices.

To explain why kernel metrics do not encompass all the O(n)-invariant metrics cited
above, we need to present them or at least the most important ones. One can notice that
many metrics and families of metrics are actually based on five of them, namely the Euclidean,
the log-Euclidean, the affine-invariant, the Bures-Wasserstein and the Bogoliubov-Kubo-Mori
metrics. That is why in Section 4.3, we synthesize the literature on these five noted metrics.
For each of them, we give the fundamental Riemannian operations (squared distance, Levi-
Civita connection, curvature, geodesics, logarithm map, parallel transport map) when they
are known. As a secondary contribution, we give the complete formula of the sectional
curvature of the affine-invariant metric and we also give, for the Bures-Wasserstein metric,
the new formula of the parallel transport between commuting matrices and simpler formulae
of the Levi-Civita connection, the curvature and the parallel transport equation.

In Section 4.4, after reviewing kernel metrics and their key properties, we give two new
observations on them. Firstly, the cometric of a metric on SPD matrices can be considered
itself as a metric on SPD matrices by identifying the vector space of symmetric matrices and
its dual via the Frobenius inner product. Therefore we observe that the cometric of a kernel
metric defined by the kernel map φ is a kernel metric characterized by 1/φ. This remarkable
result has an important consequence for the numerical computation of geodesics. Indeed,
the geodesic equation ∇γ̇ γ̇ = 0, which is a second order equation, has a Hamiltonian version
which is a first order equation that only involves the cometric, not the Christoffel symbols.
The Hamiltonian equation is much simpler to integrate and numerically more stable, that is
why it is often preferred in numerical implementations, for instance in the Python package
geomstats [Miolane et al., 2020a]. Hence knowing a simple explicit formula for the cometric
helps to compute numerically the geodesics. Secondly, there is a natural extension of kernel
metrics that encompasses all the aforementioned O(n)-invariant metrics, which still satisfies
the key properties of kernel metrics including the cometric stability. Roughly speaking, kernel
metrics look like the Frobenius inner product on symmetric matrices where the elementary
quadratic forms (the X2

ij) are weighted by a coefficient involving the kernel map φ and
depending on the point. Since the Frobenius inner product is not the only O(n)-invariant
inner product on symmetric matrices as explained above, the trace term can be added to the
framework of kernel metrics to form extended kernel metrics.

https://geomstats.github.io/
https://geomstats.github.io/
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In Section 4.5, we characterize the class of O(n)-invariant metrics on SPD matrices
by means of three multivariate maps α, β, γ : (R+)n −→ R operating on the eigenvalues
(d1, ..., dn) of the SPD matrix and which satisfy three conditions of symmetry, compatibility
and positivity (Theorem 4.5). Then, we observe that kernel metrics are characterized by
two properties within this family. They are ortho-diagonal: it means that the metric matrix
is diagonal, i.e. β = 0. They are bivariate: it means that the remaining functions α and
γ do not depend on their n − 2 last terms, and the compatibility condition imposes that
they are equal so we can write γ = α = 1/φ : (R+)2 −→ R+. Since the term “kernel” is
quite overloaded in many different contexts (such as in Reproducing Kernel Hilbert Spaces
in machine learning or in kernel density estimation/regression in statistics), we propose to
designate them as Bivariate Ortho-Diagonal (BOD) metrics. Afterwards, we give key prop-
erties of O(n)-invariant metrics in analogy with the key properties of BOD (kernel) metrics.
Since we do not have a closed-form expression for the cometric anymore, we introduce the
intermediate class of bivariate separable metrics which is cometric-stable and we give the
expression of the cometric. A summary of the classes of metrics defined in this chapter is
shown on Figure 4.1.

Section 4.6 is dedicated to the conclusion.

Figure 4.1: Super-classes of kernel metrics.

4.1.2 Notations and conventions
Manifolds Our manifold-related notations are summarized in Table 4.1. A chart ϕ : U ⊂
M −→ RN provides a local basis of vectors (∂1, ..., ∂N) where ∂k = ∂

∂ϕk
is a short notation

defined for all differentiable maps f : M −→ R and at each point x ∈ U by (∂kf)|x =
∂(f◦ϕ−1)
∂xk

∣∣∣
ϕ(x)

. A vector field X can be locally decomposed on this basis, X = Xk∂k, where
Xk : U −→ R are the coordinate functions of X and where we used Einstein’s summation
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convention. As we deal with matrices, the coordinates often have two indices: X = X ij∂ij.

TxM, TM Tangent space at x, tangent bundle
dxf, df Differential of map f at x, differential of map f
f ∗, f∗ Pullback via f , pushforward via f
γ̇ Derivative of curve γ
g,G Metric on Sym+(n), metric on another space
d Riemannian distance on Sym+(n)
∇ Levi-Civita connection
R Curvature R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

γ(Σ,X)(t) Geodesic at time t with γ(0) = Σ and γ̇(0) = X
Exp,Log Riemannian exponential and logarithm maps
Πγ;Σ→ΛX Parallel transport of X along curve γ from Σ to Λ

Table 4.1: Notations in a manifold.

Manifolds of matrices We denote the matrix spaces as shown in Table 4.2. The (i, j)-
coefficient of a matrix M is denoted Mij, [M ]ij or M(i, j) depending on the context. To
build a matrix from its coefficients, we denote M = [Mij]16i,j6n or simply M = [Mij]i,j.
We denote (Cij) the canonical basis of matrices, Eii = Cii, Eij = 1√

2(Cij + Cji) and Fkl =
1
2(Ckl + Clk) for i 6= j and k, l ∈ {1, ..., n}. The norms are denoted ‖M‖1 = ∑

i,j |Mij| and
‖M‖2 =

√
tr(MM>).

Vector space of matrices Manifold of matrices
Mat(n) n× n real matrices GL(n) General Linear group

GL+(n) Positive determinant
Sym(n) Real symmetric Sym+(n) Symmetric positive definite
Skew(n) Real skew-symmetric O(n) Orthogonal group

SO(n) Rotation group
Diag(n) Diagonal Diag+(n) Positive diagonal

Table 4.2: Notations for matrix spaces.

The congruence action is the following action of the general linear group on matrices ? :
(A,M) ∈ GL(n)×Mat(n) 7−→ AMA> ∈ Mat(n) which leaves stable the spaces of symmetric
matrices and SPD matrices. Then, A ∈ GL(n) naturally acts onM = M i1j1,...,iqjqCi1j1⊗· · ·⊗
Ciqjq ∈ Mat(n)⊗q by:

A ?M = M i1j1,...,iqjq(A ? Ci1j1)⊗ · · · ⊗ (A ? Ciqjq) ∈ Mat(n)⊗q.

GL(n) also acts by ? on any Cartesian product ∏r
i=1 Sym(n)⊗qi component-wise, especially

on Sym(n)p.
Let E and F be two spaces on which GL(n) acts by ?. Let G ⊆ GL(n) be a subgroup of

GL(n). A map f : E −→ F is:
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· G-equivariant if f(A ?M) = A ? f(M) for all A ∈ G, for all M ∈ E ,

· G-invariant if f(A ?M) = f(M) for all A ∈ G, for all M ∈ E .

In particular, a Riemannian metric g : Sym+(n) × Sym(n) × Sym(n) −→ R (or an inner
product) is G-invariant if gAΣA>(AXA>, AXA>) = gΣ(X,X) for all A ∈ G, Σ ∈ Sym+(n)
and X ∈ Sym(n).

The symmetric group of order n is denoted by Sn and the permutations by small greek
letters σ, τ.... The permutation matrix associated to the permutation σ, which sends any ba-
sis (e1, ..., en) of Rn to the permuted basis (eσ(1), ..., eσ(n)), is denoted Pσ. We have Pσ(i, j) =
δσ(i),j where δ is the Kronecker symbol. Given a matrixM ∈ Mat(n), we have (P>σ MPσ)(i, j) =
M(σ(i), σ(j)).

The manifold of SPD matrices The manifold Sym+(n) is an open set of the vector space
of symmetric matrices Sym(n). Hence, the canonical immersion id : Sym+(n) ↪→ Sym(n)
provides:

· An identification between the tangent space TΣSym+(n) and the vector space Sym(n)
at any point Σ ∈ Sym+(n) by dΣid : TΣSym+(n) ∼−→ Sym(n). Thus, any tangent
vector X ∈ TΣSym+(n) is considered as a symmetric matrix: X ≡ dΣid(X) ∈ Sym(n).

· A global chart (id, Sym+(n)) of the manifold Sym+(n), thus a global derivation ∂XY =
X ij(∂ijY kl)∂kl defined by derivation of coordinates in this global chart. More generally,
if f : Sym+(n) −→ Sym(n) is a diffeomorphism on its image, it provides a global
derivation denoted ∂f .

Another important tool is the matrix exponential exp(X) = ∑+∞
k=0

Xk

k! which is a diffeo-
morphism between Sym(n) and Sym+(n), and therefore its inverse, the symmetric matrix
logarithm log : Sym+(n) −→ Sym(n).

The spectral theorem ensures that symmetric matrices are orthogonally congruent to a
diagonal matrix. If the symmetric matrix is SPD, then the diagonal matrix has positive
elements on the diagonal. Most of the time in this chapter, for an SPD matrix Σ ∈ Sym+(n),
we denote Σ = PDP> one spectral decomposition with P ∈ O(n) and D = diag(d1, ..., dn) ∈
Diag+(n). When we consider tangent vectors X, Y, ... ∈ TΣSym+(n), we denote X ′ = P>XP
so that every matrix expressed in the orthogonal basis given by P is denoted with a prime:
X = PX ′P>, Y = PY ′P>, etc.

Products of symmetric matrices share two nice properties with symmetric matrices. First,
if X, Y ∈ Sym(n), then sp(XY ) ⊂ R where sp denotes the spectrum, i.e. the set of complex
eigenvalues. Second, if Σ,Λ ∈ Sym+(n), then ΣΛ has a unique square-root matrix that
represents a positive definite self-adjoint endomorphism, it is denoted (ΣΛ)1/2 =

√
ΣΛ =

Σ1/2(Σ1/2ΛΣ1/2)1/2Σ−1/2 = Λ−1/2(Λ1/2ΣΛ1/2)1/2Λ1/2. This definition is used in [Bhatia et al.,
2019, Equation (10)] for example.
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4.2 Preliminary concepts and results

4.2.1 Extending maps defined on diagonal matrices
Thanks to the spectral theorem, O(n)-equivariant maps f : Sym+(n) −→ F are characterized
by their values on positive diagonal matrices. A question that arises several times in this
chapter is: are we allowed to extend a map f : Diag+(n) −→ F into an O(n)-equivariant map
f : Sym+(n) −→ F by the formula f(PDP>) = P ? f(D)? To do so, we need to show that
given two eigenvalue decompositions Σ = PDP> = Q∆Q>, we have P ? f(D) = Q ? f(∆).
Note that (Q,∆) is highly constrained by (P,D). The following lemma gives explicitly the
possible cases, hence it tells exactly what is to be checked in such an extension process.

Lemma 4.1 (Relation between two eigenvalue decompositions of an SPD matrix) LetD,∆ ∈
Diag+(n) and P,Q ∈ O(n) such that PDP> = Q∆Q>. Let τ ∈ S(n) be a permutation that
orders the values of D decreasingly, i.e. such that D = PτDiag(λ1Im1 , ..., λpImp)P>τ with
λ1 > ... > λp > 0. Then, there exists a permutation σ ∈ S(n) and a block-diagonal
orthogonal matrix R = Diag(R1, ..., Rp) ∈ O(n) with j-th block Rj ∈ O(mj) such that
∆ = P>σ P

>
τ DPτPσ and Q = PPτRPσ.

Proof. ∆ is clearly a permutation of D so there exists σ ∈ S(n) such that ∆ = P>σ P
>
τ DPτPσ.

Let R = P>τ P
>QP>σ . Then PDP> = Q∆Q> is equivalent to Diag(λ1Im1 , ..., λpImp)R =

RDiag(λ1Im1 , ..., λpImp). Decomposing R by blocks, the off-diagonal blocks have to be null
since the λi’s are distinct. Since RR> = In, the diagonal blocks are orthogonal.

This result tells what is to be checked to extend f : Diag+(n) −→ F . In this chapter, we
only need to extend tensorial maps T : Diag+(n) −→ Sym(n)⊗q⊗(Sym(n)∗)⊗p or equivalently
T : Diag+(n) × Sym(n)p −→ Sym(n)⊗q for p, q ∈ N. Hence, we state the result in this
particular case though it is valid for F .

Lemma 4.2 (Spectral extension) Let T : Diag+(n)×Sym(n)p −→ Sym(n)⊗q be a map such
that for all D0 = Diag(λ1Im1 , ..., λpImp) with λ1 > ... > λp > 0 and for all X ∈ Sym(n)p:

(a) T (D0, X) = Pσ ? T (P>σ D0Pσ, P
>
σ ? X) for all permutations σ ∈ S(n),

(b) T (D0, X) = R ? T (D0, R
> ? X) for all block-diagonal orthogonal matrices R ∈ O(n),

R = Diag(R1, ..., Rp) with Rj ∈ O(mj).

Then, T : Sym+(n)× Sym(n)p −→ Sym(n)⊗q defined by T (PDP>, X) := P ? T (D,P> ? X)
extends T , with D ∈ Diag+(n), P ∈ O(n) and X ∈ Sym(n)p.

Proof. Assume that PDP> = Q∆Q>. Then by Lemma 4.1, let σ, τ ∈ S(n) and R as in (b)
such that D0 = P>τ DPτ = Diag(λ1Im1 , ..., λpImp), ∆ = P>σ D0Pσ and Q = PPτRPσ. Then,
by applying (a) with σ, (b) with R and (a) with τ , we easily see that Q ? T (∆, Q> ? X) =
P ? T (D,P> ? X). Thus T : Sym+(n)× Sym(n)p −→ Sym(n)⊗q is well defined.

In practice in this chapter, we use Lemma 4.2 for:

· p = 0, q = 1 for f : Diag+(n) −→ Sym(n) in Section 4.2.2,
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· p = 1, q = 1 for Φ : Diag+(n)× Sym(n) −→ Sym(n) in Section 4.4.2.3,

· p = 2, q = 0 for g : Diag+(n)× Sym(n)× Sym(n) −→ R in Section 4.5.2.

4.2.2 Univariate maps
We apply Lemma 4.2 to a map defined on positive real numbers f : R+ −→ R and ex-
tended to positive diagonal matrices f : Diag+(n) −→ Diag(n) by f(Diag(d1, ..., dn)) :=
Diag(f(d1), ..., f(dn)).

(a) Since f is defined component-wise, we have f(D) = Pσ f(P>σ DPσ)P>σ .

(b) As f(λImj) = f(λ)Imj , the matrix Rf(D)R> is a block diagonal matrix with j-th block
f(λj)RjR

>
j = f(λj)Imj , which corresponds to f(D)’s j-th block so Rf(D)R> = f(D).

Therefore f can be extended into an O(n)-equivariant map f : Sym+(n) −→ Sym(n) by
f(PDP>) = Pf(D)P>. This extension is called the functional calculus of f in Functional
Analysis. We call it a univariate map. The symmetric matrix logarithm log : Sym+(n) −→
Sym(n), the power diffeomorphisms powp : Sym+(n) −→ Sym+(n) with p 6= 0 or the constant
map pow0 : Σ ∈ Sym+(n) 7−→ In ∈ Sym(n) are examples of univariate maps.

Definition 4.3 (Univariate maps) A univariate map is the extension of a map on positive
real numbers f : R+ −→ R into an O(n)-equivariant map f : Sym+(n) −→ Sym(n) by the
equality f(PDP>) = P Diag(f(d1), ..., f(dn))P>. Moreover [Bhatia, 1997, Theorem V.3.3],
if f ∈ C1(R+), then its extension f is differentiable and the differential df : Sym+(n) ×
Sym(n) −→ Sym(n) is O(n)-equivariant, thus it is characterized by its values at diagonal
matrices D ∈ Diag+(n), given by:

∀X ∈ Sym(n), [dDf(X)]ij = f [1](di, dj)Xij, (4.1)

where f [1] is the first divided difference defined below. Thus, a C1-diffeomorphism f : R+ −→
R+ is extended into a diffeomorphism f : Sym+(n) −→ Sym+(n).

Definition 4.4 (First divided difference) [Bhatia, 1997] Let f ∈ C1(R+). The first divided
difference of f is the continuous symmetric map f [1] : (R+)2 −→ R defined for all x, y ∈ R
by:

f [1](x, y) =
®

f(x)−f(y)
x−y if x 6= y

f ′(x) if x = y

´
. (4.2)

4.2.3 O(n)-invariant inner products on symmetric matrices
To characterize the O(n)-invariant metrics on SPD matrices, an appropriate starting point is
the characterization of O(n)-invariant inner products on the tangent space, i.e. on symmetric
matrices. The following theorem states that such inner products form a two-parameter family
indexed by a Scaling factor α > 0 and a Trace factor β > −α/n.
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Theorem 4.5 (Characterization of O(n)-invariant inner products on symmetric matrices)
Let 〈·|·〉 : Sym(n) × Sym(n) −→ R be an inner product on symmetric matrices. It is O(n)-
invariant if and only if there exists (α, β) ∈ ST := {(α, β) ∈ R2|min(α, α + nβ) > 0} such
that:

∀X ∈ Sym(n), 〈X|X〉 = α tr(X2) + β tr(X)2. (4.3)
Moreover, the linear isometry that pulls the Frobenius inner product back onto this one is
Fp,q(X) = q X + p−q

n
tr(X)In with p =

√
α + nβ and q =

√
α.

There are several proofs of this elementary result. We already gave one in Section 3.3.2.1.
Here we give one based on the following lemma because we reuse it to characterize O(n)-
invariant metrics on SPD matrices. This lemma gives the characterization of inner products
on symmetric matrices which are respectively invariant under two subgroups of O(n):

(a) the group D±(n) := {ε = Diag(±1, ...,±1)} ∼= {−1,+1}n of diagonal matrices taking
their diagonal values in {−1,+1},

(b) the group S±(n) := {εPσ ∈ Mat(n)|(ε, σ) ∈ D±(n)×S(n)} ∼= D±(n)×S(n) of signed
permutation matrices.

Lemma 4.6 (Characterization of inner products on symmetric matrices invariant under
D±(n) or S±(n)) Let 〈·|·〉 : Sym(n) × Sym(n) −→ R be an inner product on symmetric
matrices.

(a) It is D±(n)-invariant if and only if there exist n(n−1)
2 positive real numbers αij = αji > 0

for i 6= j and a matrix S ∈ Sym+(n) such that:

∀X ∈ Sym(n), 〈X|X〉 =
∑
i 6=j

αijX
2
ij +

∑
i,j

SijXiiXjj. (4.4)

(b) It is S±(n)-invariant if and only if there exist (α, β, γ) ∈ R3 with α > 0, γ > β and
γ + (n− 1)β > 0 such that:

∀X ∈ Sym(n), 〈X|X〉 = γ
n∑
i=1

X2
ii + α

∑
i 6=j

X2
ij + β

∑
i 6=j

XiiXjj. (4.5)

See the proof of Lemma 4.6 in Section 11.3.

Proof of Theorem 4.5. An O(n)-invariant inner product on symmetric matrices is S±(n)-

invariant so it is of the form of Equation (4.5). We define the rotation matrixR =
Å
Rπ/4 0

0 In−2

ã
∈

O(n) with Rπ/4 =
√

2
2

Å
1 1
−1 1

ã
∈ O(2) and we apply it to the matrix X =

Å
M Y
Y > Z

ã
∈

Sym(n) with M =
Å
a b
b c

ã
∈ Sym(2). Since Rπ/4MR>π/4 = 1

2

Å
a+ c+ 2b c− a
c− a a+ c− 2b

ã
, the

coefficient of b2 in 〈X|X〉 in Equation (4.5) is 2α and the coefficient of b2 in 〈RXR>|RXR>〉
is 2γ − 2β. Hence by invariance, γ = α+ β and the positivity condition becomes α > 0 and
α + nβ > 0. Conversely, Equation (4.3) clearly defines O(n)-invariant inner products.
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4.3 Main O(n)-invariant metrics on SPD matrices with
new formulae

The goal of this section is to describe the main O(n)-invariant metrics on SPD matrices
that can be found in the literature, namely the Euclidean (abbreviated ‘E’, Section 4.3.1),
the Log-Euclidean (‘LE’, Section 4.3.2), the Affine-invariant (‘A’, Section 4.3.3), the Bures-
Wasserstein (‘BW’, Section 4.3.4) and the Bogoliubov-Kubo-Mori (‘BKM’, Section 4.3.5)
metrics. For each metric, we give a short explanation on the way it was introduced, some
useful references and a synthetic table that summarizes its fundamental Riemannian opera-
tions: squared distance, Levi-Civita connection, curvature, geodesics, logarithm map, parallel
transport map.

Our contributions are (1) the synthesis of many results scattered in the literature espe-
cially for the Bures-Wasserstein metric, (2) the complete formula of the sectional curvature of
the affine-invariant metric, (3) the new formula of the parallel transport between commuting
matrices and new expressions of the Levi-Civita connection, the curvature and the parallel
transport equation of the Bures-Wasserstein metric.

4.3.1 O(n)-invariant Euclidean metrics
A Euclidean metric on SPD matrices is the pullback of an inner product 〈·|·〉 on symmetric
matrices by the canonical immersion id : Sym+(n) −→ Sym(n). As we know O(n)-invariant
inner products on symmetric matrices from Theorem 4.5, we know all the O(n)-invariant
Euclidean metrics on SPD matrices.

Definition 4.7 (O(n)-invariant Euclidean metrics on SPD matrices) An O(n)-invariant
Euclidean metric on SPD matrices is a Riemannian metric of the following form for all
Σ ∈ Sym+(n) and X ∈ Sym(n):

g
E(α,β)
Σ (X,X) = α tr(X2) + β tr(X)2, (4.6)

with (α, β) ∈ ST, i.e. α > 0 and β > −α/n. Its Riemannian operations are detailed in Table
4.3.

4.3.2 O(n)-invariant log-Euclidean metrics
A log-Euclidean metric on SPD matrices [Arsigny et al., 2006] is the pullback of an inner
product 〈·|·〉 on symmetric matrices by the symmetric matrix logarithm log : Sym+(n) −→
Sym(n). Hence the SPD manifold endowed with the log-Euclidean metric is isometric to a
Euclidean space, thus geodesically complete. From Theorem 4.5 and the fact that d log :
Sym+(n) × Sym(n) −→ Sym(n) is O(n)-equivariant, we know all the O(n)-invariant log-
Euclidean metrics.

Definition 4.8 (O(n)-invariant log-Euclidean metrics on SPD matrices) An O(n)-invariant
log-Euclidean metric on SPD matrices is a Riemannian metric of the following form for all
Σ ∈ Sym+(n) and X ∈ Sym(n):

g
LE(α,β)
Σ (X,X) = α tr(dΣ log(X)2) + β tr(Σ−1X)2, (4.7)
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Metric gΣ(X,X) = α‖X‖2
2 + β tr(X)2

Squared distance d(Σ,Λ)2 = α‖Λ− Σ‖2
2 + β(tr(Λ)− tr(Σ))2

Levi-Civita ∇XY = ∂XY
Curvature R = 0

Geodesics

γ(Σ,X)(t) = Σ + tX for t ∈ I where I depends on λmin =
min sp(Σ−1X) and λmax = max sp(Σ−1X) as follows:
• If λmin < 0 < λmax, then I = (−1/λmax,−1/λmin).
• If 0 6 λmin, then I = (−1/λmax,+∞).
• If λmax 6 0, then I = (−∞,−1/λmin).

Logarithm LogΣ(Λ) = Λ− Σ

Parallel transport
Does not depend on the curve:

ΠΣ→Λ :
ß
TΣSym+(n) −→ TΛSym+(n)

X 7−→ (dΛid)−1(dΣid(X)) ≡ X

Table 4.3: Riemannian operations of O(n)-invariant Euclidean metrics on SPD matrices.

with (α, β) ∈ ST, i.e. α > 0 and β > −α/n. Moreover, this metric is the pullback of the
Frobenius log-Euclidean metric (α = 1 and β = 0) by the isometry fp,q : Σ ∈ Sym+(n) 7−→
exp(Fp,q(log Σ)) = det(Σ) p−qn Σq ∈ Sym+(n) with p =

√
α + nβ and q =

√
α, where Fp,q was

defined in Theorem 4.5. Its Riemannian operations are detailed in Table 4.4.

Metric gΣ(X,X) = α‖dΣ log(X)‖2
2 + β tr(Σ−1X)2

Squared distance d(Σ,Λ)2 = α‖ log Λ− log Σ‖2
2 + β log(det(Λ)/ det(Σ))2

Levi-Civita ∇XY = ∂log
X Y

Curvature R = 0
Geodesics ∀t ∈ R, γ(Σ,X)(t) = exp(log(Σ) + t dΣ log(X))
Logarithm LogΣ(Λ) = (dΣ log)−1(log Λ− log Σ)

Parallel transport
Does not depend on the curve:

ΠΣ→Λ :
ß
TΣSym+(n) −→ TΛSym+(n)

X 7−→ (dΛ log)−1(dΣ log(X))

Table 4.4: Riemannian operations of O(n)-invariant log-Euclidean metrics on SPD matrices.

4.3.3 Affine-invariant metrics
Affine-invariant metrics were introduced in many different ways. We adopt here the most
recent viewpoint [Pennec, 2009], which underlies the term “affine-invariant”. Consider SPD
matrices Σ ∈ Sym+(n) as empirical covariance matrices of a random vector X ∈ Rn, namely
Σ = 1

n
(X − X̄)(X − X̄)>. Define the affine action on vectors ((A,B), X) ∈ (GL(n) n

Rn) × Rn 7−→ AX + B ∈ Rn. Then, the induced action on SPD matrices is ((A,B),Σ) ∈
(GL(n) n Rn) × Sym+(n) 7−→ AΣA> ∈ Sym+(n). It is simply the congruence action of
GL(n) on matrices. Hence an affine-invariant metric on SPD matrices simply designates a
GL(n)-invariant metric.
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Historically, Siegel introduced a metric on the half space S = {X + iΣ|X ∈ Sym(n),Σ ∈
Sym+(n)} which is invariant under the action of the symplectic group [Siegel, 1943]. As a
consequence, the restriction of this metric to SPD matrices by the immersion Σ ∈ Sym+(n) ↪→
iΣ ∈ S was proved to be invariant under GL(n) and under inversion and to provide a
Riemannian homogeneous structure to Sym+(n). The expression of this metric is gΣ(X, Y ) =
tr(Σ−1XΣ−1Y ).

Rao considered the Fisher information of a family of densities as a Riemannian metric
on the space of parameters [Rao, 1945] and Skovgaard detailed all the properties of the
Fisher-Rao metric of the family of multivariate Gaussian densities [Skovgaard, 1984]. By
restriction to the family of centered multivariate Gaussian densities, we get the same metric
as Siegel’s scaled by a factor 1/2, namely gΣ(X, Y ) = 1

2tr(Σ−1XΣ−1Y ). In addition, Amari
and Nagaoka stated that the canonical immersion id : Σ ∈ Sym+(n) 7−→ Σ ∈ Sym(n) and
the inversion inv : Σ ∈ Sym+(n) 7−→ Σ−1 ∈ Sym(n) give two dual coordinate systems with
respect to this metric [Amari and Nagaoka, 2000].

Between 2005 and 2007, this metric was used in many computational methods for Dif-
fusion Tensor Imaging [Pennec et al., 2006, Lenglet et al., 2006, Fletcher and Joshi, 2007,
Moakher, 2005, Batchelor et al., 2005], in functional MRI [Varoquaux et al., 2010] and in
Brain-Computer Interfaces [Barachant et al., 2013]. It was claimed to be the unique affine-
invariant metric. However, Pennec showed that GL(n)-invariant metrics are characterized
by O(n)-invariant inner products on the tangent space at In, that is on symmetric matrices.
Hence from Theorem 4.5, there is actually a two-parameter family of affine-invariant metrics
[Pennec, 2009].

Definition 4.9 (Affine-invariant metrics on SPD matrices) An affine-invariant metric on
SPD matrices is a GL(n)-invariant Riemannian metric. It is of the following form for all
Σ ∈ Sym+(n) and X ∈ Sym(n):

g
A(α,β)
Σ (X,X) = α tr((Σ−1X)2) + β tr(Σ−1X)2, (4.8)

with (α, β) ∈ ST, i.e. α > 0 and β > −α/n. The Fisher-Rao metric often refers to the
affine-invariant metric with (α, β) = (1/2, 0). Moreover, given α > 0, this metric is the
pullback of the affine-invariant metric with β = 0 by the isometry fp,1 : Σ ∈ Sym+(n) 7−→
det(Σ) p−1

n Σ ∈ Sym+(n) with p =
»

α+nβ
α

.

The following proposition details the characteristics of homogeneity and symmetry of
these Riemannian metrics. The Riemannian operations, essentially due to Skovgaard [Skov-
gaard, 1984], are detailed in Table 4.5. The second term of the sectional curvature is part of
our contributions as it seems to be forgotten in [Skovgaard, 1984]. We prove the formula in
Section 11.3.

Proposition 4.10 (Riemannian symmetric structure of the affine-invariant metric) The Rie-
mannian manifold (Sym+(n), gA(α,β)) is a Riemannian symmetric space, hence it is geodesi-
cally complete. The underlying homogeneous space is GL+(n)/SO(n) and gA(α,β) is a quo-
tient metric obtained by the submersion π : A ∈ GL+(n) 7−→ AA> ∈ Sym+(n) from the
left-invariant metric GA(M,M) = 4α tr(A−1M(A−1M)>) + 4β tr(A−1M)2 for A ∈ GL+(n)
and M ∈ TAGL+(n). The symmetries are sΣ : Λ ∈ Sym+(n) 7−→ ΣΛ−1Σ ∈ Sym+(n).
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Metric gΣ(X,X) = α‖Σ−1X‖2
2 + β tr(Σ−1X)2

Squared distance d(Σ,Λ)2 = α‖ log(Σ−1/2ΛΣ−1/2)‖2
2 + β log(det(Σ−1Λ))2

Levi-Civita (∇XY )|Σ = (∂XY )|Σ − 1
2(XΣ−1Y + Y Σ−1X)

Curvature

The sectional curvature κ ∈ [−1/2α; 0]. More precisely,
the Riemann and sectional curvatures are:
RΣ(X, Y, Z, T ) = α

2 (XΣ−1Y Σ−1(ZΣ−1T−TΣ−1Z)Σ−1)
κΣ(Σ1/2Eβ

iiΣ1/2,Σ1/2Eβ
ijΣ1/2) = −1/4α for i 6= j

κΣ(Σ1/2Eβ
ijΣ1/2,Σ1/2Eβ

ikΣ1/2) = −1/8α for i 6= j 6= k 6= i

where Eβ
ij = Eij − 1−p

np
δijIn. Other terms are null.

Geodesics ∀t ∈ R, γ(Σ,X)(t) = Σ1/2 exp(tΣ−1/2XΣ−1/2)Σ1/2

Logarithm LogΣ(Λ) = Σ1/2 log(Σ−1/2ΛΣ−1/2)Σ1/2

Parallel transport
Depends on the curve. Along a geodesic:

ΠΣ→Λ :
ß
TΣSym+(n) −→ TΛSym+(n)

X 7−→ (ΛΣ−1)1/2X(Σ−1Λ)1/2

Table 4.5: Riemannian operations of affine-invariant metrics on SPD matrices.

Another metric that also provides a Riemannian symmetric structure on Sym+(n) was
used in [Su et al., 2012, Zhang et al., 2018]. It was introduced directly by the quotient
structure detailed in Proposition 4.10 but with the submersion

√
π : A ∈ GL+(n) 7−→√

AA> ∈ Sym+(n) based on the polar decomposition of A (and without the coefficient 4).
We called it the polar-affine metric in [Thanwerdas and Pennec, 2019b]. It is GL(n)-invariant
with respect to the action (A,Σ) ∈ GL(n)× Sym+(n) 7−→

√
AΣ2A> ∈ Sym+(n). Hence it is

O(n)-invariant in the usual sense. It is the pullback metric of the affine-invariant metric via
the square diffeomorphism pow2 : Σ 7−→ Σ2 [Thanwerdas and Pennec, 2019b].

4.3.4 Bures-Wasserstein metric
The L2-Wasserstein distance between multivariate centered Gaussian distributions is given
by d(Σ,Λ)2 = tr(Σ) + tr(Λ) − 2 tr((ΣΛ)1/2). It corresponds to the Procrustes distance be-
tween square-root matrices, namely d(Σ,Λ)2 = infU∈O(n) ‖Σ1/2 − Λ1/2U‖2

Frob. The second
order approximation of this squared distance defines a Riemannian metric called the Bures
metric (or the Helstrom metric) in quantum physics. All these viewpoints are explained in
details with modern notations in [Bhatia et al., 2019]. In particular, the expression of the
Riemannian metric is derived in [Bhatia et al., 2019] and we take it as a definition.

Definition 4.11 (Bures-Wasserstein metric) The Bures-Wasserstein metric is the Rieman-
nian metric associated to the Bures-Wasserstein distance. It is O(n)-invariant and given an
eigenvalue decomposition Σ = PDP> ∈ Sym+(n) with P ∈ O(n) and D = diag(d1, ..., dn)
and X = PX ′P>, its expression is:

gBW
Σ (X,X) = gBW

D (X ′, X ′) = 1
2
∑
i,j

1
di + dj

X ′2ij . (4.9)

The Bures-Wasserstein metric can also be expressed by means of the linear map SΣ :
Sym(n) −→ Sym(n) implicitly defined by the Sylvester equation X = ΣSΣ(X)+SΣ(X)Σ for
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X ∈ Sym(n). More explicitly with the previous notations, we have SΣ(X) = P
[

X′ij
di+dj

]
i,j
P>.

Then we have gBW
Σ (X, Y ) = 1

2tr(XSΣ(Y )) = tr(SΣ(X)ΣSΣ(Y )), where X, Y ∈ TΣSym+(n)
are canonically identified with dΣid(X), dΣid(Y ) ∈ Sym(n), as explained in the introduction.
This is a common expression in recent papers [Malagò et al., 2018, van Oostrum, 2020].
However, in [Takatsu, 2011] which is a reference paper on the Bures-Wasserstein metric,
Takatsu gives the expression gΣ(X, Y ) = tr(XΣY). The trick comes from the identification
SΣ(X) ≡ X ∈ Sym(n) that differs from the canonical one dΣid(X) ≡ X ∈ Sym(n). As
this could be confusing when the formula is written without this precision (and without bold
letters), we adopt the same formalism as in [Malagò et al., 2018, Bhatia et al., 2019, van
Oostrum, 2020].

Bundle GL(n)
Group action ρ : (A,U) ∈ GL(n)×O(n) 7−→ AU ∈ GL(n)
Submersion π : A ∈ GL(n) 7−→ Σ := AA> ∈ Sym+(n)
Vertical space VA = ker dAπ = Skew(n)A−>
Bundle metric GA(M,M) = tr(MM>)
Hor. space HA = V⊥GA = Sym(n)A

Hor. isometry (dAπ)|HA :
ß
HA = Sym(n)A −→ TΣSym+(n)
Xh = X0A 7−→ X = ΣX0 +X0Σ

Sym. lift X0 SΣ :
®
TΣSym+(n) −→ HIn = Sym(n)

X 7−→ X0 = PX0′P>withX0
ij
′ = X′ij

di+dj
Hor. lift Xh X ∈ TΣSym+(n) 7−→ Xh = X0A ∈ HA

Table 4.6: Quotient structure of the Bures-Wasserstein metric.

We recall the quotient structure of the Bures-Wasserstein metric [Bhatia et al., 2019] in
Table 4.6. The Riemannian operations are detailed in Table 4.7. Let us precise what was
known and what is new in Table 4.7.

The proofs of the formulae of the distance and the logarithm can be found in [Bhatia et al.,
2019]. The Levi-Civita connection and the exponential map were computed in [Malagò et al.,
2018]. We computed the Levi-Civita connection independently using a more geometric proof
that we provide in Section 11.3. We get a simpler formula.

Takatsu computed the curvature in [Takatsu, 2010] in a basis of vectors and gave a general
formula in [Takatsu, 2011]. However, we argued above that the notations of [Takatsu, 2011]
could be confusing because of the chosen identification. Moreover, the expression of the
curvature given there is a bit implicit since it is RΣ(X, Y,X, Y ) = 3

4tr((|Y,X]−S)Σ([Y,X]−
S)>) where S = SΣ([X, Y ]Σ + Σ[Y,X]) ∈ Sym(n). Therefore, we prove in Section 11.3
the compact and explicit formula provided in Table 4.7 using the same method: O’Neill’s
equations of submersions [O’Neill, 1966].

Finally, the geodesic parallel transport between commuting SPD matrices is new. The
proof is given in Section 11.3. We provide a new formulation of the equation of the parallel
transport between any two SPD matrices in the following proposition. It is used in the
Python package geomstats [Miolane et al., 2020a] to compute the parallel transport.

https://geomstats.github.io/
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Metric gΣ(X,X) = gΣ1/2(Xh, Xh) = 1
2
∑
i,j

1
di+djX

′2
ij

Squared distance d(Σ,Λ)2 = trΣ + trΛ− 2tr((ΣΛ)1/2)
Levi-Civita (∇XY )|Σ = (∂XY )|Σ − (X0ΣY 0 + Y 0ΣX0)

Curvature
The sectional curvature is non-negative.
More precisely RΣ(X, Y,X, Y ) = 3

2
∑
i,j

didj
di+dj

[
X0′, Y 0′]2

ij

where [V,W ] = VW −WV is the Lie bracket of matrices.

Geodesics

γ(Σ,X)(t) = Σ + tX + t2X0ΣX0 for t ∈ I where I depends
on λmax = max sp(X0) and λmin = min sp(X0) as follows:
• If λmin < 0 < λmax, then I = (−1/λmax,−1/λmin).
• If 0 6 λmin, then I = (−1/λmax,+∞).
• If λmax 6 0, then I = (−∞,−1/λmin).

Logarithm LogΣ(Λ) = (ΣΛ)1/2 + (ΛΣ)1/2 − 2Σ

Parallel transport

Depends on the curve. Along a geodesic between com-
muting matrices Σ = PDP> and Λ = P∆P>:

ΠΣ→Λ :
{
TΣSym+(n) −→ TΛSym+(n)

X 7−→ P
[√

δi+δj
di+dj [P

>XP ]ij
]
P>

Table 4.7: Riemannian operations of the Bures-Wasserstein metric on SPD matrices.

Proposition 4.12 (Parallel transport equation of Bures-Wasserstein metric) Let γ(t) the
geodesic between γ(0) = Σ and γ(1) = Λ, and a vector X ∈ TΣSym+(n). We denote
γh(t) = (1 − t)Σ1/2 + tΣ−1/2(Σ1/2ΛΣ1/2)1/2 the horizontal lift of the geodesic γ. The two
following statements are equivalent.

(i) The vector field X(t) defined along γ(t) is the parallel transport of X.

(ii) X(t) = γ(t)X0(t)+X0(t)γ(t) where X0(t) is a curve in Sym(n) satisfying the following
ODE:

γ(t)Ẋ0(t) + Ẋ0(t)γ(t) + γh(t)γ̇h>X0(t) +X0(t)γ̇hγh(t)> = 0. (4.10)

See the proof of Proposition 4.12 in Section 11.3.

Interestingly, this equation resembles the parallel transport equation on the Kendall shape
space, which is also a quotient space, derived in [Kim et al., 2021, Proposition 3.1].

4.3.5 Bogoliubov-Kubo-Mori metric
The Bogoliubov-Kubo-Mori metric is a Riemannian metric used in quantum physics [Petz and
Toth, 1993], given by gBKM

Σ (X,X) = tr(
∫∞
0 (Σ + t In)−1X(Σ + t In)−1Xdt). It can be seen as

the integration of the affine-invariant metric on a half-line included in the SPD cone. It can
be rewritten thanks to the differential of the logarithm and we take this other expression as
a definition.

Definition 4.13 (Bogoliubov-Kubo-Mori (BKM) metric) The Bogoliubov-Kubo-Mori metric
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is the O(n)-invariant Riemannian metric defined for Σ ∈ Sym+(n) and X ∈ TΣSym+(n) by:

gBKM
Σ (X,X) = tr(X dΣ log(X)). (4.11)

Important functions related to this metric are defined by [Michor et al., 2000] to get
simple expressions of the Levi-Civita connection and the curvature. Given Σ = PDP> ∈
Sym+(n), they define mij =

∫∞
0 (di + t)−1(dj + t)−1dt which is symmetric in (i, j) and mijk =∫∞

0 (di + t)−1(dj + t)−1(dk + t)−1dt which is symmetric in (i, j, k). They also denote gΣ(X) =
dΣ log(X) whose expression is gΣ(X) = P gD(X ′)P> and [gD(X ′)]ij = mijX

′
ij where X ′ =

P>XP . This gΣ is defined so that gΣ(X, Y ) = tr(X gΣ(Y )). By differentiating this equality
and using the definition of the BKM metric, they get the differential of Σ 7−→ gΣ:

dΣg(PFijP>)(PFklP>) = dDg(Fij)(Fkl)

= −1
2(δjkmiljFil + δjlmikjFik + δilmjkiFjk + δikmjliFjl),

or more compactly [dΣg(PXP>)(PXP>)]ij = −2∑n
k=1mijkXikXjk. The Levi-Civita con-

nection and the curvature can be expressed in closed forms by means of g and dg, as shown
in Table 4.8. Note that the sign of the sectional curvature is not known. The distance,
exponential, logarithm and parallel transport maps are not known either.

Metric gΣ(X,X) = tr(X dΣ log(X))
Levi-Civita (∇XY )|Σ = (∂XY )|Σ + 1

2g
−1
Σ (dΣg(X)(Y ))

Curvature RΣ(X, Y )Z = −1
4g
−1
Σ (dΣg(X)(g−1

Σ (dΣg(Y )(Z))))
+1

4g
−1
Σ (dΣg(Y )(g−1

Σ (dΣg(X)(Z))))

Table 4.8: Riemannian operations of the BKM metric on SPD matrices.

In this section, we reviewed five of the mainly used O(n)-invariant Riemannian metrics
and we contributed new formulae. We also highlighted that the O(n)-invariant Euclidean,
the O(n)-invariant log-Euclidean and the affine-invariant metrics are actually two-parameter
families of Riemannian metrics indexed by (α, β) ∈ ST while this extra term weighted by the
trace factor β is never defined in the literature for the Bures-Wasserstein and the Bogoliubov-
Kubo-Mori metrics. Actually, there does not seem to exist a natural way of extending them
with a trace term. Indeed, under the Bures-Wasserstein metric, there is a choice of an O(n)-
right-invariant inner product on GL(n) but they differ from O(n)-invariant inner products on
symmetric matrices given in Theorem 4.5. Indeed, any inner product on GL(n) of the form
〈X|X〉 = tr(X>SX) with S ∈ Sym+(n) is O(n)-right-invariant. As for the BKM metric,
we could change the inner product in the integral but after computation, we would obtain
this metric: α gBKM

Σ (X,X) + β
∑
i,j log[1](di, dj)X ′iiX ′jj. The fact that we cannot separate the

indices i and j in the trace term differs from the previous situations.
In the next section, we recall the definition of the class of kernel metrics [Hiai and Petz,

2009, Hiai and Petz, 2012] and a selection of its key properties. Since this class of Riemannian
metrics contains all the previously introduced metrics without trace term, we show that this
is the right framework to define the trace term extension. We show that this new class of
extended kernel metrics still satisfies the key results on kernel metrics we selected. We also
prove another property of these two classes: the stability under the cometric.
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4.4 The interpolating class of kernel metrics: new ob-
servations

Kernel metrics were introduced by Hiai and Petz in 2009 [Hiai and Petz, 2009]. It is a family
of O(n)-invariant metrics indexed by smooth bivariate functions φ : (R+)2 −→ R+ called
kernels. It has several key properties and it encompasses all the O(n)-invariant metrics
introduced in Section 4.3 without trace term (β = 0). After recalling these key results
(Section 4.4.1), we provide new observations on kernel metrics (Section 4.4.2), especially the
trace term extension and the stability under the cometric.

4.4.1 The general class of kernel metrics
Definition 4.14 (Kernel metrics, mean kernel metrics) [Hiai and Petz, 2009] A kernel metric
is an O(n)-invariant metric for which there is a smooth bivariate map φ : (R+)2 −→ R+ such
that gΣ(X,X) = gD(X ′, X ′) = ∑

i,j
1

φ(di,dj)X
′2
ij , where Σ = PDP> with P ∈ O(n) and

D = Diag(d1, ..., dn), and X = PX ′P>.
A mean kernel metric is a kernel metric characterized by a bivariate map φ of the form

φ(x, y) = am(x, y)θ where a > 0 is a positive coefficient, θ ∈ R is a homogeneity power and
m : (R+)2 −→ R+ is a symmetric homogeneous mean, that is:

1. symmetric, i.e. m(x, y) = m(y, x) for all x, y > 0,
2. homogeneous, i.e. m(λx, λy) = λm(x, y) for all λ, x, y > 0,
3. non-decreasing in both variables,
4. min(x, y) 6 m(x, y) 6 max(x, y) for all x, y > 0. It implies m(x, x) = x.

As the goal of this chapter is to extend the class of kernel metrics, we selected from [Hiai
and Petz, 2009, Hiai and Petz, 2012] the results that we found simple and powerful to be
able to generalize them later on. It would be interesting to study other properties such as
monotonicity and comparison properties but it is beyond our scope. Our selection of results
is in Proposition 4.15.

Proposition 4.15 (Key results on kernel metrics) [Hiai and Petz, 2009]

1. (Generality) The Euclidean, log-Euclidean and affine-invariant metrics without trace
term (β = 0), the polar-affine, the Bures-Wasserstein and the Bogoliubov-Kubo-Mori
metrics are mean kernel metrics. The kernels and the names of the corresponding
means are given in Table 4.9.

2. (Stability) The class of kernel metrics is stable under univariate diffeomorphisms. More
precisely, if g is a kernel metric with kernel function φ and if f is a univariate diffeo-
morphism (defined in Section 4.2.2), then the pullback metric f ∗g is a kernel metric
with bivariate function (x, y) 7−→ φ(f(x),f(y))

f [1](x,y)2 . Note that the class of mean kernel metrics
is not stable under univariate diffeomorphisms because of the non-decreasing property
required for mean kernel metrics.
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Metric φ(x, y) Mean m θ
Euclidean 1 Any mean 0

Log-Euclidean ( x−y
log(x)−log(y))

2 Logarithmic mean 2
Affine-invariant xy Geometric mean 2
Polar-affine ( 2xy

x+y )2 Harmonic mean 2
Bures-Wasserstein 4 x+y

2 Arithmetic mean 1
BKM x−y

log(x)−log(y) Logarithmic mean 1

Table 4.9: Bivariate functions of all the O(n)-invariant metrics of Section 4.3.

3. (Completeness) A mean kernel metric with homogeneity power θ is geodesically com-
plete if and only if θ = 2. Therefore this result provides a sufficient condition for kernel
metrics to be geodesically complete.

Another property that we left for a different reason is the attractivity of the Log-Euclidean
metric, i.e. the fact that the log-Euclidean metric is the limit when p tends to 0 of the pullback
of a kernel metric by a power diffeomorphism powp : Σ ∈ Sym+(n) 7−→ Σp ∈ Sym+(n), scaled
by 1

p2 . However, it is not specific to kernel metrics since this is the case for any metric g.

4.4.2 New observations on kernel metrics
4.4.2.1 Kernel metrics form a cone

The class of kernel metrics is a sub-cone of the cone of Riemannian metrics on the SPD
manifold. Indeed, it is stable by positive scaling and it is convex because if g, g′ are kernel
metrics associated to φ, φ′, then (1− t)g+ tg′ is a kernel metric associated to φφ′/((1− t)φ′+
tφ) > 0 for t ∈ [0, 1].

4.4.2.2 Cometric stability of the class of kernel metrics

A Riemannian metric g : TM × TM −→ R on a manifold M defines a cometric g∗ :
T ∗M × T ∗M −→ R defined for all covectors ω, ω′ ∈ T ∗M by g∗(ω, ω′) = ω(x′) where
x′ ∈ TM is the unique vector such that for all vectors x ∈ TM, g(x, x′) = ω′(x) (Riesz’s
theorem).

On the manifold of SPD matrices M = Sym+(n), we have a canonical identification of
TΣM with Sym(n) given by dΣid. Hence by duality, we also have a canonical identification
between T ∗ΣM and Sym(n)∗. So to identify TΣM with T ∗ΣM, we only need an identification
between Sym(n) and Sym(n)∗. This is provided by the Frobenius inner product. To sum-
marize, there is a natural identification between the tangent space and the cotangent space
given by: ß

TΣSym+(n) −→ T ∗ΣSym+(n)
X 7−→ (Y ∈ TΣSym+(n) 7−→ tr(dΣid(X)dΣid(Y ))) . (4.12)

Hence, a cometric on SPD matrices can be seen as a metric.
Back to kernel metrics, it is interesting to note that this class is stable under taking the

cometric and that the cometric has a simple expression.
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Proposition 4.16 (Cometric stability of kernel metrics) Let g be a kernel metric with kernel
function φ. Then the cometric g∗ seen as a metric through the identification explained above
is a kernel metric with kernel function φ∗ = 1/φ.

This elementary fact is interesting from a numerical point of view. Indeed, to com-
pute numerically the geodesics, one can either integrate the geodesic equation involving the
Christoffel symbols (which is of second order) or integrate its Hamiltonian version involving
the cometric (which is of first order). Hence, the fact that the cometric of a kernel metric
is available is a quite important result that appeared to be previously unnoticed. More pre-
cisely, the geodesic equation writes ẍk +Γkijẋiẋj = 0 where x(t) is a curve on the manifoldM
and Γkij are the Christoffel symbols related to the metric by Γkij = 1

2g
kl(∂igjl + ∂jgil − ∂lgij).

By considering a curve p(t) on the cotangent bundle T ∗M instead, and x(t) the curve on the
manifoldM such that p(t) ∈ T ∗x(t)M, the geodesic equation admits the following Hamiltonian
formulation: ®

ẋk = gklpl
ṗl = −1

2
∂gij

∂xl
pipj

. (4.13)

The Hamiltonian equation is often preferred to compute the geodesics numerically since the
integration is simpler and more stable. It only involves the cometric g∗ = (gij)i,j, which is
very easy to compute for a kernel metric. This is how geodesics are generically computed in
the python package geomstats for example.

4.4.2.3 Canonical Frobenius-like expression of a kernel metric

An expression of kernel metrics was given in [Hiai and Petz, 2009] by means of the operators
LΣ : X 7−→ ΣX, RΣ : X 7−→ XΣ and φ(LΣ,RΣ) : Sym(n) −→ Sym(n) defined for Σ =
PDP> ∈ Sym+(n) by φ(LΣ,RΣ)X = P

(
[φ(di, dj)]i,j ◦ (P>XP )

)
P>, where ◦ denotes the

Schur (entry-wise) product. This expression is gφΣ(X,X) = tr(Xφ(LΣ,RΣ)−1(X)). The
existence of the map Φ : Sym+(n) × Sym(n) −→ Sym(n) hidden in φ(LΣ,RΣ) := ΦΣ is
ensured by extending the O(n)-equivariant map Φ : Diag+(n)× Sym(n) −→ Sym(n) defined
by [ΦD(X)]ij = φ(di, dj)Xij. Indeed, one can easily check that Φ satisfies the two hypotheses
of Lemma 4.2. In this work, we even prefer to define the bivariate map ψ = φ−1/2 and define
in a analogous way the map Ψ : Sym+(n) × Sym(n) −→ Sym(n) so that we can write the
kernel metric with a suitable Frobenius-like expression:

gφΣ(X,X) = tr(ΨΣ(X)2). (4.14)

We can give explicitly Ψ in some particular cases:

1. Euclidean metric: ΨE
Σ(X) = X;

2. log-Euclidean metric: ΨLE
Σ (X) = dΣ log(X);

3. affine-invariant metric: ΨA
Σ(X) = Σ−1/2XΣ−1/2.

This is an important step towards the trace term extension.

https://geomstats.github.io/
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4.4.2.4 Kernel metrics with a trace term

The class of kernel metrics does not encompass the O(n)-invariant Euclidean, O(n)-invariant
log-Euclidean and affine-invariant metrics with a trace factor β 6= 0. However, thanks to the
previous canonical expression, we can define a natural extension of a kernel metric with a
trace term.

Definition 4.17 (Extended kernel metrics) Let gφ be a kernel metric associated to the
kernel function φ : (R+)2 −→ R+. We define the map ψ = φ−1/2 and the map Ψ : Sym+(n)×
Sym(n) −→ Sym(n) as described above so that gΣ(X,X) = tr(ΨΣ(X)2). We define a two-
parameter family which extends the kernel metric gφ for all Σ ∈ Sym+(n) and X ∈ Sym(n)
by:

gφ,α,βΣ (X,X) = α tr(ΨΣ(X)2) + β tr(ΨΣ(X))2, (4.15)

where (α, β) ∈ ST, i.e. α > 0 and α + nβ > 0.

We can apply this definition to the Bures-Wasserstein and the BKM metrics. One can
show that the trace term such defined is β tr(Σ−1/2X)2. Contrarily to the log-Euclidean and
the affine-invariant cases, there is no isometry a priori between two metrics of the family. It
is interesting to note that Propositions 4.15 and 4.16 are still valid for these extended kernel
metrics. We omit the proofs since they are analogous to the ones given for kernel metrics in
[Hiai and Petz, 2009].

Proposition 4.18 (Key results on extended kernel metrics)

1. (Generality) All the metrics in Section 4.3 are extended kernel metrics.

2. (Stability) The class of extended kernel metrics is stable under univariate diffeomor-
phisms and the transformation is the same as in Proposition 4.15.

3. (Completeness) An extended mean kernel metric with homogeneity power θ is geodesi-
cally complete if and only if θ = 2.

4. (Cometric) The class of extended kernel metrics is cometric-stable and the correspond-
ing transformation is (φ, α, β) 7−→ ( 1

φ
, 1
α
,− β

α(α+nβ)).

In this section, we recalled the definition of kernel metrics and three key properties. We
added the property of stability under the cometric with an explicit expression and we argued
that it is an interesting property from a numerical point of view to compute geodesics. We
found a wider class of metrics which satisfies the same key properties and which encompasses
all the O(n)-invariant metrics defined in Section 4.3. It is now tempting to look for wider
classes of O(n)-invariant metrics and to determine if these properties are still valid.

In the next section, we characterize O(n)-invariant metrics by means of three multivariate
functions satisfying conditions of symmetry, compatibility and positivity. This result allows
to understand better the specificity of kernel metrics and extended kernel metrics within the
whole class of O(n)-invariant metrics. Then we give a counterpart of Proposition 4.18 and
we propose a new intermediate class of O(n)-invariant metrics which is cometric stable.
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4.5 Characterization of O(n)-invariant metrics
In this section, we give a characterization of O(n)-invariant metrics on SPD matrices. We
present it as an extension of Theorem 4.5 characterizing O(n)-invariant inner products on
symmetric matrices. Instead of two parameters α, β which satisfy a positivity condition, an
O(n)-invariant metric is characterized by three multivariate functions α, β, γ : (R+)n −→ R
which satisfy a positivity condition plus a symmetry condition and a compatibility condition.
This is explained in Section 4.5.1. We also give two corollary results which characterize
two subclasses of O(n)-invariant metrics with additional invariances: scaling invariance and
inverse-consistency. Section 4.5.2 is dedicated to the proof of the theorem. In Section 4.5.3,
we reinterpret kernel metrics in light of the theorem. In Section 4.5.4, we give key results on
O(n)-invariant metrics and we compare them to those on kernel metrics given in Proposition
4.15. In particular, we state that the cometric can be difficult to compute. Hence in Section
4.5.5, we introduce the class of bivariate separable metrics which is an intermediate class
between O(n)-invariant and extended kernel metrics, which is cometric-stable and for which
the cometric is known in closed-form.

4.5.1 Theorem and corollaries
Let us rephrase the characterization of O(n)-invariant inner products on Sym(n) (Theorem
4.5). An inner product 〈·|·〉 on Sym(n) is O(n)-invariant if and only if there exist real numbers
γ, α > 0 and β ∈ R such that:

〈X|X〉 = γ
∑
i

X2
ii + α

∑
i 6=j

X2
ij + β

∑
i 6=j

XiiXjj, (4.16)

1. (Compatibility) γ = α + β,
2. (Positivity) the symmetric matrix S defined by Sii = γ and Sij = β is positive definite.

The characterization of O(n)-invariant metrics on Sym+(n) has an analogous form where real
numbers are replaced by n-multivariate functions and where there is an additional property
of symmetry of these functions. We introduce this notion of symmetry before stating the
theorem. The proof is in Section 4.5.2.

Definition 4.19 ((k, n − k)-symmetric functions) We say that a function f : (R+)n −→ R
is (k, n − k)-symmetric if it is symmetric in its k first variables and symmetric in its n − k
last variables. In other words, f is invariant under permutations σ = σ1σ2 where σ1 has
support in {1, ..., k} and σ2 has support in {k + 1, ..., n}. Hence, given a set I ⊆ {1, ..., n}
of cardinal k and d ∈ (R+)n, we denote f(di∈I , di/∈I) := f(σ · d) where σ({1, ..., k}) = I and
(σ · d)i = dσ(i).

Theorem 4.20 (Characterization of O(n)-invariant metrics) Let g be a Riemannian metric
on Sym+(n). If g is O(n)-invariant, then there exist three maps γ, α : (R+)n −→ R+ and
β : (R+)n −→ R such that for all Σ = PDP> ∈ Sym+(n) and X = PX ′P> ∈ TΣSym+(n):

gΣ(X,X) = gD(X ′, X ′) (4.17)
=
∑
i

γ(di, dk 6=i)X ′2ii +
∑
i 6=j

α(di, dj, dk 6=i,j)X ′2ij +
∑
i 6=j

β(di, dj, dk 6=i,j)X ′iiX ′jj,
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0. (Symmetry) γ is (1, n− 1)-symmetric and α, β are (2, n− 2)-symmetric,
1. (Compatibility) γ equals α + β on the set D = {d ∈ (R+)n|d1 = d2},
2. (Positivity) for all d ∈ (R+)n, the symmetric matrix S(d) defined by Sii(d) = γ(di, dk 6=i)

and Sij(d) = β(di, dj, dk 6=i,j) is positive definite.

Conversely, if there exist such maps α, β, γ, then Equation (4.17) correctly defines an O(n)-
invariant Riemannian metric that we denote gα,β,γ or equivalently gα,S.
Moreover, g is continuous if and only if α, β, γ are continuous.

Before giving the proof, we observe that this theorem allows to characterize subclasses of
O(n)-invariant metrics as well. Here we give the general form of O(n)-invariant metrics that
are invariant under scaling and under inversion respectively. We omit the proof.

Proposition 4.21 (Characterizations of subclasses of O(n)-invariant metrics) Let g be an
O(n)-invariant metric characterized by the maps α, β, γ.

1. g is invariant under scaling if and only if f(λd) = 1
λ2f(d) for f ∈ {α, β, γ}, for all

d ∈ (R+)n and for all λ > 0.

2. g is invariant under inversion if and only if γ(d−1
1 , ..., d−1

n ) = d4
1 γ(d1, ..., dn) and f(d−1

1 , ..., d−1
n ) =

d2
1d

2
2 f(d1, ..., dn) for f ∈ {α, β}, for all d ∈ (R+)n.

4.5.2 Proof of the theorem
Proof of Theorem 4.20 (Characterization of O(n)-invariant metrics). Let g be an O(n)-invariant
metric on Sym+(n). Since any diagonal matrix D is invariant under the subgroup D±(n),
the inner product gD is D±(n)-invariant. Hence, Lemma 4.6 (a) ensures that there are
positive coefficients αij(D) = αji(D) and a matrix S(D) ∈ Sym+(n) s.t. gD(X,X) =∑
i 6=j αij(D)X2

ij +∑
i,j Sij(D)XiiXjj. Then, we define the three maps:

· α : d ∈ (R+)n 7−→ α12(Diag(d)) > 0,

· β : d ∈ (R+)n 7−→ S12(Diag(d)),

· γ : d ∈ (R+)n 7−→ S11(Diag(d)) > 0.

Following the same idea as in the proof of Lemma 4.6 (b), we use the invariance under
permutations since Diag+(n) is stable under this action. Then, one easily checks that α, β
are (2, n − 2)-symmetric and γ is (1, n − 1)-symmetric and that we can express the other
coefficients in function of α, β, γ by permuting the di’s. We get for i 6= j:

· αij(Diag(d)) = α(di, dj, dk 6=i,j),

· Sij(Diag(d)) = β(di, dj, dk 6=i,j),

· Sii(Diag(d)) = γ(di, dk 6=i).
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So we get the expression (4.17), the symmetry and the positivity conditions. We only miss the
compatibility condition so let d = (d1, ..., dn) ∈ (R+)n such that d1 = d2. Since D = Diag(d)
is stable under any block-diagonal orthogonal matrix R = Diag(Rθ, In−2) ∈ O(n) with Rθ ∈
O(2), with the same computations as in the proof of Theorem 4.5, we get γ(d) = α(d)+β(d).

Conversely, if α, β, γ are three maps satisfying the conditions of symmetry, compatibil-
ity and positivity, then we define gD(X,X) = ∑

i γ(di, dk 6=i)X2
ii + ∑

i 6=j α(di, dj, dk 6=i,j)X2
ij +∑

i 6=j β(di, dj, dk 6=i,j)XiiXjj. In other words, we define a map g : Diag+(n) × Sym(n) ×
Sym(n) −→ R and we would like to extend it by defining gPDP>(X,X) = gD(P>XP,P>XP ).
According to Lemma 4.2, we have two cases to study. One can easily show that the first condi-
tion with permutations is satisfied. The non-trivial condition is the second one, involving a di-
agonal matrix D = Diag(λ1Im1 , ..., λpImp) with sorted diagonal values λ1 > ... > λp > 0 and a
block-diagonal orthogonal matrix R = Diag(R1, ..., Rp) ∈ O(n) with Rk ∈ O(mk). So we have
to show that gD(R>XR,R>XR) = gD(X,X) for all matrix X ∈ Sym(n), since R>DR = D.
We denote X̄kl ∈ Mat(mk,ml) the (k, l) block matrix defined by X̄kl

ij = Xnk−1+i,nl−1+j where
nk = ∑k

j=1 mj. Note that X̄kk ∈ Sym(mk) is the k-th diagonal block of X and X̄ lk = (X̄kl)>.
Therefore R>XRkl = R>k X̄

klRl. In the following, we split the sums between the blocks with
multiplicity 1 and the blocks with higher multiplicity and we use the compatibility condi-
tion. The notation α(λk, λl, ...) stands for α(di, dj, dm6=i,j) where λk = di and λl = dj, i.e.
nk−1 + 1 6 i 6 nk and nl−1 + 1 6 j 6 nl. We compute the difference:

gD(R>XR,R>XR)− gD(X,X)
=

∑
k:mk=1

γ(dnk , dm6=nk)((R>XR)2
nknk
−X2

nknk
)︸ ︷︷ ︸

0

+
∑
k 6=l

mk=ml=1

α(λk, λl, ...)((R>XR)2
nknl
−X2

nknl
)︸ ︷︷ ︸

0

+
∑
k 6=l

mk=ml=1

β(λk, λl, ...)((R>XR)nknk(R>XR)nlnl −XnknkXnlnl)︸ ︷︷ ︸
0

+
∑

k:mk>1
γ(λk, λk, ...)︸ ︷︷ ︸

α(λk,λk,...)+β(λk,λk,...)

nk∑
i=nk−1+1

((R>XR)2
ii −X2

ii)

+
∑
k,l

mk orml>1

α(λk, λl, ...)
∑

nk−1+16i6nk
nl−1+16j6nl

i 6=j

((R>XR)2
ij −X2

ij)

+
∑
k,l

mk orml>1

β(λk, λl, ...)
∑

nk−1+16i6nk
nl−1+16j6nl

i 6=j

((R>XR)ii(R>XR)jj −XiiXjj).

Hence the missing term i = j in the two last sums is provided by the sum weighted by γ.
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After a change of indexes based on the equality R>XRkl = R>k X̄
klRl, we get:

gD(R>XR,R>XR)− gD(X,X)

=
∑
k,l

mk orml>1

α(λk, λl, ...)
mk∑
i=1

ml∑
j=1

((R>k X̄klRl)2
ij − (X̄kl)2

ij)︸ ︷︷ ︸
tr(R>

k
X̄klRl(R>k X̄klRl)>)−tr(X̄kl(X̄kl)>)=0

+
∑
k,l

mk orml>1

β(λk, λl, ...)
mk∑
i=1

ml∑
j=1

((R>k X̄kkRk)ii(R>l X̄ llRl)jj − X̄kk
ii X̄

ll
jj)︸ ︷︷ ︸

tr(R>
k
X̄kkRk)tr(R>

l
X̄llRl)−tr(X̄kk)tr(X̄ll)=0

= 0.

This proves that gΣ is well defined for all Σ ∈ Sym+(n) and O(n)-invariant by construc-
tion. The positivity condition ensures that g is a metric.

Finally, it is clear that α, β, γ have at least the same regularity as the metric g since they
are coordinates of the map D ∈ Diag+(n) 7−→ gD. By Theorem 2.18, if α, β, γ are continuous,
then the metric g is continuous.

The smoothness seems to be more complicated to study. We suspect additional conditions
of compatibility on the derivatives of the smooth maps α, β, γ at the singular set of SPD
matrices with repeated eigenvalues in order to make the metric g is smooth.

4.5.3 Reinterpretation of kernel metrics
Theorem 4.20 allows to reinterpret kernel metrics. The curiosity of this theorem is the
function γ because we have no information on it as soon as the di’s are distinct. If α, β, γ
do not depend on their n − 2 last arguments, i.e. if they are bivariate, then γ does not
depend on its second argument and γ(d1) must be equal to α(d1, d1) + β(d1, d1). Hence
gΣ(X,X) = ∑

i,j α(di, dj)X ′2ij +∑i,j β(di, dj)X ′iiX ′jj with α > 0 and α+nβ > 0, which is much
more tractable. Moreover, if β = 0, then the quadratic form has a diagonal expression (sum
of squares X ′2ij , no mixed terms X ′iiX ′jj) in the basis of matrices induced by the orthogonal
matrix P ∈ O(n) in the eigenvalue decomposition of Σ. In this case, we say that the metric
is ortho-diagonal.

To sum up, the subclass of kernel metrics has two fundamental properties: it is bivariate
(α = γ − β = 1/φ) and ortho-diagonal (β = 0). This is the reason why we propose to
designate kernel (resp. mean kernel) metrics as Bivariate Ortho-Diagonal or BOD metrics
(resp. Mean Ortho-Diagonal or MOD metrics), as summarized in Table 4.10. We say that
the metric is Bivariate Ortho-ST when it is the extension by Definition 4.17 of a Bivariate
Ortho-Diagonal metric with the Scaling and Trace factors α > 0 and β > −α/n. Hence, the
extended (mean) kernel metrics can also be designated as BOST (and MOST) metrics.

4.5.4 Key results on O(n)-invariant metrics
In Section 4.4, we gave four key results on BOD/MOD metrics in Propositions 4.15 and
4.16, and four key results on BOST/MOST metrics in Proposition 4.18. Here we give the
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Previous description New designation
Kernel metric BOD metric

Mean kernel metric MOD metric
Extended kernel metric BOST metric

Extended mean kernel metric MOST metric

Table 4.10: Name correspondences for kernel metrics and sub/super-classes.

counterpart of these propositions for O(n)-invariant metrics.

Proposition 4.22 (Key results on O(n)-invariant metrics)
1. (Generality) The class of O(n)-invariant metrics obviously contains the classes of BOD,

MOD, BOST, MOST metrics, hence it contains all the metrics in Section 4.3.
2. (Stability) The class of O(n)-invariant metrics is obviously stable by O(n)-equivariant

diffeomorphisms of Sym+(n). Hence it is stable by univariate diffeomorphisms f :
Sym+(n) −→ Sym+(n) and in this case, the pullback metric f ∗gα,β,γ is characterized
by the three maps:

(a) αf : d ∈ (R+)n 7−→ α(f(d))
f [1](d1,d2)2 ,

(b) βf : d ∈ (R+)n 7−→ β(f(d))
f [1](d1,d2)2 ,

(c) γf : d ∈ (R+)n 7−→ γ(f(d))
f ′(d1)2 .

3. (Completeness) Let g = gα,β,γ be an O(n)-invariant metric. We assume that α, β, γ
satisfy a homogeneity property which is similar to the one assumed for mean kernel
metrics: there exists θ ∈ R such that for f ∈ {α, β, γ}, x ∈ (R+)n and λ > 0, we have
f(λx) = λ−θf(x). If the metric g is geodesically complete, then θ = 2.

4. (Cometric) The class of O(n)-invariant metrics is obviously cometric-stable. The co-
metric is characterized by α∗ = 1/α and S∗ = S−1 where S(d) ∈ Sym+(n) is defined
by Sij(d) = β(di, dj, dk 6=i,j) and Sii(d) = γ(di, dk 6=i) for all d ∈ R+ and i 6= j.

We omit the proof since it consists in elementary verifications for all but the third state-
ment, whose proof is analogous to the one given in [Hiai and Petz, 2009].

About completeness, the result is much weaker for general O(n)-invariant metrics. In-
deed, we lost the converse implication: “if θ = 2, then the metric is geodesically complete”.
According to the proof of [Hiai and Petz, 2009], the key element to prove this converse impli-
cation is exactly the bivariance, plus the fact that a symmetric homogeneous mean satisfies
m(x, x) = x. It is worth noticing that θ = 2 is still necessary though.

About the cometric, we lost the closed-form expression we had for BOD and BOST
metrics. Computing the cometric is numerically quite heavy in general because it is equivalent
to invert the matrix S(d) for all d ∈ (R+)n. However, note that when β = 0, the cometric is
obviously given by the triple (1/α, 0, 1/γ). These ortho-diagonal metrics can be seen as the
multivariate generalization of BOD metrics. In the next section, we give a cometric-stable
extension of the class of BOST metrics for which the cometric can be computed in closed
form: the class of bivariate separable metrics.
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4.5.5 Bivariate separable metrics
We argued in Section 4.5.3 that bivariate metrics are of the form gΣ(X,X) = ∑

i,j α(di, dj)X ′2ij+∑
i,j β(di, dj)X ′iiX ′jj with α > 0 and α + nβ > 0. Then, the first term corresponds to a

BOD metric and it can be rewritten tr(ΨΣ(X)2), but it is still difficult to write the sec-
ond term in a more compact way. If the function β is separable, i.e. if β can be written
β(x, y) = ψ(1)(x)ψ(2)(y), then the second term is simply tr(Ψ(1)

Σ (X))tr(Ψ(2)
Σ (X)). Indeed, we

can define Ψ(k)
D (X) = Diag(ψ(k)(di)Xii) and extend it into Ψ(k)

Σ as explained in Section 4.4.2.3.
In particular, BOST metrics correspond to the case when β(x, y) = λ

√
α(x, x)α(y, y) with

1 +nλ > 0. The wider class of bivariate separable metrics is actually cometric-stable and the
cometric can be computed quite easily. This is stated in Proposition 4.23.

Proposition 4.23 (Cometric of bivariate separable metrics) Let ψ : (R+)2 −→ R+ be a
symmetric map and let ψ(1), ψ(2) : R+ −→ R+ be two maps on positive real numbers. As
explained above, we define their extensions Ψ,Ψ(1),Ψ(2) : Sym+(n) × Sym(n) −→ Sym(n).
The quadratic form defined by gΣ(X,X) = tr(ΨΣ(X)2) + tr(Ψ(1)

Σ (X))tr(Ψ(2)
Σ (X)) automati-

cally satisfies the symmetry and compatibility conditions of Theorem 4.20. Then g is positive
definite if and only if the vectors x = x(d) =

Ä
ψ(1)(di)
ψ(di,di)

ä
16i6n

and y = y(d) =
Ä
ψ(2)(di)
ψ(di,di)

ä
16i6n

satisfy the inequality ‖x‖‖y‖ − 〈x|y〉 < 2 for all d ∈ (R+)n.
In this case, we say that g is a Bivariate Separable metric. As an O(n)-invariant metric,

it is characterized by α(d) = ψ(d1, d2)2 and the matrix S = S(d) = ∆(In + 1
2(xy> + yx>))∆

with ∆ = Diag(ψ(di, di)). This class of metrics is cometric-stable. If x = 0 or y = 0, the
cometric at Σ is simply characterized by S−1 = ∆−2. Otherwise, the cometric is given by:

S−1 = ∆−1
ï
In −

1
4c(2 + 〈x|y〉)(xy> + yx>) + 1

4c(‖y‖2xx> + ‖x‖2yy>)
ò

∆−1, (4.18)

with c = 1 + 〈x|y〉 − 1
4(‖x‖2‖y‖2 − 〈x|y〉2) > 0.

Proof of Proposition 4.23. To determine when g is a metric, we express the functions α, β, γ, S
of Theorem 4.20 in function of ψ, ψ(1), ψ(2):

1. α(d1, ..., dn) = ψ(d1, d2)2 > 0,

2. β(d1, ..., dn) = 1
2(ψ(1)(d1)ψ(2)(d2) + ψ(1)(d2)ψ(2)(d1)),

3. γ(d1, ..., dn) = ψ(d1, d1)2 + ψ(1)(d1)ψ2(d1),

4. hence Sij(d) = ∆2
ij + 1

2(ψ(1)(di)ψ(2)(dj) + ψ(2)(di)ψ(1)(dj)), so we have S = ∆(In +
1
2(xy> + yx>))∆ with the notations of the proposition.

The symmetry and compatibility conditions of Theorem 4.20 are trivially satisfied. The
positivity condition reduces to S ∈ Sym+(n), i.e. In + 1

2(xy> + yx>) ∈ Sym+(n). As the
eigenvalues ofM = xy>+yx> are 0 (with multiplicity n−2) and 〈x|y〉±‖x‖‖y‖, S is positive
definite if and only if 2 + 〈x|y〉 ± ‖x‖‖y‖ > 0. But 〈x|y〉 + ‖x‖‖y‖ > 0 so there is only one
condition: 2 > ‖x‖‖y‖ − 〈x|y〉(> 0), as announced.

Now, we want to compute S−1. If x = 0 or y = 0, the result is obvious so we assume that
x, y 6= 0. AsM is of rank 2 at most, there exists a polynomial P of degree 3 at most such that



Chapter 4. O(n)-invariant Riemannian metrics 93

P (In + 1
2M) = 0. Let us find such a polynomial to compute S−1. Since M2 = 〈x|y〉M + N

with N = ‖y‖2xx> + ‖x‖2yy> and NM = ‖x‖2‖y‖2M + 〈x|y〉N , we have:Å
In + 1

2M
ã2

= In +
Å

1 + 〈x|y〉4

ã
M + 1

4N,Å
In + 1

2M
ã3

=
Å
In + 1

2M
ã2

+ 1
2

Å
In + 1

2M
ã2
M

=
Å
In + 1

2M
ã2

+ 1
2M + 1

2

Å
1 + 〈x|y〉4

ã
M2 + 1

8NM

=
Å
In + 1

2M
ã2

+ 4 + 4〈x|y〉+ 〈x|y〉2 + ‖x‖2‖y‖2

8 M + 1
4(2 + 〈x|y〉)N

= a

Å
In + 1

2M
ã2

+ b

2M − (2 + 〈x|y〉)In

= a

Å
In + 1

2M
ã2

+ b

Å
In + 1

2M
ã

+ c In,

with


a = 3 + 〈x|y〉
b = −12−8〈x|y〉−〈x|y〉2+‖x‖2‖y‖2

4
c = 1 + 〈x|y〉+ 〈x|y〉2−‖x‖2‖y‖2

4 = 1− a− b > 0
. Indeed, c > 1 + 〈x|y〉 − 1

2(‖x‖‖y‖+

〈x|y〉) = 1 − 1
2(‖x‖‖y‖ − 〈x|y〉) > 0. Hence, denoting S0 := In + 1

2M , we have S−1
0 =

1
c

(S2
0 − aS0 − bIn) = In+ 1

4c(N−(2+〈x|y〉)M) and S−1 = ∆−1 (In + 1
4c(N − (2 + 〈x|y〉)M)

)
∆−1

which is exactly Equation (4.18).
Finally, we want to prove that the cometric is bivariate separable. Regarding Equation

(4.18), we look for x′ = Ax+By
4c and y′ = Cx+Dy for A,B,C,D ∈ R such that:

x′y′> + y′x′> = − 1
2c(2 + 〈x|y〉)(xy> + yx>) + 1

2c(‖y‖2xx> + ‖x‖2yy>) (4.19)

It is satisfied if AC = ‖y‖2, BD = ‖x‖2 and AD + BC = −2(2 + 〈x|y〉), or equivalently
(AX+B)(CX+D) = ‖y‖2X2−2(2+〈x|y〉)X+‖x‖2. This is a second-order polynomial with
roots λ = 2+〈x|y〉+

√
δ

‖y‖2 and µ = 2+〈x|y〉−
√
δ

‖y‖2 where δ = (2+〈x|y〉+‖x‖‖y‖)(2+〈x|y〉−‖x‖‖y‖) > 0
is the discriminant. Hence, it suffices to define A = ‖y‖, B = −λ‖y‖, C = ‖y‖ and
D = −µ‖y‖, so that S−1 = ∆−1 (In + 1

2(x′y′> + y′x′>)
)

∆−1. Hence, the cometric is bivariate
separable and this class of metrics is cometric-stable.

4.6 Conclusion
To encompass all the O(n)-invariant metrics summarized in Section 4.3, including the ones
with a trace term (β 6= 0), we defined the class of extended kernel metrics. This class sat-
isfies the key results of stability and completeness we selected from [Hiai and Petz, 2009]
plus the cometric-stability with cometric in closed form, which is important to compute
geodesics numerically via the Hamiltonian formulation. Then, from the characterization of
O(n)-invariant metrics in terms of three continuous maps α, β, γ : (R+)n −→ R+ satisfy-
ing properties of symmetry, compatibility and positivity, we were able to characterize kernel
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metrics as Bivariate Ortho-Diagonal (BOD) metrics. Among the key results on mean kernel
metrics, the sufficient condition of completeness and the closed-form expression of the comet-
ric disappear for general O(n)-invariant metrics. We finally defined the intermediate class of
bivariate separable metrics which is cometric-stable and for which the cometric has a simple
expression.

Since kernel metrics encompass very different metrics regarding curvature and complete-
ness, it would be nice to introduce some more requirements on metrics to perform the opposite
work of defining principled sub-classes of (mean) kernel metrics. In the next chapter, we pro-
pose some principled subfamilies of kernel metrics. It would also be interesting to rely on
the cometric-stability of kernel metrics or super-classes to effectively compute the geodesics
numerically and to investigate their properties regarding statistical analyses.

Another interesting direction would be to consider other properties of kernel metrics that
were described in [Hiai and Petz, 2009], namely monotonicity and comparison properties. It
would be challenging to understand how they could be generalized to BOST metrics or even
to O(n)-invariant metrics. Furthermore, to our knowledge there is no trace of families of
non O(n)-invariant metrics in the literature. However, there exist some situations where the
O(n)-invariance is not relevant, for example on correlation matrices because the space is not
stable under this group action. This is investigated in Part IV.
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Chapter 5

Geometry of Mixed-Euclidean metrics

Abstract
Several Riemannian metrics and families of Riemannian metrics were defined on the manifold of
Symmetric Positive Definite (SPD) matrices. Firstly, we formalize a common general process to
define families of metrics: the principle of deformed metrics. We relate the recently introduced
family of alpha-Procrustes metrics to the general class of mean kernel metrics by providing a suffi-
cient condition under which elements of the former belongs to the latter. Secondly, we focus on the
principle of balanced bilinear forms that we recently introduced. We give a new sufficient condition
under which the balanced bilinear form is a metric. It allows us to introduce the Mixed-Euclidean
(ME) metrics which generalize the Mixed-Power-Euclidean (MPE) metrics. We unveal their link
with the (u, v)-divergences and the (α, β)-divergences of information geometry and we provide an
explicit formula of the Riemann curvature tensor. We show that the sectional curvature of all ME
metrics can take negative values and we show experimentally that the sectional curvature of all
MPE metrics but the log-Euclidean, power-Euclidean and power-affine metrics can take positive
values.

This chapter was published in the journal Differential Geometry and its Applications in
April 2022 under the title “The geometry of mixed-Euclidean metrics on symmetric positive
definite matrices” [Thanwerdas and Pennec, 2022a]. All the proofs, originally in appendix of
the paper, are deferred to Section 11.4.

5.1 Introduction
The convex cone of Symmetric Positive Definite (SPD) matrices is a manifold on which
several Riemannian metrics were defined: Euclidean, Fisher-Rao/affine-invariant [Skovgaard,
1984, Amari and Nagaoka, 2000, Moakher, 2005, Pennec et al., 2006, Lenglet et al., 2006,
Fletcher and Joshi, 2007], log-Euclidean [Arsigny et al., 2006], Bures-Wasserstein [Dowson
and Landau, 1982, Olkin and Pukelsheim, 1982, Dryden et al., 2009, Takatsu, 2010, Takatsu,
2011, Bhatia et al., 2019], Bogoliubov-Kubo-Mori [Petz and Toth, 1993, Michor et al., 2000],
log-Cholesky [Lin, 2019], etc. Several families of metrics encompassing them were defined
to understand their common properties, their differences and the level of generality of each
property: kernel metrics and mean kernel metrics [Hiai and Petz, 2009, Hiai and Petz, 2012],
power-Euclidean [Dryden et al., 2010], alpha-Procrustes [Hà Quang, 2019], deformed-affine
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[Thanwerdas and Pennec, 2019b], mixed-power-Euclidean [Thanwerdas and Pennec, 2019a],
extended kernel metrics, bivariate separable metrics [Thanwerdas and Pennec, 2022b], etc.
In particular, kernel metrics form a very general family of O(n)-invariant metrics indexed by
kernel maps φ : (0,∞)2 −→ (0,∞) acting on the eigenvalues of SPD matrices. This family
contains many O(n)-invariant metrics and it has good stability properties. The subclass of
mean kernel metrics, for which the kernel maps have monotonicity properties, is interesting
because it provides a necessary and sufficient condition for geodesic completeness. Hence,
kernel metrics and mean kernel metrics appear as sufficiently general families with interesting
properties so it is a natural framework to work in. However, this class contains metrics with
very different geometries so it motivates us to define subfamilies of metrics which share more
geometric properties with one another.

In previous works, we introduced two principles for building families of Riemannian met-
rics that share interesting properties: the principle of deformed metrics [Thanwerdas and Pen-
nec, 2019b] and the principle of balanced bilinear forms [Thanwerdas and Pennec, 2019a].
Deforming metrics (or datasets of SPD matrices) via a diffeomorphism is a very common
procedure to define families of metrics. In particular, kernel metrics are stable by univari-
ate diffeomorphisms, those which are characterized by their action on eigenvalues. However,
mean kernel metrics are not stable by all univariate diffeomorphisms because of the mono-
tonicity requirement. In this work, we gather many constructions of deformed metrics and
we contribute a sufficient condition under which alpha-Procrustes metrics are mean kernel
metrics.

The balanced bilinear form of two flat metrics is defined by composing the Frobenius in-
ner product with the parallel transport of each flat metric [Thanwerdas and Pennec, 2019a].
When the bilinear form is a metric, it forms a dually-flat manifold along with the two flat
Levi-Civita connections of the flat metrics. In the case where the two flat metrics are power-
Euclidean metrics, the balanced bilinear form is a metric called the mixed-power-Euclidean
metric. In this work, we give a new sufficient condition for a balanced bilinear form to be
a metric, namely that the flat metrics are univariately-deformed-Euclidean metrics, which
allows to define the new family of Mixed-Euclidean metrics. Then, we provide the geomet-
ric operations of Mixed-Euclidean metrics regarding information geometry and Riemannian
geometry. In particular, our main contributions are on the one hand the link we establish
between Mixed-Euclidean/Mixed-Power-Euclidean metrics and the (u, v)/(α, β)-divergences
of information geometry, and on the other hand the expression of the Riemann curvature
tensor of Mixed-Euclidean metrics.

In Section 5.2, we present our notations and the preliminary concepts of univariate maps
and kernel metrics. In Section 5.3, we study deformed metrics and we relate the family of
alpha-Procrustes metrics to the class of mean kernel metrics. In Section 5.4, we recall the
main concepts of information geometry, we state the principle of balanced bilinear forms and
we explain the relation between the two. In Section 5.5, we introduce the new family of Mixed-
Euclidean metrics and we study its geometry. We conclude and discuss some perspectives in
Section 5.6. The proofs of the results are presented in appendix.



Chapter 5. Geometry of Mixed-Euclidean metrics 97

5.2 Notations and preliminary concepts
Section 5.2 partly summarizes Chapter 4 to allow Chapter 5 to be read independently. The
skilled reader may, after a glance at the definition of the second divided difference (Definition
5.2), skip this part to resume at Section 5.3.

In this section, we introduce some notations and we recall two concepts that are used
throughout the chapter. The first one is the concept of univariate map on SPD matrices: it
is a map acting on the eigenvalues, such as the symmetric matrix logarithm or the power
maps. The successive differentials of smooth univariate maps can be expressed in closed form
modulo eigenvalue decomposition thanks to the functions called divided differences [Bhatia,
1997]. This main advantage explains why they are ubiquitous as indexing collections of
families of metrics. Secondly, we recall the main facts about classes of kernel and mean
kernel metrics introduced in [Hiai and Petz, 2009, Hiai and Petz, 2012].

5.2.1 Notations
We denote Sym(n) the vector space of real symmetric matrices of size n, Sym+(n) the man-
ifold of SPD matrices, O(n) the orthogonal group, Diag+(n) the group of positive diagonal
matrices.

On the manifold Sym+(n), we denote TΣSym+(n) the tangent space at Σ ∈ Sym+(n).
Given a metric gI on the manifold Sym+(n) where I is any index characterizing the metric,
we denote ∇I its Levi-Civita connection, RI the Riemann curvature tensor, T I the torsion
tensor, ΠI the parallel transport. We omit the index when the context is clear.

Given a matrixM , we denoteMij or [M ]ij the (i, j)-th coefficient ofM . Given coefficients
(Mij)16i,j6n ∈ Rn2 , we denote [Mij]i,j the matrix with (i, j)-th entry Mij. Given (d1, ..., dn) ∈
Rn, we denote diag(d1, ..., dn) the corresponding diagonal matrix.

We recall that exp : Σ ∈ Sym(n) 7−→ ∑+∞
k=0

1
k!Σ

k ∈ Sym+(n) is a diffeomorphism whose
inverse is the symmetric matrix logarithm denoted log : Sym+(n) −→ Sym(n).

5.2.2 Univariate maps
We call O(n)-equivariant map a map f : Sym+(n) −→ Sym(n) such that f(RΣR>) =
Rf(Σ)R> for all Σ ∈ Sym+(n) and R ∈ O(n). Among O(n)-equivariant maps, we focus on
the class of univariate maps.

Definition 5.1 (Univariate maps) A univariate map is an O(n)-equivariant map f : Sym+(n) −→
Sym(n) such that there exists a map on positive real numbers also denoted f : (0,∞) −→ R
such that f(PDP>) = P Diag(f(d1), ..., f(dn))P> for all P ∈ O(n) and D ∈ Diag+(n) with
D = Diag(d1, ..., dn).

Any f : (0,∞) −→ R can be extended into a univariate map and if the former is of class
C1 (resp. C2, resp. a C1-diffeomorphism), then the latter is differentiable (resp. two times
differentiable, resp. a diffeomorphism) [Bhatia, 1997, Thanwerdas and Pennec, 2022b]. We
denote Univ the set of smooth univariate diffeomorphisms. In addition, the differential and
the Hessian of a smooth univariate map can be expressed thanks to the first and second
divided differences as follows.
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Definition 5.2 (Divided differences) [Bhatia, 1997]

1. Let f ∈ C1(R,R). The first divided difference of f is the continuous symmetric map
f [1] : R2 −→ R defined for x, y ∈ R by:

f [1](x, y) =
®

f(x)−f(y)
x−y if x 6= y

f ′(x) if x = y

´
. (5.1)

2. Let f ∈ C2(R,R). The second divided difference of f is the continuous symmetric map
f [2] : R3 −→ R defined for x, y, z ∈ R by:

f [2](x, y, z) =


(f [1](x, ·))[1](y, z) = f [1](x,z)−f [1](x,y)

z−y if y 6= z

(f [1](y, ·))[1](z, x) = f [1](y,x)−f [1](y,z)
x−z if z 6= x

(f [1](z, ·))[1](x, y) = f [1](z,y)−f [1](z,x)
y−x if x 6= y

1
2f
′′(x) if x = y = z

 . (5.2)

If f ∈ C2(R,R), then one can check that the differential of f [1] at (x, y) ∈ R2 is:

d(x,y)f
[1](h, k) =

®
f ′(x)h−f ′(y)k

x−y + f(x)−f(y)
(x−y)2 (h− k) if x 6= y

f ′′(x)
2 (h+ k) if x = y

´
, (5.3)

so one can prove that df [1] is continuous and f [1] ∈ C1(R2,R). This also proves that
∂f [1]

∂x
(x, x) = f ′′(x)

2 and that f [2] is continuous.
From now on, all univariate maps are assumed to be smooth.

Lemma 5.3 (Differential and Hessian of a univariate map) [Bhatia, 1997] The differential and
the Hessian of a univariate map f are O(n)-equivariant: dPDP>f(PXP>) = P dDf(X)P>
and HPDP>f(PXP>, PY P>) = P HDf(X, Y )P>. Hence, they are determined by their
values at diagonal matrices D ∈ Diag+(n), which are given by the following formulae:

[dDf(X)]ij = f [1](di, dj)Xij, (5.4)

[HDf(X,X)]ij = 2
n∑
k=1

f [2](di, dj, dk)XikXjk. (5.5)

5.2.3 Classes of O(n)-invariant metrics
The class of kernel metrics is a subclass of O(n)-invariant metrics on SPD matrices indexed
by smooth bivariate symmetric maps φ : (0,∞)2 −→ (0,∞) [Hiai and Petz, 2009]. The
advantages of this class are the simple formulation of its elements, some important results
on the metrics (completeness, cometric) and some important stability properties of the class.
Hence, it is a good ambient class to define subfamilies of metrics. Therefore in this section, we
recall the definition of kernel metrics, the refinement of mean kernel metrics and the results
on completeness, cometric and stability.
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5.2.3.1 Kernel metrics

Definition 5.4 (Kernel metric) A kernel metric [Hiai and Petz, 2009] is an O(n)-invariant
metric for which there is a smooth bivariate map φ : (0,∞)2 −→ (0,∞) such that gΣ(X,X) =
gD(X ′, X ′) = ∑

i,j
1

φ(di,dj)X
′2
ij , where X = PX ′P>, Σ = PDP> with P ∈ O(n) and D =

Diag(d1, ..., dn).

Important examples of kernel metrics are the Euclidean, the log-Euclidean, the affine-
invariant, the Bures-Wasserstein and the Bogoliubov-Kubo-Mori metrics:

(Euclidean) gE
Σ(X,X) = tr(X2), (5.6)

(Log-Euclidean) gLE
Σ (X,X) = tr(dΣ log(X)2), (5.7)

(Affine-invariant) gA
Σ(X,X) = tr((Σ−1X)2), (5.8)

(Bures-Wasserstein) gBW
Σ (X,X) = tr(ΣSΣ(X)2), (5.9)

(Bogoliubov-Kubo-Mori) gBKM
Σ (X,X) = tr(dΣ log(X)X), (5.10)

where SΣ(X) denotes the solution of the Sylvester equation X = ΣSΣ(X) + SΣ(X)Σ. A
review of the definitions, geometric properties and main references on these five metrics can
be found in [Thanwerdas and Pennec, 2022b].

5.2.3.2 The refinement of mean kernel metrics

There is a refinement of kernel metrics where the bivariate function φ relies on a function
called a symmetric homogeneous mean [Hiai and Petz, 2009]. These subclasses provide a
nice necessary and sufficient condition for geodesic completeness.

Definition 5.5 (Mean kernel metrics) [Hiai and Petz, 2009] A mean kernel metric is a kernel
metric characterized by a bivariate map φ of the form φ(x, y) = am(x, y)θ where a > 0 is a
positive coefficient, θ ∈ R is a homogeneity power and m : (0,∞)2 −→ (0,∞) is a symmetric
homogeneous mean, that is:

1. symmetric, i.e. m(x, y) = m(y, x) for all x, y > 0,
2. homogeneous, i.e. m(cx, cy) = cm(x, y) for all c, x, y > 0,
3. non-decreasing in both variables,
4. min(x, y) 6 m(x, y) 6 max(x, y) for all x, y > 0. It implies m(x, x) = x.

Theorem 5.6 (Completeness of mean kernel metrics) [Hiai and Petz, 2009] Mean kernel
metrics are geodesically complete if and only if θ = 2.

5.2.3.3 Main results

The five kernel metrics cited above are mean kernel metrics. The mean functions are sum-
marized in Table 5.1.

Moreover, the class of kernel metrics is stable under pullback by univariate diffeomor-
phisms [Hiai and Petz, 2009]. However, the class of mean kernel metrics is not stable under
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Metric Kernel φ(x, y) Mean m Power θ
Euclidean 1 Any mean 0

Log-Euclidean ( x−y
log(x)−log(y))

2 Logarithmic mean 2
Affine-invariant xy Geometric mean 2

Bures-Wasserstein 4 x+y
2 Arithmetic mean 1

Bogoliubov-Kubo-Mori x−y
log(x)−log(y) Logarithmic mean 1

Table 5.1: Bivariate functions of the main O(n)-invariant metrics on SPD matrices.

univariate diffeomorphisms, essentially because of the third condition of a symmetric homo-
geneous mean. Indeed, the mean has to be non-decreasing in both variables which is neither
a differential nor a Riemannian property.

In addition, the class of kernel metrics is cometric stable [Thanwerdas and Pennec,
2022b]. Indeed, the cometric is a metric on the cotangent bundle T ∗Sym+(n) ' Sym+(n)×
Sym(n)∗. Thanks to the Riesz theorem, the Frobenius inner product provides the identifica-
tion Sym(n)∗ ' Sym(n) so the cometric can be considered as a metric. The cometric of the
kernel metric characterized by φ is the kernel metric characterized by 1

φ
.

5.3 Deformed metrics
Log-Euclidean metrics on SPD matrices are pullback metrics of Euclidean metrics on the
vector space of symmetric matrices via the symmetric matrix logarithm log : Sym+(n) −→
Sym(n). This geometric construction of a metric on SPD matrices based on a diffeomorphism
f is commonly used to define families of metrics on SPD matrices indexed by automorphisms
of SPD matrices. Indeed, even if these metrics are isometric, they do not give the same results
in data analyses. It is actually equivalent to compute with the metric g on the transformed
dataset [f(Σ1), ..., f(ΣN)] or to compute with the pullback metric f ∗g on the initial dataset
[Σ1, ...,ΣN ].

In this section, we give examples of situations in the literature where such transformations
are applied to the data (Section 5.3.1), then we unify them into our principle of deformed
metrics and we give the fundamental Riemannian operations (distance, geodesics, curvature,
parallel transport) of the deformed metrics (Section 5.3.2). In Section 5.3.3, we contribute
the new family of deformed-Wasserstein metrics based on this principle which comprises the
family of alpha-Procrustes metrics [Hà Quang, 2019]. We also give a sufficient condition
under which alpha-Procrustes metrics are mean kernel metrics.

5.3.1 Use of a deformation in the literature
As mentioned before, the class of kernel metrics is stable by pullback under univariate diffeo-
morphisms [Hiai and Petz, 2009, Thanwerdas and Pennec, 2022b]. In particular, pullbacks
of the Euclidean metric and the affine-invariant metric under power diffeomorphisms are de-
tailed in the original paper on kernel metrics [Hiai and Petz, 2009]. They were later called
power-Euclidean [Dryden et al., 2010] and power-affine metrics, or more generally deformed-
Euclidean and deformed-affine metrics for an arbitrary diffeomorphism [Thanwerdas and



Chapter 5. Geometry of Mixed-Euclidean metrics 101

Pennec, 2019b]. Moreover, power-Euclidean metrics are mean kernel metrics for any power
and power-affine metrics are mean kernel metrics if and only if the power belongs to [−2, 2]
[Hiai and Petz, 2009]. Since power-Euclidean metrics interpolate between the log-Euclidean,
the Wigner-Yanase/square-root and the Euclidean metrics, an optimization procedure was
proposed on the parameter to choose the most appropriate metric on a dataset of covariance
matrices for Diffusion Tensor Imaging (DTI) [Dryden et al., 2010]. It is common in DTI to
compute with precision matrices which are the inverses of covariance matrices, inv(Σ) = Σ−1

[Lenglet et al., 2004], or with other transformations of the covariance matrices such as the
adjugate function adj(Σ) = det(Σ)Σ−1 [Fuster et al., 2016]. More recently, the family of
alpha-Procrustes metrics was introduced by pullback under power diffeomorphisms of the
Bures-Wasserstein metric, as for power-Euclidean and power-affine metrics, and it was ex-
tended to the infinite dimension in the context of Reproducing Kernel Hilbert Spaces (RKHS)
[Hà Quang, 2019].

In papers where the power diffeomorphisms are used to define power-Euclidean, power-
affine and alpha-Procrustes metrics [Hiai and Petz, 2009, Dryden et al., 2010, Hiai and Petz,
2012, Thanwerdas and Pennec, 2019b, Hà Quang, 2019], it is often noticed that the limit when
the power tends to 0 is the log-Euclidean metric. This is actually a general fact. Indeed, from
a Riemannian metric g, it is possible to construct a one-parameter family of metrics (g(p))p∈R∗
by taking the pullback by the power diffeomorphism powp : Σ ∈ Sym+(n) 7−→ Σp ∈ Sym+(n)
for p 6= 0 and to scale it by 1

p2 , that is g(p)
Σ (X,X) = 1

p2 gΣp(dΣpowp(X), dΣpowp(X)) for all Σ ∈
Sym+(n) and all X ∈ TΣSym+(n). Then when p tends to 0, g(p) tends to the log-Euclidean
metric associated to the inner product gIn , that is g

(p)
Σ (X,X) −→

p→0
gIn(dΣ log(X), dΣ log(X))

for all Σ ∈ Sym+(n) and all X ∈ TΣSym+(n).

5.3.2 Principle of deformed metrics

Principle 5.7 (Principle of deformed metrics) Let g be a Riemannian metric on Sym+(n)
and f : Sym+(n) −→ Sym+(n) be a diffeomorphism. Then the f -deformed metric is defined
as the pullback metric f ∗g. It is a Riemannian metric on Sym+(n) which is isometric to g
and whose expression is:

(f ∗g)Σ(X,X) = gf(Σ)(dΣf(X), dΣf(X)). (5.11)

All the Riemannian operations of a deformed metric are obtained by pulling back the
formulae that are known for the initial metric, as shown in Table 5.2.

A fundamental stability property is that if g is O(n)-invariant and if f is O(n)-equivariant,
then the deformed metric f ∗g is also O(n)-invariant. Moreover, as mentioned before, if g is a
kernel metric and if f is univariate, then the deformed metric f ∗g is a kernel metric and the set
{f ∗g, f ∈ Univ} forms a family of kernel metrics that is closed under pullback by univariate
diffeomorphisms [Hiai and Petz, 2009]. The Riemannian operations that are known in closed
form for g are also known in closed form for f ∗g.
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Metric gfΣ(X,X) = gf(Σ)(dΣf(X), dΣf(X))
Distance df (Σ,Λ) = d(f(Σ), f(Λ))

Levi-Civita dΣf(∇f
XΣ
Y ) = ∇dΣf(X)(df(Y ))

Curvature dΣf(Rf
Σ(X, Y )Z) = Rf(Σ)(dΣf(X), dΣf(Y ))dΣf(Z)

Geodesics f(γf(Σ,X)(t)) = γ(f(Σ),dΣf(X))(t)
Logarithm dΣf(LogfΣ(Λ)) = Logf(Σ)(f(Λ))

Parallel transport dΛf(Πf
γ;Σ→ΛX) = Πf◦γ;f(Σ)→f(Λ)(dΣf(X))

Table 5.2: Riemannian operations of deformed metrics on SPD matrices.

5.3.3 The new family of deformed-Wasserstein metrics
Definition 5.8 (Deformed-Wasserstein metrics) A deformed-Wasserstein metric is the pull-
back metric by a univariate diffeomorphism of the Bures-Wasserstein metric (Formula (5.9)).

The family of deformed-Wasserstein metrics contains the family of alpha-Procrustes met-
rics since they are pullbacks of the Bures-Wasserstein metric by the power diffeomorphism
pow2α scaled by 1

4α2 [Hà Quang, 2019]. In this work, we designate alpha-Procrustes metrics
as power-Wasserstein metrics to be consistent with power-Euclidean and power-affine met-
rics and to parameterize the family by p ∈ R∗, the correspondence being p = 2α. As argued
earlier, we can say that the log-Euclidean metric belongs to deformed-Wasserstein metrics so
we can designate it as power-Wasserstein with power p = 0.

Since the Bures-Wasserstein metric is a mean kernel metric, it is tempting to determine
when a power-Wasserstein metric is a mean kernel metric, in analogy to the work done for the
power-Euclidean and the power-affine metrics [Hiai and Petz, 2009]. Here we give a sufficient
condition under which a power-Wasserstein metric is a mean kernel metric. The proof is in
Section 11.4.

Theorem 5.9 (Sufficient condition for power-Wasserstein to be mean kernel) The power-
Wasserstein metric of parameter p 6 1 is a mean kernel metric.
See the proof of Theorem 5.9 in Section 11.4.

This condition does not seem to be sufficient. Indeed, after numerical simulations, we
conjecture that there exists p0 ∈ (2.61, 2.611) such that the power-Wasserstein metric of
parameter p is a mean kernel metric if and only if p ∈ (−∞, 1] ∪ [p0,+∞). Moreover, the
proof actually tells that if p ∈ (1, 2], then it is not a mean kernel metric.

In this section, we gathered the deformations of Riemannian metrics or of SPD datasets
under our principle of deformed metrics. Therefore from a metric we can define the family
of power deformations of this metric, which tends to a log-Euclidean metric when the power
tends to 0. Moreover, the family of univariate deformations of a kernel metric is a stable
subfamily of kernel metrics and it is interesting to determine when these metrics are mean
kernel metrics. It seems to be a quite difficult problem for general univariate deformations.
On the example of power deformations of the Bures-Wasserstein metric, we gave the suffi-
cient condition p 6 1. To the best of our knowledge, determining necessary and sufficient
conditions for deformed-Euclidean, deformed-affine and deformed-Wasserstein metrics to be
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mean kernel metrics remains an open problem.

5.4 Balanced metrics
The affine-invariant and the Bogoliubov-Kubo-Mori metrics were shown to provide a dually-
flat structure, that is a couple of flat affine connections which are dual with respect to the
metric. This is a rich geometric structure which provides a so called canonical divergence,
potentials and specific algorithms [Amari and Nagaoka, 2000, Banerjee et al., 2005, Nielsen
and Nock, 2009]. A dually-flat manifold is a Hessian manifold where the potential is defined
globally [Shima and Yagi, 1997, Amari and Armstrong, 2014]. Inspired by the character-
ization of the duality based on parallel transport, we introduced a preliminary version of
the principle of balanced bilinear forms in [Thanwerdas and Pennec, 2019a] which allows
to define a bilinear form g0 on SPD matrices from two flat Riemannian metrics g, g∗ by
g0

Σ(X, Y ) = tr((ΠΣ→InX)(Π∗Σ→InY )) where Π,Π∗ denote the respective parallel transports.
The term “balanced” was chosen because the bilinear form relies half on each of the two
flat metrics. We showed that if the two flat metrics are power-Euclidean metrics, then the
balanced bilinear form is symmetric and positive definite, i.e. a metric. In this section, we
give a weaker condition under which the bilinear form is a metric.

To ease the comprehension of this section, we recall the main concepts of information
geometry, especially dually-flat manifolds and related notions, in Section 5.4.1. In Section
5.4.2, we provide a new condition on the two flat metrics so that the balanced bilinear form is
a metric: it is sufficient to assume that the flat metrics are univariately-deformed-Euclidean
metrics.

5.4.1 Information geometry and dually-flat manifolds
Before introducing the specific concepts of information geometry, we recall the definition of
an affine map between manifolds equipped with affine connections and the definition of a flat
affine connection. We denote ∂ the canonical affine connection on a vector space.

Definition 5.10 (Affine map) LetM,M′ be two manifolds with respective affine connections
∇,∇′. We say that f : M −→ M′ is an affine map if for all vector fields X, Y on M, we
have ∇′f∗(X)f∗(Y ) = f∗(∇XY ).

Definition 5.11 (Flat affine connection) Depending on domains of research and authors, a
flat affine connection is a connection such that:

1. (Affine geometry) R = 0 and T = 0,
2. (Information geometry) [Amari and Nagaoka, 2000, Section 1.7] there exists a global

chart f : (M,∇) −→ (RdimM, ∂) which is an affine map, i.e. M can be seen as an
open set of RdimM via f .

In the following, we call 1-flat (resp. 2-flat) a connection that is flat according to the
sense 1 (resp. 2) of the previous definition. A 2-flat connection is clearly 1-flat. Conversely,
a 1-flat connection is locally 2-flat, i.e. each point has a neighborhood U such that ∇ is 2-flat
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on U . A 1-flat connection is a priori not globally 2-flat because the manifold need not be an
open set of Rn (e.g. the circle S1). The obstruction is topological.

In this work, the flat metrics we introduce on Sym+(n) (which is an open set of the vector
space of symmetric matrices) are actually 2-flat.

5.4.1.1 Dual connections with respect to a metric

Definition 5.12 (Dual connections) [Amari and Nagaoka, 2000] Let (M, g) be a Riemannian
manifold, ∇g the Levi-Civita connection of g and ∇,∇∗ be affine connections on M. We
say that ∇∗ is the dual connection of ∇ with respect to g if one of the following equivalent
requirements is satisfied:

1. ∂kgij = gljΓlki + gil(Γ∗)lkj for all i, j, k ∈ {1, ..., dimM} in any chart, where Γkij and
(Γ∗)kij are the Christoffel symbols of ∇ and ∇∗,

2. Z g(X, Y ) = g(∇ZX, Y ) + g(X,∇∗ZY ) for all vector fields X, Y, Z onM,

3. g(X, Y ) = g(ΠX,Π∗Y ) for all vector fields X, Y onM.

Hence given a metric g, ∇ uniquely determines ∇∗ and (∇∗)∗ = ∇ so that ∇+∇∗
2 is a metric

connection. We call (g,∇,∇∗) a dualistic structure.
Note that if ∇ and ∇∗ are torsion-free, then ∇+∇∗

2 = ∇g.

Definition 5.13 (Dually-flat manifold) [Amari and Nagaoka, 2000] We say that (M, g,∇,∇∗)
is a dually-flat manifold (or a Hessian manifold) when ∇ and ∇∗ are dual with respect to
the metric g and when ∇ and ∇∗ are flat (in the sense 2 of Definition 5.11).

5.4.1.2 Divergence

Definition 5.14 (Divergence) [Amari and Nagaoka, 2000] A divergence is a distance-like
smooth map D :M×M−→ R+ such that:

1. (separation) D(x, y) = 0 if and only if x = y,

2. (non-degenerate) the symmetric positive semi-definite bilinear form gD : z ∈ M 7−→
−∂x|x=z∂y|y=zD is positive definite. It is called the induced Riemannian metric. We
denote [ : TM −→ T ∗M and # = [−1 : T ∗M −→ TM the musical isomorphisms
associated to the metric gD, defined by [(X)(Y ) = g(X, Y ).

We can also define the dual divergence D∗ : (x, y) 7−→ D(y, x) and the induced connection
by ∇D

XY : z ∈M 7−→ ](Z 7−→ ∂2
x|x=z∂y|y=zD(X, Y, Z)).

Lemma 5.15 (Dual connections induced by a divergence) [Amari and Nagaoka, 2000] Let
D be a divergence on M. Then the connections ∇ := ∇D and ∇∗ := ∇D∗ are dual with
respect to the induced metric gD: a divergence induces a dualistic structure.

In general, there is not a canonical way to define a divergence from a dualistic structure,
except if it is dually-flat.
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5.4.1.3 Canonical divergence of a dually-flat manifold

Definition 5.16 (Canonical divergence) [Amari and Nagaoka, 2000] Let (M, g,∇,∇∗) be
a dually-flat manifold where M is simply connected. Let u, v : M −→ Rn be two smooth
coordinate systems such that u is ∇-affine, v is ∇∗-affine and g( ∂

∂ui
, ∂
∂vj

) = δij. The canonical
divergence D is defined by D(x, y) = ψ(x) + ϕ(y)− 〈u(x)|v(y)〉 for all x, y ∈ M where 〈·|·〉
is the canonical inner product on Rn and ψ, ϕ :M−→ R are smooth maps called potentials
defined as follows:

1. dψ = ∑
i v

idui for all i ∈ {1, ..., n} or equivalently without coordinates dxψ(X) =
〈v(x)|dxu(X)〉 for all x ∈M and X ∈ TxM,

2. dϕ = ∑
i u

idvi for all i ∈ {1, ..., n} or dxϕ(X) = 〈u(x)|dxv(X)〉,

3. ψ(x) + ϕ(x) = 〈u(x)|v(x)〉 for all x ∈M.

The equation dψ = ∑
i v

idui has a solution by Poincaré’s lemma becauseM is simply con-
nected and the differential form ω = ∑

i v
idui is closed. Indeed, g( ∂

∂ui
, ∂
∂uj

) = ∂vk

∂uj
g( ∂

∂ui
, ∂
∂vk

) =
∂vi

∂uj
and by symmetry of g, g( ∂

∂ui
, ∂
∂uj

) = ∂vj

∂ui
so ∂vi

∂uj
= ∂vj

∂ui
. So ψ is well defined up to an ad-

ditive constant and ϕ as well. Finally, dx(ψ + ϕ)(X) = 〈v(x)|dxu(X)〉 + 〈u(x)|dxv(X)〉 =
dx(〈u|v〉)(X) so there exists a constant c ∈ R such that ψ(x) +ϕ(x) = 〈u(x)|v(x)〉+ c for all
x ∈M. We can impose c = 0 by choosing the constant in ϕ appropriately.

5.4.2 Principle of balanced bilinear forms
The principle of balanced bilinear forms [Thanwerdas and Pennec, 2019a] provides a bilinear
form by combining the parallel transports of two flat metrics via the Frobenius inner product.
We can give a more general definition of a balanced bilinear form by choosing any inner
product on symmetric matrices, although we focus on the Frobenius inner product afterwards.

Principle 5.17 (Principle of balanced bilinear forms) We fix 〈·|·〉 an inner product on
Sym(n). Let g+, g− be two flat Riemannian metrics on Sym+(n). We denote ∇+,∇− their
Levi-Civita connections and Π+,Π− their associated parallel transport maps that do not de-
pend on the curve since the metrics are flat. Then the balanced bilinear form associated to
g+ and g− is defined by:

g0
Σ(X, Y ) = 〈Π+

Σ→InX|Π
−
Σ→InY 〉. (5.12)

Theorem 5.18 (Relation between balanced metric and dually-flat manifold) [Thanwerdas
and Pennec, 2019a] Let g+, g− be two flat Riemannian metrics on Sym+(n). We denote
∇+,∇− their Levi-Civita connections. If the balanced bilinear form g0 is a metric, then
(Sym+(n), g0,∇+,∇−) is a dually-flat manifold, which automatically comes with a canonical
divergence D according to the previous section.

It would be nice to have a sufficient condition under which a balanced bilinear form is
a metric. In [Thanwerdas and Pennec, 2019a], we proved that, with the Frobenius inner
product, if g+ and g− are power-Euclidean metrics with powers α and β, then g0 is a metric.
In the following theorem, we give a weaker sufficient condition which allows to define the new
family of Mixed-Euclidean metrics. The proof is in Section 11.4.
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Theorem 5.19 (Sufficient condition for a balanced bilinear form to be a metric) Let 〈·|·〉 =
Frob be the Frobenius inner product. Let g+, g− be deformed-Euclidean metrics respectively
associated to univariate diffeomorphisms u and v. Then the balanced bilinear form g0 is a
metric.
See the proof of Theorem 5.19 in Section 11.4.

5.5 The new family of mixed-Euclidean metrics

5.5.1 Definition
Definition 5.20 (Mixed-Euclidean metric ME(u, v)) The (u, v)-Mixed-Euclidean metric is
the balanced metric g0 defined in Theorem 5.19. It is given by:

g
ME(u,v)
Σ (X,X) = 1

u′(1)v′(1)
∑
i,j

u[1](di, dj)v[1](di, dj)X ′2ij , (5.13)

where X = PX ′P>, Σ = PDP> with P ∈ O(n), D = diag(d1, ..., dn).

Remark 5.21 We notice that if we denote φu = u′(1)
u[1] and φv = v′(1)

v[1] the kernel maps
associated to the u, v-deformed Euclidean metrics, the balanced metric is a kernel metric
characterized by φu,v =

√
φuφv. Hence, the principle of balanced bilinear forms seems to

appear as a principle of mean of metrics.

The family of Mixed-Euclidean metrics contains the family of Mixed-Power-Euclidean
metrics [Thanwerdas and Pennec, 2019a] for u = Fα and v = Fβ where Fα = powα if α 6= 0
and F0 = log.

(Log-Euclidean) g
MPE(0,0)
Σ (X,X) = tr(dΣ log(X)2), (5.14)

(Power-Euclidean) g
MPE(α,α)
Σ (X,X) = 1

α2 tr(dΣpowα(X)2), (5.15)

(Power-affine) g
MPE(α,−α)
Σ (X,X) = 1

α2 tr((Σ−αdΣpowα(X))2), (5.16)

(“Power-BKM′′) g
MPE(α,0)
Σ (X,X) = 1

α
tr(dΣpowα(X)dΣ log(X)), (5.17)

(General MPE) g
MPE(α,β)
Σ (X,X) = 1

αβ
tr(dΣpowα(X)dΣpowβ(X)). (5.18)

As mentioned in [Thanwerdas and Pennec, 2019a], this family interpolates between the log-
Euclidean metric (0, 0), the power-Euclidean metrics (α, α), the power-affine metrics (α,−α)
(including the affine-invariant metric (1,−1)) and the Bogoliubov-Kubo-Mori metric (1, 0).

5.5.2 Information geometry of Mixed-Euclidean metrics
As said in Theorem 5.18, balanced metrics come with a canonical divergence. As Mixed-
Euclidean metrics are the balanced metrics of two deformed-Euclidean metrics u∗gE and v∗gE,
it is straightforward that u : Sym+(n) −→ Sym(n) and v : Sym+(n) −→ Sym(n) provide flat
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coordinate systems for these respective metrics. The canonical divergence of this structure
is known as the (u, v)-divergence in Information Geometry [Amari, 2016, Section 4.5.2].
The novelty here is the relation we establish between Mixed-Euclidean metrics and (u, v)-
divergences. In particular, the Mixed-Power-Euclidean metrics come with the so-called (α, β)-
divergences on SPD matrices [Amari, 2014]. This family contains the well known families of
α-divergences and β-divergences [Amari, 2014, Formulae 69,70]. We state the correspondence
between Mixed-Euclidean metrics and (u, v)-divergences in the following corollary of Theorem
5.18. We recall the formulae of (α, β)-divergences with the corresponding potentials and we
illustrate the correspondence with two charts.

Corollary 5.22 (Mixed-Euclidean metrics and (u, v)-divergences) Let u, v be two univariate
diffeomorphisms u, v : Sym+(n) −→ Sym+(n). Then the manifold (Sym+(n), gME(u,v), u∗∇E, v∗∇E)
is dually-flat and its canonical divergence is the (u, v)-divergence of Information Geometry
[Amari, 2016]. In particular, the manifold (Sym+(n), gMPE(p,q),∇PE(p),∇PE(q)) is dually-flat
and its canonical divergence is the (α, β)-divergence [Amari, 2014, Formulae 51,54,56,66].
The (α, β)-divergences and the corresponding potentials (up to an additive constant, see
Section 5.4.1.3) are:

(α = β = 0) D0,0(Σ|Σ′) = 1
2‖ log(Σ)− log(Σ′)‖2

Frob, (5.19)

(α = β 6= 0) Dα,α(Σ|Σ′) = 1
2α2‖Σ

α − Σ′α‖2
Frob, (5.20)

(α = −β 6= 0) Dα,−α(Σ|Σ′) = − 1
α2 tr

[
(In + α log Σ)− α log Σ′ − ΣαΣ′−α

]
, (5.21)

(α 6= β = 0) Dα,0(Σ|Σ′) = 1
α

tr
ïÅ

Σα log Σ− 1
α

Σα

ã
+ 1
α

Σ′α − Σα log Σ′
ò
, (5.22)

(α, β, α± β 6= 0) Dα,β(Σ|Σ′) = 1
αβ

tr
ï

α

α + β
Σα+β + β

α + β
Σ′α+β − ΣαΣ′β

ò
, (5.23)

(α = β = 0) ψ0,0(Σ) = 1
2tr(log(Σ)2), (5.24)

(α = β 6= 0) ψα,α(Σ) = 1
2α2 tr(Σ2α), (5.25)

(α = −β 6= 0) ψα,−α(Σ) = − 1
α

tr(log Σ) = − 1
α

log(det Σ) (5.26)

(α 6= β = 0) ψα,0(Σ) = 1
α

tr(Σα log Σ− 1
α

Σα), (5.27)

(α, β, α± β 6= 0) ψα,β(Σ) = 1
β(α + β)tr(Σα+β). (5.28)

The (α, β)-divergences on SPD matrices can also be obtained by extending the (α, β)-
divergences on positive discrete measures [Cichocki et al., 2011]. Indeed, a positive
discrete measure is a vector of positive numbers so the diagonal matrix of eigenvalues of an
SPD matrix can be considered as a positive discrete measure. Then the (α, β)-potential on
positive diagonal matrices is extended by O(n)-invariance, which defines the (α, β)-potential
and the (α, β)-divergence on SPD matrices [Amari, 2014]. Conversely, the (α, β)-divergences
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on SPD matrices define divergences on positive discrete measures when restricted to positive
diagonal matrices. So there is a one-to-one correspondence between (α, β)-divergences on
SPD matrices [Amari, 2014] (or Mixed-Power-Euclidean metrics) and (α, β)-divergences on
positive discrete measures [Cichocki et al., 2011]. This correspondence is given on Figure 5.1.
The graph on the right is essentially borrowed from [Cichocki et al., 2011] with complements
from [Cichocki and Amari, 2010].

Figure 5.1: Correspondence between MPE metrics on SPD matrices and (α, β)-divergences
on positive discrete measures.

Remark 5.23 The affine-invariant/Fisher-Rao metric is associated to the Kullback-Leibler
divergence of centered multivariate Gaussian densities, which differs from the O(n)-
invariant extension of the Kullback-Leibler divergence of positive discrete measures rep-
resented on Figure 5.1.

The (u, v)-divergences can be expressed via an integral formula [Amari, 2016, Formula
(4.170)] following Definition 5.16. The formulae of the previous corollary can thus be com-
puted either from that formula or directly.

5.5.3 Riemannian geometry of Mixed-Euclidean metrics
Another immediate consequence of the relation between balanced metrics and dually-flat
manifolds is that the Levi-Civita connection of the Mixed-Euclidean metric MPE(u, v) is
simply the arithmetic mean of the Levi-Civita connections of the deformed-Euclidean metrics
u∗gE and v∗gE.

Corollary 5.24 (Levi-Civita connection of Mixed-Euclidean metrics)

∇ME(u,v)
XΣ

Y = ∂XΣY + 1
2((dΣu)−1(HΣu(X, Y )) + (dΣv)−1(HΣv(X, Y ))) (5.29)
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It is even possible to compute the curvature following the same ideas as for the BKM
metric in [Michor et al., 2000]. The proof is given in Section 11.4.

Theorem 5.25 (Curvature of Mixed-Euclidean metrics) Let u, v : Sym+(n) −→ Sym+(n)
be two univariate diffeomorphisms. We define the univariate diffeomorphism w = v ◦ u−1

so that u : (Sym+(n), gME(u,v)) −→ (Sym+(n), w′(1)
u′(1)v′(1)g

ME(Id,w)) is an isometry. For Σ =
PDP> ∈ Sym+(n), we denote X = PX ′P> ∈ TΣSym+(n) and analogously for Y, Z, T ∈
TΣSym+(n), we denote uij = u[1](di, dj), uijk = u[2](di, dj, dk) and analogously for v, w. We
denote mij = w[1](u(di), u(dj)) = vij

uij
and mijk = w[2](u(di), u(dj), u(dk)). Then the curvature

of the mixed-Euclidean metric gME(u,v) is:

R
ME(u,v)
Σ (X, Y, Z, T ) = 1

u′(1)v′(1)
∑
i,j,k,l

ρijkl(X ′ijY ′jkZ ′klT ′li − Y ′ijX ′jkZ ′klT ′li (5.30)

+X ′ijZ
′
jkY

′
klT
′
li − Y ′ijZ ′jkX ′klT ′li),

where ρijkl = mijlmjlk
2mjl

uijujkukluli = 1
2ujlvjl

(uijvijl − vijuijl)(ujkvjkl − vjkujkl) is symmetric in
i↔ k, in j ↔ l and in u↔ v. In particular, at Σ = In, the curvature is:

R
ME(u,v)
In (X, Y, Z, T ) = 1

4

ïÅ
ln
∣∣∣∣v′u′
∣∣∣∣ã′ (1)

ò2

RA
In(X, Y, Z, T ), (5.31)

where A stands for the affine-invariant metric (Formula 5.8). Therefore, the sectional curva-
ture of the mixed-Euclidean metric at In takes non-positive values. In particular, for mixed-
power-Euclidean metrics MPE(α, β) with α2 6= β2 (thus excluding log-Euclidean, power-
Euclidean and power-affine metrics), since κMPE(α,β)

λΣ (X, Y ) = λ−(α+β) × κMPE(α,β)
Σ (X, Y ) for

all λ > 0, the lower bound of the sectional curvature is −∞.
See the proof of Theorem 5.25 in Section 11.4.

It seems difficult to determine theoretically whether the sectional curvature of mixed-
Euclidean metrics (again, excluding MPE(α, β) with α2 = β2) can take positive values. On
Figure 5.2, we show numerical results which make us think that this is the case. Indeed, we
observe numerically that for all α, β ∈ {0.05 k| k ∈ {−40, ..., 40}} such that α2 6= β2, we have
κ

MPE(α,β)
min < 0 and κMPE(α,β)

max > 0. These simulations also tend to show that, at a given point
Σ, the negative values taken by the sectional curvature are much larger in absolute value
than the positive values taken by the sectional curvature.

From Figure 5.2, it appears that power-Euclidean metrics (flat), power-affine metrics
(Hadamard) and the log-Euclidean metric at the intersection play a special role among the
family of Mixed-Power-Euclidean since all others apparently admit positive and negative
sectional curvature.

In addition, for Mixed-Power-Euclidean metrics, we can also compute the geodesics, the
logarithm map and the distance between commuting matrices. These formulae are proved in
Section 11.4.

Theorem 5.26 (Riemannian operations of MPE metrics) Let α, β ∈ R such that α+β 6= 0,
thus excluding log-Euclidean and power-affine metrics. Table 5.3 summarizes the formulae
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Figure 5.2: Lower and upper bounds of the sectional curvature of the mixed-power-
Euclidean metrics. Left: lower bound. Right: upper bound. The lower bound of
the power-affine metrics (β = −α) is known as −α2

2 [Thanwerdas and Pennec, 2022b]. The
bounds were obtained in dimension 3 by taking 1000 random positive diagonal matrices
D of determinant 1 (to avoid scaling effects), 1000 random pairs of symmetric matrices
(X, Y ) and computing the sectional curvature κMPE(α,β)

D (X, Y ) = RD(X,Y,X,Y )
gD(X,X)gD(Y,Y )−gD(X,Y )2 for

(α, β) ∈ [−2, 2]2 with a step ∆α = ∆β = 0.05. Diagonal matrices are taken instead of SPD
matrices because the MPE metrics are O(n)-invariant.

of the geodesics, the logarithm map and the distance in the particular case where Σ,Λ ∈
Sym+(n) and V ∈ TΣSym+(n) commute. They essentially reduce to the formulae of the
α0-power-Euclidean metric with α0 = α+β

2 . These formulae are generally not valid for non-
commuting matrices.
See the proof of Theorem 5.26 in Section 11.4.

Geodesics γ(Σ,V )(t) = (Σα0 + t dΣpowα0(V ))1/α0

Logarithm LogΣ(Λ) = (dΣpowα0)−1(Λα0 − Σα0)
Distance d(Σ,Λ) = 1

α0
‖Λα0 − Σα0‖Frob

Table 5.3: Riemannian operations of Mixed-Power-Euclidean metrics for commuting matri-
ces.

It would be tempting to generalize the formulae of geodesics, logarithm and distance
between commuting matrices to Mixed-Euclidean metrics. However, if we consider two dif-
feomorphisms u, v : (0,∞) −→ (0,∞), the map f =

√
uv (which generalizes powα0 =√powαpowβ) is not a diffeomorphism of (0,∞) in general. For example, take u(x) = x(x+1)

and v(x) = 1
x2 . So the generalization is not straightforward.
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5.6 Conclusion
Deforming a Riemannian metric is a general way of defining new metrics and new families of
metrics on SPD matrices. In particular, using power diffeomorphisms defines one-parameter
families which tend to the log-Euclidean metric when the power tends to 0. The class of kernel
metrics is stable by univariate diffeomorphism whereas the class of mean kernel metrics is
not. We showed that the alpha-Procrustes (or power-Wasserstein) metrics are mean kernel
metrics when the power p = 2α 6 1.

We extended the principle of balanced bilinear forms and we gave a new sufficient con-
dition under which the bilinear form is a metric. This allowed to define the new family of
Mixed-Euclidean metrics which extends the two-parameter family of Mixed-Power-Euclidean
metrics. Since balanced metrics define dually-flat manifolds which are characterized by a
canonical divergence, Mixed-Euclidean metrics are in one-to-one correspondence with the
(u, v)-divergences of information geometry. In particular, Mixed-Power-Euclidean metrics
are in bijection with (α, β)-divergences. Finally, we computed the curvature of all Mixed-
Euclidean metrics.

Some questions remain open. What are the conditions on the univariate diffeomorphisms
u, v for the u-deformed Euclidean, affine, Wasserstein or the (u, v)-mixed-Euclidean metric
to be a mean kernel metric? Are there more general conditions on two flat metrics for their
balanced bilinear form to be a metric? What if we replace the Frobenius inner product
by another one? Does the operation (φ, φ′) 7−→

√
φφ′ on flat kernel metrics generalize the

principle of balanced metrics?
More generally, since the two-parameter family of (α, β)-Mixed-Power-Euclidean metrics

interpolate between the Euclidean, the log-Euclidean, the affine-invariant and the Bogoliubov-
Kubo-Mori metrics, does there exist a principled family with three or four parameters which
additionally includes the Bures-Wasserstein metric? It is not difficult to build parametric
families of metrics which interpolate between all of them whereas it is more difficult to find
interpolations with an interesting geometry such as the dually-flat geometry.
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Part IV

Correlation matrices of full rank:
the open elliptope
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Chapter 6

Geometry of Quotient-affine metrics

Abstract
Correlation matrices are used in many domains of neurosciences such as fMRI, EEG, MEG. How-
ever, statistical analyses often rely on embeddings into a Euclidean space or into Symmetric Positive
Definite matrices which do not provide intrinsic tools. The quotient-affine metric was recently in-
troduced as the quotient of the affine-invariant metric on SPD matrices by the action of diagonal
matrices. In this work, we provide most of the fundamental Riemannian operations of the quotient-
affine metric: the expression of the metric itself, the geodesics with initial tangent vector, the
Levi-Civita connection and the curvature.

This chapter was presented and published in the proceedings of the conference Geometric
Science of Information 2021 under the title “Geodesics and Curvature of the Quotient-Affine
Metrics on Full-Rank Correlation Matrices” [Thanwerdas and Pennec, 2021]. All the proofs,
originally in appendix of the paper, are deferred to Section 11.5. Besides, one result proved
with Jonas Lueg at the conference GSI 2021 is added. Minor modifications were additionally
brought for harmonization purposes.

6.1 Introduction
Correlation matrices are used in many domains with time series data such as functional brain
connectivity in functional MRI, electroencephalography (EEG) or magnetoencephalography
(MEG) signals. Full-rank correlation matrices form a strict sub-manifold of the cone of Sym-
metric Positive Definite (SPD) matrices sometimes called the (open) elliptope [Tropp, 2018].
However, very few geometric tools were defined for intrinsic computations with correlation
matrices. For example, [Rebonato and Jaeckel, 2001] rely on a surjection from a product of
n spheres of dimension n− 1 onto the space of correlation matrices in order to sample valid
correlation matrices for financial applications: a point in the former space can be represented
by an n × n matrix A with normed rows and therefore encodes a correlation matrix AA>.
Since low-rank matrices have null measure, one gets a full-rank correlation matrix almost
surely. More recently, the open elliptope was endowed with the Hilbert projective geometry
[Nielsen and Sun, 2019] which relies on its convexity.

Since there exist efficient tools on SPD matrices (affine-invariant/Fisher-Rao metric, log-
Euclidean metric, etc.), correlation matrices are often treated as SPD matrices [Varoquaux
et al., 2010]. Nevertheless, these extrinsic tools do not respect the geometry of correlation
matrices. Moreover, most of these tools on SPD matrices are invariant under orthogonal
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transformations which is not compatible with correlation matrices. The elliptope is not
even stable by the orthogonal action. Hence using the tools designed for SPD matrices
may not be relevant for correlation matrices. One could restrict a Riemannian metric from
the cone of SPD matrices to the open elliptope to define intrinsic tools by embedding. To
the best of our knowledge, this hasn’t been studied in depth. However, a key property of
correlation matrices in applications with respect to covariance matrices is that the scale is
renormalized independently for each axis. This physically corresponds to an invariance under
a group action, namely the action of diagonal matrices on SPD matrices. The previously
cited structures do not rely on this physical reality. This is why we are more interested
in the recently introduced quotient-affine metric which corresponds to the quotient of the
affine-invariant metric on SPD matrices by the action of diagonal matrices [David and Gu,
2019, David, 2019].

In this work, we investigate the geometry of this quotient-affine metric and we contribute
additional tools to compute on this manifold. Based on the formalization of the quotient
manifold with vertical and horizontal distributions, we compute in closed form some funda-
mental Riemannian operations of the quotient-affine metrics, notably the exponential map
and the curvature. In Section 6.2, we recall how quotient-affine metrics are introduced, as
well as the basics on quotient manifolds. In Section 6.3, we provide the following fundamental
quotient and Riemannian operations of quotient-affine metrics: the vertical and horizontal
projections, the metric, the exponential map, the Levi-Civita connection and the sectional
curvature. This opens the way to many practical algorithms on the open elliptope for dif-
ferent applications. Considering SPD matrices as the Cartesian product of positive diagonal
matrices and full-rank correlation matrices, it also allows to define new Riemannian met-
rics which preserve the quotient-affine geometry on correlation matrices. Thus in Section
6.4, we illustrate the quotient-affine metric in dimension 2 by coupling it with the diagonal
power-Euclidean metrics gE(p)

D (∆,∆) = tr(D2(p−1)∆2) for p ∈ {−1, 0, 1, 2}, where D is pos-
itive diagonal and ∆ diagonal, and then by comparing it with the affine-invariant and the
log-Euclidean metrics on SPD matrices.

6.2 Quotient-affine metrics

6.2.1 The quotient manifold of full-rank correlation matrices
The group of positive diagonal matrices Diag+(n) acts on the manifold of SPD matrices
Sym+(n) via the congruence action (Σ, D) ∈ Sym+(n) × Diag+(n) 7−→ DΣD ∈ Sym+(n).
The manifold of full-rank correlation matrices Cor+(n) can be seen as the quotient manifold
Sym+(n)/Diag+(n) via the invariant submersion Cor which computes the correlation matrix
from a covariance matrix, Cor : Σ ∈ Sym+(n) 7−→ Diag(Σ)−1/2 Σ Diag(Σ)−1/2 ∈ Cor+(n),
where Diag(Σ) = diag(Σ11, ...,Σnn). Hence, any Riemannian metric G on Sym+(n) which is
invariant under Diag+(n) induces a quotient metric g on Cor+(n). The steps to define it are
the following.

1. Vertical distribution. VΣ = ker dΣCor for all Σ ∈ Sym+(n).

2. Horizontal distribution. HΣ := V⊥Σ for all Σ ∈ Sym+(n), where the orthogonality ⊥
refers to the inner product GΣ.
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3. Horizontal lift. The linear map dΣCor restricted to the horizontal space HΣ is a lin-
ear isomorphism onto the tangent space of full-rank correlation matrices (dΣCor)|HΣ :
HΣ

∼−→ TCor(Σ)Cor+(n). The horizontal lift # is its inverse:

# : X ∈ TCor(Σ)Cor+(n) ∼−→ X# ∈ HΣ. (6.1)

4. Quotient metric. It is defined by pullback through the horizontal lift:

∀C ∈ Cor+(n),∀X ∈ TCCor+(n), gC(X,X) = GΣ(X#, X#), (6.2)

where Σ ∈ Cor−1(C) and the definition does not depend on the chosen Σ.

So the only missing ingredient is a Riemannian metric on SPD matrices which is invariant
under the congruence action of positive diagonal matrices. In [David and Gu, 2019, David,
2019], the authors chose to use the famous affine-invariant/Fisher-Rao metric.

6.2.2 The affine-invariant metrics and the quotient-affine metrics
The affine-invariant metric is the Riemannian metric defined on SPD matrices by GΣ(V, V ) =
tr(Σ−1V Σ−1V ) for all Σ ∈ Sym+(n) and V ∈ TΣSym+(n) [Siegel, 1943, Skovgaard, 1984,
Amari and Nagaoka, 2000]. It is invariant under the congruence action of the whole real
general linear group GL(n) which contains Diag+(n) as a subgroup. It provides a Riemannian
symmetric structure to the manifold of SPD matrices, hence it is geodesically complete
and the geodesics are given by the group action of one-parameter subgroups. We recall
the exponential map, the Levi-Civita connection and the sectional curvature below for all
Σ ∈ Sym+(n) and vector fields V,W ∈ Γ(TSym+(n)) where we also denote V ≡ VΣ and
W ≡ WΣ ∈ TΣSym+(n):

ExpGΣ(V ) = Σ1/2 exp(Σ−1/2V Σ−1/2)Σ1/2, (6.3)

(∇GVW )|Σ = dΣW (V )− 1
2(V Σ−1W +WΣ−1V ), (6.4)

κGΣ(V,W ) = 1
4

tr((Σ−1V Σ−1W − Σ−1WΣ−1V )2)
G(V, V )G(W,W )−G(V,W )2 6 0. (6.5)

The metrics that are invariant under the congruence action of the general linear group
GL(n) actually form a two-parameter family of metrics indexed by α > 0 and β > −α/n [Pen-
nec, 2009]: Gα,β

Σ (V, V ) = α tr(Σ−1V Σ−1V ) + β tr(Σ−1V )2. We call them all affine-invariant
metrics. In particular, these metrics are invariant under the congruence action of diagonal
matrices so they are good candidates to define Riemannian metrics on full-rank correlation
matrices by quotient. In [David and Gu, 2019, David, 2019], the authors rely on the “classi-
cal” affine-invariant metric (α = 1, β = 0). We generalize their definition below.

Definition 6.1 (Quotient-affine metrics on full-rank correlation matrices) The quotient-
affine metric of parameters α > 0 and β > −α/n is the quotient metric gα,β on Cor+(n)
induced by the affine-invariant metric Gα,β via the submersion Cor : Σ ∈ Sym+(n) 7−→
Diag(Σ)−1/2 Σ Diag(Σ)−1/2 ∈ Cor+(n).
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6.3 Fundamental Riemannian operations
In this section, we detail the quotient geometry of quotient-affine metrics gα,β. We give
the vertical and horizontal distributions and projections in Section 6.3.1. We contribute the
formulae of the metric itself in Section 6.3.2, the exponential map in Section 6.3.3, and finally
the Levi-Civita connection and the sectional curvature in Section 6.3.4. To the best of our
knowledge, all these formulae are new. They are proved in Section 11.5.

6.3.1 Vertical and horizontal distributions and projections
· Let • be the Hadamard/Schur product on matrices defined by [X • Y ]ij = XijYij.
· Let A : Σ ∈ Sym+(n) 7−→ A(Σ) = Σ • Σ−1 ∈ Sym+(n). This smooth map is invariant
under the action of positive diagonal matrices. The Schur product theorem ensures
that A(Σ) ∈ Sym+(n). A fortiori, In + A(Σ) ∈ Sym+(n).
· Let ψ : µ ∈ Rn 7−→ (µ1> + 1µ>) ∈ Sym(n). This is an injective linear map. This
function was met in Chapter 3 in the S(n)-irreducible decomposition of Sym(n).
· Let SΣ(V ) the unique solution of the Sylvester equation ΣSΣ(V ) + SΣ(V )Σ = V for

Σ ∈ Sym+(n) and V ∈ Sym(n).
· Let Hol(n) be the vector space of symmetric matrices with vanishing diagonal (sym-
metric hollow matrices). Each tangent space of the manifold of full-rank correlation
matrices can be seen as a copy of this vector space.

Theorem 6.2 (Vertical and horizontal distributions and projections) The vertical distribu-
tion is given by VΣ = Σ•ψ(Rn) and the horizontal distribution is given byHΣ = SΣ−1(Hol(n)).
The vertical projection is:

ver : V ∈ TΣSym+(n) 7−→ Σ • ψ((In + A(Σ))−1Diag(Σ−1V )1) ∈ VΣ. (6.6)

Then, the horizontal projection is simply hor(V ) = V − ver(V ).
See the proof of Theorem 6.2 in Section 11.5.

6.3.2 Horizontal lift and metric
Theorem 6.3 (Horizontal lift) Let Σ ∈ Sym+(n) and C = Cor(Σ) ∈ Cor+(n). The horizon-
tal lift at Σ of X ∈ TCCor+(n) is X# = hor(∆ΣX∆Σ) with ∆Σ = Diag(Σ)1/2. In particular,
the horizontal lift at C ∈ Sym+(n) is X# = hor(X).
See the proof of Theorem 6.3 in Section 11.5.

Theorem 6.4 (Expression of quotient-affine metrics) For all C ∈ Cor+(n) andX ∈ TCCor+(n),
gα,βC (X,X) = α gQA

C (X,X) (independent from β) where:

gQA
C (X,X) = tr((C−1X)2)− 21>Diag(C−1X)(In + A(C))−1Diag(C−1X)1. (6.7)

See the proof of Theorem 6.4 in Section 11.5.
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6.3.3 Geodesics
The geodesics of a quotient metric are the projections of the horizontal geodesics of the
original metric. This allows us to obtain the exponential map of the quotient-affine metrics.

Theorem 6.5 (Geodesics of quotient-affine metrics) The geodesic from C ∈ Cor+(n) with
initial tangent vector X ∈ TCCor+(n) is:

∀t ∈ R, γQA
(C,X)(t) = ExpQA

C (tX) = Cor(C1/2 exp(t C−1/2hor(X)C−1/2)C1/2). (6.8)
In particular, the quotient-affine metric is geodesically complete.
See the proof of Theorem 6.5 in Section 11.5.

The Riemannian logarithm between C1 and C2 ∈ Cor+(n) is much more complicated
to compute. It amounts to find Σ ∈ Sym+(n) in the fiber above C2 such that LogGC1(Σ)
is horizontal. Then we have LogQA

C1 (C2) = dC1Cor(LogGC1(Σ)). This means finding Σ that
minimizes the affine-invariant distance in the fiber:

D = arg minD∈Diag+(n)d(C1, DC2D),
from which we get Σ = DC2D. This is the method used in [David and Gu, 2019, David,
2019].

During the conference GSI 2021, Jonas Lueg had the idea to prove the existence of a min-
imizer by showing the coercivity of the smooth map f : D ∈ Diag+(n) 7−→ tr(log(ΣDΛDΣ)2)
for all Σ,Λ ∈ Sym+(n), i.e. show that f(D) −→ +∞ when one of the di’s tends to 0 or
to +∞. Thus we proved the following theorem. Note that the uniqueness remains an open
problem.

Theorem 6.6 (Existence of a logarithm) For all C1, C2 ∈ Cor+(n), there exists X ∈
TCCor+(n) such that ExpQA

C1 (X) = C2.
See the proof of Theorem 6.6 in Section 11.5.

6.3.4 Levi-Civita connection and sectional curvature
In this section, we give the Levi-Civita connection and the curvature. The computations are
based on the fundamental equations of submersions [O’Neill, 1966]. We denote sym(M) =
1
2(M +M>) the symmetric part of a matrix.

Theorem 6.7 (Levi-Civita connection and sectional curvature of quotient-affine metrics)
The Levi-Civita connection of quotient-affine metrics is:

(∇QA
X Y )|C = dCY (X) + sym[Diag(X#)Y # + Diag(Y #)X# + Diag(X#C−1Y #)C

−X#C−1Y # − 1
2Diag(X#)CDiag(Y #)− 3

2Diag(X#)Diag(Y #)C]. (6.9)

The curvature of quotient-affine metrics is:

κQA
C (X,Y ) = κGC(X#, Y #) + 3

4
GC(ver[X#, Y #], ver[X#, Y #])
gC(X,X)gC(Y, Y )− gC(X,Y )2 (6.10)

= 2 tr((C−1X#C−1Y # − C−1Y #C−1X#)2) + 31>D(In +A(C))−1D1

8(gC(X,X)gC(Y, Y )− gC(X,Y )2) , (6.11)
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where [V,W ] = dW (V )−dV (W ) is the Lie bracket on Sym+(n) and D = D(X, Y )−D(Y,X)
with D(X, Y ) = Diag(C−1Diag(X#)Y # − C−1Y #C−1Diag(X#)C). There is a slight abuse
of notation because ver[X#, Y #] induces that X# and Y # are vector fields. Indeed here,
they are horizontal vector fields extending the horizontal lifts at C.
See the proof of Theorem 6.7 in Section 11.5.

The first term of the sectional curvature is negative, the second one is positive so we don’t
know in general the sign of the curvature of quotient-affine metrics.

The quotient-affine metrics not only provide a Riemannian framework on correlation ma-
trices but also provide correlation-compatible statistical tools on SPD matrices if we consider
that the space of SPD matrices is the Cartesian product of positive diagonal matrices and
full-rank correlation matrices. We give a taste of such a construction in the next section.

6.4 Illustration in dimension 2

In dimension 2, any correlation matrix C ∈ Cor+(2) writes C = C(ρ) :=
Å

1 ρ
ρ 1

ã
where

ρ ∈ (−1, 1) is the correlation coefficient between the two variables. In the following theorem,
we give explicitly the logarithm, the distance and the interpolating geodesics of the quotient-
affine metric.

Theorem 6.8 (Quotient-affine metrics in dimension 2) Let C1 = C(ρ1), C2 = C(ρ2) ∈
Cor+(n) with ρ1, ρ2 ∈ (−1, 1). We denote f : ρ ∈ (−1, 1) 7→ 1+ρ

1−ρ ∈ (0,∞) which is a smooth
increasing map. We denote λ = λ(ρ1, ρ2) = 1

2 log f(ρ2)
f(ρ1) which has the same sign as ρ2 − ρ1.

Then the quotient-affine operations are:

1. (Logarithm) LogQA
C1 (C2) = λ

Å
0 1− ρ2

1
1− ρ2

1 0

ã
,

2. (Distance) dQA(C1, C2) =
√

2|λ|,

3. (Geodesics) γQA
(C1,C2)(t) = C(ρQA(t)) where ρQA(t) = ρ1 cosh(λt)+sinh(λt)

ρ1 sinh(λt)+cosh(λt) ∈ (−1, 1) is mono-
tonic (increasing if and only if ρ2 − ρ1 > 0).

Let Σ1,Σ2 ∈ Sym+(2) and C1, C2 their respective correlation matrices. We denote
γAI, γLE the geodesics between Σ1 and Σ2 for the affine-invariant and the log-Euclidean
metrics respectively. We define ρAI, ρLE such that the correlation matrices of γAI(t), γLE(t)

are C(ρAI(t)), C(ρLE(t)). Figure 6.1.(a) shows ρAI, ρLE, ρQA with Σ1 =
Å

4 1
1 100

ã
and Σ2 =Å

100 19
19 4

ã
. When varying numerically Σ1 and Σ2, it seems that ρLE and ρAI always have

three inflection points. In contrast, ρQA always has one inflection point since (ρQA)′′ =
−2λ2ρQA(1− (ρQA)2). Analogously, we compare the interpolations of the determinant (Fig.
6.1.(b)) and the trace (Fig. 6.1.(c)) using several Riemannian metrics: Euclidean (trace-
monotonic); log-Euclidean and affine-invariant (determinant-monotonic); power-Euclidean
× quotient-affine (correlation-monotonic).
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(a) Interpolation and extrapolation of the correlation
coefficient. All the interpolations relying on product
metrics on Sym+(2) = Diag+(2) × Cor+(2) with the
quotient-affine metric on Cor+(2) lead to the same cor-
relation coefficient, labelled as “Quotient-affine”.

(b) Interpolation of the determinant

(c) Interpolation of the trace

Figure 6.1: Extrapolation and interpolation between the SPD matrices Σ1 and Σ2 using various
Riemannian metrics. The metrics E(p)×QA refer to the p-power-Euclidean metric on the diagonal
part and the quotient-affine metric on the correlation part. When p tends to 0, E(p) tends to the
log-Euclidean metric LE ≡ E(0).

On Figure 6.2, we compare the geodesics of these metrics. The determinant is the area
of the ellipsis and the trace is the sum of the lengths of the axes. Thus the product metrics
of the form power-Euclidean on the diagonal part and quotient-affine on the correlation part
can be seen as performing a correlation-monotonic trade-off between the trace-monotonicity
and the determinant-monotonicity.

6.5 Conclusion
We investigated in this chapter the very nice idea of quotienting the affine-invariant metrics on
SPD matrices by the action of the positive diagonal group to obtain the principled quotient-
affine metrics on full-rank correlation matrices. The quotient-affine metric with α = 1 and
β = 0 was first proposed in Paul David’s thesis [David, 2019] and in the subsequent journal
paper [David and Gu, 2019]. We contribute here exact formulae for the main Riemannian
operations, including the exponential map, the connection and the sectional curvature. The
exponential map is particularly interesting to rigorously project tangent computations to
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Time t
t=0 t=1

Eucl.

E(2)xQA

E(1)xQA

LExQA

E(-1)xQA

Aff-inv.

Log-Eucl.

Figure 6.2: Interpolations between SPD matrices Σ1 and Σ2.

the space of full-rank correlation matrices. This opens the way to the implementation of a
number of generic algorithms on Riemannian manifolds. However, we could not find a closed
form expression for the logarithm which remains to be computed through an optimization
procedure. Thus, computing distances with these metrics remains computationally expen-
sive. In order to obtain more efficient methods, this leads us to look for other principled
Riemannian metrics on correlation matrices for which the logarithm could be expressed in
closed form.
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Chapter 7

Theoretically and computationally convenient
Cholesky-based geometries

Abstract
In contrast to SPD matrices, few tools exist to perform Riemannian statistics on the open elliptope
of full-rank correlation matrices. The quotient-affine metric was recently built as the quotient of the
affine-invariant metric by the congruence action of positive diagonal matrices. The space of SPD
matrices had always been thought of as a Riemannian homogeneous space. In contrast, we view
in this work SPD matrices as a Lie group and the affine-invariant metric as a left-invariant met-
ric. This unexpected new viewpoint allows us to generalize the construction of the quotient-affine
metric and to show that the main Riemannian operations can be computed numerically. However,
the uniqueness of the Riemannian logarithm or the Fréchet mean are not ensured, which is bad for
computing on the elliptope. Hence, we define three new families of Riemannian metrics on full-rank
correlation matrices which provide Hadamard structures, including two flat. Thus the Riemannian
logarithm and the Fréchet mean are unique. We also define a nilpotent group structure for which
the affine logarithm and the group mean are unique. We provide the main Riemannian/group op-
erations of these four structures in closed form.

This chapter was submitted to the SIAM Journal on Matrix Analysis and its Applications
in January 2022 under the title “Theoretically and computationally convenient geometries
on full-rank correlation matrices” [Thanwerdas and Pennec, 2022c]. All the proofs, whatever
their location in the submitted version, are deferred to Section 11.6.

7.1 Introduction
The (open) elliptope is the set of full-rank correlation matrices, it is open in the affine space
of symmetric matrices with unit diagonal. Its geometry has been much less studied than
the one of the cone of Symmetric Positive Definite (SPD) matrices. Nevertheless, several
applications could benefit from well suited geometries on this manifold: graphical networks,
brain connectomes [Varoquaux et al., 2010, Dodero et al., 2015], finance [Rebonato and
Jaeckel, 2001, Marti et al., 2021] or phylogenetic trees [Garba et al., 2021]. A few operations
have been proposed such as sampling by projecting samples on spheres [Rebonato and Jaeckel,
2001, Kercheval, 2008], computing distances via the Hilbert geometry of convex sets [Nielsen
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and Sun, 2019] or via a recent parametrization by Rn(n−1)/2 [Archakov and Hansen, 2021].
The open elliptope was also recently characterized as the quotient manifold of SPD ma-

trices by the smooth, proper and free congruence action of positive diagonal matrices [David
and Gu, 2019, David, 2019]. Indeed, a correlation matrix is obtained from the covariance
matrix by dividing by the standard deviation of each variable. This is equivalent to multiply
the covariance matrix on left and right by the diagonal matrix of the inverse square roots
of the variances. Hence all covariance matrices that are congruent up to a diagonal matrix
represent the same correlation matrix. This structure allowed to quotient the well known
affine-invariant metrics on SPD matrices to the so called quotient-affine metrics on full-rank
correlation matrices [David and Gu, 2019, David, 2019, Thanwerdas and Pennec, 2021]. They
only differ by a scaling factor so they are often referred as the quotient-affine metric. It offers
promising perspectives since it is geodesically complete with closed form expressions for the
exponential map, the Levi-Civita connection and the sectional curvature. However, it was
difficult to determine the sign and potential bounds of the curvature of the quotient-affine
metric. In this chapter, we show that the sectional curvature can take both positive and
negative values, that it is bounded from below and unbounded from above. Therefore, the
elliptope of full-rank correlation matrices endowed with the quotient-affine metric is neither
a Hadamard space nor a CAT(k) space for any k ∈ R.

This calls for new Riemannian metrics on the elliptope. Indeed, we could expect to
find suitable metrics with non-positive or even null curvature since the elliptope is an open
set of an affine space. The structure of the space is an important element of modeling
because simple structures often bring good theoretical properties and better computability
of the geometric operations. For example, in a Hadamard space, the Fréchet mean is unique.
Recall that in a metric space (M, d), a Fréchet mean of points x1, ..., xk ∈ M is a point
x ∈ M which minimizes the function x ∈ M 7−→ ∑k

i=1 d(x, xi)2 > 0. This is the case of the
affine-invariant metric on SPD matrices [Skovgaard, 1984] or the Fisher metric of beta and
Dirichlet distributions [Le Brigant et al., 2021]. Moreover, if one has a Euclideanization of
the space, i.e. a smooth diffeomorphism to a Euclidean space, then all operations become
trivial. This is the case of the log-Euclidean [Arsigny et al., 2006] or the log-Cholesky [Lin,
2019] metrics on SPD matrices.

Another strong element of modeling is the invariance of the geometry under a given group
action. Let us give some examples. First, on SPD matrices, one could require the invariance
of the geometry under all affine transformations of the feature vector. Indeed in EEG, if
we assume that there is an affine transformation from one brain to another at first order,
then electromagnetic fields are transformed similarly since they satisfy linear equations. The
affine-invariant metric significantly improved the results of classification in BCI [Barachant
et al., 2013]. Second, one could want the analysis to be invariant from the scale of each
variable. As explained previously, this corresponds to the invariance under the congruence
action of positive diagonal matrices and it suggests to focus more on correlation matrices than
on covariance matrices. Third, all the operations mentioned above on correlation matrices
are invariant under permutations. It means that the statistical analyses are invariant under
any joint permutation of the rows and columns of the correlation matrices in the dataset.
It is an advantage if the way the variables (or channels) are ordered is arbitrary. It is a
drawback if the order is chosen for a certain reason. For instance, in the auto-correlation
matrix of a signal, the variables represent different times, which are not exchangeable. One
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could want a structure on correlation matrices that respects the time structure instead of
being invariant under permutations. In this chapter, we focus on non-permutation-invariant
geometric structures.

Moreover, an invariance may also lead to simple structures with good properties. For
example, a Riemannian homogeneous space is geodesically complete, which is well suited for
interpolation and extrapolation. The geodesics of naturally reductive homogeneous spaces are
the orbits of the one-parameter subgroups so they are known in closed form. In a Riemannian
symmetric space, the parallel transport is obtained in closed form by composition of two
symmetries. So it is another good reason to study Lie group actions on our space.

7.1.1 Overview of the results
In this chapter, we define new non-permutation-invariant geometric structures on full-rank
correlation matrices following two directions. Firstly, we define a non-permutation-invariant
generalization of quotient-affine metrics. Our approach consists in studying the congruence
action of several matrix Lie groups on SPD matrices. Our main result is a characterization
of affine-invariant metrics, i.e. metrics that are invariant under the congruence action of the
general linear group GL(n), by the joint invariance of a pair of subgroups. These are the
group of permutation matrices S(n) and the group of lower triangular matrices with positive
diagonal LT+(n). In other words, the affine-invariant metrics are the unique (S(n)×LT+(n))-
invariant metrics on SPD matrices. Therefore, the family of LT+(n)-invariant metrics appears
as a natural non-permutation-invariant generalization of affine-invariant metrics. Moreover,
we show that such metrics are exactly the pullback metrics of left-invariant metrics on the
Lie group LT+(n) by the Cholesky map, so we call them Lie-Cholesky metrics. In particular,
there exists a Lie group structure on SPD matrices (namely, the product of the Cholesky
factors) such that affine-invariant metrics are left-invariant metrics on that Lie group. Finally,
since the Lie group LT+(n) contains positive diagonal matrices, Lie-Cholesky metrics descend
to quotient metrics on full-rank correlation matrices by the same procedure as affine-invariant
metrics. We show that several Riemannian operations are numerically computable such as
the Riemannian metric, the exponential map, the logarithm map or the Riemannian distance.
However, despite the nice theoretical results and the computability of the main geometric
operations, quotient-Lie-Cholesky metrics don’t have obvious nice geometric properties. For
example, it is not clear whether the Riemannian logarithm and the Fréchet mean are unique
or not.

Hence, secondly, to solve the drawbacks of quotient-affine and quotient-Lie-Cholesky met-
rics, we propose a series of new geometries on full-rank correlation matrices for which the
mean of finite samples is unique. They are built in a different way than the Lie-Cholesky
metrics, the only common point being the use of the Cholesky map to convey the structures
from triangular matrices to correlation matrices. Hence they are not permutation-invariant
either for n > 3. We define the poly-hyperbolic-Cholesky metrics as the pullbacks of weighted
products of hyperbolic spaces H1 × · · · × Hn−1. The metrics of this family provide a struc-
ture of Riemannian symmetric space with non-positive bounded curvature, thus Hadamard.
All operations are known in closed form. We define the Euclidean-Cholesky and the log-
Euclidean-Cholesky metrics as the pullbacks by two maps derived from the Cholesky map of
Euclidean structures on the vector space LT0(n) of strictly lower triangular matrices. The



124 Part IV. Correlation matrices of full rank

metrics in these two families are flat and geodesically complete so all Riemannian operations
are known in closed form, the former being less costly than the latter. Finally, we define a Lie
group structure as the pullback of the Lie group (for matrix multiplication) LT1(n) of lower
triangular matrices with unit diagonal. Here, we consider the geometric structure induced
by the canonical Cartan-Schouten connection rather than by a Riemannian metric. Indeed,
the (group) exponential map allows to define a group mean, which is unique here because the
Lie algebra of the Lie group is nilpotent [Buser and Karcher, 1981]. Finally, in dimension 2,
we show that on the one hand, the quotient-affine and the poly-hyperbolic-Cholesky metrics
coincide, and on the other hand, the Euclidean-Cholesky and the log-Euclidean-Cholesky
metrics coincide and their geodesics coincide with the group geodesics. In particular, these
geodesics provide a new interpolation of the correlation coefficient, different than the one
proposed in [Thanwerdas and Pennec, 2021].

In the remainder of this section, we introduce the matrix notations, the notions of covari-
ance and correlation matrices and the Cholesky map. In Section 7.2, we recall the definition
of the quotient-affine metrics and we prove that its sectional curvature takes both negative
and positive values and is unbounded from above. In Section 7.3, we give a characterization of
affine-invariant metrics in function of the congruence action of other groups. This allows us to
introduce Lie-Cholesky metrics on SPD matrices and quotient-Lie-Cholesky metrics on full-
rank correlation matrices. In Section 7.4, we introduce four new non-permutation-invariant
structures on full-rank correlation matrices for which the mean is unique. We conclude in
Section 7.5.

7.1.2 Concepts and notations
7.1.2.1 Matrix notations

Our main matrix space notations are given in Table 7.1. In this chapter, we also use the
following linear maps:

· (A,B) ∈ Mat(n)×Mat(n) 7−→ A•B = [AijBij]16i,j6n ∈ Mat(n) is the Hadamard/Schur
product of matrices,

· Diag : M ∈ Mat(n) 7−→ [δijMij]16i,j6n ∈ Diag(n) selects the diagonal terms,

· Off = IdMat(n) −Diag : Mat(n) −→ ker Diag selects the off-diagonal terms,

· Low : M ∈ Mat(n) 7−→ [δi>jMij]16i,j6n ∈ LT(n) selects the lower triangular terms,
including the diagonal terms,

· Low0 = Low − Diag : Mat(n) −→ LT0(n) selects the strictly lower triangular terms,
excluding the diagonal terms,

· LowS = Low0 + 1
2Diag : Sym(n) −→ LT(n) selects the strictly lower triangular terms

and half of the diagonal terms, so that when a symmetric matrix writes M = L+L> ∈
Sym(n) with L ∈ LT(n), then L = LowS(M),

· Sum : M ∈ Mat(n) 7−→ ∑
i,jMij = 1>M1 sums the terms of the matrix,

· sum : x ∈ Rn 7−→ ∑
i xi = 1>x sums the terms of the vector,
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Matrix vector spaces Matrix manifolds
Mat(n) Squared GL(n) General linear group

Skew(n) Skew-symmetric O(n) Orthogonal group
SO(n) Special orthogonal group

Sym(n) Symmetric Sym+(n) Sym Positive Definite cone
Hol(n) Symmetric hollow Cor+(n) Full-rank correlation elliptope
LT(n) Lower Triangular LT+(n) LT with positive diagonal
LT0(n) LT with null diagonal LT1(n) LT with unit diagonal
Diag(n) Diagonal Diag+(n) Positive diagonal group

Table 7.1: Matrix space notations.

where 1 = (1, ..., 1)> ∈ Rn.
The possibly uncommon notations in Table 7.1 are:

· Sym+(n) = {Σ ∈ Sym(n)|Σ > 0} where > is the Loewner order,
· Cor+(n) = {Σ ∈ Sym+(n)|Diag(Σ) = In},
· Hol(n) = {M ∈ Sym(n)|Diag(M) = 0} where “hollow” means vanishing diagonal,
· LT(n) = {Low(M)|M ∈ Mat(n)},
· LT+(n) = {L ∈ LT(n)|Diag(L) ∈ Diag+(n)},
· LT0(n) = {L ∈ LT(n)|Diag(L) = 0},
· LT1(n) = {L ∈ LT(n)|Diag(L) = In} = In + LT0(n).

We denote S(n) the permutation group of order n.

7.1.2.2 Covariance and correlation matrices

Given an invertible covariance matrix Σ = (Cov(Xi, Xj))16i,j6n ∈ Sym+(n) of a random vec-
tor X, the corresponding correlation matrix is defined by C = Cor(Σ) = (Cor(Xi, Xj))16i,j6n
where:

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj), (7.1)

Cor(Xi, Xj) = Cov(Xi, Xj)√
Cov(Xi, Xi)

√
Cov(Xj, Xj)

= Σij√
Σii

√
Σjj

(7.2)

= [Diag(Σ)−1/2 Σ Diag(Σ)−1/2]ij, (7.3)

with Diag(Σ) = diag(Σ11, ...,Σnn) ∈ Diag+(n). Moreover, if D ∈ Diag+(n), then the correla-
tion matrix associated to DΣD is again Cor(Σ). It is known as the invariance of the correla-
tion matrix under the scaling of each component of the random vector. In other words, the
surjective map Cor : Σ ∈ Sym+(n) 7−→ Cor(Σ) ∈ Cor+(n) is invariant under the group action
(D,Σ) ∈ Diag+(n)×Sym+(n) 7−→ DΣD ∈ Sym+(n) and the orbit space Sym+(n)/Diag+(n)
can be identified with Cor+(n). Note that, via this identification, the induced topology
Cor+(n) ↪→ Sym(n) coincides with the quotient topology of Sym+(n)/Diag+(n). The ac-
tion being proper [David and Gu, 2019], the quotient manifold theorem [Lee, 2012] states
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that the orbit space Sym+(n)/Diag+(n) has a unique smooth manifold structure such that
the canonical surjection Sym+(n) −→ Sym+(n)/Diag+(n) is a smooth submersion. Since
Cor : Sym+(n) −→ Cor+(n) is a smooth submersion and since Cor+(n) is Sym+(n)/Diag+(n)
as a topological space, this smooth structure coincides with the induced smooth structure of
Cor+(n).

7.1.2.3 The Cholesky map

A Cholesky decomposition of a symmetric positive semi-definite matrix Σ is a factorization
of the form Σ = LL> where L ∈ LT(n) is a lower triangular matrix. If Σ is positive definite,
then there exists a unique triangular matrix with positive diagonal L ∈ LT+(n) such that
Σ = LL>. This allows to define the Cholesky bijective map:

Chol : Σ ∈ Sym+(n) 7−→ L ∈ LT+(n), (7.4)
whose inverse is the smooth map φ : L ∈ LT+(n) 7−→ LL> ∈ Sym+(n). Moreover,
the Cholesky map is smooth. Indeed, it is the product of two smooth maps Chol(Σ) =
L(Σ)

√
D(Σ) where L ≡ L(Σ) ∈ LT1(n) and D ≡ D(Σ) ∈ Diag+(n) are recursively defined

for all (i, j) ∈ {1, ..., n}2 with i > j by:

Dii = Σii −
i−1∑
j=1

L2
ijDjj > 0, (7.5)

Lij = 1
Djj

Ç
Σij −

j−1∑
k=1

LikLjkDkk

å
, (7.6)

the order of the computations being {D11} → · · · → {Li1 → Li2 → · · · → Li,i−1 → Dii} →
· · · → {Ln1 → · · · → Ln,n−1 → Dnn}.

We denote:

L = Chol(Cor+(n)) =

L =

Ö
L1
...
Ln

è
∈ LT+(n)|∀i ∈ {1, ..., n}, ‖Li‖2 = LiL

>
i = 1

 ,

which is diffeomorphic to Cor+(n) via the Cholesky map. We also define a Cholesky-based
diffeomorphism between Cor+(n) and LT1(n):

Θ : C ∈ Cor+(n) 7−→ Γ = Diag(Chol(C))−1Chol(C) ∈ LT1(n), (7.7)
Φ : Γ ∈ LT1(n) 7−→ C = Diag(ΓΓ>)−1/2ΓΓ>Diag(ΓΓ>)−1/2 ∈ Cor+(n). (7.8)

We clearly have the relations Φ = Θ−1 = Cor ◦ φ.
We compute the differentials of φ : LT+(n) −→ Sym+(n) and Chol : Sym+(n) −→

LT+(n). For all Z ∈ TLLT+(n) ' LT(n):
V := dLφ(Z) = ZL> + LZ>, (7.9)

L−1V L−> = L−1Z + (L−1Z)>,
LowS(L−1V L−>) = L−1Z,

Z = dΣChol(V ) = LLowS(L−1V L−>). (7.10)
In particular, dInChol = LowS.
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7.2 Quotient-affine metrics
In this section, we briefly recall how to build quotient metrics to fix the notations (Section
7.2.1), then we recall the definition of quotient-affine metrics (Section 7.2.2) and finally
we show that the sectional curvature takes both negative and positive curvature and is
unbounded from above (Section 7.2.3).

Sections 7.2.1 and 7.2.2 partly summarize Chapter 6 to allow Chapter 7 to be read inde-
pendently. The skilled reader may skip these sections to resume at Section 7.2.3.

7.2.1 Quotient metrics
Given smooth manifoldsM,M′ and a smooth submersion π :M−→M′, we can define the
vertical space Vx = ker dxπ ⊂ TxM, where dxπ : TxM −→ Tπ(x)M′ is the differential of the
map π at point x ∈ M. The horizontal space Hx can be any supplementary vector space,
i.e. such that Vx⊕Hx = TxM. Given a horizontal distribution x 7−→ Hx, there exist vertical
and horizontal projections verx : TxM−→ Vx and horx : TxM−→ Hx. Moreover, the linear
map (dxπ)|Hx : Hx −→ Tπ(x)M′ is an isomorphism. Its inverse isomorphism is called the
horizontal lift and denoted #x : X ∈ Tπ(x)M′ −→ X#

x ∈ Hx. When M is endowed with a
Riemannian metric, there is a canonical choice of horizontal space which is the orthogonal
Hx = V⊥x . In this case, the projections are orthogonal.

Given a smooth manifoldM on which a Lie group G acts smoothly, properly and freely,
the quotient spaceM/G admits a unique smooth manifold structure that turns the canonical
projection π : M −→ M/G into a smooth submersion [Lee, 2012, Theorem 21.10]. The
vertical distribution is G-equivariant, i.e. Va·x = a · Vx for all a ∈ G (where · is the group
action on M and TM). Given a G-invariant Riemannian metric g on M, the horizontal
distribution is G-equivariant and the metric descends to a metric g′ on M/G defined by
g′π(x)(X,X) = gx(X#

x , X
#
x ).

7.2.2 Definition of quotient-affine metrics
Applying this toM = Sym+(n), G = Diag+(n) andM/G ' Cor+(n), the submersion Cor :
Σ ∈ Sym+(n) 7−→ Diag(Σ)−1/2 Σ Diag(Σ)−1/2 ∈ Cor+(n) [David and Gu, 2019, David, 2019]
allows to descend any Diag+(n)-invariant Riemannian metric on Sym+(n) to a Riemannian
metric on Cor+(n) [O’Neill, 1966].

A natural example of Diag+(n)-invariant Riemannian metric on SPD matrices is provided
by the affine-invariant metric defined for all Σ ∈ Sym+(n) and V ∈ TΣSym+(n) ' Sym(n)
by:

g
AI(α,β)
Σ (V, V ) = α tr(Σ−1V Σ−1V ) + β tr(Σ−1V )2 (7.11)

where α > 0 and β > −α
n
. Its sectional curvature is for V,W ∈ Sym(n) [Skovgaard,

1984, Thanwerdas and Pennec, 2022b]:

κ
AI(α,β)
Σ (V,W ) = 1

4αtr((Σ−1V Σ−1W − Σ−1WΣ−1V )2) ∈
ï
− 1

2α ; 0
ò

(7.12)

The quotient-affine metric is the quotient of the affine-invariant metric via the submersion
Cor : Sym+(n) −→ Cor+(n). It does not depend on β and it writes α gQA with, for all
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C ∈ Cor+(n) and X ∈ TCCor+(n) ' Hol(n):

gQA
C (X,X) = tr((C−1X)2)− 21>Diag(C−1X)(In + C • C−1)−1Diag(C−1X)1. (7.13)

Note that it is invariant under permutations.
The vertical/horizontal distributions/projections and the horizontal lift are for all Σ ∈

Sym+(n), V ∈ TΣSym+(n) ' Sym(n) and X ∈ TCor(Σ)Cor+(n) ' Hol(n) [Thanwerdas and
Pennec, 2021]:

· VΣ = {DΣ + ΣD|D ∈ Diag(n)},
· HΣ = {V ∈ Sym(n)|Σ−1V + V Σ−1 ∈ Hol(n)} = SΣ−1(Hol(n)),
· verΣ(V ) = DΣ + ΣD ∈ VΣ with D = diag ((In + Σ • Σ−1)−1Diag(Σ−1V )1),
· horΣ(V ) = V − verΣ(V ) ∈ HΣ,
· X#

Σ = horΣ(Diag(Σ)1/2XDiag(Σ)1/2) ∈ HΣ,

where SA(X) is the unique solution of the Sylvester equation ASA(X) + SA(X)A = X.
These operations allow to write the sectional curvature for all C ∈ Cor+(n) and X, Y ∈

TCCor+(n) ' Hol(n) [Thanwerdas and Pennec, 2021]:

κQA
C (X, Y ) = κAI

C (X#
C , Y

#
C )︸ ︷︷ ︸

∈[− 1
2 ;0]

+ 3
8

µ>(In + C • C−1)−1µ

gQA
C (X,X)gQA

C (Y, Y )− gQA
C (X, Y )2︸ ︷︷ ︸

>0

, (7.14)

with µ ∈ Rn defined by µ = [D(X, Y )−D(Y,X)]1 ∈ Rn and D(X, Y ) ∈ Diag(n) defined by
D(X, Y ) = Diag([C−1Diag(X#

C )C,C−1Y #
C ]), where [A,B] = AB −BA is the commutator of

squared matrices.

7.2.3 Complement: bounds of curvature
Theorem 7.1 (Bounds of curvature) The sectional curvature of the quotient-affine metric
takes positive and negative values. It is bounded from below and unbounded from above.
See complete proof of Theorem 7.1 in Section 11.6.

Sketch of the proof. First of all, κC(X, Y ) > κAI
C (X, Y ) > −1

2 so the curvature is bounded
from below. Second, at C = In, X# = X and Y # = Y so Diag(X#) = Diag(Y #) = 0 and
µ = 0. Hence, κIn(X, Y ) = κAI

In (X, Y ) 6 0 and for example κIn(Eij, Eik) = −1
8 < 0 with

i 6= j 6= k 6= i ∈ {1, ..., n} [Thanwerdas and Pennec, 2022b]. So the curvature takes negative
values. Third, let X = 11> − In and Y = µ1> + 1µ> − 2 diag(µ) with sum(µ) = 1>µ = 0
where µ ∈ Rn. Let C = (1− ρ)In + ρ11> ∈ Cor+(n) for ρ ∈ (− 1

n−1 , 1). We show in Section
11.6 that κC(X, Y ) tends to +∞ when ρ → − 1

n−1 , which proves that the curvature takes
positive values and it is not bounded from above.

Hence, the Riemannian manifold of full-rank correlation matrices endowed with the
quotient-affine metric is geodesically complete but it is not a CAT(k) space for any k ∈ R.
In particular, it is not a Hadamard space as one could have hoped. It may be a problem for
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many algorithms because the Riemannian logarithm and the Fréchet mean are not ensured
to be unique.

In Section 7.3, we relax the invariance under permutations that might be unsuitable in
some contexts. In Section 7.4, we define non-permutation-invariant metrics which in addition
bring uniqueness of the mean.

7.3 Generalization of quotient-affine metrics
In this section, we define a family of quotient metrics which generalize quotient-affine metrics
and which are not invariant by permutations. In Section 7.3.1, we start by giving an overview
of the congruence action of several subgroups of the general linear group GL(n) on SPD
matrices. In particular, we show that affine-invariant metrics are exactly (S(n)× LT+(n))-
invariant metrics so the family of LT+(n)-invariant metrics appears as a natural generalization
of affine-invariant metrics. In Section 7.3.2, we show that LT+(n)-invariant metrics are
exactly pullbacks by the Cholesky map of left-invariant metrics on the Lie group LT+(n).
We call them Lie-Cholesky metrics. In particular, we define a Lie group structure on SPD
matrices such that the affine-invariant metric is a left-invariant metric on that Lie group.
This is an unexpected result as the SPD cone endowed with an affine-invariant metric is
always seen as a Riemannian homogeneous (symmetric) space. In Section 7.3.3, we define
quotient-Lie-Cholesky metrics and we show that we can compute numerically the exponential
map, the logarithm map and the Riemannian distance.

7.3.1 Congruence actions of matrix Lie groups on SPD matrices
The action of congruence of the real general linear group GL(n) on SPD matrices is:ß

GL(n)× Sym+(n) −→ Sym+(n)
(A,Σ) 7−→ AΣA> . (7.15)

In the following theorem, we focus on the subactions given by the following subgroups.

1. The group of matrices with positive determinant GL+(n).
2. The special linear group SL(n) = {A ∈ GL(n)| det(A) = 1} ⊂ GL+(n), which is

interesting for the invariance of covariance matrices under volume-preserving linear
transformations of the feature vector.

3. The orthogonal group O(n) = {R ∈ GL(n)|RR> = In} and the special orthogonal
group SO(n) = O(n) ∩ SL(n), which are interesting for the invariance of covariance
matrices under rotations and symmetries.

4. The group of lower triangular matrices with positive diagonal LT+(n), which is inter-
esting because an LT+(n)-invariant metric on SPD matrices is a left-invariant metric
on a Lie group (cf. Section 7.3.2).

5. The positive diagonal group Diag+(n) ⊂ LT+(n), which is interesting for the invariance
of covariance matrices under scalings on each variable.
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6. The group of positive real numbers R+ which injects itself into the general linear group
via the map λ ∈ R+ 7−→ λIn ∈ GL+(n). It is interesting for the invariance of covariance
matrices under global scaling.

7. The permutation group S(n) which injects itself into the orthogonal group via the
map σ ∈ S(n) ↪→ Pσ ∈ O(n) defined by [Pσ]ij = δi,σ(j) for all i, j ∈ {1, ..., n}. It is
interesting for the invariance of covariance matrices under permutation of the axes.

In the proof, we also use the following notations: R∗ is the group of invertible scalar ma-
trices, Diag∗(n) is the group of invertible diagonal matrices, LT∗(n) is the group of invertible
lower triangular matrices, UT+(n) is the group of upper triangular matrices with positive
diagonal.

Theorem 7.2 (Characterization of affine-invariant metrics) Let g be a Riemannian metric
on SPD matrices. The following statements are equivalent:

1. g is GL(n)-invariant,

2. g is GL+(n)-invariant,

3. g is SL(n)-invariant and R+-invariant,

4. g is SO(n)-invariant and Diag+(n)-invariant,

5. g is S(n)-invariant and LT+(n)-invariant.

See the proof of Theorem 7.2 in Section 11.6.

One interpretation of this result is that these pairs of invariance (SL(n) and R+; SO(n)
and Diag+(n); S(n) and LT+(n)) are incompatible except in the affine-invariant metrics. In
other words, the family of LT+(n)-invariant metrics is a natural non-permutation-invariant
extension of the family of affine-invariant metrics. In the next section, we characterize them
as pullback metrics of left-invariant metrics on the Lie group LT+(n) by the Cholesky map.

7.3.2 Lie-Cholesky metrics
7.3.2.1 LT+(n)-invariant metrics are Lie-Cholesky metrics

The manifold LT+(n) is an open set of the vector space LT(n). It is a Lie group where the
internal law is the matrix multiplication.

Definition 7.3 (Lie-Cholesky metrics on Sym+(n)) A Lie-Cholesky metric on Sym+(n) is
the pullback of a left-invariant metric on the Lie group (LT+(n),×) via the Cholesky diffeo-
morphism. It is geodesically complete.

Theorem 7.4 (Lie-Cholesky are LT+(n)-invariant metrics) A Riemannian metric on Sym+(n)
is a Lie-Cholesky metric if and only if it is LT+(n)-invariant.
See the proof of Theorem 7.4 in Section 11.6.
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7.3.2.2 Consequences

Corollary 7.5 The Riemannian metrics on Sym+(n) which are LT+(n)-invariant are geodesi-
cally complete.

Corollary 7.6 Permutation-invariant Lie-Cholesky metrics are affine-invariant metrics.

Corollary 7.7 (Affine-invariant metrics on SPD matrices are left-invariant metrics on a Lie
group) The manifold Sym+(n) has a structure of Lie group given by the matrix multiplication
of the Cholesky factors, i.e. for all Σ,Σ′ ∈ Sym+(n), denoting L = Chol(Σ) and L′ =
Chol(Σ′), the internal law is:

Σ ? Σ′ = (LL′)(LL′)> = LΣ′L>. (7.16)
The affine-invariant metrics gΣ(X,X) = α tr(Σ−1XΣ−1X) + β tr(Σ−1X)2 are left-invariant
metrics for this Lie group structure. They are pullbacks of the left-invariant metrics on
the Lie group LT+(n) characterized by the following inner products at In ∈ LT+(n), where
Z ∈ TInLT+(n) ' LT(n):

〈Z|Z〉α,β = gIn(Z + Z>, Z + Z>)
= α tr((Z + Z>)(Z + Z>)) + β tr(Z + Z>)2

= 2α tr(ZZ>) + 2α tr(Diag(Z)2) + 4β tr(Z)2. (7.17)
We denote 〈·|·〉 = 〈·|·〉1/2,0, i.e. 〈Z|Z ′〉 = tr(ZZ>) + tr(Diag(Z)2) for Z ∈ LT(n).

The left-invariant metrics on LT+(n) are parametrized by the inner products at In. Hence,
they can be parametrized by self-adjoint positive definite linear maps f : LT(n) −→ LT(n)
as follows, for all Z,Z ′ ∈ LT(n):

Z · Z ′ = 〈f(Z)|Z ′〉 = 〈Z|f(Z ′)〉. (7.18)
In other words, if vec : LT(n) −→ Rn(n+1)/2 denotes the linear map defined by vec(Z) =
(Z11, Z21, Z22, ..., Zn,n−1, Znn)> for all Z ∈ LT(n), then there exists an SPD matrix A ∈
Sym+(n(n+1)

2 ) such that Z · Z ′ = vec(Z)>A vec(Z ′). Thus the Lie-Cholesky metrics are
parametrized by self-adjoint positive definite linear maps f : LT(n) −→ LT(n) or SPD
matrices A ∈ Sym+(n(n+1)

2 ). They are denoted LC(f) or LC(A).
Therefore, we can see the family of Lie-Cholesky metrics as a natural non-permutation-

invariant extension of affine-invariant metrics. Since they are left-invariant metrics on a Lie
group, the numerical computation of the geodesics (exponential map, logarithm map) and the
parallel transport is simpler and much more stable and precise than for other metrics [Guigui
and Pennec, 2021b]. The curvature is known in closed form modulo the computation of the
operator ad∗ : LT(n)×LT(n) −→ LT(n) defined for all X, Y, Z ∈ LT(n) by 〈ad∗(X)(Y )|Z〉 =
〈Y |[X,Z]〉 [Besse, 1987, Theorem 7.30]. The operator ad∗ for Lie-Cholesky metrics is given
in the following lemma.

Lemma 7.8 (Operator ad∗ for Lie-Cholesky metrics) Let LC(A) be a Lie-Cholesky metric
characterized by A ∈ Sym+(n(n+1)

2 ). Then for X, Y ∈ LT(n), vec(ad∗(X)(Y )) = A(In⊗X>−
X ⊗ In)A−1vec(Y ).
See the proof of Lemma 7.8 in Section 11.6.
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7.3.3 Quotient-Lie-Cholesky metrics
Lie-Cholesky metrics being LT+(n)-invariant, they are in particular Diag+(n)-invariant as the
affine-invariant metric. As recalled earlier, the smooth map Cor : Sym+(n) −→ Cor+(n) is
a Diag+(n)-invariant submersion so Lie-Cholesky metrics descend to quotient-Lie-Cholesky
metrics on full-rank correlation matrices. Quotient-Lie-Cholesky metrics naturally extend
quotient-affine metrics. To use them, one needs to compute the vertical and horizontal
projections. After the definition of quotient-Lie-Cholesky metrics, the following lemma gives
the expression of the vertical and horizontal distributions.

Definition 7.9 (Quotient-Lie-Cholesky metric) A quotient-Lie-Cholesky metric is the quo-
tient metric of a Lie-Cholesky metric by the submersion Cor : Sym+(n) −→ Cor+(n).
Equivalently, it is the pushforward metric by the diffeomorphism Φ : L ∈ LT1(n) 7−→
Diag(LL>)−1/2LL>Diag(LL>)−1/2 ∈ Cor+(n) of a quotient metric on LT1(n) ' Diag(n)\LT+(n)
defined by quotient via the submersion π : L ∈ LT+(n) 7−→ Diag(L)−1L ∈ LT1(n).

In this section, we express all the Riemannian operations of quotient-Lie-Cholesky metrics
LT1(n). It suffices to push them forward by Φ to get them on Cor+(n).

Lemma 7.10 (Vertical distribution, horizontal distribution) The vertical and horizontal
distributions associated to the quotient-Lie-Cholesky associated to f are VL = Diag(n)L and
HLC(f)
L = Lf−1(L−1dLL>Chol(S(LL>)−1(Hol(n)))).

See the proof of Lemma 7.10 in Section 11.6.

Then, to compute the vertical and horizontal projections, it suffices to take bases of the
vertical space VL and the horizontal spaceHL, to orthonormalize them by Gram-Schmidt pro-
cess and to project onto these orthonormal bases. Then the horizontal lift can be computed
as follows, which allows to compute the metric and the exponential map.

Lemma 7.11 (Horizontal lift, Riemannian metric, exponential map) Given the horizontal
projection horL : TLLT+(n) −→ HL and the exponential map of the Lie-Cholesky metric
ExpLC : LT(n) −→ LT+(n), we have for all L ∈ LT+(n), for all Γ = Diag(L)−1L ∈ LT1(n),
for all ξ ∈ TΓLT1(n) ' LT0(n):

· (Horizontal lift) ξ#
L = horL(Diag(L)ξ),

· (Riemannian metric) gQLC
Γ (ξ, ξ) = 〈f(Γ−1horΓ(ξ))|Γ−1horΓ(ξ)〉,

· (Exponential map) ExpQLC
Γ (tξ) = Diag(ExpLC

Γ (t hor(ξ)))−1ExpLC
Γ (t hor(ξ)).

In particular, quotient-Lie-Cholesky metrics are geodesically complete.
See the proof of Lemma 7.11 in Section 11.6.

The Riemannian logarithm and the Riemannian distance can then be computed by mini-
mizing the Lie-Cholesky distance along a fiber. The Lie-Cholesky distance is itself computed
numerically with efficient tools on Lie groups [Guigui and Pennec, 2021b].

In this section, we gave an overview of the congruence action of several matrix Lie groups
on SPD matrices. It allowed to understand that the natural extension of affine-invariant
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metrics to non-permutation-invariant metrics is the family of LT+(n)-invariant metrics. We
showed that such metrics are pullbacks of left-invariant metrics on the Lie group LT+(n) by
the Cholesky diffeomorphism. Hence, the space of lower triangular matrices and the Cholesky
map naturally appear when one wants to get rid of the invariance under permutations on SPD
matrices. Following the same construction as for the quotient-affine metric, we built quotient-
Lie-Cholesky metrics and we showed that most of the interesting Riemannian operations can
be computed numerically. However, this geometry is not completely satisfying since we
have no formula in closed form and no obvious nice geometric properties except geodesic
completeness. Moreover, the numerical computation of the Riemannian logarithm and the
Riemannian distance are done with the generic methods in quotient manifolds which can
be heavy and unstable. Furthermore, the quotient-affine metric has unbounded curvature
as shown in Section 7.2 and it is difficult to say something about the curvature of general
quotient-Lie-Cholesky metrics.

Hence in the following section, we continue to rely on lower triangular matrices and
the Cholesky map to define Riemannian metrics with simpler geometries than the general
quotient geometry of quotient-Lie-Cholesky metrics.

7.4 New geometric structures with unique mean

In this section, we define new families of metrics on the open elliptope of full-rank correlation
matrices. They are based on simple geometries of subspaces of lower triangular matrices and
transported to the elliptope via the Cholesky map or the derived map Θ. In Section 7.4.1,
we introduce the poly-hyperbolic-Cholesky metrics which provide Riemannian symmetric
structures. Then we introduce the Euclidean-Cholesky metrics (Section 7.4.2) and the log-
Euclidean-Cholesky metrics (Section 7.4.3) that provide Euclidean structures. Equipped with
a metric of one of these three families, the open elliptope is Hadamard so the Riemannian
logarithm and the Fréchet mean are unique. In Section 7.4.4, we introduce a Lie group
structure that allows to define Cartan-Schouten affine connections and left-invariant metrics.
The group mean of the canonical Cartan-Schouten connection is unique. In Section 7.4.5,
we give the geodesics in dimension 2, which correspond to interpolations of one correlation
coefficient.

7.4.1 Symmetric space: poly-hyperbolic-Cholesky metrics

In this section, we use the diffeomorphism Chol|Cor+(n) : Cor+(n) −→ L where L is the set of
lower triangular matrices with positive diagonal such that each row is unit normed for the
canonical Euclidean norm. Thus, the k-th row of L = Chol(C) ∈ L writes (Lk1, ..., Lk,k−1, Lkk, 0, ..., 0)
with Lkk > 0. It belongs to the open hemisphere HSk−1 = {x ∈ Rk|‖x‖ = 1 and xk > 0}.
So each L ∈ L is a point in HS0 × · · · × HSn−1. This construction is clearly bijective and
diffeomorphic. Note that since L11 = 1 and HS0 = {1}, we can remove it from the Cartesian
product. Hence, we can define the diffeomorphism Ψ : L −→ HS1 × · · · × HSn−1. Moreover,
an open hemisphere is one of the avatars of the hyperbolic space, which is the Riemannian
manifold of negative constant curvature.
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Before introducing the Riemannian metric induced by the diffeomorphism Ψ, we recall the
definition and Riemannian operations of the hyperbolic space in the model of the hyperboloid.

Theorem 7.12 (Hyperbolic geometry of the hyperboloid) The vector space Rk+1 is endowed
with the non-degenerate quadratic form Q(x) = ∑k

i=1 x
2
i−x2

k+1. We denote (x, y) 7−→ Q(x, y)
the associated symmetric bilinear form. The hyperboloid Hk is the Riemannian manifold
defined by Hk = {x ∈ Rk+1|Q(x) = −1} endowed with the induced pseudo-metric, which is
a Riemannian metric on Hk. The tangent space writes TxHk = {v ∈ Rk+1|Q(x, v) = 0}. For
all x, y ∈ Hk, v ∈ TxHk and w ∈ TxHk non colinear to v, the Riemannian operations are:

· (Riemannian metric) gHx (v, v) = Q(v),
· (Riemannian norm) ‖v‖H =

√
Q(v),

· (Riemannian distance) dH(x, y) = arccosh(−Q(x, y)),
· (Exponential map) ExpH

x (v) = cosh(‖v‖H)x+ sinh(‖v‖H) v
‖v‖H

,

· (Logarithm map) LogH
x (y) = dH(x, y) y+Q(x,y)x

‖y+Q(x,y)x‖H
,

· (Sectional curvature) κHx (v, w) = −1.

The formulae on the other models of the hyperbolic space can be obtained by pullback
via the appropriate diffeomorphism. In particular, the diffeomorphism between the open
hemisphere HSk = {(x1, ..., xk+1) ∈ Rk × R+|∑k+1

i=1 x
2
i = 1} and the hyperbolic space Hk is:

ϕSH : (x1, ..., xk+1) ∈ HSk 7−→ 1
xk+1

(x1, ..., xk, 1) ∈ Hk. (7.19)

Thus the natural metric on the open hemisphere is the pullback metric gHS = (ϕSH)∗gH.

Definition 7.13 (Poly-hyperbolic-Cholesky metrics) Let α1, ..., αn−1 > 0 be positive co-
efficients. A poly-hyperbolic-Cholesky metric on Cor+(n) is the pullback metric gPHC =
(Ψ ◦Chol)∗(α1g

HS1 ⊕ ...⊕ αn−1g
HSn−1) by the map Chol ◦Ψ of a weighted product metric on

the product of hyperbolic spaces HS1× · · · ×HSn−1. The PHC metric with all weights equal
to 1 is called the canonical PHC metric.

Theorem 7.14 (Symmetric space structure) The manifold of full-rank correlation matrices
Cor+(n) equipped with a poly-hyperbolic-Cholesky metric is a Riemannian symmetric space
of non-positive sectional curvature bounded by [a, 0] with a = − 1

mini>2 αi
. For n > 3, it

is not of constant curvature. The canonical PHC metric writes for all C ∈ Cor+(n) and
X ∈ TCCor+(n) ' Hol(n):

gCPHC
C (X,X) = ‖Diag(L)−1LLowS(L−1XL−>)‖2, (7.20)

where L = Chol(C) ∈ L. The square distance between C and C ′ = φ(L′) writes:

dCPHC(C,C ′)2 =
n∑
i=2

arccosh(−Q(L>i , L′i
>))2, (7.21)

where Li, L′i are the i-th rows of L,L′ respectively.
See the proof of Theorem 7.14 in Section 11.6.
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7.4.2 Vector space: Euclidean-Cholesky metrics
The Cholesky map was already used on SPD matrices [Wang et al., 2004]. The Euclidean-
Cholesky metric is defined as the Euclidean metric on the Cholesky factor belonging to
LT+(n). However, it is not complete because LT+(n) is open in LT(n). A solution to this
problem is to take the logarithm of the diagonal before taking the Euclidean metric [Pinheiro
and Bates, 1996, Lin, 2019]. It amounts to define the product metric of a Euclidean metric
on the strictly lower part and a log-Euclidean metric on the diagonal part.

For correlation matrices, we can use the diffeomorphism Θ : Cor+(n) −→ LT1(n). Since
the diagonal is In, the two mentioned metrics reduce to the same metric on the open elliptope.
We call it the Euclidean-Cholesky metric.

Definition 7.15 (Euclidean-Cholesky metrics) The Euclidean-Cholesky metrics on full-rank
correlation matrices are pullback metrics by Θ : Cor+(n) −→ LT1(n) of inner products on
LT1(n) = In + LT0(n).

Theorem 7.16 (Riemannian operations) Let ‖ · ‖ be a Euclidean norm on LT0(n). The
Riemannian operations of the Euclidean-Cholesky metric associated to this norm are, for all
C,C ′, Ci ∈ Cor+(n), X ∈ TCCor+(n) ' Hol(n), t ∈ R:
· (Exponential map) ExpC(tX) = Θ−1(Θ(C) + t dCΘ(X)),
· (Logarithm map) LogC(C ′) = (dCΘ)−1(Θ(C ′)−Θ(C)),
· (Geodesic) γC→C′(t) = Θ−1((1− t)Θ(C) + tΘ(C ′)),
· (Distance) d(C,C ′) = ‖Θ(C ′)−Θ(C)‖,
· (Parallel transport) ΠC→C′X = (dC′Θ)−1(dCΘ(X)),
· (Curvature) Null,
· (Fréchet mean) C̄ = Θ−1( 1

n

∑n
i=1 Θ(Ci)),

where dCΘ(X) = Θ(C)LowS(L−1XL−>) − 1
2Diag(L−1XL−>)Θ(C) and L = Chol(C). The

Euclidean-Cholesky metrics are geodesically complete.

These metrics are flat, geodesically complete and the Riemannian operations are trivial.
Since they reduce to (the pullback of) an inner product on a vector space, we prefer not to
use the term Lie group for them, contrarily to the terminology of [Li et al., 2017, Lin, 2019].
We prefer to reserve it for Lie groups that are not vector spaces, such as the natural Lie
group structure of LT+(n) (with matrix multiplication) underlying Lie-Cholesky metrics.

7.4.3 Vector space: log-Euclidean-Cholesky metrics
Another map was used to Euclideanize the manifold LT+(n): the matrix logarithm [Li et al.,
2017]. Indeed, the matrix exponential is a smooth diffeomorphism from LT(n) to LT+(n)
[Gallier, 2008]. We can use the same idea for correlation matrices since the matrix exponential
is a smooth diffeomorphism from LT0(n) to LT1(n). Moreover it has a particularly simple
expression:

exp(ξ) =
n−1∑
k=0

1
k!ξ

k, (7.22)
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because LT0(n) is a nilpotent algebra. Then the logarithm log : LT1(n) −→ LT0(n) is simply:

log(Z) =
n−1∑
k=1

(−1)k−1

k
(Z − In)k. (7.23)

Therefore, the differential of the logarithm writes:

dZ log(ξ) =
n−1∑
k=1

(−1)k
k

[(Z − In)k−1ξ + (Z − In)k−2ξ(Z − In) + ...+ ξ(Z − In)k−1]. (7.24)

Definition 7.17 (Log-Euclidean-Cholesky metrics) The log-Euclidean-Cholesky metrics on
full-rank correlation matrices are pullback metrics by log ◦Θ : Cor+(n) −→ LT0(n) of inner
products on LT0(n).

Theorem 7.18 (Riemannian operations) Let ‖ · ‖ be a Euclidean norm on LT0(n). The
Riemannian operations of log-Euclidean-Cholesky metrics associated to this norm are, for all
C,C ′, Ci ∈ Cor+(n), X ∈ TCCor+(n) ' Hol(n), t ∈ R:

· (Exponential map) ExpC(tX) = Θ−1 ◦ exp(log(Θ(C)) + t dC(log ◦Θ)(X)),
· (Logarithm map) LogC(C ′) = (dC(log ◦Θ))−1(log(Θ(C ′))− log(Θ(C))),
· (Geodesic) γC→C′(t) = Θ−1 ◦ exp((1− t) log(Θ(C)) + t log(Θ(C ′))),
· (Distance) d(C,C ′) = ‖ log(Θ(C ′))− log(Θ(C))‖,
· (Parallel transport) ΠC→C′X = (dC′(log ◦Θ))−1(dC log ◦Θ(X)),
· (Curvature) Null,
· (Fréchet mean) C̄ = Θ−1 ◦ exp( 1

n

∑n
i=1 log(Θ(Ci))),

where dC(log ◦Θ)(X) = dΘ(C) log(dCΘ(X)). The log-Euclidean-Cholesky metrics are geodesi-
cally complete.

The computation of the Riemannian operations of the Euclidean-Cholesky metrics is more
straightforward than those of the log-Euclidean-Cholesky because one has to compute the
differential of the triangular matrix logarithm for the latter.

7.4.4 Nilpotent Lie group structure
Another interesting structure is given by the natural Lie group structure of LT1(n) for the
matrix multiplication. This equips full-rank correlation matrices with a Lie group structure
via the diffeomorphism Θ : Cor+(n) −→ LT1(n). Hence, left-invariant metrics can be defined.
In analogy with Sym+(n) ' LT+(n), they can also be called Lie-Cholesky metrics. Then all
Riemannian operations can be computed numerically [Guigui and Pennec, 2021b] and the
space is ensured to be geodesically complete. However, this doesn’t give information on the
sign of the curvature.

More interestingly, one can rely on the canonical Cartan-Schouten connection to define the
group exponential and the notion of group mean. We can also name them after Lie-Cholesky.



Chapter 7. Convenient Cholesky-based geometries 137

Theorem 7.19 (Group operations) The group operations associated to the Lie-Cholesky
group structure on full-rank correlation matrices are, for all C,C ′, Ci ∈ Cor+(n), X ∈
TCCor+(n) ' Hol(n), t ∈ R:

· (Exponential map) ExpC(tX) = Θ−1(Θ(C) exp(tΘ(C)−1dCΘ(X)),

· (Logarithm map) LogC(C ′) = (dCΘ)−1(Θ(C) log(Θ(C)−1Θ(C ′))),

· (Geodesic) γC→C′(t) = Θ−1(Θ(C)(Θ(C)−1Θ(C ′))t),

· (Group mean) Unique, characterized by ∑k
i=1 log(Θ(C̄)−1Θ(Ci)) = 0.

See the proof of Theorem 7.19 in Section 11.6.

7.4.5 Explicit geodesics in dimension 2
In dimension 2, the elliptope is reduced to one parameter. All full-rank correlation matrices
write C = C(ρ) =

Å
1 ρ
ρ 1

ã
with ρ ∈ (−1, 1). Therefore, the quotient-affine metric and the

metrics defined in Section 7.4 only depend on one scaling parameter. They actually split in
two groups and the geodesics can be computed in closed forms. The two formulae in the
following result provide two different interpolations of the correlation coefficient. The proof
is in the supplementary material.

Theorem 7.20 (Geodesics in dimension 2) Let C1 = C(ρ1), C2 = C(ρ2) ∈ Cor+(2) with
ρ1, ρ2 ∈ (−1, 1).

1. Quotient-affine metrics and poly-hyperbolic-Cholesky metrics coincide (up to a scaling
factor). The geodesic between C1 and C2 is C(ρ(t)) for t ∈ R where:

ρ(t) = ρ1 cosh(λt) + sinh(λt)
ρ1 sinh(λt) + cosh(λt) , (7.25)

where λ = log
»

1+ρ2
1−ρ2
−log

»
1+ρ1
1−ρ1

is known as the difference of the Fisher transformation
of the correlation coefficients ρ1 and ρ2.

2. Euclidean-Cholesky and log-Euclidean-Cholesky metrics coincide. The geodesic be-
tween C1 and C2 is C(ρ(t)) for t ∈ R where:

ρ(t) = F (t)√
1 + F (t)2

, (7.26)

where F (t) = (1−t) ρ1√
1−ρ2

1
+t ρ2√

1−ρ2
2
. This geodesic also coincides with the Lie-Cholesky

group geodesic of Section 7.4.4.

See the proof of Theorem 7.20 in Section 11.6.
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7.5 Conclusion
In this work, we proposed new Riemannian metrics on the open elliptope of full-rank corre-
lation matrices that are not invariant under permutations. To the best of our knowledge, all
the existing geometric structures were invariant under permutations. Thus the geometries we
propose significantly departs from the classical structures. This can be a good assumption
in some applications and an irrelevant characteristic in some others. We generalized the re-
cently introduced quotient-affine metrics by studying the congruence action of several matrix
Lie groups on SPD matrices. We showed that the family of LT+(n)-invariant metrics is a
natural non-permutation-invariant generalization of affine-invariant metrics. Moreover, they
are pullbacks of left-invariant metrics on the Lie group LT+(n) by the Cholesky map. They
are invariant under the congruence action of positive diagonal matrices so they descend to
the elliptope. We explained that the main Riemannian operations can be computed numeri-
cally for these quotient-Lie-Cholesky metrics. However, we also showed that the curvature of
quotient-affine metrics is unbounded and we can conjecture that the situation is not better for
quotient-Lie-Cholesky metrics. In addition, the Riemannian operations are not computable
in closed form a priori.

That is why we introduced new Riemannian metrics on the elliptope in a different way.
We kept the Cholesky map which seems to be a good alternative to the invariance under
permutations since the space of lower triangular matrices is not stable by permutations.
Thus we defined the poly-hyperbolic-Cholesky (PHC) metrics which provide non-positively
curved Riemannian symmetric space structures. We also defined two kinds of vector space
structures that are flat, geodesically complete and for which all operations are known in closed
form. Thus, these three families of metrics provide a Hadamard structure, in particular the
Riemannian logarithm and the Fréchet mean are unique. We also put forward a nilpotent Lie
group structure for which the group mean is unique. Finally, we proved that in dimension
2, the PHC geodesics are the quotient-affine geodesics and the geodesics of the three last
structures coincide. This provides a new interpolation of the correlation coefficient.

It would be nice to test these new metrics on different kinds of data in future works.
Moreover, all metrics on correlation matrices provide new product metrics on covariance
matrices by decoupling the scales of the variables and the correlations between them. This
approach seems promising since in many problems, the correlation gives more information
than the covariance on the strength of the relations between the variables, although the scales
can remain interesting. Thus, one question could be to adjust the weights between the two
components and also between the scales of the variables. The possibilities are multiplied now
we have many metrics on correlation matrices. Another direction of research is to investigate
permutation-invariant Riemannian metrics on correlation matrices with a simpler geometry
than the one of the quotient-affine metrics, for example Hadamard or even flat.
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Chapter 8

Permutation-invariant Log-Euclidean metrics

Abstract
There is a growing interest in defining specific tools on correlation matrices which depart from
those suited to SPD matrices. Several geometries have been defined on the open elliptope of
full-rank correlation matrices: some are permutation-invariant, some others are log-Euclidean, i.e.
diffeomorphic to a Euclidean space. In this work, we merge these two properties by defining the
families of off-log metrics and log-scaled metrics. Firstly, we prove that the recently introduced
off-log bijection is a diffeomorphism, allowing to pullback (permutation-invariant) inner products.
We introduce the “cor-inverse” involution on the open elliptope which can be seen as analogous to
the inversion of SPD matrices. We show that off-log metrics are not inverse-consistent. That is why
secondly, we define the log-scaling diffeomorphism between the open elliptope and the vector space
of symmetric matrices with null row sums. This map is based on the congruence action of positive
diagonal matrices on SPD matrices, more precisely on the existence and uniqueness of a “scaling”,
i.e. an SPD matrix with unit row sums within an orbit. Thanks to this multiplicative approach,
log-scaled metrics are inverse-consistent. We provide the main Riemannian operations in closed
form for the two families modulo the computation of the respective bijections. In particular, we
define a new algorithm that computes the scaling of an SPD matrix in logarithmic time complexity.

8.1 Introduction
In many domains such as Diffusion Tensor Imaging, Brain-Computer Interfaces, brain con-
nectomes or radar signals, the data are time series which are often represented by their
covariance matrices. They encode the dependence between the variables and the scale of
intensity of these variables. Many Riemannian geometries were proposed to compute with
covariance matrices with more natural tools that the Euclidean ones. The use of the affine-
invariant metric was shown to outperform many results based on Euclidean metrics such as
fiber reconstruction in DTI [Pennec et al., 2006], movement classification in BCI [Barachant
et al., 2013] or detection of brain functional connectivity [Varoquaux et al., 2010]. Shortly
after, the log-Euclidean metric [Arsigny et al., 2006, Fillard et al., 2007] was shown to be
a more efficient alternative to the affine-invariant metric with similar results. The Bures-
Wasserstein metric was also proposed to deal with low-rank matrices since the two previous
ones are only defined on the space Sym+(n) of Symmetric Positive Definite (SPD) matri-
ces. All these metrics belong to the wide families of kernel metrics [Hiai and Petz, 2009]
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and O(n)-invariant metrics [Thanwerdas and Pennec, 2022b]. Non O(n)-invariant metrics
were also proposed such as the Cholesky [Wang et al., 2004, Grubišić and Pietersz, 2007],
log-Euclidean-Cholesky [Li et al., 2017] and log-Cholesky [Lin, 2019] metrics.

In the previously cited domains and in other ones such as phylogenetic trees [Garba
et al., 2021] or Gaussian graphical networks [Lauritzen, 1996, Epskamp and Fried, 2018],
another possible and natural choice to represent the data is the correlation matrix instead
of the covariance matrix. However, the geometries of correlation matrices have been much
less studied. Hence they are often considered as covariance matrices on which one can use
the classical tools. Nevertheless, these tools are not adapted to correlation matrices, at
least the O(n)-invariant ones. Indeed, firstly, the manifold of full-rank correlation matrices
is not stable by the congruence action of the orthogonal group so this action has no sense
for them. Secondly, it is not a totally geodesic submanifold for neither of the noted O(n)-
invariant metrics on SPD matrices, except the Euclidean metric. This motivates the study of
intrinsic geometries of correlation matrices. Such geometries could also have a great impact
on applications with covariance matrices since they would provide product metrics with one
part on diagonal matrices and the other part on correlation matrices. It would thus allow to
decouple the scale of the variables from the dependence between the variables.

Among the geometries proposed on correlation matrices, one involves a surjection from
a product of spheres [Rebonato and Jaeckel, 2001, Kercheval, 2008]. It is an orbit space
[Alekseevsky et al., 2001], this construction is quite analogous to the Bures-Wasserstein
geometry of covariance matrices. However, to our knowledge, it has not been precisely
described yet. A metric space structure called the Hilbert geometry relies on the convexity of
the set [Nielsen and Sun, 2019]. Among the Riemannian structures, the recently introduced
quotient-affine metric is obtained by taking the quotient of the affine-invariant metric under
the congruence action of positive diagonal matrices ? : (∆,Σ) ∈ Diag+(n) × Sym+(n) 7−→
∆Σ∆ ∈ Sym+(n) [David and Gu, 2019, Thanwerdas and Pennec, 2021]. Indeed, full-rank
correlation matrices can be seen as the orbits of this action so the space Cor+(n) of such
matrices is the quotient manifold Sym+(n)/Diag+(n) and any invariant metric on Sym+(n) '
Cor+(n)×Diag+(n) descends to a Riemannian metric on Cor+(n). These constructions have
the common property to be invariant under permutations. It means that the statistical
analysis is invariant under reordering the variables, which can be a relevant hypothesis when
the order is arbitrary. When the order of the variables is meaningfully chosen depending
on the application (e.g. for auto-correlation matrices), other Riemannian metrics that are
not permutation-invariant can be considered. The metrics proposed in [Thanwerdas and
Pennec, 2022c] provide a Hadamard structure or even a vector space structure, which are
very convenient for computing with correlation matrices.

Given this short survey on geometries of correlation matrices, there is an obvious gap to
fill in: no permutation-invariant log-Euclidean metrics have been derived yet on the space
Cor+(n) of full-rank correlation matrices. By log-Euclidean, we mean the pullback of an inner
product on a vector space V by a diffeomorphism referred to as a logarithm and denoted Log :
Cor+(n) −→ V . In this work, we propose two approaches to define such a diffeomorphism.
The first one is based on a recent bijective parametrization of full-rank correlation matrices
by the space LT0(n) of lower triangular matrices with null diagonal introduced by Archakov
and Hansen [Archakov and Hansen, 2021]. The second one is entirely new. We rephrase
their framework to present the two approaches in a similar way to facilitate the comparison
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between them and the comprehension of the second one by analogy with the first one. These
two methods are summarized in Table 8.1 and explained below.

First approach (additive) Second approach (multiplicative)
Off-log diffeomorphism Cor-exp diffeomorphism

Action + :
ß

Diag(n)× Sym(n) −→ Sym(n)
(D,S) 7−→ D + S

? :
ß

Diag+(n)× Sym+(n) −→ Sym+(n)
(∆,Σ) 7−→ ∆Σ∆

Claim ∀S ∈ Sym(n),∃!D := D(S) ∈ Diag(n) : ∀Σ ∈ Sym+(n),∃! ∆ := D?(Σ) ∈ Diag+(n) :
exp(D + S) ∈ Cor+(n) log(∆ ? Σ) ∈ V?

Status Claim proved in [Archakov and Hansen, 2021] Claim proved for V? = Row0(n) in Section 3

Diagram Cor+(n)
Log=Off ◦ log

��

Hol(n) �
�

//

Exp

??

Sym(n) D //

exp ◦ (D+IdSym(n))

OO

Diag(n)

Cor+(n) �
�

//

Log?

!!

Sym+(n) D?
//

log ◦ (D?? IdSym+(n))
��

Diag+(n)

V?
Exp?=Cor ◦ exp

aa

Outline Sec. 2.1. Definition of D Sec. 3. Def. of D? (choice of appropriate V?)
Sec. 2.2. Definition of pullback metrics Sec. 4. Definition of pullback metrics
Sec. 2.3. Numerical computation of D Sec. 5. Numerical computation of D?

Table 8.1: Two approaches to define permutation-invariant log-Euclidean metrics on Cor+(n).
The left part is based on [Archakov and Hansen, 2021]. The right part is new; V? is a vector
space stable by permutations satisfying Sym(n) = V? ⊕Diag(n).

8.1.1 Results and organization of the chapter
In the remainder of this section, we introduce the necessary notations. We also define a
natural involution on the open elliptope called the cor-inversion, which allows to define a
notion of inverse-consistency for Riemannian metrics.

In [Archakov and Hansen, 2021], the authors show the claim on the left of Table 8.1,
that is for all symmetric matrix S, there exists a unique diagonal matrix D = D(S) such
that exp(D + S) is a full-rank correlation matrix. Thus it defines a surjective map π :
S ∈ Sym(n) 7−→ exp ◦(D(S) +S) ∈ Cor+(n) which is equivariant under permutations, and a
bijective map L ∈ LT0(n) 7−→ π(L+L>) ∈ Cor+(n). We astutely replace the space LT0(n) by
the space V = Hol(n) of symmetric matrices with null diagonal (which is of same dimension)
so that the restriction Exp = π|V : V −→ Cor+(n) is also equivariant under permutations.
Note that Hol(n) is actually the tangent space of Cor+(n). Moreover, we trivially observe
that π is invariant by the additive action of a diagonal matrix. Our contribution is to show
that the bijection Exp is a smooth (that is C∞) diffeomorphism, to define by pullback the
family of off-log metrics and to provide all the Riemannian operations in closed form modulo
the computation of D. An algorithm with logarithmic time complexity is already defined in
[Archakov and Hansen, 2021] to compute D. This additive approach is summarized on the
left part of Table 8.1 and exposed in Section 8.2.

Our second approach consists in inverting the roles played by the vector spaces Sym(n) =
V ⊕ Diag(n) and the manifolds Sym+(n) = Cor+(n) × Diag+(n), as well as the matrix
exponential and the matrix logarithm, and especially to replace the additive action of Diag(n)
on Sym(n) by the congruence action ? : (∆,Σ) ∈ Diag+(n)×Sym+(n) 7−→ ∆Σ∆ ∈ Sym+(n).
In this work, we find a vector space V? such that for all Σ ∈ Sym+(n), there exists a unique
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∆ = D?(Σ) ∈ Diag+(n) such that log(∆Σ∆) ∈ V?. This allows to define the surjective
map π? : Σ ∈ Sym+(n) 7−→ log(D?(Σ) ? Σ) ∈ V? and the bijective map Log? = π|Cor+(n) :
Cor+(n) −→ V? which are equivariant under permutations. This multiplicative approach is
summarized on the right part of Table 8.1 and exposed in Section 8.3. One major advantage
of this multiplicative approach is that it intrinsically respects the structure of correlation
matrices since Cor+(n) = Sym+(n)/Diag+(n), contrarily to the additive approach. The
main consequence is the compatibility with the inversion, i.e. π?(C−1) = −π?(C) for all
C ∈ Cor+(n).

More precisely, we try to prove the claim with V? = Hol(n) and V? = Row0(n), where
Row0(n) is the vector space of symmetric matrices with null row sums. With the first
choice, we only manage to prove the existence. We actually prove that the uniqueness
would imply the uniqueness of the Riemannian logarithm at identity of the quotient-affine
metric mentioned above, which is an open problem. This is a secondary contribution that
relates two problems on full-rank correlation matrices. In contrast, we prove the claim with
V? = Row0(n). Indeed, we show that exp(Row0(n)) = Row+

1 (n), where Row+
1 (n) is the

submanifold of SPD matrices with unit row sums. This reduces our question to the famous
problem of scaling an SPD matrix to prescribed row sums by congruence of a positive diagonal
matrix: for all SPD matrix Σ, does there exist a positive diagonal matrix ∆ = D?(Σ) such
that ∆Σ∆ ∈ Row+

1 (n). The answer is yes [Marshall and Olkin, 1968, Johnson and Reams,
2009] so the claim is true.

In Section 8.4, similarly to the additive approach, we prove that the bijection Log? is
a smooth diffeomorphism and we define by pushforward the family of log-scaled metrics.
Contrarily to off-log metrics, they are inverse-consistent. We provide all the Riemannian
operations in closed form modulo the computation of D?, that is the computation of the
scaling of an SPD matrix. In Section 8.5, we design a new algorithm to compute the scaling
of an SPD matrix which is more efficient than generic algorithms to compute the scaling
such as [Khachiyan and Kalantari, 1992, O’Leary, 2003] (see surveys [Johnson and Reams,
2009, Idel, 2016, Allen-Zhu et al., 2017]). We build it by following the proof of existence
given by [Marshall and Olkin, 1968] and adapting the efficient Projected Gradient Descent
(PGD) algorithm [Bubeck, 2015]. We conclude in Section 8.6.

8.1.2 Notations
8.1.2.1 Matrices

Tables 8.2 and 8.3 summarize our notations for matrix spaces. We also use the following
constant and linear operators on vectors and matrices:

· 1 ∈ Rn is the vector with all entries equal to 1;
· diag : Rn −→ Diag(n) makes a diagonal matrix from a vector;
· sum : Rn −→ R computes the sum of the entries of a vector;
· Diag : Mat(n) −→ Diag(n) extracts the diagonal matrix from a matrix;
· Off : Mat(n) −→ ker Diag substracts the diagonal matrix from a matrix;
· Sum : Mat(n) −→ R computes the sum of entries of a matrix;
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· • : Mat(n)×Mat(n) −→ Mat(n) computes the Hadamard/Schur (entry-wise) product
of matrices.

Squared of size n Mat(n) = {M = [Mij]16i,j6n|Mij ∈ R}
Skew-symmetric Skew(n) = {Y ∈ Mat(n)|Y > = −Y }
Symmetric Sym(n) = {X ∈ Mat(n)|X> = X}
Diagonal Diag(n) = {Diag(X)|X ∈ Mat(n)}
Symmetric hollow (null diagonal) Hol(n) = {X ∈ Sym(n)|Diag(X) = 0}
Symmetric null-row-sum Row0(n) = {X ∈ Sym(n)|X1 = 0}

Table 8.2: Matrix vector spaces.

Invertible GL(n) = {A ∈ Mat(n)| det(A) 6= 0}
Orthogonal O(n) = {A ∈ GL(n)|AA> = In}
Symmetric Positive Definite Sym+(n) = {AA>|A ∈ GL(n)}
Positive diagonal Diag+(n) = Sym+(n) ∩Diag(n)
Full-rank correlation Cor+(n) = {C ∈ Sym+(n)|Diag(C) = In}
SPD unit-row-sum Row+

1 (n) = {Σ ∈ Sym+(n)|Σ1 = 1}

Table 8.3: Matrix manifolds.

We recall the definition of the congruence action ? : (A,M) ∈ GL(n) × Mat(n) 7−→
AMA> ∈ Mat(n). Since the permutation group S(n) is a subgroup of the orthogonal group
via the canonical injection σ ∈ S(n) ↪→ Pσ = [δi,σ(j)]16i,j6n ∈ O(n), the permutation action
(σ,M) ∈ S(n) × Mat(n) 7−→ σ ·M = PσMP>σ ∈ Mat(n) is the congruence action of the
subgroup S(n).

We recall the definition of the matrix exponential exp : M ∈ Mat(n) −→ ∑+∞
k=0

1
k!M

k ∈
GL(n) which is a smooth map. Its restriction to symmetric matrices is a smooth dif-
feomorphism onto SPD matrices, exp : Sym(n) −→ Sym+(n). The symmetric matrix
logarithm is its smooth inverse, log : Sym+(n) −→ Sym(n). The computation of exp,
log and their differentials are particularly simple modulo eigenvalue decomposition. Given
Σ = PDP> ∈ Sym+(n), X = Q∆Q>, Y ∈ Sym(n) where P,Q ∈ O(n), D ∈ Diag+(n) and
∆ ∈ Diag(n):

exp(X) = Q exp(∆)Q>, (8.1)
log(Σ) = P log(D)P>, (8.2)

dX exp(Y ) = Q
Ä
[exp[1](δi, δj)]16i,j6n • (Q>Y Q)

ä
Q>, (8.3)

dΣ log(Y ) = P
Ä
[log[1](di, dj)]16i,j6n • (P>Y P )

ä
P>, (8.4)

where f [1](x, y) =
®

f(x)−f(y)
x−y if x 6= y

f ′(x) if x = y

´
is the first divided difference of f ∈ {exp, log}

[Bhatia, 1997]. In other words, the maps exp, log, d exp, d log are O(n)-equivariant, and
therefore S(n)-equivariant.
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8.1.2.2 Correlation matrices

The manifold of full-rank correlation matrices is called the open elliptope. It it relatively
open in Sym(n), i.e. open in In + Hol(n).

We introduce the smooth submersion Cor : Σ ∈ Sym+(n) 7−→ Diag(Σ)−1/2 Σ Diag(Σ)−1/2 ∈
Cor+(n). Given Σ ∈ Sym+(n), X ∈ Sym(n), denoting ∆ = Diag(Σ)−1/2, its differential is:

dΣCor(X) = ∆
ï
X − 1

2(∆2Diag(X)Σ + ΣDiag(X)∆2)
ò

∆. (8.5)

We introduce a notation for equicorrelation matrices C(ρ) = (1− ρ)In + ρ11> ∈ Cor+(n)
where ρ ∈ (− 1

n−1 , 1). Given a correlation matrix C ∈ Cor+(n), there exist partitions of n,
i.e. sets I = {i1, ..., ip} satisfying i1, ..., ip > 1 and i1 + · · · + ip = n, partitioning the matrix
C into equicorrelation diagonal blocks and constant off-diagonal blocks. The signature of C
is the maximum IC of such sets I with respect to the natural order on partitions of n. We
say that C is a block equicorrelation matrix of signature IC (see Table 8.4). For example,
an equicorrelation matrix is a block equicorrelation matrix with signature {n}. The maps
introduced in this chapter preserve the signature.

C(ρ) =

á1 ρ · · · ρ

ρ 1 . . . ...
... . . . . . . ρ
ρ . . . ρ 1

ë á
C(ρ1) ρ1211

> · · · ρ1p11
>

ρ1211
> C(ρ2) . . . ...

... . . . . . . ρp−1,p11
>

ρ1p11
> · · · ρp−1,p11

> C(ρp)

ë
Table 8.4: Equicorrelation and block equicorrelation matrices.

The elliptope is stable by the permutation action, it is not stable by the congruence
action of the orthogonal group O(n). It is not stable by inversion either. However, the
correlation matrix of its inverse, namely Cor(C−1), contains the same information as the
partial correlation matrix defined below.

Definition 8.1 (Cor-inversion, partial correlation matrix)
· The cor-inversion is the smooth involution I : C ∈ Cor+(n) 7−→ Cor(C−1) ∈ Cor+(n).
· The partial correlation matrix of an SPDmatrix Σ ∈ Sym+(n) is the matrix Γ ∈ Sym(n)
defined by Γ = In −Off(I(C)) = 2In − I(C), where C = Cor(Σ).

The bijective parametrization C 7−→ Γ is used in the theory of stationary stochastic
processes where the (potentially complex and infinite-dimensional) matrices are Toeplitz.
The set of partial correlation coefficients (along with the common variance) is considered
as an alternative “represention of the second-order statistics” [Burg, 1975, Section II.B.5] of
the process with respect to the traditional “auto-correlation” (or auto-covariance) function.
This characterization is used in signal processing, especially in radar signal processing where
the manifold of SPD Toeplitz matrices is traditionally endowed with the Poincaré polydisk
geometry [Barbaresco, 2013]. In Gaussian graphical networks, the partial correlation between
two variables indicates the correlation between them conditionally to the other variables.
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Thus the partial correlations are the weights of the arrows in the network [Lauritzen, 1996,
Koller and Friedman, 2009, Epskamp and Fried, 2018]. This approach is applied in many
domains such as genomics [de la Fuente et al., 2004, Peng et al., 2009] or brain connectomics
[Marrelec et al., 2006]. Hence the importance of partial correlations confirms that the cor-
inversion is a relevant concept.

We consider the cor-inversion as analogous to the matrix inversion for SPD matrices
inv : Sym+(n) −→ Sym+(n). The cor-inversion commutes with permutations on full-rank
correlation matrices as well as the inversion commutes with the congruence by O(n) on
SPD matrices. Moreover, for all signature I, the space of block equicorrelation matrices of
signature I is stable by the cor-inversion. In addition, in relation to the problem of this
chapter, we have the following result.

Theorem 8.2 (Compatibility between the second approach and the cor-inversion) Let V?
be a vector space stable by permutations and such that Sym(n) = V?⊕Diag(n). We assume
that the claim on the right part of Table 8.1 is true, i.e. for all C ∈ Cor+(n), there exists
a unique ∆ ∈ Diag+(n) such that log(∆C∆) ∈ V?. This defines the inverse bijections
Log? : C ∈ Cor+(n) 7−→ log(∆C∆) ∈ V? and Exp? = Cor ◦ exp : V? −→ Cor+(n). Then we
automatically have Log?(I(C)) = −Log?(C), i.e. the following diagram commutes.

Cor+(n) I //

Log?
��

Cor+(n)
Log?
��

V? −Id
// V?

(8.6)

Proof. Note that for all Σ ∈ Sym+(n), we have Cor(Σ−1) = Cor(Cor(Σ)−1). Indeed, if
Σ = DCD with C = Cor(Σ) ∈ Cor+(n), then Cor(Σ−1) = Cor(D−1C−1D−1) = Cor(C−1).
Therefore, for all X ∈ V? we have Exp?(−X) = Cor(exp(−X)) = Cor(exp(X)−1) =
Cor(Exp?(X)−1) = I(Exp?(X)). Thus with C = Exp?(X), we have Log?(I(X)) = −Log?(C).

Otherwise said, the multiplicative approach is automatically compatible with the cor-
inversion. This is due to the use of the congruence action of positive diagonal matrices on
SPD matrices instead of the additive action of diagonal matrices on symmetric matrices.
Indeed, the former is intrinsically related to the definition of a correlation matrix. On the
contrary, we can expect that the bijections built via the additive approach are not compatible
with the cor-inversion in general.

Thus, if one finds a vector space V? satisfying the claim and if the bijections are smooth,
the log-Euclidean metrics defined by pullback will automatically be inverse-consistent. This
is quite satisfying for log-Euclidean metrics on full-rank correlation matrices in analogy with
SPD matrices.

8.2 Permutation-invariant log-Euclidean metrics via the
off-log diffeomorphism

In this section, we rephrase the framework of [Archakov and Hansen, 2021] (Section 8.2.1) to
ease the comprehension of the next sections by analogy. In Section 8.2.2, we prove that the
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bijection they define, that we call the off-log bijection and that we denote Log : Cor+(n) −→
Hol(n), is actually a diffeomorphism. It allows to pullback inner products on full-rank cor-
relation matrices. Since the off-log diffeomorphism is equivariant under permutations, we
give a characterization of permutation-invariant inner products on Hol(n) so that their pull-
backs provide permutation-invariant log-Euclidean metrics on Cor+(n). Then, we detail the
Riemannian operations of these metrics. We prove that, as expected, the log-Euclidean
metrics such defined are not inverse-consistent with respect to the cor-inversion. In Section
8.2.3, we simply recall the algorithm of [Archakov and Hansen, 2021] to compute the inverse
diffeomorphism Exp = Log−1, the speed of convergence and the complexity.

8.2.1 The off-log bijection
Theorem 8.3 states that the claim in the left part of Table 8.1 is true. It allows to define the
off-log bijection Log : Cor+(n) −→ Hol(n). Theorem 8.4 states some interesting properties of
the off-log bijection. These results are due to Archakov and Hansen [Archakov and Hansen,
2021].

Theorem 8.3 (Definition of D) [Archakov and Hansen, 2021] For all S ∈ Sym(n), there
exists a unique D ∈ Diag(n) such that exp(D + S) ∈ Cor+(n). This allows to define:

· the surjective map D : S ∈ Sym(n) 7−→ D ∈ Diag(n),
· the surjective map π : S ∈ Sym(n) 7−→ exp(D(S) + S) ∈ Cor+(n) which is invariant
under the additive group action + : Diag(n)× Sym(n) −→ Sym(n),
· the bijective map Exp = π|Hol(n) : Hol(n) −→ Cor+(n) (note that π = Exp ◦Off),
· the smooth bijective inverse map Log = Exp−1 = Off ◦ log : Cor+(n) −→ Hol(n) that
we call the off-log bijection.

Theorem 8.4 (Properties of the off-log bijection) [Archakov and Hansen, 2021]

1. (Equivariance) Log and Exp are equivariant under permutations.

2. (Equicorrelation matrix) For all ρ ∈ (− 1
n−1 , 1), Log(C(ρ)) = 1

n
ln
Ä

1+(n−1)ρ
1−ρ

ä
(11>−In).

In dimension n = 2, Log(C(ρ)) =
Å

0 F (ρ)
F (ρ) 0

ã
where F (ρ) = 1

2 log(1+ρ
1−ρ) ∈ R is the

Fisher transformation of the correlation coefficient ρ ∈ (−1, 1).
3. (Block equicorrelation matrix) If C is a block equicorrelation matrix of signature I =
{i1, ..., ip}, then Log(C) is a block symmetric hollow matrix of signature I with multiples
of 1ij1>ij − Iij on diagonal blocks and multiples of 1ij1>ik on off-diagonal blocks.

4. (Generalization) For all ∆ ∈ Diag+(n), for all S ∈ Sym(n), there exists a unique
D ∈ Diag(n) such that Diag(exp(D + S)) = ∆.

Note that Theorem 8.3 is a particular case of Theorem 8.4 item 4 with ∆ = In. The result
in dimension 2 was stated as a motivation in [Archakov and Hansen, 2021] to use the map
Log = Off◦log in higher dimensions since it gives in dimension 2 a well known transformation
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of the correlation coefficient. Interestingly, the same coefficient appears in dimension 2 for
the quotient-affine metric [Thanwerdas and Pennec, 2021].

By analogy with the symmetric matrix logarithm log : Sym+(n) −→ Sym(n) satisfying
log(Σ−1) = − log(Σ), one could expect that the off-log bijection Log : Cor+(n) −→ Hol(n)
“commutes with inversion”, i.e. satisfies Log(I(C)) = −Log(C). We show that it is not the
case as we argued in the introduction.

Theorem 8.5 (Incompatibility between cor-inversion and off-log bijection) Let n > 3. There
exists C ∈ Cor+(n), such that Log(I(C)) 6= −Log(C). Otherwise said, the following diagram
does not commute.

Cor+(n) I //

Log
��

Cor+(n)
Log
��

Hol(n) −Id
// Hol(n)

(8.7)

See the proof of Theorem 8.5 in Section 11.7.

This incompatibility is one of the justifications of the multiplicative approach that we
present in Section 8.3. Still, this bijection Log : Cor+(n) −→ Hol(n) remains a very nice tool
that allows to define permutation-invariant log-Euclidean metrics on full-rank correlation
matrices. Let us show this.

8.2.2 Permutation-invariant pullback metrics via the off-log dif-
feomorphism

This section is part of our contributions. We prove that the off-log bijection Log : Cor+(n) −→
Hol(n) is actually a diffeomorphism (Section 8.2.2.1). Then we characterize all permutation-
invariant inner products on Hol(n) (Section 8.2.2.2) and we pull them back to permutation-
invariant log-Euclidean metrics on Cor+(n) (Section 8.2.2.3).

8.2.2.1 The off-log bijection is a diffeomorphism

Theorem 8.6 (Log = Off ◦ log is a diffeomorphism) The off-log bijection Log : Cor+(n) −→
Hol(n) is a smooth diffeomorphism. We give the differentials of Log and Exp in function of
the differentials of the symmetric matrix logarithm and exponential maps log and exp. For
all C ∈ Cor+(n) and S,X, Y ∈ Hol(n):

dCLog(X) = Off(dC log(X)), (8.8)
dSExp(Y ) = dlog(Exp(S)) exp(Y −Diag(Exp(S)Y )). (8.9)

See the proof of Theorem 8.6 in Section 11.7.

8.2.2.2 Permutation-invariant inner products on Hol(n)

The characterization of permutation-invariant inner products on Hol(n) can be found in
Section 3.3.4.1 of Chapter 3.
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Theorem 8.7 (Permutation-invariant inner products on Hol(n)) [Section 3.3.4.1] For n > 4,
permutation-invariant inner products on Hol(n) are the symmetric bilinear forms associated
to the following positive definite quadratic forms defined for X ∈ Hol(n):

q(X) = α tr(X2) + β Sum(X2) + γ Sum(X)2 (8.10)

with α > 0, 2α + (n − 2)β > 0 and α + (n − 1)(β + nγ) > 0. For n = 3, the permutation-
invariant inner products have the same form with α = 0, i.e. q(X) = β Sum(X2)+γ Sum(X)2

with β > 0 and β + 3γ > 0. For n = 2, they have the same form with α = β = 0, i.e.
q(X) = γ Sum(X)2 with γ > 0.

8.2.2.3 Pullback metrics via the off-log diffeomorphism

Definition 8.8 (Off-log metrics) An off-log metric on Cor+(n) is the pullback metric of an
inner product characterized by a quadratic form q as in Definition 8.7. For all C ∈ Cor+(n)
and X ∈ TCCor+(n) = Hol(n), it writes gC(X,X) = q(dCLog(X)) where dCLog(X) =
Off(dC log(X)).

Theorem 8.9 (Riemannian operations of off-log metrics) We consider an off-log metric char-
acterized by the quadratic form q. Let C,C ′, C1, ..., Ck ∈ Cor+(n), X ∈ Hol(n). The Rie-
mannian operations of this metric are summarized in Table 8.5.

Exponential map ExpC(X) = Exp(Log(C) + dCLog(X)))
Logarithm map LogC(C ′) = dLog(C)Exp(Log(C ′)− Log(C))

Geodesic γ(t) = Exp((1− t)Log(C) + tLog(C ′))
Squared distance d(C,C ′)2 = q(Log(C ′)− Log(C))
Fréchet mean C̄ = Exp( 1

k

∑k
i=1 Log(Ci))

Curvature R = 0
Parallel transport ΠC→C′X = (dC′Log)−1(dCLog(X))

Table 8.5: Riemannian operations of off-log metrics.

Beware that the Riemannian exponential and logarithm maps only coincide with the
diffeomorphisms Exp : Hol(n) −→ Cor+(n) and Log : Cor+(n) −→ Hol(n) at C = In
introduced in Theorem 8.3. They differ from the symmetric matrix diffeomorphisms exp :
Sym(n) −→ Sym+(n) and log : Sym+(n) −→ Sym(n).

Therefore, the off-log diffeomorphism provides a closed-form distance between two full-
rank correlation matrices (modulo the computation of a symmetric matrix logarithm, i.e.
modulo an eigenvalue decomposition). Moreover, all the other Riemannian operations can
be computed in closed form modulo the computation of Exp, i.e. the computation of D. In
the next section, we recall how it is computed in [Archakov and Hansen, 2021].

8.2.3 Numerical computation of the off-log inverse map
The implicit functions D and Exp = exp ◦ (D + IdSym(n)) can be computed very efficiently,
as proved in [Archakov and Hansen, 2021].
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Theorem 8.10 (Algorithm to compute D: convergence, speed, complexity) [Archakov and
Hansen, 2021] Let S ∈ Sym(n) and D0 ∈ Diag(n), e.g. D0 = 0. The sequence (Dk)k∈N ⊂
Diag(n) is recursively defined by Dk+1 = ϕS(Dk) where ϕS : D ∈ Diag(n) 7−→ D −
log(Diag(exp(D + S))) is a smooth L-contractant map with L ∈ [0, 1). Then:

1. (Convergence) (Dk) converges to the fixed point D∗ = D(S) ∈ Diag(n) of ϕS.
2. (Speed of convergence) The convergence is exponential: ‖Dk −D∗‖ 6 Lk

1−L‖D1 −D0‖.
3. (Time complexity) For all ε > 0, the sufficient number of iterations so that ‖Dk−D∗‖ <
ε is kε = O(ln(n

ε
)).

4. (Complexity) At each iteration, a symmetric matrix exponential is computed which is
a O(n3). Hence the complexity with precision ε > 0 is O(n3kε) = O(n3 ln(n

ε
)).

In this section, we recalled the main facts on the off-log parametrization introduced in
[Archakov and Hansen, 2021] and we transformed it as a geometric tool to introduce log-
Euclidean metrics on full-rank correlation matrices. We also formalized this tool in terms of
invariance under a group action and we showed that off-log metrics are not inverse-consistent.
In the next sections, we rely on this formalization to introduce the family of log-scaled metrics
which are permutation-invariant, log-Euclidean and inverse-consistent.

8.3 The log-scaling bijection
In this section, we examine two versions of the following conjecture: for all Σ ∈ Sym+(n),
there exists a unique ∆ ∈ Diag+(n) such that log(∆Σ∆) ∈ V?. This conjecture depends on
V?, which is a vector space stable by permutations satisfying Sym(n) = V? ⊕ Diag(n). In
Section 8.3.1, we relate the conjecture with V? = Hol(n) to the problem of the quotient-affine
logarithm [David and Gu, 2019, Thanwerdas and Pennec, 2021]. We prove the existence and
we explain why the uniqueness remains difficult to prove. In Section 8.3.2, we explain why
V? = Row0(n) is a good candidate for the conjecture to be true and in Section 8.3.3, we prove
the conjecture thanks to a result known as the existence and uniqueness of the scaling of
SPD matrices [Marshall and Olkin, 1968, Johnson and Reams, 2009]. We explain the proof of
existence because it can be difficult to understand in [Marshall and Olkin, 1968] and because
we need it in Section 8.5 to design the algorithm that computes the scaling. In Section 8.3.4,
we give the properties of our new Euclideanization called the log-scaling bijection.

8.3.1 Is the conjecture true with V? = Hol(n)?
Before relating the conjecture with V? = Hol(n) to the problem of existence and uniqueness
of the Riemannian logarithm at In of the quotient-affine metric, we first recall the conjecture
and the definition of the quotient-affine metric.

Conjecture 8.11 (The result is true with V? = Hol(n)) For all Σ ∈ Sym+(n), there exists
a unique matrix ∆ ∈ Diag+(n) such that log(∆Σ∆) ∈ Hol(n).

Definition 8.12 (Quotient-affine metric) The quotient-affine metric on Cor+(n) is the quo-
tient metric of the affine-invariant metric on Sym+(n) by the congruence action of Diag+(n)
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[David and Gu, 2019]. At In, the horizontal space is HQA
In = Hol(n), the quotient-affine met-

ric writes gQA
In (X,X) = tr(X2) and the exponential map writes ExpQA

In (X) = Cor(exp(X))
for all X ∈ Hol(n) [Thanwerdas and Pennec, 2021].

Theorem 8.13 (Existence and equivalence of conjectures) We define the smooth map f :
∆ ∈ Diag+(n) 7−→ dAI(In,∆C∆)2 = tr(log(∆C∆)2). It gives the affine-invariant squared dis-
tance between In and all points of the fiber Cor−1(C) = {∆C∆ ∈ Sym+(n)|∆ ∈ Diag+(n)}.

1. The smooth map f has a global minimizer.
2. For all Σ ∈ Sym+(n), there exists ∆ ∈ Diag+(n) such that log(∆Σ∆) ∈ Hol(n).
3. The following conjectures are equivalent for all C ∈ Cor+(n).

(i) There exists a unique ∆ ∈ Diag+(n) such that log(∆C∆) ∈ Hol(n) (Conjecture
8.11).

(ii) There exists a unique X ∈ Hol(n) such that ExpQA
In (X) = C.

(iii) There exists a unique local minimizer of the smooth map f , which is actually the
global minimizer ensured by statement 1.

4. The previous conjectures imply the uniqueness of the quotient-affine logarithm at In.

See the proof of Theorem 8.13 in Section 11.7.

Otherwise said, Conjecture 8.11 is stronger than the conjecture stating the uniqueness
of the quotient-affine logarithm at In. On the one hand, this could provide a new path to
prove the latter. However, Conjecture 8.11 seems difficult to prove because the manifold
exp(Hol(n)) is hard to describe in terms of properties on the coefficients of the matrices.
Thus it is difficult to determine whether its intersection with the fiber Diag+(n) ? Σ =
Cor−1(Cor(Σ)) is reduced to one point or not. On the other hand, this could also help to
show that Conjecture 8.11 is false. Indeed, the quotient-affine metric has both positive and
negative curvature so the quotient-affine logarithm might not be unique. Hence, this seems
to be a difficult problem.

8.3.2 Why V? = Row0(n) seems to be a better choice
Nevertheless, another interesting decomposition of symmetric matrices where each subspace
is stable by permutations is given by Sym(n) = Row0(n)⊕Diag(n), where Row0(n) = {S ∈
Sym(n)|S1 = 0} is the vector space of symmetric matrices with null row sums. That is why
we propose to examine V? = Row0(n). In the following theorem, we show that exp(Row0(n))
has a nice form.

Theorem 8.14 (exp : Row0(n) −→ Row+
1 (n) is a smooth diffeomorphism) The symmetric

matrix logarithm is a smooth diffeomorphism from Row+
1 (n) = {Σ ∈ Sym+(n)|Σ1 = 1} onto

Row0(n) = {S ∈ Sym(n)|S1 = 0}.

Proof. It is clear that exp(Row0(n)) ⊂ Row+
1 (n) since if S ∈ Row0(n), then exp(S)1 =∑∞

k=0
1
k!S

k1 = 1. Conversely, let Σ ∈ Row+
1 (n). Then the Lagrange polynomial P (X) =
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∑
λ∈eig(Σ) log(λ)∏µ∈eig(Σ),µ6=λ

X+1−µ
λ−µ satisfies P (Σ − In) = log Σ. Since 1 ∈ eig(Σ), P (0) =

log(1) + ∑
λ 6=1 log(λ) 1−1

λ−1
∏
µ6=λ,1

1−µ
λ−µ = 0. Hence log(Σ)1 = P (Σ − In)1 = P (0)1 = 0. So

log(Row+
1 (n)) ⊂ Row0(n). Finally, Row+

1 (n) = exp(Row0(n)) so log : Row+
1 (n) −→ Row0(n)

is a smooth diffeomorphism.

Hence, the question becomes: for all Σ ∈ Sym+(n), does there exist a unique ∆ ∈
Diag+(n) such that ∆Σ∆ ∈ Row+

1 (n)? The answer is yes [Marshall and Olkin, 1968, Johnson
and Reams, 2009], let us explain why.

8.3.3 The conjecture is true with V? = Row0(n)
We recall that we denote ? : Diag+(n) × Sym+(n) −→ Sym+(n) the congruence action of
positive diagonal matrices on SPD matrices.

Theorem 8.15 (Definition of D?) For all Σ ∈ Sym+(n), there exists a unique ∆ ∈ Diag+(n)
such that log(∆Σ∆) ∈ Row0(n) [Marshall and Olkin, 1968, Johnson and Reams, 2009]. This
allows to define:

· the surjective map D? : Σ ∈ Sym+(n) 7−→ ∆ ∈ Diag+(n),
· the surjective map π? : Σ ∈ Sym+(n) 7−→ log(D?(Σ) ?Σ) ∈ Row0(n) which is invariant
under the congruence group action of Diag+(n) on Sym+(n),
· the bijective map Log? = π?|Cor+(n) : Cor+(n) −→ Row0(n) that we call the log-scaling
(note that π? = Log? ◦ Cor),
· the smooth bijective inverse map Exp? = (Log?)−1 = Cor◦exp : Row0(n) −→ Cor+(n).

Proof of Theorem 8.15 (Definition of D?). The existence and uniqueness are due to [Mar-
shall and Olkin, 1968], the uniqueness has been proved differently later in [Johnson and
Reams, 2009]. Before explaining the proof of existence which is important to compute the
solution numerically, let us explain the properties of the functions D?, π?, Log? and Exp?.

· The map D? is surjective because D?(∆−2) = ∆ for all ∆ ∈ Diag+(n).
· The map π? is surjective because if S ∈ Row0(n), then π?(exp(S)) = S.
· The map Log? is surjective because Log?(Cor(exp(S))) = S and injective because if
C,C ′ ∈ Cor+(n) are such that Log?(C) = Log?(C ′), then D?(C) ? C = D?(C ′) ? C ′ so
C = Cor(D?(C) ? C) = Cor(D?(C ′) ? C ′) = C ′.
· We just showed that (Log?)−1 = Cor ◦ exp so Exp? = (Log?)−1 is bijective and smooth.

The existence of ∆ ∈ Diag+(n) such that log(∆Σ∆) ∈ Row0(n) comes from the following
more general result from Marshall and Olkin [Marshall and Olkin, 1968] that we explain
below.

Theorem 8.16 (Existence of a scaling for prescribed row sum) [Marshall and Olkin, 1968]
Let S ∈ Sym(n) and µ ∈ (R+)n. We define f : x ∈ (R+)n 7−→ x>Sx ∈ R. We denote
Mµ = {x ∈ (R+)n|∏n

i=1 x
µi
i = 1} which is a smooth hypersurface of Rn. We assume that

f|Mµ is:
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1. (bounded away from 0) ∃c > 0,∀x ∈Mµ, |f(x)| > c,
2. (unbounded above when ‖x‖ → ∞) ∀C > 0,∃M > 0,∀x ∈Mµ, ‖x‖ > M ⇒ f(x) > C.

Then there exists ∆ = ∆µ ∈ Diag+(n) such that ∆S∆1 = µ.

Theorem 8.16 implies the existence in Theorem 8.15 with S = Σ ∈ Sym+(n). Indeed,
for all x ∈ Mµ, f(x) > λmin‖x‖2 where λmin = min eig(Σ) > 0 so Assumption 2 is satisfied.
Moreover, there exists ε > 0 such that the ball B(0, ε) satisfies B(0, ε)∩Mµ = ∅ so if x ∈Mµ,
then ‖x‖ > ε. Thus for all x ∈ Mµ, f(x) > λminε

2 > 0 so Assumption 1 is satisfied. These
assumptions are actually satisfied for any strictly copositive matrix [Marshall and Olkin,
1968, Theorem 1].

Detailed proof of Theorem 8.16. We follow the path sketched in [Marshall and Olkin, 1968]
giving more details. The proof consists in rewriting the equation ∆S∆1 = µ into a mini-
mization problem:

Sδ −
Å
µ1

δ1
, ...,

µn
δn

ã>
= 0 (8.11)

where δ = ∆1 = (δ1, ..., δn)>. Now we can easily find a function whose gradient is (twice)
the left side of this equation, namely:

F (∆) = δ>Sδ − 2
Ç

n∑
i=1

µi log(δi)− log(c)
å
, (8.12)

where c > 0 is a constant. Equivalently, if we denote m = ∑n
i=1 µi, xi = c−1/mδi and

λ = c−2/m, then the following function has the same gradient up to a scaling factor:

G(∆) = λF (∆) = x>Sx− 2λ
n∑
i=1

µi log(xi). (8.13)

This function can be seen as the Lagrangian L(x, λ) of the minimization problem minx∈Mµ f(x) =
min f|Mµ . Therefore, we prove that f|Mµ reaches its infimum at a certain x∗ ∈ Mµ (thanks
to Assumption 2) and that this provides a solution ∆∗ ∈ Diag+(n) to our problem (thanks
to Assumption 1).

To prove that f|Mµ reaches its infimum, it suffices to prove that the level sets Sf|Mµ (a) =
{x ∈Mµ|f(x) 6 a} are compact. Indeed, the level sets Sf|Mµ (a) = f−1

|Mµ(]−∞, a]) are closed
in Mµ since f|Mµ is continuous on Mµ and ] − ∞, a] is closed in R. As Mµ is closed in
Rn, Sf|Mµ (a) is closed in Rn. The level sets are bounded because according to Assumption
2, there exists M > 0 such that for all x ∈ Sf|Mµ (a), ‖x‖ 6 M . Hence the level sets are
compact. Since at least one of them is non-empty and f is continuous on this compact set,
it reaches its minimum at a certain x∗ ∈Mµ.

According to the Lagrange multiplier theorem, there exists a unique λ∗ such that (x∗, λ∗) is
a critical point of the Lagrangian. Since∇L(x, λ) = (2Sx−2λ(µ1

x1
, ..., µn

xn
),−2∑n

i=1 µi log(xi)),
the critical point (x∗, λ∗) has to satisfy λ∗ = f(x∗)

m
. Thus according to Assumption 1, we have

λ∗ 6= 0. Hence it provides a solution ∆∗ = 1√
λ∗

diag(x∗) to Equation (8.11).

This demonstration not only allows to prove the result but also shows that D?(Σ) =
1√
λ∗

diag(x∗) with x∗ = minM f and λ∗ = f(x∗)
n

where f : x ∈ (R+)n 7−→ x>Σx ∈ R+ and
M =M1 = {x ∈ (R+)n|∏n

i=1 xi = 1}. We use this fact in Section 8.5 to compute D?(Σ).
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8.3.4 Properties of the log-scaling bijection
Let us give properties of Log? that are analogous to the properties of Log.

Theorem 8.17 (Properties of the log-scaling bijection) The log-scaling bijection satisfies the
following properties.

1. (Equivariance) Log? and Exp? are equivariant under permutations.
2. (Equicorrelation) For all ρ ∈ (− 1

n−1 , 1), Log?(C(ρ)) = 1
n

ln
Ä

1+(n−1)ρ
1−ρ

ä
(11> − nIn). In

dimension n = 2, Log?(C(ρ)) =
Å
−F (ρ) F (ρ)
F (ρ) −F (ρ)

ã
where F (ρ) = 1

2 log(1+ρ
1−ρ) ∈ R is the

Fisher transformation of the correlation coefficient ρ ∈ (−1, 1).
3. (Block equicorrelation matrix) If C is a block equicorrelation matrix of signature I =
{i1, ..., ip}, then Log?(C) is a block symmetric matrix with null row sum of signature I
with diagonal blocks of the form (αj − βj)Iij + βj1ij1

>
ij
and off-diagonal blocks of the

form βjk1ij1
>
ik
.

4. (Generalization) For all x ∈ (R+)n, for all Σ ∈ Sym+(n), there exists a unique ∆ ∈
Diag+(n) such that log(∆Σ∆)x = 0.

See the proof of Theorem 8.17 in Section 11.7.

The log-scaling bijection has an additional property: it is compatible with the cor-
inversion. It is a corollary of Theorem 8.2, the key reason being the use of the congruence
action of positive diagonal matrices instead of the additive action of diagonal matrices.

Theorem 8.18 (Compatibility between inversion and log-scaling bijection) For all C ∈
Cor+(n), Log?(I(C)) = −Log?(C). Otherwise said, the following diagram commutes.

Cor+(n) I //

Log?
��

Cor+(n)
Log?
��

Row0(n) −Id
// Row0(n)

(8.14)

In this section, we proved the existence in the conjecture with V? = Hol(n) and we proved
the conjecture for V? = Row0(n). This provides a bijective map Log? : Cor+(n) −→ Row0(n)
called the log-scaling bijection.

8.4 Permutation-invariant log-Euclidean metrics via the
log-scaling bijection

In this section, we use the log-scaling bijection to define log-Euclidean metrics on Cor+(n).
More precisely, in Section 8.4.1, we prove that the log-scaling bijection is a diffeomorphism.
In Section 8.4.2, we characterize all permutation-invariant inner products on Row0(n). In
Section 8.4.3, we define permutation-invariant log-Euclidean metrics by pullback and we give
their geometric properties.
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8.4.1 The cor-exp bijection is a diffeomorphism
Theorem 8.19 (Exp? = Cor ◦ exp is a diffeomorphism) The log-scaling bijection Log? :
Cor+(n) −→ Row0(n) is a smooth diffeomorphism. We give the differentials of Log? and
Exp? in function of the differentials of the symmetric matrix logarithm and exponential
maps log and exp. For all C ∈ Cor+(n), S, Y ∈ Row0(n) and X ∈ Hol(n) such that
Σ = D?(C) ? C = exp(S):

dSExp?(Y ) = ∆−1
ï
dS exp(Y )− 1

2(∆−2 Diag(dS exp(Y )) Σ + Σ Diag(dS exp(Y )) ∆−2)
ò

∆−1,

(8.15)

dCLog?(X) = dΣ log
Å

∆X∆ + 1
2(X0Σ + ΣX0)

ã
, (8.16)

where ∆ = Diag(Σ)1/2 and X0 = −2 diag((In + Σ)−1∆X∆1).
See the proof of Theorem 8.19 in Section 11.7.

8.4.2 Permutation-invariant inner products on Row0(n)
Theorem 8.20 (Permutation-invariant inner products on Row0(n)) For n > 4, permutation-
invariant inner products on Row0(n) are the symmetric bilinear forms associated to the
following positive definite quadratic forms q? defined for Y ∈ Row0(n):

q?(Y ) = α tr(Y 2) + δ tr(Diag(Y )2) + ζ tr(Y )2, (8.17)

with α > 0, nα + (n − 2)δ > 0 and nα + (n − 1)(δ + nζ) > 0. For n = 3, the permutation-
invariant inner products have the same form with α = 0. For n = 2, they have the same
form with α = δ = 0.
See the proof of Theorem 8.20 in Section 11.7.

8.4.3 Pullback metrics via the log-scaling diffeomorphism
Definition 8.21 (Log-scaled metrics) An log-scaled metric on Cor+(n) is the pullback metric
of an inner product characterized by a quadratic form q? as in Definition 8.20. For all
C ∈ Cor+(n) and X ∈ TCCor+(n) = Hol(n), it writes g?C(X,X) = q?(dCLog?(X)) where
dCLog?(X) = dC log(X + 1

2(X0C + CX0)) with X0 = −2diag((In + C)−1X1).

Theorem 8.22 (Riemannian operations of log-scaled metrics) We consider a log-scaled met-
ric characterized by the quadratic form q?. Let C,C ′, C1, ..., Cn ∈ Cor+(n), X ∈ Row0(n).
The Riemannian operations of this metric are summarized in Table 8.6. Moreover, the metric
is permutation-invariant and inverse-consistent, i.e. it is invariant under the pullback by the
cor-inversion I : Cor+(n) −→ Cor+(n).

Beware not to confuse the Riemannian maps Exp?C : TCCor+(n) = Hol(n) −→ Cor+(n)
and Log?C : Cor+(n) −→ TCCor+(n) = Hol(n) with the diffeomorphisms Exp? : Row0(n) −→
Cor+(n) and Log? : Cor+(n) −→ Row0(n).

Since one motivation behind the off-log bijection in [Archakov and Hansen, 2021] was the
closed form expression in dimension 2 (cf. Theorem 8.4.2), it seems important to note the
following result.
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Exponential map Exp?C(X) = Exp?(Log?(C) + dCLog?(X)))
Logarithm map Log?C(C ′) = dLog?(C)Exp?(Log?(C ′)− Log?(C))

Geodesic γ?(t) = Exp?((1− t)Log?(C) + tLog?(C ′))
Squared distance d?(C,C ′)2 = q?(Log?(C ′)− Log?(C))
Fréchet mean C̄? = Exp?( 1

k

∑k
i=1 Log?(Ci))

Curvature R? = 0
Parallel transport Π?

C→C′X = (dC′Log?)−1(dCLog?(X))

Table 8.6: Riemannian operations of log-scaled metrics.

Theorem 8.23 (Coincidence of the metrics in dimension 2) In dimension 2, up to a positive
scaling factor, the quotient-affine metric, the off-log metric and the log-scaled metric coincide.
We recall that the Fisher transformation is the increasing map F : ρ ∈ (−1, 1) 7−→ 1

2 ln(1+ρ
1−ρ) ∈

R+. Let C = C(ρ) and X =
Å

0 x
x 0

ã
with ρ ∈ (−1, 1) and x ∈ R. Then:

1. (Metric) gC(X,X) = x2

(1−ρ2)2 (up to a scaling factor α > 0),

2. (Geodesic) γ(t) = C(ρ(t)) where ρ(t) = ρ1 cosh(λt)+sinh(λt)
ρ1 sinh(λt)+cosh(λt) with λ = F (ρ2) − F (ρ1) is

monotonic (increasing if ρ1 < ρ2, decreasing if ρ1 > ρ2, constant if ρ1 = ρ2),
3. (Distance) d(C1, C2) = |λ| = |F (ρ2)− F (ρ1)| (up to a scaling factor

√
α).

See the proof of Theorem 8.23 in Section 11.7.

We showed in this section that the log-scaling bijection is a diffeomorphism. Therefore it
provides a family of permutation-invariant inverse-consistent log-Euclidean metrics by pulling
back permutation-invariant inner products on Row0(n). Thus, the Riemannian operations
are trivial. As shown in Table 8.6, they are known in closed form modulo the computation of
Log? : Cor+(n) −→ Row0(n) or equivalently the computation of D? : Sym+(n) −→ Diag+(n).
That is the goal of the next section.

8.5 Numerical computation of the log-scaling
The topic of scaling a matrix to prescribed row and column sums is much broader than the
use we make of it in this chapter. The research on this topic in linear algebra started in the
1960’s with the Sinkhorn theorem stating that squared positive matrices A ∈ Mat(n), i.e.
with positive entries Aij > 0, admit a bistochastic scaling D1AD2 where D1, D2 are positive
diagonal matrices. After several extensions of this result, the novelty of [Marshall and Olkin,
1968] was to gather three ingredients: to tackle symmetric matrices A ∈ Sym(n), to impose
D1 = D2 and to abandon the positivity of the coefficients. As recalled in Theorem 8.16,
they proved the sufficiency of two hypotheses which are in particular satisfied for positive
definite matrices and even for strictly copositive matrices. See the introduction of [Johnson
and Reams, 2009] for a brief survey or [Idel, 2016] for a thorough one.

According to [Allen-Zhu et al., 2017], this problem actually appeared in different scientific
communities from telephone traffic computation to probability theory. Moreover, the results
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have been applied to many fields from image reconstruction to computer science. Thus, the
question of the computation of the scaling has always been a burning topic. Examining the
literature, there seems to exist very few algorithms specifically designed for SPD matrices
with respect to positive matrices or other classes of matrices. That is surprising since the
proof of Theorem 8.16 [Marshall and Olkin, 1968] suggests that the positive definiteness
could improve significantly the performance of an optimization algorithm since the map to
minimize f : x ∈ Rn 7−→ x>Σx ∈ R+ is strictly convex. We can cite [O’Leary, 2003] with
polynomial complexity (without more information) and [Khachiyan and Kalantari, 1992]
with time complexity O(

√
n ln(n)+ln(ln(1

ε
))) via a Newton method (as proved in [Kalantari,

2005, Theorem 8.4 SP]), where ε is the desired precision. For the latter, each step requires to
solve a linear system, which is O(n2), so the total complexity is O(n5/2 ln(n) + n2 ln(ln(1

ε
))).

As for generic methods, the best one seems to be from [Allen-Zhu et al., 2017] where the
total complexity is O(m+ n1/4) where m is the number of non-zero entries in the matrix.

In this section, we provide an algorithm to compute the scaling of an SPD matrix with
precision ε, therefore to compute D? : Sym+(n) −→ Diag+(n) and Log? : Cor+(n) −→
Row0(n), with complexity O(m ln(n

ε
) + n ln(n

ε
) ln(ln(n

ε
))) which seems quite competitive. In

Section 8.5.1, we explain the convex optimization problem we need to solve to compute D?,
based on the proof of Theorem 8.16 [Marshall and Olkin, 1968]. In Section 8.5.2, we explain
that this kind of problem can be solved with logarithmic time complexity by Projected
Gradient Descent (PGD) if one knows the projection [Bubeck, 2015]. Since we don’t have
the projection in closed form, we propose in Section 8.5.3 an efficient algorithm to compute
it. Finally in Section 8.5.4, we modify the PGD algorithm with the projection approximation
and we show that it still converges with logarithmic time complexity.

8.5.1 The optimization problem
From the proof of Theorem 8.16, we know that D?(Σ) = 1√

λ∗
diag(x∗) with x∗ = minM f

and λ∗ = f(x∗)
n

where f : x ∈ (R+)n 7−→ x>Σx ∈ R+ and M = {x ∈ (R+)n|∏n
i=1 xi = 1}.

Since the map f is a positive definite quadratic form, it is natural to think about convex
optimization to compute x∗. However, this map has to be minimized on the setM which is
not convex. In the following result, we show that x∗ is also the minimum of f on the convex
hull ofM, which is Ω = {x ∈ (R+)n|∏n

i=1 xi > 1}.

Theorem 8.24 (Optimization problem to compute the scaling) arg minΩ f ∈ M and Ω =
conv(M). Thus x∗ is the global minimizer of the convex map f on the closed convex set Ω.
See the proof of Theorem 8.24 in Section 11.7.

8.5.2 Optimizing an α-strongly convex β-smooth map on a closed
convex set

There are many algorithms to optimize convex maps on closed convex sets, as described in
[Bubeck, 2015]. The optimal algorithm depends on the properties of the map. The simplest
one is the Projected Gradient Descent (PGD): it consists in alternating an unconstrained
gradient descent and a projection onto the convex set of constraints. More precisely, if
f : Rn −→ R is a map to minimize on the closed convex set C ⊆ Rn, the algorithm takes
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x0 ∈ C, computes yk+1 = xk−η∇f |xk and xk+1 = ΠCyk+1 where η > 0 is a fixed parameter and
ΠC is the projection onto the closed convex set C. The PGD algorithm is shown to converge
with logarithmic time complexity when the map is α-strongly convex and β-smooth. [Bubeck,
2015]

In this section, we recall the definitions of an α-strongly convex map and a β-smooth
map and we show that f : x 7−→ x>Σx satisfies these two properties. Then we recall the
definition of the projection onto a closed convex set C and the theorem of convergence of the
PGD algorithm for an α-strongly convex and β-smooth map.

8.5.2.1 α-strongly convex β-smooth maps

Definition 8.25 (α-strongly convex map) [Bubeck, 2015] Let C ⊆ Rn be a convex set. We
say that the map f : C −→ R is α-strongly convex if one of the following equivalent assertions
is satisfied:

(i) f((1− t)x1 + tx2) 6 (1− t)f(x1) + tf(x2)− α
2 t(1− t)‖x1− x2‖2 for all t ∈ [0, 1], for all

x1, x2 ∈ C,
(ii) the function f − α

2 ‖ · ‖
2 is convex.

If f is differentiable, then these assertions are equivalent to a third one:

(iii) f(x1)− f(x2) 6 ∇f>|x1
(x1 − x2)− α

2 ‖x1 − x2‖2 for all x1, x2 ∈ C.

Definition 8.26 (β-smooth map) [Bubeck, 2015] We say that f : Rn −→ R is β-smooth if f
is of class C1 and its gradient is β-Lipschitz, i.e. for all x1, x2 ∈ Rn, we have ‖∇f |x1−∇f |x2‖ 6
β‖x1 − x2‖.

We state an important inequality satisfied by β-smooth maps from [Bubeck, 2015], that
we use later.

Lemma 8.27 (Important result on β-smooth maps) [Bubeck, 2015] Let f : Rn −→ R be a
β-Lipschitz map. Then for all x1, x2 ∈ Rn, f(x1)− f(x2)−∇f>|x2

(x1 − x2) 6 β
2‖x1 − x2‖2.

Now, we state that f : x 7−→ x>Σx satisfies these two properties.

Lemma 8.28 (The map f is 2λmin-strongly convex and 2λmax-smooth) Let Σ ∈ Sym+(n).
We denote λmin, λmax the minimum and maximum eigenvalues of Σ. The map f : x ∈ Rn 7−→
x>Σx ∈ R is 2λmin-strongly convex and 2λmax-smooth.

Proof. The map f − λmin‖ · ‖2 : x ∈ Rn 7−→ x>(Σ − λminIn)x is convex because Σ − λminIn
is symmetric positive semi-definite. So f is 2λmin-strongly convex. Moreover, ∇f|x = 2Σx so
‖∇f|x1 −∇f|x2‖ = 2‖Σ(x1 − x2)‖ 6 2λmax‖x1 − x2‖. Hence, f is 2λmax-smooth.

8.5.2.2 Projection and Projected Gradient Descent

We recall the definition of the projection onto a closed convex set and the theorem of con-
vergence of the Projected Gradient Descent for α-strongly convex β-smooth maps.
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Definition 8.29 (Projection onto a closed convex set) Let C ⊆ Rn be a closed convex set.
For all z ∈ Rn, there exists a unique x ∈ C satisfying the following equivalent conditions:

(i) for all y ∈ C, ‖z − x‖ 6 ‖z − y‖,
(ii) for all y ∈ C, 〈z − x|y − x〉 6 0.

This point x ∈ C is called the projection of z onto C and denoted ΠC(z). It defines a
1-Lipschitz map ΠC : Rn −→ C which satisfies (ΠC)|C = IdC and ΠC(Rn\C) ⊆ ∂C.

Theorem 8.30 (Projected gradient descent for α-strongly convex β-smooth maps) [Bubeck,
2015] Let f : C −→ R be a convex map on a convex set C. We assume that f is α-strongly
convex and β-smooth and we denote κ = β/α. Let x0 ∈ C. We define yk+1 = xk − 1

β
∇f|xk

and xk+1 = ΠC(yk+1). Then (xk)k∈N converges to x∗ = arg minC f . Moreover, ‖xk − x∗‖ 6
exp(− k

2κ)‖x0 − x∗‖ for all k ∈ N.

Thus, this theorem provides a very efficient algorithm to compute arg minΩ f , and thus
D?, if we know the projection onto Ω = {x ∈ (R+)n|∏n

i=1 xi > 1}. However, we don’t know
it in closed form. Hence, we have to approximate it and to show that this approximation
preserves the previous theorem, i.e. that the new algorithm with approximated projection
still converges, hopefully with logarithmic time complexity. That is the goal of the two next
sections.

8.5.3 Approximate the projection
In this section, we define an approximation of the projection ΠΩ : Rn −→ Ω which is not
generic but very specific to the space Ω = {x ∈ (R+)n|∏n

i=1 xi > 1}.
We consider the hypersurfacesMα = ∂Ωα = {x ∈ (R+)n|∏n

i=1 xi = α} for α ∈ R+. Our
method to project z ∈ Rn\Ω onto Ω consists in defining a map Fz : a ∈ R+ 7−→ x(a) ∈Mα(a)
such that α(a) = ∏n

i=1 xi(a) increases with a. Thus, it suffices to do a line search on a > 0
to find the one such that α(a) = 1. This is illustrated on Figure 8.1.

The tangent hyperplane at x ∈ Mα is TxMα = ( 1
x
)⊥ where 1

x
= ( 1

x1
, ..., 1

xn
). Thus, the

orthogonal projection x ∈ Mα of z /∈ Ω onto Ωα = conv(Mα) satisfies x− z ‖ 1
x
. Otherwise

said, there exists a ∈ R+ such that x − z = a 1
x
. Given z /∈ Ω and α ∈ R+, it is difficult

to compute x ∈ Mα and a ∈ R+ such that x − z = a 1
x
. On the contrary, given z /∈ Ω and

a ∈ R+, it is very easy to find α ∈ R+ and x ∈Mα such that x− z = a 1
x
. Indeed, xi satisfies

the equation x2
i − zixi − a = 0 so xi = 1

2(zi +
√
z2
i + 4a) and α = ∏n

i=1 xi.
Therefore, for z ∈ Rn\Ω, we define the smooth map Fz : a ∈ R+ 7−→ x = (x1, ..., xn) ∈ Rn

and the smooth increasing map PFz : a ∈ R+ 7−→ ∏n
i=1 xi ∈ R+ where xi = 1

2(zi+
√
z2
i + 4a)

for all i ∈ {1, ..., n}. Thus, x := Fz(a) and α := PFz(a) satisfy x− z = a 1
x
and x ∈ Mα. In

other words, x = ΠΩα(z) or Fz(a) = ΠΩPFz(a)(z).

Theorem 8.31 (Approximate the projection) We use the above notations.

1. There exists a unique a∗ ∈ R+ such that PFz(a∗) = 1. It satisfies Fz(a∗) = ΠΩ(z) and
for all a > a∗, PFz(a) > 1 and Fz(a) ∈ Ω.
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Figure 8.1: Approximation of the projection.

2. We define I0 = [b0; c0] where b0 = 0 and c0 = 1−mini zi > 0 so that PFz(b0) < 1 and
PFz(c0) > 1. We define recursively for all k ∈ N:

ak = bk + ck
2 , (8.18)

Ik+1 = [bk+1; ck+1] =
ß

[bk; ak] if PFz(ak) > 1
[ak, ck] if PFz(ak) < 1

™
. (8.19)

Then limk→∞ ak = a∗, limk→∞ PFz(ak) = 1 and limk→∞ Fz(ak) = ΠΩ(z). Moreover,
|ak − a∗| 6 c0 2−k. The time complexity is kε = 1

ln(2) ln( c0
ε

) and the complexity is
O(n ln( c0

ε
)).

Proof of Theorem 8.31 (Approximate the projection).
1. Note that lim

a→0
PFz(a) = ∏n

i=1
zi+|zi|

2 . It is null (thus inferior to 1) if one of the zi’s is
non-positive. Otherwise if all zi > 0, it is equal to ∏n

i=1 zi < 1 since z /∈ Ω. Thus,
since PFz is continuous and increasing from lim

a→0
PFz(a) < 1 to +∞, there exists a

unique a∗ ∈ R+ such that PFz(a∗) = 1. Therefore, Fz(a∗) = ΠΩ1(z) and for all a > a∗,
PFz(a) > PFz(a∗) = 1 so Fz(a) = ΠΩPFz(a)(z) ∈ ΩPFz(a) ⊆ Ω.

2. We just proved that PFz(b0) < 1. Without loss of generality, let us assume that
mini zi = z1. We have z1 < 1 because ∏n

i=1 zi < 1. Hence c0 = 1 − z1 > 0 and
z1 +

√
z2

1 + 4c0 = 1. Since for all i ∈ {1, ..., n}, zi +
√
z2
i + 4c0 > z1 +

√
z2

1 + 4c0,
we have PFz(c0) > 1. Moreover, the decreasing sequence of segments (Ik)k∈N has its
diameter tending to 0 so their intersection is a singleton. Since PFz(a∗) = 1, a∗ ∈ Ik
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for all k ∈ N so ⋂k∈N Ik = {a∗}. For all k ∈ N, |ak − a∗| 6 ck − bk = c0
2k so the sequence

(ak) converges to a∗. By continuity, limk→∞ PFz(ak) = 1 and limk→∞ Fz(ak) = ΠΩ(z).
The time complexity kε for precision ε is given by c02−kε = ε, i.e. kε = 1

ln(2) ln( c0
ε

). (We
keep c0 because c0 = c0(z) will change at each step of the minimization algorithm since
z will change.) At each step, we only compute PFz(ak) which requires 4n + n − 1 =
5n− 1 = O(n) operations. Hence, the complexity is the product O(n ln( c0

ε
)).

Theorem 8.32 (Stopping criterion) ∀z ∈ Rn\Ω,∀α > 1, ‖ΠΩαz −ΠΩz‖ 6 (α1/n − 1)‖ΠΩz‖.

Proof. Let z ∈ Rn\Ω. We denote x = ΠΩz and a ∈ R+ such that x − z = a 1
x
. Thus it is

equivalent to prove that for all x ∈ M and a ∈ R+, ‖ΠΩα(x − a
x
) − x‖ 6 (α1/n − 1)‖x‖.

Hence, we define the smooth maps:

z : a ∈ R+ 7−→ x− a

x
∈ Rn\Ω,

y : a ∈ R+ 7−→ ΠΩα(z(a)) ∈Mα,

D : a ∈ R+ 7−→ ‖y(a)− x‖2 =
n∑
i=1

(yi(a)− xi)2 ∈ R+.

We want to prove that for all a ∈ R+, D(a) 6 (α1/n − 1)2‖x‖2. We proceed in two steps.
Firstly, we prove that lima→+∞D(a) = (α1/n − 1)2‖x‖2. Secondly, we prove that D is
increasing. The proofs of these two facts being quite technical, we put them in Section
11.7.

This theorem states that given ε > 0, one can compute ak’s until 1 6 PFz(ak) 6 1 + εn

to ensure that Fz(ak) ∈ Ω and ‖Fz(ak) − ΠΩz‖ 6 ε‖ΠΩ(z)‖. Thus we define the projection
approximation as follows.

Definition 8.33 (Projection approximation) Let ε > 0. We define Πε
Ω : z ∈ Rn\Ω 7−→

Fz(ak) ∈ Ω where k = min{i ∈ N|1 6 PFz(ai) 6 1 + εn}. Note that Πε
Ω(z) = ΠΩPFz(ak)(z).

Now we can use this projection approximation to modify the algorithm in Theorem 8.30
and prove the convergence of this new algorithm.

8.5.4 Approximated projection gradient descent
In this section, we define the new algorithm and we prove that it still converges at exponential
rate. We recall that Ω = {x ∈ (R+)n|∏n

i=1 xi = 1} and f : x ∈ Rn 7−→ x>Σx ∈ R where
Σ ∈ Sym+(n). We denote λmin, λmax the minimum and maximum eigenvalues of Σ.

Theorem 8.34 (Algorithm to computeD?: convergence, speed, complexity) Let x0 = 1 ∈ Ω.
We denote κ = λmax

λmin
and R =

√
nκ. Let ε ∈ (0, 1). Let δ = ε2

72nκ2 . Let (uk)k∈N ∈ (R+)N
is a decreasing sequence with ∑∞

k=0 uk 6 1, e.g. uk = 6
π2(k+1)2 , and δk = δuk. We define

yk+1 = (In − 1
λmax

Σ)xk and xk+1 = Πδk+1
Ω (yk+1). Then:
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1. (Convergence) (xk)k∈N converges to x∗ = arg minΩ f .

2. (Speed of convergence) The convergence is exponential: ‖xk−x∗‖ 6 ε+exp(− k
2κ)‖x0−

x∗‖.

3. (Time complexity) For all ε > 0, the sufficient number of iterations so that ‖xk−x∗‖ <
2ε is kε = O(ln(n

ε
)).

4. (Complexity) The total complexity with precision 2ε is O
(
n2 ln

(
n
ε

)
+ n ln

(
n
ε

)
ln ln

(
n
ε

))
.

We recall that given x∗, we then have D?(Σ) = 1√
λ∗

diag(x∗) where λ∗ = 1
n
(x∗)>Σx∗.

Proof. The proof of Theorem 8.30 strongly relies on the characterization of the projection
onto a closed convex set (item 2 of Definition 8.29) [Bubeck, 2015]. Therefore, it is not
obvious that replacing the projection by an approximation leads to the same convergence.
There is actually an extra term that appears and that we need to bound carefully. We
proceed in three steps:

1. We bound all what should be bounded.

2. We define the extra term and we bound it.

3. We prove the convergence.

We need to introduce the theoretical sequences of Theorem 8.30 by x0
0 = x0 = 1,

y0
k+1 = (In − 1

λmax
Σ)x0

k and x0
k+1 = ΠΩy

0
k+1. We also introduce the sequences (ak)k∈N,

(αk)k∈N and (x̄k)k∈N defined by xk = Fyk(ak), αk = PFyk(ak) and x̄k = ΠΩαky
0
k. Note

that xk = ΠΩαkyk.

First step: bounds
Note that ‖x0‖ 6 R since ‖x0‖2 = n 6 nκ. Let us show that ‖x∗‖ 6 R. We denote
EΣ = {x ∈ Rn|x>Σx 6 1} the ellipsoid characterizing the SPD matrix Σ. We clearly
have B(0, 1√

λmax
) ⊆ EΣ ⊆ B(0, 1√

λmin
), where B(0, d) = {x ∈ Rn|‖x‖ 6 d} is the centered

closed ball of radius d. Thus 1
2
√
nλminEΣ ∩ Ω ⊆ B(0,

√
n

2 ) ∩ Ω = ∅. In addition, r 6 r′

if and only if rEΣ ⊆ r′EΣ. Therefore, there exists (a unique) r∗ ∈ R+ such that for all
r ∈ R+, r < r∗ if and only if rEΣ ∩ Ω = ∅. Note that rEΣ = f−1((0, r2]). Since x∗ is
the unique minimizer of f on Ω, we have r∗ =

√
minΩ f and r∗EΣ ∩ Ω = {x∗}. Since

1 ∈ B(0,
√
n)∩Ω =

√
nλmaxB(0, 1√

λmax
)∩Ω ⊆

√
nλmaxEΣ∩Ω, this proves that

√
nλmaxEΣ∩Ω

is non-empty so
√
nλmax > r∗. Hence x∗ ∈ r∗EΣ ⊆

√
nλmaxEΣ ⊆ B(0, R) so ‖x∗‖ 6 R.

From Theorem 8.30, we have ‖x0
k − x∗‖ 6 exp(− k

2κ)‖x0
0 − x∗‖ 6 2R so ‖x0

k‖ 6 ‖x0
k −

x∗‖+‖x∗‖ 6 3R and ‖y0
k+1‖ 6 ‖x0

k‖ 6 3R because the eigenvalues of In− 1
λmax

Σ are in [0, 1).
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Moreover, using Theorem 8.32 and the fact that ΠΩαk+1
is 1-Lipschitz, we have:

‖x0
k+1 − xk+1‖ 6 ‖x0

k+1 − x̄k+1‖+ ‖x̄k+1 − xk+1‖
=
∥∥∥ΠΩy

0
k+1 − ΠΩαk+1

y0
k+1

∥∥∥+
∥∥∥ΠΩαk+1

y0
k+1 − ΠΩαk+1

yk+1

∥∥∥
6 (α1/n

k+1 − 1)‖x0
k+1‖+ ‖y0

k+1 − yk+1‖
6 δk+13R + ‖x0

k − xk‖ = 3Rδuk+1 + ‖x0
k − xk‖,

‖x0
k − xk‖ 6

k−1∑
i=0

3Rδui+1 6 3Rδ 6 R,

‖xk‖ 6 ‖xk − x0
k‖+ ‖x0

k‖ 6 4R,
‖yk+1‖ 6 ‖xk‖ 6 4R.

Second step: extra term.
By Definition 8.29, we have (x0

k+1−y0
k+1)>(x0

k+1−x∗) 6 0. We would like to have an equality
of the form (xk+1− yk+1)>(xk+1− x∗) 6 cε where cε =

ε→0
o(1). We introduce x0

k+1 and y0
k+1 in

this expression to use the inequality:
(xk+1 − yk+1)>(xk+1 − x∗)
= (xk+1 − x0

k+1 + x0
k+1 − y0

k+1 + y0
k+1 − yk+1)>(xk+1 − x0

k+1 + x0
k+1 − x∗)

6 (xk+1 − x0
k+1)>(xk+1 − yk+1 + x0

k+1 − x∗) + (y0
k+1 − yk+1)>(x0

k+1 − x∗)
6 ‖xk+1 − x0

k+1‖(‖xk+1‖+ ‖yk+1‖+ ‖x0
k+1 − x∗‖) + ‖y0

k+1 − yk+1‖‖x0
k+1 − x∗‖

6 ‖xk+1 − x0
k+1‖(‖xk+1‖+ ‖yk+1‖+ 2‖x0

k+1 − x∗‖)

6 3Rδ(4R + 4R + 4R) = 36R2δ = ε2

2κ =: cε.

This implies an inequality that we use to prove the convergence and which is a modification
of a similar inequality (namely with cε = 0) from [Bubeck, 2015]. Note that yk+1 = (In −

1
λmax

Σ)xk = xk − 1
β
∇f|xk since ∇f|x = 2Σx and β = 2λmax. Hence the previous inequality

rewrites:

(xk+1 − (xk −
1
β
∇f|xk))>(xk+1 − x∗) 6 cε

⇐⇒ ∇f>|xk(xk+1 − x∗) 6 βcε + β(xk − xk+1)>(xk+1 − x∗).
Third step: convergence.

We use the fact that f is α-strongly convex and β-smooth with α = 2λmin and β = 2λmax as
in [Bubeck, 2015]:

0 6 f(xk+1)− f(x∗) = f(xk+1)− f(xk) + f(xk)− f(x∗)

6 ∇f>|xk(xk+1 − xk) + β

2 ‖xk+1 − xk‖2 +∇f>xk(xk − x
∗)− α

2 ‖xk − x
∗‖2

= ∇f>|xk(xk+1 − x∗) + β

2 ‖xk+1 − xk‖2 − α

2 ‖xk − x
∗‖2

6 βcε + β(xk − xk+1)>(xk+1 − x∗) + β

2 ‖xk+1 − xk‖2 − α

2 ‖xk − x
∗‖2

6 β
ε2

2κ + β(xk − xk+1)>(xk − x∗)−
β

2 ‖xk+1 − xk‖2 − α

2 ‖xk − x
∗‖2,
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so:
‖xk+1 − xk‖2 − 2(xk − x∗)>(xk − xk+1) 6 ε2

κ
− α

β
‖xk − x∗‖2.

Hence:

‖xk+1 − x∗‖2 = ‖xk+1 − xk + xk − x∗‖2

= ‖xk − x∗‖2 + ‖xk+1 − xk‖2 − 2(xk − x∗)>(xk − xk+1)

6
ε2

κ
+
Å

1− 1
κ

ã
‖xk − x∗‖2,

‖xk+1 − x∗‖2 − ε2 6
Å

1− 1
κ

ã
(‖xk − x∗‖2 − ε2).

Let k0 = min{k ∈ N|‖xk − x∗‖ 6 ε}. Then for all k 6 k0:

‖xk − x∗‖2 − ε2 6
Å

1− 1
κ

ãk
(‖x0 − x∗‖2 − ε2)

6 ‖x0 − x∗‖2 exp
Å
−k
κ

ã
,

and this inequality is trivially true for k > k0 since ‖xk − x∗‖− ε 6 0 6 ‖x0− x∗‖2 exp(− k
κ
).

To conclude, ‖xk − x∗‖ 6 ε+ ‖x0 − x∗‖ exp
(
− k

2κ
)
.

Finally, the time complexity kε is obtained by ‖x0 − x∗‖ exp(− kε
2κ) = ε, i.e. kε =

2κ ln(‖x0−x∗‖
ε

) 6 2κ ln(2R
ε

) = O(ln(n
ε
)). At each step, there is a multiplication matrix-

vector (n2 operations) and a projection approximation with complexity 5n−1
ln(2) ln( n

δj
) since

(c0)j = 1 − mini[yk]i 6 1 + 4R = 1 +
√
nκ (with the notation c0 from Theorem 8.31).

Therefore, the total complexity is bounded by the following quantity:
kε∑
j=1

Å
n2 + n ln

Å
n

δj

ãã
6 n2kε + nkε ln

Å
n

δukε

ã
= O

(
n2 ln

(n
ε

)
+ n ln

(n
ε

)
ln ln

(n
ε

))
.

From the proof, we can notice that the choice of δ ∝ ε2 seems necessary to get an approx-
imation of the result up to ε. Numerically, it means that if real numbers are implemented
with precision 10−16, then the precision on D? cannot exceed 10−8. Moreover, the other
parameters n, κ and uk’s strengthen this observation. For example, if n = 100, κ = 10 and
u10 = 1

100 , then δ10 < ε2 × 10−6 so ε > 10−5. However, the inequalities in the proof are far
from optimal. It means that at the beginning of the algorithm, xk might be far from xk+1
and x∗ so the inequalities used in the third step are large. In addition, when xk becomes close
to x∗, the inequalities used in the first step are overestimated of a factor about 18. These
observations can help gain in precision in practice.

The combination of this approach with the Newton method of [Khachiyan and Kalantari,
1992] can also help gain in precision. Indeed, as soon as ‖∆kΣ∆k1 − 1‖ 6 c < 1 (where
∆k = 1√

x>
k

Σxk
diag(xk)), the Newton method ensures that for all s ∈ N, ‖∆k+sΣ∆k+s1−1‖ 6

c2s [Khachiyan and Kalantari, 1992] so one could reach any precision ε′ in an additional
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O(ln(ln( 1
ε′

))) of steps. The total complexity becomes O(n2 ln(n ln( 1
ε′

))) since each step of
Newton requires to solve a linear system which is a O(n2). Although the complexity is
worse, the precision could be better. However, this is conditioned to the possibility to reach
‖∆kΣ∆k1−1‖ < 1 with our method. One can show that ‖∆kΣ∆k1−1‖ 6 2κR‖xk−x∗‖ so
one has to choose ε < 1

8κR . With the values of the previous paragraph, 1
8κR = 5×10−4 which is

greater than 10−5 so one can actually reach any precision ε′ by plugging Khachiyan’s method
[Khachiyan and Kalantari, 1992] after ours, with a better complexity than Khachiyan’s. Note
that the precision ε′ is limited by the resolution of the linear system (∆−2

k+s+Σ)h = −Σ∆k+s1

where h ∈ Rn is unknown, the next step being ∆k+s+1 = ∆k+s + diag(h).
To compare with algorithms for which the complexity depends on the number of non-

zero entries m 6 n2 of Σ, we can notice that the multiplication matrix-vector at each step
of the algorithm only requires m operations. Therefore, the complexity of our algorithm
is actually O

(
m ln(n

ε
) + n ln(n

ε
) ln ln(n

ε
)
)
. In comparison with the generic algorithm with

complexity O(m+n4/3) of [Allen-Zhu et al., 2017], it is competitive for sparse SPD matrices
with m < n4/3.

8.6 Conclusion
In this work, we introduced two families of permutation-invariant log-Euclidean metrics on
full-rank correlation matrices. The first family was built via the off-log diffeomorphism whose
algebraic properties were introduced in [Archakov and Hansen, 2021]. The second family was
built via the log-scaling diffeomorphism thanks to the result on the scaling of symmetric ma-
trices [Marshall and Olkin, 1968]. In addition, the log-scaled metrics are inverse-consistent
contrarily to the off-log metrics. These metrics allow to compute with correlation matrices
very efficiently since they are flat and the main Riemannian operations are known in closed
form modulo the computation of the maps D and D?. That is why we also provide efficient
algorithms to compute them. These permutation-invariant log-Euclidean metrics fill a gap
in the study of Riemannian metrics on the open elliptope since they gather the invariance
under permutations of some structures [Kercheval, 2008, Nielsen and Sun, 2019, David and
Gu, 2019, Thanwerdas and Pennec, 2021] and the log-Euclidean geometry of some others
[Thanwerdas and Pennec, 2022c]. More generally, we tried to introduce a comprehensive
formalism on full-rank correlation matrices in terms of stability under the action of permu-
tations and under the cor-inverse involution. This systematic approach allowed to satisfy
intrinsically the requirement of inverse-consistency in the construction of log-Euclidean met-
rics. We hope that this presentation will help to manipulate correlation matrices as easily as
we work with SPD matrices. This approach could also help to define appropriate geometries
of block equi-correlation matrices of a given signature.
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Chapter 9

Bures-Wasserstein stratified geometry of
covariance matrices

Abstract
The set of covariance matrices equipped with the Bures-Wasserstein distance is the orbit space
of the smooth, proper and isometric action of the orthogonal group on the Euclidean space of
square matrices by right multiplication. This construction induces a natural orbit stratification
on covariance matrices, which is exactly the stratification by the rank. Thus, the strata are the
manifolds of symmetric positive semi-definite (PSD) matrices of fixed rank endowed with the Bures-
Wasserstein Riemannian metric. In this work, we study the geodesics of the Bures-Wasserstein
distance. Firstly, we complete the literature on geodesics in each stratum by clarifying the set of
preimages of the exponential map and by specifying the injectivity domain. We also give explicit
formulae of the horizontal lift, the exponential map and the Riemannian logarithms that were kept
implicit in previous works. Secondly, we give the expression of all the minimizing geodesic segments
joining two covariance matrices of any rank. More precisely, we show that the set of all minimizing
geodesics between two covariance matrices Σ and Λ is parametrized by the closed unit ball of
R(k−r)×(l−r) for the spectral norm, where k, l, r are the respective ranks of Σ,Λ,ΣΛ. In particular,
the minimizing geodesic is unique if and only if r = min(k, l). Otherwise, there are infinitely many.

9.1 Introduction
Many data can be represented as covariance matrices. They are often assumed to be Sym-
metric Positive Definite (SPD) because it is much more convenient from the geometric point
of view. Indeed, the set of SPD matrices is an open convex cone in the vector space of sym-
metric matrices so it has a canonical differential structure. The induced Euclidean metric is
not satisfying to compute with SPD matrices because geodesics leave the space in finite time
and interpolations are often non-realistic. To solve this problem, a lot of Riemannian metrics
were proposed on SPD matrices, mainly O(n)-invariant metrics [Thanwerdas and Pennec,
2022b] (affine-invariant [Siegel, 1943, Skovgaard, 1984, Pennec et al., 2006, Lenglet et al.,
2006, Fletcher and Joshi, 2007, Moakher, 2005], log-Euclidean [Arsigny et al., 2006, Fillard
et al., 2007, Hà Quang et al., 2014], Bures-Wasserstein [Dowson and Landau, 1982, Olkin and
Pukelsheim, 1982, Takatsu, 2010, Takatsu, 2011, Malagò et al., 2018, Bhatia et al., 2019],
Bogoliubov-Kubo-Mori [Petz and Toth, 1993, Michor et al., 2000], etc.), Cholesky-like metrics
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[Li et al., 2017, Lin, 2019] or product metrics with one metric on positive diagonal matrices
and one metric on full-rank correlation matrices [Thanwerdas and Pennec, 2021, Thanwerdas
and Pennec, 2022c].

However, this viewpoint often forgets about singular covariance matrices, that is covari-
ance matrices with non-full rank. Altogether, they form a closed convex cone which is not
anymore a manifold. First, it can be equipped with distances to provide a metric space struc-
ture. The Euclidean distance is not satisfying either here because geodesics leave the closed
cone in finite time again. A very interesting alternative is the Helstrom/Bures distance de-
fined in quantum information geometry [Helstrom, 1967, Bures, 1969]. It was also introduced
in optimal transport as the L2 Wasserstein/Kantorovitch distance between multivariate cen-
tered Gaussian distributions, possibly degenerate [Dowson and Landau, 1982, Olkin and
Pukelsheim, 1982]. This is why it is now called the Bures-Wasserstein distance. From our
viewpoint, it allows to define a distance on the whole set of covariance matrices, contrarily to
the aforementioned affine-invariant and log-Euclidean metrics. The Bures-Wasserstein dis-
tance is also the quotient distance of the Euclidean metric on square matrices by the right
action of the orthogonal group (U,M) ∈ O(n)× Rn×n −→ MU ∈ Rn×n. This is why it was
also called the Procrustes distance [Dryden et al., 2009, Hà Quang, 2022]. This viewpoint
allows to split the closed cone into strata that are Riemannian manifolds whose induced
geodesic distance is precisely the Bures-Wasserstein distance. In particular, the space of
covariance matrices equipped with this distance is a complete geodesic metric space.

The geometry of stratified spaces is a topic of interest in the community of statistics
in non-linear spaces. Examples of popular stratified spaces are the Kendall shape spaces
[Kendall, 1984], the BHV space of trees [Billera et al., 2001], the QED space of trees [Feragen
et al., 2010], the Graph space [Calissano et al., 2020], the Wald space of forests [Garba et al.,
2021], the correlation matrices or the symmetric/diagonal matrices stratified by eigenvalue
multiplicity. Moreover, the space of covariance matrices with the Bures-Wasserstein distance
is a metric space of non-negative curvature [Takatsu, 2011]. Spaces of this type have been
much less described than metric spaces of non-positive curvature [Bridson and Haefliger,
1999]. These are two motivations to study the Bures-Wasserstein geometry of covariance
matrices. In this work, we focus on geodesics.

There are three new elements with respect to the previous chapters that we would like to
highlight. Firstly, most of the previous Riemannian manifolds were geodesically complete.
In this chapter, we need the notion of definition domain of the exponential map because it
is not R in general. Secondly, the geodesics were minimizing on R most of the time. Here,
we need the notions of cut time and injectivity domain to specify when the geodesic stops to
be minimizing. Thirdly, we talk about geodesics in a metric space, not only in a Riemannian
manifold as previously.

In the principal (or regular) stratum of SPD matrices, the Bures-Wasserstein Riemannian
metric was extensively studied. SinceX ∈ GL(n) 7−→ XX> ∈ Sym+(n) is a Riemannian sub-
mersion, many geometric operations can be computed thanks to O’Neill’s equations [O’Neill,
1966]. Therefore, the curvature was derived in [Takatsu, 2010, Takatsu, 2011, Thanwerdas
and Pennec, 2022b], the quotient geometry was described in [Malagò et al., 2018, Bhatia
et al., 2019, van Oostrum, 2020], the exponential map was computed in [Malagò et al., 2018],
a Riemannian logarithm was given in [Bhatia et al., 2019], the injectivity radius was com-
puted in [Massart and Absil, 2020] and a simplified equation of the geodesic parallel transport
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was proposed in [Thanwerdas and Pennec, 2022b]. In contrast to geodesically complete Rie-
mannian metrics, it is important to specify the definition domain of the exponential map.
It was characterized in [Malagò et al., 2018] as the connected component of 0 in a subset
of R, which could be specified more explicitly. Moreover, the uniqueness of the Riemannian
logarithm is not established and the injectivity domain seems to be unknown. Therefore in
Section 9.4, we clarify the definition domain of the exponential map, we prove the uniqueness
of the logarithm thanks to a result from [Massart and Absil, 2020] and we prove that the
geodesics are minimizing on their domain of definition, which also provides the injectivity
domain.

In each other stratum of PSD matrices of fixed rank k < n, the Bures-Wasserstein Rie-
mannian metric was studied via the analogous Riemannian submersion defined by X ∈
Rn×k
∗ 7−→ XX> ∈ Sym+(n, k), where Rn×k

∗ is the open set of matrices of full rank k in Rn×k

and Sym+(n, k) is the set of PSD matrices of size n and rank k. The curvature was computed
in [Massart et al., 2019], the exponential map, its domain of definition, the logarithm map
and the injectivity radius were derived in [Massart and Absil, 2020]. The horizontal lift was
kept implicit so these results are formulated in the total space Rn×k

∗ . We think that it is easier
to understand the geometry with formulae depending directly on the tangent vector and not
on its horizontal lift. Therefore, in Section 9.5, we compute the horizontal lift and we give
the expressions of the Riemannian metric, the exponential map and its definition domain
in function of vectors tangent to the manifold Sym+(n, k). Moreover, we solve the problem
of characterization of the preimages of the exponential map, which is knowingly left open
in [Massart and Absil, 2020] where they focus on the characterization of logarithms, that is
preimages with minimal norm. In addition, we give an explicit bijective parametrization of
the Riemannian logarithms, which allows us to count them. When it is unique, we give an
explicit formula of the corresponding minimizing geodesic in function of the end points. This
finally allows us to compute the injectivity domain which is kept implicit in [Massart and
Absil, 2020].

Beyond the clarification and completion of the literature on geodesics in each stratum, our
main objective is to characterize the minimizing geodesics between strata. Our main results
are the following. (1) Any minimizing geodesic segment between two covariance matrices Σ
and Λ is of constant rank on the interior of the segment. It is called the rank of the minimizing
geodesic and it is greater than the ranks of Σ and Λ. (2) We give the explicit formula of all
the minimizing geodesic segments in Theorem 9.31. (3) They are parametrized by the vectors
of the closed unit ball of R(k−r)×(l−r) for the spectral norm, where k, l, r are the respective
ranks of Σ,Λ,ΣΛ. In other words, they are parametrized by matrices R0 ∈ R(k−r)×(l−r)

with singular values in [0, 1]. (4) The minimizing geodesic segment is unique if and only if
r = min(k, l) (this includes max(k, l) = n). Otherwise, there are infinitely many. (5) The
number of minimizing geodesics of minimal rank (i.e. of rank equal to max(k, l)) is 1 if
r = min(k, l), otherwise it is 2 if k = l, otherwise it is infinite. (6) Assuming k > l, if R0
belongs to the Stiefel manifold St(k − r, l − r), that is R>0 R0 = Il−r, then the corresponding
geodesic is of minimal rank. (7) The choice of parameter R0 = 0 leads to the geodesic
γ0

Σ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t)sym(Σ1/2((Σ1/2ΛΣ1/2)1/2)†Σ1/2Λ) whose expression does
not depend on the ranks of Σ and Λ. It is called the Bures-Wasserstein canonical geodesic.

In the remainder of this section, we introduce some matrix notations. In Section 9.2,
we introduce the important concepts of geodesics and quotient space in metric spaces and
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manifolds. We give a particular attention to the notions that characterize if a geodesic (self-
parallel curve) is minimizing: cut time, injectivity domain, difference between preimages
of the exponential map and Riemannian logarithms. In Section 9.3, we recall the algebraic
structure, metric topology and differential geometry of the convex cone of covariance matrices
seen as the quotient of square matrices by the orthogonal group. In Sections 9.4 and 9.5, we
complete the literature on the geodesics of the Bures-Wasserstein metric on SPD matrices
and on singular matrices of fixed rank respectively. In Section 9.6, we give our main results
on minimizing geodesics in the whole Bures-Wasserstein metric space of covariance matrices.
We conclude in Section 9.7 and we give a glance at an analogous structure on correlation
matrices. The main proofs are deferred to Section 11.8.

Matrix notations Let n, k ∈ N. In this work, we use the following manifolds of matrices:

· the vector space of n× k matrices Rn×k,
· the open subset Rn×k

∗ ⊂ Rn×k of full-rank matrices,
· in particular, the vector space of square matrices Mat(n) = Rn×n and the general linear
group GL(n) = Rn×n

∗ ,
· the orthogonal group O(n),
· the Stiefel manifold St(n, k) = O(n)/O(n− k),
· the manifold of symmetric positive definite matrices Sym+(n),
· the manifold of symmetric positive semi-definite matrices of fixed rank k, Sym+(n, k),
· the vector space of diagonal matrices Diag(n),
· the groups of invertible diagonal matrices Diag∗(n) = Diag(n) ∩ GL(n) and positive
diagonal matrices Diag+(n) = Diag(n) ∩ Sym+(n).

We use the following notations.

· In denotes the identity matrix of size n.
· 0n denotes the null matrix of size n×n. 0n,k denotes the null matrix of size n× k. We
may simply denote them 0 when sizes are obvious in the context.
· (Sylvester equation) SA(B) is the unique solution Z of the Sylvester equation AZ +
ZA = B for A ∈ Sym+(k) and B ∈ Sym(k).
· (Löwner order) For all Σ ∈ Sym(n), we say that Σ is positive definite (resp. positive
semi-definite) and we denote Σ > 0 (resp. Σ > 0) when Σ has positive (resp. non-
negative) eigenvalues. Given Λ ∈ Sym(n), we denote Σ > Λ (resp. Σ > Λ) when
Σ− Λ > 0 (resp. Σ− Λ > 0).

We recall basic facts on symmetric matrices.

1. (Eigenvalue decomposition) For all Σ ∈ Sym(n), there exist U ∈ O(n) and D ∈ Diag(n)
such that Σ = UDU>. By removing null eigenvalues, given r = rk(Σ), there also exist
U ∈ St(n, r) and D ∈ Diag∗(r) such that Σ = UDU>.
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2. For all X ∈ Rn×k, XX> is symmetric positive semi-definite and rk(X) = rk(XX>) =
rk(X>X). In particular, if X ∈ Rn×k

∗ , then X>X ∈ GL(k).
3. (Singular value decomposition) For all M ∈ Rn×k, denoting r = rk(M) 6 min(n, k),

there exist U ∈ O(n), V ∈ O(k) and D =
Å

Dr 0r,k−r
0n−r,r 0n−r,k−r

ã
with Dr ∈ Diag+(r) such

that M = UDV >. The diagonal entries of D, that is the D′iis for i ∈ {1, ...,min(n, k)}
are called the singular values of M .

4. (Moore-Penrose inverse) For all M ∈ Rn×k, the unique matrix M † ∈ Rk×n satisfying
MM †M = M , M †MM † = M †, MM † ∈ Sym(n) and M †M ∈ Sym(k) is called the
pseudoinverse or Moore-Penrose inverse. In this work, we only use it for symmetric
matrices Σ ∈ Sym(n). Given r = rk(Σ) and an eigenvalue decomposition Σ = UDU> =
PDiag(D, 0)P> with U ∈ St(n, r), P = [U U⊥] ∈ O(n), D ∈ Diag∗(r), it is easy
to check that Σ† = UD−1U> = PDiag(D−1, 0)P>. Moreover, for all V ∈ St(n, k),
(V ΣV >)− = V Σ−V >.

5. (Symmetric square root) For all Σ ∈ Sym(n), if Σ > 0, then there exists a unique
matrix A ∈ Sym(n), A > 0 such that A2 = Σ. It is called the (symmetric) square root
of Σ and it is denoted

√
Σ or Σ1/2.

6. (Non-symmetric square roots) For all X, Y ∈ Rn×k, XX> = Y Y > if and only if there
exists U ∈ O(k) such that XU = Y [Groetzner and Dür, 2020, Lemma 2.6].

We use the following notations for norms of vectors x ∈ Rk and matrices M ∈ Rn×k:

1. (Euclidean norm) ‖M‖2 = tr(M>M)1/2 and ‖x‖2 = (x>x)1/2.
2. (Spectral norm or Schatten’s infinite norm) ‖M‖S = sup x∈Rk

‖x‖261
‖Mx‖2 = max16i6n σi(M),

where σ1(M), ..., σn(M) are the singular values of M .

Without index, ‖ · ‖ generically denotes the norm on the tangent spaces associated to the
Riemannian metric at hand.

9.2 Preliminary concepts
In this section, we recall the basic definitions of geodesics and quotient spaces. We depart
from the previous chapters where most of the Riemannian metrics were geodesically complete
and where the injectivity domain of the exponential map was the entire manifold. We also
need to introduce the notions of length and geodesic in a metric space [Bridson and Haefliger,
1999, Paulin, 2014] and the notion of Riemannian orbit space [Alekseevsky et al., 2001].

In Section 9.2.1, we introduce the concepts needed to study geodesics and minimizing
geodesics. We recall that geodesics are defined in a metric space, in a manifold endowed with
an affine connection and in a Riemannian manifold, where the two previous notions coincide.
Then we introduce our notations for preimages of the exponential map, logarithms and related
notions. We define the cut time and the injectivity domain, extending the definition usually
given in complete metric spaces, and we explain where to be cautious. In Section 9.2.2, we
recall the notions of quotient metric space, quotient Riemannian manifold and Riemannian
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orbit space. We introduce the vocabulary, notations and results that we use in the next
sections.

9.2.1 Geodesics
Definition 9.1 (Curve) LetM be a topological space. A curve onM is a continuous map
c : I −→M, where I is an interval of R. When I is a segment of R, we may call c a segment.

9.2.1.1 Geodesics in a metric space

Definition 9.2 (Length, length distance, length space) [Paulin, 2014] Let (M, d) be a metric
space.

1. (Length) Let c : [a, b] ⊆ I −→ M be a curve. The length of c is defined by L(c) =
sup∑p

k=0 d(c(tk), c(tk+1)) ∈ [0,+∞] over all subdivisions a = t0 6 t1 6 ... 6 tp 6
tp+1 = b. We say that c : I −→ M is rectifiable when for all a 6 b in I, L(c|[a,b]) is
finite.

2. (Length distance) The length distance between x ∈ M and y ∈ M is defined by
dL(x, y) = inf L(c) > d(x, y) over all rectifiable curves c : [0, 1] −→ M from x = c(0)
to y = c(1). IfM is connected by rectifiable curves, then dL is a distance.

3. (Length space) We say that (M, d) is a length space when d = dL.

Lemma 9.3 (Length is additive and continuous) [Bridson and Haefliger, 1999, Proposition
1.20] Let c : [a, b] −→M be a rectifiable curve.

1. For all t ∈ [a, b], L(c) = L(c|[a,t]) + L(c|[t,b]).
2. The map f : t ∈ [a, b] 7−→ L(c|[a,t]) is non-decreasing and continuous.

A classical example is the sphere S2 ⊂ R3 endowed with the Euclidean distance d. The
distances between the north poleN = (0, 0, 1) and the south pole S = (0, 0,−1) are d(N,S) =
2 and dL(N,S) = π. The metric space (S2, d) is not a length space while the metric space
(S2, dL) is a length space.

Definition 9.4 (Geodesics in a metric space) [Paulin, 2014] Let (M, d) be a metric space.

1. (Constant speed) We say that c : I −→M is a curve parameterized at constant speed
when there exists v > 0 such that for all t 6 t′ in I, L(c|[t,t′]) = v(t′ − t).

2. (Unit speed) We say that c : I −→ M is a curve parameterized at unit speed (or by
arc length) when for all t 6 t′ in I, L(c|[t,t′]) = t′ − t.

3. (Globally minimizing) We say that c : I −→ M is (globally) minimizing when for all
a 6 b in I, L(c|[a,b]) = d(c(a), c(b)).

4. (Locally minimizing) We say that c : I −→M is locally minimizing when for all t ∈ I,
there exists a neighborhood I0 ⊆ I of t such that c|I0 is minimizing.

5. (Geodesic) A geodesic is a locally minimizing curve of constant speed. A minimizing
geodesic is a globally minimizing curve of constant speed.
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6. (Geodesic space) A geodesic (metric) space is a length space such that there exists a
minimizing geodesic between any two points.

9.2.1.2 Geodesics of an affine connection

In the following notions, the definition interval and the definition domain are of interest when
the manifold is not geodesically complete and the set of preimages is of interest when the
exponential map is not injective.

Definition 9.5 (Geodesics of an affine connection) [Paulin, 2014] Let (M,∇) be a smooth
manifold equipped with an affine connection ∇ : Γ(TM)× Γ(TM) −→ Γ(TM).

1. (Geodesic) A geodesic (or self-parallel curve) is a solution γ : I −→M of the second-
order equation ∀t ∈ I,∇γ̇(t)γ̇ = 0. The maximal solution satisfying the initial condition
γ̇(0) = v for v ∈ TxM is denoted γ(x,v) : Ix,v −→M.

2. (Definition interval) We call Ix,v ⊆ R the definition interval of γ(x,v). It is the maximal
interval of R on which the geodesic γ(x,v) is defined.
In a geodesically complete manifold, Ix,v = R.

3. (Exponential map) The exponential map is defined by Exp : v 7−→ γ(x,v)(1) on the
open set ⋃x∈M{v ∈ TxM| 1 ∈ Ix,v} ⊆ TM. The exponential map at x, defined
by Expx(v) = Exp(v) for v ∈ TxM such that 1 ∈ Ix,v, is a diffeomorphism from a
neighborhood of 0 in TxM to a neighborhood of x inM.

4. (Definition domain) The definition domain of the exponential map if Dx = {v ∈
TxM| 1 ∈ Ix,v}.

5. (Preimage) A preimage of y ∈M by Expx is a vector v ∈ TxM such that 1 ∈ Ix,v and
Expx(v) = y. The set of preimages of y from x is denoted Prex(y) = Exp−1

x ({y}) =
{v ∈ TxM| 1 ∈ Ix,v and Expx(v) = y}.
Note that there might be none, one, several or infinitely many elements in Prex(y).

6. (Geodesic from x to y) A geodesic from x to y is a geodesic γ(x,v) such that v ∈
Prex(y). They are bijectively indexed by Prex(y) so we denote them γvx→y = γ(x,v) for
v ∈ Prex(y).
When there exists a unique preimage of y from x, we simply denote the geodesic γx→y.

9.2.1.3 Geodesics of a Riemannian metric

Any Riemannian manifold is equipped with a natural affine connection called the Levi-Civita
connection. Moreover, we recall in the following definition that a connected Riemannian
manifold is a metric space and even a length space.

Definition 9.6 (Length, Riemannian distance) [Paulin, 2014] Let (M, g) be a Riemannian
manifold. For v ∈ TM, we denote its norm ‖v‖ =

√
g(v, v).
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1. (Length) The length of a C1 curve c : [a, b] −→ M is defined by L(c) =
∫ 1

0 ‖ċ(t)‖dt.
This definition extends to piecewise C1 curves. The length is independent from the
parametrization of the curve.

2. (Distance) The Riemannian distance between x, y ∈M is defined by d(x, y) = inf L(c)
over all piecewise C1 curves c : [0, 1] −→ M from x = c(0) to y = c(1). If M is
connected, then the Riemannian distance is a distance (defining the topology of M),
the Riemannian length and the metric length coincide on piecewise C1 curves, and
(M, d) is a length space.

Fortunately, the two notions of geodesics coincide: a piecewise C1 curve is a geodesic
for the Levi-Civita connection if and only if it is a geodesic in the metric space (M, d).
Then, it is natural to ask what are the globally minimizing geodesics. A few concepts can
be introduced to formalize this question: injectivity radius, cut time, cut locus, injectivity
domain. Moreover, among the preimages v ∈ Prex(y) of the exponential map of the Levi-
Civita connection, those which satisfy ‖v‖ = d(x, y) are called Riemannian logarithms. When
there exists a unique Riemannian logarithm, the logarithm map can be defined.

Definition 9.7 (Geodesics of a Riemannian metric) Let (M, g) be a connected Riemannian
manifold. Let d be the Riemannian distance and∇ be the Levi-Civita connection. We denote
Bx(ε) = {v ∈ TxM|‖v‖ < ε} ⊂ TxM the centered open ball of TxM of radius ε > 0.

1. (Geodesics) A curve γ : I −→ M is called a geodesic of (M, g) if one of the two
following equivalent statements is satisfied:

(a) γ is a geodesic of (M, d) (locally length-minimizing curve of constant speed),
(b) γ is a geodesic of (M,∇) (self-parallel curve).

The equivalence is shown in [Paulin, 2014, Proposition 3.14] for example.

2. (Injectivity radius) [Paulin, 2014] The injectivity radius at x ∈M is defined by inj(x) =
sup ε over all ε > 0 such that expx is a diffeomorphism from Bx(ε) ⊂ TxM to its image.
The injectivity ball is Bx(inj(x)) ⊂ TxM.
For v ∈ TxM of norm 1 and t0 ∈ [0, inj(x)), the map γ(x,v) : t ∈ [0, t0] 7−→ expx(tv) ∈M
is the unique geodesic between x and γ(x,v)(t0). It is globally minimizing.
The injectivity radius ofM is defined by inj(M) = infx∈M inj(x).

3. (Cut time) The cut time at x ∈ M in the direction v ∈ TxM, ‖v‖ = 1, is defined by
tcut(x, v) = sup{t ∈ Ix,v|d(x,Expx(tv)) = t} ∈ (0,+∞]. Note that the geodesic γ(x,v)
need not be minimizing on (−tcut(x,−v), tcut(x, v)).

4. (Tangential cut locus) The tangential cut locus at x is the set TCL(x) = {tcut(x, v)v| v ∈
TxM, ‖v‖ = 1, tcut(x, v) < +∞}.

5. (Injectivity domain) The injectivity domain of the exponential map at x is the set
Inj(x) = {tv|t ∈ [0, tcut(x, v)), v ∈ TxM, ‖v‖ = 1} ⊆ Dx. The injectivity ball is
included in the injectivity domain.
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6. (Logarithms) We call (Riemannian) logarithm of y ∈ M from x ∈ M a preimage
v ∈ Prex(y) ⊆ TxM of y from x by the exponential map such that ‖v‖ = d(x, y). We
denote Logx(y) ⊆ Prex(y) the set of logarithms of y from x. In particular, the geodesic
γvx→y joining x to y with initial speed v ∈ Logx is minimizing on [0, 1].

7. (Logarithm map) Denoting Ux ⊆ M the subset of points y such that there exists a
unique logarithm of y from x, this defines a map Logx : Ux −→ TxM. In particular,
Bx(inj(x)) ⊆ Ux and Logx : Expx(Bx(ε)) −→ Bx(ε) is a diffeomorphism for all ε <
inj(x).

Remark 9.8 The cut time is usually defined in complete manifolds only [do Carmo, 1992].
Although the definition still holds, some basic results may fail in non-complete manifolds.
For example, if Ix,v 6= R and tcut(x, v) < +∞, then tcut(x, v) need not belong to Ix,v and
Expx(tcut(x, v)v) need not be defined. Then the cut locus, which is the image of the tangential
cut locus by the exponential map in complete manifolds, should be defined differently. One
possible definition could simply forget the vectors v ∈ TxM such that tcut(x, v) /∈ Ix,v as
well as the definition in complete manifolds forgets about the vectors v ∈ TxM such that
tcut(x, v) = +∞. A maybe more satisfying definition could rely on the metric completion
of the space: the cut point in direction v could be the limit of Expx(tv) when t tends to
tcut(x, v) if this limit exists.

Studying the geodesics of a space means (at least) determining precisely an expression
of the geodesic γ(x,v), the maximal domain Ix,v, the injectivity radiuses inj(x) and inj(M),
the cut time tcut(x, v), the preimages of the exponential map Prex(y), an expression of
the geodesics γvx→y, the Riemannian logarithms Logx(y), the logarithm map Logx and its
definition domain Ux.

The goal of Sections 9.4 and 9.5 is to clarify and complete the knowledge on geodesics of
the Bures-Wasserstein metric on the manifolds Sym+(n) and Sym+(n, k).

9.2.2 Quotient spaces
9.2.2.1 Quotient distance

Definition 9.9 (Quotient distance) Let (M, d) be a metric space. Let G be a group acting
isometrically on (M, d). We denote M0 = M/G and we define the map d0 : (Gx,Gy) ∈
M0 ×M0 7−→ d(Gx,Gy) = infg∈G d(gx, y) ∈ [0,+∞). If the orbits are closed, then d0 is a
distance onM0 called the quotient distance.

Remark 9.10 There exists a more general notion of quotient pseudo-distance when the
action is not isometric. In this chapter, the actions are isometric so we don’t detail it.

Remark 9.11 The hypotheses of the definition are satisfied if the following conditions hold
together:

· G is a locally compact topological group (e.g. a Lie group),
· (M, d) is a metric space (e.g. a Riemannian manifold),
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· the action of G on (M, d) is continuous and isometric,
· the action is proper, i.e. (with the previous assumptions [Bourbaki, 1971, III.4.4 Propo-
sition 7]) for all x, y ∈ M, there exist respective neighborhoods Vx,Vy such that the
set K = {g ∈ G|gVx ∩ Vy 6= ∅} is relatively compact.

Indeed, let (gnx)n∈N be a sequence in Gx tending to y ∈ M. Then there exists n0 ∈ N such
that for all n > n0, gnx ∈ Vy so gnVx ∩ Vy 6= ∅, i.e. gn ∈ K. SinceM is a metric space and
K is relatively compact, there exists a subsequence (gϕ(n)) converging to g ∈ G. Since the
action is continuous, gϕ(n)x converges to gx. Therefore, y = gx ∈ Gx and Gx is sequentially
closed, hence closed.

Definition 9.12 (Registered points) We say that x, y ∈ M are registered points when
d(x, y) = d0(Gx,Gy).

Lemma 9.13 (Length in a quotient metric space) We denote L the length on bothM and
M0 = M/G, and π : M −→ M0 the canonical projection. For all curve c : [0, 1] −→ M,
we have L(π ◦ c) 6 L(c). In particular, if x = c(0) and y = c(1) are registered and if c is
minimizing, then π ◦ c is minimizing and L(π ◦ c) = L(c) = d(x, y) = d0(π(x), π(y)).

Proof. By definition L(π◦c) 6 sup∑p
k=0 d

0(π(c(tk)), π(c(tk+1))) 6 sup∑p
k=0 d(c(tk), c(tk+1)) =

L(c). If x = c(0) and y = c(1) are registered, then d(x, y) = d0(π(x), π(y)) 6 L(π ◦ c). If c
is minimizing, then d(x, y) = L(c) > L(π ◦ c). Thus if both hold, then L(π ◦ c) = L(c) =
d(x, y) = d0(π(x), π(y)) and π ◦ c is minimizing.

9.2.2.2 Quotient Riemannian metric

Definition 9.14 (Quotient metric) Let (M, g) be a Riemannian manifold. Let G be a Lie
group acting smoothly, properly, freely and isometrically on (M, g). Then there exists a
unique smooth structure on M0 = M/G such that the quotient map π : M −→ M0 is a
submersion [Lee, 2012]. Thus, one can define for all x ∈M:

1. (Vertical space) Vx = TxMx = ker dxπ whereMx = π−1(x) is a submanifold ofM,
2. (Horizontal space) Hx = V⊥x so that TxM = Vx ⊕Hx,
3. (Horizontal lift) #x : Tπ(x)M0 −→ Hx the inverse isomorphism of (dxπ)|Hx : Hx −→
Tπ(x)M0,

4. (Quotient metric) g0
π(x) : (v, w) ∈ Tπ(x)M0 × Tπ(x)M0 7−→ gx(v#

x , w
#
x ) ∈ R.

This is a particular case of a Riemannian submersion [O’Neill, 1966]. The Riemannian
distance of the quotient metric g0 is the quotient distance of d, defined by d0(π(x), π(y)) =
d(Gx,Gy) = infg∈G d(gx, y).

The fundamental theorem on geodesics of a quotient metric is the following.

Theorem 9.15 (Geodesics of a quotient metric) [O’Neill, 1966] The projection of a horizontal
geodesic is a horizontal geodesic and their lengths coincide on any segment. More precisely,
let x ∈ M and v ∈ Tπ(x)M0. Then Ix,v#

x
⊆ Iπ(x),v and for all t ∈ Ix,v#

x
, Expπ(x)(tv) =

π(Expx(tv#
x )).
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9.2.2.3 Riemannian orbit spaces

When the action of G onM is not free, the orbit spaceM/G is not a Riemannian manifold
in general. This was studied in [Alekseevsky et al., 2001]. We briefly recall the main facts
that we use in this chapter.

Theorem 9.16 (Riemannian geometry of orbit spaces) [Alekseevsky et al., 2001] Let (M, g)
be a connected complete Riemannian manifold. Let G be a Lie group acting smoothly,
properly and isometrically on (M, g). We denote π :M−→M/G the canonical surjection.
For a Lie subgroup H of G, we denote (H) = {gHg−1|g ∈ G} the conjugacy class of H and
M(H) the set of points x ∈ M such that the stabilizer of x, Stab(x) = {g ∈ G|gx = x},
belongs to (H).

1. M(H) is a smooth submanifold ofM.
2. We denote (M/G)(H) = π(M(H)) =M(H)/G the (isotropy) stratum of type (H). Then
π(H) := π|M(H) :M(H) −→ (M/G)(H) is a smooth fiber bundle with fiber type G/H.

3. The isotropy strata form a partition ofM/G.
4. (M/G, d0) is a complete metric space and a length space.

The definition of the vertical space still holds while the horizontal space is replaced by
the normal space [Michor, 2008, VI.29.2].

Definition 9.17 (Vertical space, normal space) We take the notations of Theorem 9.16. Let
x ∈M(H). ThusMx = π−1(π(x)) is a submanifold ofM(H).

1. (Vertical space) Vx = TxMx ⊆ TxM(H) ⊆ TxM.
2. (Normal space) Nx = V⊥x ⊆ TxM so that TxM = Vx ⊕Nx.

Note that Vx and Nx need not have a constant dimension. We recall a result that we use
later.

Lemma 9.18 (Geodesics in a Riemannian orbit space) [Alekseevsky et al., 2001, Lemma
3.5] We take the notation of Theorem 9.16. Given Lie subgroups H1, H2 of G, we denote
(H1) 6 (H2) if H1 is conjugated so a subgroup of (H2). Let γ : [0, 1] −→ M/G be a
minimizing curve. For t ∈ [0, 1], let (M/G)(Ht) denote the stratum of γ(t). Then, for all
t ∈ (0, 1), (Ht) 6 (H0) and (Ht) 6 (H1).

We are now well prepared to study the construction of the orbit space of covariance
matrices (Section 9.3), the geodesics within each stratum (Sections 9.4 and 9.5) and the
minimizing geodesics in the whole space (Section 9.6).

9.3 Bures-Wasserstein geometry of covariance matrices
We denote the set of symmetric positive semi-definite matrices or covariance matrices by
Cov(n) = {Σ ∈ Sym(n)|Σ > 0} = {XX>|X ∈ Mat(n)} ⊂ Mat(n). It is a complete metric
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subspace of the vector space of n× n square matrices equipped with the Euclidean distance
dE(Σ,Λ) = ‖Σ− Λ‖2 = tr((Σ− Λ)2)1/2.

In this section, we recall that this set can also be described as the orbit space of the
manifold Mat(n) of n × n matrices quotiented on the right by the orthogonal group O(n).
We recall that the quotient topology coincides with the Euclidean topology and we recall the
expression of the quotient distance known as the Bures-Wasserstein distance. We insist on
the definition of the strata, which are investigated in the following sections.

9.3.1 The quotient geometry of covariance matrices
The group action of the orthogonal group O(n) on the vector space of square matrices
Mat(n) is (X,U) ∈ Mat(n) × O(n) 7−→ XU ∈ Mat(n). It is smooth, proper and isometric
for the Euclidean distance.

The stabilizer (or isotropy group) of a matrix X ∈ Mat(n) is Stab(X) = {U ∈
O(n)|XU = X}. If we denote k = rk(X), it is well known that X is equivalent to the

matrix Jk =
Å
Ik 0
0 0

ã
, i.e. there exist P ∈ GL(n) and Q ∈ O(n) such that X = PJkQ. Then

it is clear that Hk := Stab(Jk) = {
Å
Ik 0
0 U

ã
|U ∈ O(n − k)} and Stab(X) = Q> Stab(Jk)Q

with dim Stab(X) = dim O(n− k) = (n−k)(n−k−1)
2 . Hence two matrices have conjugate stabi-

lizers if and only if they have the same rank. Note that (Hk) 6 (Hl) if and only if k > l.
The orbit of X is Orb(X) = {XU |U ∈ O(n)} ' O(n)/Stab(X). Its dimension is

dim Orb(X) = dim O(n) − dim Stab(X) = nk − k(k+1)
2 . Given that there exists U ∈ O(n)

such that Y = XU if and only if XX> = Y Y > [Groetzner and Dür, 2020, Lemma 2.6], we
have Orb(X) = {Y ∈ Mat(n)|Y Y > = XX>}.

The orbit space Mat(n)/O(n) = {Orb(X)|X ∈ Mat(n)} is thus in bijection with the
set of covariance matrices Cov(n) = {XX>|X ∈ Mat(n)} by the map Orb(X) 7−→ XX>.

The orbit strata of Mat(n)/O(n) are the sets of points that have conjugate stabilizers
[Alekseevsky et al., 2001], i.e. that have the same rank here. This gives a manifold structure
to Mat(n)(Hk) = Rn×n

k . The strata of Mat(n)/O(n) are Rn×n
k /O(n), or equivalently the strata

of covariance matrices are the sets of symmetric positive semi-definite matrices of fixed rank
Sym+(n, k) = Cov(n)∩Rn×n

k . The principal/regular stratum is the set of Symmetric Positive
Definite (SPD) matrices Sym+(n) = Cov(n) ∩ GL(n). Finally, πk := π(Hk) : Rn×n

k −→
Sym+(n, k) is a smooth fiber bundle with fiber type St(n, k) = O(n)/O(n− k), in particular
it is a submersion.

9.3.2 The Bures-Wasserstein distance
Since the group action is continuous, proper and isometric, the Euclidean distance descends to
a distance on Mat(n)/O(n). Via the bijection Orb(X) ∈ Mat(n)/O(n) 7−→ XX> ∈ Cov(n),
it is usually expressed as a distance on covariance matrices. It is known as the Bures-
Wasserstein distance [Dowson and Landau, 1982, Olkin and Pukelsheim, 1982, Bhatia et al.,
2019].
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Definition 9.19 (Bures-Wasserstein distance) [Bhatia et al., 2019] The Bures-Wasserstein
distance between Σ and Λ is defined by:

dBW(Σ,Λ) = inf
X,Y ∈Mat(n)

XX>=Σ,Y Y >=Λ

dE(X, Y ) = inf
R∈O(n)

dE(Σ1/2,Λ1/2R) (9.1)

= tr(Σ + Λ− 2(Σ1/2ΛΣ1/2)1/2)1/2. (9.2)

If XX> = Σ and Y Y > = Λ, let R ∈ O(n) such that X>Y = (X>ΛX)1/2R. Then
dE(X, Y R>)2 = ‖Y R> −X‖2

2 = tr(XX> + Y Y > − 2X>Y R>) = dBW(Σ,Λ)2.

As the quotient of a length space, the space of covariance matrices endowed with the
Bures-Wasserstein metric is a length space. It is even a complete geodesic metric space
[Alekseevsky et al., 2001, Proposition 3.1.(1)].

The following result seems elementary although we did not find a clear reference in the
literature.

Lemma 9.20 (Euclidean and Bures-Wasserstein topologies coincide) The Euclidean distance
dE and the Bures-Wasserstein distance dBW define the same topology on Cov(n).
See the proof of Lemma 9.20 in Section 11.8.

9.3.3 Topology, metric and smooth structure of the strata
The set of symmetric positive definite (SPD) matrices Sym+(n) = {Σ ∈ Sym(n)| sp(Σ) ⊂
(0,+∞)} is an open set of the vector space of symmetric matrices, hence it has a natural
structure of smooth manifold. This topology clearly coincides with the topology induced by
(Cov(n), dE), thus it also coincides with the topology induced by (Cov(n), dBW).

The set Sym+(n, k) is in bijection with Rn×n
k /O(n). The Euclidean distance on Rn×n

k de-
scends to the Bures-Wasserstein distance on Sym+(n, k) thanks to Equation (9.1). Therefore,
the quotient topology coincides with the Bures-Wasserstein topology induced by (Cov(n), dBW),
thus also with the Euclidean topology induced by (Cov(n), dE) and (Sym(n), dE).

However, the Riemannian geometry is difficult to study via the submersion πk : Rn×n
k −→

Sym+(n, k). Indeed, it is the projection of a bundle of fiber St(n, k) ' O(n)/O(n− k) which
is not a Lie group. Fortunately, the set Sym+(n, k) is also in bijection with the quotient
manifold Rn×k

∗ /O(k) [Massart and Absil, 2020, Proposition 2.1], where Rn×k
∗ is the open set

of matrices of full rank in Rn×k. We recall this quotient geometry in Table 9.1. The quotient
distance induced on Sym+(n, k) is the Bures-Wasserstein distance [Massart and Absil, 2020,
Proposition 5.1]. In particular, the quotient topology coincides with the previous ones. This
bijection naturally provides a smooth structure on Sym+(n, k). Above all, the submersion
π̃k : Rn×k

∗ −→ Sym+(n, k) is the projection of a principal fiber bundle. Hence, it is much
more convenient to study the Bures-Wasserstein Riemannian geometry of Sym+(n, k) via the
Riemannian submersion π̃k. This is exactly what is done in [Massart and Absil, 2020].

To summarize, the strata Sym+(n, k) are smooth connected manifolds and the regular
stratum Sym+(n) is a dense open set in Cov(n).

The Riemannian geometry of the principal stratum was extensively studied [Takatsu,
2010, Takatsu, 2011, Malagò et al., 2018, Bhatia et al., 2019, van Oostrum, 2020, Thanwer-
das and Pennec, 2022b] and the Riemannian geometry of the other strata was recently well
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Set Sym+(n, k) = Cov(n) ∩ Rn×n
k

Smooth manifold Rn×k
∗ /O(k)

Group action
ß

Rn×k
∗ ×O(k) −→ Rn×k

∗
(X,U) 7−→ XU

Orbit Orb(X) = {Y ∈ Rn×k
∗ |Y Y > = XX>}

Identification
ß

Rn×k
∗ /O(k) −→ Sym+(n, k)
Orb(X) 7−→ XX>

Submersion πSym+(n,k) :
ß

Rn×k
∗ −→ Sym+(n, k)
X 7−→ XX>

Table 9.1: Smooth manifold structure of Sym+(n, k).

detailed [Massart et al., 2019, Massart and Absil, 2020]. However, there remain missing
formulae and open questions about the geodesics in each stratum: injectivity domain, preim-
ages, and explicit formulae of the horizontal lift, the exponential map and logarithms in the
base space Sym+(n, k) of the principal fiber bundle Rn×k

∗ −→ Sym+(n, k). We precisely an-
swer these questions in Section 9.4 (full-rank matrices) and Section 9.5 (low-rank matrices).
Furthermore, we contribute in Section 9.6 the minimizing geodesics for the Bures-Wasserstein
distance between different strata and the condition of uniqueness of the geodesic between two
points.

9.4 Geodesics of the Bures-Wasserstein metric on Sym+(n)
In this section, we give complements and new results on the Bures-Wasserstein geodesics on
SPD matrices Sym+(n). The quotient structure is well known, as well as the exponential
map [Malagò et al., 2018] and the injectivity radius [Massart and Absil, 2020]. The definition
interval of the geodesic was implicitly described in [Malagò et al., 2018] as the connected
component of 0 in a subset or R so we give it explicitly here. It was proved in [Bhatia et al.,
2019] that there exists a preimage which is a logarithm. We prove the uniqueness of the
preimage and the logarithm based on a result of [Massart and Absil, 2020] on Sym+(n, k)
applied for k = n. Moreover, we contribute the cut time, thus the injectivity domain. The
proof is deferred to Section 11.8. After Theorem 9.22 on Bures-Wasserstein geodesics, we
show on an example that we already know some geodesics between degenerate matrices that
cross the main stratum of SPD matrices.

Definition 9.21 (Bures-Wasserstein metric on Sym+(n)) [Malagò et al., 2018, Bhatia et al.,
2019, van Oostrum, 2020] The Bures-Wasserstein metric on Sym+(n) is the quotient Rie-
mannian metric induced by the submersion π : X ∈ GL(n) 7−→ XX> ∈ Sym+(n) and the
Frobenius metric on GL(n). Let X ∈ GL(n) such that XX> = Σ and let V ∈ TΣSym+(n) ≡
Sym(n). The quotient operations are:

1. (Vertical space) VX = ker dXπ = X Skew(n),
2. (Horizontal space) HX = Sym(n)X,
3. (Horizontal lift) V #

X = SΣ(V )X ∈ HX ,
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4. (Bures-Wasserstein metric) gBW (n)
Σ (V, V ) = tr(SΣ(V )ΣSΣ(V )),

where SΣ(V ) ∈ Sym(n) is the unique solution of the Sylvester equation ΣSΣ(V ) +SΣ(V )Σ =
V .

Theorem 9.22 (Bures-Wasserstein geodesics on Sym+(n)) Let Σ ∈ Sym+(n).

1. (Exponential map) [Malagò et al., 2018] For all V ∈ TΣSym+(n) ≡ Sym(n), the geodesic
from Σ with initial speed V writes γ(Σ,V )(t) = Σ + tV + t2SΣ(V )ΣSΣ(V ) ∈ Sym+(n).

2. (Definition interval) Let λmax = max sp(SΣ(V )) and λmin = min sp(SΣ(V )). The defi-
nition interval of the geodesic γ(Σ,V ) is the interval IΣ,V defined by:

· IΣ,V = (− 1
λmax

,− 1
λmin

) if λmin < 0 < λmax,

· IΣ,V = (−∞,− 1
λmin

) if λmin < 0 and λmax 6 0,

· IΣ,V = (− 1
λmax

,+∞) if λmin > 0 and λmax > 0,
· IΣ,V = R if λmin = λmax = 0 (which only happens for V = 0).

3. (Cut time) The cut time is tcut(Σ, V ) = − 1
λmin

if λmin < 0 or +∞ otherwise. The
geodesic γ(Σ,V ) : IΣ,V −→M is even minimizing on IΣ,V .

4. (Logarithm map) For all Λ ∈ Sym+(n), there exists a unique preimage V ∈ PreΣ(Λ).
It writes V = 2 sym(Σ1/2(Σ1/2ΛΣ1/2)1/2Σ−1/2)−2Σ, where we denote sym(M) = 1

2(M+
M>). The geodesic joining Σ to Λ writes:

γΣ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t) sym(Σ1/2(Σ1/2ΛΣ1/2)1/2Σ−1/2). (9.3)

Moreover, it is a logarithm: V ∈ Logx(y). Thus the logarithm map is defined on
UΣ = Sym+(n) and it writes:

LogΣ :
ß

Sym+(n) −→ TΣSym+(n)
Λ 7−→ 2sym(Σ1/2(Σ1/2ΛΣ1/2)1/2Σ−1/2)− 2Σ . (9.4)

See the proof of Theorem 9.22 in Section 11.8.

Remark 9.23 The minimizing geodesic γ(Σ,V ) : IΣ,V −→ Sym+(n) clearly has a limit at the
finite boundaries of IΣ,V . When IΣ,V is bounded, we can define Σ0 = limt→−1/λmax γ(Σ,V )(t),
Σ1 = limt→−1/λmin γ(Σ,V )(t) and the extended curve γ : ĪΣ,V = [−1/λmax,−1/λmin] by γ(t) =
γ(Σ,V )(t) for t ∈ IΣ,V , γ(−1/λmax) = Σ0 and γ(−1/λmin) = Σ1. The curve γ is a mini-
mizing geodesic on IΣ,V . Thus, by Lemma 9.3 (continuity of the length), the curve γ is
a minimizing geodesic on [−1/λmax,−1/λmin]. So we already have examples of minimiz-
ing geodesics between two degenerate matrices which pass through the principal stratum
Sym+(n). For instance, we have Σ =

Å
4 0
0 0

ã
and Λ =

Å
0 0
0 4

ã
which are linked by the

geodesic ExpI2(tV ) =
Å

(1 + t)2 0
0 (1− t)2

ã
for t ∈ (−1, 1) with V =

Å
2 0
0 −2

ã
.
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Moreover, from the viewpoint of the Levi-Civita connection, the curve t 7−→ ExpΣ(tV )
is a geodesic (self-parallel curve) on each subinterval of the set JΣ,V = {t ∈ R|ExpΣ(tV ) ∈
Sym+(n)} = R\{t ∈ R| − 1

t
∈ sp(SΣ(V ))}, which is R without a maximum of n points. The-

orem 9.22 actually states that every geodesic is minimizing on its domain. Hence, the mini-
mizing geodesic γ(Σ,V ) : IΣ,V −→ Sym+(n) naturally extends to a curve γ(Σ,V ) : R −→ Cov(n)
which is a minimizing geodesic on the segments delimited by two consecutive values in R\JΣ,V .

9.5 Geodesics of the Bures-Wasserstein metric on Sym+(n, k)
In this section, we give complements and new results on the Bures-Wasserstein geodesics on
the manifold of PSD matrices of fixed rank k, Sym+(n, k). They were mainly studied in
[Massart and Absil, 2020]. The formulae of the exponential map and its definition domain
were kept implicit because they were formulated in function of horizontal vectors in the
total space Rn×k

∗ of matrices of full-rank k. We compute the horizontal lift, which allows
us to express the Bures-Wasserstein metric, the exponential map and the definition interval
directly in function of the tangent vector. Moreover, we characterize the preimages of the
exponential map. In [Massart and Absil, 2020], they characterize the logarithms by solving
the underlying matrix equation and then imposing the condition of minimizing norm. Based
on their resolution of the matrix equation, we impose the weaker condition that the preimage
v ∈ Prex(y) must satisfy 1 ∈ Ix,v; otherwise, the geodesic γx,v : Ix,v −→ M could leave the
space before reaching y. This is how we characterize all the preimages. We also give an explicit
formula of the minimizing geodesic joining two points when it is unique and we specify the
number of minimizing geodesics between two points otherwise. Finally, we compute the
injectivity domain that was kept implicit in [Massart and Absil, 2020]. After Theorem 9.26,
we precisely specify the novelty of our result with respect to the reference work [Massart
and Absil, 2020]. Then, we give examples to illustrate the possible cases for the number of
preimages and logarithms.

Definition 9.24 (Bures-Wasserstein metric on Sym+(n, k)) [Massart and Absil, 2020] The
Bures-Wasserstein metric on Sym+(n, k) is the quotient Riemannian metric induced by the
submersion π : X ∈ Rn×k

∗ 7−→ XX> ∈ Sym+(n, k) and the Frobenius metric on Rn×k. Let
X ∈ Rn×k

∗ such that XX> = Σ and let V ∈ TΣSym+(n, k). The vertical and horizontal
spaces are:

1. (Vertical space) VX = ker dXπ = X Skew(k),
2. (Horizontal space)HX = {X(X>X)−1F+X⊥K,F ∈ Sym(k), K ∈ Mat(n−k, k)} where
X⊥ ∈ Mat(n, n− k) has orthonormal columns (X>⊥X⊥ = In−k) that are orthogonal to
the columns of X (X>X⊥ = 0).

Theorem 9.25 (Horizontal lift, tangent space, metric) Let Σ ∈ Sym+(n, k), let X ∈ Rn×k
∗

such that Σ = XX> ∈ Sym+(n, k) and let V ∈ TΣSym+(n, k). Let Σ = UDU> be a
singular value decomposition with D ∈ Diag+(k) and U ∈ St(n, k). We denote S = SΣ,V =
USD(U>V U)U>, where SA(B) denotes the unique solution Z of the Sylvester equation AZ+
ZA = B. Note that SΣ,V and (In − UU>) are independent from the chosen decomposition.

1. (Tangent space) TΣSym+(n, k) = {V ∈ Sym(n)|X>⊥V X⊥ = 0},
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2. (Horizontal lift) V #
X = X(X>X)−1SX>X(X>V X)+(In −X(X>X)−1X>)︸ ︷︷ ︸

X⊥X
>
⊥

V X(X>X)−1,

3. (Bures-Wasserstein metric) gBW (n,k)
Σ (V, V ) = tr(SΣ,V ΣSΣ,V + V Σ†V (In − UU>)).

See the proof of Theorem 9.25 in Section 11.8.

Theorem 9.26 (Bures-Wasserstein geodesics on Sym+(n, k)) Let Σ,Λ ∈ Sym+(n, k) and
X, Y ∈ Rn×k

∗ such that XX> = Σ and Y Y > = Λ. Let U ∈ St(n, k) and D ∈ Diag+(k) such
that Σ = UDU>.

1. (Exponential map) For all V ∈ TΣSym+(n, k), the geodesic from Σ with initial speed
V is γ(Σ,V ) : t ∈ IΣ,V 7−→ Σ + tV + t2WΣ,V , where WΣ,V = SΣ,V ΣSΣ,V + SΣ,V V (In −
UU>)+(In−UU>)V SΣ,V +(In−UU>)V Σ+V (In−UU>) and SΣ,V = USD(U>V U)U>.

2. (Definition interval) Let F 0
X,V = SX>X((X>X)−1/2X>V X(X>X)−1/2) and M0

X,V =
(X>X)−3/2X>V (In − X(X>X)−1X>)V X(X>X)−3/2 ∈ Sym(n). Let EΣ,V = {λ ∈
sp(F 0

X,V )| ker(λIk − F 0
X,V ) ∩ ker(M0

X,V ) 6= {0}} ⊆ sp(F 0
X,V ) = sp(SΣ,V ). If EΣ,V is

non-empty, then let λ+ = max EΣ,V and λ− = min EΣ,V . The definition interval of the
geodesic γ(Σ,V ) is the interval IΣ,V defined by:

· IΣ,V = (− 1
λ+
,− 1

λ−
) if λ− < 0 < λ+,

· IΣ,V = (−∞,− 1
λ−

) if λ− < 0 and λ+ 6 0,

· IΣ,V = (− 1
λ+
,+∞) if λ− > 0 and λ+ > 0,

· IΣ,V = R if EΣ,V is empty.

Applying this toX = UD1/2 without loss of generality, F 0
X,V = SD(U>V U) andM0

X,V =
D−1U>V (In − UU>)V UD−1 which is a bit more tractable to compute EΣ,V .

3. (Cut time) Let λmax = max sp(F 0
X,V ) and λmin = min sp(F 0

X,V ). Note that if EΣ,V 6= ∅,
then we have (λ−, λ+) ⊆ (λmin, λmax). The cut time is tcut(Σ, V ) = − 1

λmin
if λmin < 0

or +∞ otherwise. Symmetrically, we have tcut(Σ,−V ) = 1
λmax

if λmax > 0 or +∞
otherwise.

4. (Preimages) We define the indexing set IPreX,Y by:

IPreX,Y = {R ∈ O(n)|H := X>Y R> ∈ Sym(n) and
∀µ < 0, ker(µIk − (X>X)−1/2H(X>X)−1/2)

∩ ker(µ2Ik − (X>X)−1/2RY >Y R>(X>X)−1/2) = {0}}.

For R ∈ IPreX,Y , we denote H = HX,Y,R = X>Y R> so that X>Y = HR.
Then, the map R ∈ IPreX,Y 7−→ V = 2 sym(XRY >)− 2Σ ∈ PreΣ(Λ) is a bijection whose
inverse is V ∈ PreΣ(Λ) 7−→ R = (Y >Y )−1Y >(X + V #

X ) ∈ IPreX,Y .
The geodesic joining Σ to Λ parametrized by R ∈ IPreX,Y writes:

∀t ∈ [0, 1], γRΣ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t)sym(XRY >). (9.5)
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5. (Logarithms) Let ILogX,Y = {R ∈ O(n)|HX,Y,R = X>Y R> ∈ Cov(n)} = {R ∈ O(n)|HX,Y,R =
(X>ΛX)1/2} = {R ∈ O(n)|X>Y = (X>ΛX)1/2R} ⊆ IPreX,Y .

Then, the map R ∈ ILogX,Y 7−→ V = 2 sym(XRY >)− 2Σ ∈ LogΣ(Λ) is a bijection whose
inverse is V ∈ LogΣ(Λ) 7−→ R = (Y >Y )−1Y >(X + V #

X ) ∈ ILogX,Y .

6. (Logarithm map) Let r = rk(ΣΛ) = rk(X>Y ) = rk(H).

(a) If r = k, then there exists a unique logarithm of Λ from Σ. In this case, the
minimizing geodesic joining Σ to Λ writes:

γΣ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t)sym(Σ1/2((Σ1/2ΛΣ1/2)1/2)†Σ1/2Λ). (9.6)

(b) If r = k − 1, then there exist exactly two logarithms of Λ from Σ.
(c) If r < k − 1, then there is an infinity of logarithms of Λ from Σ.

Therefore, the logarithm map is defined on UΣ = {Λ ∈ Sym+(n, k)|rk(ΣΛ) = k} and it
writes LogΣ : Λ ∈ UΣ 7−→ 2 sym(Σ1/2((Σ1/2ΛΣ1/2)1/2)†Σ1/2Λ)− 2Σ ∈ TΣSym+(n, k).

See the proof of Theorem 9.26 in Section 11.8.

Remark 9.27 Let us clarify our contributions in Theorem 9.26 with respect to the reference
paper [Massart and Absil, 2020].

1. (Exponential map) The formula is new. Only the exponential map of a horizontal
vector in the total space Rn×k

∗ was given in [Massart and Absil, 2020].
2. (Definition interval) The definition interval was formulated in the total space Rn×k

∗ in
[Massart and Absil, 2020]. The novelty here is to formulate it in function of V thanks
to the horizontal lift.

3. (Cut time) This is new.
4. (Preimages) Note that IPreX,Y ⊆ ISolX,Y := {R ∈ O(n)|X>Y R> ∈ Sym(n)}. As shown in

[Massart and Absil, 2020], the set ISolX,Y indexes the solutions of the logarithm equation
ExpΣ(V ) = Λ. The characterization of IPreX,Y = {R ∈ O(n)|1 ∈ IΣ,V } (with V =
XRY >+Y R>X>−2Σ) is explicitly dismissed in [Massart and Absil, 2020]. The curve
“γR” with R ∈ ISolX,Y may hit the boundary before reaching Λ. Therefore, among these
candidate R’s such that X>Y R> ∈ Sym(n), we specify the set of R’s that really define
a geodesic from Σ to Λ in the manifold Sym+(n, k), based on the condition underlying
the definition interval.

5. (Logarithms) It was stated in [Massart and Absil, 2020] that if R leads to a logarithm
then H > 0, and that if H > 0, then R leads to a preimage which is additionally
a logarithm. However, it is not stated clearly that in this case, H has to be equal to
(X>ΛX)1/2. It is important for the next point though. The expression of the logarithms
is new, although very straightforward. It was not given in [Massart and Absil, 2020]
because they prefer to work in the total space Rn×k

∗ .
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6. (Logarithm map) It was stated that the logarithm is unique if and only if r = k in
[Massart and Absil, 2020]. However, it was not stated that there are exactly two
logarithms when r = k − 1 and that there is an infinity of logarithms when r < k − 1.
The expression of the minimizing geodesic when it is unique is also new.

In other words, we have a minor contribution on the reformulation in Sym+(n, k) of results
stated in the total space, and more important contributions on the injectivity domain (cut
time), the expression of the minimizing geodesic when it is unique and the clarification
between the three sets ILogX,Y ⊆ IPreX,Y ⊆ ISolX,Y := {R ∈ O(n)|X>Y R> ∈ Sym(n)}. We give
several examples below to illustrate the differences between these three sets.

Remark 9.28 The definitions of the sets EΣ,V and IPreΣ,V might seem intricate. It is difficult
to simplify them though. Nevertheless, the set EΣ,V is easy to determine numerically. Anal-
ogously, it is easy to determine numerically if a candidate R ∈ ISolX,Y given in [Massart and
Absil, 2020, Lemma 4.1] belongs to IPreX,Y .

Examples 9.29 Let us denote R−θ =
Å
− cos θ sin θ
sin θ cos θ

ã
∈ O(2)∩Sym(2) with det(R−θ ) = −1.

1. Let Σ =

Ñ
1 0 0
0 1 0
0 0 0

é
and Λ =

Ñ
4 0 0
0 4 0
0 0 0

é
= 4Σ in Sym+(3, 2) with r = 2. Then, let

X =

Ñ
1 0
0 1
0 0

é
and Y =

Ñ
2 0
0 2
0 0

é
. Then XX> = Σ, Y Y > = Λ and X>Y = 2I2. Thus

the candidate pairs for (H,R) are (2I2, I2), (−2I2,−I2) and (2R−θ , R−θ ). One can show
that:

(a) R = I2 leads to the unique minimizing geodesic γΣ→Λ(t) = (1 + t)2Σ ∈ Sym+(3, 2)
for t ∈ (−1,+∞) ⊃ [0, 1],

(b) there is no non-minimizing geodesic,
(c) R = −I2 or R = R−θ lead to curves that hit Sym+(3, 1) at t = 1

3 < 1, e.g. R = −I2
leads to the curve γ(t) = (1− 3t)2Σ ∈ Sym+(3, 2) only for t ∈ (−∞, 1

3).

2. Let Σ =

Ñ
1 0 0
0 1 0
0 0 0

é
and Λ =

Ñ
1 0 0
0 1 1
0 1 1

é
in Sym+(3, 2) with r = 2 again. Then, let

X =

Ñ
1 0
0 1
0 0

é
and Y =

Ñ
1 0
0 1
0 1

é
. Then X>Y = I2 so the candidate pairs for (H,R)

are (I2, I2), (−I2,−I2) and (R−θ , R−θ ). One can show that:

(a) R = I2 leads to the geodesic γI2Σ→Λ(t) =

Ñ
1 0 0
0 1 t
0 t t2

é
∈ Sym+(3, 2) for t ∈ R

which is minimizing on
î
− 2

1+
√

2 ,
2√
2−1

ó
⊃ [0, 1],
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(b) R = R−θ for θ 6= 0 lead to non-minimizing geodesics, e.g. R = R−π leads to the

curve γR
−
π

Σ→Λ(t) =

Ñ
1 0 0
0 (1− 2t)2 −t(1− 2t)
0 −t(1− 2t) t2

é
∈ Sym+(3, 2) for t ∈ [0, 1],

(c) R = R−0 and R = −I2 lead to curves that hit Sym+(3, 1) at t = 1
2 < 1, e.g. R = R−0

leads to the curve γ(t) =

Ñ
(1− 2t)2 0 0

0 1 t
0 t t2

é
∈ Sym+(3, 2) only for t ∈ (∞, 1

2).

3. Let Σ =

Ñ
1 0 0
0 1 0
0 0 0

é
and Λ =

Ñ
1 0 0
0 0 0
0 0 1

é
in Sym+(3, 2) with r = 1. Then, let

X =

Ñ
1 0
0 1
0 0

é
and Y =

Ñ
1 0
0 0
0 1

é
. Then X>Y =

Å
1 0
0 0

ã
so the candidate values of R

are Diag(±1,±1). One can show that:

(a) R0
± = Diag(1,±1) lead to two minimizing geodesics whose expressions are γR

0
±

Σ→Λ(t) =Ñ
1 0 0
0 (1− t)2 ±t(1− t)
0 ±t(1− t) t2

é
∈ Sym+(3, 2) for t ∈ [0, 1],

(b) there is no non-minimizing geodesic,

(c) R1
± = Diag(−1,±1) lead to curves that hit Sym+(3, 1) at t = 1

2 < 1, namely

γR
1
±(t) =

Ñ
(1− 2t)2 0 0

0 (1− t)2 ±t(1− t)
0 ±t(1− t) t2

é
∈ Sym+(3, 2) only for t ∈ (−∞, 1

2).

4. Let Σ =
Å
I2 0
0 0

ã
and Λ =

Å
0 0
0 I2

ã
in Sym+(4, 2) with r = 0. Then, let X =

Å
I2
0

ã
and Y =

Å
0
I2

ã
. Then X>Y = 0 so every R ∈ O(2) is a candidate. One can show that

any R ∈ O(2) leads to a minimizing geodesic γRΣ→Λ(t) =
Å

(1− t)2I2 t(1− t)R
t(1− t)R> t2I2

ã
∈

Sym+(4, 2) for t ∈ R.

In the two last sections, we studied the geodesics and the minimizing geodesics within
each stratum. In the next section, we turn to the study of the minimizing geodesic segments
in the Bures-Wasserstein metric space (Cov(n), dBW), that is between any two covariance
matrices of any rank.
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9.6 Minimizing geodesics of the Bures-Wasserstein dis-
tance on Cov(n)

In this section, we completely characterize the Bures-Wasserstein minimizing geodesic seg-
ments between any two covariance matrices. We show that they have constant rank on the
interior of the segment and we give an explicit expression. Moreover, we show that the
number of geodesics depends on the ranks of the extremities and we give this number in all
cases. More precisely, we show that minimizing geodesics between Σ and Λ ∈ Cov(n) are
parametrized by the closed unit ball of R(k−r)×(l−r) for the spectral norm, where k, l, r are the
respective ranks of Σ,Λ,ΣΛ. We also give the number of geodesics of minimal rank. Finally,
we show that there exists a canonical geodesic with an expression that does not depend on
the ranks of the extremities. This expression coincides with the formula in low rank when
the minimizing geodesic is unique and with the formula in full rank.

9.6.1 Characterization of minimizing geodesics
The following lemma states that the rank of a minimizing geodesic segment is constant on the
interior of the segment. Then, Theorem 9.31 characterizes the Bures-Wasserstein minimizing
geodesic segments.

Lemma 9.30 (Rank of minimizing curve) Let γ : [0, 1] −→ Cov(n) be a minimizing curve
from Σ to Λ. Then γ has constant rank p > max(rk(Σ), rk(Λ)) on (0, 1).

Proof. Let p = maxt∈[0,1] rk(γ(t)) and let t0 ∈ [0, 1] such that rk(t0) = p. By Lemma 9.18, for
all t ∈ (0, t0) ∪ (t0, 1), (Hrk(γ(t))) 6 Hrk(γ(t0)) so rk(γ(t)) > rk(γ(t0)) = p so rk(γ(t)) = p.

Theorem 9.31 (Bures-Wasserstein minimizing geodesic segments in Cov(n)) Let Σ,Λ ∈
Cov(n) with rk(Σ) = k and rk(Λ) = l. Let X, Y ∈ Rn×n such that XX> = Σ and Y Y > = Λ.
The two following statements are equivalent:

(i) the curve γ : [0, 1] −→ Cov(n) is a minimizing geodesic segment from Σ to Λ,

(ii) there exists R ∈ O(n) such that HX,Y,R := X>Y R> ∈ Cov(n) and for all t ∈ [0, 1],
γ(t) = γRΣ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t)sym(XRY >).

Moreover, HX,Y,R = (X>ΛX)1/2 and the minimizing geodesic γRΣ→Λ is of constant rank p >
max(k, l) on (0, 1).
See the proof of Theorem 9.31 in Section 11.8.

Remark 9.32 In the previous theorem, X and Y may be respectively taken as X = Σ1/2

and Y = Λ1/2.

9.6.2 Number of minimizing geodesics
In this section, we count the number of minimizing geodesic segments between two covariance
matrices. We start with an elementary lemma.



Chapter 9. Bures-Wasserstein stratified geometry 187

Lemma 9.33 (Elementary algebra) Let Σ,Λ ∈ Cov(n) with rk(Σ) = k and rk(Λ) = l. Let
r = rk(ΣΛ).

1. For all X, Y ∈ Mat(n) such that XX> = Σ and Y Y > = Λ, r = rk(X>Y ).
2. We have l − r 6 n− k.

See the proof of Lemma 9.33 in Section 11.8.

In the following theorem and especially in its proof, we need to distinguish cases where
matrices may have one or two null dimensions, i.e. belonging to Rn×0, R0×k or R0×0. Thus
we recall that these spaces are equal to the vector space {0}. Indeed, there is a unique linear
map from Rn to R0 or from R0 to Rk, which is the identically null map. The canonical basis of
R0 is empty and the corresponding matrix in the canonical bases is called the empty matrix.
It is practical to treat these spaces as non-trivial spaces to avoid writing particular cases. In
particular, St(n, 0) = Rn×0 and O(0) = GL(0) = Mat(0) = Diag(0) are sets of cardinal 1.

Theorem 9.34 (Number of Bures-Wasserstein minimizing geodesic segments in Cov(n))
Let Σ,Λ ∈ Cov(n) with rk(Σ) = k and rk(Λ) = l. We assume that k > l without loss of
generality. We denote r = rk(ΣΛ). We have l − r 6 n− k.

1. There exists a bijection between the set of minimizing geodesics from Σ to Λ and the
closed unit ball of R(k−r)×(l−r) for the spectral norm B̄S(0, 1) = {R0 ∈ R(k−r)×(l−r)| ‖R0‖S 6
1} = {R0 ∈ R(k−r)×(l−r)| 0 6 R>0 R0 6 Il−r}. More precisely, this bijection is given by:

γR0
Σ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t) sym(XrY

>
r +Xk−rR0Y

>
l−r), (9.7)

where X = (Xr Xk−r 0) ∈ Rn×n and Y = (Yr Yl−r 0) ∈ Rn×n are such that XX> = Σ,

Y Y > = Λ and X>Y = Diag(Dr, 0), and R =

Ñ
Ir 0 0
0 R0 ∗
0 ∗ ∗

é
∈ O(n), with Xr, Yr ∈

Rn×r, Xk−r ∈ Rn×(k−r), Yl−r ∈ Rn×(l−r), Dr ∈ Diag+(r), R0 ∈ B̄S(0, 1).
2. The minimizing geodesic is unique if and only if r = l. This includes the cases k = n.
3. There are infinitely many minimizing geodesics if and only if r < l.
4. The minimizing geodesics corresponding to the choices R0 ∈ St(k − r, l− r) (including

the empty matrix if r = l) have rank exactly k on [0, 1) (on [0, 1] if l = k). Note that
St(k− r, l− r) is included in the unit sphere SS(0, 1) = {R0 ∈ R(k−r)×(l−r)| ‖R0‖S = 1}.

5. The minimizing geodesic corresponding to the choice R0 = 0 (or the empty matrix if
r = l) writes for all t ∈ [0, 1]:

γ0
Σ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t) sym(Σ1/2((Σ1/2ΛΣ1/2)1/2)†Σ1/2Λ). (9.8)

If r = l, it has rank exactly k on [0, 1).

The number of minimizing geodesic segments in Sym+(n, k) and in Cov(n) is summarized in
Table 9.2 with n > k > l > r.
See the proof of Theorem 9.34 in Section 11.8.
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Σ ∈ Λ ∈ r = rk(ΣΛ) Number of minimizing geodesics
in Sym+(n, k) in Cov(n)

Sym+(n) Sym+(n) n 1 1
Sym+(n) Sym+(n, k) k 1 1

Sym+(n, k) Sym+(n, k)
k 1 1

k − 1 2 ∞
< k − 1 ∞ ∞

Sym+(n, k) Sym+(n, l) l 1 1
< l ∞ ∞

Table 9.2: Number of Bures-Wasserstein minimizing geodesic segments (n > k > l > r).

Remark 9.35 The canonical minimizing geodesic (Equation 9.8) is defined between any two
covariance matrices. This formula can always be used to interpolate between two covariance
matrices. In particular, we easily check that it reduces to the formula of the unique minimizing
geodesic between two SPD matrices (Equation 9.3). Moreover, Equation 9.8 is logically the
same as the formula of the minimizing geodesic in Sym+(n, k) when it is unique (Equation
9.6).

9.7 Conclusion
In this work, we have answered several open questions on geodesics of the Bures-Wasserstein
distance on covariance matrices. Beyond geodesics, a very important element of Riemannian
geometry is the curvature. We know that the space of covariance matrices with the Bures-
Wasserstein distance is an Aleksandrov space of non-negative curvature [Takatsu, 2011] and
we know the curvature tensor in each stratum [Takatsu, 2010, Takatsu, 2011, Massart et al.,
2019]. However, we lack a comprehensive and global approach of the curvature of the whole
metric space. In particular, what is the appropriate notion of curvature to use to go from a
stratum to another?

In the community of geometric statistics, most of the stratified spaces that were studied
from the viewpoint of geodesics or curvature are very singular (spiders, trees) or a bit complex
to start with (BHV space, Wald space) [Feragen and Nye, 2020]. Thus, the familiar example
of the Bures-Wasserstein Riemannian orbit space appears to be a good basis to generalize
concepts defined in Riemannian statistics. Indeed, after studying the geometry of these
non-Riemannian spaces, what statistical tools should we define on them to generalize the
Euclidean and Riemannian ones? This is probably the main question to investigate for the
future.

As a perspective for future works, we quickly introduce an ongoing work that is closely
related to the Bures-Wasserstein geometry of covariance matrices. The set of correlation
matrices, known as the elliptope, was mainly studied on the open stratum of full-rank cor-
relation matrices Cor+(n) = {C ∈ Sym+(n)|Diag(C) = In} [David and Gu, 2019, David,
2019, Nielsen and Sun, 2019, Thanwerdas and Pennec, 2021, Thanwerdas and Pennec, 2022c,
Archakov and Hansen, 2021, Thanwerdas, 2022]. The geometry of the whole elliptope
Cor(n) = {C ∈ Cov(n)|Diag(C) = In} was described topologically in [Kercheval, 2008]



Chapter 9. Bures-Wasserstein stratified geometry 189

as the quotient of square matrices with unit row length B(n) = {M = (X1 · · ·Xn)> ∈
Mat(n)|‖X1‖ = · · · = ‖Xn‖ = 1} ' (Sn−1)n by the orthogonal group O(n). Therefore, in
light of the work on the Bures-Wasserstein orbit space of covariance matrices, it is natural
to go beyond this topogical description and define a Riemannian orbit space structure on
the elliptope of correlation matrices of any rank Cor(n). We naturally call it the quotient-
polysphere structure.

Indeed, the sets of correlation matrices of fixed rank Cor+(n, k) for k > 0 are clearly the
isotropy strata of this orbit space, the principal stratum being the open elliptope Cor+(n).
(More precisely, the stratum Cor+(n, 1) is discrete and contains the 2n−1 vertices of the ellip-
tope so each vertex is itself an orbit stratum [Tropp, 2018].) The natural geometry on B(n)
is the product of spheres so the elliptope Cor(n) inherits the quotient-polysphere distance.
It reduces to the quotient-polysphere Riemannian metric on each stratum Cor+(n, k) =
(Sk−1)n/O(k) so the study can be conducted first on each stratum then globally, as for the
Bures-Wasserstein geometry. The computations remain to be done.
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Chapter 10

Conclusion and perspectives

10.1 Summary of contributions and beyond

In this thesis, we studied geometries of covariance and correlation matrices from different an-
gles. On SPD matrices, we formalized a dictionary of Riemannian metrics enriched with new
formulae and with a novel approach of classes based on the characterization of O(n)-invariant
metrics. In particular, we interpolated the noted Euclidean, log-Euclidean, power-Euclidean,
affine-invariant, power-affine and Bogoliubov-Kubo-Mori metrics by the two-parameter fam-
ily of Mixed-Power-Euclidean metrics. We enlightened the bridge between the wider family
of Mixed-Euclidean metrics and the (u, v)-divergences of information geometry and we com-
puted their curvature by generalizing the computation known for the BKM metric, that is
with u = Id and v = log. Besides O(n)-invariant metrics, we also characterized LT+(n)-
invariant Riemannian metrics as pullbacks of left-invariant metrics on the Lie group LT+(n)
via the Cholesky map. These Lie group metrics form a family of Riemannian metrics
parametrized by inner products on LT(n), that is by Sym+(n(n+1)

2 ). They belong to the
wider family of Diag+(n)-invariant metrics which descend to the open elliptope of full-rank
correlation matrices. This exploration of the space of Riemannian metrics on SPD matrices
with parametric and non-parametric subfamilies offers a new promising setting for choosing
a metric satisfying given requirements or for optimizing the metric.

We also followed this systematic approach on full-rank correlation matrices. Our work on
Lie group actions on SPD matrices allowed us to generalize the quotient-affine metric with
the family of quotient-Lie-Cholesky metrics. However, we observed that these are probably
not the best suited metrics on the open elliptope. Thus we grasped the relevant concepts
behind them such as the permutation action, the positive diagonal action on SPD matri-
ces, the reduced Cholesky map Θ : Cor+(n) −→ LT1(n), the cor-inverse involution or the
block-equicorrelation matrices. In view of proposing better metrics, the characterization of
permutation-invariant inner products on the tangent space Hol(n) = TInCor+(n) turned out
to be crucial for understanding the natural vector spaces to work with. This made us real-
ize the module isomorphism between Hol(n) and Row0(n), which supported the idea of an
analogous correspondence at the manifold level between Cor+(n) and Row+

1 (n). Thanks to
these suited tools, we built five families of Hadamard and flat metrics on full-rank correlation
matrices. In particular, the log-scaled metrics are flat, geodesically complete, permutation-
invariant and inverse-consistent, which are quite satisfying properties. All the geometric
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operations can be computed via the diffeomorphism onto the Euclidean space at hand, in
finite time for the ones based on the Cholesky map, in logarithmic time complexity for the
others. For the log-scaled metrics, we proposed a new algorithm to compute the scaling of
an SPD matrix which seems competitive with respect to existing ones.

These Riemannian metrics also lead to brand new approaches on SPD matrices since they
allow to decouple the scales of variables and the correlations between variables. These two
components of the data are completely mixed so far because of the use of O(n)-invariant
metrics such as the affine-invariant or the log-Euclidean metrics. These new product metrics
define new classes of means and midpoints with different monotonicity properties that could
be compared with existing ones [Bhatia and Holbrook, 2006, Mostajeran and Sepulchre,
2018, Mostajeran et al., 2020]. In practice, they offer the possibility for researchers to make
other types of assumptions than before on their data and experiments. For example, if
the scales of variables do not matter in first approximation, the data can be normalized
to correlation matrices. Then one could add a metric λg on the scales, that is on positive
diagonal matrices, with a parameter λ > 0 to tune in function of the relative importance of
scales to correlations.

Let us give the example of single-cell analysis in genetics. Cells are sampled from a tissue,
the goal is to identify types of different cells. For each cell i, the number of mRNA segments
belonging to the gene j is counted after a polymerase chain reaction (PCR). Thus the raw
data are count matrices of size ncells × ngenes. An independent normalization of each row
is usually applied to neglect effects related to the size of the cell: a big cell tends to have
more mRNA segments than a smaller cell. Thus the correlation matrix of the count matrix
could be a relevant representation of the data. However, the size of the cell may also contain
information on the type of cell. Therefore, one could assume that choosing a product metric
with a low coefficient on the diagonal part could better fit the application.

It is even possible to tune the metric g to give more or less importance to the scales of
some variables. For example, in brain-computer interfaces, we may assume that the scales
of the signals at the electrodes located in the brain region of the response to the stimulus
contain more information than elsewhere. Therefore, one would rather choose a metric on
diagonal matrices that is not invariant by permutations to take into account this asymmetry.
By analogy with [Guigui et al., 2021, Guigui, 2021], the product metrics could also initiate
new methods in the registration of covariance matrices with parallel transport by allowing
a step of normalization of the scales, especially when the scales significantly differ within a
dataset of covariance matrices.

On covariance matrices of any rank, we promoted the viewpoint of Riemannian orbit
spaces to compute all the minimizing geodesics of the Bures-Wasserstein geometry. It was
well known that covariance matrices form a quotient space, the strata had been described in
[Takatsu, 2011], the geometry had been studied on each stratum [Malagò et al., 2018, Bhatia
et al., 2019, Massart and Absil, 2020], and we finally brought a bigger picture with the charac-
terization of minimizing geodesics. This work departs from the current research on stratified
spaces for applications. Indeed, it is an example of a non-negatively curved metric stratified
space that is not a tree space or a graph space and for which the minimizing geodesics are
known in closed form. Besides these three major differences, the simple formulae of geodesics
supports the idea of using Riemannian orbit spaces when it is possible to get more structure
in the space. This class contains Kendall shape spaces, the space of correlation matrices
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stratified by the rank, the space of diagonal matrices stratified by eigenvalue multiplicity
and probably other examples. Moreover, Geodesic PCA [Huckemann et al., 2010] is defined
in this kind of spaces via generalized geodesics, which are simply projections of horizontal
geodesics. We note that the Bures-Wasserstein metric is more and more used in applica-
tions [Severn et al., 2019, Chewi et al., 2020, Kroshnin et al., 2021, Han et al., 2021] since
its geometric operations were derived. In this aspect, our formulae open new uses of the
Bures-Wasserstein distance in applications where covariance matrices may be either regular
or singular.

Riemannian orbit spaces could be a nice first class of stratified spaces to implement in
geomstats with generic geometric and statistical operations. Complete Riemannian orbit
spaces should inherit all the methods known in complete metric spaces and should be the
right class to generalize many statistical methods used in complete Riemannian (quotient)
manifolds. Although mainly ad hoc methods are currently used in stratified spaces such
as the BHV space or the QED space, it might be possible to adapt some of them to the
richer structure of Riemannian orbit spaces. Therefore, the Bures-Wasserstein geometry of
covariance matrices offers a new playground to test generic tools on orbit spaces and stratified
spaces.

During my PhD thesis, I also took part in the development of the geomstats package with
about 100 commits. I also had a less visible role in the reflection of the class architecture,
trying to mathematically categorize the types of spaces of interest with my colleague Nicolas
Guigui. Thanks to my bibliographic work on Riemannian metrics, especially on the affine-
invariant, the Bures-Wasserstein and the quotient-affine metrics, we had long discussions on
all sorts of quotient spaces and homogeneous spaces before he implemented the generic class
of (principal) fiber bundle. I personally left the code aside momentarily to allocate time for
the research of suitable structures on covariance and correlation matrices and to push the
computations as far as they could be. I can now implement all these tools in geomstats and
make them available for everyone.

10.2 Future works

10.2.1 Other geometries for the rank stratification
The first burning perspective to this work is probably the study of the Riemannian orbit
space of correlation matrices endowed with the quotient-polysphere structure that we briefly
described at the end of Chapter 9. Contrarily to the Bures-Wasserstein geometry, it has not
been described on each stratum so it is a very challenging problem.

It would also be nice to introduce families of stratified geometries on covariance and
correlation matrices to allow some flexibility. In this direction, generalized Bures-Wasserstein
metrics were recently introduced on SPD matrices [Han et al., 2021]. They are defined as
the quotient metrics of the O(n)-invariant metrics gGBW(S)

A (X,X) = tr(X>SX) for A ∈
GL(n) and X ∈ Mat(n), where S ∈ Sym+(n) is a parameter. The Bures-Wasserstein metric
corresponds to S = In. This metric turn out to be simply the pullback metric of the Bures-
Wasserstein metric by the diffeomorphism Σ ∈ Sym+(n) 7−→ S1/2ΣS1/2 ∈ Sym+(n). In other
words, it is a change of reference point. This construction could be extended to the whole

https://geomstats.github.io/
https://geomstats.github.io/
https://geomstats.github.io/
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space of covariance matrices to define the family of generalized Bures-Wasserstein stratified
geometries indexed by S ∈ Sym+(n). With S ∈ Diag+(n)\R+In, this introduces weights on
the features, thus the geometry is not anymore invariant under permutations. It could be
interesting if one wants to give more or less importance to some features for example.

Analogously, a generalized quotient-polysphere distance could be defined by introducing
weights in the product metric of spheres (Sn−1)n. Another question that we left aside is the
research of geometries for the manifolds Cor(n, k) of fixed-rank correlation matrices, inde-
pendently from other strata. It could be useful in applications where the rank is almost
surely equal to k. Note that contrarily to the full-rank case, the manifold Cor(n, k) is not
the quotient of Sym+(n, k) by positive diagonal matrices. Indeed, singular covariance ma-
trices include covariance matrices with zero variance, which are excluded from Cor(n, k).
We suspect that several quotient geometries on Sym+(n, k) = M/G may pass to Cor(n, k)
not by simple quotient but by an operation of type (Diag+(n)\M)/G, that is removing the
scales before quotienting by G. That is exactly the case for the quotient-polysphere struc-
ture: the Bures-Wasserstein geometry on covariance matrices is not invariant under posi-
tive diagonal matrices so instead of defining something like Cor(n) = Diag+(n)\Cov(n) =
Diag+(n)\(Mat(n)/O(n)), the quotient-polysphere is defined by Cor(n) = (Sn−1)n/O(n) =
(Diag+(n)\Mat(n))/O(n).

Covariance and correlation matrices are also embedding spaces for spaces of trees or graphs
such as the Laplacian matrices [Ginestet et al., 2017] or the Wald space [Garba et al., 2021],
which are themselves stratified spaces. It could be interesting to study the geometry induced
by the Bures-Wasserstein geometry of these spaces. For example, a condition satisfied by
Laplacian matrices is that the row sums are null. We notice that this condition is preserved
all along a minimizing geodesic if it is satisfied by the end points. We could extend the notion
of totally geodesic submanifold to metric spaces and study if these spaces are totally geodesic
subspaces of covariance matrices or correlation matrices.

10.2.2 Geometries of matrices of any size and any rank
Distances between Grassmannians and between SPD matrices of different dimensions were
proposed in [Ye and Lim, 2016, Lim et al., 2019]. For two SPD matrices Σ ∈ Sym+(n)
and Λ ∈ Sym+(k) with k 6 n represented as ellipsoids EΣ and EΛ, the general methodology
consists in finding the ellipsoid EΣ0 ⊆ EΣ of dimension k which is the closest to EΛ for a given
distance d in Sym+(k). The distance between Σ and Λ is defined as the distance d(Λ,Σ0)
in Sym+(k). For Grassmannians, it consists in aligning vector spaces in a similar way. This
method seems quite general, it could probably be applied to PSD matrices represented as
ellipsoids for SPD matrices and ellipsoidal cylinders for singular matrices, as well as for
correlation matrices. This would provide distances between covariance matrices of different
dimensions and different ranks. If the dimension is fixed, it could be interesting to study
the geometry of such defined distances on the spaces of covariance matrices and correlation
matrices.

This raises the problem of the geometry of spaces of matrices of different dimensions.
Beyond the distance, is it possible to glue the manifolds together in a stratified way? Could
they be seen as orbit spaces? These challenging theoretical questions may meet practical
needs in graph theory for example, were it is difficult to compare graphs with a different
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number of nodes. These graphs are often represented by adjacency or Laplacian matrices so
adding an isolated node corresponds to add zeros in the matrix, which artificially introduces
singularities. This also obliges to fix the number of nodes beforehand, which is a strong
constraint in applications where nodes appear and disappear.

10.2.3 Eigenvalue multiplicity and block-wise transformations

The stratification of SPD matrices by eigenvalue multiplicity was investigated in [Groisser
et al., 2017]. To understand eigenvalue multiplicity, it may be easier to consider the simpler
stratified space of positive diagonal matrices. It is the orbit space of SPD matrices by the
congruence action of the orthogonal group. This framework can probably be extended to
covariance matrices of any rank by allowing null eigenvalues. This would create a framework
where both multiple eigenvalues and singular matrices are allowed.

Another direction to investigate could be the invariance under the action of block-wise
orthogonal transformations or block-wise permutations. This could help identify groups
of variables that must be equally treated within groups but potentially not across different
groups. This is related to eigenvalue multiplicity since block-orthogonal matrices are precisely
the stabilizers of diagonal matrices with repeated (non-decreasingly ordered) eigenvalues.
This is also related to the study of flag manifolds, which are quotients of the orthogonal
group by a block-orthogonal group [Monk, 1959, Alekseevsky, 1997] and which generalize the
Grassmannians. Moreover, thanks to Chapter 3, we have all the necessary tools to determine
all block-permutation-invariant inner products on symmetric matrices so this could help
define suitable Riemannian metrics to handle this kind of invariance.

10.2.4 Applications

One of the most exciting challenges is to apply these new tools on covariance and correlation
matrices in the domains we identified: brain-computer interfaces, brain connectivity, signal
processing, genomics, shapes of proteins, finance, etc. Although the affine-invariant and the
log-Euclidean metrics were shown to outperform the results with respect to the Euclidean
metric in many contexts, there are still many unsolved issues with this kind of data. While
discussing with researchers from these domains, the three problems we heard the most were
the fact that the rank might be deficient, the fact that the rank might be non-constant within
a dataset and the lack of tools for correlation matrices. Therefore, the tools we propose will
at least allow to do new operations on the data. Note that many of the new geometries
defined in this thesis could probably be extended to complex matrices, which opens the way
to other applications in complex signal processing for instance.

Furthermore, applying our metrics to these problems will allow us to test our assumptions
and to compare the results obtained with different metrics. There are many simple tests to
do on synthetic data of full-rank correlation matrices such as computing means, principal
components and distances to do clustering. For example in BCI, it is frequent to classify
mental tasks by comparing distances to reference points. Then, the interactions with re-
searchers of these domains will help us get other assumptions on the data and understand at
which step of the workflow the geometry may intervene. These are appealing perspectives to
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close the loop initiated in the introduction and reproduced on Figure 10.1.

Theoretical considerations −→ Research −→ Results
Topology Computations Classification

Group actions Characterization
Structure Stability, regularity
Functions Invariance, symmetry
↑ Structure

Assumptions from applications Closed-form formulae
Invariances (geodesics, parallel transport,
Symmetries connection, curvature)
Singularities Tests on Algorithms

Independent variables ←− applications ←− Implementation

Figure 10.1: Future works: tests on applications.

To conclude, the concepts and geometric tools introduced in this thesis could be the basis
of many future developments to tackle challenging theoretical and practical problems.
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Chapter 11

Proofs

11.1 Proofs of Chapter 2

11.1.1 Proof of Theorem 2.7
Theorem 2.7 (No continuous map of eigenvectors on Sym 6=(n)) Let n > 2. There exists no
continuous map vec : Sym 6=(n) −→ O(n) such that for all Σ ∈ Sym 6=(n), vec(Σ)val(Σ)vec(Σ)> =
Σ.

Proof of Theorem 2.7 (No continuous map of eigenvectors on Sym 6=(n)). It is well known that
there is no continuous map of eigenvectors on the whole vector space of symmetric ma-
trices Sym(n). Indeed, if Σ(t) = t

Å
−1 0
0 1

ã
= t I2

Å
−1 0
0 1

ã
I2 and Λ(t) = t

Å
0 1
1 0

ã
=

t
2

Å
1 1
−1 1

ãÅ
−1 0
0 1

ãÅ
1 −1
1 1

ã
, then vec(Σ(t)) = ε where ε = Diag(±1,±1) and vec(Λ(t)) =

√
2

2

Å
1 1
−1 1

ã
ε′ where ε′ = Diag(±1,±1). If the map vec were continuous, then vec(0) =

limt→0 vec(Σ(t)) = ε and vec(0) = limt→0 vec(Λ(t)) =
√

2
2

Å
1 1
−1 1

ã
ε′, which is a contradic-

tion. In other words, one can reach a symmetric matrix with repeated eigenvalues (here 0)
from different bases in the eigenspace corresponding to the repeated eigenvalue.

Removing the matrices with repeated eigenvalues is not sufficient because one can still
turn around the axis RI2. That is what we prove now. Assume there exists a continuous
map of eigenvectors vec : Sym 6=(n) −→ O(n). Let D = Diag(−1, 1) ∈ Diag(2), P (t) =Å

cos(πt) sin(πt)
− sin(πt) cos(πt)

ã
∈ O(2) and Σ(t) = P (t)DP (t)> ∈ Sym 6=(n). Then P (0) = I2, P (1) =

−I2 and Σ(0) = Σ(1) = D. We define the continuous maps Q : t ∈ R 7−→ vec(Σ(t)) ∈
O(2) and R : t ∈ R 7−→ P (t)Q(0) ∈ O(2). Note that Q(0) = Q(1) = R(0) = −R(1) ∈
Diag(±1,±1) and Σ(t) = Q(t)DQ(t)> = R(t)DR(t)> for all t ∈ [0, 1]. Thanks to Lemma
2.6, we will build a sequence 0 = t0 < ... < tN 6 tN+1 = 1 and show by recurrence that
Q(tk) = R(tk) for all k ∈ {0, ..., N + 1}. Thus we will show that Q(1) = R(1) which will be
a contradiction.

By the Heine theorem applied to Q on [0, 1], let δ ∈ (0, 1
4) such that if t, t′ ∈ [0, 1]

satisfy |t − t′| < 2δ, then ‖Q(t) − Q(t′)‖ <
√

2. We denote tk = kδ for k ∈ {0, ..., N}
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where N =
⌊1
δ

⌋
and tN+1 = 1. Since N 6 1

δ
< N + 1, we have tN 6 1 < tN + δ so 0 6

tN+1 − tN < δ. Assume that k ∈ {0, ..., N} is such that Q and R coincide on t0, ..., tk. Since
Q(tk+1)DQ(tk+1)> = R(tk+1)DR(tk+1)> and D has distinct eigenvalues, we have Q(tk+1) =
R(tk+1)ε with ε ∈ Diag(±1,±1). Let us show that ε = I2. Since |tk+1 − tk| 6 δ < 2δ,
we have ‖Q(tk+1) − Q(tk)‖ <

√
2 so by Lemma 2.6, Diag(Q(tk)>Q(tk+1)) > 0. We also

have Diag(R(tk)>R(tk+1)) = Q(0)Diag(P (tk)>P (tk+1))Q(0) = cos(π(tk+1 − tk))I2 > 0 since
|tk+1 − tk| < 1

2 . Since Diag(Q(tk)>Q(tk+1)) = Diag(R(tk)>R(tk+1))ε, it is only possible if
ε = I2 so Q(tk+1) = R(tk+1). By recurrence, since R(0) = Q(0), we have R(tN+1) = Q(tN+1),
i.e. R(1) = Q(1). This is a contradiction.

11.2 Proofs of Chapter 3
In this section, we prove the general form of invariant inner products given in Chapter 3.

11.2.1 Proof of Example 3.5
Example 3.5 (O(I)-invariant inner products on Skew(n)) The irreducible decomposition of
Skew(n) with respect to the congruence action of O(I) is Skew(n) = ⊕

16i6p
ki>2

Skewn(ki) ⊕⊕
16i<j6p Skewn(ki, kj). The decomposition is orthogonal for the Frobenius inner product.

The O(I)-invariant inner products on Skew(n) are given for all X ∈ Skew(n) by:

ϕ(X,X) =
∑

16i6p
ki>2

αii‖X ii‖2 +
∑

16i<j6p
αij‖X ij‖2,

where αij > 0 for all 1 6 i 6 j 6 p.

Proof of Example 3.5: O(I)-invariant inner products on Skew(n).

Direct sum The orthogonal direct sum is the sum of blocks and the orthogonal pro-
jections are the canonical projections. When ki = 1, Skewn(ki) = {0} so these spaces are
removed from the direct sum.

Irreducibility By block matrix multiplication, the terms are clearly stable by O(I).
Moreover, we already showed that Skew(n) is O(n)-irreducible in the previous section for
n > 2. Hence, for ki > 2, Skewn(ki) is clearly irreducible with respect to the group On(ki).
Since it is a subgroup of O(I) and since Skewn(ki) is stable under O(I), Skewn(ki) is O(I)-
irreducible.

Moreover, we can show that Mat(k, l) is O(k)×O(l)-irreducible for the action ((U, V ), X) ∈
(O(k) × O(l)) ×Mat(k, l) 7−→ UXV > and this will analogously prove that Skewn(ki, kj) '
Mat(ki, kj) is On(ki) × On(kj)-irreducible, hence O(I)-irreducible. Indeed, if k 6 l (with-
out loss of generality), then by singular value decomposition, for all X ∈ Mat(k, l), there
exists U, V ∈ O(k) × O(l) such that UXV > = (D 0) with D ∈ Diag(k). If X 6= 0, then
there exists i ∈ {1, ..., k} such that di 6= 0, for example i = 1. Hence, applying the action of
(Ik, diag(−1, 1, ..., 1)) ∈ O(k)×O(l), we getD′ = diag(−d1, d2, ..., dn). Then E11 = 1

di
(D−D′)

and all the matrices eie>j of the canonical basis can be obtained by permuting the lines and
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columns by (P(1,i), P(1,j)). So from any X ∈ Mat(k, l)\{0}, we retrieve Mat(k, l) so Mat(k, l)
is O(k)×O(l)-irreducible.

Isomorphic modules The group clearly acts differently on each block so the irreducible
modules of the decomposition are not isomorphic.

General form Therefore, we are again in the simple case where an invariant inner
product is the positive weighted sum of the restrictions of the Frobenius inner product to
each irreducible submodule in the decomposition.

11.2.2 Proof of Example 3.6
Example 3.6 (O(I)-invariant inner products on Sym(n)) The irreducible decomposition
of Sym(n) with respect to the congruence action of O(I) is Sym(n) = ⊕p

i=1 span(I iin ) ⊕⊕
16i6p
ki>2

Sym0
n(ki)⊕

⊕
16i<j6p Symn(ki, kj). The decomposition is orthogonal for the Frobenius

inner product and V . The O(I)-invariant inner products on Sym(n) are given for all X ∈
Sym(n) by:

ϕ(X,X) =
∑

16i,j6p
Sij

tr(X ii)tr(Xjj)√
kikj

+
∑

16i6p
ki>2

αii

∥∥∥∥∥X ii − tr(X ii)
ki

I iin

∥∥∥∥∥
2

+
∑

16i<j6p
αij‖X ij‖2,

where S ∈ Sym+(p) and αij > 0 for all 1 6 i 6 j 6 p.

Proof of Example 3.6: O(I)-invariant inner products on Sym(n).

Direct sum The orthogonal direct sum is the sum of blocks, refined on the diagonal
blocks with the O(ki)-irreducible decomposition on Symn(ki) ' Sym(ki), i.e. the trace part
span(I iin ) and the traceless part Sym0

n(ki). When ki = 1, Sym0
n(ki) = {0} so these spaces are

removed from the direct sum.

Irreducibility The terms of the direct sum are stable. The terms span(I iin ) and Sym0
n(ki)

are O(I)-irreducible because they are On(ki)-irreducible. The modules Symn(ki, kj) and
Skewn(ki, kj) are isomorphic as O(ki)×O(kj)-modules to Mat(ki, kj): it suffices to keep the
Upper Triangular (UT) part and take the opposite of the Lower Triangular (LT) part of
X ∈ Symn(ki, kj) to get UT(X)−LT(X) ∈ Skewn(ki, kj). We just proved that Skewn(ki, kj)
if O(I)-irreducible, hence so does Symn(ki, kj).

Isomorphic modules The main difference with the previous examples is that the spaces
span(I iin ) are all isomorphic as modules. Indeed, ψi : λ√

ki
I iin ∈ span(I iin ) 7−→ λ ∈ R for

i ∈ {1, ..., p} are clearly module isomorphisms with respect to O(I), where O(I) trivially acts
on R by (R, λ) ∈ O(I) × R 7−→ λ ∈ R. They are isometries since tr

(Ä
λ√
ki
I iin
ä2)

= λ2. The
other terms of the irreducible decomposition are clearly not isomorphic as modules because
the action of O(I) differs on each block. If there were an off-diagonal block of dimension 1,
it couldn’t be isomorphic as a module to span(I iin ) since it can be changed into its opposite
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by an appropriate element of O(I).

General form Therefore, according to Theorem 3.4, the O(I)-invariant inner products
on Sym(n) are given for all X ∈ Sym(n) by:

ϕ(X,X) =
∑

16i6p
ki>2

αii

∥∥∥∥∥X ii − tr(X ii)
ki

I iin

∥∥∥∥∥
2

+
∑

16i<j6p
αij‖X ij‖2

+
∑

16i,j6p
Sijψi

Åtr(X ii)
ki

I iin

ã
︸ ︷︷ ︸

tr(Xii)√
ki

ψj

Åtr(Xjj)
kj

Ijjn

ã
︸ ︷︷ ︸

tr(Xjj)√
kj

, (11.1)

where αij > 0 for 1 6 i 6 j 6 p and S = (Sij)16i6j6p ∈ Sym+(p), as expected.

11.2.3 Proof of Example 3.8
Example 3.8 (S(n)-invariant inner products on Hol(n)) The irreducible decomposition
of Hol(n) with respect to the congruence action of S(n), i.e. of permutation matrices, is
Hol(n) = kerφ1

⊥
⊕ imψ2

⊥
⊕ imψ3 where:

1. φ1 : X ∈ Hol(n) 7−→ X1 ∈ Rn,
2. ψ2 : µ ∈ Rn

0 7−→ 1
n−2(µ1> + 1µ> − 2diag(µ)) ∈ Hol(n),

3. ψ3 : x ∈ R 7−→ x
n(n−1)(11

> − In) ∈ Hol(n),

with φ1 surjective, ψ2 and ψ3 injective. The corresponding orthogonal projections are:

· p3 : X ∈ Hol(n) 7−→ X3 = ψ3(sum(X)) ∈ imψ3,
· p2 : X ∈ Hol(n) 7−→ X2 = ψ2((X −X3)1) ∈ imψ2,
· p1 : X ∈ Hol(n) 7−→ X1 = X −X2 −X3 ∈ kerφ1.

The S(n)-invariant inner products on Hol(n) are given for all X ∈ Hol(n) by:

ϕ(X,X) = α1tr(X2
1 ) + α2tr(X2

2 ) + α3tr(X2
3 )

= α tr(X2) + β sum(X2) + γ sum(X)2,

where α1 = α > 0, α2 = α + n−2
2 β and α3 = α + (n− 1)(β + nγ) > 0.

Proof of Example 3.8: S(n)-invariant inner products on Hol(n), n > 3.

Direct sum Here, the decomposition and the projections are not trivial so let us check
all the statements made above. Indeed, ψ3 is clearly injective and for all µ ∈ Rn, with µ0 =
µ− sum(µ)

n
1 ∈ Rn

0 , we have ψ2(µ0)1 = µ0 and [ψ2(µ0)+ψ3(sum(µ))]1 = µ, which proves that ψ2
is injective and ψ1 is surjective. By definition of X3, 1>(X−X3)1 = sum(X)− sum(X3) = 0
so (X−X3)1 ∈ Rn

0 and p2 is well defined. Then X1 = (X−X3)1−ψ2((X−X3)1) = 0 so p1
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is well defined and Hol(n) = kerφ1+imψ2+imψ3. Since dim kerφ1+dim imψ2+dim imψ3 =
(dim Hol(n) − n) + (n − 1) + 1 = dim Hol(n), the sum is a direct sum. Now if X ∈ kerφ1,
Y = ψ2(µ) and Z = ψ3(x), we have:

tr(XY >) = 1
n− 2tr(Xµ1> +X1µ> − 2Xdiag(µ))

= − 2
n− 2tr(Xdiag(µ)) = − 2

n− 2

n∑
i=1

µi
n∑
j=1

Xij = 0,

tr(XZ>) = x

n(n− 1)tr(X11> −X) = 0,

tr(Y Z>) = x

n(n− 1)(n− 2)tr(ψ2(µ)11> − ψ2(µ))

= x

n(n− 1)(n− 2)tr(µ1>) = 0,

so the direct sum is orthogonal for the Frobenius inner product.

Irreducibility The vector spaces kerφ1, imψ2, imψ3 are stable because φ1, ψ2, ψ3 are
equivariant. Then, imψ2, imψ3 are irreducible as images of irreducible modules by injective
maps. Let us show that kerφ1 = {X ∈ Hol(n)|X1 = 0} is irreducible. Note that kerφ1 is
generated by matrices Eijkl with distinct i, j, k, l ∈ {1, ..., n}, defined by:

Eijkl = Eij + Ekl − Eil − Ejk
= (ei − ek)(ej − el)> + (ej − el)(ei − ek)>

= Ejilk = −Ekjil = −Eilkj.

Indeed, the subfamily {E12kl| 3 6 k < l 6 n} ∪ {E132l| 4 6 l 6 n} is free because if
(λkl)36k<l6n ∈ R(n−2

2 ) and (λ2l)l646n ∈ Rn−3 are coefficients such that ∑36k<l6n λklE12kl +∑
46l6n λlE132l = 0, then for 3 6 k < l 6 n, the (k, l)-th coefficient is λkl = 0 and the (2, l)-th

coefficient is λl = 0. Since it is of cardinal
(
n−2

2
)

+n−3 = n(n−3)
2 = dim kerφ1, this subfamily

is a basis so the whole family generates kerφ1. Moreover, all the matrices Eijkl are in the
same orbit under the action of the permutation group S(n). Indeed, if Erstu is another one,
it suffices to apply a permutation σ ∈ S(n) such that σ(i) = r, σ(j) = s, σ(k) = t and
σ(l) = u to get Erstu = PσEijklP

>
σ .

We are ready to prove that kerφ1 is irreducible. Let W ⊆ kerφ1, W 6= {0}, and let
X ∈ W , X 6= 0. It suffices to show that one Eijkl ∈ W and we will have kerφ1 ⊆ W .
First, there exist distinct indexes i, j, k ∈ {1, ..., n} such that Xik 6= Xjk, otherwise X
would belong to span(11> − In) so it would be null. Up to permutation, we can as-

sume that i = 1, j = 2 and k = 3. We define Y = X − (1, 2) · X =
Å

0 A
A> 0

ã
∈ W

where A =
Å
a3 · · · an
−a3 · · · −an

ã
∈ Mat(2, n − 2) with ∑n

i=3 ai = 0 and (a3, ..., an) 6= 0 since
a3 = X13 − X12 6= 0. Hence, there exist 3 6 k < l 6 n such that ak 6= al so we can define
Z = 1

ak−al
(Y − (k, l) · Y ) = E1k2l ∈ W . Therefore, W = kerφ1 and kerφ1 is irreducible.
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Isomorphic modules A simple verification on the dimensions shows that the three terms
cannot be isomorphic. Indeed, dim kerφ1 = n(n−3)

2 , dim imψ2 = n− 1 > dim imψ3 = 1 so for
n > 5, dim kerφ1 > dim imψ2 and for n ∈ {3, 4}, dim imψ2 > dim kerφ1 6= 1.

General form So the invariant inner products are positive weighted sums of the restric-
tion of the Frobenius inner product to each term. Hence, the S(n)-invariant inner products
on Hol(n) are given for all X ∈ Hol(n) by:

ϕ(X,X) = α1tr(X2
1 ) + α2tr(X2

2 ) + α3tr(X2
3 ) (11.2)

= α1tr(X2 −X2
2 −X2

3 ) + α2tr(X2
2 ) + α3tr(X2

3 ) (11.3)
= α1tr(X2) + (α2 − α1)tr(X2

2 ) + (α3 − α1)tr(X2
3 ), (11.4)

with α1, α2, α3 > 0. We would like to get a more comprehensive formula without Xi’s, with
only X. To do so, we compute tr(X2

2 ) and tr(X2
3 ) in function of X in two steps. First,

we compute these quantities in function of µ ∈ Rn
0 and x ∈ R, taking X2 = ψ2(µ) and

X3 = ψ3(x):

tr(X2
2 ) = 1

(n− 2)2 tr((µ1> + 1µ> − 2diag(µ))2)

= 1
(n− 2)2 tr[sum(µ)︸ ︷︷ ︸

0

(µ1> + 1µ>) + 4diag(µ)2 + nµµ> + ‖µ‖211>

− 4µµ> − 2(µ21> + 1(µ2)>)]

= 1
(n− 2)2 (2n− 4) ‖µ‖2 = 2

n− 2‖µ‖
2,

tr(X2
3 ) = x2

n2(n− 1)2 tr((11> − In)2) = x2

n2(n− 1)2n(n− 1) = x2

n(n− 1) .

Second, we need to express µ and x in function of X = X1 + ψ2(µ) + ψ3(x). On the one
hand, sum(X) = 0 + 0 + x so x = sum(X). On the other hand, X1 = 0 + µ + x

n
1 so

µ = X1− sum(X)
n

1. We finish by computing ‖µ‖2 in function of X:

‖µ‖2 = µ>µ =
Å
1>X − sum(X)

n
1>
ãÅ

X1− sum(X)
n

1

ã
= sum(X2)− 1

n
sum(X)2.

Altogether, the inner product writes:

ϕ(X,X) = α tr(X2) + β sum(X2) + γ sum(X)2, (11.5)

with α = α1, β = 2
n−2(α2 − α1) and γ = 1

n(n−1)(α3 − α1) − 2
n(n−2)(α2 − α1). The inverse

relations write α1 = α, α2 = α + n−2
2 β and α3 = α + (n− 1)(β + nγ) as expected.

11.2.4 Proof of Example 3.10
Example 3.10 (S(n)-invariant inner products on Sym(n)) The irreducible decomposition

of Sym(n) with respect to the congruence action of S(n), i.e. of permutation matrices, is
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Sym(n) = kerφ1
⊥
⊕ imψ2

⊥
⊕ imψ3︸ ︷︷ ︸

Hol(n)

⊥
⊕ imψ4

⊥
⊕ imψ5︸ ︷︷ ︸

Diag(n)

' kerφ1 ⊕ 2Rn
0 ⊕ 2R where φ1, ψ2, ψ3 were

defined in the previous section and:
4. ψ4 : λ ∈ Rn

0 7−→ diag(λ) ∈ Diag(n),
5. ψ5 : y ∈ R 7−→ y

n
In ∈ Diag(n),

with ψ4, ψ5 injective. The corresponding orthogonal projections are:
· π5 : X ∈ Sym(n) 7−→ X5 = ψ5(tr(X)) ∈ imψ5,
· π4 : X ∈ Sym(n) 7−→ X4 = Diag(X −X5) ∈ imψ4,
· π3 : X ∈ Sym(n) 7−→ X3 = p3(X −Diag(X)) ∈ imψ3,
· π2 : X ∈ Sym(n) 7−→ X2 = p2(X −Diag(X)) ∈ imψ2,
· π1 : X ∈ Sym(n) 7−→ X1 = p1(X −Diag(X)) ∈ kerφ1.
The S(n)-invariant inner products on Sym(n) are given for all X = X1 +ψ2(µ) +ψ3(x) +

ψ4(λ) + ψ5(y) ∈ Sym(n) by:

ϕ(X,X) = α1tr(X2
1 ) + S11‖µ‖2 + Σ11x

2 + S22‖λ‖2 + Σ22y
2 + 2S12λ

>µ+ 2Σ12xy

= α tr(X2) + β sum(X2) + γ sum(X)2 + δ tr(Diag(X)2)
+ ε sum(Diag(X)X) + ζ tr(X)2 + η tr(X) sum(X),

where α1 = α > 0 and the SPD matrices are S =
Å 2
n−2α + β β + ε

2
β + ε

2 α + β + δ + ε

ã
∈ Sym+(2)

and Σ = 1
n

Å 1
n−1α + β + nγ β + ε

2 + n(γ + η
2)

β + ε
2 + n(γ + η

2) α + β + δ + ε+ n(γ + ζ + η)

ã
∈ Sym+(2).

Proof of Example 3.10: S(n)-invariant inner products on Sym(n), n > 3.

Direct sum Based on the study of the action of S(n) on Hol(n) and Rn ' Diag(n), the
direct sum and the orthogonal projections are clear.

Irreducibility The terms in Hol(n) were treated in the previous example. The spaces
imψ4 and imψ5 are irreducible modules as images by equivariant maps of irreducible modules.

Isomorphic modules On the one hand, imψ2 and imψ4 are isomorphic to Rn
0 as mod-

ules. On the other hand, imψ3 and imψ5 are isomorphic to R as modules. None of them is
isomorphic to kerφ1 because they have different dimensions.

General form Therefore, Theorem 3.4 ensures that the S(n)-invariant inner products
on Sym(n) are given for all X = X1 + ψ2(µ) + ψ3(x) + ψ4(λ) + ψ5(y) ∈ Sym(n) by:

ϕ(X,X) = α1tr(X2
1 ) + S11‖µ‖2 + Σ11x

2 + S22‖λ‖2 + Σ22y
2 + 2S12λ

>µ+ 2Σ12xy (11.6)

= α1tr(X2) +
Å
S11 −

2
n− 2α1

ã
‖µ‖2 +

Å
Σ11 −

1
n(n− 1)α1

ã
x2

+ (S22 − α1)‖λ‖2 +
Å

Σ22 −
1
n
α1

ã
y2 + 2S12λ

>µ+ 2Σ12xy, (11.7)
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where α1 > 0, S ∈ Sym+(2) and Σ ∈ Sym+(2), because tr(X2
1 ) = tr(X2) − ∑5

i=2 tr(X2
i ),

because the computations of tr(ψ2(µ)2) = 2
n−2‖µ‖

2 and tr(ψ3(x)2) = x2

n(n−1) made previously
are still valid and because tr(X2

4 ) = ‖λ‖2 and tr(X2
5 ) = y2

n
. To get an explicit formula in

function of X, we need to compute µ, λ ∈ Rn
0 and x, y ∈ R:

tr(X) = 0 + 0 + 0 + 0 + y,

Diag(X) = 0 + 0 + 0 + diag(λ) + y

n
In,

sum(X) = 0 + 0 + x+ 0 + y,

X1 = 0 + µ+ x

n
1 + λ+ y

n
1,

so y = tr(X), diag(λ) = Diag(X)− y
n
In, x = sum(X)− tr(X) and µ = X1−λ− x+y

n
1. Then:

‖µ‖2 =
(
1>X − λ> − x+ y

n
1>
)(

X1− λ− x+ y

n
1
)

(11.8)

=
Å

sum(X2) + ‖λ‖2 − (x+ y)2

n
− 2λ>X1

ã
, (11.9)

where:

‖λ‖2 = (1>Diag(X)− y

n
1>)(Diag(X)1− y

n
1) (11.10)

= tr(Diag(X)2)− 1
n

tr(X)2, (11.11)

λ>X1 = (1>Diag(X)− y

n
1>)X1 = sum(XDiag(X))− 1

n
sum(X)tr(X). (11.12)

So we obtain:

‖µ‖2 = sum(X2) + tr(Diag(X)2)− 1
n

tr(X)2 − 1
n

sum(X)2

− 2sum(XDiag(X)) + 2
n

sum(X)tr(X), (11.13)

x2 = sum(X)2 + tr(X)2 − 2sum(X)tr(X), (11.14)

‖λ‖2 = tr(Diag(X)2)− 1
n

tr(X)2, (11.15)

y2 = tr(X)2, (11.16)
λ>µ = λ>X1− ‖λ‖2 (11.17)

= sum(XDiag(X))− 1
n

sum(X)tr(X)− tr(Diag(X)2) + 1
n

tr(X)2, (11.18)

xy = sum(X)tr(X)− tr(X)2. (11.19)

Altogether, the inner product writes:

ϕ(X,X) = α tr(X2) + β sum(X2) + γ sum(X)2 + δ tr(Diag(X)2)
+ ε sum(Diag(X)X) + ζ tr(X)2 + η tr(X) sum(X),
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with:

α = α1,

β = − 2
n− 2α1 + S11,

γ =
Å 2
n(n− 2) −

1
n(n− 1)

ã
︸ ︷︷ ︸

1
(n−2)(n−1)

α1 −
1
n
S11 + Σ11,

δ = −
Å

1 + 2
n− 2

ã
︸ ︷︷ ︸

n
n−2

α1 + S11 + S22 − 2S12,

ε = 4
n− 2α1 − 2S11 + 2S12,

ζ =
Å 2
n(n− 2) −

1
n(n− 1) + 1

n
− 1
n

ã
︸ ︷︷ ︸

1
(n−2)(n−1)

α1 −
1
n
S11 + Σ11 −

1
n
S22 + Σ22 + 2

n
S12 − 2Σ12,

η =
Å
− 4
n(n− 2) + 2

n(n− 1)

ã
︸ ︷︷ ︸

−2
(n−2)(n−1)

α1 + 2
n
S11 − 2Σ11 −

2
n
S12 + 2Σ12.

The inverse relations are:

α1 = α,

S11 = 2
n− 2α + β,

Σ11 = γ + 1
n
β + 1

n(n− 1)α,

S12 = β + ε

2 ,

S22 = α + β + δ + ε,

Σ12 = 1
n

(
β + ε

2

)
+ γ + η

2 ,

Σ22 = 1
n

(α + β + δ + ε) + γ + ζ + η,

as expected.

11.2.5 Proof of Example 3.12

Example 3.12 (S(n)-invariant inner products on Mat(n)) The irreducible decomposition
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of Mat(n) with respect to the congruence action of S(n), i.e. of permutation matrices, is:

Mat(n) = kerφ1
⊥
⊕ imψ2

⊥
⊕ imψ3︸ ︷︷ ︸

Hol(n)

⊥
⊕ imψ4

⊥
⊕ imψ5︸ ︷︷ ︸

Diag(n)︸ ︷︷ ︸
Sym(n)

⊥
⊕ kerφ6

⊥
⊕ imψ7︸ ︷︷ ︸

Skew(n)

' kerφ1 ⊕ kerφ6 ⊕ 3Rn
0 ⊕ 2R,

where φ1, ψ2, ψ3, ψ4, ψ5 were defined in the previous sections and:
6. φ6 : X ∈ Skew(n) 7−→ X1 ∈ Rn

0 ,
7. ψ7 : ν ∈ Rn

0 7−→ 1
n
(ν1> − 1ν>) ∈ Skew(n),

with φ6 surjective and ψ7 injective. The corresponding orthogonal projections are:

· Π7 : X ∈ Mat(n) 7−→ X7 = ψ7
Ä
X−X>

2 1
ä
∈ imψ7,

· Π6 : X ∈ Mat(n) 7−→ X6 = X−X>
2 −X7 ∈ kerφ6,

· Π5 : X ∈ Mat(n) 7−→ X5 = π5
Ä
X+X>

2

ä
= ψ5(tr(X)) ∈ imψ5,

· Π4 : X ∈ Mat(n) 7−→ X4 = π4
Ä
X+X>

2

ä
= Diag(X −X5) ∈ imψ4,

· Π3 : X ∈ Mat(n) 7−→ X3 = π3
Ä
X+X>

2

ä
∈ imψ3,

· Π2 : X ∈ Mat(n) 7−→ X2 = π2
Ä
X+X>

2

ä
∈ imψ2,

· Π1 : X ∈ Mat(n) 7−→ X1 = π1
Ä
X+X>

2

ä
∈ kerφ1.

The S(n)-invariant inner products on Mat(n) are given for all X = X1 + ψ2(µ) + ψ3(x) +
ψ4(λ) + ψ5(y) +X6 + ψ7(ν) ∈ Mat(n) by:

ϕ(X,X) = α1tr(X2
1 ) + S11‖µ‖2 + Σ11x

2 + S22‖λ‖2 + Σ22y
2 + α2tr(X2

6 ) + S33‖ν‖2

+ 2S12λ
>µ+ 2S23ν

>λ+ 2S13µ
>ν + 2Σ12xy

= α tr(XX>) + α′ tr(X2) + β sum(X2) + β′ sum(XX>) + β′′ sum(X>X)
+ γ sum(X)2 + δ tr(Diag(X)2) + ζ tr(X)2 + η tr(X) sum(X)
+ ε sum(Diag(X)X) + ε′sum(Diag(X)X>),

where α1 = α+α′
2 > 0, α2 = α−α′

2 > 0 and the SPD matrices are:

S =

Ñ 2
n−2

α+α′
2 + β + β′ + β′′ β + β′ + β′′ + 1

2(ε+ ε′) β′′−β′
4

β + β′ + β′′ + 1
2(ε+ ε′) α+α′

2 + β + β′ + β′′ + δ + ε+ ε′ β′′−β′
4 + ε′−ε

2
β′′−β′

4
β′′−β′

4 + ε′−ε
2 2α + β − β′ − β′′

é
∈ Sym+(3),

Σ = 1
n

Ç
1

n−1
α+α′

2 + β + β′ + β′′ + nγ β + β′ + β′′ + 1
2(ε+ ε′) + n(γ + η

2)
β + 1

2(ε+ ε′) + n(γ + η
2) α+α′

2 + β + β′ + β′′ + δ + ε+ ε′ + n(γ + ζ + η)

å
∈ Sym+(2).
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Proof of Example 3.12: S(n)-invariant inner products on Mat(n), n > 3.

Direct sum Given the previous sections, we only need to check the direct sum Skew(n) =
kerφ6 ⊕ imψ7. Since ψ7(ν)1 = ν for all ν ∈ Rn

0 , φ6 is surjective and ψ7 is injective. Since
1>X−X

>

2 1 = 1
2(sum(X) − sum(X>)) = 0, X−X>

2 1 ∈ Rn
0 so Π7 is well defined. Hence,Ä

X−X>
2 −X7

ä
1 = X−X>

2 1−ψ7
Ä
X−X>

2 1
ä
1 = 0 so Π6 is well defined and Skew(n) = kerφ6 +

imψ7. Since dim kerφ6 + dim imψ7 = (dim Skew(n)− (n− 1)) + (n− 1) = dim Skew(n), the
sum is a direct sum. Moreover, if X ∈ kerφ6 and Y = ψ7(ν) ∈ imψ7 with ν ∈ Rn

0 , then:

tr(Y X>) = 1
n

tr(ν1>X> − 1ν>X>) = 1
n

tr(1ν>X) = 0,

so the sum is orthogonal for the Frobenius inner product. The other projections Π1, ...,Π5
are the compositions of the previous projections π1, ..., π5 with the projection onto symmetric
matrices X ∈ Mat(n) 7−→ X+X>

2 .

Irreducibility The vector spaces kerφ6 and imψ7 are stable because φ6 and ψ7 are
equivariant. Then, imψ7 is irreducible as image of an irreducible module by an injective
map. Let us show that kerφ6 = {X ∈ Skew(n)|X1 = 0} is irreducible. Note that kerφ6 is
generated by matrices Fijkl with i, j, k, l ∈ {1, ..., n}, i 6= k and j 6= l and (i 6= j or k 6= l),
defined by:

Fijkl = (ei − ek)(ej − el)> − (ej − el)(ei − ek)>

= (eie>j − eje>i ) + (eke>l − ele>k )− (eie>l − ele>i )− (eke>j − eje>k )
= Fjilk = −Fkjil = −Filkj.

Indeed, the subfamily (F11kl)26k<l6n is free because if (λkl)26k<l6n ∈ R(n−1
2 ) are coefficients

such that ∑26k<l6n λklF11kl = 0, then the (k, l)-th coefficient is λkl = 0. Since it is of cardinal(
n−1

2
)

= (n−1)(n−2)
2 = dim kerφ6, this subfamily is a basis so the whole family generates kerφ6.

For n = 3, dim kerφ6 = 1 so kerφ6 is irreducible. We assume that n > 4. Let W ⊆ kerφ6
be a submodule, W 6= {0}. Let X ∈ W , X 6= 0. By absurdum, if for all distinct i, j, k, l ∈
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{1, ..., n}, Xik −Xjk = Xil −Xjl, then:

∀i 6= j 6= l 6= i, 0 =
n∑
k=1

(Xik −Xjk)

= −Xji +Xij +
∑
k 6=i,j

(Xik −Xjk)

= 2Xij +
∑
k 6=i,j

(Xil −Xjl)

= 2Xij + (n− 2)(Xil −Xjl),

∀j 6= l, 0 =
n∑
i=1

2Xij

= 2Xlj +
∑
i 6=j,l

2Xij

= 2Xlj −
∑
i 6=j,l

(n− 2)(Xil −Xjl)

= 2Xlj − (n− 2)[(0−Xjl)− (n− 2)Xjl]
= n(n− 3)Xjl,

so X would be 0. Therefore, there exist distinct i, j, k, l ∈ {1, ..., n} such that Xik −Xjk =
Xil−Xjl. Up to a permutation, we can assume that (i, j, k, l) = (1, 2, 3, 4). Let Y = X−(1, 2)·

X =
Å

B A
−A> 0

ã
∈ W where B =

Å
0 a2
−a2 0

ã
∈ Skew(2) and A =

Å
a3 a4 · · · an
−a3 −a4 · · · −an

ã
∈

Mat(2, n− 2). Hence a3 = X13−X23 6= X14−X24 = a4 so F1324 = 1
a3−a4

(Y − (3, 4) ·Y ) ∈ W .
By permutations, all Fijkl ∈ W with distinct i, j, k, l ∈ {1, ..., n}.

Moreover, there exist i 6= j such that Xij 6= 0. Up to a permutation, we can assume

that (i, j) = (1, 2). Let Y ′ = X − (1, 2) ·X =
Å

B′ A′

−A′> 0

ã
∈ W where B′ =

Å
0 a′2
−a′2 0

ã
∈

Skew(2) and A′ =
Å
a′3 a′4 · · · a′n
−a′3 −a′4 · · · −a′n

ã
∈ Mat(2, n − 2) with a′2 = 2X12 6= 0. Let

σ = (3, 4, ..., n) ∈ S(n), let Zk = σk · Y for k ∈ {0, ..., n − 3} and let Z = 1
a′2

∑n−3
k=0 Zk =â

0 n− 2 −1 · · · −1
−(n− 2) 0 1 · · · 1

1 −1 0 · · · 0
... ... ... . . . ...
1 −1 0 · · · 0

ì
. Finally, F1123 = 1

n−2(Z −∑n
k=4 F132k) ∈ W and by

permutations, all Fiikl ∈ W for distinct i, k, l ∈ {1, ..., n}. So W = kerφ6 and kerφ6 is
irreducible.

Isomorphic modules The module imψ7 is isomorphic to Rn
0 , thus to imψ2 and imψ4.

We still have imψ3 ' ψ5. For n > 4, the other dimensions don’t match. For n = 3,
dim kerφ6 = 1 but the permutation (1, 2) changes X ∈ kerφ6 into −X while it does not act
on imψ3 or imψ5. So there is no other isomorphism.
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General form Therefore, Theorem 3.4 ensures that the S(n)-invariant inner products
on Mat(n) are given for all X = X1 + ψ2(µ) + ψ3(x) + ψ4(λ) + ψ5(y) +X6 + ψ7(ν) ∈ Mat(n)
by:

ϕ(X,X) = α1tr(X2
1 ) + S11‖µ‖2 + Σ11x

2 + S22‖λ‖2 + Σ22y
2 + α2tr(X2

6 ) + S33‖ν‖2

+ 2S12λ
>µ+ 2S23ν

>λ+ 2S13µ
>ν + 2Σ12xy

= (α1 + α2)tr(XX>) + (α1 − α2)tr(X2) +
Å
S11 −

2
n− 2α1

ã
‖µ‖2

+
Å

Σ11 −
1

n(n− 1)α1

ã
x2 + (S22 − α1)‖λ‖2 +

Å
Σ22 −

1
n
α1

ã
y2

+ (S33 − 2α1 − 2α2)‖ν‖2 + 2S12λ
>µ+ 2S13ν

>λ+ 2S23µ
>ν + 2Σ12xy,

where α1, α2 > 0, S ∈ Sym+(3) and Σ ∈ Sym+(2), because:

· tr(X2
1 ) = tr(XX>)−∑5

i=2 tr(X2
i )−

∥∥∥X−X>2

∥∥∥2
= tr(XX>)+tr(X2)

2 −∑5
i=2 tr(X2

i ),

· tr(ψ2(µ)2) = 2
n−2‖µ‖

2, tr(ψ3(x)2) = x2

n(n−1) , tr(X2
4 ) = ‖λ‖2, tr(X2

5 ) = y2

n
as seen earlier,

· tr(X6X
>
6 ) =

∥∥∥X−X>2

∥∥∥2
−tr(X7X

>
7 ) = tr(XX>)−tr(X2)

2 −tr(X7X
>
7 ) and tr(X7X

>
7 ) = 2‖ν‖2.

The previous expressions of µ, λ ∈ Rn
0 and x, y ∈ R in function of X are still valid if we

replace X by X+X>
2 ∈ Sym(n). So y = tr(X+X>

2 ) = tr(X), diag(λ) = Diag(X+X>
2 ) − y

n
In =

Diag(X)− y
n
In, x = sum(X+X>

2 )− tr(X+X>
2 ) = sum(X)− tr(X) and µ = X+X>

2 1−λ− x+y
n
1.

Updating Equations (11.8) to (11.19), we get:

‖µ‖2 = 1
2sum(X2) + 1

4sum(XX>) + 1
4sum(X>X) + tr(Diag(X)2)− 1

n
tr(X)2 − 1

n
sum(X)2

− sum(Diag(X)X)− sum(Diag(X)X>) + 2
n

sum(X)tr(X),

x2 = sum(X)2 + tr(X)2 − 2sum(X)tr(X),

‖λ‖2 = tr(Diag(X)2)− 1
n

tr(X)2,

y2 = tr(X)2,

λ>µ = 1
2sum(Diag(X)X) + 1

2sum(Diag(X)X>)− 1
n

sum(X)tr(X)− tr(Diag(X)2) + 1
n

tr(X)2,

xy = sum(X)tr(X)− tr(X)2.
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In addition, ν = X−X>
2 1 so:

‖ν‖2 = 1
4sum((X −X>)>(X −X>))

= 1
2sum(X2)− 1

4sum(XX>)− 1
4sum(X>X),

ν>λ = 1
2sum

Å
(X −X>)>

Å
Diag(X)− tr(X)

n
In

ãã
= 1

2sum(Diag(X)X>)− 1
2sum(Diag(X)X),

ν>µ = −ν>λ+ 1
2sum

Å
(X −X>)>

Å
X +X>

2 − x+ y

n
In

ãã
= 1

2sum(Diag(X)X)− 1
2sum(Diag(X)X>) + 1

4sum(X>X)− 1
4sum(XX>).

Altogether, the inner product writes:

ϕ(X,X) = α tr(XX>) + α′ tr(X2) + β sum(X2) + β′ sum(XX>) + β′′ sum(X>X)
+ γ sum(X)2 + δ tr(Diag(X)2) + ζ tr(X)2 + η tr(X) sum(X)
+ ε sum(Diag(X)X) + ε′sum(Diag(X)X>), (11.20)

where:

α = α1 + α2,

α′ = α1 − α2,

β =
Å
− 1
n− 2 − 1

ã
α1 − α2 + 1

2(S11 + S33),

β′ = 1
2

Å
− 1
n− 2 + 1

ã
α1 + 1

2α2 + 1
4(S11 − S33 − 2S13),

β′′ = 1
2

Å
− 1
n− 2 + 1

ã
α1 + 1

2α2 + 1
4(S11 − S33 + 2S13),

γ =
Å 2
n(n− 2) −

1
n(n− 1)

ã
α1 −

1
n
S11 + Σ11,

δ =
Å
− 2
n− 2 − 1

ã
α1 + S11 + S22 − 2S12,

ε = 2
n− 2α1 − S11 + S12 − S23 + S13,

ε′ = 2
n− 2α1 − S11 + S12 + S23 − S13,

ζ =
Å 2
n(n− 2) −

1
n(n− 1) + 1

n
− 1
n

ã
α1 −

1
n
S11 + Σ11 −

1
n
S22 + Σ22 + 2

n
S12 − 2Σ12,

η =
Å
− 4
n(n− 2) + 2

n(n− 1)

ã
α1 + 2

n
S11 − 2Σ11 −

2
n
S12 + 2Σ12.
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The inverse relations are:

α1 = α + α′

2 ,

α2 = α− α′

2 ,

S13 = β′′ − β′

4 ,

S11 = 2
n− 2

α + α′

2 + β + β′ + β′′,

S33 = 2α + β − β′ − β′′,

Σ11 = 1
n(n− 1)

α + α′

2 + 1
n

(β + β′ + β′′) + γ,

S12 = β + β′ + β′′ + 1
2(ε+ ε′),

S22 = α + α′

2 + β + β′ + β′′ + δ + ε+ ε′,

S23 = β′′ − β′

4 + ε′ − ε
2 ,

Σ12 = 1
n

Å
β + β′ + β′′ + 1

2(ε+ ε′)
ã

+ γ + η

2 ,

Σ22 = 1
n

Å
α + α′

2 + β + β′ + β′′ + δ + ε+ ε′
ã

+ γ + ζ + η.

11.3 Proofs of Chapter 4
In this section, we prove the results of Chapter 4: O(n)-invariant metrics.

11.3.1 Proof of Lemma 4.6
Lemma 4.6 (Characterization of inner products on symmetric matrices invariant under
D±(n) or S±(n)) Let 〈·|·〉 : Sym(n) × Sym(n) −→ R be an inner product on symmetric
matrices.

(a) It is D±(n)-invariant if and only if there exist n(n−1)
2 positive real numbers αij = αji > 0

for i 6= j and a matrix S ∈ Sym+(n) such that:

∀X ∈ Sym(n), 〈X|X〉 =
∑
i 6=j

αijX
2
ij +

∑
i,j

SijXiiXjj.

(b) It is S±(n)-invariant if and only if there exist (α, β, γ) ∈ R3 with α > 0, γ > β and
γ + (n− 1)β > 0 such that:

∀X ∈ Sym(n), 〈X|X〉 = γ
n∑
i=1

X2
ii + α

∑
i 6=j

X2
ij + β

∑
i 6=j

XiiXjj.
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Proof of Lemma 4.6.

(a) We write 〈X|X〉 = ∑
i,j,k,l aij,klXijXkl a general inner product. Note that aij,kl =

aji,kl = aji,lk = aij,lk by symmetry of X and aij,kl = akl,ij by symmetry of the inner
product. We use the invariance under the matrix εm ∈ D±(n) with −1 on the m-th
component and 1 elsewhere, for m ∈ {1, ..., n}. We denote P XOR Q = 1 if the “ex-
clusive or” between propositions P and Q holds, and otherwise P XOR Q = 0. Thus,
we have [εmXεm]ij = (−1)(i=m)XOR(j=m)Xij and [εmXεm]ij[εmXεm]kl = θijklmXijXkl

with θijklm = (−1)[(i=m)XOR(j=m)]XOR[(k=m)XOR(l=m)] ∈ {−1, 1}. Then the equality
〈X|X〉 = 〈εmXεm|εmXεm〉 leads to aij,kl = θijklmaij,kl. Therefore, if there exists
m ∈ {1, ..., n} such that θijklm = −1, then aij,kl = 0. One can easily show that
θijklm = −1 if and only if m equals exactly one or exactly three index(es) among
i, j, k, l. There exists such an m if:

· card({i, j, k, l}) = 4, i.e. i, j, k, l are distinct,
· card({i, j, k, l}) = 3,
· card({i, j, k, l}) = 2 and three of them are equal.

Thus we are left with 〈X|X〉 = ∑
i<j 4aij,ijX2

ij + ∑
i,j aii,jjXiiXjj. Then, we get the

expression (4.4) by denoting αij = 2aij,ij and Sij = aii,jj = Sji. Since the quadratic form
splits into two quadratic forms defined on supplementary vector spaces (off-diagonal
and diagonal terms), it is positive definite if and only if these two quadratic forms
are positive definite, i.e. αij > 0 for all i 6= j and S is positive definite. Conversely,
Equation (4.4) clearly defines D±(n)-invariant inner products.

(b) AS±(n)-invariant inner product on symmetric matrices isD±(n)-invariant so it is of the
form of Equation (4.4). Since it is invariant under permutations, we have αij = αkl =: α
and Sij = Skl =: β for all i 6= j and k 6= l and Sii = Sjj =: γ for all i, j. Under these
notations, Equation (4.4) becomes Equation (4.5). Since S = (γ − β) In + β 11>, then
S ∈ Sym+(n) if and only if γ − β > 0 and γ − β + nβ > 0 as expected. Conversely,
Equation (4.5) clearly defines S±(n)-invariant inner products.

11.3.2 Proof of affine-invariant curvature
We prove that the sectional curvature of the affine-invariant metric satisfies κ ∈ [−1/2α; 0].

More precisely, the Riemann and sectional curvatures are:
· RΣ(X, Y, Z, T ) = α

2 (XΣ−1Y Σ−1(ZΣ−1T − TΣ−1Z)Σ−1),

· κΣ(Σ1/2Eβ
iiΣ1/2,Σ1/2Eβ

ijΣ1/2) = −1/4α for i 6= j,

· κΣ(Σ1/2Eβ
ijΣ1/2,Σ1/2Eβ

ikΣ1/2) = −1/8α for i 6= j 6= k 6= i,

where Eβ
ij = Eij − 1−p

np
δijIn. Other terms are null.

Proof of sectional curvature in Table 4.5. Firstly, we compute the sectional curvature of the
affine-invariant metrics for β = 0 at Σ ∈ Sym+(n) in the orthonormal basis (Σ1/2EijΣ1/2)16i6j6n,
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with Eii, Eij for i 6= j defined by Eii(k, l) = δikδil and Eij(k, l) = δikδjl+δilδjk√
2 . As κΣ(X, Y ) =

RΣ(X,Y,X,Y )
‖X‖2‖Y ‖2−〈X|Y 〉2 , we have κΣ(Σ1/2EijΣ1/2,Σ1/2EklΣ1/2) = 1

2αtr((EijEkl)2 − (EijEkl)(EijEkl)>)
so we only need to compute a few expressions. In the following equalities, when an elemen-
tary matrix E has two different indexes, they are assumed to be distinct:
• EiiEjj = δijCij hence ‖EiiEjj‖2

2 = δij,
• EiiEjk = 1√

2(δijCik + δikCij) hence ‖EiiEjk‖2
2 = 1

2(δij + δik),
• EijEkl = 1

2(δjkCil + δikCjl + δjlCik + δilCjk)
hence ‖EijEkl‖2

2 = 1
4(δik + δil + δjk + δjl),

• (EiiEjj)2 = δijCij hence tr((EiiEjj)2) = δij,
• (EiiEjk)2 = 0 hence tr((EiiEjk)2) = 0,
• (EijEkl)2 = 1

4(δjkδil(Cil + Cjk) + δjlδik(Cik + Cjl)),
hence tr((EijEkl)2) = 1

2(δjkδil + δjlδik).
• κIn(Eii, Ejj) = 0,
• κIn(Eii, Ejk) = − 1

4α(δij + δik),
• κIn(Eij, Ekl) = − 1

8α((δik − δjl)2 + (δil − δjk)2).
Hence the non null terms are κIn(Eii, Eij) = − 1

4α and κIn(Eij, Eik) = − 1
8α .

Secondly, for β 6= 0, we use the isometry fp,1: the values are the same if we replace Σ1/2EijΣ1/2

by (dΣfp,1)−1(fp,1(Σ)1/2Eijfp,1(Σ)1/2) = Σ1/2Eβ
ijΣ1/2.

To prove that κ ∈ [−1/2α; 0], it suffices to note that for normed and orthogonal X, Y ∈
Sym(n), we have κIn(X, Y ) = − 1

4α‖[X, Y ]‖2
2. Diagonalizing X = P∆P> and denoting

Z = P>Y P , from (di − dj)2 6 2(d2
i + d2

j) 6 2‖D‖2, we get κIn(X, Y ) = κIn(∆, Z) =
− 1

4α
∑
i 6=j(di−dj)2Z2

ij > − 1
2α‖D‖

2‖Z‖2 = − 1
2α . This bound is reached for X = 1√

2(Eii−Ejj)
and Y = Eij.

11.3.3 Proof of Bures-Wasserstein Levi-Civita connection

We prove that the Levi-Civita connection of the Bures-Wasserstein metric is (∇XY )|Σ =
(∂XY )|Σ − (X0ΣY 0 + Y 0ΣX0) for all X, Y ∈ TΣSym+(n) at Σ ∈ Sym+(n).

Proof of Levi-Civita connection in Table 4.7. Let X, Y be vector fields on Sym+(n). The
Levi-Civita connection is computed in [Malagò et al., 2018]. With our notation X0 = SΣ(X)
defined by X = ΣX0 +X0Σ, their result writes ∇XY = ∂XY −{X0Y +Y 0X}S +{ΣX0Y 0 +
ΣY 0X0}S where {A}S = 1

2(A+A>) is the symmetric part of the matrix A. It is easy to see
that it rewrites ∇XY = ∂XY − (X0ΣY 0 + Y 0ΣX0) which is a simpler expression.

We would like to give a different proof that relies on the geometry of the horizontal
distribution. According to [O’Neill, 1966, Lemma 1], dπ(∇G

XhY h) = ∇XY , where ∇G = ∂
is the Levi-Civita connection of the Frobenius metric G on GL(n), i.e. the derivative of
coordinates in the canonical basis of matrices. We differentiate the equality Xh = (X0 ◦π)×
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IdGL(n) on GL(n):

(∇G
XhY h)|A = ∂Xh

A
(Y 0 ◦ π)A+ Y 0

π(A)X
h
A

= (∂Xπ(A)Y
0)A+ Y 0

π(A)X
0
π(A)A,

(∇XY )|AA> = dAπ((∇G
XhY h)|A)

= AA>(∂Xπ(A)Y
0) + (∂Xπ(A)Y

0)AA>

+ AA>X0
π(A)Y

0
π(A) + Y 0

π(A)X
0
π(A)AA

>,

(∂XY )|Σ = Σ(∂XΣY
0) + (∂XΣY

0)Σ +XΣY
0

Σ + Y 0
ΣXΣ

= Σ(∂XΣY
0) + (∂XΣY

0)Σ + ΣX0
ΣY

0
Σ + Y 0

ΣX
0
ΣΣ

+X0
ΣΣY 0

Σ + Y 0
ΣΣX0

Σ

= (∇XY )|Σ +X0
ΣΣY 0

Σ + Y 0
ΣΣX0

Σ.

Finally, we find ∇XY = ∂XY − (X0ΣY 0 + Y 0ΣX0) as expected.

11.3.4 Proof of Bures-Wasserstein curvature
We prove that the Riemann curvature of the Bures-Wasserstein metric isRΣ(X, Y,X, Y ) =

3
2
∑
i,j

didj
di+dj

[
X0′, Y 0′]2

ij
for all X, Y ∈ TΣSym+(n) at Σ ∈ Sym+(n), where [V,W ] = VW −

WV is the Lie bracket of matrices.
Proof of curvature in Table 4.7. Let X, Y ∈ TΣSym+(n) be tangent vectors at Σ ∈ Sym+(n).
We would like to compute the sectional curvature κ(X, Y ) = R(X,Y,X,Y )

‖X‖2‖Y ‖2−〈X|Y 〉2 , i.e. R(X, Y,X, Y ).
Let Xh, Y h ∈ HΣ1/2 be the horizontal lifts of X, Y at Σ1/2 and X0, Y 0 ∈ Sym(n) defined as
explained above. We extend Xh, Y h into vector fields by Xh

A := X0A and Y h
A := Y 0A. We

do so because the formula we use to compute the curvature is based on a Lie bracket and can
only be computed with fields. As the curvature is a tensor, it only depends on the values of
X and Y at Σ so the way we extend the fields does not influence the result (but it simplifies
the computation).

A first strategy to compute the curvature is to use the Levi-Civita connection via the
definition R(X, Y )Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y ]Z. It is tedious but doable. An-
other one consists in using the relation between the curvatures of the quotient metric (here,
Bures-Wasserstein) and the original metric (here, Frobenius) found in [O’Neill, 1966], for-
mula {4}. According to this formula, since the Euclidean metric is flat, the formula is
RΣ(X, Y,X, Y ) = 3

4‖verJXh, Y hKΣ1/2‖2 where ver : Xv + Xh ∈ TGL(n) 7−→ Xv ∈ V is
the vertical projection and J·, ·K denotes the Lie bracket on vector fields of GL(n), which
must be distinguished from the matrix Lie bracket [V,W ] = VW − WV . Note that the
right term only depends on Xh

Σ1/2 and Y h
Σ1/2 because if f : GL+(n) −→ R is a map, then

verJfXh, Y hKΣ1/2 = f(Σ1/2)verJXh, Y hKΣ1/2 + dΣ1/2f(Y h)ver(Xh)︸ ︷︷ ︸
0

.

The rest of the proof consists in computing verJXh, Y hK = JXh, Y hK − horJXh, Y hK.
On the one hand, JXh, Y hKA = Y 0Xh

A − X0Y h
A = −[X0, Y 0]A. On the other hand, let

Zh
A := horJXh, Y hKA =: Z0

AA>A ∈ HA. Now, we can fix Σ ∈ Sym+(n) and A = Σ1/2. We
take a spectral decomposition Σ = PDP> and we denote with a prime all the previous
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matrices taken in the basis P of eigenvectors of Σ, e.g. X0′ = P>X0P . Then:

ZΣ := dΣ1/2π(JXh, Y hKΣ1/2) = Σ[X0, Y 0]− [X0, Y 0]Σ,
Zh

Σ1/2 = (dΣ1/2π|HΣ1/2 )−1(dΣ1/2π(JXh, Y hKΣ1/2))
= (dΣ1/2π|HΣ1/2 )−1(ZΣ),

[Z0′
Σ ]ij = 1

di + dj
(D[X0′, Y 0′]− [X0′, Y 0′]D)ij

= di − dj
di + dj

[X0′, Y 0′]ij,

[Zh′

Σ1/2 ]ij =
√
dj[Z0′

Σ ]ij =
√
dj
di − dj
di + dj

[X0′, Y 0′]ij,

(verJXh, Y hKΣ1/2)′ij = (JXh, Y hKΣ1/2)′ij − [Zh′

Σ1/2 ]ij

= − [X0′, Y 0′]ij
√
dj −

√
dj
di − dj
di + dj

[X0′, Y 0′]ij

= −
2di
√
dj

di + dj
[X0′, Y 0′]ij,

RΣ(X, Y,X, Y ) = 3
4‖(verJXh, Y hKΣ1/2)′‖2

= 3
∑
i,j

d2
i dj

(di + dj)2

î
X0′, Y 0′

ó2

ij

= 3
2
∑
i,j

didj
di + dj

î
X0′, Y 0′

ó2

ij
,

where P>XP = DX0′ +X0′D and P>Y P = DY 0′ + Y 0′D.

11.3.5 Proof of Bures-Waserstein geodesic parallel transport be-
tween commuting matrices

We prove that along a geodesic between commuting matrices Σ = PDP> and Λ =
P∆P> ∈ Sym+(n), the parallel transport of the Bures-Wasserstein metric writes:

ΠΣ→Λ :
{
TΣSym+(n) −→ TΛSym+(n)

X 7−→ P
[√

δi+δj
di+dj [P

>XP ]ij
]
P>

.

Proof of geodesic parallel transport between commuting matrices in Table 4.7. We want to prove
that the geodesic parallel transport of the Bures-Wasserstein metric between two commuting
matrices is ΠΣ→ΛX = P

[√
δi+δj
di+dj [P

>XP ]ij
]
i,j
P> where Σ = PDP> and Λ = P∆P> ∈

Sym+(n). The geodesic parallel transport is O(n)-invariant so we only need to prove that
[ΠD→∆X]ij =

√
δi+δj
di+djXij. The geodesic from D to ∆ is γ(t) = ((1 − t)

√
D + t

√
∆)2. Let

us define X(t) =
[√

((1−t)di+tδi)2+((1−t)dj+tδj)2

di+dj Xij

]
i,j

and let us check that ∇γ̇X = 0. We
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compute:

[X0(t)]ij = [X(t)]ij
γi(t) + γj(t)

= 1√
di + dj

√
((1− t)di + tδi)2 + ((1− t)dj + tδj)2

Xij,

γ̇(t) = 2(
√

∆−
√
D)((1− t)

√
D + t

√
∆),

γ̇0(t) = 1
2 γ̇(t)γ−1(t) = 1

2γ
−1(t)γ̇(t) = (

√
∆−

√
D)((1− t)

√
D + t

√
∆)−1,

[Ẋ(t)]ij =
2(
√
δi −
√
di)((1− t)di + tδi) + 2(

√
δj −

√
dj)((1− t)dj + tδj)

2
√
di + dj

√
((1− t)di + tδi)2 + ((1− t)dj + tδj)2

Xij

= (
√
δi −

√
di)((1− t)di + tδi)[X0(t)]ij

+ [X0(t)]ij(
√
δj −

√
dj)((1− t)dj + tδj)

= [γ̇0(t)γ(t)X0(t) +X0(t)γ(t)γ̇0(t)]ij,
∇γ̇(t)X = Ẋ(t)− (γ̇0(t)γ(t)X0(t) +X0(t)γ(t)γ̇0(t)) = 0.

So the geodesic parallel transport from Σ = PDP> to Λ = P∆P> is ΠΣ→ΛX = P
[√

δi+δj
di+dj [P

>XP ]ij
]
i,j
P>.

11.3.6 Proof of Proposition 4.12
Proposition 4.12 (Parallel transport equation of Bures-Wasserstein metric) Let γ(t)

the geodesic between γ(0) = Σ and γ(1) = Λ, and a vector X ∈ TΣSym+(n). We denote
γh(t) = (1 − t)Σ1/2 + tΣ−1/2(Σ1/2ΛΣ1/2)1/2 the horizontal lift of the geodesic γ. The two
following statements are equivalent.
(i) The vector field X(t) defined along γ(t) is the parallel transport of X.
(ii) X(t) = γ(t)X0(t)+X0(t)γ(t) where X0(t) is a curve in Sym(n) satisfying the following

ODE:
γ(t)Ẋ0(t) + Ẋ0(t)γ(t) + γh(t)γ̇h>X0(t) +X0(t)γ̇hγh(t)> = 0.

Proof of Proposition 4.12 (Parallel transport equation of Bures-Wasserstein metric). The geodesic
parallel transport equation is ∇γ̇(t)X = 0 along the geodesic γ(t) = γh(t)γh(t)> between Σ
and Λ ∈ Sym+(n), where γh(t) = (1− t)Σ1/2 + tΣ−1/2(Σ1/2ΛΣ1/2)1/2. For a vector field X(t)
on Sym+(n) defined along γ(t), we can define the horizontal lift Xh(t) = X0(t)γh(t) ∈ Hγh(t)
where X0(t) is defined by X(t) = γ(t)X0(t) +X0(t)γ(t). We are going to prove that X(t) is
the geodesic parallel transport of X ∈ TΣSym+(n) if and only if X0(t) satisfies the following
ODE:

γ(t)Ẋ0(t) + Ẋ0(t)γ(t) + γh(t)γ̇h>X0(t) +X0(t)γ̇hγh(t)> = 0. (11.21)

To rewrite the geodesic parallel transport equation ∇γ̇(t)X = 0, we need to compute the
following derivatives:

Ẋ(t) = γ(t)Ẋ0(t) + Ẋ0(t)γ(t) + γ̇(t)X0(t) +X0(t)γ̇(t),
γ̇(t) = γ̇hγh(t)> + γh(t)γ̇h> where γ̇h = γ̇0(t)γh(t).
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Now, we simply rewrite the equation:

∇γ̇(t)X = 0⇐⇒ Ẋ(t)− (γ̇0(t)γ(t)X0(t) +X0(t)γ(t)γ̇0(t)) = 0
⇐⇒ γ(t)Ẋ0(t) + Ẋ0(t)γ(t)

+ (γ̇(t)− γ̇hγh(t)>)X0(t) +X0(t)(γ̇(t)− γh(t)γ̇h>) = 0
⇐⇒ γ(t)Ẋ0(t) + Ẋ0(t)γ(t) + γh(t)γ̇h>X0(t) +X0(t)γ̇hγh(t)> = 0.

11.4 Proofs of Chapter 5
In this section, we prove the results of Chapter 5: Geometry of Mixed-Euclidean metrics.

11.4.1 Proof of Theorem 5.9
Theorem 5.9 (Sufficient condition for power-Wasserstein to be mean kernel) The power-
Wasserstein metric of parameter p 6 1 is a mean kernel metric.

Proof of Theorem 5.9 (Sufficient condition for power-Wasserstein to be mean kernel). Let us

show that if p 6 1, then the function m(x, y) =
[
(xp + yp)

Ä
p x−y
xp−yp

ä2] 1
2−p is non-decreasing

in x (and by symmetry in y). If we factorize by y and define a new variable t = x/y, we have
to study the function f(t) = F (t)

1
2−p where F (t) = (tp + 1)

Ä
p t−1
tp−1

ä2
.

First, let us prove that F is non-decreasing if and only if p 6 1. We denote f0(x) =
p x−1
xp−1 > 0 and g0(x) = xpf0(x)2 so that F (x) = f0(x)2 +g0(x). Note that f0 is non-decreasing

if and only if p 6 1. We also introduce h0(x) = (xp + 1)(x− 1)2 so that F (x) = p2 h0(x)
(xp−1)2 .

1. If p − 1 > 0, then F ′(0) = −2p2 < 0 so F ′ cannot be positive around 0 because it is
smooth at 0. So F is not non-decreasing.

2. If p ∈]0, 1], then F is non-decreasing as product of three non-decreasing positive func-
tions.

3. We assume that p < 0. Let us prove separately that F is increasing on (0, 1) and on
(1,∞). As F is continuous (at 1), it will prove that F is increasing on (0,∞).

(a) Let us prove that F is increasing on (0, 1). We only need to prove that g0 is
increasing on (0, 1). We successively derive:

· g′0(x) = p2 x− 1
(xp − 1)3x

p−1︸ ︷︷ ︸
<0

((2− p)xp+1 + pxp − (p+ 2)x+ p)︸ ︷︷ ︸
g1(x)

,

· g′1(x) = (2− p)(p+ 1)xp + p2xp−1 − (p+ 2),
· g′′1(x) = pxp−2((2− p)(p+ 1)x+ p(p− 1)).
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We can notice that g1(1) = 0 and g′1(1) = 0. So if we prove that g′′1 < 0 on (0, 1),
then g′1 is decreasing thus positive, so g1 is increasing thus negative, and finally g′0
is positive so g0 increases.
i. If p+ 1 = 0, then g′′1 has the sign of p2(p− 1) < 0,
ii. if p+ 1 > 0, then g′′1 is positive before x0 := p(p−1)

(p+1)(p−2) < 0 and negative after,

iii. if p+ 1 < 0, then g′′1 is negative before x0 := p(p−1)
(p+1)(p−2) > 1 and positive after.

So we proved that F is increasing on (0, 1).
(b) Let us prove that F is increasing on (1,∞). As x 7−→ 1

(xp−1)2 is increasing, we only
need to prove that h0 is increasing on (1,∞) so that F is increasing on (1,∞) as
product of two positive increasing functions. We derive successively:
· h′0(x) = (x− 1)h1(x) with h1(x) = (p+ 2)xp − pxp−1 + 2,
· h′1(x) = pxp−2((p+ 2)x− (p− 1)).

We need to prove that h1 > 0 on (1,∞). As before, we distinguish the cases:
i. If p + 2 < 0, then h′1 is negative before x0 := p−1

p+2 > 1 and positive after. As
h1(x0) = 2− xp−1

0 > 1, we have h1 > 0 on (1,∞).
ii. If p + 2 > 0, then h′1 is negative on (1,∞). As limx→∞ h1(x) = 2, we have

h1 > 0 on (1,∞).
So we proved that F is increasing on (1,∞) and therefore on (0,∞).

Finally, we proved that F is non-decreasing if and only if p 6 1. As f = pow 1
2−p
◦ F , we can

assert that if p 6 1, then f is non-decreasing, as expected.

11.4.2 Proof of Theorem 5.19
Theorem 5.19 (Sufficient condition for a balanced bilinear form to be a metric) Let 〈·|·〉 =
Frob be the Frobenius inner product. Let g+, g− be deformed-Euclidean metrics respectively
associated to univariate diffeomorphisms u and v. Then the balanced bilinear form g0 is a
metric.

Proof of Theorem 5.19 (Sufficient condition for a balanced bilinear form to be a metric). Let
u, v : Sym+(n) −→ Sym(n) be two univariate diffeomorphisms onto the respective image of
Sym+(n) by u and v. Let g+, g− be the respective deformed-Euclidean metrics by u and v.
Hence for all Σ ∈ Sym+(n) and X, Y ∈ TΣSym+(n):

g+
Σ (X,X) = tr(dΣu(X)2),
g−Σ (Y, Y ) = tr(dΣv(Y )2).

Hence the flat parallel transports Π+ and Π− do not depend on the curve, they are simply
given by the differentials of u and v:

Π+
Σ→ΛX = (dΛu)−1(dΣu(X)),

Π−Σ→ΛY = (dΛv)−1(dΣv(Y )),
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where dΣu(X) = P dDu(P>XP )P> and [dDu(P>XP )]ij = u[1](di, dj)[P>XP ]ij given an
eigenvalue decomposition of Σ = PDP> with D = diag(d1, ..., dn) ∈ Diag+(n) and P ∈ O(n).
Note that dInu(X) = u′(1)X so dInu = u′(1)Id. The same is valid for v. Therefore, since the
parallel transport is O(n)-equivariant, the balanced bilinear form g0 is defined by:

g0
Σ(X, Y ) = tr((Π+

Σ→InX)(Π−Σ→InY ))
= tr(P (Π+

D→InP
>XP )P>P (Π−D→InP

>Y P )P>)

= 1
u′(1)v′(1)tr(dDu(P>XP )dDv(P>Y P ))

= 1
u′(1)v′(1)

∑
i,j

u[1](di, dj)v[1](di, dj)[P>XP ]ij[P>Y P ]ij.

First, g0 is symmetric. Second, since u : (0,∞) −→ R is a diffeomorphism, either u′ > 0 or
u′ < 0 and by the mean value theorem, the sign of u[1] is the sign of u′. Hence u[1](di,dj)

u′(1) > 0
and similarly v[1](di,dj)

v′(1) > 0 so the coefficients of the quadratic form g0
Σ(X,X) are positive. So

the balanced bilinear form g0 is a Riemannian metric.

11.4.3 Proof of Theorem 5.25
Theorem 5.25 (Curvature of Mixed-Euclidean metrics) Let u, v : Sym+(n) −→ Sym+(n)
be two univariate diffeomorphisms. We define the univariate diffeomorphism w = v ◦ u−1

so that u : (Sym+(n), gME(u,v)) −→ (Sym+(n), w′(1)
u′(1)v′(1)g

ME(Id,w)) is an isometry. For Σ =
PDP> ∈ Sym+(n), we denote X = PX ′P> ∈ TΣSym+(n) and analogously for Y, Z, T ∈
TΣSym+(n), we denote uij = u[1](di, dj), uijk = u[2](di, dj, dk) and analogously for v, w. We
denote mij = w[1](u(di), u(dj)) = vij

uij
and mijk = w[2](u(di), u(dj), u(dk)). Then the curvature

of the mixed-Euclidean metric gME(u,v) is:

R
ME(u,v)
Σ (X, Y, Z, T ) = 1

u′(1)v′(1)
∑
i,j,k,l

ρijkl(X ′ijY ′jkZ ′klT ′li − Y ′ijX ′jkZ ′klT ′li

+X ′ijZ
′
jkY

′
klT
′
li − Y ′ijZ ′jkX ′klT ′li),

where ρijkl = mijlmjlk
2mjl

uijujkukluli = 1
2ujlvjl

(uijvijl − vijuijl)(ujkvjkl − vjkujkl) is symmetric in
i↔ k, in j ↔ l and in u↔ v. In particular, at Σ = In, the curvature is:

R
ME(u,v)
In (X, Y, Z, T ) = 1

4

ïÅ
ln
∣∣∣∣v′u′
∣∣∣∣ã′ (1)

ò2

RA
In(X, Y, Z, T ),

where A stands for the affine-invariant metric (Formula 5.8). Therefore, the sectional curva-
ture of the mixed-Euclidean metric at In takes non-positive values. In particular, for mixed-
power-Euclidean metrics MPE(α, β) with α2 6= β2 (thus excluding log-Euclidean, power-
Euclidean and power-affine metrics), since κMPE(α,β)

λΣ (X, Y ) = λ−(α+β) × κMPE(α,β)
Σ (X, Y ) for

all λ > 0, the lower bound of the sectional curvature is −∞.

Proof of Theorem 5.25 (Curvature of Mixed-Euclidean metrics). We compute the curvature
of the metric gME(u,v) for univariate diffeomorphisms u, v : Sym+(n) −→ Sym+(n). Since



222 Part VII. Appendix

dΣv(X) = du(Σ)w(dΣu(X)) with w = v ◦ u−1, the map u is an isometry between gME(u,v)

and c gME(Id,w) with c = w′(1)
u′(1)v′(1) . So it suffices to compute the curvature of gME(Id,w) and to

conclude by pullback and scaling.
Let Σ = PDP> ∈ Sym+(n). We denote uij = u[1](di, dj), uijk = u[2](di, dj, dk) and

analogously for v and w.
The curvature of g := gME(Id,w) can be computed the same way as shown in [Michor et al.,

2000] for the metric BKM = MPE(1, 0) = ME(Id, log). Following [Michor et al., 2000], we
introduce GΣ(X) = dΣw(X) and ΓΣ(X, Y ) such that:

gΣ(X, Y ) = 1
w′(1)tr(dΣw(X)Y ) = 1

w′(1)tr(GΣ(X)Y ),

∇XΣY = dΣY (X) + ΓΣ(X, Y ),

where ∇ is the Levi-Civita connection of g. Note that GΣ : Sym(n) −→ Sym(n) is a linear
isomorphism and ΓΣ is symmetric. According to Lemma 5.3, [GD(X)]ij = wijXij. Then the
Riemann curvature tensors are defined by R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z and
R(X, Y, Z, T ) = −g(R(X, Y )Z, T ) so we can write R in function of Γ and dΓ or in function
of G and dG [Michor et al., 2000]:

R(X, Y )Z = dΓ(X)(Y, Z)− dΓ(Y )(X,Z) + Γ(X,Γ(Y, Z))− Γ(Y,Γ(X,Z))

= −1
4G
−1(dG(X)(G−1(dG(Y )(Z)))) + 1

4G
−1(dG(Y )(G−1(dG(X)(Z)))),

R(X, Y, Z, T ) = 1
4w′(1)tr

[(
dG(X)(G−1(dG(Y )(Z)))− dG(Y )(G−1(dG(X)(Z)))

)
T
]
.

So we only need to express dΣG(X)(Y ) = HΣw(X, Y ). Lemma 5.3 gives HΣw(X, Y ) =
P HDw(X ′, Y ′)P> and [HD(X ′, Y ′)]ij = ∑

k wijk(X ′ikY ′jk +X ′jkY
′
ik). Hence:

tr(dΣG(X)(G−1
Σ (dΣG(Y )(Z)))T ) = tr(dDG(X ′)(G−1

D (dDG(Y ′)(Z ′)))T ′)
=
∑
i,j

[dDG(X ′)(G−1
D (dDG(Y ′)(Z ′)))]ijT ′ij

=
∑
i,j,k

wijk(X ′ik[G−1
D (dDG(Y ′)(Z ′))]jk +X ′jk[G−1

D (dDG(Y ′)(Z ′))]ik)T ′ij

= 2
∑
i,j,k

wijkX
′
ik[G−1

D (dDG(Y ′)(Z ′))]jkT ′ij

= 2
∑
i,j,k

wijk
wjk

X ′ik[dDG(Y ′)(Z ′)]jkT ′ij

= 2
∑
i,j,k,l

wijkwjkl
wjk

X ′ik(Y ′jlZ ′kl + Y ′klZ
′
jl)T ′ij .

Therefore:

R(X, Y, Z, T ) = 1
w′(1)

∑
i,j,k,l

wijkwjkl
2wjk

(X ′ikY ′klZ ′ljT ′ji +X ′ikZ
′
klY

′
ljT
′
ji

− Y ′ikX ′klZ ′ljT ′ji − Y ′ikZ ′klX ′ljT ′ji).
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To get the curvature of gME(u,v), we scale this formula by c = w′(1)
u′(1)v′(1) and we pull it back

via the map u. The coefficients wij = w[1](di, dj) and wijk = w[2](di, dj, dk) are replaced by
the coefficients mij = w[1](u(di), u(dj)) = vij/uij and mijk = w[2](u(di), u(dj), u(dk)). The
vectors X = [Xij]i,j are replaced by the vectors dΣu(X) = [uijXij]i,j. Hence the curvature of
ME(u, v) writes (modulo a permutation of indexes l→ k → j → l):

R
ME(u,v)
Σ (X, Y, Z, T ) = 1

u′(1)v′(1)
∑
i,j,k,l

ρijkl(X ′ijY ′jkZ ′klT ′li +X ′ijZ
′
jkY

′
klT
′
li (11.22)

− Y ′ijX ′jkZ ′klT ′li − Y ′ijZ ′jkX ′klT ′li),

where ρijkl = mijlmjlk
2mjl

uijujkukluli. This expression is symmetric in i ↔ k and j ↔ l but it
does not look really symmetric in u ↔ v. Let us check that it is though. If dj 6= dl, we can
write:

ρijkl = 1
2
ujl
vjl

1
u(dj)− u(dl)

(mij −mil)
1

u(dj)− u(dl)
(mkj −mkl)uijujkukluli

= 1
2(dj − dl)2

1
ujlvjl

(vijuil − uijvil)(vkjukl − ukjvkl)

= (vij(uil − uij)− uij(vil − vij))(vkj(ukl − ukj)− ukj(vkl − vkj))
2(dj − dl)2ujlvjl

= 1
2ujlvjl

(uijvijl − vijuijl)(ujkvjkl − vjkujkl).

Since the two expressions of ρijkl are continuous in (di, dj, dk, dl), they also coincide when
dj = dl. The last expression is clearly symmetric in u↔ v.
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The curvature at Σ = D = In follows from the following computations:

uij = u[1](di, dj) = u′(1),

mij = vij
uij

= v′(1)
u′(1) ,

mijk = w[2](u(di), u(dj), u(dk)) = 1
2w
′′(u(1)),

w′ = (v′ ◦ u−1)× (u−1)′ = v ◦ u−1

u′ ◦ u−1 ,

w′ ◦ u = v′

u′
,

(w′′ ◦ u)× u′ = v′′u′ − v′u′′

u′2
,

mijk =
Å
v′′u′ − u′v′′

2u′3
ã

(1),

ρijkl = mijlmjlk

2mjl

uijujkukluli

= u′(1)
2v′(1)

Ç
v′′(1)u′(1)− u′(1)v′′(1)

2u′(1)3

å2

u′(1)4

= 1
8u′(1)v′(1)(v′′(1)u′(1)− v′(1)u′′(1))2

= 1
8u′(1)v′(1)u

′(1)2v′(1)2
Å
v′′(1)
v′(1) −

u′′(1)
u′(1)

ã2

= 1
8u
′(1)v′(1) ((ln |v′|)′ − (ln |u′|)′)2 (1)

= 1
8u
′(1)v′(1)

ïÅ
ln
∣∣∣∣v′u′
∣∣∣∣ã′ (1)

ò2

.

Hence, according to Formula (11.22), the curvature at In writes:

R
ME(u,v)
In

(X,Y, Z, T ) = 1
8

ñÅ
ln
∣∣∣∣v′u′
∣∣∣∣ã′ (1)

ô2

tr(XY ZT +XZY T − Y XZT − Y ZXT )

= 1
8

ñÅ
ln
∣∣∣∣v′u′
∣∣∣∣ã′ (1)

ô2

tr(XY ZT − Y XZT ), (11.23)

because the second and fourth terms cancel. Recognizing the curvature of the affine-invariant
RA
In(X, Y, Z, T ) = 1

2tr(XY ZT − Y XZT ) metric [Skovgaard, 1984, Pennec et al., 2020,
Thanwerdas and Pennec, 2022b], we can finally write:

R
ME(u,v)
In (X, Y, Z, T ) = 1

4

ïÅ
ln
∣∣∣∣v′u′
∣∣∣∣ã′ (1)

ò2

RA
In(X, Y, Z, T ). (11.24)
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11.4.4 Proof of Theorem 5.26
Theorem 5.26 (Riemannian operations of MPE metrics) Let α, β ∈ R such that α+ β 6= 0,
thus excluding log-Euclidean and power-affine metrics. Table 5.3 summarizes the formulae
of the geodesics, the logarithm map and the distance in the particular case where Σ,Λ ∈
Sym+(n) and V ∈ TΣSym+(n) commute. They essentially reduce to the formulae of the
α0-power-Euclidean metric with α0 = α+β

2 . These formulae are generally not valid for non-
commuting matrices.

Geodesics γ(Σ,V )(t) = (Σα0 + t dΣpowα0(V ))1/α0

Logarithm LogΣ(Λ) = (dΣpowα0)−1(Λα0 − Σα0)
Distance d(Σ,Λ) = 1

α0
‖Λα0 − Σα0‖Frob

Table 5.3: Riemannian operations of Mixed-Power-Euclidean metrics for commuting matrices

Proof of Theorem 5.26 (Riemannian operations of MPE metrics). We compute the geodesics,
the logarithm map and the distance between commuting matrices. We show that the
geodesics of the Mixed-Power-Euclidean metrics MPE(α, β) with α + β 6= 0 when the
base point Σ ∈ Sym+(n) and the initial tangent vector X ∈ TΣSym+(n) commute is
γ(t) = (Σα0 + t α0 Σα0−1X)1/p0 where α0 = α+β

2 6= 0. Once this is shown, the formulae
of the logarithm and the distance are obvious so we omit the proofs. As the metric is O(n)-
invariant, we can assume that Σ and X are diagonal matrices.

First, we assume that α, β 6= 0. As MPE(α, β) is a balanced metric, the Levi-Civita
connection is ∇MPE(α,β) = 1

2(pow∗α∇E + pow∗β∇E) where ∇E is the Euclidean connection on
symmetric matrices. Since for any curve γ on Sym+(n), we have:

(pow∗α∇E)γ′(t)γ′ = (dγ(t)powα)−1(∇E
(dγ(t)powα)(γ′(t))dpowα(γ′))

= (dγ(t)powα)−1(∇E
(γα)′(t)(γα)′)

= (dγ(t)powα)−1((γα)′′(t)),

the geodesic equation ∇MPE(α,β)
γ′ γ′ = 0 rewrites:

(dγ(t)powα)−1((γα)′′(t)) + (dγ(t)powβ)−1((γβ)′′(t)) = 0.

We compute:

γ(t)α = Σα(In + t α0 Σ−1X)
α
α0 ,

(γα)′(t) = αΣα−1X(In + t α0 Σ−1X)
α
α0
−1
,

(γα)′′(t) = α(α− α0) Σα−2X2(In + t α0 Σ−1X)
α
α0
−2
,

(dγ(t)powα)−1((γα)′′(t)) = 1
α
γ(t)1−α(γα)′′(t)

= α− β
2 Σ−1X2(In + t α0 Σ−1X)

1
α0
−2
. (11.25)

As this expression is skew-symmetric in (α, β), the curve γ satisfies the geodesic equation.
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Second, we assume that α 6= 0 and β = 0. Similarly, the Levi-Civita connection is
∇MPE(α,β) = 1

2(pow∗α∇E+log∗∇E). Hence the geodesic equation is analogously (dγ(t)powα)−1((γα)′′(t))+
(dγ(t) log)−1((log γ)′′(t) = 0. Thus:

log γ(t) = log Σ + 1
α0

log(In + t α0 Σ−1X),

(log γ)′(t) = Σ−1X(In + t α0 Σ−1X)−1,

(log γ)′′(t) = −α0 Σ−2X2(In + t α0 Σ−1X)−2,

(dγ(t) log)−1((log γ)′′(t)) = γ(t)(log γ)′′(t)

= −α2 Σ−1X2(In + t α0 Σ−1X)
1
α0
−2
.

This expression cancels Equation (11.25) with β = 0 so the curve γ is the geodesic.

11.5 Proofs of Chapter 6
In this section, we prove the results of Chapter 6: Geometry of Quotient-affine metrics.

11.5.1 Proof of Theorem 6.2
Theorem 6.2 (Vertical and horizontal distributions and projections) The vertical distribu-
tion is given by VΣ = Σ•ψ(Rn) and the horizontal distribution is given byHΣ = SΣ−1(Hol(n)).
The vertical projection is:

ver : V ∈ TΣSym+(n) 7−→ Σ • ψ((In + A(Σ))−1Diag(Σ−1V )1) ∈ VΣ.

Then, the horizontal projection is simply hor(V ) = V − ver(V ).

Proof of Theorem 6.2 (Vertical and horizontal distributions and projections). We denote ∆Σ =
Diag(Σ)1/2. Using Section 6.2.1, we have:

dΣπ(V ) = ∆−1
Σ
[
V − 1

2(∆−2
Σ Diag(V )Σ + ΣDiag(V )∆−2

Σ )
]

∆−1
Σ .

V ∈ VΣ ⇐⇒ ∀i, j ∈ {1, ..., n}, Vij = Σij × 1
2

Ä
Vii
Σii + Vjj

Σjj

ä
⇐⇒ V ∈ Σ • ψ(Rn).

W ∈ HΣ ⇐⇒ ∀V ∈ VΣ, tr(Σ−1V Σ−1W ) = 0,
⇐⇒ ∀µ ∈ Rn,

∑
ijkl [Σ−1]ijΣjk(µj + µk)[Σ−1]klWli = 0,

⇐⇒ ∀D ∈ Diag(n), tr(Σ−1DW +DΣ−1W ) = 0,
⇐⇒ (Σ−1W +WΣ−1) ∈ Hol(n)⇐⇒ W ∈ SΣ−1(Hol(n)).

Thus, we have computed the horizontal space for the affine-invariant metric α = 1 and
β = 0. It is still valid for all α > 0 and β > −α/n since the latter is included in the former
(because tr(Σ−1W ) = 0) and they have the same dimension so they are equal. Now we
compute the vertical projection. Let V ∈ TΣSym+(n) and let µ ∈ Rn and W ∈ HΣ such that
V = Σ • ψ(µ) + W . We are looking for µ. Since Σ−1V = Σ−1(Σ • ψ(µ)) + Σ−1W , we have
[Σ−1V ]ii = ∑

j [Σ−1]ijΣij(µi + µj) = µi + [A(Σ)µ]i so Diag(Σ−1V )1 = (In + A(Σ))µ, hence
µ = (In + A(Σ))−1Diag(Σ−1V )1.
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11.5.2 Proof of Theorem 6.3
Theorem 6.3 (Horizontal lift) Let Σ ∈ Sym+(n) and C = Cor(Σ) ∈ Cor+(n). The horizontal
lift at Σ of X ∈ TCCor+(n) is X# = hor(∆ΣX∆Σ) with ∆Σ = Diag(Σ)1/2. In particular, the
horizontal lift at C ∈ Sym+(n) is X# = hor(X).

Proof of Theorem 6.3 (Horizontal lift). The horizontal lift isX# = hor(∆ΣX∆Σ) since dΣπ(∆ΣX∆Σ) =
∆−1

Σ
[
V − 1

2(∆−2
Σ Diag(V )Σ + ΣDiag(V )∆−2

Σ )
]

∆−1
Σ = X, where V = ∆ΣX∆Σ.

11.5.3 Proof of Theorem 6.4
Theorem 6.4 (Expression of quotient-affine metrics) For all C ∈ Cor+(n) andX ∈ TCCor+(n),
gα,βC (X,X) = α gQA

C (X,X) (independent from β) where:

gQA
C (X,X) = tr((C−1X)2)− 21>Diag(C−1X)(In + A(C))−1Diag(C−1X)1.

Proof of Theorem 6.4 (Expression of quotient-affine metrics). We use the definition of the
quotient metric.

gα,βC (X,X) = Gα,β
C (hor(X), hor(X)) = Gα,β

C (X,X)−Gα,β
C (ver(X), ver(X)).

First, we observe that tr(C−1X) = tr(C−1ver(X)) since tr(C−1hor(X)) = 0 so the terms in
β vanish and gα,βC (X,X) = α(tr(C−1XC−1X)− tr(C−1ver(X)C−1ver(X))) does not depend
on β.

We denote ver(X) = C • ψ(µ) with µ = (In + A(C))−1Diag(C−1X)1. Then:

tr(C−1ver(X)C−1ver(X)) = ∑
ijkl [C−1]ijCjk(µj + µk)[C−1]klCli(µl + µi),

= 2∑ij (δij + [C−1]ijCij)µiµj,
= 2µ>(In + A(C))µ,
= 21>Diag(C−1X)(In + A(C))−1Diag(C−1X)1.

11.5.4 Proof of Theorem 6.5
Theorem 6.5 (Geodesics of quotient-affine metrics) The geodesic from C ∈ Cor+(n) with
initial tangent vector X ∈ TCCor+(n) is:

∀t ∈ R, γQA
(C,X)(t) = ExpQA

C (tX) = π(C1/2 exp(t C−1/2hor(X)C−1/2)C1/2).

In particular, the quotient-affine metric is geodesically complete.

Proof of Theorem 6.5 (Geodesics of quotient-affine metrics). The geodesics are the the pro-
jections of horizontal geodesics [Gallot et al., 2004] so they are given by ExpQA

C (X) =
π(ExpGC(X#)) = π(C1/2 exp(C−1/2hor(X)C−1/2)C1/2).
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11.5.5 Proof of Theorem 6.6
Theorem 6.6 (Existence of a logarithm) For all C1, C2 ∈ Cor+(n), there exists X ∈
TCCor+(n) such that ExpQA

C1 (X) = C2.

Proof of Theorem 6.6 (Existence of a logarithm). We prove the coercivity of f : D ∈ Diag+(n) 7−→
tr(log(ΣDΛDΣ)2). Since f(D) = tr(log(Σ′D−1Λ′D−1Σ′)2) with Σ′ = Σ−1 and Λ′ = Λ−1, it
suffices to prove that if d1 −→ 0, then f(D) −→ +∞. Indeed, if d1 −→ 0, then [DΛD]11 −→ 0
so DΛD tends to a singular matrix and so does ΣDΛDΣ. Hence f(D) −→ +∞.

11.5.6 Proof of Theorem 6.7
Theorem 6.7 (Levi-Civita connection and sectional curvature of quotient-affine metrics)
The Levi-Civita connection of quotient-affine metrics is:

(∇QA
X Y )|C = dCY (X) + sym[Diag(X#)Y # + Diag(Y #)X# + Diag(X#C−1Y #)C
−X#C−1Y # − 1

2Diag(X#)CDiag(Y #)− 3
2Diag(X#)Diag(Y #)C].

The curvature of quotient-affine metrics is:

κQA
C (X,Y ) = κGC(X#, Y #) + 3

4
GC(ver[X#, Y #], ver[X#, Y #])
gC(X,X)gC(Y, Y )− gC(X,Y )2 ,

= 2 tr((C−1X#C−1Y # − C−1Y #C−1X#)2) + 31>D(In +A(C))−1D1

8(gC(X,X)gC(Y, Y )− gC(X,Y )2)

where [V,W ] = dW (V )− dV (W ) is the Lie bracket on Sym+(n) and D = D(X,Y )−D(Y,X) with
D(X,Y ) = Diag(C−1Diag(X#)Y # − C−1Y #C−1Diag(X#)C). There is a slight abuse of notation
because ver[X#, Y #] induces that X# and Y # are vector fields. Indeed here, they are horizontal
vector fields extending the horizontal lifts at C.

Proof of Theorem 6.7 (Levi-Civita connection and sectional curvature of quotient-affine metrics). According
O’Neill’s equations of submersions, the Levi-Civita connection of quotient-affine metrics is given by:

(∇QA
X Y )|C = dΣπ((∇GX#Y

#)|C),

= dCπ(dCY #(X#)− 1
2(X#C−1Y # + Y #C−1X#)),

= dCY
#(X#)− 1

2(Diag(dCY #(X#))C + CDiag(dCY #(X#)) (11.26)

− 1
2(X#C−1Y # + Y #C−1X# −Diag(X#C−1Y #)C − CDiag(X#C−1Y #)).

Since Yπ(Σ) = ∆−1
Σ Y #

Σ ∆−1
Σ − sym(∆−3

Σ Diag(Y #
Σ )Σ∆−1

Σ ) where ∆Σ = Diag(Σ)1/2, then:

dπ(Σ)Y (X) = dΣ(Y ◦ π)(X#),
= ∆−1

Σ (dΣY
#(X#))∆−1

Σ − sym(∆−3
Σ Diag(dΣY

#(X#))Σ∆−1
Σ ) (11.27)

− sym[∆−3
Σ Diag(X#)Y #∆−1

Σ −
3
2∆−5

Σ Diag(X#)Diag(Y #)Σ∆−1
Σ

+ ∆−3
Σ Diag(Y #)X#∆−1

Σ −
1
2∆−3

Σ Diag(Y #)ΣDiag(X#)∆−3
Σ ].
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Since line (11.26) is line (11.27) at Σ = C, we finally get:

(∇QA
X Y )|C = dCY (X) + sym[Diag(X#)Y # + Diag(Y #)X# + Diag(X#C−1Y #)C

−X#C−1Y # − 1
2Diag(X#)CDiag(Y #)− 3

2Diag(X#)Diag(Y #)C].

The curvature in formula (6.10) directly comes from the fundamental equations of submersions
[O’Neill, 1966]. The curvature of the affine-invariant metric comes from [Skovgaard, 1984]. Hence
we only have to compute GC(ver[X#, Y #], ver[X#, Y #]) where G is the affine-invariant metric, [·, ·]
is the Lie bracket on the manifold of SPD matrices (it is not the matrix commutator), C ∈ Cor+(n)
and X#, Y # are horizontal vector fields on Sym+(n) extending X#

C and Y #
C respectively, where

X,Y ∈ TCCor+(n) are tangent vectors at C. For example, we can consider that X,Y are constant
vector fields on Cor+(n) and simply define X#, Y # as their horizontal lifts everywhere:

Y #
Σ = hor(∆ΣY∆Σ),

= ∆ΣY∆Σ − ver(∆ΣY∆Σ),
= ∆ΣY∆Σ − 2Σ • ψ((In + Σ • Σ−1)−1Diag(Σ−1∆ΣY∆Σ)1),
= ∆ΣY∆Σ − 2Σ • ψ((In + Σ • Σ−1)−1Diag(π(Σ)−1Y )1),

with ∆Σ = Diag(Σ)1/2 and ψ(µ) = µ1> + 1µ> for µ ∈ Rn. Now we can compute [X#, Y #] =
∂X#Y # − ∂Y #X# and evaluate it at C. We have:

∂X#Y # = 1
2(∆−1

Σ Diag(X#)Y∆Σ + ∆ΣYDiag(X#)∆−1
Σ )

−X# • ψ((In + Σ • Σ−1)−1Diag(Σ−1Y )1 + vΣ(X,Y ),

where vΣ(X,Y ) ∈ VΣ is a short notation for the following expression:

Σ • ψ[(In + Σ • Σ−1)−1(X# • Σ−1 − Σ • Σ−1X#Σ−1)(In + Σ • Σ−1)−1Diag(Σ−1Y )1
+ (In + Σ • Σ−1)−1Diag(π(Σ)−1Xπ(Σ)−1Y )1]

We evaluate it at C ∈ Cor+(n) so that ∆C = In. We denote B = (In + C • C−1)−1 to simplify
the notations. Note that the last term is symmetric in X and Y so we can define v0

C(X,Y ) =
C • ψ[B(X# • C−1 − C • C−1X#C−1)BDiag(C−1Y )1]. Then:

[X#, Y #] = 1
2(Diag(X#)Y + YDiag(X#)−Diag(Y #)X −XDiag(Y #)), (11.28)

− (X# • ψ(BDiag(C−1Y )1)− Y # • ψ(BDiag(C−1X)1)), (11.29)
+ v0

C(X,Y )− v0
C(Y,X). (11.30)

Fortunately, the computation of ver[X#, Y #] = C •ψ(BDiag(C−1[X#, Y #])1) brings some simpli-
fications. We proceed line by line.

1. To simplify line (11.28), we plug Y = Y # − 1
2(Diag(Y #)C + CDiag(Y #)). We proceed term

by term.

(a)

Diag(C−1Diag(X#)Y ) = Diag(C−1Diag(X#)Y #) (11.31)

− 1
2Diag(C−1Diag(X#)Diag(Y #)C)− 1

2Diag(C−1Diag(X#)CDiag(Y #))

The second term is symmetric in X and Y .
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(b)

Diag(C−1YDiag(X#)) = Diag(C−1Y #Diag(X#)) (11.32)

− 1
2Diag(C−1Diag(Y #)CDiag(X#))− 1

2Diag(Y #)Diag(X#)

The first term in null, the third term is symmetric in X and Y .

The expression composed of the third term of Equation (11.31) plus the second term of Equa-
tion (11.32) is symmetric in X and Y . Hence, the vertical projection of line (11.28) reduces
to the vertical projection of 1

2(Diag(X#)Y # −Diag(Y #)X#).

2. To simplify line (11.29), we can show by computing coordinate by coordinate that Diag(C−1(X#•
ψ(BDiag(C−1Y )1)))1 = (C−1 • X#)BDiag(C−1Y )1. Hence, line (11.29) cancels the first
term of v0.

3. Finally, a nicer expression of the second term of v0 can be obtained by noticing that Diag(Y #)1 =
−2BDiag(C−1Y )1. After simple calculations, we get (C • C−1X#C−1)BDiag(C−1Y )1 =
−1

2Diag(CDiag(X#)C−1Y #C−1)1.

To summarize, we have ver[X#, Y #] = C • ψ(1
2BD1) with D = D(X,Y )−D(Y,X) ∈ Diag(n)

and D(X,Y ) = Diag(C−1Diag(X#)Y #−C−1Y #C−1Diag(X#)C). Finally, since GC(C •ψ(µ), C •
ψ(µ)) = 2µ>Bµ for any vector µ ∈ Rn, we get GC(ver[X#, Y #], ver[X#, Y #]) = 1

21
>DBD1, as

expected.

11.6 Proofs of Chapter 7
In this section, we prove the results of Chapter 7: Theoretically and computationally convenient
Cholesky-based geometries.

11.6.1 Proof of Theorem 7.1
Theorem 7.1 (Bounds of curvature) The sectional curvature of the quotient-affine metric takes
positive and negative values. It is bounded from below and unbounded from above.

Proof appendix of Theorem 7.1 (Bounds of curvature). First of all, κC(X,Y ) > κAI
C (X,Y ) > −1

2 so
the curvature is bounded from below. Second, at C = In, X# = X and Y # = Y so Diag(X#) =
Diag(Y #) = 0 and µ = 0. Hence, κIn(X,Y ) = κAI

In
(X,Y ) 6 0 and for example κIn(Eij , Eik) =

−1
8 < 0 with i 6= j 6= k 6= i ∈ {1, ..., n} [Thanwerdas and Pennec, 2022b]. So the curvature takes

negative values. Third, let X = 11>− In and Y = µ1>+ 1µ>− 2 diag(µ) with sum(µ) = 1>µ = 0
where µ ∈ Rn. Let C = (1− ρ)In + ρ11> ∈ Cor+(n) for ρ ∈ (− 1

n−1 , 1). Let us show that κC(X,Y )
tends to +∞ when ρ→ − 1

n−1 , which proves that the curvature is not bounded from above.
The symmetric matric 11> has two eigenvalues: 0 with multiplicity n−1 and n with multiplicity

1. Since (11>)2 = n11>, the minimal polynomial is P11>(x) = x(x−n) for x ∈ R. For all α, β ∈ R,
the symmetric matrix Σ = αIn + β11> has minimal polynomial PΣ(x) = (x−α)(x− (α+ nβ)) for
x ∈ R, which is of degree 2. Hence Σ is positive definite if and only if α > 0 and α + nβ > 0. In
this case, its inverse is a polynomial in 11> of degree 1. More precisely, Σ−1 = α′In + β′11> with
α′ = 1

α and α′ + nβ′ = 1
α+nβ , i.e. β

′ = − β
α(α+nβ) . Note that αβ′ + βα′ + nββ′ = 0.



Chapter 11. Proofs 231

Moreover, for all i 6= j ∈ {1, ..., n}, [Σ•Σ−1]ii = (α+β)(α′+β′) and [Σ•Σ−1]ij = ββ′. Therefore,
In + Σ • Σ−1 = AIn +B11> with A = 1 + (α+ β)(α′ + β′)− ββ′ = 2 + αβ′ + βα′ = 2α(α+nβ)+nβ2

α(α+nβ)
and B = ββ′. Note that A + nB = 2. And (In + Σ • Σ−1)−1 = A′In + B′11> with A′ = 1

A and
B′ = − B

2A .
We compute κC(X,Y ) where C = αIn + β11> ∈ Cor+(n) with α+ β = 1.

C−1X = (α′In + β′11>)(11> − In)
= −α′In + (α′ + (n− 1)β′)11>

= − 1
α
In + 1

α(α+ nβ)11
>,

Diag(C−1X) = (n− 1)β′In,
(In + C • C−1)−1Diag(C−1X)1 = (n− 1)β′(A′In +B′11>)1

= n− 1
2 β′1,

X# = X − (n− 1)β′C,
Diag(X#) = −(n− 1)β′In,
D(X,Y ) = Diag(C−1Diag(X#)Y # − C−1Y #C−1Diag(X#)C)

= 0,
C−1Y = (α′In + β′11>)(µ1> + 1µ> − 2diag(µ))

= α′µ1> + (α′ + (n− 2)β′)1µ> − 2α′diag(µ),
Diag(C−1Y ) = (n− 2)β′diag(µ),

(In + C • C−1)−1Diag(C−1Y )1 = (n− 2)β′(A′In +B′11>)µ
= (n− 2)β′A′µ,

Y # = Y − (n− 2)β′A′(diag(µ)C + Cdiag(µ)),
Diag(Y #) = −2(n− 2)β′A′diag(µ),

C−1Diag(Y #)X# = −2(n− 2)β′A′(α′In + β′11>)diag(µ)(11> − In)
= −2(n− 2)β′A′(−α′diag(µ) + α′µ1> − β′1µ>),

C−1X#C−1Diag(Y #)C
= −2(n− 2)β′A′(−α′In + (α′ + (n− 1)β′)11>)(α′In + β′11>)diag(µ)(αIn + β11>)
= −2(n− 2)β′A′(−α′In + (α′ + (n− 1)β′)11>)(diag(µ) + α′βµ1> + αβ′1µ>)
= −2(n− 2)β′A′[−α′(diag(µ) + α′βµ1> + αβ′1µ>) + (α′ + (n− 1)β′)(1 + nαβ′)1µ>],

C−1Diag(Y #)X# − C−1X#C−1Diag(Y #)C
= −2(n− 2)β′A′[α′(1 + α′β)µ1> − (α′ + (n− 1)β′)(1 + nαβ′)1µ>],
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D(Y,X) = −2(n− 2)β′A′
Å 1
α2 −

1 + (n− 1)αβ′

α+ nβ

ã
diag(µ) (11.33)

= −2(n− 2)β′A′
Å 1
α2 −

1
(α+ nβ)2

ã
diag(µ)

= 2n(n− 2) β2

2α(α+ nβ) + nβ2
2α+ nβ

α2(α+ nβ)2 diag(µ),

1>D(In + C • C−1)−1D1 = A′
Å

2n(n− 2) β2

2α(α+ nβ) + nβ2
2α+ nβ

α2(α+ nβ)2

ã2
‖µ‖2

= 4n2(n− 2)2 β4(2α+ nβ)2

[α(α+ nβ)(2α(α+ nβ) + nβ2)]3 ‖µ‖
2,

where we used α + β = 1 from Equation (11.33).
Now, we compute gQA

C (X,X), gQA
C (Y, Y ) and gQA

C (X, Y ).

gC(X,X) = tr((C−1X)2)− 21>Diag(C−1X)(In + C • C−1)−1Diag(C−1X)1

= tr
Ä
(−α′In + (α′ + (n− 1)β′)11>)2

ä
− 2(n− 1)2β′

2sum(A′In +B′11>)

= tr(α′2In + (n(α′ + (n− 1)β′)2 − 2α′(α′ + (n− 1)β′))11>)

− 2(n− 1)2β′
2
n(A′ + nB′)

= n((n− 1)α′2 + 2(n− 1)2α′β′ + n(n− 1)2β′
2)− n(n− 1)2β′

2

= n(n− 1)
α2(α+ nβ)2 ((α+ nβ)2 − 2(n− 1)β(α+ nβ) + (n− 1)2β2)

= n(n− 1)
α2(α+ nβ)2 ,

gC(Y, Y ) = tr((C−1Y )2)− 21>Diag(C−1Y )(In + C • C−1)−1Diag(C−1Y )1

= tr
Ä
(α′µ1> + (α′ + (n− 2)β′)1µ> − 2α′diag(µ))2

ä
− 2(n− 2)2β′

2
µ>(A′In +B′11>)µ

= tr(4α′2diag(µ)2 + α′(α′ + (n− 2)β′)(nµµ> + ‖µ‖211>))
− 2α′tr((2α′ + (n− 2)β′)µµ> + α′(µ • µ)1> + (α′ + (n− 2)β′)1(µ • µ)>))

− 2(n− 2)2β′
2
A′‖µ‖2

= ‖µ‖2(4α′2 + 2nα′(α′ + (n− 2)β′)− 4α′(2α′ + (n− 2)β′)− 2(n− 2)2β′
2
A′)

= ‖µ‖2(2(n− 2)α′(α′ + (n− 2)β′)︸ ︷︷ ︸
1+β

α2(α+nβ)

− 2(n− 2)2 β′
2
A′︸ ︷︷ ︸

β2
α(α+nβ)(2α(α+nβ)+nβ2)

)

= 2(n− 2)‖µ‖2

α2(α+ nβ)(2α(α+ nβ) + nβ2)((1 + β)(2α(α+ nβ) + nβ2)− (n− 2)αβ2)︸ ︷︷ ︸
2α(1+β)(α+nβ)+2β2(α+nβ)=2(α+nβ)

= 4(n− 2)‖µ‖2

α2(2α(α+ nβ) + nβ2) ,
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gC(X,Y )
= tr(C−1XC−1Y )− 21>Diag(C−1X)(In + C • C−1)−1Diag(C−1Y )1
= tr((−α′In + (α′ + (n− 1)β′)11>)(α′µ1> + (α′ + (n− 2)β′)1µ> − 2α′diag(µ)))

− 2(n− 1)(n− 2)β′21>(A′In + β′11>)µ
= constant× sum(µ) = 0.

Finally:

3
8

1>D(In + C • C−1)−1D1

gC(X,X)gC(Y, Y )− gC(X, Y )2 = 3n(n− 2)
8(n− 1)

αβ4

α + nβ

Å 2α + nβ

2α(α + nβ) + nβ2

ã2
.

When β → − 1
n−1 (and α = 1 − β → n

n−1), we have α + nβ → 0 and we have
αβ4

Ä
2α+nβ

2α(α+nβ)+nβ2

ä2
→ n

(n−1)3 so this quantity tends to +∞. Finally with C = (1 −
ρ)In + ρ11> ∈ Cor+(n) with ρ ∈ (− 1

n−1 ; 1), X = In − 11> ∈ TCCor+(n) and Y =
µ1> + 1µ> − 2diag(µ) ∈ TCCor+(n), we have:

κC(X, Y ) > −1
2 + 3

8
1>D(In + C • C−1)−1D1

gC(X,X)gC(Y, Y )− gC(X, Y )2 −→
ρ→− 1

n−1

+∞. (11.34)

This proves that the quotient-affine sectional curvature is not bounded from above.

11.6.2 Proof of Theorem 7.2
Theorem 7.2 (Characterization of affine-invariant metrics) Let g be a Riemannian metric
on SPD matrices. The following statements are equivalent:

1. g is GL(n)-invariant,
2. g is GL+(n)-invariant,
3. g is SL(n)-invariant and R+-invariant,
4. g is SO(n)-invariant and Diag+(n)-invariant,
5. g is S(n)-invariant and LT+(n)-invariant.

Proof of Theorem 7.2 (Characterization of affine-invariant metrics). The first statement clearly
implies the others. To prove 2 =⇒ 1, we need to take a general GL+(n)-invariant metric on
SPD matrices and prove that it is GL(n)-invariant. It amounts to prove that SO(n)-invariant
inner products on symmetric matrices are O(n)-invariant, which is well known so 2 =⇒ 1. To
prove 3 =⇒ 2; 4 =⇒ 2 and 5 =⇒ 1, it suffices to prove that the pairs of groups respectively
generate GL+(n), GL+(n) and GL(n).

The group generated by SL(n) and R+ is GL+(n) so 3 =⇒ 2. The group generated
by SO(n) and Diag+(n) is also GL+(n) (it is clearly included in GL+(n) and conversely it
contains Sym+(n) by the spectral theorem and GL+(n) by polar decomposition) so 4 =⇒ 2.

To prove that 5 =⇒ 1, let us show that the group generated by S(n) and LT+(n) is
GL(n). First, the LU decomposition exists for any square matrix modulo a permutation.
More precisely, for all A ∈ GL(n), there exists a permutation σ ∈ S(n), a lower triangular
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matrix L ∈ LT∗(n) and an upper triangular matrix U ∈ UT+(n) with Diag(U) = In such
that A = PσLU . If we permute the rows and columns of U according to the permutation
σ0 : k 7−→ n + 1 − k, then Pσ0UP

>
σ0 is lower triangular with ones on the diagonal so it

is in LT+(n). Hence the group generated by S(n) and LT∗(n) is GL(n). Since LT∗(n) is
generated by LT+(n) and Diag∗(n), it suffices to prove that Diag∗(n) is generated byS(n) and
LT+(n). Since Diag∗(n) is generated by Diag+(n) and matrices of the form diag(±1, ...,±1)
and since Diag+(n) ⊂ LT+(n), it suffices to prove that matrices of the form diag(±1, ...,±1)
are generated by S(n) and LT+(n). By matrix product and permutations, it suffices to prove
that diag(−1, 1, ..., 1) is generated by S(n) and LT+(n). The following product of matrices:

∈LT+(2)︷ ︸︸ ︷Å
1 0
−1 1

ã ∈UT+(2)︷ ︸︸ ︷Å
1 1
0 1

ã ∈LT+(2)︷ ︸︸ ︷Å
1 0
−1 1

ã
↗ ↓ ↗ ↓ ↗ ↓=

S(2) 3
Å

0 1
1 0

ã Å
−1 1
1 0

ã Å
−1 0
1 1

ã Å
−1 0
0 1

ã (11.35)

can be generalized in dimension n by adding a diagonal block In−2. Hence, the matrix
diag(−1, 1, ..., 1) is generated by S(n) and LT+(n) so LT∗(n) as well and finally GL(n)
entirely.

11.6.3 Proof of Theorem 7.4
Theorem 7.4 (Lie-Cholesky are LT+(n)-invariant metrics) A Riemannian metric on

Sym+(n) is a Lie-Cholesky metric if and only if it is LT+(n)-invariant.

Proof of Theorem 7.4 (Lie-Cholesky are LT+(n)-invariant metrics). Let g be a metric on Sym+(n).
Let Σ ∈ Sym+(n), V ∈ TΣSym+(n), L = Chol(Σ) and Z = dΣChol(X). Note that Equation
(7.10) rewrites L−1Z = dInChol(L−1V L−>). Thus, by definition of the pushforward, we have
the following equalities:

(Chol∗g)L(Z,Z) = gΣ(V, V ) (11.36)
(Chol∗g)In(L−1Z,L−1Z) = gIn(L−1V L−>, L−1V L−>) (11.37)

Hence, g is a Lie-Cholesky metric if and only if Chol∗g is left-invariant if and only if the left
terms are equal if and only if the right terms are equal if and only if g is invariant under the
action of LT+(n).

11.6.4 Proof of Lemma 7.8
Lemma 7.8 (Operator ad∗ for Lie-Cholesky metrics) Let LC(A) be a Lie-Cholesky

metric characterized by A ∈ Sym+(n(n+1)
2 ). Then for X, Y ∈ LT(n), vec(ad∗(X)(Y )) =

A(In ⊗X> −X ⊗ In)A−1vec(Y ).
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Proof of Lemma 7.8 (Operator ad∗ for Lie-Cholesky metrics). In the matrix Lie group LT(n),
the Lie bracket is the commutator [X,Z] = XZ − ZX. Therefore:

ad∗(X)(Y ) · Z = Y · [X,Z] = vec(Y )>A vec(XZ − ZX)
= vec(Y )>A(In ⊗X −X> ⊗ In)vec(Z)
= [vec(Y )>A(In ⊗X −X> ⊗ In)A−1]A vec(Z)

vec(ad∗(X)(Y )) = A−1(In ⊗X> −X ⊗ In)A vec(Y ).

11.6.5 Proof of Lemma 7.10
Lemma 7.10 (Vertical distribution, horizontal distribution) The vertical and horizontal

distributions associated to the quotient-Lie-Cholesky associated to f are VL = Diag(n)L and
HLC(f)
L = Lf−1(L−1dLL>Chol(S(LL>)−1(Hol(n)))).

Proof of Lemma 7.10 (Vertical distribution, horizontal distribution). The vertical space is the
tangent space of the fiber Diag+(n)L or the kernel of the differential of the submersion
dLπ(Z) = Diag(L)−1(Z − Diag(L−1Z)L). Hence VL = Diag(n)L. Moreover, we know that
when f = IdLT(n), the horizontal space is HAI

L = dLL>Chol(S(LL>)−1(Hol(n))). Indeed, it is
the pushforward by the Cholesky map of the horizontal space on SPD matrices (cf. Sec-
tion 7.2.2). In other words, for all Z ∈ HAI

L , for all Z ′ ∈ VL, we have 〈L−1Z|L−1Z ′〉 = 0.
Therefore, the horizontal space of the metric LC(f) is:

HLC(f)
L = {Z ∈ LT(n)| ∀Z ′ ∈ VL, 〈f(L−1Z)|L−1Z ′〉 = 0}

= {Z ∈ LT(n)| ∀Z ′ ∈ VL, 〈L−1Lf(L−1Z)|L−1Z ′〉 = 0}
= {Z ∈ LT(n)|Lf(L−1Z) ∈ HAI

L }
= Lf−1(L−1HAI

L ).

11.6.6 Proof of Lemma 7.11
Lemma 7.11 (Horizontal lift, Riemannian metric, exponential map) Given the horizontal

projection horL : TLLT+(n) −→ HL and the exponential map of the Lie-Cholesky metric
ExpLC : LT(n) −→ LT+(n), we have for all L ∈ LT+(n), for all Γ = Diag(L)−1L ∈ LT1(n),
for all ξ ∈ TΓLT1(n) ' LT0(n):
· (Horizontal lift) ξ#

L = horL(Diag(L)ξ),

· (Riemannian metric) gQLC
Γ (ξ, ξ) = 〈f(Γ−1horΓ(ξ))|Γ−1horΓ(ξ)〉,

· (Exponential map) ExpQLC
Γ (tξ) = Diag(ExpLC

Γ (t hor(ξ)))−1ExpLC
Γ (t hor(ξ)).

In particular, quotient-Lie-Cholesky metrics are geodesically complete.



236 Part VII. Appendix

Proof of Lemma 7.11 (Horizontal lift, Riemannian metric, exponential map). For all ξ ∈ LT0(n),
we have dLπ(Diag(L)ξ) = Diag(L)−1(Diag(L)ξ−Diag(ξ)L) = ξ. Hence ξ#

L = horL(Diag(L)ξ).
In particular, ξ#

Γ = horΓ(ξ). Then the metric and the exponential map simply write gQLC
Γ (ξ, ξ) =

gLC
Γ (ξ#

Γ , ξ
#
Γ ) and ExpQLC

Γ (tξ) = π(ExpLC
Γ (tξ#

Γ ).

11.6.7 Proof of Theorem 7.14
Theorem 7.14 (Symmetric space structure) The manifold of full-rank correlation ma-

trices Cor+(n) equipped with a poly-hyperbolic-Cholesky metric is a Riemannian symmetric
space of non-positive sectional curvature bounded by [a, 0] with a = − 1

mini>2 αi
. For n > 3,

it is not of constant curvature. The canonical PHC metric writes for all C ∈ Cor+(n) and
X ∈ TCCor+(n) ' Hol(n):

gCPHC
C (X,X) = ‖Diag(L)−1LLowS(L−1XL−>)‖2,

where L = Chol(C) ∈ L. The square distance between C and C ′ = φ(L′) writes:

dCPHC(C,C ′)2 =
n∑
i=2

arccosh(−Q(L>i , L′i
>))2,

where Li, L′i are the i-th rows of L,L′ respectively.

Proof of Theorem 7.14 (Symmetric space structure). The product of Riemannian symmetric
spaces is a Riemannian symmetric space. The product of manifolds with sectional curvature
bounded by [a, b] with a 6 0 6 b has its sectional curvature bounded by [a, b]. (This is
also valid for (−∞, b] and [a,+∞).) Let k > 2 such that αk = mini>2 αi. The values
a = − 1

αk
and b = 0 are clearly reached for n > 3 by bivectors (X, Y ) and (X,Z) respectively,

where X = (0, ..., 0, Xk, 0, ..., 0), Y = (0, ..., 0, Yk, 0, ..., 0) and Z = (Z1, 0, ..., 0) ∈ T (HS1 ×
· · · × HSn−1). To express the Riemannian metric, we take the pullback of the Riemannian
metric on the hyperboloid Hn defined by gx(v, v) = ∑n

k=1 v
2
k − v2

n+1 by the diffeomorphism
ϕSH : (x1, ..., xn+1) ∈ HSn 7−→ 1

xn+1
(x1, ..., xn, 1) ∈ Hn. We compute for all x ∈ HSn and all

v ∈ TxHSn, using ∑n+1
k=1 x

2
k = 1 and ∑n+1

k=1 xkvk = 0:

dxϕ
SH(v) = 1

xn+1

Å
v1 − x1

vn+1

xn+1
, ..., vn − xn

vn+1

xn+1
,−vn+1

xn+1

ã
,

gHS
x (v, v) = gHϕ(x)(dxϕSH(v), dxϕSH(v))

= 1
x2
n+1

Ç
n∑
k=1

Å
vk − xk

vn+1

xn+1

ã2
−
v2
n+1
x2
n+1

å
= 1
x2
n+1

Ç
n∑
k=1

Å
v2
k − 2xkvk

vn+1

xn+1
+ x2

k

v2
n+1
x2
n+1

ã
−
v2
n+1
x2
n+1

å
= 1
x2
n+1

Ç
n∑
k=1

v2
k + 2v2

n+1 + (1− x2
n+1)v

2
n+1
x2
n+1
−
v2
n+1
x2
n+1

å
= ‖v‖

2

x2
n+1

.
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Hence, for all C ∈ Cor+(n), X ∈ Hol(n), L = Chol(C) ∈ L and Y = dCChol(X) =
LLowS(L−1XL−>) with Y11 = 1

2L11[L−1XL−>]11 = X11
2L11

= 0, we have:

gPHC
C (X,X) = gHS1×···×HSn−1

L (Y, Y )

=
n∑
i=2

‖Yi•‖2

L2
ii

=
n∑
i=1
‖Diag(L)−1

ii Yi•‖2

= ‖Diag(L)−1Y ‖2 = ‖Diag(L)−1LLowS(L−1XL−>)‖2.

Note that the general PHC metric writes gPHC
C (X,X) = ∑n

i=2 ‖Diag(L)−1
ii αiYi•‖2 and the

general PHC distance writes d(C,C ′)2 = ∑n
i=2 αi arccos(−Q(L>i , L′i

>))2.

11.6.8 Proof of Theorem 7.19
Theorem 7.19 (Group operations) The group operations associated to the Lie-Cholesky

group structure on full-rank correlation matrices are, for all C,C ′, Ci ∈ Cor+(n), X ∈
TCCor+(n) ' Hol(n), t ∈ R:
· (Exponential map) ExpC(tX) = Θ−1(Θ(C) exp(tΘ(C)−1dCΘ(X)),
· (Logarithm map) LogC(C ′) = (dCΘ)−1(Θ(C) log(Θ(C)−1Θ(C ′))),
· (Geodesic) γC→C′(t) = Θ−1(Θ(C)(Θ(C)−1Θ(C ′))t),
· (Group mean) Unique, characterized by ∑k

i=1 log(Θ(C̄)−1Θ(Ci)) = 0.

Proof of Theorem 7.19 (Group operations). The exponential map, logarithm map and geodesics
are pullbacks by Θ of corresponding operations in LT1(n), which are for all Γ,Γ′ ∈ LT+(n),
ξ ∈ TΓLT+(n) ' LT(n) and t ∈ R:

· (Exponential map) ExpΓ(tξ) = Γ exp(tΓ−1ξ),
· (Logarithm map) LogΓ(Γ′) = Γ log(Γ−1Γ′),
· (Geodesic) γΓ→Γ′(t) = ExpΓ(tΓ−1LogΓ(Γ′)) = Γ(Γ−1Γ′)t.

Since the Lie algebra LT0(n) is nilpotent, the group mean Γ̄ of the finite sample Γ1, ...,Γk ∈
LT1(n) is unique [Buser and Karcher, 1981, Example 8.1.8]. It is characterized by 0 =∑k
i=1 LogΓ̄(Γi) = Γ̄∑k

i=1 log(Γ̄−1Γi), which is equivalent to ∑k
i=1 log(Γ̄−1Γi) = 0.

11.6.9 Proof of Theorem 7.20
Theorem 7.20 (Geodesics in dimension 2) Let C1 = C(ρ1), C2 = C(ρ2) ∈ Cor+(2) with

ρ1, ρ2 ∈ (−1, 1).
1. Quotient-affine metrics and poly-hyperbolic-Cholesky metrics coincide (up to a scaling

factor). The geodesic between C1 and C2 is C(ρ(t)) for t ∈ R where:

ρ(t) = ρ1 cosh(λt) + sinh(λt)
ρ1 sinh(λt) + cosh(λt) ,

where λ = log
»

1+ρ2
1−ρ2
−log

»
1+ρ1
1−ρ1

is known as the difference of the Fisher transformation
of the correlation coefficients ρ1 and ρ2.
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2. Euclidean-Cholesky and log-Euclidean-Cholesky metrics coincide. The geodesic be-
tween C1 and C2 is C(ρ(t)) for t ∈ R where:

ρ(t) = F (t)√
1 + F (t)2

,

where F (t) = (1−t) ρ1√
1−ρ2

1
+t ρ2√

1−ρ2
2
. This geodesic also coincides with the Lie-Cholesky

group geodesic of Section 7.4.4.

Proof of Theorem 7.20. 1. The formula of the geodesic is known for the quotient-affine
metrics in dimension 2. Hence it suffices to show that the quotient-affine metrics and
the poly-hyperbolic-Cholesky metrics coincide up to a scaling factor. Let C = C(ρ)

and X =
Å

0 x
x 0

ã
∈ TCCor+(2). We compute the quotient-affine metric gQA

C (X,X) =

tr(C−1XC−1X)−2 sum(D(In+C•C−1)−1D) and the canonical PHCmetric gCPHC
C (X,X) =

‖Diag(L)−1LLowS(L−1XL−>)‖2 where D = Diag(C−1X) and L = Chol(C).

C−1 = 1
1− ρ2

Å
1 −ρ
−ρ 1

ã
,

C−1X = x

1− ρ2

Å
−ρ 1
1 −ρ

ã
,

C−1XC−1X = x2

(1− ρ2)2

Å
1 + ρ2 −2ρ
−2ρ 1 + ρ2

ã
,

tr(C−1XC−1X) = 2(1 + ρ2)
(1− ρ2)2 x

2,

In + C • C−1 = 1
1− ρ2

Å
2− ρ2 −ρ2

−ρ2 2− ρ2

ã
,

(In + C • C−1)−1 = 1
4

Å
2− ρ2 ρ2

ρ2 2− ρ2

ã
,

D = Diag(C−1X) = − ρx

1− ρ2 I2,

sum(D(In + C • C−1)−1D) = ρ2x2

(1− ρ2)2 ,

gC(X,X) = 2x2

(1− ρ2)2 ,
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L = Chol(C) =
Å

1 0
ρ
√

1− ρ2

ã
,

L−1XL−> =
Ç

1 0
− ρ√

1−ρ2
1√

1−ρ2

åÅ
0 x
x 0

ãÑ1 − ρ√
1−ρ2

0 1√
1−ρ2

é
=
Ç

0 x
x√
1−ρ2

− ρx√
1−ρ2

åÑ1 − ρ√
1−ρ2

0 1√
1−ρ2

é
=

Ñ
0 x√

1−ρ2

x√
1−ρ2

− 2ρx
1−ρ2

é
,

Diag(L)−1LLowS(L−1XL−>) =
Ç

1 0
ρ√

1−ρ2
1

åÇ
0 0
x√
1−ρ2

− ρx
1−ρ2

å
=
Ç

0 0
x√
1−ρ2

− ρx
1−ρ2

å
,

gCPHC
C (X,X) =

Å 1
1− ρ2 + ρ2

(1− ρ2)2

ã
x2

= x2

(1− ρ2)2 .

2. Euclidean-Cholesky and log-Euclidean-Cholesky metrics coincide in dimension 2 be-
cause exp(ξ) = In + ξ and log(Γ) = Γ− I2 for ξ ∈ LT0(2) and Γ ∈ LT1(2). Thus their
common Riemannian exponential and logarithm in LT1(2) are simply ExpΓ(ξ) = Γ + ξ
and LogΓ(Γ′) = Γ′ − Γ. On the other hand, the group exponential in LT1(2) is
ExpLT1(2)

Γ (ξ) = Γ exp(Γ−1ξ) = Γ(In + Γ−1ξ) = Γ + ξ = ExpΓ(ξ). Hence, the group
geodesics coincide with the (log-)Euclidean-Cholesky geodesics. Let us compute them.

Γ1 := Diag(Chol(C1))−1Chol(C1) =
Ç

1 0
ρ1√
1−ρ2

1
1

å
,

Γ2 := Diag(Chol(C2))−1Chol(C2) =
Ç

1 0
ρ2√
1−ρ2

2
1

å
,

C(t) = Θ−1((1− t)Γ1 + tΓ2) = Θ−1
Å

1 0
F (t) 1

ã
= Cor

Å
1 F (t)

F (t) 1 + F (t)2

ã
=

Ñ
1 F (t)√

1+F (t)2

F (t)√
1+F (t)2

1

é
.

We can also compute the (log-)Euclidean-Cholesky metric in dimension 2.

gC(X,X) = ‖dCΘ(X)‖2 = ‖(Θ ◦ C)′(ρ)‖x2

= f ′(ρ)2x2,
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where f(ρ) = ρ√
1−ρ2

. So f ′(ρ) =
√

1−ρ2+ ρ2√
1−ρ2

1−ρ2 = 1
(1−ρ2)3/2 and:

gC(X,X) = x2

(1− ρ2)3 .

11.7 Proofs of Chapter 8
In this section, we prove the results of Chapter 8: Permutation-invariant Log-Euclidean
metrics.

11.7.1 Proof of Theorem 8.5
Theorem 8.5 (Incompatibility between cor-inversion and off-log bijection) Let n > 3. There
exists C ∈ Cor+(n), such that Log(I(C)) 6= −Log(C). Otherwise said, the following diagram
does not commute.

Cor+(n) I //

Log
��

Cor+(n)
Log
��

Hol(n) −Id
// Hol(n)

Proof of Theorem 8.5 (Incompatibility between cor-inversion and off-log bijection). It is easy
to see it numerically. For a formal proof, one can look for a matrix C ∈ Cor+(3) such that
log(C) and log(I(C)) are easy to compute manually. We propose the following example,
with x = 1√

7 and a = x√
1−x2 = 1√

6 :

C =

Ñ
1 x −x
x 1 0
−x 0 1

é
= PDP> with P = 1

2

Ñ
0
√

2
√

2√
2 1 −1√
2 −1 1

é
, D = diag(1, 1 +

√
2√
7
, 1−

√
2√
7

),

I(C) =

Ñ
1 −a a
−a 1 −a2

a −a2 1

é
= Q∆Q> with Q = 1√

14

Ñ
0
√

6 2
√

2√
7 −2

√
3√

7 2 −
√

3

é
,∆ = 1

6diag(5, 10, 3).

Thus:

[Log(C) + Log(I(C))]12 = [log(C) + log(I(C))]12

= [P log(D)P> +Q log(∆)P>]12

=
3∑

k=1
(ln(Dkk)P1kP2k + ln(∆kk)Q1kQ2k)

= 1
2
√

2
ln
Ç√

7 +
√

2√
7−
√

2

å
+
√

6
7 ln

Å 3
10

ã
> 0.

For n > 4, it suffices to take the block diagonal matrix Diag(C, In−3).
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11.7.2 Proof of Theorem 8.6
Theorem 8.6 (Log = Off ◦ log is a diffeomorphism) The off-log bijection Log : Cor+(n) −→
Hol(n) is a smooth diffeomorphism. We give the differentials of Log and Exp in function of
the differentials of the symmetric matrix logarithm and exponential maps log and exp. For
all C ∈ Cor+(n) and S,X, Y ∈ Hol(n):

dCLog(X) = Off(dC log(X)),
dSExp(Y ) = dlog(Exp(S)) exp(Y −Diag(Exp(S)Y )).

Proof of Theorem 8.6 (Log = Off ◦ log is a diffeomorphism). It suffices to show that D is
smooth. We use the implicit function theorem with the smooth map Φ : (S,D) ∈ Hol(n) ×
Diag(n) 7−→ Diag(exp(D + S)) − In ∈ Diag(n) which is such that D = D(S) if and only
if Φ(S,D) = 0. We want to show that for (S,D) ∈ Φ−1(0), the differential of ΦS : D ∈
Diag(n) 7−→ Φ(S,D) ∈ Diag(n) is invertible. We introduce the intermediate smooth map
ϕS : D ∈ Diag(n) 7−→ D − log Diag exp(D + S) ∈ Diag(n) as in [Archakov and Hansen,
2021] so that ΦS(D) = exp(D−ϕS(D))− In. It is proved in the Appendix of [Archakov and
Hansen, 2021] that for all D ∈ Diag(n), the linear map dDϕS : Diag(n) −→ Diag(n) has its
eigenvalues in [0, 1) ⊂ R. For all (S,D) ∈ Φ−1(0) and all ∆ ∈ Diag(n), we have:

dDΦS(∆) = exp(D − ϕS(D))︸ ︷︷ ︸
In

(∆− dDϕS(∆))

= (Id− dDϕS)(∆).

Therefore, the linear map dDΦS = Id − dDϕS has its eigenvalues in (0, 1] so it is invertible.
Hence, the implicit function D : Sym(n) −→ Diag(n) is smooth so π = exp ◦ (D+ IdSym(n)) :
Sym(n) −→ Cor+(n) is smooth. Then Exp = π|Hol(n) : Hol(n) −→ Cor+(n) is smooth and
Log is a smooth diffeomorphism.

Since Log = Off ◦ log and Off is linear, the differential of Log is clear. Let us compute
the differential of f , D and Exp. Let S ∈ Sym(n), C = Exp(S) ∈ Cor+(n), D,∆ ∈ Diag(n),
X ∈ Hol(n) and Y = dCLog(X) ∈ Hol(n).

d(S,D)Φ(Y,∆) = Diag(exp(D + S)(∆ + Y ))
= Diag(exp(D + S))∆ + Diag(exp(D + S)Y ),

d(S,D(S))Φ(Y,∆) = ∆ + Diag(CY ),
d(S,D(S))Φ(Y, dSD(Y ))︸ ︷︷ ︸

=dS(Φ◦(Id,D))(Y )=0

= dSD(Y ) + Diag(CY ),

dSD(Y ) = −Diag(CY ) = −Diag(Exp(S)Y ),
dSExp(Y ) = dD(S)+S exp(dSD(Y ) + Y )

= dlog(C) exp(Y −Diag(Exp(S)Y )).

11.7.3 Proof of Theorem 8.13
Theorem 8.13 (Existence and equivalence of conjectures) We define the smooth map f : ∆ ∈
Diag+(n) 7−→ dAI(In,∆C∆)2 = tr(log(∆C∆)2). It gives the affine-invariant squared distance
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between In and all points of the fiber Cor−1(C) = {∆C∆ ∈ Sym+(n)|∆ ∈ Diag+(n)}.

1. The smooth map f has a global minimizer.
2. For all Σ ∈ Sym+(n), there exists ∆ ∈ Diag+(n) such that log(∆Σ∆) ∈ Hol(n).
3. The following conjectures are equivalent for all C ∈ Cor+(n).

(i) There exists a unique ∆ ∈ Diag+(n) such that log(∆C∆) ∈ Hol(n) (Conjecture
8.11).

(ii) There exists a unique X ∈ Hol(n) such that ExpQA
In (X) = C.

(iii) There exists a unique local minimizer of the smooth map f , which is actually the
global minimizer ensured by statement 1.

4. The previous conjectures imply the uniqueness of the quotient-affine logarithm at In.

Proof of Theorem 8.13 (Existence and equivalence of conjectures).

1. The smooth map f has a global minimizer because it is coercive (Theorem 6.6).

2. Hence, there exists ∆ ∈ Diag+(n) such that f(∆) = min f . In other words, ∆C∆
is “in optimal position” to In [Huckemann et al., 2010, Definition 2.3]. Thus [Huck-
emann et al., 2010, Theorem 2.4], the geodesic from In to ∆C∆ is horizontal, i.e.
LogAI

In (∆C∆) ∈ HQA
In , i.e. log(∆C∆) = Hol(n). For Σ = Diag(Σ)1/2C Diag(Σ)1/2, it

suffices to take ∆Diag(Σ)−1/2 ∈ Diag+(n).

3. Since ExpQA
In = Cor◦exp, we clearly have (i)⇐⇒ (ii) because X = log(∆C∆) and ∆ =

Diag(exp(X))1/2. To prove (i)⇐⇒ (iii), let us compute the differential and the Hessian
of f . Let ∆ ∈ Diag+(n) and D,D′ ∈ Diag(n). We denote E = D∆−1 ∈ Diag(n) and
A = ∆C∆ = PBP> ∈ Sym+(n) with P ∈ O(n) and B ∈ Diag+(n).

d∆f(D) = 2 tr(log(∆C∆) d∆C∆ log((DC∆ + ∆CD)))
= 2 tr(log(A) dA log(EA+ AE>))
= 2 tr(log(B) dB log(P>EPB +BP>E>P ))
= 2 tr(log(B)B−1(P>EPB +BP>E>P ))
= 4 tr(log(A)E)
= 4 tr(log(∆C∆)D∆−1),

d∆f = 0⇐⇒ Diag(log(∆C∆)) = 0⇐⇒ log(∆C∆) ∈ Hol(n),
H∆f(D,D′) = 4 tr(dA log(EA+ AE>)D′∆−1 − log(A)D′∆−1D∆−1)

= 4 tr(2∆−2DD′ −Diag(log(∆C∆))∆−2DD′),
H∆f(D,D) = 4 tr((2In −Diag(log(∆C∆)))∆−2D2).

Hence, if ∆ ∈ Diag+(n) is such that log(∆C∆) ∈ Hol(n), then the Hessian of f at ∆ is
positive definite so f has a local minimum at ∆. Thus, if proposition (iii) is true, then
∆ has to be the global minimizer so it is unique. Conversely, if f has a local minimum
at ∆ ∈ Diag+(n), then d∆f = 0 so log(∆C∆) ∈ Hol(n). Thus, if proposition (i) is
true, then ∆ is unique. Therefore, assertions (i) and (iii) are equivalent.



Chapter 11. Proofs 243

4. A quotient-affine logarithm of C ∈ Cor+(n) at In is a tangent vector X ∈ Hol(n)
of minimal length such that ExpQA

In (X) = Cor(exp(X)) = C. Otherwise said, it is a
tangent vector X = log(∆C∆) where ∆ minimizes f(∆) = tr(X2) = ‖X‖2. Thus the
uniqueness in the conjectures of statement 3 imply the uniqueness of the quotient-affine
logarithm at In.

11.7.4 Proof of Theorem 8.17
Theorem 8.17 (Properties of the log-scaling bijection) The log-scaling bijection satisfies

the following properties.
1. (Equivariance) Log? and Exp? are equivariant under permutations.

2. (Equicorrelation) For all ρ ∈ (− 1
n−1 , 1), Log?(C(ρ)) = 1

n
ln
Ä

1+(n−1)ρ
1−ρ

ä
(11> − nIn). In

dimension n = 2, Log?(C(ρ)) =
Å
−F (ρ) F (ρ)
F (ρ) −F (ρ)

ã
where F (ρ) = 1

2 log(1+ρ
1−ρ) ∈ R is the

Fisher transformation of the correlation coefficient ρ ∈ (−1, 1).
3. (Block equicorrelation matrix) If C is a block equicorrelation matrix of signature I =
{i1, ..., ip}, then Log?(C) is a block symmetric matrix with null row sum of signature I
with diagonal blocks of the form (αj − βj)Iij + βj1ij1

>
ij
and off-diagonal blocks of the

form βjk1ij1
>
ik
.

4. (Generalization) For all x ∈ (R+)n, for all Σ ∈ Sym+(n), there exists a unique ∆ ∈
Diag+(n) such that log(∆Σ∆)x = 0.

Proof of Theorem 8.17 (Properties of the log-scaling bijection). 1. This is clear.
2. Let C = C(ρ). The result is clear for ρ = 0 so we assume that ρ 6= 0. One easily checks

that ∆ =
√
aIn with a = 1

1+(n−1)ρ satisfies Σ := ∆C∆ = aC = (a − b)In + b11> ∈
Row+

1 (n) with b = aρ = ρ
1+(n−1)ρ . Indeed, a+(n−1)b = 1. Since log(Σ) is a polynomial

in Σ, there exists (α, β) ∈ R2 such that log(Σ) = (α−β)In+β11> and α+(n−1)β = 0.
Moreover, eig(Σ) = {1; a− b} with a− b 6= 1 and eig(log(Σ)) = {0;α− β} so α− β =
ln(a− b) = − ln

Ä
1+(n−1)ρ

1−ρ

ä
. Therefore, nβ = −(α− β) = ln

Ä
1+(n−1)ρ

1−ρ

ä
and:

Log?(C) = (α− β)In + β11> = β(11> − nIn) = 1
n

ln
Å1 + (n− 1)ρ

1− ρ

ã
(11> − nIn).

3. If C is a block equicorrelation matrix of signature I = {i1, ..., ip}, it is clear that the
matrix ∆ is a block diagonal matrix of signature I with scalar blocks because the sums
of all the rows belonging to the same interval [ij+1; ij+1] are equal. The matrix product
preserves the signature and the form of the blocks so the logarithm as well.

4. Similarly to Theorem 8.14, one can prove that given x ∈ (R+)n, the map exp : {S ∈
Sym(n)|Sx = 0} −→ {Σ ∈ Sym+(n)|Σx = x} is a diffeomorphism. We denote X =
diag(x) ∈ Diag+(n). Therefore, for all ∆ ∈ Diag+(n), log(∆Σ∆)x = 0 if and only if
∆Σ∆x = x if and only if X∆Σ∆X1 = X21 if and only if X∆ ∈ Diag+(n) scales Σ onto
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an SPD matrix with row sums prescribed by X21. Thus the existence and uniqueness
is ensured by [Marshall and Olkin, 1968].

11.7.5 Proof of Theorem 8.19
Theorem 8.19 (Exp? = Cor ◦ exp is a diffeomorphism) The log-scaling bijection Log? :

Cor+(n) −→ Row0(n) is a smooth diffeomorphism. We give the differentials of Log? and
Exp? in function of the differentials of the symmetric matrix logarithm and exponential
maps log and exp. For all C ∈ Cor+(n), S, Y ∈ Row0(n) and X ∈ Hol(n) such that
Σ = D?(C) ? C = exp(S):

dSExp?(Y ) = ∆−1
ï
dS exp(Y )− 1

2(∆−2 Diag(dS exp(Y )) Σ + Σ Diag(dS exp(Y )) ∆−2)
ò

∆−1,

dCLog?(X) = dΣ log
Å

∆X∆ + 1
2(X0Σ + ΣX0)

ã
,

where ∆ = Diag(Σ)1/2 and X0 = −2 diag((In + Σ)−1∆X∆1).
Proof of Theorem 8.19 (Exp? = Cor ◦ exp is a diffeomorphism). It suffices to show that D?
is smooth. We apply the implicit function theorem to the smooth function Φ? : (Σ,∆) ∈
Sym+(n) × Diag+(n) 7−→ ∆Σ∆1 − 1 ∈ (R+)n which satisfies ∆ = D?(Σ) if and only if
Φ?(Σ,∆) = 0. Let us prove that for all (Σ,∆) ∈ (Φ?)−1(0), the differential of the partial
function Φ?

Σ : ∆ ∈ Diag+(n) 7−→ Φ?(Σ,∆) ∈ (R+)n is invertible. In the direction D ∈
T∆Diag+(n) = Diag(n):

d∆Φ?
Σ(D) = DΣ∆1 + ∆ΣD1

= D∆−11 + ∆ΣD1
= ∆(∆−2 + Σ)D1.

Since ∆(∆−2 + Σ) ∈ GL(n), the differential is invertible so D? is smooth.
Since Exp? = Cor ◦ exp, we have dSExp?(Y ) = dΣCor(dS exp(Y )) with Σ = exp(S).

Using dΣCor(Z) = ∆−1 [Z − 1
2(∆−2Diag(Z)Σ + ΣDiag(Z)∆−2)

]
∆−1 with ∆ = Diag(Σ)1/2

and Z = dS exp(Y ) ∈ TΣRow+
1 (n) = Row0(n), we get the expected result. Now we want to

invert the relation X = dSExp?(Y ) to get Y = dΣLog?(X). We use the intermediate matrices
Σ ∈ Row+

1 (n) and Z ∈ Row0(n) and the relations X = dΣCor(Z) and Y = dΣ log(Z).

∆X∆ = Z − 1
2(∆−2Diag(Z)Σ + ΣDiag(Z)∆−2),

∆X∆1 = −1
2(∆−2Diag(Z)Σ1 + ΣDiag(Z)∆−21)

= −1
2(In + Σ)∆−2Diag(Z)1,

∆−2Diag(Z)1 = −2(In + Σ)−1∆X∆1,

∆−2Diag(Z) = X0,

Z = ∆X∆ + 1
2(X0Σ + ΣX0),

which allows to conclude with dΣLog?(X) = Y = dΣ log(Z).
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11.7.6 Proof of Theorem 8.20
Theorem 8.20 (Permutation-invariant inner products on Row0(n)) For n > 4, permutation-

invariant inner products on Row0(n) are the symmetric bilinear forms associated to the fol-
lowing positive definite quadratic forms q? defined for Y ∈ Row0(n):

q?(Y ) = α tr(Y 2) + δ tr(Diag(Y )2) + ζ tr(Y )2, (11.38)

with α > 0, nα + (n − 2)δ > 0 and nα + (n − 1)(δ + nζ) > 0. For n = 3, the permutation-
invariant inner products have the same form with α = 0. For n = 2, they have the same
form with α = δ = 0.

Proof of Theorem 8.20 (Permutation-invariant inner products on Row0(n)). We rely on the
characterization of permutation-invariant inner products on Hol(n) and on the equivariant

isomorphism Θ :
ß

Hol(n) −→ Row0(n)
X 7−→ Y = AXA>

with A = In − 1
n
11> found in [Kurata and

Bapat, 2016], whose inverse isomorphism is given by X = Θ−1(Y ) = Y − (µ1> + 1µ>) with
µ = 1

2Diag(Y )1. Indeed, let q? : Row0(n) −→ R be a permutation-invariant quadratic form.
Then q? is positive definite if and only if q? ◦ Θ : Hol(n) −→ R is a permutation-invariant
quadratic form on Hol(n). Hence, by Theorem 8.7, q? is of the form q?(Y ) = α tr(Θ−1(Y )2)+
β Sum(Θ−1(Y )2) +γ Sum(Θ−1(Y ))2 with min(α, 2α+ (n− 2)β, α+ (n− 1)(β+nγ)) > 0. We
compute X2 with X = Θ−1(Y ), and the three terms:

X2 = Y 2 + 1
2tr(Y )(µ1> + 1µ>) + nµµ> + ‖µ‖211> − Y µ1> − 1µ>Y,

tr(X2) = tr(Y 2) + 1
2tr(Y )2 + n

2 tr(Diag(Y )2),

Sum(X2) = n

2 tr(Y )2 + n

4 tr(Y )2 + n2

4 tr(Diag(Y )2),

Sum(X) = −n tr(Y ),
Sum(X)2 = n2tr(Y )2.

Hence g(Y, Y ) = α tr(Y 2)+δ tr(Diag(Y )2)+ζ tr(Y )2 with δ = n
2 (α+n

2β) and ζ = α
2 +3n

4 β+n2γ.
The inverse relations between coefficients are β = 4

n2 δ − 2
n
α and γ = 1

n2 (ζ − 3
n
δ + α). Thus

2α+ (n− 2)β = 4
n2 (nα+ (n− 2)δ) and α+ (n− 1)(β+nγ) = 1

n2 (nα+ (n− 1)(δ+nζ), which
gives the expected positivity condition.

11.7.7 Proof of Theorem 8.23
Theorem 8.23 (Coincidence of the metrics in dimension 2) In dimension 2, up to a

positive scaling factor, the quotient-affine metric, the off-log metric and the log-scaled metric
coincide. We recall that the Fisher transformation is the increasing map F : ρ ∈ (−1, 1) 7−→
1
2 ln(1+ρ

1−ρ) ∈ R+. Let C = C(ρ) and X =
Å

0 x
x 0

ã
with ρ ∈ (−1, 1) and x ∈ R. Then:

1. (Metric) gC(X,X) = x2

(1−ρ2)2 (up to a scaling factor α > 0),
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2. (Geodesic) γ(t) = C(ρ(t)) where ρ(t) = ρ1 cosh(λt)+sinh(λt)
ρ1 sinh(λt)+cosh(λt) with λ = F (ρ2) − F (ρ1) is

monotonic (increasing if ρ1 < ρ2, decreasing if ρ1 > ρ2, constant if ρ1 = ρ2),

3. (Distance) d(C1, C2) = |λ| = |F (ρ2)− F (ρ1)| (up to a scaling factor
√
α).

Proof of Theorem 8.23 (Coincidence of the metrics in dimension 2). It suffices to use the 2nd
statement of Theorems 8.4 and 8.17 and the formulae of distances of the off-log metric and
the log-scaled metric. For the former, d(C1, C2) = q(F (ρ2)

Å
0 1
1 0

ã
− F (ρ1)

Å
0 1
1 0

ã
) ∝ λ2

and similarly for the ladder. Up to a multiplicative constant, these distances are equal to
the quotient-affine distance in dimension 2 [Thanwerdas and Pennec, 2021]. Therefore, the
Riemannian metrics coincide up to a constant and the geodesics coincide. The formulae can
be found in [Thanwerdas and Pennec, 2022c].

11.7.8 Proof of Theorem 8.24

Theorem 8.24 (Optimization problem to compute the scaling) arg minΩ f ∈ M and
Ω = conv(M). Thus x∗ is the global minimizer of the convex map f on the closed convex
set Ω.

Proof of Theorem 8.24 (Optimization problem to compute the scaling). For all x ∈ Ω, the
vector x0 = 1

α
x ∈ M with α = (∏n

i=1 xi)1/n > 1 satisfies f(x0) = x>0 Σx0 = 1
α2x

>Σx 6
f(x). Moreover, if α > 1, then f(x0) < f(x). Hence if x minimizes f on Ω, then
f(x) 6 f(x0) 6 f(x) so f(x0) = f(x) so α = 1 and x = x0 ∈ M. Otherwise said,
arg minΩ f = arg minM f ∈M.

Let us show that Ω = conv(M). Let x, y ∈ Ω and t ∈ [0, 1]. Then since log is concave,∑n
i=1 log((1− t)xi + tyi) > (1−t)∑n

i=1 log(xi)+t∑n
i=1 log(yi) > 0 so (1−t)x+ty ∈ Ω. Hence

Ω is convex and it containsM so conv(M) ⊆ Ω.
Let x ∈ Ω\M. Let F : a ∈ (−x2, x1) 7−→ log(x1−a)+log(x2+a)+∑n

i=3 log(xi) ∈ R. Note
that F (0) > 0. Then F ′(a) = 1

x2+a −
1

x1−a = x1−x2−2a
(x1−a)(x2+a) . Hence with a0 = x1−x2

2 ∈ (−x2, x1),
F ′(a) is positive when a < a0 and negative when a > a0. Thus F increases on (−x2, a0) and
decreases on (a0, x1) with F (a0) > F (0) > 0, F −→

a→−x2
−∞ and F −→

a→x1
−∞. So, since F is

continuous, there exist a2 ∈ (−x2; a0) and a1 ∈ (a0;x1) such that F (a1) = F (a2) = 0. Note
that a2 < 0 < a1 because F (0) > 0. Therefore, x = (1 − t)y + tz with y = (x1 − a1, x2 +
a1, x3, ..., xn) ∈ M, z = (x1 − a2, x2 + a2, x3, ..., xn) ∈ M and t = a1

a1−a2
∈ (0, 1). Finally,

Ω ⊆ conv(M) so Ω = conv(M).

11.7.9 Proof of Theorem 8.32

Theorem 8.32 (Stopping criterion) ∀z ∈ Rn\Ω,∀α > 1, ‖ΠΩαz − ΠΩz‖ 6 (α1/n −
1)‖ΠΩz‖.
Proof of Theorem 8.32. Let z ∈ Rn\Ω. We denote x = ΠΩz and a ∈ R+ such that x−z = a 1

x
.

Thus it is equivalent to prove that for all x ∈M and a ∈ R+, ‖ΠΩα(x− a
x
)−x‖ 6 (α1/n−1)‖x‖.
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Hence, we define the smooth maps:

z : a ∈ R+ 7−→ x− a

x
∈ Rn\Ω,

y : a ∈ R+ 7−→ ΠΩα(z(a)) ∈Mα,

D : a ∈ R+ 7−→ ‖y(a)− x‖2 =
n∑
i=1

(yi(a)− xi)2 ∈ R+.

We want to prove that for all a ∈ R+, D(a) 6 (α1/n − 1)2‖x‖2. We proceed in two steps.
Firstly, we prove that lima→+∞D(a) = (α1/n − 1)2‖x‖2. Secondly, we prove that D is
increasing.

First step: we compute the limit of D at +∞.
We recall that x ∈ M, z(a) = x − a

x
, y(a) = ΠΩαz(a) and D(a) = ‖y(a) − x‖2. We denote

u = 1
‖ 1
x‖

1
x
∈ Sn−1.

Let us prove that y is bounded. Let y0 = α1/nx. We consider the line D = y0 + R 1
y0

and
the infinite right circular cylinder C centered on D and passing through x. More precisely,
denoting R = ‖y0 − x − 〈y0 − x|u〉u‖, the cylinder is C = {p ∈ Rn|d(p,D) 6 R}. Since the
line D′ = x+ R 1

x
is parallel to D and since x ∈ C, we have D′ ⊂ C. For z(a) ∈ D′, we define

p = ΠDz(a) = z0 + y0 − x− 〈y0 − x|u〉u ∈ D. Then:

‖y(a)− y0‖ = ‖ΠΩα(z(a))− ΠΩα(p)‖ 6 ‖z(a)− p‖ = R.

So y is bounded.
Let us prove that lima→+∞ y(a) = y0. We denote v(a) = y(a)−x−〈y(a)−x|u〉u

‖y(a)−x−〈y(a)−x|u〉u‖ ∈ Sn−1 so that
u ⊥ v(a) and the triangle T (a) with vertices x, y(a), z(a) is in the plane (x, u, v(a)). In T (a),
since x = ΠΩ(z(a)) and y(a) ∈ Ω, we have 〈x− z(a)|x− y(a)〉 6 0, i.e. cos(Ÿ�z(a)xy(a)) 6 0,
i.e. Ÿ�z(a)xy(a) ∈ [π2 , π). Hence the angles θ(a) = Ÿ�xz(a)y(a) and ϕ(a) = Ÿ�xy(a)z(a) are in
(0, π2 ]. Moreover, the law of sines ensures that ‖y(a)−x‖

sin θ(a) = ‖z(a)−x‖
sinϕ(a) > ‖z(a) − x‖ −→

a→+∞
+∞.

Since ‖y(a) − x‖ is bounded, lima→+∞ sin θ(a) = 0 so lima→+∞ θ(a) = 0. Hence, since v is
bounded and θ(a) −→

a→+∞
0, we have:

1∥∥∥ 1
y(a)

∥∥∥ 1
y(a) = y(a)− z(a)

‖y(a)− z(a)‖ = cos(θ(a))u+ sin(θ(a))v(a) −→
a→+∞

u.

Now, let (ak)k∈N ⊂ (R+)N be a sequence such that limk→∞ ak = +∞. Let yk = y(ak). Let
Y be a subsequential limit of (yk)k∈N. Then 1

Y
‖ u so Y ‖ x. Moreover Y ∈ Mα since

Mα is closed so Y = α1/nx = y0. Otherwise said, (yk)k∈N is a bounded sequence with only
one subsequential limit y0 so (y(ak))k∈N converges to y0. This being valid for any sequence
(ak)k∈N tending to +∞, we proved that y(a) tends to y0 = α1/nx when a tends to +∞. Thus
lima→+∞D(a) = (α1/n − 1)2‖x‖2.

Second step: we prove that D is increasing.
Since y = y(a) is characterized by y(a) − z(a) ‖ 1

y(a) and ∏n
i=1 yi(a) = α, it is implicitly
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defined by the following equations:

∀i ∈ {1, ..., n− 1}, yi(yi − zi(a)) = yi+1(yi+1 − zi+1(a)),
n∏
i=1

yi = α.

Let us apply the implicit function theorem to the smooth map G : (a, y) ∈ R+ × Rn 7−→
(y2(y2− z2(a))− y1(y1− z1(a)), ..., yn(yn− zn(a))− yn−1(yn−1− zn−1(a)),∑n

i=1 ln(yi)− ln(α)).

∂G

∂y1
= (z1(a)− 2y1, 0, ..., 0,

1
y1

),

∀i ∈ {2, ..., n− 1}, ∂G
∂yi

= (0, ..., 0, 2yi − zi(a), zi(a)− 2yi, 0, ..., 0,
1
yi

),

∂G

∂yn
= (0, ..., 0, 2yn − zn(a), 1

yn
),

det
Å
∂G

∂y

ã
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1 0 0 · · · 0 1
y1

−u2 u2 0 · · · 0 1
y2

0 −u3 u3 · · · 0 1
y3... . . . . . . ...

0 . . . 0 −un−1 un−1
1

yn−1

0 . . . 0 −un 1
yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1 0 0 · · · 0 1
y1

0 u2 0 · · · 0 1
y2

0 0 u3 · · · 0 1
y3... . . . . . . ...

0 . . . 0 0 un−1
1

yn−1

−un . . . −un −un 1
yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1 0 0 · · · 0 1
y1

0 u2 0 · · · 0 1
y2

0 0 u3 · · · 0 1
y3... . . . . . . ...

0 . . . 0 0 un−1
1

yn−1

0 . . . 0 0 1
yn

+ un
∑n−1
i=1

1
uiyi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n∏
i=1

ui︸ ︷︷ ︸
6=0

n∑
j=1

1
ujyj︸ ︷︷ ︸
<0

6= 0.

where ui = zi − 2yi. So by the implicit function theorem, y : R+ −→ Rn is smooth. We
introduce an intermediate map b : R+ −→ R+ defined by zi(a) = xi − a

xi
= yi(a) − b(a)

yi(a) . It
does not depend on i since y − z ‖ 1

y
. It is smooth since it writes b = yi(yi − zi).
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Let us prove that D : a ∈ R+ 7−→ ‖y(a)− x‖2 = ∑n
i=1 (yi(a)− xi)2 ∈ R+ is increasing.

D′(a) = 2
n∑
i=1

(yi(a)− xi)y′i(a),

− 1
xi

= (1 + b(a)
yi(a)2 )y′i(a)− b′(a)

yi(a) ,

−yi(a)
xi

= (yi(a) + b(a)
yi(a))y′i(a)− b′(a),

− 1
n

n∑
i=1

yi(a)
xi

= 1
n

n∑
i=1

yi(a)y′i(a)− b′(a),

1
n

n∑
j=1

yj(a)
xj
− yi(a)

xi
= (1 + b(a)

yi(a)2 )yi(a)y′i(a)− 1
n

n∑
i=1

yi(a)y′i(a),

u(a) = M(a)v(a),

where u(a) = ( 1
n

∑n
j=1

yj(a)
xj

)1 − y(a)
x
, v(a) = y(a)y′(a) (product of vectors are Hadamard

products, i.e. coordinate-wise) and:

M(a) =

à
(1 + b(a)

y1(a)2 )− 1
n

− 1
n

· · · − 1
n

− 1
n

(1 + b(a)
y2(a)2 )− 1

n

...
... . . . − 1

n

− 1
n

. . . − 1
n

(1 + b(a)
yn(a)2 )− 1

n

í
.

Thus we can get y′(a) by inverting M(a). Let us compute the inverse with the formula
M−1 = 1

det(M)com(M)> where com(M) is the comatrix of M . First, one can show that the
matrix with diagonal Diag(m1, ...,mn) and off-diagonal terms all equal to µ /∈ {m1, ...,mn},
then its determinant is det(M) = ∏n

i=1(mi − µ)(1 + µ
∑n
i=1

1
mi−µ). This also gives the di-

agonal cofactors [com(M)]ii = ∏
j 6=i(mj − µ)(1 + µ

∑
j 6=i

1
mj−µ). The off-diagonal cofactors

are, up to a sign, the determinant of a matrix of the same type, where mi = µ, which is
µ
∏
j 6=i(mj − µ). Hence the off-diagonal cofactors for i < j are [com(M)]ij = [com(M)]ji =

(−1)i+j(−1)j−1−iµ︸ ︷︷ ︸
−µ

∏
j 6=i(mj −µ) because the (j− 1)-th column has to be put in i-th position

(by inverting consecutive columns) so that we are in the previous situation. This requires
j − 1− i transpositions. Finally:

M−1 = 1
det(M)com(M)

= Diag(c1, ..., cn) + 1
nδ

[cicj]16i,j6n,

where ci = ci(a) = 1
mi−µ = 1

1+ b(a)
yi(a)2

and δ = δ(a) = 1 − 1
n

∑n
i=1 ci(a) > 0. Now it suffices to

compute D′(a) and show that it is positive. We remove the dependence in a for readability.
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We denote s = 1
n

∑n
j=1

yj
xj
.

δ

2D
′(a) = δ

n∑
i=1

(yi − xi)y′i

= δ

Å
y − x
y

ã>
v

= δ

Å
y − x
y

ã>
M−1u

= δ
n∑
i=1

ci(1−
xi
yi

)(s− yi
xi

) + 1
n

∑
i,j

cicj(1−
xi
yi

)(s− yj
xj

)

=
n∑
i=1

ci(1−
xi
yi

)(s− yi
xi

)− 1
n

n∑
j=1

cj
n∑
i=1

ci(1−
xi
yi

)(s− yi
xi

) + 1
n

∑
i,j

cicj(1−
xi
yi

)(s− yj
xj

)

=
∑
i

ci(1−
xi
yi

)(s− yi
xi

) + 1
n

∑
i,j

cicj(1−
xi
yi

)(xi
yi
− yj
xj

)

=
∑
i

ci(1−
xi
yi

) 1
n

∑
j

(yj
xj
− yi
xi

)−
∑
i

ci(1−
xi
yi

) 1
n

∑
j

cj(
yj
xj
− xi
yi

)

= 1
n

∑
i,j

ci(1− cj)(1−
xi
yi

)(yj
xj
− yi
xi

)

= 1
2n

∑
i,j

(yj
xj
− yi
xi

)(1− ci)(1− cj)[
ci(1− xi

yi
)

1− ci
−
cj(1− xj

yj
)

1− cj
]

= 1
2nb

∑
i,j

(1− ci)(1− cj)︸ ︷︷ ︸
>0

(yj
xj
− yi
xi

)[yi(yi − xi)− yj(yj − xj)]

Since b = yi(yi − zi) = yi(yi − xi) + a yi
xi

and a > 0, we have yi(yi − xi) − yj(yj − xj) =
a( yj

xj
− yi

xi
). Finally:

D′(a) = a

nbδ

∑
i,j

(1− ci)(1− cj)(
yj
xj
− yi
xi

)2 > 0 (11.39)

The inequality is strict because the sum is null if and only if x and y are colinear, i.e.
y = α1/nx, which corresponds to a = +∞.

So D is increasing so D 6 lima→+∞D(a) = (α1/n − 1)2‖x‖2.

11.8 Proofs of Chapter 9
In this section, we prove the results of Chapter 9: Bures-Wasserstein stratified geometry of
covariance matrices.

11.8.1 Proof of Lemma 9.20
Lemma 9.20 (Euclidean and Bures-Wasserstein topologies coincide) The Euclidean distance
dE and the Bures-Wasserstein distance dBW define the same topology on Cov(n).



Chapter 11. Proofs 251

Proof of Lemma 9.20 (Euclidean and Bures-Wasserstein topologies coincide). The map π :
X ∈ Mat(n) 7−→ XX> ∈ (Cov(n), dE) is continuous so the quotient topology, i.e. the topol-
ogy induced by the Bures-Wasserstein distance, is finer than the Euclidean topology. Con-
versely, let U be an open set for the Bures-Wasserstein distance. Let Σ ∈ U . Let ε > 0 such
that the Bures-Wasserstein ball BBW(Σ, ε) is included in U . The set V = pow2(BE(Σ1/2, ε))
is open for the Euclidean distance because the map pow2 : Σ 7−→ Σ2 is a homeomor-
phism of (Cov(n), dE). Moreover, if Λ ∈ V , then dBW(Σ,Λ) 6 dE(Σ1/2,Λ1/2) 6 ε so
Λ ∈ BBW(Σ, ε) ⊆ U . So V ⊆ U is a Euclidean neighborhood of Σ, so U is open for the
Euclidean distance. Therefore the two topologies coincide.

11.8.2 Proof of Theorem 9.22
Theorem 9.22 (Bures-Wasserstein geodesics on Sym+(n)) Let Σ ∈ Sym+(n).

1. (Exponential map) [Malagò et al., 2018] For all V ∈ TΣSym+(n) ≡ Sym(n), the geodesic
from Σ with initial speed V writes γ(Σ,V )(t) = Σ + tV + t2SΣ(V )ΣSΣ(V ) ∈ Sym+(n).

2. (Definition interval) Let λmax = max sp(SΣ(V )) and λmin = min sp(SΣ(V )). The defi-
nition interval of the geodesic γ(Σ,V ) is the interval IΣ,V defined by:

· IΣ,V = (− 1
λmax

,− 1
λmin

) if λmin < 0 < λmax,
· IΣ,V = (−∞,− 1

λmin
) if λmin < 0 and λmax 6 0,

· IΣ,V = (− 1
λmax

,+∞) if λmin > 0 and λmax > 0,
· IΣ,V = R if λmin = λmax = 0 (which only happens for V = 0).

3. (Cut time) The cut time is tcut(Σ, V ) = − 1
λmin

if λmin < 0 or +∞ otherwise. The
geodesic γ(Σ,V ) : IΣ,V −→M is even minimizing on IΣ,V .

4. (Logarithm map) For all Λ ∈ Sym+(n), there exists a unique preimage V ∈ PreΣ(Λ).
It writes V = 2 sym(Σ1/2(Σ1/2ΛΣ1/2)1/2Σ−1/2) − 2Σ, where sym(M) = 1

2(M + M>).
The geodesic joining Σ to Λ writes:

γΣ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t) sym(Σ1/2(Σ1/2ΛΣ1/2)1/2Σ−1/2).

Moreover, it is a logarithm: V ∈ Logx(y). Thus the logarithm map is defined on UΣ =
Sym+(n) and it writes LogΣ : Λ ∈ Sym+(n) 7−→ 2sym(Σ1/2(Σ1/2ΛΣ1/2)1/2Σ−1/2)−2Σ ∈
TΣSym+(n).

Proof of Theorem 9.22 (Bures-Wasserstein geodesics on Sym+(n)). We prove statement 3 in
the end because it requires statement 4.

1. (Exponential map) The expression of the exponential map comes from [Malagò et al.,
2018].

2. (Definition domain) The domain IΣ,V is described in [Malagò et al., 2018] as the con-
nected component of 0 in JΣ,V = {t ∈ R|In + tSΣ(V ) ∈ Sym+(n)}. Since t ∈ JΣ,V if
and only if 0 /∈ {1 + tλ|λ ∈ sp(SΣ(V ))} if and only if t /∈ {− 1

λ
|λ ∈ sp(SΣ(V ))}, we have

max(−∞, 0] ∩ {− 1
λ
|λ ∈ sp(SΣ(V ))} = − 1

λmax
if λmax > 0 and min[0,+∞) ∩ {− 1

λ
|λ ∈

sp(SΣ(V ))} = − 1
λmin

if λmin < 0. Therefore, we have the following cases:
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· if λmin < 0 < λmax, then IΣ,V = (− 1
λmax

,− 1
λmin

),

· if λmin < 0 and λmax 6 0, then (−∞, 0] ⊆ JΣ,V so IΣ,V = (−∞,− 1
λmin

),

· if λmin > 0 and λmax > 0, then [0,+∞) ⊆ JΣ,V so IΣ,V = (− 1
λmax

,+∞),
· if λmin > 0 and λmax 6 0, which means λmin = λmax = 0, then V = 0 and
IΣ,V = JΣ,V = R.

4. (Logarithm map) The existence of a preimage V ∈ PreΣ(V ) and even a logarithm
V ∈ LogΣ(V ) (because it satisfies ‖V ‖ = d(Σ,Λ)) is due to [Bhatia et al., 2019]. The
geodesic joining Σ to Λ (Equation 9.3) is derived in [Bhatia et al., 2019] and it suffices to
derive the expression at t = 0 to compute V = γ̇Σ→Λ(0) = 2 sym(Σ1/2(Σ1/2ΛΣ1/2)1/2Σ−1/2)−
2Σ.
The uniqueness of the preimage comes from [Massart and Absil, 2020, Proposition
4.4] on Sym+(n, k) applied to k = n. Indeed, it is stated that there exists a unique
W ∈ HΣ1/2 such that:

(a) for all t ∈ [0, 1], Σ1/2(Σ1/2 + tW ) ∈ GL(n),
(b) (Σ1/2 +W )(Σ1/2 +W )> = Λ.

Therefore, there exists a unique V = dΣ1/2π(W ) = Σ1/2W> + WΣ1/2 ∈ TΣSym+(n)
(and W = V #

Σ1/2) such that 1 ∈ IΣ,V (for all t ∈ [0, 1], ExpΣ(tV ) ∈ Sym+(n)) and
ExpΣ(V ) = Λ, i.e. V ∈ PreΣ(Λ). Thus the logarithm map LogΣ is defined on UΣ =
Sym+(n).

3. (Cut time) Let us prove that γ(Σ,V ) is minimizing on IΣ,V . This will prove in particular
that tcut(Σ, V ) = sup IΣ,V . Let t, t′ ∈ IΣ,V , t < 0 < t′, let Λ = ExpΣ(tV ) and Λ′ =
ExpΣ(t′V ). Changing the base point of the geodesic, we have Λ′ = ExpΛ((t′ − t)V ′)
with V ′ = −γ̇(Σ,V )(t) ∈ TΛSym+(n). Since for all s ∈ [0, 1], (1 − s)t + st′ ∈ IΣ,V
and ExpΛ(s(t′ − t)V ′) = ExpΣ(((1− s)t+ st′)V ) ∈ Sym+(n), we have 1 ∈ IΛ,(t′−t)V ′ so
(t′−t)V ′ ∈ PreΛ(Λ′). By uniqueness of the preimage of Λ′ from Λ, LogΛ(Λ′) = (t′−t)V ′
and γΛ,(t′−t)V ′ is minimizing on [0, 1]. Equivalently, γ(Σ,V ) is minimizing on [t, t′] so it is
minimizing on IΣ,V .

11.8.3 Proof of Theorem 9.25
Theorem 9.25 (Horizontal lift, tangent space, metric) Let Σ ∈ Sym+(n, k), letX ∈ Rn×k

∗
such that Σ = XX> ∈ Sym+(n, k) and let V ∈ TΣSym+(n, k). Let Σ = UDU> be a
singular value decomposition with D ∈ Diag+(k) and U ∈ St(n, k). We denote S = SΣ,V =
USD(U>V U)U>, where SA(B) denotes the unique solution Z of the Sylvester equation AZ+
ZA = B. Note that SΣ,V and (In − UU>) are independent from the chosen decomposition.

1. (Tangent space) TΣSym+(n, k) = {V ∈ Sym(n)|X>⊥V X⊥ = 0},

2. (Horizontal lift) V #
X = X(X>X)−1SX>X(X>V X)+(In −X(X>X)−1X>)︸ ︷︷ ︸

X⊥X
>
⊥

V X(X>X)−1,
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3. (Bures-Wasserstein metric) gBW (n,k)
Σ (V, V ) = tr(SΣ,V ΣSΣ,V + V Σ†V (In − UU>)).

Proof of Theorem 9.25 (Horizontal lift, tangent space, metric). 1&2. We prove the expres-
sion of the tangent space and the horizontal lift together. Let V ∈ TΣSym+(n, k).
The horizontal lift is defined by:

· (lift) V = dXπ(V #) = X(V #)> + V #X>,
· (horizontal) V # = X(X>X)−1F+X⊥K where F ∈ Sym(r) andK ∈ Mat(n−r, r).

When we plug the second equality in the first one and we multiply by X> on the left
and X on the right, since X>X⊥ = 0, we get immediately X>V X = X>XF +FX>X
so F = SX>X(X>V X). By multiplying by X>⊥ on the left instead, we get X>⊥V X =
KX>X so K = X>⊥V X(X>X)−1. Since the matrix (X(X>X)−1/2 ; X⊥) is orthogonal,
we have X(X>X)−1X> +X⊥X

>
⊥ = In.

We compute dXπ(V #) to check that it is equal to V :

dXπ(V #) = X[(X>X)−1F + F (X>X)−1]X> + 2sym(X⊥X>⊥V X(X>X)−1X>)
= X(X>X)−1X>V X(X>X)−1X> + 2sym(X⊥X>⊥V (In −X⊥X>⊥ ))
= (In −X⊥X>⊥ )V (In −X⊥X>⊥ ) +X⊥X

>
⊥V + V X⊥X

>
⊥ − 2X⊥X>⊥V X⊥X>⊥

= V −X⊥X>⊥V X⊥X>⊥ .

Thus, X⊥X>⊥V X⊥X>⊥ = 0 so X>⊥V X⊥ = 0. Conversely, if X>⊥V X⊥ = 0, then V is the
image by dXπ of a horizontal vector so V ∈ TΣSym+(n, k). Hence TΣSym+(n, k) =
{V ∈ Sym(n)|X>⊥V X⊥ = 0}.

3. The quotient metric is defined by gBW(n,k)
Σ (V, V ) = tr(V #

X (V #
X )>) so we only need to

compute V #(V #)> for any X, for example X = UD1/2, and its trace.

V # = UD1/2D−1SD(D1/2U>V UD1/2) + (In − UD1/2D−1D1/2U>)V UD1/2D−1

= USD(U>V U)D1/2 + (In − UU>)V UD−1/2

= SUD1/2 + (In − UU>)V UD−1/2,

V #(V #)> = SUDU>S + SV (In − UU>) + (In − UU>)V S + (In − UU>)V Σ†V (In − UU>).

Hence tr(V #(V #)>) = tr(SΣS + V Σ†V (In − UU>)).

11.8.4 Proof of Theorem 9.26
Theorem 9.26 (Bures-Wasserstein geodesics on Sym+(n, k)) Let Σ,Λ ∈ Sym+(n, k) and

X, Y ∈ Rn×k
∗ such that XX> = Σ and Y Y > = Λ. Let U ∈ St(n, k) and D ∈ Diag+(k) such

that Σ = UDU>.
1. (Exponential map) For all V ∈ TΣSym+(n, k), the geodesic from Σ with initial speed
V is γ(Σ,V ) : t ∈ IΣ,V 7−→ Σ + tV + t2WΣ,V , where WΣ,V = SΣ,V ΣSΣ,V + SΣ,V V (In −
UU>)+(In−UU>)V SΣ,V +(In−UU>)V Σ+V (In−UU>) and SΣ,V = USD(U>V U)U>.



254 Part VII. Appendix

2. (Definition interval) Let F 0
X,V = SX>X((X>X)−1/2X>V X(X>X)−1/2) and M0

X,V =
(X>X)−3/2X>V (In − X(X>X)−1X>)V X(X>X)−3/2 ∈ Sym(n). Let EΣ,V = {λ ∈
sp(F 0

X,V )| ker(λIk − F 0
X,V ) ∩ ker(M0

X,V ) 6= {0}} ⊆ sp(F 0
X,V ) = sp(SΣ,V ). If EΣ,V is

non-empty, then let λ+ = max EΣ,V and λ− = min EΣ,V . The definition interval of the
geodesic γ(Σ,V ) is the interval IΣ,V defined by:

· IΣ,V = (− 1
λ+
,− 1

λ−
) if λ− < 0 < λ+,

· IΣ,V = (−∞,− 1
λ−

) if λ− < 0 and λ+ 6 0,

· IΣ,V = (− 1
λ+
,+∞) if λ− > 0 and λ+ > 0,

· IΣ,V = R if EΣ,V is empty.

Applying this toX = UD1/2 without loss of generality, F 0
X,V = SD(U>V U) andM0

X,V =
D−1U>V (In − UU>)V UD−1 which is a bit more tractable to compute EΣ,V .

3. (Cut time) Let λmax = max sp(F 0
X,V ) and λmin = min sp(F 0

X,V ). Note that if EΣ,V 6= ∅,
then we have (λ−, λ+) ⊆ (λmin, λmax). The cut time is tcut(Σ, V ) = − 1

λmin
if λmin < 0

or +∞ otherwise. Symmetrically, we have tcut(Σ,−V ) = 1
λmax

if λmax > 0 or +∞
otherwise.

4. (Preimages) We define the indexing set IPreX,Y by:

IPreX,Y = {R ∈ O(n)|H := X>Y R> ∈ Sym(n) and
∀µ < 0, ker(µIk − (X>X)−1/2H(X>X)−1/2)

∩ ker(µ2Ik − (X>X)−1/2RY >Y R>(X>X)−1/2) = {0}}.

For R ∈ IPreX,Y , we denote H = HX,Y,R = X>Y R> so that X>Y = HR.
Then, the map R ∈ IPreX,Y 7−→ V = 2 sym(XRY >)− 2Σ ∈ PreΣ(Λ) is a bijection whose
inverse is V ∈ PreΣ(Λ) 7−→ R = (Y >Y )−1Y >(X + V #

X ) ∈ IPreX,Y .
The geodesic joining Σ to Λ parametrized by R ∈ IPreX,Y writes:

∀t ∈ [0, 1], γRΣ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t)sym(XRY >). (11.40)

5. (Logarithms) Let ILogX,Y = {R ∈ O(n)|HX,Y,R = X>Y R> ∈ Cov(n)} = {R ∈ O(n)|HX,Y,R =
(X>ΛX)1/2} = {R ∈ O(n)|X>Y = (X>ΛX)1/2R} ⊆ IPreX,Y .

Then, the map R ∈ ILogX,Y 7−→ V = 2 sym(XRY >)− 2Σ ∈ LogΣ(Λ) is a bijection whose
inverse is V ∈ LogΣ(Λ) 7−→ R = (Y >Y )−1Y >(X + V #

X ) ∈ ILogX,Y .

6. (Logarithm map) Let r = rk(ΣΛ) = rk(X>Y ) = rk(H).

(a) If r = k, then there exists a unique logarithm of Λ from Σ. In this case, the
minimizing geodesic joining Σ to Λ writes:

γΣ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t)sym(Σ1/2((Σ1/2ΛΣ1/2)1/2)†Σ1/2Λ). (11.41)
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(b) If r = k − 1, then there exist exactly two logarithms of Λ from Σ.

(c) If r < k − 1, then there is an infinity of logarithms of Λ from Σ.

Therefore, the logarithm map is defined on UΣ = {Λ ∈ Sym+(n, k)|rk(ΣΛ) = k} and it
writes LogΣ : Λ ∈ UΣ 7−→ 2 sym(Σ1/2((Σ1/2ΛΣ1/2)1/2)†Σ1/2Λ)− 2Σ ∈ TΣSym+(n, k).

Proof of Theorem 9.26 (Bures-Wasserstein geodesics on Sym+(n, k)). We prove statement 3
in the end because it requires statements 4 and 5.

1. (Exponential map) The exponential map is simply ExpΣ(tV ) = π(ExpX(tV #
X )) = (X+

tV #
X )(X + tV #

X )> = Σ + tV + V #
X (V #

X )>. The matrix W = V #
X (V #

X )> was already
computed in the proof of Theorem 9.25.

2. (Definition domain) As in Sym+(n), let us first determine JΣ,V = {t ∈ R|rk(Σ +
tV + t2WΣ,V ) = k}. According to [Massart and Absil, 2020, Proposition 3.2] ap-
plied to tV #

X = t[X(X>X)−1FX,V + X⊥KX,V ] with F = FX,V = SX>X(X>V X) and
K = KX,V = X>⊥V X(X>X)−1, we have t ∈ JΣ,V if and only if ker(Ik + t(X>X)−1F )∩
ker(K) = {0}. Denoting EΣ,V = {λ ∈ sp((X>X)−1F )| ker(λIk − (X>X)−1F ) ∩
ker(K) 6= {0}}, it is clear that JΣ,V = R\{− 1

λ
|λ ∈ EΣ,V }. Then IΣ,V is the con-

nected component of 0 in JΣ,V . Its computation is analogous to the one in the proof of
Theorem 9.22.

To get a condition on the kernels of symmetric matrices in EΣ,V , it suffices to note that
the condition rewrites ker(λIk − (X>X)−1/2F (X>X)−1/2) ∩ ker(K(X>X)−1/2) 6= {0}
and ker(K(X>X)−1/2) = ker((X>X)−1/2K>K(X>X)−1/2) with (X>X)−1/2K>K(X>X)−1/2 =
(X>X)−3/2X>V X⊥X

>
⊥V X(X>X)−3/2 = (X>X)−3/2X>V (In−X(X>X)−1X>)V X(X>X)−3/2.

Note that EΣ,V is independent from the choice of X because FXR,V = R>FX,VR and
KXR,V = R>KX,VR for all R ∈ O(n) so the condition does not depend on X.

4. (Preimages) In [Massart and Absil, 2020, Propositions 4.4 & 4.5], the solutions of the
equation ExpΣ(V ) = Λ are computed in a wider set than the definition domainDΣ of the
exponential map because they did not need more to characterize the logarithms. They
are actually computed in the set {V ∈ TΣSym+(n, k)|Σ + V + WΣ,V ∈ Sym+(n, k)}.
However, the geodesic γ(Σ,V ) may leave the manifold Sym+(n, k) before reaching Λ.
Therefore, we complete their work with the additional condition 1 ∈ IΣ,V to characterize
the preimages of Λ from Σ.

From [Massart and Absil, 2020], we know that preimages V necessarily satisfy V #
X =

Y R> −X with X>Y = HR, H ∈ Sym(n), R ∈ O(n). Thus, V = XRY > + Y R>X> −
2XX> so X>V X = HX>X+X>XH−2(X>X)2 so F = SX>X(X>V X) = H−X>X.
Moreover, K = X>⊥V X(X>X)−1 = X>⊥Y R

>. Denoting A = (X>X)−1/2H(X>X)−1/2

and B = (X>X)−1/2RY >Y R>(X>X)−1/2, we have (X>X)−1/2F (X>X)−1/2 = A − Ik
and (X>X)−1/2K>K(X>X)−1/2 = (X>X)−1/2RY >X⊥X

>
⊥Y R

>(X>X)−1/2 = B − A2.
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We can now compute EΣ,V and IΣ,V . For all λ ∈ R, for all Z ∈ Rn:

Z ∈ ker(λIk − S0
X,V ) ∩ ker(M0

X,V )⇐⇒ Z ∈ ker((λ+ 1)Ik − A) ∩ ker(B − A2)
⇐⇒ AZ = (λ+ 1)Z and BZ = A2Z

⇐⇒ AZ = (λ+ 1)Z and BZ = (λ+ 1)2Z

⇐⇒ Z ∈ ker((λ+ 1)Ik − A) ∩ ker((λ+ 1)2Ik −B).

Therefore:

EΣ,V = {λ ∈ sp(A− Ik)| ker((λ+ 1)Ik − A) ∩ ker((λ+ 1)2Ik −B) 6= {0}}
= {µ− 1 ∈ sp(A− Ik)| ker(µIk − A) ∩ ker(µ2Ik −B) 6= {0}}.

Thus, denoting λ− = min EΣ,V , the condition 1 ∈ IΣ,V rewrites:

1 ∈ IΣ,V ⇐⇒ λ− > 0 or − 1
λ−

> 1⇐⇒ λ− > −1

⇐⇒ ∀µ ∈ sp(A), ker(µIk − A) ∩ ker(µ2Ik −B) 6= {0} =⇒ µ > 0
⇐⇒ ∀µ < 0, ker(µIk − A) ∩ ker(µ2Ik −B) = {0}.

To conclude, with the notations of statement 4, V = 2 sym(XRY >)− 2Σ ∈ PreΣ(Λ) if
and only if R ∈ IPreX,Y .

5. (Logarithms) In [Massart and Absil, 2020], it is stated that the shortest vectors V =
dπ(V #

X ) with V #
X = Y R> − X are those for which (H,R) is a polar decomposition of

X>Y , i.e. H > 0. Therefore, we necessarily have H = (X>ΛX)1/2. From Definition
9.19, they even satisfy ‖V ‖ = ‖V #‖ = dBW(Σ,Λ). Moreover, if H > 0, the condition
1 ∈ IΣ,V is automatically satisfied, as stated in [Massart and Absil, 2020, Corollary 3.3
(5)]. So with the notations of statement 5, the logarithms are indexed by ILogX,Y .

6. (Logarithm map) It is clear that rk(ΣΛ) 6 rk(X>Y ) since ΣΛ = X(X>Y )Y >. We also
have X>Y = (X>X)−1X>(ΣΛ)Y (Y >Y )−1 so rk(X>Y ) 6 rk(ΣΛ). Finally, rk(ΣΛ) =
rk(X>Y ) = rk(H). We denote it r = rk(ΣΛ).

(a) As stated in [Massart and Absil, 2020], if r = k, then there exists a unique
logarithm of Σ from Λ. Moreover, we can compute an explicit expression. Indeed,
R = H−1X>Y so XRY > = XH−1X>Λ = X(X>ΛX)−1/2X>Λ. Since the choice
of X is free, let us take X = UD1/2 where Σ = UDU> with U ∈ St(n, k) and
D ∈ Diag+(k). Therefore:

XRY > = UD1/2(D1/2U>ΛUD1/2)−1/2D1/2U>Λ
= UD1/2U>U((D1/2U>ΛUD1/2)1/2)−1U>UD1/2U>Λ
= Σ1/2(U(D1/2U>ΛUD1/2)1/2U>)†Σ1/2Λ
= Σ1/2((UD1/2U>ΛUD1/2U>)1/2)†Σ1/2Λ
= Σ1/2((Σ1/2ΛΣ1/2)1/2)†Σ1/2Λ.

So the unique minimizing geodesic joining Σ to Λ writes:

γ(Σ,Λ)(t) = (1− t)2Σ + t2Λ + 2t(1− t)sym(Σ1/2((Σ1/2ΛΣ1/2)1/2)†Σ1/2Λ).
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(b) If r = k − 1, without loss of generality, let us assume that X>Y ∈ Diag(k),
X>Y = Diag(d1, ..., dk−1, 0). Then H > 0 and H2 = (X>Y )2 imposes that
H = Diag(|d1|, ..., |dk−1|, 0). Therefore, there are only two matricesR+, R− ∈ O(n)
defined by R± = Diag(sgn(d1), ..., sgn(dk−1),±1) such that X>Y = HR±. Thus
there are exactly two logarithms of Λ from Σ.

(c) If r < k − 1, similarly we can assume without loss of generality that X>Y =
Diag(d1, ..., dr, 0, ..., 0). Then H = Diag(|d1|, ..., |dr|, 0, ..., 0) and R = Diag(ε, R0)
is a block-diagonal matrix with ε = Diag(sgn(d1), ..., sgn(dr)) ∈ Diag(r) and R0 ∈
O(k − r). Thus there is an infinity of logarithms of Λ from Σ.

Thus the logarithm map is defined on UΣ = {Λ ∈ Sym+(n, k)| rk(ΣΛ) = k}, as stated
in [Massart and Absil, 2020].

3. (Cut time) Let t ∈ IΣ,V ∩ R+. Let Λ = γ(Σ,V )(t), Y ∈ Rn×k
∗ such that Y Y > = Λ,

(H,R) ∈ Sym(k) × O(k) such that X>Y = HR and V #
X = Y R> −X. Then, X>X +

tX>V #
X = X>Y R> = H. Besides, X>X + tX>V # = (X>X)1/2(In + tS0

X,V )(X>X)1/2.
Let λmin = min sp(S0

X,V ) = min sp(SΣ,V ). Therefore, γ(Σ,V ) is minimizing on [0, t] if and
only if H > 0 if and only if In + tS0

X,V > 0 if and only if 1 + tλmin > 0. If λmin > 0, the
condition is empty so tcut(Σ, V ) = +∞. If λmin < 0, the condition writes t 6 − 1

λmin
so

tcut(Σ, V ) = − 1
λmin

.

11.8.5 Proof of Theorem 9.31
Theorem 9.31 (Bures-Wasserstein minimizing geodesic segments in Cov(n)) Let Σ,Λ ∈

Cov(n) with rk(Σ) = k and rk(Λ) = l. Let X, Y ∈ Rn×n such that XX> = Σ and Y Y > = Λ.
The two following statements are equivalent:
(i) the curve γ : [0, 1] −→ Cov(n) is a minimizing geodesic segment from Σ to Λ,

(ii) there exists R ∈ O(n) such that HX,Y,R := X>Y R> ∈ Cov(n) and for all t ∈ [0, 1],
γ(t) = γRΣ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t)sym(XRY >).

Moreover, HX,Y,R = (X>ΛX)1/2 and the minimizing geodesic γRΣ→Λ is of constant rank p >
max(k, l) on (0, 1).

Proof of Theorem 9.31 (Bures-Wasserstein minimizing geodesic segments in Cov(n)).
(Necessity) Let γ : [0, 1] −→ Cov(n) be a minimizing geodesic segment from Σ = γ(0) to
Λ = γ(1). Let p = maxt∈[0,1] rk(γ(t)). By Lemma 9.30, γ is of constant rank p > max(k, l) on
(0, 1). In other words, γ|(0,1) : (0, 1) −→ Sym+(n, p) is a minimizing geodesic of Sym+(n, p).
Let c0 : (0, 1) −→ Rn×p

∗ be a horizontal lift of γ|(0,1). Necessarily, c0(t) = (1 − t)X0 + tY0
with X0, Y0 ∈ Rn×p with X0X

>
0 = Σ and Y0Y

>
0 = Λ since (X0,Σ) = limt→0(c0(t), γ(t)) and

(Y0,Λ) = limt→1(c0(t), γ(t)). Let us show that X>0 Y0 ∈ Cov(p).
For all [a, b] ⊂ (0, 1), the tangent vectors V #

c0(a) = (b − a)(Y0 −X0) ∈ Tc0(a)Rn×p
∗ = Rn×p

and V = c0(a)(V #
c0(a))> + V #

c0(a)c0(a)> ∈ Logγ(a)(γ(b)) ⊂ Tγ(a)Sym+(n, p) uniquely determine
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a pair of matrices Ra,b ∈ ILogc0(a),c0(b) and Ha,b = Hc0(a),c0(b),Ra,b = c0(a)>c0(b) ∈ Cov(p). We
compute Ha,b:

Ha,b = c0(a)>c0(b) = [(1− a)X0 + aY0]>[(1− b)X0 + bY0]
= (1− a)(1− b)X>0 X0 + abY >0 Y0 + (1− a)bX>0 Y0 + a(1− b)Y >0 X0.

Therefore, lima→0
b→1

Ha,b = X>0 Y0 so X>0 Y0 ∈ Cov(p).
Since [X0 0][X0 0]> = Σ and [Y0 0][Y0 0]> = Λ, there exist P,Q ∈ O(n) such that

X = [X0 0]P and Y = [Y0 0]Q. Thus the curve c : t ∈ [0, 1] 7−→ (1− t)X + tY R> ∈ Mat(n)
with R = P>Q ∈ O(n) satisfies γ(t) = c(t)c(t)> for all t ∈ [0, 1]. Indeed, it is equal to
c0(t)c0(t)> on (0, 1) and the equality is clear for t ∈ {0, 1}. Moreover, HX,Y,R = X>Y R> =
U>Diag(X>0 Y0, 0)U ∈ Cov(n) so HX,Y,R = ((X>Y )(X>Y )>)1/2 = (X>ΛX)1/2. Finally,
γ(t) = c(t)c(t)> = (1− t)2Σ + t2Λ + 2t(1− t) sym(XRY >).

(Sufficiency) Let γR(Σ,Λ)(t) = (1− t)2Σ + t2Λ + 2t(1− t)sym(XRY >) with H = HX,Y,R =
X>Y R> ∈ Cov(n) and let us prove that it is a minimizing geodesic segment. We define
W = Y R> − X and c(t) = X + tW = (1 − t)X + tY R> for t ∈ [0, 1]. The curve c is
a geodesic of Mat(n) such that c(t)c(t)> = γR(Σ,Λ)(t) for all t ∈ [0, 1]. Moreover, L(c) =
‖W‖ = tr(XX> + Y Y > − 2X>Y R>)1/2 = tr(Σ + Λ − 2H)1/2. Let Q ∈ O(n) such that
X = Σ1/2Q. Since H > 0, H = (X>ΛX)1/2 = Q>(Σ1/2ΛΣ1/2)1/2Q. Therefore, L(c) =
‖W‖ = ‖Y R> −X‖ = tr(Σ + Λ− 2H)1/2 = dBW(Σ,Λ). In other words, c : [0, 1] −→ Cov(n)
is a minimizing curve between two registered points X and Y R> so by Lemma 9.13, its
projection γ : [0, 1] −→ Cov(n) is a minimizing curve and L(γ) = L(c) = dBW(Σ,Λ).

By Lemma 9.30 again, γ has constant rank p > max(k, l) on (0, 1) so γ|(0,1) : (0, 1) −→
Sym+(n, p) is a minimizing curve of Sym+(n, p). Since c|(0,1) has constant speed, so does
γ|(0,1). By continuity of the length, γ has constant speed on [0, 1] so γ : [0, 1] −→ Cov(n) is
a minimizing geodesic segment.

11.8.6 Proof of Lemma 9.33
Lemma 9.33 (Elementary algebra) Let Σ,Λ ∈ Cov(n) with rk(Σ) = k and rk(Λ) = l.

Let r = rk(ΣΛ).
1. For all X, Y ∈ Mat(n) such that XX> = Σ and Y Y > = Λ, r = rk(X>Y ).
2. We have l − r 6 n− k.

Proof of Lemma 9.33 (Elementary algebra). 1. Let X0 ∈ Rn×k
∗ and Y0 ∈ Rn×l

∗ such that
X0X

>
0 = Σ and Y0Y

>
0 = Λ. Thus there exist P,Q ∈ O(n) such that X = [X0 0]P

and Y = [Y0 0]Q. Since ΣΛ = X(X>Y )Y >, we have r 6 rk(X>Y ) = rk(X>0 Y0).
Since X>0 Y0 = (X>0 X0)−1X>0 ΣΛY0(Y >0 Y0)−1, we have rk(X>0 Y0) 6 rk(ΣΛ). Finally,
r = rk(X>0 Y0) = rk(X>Y ).

2. Let f, g : Rn −→ Rn be linear endomorphisms respectively represented by Σ and Λ is the
canonical basis. From the rank-nullity theorem applied to f|im (g) : im (g) −→ Rn, the
restriction of f to im (g), and since im (f|im (g)) = im (f ◦g) and ker(f|im (g)) ⊆ ker(f), we
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have rk(g) = rk(f|im (g))+dim ker(f|im (g)) 6 rk(f ◦g)+dim(ker f) = rk(f ◦g)+n−rk(f).
This writes l − r 6 n− k.

11.8.7 Proof of Theorem 9.34
Theorem 9.34 (Number of Bures-Wasserstein minimizing geodesic segments in Cov(n))

Let Σ,Λ ∈ Cov(n) with rk(Σ) = k and rk(Λ) = l. We assume that k > l without loss of
generality. We denote r = rk(ΣΛ). We have l − r 6 n− k.

1. There exists a bijection between the set of minimizing geodesics from Σ to Λ and the
closed unit ball of R(k−r)×(l−r) for the spectral norm B̄S(0, 1) = {R0 ∈ R(k−r)×(l−r)| ‖R0‖S 6
1} = {R0 ∈ R(k−r)×(l−r)| 0 6 R>0 R0 6 Il−r}. More precisely, this bijection is given by:

γR0
Σ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t) sym(XrY

>
r +Xk−rR0Y

>
l−r),

where X = (Xr Xk−r 0) ∈ Rn×n and Y = (Yr Yl−r 0) ∈ Rn×n are such that XX> = Σ,

Y Y > = Λ and X>Y = Diag(Dr, 0), and R =

Ñ
Ir 0 0
0 R0 ∗
0 ∗ ∗

é
∈ O(n), with Xr, Yr ∈

Rn×r, Xk−r ∈ Rn×(k−r), Yl−r ∈ Rn×(l−r), Dr ∈ Diag+(r), R0 ∈ B̄S(0, 1).
2. The minimizing geodesic is unique if and only if r = l. This includes the cases k = n.
3. There are infinitely many minimizing geodesics if and only if r < l.
4. The minimizing geodesics corresponding to the choices R0 ∈ St(k − r, l− r) (including

the empty matrix if r = l) have rank exactly k on [0, 1) (on [0, 1] if l = k). Note that
St(k− r, l− r) is included in the unit sphere SS(0, 1) = {R0 ∈ R(k−r)×(l−r)| ‖R0‖S = 1}.

5. The minimizing geodesic corresponding to the choice R0 = 0 (or the empty matrix if
r = l) writes for all t ∈ [0, 1]:

γ0
Σ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t) sym(Σ1/2((Σ1/2ΛΣ1/2)1/2)†Σ1/2Λ).

If r = l, it has rank exactly k on [0, 1).

The number of minimizing geodesic segments in Sym+(n, k) and in Cov(n) is summarized in
Table 9.2 with n > k > l > r.

Σ ∈ Λ ∈ r = rk(ΣΛ) Number of minimizing geodesics
in Sym+(n, k) in Cov(n)

Sym+(n) Sym+(n) n 1 1
Sym+(n) Sym+(n, k) k 1 1

Sym+(n, k) Sym+(n, k)
k 1 1

k − 1 2 ∞
< k − 1 ∞ ∞

Sym+(n, k) Sym+(n, l) l 1 1
< l ∞ ∞

Table 9.2: Number of Bures-Wasserstein minimizing geodesic segments (n > k > l > r)
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Proof of Theorem 9.34 (Number of Bures-Wasserstein minimizing geodesic segments in Cov(n)). 1.
Without loss of generality, let us choose X, Y ∈ Mat(n) with an convenient form. We
choose X0 ∈ Rn×k

∗ and Y0 ∈ Rn×l
∗ as in the proof of the previous lemma. Given a

singular value decomposition of X>0 Y0 = UkDV
>
l with Uk ∈ O(k), Vl ∈ O(l) and

D = Diag(Dr, 0) with Dr ∈ Diag+(r), we define P = Diag(Uk, In−k) ∈ O(n) and
Q = Diag(Vl, In−l) ∈ O(n). We choose X = [X0 0]P = [Xk 0] with Xk = X0Uk ∈ Rn×k

∗
and Y = [Y0 0]Q = [Yl 0] with Yl = Y0Vl ∈ Rn×l

∗ . Therefore we have XX> = Σ,
Y Y > = Λ,X = [Xk 0], Y = [Yl 0] andX>Y = Diag(Dr, 0). We denoteX = [Xr Xk−r 0]
and Y = [Yr Yl−r 0] with Xr, Yr ∈ Rn×r

∗ , Xk−r ∈ Rn×(k−r) and Yl−r ∈ Rn×(l−r).

Necessarily, H = (X>Y Y >X)1/2 = Diag(Dr, 0). The possible R ∈ O(n) such that
HR = X>Y are R = Diag(Ir, Rn−r) with Rn−r = [Rl−r Rn−l] ∈ O(n − r) where

Rl−r ∈ St(n − r, l − r) and Rn−l ∈ St(n − r, n − l). We denote Rl−r =
Å
R0
R1

ã
with

R0 ∈ R(k−r)×(l−r) and R1 ∈ R(n−k)×(l−r) with R>0 R0 +R>1 R1 = Il−r. Note that both R0
and R1 have more rows than columns.

A simple calculus gives XRY > = XrY
>
r + Xk−rR0Y

>
l−r. Given R,R′ satisfying HR =

HR′ = X>Y , we have XRY > = XR′Y > if and only if R0 = R′0 since X>k−rXk−r
and Y >l−rYl−r are invertible. We even have sym(XRY >) = sym(XR′Y >) if and only if
R0 = R′0. Indeed, if sym(XRY >) = sym(XR′Y >), thenXk−r(R0−R′0)Y >l−r = Yl−r(R′0−
R0)>X>k−r. Since X>k−rYl−r = 0, it suffices to multiply on the left by X>k−r and on the
right by Yl−r to conclude that R0 = R′0. Thus there is a bijection between minimizing

geodesic segments and submatrices R0 ∈ R(k−r)×(l−r) of Rl−r =
Å
R0
R1

ã
∈ St(n− r, l− r).

Since R1 has more rows than columns, any R0 ∈ R(k−r)×(l−r) such that R>0 R0 6 Il−r

can be completed by an appropriate R1 =
Å

(Il−r −R>0 R0)1/2

0n−k−(l−r),l−r

ã
.

Therefore, the minimizing geodesic segments are in bijection with the matrices R0 ∈
R(k−r)×(l−r) such that R>0 R0 6 Il−r, that is the closed unit ball for the spectral norm
B̄S(0, 1).

2. When r = l, the component Yl−r of Y is the empty matrix. In other words, the
dependence of the minimizing geodesic on R0 vanishes so the minimizing geodesic is
unique. In particular when k = n, r = rk(ΣΛ) = rk(Λ) = l.

3. On the contrary, when r < l (thus n > k > l), there is an infinite number of convenient

R0’s. For example, R0 =
Å

cos θ 01,l−r−1
0k−r−1,1 0k−r−1,l−r−1

ã
andR1 =

Ñ
sin θ 01,l−r−1

0l−r−1,1 Il−r−1
0n−k−(l−r),1 0n−k−(l−r),l−r−1

é
.

4. Since R0 has more rows than columns, R1 may be null which means than R0 ∈ St(k −
r, l − r), that is R>0 R0 = Il−r. A simple calculus shows than Y R> = [Yr Yl−rR>0 0n−k].
Therefore, the curve c(t) = (1− t)X + tY R> has its n− k columns identically null so
it has rank less than k. But it also has rank at least k because rk(Σ) = rk(X) = k. So
c and γR0

Σ→Λ are of rank exactly k on [0, 1) (and on [0, 1] if l = rk(Λ) = k).
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5. At the other extremity, there is R0 = 0 (and R1 ∈ St(n − k, l − r)). For r = l, it
corresponds to the empty matrix. In this case, XRY > = XrY

>
r . Inspired by the case

of the unique geodesic in Sym+(n, k) (with k = l = r), we notice that XH†X>Y Y > =
XH†HY > = XDiag(Ir, 0)Y > = XrY

>
r = XRY >. Therefore, denoting X = UD1/2V >

with U, V ∈ St(n, k) and D ∈ Diag+(k), we have:

XRY > = XH†X>Λ
= UD1/2V >((V D1/2U>ΛUD1/2V >)1/2)†V D1/2U>

= UD1/2((D1/2U>ΛUD1/2)1/2)†D1/2U>

= UD1/2U>((UD1/2U>ΛUD1/2U>)1/2)†UD1/2U>

= Σ1/2((Σ1/2ΛΣ1/2)1/2)†Σ1/2Λ.

Thus the minimizing geodesic writes:

γ0
Σ→Λ(t) = (1− t)2Σ + t2Λ + 2t(1− t) sym(Σ1/2((Σ1/2ΛΣ1/2)1/2)†Σ1/2Λ).

When the geodesic is unique, i.e. when r = l, i.e. when R0 is the empty matrix, it has
rank exactly k on [0, 1).
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