N
N

N

HAL

open science

Probabilistic numerical approximation schemes in

finance: learning methods for high-dimensional BSDEs
and unbiased Monte Carlo algorithms for stochastic
volatility models

Junchao Chen

» To cite this version:

Junchao Chen. Probabilistic numerical approximation schemes in finance: learning methods for high-
dimensional BSDEs and unbiased Monte Carlo algorithms for stochastic volatility models. Numerical

Analysis [math.NA]. Université de Paris, 2022. English. NNT: . tel-03695446

HAL Id: tel-03695446
https://hal.science/tel-03695446

Submitted on 14 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/tel-03695446
https://hal.archives-ouvertes.fr

o\

] LPSM

Laboratoire de probabilités
Université de Paris statistique & modélisation

Université de Paris

Ecole doctorale de Sciences Mathématiques de Paris Centre (386)
Laboratoire de Probabilités, Statistique et Modélisation (LPSM, UMR 8001)

Schémas d’approximation numérique probabiliste en
finance: méthodes d’apprentissage pour les EDSRs de

grande dimension et algorithmes de Monte Carlo sans

biais pour des modeles a volatilité stochastique

Probabilistic numerical approximation schemes in finance:

learning methods for high-dimensional BSDEs and unbiased
Monte Carlo algorithms for stochastic volatility models

Par Junchao CHEN
These de doctorat de Mathématiques Appliquées

Dirigée par Jean-Frangois Chassagneux
Et par Noufel Frikha

Présentée et soutenue publiguement le 24 Mars 2022

Devant un jury composé de:

Jean-Frangois Chassagneux Prof. & Université de Paris Directeur
Noufel Frikha MCF a Université de Paris Directeur
Pierre Henry-Labordeére HDR, Natixis Rapporteur
Céline Labart MCF a Université Savoie Mont-Blanc ~ Examinatrice
Huyén Pham Prof. a Université de Paris Président
Christoph Reisinger Prof. a Université d’Oxford Examinateur
Xiaolu Tan Prof. a CUHK Rapporteur

Xavier Warin Personnalité extérieure & EDF R&D Membre invité

Acknowledgements

First of all, I would like to warmly thank my thesis supervisors, Jean-Francois
Chassagneux and Noufel Frikha, for introducing me to the world of research in fi-
nancial mathematics, without their help this work would not have seen the light
of today. I am particularly grateful to them for their inspiring vision and helpful
advices during the past three years. Their seriousness and rigor on mathematics
research, and also the optimistic attitude to life have given me a lot, it will be an
important part in my whole life.

All my gratitude also goes to Chao Zhou. Our collaboration contributed to part
of this manuscript. I am also grateful to him for the rewarding stays in Suzhou
Research Institute of NUS. And I am honored to join the Mathematics Discussion
Group in NUS to communicate with his PhD students, such as Xizhi Su, Gang Guo,
Weiwei Zhang.

I would like to express my thanks to M. Pierre Henry-Labordere and M. Xi-
aolu Tan who agreed to report this thesis. I am very honored by their valuable
comments. I would also like to thank Mme Céline Labart, M. Christoph Reisinger,
M. Huyén Pham, M. Xavier Warin, for having accepted to be part of the defense jury.

Then I would like to thank the whole Laboratory of LPSM, in particular the doc-
toral students and the Financial and Actuarial Mathematics, Numerical Probability
team for welcoming me during these three years, always in a good mood. Especially
thanks to Huyén Pham, Claudio Fontana, Zorana Grbac, Noufel Frikha for the nice
courses when I studied in M2MO and some of my good friends in the Lab, such as
Ashaaf, Aaroan, Azar, Barbara, Benjamin, Bohdan, Clément, Céme, Cyril, Enzo,
Fabio, Guillaume C., Guillaume S., Hiroshi, Hoang-Dung, Houzhi, Ibrahim, Laure,
Luca, Lucas, Marc, Maximilien, Mohan, Motto, Nathan, Nisrine, Simon, Sothea,
Sylvain, William, Xiaoli, Xuanye, Yann, Yating, Yiyang and Ziad and so on. Also
thanks to Nathalie and Valérie for accompanying us in the administrative problems
that we encounter on a daily basis.

Thanks to Pr. Quanhua Xu who organised a program between Wuhan Univer-
sity and University of Besangon with the funding by China Scholarship Council, so
that I have a chance to study in France. I would also like to thank other professors
in Wuhan University and University of Besancon.

Thanks to Kuang Huang who is my classmate in Wuhan University and now a
PhD student in Columbia University. We discussed a lot about academic questions
and given me some useful ideas in the past years.

Special thanks to my parents in China, their trust and unconditional support
during my many years of study allowed me to achieve what I am today.

ii

Abstract

In this thesis, we propose some probabilistic numerical approximation in finance.
Including a learning scheme by sparse grids and Picard approximations for semi-
linear parabolic PDEs, high-order approximation for high-dimensional BSDEs by
deep learning methods, and probabilistic representation of integration by parts for-
mulae for some stochastic volatility models with unbounded drift.

In the first part of this thesis, we rely on the classical connection between Back-
ward Stochastic Differential Equations (BSDEs) and non-linear parabolic partial
differential equations (PDEs), to propose a new probabilistic learning scheme for
solving high-dimensional semi-linear parabolic PDEs. This scheme is inspired by
the approach coming from machine learning and developed using deep neural net-
works in Han et al. [56]. However, our algorithm is based on a Picard iteration
scheme in which a sequence of linear-quadratic optimisation problem is solved by
means of stochastic gradient descent (SGD) algorithm. In the framework of a linear
specification of the approximation space, we manage to prove a convergence result
for our scheme, under some smallness condition.

In practice, in order to be able to treat high-dimensional examples, we employ
sparse grid approximation spaces. In the case of periodic coefficients and using
pre-wavelet basis functions, we obtain an upper bound on the global complexity
of our method. It shows in particular that the curse of dimensionality is tamed
in the sense that in order to achieve a root mean squared error of order ¢, for a
prescribed precision ¢, the complexity of the Picard algorithm grows polynomially
in e~! up to some logarithmic factor |log(¢)| whose exponent grows linearly with
respect to the PDE dimension. Various numerical results are presented to validate
the performance of our method and to compare them with some recent machine
learning schemes proposed in Han et al. [36] and Huré et al. [65].

Deep learning techniques are efficient techniques to overcome empirically the
curse of dimensionality when solving high-dimensional backward stochastic differ-
ential equations (BSDEs). The current deep learning algorithms are based on an
Fuler type discretization. In the second work, we instead combine some high-order
time discretization schemes such as Crank-Nicolson scheme or explicit multi stage
Runge-Kutta scheme with non-linear regression. We prove theoretical convergence
bounds for our algorithms. We then numerically compare the computational time
cost of different methods and show that high order scheme for the discrete time
error, if correctly implemented, are more efficient than classical Euler schemes.

In the second part, we establish a probabilistic representation as well as some
integration by parts formulae for the marginal law at a given time maturity of some

iii

stochastic volatility model with unbounded drift. Relying on a perturbation tech-
nique for Markov semigroups, our formulae are based on a simple Markov chain
evolving on a random time grid for which we develop a tailor-made Malliavin calcu-
lus. Among other applications, an unbiased Monte Carlo path simulation method
stems from our formulas so that it can be used in order to numerically compute
with optimal complexity option prices as well as their sensitivities with respect to
the initial values or Greeks in finance, namely the Delta and Vega, for a large class
of non-smooth European payoff. Numerical results are proposed to illustrate the
efficiency of the method.

Keywords: BSDEs, Semi-linear PDEs, Sparse grids, SGD algorithm, Deep learn-

ing, High-dimensional, High-order approximation, Probabilistic representation, Stochas-
tic volatility model, Monte Carlo method.

iv

Résumé

Dans la premiere partie, nous analysons en détail la convergence théorique de la so-
lution des équations différentielles stochastiques rétrogrades (EDSRs) et des applica-
tions numériques dans le domaine de la finance avec a la fois ’algorithme SGD tradi-
tionnel et la méthode d’apprentissage en profondeur. Les méthodes sont basées sur la
connexion classique entre les équations aux dérivées partielles (EDPs) paraboliques
non linéaires et les EDSRs. Et de nombreux résultats numériques sur les EDSR de
grande dimension sont présentés pour comparaison avec les articles [65, 30].

Dans le chapitre 2, nous introduisons ici un algorithme dont on montre qu’il con-
verge vers un minimum global. Tout d’abord, nous passons de I’espace d’approximation
des réseaux de neurones profonds a une spécification linéaire plus classique de
I’espace d’approximation. Cependant, en raison de la non-linéarité du générateur f,
le probleme d’optimisation globale a résoudre est toujours non convexe. Pour con-
tourner ce probléme, nous utilisons une procédure d’itération Picard. La procédure
globale devient alors une séquence de problemes d’optimisation linéaire-quadratique
qui sont résolus par un algorithme SGD. Notre premier résultat principal est un con-
trole de 'erreur globale entre 1’algorithme implémenté et la solution de la EDSR qui
montre notamment la convergence de la méthode sous certaines conditions de pe-
titesse, voir le Théoréme 2.2.1. En particulier, contrairement a [50, 58] ou [65], notre
résultat prend en compte 'erreur induite par 'algorithme SGD. Dans nos expéri-
ences numériques, nous nous appuyons sur des espaces d’approximation de sparse
grid qui sont connus pour étre bien adaptés pour traiter des problemes de grande
dimension. Dans le cadre des coefficients périodiques, nous établissons comme deux-
ieme résultat principal, une borne supérieure sur la complexité globale pour notre
algorithme implémenté, voir le Théoreme 2.3.1. Nous montrons notamment que la
malédiction de la dimensionnalité est apprivoisée dans le sens ou la complexité est
d’ordre e7|log(¢)|?¥, ol p est un constante qui ne dépend pas de la dimension
PDE et d — ¢(d) est une fonction affine. Nous démontrons également numérique-
ment 'efficacité de nos méthodes dans un cadre de grande dimension.

Dans le chapitre 3, nous rappelons d’abord la définition des schémas de Runge-
Kutta pour les EDSR dans Section 3.2, puis nous étudions la stabilité des schémas
de Runge-Kutta de deux manieres différentes. Le Theorem 3.2.1 donne les erreurs en
temps discret de 5 méthodes différentes qui seront étudiées dans ce chapitre. Dans
Section 3.3, nous présentons une implémentation des schémas de Runge-Kutta pour
résoudre les EDSR par réseaux de neurones, y compris le cas particulier des schémas
d’Euler implicites [65], schéma d’Euler explicite, schéma de Crank-Nicolson, schéma
de Runge-Kutta explicite en deux étapes. Nous fournissons le contrdle d’erreur de

la méthode d’apprentissage générale par le schéma de Runge-Kutta et le réseau de
neurones a la fin de cette section, voir le Theorem 3.3.2. Dans Section 3.4, nous
vérifions numériquement 1’ordre de convergence de ’erreur en temps discret des 5
méthodes du Theorem 3.2.1, et nous comparons également le cotit du temps de calcul
de ces méthodes.

Dans la deuxiéme partie, nous présentons des formules de représentation prob-
abilistes pour la loi marginale d’'un modeéles & volatilité stochastique a dérive non
bornée. Nous établissons également des formules d’intégration par partie pour les
Delta et Vega. Ces formules sont basées sur une chaine de Markov évoluant le long
d’une grille temporelle aléatoire donnée par les instants de saut d’un processus de
renouvellement. Une méthode de Monte Carlo sans biais de complexité optimale
découle de nos formules. La principale nouveauté de notre approche par rapport
aux travaux est que nous permettons au coefficient de dérive d’étre éventuellement
non borné comme c’est le cas dans la plupart des modeles de volatilité stochastique
(Stein-Stein, Heston, ...).

Mots clé: EDSRs, EDPs semi-linéaires, Sparse grids, Algorithme SGD, Deep learn-

ing, Grande dimension, Schémas de Runge-Kutta, Représentation probabiliste, Mod-
ele de volatilité stochastique, Méthode de Monte Carlo.

vi

Contents

Acknowledgements i

Abstract iii

Résumé v

Résumé détaillé 1

1 Introduction 13

1.1 Machine learning methods for high-dimensional BSDEs 14

1.1.1 Connection between semilinear parabolic PDEs and BSDEs . 14

1.1.2 Our contributions o oL 15

1.1.3 SGD algorithms with sparse grids 15

1.1.4 Deep learning methods 23

1.2 Probabilistic representation for stochastic volatility models 31

1.2.1 Stochastic volatility model 32

1.2.2 Probabilistic representation 33

1.2.3 Integration by parts formulae 37

1.2.4 Numerical results 0o 38

I Schemes for solving BSDEs 41
2 A learning scheme by sparse grids and Picard approximations for

semilinear parabolic PDEs 43

2.1 Imtroduction 44

2.2 The direct and Picard algorithms 47

2.2.1 Assumptions on the coefficients and connection with the semi-

linear PDE oo 48

2.2.2 Direct algorithm Lo 49

2.2.3 A Picard algorithm 53

2.3 Convergence results for sparse grid approximation 60

2.3.1 Convergence results for the pre-wavelet basis 61

2.3.2 Numerical results with the modified hat functions basis . . . 70

2.4 Study of the discrete optimization problems 75

2.4.1 Preliminary estimates 75

2.4.2 Application to the direct algorithm 78

vii

Contents

2.4.3 Study of the Picard algorithm 81
2.4.4 Convergence and complexity analysis for sparse grid approxi-
mations 90
2.5 Appendix 96
2.5.1 Algorithms parameters 96
3 Deep Runge-Kutta schemes for BSDEs 101
3.1 Imtroduction. 102
3.2 Runge-Kutta schemes for BSDEs 105
3.2.1 Definitions e 105
3.2.2 Stability of Runge-Kutta scheme 106
3.2.3 Discrete time erroro 107
3.3 A learning method for Runge-Kutta schemes 110
3.3.1 Eulerscheme L. 110
3.3.2 Crank-Nicolson scheme 113
3.3.3 Two stage explicit Runge-Kutta scheme 119
3.3.4 Three stage explicit Runge-Kutta scheme 121
3.3.5 Generalcase 123
3.4 Numerical results 129
3.4.1 Approximation of the forward process 129
3.4.2 Empirical convergence resultso 130
3.5 Appendix 135
3.5.1 Proof of Proposition 3.2.1 135
3.5.2 Proof of step 2 of Theorem 3.2.1 140

ITI Probabilistic representation of integration by parts formulae

for stochastic volatility models with unbounded drift 143
4 Probabilistic representation of IBP formulae for stochastic volatil-
ity models with unbounded drift 145
4.1 Introduction 146
4.2 Preliminaries: assumptions, definition of the underlying Markov chain
and related Malliavin calculuso 148
4.2.1 Assumptions 148
4.2.2 Choice of the approximation process 149
4.2.3 Markov chain on random time grid 151
4.2.4 Tailor-made Malliavin calculus for the Markov chain (X,Y). 152
4.3 Probabilistic representation for the couple (Sp,Yr). 158
4.4 Integration by parts formulae o 0oL 159
4.4.1 The transfer of derivative formula 160
4.4.2 The integration by parts formulae 162
4.5 Numerical Results oo 172
4.5.1 Black-Scholes Model, 173
4.5.2 A Stein-Stein type modelo L 175
4.5.3 A model with a periodic diffusion coefficient function 175
4.6 Appendix 181

viii

Contents

4.6.1
4.6.2
4.6.3
4.6.4

Bibliography

Proof of Theorem 4.3.1 181
Proof of Lemma 4.4.1 190
Emergence of jumps in the renewal process N 195
Some useful formulas oL 197

201

ix

Contents

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

1.8
1.9

2.1
2.2
2.3
24
2.5
2.6

2.7

2.8

2.9
2.10
2.11

m — |V — (0, X3)|? for the Picard algorithm, d = 3. The MSE is
computed by the mean of the last 10000 steps of each Picard iteration. 20
Jo for the quadratic model with d=5 and T=1 by direct algorithm

and deep learning algorithm. 21
The value of g9 by Picard algorithm with d=5, level=3, T=1, P=6,
M=2000.. e 21
1-dimensional modified hat functions at level = 1,23 22
2% for the quadratic model with d=100 and T=1 23
Graph with common parameters and variables of Crank-Nicolson scheme

in the deep learning algorithm. 27
Error against time steps for different schemes 31
Error against time cost for different schemes 31
Transfer the derivatives forward in time on each random intervals

with Np=3. . . . o 37

m — |Y7" — u(0, X§")|? for the Picard algorithm, d = 3. The MSE is
computed by the mean of the last 10000 steps of each Picard iteration. 65
Jo for the quadratic model with d=5 and T=1 by direct algorithm

and deep learning algorithm. 68
The value of gg by Picard algorithm with d=5, level=3, T=1, P=6,
M=2000.. e 68
Approximation g by Picard algorithm when d=4 and T=0.5. 69
Approximation 2y by Picard algorithm when d=4 and T=0.5. 69
The value of gg by Picard algorithm with d=2, level=3, T=1, P=9,
M=5000, a=-0.4. 70
The value of g9 by Picard algorithm with d=2, level=3, T=1, P=9,
M=5000, a=-1.5 e 70

The value of gy by Picard algorithm, direct algorithm and deep learn-
ing method with d=2, level=3, T=1, P=9, M=5000. The last four
steps are shown for the Picard Algorithm illustrating the bifurcation
phenomenon. Note that the direct algorithm does not exhibit such

behaviour. 70
o for the quadratic model with d=100 and T=1 72
24 for the quadratic model with d=100 and T=1 72
7o for the quadratic model by Picard algorithm with d=25, T=1, P=3,

N=10, M=1500 e 72

xi

List of Figures

xii

2.12 o — 1.1745 by direct SGD algorithm when d=8, N=60, M=10000. .
2.13 9o — —0.2439 by direct algorithm when d=10, N=100, M=10000. . .
2.14 99 — —0.2594 by picard SGD algorithm when d=10, P=8, N=100,

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

M=10000.

The error of Yy for CN scheme based on the balance number

Time cost against time steps for different schemes
Error against time steps for different schemes
Error against time cost for different schemes
Error against time steps for different schemes
Y) against time steps for different schemes
Time cost against time steps for different schemes
Error against time cost for different schemes

List of Tables

1.1

1.2

1.3

1.4

1.5

1.6

2.1

2.2

2.3

24
2.5
2.6
2.7

2.8
2.9
2.10

4.1

4.2

The number of points in the sparse grid approximation without bound-
ary functions for different dimensions and levels.
The number of functions in the sparse grid approximation with bound-
ary for different dimensions and levels.
Comparison of the value of {jy by different methods when T = 1.

Comparison between the unbiased Monte Carlo estimation and the
Monte Carlo Euler-Maruyama scheme for the price of a Call option
in the Black-Scholes model for different values of og.
Comparison between the unbiased Monte Carlo estimation and the
Monte Carlo Euler-Maruyama scheme for the Delta of a Call option
in the Black-Scholes model for different values of og.
Comparison between the unbiased Monte Carlo estimation for the
Vega of a Call option in the Black-Scholes model for different values
of 5. . . . e

The number of functions in the sparse grid approximation with bound-
ary for different dimensions and levels.
Comparison of the direct algorithm and the deep learning algorithm
for the financial model. oL
The number of points in the sparse grid approximation without bound-
ary functions for different dimensions and levels.
Comparison of the direct algorithm and the deep learning algorithm.
Comparison of the value of jy by different methods when T" = 1.

Parameters for the periodic example
Parameters by model for the deep learning method with layers =
4, batchsize =64
Parameters by model for the direct algorithm
Parameters by model for the Picard algorithm
Parameters by model for the Picard algorithm

Comparison between the unbiased Monte Carlo estimation and the
Monte Carlo Euler-Maruyama scheme for the price of a Call option
in the Black-Scholes model for different values of og.
Comparison between the unbiased Monte Carlo estimation and the
Monte Carlo Euler-Maruyama scheme for the Delta of a Call option
in the Black-Scholes model for different values of og.

xiii

22

22

23

39

40

40

66

69

72
73
74
96

97
98
99
100

174

List of Tables

Xiv

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

Comparison between the unbiased Monte Carlo estimation for the
Vega of a Call option in the Black-Scholes model for different values
of 0g. . .
Comparison between the unbiased Monte Carlo estimation for the
price of a Call option in the Stein-Stein type model for different values
of the parameters oq and o9.
Comparison between the unbiased Monte Carlo estimation for the
Delta of a Call option in the Stein-Stein type model for different
values of the parameters oy and o9.
Comparison between the unbiased Monte Carlo estimation for the
Vega of a Call option in the Stein-Stein type model for different values
of the parameters oqy and o9.
Comparison between the unbiased Monte Carlo estimation for the
price of a digital Call option in the Stein-Stein type model for different
values of the parameters oq and o9.
Comparison between the unbiased Monte Carlo estimation for the
Delta of a digital Call option in the Stein-Stein type model for differ-
ent values of the parameters oy and o9.
Comparison between the unbiased Monte Carlo estimation for the
Vega of a digital Call option in the Stein-Stein type model for different
values of the parameters oy and o9.
Comparison between the unbiased Monte Carlo estimation for the
price of a Call option in the model with og(x) = o1 cos(z) + o9 for
different values of the parameters o1 and oo..
Comparison between the unbiased Monte Carlo estimation for the
Delta of a Call option in the model with og(x) = o7 cos(x) + o2 for
different values of the parameters o1 and oo..
Comparison between the unbiased Monte Carlo estimation for the
Vega of a Call option in the model with og(x) = o7 cos(z) + o9 for
different values of the parameters o1 and oo..
Comparison between the unbiased Monte Carlo estimation for the
price of a digital Call option in the model with og(x) = o1 cos(z) + o2
for different values of the parameters o1 and oo.
Comparison between the unbiased Monte Carlo estimation for the
Delta of a digital Call option in the model with og(z) = o7 cos(x)+ o2
for different values of the parameters oy and oo.
Comparison between the unbiased Monte Carlo estimation for the
Vega of a digital Call option in the model with og(x) = o1 cos(z) + o2
for different values of the parameters oq and o9.

Résumé détaillé

Ce manuscrit étudie les solutions des équations différentielles stochastiques rétro-
grades (EDSRs) par différentes méthodes d’apprentissage et la représentation prob-
abiliste des modeles de volatilité stochastique avec dérive non bornée.

Partie I: Méthodes d’apprentissage statistique pour EDSRs de grande
dimension (Chapitres 2 et 3)

Soit W un mouvement brownien d-dimensionnel défini sur un espace de probabilité
complet (9, A, P) et soit Xy un d-dimensionnel vecteur aléatoire A-mesurable ayant
support compact ou déterministe, indépendant de W. Nous définissons (F;)o<i<T
comme la filtration augmentée générée par W et Xy. Pour b : R — R% et o :
R? — My (I’ensemble des matrices d x d) deux fonctions mesurables, Nous définisons
le processus de diffusion forward X comme la solution de 1’équation différentielle
stochastique suivante (EDS en abrégé)

d/Yt = b(Xt) dt + O'(Xt) th y (001)

et on définit son générateur infinitésimal £, pour ¢ suffisamment reguliée, par
1
Lop(t,x) :=b(x) - Vyp(t,x) + §T1“[(O'O'T)(l’)v3264p(t,l‘)]. (0.0.2)

Dans ce manuscrit, nous nous intéressons dans la premiere partie a ’approximation
numérique de la solution (u(t, X)), o' (X;)Veu(t, &y)), oll u est la solution de 'EDP
parabolique semi-linéaire de grande dimension

owu(t,) + Lu(t,x) + f(ut,x),0 " (2)Veu(t,x)) =0, (t,z)e[0,T) x RY
{ uw(T,z) = g(z), zeR?
(0.0.3)
et la solution (F;)-adaptée (), Z;) € R x R? 3 'EDSR

T T
Y, = g(Xr) + f Vs, Z5)ds — f Zy-dW,, 0<t<T, (0.0.4)
t t

o f :RxRY—>R, g :RY— R sont des fonctions mesurables.

Il a été remarqué pour la premiere fois dans [31] qu’il existe une connexion entre
les EDPs paraboliques semi-linéaires de la forme (0.0.3) et les EDSRs (0.0.4) comme
suit:

(u(t, X),0 (X)) Vault, X)) = Vi, 2),0 <t < T.

Résumé détaillé

Cela montre que résoudre 'EDP (0.0.3) est équivalent a résoudre I'EDSR (0.0.4).

Depuis, 'approximation numérique de (0.0.4) a été largement étudiée a travers
la recherche d’algorithmes numériques efficaces. En particulier, les méthodes de
branchement [59], les méthodes de Picard multiniveaux récursive en histoire com-
plete [66], les méthodes de cubature [25, 31, 32], les méthodes de quantification
optimales [0, 5, 80, 77], les méthodes basées sur le calcul de Malliavin [33, 17, (4]
et certaines méthodes de régression linéaire [19, 50, 51] ont été considérées. Il est
reconnu que de telles approches seront réalisables pour des problemes jusqu’a la di-
mension 10. Résoudre des EDSRs non linéaires de grande dimension est une tache
difficile en raison du “fiéau de la dimension”. Une avancée majeure est que la tech-
nique d’apprentissage automatique (en particulier a 'aide de réseaux de neurones
profonds) a été appliquée a ce domaine par Weinan E, Jiequn Han, Arnulf Jentzen
et Christian Beck en 2017 [36]. Des lors, les EDSRs a 100 dimensions sont de-
venues résolubles. Ensuite, les performances des expériences numériques ont été
améliorées par de nombreux nouveaux algorithmes basés sur le réseau de neurones,
voir [56, 57, 58, 21, 65, 46, 85, 86, 47, 67, 68, 90, 28]. Et Teng Long a proposé un
algorithme numérique basé sur 'amplification du gradient en 2021 [91] qui pourrait
résoudre des EDSRs non linéaires & 10000 dimensions.

Dans la premiere partie de cette these, nous analysons en détail la convergence
théorique de certaines approximations numériques, c’est-a-dire ’algorithme tradi-
tionnel de descente de gradient stochastique (SGD en anglais) et les méthodes
d’apprentissage profond, de la solution a une équation différentielle stochastique
rétrograde. Les algorithmes sont testés sur plusieurs exemples issus de la finance
mathématique. Les approximations sont basées sur la connexion classique entre les
EDPs paraboliques non linéaires et les EDSRs. Les résultats numériques sur les
EDSRs de grande dimension sont comparés a ceux obtenus dans [65, 30].

Dans le Chapitre 2, nous introduisons un algorithme pour approximer les solu-
tions en utilisant des fonctions de base sur certains espaces de grille clairsemée et
il est montré qu’il converge vers un minimum global. Le probleme d’optimisation
global a résoudre est non convexe en raison du générateur non linéaire des EDSRs.
Afin de contourner ce probléme, nous utilisons une procédure d’itération Picard. En-
suite, la procédure globale devient une suite de problemes d’optimisation linéaire-
quadratique qui peuvent étre résolus par ’algorithme SGD. Dans le Théoreme 2.2.1,
nous contrdlons l'erreur globale de 'algorithme implémenté qui montre la conver-
gence de l'algorithme sous certaines conditions. En particulier, contrairement aux
méthodes d’apprentissage profond [56, 58, 65], Nous obtienons une borne supérieure
sur Ierreur induite par I’algorithme SGD. En pratique, nous nous appuyons sur des
espaces d’approximation de grille clairsemée pour faire face au “fiéau de la dimen-
sion”. Notre deuxiéme résultat principal est le Théoréeme 2.3.1 qui montre, sous
une hypothese de coefficients périodiques, une borne supérieure pour la complexité
globale de algorithme implémenté. En particulier, nous prouvons que le “fléau de
la dimension” est apprivoisé, dans le sens ol nous obtiensons une approximation
avec une erreur inférieure & € > 0 avec une complexité d’ordre 7| log(e)|4?D, ot p
est une constante et ¢(d) est une fonction affine. Enfin, divers exemples en grande
dimension montrent numériquement ’efficacité de nos méthodes, voir Section 2.3.

Soit une grille équidistante 7 := {t,, = nh,n =0,--- N|h := T/N} de [0,T], nous

Résumé détaillé

utilisons I'espace des grilles clairsemées afin d’approximer les solutions (u(ty, -), Ozu(ty, -))
de ’EDP parabolique semi-linéaire (0.0.3) au temps ¢,. L’algorithme est appliqué
comme algorithme d’apprentissage du gradient pour optimiser les coefficients des
fonctions de base, et un schéma d’itération de Picard est introduit pour que I’algorithme
converge vers la solution globale.

L’objectif principal est de calculer une approximation de u(0, Xp), ou u est la
solution de 'EDP (0.0.3) a l'instant initial sur un domaine donné ou en un point
précis. Cela nous a conduit a introduire la configuration suivante pour la valeur
initiale Xp:

Assumption 0.0.1 L’un des deux cas suivants est valable:

(i) La loi de Xy est a support compact et absolument continue par rapport d la
mesure de Lebesque.

(i) La loi de Xy est une masse de Dirac en un point xg € RY.

Soit W := (W, Jo<n<n la version en temps discrets du mouvement brownien W.
On définit AW,, =Wy, ., —W;,,0<n<N—-1et

Xo=Xo, Xi,., =Xy, +b(Xp)h+0(X,)AW,, 0<n<N-—1. (0.0.5)

Nous introduisons maintenant une approximation en temps discrets du processus Z
et). Pour un ¢, € 7\{T'} donné, supposons que ¥, est un espace d’approximation
fonctionnelle paramétrique généré par un ensemble de fonctions de base

(Vh(z))1<h<kz, weR? (0.0.6)

avec un entier positif K. Pour une utilisation ultérieure, nous définissons:
K*:=) K7. (0.0.7)

Definition 0.0.1 (Class of discrete control process) Soit H™Y I’ensemble des

processus de contréle discrets Z définis par : pour 3 € RIE® ¢t Jes fonctions de base
(0.0.6),

K
Zy, = Y Uh(Xy,)i, for0<n < N-1, (0.0.8)
k=1

et nous définissons Zy = Zt,, tn, <t < tp+1,0 < n < N — 1 avec la convention
Zr = 0.

Definition 0.0.2 Etant donné u = (n,3) € REY x]Rd[{z, on note par Z* € H™V le
processus de controle discret défini par (0.0.8). Ensuite, le processus controlé discret
YY" est défini comme suit:

Résumé détaillé

1. Initialisation: définir
K
Y5 =) vr(Xo)y". (0.0.9)
k=1

2. Version discréte: pour tout 0 <n < N —1:

YU

tn+1

=Y, —hf(Ye, Z}) + Zy, - AW, (0.0.10)

3. Version continue: pour tout 0 <n < N —1 et tout t,, <t <tnpt1,

Y=V (b)) F(VE L ZE) + ZE - (W= W) (0.0.11)

D’aprés la Définition 0.0.1 et la Définition 0.0.2, soit B~ I’ensemble des proces-
sus (Y¥, ZY), avec Z% € H™Y, Y* défini comme ci-dessus pour un u € RE" x RI5”,
Maintenant, 1’idée principale d’approximation par des méthodes d’apprentissage est
de minimiser une fonction de perte définie comme la différence entre la condition
terminale approchée g(Xr) et le processus controlé discret Y;! au temps de maturité
T. Ici, nous travaillons avec une fonction de perte quadratique, c’est-a-dire que nous
devons besoin de résoudre le probleme d’optimisation

inf () := E[G(Xo, W,)] (0.0.12)

u=(n.5)eRKY xRUK*

avec
G(Xo, W,u) = |g(X7) — YF[*.

Cependant, le probléme d’optimisation ci-dessus (0.0.12) n’est généralement pas
convexe, nous ne pouvons donc pas garantir que l’algorithme converge vers des
minima locaux ou globaux. Il est bien connu que la solution de 'EDSR (0.0.4)
peut étre obtenue par la limite d’une suite d’itérations de Picard, voir e.g. [37,

| d’'un point de vue numérique. Nous introduisons donc 'algorithme de Picard
qui transforme le probléme d’optimisation non convexe (0.0.12) & une suite des
problemes d’optimisation linéaire-quadratique. Notre algorithme de Picard est basé
sur I'itération de I'opérateur ® défini ci-dessous :

RE? x RE" 54> &) := argmin E[|g(XT) — Uk 2] : (0.0.13)
ueRKY x RAK?

ot U™ est définie par le schéma d’approximation de découplage suivant:

1. Pour i € REKY x RK* | considérons (YH Z%) e B™¥ introduit dans la Définition
0.0.2.

2. Alors, pour tout u € REY x R‘ﬂ_{z, et Z* € H™¥ comme introduit dans la
Définition 0.0.1, nous définissons le processus de controle U** par

UMt = v (0.0.14)
et pour tout 0 <n < N —1,
USt = US = hf (VR Z8) + 28 (Wayy — W) (0.0.15)

Résumé détaillé

ot le générateur f (Y,}:‘L, an) ne dépend pas des processus (Y*, Z%) pour un &t € RE" x
RIK* fixé & I’étape 1. I existe donc une solution unique au probléme d’optimisation

(0.0.13). La définition suivante donne la procédure entiere de ’algorithme de Picard.

Definition 0.0.3 (Theoretical Picard algorithm) Pour un entier positif pré-
spécifié P:

1. Initialisation: définir u® € REY x RIK*
2. Itération: pour 1 < p < P, calculer : wP = ®(uP~1).

Ensuite, la sortie de Ualgorithme est u®.

Dans le théoreme 2.2.1, sous certaines hypothéses théoriques telles que des con-
ditions de petitesse, 'erreur quadratique moyenne de 1’algorithme complet est con-
trolée par la somme de lerreur de discrétisation en temps, l'erreur introduite par
I’algorithme SGD, I’erreur de discrétisation de I’espace de 'approximation de la grille
clairsemée, et enfin 'erreur due a l'itération de Picard. La complexité numérique C.
de I'algorithme complet est donnée par

C. = Oy(PNEKM). (0.0.16)

ou K est le nombre de fonctions de base dans I’espace des grilles et M est les étapes
d’itération de 'algorithme SGD.

Dans la cadre de la Section 2.3.1.2 , ou les coefficients sont supposés périodiques,
afin d’obtenir une erreur quadratique moyenne globale d’ordre €2 comme indiquée
dans (0.0.16), la complexité complete de algorithme de Picard en utilisant des
fonctions de base pré-ondelettes sur des grilles clairsemées est

Ce = 04e™ 3072 log, (e)| 1+ 755 (1)

9
pour tout 1 <¢ < .

En particulier, cela montre que le “fléau de la dimension” est apprivoisé en
utilisant 'approximation de la grille clairsemée car on peut voir que C, croit polyno-
mialement sur e ! jusqu’a un certain facteur logarithmique | log,(¢)| dont I'exposant
est une fonction affine par rapport a d.

Dans le Chapitre 3, nous introduisons un schéma d’approximation d’ordre élevé
(e.g. le schéma de Crank-Nicolson, le schéma de Runge-Kutta) pour réduire le temps
de calcul du schéma d’apprentissage profond avec le schéma d’Euler introduit dans
[65]. Nous montrons que la convergence en utilisant le théoréme d’approximation
universel des réseaux de neurones [62, 63]. De plus, certaines techniques de réduction
de la variance sont utilisées.

Au cours des dix derniéres années, les réseaux de neurones ont été appliqués
dans nombreux domaines (e.g. le traitement d’images, le NLP, I'TA ...) qui ont des
réalisations impressionnantes, notamment pour surmonter empiriquement le “fléau
de la dimension” du probléemes de grande dimension. En effet, le temps du calcul
de l'approximation par le réseau de neurones a une croissance au plus polynomial.

Résumé détaillé

Le réseau de neurones a d’abord été appliqué pour résoudre des EDSRs de grande
dimension par Weinan E, Jiequn Han, Arnulf Jentzen et Christian Beck en 2017
[36, 7]. Ils ont proposé dans leur travail un schéma forward (voir la Définition
0.0.4 une discretiozation par le schéma d’Euler) avec un grand schéma de réseau de
neurones. De nombreux travaux basés sur les réseaux de neurones pour résoudre les
EDSRs apparissent, voir par exemple [58, 21, 65, 46, 86, 47, 67, 68, 90, 28].

Definition 0.0.4 (Implemented deep forward scheme) [76] Pour la fonction
terminale fizée g, la solution numérique est calculée par les étapes suivantes:

e Pour n =0, initialiser Xog = xg, 5)0 = 10.
e Pourn=20,---,N—1, étant donné ;)A/n,

— Calculer X411 = X + 0(Xp)h + 0(X,) AW,.

— Calculer V, = N(Xp;0n), ot N(x;60,) est un réseau de neurones avec
des parameétres réels 0, et des variables d’entrée .

— Calculer)A},Hl =Y, — hf())mf)n) + Vo AW,,. A Uinverse, 5}”“ dépend
des parameétres yo et (0o, ,0p).

o Calculer un minimiseur de la fonction de perte :
(45, 6") € argmin, o E[[V (y0,0) — 9(Xr)?] .
ou 0 = (90, cee 70N—1)~

Par rapport au forward schéma, profond défini ci-dessus, un schéma plus stable a
été introduit pour la premiéere fois par Céme Huré, Hiiyen Pham et Xavier Warin [65],
appelé backward schéma profond, voir Définition 0.0.5 ci-dessous. La convergence de
leurs méthodes repose sur le fait que les réseaux de neurones sont des approximateurs
universels. Théoriquement, les erreurs dues aux réseaux neuronaux pourraient étre
rendues arbitrairement petites en augmentant le nombre de neurones. Inspiré de
la méthode DBDP1 dans [65], notre objectif est de réduire le temps de calcul en
utilisant des méthodes d’approximation d’ordre élevé (telles que le schéma de Crank-
Nicolson, le schéma de Runge-Kutta...) pour controler I'erreur de discrétisation en
temps.

Definition 0.0.5 (Implemented deep backward scheme) Pour la fonction de
perte fizée Ly[p,1](0), (¢,9) € C(RY,R) x C(RY, RY), la solution numérique est cal-
culée par les étapes suivantes:

e Pour n = N, initialiser Uy = g,]A)N = 0Vy,g.
e Pourmn=N-—1,---,1,0, étant donné les réseaux Z;ln+1, 1>n+1,

— Calculer un minimiseur de la fonction de perte :

A A

0y € argming Ly [Up+1, Vat+1](0n).

ot 0, est les paramétres d’un réseau de neurones N (-, 0y).

Résumé détaillé

— Définir (LAln,]A}n) = N(-,6:) comme les fonctions d’approximation de
(u(tn,-), 0 Opu(tn,)).

Le schéma d’Euler implicite pour les EDSRs [93, 16] est traditionnellement défini
comme
AW,
Yn = Etn[Yn+1 + hf(Yn, Zn>)] et Zn = Etn TYTLJ'_I s 0 <n< N (0017)
avec (Yiv, Zx) = (9(Xn) 0 (Xn)2ng(Xn)).
Pour le schéma DBDP1 dans [65], 6 et 9 sont a la fois optimisés: étant donné
y:t+1(')7

(0%, 9) =argming yE| [y 11 (Xot1) = {h(X0) = AF(A(X0), 20 (X)) + 20 (Xa) AW} 2.
(0.0.18)

Comme nous le savons, le taux de convergence faible du schéma d’Euler est
d’ordre 1 uniquement, nous introduisons maintenant le schéma de Crank-Nicolson
qui est un schéma d’ordre 2 avec une structure simple, voir entre autres [32]. Bien
qu’il soit implicite, il a presque la méme complexité que les algorithmes obtenus par
le schéma d’Euler. Nous allons étudier le schéma habituel de Crank-Nicolson, e.g.
un schéma, 0 avec 0 = %, pour 0 <n < N,

{ Yn = IEtn[}/n-&-l + %(f(Yna Zn) + f(Yn-&-la Zn+1))])

Zn =E¢ [Hy(Yns1 + hf(Yoit, Zns1))] (0.0.19)

avec (Yn, Zn) := (g(Xn), 0" (Xn)0.9(Xn)), oit H, € R? est une variable aléatoire
Fi,-mesurable vérifiant E [H,] = 0 et hE [|Hy|*] < co.

Dans le Lemme 3.3.3, un probleme d’optimisation est introduit pour obtenir la
solution du systéeme (0.0.19) avec A, := _%Etn[f(Xn+la Yii1, Zn+1)hHy):

]

2
] (0.0.20)

1
min Ln(?/» 2 a) = CohE [’thf(Xn+1a Yo+t Zn+1) +a
¥,2,a€L2(Ft,,) 2

E

h Hy,
Yn+1 - {y - 5 (f(XnvyaZ) + f(Xn+17Yn+1, ZTLJrl)) + (Z + a)’U}

ou vy, = Etn[|Hn|2], Co > 0 est une constante, et A,, est une variable intermédiaire
afin d’implémenter l'algorithme en utilisant un seul réseau comme (0.0.18). Il ne
fait aucun doute qu’une erreur apparaitra également dans le terme A lorsque nous
optimisons le réseau de neurones, mais elle a la méme amplitude que celle dans le
terme Z dans le réseau de neurones, donc I'impact introduit par le terme A sur le
résultat final est négligeable.

Les méthodes de Runge-Kutta [24] sont une famille des méthodes de discréti-
sation implicites et explicites, qui incluent le schéma d’Euler implicite, le schéma
d’Euler explicite, le schéma de Crank-Nicolson en particulier, voir le Théoréme
3.2.1. D’apres la Définition 0.0.6 ci-dessous, nous remarquons que le schéma de
Runge-Kutta est un schéma a plusieurs étapes et peut atteindre un ordre supérieur

Résumé détaillé

au schéma de Crank-Nicolson. Soit () le nombre d’étapes, remarquons que le schéma
de Runge-Kutta est toujours explicite pour le terme Z, il existe une barriere d’ordre
pour que le schéma implicite obtienne un schéma d’ordre () + 1 avec un schéma de
Q—étapes lorsque @ > 1 tant que 0,f # 0. Par conséquent, nous ne considérons le
schéma explicite que lorsque @) = 2, 3 car le schéma implicite n’a aucun avantage par
rapport au schéma explicite pour les générateurs généraux. Cependant, ’algorithme
converge trop vite lorsque (@ = 3, ce qui conduit a une erreur de discrétisation in-
férieure a la variance de l'algorithme. Et il existe également une barriere d’ordre
pour le schéma explicite, ce qui signifie qu’il n’y a pas de méthodes explicites a qua-
tre étapes dans la classe des méthodes pour la Définition 0.0.6. De sorte que nous
ne considérons jamais le cas @ > 4.

Definition 0.0.6 Pour Q € N*, soit ¢ = (c1,...,cq41) € [0,1]9F! satisfaisant
O=:c1<e<...<c <~ <cQ <cgy1 =1, ettyg = thyr —cgh . Alors
tn =thQ+1 < ... Stpg < ... <ty1 =tysr1. On note la “grille compléte”
II:={t,,e[0,T]|0<n<N,1<qg<Q}
Pourt, 4 €11, &y, , est approximé par X, 4 € EQ(}}n’q), 0<Kn<Netl<qg<Q.
Pour samplifier la notation, notons (X,)o<n<n approrimation de X sur la grille
m. Observez que X, 911 = Xy et X1 = Xyp1. Supposons que X est un processus

de Markov sur I1. Nous définissons maintenant (Y, Z) lapproximation de (¥, Z),
rappelons (0.0.4).

i) Définir la condition terminale par
(Yv, Zn) = (9(Xn), 0(Xn) Vg(Xn)).

it) Pour0 <n < N—1etQ =1, le passage de (Yni1,Zn+1) 4 (Yy, Zy) implique
Q étapes. Auzx instants intermédiaires, pour 1 < q < Q + 1, soit

q
Yn,q = Etn,q Yn+1 +h Z aqkf(ka,Yn’k, ka)] s (0.0.21)
k=1
q—1
Zng =B, | HfYni1 + h Y. cgrnHYw f (X i Yo, ka)] , (0.0.22)
k=1

<
a1, =0,1<k<Q,app=0ag=0,1<g<k<Q+1et

q q—1
Z Qg = Z gk lic, <c,} = Cq g<Q+1 (0.0.23)
k=1 k=1

Nous définissons (Y, Zn) = (Yn,Q+1, YnQ+1) au temps t,.
Pour tout 1 < k < q¢ < @+ 1,n < N, les variables aléatoires Hi, HY) sont
Ft, . —mesurable, indépendants de Fy, , et Fy, , respectivement ayant la pro-

priété
Etn,q[Hl?] = Etn,k[H;L,k] =0 et UZJL = Etmq[‘HgF] ’Ug,k = Etn,k[‘HZkF])
A A
h < min(vy, vgy) et max(vy,vgy) < T

Résumé détaillé

ot A\, A sont des constantes positives qui ne dépendent pas de h.

L’approximation du schéma général de Runge-Kutta est essentiellement basée
sur une itération de ce qui a été fait pour le schéma de Crank-Nicolson. Nous
introduisons une nouvelle variable intermédiaire

q—1

An,q = Etn,qlz (aqu(? - aqk k) hf(n, ks Yn N3 Zn,k)] s (0024)
k=1

et nous minimisons alors la fonction de perte

q—1 2
Cotla— 7 (age) — o) 1 (X Yo Zoi)| +
k=1

Lyq(y,z,a):=E

q—1 H™ 2
+Yn+1+h2aqkf nkaYnka nk) {y haqqf(nqu7z)+(z+a)v7]
q

Ensuite, nous pouvons implémenter ’ensemble du schéma Runge-Kutta comme nous
I’avons décrit dans la Définition 0.0.7 ci-dessous.

Definition 0.0.7 (Implemented Runge-Kutta scheme) La solution numérique
est calculée en utilisant [’étape suivante:

e Pourn = N, initialiser Uy = g,f/N =0'Vxg, An =0.

A A

e Pourn=N—1,---,0,1<q<Q+1 étant donné Ups1, Vns1) = (Un1;Vn1)
et (Umk,vn,k), 1<k< q,

— Définir (O, Ug) := Ui, Vo), 1 <k < q, (B, Tg) =0, k =g

— Calculer un minimiseur de la fonction de perte :
* : RK
07,4 € argming Lo [®, V](0),

ot Llﬁfg est la fonction de perte du schéma de Runge-Kutta o [’étape q et
® = (P, ,P,1) € C(RL,R)I et U = (Vy, -+, ¥, 1) eC(RYRY)I!
— Définir (Ung Vg, Ang) = Nn(cdot; 6%), ott Ny (- 0r,.,) est un réseau

b n q
de neurones.

A A

Déﬁmr’ (Z/A{n,f}n) = (Z/[n,Q+1aVn,Q+1>

Partie I: Représentation probabiliste pour les modeles de volatilité
stochastique (Chapitre 4)

Dans la deuxieme partie de la theése, nous établissons une formule de représentation
probabiliste de deux formules d’intégration par parties (IPP) de la loi marginale du
processus pour certains modeles de volatilité stochastique a un temps de maturité
fixé T. Ensuite, une méthode de simulation de Monte Carlo non biaisée découle des

Résumé détaillé

formules probabilistes basées sur une simple chaine de Markov évoluant le long d’une
grille de temps aléatoire donnée par les temps de saut d’un processus de renouvelle-
ment indépendant, de sorte qu’elle peut étre utilisée pour calculer numériquement
le prix et les grecques des options, en particulier delta et vega, pour une large classe
de pay-off européen non reguliée. L’erreur obtenue est optimale puisque le calcul ne
sera affecté que par 'erreur statistique. La principale nouveauté de notre approche
par rapport aux travaux précédents [12, 3, 1] est que nous permettons au coefficient
de dérive d’étre éventuellement non borné comme c’est le cas dans la plupart des
modeles de volatilité stochastique (modeles de Stein-Stein, modeles de Heston, ...).

En finance mathématique, un modele a volatilité stochastique est un modele
dont la variance est donnée par un processus stochastique, au lieu d’'un processus
déterministe [11]. Ces modeles sont largement utilisés en finance mathématique
pour le pricing des produits dérivés, tels que les options. Les modeles de volatilité
stochastique sont des extensions du modele Black-Scholes, pour lequel la volatilité est
supposée constante au fil de temps. De nombreux modeles de volatilité stochastique
ont été étudiés, tels que le modele Heston [61], le modele CEV [30], le modele de
volatilité SABR [54], le modele GARCH [19] parmi les autres. Dans ce travail,
nous considérons un modele de volatilité stochastique bidimensionnel défini par la
solution (S,Y") de EDS suivante

t t
Sy =580+ f rSs ds +J O'S(YS)SS dWs,

0 0
t t

0.0.25

Y, =yo+f by<n>ds+f oy (V) dB., (00:25)

0 0
d(B,W)s = pds

ou les coefficients by, g, oy : R — R sont des fonctions reguliées, r € R, W et
B sont des mouvements browniens standards unidimensionnels ayant un facteur de
corrélation p € (—1,1), définis sur un espace de probabilité (Q2, F,P) .

Nous supposons que ag := a%, ay = 032, et la dérive by sont infiniment dif-
férentiables, et supposons que ag et ay sont bornés. Notre amélioration principale
est que by n’est pas borné, par rapport aux autres travaux sur la représentation
probabiliste, voir e.g. [12] pour les processus tués et Agarwal et Gobet [2] pour les
processus de diffusion multidimensionnels.

Nous nous intéressons a établir une formule de représentation probabiliste du
prix d’une option européenne de maturité T > 0 et de pay-off h(Sp, Yr), donnée par

E [h(S7,YT)],

ainsi que les formules d’intégration par parties (IPP) des sensibilités (Grecques) de
I’option, données par

630E [h(ST, YT)] et 6y0E [h(ST, YT)] s

d’ou découle une méthode de simulation de Monte Carlo non biaisée.

Nous établissons une formule de représentation probabiliste de la loi marginale
(St,Yr), T > 0 basée sur une chaine de Markov simple évoluant une grille en temps
aléatoire donné par les temps de saut d’un processus de renouvellement indépendant.

10

Résumé détaillé

Cette formule fournit une méthode de Monte Carlo non biaisée. Elle s’inspire de
la formule de représentation probabiliste de Bally et Kohatsu-Higa [1] et les autres
[3, 60, 42, 2] pour les processus de diffusion multidimensionnels, les processus uni-
dimensionnels et de certains EDS de Lévy avec des coefficients bornés de dérive, de
diffusion et de saut.

Le principal nouveau défi est de s’attaquer au cas ou la dérive de la volatilité by
est non bornée. Afin de surmonter cette difficulté, nous figeons les coefficients by
os et oy le flot d’équation différentielle ordinaire (ODE) dmf = by (m¢), mo = Yo
obtenue en supprimant le terme de diffusion dans la dynarmque de Y. La chaine de
Markov sous-jacente (X' , 17) sur laquelle la représentation probabiliste est basée, est
alors obtenue a partir de

t

o= [0 sty [st
0
t

¢
Y;yozy(ﬁ-fbyms ds—i—fayms By,
0 0

d<VV7 B>s =p ds.

Supposons que T = (7,)n>0, 70 = 0 est une suite non décroissante de R; modélisant
des temps de saut aléatoires et soit N = (N¢);>0 le processus de renouvellement,

défini par N; :=] 1(<4 N est indépendant des deux mouvements browniens
n=1

W et B. On discrétise le processus (X,Y) en utilisant un schéma d’Euler sur la
grille de temps aléatoire ((;)i=0 avec (o = 0 et (; = 7; A T', comme suit

XH—I =X, + (7’(@+1 Gi) — aSz) + US,iZilJrl’

Yigr = mi + OYi (PiZi+1 +4/1 ZZ+1)

ou

I

) Cit1—Ci B
as; = 0g; = J as(ms(Y;)) ds,

0

) Ci+1—Ci _
ay; : = f ay (ms(Y;)) ds,
0

= JY,Z =
<z+1 C’L _
ssvii= [(osov)(m(T0) ds
0
0SY,i
pi=p——,
0S,i0Yi

My 2= Mg ¢ (Y1)7

ot Z = (Z},Z2),>1 est une suite de i.i.d. variables aléatoires de loi A'(0,I3) in-
dépendantes de (W, B).

Nous notons B, (R?) I'ensemble des applications Boréliennes h : R? — R satis-
faisant I'hypothese de croissance exponentielle & I'infini. Sous certaines hypotheses
qui seront énoncées dans la partie IT de cette thése, la loi du couple (X7, Yr) satisfait

11

Résumé détaillé

la représentation probabiliste suivante : pour tout h € B,Y(RQ) et pour un certain
~v > 0, le prix d’une option exercée a 'instant T" avec pay-off h(Xr, Yr) satisfait :

Np+1
E[h(X7, YT)] = E[h(XNTH,YNTH) H 91],

i=1

ol les variables aléatoires #; sont dans Si_lm()_(,Y) sur 'ensemble {N7 = n}. On a
Onpi1 = (1 — F(T —(ny)) Y et pour i =1, , Np |

0 = (G = o) TV (e) =T () + TP () + TP 0h) + T (e) |-

Enfin, si N est un processus de renouvellement avec des temps de saut qui suit

une distribution Beta(1/2,1), alors pour tout p > 1 et h € B,(R?) pour un certain
_ _ Nr+1

vp > 0, la variable aléatoire h(Xn,+1,Yny+1) [[¢ admet un moment LP(P) fini.
i=1

Comme d’habitude, nous définissons la dérivé par rapport au prix spot (resp.

sa volatilité) de 'actif sous-jacent par Delta (resp. Vega). Sous les hypotheses

appropriées (AR) et (ND) de la partie II, pour tout h € B,(R?) et pour un certain

v > 0 et tout (so,y0) = (exp(Xo),Yo) € R2, la loi du couple (Xr,Yr) vérifie les

formules de type Bismut-Elworthy-Li suivantes :

Np+1

_ . _,Zu) Npt
ST 0w B(X7, Y1)| = E[A(Xnpi1, Virs1) Y (G Goo1) 0]
k=1
avec
Ty, E| h(Xr, V7)]
Nr+1 (2),Np+1 k NT+1 (1),Np+1
- - —1! el
=E [h(XNTJrlaYNTJrl) DG — G 1)(+3,0 0;)] ;
k=1 j=1
(1),n+1 — ﬁ+1 N (2),n+1 (1),n+1
AL , 7 , g et HI avecn = 0sur {Np =n}, 1 <j<k<

n + 1, sont des fonctions explicites des parametres du modele et des poids 9 . Cela
implique que les variables aléatoires qui apparaissent a l'intérieur des attentes sur
le coté droit de la formule IPP peuvent étre parfaitement simulées. Par conséquent,
Delta et Vega peuvent étre calculées par une méthode de simulation Monte-Carlo
non biaisée avec une complexité optimale.

12

Chapter 1

Introduction

This manuscript investigates the solutions of BSDEs by different learning methods
and the probabilistic representation for stochastic volatility models with unbounded
drift. The aim of this chapter is to introduce and motivate the questions we studied
and to summarize the main results obtained.

Contents
1.1 Machine learning methods for high-dimensional BSDEs 14
1.1.1 Connection between semilinear parabolic PDEs and BSDEs 14

1.1.2 Our contributions 15
1.1.3 SGD algorithms with sparse grids 15
1.1.3.1 The direct and Picard algorithms 16

1.1.3.2 SGD algorithm 18

1.1.3.3 Sparse grids 18

1.1.34 Mainresults oL 19

1.1.3.5 Numerical results 20

1.1.4 Deep learning methods 23
1.1.4.1 Neural networks 24

1.1.4.2 Euler scheme 25

1.1.4.3 Crank-Nicolson scheme 26

1.1.4.4 Runge-Kutta scheme 27

1.1.4.5 Mainresults L oL 29

1.1.4.6 Numerical results 31

1.2 Probabilistic representation for stochastic volatility mod-

els . . L e e e e e e e e 31
1.2.1 Stochastic volatility model L. 32
1.2.2 Probabilistic representation 33
1.2.2.1 Background oo 33

1.2.2.2 Our contributions 34

1.2.3 Integration by parts formulae 37
1.2.4 Numerical results L. 38

13

1.1. Machine learning methods for high-dimensional BSDEs

1.1 Machine learning methods for high-dimensional BS-
DEs

1.1.1 Connection between semilinear parabolic PDEs and BSDEs

Let W be a d-dimensional Brownian motion defined on a complete probability space
(9,A,P) and let X be a A-measurable d-dimensional random vector with compact
support or deterministic, independent from W. We define (F;)o<t<r as the aug-
mented filtration generated by W and Xy. For b : R — R% and o : R — My
(the set of d x d matrices) two measurable functions, we define the forward diffusion
process X as the solution to the following stochastic differential equation (SDE for
short)

dXt = b(Xt) dt + O'(Xt) th y (111)

and we define its infinitesimal generator L, for ¢ smooth enough, by
1
Lo(t,z) :==0b(x) Vyp(t,z) + §Tr[(aoT)(:c)Vi<p(t,x)]. (1.1.2)

We are concerned in the first part of the thesis with the numerical approximation
of the solution (u(t,X;),o " (X;)V,u(t, X)), where u is the solution to the high-
dimensional semilinear parabolic PDE

oru(t,) + Lu(t,x) + f(ut,x),0 (2)Veu(t,x)) =0, (t,z)e[0,T)x RY
{ u(T,z) = g(z), zeR?
(1.1.3)
and the (F;)-adapted solution ()}, Z;) € R x R? to the BSDE

T T
Y, =g(XT)+J f(yS,ZS)dsJ Zo dW,, 0<t<T, (1.1.4)
t t

where f: R x R - R, g: R? - R are measurable functions.
It was first noticed in [31] that there exist a connection between semilinear
parabolic PDEs of the form (1.1.3) and BSDEs (1.1.4) as follows:

(u(t, &), 0 " (X)) Vault, X)) = Vi, Z¢),0 <t < T.

This shows that solving the PDE (1.1.3) is equivalent to solving the BSDE (1.1.4).
Since then, the numerical approximation of (1.1.4) was widely studied through
the research of efficient numerical algorithms. In particular, branching methods

[59], full history recursive multilevel Picard method (MLP for short) [66], cubature
methods [25, 31, 32], optimal quantization methods [0, 5, 80, 77], Malliavin calculus
based methods [33, 17, 64] and some linear regression methods [19, 50, 51] were

considered. It is acknowledged that such approaches will be feasible for problems
up to dimension 10. Solving high-dimensional non-linear BSDEs is a challenging
task due to the “curse of dimensionality”. A major breakthrough is that machine
learning technique (especially using deep neural networks) was applied to this field by
Weinan E, Jiequn Han, Arnulf Jentzen, and Christian Beck in 2017 [36]. From then
on, 100-dimensional BSDEs became solvable. Then, the performance of numerical

14

Chapter 1. Introduction

experiments were improved by many new algorithms rely on neural network , see
[56, 57, 58, 21, 65, 46, 85, 86, 47, 67, 68, 90, 28]. And Teng Long proposed a
Gradient boosting-based numerical algorithm in 2021 [91] which could solve 10000
dimensional nonlinear BSDEs.

1.1.2 Ouwur contributions

In the first part of this thesis, we analyse in detail the theoretical convergence
of some numerical approximations, namely traditional Stochastic Gradient Descent
(SGD for short) algorithm and deep learning methods, of the solution to a Backward
Stochastic Differential Equation. The algorithms are tested on several examples
coming from mathematical finance. The approximations are based on the classical
connection between non-linear parabolic PDEs and BSDEs. The numerical results
on high dimensional BSDEs are compared with the one obtained in [65, 30].

In Chapter 2, we introduce an algorithm to approximate the solutions by using
some basis functions on some sparse grids spaces and it is shown to converge to a
global minimum. The global optimisation problem to be solved is non-convex due
to the non-linear driver of the BSDEs. In order to circumvent this issue, we employ
a Picard iteration procedure. Then, the overall procedure becomes a sequence of
linear-quadratic optimisation problems which can be solved by a SGD algorithm. In
Theorem 2.2.1, we control the global error of the implemented algorithm which shows
the convergence of the algorithm under some conditions. In particular, contrary to
the deep learning methods [56, 58, (5], we obtain an upper bound on the error
induced by the SGD algorithm. In practice, we rely on sparse grid approximation
spaces to deal with the “curse of dimensionality”. Our second main result is Theorem
2.3.1 which provides, under a periodic coefficients hypothesis, an upper bound for
the global complexity of the implemented algorithm. Especially, we prove that the
“curse of dimensionality” is tamed, in the sense that an approximation with error
less than & > 0 is obtained with complexity of order e ?|log(e)|%?9), where p is a
constant and ¢(d) is an affine function. Last, various examples in a high dimensional
setting numerically show the efficiency of our methods, see Section 2.3.

In Chapter 3, we propose new algorithms by combining some high-order approxi-
mation schemes (Crank-Nicolson scheme, explicit multi-stage Runge-Kutta scheme)
with neural networks to approximate the solutions of high-dimensional BSDEs. We
study the stability of these algorithms. We obtain weak convergence of the algorith-
mms thanks to the Universal Approximation Theorem for neural networks [62, (3]
and their discrete time errors, see Theorem 3.3.2. We implement these schemes
to numerically compare the convergence rates and the computational time cost in
Section 3.4.

1.1.3 SGD algorithms with sparse grids

In Chapter 2, given an equidistant grid 7 := {¢t, = nh,n = 0,--- N|h := T/N} of
[0, 7], we use the sparse grids space to approach the solutions (u(ty,), Ozu(tn, ")) of
the semi-linear parabolic PDE (1.1.3) at time t,. The algorithm is applied as the
gradient learning algorithm to optimize the coefficients of the basis functions, and a

15

1.1. Machine learning methods for high-dimensional BSDEs

Picard iteration scheme is introduced so that the algorithm converges to the global
solution.

The main goal is to compute an approximation of u(0, Xy), where u is the solution
to the PDE (1.1.3) at the initial time on a given domain or at a specific point. This
lead us to introduce the following setup for the initial value Xj:

Assumption 1.1.1 One of the two following cases holds:

(i) The law of Xy has compact support and is absolutely continuous with respect
to the Lebesgue measure.

(ii) The law of Xy is a Dirac mass at some point xo € RY.

1.1.3.1 The direct and Picard algorithms

In Section 2.2, we first introduce the direct algorithm, which is a SGD algorithm
with a linear specification of the approximation space. However, the non convexity
of the optimisation (computed via SGD) may cause numerical difficulty. We then
introduce a new numerical method to reach the global minimum, called the Picard
algorithm.

Let W := (W, Jo<n<n be the discrete-time version of the Brownian motion W.

We define AW, =W, ., —W;,,0<n <N —1and
Xo =X, Xy, =Xy, +0(Xy,)h+0(Xe,)AW,, 0<n<N-1. (1.1.5)

We now introduce a discrete-time approximation of the process Z and). For a given
t, € m\{T'}, assume 7,7 is a parametric functional approximation space generated
by a set of basis functions

(wlnc(x))lsksK,i, zeR? (1.1.6)

with some positive integer K. For later use, we set:
- N-1
K*:=) K7. (1.1.7)
n=0

Definition 1.1.1 (Class of discrete control process) We let H™Y be the set of
discrete control process Z defined by: for 3 € R and basis functions (1.1.6),

K
Zy, = Y Uh(Xy,)3, for0<n < N-1, (1.1.8)
k=1

and we set Zy = Zy,, tn <t <1pt+1,0 < n < N —1 with the convention Zr = 0.

Then, with the above approximation of the control process Z at hand, we natu-
rally consider the following approximation scheme for the process).

Definition 1.1.2 Given u = (v,3) € RX" x RIE* | we denote by Z* € H™Y the
discrete control process as given in (1.1.8). Then, the discrete controlled process Y*
1s defined as follows:

16

Chapter 1. Introduction

1. Initialization: Set

K
Yo = D ¢k (Xo)n" (1.1.9)
k=1

2. Discrete version: for any 0 <n < N —1:

Yu

tn+1

3. Continuous version: for any 0 <n < N —1 and any t, <t < tpy1,

Y=Y, - —ta)f(Y, Z0) + 2, - We = Wh,) (1.1.11)

Based on Definition 1.1.1 and Definition 1.1.2, let B™¥ be the set of processes
(Y, Z%), with Z% € H™¥, Y* defined as above for some u € RX" x R¥* Now,
the main idea of approximation by learning methods is to minimize a loss function
defined as the difference of the approximated terminal condition g(X7) and the
discrete controlled process Y at maturity 7. Here, we work with a quadratic loss
function, that is we have to solve the optimization problem

inf () := E[G(Xo, W,)] (1.1.12)

u=(y,5)eREY x RdK?
with
G(Xo, W,u) = |g(X7) — Y3

However, the above optimization problem (1.1.12) is generally not convex, so
that we cannot guarantee that the algorithm converges to local or global minima. It
is well known that the solution of the BSDE (1.1.4) itself can be obtained by the limit
of a sequence of Picard iterations, see e.g. [37] and [9] from a numerical perspective.
Thus, we introduce the Picard algorithm which transforms the non-convex optimi-
sation problem (1.1.12) into a sequence of linear-quadratic optimization problems.
Our Picard algorithm is based on the iteration of the operator ¢ defined below:

REY x RIE" 541 ®(1) := argmin E[|g(XT) - U%’u 2] , (1.1.13)

ueRKY x RIK*
where U™ is given by the following decoupling approximation scheme:
1. For i e REY x Rdi{z, consider (Y¥, Z%) € B™¥ as introduced in Definition 1.1.2.

2. Then, for any u € RE" x R‘mz, and Z* € H™¥ as introduced in Definition
1.1.1, we define the control process U%" by

UMt = v (1.1.14)
and forany 0 <n < N —1,
UM = US = hf (VR ZE) + 2 (Wayy — W) (1.1.15)

17

1.1. Machine learning methods for high-dimensional BSDEs

where the driver f (Kﬁ,an) does not depend on the processes (Y, Z") for fixed
it € REY x R in step 1. There consequently exists an unique solution to the
optimisation problem (1.1.13). The following definition gives the whole process of
the Picard algorithm.

Definition 1.1.3 (Theoretical Picard algorithm) For a prescribed positive in-
teger P:

1. Initialization: set u° € RKY x RIK*

2. Iteration: for 1 < p < P, compute: uP = ®&(uP~1).

Then, the output of the algorithm is ut’.

1.1.3.2 SGD algorithm

It is well known that SGD algorithms are efficient iterative methods for solving
optimization problems under smooth conditions. The basic idea of SGD is traced
back to the Robbins-Monro algorithm, which is introduced by Herbert Robbins and
Sutton Monro in 1951 [88]. It is typically used for root-finding problems. In contrast
with the Newton-Raphson algorithm, the Robbins—Monro algorithm does not require
to compute the inverse of a matrix, which is costly in a high-dimensional setting.

‘We will implement the SGD algorithm to compute a solution (1,3) € REY x
R4 to the optimization problem (1.1.12). We first prescribe a positive integer M
representing the number of steps that the stochastic algorithm will iterate, and then
choose a deterministic non increasing sequence of positive real numbers (V)m>1
representing the learning rates and satisfying the following conditions

Z Ym = 00 and Z 72 < 0. (1.1.16)

m=1 m=1

A particular learning rates sequence which satisfy the above conditions, and was
suggested by Robbins—Monro, have the form ~,, = 1/m® for some « € (0.5,1]. The
algorithm consists in computing iteratively, for 0 < m < M — 1 and A\, = 9,3",0 <
n<N-—1,

Ams1 = Am — ’Yerlv)\G(XénJrl, Wm+1,um) , (1117)

where VG is the gradient of G(Xp, W, u) = |g(X7)—Y#|? to X. Under some classical
hypothesis, the algorithm converges in L?, see e.g. [35, 70, 10].

In Lemma 2.2.2, we provide the analytic expression of the local gradient functions
VAG(Xo, Wu), A € {n,3",0 <n < N — 1} appearing in (1.1.17), allowing to easily
compute (Ym+1,3m+1) once (Y¥m Z4) 0 < m < M — 1, have been simulated.

1.1.3.3 Sparse grids

For both the implemented direct algorithm and the implemented Picard algorithm,
the choice of the approximation spaces 7Y and 7,7, 0 < n < N —1, and their related
basis functions (¢§)1sk<[(y and (Q/Jfl)ogngN,LKkgKé, are of paramount importance.

18

Chapter 1. Introduction

In Section 2.3, we choose to use sparse grids approximation together with two types
of basis functions: pre-wavelet [141] and “modified hat function” [13].
As usual, for 0 < n < N — 1, we build the basis functions on a compact domain

d
= [[laf,67] where of <bf forle{1,...,d}. (1.1.18)
=1

The domain specification relies on the applications under study. We will consider
two main cases in this work.

1. Forall 1< n< N -1,

d
= [low bu] = (1.1.19)
=1

which does not depend on n. We will study this case in Section 2.3.1.2 where
we consider coefficient functions that are O-periodic.

2. The coefficient a and b are functions of the time-step and the diffusion coeffi-
cients (b, o), recalling (1.1.1), and (1.1.3), meaning that a” and b™ are defined
as

a" :=a(ty,b,0,d) and b" :=b(t,,b,0,d), (1.1.20)
where a and b are given mappings.

In both cases, we can obtain the basis functions by a linear transformations from
basis functions defined on standard sparse grids on the canonical domain [0, 1]d, see
e.g. [20]. We choose the number of basis functions in sparse grids space to be of
order

o241y (1.1.21)

where £ is the prescribed level of the sparse grids, so that “the curse of dimension-
ality” only depends on the level ¢, see [38, 87]. [13, Theorem 3.25] shows that the
approximation error of the sparse grids space is controlled as soon as the functions
to be approximated are smooth enough.

1.1.3.4 Main results

In Theorem 2.2.1, under some theoretical assumptions such as a smallness condi-
tions, the mean squared error of the complete algorithm is controlled by the sum
of the time-discretisation error, the error induced by the SGD algorithm, the space-
discretisation error from the sparse grid approximation, and finally the error due to
the Picard iteration. The numerical complexity C. of the full algorithm is given by

C. = O4(PNKM). (1.1.22)

Under the setting of Section 2.3.1.2 , where coefficients are assumed periodic,
in order to achieve a global mean squared error of order £ as stated in (1.1.22),

19

1.1. Machine learning methods for high-dimensional BSDEs

the complexity of the full Picard algorithm by using pre-wavelet basis functions on

sparse grids is s 45450
C. = Od(&:*?(l”w’ 10%2(5)|1+ 3 (dil))

9
for any 1 <1 < £.

In particular, it shows that the “curse of dimensionality” is tamed by using the
sparse grid approximation as we can see that C. grows polynomially in e~ up to
some logarithmic factor |log,(¢)| whose exponent is an affine function with respect
to d.

1.1.3.5 Numerical results

Periodic example We first work on a periodic example under the setting of
Assumption 1.1.1 (i). We consider here 1-periodic coefficients of the forward SDE
(1.1.1) on R%, see the model in detail in Section 2.3.1.2. We perform the test for
d = 3 by Picard Algorithm with P = 5, then there are KY = K? = K = 225
basis functions. We obtain a mean square error &ysg = 0.0201 at the 5-th Picard
iteration: See Figure 1.1 displaying the learning performance.

Error of YO by Picard algorithm with dim=3, level=3, T=0.3, P=5, M=100000, N=10

= MSE —> 0.0286 for p=1

MSE ——> 0.0247 for p=2
= MSE —> 0.0219 for p=3
4 —— MSE —> 0.0207 for p=4
MSE ——> 0.0201 for p=5

0 100000 200000 300000 400000 500000
Steps

Figure 1.1 — m — [Y" — u(0, XJ)|? for the Picard algorithm, d = 3. The MSE is computed
by the mean of the last 10000 steps of each Picard iteration.

Numerical convergence of the Picard and direct Algorithm Under the
setting of Assumption 1.1.1(ii), we also compare our methods to existing methods
as the ones investigated in [30, 65]. We consider the quadratic example, whose driver
is set to

fy,2) =alzPP =a(z + 22 +---+22), yeR, zeRY, (1.1.23)

where a € R is a constant, and the terminal condition to

1 2
g(x) = log (*f') . zeRe (1.1.24)

The explicit solution can be obtained through the Cole-Hopf transformation and
then simulated by Monte Carlo method. For the 5-dimensional quadratic model,

20

Chapter 1. Introduction

Figure 1.2 shows the difference of §jg between our SGD algorithm and Monte Carlo
method is less than 1072, It turns out that for this “low” dimensional example, it is
more precise than the deep learning algorithm introduced in [36]. Figure 1.3 shows
that o converges for each Picard iteration. We can observe that gy is very close to
the reference solution 3y when the number of iteration p is greater or equal to 4.

f yO by direct algorithm and deep learning method with dim=5, level=3, T=1.0, M=2000, N=10 Malueof Y0 by Ficard sigorithm with dim=5; level =3,/7=1.0, P=6: H=2000:N=10,

Figure 1.2 — gy for the quadratic model Figure 1.3 — The value of ¢y by Picard
with d=5 and T=1 by direct algorithm algorithm with d=5, level=3, T=1, P=6,
and deep learning algorithm. M=2000.

Numerical results with the modified hat functions basis We were able to
establish a theoretical upper-bound on the global complexity for the Picard algorithm
by using the pre-wavelet basis. However, the number of basis functions is still quite
large which prevents us from dealing effectively with high-dimensional BSDEs. In
fact, the number of basis functions used to capture what happens on the boundary
of the domain is large. We could use the so-called “modified hat functions” [13]
below that allows to get rid of the boundary basis. Table 1.1 shows the number of
points in the sparse grids without boundary, it is much less than sparse grids with
boundary for the same dimensions and levels, see Table 1.2.

1 if l=1Ar1=1
_ ol ;
1-2 x if $e‘[0,2hl] 11l
o) = 4 0 otherwise
1 = -1 o : _

2 x+(1—14)/2 if a;e.[l 2h, 1] =1 nicol_1
0 otherwise

é1i(x) otherwise,

where ¢¥(x) is the family of hat functions given by

ua(o) = o(2a i) with g(o) = { 11 SR

21

1.1. Machine learning methods for high-dimensional BSDEs

X31 X33 X35 X37

Figure 1.4 — 1-dimensional modified hat functions at level = 1,2,3

. : levels 1<3 <4 I<5
dimensions
d=2 17 49 129
d=4 49 209 769
d=5 71 351 1471
d=10 241 2001 13441
d=100 20401 | 1394001 ~

Table 1.1 — The number of points in the sparse grid approximation without boundary func-
tions for different dimensions and levels.

L levels | y <3| <4 | e<5
dimensions
d=2 49 113 257
d=4 945 2769 | 7681
d=5 3753 | 12033 | 36033

Table 1.2 — The number of functions in the sparse grid approximation with boundary for
different dimensions and levels.

Come back to the quadratic model introduced in (1.1.23)-(1.1.24). In this setting,
we can test the 100-dimensional version of this model. the convergence of {jy by using
the direct algorithm is shown in Figure 1.5: 3819 seconds were spent on this test.
The error for §jy appears to be less than 0.01.

22

Chapter 1. Introduction

Value of y0 by direct algorithm with dim=100, level=3, T=1.0, N=10, M=2000

— Y0 -—>3.9166
o ---- 95% Cl of y0: [3.9107, 3.9226]
~--- Y0 ——> 3.9222 by MC simulation

0 250 500 750 1000 1250 1500 1750 2000
Steps

Figure 1.5 — 2} for the quadratic model with d=100 and T=1

There is a challenging example with an unbounded and complex unbounded
structure solution below that was analyzed in [65].

d d
Tt
u(t,x) = — Z(sin(zi)l{zi@} + ;1 {z,0}) + cos (Z zmz> , zeRY
i=1

i=1

We compare the approximation of yg by using five different algorithms to the the-
oretical solution in Table 1.3. The deep learning algorithm [55] fails when d > 3.
The two deep learning schemes of [05] and our algorithms with sparse grids still
works well when d < 8. When the dimension d = 10, all the algorithms failed at
providing correct estimates of the solution as shown in the table, but the errors of
our algorithms appear to be smaller than the errors of deep learning methods.

' ' Theoretical SGP algo with L? sParse DL scheme DL scheme
dimensions “olution grids and hat functions of HPW [67)] of HIE 7]
direct algo | Picard algo | DBDP1 | DBDP2
d=1 1.3776 1.3790 1.3825 1.3720 | 1.3736 1.3724
d=2 0.5707 0.5795 0.5794 0.5715 | 0.5708 0.5715
d=>5 0.8466 0.8734 0.8606 0.8666 | 0.8365 NC
d=8 1.1603 1.1745 1.1801 1.1694 | 1.0758 NC
d=10 -0.2149 -0.2439 -0.2594 -0.3105 | -0.3961 NC

Table 1.3 — Comparison of the value of gy by different methods when 7" = 1.

1.1.4 Deep learning methods

In Chapter 3, we introduce some high order approximation scheme (such as Crank-
Nicolson scheme, Runge-Kutta scheme) to reduce the computational time cost of
the backward deep learning scheme with Euler scheme introduced in [65]. The
convergence is proved using the universal approximation theorem of neural networks
[62, 63]. In addition, some variance reduction techniques are used.

23

1.1. Machine learning methods for high-dimensional BSDEs

1.1.4.1 Neural networks

In the past ten years, neural networks have been used in many fields (such as image
Processing, NLP, AI ...) and this resulted in impressive achievements, especially
to overcome empirically the curse of dimensionality when solving high-dimensional
problems. Indeed, using neural networks results in approximations computed in an
at-most polynomially growing time. It was first applied to solve high-dimensional
BSDEs by Weinan E, Jiequn Han, Arnulf Jentzen, and Christian Beck in 2017
[36, 7]. They proposed in their work a forward scheme (see Definition 1.1.4 which
is discretized by Euler scheme) with a large neural network scheme. Many works
based on neural networks to solve BSDEs have then appeared, see for example

[) I Y I)) Y Y 9]‘

Definition 1.1.4 (Implemented deep forward scheme) [70] For the given ter-
minal function g, the numerical solution is computed using the following step:

A

e Forn =0, initialize Xo = x9, Yo = yo-
e Forn=0,---,N—1, given Y,

— Compute Xp41 = X, + b(Xpn)h + 0(X,) AW,.
— Compute Vy, = N(Xn;0y), where N(x;6,) is a neural network with real
parameters 0, and input variables x.

— Compute j>n+1 =Y, — hf(j/n,]}n) + V, AW,,. Obversely,)7n+1 depends
on the parameters yo and (0y,--- ,0y).

o Compute a minimizer of the loss function:
(43, 0") € argmin, o E| [V (y0,0) - 9(X1)?| .
where 6 = (0g, -+ ,0n_1).

Compared to the deep forward scheme defined above, a more stable scheme was
first introduced by Céme Huré, Hiyen Pham, and Xavier Warin [65], called deep
backward scheme, see Definition 1.1.5 below. The convergence of their methods is
based on the fact that the neural networks are universal approximators, see Theorem
3.1.1. Theoretically, the errors due to neural networks could be made arbitrarily
small by increasing the number of neurons. Inspired by the DBDP1 method in [65],
our goal is to reduce the computational time cost by using high-order approximation
methods (such as Crank-Nicolson scheme, Runge-Kutta scheme...) to control the
time-discretisation error.

Definition 1.1.5 (Implemented deep backward scheme) For the given loss func-
tion Lu[p,1](0), (¢,¥) € C(RY, R) x C(RY,R?), the numerical solution is computed
using the following step:

e Forn = N, initialize Uy = g,f/N =0'V,g.

e Form=N—1,---,1,0, given the networks L?n+1,l>n+1,

24

Chapter 1. Introduction

— Compute a minimizer of the loss function:
0:1 € argmin@ Ln [Z/?n+17 f}nJrl](en)

where 0,, is the parameters of a neural network N(-,0,).
— Set (Un, V) := N (-,0%) as the approzimation functions of (u(ty,), o Oxu(ty,-)).

1.1.4.2 FEuler scheme

Implicit Euler scheme: The implicit Euler scheme for BSDEs [93, 10] is tradi-
tionally defined as

Yo = By [Yor1 + hf(Ya, Zn))] and Z, — Etn[AhW"
with (Yy, Zn) := (9(Xn),0" (Xn)0:9(Xn)). The conditional expectations could
be computed directly by Monte Carlo simulation. For two given sets of parameters
0 and 9, x — y?(z), x — 2’(z) are functions (represented as neural network with
the given parameters) and, our goal is to find optimal parameters 6*, ¥* so that
the associated functions g7 (-), 2%(-) should approximate u(t,,-) and o' d,u(ty,,-)
(recalling V; = u(t, X;), Z; = o' (X;)0u(t, X;)). The optimal set of parameters is
computed recursively. Given g 1, one needs to solve the two following optimisation

problems at time t,,:

Yn+1] , 0<n<N (1.1.25)

N . AW;
0 = angaing | | 247, () 206 (1.1.26)

and

0" = argmingE| [y 11 (Xn1) = 195(Xa) = RFWA(Xa) 2 (G| (11.27)

One could also add a term z; (W;,)AW,, to reduce the variance.

For the scheme called DBDP1 in [65], the authors optimised both 6 and 9 at
the same time: given y_,(-),

(6°,9%) =argming o951 (Y1) = ((X0) = b (WA(Xn), 20(Xa) + 20 (X) AW
(1.1.28)

so that only one network is needed to solve this optimization problem which could
save half of the computational time cost. In fact, the optimization problem (1.1.28)
can be rewritten as

(0,9") =argmin9,ﬁ{E[ry;+l<XnH> — {95(X0) — R (A(X0), 205]

AW?’L * 1 *
B[[0 (W1,0) = 220V = FE00 0,)ATV,] }

(1.1.29)

We recognize that the second term is the term to minimize in (1.1.26) and can be
used to find ¥*, while the first term is the term to minimize in (1.1.27) and can be
used to find #*. The last term is a negative constant which could reduce the loss of
(1.1.28) compared to (1.1.27)-(1.1.26).

25

1.1. Machine learning methods for high-dimensional BSDEs

Explicit Euler scheme: In the implicit Euler scheme defined in (1.1.25), we
observe that only the Y-part is implicit. The explicit Euler scheme considers an
explicit conditional expectation for the Y-part also:

AWy,

Y = By [V + hf(Yosr, Zosa))] and Z, —Etn[!

Yn+1j| y 0 S n < N
(1.1.30)

To implement this scheme in practice, one only needs to replace the optimization
problem (1.1.28) by

(6*,9*) = axgming o [y (Xn11)— (1.1.31)

{y?z(Xn) - hf(y;-i-l(XnJrl)v 27:+1(Xn+1)) + Zz(Xn)AWnHQ]

given v 1(-), 25 ,1(-). In practice, using implicit or explicit Euler scheme together
with neural networks approximation should induce similar time costs and variance
for Yj.

1.1.4.3 Crank-Nicolson scheme

As we know, the weak convergence rate of Euler scheme is of order 1 only, we now
introduce the Crank-Nicolson scheme which is a second-order scheme with a simple
structure, see among others [32]. Though it is implicit, it has almost the same
complexity as the algorithms obtained by using Euler scheme. For the Y —part, we
will study the usual Crank-Nicolson scheme, namely a 6-scheme with 6 = %,

Yo =By [Yorr + 5(f(Ya, Zn) + f(Yai1, Zni1))], 1<n<N-1.

For the general expression of Z—part, we define {Z;}o<i<n as follows:

{ Zy = 0z9(Xn), (1.1.33)

(1.1.32)

Zn =By [Hy(Yns1 + hf (Yot1, Zns1))],

where H, € R? is a F; -mesureable random variables satisfying E; [H,] = 0 and
hE:,||Hn|?] < c0. When the underlying is Brownian motion, one can choose (among
others)

AW,
H, = N .
The numerical analysis for discretization error has been done e.g. in [32, 24]. The

local discretization error will be O(h?), so that the global error is O(h?). For the
general diffusion case, one can choose H,, = %w + —1% e R4, where
ce (0,1) and AW, 0 = Wy, ., =Wy, . —cn. This directly comes from the Runge-Kutta
scheme for BSDEs [24].

Compare to the two steps scheme with loss functions

min () i= BE| (Va1 + hf (Yar, 2 n+1))Hn—z)2],

2€L2(Fiyp,)
R h
ye[IiIQl(I;l-'tn)L (y) := [n+l — {y 2 (Yot1,Zn+1) — }‘]

26

Chapter 1. Introduction

one can optimize two loss functions together by only one neural network below to
save some computational time:

- h h
min L"(y, z) := E[Vo1 — {y— §f(Yn+1a Zn+1) — §f(ya Zn)}r]

y’Z€£2 (]:tn)

2
+ BB (Vi +hf Vasr Zn) Ho — 2| | (1139)

In Lemma 3.3.3, an equivalent optimisation problem is introduced to get the
solution of system (1.1.32)-(1.1.33) with A,, 1= —3E¢ [f(Xn+1, Yns1, Zns1)hH,):

i

2
] (1.1.35)

1
in L™y, 2 a) = CohE| | > hHy f(Xnst1s Yists Zns1) +
Bl 050 = OB [Yo T

E

h n
Yn+1—{y—(f(me,)"‘f(n+1, n+1azn+1))+(z+a)H}

2 Un,

where v,, = Etn[\Hn\Q], Cy > 0is a constant, and A,, is an intermediate variable that
we introduced in order to implement the algorithm by using only one network as
(1.1.28) or (1.1.31). The loss function (1.1.35) can achieve smaller variance for the
approximation of Yy compares to the loss function (1.1.34). It does not increase the
computational time compares to the implicit Euler scheme. There is no doubt that
an error will also appear on the A—part when we optimise the neural network, but
it has the same amplitude as the associated to the Z—part in the neural network,
the influence on the final is negligible.

to t1 e tN—2

AAAAAA

Xo
M
initialize) initialize y initialize initialize
£ T —_ .. YV
with 0% L) with, 0} ~ with 9;\,72\‘;) with 0% _, \‘

(L{o Vo, Ao) (lh Vl,Al) ~~~~~~ (MN—2aVN—27AN—2) (UN71sVN717AN71) ((MN,

O e
'

LGN (0N —2) LGN (On—-1)

Figure 1.6 — Graph with common parameters and variables of Crank-Nicolson scheme in the
deep learning algorithm.

1.1.4.4 Runge-Kutta scheme

Runge-Kutta methods [24] are a family of implicit and explicit discretization meth-
ods, which include implicit Euler scheme, explicit Euler scheme, Crank-Nicolson

27

initialize

'(gyr?zg)|

1.1. Machine learning methods for high-dimensional BSDEs

scheme in particular, see Theorem 3.2.1. From Definition 1.1.6 below, we notice
that the Runge-Kutta scheme is a muti-stage scheme and can achieve a higher order
than Crank-Nicolson scheme. We denote by) the number of stages. Note that the
Runge-Kutta scheme is always explicit for Z-part, there exists an order barrier for
implicit scheme to get an order @ + 1 scheme with a QQ—stage scheme when @ > 1
as long as d,f # 0. Hence, we only consider the explicit scheme when Q = 2,3 as
the implicit scheme has no advantage compared to the explicit scheme for general
drivers. However, the algorithm converges too fast when @Q = 3, which leads to a
discretization error smaller than the variance of the algorithm. And there also exists
an order barrier for explicit scheme, which means that there is no explicit four stage
methods in the class of methods for the definition 1.1.6. So that we never consider
the case) = 4

Definition 1.1.6 For Q € N*, let ¢ = (c1,...,cg+1) € [0,1]9F! satisfying 0 =
cp <cp < ...< ¢ < - < ceg < cge1 =1, and tyy = ther — cgh. Then
tn =tho+1 < ... <tpg <...<tp1 = tpt1. We denote the “full grid”

I:={t,,e[0,T][0<n <N, 1<q<Q}

For tnq € II, X, is approzimated by Xnq € L*(F,,), 0 < n < N and 1 <
q < Q. For ease of notation, denote by (X,)o<n<n the approximation of X on the
grid m. Observe that X, g+1 = Xy, and X, 1 = Xy41. Assume that X is a Markov
process on I1. We now define (Y, Z) the approzimation of (Y, Z), recall (1.1.4).

i) Set the terminal condition as
(Yn, Zn) = (9(Xn), 0(Xn) T Vg(Xn)).

it) For 0 < n < N —1 and Q = 1, the transition from (Yni1,Zns1) to (Yo, Zy)
tnvolves) stages. At the intermediate instances, for 1 < q < Q + 1, let

q
Vg = B | Vasr + 1) agef (X g, Yok, ka)] : (1.1.36)
k=1
q—1
Zng=E, | HiYni1+ 1 Z g gk f (X ks Yok Zn,k)] : (1.1.37)
k=1

<q.k<Q+15 (k) 1<q k<@+1 take their values in R and with ai, =
a1, =0,1<k<Q,app=ag=0,1<¢g<k<Q@Q+1 and

q
Z gk, = Z aqk]l{ck<cq} g<Q+1. (1.1.38)
1 p—

We set (Yn, Zn) = (Yn,0+1, Yn,Q+1) at the dates on 7.

For all 1 < k < ¢ < Q@+ 1,n < N, the random variables Hj JHy are
Ft,.,—measurable, independent of Fi, , and Fy, . respectively wzth the prop-
erty

Bt [Hy | = B, [HY3] = 0 and v =By, [|Hy [P], vg), = B, [H]

é
h’

S| >

- < min(vy, vgy) and max(vy, vgy) <

28

Chapter 1. Introduction

where X\, A are positive constants which do not depend on h.

The approximation of general Runge-Kutta scheme is essentially based on an
iteration of what has been done for the Crank-Nicolson scheme. We introduce a
new intermediate variable

q—1
An,q = Et"’qlz (aquZ; — O‘quZk) hf(Xn,kyyn,h ka)] s (1139)
k=1
and we then minimise the loss function
q_l 2
Lng(y,z,a) :=E C’oh’a 3 (ageH] — ag H2) hf(ka,Yn,k,ka)‘ +
k=1
q—1 H™ 2
HYoi1 + 1 Y agrf (Ko Yok, Zng) — {y — hagef (Xng,y,2) + (2 + G)TZ}
k=1 q

Then, one can implement the whole Runge-Kutta scheme as we described in Defi-
nition 1.1.7 below.

Definition 1.1.7 (Implemented Runge-Kutta scheme) The numerical solution
is computed using the following step:

e Forn = N, initialize Uy = g,]}N =o' Vxg, Ay =0.

A A A A

e Forn=N-—1,---,0, for1 <q<Q+1 given (Up41,Vns1) = Un1,Vn1) and

A

(un,kaf}n,k)y 1<k< q,

A A

— set (q)ka\ljk) = (un,kavn,k)y I1<k< q, (q)]wqjk) = 0: k> q
— Compute a minimizer of the loss function:
07,4 € argming L%}é[@, v](0),
where L%}é 1s the loss function of Runge-Kutta scheme at stage q and ® =
(@1, ,®g—1) € C(RYL,R)TL and ¥ = (Vy,---,¥,_q) € C(RY RY)7-1
— set Un.g> Vings Ang) := Non (5602), where Ny, (- 0%

o h.g) 18 a neural network.

Set (Un, V) := (L?n,Q+1,1>n,Q+1)

1.1.4.5 Main results

For n < N and 1 < ¢ < @ + 1, based on the following perturbed scheme,

q
Vg = Bty o| Va1 + 1D agrf (Xos Yok Znke) | + Clgo (1.1.40)
k=1
q—1
Zn,q = Etn,q H;LYn+1 +h Z O‘quZkf(Xn,k» Yn,k, Zn,k)] + Cfb,qv (1141)
k=1

with (Cﬁiq,gi’q) € [,2(]-"% ,)» we obtain a new stability result to control the error
linked to the estimation of the conditional expectations at each stage of the scheme.

29

1.1. Machine learning methods for high-dimensional BSDEs

Pr0p051t10n 1.1.1 Assume that f is Lipschitz continuous. Then, setting §Y, :=
Y, — Y, and 6Z, := Z, — Z,, the following holds

;I%E 0Y, 7] ZhE 10Z,]
N—-1Q+1
CE||6YN|? + h|6ZN]|? A Gl h 2 1.1.42
< !N|+|N\+ZZ h+|qu| (1.1.42)
n=0 gqg=2

Under some regularity assumptions on the coefficients, and noticing that éYy =
0Zxn = 0 in our setting, from the above proposition and the order of discretisation
errors, we obtain a global control on the error between the solution of the BSDEs
and the deep backward approximations, solutions to our different algorithms.

Theorem 1.1.1 Let (Y, Z,,) := (u(tn, Xp), 0 Vi(tn, Xn)), for n < N. We define

VAR _Etnq[+h2aqkf ks ﬁ@),zﬁ’q’))] (1.1.43)
k=1
o,v o o, v o,
Z®Y =By, | HPY Y 4 0 Y agH f (X, Y, 28))] (1.1.44)
k=1
Etnqlz ageHy — agHgy) hf(Xok, ,f?;w),ZS’,f))] (1.1.45)

with (Y, (q) v Z(q) ql)) = (Pr(Xn k), Yi(Xng)), for 1 <k <gq, and

Eng(®, 1) =) V(D,1) + hel 2 (@, V) + hel (D, D) (1.1.46)
where
vy (. 0) := ienny[erSji”q’) — U o(Xng 0P (1.1.47)
N (@, 9) = inf B[ALY — Ang(Xog 677 (1.1.48)
N (@) = inf B[|20 — Vi (X307) 2] (1.1.49)

Then, under some regularity assumptions on the solution of (1.1.3) and process X,
the following holds

N— N—-1
maxE[yY T (] Z [|Zn —f)n(Xn)\?] <Ch*+N Y &) . (1.150)
n=0 n=0

where h® is the discrete time errors of the scheme, and &, equals to 5n71(1;1n+1, 1>n+1),
En2 <(Z;{n+17an,2)7 (f/n+1, fjn?)) En3 ((Z/A{n-&-l;ang,z;{n,?,), (f}nﬂ, f/n,g, f/ng)) respectively
for Crank-Nicolson scheme, two stage explicit Runge-Kutta scheme, three stage ex-

plicit Runge-Kutta scheme. Nzgz_ol &, represents the global approzimation errors
due to the neural networks.

30

Chapter 1. Introduction

Note carefully that the second term appearing in the right side of (1.1.50) de-
pends on the considered scheme that we apply and the total number of time steps
N, so that it may become large when N increases and has to be balance with the
total number of neurons in practical implementaton.

1.1.4.6 Numerical results

In Section 3.4, we analyse the performance of Euler scheme, Crank-Nicolson scheme,
two stage explicit Runge-Kutta scheme and three stage explicit Runge-Kutta scheme
from a numerical perspective with a special case that the underlying {X;}o<i<r is
a 10-dimensional drifted Brownian motion. We plotted the error of Yy w.r.t. the
time steps in Figure 1.7 and the error of Yy w.r.t. the time cost in Figure 1.8 for
the 5 schemes mentioned above. As we expected, the order of both explicit Euler
scheme and implicit Euler scheme are 1, the Crank-Nicolson scheme and two stage
explicit Runge-Kutta scheme are almost order 2 scheme, and the three stage explicit
Runge-Kutta scheme converges too fast leads to that we can not observe the order
clearly. Finally, We conclude that the Crank-Nicolson scheme is the most efficient
one if we want an error smaller than 0.01 ~ 27664,

Absolute error of Y0 against Ntime for Bounded example with nTest = 10, d=10 Absolute error of Y0 against time cost for Bounded example with nTest = 10, d=10

Euler_implicic implicit
21— - Euler_explicit -2
e - 3
s | ---- RKGN_2 ey - RKgN_2
- RKaN3 . - RKqN3

log2(Error)
log2{Error)

Figure 1.7 — Error against time steps Figure 1.8 — Error against time cost for
for different schemes different schemes

Next, we will pay attention to the numerical results of the order 2 schemes with
the underlying is general diffusion process. We have to discretize the forward dif-
fusion process with a second order weak approximation scheme in practice, such
as Ninomiya-Victoire scheme [70], see the detail results in Section 3.4.1.2 and Sec-
tion 3.4.2.2.

1.2 Probabilistic representation for stochastic volatility
models

In the second part of the thesis, we establish a probabilistic representation formula
for two integration by parts (IBP) formulae for the marginal law of the process for
some stochastic volatility models at a given time maturity 7. Then an unbiased
Monte Carlo path simulation method stems from the probabilistic formulae based
on a simple Markov chain evolving along a random time grid given by the jump times

31

1.2. Probabilistic representation for stochastic volatility models

of an independent renewal process, so that it can be used in order to numerically
compute options’ prices and greeks, in particular delta and vega, for a large class of
non-smooth European payoffs. The achieved error is optimal since the computation
will be only affected by the statistical error. The main novelty of our approach in
comparison to the previous works [12, 3, 1] is that we allow the drift coefficient to be
possibly unbounded as it is the case in most stochastic volatility models (Stein-Stein,
Heston, ...).

1.2.1 Stochastic volatility model

In mathematical finance, a stochastic volatility model is a model for which the vari-
ance given by a stochastic process, instead of being a deterministic process [11].
These models are widely used in mathematical finance to evaluate derivative securi-
ties, such as options. Stochastic volatility models are extensions of the Black—Scholes
model, for which the volatility is assumed constant over time. This model can not
explain long-observed features of the implied volatility surface such as volatility smile
and skew. It becomes possible to price derivatives more accurately if we assume that
the volatility of the underlying price is a stochastic process.

Many stochastic volatility models have been studied, such as the Heston model
[61], the CEV model [30], the SABR volatility model [51], the GARCH model [19]
among others. In this work, we consider a two-dimensional stochastic volatility
model given by the solution (S,Y") of the following SDE

¢ ¢
S; = sg+ J rSsds + f o5(Ys)Ss dWs,

0 0
k t (1.2.1)

Y: =wo +J by (Ys) ds +f oy (Yy) dBs,
0 0
d(B,W)s =pds

where the coefficients by, g, oy : R —> R are smooth functions, » € R, W and B
are one-dimensional standard Brownian motions with correlation factor p € (—1,1)
both being defined on some probability space (2, F,P).

We assume that ag := 0%, ay = U% and drift by coefficients are infinitely
differentiable, and assume ag and ay are bounded. One main improvement is that
by is not bounded, in comparison to other works on probabilistic representation, see
[12] for killed processes and Agarwal and Gobet [2] for multi-dimensional diffusion
processes, for example. Typically, the drift corresponds to a mean reversion term,
i.e. by(y) = Mp — y) for some A > 0, as in Stein-Stein model [89]. In addition the
volatilities ag(x) and ay (z) should also satisfy some uniform ellipticity conditions.
We would like to consider the log-price process X; = In(S;) instead of the spot price,
so that

1
aX; = (r = Sas(¥y)) dt + o5(¥)) dWh,
and the couple (Xy, Y;)se[o,r) has initial conditions (Xo, Yp) = (In(so),%0)-

32

Chapter 1. Introduction

1.2.2 Probabilistic representation
1.2.2.1 Background

The Probabilistic representation method originally developed by Bally, Kohatsu-
Higa, Anderson in [1, 3]. For sake of simplicity, we will consider the one dimensional
case and o(t,x) = 0,b(x) € CL(R). Thus, we introduce the one-step Euler scheme

X = o+ o(W, — W),

Assume that [0,7] x R 3 (s,x) — u(s,z) = E[f(XZ)] is the unique solution of the
PDE:

{ (0s — L)u(s,z) =0,
u(0,z) = f(x).

Apply Itd’s rule to u(T — ¢,)_(to’x)te[ojT], we have
E[f(X2")] = E[u(O,X%””>]

T

= +J IE{ T—r, Xom)+202(92 u(T —7‘,)_(,9’:”)]] dr
0

T

=) + E{ —L+ 0282)(—7“,)_(,9"”)} dr

S

T —
= f Eonzau(—r,XS’Z’)] dr

T _—)?
= j J b(y -7 y)ie o dy dr
0o JrR "N 2mor
T Y e A
=)+ w(T —r,y)(b(y) =V “ dydr
jo fR D) — ¥) e = dy
T
=: J E[6, 0&Yu(T -, X?’I)] dr
0
with the notation 6, (z,vy) = —(b(y) — V'(y)%s7). Hence we get
T
u(T,x) = E[f()_(%x)] + j E[6,(z, XO")u(T — r, X)™)] dr. (1.2.2)
0

It could be shown that for r € [0, 77,
E[0, (z, XP*)u(T —r, X>*)] | € L*([0,T7]).

Then, by the same argument,

uw(l —r,z)=E _f()_(%i)_ H-E[é’ir1 T, Xgl’m)u(T —r—r,X)] drq

0
0

T—r

+ f (
0

[/0,2] T 14 0, 0,z
=E f(XTfr) +j E[T1*7‘(Xrlz r) (T_rlerl 7“)] dry
- T

T — — —

+ J E[1 —r (2, X u(T — 71, X:;x)] dry,
T

— E[/(X92,)]

33

1.2. Probabilistic representation for stochastic volatility models

so that
u(T) = E[(2] + JTIE[ém(x,X?f)f(X%”C)] dr

j f (2, X2)0y —ry (X207, X0 V(T — 79, X15¥)] dry dra.

Repeating N time the same arguments, we can prove by induction

N n
u(T,z) = Z J [H Th—Thk— (XBkINX?(");;x)] dry---dry (1.2.3)
+ E|u(T —ryi1, X H e (X7 X0 L dry - A,
An41(T) k=1
where Ap(T) := {(rl,--- ,ry) € [0,T]"|0 < r; < --- <1, < T} and by convention

ro =0, H@ = 1. Under some good controls, let N — o0 on the previous identity

’LL(T,.%') = ZJ [)(Oac H TE—Tk— 1 ngx17X0x)] dry--- d’f‘n
n=0 An(T)

In order to get a probabilistic representation of the series, one remarks that for a

Poisson process N with intensity A, independent of W, when Np = n, its jump times

(1, -+, Cy are distributed as the order statistics of n i.i.d. uniform random variable
n [0, 7], that is

P(Ny =n,(1 € dry, -+ ,Cu € dry) = Ne M dry -+ dry,

on Ay(T). As a consequence,
E[f(X0")| = u(T,2)

n
= Z GAT}E [f(XTO—:I) H Ailerk_rk—l X70‘kzl7X7(‘]];x)1NT—n]
k=1

n=0

n
=eME [f(ng) H Alerk—Tk—l(Xkal’Xg;x)] .
k=1

The probabilistic representation allows to compute u(T,z) = IE[f (ng”)] with-
out any discretization error but only a statistical error.

1.2.2.2 Our contributions

We are interested in establishing a probabilistic representation formula for the price
of a European option with maturity 7" > 0 and payoff h(St, Y7), given by

E[n(St,YT)],

34

Chapter 1. Introduction

as well as integration by parts (IBP) formulae for the sensitivities (Greeks) of the
option, given by

8501[-2 [h(ST, YT)] and 8yOE [h(ST, YT)] 5

from which stem an unbiased Monte Carlo simulation method.

We establish a probabilistic representation formula for the marginal law (St, Y7),
T > 0 based on a simple Markov chain evolving along a random time grid given
by the jump times of an independent renewal process. This formula provides an
unbiased Monte Carlo method. It is inspired by the probabilistic representation
formula derived in Bally and Kohatsu-Higa [1] and others [3, 60, 42, 2] for multi-
dimensional diffusion process, one-dimensional killed processes and of some Lévy
driven SDEs with bounded drift, diffusion and jump coefficients. The main novel
challenge is to tackle the case where the volatility drift by is unbounded. In order
to overcome this difficulty, we freeze the coefficients by , og and oy along the flow
of the ordinary differential equation (ODE) dmt = by (my), mo = yp obtained by
removing the diffusion term in the dynamics of Y. The underlying Markov chain
(X,Y) on which the probabilistic representation is based, is then obtained from

t

X?OZZL‘()-FJ

. (r— fas(ms)) ds + f os(ms) dW,

t
Y;y0=yo+fbyms ds+fay o
0 0
d{W,B)s = p ds.
Assume 7 = (7,)n>0,70 = 0 is a non-decreasing sequence of R; modelling ran-
dom jump times and let N = (INV;);=9 be the renewal proces, defined by Ny :=

hI | {(rn<t}- IV is independent of the two Brownian motions W and B. We discre-

tise the process (X,Y) using a Euler scheme on the random time grid (¢;)i=0 with
o =0and (; =7; AT, namely

_ _ 1
Xiy1=X; + (T(CiJrl —Gi) — 5‘15,1‘) + US,iZz‘IH’

Yig1 = mj + oy, (piZz'1+1 +4/1— pfzfﬂ)-

where
9 Cz+1 Cz _
as; = 0g; = J as(ms(Y;)) ds,
) Ci+1—Ci _
ay,; = 0y; = f ay (ms(Y;)) ds,

<z+1*C'L _
ooy im f (050y)(ma(¥3) ds,

My 2= Mg —¢ (}71)7

35

1.2. Probabilistic representation for stochastic volatility models

where Z = (Z}, Z2),,>1 is a sequence of i.i.d. random variables of law A/(0, I3) which
is independent of (W, B) and U’Sz, ag/ i agy ;» p; and m are the partial derivatives
of 05, Ov,i, 08y, Pi, M; With respect to Y;.

The approximation process (X Y) is a Markov Chaln with respect to the filtration
defined by G = (Gi)i=0 where G; = o(Z;, 0 < j < i) fori = 1 and Gy is the
trivial o—field. We define (" = (o, ,(n), 7" = (Tg, o+, Ty) for n e NT. We first
define the set S; ,(X,Y), neN, ie {0, ,n} as the space of random variables H
satisfying:

o = h(Xi7}7i7Xi+ly}7i+laCn+l) on {NT = n}7 where Cn+1 = (0 = COaCla e aCnv
Cn+1 = T)

e For all ;41 € A1 (T) := {Sp+1€[0,T]": 0 <81 < ---8p41 < T}, the func-
tion h(.,Sp+1) is in C;O(R4).

We also define the derivative operator Dgi)lH, ae{l,2} for HeS;,(X,Y):

PO

WH =05, H and D2\ H =0y H

i+1

We then develop a tailor-made Malliavin calculus for the Euler scheme (X;, Y;)o<i<Np+1-

.71 2
(H) H[leJrl b piZipy + \/ 1— Zz-i—l] _ D(l) .

7
osi(1—p7) 1-p; 08,

i+1

1 2
(2) piZi+1 +4/1 - p?ZiJrl Pi ZzlJrl (2)
7% (H) = H[.] D@ H.
oyi(1 = p;) 1—p? o

Then, for a multi-index o = (o, ...,), a; € {1,2} with length p and an index
apt1 € {1,2}, we have the following relations:

(H)) D(a Oép+1)H D(Oépﬂ)(D(a) H).

7oy () = T @) i il (Pih

i+1 i+1 i+1

Setting E; ,[X] = E[X|G;, 7", Ny = n] for X € L}(P) and i € {0,---,n}, we
obtain the following duality identity

[(X, z+1)H] :Ez’,n[f(Xi+17Yi—i—l)Ii(ii(H)]'

We denote B, (R?) the set of Borel measurable map h : R* — R satisfying the
exponential growth assumption at infinity. Under some assumptions that will be
stated in Part IT of this thesis, the law of the couple (X7, Yr) satisfies the following
probabilistic representation: for all h € B, (R2) for some v > 0, the price of an option
exercised at time T with payoff h(Xp, Yr) satisfies:

Npr+1

E[h(X7, Yr)] = E[h(XNT+17YNT+1) I 1 9i]7
i=1

36

Chapter 1. Introduction

where the random variables 6; are in Si,lyn()_(,Y) on the set {Np = n}. We have
0NT+1 = (1 - F(T - CNT))_lﬂ and for i = 17 T 7NT7

0 = (F(G = G0y~ |20V () = T (e) + I8 () + T2 08) + T (ehs) |.

Last, if N is a renewal process with jump times of distribution Beta(1/2,1), then
_ _ Nr+1
forallp>1landhe BA,(RQ) for some yp > 0, the random variable h(Xn,+1, YN, +1) [6
i=1

admits a finite LP(P) moment.

1.2.3 Integration by parts formulae

As usual, we define the derivative with respect to the spot price of the underlying
asset (resp. its volatility) by Delta (resp. Vega). We are interested in establishing a
Bismut-Elworthy-Li-type formulae for the two quantities:

aSOE[h(XT, YT)] and &yOE[h(XT, YT)],
where so = exp(Xp), yo = Yo.

The central idea is to exchange the order of the derivative and the expectation,
so that the two Greeks can be computed by a Monte Carlo simulation. Applying
the probabilistic representation, the Greeks write

NT+1 NT+1

&SOE[h(XNTH,Y’NTH) H 01] and 8yOE[h(XNT+1,}7NT+1) H 01]
i=1 i=1

The second step is to apply an appropriate integration by parts formula in order
to differentiate before averaging. However, the usual Malliavin’s IBP formula cannot
be applied here due to integrability issues. Following the ideas developed in [12]
for killed diffusion processes with bounded drift coefficient, we first transfer the
derivatives forward in time on each random time intervals [(;, (iy1], @ = 0,--- , N7,
as explained in the following graph.

EA S 0,

§ G2 (3 =T

Figure 1.9 — Transfer the derivatives forward in time on each random intervals with Np = 3

37

1.2. Probabilistic representation for stochastic volatility models

Then, we perform a local IBP formula on each random time interval [(;, (1],
i =0,---,Np. For instance, on the last time interval [(n;, (Np+1] = [Cnys T, on
the set {Np = n}, to obtain the IBP of Vega one has

O3 En [h()‘(nﬂ,z?m)enﬂ]

=Enp [aifnﬂh(XnH, V1) 0 n—‘,—l] + Enn[ax h(XnH,YnH)?Zfl]
+En,n[h(Xn+1, n+1>?2+1]

= B [h(Xoer Vo) (T (F1700) + TO(F 75 + T)|

e,Y —eX —c
for some new weights 6 . I

Finally, we combine each local IBP formula in an adequate manner to establish
the global IBP formula, using the fact that

NT+1
E[XT7YT ZE[[XNT+17YNT+1) H Gi’Tn+1]]—{NT—n}]
=1

n=0

Under appropriate assumptions (AR) and (ND) in Part II, for all h € B, (R?)
for some v > 0 and all (so,%0) € R?, the law of the couple (X7, Yr) satisfies the
following Bismut-Elworthy-Li type formulae:

B B Nr+1 _)I(l) Np+1
0T 00, B[n(X7, Y7) | = B[h(Xnps1 Yivg 1) D, (G = Ge1) @]
k=1
and
Ty, E| (X1, V1)]
Nr+1 (2),Np+1 k NT+1 (1),Np+1
_ _ — 1! 77
=E [h(XNT+1aYNT+1) DTG~ G 1)(Z)] ;
k=1 j=1
_)I(l),n+1 —)C’,}‘Fl _):Z-(Q),n+1 (1) n+1
where 6" , 077 0" d¢9 with n >0 on {Np =n}, 1 <

k < n + 1, are explicit functions of the parameters of the model and the Welghts
f;. This implies that the random variables that appear inside the expectations on
the right-hand side of the IBP formula can be perfectly simulated. Therefore, Delta
and Vega can be computed by an unbiased Monte-Carlo simulation method with
optimal complexity.

1.2.4 Numerical results

Finally, we numerically compute the prices and Greeks of the following model

dSy = rSy dt + Us(}/t)st dWr,
dy; = by(ﬁ) dt + Uy(ift)dBt,
d<va>t :pdta pE (_171)7

38

Chapter 1. Introduction

with unbounded mean-reversion drift by (z) = Ay (u —), for both European call
options (payoffs: h(z,y) = (exp(z) — K)4) and digital call options which has non-
continuous payoff functions h(z,y) = 1{exp(a)=K)- We compare the results of the
unbiased Monte Carlo method by Exponential sampling (a Poisson process with
intensity parameter A = 0.5, then E[Np] = 1.25) and Beta sampling (a renewal
process with [0,2]—valued Beta(0.5,1) jump times, then E[Np] = 1.79) to Euler
scheme of three different models:

e Black-Scholes model where og(z) = og is a constant.

e A Stein-Stein type model where og(x) = 012 + 02, we choose o071, o9 such that
os(z) is positive in the domain of x.

o A model with a periodic diffusion coefficient function where og(x) = o1 cos(z)+
09, 09 — 01 > 0.

We fix the parameters as follows: T' = 0.5, r = 0.03, K = 1.5, zp = In(sp) = 0.4,
Yo = 0.2, oy(.)) =0y =02, \y = 0.5, p = 0.3 and p = 0.6. We perform M;
paths such that E[N7] x M; = 3.2 x 107 for the unbiased Monte Carlo method in
both Exponential sampling and Beta sampling case. And for the Euler-Maruyama
approximation scheme, we simulate M = 160000 Monte Carlo simulations paths
and set mesh size § = T'/n where n = 200, we also have Myn = 3.2 x 107,

For the Black-Scholes model, we have explicit formulas for the price and the
Greeks. The numerical results for the price, Greeks, together with their variance,
95% half width of the confidence interval of the unbiased Monte Carlo estimation
and the Monte Carlo Euler-Maruyama scheme of a Call option in the Black-Scholes
model for different values of og are provided in the three tables below. Additional
numerical results are presented in Section 4.5.

BS Euler Scheme Exponential sampling Beta sampling

formula | Price | Half-width | Variance | Price | Halfwidth | Variance | Price | Half-width | Variance
0.25 | 0.111804 | 0.111853 | 0.000860286 | 0.0308244 | 0.112196 | 0.000124112 | 0.102648 | 0.112199 | 0.000154064 | 0.110598
03 | 0132621 | 0.132808 | 0.0010515 | 0.0460493 | 0.133193 | 0.000152038 | 0.15404 | 0.133036 | 0.000187336 | 0.163524
04 | 0174152 | 0173559 | 000144315 | 0.0867423 | 0.174754 | 0.000208983 | 0291037 | 0.174711 | 0.000257441 | 0.308813
06| 0256572 | 0.255388 | 000235625 | 0.231233 | 0.257287 | 0.000334903 | 0.747423 | 0.256978 | 0.0004127 | 0.793617

as

Table 1.4 — Comparison between the unbiased Monte Carlo estimation and the Monte Carlo
Euler-Maruyama scheme for the price of a Call option in the Black-Scholes model for different
values of og.

39

1.2. Probabilistic representation for stochastic volatility models

B-S Euler Scheme Exponential sanpling Beta sampling

formula | Delta | Half-width | Variance | Delta | Half-width | Variance | Delta | Half-width | Variance
0.25 | 0.556589 | 0.55675 | 0.00280539 | 0.327789 | 0.554992 | 0.000895101 | 5.33915 | 0.555192 | 0.00114054 | 6.0612
0.3 | 0.560018 | 0.560534 | 0.00200622 | 0351775 | 0.538285 | 0.000923515 | 56833 | 0.557974 | 0.00116621 | 6.33719
04 | 0.569512 | 0.570228 | 0.00311011 | 0.402864 | 0.567568 | 0.000978965 | 6.38649 | 0.567091 | 0.00123 | 7.04938
0.6 | 0.592743 | 0.590041 | 0.00358714 | 0.533925 | 0.589 | 0.0010899 | 7.91588 | 0.587681 | 0.00137469 | 8.80548

ag

Table 1.5 — Comparison between the unbiased Monte Carlo estimation and the Monte Carlo
Euler-Maruyama scheme for the Delta of a Call option in the Black-Scholes model for dif-
ferent values of og.

B-S Exponential sampling Beta sampling
formula Vega Half-width | Variance Vega Half-width | Variance
0.25 0 0.000690222 | 0.00115103 | 8.82877 | -0.000559242 | 0.00128448 | 7.68766
0.3 0 0.00182175 | 0.00137953 | 12.6821 | 0.000500579 | 0.00156401 | 11.3978
0.4 0 -0.00163321 | 0.00189888 | 24.0283 | -0.000817515 | 0.00215655 | 21.6701
0.6 0 -0.000830748 | 0.00300346 | 60.1136 | -0.001055 | 0.00340386 | 53.9862

as

Table 1.6 — Comparison between the unbiased Monte Carlo estimation for the Vega of a Call
option in the Black-Scholes model for different values of og.

40

Part 1

Schemes for solving BSDEs

41

Chapter 2

A learning scheme by sparse
grids and Picard approximations
for semilinear parabolic PDEs

The content of this chapter is from an article in collaboration with Jean-Frangois
Chassagneux, Noufel Frikha, Chao Zhou [23]. Submitted to IMA Journal of Numer-
ical Analysis.

Contents

2.1 Imntroduction 44
2.2 The direct and Picard algorithms 47

2.2.1 Assumptions on the coefficients and connection with the
semilinear PDE 000000 48
2.2.2 Direct algorithm 49
2.2.3 A Picard algorithm 53
2.2.3.1 Theoretical Picard algorithm 54
2.2.3.2 Well-posedness of the theoretical algorithm 54
2.2.3.3 Algorithm implementation 57
2.3 Convergence results for sparse grid approximation ... 60
2.3.1 Convergence results for the pre-wavelet basis 61
2.3.1.1 Definition of the pre-wavelet basis 61

2.3.1.2 The Picard Algorithm in the case of periodic co-
efficients L o o 62

2.3.1.3 Numerical convergence of the Picard and direct
Algorithm 65
2.3.1.4 Limits of the Picard Algorithm 69
2.3.2 Numerical results with the modified hat functions basis . . 70
2.3.2.1 Definition of the basis functions 71
2.4 Study of the discrete optimization problems 75
2.4.1 Preliminary estimates 75
2.4.2 Application to the direct algorithm 78
2.4.3 Study of the Picard algorithm 81

43

2.1. Introduction

2.4.3.1 Preliminary estimates 81
2.4.3.2 Study of the approximation error of the stochastic
gradient descent algorithm 83
2.4.4 Convergence and complexity analysis for sparse grid ap-
proximationso Lo 90
2.4.4.1 Sparse grid approximation error 91
2.4.4.2 Norm equivalence constants 92
2.4.4.3 Complexity analysis 93
2.5 Appendix 000l e e e e e e e e e e e e e 96
2.5.1 Algorithms parameters 96

2.1 Introduction

In the present work, we are interested in the numerical approximation in high di-
mension d of the solution to the semilinear parabolic PDE

Sru(t,) + Lu(t,x) + flu(t,z),0 " (2)Veu(t,z)) =0, (t,z)e[0,T)x R
{ u(T,z) = g(z), zeR?
(2.1.1)
where f : RxR? - R, g : R? - R are measurable functions and £ is the infinitesimal
generator of the forward diffusion process with dynamics

dXt = b(Xt) dt + O'(Xt) th (212)

and defined, for a smooth function ¢, by
1
Lo(t,z) :==0b(z) Vyp(t,z)+ §Tr[(aaT)(x)Vig0(t,x)]. (2.1.3)

Here, W is a d-dimensional Brownian motion defined on a complete probability space
(O,AP), b: R - R? and o : R? - My are measurable functions, My being the
set of d x d matrix. The initial condition A} is a square integrable random variable
independent from the Brownian Motion WW. We denote by (F;)o<t<r the filtration
generated by W and &), augmented with P null sets.

Developing efficient algorithms for the numerical approximation of high-dimensional
non-linear PDEs is a challenging task that has attracted considerable attention from
the research community in the last two decades. We can quote various approaches
(limiting to the "stochastic" ones) that have proven to be efficient in a high di-
mensional setting: branching methods, see e.g. [59], machine learning methods

(especially using deep neural networks), see e.g. [50], and full history recursive mul-
tilevel Picard method (abbreviated MLP in the literature) see e.g. [06]. This is a
very active field of research, we refer to the recent survey papers [57, 8] for more

references and an overview of the numerical and theoretical results available. We
focus now more on one stream of research which uses the celebrated link between
semilinear parabolic PDEs of the form (2.1.1) and BSDEs. This connection, initi-
ated in [81], is as follows: denoting by u a classical solution to (2.1.1), we have that

44

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

(u(t, &), 0T (X)) Vault, X)) = (Vy, Z;) where the pair (), Z) is the R x Ré-valued
and (F;)-adapted process solution to the BSDE with dynamics

T T
V=g + | F0uZ)ds - [z am 0sesT (2.1.4)
t t

so that, the original problem boils down to the numerical approximation of the above
stochastic system. Various strategies have been used to numerically approximate the
stochastic system (AXy, Vi, Z¢)sejo,r)- The most studied one is based on a time dis-
cretization of (2.1.4) leading to a backward programming algorithm to approximate
(Y, Z), as exposed in e.g [17, 93] (see the references therein for early works). This
involves computing a sequence of conditional expectations and various methods have
been developed: Malliavin calculus based methods [17, 33, 6], optimal quantization
methods [5, 6, 80], cubature methods [31, 32, 25] and (linear) regression methods,
see among others [19, 51, 50]. It is acknowledged that such approaches will be fea-
sible for problems up to dimension 10. This limitation is a manifestation of the
so-called “curse of dimensionality”. Recently, non-linear regression methods using
deep neural networks were succesfuly combined with this approach and proved to be
capable of tackling problems in high dimension [65]. However, other strategies have
been introduced in the last five years or so to approximate (2.1.4) trying to adopt a
"forward point of view". Relying on Wiener chaos expansion and Picard iteration,
[18, 15] introduced a method that notably works in non-Markovian setting but is
still impacted by the curse of dimension. A key step forward has been realized by
the so called deep BSDEs solver introduced in [50]. Interpreting the resolution of a
BSDEs as an optimisation problem, it relies on the expressivity of deep neural net-
work and well established SGD algorithms to show great performance in practice.
More precisely, in this approach, the)-process is now interpreted as a forward SDE
controlled by the Z-process. Then, an Euler-Maruyama approximation scheme is
derived in which the derivative of the solution u appearing in the non-linear function
f (through the Z-process) is approximated by a multi-layer neural network. The
optimal weights are then computed by minimizing the mean-squared error between
the value of the approximation scheme at time 7" and a good approximation of the
target g(Xr) using stochastic gradient descent algorithms. Again, this kind of deep
learning technique seems to be very efficient to numerically approximate the solution
to semi-linear parabolic PDEs in practice. However a complete theory concerning
its theoretical performance is still not achieved [8]. One important observation is
that, due to highly non-linear specification, the optimisation problem that has to be
solved in practice, has no convexity property. The numerical procedure designed can
only converge to local minima, whose properties (with respect to the approximation
question) are still not completely understood.

Inspired by this new forward approach, we introduce here an algorithm which is
shown to converge to a global minimum. This, of course, comes with a price. First,
we move from the deep neural networks approximation space to a more classical
linear specification of the approximation space. However, due the non-linearity in
the BSDE driver, the global optimisation problem to be solved is still non-convex.
To circumvent this issue, we employ a Picard iteration procedure. The overall pro-
cedure becomes then a sequence of linear-quadratic optimisation problems which

45

2.1. Introduction

are solved by a SGD algorithm. Our first main result is a control of the global
error between the implemented algorithm and the solution to the BSDE which no-
tably shows the convergence of the method under some smallness conditions, see
Theorem 2.2.1. In particular, contrary to [56, 58] or [65], our result takes into ac-
count the error induced by the SGD algorithm. In our numerical experiments, we
rely on sparse grid approximation spaces which are known to be well-suited to deal
with high-dimensional problems. Under the framework of periodic coefficients, we
establish as our second main result, an upper bound on the global complexity for
our implemented algorithm, see Theorem 2.3.1. We notably prove that the curse of
dimensionality is tamed in the sense that the complexity is of order e~P|log(e)|%®,
where p is a constant which does not depend on the PDE dimension and d — ¢(d)
is an affine function. We also demonstrate numerically the efficiency of our methods
in high dimensional setting.

The rest of the Chapter is organized as follows. In Section 2.2, we first recall
the deep BSDEs solver of [50] but adapted to our framework. Namely, we use a
linear specification of the approximation space together with SGD algorithms. For
sake of clarity, we denote this method: the direct algorithm. Then, we introduce our
new numerical method: the Picard algorithm. We present our main assumptions
on the coefficients and state our main convergence results. In Section 2.3, we use
sparse grid approximation with the direct and Picard algorithms, using two types of

basis functions: pre-wavelet [11] and modified hat function [13]. We discuss their
numerical performances in practice through various test examples. We also compare
them with some deep learning techniques [56, 65]. We also state our main theoreti-

cal complexity result. Section 2.4 is devoted to the theoretical analysis required to
establish our main theorems: all the proofs are contained in this section. Finally,
we give a complete list of the algorithm parameters that have been used to obtain
the numerical results in Appendix 2.5.1.

Notation: Elements of RY are seen as column vectors. For x € RY, x; is the ith
component and |z| corresponds to its Euclidian norm, z-y denotes the scalar product
of x and y € RY. M, is the set of ¢ x ¢ real matrices. We denote by el the (th vector
of the standard basis of R?. The vector (1,...,1)T is denoted 1, I is the d x d
identity matrix. We use the bold face notations 1 € N for multidimensional indices
d
1:= (ly,- - ,lg) with (index) norms denoted by |1, := (Y 12)/P and |1]o := max |1;].
i=1 <<
For later use, for a positive integer k, we introduce the set J ka of multidimensional

indices 1 € N satisfying |1|o, < k. For a finite set A, we denote by |A| its cardinality.

For a function f : RY — R, we denote by Oy, [the partial derivative function
with respect to x;, Vf denotes the gradient function of f, valued in R?. We also
use V2f = (é’%i’mjf)K@Kd to denote the Hessian matrix of f, valued in M . For a
sufficiently smooth real-valued function f defined in R?, we let D'f = 65,}1 e 655{1 f
denote the differentiation operator with respect to the multi-index 1 € N%. For a

fixed positive integer k and a function f defined on an open domain Y — R?, we

46

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

define its Sobolev norm of mixed smoothness

s an = (2 1071 00)° (2.1.5)

1eJ%,

where the derivative D!f in the above formula has to be understood in the weak
sense and for a map g : U — R, HgH%g(u) := §,/lg9(x)|?dz. The Sobolev space of

mixed smoothness HF . (U) is then defined by

Hb o) = {f € La@) 1 flas, o) < 0} (2.1.6)

For a positive integer ¢, the set 7-[2 is the set of progressively measurable pro-
cesses V defined on the probability space (9,.4,P) with values in R? and satisfying

E[S(:)F |V, |2 dt] < 400. The set Sg is the set of adapted cadlag processes U defined on

the probability space (9, A, P) with values in R? and satisfying E[supte[O’T] |Ut|2] <
+00. We also define B? := 87 x H2.

2.2 The direct and Picard algorithms

We describe here the numerical methods studied in this work. The first one, the
direct algorithm is an adaptation of the Deep BSDEs solver introduced in [30] to
the linear specification of the parametric space that we use here. The second one,
the Picard algorithm, is new and is the main contribution of our work. We also
give here the main general convergence results related to the Picard algorithm. The
complexity analysis is postponed to the next section.

The methods we introduce below have for goal to compute an approximation
of the value function u, satisfying the PDE (2.1.1), at the initial time on a given
domain or at a specific point. This lead us to introduce the following setup for the
initial value Aj:

Assumption 2.2.1 One of the two following cases holds:

(i) The law of Xy has compact support and is absolutely continuous with respect
to the Lebesgue measure.

(ii) The law of Xy is a Dirac mass at some point xo € RY.

Most of our numerical applications are done in the setting of Assumption 2.2.1(ii),
see next section. Then, obviously, the approximation of the value function is known
only at the point xg at the initial time. However, one should note that it could also
be interesting to work in the setting of Assumption 2.2.1(i) if one seeks to obtain
an approximation of the whole value function (on the support of Xj) at the initial
time.

47

2.2. The direct and Picard algorithms

2.2.1 Assumptions on the coefficients and connection with the semi-
linear PDE

In this subsection, we first give the assumptions on the BSDE coefficients that will be
required for our approach and then recall the connection with semilinear PDEs. In
particular, under these assumptions, the underlying PDE admits a unique classical
solution. Under an additional regularity assumption on the coefficients, the unique
solution to the PDE admits smooth derivatives of enough order which are controlled
on the whole domain by known parameters. This additional regularity, together with
a periodicity assumption, will be used to obtain our theoretical complexity result,
see Section 2.3.1.2. For sake of simplicity, it is also assumed that the coefficients
b, o0 and f do not depend on time and that f does not depend on the space variable.

Assumption 2.2.2 (i) The coefficients b, o, f and g are bounded, Lipschitz-
continuous with respect to all variables and g € C***(R%), for some a € (0,1].
We will denote by L the Lipschitz-constant of the map f.

(ii) The coefficient a = oo is uniformly elliptic, that is, there exists Ao = 1 such
that for any (x,¢) € (R%)? 4t holds

Ao ICP < a(@)¢- ¢ < Mol¢l (2.2.1)

(iii) For any (i,7) € {1,--- ,d}?, the coefficients b;, i, g belong to C?¢FH(RY R)
and f belongs C*H(R x R4, R). Moreover, their derivatives of any order up
and equal to 2d + 1 are bounded and Lipschitz continuous.

(iv) The coefficients b, o, f and g are periodic functions.

From now on, we will say that Assumption 2.2.2 holds if and only if Assumption
2.2.2 (i), (ii), (iii) and (iv) are satisfied.

Under Assumption 2.2.2 (i) and (ii), it is known (see e.g. [1]) that for any square
integrable initial condition Xj there exists a unique couple (), Z) € B? satisfying
equation (2.1.4) P-a.s. Moreover, from [72] Chapter VI and [11] Chapter 7, the PDE
(2.1.1) admits a unique solution u € C2([0,T] x R? R) satisfying: there exists a
positive constant C, depending on T and the parameters appearing in Assumption
2.2.2 (i) and (ii), such that for all (t,z) € [0,T] x R?

lu(t,)| + |Qpu(t,)| + |Vult, z)| + |V§u(t,az)| < Cl

From [84, 82, 83], the semilinear PDE (2.1.1) and the BSDE (2.1.2)-(2.1.4) are
connected, namely, for all (¢,z) € [0,T) x RY, it holds

)Jt = U(t, Xt), Zt = UT(Xt)qu(t, Xt)

Finally, under Assumption 2.2.2, still from [72] Chapter IV and [11] Chapter III,
the unique solution u to the PDE (2.1.1) is smooth, namely, setting v; = (o Vu);,
1 <i<d, forany 1 e J7,, D (t,.) exists and is bounded. In particular, there
exists a positive constant, Hepending on T and the known parameters appearing in
Assumption 2.2.2 (i), (ii) and (iii) such that for all 1 € J7’, and all (¢,z) € [0, 7] x R,

max | Dl (t,z)| < C. (2.2.2)

1<i<d

48

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

2.2.2 Direct algorithm

We first consider the approximation of the forward component (2.1.2). Given an
equidistant grid 7 :={tp =0 < --- <t, <--- <ty =T} of the time interval [0,T],
t, = nh, n =0,--- N, with time-step h := T/N, we denote by W := OV, Jo<n<n
the discrete-time version of the Brownian motion W and define AW,, = W, —W;_,
0<n<N-1

We then introduce a standard Euler-Maruyama approximation scheme of X on
7 defined by Xg = Ap and for 0 <n < N —1,

n+1

Before discussing the approximation of the backward component, we here state
an important lemma concerning the existence of two-sided Gaussian estimates for
the transition density of the above Euler-Maruyama approximation scheme. These
estimates will prove very useful in the sequel, when studying the theoretical com-
plexity of the Picard algorithm. We denote by p™(t;,t;,x,-) the transition density
function of the Euler-Maruyama scheme starting from the point x at time ¢; and
taken at time t;, with 0 < t; < t; < T. We refer e.g. to [75] for a proof of the
following result.

Lemma 2.2.1 Assume that the coefficients b and o satisfies Assumption 2.2.2 (i)
and (ii). There exist constants ¢ := c¢(X\o,b,0,d) € (0,1] and € := €(T, \,b,0,d) > 1
such that for any (z,2") € (RY)? and for any 0 <i<j < N

Cple(ty — t;), 2 — ') < p™(ti, tj, 2, 2") < Cp(c H(t; — t;),2" —) (2.2.4)
where for any (t,z) € (0,00) x RY, p(t, x) := (1/(2nt))¥? exp(—|z|/(2t)).

We now turn to the approximation of the backward component (2.1.4). We
first introduce a linear parametrization of the process Z. For each discrete date
tn, € m\{T'}, we consider a parametric functional approximation space ¥,? generated
by a set of basis functions (%)<« Kz, for 0 <n < N —1 and some positive integer
K?. The measurable functions ¢* : R? — R have at most polynomial growth. Note
that, for n > 1, the specification of the basis function could depend on the time t,,
but in order to simplify the discussion, we let the number of basis functions be the
same and set to K. Namely, K? = K, for all n > 1. For n = 0, the specification
will depend on the nature of Ap: if Assumption 2.2.1(i) holds, then we will set
K = K; if Assumption 2.2.1(ii) holds, then we simply set K = 1 and 1§ is a
function satisfying 1§ (x¢) = 1. For latter use, we set:

N-1
K*:= Y K; =K+ (N-1K . (2.2.5)

n=0

Remark that there is no need to introduce an approximation space at 7' since the
function g is explicitly known.

For 0 < n < N — 1, each component of (¢ V,u)(t,,-) should be approximated in
an optimal way by a function in ¥;?. The process Z appearing in the dynamics of

49

2.2. The direct and Picard algorithms

the controlled process), that has to be optimized, is parametrized using the spaces
(7:7)o<n<n—1. Namely, the R%valued random variable Z;, will be approximated by

K;
DUE(X,)5, (2.2.6)
k=1

where 3™ € Rd for any 1 < k < K7 and 0 < n < N — 1. Importantly, we denote,
for later use, 37 := ((3™)T)OgngN_l’lgkgKﬁ so that 3 € R47,

Definition 2.2.1 (Class of discrete control process) We let H™Y be the set of
discrete control process Z defined by: for 3 € RE”,

Z WX,)3, for0<n <N -1, (2.2.7)

and where we set Zy = Zy,, tp <t < th41,0 < n < N — 1 with the convention
Zr = 0.

Remark 2.2.1 We insist on the fact that for a given Z € H™Y, the R%-valued
random variable Z;, depends only on 3", for any 0 < n < N —1. The approximation
space we consider is a finite dimensional vector space. This notably differs from the
recent works [7, 55, 05] where a non-linear approximation using neural network is
used.

The dynamics of) given by (2.1.4), in turn, has to be approximated. As previ-
ously mentioned in the introduction, we first rewrite it in forward form as follows

t t
Y :yo—f f(ys,zs)derJ Z, - dWs, te [0,T], with Yo = u(0, Xp).
0 0

The main goal of the algorithm is to obtain a good estimate of u(0,.) on the sup-
port of Xy. In order to do so, we define the starting point of Y, standing for the
approximation of), by using a linear functional approximation space denoted ¥,
namely

= > Wh(Xo)w* with peRX. (2.2.8)

The specification of ¥ will depend also on the nature of Ay. Namely, if Assumption
2.2.1(i) holds, then we set KY = K, while if Assumption 2.2.1(ii) holds, then we
simply set KY = 1 and z/zé is a function satisfying @D;(xo) =1.

Then, employing a standard Euler scheme on 7 together with the above approx-
imation Z € H™¥ of the control process Z, we are naturally led to consider the
following approximation scheme for).

50

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

Definition 2.2.2 i) Given u = (1,3) € RE” x R¥E" we denote by 2 € H™ the
discrete control process as given in (2.2.7). Then, the discrete controlled process
Y is defined as follows.

(a) Initialization: Set
K
Yo =) er(Xo)y"®. (2:2.9)
k=1
(b) Discrete version: for any 0 <n < N —1:
Yo, =Y —hf(Ye, Zy) + Zy, - AW, (2.2.10)

where we recall that AW, = Wy, ., — W,

(c) Continuous version: for any 0 <n < N —1 and any t, <t < tyy1,

n*

Y= VR = (=) (Y, Z8) + 28 (Wi — W) (2.2.11)

ii) Based on the previous step, we define B™Y < B2 as the set of processes (Y, Z"),
with Z4 € H™¥, Y* defined as above for some ue RE" x RK”,

Remark 2.2.2 Let us note that the discrete process (X, Y}, Z}')ier depends on X
and (Wy)er but we omit these dependences in the notation.

The main idea of approximation by learning methods is to force the discrete con-
trolled process Y7 at maturity 7' to match the approximated terminal condition
g(Xr), by minimizing a loss function. Here, we work with the quadratic loss func-
tion, so that one faces the optimization problem

inf g(u) == E[G(Xp, Wiw)] with G(Xp, W,u) = [g(Xr) — VP

u=(y,3)eRKY xRIK*

(2.2.12)

However, one has to come up with a numerical procedure to compute the solution
in practice.

In order to numerically compute a solution to the optimization problem (2.2.12)
(if any exists), one generally employs a stochastic approximation scheme such as
a SGD algorithm. For an overview of the theory of stochastic approximation, the
reader may refer to [35], [70] and [10] and to [7, 36, 55, 65, 53] for applications to
deep learning approximation of PDEs.

We now describe the SGD algorithm that we implement in order to compute a
solution (1,3) € RE" x R¥” to the optimization problem (2.2.12).

For a prescribed positive integer M representing the number of steps in the
stochastic algorithm and two deterministic non increasing sequences of positive real
number (v,)m>1 and (vZ,)m>1 representing the learning rates, we design the follow-
ing direct algorithm.

Definition 2.2.3 (Implemented direct algorithm)

51

2.2. The direct and Picard algorithms

1. Simulate M independent discrete paths of the Brownian motion 20 = (W™)1<m<m
and M independent samples of the initial condition (X{")1<m<M -

2. Initialization: select a random vector uy = (0o, 30) with values in REY x dez,
independent of W and (X")1<m<m, and such that E[[ug|?] < oo
3. Iteration: For 0 < m < M — 1, compute
D1 = Y — Vo1 VoG (AT Wy,) (2.2.13)
3t = dm — Y Vi G Wt) (2.2.14)
forO<n< N-—1.

The output of the algorithm is then uyy = (War, 30)-

Remark 2.2.3 In order to analyse the asymptotic properties of stochastic approxi-
mation schemes, one usually chooses the learning sequences (Ym)ms=1 = (Vi)m=1 or

(Ym)m=1 = (V2,)m>1 such that

Z Ym = 0 and Z 72 < oo, (2.2.15)

m>=1 m=1
see e.g. [75, 70, 10)].

The following lemma, whose proof is postponed to Section 2.4.2, provides the ana-
lytic expression of the local gradient functions VG (Xp, Wiu), A € {n,3",0 <n < N — 1}
appearing in the above SGD algorithm. It shows that (9,,+1,3m+1) can be easily
computed once (Y, Z'm) have been simulated for any 0 < m < M — 1.

Lemma 2.2.2 For A € {nk,l <k< Ky}U{g,"’k,l <k<K:;,0<n<N-1} and
u=(y,3) € REY x R it holds

VAG(Xo, W) = —2(g(X7) — YV, Y2 (2.2.16)

with
N-1
Ve Yp = 4y(Xo) [[(1= hVy (V. Z})), 1< k< KY,
1=0

and forany0 <n <N —1and any 1 <k < K7,

N—-1
Vs Vi = 0h(X,,) (AW, —aV.f(V, 22)) [(1= RV (v, Z2)
l=n+1

with the convention | = 1.

Under Assumption 2.2.1, Assumption 2.2.2 (i) and Assumption 2.2.3, the well-
posedness of Algorithm 2.2.3, that is, the fact that it holds

argmin g(u) £

ueREY x RAKZ

52

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

is proved in Lemma 2.4.1.
Additionally, for any u* € arg min, _p kv, pax= §(4), we show in Proposition 2.4.2 that

N-1
EPMQMﬂKVP+hZ]BMZ£F

n=0

<C(5ﬂ-+5¢),

for some positive constant C. The quantities £, and &, represents the discrete-time
error and the error due to the approximation in the functional spaces (¥Y,%,7),
respectively. They are defined by

N-1 tn+1
n=0 vin

and
N-1
Eyp 1= inf E[]u(o, Xp) — Y3 + Z (o "V ou)(tn, Xz,) — an|2] .
ueREY x RIK?

n=0

(2.2.18)
Let us mention, for later use, that, in the setting of Assumptions 2.2.1 and 2.2.2(i),
&< Ch, (2.2.19)

for some positive constant C, see e.g. Ma and Zhang [73] and Pages [79].

We shall not seek to obtain theoretical convergence results for the direct algorithm
itself. However, we illustrate its performance numerically in Section 2.3 when using
sparse grids approximations [20].

Remark 2.2.4 The numerical complexity C will be measured by the number of coef-
ficients update realized to obtain the approximation. From the previous description,
we obtain straightforwardly that the complexity at worst satisfies

C =04 NKM). (2.2.20)

2.2.3 A Picard algorithm

An issue with the above algorithm comes from the fact that the optimization problem
(2.2.12) is generally not convex. Even though u — (Y, Z") is linear for our choice
of parametrisation, in general the mapping 1 — Y™ is non-linear since f itself is non-
linear. As a consequence, in practical implementation, we have no guarantee that
the algorithm converges to local or global minima. On top of practical problems,
this renders the theoretical analysis of the implemented direct algorithm difficult,
in particular if one wants to obtain rates of convergence to assess precisely the
numerical complexity of the method.

In this section, we introduce a Picard algorithm which transforms this non-convex
optimisation problem into a sequence of linear-quadratic optimization problems.
This is done by using the special structure of the original problem. Indeed, it is
well known that the solution of the BSDE (2.1.4) itself is obtained as the limit of a
sequence of Picard iterations, see e.g. [37] and [9] from a numerical perspective.

53

2.2. The direct and Picard algorithms

2.2.3.1 Theoretical Picard algorithm

Our Picard algorithm is based on the iteration of the following operator:
REY 5 R¥E™ 541 @(ii) := it e REY x RIK (2.2.21)
where,

U= argmin E[\g(XT) — U;’u

UeRKY x RAK?

2] . (2.2.22)

In the above expectation, the process X is the Euler-Maruyama approximation
scheme on the time grid = with dynamics (2.2.3) and U"" (simply denoted as U
below) is given by the following decoupling approximation scheme:

1. For it € REY x R4 we first consider (Y¥, Z%) € B™ as introduced in Defini-
tion 2.2.2.

2. Then, for any u e RE* x RIK *, consider the discrete control process Z% € H™¥
as introduced in (2.2.7) of Definition 2.2.1 and define the control process U"*
by

UMt = v (2.2.23)
recall (2.2.9) and for any 0 <n < N —1,

Uﬁ,u _ Uf,,;u _ hf(}/;fiv Ztﬁn> + Ztun . (th+1 — th)7 (2224)

tn+1

and its continuous version, for any ¢, <t < tpy1,

UM = Uy = (= t) F(YE, Z8) + 23, - W= Wi

Note that under Assumption 2.2.2(i) it holds E[supte[O’T] \Uf’u|2] < +0.
Definition 2.2.4 (Theoretical Picard algorithm) For a prescribed positive in-
teger P:

1. Initialization: set u® € REY x RIK",

2. Iteration: for 1 < p < P, compute: uP = ®(uP~1).

The output of the algorithm is then u’.

2.2.3.2 Well-posedness of the theoretical algorithm

The main novelty compared to the optimization problem (2.2.12) comes from the fact
that the map u — U™" is now linear. This linearity is achieved by freezing the driver
f in the dynamics of the control process along the process (Y¥ Z%) € B™%. The
parameter it € REY x R ig then updated through the Picard iteration procedure.
This is of course the main purpose of this Picard algorithm, compared to the direct
algorithm of Section 2.2.2. At this stage, the above algorithm is theoretical and

54

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

its solution (if any exists) still needs to be numerically approximated. This will be
discussed in full details in the next section.

We here discuss the well-posedness of the optimization problem (2.2.22). We
first introduce some notations that will be useful in the sequel to study the Picard
algorithm as iterated least-square optimization problems.

First, to clarify the linear structure, we introduce the following notations

i) For 1 <k < KY, 0% := ¢F(X).

ii) For 0 <n < N —1,1< k < K, the R%valued random vectors w™F is defined
by

wn,k _ \I/n’kAWn with \I/n’k _ wg(th) , (2225)
Rdf(z

and we set w' := ((w™"))o<p<n—1,1<k<k: (S0 that w is an -valued ran-

dom vector).
iii) the random vector Q = (#7,w")T which takes values in RE? x RIK*.

Note that both w and €2 depends on W and Xy, but we will omit this in the notation.
Then, we rewrite

g(Xp) — U = &% —u-Q (2.2.26)
where

N-1
G = (X, W) := g(Xr)+), hf(YE, Z)) . (2.2.27)
n=0

Thus, the optimization problem (2.2.22) is given by
Ul = argmin, prv, par=N(U,u) with H(u,u) := E[|®ﬁ —u- 9\2] (2.2.28)

and simply reads as a Linear-Quadratic optimization problem. Classically, we intro-
duce semi-norms on the parameter spaces.

Definition 2.2.5 For u = (1,3) € RE" x R¥E" | we define
Il5 == E[ln-0F], Is)Z := E[ls - w[*] and |Ju]|® := E[Ju- P].

Let us insist on the fact that these quantities depend on the choices of w3 though
this is not reflected in the notation.

Remark 2.2.5 i) Observe that from the very definition of the random vector €,
for any u = (9,3) € REY x R it holds

llul® = Nolly + lal2- (2.2.29)

95

2.2. The direct and Picard algorithms

it) With the notations of Section 2.2.2, the following relations hold

T 2 N—-1
lull* = E||vg' +J0 Zi AWy] ol = E[1YS'?] and |52 =) RE[1Z} 7] .
n=0
(2.2.30)
for any u = (y,3) e RE” x RIK*
iti) For later use, see Section 2.2.5.3, we also note that || - |, develops as
N-1
HEY h,Z DTE[S(T) T 5 (2.2.31)
n=0 [=1

by using the independence of the increments (AW)i, for 0 < < N —1 and

le{l,...,d} and where we used the notations 3" = (3l U 1 ") and U™ =
QI

A key assumption to ensure the well-posedness of our approach is the following.

Assumption 2.2.3 There exist two positive constants kg = 1 > ak such that for
any (n,3) € RE” x RIE”

ak v < |yl < sxlvl* and hax|s* < |37 < hexls .
N2
Lemma 2.2.3 For all (Ti,u) € (RKy X RdKz> , it holds

u! V29 (i, wu = 2[ul|?, (2.2.32)

where V2§ denotes the Hessian of the function u — $(t,u).
Moreover, under Assumption 2.2.3, the optimization problem (2.2.22) admits a unique
solution and for any it € RE" x R¥E™ and (v,3) € RE” x R¥K” it holds

(0 —9) - Vo (1) = 2y — 5 > 2axy — 9| (2.2.33)
(3—3) - Vi9(u,u) = 2[5 — 5[= 2haxl; -5 (2.2.34)

where 1 = (1,3) € REY x RIK™ s the unique solution to (2.2.22).

Proof. From (2.2.28), we straightforwardly compute
VS (i, 1) = —QE[((‘jﬁ - Q)Q] and V28 (ii, 1) = 2E[QQ"] (2.2.35)
which, recalling Definition 2.2.5, directly yields (2.2.32). In particular, we have
Yy (it 1) = —2E[(e§ﬁ Sy Q)e] - —2E[(e§ﬁ . 9)9] (2.2.36)
and, forany 0 <n < N —1and any 1 <1 <d,
V(i) = —21[3[(@5ﬁ —Q. u)wff] - —2E[(e5ﬁ e -g,;”‘f)wf"] . (2.2.37)

Under Assumption 2.2.3, we deduce from (2.2.32) that the problem is strictly convex
and has a unique (global) minimum tt = (9,3). The inequalities (2.2.33) and (2.2.34)
then follow from (2.2.36) and (2.2.37) combined with the fact that V,$(u, 1) = 0.

56

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

2.2.3.3 Algorithm implementation

From a practical point of view, the sequence of theoretical Linear-Quadratic opti-
mization problem described in the previous section has to be approximated. Due
to the possibly high dimension of the matrix E[QQ], we will rely on a SGD algo-
rithm! to compute the unique solution to (2.2.22). Indeed, for a fixed vector i in
REY x R the key point is to observe that the unique minimizer 1 is the unique
solution to the equation

VuH (@, u) = 0. (2.2.38)

We importantly remark, using (2.2.36) and (2.2.37) that the above relation
(2.2.38) holds true if and only if

E[HY(Xy, W, ,9)] =0, and E[H"J(XO, W,ﬁ,;,f")] —0, (2.2.39)
where HY is a map from R? x (RN x (RE” x RIK 7)) x REY to RE” and defined by
2 .
HY(Xo, W, 1) := _F(gu —9-0)0, (2.2.40)
K

and H™! are maps defined on R? x (RH)N x (RE” x dez) x REn taking values in
RE% and given by

H™ (X, Wit 5,7) = (& —w 57w, 0<n<N-1, 1<l<d.

2
BrvVh
(2.2.41)
We importantly point out that we abuse the notation in (2.2.40) and (2.2.41) since
the variable (Xp, W) stands for a vector of R? x (RN and (&p, W) — &% =
&' (Xp, W) is also defined by (2.2.27) while in (2.2.39) the random vector W =
(Wr,,)1<n<n stands for the discrete path of the Brownian motion W and X} for the

starting value of X.

In (2.2.40) and (2.2.41), the deterministic constant Sx corresponding to a normaliz-
ing factor is introduced in order to control the L?(P)-moment of the random vectors

(8" —9-6)0 and (S" —w;"" - 3")w;"". Namely, we select Sk large enough so that
(Br)* = (L +E[|0]*]) v max (1 +E[&/*]) (2.2.42)

0<n<N-1,1<I<d

with &J?" = w‘%h Let us insist on the fact that the chosen Sx above should be uniform
for all time grid 7. It depends only on the level of approximation coming from the
definition of the approximation spaces. This qualitative level of approximation is
controlled by the number of basis function per time step, namely K.
For latter use, comparing (2.2.40) to (2.2.36) and (2.2.41) to (2.2.37), we remark
that

1

E[H! (%o, W5, 9)] = 5

_ . o 1 _
V9 (i, 1) and E[H ’Z(XO,W,u,;,l’)] = 5 Vi),

(2.2.43)

Since it is also the procedure used for the direct algorithm, the numerical comparison between
the two will be more relevant.

o7

2.2. The direct and Picard algorithms

for 0<n<N-—11¢{l,...,d} and (ii,u) € (REY x RIE*)2,

The implemented Picard algorithm is obtained by iterating a stochastic gradient
operator which is the counterpart of ® defined by (2.2.21) obtained by the numerical
approximation that we now introduce.

Definition 2.2.6 Let M be a positive integer. Let 0 := (W"™)1<m<rr, be M dis-
crete paths along the time grid m of the Brownian motion W, X¢ := (XJ")1<m<M
be M independent samples of the initial condition (and independent from 20) and
(Ym)m=1 a deterministic sequence of positive real numbers satisfying:

Ddm=o00 and 47 < o0 (2.2.44)
m=1 m>1
We set, for allm =1,
Yy z _ Om
vy o=Ym and 7y, = —. (2.2.45)

Vh

Let ug = (99,30) be a random vector taking values in RE" x]dez, independent of
(X0,20) and such that E[|ug|?] < 0.
The operator @y, parametrized by (uy, Xo,20), is given by

REY 5 R¥E™ 541 @y (ug, X0, 20, 1) = upy (2.2.46)

where ups is the output of the SGD algorithm after M steps and is obtained as
follows:

1. The initial value is set to ug.

2. Iteration: For 0 < m < M — 1, compute

D1 = Dm — 72 HY (XL, WD iy, (2.2.47)
and
Blmet = 1 — Vet HMHAGH, WD 457) (2.2.48)

forany0<n< N—-1andany 1 <[<d.

Definition 2.2.7 (Implemented Picard algorithm) For a prescribed positive in-
teger P:

1. Initialization: Select a random wvector u8 taking values in REY x RIE* gych
that E[|ud|?] < oo. Set u§, :=uf.

2. Iteration: for 1 < p < P, simulate independently a set of M independent
discrete paths Q0P of the Brownian motion W, independent initial condition
X{ and an ;'m'tz'ql starting point uf (independently also of u8, w) and of the
previous (X},207), 1 < j < p—1), and compute v, := @M(ug,%g,ﬂﬂp,uﬁ/fl)
as in Definition 2.2.6.

o8

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

. . P
The output of the algorithm is then uy;.

Remark 2.2.6 i) The choice of the learning sequence ~y for the SGD algorithm
(2.2.47), (2.2.48) might be delicate in practice, see e.g. Section 2.3.1.5.

i1) The initialisation is random in the above algorithm. We do not always follow
this procedure in our numerical experiments, see Section 2.35.

i1i) The numerical complexity C of the full algorithm is the sum of the local com-
plexity of each SGD algorithm so that

C = Oy(PNKM). (2.2.49)

Using the output uﬁ of the Picard algorithm, we set the approximating function at
time 0 to be:

KY

Unr(z) == > (i) eh () (2.2.50)
k=1

recalling (2.2.8).
We then aim to control the following mean squared error:

Ensi = E[WAI}(XO) — (0, XO)|2] . (2.2.51)

We obtain an explicit upper bound on the mean-squared error when specifying
the parameters of the algorithm as follows. Forv > 0, p € (%, 1), we set Y, :=ym ™",
m > 1 and we assume that the number of steps M in the SGD algorithm satisfies,
for some n = 0,

O 5 V2 KK —24/2In(2)ySE M1-r BK
— M P> = d — A <n. (2.2.52
’YﬁK 5 an o~ o (e K +aKMP n. ()

Theorem 2.2.1 Let Assumption 2.2.1, Assumption 2.2.2 (i), (ii), Assumption 2.2.3
and (2.2.52) hold. If LT? and n are small enough, then there exists § < 1 such that

< P REK 72\/5111(2)’}/;7[{]\41_’) /BK . 29,
Euse < Cpy (5 o p- <e K + o M7 +h+& (2.2.53)

for some positive constant C, ., where we recall that &y is given by (2.2.18).

Remark 2.2.7 1. As expected, the above upper bound is the sum of the error due
to the Picard iteration, the error induced by the SGD algorithm, the discrete-
time approzimation error, recall (2.2.19), and the error &, generated by the
approzimation in the functional spaces (VY, V7).

2. The smallness condition on LT? is precisely given in the statement of Propo-
sition 2.4.4. This condition should not come as a surprise since we use Picard
iteration. The smallness condition on n is not restrictive in practice as the
quantity it controls should go to zero to obtain the convergence of the numeri-
cal procedure.

99

2.3. Convergence results for sparse grid approximation

To deduce a rate of convergence from (2.2.53), one has to chose the approximation
basis functions (¢§)1<kgKy and (wﬁ)ogngN,l,lgksKﬁ and to set optimally the algo-
rithm’s parameters. The choice of the basis function has a dramatic impact on the
complexity of the algorithm. In the next section, we work with sparse grid approxi-
mation and we are able to show that the complexity is controlled both theoretically
and in practice under Assumption 2.2.2.

2.3 Convergence results for sparse grid approximation

Both the implemented direct algorithm, see Definition 2.2.3, and the implemented
Picard algorithm, see Definition 2.2.7, rely on the choice of the approximation spaces
YYand 7,7, 0 <n < N —1 and the choice of the related basis functions (1/}5)1<k<](y
and (w Jo<n<N—1,1<k< kz- The impact is both theoretical, in terms of convergence
rate and numerical complexity, and practical in terms of computational time. We
choose here to use sparse grid approximations. This will allow us to obtain inter-
esting numerical complexity results in the setting of Assumption 2.2.2, see Theorem
2.3.1. We carefully investigate the convergence of the implemented Picard Algorithm.
It is not the first time that sparse grid approximations are investigated in the context
of linear regression. We will use the framework introduced in [14]. Note however
that some restriction in the choice of sparse grid approximations are introduced by
Assumption 2.2.3.

The basis functions are built using elementary bricks that have a compact sup-
port included in the bounded domain

d
H a;’,b;'] where af <b} forle{l,...,d}. (2.3.1)
=1

The domain specification strongly depends on the applications under study. We
will consider two main cases in this work.

1. Foralll<n<N-1,

d
= [[loe, 1] = (2.3.2)
=1
Namely, the coefficients a and b do not depend on n. This will be the case in
Section 2.3.1.2 where we consider coefficient functions that are O-periodic.

2. Alternatively, the coefficient a and b are functions of the time-step but also
of the diffusion coefficients (b, o), recall (2.1.2), and the PDE dimension d.
Namely

a® = Cl(tn, bv g, d) and b" 1= b(t’n«? b7 g, d) (233>

However, In both cases the basis functions are obtained by a transformation of
the domain [0,1]% on which we define the primary basis using sparse grids. The

60

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

transformation is defined as follows:

1 —af a:d—a:;)T

d
Tn R 91"—>7‘n(l‘)=<n e

eR?. (2.3.4)
We will introduce two types of basis functions: the first one, based on pre-wavelet
basis, follows from [14] and the second one, based on hat functions modified at the
boundary of the domain, follows from [13].

2.3.1 Convergence results for the pre-wavelet basis

2.3.1.1 Definition of the pre-wavelet basis

We describe here the elementary bricks that are used to build the basis functions of
the approximation spaces.

For a level [€ N and an index i € {0,...,2'}, we first consider the family of hat
functions given by

6 (z) = $(2' — i) with b(z) — { L= |‘”(l Z{h;juzjex <1 (2.3.5)
The univariate pre-wavelet basis functions y** : R — R are defined by
00 — Loy — @Ol (L — 9l g (2.3.6)
and for [> 2, i e I\{1,2" — 1} with [; := {1 <i <2/ — 1|4 odd}
NEPY (hi—2 _ ¢l7i—1 b - £¢l,i+1 N 1¢l,i+2> ' (2.3.7)
10 10 10

For the boundary points i € {1,2! — 1}, we set

Xt =23 <_§¢lo +

11 3 1
10¢ — ¢+ md)l’g) and Xl’2l_1(:c) = Xl’l(l —xz),zeR.

5
(2.3.8)

The multivariate pre-wavelet function on R? are obtained by a classical tensor-
product approach. For a multi-index level 1 = (y,...,l;) and a multi-index position

1= (il,...,id),
d
]_[Lot (7). (2.3.9)

In this multivariate case, the index sets are given by

I, = ieNd’ Osi<l1 Z.f =0 o all1<j<dp . (2.3.10)
1 € Il]. ’Lf lj > 0,

The hierarchical increment spaces are then defined for 1 € N¢ by

W = span{xM |ie I} .

61

2.3. Convergence results for sparse grid approximation

The sparse grid space approximation at level £ is given by

Fr= @M, Lo={1eN (1) <0} (2.3.11)
lely

with (4(0) := 0 and for 1 # 0
CaM) = [y —d + [{jll; = 0} + 1, (2.3.12)

where for a multi-index 1 € N we recall that [1|; = Z@lzl l¢ and that |A| is the
cardinality of A.
The key point here is that the dimension of .#} satisfies

dim(.77) = O(2%¢471) | (2.3.13)

so that the curse of dimensionality only appears with respect to the level ¢, see [35]
(and also in the constant related to the notation O(.)). The key point now is that the
approximation error when using the sparse space is also controlled if the function
to be approximated is smooth enough. To this end, for the fixed open domain
(0,1)4, we consider the space of function with mixed derivatives HZ, ((0,1)%) (see
the section Notation for a precise definition). Then, for any v € HZ, ((0,1)%), it
holds

. 2 —40 pd—1 2
Jnf € = vlZ2(0,090) < C27 46 ol (0.9 (2.3.14)

for some positive constant C' := C(d). We refer e.g. Theorem 3.25 in [13] for a proof
of this result. Again, we importantly emphasize that in the above control of the
error the curse of dimensionality only appears with respect to the level £.

Remark 2.3.1 The number of basis functions is thus K = dim(.#;). We denote by
k:Cw— {1,...,K} any bijection enumerating C. We will often slightly abuse the

notation and write directly (V¥)1<p<x instead of (w,(ql’l))(l,i)ec to be consistent with
the notation introduced in the previous section.

2.3.1.2 The Picard Algorithm in the case of periodic coefficients

In this section, we work under the setting of Assumption 2.2.2 (iv). To alleviate
the notation — but without loss of generality — we assume that the coefficients are
1-periodic in the following sense: for A = b,0 or g

Mz +q) = Mx), for all (z,q) e RY x 2, (2.3.15)

which implies the same property for the value function u and its derivatives.

We thus consider here that O = [0,1]¢, recall (2.3.2) and 7 = I, recall (2.3.4).
Here, we are looking for an approximation U2/ (-) of u(0,-) on the whole domain O,
recall (2.2.50). We thus set Xy to be uniformly distributed on (0,1)?, which means
that Assumption 2.2.1(i) holds true.

For sake of clarity, we summarize the current setting in the following assumption:

62

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

Assumption 2.3.1 Let Assumption 2.2.1(i) and Assumption 2.2.2 hold true. More-
over, set O = [0,1]% and Xy ~ U((0,1)%).

To take into account the periodic setting in our approximation, let us first define
the 1-periodisation of a compactly supported function ¢ by

o(x) = Z oz +q), forall zeR? . (2.3.16)
qeZ?

The basis functions 1 are then given by ¢) = Y. Namely, for any 0 <n < N — 1, for
an approximation date t,, we introduce the set of functions

V7= {£:RY— R|&(x) = T(z), for some v e .7} . (2.3.17)
Moreover, at the initial time, the approximation of u(0,-) will also be computed in

Y= {6 :RY— R|&(z) = ¥(z), for some ve .7} . (2.3.18)

Remark 2.3.2 We could have set an approzimation level different for each time
step, however we shall not use this possibility in our theoretical or numerical con-
vergence results. We thus simply consider a fized positive level £ of approximation,
that, obviously, will be chosen later in an optimal way.

Let also introduce the function
RYsz— Zel0,1)? (2.3.19)

such that Z and x belong to the same equivalence class in Rd/Zd. Denoting by
P, the probability measure on R¢ associated to the random vector X;, given by
the Euler-Maruyama scheme (2.2.3) taken at time ¢,, and starting from Xj at time
0 and using Lemma 2.2.1, we remark that the boundary of the domain O has null

Py, -measure. We thus deduce

(X)) = (X)) P—as., (2.3.20)

and in practice we should work with the latter quantity. Namely, we construct our
approximation scheme using;:

KY K
Yo=Y wk(Xont and Zp =) gR(X,)", for0<n< N -1, (2.3.21)
k=1 k=1

with u = (y,3) € REY x R,

Under the current setting of periodic coefficients and sparse grid approximation,
we take benefit of the convergence results given in Theorem 2.2.1 to obtain our
main theoretical result on the complexity of the Picard algorithm. Indeed, the next
theorem shows that the curse of dimensionality is tamed by using the sparse grid
approximation.

63

2.3. Convergence results for sparse grid approximation

Theorem 2.3.1 Let Assumption 2.3.1 hold and assume that LT? is small enough.
For a prescribed ¢ > 0, the complexity C., defined in Remark 2.2.6, of the full
Picard algorithm in order to achieve a global error Eysg of order €2, recall (2.2.51),
satisfies

C. = 04e™ 3072 log, (e)| 1+ 75 ()

9

Jorany 1 <. <z.

The proof of this theorem is given in Section 2.4.4 where the algorithm’s parameters
are optimally set with respect to €.

2.3.1.2.1 Periodic example We consider here l-periodic coefficients on R
The coefficients of the forward SDE (2.1.2) are given by, for x € R?,

1
- Vdm

bi(z) = 0.2sin(27z;) , 04 4(x) (0.25 + 0.1cos(2mz;)) 1—jy, 1 < 4,5 < d.

The coeflicients of the BSDE reads

d d
L.
g(x) = - (sm (27T21£Ui> + cos (2%2@)) ,x e R
1= 1=

d d
f(twrvyvz) = 277-2?/2(0-1,1(1"))2_2[)1(3:) & +h(t,ﬂ§‘),t€ [O7T]7$6Rd7yER726Rd7
i=1)

a0 o)

where h(t,z) = 2 (COS(27T Zf;l x; +27n(T —t)) — sin(27 Zle x; + 2m(T — t))) The
explicit solution is given by

d d
u(t,x) = % (sin (27T Z z; +2n(T — t)> + cos (277 Z xi +2n(T — t))) ,z € R

i=1 1=1

We perform the test for d = 3 and M = 100000, N = 10,7 = 0.3,level = 3 by
Picard Algorithm with P = 5, then there are KY = K} = K = 225 basis functions.
We obtain a mean square error &ysg = 0.0201 at the 5-th Picard iteration: See
Figure 2.1 displaying the learning performance. The parameters of the test are
shown in Table 2.6 in the appendix 2.5.1.

64

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

Error of Y0 by Picard algorithm with dim=3, level=3, T=0.3, P=5, M=100000, N=10

—— MSE ----= 0.0286 for p=1

MSE ----= 0.0247 for p=2
—— MSE = 0.0219 for p=3
4 —— MSE = 0.0207 for p=4
MSE ----= 0.0201 for p=5

) 100000 200000 300000 400000 500000
Steps

Figure 2.1 — m — [V — u(0, XJ")|? for the Picard algorithm, d = 3. The MSE is computed
by the mean of the last 10000 steps of each Picard iteration.

2.3.1.3 Numerical convergence of the Picard and direct Algorithm

We will now investigate numerically the behavior of the Picard algorithm and direct
algorithm on “test” examples that have been already considered in the literature.
In particular, this will allow us also to compare our methods to existing methods as
the ones investigated in [30, 65].

For this section, we work in the setting of Assumption 2.2.1(ii). This means that
at the initial time, the output (g, 20) of the algorithms: (go,20) = (har,3%,), for
the direct algorithm, recall Definition 2.2.3, or (fo, 20) = (%, (35,)°), for the Picard
algorithm?, recall Definition 2.2.7, are approximating (u(0, zo), o " V,u(0,zg)) € R x
R?. Since, these are one point values, there is no need to introduce basis functions
at the initial time and the approximating spaces are just Y = R and 7 = R4,
Then, for any 1 < n < N — 1, for the discrete time t,, we set the approximating
space as follows:

77 = (¢ : R R|€&(z) = v(rn(z)), for some v e .7}, (2.3.22)

recall (2.3.4). In particular, the basis functions are given by ¥k (x) = x*(r.(z)),
recall (2.3.9) and Remark 2.3.1.

We now report more specifically the various algorithms parameters that have
been used in practice. The first thing to note is that we are able to obtain good
results with a low level of approximation. Indeed, in all our numerical tests, we set
the level £ = 3. The Table 2.1 below indicates the number of basis functions that
have theoretically to be considered when including boundary function.

?Deviating slightly from Definition 2.2.7, we will use for the initialization of the current SGD
step, the last value computed at the previous step instead of a random value.

65

2.3. Convergence results for sparse grid approximation

. . levels v<3lr<alr<s
dimensions
d=2 49 113 257
d=3 225 593 1505
d=4 945 2769 | 7681
d=5 3753 | 12033 | 36033

Table 2.1 — The number of functions in the sparse grid approximation with boundary for
different dimensions and levels.

Next, we need to define the domain O,,,1 < n < N —1, where the approximation
will be computed, which depends on the underlying process, recall (2.3.1)-(2.3.3).
We will consider two cases in our simulations, each component of the forward SDE
is given by a Brownian motion with drift x4 and volatility o: ¢ — x¢ + ut + cW; or
a geometric Brownian motion: t — zgexp((u — 02/2)t + cWy).

1. For the Brownian motion with drift, we set

On = 0 + [ty — 70ty ity + rax/a]d, for some r € R™. (2.3.23)

2. For the geometric Brownian motion, we set

1
Oy = [woeR "0V goef 7oV R = (u— Z0°)t,, for some r € R™.

2
(2.3.24)

Finally, a delicate parameter to chose is the the learning rate. Empirically, it
was set to: for A € {1,3% }neo U {3 hi<n<n_1,

Br(M)n + Bo(N)
1+ (m +mg(A))eX

fym()‘atnaaa/B07ﬁlum0) = 5 1<m< M, (2325)

where By, 51 € RT,mge NT, a € (%’ 1]'

Remark 2.3.3 i) mg is a suitable positive number to decrease the learning rates for
avoiding a big jump of the estimated X\ in the beginning steps of the algorithm.

ii) The parameter r € R* is a suitable number to balance the running time and the
errors of the algorithms.

iii) Both By and « can be used to adjust the converge speed and the variance of the
estimated A. Suitable parameters make the algorithm more stable, converge faster
and reduce the variance of the estimated .

i) Usually, we increase the value of a or decrease the value of (5o, 1) gradually
to decrease the convergence rate with the increase of step p,1 < p < P for Picard
algorithm.

Concerning the number of steps in the SGD algorithm, we make the following re-
mark.

66

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

Remark 2.3.4 We used two techniques to control M in order to reduce the compu-
tational cost:

i) We use a € (O, %] which still works well as the SGD algorithm can converge faster.

it) If 1 (\) = 0, for M large enough, the algorithm eventually converge, but {3"’“}%222%_1
convergence becomes slower and slower with the increase of n (the time step). We
thus choose 31(\) > 0 in practice to make all {5”’“}%2513\{,_1 converge altogether with

a smaller M (thanks to the learning rates increase with n).

The remaining parameters are precised in the examples below. We refer also
Section to the Appendix 2.5.1 for the collection of all algorithm parameters values
used in the numerical simulation.

2.3.1.3.1 Quadratic model First, we consider the quadratic example, whose
driver is set to

fy,2)=alzP =a(z + 22 +---+22), yeR, zeRY, (2.3.26)

where a € R is a constant, and the terminal condition to

1 2
g(x) = log <—|—2|x|) , zeRY (2.3.27)

The explicit solution can be obtained through the Cole-Hopf transformation(see e.g.
[27, 30)):
1 a
- 9(@+Wr—_¢)
R L o i
Elg(z + Wr—¢)], a=0
and

E[a’mg(w + WT_t)ea‘g(I+WT_t)]
E[eao(@+Wr—1)])

zzzé’xiu(t,x)z 1=1,2,---,d.

Thus, to obtain a numerical reference solution and 95% confidence interval for yq
and zé,i =1,2,---,d, we use classical Monte Carlo estimation of the expectations.

The underlying diffusion X is given by the Brownian motion W, and the param-
eters are selected as follows: a = 1, M = 2000, N = 10,7 = 1,z29 = (0,---,0). We
compute a reference solution gy = 1.0976 with 95% confidence interval (1.0943, 1.1009)
when d = 5 by Monte Carlo method using 10° simulation paths. Figure 2.2 shows
the numerical approximation of yy and its 95% confidence interval by the same color
line of the 5-dimensional quadratic model by direct algorithm and the deep learn-
ing algorithm introduced in [36] which used a large neural network contains N — 1
fully-connected sub-neural network to represent Z;,,% = 1,-, N — 1 and minimized
the loss function at the maturity 7. The difference of {jy between our SGD algo-
rithm and Monte Carlo simulation is less than 1072, It turns out that for this “low”
dimensional example and with this set of parameter, it is more precise than the deep
BSDEFEs solver.

67

2.3. Convergence results for sparse grid approximation

Value of yO by Picard algorithm with dim=5, level=3, T=1.0, P=6, M=2000, N=10

Figure 2.2 — §jy for the quadratic model Figure 2.3 — The value of {jy by Picard
with d=5 and T=1 by direct algorithm algorithm with d=5, level=3, T=1, P=6,
and deep learning algorithm. M=2000.

For d = 5, M = 2000,N = 10,P = 6,7 = 1,a = 1, Figure 2.3 shows that g
converges for each Picard iteration, and overall gy — 1.1046. We can observe that
7o is very close to the reference solution gy when the number of iteration p is greater
or equal to 4.

2.3.1.3.2 A financial model We now report our numerical results for a model
with a financial flavour. The underlying process X follows a d-dimensional geometric
Brownian motion, for 4 € R, ¢ > 0, namely

dX;:X;(Hdt+O'dW;)7 i:172a"'d7 XOZTEOE(RJr)d-

The driver of the BSDE is given by, for (y,2) € R x R?,

g

p—R 4
fly.z) = —R'y - Mzt (R~ Rymax {0, Z=15 8,
i=1 (2
and the terminal condition

g(xz) = max {[max xz] - Kl,O} — 2max { {max xl] - KQ,O} :
I<i<d 1<i<d

Hence, for all ¢t € [0,T),z € R, it holds that u(T,z) = g(z) and

LN <PPL . RY(—i 2y Rl —i N G N
n 21:13:2-6%2 min U izlxzam, n xlé’xi =0. 3.

v i=1

This is a typical example of “non-linear market” specification, where there are two
different interest rates for borrowing and lending money, see Bergman [11] and e.g.
[36, 19, 18, 31, 9], where this example has been used as a test example for numerical
methods for BSDEs.

In our numerical test below, we set the parameters as follows: N = 10, M = 6000,
p = 0.06,0 = 0.2, R* = 0.04,R* = 0.06, K; = 110, Ky = 130, T = 0.5 and
xo = (100, - - - ,100).

Table 2.2 compares the results of the direct algorithm and the deep learning algorithm
[36] when d = 2,4. The approximated value of yy obtained by the two methods are
very close. Figure 2.4 and Figure 2.5 show the performance of the Picard algorithm
with parameters d = 4, P = 12, and gy converges to 7.1352 at the last step.

68

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

SGD algo with Sparse grids | Deep learning scheme [30]
Yo 95% CI of 1 Yo 95% CT of g
d=2 | 43332 | [4.2921, 4.3743] | 4.3516 | [4.3420, 4.3612]
d=4 7.0960 [7.0432, 7.1487] 7.1130 | [7.0649, 7.1611]

dimensions

Table 2.2 — Comparison of the direct algorithm and the deep learning algorithm for the
financial model.

b
Figure 2.4 — Approximation gy by Picard Figure 2.5 — Approximation 2y by Picard
algorithm when d=4 and T=0.5. algorithm when d=4 and T=0.5.

2.3.1.4 Limits of the Picard Algorithm

We now illustrate on a numerical example that the smallness assumption may be
necessary to obtain the convergence of the Picard Algorithm. To this end, we consider
the following model. For a given a € R, the BSDE driver is given by

d
fly, z) := arctan(ay) + Z zj, (y,2) e Rx RY,
j=1
and the terminal condition
61+1-z d
g(l‘) = W, T € R .

The underlying process X is simply equal to the Brownian motion W, namely b = 0,
o = I;. We set the terminal time T' = 1 and the dimension d = 2.

We study numerically the above model for different value of a, which controls the
Lipschitz constant of f, in the case of the Picard Algorithm. The value obtained are
compared to the ones obtained by two other methods: a multistep scheme in [22]
and the deep BSDEs solver of [36]. The values obtained by these two methods are
considered to be close to the true solution.

When a = —0.4, Figure 2.6 shows that ¢y converges. However, this is not the
case anymore when a = —1.5, see Figure 2.7, as gg oscillates between two values.
Actually, we see on Figure 2.8 that a bifurcation occurs for the Picard Algorithm
around a = —0.8.

69

2.3. Convergence results for sparse grid approximation

Value of y0 by Picard algorithm with dim=2, level=3, T=1, P=9, M=5000, N=20, a=-0.4

o7

N I e R

06

> 0.5314 for p=1
> 0.7328 for p=2

---> (.6408 for p=3

> 0.6790 for p=4

> 0.6594 for p=5
-—-->0.6699 for p=6

> 0.6631 for p=7

> 0.6613 for p=8

> 0.6631 for p=9

-~ Mutistep schemes y0 = 0.6178
03 -—- Deep leaming y0 = 0.6798

05

[l
533355355

04

1) 5000 10000 15000 20000 5000 30000 35000 40000 45000
Steps

Figure 2.6 — The value of §y by Picard algorithm with d=2, level=3, T=1, P=9, M=5000,
a=-0.4.

Value of y0 by Picard algorithm with dim=2, level=3, T=1, P=9, M=5000, N=20, a=-1.5

r

— y0 > 0.6768 for p=1

¥0 > -0.0304 for p=2

% — y0 > 12355 for p=3
— y0-—>-03770 forp=4

7694 for p=5

—— y0 > 03462 for p=6
¥ 7621 for p=7
05 Y0 > -0.3761 for p=8
‘ ¥0 > 1.7791 for p=9
- Mutistep schemes y0 = 0.2547
| ‘ ---- Deep leaming y0 = 0.3027
00 SR |
1) 5000 10000 15000 20000 5000 30000 35000 40000 45000

Steps

Figure 2.7 — The value of §jy by Picard algorithm with d=2, level=3, T=1, P=9, M=5000,
a=-1.5

Value of yo with d=2, level=3, T=1, P=8, M=3000, N=20.

— Multistep schemes
Deep leaming

i — SG_direct
--- b
B
- p=8
-5 =9
» » Ed P S S 4

Figure 2.8 — The value of ¢y by Picard algorithm, direct algorithm and deep learning method
with d=2, level=3, T=1, P=9, M=5000. The last four steps are shown for the Picard
Algorithm illustrating the bifurcation phenomenon. Note that the direct algorithm does not
exhibit such behaviour.

2.3.2 Numerical results with the modified hat functions basis

In the previous section, using the pre-wavelet basis, we were able to establish a the-
oretical upper-bound on the global complexity for the Picard algorithm and to show

70

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

that both the Picard algorithm and direct algorithm converge in practice too. How-
ever, the number of basis functions, even though we use a sparse approximation, is
still quite important which prevents us from dealing effectively with high-dimensional
PDE. In particular, the number of basis functions used to capture what happens on
the boundary of the domain is large. In this section, we use, the so-called “modified
hat functions” that allows to get rid of the boundary basis.

2.3.2.1 Definition of the basis functions

The modified hat functions are defined by the following method (which corresponds
to equation (2.16) in [13]),

L if l=1ni=1
1—9l-1. 4 if e [0,2h)] _ .
J)l:i(;z;) = d { 0 otherwise if I>1Ai=1
= -1 _ B
{ (2) oo lofth:riligi 2, 1] } if I>1ai=2"—1
() otherwise ,

(2.3.29)
The multivariate hat function on R?% are obtained by a classical tensor-product
approach. For these basis functions, we can remove the points on the boundary of

the space so that all the components l;,j = 1,--- ,d, are positive for a multi-index
level 1 = (I1,...,lg) and a multi-index position i = (i1,...,1%q),
P ()]_[¢l (27). (2.3.30)

In this multivariate case, the index set are given by

I = {z eN‘|ijel, forall 1<) < d} . (2.3.31)

Table 2.3 shows the number of points in the sparse grids without boundary. In
particular, we observe that it is much less than sparse grids with boundary for the
same dimensions and levels, recall Table 2.1.

2.3.2.1.1 The quadratic model We come back to the quadratic model intro-
duced in (2.3.26)-(2.3.27). In this setting, we can test the 100-dimensional version
of this model. Let M = 2000, N = 10,7 = 1,a = 1, the convergence of gy and
2o, when using the direct algorithm, is shown in Figure 2.9 and Figure 2.10: 3819
seconds were spent on this test. The error for fjy appears to be less than 0.01. For
Z, the true solution is z{ = % = 0,Vi = 1,...,d. The gain in computa-
tional time is important in comparison with the pre-wavelet specification of the last
section. Not only less basis functions are used, but one should also note that the
computational cost of a hat function is less than a pre-wavelet function up to a
factor 5. We do also test the Picard algorithm in 25-dimensional setting. We set
M = 1500,N = 10,T = 1,a = 1,P = 3 and get 9o ~ 2.5481 quite quickly, see

71

2.3. Convergence results for sparse grid approximation

. . levels 1<3 <4 I<5
dimensions
d=2 17 49 129
d=4 49 209 769
d=5 71 351 1471
d=10 241 2001 13441
d=20 881 13201 154881
d=25 1351 24751 352351
d=50 5201 | 182001 | 4867201
d=100 20401 | 1394001 ~

Table 2.3 — The number of points in the sparse grid approximation without boundary func-
tions for different dimensions and levels.

Figure 2.11 (all the initial value of ™%, 1 <n < N — 1,1 < k < K7 are set to 0 in
this test).

Value of y0 by direct algorithm with dim=100, level=3, T=1.0, N=10. M=2000 Value of 20 by direct algorithm with dim=100, level=3, T=1.0, N=10, M=2000
— y0——>39166
--=- 95% Cl of y0: [3.9107, 3.9226]
---- y0 ---> 3.9222 by MC simulation

46 a0

42 -02

-0a
[} 250 500 70 1000 1250 1500 1750 2000 [50 500 750 1000 1250 1500 1750 2000

Figure 2.9 — gy for the quadratic model Figure 2.10 — 2} for the quadratic
with d=100 and T=1 model with d=100 and T=1

Value of y0 by Picard algorithm with dim=25, level=3, T=1.0, P=3, M=1500, N=10

26
s
24
22
20
18
16
14
) — y0 > 25581 for p=1
YD = 2 5483 for p—2
0> 25550 far p=3
. -~ y0—-> 2.5628 by MC simulation
4 1500 3000 4500

Steps

Figure 2.11 — go for the quadratic model by Picard algorithm with d=25, T=1, P=3, N=10,
M=1500

2.3.2.1.2 The financial model of (2.3.28) For the direct algorithm in this
example, we set the parameters N = 10, M = 5000, u = 0.06,c = 0.2, R =

72

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

0.04, R® = 0.06, K; = 110, Ky = 130, T = 0.5. Table 2.4 compares the results for
the direct algorithm and deep BSDEs solver: the approximated value for yg obtained
by the two methods are very close. The running time for the deep BSDFEs solver
shows almost no increase up to d < 25. For the direct algorithm, it does increase

with the dimensions but it stays reasonable. Actually, it is even competitive when
d < 25%.

dimensions direct SGD algo with Sparse grids Deep BSDEs solver|[30]
o 95% CI of yq time 1o 95% CI of g time
d=5 8.0966 [8.0226, 8.1705] 3s | 81010 | [8.0747,8.1273] | 1155
d=10 10.9865 | [10.9224, 11.0506] | 12's | 10.9216 | [10.8944, 10.9489] | 120 s
d=15 11.848 | [11.7853, 11.9107] | 33 s | 11.8226 | [11.7750, 11.8702] | 122 s
d=20 11.8674 | [11.7962, 11.9387] | 61 s | 11.9508 | [11.8965, 12.0051] | 127 s
d=25 11.7801 | [11.6467, 11.9135] | 130 s | 11.6416 | [11.5316, 11.7517] | 132's

Table 2.4 — Comparison of the direct algorithm and the deep learning algorithm.

2.3.2.1.3 A challenging example We now consider a model with an unbounded
and complex structure solution, which has been analyzed in [65]. The value function
in this case is given by:

d d
T—t
u(t,w) = —— D (sin(xs) Lz, <op + il {z,20) + cos (Z w:) , zeR% (2.3.32)
i=1 =1

It corresponds to a BSDE, with underlying process given by X; = z + ﬁIth, and
xg = 0.514 and driver and terminal condition given respectively by

flt,x,y,2) = <1 + (T — t)(i — C’)> A(z)+ (1 — (T —t)C)B(x) + Cy,

d

T—1
=(1+——)A(x) + B(x) + Ccos Zml , zeRY yeR, zeRY,
2d =

d
g(x) =u(T,z) = cos (Z m,) , zeR%
i=1

where

J d
A(z) = d Z sin(@;) 1z, <0}, B(z) = d Z ilzzop O = ()1(2)
i=1 i=1

3 The numerical experiments were realised by C++ 17 on a MacBook Pro 6-core Intel Core i7,
using only one core and compiling with optimisation flag ‘-O3’ in gec. The deep BSDEs solver [36],
using Tensorflow, spends most of the time to build the graph for the NN and initialize the variables
when the dimension is small then the learning phase is quick. On the contrary, our algorithm builds
the approximation grid space quite efficiently (less than 1 second when d < 100, level < 3) and then
the runtime is spent on the the SG algorithm.

73

2.3. Convergence results for sparse grid approximation

In Table 2.5, we compare the approximation of yg by using five different algo-
rithms to the theoretical solution. When the dimension d < 2, all the algorithms
perform well. However, as already mentioned in [65] the deep learning algorithm [55]
fails when d > 3 (no matter the chosen initial learning rate and the activation func-
tion for the hidden layers, among the tanh, ELU, ReLu and sigmoid ones; besides,
taking 3 or 4 hidden layers does not improve the results.) The two deep learning
schemes of [65] and our algorithms with sparse grids still works well when d < 8.
Figure 2.12 shows the performance of the direct algorithm , o converges to 1.1745
when d = 8, it is close to the theoretical solution 1.1603, and the 95% confidence in-
terval of g is [1.1611,1.1881]. When the dimension d = 10, all the algorithms failed
at providing correct estimates of the solution as shown in the table, but the errors
of our algorithms appear to be smaller than the errors of deep learning methods.
Figure 2.13 and Figure 2.14 show the performance of the direct algorithm, Picard
algorithm respectively.

' . Theoretical SGD algo with L sparse DL scheme DL scheme
dimensions soltion grids and hat functions of HPW [67] of HJE]
direct algo | Picard algo | DBDP1 | DBDP2
d=1 1.3776 1.3790 1.3825 1.3720 | 1.3736 1.3724
d=2 0.5707 0.5795 0.5794 0.5715 | 0.5708 0.5715
d=5 0.8466 0.8734 0.8606 0.8666 | 0.8365 NC
d=8 1.1603 1.1745 1.1801 1.1694 | 1.0758 NC
d=10 -0.2149 -0.2439 -0.2594 | -0.3105 | -0.3961 NC

Table 2.5 — Comparison of the value of {jo by different methods when 7" = 1.

Value of y0 by direct algorithm with dim=8, level=3, T=1.0, N=60, M=10000
Value of y0 by direct algorithm with dim=10, level=3, T=1.0, N=100, M=10000

-0
— Y0-> 11746 f

== 95% Cl of y0: [1.1611, 11880] L% "
06 ---- Theoretical y0 = 1.1603 -0.25

[} 2000 4000 6000 8000 10000 0 2000 4000 6000 B00 10000

Figure 2.12 — g9 — 1.1745 by di- Figure 2.13 — §o — —0.2439 by di-
rect SGD algorithm when d=8, N=60, rect algorithm when d=10, N=100,
M=10000. M=10000.

74

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

Value of y0 by Picard algorithm with dim=10, level=3, T=0.5, P=8, M=10000, N=100

—— y0 —-> -0.2563 for p=1
y0 - -0.3286 for p=2
— y0 > -0.2735 for p=3
— y0 ——>-0.2497 for p=4
y0 ——= -0.2808 for p=5
— y0 ——> -0.2527 for p=6
y0 ——> -0.2450 for p=7
y0 ——> -0.2594 for p=8
--- Theoretical solution -—= -0 2149

01

0.0

0 10000 20000 30000 40000 50000 60000 0000 80000
Steps

Figure 2.14 — gy — —0.2594 by picard SGD algorithm when d=10, P=8, N=100, M=10000.

2.4 Study of the discrete optimization problems

In this section, we study theoretically the direct algorithm and the Picard algorithm
in order to prove the results stated in Section 2.2 and 2.3.1.2. We first obtain forward
and backward estimates on perturbed BSDEs. This allows in particular to derive
the wellposedness of the direct algorithm. However, most of the work concentrates
on the Picard algorithm in Section 2.4.3. A careful study of the iterated SGD
algorithms allows to prove the convergence announced in Theorem 2.2.1. Finally,
we prove Theorem 2.3.1 concerning the complexity of the method in the case of
periodic coefficients and using pre-wavelet basis.

2.4.1 Preliminary estimates

In this subsection, we prove general technical estimates for the backward component
of a BSDE that will be used in the proof of the convergence of the numerical methods
under study. We will essentially compare two processes with dynamics given by
(2.2.11) but taken at two different starting points and controlled processes.

The first process, denoted by V, is a scheme built with a random driver F' satisfying:

Assumption 2.4.1 1. For all (y,z) € R xRe, F(-,y,2) is progressively measur-
able.

2. There exists some deterministic constant C = 0 such that for any t € [0,T]
and any (y,y,2,72') € R? x R?d

|F(t,y,z) — F(t,y,2) | <C(ly—y|+|z— 7).

For Z € 83 and ¢ € L*(Fy), we thus define
t

t
VeE = ¢ —f F(5, V8?7 Zg) ds +f Zs AW, (2.4.1)
0 0

75

2.4. Study of the discrete optimization problems

where we introduced the notation s := ¢, for ¢, < s < t,41. The second one,
denoted V', corresponds to the the true solution to the BSDE

+ t
V;C’Z = _J F(S,V;C’Z,Zs) ds —|—J ZsdWy | (242)
0 0

where F satisfies the same assumptions as I’ above.

Proposition 2.4.1 Let Assumption 2.4.1 hold for F and F. For (¢, (') € L2(Fy) x
L2(Fo) and (Z,Z') € 82 x 82, we consider V&7 and V<7 as defined in (2.4.1)-
(2.4.2) and we set 6F = F(-,V$Z,7) — F(.,VS2,7), 5l = F(s,V$"% 7!) -
F(s, VEC/’Z/, 7Y and n? = Z! — Z%. Then, under the above assumptions on F and F,
it holds

1. Forward estimate:

E| sup [0 — V7P
te[0,T7]

N-1
cofsficcr i ar
i=0
T
8| [5m + 1 + gy as).
0
2. Backward estimate:

2t

N-1
E[sup "(/tg’,Z’ . V;Cyz 2 + h 2 ’Ztn _ Zt/n|2] < CE[‘V,ZQ/,Z’ . V,IQ_:,Z
tE[O,T] i=0

T
fo (SE + Inf P + rn§P>ds] .

Proof. . o .
1. Denote AV := V<2 —V$Z AZ = 7' —Z, AF = F(-,V<"?', 2") = F(-,V$%, Z)
and Al's = AZs + nZ. Applying It6’s formula, we compute
t t
IAV? = |AV? + J {—2AV,(AFs + 0F5 + 1) + |AT[*} ds + 2f AVL,AT AW .
0 0
(2.4.3)

Since F' is Lipschitz-continuous, we have

2|AVs(AFs + 0Fs +)| < (4+ L) sup |AV,|? + LIAZs|* + |0F5% + |nf)?

0<r<s

which combined with (2.4.3) leads to

t
E[sup |Avﬂ < E[mwz v 0 [(sup AP+ |AZP + 5P + [nf P + \n§|2}ds]

0<s<t 0 0<r<s

+ 21@[sup | AVS(AZSJrnj)dWSq . (2.4.4)

o<r<t JO

76

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

Applying the Burkholder-Davis-Gundy inequality, we obtain

t
<cu|| [1avaze+ P ast|
0

E| sup | | AVi(AZs +nZ)dWs|
re[0,¢] JO

t
<c (E[o [V + [8z + |n§\2>ds}>
0

0<s<t

where we used Young’s inequality for the last inequality. Inserting the previous
inequality into (2.4.4), we get

t

E| sup [AViF| < 1A% + € [B| sup AW+ 1AZ2 + P + 1675 + il as.
o<sr<t 0 0<r<s

The proof for this step is concluded by applying Gronwall’s Lemma.

2. From (2.4.3), we compute

T T
E[\Am? + J |AFS|2ds] < E[AVT|2 + zf AV,(AF5 + 0F; + ng‘)ds} .
t t

We observe that, since F is Lipschitz continuous,
AV;AF; < CIAVS? + |AVE? + |AVAZs).

For o > 0, to be fixed later on, we get using Young’s inequality,
1
AV.AF, < C ((1 + DAV + AP + a|Azs|2) ,
1
<0+ DIAVP + AV + alan? + 145
For a small enough, we thus obtain
1 (T
E[\AV;P + QJ AP5|2ds] (2.4.5)
t
T
< E[AVT|2 + cf (JAVA2 + AV + [8F5f + nf 2 +] ds] . (2.46)
t
Applying Gréonwall’s Lemma leads to, for all t < T,
T
E[|AV;?] < CE{QBT +J]AVS|2ds] (2.4.7)
t
with
T
Bri= [AVIP + | (] + i + 6F) ds
0

In particular, for n < N and ¢, € m, we have

N-1
Br+h Y, |AV,?

Jj=n

E[|AV;,[*] < CE

7

2.4. Study of the discrete optimization problems

which in turn, using the discrete-time Gronwall Lemma, leads to maﬁE[|AV}n|] <
n<

CE[%r]. Combining this inequality with (2.4.5) and (2.4.7), we obtain
1 (T
]E{|AV,}|2 + QJ |AFS]2ds] < CE[%r],t<T.
t

To conclude the proof one applies the Burkholder-Davis-Gundy inequality as in step
1. (]
2.4.2 Application to the direct algorithm

We here prove the results announced in Section 2.2.2. We start by proving the
analytic expression of the main quantities appearing in the direct algorithm, recall
Definition 2.2.3.

Proof of Lemma 2.2.2 By standard computations, recall (2.2.6), for any 0 < n <
N -1,

VyeZt =0, and Vur(Z1) = ¥5(Xe,)Ly, y€ -
This leads to, for 0 < g < N — 1,

Yk (ZE - AWg) = Pk (Xy,) AW 14y (2.4.8)

and
Vo fVE, 28) = Vo fVE, 2V i Vit 4 0 (X VoV, Z8) gy (2.49)

Now, differentiating both side of (2.2.10) with respect to the variable n*,1 < k < KV
yields

VY = 1:[(1—thf Y,}‘,Z”)) for n > 0.

From (2.2.10), by differentiation, we obtain V,..Ys = 0 and using (2.4.8) and
(2.4.9), for ¢ = 1,

\%

3n,k t’; - an‘ky?;—l (hvyf(tq 17Z?q 1)>

F R (X0, L pnmg 1y (AW = RVLFO 28))
which in turn yields

Vpr¥t =0forg<n, V = Un(Xy,) (AW, — hV.F(VE, Z3))

u
3n,k tn+1
and for ¢ = n + 2,

q—1
Vit = h(Xe,) (AW, =WV (v, 28)) [T (1= hvuf (v, 28)) -
j=n+1

78

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

This concludes the proof. L]

Recall that, the time discretization error that will appear in our estimates is classi-
cally given by

N— tn+1
En = E[> f (1Vs = Vi I> + 125 — 20, + | X, — X0 P) d5] . (2.4.10)

The approximation error due to the restriction to the functional space, expressed
n (2.2.18), is also given by

N-1
Ep = E[|u(0,)€0) —uo(Xo)]> + > hl(0 T Vau)(tn, X,,) — vn(th)|2] . (2.4.11)

n=1

where, 0, is the L?(R? P,)-projection of the map (0" V,u)(t,,) onto %72, 0 <
n < N — 1 and i is the L?(R? Px,)-projection of the map u(0,-) onto #¥. We
denote 1 the coefficient associated to the decomposition of %, namely

R? 5 2 — Gg(x Z gl () (2.4.12)

and also 3" the coefficient associated to the decomposition of v,, namely
R 5 2 > by (z Zg”%k)eRL,0O<n< N -1 (2.4.13)

For later use, we introduce a reference solution
i =(9,3) e REY x R (2.4.14)
We first discuss the well-posedness of the optimization problem (2.2.12).

Lemma 2.4.1 Under Assumption 2.2.1, Assumption 2.2.2 (i) and Assumption 2.2.3,
it holds

argmin g(u) # & .

UeRKY xRAK?
Proof. Let u = (9,3) € REY x R Using the backward estimate of Proposition
2.4.1 with V&Z := Y* and V<7 .= Y0 (¢' = 0, Z' = 0) yields

N-1
=E|YJ?+), hlZ P
n=0

Jlufl? CE[|Y} - Y7’] < C(1 + E[|g(XT) — Y7F*]).

Under Assumption 2.2.3, we thus deduce that the continuous function REY x
R 54 g(u) is coercive. As a consequence, it admits a global minimizer so that
the optimization problem (2.2.12) is well-posed.]

The following proposition can be seen as a version of the results in [58] (see
Theorem 1 & 2) adapted to our context. Let us note that our setting is simpler as
we do not deal with fully coupled Forward Backward SDEs.

79

2.4. Study of the discrete optimization problems

Proposition 2.4.2 Under Assumption 2.2.1, Assumption 2.2.2 (i), (ii) and As-
sumption 2.2.8, there exists a positive constant C such that for any

u = (9",3") € argmin g(u),
ueRKY x RAK*?

it holds
N-1
E[|u(0,)€o) -Y]2 +h 2 |2, — Zy, \2 < C (& +&y) (2.4.15)
n=0
and
g(u’) <g(u) < C (& +&y) - (2.4.16)

li’roof. Wf: use the backward estimate of Proposition 2.4.1 with V¢Z := Y*" and
V<2 .= Y* where 1 is given in (2.4.14), to obtain

N-1

E| sup [V = ¥F2+h Y B||ZE - 25 2| | < CE| v - viP]
tE[O,T] n=0

< CE[|¥# - g(X§)2 + |g(x7) - V|

By optimality of u*, we get

N-1
E[sup [V — YA +h > E[|an — Z;‘;|2] < CE[lg(X%) - Y] . (2.4.17)

te[0,T]

n=0

We now use the forward estimate of Proposition 2.4.1 with V¢Z := Y% and V¢+Z :=
Y. We obtain

o) = E[lg(X7) — Vi
) T N-1 i
3o - YER+ [(9= i 12, - ZaP) ds+ 3, hlzi, — ZE P
0 n=0

< CE

(2.4.18)

Observe now that in our current smooth coefficients framework 2, = (0" V,u)(tn, X))
so that one has

E[|2:, — 2} 7]
— B[|07 Vo) (tn, Xi,) — 25]
< 2(B[|(07 Vo) (tn, X,) = (07 Vo) (b, X3,) 2| + B[(6T Vo) (b0, X,) = ZE,)
< C(E[1%, — X, 2| + E[|(0 Vau)(tn, X7°) - 25) (2.4.19)

where we used the Lipschitz regularity of z + (0" V,u) (¢, *) uniformly with respect
to the variable ¢,,. Combining (2.4.18) and (2.4.19) leads to

g(n) < C (& + &)

80

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

which, since g(u*) < g(u), proves (2.4.16).
The above estimate together with (2.4.17) leads to

N-1
E| sup [V = Y72 +h Y E[|ZE - 2852 | <O &+ &)
n=0

te[0,T]

Then, using the inequalities _Ztn—Zf;\Q <_2|Z;‘;—Z§‘n\2+2|Ztn—Zf‘n\2, 0<n<N-1,
and |[Y*" — V)% < 2|V — Y¥? 4 2|); — Y¥|? yields (2.4.15) and concludes the proof.

L]
2.4.3 Study of the Picard algorithm
We introduce the following mean squared error:
& =E[|uf, —ul’] .0<p< P, (2.4.20)
where the sequence (1,)o<p<p is given by Definition 2.2.7, ||-|| is given by Definition

2.2.5 and u is the reference solution introduced in (2.4.14). In this subsection, our
aim is to establish an upper bound for the quantity £p that will allow us to prove
Theorem 2.2.1.

2.4.3.1 Preliminary estimates

Proposition 2.4.3 Suppose that Assumption 2.2.1, Assumption 2.2.2 (i), (ii) and

Assumption 2.2.3 hold. If T(1 +2L*(1 + h)) < 1 and 0, := % <1,

then for any € > 0 such that 0p, . := 0p(1 +¢) < 1 there exists a positive constant Cs
such that for any positive integer P

Ep <0 .Eo + Ce(Epm + Ey + &x) (2.4.21)
with the notation
. P p—1y |12
5RM._EQ§2}E[muM. QKuM»)M]. (2.4.22)

Proof. From the decomposition,
Wy — =0y () — Bl) + o) —w

we obtain, for any ¢ > 0,

& < (1+ e + (1 + B[], ") — 2]
Then, using Lemma 2.4.2 below, we get

Ep < Ope&p-1+ Ce (Ey + Ex + ErM)
up to a modification of €. By an induction argument, we derive
Ep < 0}, .E0 + Ce(Erm + Ey + &x)

which concludes the proof.]

81

2.4. Study of the discrete optimization problems

Lemma 2.4.2 Suppose that Assumption 2.2.1, Assumption 2.2.2 (i), (ii) and As-

sumption 2.2.3 hold. If T(1 +2L*(1+ h)) <1 and &}, := %M < 1, then,

for any e > 0 there exists a positive constant C. (e — C being non-increasing) such
that for any it € REY x R it holds
@ (@) — ul|? < 6r(1 +)i —ul|* + Ce (Ey + &x).-

Proof.
Step 1: We denote it = ®(ii) where it = (§,3) and & = (f,3) belongs to RX” x
R We first observe that, recalling (2.2.21), (2.2.30) and (2.2.23),

o) - wl? = B ivg - vie+ [i -z
— E| 03" - URP.
Moreover, by optimality of it
B[- 0P| < 2 (B[03" = g(xX0)P] + B[lg(xr) - UF1))
< 4E|lg(xr) - UF"P].
We now compute, for any ¢ > 0,

- 1 _ _ -
E[lg(Xr) - Up"P| < (1 + DE[lg(Xr) - UF*R] + (1 + B[IUF" — Up"

’
)
which, combined with the previous inequality, yields

2@ — 5> < 401 + D)E[lg(xr) — U

2| a(1 4 OR[[UF - UR] L (24.23)

Since U%* = Y¥ we can give an upper bound for the first term appearing on the
right-hand side of the above inequality by using (2.4.16),

E|lg(Xr) - UF"[] = s(@) < C (&) + &) (2.4.24)

Step 2: We now turn to the study of the second term appearing on the right
hand side of (2.4.23). Recalling the dynamics (2.2.24), denoting 06U := UH¥ — V¥
67 =Z% -~ Z% §Y =Y"— Y% and §f;, = f(l@i,an) —fYA,ZE),0<n< N -1,
using the Cauchy-Schwarz inequality and the Lipschitz-regularity of the map f, we
get

T N—-1
E[|6U7?] < Tf E[|6£2] ds < 202T Y hE[|6i, [+ |52, 2] ds. (2.4.25)
0

n=0

For all 0 < n < N — 1, one has

0Yy, .. =0Yy, —hofy, +02;, AW,

82

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

which in turn, setting AM,, := 2(8Y;, — hd fy,)02, AW, yields
03,1 |? = [0Y2, |2 — 2h8Y3, 0 fr, + W20 fu, |2 + |0 24, AW, > + AM,,.

Using the fact that E[AM,] = 0 and the Lipschitz regularity of the map f, we
deduce

E[[6Y3,1? + hl0Yy, * + (b + h*)|0 o, [* + 1|62,]

E[‘énnﬁ»lp] <
< E[|6Y:, > + (h+ 2L (h + 1)) (|6Y4, | + 162, 7)] -

Summing the previous inequality, we obtain

N-1
E[|6Y,,] < |0Yo|* + JE[D5 (4202 (h+ B2))(|6Yy, > + 162y, IZ)]
7=0

so that, multiplying both side of the previous inequality by h and summing again,

we get
h|5Z,|])

T
<1—T(1+2L2(1+h)) <|<5Y0|2 + (14 2L*(1 + h)) [Z h|6Zy,|])

where, for the last inequality, we used the fact that T(1+2L?(1+h)) < 1. Combining
the previous inequality with (2.4.25), we obtain

n=0

N—
3 hE[|8Y;, 2] < TI6Yo[? + T(1 +2L%(1 +) < [Z h|5Yy,|]+IE[Z
N—

N-1 1

E[|6Ur|?] < 2L°T T|6Yo|* + NZI hE[|6Zt,|?] (2.4.26)
S 1-T(1+2L%(1 + h)) = A o
We finally complete the proof by combining (2.4.23), (2.4.24) and (2.4.26). O

2.4.3.2 Study of the approximation error of the stochastic gradient de-
scent algorithm

In this subsection, our aim is to study the approximation error of ® by ®,;; where
® s has been introduced in Definition 2.2.6.

Lemma 2.4.3 Suppose that Assumption 2.2.1, Assumption 2.2.2 (i) and Assump-
tion 2.2.3 hold. Let it be a fized REY x R _valued random vector and set it =
(9,3) := @) and upr = (Dar, 30) := Par(ug, X0, 20,1), M being a positive integer
and where (ug, Xo,20) (recall Definition 2.2.6) is independent of . We denote by
Ei[-], the conditional expectation with respect to the sigma-field o(it) generated by 1.
Then, for any positive integer M, the random vector (Yar,3n) satisfies:

. . n.- . 1 .
Eﬁ[|0M - U|2] < Lgm(1+19?) and Eﬁ[|3M7l =3 |2] < Ly (h + 15 |2>
(2.4.27)

83

2.4. Study of the discrete optimization problems

foranyle {1, - d}, with

M
Licar i= 0001 (1 + E[|u0|2]> 3 exp (4BT< T — Fm)> N2 (2.4.28)
m=1
k=1

where the constants oo, 01 are defined respectively in equation (2.4.32) and (2.4.36)
below.
Moreover, it holds

a2 () — ®(@)1°] < s Lacar (1 +dN)+Z—[;LK7M\H<I>(ﬁ)|||2. (2.4.30)

Proof.

Step 1: We prove the estimate for the difference 33}, — 3. The proof for y5; — 1§
follows from similar arguments and we omit some technical details. From (2.2.41),
one gets

4 N
|11n’l(X07 2!)ﬁa 5”,')|2 = |®u - wn’. : 3n7'|2|("‘)n7'|2
: (ﬁK\f) P :

5K(|(‘5“|2 + hlay Play P)le
Under the boundedness Assumption 2.2.2 (i), recalling (2.2.27), we obtain
6% <2 (lgl3% + T%(f1%) (2.4.31)
so that setting
00 = 8max{(|gloc + T fo0)* 2} (2.4.32)

and from the lower bound (2.2.42), we obtain

Ea[]H”J(XO, W, i, 57")\2] < oo(l+hls" =57 +hl5" %) - (2.4.33)
Step 2: We now introduce the natural filtration of the algorithm namely F =
(Fim)o<menr, defined by Fr, = (g, X, WH 1 < k < m), m > 1, and Fy = o (ug).

From the dynamics (2.2.48), we directly get

; (Xémﬂ), wm+D) g 3?;5)) (5;% -3
+ (’an+1)2|Hn’l(X(§m+l)a W(m+1) u 3 m)|2

81 =301 = a1,

so that introducing the sequence of F-martingale increments, for m > 0,

AM,, .1 = Vo 5 (i,) — B (D 0n) g5 m)) Gl =),

1
(v

84

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

we have
2
I ¥, 12 5" ¥, 2 7l~)" 3T,
|5Zm+l -3 _|3Zm =37 - m’Yﬁ@HVz?"YJ" (tt, upy) - (3?771 -3
+ 2951 DMy 1 + (302 H™ (A, WD e)2

Now, from the previous equality, (2.2.34) and the fact that Eg[AM,,+1|Fm] = 0,
recall (2.2.43), we obtain

E; 7|3Z’T.n+1 - glm |2]

B . “Th.e haK 1 - .

< Ea| I, = 57 2] (1= 4=0=0000) + () Ea | [(070, W s) 2
- BrVh

< E- [N,e xN,t 2 1—-14 hOéK z h z 2 z 2 1 h 1,2

S B |3l,m 3 Y1+ 00h(Vmi1)”) + 00(Vms1)” (L + A[57[7)
: BrvVh

(2.4.34)

where, for the last inequality, we used (2.4.33) together with the fact that, since
(XO(mH) , W(mH)) is independent of F,, and 3,, is F,,-measurable, one has

Eﬁ[|Hn’l(Xém+1), W(m+1)7ﬁ’ 3Z,m)|2|]:m] _ Eﬁ[|Hn’l(X07 W, 3?,~)|2]

N, __ N, N
30" =31m

Observe now that by the very definition (2.2.45) of the sequence (vZ,)m>1 and using
the fact that ax/Bx < 1 and gy > 16, one gets 1 — 4;;0‘\’/%7;“ + 00h(VZ41)° =
1= (4% et — 00721) > 1= (V&mes — 0vis) > 1= 1/4 = 3/4 As a
consequence, I, := [[, (1 — 46};(0‘\%7,'2 +00h(vP)?) =TT, (1 - 455y + 007}) is
a product of positive terms. From (2.4.34), we thus deduce

Eal 571 — 3 2]

1 m+1
< Mo 375 = 57712 + 0o+ 57))
q=1

Hm+1 2
m, 4
q

el . .-
< 201 exp (— 4ﬁflfirm+1> (Eﬁ[‘?)?op] + 13" ’2>

m—+1

1 .- (0774
+o100(+ + 317 Z exp (—4——=(Tmi1 —Ty) | 72
h a Br
1 m—+1 K
< 0001 (1 + Eg[|326 2]) <h + |§l”]2> Z exp <—45I((Fm+1 — Fq)> 'yg (2.4.35)
qg=1

where we used the standard inequality 1+ < e, the fact that pg > 2 and introduced
the quantity

01 := exp(0o Z 72). (2.4.36)
m=1
This concludes the proof for (2.4.27).

85

2.4. Study of the discrete optimization problems

Step 3: Recalling Definition 2.2.5 and using (2.2.29) as well as Assumption 2.2.3,
we directly deduce

N—-1 d

Ea 1@ (@) — ®(0)[12] < Ba|raclonr — 512 + s 2, D lsita = 31]
n=1 [=1

so that, using (2.4.27)

N—-1 d
- - . 1 ..
B 19 (@) — @(0)] < wacLicar (L + [B%) + hrscLicas Y, (5 + 157 2),
n=1[=1

RK o 1 RK o
< kL + =L m|9l; + b L aNd— + ==L 3],
(677 h (077¢
RK o
< kxLgy (1+dN) + ax L |51

which concludes the proof. O

The following result provides an upper-bound for the quantity Lx ys for a given
specification of the learning step that is useful to study the complexity of the global
algorithm.

Lemma 2.4.4 Let Assumption 2.2.8 hold. For v >0, p € (%, 1), set vy = ym™",
m = 1. If the number of steps M in the stochastic gradient descent algorithm satisfies

> -, (2.4.37)

then, there exists some positive constant C := C(p,v) such that

—2\/§ln(2)'yg—KM1_p Br
Ly <C (e M QKMp) . (2.4.38)

Remark 2.4.1 1. In practice, Ly should go to zero with respect to the optimal
parameters. Thus, we must have that a}’f’&p goes to zero and XM= goes to
infinity at the same time as M goes to infinity. This will be carefully discussed
in Section 2.4.4.3. With these constraints, we will naturally have that (2.4.37)

is satisfied.

2. A careful analysis of the proof below shows that lim, o 5+ C(p,v) = +00, which

comes from the dependence of C(p,~y) with respect to foc #

must bear in mind that p is a fixed (but optimised) parameter.

However, one

Proof of Lemma 2.4.4. We have, since I'),, = yzgnzl qip, form=>1,

i (m'?—-1)<Tp < —— (M7 —1) +7 (2.4.39)

86

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

by standard computations based on comparison between series and integral, leading
to

e) (2.4.40)

Iy, — Ty <
L—p

Recalling (2.4.28), we employ the following decomposition

M
(6%
Lg.m = 0001 (1 + E[|u0|2]) D exp (—4;;(1“]\/[— Fm)> v2 (2.4.41)
m=1
a
< 0001 (1 v E[|u0]2]) exp (476119 (A + Bar + %) (2.4.42)
with
[M /2] ~ 2
Ay = Z exp <451 mi=P — M~ p}) —rE
m=1
M-1
e 7K v 1 1-p 2
By = Z exp 4,6’ T - M mzp
m=|M/2]+1

For the first term Aj7, we observe that, for m < |[M/2| < M/2 and § < p < 1,

m!=P — M17P < —‘f In(2)(1 — p)M1=*. (2.4.43)
We then compute
o [M/2] 2
Ay < exp <—2\/§ln(2)’yKM1p> —
/BK m=1 mse
< O~ exp (-2\/5 1n(2)7B—M) : (2.4.44)
K

We now study the term Bj; which reads

M—1
- oo (22 0) S

Prc 1 - m=|M/2]+1
where, the map A is defined for z > 1 by
Y- 1
= 4—7 Pl —. 2.4.4
A(z) := exp < . x) o (5)

We observe that A is increasing on [|M /2] + 1, —|—oo) when (2.4.37) holds. This leads
to

M-1 M
2 A(m) < f Az)dz
m=|M/2|+1 M/2

87

2.4. Study of the discrete optimization problems

Bk
MPay *

Inserting the previous inequality and estimate (2.4.44) into (2.4.42) concludes

which in turn yields By <

the proof, since E[|uo|2] < o0, recall Definition 2.2.7, step 1. and % < 1 recall
Assumption 2.2.3 and (2.2.42). O

Remark 2.4.2 Let us importantly point out that if one choses v, = ~v/m, with
v > 0, then from standard comparison between series and integral I'p, — I'pp <
v(In(m/M) + 1) so that repeating the computations of the proof of Lemma 2.4.4,
one has to consider the two disjoint cases v < fx—KK and v > ﬁé—KK in order to provide
an upper bound for the quantity of interest Ly ar. Only the latter allows to obtain
the best convergence rate of order 1/M. However, in practice, the user does not
know the exact value of ﬁy—KK so that one will often consider higher values of v than
requested which will have the undesirable effect to deteriorate the upper-bound as
suggested by the value of o1 in (2.4.36). Moreover, as shown in Section 2.4.4, the
value zﬁTKK actually goes to infinity when the prescribed approrimation error & goes

to zero so that the latter condition becomes more and more stringent.

We now give an upper bound for the error £p defined by (2.4.20), with respect to
all the algorithm’s parameters. These parameters will be chosen in the next section
taking into account the precise specification of the functional approximation space.

Proposition 2.4.4 Suppose that Assumption 2.2.1, Assumption 2.2.2 (i), (ii) and
Assumption 2.2.3 hold. Assume that there exists a positive constant n (independent
of N, M and the basis functions (1)) such that

KK
L <7n. 244
ho~ o KM ST (6)
IfT(142L%(1 + h)) < 1 and 6p, := % < 1, then for any € > 0 there

exists a positive constant C. such that

RK

Erm < C;
h Aok

Ly m

so that, with the notations of Proposition 2.4.3, it holds

Ep < (5;;550 + C; (K LK,M + gw + 5W> . (2.4.47)
K

h Ao

Remark 2.4.3 In practice, n will be fixed to be a small constant as the term in the
left hand side of (2.4.46) should be asymptotically zero.

Proof of Proposition 2.4.4.
Step 1: From Proposition 2.4.3, we see that to obtain (2.4.47), it remains to control

i = mae E[[8ar(u ") — 20,7

IPs

88

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

Using Lemma 2.4.3, we have

E[l1ar(u;") — D) 1] < wacLicar L+ dN) + 25 LB o)1)
(2.4.48)

To conclude the proof, we will in the next step, provide an upper bound for the term
[\HCD()HP] uniformly with respect to p.

Step 2: We denote by C. a constant that may change from line to line along with
€. From Young’s inequality and Lemma 2.4.2, we obtain

B[l)l*] < (1 +o)E[lle(uf,) — ufl*] + (1 +)HMH2
< On(L +)E[lJuy, — ull*] + Ce(Ex + €y + [|5]|%)
< (1 + B[l I7] + Ce(€x + &y + [ull?)

up to a modification of . From the previous inequality, we readily obtain
E[[|@(uj,)]?] < C
Now, if p is a positive integer, noting again that
EfJJah, 2] < 2B [[|@ar(u ") — @0k I + 2E[flo 2|
we obtain
E[l|@ () I2] < 200(1 +)E| |08) I2] + 20 (1 +)E| |00, (5) — @i)17

+ C. <57r + &y + u|||2>

so that using (2.4.48), we get

E{leg)1%] <280+ 6) (1+ S L) B[00)]

+ 20n,(1 +)k L pr (1 +dN) + Ce (&r + &y + |||u2>)

From (2.4.46) and the fact that d,,, we can set & such that 26, (1+¢)(1+ 55 Lk mr) <
dnn(14€) < 1so that from the above inequality, by induction, for any positive integer
p, we get

E[[|@h)I7] < (Ony(1 + e)PE[I@h)IP] + Ce(Er + Ep + [[ull + dn) < Ce

which concludes the proof. O

We now have all the ingredients to give the proof of the main result announced in
Section 2.2.3 on the upper bound for the global convergence error at the initial time.

89

2.4. Study of the discrete optimization problems

2.4.3.2.1 Proof of Theorem 2.2.1 From the very definition (2.2.51) of the
global error, we deduce

Enise < 2E[|u(o X) — a(Xp) |2 + |V — “M|] (2.4.49)

where we used the notations introduced in (2.2.9), (2.4.12) and (2.4.14). A fortiori,
we have

E[[u(0, %) — to(X0)[’] <&y and E[IYO — vy] <é&p (2.4.50)
recalling (2.4.11), (2.2.30) and (2.4.20). Combining (2.4.50) and (2.4.49) yields
EmsE < 2 (5¢ +E&p) . (2.4.51)

We eventually conclude the proof by invoking Proposition 2.4.4 together with Lemma
2.4.4.]
2.4.4 Convergence and complexity analysis for sparse grid approx-

imations

For this part, we work in the setting of Section 2.3.1.2. Our goal is to prove the
theoretical upper-bound on the algorithm’s complexity stated in Theorem 2.3.1.

We first state the following useful estimate.

Lemma 2.4.5 Suppose that Assumption 2.3.1 is satisfied. Let ¢ : R? —>Rbea
non-negative measurable function whose support is included in O and ¢ be its 1-
periodisation defined by (2.3.16). Then, it holds

¢ E[p(U)] < E[&(th)] = E[cb(f(tn)] < CE[¢(U)]

where U has law U((0,1)%) and € is given in Lemma 2.2.1.

Proof. We denote by 2’ — px(t,,2’) the density function of X; given by the
Euler-Maruyama scheme taken at time ¢,, and starting from Xy with law 2((0,1)%)
at time 0. Note that we have px(tn,2') = §p™(0,tn, 2,2")1(g 1ya(z) dz and using
(2.2.4),

¢! fp(ctn,x —2')1 g 1ya() dz < px(tn,2") < Cfp(c_ltn,a:’ —2)1g1ya(z) dz.
Then,
E[gb()?tn)] - E[(p th > f¢ J (ctn, 7 — ') 1 (g ya(x) dz da’
so that introducing the notation = = £ + Wy, ,
f(Z(x’) fp(ctn, x—1')1gq)a(r) deds’ = E[&E(E)] = E[¢(§)] (2.4.52)

The proof is then concluded by observing that ﬁ(é) L(U). The proof of the
upper-bound follows from similar arguments. O

90

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

2.4.4.1 Sparse grid approximation error

We now provide some upper-bound estimates for the sparse grid approximation
error.

Theorem 2.4.1 Under Assumption 2.8.1, there exists a positive constant C :=
C(T,b,0,d,\g) such that

Eyp < C27 4L (2.4.53)

To obtain an error of order €2 for the quantity £, one may thus set

d—1

_1
le = logy(e™2|logy(e)|),
so that, for eachn =1,--- | N — 1, the number of basis functions required satisfies

5(d—1)

K. =3 |logy(e)| 7

Proof. For 1 <i<d,n=0,--,N — 1, setting v;(tn,) = (0" Vou)i(tn, ¥)Lizeoy
r e R? from (2.2.2) we have

HUHHﬁuz(O) + 112?<Xd HleH’rI;zz(O) S C. (2‘4‘54)
Moreover, from (2.3.20), we obtain
(U V u) (tn7th) - Uz(tnath)
thus

d
B[l V)t Xea) = 22, 1] = DB

)

K . R 2
[Uz tnath) 3?7 ¢5L(th)]
k=1
d [

with U ~ U4((0,1)%) and where we use the upper-estimate given in Lemma 2.4.5 to
obtain the last inequality. We also recall that

2
)~ 3 SR
k=1

E[[u(0, Xo) - Y¢'*] =

E||u(0,U) 2 yE (U (2.4.55)

From (2.2.18) and the previous estimates, we thus deduce

Osn<N-1 ey

d
. 2 2
&y <C (5161}12 1€ = u(0, ')HL2((’)) + _max Z inf [[€ — vi(tn, -)|L2(o)>)

< C274yd=1 (2.4.56)

where for the last inequality we used (2.3.14) and (2.4.54).

Finally, setting £, = logQ(s_%HogQ(s)\%) yields &, = O(g?) as € | 0 and from
(2.3.13) (see also Remark 2.3.1) we deduce that in this case K. = 6_%| 10g2(5)|5(d4;1) .
O

91

2.4. Study of the discrete optimization problems

2.4.4.2 Norm equivalence constants

We now provide some estimates for the value of ax and kg appearing in Assumption
2.2.3.

Proposition 2.4.5 Suppose that Assumption 2.53.1 holds. In the setting of Section
2.8.1.2, there exists a constant € < 1 such that

KK

Proof. For any u = (y,3) € REX" x dez, any0 <n< N-—1landanyle{l,- -, d},
from (2.2.6) we have

E|l(ze)| - []Za k()|

Using Lemma 2.4.5, we obtain

LS 2
c’:lE[\ S artubw| | <E[Ize) P < er|| 2 k)] (2.4.57)
k=1
Note that in our setting, /¥ = x*, so it holds
Ko 5 Ko 5
f | atuk()| e = f | s @)| da (2.4.58)
O k=1 O k=1
Since the basis functions (x*)1<r<x forms a Riesz basis [72], there exists a constant
c = 1 such that it holds
K K
s 2 Pk do <o D) I (2.4.59)
k=1 k=1

Combining (2.4.57)-(2.4.58)-(2.4.59) and taking into account all the component of
Zy , we compute

c—le—ldf 5P < E[I(Z1)F] < c@di 51 (2.4.60)
We also observe that
E[|v[2] [\ Sy]] . (2.4.61)
Since Xy ~ U((0,1)%), we similarly deduce that

‘1210 E[[vg'] <

The proof is concluded by combining (2.4.60) and (2.4.62) with (2.2.30) and setting
t=clte gt [

[2. (2.4.62)

Mx

k

Il
fu

92

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

2.4.4.3 Complexity analysis

Lemma 2.4.6 Under Assumption 2.3.1, one can set
Br = Cq(1 + 280471 (2.4.63)
for some positive constant Cy which depends on the PDE dimension d.

Proof.
Step 1: For any ne {0,...,N — 1}, any £ € {1,...,d}, one has

Efle;] <Z [l)2 - (2.4.64)

Using Jensen’s inequality, we obtain

E[|@} KE[E\”"“] 3d2KZ [ywn X))] (2.4.65)

From now on, we use the indexation related to the sparse grid description introduced
in Remark 2.3.1, namely, we write

SE [k Re)lf] = 3 B[00 (Rs)] (2.4.66)

k=1 (1,i)eC
= > B[R] (2.4.67)
(1i)eC
in our setting.
Step 2: Using Lemma 2.4.5, we observe
E| (R, | < eB| @) - (2.4.68)

Moreover, we compute
f 160 (2)[* dar = J\(;S(Zla; —i)tde < C2!
and from the definition of (%), we deduce
J]X(lj’ij)(x)A‘dx <c2.
Combining the previous inequality with (2.4.68) leads to

E| (X, < c2

and inserting the previous estimate in (2.4.66) yields

Z [W (X1l]<C > 2l (2.4.69)

k=1 (1,i)eC

93

2.4. Study of the discrete optimization problems

Step 3: We now quantify the term appearing in the right-hand side of (2.4.69),
namely

J4
Z ol — 1 4 Z Z 2|1|11{Cd(1):k} . (2.4.70)
(Li)eC k=1]1eNd

We denote by |1ljo = |{j|l; = 0}|. For 1 # 0, recall that (4(1) = [1|; + [ljo — (d — 1)
(from the definition of (4). Thus,

¢ d—-1
1
Q=1+ Z Z 2! |11{|1|1:k+d717q and [Ifo=q}
k=1qg=01g(Ns)d~¢
¢ d-1
— k+d—1—qrd— q
=1+ > > 2 1Oy, CY
k=1q=0

recall that |{l € (Nxo)? 9| |} = k+d—1—q}| = C{,% ! ,. Introducing § = d—1—q,
we get

d—1
Q=1+ Z 2k +) 2 HPd1-o Z 2k=1cl ., (2.4.71)
k=1 =1

From Lemma 3.6 in [20], we know that Zk V2RI L, = 24(+ O0g4(£71)). We
thus obtain

d
Q=2 ((di 1)!ed—1 + od(ed—2)>

which combined with (2.4.69) yields
K
Z [Iwn (Xe,)]] < 2t (2.4.72)

Combining the previous inequality with (2.4.65), we obtain
E[|w)”[*] < Cq2240%2 . (2.4.73)

Using similar arguments, as the basis function are chosen to be the same in our
setting, we also have

]E[|6|4] < Cd22£€2d_2)

The proof is then concluded recalling the definition of Sk in (2.2.42).]

We now turn to the analysis of the convergence and complexity of the full Picard
algorithm. The following corollary is a preparatory result and expresses the main
convergence results in terms of the parameters P, M, ¢ and h.

94

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

Corollary 2.4.1 Suppose that Assumption 2.3.1 as well as (2.4.37) and (2.4.46)

hold. Set v, = v/m?, for some p e (1/2,1) and v > 0. If T(1+2L*(1+h)) <1 and

Ohy = % < 1, then, with the notations of Proposition 2.4.3, for any e >

0 such that 6y ¢ := 0pn(1+¢€) < 1 there exist constants C. := C(e,T,b,0,d,v,p) =1,
c:=c(T,b,0,d,v) > 0 such that it holds

Mml-p 1+ 2é£d—1

Ep < 6f & + C: (Ne_cuzfed—l t 9~ 4bpd=1 4 h) : (2.4.74)

Proof. Combining Proposition 2.4.4 with Theorem 2.4.1 and (2.2.19), we obtain

Ep <oF &+ C. (- BK Lear + 27001 4 h> . (2.4.75)
’ N OK
From Proposition 2.4.5, we have that hng < %, which combined with Lemma 2.4.4
gives
KK Con [—v2v2m(2)-t M= Bk
L < = B — 2.4.
h A« KM h (e * + eMP (76)
C _e_Mlze 14 9fpd—1
< Z;’Y (6 '31+281zd71 + W) (2.4.77)

for some positive constant ¢, where we used Lemma 2.4.6 for the last inequality. []
We are now ready to establish the complexity of the full Picard algorithm.

2.4.4.3.1 Proof of Theorem 2.3.1 Step 1: Setting the parameters P, N, M,
{ and p.

We will chose the parameters P, N, M, ¢ and p in order to achieve a global error
Ep of order €2, as this error controls Eysg. We first set P = 2|logs(e)| and N, =
[TE*Q] so that h. = T/N. < 2. From Theorem 2.4.1, we also know that setting

- (d—1)
(. = logy(~ 2| logy(e)| ‘T i

), we obtain &, = Og(e?) and K, = Od(s_%\ logy(e)|™ 7).

We now set M such that the term Mlgfhs is of order £2, which leads to

5(d—1)

_9
M. = Oq(e 20 |logy(e)|” %).
For t > 1, we set p = %L with the constraint p > % and we verify that

1—
M:™*

K () 1N

> 2179 log,

for some constant ¢ > 0. This leads to

15

e MiTP \
7, d—

e 1+2teeg — 0(5)

and we also have that (2.4.37) is satisfied.
Step 2: Computing the complexity C.. Recalling Remark 2.2.4, we see that the

95

2.5. Appendix

overall complexity C. to reach the prescribed approximation accuracy €2 satisfies

Cs = PeNeKsMs
(d—1) (d—1)
— 04 (10ga(e)]e 2= logy(e) | T & |logy(e)] 75)

= Oy(e™ 3142 logy (e) [+ 5% (@-1)) |

which concludes the proof.

2.5 Appendix

2.5.1 Algorithms parameters
We gather below all the parameters values used in the various algorithms, examples

and basis functions settings. In particular, we recall that the domain specification
is given in (2.3.23) and (2.3.24) The learning rates are given by (2.3.25). Denoting

P(A) := (a(N), BL(N), Bo(A), mo(N)) € RY,

we set the parameters in all the approximating space 7,7,1 < n < N — 1 to be
the same: namely I'(3) = ['(3'") for all n > 2. Thus, in the table below, the
parameters of the learning rates are simply denoted by:

L= {T(n),0("),T(")} e RP

Algorithms Basis functions | dim | N | M T | Initial 3"*’“ D r ENSE
(0.6, 0, 3, 15000),
1 (0.6, 0, 20, 10000) 00286
(0.6, 0, 2, 8000),
2 (0.6, 0, 10, 8000 DOAT
Picard Algorithm | Pre-wavelets | 3 | 10| 100000 | 0.3 0 3 (0.6, 0, 1, 8000), 0.0219
(0.6,0,5,8000 |
(0.6, 0, 0.5, 8000),
4 (0.6, 0, 3, 8000) 00207
(0.6, 0, 0.5, 8000),
) (0.6, 0, 3, 8000) 0001

Table 2.6 — Parameters for the periodic example

96

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
parabolic PDEs

Examples a dim | M N | Initial yp | Learning rate
Quadratic 1 5 12000 | 10 0.5 0.01
Limits to -04 2 | 5000 | 20 0.3 0.002
Picard algorithm | -1.5 2 | 5000 | 20 0 0.001
2 16000 | 20 2 0.005
4 | 6000 | 20 5 0.005
Financial 5 | 5000 | 20 5t 0.005
example N.A. | 10 | 5000 | 20 8 0.005
15 | 5000 | 20 8 0.005
20 | 5000 | 20 8 0.005
25 | 5000 | 20 8 0.005

Table 2.7 — Parameters by model for the deep learning method with layers = 4, batchsize =

64

97

2.5. Appendix

Examples

Basis functions

dim

Initial value

)

5n7/c

r

Quadratic

Pre-wavelets

10

0.5

(1,0, 1, 100),
(0.8, 0, 1, 100),
(0.86, 0.02, 0.05, 100)

model

Hat

100

10

3.2

5.9

(0.9, 0, 1, 100),
(0.7, 0, 1, 100),
(1, 0.003, 0.01, 1000)

Pre-wavelets

10

(1,0, 1.5, 1000),
(1, 0, 20, 1000),
(1, 0.003, 0.01, 1000)

10

(1, 0, 1, 1000),
(1, 0, 20, 1000),
(1, 0.001, 0.01, 1000)

Financial
example

Hat

10

(0.95, 0, 0.3, 100),
(1, 0, 5, 100),
(1, 0.001, 0.01, 100)

10

10

2.5

(0.9, 0, 0.35, 300),
(1, 0, 5, 300),
(1, 0.001, 0.01, 300)

15

10

2.5

(0.85, 0, 0.3, 500),
(1,0, 5, 500),
(1, 0.001, 0.01, 500)

20

10

2.5

(0.8, 0, 0.2, 1000),
(1, 0, 5, 1000),
(1, 0.001, 0.01, 1000)

25

10

2.8

(0.7, 0, 0.2, 1500),
(1, 0, 5, 1500),
(1, 0.001, 0.01, 1500)

The
challenging
example

Hat

10

0.5

(1, 0, 0.5, 100),
(1,0, 3, 100),
(1, 0.1, 0.1, 100)

20

0.1

(1,0, 0.5, 100),
(1, 0, 5, 100),
(1, 0.2, 0.5, 100)

40

0.4

(1,0, 0.5, 300),

60

2.2

0.6

0.08

10

100

2.5

0.1

-0.1

98

Table 2.8 — Parameters by model for the direct algorithm

Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear

parabolic PDEs

Examples

Basis functions

dim

Initial value

n

3

3n,k

r

Quadratic
model

Pre-wavelets

0.5

-0.2

(1, 0, 0.8, 100),
0.9, 0, 1, 100),
(0.84, 0.02, 0.05, 100)

(1, 0, 0.3, 100),
(0.9, 0, 0.4, 100),
(0.84, 0.01, 0.02, 100)

(1, 0, 0.2, 100),
(0.9, 0, 0.2, 100),
(0.84, 0.005, 0.01, 100)

Hat

25

2.8

0.1

(0.9, 0, 0.5, 100),
(08, 0, 0.8, 100),
(1,0.003, 0.01, 1000)

Financial
example

Pre-wavelets

0.1

-0.01

N.A.

(1,0, 1, 1000),
(1, 0, 20, 1000),
(1, 0.001, 0.01, 1000)

(1, 0, 0.3, 1000),
(1,0, 5, 1000),
(1, 0.0005, 0.0, 1000)

(1, 0, 0.2, 1000),
(1,0, 5, 1000),
(1, 0.0003, 0.003, 1000)

(1,0, 0.15, 1000),
(1,0, 3, 1000),
(1, 00002, 0.002, 1000)

(1, 0, 0., 1000),
(1, 0,2, 1000),
(1, 0.0001, 0.001, 1000)

Hat

20

2.5

N.A.

(0.9, 0, 0.6, 1000},
(1,0, 5, 1000),
(1, 0.001, 0.01, 1000)

(0.9, 0, 0.2, 1000),
(1,0, 4, 1000),
(1,0.001, 001, 1000)

(0.9, 0, 0.15, 1000),
(1,0, 3, 1000),
(1, 0.0005, 0.005, 1000)

(0.9, 0, 0.1, 1000),
(1,0, 2, 1000),
(1, 00005, 0.005, 1000)

Limits to
Picard
algorithm

Pre-wavelets

0.3

-0.4

(1,0, 1, 300),
(1,0, 1, 300),
(1,0.6, 0.1, 300)

-1.5

(1,0, 2, 300),
(1,0, 1, 300),
(1, 0.6, 0.1, 300)

Table 2.9 — Parameters by model for the Picard algorithm

99

2.5. Appendix

Examples | Basis functions | dim | r Ulmt;ﬁ,val;i — N D [
(1,0,05# (0.8, 100),
L[2005[0[0|101<pgh (1,0, 3+(0.8)1, 100),
(1, 0.1(0.8)1, 0.1£(0.8)7, 100)
(1,0,054(0.8)P1, 100),
20200100 |2 1<p<h (1,0, 5+(0.8)1, 100),
(1, 0.2¢(0.8)"1, 0.5+(0.8), 100)
(1,0, 05¢(0.8)P, 300),
5oL 2042 0 [40]1<p<h] (0950, 5+(0.8) 500),
(1, 0.24(0.8)~%, 0.1¢(0.8)P, 500)
(1,0,035¢(0.8)P~%, 500),
8 | 22006] 1 (008]60|1<p<h (1,0, 5+(0.8)~, 500),
(1,02¢(0.8)L, (0.8)1, 500)
The (1,0, 0.25, 500),
challenging Hat 1 (0.95, 0, 4, 500),
example (1, 0.15, 0.5, 500)
(1,0, 0.2, 500),
2 (0.95, 0, 3, 500),
(1,0.12, 0.4, 500)
(1,0, 0.1, 500),
10 [25[001]-1[-01]100] 3 (0.95, 0, 2, 500),
(1,01,0.3, 500)
(1,0, 0.1, 500),
p>d (0.95, 0, 1, 500),
(1,008, 0.25, 500)
(1,0, 0.05, 500),
p26 (0.95, 0, 0.5, 500),
(1,0.05, 0.2, 500)

100

Table 2.10 — Parameters by model for the Picard algorithm

Chapter 3

Deep Runge-Kutta schemes for
BSDEs

Contents

3.1 Imtroduction 000 102
3.2 Runge-Kutta schemes for BSDEs 105
3.2.1 Definitions 105
3.2.2 Stability of Runge-Kutta scheme 106
3.2.3 Discrete time erroro oo 107

3.3 A learning method for Runge-Kutta schemes 110
3.3.1 Eulerscheme 110
3.3.2 Crank-Nicolson scheme 113
3.3.2.1 Pseudo-consistency of the implemented scheme . . 118

3.3.3 Two stage explicit Runge-Kutta scheme 119
3.3.4 Three stage explicit Runge-Kutta scheme 121
3.3.5 Generalcase o 123
3.3.5.1 Implementation 124

3.3.5.2 Pseudo-consistency 125

3.4 Numericalresults, 129
3.4.1 Approximation of the forward process 129
3.4.1.1 Brownian motioncase 129

3.4.1.2 General diffusion case of Crank-Nicolson scheme . 129

3.4.2 Empirical convergence results 130
3.4.2.1 Brownian motion case 131

3.4.2.2 Cox-Ingersoll-Ross process 132

3.5 Appendixttt e e e e e e e e e e e e e e 135
3.5.1 Proof of Proposition 3.2.1 135
3.5.2 Proof of step 2 of Theorem 3.2.1 140

101

3.1. Introduction

3.1 Introduction

In this chapter, we consider the forward diffusion process with dynamics

t t

(Xy)ds + f o(X)dW,, 0<t<T, (3.1.1)

Xt:XO—i—J
0

0
and we would like to approximate the solution of the BSDEs

T T
Vi = g(Xr) +f f(Xs, Vs, Z5) ds — f Zo-dWy, 0<t<T, (3.1.2)
t t

where W is a d-dimensional Brownian motion defined on a complete probability
space (Q, A,P), u:R? - R? and ¢ : R? — My (the set of d x d matrices) are mea-
surable functions, the initial condition Xy € R?. We denote the filtration generated
by W and Xj as (F;)o<t<T, augmented with P null sets.

Relying on the classical connection between Backward Stochastic Differential
Equations (BSDEs) and non-linear parabolic partial differential equations (PDEs)
initiated in [31], we have, under some regularity assumptions on p,o:

Y = u(t, X)), Zi =0 (X)Vult,&), 0<t<T, (3.1.3)
where u : [0, 7] x RY — R is the solution to a semi-linear PDE:

{ oru(t, r) + Lu(t,x) + f(u(t,z),0 " ()Veu(t,x)) =0, (t,z)e[0,T)x R
u(T,r) = g(z), zeR?

(3.1.4)
and £ is the infinitesimal generator defined by
1
Lu(t,z) := p(z) - Vyu(t,x) + §Tr[(aaT)(az)Viu(t, z)]. (3.1.5)
Since BSDEs have been introduced by Pardoux and Peng [31, 82| in 1990s,

designing efficient numerical algorithms to solve BSDEs has attracted considerable
attention. However, solving high-dimensional BSDEs is a challenging task due to
the “curse of dimensionality”. Many traditional methods to solve BSDEs have been

proposed in the last two decades, such as the cubature methods [25, 31, 32], optimal
quantization methods [0, 5, 80, 77], Malliavin calculus based methods [33, 17, 64] and
some linear regression methods [19, 50, 51]. However, these methods are bounded by
a low dimensional setting d < 10. [23] proposed a learning scheme based on sparse

grids and Picard approximations proved that the“curse of dimensionality” is tamed
in the sense that the complexity is of order e ?|log(e)|9(¥), where p is a constant
which does not depend on d and d — ¢(d) is an affine function. In some case, 100
dimensional BSDEs can be solved.

In the past five years, numerous numerical methods based on deep learning
method (non-linear regression) to solve BSDEs have been proposed, including the
forward scheme [36, 7, 58] and the backward scheme [05, 16, 86, 17], see more related
research results from the papers [21, 67, 68, 90, 28]. These algorithms are based on
the use of Euler schemes for the time-discretization. It is well known that the weak
convergence rate of Euler scheme is of order 1, so that the computational time cost

102

Chapter 3. Deep Runge-Kutta schemes for BSDEs

for these algorithms is still large for high-dimensional BSDEs as many time steps
might be required to achieve good accuracy. In this chapter, we combine some
high-order time discretization numerical schemes with non-linear regression based
on deep neural network to solve high-dimensional BSDEs.

High-order discrete-time approximation schemes have been introduced in [22, 2],
see also the references therein. These high-order schemes are based on a backward
algorithm and, as usual, they require a good estimation of conditional espectation
in practice. In particular, the Crank-Nicolson scheme is a second-order scheme with
a simple structure, see among others [32]. Though it is implicit, it requires no extra
computation of conditional expectation compared to Euler scheme. More generally,
Runge-Kutta methods [24] are a family of implicit and explicit discretization meth-
ods, which include implicit Euler scheme, explicit Euler scheme, Crank-Nicolson
scheme and some other iterative methods that can achieve higher order convergence
rates. To the best of our knowledge, these high order schemes have not been tested
with (non-linear) regression techniques.

In this chapter, we establish the convergence of these algorithms with the help
of universal approximation theorem of neural network, see Theorem 3.3.2. We also
implement these schemes to compare the convergence rates and the computational
time cost. We conclude that Crank-Nicolson scheme seems to be the best scheme to
use if we want to achieve an error smaller than 0.01.

The rest of the chapter is organized as follows. We first recall the definition
of Runge-Kutta schemes for BSDEs in Section 3.2, then we study the stability of
Runge-Kutta schemes in two different ways. Theorem 3.2.1 gives the discrete time
errors for the main methods that will be studied in this chapter. In Section 3.3, we
present an implementation of the Runge-Kutta schemes to solve BSDEs by neural
networks, including the special case of implicit Euler schemes [65], explicit Euler
scheme, Crank-Nicolson scheme, two stage explicit Runge-Kutta scheme. We provide
the error control of the general learning method by Runge-Kutta scheme and neural
network in the end of this section, see Theorem 3.3.2. In Section 3.4, we numerically
verify the convergence order of the discrete time error of the methods given in
Theorem 3.2.1. We also compare the computational time cost of these methods.

In the whole chapter, we assume that the driver f and terminal function g satisfy
the Lipschitz condition:

Assumption 3.1.1 There exists constants [f]r, > 0 and [g]r > 0 such that

|f(z2,y2, 22) — f(x1,91,21)

|9(x2) = g(21)

< [fle (ly2 — 1| + |22 — 21]) (3.1.6)
< [gllwz — a1l

Assumption 3.1.2 There exists a constant C > 0 such that the following two
conditions hold for all z,y € RY,

[u(x) — w(y)| + lo(z) — o(y)| < Clz —yl. (3.1.8)
Some notations and basic definitions about the neural networks that will be used

103

3.1. Introduction

in this chapter, state as follows:

M5 (R) : the matrix space for all m x n matrices with elements in R,
dop = d : input dimension,
di : output dimension,
L +1eN\{0,1,2} : number of layers of the network,
my,f =0,1,---,L: number of neurons on each layer, note mg = do, my = d,
L Hf,é =1,---,L—1: output of the hidden layers at time t,,0 <n < N — 1.

For Euler scheme, the output dimension d; := 1 + d which includes 1 component
for Y—part and d components for Z—part. However, we choose d; := 1 + 2d for
the networks of more general schemes as Crank-Nicolson scheme: The components
consist 1, d, d dimensions for Y, Z, A, respectively, where A is a d—dimensional vari-
able that will be introduced later, see Section 3.3.2. For the L — 1 hidden lay-
ers in this neural network, we choose for simplicity the same number of neurons
mg=m,l=1---,L—1.

For ¢ =1,--- L, we define the maps M, : R"-1 —— R as:

M(z) = Wiz + B, (3.1.9)

where Wy € M, xm,_, (R) is a matrix called weight, and 8, € R™¢ is a vector called
bias. Then M, is an affine transformation that can map the features of the (/—1)-th
layer to the ¢-th layer. A feedforward neural network is a function from R% to R%
defined as the composition

zeR® — Mpop,yoMpqo---0poM(z)eRY, (3.1.10)

where pi(x) = (p(z1), -+, p(¥m,)),z € R™ £ =1,--- L —1, here p : R — R is
an activation function which is also a nonlinear function, such as ReLu, Elu, tanh,
sigmoid. Then the parameters of the neural network consist of the weight matrices
(Wh)1<e<r, the bias vector (8¢)1<e<r. For fixed dy,d; and L, the total number of
parameters is

L
Ny, = Z me(me—1 + 1) = do(1 +m) + m(m + 1)(L — 2) + m(1 + dy),
(=1

so that the parameters can be identified with an element # € RVm. Defining
R% 52— N, (2;0) = Mpopr_1oMp_10---0p oMy(x)e R, (3.1.11)

we introduce

S g @YY = {Npn(50) e R | ge RV} (3.1.12)
and
5507d17L = U Sgo,dl,L,m(RNm)‘ (3113)
meN+
The fundamental result of Hornik et al. [62] states the following universal approx-

imation theorem to justify that the neural networks can be applied as function
approximators:

104

Chapter 3. Deep Runge-Kutta schemes for BSDEs

Theorem 3.1.1 (Universal approximation theorem) Sjj , | is dense in L?(v)

for any finite measure v on R, whenever p is continuous and non-constant.

3.2 Runge-Kutta schemes for BSDEs

We consider in our work a class of Runge-Kutta schemes, that have been introduced
in [24]. The main difference with the previous work is that we also consider an
approximation of the forward process.

3.2.1 Definitions

We consider an equidistant grid
mi={tp=0<--<t,<---<ty=T}

of the time interval [0,7"] with time step h := %,tn =nh,n=0,---,N. And we
denote AW, =Wy ., — AW, ,0<n <N -1

The Runge-Kutta schemes involve in full generality intermediate steps of compu-
tation between two dates of the main grid w. Thus, for a positive integer @ let ¢ =
(c1,...,co+1) €0, 119+ satisfying 0 =: ¢; <3 < ... < g < -<cg <cgq1i=1
We introduce the intermediate “instances” ¢, 4 := t,+1 — csh. With these notations,
we observe that t, = t, 011 < ... <tpq < ... <1p1 = th41. We denote the “full
grid”

:= {t,, € [0,T]]0<n < N,1<¢<Q}.

First, we are given an approximation of the forward component (3.1.1) on the
grid II. Namely, for ¢, 4 € II, X}, is approximated by X, 4 € £L*(F,,), 0<n< N
and 1 < ¢ < Q. For ease of notation, we will simply denote by (X,,)o<n<n the
approximation of X on the grid 7. Observe that X, g4+1 = X, and X, 1 = Xp41.

In the following, we assume that X is a Markov process on II. In this chapter,
Ry,1=Ry1=Ru110+41,0 <n <N — 1 represent the same random variables.

We now define (Y, Z) the approximation of (), Z), recall (3.1.2).

Definition 3.2.1 i) Set the terminal condition as
(Yn, Zn) = (9(Xn), 0 (Xn)TVg(Xn)).

it) For 0 < n < N —1 and Q > 1, the transition from (Y41, Zns1) to (Yo, Zy)
involves (Q stages. At the intermediate instances, for 1 < q¢ < Q + 1, let

q
Yn,q = Etn,q Yn+1 +h Z aqkf(Xn,ka Yn,ka Zn,k)] ’ (321)
k=1
qg—1
Zn,q =]Etn’q H;LYn—i-l + h Z OéquZ;’kf(Xn’k, Yn,kv Zn,k:)] , (322)
k=1

105

3.2. Runge-Kutta schemes for BSDEs

where (agr)1<q.k<Q+1> (Qgk)1<q k<Q+1 take their values in R and with a1, =
a1, =0,1<k<Q, aqk—aqk—O 1<g<k<Q@Q+1and

q
Z agh = Z agrliep<c,} = ¢<Q+1. (3.2.3)
=1 k=1
We set (Yn, Zn) = (Yn,0+1, Yn,Q+1) at the dates on 7.

For all 1 < k < ¢ < Q+ 1,n < N, the random variables H} JHYy are
Ft,1—measurable, independent of Fi, , and Fy, . respectively wzth the prop-

erty
B, JHy] = B, JH'w] = 0 and v} =By, [|H}1?] vy o= B, [IHe k]
(3.2.4)
- < min(vy, vyy) and max(vy,vyy) < < (3.2.5)

where X\, A are positive constants which do not depend on h.

We note that (3.2.1) may define Y, , implicitly but this definition is well-posed

for h small enough (e.g. as soon as . maé(. aqqhL < 1). Iteratively, one also obtains
<qg<@+
that

max E[|Y,, 4|° + | Znql?*] < +0. (3.2.6)
n7q

3.2.2 Stability of Runge-Kutta scheme

A key property to obtain the convergence results stated in Theorem 3.2.1 is — clas-
sically — the L2-stability of the schemes of Definition 3.2.1. This has already been
observed in [21]. We shall review here this property as it will be useful in the sequel.

The first observation is the fact that the schemes given in Definition 3.2.1 can
be written in the following implicit form, for n < N:

Yn = Etn[YnJrl + @Z(Yn+1’ Zn+1a h)] (3'2'7)
Zn =B [HY Yo + B (Yas1, Zni1, h)] (3.2.8)
where (®Y, ®Z) : Q x L2(F,) x L2(F,,,) x Ry — L2(F,,,). This writing really

stresses the fact that the schemes are one-step scheme. One introduces a perturbed
version of the scheme, namely,

¥, =]Etn[f/nﬂ + @Y (Vst, Znst, h)] + & (3.2.9)
T = Etn[Hg+1Zn+1 + 2 (Vyar, Zsn, h)] +¢Z (3.2.10)
for (C¥,C7) € L2(Fi,) x L2(Fy,), and obtains, see Theorem 1.2(i) in [24], the fol-
lowing stability result, setting 8Y;, := Y, — Yo, 0Zn 1= Zn — Zn,
maXE [16Yz %] Z hE[|0Za)*] < CE||6YN|* + h|6Zn|? + Z ’C” " +h|gZ|2]
(3.2.11)

106

Chapter 3. Deep Runge-Kutta schemes for BSDEs

This approach is particularly well-suited for the study of the discrete time error, see
the proof of Theorem 3.2.1 in Section 3.2.3 below. However, we need also a stability
result to control the error linked to the estimation of the conditional expectations at
each stage of the schemes. To this end, we now introduce another perturbed scheme,
for n < N, at the intermediate instances, for 1 < ¢ < Q + 1, let

q
Yn,q = Etn,q Yn+1 +h Z aqkf(Xn,ka Yn,k’a Zn,k) + ng? (3'2'12)
k=1
q—1
Zn,q == Etn,fl HgYn—‘rl + h Z @qug’kf(Xn,k, Yn,k‘a Zn7k>] + Cig, (3213)
k=1

with (¢Hg, G2) € L2(F,,.,)-
Associated to the above perturbed version, we can state the following stability
result.

Proposition 3.2.1 Assume that f is Lipschitz continuous. Then, setting §Y, :=
Y, =Y., 02, = Z, — Z,, the following holds

N—1
max [} [10Y2)?] Z hE[[6Z,]
S [Ikl
E|[6Yn|? + h|6Zn|? + Z Z < e +h|qu|2> (3.2.14)
Proof. See the proof in Section 3.5.1. O

3.2.3 Discrete time error

In [24], the discrete-time error has been studied when X = X, namely there is
no error in the approximation of the underlying process. Building on the results
in [24], we will give an upper bound of the discrete-time error when the forward

process is indeed approximated. We will focus here on one stage schemes both
implicit and explicit and two and three stage explicit scheme: See Remark 3.2.1 for
an explanation of this limitation. The control of the discrete-time error is based on
smoothness assumptions satisfied by the value function w solution to (3.1.4). We
now introduce the necessary notations to formalise this statement.

Let

M:={z}tu [J{o,....a"
m=1

the set of multi-indices with entry O, ...,d. We define the differential operators as

=0 + Z (10, + = Z Z CLADIT-A. (3.2.15)

’Lljl

= Z Orelny, LE{l,...,d}, (3.2.16)

107

3.2. Runge-Kutta schemes for BSDEs

and their iteration, namely, for o € M,
L% = [(@) 5. .o plaw)

for a multi-index a with length [(a) := p. By convention, L9 is the identity operator,

and denote o = (0,--- ,0) = (0),, with [(a)) = p. We denote by * the concatenation of

two multi-indices namely a8 = (a1, ..., ap, 01, ..., 0y) with p = [(«) and ¢ = [(3).

We denote by Qé the set of all functions v : [0,7] x R — R for which L% is well

defined, continuous and bounded for all muti-index o € {(a1, -+,)1 < p < 1}
In particular, we shall use the following assumption, for p = 1,2, 3:

(Hr), : the value function u € QPH and feCy.

The key to control the discrete-time error by a judicious choice of the scheme
coefficients is to be able to expand the value function v along the approximation
scheme X. To this end, we introduce the following assumption for M > 1:

(HX) s : the process X satisfies, for all v € g,j”“, 0<n<N,1<qg<0@Q,k<aq,
1 </ <d, denote v® = L%,

cq — cpth)™
Er, [v(tnps Xnk)] = v(o)m(tn,q,Xn,q)—({ 2 — ci}h) + 0y, (KM, (3.2.17)

AN

0 m'
M-—1
cgh)™
]Etn,q[(H(?)ev(thrb Xn+1)] = 'U(Z)*(O)m (tn,(p qu) (an) + Otn,q(hM-‘rl),
m=0 .
(3.2.18)
M-—1
n Co — CiYh)™
Etn,q[(quk)%(th, ntl] Z v tn,q,Xn,q)({qm'}) + Oy, , (WMD),
m=0 .
(3.2.19)

where the Landau notation O;(r) means that for a random variable R such that
|R| < M'r with A} is a positive random variable satisfying

[|)\t |p] Cp, Vp>0,h>0,
We note that (3.2.17) indicates that X is a weak approximation scheme of order
M approximation [09, 24]. Conditions (3.2.18)-(3.2.19) are required to manage the

error coming from the approximation of the Z-component.
Regarding the discrete-time error, our main result reads as follows. Define

Yoy Zn) = (u(tn, Xn), 0 Vou(tn, X)), (3.2.20)

and the global discrete time error as
N—
Tn = maXEUY ~ Y% Z [1Z,, — Za|*] .- (3.2.21)

As usual, we say that the scheme is of order a € [0,00) if Ty = O(h?%).

108

Chapter 3. Deep Runge-Kutta schemes for BSDEs

Theorem 3.2.1 i) Euler scheme (one stage scheme): Assume (Hr), and (HX)q,
the global truncation error of Runge-Kutta scheme is at least order 1 if

as1 + asg = 1.

This condition leads to the explicit Euler scheme when as; = 1 and implicit
FEuler scheme when agse = 1, respectively.

it) Crank-Nicolson scheme (one stage scheme): Assume (Hr)z and (HX)2, the
global truncation error of Runge-Kutta scheme is at least order 2 if
1
ag1 = Qo = 3 and a9 = 1.
iti) Two stage explicit scheme: Assume (Hr)y and (HX)a, the global truncation
error of Runge-Kutta scheme is at least order 2 if ass = a3z = 0 and

a1 =c2, az1=1—-—, a3

9y’ and a3 + 04321{02<1} = 1.

262 ’

iv) Three stage explicit scheme: Assume (Hr)s and (HX)s3, the global truncation
error of Runge-Kutta scheme is at least order 3 if 0 < ca < ¢3 < 1(co #
% when ¢z = 1), a22 = ass = aqq = 0 and the following conditions holds true

1
aq1 + ag2 +ag3 = 1, agoco + agzes = -,

2
9 9 1 1
(42€ +43C3 = 3, 43032C2 = Q430322 =
1
g1+ age + ozl 1y =1, auace + augesly<qy = 3

Proof. 1. We give a short proof of the discrete time error upper bound for these
most interesting schemes, as it is closed to the one given in [24].

Recall the definition of (Y, Z,,)o<n<n in (3.2.20). We observe that it can be written
also as

Yn = Etn[}}n+1 + (I)rlb/(}_/n-irl’ Zn+1’ h)] + @L/’
Zn = Etn[Hg+1Yn+1 + (I)rZL(Yn-&-la Zn—l—lv h)] + 55

Now, thanks to assumption (HX)s with M = 1,2,3, one can follow the computa-
tions made in Theorem 1.3 for statement (i)-(ii), Theorem 1.5 for statement (iii) or

Theorem 1.6 for statement (iv) in [24] to obtain the corresponding upper bounds for
the error linked to the perturbation, namely
E[K}:‘Q + h‘5Z|2 _ O(h2a+1)
h n -)

for a = 1,2 or 3. The proof is then concluded using (3.2.11).
2. We give the proof with full computation for the Crank-Nicolson scheme only,
see Section 3.5.2. O

109

3.3. A learning method for Runge-Kutta schemes

Remark 3.2.1 (i) See [2/], contrary to the ODE case, since the scheme we consid-
ered are always explicit for Z-part, there exists an order barrier for implicit scheme
to get an order Q+1 scheme with a QQ—stage scheme when Q@ > 1 as long as 0, f # 0.
Hence, we only consider the explicit scheme when QQ > 1 as the implicit scheme has
no advantage compared to the explicit scheme for general drivers f.

(ii) For the explicit Runge-Kutta scheme, we can choose the coefficients such that
aqkzaqk,V1<k<q<Q+l.

(iii) When @Q = 3, the algorithm converges too fast to lead to the discretization error
smaller than the variance even the time steps N is very small, we can not observe
the order of the algorithm. Hence, we don’t consider the case with @ > 3. In fact,
there is an order barrier when (Q > 3 that is also why we do not study Q = 4, see

also [2]].

3.3 A learning method for Runge-Kutta schemes

In this section, we present an implementation of the Runge-Kutta schemes given
in Definition 3.2.1, which is particularly well suited for non-linear regression. It ex-
tends the method proposed in [65] to more efficient schemes, in term of discrete-time
error. We start then by recalling one approach developed in [65] for the implicit Eu-
ler scheme (the DBDP1 scheme). We then present the case of the Crank-Nicolson
scheme which reveals the necessary extension to consider. We present then the
method for two stage and three stage explicit scheme that will be illustrated numer-
ically in Section 3.4. We conclude this section by discussing general Runge-Kutta
schemes and proving some error control.

3.3.1 Euler scheme

We first recall the implementation of the implicit Euler scheme in [65] using deep
neural networks. Our aim is to obtain a similar implementation for general Runge-
Kutta scheme. In this section only, we assume that (X,,),<n is given by the classical
Euler scheme on 7:

Xnt1 = Xp + w(Xp)h + o(Xp) AW, ,n < N -1, (3.3.1)
with AW, := W, ., — W;, and X = Aj.
The implicit Euler scheme of BSDEs [93, 16] reads classically as follows, for
0<n<N,
AW,
Yo =E [Yoi1 + hf(Xn,Yn, Zn))] and Z, = E; TYnH , (3.3.2)
Wti1—Win . C e
where we set H, = —**——. Though implicit in the Y-component, the scheme

is well-posed for h small enough as f is Lipschitz continuous. Numerous methods
have been considered to compute the scheme in practice [26, 25, 15, 65, 22, 34].
However, in the numerical section of this work, we rely on the high representa-
tive power of Deep Neural Network (recall the Universal Representation Theorem
3.1.1). Using this class of functions, a first approach could be, for parameters (6, 9),

110

Chapter 3. Deep Runge-Kutta schemes for BSDEs

associated mappings = — U(z,0), x — V(x,9), given (U(Xn,0%),V(XnN,0y)) =
(9(Xn),0 " (XN)0:9(XN)), to find the parameters by solving the following optimi-
sation problems: for 0 <n < N — 1,

AW, .
Tu(Xn-‘rl? n+1) - V(Xn, ﬁ)

2
Iy = argminﬁE”] , (3.3.3)

and then

0, = avgmingE | [U(Xns1, 05 1) = {U(Xn: 0) = UK, 0), V(X 0 |
(3.3.4)

However, a better empirical approach, introduced in [(5] is to optimise in “one go”
0 and ¢ at each step, namely

n»-n

(07, 0%) = argmineﬂgEHU(XnH,G;H) (3.3.5)

(X, 0) = hJ U(X 0), V(X0 97) + V<Xn,z9z>AWn}ﬂ ,

The previous procedure is named DBDP1 in [65]. One observes that it is possible
to use only one network in the above optimization. This will also save half of the
computational time cost.

The above scheme is jutified by the following observation.
Lemma 3.3.1 Under our standing assumptions,
(Y, Zn) = argmin, ooz, (B[[Yai1 — (y — hf(Xn,y,2) + 2AW,)P] . (3.3.6)
Proof. We first observe that
Y1 =Y, —hf(Xn, Y, Z,) + Z,AW,, — AM,,, (3.3.7)
where By, [AM,] = E [AM,AW,] = 0,E, [|AM,|*] < o0. , so that

E[|Yn+1 - (y - hf(Xna Y, Z) + ZAWn)F]
=E[|Y, — hf(Xn, Yo, Zn) — {y — hf (Xn, 4, 2)} + (Zn — 2)AW,, — AM,,|?]
=E[|Y, — hf (Xn, Yo, Zn) — {y — hf (Xn, v, 2)} | + RE[|Z, — 2] + E[JAM,|?].
Obviously, (Y,,, Z,,) does achieve the minimum of the right side of the above equation.

Reciprocally, any optimal solution (y*, z*) must satisfy z* = Z,, from the second term
of the right side in the above equality. Moreover, necessarily one has

y* = Etn[Yn - hf(XmYm ZTL) + hf(me*, Z'fl)]
= Etn[YnJrl + hf(Xn7 y*a Zn)] .

By uniqueness of the scheme definition, we conclude y* =Y. O

111

3.3. A learning method for Runge-Kutta schemes

Let us define rigorously the scheme. First, we introduce the loss function, for
¢ € C(RY,R):

L2V] (0) (3.3.8)

T

Definition 3.3.1 (Implemented implicit Euler scheme) The numerical solu-

= B 06010) — {UCK30) = BT U1 0). V6,5 0) + VX DA,

with (U, V) := N € 8§ 4. 1 o (RY™), recall (3.1.11)-(3.1.12).

The implemented implicit Euler scheme is then given by

tion is computed using the following step:
e Forn = N, initialize Uy = g,)A}N =0'V,g.
e Form=N-—-1,---,1,0, givenb?n+1,

— Compute a minimizer of the loss function:

N

0 € argming LEVi[14,.1](6), (3.3.9)
recall (3.3.8).
— Set (Un, V) := Non(563) € 8 4 1 (RN™), recall (3.1.11)-(3.1.12).

In the following, we build on this approach to obtain implementations of the
theoretical Runge-Kutta schemes given in Definition 3.2.1. For sake of completeness,
let us also mention that the explicit Euler scheme could be considered instead,
with essentially the same empirical result, see Section 3.4. Namely, for (p,) €
C(R%,R) x C(R? R?), we introduce the loss function at step n < N:

L2V Lo,](0) i= B [(Xns1) + Bf (X1, 9(Xns1), % (X 1))

— {U(X0;0) + V(X3 0) AW, } 2] (3.3.10)

with U, V) := N € Sh 4 1 o (RY™), recall (3.1.11)-(3.1.12).
Similarly, we have the following lemma and the definition of implemented explicit
FEuler scheme.

Lemma 3.3.2 Under our standing assumptions,

(Yna Zn) = argminy7ze£2(ftn)E[|Yn+1 - (y - hf(Xn+1, Yoi1, Zn+1) + ZAWn)|2] .
(3.3.11)

Definition 3.3.2 (Implemented explicit Euler scheme) The numerical solution
is computed using the following step:

e Forn = N, initialize Uy = g, VN = 0'V.g, Ay = 0.
e Form=N—1,---.,1,0, given Z]n+1,]>n+1,
— Compute a minimizer of the loss function:
0% € argming LEV°[14,, 1, Vi i1](6), (3.3.12)

recall (3.3.10).
— Set (Upn, Vp) := Non(0%) € SgoydhL’m(]RNm), recall (3.1.11)-(3.1.12).

112

Chapter 3. Deep Runge-Kutta schemes for BSDEs

3.3.2 Crank-Nicolson scheme

We now turn to the study of the Crank-Nicolson scheme for BSDEs. It is a one stage
scheme which belongs to the class given in Definition 3.2.1. It has been introduced
in [32], where it is implemented using cubature methods and tree based branching
algorithm(TBBA). Other 6-scheme entering into this class will not be considered
here as there are suboptimal in terms of discrete-time error bound.

The scheme reads as follows. For the Y —part, it is the usual Crank-Nicolson
scheme, namely

{ Yy = g(Xn),
Y, =E [Yn+1 + %(f(XmYnaZ) + f(n+1, n+laZn+1))]) 0<n<N-— 17

and for Z—part,

3.3.14
{ Z = Etn[n(n+1 + hf(n+17Yn+17 Zn+1))]) ()

where H, € R? is a F;, , ,-mesurable random variable, satisfying (3.2.4)-(3.2.5).
In order to suggest an implementation using non-linear regression mimicking

(3.3.6) or (3.3.11) for the Euler scheme, we first make the following observation.

Lemma 3.3.3 For 0 < n < N — 1, set Ay := —3E[f(Xn+1, Yns1, Zns1)hH,y).
Then, (Yn, Zn, Ay) is the unique solution to the following optimisation problem

min L"(y,z,a) :=E
y,2,06L2 (Fey,) (y)

h
Yii1 — {y—Q(f(Xmi% 2) + f(Xn+1, Y1, Zng1))

2

. 2
+ COhIEUZthf(XnH, Yoi1, Zns1) +a] 5

(3.3.15)

+(z + a)f"}

where Co > 0 is a constant and v, = By [|Hy|?].

Proof. We first observe that

h H,
Yor1=Yn = S{f(Xn, Yo, Zn) + f(Xns1, Yot Zug1)} + (Zn + An) = — AMy,
(3.3.16)

where E; [AM,] = B [AM,H,]| = 0,E; [|AM,|*] < co. From the very definition

of A,,
2]

” hf(n+1, n+1vZn+1)Hn+An

” hf(n+1, n+17Zn+1)Hn+a

2
+ |Ap — a2] .

113

3.3. A learning method for Runge-Kutta schemes

Inserting (3.3.16) into the definition of L™(y, z,a) and using the previous equality,
we compute

L"(y,z,a)
h h Hn 2
=E ‘Yn §f(Xn7YmZ) {y_§f(Xn7yaz)}+(Zn_z+(An_a))U7_AMn|
1 2
+]E[‘2hf(Xn+1,Yn+17 Zn_;,_]_)H + A + |An — CL2]
= L1(y,2) + L3(a,2) + Li(a) + £,
where
n h h 2
Ll (yv Z) =E |Yn - §f(Xn’Yna Zn) - {y - §f(Xn7y7 Z)}|) (3317)
~ 1
Li(a,z) = —]E[|Zn —z+ A, — a|2] , (3.3.18)
L3(a) = CohE[|A —al?], (3.3.19)

2

én =]E[|AMn|2 + CO ’ hf(n+1, n+1, Z?’L+1)H?’L + An (3320)

We then observe that L§(A,) = 0, L5(A,, Z,) = 0 and L}(Y,, Z,) = 0, so that
(Yo, Zn, Ay) does achieve the minimum of L™.

Reciprocally, any optimal solution (y*, z*,a*) must satisfy f/g(a*) =0,L3(a*,2*) =
0, which implies a* = A,,2* = Z,. Moreover, necessarily one has f/’f(y*, Zn) =0,
then using (3.3.13), we find

N h
Yy = Etn[Yn+1 + 5(

Pt Za) 4 (X Yoer, Zoer) |
By uniqueness of the scheme definition, we conclude y* =Y. O
The previous result indicates how to adapt (3.3.5) for the Crank-Nicolson scheme.

The implemented scheme will be given by iterations of the following optimisation
problems.

Let (¢,7) € C(RY,R) x C(RY R?), we introduce the loss function at step n < N:
Lo, 01(0) 1= E[oK) — {U(X00) = & F(Xoir 0(Xnir), ¥(Xnr)) (3.3.21)
= GG UX30). V(X,i0)) + (V(X30) + A 0) |
+ Ooh| B F(Xor, (X 1), 0 (X 2)) H + (K e>(|
with (U, V, A) := N € 8§, 4, 1 (RY™), recall (3.1.11)-(3.1.12).
We now define the scheme which is implemented in practice. Each optimisation

is done using SGD algorithm, see Section 3.4 for details.

114

|

Chapter 3. Deep Runge-Kutta schemes for BSDEs

Definition 3.3.3 (Implemented Crank-Nicolson scheme) The numerical so-
lution is computed using the following step:

e Forn = N, initialize Zx?N = g,fiN = GTVXg, AN = 0.
e Form=N—1,---,1,0, given Z;[n+1,]>n+1,

— Compute a minimizer of the loss function:

A A

0 € argming LSN[Up 11, Voy1](0), (3.3.22)

recall (3.3.21).
— Set Un, Vo, An) 1= Non(03) € S5 4, 1 (RY™), recall (3.1.11)~(3.1.12).

Remark 3.3.1 i) Note carefully that we don’t have any theoretical guarantees that
the minimization problems (3.3.9), (3.3.12), (3.3.22) are well-posed on the whole
space RNm . A sufficient (but far from necessary) condition is the convexity
and coercivity (limg|_, Lo[Uni1, Vor1](0) = +x0) of the objective function.
However, in practical implementation, we restrict the domain to a compact
subset of RVm | so that the minimization problems are always well-posed. This
remark also applies to the explicit Runge-Kutta schemes in the following section.

ii) Lemma 3.3.5 below shows that the minimal possible loss LSN [, 1] is controlled
in O(h?) under some good conditions. This minimum loss has no influence on
the study of the weak error we perform here. However, it has an impact when
doing the Monte Carlo simulation.

i1i) The value of the Cy, that we called the balance number Cy, recall (3.3.21),
impacts the numerical results, see Figure 3.1 in Section 3.4.

iv) For the numerical part, we can use the following loss function instead of (3.3.21)
in order to reduce the variance of A—part by the control variate technique, it
has no influence on the theoretical part.

LN Lo, 1(0) 1= B[oK) — {U(X0:6) = 5 F (Ko, 9(Xi), 9(X11))

(3.3.23)

h H, 2
= 5 (X, U(Xn;), V(X 0)) + V(X3 0) + A(Xn;H))Z}

+ O (Pt (X)) = (s (X)) Hy
vAo[]

We now give an estimation of the (theoretical) error implied by the non-linear
regression procedure for one time step.

Lemma 3.3.4 Assume that

0* € argming LN [, 1](0),

115

3.3. A learning method for Runge-Kutta schemes

and define
Yo = Etn[Yn(f’f” P (P YD Z50) 4 1, v, Zﬁf””))}
3.3.24)
25 e B (V0 + 17 e 20, 2590 5325
Al *%Etn[Hn (X, 7,80, 250)) | (3.3.26)

with (Yéf’lw), Zr(fr’ib)) = (p(Xn+1),¥(Xn+1)). Then, the following holds

B[[Y,%) = U (X5 0*)[+ RIZED) = V(X3 072 + BIAPY) = Ay (X3 6%)P?]

< C&u(p,9) (3.3.27)
where
En(0,1)) = e ¥ (0, 0) + heh * (0, 9) + el (p,1)) (3.3.28)
and
NV,) = i;lny[|Y7$‘P’¢) — Up (X 9y)|2] , (3.3.29)
(¢,) 1= IfE[|APY) — An(Xa3 02 (3.3.30)
N2 () = iéquE[wg%W V(X 92)|2] . (3.3.31)

Proof. 1. We first observe that (3.3.24) rewrites

h
VAT = Vo) — (X0, Y, 20 + fn, V0, 257

+ (ZT(LWP) + Aq(;a@) Hn + AM#Y) (3.3.32)

o P
where Etn[AMé‘f’"‘”] - Etn[AM,(f"’w)Hn] - o,Etn[mM#’WP] < o0. Following the

same computations as in the proof of Lemma 3.3.3, we obtain that

LN, 9](0) = L[, ¢](0) + L[, ¢](0) + Li[@,1](0) + lule.v] (3.3.33)
with

LT[, 9](0) = E| [v,{#) — gf(Xm y(e) 7o)

h

— {Un (X3 0) = 5 (X Un (X 9>,vn<Xn;9>>}|2], (3.3.34)

= 1
Ly[p,](0) = ;E[IZ#’@ — Vp(Xn;0) + AP — A (X, 9)\2] , (3.3.35)
L5)(6) = CohE|AYY) — Au(Xa:6)?], (3.3.36)

1 2
lnlip, 0] = E||AMEE) 2 + Coh ‘Qhﬂxnﬂ, Yo, 2D Hy + AP] .

(3.3.37)

116

Chapter 3. Deep Runge-Kutta schemes for BSDEs

Setting L[, ¥](0) := L7 [, ¥]1(0) + Ly [0, ¥](0) + L[, ¢](0), we then deduce that
argming L, [, ¥](0) = argming L(IJIN [, ¥](0) (3.3.38)

2. Using the Lipschitz continuity of f and recalling (3.2.4)-(3.2.5), we obtain the
following upper bound:

Lalip, 61(6) < CE[[Y,$#%) — Uy (X0)12 + BZEFD = V(X3 0)[2
+h|APY) An(Xn;e)F] : (3.3.39)

We now prove a lower bound for the previous quantity. First, we observe that, for
any 0 < a < 1,

1
(x+y)? =221 —a) + (1 -) (3.3.40)
Thus, for any « such that 1 > a > ﬁ, we obtain
. - 1—
L2[p,41(0) + Li[p,0)(6) = h=—"E[|Z#%) — v, (X0;0)]
C
n h%E[\A,(f’W — An(Xn: 9)\2] . (3.3.41)

Using again (3.3.40), we get

- 1
Lile,v1(0) > SE[1V,) — Un(Xa,0)
2
- %E[’f(Xnv Yrg%w)a Z};pﬂb)) - f(Xmun(Xm 9)7 Vn(Xna 0))’2]

Since f is Lipschitz continuous, we compute

L2h?
-5

" L2h?
LAl v)6) > (- 2

E[Y — Un(Xa, 0)P | = 5[12009 V(X 0)P

This leads, combined with (3.3.41), for h small enough, to
E[|Yn(%w) - un<Xn§ 0)’2 + h’ZT(z%w) - Vn(Xna 9)‘2 + h‘Agpﬂl’) - An(Xna 9)‘2]

< OLn[w,1](0). (3.3.42)
3. The above inequality is a fortiori true at the optimum 6*. Moreover, optimizing
on separated networks is always more costly than optimizing on a fully connected
network thus leading to (3.3.27). O
Lemma 3.3.5 Assume (HX)q and ¢, € gg, then the following holds

En[@, sz)] < Cﬁphz)

recall (3.3.37).

117

3.3. A learning method for Runge-Kutta schemes

Proof. Observe that

‘P(Xn-H) = p(Xp + W(Xn)h + 0(Xy) AW,)
©(Xn) + 0xp(Xn) ((Xn)h + o (X)) AW,) + O(|pu(Xn)h + U(XH)AWHP)-

Recalling (3.3.32), we deduce
P(Xn) + 0o (Xn) ((Xn) R + 0 (Xn) AW) + O(p(Xn)h + 0 (X)) AW [?) = Y04
B Llew)y _ N : : : : ,
ff(wets VD Z0) = S (X, Y, Z800) 1 (Z09) + AP)) AW, + AMEY)

n+1

Reorganizing the above equality, we get

<8x<p<Xn>u(n) + ;f(w1, Y00, Z£+1))> h+ O(u(Xn)h + o(X,) AW, [2)

= YW = o(X0) = 5 (X, V0, Z(P)

+ (ZW> AP (%Ecp(Xn)U(Xn)) AW, + AMEY)

Squaring the previous estimate, taking expectation and recalling the orthogonality
property of (1, AW, AM#’D’W), one gets

E[|AM};"’¢)|2] < CH(E[|AW,[*] + h?) < C,h2.

One also computes that E[|%f(n+1,Y(A zﬁ))AVVn + A#’WP] < Ch, which

n+l »“n+1
combined with the previous upper bound, concludes the proof. O

3.3.2.1 Pseudo-consistency of the implemented scheme

Proposition 3.3.1 Assume that the scheme given in Definition 3.5.3 is well-posed,
then

%)V(E[\Y — U] Ji[n)yQ]gczv]:Z:gn, (3.3.43)

where &, := E'n(LA{nH,]}nH), recall (3.3.28).

Proof. Let us define, for n < N, recalling (3.3.24)-(3.3.25)-(3.3.26) and Definition
3.3.3

Y, y(1, Vn+1) Ty = ZT(LZ)n+1,]>n+l)’ A, = Ag;{nJrl,VnJrl). (3.3.44)

We first observe that (Uy, Vi) := (Un(Xn), Va(Xn)) can be rewritten as a perturbed

scheme, namely

A~ A

N h N N N
Un = Etn|:Un+1 + 5 (f(Xn+17 Un+17 Vn+1) + f(Xna Unv Vn)):| + Cg, (3345)

Vv, = Etn[Hn (Unﬂ 4 hf (Xt Ut Vnﬂ))] + (2 (3.3.46)

118

Chapter 3. Deep Runge-Kutta schemes for BSDEs

V=T — Yy + = (f(Xn,Yn, Zn) — f(Xn, Un,vn)) and =V — Zy. (3.3.47)

. . 2 > Z/ITL 71>TL ZJTL ’]}7L
Indeed, with our notations, we have (Up41, Vag1) = (Y070 ", 20007

over, since Uy, = Up(X,)) = Un (X, 0%), recall Definition 3.3.3, we have

. More-

1 1 _ _
B[G + MG | < CB| 060, 02) = Fal? + 1Y% (X, 05) — 2P

< CNgn(un-&-la Vn+1)a

where for the last inequality we applied Lemma 3.3.4. Now the proof is concluded
using the stability result given in Proposition 3.2.1. O

We conclude this section with a global control on the error between the true
solution of the BSDEs and the scheme introduced in Definition 3.3.3.

Theorem 3.3.1 Let (Y, Z,) := (u(tn, Xn), 0 Vau(ty, X)), forn < N. Then, the
following holds

n

N-1
maXE[D_/n - z)n(Xn)R] + 3 hE[|Zn - f;n(xn)ﬁ] <O +N Y &).
n=0

Proof. First, one observes that

mng[m U (Xn)|2] + hIE[|Zn - f/n(Xn)P]
n=0
_ N-1
<2 <maxE[\Yn — Y’ +), hE[|Z, — Zﬁ])
n=0

The first two terms in the right hand side of the previous inequality is the discrete-
time error, whose upper bound follows from Theorem 3.2.1(ii). The second term is
upper bounded using Proposition 3.3.1. O

3.3.3 Two stage explicit Runge-Kutta scheme

We now present the numerical procedure to compute two stage Runge-Kutta scheme.
It is essentially based on an iteration of what has been done for the Crank-Nicolson
scheme. Some simplifications occur for the first stage, as this is an explicit Euler
step: indeed, there is no need to introduce the correction term A. Recalling Theorem
3.2.1(iii), one can choose the coefficients such that

agy = g1 =C2, az1=agz1=1—-—, azg =azyp =,
262 262

119

3.3. A learning method for Runge-Kutta schemes

to obtain the optimal bound on the discrete time error.
The scheme reads thus as follows

Yoo = By, [Yoi1 + b f(Xnt1, Yar1, Zng1)], (3.3.48)
Zn,g = Etn,z[HSYn+1 + H;lthf(XnH, Yn-&-lv Zn+1)>] , (3349)
and
1
Y, = Et¢|:Yn+1 +(1-)hf(n+1s Yngtls Znst1) + T@hf(Xn’Q’ Y, 0, Zn,2):|)
(3.3.50)
1
Zp = Eti[HgYn-&-l + (1 - T@)hH?T,Lf(Xn+17Yn+lyzn+l> hHs o f (Xn2, 77,27Zn,2)j| -
(3.3.51)

Note that we have used Hj3'y = Hy, which simplifies slightly the term A, 3 below.
We must consider loss functions for each stage of computations, namely:
- First stage: For (p,1) € C(R%, R) x C(R4,RY),
LE2[p,1(0) 1= E[0(Xn11) + heaf (Xns1, 0(Xn 1), 9(Xns1)
H}) 2
- {u(Xn,g; 0) + V(X1 9)@5} | }
2

with (U, V) € 8§ 4 1 (RY™), recall (3.1.11)-(3.1.12);
- last stage: For (®,¥) e C(RY,R)? x C(R?, R?)2,

L3, ¥](6) = (3.3.52)
B 1 (X0) + A1 = 5)Xo 1 (X))
h HY 2
50y (K2 22(Xn2), W2 Xn2)) - {U<an9> + (V(X0:60) + A(Xo: e))zjg} |

1

2
+C’0h’A(Xn;) — e (HY — H3o) hf(Xn2, P2(Xn2), ‘Ifz(Xng))‘]

with U, V, A) := Nim € 8§, 4 1 o (RY™), recall (3.1.11)-(3.1.12).
The implemented scheme in then given by

Definition 3.3.4 For a given fized balance number Cy > 0 , the algorithm is de-
signed as follows:

o Fori= N, initialize Uy = g,]}N =0'V,g.
o Fori=N—1,---,0, given L?n+1,1>n+1,
— Compute a minimizer of the loss function at step (n,2):
0r,.2 € argming LS U1, Vor1](6) -

Set (Z/A{m?v]}m?) = (U(707’; 2) V(?0:12))

120

Chapter 3. Deep Runge-Kutta schemes for BSDEs

— Compute a minimizer of the loss at step (n,3):

A

9;,3 € argming L§§2[(an+1aﬁn,2)a (fjn-i-h Vn,Q)](H) .

A A

Set (umvn) = (U(, ;,3)7])('7 7‘;,3))'

The convergence result for the above scheme is stated below, see Theorem 3.3.2.

3.3.4 Three stage explicit Runge-Kutta scheme

The numerical procedure of three stage Runge-Kutta scheme consists in one more
iteration than the two stage Runge-Kutta scheme. Recalling Theorem 3.2.1(iv), one
can choose the coefficients such that

2
c3(3ca — 3¢5 — ¢3) c3(e3 — c2)
a21 = (21 = C2, Aa31 = (31 = y A32 = Q32 = —————,
62(2 - 362) 02(2 - 362)
—3c3 + 6¢acs — 3co 3cg — 2 2 —3co
G41 = Q41 = y A2 = Qg2 = ———F——~, 43 = Q43 = ——F— .
60263 662 (Cg — CQ) 663(63 — 62)

to obtain the optimal bound on the discrete time error. The scheme reads thus as
follows

Yoo = Et, o[Yoi1 + c2hf(Xnt1, Yar1, Zny1)], (3.3.53)
Zng = By, [HYYni1 + Hy yeohf (Xng1, Yar1, Zns1))] (3.3.54)

Yoz = By, [Yos1 + as1hf(Xns1, Yos1, Zns1) + asohf (X2, Y2, Zn2)], (3.3.55)
Znz =By, JHYYni1 + Hy yosihf (Xng1, Yar1, Zng1) + HYgasoh f(Xn2, Yo, Zn2))]
(3.3.56)

and

Yo = Et, [Yor1 + aathf(Xnt1, Yort, Znv1) + as2h f(Xn2, Ya2, Zn2)
+asshf(Xns, Yns, Zn3)], (3.3.57)
Zyp = Ky, ,JHyYni1 + Hyoarh f (X1, Yar1, Zns)
+ Higouoh f(Xn2, Yn2, Zn2)) + Hisoushf(Xn3,Yn3, Zn3))], (3.3.58)
Note that we have used Hj'y = H for ¢ = 3,4, which simplifies slightly the term
An,37 An,4 below.
We must consider loss functions for each stage of computations, namely:
- First stage: For (®,¥) € C(R4, R) x C(R?, R?),
LR [0, W)(0) = B[|p(Xns1) + heaf (Xni1, ®(Xn11), W(Xns1))

HZY) 2
- {U(Xn,z; 0) + V(Xn,2; 9)1)2} ‘ }
2

121

3.3. A learning method for Runge-Kutta schemes

with U, V) € 8§ 4 (RY™), recall (3.1.11)-(3.1.12);
- Second stage: For (®,¥) € C(R% R)? x C(R%,RY)?,

LR [@, W](0) i= B[®1(Xo11) + hagt f(Xn 11, ®1(Xn11), U1(Xns1) (3.3.59)

HIY g2
tasahf(Xn2, P2(Xn2), Vo(Xpn2)) — {U(Xn,ss 0) + (V(Xn3:0) + A(Xn3; 9))1)2} ‘
3

2
O A, 250) ~ (0 — s H3a) h (X ®a(o), 02X, |

with (U, V, A) := N € 8§ 4, 1 (RY™), recall (3.1.11)-(3.1.12).
- Third stage: For (®,¥) e C(R% R)? x C(R%,RY)3,
LY@, v](0) := IEH(I)I(X,LH) + hag f(Xni1, @1(Xnt1), ¥1(Xnt1)) (3.3.60)
tash f(Xn2, ®2(Xn,2), V2(Xn2)) + asshf(Xn3, P3(Xn3), U3(Xy,3))

_ {Z/{(Xn; 0) + (V(Xn;0) + A(Xn;H))Hg} ‘2

Uy

+COh‘A(Xn; 0) — (as2HY — apHY') hf (X2, ®2(Xn2), ¥a(Xn2))
2
— (a43HY — ausH 3) hf(Xn3, ®3(Xn3), ‘1/3(Xn,3))‘ }

with (U, V, A) := N € 8§ 4, 1 (RY™), recall (3.1.11)-(3.1.12).

The implemented scheme is then:

Definition 3.3.5 For a given fized balance number Cy > 0, the algorithm is de-
signed as follows:

e Fori= N, initialize Un = ¢, VN = 0 ' Vgg.
e Fori=N—1,---,1,0, given L?n+1,1>n+1,

— Compute a minimizer of the loss function at step (n,2):

A A

0}, € argming L%gg[un+17 Vit1](0) -

A A

Set (Un,Q,VnQ) = (U(, Z,Z)?V(W 2,2))'
— Compute a minimizer of the loss at step (n,3):

A A A A

9;,3 € argming Lﬁgg[(un-&-lvun?)a (Vn+1, Vn?)](e) .

Set Un, Vi) = U055,V 07,3))-
— Compute a minimizer of the loss at step (n,4):

A A

9:%4 € argming LII{IEB[(Z/A{n-i-lyan,Za Z/A{n,i’))) (f)n+17 Vn,Q; Vn,B)] (9) .
Set (Z/A{m)}n) = (u("e:LA)?V(" ;,4))‘

The convergence result for the above scheme is stated below in Theorem 3.3.2.

122

Chapter 3. Deep Runge-Kutta schemes for BSDEs

3.3.5 General case

The general case is built using the approach developed for the Crank-Nicolson scheme
with the necessary introduction of the A-terms. Each stage will be computed recur-
sively. Our first observation is the following.

Lemma 3.3.6 The transition from step n to n—1 in the scheme given in Definition
3.2.1 is solution of the following sequence of optimisation problems. For 1 < q <
Q + 1, define

q—1
Ay = Em[Z (agrnH} — agHJ) hf (X, nk,zmk)] , (3.3.61)
k=1
then, recall (3.2.1)-(3.2.2), we have
Yn.g» Zng, Anyg) = argmin(yyz,a)eﬁz(}—tn’q)Lnjq(y, z,a), (3.3.62)
with
Lngq(y,2,a) (3.3.63)
g—1 Hn 2
=E((Y1 +h Z aqkf(Xn,ka Yo ks Zn,k) —{y - haqqf(Xn,qa y,2) + (2 + Q)UT}
k=1 q
q_l 2
+Coh‘a— Z (ageH] — g HY)) Bf (X g, nkyZn,k)‘] :
k=1

Proof. We first observe that
n

g H
Yop1 =Yg =0 . agef X, Vks Zng) + (Zng + Ang)—+ —r— AMy, (3.3.64)
k=1 q

where By, [AM,, 4] = By, [AM, (H}'| = 0,Ey, [[AM, 4|*] < 0. We also have that

i q—1 2
E - Z (a’quc? - aqk k) hf(n,ks nlm Zn,k:)
=1
- -)
=E||a— Ang*+ |4 q—Z(aquf;—OéquZ)hf(niks Yoks Zn k)

Inserting (3.3.64) into the definition of Ly, 4(y, 2, a) and using the previous equality,
we compute

Ln,q(% z,a)
H’)"L
}

i1 vq

Yoi1+h Z aqkf n, k)Yn k> Zn k) - {y haqqf(n,gr» Y, 2) (Z + a)
2

+ CohE | |a — Apgl? +

Z ageHy — ag 1y) R (X g, Yoks Zn k)
k—1

= LV y,2) + Ly%(a, 2) + Ly (a) + Lo g,

123

3.3. A learning method for Runge-Kutta schemes

where

E?q(y? z) = E[‘Yn,q - aqth(Xn,q> Ynq Zn,q) —{y— aqth(Xn,m Y, z)}‘z] , (3.3.65)

~ 1
qu(a? Z) = UinEUZn,q —z+ An,q - a|2] s (3.3.66)
q
Ly%(a) = CohE[|Anq — al’], (3.3.67)
q—1 2
en,q =K |AMn,q|2 + Coh An,q - Z (aquZ; - aquZk) hf(Xn,lm Yn,lm Zn,k)
k=1
(3.3.68)

We then observe that Ly%(A,) =0, LYY (An, Z,) = 0 and L% (Y;, Z,) = 0, so that
(Ya.q, Zn,q, An,q) does achieve the minimum of L, ,.

Reciprocally, any optimal solution (y*, 2*, a*) must satisfy Ly (a*) = 0, Ly (a*, 2*) =
0, which implies a* = A,, 4, 2* = Z,, 4. Moreover, necessarily one has L1 (y*, Z,, 4) =
0, then using (3.2.1), we find

qg—1
y* = Etn Yoi1+h Z aqkf(Xn,ka Yn,ka Zn,k) + aqqf(Xn,qa y*, Zn,q)
k=1

By uniqueness of the scheme definition, we get y* =Y}, ,, which concludes the proof.

Ul

3.3.5.1 Implementation

Let ® = (&1, ,Pg41) € C(RY,R)OT and ¥ = (Vy,---,Ug41) € C(RY RY)QFL,
we introduce a generic loss function at each stage of computation (n,q), 1 <n < N,
l<g<Q+1:

LS [@, v](0) :=
q—1

E[’(I)I(Xn+1) +h 2 agkf (Xn s Pr(Xn k) Vi (Xnk))
k=1

HTL

_{U(Xn,tﬁ 9) - haqqf(Xn,mu(Xn,q; 9)7 V(Xn,q; 9)) + (V(Xn,qS 9) + A(Xn,zﬁ 6))Tq}

n
q

qfl 2
+C(]h‘A(Xn7q; 0) = > (agrH] — agHpy) hf(Xn g Pe(Xnk). ‘llk(Xn,k))‘]
k=1

(3.3.69)

with (U, V, A) := N € 8§ 4, 1 (RY™), recall (3.1.11)-(3.1.12).

Definition 3.3.6 (Implemented Runge-Kutta scheme) The numerical solution
1s computed using the following step:

e Forn = N, initialize Uy = g,)}N =0'Vxg, An = 0.

124

Chapter 3. Deep Runge-Kutta schemes for BSDEs

e Forn=N-—1,---,0, for1 <qg<Q+1 given (Z/Aln+1,1>n+1) =: (Z/A{n,l,f}n,l) and
(un,kvvn,k>’ 1<k< q,

— set (@k,@k) = (Z:{n,kai)n,k)} I1<k< q, (q)kaq]k) = 07 k> q

— Compute a minimizer of the loss function:
0}, , € argming B [<I> v](6),

where LRK defined by (3.3.69).

— set (Un.gs Vings Ang) = Nl 0n.) € SgoydhL’m(RNm), recall (3.1.11)-
(3.1.12).

Set (Z/A{n,f}n) = (Z/A[n,QJrlaf}n:QJrl)

3.3.5.2 Pseudo-consistency

We study here a kind of minimal consistency of the implemented scheme in terms
of approximation error made at each step.

Lemma 3.3.7 Letn < N and 1 < ¢ < Q + 1. Assume that
0* € argmin, L%E[CI), v](6),

and define
v = Etnq[it hZ Qg f (X Y, W),Zﬁ’@))] , (3.3.70)
k=1
®,w S} 0
Z®Y =By, | HIY T 4 0 Y ag B f (X, Y, 25))] . (3.371)
AT = E[Z (ageHY — aguHJy) 1 (X, Y,y ‘“,fo,f’)] . (33.72)
with (YTZ(?;’\I’),ZT(SIC’\D)) = (Pp(Xn k), Vi (Xnk)), for 1 < k < q. Then, the following
holds
B[V8 — Uy g(Xg3 07 + BIZEEY) = Vi (X3 02 + LAY — A (X367 2]
< O q(D,1), (3.3.73)
where
Eng(®,0) = NV (®, 1) + hel (D, 0) + hel (D, V) (3.3.74)
and
N (@, 0) 1= inf B[V5 — U g (X5 0")? (3.3.75)
eng (®, W) = inf E[IASI)’W) — A g(Xngi 0“)|2] , (3.3.76)
N (@, 0) = il || 285" — Vi (X3 0°)2 (3.3.77)

125

3.3. A learning method for Runge-Kutta schemes

Proof. 1. We first observe that (3.3.70) rewrites

n

H
Y(f’fp) _p 2 agnf (Xnx Y ﬁ‘l’ Zﬁ@) + <Z(<I>,\I/) + A(@,\If)) — 4 AMSI;,\I/) ,

n
Uq

(3.3.78)

where By, | AM{GY | = By, | AMEGVHE| = 0,F,, | |AMEGY | < o0. Following

the same computations as in the proof of Lemma 3.3.6, we obtain that

Lial®,](9) = L[@, W](0) + Ly [®, W] () + Ly [®, W](6) + £ng[®, V] (3.3.79)

with
L@, w](0) = B[V, 5Y) — agghf (Xoq, Y53, Z059) (3.3.80)
~ {Un(Xng3 0) = g Xy Un(Xng3 0), V(X)} 2],
EZ@.910) = JB[1Z5Y — Vi (Xigi) + ALY — A nq;ew], (3381)
Ly“[e, v])(6) = cohE[|A<”> Ang(Xnqi 0)2] (3.3.82)
lng[®, 9] = [|AM‘”“>| + (3.3.83)

2
A%\P) - Z (ageHy — agrHgy) hf (Xo, Y, n(k Y Z(CD \P))

Setting Ly, o[®, ¥](0) := LTI[®, ¥](0)+ Ly [®, U](0)+ Ly [®, ¥](6), we then deduce
that

argming Ly, ,[®, ¥](0) = argmin, LT [(I> v](6). (3.3.84)

2. Using the Lipschitz continuity of f and recalling (3.2.4)-(3.2.5), we easily compute
the following upper bound:

Ly g[®,9)(0) SCE[[V,5") = Uy (X3 0)2 + B ZS5T) = Yoy (X i 0) (3:3.85)
FRIAGT — Ay (X0 g 0)2]

We now prove a lower bound for the previous quantity. First, we observe that, for
any 0 < a < 1,

(x+y)?=221-a)+y*1 - é). (3.3.86)

Thus, for any « such that 1 > o > ﬁ, we obtain

. - 1—
L2 [0, 9](9) + L} [0, w)(6) >h— O‘E[|Z<<I>»W> ~VeaXngi O] (3:387)

126

Chapter 3. Deep Runge-Kutta schemes for BSDEs

Using again (3.3.86), we get

L[, 91(0) = SB[V~ thy (X0, 0)
B aqqhQEDf(Xn 9> an;) Z(q)’q})) - f(Xn,wun,q(qu; 0), Vn,q(qu; 9>)|2] .

n?q

Since f is Lipschitz continuous, we obtain

~ 1
L, o[®,91(6) >(5 — 202, L*W)E|[Y,) = Uy (X,)
— 22, L2W2E | 285" — Vi g (X, O)]
Combining the previous inquality with (3.3.87), we deduce that for A small enough,
B[V5 = U g(Xigi O) + HIZS5Y) = Vi (X3 0) P+
BIASY) = A g(Xngi O)FF| < CLy [0, 9](0) (33.88)

3. The above inequality is a fortiori true at the optimum 6*. Moreover, optimizing
on separated networks is always more costly than optimizing on a fully connected
network thus leading to (3.3.73). O

Proposition 3.3.2 Assume that the scheme given in Definition 3.3.6 is well-posed
then

N N—
g?}éE[\Yn— 2]+ Z 120 = Vu(X0)?| < © Z (3.3.89)

_ Q A . . A N
where &y := Y En 1 (P, ¥y) and with ® = (U, 1) 1<k<q and ¥ = (V1) 1<k<qQ, Tecall
k=1

(3.3.74).
Proof. Let us define, for n < N,1 < ¢ < Q + 1, recalling (3.3.70)-(3.3.71)-(3.3.72),

Vog=Y,®Y | Z, 0= 280 A, = AED. (3.3.90)

We first observe that (Un.g, Vig) = Ung(Xng)s Vng(Xng)) can be rewritten as a
perturbed scheme, namely

Unq =Ep, |Uni1+h Zq: gl f (Xnges Un s Vi) | + €2 (3.3.91)
k:lq_l
Vn,q =E,, H;lﬁnﬂ +h Z gk Hy' ik f (X ks nk,v k) |+ Ghgs (3.3.92)
k=1
with
Grg = — Youq + aggh (f(Xn,qv Yogs Zna) = F(Xnigs Ungs Vn,q)) ; (3.3.93)
Cig = Vg — Zng- (3.3.94)

127

3.3. A learning method for Runge-Kutta schemes

Indeed, with our notations, we have (Un,hvn,k) = (Yé:,};’qj),Zr(f,f)),l < k <q.
Moreover, since Uy, g = Up, ¢(Xn q) = Un,q(Xn.q, 05,), recall Definition 3.3.6, it holds

n,q9> ¥'n,q

1 z 1 *
B| 1 IG0l? + HIGE | < CB| s (X 1) -

< CNgn,q (Z/A{n-&-lv 1>n+1)a

a(Xa 010) — |]

where for the last inequality we applied Lemma 3.3.7. Now the proof is concluded
using the stability result given in Proposition 3.2.1. O

We can then state the following convergence result for two stage explicit Runge-
Kutta scheme and three stage explicit Runge-Kutta scheme.

Theorem 3.3.2 Let (Y, Zy,) := (u(tn, Xp), 0 Vau(tn, X)), forn < N.

1. Assume (Hr)y and (HX)a. Then, the following holds
N-1

B[, G060+ 3]2 D] < Ot Y).

n=0

A

with E8X2 = &, 5 ((Z/A{n+1,2;{n72), (Vn+1,)>n72)>, where £, 2 is defined by (3.3.74).

2. Assume (Hr)s and (HX)s. Then, the following holds
N-1

B[|7~ (5] + X [- 0] < 0+ X 8.

n=0

A A

with EFX3 = &, 3 ((an+1,an,2,an,3)7 (Vn+1ﬂ>n,2,Vn,3)>; where &,3 is defined
by (3.3.74).

Proof. First, one observes that
mng[\Y] 2 [(Xn)‘Q]
N—-1
<2 <maxIE[|Y Yo% Z [1Z, — Z|]>
+2 (maxE[\Y — Un(] NZ_} [’Z — V(X))])

The first term in the right hand side of the previous inequality is the discrete-time
error, whose upper bound follows from Theorem 3.2.1(iii), (iv), the second term is
upper bounded using Proposition 3.3.2. O

128

Chapter 3. Deep Runge-Kutta schemes for BSDEs

3.4 Numerical results

3.4.1 Approximation of the forward process
3.4.1.1 Brownian motion case

We study the special case where {X;}o<i<7 is a drifted Brownian motion, that is
X=X +put+oW,, 0<t<T. (3.4.1)

We use directly the forward diffusion process X on the the grid II. There is no
discretization error for this special case and it corresponds directly to the Euler
scheme on II. In the case, where the underlying is the Brownian motion, note that
LO o L® = L® o LO) for ¢ € {1,---,d} and see Remark 2.1(ii) of [24], one can
choose to compute the Z-part, the H random weight with this simple form: for
n<N,

Wi — We,
Hj = —=——=%, 1<q<Q+1,
cqh
Wy . — W, Wy, . — W,
= ok tha e DIk g o k< Q4

It can be verified that H', H7; satisfy the assumptions (HX)2, see Proposition
2.3 in [21].

3.4.1.2 General diffusion case of Crank-Nicolson scheme

For the general diffusion case, we also have to discretize the forward diffusion process

with some second order weak approximation schemes, , see [1, 92], for all ¢ € C}(R?),
sup |E[p(X)] — E[e(X)]| < Ch. (3.4.2)

te[0,T]
We implemented it by Ninomiya-Victoire scheme [76] in practice, the convergence of

this algorithm only requires ¢ to be continuous, under a condition on the vector fields
weaker than Hérmander condition. For example, we apply the Ninomiya-Victoire
scheme to the d-dimensional independent Cox-Ingersoll-Ross(CIR for short) pro-
cess:

dXtZCL(b—Xt)dt-FO'Edth, O<t<T

where Y3 = diag(\/&}, -+ ,4/X%). Under the Ninomiya-Victoire scheme, assume
A, is a Bernoulli random variable independent of (W,,)n—01,.. N1, then
Xo =Xy
x| exp("50) exp(AWIV)... exp(AW, V) exp(*52) X, A =1
m e exp(52) exp(AWVY)... exp(AWAV,) exp(252) X, A, = —1

129

3.4. Numerical results

where for z € R?,

exp(sVp)(x) = ze ™ + (b— £)(1 — e7%%)1,,
eXp(SV;)([B) = (3317 cet, Ti—1, (? + @)27$i+17 ce 7$d)7 1#0

Hence, if all the components of (W,)n—0,1,..., N—1 are independent,

exp(AW, V) : = exp(AWV}) - - - exp(AWIV,) () = exp(AWIV,)... exp(AW V) ()

g 1 g d
(55 Vot (P).

Thus,

hV, hV;
Xny1 = exp(TO) exp(AW, V) exp(TO)Xn.

And in this case, for 0 < n < N — 1, one can choose

c—2Wii—ch — Wi c—1W; — Whtpi1—ch
H, — n+1 n n+1 n4+1 Rd 0.1
which directly comes from Example 2.1(ii.b) of [24]. Then, for each component
1
'H;,1 <1 < d of H;, we have E[|'H;|?] = (1 + ﬁ) 7 We use ¢ = 0.5 for the

implementation of this Chapter.

3.4.2 Empirical convergence results

For the neural networks in numerical experiments, we used a fully connected feedfor-
ward network with 2 hidden layers and the number of neurons of each hidden layer is
d + 10. And for the networks of all schemes, a tanh activation function is used after
each hidden layer. We choose the batchsize = b (set b = 1000 for Brownian motion
case) to train the network and check the convergence of loss function with a test
dataset of batchsize = 2b after every 50 training epochs, we decrease the learning
rate with a discount factor v = 0.5 if the loss decay is less than a given threshold,
and we stop training after the learning rate less than 10~°. In fact, it is good enough
to choose 107° for Euler scheme. We choose a smaller stopping learning rate in or-
der to reduce the impact of the variance of Yy for high order schemes. And small
batchsize b; = 1000, b, = 10000 is enough for the Brownian motion case. However,
for the general diffusion process, small batchsize usually leads to a bias of Y due to
the cumulative error from the accuracy of gradient by Monte Carlo simulation.

We take the absolute of the difference of the theoretical solution and average
result of nT'est = n runs as the error:

€:= ,

n
PRCERT
=1

we set n = 10 for the numerical results below.

S|

130

Chapter 3. Deep Runge-Kutta schemes for BSDEs

We implemented the code in Python3 with the multi-process technique to run
n tests at the same time. Due to the long running time, especially when the dis-
cretization time steps N is large, we run the code on a server '.

3.4.2.1 Brownian motion case

We consider the following example borrowed from [65]. For d = 10,T = 1,t € [0,T],
let
0.2 1

dX, = —1,dt+ —=L;dW,., Xy =1
t g +\/ad ts 0 ds
T—t

f(t,x,y,2) = (cos(z) + 0.2sin(z)) e 2 — %(sin(:ﬁ) cos(z)el 74)? + 1

54 (y (2 14))*,

g(x) = cos(),

d _ _
where z =)] x;. The theoretical solution of this BSDE is V; = COS(Xt)e% and

1=

1
Zh = —%sin(})e%,i =1,---,d.

We will compare the numerical results for the 5 cases stated in Theorem 3.2.1
and called them explicit Euler scheme, implicit Euler scheme, CN scheme, RK-2
scheme, RK-3 scheme, respectively. We set ¢o = 0.5 and we recall Section 3.3.3

1

ag) = g1 =C2, a3z =a31 =1—-—, azg =a3z=-—,
262 202

for RK-2 scheme. For RK-3 scheme, we set co = 0.3, c3 = 0.7 and recall Section 3.3.4

c3(3c2 — 3¢5 — ¢3) c3(e3 — ¢2)
ag1 = (1 = C2, A31 = Q3] = y @32 = Q32 = ————,
02(2 — 362) 02(2 — 302)
—3c3 + 6¢acg — 3co 3cg3 — 2 2 — 3¢y
41 = Q41 = y 42 = Qg = ————, A43 = Q043 = -
6cocs 6ca(cg — c2) 6cs(cs — c2)

We know discuss the balance number Cj as it has some influence on the numer-
ical results. On Figure 3.1, we can see that the error of CN scheme is stable when
log,(Cy) > 3. However, we can get smaller error when —1 < logy(Cp) < 3. In the
implementation, we choose Cy = % for CN scheme, the convergence rate is almost
order 2 when the time steps N < 12, and then if N > 12, the error is almost a
constant, this might be caused by the variance of Yo. Similarly, we choose Cp = 25¢,
for Runge-Kutta scheme at stage 1 < ¢ < @ + 1.

Figure 3.2 shows that the computational time is almost linear to the time steps
for each scheme which is reasonable. The computational time of implicit Euler
scheme and explicit scheme are almost the same. The computational time of CN
scheme is only slightly larger than Euler scheme since this is still a one-stage scheme
though the driver f is computed on both ¢, and ¢,11 at each step 0 <n < N — 1.

The server of the Laboratory LPSM, which has 32 cores CPU and 2 GPUs

131

3.4. Numerical results

For the Runge-Kutta scheme in the general case: the computational time is more
than @) times the computational time of CN scheme, as expected.

Absclute error of YO against balance number cost with, d = 10, T = 1, nTest = 10, Ntime = 10 Time cost of Y0 against Ntime for Bounded example with nTest = 10, d=10

Euler_implicit ok)
--=- Euler_explicit
— o

- - RK_aN_2 pe P
-en RKQN3 .

log2 Error)

2 4
10g2(C_0) Tog2{hitime)

Figure 3.1 — The error of Y, for CN Figure 3.2 — Time cost against time
scheme based on the balance number steps for different schemes

Absolute error of YO against Ntime for Bounded example with nTest = 10, d=10 Absolute error of YO against time cost for Bounded example with nTest = 10, d=10

Euler_impiicit Euler_implicic
21—y -==- Euler_explicit -2 uler_explicit

log2Error)
lag2(Error)

H [7 [§ 1 Y]] 1 15

4 1
log2{htime) log2(Time cost)

Figure 3.3 — Error against time steps Figure 3.4 — Error against time cost for
for different schemes different schemes

In Figure 3.3, we compare the convergence rate of the 5 schemes mentioned
above. We verify that the implicit Euler scheme and explicit Euler scheme are al-
most order 1. The CN scheme is almost order 2. The convergence rate of RK-2
scheme is slightly less than CN scheme, but the error is smaller. The RK-3 scheme
converges so fast that we are not able to observe any convergence order.

In Figure 3.4, we plotted the error w.r.t. the time cost for the 5 schemes men-
tioned above. We see that the Euler schemes are too slow reach a small error. The
RK-3 scheme is very fast but it spend too much time even the number of time steps
N is small. As we expected, CN scheme is faster than RK-2 scheme. In conclusion,
if we want an error smaller than 0.01 ~ 27564 CN scheme seems to be the best
scheme to use.

3.4.2.2 Cox—Ingersoll-Ross process

In this section, we test the CIR process as we mentioned before,

dXt = a(b - Xt)dt + o/ Xtth,

132

Chapter 3. Deep Runge-Kutta schemes for BSDEs

which is a mean reversion process, the following conditions ensure (X})¢~¢ is always
positive:
a>0,b>0,2ab=0% Xy=0.

And the distribution of future values of a CIR process can be computed in closed
form: for ¢ > 0,

72
X () . _ 2a _ 4dab —at
X ~ 5 with ¢ = (1= cal)o? k= 2 , p = 2cXpe™ ¥,

where X;ﬁ(p) is a non-central chi-squared distribution with & degrees of freedom and
non-centrality parameter p. One can also compute the expectation and Variance of
th

o2 bo?

E[X:] = Xpe ™ +b(1 —e™ ™), Var(X) = Xg;(ef‘“ — g2ty 4 = (1— eat)2,

We tested the BSDE with the same solution of the previous subsection ¥; = u(t, X;) =
_ _ . 3 _ _ d

Cos(Xt)e%, Z = —\/%sin(Xt)e%,i = 1,---,d, recalling ¥ := > x;, and
i=1

keep the terminal function g of Brownian Motion case, but with the forward dif-

fusion process is CIR process with a = b =30 = ﬁ and recalling ¥y =

diag(1/A}, - -- \/7

1
X, = (3~ X)) dt +

1
5d?

1
AW, Ap = 101,
\/a d t 0 d

Then, setting the driver f:

o) = (Geost@a+ 5 +sin@ - 2)) 5,

2
2
2
Vi)

Fto,1,2) = F(@) = sin(@) cos(@eT02 + & (43"
,@,9,2) = f(z) — ¢ (sin(Z) cos(z)e d yA=1

d 2
~ 1
= f(z) — g(sin(:i) cos(z)el 74)? + 5d2 ((t,x ; u(t,x) ,
d
where z = Y} z; and recalling Section 3.4.1.2, for z € R?,
i=1
exp(sVp)(z) = ze 5a + 7 (1 —e754)1g,
xpaV(E) = (r1,- 1 (o5 + AT s), 0

We only compare Crank-Nicolson scheme with implicit Euler scheme in this sub-
section since Crank-Nicolson scheme is the best one as we discussed above. Setting
d=10,T =1,Cy = 1. We only test the implicit Euler scheme with b = 5000, and
we test the Crank-Nicolson scheme for both b = 5000 and b = 50000.

133

3.4. Numerical results

In Figure 3.5, the implicit Euler scheme is almost order 1, however it can only
achieve an error around 27° even N = 128. And then see Figure 3.6, the approxi-
mation solution Yy cross the real solution Y, around N = 256 and a bias appeared
when N = 512. For the Crank-Nicolson scheme with batchsize b; = 5000 (red line),
it converger faster than order 2 and achieve the minimal error at N = 12, then the
error almost converges to 27° (the same with Euler scheme with N = 512). When
we increase the batchsize 10 times, the Crank-Nicolson scheme (blue line) is almost
order 2 when N < 16, and then achieve an error smaller than 276 at last, it seems
there still exist a bias, but it smaller than the red line.

Figure 3.7 shows the relation between discreate time steps and time cost, except
the impact of the machine, the lines are almost order 1. In Figure 3.8, see the orange
line and the red line, CN scheme can achieve the same error with Euler scheme but
less time cost when the batchsize for both scheme are identical. However, we have to
increase the value of batchsize if we want to improve the accuracy which will greatly
increase the computational time cost.

Absolute error of YO against Ntime for CIR example with nTest = 10, d=10

log2{Error)

Euler_5000

-+ CN_5000

CN_50000

Y0 against Ntime for CIR example with nTest = 10, d=10

Euler
— 5000
— o 50000
--- real Y0 = 14217

1 2 3 1] 13 7 8

5
log2{htime)

Figure 3.5 — Error against time steps

for different schemes

Tog2{htime)

Figure 3.6 — Yy against time steps for

different schemes

Time cost against Ntime for CIR example with nTest = 10, d=10

Euler_implicit 5000
- CN_50000 o
- CN_5000 Pl

log2(Time cost)
)
a

5
log2{htime)

Figure 3.7 — Time cost against time

steps for different schemes

134

log2(Error)

Absolute error of Y0 against time cost for CIR example with nTest = 10, d=10

Euler_implicit_5000
- CN_50000
-~ CN_5000

2
log2(Time cost)

Figure 3.8 — Error against time cost for
different schemes

Chapter 3. Deep Runge-Kutta schemes for BSDEs

3.5 Appendix

3.5.1 Proof of Proposition 3.2.1

Recalling (3.2.1)-(3.2.2) and v} = Eq, [|H'?], observe that for 1 < ¢ < Q + 1, it
holds

n

1 H
Yn,q =Yot1th Z aqkf(Xn,ka Yn,ky Zn,lc) - (Zn,q + An,q)TZ + A]\471,q’ (351)
k=1 q

where By, [AM,] = By, [HIAM, 4] = 0,Eq, [|AM, 4|*] < o0, and

q—1
An,q = Etn,q H;L (Yn+1 + h Z Clqk;f(XnJ{;, Yn,k;’ Zn7k)>] — Zn7q
k=1
qg—1
= Etn,qlz (aqu;z - O‘qu;L,k) hf(Xn,ka Yn,k; Zn,k:)] . (3.5.2)
k=1

And for the perturbed scheme defined in (3.2.12)-(3.2.13), observe that

n

- g - . . - H -
Yn#] = In+4+l + h Z Cquf(Xn,ka Yn,ka Zn,k) + C%,q — (Zn,q + An7q — Cfl,q)TZ + AMn,qy

k=1 p
(3.5.3)

where By, [AMy 4] = By, [HIAM, 4] = 0,Bq, [|AM;4|*] < o0, and
-]Et” Z aqu(? B aqk k) hf(n k:a n,k> Zn,k‘) . (354)

Set 5Yn,q~: Yg,q_ffn,qa 5Zn,q = Zn,q_Zn,tp 5~An,q = An,q_An,qv 5fn,q = f(Xn,qa Yn,qa Zn,q)_
f(Xng Yng Znyg), 0AMy g = AMy o — AM, g foral 0<Sn < N—-1,1<¢g<Q+1.
From eq. (3.5.1) and eq. (3.5.3), we get

H" q H"
§Yng + (0 Znq + c,;q)v—g + 6AM, g = Y01 +h). agrdfok — Cly — 6AW1U—Z.
4 k=1 q
(3.5.5)

Step 1: For 0 <n < N — 1, control on E[|6Y,|?] by the term h Z Z E[16Z1q]?]
k—n ¢—=2

Squaring both sides of (3.5.5), taking conditional expectation and using Young’s

inequality, we obtain

2

1 h J
10,42 + Ufnyazw + §,§7q|2 < <1 + C> Ei, | [0Yns1 + 1 Z gk frk
q k=1

C 2 1
+2 <1 + h) <\g;4,qy + o |5An,q|2> . (3.5.6)

135

3.5. Appendix

Recalling (3.2.4)-(3.2.5), and denote a = mz]xﬁx{|aqk|, |agr|}, thus have
q7

2

qg—1
‘5ATL7Q|2 = h2 Etn,qlz (aqu(;L - aqk‘H(Zk)(sfn,k]
k=1
q—1)
< (q - 1)h2 Z ‘Etn,q[(a‘qk‘Hg - aqu;k)(sfn,k]’
k=1
qg—1
<gh® Z Etn,q[’aqkﬂg - aquZkl2] Etn,q[|5fn,k|2]
k=1
qg—1
< qh? Y By, [202 HY? + 200 | Hy b) Be, [20F17(10Y0 k> + 16 Zn k)]
k=1
q—1

< 8¢°@[fIL AR Y B, [16Ykl® + [6Z0)]

q—1
< Ch Z Etn,q[|6yn,k|2 + |6Zn,k|2] > (357)
k=1

and

1 1
10Zn,q + G gl* = (1= 0)[6Zn)* + (1 - H)ICZ,(,\Q > (L=0)[6Z,q° — H\Cﬁ,qlz,
(3.5.8)
for n > 0. Using the Lipschitz regularity of f, Young’s inequality and Jensen’s
inequality, for any € > 0, we obtain

2

q
5Yn+1 +h 2 aqk(sfn,k
k=1

q

2
< <|5Yn+1|+h Z |ag(|5Ynk|+\5an])>

2
q
1+ Ch)|6Yn11| + Chl6Znsa| + Ch Y (16Yo k] + |5Zn,k|)>

+IZ>< o >
+h

q 2
1+ Ch) [6Yni1| + Ch) yayn,ko +C(h+e h(
k
q

k=2

q 2
(‘5Zn,k‘>
=1
2
6) (1+ Ch) |6Yps1]? + Ch Z |0V 41]|0Y5 1| + Ch? (6Yn7k|>
k=2 k=2

< <<
< (1
(1

C(h+eh (Z 1070, 1])

h q q
< <1 + 6) ((1 + Ch) |0V i1|* + Ch Y. 15Yn7k|2> +C(h+e)h Y (6 Zn sl

k=2 k=1

136

Chapter 3. Deep Runge-Kutta schemes for BSDEs

Choosing h small enough and € such that C(h + €) < ﬁ, we obtain

2

q q q
h
8Ypi1+ h Sfkl < (14 Ch)|6Ysrl? + Ch Y |6Y, i + — 87 k|2
41 ;aqk Ink ()16Y 011 1;:2' xl A kE: |6 Zn 1|

(3.5.9)

Thus choosing n = 7 in (3.5.8), and using (3.5.9), (3.5.7) into (3.5.6), observing that

% < # < %, then for h small enough, we get

h
|5Yn7q|2 < |5Yn,q|2 + ﬂ|5zn7q|2

q—1
< (1+ Ch) By, [|6Yn1*] + Ch > By, [16Ynkl* + |0 Z0k]*]

c 2
+ Etn,q|:|g{aq|2 + Ch |Cn,q|2:|
-1

< (1+ Ch)Ey, [|0Yn41]?] +ChZEtnq 16Zn1]%] +02Etw[|ggk|2+hy¢nky]
k=1 k=2

(3.5.10)

Using the discrete version of Gronwall’s lemma, we even eventually conclude:

N—-1Q+1
1 L2
E[|0Y,]*] < C (E[(SYNI2 10Zn/?] kEn ;2 E[|5Zk,q|2 + ﬁycgﬂqﬁ + |G 4l]) .
(3.5.11)

Step 2: Control of h Z Z E[|6Z5,4]?].
k=n q=2
Using the Cauchy-Schwarz inequality and the Lipschitz regularity of f, we get

BB, [HHG 0 Fi][* < DO, JIHG] B 16 Skl]

<
< 2d[f]LAh2Etn,q[|6Yn,k|2 + 102 1] (3.5.12)
and

By [B, [} (Va1 — B 0% D]

By, [hEq, [|HP %] By, [16Yne1 — e [0Ynia] 2]
AR [|0Y41 — B [0V 7]
<A

(}Etn[wynﬂ 2] - Etn[csym]?) . (3.5.13)

NN

137

3.5. Appendix

Taking ¢ = @ + 1 in (3.5.5), using Young’s inequality, and note the subscript {n} =
{n,Q + 1}, we get

Ei,[[0Yni1]?] — Ee [0Yns1]?

Q+1

2
= Etn[’6Yn+l|2] — Etnldyn + CT:L{ — h Z aqutn’q[(S.fn7k]]
k=1

Q+1
< By [|0Vn41?] = [6Yal* + C <\5YnHC${| + h(|6Yn] + 1Y) D Eti[an,kH)
k=1

Q+1
< E, [[6Yni1*] = [0Ya]* + C <|5Yn||<${| + h([0Yo] + |CY]) D B, [I0Yn] + I5Zn,k|]>
k=1

Q+1
1 C
< Etn[|5Yn+1|2] - |53/n|2 + Ch Z Etn[€|5Yn,k|2 + 6|(SZn,k|2:| + ﬁEtn“GﬁQ] ’
k=1

(3.5.14)

for any ¢ > 0. Using Jensen’s inequality, and the inequalities (3.5.12), (3.5.13),
(3.5.14), we obtain

q—1 2

Ei, [Hg(sym > g H 8 fu — g;,q]
k=1

hE:,[|0Zy,4*] = hE,

q—1
< CEtn[h B¢, JH(8Yni1 — Etn[5Yn+1])]‘2 + Z azh ‘Etn,q[hHZk6fn,k]‘2 + h‘C’rZL,qP]
=1

q—1
<C (Etn[léynﬁ] — B, [6Yn 1] [P+ 12 Y By, [[0Ynkl® + 620 7] + hEtn[lcz,qP])

k=1
Q+1 1
< C(Etn[\éYnHF] — |6Y, > + Ch Z]Etn[ewn,k\? + e|5zn,k|2]
k=1
E C v hlcZ |2 3.5.15
+ tn EKn‘ + Kn,q| (o)

138

Chapter 3. Deep Runge-Kutta schemes for BSDEs

Summing over ¢ and n, setting ¢ = m, and note that the subscript {n,1} =

{n+1} ={n+1,Q + 1}, then for h small enough,

N-1Q+1
h E[[0 Z.q|*]
k=n q=2
N—-1Q+1 Q+1 4 1
<C E| [0Y51]? = 0Yi]> + b > (S[6Yial? + €621 |?) + ﬁKif\Q + h’sz,qF]
k=n q=2 =1 €
N-1 p, @t Q+1
=C E[Q\5Yk+1’2 — QloYi* + Z |6 + ’Ck\z +h Z (6 q’2]
k=n
j, No1Q+l
+ Q_|_2 E[|5Zkl|2]
k=n [=2
so that
N—-1Q+1
h Z Z |5Zk q|
k=n q=
N—-1 Q+1 Q+1
C Y E|[0Yis1|* — [0Yi[* + R 2 |6V q)* + f\<k|2 +h Z mﬁ]
= q=

N-1 N—-1Q+1 1
< CE[MYNF +HROZNP R DI+ D) D <hyg};’q|2 + h|C,‘§7q|2>] (3.5.16)

k=n k=n q=2

where we used (3.5.10) and the subscript {n,1} ={n+1}={n+1,Q+1},0<n <
N — 1 again in the last line.

Step 3: Control of the term E[|5Yn|2] ,0<n<N-1.

Combining the inequality (3.5.16) with (3.5.11), we get

N—-1 N—-1Q+1 1
E[|6Y,*] < CE[|0YNI> + 62N> +h D [6ViP +h D>] <h2|C’Z7‘1|2 + |g,§7q|2>] .
k=n k=n q=2
(3.5.17)
) . 2
Step 4: Control on hax E[|6Y%/?] + kgnEU(SZk]]
Set oy, Z E[|6Y%[?], and
N—-1Q+1 1
0, == E[|0YN|* + h|0Zn|?] Z Z IEL#K,@;HP + |g,;q|2] . (3.5.18)
k=n q=2
It holds
n — Opt1 < Ché, + CO,,. (3.5.19)

139

3.5. Appendix

Using the discrete version of Gronwall’s lemma, and noting that dy_1 < 6,, 0 <0,
for k = n, we obtain

N-1

1

671 <C (5]\[_1 + Z ekeC(N—k—l)h> < Cenm (3520)
k=n

This last inequality combined with (3.5.19) leads to
E[[6Y2|*] = 6n — Gns1 < CHh.

And for Z—part, the proof is concluded plugging (3.5.20) into (3.5.16) with n = 0
in this equation. Then, we conclude the proof

IE Y: Z < - .5.21
max E[lovif? +h2 [1624%] < Co (3.5.21)

3.5.2 Proof of step 2 of Theorem 3.2.1
Denote H, = Hi' = Hjy, that is

Vo= Eoy [Vosr 4 50/ (s Z0) + F(Vasr, Znsn)|
Zn = Etn [Hn (Yn+1 + hf(n+1, Zn+1))]'

Then recalling (3.1.4) and (3.2.18), set Y41 = u(tnt1, X,,,) =: ug,,, we have for
1<t<d,

Zt = E,, I:(Hn)e (Y1 + hf(Yait, Zn+1))]
= Etn[(H)Z (utn-H — hu (S)ﬂ)]
= () + ™V + 0(h%) — h(ut” + O(h))

Wl +on?) = Z{ +o(n?), (3.5.22)
which yields,
N-1 _
h > E[|Zn — Zo] = O(R?). (3.5.23)
n=0

Using a first-order Taylor expansion, this leads to

d
FYVas Z0) = f (Yo, Zn) Z (Zn = Z0)0f (Yn, Zn) + O(h?)

— —u” + 0(n?). (3.5.24)

140

Chapter 3. Deep Runge-Kutta schemes for BSDEs

For the Y-part, we have

Yn = IE:tn [YnJrl + gf(YnJrla Zn+1)] +)
= IEtn [YnJrl + gf(Yn+1a Zn+1) + gf(yna Zn)] + (f(}_/na Zn) - f(Yn; Zn))
_ Etn[utm o hu(o)] b (Vo Za) — (Y 2)) + O(R). (35.25)

5 tn+1 5 tn

On the other hand,

© " (00 3
Uty = Ut, + hutn + ?Utn7 + O(h), (3526)
up) = uf + b + O(h?). (3.5.27)
Hence,
_ h - _ _
Yo =Y+ =(f(Yn, Zn) — f(Yn, Zy)) + O(h®). (3.5.28)

2
Observe that Y;, = Y;, + O(h) which leads to

f(Vas Z) = f(Yn, Zn) = O(h). (3.5.29)
Therefore,

Y, =Y, + O(h?), (3.5.30)

fYny Z0) = (Yo, Zn) = O(h?). (3.5.31)

Y, =Y, + O(h®), (3.5.32)

E[|Y, — Yal*] = O(h%), (3.5.33)

Tn = O(h%). (3.5.34)

141

3.5. Appendix

142

Part 11

Probabilistic representation of
integration by parts formulae

for stochastic volatility models
with unbounded drift

143

Chapter 4

Probabilistic representation of
IBP formulae for stochastic

volatility models with
unbounded drift

The content of this chapter is from an article in collaboration with Noufel Frikha,
Houzhi Li [29]. Submitted to ESAIM: Probability and Statistics.

Contents
4.1 Introduction 146
4.2 Preliminaries: assumptions, definition of the underlying
Markov chain and related Malliavin calculus 148
4.2.1 Assumptions 148
4.2.2 Choice of the approximation process 149
4.2.3 Markov chain on random time grid 151

4.2.4 Tailor-made Malliavin calculus for the Markov chain (X,Y).152
4.3 Probabilistic representation for the couple (Sr,Yr). . . . 158

4.4 Integration by parts formulae 159
4.4.1 The transfer of derivative formula 160
4.4.2 The integration by parts formulae 162

4.5 Numerical Results, 172
4.5.1 Black-Scholes Model 173
4.5.2 A Stein-Stein type model Lo 175
4.5.3 A model with a periodic diffusion coefficient function 175

4.6 Appendix e e e e e e e e e 181
4.6.1 Proof of Theorem 4.3.1 181
4.6.2 Proof of Lemma 4.4.1, 190
4.6.3 Emergence of jumps in the renewal process N 195
4.6.4 Some useful formulas. 197

145

4.1. Introduction

4.1 Introduction

In this work, we consider a two dimensional stochastic volatility model given by
the solution of the following stochastic differential equation (SDE for short) with
dynamics

t t
Sy = So-i-f TSSdS+f Us(YS)SSdWS,
0 0
! t 41.1
Yi = Yo+ by(Ys)ds+f oy (Ys) dBs, ()
0 0

d(B,W)s = pds

where the coefficients by, og, oy : R — R are smooth functions, »r € R, W and B
are one-dimensional standard Brownian motions with correlation factor p € (—1,1)
both being defined on some probability space (€2, F,P) .

The aim of this part is to prove a probabilistic representation formula for two
integration by parts (IBP) formulae for the marginal law of the process (S,Y) at
a given time maturity 7. To be more specific, for a given starting point (sg,yo) €
(0,00) xR and a given finite time horizon 7' > 0, we establish two Bismut-Elworthy-
Li (BEL) type formulae for the two following quantities

8SOE [h(ST, YT)] and ayoE [h(ST, YT)] (4.1.2)

where h is a real-valued possibly non-smooth payoff function defined on [0, 00) x R.

Such IBP formulae have attracted a lot of interest during the last decades both
from a theoretical and a practical point of views as they can be further analyzed to
derive properties related to the transition density of the underlying process or to de-
velop Monte Carlo simulation algorithm among other practical applications, see e.g.
Nualart [78], Malliavin and Thalmaier [71] and the references therein. They are also
of major interest for computing sensitivities, also referred as to Greeks in finance,
of arbitrage price of financial derivatives which is the keystone for hedging purpose,
i.e. for protecting the value of a portfolio against some possible changes in sources of
risk. The two quantities appearing in (4.1.2) corresponds respectively to the Delta
and Vega of the European option with payoff h(St, Yr). For a more detailed discus-
sion on this topic, we refer the interested reader to Fournié and al. [10],[39] for IBP
formulae related to European, Asian options and conditional expectations, Gobet
and al.[18], [12] for IBP formulae related to some barrier or lookback options. Let
us importantly point out that, from a numerical point of view, the aforementioned
IBP formulae will inevitably involve a time discretization procedure of the underly-
ing process and Malliavin weights, thus introducing two sources of error given by a
bias and a statistical error, as it is already the case for the computation of the price
E[h(ST, YT)].

Relying on a perturbation argument for the Markov semigroup generated by
the couple (X,Y), we first establish a probabilistic representation formula for the
marginal law (S7,Yr) for a fixed prescribed maturity 7' > 0 based on a simple
Markov chain evolving along a random time grid given by the jump times of an inde-
pendent renewal process. Such type of probabilistic representation formula was first
derived in Bally and Kohatsu-Higa [4] for the marginal law of a multi-dimensional
diffusion process and of some Lévy driven SDEs with bounded drift, diffusion and

146

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

jump coefficients. Still in the case of bounded coefficients, it was then further in-
vestigated in Labordére and al. [60], Agarwal and Gobet [2] for multi-dimensional
diffusion processes and in Frikha and al. [12] for one-dimensional killed processes.
The major advantage of the aforementioned probabilistic formulae lies in the fact
that an unbiased Monte Carlo simulation method directly stems from it. Thus,
it may be used to numerically compute an option price with optimal complexity
since its computation will be only affected by the statistical error. However, let us
emphasize that in general the variance of the Monte Carlo estimator tends to be
large or even infinite. In order to circumvent this issue, an importance sampling
scheme based on the law of the jump times of the underlying renewal process has
been proposed in Anderson and Kohatsu-Higa [3] in the multi-dimensional diffusion
framework and in [12] for one-dimensional killed processes.

The main novelty of our approach in comparison to the aforementioned works is
that we allow the drift coefficient by to be possibly unbounded as it is the case in
most stochastic volatility models (Stein-Stein, Heston, ...). Such boundedness con-
dition on the drift coefficient has appeared persistently in the previous contributions
and is actually essential since basically it allows to remove the drift in the choice
of the approximation process in order to derive the probabilistic representation for-
mula. Importantly, a direct application of the methodology developed in [1, 60, 12]
does not work when the drift is unbounded. The key ingredient that we here develop
in order to remove this restriction consists in choosing adequatly the approximation
process around which the original perturbation argument of the Markov semigroup
(X,Y) is done by taking into account the transport of the initial condition by the
deterministic ordinary differential equation (ODE) having unbounded coefficient!.
The approximation process, or equivalently the underlying Markov chain on which
the probabilistic representation is based, is then obtained from the original dynam-
ics (4.1.1) by freezing the coefficients by, og and oy along the flow of this ODE.
We stress that the previous choice is here crucial since it provides the adequate
approximation process on which some good controls on the weights involved in the
probabilistic representation formulae can be established. Roughly speaking, it allows
to cancel the time singularity generated by the Malliavin IBP operators appearing
in the weights. To the best of our knowledge, this feature appears to be new in this
context.

Having this probabilistic representation formula at hand together with the tailor-
made Malliavin calculus machinery for this well-chosen underlying Markov chain, in
the spirit of the BEL formula established in [12] for killed diffusion processes with
bounded drift coefficient, we rely on a propagation of the spatial derivatives forward
in time then perform local IBP formulas on each time interval of the random time
grid and eventually merge them in a suitable manner in order to establish the two
BEL formulae for the two quantities (4.1.2). Following the ideas developed in [3], we
achieve finite variance for the Monte Carlo estimators obtained from the probabilistic
representation formulas of the couple (St, Yr) and of both IBP formulae by selecting
adequatly the law of the jump times of the renewal process. We finally provide some
numerical tests illustrating our previous analysis. Let us eventually mention that

'This dynamical system is obtained by removing the noise, that is, by setting oy = 0, from the
dynamics of Y in (4.1.1).

147

4.2. Preliminaries: assumptions, definition of the underlying Markov chain and related
Malliavin calculus

for sake of simplicity in the present chapter we have decided to consider only one-
dimensional processes S and Y but that some multi-dimensional generalizations of
the above formulae could be achieved at the price of additional technicalities which
we believe would be prejudicial to the understanding of the main idea.

This chapter is organized as follows. In Section 4.2, we introduce our assump-
tions on the coefficients, present the approximation process that will be the main
building block for our perturbation argument as well as the Markov chain that will
play a central role in our probabilistic representation for the marginal law of the
process (X, Y) and for our IBP formulae. In addition, we construct the taillor-made
Malliavin calculus machinery related to the underlying Markov chain upon which
both IBP formulae are made. In Section 4.3, relying on the Markov chain introduced
in Section 4.2, we establish in Theorem 4.3.1 the probabilistic representation formula
for the coupled (S7,Yr). In Section 4.4, we establish the BEL formulae for the two
quantities appearing in (4.1.2). The main result of this section is Theorem 4.4.1.
As a proof of concept, some numerical results are presented in Section 4.5. Clearly,
we believe that one needs to study numerical issues in more details and these are
left for later studies. The proofs of Theorem 4.3.1 and of some other technical but
important results are postponed to the appendix of Section 4.6.

Notations:

For a fixed time T and positive integer n, we will use the following notation for
time and space variables s, = (s1, - ,Sn), Xpn = (21, ,2y), the differentials
ds, = dsy---dsy, dx, = dri---dr, and also introduce the simplex A, (T) :=
{snel0,T]":0<s1 < -5, <T}.

In order to deal with time-degeneracy estimates, we will often use the following
space-time inequality:

¥p=0,qg>0,VoeR, |zPe " < (p/(2qe))P/>. (4.1.3)

For two positive real numbers « and 3, we define the Mittag-Lefler function z —

o0
E,p(2) = > 2%/T(ak + B). For a positive integer d, we denote by C;O(Rd) the space

of real-valued functions which are infinitely differentiable on R? with derivatives of
any order having polynomial growth.

4.2 Preliminaries: assumptions, definition of the under-
lying Markov chain and related Malliavin calculus
4.2.1 Assumptions

Throughout the chapter, we work on a probability space (2, F,P) which is assumed
to be rich enough to support all random variables that we will consider in what
follows. We will work under the following assumptions on the coefficients:

(AR) The coefficients og and oy are bounded and smooth, in particular g and oy
belong to C;°(R). The drift coefficient by belongs to C*(R) and admits bounded

148

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

derivatives of any order greater than or equal to one. In particular, the drift coeffi-
cient by may be unbounded.

(ND) There exists £ > 1 such that for all x € R,

where ag = a?s and ay = a}%. Therefore, without loss of generality, we will assume
that both og and oy are positive function.

Apply 1t6’s lemma to X; = In(S;). We get

t 1 t
X =.T0+f<7“—as dS-i-fO’S
(% ’ ’ 4.2.1
v, —wo+ [vds+ [ovvan, 42.1)
0

d(B,W)s = pds,

with o = In(sp). Without loss of generality, we will thus work with the Markov
semigroup associated to the process (X,Y'), namely Ph(xo,yo) = E[h(X¢, Y?)].

4.2.2 Choice of the approximation process

As already mentioned in the introduction, our strategy here is based on a probabilis-
tic representation of the marginal law, in the spirit of the unbiased simulation method
introduced for multi-dimensional diffusion processes by Bally and Kohatsu-Higa [1],
see also Labordeére and al. [60], and investigated from a numerical perspective by
Andersson and Kohatsu-Higa [3]. We also mention the recent contribution of one of
the author with Kohatsu-Higa and Li [12] for IBP formulae for the marginal law of
one-dimensional killed diffusion processes.

However, at this stage, it is important to point out that our choice of approxima-
tion process significantly differs from the four aforementioned references. Indeed, in
the previous contributions, the drift is assumed to be bounded and basically plays
no role so that one usually removes it in the dynamics of the approximation process.
In order to handle the unbounded drift term by appearing in the dynamics of the
volatility process, one has to take into account the transport of the initial condition
by the ODE obtained by removing the noise in the dynamics of Y. To be more
specific, we denote by (mt(s,y))te[s,;p], 0 < s < T, the unique solution to the ODE
my = by (my) with initial condition ms = y. Observe that by time-homogeneity of
the coefficient by, one has my(s,y) = m—s(0,y). We will simplify the notation when
s = 0 and write m(yo) for m¢(0,y0). When there is no ambiguity, we will often omit
the dependence with respect to the initial point yg and we only write m; for my(yo).
We now introduce the approximation process (X' , }7) defined by

_ t 1 t
X0 =x0 + L (r— §ag(ms)) ds + L os(ms) dWs,
;v ' ' (4.2.2)
Y; =yo+ | by(ms)ds+ | oy(ms)dBs,
0 0

d(B,W)s = pds.

149

4.2. Preliminaries: assumptions, definition of the underlying Markov chain and related
Malliavin calculus

Observe that the couple (X[°,Y°);>¢ is a Gaussian process. We will make
intensive use of the explicit form of the Markov semigroup (F;)e[o,r] defined for any
bounded measurable map h : R? — R by Ph(zo,y0) = E[A(X], Y,)].

Lemma 4.2.1 Let (x9,90) € R?, pe (—1,1) and t € (0,00). Then, for any bounded
and measurable map h : R? — R, it holds

Puh(o, yo) = f W, y) Bt 70, 90,7,) drdy (4.2.3)
R
with
p(t, 20,40, 7,9) 1 xp (- LEZ == Jas)P 1 yomi)
s L0y YO, Ly = -3 -5
2mos0vay/ 1 — py 2 asq (1 — pf) 2 ay,(1— p?)
pr (x—wo— (rt — Jasy))(y —my)
X exp (5)
(1= pi) 05,t0Yt

where we introduced the notations

t
asy = ag(yo) == 0%, = f as(ms(yo)) ds,
0
t
ave = aya(o) == 0% = j ay (ma(y0)) ds,
0
t

osyt = 0syt(yo) = L(USUY)(ms(yo)) ds,

pr = posyi/(0s0v)-
Moreover, there exists some positive constant C := C(T, p,a,r, k) such that for
any t e (0,T]
]5(75,1‘073/0,3’3,.@) < Cq4ﬂ(t7$03y05$7y) (424)
where, for a positive parameter c, we introduced the density function

2

_ 1 (x —x0)®> (y—m)
,Y) — qc(t, xo, Y0, T,Y) 1= —— (— —) 4.2.5
(,9) = Ge(t, w0, yo, ¥, y) := 5— exp 5ot 5o (4.2.5)

Proof. We write

t t

o 1
(X7, 7°) = (mo +rt— 505 +J

os(ms) dWs, my + J
0

0

oy (ms) (deS +4/1— p2d17/5>>

where W is a one-dimensional standard Brownian motion independent of W. We
thus deduce that (X;°, V") ~ N (u(t, zo,90), Xt) with

ast PO'S,Y,t)

1
t, xo, =(x +7rt—=a ,m) and ¥ =
u(t, o, yo) 0 St Mt K (posy,t ayy

2

The expression of the transition density then readily follows. Now, from (ND),
it is readily seen that ag,ay; < st so that using the inequalities ab < %az + %62,

150

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

(a —b)? > 1a? — % and p? < p* < 1, it holds

1
- 2ros0yvin/1— pp P (2 as (1 — p}) - 5aY,t(l — p?)
pr (x—x0— (rt — Jagy))(y — mt))
1—p? 05,10y ¢t
1 b (1(z—mz— (rt — agy))?

1 (y —my)?
- 1= o) = 5= (1= i)
27T1€t ex 2 aS,t(]- o ,0%) (‘pt‘) 2 aY,t(]- o th)(|pt|)
1

x—x0)2 —my)?
0271_(4I€)t exp(—(4/<;)71(0) —(4/43)71(2/) >

2t 2t
= Cg4n(t7 Zo, Yo, T, y)

p(t7$07y07x7y)
1(z =@ — (rt — 3ase))® 1 (y—my)?)

X exp(

<

for some positive constants C := C(T, A\, p,a,7, k).

We will also use the notation (X,**,Y;¥);> for the approximation process start-
ing from (x,y) at time s and with coefficients frozen along the deterministic flow
{m(s,y) = my—s(y),t = s}. Note that the corresponding Markov semigroup satisfies
]557th(x,y) =F [h(Xf’x, Yts’y)] =FE [h(Xt{S,Ytyfs)] = Pt_sh(a:,y).

4.2.3 Markov chain on random time grid
The first tool that we will employ is a renewal process N that we now introduce.

Definition 4.2.1 Let 7 := (7,)n>0 be a sequence of random wvariables such that
(Tn — Th—1)n>1, with the convention 1o = 0, are i.i.d. with positive density function
f and cumulant distribution function t — F(t) = St_oo f(s)ds and T is independent
of (Ws, Bs)ocs<r- Then, the renewal process N := (Ny)i=o with jump times T is

defined by Ny := 35 o1 1ir <t}

It is readily seen that, for any ¢ > 0, {N; =n} = {7, <t < 7,41} and by an
induction argument that we omit, one may prove that the joint distribution of
(1, ,7p) is given by

n—1

]P)(Tl € d817 “r,Tn € dsn) = H f(5j+l - Sj)1{0<51<-~<sn}
7=0

which in turn implies

E[l{Nt:n}q)(Tl, NN ,Tn)] = E[l{rn<t<~rn+1}(b(7-l, . 7Tn)]
© n
[et s [T s = sy dsuan
t n(t) j=0

with the convention sg = 0. Hence, by Fubini’s theorem, it holds

n—1
E[1{n,—n}® (71, ,70)] = L o O(s1,+ 5 50) (1= F(t—s0)) [[f(s541 — 55) dsn
n j=0

(4.2.6)

151

4.2. Preliminaries: assumptions, definition of the underlying Markov chain and related
Malliavin calculus

for any measurable map ® : A, (t) — R satisfying E[1(y,—y[®(71,- -+, 7)|] < o0.
Usual choices that we will consider are the followings.

Example 4.2.2 1. If the density function f is given by f(t) = Ae 1 [0,00) (t) for
some positive parameter X, then N is a Poisson process with mtenszty)\

2. If the density function f is given by f(t) = Tll == tﬁ 1[0,7)(t) for some parameters
(o, 7) € (0,1) x (T, 0), then N is a renewal process wzth [0, T]-valued Beta(1l—
a, 1) jump times.
o
TB(a’@f tlfa(;—l_t)lfﬂ 1[0,7"] (t)
for some parameters (c, 3,7) € (0,1)2 x (T,0), then N is a renewal process
with [0, T]-valued Beta(a, B) jump times.

3. More generally, if the density function f is given by f(t) =

Given a sequence Z = (Z} 7Z2),>1 of i.i.d. random vector with law N (0, I5)
which is independent of (W, B) and a renewal process N independent of Z with jump
times (7;)i>0, we set (; = 7, A T, with the convention {y = 0, and we consider the
two-dimensional Markov chain (X,Y") with (Xo,Yo) = (z0,%0) at time O (evolving
on the random time grid ({;);>0) and with dynamics for any 0 < i < Np

Xiy1 =X, + (T(CiH —Gi) — laSz‘) + o5 ZL

Yiy1 =m; + oy (piZi1+1 + \/723+1>

where we introduced the notations

(4.2.7)

_ Ci+1—Ci _
as,i = 0%; = asc,,—¢(Ys) =J as(ms(Y;)) ds,
0
) _ Gi+1—Gi _
ay; =0y, 1= Ay -6 (Yi) =J ay (ms(Y;)) ds,
0
Cit+1—Ci _
ssvai= [(soy)(m () ds,
0
= 0SY.i
i = pc - (Ys) = p——"—,
pii= Pen—aY) = P

mi 2= M¢ 01— (YZ)

We will denote by U'Sﬂ- the first derivative of y — og;(y) taken at Y; and proceed
similarly for the quantities oy, 0y, p; and m;. We define the filtration G =
(Gi)i=o where G; = O'(Z},Z]?, 1 <j<i),fori>1and Gy stands for the trivial o-
field. We assume that the filtration G satisfies the usual conditions. For an integer
n, we will use the notations " = (o, - ,(n) and 7" = (79, + , Tn).

4.2.4 Tailor-made Malliavin calculus for the Markov chain (X,Y).

In this section we introduce a tailor-made Malliavin calculus for the underlying
Markov chain (X,Y) defined by (4.2.7) which will be employed in order to establish
our IBP formulae. Instead of using an infinite dimensional calculus as it is usually
done in the literature, see e.g. Nualart [78], the approach developed below is based
on a finite dimensional calculus for which the dimension is given by the number of
jumps of the underlying renewal process involved in the Markov chain (X,Y).

152

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

Definition 4.2.3 Let n € N. For any i € {0,--- ,n}, we define the set S; ,(X,Y),
as the space of random variables H such that

o H =h(X;,Y:, Xi41,Yir1, "), on the set {Np = n}, where we recall ("1 :=
(€07 T 7Cn+1) = (07C17 e 7Cn7T)'

o For any spy1 € Api1(T), the map h(.,.,.,.,Sp41) € C;O(R4).
For ar.v. HeS;,(X,Y), we will often abuse the notations and write
H = H(X;,Yi, Xit1,Yie1, ")

that is the same symbol H may denote the r.v. or the function in the set Sin(X,Y).
One can easily define the flow derivatives for H € S; ,(X,Y) as follows

8X+1H—(93h(X Vi, Xi1,Yir1, "),
Oy, H = 04h(X; Vi, X, Yier, (771,
0 H = 01h(X;,Yi, Xiy1, Yig1, (" ")+ 030 (X5, Vi, Xis, 7l-+1,§"+1)0)—(i5(1-+1,
oy, H = Oah(Xi, Yy, Xiv1, z+17<n+1) + 03h(X; }_Q _1+17E+1’Cn+1)aﬁx”1
+ 04h(X;, Vi, Xit1, Yig1,C")(? i}_/iﬂv

and from the dynamics (4.2.7)

0;zi)_(i+1 =1,

/
aﬁ'YiH = mj + Ug/,z' (PiZz'1+1 +4/1 - p?Zi2+1) + UY,i\/lpZi2 <\/ 1—p; Zz+1 Zz'2+1>)

(4.2.8)
_ 1 1, Uls,i _ _
af/;.Xi-i-l = 2052 + 051Z2+1 = —§CLS,¢ + 7(Xi+1 - Xi— <T(Ci+1 Gi) — aSz))~
0S5
(4.2.9)
We now define the integral and derivative operators for H € S; ,(X,Y), a
71 piZlg a1 — p2Z2
T (H) = H[2 P D) -pfhH, (@210
US,Z(l_Pi) L —p; 058,
piZ} g +)1 — p2Z? A
Ifi)l(H) _ H[1i+1 i+1 Pi ’L+1:| Dfi)lH, (4211)
oy,i(1—p?) 1 p2 oy,
1
DY\ H = 0%, H, (4.2.12)
DY H = oy, H. (4.2.13)

Note that due to the above definitions and assumptions (AR) and (ND), it is
readily checked that IZ-(Jlr)l (H), Iﬁ)l (H), DZ(+)1H and DZ(+)1H are elements of S; ,,(X,Y)
so that we can define iterations of the above operators. Namely, by induction, for

153

4.2. Preliminaries: assumptions, definition of the underlying Markov chain and related
Malliavin calculus

a multi-index o = (o, -, ap) of length p with oy € {1,2} and a,41 € {1,2}, we
define

TP (H) = 07 (@ (1), DT H = DS (D H)
with the intuitive notation (o, apy1) = (a1, , py1).

Throughout the chapter, we will use the following notation for a certain type of
conditional expectation that will be frequently employed. For any X € L'(P) and
any i € {0, -+ ,n},

Ein[X] = E[X|G;, 7", Np = n]

where we recall that we employ the notation 7°*! = (7g,---,7,41). Having the

above definitions and notations at hand, the following duality formula is satisfied:
for any non-empty multi-index « of length p, with «; € {1,2}, for any i € {1,--- ,p},
p being a positive integer, it holds

E;in [Dﬁ{f(f(”l, Yi+1)H] = Ein [f(Xi+1> Y2+1)Iﬁ)1 (H)] - (4.2.14)

In order to obtain explicit norm estimates for random variables in Si,n(f(, f/), it
is useful to define for H € S; ,(X,Y), i€ {0,--- ,n} and p > 1

| H

pin = EinllH["].

p,Z,n

We will also employ a chain rule formula for the integral operators defined above.

Lemma 4.2.2 Let H = H(X;,Y;, Xiq1,Yir1,¢"Y) € Sin(X,Y), for some i €
{0,--- ,n}. The following chain rule formulae hold for any (a1, as9) € {1, 2}2

Ox ISV (H) = T (0x H), ox ISV (H) = T (0x, H). (4.2.15)

Moreover, one has

/ /
1 1 0841 Pi OYi (2
O3, T (H) = Ty (O 1) = AT (H) = 25 AT (1), (4.2.16)
/ /

2 2 Oy, PiPi 2
%ﬁMM=#m%H%<W,1_ﬁ>ﬁﬂm, (4.2.17)
/ ’

(1,1) (1,1) 98,i +(1,1) Pi OYi ((12) (2.1)
af/ZIiH (H) = Zi+1 (5{@H) - 205,1-1”1 (H) - 1_ ng 05 <I¢+1 (H) +I¢+1 (H)>)
(4.2.18)
/ /
2,2 2,2 Oy, PiPi 2,2
oy ID(H) = IO (05, H) — 2 (m - p2> 20 (H), (4.2.19)

0'/ . 0'/ . /. / ov
P I~(1’2) H) — 1(1,2) 0o H) — S,i 4 Yi PiPi 1(1,2) H) — Pi Y,zZ(Q,Z) H).
Yi"i+1 () i+1 (Y;) 05 oy 1_p2 i+1 () 1_ng s i+1 ()

(4.2.20)

)

154

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

Proof. Observe that from the very definitions (4.2.10) and (4.2.11), one directly
gets
ox (1) = 0 I (1) = 0

while, also by direct computatlon, we obtain

1 Pé OY,i (2
aY Z(-'r)]_() = JSz 7,(+)1() 1 _ ,02 O_SiIi(—&-)l(l)a
) i pips)
oy L5 (1) = — O.YL. 1 _Z 2 Z;5(1).

We thus deduce
05, ISV (H) = 05, HISV (1) + Hog I5V (1) — 03, DSV H

1+1 1+1 +1 i+1
= 0, HI®Y (1) - DY (0, H)
= 7 (05, H)

i+1
computation. As a consequence, it is readily seen that

05, TV (H) = 03 IS (T0V (H)) = T2 (05, T4V (H)) = TS5 (05, H))

= 700 (05 H).

This concludes the proof of (4.2.15). The chain rule formulae (4.2.16), (4.2.17),
(4.2.18), (4.2.19) and (4.2.20) follow from similar arguments. Let us prove (4.2.16)
and (4.2.17). The proofs of (4.2.18), (4.2.19) and (4.2.20) are omitted. Observe first

that in general D()é’y H # 0y, Dl(ill)H . Indeed, by standard computations, it holds

where we used the fact Dg +11)(3X1_H = 0x,D DY [which easily follows by direct

o5, D)

H = 0y,0%, h(Xi,Yi, Xiv1,Yigr, (")
= a%,Sh(XiaE?Xi-l-l??:i-i-laCnJrl) + agh(XZ‘7E7X’i+17}7i+1acn+1)aﬁxi+l
+ 04 30(X3, Vi, X1, Vg1, ¢ 10y, Vi,

Z(Jr)l& H 6)_(+16 h(X ﬁaXi+17ﬁ+1>Cn+1>

= 0%, (52h(X‘ Y, Xivt, Yirn, ¢ + 03h(X3, Vi, X1, Yigr, (") 0p Xy
+ 84h(Yi, z+1, Yi+1a Cnﬂ)a{fi}_fiﬂ)
= 53,2h(Xi,Yi,Xi+1, Yie1, (") + 05h(Xi, Yy, Xig, Yigr, "oy, Xi
+ 03h(Xy, Yi, Xiy1, Vi1, (")0x, 0y, Xin
+ 03 4h(X3, Vi, Xig1, Vi1, ("0 Vi
+ 04h(X;, Yy, Xiva, Yiga, Cn+1)af(i+1a{/i}_/i+1
= 0y DL H + 03h(X3, Vi, X1, Yia1, (o, 0y Xip
+ O4h(Xi, Vi, Xig1, Yis, CHH)@XHI@);Z,Y;H
= 0y D) H + Dﬁ’lﬂa)—maﬁ Xiv1 + D2 Hog | 05, Vien
_ oy DY, g1 4 TSiplD)

+1 +1
’ US,Z ! 1- P; 08

/ .
H + b 2 it Dz(-zi-)lﬂ

155

4.2. Preliminaries: assumptions, definition of the underlying Markov chain and related
Malliavin calculus

_ / — /
; it - _x., ., = 7S - _ V. = _Pi_ovi
where we used the two identities 8XZ_+18YiXZ+1 = s and 8XZ_+16YiYZ'+1 = T o5

which readily stems from (4.2.8), (4.2.9) and the dynamics (4.2.7).
From (4.2.10) and the previous identity, we thus obtain

o5 I (H) = 05,70, () H + 19, (1)og, H — 03, D), H

T5,i (1) Pi OV, (2) (1) 114 (1)
aszz”l()H—l_ipggsﬂzzﬂ(VH + I (1)oy, H — DY oy H
Sz M) g pi oy 2) 71
og D7,+1 1 o p2 O.SZDZJrl
/
1 1 1
- (IQQI(JH —DELH) + T, (1)oy, H - DY og, H
p;) 2)
1 _pz USz (Iz+1()H DZ+1H)
/
Sz i OYi
= 1), 0y, H) - 210, (1) — LT ().

08,i 1—P12051

Similarly, after some algebraic manipulations using (4.2.7) and (4.2.8), we get dy +1a§7¢ Yig =

/
T¥i _ plpl so that
OY,i 1— p

! /

2 > 2 Iyi _ Pibi 2

z(+)laYH oy, D z(+)1H + D§+)1Haf/i+1aﬁyi+l = aYiDEJF)lH + (Uyl] _Z ;2> DE+)1H
?l 7:

so that, omitting some technical details, we get
0 7 @ (o OVi pipi | @) ovi pipi @)
Yz’I’H-l(H) = Iz‘+1(KH) I R 2 Iz‘+1(1)H R M 2 Dz‘+1H

oY ! 0;
= Iz‘(i)1(ai7¢H) - (Y - BP 2> Iz‘(i)l(H)-

The identities (4.2.18), (4.2.19) and (4.2.20) eventually follows from (4.2.16) and
(4.2.17) using some simple algebraic computations.

We conclude this section by introducing the following space of random variables
which satisfy some time regularity estimates.

Definition 4.2.4 Let € Z and n € N. For any i € {0,--- ,n}, we define the space
M; ,(X,Y,€/2) as the set of finite random variables H € SM(X Y) satisfying the
following time reqularity estimate: for any p = 1, for any ¢ > 0, there exists some
positive constants C := C(T,c), ¢ := ' (¢), T — C’(T7 ¢) being non-decreasing and ¢
being independent of T, such that for any (T, Yi, Tis1, Yis1,Sns1) € R x A, 1 (T),

|H (i, Yi> Tit1, Yir 15 Snt1) [PGe(Siv1 — 8o, i, Yi Tiv 1, Yiv1) (4.2.21)

pt _
< C(8ip1 = 8i) 2 Qo (Siv1 — Sis Tiy Yis Tit 15 Yit 1)

where the density function R? 5 (Tit1, Yit1) = Ge(Sis1 — Sis Tis Yi, Tig1, Yiv1) s de-
fined in Lemma 4.2.1.

156

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

We again remark that since the space M, (X,Y,£/2) is a subset of S; ,(X,Y),
when we say that a random variable M ,,(X, Y, £/2) this statement is always under-
stood on the set {Np = n}.

Before proceeding, let us provide a simple example of some random variables
that belong to the aforementioned space. From (4.2.10) and the dynamics (4.2.7) of
the Markov chain (X,Y), it holds
Xivt = Xi = (r(Giv1 = G) —gas3) pi Yig1 —

asi(1—p?) 1—p? 050y

1
7 (1) = @ ()2 - DL (1) = (@ (1) - A

Iz'(Jlr)1(1) =

so that Ifi)l(1) and Iz(_lﬂl)(l) belong to S; ,(X,Y). Moreover, under (ND), for any
p = 1, it holds

. Tiv1 —2ilP |yis1 — ma(y)|P
I£+)1(1)($iayia$i+1,?/z’+1,5n+1) | ax Z| | A Z(2)|)

(Si+1 — 8i)P (Si+1 — 8i)P

‘p<0(1+

and similarly,

p
IZ.(i’ll)(l)(ﬂfi, Yis Tit1, Yi+1, Sn+1)‘ < C<1+ (

|Zit1 — 2 |yis1 — mi(yi)\Qp)
Siv1 — Si)P (Si41 — 54)%P (Sit1 — 8;)%P

Hence, from the space-time inequality (4.1.3), for any ¢ > 0 and any ¢ > ¢, it
holds

1 p_
IZ'(+)1(1><37i7yiaxi+layi+1asn+1)’ Qe(Siv1 = Si, iy Yir Tit 1, Yit1)

_b _
S CO(Sit1 = 8i) 2qe (Si1 — Sis Tis Yis Tit 1, Yit1)
and

7D

41 (1)(xiayi;$i+1ayi+lasn+l) @c(5i+1 — 84, Tiy Yis Tit 1, Yit 1)

‘p
< O(Sit1 — 5i) Pqe (Sit1 — Siy Tiy Yir Tit15 Yit1)

for some positive constant C' := C(T), T — C(T) being non-decreasing. We thus

conclude that TV, (1) € My, (X,Y,—1/2) and (1) € My, (X,Y, —1) for any
i€{0,---,n}.

i+1
A straightforward generalization of the above example is the following property
that will be frequently used in the sequel. We omit its proof.

Lemma 4.2.3 FizneN and i€ {0,---,n}.

o Let l1,ly € Z and Hy € M@n(X,Y,01/2),Hy € M 5 (X X,Y,ly/2). Then, one
has H1Hy € Miyn(X,Y, (61 + gg)/)

o Let £ € Z and H € M, ,(X,Y,£/2) such that D\°VH € M, (X,Y,0/2) for
some a1 € {1,2} and V' € Z.
- It holds that TS} (H) € My (X, Y, (€=1) AL))/2) and (Gip1—G)TSY (H) €

157

4.3. Probabilistic representation for the couple (S, Yr).

Min(R, 7, (4 1) n (¢ +2)/2).

- Assume additionally that Dgﬂ’aQ)H € M, ,,(X,Y,0"/2) for some " € Z and
ag € {1,2}. Then it holds that IZ»(fi’O‘Q)(H) e M (X, Y, (£=2) A (' =1) A
")/2).

Finally, we importantly emphasize that if H € M, (X,Y,¢/2) for some n € N,

i € {0,---,n} and ¢ € Z, then, its conditional LP(IP)-moment is finite and also
satisfies a time regularity estimate. More precisely, for any p > 1, it holds
| Hllpin < C(Givr — i) (4.2.22)

for some positive constant C' := C(T), T — C(T) being non-decreasing. Indeed,
using the fact that the sequence Z is independent of N as well as the upper-estimate
(4.2.4) of Lemma 4.2.1 and finally (4.2.21), one directly gets

I 0y = B[|H (X, Vi, K, Vi, P X, Vi 74 Ny =

p?l’n

= |H (X, Y, i1, Yie1, COIPD(Girr — Gy Xiy Yy i1, Yig1) dTip1dyin
R

<C i |H (X, Y, i1, Yis1, C PGk (Givt — Gy Xi, Vi i1, Yis1) dwis1dyin
R
< C(Ciy1 — G)PY?

so that (4.2.22) directly follows. The previous conditional LP(P)-moment estimate
will be used at several places in the sequel.

4.3 Probabilistic representation for the couple (S, Y7).

In this section, we establish a probabilistic representation for the marginal law
(St,Yr), or equivalently, for the law of (Xp,Yr) which is based on the Markov
chain (X ,Y) introduced in the previous section. For v > 0, we denote by BA,(RQ)
the set of Borel measurable map h : R? — R satisfying the following exponen-
tial growth assumption at infinity, namely, for some positive constant C, for any
(z,y) € R?,

k(2 y)| < Cexp(y(|z* + [y[*)). (4.3.1)

Theorem 4.3.1 Let T > 0. Under assumptions (AR) and (ND), the law of the
couple (X7,Yr) given by the unique solution to the SDE (4.2.1) at time T starting
from (zo = In(sg),yo) at time O satisfies the following probabilistic representation:

there exists a positive constant ¢ := c(T,by, k) such that for any 0 < v < ¢! and
any h € B,(R?), it holds
_ B Nr+1
E[h(Xr, Y1)] = E|h(Xnps1, Vg 1) 1] 6] (4.3.2)
i=1

where the random variables 0; € Si_l,n()z, Y), 1 <i < Nr are defined by

0 = (G = Gm) TV (e) ~ T () + TP () + T 0h) + T ek s)

() () B

(4.3.3)

158

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

and

Onpsr = (1— F(T — Cny)) L (4.3.4)

with

cfg: %((ﬁ)—as(mz‘—l)),

& = 5 (ay(Y) - ay(mi—1)>,
bl = by (Y;) — by (my_1),
&5 = p((os0y)(Yi) = (050v)(mi-1)).

Assume furthermore that N is a renewal process with Beta(a,1) jump times.
For any p 1 satisfying p(f —a) < 1—a, for any vy such that 0 < py < ¢! and any
h e B,(R 2), the random variable appearing inside the expectation in the right-hand
side of (4.3.2) admits a finite LP(IP)-moment. In particular, if & = 1/2 then for any
p =1, for any h € By(R?) with 0 < py < ¢, the LP(P)-moment is finite.

The proof of Theorem 4.3.1 is postponed to Appendix 4.6.1.

Remark 4.3.2 The strategy to establish a probabilistic representation formula for
the couple (Xp,Yr) follows similar lines to the one implemented in [/, 3, /2]. The
central argument consists in a perturbation argument of the Markov semigroup as-
sociated to the original process (X, Yy)i=0 around the one generated by an approzi-
mation process (Xt, Yt)t>g As previously mentioned, the main difference here with
respect to the aforementioned references lies exactly in the choice of this approxi-
mation process around which this perturbation argument is performed, see Section
4.2.2 for its definition. This choice is crucial and leads to a specification of the
weights (0;)1<i<np+1, see (4.3.3)-(4.3.4), that is different from the previous works.
The main difficulty then consists in proving that the conditional L'(P)-moment of
the weights 6; are of the correct order, that is, they do not lead to a non-integrable
time singularity as hinted in the estimate (4.2.21) (with p = 1) of Definition 4.2.4.
Roughly speaking, these weights are given by Malliavin IBP operators of order 1 or
2 applied to the difference of the coefficients appearing in the infinitesimal genera-
tors associated to (X¢, Yy)i=0 and (Xz,Yy)i=0. As discussed right after the Definition

4.2.4, the Malliavin IBP operator Ifﬂ)(1) € M; ,(X,Y,—1) so that it generates a
non-integrable time singularity of order one and the same conclusion holds true for
Iﬁ’f)(l) and Iﬁ’f)(l). However, the coefficients ¢, c&, b, C%/,S appearing inside
these Malliavin IBP operators, which write as the difference of the coefficients eval-
uated along the dynamics (4.2.7) between two consecutive times, allow to remove this
time singularity. We refer the reader to the technical Lemma 4.6.2 for a rigorous

proof of this claim.

4.4 Integration by parts formulae

In this section, we establish two IBP formulae for the law of the couple (St,Yr).
More precisely, we are interested in providing a Bismut-Elworthy-Li formula for the

159

4.4. Integration by parts formulae

two quantities
OwEIN(ST. Y1)l yElh(Sr, Yr)].

Our strategy is divided into two steps as follows:

Step 1: The first step was performed with the probabilistic representation es-
tablished in Theorem 4.3.1 for the couple (X7, Yr) involving the two-dimensional
Markov chain (X,Y) evolving on a time grid governed by the jump times of the
renewal process N. Introducing h(z,y) = f(e*,y) and assuming that f is of poly-
nomial growth at infinity, it is sufficient to consider the two quantities

NT+1 NT-‘rl

aSOE[h(XNT-HvYNT-i-l) H 92]7 ayoE[h(XNT-i-l?YNT-i-l) H 91]
i=1 i=1

recalling that zo = In(sp).

Step 2: At this stage, one might be tempted to perform a standard IBP formula

as presented in Nualart [78] on the whole time interval [0,7]. However, such a
strategy is likely to fail. The main reason is that the Skorokhod integral of the
Np+1

product of weights [[;]"" 6; will inevitably involve the Malliavin derivative of 6;
which will in turn raise some integrability issues of the resulting Malliavin weight.
The key idea that we use in order to circumvent this issue consists in performing
local IBP formulae on each of the random intervals [(;, (i+1], ¢ = 0, , Np, that
is, by using the noise of the Markov chain on this specific time interval and then by
combining all these local IBP formulae in a suitable way.

To implement successfully our strategy, two main ingredients are needed. Our
first ingredient consists in transferring the partial derivatives ds, and 0y, on the
expectation forward in time from the first time interval [0, (1] to the interval on which
we perform the local IBP formula, say [(;, (i+1]- Our second ingredient consists
in combining these various local IBP formulae in an adequate manner. Roughly
speaking, we will consider a weighted sum of each IBP formula, the weight being
precisely the length of the corresponding time interval.

4.4.1 The transfer of derivative formula

Lemma 4.4.1 Leth e C}(R?) andn € N. The maps R? 3 (z,y) — Eq [h(XHl, Yii1)

0;41|(X5,Y;) = (x,y)], i €{0,--- ,n}, belong to Cj(R?) a.s. Moreover, the following
transfer of derivative formulae hold

aSOEO,n[h(Xl,Yl)el] — Eon [ath(Xl,f/l):] (4.4.1)

while for 1 <i < n,

0%, Ein [h(XHl, Yz’+1)91+1] =Ein [axi+1h()_(i+1, 57z'+1)91'+1]- (4.4.2)

160

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

Similarly, the following transfer of derivative formulae hold: for any0 <i < n—1

0y Ein [h(Xi+17 371‘+1)9i+1] =Ein [8§;+1h()§+1, 17@+1)7:+Y1]
+Ei, [6)—(2,“}1(){'”1, }Zﬂ)ﬁfﬁ]
+ Ein [h(XiH, }_/;'+1)?):+1] (4.4.3)
with
—eY

9i+1 _ (f(CH-l Q)) 1[)(derl) —I—I()(dz+1) _i_IZ(i)l(Yz+1) —i—I()(Yz-i—l)

+ I(l 2) (dz+1)]

—e, X

50 = (f(Grr —)T (e,

= —e, X —e,Y
i =10 (5;71.Xi+19z'+1 -0 :+1) + 0y, biv1 + 72 [m291+1 ~ 0

/
+ (Ug/,i (piZz‘1+1 * MZHl) + UY%%(\/ Zz+1 Zi2+1>>0i+1]7

1 —p:
1
dgrl _ m'c?l,
i+1 ! i+l
dirt = = m;c
Y Y »
i+1 / i+l
dy,s = M;Cy g,
Y+l 1 i+l i+1
eg = —m;Cg +8YCYS,

Y+l _ it+1 il
ey’ = miby + dy.cy

X,i+1 z+1
e = Oy.Cq -
For i =n, one also has

_ _ _ _ —eY
9, Enn [h(XnH, Yn+1)0n+1] =Enn [5yn+1h(Xn+1, Yit1) 0 Z+1]
_ _ —e, X
+ Enn| 0%, h(Knts Yort) 00 |

+ Enn | h(Znt 1, Yas1) T o (4.4.4)
with
7;213—/1 =(1—-F(T—¢)™! (m + 0y <Pn n+1 t mZnH)
+(7Yn\/;(v — P2 41 — n+1>>
Torki = (0= P =)™ (= S+ 05nZhnn):
and we set 7;+1 = 0 for notational convenience.

161

4.4. Integration by parts formulae

. . —e,Y —e, X —
Finally, the weight sequences (9: Ji<i<n+tls ((9;3)i<i<n+1 and (6 :)1<i<n+1

defined above satisfy

f(C’L - Ci—l)??ya f(CZ - Cl—l)g): € M’i—l,n(Xa};v _1/2)7 1€ {17 T 7n}7
f(Ci_Ci—1>7?XEMi—l,n(Xa?yo)a i€{l,--- n},

—eY

and (1— F(T—) 05) | € Mun(X,V,0), (1—F(T— () 0y, € Mpn(X,V,1/2).

The proof of Lemma 4.4.1 is postponed to Appendix 4.6.2. The transfer of
derivative procedure starts on the first time interval [0, ;] according to formulae
(4.4.1) and (4.4.3) (for i = 0). It expresses the fact that the flow derivatives 0y,
and 0y, of the conditional expectations on the left-hand side of the equations are
transferred to derivative operators dg, and dy, on the test function h appearing
on the right-hand side. Remark that the first derivatives of A have been written
ubiquitously as dg, h(Xi+1,Yis1) and Jy, h(Xit1, Yit).

Then, by the Markov property satisfied by the process (X,Y’), the function h
appearing inside the (conditional) expectations on the right-hand side of (4.4.1) and
(4.4.3) (for i = 0) will be given by the conditional expectation appearing on the left-
hand side of the same equations but for ¢ = 1. The transfer of derivative formulae
for the following time intervals are obtained by induction using (4.4.2) and (4.4.3) up
to the last time interval. Doing so, we obtain various transfer of derivative formulae
by transferring successively the derivative operators through all intervals forward in
time.

4.4.2 The integration by parts formulae

We first define the weights that will be used in our IBP formulae. For an integer n,
on the set {Np = n}, for any ke {1,--- ,n+ 1} and any j € {1, -, k}, we define

(1),n+1 n+1 k—1
e (1)
0 = 1_[91 X Ik (Gk) X H 92',
i=k+1 i=1
+1 Jj—1
—contl n —c —eY
07 = H 0; x 0, x 0, .,
i=j+1 i=1
(2),n+1 n+1 k—1
—7 2) —eY —e,Y
g =] axz?@) <[]0,
i=k+1 =1
(1),n+1 n+1 k—1]71
T 1 —eX S
g =] xzVO)x [6:x 87" x[[07, j=1, k-1,
i=k+1 i=j+1 i=1
(1),n+1 n+1 k—1
—Z, (1) —e, X —e,Y
0, = [[6:xz,’(0,) <[] 7
i=k+1 i=1
with the convention | | o+ = 1. Having the above definitions at hand, we are now

able to state our IBP formulae.

162

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

Theorem 4.4.1 Let T > 0. Under assumptions (AR) and (ND), the law of the
couple (X1,Yr), given by the unique solution to the SDE (4.2.1) at time T starting
from (xog = In(sg),y0) at time 0, satisfies the following Bismut-Elworthy-Li IBP
formulae: there exists some positive constant ¢ := c(T,by,k) such that for any
0<~vy<c, any h e B,(R?) and any (so,y0) € (0,0) x R, it holds

_ B Nr+1 I(1) N +1
50T 00, B[R(X7, Y7) | = B[h(Xnps1 Vg 1) D5 (G = Ge1) @ | @as)
i=1
and
B B Np+1
TayoE[h(XT7YT)] :E[h(XNT+17YNT+1) DTG — Gr1)
k=1

N+

(7 raC i(@ i +92(1)NT+1))]. (4.4.6)

Moreover, if N is a renewal process with Beta(a, 1) jump times, then, for any
p = 1 satisfying p(% —a) < 1—a, for any v such that 0 < py < ¢ and any
he BFY(RQ), the random variables appearing inside the expectation in the right-hand
side of (4.4.5) and (4.4.6) admit a finite LP(IP)-moment. In particular, if o = 1/2
then for any p = 1, for any h € B,(R?) with 0 < py < ¢!, the LP(P)-moment is
finite.

Proof. We only prove the IBP formula (4.4.6). The proof of (4.4.5) follows by
completely analogous (and actually more simple) arguments and is thus omitted.

Step 1: proof of the IBP formula (4.4.6) for h € C}(R?).
Let h € C}(R?). From Theorem 4.3.1 and Fubini’s theorem, we write

n+1
E[h(X7,Yr)] = Y E[E[h()’(nﬂ,?nﬂ) [01-17"“] 1{NT:n}] (4.4.7)
n=0 i=1

where we used the fact that {Np =n} = {r,41 > T} n {7, <T}. In most of the
arguments below, we will work on the set {Np = n}. In order to perform our
induction argument forward in time through the Markov chain structure, we define
for k€ {0,--- ,n} the functions

n+1
Hy (X, Vi) = B | h(Xi1, Yarr) [T 0]
i=k+1
3 _ n+1 L
= E[h(XTl-‘rlaYn-i-l) [T 601Xk Y, 7", Np = Tl]
i=k+1

We also let Hy,11(Xnt1, Yni1) := h(Xns1,Yns1). Note that we omit the depen-
dence with respect to the sequence 7°"! in the definition of the (random) maps
(Hy)o<k<n+1. From the above definition and using (ND), (AR), it follows that

163

4.4. Integration by parts formulae

the map Hj belongs to C; (R?) a.s. for any 0 < k < n + 1. Moreover, from the

tower property of conditional expectation the following relation is satisfied for any
ke{0,---,n}

Hy(Xk, Vi) = B [His1 (Xps1, Yir1)0k1]- (4.4.8)

Now, iterating the transfer of derivative formula (4.4.3) in Lemma 4.4.1, for any
ke {l,---,n}, we obtain?

Oyo Ho(X0, Yo)
= 0yoFo.n[H1(X1,Y1)01]
= - .—eY S S a—=>e,X S o \—>C
=]Eom[aylHl(Xl,Yl) 0 1] + Eom[aXlHl(Xl,Yl) 0 1] + EO,n[Hl(XhYl) 0 1]

k
—eY S o \—C —eY
= B[Hu(Xe. Vi) [[0771+ 3 ol (X, V) 05 [] 077
i=1 Jj=1 i=1
S S X7 ey
+ Z EO,n[D](‘l)Hj(Xj’Yj) 0 0, (4.4.9)
j i=1

Hence, by the Lebesgue differentiation theorem, we deduce

n+1

ayoE[(n+1, TL+1 He‘ TL+1:|
- 5yOE[H0(XO, o) T”“]
- E[ayOHO(XO, o) T"H]

= k —e,Y i S S j_1—> Y
— B[D H (X VO T 00 |74 |+ Y B[H (X,) 05 187 |~
i=1 j=1 =1
k - = —)er71—>6}/
—i—ZIE[DJ(.l)HJ(XJ, A A)r”“]. (4.4.10)

To further simplify the first term appearing on the right-hand side of (4.4.10),
we use the tower property of conditional expectation (w.r.t Ex_;,[.]) and the inte-
gration by parts formula (4.2.14). For any k € {1,--- ,n}, we obtain

—eY

B[D Hi(%, Vi) 03 |Gr1, 7| = B[Hi (X, YT (877 |Gy, 7.
(4.4.11)

We also simplify the third term appearing on the right-hand side of (4.4.10), by
using the transfer of derivatives formula (4.4.2) up to the time interval [(x—1, (k]
For any j € {1,--- ,k}, it holds

j—1 k j—1
B[D (%, 7)) 05] 00 [+ | = o w5) T 005 170+
i=1 i=j+1 i=1

164

Chapter 4. Probabilistic representation of IBP formulae

for stochastic volatility models
with unbounded drift

so that, if j € {1,--- ,k
and then performing an IBP formula on the last time

(1)

E| D}

— 1}, taking conditional expectation (using again Ej_1 ,[.])

interval [Cx—1, (x| yield

Tn+1]

o T"“], (4.4.12)
7571" 7_n-&-l]

’ T"H] (4.4.13)

Coming back to (4.4.10), gathering (4.4.11), (4.4.12), (4.4.13) and using the

definition of the maps (Hy)o<k<n+1, we thus deduce

n+1
ayOEI:h(Xn+17YH+1) H 0; TnH]
i=1
—e,Y k_l—wY k - = .—>cC i —e,Y
— B[(X, VT (07 < [T 07 |70 + Y B[%5,) 05 < [T 077 |7+
i=1 j=1 i=1
— _ 1 k=l —e Xj_1 —eY
+ Z E[Hk(Xk,Yk)Z]i)(Qk) X 1_[91 X 9]7 0 i’ Tn+1]
= z=j+1 i=1
+E[H (X, Vi) (7 H ?’QY’ n+1
— — ntl —e,Y s —e,Y
= B[A(X0i1, Yar) [] 0 x20@) < [[07774
i=k+1 =1
k ntl c =1 —eY
2 [Xn+1, Yoyg1) H 0i x 0 ; x b, ‘TnH]
j=1 i=j+1 i=1
k—1 n+1 k—1 x 7j—1 v
—e,
Z [n+17 n+1 H 9 XI()(Ok) H 9i>< 0. x H 01 n+1]
j=1 i=k+1 =741 i=1
n+1 X k—1 Y
—>e —>e
+E[h(Xn+1, o) [0 xz! H ”+1]. (4.4.14)

i=k+1

In the case k = n + 1, using the transfer of derivative formulae (4.4.4), (4.4.2) of
Lemma 4.4.1 on the last time interval and then performing the IBP formula (4.2.14),

165

4.4. Integration by parts formulae

we obtain the representation

B n+1
ayOE[h(Xn+17 n+1 H 0 n+1]
=1
9 n+1 v n+1 7—1 v
it S S\ —e,
= [r(z-i)-lh‘(n+17Yn+1) H HZ ‘ n+1] + E[Hj(G]) 9] H 92 n+l]
i=1 j=1 i=1
asy S 5 —>er71 —eY
+ ZE[D‘El)HJ(XJ’])9j7 91'7 7_71,+1:|
Jj=1 i=1
> = —eY | T —eY s - - _,cj_l_>ey
:E[h(XTL+17Yn+1)I'r(L2—21(en’—&-l)n ei’ Tn+1] + E[HJ(XJ,Y})QJ 9; ‘Tn+1]
i=1 Jj=1 i=1
n+1 n+1 J—1
< —e, X —e,Y
+ Z [7(11-i)-1h(n+17Yn+1) 9i X 9; X 9: ’rn+1]
Jj=1 i=j+1 i=1
n
3. > —eY —e,Y
= E[h(Xn+1a Yn+1)I7(12-21(0 1€1+1) X 1_[9: Tn+1]
=1
n+1 n+1 j—1 v
—c —e
+ E[Xni1, Yos1) H ;i x 0, x g, T”“]
J=1 i=j+1 =1
S 1 - —e, X =1 —eY
+ ZE[Xn+1, Y, n+1)Ir(LJ21(9n+1) X H 0; x 0, x 0, ’T”H]
j=1 i=j+1 i=1
n
o > —e, X —e,Y
+ E[h(Xner Yn+1)IqleZl(0 fz+1) X H 4 f ‘ TnH] (4.4.15)
i=1

where, for the last term appearing in the right-hand side of the above identities, we
employed the transfer of derivative formula (4.4.2) up to the last time interval and
then performed an IBP formula.

Now, the key point in order to establish the IBP formula (4.4.6) is to combine in a
suitable way the identities (4.4.14) and (4.4.15). For each k € {0,--- ,n}, we multiply
the above formulae by the length of the interval on which the local IBP formula is
performed, namely we multiply by (x — (x—1 both sides of (4.4.14), k =1,--- ,;n—1,
and we multiply by 7" — (, both sides of (4.4.15). We then sum them over all k.

166

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

Recalling that ZZLI Co—Coo1 =T — (o =T, we deduce

n+1

Tayo]E[(Xnt1, Yot1) H@' T"H]
=1
n+1 n+1 k—1
—> Y ,Y
_Z Ck — Ck— 1 [(n+1, n+1 H 0; XZ(2 Iy X H Tn+1]
i=k+1 i=1
n+1 k n+1 j—1 v
c —e,
+ (G = 1) ZE[Xoi1,Yorn) [] 6ix 05 <[] 7 ‘TRH]
k=1 j=1 i=j+1 i=1
n+1 k—1 n+1
67
+ (Ck_<k71>< E[h(th wit) [0 x I, H 0; x 0
k=1 j=1 i=k+1 i=j+1
=1 —e,Y 1 — — ntl —>eX —eY 1
<16 T”+]+E[h(Xn+1,Yn+1) [6 x 7" xH g |t])
i=1 i=k+1
ntl (2),n+1 k n+1 (1),n+1
—>I C —>Z
i o S G (7 5 (7 D]
k=1 7j=1

We now provide a sharp upper-estimate for the above quantity. From Lemma

4.6.2 and Lemma 4.4.1, it follows that f(¢; — (i—1)0i, f(G — G- 1) - ,f((l

G1)0; € Mi1,(X,Y,~1/2) and f(¢ — Czel)?):’x € Mifl,n(ijﬂ) fc;(lf any

i € {1,---,n}. Moreover, from the very definition of the weights 6;, G077 and

—e,Y . . .

0, , after some simple but cumbersome computations that we omit (we also re-

fer the reader to Appendix 4.6.4 which contains some expansion formulae), one
e,Y

has f(G; = G)P}V (6), 1(G — G)PP(T7) € Mioin(X,¥, 1) and f(G -
Q,l)Dl(l)(?f’) € M;_1,,(X,Y,—1/2) so that from Lemma 4.2.3 we conclude f(¢;—

—)6

G0 (G=G)TN (0:) € M1 (X, V,0), F(G=G1) (G—CG)IP (T) € My_1 (X, Y,0)

and f(§ — G-1)(G — Q,l)Ii(l)(?:’X) € M;_1,(X,Y,1/2). Hence, from the bound-
edness of h, the tower property of conditional expectation and (4.2.22), it holds

n+1 k:fl
—>e Y

’(Ck—qu)E[(Xnt1, Yni1) H 0; ><I X @

i=k+1

Y

Tn+1”

(f(Ce = Grm))

&

=

<O =FT =G [T (G = GG = G

1:[— o)) MG~ Ger) 2
i=1

167

4.4. Integration by parts formulae

so that using the identity (4.2.6)

n+1 n+1 k-1
—e,Y —eY| .
ZE[Z‘Ck_gk 1 [(n+1,Yn+1) 1_[ezleg)(ek)X 91 T+1”1{NT
n=0 i=k+1 i=1
n+1
<20 E (1= F(T =) ™ (f (G = Gon) ™
n=0
X H (f(G = Gi1)) MG — Ci—l)_%l{NT:n}]
i=1,i#k
n+1
_ Z o+l Z J s 1) Y2ds,
n=0 z ll;&k
I(1/2)
< Y (n4 D)ot _— 222 oo
7;0 I'(1+n/2)
From similar arguments that we omit, it follows
k Cn+l Z—(l) n+1 1
‘Ck:—Ck 1 ZE[Xnit, n+1)(9 ’ —1-9)T"Jr”
7j=1
<C"NG = Ge1) Y, (1= F(T = ()"
j=1
X H(f((z‘ = Ge)) MG = G) TP Ly (G- Giea) T
i=1
so that using again the identity (4.2.6)
n+1 k
CTL+1 _)I(l),n+1
ZE[Z ‘ Ck _Ck 1 Z [n+1a n+1)<9 ’ + ij) Tn+1”1{NT=n}]
n=0 j=1
n+1 k
< o Z (k= Com1) D (1= F(T = Ga)) !
n=0 j=1
H “HG = Gm) TP+ L (G — Gm) T gy
I"(1/2)
(n+1)/2
g Yn+1)(n+2)T T <%

/

The preceding estimates combined with (4.4.7) and the Lebesgue dominated
convergence theorem allows to conclude that yo — E[h(X7,Y7)] is continuously

168

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

differentiable with

10y E[h(X1, YT)]

Nr+1
=T(9y0E[h(XNT+1,YNT+1) H ei]

i=1
=Y E [TﬁyOE[n+1,Yn+1)ﬁ9z“T"H] 1{NT:n}]

n=0

= Y E[E[A(Xns1, Vun) i (G = Ge-1)

n=0
_)1(2)77”’1 k C'n+1 I(l) n+1
(TR T)]
Np+1 (2),Np+1 k nt1 (1),Np+1
_ _ 1t cr T
—E[h(Xnpa, Vi) 2, G-G)(F X (7 <77)]
k=1 j=1

where we used Fubini’s theorem for the last equality. This completes the proof of
the IBP formula (4.4.6) for h € C}(R?).

Step 2: Eaxtension to h € By(R?) for some positive .

We now extend the two IBP formulae that we have established in the previous
step to the case of a test function h € B, (R?) for some sufficiently small v > 0. Let
us note that under assumption (15) (AR) and (ND), from Kusuoka and Stroock
[71], Corollary (3.25) and the upper-estimate (3.27) therein, the process (X¢, ¥3)i=0
admits a smooth transition density (¢, o, yo,x,y) — p(t, zo, Yo, x,y) € C*((0,00) x
R? x R?) and for any h € C}(R?), it holds

50 7 Yo

2 66 E[h(XT7 YT)] = f h(x y) a aygp(T7 o, Y0, T, y) dl'dy (4416)
R2

for any T' > 0 and any integers o and f3.
We then proceed as in step 2 of the proof of Theorem 4.3.1. Namely, we prove
that

10y E[h(X7, YT)]

_ _ Nr+l _z@nNpr1 K w1 (DNp
=E[h(XNT+1,YNT+1) Z (Ck_Ck—ﬁ(QIk T+ —1—2 (00]+1+ HJI,C T+ >>]
k=1 Jj=1
_ _ Nr+1 _)1(2),NT+1 k
:JRQ h(xvy)E[p(T_CNT’XNT’YNT’xvy) Z (Ck — Cr— 1)(+Z
k=1 j=1
(T T deay (@417

for any h € C}(R?).

169

4.4. Integration by parts formulae

Indeed, since f(CZ Gie1)0i, f(G — G)_jy € Mi—l,n(Xa?a —1/2) and f(¢ —
—>eY

C—1)(Ck — Cpo— 1) () € Mj_ 1n(X Y,0), for some ¢ := ¢(T,by,r) > 4r, it
holds

o n+1 (2),n+1
E[ﬁ(T - C’anna Yo, x,y) Z (Ck - Ck: 1)‘ 7

k=1

n+1]

n+1
< Cn+1 J;R2) q4n(T_<na$n7ynvxay) Z(l_F(T_Cn))_l
" k=1

< [T (FG = G-0) (G = Go) (G — Grer)) !
i=k11
k—1+ n
< [TG = G) MG = Go) ™2] [@am (G = Gty i1, yi1, i, i) dndyn
i=1 i=1
n+1 n n
< C"Ge(T, o, yo, 7, y) Z F(T =) TG =G T G —¢-1)"?
k=1 i=1 i=1,i%k

(4.4.18)

where, for the first inequality we used the upper-estimate (4.2.4) and for the last
inequality we used Lemma 4.6.3. From similar arguments, one gets

o ntl k (1),Np+1
E[ﬁ(T - Cn,Xn,Yn,a:,y) Z (Ck — Ckfl) 2 (‘ 0] I > Tn+1]
- =
n+1 k ’
< C"Ge(T, o, y0, 2,y) D (G — Goa Z F(T =)™
k=1 =1
x H(f(@ — Gim1)) TG = Gie1) TR+ Loy (G — Gm) L (4.4.19)

Now, from the upper-bounds (4.4.18) and (4.4.19) as well as the identity (4.2.6),

170

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

we conclude

n+1
Z E[E[ﬁ(T — Gy X, Yo, 2, 9) Z (Ck — Cr—1)
n=0 k=1

T"“]l{NT:n}]

(2),n+1 k nt1 (1),n+1

—7T —C —7,

X ‘9’“ +§<‘99 ’0-’“ >>
J

< j=1

n+1
<(jC(T7x0ay07$7y) Z Cn+1E|:<Z(1_F(T_Cn H Cl 1
k=1

n=0
n n+1 k
x [T G=6-0)+ DG —G1) Y, (1= F(T = ¢) "
i=1,izk k=1 j=1
< JTUFG = Go0) MG = G) VP + Ly (G — Ql)_m]) 1{NT=n}]
i=1
< q.(T, x0, yo, T, y) 1;0 C" ' (n+1)+ (n+1)(n+ 2)/2]T(”+1)/21m
= CTl/zq_C(T7 350’3/0;1’73/)- (4420)

From the preceding inequality and Fubini’s theorem, we thus get

B B Np+1
‘]E[p(T - CNTaXNTa YNTa -T,y) Z (Ck - Ck—l)
k=1
I(2),NT+1 k NT+1 Ilil),NT+1
(@ (@ 7))
7=1
< CTI/Q@C(Ta L0, Y0, T, y) (4421)
for some positive constant C' := C(T) such that T" — C(T') is non-decreasing.

Applying again Fubini’s theorem allows to complete the proof of (4.4.17). Hence,
combining (4.4.16) with (4.4.17)

T0y E[h(XT, Y7)]

= f U@, y) Toyp(T, z0, yo, . y) dudy
R
3 3 NT+1
= fRz h(m,y) E[ﬁ(T = CNgps XNops YNT,x,y) Z (Ck - Ck—l)
oNTHl L ().Npt

x (7 Zi](a)| dedy

for any h € C} (R?). A monotone class argument allows to conclude that the preceding
identity is still valid for any bounded and measurable map h defined over R? and
a standard approximation argument allows to extend it to h € B,Y(RQ) for any
0 < 7y < (2¢T)71, ¢ being the positive constant appearing in the right-hand side

(2) Np+1

171

4.5. Numerical Results

of (4.4.21). We eventually conclude from the preceding identity, (4.4.21) combined
with Fubini’s theorem that

T0y E[h(XT, YT)]

Np+1 (2),Np+1 Np+1 (1),Np+1
_ _ —T —C. —T
k=1 Jj=1

for any h € B,(R?) such that 0 <y < (2¢T)~ L.

Step 3: LP(IP)-moments for a renewal process with Beta jump times.

From the above formula, the proof of the LP(IP)-moment estimate when N is a
renewal process with Beta jump times follows by similar arguments as those em-
ployed at step 3 of the proof of Theorem 4.3.1. We omit the remaining technical
details.

4.5 Numerical Results

In this section, as a proof of concept, we provide some simple numerical results for
the unbiased Monte Carlo algorithm that stems from the probabilistic representa-
tion formula established in Theorem 4.3.1 and the Bismut-Elworthy-Li formulae of
Theorem 4.4.1 for the couple (S, Yr) that allows to compute the Delta and the
Vega related to the option price of the vanilla option with payoff h(St). As already
mentioned in the introduction, we believe that one needs to study numerical issues
and to compare our algorithm with other existing methods to compute Greeks in
more details. However, this is beyond the scope of the current thesis and is left to
future research.

We here consider the unique strong solution associated to the SDE (4.1.1) for
three different models corresponding to three different diffusion coefficient func-
tion og and two different options, namely Call and digital Call options with matu-
rity T' and strike K, with payoff functions h(x,y) = (exp(x) — K)+ and h(z,y) =
L(exp(x)=K) Tespectively. For these three models, the drift function of the volatil-
ity process is defined by by (x) = Ay (u — x) and we fix the parameters as follows:
T =05 r =003 K =15 x9 =1In(sg) =04, Yo = 0.2, oy(.) = oy = 0.2,
Ay = 0.5, p = 0.3 and p = 0.6. We also consider two type of renewal process
N: a Poisson process with intensity parameter A = 0.5 and a renewal process with
Beta(l — «, 1) jump times with parameters « = 0.5 and 7 = 2. A crude Monte
Carlo estimator gives that E[Nr] = 1.25 for Exponential sampling (which is inline
with the theoretical value 1 + AT") and E[N7]| = 1.79 for Beta sampling.

The total time for the computation of the price, Delta and Vega are about 8
seconds for the Monte Carlo method with Euler scheme and about 10 seconds for
the unbiased Monte Carlo method with Exponential and Beta sampling. Generally
speaking, we observe that the variance of the unbiased Monte Carlo estimators
is larger than the variance of the Monte Carlo estimator with Euler-Maruyama
discretization scheme. This should not come as a big surprise since this fact is
reminiscent of unbiased Monte Carlo methods. However, the Monte Carlo method
with Euler scheme is also affected by its inherent bias.

172

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

4.5.1 Black-Scholes Model

We first consider the simple (toy) example corresponding to the Black-Scholes dy-
namics

dSy = rSydt+ogSy dWy, dY; = by(n) dt—i—O’y(Y;g)dBt, d<B, W>t = pdt, pE (—1, 1)

with constant diffusion coefficient function og(.) = og > 0. The law of (S, Y7) can
be computed explicitly so that analytical formulas are available for the price, Delta
and Vega. Note that the discount factor e™"7" has been added in our probabilistic
representation formula for comparison purposes. In this example, we importantly
remark that the dynamics of the Euler scheme writes

Xip1 =X + (7” - %&S,z‘) (CGiv1 — G) + 08,/ Cir1 — G2}y,

Yier =m+oyin/Gii1 — G (piZil_H +4/1— P?Z¢2+1> ,

with m; = me,,,—¢;(Yi) = p+ (Y — p)e NG+176) Also, the weights (6;)1<i<ny+1 in
the probabilistic representation (4.3.2) of Theorem 4.3.1 greatly simplifies, namely

(4.5.1)

0= (f(G — Go)) TP)), 1 <i<Np, and Oypar = (1— F(T = Cy))

We perform M; = 2.56 x 107 for the unbiased Monte Carlo method with Ex-
ponential sampling and M; = 1.79 x 107 in the case of Beta sampling to approxi-
mate the price as well as the two Greeks so that the (average) computational cost
(up to a constant multiplicative factor) is given by E[Ny] x M; = 3.2 x 107 in
both cases. We compare them with the corresponding values obtained using the
standard Monte Carlo method combined with an Euler-Maruyama approximation
scheme for the dynamics (4.1.1) with My = 160000 Monte Carlo simulations paths
and mesh size § = T/n where n = 200. Its computational complexity (up to
a constant multiplicative factor) is given by n x My = 3.2 x 107. Hence, both
Monte Carlo estimators have comparable computational complexity though their
computational time are slightly different in practical implementation. The Delta
and Vega are obtained using the Monte Carlo finite difference approach combined
with the Euler-Maruyama discretization scheme, that is, denoting by E}%(so,yo)
the Monte Carlo estimator associated to the Euler-Maruyama scheme, we compute
(B4, (50 +€,90) — By, (S0, v0)) /e and (E}, (s0,yo + &) — E}yy, (s0,y0)) /€ respectively
with ¢ = 1072, The numerical results for the three different quantities are summa-
rized in Table 4.1, Table 4.2, Table 4.3 respectively. The first column provides the
value of the parameter og. The second column stands for the value of the price, Delta
or Vega obtained by the corresponding Black-Scholes formula. The third, fourth and
fifth columns correspond to the value obtained by the Monte Carlo estimator using
Euler-Maruyama discretization scheme together with its half-width 95% confidence
interval and its empirical variance. The sixth, seventh and eighth (resp. the ninth,
tenth and eleventh) columns provide the estimated value with its halfwidth 95%
confidence interval and empirical variance by our method in the case of Exponen-
tial sampling (resp. Beta sampling). Note that though the variance of the Monte
Carlo estimator in the case of Exponential sampling may explode, we compute it

173

4.5. Numerical Results

for sake of completeness. Indeed, in our numerical experiences, we observed that
the variance of the Monte Carlo estimator in the Exponential sampling case slightly
increases with respect to M;. Nevertheless, we observe a good behaviour of the
unbiased estimators for all three quantities and for all the values of the parameter
os.

BS Euler Scheme Exponential sampling Beta sampling

formula | Price | Half-width | Variamce | Price | Half-width | Variance | Price | Half-width | Variance
0.25 | 0.111804 | 0.111853 | 0.000860286 | 0.0308244 | 0.112196 | 0.000124112 | 0.102648 | 0.112199 | 0.000154064 | 0.110398
0.3 | 0.132621 | 0.132808 0.0010515 | 0.0460493 | 0.133193 | 0.000152038 | 0.15404 | 0.133036 | 0000187336 | 0.163524
0.4 | 0074152 | 0.173559 | 0.00144315 | 00867423 | 0.174754 | 0000208983 | 0.291037 | 0.174711 | 0000257441 | 0.308813
0.6 | 0.256572 | 0.255388 | 0.00233625 | 0.231233 | 0.257287 | 0.000334903 | 0.747423 | 0.256978 | 0.0004127 | 0.793617

ag

Table 4.1 — Comparison between the unbiased Monte Carlo estimation and the Monte Carlo
Euler-Maruyama scheme for the price of a Call option in the Black-Scholes model for different
values of og.

B Euler Scheme Exponential sampling Beta sampling

formula | Delta | Half-width | Variance | Delta | Halfwidth | Variance | Delta | Half-width | Variance
0.25 | 0536589 | 0.55675 | 0.00280539 | 0.327789 | 0.554992 | 0.000895101 | 533915 | 0.555192 | 0.00114054 | 6.0612
0.3 | 0.560018 | 0.560534 | 0.00290622 | 0351775 | 0.558285 | 0.000923515 | 5.6835 | 0.957974 | 0.00116621 | 6.33719
0.4 | 0569512 | 0.570228 | 0.00311011 | 0402864 | 0.567568 | 0.000978965 | 6.98649 | 0.567091 | 0.00123 | 7.04938
0.6 | 0592743 | 0.590041 | 000358714 | 0533925 | 0.589 | 0.0010899 | 791588 | 0.987681 | 0.00137469 | 8.80548

ag

Table 4.2 — Comparison between the unbiased Monte Carlo estimation and the Monte Carlo
Euler-Maruyama scheme for the Delta of a Call option in the Black-Scholes model for dif-
ferent values of og.

B-S Exponential sampling Beta sampling
formula Vega Half-width | Variance Vega Half-width | Variance
0.25 0 0.000690222 | 0.00115103 | 8.82877 | -0.000559242 | 0.00128448 | 7.68766
0.3 0 0.00182175 | 0.00137953 | 12.6821 | 0.000500579 | 0.00156401 | 11.3978
04 0 -0.00163321 | 0.00189888 | 24.0283 | -0.000817515 | 0.00215655 | 21.6701
0.6 0 -0.000830748 | 0.00300346 | 60.1136 | -0.001055 | 0.00340386 | 53.9862

as

Table 4.3 — Comparison between the unbiased Monte Carlo estimation for the Vega of a Call
option in the Black-Scholes model for different values of og.

174

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

4.5.2 A Stein-Stein type model

In this second example, we consider a Stein-Stein type model where the diffusion
coefficient function for the spot price is an affine function, namely og(x) = 012 + 09
where o1 and o9 are two positive constants. Note carefully that og is not uniformly
elliptic and bounded so that (AR) and (ND) are not satisfied. However, we heuris-
tically choose o1 and o9 so that og(Y;) is bounded and strictly positive with high
probability. Also, analytical expressions for the coefficients are available, namely

Ci+1—Ci _ N 2

as; = f [0'1 (4 (Yi—p)e ™?) + 02] ds,
0

,1— e~ 22y (Giv1—Gi)

2y

= (o1p + 09)*(Gis1 — G) + 01 (Y; —)
1 — e~ M (Giv1—G)
Ay ’
1 — e~ 22 (Gr1—G) 1 — e~ M (Giv1—G)
+20’1(0’1M+0’2))
)\y)\Y

gi“_g [a(,u + (}7Z — ,u)e_’\s) + C] ds

pi=p
' 05,i\/ Git1 — G

_ po‘(Yi —) (1 — e MGG X + (g1p + 09) (Giv1 — Gi)
05,/ Giv1 — G ’
_ ogifon(1— e A GrmG)))y)
S as,in/Gi+1 — Gi
i (01(Yi = p) (1 — e C=C) Ay 4 (o1 + 02) (Gigr — Gi))

—p
as,in/Gi+1 — G

The parameters for the unbiased Monte Carlo method and the Monte Carlo
method combined with an Euler-Maruyama approximation scheme are chosen as in
the first example. The numerical results related to the price, Delta and Vega are
provided in Table 4.4, Table 4.5, Table 4.6 respectively for the Call option and in
Table 4.7, Table 4.8, Table 4.9 for the digital Call option. In spite of the fact that
the main assumptions are not satisfied, we again observe a good performance of the
unbiased estimators for all three quantities and for all the values of the parameters
o1, o2, except for the computation of the Vega of a Call option for large values of
o1 and o9.

+ 201 (o1 + 02)(Y; —)

afS,i = U%(ffi —)

4.5.3 A model with a periodic diffusion coefficient function

In our last example, the volatility of spot price takes the following form og(z) =
o1 cos(x) + o9 where o1 and o9 are two positive constants such that oo — o1 > 0

175

4.5. Numerical Results

01

)

Fuler Scheme

Exponential sampling

Beta sampling

Price

Half-width

Variance

Price

Half-width

Variance

Price

Half-width

Variance

0.1

0.15

0.0788438

0.000591635

0.014579%6

0.0785159

0.000184333

0.226921

0.0787702

0.000127826

0.076134

0.2

025

0129

0.0010356

0.04640%

0.120024

0.000391611

102197

0.128967

0.000238248

0.264483

0.3

04

0.200983

0.00179584

0.13432

0.200121

0.000570515

216901

0.200039

0.000388453

0.70310

04

0.3

0.250972

0.00240492

0.240884

0.249897

0.000762565

387509

0.249507

0.000539937

13584

Table 4.4 — Comparison between the unbiased Monte Carlo estimation for the price of a Call
option in the Stein-Stein type model for different values of the parameters o7 and os.

ul

03

Euler Scheme

Exponential sampling

Beta sampling

Delta

Half-width

Variance

Delta

Half-width

Variance

Delta

Half-width

Variance

01

0.15

0547988

000265342

0293238

0538724

0.00165166

18.179

0539677

000137889

8.85936

02

0.25

054942

0.00289365

0.349943

0539137

000211916

29.9265

0538131

000152902

10.8935

0.3

04

0.566344

000328048

0448211

556553

000254168

43.0495

0556605

000162791

123481

04

0.5

0.580157

000359471

053819

0.567956

00026141

£.531

0567737

000184814

159151

Table 4.5 — Comparison between the unbiased Monte Carlo estimation for the Delta of a
Call option in the Stein-Stein type model for different values of the parameters o7 and 3.

0

)

Fuler Scheme

Exponential sampling

Beta sampling

Vega

Half-width

Variance

Vega

Half-width

Variance

Vega

Half-width

Variance

0.1

0.15

0.0369128

0.000309236

0.0039828

0.0325922

0.00150912

15.1766

0.0349527

0.00104028

5.04243

0.2

0.25

0.0733673

0.000689904

0.019827

0.0671736

0.00333563

74,1462

0.0680856

0.00190913

16.9829

0.3

04

0.109991

0.00121245

0.0612259

0.0090781

0.004919

161.243

0.0954942

0.00311339

15165

04

0.5

0.143413

0.0018251

0.138734

0.129808

0.00689953

317.226

0122975

0.00443729

91.7436

Table 4.6 — Comparison between the unbiased Monte Carlo estimation for the Vega of a Call
option in the Stein-Stein type model for different values of the parameters o7 and os.

01

73

Euler Scheme

Exponential sampling

Beta sampling

Price

Half-width

Variance

Price

Half-width

Variance

Price

Halt-width

Variance

0

0.3

0468101

000241055

0.242013

0.4686%

0.000363387

0.879968

0.46889

0.000466078

L0218

01

0.15

049084

000241351

0.242608

048939

0.000706916

3.33015

0439924

0.000534225

1.32981

0.2

0.25

0458089

0.00240761

0241423

0458472

0.000780893

40636

0.4583%

0.000536405

1.34069

0.3

04

0430371

000239421

0.238744

0.428881

0.000840943

4.71261

0429222

0.000513132

1.22687

04

0.5

0410102

000237947

0235813

0.409966

0000737924

3,687

0409407

0000510215

1.21296

Table 4.7 — Comparison between the unbiased Monte Carlo estimation for the price of a
digital Call option in the Stein-Stein type model for different values of the parameters o
and os.

176

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

ul

73

Fuler Scheme

Exponential sampling

Beta sampling

Delta

Half-width

Variance

Delta

Half-width

Variance

Delta

Half-width

Variance

0

0.

1.23092

0.0306499

39.126

1.2445

000157472

16.5247

1.24436

000199696

185815

0.1

0.15

220347

0.0403738

67.3968

217998

0.0049492

163.229

218349

0.00400828

748611

02

0.2

1.27673

00311925

405237

1.27004

000456344

138.776

1.27093

000239161

26.6516

0.3

04

0.79344

0.0247765

25,5675

0.793619

00023143

35,6918

0.792876

000144989

0.79521

04

0.5

0.617625

0.0219193

200107

0623268

0.00168461

18.9116

0622453

000115744

6.24217

Table 4.8 — Comparison between the unbiased Monte Carlo estimation for the Delta of a
digital Call option in the Stein-Stein type model for different values of the parameters o;
and os.

Ul

02

Fuler Scheme

Exponential sampling

Beta sampling

Vega

Half-width | Variance

Vega

Half-width

Variance

Vega

Half-width

Variance

0

0.3

0

(

0

{0.000131092

0.00343628

T8.6873

0.000348826 | 0.00401465

75.099

01

015

0.0369417

0.0147786

9.09656

0.0279754

0.00583723

227,061

0.0278411 | 0.00446809

93.0219

0.2

0.5

0.0202435

0.0138245

7.95983

0.0324521

0.00764528

380.506

0.0363005 | 0.00443643

92.539

0.3

04

0.04155%4

0.015675

10.2334

00437127

0.00764653

389,633

0.0405366 | 0.0042496

84,1467

04

0.3

.0538733

0.0178463

13.2649

0.0526366

0.00643334

275.8048

0.0546736 | 0.00423366

83.5054

Table 4.9 — Comparison between the unbiased Monte Carlo estimation for the Vega of a
digital Call option in the Stein-Stein type model for different values of the parameters o
and 9.

177

4.5. Numerical Results

in order to ensure that (ND) is satisfied. Here, the coefficients appearing in the
dynamics (4.2.7) write

Ci+1—GCi _ N 2
as,; = f [01 coS (,u + (Vi — p)e” YS) + 02] ds,
0

Git1—Gi _ _
ag,; = —2af e S gin (1 + (Y — u)e_/\ys) [01 cos (p+ (Y; — /L)e—/\ys) + 02] ds,
0

§17 o1 cos (+ (Vi — e ™) + 2] ds
pi=p 7
, 0108, Sgi+1—Ci e~ AYS gin (N + (}7 _ u)e—Ays)dS
pi = —p

Ufg,i gi“_g [01 cos (,u + (Y; — ,u)e_)‘Ys) + 0'2] ds
—p
asi/Gi+1 — G

and no analytical expressions are available. However, a simple numerical integration
method can be employed for the computation of the above integrals. We here use
Simpson’s 3/8 rule which for a real-valued C*([0,7]) function g writes as follows

vt e [0,7], ﬂg(s)ds ~ é (g(O) + 39 (;) +3g (2;> + g(t)>

with an error given by g (¢')T° /6480 for some t’ € [0, T].

The parameters of the unbiased Monte Carlo method and the Monte Carlo Euler-
Maruyama scheme remain unchanged. The numerical results related to the price,
Delta and Vega are provided in Table 4.10, Table 4.11, Table 4.12 respectively for
the Call option and in Table 4.13, Table 4.14, Table 4.15 for the digital Call option.
Here again, the unbiased estimators perform very well for all range of values of the
parameters.

=

Euler Scheme Exponential sampling Beta sampling
Price | Half-width | Variance | Price | Half-width | Variance | Price | Halfwidth | Variance
0.1 { 0.15 | 0.110563 | 0.000847678 | 0.0200274 | 0.111364 | 0.000124637 | 0.10352 | 0.111372 | 0000153086 | 0.109198
02 0.25 | 0.193444 | 0.00164016 | 0.112042 | 0.193513 | 0.000243912 | 0.396457 | 0.193538 | 0.000291832 | 0.396832
03 | 0410294835 | 0.00281222 | 0.329386 | 0.205101 | 0.000416276 | 1.15476 | 0.295277 | 0000496958 | 1.1507
04 {05 | 0372503 | 00039339 | 0.644346 | 0.873974 | 0.000648198 | 2.79991 | 0.374822 | 0000693144 | 2.23866

0 | 03

Table 4.10 — Comparison between the unbiased Monte Carlo estimation for the price of a
Call option in the model with og(x) = o1 cos(x) + o2 for different values of the parameters
o1 and oo.

178

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

Euler Scheme Exponential sampling Beta sampling
Delta | Half-width | Varlance | Delta | Half-width | Varlance | Delta | Half-width | Variance
0.1] 0.5 | 0.556212 | 0.00279964 | 0.326447 | 0.558216 | 0.000913553 | 5.56155 | 0.558105 | 000114048 | 6.06062
02 025 | 0.576577 | 0.00321369 | 0.430147 | 0.573738 | 0.00101499 | 6.86522 | 0.574758 | 000125848 | 7.37962
03 | 0.4 | 0.608348 | 0.0038355 | 0.612705 | 0.60132 | 0.00118321 | 9.32936 | 0.601943 | 0.00145509 | 9.86555
04 | 0.5 | 0.629084 | 000444972 | 0.824655 | 0.623976 | 0.00135463 | 12.2284 | 0.625204 | 0.001653 | 12.7317

0 | 03

Table 4.11 — Comparison between the unbiased Monte Carlo estimation for the Delta of a
Call option in the model with og(z) = o1 cos(z) + o2 for different values of the parameters
g1 and g92.

Eler Scheme Exponential sampling Beta sampling
Vega | Halfwidth | Variance | Vega | Half-width | Variance | Vega | Halfwidth | Variance
0.0 0.05 | -0.00775169 | 9.12481e-05 | 0.000346781 | -0.00651665 | 0.00112781 | 847614 | -0.00739643 | 0.00128018 | 7.63629
0.2 1 0.25 | -0.0156966 | 0.000218523 | 0.00198885 | -0.00421% | 000220569 | 324202 | -0.015778 | 0.00245716 | 28.1324
0.3 | 04 | -0.023379 | 0.000412417 | 0.00708403 | -0.0074822 | 000873738 | 93.0011 | -0.0179794 | 0.00413341 | 79,6854
0.4 105 | -0.0307742 | 0.000670215 | 0.0187084 | -0.0311582 | 000563561 | 203.151 | -0.0304437 | 00042962 | 153.747

0| 09

Table 4.12 — Comparison between the unbiased Monte Carlo estimation for the Vega of a
Call option in the model with og(z) = o1 cos(x) + o3 for different values of the parameters
o1 and os.

Euler Scheme Exponential sampling Beta sampling
Price | Half-width | Variance | Price | Half-width | Varlance | Price | Half-width | Variance
0 | 03 [0466531 | 0.00241015 | 0.241934 | 0.468532 | 0.000363404 | 0.880049 | 0.468702 | 0.000466623 | 1.01455
0.1] 0.15 | 0.481467 | 0.00241291 | 0.242488 | 0.481189 | 0.000371395 | 0.91918 | 0481203 | 0.000469696 | 1.02795
02 | 0.25 | 0.442993 | 0.00240127 | 0.240155 | 0.45142 | 0.000368266 | 0.903758 | 0445054 | 0.000456271 | 0.970033
0.3 | 0.4 {0.406075 | 0.00237603 | 0.235133 | 0.407653 | 0.000357236 | 0.850523 | 0407567 | 0.000441207 | 0.907039
041 0.5 | 0.377704 | 0.00234699 | 0.22942 | 0.380003 | 0.000346223 | 0.798802 | 0.380009 | 0.000429336 | 0.838886

0| 02

Table 4.13 — Comparison between the unbiased Monte Carlo estimation for the price of
a digital Call option in the model with og(z) = o1 cos(z) + o2 for different values of the
parameters o1 and os.

179

4.5. Numerical Results

Euler Scheme Exponential sampling Beta sampling
Delta | Half-width | Variance | Delta | Half-width | Variance | Delta | Half-width | Variance
0 |03 | 123339 | 0.030679 | 30.2017 | 1.24300 | 0.00156929 | 16411 | 124507 | 0.0019971 | 18.5841
0.0 [0.05 | 151796 | 0.0338824 | 47.8142 | 151058 | 0.00193524 | 249572 | 151051 | 0.00242614 | 27.4265
02 1025 | 0.816965 | 0.0251319 | 26.3063 | 0.834766 | 0.00107561 | 7.70968 | 0.834635 | 0.00132928 | 8.23333
03 | 0.4 | 052051 | 0.0203232 | 17.2025 | 0.527783 | 0.000676488 | 3.04964 | 0.527829 | 0.000838507 | 3.27608
04 | 0.5 {0.389601 | 0.0174702 | 127117 | 0.403047 | 0.000518279 | 1.79001 | 0403017 | 0.0006438 | 1.93127

01 | 03

Table 4.14 — Comparison between the unbiased Monte Carlo estimation for the Delta of
a digital Call option in the model with og(z) = o7 cos(z) + o2 for different values of the
parameters oy and os.

Euler Scheme Exponential sampling Beta sampling
Vega | Halfwidth | Variance | ~ Vega | Halfwidth | Variance | Vega | Half-width | Variance
0103 0 0 0| 0.00052633 | 0.00341519 | 77.7246 | -0.00120724 | 0.00401747 | 75.2048
0.0 | 0.15 | 0.0107747 | 0.00798181 | 2.65345 | 0.00924064 | 0.00351717 | 82.4356 | 0.00920282 | 0.00407047 | 77.204
0.2 0.25 | 0.0138331 | 0.00905046 | 341153 | 0.0129711 | 0.00349226 | 81.2719 | 0.0125995 | 0.00391887 | 715586
0.3 | 04| 0.0123139 | 0.00853288 | 3.03249 | 0.0117377 | 0.00336349 | 75389 | 0.0119138 | 0.00375579 | 65.7269
04 | 05 | 0.0153924 | 0.00953999 | 3.79057 | 0.0170044 | 0.00319472 | 68.0131 | 0.01687% | 0.00363443 | 61548

gy | 0

l
l
l
l

Table 4.15 — Comparison between the unbiased Monte Carlo estimation for the Vega of
a digital Call option in the model with og(z) = o1 cos(z) + o2 for different values of the
parameters oy and os.

180

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

4.6 Appendix

4.6.1 Proof of Theorem 4.3.1

The proof is divided into three steps. In the first part, we establish the probabilis-
tic representation for a bounded and continuous function A. We then provide the
extension to measurable maps satisfying the growth condition 4.3.1. We eventu-
ally conclude by establishing the LP-moments when the jump times are distributed
according to the Beta law.

Denote by £ and (L;);>o the infinitesimal generators of (P;)i=o and (P;)i=0
respectively given by

L) = (r — Jas()ouf (r,9) + Sas)Ef(r.y) + by ()2, f(r.9)

+ 5o) @) + plosor))3, @),

Lof () = (r = as(mu(u0)2f (2,4) + sas(melu) 2 (,) + by (mals0)) 2y f (2,)

+ sov ()3 (2,9) + p(osov) me(u) 22,/ (2,1)

for any f € CZ(R?).

Step 1: Probabilistic representation for a bounded and continuous map h

B We establish a first order expansion of the Markov semigroup (P;)¢>o around
(Py)t=0. We apply Ito’s rule to the map [0,t] x R? 5 (s,z,y) — Pi_sh(z,y) €
C;’Q([O,t] x R?) for h € C°(R?), observing that dsP,_sh(z,y) = —LP_sh(z,y). We
obtain

T

h(Xr,Yr) = Prh(zo, yo) +j

(aSPT,Sh(XS, Y,) + Lo Pr_sh(Xs, 175)) ds + My
0

T - - —
_ Prh(ao,y0) + f (Lo — £)Ppoh(Xs, V2)ds + My
0

where M := (M;);>0 is a square integrable martingale. We then take expectation in
the previous expression and make use of Fubini’s theorem so that

Prh(zo,yo0)

T
— Prh(zo, yo) + L E[(L — £,)Pr_sh(X,, V)] ds

T

= BRCE, V0] + | B[ar (729) — oy (ma ()35 Pr-oh (X320, 7) | ds

0

T
+ | B[5 as(V®) ~ astm. () [02Pr— (X2, Y1) — 0uPr_oh(X20, V) ds
0 L

+

T
[v () = by oo, Proan(xzn ¥ ds

T
+j0 E[p((050v) (V) = (a50v)(ms(90)))02, Pr—oh(X20,70) | ds. (46.1)

181

4.6. Appendix

~ We now rewrite the previous first order expansion using the Markov chain
(Xi,Yi)o<i<ny+1 and the renewal process N. From the previous identity, the defi-
nition of fy, 11 in (4.3.4) and the identity (4.2.6), we directly obtain

Prh(zo,yo)
=]E[h’(XNT+17 YNT+1)9NT+11{NT:O}]

+E [((1 — F(T =))(6)) ™ Lno [;ms(fa) —as(mo)) Dy Pr_g h(X1, Y1)
L (1) R AN (2,2) c v
—5las(Y1) —as(mo))Dy Pr—¢ (X1, Y1) + S (ay (Y1) — ay (mo)) Dy Pr—g h(X1, Y1)
+(by (Y1) — by (mo)) D) Pr_, (X1, V1)
+p((o50v) (V1) = (50y) (o)) DS Pr_g (X1, 1) |
= E[A(XNp11, YNp 11087 1 1 vp—o}] + E[((l — F(T —) f(C1)) gy
x [cg’pgl’”PT,clh(Xl, V1) — 5DV Pr_e h(X1, Y1) + b D3P Pr_ h(Xy, V1)
+ 0 DO Pr_ o h(X1, Y1) + iy D2 P h(Xy, 1?1)]]. (4.6.2)

_ Next, we apply the IBP formula (4.2.14) with respect to the random vector
(X1,Y1) in the above expression. In order to do that rigorously, one first has to take
the conditional expectation Eg 1[.] in the second term of the above equality. We thus
obtain

o [c}qul’”PT,ﬁ h(X1, Y1) — s DY Pr_ h(Xy, V1) + DD Pr_ h(X, Y1)
+ by D Pr_g, h(X1, V1) + chy D Pr_g h(X, 1?1)]
= Eo| |7 (eh) = TV (eh) + ZED (k) + P 1)) + T (ehy) | Prog (K, 1) |
(4.6.3)
From Lemma 4.6.2 and the estimate (4.2.22), we get
Boa||[20"V (ch) - 70 (k) + TED () + TP 04) + T (k) ||| Prci (K0, 1) |
< Crlhlocy (4.6.4)

for some positive constant Cr such that T" — Cr is non-decreasing. The previous
estimate yields an integrable time singularity. Indeed, from the previous estimate
and (4.2.6), one directly gets

E[((l — F(T - C1))f(€1))_11{NT=1}’E0,1 [[I{l’l)(c}g) - Ifl)(C}S) + 1'{2’2) (cy)
+ TP + Ifl’Z)(CE,y)]Pchlh(le 371)] H
< CE[(1 - F(T = &) F(0)) ¢ 1wy

T 4p
=Cf 51_/ ds1 < 0.
0

182

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

Coming back to (4.6.2) and using (4.6.3), we thus derive

17rh($o,yo)

[(XNT+17YNT+1)9NT+11{NT 0}]
E[((1—F(T -) () ynpeyy
|2k = 1V (eh) + IV () + TP 0) + 2 ey) | Prog (X0 V)

= E[h(XNT_,_l, YNT+1)9NT+11{NT:0}] + E[Pnglh(Xl, Y1)92011{NT:1}]‘ (4.6.5)

Our aim now is to iterate the above first order expansion. We prove by induction
the following formula: for any positive integer n, one has

n—1 NT-‘rl
Prh(zo,y0) = Z E [A(XNp+1, YNg+1) H Qil{NT=j}]
7=0 i=1
. ntl
+E PT*Cn X ,Yn) H 0; 1{NT n}] (4.6.6)

The case n = 1 corresponds to (4.6.5). We thus assume that (4.6.6) holds at step n.
We expand the last term appearing in the right-hand side of the previous equality
using again (4.6.1), by then applying Lemma 4.6.1 and by finally performing IBPs
as before.

To be more specific, using the notations introduced in Subsection 4.2.2, from
(4.6.1) and a change of variable, for any (deterministic) ¢ € [0,T], one has

PT—Ch(:Ev y)
~ BN 5]

T -

+ | [las(VE) — astm)P h(XE* YEY) - 0, Pr_h(XE# V40| ds
T -1 B _ _

| [lay (VE9) — ay (m-)03 Proh(X67, V)| ds

T B — — —
+ f E| (by (V4%) = by (myc(9)))0y Pr-oh(X$7, VE0) | ds

T
+ | B[ol(osov) (V57) (@s0v) m- ()02, Pr-oh(XE YE0) | ds.

We take ¢ = (u, (7,9) = (Xny, Ya,) in the previous equality, then multiply it

183

4.6. Appendix

by]—[?:11 0i1(N;—ny and finally take expectation. We obtain

. ntl
E[PT—Cnh(ns Yn) H eil{NT:n}]
=1

n+1

= E[h(}z%"axn7 Yﬁn,Yn) H eil{NT:n}]
i=1
n+1 T 1 _ _ _
* E[[101 ng=n L 5 (as(Yim™) = ag(ms—, (Va))
i=1 n

X [aiPT_Sh(Xgny)_(n’)_/;Cnv}_/n) _ amPT_Sh(X§n7Xn7 }_/;CT“?H)]dS]

n+1 T

1 _ _ _ _ _ _ _
+E[[0 nrmn) f 5@y (V) — ay(my, (Va))) 02 Prosh(X§ ¥, Y) ds]
=1 Cn
~n+1 T - _ R
B[]0k | Oy (FET) = by (mem, (V) Proch(X6 0, Y505 |
T =1 Cn
nl T o
+E[[Ly L p((o50y) (T)
T i=1 n

— (050v) (e, (V)2 Pr_oh(X6n X YérTnyds|. - (4.6.7)

Now, from the very definition of the Markov chain (X;,Y;)o<i< Ny+1 and of the
weight sequence (6;)1<i<ny+1 of Theorem 4.3.1, the first term of the above equality
can be written as

B _ 3 _ n+l B B Np+1
E[h(X%"’Xn7Y7€nuYn) E eil{NT:n}] = E[h(XNT-i-l’YNT-i-l) E Hil{NT:n}].

(4.6.8)

We now look at the second, third, fourth and fifth terms. Let us deal with

the third and fourth terms. The others are treated in a similar manner and we

will omit some technical details. We first take its conditional expectation w.r.t
{¢&i =t1, -,y = tn, Nr = n} and introduce the measurable function

n+1

Gt by, T) i= B| [T 0:] 5 (ay (VET") = ay (i, (V))02 Pr-gh(XX YT
=1

N =

+ (by (YSYn) — by(msfcn(?n)))aypT_sh(Xngn,?;Cnv"”w]\cl =t1,- ,Cp = tn, Np = n]

which satisfies

n+1

|G(t17 T ,tn,S,T)’ < CE[H |01|<1 + | Ls O-Y(mu—tn)dBuD‘Cl = tla e)Cn = tn)NT = ’I’Z]
i=1 n
n+1

< CE[H |07,||C1 = tly"' 7Cn = tnaNT = n]
=1

184

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

where we used the boundedness of ay, the Lipschitz regularity of by, the inequal-
ities supg<;<7 |05 Pihle < C for £ = 1,2 and, for the last inequality, the in-
cquality E[|§;. 0y (mu—r,) dB.l|GarCi = t1,- .Go = b Ny = n] < Cloy|o(s -
t,)Y/? < CT'2. Recall now that P(Ny = n,(; € dty,--- ,(n € dtp) = (1 — F(T —
tn)) H;:& f(tj41 —tj)dt1,- - ,dt, on the set A, (T) so that from Lemma 4.6.2 and
the estimate (4.2.22), we obtain

T
E[L |G(<17 T aCTLv SaT)|1{NT:n}dS]

T n
< CJ f (T —tn) H(tz - tz‘—1>71/2dt1 oo dtpdtn, 1 < o0.

i=1
Hence, by Lemma 4.6.1, it holds

n+1
1
[I{NT =n} He f [ay YCmYn)_aY(ms—Cn()))a Pr_, (chn,Xn an,yn)

o+ (by (VET) = by (g, (V) Oy Pr—sh(X§0 X Y T) | as]
T
- E[I{NT=7L} L G(Clv w5 Gns S, T) ds]
|
x| 5 @y (Vas1) = ay (ma) DD o A1, Vi)

+ (by (Ynt1) = by (mn)) D) Pr_g, h(Xn1, Yn+1)]1{NT:n+1}]-

l
A::]:

@
Il
—_

91'(1 - F(T - €n+1))71(f(<n+1 - Cn))il

N =

Finally, we take the conditional expectation E, ,41[.] inside the above expec-
tation and then employ the IBP formula (4.2.14), two times w.r.t. the diffusion
coefficient and one time w.r.t the drift coefficient as done before. We obtain

n

E[H@l— (T = Gos1))™ (f(CnH—cn))*l[l

92 (aY(Yn-&-l)

- ay<mn>>Dg;1>PT_¢wh(XnH, Yis1)
+ (bY(n+1) - bY(mn))DSJZlPT—CnHh(Xn-Hv 1771—%-1)]1{NT:7L+1}]

—E[Hﬁ (1= F(T = Gue1) ™ (f (Gt — G) T ZED () + T3, (0]

X PT—<n+1h(X7’L+17 Yn+1)1{NT=n+1}]-

185

4.6. Appendix

In a completely analogous manner, we derive

n+1

B[100w [5005 = asime, (7))
x [02 Pr_gh(X 5 Xn Y Yn) — 0, Pr_ h(X ",Yf"y")]dS]
[H@ 1-— T Cn+1)) (f(Cn-i—l - Cn))il

1,1, n 1), n - —
x (203 (et =z, (e Pre <n+1h(Xn+1aYn+1)1{NT:n+1}]

and
n+1 _ B B B
E[H91{NT n}f (os0y) (YET) — (50y) (M, (n)))af;,yPT—sh(Xg”’X”,KC"’Y”)dS]
=1
= B[TT6:00 = F(T = o) ™ (F G = G) T T Pr g (K1, Yo)L vy |
=1

Summing the three previous identities, we obtain that the sum of the second,
third, fourth and fifth term in the right-hand side of (4.6.7) is equal to

B[00 = PT = o)™ (G =) [0 @) ~ 2 ™)
+ T8 @) + I8 0 + T @D | Procon MK, Yas) L npnsny |
n+2 3 B

= E[H 0:Pr—c, , M(Xps1, Yn+1)1{NT:n+1}]

i=1

where we used the very definitions (4.3.3) and (4.3.4) of the weights (6;)1<i<nNy+1
on the set {Ny = n + 1}. This concludes the proof of (4.6.6) at step n + 1.

To conclude it remains to prove the absolute convergence of the first sum and
the convergence to zero of the last term in (4.6.6). These two results follow directly

from the boundedness of h and the general estimates on the product of weights
established in Lemma 4.6.2.

Indeed, from Lemma 4.6.2, the estimate (4.2.22), the tower property of condi-
tional expectation and the identity (4.2.6), we obtain

~ B Nr+1
E[’h(XNT+1,YNT+1)‘ H ‘91‘ 1{NT:j}]
=1

< Cj|h’ooE[(1 —F(T =) (G = Gon) MG - Cz‘—1)7%1{NT:j}]
i=1

J
= Cj h f S; — 32‘—1)_% ds;
e |, o :

i i I7(1/2)
O)

186

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

which in turn yields

n—1 Nr+1 1/2\n
. (CTY?)
2 B et Voersn)| [T 1060 L] < e 35 5 s
j:0 1=1 n=0

= |h’ooE1/2,1(CT1/2)

so that the series converge absolutely. Similarly,

n+1

o . T7(1/2
‘E[PT—cnh(X”’ Y) E eil{NT:"}” < Cn’h‘ooﬂf(liil/z)

so that the remainder indeed vanishes as n goes to infinity. We thus conclude

)) Nr+1
Prh(zo,y0) = Z E[h(XNT+1,YNT+1)]_[Gil{NT:n}]

n=0 i=1

NT+1

:E[h(XNTH,?NTH) I 9z-] (4.6.9)

for any h € Cl? (R2%). We eventually extend the above representation formula to any
bounded and continuous function A using a standard approximation argument. The
remaining technical details are omitted.

Step 2: Extension to measurable map h satisfying the growth assumption (4.3.1)

We first extend the previous result to any bounded and measurable h. This
follows from a monotone class argument that we now detail.

Let us first consider h € Cp(R?). From Fubini’s theorem, it holds

n+1
E[h(Xn+1a Y1) H Hi‘NT =n, CnH]

i=1
= JRQ h(z,y) E[ﬁ(T — Gy X, Yo, 2, %)
n+1 B B o
H 01(i—1y }/:i—].a X’i7 }/’b Cn+1)’NT =n, CTL+1:| dxdy
i=1

which can be justified as follows. From the upper-bound estimate (4.2.4), Lemma

187

4.6. Appendix

4.6.2, Lemma 4.6.3, it holds

n+1
‘E[ﬁ(T = Gy X, Yoy,) [[0(Xim1, Yio1, X4, Y, ¢ | Np = CnH”
5

< (1_F(T_Cn))lf ﬁ(T_memyn,l’ay)
(R%)n
< | T16i(@i1, yi 1, i, yi, DG = Gty @it Yio1, T, i) dXndyn
=1
< (CT)n+1(1 - F(T - Cn))il J(RQ) Cjc(T - C’I’L? Tn, Yn, T, y)
H(f(g - (ifl))_l(é.i - Ci*l)_% X qe (< Gim1,Ti—1,Yi— 173317%) dx,dyn
=1

< (Cr)" (1 = F(T = &) [J(F(G — Gim1) MG — Gim1) ™ 28e(T, w0, 0, 2, y)
=1

for some ¢ := ¢(T,by,x) > 4k. Hence, from (4.6.9) and again Fubini’s theo-
rem, justified by the previous estimate and the fact that E[(C’T)NT+1(1 - F(T -

Cvg)) HfV:Tl(f(Cz —¢i—1)) MG - C¢_1)_%] < 00, one has

NT-‘rl

Prh(xo,y0) = f . h(z, y)E[ﬁ(T — CNps XNp, YNg 2,) H Hi] dxdy (4.6.10)
R i=1

for any h € C,(R?). Moreover, from the previous computations, the following upper-
bound holds

B B Np+1
‘E[ﬁ(T_CNT)XNTvyNTvx’y) H 01:|
=1
n+1
- ZJ]E[ﬁ(— 8y Xy Yoo ,9) HO ‘NT—n ¢t = (0, 31,-‘-,8n,T)]
n=0 i=1
n
X(l— —Sn Hf —Szldsn‘
i=1
_1 _
Z J n+1 H — Si— 1 T2 dsn)Qc(T7 x07y07x7y)
n>0 nT) i=1
= CEI/Q,I(CT 1/2)QC(Ta 'r(]ay()azay)' (4611)

It now follows from (4.6.10) and a monotone class argument that the probabilistic
representation formula (4.3.2) is valid for any real-valued bounded and measurable
map h defined over R?. The extension to any measurable map h satisfying the
growth assumption: |h(z,y)| < Cexp(y(|z|* + |y?)) for any 0 < v < (2¢T)7L, ¢
being the constant appearing on the right-hand side of (4.6.11), follows from the in-
tegral representation (4.6.10), the upper-bound (4.6.11) combined with a standard

188

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

approximation argument. Remaining technical details are omitted.
Step 3: Finite LP(IP)-moment for the probabilistic representation

If N is a renewal process with Beta(a,1) jump times then f(s; — si—1) =

—Q
8 i ol (si = sic) and 1= F(T = s,) = 1= (T52) " > 1 (D)o

T)
similarly to step 2, by Fubini’s theorem, we get

n+1
E[h(Xns1, Vo) [| 10317 N7 = m, ¢
i=1
- | I P B[R = G X Ti)
n+1l

H ‘ei(Xi—hY/i—laX%E;Cn—‘rl)’p‘NT =n, <n+1] dl'dy
=1

The above formula is justified by Lemma 4.6.2 and Lemma 4.6.3 which yield

n+1
E[5(T = Gus X Vo 2) [] 10:Ki1, Vir, X0 Vi ¢ | Np = m, 741
i=1
SCU-FT=G)™ | o0 = G psny)
(R2)n

n

X H 105(2i—1, yi1, @i, yi, CTIPD(G — Gty e 1, Yim1, T, y) dXndyn

i=1
SCMA=FE -G |l = G nny)
(RQ)”
x [JCF(G = Gm)) (G = Gim1) ™2 8e(Gi — Gimts @imt Yim1, i, Ui) dXpdlyn
i=1
<C"H 1= F(T = G)) [[(F(G = Gm1)7HG = Gima) ™ 272G (T, w0, o, 7, y)
i=1

for some ¢ := ¢(T,by,k) > 4k. Now, using the fact that E[CNT+1(1 — F(T —

e) TS (F (G = Gimn) MG — Ci—l)fgml”a] <o assoonas p(z —a) <1—a

189

4.6. Appendix

and that h € B, (R?), from the previous computation, we obtain

B) Np+1
E[|(XNp+1, Vg 1) [P H 0[]
+00 _ _ - n+1

= 3 E[E[h(Far, Tarn) P T T 1000 | N2, ¢ | Ly
1=0 =1

<E|CNTH(1L - F(T = () H = Gie)) G = Go) et

X L PP+ G (T 20, yo, 2, y) dady.
R

To conclude the proof, it suffices to note that the above space integral is finite
as soon as 0 < yp < (2¢T)~*

4.6.2 Proof of Lemma 4.4.1

Since h € Cj(R?) and Eiyn[|)§+1|q + |}7i+1|q] < @ a.s., for any ¢ > 1, under (AR),
one may differentiate under the (conditional) expectation and deduce that (z,y) —
Ei,n[h(XiH,17%+1)9i+1’(Xi,Yi) = (flfay)] € C,(R?) for any i € {0,---,n} a.s. The
rest of the proof is divided into three parts.

Step 1: proofs of (4.4.1) and (4.4.2)

The transfer of derivatives formulae (4.4.1) and (4.4.2) are easily obtained by dif-
ferentiating under expectation (which is allowed by the polynomial growth at infinity
of h) noting from the definition of the Markov chain X that 05, X1 = 05, In(so) = %

and Ox h(Xit1,Yip1) = 0%, M Xit1,Yie1)0g, Xip1 = %, h(Xit1,Yis1). Observe
as well that from (4.2.15), the fact that dg. c7’+1 = Ox.cy i = é’Xibifl dx.cy e =

Ox, Ifi)l(1) = GXiIfi)l(l) = 0 and the very definition of the random var1ables
(Hi)1<,<n+1, one has 0g,0;+1 = 0. This gives the identities (4.4.1) and (4.4.2).

Step 2: proofs of (4.4.3) and (4.4.4)

The proofs of (4.4.3) and (4.4.4) are more involved. Let us prove (4.4.3). We
proceed by considering the difference between the term appearing on the left-hand
side and the first two terms appearing on the right-hand side of (4.4.3). On the one

190

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

hand, using the IBP formula (4.2.14) and (4.2.8), we get

0y, Ein [h(Xi+1;Yi+1)0i+1]

=Ein [5)2i+1h()_(i+1, 171'+1)5Yi)_(i+19¢+1] +Ein [3{@.“]1()_(#1, E+1)5g5_/z‘+19¢+1]
+ Ein [h(Xz‘-i-l,)7i+1)a§7i9i+1]

=Ein [h(XiJrh Yii1) [Ii(i)l(af/iXiJrlgiJrl) + Ii(-?-)l (m;91‘+1)]]

+Ein h(Xit1, 1?iJrl)Ii(i)l <Ug’7i (piZilH +4/1 = P%Zz‘2+1)9i+1)]

/
+ Eipn h(Xit1, Yz’+1)Ii(42_)1 <UY,1# (\/ 1- PZ?ZZ‘IH - PiZi2+1>9i+1>]
L 1— i

+ Ein| A(Xig1, ?}H)a{/ﬁiﬂ]-

On the other hand, again from the IBP formula (4.2.14), we obtain

— = —e, X = = —eY
Ein [(%Qﬂh(XHl, Yit1)0 :H] +Ein [537i+1h(Xi+1, Yit1)0 §+1]

+E;n [h(XHla }7i+1)§)§+1]
—eY —c

= = —e, X
= Ei,n [h(Xi+1? YPA) [Ii(}ra(0 i+1) + Ii(i)l(0 i+1) + 0 i+1]]'

Combining the two previous identities, we see that the difference

0y.Ein [h(Xi-Ha YE+1)9z‘+1] - (Ezn [a)_(iHh(Xi-i—l, Yz+1)72§]

= = —e,Y = = —
+Ein [5;7i+1h(Xi+1, Yit1) 0 :+1] + Ein [h(Xi+la Yit1) 0 f+1])

—e,Y S =
=E;, [h(Xi+17 Y2+1)I¢(i)1 <m;0i+1 -0 i+1)] +E;n [h(Xi+1, Yi+1)5{g9z‘+1]

r — _ 1) ,—e, X S = 1 v
—Eipn _h(Xz'+1, Yi+1)Ii(+)1(Y i+1)] + Ein [h(Xz‘+1, K+1)Ii(+)1(557iXi+19¢+1)]

+Ein :h(XiHv YiH)Iz‘(i)l (Ug/,i <piZi1+1 T/l - p?ZiQJrl)Hi-&-l)]

+ Ein :h(Xi—&-la 17i+1)zﬁ)1 (Uwpig (1/ L—p2ZL — piZfH)HHl)] (4.6.12)

/1= 07

)

- EZ n h(X’H-lJ E+1)7§+1] .

Before proceeding, we provide the explicit expression for the quantity (991_ Oit1.
Using the chain rule formula of Lemma 4.2.2, after some standard but cumbersome
computations, we obtain

191

4.6. Appendix

0y, 0i+1
= (f(Gr1 = G))” [H)(ay)~ 2 (@Pr e + I (Gr.) + T (0r)

TP gt - (22 (D) -) + (D)

3

(-) (i) 2 + T D)

oy

p; UY{L' 1,2 i 2,1 7 2 i 2,2 3
1_%2051.(1%'(4-1)(+1)+I()(+1) Iz(+)1(+1)+I()(}jré))]

—e,Y
Also, after some simple algebraic simplifications using the definitions of 6 f 11

and ﬁfﬁ in (4.4.3), one obtains

) (miier = i) = =G —)20 (0p,6511) + 207 (0,618 |

and
—e, X

IO (T = (PG —)T (on ™).

Combining the three previous identities and gathering similar terms, we obtain

—eY —e, X
Iﬁ)l (m;9i+1 — 40 i+1) + 0,041 _Ii(Jlr)l(041)

= (F(Gi = 67| = Zh@r e ™) + I @05

i 1)/ i+ 1,2) 4
_<05 (2IZ(+1)(+1) Iz(+)1(1)+Ii(+1)(c£§)>

Ovi _ Ppi (22)i+1y | 7 itly L 712 it
+<m_1—2><ﬂ”1()+ TR0 + I5D ()

Pg OY, 1,2)/ 4 i 2) 2,2), i
_1_pz20$l<1'2(+1)(+1)+I()(+1) Iz(+)1(+1)+I()(6;51«)>] (4613)

The previous identity will be used in the next step of the proof. Coming back
—>C
to (4.6.12) and using the definition of the weight 6, ; allows to conclude the proof
of the identity (4.4.3).

—e, X —c

—e,Y
Step 3: The weight sequences (9: Ji<i<n+1, (03)i<i<n+1 and (0 ;) i1<i<n+1 and
the related spaces M ,,(X,Y,0/2), £ € 7Z.

In this last step, we prove the last statement of Lemma 4.4.1 concerning the
. —e,Y —e, X —c
weight sequences (0 ;")i<i<n+1, (0)i<i<nt1 and (0;)1<i<nyi-

Following similar lines of reasonings as those used in the proof of Lemma 4.6.2,
namely using the fact that di', ditt, d?ré, g”l, e?”l € M;,(X,Y,1/2) and

192

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

(1) i1 O g+l @) gt ~22) gitl D) gitl ~©2) g+l ~(12) il (1) Y+l
DiJr)ld?_‘) ,Dz(Jrl dg", Dz(+1d§jr ; Di+1)d§;r) Dz(+)1d§j,r5a Dz(+1d§jfs’ D£+1)d§/-t_57 D§+)lesz)
Dﬁ)le}t’zﬂ € M, ,(X,Y,0) as well as Lemma 4.2.3, we conclude

—eY = = .
f(Ci-i—l - Cz> 9i+1 eMi,n(X7Y7_1/2)7 (AS {07"' y 10— 1} .

Note also that

eg(,i+1 _ (9371,0?1
1 _ _
= 5(“’5(Yi+1)5ifiyi+1 - ag(mi)m;)
1 _

_ 1 _
= 5(00(9(3/”1) — ag(m;))dy,Yit1 + 500(9(77%)(3{@1/%1 — m;)
so that, using on the one hand the Lipschitz regularity of a and on the other
hand (4.2.8), from similar arguments as those used in the proof of Lemma 4.6.2, we
conclude that

1, - _ 1 _ _
§als(Yz'+1) — als(m;))0y,Yit1, §a's(mz‘)(5zYz‘+1 —m;) € M o(X,Y,1/2)

which in turn implies that e?’”l € M, ,,(X,Y,1/2). Moreover, standard computa-
tions that we omit show that Dﬁ)leé(’wl e M; ,(X,Y,0) so that by Lemma 4.2.3 we
deduce

F(Gir = G) T € Min(X, Y, 0).

We now prove that f((j41 — Q)?fﬂ e M; ,(X,Y,—1/2) for any i € {0, ,n — 1}.
We use the decomposition

—c —e,Y —e, X

f(CiH - Q‘) 0 i+1 = f(Cz’H - Cz‘) (Ii(i)l <m§9¢+1 — 0 z‘+1) + 5}71-9141 - Zi(Jlr)l(0 z‘+1>>
+ Ifi)l <5gXi+1f(Ci+1 - <i)9i+1>

2 /
+ Iz'(+)1 ((Ugf,i (PiZz'1+1 +14/1— p?ZiQH)

/

+ Gy,i\/lpiiz (\/ 1—p2Z{, — piZi2+1))f(<i+1 - Cz')9i+1>.
e

—e,Y —e, X

We first prove that f((j+1 — Q)(Iﬁ)l <m;9i+1 -0 Z-+1> + 0y,0i11 — lﬁ)l(0 i+1)) €
M; ,(X,Y,—1/2). We investigate each term appearing on the right-hand side of
(4.6.13).

In particular, we first use the fact that C?rl, c%,“, bi;rl, il

Y,S Oy,cs ™ opby ! €
M; ,(X,Y,1/2) and the fact that when one applies the differential operators Dl(jfll), Dﬁll’w)
to these elements the resulting random variables belong to M; ,(X,Y,0) for any

(o1, c2) € {1,2}%. From Lemma 4.2.3, we thus conclude that the elements Zi(}r’ll) (i,

1,2 i 2,1 ; 2,2 ; 1,2 . 2,2 . -
Ii(+1) (i, Ii(+1) (&, Ii(ﬂ) (i), Ii(+1) (c%fé), Ii(+1) (cﬁfé) belong to Mj; ,(X,Y, —1/2)
and that Ii(i)l(c?’l),lﬁ)l (birhy, IZ-(Jlr)l(ﬁpi chﬂ),Ii(i)l(&yi i) belong to M, (X,Y,0).

Moreover, using (ND), one gets that there exists C' > 0 such that for any i €

193

4.6. Appendix

{0,---,n—1}, |U/sl/USz'|+|U§m/UYz|+|UYz/GSz|+|P§/(1 P+ pipi/(1—p2)| < C.
We thus conclude that f({41 —Cl)(i (m O;iv1— 0 Z+1) +0y.0i41 —Il(}r)l(0 fﬁ)) €
M@n(X,Y,—l/Q).

It thus suffices to prove IZ(+)1 (&-.X¢+1f(@+1 i) Z+1), Z(i)l (O'YZ (piZt, +

\/ Zz+1)f(Ci+1_Ci0i+1> and Il(+)1 (CTYz\/pZipl2 <\/ leﬂ Zi+1))f(<i+1_

Ci)9i+1) belong to M ,,(X,Y, —1/2). In order to do this, we remark that

_ 1 _
Oy, Xiy1 = —iag’i + 0% 241 € Min(X,Y,1/2),
/

Og . _
= 2 e My (X, Y,0),

S
OalpiZhs + 1)1~ 02 22,1) € Min(X,Y,1/2),
/

2 UY,' _

Dz<+)1 (O’g/vi(piz’il-l‘l + V 1 - pgz’?‘f‘l) - YZA € Mi,n(X,Y, 0)7
K

P 2 v

O—Y,Z 5 Z’L+1 Z’L-‘rl EMZ,TL(X7Y7 1/2),

1—pi

PO

z+1(a?i)?i+1)

/ . _
D) (s s (228 -) = 2y 0,5, 7.0

1— 1=7;

i

and from Lemma 4.6.2, f((i+1 — ()0iv1 € Mi7n()z, Y,—1/2). From Lemma 4.2.3, it

follows that f(Ciy1—Ci)0it10y, Xit1, f(Giv1—Ci)0iv10v(pZl 1 +/1 = 0222, 1), F(Civ1—

Gi)Oiv10vi f; > <1/ Z}H Zfﬂ) € M@n()_(,}_/,()). Now following similar
—p

i

computations as those employed in the proof of Lemma 4.6.2 and omitting some tech-
nical details we obtain DZ(H(f(C,H ¢i)0iv1) € M (X, Y, —1) so that from the chain

rule formula and Lemma 4.2.3, the random variables Dz(il(f(Giv1 = Gi)0it10y, Xi1),
DI (04 (piZir+4/1 = pRZ20) F(Gia1—G)Ois) and D§+)1(0Y,i\/fi—p?(y/ VARES
plZHl)f(QH — (;)0i+1) belong to Mi’n()z,l_/, —1/2). From Lemma 4.2.3, we thus
conclude that Zi(}r)l (0}71_Xi+1f((i+1_<i)9i+1) , Iﬁ)l (a&i(pzZl 1+H4/1— Z¢+1)f(fi+1—
Ci)9i+1> and Iﬁ)l (Uw\/lpé—p? (W1=piZ} 0 = piZ) f(Civa — Ci)9i+1) belong to

M; ,(X,Y, —1/2). From the preceding arguments, we eventually deduce that f(¢;11—
Q)?;l e M; ,(X,Y,—1/2) for any i € {0,--- ,n — 1}.

Y
Finally, from the very definition of the weights on the last time interval ?2 41

—e, X
and 0 Z 1 one directly gets that
—e,Y
(1= F(T =) Tt =, +ayn(pn VI R2Z2)
(\/ ann+1 n+1>

+oyn—F/—m——

ﬁ

194

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

belongs to M, ,(X,Y,0) and that

—>eX

1
(1 - (T CTL)> n+1l = _iafg,n + Ufg,n2711+1
belongs to M, ,(X,Y,1/2). The proof is now complete.

4.6.3 Emergence of jumps in the renewal process N

The next result is used in the proof of the probabilistic representation in Theorem
4.3.1 to express that time integrals add jumps to the renewal process N. In what
follows, N is a renewal process in the sense of Definition 4.2.1.

Lemma 4.6.1 Let n € N and G : {(t1,...,tpt2) : 0 < t1 < -+ < tpp1 < tpyo =
T} — R be a measurable function such that E[SZ; |G(C1y- -y Cny s,T)]l{NT:n}ds] <
. Then, it holds

T
E| < G-+ G, TV L gy

= E[G(Clv ceey Cna Cn+1,T)(1 - F(T - <n+1))_1
(1= F(T = G))(f Gt = 6) ™ Lpvpmmiyy |

Proof. The proof follows by rewriting the above expectations using (4.2.6). We
rewrite the expectation on the right-hand side in integral form. By Fubini’s theorem,
we obtain

E[G(Gr, - G Gt T)
(1= F(T = Gue)) ™ (1= F(T =) (F (G = G) ™ Lpnipmny
-| o Gt s T = F(T =)™ (1= FT = 50)) (onrt =)

n

x (1— — Snt1)) H 33+1 - Sj dsp+1

n—1
f f (st smst, T) dsnar (1= F(T = 5,)) [£(5551 — ;) ds.

7=0

This completes the proof.

Lemma 4.6.2 Let n € N. On the set { Ny = n}, the sequence of weights (6;)1<i<n+1
defined by (4.3.3) and (4.3.4) satisfy: Yie {1,--- ,n},

(G —Go1)0i e M1 (X, Y, =1/2), (1= F(T —¢n))0n+1 € My (X, Y

Proof. We investigate each term appearing in the definition of f(¢; — (i-1)0; €
Si—1n(X,Y) and seek to apply Lemma 4.2.3. From the Lipschitz property of ag

195

4.6. Appendix

and the space-time inequality (4.1.3), for any ¢ > 0 and any ¢ > 0, the map
(Ti—1,Yi—1,Ti, Yir Snt1) = Cq(Ti—1,Yi—1, Ti, Yi, Sny1) satisfies
| (i1, Yi1s @iy Yir S 1) Pe(si — Sim1, i1, Yio1, T, i)
< Clyi —mi—1(yi-1)Pqe(si — si-1, Tie1,Yi—1, Ti> Yi)
< C(si = 8i-1)" 20 (8§ — Sic1, Ti1, Yio1, T, Yi)

so that, the random variables ck € Miil’n()_(,i_/, 1/2), for any i € {1,--- ,n+ 1}.
Moreover, since ch does not depend on X; and 5&_}’; = 0, one has

DMy = DMV el = 0.

From Lemma 4.2.3, we thus conclude

I (ch) e My_1 (X, Y,0) and TV (ch) e My_y (X, Y, —1/2), ie{l,-- ,n}.

(2

In a completely analogous manner, omitting some technical details, we derive

TP b)) € Mi10(X,7,0), and I (chg), I (ch) € My (X, Y, —1/2).

()

Hence, we obtain f(¢; —(;—1)0; € Mi_1,(X,Y,—1/2), for any i € {1,--- ,n}. We
finally observe that (1 — F(T — (,))0p+1 = 1 € M, ,(X,Y,0). The proof is now
complete.

Lemma 4.6.3 Let T > 0 and n a positive integer. For any s, = (s1, -+ ,Sn) €
An(T), any (z,y) € R? and any positive constant c there exist two positive constants
C and ¢ > ¢ such that the transition density (t,x,y) — q.(t, zo, Yo, x,y) defined by
(4.2.5) satisfies the following semigroup property:

f 2 qC(T — SnyTn,yYn, T, y) X qc(Sn - 8n71,$n71,yn71,$n,yn) Xoee
(R2)m

X Qc(51, 0, Y0, 1, Y1) dXndyn
< Cn(jc’(T7 o, Yo, T, y)

Proof. Thedzx; ---dx, integrals are treated using the standard semigroup property
of Gaussian kernels so that from the very definition of q., it directly follows

J) (jc(T - Snaxmym:vyy) X Cjc(sn - Snflaxnfbynfl,xmyn) Koo
(R2)m

X Ge(S1, %0, Yo, 1, Y1) dXpdyn

1 (z—=q)? 1 _ (y*mT_sn(yn))2
= ——— ¢ 2T - ¢ 2¢(T—sn)
V2T Rn A/ 2mc(T — sp)
1 _ (w1—msy (wo)?

X oo X

e 2csq d
V2Tesy Yn

In order to upper-bound the integral appearing in the right-hand side of the above
identity. We now perform the change of variables y; = mg, (21),y2 = msy(22), -+, Yn =

196

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

ms, (2n). Observe that since by admits a bounded first derivative the determinants
of the Jacobians Jg (21) := mi (21), -+ ,Jr—s,(2n) = mp_, (2n) are uniformly
bounded for any (s1,--,s,) € An(T). Remark also that from the semigroup prop-
erty ms, —s;(Ms;(2i)) = Mg, (), for 1 < i < n with the convention s,41 = T.
Hence, for some positive constants C' and ¢’ > ¢ that may change from line to line,
we get

1 (2—2q)? 1 _mmr_g, ()
e 2T —_—— 2¢(T—sn) X oee
V2meTl rr A/ 2mc(T — sp)
1 _ wi—ms; (wo)?
X e 2csq dyn
V2mesy
1 (e—2g)2 1 _ (y=mp(zn))?
< C"——e~ 2679 _ ¢ 2¢(T—sn) X +«-
\2meT rn A/ 2mc(T — sp)
1 (msy (21)—msy (v0))?
2csq dZn

>< —
\/27rcsle

1 _ (z—=q)?

(m7 ! (v)—2n)?
-1 T
2cT ¢

n 2¢(T—snp) X oeee

1
<C"—e ———e¢
V2T rn A/ 2mc(T — sp)

1 _c-1 (z1-v0)?
X ———e 2csq dzn
\V2mesy
1 (r—20)2 (mp'@)—v0)?
=C"——— e 2T e~ 2¢CT
27TCT\/6

< C"qu (T, z0, Y0, 2, y)
where we first used the bi-Lipschitz property of the flow (s,z) — ms(z) which yields
Ve [0,T], C Yz — 2| < |my(z) — mu(2) > < Clz — 2|2
for some positive constant C' > 1 and then the semigroup property satisfied by
Gaussian kernels. This completes the proof.
4.6.4 Some useful formulas

We here provide some useful formulas in order to device the unbiased Monte Carlo
algorithms based on Theorem 4.3.1 and Theorem 4.4.1. Their proofs follow from

standard computations as those used in subsection 4.2.4 and are omitted.
We first provide some basis results to the computations of formulas of the price
and the Greeks.

D (ck) = o5(Yi)os(Vi),
D () = mi[os (Vie1)os(Virn) = os(mi)ors(ma)|
Dz@) (cﬁ/’s) = PUYUQ(YQ),
DEZ’Q)(Cg/,s) = poyas(V:),
D (etd) = poym (o (Vi) — os(ma)),
D (D) (i78)) = DL (DD (i 4) = poymlch(Yier),

197

4.6. Appendix

(1)) L
DU = A) st (G — G)’
@MWy P !
D;71;°(1) = 1—p2o5(mi_1)oy (G —Cio1)’
M@y - __P !
D; ;7 (1) = 1—p2os(mi1)oy (G —Cio1)’
DT (1) = :

(1 =p2oy (G = Cim1)’

/) /
D2, 70(1) = - TSI 7

US(mi—l)
Dz(i)lz1(2)(l) = 01
D(Q) D(l)I,(l)(l) = fM'D(DI(U(1),
e os(mi_1)
p® p@7 1y = IsMi—)mioy o) 71 g
1—1%1 7 US’(mifl) [7

The following formulae are required in order to compute the weights (0;)1<i<n,
appearing in the identity (4.3.2). Note that in our examples since ay (.) is constant,
one has ¢}, (.) =0 forie {1,--- , Np}. Hence, for i € {1,---, Nr}, one has:

I<”<cg~> STV (),
M (k) = s (M (1)) - DTN (1))
I@)a)): VI (1) — (1))
I () = I (s (1) = o s TV (VTP (1) — IV (1)D () — b s DTV (D).

The following formulae are needed in order to compute the weights for the Delta
appearing in the identity (4.4.5), for i € {1,--- , Ny} one has:

D (M (k) = 257V (1D T (1),
V(2 (k) = 5DVTM (1),
DI (b)) = b, DV (1),
DT (dg)) = ¢ oDV (TP (1) + ¢ DV TP ()T (1) - DIVTV ()DL (e o).

D6 = (£(G — G- PV eh) - POV (k) + VT () + DVTH

Y,S)]v

I (0k) = TV (16, — D6y, k < N,

1 1
I3 1 (O, 1) = 9NT+1IJ(V)+1(1) — DY) 1Onp 1 = Onp 124 1 (1)

The following formulae are required for the computation of the weights for the Vega

198

Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
with unbounded drift

appearing in the identity (4.4.6), for i € {1,--- , Np} it holds:

TP (A5 = miZi) (s,

I (e = —miZ((5 + D (DI (1) - D D (i),

IR ey ™) = miZ D (),

TP (L) = miZ P (e,

Iied ™) = e I () - DR ey = D (I (1) - DD (),

DI () = D ()T (1)) + 2V (D TV (1) - D (k) Dy VTV (1),
DI () = D ()T (1) + ¢ D<2>z“><1>,
DI (1)) = b (V)T (1) + 6 DI T (1) - b (V)),
DI) - Dk 2O WD) + 4 DPTP T) + s TP DL 1)

(
— 7V ()PP (ch5) - 2D (¢4,) DP TV (1),

7 K2

DI (T (%)) = D2, ()@ V(1)) + 25T (1D, T (1)
- D (5P DI (1) - D) (DM (1)),
(29 (k) = DP) ()2 (1) + 5D T (1),
P (b)) = by DT (1) + 2 (1) (b (Yi)dy,_, Vi — by (mi_y)mi_y) — by (Y:)dy, Vi,
DY I“”(y,s>>=Dfl(cys)ﬂ”(l)zf”(l)+c @@ oz + 2V (1D 1 (1)
— V()PP (DP)(d) - DTV (1))DP (¢) — & DI DTV (1

2 2 1
- Di_E(cy,s)DE 'z ().

1)

D0, =(£(G = -0) 7 | PP @V () = D@ (e) + PP @ 04) + DI (T (e) .
D20 =(£(G = G-0) DL @M (e5) = DE @V (k) + DALEP 04)) + DAL T (e) .
T =m0+ (G = G @ WD (e s) — DUDE) (e),
DEQ)E)?Y = m;ﬂD@)@i + (f(G — Cifl))_l[1()(D£2)1(C ,S))Iz(l)()

+ D) (¢4 5D T (1) - DODIDR, (eh).

1—1
1@) =T TP - DPTT,
—e,Y
If”(m;fle 777) = —(f(G—Cia)™ 1112)(7352)1(cys>>

= ~((G = G- (P2 (e) 2 (TP (1) - TV ()PP D) (k)
- D2, (e)PV (1) - DD, (e,)Z (1) + DDV D (ch,)),

199

4.6. Appendix

T = (F(G - o) TOE) = (£(G - Go) @ WD, () - DIDP, (k)
DT = (G- G e DI),
(@) =7) - o7

V(0:0%, X;) = (0,27 (1) — DV 6:) DY)

IO (W= Zi=pia 2200) = (V1= a2l = pia 22) @2 ()6 - D6 +

g}: :I-(Q) (m;_lai — ??Y) +0yi—1

K2

1 2) - 1
+ 2V (0:D, X)) — 7V

(2

—e,Y
O Nps1 =ONrs1 = (M, + oy N,

—e, X

i D -
X; - DV(DP), X,)6;,

—e, X 2
(777) + D20,

/

PN
e (U R P~ e Zep)).
A/ 1= PN,

/ / 1
O Npt1 =ONp+1 = (‘ 5S,Nx + US’,NTZNT-H)v

9 Nr+1 :0)

2 —e,Y —e,Y 2 2
0 1 (FNrs1) = O Ny a2 (1) = DY)

2 —e, X —e, X 2 2
IJ(VT)H(0 NT+1) =0 NT+1II(\/'7)~+1() - ng;

200

—e,Y —e,Y 2
10N =0 NT+1I1(V7)“+1(1) +Onps1 T
T

—e, X —e, X

_ (2) 98,Nr
+1 Y Nr+1 — ¢ NT+1INT+1() - 9NT+1

0S,Nr

p;VTpNT

/
T (1= 2 iz

b

Bibliography

1]

[10]

[11]

ABDULLE, A., COHEN, D., VILMART, G., AND ZYGALAKIS, K. C. High weak
order methods for stochastic differential equations based on modified equations.
SIAM Journal on Scientific Computing 34, 3 (2012), A1800-A1823.

AGARWAL, A., AND GOBET, E. Finite variance unbiased estimation of stochas-

tic differential equations. Proceedings of the 2017 Winter Simulation Conference
(2017), 1950-1961.

ANDERSSON, P., AND KOHATSU-HIGA, A. Unbiased simulation of stochastic

differential equations using parametrix expansions. Bernoulli 23, 3 (2017),
2028-2057.

BALLy, V., AND KOHATSU-HIGA, A. A probabilistic interpretation of the
parametrix method. Ann. Appl. Probab. 25, 6 (12 2015), 3095-3138.

BaLLy, V., AND PAGES, G. Error analysis of the optimal quantization algo-

rithm for obstacle problems. Stochastic Processes and their Applications 106, 1
(2003), 1 — 40.

BALLY, V., AND PAGES, G. A quantization algorithm for solving multidimen-
sional discrete-time optimal stopping problems. Bernoulli 9, 6 (2003), 1003~
1049.

BEck, C., E, W., AND JENTZEN, A. Machine learning approximation algo-
rithms for high-dimensional fully nonlinear partial differential equations and
second-order backward stochastic differential equations. Journal of Nonlinear
Science (2017), 1-57.

BECK, C., HUTZENTHALER, M., JENTZEN, A., AND KUCKUCK, B. An
overview on deep learning-based approximation methods for partial differen-
tial equations. arXiv preprint arXiv:2012.12348 (2020).

BENDER, C., AND DENK, R. A forward scheme for backward sdes. Stochastic
Processes and their Applications 117, 12 (2007), 1793-1812.

BENVENISTE, A., METIVIER, M., AND PRIOURET, P. Adaptive algorithms and
stochastic approximations, vol. 22. Springer Science & Business Media, 2012.

BERGMAN, Y. Z. Option pricing with differential interest rates. The Review
of Financial Studies 8, 2 (1995), 475-500.

201

Bibliography

[12]

[19]

[20]

[21]

[22]

202

BERNIS, G., GOBET, E., AND KoHATSU-HIGA, A. Monte Carlo evaluation of
Greeks for multidimensional barrier and lookback options. Math. Finance 13,
1 (2003), 99-113. Conference on Applications of Malliavin Calculus in Finance
(Rocquencourt, 2001).

BouN, B. FError analysis of regularized and unregularized least-squares re-
gression on discretized function spaces. PhD thesis, Institute for Numerical
Simulation, University of Bonn, (2017).

BoHN, B. On the convergence rate of sparse grid least squares regression. In
Sparse Grids and Applications-Miami 2016. Springer, (2018), pp. 19-41.

BoucHARrD, B., ELIE, R., AND Touzi, N. Discrete-time approximation of

bsdes and probabilistic schemes for fully nonlinear pdes. In Advanced financial
modelling. De Gruyter, 2009, pp. 91-124.

BoucHARD, B., AND Touzi, N. Discrete-time approximation and monte-carlo

simulation of backward stochastic differential equations. Stochastic Processes
and their Applications 111, 2 (2004), 175-206.

BoucHARD, B., AND Touzi, T. Discrete-time approximation and monte-carlo
simulation of backward stochastic differential equations. Stochastic Processes
and their Applications 111, 2 (2004), 175 — 206.

BRIAND, P., AND LABART, C. Simulation of bsdes by wiener chaos expansion.
The Annals of Applied Probability 24, 3 (2014), 1129-1171.

Brooks, C. Rats handbook to accompany introductory econometrics for fi-
nance. Cambridge Books (2008).

BuNGARTZ, H.-J., AND GRIEBEL, M. Sparse grids. Acta numerica 13 (2004),
147-269.

CHAN-WAI-NAM, Q., MIKAEL, J., AND WARIN, X. Machine learning for semi
linear pdes. Journal of Scientific Computing 79, 3 (2019), 1667-1712.

CHASSAGNEUX, J.-F. Linear multistep schemes for bsdes. SIAM Journal on
Numerical Analysis 52, 6 (2014), 2815-2836.

CHASSAGNEUX, J.-F., CHEN, J., FrRIKHA, N., AND ZHOU, C. A learning

scheme by sparse grids and picard approximations for semilinear parabolic pdes.
arXiv preprint arXiv:2102.12051 (2021).

CHASSAGNEUX, J.-F., AND CRISAN, D. Runge—kutta schemes for backward
stochastic differential equations. Annals of Applied Probability 24, 2 (2014),
679-720.

CHASSAGNEUX, J.-F., AND GARCIA TRILLOS, C. Cubature method to solve

bsdes: Error expansion and complexity control. Mathematics of Computation
89, 324 (2020), 1895-1932.

Bibliography

[26]

[27]

28]

[29]

[33]

[34]

[35]

[36]

CHASSAGNEUX, J.-F., AND RIcHOU, A. Numerical stability analysis of the
euler scheme for bsdes. SIAM Journal on Numerical Analysis 53, 2 (2015),
1172-1193.

CHASSAGNEUX, J.-F., AND RicHOU, A. Numerical simulation of quadratic
bsdes. The Annals of Applied Probability 26, 1 (2016), 262-304.

CHASSAGNEUX, J.-F., AND YANG, M. Numerical approximation of singular
forward-backward sdes. arXiv preprint arXiv:2106.15496 (2021).

CHEN, J., FRIKHA, N., AND L1, H. Probabilistic representation of integration
by parts formulae for some stochastic volatility models with unbounded drift.

arXiv preprint arXiw:2011.10453 (2020).

Cox, J. C. The constant elasticity of variance option pricing model. Journal
of Portfolio Management (1996), 15.

CRrisaN, D., AND MANOLARAKIS, K. Solving backward stochastic differential
equations using the cubature method: application to nonlinear pricing. SIAM
Journal on Financial Mathematics 3, 1 (2012), 534-571.

CRISAN, D., AND MANOLARAKIS, K. Second order discretization of back-
ward sdes and simulation with the cubature method. The Annals of Applied
Probability 24, 2 (2014), 652-678.

CRISAN, D., MANOLARAKIS, K., AND NizAR, T. On the monte carlo simula-

tion of bsdes: An improvement on the malliavin weights. Stochastic Processes
and their Applications 120, 7 (2010), 1133 — 1158.

CRISAN, D., MANOLARAKIS, K., AND TouUz1, N. On the monte carlo simula-

tion of bsdes: An improvement on the malliavin weights. Stochastic Processes
and their Applications 120, 7 (2010), 1133-1158.

DurLo, M. Algorithmes stochastiques, vol. 23 of Mathématiques & Applications
(Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, (1996).

E, W., HaN, J., AND JENTZEN, A. Deep learning-based numerical methods for
high-dimensional parabolic partial differential equations and backward stochas-
tic differential equations. Communications in Mathematics and Statistics 5, 4
(2017), 349-380.

EL Karoul, N., PENG, S., AND QUENEZ, M. C. Backward stochastic differ-
ential equations in finance. Mathematical finance 7, 1 (1997), 1-71.

FEUERSANGER, C. Sparse grid methods for higher dimensional approzimation.
PhD thesis, University of Bonn, (2010).

FOURNIE, E., LASRY, J.-M., LEBUCHOUX, J., AND LIONS, P.-L. Applications
of Malliavin calculus to Monte-Carlo methods in finance. II. Finance Stoch. 5,
2 (2001), 201-236.

203

Bibliography

[40]

[41]

[42]

[44]

[45]

[46]

[47]

[48]

204

FouRNIE, E., LASRY, J.-M., LEBUCHOUX, J., LioNs, P.-L., AND Touzi, N.
Applications of Malliavin calculus to Monte Carlo methods in finance. Finance
Stoch. 3, 4 (1999), 391-412.

FRrRIEDMAN, A. Partial differential equations of parabolic type. Prentice-Hall,
Inc., Englewood Cliffs, N.J., (1964).

FrikHA, N., KOHATSU-HIGA, A., AND Li, L. Integration by parts formula

for killed processes: a point of view from approximation theory. FElectron. J.
Probab. 24 (2019), 44 pp.

FROMMERT, M., PFLUGER, D., RILLER, T., REINECKE, M., BUNGARTZ, H.-
J., AND ENssLIN, T. Efficient cosmological parameter sampling using sparse
grids. Monthly Notices of the Royal Astronomical Society 406, 2 (2010), 1177-
1189.

GATHERAL, J. The volatility surface: a practitioner’s guide, vol. 357. John
Wiley & Sons, 2011.

GEIrss, C., AND LABART, C. Simulation of bsdes with jumps by wiener chaos
expansion. Stochastic Processes and their Applications 126, 7 (2016), 2123—
2162.

GERMAIN, M., PHAM, H., AND WARIN, X. Deep backward multistep
schemes for nonlinear pdes and approximation error analysis. arXiv preprint

arXiv:2006.01496 (2020).

GERMAIN, M., PHAM, H., AND WARIN, X. Neural networks-based algorithms
for stochastic control and pdes in finance. arXiv preprint arXiv:2101.08068
(2021).

GOBET, E., AND KoHATSU-HIGA, A. Computation of Greeks for barrier and
look-back options using Malliavin calculus. Electron. Comm. Probab. 8 (2003),
51-62.

GOBET, E., LEMOR, J.-P., AND WARIN, X. A regression-based monte carlo
method to solve backward stochastic differential equations. The Annals of Ap-

plied Probability 15, 3 (2005), 2172-2202.

GOBET, E., LOPEZ-SALAS, J. G., TURKEDJIEV, P., AND VAZQUEZ, C. Strati-
fied regression monte-carlo scheme for semilinear pdes and bsdes with large scale
parallelization on gpus. SIAM Journal on Scientific Computing 38, 6 (2016),
C652-C677.

GOBET, E., AND TURKEDJIEV, P. Approximation of backward stochas-
tic differential equations using malliavin weights and least-squares regression.

Bernoulli 22,1 (2016), 530-562.

GRIEBEL, M., AND OSWALD, P. Tensor product type subspace splittings and

multilevel iterative methods for anisotropic problems. Advances in Computa-
tional Mathematics 4, 1 (1995), 171.

Bibliography

[53]

Gu, Y., YANG, H., AND ZHOU, C. Selectnet: Self-paced learning for high-

dimensional partial differential equations. arXiv preprint arXiv:2001.04860
(2020).

HacaN, P. S., KuMAR, D., LESNIEWSKI, A. S., AND WOODWARD, D. E.
Managing smile risk. The Best of Wilmott 1 (2002), 249-296.

HaN, J., JENTZEN, A., AND E, W. Overcoming the curse of dimensional-
ity: Solving high-dimensional partial differential equations using deep learning.
arXiv preprint arXiv:1707.02568 (2017).

HaN, J., JENTZEN, A., AND E, W. Solving high-dimensional partial differ-

ential equations using deep learning. Proceedings of the National Academy of
Sciences 115, 34 (2018), 8505-8510.

Han, J., JENTZEN, A., AND E, W. Algorithms for solving high dimen-
sional pdes: From nonlinear monte carlo to machine learning. arXiv preprint
arXiv:2008.13333 (2020).

HaN, J., AND LoONG, J. Convergence of the deep bsde method for coupled
fbsdes. Probability, Uncertainty and Quantitative Risk 5, 1 (2020), 1-33.

HENRY-LABORDERE, P., OUDJANE, N., TAN, X., Touzi, N., AND WARIN,
X. Branching diffusion representation of semilinear pdes and monte carlo ap-
proximation. Ann. Inst. H. Poincaré Probab. Statist. 55, 1 (02 2019), 184-210.

HENRY-LABORDERE, P., TAN, X., AND Touzi, N. Unbiased simulation of
stochastic differential equations. Ann. Appl. Probab. 27, 6 (12 2017), 3305—
3341.

HesTON, S. L. A closed-form solution for options with stochastic volatility
with applications to bond and currency options. The review of financial studies
6, 2 (1993), 327-343.

Hornik, K., STINCHCOMBE, M., AND WHITE, H. Multilayer feedforward
networks are universal approximators. Neural networks 2, 5 (1989), 359-366.

HorniIk, K., STINCHCOMBE, M., AND WHITE, H. Universal approximation of
an unknown mapping and its derivatives using multilayer feedforward networks.
Neural networks 3, 5 (1990), 551-560.

Hu, Y., NUALART, D., AND SONG, X. Malliavin calculus for backward stochas-

tic differential equations and application to numerical solutions. The Annals of
Applied Probability 21, 6 (2011), 2379-2423.

Hurg, C., Paam, H., AND WARIN, X. Deep backward schemes for high-
dimensional nonlinear pdes. Mathematics of Computation 89, 324 (2020), 1547—
1579.

HUTZENTHALER, M., JENTZEN, A., KRUSE, T., AND E, W. Multilevel picard

iterations for solving smooth semilinear parabolic heat equations. arXiv preprint
arXiv:1607.03295 (2016).

205

Bibliography

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

206

JIANG, Y., AND L1, J. Convergence of the deep bsde method for fbsdes with
non-lipschitz coefficients. arXiv preprint arXiv:2101.01869 (2021).

KaprLANI, L., AND TENG, L. Deep learning algorithms for solving high di-
mensional nonlinear backward stochastic differential equations. arXiv preprint
arXiv:2010.01319 (2020).

KLOEDEN, P. E., AND PLATEN, E. Stochastic differential equations. In Numer-
ical Solution of Stochastic Differential Equations. Springer, 1992, pp. 103-160.

KusHNER, H. J., AND YIN, G. G. Stochastic approrimation and recursive
algorithms and applications, second ed., vol. 35 of Applications of Mathematics
(New York). Springer-Verlag, New York, (2003). Stochastic Modelling and
Applied Probability.

KusuokA, S., AND STROOCK, D. Applications of the Malliavin calculus. II.
J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32, 1 (1985), 1-76.

LADYZENSKAJA, O. A., SOLONNIKOV, V. A., AND URAL'CEVA, N. N. Linear
and quasilinear equations of parabolic type. Translated from the Russian by S.
Smith. Translations of Mathematical Monographs, Vol. 23. American Mathe-
matical Society, Providence, R.I., (1968).

Ma, J., AND ZHANG, J. Path regularity for solutions of backward stochastic
differential equations. Probability Theory and Related Fields 122, 2 (2002),
163-190.

MALLIAVIN, P., AND THALMAIER, A. Stochastic Calculus of Variations in
Mathematical Finance. Springer Finance. Springer Berlin Heidelberg, 2005.

MENOZZ1, S., AND LEMAIRE, V. On some non asymptotic bounds for the euler
scheme. Electron. J. Probab. 15 (2010), 1645-1681.

NINOMIYA, S., AND VICTOIR, N. Weak approximation of stochastic differential
equations and application to derivative pricing. Applied Mathematical Finance
15,2 (2008), 107-121.

NMEIR, R. E. Quantization-based approximation of reflected bsdes
with extended upper bounds for recursive quantization. arXiv preprint
arXiv:2105.07684 (2021).

NUALART, D. The Malliavin calculus and related topics, second ed. Probability
and its Applications (New York). Springer-Verlag, Berlin, 2006.

Paces, G. Numerical Probability: An Introduction with Applications to Fi-
nance. Universitext. Springer International Publishing, (2018).

PAGES, G., AND SAGNA, A. Improved error bounds for quantization based
numerical schemes for bsde and nonlinear filtering. Stochastic Processes and
their Applications 128, 3 (2018), 847 — 883.

Bibliography

[81]

[82]

[92]

[93]

PArDOUX, E., AND PENG, S. Adapted solution of a backward stochastic
differential equation. Systems Control Lett. 14, 1 (1990), 55—61.

PArRDOUX, E., AND PENG, S. Backward stochastic differential equations and
quasilinear parabolic partial differential equations. In Stochastic partial differ-
ential equations and their applications (Charlotte, NC, 1991), vol. 176 of Lect.
Notes Control Inf. Sci. Springer, Berlin, (1992), pp. 200-217.

PARDOUX, E., AND TANG, S. Forward-backward stochastic differential equa-
tions and quasilinear parabolic PDEs. Probab. Theory Related Fields 114, 2
(1999), 123-150.

PENG, S. Probabilistic interpretation for systems of quasilinear parabolic par-
tial differential equations. Stochastics and Stochastics Reports (Print) (1991).

PuaMm, H., WARIN, X., AND GERMAIN, M. Neural networks-based backward
scheme for fully nonlinear pdes. arXiv preprint arXiv:1908.00412 (2019).

PHAM, H., WARIN, X., AND GERMAIN, M. Neural networks-based backward

scheme for fully nonlinear pdes. SN Partial Differential Fquations and Appli-
cations 2, 1 (2021), 1-24.

REISINGER, C. Analysis of linear difference schemes in the sparse grid combi-
nation technique. IMA Journal of Numerical Analysis 33, 2 (2013), 544-581.

RoBBINS, H., AND MONRO, S. A stochastic approximation method. The
Annals of Mathematical Statistics (1951), 400-407.

STEIN, E. M., AND STEIN, J. C. Stock price distributions with stochastic

volatility: an analytic approach. The review of financial studies 4, 4 (1991),
T727-752.

TAKAHASHI, A., TSUCHIDA, Y., AND YAMADA, T. A new efficient approx-

imation scheme for solving high-dimensional semilinear pdes: control variate
method for deep bsde solver. arXiv preprint arXiv:2101.09890 (2021).

TENG, L. Gradient boosting-based numerical methods for high-dimensional
backward stochastic differential equations. arXiv preprint arXiv:2107.06673
(2021).

YAMADA, T., AND YAMAMOTO, K. A second-order weak approximation of
sdes using a markov chain without lévy area simulation. Monte Carlo Methods
and Applications 24, 4 (2018), 289-308.

ZHANG, J. A numerical scheme for bsdes. The Annals of Applied Probability
14,1 (2004), 459-488.

207

	Acknowledgements
	Abstract
	Résumé
	Résumé détaillé
	Introduction
	Machine learning methods for high-dimensional BSDEs
	Connection between semilinear parabolic PDEs and BSDEs
	Our contributions
	SGD algorithms with sparse grids
	Deep learning methods

	Probabilistic representation for stochastic volatility models
	Stochastic volatility model
	Probabilistic representation
	Integration by parts formulae
	Numerical results

	I Schemes for solving BSDEs
	A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs
	Introduction
	The direct and Picard algorithms
	Assumptions on the coefficients and connection with the semilinear PDE
	Direct algorithm
	A Picard algorithm

	Convergence results for sparse grid approximation
	Convergence results for the pre-wavelet basis
	Numerical results with the modified hat functions basis

	Study of the discrete optimization problems
	Preliminary estimates
	Application to the direct algorithm
	Study of the Picard algorithm
	Convergence and complexity analysis for sparse grid approximations

	Appendix
	Algorithms parameters

	Deep Runge-Kutta schemes for BSDEs
	Introduction
	Runge-Kutta schemes for BSDEs
	Definitions
	Stability of Runge-Kutta scheme
	Discrete time error

	A learning method for Runge-Kutta schemes
	Euler scheme
	Crank-Nicolson scheme
	Two stage explicit Runge-Kutta scheme
	Three stage explicit Runge-Kutta scheme
	General case

	Numerical results
	Approximation of the forward process
	Empirical convergence results

	Appendix
	Proof of Proposition 3.2.1
	Proof of step 2 of Theorem 3.2.1

	II Probabilistic representation of integration by parts formulae for stochastic volatility models with unbounded drift
	Probabilistic representation of IBP formulae for stochastic volatility models with unbounded drift
	Introduction
	Preliminaries: assumptions, definition of the underlying Markov chain and related Malliavin calculus
	Assumptions
	Choice of the approximation process
	Markov chain on random time grid
	Tailor-made Malliavin calculus for the Markov chain (barX, barY).

	Probabilistic representation for the couple (ST, YT).
	Integration by parts formulae
	The transfer of derivative formula
	The integration by parts formulae

	Numerical Results
	Black-Scholes Model
	A Stein-Stein type model
	A model with a periodic diffusion coefficient function

	Appendix
	Proof of Theorem 4.3.1
	Proof of Lemma 4.4.1
	Emergence of jumps in the renewal process N
	Some useful formulas

	Bibliography

