Mme Céline Labart

M Christoph Reisinger

Huyên Pham

Claudio Fontana

Zorana Grbac

Noufel Frikha

Aaroan, Azar Barbara Ashaaf

Bohdan, Clément, Côme, Cyril Benjamin

Fabio Enzo

Hiroshi, Hoang-Dung, Houzhi, Ibrahim Guillaume S Laure

Luca

Marc Lucas

Maximilien Mohan

Quanhua Xu

Keywords: BSDEs, Semi-linear PDEs, Sparse grids, SGD algorithm, Deep learning, High-dimensional, High-order approximation, Probabilistic representation, Stochastic volatility model, Monte Carlo method EDSRs, EDPs semi-linéaires, Sparse grids, Algorithme SGD, Deep learning, Grande dimension, Schémas de Runge-Kutta, Représentation probabiliste, Modèle de volatilité stochastique, Méthode de Monte Carlo formulas . against time steps for different schemes 1.8 Error against time cost for different schemes . 3.4 Error against time cost for different schemes 3.5 Error against time steps for different schemes 3 3.7 Time cost against time steps for different schemes 3.8 Error against time cost for different schemes

First of all, I would like to warmly thank my thesis supervisors, Jean-François Chassagneux and Noufel Frikha, for introducing me to the world of research in financial mathematics,

Résumé

Dans la première partie, nous analysons en détail la convergence théorique de la solution des équations différentielles stochastiques rétrogrades (EDSRs) et des applications numériques dans le domaine de la finance avec à la fois l'algorithme SGD traditionnel et la méthode d'apprentissage en profondeur. Les méthodes sont basées sur la connexion classique entre les équations aux dérivées partielles (EDPs) paraboliques non linéaires et les EDSRs. Et de nombreux résultats numériques sur les EDSR de grande dimension sont présentés pour comparaison avec les articles [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF][START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF].

Dans le chapitre 2, nous introduisons ici un algorithme dont on montre qu'il converge vers un minimum global. Tout d'abord, nous passons de l'espace d'approximation des réseaux de neurones profonds à une spécification linéaire plus classique de l'espace d'approximation. Cependant, en raison de la non-linéarité du générateur f, le problème d'optimisation globale à résoudre est toujours non convexe. Pour contourner ce problème, nous utilisons une procédure d'itération Picard. La procédure globale devient alors une séquence de problèmes d'optimisation linéaire-quadratique qui sont résolus par un algorithme SGD. Notre premier résultat principal est un contrôle de l'erreur globale entre l'algorithme implémenté et la solution de la EDSR qui montre notamment la convergence de la méthode sous certaines conditions de petitesse, voir le Théorème 2.2.1. En particulier, contrairement à [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF][START_REF] Han | Convergence of the deep bsde method for coupled fbsdes[END_REF] ou [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF], notre résultat prend en compte l'erreur induite par l'algorithme SGD. Dans nos expériences numériques, nous nous appuyons sur des espaces d'approximation de sparse grid qui sont connus pour être bien adaptés pour traiter des problèmes de grande dimension. Dans le cadre des coefficients périodiques, nous établissons comme deuxième résultat principal, une borne supérieure sur la complexité globale pour notre algorithme implémenté, voir le Théorème 2.3.1. Nous montrons notamment que la malédiction de la dimensionnalité est apprivoisée dans le sens où la complexité est d'ordre ε ´p| logpεq| qpdq , où p est un constante qui ne dépend pas de la dimension PDE et d Þ Ñ qpdq est une fonction affine. Nous démontrons également numériquement l'efficacité de nos méthodes dans un cadre de grande dimension.

Dans le chapitre 3, nous rappelons d'abord la définition des schémas de Runge-Kutta pour les EDSR dans Section 3.2, puis nous étudions la stabilité des schémas de Runge-Kutta de deux manières différentes. Le Theorem 3.2.1 donne les erreurs en temps discret de 5 méthodes différentes qui seront étudiées dans ce chapitre. Dans Section 3.3, nous présentons une implémentation des schémas de Runge-Kutta pour résoudre les EDSR par réseaux de neurones, y compris le cas particulier des schémas d'Euler implicites [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF], schéma d'Euler explicite, schéma de Crank-Nicolson, schéma de Runge-Kutta explicite en deux étapes. Nous fournissons le contrôle d'erreur de v la méthode d'apprentissage générale par le schéma de Runge-Kutta et le réseau de neurones à la fin de cette section, voir le Theorem 3.3.2. Dans Section 3.4, nous vérifions numériquement l'ordre de convergence de l'erreur en temps discret des 5 méthodes du Theorem 3.2.1, et nous comparons également le coût du temps de calcul de ces méthodes.

Dans la deuxième partie, nous présentons des formules de représentation probabilistes pour la loi marginale d'un modèles à volatilité stochastique à dérive non bornée. Nous établissons également des formules d'intégration par partie pour les Delta et Vega. Ces formules sont basées sur une chaîne de Markov évoluant le long d'une grille temporelle aléatoire donnée par les instants de saut d'un processus de renouvellement. Une méthode de Monte Carlo sans biais de complexité optimale découle de nos formules. La principale nouveauté de notre approche par rapport aux travaux est que nous permettons au coefficient de dérive d'être éventuellement non borné comme c'est le cas dans la plupart des modèles de volatilité stochastique (Stein-Stein, Heston, ...).

Partie I: Méthodes d'apprentissage statistique pour EDSRs de grande dimension (Chapitres 2 et 3)

Soit W un mouvement brownien d-dimensionnel défini sur un espace de probabilité complet pO, A, Pq et soit X 0 un d-dimensionnel vecteur aléatoire A-mesurable ayant support compact ou déterministe, indépendant de W. Nous définissons pF t q 0ďtďT comme la filtration augmentée générée par W et X 0 . Pour b : R d Ñ R d et σ : R d Ñ M d (l'ensemble des matrices dˆd) deux fonctions mesurables, Nous définisons le processus de diffusion forward X comme la solution de l'équation différentielle stochastique suivante (EDS en abrégé) dX t " bpX t q dt `σpX t q dW t , (0.0. Dans ce manuscrit, nous nous intéressons dans la première partie à l'approximation numérique de la solution pupt, X t q, σ J pX t q∇ x upt, X t qq, où u est la solution de l'EDP parabolique semi-linéaire de grande dimension

"
B t upt, xq `Lupt, xq `f pupt, xq, σ J pxq∇ x upt, xqq " 0, pt, xq P r0, T q ˆRd , upT, xq " gpxq, x P R d (0.0.3) et la solution pF t q-adaptée pY t , Z t q P R ˆRd à l'EDSR Y t " gpX T q `ż T t f pY s , Z s q ds ´ż T t Z s ¨dW s , 0 ď t ď T , (0.0.4) où f : R ˆRd Ñ R, g : R d Ñ R sont des fonctions mesurables. Il a été remarqué pour la première fois dans [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] qu'il existe une connexion entre les EDPs paraboliques semi-linéaires de la forme (0.0.3) et les EDSRs (0.0.4) comme suit:

pupt, X t q, σ J pX t q∇ x upt, X t qq " pY t , Z t q, 0 ď t ď T.

utilisons l'espace des grilles clairsemées afin d'approximer les solutions pupt n , ¨q, B x upt n , ¨qq de l'EDP parabolique semi-linéaire (0.0.3) au temps t n . L'algorithme est appliqué comme algorithme d'apprentissage du gradient pour optimiser les coefficients des fonctions de base, et un schéma d'itération de Picard est introduit pour que l'algorithme converge vers la solution globale. L'objectif principal est de calculer une approximation de up0, X 0 q, où u est la solution de l'EDP (0.0.3) à l'instant initial sur un domaine donné ou en un point précis. Cela nous a conduit à introduire la configuration suivante pour la valeur initiale X 0 : Assumption 0.0.1 L'un des deux cas suivants est valable:

(i) La loi de X 0 est à support compact et absolument continue par rapport à la mesure de Lebesgue.

(ii) La loi de X 0 est une masse de Dirac en un point x 0 P R d .

Soit W :" pW tn q 0ďnďN la version en temps discrets du mouvement brownien W.

On définit ∆W n " W t n`1 ´Wtn , 0 ď n ď N ´1 et X 0 " X 0 , X t n`1 " X tn `bpX tn qh `σpX tn q∆W n , 0 ď n ď N ´1 . (0.0.5)

Nous introduisons maintenant une approximation en temps discrets du processus Z et Y. Pour un t n P πztT u donné, supposons que V z n est un espace d'approximation fonctionnelle paramétrique généré par un ensemble de fonctions de base pψ k n pxqq 1ďkďK z n , x P R d (0.0.6) avec un entier positif K z n . Pour une utilisation ultérieure, nous définissons:

s K z :" N ´1 ÿ n"0 K z n .
(0.0.7) Definition 0.0.1 (Class of discrete control process) Soit H π,ψ l'ensemble des processus de contrôle discrets Z définis par : pour z P R d s K z et les fonctions de base (0.0.6), Z tn :"

K z n ÿ k"1 ψ k
n pX tn qz n,k , for 0 ď n ď N ´1, (0.0.8) et nous définissons Z t " Z tn , t n ď t ă t n`1 , 0 ď n ď N ´1 avec la convention Z T " 0.

Definition 0.0.2 Étant donné u " py, zq P R K y ˆRd Kz , on note par Z u P H π,ψ le processus de contrôle discret défini par (0.0.8). Ensuite, le processus contrôlé discret Y u est défini comme suit:

1. Initialisation: définir

Y u 0 " K ÿ k"1
ψ k y pX 0 qy k . (0.0.9)

2. Version discrète: pour tout 0 ď n ď N ´1:

Y u t n`1 " Y u
tn ´hf pY u tn , Z u tn q `Zu tn ¨∆W n . (0.0.10)

Version continue: pour tout

0 ď n ď N ´1 et tout t n ď t ă t n`1 ,
Y u t " Y u tn ´pt ´tn qf pY u tn , Z u tn q `Zu tn ¨pW t ´Wtn q (0.0.11) D'après la Définition 0.0.1 et la Définition 0.0.2, soit B π,ψ l'ensemble des processus pY u , Z u q, avec Z u P H π,ψ , Y u défini comme ci-dessus pour un u P R K y ˆRd Kz . Maintenant, l'idée principale d'approximation par des méthodes d'apprentissage est de minimiser une fonction de perte définie comme la différence entre la condition terminale approchée gpX T q et le processus contrôlé discret Y u T au temps de maturité T . Ici, nous travaillons avec une fonction de perte quadratique, c'est-à-dire que nous devons besoin de résoudre le problème d'optimisation inf u"py,zqPR K y ˆRd Kz gpuq :" ErGpX 0 , W, uqs (0.0.12) avec GpX 0 , W, uq " |gpX T q ´Y u T | 2 .

Cependant, le problème d'optimisation ci-dessus (0.0.12) n'est généralement pas convexe, nous ne pouvons donc pas garantir que l'algorithme converge vers des minima locaux ou globaux. Il est bien connu que la solution de l'EDSR (0.0.4) peut être obtenue par la limite d'une suite d'itérations de Picard, voir e.g. [START_REF] El Karoui | Backward stochastic differential equations in finance[END_REF][START_REF] Bender | A forward scheme for backward sdes[END_REF] d'un point de vue numérique. Nous introduisons donc l'algorithme de Picard qui transforme le problème d'optimisation non convexe (0.0.12) à une suite des problèmes d'optimisation linéaire-quadratique. Notre algorithme de Picard est basé sur l'itération de l'opérateur Φ défini ci-dessous :

R K y ˆRd Kz Q ũ Þ Ñ Φpũq :" arg min uPR K y ˆRd Kz E " |gpX T q ´U ũ,u T | 2
ı , (0.0.13) où U ũ,u est définie par le schéma d'approximation de découplage suivant:

1. Pour ũ P R K y ˆRd Kz , considérons pY ũ, Z ũq P B π,ψ introduit dans la Définition 0.0.2.

2. Alors, pour tout u P R K y ˆRd Kz , et Z u P H π,ψ comme introduit dans la Définition 0.0.1, nous définissons le processus de contrôle U ũ,u par U ũ,u 0 " Y u 0 (0.0.14) et pour tout 0 ď n ď N ´1, U ũ,u t n`1 " U ũ,u tn ´hf pY ũ tn , Z ũ tn q `Zu tn ¨pW t n`1 ´Wtn q , (0.0.15) où le générateur f pY ũ tn , Z ũ tn q ne dépend pas des processus pY u , Z u q pour un ũ P R K y Rd Kz fixé à l'étape 1. Il existe donc une solution unique au problème d'optimisation (0.0.13). La définition suivante donne la procédure entière de l'algorithme de Picard. Definition 0.0.3 (Theoretical Picard algorithm) Pour un entier positif préspécifié P :

1. Initialisation: définir u 0 P R K y ˆRd Kz .

2. Itération: pour 1 ď p ď P , calculer : u p " Φpu p´1 q.

Ensuite, la sortie de l'algorithme est u P .

Dans le théorème 2.2.1, sous certaines hypothèses théoriques telles que des conditions de petitesse, l'erreur quadratique moyenne de l'algorithme complet est contrôlée par la somme de l'erreur de discrétisation en temps, l'erreur introduite par l'algorithme SGD, l'erreur de discrétisation de l'espace de l'approximation de la grille clairsemée, et enfin l'erreur due à l'itération de Picard. La complexité numérique C ε de l'algorithme complet est donnée par

C ε " O d pP N KM q .
(0.0.16) où K est le nombre de fonctions de base dans l'espace des grilles et M est les étapes d'itération de l'algorithme SGD. Dans la cadre de la Section 2.3.1.2 , où les coefficients sont supposés périodiques, afin d'obtenir une erreur quadratique moyenne globale d'ordre ε 2 comme indiquée dans (0.0.16), la complexité complète de l'algorithme de Picard en utilisant des fonctions de base pré-ondelettes sur des grilles clairsemées est C ε " O d pε ´5 2 p1`2ιq | log 2 pεq| 1`4 5`50ι 36 pd´1q q pour tout 1 ă ι ă 9 5 . En particulier, cela montre que le "fléau de la dimension" est apprivoisé en utilisant l'approximation de la grille clairsemée car on peut voir que C croît polynomialement sur ε ´1 jusqu'à un certain facteur logarithmique | log 2 pεq| dont l'exposant est une fonction affine par rapport à d.

Dans le Chapitre 3, nous introduisons un schéma d'approximation d'ordre élevé (e.g. le schéma de Crank-Nicolson, le schéma de Runge-Kutta) pour réduire le temps de calcul du schéma d'apprentissage profond avec le schéma d'Euler introduit dans [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF]. Nous montrons que la convergence en utilisant le théorème d'approximation universel des réseaux de neurones [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF][START_REF] Hornik | Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[END_REF]. De plus, certaines techniques de réduction de la variance sont utilisées.

Au cours des dix dernières années, les réseaux de neurones ont été appliqués dans nombreux domaines (e.g. le traitement d'images, le NLP, l'IA . . .) qui ont des réalisations impressionnantes, notamment pour surmonter empiriquement le "fléau de la dimension" du problèmes de grande dimension. En effet, le temps du calcul de l'approximation par le réseau de neurones a une croissance au plus polynomial.

Le réseau de neurones a d'abord été appliqué pour résoudre des EDSRs de grande dimension par Weinan E, Jiequn Han, Arnulf Jentzen et Christian Beck en 2017 [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF][START_REF] Beck | Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations[END_REF]. Ils ont proposé dans leur travail un schéma forward (voir la Définition 0.0.4 une discretiozation par le schéma d'Euler) avec un grand schéma de réseau de neurones. De nombreux travaux basés sur les réseaux de neurones pour résoudre les EDSRs apparissent, voir par exemple [START_REF] Han | Convergence of the deep bsde method for coupled fbsdes[END_REF][START_REF] Mikael | Machine learning for semi linear pdes[END_REF][START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF][START_REF] Germain | Deep backward multistep schemes for nonlinear pdes and approximation error analysis[END_REF][START_REF] Pham | Neural networks-based backward scheme for fully nonlinear pdes[END_REF][START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF][START_REF] Jiang | Convergence of the deep bsde method for fbsdes with non-lipschitz coefficients[END_REF][START_REF] Kapllani | Deep learning algorithms for solving high dimensional nonlinear backward stochastic differential equations[END_REF][START_REF] Takahashi | A new efficient approximation scheme for solving high-dimensional semilinear pdes: control variate method for deep bsde solver[END_REF][START_REF] Chassagneux | Numerical approximation of singular forward-backward sdes[END_REF]. Definition 0.0.4 (Implemented deep forward scheme) [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF] Pour la fonction terminale fixée g, la solution numérique est calculée par les étapes suivantes:

• Pour n " 0, initialiser X 0 " x 0 , Ŷ0 " y 0 .

• Pour n " 0, ¨¨¨, N ´1, étant donné Ŷn , -Calculer X n`1 " X n `bpX n qh `σpX n q∆W n .

-Calculer Vn " N pX n ; θ n q, où N px; θ n q est un réseau de neurones avec des paramètres réels θ n et des variables d'entrée x.

-Calculer Ŷn`1 " Ŷn ´hf p Ŷn , Vn q `V n ∆W n . A l'inverse, Ŷn`1 dépend des paramètres y 0 et pθ 0 , ¨¨¨, θ n q.

• Calculer un minimiseur de la fonction de perte :

py ‹ 0 , θ ‹ q P argmin y 0 ,θ E " | ŶN py 0 , θq ´gpX T q| 2 ı .

où θ " pθ 0 , ¨¨¨, θ N ´1q.

Par rapport au forward schéma profond défini ci-dessus, un schéma plus stable a été introduit pour la première fois par Côme Huré, Hûyen Pham et Xavier Warin [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF], appelé backward schéma profond, voir Définition 0.0.5 ci-dessous. La convergence de leurs méthodes repose sur le fait que les réseaux de neurones sont des approximateurs universels. Théoriquement, les erreurs dues aux réseaux neuronaux pourraient être rendues arbitrairement petites en augmentant le nombre de neurones. Inspiré de la méthode DBDP1 dans [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF], notre objectif est de réduire le temps de calcul en utilisant des méthodes d'approximation d'ordre élevé (telles que le schéma de Crank-Nicolson, le schéma de Runge-Kutta...) pour contrôler l'erreur de discrétisation en temps.

Definition 0.0.5 (Implemented deep backward scheme) Pour la fonction de perte fixée L n rϕ, ψspθq, pϕ, ψq P CpR d , Rq ˆCpR d , R d q, la solution numérique est calculée par les étapes suivantes:

• Pour n " N , initialiser ÛN " g, VN " σ J ∇ x g.

• Pour n " N ´1, ¨¨¨, 1, 0, étant donné les réseaux Ûn`1 , Vn`1 , -Calculer un minimiseur de la fonction de perte : θ ‹ n P argmin θ L n r Ûn`1 , Vn`1 spθ n q. où θ n est les paramètres d'un réseau de neurones N p¨, θ n q.

-Définir p Ûn , Vn q :" N p¨, θ ‹ n q comme les fonctions d'approximation de pupt n , ¨q, σ J B x upt n , ¨qq.

Le schéma d'Euler implicite pour les EDSRs [START_REF] Zhang | A numerical scheme for bsdes[END_REF][START_REF] Bouchard | Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations[END_REF] est traditionnellement défini comme

Y n " E tn rY n`1 `hf pY n , Z n qqs et Z n " E tn " ∆W n h Y n`1
 , 0 ď n ă N (0.0.17) avec pY N , Z N q :" pgpX N q, σ J pX N qB x gpX N qq.

Pour le schéma DBDP1 dans [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF], θ et ϑ sont à la fois optimisés: étant donné y ‹ n`1 p¨q, pθ ‹ , ϑ ‹ q "argmin θ,ϑ E " |y ‹ n`1 pX n`1 q ´ty θ n pX n q ´hf py θ n pX n q, z ϑ n pX n qq `zϑ n pX n q∆W n u| 2 ı .

(0.0.18)

Comme nous le savons, le taux de convergence faible du schéma d'Euler est d'ordre 1 uniquement, nous introduisons maintenant le schéma de Crank-Nicolson qui est un schéma d'ordre 2 avec une structure simple, voir entre autres [START_REF] Crisan | Second order discretization of backward sdes and simulation with the cubature method[END_REF]. Bien qu'il soit implicite, il a presque la même complexité que les algorithmes obtenus par le schéma d'Euler. Nous allons étudier le schéma habituel de Crank-Nicolson, e.g. un schéma θ avec θ " 1 2 , pour 0 ď n ă N ,

" Y n " E tn " Y n`1 `h 2 pf pY n , Z n q `f pY n`1 , Z n`
où υ n " E tn " |H n | 2 ‰
, C 0 ą 0 est une constante, et A n est une variable intermédiaire afin d'implémenter l'algorithme en utilisant un seul réseau comme (0.0.18). Il ne fait aucun doute qu'une erreur apparaîtra également dans le terme A lorsque nous optimisons le réseau de neurones, mais elle a la même amplitude que celle dans le terme Z dans le réseau de neurones, donc l'impact introduit par le terme A sur le résultat final est négligeable.

Les méthodes de Runge-Kutta [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF] sont une famille des méthodes de discrétisation implicites et explicites, qui incluent le schéma d'Euler implicite, le schéma d'Euler explicite, le schéma de Crank-Nicolson en particulier, voir le Théorème 3.2.1. D'après la Définition 0.0.6 ci-dessous, nous remarquons que le schéma de Runge-Kutta est un schéma à plusieurs étapes et peut atteindre un ordre supérieur au schéma de Crank-Nicolson. Soit Q le nombre d'étapes, remarquons que le schéma de Runge-Kutta est toujours explicite pour le terme Z, il existe une barrière d'ordre pour que le schéma implicite obtienne un schéma d'ordre Q `1 avec un schéma de Q´étapes lorsque Q ą 1 tant que B z f ‰ 0. Par conséquent, nous ne considérons le schéma explicite que lorsque Q " 2, 3 car le schéma implicite n'a aucun avantage par rapport au schéma explicite pour les générateurs généraux. Cependant, l'algorithme converge trop vite lorsque Q " 3, ce qui conduit à une erreur de discrétisation inférieure à la variance de l'algorithme. Et il existe également une barrière d'ordre pour le schéma explicite, ce qui signifie qu'il n'y a pas de méthodes explicites à quatre étapes dans la classe des méthodes pour la Définition 0.0.6. De sorte que nous ne considérons jamais le cas Q ě 4. Definition 0.0.6 Pour Q P N `, soit c " pc 1 , . . . , c Q`1 q P r0, 1s Q`1 satisfaisant 0 " : c 1 ă c 2 ď . . . ď c q ď ¨¨¨ď c Q ď c Q`1 :" 1, et t n,q :" t n`1 ´cq h . Alors t n " t n,Q`1 ď . . . ď t n,q ď . . . ď t n,1 " t n`1 . On note la "grille complète" Π :" tt n,q P r0, T s | 0 ď n ď N, 1 ď q ď Qu.

Pour t n,q P Π, X tn,q est approximé par X n,q P L 2 pF tn,q q, 0 ď n ď N et 1 ď q ď Q. Pour samplifier la notation, notons pX n q 0ďnďN l'approximation de X sur la grille π. Observez que X n,Q`1 " X n et X n,1 " X n`1 . Supposons que X est un processus de Markov sur Π. Nous définissons maintenant pY, Zq l'approximation de pY, Zq, rappelons (0.0.4).

i) Définir la condition terminale par

pY N , Z N q " pgpX N q, σpX N q J ∇gpX N qq.

ii) Pour 0 ď n ď N ´1 et Q ě 1, le passage de pY n`1 , Z n`1 q à pY n , Z n q implique Q étapes. Aux instants intermédiaires, pour 1 ă q ď Q `1, soit

Y n,q " E tn,q « Y n`1 `h q ÿ k"1 a qk f pX n,k , Y n,k , Z n,k q ff , (0.0.21) Z n,q " E tn,q « H n q Y n`1 `h q´1 ÿ k"1 α qk H n q,k f pX n,k , Y n,k , Z n,k q ff , (0.0.22)
où pa qk q 1ďq,kďQ`1 , pα qk q 1ďq,kďQ`1 prennent leurs valeurs dans R et avec a 1k "

α 1k " 0, 1 ď k ď Q, a qk " α qk " 0, 1 ď q ă k ď Q `1 et q ÿ k"1 a qk " q´1 ÿ k"1 α qk 1 tc k ăcqu " c q , q ď Q `1. (0.0.23)
Nous définissons pY n , Z n q " pY n,Q`1 , Y n,Q`1 q au temps t n .

Pour tout 1 ď k ă q ď Q `1, n ď N , les variables aléatoires H n q , H n q,k sont F t n`1 ´mesurable, indépendants de F tn,q et F t n,k respectivement ayant la propriété

E tn,q " H n q ‰ " E t n,k " H n q,k ‰ " 0 et υ n q :" E tn,q " |H n q | 2 ‰ , υ n q,k :" E t n,k " |H n q,k | 2 ‰ , λ h
ď minpυ n q , υ n q,k q et maxpυ n q , υ n q,k q ď Λ h , où λ, Λ sont des constantes positives qui ne dépendent pas de h.

L'approximation du schéma général de Runge-Kutta est essentiellement basée sur une itération de ce qui a été fait pour le schéma de Crank-Nicolson. Nous introduisons une nouvelle variable intermédiaire A n,q " E tn,q

« q´1 ÿ k"1
`aqk H n q ´αqk H n q,k ˘hf pX n,k , Y n,k , Z n,k q ff , (0.0.24) et nous minimisons alors la fonction de perte L n,q py, z, aq :"

E « C 0 h ˇˇa ´q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Y n,k , Z n,k q ˇˇ2Ỳ n`1 `h q´1 ÿ k"1
a qk f pX n,k , Y n,k , Z n,k q ´ty ´ha qq f pX n,q , y, zq `pz `aq H n q υ n q u ˇˇ2 ff Ensuite, nous pouvons implémenter l'ensemble du schéma Runge-Kutta comme nous l'avons décrit dans la Définition 0.0.7 ci-dessous.

Definition 0.0.7 (Implemented Runge-Kutta scheme) La solution numérique est calculée en utilisant l'étape suivante:

• Pour n " N , initialiser ÛN " g, VN " σ J ∇ X g, ÂN " 0.

• Pour n " N ´1, ¨¨¨, 0, 1 ă q ď Q `1 étant donné p Ûn`1 , Vn`1 q ": p Ûn,1 , Vn,1 q et p Ûn,k , Vn,k q, 1 ă k ă q, -Définir pΦ k , Ψ k q :" p Ûn,k , Vn,k q, 1 ď k ă q, pΦ k , Ψ k q :" 0, k ě q -Calculer un minimiseur de la fonction de perte : θ ‹ n,q P argmin θ L RK n,q rΦ, Ψspθq, où L RK n,q est la fonction de perte du schéma de Runge-Kutta à l'étape q et Φ " pΦ 1 , ¨¨¨, Φ q´1 q P CpR d , Rq q´1 et Ψ " pΨ 1 , ¨¨¨, Ψ q´1 q P CpR d , R d q q´1 -Définir p Ûn,q , Vn,q , Ân,q q :" N m p cdot; θ ‹ n,q q, où N m p¨; θ ‹ n,q q est un réseau de neurones. Définir p Ûn , Vn q :" p Ûn,Q`1 , Vn,Q`1 q Partie I: Représentation probabiliste pour les modèles de volatilité stochastique (Chapitre 4)

Dans la deuxième partie de la thèse, nous établissons une formule de représentation probabiliste de deux formules d'intégration par parties (IPP) de la loi marginale du processus pour certains modèles de volatilité stochastique à un temps de maturité fixé T . Ensuite, une méthode de simulation de Monte Carlo non biaisée découle des formules probabilistes basées sur une simple chaîne de Markov évoluant le long d'une grille de temps aléatoire donnée par les temps de saut d'un processus de renouvellement indépendant, de sorte qu'elle peut être utilisée pour calculer numériquement le prix et les grecques des options, en particulier delta et vega, pour une large classe de pay-off européen non reguliée. L'erreur obtenue est optimale puisque le calcul ne sera affecté que par l'erreur statistique. La principale nouveauté de notre approche par rapport aux travaux précédents [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF][START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF]4] est que nous permettons au coefficient de dérive d'être éventuellement non borné comme c'est le cas dans la plupart des modèles de volatilité stochastique (modèles de Stein-Stein, modèles de Heston, ...).

En finance mathématique, un modèle à volatilité stochastique est un modèle dont la variance est donnée par un processus stochastique, au lieu d'un processus déterministe [START_REF] Gatheral | The volatility surface: a practitioner's guide[END_REF]. Ces modèles sont largement utilisés en finance mathématique pour le pricing des produits dérivés, tels que les options. Les modèles de volatilité stochastique sont des extensions du modèle Black-Scholes, pour lequel la volatilité est supposée constante au fil de temps. De nombreux modèles de volatilité stochastique ont été étudiés, tels que le modèle Heston [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF], le modèle CEV [START_REF] Cox | The constant elasticity of variance option pricing model[END_REF], le modèle de volatilité SABR [START_REF] Hagan | Managing smile risk[END_REF], le modèle GARCH [START_REF] Brooks | Rats handbook to accompany introductory econometrics for finance[END_REF] parmi les autres. Dans ce travail, nous considérons un modèle de volatilité stochastique bidimensionnel défini par la solution pS, Y q de l'EDS suivante n'est pas borné, par rapport aux autres travaux sur la représentation probabiliste, voir e.g. [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF] pour les processus tués et Agarwal et Gobet [2] pour les processus de diffusion multidimensionnels.

Nous nous intéressons à établir une formule de représentation probabiliste du prix d'une option européenne de maturité T ą 0 et de pay-off hpS T , Y T q, donnée par E rhpS T , Y T qs , ainsi que les formules d'intégration par parties (IPP) des sensibilités (Grecques) de l'option, données par B s 0 E rhpS T , Y T qs et B y 0 E rhpS T , Y T qs , d'où découle une méthode de simulation de Monte Carlo non biaisée.

Nous établissons une formule de représentation probabiliste de la loi marginale pS T , Y T q, T ą 0 basée sur une chaîne de Markov simple évoluant une grille en temps aléatoire donné par les temps de saut d'un processus de renouvellement indépendant.

Cette formule fournit une méthode de Monte Carlo non biaisée. Elle s'inspire de la formule de représentation probabiliste de Bally et Kohatsu-Higa [4] et les autres [START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF][START_REF] Henry-Labordère | Unbiased simulation of stochastic differential equations[END_REF][START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF]2] pour les processus de diffusion multidimensionnels, les processus unidimensionnels et de certains EDS de Lévy avec des coefficients bornés de dérive, de diffusion et de saut.

Le principal nouveau défi est de s'attaquer au cas où la dérive de la volatilité b Y est non bornée. Afin de surmonter cette difficulté, nous figeons les coefficients b Y , σ S et σ Y le flot d'équation différentielle ordinaire (ODE) dmt dt " b Y pm t q, m 0 " y 0 obtenue en supprimant le terme de diffusion dans la dynamique de Y . La chaîne de Markov sous-jacente p X, Ȳ q sur laquelle la représentation probabiliste est basée, est alors obtenue à partir de Xx 0 t " x 0 `ż t 0 pr ´1 2 a S pm s qq ds `ż t 0 σ S pm s q dW s , Ȳ y 0 t " y 0 `ż t 0 b Y pm s q ds `ż t 0 σ Y pm s q dB s , dxW, By s " ρ ds.

Supposons que τ " pτ n q ně0 , τ 0 " 0 est une suite non décroissante de R `modélisant des temps de saut aléatoires et soit N " pN t q tě0 le processus de renouvellement, défini par N t :" ř ně1 1 tτnďtu . N est indépendant des deux mouvements browniens W et B. On discrétise le processus p X, Ȳ q en utilisant un schéma d'Euler sur la grille de temps aléatoire pζ i q iě0 avec ζ 0 " 0 et ζ i " τ i ^T , comme suit Xi`1 " Xi `´rpζ i`1 ´ζi q ´1 2 a S,i ¯`σ S,i Z 1 i`1 , Ȳi`1 " m i `σY,i ´ρi

Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 ¯.
où a S,i :" σ 2 S,i "

ż ζ i`1 ´ζi 0 a S pm s p Ȳi qq ds, a Y,i :" σ 2 Y,i " ż ζ i`1 ´ζi 0 a Y pm s p Ȳi qq ds,
σ S,Y,i :"

ż ζ i`1 ´ζi 0 pσ S σ Y qpm s p Ȳi qq ds, ρ i :" ρ σ S,Y,i σ S,i σ Y,i , m i :" m ζ i`1 ´ζi p Ȳi q,
où Z " pZ 1 n , Z 2 n q ně1 est une suite de i.i.d. variables aléatoires de loi N p0, I 2 q indépendantes de pW, Bq.

Nous notons B γ pR 2 q l'ensemble des applications Boréliennes h : R 2 Ñ R satisfaisant l'hypothèse de croissance exponentielle à l'infini. Sous certaines hypothèses qui seront énoncées dans la partie II de cette thèse, la loi du couple pX T , Y T q satisfait Résumé détaillé la représentation probabiliste suivante : pour tout h P B γ pR 2 q et pour un certain γ ą 0, le prix d'une option exercée à l'instant T avec pay-off hpX T , Y T q satisfait :

ErhpX T , Y T qs " E " hp XN T `1, ȲN T `1q N T `1 ź i"1 θ i ı ,
où les variables aléatoires θ i sont dans S i´1,n p X, Ȳ q sur l'ensemble tN T " nu. On a θ N T `1 " p1 ´F pT ´ζN T qq ´1, et pour i " 1, ¨¨¨, N T , θ i " pf pζ i ´ζi´1 qq

´1" I p1,1q i pc i S q ´Ip1q i pc i S q `Ip2,2q i pc i Y q `Ip2q i pb i Y q `Ip1,2q i pc i Y,S q ı .
Enfin, si N est un processus de renouvellement avec des temps de saut qui suit une distribution Betap1{2, 1q, alors pour tout p ě 1 et h P B γ pR 2 q pour un certain γp ą 0, la variable aléatoire hp XN T `1, ȲN T `1q N T `1 ś i"1 θ i admet un moment L p pPq fini.

Comme d'habitude, nous définissons la dérivé par rapport au prix spot (resp. sa volatilité) de l'actif sous-jacent par Delta (resp. Vega). Sous les hypothèses appropriées (AR) et (ND) de la partie II, pour tout h P B γ pR 2 q et pour un certain γ ą 0 et tout ps 0 , y 0 q " pexppX 0 q, Y 0 q P R 2 , la loi du couple pX T , Y T q vérifie les formules de type Bismut-Elworthy-Li suivantes :

s 0 T B s 0 E " hpX T , Y T q ı " E " hp XN T `1, ȲN T `1q N T `1 ÿ k"1 pζ k ´ζk´1 q Ý Ñ θ I p1q,N T `1 k ı avec T B y 0 E " hpX T , Y T q ı " E « hp XN T `1, ȲN T `1q N T `1 ÿ k"1 pζ k ´ζk´1 q ´Ý Ñ θ I p2q,N T `1 k `k ÿ j"1 Ý Ñ θ C N T `1 j `Ý Ñ θ I p1q,N T `1 k j ¯ff , où Ý Ñ θ I p1q,n`1 k , Ý Ñ θ C n`1 j , Ý Ñ θ I p2q,n`1 k et Ý Ñ θ I p1q,n`1 k j
avec n ě 0 sur tN T " nu, 1 ď j ď k ď n `1, sont des fonctions explicites des paramètres du modèle et des poids θ i . Cela implique que les variables aléatoires qui apparaissent à l'intérieur des attentes sur le côté droit de la formule IPP peuvent être parfaitement simulées. Par conséquent, Delta et Vega peuvent être calculées par une méthode de simulation Monte-Carlo non biaisée avec une complexité optimale.

Chapter 1 Introduction

This manuscript investigates the solutions of BSDEs by different learning methods and the probabilistic representation for stochastic volatility models with unbounded drift. The aim of this chapter is to introduce and motivate the questions we studied and to summarize the main results obtained.

Connection between semilinear parabolic PDEs and BSDEs

Let W be a d-dimensional Brownian motion defined on a complete probability space pO, A, Pq and let X 0 be a A-measurable d-dimensional random vector with compact support or deterministic, independent from W. We define pF t q 0ďtďT as the augmented filtration generated by W and X 0 . For b : R d Ñ R d and σ : R d Ñ M d (the set of d ˆd matrices) two measurable functions, we define the forward diffusion process X as the solution to the following stochastic differential equation (SDE for short) dX t " bpX t q dt `σpX t q dW t , (1.1.1)

and we define its infinitesimal generator L, for ϕ smooth enough, by

Lϕpt, xq :" bpxq ¨∇x ϕpt, xq `1 2 Trrpσσ J qpxq∇ 2 x ϕpt, xqs.

(1.1.2)

We are concerned in the first part of the thesis with the numerical approximation of the solution pupt, X t q, σ J pX t q∇ x upt, X t qq, where u is the solution to the highdimensional semilinear parabolic PDE " B t upt, xq `Lupt, xq `f pupt, xq, σ J pxq∇ x upt, xqq " 0, pt, xq P r0, T q ˆRd , upT, xq " gpxq, x P R d (1.1.3) and the pF t q-adapted solution pY t , Z t q P R ˆRd to the BSDE Y t " gpX T q `ż T t f pY s , Z s q ds ´ż T t Z s ¨dW s , 0 ď t ď T , (1.1.4) where f : R ˆRd Ñ R, g : R d Ñ R are measurable functions. It was first noticed in [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF] that there exist a connection between semilinear parabolic PDEs of the form (1.1.3) and BSDEs (1.1.4) as follows:

pupt, X t q, σ J pX t q∇ x upt, X t qq " pY t , Z t q, 0 ď t ď T. This shows that solving the PDE (1.1.3) is equivalent to solving the BSDE (1.1.4). Since then, the numerical approximation of (1.1.4) was widely studied through the research of efficient numerical algorithms. In particular, branching methods [START_REF] Henry-Labordère | Branching diffusion representation of semilinear pdes and monte carlo approximation[END_REF], full history recursive multilevel Picard method (MLP for short) [START_REF] Hutzenthaler | Multilevel picard iterations for solving smooth semilinear parabolic heat equations[END_REF], cubature methods [START_REF] Chassagneux | Cubature method to solve bsdes: Error expansion and complexity control[END_REF][START_REF] Crisan | Solving backward stochastic differential equations using the cubature method: application to nonlinear pricing[END_REF][START_REF] Crisan | Second order discretization of backward sdes and simulation with the cubature method[END_REF], optimal quantization methods [START_REF] Bally | A quantization algorithm for solving multidimensional discrete-time optimal stopping problems[END_REF][START_REF] Bally | Error analysis of the optimal quantization algorithm for obstacle problems[END_REF][START_REF] Pagès | Improved error bounds for quantization based numerical schemes for bsde and nonlinear filtering[END_REF][START_REF] Nmeir | Quantization-based approximation of reflected bsdes with extended upper bounds for recursive quantization[END_REF], Malliavin calculus based methods [START_REF] Crisan | On the monte carlo simulation of bsdes: An improvement on the malliavin weights[END_REF][START_REF] Bouchard | Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations[END_REF][START_REF] Hu | Malliavin calculus for backward stochastic differential equations and application to numerical solutions[END_REF] and some linear regression methods [START_REF] Gobet | A regression-based monte carlo method to solve backward stochastic differential equations[END_REF][START_REF] Gobet | Stratified regression monte-carlo scheme for semilinear pdes and bsdes with large scale parallelization on gpus[END_REF][START_REF] Gobet | Approximation of backward stochastic differential equations using malliavin weights and least-squares regression[END_REF] were considered. It is acknowledged that such approaches will be feasible for problems up to dimension 10. Solving high-dimensional non-linear BSDEs is a challenging task due to the "curse of dimensionality". A major breakthrough is that machine learning technique (especially using deep neural networks) was applied to this field by Weinan E, Jiequn Han, Arnulf Jentzen, and Christian Beck in 2017 [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF]. From then on, 100-dimensional BSDEs became solvable. Then, the performance of numerical experiments were improved by many new algorithms rely on neural network , see [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF][START_REF] Han | Algorithms for solving high dimensional pdes: From nonlinear monte carlo to machine learning[END_REF][START_REF] Han | Convergence of the deep bsde method for coupled fbsdes[END_REF][START_REF] Mikael | Machine learning for semi linear pdes[END_REF][START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF][START_REF] Germain | Deep backward multistep schemes for nonlinear pdes and approximation error analysis[END_REF][START_REF] Pham | Neural networks-based backward scheme for fully nonlinear pdes[END_REF][START_REF] Pham | Neural networks-based backward scheme for fully nonlinear pdes[END_REF][START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF][START_REF] Jiang | Convergence of the deep bsde method for fbsdes with non-lipschitz coefficients[END_REF][START_REF] Kapllani | Deep learning algorithms for solving high dimensional nonlinear backward stochastic differential equations[END_REF][START_REF] Takahashi | A new efficient approximation scheme for solving high-dimensional semilinear pdes: control variate method for deep bsde solver[END_REF][START_REF] Chassagneux | Numerical approximation of singular forward-backward sdes[END_REF]. And Teng Long proposed a Gradient boosting-based numerical algorithm in 2021 [START_REF] Teng | Gradient boosting-based numerical methods for high-dimensional backward stochastic differential equations[END_REF] which could solve 10000 dimensional nonlinear BSDEs.

Our contributions

In the first part of this thesis, we analyse in detail the theoretical convergence of some numerical approximations, namely traditional Stochastic Gradient Descent (SGD for short) algorithm and deep learning methods, of the solution to a Backward Stochastic Differential Equation. The algorithms are tested on several examples coming from mathematical finance. The approximations are based on the classical connection between non-linear parabolic PDEs and BSDEs. The numerical results on high dimensional BSDEs are compared with the one obtained in [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF][START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF].

In Chapter 2, we introduce an algorithm to approximate the solutions by using some basis functions on some sparse grids spaces and it is shown to converge to a global minimum. The global optimisation problem to be solved is non-convex due to the non-linear driver of the BSDEs. In order to circumvent this issue, we employ a Picard iteration procedure. Then, the overall procedure becomes a sequence of linear-quadratic optimisation problems which can be solved by a SGD algorithm. In Theorem 2.2.1, we control the global error of the implemented algorithm which shows the convergence of the algorithm under some conditions. In particular, contrary to the deep learning methods [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF][START_REF] Han | Convergence of the deep bsde method for coupled fbsdes[END_REF][START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF], we obtain an upper bound on the error induced by the SGD algorithm. In practice, we rely on sparse grid approximation spaces to deal with the "curse of dimensionality". Our second main result is Theorem 2.3.1 which provides, under a periodic coefficients hypothesis, an upper bound for the global complexity of the implemented algorithm. Especially, we prove that the "curse of dimensionality" is tamed, in the sense that an approximation with error less than ε ą 0 is obtained with complexity of order ε ´p| logpεq| qpdq , where p is a constant and qpdq is an affine function. Last, various examples in a high dimensional setting numerically show the efficiency of our methods, see Section 2.3.

In Chapter 3, we propose new algorithms by combining some high-order approximation schemes (Crank-Nicolson scheme, explicit multi-stage Runge-Kutta scheme) with neural networks to approximate the solutions of high-dimensional BSDEs. We study the stability of these algorithms. We obtain weak convergence of the algorithmms thanks to the Universal Approximation Theorem for neural networks [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF][START_REF] Hornik | Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[END_REF] and their discrete time errors, see Theorem 3.3.2. We implement these schemes to numerically compare the convergence rates and the computational time cost in Section 3.4.

SGD algorithms with sparse grids

In Chapter 2, given an equidistant grid π :" tt n " nh, n " 0, ¨¨¨N |h :" T {N u of r0, T s, we use the sparse grids space to approach the solutions pupt n , ¨q, B x upt n , ¨qq of the semi-linear parabolic PDE (1.1.3) at time t n . The algorithm is applied as the gradient learning algorithm to optimize the coefficients of the basis functions, and a 1.1. Machine learning methods for high-dimensional BSDEs Picard iteration scheme is introduced so that the algorithm converges to the global solution.

The main goal is to compute an approximation of up0, X 0 q, where u is the solution to the PDE (1.1.3) at the initial time on a given domain or at a specific point. This lead us to introduce the following setup for the initial value X 0 : Assumption 1.1.1 One of the two following cases holds:

(i) The law of X 0 has compact support and is absolutely continuous with respect to the Lebesgue measure.

(ii) The law of X 0 is a Dirac mass at some point x 0 P R d .

The direct and Picard algorithms

In Section 2.2, we first introduce the direct algorithm, which is a SGD algorithm with a linear specification of the approximation space. However, the non convexity of the optimisation (computed via SGD) may cause numerical difficulty. We then introduce a new numerical method to reach the global minimum, called the Picard algorithm.

Let W :" pW tn q 0ďnďN be the discrete-time version of the Brownian motion W. We define ∆W n " W t n`1 ´Wtn , 0 ď n ď N ´1 and

X 0 " X 0 , X t n`1 " X tn `bpX tn qh `σpX tn q∆W n , 0 ď n ď N ´1 . (1.1.5)
We now introduce a discrete-time approximation of the process Z and Y. For a given t n P πztT u, assume V z n is a parametric functional approximation space generated by a set of basis functions

pψ k n pxqq 1ďkďK z n , x P R d (1.1.6)
with some positive integer K z n . For later use, we set:

s K z :" N ´1 ÿ n"0 K z n . (1.1.7) Definition 1.1.

(Class of discrete control process)

We let H π,ψ be the set of discrete control process Z defined by: for z P R d s K z and basis functions (1.1.6),

Z tn :" K z n ÿ k"1 ψ k n pX tn qz n,k , for 0 ď n ď N ´1, (1.1.8)
and we set Z t " Z tn , t n ď t ă t n`1 , 0 ď n ď N ´1 with the convention Z T " 0.

Then, with the above approximation of the control process Z at hand, we naturally consider the following approximation scheme for the process Y. Definition 1.1.2 Given u " py, zq P R K y ˆRd Kz , we denote by Z u P H π,ψ the discrete control process as given in (1.1.8). Then, the discrete controlled process Y u is defined as follows:

1. Initialization: Set Y u 0 " K ÿ k"1 ψ k y pX 0 qy k . (1.1.9)
2. Discrete version: for any 0 ď n ď N ´1: Based on Definition 1.1.1 and Definition 1.1.2, let B π,ψ be the set of processes pY u , Z u q, with Z u P H π,ψ , Y u defined as above for some u P R K y ˆRd Kz . Now, the main idea of approximation by learning methods is to minimize a loss function defined as the difference of the approximated terminal condition gpX T q and the discrete controlled process Y u T at maturity T . Here, we work with a quadratic loss function, that is we have to solve the optimization problem inf u"py,zqPR K y ˆRd Kz gpuq :" ErGpX 0 , W, uqs

Y u t n`1 " Y u tn ´hf pY u tn , Z u tn q `Zu tn ¨∆W n . (1
(1.1.12) with GpX 0 , W, uq " |gpX T q ´Y u T | 2 .
However, the above optimization problem (1.1.12) is generally not convex, so that we cannot guarantee that the algorithm converges to local or global minima. It is well known that the solution of the BSDE (1.1.4) itself can be obtained by the limit of a sequence of Picard iterations, see e.g. [START_REF] El Karoui | Backward stochastic differential equations in finance[END_REF] and [START_REF] Bender | A forward scheme for backward sdes[END_REF] from a numerical perspective. Thus, we introduce the Picard algorithm which transforms the non-convex optimisation problem (1.1.12) into a sequence of linear-quadratic optimization problems. Our Picard algorithm is based on the iteration of the operator Φ defined below:

R K y ˆRd Kz Q ũ Þ Ñ Φpũq :" arg min uPR K y ˆRd Kz E " |gpX T q ´U ũ,u T | 2 ı , (1.1.13)
where U ũ,u is given by the following decoupling approximation scheme:

1. For ũ P R K y ˆRd Kz , consider pY ũ, Z ũq P B π,ψ as introduced in Definition 1.1.2.

2. Then, for any u P R K y ˆRd Kz , and Z u P H π,ψ as introduced in Definition 1.1.1, we define the control process U ũ,u by

U ũ,u 0 " Y u 0 (1.1.14)
and for any 0 ď n ď N ´1,

U ũ,u t n`1 " U ũ,u tn ´hf pY ũ tn , Z ũ tn q `Zu tn ¨pW t n`1 ´Wtn q , (1.1.15)
where the driver f pY ũ tn , Z ũ tn q does not depend on the processes pY u , Z u q for fixed ũ P R K y ˆRd Kz in step 1. There consequently exists an unique solution to the optimisation problem (1.1.13). The following definition gives the whole process of the Picard algorithm. 2. Iteration: for 1 ď p ď P , compute: u p " Φpu p´1 q.

Then, the output of the algorithm is u P .

SGD algorithm

It is well known that SGD algorithms are efficient iterative methods for solving optimization problems under smooth conditions. The basic idea of SGD is traced back to the Robbins-Monro algorithm, which is introduced by Herbert Robbins and Sutton Monro in 1951 [START_REF] Robbins | A stochastic approximation method[END_REF]. It is typically used for root-finding problems. In contrast with the Newton-Raphson algorithm, the Robbins-Monro algorithm does not require to compute the inverse of a matrix, which is costly in a high-dimensional setting.

We will implement the SGD algorithm to compute a solution py, zq P R K y Rd Kz to the optimization problem (1.1.12). We first prescribe a positive integer M representing the number of steps that the stochastic algorithm will iterate, and then choose a deterministic non increasing sequence of positive real numbers pγ m q mě1 representing the learning rates and satisfying the following conditions ÿ mě1 γ m " 8 and ÿ mě1 γ 2 m ă 8.

(1.1.16) A particular learning rates sequence which satisfy the above conditions, and was suggested by Robbins-Monro, have the form γ m " 1{m α for some α P p0.5, 1s. The algorithm consists in computing iteratively, for 0 ď m ď M ´1 and λ m " y, z n , 0 ď n ď N ´1,

λ m`1 " λ m ´γm`1 ∇ λ G `X m`1 0 , W m`1 , u m ˘, (1.1.17)
where ∇ λ G is the gradient of GpX 0 , W, uq " |gpX T q´Y u T | 2 to λ. Under some classical hypothesis, the algorithm converges in L 2 , see e.g. [START_REF] Duflo | Mathématiques & Applications[END_REF][START_REF] Kushner | Stochastic approximation and recursive algorithms and applications[END_REF][START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF].

In Lemma 2.2.2, we provide the analytic expression of the local gradient functions ∇ λ GpX 0 , W, uq, λ P ty, z n , 0 ď n ď N ´1u appearing in (1.1.17), allowing to easily compute py m`1 , z m`1 q once pY um , Z um q, 0 ď m ď M ´1, have been simulated.

Sparse grids

For both the implemented direct algorithm and the implemented Picard algorithm, the choice of the approximation spaces V y and V z n , 0 ď n ď N ´1, and their related basis functions pψ k y q 1ďkďK y and pψ k n q 0ďnďN ´1,1ďkďK z n , are of paramount importance.

In Section 2.3, we choose to use sparse grids approximation together with two types of basis functions: pre-wavelet [START_REF] Bohn | On the convergence rate of sparse grid least squares regression[END_REF] and "modified hat function" [START_REF] Frommert | Efficient cosmological parameter sampling using sparse grids[END_REF].

As usual, for 0 ď n ď N ´1, we build the basis functions on a compact domain

O n " d ź l"1
ra n l , b n l s where a n l ă b n l for l P t1, . . . , du.

(1.1.18)

The domain specification relies on the applications under study. We will consider two main cases in this work.

1. For all 1 ď n ď N ´1,

O n " d ź l"1 ra l , b l s ": O. (1.1.19)
which does not depend on n. We will study this case in Section 2.3.1.2 where we consider coefficient functions that are O-periodic.

where a and b are given mappings.

In both cases, we can obtain the basis functions by a linear transformations from basis functions defined on standard sparse grids on the canonical domain r0, 1s d , see e.g. [START_REF] Bungartz | Sparse grids[END_REF]. We choose the number of basis functions in sparse grids space to be of order

Op2 d´1 q , (1.1.21)
where is the prescribed level of the sparse grids, so that "the curse of dimensionality" only depends on the level , see [START_REF] Feuersänger | Sparse grid methods for higher dimensional approximation[END_REF][START_REF] Reisinger | Analysis of linear difference schemes in the sparse grid combination technique[END_REF]. [START_REF] Bohn | Error analysis of regularized and unregularized least-squares regression on discretized function spaces[END_REF]Theorem 3.25] shows that the approximation error of the sparse grids space is controlled as soon as the functions to be approximated are smooth enough.

Main results

In Theorem 2.2.1, under some theoretical assumptions such as a smallness conditions, the mean squared error of the complete algorithm is controlled by the sum of the time-discretisation error, the error induced by the SGD algorithm, the spacediscretisation error from the sparse grid approximation, and finally the error due to the Picard iteration. The numerical complexity C ε of the full algorithm is given by

C ε " O d pP N KM q . (1.1.22)
Under the setting of Section 2.3.1.2 , where coefficients are assumed periodic, in order to achieve a global mean squared error of order ε 2 as stated in (1.1.22), 1.1. Machine learning methods for high-dimensional BSDEs the complexity of the full Picard algorithm by using pre-wavelet basis functions on sparse grids is

C ε " O d pε ´5 2 p1`2ιq | log 2 pεq| 1`4 5`50ι 36 pd´1q q
for any 1 ă ι ă 9 5 . In particular, it shows that the "curse of dimensionality" is tamed by using the sparse grid approximation as we can see that C grows polynomially in ε ´1 up to some logarithmic factor | log 2 pεq| whose exponent is an affine function with respect to d.

Numerical results

Periodic example

We first work on a periodic example under the setting of Assumption 1.1.1 (i). We consider here 1-periodic coefficients of the forward SDE (1.1.1) on R d , see the model in detail in Section 2.3.1.2. We perform the test for d " 3 by Picard Algorithm with P " 5, then there are K y " K z n " K " 225 basis functions. We obtain a mean square error E MSE " 0.0201 at the 5-th Picard iteration: See Figure 1.1 displaying the learning performance. Numerical convergence of the Picard and direct Algorithm Under the setting of Assumption 1.1.1(ii), we also compare our methods to existing methods as the ones investigated in [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF][START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF]. We consider the quadratic example, whose driver is set to

f py, zq " a|z| 2 " apz 2 1 `z2 2 `¨¨¨`z 2 d q, y P R, z P R d , (1.1.23)
where a P R is a constant, and the terminal condition to

gpxq " log ˆ1 `|x| 2 2 ˙, x P R d . (1.1.24)
The explicit solution can be obtained through the Cole-Hopf transformation and then simulated by Monte Carlo method. For the 5-dimensional quadratic model, Figure 1.2 shows the difference of ŷ0 between our SGD algorithm and Monte Carlo method is less than 10 ´2. It turns out that for this "low" dimensional example, it is more precise than the deep learning algorithm introduced in [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF]. Figure 1.3 shows that ŷ0 converges for each Picard iteration. We can observe that ŷ0 is very close to the reference solution ȳ0 when the number of iteration p is greater or equal to 4. Numerical results with the modified hat functions basis We were able to establish a theoretical upper-bound on the global complexity for the Picard algorithm by using the pre-wavelet basis. However, the number of basis functions is still quite large which prevents us from dealing effectively with high-dimensional BSDEs. In fact, the number of basis functions used to capture what happens on the boundary of the domain is large. We could use the so-called "modified hat functions" [START_REF] Frommert | Efficient cosmological parameter sampling using sparse grids[END_REF] below that allows to get rid of the boundary basis. Table 1.1 shows the number of points in the sparse grids without boundary, it is much less than sparse grids with boundary for the same dimensions and levels, see Table 1.2.

ϕ l,i pxq :" $ ' ' ' ' ' ' & ' ' ' ' ' ' % 1 if l " 1 ^i " 1 " 1 ´2l´1 ¨x if x P r0, 2h l s 0 otherwise * if l ą 1 ^i " 1 " 2 l´1 ¨x `p1 ´iq{2 if x P r1 ´2h l , 1s 0 otherwise * if l ą 1 ^i " 2 l ´1 φ l,i pxq otherwise ,
where φ l,i pxq is the family of hat functions given by φ l,i pxq " φp2 l x ´iq with φpxq " Come back to the quadratic model introduced in (1.1.23)- (1.1.24). In this setting, we can test the 100-dimensional version of this model. the convergence of ŷ0 by using the direct algorithm is shown in Figure 1.5: 3819 seconds were spent on this test. The error for ŷ0 appears to be less than 0.01. There is a challenging example with an unbounded and complex unbounded structure solution below that was analyzed in [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF].

" 1 ´|x| if ´1 ă x ă 1 0 otherwise .
upt, xq " T ´t d d ÿ i"1 psinpx i q1 tx i ă0u `xi 1 tx i ě0u q `cos ˜d ÿ i"1 ix i ¸, x P R d .
We compare the approximation of y 0 by using five different algorithms to the theoretical solution in

Deep learning methods

In Chapter 3, we introduce some high order approximation scheme (such as Crank-Nicolson scheme, Runge-Kutta scheme) to reduce the computational time cost of the backward deep learning scheme with Euler scheme introduced in [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF]. The convergence is proved using the universal approximation theorem of neural networks [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF][START_REF] Hornik | Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[END_REF]. In addition, some variance reduction techniques are used.

1.1. Machine learning methods for high-dimensional BSDEs

Neural networks

In the past ten years, neural networks have been used in many fields (such as image Processing, NLP, AI . . .) and this resulted in impressive achievements, especially to overcome empirically the curse of dimensionality when solving high-dimensional problems. Indeed, using neural networks results in approximations computed in an at-most polynomially growing time. It was first applied to solve high-dimensional BSDEs by Weinan E, Jiequn Han, Arnulf Jentzen, and Christian Beck in 2017 [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF][START_REF] Beck | Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations[END_REF]. They proposed in their work a forward scheme (see Definition 1.1.4 which is discretized by Euler scheme) with a large neural network scheme. Many works based on neural networks to solve BSDEs have then appeared, see for example [START_REF] Han | Convergence of the deep bsde method for coupled fbsdes[END_REF][START_REF] Mikael | Machine learning for semi linear pdes[END_REF][START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF][START_REF] Germain | Deep backward multistep schemes for nonlinear pdes and approximation error analysis[END_REF][START_REF] Pham | Neural networks-based backward scheme for fully nonlinear pdes[END_REF][START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF][START_REF] Jiang | Convergence of the deep bsde method for fbsdes with non-lipschitz coefficients[END_REF][START_REF] Kapllani | Deep learning algorithms for solving high dimensional nonlinear backward stochastic differential equations[END_REF][START_REF] Takahashi | A new efficient approximation scheme for solving high-dimensional semilinear pdes: control variate method for deep bsde solver[END_REF][START_REF] Chassagneux | Numerical approximation of singular forward-backward sdes[END_REF].

Definition 1.1.4 (Implemented deep forward scheme) [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF] For the given terminal function g, the numerical solution is computed using the following step:

• For n " 0, initialize X 0 " x 0 , Ŷ0 " y 0 .

• For n " 0, ¨¨¨, N ´1, given Ŷn ,

-Compute X n`1 " X n `bpX n qh `σpX n q∆W n .
-Compute Vn " N pX n ; θ n q, where N px; θ n q is a neural network with real parameters θ n and input variables x.

-Compute Ŷn`1 " Ŷn ´hf p Ŷn , Vn q `V n ∆W n . Obversely, Ŷn`1 depends on the parameters y 0 and pθ 0 , ¨¨¨, θ n q.

• Compute a minimizer of the loss function:

py ‹ 0 , θ ‹ q P argmin y 0 ,θ E " | ŶN py 0 , θq ´gpX T q| 2 ı .
where θ " pθ 0 , ¨¨¨, θ N ´1q.

Compared to the deep forward scheme defined above, a more stable scheme was first introduced by Côme Huré, Hûyen Pham, and Xavier Warin [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF], called deep backward scheme, see Definition 1.1.5 below. The convergence of their methods is based on the fact that the neural networks are universal approximators, see Theorem 3.1.1. Theoretically, the errors due to neural networks could be made arbitrarily small by increasing the number of neurons. Inspired by the DBDP1 method in [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF], our goal is to reduce the computational time cost by using high-order approximation methods (such as Crank-Nicolson scheme, Runge-Kutta scheme...) to control the time-discretisation error. Definition 1.1.5 (Implemented deep backward scheme) For the given loss function L n rϕ, ψspθq, pϕ, ψq P CpR d , Rq ˆCpR d , R d q, the numerical solution is computed using the following step:

• For n " N , initialize ÛN " g, VN " σ J ∇ x g.
• For n " N ´1, ¨¨¨, 1, 0, given the networks Ûn`1 , Vn`1 , -Compute a minimizer of the loss function:

θ ‹ n P argmin θ L n r Ûn`1 , Vn`1 spθ n q.
where θ n is the parameters of a neural network N p¨, θ n q.

-Set p Ûn , Vn q :" N p¨, θ ‹ n q as the approximation functions of pupt n , ¨q, σ J B x upt n , ¨qq.

Euler scheme

Implicit Euler scheme: The implicit Euler scheme for BSDEs [START_REF] Zhang | A numerical scheme for bsdes[END_REF][START_REF] Bouchard | Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations[END_REF] is traditionally defined as

Y n " E tn rY n`1 `hf pY n , Z n qqs and Z n " E tn " ∆W n h Y n`1  , 0 ď n ă N (1.1.25)
with pY N , Z N q :" pgpX N q, σ J pX N qB x gpX N qq. The conditional expectations could be computed directly by Monte Carlo simulation. For two given sets of parameters θ and ϑ, x Þ Ñ y θ n pxq, x Þ Ñ z ϑ n pxq are functions (represented as neural network with the given parameters) and, our goal is to find optimal parameters θ ‹ , ϑ ‹ so that the associated functions y ‹ n p¨q, z ‹ n p¨q should approximate upt n , ¨q and σ J B x upt n , ¨q (recalling Y t " upt, X t q, Z t " σ J pX t qB x upt, X t q). The optimal set of parameters is computed recursively. Given y ‹ n`1 , one needs to solve the two following optimisation problems at time t n :

ϑ ‹ " argmin ϑ E " | ∆W i h y ‹ n`1 pX n`1 q ´zϑ n pX n q| 2  , (1.1.26)
and

θ ‹ " argmin θ E " |y ‹ n`1 pX n`1 q ´ty θ n pX n q ´hf py θ n pX n q, z ‹ n pX n qqu| 2 ı . (1.1.27)
One could also add a term z ‹ n pW tn q∆W n to reduce the variance.

For the scheme called DBDP1 in [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF], the authors optimised both θ and ϑ at the same time: given y ‹ n`1 p¨q, pθ ‹ , ϑ ‹ q "argmin θ,ϑ E " |y ‹ n`1 pX n`1 q ´ty θ n pX n q ´hf py θ n pX n q, z ϑ n pX n qq `zϑ n pX n q∆W n u| 2 ı ,

(1.1.28) so that only one network is needed to solve this optimization problem which could save half of the computational time cost. In fact, the optimization problem (1.1.28) can be rewritten as

pθ ‹ , ϑ ‹ q "argmin θ,ϑ # E " |y ‹ n`1 pX n`1 q ´ty θ n pX n q ´hf py θ n pX n q, z ϑ n pX n qqu| 2 ı `hE " | ∆W n h y ‹ n`1 pW t n`1 q ´zϑ n pW tn q| 2  ´1 h E " |y ‹ n`1 pW t n`1 q∆W n | 2 ‰ + . (1.1.29)
We recognize that the second term is the term to minimize in (1.1.26) and can be used to find ϑ ‹ , while the first term is the term to minimize in (1.1.27) and can be used to find θ ‹ . The last term is a negative constant which could reduce the loss of (1.1.28) compared to (1.1.27)-(1.1.26).

Machine learning methods for high-dimensional BSDEs

Explicit Euler scheme: In the implicit Euler scheme defined in (1.1.25), we observe that only the Y -part is implicit. The explicit Euler scheme considers an explicit conditional expectation for the Y -part also:

Y n " E tn rY n`1 `hf pY n`1 , Z n`1 qqs and Z n " E tn " ∆W n h Y n`1  , 0 ď n ă N.
(1.1.30)

To implement this scheme in practice, one only needs to replace the optimization problem (1.1.28) by

pθ ‹ , ϑ ‹ q " argmin θ,ϑ E " |y ‹ n`1 pX n`1 q´(1.1.31) ty θ n pX n q ´hf py ‹ n`1 pX n`1 q, z ‹ n`1 pX n`1 qq `zϑ n pX n q∆W n u| 2 ı .
given y ‹ n`1 p¨q, z ‹ n`1 p¨q. In practice, using implicit or explicit Euler scheme together with neural networks approximation should induce similar time costs and variance for Y 0 .

Crank-Nicolson scheme

As we know, the weak convergence rate of Euler scheme is of order 1 only, we now introduce the Crank-Nicolson scheme which is a second-order scheme with a simple structure, see among others [START_REF] Crisan | Second order discretization of backward sdes and simulation with the cubature method[END_REF]. Though it is implicit, it has almost the same complexity as the algorithms obtained by using Euler scheme. For the Y ´part, we will study the usual Crank-Nicolson scheme, namely a θ-scheme with θ " 1 2 ,

" Y N " gpX N q, Y n " E tn " Y n`1 `h 2 pf pY n , Z n q `f pY n`1 , Z n`1 qq ‰ , 1 ď n ď N ´1. (1.1.32)
For the general expression of Z´part, we define tZ i u 0ďiďN as follows:

" Z N " B x gpX N q, Z n " E tn rH n pY n`1 `hf pY n`1 , Z n`1 qqs , (1
H n " ∆W n h .
The numerical analysis for discretization error has been done e.g. in [START_REF] Crisan | Second order discretization of backward sdes and simulation with the cubature method[END_REF][START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF]. The local discretization error will be Oph 3 q, so that the global error is Oph 2 q. For the general diffusion case, one can choose

H n " c´2 c´1 ∆Wn´∆W n,2 h `c´1 c ∆W n,2 h P R d
, where c P p0, 1q and ∆W n,2 " W t n`1 ´Wt n`1 ´ch . This directly comes from the Runge-Kutta scheme for BSDEs [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF].

Compare to the two steps scheme with loss functions min

zPL 2 pFt n q Ln pzq :" hE "ˇˇˇp Y n`1 `hf pY n`1 , Z n`1 qq H n ´zˇˇˇ2ı , min yPL 2 pFt n q Ln pyq :" E "ˇˇˇY n`1 ´ y ´h 2 f pY n`1 , Z n`1 q ´h 2 f py, Z n q (ˇˇ2 ı ,
one can optimize two loss functions together by only one neural network below to save some computational time:

min y,zPL 2 pFt n q Ln py, zq :" E "ˇˇˇY n`1 ´ y ´h 2 f pY n`1 , Z n`1 q ´h 2 f py, Z n q (ˇˇ2 ı `hE "ˇˇˇp Y n`1 `hf pY n`1 , Z n`1 qq H n ´zˇˇˇ2ı . (1
:" ´1 2 E tn rf pX n`1 , Y n`1 , Z n`1 qhH n s: min y,z,aPL 2 pFt n q L n py, z, aq :" C 0 hE « ˇˇˇ1 2 hH n f pX n`1 , Y n`1 , Z n`1 q `aˇˇˇˇ2 ff È« ˇˇˇY n`1 ´"y ´h 2 pf pX n , y, zq `f pX n`1 , Y n`1 , Z n`1 qq `pz `aq H n υ n *ˇˇˇˇ2 ff (1.1.35)
where

υ n " E tn " |H n | 2 ‰
, C 0 ą 0 is a constant, and A n is an intermediate variable that we introduced in order to implement the algorithm by using only one network as (1.1.28) or (1.1.31). The loss function (1.1.35) can achieve smaller variance for the approximation of Y 0 compares to the loss function (1.1.34). It does not increase the computational time compares to the implicit Euler scheme. There is no doubt that an error will also appear on the A´part when we optimise the neural network, but it has the same amplitude as the associated to the Z´part in the neural network, the influence on the final is negligible.

t 0 X 0 H 1 0 . . . H L´1 0 θ 0 U 0 , V 0 , A 0 L CN 0 pθ 0 q t 1 X 1 H 1 1 . . . H L´1 1 θ 1 U 1 , V 1 , A 1 L CN 1 pθ 1 q ¨¨¨¨¨. ¨¨¨¨¨¨t N ´2 X N ´2 H 1 N ´2 . . . H L´1 N ´2 θ N ´2 U N ´2, V N ´2, A N ´2 L CN N ´2pθ N ´2q t N ´1 X N ´1 H 1 N ´1 . . . H L´1 N ´1 θ N ´1 U N ´1, V N ´1 , A N ´1 L CN N ´1pθ N ´1 q t N X N pU N , Z N q pg, Bxgq initialize initialize with θ ‹ N ´1 initialize with θ ‹ N ´2 initialize with θ ‹ 2 initialize with θ ‹ 1 θ N ´1 θ ‹ N ´1 θ N ´2 θ ‹ N ´2 θ ‹ 2 θ 1 θ ‹ 1 θ 0

Runge-Kutta scheme

Runge-Kutta methods [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF] are a family of implicit and explicit discretization methods, which include implicit Euler scheme, explicit Euler scheme, Crank-Nicolson 1.1. Machine learning methods for high-dimensional BSDEs scheme in particular, see Theorem 3.2.1. From Definition 1.1.6 below, we notice that the Runge-Kutta scheme is a muti-stage scheme and can achieve a higher order than Crank-Nicolson scheme. We denote by Q the number of stages. Note that the Runge-Kutta scheme is always explicit for Z-part, there exists an order barrier for implicit scheme to get an order Q `1 scheme with a Q´stage scheme when Q ą 1 as long as B z f ‰ 0. Hence, we only consider the explicit scheme when Q " 2, 3 as the implicit scheme has no advantage compared to the explicit scheme for general drivers. However, the algorithm converges too fast when Q " 3, which leads to a discretization error smaller than the variance of the algorithm. And there also exists an order barrier for explicit scheme, which means that there is no explicit four stage methods in the class of methods for the definition 1.1.6. So that we never consider the case Q ě 4.

Definition 1.1.6 For Q P N `, let c " pc 1 , . . . , c Q`1 q P r0, 1s Q`1 satisfying 0 ": c 1 ă c 2 ď . . . ď c q ď ¨¨¨ď c Q ď c Q`1 :" 1, and t n,q :" t n`1 ´cq h. Then t n " t n,Q`1 ď . . . ď t n,q ď . . . ď t n,1 " t n`1 .
We denote the "full grid" Π :" tt n,q P r0, T s | 0 ď n ď N, 1 ď q ď Qu.

For t n,q P Π, X tn,q is approximated by X n,q P L 2 pF tn,q q, 0 ď n ď N and 1 ď q ď Q. For ease of notation, denote by pX n q 0ďnďN the approximation of X on the grid π. Observe that X n,Q`1 " X n and X n,1 " X n`1 . Assume that X is a Markov process on Π. We now define pY, Zq the approximation of pY, Zq, recall (1.1.4).

i) Set the terminal condition as

pY N , Z N q " pgpX N q, σpX N q J ∇gpX N qq.

ii) For 0 ď n ď N ´1 and Q ě 1, the transition from pY n`1 , Z n`1 q to pY n , Z n q involves Q stages. At the intermediate instances, for

1 ă q ď Q `1, let Y n,q " E tn,q « Y n`1 `h q ÿ k"1 a qk f pX n,k , Y n,k , Z n,k q ff , (1.1.36) Z n,q " E tn,q « H n q Y n`1 `h q´1 ÿ k"1 α qk H n q,k f pX n,k , Y n,k , Z n,k q ff , (1.1.37)
where pa qk q 1ďq,kďQ`1 , pα qk q 1ďq,kďQ`1 take their values in R and with a 1k "

α 1k " 0, 1 ď k ď Q, a qk " α qk " 0, 1 ď q ă k ď Q `1 and q ÿ k"1 a qk " q´1 ÿ k"1 α qk 1 tc k ăcqu " c q , q ď Q `1. (1.1.38)
We set pY n , Z n q " pY n,Q`1 , Y n,Q`1 q at the dates on π. For all 1 ď k ă q ď Q `1, n ď N , the random variables H n q , H n q,k are F t n`1 ´measurable, independent of F tn,q and F t n,k respectively with the property

E tn,q " H n q ‰ " E t n,k " H n q,k ‰ " 0 and υ n q :" E tn,q " |H n q | 2 ‰ , υ n q,k :" E t n,k " |H n q,k | 2 ‰ , λ h ď minpυ n q , υ n q,k q and maxpυ n q , υ n q,k q ď Λ h ,
where λ, Λ are positive constants which do not depend on h.

The approximation of general Runge-Kutta scheme is essentially based on an iteration of what has been done for the Crank-Nicolson scheme. We introduce a new intermediate variable

A n,q " E tn,q « q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Y n,k , Z n,k q ff , (1.1.39)
and we then minimise the loss function

L n,q py, z, aq :" E « C 0 h ˇˇa ´q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Y n,k , Z n,k q ˇˇ2Ỳ n`1 `h q´1 ÿ k"1 a qk f pX n,k , Y n,k , Z n,k q ´ty ´ha qq f pX n,q , y, zq `pz `aq H n q υ n q u ˇˇ2 ff
Then, one can implement the whole Runge-Kutta scheme as we described in Definition 1.1.7 below.

Definition 1.1.7 (Implemented Runge-Kutta scheme) The numerical solution is computed using the following step:

• For n " N , initialize ÛN " g, VN " σ J ∇ X g, ÂN " 0.
• For n " N ´1, ¨¨¨, 0, for 1 ă q ď Q `1 given p Ûn`1 , Vn`1 q ": p Ûn,1 , Vn,1 q and p Ûn,k , Vn,k q, 1 ă k ă q, -set pΦ k , Ψ k q :" p Ûn,k , Vn,k q, 1 ď k ă q, pΦ k , Ψ k q :" 0, k ě q -Compute a minimizer of the loss function:

θ ‹ n,q P argmin θ L RK n,q rΦ, Ψspθq,
where L RK n,q is the loss function of Runge-Kutta scheme at stage q and Φ " pΦ 1 , ¨¨¨, Φ q´1 q P CpR d , Rq q´1 and Ψ " pΨ 1 , ¨¨¨, Ψ q´1 q P CpR d , R d q q´1 -set p Ûn,q , Vn,q , Ân,q q :" N m p¨; θ ‹ n,q q, where N m p¨; θ ‹ n,q q is a neural network.

Set p Ûn , Vn q :" p Ûn,Q`1 , Vn,Q`1 q

Main results

For n ă N and 1 ă q ď Q `1, based on the following perturbed scheme, Ỹn,q " E tn,q

« Ỹn`1 `h q ÿ k"1 a qk f pX n,k , Ỹn,k , Zn,k q ff `ζy n,q , (1.1.40) Zn,q " E tn,q « H n q Ỹn`1 `h q´1 ÿ k"1 α qk H n q,k f pX n,k , Ỹn,k , Zn,k q ff `ζz n,q , (1.1.41)
with pζ y n,q , ζ z n,q q P L 2 pF tn,q q, we obtain a new stability result to control the error linked to the estimation of the conditional expectations at each stage of the scheme.

max năN E " |δY n | 2 ‰ `N´1 ÿ n"0 hE " |δZ n | 2 ‰ ď CE « |δY N | 2 `h|δZ N | 2 `N´1 ÿ n"0 Q`1 ÿ q"2 ˆ|ζ y n,q | 2 h `h|ζ z n,q | 2 ˙ff . (1.1.42)
Under some regularity assumptions on the coefficients, and noticing that δY N " δZ N " 0 in our setting, from the above proposition and the order of discretisation errors, we obtain a global control on the error between the solution of the BSDEs and the deep backward approximations, solutions to our different algorithms.

Theorem 1.1.1 Let p Ȳn , Zn q :" pupt n , X n q, σ J ∇ x pt n , X n qq, for n ď N . We define

Y pΦ,Ψq n,q :" E tn,q « Y pΦ,Ψq n,1 `h q ÿ k"1 a qk f pX n,k , Y pΦ,Ψq n,k , Z pΦ,Ψq n,k q ff (1.1.43) Z pΦ,Ψq n,q :" E tn « H n q Y pΦ,Ψq n,1 `h q´1 ÿ k"1 α qk H n q,k f pX n,k , Y pΦ,Ψq n,k , Z pΦ,Ψq n,k q ff (1.1.44) A pΦ,Ψq n,q " E tn,q « q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Y pΦ,Ψq n,k , Z pΦ,Ψq n,k q ff (1.1.45) with pY pΦ,Ψq n,k
, Z pΦ,Ψq n,k q :" pΦ k pX n,k q, Ψ k pX n,k qq, for 1 ď k ă q, and E n,q pΦ, Ψq " N ,y n,q pΦ, Ψq `h N ,z n,q pΦ, Ψq `h N ,a n,q pΦ, Ψq (1. 1.46) where N ,y n,q pΦ, Ψq :" inf

θ y E " |Y pΦ,Ψq n,q
´Un,q pX n,q ; θ y q| 2 ı , (

N ,a n,q pΦ, Ψq :" inf

θ a E " |A pΦ,Ψq n,q
´An,q pX n,q ; θ a q| 2 ı , (1.1.48)

N ,z n,q pΦ, Ψq :" inf θ z E " |Z pΦ,Ψq n,q
´Vn,q pX n,q ; θ z q| 2 ı .

(1.1.49)

Then, under some regularity assumptions on the solution of (1.1.3) and process X, the following holds

max n E " | Ȳn ´Û n pX n q| 2 ı `N´1 ÿ n"0 hE " | Zn ´V n pX n q| 2 ı ď Cph α `N N ´1 ÿ n"0 Ēn q . (1.1.50)
where h α is the discrete time errors of the scheme, and Ēn equals to E n,1 p Ûn`1 , Vn`1 q, E n,2 ´p Ûn`1 , Ûn,2 q, p Vn`1 , Vn,2 q ¯, E n,3 ´p Ûn`1 , Ûn,2 , Ûn,3 q, p Vn`1 , Vn,2 , Vn,3 q ¯respectively for Crank-Nicolson scheme, two stage explicit Runge-Kutta scheme, three stage explicit Runge-Kutta scheme. N ř N ´1 n"0 Ēn represents the global approximation errors due to the neural networks. Note carefully that the second term appearing in the right side of (1.1.50) depends on the considered scheme that we apply and the total number of time steps N , so that it may become large when N increases and has to be balance with the total number of neurons in practical implementaton.

Numerical results

In Section 3.4, we analyse the performance of Euler scheme, Crank-Nicolson scheme, two stage explicit Runge-Kutta scheme and three stage explicit Runge-Kutta scheme from a numerical perspective with a special case that the underlying tX t u 0ďtďT is a 10-dimensional drifted Brownian motion. We plotted the error of Y 0 w.r.t. the time steps in Figure 1.7 and the error of Y 0 w.r.t. the time cost in Figure 1.8 for the 5 schemes mentioned above. As we expected, the order of both explicit Euler scheme and implicit Euler scheme are 1, the Crank-Nicolson scheme and two stage explicit Runge-Kutta scheme are almost order 2 scheme, and the three stage explicit Runge-Kutta scheme converges too fast leads to that we can not observe the order clearly. Finally, We conclude that the Crank-Nicolson scheme is the most efficient one if we want an error smaller than 0.01 « 2 ´6.64 . Next, we will pay attention to the numerical results of the order 2 schemes with the underlying is general diffusion process. We have to discretize the forward diffusion process with a second order weak approximation scheme in practice, such as Ninomiya-Victoire scheme [START_REF] Ninomiya | Weak approximation of stochastic differential equations and application to derivative pricing[END_REF], see the detail results in Section 3.4.1.2 and Section 3.4.2.2.

Probabilistic representation for stochastic volatility models

In the second part of the thesis, we establish a probabilistic representation formula for two integration by parts (IBP) formulae for the marginal law of the process for some stochastic volatility models at a given time maturity T . Then an unbiased Monte Carlo path simulation method stems from the probabilistic formulae based on a simple Markov chain evolving along a random time grid given by the jump times 1.2. Probabilistic representation for stochastic volatility models of an independent renewal process, so that it can be used in order to numerically compute options' prices and greeks, in particular delta and vega, for a large class of non-smooth European payoffs. The achieved error is optimal since the computation will be only affected by the statistical error. The main novelty of our approach in comparison to the previous works [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF][START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF]4] is that we allow the drift coefficient to be possibly unbounded as it is the case in most stochastic volatility models (Stein-Stein, Heston, ...).

Stochastic volatility model

In mathematical finance, a stochastic volatility model is a model for which the variance given by a stochastic process, instead of being a deterministic process [START_REF] Gatheral | The volatility surface: a practitioner's guide[END_REF]. These models are widely used in mathematical finance to evaluate derivative securities, such as options. Stochastic volatility models are extensions of the Black-Scholes model, for which the volatility is assumed constant over time. This model can not explain long-observed features of the implied volatility surface such as volatility smile and skew. It becomes possible to price derivatives more accurately if we assume that the volatility of the underlying price is a stochastic process. Many stochastic volatility models have been studied, such as the Heston model [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF], the CEV model [START_REF] Cox | The constant elasticity of variance option pricing model[END_REF], the SABR volatility model [START_REF] Hagan | Managing smile risk[END_REF], the GARCH model [START_REF] Brooks | Rats handbook to accompany introductory econometrics for finance[END_REF] among others. In this work, we consider a two-dimensional stochastic volatility model given by the solution pS, Y q of the following SDE

$ ' ' ' ' & ' ' ' ' % S t " s 0 `ż t 0 rS s ds `ż t 0 σ S pY s qS s dW s , Y t " y 0 `ż t 0 b Y pY s q ds `ż t 0 σ Y pY s q dB s , dxB, W y s " ρ ds (1.2.1)
where the coefficients b Y , σ S , σ Y : R Ñ R are smooth functions, r P R, W and B are one-dimensional standard Brownian motions with correlation factor ρ P p´1, 1q both being defined on some probability space pΩ, F, Pq.

We assume that a S :" σ 2 S , a Y :" σ 2 Y and drift b Y coefficients are infinitely differentiable, and assume a S and a Y are bounded. One main improvement is that b Y is not bounded, in comparison to other works on probabilistic representation, see [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF] for killed processes and Agarwal and Gobet [2] for multi-dimensional diffusion processes, for example. Typically, the drift corresponds to a mean reversion term, i.e. b Y pyq " λpµ ´yq for some λ ą 0, as in Stein-Stein model [START_REF] Stein | Stock price distributions with stochastic volatility: an analytic approach[END_REF]. In addition the volatilities a S pxq and a Y pxq should also satisfy some uniform ellipticity conditions. We would like to consider the log-price process X t " lnpS t q instead of the spot price, so that dX t " ´r ´1 2 a S pY t q ¯dt `σS pY t q dW t , and the couple pX t , Y t q tPr0,T s has initial conditions pX 0 , Y 0 q " plnps 0 q, y 0 q.

Probabilistic representation

Background

The Probabilistic representation method originally developed by Bally, Kohatsu-Higa, Anderson in [4,[START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF]. For sake of simplicity, we will consider the one dimensional case and σpt, xq " σ, bpxq P C 1 b pRq. Thus, we introduce the one-step Euler scheme Xs,x t " x `σpW t ´Ws q.

Assume that r0, T s ˆR Q ps, xq Þ Ñ ups, xq " Erf pX x s qs is the unique solution of the PDE:

" pB s ´Lqups, xq " 0, up0, xq " f pxq.

Apply Itô's rule to upT ´t, X0,x t q tPr0,T s , we have with the notation θr px, yq " ´pbpyq ´b1 pyq y´x σ 2 r q. Hence we get

E " f p X0,x T q ı " E " up0, X0,x T q ı " upT, xq `ż T 0 E " ´Bs upT ´r, X0,x r q `1 2 σ 2 B 2 x upT ´r, X0,x r qs  dr " upT, xq `ż T 0 E " p´L `1 2 σ 2 B 2 x qupT ´r, X0,x r q  dr " upT, xq ´ż T 0 E " bp X0,
upT, xq " E " f p X0,x T q ı `ż T 0 E " θr px, X0,x r qupT ´r, X0,x r q ‰ dr. (1.2.2)
It could be shown that for r P r0, T s, |E " θr px, X0,x r qupT ´r, X0,x r q

‰ | P L 1 pr0, T sq.
Then, by the same argument,

upT ´r, xq " E " f p X0,x T ´rq ı `ż T ´r 0 E " θr 1 px, X0,x r 1 qupT ´r ´r1 , X0,x r 1 q ‰ dr 1 " E " f p X0,x T ´rq ı `ż T r E " θr 1 ´rpx, X0,x r 1 ´rqupT ´r1 , X0,x r 1 ´rq ı dr 1 " E " f p X0,x T ´rq ı `ż T r E " θr 1 ´rpx, Xr,x r 1 qupT ´r1 , Xr,x r 1 q ‰ dr 1 ,
1.2. Probabilistic representation for stochastic volatility models so that

upT, xq " E " f p X0,x T q ı `ż T 0 E " θr 1 px, X0,x r 1 qf p X0,x T q ı dr 1 `ż T 0 ż T r 1 E " θr 1 px, X0,x r 1 q θr 2 ´r1 p X0,x r 1 , X0,x r 2 qupT ´r2 , X0,x r 2 q ‰ dr 1 dr 2 .
Repeating N time the same arguments, we can prove by induction

upT, xq " N ÿ n"0 ż ∆npT q E « f p X0,x T q n ź k"1 θr k ´rk´1 p X0,x r k´1 , X0,x r k q ff dr 1 ¨¨¨dr n (1.2.3) `ż∆ N `1pT q E « upT ´rN`1 , X0,x T q n ź k"1 θr k ´rk´1 p X0,x r k´1 , X0,x r k q ff dr 1 ¨¨¨dr N `1,
where ∆ n pT q :" tpr1, ¨¨¨, r n q P r0, T s n |0 ď r 1 ď ¨¨¨ď r n ď T u and by convention r 0 " 0, ś H " 1. Under some good controls, let N Ñ 8 on the previous identity upT, xq "

ÿ ně0 ż ∆npT q E « f p X0,x T q n ź k"1 θr k ´rk´1 p X0,x r k´1 , X0,x r k q ff dr 1 ¨¨¨dr n .
In order to get a probabilistic representation of the series, one remarks that for a Poisson process N with intensity λ, independent of W , when N T " n, its jump times ζ 1 , ¨¨¨, ζ n are distributed as the order statistics of n i.i.d. uniform random variable on r0, T s, that is PpN T " n, ζ 1 P dr 1 , ¨¨¨, ζ n P dr n q " λ n e ´λT dr 1 ¨¨¨dr n on ∆ b pT q. As a consequence,

E " f pX 0,x T q ı " upT, xq " ÿ ně0 e λT E « f p X0,x T q n ź k"1 λ ´1 θr k ´rk´1 p X0,x r k´1 , X0,x r k q1 N T "n ff " e λT E « f p X0,x T q n ź k"1 λ ´1 θr k ´rk´1 p X0,x r k´1 , X0,x r k q ff .
The probabilistic representation allows to compute upT, xq " E " f pX 0,x T q ı without any discretization error but only a statistical error.

Our contributions

We are interested in establishing a probabilistic representation formula for the price of a European option with maturity T ą 0 and payoff hpS T , Y T q, given by E rhpS T , Y T qs , as well as integration by parts (IBP) formulae for the sensitivities (Greeks) of the option, given by

B s 0 E rhpS T , Y T qs and B y 0 E rhpS T , Y T qs ,
from which stem an unbiased Monte Carlo simulation method. We establish a probabilistic representation formula for the marginal law pS T , Y T q, T ą 0 based on a simple Markov chain evolving along a random time grid given by the jump times of an independent renewal process. This formula provides an unbiased Monte Carlo method. It is inspired by the probabilistic representation formula derived in Bally and Kohatsu-Higa [4] and others [START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF][START_REF] Henry-Labordère | Unbiased simulation of stochastic differential equations[END_REF][START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF]2] for multidimensional diffusion process, one-dimensional killed processes and of some Lévy driven SDEs with bounded drift, diffusion and jump coefficients. The main novel challenge is to tackle the case where the volatility drift b Y is unbounded. In order to overcome this difficulty, we freeze the coefficients b Y , σ S and σ Y along the flow of the ordinary differential equation (ODE) dmt dt " b Y pm t q, m 0 " y 0 obtained by removing the diffusion term in the dynamics of Y . The underlying Markov chain p X, Ȳ q on which the probabilistic representation is based, is then obtained from

Xx 0 t " x 0 `ż t 0 pr ´1 2 a S pm s qq ds `ż t 0 σ S pm s q dW s , Ȳ y 0 t " y 0 `ż t 0 b Y pm s q ds `ż t 0 σ Y pm s q dB s , dxW, By s " ρ ds.
Assume τ " pτ n q ně0 , τ 0 " 0 is a non-decreasing sequence of R `modelling random jump times and let N " pN t q tě0 be the renewal proces, defined by N t :" ř ně1 1 tτnďtu . N is independent of the two Brownian motions W and B. We discretise the process p X, Ȳ q using a Euler scheme on the random time grid pζ i q iě0 with ζ 0 " 0 and

ζ i " τ i ^T , namely Xi`1 " Xi `´rpζ i`1 ´ζi q ´1 2 a S,i ¯`σ S,i Z 1 i`1 , Ȳi`1 " m i `σY,i ´ρi Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 ¯.
where a S,i :" σ 2 S,i "

ż ζ i`1 ´ζi 0 a S pm s p Ȳi qq ds, a Y,i :" σ 2 Y,i " ż ζ i`1 ´ζi 0 a Y pm s p Ȳi qq ds, σ S,Y,i :" ż ζ i`1 ´ζi 0 pσ S σ Y qpm s p Ȳi qq ds, ρ i :" ρ σ S,Y,i σ S,i σ Y,i , m i :" m ζ i`1 ´ζi p Ȳi q,
where Z " pZ 1 n , Z 2 n q ně1 is a sequence of i.i.d. random variables of law N p0, I 2 q which is independent of pW, Bq and σ 1 S,i , σ 1 Y,i , σ 1 S,Y,i , ρ 1 i and m 1 i are the partial derivatives of σ S,i , σ Y,i , σ S,Y,i , ρ i , m i with respect to Ȳi .

The approximation process p X, Ȳ q is a Markov chain with respect to the filtration defined by G " pG i q iě0 where G i " σpZ j , 0 ď j ď iq for i ě 1 and G 0 is the trivial σ´field. We define ζ n " pζ 0 , ¨¨¨, ζ n q, τ n " pτ 0 , ¨¨¨, τ n q for n P N `. We first define the set S i,n p X, Ȳ q, n P N, i P t0, ¨¨¨, nu as the space of random variables H satisfying:

• H " hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q on tN T " nu, where ζ n`1 :" p0 " ζ 0 , ζ 1 , ¨¨¨, ζ n , ζ n`1 " T q
• For all s n`1 P ∆ n`1 pT q :" ts n`1 P r0, T s n : 0 ď s 1 ă ¨¨¨s n`1 ď T u, the function hp., s n`1 q is in C 8 p pR 4 q.

We also define the derivative operator D pαq i`1 H, α P t1, 2u for H P S i,n p X, Ȳ q:

D p1q i`1 H " B Xi`1 H and D p2q i`1 H " B Ȳi`1 H.
We then develop a tailor-made Malliavin calculus for the Euler scheme p Xi , Ȳi q 0ďiďN T `1.

I p1q i`1 pHq " H " Z 1 i`1 σ S,i p1 ´ρ2 i q ´ρi 1 ´ρ2 i ρ i Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 σ S,i ı ´Dp1q i`1 H, I p2q i`1 pHq " H " ρ i Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 σ Y,i p1 ´ρ2 i q ´ρi 1 ´ρ2 i Z 1 i`1 σ Y,i ı ´Dp2q i`1 H.
Then, for a multi-index α " pα 1 , ..., α p q, α i P t1, 2u with length p and an index α p`1 P t1, 2u, we have the following relations:

I pα,α p`1 q i`1 pHq " I pα p`1 q i`1 pI pαq i`1 pHqq, D pα,α p`1 q i`1 H " D pα p`1 q i`1 pD pαq i`1 Hq.
Setting E i,n rXs " ErX|G i , τ n`1 , N T " ns for X P L 1 pPq and i P t0, ¨¨¨, nu, we obtain the following duality identity

E i,n " D pαq i`1 f p Xi`1 , Ȳi`1 qH ı " E i,n " f p Xi`1 , Ȳi`1 qI pαq i`1 pHq ı .
We denote B γ pR 2 q the set of Borel measurable map h : R 2 Ñ R satisfying the exponential growth assumption at infinity. Under some assumptions that will be stated in Part II of this thesis, the law of the couple pX T , Y T q satisfies the following probabilistic representation: for all h P B γ pR 2 q for some γ ą 0, the price of an option exercised at time T with payoff hpX T , Y T q satisfies:

ErhpX T , Y T qs " E " hp XN T `1, ȲN T `1q N T `1 ź i"1 θ i ı ,
where the random variables θ i are in S i´1,n p X, Ȳ q on the set tN T " nu. We have θ N T `1 " p1 ´F pT ´ζN T qq ´1, and for i " 1, ¨¨¨, N T , θ i " pf pζ i ´ζi´1 qq

´1" I p1,1q i pc i S q ´Ip1q i pc i S q `Ip2,2q i pc i Y q `Ip2q i pb i Y q `Ip1,2q i pc i Y,S q ı .
Last, if N is a renewal process with jump times of distribution Betap1{2, 1q, then for all p ě 1 and h P B γ pR 2 q for some γp ą 0, the random variable hp XN T `1, ȲN T `1q

N T `1 ś i"1
θ i admits a finite L p pPq moment.

Integration by parts formulae

As usual, we define the derivative with respect to the spot price of the underlying asset (resp. its volatility) by Delta (resp. Vega). We are interested in establishing a Bismut-Elworthy-Li-type formulae for the two quantities:

B s 0 ErhpX T , Y T qs and B y 0 ErhpX T , Y T qs,
where s 0 " exppX 0 q, y 0 " Y 0 .

The central idea is to exchange the order of the derivative and the expectation, so that the two Greeks can be computed by a Monte Carlo simulation. Applying the probabilistic representation, the Greeks write

B s 0 E " hp XN T `1, ȲN T `1q N T `1 ź i"1 θ i ı and B y 0 E " hp XN T `1, ȲN T `1q N T `1 ź i"1 θ i ı .
The second step is to apply an appropriate integration by parts formula in order to differentiate before averaging. However, the usual Malliavin's IBP formula cannot be applied here due to integrability issues. Following the ideas developed in [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF] for killed diffusion processes with bounded drift coefficient, we first transfer the derivatives forward in time on each random time intervals rζ i , ζ i`1 s, i " 0, ¨¨¨, N T , as explained in the following graph. Then, we perform a local IBP formula on each random time interval rζ i , ζ i`1 s, i " 0, ¨¨¨, N T . For instance, on the last time interval rζ N T , ζ N T `1s " rζ N T , T s, on the set tN T " nu, to obtain the IBP of Vega one has

0 " ζ 0 ζ 1 ζ 2 ζ 3 ζ 4 " T Ý Ñ θ e,Y 1 Ý Ñ θ e,Y 2 θ3 θ4 B Ȳ2 ‹ 1 ‹ 2 ‹ 3 ‹ 4 Ý Ñ θ e , X 1 Ý Ñ θ c 1 Ý Ñ θ e , X 2 Ý Ñ θ c 2
B Ȳn E n,n " hp Xn`1 , Ȳn`1 qθ n`1 ı " E n,n " B Ȳn`1 hp Xn`1 , Ȳn`1 q Ý Ñ θ e,Y n`1 ı `En,n " B Xn`1 hp Xn`1 , Ȳn`1 q Ý Ñ θ e,X n`1 ı `En,n " hp Xn`1 , Ȳn`1 q Ý Ñ θ c n`1 ı " E n,n " hp Xn`1 , Ȳn`1 qpI p2q p Ý Ñ θ e,Y n`1 q `Ip1q p Ý Ñ θ e,X n`1 q `Ý Ñ θ c n`1 q ı for some new weights Ý Ñ θ e,Y n`1 , Ý Ñ θ e,X n`1 , Ý Ñ θ c n`1 .
Finally, we combine each local IBP formula in an adequate manner to establish the global IBP formula, using the fact that ErhpX T , Y T qs "

ÿ ně0 E « E " hp XN T `1, ȲN T `1q N T `1 ź i"1 θi |τ n`1 ı 1 tN T "nu ff
Under appropriate assumptions (AR) and (ND) in Part II, for all h P B γ pR 2 q for some γ ą 0 and all ps 0 , y 0 q P R 2 , the law of the couple pX T , Y T q satisfies the following Bismut-Elworthy-Li type formulae:

s 0 T B s 0 E " hpX T , Y T q ı " E " hp XN T `1, ȲN T `1q N T `1 ÿ k"1 pζ k ´ζk´1 q Ý Ñ θ I p1q,N T `1 k ı and T B y 0 E " hpX T , Y T q ı " E « hp XN T `1, ȲN T `1q N T `1 ÿ k"1 pζ k ´ζk´1 q ´Ý Ñ θ I p2q,N T `1 k `k ÿ j"1 Ý Ñ θ C N T `1 j `Ý Ñ θ I p1q,N T `1 k j ¯ff , where Ý Ñ θ I p1q,n`1 k , Ý Ñ θ C n`1 j , Ý Ñ θ I p2q,n`1 k and Ý Ñ θ I p1q,n`1 k j
with n ě 0 on tN T " nu, 1 ď j ď k ď n `1, are explicit functions of the parameters of the model and the weights θ i . This implies that the random variables that appear inside the expectations on the right-hand side of the IBP formula can be perfectly simulated. Therefore, Delta and Vega can be computed by an unbiased Monte-Carlo simulation method with optimal complexity.

Numerical results

Finally, we numerically compute the prices and Greeks of the following model • Black-Scholes model where σ S pxq " σ S is a constant.

dS t "
• A Stein-Stein type model where σ S pxq " σ 1 x `σ2 , we choose σ 1 , σ 2 such that σ S pxq is positive in the domain of x.

• A model with a periodic diffusion coefficient function where σ S pxq " σ 1 cospxqσ 2 , σ 2 ´σ1 ą 0.

We fix the parameters as follows: T " 0.5, r " 0.03, K " 1.5, x 0 " lnps 0 q " 0.4, Y 0 " 0.2, σ Y p.q " σ Y " 0.2, λ Y " 0.5, µ " 0.3 and ρ " 0.6. We perform M 1 paths such that ErN T s ˆM1 " 3.2 ˆ10 7 for the unbiased Monte Carlo method in both Exponential sampling and Beta sampling case. And for the Euler-Maruyama approximation scheme, we simulate M 2 " 160000 Monte Carlo simulations paths and set mesh size δ " T {n where n " 200, we also have M 2 n " 3.2 ˆ10 7 .

For the Black-Scholes model, we have explicit formulas for the price and the Greeks. The numerical results for the price, Greeks, together with their variance, 95% half width of the confidence interval of the unbiased Monte Carlo estimation and the Monte Carlo Euler-Maruyama scheme of a Call option in the Black-Scholes model for different values of σ S are provided in the three tables below. Additional numerical results are presented in Section 4.5. The initial condition X 0 is a square integrable random variable independent from the Brownian Motion W. We denote by pF t q 0ďtďT the filtration generated by W and X 0 , augmented with P null sets.

Developing efficient algorithms for the numerical approximation of high-dimensional non-linear PDEs is a challenging task that has attracted considerable attention from the research community in the last two decades. We can quote various approaches (limiting to the "stochastic" ones) that have proven to be efficient in a high dimensional setting: branching methods, see e.g. [START_REF] Henry-Labordère | Branching diffusion representation of semilinear pdes and monte carlo approximation[END_REF], machine learning methods (especially using deep neural networks), see e.g. [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF], and full history recursive multilevel Picard method (abbreviated MLP in the literature) see e.g. [START_REF] Hutzenthaler | Multilevel picard iterations for solving smooth semilinear parabolic heat equations[END_REF]. This is a very active field of research, we refer to the recent survey papers [START_REF] Han | Algorithms for solving high dimensional pdes: From nonlinear monte carlo to machine learning[END_REF][START_REF] Beck | An overview on deep learning-based approximation methods for partial differential equations[END_REF] for more references and an overview of the numerical and theoretical results available. We focus now more on one stream of research which uses the celebrated link between semilinear parabolic PDEs of the form (2.1.1) and BSDEs. This connection, initiated in [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF], is as follows: denoting by u a classical solution to (2.1.1), we have that pupt, X t q, σ J pX t q∇ x upt, X t qq " pY t , Z t q where the pair pY, Zq is the R ˆRd -valued and pF t q-adapted process solution to the BSDE with dynamics

Y t " gpX T q `ż T t f pY s , Z s q ds ´ż T t Z s ¨dW s , 0 ď t ď T , (2.1.4)
so that, the original problem boils down to the numerical approximation of the above stochastic system. Various strategies have been used to numerically approximate the stochastic system pX t , Y t , Z t q tPr0,T s . The most studied one is based on a time discretization of (2.1.4) leading to a backward programming algorithm to approximate pY, Zq, as exposed in e.g [START_REF] Bouchard | Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations[END_REF][START_REF] Zhang | A numerical scheme for bsdes[END_REF] (see the references therein for early works). This involves computing a sequence of conditional expectations and various methods have been developed: Malliavin calculus based methods [START_REF] Bouchard | Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations[END_REF][START_REF] Crisan | On the monte carlo simulation of bsdes: An improvement on the malliavin weights[END_REF][START_REF] Hu | Malliavin calculus for backward stochastic differential equations and application to numerical solutions[END_REF], optimal quantization methods [START_REF] Bally | Error analysis of the optimal quantization algorithm for obstacle problems[END_REF][START_REF] Bally | A quantization algorithm for solving multidimensional discrete-time optimal stopping problems[END_REF][START_REF] Pagès | Improved error bounds for quantization based numerical schemes for bsde and nonlinear filtering[END_REF], cubature methods [START_REF] Crisan | Solving backward stochastic differential equations using the cubature method: application to nonlinear pricing[END_REF][START_REF] Crisan | Second order discretization of backward sdes and simulation with the cubature method[END_REF][START_REF] Chassagneux | Cubature method to solve bsdes: Error expansion and complexity control[END_REF] and (linear) regression methods, see among others [START_REF] Gobet | A regression-based monte carlo method to solve backward stochastic differential equations[END_REF][START_REF] Gobet | Approximation of backward stochastic differential equations using malliavin weights and least-squares regression[END_REF][START_REF] Gobet | Stratified regression monte-carlo scheme for semilinear pdes and bsdes with large scale parallelization on gpus[END_REF]. It is acknowledged that such approaches will be feasible for problems up to dimension 10. This limitation is a manifestation of the so-called "curse of dimensionality". Recently, non-linear regression methods using deep neural networks were succesfuly combined with this approach and proved to be capable of tackling problems in high dimension [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF]. However, other strategies have been introduced in the last five years or so to approximate (2.1.4) trying to adopt a "forward point of view". Relying on Wiener chaos expansion and Picard iteration, [START_REF] Briand | Simulation of bsdes by wiener chaos expansion[END_REF][START_REF] Geiss | Simulation of bsdes with jumps by wiener chaos expansion[END_REF] introduced a method that notably works in non-Markovian setting but is still impacted by the curse of dimension. A key step forward has been realized by the so called deep BSDEs solver introduced in [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF]. Interpreting the resolution of a BSDEs as an optimisation problem, it relies on the expressivity of deep neural network and well established SGD algorithms to show great performance in practice. More precisely, in this approach, the Y-process is now interpreted as a forward SDE controlled by the Z-process. Then, an Euler-Maruyama approximation scheme is derived in which the derivative of the solution u appearing in the non-linear function f (through the Z-process) is approximated by a multi-layer neural network. The optimal weights are then computed by minimizing the mean-squared error between the value of the approximation scheme at time T and a good approximation of the target gpX T q using stochastic gradient descent algorithms. Again, this kind of deep learning technique seems to be very efficient to numerically approximate the solution to semi-linear parabolic PDEs in practice. However a complete theory concerning its theoretical performance is still not achieved [START_REF] Beck | An overview on deep learning-based approximation methods for partial differential equations[END_REF]. One important observation is that, due to highly non-linear specification, the optimisation problem that has to be solved in practice, has no convexity property. The numerical procedure designed can only converge to local minima, whose properties (with respect to the approximation question) are still not completely understood.

Inspired by this new forward approach, we introduce here an algorithm which is shown to converge to a global minimum. This, of course, comes with a price. First, we move from the deep neural networks approximation space to a more classical linear specification of the approximation space. However, due the non-linearity in the BSDE driver, the global optimisation problem to be solved is still non-convex. To circumvent this issue, we employ a Picard iteration procedure. The overall procedure becomes then a sequence of linear-quadratic optimisation problems which are solved by a SGD algorithm. Our first main result is a control of the global error between the implemented algorithm and the solution to the BSDE which notably shows the convergence of the method under some smallness conditions, see Theorem 2.2.1. In particular, contrary to [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF][START_REF] Han | Convergence of the deep bsde method for coupled fbsdes[END_REF] or [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF], our result takes into account the error induced by the SGD algorithm. In our numerical experiments, we rely on sparse grid approximation spaces which are known to be well-suited to deal with high-dimensional problems. Under the framework of periodic coefficients, we establish as our second main result, an upper bound on the global complexity for our implemented algorithm, see Theorem 2.3.1. We notably prove that the curse of dimensionality is tamed in the sense that the complexity is of order ε ´p| logpεq| qpdq , where p is a constant which does not depend on the PDE dimension and d Þ Ñ qpdq is an affine function. We also demonstrate numerically the efficiency of our methods in high dimensional setting.

The rest of the Chapter is organized as follows. In Section 2.2, we first recall the deep BSDEs solver of [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF] but adapted to our framework. Namely, we use a linear specification of the approximation space together with SGD algorithms. For sake of clarity, we denote this method: the direct algorithm. Then, we introduce our new numerical method: the Picard algorithm. We present our main assumptions on the coefficients and state our main convergence results. In Section 2.3, we use sparse grid approximation with the direct and Picard algorithms, using two types of basis functions: pre-wavelet [START_REF] Bohn | On the convergence rate of sparse grid least squares regression[END_REF] and modified hat function [START_REF] Frommert | Efficient cosmological parameter sampling using sparse grids[END_REF]. We discuss their numerical performances in practice through various test examples. We also compare them with some deep learning techniques [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF][START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF]. We also state our main theoretical complexity result. Section 2.4 is devoted to the theoretical analysis required to establish our main theorems: all the proofs are contained in this section. Finally, we give a complete list of the algorithm parameters that have been used to obtain the numerical results in Appendix 2.5.1.

Notation: Elements of R q are seen as column vectors. For x P R q , x i is the ith component and |x| corresponds to its Euclidian norm, x¨y denotes the scalar product of x and y P R q . M q is the set of q ˆq real matrices. We denote by e the th vector of the standard basis of R q . The vector p1, . . . , 1q J is denoted 1, I d is the d ˆd identity matrix. We use the bold face notations l P N d for multidimensional indices l :" pl 1 , ¨¨¨, l d q with (index) norms denoted by |l| p :" p

d ř i"1 l p i q 1{p and |l| 8 :" max 1ďiďd |l i |.
For later use, for a positive integer k, we introduce the set J 8 d,k of multidimensional indices l P N d satisfying |l| 8 ď k. For a finite set A, we denote by |A| its cardinality.

For a function f : R d Ñ R, we denote by B x l f the partial derivative function with respect to x l , ∇f denotes the gradient function of f , valued in R d . We also use ∇ 2 f " pB 2

x i ,x j f q 1ďi,jďd to denote the Hessian matrix of f , valued in M d . For a sufficiently smooth real-valued function f defined in R d , we let D l f " B l 1

x 1 ¨¨¨B l d x d f denote the differentiation operator with respect to the multi-index l P N d . For a fixed positive integer k and a function f defined on an open domain U Ă R d , we Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs define its Sobolev norm of mixed smoothness

}f } H k mix pU q :" ´ÿ lPJ 8 d,k }D l f } 2 L 2 pU q ¯1 2 (2.1.5)
where the derivative D l f in the above formula has to be understood in the weak sense and for a map

g : U Þ Ñ R, }g} 2 L 2 pU q :" ş U |gpxq| 2 dx.
The Sobolev space of mixed smoothness H k mix pUq is then defined by

H k mix pUq :" ! f P L 2 pUq : }f } H k mix pU q ă 8) . (2.1.6)
For a positive integer q, the set H 2 q is the set of progressively measurable processes V defined on the probability space pO, A, Pq with values in R q and satisfying

E " ş T 0 |V t | 2 dt ı ă `8. The set S 2
q is the set of adapted càdlàg processes U defined on the probability space pO, A, Pq with values in R q and satisfying E

" sup tPr0,T s |U t | 2 ı ă `8. We also define B 2 :" S 2 1 ˆH2 d .

The direct and Picard algorithms

We describe here the numerical methods studied in this work. The first one, the direct algorithm is an adaptation of the Deep BSDEs solver introduced in [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF] to the linear specification of the parametric space that we use here. The second one, the Picard algorithm, is new and is the main contribution of our work. We also give here the main general convergence results related to the Picard algorithm. The complexity analysis is postponed to the next section. The methods we introduce below have for goal to compute an approximation of the value function u, satisfying the PDE (2.1.1), at the initial time on a given domain or at a specific point. This lead us to introduce the following setup for the initial value X 0 :

Assumption 2.2.1 One of the two following cases holds:

(i) The law of X 0 has compact support and is absolutely continuous with respect to the Lebesgue measure.

(ii) The law of X 0 is a Dirac mass at some point

x 0 P R d .
Most of our numerical applications are done in the setting of Assumption 2.2.1(ii), see next section. Then, obviously, the approximation of the value function is known only at the point x 0 at the initial time. However, one should note that it could also be interesting to work in the setting of Assumption 2.2.1(i) if one seeks to obtain an approximation of the whole value function (on the support of X 0) at the initial time.

The direct and Picard algorithms

Assumptions on the coefficients and connection with the semilinear PDE

In this subsection, we first give the assumptions on the BSDE coefficients that will be required for our approach and then recall the connection with semilinear PDEs. In particular, under these assumptions, the underlying PDE admits a unique classical solution. Under an additional regularity assumption on the coefficients, the unique solution to the PDE admits smooth derivatives of enough order which are controlled on the whole domain by known parameters. This additional regularity, together with a periodicity assumption, will be used to obtain our theoretical complexity result, see Section 2.3.1.2. For sake of simplicity, it is also assumed that the coefficients b, σ and f do not depend on time and that f does not depend on the space variable.

Assumption 2.2.2 (i)

The coefficients b, σ, f and g are bounded, Lipschitzcontinuous with respect to all variables and g P C 2`α pR d q, for some α P p0, 1s.

We will denote by L the Lipschitz-constant of the map f .

(ii) The coefficient a " σσ J is uniformly elliptic, that is, there exists λ 0 ě 1 such that for any px, ζq P pR d q 2 it holds

λ ´1 0 |ζ| 2 ď apxqζ ¨ζ ď λ 0 |ζ| 2 . (2.2.1)
(iii) For any pi, jq P t1, ¨¨¨, du 2 , the coefficients b i , σ i,j , g belong to C 2d`1 pR d , Rq and f belongs C 2d`1 pR ˆRd , Rq. Moreover, their derivatives of any order up and equal to 2d `1 are bounded and Lipschitz continuous.

(iv) The coefficients b, σ, f and g are periodic functions.

From now on, we will say that Assumption 2.2.2 holds if and only if Assumption 2.2.2 (i), (ii), (iii) and (iv) are satisfied.

Under Assumption 2.2.2 (i) and (ii), it is known (see e.g. [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF]) that for any square integrable initial condition X 0 there exists a unique couple pY, Zq P B 2 satisfying equation (2.1.4) P-a.s. Moreover, from [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF] Chapter VI and [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] Chapter 7, the PDE (2.1.1) admits a unique solution u P C 1,2 pr0, T s ˆRd , Rq satisfying: there exists a positive constant C, depending on T and the parameters appearing in Assumption 2.2.2 (i) and (ii), such that for all pt, xq P r0, T s ˆRd

|upt, xq| `|B t upt, xq| `|∇ x upt, xq| `|∇ 2
x upt, xq| ď C. From [START_REF] Peng | Probabilistic interpretation for systems of quasilinear parabolic partial differential equations[END_REF][START_REF] Pardoux | Backward stochastic differential equations and quasilinear parabolic partial differential equations[END_REF][START_REF] Pardoux | Forward-backward stochastic differential equations and quasilinear parabolic PDEs[END_REF], the semilinear PDE (2.1.1) and the BSDE (2.1.2)-(2.1.4) are connected, namely, for all pt, xq P r0, T q ˆRd , it holds

Y t " upt, X t q, Z t " σ J pX t q∇ x upt, X t q.
Finally, under Assumption 2.2.2, still from [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF] Chapter IV and [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] Chapter III, the unique solution u to the PDE (2.1.1) is smooth, namely, setting v i " pσ J ∇ x uq i , 1 ď i ď d, for any l P J 8 d,2 , D l v i pt, .q exists and is bounded. In particular, there exists a positive constant, depending on T and the known parameters appearing in Assumption 2.2.2 (i), (ii) and (iii) such that for all l P J 8 d,2 and all pt, xq P r0,

T sˆR d , max 1ďiďd |D l v i pt, xq| ď C. (2.2.2)

Direct algorithm

We first consider the approximation of the forward component (2.1.2). Given an equidistant grid π :" tt 0 " 0 ă ¨¨¨ă t n ă ¨¨¨ă t N " T u of the time interval r0, T s, t n " nh, n " 0, ¨¨¨N , with time-step h :" T {N , we denote by W :" pW tn q 0ďnďN the discrete-time version of the Brownian motion W and define ∆W n " W t n`1 ´Wtn , 0 ď n ď N ´1.

We then introduce a standard Euler-Maruyama approximation scheme of X on π defined by X 0 " X 0 and for 0 ď n ď N ´1,

X t n`1 " X tn `bpX tn qh `σpX tn q∆W n . (2.2.3)
Before discussing the approximation of the backward component, we here state an important lemma concerning the existence of two-sided Gaussian estimates for the transition density of the above Euler-Maruyama approximation scheme. These estimates will prove very useful in the sequel, when studying the theoretical complexity of the Picard algorithm. We denote by p π pt i , t j , x, ¨q the transition density function of the Euler-Maruyama scheme starting from the point x at time t i and taken at time t j , with 0 ď t i ă t j ď T . We refer e.g. to [START_REF] Menozzi | On some non asymptotic bounds for the euler scheme[END_REF] for a proof of the following result.

Lemma 2.2.1 Assume that the coefficients b and σ satisfies Assumption 2.2.2 (i) and (ii)

. There exist constants c :" cpλ 0 , b, σ, dq P p0, 1s and C :" CpT, λ, b, σ, dq ě 1 such that for any px, x 1 q P pR d q 2 and for any 0 ď i ă j ď N C ´1ppcpt j ´ti q, x ´x1 q ď p π pt i , t j , x, x 1 q ď Cppc ´1pt j ´ti q, x 1 ´xq (2.2.4)

where for any pt, xq P p0, 8q ˆRd , ppt, xq :" p1{p2πtqq d{2 expp´|x| 2 {p2tqq.

We now turn to the approximation of the backward component (2.1.4). We first introduce a linear parametrization of the process Z. For each discrete date t n P πztT u, we consider a parametric functional approximation space V z n generated by a set of basis functions pψ k n q 1ďkďK z n , for 0 ď n ď N ´1 and some positive integer K z n . The measurable functions ψ k n : R d Þ Ñ R have at most polynomial growth. Note that, for n ě 1, the specification of the basis function could depend on the time t n , but in order to simplify the discussion, we let the number of basis functions be the same and set to K. Namely, K z n " K, for all n ě 1. For n " 0, the specification will depend on the nature of X 0 : if Assumption 2.2.1(i) holds, then we will set K z 0 " K; if Assumption 2.2.1(ii) holds, then we simply set K z 0 " 1 and ψ 1 0 is a function satisfying ψ 1 0 px 0 q " 1. For latter use, we set:

s K z :" N ´1 ÿ n"0 K z n " K z 0 `pN ´1qK . (2.2.5)
Remark that there is no need to introduce an approximation space at T since the function g is explicitly known. For 0 ď n ď N ´1, each component of pσ J ∇ x uqpt n , ¨q should be approximated in an optimal way by a function in V z n . The process Z appearing in the dynamics of the controlled process Y, that has to be optimized, is parametrized using the spaces pV z n q 0ďnďN ´1. Namely, the R d -valued random variable Z tn will be approximated by

K z n ÿ k"1 ψ k n pX tn qz n,k , (2.2.6)
where z n,k P R d for any 1 ď k ď K z n and 0 ď n ď N ´1. Importantly, we denote, for later use, z J :" ppz n,k q J q 0ďnďN ´1,1ďkďK z n so that z P R d s K z .

Definition 2.2.1 (Class of discrete control process)

We let H π,ψ be the set of discrete control process Z defined by: for

z P R d s K z , Z tn :" K z n ÿ k"1 ψ k n pX tn qz n,k , for 0 ď n ď N ´1, (2.2.7)
and where we set

Z t " Z tn , t n ď t ă t n`1 , 0 ď n ď N ´1 with the convention Z T " 0.

Remark 2.2.1

We insist on the fact that for a given Z P H π,ψ , the R d -valued random variable Z tn depends only on z n , for any 0 ď n ď N ´1. The approximation space we consider is a finite dimensional vector space. This notably differs from the recent works [START_REF] Beck | Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations[END_REF][START_REF] Han | Overcoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning[END_REF][START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF] where a non-linear approximation using neural network is used.

The dynamics of Y given by (2.1.4), in turn, has to be approximated. As previously mentioned in the introduction, we first rewrite it in forward form as follows

Y t " Y 0 ´ż t 0 f pY s , Z s q ds `ż t 0 Z s ¨dW s , t P r0, T s, with Y 0 " up0, X 0 q.
The main goal of the algorithm is to obtain a good estimate of up0, .q on the support of X 0 . In order to do so, we define the starting point of Y , standing for the approximation of Y, by using a linear functional approximation space denoted V y , namely

Y 0 :" K y ÿ k"1 ψ k y pX 0 qy k with y P R K y . (2.2.8)
The specification of V y will depend also on the nature of X 0 . Namely, if Assumption 2.2.1(i) holds, then we set K y " K, while if Assumption 2.2.1(ii) holds, then we simply set K y " 1 and ψ 1 y is a function satisfying ψ 1 y px 0 q " 1. Then, employing a standard Euler scheme on π together with the above approximation Z P H π,ψ of the control process Z, we are naturally led to consider the following approximation scheme for Y. Definition 2.2.2 i) Given u " py, zq P R K y ˆRd Kz , we denote by Z u P H π,ψ the discrete control process as given in (2.2.7). Then, the discrete controlled process Y u is defined as follows.

(a) Initialization: Set

Y u 0 " K ÿ k"1 ψ k y pX 0 qy k . (2
Y u t n`1 " Y u tn ´hf pY u tn , Z u tn q `Zu tn ¨∆W n (2.2.10)
where we recall that ∆W n " W t n`1 ´Wtn .

(c) Continuous version: for any 0 ď n ď N ´1 and any

t n ď t ă t n`1 , Y u t " Y u tn ´pt ´tn qf pY u tn , Z u tn q `Zu tn ¨pW t ´Wtn q (2.2.11)
ii) Based on the previous step, we define B π,ψ Ă B 2 as the set of processes pY u , Z u q, with Z u P H π,ψ , Y u defined as above for some u P R K y ˆRd Kz .

Remark 2.2.2

Let us note that the discrete process pX t , Y u t , Z u t q tPπ depends on X 0 and pW t q tPπ but we omit these dependences in the notation.

The main idea of approximation by learning methods is to force the discrete controlled process Y u T at maturity T to match the approximated terminal condition gpX T q, by minimizing a loss function. Here, we work with the quadratic loss function, so that one faces the optimization problem inf u"py,zqPR K y ˆRd Kz gpuq :" ErGpX 0 , W, uqs with GpX 0 , W, uq " |gpX T q ´Y u T | 2 .

(2.2.12)

However, one has to come up with a numerical procedure to compute the solution in practice.

In order to numerically compute a solution to the optimization problem (2.2.12) (if any exists), one generally employs a stochastic approximation scheme such as a SGD algorithm. For an overview of the theory of stochastic approximation, the reader may refer to [START_REF] Duflo | Mathématiques & Applications[END_REF], [START_REF] Kushner | Stochastic approximation and recursive algorithms and applications[END_REF] and [START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF] and to [START_REF] Beck | Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations[END_REF][START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF][START_REF] Han | Overcoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning[END_REF][START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF][START_REF] Gu | Selectnet: Self-paced learning for highdimensional partial differential equations[END_REF] for applications to deep learning approximation of PDEs.

We now describe the SGD algorithm that we implement in order to compute a solution py, zq P R K y ˆRd Kz to the optimization problem (2.2.12). For a prescribed positive integer M representing the number of steps in the stochastic algorithm and two deterministic non increasing sequences of positive real number pγ y m q mě1 and pγ z m q mě1 representing the learning rates, we design the following direct algorithm.

Definition 2.2.3 (Implemented direct algorithm)

1. Simulate M independent discrete paths of the Brownian motion W " pW m q 1ďmďM and M independent samples of the initial condition pX m 0 q 1ďmďM . 2. Initialization: select a random vector u 0 " py 0 , z 0 q with values in R K y ˆRd Kz , independent of W and pX m 0 q 1ďmďM , and such that Er|u 0 | 2 s ă 8.

Iteration: For

0 ď m ď M ´1, compute y m`1 " y m ´γy m`1 ∇ y G `X m`1 0 , W m`1 , u m ˘, (2.2.13)
z n m`1 " z n m ´γz m`1 ∇ z n G `X m`1 0 , W m`1 , u m ˘, (2.2.14) for 0 ď n ď N ´1.
The output of the algorithm is then u M " py M , z M q.

Remark 2.2.3 In order to analyse the asymptotic properties of stochastic approximation schemes, one usually chooses the learning sequences pγ m q mě1 " pγ y m q mě1 or pγ m q mě1 " pγ z m q mě1 such that ÿ mě1 γ m " 8 and

ÿ mě1 γ 2 m ă 8, (2.2.15
) see e.g. [START_REF] Duflo | Mathématiques & Applications[END_REF][START_REF] Kushner | Stochastic approximation and recursive algorithms and applications[END_REF][START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF].

The following lemma, whose proof is postponed to Section 2.4.2, provides the analytic expression of the local gradient functions ∇ λ GpX 0 , W, uq, λ P ty, z n , 0 ď n ď N ´1u appearing in the above SGD algorithm. It shows that py m`1 , z m`1 q can be easily computed once pY um , Z um q have been simulated for any 0 ď m ď M ´1.

Lemma 2.2.2 For

λ P y k , 1 ď k ď K y (Ť z n,k , 1 ď k ď K z n , 0 ď n ď N ´1(and u " py, zq P R K y ˆRd Kz , it holds ∇ λ GpX 0 , W, uq " ´2pgpX T q ´Y u T q∇ λ Y u T (2.2.16) with ∇ y k Y u T " ψ k y pX 0 q N ´1 ź l"0 `1 ´h∇ y f pY u t l , Z u t l q ˘, 1 ď k ď K y ,
and for any 0 ď n ď N ´1 and any

1 ď k ď K z n , ∇ z n,k Y u T " ψ k n pX tn q `∆W J n ´h∇ z f pY u tn , Z u tn q ˘N´1 ź l"n`1 `1 ´h∇ y f pY u t l , Z u t l q with the convention ś H " 1.
Under Assumption 2.2.

E « |up0, X 0 q ´Y u ‹ 0 | 2 `h N ´1 ÿ n"0 |Z tn ´Zu ‹ tn | 2 ff ď C pE π `Eψ q ,
for some positive constant C. The quantities E π and E ψ represents the discrete-time error and the error due to the approximation in the functional spaces pV y , V z n q, respectively. They are defined by

E π :" E « N ´1 ÿ n"0 ż t n`1 tn `|Y s ´Ytn | 2 `|Z s ´Ztn | 2 `|X tn ´Xtn | 2 ˘ds ff (2.2.17)
and

E ψ :" inf uPR K y ˆRd Kz E « |up0, X 0 q ´Y u 0 | 2 `N´1 ÿ n"0 h|pσ J ∇ x uqpt n , X tn q ´Zu tn | 2 ff .
(2.2.18)

Let us mention, for later use, that, in the setting of Assumptions 2.2.1 and 2.2.2(i),

E π ď Ch , (2.2.19)
for some positive constant C, see e.g. Ma and Zhang [START_REF] Ma | Path regularity for solutions of backward stochastic differential equations[END_REF] and Pagès [START_REF] Pagès | Numerical Probability: An Introduction with Applications to Finance[END_REF].

We shall not seek to obtain theoretical convergence results for the direct algorithm itself. However, we illustrate its performance numerically in Section 2.3 when using sparse grids approximations [START_REF] Bungartz | Sparse grids[END_REF].

Remark 2.2.4

The numerical complexity C will be measured by the number of coefficients update realized to obtain the approximation. From the previous description, we obtain straightforwardly that the complexity at worst satisfies

C " O d pN KM q . (2.2.20)

A Picard algorithm

An issue with the above algorithm comes from the fact that the optimization problem (2.2.12) is generally not convex. Even though u Þ Ñ pY u 0 , Z u q is linear for our choice of parametrisation, in general the mapping u Ñ Y u is non-linear since f itself is nonlinear. As a consequence, in practical implementation, we have no guarantee that the algorithm converges to local or global minima. On top of practical problems, this renders the theoretical analysis of the implemented direct algorithm difficult, in particular if one wants to obtain rates of convergence to assess precisely the numerical complexity of the method.

In this section, we introduce a Picard algorithm which transforms this non-convex optimisation problem into a sequence of linear-quadratic optimization problems. This is done by using the special structure of the original problem. Indeed, it is well known that the solution of the BSDE (2.1.4) itself is obtained as the limit of a sequence of Picard iterations, see e.g. [START_REF] El Karoui | Backward stochastic differential equations in finance[END_REF] and [START_REF] Bender | A forward scheme for backward sdes[END_REF] from a numerical perspective.

Theoretical Picard algorithm

Our Picard algorithm is based on the iteration of the following operator:

R K y ˆRd Kz Q ũ Þ Ñ Φpũq :" ǔ P R K y ˆRd Kz (2.2.21)
where, ǔ " arg min

uPR K y ˆRd Kz E " |gpX T q ´U ũ,u T | 2 ı . (2.2.22)
In the above expectation, the process X is the Euler-Maruyama approximation scheme on the time grid π with dynamics (2.2.3) and U ũ,u (simply denoted as U below) is given by the following decoupling approximation scheme:

1. For ũ P R K y ˆRd Kz , we first consider pY ũ, Z ũq P B π,ψ as introduced in Definition 2.2.2.

2. Then, for any u P R K y ˆRd Kz , consider the discrete control process Z u P H π,ψ as introduced in (2.2.7) of Definition 2.2.1 and define the control process U ũ,u by

U ũ,u 0 " Y u 0 (2.2.23)
recall (2.2.9) and for any 0 ď n ď N ´1,

U ũ,u t n`1 " U ũ,u tn ´hf pY ũ tn , Z ũ tn q `Zu tn ¨pW t n`1 ´Wtn q , (2.2.24)
and its continuous version, for any t n ď t ď t n`1 , U ũ,u t " U ũ,u tn ´pt ´tn qf pY ũ tn , Z ũ tn q `Zu tn ¨pW t ´Wtn q .

Note that under Assumption 2.2.

2(i) it holds E " sup tPr0,T s |U ũ,u t | 2 ı ă `8.

Definition 2.2.4 (Theoretical Picard algorithm)

For a prescribed positive integer P :

1. Initialization: set u 0 P R K y ˆRd Kz .
2. Iteration: for 1 ď p ď P , compute: u p " Φpu p´1 q.

The output of the algorithm is then u P .

Well-posedness of the theoretical algorithm

The main novelty compared to the optimization problem (2.2.12) comes from the fact that the map u Þ Ñ U ũ,u is now linear. This linearity is achieved by freezing the driver f in the dynamics of the control process along the process pY ũ, Z ũq P B π,ψ . The parameter ũ P R K y ˆRd Kz is then updated through the Picard iteration procedure. This is of course the main purpose of this Picard algorithm, compared to the direct algorithm of Section 2.2.2. At this stage, the above algorithm is theoretical and its solution (if any exists) still needs to be numerically approximated. This will be discussed in full details in the next section.

We here discuss the well-posedness of the optimization problem (2.2.22). We first introduce some notations that will be useful in the sequel to study the Picard algorithm as iterated least-square optimization problems. First, to clarify the linear structure, we introduce the following notations

i) For 1 ď k ď K y , θ k :" ψ k y pX 0 q. ii) For 0 ď n ď N ´1, 1 ď k ď K, the R d -valued random vectors ω n,k is defined by ω n,k " Ψ n,k ∆W n with Ψ n,k " ψ k n pX tn q , (2.2.25)
and we set ω J :" ppω n,k q J q 0ďnďN ´1,1ďkďK z n (so that ω is an R d Kz -valued random vector).

iii) the random vector Ω " pθ J , ω J q J which takes values in R K y ˆRd Kz .

Note that both ω and Ω depends on W and X 0 , but we will omit this in the notation. Then, we rewrite

gpX T q ´U ũ,u T " G ũ ´u ¨Ω (2.2.26)
where and simply reads as a Linear-Quadratic optimization problem. Classically, we introduce semi-norms on the parameter spaces.

G ũ " G ũpX 0 , W q :" gpX T q`N ´1 ÿ n"0 hf pY ũ tn , Z ũ tn q . (2
Definition 2.2.5 For u " py, zq P R K y ˆRd Kz , we define

}y} 2 y :" E " |y ¨θ| 2 ‰ , }z} 2 z :" E " |z ¨ω| 2 ‰ and ~u~2 :" E " |u ¨Ω| 2 ‰ .
Let us insist on the fact that these quantities depend on the choices of π,ψ though this is not reflected in the notation.

Remark 2.2.5 i) Observe that from the very definition of the random vector Ω, for any u " py, zq P R K y ˆRd Kz , it holds ~u~2 " }y} 2 y `}z} 2 z .

(2.2.29)

ii) With the notations of Section 2.2.2, the following relations hold

~u~2 " E « ˇˇˇY u 0 `ż T 0 Z u t dW t ˇˇˇ2 ff , }y} 2 y " E " |Y u 0 | 2 ‰ and }z} 2 z " N ´1 ÿ n"0 hE " |Z u tn | 2 ‰ , (2.2.30)
for any u " py, zq P R K y ˆRd Kz .

iii) For later use, see Section 2.2.3.3, we also note that } ¨}z develops as

}z} 2 z " N ´1 ÿ n"0 h d ÿ l"1 pz n,l q J E " Ψ n,¨p Ψ n,¨qJ ‰ z n,l (2.2.31)
by using the independence of the increments p∆W n q l , for 0 ď n ď N ´1 and l P t1, . . . , du and where we used the notations z n,l " pz n,1 l , . . . , z

n,K z n l q and Ψ n,¨" pΨ n,1 , . . . , Ψ n,K z n q.
A key assumption to ensure the well-posedness of our approach is the following.

Assumption 2.2.3 There exist two positive constants κ

K ě 1 ě α K such that for any py, zq P R K y ˆRd Kz α K |y| 2 ď }y} 2 y ď κ K |y| 2 and hα K |z| 2 ď }z} 2 z ď hκ K |z| 2 .

Algorithm implementation

From a practical point of view, the sequence of theoretical Linear-Quadratic optimization problem described in the previous section has to be approximated. Due to the possibly high dimension of the matrix ErΩΩ J s, we will rely on a SGD algorithm1 to compute the unique solution to (2.2.22). Indeed, for a fixed vector ũ in R K y ˆRd Kz , the key point is to observe that the unique minimizer ǔ is the unique solution to the equation ∇ u Hpũ, uq " 0.

(2.2.38)

We importantly remark, using (2.2.36) and (2.2.37) that the above relation (2

.2.38) holds true if and only if

ErH y pX 0 , W, ũ, yqs " 0, and

E " H n,l pX 0 , W, ũ, z n,l q ı " 0, (2.2.39)
where H y is a map from R d ˆpR d q N ˆpR K y ˆRd Kz q ˆRK y to R K y and defined by

H y pX 0 , W, ũ, yq :" ´2 β K pG ũ ´y ¨θqθ, (2.2.40)
and H n,l are maps defined on R d ˆpR d q N ˆpR K y ˆRd Kz q ˆRK z n taking values in R K z n and given by

H n,l pX 0 , W, ũ, z n,l q :" ´2 β K ? h pG ũ ´ωn,l ¨zn,l qω n,l , 0 ď n ď N ´1, 1 ď l ď d.
(2.2.41)

We importantly point out that we abuse the notation in (2.2.40) and (2.2.41) since the variable pX 0 , W q stands for a vector of R d ˆpR d q N and pX 0 , W q Þ Ñ G ũ " G ũpX 0 , W q is also defined by (2.2.27) while in (2.2.39) the random vector W " pW tn q 1ďnďN stands for the discrete path of the Brownian motion W and X 0 for the starting value of X. In (2.2.40) and (2.2.41), the deterministic constant β K corresponding to a normalizing factor is introduced in order to control the L 2 pPq-moment of the random vectors pG ũ ´y ¨θqθ and pG ũ ´ωn,l ¨zn,l qω n,l . Namely, we select β K large enough so that

pβ K q 2 ě p1 `E" |θ| 4 ‰ q _ max 0ďnďN ´1,1ďlďd p1 `E" |ω n,l | 4 ‰ q (2.2.42)
with ωn,¨ "

ω n,¨ ?
h . Let us insist on the fact that the chosen β K above should be uniform for all time grid π. It depends only on the level of approximation coming from the definition of the approximation spaces. This qualitative level of approximation is controlled by the number of basis function per time step, namely K. For latter use, comparing (2.2.40) to (2.2.36) and (2.2.41) to (2.2.37), we remark that ErH y pX 0 , W, ũ, yqs "

1 β K ∇ y Hpũ, uq and E " H n,l pX 0 , W, ũ, z n,l q ı " 1 β K ? h ∇ z n,l Hpũ, uq , (2.2.43)
for 0 ď n ď N ´1, l P t1, . . . , du and pũ, uq P pR

K y ˆRd Kz q 2 .
The implemented Picard algorithm is obtained by iterating a stochastic gradient operator which is the counterpart of Φ defined by (2.2.21) obtained by the numerical approximation that we now introduce. Definition 2.2.6 Let M be a positive integer. Let W :" pW m q 1ďmďM , be M discrete paths along the time grid π of the Brownian motion W, X 0 :" pX m 0 q 1ďmďM , be M independent samples of the initial condition (and independent from W) and pγ m q mě1 a deterministic sequence of positive real numbers satisfying:

ÿ mě1 γ m " 8 and ÿ mě1 γ 2 m ă 8.
(2.2.44)

We set, for all m ě 1,

γ y m " γ m and γ z m " γ m ? h . (2

.2.45)

Let u 0 " py 0 , z 0 q be a random vector taking values in R K y ˆRd Kz , independent of pX 0 , Wq and such that Er|u 0 | 2 s ă 8.

The operator Φ M , parametrized by pu 0 , X 0 , Wq, is given by

R K y ˆRd Kz Q ũ Þ Ñ Φ M pu 0 , X 0 , W, ũq " u M (2.2.46)
where u M is the output of the SGD algorithm after M steps and is obtained as follows:

1. The initial value is set to u 0 .

Iteration: For

0 ď m ď M ´1, compute y m`1 " y m ´γy m`1 H y pX m`1 0 , W pm`1q , ũ, y m q , (2.2.47)
and

z n,l ,m`1 " z n,l ,m ´γz m`1 H n,l pX m`1 0 , W pm`1q , ũ, z n,l ,m q , (2.2.48)
for any 0 ď n ď N ´1 and any 1 ď l ď d.

Definition 2.2.7 (Implemented Picard algorithm)

For a prescribed positive integer P :

1. Initialization: Select a random vector

u 0 0 taking values in R K y ˆRd Kz such that Er|u 0 0 | 2 s ă 8. Set u 0 M :" u 0 0 .
2. Iteration: for 1 ď p ď P , simulate independently a set of M independent discrete paths W p of the Brownian motion W, independent initial condition X p 0 and an initial starting point u p 0 (independently also of u 0 0 , u j 0 and of the previous pX j 0 , W j q, 1 ď j ď p ´1), and compute u p M :" Φ M pu p 0 , X p 0 , W p , u p´1 M q as in Definition 2.2.6. ii) The initialisation is random in the above algorithm. We do not always follow this procedure in our numerical experiments, see Section 2.3.

iii) The numerical complexity C of the full algorithm is the sum of the local complexity of each SGD algorithm so that

C " O d pP N KM q . (2.2.49)
Using the output u P M of the Picard algorithm, we set the approximating function at time 0 to be:

U P M pxq :" K y ÿ k"1 py P M q k ψ k y pxq , (2.2.50) recalling (2.2.8).
We then aim to control the following mean squared error:

E MSE :" E " ˇˇU P M pX 0 q ´up0, X 0 q ˇˇ2 ı . (2.2.51)
We obtain an explicit upper bound on the mean-squared error when specifying the parameters of the algorithm as follows. For γ ą 0, ρ P p 1 2 , 1q, we set γ m :" γm ´ρ, m ě 1 and we assume that the number of steps M in the SGD algorithm satisfies, for some η ě 0,

γ α K β K M 1´ρ ě ? 2 2 and κ K h ^αK ˆe´2 ? 2 lnp2qγ α K β K M 1´ρ `βK α K M ρ ˙ď η . (2
E MSE ď C ρ,γ ˆδP `κK h ^αK ˆe´2 ? 2 lnp2qγ α K β K M 1´ρ `βK α K M ρ ˙`h `Eψ ˙. (2.2.53)
for some positive constant C ρ,γ , where we recall that E ψ is given by (2.2.18).

Remark 2.2.7

1. As expected, the above upper bound is the sum of the error due to the Picard iteration, the error induced by the SGD algorithm, the discretetime approximation error, recall (2.2.19), and the error E ψ generated by the approximation in the functional spaces pV y , V z n q.

To deduce a rate of convergence from (2.2.53), one has to chose the approximation basis functions pψ k y q 1ďkďK y and pψ k n q 0ďnďN ´1,1ďkďK z n and to set optimally the algorithm's parameters. The choice of the basis function has a dramatic impact on the complexity of the algorithm. In the next section, we work with sparse grid approximation and we are able to show that the complexity is controlled both theoretically and in practice under Assumption 2.2.2.

Convergence results for sparse grid approximation

Both the implemented direct algorithm, see Definition 2.2.3, and the implemented Picard algorithm, see Definition 2.2.7, rely on the choice of the approximation spaces V y and V z n , 0 ď n ď N ´1 and the choice of the related basis functions pψ k y q 1ďkďK y and pψ k n q 0ďnďN ´1,1ďkďK z n . The impact is both theoretical, in terms of convergence rate and numerical complexity, and practical in terms of computational time. We choose here to use sparse grid approximations. This will allow us to obtain interesting numerical complexity results in the setting of Assumption 2.2.2, see Theorem 2.3.1. We carefully investigate the convergence of the implemented Picard Algorithm. It is not the first time that sparse grid approximations are investigated in the context of linear regression. We will use the framework introduced in [START_REF] Bohn | On the convergence rate of sparse grid least squares regression[END_REF]. Note however that some restriction in the choice of sparse grid approximations are introduced by Assumption 2.2.3.

The basis functions are built using elementary bricks that have a compact support included in the bounded domain

O n " d ź l"1
ra n l , b n l s where a n l ă b n l for l P t1, . . . , du.

(2.3.1)

The domain specification strongly depends on the applications under study. We will consider two main cases in this work.

1. For all 1 ď n ď N ´1, O n " d ź l"1 ra l , b l s ": O. (2.3.2)
Namely, the coefficients a and b do not depend on n. This will be the case in Section 2.3.1.2 where we consider coefficient functions that are O-periodic.

2. Alternatively, the coefficient a and b are functions of the time-step but also of the diffusion coefficients pb, σq, recall (2.1.2), and the PDE dimension d. Namely

a n :" apt n , b, σ, dq and b n :" bpt n , b, σ, dq.

(2.3.3) However, In both cases the basis functions are obtained by a transformation of the domain r0, 1s d on which we define the primary basis using sparse grids. The Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs transformation is defined as follows:

τ n : R d Q x Þ Ñ τ n pxq " ´x1 ´an 1 b n 1 ´an 1 , . . . , x d ´an d b n d ´an d ¯J P R d . (2.3.4)
We will introduce two types of basis functions: the first one, based on pre-wavelet basis, follows from [START_REF] Bohn | On the convergence rate of sparse grid least squares regression[END_REF] and the second one, based on hat functions modified at the boundary of the domain, follows from [START_REF] Frommert | Efficient cosmological parameter sampling using sparse grids[END_REF].

Convergence results for the pre-wavelet basis

Definition of the pre-wavelet basis

We describe here the elementary bricks that are used to build the basis functions of the approximation spaces.

For a level l P N and an index i P t0, . . . , 2 l u, we first consider the family of hat functions given by φ l,i pxq " φp2 l x ´iq with φpxq "

" 1 ´|x| if ´1 ă x ă 1 0 otherwise . (2.3.5)
The univariate pre-wavelet basis functions χ l,i : R Ñ R are defined by

χ 0,0 " 1 r0,1s , χ 0,1 " φ 0,1 , χ 1,1 " 2φ 1,1 ´1 (2.3.6)
and for l ě 2, i P I l zt1, 2 l ´1u with

I l :" t1 ď i ď 2 l ´1 | i oddu χ l,i " 2 l 2 ˆ1 10 φ l,i´2 ´6 10 φ l,i´1 `φl,i ´6 10 φ l,i`1 `1 10 φ l,i`2 ˙. (2.3.7)
For the boundary points i P t1, 2 l ´1u, we set

χ l,1 " 2 l 2 ˆ´6 5 φ l,0 `11 10 φ l,1 ´3 5 φ l,2 `1 10 φ l,3 ˙and χ l,2 l ´1pxq " χ l,1 p1 ´xq , x P R . (2.3.8)
The multivariate pre-wavelet function on R d are obtained by a classical tensorproduct approach. For a multi-index level l " pl 1 , . . . , l d q and a multi-index position i " pi 1 , . . . , i d q, χ l,i pxq "

d ź j"1
χ l j ,i j px j q.

(2.3.9)

In this multivariate case, the index sets are given by

I l " " i P N d ˇˇ0 ď i j ď 1 if l j " 0, i j P I l j if l j ą 0, for all 1 ď j ď d * . (2.3.10)
The hierarchical increment spaces are then defined for l P N d by

W l :" spantχ l,i | i P I l u .
The sparse grid space approximation at level is given by

S :" à lPL W l , L :" tl P N d , ζ d plq ď u (2.3.11)
with ζ d p0q :" 0 and for l ‰ 0

ζ d plq " |l| 1 ´d `|tj|l j " 0u| `1 , (2.3.12)
where for a multi-index l P N d we recall that |l| 1 " ř d "1 l and that |A| is the cardinality of A.

The key point here is that the dimension of S satisfies dimpS q " Op2 d´1 q , (2.3.13) so that the curse of dimensionality only appears with respect to the level , see [START_REF] Feuersänger | Sparse grid methods for higher dimensional approximation[END_REF] (and also in the constant related to the notation Op.q). The key point now is that the approximation error when using the sparse space is also controlled if the function to be approximated is smooth enough. To this end, for the fixed open domain p0, 1q d , we consider the space of function with mixed derivatives H 2 mix pp0, 1q d q (see the section Notation for a precise definition). Then, for any v P H 2 mix pp0, 1q d q, it holds

inf ξPS }ξ ´v} 2 L 2 pp0,1q d q ď C2 ´4 d´1 }v} 2 H 2 mix pp0,1q d q (2.3.14)
for some positive constant C :" Cpdq. We refer e.g. Theorem 3.25 in [START_REF] Bohn | Error analysis of regularized and unregularized least-squares regression on discretized function spaces[END_REF] for a proof of this result. Again, we importantly emphasize that in the above control of the error the curse of dimensionality only appears with respect to the level .

Remark 2.3.1

The number of basis functions is thus K " dimpS q. We denote by k : C Þ Ñ t1, . . . , Ku any bijection enumerating C. We will often slightly abuse the notation and write directly pψ k n q 1ďkďK instead of pψ pl,iq n q pl,iqPC to be consistent with the notation introduced in the previous section.

The Picard Algorithm in the case of periodic coefficients

In this section, we work under the setting of Assumption 2.2.2 (iv). To alleviate the notation -but without loss of generality -we assume that the coefficients are 1-periodic in the following sense: for λ " b, σ or g λpx `qq " λpxq , for all px, qq P R d ˆZ Z d , (2.3.15) which implies the same property for the value function u and its derivatives. We thus consider here that O " r0, 1s d , recall (2.3.2) and τ " I d , recall (2.3.4).

Here, we are looking for an approximation U P M p¨q of up0, ¨q on the whole domain O, recall (2.2.50). We thus set X 0 to be uniformly distributed on p0, 1q d , which means that Assumption 2.2.1(i) holds true. For sake of clarity, we summarize the current setting in the following assumption: To take into account the periodic setting in our approximation, let us first define the 1-periodisation of a compactly supported function ϕ by q ϕpxq :"

ÿ qPZ Z d ϕpx `qq , for all x P R d .
(2.3.16)

The basis functions ψ are then given by ψ " q χ. Namely, for any 0 ď n ď N ´1, for an approximation date t n , we introduce the set of functions

V z n :" tξ : R d Þ Ñ R | ξpxq " q vpxq, for some v P S u . (2.3.17)
Moreover, at the initial time, the approximation of up0, ¨q will also be computed in

V y :" tξ : R d Þ Ñ R | ξpxq " q vpxq, for some v P S u . (2.3.18)
Remark 2.3.2 We could have set an approximation level different for each time step, however we shall not use this possibility in our theoretical or numerical convergence results. We thus simply consider a fixed positive level of approximation, that, obviously, will be chosen later in an optimal way.

Let also introduce the function

R d Q x Þ Ñ p x P r0, 1q d (2.3.19)
such that p x and x belong to the same equivalence class in R d {Z Z d . Denoting by P Xt n the probability measure on R d associated to the random vector X tn given by the Euler-Maruyama scheme (2.2.3) taken at time t n and starting from X 0 at time 0 and using Lemma 2.2.1, we remark that the boundary of the domain O has null P Xt n -measure. We thus deduce q ψpX tn q " ψp p X tn q P ´a.s. , (2.3.20) and in practice we should work with the latter quantity. Namely, we construct our approximation scheme using:

Y u 0 :" K y ÿ k"1 ψ k y p p X 0 qy k and Z u tn :" K z n ÿ k"1 ψ k n p p X tn qz n,k , for 0 ď n ď N ´1 , (2.3.21)
with u " py, zq P R K y ˆRd Kz . Under the current setting of periodic coefficients and sparse grid approximation, we take benefit of the convergence results given in Theorem 2.2.1 to obtain our main theoretical result on the complexity of the Picard algorithm. Indeed, the next theorem shows that the curse of dimensionality is tamed by using the sparse grid approximation.

Theorem 2.3.1 Let Assumption 2.3.1 hold and assume that LT 2 is small enough. For a prescribed ε ą 0, the complexity C ε , defined in Remark 2.2.6, of the full Picard algorithm in order to achieve a global error E MSE of order ε 2 , recall (2.2.51), satisfies

C ε " O d pε ´5 2 p1`2ιq | log 2 pεq| 1`4 5`50ι 36 pd´1q q
for any 1 ă ι ă 9 5 .

The proof of this theorem is given in Section 2.4.4 where the algorithm's parameters are optimally set with respect to ε.

Periodic example

We consider here 1-periodic coefficients on R d . The coefficients of the forward SDE (2.1.2) are given by, for

x P R d , b i pxq " 0.2 sinp2πx i q , σ i,j pxq " 1 ? dπ p0.25 `0.1 cosp2πx i qq1 ti"ju , 1 ď i, j ď d .
The coefficients of the BSDE reads gpxq " 1 π ˜sin ˜2π

d ÿ i"1 x i ¸`cos ˜2π d ÿ i"1 x i ¸¸, x P R d , f pt, x, y, zq " 2π 2 y d ÿ i"1 pσ i,i pxqq 2 ´d ÿ i"1 b i pxq z i σ i,i pxq `hpt, xq, t P r0, T s, x P R d , y P R, z P R d ,
where hpt, xq " 2 ´cosp2π ř d i"1 x i `2πpT ´tqq ´sinp2π

ř d i"1 x i `2πpT ´tqq ¯. The explicit solution is given by upt, xq " 1 π ˜sin ˜2π d ÿ i"1 x i `2πpT ´tq ¸`cos ˜2π d ÿ i"1 x i `2πpT ´tq ¸¸, x P R d .
We perform the test for d " 3 and M " 100000, N " 10, T " 0.3, level " 3 by Picard Algorithm with P " 5, then there are K y " K z n " K " 225 basis functions. We obtain a mean square error E MSE " 0.0201 at the 5-th Picard iteration: See Figure 2.1 displaying the learning performance. The parameters of the test are shown in Table 2.6 in the appendix 2.5.1. parabolic PDEs

Numerical convergence of the Picard and direct Algorithm

We will now investigate numerically the behavior of the Picard algorithm and direct algorithm on "test" examples that have been already considered in the literature. In particular, this will allow us also to compare our methods to existing methods as the ones investigated in [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF][START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF].

For this section, we work in the setting of Assumption 2.2.1(ii). This means that at the initial time, the output pŷ 0 , ẑ0 q of the algorithms: pŷ 0 , ẑ0 q " py M , z 0 M q, for the direct algorithm, recall Definition 2.2.3, or pŷ 0 , ẑ0 q " py P M , pz P M q 0 q, for the Picard algorithm 2 , recall Definition 2.2.7, are approximating pup0, x 0 q, σ J ∇ x up0, x 0 qq P R Rd . Since, these are one point values, there is no need to introduce basis functions at the initial time and the approximating spaces are just V y " R and V z 0 " R d . Then, for any 1 ď n ď N ´1, for the discrete time t n , we set the approximating space as follows:

V z n :" tξ : R d Þ Ñ R | ξpxq " vpτ n pxqq, for some v P S u , (2.3.22)
recall (2.3.4). In particular, the basis functions are given by ψ k n pxq " χ k pτ n pxqq, recall (2.3.9) and Remark 2.3.1.

We now report more specifically the various algorithms parameters that have been used in practice. The first thing to note is that we are able to obtain good results with a low level of approximation. Indeed, in all our numerical tests, we set the level " 3. The Table 2 Next, we need to define the domain O n , 1 ď n ď N ´1, where the approximation will be computed, which depends on the underlying process, recall (2.3.1)-(2.3.3). We will consider two cases in our simulations, each component of the forward SDE is given by a Brownian motion with drift µ and volatility σ: t Þ Ñ x 0 `µt `σW t or a geometric Brownian motion: t Þ Ñ x 0 expppµ ´σ2 {2qt `σW t q.

1. For the Brownian motion with drift, we set

O n " x 0 `rµt n ´rσ ? t n , µt n `rσ ? t n s d , for some r P R `. (2.3.23)
2. For the geometric Brownian motion, we set

O n " rx 0 e R´rσ ? tn , x 0 e R`rσ ? tn s, R " pµ ´1 2 σ 2 qt n , for some r P R `.
(2.3.24)

Finally, a delicate parameter to chose is the the learning rate. Empirically, it was set to: for λ P ty, z 0,¨u n"0 Y tz n,¨u 1ďnďN ´1,

γ m pλ, t n , α, β 0 , β 1 , m 0 q " β 1 pλqn `β0 pλq 1 `pm `m0 pλqq αpλq , 1 ď m ď M, (2.3.25)
where β 0 , β 1 P R `, m 0 P N `, α P `1 2 , 1 ‰ .

Remark 2.3.3 i) m 0 is a suitable positive number to decrease the learning rates for avoiding a big jump of the estimated λ in the beginning steps of the algorithm.

ii) The parameter r P R `is a suitable number to balance the running time and the errors of the algorithms. iii) Both β 0 and α can be used to adjust the converge speed and the variance of the estimated λ. Suitable parameters make the algorithm more stable, converge faster and reduce the variance of the estimated λ. iv) Usually, we increase the value of α or decrease the value of pβ 0 , β 1 q gradually to decrease the convergence rate with the increase of step p, 1 ď p ď P for Picard algorithm.

Concerning the number of steps in the SGD algorithm, we make the following remark.

Remark 2.3.4

We used two techniques to control M in order to reduce the computational cost: i) We use α P `0, 1 2 ‰ which still works well as the SGD algorithm can converge faster. ii) If β 1 pλq " 0, for M large enough, the algorithm eventually converge, but tz n,k u 1ďkďK 1ďnďN ´1 convergence becomes slower and slower with the increase of n (the time step). We thus choose β 1 pλq ą 0 in practice to make all tz n,k u 1ďkďK 1ďnďN ´1 converge altogether with a smaller M (thanks to the learning rates increase with n).

The remaining parameters are precised in the examples below. We refer also Section to the Appendix 2.5.1 for the collection of all algorithm parameters values used in the numerical simulation.

Quadratic model

First, we consider the quadratic example, whose driver is set to

f py, zq " a|z| 2 " apz 2 1 `z2 2 `¨¨¨`z 2 d q, y P R, z P R d , (2.3.26)
where a P R is a constant, and the terminal condition to

gpxq " log ˆ1 `|x| 2 2 ˙, x P R d . (2.3.27)
The explicit solution can be obtained through the Cole-Hopf transformation(see e.g. [START_REF] Chassagneux | Numerical simulation of quadratic bsdes[END_REF][START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF]):

y t " upt, xq " # 1 a log E " e a¨gpx`W T ´tq ‰ , a ‰ 0
Ergpx `WT ´tqs , a " 0 and

z i t " B x i upt, xq " E " B x i gpx `WT ´tqe a¨gpx`W T ´tq ‰ E " e a¨gpx`W T ´tq ‰ , i " 1, 2, ¨¨¨, d.
Thus, to obtain a numerical reference solution and 95% confidence interval for y 0 and z i 0 , i " 1, 2, ¨¨¨, d, we use classical Monte Carlo estimation of the expectations. The underlying diffusion X is given by the Brownian motion W, and the parameters are selected as follows: a " 1, M " 2000, N " 10, T " 1, x 0 " p0, ¨¨¨, 0q. We compute a reference solution ȳ0 " 1.0976 with 95% confidence interval p1.0943, 1.1009q when d " 5 by Monte Carlo method using 10 5 simulation paths. Figure 2.2 shows the numerical approximation of y 0 and its 95% confidence interval by the same color line of the 5-dimensional quadratic model by direct algorithm and the deep learning algorithm introduced in [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF] which used a large neural network contains N ´1 fully-connected sub-neural network to represent Z t i , i " 1, ¨, N ´1 and minimized the loss function at the maturity T . The difference of ŷ0 between our SGD algorithm and Monte Carlo simulation is less than 10 ´2. It turns out that for this "low" dimensional example and with this set of parameter, it is more precise than the deep BSDEs solver. For d " 5, M " 2000, N " 10, P " 6, T " 1, a " 1, Figure 2.3 shows that ŷ0 converges for each Picard iteration, and overall ŷ0 Ñ 1.1046. We can observe that ŷ0 is very close to the reference solution ȳ0 when the number of iteration p is greater or equal to 4.

A financial model

We now report our numerical results for a model with a financial flavour. The underlying process X follows a d-dimensional geometric Brownian motion, for µ P R, σ ą 0, namely

dX i t " X i t pµdt `σdW i t q, i " 1, 2, ¨¨¨d, X 0 " x 0 P pR `qd .
The driver of the BSDE is given by, for py, zq P R ˆRd , f py, zq " ´Rl y ´µ ´Rl σ

d ÿ i"1 z i `pR b ´Rl q max # 0, ř d i"1 z i σ ´y+ ,
and the terminal condition

gpxq " max "" max 1ďiďd x i  ´K1 , 0 * ´2 max "" max 1ďiďd x i  ´K2 , 0 * .
Hence, for all t P r0, T q, x P R d , it holds that upT, xq " gpxq and

Bu Bt `σ2 2
d ÿ i"1 x 2 i B 2 u Bx 2 i ´min # R b pu ´d ÿ i"1 x i Bu Bx i q, R l pu ´d ÿ i"1 x i Bu Bx i q + " 0 . (2.3.28)
This is a typical example of "non-linear market" specification, where there are two different interest rates for borrowing and lending money, see Bergman [START_REF] Bergman | Option pricing with differential interest rates[END_REF] and e.g. [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF][START_REF] Gobet | A regression-based monte carlo method to solve backward stochastic differential equations[END_REF][START_REF] Briand | Simulation of bsdes by wiener chaos expansion[END_REF][START_REF] Crisan | Solving backward stochastic differential equations using the cubature method: application to nonlinear pricing[END_REF][START_REF] Bender | A forward scheme for backward sdes[END_REF], where this example has been used as a test example for numerical methods for BSDEs.

In our numerical test below, we set the parameters as follows: N " 10, M " 6000, µ " 0.06, σ " 0.2, R l " 0.04, R b " 0.06, K 1 " 110, K 2 " 130, T " 0.5 and x 0 " p100, ¨¨¨, 100q.

Limits of the Picard Algorithm

We now illustrate on a numerical example that the smallness assumption may be necessary to obtain the convergence of the Picard Algorithm. To this end, we consider the following model. For a given a P R, the BSDE driver is given by f py, zq :" arctanpayq `d ÿ j"1 z j , py, zq P R ˆRd , and the terminal condition

gpxq :" e 1`1¨x 1 `e1`1¨x , x P R d .
The underlying process X is simply equal to the Brownian motion W, namely b " 0, σ " I d . We set the terminal time T " 1 and the dimension d " 2.

We study numerically the above model for different value of a, which controls the Lipschitz constant of f , in the case of the Picard Algorithm. The value obtained are compared to the ones obtained by two other methods: a multistep scheme in [START_REF] Chassagneux | Linear multistep schemes for bsdes[END_REF] and the deep BSDEs solver of [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF]. The values obtained by these two methods are considered to be close to the true solution.

When a " ´0.4, Figure 2.6 shows that ŷ0 converges. However, this is not the case anymore when a " ´1.5, see Figure 2.7, as ŷ0 oscillates between two values. Actually, we see on Figure 2.8 that a bifurcation occurs for the Picard Algorithm around a " ´0.8.

Numerical results with the modified hat functions basis

In the previous section, using the pre-wavelet basis, we were able to establish a theoretical upper-bound on the global complexity for the Picard algorithm and to show that both the Picard algorithm and direct algorithm converge in practice too. However, the number of basis functions, even though we use a sparse approximation, is still quite important which prevents us from dealing effectively with high-dimensional PDE. In particular, the number of basis functions used to capture what happens on the boundary of the domain is large. In this section, we use, the so-called "modified hat functions" that allows to get rid of the boundary basis.

Definition of the basis functions

The modified hat functions are defined by the following method (which corresponds to equation (2.16) in [START_REF] Frommert | Efficient cosmological parameter sampling using sparse grids[END_REF]), φl,i pxq :"

$ ' ' ' ' ' ' & ' ' ' ' ' ' % 1 if l " 1 ^i " 1 " 1 ´2l´1 ¨x if x P r0, 2h l s 0 otherwise * if l ą 1 ^i " 1 " 2 l´1 ¨x `p1 ´iq{2 if x P r1 ´2h l , 1s 0 otherwise * if l ą 1 ^i " 2 l ´1 φ l,i pxq otherwise , (2.3.29)
The multivariate hat function on R d are obtained by a classical tensor-product approach. For these basis functions, we can remove the points on the boundary of the space so that all the components l j , j " 1, ¨¨¨, d, are positive for a multi-index level l " pl 1 , . . . , l d q and a multi-index position i " pi 1 , . . . , i d q, φl,i pxq " d ź j"1 φl j ,i j px j q.

(2.3.30)

In this multivariate case, the index set are given by

I l " ! i P N d | i j P I l j for all 1 ď j ď d) . (2.3.31)
Table 2.3 shows the number of points in the sparse grids without boundary. In particular, we observe that it is much less than sparse grids with boundary for the same dimensions and levels, recall Table 2.1.

The quadratic model

We come back to the quadratic model introduced in (2.3.26)- (2.3.27). In this setting, we can test the 100-dimensional version of this model. Let M " 2000, N " 10, T " 1, a " 1, the convergence of ŷ0 and ẑ0 , when using the direct algorithm, is shown in Figure 2.9 and Figure 2.10: 3819 seconds were spent on this test. The error for ŷ0 appears to be less than 0.01. For Z, the true solution is zi 0 "

2W i 0 Er1`|W T | 2 s " 0, @i " 1, ..., d.
The gain in computational time is important in comparison with the pre-wavelet specification of the last section. Not only less basis functions are used, but one should also note that the computational cost of a hat function is less than a pre-wavelet function up to a factor 5. We do also test the Picard algorithm in 25-dimensional setting. We set M " 1500, N " 10, T " 1, a " 1, P " 3 and get ŷ0 « 2. 5481

A challenging example

We now consider a model with an unbounded and complex structure solution, which has been analyzed in [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF]. The value function in this case is given by:

upt, xq " T ´t d d ÿ i"1 psinpx i q1 tx i ă0u `xi 1 tx i ě0u q `cos ˜d ÿ i"1 ix i ¸, x P R d . (2.3.32)
It corresponds to a BSDE, with underlying process given by X t " x `1 ? d I d W t , and x 0 " 0.51 d and driver and terminal condition given respectively by

f pt, x, y, zq " ˆ1 `pT ´tqp 1 2d ´Cq ˙Apxq `p1 ´pT ´tqCqBpxq `Cy, " ˆ1 `T ´t 2d ˙Apxq `Bpxq `C cos ˜d ÿ i"1 ix i ¸, x P R d , y P R, z P R d , gpxq "upT, xq " cos ˜d ÿ i"1 ix i ¸, x P R d ,
where

Apxq " 1 d d ÿ i"1 sinpx i q1 tx i ă0u , Bpxq " 1 d d ÿ i"1 x i 1 tx i ě0u , C " pd `1qp2d `1q 12 .
In Table 2.5, we compare the approximation of y 0 by using five different algorithms to the theoretical solution. When the dimension d ď 2, all the algorithms perform well. However, as already mentioned in [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF] the deep learning algorithm [START_REF] Han | Overcoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning[END_REF] fails when d ě 3 (no matter the chosen initial learning rate and the activation function for the hidden layers, among the tanh, ELU, ReLu and sigmoid ones; besides, taking 3 or 4 hidden layers does not improve the results.) The two deep learning schemes of [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF] and our algorithms with sparse grids still works well when d ď 8. Figure 2.12 shows the performance of the direct algorithm , ŷ0 converges to 1.1745 when d " 8, it is close to the theoretical solution 1.1603, and the 95% confidence interval of ŷ0 is r1.1611, 1.1881s. When the dimension d " 10, all the algorithms failed at providing correct estimates of the solution as shown in the table, but the errors of our algorithms appear to be smaller than the errors of deep learning methods. Figure 2. [START_REF] Bohn | Error analysis of regularized and unregularized least-squares regression on discretized function spaces[END_REF]

Study of the discrete optimization problems

In this section, we study theoretically the direct algorithm and the Picard algorithm in order to prove the results stated in Section 2.2 and 2.3.1.2. We first obtain forward and backward estimates on perturbed BSDEs. This allows in particular to derive the wellposedness of the direct algorithm. However, most of the work concentrates on the Picard algorithm in Section 2.4.3. A careful study of the iterated SGD algorithms allows to prove the convergence announced in Theorem 2.2.1. Finally, we prove Theorem 2.3.1 concerning the complexity of the method in the case of periodic coefficients and using pre-wavelet basis.

Preliminary estimates

In this subsection, we prove general technical estimates for the backward component of a BSDE that will be used in the proof of the convergence of the numerical methods under study. We will essentially compare two processes with dynamics given by (2.2.11) but taken at two different starting points and controlled processes. The first process, denoted by V , is a scheme built with a random driver F satisfying:

Assumption 2.4.1 1. For all py, zq P R ˆRd , F p¨, y, zq is progressively measurable.

2. There exists some deterministic constant C ě 0 such that for any t P r0, T s and any py, y 1 , z, z

1 q P R 2 ˆR2d |F pt, y, zq ´F pt, y 1 , z 1 q| ď C `|y ´y1 | `|z ´z1 | ˘.
For Z P S 2 d and ζ P L 2 pF 0 q, we thus define

V ζ,Z t " ζ ´ż t 0 F ps, V ζ,Z s , Z sq ds `ż t 0 Z s dW s , (2.4.1)
where we introduced the notation s :" t n for t n ď s ă t n`1 . The second one, denoted Ṽ , corresponds to the the true solution to the BSDE

Ṽ ζ,Z t " ζ ´ż t 0 F ps, Ṽ ζ,Z s , Z s q ds `ż t 0 Z s dW s , (2.4.2)
where F satisfies the same assumptions as F above.

Proposition 2.4.1 Let Assumption 2.4.1 hold for F and F . For pζ, ζ 1 q P L 2 pF 0 q L2 pF 0 q and pZ, Z

1 q P S 2 d ˆS2 d , we consider V ζ,Z and Ṽ ζ 1 ,Z 1 as defined in (2.4.1)- (2.4.2) and we set δF :" F p¨, V ζ,Z , Zq ´F p¨, V ζ,Z , Zq, η f s " F ps, Ṽ ζ 1 ,Z 1 s , Z 1 s q F ps, Ṽ ζ 1 ,Z 1 s , Z 1 sq and η z s " Z 1 s ´Z1 s.
Then, under the above assumptions on F and F , it holds 1. Forward estimate:

E « sup tPr0,T s | Ṽ ζ 1 ,Z 1 t ´V ζ,Z t | 2 ff ď C ˜E« |ζ ´ζ1 | 2 `h N ´1 ÿ i"0 |Z tn ´Z1 tn | 2 ff `E"ż T 0 p|δF s| 2 `|η f s | 2 `|η z s | 2 q ds ˙.
2. Backward estimate:

E « sup tPr0,T s | Ṽ ζ 1 ,Z 1 t ´V ζ,Z t | 2 `h N ´1 ÿ i"0 |Z tn ´Z1 tn | 2 ff ď CE " | Ṽ ζ 1 ,Z 1 T ´V ζ,Z T | 2 ż T 0 p|δF s| 2 `|η f s | 2 `|η z s | 2 q ds  . Proof. 1. Denote ∆V :" Ṽ ζ 1 ,Z 1 ´V ζ,Z , ∆Z " Z 1 ´Z, ∆F " F p¨, Ṽ ζ 1 ,Z 1 , Z 1 q ´F p¨, V ζ,Z
, Zq and ∆Γ s " ∆Z s `ηz s . Applying Itô's formula, we compute

|∆V t | 2 " |∆V 0 | 2 `ż t 0 t´2∆V s p∆F s `δF s `ηf s q `|∆Γ s | 2 u ds `2 ż t 0 ∆V s ∆Γ s dW s . (2.4.3)
Since F is Lipschitz-continuous, we have Applying the Burkholder-Davis-Gundy inequality, we obtain

2|∆V s p∆F s `δF s `ηf s q| ď p4 `Lq sup 0ďrďs |∆V r | 2 `L|∆Z s| 2 `|δF s| 2 `|η f s | 2 which combined with (2.4.3) leads to E " sup 0ďsďt |∆V s | 2  ď E " |∆V 0 | 2 `C ż t 0 t sup 0ďrďs |∆V r | 2 `|∆Z s| 2 `|δF s| 2 `|η f s | 2 `|η z s | 2 u ds  `2 E " sup 0ďrďt | ż r 0 ∆V s p∆Z s `ηz s q dW s |  . (2
E « sup rPr0,ts | ż r 0 ∆V s p∆Z s `ηz s q dW s | ff ď CE " | ż t 0 |∆V s p∆Z s `ηz s q| 2 ds| 1 2  ď C ˆE" sup 0ďsďt |∆V s | 2 `ż t 0 p|∆Z s| 2 `|η z s | 2 q
ds ẇ here we used Young's inequality for the last inequality. Inserting the previous inequality into (2.4.4), we get

E " sup 0ďrďt |∆V t | 2  ď |∆V 0 | 2 `C ż t 0 E " sup 0ďrďs |∆V r | 2 `|∆Z s| 2 `|η f s | 2 `|δF s| 2 `|η z s | 2  ds .
The proof for this step is concluded by applying Grönwall's Lemma.

2. From (2.4.3), we compute

E " |∆V t | 2 `ż T t |∆Γ s | 2 ds  ď E " |∆V T | 2 `2 ż T t ∆V s p∆F s `δF s `ηf s q ds  .
We observe that, since F is Lipschitz continuous,

∆V s ∆F s ď Cp|∆V s | 2 `|∆V s| 2 `|∆V s ∆Z s|q.
For α ą 0, to be fixed later on, we get using Young's inequality,

∆V s ∆F s ď C ˆp1 `1 α q|∆V s | 2 `|∆V s| 2 `α|∆Z s| 2 ˙, ď C ˆp1 `1 α q|∆V s | 2 `|∆V s| 2 `α|∆Γ s | 2 `|η z s | 2 ˙.
For α small enough, we thus obtain

E " |∆V t | 2 `1 2 ż T t |∆Γ s | 2 ds  (2.4.5) ď E " |∆V T | 2 `C ż T t ´|∆V s | 2 `|∆V s| 2 `|δF s| 2 `|η f s | 2 `|η z s | 2 ¯ds  . (2.4.6)
Applying Grönwall's Lemma leads to, for all t ď T ,

E " |∆V t | 2 ‰ ď CE " B T `ż T t |∆V s| 2 ds  (2.4.7)
with

B T :" |∆V T | 2 `ż T 0 p|η f s | 2 `|η z s | 2 `|δF s| 2 q ds .
In particular, for n ď N and t n P π, we have

E " |∆V tn | 2 ‰ ď CE « B T `h N ´1 ÿ j"n |∆V t j | 2 ff
E " |∆V t | 2 `1 2 ż T t |∆Γ s | 2 ds  ď CErB T s , t ď T.
To conclude the proof one applies the Burkholder-Davis-Gundy inequality as in step 1. l

Application to the direct algorithm

We here prove the results announced in Section 2.

∇ y k Z u tn " 0, and ∇ z n,k pZ u t q l " ψ k n pX tn q1 tt"tnu e l .
This leads to, for 0 ď q ď N ´1,

∇ z n,k pZ u tq ¨∆W q q " ψ k n pX tn q∆W n 1 tq"nu (2.4.8)
and

∇ z n,k f pY u tq , Z z tq q " ∇ y f pY u tq , Z u tq q∇ z n,k Y u tq `ψk n pX tn q∇ z f pY u tq , Z u tq q1 tq"nu . (2.4.9)
Now, differentiating both side of (2.2.10) with respect to the variable

y k , 1 ď k ď K y yields ∇ y k Y u tn " ψ k y pX 0 q n´1 ź j"0 ´1 ´h∇ y f pY u t j , Z u t j q ¯for n ě 0.
From (2.2.10), by differentiation, we obtain ∇ z n,k Y u 0 " 0 and using (2.4.8) and (2.4.9), for q ě 1,

∇ z n,k Y u tq " ∇ z n,k Y u t q´1 ´1 ´h∇ y f pY u t q´1 , Z z t q´1 q ψk n pX tn q1 tn"q´1u ´∆W J q´1 ´h∇ z f pY u t q´1 , Z u t q´1 q ¯,
which in turn yields

∇ z n,k Y u tq " 0 for q ď n , ∇ z n,k Y u t n`1 " ψ k n pX tn q `∆W J n ´h∇ z f pY u tn , Z u tn q ȃnd for q ě n `2, ∇ z n,k Y u tq " ψ k n pX tn q `∆W n ´h∇ z f pY u tn , Z u tn q ˘q´1 ź j"n`1 ´1 ´h∇ y f pY u t j , Z u t j q ¯.
Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs

This concludes the proof. l

Recall that, the time discretization error that will appear in our estimates is classically given by

E π " E « N ´1 ÿ n"0 ż t n`1 tn `|Y s ´Ytn | 2 `|Z s ´Ztn | 2 `|X tn ´Xtn | 2 ˘ds ff . (2.4.10)
The approximation error due to the restriction to the functional space, expressed in (2.2.18), is also given by

E ψ " E « |up0, X 0 q ´ū 0 pX 0 q| 2 `N´1 ÿ n"1 h|pσ J ∇ x uqpt n , X tn q ´v n pX tn q| 2 ff , (2.4.11)
where, vn is the L 2 pR d , P Xt n q-projection of the map pσ J ∇ x uqpt n , ¨q onto V z n , 0 ď n ď N ´1 and ū0 is the L 2 pR d , P X 0 q-projection of the map up0, ¨q onto V y . We denote ȳ the coefficient associated to the decomposition of ū, namely

R d Q x Þ Ñ ū0 pxq " K y ÿ k"1 ȳk ψ k 0 pxq P R, (2.4.12)
and also zn the coefficient associated to the decomposition of vn , namely

R d Q x Þ Ñ vn pxq " K z n ÿ k"1 zn,k ψ k n pxq P R d , 0 ď n ď N ´1. (2
.4.1 with V ζ,Z :" Y u and Ṽ ζ 1 ,Z 1 :" Y 0 (ζ 1 " 0, Z 1 " 0) yields ~u~2 " E « |Y u 0 | 2 `N´1 ÿ n"0 h|Z u tn | 2 ff ď CE " |Y u T ´Y 0 T | 2 ‰ ď Cp1 `E" |gpX T q ´Y u T | 2 ‰ q.
Under Assumption 2.2.3, we thus deduce that the continuous function

R K y Rd Kz Q u Þ Ñ gpuq is coercive.
As a consequence, it admits a global minimizer so that the optimization problem (2.2.12) is well-posed. l The following proposition can be seen as a version of the results in [START_REF] Han | Convergence of the deep bsde method for coupled fbsdes[END_REF] (see Theorem 1 & 2) adapted to our context. Let us note that our setting is simpler as we do not deal with fully coupled Forward Backward SDEs.

Proposition 2.4.2 Under Assumption 2.2.1, Assumption 2.2.2 (i), (ii) and

Assumption 2.2.3, there exists a positive constant C such that for any u ‹ :" py ‹ , z ‹ q P arg min

uPR K y ˆRd Kz gpuq, it holds E « |up0, X 0 q ´Y u ‹ 0 | 2 `h N ´1 ÿ n"0 |Z tn ´Zu ‹ tn | 2 ff ď C pE π `Eψ q (2.4.15)
and

gpu ‹ q ď gpūq ď C pE π `Eψ q . (2
E « sup tPr0,T s |Y u ‹ t ´Y ū t | 2 `h N ´1 ÿ n"0 E " |Z ū tn ´Zu ‹ tn | 2 ı ff ď CE " |Y u ‹ T ´Y ū T | 2 ı ď CE " |Y u ‹ T ´gpX x T q| 2 `|gpX x T q ´Y ū T | 2 ı .
By optimality of u ‹ , we get

E « sup tPr0,T s |Y u ‹ t ´Y ū t | 2 `h N ´1 ÿ n"0 E " |Z ū tn ´Zu ‹ tn | 2 ı ff ď CE " |gpX x T q ´Y ū T | 2 ‰ . (2.4.17)
We now use the forward estimate of Proposition 2.4.1 with V ζ,Z :" Y ū and Ṽ ζ 1 ,Z :" Y. We obtain

gpūq " E " |gpX x T q ´Y ū T | 2 ‰ ď CE « |Y 0 ´Y ū 0 | 2 `ż T 0 `|Y s ´Ys | 2 `|Z s ´Zs | 2 ˘ds `N´1 ÿ n"0 h|Z tn ´Zū tn | 2 ff .
(2.4.18)

Observe now that in our current smooth coefficients framework Z tn " pσ J ∇ x uqpt n , X tn q so that one has

E " |Z tn ´Zū tn | 2 ‰ " E " |pσ J ∇ x uqpt n , X tn q ´Zū tn | 2 ı ď 2 ´E" |pσ J ∇ x uqpt n , X tn q ´pσ J ∇ x uqpt n , X tn q| 2 ı `E" |pσ J ∇ x uqpt n , X tn q ´Zū tn | 2 ıď C ´E" |X tn ´Xtn | 2 ı `E" |pσ J ∇ x uqpt n , X x 0 tn q ´Zū tn | 2 ı¯(2.4.19)
where we used the Lipschitz regularity of x Þ Ñ pσ

|Y u ‹ t ´Y ū t | 2 `h N ´1 ÿ n"0 E " |Z ū tn ´Zu ‹ tn | 2 ı ff ď C pE π `Eψ q .
Then, using the inequalities

|Z tn ´Zu ‹ tn | 2 ď 2|Z u ‹ tn ´Zū tn | 2 `2|Z tn ´Zū tn | 2 , 0 ď n ď N ´1, and |Y u ‹ t ´Yt | 2 ď 2|Y u ‹ t ´Y ū t | 2 `2|Y t ´Y ū t | 2 yields (2.4.15
) and concludes the proof. l

Study of the Picard algorithm

We introduce the following mean squared error:

E p :" E " ~up M ´ū~2 ‰ , 0 ď p ď P , (2.4.20)
where the sequence pu p M q 0ďpďP is given by Definition 2.2.7, ~¨~is given by Definition 2.2.5 and ū is the reference solution introduced in (2.4.14). In this subsection, our aim is to establish an upper bound for the quantity E P that will allow us to prove Theorem 2.2.1.

Preliminary estimates

8L 2 T
1´T p1`2L 2 p1`hqq ă 1, then for any ε ą 0 such that δ h,ε :" δ h p1 `εq ă 1 there exists a positive constant C ε such that for any positive integer P

E P ď δ P h,ε E 0 `Cε `ERM `Eψ `Eπ ˘(2.4.21)
with the notation

E RM :" max 1ďpďP E " ~up M ´Φpu p´1 M q~2 ı . (2

.4.22)

Proof. From the decomposition,

u p M ´ū "Φ M pu p´1 M q ´Φpu p´1 M q `Φpu p´1 M q ´ū
we obtain, for any ε ą 0,

E p ď p1 `1 ε qE RM `p1 `εqE " ~Φpu p´1 M q ´ū~2 ı .
Then, using Lemma 2.4.2 below, we get

E p ď δ h,ε E p´1 `Cε pE ψ `Eπ `ERM q
up to a modification of ε. By an induction argument, we derive

E P ď δ P h,ε E 0 `Cε
8L 2 T
1´T p1`2L 2 p1`hqq ă 1, then, for any ε ą 0 there exists a positive constant C ε (ε Þ Ñ C ε being non-increasing) such that for any ũ P R K y ˆRd Kz it holds ~Φpũq ´ū~2 ď δ h p1 `εq~ũ ´ū~2 `Cε pE ψ `Eπ q .

Proof.

Step 1: We denote ǔ " Φpũq where ǔ " py, žq and ũ " pỹ, zq belongs to R K y Rd Kz . We first observe that, recalling (2.2.21), (2.2.30) and (2.2.23),

~Φpũq ´ū~2 " E " |Y ū 0 ´Y ǔ 0 | 2 `ż T 0 |Z ǔ t ´Zū t | 2 dt  " E " |U ũ,ǔ T ´U ũ,ū T | 2 ı .
Moreover, by optimality of ǔ

E " |U ũ,ǔ T ´U ũ,ū T | 2 ı ď 2 ´E" |U ũ,ǔ T ´gpX T q| 2 ı `E" |gpX T q ´U ũ,ū T | 2 ıď 4E " |gpX T q ´U ũ,ū T | 2 ı .
We now compute, for any ε ą 0,

E " |gpX T q ´U ũ,ū T | 2 ı ď p1 `1 ε qE " |gpX T q ´U ū,ū T | 2 ı `p1 `εqE " |U ū,ū T ´U ũ,ū T | 2 ı ,
which, combined with the previous inequality, yields

~Φpũq ´ū~2 ď 4p1 `1 ε qE " |gpX T q ´U ū,ū T | 2 ı `4p1 `εqE " |U ū,ū T ´U ũ,ū T | 2 ı . (2.4.23)
Since U ū,ū " Y ū, we can give an upper bound for the first term appearing on the right-hand side of the above inequality by using (2.4.16),

E " |gpX T q ´U ū,ū T | 2 ı " gpūq ď C pE ψ `Eπ q .
(2.4.24)

Step 2: We now turn to the study of the second term appearing on the right hand side of (2.4.23). Recalling the dynamics (2.2.24), denoting δU :" U ũ,ū ´Y ū, δZ " Z ũ ´Zū , δY " Y ũ ´Y ū and δf tn " f pY ũ tn , Z ũ tn q ´f pY ū tn , Z ū tn q, 0 ď n ď N ´1, using the Cauchy-Schwarz inequality and the Lipschitz-regularity of the map f , we get Using the fact that Er∆M n s " 0 and the Lipschitz regularity of the map f , we deduce

E " |δU T | 2 ‰ ď T ż T 0 E " |δf s| 2 ‰ ds ď 2L 2 T N ´1 ÿ n"0 hE " |δY tn | 2 `|δZ tn | 2 ‰ ds. (2
E " |δY t n`1 | 2 ‰ ď E " |δY tn | 2 `h|δY tn | 2 `ph `h2 q|δf tn | 2 `h|δZ tn | 2 ‰ ď E " |δY tn | 2 `ph `2L 2 ph `h2 qqp|δY tn | 2 `|δZ tn | 2 q ‰ .
Summing the previous inequality, we obtain

E " |δY tn | 2 ‰ ď |δY 0 | 2 `E« N ´1 ÿ j"0 ph `2L 2 ph `h2 qqp|δY t j | 2 `|δZ t j | 2 q
ff so that, multiplying both side of the previous inequality by h and summing again, we get

N ´1 ÿ n"0 hE " |δY tn | 2 ‰ ď T |δY 0 | 2 `T p1 `2L 2 p1 `hqq ˜E" N ´1 ÿ j"0 h|δY t j | 2 ı `E" N ´1 ÿ j"0 h|δZ t j | 2 ı ḑ T 1 ´T p1 `2L 2 p1 `hqq ˜|δY 0 | 2 `p1 `2L 2 p1 `hqqE " N ´1 ÿ j"0 h|δZ t j | 2 ı
where,

for the last inequality, we used the fact that T p1`2L 2 p1`hqq ă 1. Combining the previous inequality with (2.4.25), we obtain ˆRd Kz -valued random vector and set ǔ " py, žq :" Φpũq and u M " py M , z M q :" Φ M pu 0 , X 0 , W, ũq, M being a positive integer and where pu 0 , X 0 , Wq (recall Definition 2.2.6) is independent of ũ. We denote by E ũr¨s, the conditional expectation with respect to the sigma-field σpũq generated by ũ. Then, for any positive integer M , the random vector py M , z M q satisfies:

E " |δU T | 2 ‰ ď 2L 2 T 1 ´T p1 `2L 2 p1 `hqq ˜T |δY 0 | 2 `N´1 ÿ n"0 hE " |δZ tn | 2 ‰ ¸. (2
E ũ" |y M ´y| 2 ı ď L K,M p1 `|y| 2 q and E ũ" |z n,M ,l ´ž n,l | 2 ı ď L K,M ˆ1 h `|ž n,l | 2 (2.4.27)
for any l P t1, ¨¨¨, du, with ~ΦM pũq ´Φpũq~2

L K,M :" 0 1 ´1 `E" |u 0 | 2 ı¯M ÿ m"1 exp ˆ´4 α K β K pΓ M ´Γm q ˙γ2 m (2.4.28) Γ m :" m ÿ k"1 γ k , m ě 1 , (2
ı ď κ K L K,M p1 `dN q `κK α K L K,M ~Φpũq~2 . (2.4.30)
Proof.

Step 1: We prove the estimate for the difference z n,M ,l ´ž n,l . The proof for y M ´y follows from similar arguments and we omit some technical details. From (2.2.41), one gets

|H n,l pX 0 , W, ũ, z n,l q| 2 " 4 pβ K ? hq 2 |G ũ ´ωn,l ¨zn,l | 2 |ω n,l | 2 ď 8 β 2 K p|G ũ| 2 `h|ω n,l | 2 |z n,l | 2 q|ω n,l | 2 .
Under

|H n,l pX 0 , W, ũ, z n,l q| 2 ı ď 0 p1 `h|z n,l ´ž n,l | 2 `h|ž n,l | 2 q . (2.4.33)
Step 2: We now introduce the natural filtration of the algorithm namely F " pF m q 0ďmďM , defined by F m " σpu 0 , X pkq 0 , W pkq , 1 ď k ď mq, m ě 1, and F 0 " σpu 0 q. From the dynamics (2.2.48), we directly get

|z n,l ,m`1 ´ž n,l | 2 " |z n,l ,m ´ž n,l | 2 ´2γ z m`1 H n,l pX pm`1q 0 , W pm`1q , ũ, z n,l ,m q ¨pz n,l ,m ´ž n,l q `pγ z m`1 q 2 |H n,l pX pm`1q 0
, W pm`1q , ũ, z n,l ,m q| 2 so that introducing the sequence of F-martingale increments, for m ě 0,

∆M m`1 :" ´1 β K ? h ∇ z n,l H n,l pũ, u m q ´Hn,l pX pm`1q 0
, W pm`1q , ũ, z n,l ,m q ¯¨pz n,l ,m ´ž n,l q, Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs we have

|z n,l ,m`1 ´ž n,l | 2 "|z n,l ,m ´ž n,l | 2 ´2 β K ? h γ z m`1 ∇ z n,l H n,l pũ, u m q ¨pz n,l ,m ´ž n,l q `2γ z m`1 ∆M m`1 `pγ z m`1 q 2 |H n,l pX pm`1q 0 , W pm`1q , ũ, z n,l ,m q| 2 .
Now, from the previous equality, (2.2.34) and the fact that E ũr∆M m`1 |F m s " 0, recall (2.2.43), we obtain

E ũ" |z n,l ,m`1 ´ž n,l | 2 ı ď E ũ" |z n,l ,m ´ž n,l | 2 ı´1 ´4 hα K β K ? h γ z m`1 ¯`pγ z m`1 q 2 E ũ" |H n,l pX pm`1q 0 , W pm`1q , ũ, z n,l ,m q| 2 ı ď E ũ" |z n,l ,m ´ž n,l | 2 ı´1 ´4 hα K β K ? h γ z m`1 ` 0 hpγ z m`1 q 2 ¯` 0 pγ z m`1 q 2 p1 `h|ž n,l | 2 q (2.4.34)
where, for the last inequality, we used (2.4.33) together with the fact that, since

pX pm`1q 0 , W pm`1q q is independent of F m and z m is F m -measurable, one has E ũ" |H n,l pX pm`1q 0 , W pm`1q , ũ, z n,l ,m q| 2 |F m ı " E ũ" |H n,l pX 0 , W, ũ, z n,l q| 2 ı |z n,l "z n,l ,m
.

Observe now that by the very definition (2.2.45) of the sequence pγ z m q mě1 and using the fact that α K {β K ď 1 and 0 ě 16, one gets 1

´4 hα K β K ? h γ z m`1 ` 0 hpγ z m`1 q 2 " 1 ´p4 α K β K γ m`1 ´ 0 γ 2 m`1 q ě 1 ´p? 0 γ m`1 ´ 0 γ 2 m`1 q ě 1 ´1{4 " 3{4. As a consequence, Π m :" ś m k"1 p1 ´4 hα K β K ? h γ z k ` 0 hpγ z k q 2 q " ś m k"1 p1 ´4 α K β K γ k ` 0 γ 2 k
q is a product of positive terms. From (2.4.34), we thus deduce

E ũ" |z n,l ,m`1 ´ž n,l | 2 ı ď Π m`1 E ũ" |z n,l ,0 ´ž n,l | 2 ı ` 0 p 1 h `|ž n,l | 2 q m`1 ÿ q"1 Π m`1 Π q γ 2 q ď 2 1 exp ´´4 α K β K Γ m`1 ¯´E ũ" |z n,l ,0 | 2 ı `|ž n,l | 2 ¯ 1 0 p 1 h `|ž n,l | 2 q m`1 ÿ q"1 exp ˆ´4 α K β K pΓ m`1 ´Γq q ˙γ2 q ď 0 1 ´1 `Eũ " |z n,l ,0 | 2 ı¯ˆ1 h `|ž n,l | 2 ˙m`1 ÿ q"1 exp ˆ´4 α K β K pΓ m`1 ´Γq q ˙γ2 q (2.4.35)
where we used the standard inequality 1`x ď e x , the fact that ρ 0 ě 2 and introduced the quantity ~ΦM pũq ´Φpũq~2

1 :" expp 0 ÿ mě1 γ 2 m q. (2
ı ď E ũ" κ K |y M ´y| 2 `hκ K N ´1 ÿ n"1 d ÿ l"1 |z n,l ,M ´ž n,l | 2
ı so that, using (2.4.27)

E ũ"
~ΦM pũq ´Φpũq~2

ı ď κ K L K,M p1 `|y| 2 q `hκ K L K,M N ´1 ÿ n"1 d ÿ l"1 p 1 h `|ž n,l | 2 q , ď κ K L K,M `κK α K L K,M }y} 2 y `hκ K L K,M N d 1 h `κK α K L K,M }ž} 2 z , ď κ K L K,M p1 `dN q `κK α K L K,M ~ǔ~2 ,
which concludes the proof. l

The following result provides an upper-bound for the quantity L K,M for a given specification of the learning step that is useful to study the complexity of the global algorithm.

Lemma 2.4.4 Let Assumption 2.2.3 hold. For γ ą 0, ρ P p 1 2 , 1q, set γ m :" γm ´ρ, m ě 1. If the number of steps M in the stochastic gradient descent algorithm satisfies

γ α K β K M 1´ρ ě ? 2 2 , (2.4.37)
then, there exists some positive constant C :" Cpρ, γq such that

L K,M ď C ˆe´2 ? 2 lnp2qγ α K β K M 1´ρ `βK α K M ρ ˙. (2
" γ ř m q"1 1 q ρ , for m ě 1, γ 1 ´ρ `m1´ρ ´1˘ď Γ m ď γ 1 ´ρ `m1´ρ ´1˘`γ (2.4.39)
Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs by standard computations based on comparison between series and integral, leading to

Γ m ´ΓM ď γ 1 ´ρ `m1´ρ ´M 1´ρ ˘`γ.
(2.4.40)

Recalling (2.4.28), we employ the following decomposition

L K,M " 0 1 ´1 `E" |u 0 | 2 ı¯M ÿ m"1 exp ˆ´4 α K β K pΓ M ´Γm q ˙γ2 m (2.4.41) ď 0 1 ´1 `E" |u 0 | 2 ı¯e xp ˆ4γ α K β K ˙`A M `BM `γ2 M ˘(2.4.42)
with

A M :" tM {2u ÿ m"1 exp ˆ4 α K β K γ 1 ´ρ tm 1´ρ ´M 1´ρ u ˙γ2 m 2ρ , B M :" M ´1 ÿ m"tM {2u`1 exp ˆ4 α K β K γ 1 ´ρ tm 1´ρ ´M 1´ρ u ˙γ2 m 2ρ .
For the first term A M , we observe that, for m ď tM {2u ď M {2 and 1 2 ă ρ ă 1,

m 1´ρ ´M 1´ρ ď ´?2 2 lnp2qp1 ´ρqM 1´ρ . (2.4.43)
We then compute

A M ď exp ˆ´2 ? 2 lnp2qγ α K β K M 1´ρ ˙tM{2u ÿ m"1 γ 2 m 2ρ ď C ρ,γ exp ˆ´2 ? 2 lnp2qγ α K β K M 1´ρ ˙.
(2.4.44)

We now study the term B M which reads

B M " γ 2 exp ˆ´4 α K β K γ 1 ´ρ M 1´ρ ˙M´1 ÿ m"tM {2u`1 λpmq
where, the map λ is defined for x ě 1 by

λpxq :" exp ˆ4 α K β K γ 1 ´ρ x 1´ρ ˙1 x 2ρ . (2.4.45)
We observe that λ is increasing on rtM {2u `1, `8q when (2.4.37) holds. This leads to 4α K so that one will often consider higher values of γ than requested which will have the undesirable effect to deteriorate the upper-bound as suggested by the value of 1 in (2.4.36). Moreover, as shown in Section 2.4.4, the value β K 4α K actually goes to infinity when the prescribed approximation error ε goes to zero so that the latter condition becomes more and more stringent.

M ´1 ÿ m"tM {2u`1 λpmq ď ż M M {2 λpxq dx ď 2 ρ M ρ ż M M {2 exp ˆ4 α K β K γ 1 ´ρ x 1´ρ ˙1 x ρ dx ď 2 ρ´2 β K γM ρ α K exp ˆ4 α K β K γ 1 ´ρ M 1´ρ ˙87 2.4.
We now give an upper bound for the error E P defined by (2.4.20), with respect to all the algorithm's parameters. These parameters will be chosen in the next section taking into account the precise specification of the functional approximation space. Proposition 2.4.4 Suppose that Assumption 2.2.1, Assumption 2.2.2 (i), (ii) and Assumption 2.2.3 hold. Assume that there exists a positive constant η (independent of N , M and the basis functions pψq) such that

κ K h ^αK L K,M ď η . (2

.4.46)

If T p1 `2L 2 p1 `hqq ă 1 and δ h,η :"

16L 2 T p1`ηq
1´T p1`2L 2 p1`hqq ă 1, then for any ε ą 0 there exists a positive constant C ε such that

E RM ď C ε κ K h ^αK L K,M
so that, with the notations of Proposition 2.4.3, it holds

E P ď δ P h,ε E 0 `Cε ˆκK h ^αK L K,M `Eψ `Eπ ˙. (2
E " ~ΦM pu p´1 M q ´Φpu p´1 M q~2 ı ď κ K L K,M p1 `dN q `κK α K L K,M E " ~Φpu p´1 M q~2
ı .

(2.4.48)

To conclude the proof, we will in the next step, provide an upper bound for the term

E " ~Φpu p´1 M q~2
ı , uniformly with respect to p.

Step 2: We denote by C ε a constant that may change from line to line along with ε. From Young's inequality and Lemma 2.4.2, we obtain

E " ~Φpu p M q~2 ‰ ď p1 `εqE " ~Φpu p M q ´ū~2 ‰ `p1 `1 ε q~ū~2 ď δ h p1 `εqE " ~up M ´ū~2 ‰ `Cε pE π `Eψ `~ū~2q ď δ h p1 `εqE " ~up M ~2‰ `Cε pE π `Eψ `~ū~2q
up to a modification of ε. From the previous inequality, we readily obtain

E " ~Φpu 0 M q~2 ‰ ď C ε . Now, if p is a positive integer, noting again that E " ~up M ~2‰ ď 2E " ~ΦM pu p´1 M q ´Φpu p´1 M q~2 ı `2E " ~Φpu p´1 M q~2 ı we obtain E " ~Φpu p M q~2 ‰ ď 2δ h p1 `εqE " ~Φpu p´1 M q~2 ı `2δ h p1 `εqE " ~ΦM pu p´1 M q ´Φpu p´1 M q~2 ı `Cε ˆEπ `Eψ `~ū~2
ṡo that using (2.4.48), we get

E " ~Φpu p M q~2 ‰ ď2δ h p1 `εq ˆ1 `κK α K L K,M ˙E" ~Φpu p´1 M q~2 ı `2δ h p1 `εqκ K L K,M p1 `dN q `Cε ˆEπ `Eψ `~ū~2 ˙.
From (2.4.46) and the fact that δ h,η , we can set ε such that 2δ h p1`εqp1`κ K α K L K,M q ď δ h,η p1`εq ă 1 so that from the above inequality, by induction, for any positive integer p, we get

E " ~Φpu p M q~2 ‰ ď pδ h,η p1 `εqq p E " ~Φpu 0 M q~2 ‰ `Cε pE π `Eψ `~ū~2 `δh q ď C ε ,
which concludes the proof. l

We now have all the ingredients to give the proof of the main result announced in Section 2.2.3 on the upper bound for the global convergence error at the initial time.

E MSE ď 2E " |up0, X 0 q ´ūpX 0 q| 2 `|Y ū 0 ´Y u P M 0 | 2 ı (2.4.49)
where we used the notations introduced in (2.2.9), (2.4.12) and (2.4.14). A fortiori, we have

E " |up0, X 0 q ´ū 0 pX 0 q| 2 ‰ ď E ψ and E " |Y ū 0 ´Y u P M 0 | 2 ı ď E P (2

Convergence and complexity analysis for sparse grid approximations

For this part, we work in the setting of Section 2.3.1.2. Our goal is to prove the theoretical upper-bound on the algorithm's complexity stated in Theorem 2.3.1.

We first state the following useful estimate.

Lemma 2.4.5 Suppose that Assumption 2.3.1 is satisfied. Let φ : R d Ñ R be a non-negative measurable function whose support is included in O and q φ be its 1periodisation defined by (2.3.16). Then, it holds

C ´1ErφpU qs ď E " q φpX tn q ı " E " φp p X tn q ı ď CErφpU qs
where U has law Upp0, 1q d q and C is given in Lemma 2.2.1.

Proof. We denote by x 1 Þ Ñ p X pt n , x 1 q the density function of X tn given by the Euler-Maruyama scheme taken at time t n and starting from X 0 with law Upp0, 1q d q at time 0. Note that we have p X pt n , x 1 q " ş p π p0, t n , x, x 1 q1 p0,1q d pxq dx and using (2.2.4),

C ´1 ż ppct n , x ´x1 q1 p0,1q d pxq dx ď p X pt n , x 1 q ď C ż ppc ´1t n , x 1 ´xq1 p0,1q d pxq dx .
Then,

E " φp p X tn q ı " E " q φpX tn q ı ě C ´1 ż q φpx 1 q ż ppct n , x ´x1 q1 p0,1q d pxq dx dx 1
so that introducing the notation Ξ " ξ `Wctn ,

ż q φpx 1 q ż ppct n , x ´x1 q1 p0,1q d pxq dx dx 1 " E " q φpΞq ı " E " φp p Ξq ı (2.4.52)
The proof is then concluded by observing that Lp p Ξq " LpU q. The proof of the upper-bound follows from similar arguments. l

Sparse grid approximation error

We now provide some upper-bound estimates for the sparse grid approximation error.

Theorem 2.4.1 Under Assumption 2.3.1, there exists a positive constant C :" CpT, b, σ, d, λ 0 q such that

E ψ ď C2 ´4 d´1 . (2.4.53)
To obtain an error of order ε 2 for the quantity E ψ one may thus set

ε " log 2 pε ´1 2 | log 2 pεq| d´1 4 q,
so that, for each n " 1, ¨¨¨, N ´1, the number of basis functions required satisfies

K ε " ε ´1 2 | log 2 pεq| 5pd´1q 4 . Proof. For 1 ď i ď d, n " 0, ¨¨¨, N ´1, setting v i pt n , xq " pσ J ∇ x uq i pt n , xq1 txPOu , x P R d , from (2.2.2) we have }u} H k mix pOq `max 1ďiďd }v i } H k mix pOq ď C. (2.4.54)
Moreover, from (2.3.20), we obtain

pσ J ∇ x uq i pt n , X tn q " v i pt n , p X tn q , thus E " |pσ J ∇ x uqpt n , X tn q ´Zu tn | 2 ‰ " d ÿ i"1 E « ˇˇv i pt n , p X tn q ´K ÿ k"1 z n,k i ψ k n p p X tn q ˇˇ2 ff ď C d ÿ i"1 E « ˇˇv i pt n , U q ´K ÿ k"1 z n,k i ψ k n pU q ˇˇ2
ff with U " Upp0, 1q d q and where we use the upper-estimate given in Lemma 2.4.5 to obtain the last inequality. We also recall that

E " |up0, X 0 q ´Y u 0 | 2 ‰ " E « |up0, U q ´K ÿ k"1 y k ψ k y pU q| 2 ff . (2
β K " C d p1 `2 d´1 q (2.4.63)
for some positive constant C d which depends on the PDE dimension d.

Proof.

Step 1: For any n P t0, . . . , N ´1u, any P t1, . . . , du, one has

E " |ω n,¨ | 4 ‰ " E » - ˜K ÿ k"1 |ω n,k | 2 ¸2fi
fl .

(2.4.64)

Using Jensen's inequality, we obtain ´l and from the definition of χ pl j ,i j q , we deduce

E " |ω n,¨ | 4 ‰ ď KE « K ÿ k"1 |ω n,k | 4 ff ď 3d 2 K K ÿ k"1 E " |ψ k n p p X tn q| 4 ı . (2
ż |χ pl j ,i j q pxq| 4 dx ď C2 l .
Combining Step 3: We now quantify the term appearing in the right-hand side of (2.4.69), namely

Q :" ÿ pl,iqPC 2 |l| 1 " 1 ` ÿ k"1 ÿ lPN d 2 |l| 1 1 tζ d plq"ku . (2.4.70)
We denote by }l} 0 " |tj|l j " 0u|. For l ‰ 0, recall that ζ d plq " |l| 1 `}l} 0 ´pd ´1q (from the definition of ζ d). Thus,

Q " 1 ` ÿ k"1 d´1 ÿ q"0 ÿ lPpN ą0 q d´q 2 |l| 1 1 t|l| 1 "k`d´1´q and }l} 0 "qu " 1 ` ÿ k"1 d´1 ÿ q"0 2 k`d´1´q C d´q´1 k`d´q´2 C q d recall that |tl P pN ą0 q d´q | |l| 1 " k`d´1´qu| " C d´q´1 k`d´q´2 . Introducing θ " d´1´q, we get Q " 1 ` ÿ k"1 d2 k `d´1 ÿ θ"1 2 1`θ C d´1´θ d ÿ k"1 2 k´1 C θ k´1`θ (2.4.71)
From Lemma 3.6 in [START_REF] Bungartz | Sparse grids[END_REF], we know that ř k"1 2 k´1 C θ k´1`θ " 2 p θ θ! `Od p θ´1 qq. We thus obtain

Q " 2 ˆ2d pd ´1q! d´1 `Od p d´2 q ẇhich combined with (2.4.69) yields K ÿ k"1 E " |ψ k n p p X tn q| 4 ı ď C d 2 d´1 . (2.4.72)
Combining the previous inequality with (2.4.65), we obtain

E " |ω n,¨ | 4 ‰ ď C d 2 2 2d´2 . (2.4.73)
Using similar arguments, as the basis function are chosen to be the same in our setting, we also have

E " |θ| 4 ‰ ď C d 2 2 2d´2 .
The proof is then concluded recalling the definition of β K in (2.2.42). l

We now turn to the analysis of the convergence and complexity of the full Picard algorithm. The following corollary is a preparatory result and expresses the main convergence results in terms of the parameters P , M , and h.

κ K h ^αK L K,M ď C ρ,γ h ˆe´γ2 ? 2 lnp2q k β K M 1´ρ `βK kM ρ ˙(2.4.76) ď C ρ,γ h ˆe´c M 1´ρ 1`2 d´1 `1 `2 d´1 M ρ ˙(2.4.77)
for some positive constant c, where we used Lemma 2.4.6 for the last inequality. l

We are now ready to establish the complexity of the full Picard algorithm.

Proof of Theorem 2.3.1

Step 1: Setting the parameters P , N , M , and ρ. We will chose the parameters P , N , M , and ρ in order to achieve a global error E P of order ε 2 , as this error controls E MSE . We first set P " 2| log δ pεq| and N ε " P T ε ´2T so that h ε " T {N ε ď ε 2 . From Theorem 2.4.1, we also know that setting

ε " log 2 pε ´1 2 | log 2 pεq| d´1 4 q, we obtain E ψ " O d pε 2 q and K ε " O d pε ´1 2 | log 2 pεq| 5pd´1q 4
q. We now set M such that the term Kε M ρ hε is of order ε 2 , which leads to

M ε " O d pε ´9 2ρ | log 2 pεq| 5pd´1q 4ρ
q .

For ι ą 1, we set ρ " 9 10ι with the constraint ρ ą 1 2 and we verify that

M 1´ρ K ε ě cε 5p1´ιq | log 2 pεq| 5 4 pd´1qp 1 ρ ´2q
for some constant c ą 0. This leads to

e ´c M 1´ρ ε 1`2 ε d´1 ε " opε 4 q
and we also have that (2.4.37) is satisfied.

Step 2: Computing the complexity C ε . Recalling Remark 2.2.4, we see that the 95 2.5. Appendix overall complexity C ε to reach the prescribed approximation accuracy ε 2 satisfies

C ε " P ε N ε K ε M ε " O d ´| log 2 pεq|ε ´2ε ´1 2 | log 2 pεq| 5pd´1q 4 ε ´5ι | log 2 pεq| 25pd´1qι 18
"

O d pε ´5 2 p1`2ιq | log 2 pεq| 1`4 5`50ι 36
pd´1q q , which concludes the proof. l 2.5 Appendix

Algorithms parameters

We gather below all the parameters values used in the various algorithms, examples and basis functions settings. In particular, we recall that the domain specification is given in (2.3.23) and (2.3.24) The learning rates are given by (2.3.25). Denoting Γpλq :" pαpλq, β 1 pλq, β 0 pλq, m 0 pλqq P R 4 , we set the parameters in all the approximating space V z n , 1 ď n ď N ´1 to be the same: namely Γpz n,¨q " Γpz 1,¨q for all n ě 2. Thus, in the table below, the parameters of the learning rates are simply denoted by: Γ :" tΓpyq, Γpz 0,¨q , Γpz 1,¨q u P R 3ˆ4 .

Algorithms

Basis

functions dim N M T Initial z n,k p Γ E MSE
Picard Algorithm Pre-wavelets 3 10 100000 0.3 0 1 (0.6, 0, 3, 15000), (0.6, 0, 20, 10000) 0.0286 2 (0.6, 0, 2, 8000), (0.6, 0, 10, 8000 0.0247 3 (0.6, 0, 1, 8000), (0.6, 0, 5, 8000 0.0219 4 (0.6, 0, 0.5, 8000), (0.6, 0, 3, 8000) 0.0207 5 (0.6, 0, 0.5, 8000), (0.6, 0, 3, 8000) 0.0201

Quadratic model

Pre-wavelets 5 2 0.5 -0.2 0 1 1

(1, 0, 0.8, 100), (0.9, 0, 1, 100), (0.84, 0.02, 0.05, 100) 2 (1, 0, 0.3, 100), (0.9, 0, 0.4, 100), (0.84, 0.01, 0.02, 100)

p ě 3
(1, 0, 0.2, 100), (0.9, 0, 0. (1, 0, 1, 300), (1, 0, 1, 300), (1, 0.6, 0.1, 300) 0 0 0 -1.5 1 ď p ď 9

(1, 0, 2, 300), (1, 0, 1, 300), (1, 0.6, 0.1, 300) (1, 0, 0.5 ˚p0.8q p´1 , 100), (1, 0, 3˚p0.8q p´1 , 100), (1, 0.1˚p0.8q p´1 , 0.1˚p0.8q p´1 , 100) 2 2 0.1 0 0 20 1 ď p ď 5

(1, 0, 0.5˚p0.8q p´1 , 100),

(1, 0, 5˚p0.8q p´1 , 100), (1, 0.2˚p0.8q p´1 , 0.5˚p0.8q p´1 , 100) 5 2 0.4 -2 0 40 1 ď p ď 5

(1, 0, 0.5˚p0.8q p´1 , 300), (0.95, 0, 5˚p0.8q p´1 , 500), (1, 0.2˚p0.8q p´1 , 0.1˚p0.8q p´1 , 500) 8 2.2 0.6 1 0.08 60 1 ď p ď 5

(1, 0, 0.35˚p0.8q p´1 , 500),

(1, 0, 5˚p0.8q p´1 , 500), (1, 0.2˚p0.8q p´1 , p0.8q p´1 , 500) 10 2.5 0.1 -1 -0.1 100 1 (1, 0, 0.25, 500), (0.95, 0, 4, 500), (1, 0.15, 0.5, 500) 2 (1, 0, 0.2, 500), (0.95, 0, 3, 500), (1, 0.12, 0.4, 500) 3 (1, 0, 0.15, 500), (0.95, 0, 2, 500), (1, 0.1, 0.3, 500)

p ě 4
(1, 0, 0.1, 500), (0.95, 0, 1, 500), (1, 0.08, 0.25, 500) p ě 6

(1, 0, 0.05, 500), (0.95, 0, 0.5, 500), (1, 0.05, 0.2, 500)

Introduction

In this chapter, we consider the forward diffusion process with dynamics

X t " X 0 `ż t 0 µpX s q ds `ż t 0 σpX s q dW s , 0 ď t ď T, (3.1.1)
and we would like to approximate the solution of the BSDEs

Y t " gpX T q `ż T t f pX s , Y s , Z s q ds ´ż T t Z s ¨dW s , 0 ď t ď T , (3.1.2)
where W is a d-dimensional Brownian motion defined on a complete probability space pΩ, A, Pq, µ : R d Ñ R d and σ : R d Ñ M d (the set of d ˆd matrices) are measurable functions, the initial condition X 0 P R d . We denote the filtration generated by W and X 0 as pF t q 0ďtďT , augmented with P null sets.

Relying on the classical connection between Backward Stochastic Differential Equations (BSDEs) and non-linear parabolic partial differential equations (PDEs) initiated in [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF], we have, under some regularity assumptions on µ, σ: Y t " upt, X t q, Z t " σ J pX t q∇ x upt, X t q, 0 ď t ď T, (

where u : r0, T s ˆRd Þ ÝÑ R is the solution to a semi-linear PDE: Since BSDEs have been introduced by Pardoux and Peng [START_REF] Pardoux | Adapted solution of a backward stochastic differential equation[END_REF][START_REF] Pardoux | Backward stochastic differential equations and quasilinear parabolic partial differential equations[END_REF] in 1990s, designing efficient numerical algorithms to solve BSDEs has attracted considerable attention. However, solving high-dimensional BSDEs is a challenging task due to the "curse of dimensionality". Many traditional methods to solve BSDEs have been proposed in the last two decades, such as the cubature methods [START_REF] Chassagneux | Cubature method to solve bsdes: Error expansion and complexity control[END_REF][START_REF] Crisan | Solving backward stochastic differential equations using the cubature method: application to nonlinear pricing[END_REF][START_REF] Crisan | Second order discretization of backward sdes and simulation with the cubature method[END_REF], optimal quantization methods [6, 5, 80, 77], Malliavin calculus based methods [START_REF] Crisan | On the monte carlo simulation of bsdes: An improvement on the malliavin weights[END_REF][START_REF] Bouchard | Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations[END_REF][START_REF] Hu | Malliavin calculus for backward stochastic differential equations and application to numerical solutions[END_REF] and some linear regression methods [START_REF] Gobet | A regression-based monte carlo method to solve backward stochastic differential equations[END_REF][START_REF] Gobet | Stratified regression monte-carlo scheme for semilinear pdes and bsdes with large scale parallelization on gpus[END_REF][START_REF] Gobet | Approximation of backward stochastic differential equations using malliavin weights and least-squares regression[END_REF]. However, these methods are bounded by a low dimensional setting d ď 10. [START_REF] Chassagneux | A learning scheme by sparse grids and picard approximations for semilinear parabolic pdes[END_REF] proposed a learning scheme based on sparse grids and Picard approximations proved that the"curse of dimensionality" is tamed in the sense that the complexity is of order ε ´p| logpεq| qpdq , where p is a constant which does not depend on d and d Þ Ñ qpdq is an affine function. In some case, 100 dimensional BSDEs can be solved.

" B t upt
In the past five years, numerous numerical methods based on deep learning method (non-linear regression) to solve BSDEs have been proposed, including the forward scheme [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF][START_REF] Beck | Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations[END_REF][START_REF] Han | Convergence of the deep bsde method for coupled fbsdes[END_REF] and the backward scheme [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF][START_REF] Germain | Deep backward multistep schemes for nonlinear pdes and approximation error analysis[END_REF][START_REF] Pham | Neural networks-based backward scheme for fully nonlinear pdes[END_REF][START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF], see more related research results from the papers [START_REF] Mikael | Machine learning for semi linear pdes[END_REF][START_REF] Jiang | Convergence of the deep bsde method for fbsdes with non-lipschitz coefficients[END_REF][START_REF] Kapllani | Deep learning algorithms for solving high dimensional nonlinear backward stochastic differential equations[END_REF][START_REF] Takahashi | A new efficient approximation scheme for solving high-dimensional semilinear pdes: control variate method for deep bsde solver[END_REF][START_REF] Chassagneux | Numerical approximation of singular forward-backward sdes[END_REF]. These algorithms are based on the use of Euler schemes for the time-discretization. It is well known that the weak convergence rate of Euler scheme is of order 1, so that the computational time cost for these algorithms is still large for high-dimensional BSDEs as many time steps might be required to achieve good accuracy. In this chapter, we combine some high-order time discretization numerical schemes with non-linear regression based on deep neural network to solve high-dimensional BSDEs.

High-order discrete-time approximation schemes have been introduced in [START_REF] Chassagneux | Linear multistep schemes for bsdes[END_REF][START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF], see also the references therein. These high-order schemes are based on a backward algorithm and, as usual, they require a good estimation of conditional espectation in practice. In particular, the Crank-Nicolson scheme is a second-order scheme with a simple structure, see among others [START_REF] Crisan | Second order discretization of backward sdes and simulation with the cubature method[END_REF]. Though it is implicit, it requires no extra computation of conditional expectation compared to Euler scheme. More generally, Runge-Kutta methods [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF] are a family of implicit and explicit discretization methods, which include implicit Euler scheme, explicit Euler scheme, Crank-Nicolson scheme and some other iterative methods that can achieve higher order convergence rates. To the best of our knowledge, these high order schemes have not been tested with (non-linear) regression techniques.

In this chapter, we establish the convergence of these algorithms with the help of universal approximation theorem of neural network, see Theorem 3.3.2. We also implement these schemes to compare the convergence rates and the computational time cost. We conclude that Crank-Nicolson scheme seems to be the best scheme to use if we want to achieve an error smaller than 0.01.

The rest of the chapter is organized as follows. We first recall the definition of Runge-Kutta schemes for BSDEs in Section 3.2, then we study the stability of Runge-Kutta schemes in two different ways. Theorem 3.2.1 gives the discrete time errors for the main methods that will be studied in this chapter. In Section 3.3, we present an implementation of the Runge-Kutta schemes to solve BSDEs by neural networks, including the special case of implicit Euler schemes [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF], explicit Euler scheme, Crank-Nicolson scheme, two stage explicit Runge-Kutta scheme. We provide the error control of the general learning method by Runge-Kutta scheme and neural network in the end of this section, see Theorem 3.3.2. In Section 3.4, we numerically verify the convergence order of the discrete time error of the methods given in Theorem 3.2.1. We also compare the computational time cost of these methods.

In the whole chapter, we assume that the driver f and terminal function g satisfy the Lipschitz condition: Some notations and basic definitions about the neural networks that will be used M mˆn pRq : the matrix space for all m ˆn matrices with elements in R, d 0 " d : input dimension, d 1 : output dimension, L `1 P Nzt0, 1, 2u : number of layers of the network, m , " 0, 1, ¨¨¨, L : number of neurons on each layer, note m 0 " d 0 , m L " d 1 , H i , " 1, ¨¨¨, L ´1 : output of the hidden layers at time t n , 0 ď n ď N ´1.

For Euler scheme, the output dimension d 1 :" 1 `d which includes 1 component for Y ´part and d components for Z´part. However, we choose d 1 :" 1 `2d for the networks of more general schemes as Crank-Nicolson scheme: The components consist 1, d, d dimensions for Y, Z, A, respectively, where A is a d´dimensional variable that will be introduced later, see Section 3.3.2. For the L ´1 hidden layers in this neural network, we choose for simplicity the same number of neurons m " m, " 1, ¨¨¨, L ´1.

For " 1, ¨¨¨, L, we define the maps M : R m ´1 Þ ÝÑ R m as:

M pxq " W x `β , (3.1.9)
where W P M m ˆm ´1 pRq is a matrix called weight, and β P R m is a vector called bias. Then M is an affine transformation that can map the features of the p ´1q-th layer to the -th layer. A feedforward neural network is a function from R d 0 to R d 1 defined as the composition

x P R d 0 Þ ÝÑ M L ˝ρL´1 ˝ML´1 ˝¨¨¨˝ρ 1 ˝M1 pxq P R d 1 , (3.1.10)
where ρ pxq " pρpx 1 q, ¨¨¨, ρpx m qq, x P R m , " 1, ¨¨¨, L ´1, here ρ : R Þ ÝÑ R is an activation function which is also a nonlinear function, such as ReLu, Elu, tanh, sigmoid. Then the parameters of the neural network consist of the weight matrices pW q 1ď ďL , the bias vector pβ q 1ď ďL . For fixed d 0 , d 1 and L, the total number of parameters is

N m :" L ÿ "1
m pm ´1 `1q " d 0 p1 `mq `mpm `1qpL ´2q `mp1 `d1 q, so that the parameters can be identified with an element θ P R Nm . Defining

R d 0 Q x Þ ÝÑ N m px; θq " M L ˝ρL´1 ˝ML´1 ˝¨¨¨˝ρ 1 ˝M1 pxq P R d 1 , (3.1.11)
we introduce

S ρ d 0 ,d 1 ,L,m pR Nm q :" N m p¨; θq P R d 1 | θ P R Nm ((3.1.12)
and

S ρ d 0 ,d 1 ,L :" ď mPN `S ρ d 0 ,d 1 ,L,m pR Nm q. (3.1.13)
The fundamental result of Hornik et al. [START_REF] Hornik | Multilayer feedforward networks are universal approximators[END_REF] states the following universal approximation theorem to justify that the neural networks can be applied as function approximators:

Theorem 3.1.1 (Universal approximation theorem) S ρ d 0 ,d 1 ,L is dense in L 2 pυq for any finite measure υ on R d , whenever ρ is continuous and non-constant.

Runge-Kutta schemes for BSDEs

We consider in our work a class of Runge-Kutta schemes, that have been introduced in [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF]. The main difference with the previous work is that we also consider an approximation of the forward process.

Definitions

We consider an equidistant grid π :" tt 0 " 0 ă ¨¨¨ă t n ă ¨¨¨ă t N " T u of the time interval r0, T s with time step h :" T N , t n " nh, n " 0, ¨¨¨, N . And we denote ∆W n " W t n`1 ´∆W tn , 0 ď n ď N ´1.

The Runge-Kutta schemes involve in full generality intermediate steps of computation between two dates of the main grid π. Thus, for a positive integer Q let c " pc 1 , . . . , c Q`1 q P r0, 1s Q`1 satisfying 0 ":

c 1 ă c 2 ď . . . ď c q ď ¨¨¨ď c Q ď c Q`1 :" 1.
We introduce the intermediate "instances" t n,q :" t n`1 ´cq h. With these notations, we observe that t n " t n,Q`1 ď . . . ď t n,q ď . . . ď t n,1 " t n`1 . We denote the "full grid" Π :" tt n,q P r0, T s | 0 ď n ď N, 1 ď q ď Qu.

First, we are given an approximation of the forward component (3.1.1) on the grid Π. Namely, for t n,q P Π, X tn,q is approximated by X n,q P L 2 pF tn,q q, 0 ď n ď N and 1 ď q ď Q. For ease of notation, we will simply denote by pX n q 0ďnďN the approximation of X on the grid π. Observe that X n,Q`1 " X n and X n,1 " X n`1 . In the following, we assume that X is a Markov process on Π. In this chapter, R n,1 " R n`1 " R n`1,Q`1 , 0 ď n ď N ´1 represent the same random variables.

We now define pY, Zq the approximation of pY, Zq, recall (3.1.2).

Definition 3.2.1 i) Set the terminal condition as

pY N , Z N q " pgpX N q, σpX N q J ∇gpX N qq.

ii) For 0 ď n ď N ´1 and Q ě 1, the transition from pY n`1 , Z n`1 q to pY n , Z n q involves Q stages. At the intermediate instances, for

1 ă q ď Q `1, let Y n,q " E tn,q « Y n`1 `h q ÿ k"1 a qk f pX n,k , Y n,k , Z n,k q ff , (3.2.1) Z n,q " E tn,q « H n q Y n`1 `h q´1 ÿ k"1 α qk H n q,k f pX n,k , Y n,k , Z n,k q ff , (3.2.2)
where pa qk q 1ďq,kďQ`1 , pα qk q 1ďq,kďQ`1 take their values in R and with a 1k " α 1k " 0, 1 ď k ď Q, a qk " α qk " 0, 1 ď q ă k ď Q `1 and

q ÿ k"1 a qk " q´1 ÿ k"1 α qk 1 tc k ăcqu " c q , q ď Q `1. (3.2.3)
We set pY n , Z n q " pY n,Q`1 , Y n,Q`1 q at the dates on π. For all 1 ď k ă q ď Q `1, n ď N , the random variables H n q , H n q,k are F t n`1 ´measurable, independent of F tn,q and F t n,k respectively with the property

E tn,q " H n q ‰ " E t n,k " H n q,k
‰ " 0 and υ n q :" E tn,q

" |H n q | 2 ‰ , υ n q,k :" E t n,k " |H n q,k | 2 ‰ , (3.2.4) λ h ď minpυ n q , υ n q,k q and maxpυ n q , υ n q,k q ď Λ h , (3.2.5)
where λ, Λ are positive constants which do not depend on h.

We note that (3.2.1) may define Y n,q implicitly but this definition is well-posed for h small enough (e.g. as soon as max 1ăqăQ`1 a qq hL ă 1). Iteratively, one also obtains that max

n,q E " |Y n,q | 2 `|Z n,q | 2 ‰ ă `8 . (3.2.6)

Stability of Runge-Kutta scheme

A key property to obtain the convergence results stated in Theorem 3.2.1 is -classically -the L 2 -stability of the schemes of Definition 3.2.1. This has already been observed in [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF]. We shall review here this property as it will be useful in the sequel.

The first observation is the fact that the schemes given in Definition 3.2.1 can be written in the following implicit form, for n ă N :

Y n " E tn " Y n`1 `ΦY n pY n`1 , Z n`1 , hq ‰ (3.2.7) Z n " E tn " H n Q`1 Y n`1 `ΦZ n pY n`1 , Z n`1 , hq ‰ (3.2.8)
where pΦ Y n , Φ Z n q : Ω ˆL2 pF t n`1 q ˆL2 pF t n`1 q ˆR`Ñ L 2 pF t n`1 q. This writing really stresses the fact that the schemes are one-step scheme. One introduces a perturbed version of the scheme, namely,

Yn " E tn " Yn`1 `ΦY n p Yn`1 , Žn`1 , hq ı `ζ Y n (3.2.9) Žn " E tn " H n Q`1 Žn`1 `ΦZ n p Yn`1 , Žn`1 , hq ı `ζ Z n (3.2.10)
for p ζY n , ζZ n q P L 2 pF tn q ˆL2 pF tn q, and obtains, see Theorem 1.2(i) in [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF], the following stability result, setting δY n :" Yn ´Yn , δZ n :" Žn ´Zn ,

max năN E " |δY n | 2 ‰ `N´1 ÿ n"0 hE " |δZ n | 2 ‰ ď CE « |δY N | 2 `h|δZ N | 2 `N´1 ÿ n"0 | ζY n | 2 h `h| ζZ n | 2 ff . (3.2.11)
This approach is particularly well-suited for the study of the discrete time error, see the proof of Theorem 3.2.1 in Section 3.2.3 below. However, we need also a stability result to control the error linked to the estimation of the conditional expectations at each stage of the schemes. To this end, we now introduce another perturbed scheme, for n ă N , at the intermediate instances, for 1 ă q ď Q `1, let Ỹn,q " E tn,q

« Ỹn`1 `h q ÿ k"1 a qk f pX n,k , Ỹn,k , Zn,k q ff `ζy n,q , (3.2.12) Zn,q " E tn,q « H n q Ỹn`1 `h q´1 ÿ k"1 α qk H n q,k f pX n,k , Ỹn,k , Zn,k q ff `ζz n,q , (3.2.13)
with pζ y n,q , ζ z n,q q P L 2 pF tn,q q. Associated to the above perturbed version, we can state the following stability result. Proposition 3.2.1 Assume that f is Lipschitz continuous. Then, setting δY n :" Ỹn ´Yn , δZ n :" Zn ´Zn , the following holds

max năN E " |δY n | 2 ‰ `N´1 ÿ n"0 hE " |δZ n | 2 ‰ ď CE « |δY N | 2 `h|δZ N | 2 `N´1 ÿ n"0 Q`1 ÿ q"2 ˆ|ζ y n,q | 2 h `h|ζ z n,q | 2 ˙ff . (3.2.14)
Proof. See the proof in Section 3.5.1. l

Discrete time error

In [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF], the discrete-time error has been studied when X " X , namely there is no error in the approximation of the underlying process. Building on the results in [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF], we will give an upper bound of the discrete-time error when the forward process is indeed approximated. We will focus here on one stage schemes both implicit and explicit and two and three stage explicit scheme: See Remark 3.2.1 for an explanation of this limitation. The control of the discrete-time error is based on smoothness assumptions satisfied by the value function u solution to (3.1.4). We now introduce the necessary notations to formalise this statement. Let

M :" tHu Y 8 ď m"1 t0, . . . , du m ,
the set of multi-indices with entry 0, . . . , d. We define the differential operators as

L p0q " B t `d ÿ i"1 µ i B x i `1 2 d ÿ i"1 d ÿ j"1 pσσ J q ij B 2 x i ,x j , (3.2.15) L p q " d ÿ k"1 σ k B x k , P t1, . . . , du, (3.2.16)
and their iteration, namely, for α P M, L α :" L pα 1 q ˝¨¨¨˝L pαpq , for a multi-index α with length lpαq :" p. By convention, L H is the identity operator, and denote α " p0, ¨¨¨, 0q " p0q p with lpαq " p. We denote by ˚the concatenation of two multi-indices namely α ˚β " pα 1 , . . . , α p , β 1 , . . . , β q q with p " lpαq and q " lpβq.

We denote by G l b the set of all functions v : r0, T s ˆRd Þ ÝÑ R for which L α v is well defined, continuous and bounded for all muti-index α P tpα 1 , ¨¨¨, α p q|1 ď p ď lu.

In particular, we shall use the following assumption, for p " 1, 2, 3: pHrq p : the value function u P G p`1 b and f P C p b . The key to control the discrete-time error by a judicious choice of the scheme coefficients is to be able to expand the value function u along the approximation scheme X. To this end, we introduce the following assumption for M ě 1: pHXq M : the process X satisfies, for all v

P G M `1 b , 0 ď n ď N , 1 ď q ď Q, k ď q, 1 ď ď d, denote v α " L α v, E tn,q rvpt n,k , X n,k qs " M ÿ m"0 v p0qm pt n,q , X n,q q ptc q ´ck uhq m m! `Otn,q ph M `1q, (3.2.17)
E tn,q " pH n q q vpt n`1 , X n`1 q ı " M ´1 ÿ m"0 v p q˚p0qm pt n,q , X n,q q pc q hq m m! `Otn,q ph M `1q, (3.2.18)
E tn,q " pH n q,k q vpt n`1 , X n`1 q ı " M ´1 ÿ m"0 v p q˚p0qm pt n,q , X n,q q ptc q ´ck uhq m m! `Otn,q ph M `1q, Regarding the discrete-time error, our main result reads as follows. Define p Ȳn , Zn q " pupt n , X n q, σ J ∇ x upt n , X n qq, (3.2.20)

and the global discrete time error as

T N " max năN E " | Ȳn ´Yn | 2 ‰ `h N ´1 ÿ n"0 E " | Zn ´Zn | 2 ‰ . (3

.2.21)

As usual, we say that the scheme is of order a P r0, 8q if T N " Oph 2a q. Proof. 1. We give a short proof of the discrete time error upper bound for these most interesting schemes, as it is closed to the one given in [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF]. Recall the definition of p Ȳn , Zn q 0ďnďN in (3.2.20). We observe that it can be written also as

Ȳn " E tn " Ȳn`1 `ΦY n p Ȳn`1 , Zn`1 , hq ‰ `ζ Y n , Zn " E tn " H n Q`1 Ȳn`1 `ΦZ n p Ȳn`1 , Zn`1 , hq ‰ `ζ Z n .
Now, thanks to assumption pHXq M with M " 1, 2, 3, one can follow the computations made in Theorem 1.3 for statement (i)-(ii), Theorem 1.5 for statement (iii) or Theorem 1.6 for statement (iv) in [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF] to obtain the corresponding upper bounds for the error linked to the perturbation, namely

E « | ζY n | 2 h `h| ζZ n | 2 ff " Oph 2a`1 q,
for a " 1, 2 or 3. The proof is then concluded using (3.2.11).

Remark 3.2.1 (i) See [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF], contrary to the ODE case, since the scheme we considered are always explicit for Z-part, there exists an order barrier for implicit scheme to get an order Q`1 scheme with a Q´stage scheme when Q ą 1 as long as B z f ‰ 0. Hence, we only consider the explicit scheme when Q ą 1 as the implicit scheme has no advantage compared to the explicit scheme for general drivers f . (ii) For the explicit Runge-Kutta scheme, we can choose the coefficients such that α qk " a qk , @1 ď k ă q ď Q `1.

(iii) When Q " 3, the algorithm converges too fast to lead to the discretization error smaller than the variance even the time steps N is very small, we can not observe the order of the algorithm. Hence, we don't consider the case with Q ą 3. In fact, there is an order barrier when Q ą 3 that is also why we do not study Q ě 4, see also [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF].

A learning method for Runge-Kutta schemes

In this section, we present an implementation of the Runge-Kutta schemes given in Definition 3.2.1, which is particularly well suited for non-linear regression. It extends the method proposed in [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF] to more efficient schemes, in term of discrete-time error. We start then by recalling one approach developed in [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF] for the implicit Euler scheme (the DBDP1 scheme). We then present the case of the Crank-Nicolson scheme which reveals the necessary extension to consider. We present then the method for two stage and three stage explicit scheme that will be illustrated numerically in Section 3.4. We conclude this section by discussing general Runge-Kutta schemes and proving some error control.

Euler scheme

We first recall the implementation of the implicit Euler scheme in [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF] using deep neural networks. Our aim is to obtain a similar implementation for general Runge-Kutta scheme. In this section only, we assume that pX n q nďN is given by the classical Euler scheme on π:

X n`1 " X n `µpX n qh `σpX n q∆W n , n ď N ´1 , (3.3.1)
with ∆W n :" W t n`1 ´Wtn and X 0 " X 0 . The implicit Euler scheme of BSDEs [START_REF] Zhang | A numerical scheme for bsdes[END_REF][START_REF] Bouchard | Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations[END_REF] reads classically as follows, for 0 ď n ă N ,

Y n " E tn rY n`1 `hf pX n , Y n , Z n qqs and Z n " E tn " ∆W n h Y n`1  , (3.3.2)
where we set H n "

Wt n`1 ´Wtn h

. Though implicit in the Y -component, the scheme is well-posed for h small enough as f is Lipschitz continuous. Numerous methods have been considered to compute the scheme in practice [START_REF] Chassagneux | Numerical stability analysis of the euler scheme for bsdes[END_REF][START_REF] Chassagneux | Cubature method to solve bsdes: Error expansion and complexity control[END_REF][START_REF] Bouchard | Discrete-time approximation of bsdes and probabilistic schemes for fully nonlinear pdes[END_REF][START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF][START_REF] Chassagneux | Linear multistep schemes for bsdes[END_REF][START_REF] Crisan | On the monte carlo simulation of bsdes: An improvement on the malliavin weights[END_REF]. However, in the numerical section of this work, we rely on the high representative power of Deep Neural Network (recall the Universal Representation Theorem 3.1.1). Using this class of functions, a first approach could be, for parameters pθ, ϑq, associated mappings x Þ Ñ Upx, θq, x Þ Ñ Vpx, ϑq, given pUpX N , θ ‹ N q, VpX N , ϑ ‹ N qq " pgpX N q, σ J pX N qB x gpX N qq, to find the parameters by solving the following optimisation problems: for 0 ď n ď N ´1,

ϑ ‹ n " argmin ϑ E « ˇˇˇ∆ W n h UpX n`1 , θ ‹ n`1 q ´VpX n , ϑq ˇˇˇ2 ff , (3.3.3)
and then

θ ‹ n " argmin θ E " ˇˇUpX n`1 , θ ‹ n`1 q ´tUpX n , θq ´hf pUpX n , θq, VpX n , ϑ ‹ n qqu ˇˇ2 ı . (3.3.4)
However, a better empirical approach, introduced in [65] is to optimise in "one go" θ and ϑ at each step, namely

pθ ‹ n , ϑ ‹ n q " argmin θ,ϑ E "ˇˇˇU pX n`1 , θ ‹ n`1 q (3.3.5) ´tUpX n , θq ´hf pUpX n , θq, VpX n , ϑ ‹ n qq `VpX n , ϑ ‹ n q∆W n u ˇˇ2  ,
The previous procedure is named DBDP1 in [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF]. One observes that it is possible to use only one network in the above optimization. This will also save half of the computational time cost.

The above scheme is jutified by the following observation.

Lemma 3.3.1 Under our standing assumptions,

pY n , Z n q " argmin y,zPL 2 pFt n q E " |Y n`1 ´py ´hf pX n , y, zq `z∆W n q| 2 ‰ .

(3.3.6)

Proof. We first observe that

Y n`1 " Y n ´hf pX n , Y n , Z n q `Zn ∆W n ´∆M n , (3.3.7)
where

E tn r∆M n s " E tn r∆M n ∆W n s " 0, E tn " |∆M n | 2 ‰ ă 8. , so that E " |Y n`1 ´py ´hf pX n , y, zq `z∆W n q| 2 ‰ " E " |Y n ´hf pX n , Y n , Z n q ´ty ´hf pX n , y, zqu `pZ n ´zq∆W n ´∆M n | 2 ‰ " E " |Y n ´hf pX n , Y n , Z n q ´ty ´hf pX n , y, zqu| 2 ‰ `hE " |Z n ´z| 2 ‰ `E" |∆M n | 2 ‰ .
Obviously, pY n , Z n q does achieve the minimum of the right side of the above equation. Reciprocally, any optimal solution py ‹ , z ‹ q must satisfy z ‹ " Z n from the second term of the right side in the above equality. Moreover, necessarily one has

y ‹ " E tn rY n ´hf pX n , Y n , Z n q `hf pX n , y ‹ , Z n qs " E tn rY n`1 `hf pX n , y ‹ , Z n qs .
By uniqueness of the scheme definition, we conclude y ‹ " Y n . l

Crank-Nicolson scheme

We now turn to the study of the Crank-Nicolson scheme for BSDEs. It is a one stage scheme which belongs to the class given in Definition 3.2.1. It has been introduced in [START_REF] Crisan | Second order discretization of backward sdes and simulation with the cubature method[END_REF], where it is implemented using cubature methods and tree based branching algorithm(TBBA). Other θ-scheme entering into this class will not be considered here as there are suboptimal in terms of discrete-time error bound. The scheme reads as follows. For the Y ´part, it is the usual Crank-Nicolson scheme, namely

" Y N " gpX N q, Y n " E tn " Y n`1 `h 2 pf pX n , Y n , Z n q `f pX n`1 , Y n`1 , Z n`1 qq ‰ , 0 ď n ď N ´1, (3.3.13)
and for Z´part,

" Z N " σ J ∇ x gpX N q, Z n " E tn rH n pY n`1 `hf pX n`1 , Y n`1 , Z n`1 qqs , (3.3.14)
where

H n P R d is a F t n`1 -mesurable random variable, satisfying (3.2.4)-(3.2.5).
In order to suggest an implementation using non-linear regression mimicking (3.3.6) or (3.3.11) for the Euler scheme, we first make the following observation.

Lemma 3.3.3 For 0 ď n ď N ´1, set A n :" ´1 2 E tn rf pX n`1 , Y n`1 , Z n`1 qhH n s.
Then, pY n , Z n , A n q is the unique solution to the following optimisation problem min y,z,aPL 2 pFt n q L n py, z, aq :"

E «ˇˇˇˇˇY n`1 ´#y ´h 2 pf pX n , y, zq `f pX n`1 , Y n`1 , Z n`1 qq `pz `aq H n υ n +ˇˇˇˇˇ2 fi fl `C0 hE « ˇˇˇ1 2 hH n f pX n`1 , Y n`1 , Z n`1 q `aˇˇˇˇ2 ff , (3.3.15)
where C 0 ą 0 is a constant and

υ n " E tn " |H n | 2 ‰ .
Proof. We first observe that

Y n`1 " Y n ´h 2 tf pX n , Y n , Z n q `f pX n`1 , Y n`1 , Z n`1 qu `pZ n `An q H n υ n ´∆M n , (3
n " E « |∆M n | 2 `C0 h ˇˇˇ1 2 hf pX n`1 , Y n`1 , Z n`1 qH n `An ˇˇˇ2 ff . (3.3.20)
We then observe that Ln 3 pA n q " 0, Ln 2 pA n , Z n q " 0 and Ln 1 pY n , Z n q " 0, so that pY n , Z n , A n q does achieve the minimum of L n . Reciprocally, any optimal solution py ‹ , z ‹ , a ‹ q must satisfy Ln 3 pa ‹ q " 0, Ln 2 pa ‹ , z ‹ q " 0, which implies a ‹ " A n , z ‹ " Z n . Moreover, necessarily one has Ln 1 py ‹ , Z n q " 0, then using (3.3.13), we find

y ‹ " E tn " Y n`1 `h 2 pf pX n , y ‹ , Z n q `f pX n`1 , Y n`1 , Z n`1 qq  .
By uniqueness of the scheme definition, we conclude y ‹ " Y n . l

The previous result indicates how to adapt (3.3.5) for the Crank-Nicolson scheme. The implemented scheme will be given by iterations of the following optimisation problems.

Let pϕ, ψq P CpR d , Rq ˆCpR d , R d q, we introduce the loss function at step n ă N :

L CN n rϕ, ψspθq :" E "ˇˇˇϕ pX n`1 q ´ UpX n ; θq ´h 2 f pX n`1 , ϕpX n`1 q, ψpX n`1 qq (3.3.21) ´h 2 f pX n , UpX n ; θq, VpX n ; θqq `pVpX n ; θq `ApX n ; θqq H n υ n (ˇˇ2 `C0 h ˇˇh 2 f pX n`1 , ϕpX n`1 q, ψpX n`1 qqH n `ApX n ; θq ˇˇ2 ı ,
with pU, V, Aq :" N m P S ρ d 0 ,d 1 ,L,m pR Nm q, recall (3.1.11)-(3.1.12). We now define the scheme which is implemented in practice. Each optimisation is done using SGD algorithm, see Section 3.4 for details.

Definition 3.3.3 (Implemented Crank-Nicolson scheme)

The numerical solution is computed using the following step:

• For n " N , initialize ÛN " g, VN " σ J ∇ X g, ÂN " 0.

• For n " N ´1, ¨¨¨, 1, 0, given Ûn`1 , Vn`1 , -Compute a minimizer of the loss function: However, in practical implementation, we restrict the domain to a compact subset of R Nm , so that the minimization problems are always well-posed. This remark also applies to the explicit Runge-Kutta schemes in the following section.

θ ‹ n P argmin θ L CN n r Ûn`1 , Vn`1 spθq, (3.3
ii) Lemma 3.3.5 below shows that the minimal possible loss L CN n rϕ, ψs is controlled in Oph 2 q under some good conditions. This minimum loss has no influence on the study of the weak error we perform here. However, it has an impact when doing the Monte Carlo simulation.

iii) The value of the C 0 , that we called the balance number C 0 , recall (Proof. Observe that ϕpX n`1 q " ϕpX n `µpX n qh `σpX n q∆W n q " ϕpX n q `Bx ϕpX n qpµpX n qh `σpX n q∆W n q `Op|µpX n qh `σpX n q∆W n | 2 q.

Recalling (3.3.32), we deduce

ϕpX n q `Bx ϕpX n qpµpX n qh `σpX n q∆W n q `Op|µpX n qh `σpX n q∆W n | 2 q " Y pϕ,ψq n h 2 f pX n`1 , Y pϕ,ψq n`1 , Z pϕ,ψq n`1 q ´h 2 f pX n , Y pϕ,ψq n , Z pϕ,ψq n q `´Z pϕ,ψq n `Apϕ,ψq n ¯∆W n `∆M pϕ,ψq n .
Reorganizing the above equality, we get

ˆBx ϕpX n qµpX n q `1 2 f pX n`1 , Y pϕ,ψq n`1 , Z pϕ,ψq n`1 q ˙h `Op|µpX n qh `σpX n q∆W n | 2 q " Y pϕ,ψq n ´ϕpX n q ´h 2 f pX n , Y pϕ,ψq n , Z pϕ,ψq n q `´Z pϕ,ψq n `Apϕ,ψq n ´Bx ϕpX n qσpX n q ¯∆W n `∆M pϕ,ψq n .
Squaring the previous estimate, taking expectation and recalling the orthogonality property of p1, ∆W n , ∆M pϕ,ψq n q, one gets

E " |∆M pϕ,ψq n | 2 ı ď C ϕ pE " |∆W n | 4 ‰ `h2 q ď C ϕ h 2 .
One also computes that E

" | 1 2 f pX n`1 , Y
max nďN E " |Y n ´Û n pX n q| 2 ı `h N ÿ n"0 E " |Z n ´V n pX n q| 2 ı ď CN N ´1 ÿ n"0
Ēn , (3.3.43) where Ēn :" E n p Ûn`1 , Vn`1 q, recall (3.3.28). Ȳn

Proof

" Y p Ûn`1 , Vn`1 q n , Zn " Z p Ûn`1 , Vn`1 q n , Ān " A p Ûn`1 , Vn`1 q n . (3.3.44)
We first observe that p Ûn , Vn q :" pU n pX n q, V n pX n qq can be rewritten as a perturbed scheme, namely

Ûn Indeed, with our notations, we have p Ûn`1 , Vn`1 q " pY Ûn`1 , Vn`1

" E tn " Ûn`1 `h 2 ´f pX n`1 , Ûn`1 , Vn`1 q `f pX n , Ûn , Vn q ¯ `ζy n , (3
n`1 , Z Ûn`1 , Vn`1 n`1
q. Moreover, since Ûn " Ûn pX n q " U n pX n , θ ‹ n q, recall Definition 3.3.3, we have

E " 1 h |ζ y n | 2 `h|ζ z n | 2  ď CE " 1 h |U n pX n , θ ‹ n q ´Ȳ n | 2 `h|V n pX n , θ ‹ n q ´Z n | 2  ď CN E n p Ûn`1 , Vn`1 q,
where for the last inequality we applied Lemma 3.3.4. Now the proof is concluded using the stability result given in Proposition 3.2.1. l

We conclude this section with a global control on the error between the true solution of the BSDEs and the scheme introduced in Definition 3.3.3. Theorem 3.3.1 Let p Ȳn , Zn q :" pupt n , X n q, σ J ∇ x upt n , X n qq, for n ď N . Then, the following holds

max n E " | Ȳn ´Û n pX n q| 2 ı `N´1 ÿ n"0 hE " | Zn ´V n pX n q| 2 ı ď Cph 4 `N N ´1 ÿ n"0 Ēn q .
Proof. First, one observes that

max n E " | Ȳn ´Û n pX n q| 2 ı `N´1 ÿ n"0 hE " | Zn ´V n pX n q| 2 ı ď 2 ˜max n E " | Ȳn ´Yn | 2 ‰ `N´1 ÿ n"0 hE " | Zn ´Zn | 2 ‰ 2 ˜max n E " |Y n ´Û n pX n q| 2 ı `N´1 ÿ n"0 hE " |Z n ´V n pX n q| 2 ı
Ţhe first two terms in the right hand side of the previous inequality is the discretetime error, whose upper bound follows from Theorem 3.2.1(ii). The second term is upper bounded using Proposition 3.3.1. l

Two stage explicit Runge-Kutta scheme

We now present the numerical procedure to compute two stage Runge-Kutta scheme.

It is essentially based on an iteration of what has been done for the Crank-Nicolson scheme. Some simplifications occur for the first stage, as this is an explicit Euler step: indeed, there is no need to introduce the correction term A. Recalling Theorem 3.2.1(iii), one can choose the coefficients such that

a 21 " α 21 " c 2 , a 31 " α 31 " 1 ´1 2c 2 , a 32 " α 32 " 1 2c 2 ,
to obtain the optimal bound on the discrete time error. The scheme reads thus as follows

Y n,2 " E t n,2 rY n`1 `c2 hf pX n`1 , Y n`1 , Z n`1 qs , (3.3.48) Z n,2 " E t n,2 " H n 2 Y n`1 `Hn 2,1 c 2 hf pX n`1 , Y n`1 , Z n`1 qq ‰ , (3.3.49)
and

Y n " E t i " Y n`1 `p1 ´1 2c 2 qhf pX n`1 , Y n`1 , Z n`1 q `1 2c 2 hf pX n,2 , Y n,2 , Z n,2 q  , (3.3.50) Z n " E t i " H n 3 Y n`1 `p1 ´1 2c 2 qhH n 3 f pX n`1 , Y n`1 , Z n`1 q `1 2c 2 hH n 3,2 f pX n,2 , Y n,2 , Z n,2 q  . (3.3.51)
Note that we have used H n 3,1 " H n 3 , which simplifies slightly the term A n,3 below. We must consider loss functions for each stage of computations, namely: -First stage: For pϕ, ψq

P CpR d , Rq ˆCpR d , R d q, L RK2 n,2 rϕ, ψspθq :" E "ˇˇˇϕ pX n`1 q `hc 2 f pX n`1 , ϕpX n`1 q, ψpX n`1 qq
´"UpX n,2 ; θq `VpX n,2 ; θq H n

E " ˇˇΦ 1 pX n`1 q `hp1 ´1 2c 2 qf pX n`1 , Φ 1 pX n`1 q, Ψ 1 pX n`1 qq `h 2c 2 f pX n,2 , Φ 2 pX n,2 q, Ψ 2 pX n,2 qq ´"UpX n ; θq `pVpX n ; θq `ApX n ; θqq H n 3 υ n 3 * ˇˇ2 `C0 h ˇˇApX n ; θq ´1 2c 2 `Hn 3 ´Hn 3,2 ˘hf pX n,2 , Φ 2 pX n,2 q, Ψ 2 pX n,2 qq ˇˇ2  with pU, V, Aq :" N m P S ρ d 0 ,d 1 ,L,m pR Nm q, recall (3.1.11)-(3.
1.12). The implemented scheme in then given by Definition 3.3.4 For a given fixed balance number C 0 ą 0 , the algorithm is designed as follows:

• For i " N , initialize ÛN " g, VN " σ J ∇ x g.
• For i " N ´1, ¨¨¨, 0, given Ûn`1 , Vn`1 , -Compute a minimizer of the loss function at step pn, 2q:

θ ‹ n,2 P argmin θ L RK2 n,2 r Ûn`1 , Vn`1 spθq .
Set p Ûn,2 , Vn,2 q " pUp¨, θ ‹ n,2 q, Vp¨, θ ‹ n,2 qq.

-Compute a minimizer of the loss at step pn, 3q:

θ ‹ n,3 P argmin θ L RK2 n,3 rp Ûn`1 , Ûn,2 q, p Vn`1 , Vn,2 qspθq .
Set p Ûn , Vn q " pUp¨, θ ‹ n,3 q, Vp¨, θ ‹ n,3 qq.

The convergence result for the above scheme is stated below, see Theorem 3.3.2.

Three stage explicit Runge-Kutta scheme

The numerical procedure of three stage Runge-Kutta scheme consists in one more iteration than the two stage Runge-Kutta scheme. Recalling Theorem 3.2.1(iv), one can choose the coefficients such that

a 21 " α 21 " c 2 , a 31 " α 31 " c 3 p3c 2 ´3c 2 2 ´c3 q c 2 p2 ´3c 2 q , a 32 " α 32 " c 3 pc 3 ´c2 q c 2 p2 ´3c 2 q , a 41 " α 41 " ´3c 3 `6c 2 c 3 ´3c 2 6c 2 c 3 , a 42 " α 42 " 3c 3 ´2 6c 2 pc 3 ´c2 q , a 43 " α 43 " 2 ´3c 2 6c 3 pc 3 ´c2 q .
to obtain the optimal bound on the discrete time error. The scheme reads thus as follows

Y n,2 " E t n,2 rY n`1 `c2 hf pX n`1 , Y n`1 , Z n`1 qs , (3.3.53) Z n,2 " E t n,2 " H n 2 Y n`1 `Hn 2,1 c 2 hf pX n`1 , Y n`1 , Z n`1 qq ‰ , (3
Y n " E t n,4 rY n`1 `a41 hf pX n`1 , Y n`1 , Z n`1 q `a42 hf pX n,2 , Y n,2 , Z n,2 q `a43 hf pX n,3 , Y n,3 , Z n,3 qs , (3.3.57) Z n " E t n,4 rH n 4 Y n`1 `Hn 4,1 α 41 hf pX n`1 , Y n`1 , Z n`1 q `Hn 4,2 α 42 hf pX n,2 , Y n,2 , Z n,2 qq `Hn 4,3 α 43 hf pX n,3 , Y n,3 , Z n,3 qqs, (3.3.58)
Note that we have used H n q,1 " H n q for q " 3, 4, which simplifies slightly the term A n,3 , A n,4 below. We must consider loss functions for each stage of computations, namely: -First stage: For pΦ,

Ψq P CpR d , Rq ˆCpR d , R d q, L RK3 n,2 rΦ, Ψspθq :" E "ˇˇˇϕ pX n`1 q `hc 2 f pX n`1 , ΦpX n`1 q, ΨpX n`1 qq
´"UpX n,2 ; θq `VpX

, R d q 3 , L RK3 n,3 rΦ, Ψspθq :" E "ˇˇˇΦ 1 pX n`1 q `ha 41 f pX n`1 , Φ 1 pX n`1 q, Ψ 1 pX n`1 qq (3.3.60) `a42 hf pX n,2 , Φ 2 pX n,2 q, Ψ 2 pX n,2 qq `a43 hf pX n,3 , Φ 3 pX n,3 q, Ψ 3 pX n,3 qq ´"UpX n ; θq `pVpX n ; θq `ApX n ; θqq H n 4 υ n 4 * ˇˇ2 `C0 h ˇˇApX n ; θq ´`a 42 H n 4 ´α42 H n 4,2 ˘hf pX n,2 , Φ 2 pX n,2 q, Ψ 2 pX n,2 qq ´`a 43 H n 4 ´α43 H n 4,3 ˘hf pX n,3 , Φ 3 pX n,3 q, Ψ 3 pX n,3 qq ˇˇ2 
with pU, V, Aq :" N m P S ρ d 0 ,d 1 ,L,m pR Nm q, recall (3.1.11)-(3.1.12). The implemented scheme is then: Definition 3.3.5 For a given fixed balance number C 0 ą 0, the algorithm is designed as follows:

• For i " N , initialize ÛN " g, VN " σ J ∇ x g.

• For i " N ´1, ¨¨¨, 1, 0, given Ûn`1 , Vn`1 , -Compute a minimizer of the loss function at step pn, 2q:

θ ‹ n,2 P argmin θ L RK3 n,2 r Ûn`1 , Vn`1 spθq . Set p Ûn,2 , Vn,2 q " pUp¨, θ ‹ n,2 q, Vp¨, θ ‹ n,2 qq.
-Compute a minimizer of the loss at step pn, 3q:

θ ‹ n,3 P argmin θ L RK3 n,3 rp Ûn`1 , Ûn,2 q, p Vn`1 , Vn,2 qspθq .
Set p Ûn , Vn q " pUp¨, θ ‹ n,3 q, Vp¨, θ ‹ n,3 qq. -Compute a minimizer of the loss at step pn, 4q:

θ ‹ n,4 P argmin θ L RK3 n,4
rp Ûn`1 , Ûn,2 , Ûn,3 q, p Vn`1 , Vn,2 , Vn,3 qspθq .

Set p Ûn , Vn q " pUp¨, θ ‹ n,4 q, Vp¨, θ ‹ n,4 qq.

The convergence result for the above scheme is stated below in Theorem 3.3.2.

General case

The general case is built using the approach developed for the Crank-Nicolson scheme with the necessary introduction of the A-terms. Each stage will be computed recursively. Our first observation is the following.

Lemma 3.3.6

The transition from step n to n´1 in the scheme given in Definition 3.2.1 is solution of the following sequence of optimisation problems. For

1 ă q ď Q `1, define A n,q " E tn,q « q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Y n,k , Z n,k q ff , (3.3.61) then, recall (3.2.1)-(3.2.
2), we have pY n,q , Z n,q , A n,q q " argmin py,z,aqPL 2 pFt n,q q L n,q py, z, aq, (3.3.62)

with

L n,q py, z, aq (3.3.63) :" E

« ˇˇY n`1 `h q´1 ÿ k"1 a qk f pX n,k , Y n,k , Z n,k q ´ty ´ha qq f pX n,q , y, zq `pz `aq H n q υ n q u ˇˇ2 `C0 h ˇˇa ´q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Y n,k , Z n,k q ˇˇ2 ff .
Proof. We first observe that

Y n`1 " Y n,q ´h q ÿ k"1 a qk f pX n,k , Y n,k , Z n,k q `pZ n,q `An,q q H n q υ n q ´∆M n,q , (3.3.64)
where E tn r∆M n,q s " E tn " ∆M n,q H n q ‰ " 0, E tn " |∆M n,q | 2 ‰ ă 8. We also have that

E » -ˇˇˇˇa ´q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Y n,k , Z n,k q ˇˇˇˇ2 fi fl " E » -|a ´An,q | 2 `ˇˇˇˇA n,q ´q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Y n,k , Z n,k q ˇˇˇˇ2 fi fl .
Inserting (3.3.64) into the definition of L n,q py, z, aq and using the previous equality, we compute

L n,q py, z, aq

" E « ˇˇY n`1 `h q´1 ÿ k"1 a qk f pX n,k , Y n,k , Z n,k q ´ty ´ha qq f pX n,q , y, zq `pz `aq H n q υ n q u ˇˇ2 ff `C0 hE » -|a ´An,q | 2 `ˇˇˇˇA n,q ´q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Y n,k , Z n,k q
ˇˇˇˇ2 fi fl " Ln,q 1 py, zq `L n,q 2 pa, zq `L n,q 3 paq ` n,q , 123 3.3. A learning method for Runge-Kutta schemes where Ln,q 1 py, zq " E " |Y n,q ´aqq hf pX n,q , Y n,q , Z n,q q ´ty ´aqq hf pX n,q , y, zqu| 2 ‰ , (3.3.65)

Ln,q 2 pa, zq "

1 υ n q E "
|Z n,q ´z `An,q ´a| 2 ‰ , (3.3.66)

Ln,q 3 paq " C 0 hE " |A n,q ´a| 2 ‰ , (3.3.67) n,q " E » -|∆M n,q | 2 `C0 h ˇˇˇˇA n,q ´q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Y n,k , Z n,k q ˇˇˇˇ2 fi fl . (3.3.68)
We then observe that Ln,q 3 pA n q " 0, Ln,q 2 pA n , Z n q " 0 and Ln,q 1 pY n , Z n q " 0, so that pY n,q , Z n,q , A n,q q does achieve the minimum of L n,q . Reciprocally, any optimal solution py ‹ , z ‹ , a ‹ q must satisfy Ln,q 3 pa ‹ q " 0, Ln,q 2 pa ‹ , z ‹ q " 0, which implies a ‹ " A n,q , z ‹ " Z n,q . Moreover, necessarily one has Ln,q 1 py ‹ , Z n,q q " 0, then using (3.2.1), we find

y ‹ " E tn « Y n`1 `h q´1 ÿ k"1 a qk f pX n,k , Y n,k , Z n,k q `aqq f pX n,q , y ‹ , Z n,q q ff .
By uniqueness of the scheme definition, we get y ‹ " Y n,q , which concludes the proof. l

Implementation

Let Φ " pΦ 1 , ¨¨¨, Φ Q`1 q P CpR d , Rq Q`1 and Ψ " pΨ 1 , ¨¨¨, Ψ Q`1 q P CpR d , R d q Q`1 , we introduce a generic loss function at each stage of computation pn, qq, 1 ď n ă N , 1 ă q ď Q `1:

L RK n,q rΦ, Ψspθq :" E « ˇˇΦ 1 pX n`1 q `h q´1 ÿ k"1 a qk f pX n,k , Φ k pX n,k q, Ψ k pX n,k qq
´tUpX n,q ; θq ´ha qq f pX n,q , UpX n,q ; θq, VpX n,q ; θqq `pVpX n,q ; θq `ApX n,q ; θqq

H n q υ n q u ˇˇ2 `C0 h ˇˇApX n,q ; θq ´q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Φ k pX n,k q, Ψ k pX n,k qq ˇˇ2 ff (3.3.69)
with pU, V, Aq :" N m P S ρ d 0 ,d 1 ,L,m pR Nm q, recall (3.1.11)-(3.1.12).

Definition 3.3.6 (Implemented Runge-Kutta scheme)

The numerical solution is computed using the following step:

• For n " N , initialize ÛN " g, VN " σ J ∇ X g, ÂN " 0.

• For n " N ´1, ¨¨¨, 0, for 1 ă q ď Q `1 given p Ûn`1 , Vn`1 q ": p Ûn,1 , Vn,1 q and p Ûn,k , Vn,k q, 1 ă k ă q, -set pΦ k , Ψ k q :" p Ûn,k , Vn,k q, 1 ď k ă q, pΦ k , Ψ k q :" 0, k ě q -Compute a minimizer of the loss function:

θ ‹ n,q P argmin θ L RK n,q rΦ, Ψspθq,
where L RK n,q defined by (3.3.69). -set p Ûn,q , Vn,q , Ân,q q :" N m p¨; θ ‹ n,q q P S ρ d 0 ,d 1 ,L,m pR Nm q, recall (3.1.11)-(3.1.12).

Set p Ûn , Vn q :" p Ûn,Q`1 , Vn,Q`1 q

Pseudo-consistency

We study here a kind of minimal consistency of the implemented scheme in terms of approximation error made at each step.

Lemma 3.3.7 Let n ă N and 1 ă q ď Q `1. Assume that θ ‹ P argmin θ L RK n,q rΦ, Ψspθq,
and define :" E tn

Y pΦ,Ψq n,q :" E tn,q « Y pΦ,Ψq n,1 `h q ÿ k"1 a qk f pX n,k , Y pΦ,Ψq n,k , Z pΦ,Ψq n,k q ff , (3
« H n q Y pΦ,Ψq n,1 `h q´1 ÿ k"1 α qk H n q,k f pX n,k , Y pΦ,Ψq n,k , Z pΦ,Ψq n,k q ff , (3

.3.71)

A pΦ,Ψq n,q " E tn,q , Z pΦ,Ψq n,k q :" pΦ k pX n,k q, Ψ k pX n,k qq, for 1 ď k ă q. Then, the following holds

« q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Y pΦ,Ψq n,k , Z pΦ,Ψq n,k q ff , (3
E " |Y pΦ,Ψq n,q
´Un,q pX n,q ; θ ‹ q| 2 `h|Z pΦ,Ψq n,q ´Vn,q pX n,q ; θ ‹ q| 2 `h|A pΦ,Ψq n,q ´An,q pX n,q ; θ ‹ q| 2 ı ď CE n,q pΦ, Ψq, (3.3.73) where E n,q pΦ, Ψq " N ,y n,q pΦ, Ψq `h N ,z n,q pΦ, Ψq `h N ,a n,q pΦ, Ψq (3.3.74) and N ,y n,q pΦ, Ψq :" inf

θ y E " |Y pΦ,Ψq n,q
´Un,q pX n,q ; θ y q| 2 ı , (3.3.75)

N ,a n,q pΦ, Ψq :" inf

θ a E " |A pΦ,Ψq n,q
´An,q pX n,q ; θ a q| 2 ı , (3.3.76)

N ,z n,q pΦ, Ψq :" inf θ z E " |Z pΦ,Ψq n,q
´Vn,q pX n,q ; θ z q| 2

´h q ÿ k"1 a qk f pX n,k , Y pΦ,Ψq n,k , Z pΦ,Ψq n,k q `´Z pΦ,Ψq n `ApΦ,Ψq n ¯Hn q υ n q `∆M pΦ,Ψq n,q , (3.3.78)
where E tn,q

" ∆M pΦ,Ψq n,q ı " E tn,q " ∆M pΦ,Ψq n,q H n q ı " 0, E tn,q " |∆M pΦ,Ψq n,q | 2 ı ă 8
. Following the same computations as in the proof of Lemma 3.3.6, we obtain that L RK n,q rΦ, Ψspθq " Ln,q 1 rΦ, Ψspθq `L n,q 2 rΦ, Ψspθq `L n,q 3 rΦ, Ψspθq ` n,q rΦ, Ψs (3.3.79) with Ln,q 1 rΦ, Ψspθq " E " |Y pΦ,Ψq n,q ´aqq hf pX n,q , Y pΦ,Ψq n,q , Z pΦ,Ψq n,q q (3.3.80)

´tU n,q pX n,q ; θq ´aqq hf pX n,q , U n,q pX n,q ; θq, V n,q pX n,q ; θqqu| 2 ı , Ln,q 2 rΦ, Ψspθq "

1 υ n q E " |Z pΦ,Ψq n,q
´Vn,q pX n,q ; θq `ApΦ,Ψq n,q ´An,q pX n,q ; θq| 2 ı , (3.3.81)

Ln,q 3 rΦ, Ψspθq " C 0 hE " |A pΦ,Ψq n,q ´An,q pX n,q ; θq| 2 ı , (3.3.82) n,q rΦ, Ψs " E " |∆M pΦ,Ψq n,q | 2 `(3.3.83) C 0 h ˇˇˇˇA pΦ,Ψq n,q ´q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Y pΦ,Ψq n,k , Z pΦ,Ψq n,k q ˇˇˇˇ2 fi fl .
Setting Ln,q rΦ, Ψspθq :" Ln,q 1 rΦ, Ψspθq`L n,q 2 rΦ, Ψspθq`L n,q 3 rΦ, Ψspθq, we then deduce that argmin θ Ln,q rΦ, Ψspθq " argmin θ L RK n,q rΦ, Ψspθq. ´Un,q pX n,q ; θq| 2 `h|Z pΦ,Ψq n,q ´Vn,q pX n,q ; θq| 2 (3.3.85)

`h|A pΦ,Ψq n,q ´An,q pX n,q ; θq| 2 ı .

We now prove a lower bound for the previous quantity. First, we observe that, for any 0 ă α ă 1, px `yq 2 ě x 2 p1 ´αq `y2 p1 ´1 α q.

(3.3.86)

Thus, for any α such that 1 ą α ą 2 2`ΛC 0 , we obtain L2 n,q rΦ, Ψspθq `L 3 n,q rΦ, Ψspθq ěh

1 ´α Λ E " |Z pΦ,Ψq n,q
´Vn,q pX n,q ; θq| 2 ı (3.3.87)

`h C 0 2 E " |A pΦ,Ψq n,q
´An,q pX n,q ; θq| 2 ı .

Using again (3.3.86), we get L1 n,q rΦ, Ψspθq ě

1 2 E " |Y pΦ,Ψq n,q ´Un,q pX n,q , θq| 2 ı ´a2 qq h 2 E " |f pX n,q , Y pΦ,Ψq n,q
, Z pΦ,Ψq n,q q ´f pX n,q , U n,q pX n,q ; θq, V n,q pX n,q ; θqq| 2 ı .

Since f is Lipschitz continuous, we obtain L1 n,q rΦ, Ψspθq ěp

1 2 ´2a 2 qq L 2 h 2 qE " |Y pΦ,Ψq n,q ´Un,q pX n,q , θq| 2 ı ´2a 2 qq L 2 h 2 E " |Z pΦ,Ψq n,q
´Vn,q pX n,q , θq| 2 ı .

Combining the previous inquality with (3.3.87), we deduce that for h small enough,

E " |Y pΦ,Ψq n,q
´Un,q pX n,q ; θq| 2 `h|Z pΦ,Ψq n,q ´Vn,q pX n,q ; θq| 2 h|A pΦ,Ψq n,q ´An,q pX n,q ; θq| 2 ı ď C Ln,q rΦ, Ψspθq (3.3.88)

3. The above inequality is a fortiori true at the optimum θ ‹ . Moreover, optimizing on separated networks is always more costly than optimizing on a fully connected network thus leading to (3.3.73). l Proposition 3.3.2 Assume that the scheme given in Definition 3.3.6 is well-posed then

max nďN E " |Y n ´Û n pX n q| 2 ı `h N ÿ n"0 E " |Z n ´V n pX n q| 2 ı ď CN N ´1 ÿ n"0
Ēn , (3.3.89) where Ēn :"

Q ř k"1
E n,k p Φn , Ψn q and with Φ " p Ûn,k q 1ďkďQ and Ψ " p Vn,k q 1ďkďQ , recall (3.3.74).

Proof. Let us define, for n ă N,

1 ă q ď Q `1, recalling (3.3.70)-(3.3.71)-(3.3.72), Ȳn,q " Y p Φ, Ψq n,q
, Zn,q " Z p Φ, Ψq n,q , Ān,q " A p Φ, Ψq n,q .

(3.3.90)

We first observe that p Ûn,q , Vn,q q :" pU n,q pX n,q q, V n,q pX n,q qq can be rewritten as a perturbed scheme, namely Ûn,q " E tn,q

« Ûn`1 `h q ÿ k"1 a qk f pX n,k , Ûn,k , Vn,k q ff `ζy n,q , (3.3.91) Vn,q " E tn,q « H n q Ûn`1 `h q´1 ÿ k"1 α qk H n q,k f pX n,k , Ûn,k , Vn,k q ff `ζz n,q , (3.3.92)
with ζ y n,q :" Ûn,q ´Ȳ n,q `aqq h ´f pX n,q , Ȳn,q , Zn,q q ´f pX n,q , Ûn,q , Vn,q q ¯, (3.3.93)

ζ z n,q :" Vn,q ´Z n,q .

(3.3.94) 127 3.3. A learning method for Runge-Kutta schemes Indeed, with our notations, we have p Ûn,k , Vn,k q " pY p Φ, Ψq n,k , Z p Φ, Ψq n,k q, 1 ď k ă q. Moreover, since Ûn,q " Ûn,q pX n,q q " U n,q pX n,q , θ ‹ n,q q, recall Definition 3.3.6, it holds

E " 1 h |ζ y n,q | 2 `h|ζ z n,q | 2  ď CE " 1 h |U n,q pX n,q , θ ‹ n,q q ´Ȳ n,q | 2 `h|V n,q pX n,q , θ ‹ n,q q ´Z n,q | 2  ď CN E n,q p Ûn`1 , Vn`1 q,
where for the last inequality we applied Lemma 3.3.7. Now the proof is concluded using the stability result given in Proposition 3.2.1. l

We can then state the following convergence result for two stage explicit Runge-Kutta scheme and three stage explicit Runge-Kutta scheme. Theorem 3.3.2 Let p Ȳn , Zn q :" pupt n , X n q, σ J ∇ x upt n , X n qq, for n ď N .

1. Assume pHrq 2 and pHXq 2 . Then, the following holds

max n E " | Ȳn ´Û n pX n q| 2 ı `N´1 ÿ n"0 hE " | Zn ´V n pX n q| 2 ı ď Cph 4 `N´1 ÿ n"0 ĒRK2 n q .
with ĒRK2

n " E n,2 ´p Ûn`1 , Ûn,2 q, p Vn`1 , Vn,2 q ¯, where E n,2 is defined by (3.3.74).

2. Assume pHrq 3 and pHXq 3 . Then, the following holds

max n E " | Ȳn ´Û n pX n q| 2 ı `N´1 ÿ n"0 hE " | Zn ´V n pX n q| 2 ı ď Cph 6 `N´1 ÿ n"0 ĒRK3 n q .
with ĒRK3

n " E n,3 ´p Ûn`1 , Ûn,2 , Ûn,3 q, p Vn`1 , Vn,2 , Vn,3 q ¯, where E n,3 is defined by (3.3.74).

Proof. First, one observes that

max n E " | Ȳn ´Û n pX n q| 2 ı `N´1 ÿ n"0 hE " | Zn ´V n pX n q| 2 ı ď 2 ˜max n E " | Ȳn ´Yn | 2 ‰ `N´1 ÿ n"0 hE " | Zn ´Zn | 2 ‰ 2 ˜max n E " |Y n ´Û n pX n q| 2 ı `N´1 ÿ n"0 hE " |Z n ´V n pX n q| 2 ı ¸.
The first term in the right hand side of the previous inequality is the discrete-time error, whose upper bound follows from Theorem 3.2.1(iii), (iv), the second term is upper bounded using Proposition 3.3. We study the special case where tX t u 0ďtďT is a drifted Brownian motion, that is

X t " X 0 `µt `σW t , 0 ď t ď T. (3.4.1)
We use directly the forward diffusion process X on the the grid Π. There is no discretization error for this special case and it corresponds directly to the Euler scheme on Π. In the case, where the underlying is the Brownian motion, note that L p0q ˝Lp q " L p q ˝Lp0q for P t1, ¨¨¨, du and see Remark 2.1(ii) of [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF], one can choose to compute the Z-part, the H random weight with this simple form: for n ă N ,

H n q " W t n`1 ´Wtn,q c q h , 1 ă q ď Q `1, H n q,k " W t n,k ´Wtn,q t n,k ´tn,q " W tn,q ´Wt n,k pc k ´cq qh , 1 ă q ă k ď Q `1.
It can be verified that H n q , H n q,k satisfy the assumptions pHXq 2 , see Proposition 2.3 in [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF].

General diffusion case of Crank-Nicolson scheme

For the general diffusion case, we also have to discretize the forward diffusion process with some second order weak approximation schemes, , see [START_REF] Abdulle | High weak order methods for stochastic differential equations based on modified equations[END_REF][START_REF] Yamada | A second-order weak approximation of sdes using a markov chain without lévy area simulation[END_REF], for all ϕ P C We implemented it by Ninomiya-Victoire scheme [START_REF] Ninomiya | Weak approximation of stochastic differential equations and application to derivative pricing[END_REF] in practice, the convergence of this algorithm only requires ϕ to be continuous, under a condition on the vector fields weaker than Hörmander condition. For example, we apply the Ninomiya-Victoire scheme to the d-dimensional independent Cox-Ingersoll-Ross(CIR for short) process:

dX t " apb ´Xt q dt `σΣ d dW t , 0 ď t ď T. where Σ d " diagp a X 1 t , ¨¨¨, b X d t q.
Under the Ninomiya-Victoire scheme, assume Λ n is a Bernoulli random variable independent of pW n q n"0,1,¨¨¨,N ´1, then

X 0 " X 0 X n`1 " " expp hV 0 2 q expp∆W d n V d q... expp∆W 1 n V 1 q expp hV 0 2 qX n , Λ n " 1 expp hV 0 2 q expp∆W 1 n V 1 q... expp∆W d n V d q expp hV 0 2 qX n , Λ n " ´1 129
3.4. Numerical results

where for x P R d , # exppsV 0 qpxq " xe ´as `pb ´σ2 4µ qp1 ´e´as q1 d , exppsV i qpxq " px 1 , ¨¨¨, x i´1 , p σs 2 `?x i q 2 , x i`1 , ¨¨¨, x d q, i ‰ 0

Hence, if all the components of pW n q n"0,1,¨¨¨,N ´1 are independent,

expp∆W n V q : " expp∆W 1 n V 1 q ¨¨¨expp∆W d n V d qpxq " expp∆W d n V d q... expp∆W 1 n V 1 qpxq " ˆp σ∆W 1 n 2 `?x 1 q 2 , ¨¨¨, p σ∆W d n 2 `?x d q 2 ˙.
Thus,

X n`1 " expp hV 0 2 q expp∆W n V q expp hV 0 2 qX n .
And in this case, for 0 ď n ď N ´1, one can choose

H n " c ´2 c ´1 W t n`1 ´ch ´Wtn h `c ´1 c W t n`1 ´Wt n`1 ´ch h P R d , c P p0, 1q
which directly comes from Example 2.1(ii.b) of [START_REF] Chassagneux | Runge-kutta schemes for backward stochastic differential equations[END_REF]. Then, for each component

l H i , 1 ď l ď d of H i , we have E t i " | l H i | 2 ‰ " ´1 `1 cp1´cq ¯1 h
. We use c " 0.5 for the implementation of this Chapter.

Empirical convergence results

For the neural networks in numerical experiments, we used a fully connected feedforward network with 2 hidden layers and the number of neurons of each hidden layer is d `10. And for the networks of all schemes, a tanh activation function is used after each hidden layer. We choose the batchsize " b (set b " 1000 for Brownian motion case) to train the network and check the convergence of loss function with a test dataset of batchsize " 2b after every 50 training epochs, we decrease the learning rate with a discount factor γ " 0.5 if the loss decay is less than a given threshold, and we stop training after the learning rate less than 10 ´9. In fact, it is good enough to choose 10 ´6 for Euler scheme. We choose a smaller stopping learning rate in order to reduce the impact of the variance of Y 0 for high order schemes. And small batchsize b 1 " 1000, b 2 " 10000 is enough for the Brownian motion case. However, for the general diffusion process, small batchsize usually leads to a bias of Y 0 due to the cumulative error from the accuracy of gradient by Monte Carlo simulation.

We take the absolute of the difference of the theoretical solution and average result of nT est " n runs as the error:

:" ˇˇˇˇ1 n n ÿ i"1 Ŷ i 0 ´Y0 ˇˇˇˇ,
we set n " 10 for the numerical results below.

We implemented the code in Python3 with the multi-process technique to run n tests at the same time. Due to the long running time, especially when the discretization time steps N is large, we run the code on a server1 .

Brownian motion case

We consider the following example borrowed from [START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF]. For d " 10, T " 1, t P r0, T s, and

let dX t " 0.2 d 1 d dt `1 ? d I d dW t , X 0 " 1 d , f pt, x,
Z i t " ´1 ? d sinp Xt qe T ´t 2 , i " 1, ¨¨¨, d..
We will compare the numerical results for the 5 cases stated in Theorem 3.2.1 and called them explicit Euler scheme, implicit Euler scheme, CN scheme, RK-2 scheme, RK-3 scheme, respectively. We set c 2 " 0.5 and we recall Section 3.3.3

a 21 " α 21 " c 2 , a 31 " α 31 " 1 ´1 2c 2 , a 32 " α 32 " 1 2c 2 ,
for RK-2 scheme. For RK-3 scheme, we set c 2 " 0.3, c 3 " 0.7 and recall Section 3.3.4

a 21 " α 21 " c 2 , a 31 " α 31 " c 3 p3c 2 ´3c 2 2 ´c3 q c 2 p2 ´3c 2 q
, a 32 " α 32 " c 3 pc 3 ´c2 q c 2 p2 ´3c 2 q , a 41 " α 41 " ´3c 3 `6c 2 c 3 ´3c 2 6c 2 c 3 , a 42 " α 42 " 3c 3 ´2 6c 2 pc 3 ´c2 q , a 43 " α 43 " 2 ´3c 2 6c 3 pc 3 ´c2 q .

We know discuss the balance number C 0 as it has some influence on the numerical results. On Figure 3.1, we can see that the error of CN scheme is stable when log 2 pC 0 q ą 3. However, we can get smaller error when ´1 ă log 2 pC 0 q ă 3. In the implementation, we choose C 0 " 4 3 for CN scheme, the convergence rate is almost order 2 when the time steps N ď 12, and then if N ą 12, the error is almost a constant, this might be caused by the variance of Ŷ0 . Similarly, we choose C 0 " 25c q for Runge-Kutta scheme at stage 1 ă q ă Q `1.

Figure 3.2 shows that the computational time is almost linear to the time steps for each scheme which is reasonable. The computational time of implicit Euler scheme and explicit scheme are almost the same. The computational time of CN scheme is only slightly larger than Euler scheme since this is still a one-stage scheme though the driver f is computed on both t n and t n`1 at each step 0 ď n ď N ´1.

which is a mean reversion process, the following conditions ensure pX t q tą0 is always positive:

a ą 0, b ą 0, 2ab ě σ 2 , X 0 ě 0.
And the distribution of future values of a CIR process can be computed in closed form: for t ą 0,

X t " χ 1 k 2 ppq 2c with c " 2a p1 ´e´at qσ 2 , k " 4ab σ 2 , p " 2cX 0 e ´at ,
where χ 1 k 2 ppq is a non-central chi-squared distribution with k degrees of freedom and non-centrality parameter p. One can also compute the expectation and Variance of X t :

ErX t s " X 0 e ´at `bp1 ´e´at q, V arpX t q " X 0 σ 2 a pe ´at ´e´2at q `bσ 2 2a p1 ´e´at q 2 .
We tested the BSDE with the same solution of the previous subsection Y t " upt, X t q "

cosp Xt qe

T ´t 2 , Z i t " ´b X i t d sinp Xt qe T ´t 2 , i " 1, ¨¨¨, d, recalling x :" d ř i"1
x i , and keep the terminal function g of Brownian Motion case, but with the forward diffusion process is CIR process with a " 1 5d , b " 3, σ " 1 ?

d and recalling Σ d " diagp a X 1 t , ¨¨¨, b X d t q: dX t " 1 5d p3 ´Xt q dt `1 ? d Σ d dW t , X 0 " 101 d .
Then, setting the driver f :

f pxq " ˆ1 2 cospxqp1 `x d q `sinpxqp 3 5 ´x 5d q ˙e T ´t 2 , f pt, x, y, zq " f pxq ´1 5 psinpxq cospxqe T ´tq 2 `1 5d ˜y d ÿ i"1 z i ? x i ¸2 , " f pxq ´1 5 psinpxq cospxqe T ´tq 2 `1 5d 2 ˜upt, xq d ÿ i"1 B x i upt, xq ¸2 , where x " d ř i"1
x i and recalling Section 3.4.1.

`?x i q 2 , x i`1 , ¨¨¨, x d q, i ‰ 0
We only compare Crank-Nicolson scheme with implicit Euler scheme in this subsection since Crank-Nicolson scheme is the best one as we discussed above. Setting d " 10, T " 1, C 0 " 1. We only test the implicit Euler scheme with b " 5000, and we test the Crank-Nicolson scheme for both b " 5000 and b " 50000.

In Figure 3.5, the implicit Euler scheme is almost order 1, however it can only achieve an error around 2 ´5 even N " 128. And then see Figure 3.6, the approximation solution Ŷ0 cross the real solution Y 0 around N " 256 and a bias appeared when N " 512. For the Crank-Nicolson scheme with batchsize b 1 " 5000 (red line), it converger faster than order 2 and achieve the minimal error at N " 12, then the error almost converges to 2 ´5 (the same with Euler scheme with N " 512). When we increase the batchsize 10 times, the Crank-Nicolson scheme (blue line) is almost order 2 when N ď 16, and then achieve an error smaller than 2 ´6 at last, it seems there still exist a bias, but it smaller than the red line. Figure 3.7 shows the relation between discreate time steps and time cost, except the impact of the machine, the lines are almost order 1. In Figure 3.8, see the orange line and the red line, CN scheme can achieve the same error with Euler scheme but less time cost when the batchsize for both scheme are identical. However, we have to increase the value of batchsize if we want to improve the accuracy which will greatly increase the computational time cost. q " E tn,q

" |H n q | 2 ‰ , observe that for 1 ă q ď Q `1, it holds Y n,q " Y n`1 `h q ÿ k"1 a qk f pX n,k , Y n,k , Z n,k q ´pZ n,q `An,q q H n q υ n q `∆M n,q , (3.5.1)
where E tn,q r∆M n,q s " E tn,q " H n q ∆M n,q ‰ " 0, E tn,q " |∆M n,q | 2 ‰ ă 8, and

A n,q " E tn,q « H n q ˜Yn`1 `h q´1 ÿ k"1 a qk f pX n,k , Y n,k , Z n,k q ¸ff ´Zn,q " E tn,q « q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Y n,k , Z n,k q ff . (3.5.2)
And for the perturbed scheme defined in (3.2.12)-(3.2.13), observe that Ỹn,q " Ỹn`1

`h q ÿ k"1 a qk f pX n,k , Ỹn,k , Zn,k q `ζy n,q ´p Zn,q `Ã n,q ´ζz n,q q H n q υ n q `∆ Mn,q , (3.5.3)
where E tn,q " ∆ Mn,q ‰ " E tn,q " H n q ∆ Mn,q ‰ " 0, E tn,q " |∆ Mn,q | 2 ‰ ă 8, and Ãn,q " E tn,q

« q´1 ÿ k"1 `aqk H n q ´αqk H n q,k ˘hf pX n,k , Ỹn,k , Zn,k q ff . (3.5.4)
Set δY n,q " Y n,q ´Ỹ n,q , δZ n,q " Z n,q ´Z n,q , δA n,q " A n,q ´Ã n,q , δf n,q " f pX n,q , Y n,q , Z n,q qf pX n,q , Ỹn,q , Zn,q q, δ∆M n,q " ∆M n,q ´∆ Mn,q for all 0 ď n ď N ´1, 1 ă q ď Q `1. From eq. (3.5.1) and eq. (3.5.3), we get

δY n,q `pδZ n,q `ζz n,q q H n q υ n q `δ∆M n,q " δY n`1 `h q ÿ k"1 a qk δf n,k ´ζy n,q ´δA n,q H n q υ n q .
(3.5.5)

Step 1: For

0 ď n ď N ´1, control on E " |δY n | 2 ‰ by the term h N ´1 ř k"n Q`1 ř q"2 E " |δZ k,q | 2 ‰ .
Squaring both sides of (3.5.5), taking conditional expectation and using Young's inequality, we obtain

|δY n,q | 2 `1 υ n q |δZ n,q `ζz n,q | 2 ď ˆ1 `h C ˙Etn,q » -ˇˇˇˇδ Y n`1 `h j ÿ k"1 a qk δf n,k ˇˇˇˇ2 fi fl `2 ˆ1 `C h ˙ˆˇˇζ y n,q ˇˇ2 `1 υ n q |δA n,q | 2 ˙. (3.5.6) 3.5.
|δA n,q | 2 " h 2 ˇˇˇˇE tn,q « q´1 ÿ k"1 pa qk H n q ´αqk H n q,k qδf n,k ffˇˇˇˇˇ2 ď pq ´1qh 2 q´1 ÿ k"1 ˇˇE tn,q " pa qk H n q ´αqk H n q,k qδf n,k ‰ˇˇ2 ď qh 2 q´1 ÿ k"1 E tn,q " |a qk H n q ´αqk H n q,k | 2 ‰ E tn,q " |δf n,k | 2 ‰ ď qh 2 q´1 ÿ k"1 E tn,q " 2a 2 qk |H n q | 2 `2α 2 qk |H n q,k | 2 ‰ E tn,q " 2rf s 2 L p|δY n,k | 2 `|δZ n,k | 2 q ‰ ď 8q 2 ā2 rf s 2 L Λh q´1 ÿ k"1 E tn,q " |δY n,k | 2 `|δZ n,k | 2 ‰ ď Ch q´1 ÿ k"1 E tn,q " |δY n,k | 2 `|δZ n,k | 2 ‰ , (3.5.7)
and

|δZ n,q `ζz n,q | 2 ě p1 ´ηq|δZ n,q | 2 `p1 ´1 η q|ζ z n,q | 2 ě p1 ´ηq|δZ n,q | 2 ´1 η |ζ z n,q | 2 , (3.5.8)
for η ą 0. Using the Lipschitz regularity of f , Young's inequality and Jensen's inequality, for any ą 0, we obtain

ˇˇˇˇδ Y n`1 `h q ÿ k"1 a qk δf n,k ˇˇˇˇ2 ď ˜|δY n`1 | `hrf s L q ÿ k"1 |a qk |p|δY n,k | `|δZ n,k |q ¸2 ď ˜p1 `Chq |δY n`1 | `Ch|δZ n`1 | `Ch q ÿ k"2 p|δY n,k | `|δZ n,k |q ¸2 ď ˆ1 `h ˙˜p1 `Chq |δY n`1 | `Ch q ÿ k"2 |δY n,k | ¸2 `C ph ` q h ˜q ÿ k"1 |δZ n,k | ¸2 ď ˆ1 `h ˙¨p 1 `Chq |δY n`1 | 2 `Ch q ÿ k"2 |δY n`1 ||δY n,k | `Ch 2 ˜q ÿ k"2 |δY n,k | ¸2' `C ph ` q h ˜q ÿ k"1 |δZ n,k | 2 ḑ ˆ1 `h ˙˜p1 `Chq |δY n`1 | 2 `Ch q ÿ k"2 |δY n,k | 2 ¸`C ph ` q h q ÿ k"1 |δZ n,k | 2 .

Chapter 3. Deep Runge-Kutta schemes for BSDEs

Choosing h small enough and such that Cph ` q ď 1 2Λ , we obtain

ˇˇˇˇδ Y n`1 `h q ÿ k"1 a qk δf n,k ˇˇˇˇ2 ď p1 `Chq |δY n`1 | 2 `Ch q ÿ k"2 |δY n,k | 2 `h 2Λ q ÿ k"1 |δZ n,k | 2 .
(3.5.9)

Thus choosing η " 1 4 in (3.5.8), and using (3.5.9), (3.5.7) into (3.5.6), observing that h Λ ď 1 υ n q ď h λ , then for h small enough, we get

|δY n,q | 2 ď |δY n,q | 2 `h 4Λ |δZ n,q | 2 ď p1 `Chq E tn,q " |δY n`1 | 2 ‰ `Ch q´1 ÿ k"1 E tn,q " |δY n,k | 2 `|δZ n,k | 2 ‰ `Etn,q " C h |ζ y n,q | 2 `Ch ˇˇζ z n,q ˇˇ2  ď p1 `Chq E tn,q " |δY n`1 | 2 ‰ `Ch q´1 ÿ k"1 E tn,q " |δZ n,k | 2 ‰ `C q ÿ k"2 E tn,q " 1 h |ζ y n,k | 2 `h ˇˇζ z n,k ˇˇ2  .
(

Using the discrete version of Grönwall's lemma, we even eventually conclude:

E " |δY n | 2 ‰ ď C ˜E" |δY N | 2 `|δZ N | 2 ‰ `h N ´1 ÿ k"n Q`1 ÿ q"2 E " |δZ k,q | 2 `1 h 2 |ζ y k,q | 2 `ˇζ z k,q ˇˇ2  ¸. (3.5.11)
Step 2: Control of h

N ´1 ř k"n Q`1 ř q"2 E " |δZ k,q | 2 ‰ .
Using the Cauchy-Schwarz inequality and the Lipschitz regularity of f , we get

h ˇˇE tn,q " hH n q,k δf n,k ‰ˇˇ2 ď h 3 E tn,q " |H n q,k | 2 ‰ E tn,q " |δf n,k | 2 ‰ ď 2drf s 2 L Λh 2 E tn,q " |δY n,k | 2 `|δZ n,k | 2 ‰ (3.5.12)
and

E tn " h ˇˇE tn,q " H n q pδY n`1 ´Etn rδY n`1 sq ‰ˇˇ2 ı ď E tn " hE tn,q " |H n q | 2 ‰ E tn,q " |δY n`1 ´Etn rδY n`1 s | 2 ‰‰ ď ΛE tn " |δY n`1 ´Etn rδY n`1 s | 2 ‰ ď Λ ´Etn " |δY n`1 | 2 ‰ ´Etn rδY n`1 s 2 ¯. (3.5.13) 3.5. Appendix
Taking q " Q `1 in (3.5.5), using Young's inequality, and note the subscript tnu " tn, Q `1u, we get

E tn " |δY n`1 | 2 ‰ ´Etn rδY n`1 s 2 " E tn " |δY n`1 | 2 ‰ ´Etn « δY n `ζy n ´h Q`1 ÿ k"1 a qk E tn,q rδf n,k s ff 2 ď E tn " |δY n`1 | 2 ‰ ´|δY n | 2 `C ˜|δY n ||ζ y n | `hp|δY n | `|ζ y n |q Q`1 ÿ k"1 E t i r|δf n,k |s ḑ E tn " |δY n`1 | 2 ‰ ´|δY n | 2 `C ˜|δY n ||ζ y n | `hp|δY n | `|ζ y n |q Q`1 ÿ k"1 E tn,q r|δY n,k | `|δZ n,k |s ḑ E tn " |δY n`1 | 2 ‰ ´|δY n | 2 `Ch Q`1 ÿ k"1 E tn " 1 |δY n,k | 2 ` |δZ n,k | 2  `C h E tn " |ζ y n | 2 ‰ , (3.5.14)
for any ą 0. Using Jensen's inequality, and the inequalities (3.5.12), (3.5.13), (3.5.14), we obtain

hE tn " |δZ n,q | 2 ‰ " hE tn » -ˇˇˇˇE tn,q " H n q δY n`1 `h q´1 ÿ k"1 α qk H n q,k δf n,k ´ζz n,q ı ˇˇˇˇ2 fi fl ď CE tn « h ˇˇE tn,q " H n q pδY n`1 ´Etn rδY n`1 sq ‰ˇˇ2 `q´1 ÿ k"1 α 2 qk h ˇˇE tn,q " hH n q,k δf n,k ‰ˇˇ2 `h|ζ z n,q | 2 ff ď C ˜Etn " |δY n`1 | 2 ‰ ´|E tn rδY n`1 s | 2 `h2 q´1 ÿ k"1 E tn " |δY n,k | 2 `|δZ n,k | 2 ‰ `hE tn " |ζ z n,q | 2 ‰ ḑ C ˜Etn " |δY n`1 | 2 ‰ ´|δY n | 2 `Ch Q`1 ÿ k"1 E tn " 1 |δY n,k | 2 ` |δZ n,k | 2  `Etn " C h |ζ y n | 2 `h|ζ z n,q | 2  ¸(3.5.15)
Chapter 3. Deep Runge-Kutta schemes for BSDEs Summing over q and n, setting " 1 2pQ`2qC , and note that the subscript tn, 1u " tn `1u " tn `1, Q `1u, then for h small enough,

h N ´1 ÿ k"n Q`1 ÿ q"2 E " |δZ k,q | 2 ‰ ď C N ´1 ÿ k"n Q`1 ÿ q"2 E « |δY k`1 | 2 ´|δY k | 2 `h Q`1 ÿ l"1 p 1 |δY k,l | 2 ` |δZ k,l | 2 q `1 h |ζ y k | 2 `h|ζ z k,q | 2 ff " C N ´1 ÿ k"n E « Q|δY k`1 | 2 ´Q|δY k | 2 `Qh Q`1 ÿ l"1 |δY k,l | 2 `Q h |ζ y k | 2 `h Q`1 ÿ q"2 |ζ z k,q | 2 ff `Qh Q `2 N ´1 ÿ k"n Q`1 ÿ l"2 E " |δZ k,l | 2 ‰ so that h N ´1 ÿ k"n Q`1 ÿ q"2 E " |δZ k,q | 2 ‰ ď C N ´1 ÿ k"n E « |δY k`1 | 2 ´|δY k | 2 `h Q`1 ÿ q"1 |δY k,q | 2 `1 h |ζ y k | 2 `h Q`1 ÿ q"2 |ζ z k,q | 2 ff ď CE « |δY N | 2 `h|δZ N | 2 `h N ´1 ÿ k"n |δY k | 2 `N´1 ÿ k"n Q`1 ÿ q"2 ˆ1 h |ζ y k,q | 2 `h|ζ z k,q | 2 ˙ff (3.5.16)
where we used (3.5.10) and the subscript tn, 1u " tn `1u " tn `1, Q `1u, 0 ď n ď N ´1 again in the last line.

Step 3: Control of the term E " |δY n | 2 ‰ , 0 ď n ď N ´1. Combining the inequality (3.5.16) with (3.5.11), we get

E " |δY n | 2 ‰ ď CE « |δY N | 2 `h|δZ N | 2 `h N ´1 ÿ k"n |δY k | 2 `h N ´1 ÿ k"n Q`1 ÿ q"2 ˆ1 h 2 |ζ y k,q | 2 `|ζ z k,q | 2 ˙ff .
(3.5.17) Using the discrete version of Grönwall's lemma, and noting that δ N ´1 ď θ n , θ k ď θ n for k ě n, we obtain

Step 4: Control on max nďkďN ´1 E " |δY k | 2 ‰ `h N ´1 ř k"n E " |δZ k | 2 ‰ . Set δ n :" N ´1 ř k"n E " |δY k | 2 ‰ , and
θ n :" E " |δY N | 2 `h|δZ N | 2 ‰ `h N ´1 ÿ k"n Q`1 ÿ q"2 E " 1 h 2 |ζ y k,q | 2 `|ζ z k,q | 2  . (3
δ n ď C ˜δN´1 `N´1 ÿ k"n
θ k e CpN ´k´1qh ¸ď Cθ n 1 e Ch ´1 . (3.5.20) This last inequality combined with (3.5.19) leads to

E " |δY n | 2 ‰ " δ n ´δn`1 ď Cθ n .
And for Z´part, the proof is concluded plugging (3.5.20) into (3.5.16) with n " 0 in this equation. Then, we conclude the proof

max nďkďN ´1 E " |δY k | 2 ‰ `h N ´1 ÿ k"n E " |δZ k | 2 ‰ ď Cθ n .
(3.5.21)

Proof of step 2 of Theorem 3.2.1

Denote

H n " H n 1 " H n 2,1 , that is Y n " E tn " Y n`1 `1 2 pf pY n , Z n q `f pY n`1 , Z n`1 qq ı , Z n " E tn " H n pY n`1 `hf pY n`1 , Z n`1 qq ı .
Then recalling (3.1.4) and (3.2.18), set Y n`1 " upt n`1 , X t n`1 q ": u t n`1 we have for 1 ď ď d,

Z n " E tn " pH n q pY n`1 `hf pY n`1 , Z n`1 qq ı " E tn " pH n q ´ut n`1 ´hu p0q t n`1 ¯ı " pu p q tn `hu p ,0q tn `Oph 2 qq ´hpu p ,0q tn `Ophqq " u p q tn `Oph 2 q " Z tn `Oph 2 q, (3.5.22)
which yields,

h N ´1 ÿ n"0 E " | Zn ´Zn | 2 ‰ " Oph 4 q. (3.5.23)
Using a first-order Taylor expansion, this leads to

f pY n , Zn q " f pY n , Z n q `d ÿ "1 p Zn ´Zn qB z f pY n , Z n q `Oph 2 q " ´up0q tn ´Oph 2 q d ÿ "1 u p ,0q tn `Oph 2 q " ´up0q tn `Oph 2 q. (3.5.24)
For the Y-part, we have

Ȳn " E tn " Y n`1 `h 2 f pY n`1 , Z n`1 q ı `h 2 f p Ȳn , Zn q " E tn " Y n`1 `h 2 f pY n`1 , Z n`1 q `h 2 f pY n , Zn q ı `h 2 pf p Ȳn , Zn q ´f pY n , Zn qq " E tn " u t n`1 ´h 2 u p0q t n`1 ´h 2 u p0q tn  `h 2 pf p Ȳn , Zn q ´f pY n , Zn qq `Oph 3 q. (3.5.25)
On the other hand,

u t n`1 " u tn `hu p0q tn `h2 2 u p0,0q tn `Oph 3 q, (3.5.26)
u p0q t n`1 " u p0q tn `hu p0,0q tn `Oph 2 q. (3.5.27) Hence,
Ȳn " Y n `h 2 pf p Ȳn , Zn q ´f pY n , Zn qq `Oph 3 q.

(3.5.28)

Observe that Ȳtn " Y tn `Ophq which leads to f p Ȳn , Zn q ´f pY n , Zn q " Ophq. (

Ȳn " Y n `Oph 2 q, (3.5.30) f p Ȳn , Zn q ´f pY n , Zn q " Oph 2 q.

(3.5.31)

Combine with (3.5.28) again, we have

Ȳn " Y n `Oph 3 q, (3.5.32)

1 h N ´1 ÿ i"0 E " | Ȳn ´Yn | 2 ‰ " Oph 4 q, (3.5.33)
which combine with (3.5.23) yields

T N " Oph 4 q. (3.5.34)
Part II

Probabilistic representation of integration by parts formulae for stochastic volatility models with unbounded drift 4.1 Introduction

In this work, we consider a two dimensional stochastic volatility model given by the solution of the following stochastic differential equation (SDE for short) with dynamics

$ ' ' ' ' & ' ' ' ' % S t " s 0 `ż t 0 rS s ds `ż t 0 σ S pY s qS s dW s , Y t " y 0 `ż t 0 b Y pY s q ds `ż t 0 σ Y pY s q dB s , dxB, W y s " ρ ds (4.1.1)
where the coefficients b Y , σ S , σ Y : R Ñ R are smooth functions, r P R, W and B are one-dimensional standard Brownian motions with correlation factor ρ P p´1, 1q both being defined on some probability space pΩ, F, Pq . The aim of this part is to prove a probabilistic representation formula for two integration by parts (IBP) formulae for the marginal law of the process pS, Y q at a given time maturity T . To be more specific, for a given starting point ps 0 , y 0 q P p0, 8q ˆR and a given finite time horizon T ą 0, we establish two Bismut-Elworthy-Li (BEL) type formulae for the two following quantities

B s 0 E rhpS T , Y T qs and B y 0 E rhpS T , Y T qs (4.1.2)
where h is a real-valued possibly non-smooth payoff function defined on r0, 8q ˆR. Such IBP formulae have attracted a lot of interest during the last decades both from a theoretical and a practical point of views as they can be further analyzed to derive properties related to the transition density of the underlying process or to develop Monte Carlo simulation algorithm among other practical applications, see e.g. Nualart [START_REF] Nualart | The Malliavin calculus and related topics[END_REF], Malliavin and Thalmaier [START_REF] Malliavin | Stochastic Calculus of Variations in Mathematical Finance[END_REF] and the references therein. They are also of major interest for computing sensitivities, also referred as to Greeks in finance, of arbitrage price of financial derivatives which is the keystone for hedging purpose, i.e. for protecting the value of a portfolio against some possible changes in sources of risk. The two quantities appearing in (4.1.2) corresponds respectively to the Delta and Vega of the European option with payoff hpS T , Y T q. For a more detailed discussion on this topic, we refer the interested reader to Fournié and al. [START_REF] Fournié | Applications of Malliavin calculus to Monte Carlo methods in finance[END_REF], [START_REF] Fournié | Applications of Malliavin calculus to Monte-Carlo methods in finance[END_REF] for IBP formulae related to European, Asian options and conditional expectations, Gobet and al. [START_REF] Gobet | Computation of Greeks for barrier and look-back options using Malliavin calculus[END_REF], [START_REF] Bernis | Monte Carlo evaluation of Greeks for multidimensional barrier and lookback options[END_REF] for IBP formulae related to some barrier or lookback options. Let us importantly point out that, from a numerical point of view, the aforementioned IBP formulae will inevitably involve a time discretization procedure of the underlying process and Malliavin weights, thus introducing two sources of error given by a bias and a statistical error, as it is already the case for the computation of the price ErhpS T , Y T qs.

Relying on a perturbation argument for the Markov semigroup generated by the couple pX, Y q, we first establish a probabilistic representation formula for the marginal law pS T , Y T q for a fixed prescribed maturity T ą 0 based on a simple Markov chain evolving along a random time grid given by the jump times of an independent renewal process. Such type of probabilistic representation formula was first derived in Bally and Kohatsu-Higa [4] for the marginal law of a multi-dimensional diffusion process and of some Lévy driven SDEs with bounded drift, diffusion and jump coefficients. Still in the case of bounded coefficients, it was then further investigated in Labordère and al. [START_REF] Henry-Labordère | Unbiased simulation of stochastic differential equations[END_REF], Agarwal and Gobet [2] for multi-dimensional diffusion processes and in Frikha and al. [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF] for one-dimensional killed processes. The major advantage of the aforementioned probabilistic formulae lies in the fact that an unbiased Monte Carlo simulation method directly stems from it. Thus, it may be used to numerically compute an option price with optimal complexity since its computation will be only affected by the statistical error. However, let us emphasize that in general the variance of the Monte Carlo estimator tends to be large or even infinite. In order to circumvent this issue, an importance sampling scheme based on the law of the jump times of the underlying renewal process has been proposed in Anderson and Kohatsu-Higa [START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF] in the multi-dimensional diffusion framework and in [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF] for one-dimensional killed processes.

The main novelty of our approach in comparison to the aforementioned works is that we allow the drift coefficient b Y to be possibly unbounded as it is the case in most stochastic volatility models (Stein-Stein, Heston, ...). Such boundedness condition on the drift coefficient has appeared persistently in the previous contributions and is actually essential since basically it allows to remove the drift in the choice of the approximation process in order to derive the probabilistic representation formula. Importantly, a direct application of the methodology developed in [4,[START_REF] Henry-Labordère | Unbiased simulation of stochastic differential equations[END_REF][START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF] does not work when the drift is unbounded. The key ingredient that we here develop in order to remove this restriction consists in choosing adequatly the approximation process around which the original perturbation argument of the Markov semigroup pX, Y q is done by taking into account the transport of the initial condition by the deterministic ordinary differential equation (ODE) having unbounded coefficient1 . The approximation process, or equivalently the underlying Markov chain on which the probabilistic representation is based, is then obtained from the original dynamics (4.1.1) by freezing the coefficients b Y , σ S and σ Y along the flow of this ODE. We stress that the previous choice is here crucial since it provides the adequate approximation process on which some good controls on the weights involved in the probabilistic representation formulae can be established. Roughly speaking, it allows to cancel the time singularity generated by the Malliavin IBP operators appearing in the weights. To the best of our knowledge, this feature appears to be new in this context.

Having this probabilistic representation formula at hand together with the tailormade Malliavin calculus machinery for this well-chosen underlying Markov chain, in the spirit of the BEL formula established in [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF] for killed diffusion processes with bounded drift coefficient, we rely on a propagation of the spatial derivatives forward in time then perform local IBP formulas on each time interval of the random time grid and eventually merge them in a suitable manner in order to establish the two BEL formulae for the two quantities (4.1.2). Following the ideas developed in [START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF], we achieve finite variance for the Monte Carlo estimators obtained from the probabilistic representation formulas of the couple pS T , Y T q and of both IBP formulae by selecting adequatly the law of the jump times of the renewal process. We finally provide some numerical tests illustrating our previous analysis. Let us eventually mention that 4.2. Preliminaries: assumptions, definition of the underlying Markov chain and related Malliavin calculus for sake of simplicity in the present chapter we have decided to consider only onedimensional processes S and Y but that some multi-dimensional generalizations of the above formulae could be achieved at the price of additional technicalities which we believe would be prejudicial to the understanding of the main idea.

This chapter is organized as follows. In Section 4.2, we introduce our assumptions on the coefficients, present the approximation process that will be the main building block for our perturbation argument as well as the Markov chain that will play a central role in our probabilistic representation for the marginal law of the process pX, Y q and for our IBP formulae. In addition, we construct the taillor-made Malliavin calculus machinery related to the underlying Markov chain upon which both IBP formulae are made. In Section 4.3, relying on the Markov chain introduced in Section 4.2, we establish in Theorem 4.3.1 the probabilistic representation formula for the coupled pS T , Y T q. In Section 4.4, we establish the BEL formulae for the two quantities appearing in (4.1.2). The main result of this section is Theorem 4.4.1. As a proof of concept, some numerical results are presented in Section 4.5. Clearly, we believe that one needs to study numerical issues in more details and these are left for later studies. The proofs of Theorem 4.3.1 and of some other technical but important results are postponed to the appendix of Section 4.6.

Notations:

For a fixed time T and positive integer n, we will use the following notation for time and space variables s n " ps 1 , ¨¨¨, s n q, x n " px 1 , ¨¨¨, x n q, the differentials ds n " ds 1 ¨¨¨ds n , dx n " dx 1 ¨¨¨dx n and also introduce the simplex ∆ n pT q :" ts n P r0, T s n : 0 ď s 1 ă ¨¨¨s n ď T u.

In order to deal with time-degeneracy estimates, we will often use the following space-time inequality: @p ě 0, q ą 0, @x P R, |x| p e ´q|x| 2 ď pp{p2qeqq p{2 . (

For two positive real numbers α and β, we define the Mittag-Leffler function z Þ Ñ E α,β pzq "

8 ř k"0 z k {Γpαk `βq.
For a positive integer d, we denote by C 8 p pR d q the space of real-valued functions which are infinitely differentiable on R d with derivatives of any order having polynomial growth.

Preliminaries: assumptions, definition of the underlying Markov chain and related Malliavin calculus

Assumptions

Throughout the chapter, we work on a probability space pΩ, F, Pq which is assumed to be rich enough to support all random variables that we will consider in what follows. We will work under the following assumptions on the coefficients:

(AR) The coefficients σ S and σ Y are bounded and smooth, in particular σ S and σ Y belong to C 8 b pRq. The drift coefficient b Y belongs to C 8 pRq and admits bounded derivatives of any order greater than or equal to one. In particular, the drift coefficient b Y may be unbounded.

(ND) There exists κ ě 1 such that for all x P R,

κ ´1 ď a S pxq ď κ, κ ´1 ď a Y pxq ď κ
where a S " σ 2 S and a Y " σ 2 Y . Therefore, without loss of generality, we will assume that both σ S and σ Y are positive function.

Apply Itô's lemma to X t " lnpS t q. We get

$ ' ' ' ' & ' ' ' ' % X t " x 0 `ż t 0 ´r ´1 2 a S pY s q ¯ds `ż t 0 σ S pY s q dW s , Y t " y 0 `ż t 0 b Y pY s q ds `ż t 0 σ Y pY s q dB s , dxB, W y s " ρ ds, (4.2.1)
with x 0 " lnps 0 q. Without loss of generality, we will thus work with the Markov semigroup associated to the process pX, Y q, namely P t hpx 0 , y 0 q " ErhpX t , Y t qs.

Choice of the approximation process

As already mentioned in the introduction, our strategy here is based on a probabilistic representation of the marginal law, in the spirit of the unbiased simulation method introduced for multi-dimensional diffusion processes by Bally and Kohatsu-Higa [4], see also Labordère and al. [START_REF] Henry-Labordère | Unbiased simulation of stochastic differential equations[END_REF], and investigated from a numerical perspective by Andersson and Kohatsu-Higa [START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF]. We also mention the recent contribution of one of the author with Kohatsu-Higa and Li [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF] for IBP formulae for the marginal law of one-dimensional killed diffusion processes. However, at this stage, it is important to point out that our choice of approximation process significantly differs from the four aforementioned references. Indeed, in the previous contributions, the drift is assumed to be bounded and basically plays no role so that one usually removes it in the dynamics of the approximation process. In order to handle the unbounded drift term b Y appearing in the dynamics of the volatility process, one has to take into account the transport of the initial condition by the ODE obtained by removing the noise in the dynamics of Y . To be more specific, we denote by pm t ps, yqq tPrs,T s , 0 ď s ď T , the unique solution to the ODE 9 m t " b Y pm t q with initial condition m s " y. Observe that by time-homogeneity of the coefficient b Y , one has m t ps, yq " m t´s p0, yq. We will simplify the notation when s " 0 and write m t py 0 q for m t p0, y 0 q. When there is no ambiguity, we will often omit the dependence with respect to the initial point y 0 and we only write m t for m t py 0 q. We now introduce the approximation process p X, Ȳ q defined by Observe that the couple p Xx 0 t , Ȳ y 0 t q tě0 is a Gaussian process. We will make intensive use of the explicit form of the Markov semigroup p Pt q tPr0,T s defined for any bounded measurable map h : R 2 Ñ R by Pt hpx 0 , y 0 q " Erhp Xx 0 t , Ȳ y 0 t qs.

$ ' ' ' ' & ' ' ' ' % Xx 0 t " x 0 `ż t 0 pr ´1 2 a S pm s qq ds `ż t 0 σ S pm s q dW s , Ȳ y 0 t " y 0 `ż t 0 b Y pm s q ds `ż t 0 σ Y pm s q dB s , dxB, W y s " ρ ds. (4
Lemma 4.2.1 Let px 0 , y 0 q P R 2 , ρ P p´1, 1q and t P p0, 8q. Then, for any bounded and measurable map h : R 2 Ñ R, it holds

Pt hpx 0 , y 0 q " ż R 2
hpx, yq ppt, x 0 , y 0 , x, yq dxdy (4.2.3)

with ppt, x 0 , y 0 , x, yq " 1 2πσ S,t σ Y,t a 1 ´ρ2 t exp ´´1 2 px ´x0 ´prt ´1 2 a S,t qq 2 a S,t p1 ´ρ2 t q ´1 2 py ´mt q 2 a Y,t p1 ´ρ2 t q ēxp ´ρt p1 ´ρ2 t q px ´x0 ´prt ´1 2 a S,t qqpy ´mt q σ S,t σ Y,t
where we introduced the notations a S,t " a S,t py 0 q :" σ 2 S,t :"

ż t 0 a S pm s py 0 qq ds, a Y,t " a Y,t py 0 q :" σ 2 Y,t :" ż t 0 a Y pm s py 0 qq ds,
σ S,Y,t " σ S,Y,t py 0 q :" ż t 0 pσ S σ Y qpm s py 0 qq ds, ρ t :" ρσ S,Y,t {pσ S,t σ Y,t q.

Moreover, there exists some positive constant C :" CpT, ρ, a, r, κq such that for any t P p0, T s ppt, x 0 , y 0 , x, yq ď C q4κ pt, x 0 , y 0 , x, yq (

where, for a positive parameter c, we introduced the density function px, yq Þ Ñ qc pt, x 0 , y 0 , x, yq :" 1 2πct exp ´´px ´x0 q 2 2ct ´py ´mt q 2 2ct ¯.

Proof. We write

p Xx 0 t , Ȳ y 0 t q " ´x0 `rt ´1 2 a S,t `ż t 0 σ S pm s q dW s , m t `ż t 0 σ Y pm s q ´ρdW s `a1 ´ρ2 d Ă W s ¯where Ă
W is a one-dimensional standard Brownian motion independent of W . We thus deduce that p Xx 0 t , Ȳ y 0 t q " N pµpt, x 0 , y 0 q, Σ t q with µpt, x 0 , y 0 q " ´x0 `rt

´1 2 a S,t , m t ¯and Σ t " ˆaS,t ρσ S,Y,t ρσ S,Y,t a Y,t ˙.
The expression of the transition density then readily follows. Now, from (ND), it is readily seen that a S,t , a Y,t ď κt so that using the inequalities ab ď 1 2 a 2 `1 2 b 2 , pa ´bq 2 ě 1 2 a 2 ´b2 and ρ 2 t ď ρ 2 ď 1, it holds ppt, x 0 , y 0 , x, yq

" 1 2πσ S,t σ Y,t a 1 ´ρ2 t exp ´´1 2 px ´x0 ´prt ´1 2 a S,t qq 2 a S,t p1 ´ρ2 t q ´1 2 py ´mt q 2 a Y,t p1 ´ρ2 t q ēxp ´ρt 1 ´ρ2 t px ´x0 ´prt ´1 2 a S,t qqpy ´mt q σ S,t σ Y,t ď C 1 2πκt exp ´´1 2 px ´x0 ´prt ´1 2 a S,t qq 2 a S,t p1 ´ρ2 t q p1 ´|ρ t |q ´1 2 py ´mt q 2 a Y,t p1 ´ρ2 t q p1 ´|ρ t |q ď C 1 2πp4κqt exp ´´p4κq ´1 px ´x0 q 2 2t ´p4κq ´1 py ´mt q 2 2t
":

C q4κ pt, x 0 , y 0 , x, yq
for some positive constants C :" CpT, λ, ρ, a, r, κq.

We will also use the notation p Xs,x t , Ȳ s,y t q těs for the approximation process starting from px, yq at time s and with coefficients frozen along the deterministic flow tm t ps, yq " m t´s pyq, t ě su. Note that the corresponding Markov semigroup satisfies Ps,t hpx, yq :" E " hp Xs,x t , Ȳ s,y t q

‰ " E " hp Xx t´s , Ȳ y t´s q ‰ " Pt´s hpx, yq.

Markov chain on random time grid

The first tool that we will employ is a renewal process N that we now introduce.

Definition 4.2.1 Let τ :" pτ n q ně0 be a sequence of random variables such that pτ n ´τn´1 q ně1 , with the convention τ 0 " 0, are i.i.d. with positive density function f and cumulant distribution function t Þ Ñ F ptq " ş t ´8 f psq ds and τ is independent of pW s , B s q 0ďsďT . Then, the renewal process N :" pN t q tě0 with jump times τ is defined by N t :" ř ně1 1 tτnďtu . It is readily seen that, for any t ą 0, tN t " nu " tτ n ď t ă τ n`1 u and by an induction argument that we omit, one may prove that the joint distribution of pτ 1 , ¨¨¨, τ n q is given by

Ppτ 1 P ds 1 , ¨¨¨, τ n P ds n q " n´1 ź j"0 f ps j`1 ´sj q1 t0ăs 1 㨨¨ăsnu which in turn implies Er1 tNt"nu Φpτ 1 , ¨¨¨, τ n qs " Er1 tτnďtăτ n`1 u Φpτ 1 , ¨¨¨, τ n qs " ż 8 t ż ∆nptq Φps 1 , ¨¨¨, s n q n ź j"0 f ps j`1 ´sj q ds n`1
with the convention s 0 " 0. Hence, by Fubini's theorem, it holds

Er1 tNt"nu Φpτ 1 , ¨¨¨, τ n qs " ż ∆nptq Φps 1 , ¨¨¨, s n qp1 ´F pt ´sn qq n´1 ź j"0 f ps j`1 ´sj q ds n (4.2.6)
for any measurable map Φ : ∆ n ptq Ñ R satisfying Er1 tNt"nu |Φpτ 1 , ¨¨¨, τ n q|s ă 8.

Usual choices that we will consider are the followings.

Example 4.2.2 1. If the density function f is given by f ptq " λe ´λt 1 r0,8q ptq for some positive parameter λ, then N is a Poisson process with intensity λ.

2. If the density function f is given by f ptq " 1´α τ 1´α 1 t α 1 r0,τ s ptq for some parameters pα, τ q P p0, 1q ˆpT, 8q, then N is a renewal process with r0, τ s-valued Betap1 ά, 1q jump times.

More generally, if the density function f is given by f ptq " τ 1´α´β

Bpα,βq 1 t 1´α pτ ´tq 1´β 1 r0,τ s ptq for some parameters pα, β, τ q P p0, 1q 2 ˆpT, 8q, then N is a renewal process with r0, τ s-valued Betapα, βq jump times.

Given a sequence Z " pZ 1 n , Z 2 n q ně1 of i.i.d. random vector with law N p0, I 2 q which is independent of pW, Bq and a renewal process N independent of Z with jump times pτ i q iě0 , we set ζ i " τ i ^T , with the convention ζ 0 " 0, and we consider the two-dimensional Markov chain p X, Ȳ q with p X0 , Ȳ0 q " px 0 , y 0 q at time 0 (evolving on the random time grid pζ i q iě0) and with dynamics for any 0

ď i ď N T $ & % Xi`1 " Xi `´rpζ i`1 ´ζi q ´1 2 a S,i ¯`σ S,i Z 1 i`1 , Ȳi`1 " m i `σY,i ´ρi Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 ¯, (4.2.7)
where we introduced the notations a S,i :" σ 2 S,i :" a S,ζ i`1 ´ζi p Ȳi q "

ż ζ i`1 ´ζi 0 a S pm s p Ȳi qq ds, a Y,i :" σ 2 Y,i :" a Y,ζ i`1 ´ζi p Ȳi q " ż ζ i`1 ´ζi 0 a Y pm s p Ȳi qq ds, σ S,Y,i :" ż ζ i`1 ´ζi 0 pσ S σ Y qpm s p Ȳi qq ds, ρ i :" ρ ζ i`1 ´ζi p Ȳi q " ρ σ S,Y,i σ S,i σ Y,i , m i :" m ζ i`1 ´ζi p Ȳi q.
We will denote by σ 1 S,i the first derivative of y Þ Ñ σ S,i pyq taken at Ȳi and proceed similarly for the quantities σ 1 Y,i , σ 1 S,Y,i , ρ 1 i and m 1 i . We define the filtration G " pG i q iě0 where G i " σpZ 1 j , Z 2 j , 1 ď j ď iq, for i ě 1 and G 0 stands for the trivial σfield. We assume that the filtration G satisfies the usual conditions. For an integer n, we will use the notations ζ n " pζ 0 , ¨¨¨, ζ n q and τ n " pτ 0 , ¨¨¨, τ n q.

Tailor-made Malliavin calculus for the Markov chain p X, Ȳ q.

In this section we introduce a tailor-made Malliavin calculus for the underlying Markov chain p X, Ȳ q defined by (4.2.7) which will be employed in order to establish our IBP formulae. Instead of using an infinite dimensional calculus as it is usually done in the literature, see e.g. Nualart [START_REF] Nualart | The Malliavin calculus and related topics[END_REF], the approach developed below is based on a finite dimensional calculus for which the dimension is given by the number of jumps of the underlying renewal process involved in the Markov chain p X, Ȳ q. Definition 4.2.3 Let n P N. For any i P t0, ¨¨¨, nu, we define the set S i,n p X, Ȳ q, as the space of random variables H such that • H " hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q, on the set tN T " nu, where we recall ζ n`1 :" pζ 0 , ¨¨¨, ζ n`1 q " p0, ζ 1 , ¨¨¨, ζ n , T q.

• For any s n`1 P ∆ n`1 pT q, the map hp., ., ., ., s n`1 q P C 8 p pR 4 q.

For a r.v. H P S i,n p X, Ȳ q, we will often abuse the notations and write

H " Hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q
that is the same symbol H may denote the r.v. or the function in the set S i,n p X, Ȳ q.

One can easily define the flow derivatives for H P S i,n p X, Ȳ q as follows

B Xi`1 H " B 3 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q, B Ȳi`1 H " B 4 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q, B Xi H " B 1 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q `B3 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 qB Xi Xi`1 , B Ȳi H " B 2 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q `B3 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 qB Ȳi Xi`1 `B4 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 qB Ȳi Ȳi`1 ,
and from the dynamics (4.2.7)

B Xi Xi`1 " 1, B Ȳi Ȳi`1 " m 1 i `σ1 Y,i ´ρi Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 ¯`σ Y,i ρ 1 i b 1 ´ρ2 i ˆb1 ´ρ2 i Z 1 i`1 ´ρi Z 2 i`1 ˙, (4.2.8)
B Ȳi Xi`1 " ´1 2 a 1 S,i `σ1 S,i Z 1 i`1 " ´1 2 a 1 S,i `σ1 S,i σ S,i ´X i`1 ´X i ´´rpζ i`1 ´ζi q ´1 2 a S,i ¯¯. (4.2.9)
We now define the integral and derivative operators for H P S i,n p X, Ȳ q, as

I p1q i`1 pHq " H " Z 1 i`1 σ S,i p1 ´ρ2 i q ´ρi 1 ´ρ2 i ρ i Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 σ S,i ı ´Dp1q i`1 H, (4.2.10)
I p2q i`1 pHq " H " ρ i Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 σ Y,i p1 ´ρ2 i q ´ρi 1 ´ρ2 i Z 1 i`1 σ Y,i ı ´Dp2q i`1 H, (4.2.11)
D p1q i`1 H " B Xi`1 H, (4.2.12)
D p2q i`1 H " B Ȳi`1 H. (4.2.13)
Note that due to the above definitions and assumptions (AR) and (ND), it is readily checked that I i`1 H are elements of S i,n p X, Ȳ q so that we can define iterations of the above operators. Namely, by induction, for 153 4.2. Preliminaries: assumptions, definition of the underlying Markov chain and related Malliavin calculus a multi-index α " pα 1 , ¨¨¨, α p q of length p with α i P t1, 2u and α p`1 P t1, 2u, we define

I pα,α p`1 q i`1 pHq " I pα p`1 q i`1 pI pαq i`1 pHqq, D pα,α p`1 q i`1 H " D pα p`1 q i`1 pD pαq i`1 Hq
with the intuitive notation pα, α p`1 q " pα 1 , ¨¨¨, α p`1 q.

Throughout the chapter, we will use the following notation for a certain type of conditional expectation that will be frequently employed. For any X P L 1 pPq and any i P t0, ¨¨¨, nu,

E i,n rXs " ErX|G i , τ n`1 , N T " ns
where we recall that we employ the notation τ n`1 " pτ 0 , ¨¨¨, τ n`1 q. Having the above definitions and notations at hand, the following duality formula is satisfied: for any non-empty multi-index α of length p, with α i P t1, 2u, for any i P t1, ¨¨¨, pu, p being a positive integer, it holds

E i,n " D pαq i`1 f p Xi`1 , Ȳi`1 qH ı " E i,n " f p Xi`1 , Ȳi`1 qI pαq i`1 pHq ı . (4.2.14)
In order to obtain explicit norm estimates for random variables in S i,n p X, Ȳ q, it is useful to define for H P S i,n p X, Ȳ q, i P t0, ¨¨¨, nu and p ě 1 }H} p p,i,n " E i,n r|H| p s.

We will also employ a chain rule formula for the integral operators defined above.

Lemma 4.2.2 Let H " Hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q P S i,n p X, Ȳ q, for some i P t0, ¨¨¨, nu. The following chain rule formulae hold for any pα 1 , α 2 q P t1, 2u 2

B Xi I pα 1 q i`1 pHq " I pα 1 q i`1 pB Xi Hq, B Xi I pα 1 ,α 2 q i`1 pHq " I pα 1 ,α 2 q i`1 pB Xi Hq. (4.2.15)
Moreover, one has

B Ȳi I p1q i`1 pHq " I p1q i`1 pB Ȳi Hq ´σ1 S,i σ S,i I p1q i`1 pHq ´ρ1 i 1 ´ρ2 i σ Y,i σ S,i I p2q i`1 pHq, (4.2.16)
B Ȳi I p2q i`1 pHq " I p2q i`1 pB Ȳi Hq ´˜σ 1 Y,i σ Y,i ´ρ1 i ρ i 1 ´ρ2 i ¸Ip2q i`1 pHq, (4
B Ȳi I p1q i`1 p1q " ´σ1 S,i σ S,i I p1q i`1 p1q ´ρ1 i 1 ´ρ2 i σ Y,i σ S,i I p2q i`1 p1q, B Ȳi I p2q i`1 p1q " ´˜σ 1 Y,i σ Y,i ´ρ1 i ρ i 1 ´ρ2 i ¸Ip2q i`1 p1q.
We thus deduce

B Xi I pα 1 q i`1 pHq " B Xi HI pα 1 q i`1 p1q `HB Xi I pα 1 q i`1 p1q ´B Xi D pα 1 q i`1 H " B Xi HI pα 1 q i`1 p1q ´Dpα 1 q i`1 pB Xi Hq " I pα 1 q i`1 pB Xi Hq
where we used the fact D

pα 1 q i`1 B Xi H " B Xi D pα 1 q
i`1 H which easily follows by direct computation. As a consequence, it is readily seen that

B Xi I pα 1 ,α 2 q i`1 pHq " B Xi I pα 2 q i`1 pI pα 1 q i`1 pHqq " I pα 2 q i`1 pB Xi I pα 1 q i`1 pHqq " I pα 2 q i`1 pI pα 1 q i`1 pB Xi Hqq " I pα 1 ,α 2 q i`1 pB Xi Hq.
This concludes the proof of (4

q i`1 B Ȳi H ‰ B Ȳi D pα 1 q
i`1 H. Indeed, by standard computations, it holds where we used the two identities B Xi`1 B Ȳi Xi`1 "

B Ȳi D p1q i`1 H " B Ȳi B Xi`1 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q " B 2 2,3 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q `B2 3 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 qB Ȳi Xi`1 `B2 4,3 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 qB Ȳi Ȳi`1 , D p1q i`1 B Ȳi H " B Xi`1 B Ȳi hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q " B Xi`1 pB 2 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q `B3 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 qB Ȳi Xi`1 `B4 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 qB Ȳi Ȳi`1 q " B 2 3,2 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q `B2 3 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 qB Ȳi Xi`1 `B3 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 qB Xi`1 B Ȳi Xi`1 `B2 3,4 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 qB Ȳi Ȳi`1 `B4 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 qB Xi`1 B Ȳi Ȳi`1 " B Ȳi D p1q i`1 H `B3 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 qB Xi`1 B Ȳi Xi`1 `B4 hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 qB Xi`1 B Ȳi Ȳi`1 " B Ȳi D p1q i`1 H `Dp1q i`1 HB Xi`1 B Ȳi Xi`1 `Dp2q i`1 HB Xi`1 B Ȳi Ȳi`1 " B Ȳi D p1q i`1 H `σ1
σ 1 S,i
σ S,i and B Xi`1 B Ȳi Ȳi`1 "

ρ 1 i 1´ρ 2 i σ Y,i σ S,i
which readily stems from (4.2.8), (4.2.9) and the dynamics (4.2.7). From (4.2.10) and the previous identity, we thus obtain

B Ȳi I p1q i`1 pHq " B Ȳi I p1q i`1 p1qH `Ip1q i`1 p1qB Ȳi H ´B Ȳi D p1q i`1 H " ´σ1 S,i σ S,i I p1q i`1 p1qH ´ρ1 i 1 ´ρ2 i σ Y,i σ S,i I p2q i`1 p1qH `Ip1q i`1 p1qB Ȳi H ´Dp1q i`1 B Ȳi H `σ1 S,i σ S,i D p1q i`1 H `ρ1 i 1 ´ρ2 i σ Y,i σ S,i D p2q i`1 H " ´σ1 S,i σ S,i ´Ip1q i`1 p1qH ´Dp1q i`1 H ¯`I p1q i`1 p1qB Ȳi H ´Dp1q i`1 B Ȳi H ´ρ1 i 1 ´ρ2 i σ Y,i σ S,i ´Ip2q i`1 p1qH ´Dp2q i`1 H " I p1q i`1 pB Ȳi Hq ´σ1 S,i σ S,i I p1q i`1 pHq ´ρ1 i 1 ´ρ2 i σ Y,i σ S,i I p2q i`1 pHq.
Similarly, after some algebraic manipulations using (4.2.7) and (4.2.8), we get

B Ȳi`1 B Ȳi Ȳi`1 " σ 1 Y,i σ Y,i ´ρ1 i ρ i 1´ρ 2 i so that D p2q i`1 B Ȳi H " B Ȳi D p2q i`1 H `Dp2q i`1 HB Ȳi`1 B Ȳi Ȳi`1 " B Ȳi D p2q i`1 H `˜σ 1 Y,i σ Y,i ´ρ1 i ρ i 1 ´ρ2 i ¸Dp2q i`1 H
so that, omitting some technical details, we get

B Ȳi I p2q i`1 pHq " I p2q i`1 pB Ȳi Hq ´˜σ 1 Y,i σ Y,i ´ρ1 i ρ i 1 ´ρ2 i ¸Ip2q i`1 p1qH `˜σ 1 Y,i σ Y,i ´ρ1 i ρ i 1 ´ρ2 i ¸Dp2q i`1 H " I p2q i`1 pB Ȳi Hq ´˜σ 1 Y,i σ Y,i ´ρ1 i ρ i 1 ´ρ2 i ¸Ip2q i`1 pHq.
The identities (4.2.18), (4.2.19) and (4.2.20) eventually follows from (4.2.16) and (4.2.17) using some simple algebraic computations.

We conclude this section by introducing the following space of random variables which satisfy some time regularity estimates. Definition 4.2.4 Let P Z and n P N. For any i P t0, ¨¨¨, nu, we define the space M i,n p X, Ȳ , {2q as the set of finite random variables H P S i,n p X, Ȳ q satisfying the following time regularity estimate: for any p ě 1, for any c ą 0, there exists some positive constants C :" CpT, cq, c 1 :" c 1 pcq, T Þ Ñ CpT, cq being non-decreasing and c 1 being independent of T , such that for any px i , y i , x i`1 , y i`1 , s n`1 q P R 4 ˆ∆n`1 pT q, |Hpx i , y i , x i`1 , y i`1 , s n`1 q| p qc ps i`1 ´si , x i , y i , x i`1 , y i`1 q (4.2.21)

ď Cps i`1 ´si q p 2 qc 1 ps i`1 ´si , x i , y i , x i`1 , y i`1 q
where the density function R 2 Q px i`1 , y i`1 q Þ Ñ qc ps i`1 ´si , x i , y i , x i`1 , y i`1 q is defined in Lemma 4.2.1.

We again remark that since the space M i,n p X, Ȳ , {2q is a subset of S i,n p X, Ȳ q, when we say that a random variable M i,n p X, Ȳ , {2q this statement is always understood on the set tN T " nu.

Before proceeding, let us provide a simple example of some random variables that belong to the aforementioned space. From (4.2.10) and the dynamics (4.2.7) of the Markov chain p X, Ȳ q, it holds

I p1q i`1 p1q " Xi`1 ´X i ´prpζ i`1 ´ζi q ´1 2 a S,i q a S,i p1 ´ρ2 i q ´ρi 1 ´ρ2 i Ȳi`1 ´mi σ S,i σ Y,i , I p1,1q i`1 p1q " pI p1q i`1 p1qq 2 ´Dp1q i`1 pI p1q i`1 p1qq " pI p1q i`1 p1qq 2 ´1 a S,i p1 ´ρ2 i q
, so that, I p1q i`1 p1q and I p1,1q

i`1 p1q belong to S i,n p X, Ȳ q. Moreover, under (ND), for any p ě 1, it holds

ˇˇI p1q i`1 p1qpx i , y i , x i`1 , y i`1 , s n`1 q ˇˇp ď C ´1 `|x i`1 ´xi | p ps i`1 ´si q p `|y i`1 ´mi py i q| p ps i`1 ´si q p ānd similarly, ˇˇI p1,1q i`1 p1qpx i , y i , x i`1 , y i`1 , s n`1 q ˇˇp ď C ´1`1 ps i`1 ´si q p `|x i`1 ´xi | 2p ps i`1 ´si q 2p `|y i`1 ´mi py i q| 2p ps i`1 ´si q 2p ¯.
Hence, from the space-time inequality (4.1.3), for any c ą 0 and any c 1 ą c, it holds ˇˇI p1q i`1 p1qpx i , y i , x i`1 , y i`1 , s n`1 q ˇˇp qc ps i`1 ´si , x i , y i , x i`1 , y i`1 q ď Cps i`1 ´si q ´p 2 qc 1 ps i`1 ´si , x i , y i , x i`1 , y i`1 q and ˇˇI p1,1q i`1 p1qpx i , y i , x i`1 , y i`1 , s n`1 q ˇˇp qc ps i`1 ´si , x i , y i , x i`1 , y i`1 q ď Cps i`1 ´si q ´p qc 1 ps i`1 ´si , x i , y i , x i`1 , y i`1 q for some positive constant C :" CpT q, T Þ Ñ CpT q being non-decreasing. We thus conclude that I p1q i`1 p1q P M i,n p X, Ȳ , ´1{2q and I p1,1q i`1 p1q P M i,n p X, Ȳ , ´1q for any i P t0, ¨¨¨, nu.

A straightforward generalization of the above example is the following property that will be frequently used in the sequel. We omit its proof. Lemma 4.2.3 Fix n P N and i P t0, ¨¨¨, nu.

• Let 1 , 2 P Z and H 1 P M i,n p X, Ȳ , 1 {2q, H 2 P M i,n p X, Ȳ , 2 {2q. Then, one has H 1 H 2 P M i,n p X, Ȳ , p 1 ` 2 q{2q.

• Let P Z and H P M i,n p X, Ȳ , {2q such that D pα 1 q i`1 H P M i,n p X, Ȳ , 1 {2q for some α 1 P t1, 2u and 1 P Z.

-It holds that I pα 1 q i`1 pHq P M i,n p X, Ȳ , pp ´1q ^ 1 q{2q and pζ i`1 ´ζi qI pα 1 q i`1 pH 1 q P 157 4.3. Probabilistic representation for the couple pS T , Y T q.

M i,n p X, Ȳ , pp `1q ^p 1 `2qq{2q.

-Assume additionally that D pα 1 ,α 2 q i`1 H P M i,n p X, Ȳ , 2 {2q for some 2 P Z and α 2 P t1, 2u. Then it holds that I pα 1 ,α 2 q i`1 pHq P M i,n p X, Ȳ , pp ´2q ^p 1 ´1q ^ 2 q{2q.

Finally, we importantly emphasize that if H P M i,n p X, Ȳ , {2q for some n P N, i P t0, ¨¨¨, nu and P Z, then, its conditional L p pPq-moment is finite and also satisfies a time regularity estimate. More precisely, for any p ě 1, it holds

}H} p,i,n ď Cpζ i`1 ´ζi q {2 (4.2.22)
for some positive constant C :" CpT q, T Þ Ñ CpT q being non-decreasing. Indeed, using the fact that the sequence Z is independent of N as well as the upper-estimate (4.2.4) of Lemma 4.2.1 and finally (4.2.21), one directly gets

}H} p p,i,n " E " |Hp Xi , Ȳi , Xi`1 , Ȳi`1 , ζ n`1 q| p ˇˇX i , Ȳi , τ n`1 , N T " n ı " ż R 2 |Hp Xi , Ȳi , x i`1 , y i`1 , ζ n`1 q| p ppζ i`1 ´ζi , Xi , Ȳi , x i`1 , y i`1 q dx i`1 dy i`1 ď C ż R 2 |Hp Xi , Ȳi , x i`1 , y i`1 , ζ n`1 q| p q4κ pζ i`1 ´ζi , Xi , Ȳi , x i`1 , y i`1 q dx i`1 dy i`1 ď Cpζ i`1 ´ζi q p {2
so that (4.2.22) directly follows. The previous conditional L p pPq-moment estimate will be used at several places in the sequel.

Probabilistic representation for the couple pS T , Y T q.

In this section, we establish a probabilistic representation for the marginal law pS T , Y T q, or equivalently, for the law of pX T , Y T q which is based on the Markov chain p X, Ȳ q introduced in the previous section. For γ ą 0, we denote by B γ pR 2 q the set of Borel measurable map h : R 2 Ñ R satisfying the following exponential growth assumption at infinity, namely, for some positive constant C, for any px, yq P R 2 , |hpx, yq| ď C exppγp|x| 2 `|y| 2 qq. (4.3.1) Theorem 4.3.1 Let T ą 0. Under assumptions (AR) and (ND), the law of the couple pX T , Y T q given by the unique solution to the SDE (4.2.1) at time T starting from px 0 " lnps 0 q, y 0 q at time 0 satisfies the following probabilistic representation: there exists a positive constant c :" cpT, b Y , κq such that for any 0 ď γ ă c ´1 and any h P B γ pR 2 q, it holds

ErhpX T , Y T qs " E " hp XN T `1, ȲN T `1q N T `1 ź i"1 θ i ı (4.3.2)
where the random variables θ i P S i´1,n p X, Ȳ q, 1 ď i ď N T are defined by θ i " pf pζ i ´ζi´1 qq

´1" I p1,1q i pc i S q ´Ip1q i pc i S q `Ip2,2q i pc i Y q `Ip2q i pb i Y q `Ip1,2q i pc i Y,S q ı , (4
c i Y :" 1 2 ´aY p Ȳi q ´aY pm i´1 q ¯, b i Y :" b Y p Ȳi q ´bY pm i´1 q, c i Y,S :" ρppσ S σ Y qp Ȳi q ´pσ S σ Y qpm i´1 qq.
Assume furthermore that N is a renewal process with Betapα, 1q jump times. For any p ě 1 satisfying pp 1 2 ´αq ď 1 ´α, for any γ such that 0 ď pγ ă c ´1 and any h P B γ pR 2 q, the random variable appearing inside the expectation in the right-hand side of (4.3.2) admits a finite L p pPq-moment. In particular, if α " 1{2 then for any p ě 1, for any h P B γ pR 2 q with 0 ď pγ ă c ´1, the L p pPq-moment is finite.

The proof of Theorem 4.3.1 is postponed to Appendix 4.6.1.

Remark 4.3.2

The strategy to establish a probabilistic representation formula for the couple pX T , Y T q follows similar lines to the one implemented in [4,[START_REF] Andersson | Unbiased simulation of stochastic differential equations using parametrix expansions[END_REF][START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF]. The central argument consists in a perturbation argument of the Markov semigroup associated to the original process pX t , Y t q tě0 around the one generated by an approximation process p Xt , Ȳt q tě0 . As previously mentioned, the main difference here with respect to the aforementioned references lies exactly in the choice of this approximation process around which this perturbation argument is performed, see Section 4.2.2 for its definition. This choice is crucial and leads to a specification of the weights pθ i q 1ďiďN T `1, see (4.3.3)- (4.3.4), that is different from the previous works. The main difficulty then consists in proving that the conditional L 1 pPq-moment of the weights θ i are of the correct order, that is, they do not lead to a non-integrable time singularity as hinted in the estimate (4.2.21) (with p " 1) of Definition 4.2.4. Roughly speaking, these weights are given by Malliavin IBP operators of order 1 or 2 applied to the difference of the coefficients appearing in the infinitesimal generators associated to pX t , Y t q tě0 and p Xt , Ȳt q tě0 . As discussed right after the Definition 4.2.4, the Malliavin IBP operator I p1,1q i`1 p1q P M i,n p X, Ȳ , ´1q so that it generates a non-integrable time singularity of order one and the same conclusion holds true for I p2,2q i`1 p1q and I p1,2q i`1 p1q. However, the coefficients

c i S , c i Y , b i Y , c i Y,S
appearing inside these Malliavin IBP operators, which write as the difference of the coefficients evaluated along the dynamics (4.2.7) between two consecutive times, allow to remove this time singularity. We refer the reader to the technical Lemma 4.6.2 for a rigorous proof of this claim.

Integration by parts formulae

In this section, we establish two IBP formulae for the law of the couple pS T , Y T q. More precisely, we are interested in providing a Bismut-Elworthy-Li formula for the Our strategy is divided into two steps as follows:

Step 1: The first step was performed with the probabilistic representation established in Theorem 4.3.1 for the couple pX T , Y T q involving the two-dimensional Markov chain p X, Ȳ q evolving on a time grid governed by the jump times of the renewal process N . Introducing hpx, yq " f pe x , yq and assuming that f is of polynomial growth at infinity, it is sufficient to consider the two quantities

B s 0 E " hp XN T `1, ȲN T `1q N T `1 ź i"1 θ i ı , B y 0 E " hp XN T `1, ȲN T `1q N T `1 ź i"1 θ i ı
recalling that x 0 " lnps 0 q.

Step 2: At this stage, one might be tempted to perform a standard IBP formula as presented in Nualart [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] on the whole time interval r0, T s. However, such a strategy is likely to fail. The main reason is that the Skorokhod integral of the product of weights ś N T `1 i"1 θ i will inevitably involve the Malliavin derivative of θ i which will in turn raise some integrability issues of the resulting Malliavin weight.

The key idea that we use in order to circumvent this issue consists in performing local IBP formulae on each of the random intervals rζ i , ζ i`1 s, i " 0, ¨¨¨, N T , that is, by using the noise of the Markov chain on this specific time interval and then by combining all these local IBP formulae in a suitable way.

To implement successfully our strategy, two main ingredients are needed. Our first ingredient consists in transferring the partial derivatives B s 0 and B y 0 on the expectation forward in time from the first time interval r0, ζ 1 s to the interval on which we perform the local IBP formula, say rζ i , ζ i`1 s. Our second ingredient consists in combining these various local IBP formulae in an adequate manner. Roughly speaking, we will consider a weighted sum of each IBP formula, the weight being precisely the length of the corresponding time interval.

The transfer of derivative formula

Lemma 4.4.1 Let h P C 1 p pR 2 q and n P N. The maps

R 2 Q px, yq Þ Ñ E i,n " hp Xi`1 , Ȳi`1 q θ i`1 |p
Xi , Ȳi q " px, yq ı , i P t0, ¨¨¨, nu, belong to C 1 p pR 2 q a.s. Moreover, the following transfer of derivative formulae hold

B s 0 E 0,n " hp X1 , Ȳ1 qθ 1 ı " E 0,n " B X1 hp X1 , Ȳ1 q θ 1 s 0 ı (4.4.1)
while for 1 ď i ď n,

B Xi E i,n " hp Xi`1 , Ȳi`1 qθ i`1 ı " E i,n " B Xi`1 hp Xi`1 , Ȳi`1 qθ i`1 ı . (4.4.2)
Similarly, the following transfer of derivative formulae hold: for any 0 ď i ď n´1

B Ȳi E i,n " hp Xi`1 , Ȳi`1 qθ i`1 ı " E i,n " B Ȳi`1 hp Xi`1 , Ȳi`1 q Ý Ñ θ e,Y i`1 ı `Ei,n " B Xi`1 hp Xi`1 , Ȳi`1 q Ý Ñ θ e,X i`1 ı `Ei,n " hp Xi`1 , Ȳi`1 q Ý Ñ θ c i`1 ı (4.4.3) with Ý Ñ θ e,Y i`1 " pf pζ i`1 ´ζi qq ´1" I p1,1q i`1 pd i`1 S q `Ip2,2q i`1 pd i`1 Y q `Ip1q i`1 pe Y,i`1 S q `Ip2q i`1 pe Y,i`1 Y q `Ip1,2q i`1 pd i`1 Y,S q ı , Ý Ñ θ e,X i`1 " pf pζ i`1 ´ζi qq ´1I p1q i`1 pe X,i`1 S q, Ý Ñ θ c i`1 " I p1q i`1 ´B Ȳi Xi`1 θ i`1 ´Ý Ñ θ e,X i`1 ¯`B Ȳi θ i`1 `Ip2q i`1 « m 1 i θ i`1 ´Ý Ñ θ e,Y i`1 `´σ 1 Y,i ´ρi Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 ¯`σ Y,i ρ 1 i b 1 ´ρ2 i ´b1 ´ρ2 i Z 1 i`1 ´ρi Z 2 i`1 ¯¯θ i`1 ff , d i`1 S " m 1 i c i`1 S , d i`1 Y " m 1 i c i`1 Y , d i`1 Y,S " m 1 i c i`1 Y,S , e Y,i`1 S " ´m1 i c i`1 S `B Ȳi c i`1 Y,S , e Y,i`1 Y " m 1 i b i`1 Y `B Ȳi c i`1 Y , e X,i`1 S " B Ȳi c i`1 S .
For i " n, one also has

B Ȳn E n,n " hp Xn`1 , Ȳn`1 qθ n`1 ı " E n,n " B Ȳn`1 hp Xn`1 , Ȳn`1 q Ý Ñ θ e,Y n`1 ı `En,n " B Xn`1 hp Xn`1 , Ȳn`1 q Ý Ñ θ e,X n`1 ı `En,n " hp Xn`1 , Ȳn`1 q Ý Ñ θ c n`1 ı (4.4.4) with Ý Ñ θ e,Y n`1 " p1 ´F pT ´ζn qq ´1´m 1 n `σ1 Y,n ´ρn Z 1 n`1 `a1 ´ρ2 n Z 2 n`1 σY,n ρ 1 n a 1 ´ρ2 n ´a1 ´ρ2 n Z 1 n`1 ´ρn Z 2 n`1 ¯¯, Ý Ñ θ e,X n`1 " p1 ´F pT ´ζn qq ´1´´1 2 a 1 S,n `σ1 S,n Z 1 n`1 ¯,
and we set Ý Ñ θ c n`1 " 0 for notational convenience.

Ý Ñ θ I p2q,n`1 k :" n`1 ź i"k`1 θ i ˆIp2q k p Ý Ñ θ e,Y k q ˆk´1 ź i"1 Ý Ñ θ e,Y i , Ý Ñ θ I p1q,n`1 k j :" n`1 ź i"k`1 θ i ˆIp1q k pθ k q ˆk´1 ź i"j`1 θ i ˆÝ Ñ θ e,X j ˆj´1 ź i"1 Ý Ñ θ e,Y i , j " 1, ¨¨¨, k ´1, Ý Ñ θ I p1q,n`1 k k :" n`1 ź i"k`1 θ i ˆIp1q k p Ý Ñ θ e,X k q ˆk´1 ź i"1 Ý Ñ θ e,Y i
with the convention ś H ¨¨¨" 1. Having the above definitions at hand, we are now able to state our IBP formulae. Theorem 4.4.1 Let T ą 0. Under assumptions (AR) and (ND), the law of the couple pX T , Y T q, given by the unique solution to the SDE (4.2.1) at time T starting from px 0 " lnps 0 q, y 0 q at time 0, satisfies the following Bismut-Elworthy-Li IBP formulae: there exists some positive constant c :" cpT, b Y , κq such that for any 0 ď γ ă c ´1, any h P B γ pR 2 q and any ps 0 , y 0 q P p0, 8q ˆR, it holds

s 0 T B s 0 E " hpX T , Y T q ı " E " hp XN T `1, ȲN T `1q N T `1 ÿ k"1 pζ k ´ζk´1 q Ý Ñ θ I p1q,N T `1 k ı (4.4.5)
and

T B y 0 E " hpX T , Y T q ı " E « hp XN T `1, ȲN T `1q N T `1 ÿ k"1 pζ k ´ζk´1 q ´Ý Ñ θ I p2q,N T `1 k `k ÿ j"1 ´Ý Ñ θ C N T `1 j `Ý Ñ θ I p1q,N T `1 k j ¯¯ff . (4.4.6)
Moreover, if N is a renewal process with Betapα, 1q jump times, then, for any p ě 1 satisfying pp 1 2 ´αq ď 1 ´α, for any γ such that 0 ď pγ ă c ´1 and any h P B γ pR 2 q, the random variables appearing inside the expectation in the right-hand side of (4.4.5) and (4.4.6) admit a finite L p pPq-moment. In particular, if α " 1{2 then for any p ě 1, for any h P B γ pR 2 q with 0 ď pγ ă c ´1, the L p pPq-moment is finite.

Proof. We only prove the IBP formula (4.4.6). The proof of (4.4.5) follows by completely analogous (and actually more simple) arguments and is thus omitted.

Step 1: proof of the IBP formula (4.4.6) for h P C 1 b pR 2 q. Let h P C 1 b pR 2 q. From Theorem 4.3.1 and Fubini's theorem, we write ErhpX T , Y T qs "

ÿ ně0 E " E " hp Xn`1 , Ȳn`1 q n`1 ź i"1 θ i |τ n`1 ı 1 tN T "nu ı (4.4.7)
where we used the fact that tN T " nu " tτ n`1 ą T u X tτ n ď T u. In most of the arguments below, we will work on the set tN T " nu. In order to perform our induction argument forward in time through the Markov chain structure, we define for k P t0, ¨¨¨, nu the functions

H k p Xk , Ȳk q :" E k,n " hp Xn`1 , Ȳn`1 q n`1 ź i"k`1 θ i ı " E " hp Xn`1 , Ȳn`1 q n`1 ź i"k`1 θ i | Xk , Ȳk , τ n`1 , N T " n ı .
We also let H n`1 p Xn`1 , Ȳn`1 q :" hp Xn`1 , Ȳn`1 q. Note that we omit the dependence with respect to the sequence τ n`1 in the definition of the (random) maps pH k q 0ďkďn`1 . From the above definition and using (ND), (AR), it follows that the map H k belongs to C 1 p pR2 q a.s. for any 0 ď k ď n `1. Moreover, from the tower property of conditional expectation the following relation is satisfied for any k P t0, ¨¨¨, nu

H k p Xk , Ȳk q " E k,n rH k`1 p Xk`1 , Ȳk`1 qθ k`1 s. (4
B y 0 H 0 p X0 , Ȳ0 q " B y 0 E 0,n rH 1 p X1 , Ȳ1 qθ 1 s " E 0,n rB Ȳ1 H 1 p X1 , Ȳ1 q Ý Ñ θ e,Y 1 s `E0,n rB X1 H 1 p X1 , Ȳ1 q Ý Ñ θ e,X 1 s `E0,n rH 1 p X1 , Ȳ1 q Ý Ñ θ c 1 s " ¨¨" E 0,n rD p2q k H k p Xk , Ȳk q k ź i"1 Ý Ñ θ e,Y i s `k ÿ j"1 E 0,n rH j p Xj , Ȳj q Ý Ñ θ c j j´1 ź i"1 Ý Ñ θ e,Y i s `k ÿ j"1 E 0,n rD p1q j H j p Xj , Ȳj q Ý Ñ θ e,X j j´1 ź i"1 Ý Ñ θ e,Y i s. (4.4.9)
Hence, by the Lebesgue differentiation theorem, we deduce

B y 0 E " hp Xn`1 , Ȳn`1 q n`1 ź i"1 θ i ˇˇτ n`1 ı " B y 0 E " H 0 p X0 , Ȳ0 q ˇˇτ n`1 ı " E " B y 0 H 0 p X0 , Ȳ0 q ˇˇτ n`1 ı " E " D p2q k H k p Xk , Ȳk q k ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `k ÿ j"1 E " H j p Xj , Ȳj q Ý Ñ θ c j j´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `k ÿ j"1 E " D p1q j H j p Xj , Ȳj q Ý Ñ θ e,X j j´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı . (4

.4.10)

To further simplify the first term appearing on the right-hand side of (4.4.10), we use the tower property of conditional expectation (w.r.t E k´1,n r.s) and the integration by parts formula (4.2.14). For any k P t1, ¨¨¨, nu, we obtain

E " D p2q k H k p Xk , Ȳk q Ý Ñ θ e,Y k ˇˇG k´1 , τ n`1 ı " E " H k p Xk , Ȳk qI p2q k p Ý Ñ θ e,Y k q ˇˇG k´1 , τ n`1 ı . (4.4.11)
We also simplify the third term appearing on the right-hand side of (4.4.10), by using the transfer of derivatives formula (4.4.2) up to the time interval rζ k´1 , ζ k s. For any j P t1, ¨¨¨, ku, it holds

E " D p1q j H j p Xj , Ȳj q Ý Ñ θ e,X j j´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı " E " D p1q k H k p Xk , Ȳk q k ź i"j`1 θ i Ý Ñ θ e,X j j´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1
ı , so that, if j P t1, ¨¨¨, k ´1u, taking conditional expectation (using again E k´1,n r.s) and then performing an IBP formula on the last time interval rζ k´1 , ζ k s yield

E " D p1q k H k p Xk , Ȳk q k ź i"j`1 θ i Ý Ñ θ e,X j j´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı " E " H k p Xk , Ȳk qI p1q k pθ k q k´1 ź i"j`1 θ i Ý Ñ θ e,X j j´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı , (4
.4.12) while if j " k, we obtain

E " D p1q k H k p Xk , Ȳk q k ź i"j`1 θ i Ý Ñ θ e,X j j´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı " E " H k p Xk , Ȳk qI p1q k p Ý Ñ θ e,X k q k´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı . (4.4.13)
Coming back to (4.4.10), gathering (4.4.11), (4.4.12), (4.4.13) and using the definition of the maps pH k q 0ďkďn`1 , we thus deduce

B y 0 E " hp Xn`1 , Ȳn`1 q n`1 ź i"1 θ i ˇˇτ n`1 ı " E " H k p Xk , Ȳk qI p2q k p Ý Ñ θ e,Y k q ˆk´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `k ÿ j"1 E " H j p Xj , Ȳj q Ý Ñ θ c j ˆj´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `k´1 ÿ j"1 E " H k p Xk , Ȳk qI p1q k pθ k q ˆk´1 ź i"j`1 θ i ˆÝ Ñ θ e,X j j´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `E" H k p Xk , Ȳk qI p1q k p Ý Ñ θ e,X k q k´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı " E " hp Xn`1 , Ȳn`1 q n`1 ź i"k`1 θ i ˆIp2q k p Ý Ñ θ e,Y k q ˆk´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `k ÿ j"1 E " hp Xn`1 , Ȳn`1 q n`1 ź i"j`1 θ i ˆÝ Ñ θ c j ˆj´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `k´1 ÿ j"1 E " hp Xn`1 , Ȳn`1 q n`1 ź i"k`1 θ i ˆIp1q k pθ k q ˆk´1 ź i"j`1 θ i ˆÝ Ñ θ e,X j ˆj´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `E" hp Xn`1 , Ȳn`1 q n`1 ź i"k`1 θ i ˆIp1q k p Ý Ñ θ e,X k q k´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı . (4
B y 0 E " hp Xn`1 , Ȳn`1 q n`1 ź i"1 θ i ˇˇτ n`1 ı " E " D p2q n`1 hp Xn`1 , Ȳn`1 q n`1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `n`1 ÿ j"1 E " H j p Xj , Ȳj q Ý Ñ θ c j j´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `n`1 ÿ j"1 E " D p1q j H j p Xj , Ȳj q Ý Ñ θ e,X j j´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı " E " hp Xn`1 , Ȳn`1 qI p2q n`1 p Ý Ñ θ e,Y n`1 q n ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `n`1 ÿ j"1 E " H j p Xj , Ȳj q Ý Ñ θ c j j´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `n`1 ÿ j"1 E " D p1q n`1 hp Xn`1 , Ȳn`1 q n`1 ź i"j`1 θ i ˆÝ Ñ θ e,X j ˆj´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı " E " hp Xn`1 , Ȳn`1 qI p2q n`1 p Ý Ñ θ e,Y n`1 q ˆn ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `n`1 ÿ j"1 E " hp Xn`1 , Ȳn`1 q n`1 ź i"j`1 θ i ˆÝ Ñ θ c j ˆj´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `n ÿ j"1 E " hp Xn`1 , Ȳn`1 qI p1q n`1 pθ n`1 q ˆn ź i"j`1 θ i ˆÝ Ñ θ e,X j ˆj´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `E" hp Xn`1 , Ȳn`1 qI p1q n`1 p Ý Ñ θ e,X n`1 q ˆn ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı (4.4.15)
where, for the last term appearing in the right-hand side of the above identities, we employed the transfer of derivative formula (4.4.2) up to the last time interval and then performed an IBP formula. Now, the key point in order to establish the IBP formula (4.4.6) is to combine in a suitable way the identities (4.4.14) and (4.4.15). For each k P t0, ¨¨¨, nu, we multiply the above formulae by the length of the interval on which the local IBP formula is performed, namely we multiply by ζ k ´ζk´1 both sides of (4.4.14), k " 1, ¨¨¨, n ´1, and we multiply by T ´ζn both sides of (4.4.15). We then sum them over all k.

Recalling that ř n`1 k"1 ζ k ´ζk´1 " T ´ζ0 " T , we deduce

T B y 0 E " hp Xn`1 , Ȳn`1 q n`1 ź i"1 θ i ˇˇτ n`1 ı " n`1 ÿ k"1 pζ k ´ζk´1 qE " hp Xn`1 , Ȳn`1 q n`1 ź i"k`1 θ i ˆIp2q k p Ý Ñ θ e,Y k q ˆk´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `n`1 ÿ k"1 pζ k ´ζk´1 q k ÿ j"1 E " hp Xn`1 , Ȳn`1 q n`1 ź i"j`1 θ i ˆÝ Ñ θ c j ˆj´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `n`1 ÿ k"1 pζ k ´ζk´1 q ´k´1 ÿ j"1 E " hp Xn`1 , Ȳn`1 q n`1 ź i"k`1 θ i ˆIp1q k pθ k q ˆk´1 ź i"j`1 θ i ˆÝ Ñ θ e,X j ˆj´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı `E" hp Xn`1 , Ȳn`1 q n`1 ź i"k`1 θ i ˆIp1q k p Ý Ñ θ e,X k q ˆn ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ı" E " hp Xn`1 , Ȳn`1 q n`1 ÿ k"1 pζ k ´ζk´1 q ´Ý Ñ θ I p2q,n`1 k `k ÿ j"1 ´Ý Ñ θ C n`1 j `Ý Ñ θ I p1q,n`1 k j ¯¯ˇˇˇτ n`1 ı .
We now provide a sharp upper-estimate for the above quantity. From Lemma 4.6.2 and Lemma 4.4.1, it follows that f pζ i ´ζi´1 qθ i , f pζ i ´ζi´1 q Ý Ñ θ e,Y i , f pζ i ζi´1 q Ý Ñ θ c i P M i´1,n p X, Ȳ , ´1{2q and f pζ i ´ζi´1 q Ý Ñ θ e,X i P M i´1,n p X, Ȳ , 0q for any i P t1, ¨¨¨, nu. Moreover, from the very definition of the weights θ i , Ý Ñ θ e,X i and Ý Ñ θ e,Y i , after some simple but cumbersome computations that we omit (we also refer the reader to Appendix 4.6.4 which contains some expansion formulae), one has f pζ i ´ζi´1 qD p1q i pθ i q, f pζ i ´ζi´1 qD

p2q i p Ý Ñ θ e,Y i q P M i´1,n p X, Ȳ , ´1q and f pζ i ζi´1 qD p1q i p Ý Ñ θ e,X
i q P M i´1,n p X, Ȳ , ´1{2q so that from Lemma 4.2.3 we conclude f pζ i ζi´1 qpζ i ´ζi´1 qI p1q i pθ i q P M i´1,n p X, Ȳ , 0q, f pζ i ´ζi´1 qpζ i ´ζi´1 qI

p2q i p Ý Ñ θ e,Y
i q P M i´1,n p X, Ȳ , 0q and f pζ i ´ζi´1 qpζ i ´ζi´1 qI

p1q i p Ý Ñ θ e,X
i q P M i´1,n p X, Ȳ , 1{2q. Hence, from the boundedness of h, the tower property of conditional expectation and (4.2.22), it holds

ˇˇpζ k ´ζk´1 qE " hp Xn`1 , Ȳn`1 q n`1 ź i"k`1 θ i ˆIp2q k p Ý Ñ θ e,Y k q ˆk´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ıˇˇď C n`1 p1 ´F pT ´ζn qq ´1 n ź i"k`1
pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´1 2 pf pζ k ´ζk´1 qq

´1 k´1 ź i"1
pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´1 2 167 4.4. Integration by parts formulae so that using the identity (4.2.6)

ÿ ně0 E " n`1 ÿ k"1 ˇˇpζ k ´ζk´1 qE " hp Xn`1 , Ȳn`1 q n`1 ź i"k`1 θ i ˆIp2q k p Ý Ñ θ e,Y k q ˆk´1 ź i"1 Ý Ñ θ e,Y i ˇˇτ n`1 ıˇˇˇ1 tN T "nu ı ď ÿ ně0 C n`1 n`1 ÿ k"1 E " p1 ´F pT ´ζn qq ´1pf pζ k ´ζk´1 qq ´1 ˆn ź i"1,i‰k pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´1 2 1 tN T "nu ı " ÿ ně0 C n`1 n`1 ÿ k"1 ż ∆npT q n ź i"1,i‰k ps i ´si´1 q ´1{2 ds n ď ÿ ně0 pn `1qC n`1 T pn`1q{2 Γ n p1{2q Γp1 `n{2q ă 8.
From similar arguments that we omit, it follows

ˇˇpζ k ´ζk´1 q k ÿ j"1 E " hp Xn`1 , Ȳn`1 q ´Ý Ñ θ C n`1 j `Ý Ñ θ I p1q,n`1 k j ¯ˇˇτ n`1 ıˇˇď C n`1 pζ k ´ζk´1 q k ÿ j"1
p1 ´F pT ´ζn qq

´1 ˆn ź i"1
pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´1{2 r1 `1ti"ku pζ i ´ζi´1 q ´1{2 s.

so that using again the identity (4.2.6)

ÿ ně0 E " n`1 ÿ k"1 ˇˇpζ k ´ζk´1 q k ÿ j"1 E " hp Xn`1 , Ȳn`1 q ´Ý Ñ θ C n`1 j `Ý Ñ θ I p1q,n`1 k j ¯ˇˇτ n`1 ıˇˇˇ1 tN T "nu ı ď ÿ ně0 C n`1 n`1 ÿ k"1 E " pζ k ´ζk´1 q k ÿ j"1 p1 ´F pT ´ζn qq ´1 ˆn ź i"1
pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´1{2 r1 `1ti"ku pζ i ´ζi´1 q ´1{2 s1 tN T "nu ‰ ď ÿ ně0

C n`1 pn `1qpn `2qT pn`1q{2 Γ n p1{2q Γp1 `n{2q ă 8.

The preceding estimates combined with (4.4.7) and the Lebesgue dominated convergence theorem allows to conclude that y 0 Þ Ñ ErhpX T , Y T qs is continuously Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models with unbounded drift differentiable with

T B y 0 ErhpX T , Y T qs " T B y 0 E " hp XN T `1, ȲN T `1q N T `1 ź i"1 θ i ı " ÿ ně0 E " T B y 0 E " hp Xn`1 , Ȳn`1 q n`1 ź i"1 θ i ˇˇτ n`1 ı 1 tN T "nu ı " ÿ ně0 E " E " hp Xn`1 , Ȳn`1 q n`1 ÿ k"1 pζ k ´ζk´1 q ˆ´Ý Ñ θ I p2q,n`1 k `k ÿ j"1 ´Ý Ñ θ C n`1 j `Ý Ñ θ I p1q,n`1 k j ¯¯ˇˇˇτ n`1 ı 1 tN T "nu ı " E " hp XN T `1, ȲN T `1q N T `1 ÿ k"1 pζ k ´ζk´1 q ´Ý Ñ θ I p2q,N T `1 k `k ÿ j"1 ´Ý Ñ θ C n`1 j `Ý Ñ θ I p1q,N T `1 k j ¯¯ı
where we used Fubini's theorem for the last equality. This completes the proof of the IBP formula (4.4.6) for h P C 1 b pR 2 q.

Step 2: Extension to h P B γ pR 2 q for some positive γ.

We now extend the two IBP formulae that we have established in the previous step to the case of a test function h P B γ pR 2 q for some sufficiently small γ ą 0. Let us note that under assumption (15) (AR) and (ND), from Kusuoka and Stroock [START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF], Corollary (3.25) and the upper-estimate (3.27) therein, the process pX t , Y t q tě0 admits a smooth transition density pt, x 0 , y 0 , x, yq Þ Ñ ppt, x 0 , y 0 , x, yq P C 8 pp0, 8q R2 ˆR2 q and for any h P C 1 b pR 2 q, it holds

B α s 0 B β y 0 ErhpX T , Y T qs " ż R 2
hpx, yq B α s 0 B β y 0 ppT, x 0 , y 0 , x, yq dxdy (4.4.16)

for any T ą 0 and any integers α and β.

We then proceed as in step 2 of the proof of Theorem 4.3.1. Namely, we prove that

T B y 0 ErhpX T , Y T qs " E " hp XN T `1, ȲN T `1q N T `1 ÿ k"1 pζ k ´ζk´1 q ´Ý Ñ θ I p2q,N T `1 k `k ÿ j"1 ´Ý Ñ θ C n`1 j `Ý Ñ θ I p1q,N T `1 k j ¯¯ı " ż R 2 hpx, yq E " ppT ´ζN T , XN T , ȲN T , x, yq N T `1 ÿ k"1 pζ k ´ζk´1 q ´Ý Ñ θ I p2q,N T `1 k `k ÿ j"1 ˆ´Ý Ñ θ C n`1 j `Ý Ñ θ I p1q,N T `1 k j ¯¯ı dxdy (4.4.17)
for any h P C 1 b pR 2 q.

pζ k ´ζk´1 q ˇˇÝ Ñ θ I p2q,n`1 k ˇˇˇˇτ n`1 ı ď C n`1 ż pR 2 q n q4κ pT ´ζn , x n , y n , x, yq n`1 ÿ k"1 p1 ´F pT ´ζn qq ´1 ˆn ź i"k`1 pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´1{2 pf pζ k ´ζk´1 qq ´1 ˆk´1 ź i"1 pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´1{2 n ź i"1 q4κ pζ i ´ζi´1 , x i´1 , y i´1 , x i , y i q dx n dy n ď C n`1 qc pT, x 0 , y 0 , x, yq n`1 ÿ k"1 p1 ´F pT ´ζn qq ´1 n ź i"1 pf pζ i ´ζi´1 qq ´1 n ź i"1,i‰k pζ i ´ζi´1 q ´1{2 (4.4.18)
where, for the first inequality we used the upper-estimate (4.2.4) and for the last inequality we used Lemma 4.6.3. From similar arguments, one gets

E " ppT ´ζn , Xn , Ȳn , x, yq n`1 ÿ k"1 pζ k ´ζk´1 q k ÿ j"1 ˆˇˇÝ Ñ θ C n`1 j ˇˇ`ˇˇÝ Ñ θ I p1q,N T `1 k j ˇˇ˙ˇˇτ n`1 ı ď C n`1 qc pT, x 0 , y 0 , x, yq n`1 ÿ k"1 pζ k ´ζk´1 q k ÿ j"1 p1 ´F pT ´ζn qq ´1 ˆn ź i"1
pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´1{2 r1 `1ti"ku pζ i ´ζi´1 q ´1{2 s. (

pζ k ´ζk´1 q ˆ˜ˇˇˇÝ Ñ θ I p2q,n`1 k ˇˇ`k ÿ j"1 ˆˇˇÝ Ñ θ C n`1 j ˇˇ`ˇˇÝ Ñ θ I p1q,n`1 k j ˇˇ˙¸ˇˇτ n`1 ı 1 tN T "nu ı ď qc pT, x 0 , y 0 , x, yq ÿ ně0 C n`1 E " ˜n`1 ÿ k"1 p1 ´F pT ´ζn qq ´1 n ź i"1 pf pζ i ´ζi´1 qq ´1 ˆn ź i"1,i‰k pζ i ´ζi´1 q ´1{2 `n`1 ÿ k"1 pζ k ´ζk´1 q k ÿ j"1 p1 ´F pT ´ζn qq ´1 ˆn ź i"1
pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´1{2 r1 `1ti"ku pζ i ´ζi´1 q ´1{2 s ¸1tN T "nu ı ď qc pT, x 0 , y 0 , x, yq

ÿ ně0 C n`1 rpn `1q `pn `1qpn `2q{2sT pn`1q{2 Γ n p1{2q Γp1 `n{2q
" CT 1{2 qc pT, x 0 , y 0 , x, yq. (

From the preceding inequality and Fubini's theorem, we thus get

ˇˇE " ppT ´ζN T , XN T , ȲN T , x, yq N T `1 ÿ k"1 pζ k ´ζk´1 q ´Ý Ñ θ I p2q,N T `1 k `k ÿ j"1 ´Ý Ñ θ C N T `1 j `Ý Ñ θ I p1q,N T `1 k j ¯¯ıˇˇď CT 1{2 qc pT, x 0 , y 0 , x, yq (4.4.21)
for some positive constant C :" CpT q such that T Þ Ñ CpT q is non-decreasing. Applying again Fubini's theorem allows to complete the proof of (4.4.17). Hence, combining (4.4.16) with (4.4.17)

T B y 0 ErhpX T , Y T qs " ż R 2
hpx, yq T B y 0 ppT, x 0 , y 0 , x, yq dxdy

" ż R 2 hpx, yq E " ppT ´ζN T , XN T , ȲN T , x, yq N T `1 ÿ k"1 pζ k ´ζk´1 q ˆ´Ý Ñ θ I p2q,N T `1 k `k ÿ j"1 ´Ý Ñ θ C N T `1 j `Ý Ñ θ I p1q,N T `1 k j ¯¯ı dxdy
for any h P C 1 b pR 2 q. A monotone class argument allows to conclude that the preceding identity is still valid for any bounded and measurable map h defined over R 2 and a standard approximation argument allows to extend it to h P B γ pR 2 q for any 0 ď γ ă p2cT q ´1, c being the positive constant appearing in the right-hand side of (4.4.21). We eventually conclude from the preceding identity, (4.4.21) combined with Fubini's theorem that

T B y 0 ErhpX T , Y T qs " E " hp XN T `1, ȲN T `1q N T `1 ÿ k"1 pζ k ´ζk´1 q ´Ý Ñ θ I p2q,N T `1 k `k ÿ j"1 ´Ý Ñ θ C N T `1 j `Ý Ñ θ I p1q,N T `1 k j ¯¯ı
for any h P B γ pR 2 q such that 0 ď γ ă p2cT q ´1.

Step 3: L p pPq-moments for a renewal process with Beta jump times.

From the above formula, the proof of the L p pPq-moment estimate when N is a renewal process with Beta jump times follows by similar arguments as those employed at step 3 of the proof of Theorem 4.3.1. We omit the remaining technical details.

Numerical Results

In this section, as a proof of concept, we provide some simple numerical results for the unbiased Monte Carlo algorithm that stems from the probabilistic representation formula established in Theorem 4.3.1 and the Bismut-Elworthy-Li formulae of Theorem 4.4.1 for the couple pS T , Y T q that allows to compute the Delta and the Vega related to the option price of the vanilla option with payoff hpS T q. As already mentioned in the introduction, we believe that one needs to study numerical issues and to compare our algorithm with other existing methods to compute Greeks in more details. However, this is beyond the scope of the current thesis and is left to future research.

We here consider the unique strong solution associated to the SDE (4.1.1) for three different models corresponding to three different diffusion coefficient function σ S and two different options, namely Call and digital Call options with maturity T and strike K, with payoff functions hpx, yq " pexppxq ´Kq `and hpx, yq " 1 texppxqěKu respectively. For these three models, the drift function of the volatility process is defined by b Y pxq " λ Y pµ ´xq and we fix the parameters as follows: T " 0.5, r " 0.03, K " 1.5, x 0 " lnps 0 q " 0.4, Y 0 " 0.2, σ Y p.q " σ Y " 0.2, λ Y " 0.5, µ " 0.3 and ρ " 0.6. We also consider two type of renewal process N : a Poisson process with intensity parameter λ " 0.5 and a renewal process with Betap1 ´α, 1q jump times with parameters α " 0.5 and τ " 2. A crude Monte Carlo estimator gives that ErN T s " 1.25 for Exponential sampling (which is inline with the theoretical value 1 `λT) and ErN T s " 1.79 for Beta sampling.

The total time for the computation of the price, Delta and Vega are about 8 seconds for the Monte Carlo method with Euler scheme and about 10 seconds for the unbiased Monte Carlo method with Exponential and Beta sampling. Generally speaking, we observe that the variance of the unbiased Monte Carlo estimators is larger than the variance of the Monte Carlo estimator with Euler-Maruyama discretization scheme. This should not come as a big surprise since this fact is reminiscent of unbiased Monte Carlo methods. However, the Monte Carlo method with Euler scheme is also affected by its inherent bias.

Black-Scholes Model

We first consider the simple (toy) example corresponding to the Black-Scholes dynamics dS t " rS t dt`σ S S t dW t , dY t " b Y pY t q dt`σ Y pY t qdB t , dxB, W y t " ρdt, ρ P p´1, 1q.

with constant diffusion coefficient function σ S p.q " σ S ą 0. The law of pS T , Y T q can be computed explicitly so that analytical formulas are available for the price, Delta and Vega. Note that the discount factor e ´rT has been added in our probabilistic representation formula for comparison purposes. In this example, we importantly remark that the dynamics of the Euler scheme writes

$ & % Xi`1 " Xi `´r ´1 2 a S,i ¯pζ i`1 ´ζi q `σS,i a ζ i`1 ´ζi Z 1 i`1 , Ȳi`1 " m i `σY,i a ζ i`1 ´ζi ´ρi Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 ¯, (4.5.1)
with m i " m ζ i`1 ´ζi p Ȳi q " µ `p Ȳi ´µqe ´λpζ i`1 ´ζi q . Also, the weights pθ i q 1ďiďN T `1 in the probabilistic representation (4.3.2) of Theorem 4.3.1 greatly simplifies, namely

θ i " pf pζ i ´ζi´1 qq ´1I p2q i pb i Y q, 1 ď i ď N T , and θ N T `1 " p1 ´F pT ´ζN T qq ´1.
We perform M 1 " 2.56 ˆ10 7 for the unbiased Monte Carlo method with Exponential sampling and M 1 " 1.79 ˆ10 7 in the case of Beta sampling to approximate the price as well as the two Greeks so that the (average) computational cost (up to a constant multiplicative factor) is given by ErN T s ˆM1 " 3.2 ˆ10 7 in both cases. We compare them with the corresponding values obtained using the standard Monte Carlo method combined with an Euler-Maruyama approximation scheme for the dynamics (4.1.1) with M 2 " 160000 Monte Carlo simulations paths and mesh size δ " T {n where n " 200. Its computational complexity (up to a constant multiplicative factor) is given by n ˆM2 " 3.2 ˆ10 7 . Hence, both Monte Carlo estimators have comparable computational complexity though their computational time are slightly different in practical implementation. The Delta and Vega are obtained using the Monte Carlo finite difference approach combined with the Euler-Maruyama discretization scheme, that is, denoting by E n M 2 ps 0 , y 0 q the Monte Carlo estimator associated to the Euler-Maruyama scheme, we compute pE n M 2 ps 0 `ε, y 0 q ´En M 2 ps 0 , y 0 qq{ε and pE n M 2 ps 0 , y 0 `εq ´En M 2 ps 0 , y 0 qq{ε respectively with ε " 10 ´2. The numerical results for the three different quantities are summarized in Table 4.1, Table 4.2, Table 4.3 respectively. The first column provides the value of the parameter σ S . The second column stands for the value of the price, Delta or Vega obtained by the corresponding Black-Scholes formula. The third, fourth and fifth columns correspond to the value obtained by the Monte Carlo estimator using Euler-Maruyama discretization scheme together with its half-width 95% confidence interval and its empirical variance. The sixth, seventh and eighth (resp. the ninth, tenth and eleventh) columns provide the estimated value with its halfwidth 95% confidence interval and empirical variance by our method in the case of Exponential sampling (resp. Beta sampling). Note that though the variance of the Monte Carlo estimator in the case of Exponential sampling may explode, we compute it

A Stein-Stein type model

In this second example, we consider a Stein-Stein type model where the diffusion coefficient function for the spot price is an affine function, namely σ S pxq " σ 1 x `σ2 where σ 1 and σ 2 are two positive constants. Note carefully that σ S is not uniformly elliptic and bounded so that (AR) and (ND) are not satisfied. However, we heuristically choose σ 1 and σ 2 so that σ S pY t q is bounded and strictly positive with high probability. Also, analytical expressions for the coefficients are available, namely a S,i "

ż ζ i`1 ´ζi 0 " σ 1 `µ `p Ȳi ´µqe ´λY s ˘`σ 2 ı 2 ds, " pσ 1 µ `σ2 q 2 pζ i`1 ´ζi q `σ2 1 p Ȳi ´µq 2 1 ´e´2λ Y pζ i`1 ´ζi q 2λ Y `2σ 1 pσ 1 µ `σ2 qp Ȳi ´µq 1 ´e´λ Y pζ i`1 ´ζi q λ Y , a 1 S,i " σ 2 1 p Ȳi ´µq 1 ´e´2λ Y pζ i`1 ´ζi q λ Y `2σ 1 pσ 1 µ `σ2 q 1 ´e´λ Y pζ i`1 ´ζi q λ Y , ρ i " ρ ş ζ i`1 ´ζi 0 " α `µ `p Ȳi ´µqe ´λs ˘`C ı ds σ S,i a ζ i`1 ´ζi " ρ αp Ȳi ´µqp1 ´e´λpζ i`1 ´ζi q q{λ `pσ 1 µ `σ2 qpζ i`1 ´ζi q σ S,i a ζ i`1 ´ζi , ρ 1 i " ρ σ S,i `σ1 p1 ´e´λ Y pζ i`1 ´ζi q q{λ Y ȃS,i a ζ i`1 ´ζi ´ρ σ 1 S,i `σ1 p Ȳi ´µqp1 ´e´λ Y pζ i`1 ´ζi q q{λ Y `pσ 1 µ `σ2 qpζ i`1 ´ζi q ȃS,i a ζ i`1 ´ζi
The parameters for the unbiased Monte Carlo method and the Monte Carlo method combined with an Euler-Maruyama approximation scheme are chosen as in the first example. The numerical results related to the price, Delta and Vega are provided in Table 4.4, Table 4.5, Table 4.6 respectively for the Call option and in Table 4.7, Table 4.8, Table 4.9 for the digital Call option. In spite of the fact that the main assumptions are not satisfied, we again observe a good performance of the unbiased estimators for all three quantities and for all the values of the parameters σ 1 , σ 2 , except for the computation of the Vega of a Call option for large values of σ 1 and σ 2 .

A model with a periodic diffusion coefficient function

In our last example, the volatility of spot price takes the following form σ S pxq " σ 1 cospxq `σ2 where σ 1 and σ 2 are two positive constants such that σ 2 ´σ1 ą 0 in order to ensure that (ND) is satisfied. Here, the coefficients appearing in the dynamics (4.2.7) write a S,i "

ż ζ i`1 ´ζi 0 " σ 1 cos `µ `p Ȳi ´µqe ´λY s ˘`σ 2 ı 2 ds, a 1 S,i " ´2α ż ζ i`1 ´ζi 0 e ´λY s sin `µ `p Ȳi ´µqe ´λY s ˘"σ 1 cos `µ `p Ȳi ´µqe ´λY s ˘`σ 2 ı ds, ρ i " ρ ş ζ i`1 ´ζi 0 " σ 1 cos `µ `p Ȳi ´µqe ´λY s ˘`σ 2 ı ds σ S,i a ζ i`1 ´ζi , ρ 1 i " ´ρ σ 1 σ S,i ş ζ i`1 ´ζi 0 e ´λY s sin `µ `p Ȳi ´µqe ´λY s ˘ds a S,i a ζ i`1 ´ζi ´ρ σ 1 S,i ş ζ i`1 ´ζi 0 " σ 1 cos `µ `p Ȳi ´µqe ´λY s ˘`σ 2 ı ds a S,i a ζ i`1 ´ζi
and no analytical expressions are available. However, a simple numerical integration method can be employed for the computation of the above integrals. We here use Simpson's 3/8 rule which for a real-valued C 4 pr0, T sq function g writes as follows @t P r0, T s,

ż t 0 gpsqds « t 8 ˆgp0q `3g ˆt 3 ˙`3g ˆ2t 3
˙`gptq ẇith an error given by g p4q pt 1 qT 5 {6480 for some t 1 P r0, T s. The parameters of the unbiased Monte Carlo method and the Monte Carlo Euler-Maruyama scheme remain unchanged. The numerical results related to the price, Delta and Vega are provided in Table 4 The proof is divided into three steps. In the first part, we establish the probabilistic representation for a bounded and continuous function h. We then provide the extension to measurable maps satisfying the growth condition 4.3.1. We eventually conclude by establishing the L p -moments when the jump times are distributed according to the Beta law.

Denote by L and p Lt q tě0 the infinitesimal generators of pP t q tě0 and p Pt q tě0 respectively given by We establish a first order expansion of the Markov semigroup pP t q tě0 around p Pt q tě0 . We apply Itô's rule to the map r0, ts ˆR2 Q ps, x, yq Þ Ñ P t´s hpx, yq P C 1,2 b pr0, ts ˆR2 q for h P C 8 b pR 2 q, observing that B s P t´s hpx, yq " ´LP t´s hpx, yq. We obtain hp XT , ȲT q " P T hpx 0 , y 0 q `ż T 0 ´Bs P T ´shp Xs , Ȳs q `L s P T ´shp Xs , Ȳs q ¯ds `MT " P T hpx 0 , y 0 q `ż T 0 p Ls ´LqP T ´shp Xs , Ȳs q ds `MT where M :" pM t q tě0 is a square integrable martingale. We then take expectation in the previous expression and make use of Fubini's theorem so that We now rewrite the previous first order expansion using the Markov chain p Xi , Ȳi q 0ďiďN T `1 and the renewal process N . From the previous identity, the definition of θ N T `1 in (4.3.4) and the identity (4.2.6), we directly obtain

P T hpx 0 , y 0 q " PT hpx 0 , y 0 q `ż T 0 ErpL ´L s qP T ´shp Xs , Ȳs qs ds " Erhp Xx 0 T , Ȳ y 0 T qs `ż T 0 E " 1 2 pa Y p Ȳ y 0 s q ´aY pm s py 0 qqqB 2 y P T ´shp Xx 0 s , Ȳ y 0 s q ı ds `ż T 0 E " 1 2 pa S p Ȳ y 0 s q ´aS pm s py 0 qqqrB 2 x P T ´shp Xx 0 s , Ȳ y 0 s q ´Bx P T ´shp Xx 0 s , Ȳ y 0 s qs ı ds `ż T 0 E " pb Y p Ȳ y 0 s q ´bY pm s py 0 qqqB y P T ´shp Xx 0 s , Ȳ y 0 s q ı ds `ż T 0 E " ρppσ S σ Y qp Ȳ x 0 s q ´pσ S σ Y qpm s py 0 qqqB 2 x,y P T ´shp Xx 0 s , Ȳ y 0 s q ı ds. (4
P T hpx 0 , y 0 q " Erhp XN T `1, ȲN T `1qθ N T `11 tN T "0u s `E " pp1 ´F pT ´ζ1 qqf pζ 1 qq ´11 tN T "1u " 1 2 pa S p Ȳ1 q ´aS pm 0 qqD p1,1q 1
P T ´ζ1 hp X1 , Ȳ1 q ´1 2 pa S p Ȳ1 q ´aS pm 0 qqD p1q 1 P T ´ζ1 hp X1 , Ȳ1 q `1 2 pa Y p Ȳ1 q ´aY pm 0 qqD p2,2q 1
P T ´ζ1 hp X1 , Ȳ1 q `pb Y p Ȳ1 q ´bY pm 0 qqD p2q 1 P T ´ζ1 hp X1 , Ȳ1 q `ρppσ S σ Y qp Ȳ1 q ´pσ S σ Y qpm 0 qqD p1,2q 1
P T ´ζ1 hp X1 , Ȳ1 q ıı " Erhp XN T `1, ȲN T `1qθ N T `11 tN T "0u s `E" pp1 ´F pT ´ζ1 qqf pζ 1 qq ´11 tN T "1u ˆ"c 1 S D p1,1q 1
P T ´ζ1 hp X1 , Ȳ1 q ´c1 S D p1q
1 P T ´ζ1 hp X1 , Ȳ1 q `c1 Y D p2,2q 1
P T ´ζ1 hp X1 , Ȳ1 q `b1 Y D p2q 1 P T ´ζ1 hp X1 , Ȳ1 q `c1 S,Y D p1,2q 1
P T ´ζ1 hp X1 , Ȳ1 q ıı . (4.6.2)
Next, we apply the IBP formula (4.2.14) with respect to the random vector p X1 , Ȳ1 q in the above expression. In order to do that rigorously, one first has to take the conditional expectation E 0,1 r.s in the second term of the above equality. We thus obtain

E 0,1 " c 1 S D p1,1q 1
P T ´ζ1 hp X1 , Ȳ1 q ´c1 S D p1q
1 P T ´ζ1 hp X1 , Ȳ1 q `c1 Y D p2,2q 1
P T ´ζ1 hp X1 , Ȳ1 q `b1 Y D p2q 1 P T ´ζ1 hp X1 , Ȳ1 q `c1 S,Y D p1,2q 1
P T ´ζ1 hp X1 , Ȳ1 q ı " E 0,1 "" I p1,1q 1
pc 1 S q ´Ip1q 1 pc 1 S q `Ip2,2q 1 pc 1 Y q `Ip2q 1 pb 1 Y q `Ip1,2q 1 pc 1 S,Y q ı P T ´ζ1 hp X1 , Ȳ1 q ı . (4
E 0,1 "ˇˇˇ" I p1,1q 1
pc 1 S q ´Ip1q 1 pc 1 S q `Ip2,2q 1 pc 1 Y q `Ip2q 1 pb 1 Y q `Ip1,2q 1 pc 1 S,Y q ıˇˇˇˇˇˇP T ´ζ1 hp X1 , Ȳ1 q ˇˇı ď C T |h| 8 ζ ´1{2 1 (4.6.4)
for some positive constant C T such that T Þ Ñ C T is non-decreasing. The previous estimate yields an integrable time singularity. Indeed, from the previous estimate and (4.2.6), one directly gets Coming back to (4.6.2) and using (4.6.3), we thus derive

E " pp1 ´F pT ´ζ1 qqf pζ 1 qq ´11 tN T "1u ˇˇE 0,1 "" I p1,1q 1
pc 1 S q ´Ip1q 1 pc 1 S q `Ip2,2q 1 pc 1 Y q `Ip2q 1 pb 1 Y q `Ip1,2q 1 pc 1 S,Y q ı P T ´ζ1 hp X1 , Ȳ1 q ıˇˇˇı ď CErpp1 ´F pT ´ζ1 qqf pζ 1 qq ´1ζ ´1{2 1
1 tN T "1u s " C ż T 0 s ´1{2 1 ds 1 ă 8.
P T hpx 0 , y 0 q " Erhp XN T `1, ȲN T `1qθ N T `11 tN T "0u s `E" pp1 ´F pT ´ζ1 qqf pζ 1 qq ´11 tN T "1u ˆ"I p1,1q 1
pc 1 S q ´Ip1q 1 pc 1 S q `Ip2,2q 1 pc 1 Y q `Ip2q 1 pb 1 Y q `Ip1,2q 1 pc 1 S,Y q ı P T ´ζ1 hp X1 , Ȳ1 q ı " Erhp XN T `1, ȲN T `1qθ N T `11 tN T "0u s `E" P T ´ζ1 hp X1 , Ȳ1 qθ 2 θ 1 1 tN T "1u ı . (4
.6.5)

Our aim now is to iterate the above first order expansion. We prove by induction the following formula: for any positive integer n, one has

P T hpx 0 , y 0 q " n´1 ÿ j"0 E « hp XN T `1, ȲN T `1q N T `1 ź i"1 θ i 1 tN T "ju ff `E « P T ´ζn hp Xn , Ȳn q n`1 ź i"1 θ i 1 tN T "nu ff . (4.6.6)
The case n " 1 corresponds to (4.6.5). We thus assume that (4.6.6) holds at step n.

We expand the last term appearing in the right-hand side of the previous equality using again (4.6.1), by then applying Lemma 4.6.1 and by finally performing IBPs as before.

To be more specific, using the notations introduced in Subsection 4.2.2, from (4.6.1) and a change of variable, for any (deterministic) ζ P r0, T s, one has

P T ´ζ hpx, yq " Erhp Xζ,x T , Ȳ ζ,y T qs `ż T ζ E " 1 2 pa S p Ȳ ζ,y s q ´aS pm s´ζ pyqqqrB 2 x P T ´shp Xζ,x s , Ȳ ζ,y s q ´Bx P T ´shp Xζ,x s , Ȳ ζ,y s qs ı ds `ż T ζ E " 1 2 pa Y p Ȳ ζ,y s q ´aY pm s´ζ pyqqqB 2 y P T ´shp Xζ,x s , Ȳ ζ,y s q ı ds `ż T ζ E " pb Y p Ȳ ζ,y s q ´bY pm s´ζ pyqqqB y P T ´shp Xζ,x s , Ȳ ζ,y s q ı ds `ż T ζ E " ρppσ S σ Y qp Ȳ ζ,y s q ´pσ S σ Y qpm s´ζ pyqqqB 2 x,y P T ´shp Xζ,x s , Ȳ ζ,y s q ı ds.
We take ζ " ζ n , px, yq " p XN T , ȲN T q in the previous equality, then multiply it 4.6. Appendix by ś n`1 i"1 θ i 1 tN T "nu and finally take expectation. We obtain Now, from the very definition of the Markov chain p Xi , Ȳi q 0ďiďN T `1 and of the weight sequence pθ i q 1ďiďN T `1 of Theorem 4.3.1, the first term of the above equality can be written as

E " P T ´ζn hp Xn , Ȳn q n`1 ź i"1 θ i 1 tN T "nu ı " E " hp Xζn, Xn T , Ȳ ζn, Ȳn T q n`1 ź i"1 θ i 1 tN T "nu ı `E" n`1 ź i"1 θ i 1 tN T "nu ż T
E " hp Xζn, Xn T , Ȳ ζn, Ȳn T q n`1 ź i"1 θ i 1 tN T "nu ı " E " hp XN T `1, ȲN T `1q N T `1 ź i"1 θ i 1 tN T "nu ı .
(4.6.8) We now look at the second, third, fourth and fifth terms. Let us deal with the third and fourth terms. The others are treated in a similar manner and we will omit some technical details. We first take its conditional expectation w.r.t tζ 1 " t 1 , ¨¨¨, ζ n " t n , N T " nu and introduce the measurable function ı .

Gpt 1 , ¨¨¨, t n , s, T q :" E " n`1 ź i"1 θ i " 1
q ıˇˇˇζ 1 " t 1 , ¨¨¨, ζ n " t n , N T " n ı which satisfies |Gpt 1 , ¨¨¨, t n , s, T q| ď CE " n`1 ź i"1 |θ i | ´1 `| ż s tn σ Y pm u´tn q dB u | ¯ˇˇζ 1 " t 1 , ¨¨¨, ζ n " t n , N T " n ı ď CE " n`1 ź i"1 |θ i ||ζ 1 " t 1 ,
Finally, we take the conditional expectation E n,n`1 r.s inside the above expectation and then employ the IBP formula (4.2.14), two times w.r.t. the diffusion coefficient and one time w.r.t the drift coefficient as done before. We obtain ı .

E " n ź i"1 θ i p1 ´F pT ´ζn`1 qq ´1pf pζ n`1 ´ζn qq ´1" 1 2 pa Y p Ȳn`1 q ´aY pm n qqD p2,2q n`1 P T ´ζn`1 hp Xn`1 , Ȳn`1 q `pb Y p Ȳn`1 q ´bY pm n qqD p2q n`1 P T ´ζn`1 hp Xn`1 , Ȳn`1 q ı 1 tN T "n`1u ı " E " n ź i"1 θ i p1 ´F pT
Summing the three previous identities, we obtain that the sum of the second, third, fourth and fifth term in the right-hand side of (4.6.7) is equal to E " n ź i"1 θ i p1 ´F pT ´ζn`1 qq ´1pf pζ n`1 ´ζn qq ´1" I p1,1q n`1 pa n`1 S q ´Ip1q n`1 pc n`1 S q `Ip2,2q n`1 pc n`1 Y q `Ip2q n`1 pb n`1 Y q `Ip1,2q n`1 pc n`1 Y,S q ı P T ´ζn`1 hp Xn`1 , Ȳn`1 q1 tN T "n`1u

ı " E " n`2 ź i"1 θ i P T ´ζn`1 hp Xn`1 , Ȳn`1 q1 tN T "n`1u ı where we used the very definitions (4.3.3) and (4.3.4) of the weights pθ i q 1ďiďN T `1 on the set tN T " n `1u. This concludes the proof of (4.6.6) at step n `1.

To conclude it remains to prove the absolute convergence of the first sum and the convergence to zero of the last term in (4.6.6). These two results follow directly from the boundedness of h and the general estimates on the product of weights established in Lemma 4. [START_REF] Bally | A quantization algorithm for solving multidimensional discrete-time optimal stopping problems[END_REF] Γ n p1{2q Γp1 `n{2q so that the remainder indeed vanishes as n goes to infinity. We thus conclude P T hpx 0 , y 0 q "

ÿ ně0 E " hp XN T `1, ȲN T `1q N T `1 ź i"1 θ i 1 tN T "nu ı " E " hp XN T `1, ȲN T `1q N T `1 ź i"1 θ i ı (4.6.9)
for any h P C 2 b pR 2 q. We eventually extend the above representation formula to any bounded and continuous function h using a standard approximation argument. The remaining technical details are omitted.

Step 2: Extension to measurable map h satisfying the growth assumption (4.3.1)

We first extend the previous result to any bounded and measurable h. This follows from a monotone class argument that we now detail.

Let us first consider h P C b pR 2 q. From Fubini's theorem, it holds |θ i px i´1 , y i´1 , x i , y i , ζ n`1 q|ppζ i ´ζi´1 , x i´1 , y i´1 , x i , y i q dx n dy n ď pC T q n`1 p1 ´F pT ´ζn qq ´1 ż pR 2 q n qc pT ´ζn , x n , y n , x, yq

E " hp Xn`1 , Ȳn`1 q n`1 ź i"1 θ i ˇˇN T " n, ζ n`1 ı " ż R 2 hpx,
n ź i"1
pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´1 2 ˆq c pζ i ´ζi´1 , x i´1 , y i´1 , x i , y i q dx n dy n ď pC T q n`1 p1 ´F pT ´ζn qq

´1 n ź i"1
pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´1 2 qc pT, x 0 , y 0 , x, yq for some c :" cpT, b Y , κq ą 4κ. Hence, from (4.6.9) and again Fubini's theorem, justified by the previous estimate and the fact that E " pC T q N T `1p1 ´F pT ζN T qq ´1 ś N T i"1 pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´1 2 ı ă 8, one has P T hpx 0 , y 0 q " ż R f ps i ´si´1 q ds n ˇď ´ÿ ně0 ż ∆npT q pC T q n`1 n ź i"1 ps i ´si´1 q ´1 2 ds n ¯q c pT, x 0 , y 0 , x, yq " CE 1{2,1 pCT 1{2 qq c pT, x 0 , y 0 , x, yq. (4.6.11)

It now follows from (4.6.10) and a monotone class argument that the probabilistic representation formula (4.3.2) is valid for any real-valued bounded and measurable map h defined over R 2 . The extension to any measurable map h satisfying the growth assumption: |hpx, yq| ď C exppγp|x| 2 `|y| 2 qq for any 0 ď γ ă p2cT q ´1, c being the constant appearing on the right-hand side of (4.6.11), follows from the integral representation (4.6.10), the upper-bound (4.6.11) combined with a standard approximation argument. Remaining technical details are omitted.

Step 3: Finite L p pPq-moment for the probabilistic representation If N is a renewal process with Betapα, 1q jump times then f ps i ´si´1 q " 1´α τ 1´α 1 ps i ´si´1 q α 1 r0,τ s ps i ´si´1 q and 1 ´F pT ´sn q " 1 ´´T ´sn τ ¯1´α ě 1 ´p T τ q 1´α , similarly to step 2, by Fubini's theorem, we get pf pζ i ´ζi´1 qq ´ppζ i ´ζi´1 q ´p 2 qc pζ i ´ζi´1 , x i´1 , y i´1 , x i , y i q dx n dy n ď C n`1 p1 ´F pT ´ζn qq

´1 n ź i"1
pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´p 2 `αp´α qc pT, x 0 , y 0 , x, yq for some c :" cpT, b Y , κq ą 4κ. Now, using the fact that E " C N T `1p1 ´F pT ζN T qq ´1 ś N T i"1 pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´p 2 `αp´α ı ă 8 as soon as pp pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´p 2 `αp`α ı ˆżR 2 e γpp|x| 2 `|y| 2 q qc pT, x 0 , y 0 , x, yq dxdy.

To conclude the proof, it suffices to note that the above space integral is finite as soon as 0 ď γp ă p2cT q ´1.

Proof of Lemma 4.4.1

Since h P C 1 p pR 2 q and E i,n

" | Xi`1 | q `| Ȳi`1 | q
ı ă 8 a.s., for any q ě 1, under (AR), one may differentiate under the (conditional) expectation and deduce that px, yq Þ Ñ E i,n " hp Xi`1 , Ȳi`1 qθ i`1 |p Xi , Ȳi q " px, yq ı P C 1 p pR 2 q for any i P t0, ¨¨¨, nu a.s. The rest of the proof is divided into three parts.

Step 1: proofs of (4.4.1) and (4.4.2)

The transfer of derivatives formulae (4.4.1) and (4.4.2) are easily obtained by differentiating under expectation (which is allowed by the polynomial growth at infinity of h) noting from the definition of the Markov chain X that B s 0 X1 " B s 0 lnps 0 q " 1 s 0 and B Xi hp Xi`1 , Ȳi`1 q " B Xi`1 hp Xi`1 , Ȳi`1 qB Xi Xi`1 " B Xi`1 hp Xi`1 , Ȳi`1 q. Observe as well that from (4.2.15), the fact that

B Xi c i`1 S " B Xi c i`1 Y " B Xi b i`1 Y " B Xi c i`1
Y,S " B Xi I p1q i`1 p1q " B Xi I p2q i`1 p1q " 0 and the very definition of the random variables pθ i q 1ďiďn`1 , one has B Xi θ i`1 " 0. This gives the identities (4.4.1) and (4.4.2).

Step 2: proofs of (4.4.3) and (4.4.4)

The proofs of (4.4.3) and (4.4.4) are more involved. Let us prove (4.4.3). We proceed by considering the difference between the term appearing on the left-hand side and the first two terms appearing on the right-hand side of (4.4.3). On the one hand, using the IBP formula (4 ı .

Before proceeding, we provide the explicit expression for the quantity B Ȳi θ i`1 . Using the chain rule formula of Lemma 4.2.2, after some standard but cumbersome computations, we obtain i`1 pB Ȳi c i`1 S q ´Ip1q i`1 pB Ȳi c i`1 S q `Ip2,2q i`1 pB Ȳi c i`1 Y q `Ip2q i`1 pB Ȳi b i`1 Y q `Ip1,2q i`1 pB Ȳi c i`1 Y,S q ´´σ 1 S,i σ S,i ´2I p1,1q

i`1 pc i`1 S q ´Ip1q i`1 pc i`1 S q `Ip1,2q i`

1 pc i`1 Y,S q σ1 Y,i σ Y,i ´ρ1 i ρ i 1 ´ρ2 i ¯´2I p2,2q i`1 pc i`1 Y q `Ip2q i`1 pb i`1 Y q `Ip1,2q i`1 pc i`1 Y,S q ¯ρ 1 i 1 ´ρ2 i σ Y,i σ S,i
´Ip1,2q i`1 pc i`1 S q `Ip2,1q i`1 pc i`1 S q ´Ip2q i`1 pc i`1 S q `Ip2,2q i`1 pc i`1 Y,S q ¯ı. Also, after some simple algebraic simplifications using the definitions of i`1 pc i`1 S q ´Ip1q i`1 pc i`1 S q `Ip1,2q i`

1 pc i`1 Y,S q σ1 Y,i σ Y,i ´ρ1 i ρ i 1 ´ρ2 i ¯´2I p2,2q i`1 pc i`1 Y q `Ip2q i`1 pb i`1 Y q `Ip1,2q i`1 pc i`1 Y,S q ¯ρ 1 i 1 ´ρ2 i σ Y,i σ S,i
´Ip1,2q i`1 pc i`1 S q `Ip2,1q i`1 pc i`1 S q ´Ip2q i`1 pc i`1 S q `Ip2,2q i`1 pc i`1 Y,S q ¯ı. (4.6.13)

The previous identity will be used in the next step of the proof. Coming back to (4.6.12) and using the definition of the weight Ý Ñ θ c i`1 allows to conclude the proof of the identity (4.4.3).

Step 3: The weight sequences p Ý Ñ θ e,Y i q 1ďiďn`1 , p Ý Ñ θ e,X i q 1ďiďn`1 and p Ý Ñ θ c i q 1ďiďn`1 and the related spaces M i,n p X, Ȳ , {2q, P Z.

In this last step, we prove the last statement of Lemma 4. 4 so that, using on the one hand the Lipschitz regularity of a 1 S and on the other hand (4.2.8), from similar arguments as those used in the proof of Lemma 4.6.2, we conclude that 1 2 a 1 S p Ȳi`1 q ´a1 S pm i qqB Ȳi Ȳi`1 , 1 2 a 1 S pm i qpB Ȳi Ȳi`1 ´m1 i q P M i,n p X, Ȳ , 1{2q which in turn implies that e X,i`1 S P M i,n p X, Ȳ , 1{2q. Moreover, standard computations that we omit show that D p1q i`1 e X,i`1 S P M i,n p X, Ȳ , 0q so that by Lemma 4.2.3 we deduce f pζ i`1 ´ζi q Ý Ñ θ e,X i`1 P M i,n p X, Ȳ , 0q.

We now prove that f pζ i`1 ´ζi q Ý Ñ θ c i`1 P M i,n p X, Ȳ , ´1{2q for any i P t0, ¨¨¨, n ´1u. We use the decomposition

f pζ i`1 ´ζi q Ý Ñ θ c i`1 " f pζ i`1 ´ζi q ´Ip2q i`1 ´m1 i θ i`1 ´Ý Ñ θ e,Y i`1 ¯`B Ȳi θ i`1 ´Ip1q i`1 p Ý Ñ θ e,X i`1 q Īp1q i`1 ´B Ȳi Xi`1 f pζ i`1 ´ζi qθ i`1 Īp2q i`1 ´´σ 1 Y,i ´ρi Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 σY,i ρ 1 i b 1 ´ρ2 i ´b1 ´ρ2 i Z 1 i`1 ´ρi Z 2 i`1 ¯¯f pζ i`1 ´ζi qθ i`1 ¯.
We first prove that f pζ i`1 ´ζi q ´Ip2q i`1

´m1 i θ i`1 ´Ý Ñ θ e,Y i`1 ¯`B Ȳi θ i`1 ´Ip1q i`1 p Ý Ñ θ e,X
i`1 q ¯P M i,n p X, Ȳ , ´1{2q. We investigate each term appearing on the right-hand side of (4.6.13).

In particular, we first use the fact that c i`1 S , c i`1 Y , b i`1 Y , c i`1 Y,S B Ȳi c i`1 S , B Ȳi b i`1 Y P M i,n p X, Ȳ , 1{2q and the fact that when one applies the differential operators D

pα 1 q i`1 , D pα 1 ,α 2 q i`1
to these elements the resulting random variables belong to M i,n p X, Ȳ , 0q for any pα 1 , α 2 q P t1, 2u 2 . From Lemma 4.2.3, we thus conclude that the elements I p1,1q

i`1 pc i`1 S q, I p1,2q i`1 pc i`1 S q, I p2,1q

i`1 pc i`1 S q, I p2,2q

i`1 pc i`1 Y q, I p1,2q

i`1 pc i`1 Y,S q, I p2,2q

i`1 pc i`1 Y,S q belong to M i,n p X, Ȳ , ´1{2q and that I p1q i`1 pc i`1 S q, I p2q i`1 pb i`1 Y q, I p1q i`1 pB Ȳi c i`1 S q, I p2q i`1 pB Ȳi b i`1 Y q belong to M i,n p X, Ȳ , 0q. Moreover, using (ND), one gets that there exists C ą 0 such that for any i P

D p2q i`1 ´σ1 Y,i pρ i Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 ¯" σ 1 Y,i σ Y,i P M i,n p X, Ȳ , 0q, σ Y,i ρ 1 i b 1 ´ρ2 i ´b1 ´ρ2 i Z 1 i`1 ´ρi Z 2 i`1 ¯P M i,n p X, Ȳ , 1{2q, D p2q i`1 ´σY,i ρ 1 i b 1 ´ρ2 i ´b1 ´ρ2 i Z 1 i`1 ´ρi Z 2 i`1 ¯¯" ´ρi ρ 1 i 1 ´ρ2 i P M i,n p X, Ȳ , 0q
and from Lemma 4.6.2, f pζ i`1 ´ζi qθ i`1 P M i,n p X, Ȳ , ´1{2q. From Lemma 4.2.3, it follows that f pζ i`1 ´ζi qθ i`1 B Ȳi Xi`1 , f pζ i`1 ´ζi qθ i`1 σ 1 Y,i pρZ 1 i`1 `a1 ´ρ2 Z 2 i`1 q, f pζ i`1 ζi qθ i`1 σ Y,i ρ 1 i ? 1´ρ 2 i ´b1 ´ρ2 i Z 1 i`1 ´ρi Z 2 i`1 ¯P M i,n p X, Ȳ , 0q. Now following similar computations as those employed in the proof of Lemma 4.6.2 and omitting some technical details we obtain D pαq i`1 pf pζ i`1 ´ζi qθ i`1 q P M i,n p X, Ȳ , ´1q so that from the chain rule formula and Lemma 4.2.3, the random variables D pαq i`1 pf pζ i`1 ´ζi qθ i`1 B Ȳi Xi`1 q, D pαq i`1 pσ 1 Y,i pρ i Z ż T sn Gps 1 , ¨¨¨, s n`1 , T q ds n`1 p1 ´F pT ´sn qq n´1 ź j"0 f ps j`1 ´sj q ds n .

This completes the proof.

Lemma 4.6.2 Let n P N. On the set tN T " nu, the sequence of weights pθ i q 1ďiďn`1 defined by (4.3.3) and (4.3.4) satisfy: @i P t1, ¨¨¨, nu , f pζ i ´ζi´1 qθ i P M i´1,n p X, Ȳ , ´1{2q, p1 ´F pT ´ζn qqθ n`1 P M n,n p X, Ȳ , 0q. (4.6.14)

Proof. We investigate each term appearing in the definition of f pζ i ´ζi´1 qθ i P S i´1,n p X, Ȳ q and seek to apply Lemma 4.2.3. From the Lipschitz property of a S 195 4.6. Appendix and the space-time inequality (4.1.3), for any c ą 0 and any c 1 ą 0, the map px i´1 , y i´1 , x i , y i , s n`1 q Þ Ñ c i S px i´1 , y i´1 , x i , y i , s n`1 q satisfies |c i S px i´1 , y i´1 , x i , y i , s n`1 q| p qc ps i ´si´1 , x i´1 , y i´1 , x i , y i q ď C|y i ´mi´1 py i´1 q| p qc ps i ´si´1 , x i´1 , y i´1 , x i , y i q ď Cps i ´si´1 q p{2 qc 1 ps i ´si´1 , x i´1 , y i´1 , x i , y i q so that, the random variables c i S P M i´1,n p X, Ȳ , 1{2q, for any i P t1, ¨¨¨, n `1u. Moreover, since c i S does not depend on Xi and B Xi Ȳi " 0, one has D p1q i c i S " D p1,1q i c i S " 0. From Lemma 4.2.3, we thus conclude I p1q i pc i S q P M i´1,n p X, Ȳ , 0q and I p1,1q i pc i S q P M i´1,n p X, Ȳ , ´1{2q, i P t1, ¨¨¨, nu .

In a completely analogous manner, omitting some technical details, we derive I p2q i pb i Y q P M i´1,n p X, Ȳ , 0q, and I p1,2q i pc i Y,S q, I p2,2q i pc i Y q P M i´1,n p X, Ȳ , ´1{2q.

Hence, we obtain f pζ i ´ζi´1 qθ i P M i´1,n p X, Ȳ , ´1{2q, for any i P t1, ¨¨¨, nu. We finally observe that p1 ´F pT ´ζn qqθ n`1 " 1 P M n,n p X, Ȳ , 0q. The proof is now complete. Lemma 4.6.3 Let T ą 0 and n a positive integer. For any s n " ps 1 , ¨¨¨, s n q P ∆ n pT q, any px, yq P R 2 and any positive constant c there exist two positive constants C and c 1 ą c such that the transition density pt, x, yq Þ Ñ qc pt, x 0 , y 0 , x, yq defined by (4.2.5) satisfies the following semigroup property: ż pR 2 q n qc pT ´sn , x n , y n , x, yq ˆq c ps n ´sn´1 , x n´1 , y n´1 , x n , y n q ˆ¨¨q c ps 1 , x 0 , y 0 , x 1 , y 1 q dx n dy n ď C n qc 1 pT, x 0 , y 0 , x, yq.

Proof. The dx 1 ¨¨¨dx n integrals are treated using the standard semigroup property of Gaussian kernels so that from the very definition of qc , it directly follows ż pR 2 q n qc pT ´sn , x n , y n , x, yq ˆq c ps n ´sn´1 , x n´1 , y n´1 , x n , y n q ˆ¨¨q c ps 1 , x 0 , y 0 , x 1 , y 1 q dx n dy n In order to upper-bound the integral appearing in the right-hand side of the above identity. We now perform the change of variables y 1 " m s 1 pz 1 q, y 2 " m s 2 pz 2 q, ¨¨¨, y n " m sn pz n q. Observe that since b Y admits a bounded first derivative the determinants of the Jacobians J s 1 pz 1 q :" m 1 s 1 pz 1 q, ¨¨¨, J T ´sn pz n q " m 1 T ´sn pz n q are uniformly bounded for any ps 1 , ¨¨¨, s n q P ∆ n pT q. Remark also that from the semigroup property m s i`1 ´si pm s i pz i qq " m s i`1 pz i q, for 1 ď i ď n with the convention s n`1 " T . Hence, for some positive constants C and c 1 ą c that may change from line to line, we get for some positive constant C ě 1 and then the semigroup property satisfied by Gaussian kernels. This completes the proof.

Some useful formulas

We here provide some useful formulas in order to device the unbiased Monte Carlo algorithms based on Theorem 4.3.1 and Theorem 4.4.1. Their proofs follow from standard computations as those used in subsection 4.2.4 and are omitted. We first provide some basis results to the computations of formulas of the price and the Greeks. D p2q i pc i S q " σ S p Ȳi qσ 1 S p Ȳi q, D p2q i pc i`1 S q " m 1 i " σ S p Ȳi`1 qσ 1 S p Ȳi`1 q ´σS pm i qσ 1 S pm i q ı , D p2q i pc i Y,S q " ρσ Y σ 1 S p Ȳi q, D p2,2q i pc i Y,S q " ρσ Y σ 2 S p Ȳi q, D p2q i pc i`1 Y,S q " ρσ Y m 1 i pσ 1 S p Ȳi`1 q ´σ1 S pm i qq, D The following formulae are required in order to compute the weights pθ i q 1ďiďN T appearing in the identity (4.3.2). Note that in our examples since a Y p.q is constant, one has c i Y p.q " 0 for i P t1, ¨¨¨, N T u. Hence, for i P t1, ¨¨¨, N T u, one has: The following formulae are needed in order to compute the weights for the Delta appearing in the identity (4.4.5), for i P t1, ¨¨¨, N T u one has: i`1 pd i`1 S q " m 1 i I p1,1q

i`1 pc i`1 S q, I p1q i`1 pe Y,i`1 S q " ´m1 i I p1q i`1 pc i`1 S q `Dp2q i pc i`1 Y,S qI p1q i`1 p1q ´Dp1q i`1 D p2q i pc i`1 Y,S q, I p2q i`1 pe Y,i`1 Y q " m 1 i I p2q i`1 pb i`1 Y q, I p1,2q i`1 pd i`1 Y,S q " m 1 i I p1,2q

i`1 pc i`1 Y,S q, I p1q i`1 pe X,i`1 S q " e X,i`

I p2q i ´pb 1 ´ρ2 i´1 Z 1 i ´ρi´1 Z 2 i qθ i ¯" ´b1 ´ρ2 i´1 Z 1 i ´ρi´1 Z 2 i ¯pI p2q i p1qθ i ´Dp2q i θ i q `ρi´1 θ i σ Y,i´1 b 1 ´ρ2 i´1 , Ý Ñ θ c i "I p2q i pm 1 i´1 θ i ´Ý Ñ θ e,Y
i q `σY,i´1

ρ 1 i´1 b 1 ´ρ2 i´1 I p2q i ´pb 1 ´ρ2 i´1 Z 1 i ´ρi´1 Z 2 i qθ i Īp1q i pθ i D p2q i´1 Xi q ´Ip1q i p Ý Ñ θ e,X i q `Dp2q i´1 θ i , Ý Ñ θ e,Y N T `1 "θ N T `1 " ´m1 N T `σY,N T ρ 1 N T b 1 ´ρ2 N T p b 1 ´ρ2 N T Z 1 N T `1 ´ρN T Z 2 N T `1q ¯, Ý Ñ θ e,X N T `1 "θ N T `1 " ´´1 2 a 1 S,N T `σ1 S,N T Z 1 N T `1¯,

Contents 1 . 1 31 1. 2 13 1. 1 .

 11312131 Machine learning methods for high-dimensional BSDEs 14 1.1.1 Connection between semilinear parabolic PDEs and BSDEs 14 1.1.2 Our contributions . 15 1.1.3 SGD algorithms with sparse grids 15 1.1.3.1 The direct and Picard algorithms 16 1.1.3.2 SGD algorithm . 18 1.1.3.3 Sparse grids . 18 1.1.3.4 Main results . 19 1.1.3.5 Numerical results 20 1.1.4 Deep learning methods . 23 1.1.4.1 Neural networks 24 1.1.4.2 Euler scheme . 25 1.1.4.3 Crank-Nicolson scheme 26 1.1.4.4 Runge-Kutta scheme 27 1.1.4.5 Main results . 29 1.1.4.6 Numerical results Probabilistic representation for stochastic volatility models . 31 1.2.1 Stochastic volatility model 32 1.2.2 Probabilistic representation 33 1.2.2.1 Background . 33 1.2.2.2 Our contributions 34 1.2.3 Integration by parts formulae 37 1.2.4 Numerical results . 38 Machine learning methods for high-dimensional BSDEs 1.1 Machine learning methods for high-dimensional BS-DEs 1.1.

Definition 1 . 1 . 3 (

 113 Theoretical Picard algorithm) For a prescribed positive integer P : 1. Initialization: set u 0 P R K y ˆRd Kz .

2 .

 2 The coefficient a and b are functions of the time-step and the diffusion coefficients pb, σq, recalling (1.1.1), and (1.1.3), meaning that a n and b n are defined as a n :" apt n , b, σ, dq and b n :" bpt n , b, σ, dq, (

Figure 1 . 1 -

 11 Figure 1.1m Þ Ñ | Ŷ m 0 ´up0, X m 0 q| 2 for the Picard algorithm, d " 3. The MSE is computed by the mean of the last 10000 steps of each Picard iteration.

Figure 1 . 2 -

 12 Figure 1.2 -ŷ0 for the quadratic model with d=5 and T=1 by direct algorithm and deep learning algorithm.

Figure 1 . 3 -

 13 Figure 1.3 -The value of ŷ0 by Picard algorithm with d=5, level=3, T=1, P=6, M=2000.

Chapter 1 .

 1 Figure 1.5 -ẑi 0 for the quadratic model with d=100 and T=1

Figure 1 . 6 -

 16 Figure 1.6 -Graph with common parameters and variables of Crank-Nicolson scheme in the deep learning algorithm.

29

 29

1. 1 . 1 . 1 . 1

 1111 Machine learning methods for high-dimensional BSDEsProposition Assume that f is Lipschitz continuous. Then, setting δY n :" Ỹn ´Yn and δZ n :" Zn ´Zn , the following holds

Figure 1 . 7 -Figure 1 . 8 -

 1718 Figure 1.7 -Error against time steps for different schemes

Figure 1 . 9 - 3 1. 2 .

 1932 Figure 1.9 -Transfer the derivatives forward in time on each random intervals with N T " 3

.2. 9)

 9 (b) Discrete version: for any 0 ď n ď N ´1:

Figure 2 .

 2 Figure 2.1m Þ Ñ | Ŷ m 0 ´up0, X m 0 q| 2 for the Picard algorithm, d " 3. The MSE is computed by the mean of the last 10000 steps of each Picard iteration.

Figure 2 . 2 -

 22 Figure 2.2 -ŷ0 for the quadratic model with d=5 and T=1 by direct algorithm and deep learning algorithm.

Figure 2 . 3 -

 23 Figure 2.3 -The value of ŷ0 by Picard algorithm with d=5, level=3, T=1, P=6, M=2000.

Figure 2 . 4 -

 24 Figure 2.4 -Approximation ŷ0 by Picard algorithm when d=4 and T=0.5.

Figure 2 . 5 -

 25 Figure 2.5 -Approximation ẑ0 by Picard algorithm when d=4 and T=0.5.

Figure 2 . 6 -

 26 Figure 2.6 -The value of ŷ0 by Picard algorithm with d=2, level=3, T=1, P=9, M=5000, a=-0.4.

Figure 2 . 7 - 5 Figure 2 . 8 -

 27528 Figure 2.7 -The value of ŷ0 by Picard algorithm with d=2, level=3, T=1, P=9, M=5000, a=-1.5

Figure 2 .

 2 Figure 2.11 (all the initial value of z n,k , 1 ď n ď N ´1, 1 ď k ď K z n are set to 0 in this test).

Figure 2 . 9 -

 29 Figure 2.9 -ŷ0 for the quadratic model with d=100 and T=1

Figure 2 .

 2 Figure 2.12 -ŷ0 Ñ 1.1745 by direct SGD algorithm when d=8, N=60, M=10000.

Figure 2 .

 2 Figure 2.13 -ŷ0 Ñ ´0.2439 by direct algorithm when d=10, N=100, M=10000.

 95, 0, 5, 500), (1, 0.2, 1, 500)

ď p ď 9

 9

ď p ď 5

 5

3 . 4

 34 . 102 3.2 Runge-Kutta schemes for BSDEs 105 3.2.1 Definitions . 105 3.2.2 Stability of Runge-Kutta scheme 106 3.2.3 Discrete time error . 107 3.3 A learning method for Runge-Kutta schemes 110 3.3.1 Euler scheme . 110 3.3.2 Crank-Nicolson scheme . 113 3.3.2.1 Pseudo-consistency of the implemented scheme . . 118 3.3.3 Two stage explicit Runge-Kutta scheme 119 3.3.4 Three stage explicit Runge-Kutta scheme 121 3.3.5 General case . 123 3.3.5.1 Implementation 124 3.3.5.2 Pseudo-consistency 125 Numerical results . 129 3.4.1 Approximation of the forward process 129 3.4.1.1 Brownian motion case 129 3.4.1.2 General diffusion case of Crank-Nicolson scheme . 129 3.4.2 Empirical convergence results 130 3.4.2.1 Brownian motion case 131 3.4.2.2 Cox-Ingersoll-Ross process 132 3.5 Appendix . 135 3.5.1 Proof of Proposition 3.2.1 135 3.5.2 Proof of step 2 of Theorem 3.2.1 140

Assumption 3 . 1 . 1 7) 3 . 1 . 2

 3117312 There exists constants rf s L ą 0 and rgs L ą 0 such that|f px 2 , y 2 , z 2 q ´f px 1 , y 1 , z 1 q| ď rf s L p|y 2 ´y1 | `|z 2 ´z1 |q , (3.1.6) |gpx 2 q ´gpx 1 q| ď rgs L |x 2 ´x1 |. (3.1.Assumption There exists a constant C ą 0 such that the following two conditions hold for all x, y P R d , |µpxq ´µpyq| `|σpxq ´σpyq| ď C|x ´y|. (3.1.8)

.

 Let us define, for n ă N , recalling (3.3.24)-(3.3.25)-(3.3.26) and Definition 3.3.3

 pU, Vq P S ρ d 0 ,d 1 ,L,m pR Nm q, recall (3.1.11)-(3.1.12); -last stage: For pΦ, Ψq P CpR d , Rq 2 ˆCpR d , R d q 2 , L RK2 n,3 rΦ, Ψspθq :" (3.3.52)

Proof. 1 .

 1 We first observe that (3.3.70) rewrites Y pΦ,Ψq n`1 " Y pΦ,Ψq n,q

2 .

 2 Using the Lipschitz continuity of f and recalling (3.2.4)-(3.2.5), we easily compute the following upper bound: Ln,q rΦ, Ψspθq ďCE " |Y pΦ,Ψq n,q

Figure 3 . 5 -Figure 3 . 7 -

 3537 Figure 3.5 -Error against time steps for different schemes

 .5.18) It holds δ n ´δn`1 ď Chδ n `Cθ n . (3.5.19)

p1q i` 1

 1 pHq, I p2q i`1 pHq, D p1q i`1 H and D

 p2q

4. 4 .

 4 Integration by parts formulae two quantities B s 0 ErhpS T , Y T qs, B y 0 ErhpS T , Y T qs.

.4. 14)

 14 In the case k " n `1, using the transfer of derivative formulae (4.4.4), (4.4.2) of Lemma 4.4.1 on the last time interval and then performing the IBP formula (4.2.14), we obtain the representation

182 Chapter 4 .

 4 Probabilistic representation of IBP formulae for stochastic volatility models with unbounded drift

193 4 . 6 .

 46 Appendix t0, ¨¨¨, n ´1u, |σ

´pm ´1 T pyq´y 0 q 2 2cCTď

 2 C n qc 1 pT, x 0 , y 0 , x, yq where we first used the bi-Lipschitz property of the flow ps, xq Þ Ñ m s pxq which yields @t P r0, T s, C ´1|x ´z| 2 ď |m t pxq ´mt pzq| 2 ď C|x ´z| 2

p2q i pD p2q i` 1 1 σ 1 σ

 111 pc i`1 Y,S qq " D p2q i`1 pD p2q i pc i`1 Y,S qq " ρσ Y m 1 i σ 2 S pȲi`1 q, S pm i´1 qq 2 pζ i ´ζi´1 q , S pm i´1 qσ Y pζ i ´ζi´1 q , S pm i´1 qσ Y pζ i ´ζi´1 q ,

kChapter 4 .

 4 pθ k q " I p1q k p1qθ k ´Dp1q k θ k , k ď N T , I p1q N T `1pθ N T `1q " θ N T `1I p1q N T `1p1q ´Dp1q N T `1θ N T `1 " θ N T `1I p1q N T `1p1q.The following formulae are required for the computation of the weights for the Vega 198 Probabilistic representation of IBP formulae for stochastic volatility models with unbounded drift appearing in the identity (4.4.6), for i P t1, ¨¨¨, N T u it holds:I p1,1q

 Dans le Lemme 3.3.3, un problème d'optimisation est introduit pour obtenir la solution du système (0.0.19) avec A n :" ´1 2 E tn rf pX n`1 , Y n`1 , Z n`1 qhH n s:

	min y,z,aPL 2 pFt n q	L n py, z, aq :" C 0 hE « ˇˇˇ1 2	hH n f pX n`1 , Y n`1 , Z n`1 q	`aˇˇˇˇ2 ff	È«
	ˇˇˇY n`1 ´"y	´h 2	pf pX H n υ n	*ˇˇˇˇ2 ff	(0.0.20)

1 qq ‰ , Z n " E tn rH n pY n`1 `hf pY n`1 , Z n`1 qqs (0.0.19) avec pY N , Z N q :" pgpX N q, σ J pX N qB x gpX N qq, où H n P R d est une variable aléatoire F tn -mesurable vérifiant E tn rH n s " 0 et hE tn " |H n | 2 ‰ ă 8. n , y, zq `f pX n`1 , Y n`1 , Z n`1 qq `pz `aq

 Y sont infiniment différentiables, et supposons que a S et a Y sont bornés. Notre amélioration principale est que b Y

	$ ' ' '	S t " s 0	`ż t	rS s ds	`ż t
	' &		0		
	'				
	'				
	'				
	'				
	%				

0 σ S pY s qS s dW s , Y t " y 0 `ż t 0 b Y pY s q ds `ż t 0 σ Y pY s q dB s ,

dxB, W y s " ρ ds (0.0.25) où les coefficients b Y , σ S , σ Y : R Ñ R sont des fonctions reguliées, r P R, W et B sont des mouvements browniens standards unidimensionnels ayant un facteur de corrélation ρ P p´1, 1q, définis sur un espace de probabilité pΩ, F, Pq . Nous supposons que a S :" σ 2 S , a Y :" σ 2 Y et la dérive b

Table 1 .

 1

	dimensions	levels l ď 3	l ď 4	l ď 5
	d=2		17	49	129
	d=4		49	209	769
	d=5		71	351	1471
	d=10		241	2001	13441
	d=100		20401 1394001	
	dimensions	levels	ď 3	ď 4	ď 5
	d=2		49	113	257
	d=4		945	2769	7681
	d=5		3753 12033 36033

1.1. Machine learning methods for high-dimensional BSDEs Figure 1.4 -1-dimensional modified hat functions at level = 1,2,3 1 -The number of points in the sparse grid approximation without boundary functions for different dimensions and levels.

Table 1 . 2

 12

-The number of functions in the sparse grid approximation with boundary for different dimensions and levels.

Table 1

 1

	dimensions	Theoretical solution	SGD algo with L 2 sparse grids and hat functions direct algo Picard algo DBDP1 DBDP2 DL scheme of HPW [65]	DL scheme of HJE [55]
	d=1	1.3776	1.3790	1.3825	1.3720 1.3736	1.3724
	d=2	0.5707	0.5795	0.5794	0.5715 0.5708	0.5715
	d=5	0.8466	0.8734	0.8606	0.8666 0.8365	NC
	d=8	1.1603	1.1745	1.1801	1.1694 1.0758	NC
	d=10	-0.2149	-0.2439	-0.2594	-0.3105 -0.3961	NC

.3. The deep learning algorithm

[START_REF] Han | Overcoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning[END_REF]

fails when d ě 3. The two deep learning schemes of

[START_REF] Huré | Deep backward schemes for highdimensional nonlinear pdes[END_REF]

and our algorithms with sparse grids still works well when d ď 8. When the dimension d " 10, all the algorithms failed at providing correct estimates of the solution as shown in the table, but the errors of our algorithms appear to be smaller than the errors of deep learning methods.

Table 1 . 3

 13

-Comparison of the value of ŷ0 by different methods when T " 1.

 rS t dt `σS pY t qS t dW t , dY t " b Y pY t q dt `σY pY t qdB t ,

	with unbounded mean-reversion drift b Y pxq " λ Y pµ ´xq, for both European call
	options (payoffs: hpx, yq " pexppxq ´Kq `) and digital call options which has non-
	continuous payoff functions hpx, yq " 1 texppxqěKu . We compare the results of the
	unbiased Monte Carlo method by Exponential sampling (a Poisson process with
	intensity parameter λ " 0.5, then ErN T s " 1.25) and Beta sampling (a renewal
	process with r0, 2s´valued Betap0.5, 1q jump times, then ErN T s " 1.79) to Euler
	scheme of three different models:	
	dxB, W y t " ρdt,	ρ P p´1, 1q,

Table 1 .

 1 4 -Comparison between the unbiased Monte Carlo estimation and the Monte Carlo Euler-Maruyama scheme for the price of a Call option in the Black-Scholes model for different values of σ S .

	σ S	B-S formula	Euler Scheme Price Half-width Variance Price Half-width Variance Price Half-width Variance Exponential sampling Beta sampling
	0.25 0.111804 0.111853 0.000860286 0.0308244 0.112196 0.000124112 0.102648 0.112199 0.000154064 0.110598
	0.3 0.132621 0.132808 0.0010515 0.0460493 0.133193 0.000152038 0.15404 0.133036 0.000187336 0.163524
	0.4 0.174152 0.173559 0.00144315 0.0867423 0.174754 0.000208983 0.291037 0.174711 0.000257441 0.308813
	0.6 0.256572 0.255388 0.00235625 0.231233 0.257287 0.000334903 0.747423 0.256978 0.0004127 0.793617

Table 1 .

 1 5 -Comparison between the unbiased Monte Carlo estimation and the Monte Carlo Euler-Maruyama scheme for the Delta of a Call option in the Black-Scholes model for different values of σ S .

	σ S	B-S formula	Exponential sampling Vega Half-width Variance	Vega	Beta sampling Half-width Variance
	0.25	0	0.000690222 0.00115103 8.82877 -0.000559242 0.00128448 7.68766
	0.3	0	0.00182175 0.00137953 12.6821 0.000500579 0.00156401 11.3978
	0.4	0	-0.00163321 0.00189888 24.0283 -0.000817515 0.00215655 21.6701
	0.6	0	-0.000830748 0.00300346 60.1136	-0.001055 0.00340386 53.9862
	Table 1.6 -Comparison between the unbiased Monte Carlo estimation for the Vega of a Call
	option in the Black-Scholes model for different values of σ S .	

Part I Schemes for solving BSDEs 2.1 Introduction

 RˆR d Ñ R, g : R d Ñ R are measurable functions and L is the infinitesimal generator of the forward diffusion process with dynamics dX t " bpX t q dt `σpX t q dW t Pq, b : R d Ñ R d and σ : R d Ñ M d are measurable functions, M d being the set of d ˆd matrix.

	In the present work, we are interested in the numerical approximation in high di-
	mension d of the solution to the semilinear parabolic PDE
	"	B t upt, xq `Lupt, xq `f pupt, xq, σ J pxq∇ x upt, xqq " 0, pt, xq P r0, T q ˆRd ,
		upT, xq " gpxq, x P R d		
					(2.1.1)
	where f : (2.1.2)
	and defined, for a smooth function ϕ, by		
		Lϕpt, xq :" bpxq ¨∇x ϕpt, xq	`1 2	Trrpσσ J qpxq∇ 2 x ϕpt, xqs.	(2.1.3)
	Here, W is a d-dimensional Brownian motion defined on a complete probability space
	pO, A,		

 Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs is proved in Lemma 2.4.1. Additionally, for any u ‹ P arg min uPR K y ˆRd Kz gpuq, we show in Proposition 2.4.2 that

1, Assumption 2.2.2 (i) and Assumption 2.2.3, the wellposedness of Algorithm 2.2.3, that is, the fact that it holds arg min uPR K y ˆRd Kz gpuq ‰ H , 52

 The output of the algorithm is then u P M .

Remark 2.2.6 i) The choice of the learning sequence γ for the SGD algorithm (2.2.47), (2.2.48) might be delicate in practice, see e.g. Section 2.3.1.3.

 Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs Let Assumption 2.2.1(i) and Assumption 2.2.2 hold true. Moreover, set O " r0, 1s d and X 0 " Upp0, 1q d q.

	Assumption 2.3.1

Table 2 .

 2 .1 below indicates the number of basis functions that have theoretically to be considered when including boundary function. 1 -The number of functions in the sparse grid approximation with boundary for different dimensions and levels.

	dimensions	levels	ď 3	ď 4	ď 5
	d=2		49	113	257
	d=3		225	593	1505
	d=4		945	2769	7681
	d=5		3753 12033 36033

Table 2 .

 2

	Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
				parabolic PDEs
	dimensions	SGD algo with Sparse grids Deep learning scheme [36] y 0 95% CI of y 0 y 0 95% CI of y 0
	d=2	4.3332	[4.2921, 4.3743]	4.3516 [4.3420, 4.3612]
	d=4	7.0960	[7.0432, 7.1487]	7.1130 [7.0649, 7.1611]

2 compares the results of the direct algorithm and the deep learning algorithm

[START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF]

when d " 2, 4. The approximated value of y 0 obtained by the two methods are very close. Figure 2.4 and Figure 2.5 show the performance of the Picard algorithm with parameters d " 4, P " 12, and ŷ0 converges to 7.1352 at the last step.

Table 2 . 2

 22

-Comparison of the direct algorithm and the deep learning algorithm for the financial model.

Table 2 .

 2 3 -The number of points in the sparse grid approximation without boundary functions for different dimensions and levels.

	quite quickly, see

Table 2 . 4

 24 Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs 0.04, R b " 0.06, K 1 " 110, K 2 " 130, T " 0.5. Table2.4 compares the results for the direct algorithm and deep BSDEs solver: the approximated value for y 0 obtained by the two methods are very close. The running time for the deep BSDEs solver shows almost no increase up to d ď 25. For the direct algorithm, it does increase with the dimensions but it stays reasonable. Actually, it is even competitive when d ď 25 3 .

	dimensions	direct SGD algo with Sparse grids y 0 95% CI of y 0 time	y 0	Deep BSDEs solver[36] 95% CI of y 0	time
	d=5	8.0966	[8.0226, 8.1705]	3 s	8.1010	[8.0747, 8.1273] 115 s
	d=10	10.9865 [10.9224, 11.0506] 12 s 10.9216 [10.8944, 10.9489] 120 s
	d=15	11.848 [11.7853, 11.9107] 33 s 11.8226 [11.7750, 11.8702] 122 s
	d=20	11.8674 [11.7962, 11.9387] 61 s 11.9508 [11.8965, 12.0051] 127 s
	d=25	11.7801 [11.6467, 11.9135] 130 s 11.6416 [11.5316, 11.7517] 132 s

2, R l " -Comparison of the direct algorithm and the deep learning algorithm.

Table 2 . 5

 25 and Figure 2.14 show the performance of the direct algorithm, Picard algorithm respectively.

	dimensions	Theoretical solution	SGD algo with L 2 sparse grids and hat functions direct algo Picard algo DBDP1 DBDP2 DL scheme of HPW [65]	DL scheme of HJE [55]
	d=1	1.3776	1.3790	1.3825	1.3720 1.3736	1.3724
	d=2	0.5707	0.5795	0.5794	0.5715 0.5708	0.5715
	d=5	0.8466	0.8734	0.8606	0.8666 0.8365	NC
	d=8	1.1603	1.1745	1.1801	1.1694 1.0758	NC
	d=10	-0.2149	-0.2439	-0.2594	-0.3105 -0.3961	NC

-Comparison of the value of ŷ0 by different methods when T " 1.

 .4.4) Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs

 which in turn, using the discrete-time Grönwall Lemma, leads to max CErB T s. Combining this inequality with (2.4.5) and (2.4.7), we obtain

nďN E " |∆V tn | 2 ‰ ď

 2.2. We start by proving the analytic expression of the main quantities appearing in the direct algorithm, recall Definition 2.2.3.

Proof of Lemma 2.2.2 By standard computations, recall (2.2.6), for any 0 ď n ď N ´1,

 which, since gpu ‹ q ď gpūq, proves(2.4.16).The above estimate together with (2.4.17) leads to

	«	
	E	sup
	tPr0,T s

J ∇ x uqpt n , xq uniformly with respect to the variable t n . Combining (2.4.18) and (2.4.19) leads to gpūq ď C pE π `Eψ q

Proposition 2.4.3

 Suppose that Assumption 2.2.1, Assumption 2.2.2 (i), (ii) and Assumption 2.2.3 hold. If T p1 `2L 2 p1 `hqq ă 1 and δ h :"

 Suppose that Assumption 2.2.1, Assumption 2.2.2 (i), (ii) and Assumption 2.2.3 hold. If T p1 `2L 2 p1 `hqq ă 1 and δ h :"

`ERM `Eψ `Eπ which concludes the proof. l Lemma 2.4.2

 Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs which in turn, setting ∆M n :" 2pδY tn ´hδf tn qδZ tn ∆W n , yields |δY t n`1 | 2 " |δY tn | 2 ´2hδY tn δf tn `h2 |δf tn | 2 `|δZ tn ∆W n | 2 `∆M n .

.

4.25)

For all 0 ď n ď N ´1, one has δY t n`1 "δY tn ´hδf tn `δZ tn ∆W n

4.3.2 Study of the approximation error of the stochastic gradient de- scent algorithm

 In this subsection, our aim is to study the approximation error of Φ by Φ M where Φ M has been introduced in Definition 2.2.6.

	Lemma 2.4.3 Suppose that Assumption 2.2.1, Assumption 2.2.2 (i) and Assump-
	tion 2.2.3 hold. Let ũ be a fixed R K y

.

4.26)

We finally complete the proof by combining (2.4.23),

(2.4.24)

and

(2.4.26)

. l 2.

 .4.29) where the constants 0 , 1 are defined respectively in equation(2.4.32) and(2.4.36)

	below.
	Moreover, it holds
	E ũ"

 K,M should go to zero with respect to the optimal parameters. Thus, we must have that β K α K M ρ goes to zero and α K β K M 1´ρ goes to infinity at the same time as M goes to infinity. This will be carefully discussed inSection 2.4.4.3. With these constraints, we will naturally have that(2.4.37)

	is satisfied.		
	2. A careful analysis of the proof below shows that lim ρÑ0.5 `C pρ, γq " `8, which
	comes from the dependence of Cpρ, γq with respect to	ř `8 1	1 m 2ρ . However, one
	must bear in mind that ρ is a fixed (but optimised) parameter.
	Proof of Lemma 2.4.4. We have, since Γ m		

.4.38) Remark 2.4.1 1. In practice, L

 Study of the discrete optimization problems which in turn yields B M ď γβ K M ρ α K . Inserting the previous inequality and estimate(2.4.44) into(2.4.42) concludes the proof, since E Let us importantly point out that if one choses γ m " γ{m, with γ ą 0, then from standard comparison between series and integral Γ m ´ΓM ď γplnpm{M q `1q so that repeating the computations of the proof of Lemma 2.4.4, one has to consider the two disjoint cases γ ă β K 4α K and γ ą β K 4α K in order to provide an upper bound for the quantity of interest L K,M . Only the latter allows to obtain the best convergence rate of order 1{M . However, in practice, the user does not know the exact value of β K

	" |u 0 | 2	ı	ă 8, recall Definition 2.2.7, step 1. and α K β K ď 1 recall
	Assumption 2.2.3 and (2.2.42).	l
	Remark 2.4.2		

 .4.47) In practice, η will be fixed to be a small constant as the term in the left hand side of (2.4.46) should be asymptotically zero.

	Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
				parabolic PDEs
	Using Lemma 2.4.3, we have		
	Remark 2.4.3 Proof of Proposition 2.4.4.			
	Step 1: From Proposition 2.4.3, we see that to obtain (2.4.47), it remains to control
	E RM " max 1ďpďP	E " ~ΦM pu p´1 M q ´Φpu p´1 M q~2	ı	.

2.4.3.2.1 Proof of Theorem 2.2.1

 From the very definition (2.2.51) of the global error, we deduce

 Opε 2 q as ε Ó 0 and from (2.3.13) (see also Remark 2.3.1) we deduce that in this caseK ε " ε ´1 2 | log 2 pεq|

	Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear
			parabolic PDEs
	2.4.4.3 Complexity analysis			
	Lemma 2.4.6 Under Assumption 2.3.1, one can set		
				.4.55)
	From (2.2.18) and the previous estimates, we thus deduce	
	E ψ ď C ˜inf ξPV y }ξ ´up0, .q} 2 L 2 pOq `max 0ďnďN ´1 d ÿ i"1	inf ξPV z n	}ξ ´vi pt n , .q} 2 L 2 pOq	¸,
	ď C2 ´4 d´1 ,			(2.4.56)
	where for the last inequality we used (2.3.14) and (2.4.54).	
	Finally, setting 5pd´1q 4	.
				l

ε " log 2 pε ´1 2 | log 2 pεq| d´1 4 q yields E ψ "

 Suppose that Assumption 2.3.1 as well as (2.4.37) and (2.4.46) hold. Set γ m " γ{m ρ , for some ρ P p1{2, 1q and γ ą 0. If T p1 `2L 2 p1 `hqq ă 1 and δ h,η " 16L 2 T p1`2ηq1´T p1`2L 2 p1`hqq ă 1, then, with the notations of Proposition 2.4.3, for any ε ą 0 such that δ h,ε :" δ h,η p1`εq ă 1 there exist constants C ε :" Cpε, T, b, σ, d, γ, ρq ě 1, c :" cpT, b, σ, d, γq ą 0 such that it holdsE P ď δ P h,ε E 0 `Cε ˆN e

	´c M 1´ρ 1`2 d´1 `1 `2 d´1 hM ρ	`2´4 d´1 `h˙.	(2.4.74)
	Proof. Combining Proposition 2.4.4 with Theorem 2.4.1 and (2.2.19), we obtain
		ˆκK			
	E P ď δ P h,ε E 0 `Cε	h ^αK	L K,M	`2´4 d´1 `h˙.	(2.4.75)
	From Proposition 2.4.5, we have that κ K h^α K ď C h , which combined with Lemma 2.4.4 gives

Corollary 2.4.1

Table 2 .

 2 [START_REF] Bally | A quantization algorithm for solving multidimensional discrete-time optimal stopping problems[END_REF] -Parameters for the periodic example Chapter 2. A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs

	Examples	a	dim	M	N Initial y 0 Learning rate
	Quadratic	1	5	2000 10	0.5	0.01
	Limits to	-0.4	2	5000 20	0.3	0.002
	Picard algorithm	-1.5	2	5000 20	0	0.001
			2	6000 20	2	0.005
			4	6000 20	5	0.005
	Financial example	N.A.	5 10 5000 20 5000 20 15 5000 20	5 8 8	0.005 0.005 0.005
			20 5000 20	8	0.005
			25 5000 20	8	0.005

Table 2 . 7

 27

-Parameters by model for the deep learning method with layers " 4, batchsize " 64

Table 2 .

 2 8 -Parameters by model for the direct algorithm

	98

Table 2 .

 2 9 -Parameters by model for the Picard algorithm

Table 2 .

 2 10 -Parameters by model for the Picard algorithm

 Theorem 3.2.1 i) Euler scheme (one stage scheme): Assume pHrq 1 and pHXq 1 , the global truncation error of Runge-Kutta scheme is at least order 1 if a 21 `a22 " 1.

	This condition leads to the explicit Euler scheme when a 21 " 1 and implicit
	Euler scheme when a 22 " 1, respectively.
	ii) Crank-Nicolson scheme (one stage scheme): Assume pHrq 2 and pHXq 2 , the
	global truncation error of Runge-Kutta scheme is at least order 2 if
	a 21 " a 22 "	1 2	and	α 21 " 1.
	´1 2c 2	, a 32 "	1 2c 2
						1 2	,
	a 42 c 2 2 `a43 c 2 3 "	1 3	, a 43 a 32 c 2 " a 43 α 32 c 2 "	1 6	,

iii) Two stage explicit scheme: Assume pHrq 2 and pHXq 2 , the global truncation error of Runge-Kutta scheme is at least order 2 if a 22 " a 33 " 0 and

a 21 " c 2 , a 31 " 1

, and α 31 `α32 1 tc 2 ă1u " 1.

iv) Three stage explicit scheme: Assume pHrq 3 and pHXq 3 , the global truncation error of Runge-Kutta scheme is at least order 3 if 0 ă c 2 ă c 3 ď 1pc 2 ‰ 2 3 when c 3 " 1q, a 22 " a 33 " a 44 " 0 and the following conditions holds true a 41 `a42 `a43 " 1, a 42 c 2 `a43 c 3 " α 41 `α42 `α43 1 tc 3 ă1u " 1, α 42 c 2 `α43 c 3 1 tc 3 ă1u " 1 2 .

 Ûn , Vn , Ân q :" N m p¨; θ ‹ n q P S ρ d 0 ,d 1 ,L,m pR Nm q, recall (3.1.11)-(3.1.12).

	.22)
	recall (3.3.21).

-Set p Remark 3.3.1 i) Note carefully that we don't have any theoretical guarantees that the minimization problems (3.3.9), (3.3.12), (3.3.22) are well-posed on the whole space R Nm . A sufficient (but far from necessary) condition is the convexity and coercivity plim |θ|Ñ8 L n r Ûn`1 , Vn`1 spθq " `8q of the objective function.

 , ϕpX n`1 q, ψpX n`1 qq ´f pX n , ϕpX n q, ψpX n qqq H n

	and define Setting Ln rϕ, ψspθq :" Ln 1 rϕ, ψspθq `L n 2 rϕ, ψspθq `L n 3 rϕ, ψspθq, we then deduce that
						"						
	Y pϕ,ψq n	:" E tn	Y n`1 `h 2 pϕ,ψq argmin θ Ln rϕ, ψspθq " argmin θ L CN ´f pX n`1 , Y pϕ,ψq n`1 , Z pϕ,ψq n`1 q `f pX n , Y pϕ,ψq n n rϕ, ψspθq , Z pϕ,ψq n	q	¯	(3.3.38)
		(3.3.24) 2. Using the Lipschitz continuity of f and recalling (3.2.4)-(3.2.5), we obtain the
	Z pϕ,ψq n following upper bound: :" E tn " H n ´Y pϕ,ψq n`1 `hf pX n`1 , Y n`1 , Z pϕ,ψq n`1 q ¯ı pϕ,ψq	(3.3.25)
	A pϕ,ψq n	:"	´h 2 Ln rϕ, ψspθq ď CE E tn " H n ´f pX n`1 , Y n`1 , Z pϕ,ψq n`1 q ¯ı pϕ,ψq " |Y pϕ,ψq n ´Un pX n ; θq| 2 `h|Z pϕ,ψq n	(3.3.26) ´Vn pX n ; θq| 2
	with pY n`1 , Z pϕ,ψq n`1 q :" pϕpX n`1 q, ψpX n`1 qq. Then, the following holds pϕ,ψq `h|A pϕ,ψq n ı ´An pX n ; θq| 2 .	(3.3.39)
	E " |Y pϕ,ψq n We now prove a lower bound for the previous quantity. First, we observe that, for ´Un pX n ; θ ‹ q| 2 `h|Z pϕ,ψq n ´Vn pX n ; θ ‹ q| 2 `h|A pϕ,ψq n ı ´An pX n ; θ ‹ q| 2
	ď CE n pϕ, ψq any 0 ă α ă 1,					(3.3.27)
	where					E n pϕ, ψq " N ,y n pϕ, ψq `h N ,z n pϕ, ψq `h N ,a n pϕ, ψq px `yq 2 ě x 2 p1 ´αq `y2 p1 ´1 α q	(3.3.28) (3.3.40)
	and	Thus, for any α such that 1 ą α ą 2 2`ΛC 0 , we obtain
					N ,y n pϕ, ψq :" inf θ y E " |Y pϕ,ψq n n rϕ, ψspθq `L 3 L2 n rϕ, ψspθq ě h 1	ı ´Vn pX n ; θq| 2 ´Un pX n ; θ y q| 2 , ´α Λ E " |Z pϕ,ψq n	ı	(3.3.29)
												`h C 0 2	E " |A pϕ,ψq n	ı ´An pX n ; θq| 2 .	ı	.	(3.3.31) (3.3.41)
		Using again (3.3.40), we get		
	Proof. 1. We first observe that (3.3.24) rewrites
		Y	pϕ,ψq n`1 " Y pϕ,ψq n L1 n rϕ, ψspθq ě ´h 2 1 2 E tf pX n , Y pϕ,ψq n " |Y pϕ,ψq n ´Un pX n , θq| 2 , Z pϕ,ψq n q `f pX n`1 , Y n`1 , Z pϕ,ψq n`1 qu pϕ,ψq ı
									"			
									`´Z pϕ,ψq n ´h2 4 E |f pX n , Y pϕ,ψq `Apϕ,ψq n ¯Hn υ n n , Z pϕ,ψq `∆M pϕ,ψq n	,	(3.3.32)
	where E tn " ∆M	pϕ,ψq n	ı	" E tn " ∆M	pϕ,ψq n	H n	ı	" 0, E tn " |∆M	pϕ,ψq n	| 2	ı	ă 8. Following the
	same computations as in the proof of Lemma 3.3.3, we obtain that L CN n rϕ, ψspθq " Ln 1 rϕ, ψspθq `L n 2 rϕ, ψspθq `L n 3 rϕ, ψspθq ` n rϕ, ψs 1 2 ´L2 h 2 2 qE " |Y pϕ,ψq n ´Un pX n , θq| 2 ı ´L2 h 2 2 E " |Z pϕ,ψq n	(3.3.33) ´Vn pX n , θq| 2	ı	.
	with	This leads, combined with (3.3.41), for h small enough, to
							«				
	θqq ´An pX n ; θq| 2 H n (ˇˇ2 υ n (3.3.42) ı (3.3.34) 3. The above inequality is a fortiori true at the optimum θ ‹ . Moreover, optimizing 1 rϕ, ψspθq " E Ln |Y pϕ,ψq n ´h 2 f pX n , Y pϕ,ψq n , Z pϕ,ψq n q E " |Y pϕ,ψq n ´Un pX n ; θq| 2 `h|Z pϕ,ψq n ´Vn pX n ; θq| 2 `h|A pϕ,ψq n `C0 h ˇˇh 2 pf pX n`1 `ApX n ; θq ˇˇ2 ı ´tU n pX n ; θq ď C Ln rϕ, ψspθq. f pX ff , ´h 2 . Ln 2 rϕ, ψspθq " 1 υ n E " |Z pϕ,ψq n ´Vn pX n ; θq `Apϕ,ψq n ´An pX n ; θq| 2 ı , on separated networks is always more costly than optimizing on a fully connected (3.3.35) network thus leading to (3.3.27). l We now give an estimation of the (theoretical) error implied by the non-linear regression procedure for one time step. Ln 3 rϕ, ψspθq " C 0 hE " |A pϕ,ψq n ı ´An pX n ; θq| 2 , (3.3.36) ˇˇˇ2 ff Lemma 3.3.5 Assume pHXq 1 and ϕ, ψ P G 2 b , then the following holds
		Lemma 3.3.4 Assume that			pϕ,ψq n`1 , Z n`1 qH n pϕ,ψq	`Apϕ,ψq n	.
										θ ‹ P argmin θ L CN n rϕ, ψspθq,	(3.3.37)

3.3.21)

, impacts the numerical results, see Figure

3

.1 in Section 3.

4

. iv) For the numerical part, we can use the following loss function instead of

(3.3.21)

in order to reduce the variance of A´part by the control variate technique, it has no influence on the theoretical part.

L CN n,R rϕ, ψspθq :" E "ˇˇˇϕ pX n`1 q ´ UpX n ; θq ´h 2 f pX n`1 , ϕpX n`1 q, ψpX n`1 qq

(

3.3.23) ´h 2 f pX n , UpX n ; θq, VpX n ; θqq `pVpX n ; θq `ApX n ; N ,a n pϕ, ψq :" inf θ a E " |A pϕ,ψq n ´An pX n ; θ a q| 2 ı , (3.3.30) N ,z n pϕ, ψq :" inf θ z E " |Z pϕ,ψq n ´Vn pX n ; θ z q| 2 n , U n pX n ; θq, V n pX n ; θqqu| 2 n rϕ, ψs " E « |∆M pϕ,ψq n | 2 `C0 h ˇˇˇ1 2 hf pX n`1 , Y n q ´f pX n , U n pX n ; θq, V n pX n ; θqq| 2 ı Since f is Lipschitz continuous, we compute L1 n rϕ, ψspθq ě p n rϕ, ψs ď C ϕ h 2 , recall (3.3.37).

1 Pseudo-consistency of the implemented scheme Proposition 3.3.1 Assume

	pϕ,ψq n`1 , Z n`1 q∆W n pϕ,ψq	`Apϕ,ψq n	| 2	ı	ď Ch, which
	combined with the previous upper bound, concludes the proof.			l
	3.3.2.				

that the scheme given in Definition 3.3.3 is well-posed, then

 Vq P S ρ d 0 ,d 1 ,L,m pR Nm q, recall (3.1.11)-(3.1.12); -Second stage: For pΦ,Ψq P CpR d , Rq 2 ˆCpR d , R d q 2 , pX n`1 q `ha 31 f pX n`1 , Φ 1 pX n`1 q, Ψ 1 pX n`1 qq (3.3.59) `a32 hf pX n,2 , Φ 2 pX n,2 q, Ψ 2 pX n,2 qq ´"UpX n,3 ; θq `pVpX n,3 ; θq `ApX n,3 ; θqq H n ˘hf pX n,2 , Φ 2 pX n,2 q, Ψ 2 pX n,2 qq ˇˇ2  with pU, V, Aq :" N m P S ρ d 0 ,d 1 ,L,m pR Nm q, recall (3.1.11)-(3.1.12). -Third stage: For pΦ, Ψq P CpR d , Rq 3 ˆCpR d

	"ˇˇˇΦ n,3 rΦ, Ψspθq :" E with pU, L RK3	1 3	*	ˇˇ2
						υ n 3
	`C0 h ˇˇApX n,3 ; θq ´`a 32 H n 3 ´α32 H n 3,2			
		n,2 ; θq	2 υ n H n 2	*	ˇˇ2	

 y, zq " pcospxq `0.2 sinpxqq e

	T ´t 2	´1 2	psinpxq cospxqe T ´tq 2 `1 2d	py pz ¨1d qq 2 ,
	gpxq " cospxq,			
	where x "			

d ř i"1 x i . The theoretical solution of this BSDE is Y t " cosp Xt qe T ´t 2

 2, for x P R d , # exppsV 0 qpxq " xe ´s 5d `7 4 p1 ´e´s 5d q1 d , exppsV i qpxq " px 1 , ¨¨¨, x i´1 , p s

	2 ? d

 Appendix Recalling (3.2.4)-(3.2.5), and denote ā " max q,k t|a qk |, |α qk |u, thus have

 .2.2) 4.2. Preliminaries: assumptions, definition of the underlying Markov chain and related Malliavin calculus

 .2.17)

		Proof. Observe that from the very definitions (4.2.10) and (4.2.11), one directly
		gets							
			B Xi I i`1 p1q " B Xi I p1q i`1 p1q " 0 p2q
		while, also by direct computation, we obtain
	B Ȳi I	p1,1q i`1 pHq " I i`1 pB Ȳi Hq p1,1q	´2 σ 1 S,i σ S,i	I i`1 pHq p1,1q	´ρ1 i 1 ´ρ2 i	σ S,i σ Y,i	i`1 pHq ´Ip1,2q	`Ip2,1q i`1 pHq ¯,
										(4.2.18)
	B Ȳi I	p2,2q i`1 pHq " I i`1 pB Ȳi Hq p2,2q	´2 ˜σ1 Y,i σ Y,i	´ρ1 i ρ i 1 ´ρ2 i	¸Ip2,2q i`1 pHq,	(4.2.19)
	B Ȳi I	p1,2q i`1 pHq " I i`1 pB Ȳi Hq p1,2q	´˜σ 1 S,i σ S,i	`σ1 Y,i σ Y,i	´ρ1 i ρ i 1 ´ρ2 i	¸Ip1,2q i`1 pHq	´ρ1 i 1 ´ρ2 i	σ Y,i σ S,i	I i`1 pHq. p2,2q
										(4.2.20)

 .2.15). The chain rule formulae (4.2.16), (4.2.17),

	(4.2.18), (4.2.19) and (4.2.20) follow from similar arguments. Let us prove (4.2.16)
	and (4.2.17). The proofs of (4.2.18), (4.2.19) and (4.2.20) are omitted. Observe first
	that in general D	pα 1

 M k´1,n p X, Ȳ , 0q, for some c :" cpT, b Y , κq ą 4κ, it holds

	4.4. Integration by parts formulae			
	Indeed, since f pζ i ´ζi´1 qθ i , f pζ i ´ζi´1 q Ñ Ý θ qpζ k ´ζk´1 qI p2q k p Ý Ñ θ e,Y k q P E n`1 " ppT ´ζn , Xn , Ȳn , x, yq ÿ	e,Y i	P M i´1,n p X, Ȳ , ´1{2q and f pζ k	ζk´1
	k"1			

Table 4 .

 4 4 -Comparison between the unbiased Monte Carlo estimation for the price of a Call option in the Stein-Stein type model for different values of the parameters σ 1 and σ 2 .

	σ 1 σ 2	Euler Scheme Price Half-width Variance Price Half-width Variance Price Half-width Variance Exponential sampling Beta sampling
	0.1 0.15 0.0788438 0.000591655 0.0145796 0.0785159 0.000184533 0.226921 0.0787702 0.000127826 0.076134
	0.2 0.25 0.129 0.0010556 0.0464096 0.129024 0.000391611 1.02197 0.128967 0.000238248 0.264483
	0.3 0.4 0.200983 0.00179584 0.13432 0.200121 0.000570515 2.16901 0.200039 0.000388453 0.703103
	0.4 0.5 0.250972 0.00240492 0.240884 0.249897 0.000762565 3.87509 0.249507 0.000539937 1.3584
	σ 1 σ 2	Euler Scheme Delta Half-width Variance Delta Half-width Variance Delta Half-width Variance Exponential sampling Beta sampling
	0.1 0.15 0.547988 0.00265342 0.293238 0.538724 0.00165166 18.179 0.539677 0.00137889 8.85936
	0.2 0.25 0.54942 0.00289865 0.349943 0.539137 0.00211916 29.9265 0.538131 0.00152902 10.8935
	0.3 0.4 0.566344 0.00328048 0.448211 0.556553 0.00254168 43.0495 0.556605 0.00162791 12.3481
	0.4 0.5 0.580157 0.00359471 0.53819 0.567956 0.0026141 45.5377 0.567737 0.00184814 15.9151

Table 4 .

 4 5 -Comparison between the unbiased Monte Carlo estimation for the Delta of a Call option in the Stein-Stein type model for different values of the parameters σ 1 and σ 2 .

	σ 1 σ 2	Euler Scheme Vega Half-width Variance Vega Half-width Variance Vega Half-width Variance Exponential sampling Beta sampling
	0.1 0.15 0.0369128 0.000309236 0.0039828 0.0325922 0.00150912 15.1766 0.0349527 0.00104028 5.04243
	0.2 0.25 0.0733673 0.000689904 0.0198237 0.0671736 0.00333565 74.1462 0.0680856 0.00190913 16.9829
	0.3 0.4 0.109991 0.00121245 0.0612259 0.0990781 0.004919 161.243 0.0954942 0.00311339 45.1655
	0.4 0.5 0.145413 0.0018251 0.138734 0.129808 0.00689955 317.226 0.122975 0.00443729 91.7436

Table 4 .

 4 6 -Comparison between the unbiased Monte Carlo estimation for the Vega of a Call option in the Stein-Stein type model for different values of the parameters σ 1 and σ 2 .

	σ 1 σ 2	Euler Scheme Price Half-width Variance Price Half-width Variance Price Half-width Variance Exponential sampling Beta sampling
	0 0.3 0.468101 0.00241055 0.242013 0.468695 0.000363387 0.879968 0.46889 0.000466078 1.01218
	0.1 0.15 0.490844 0.00241351 0.242608 0.48959 0.000706916 3.33015 0.489924 0.000534225 1.32981
	0.2 0.25 0.458089 0.00240761 0.241423 0.458472 0.000780893 4.0636 0.458395 0.000536405 1.34069
	0.3 0.4 0.430371 0.00239421 0.238744 0.428881 0.000840943 4.71261 0.429222 0.000513132 1.22687
	0.4 0.5 0.410102 0.00237947 0.235813 0.409966 0.000737924 3.6287 0.409407 0.000510215 1.21296

Table 4 .

 4 7 -Comparison between the unbiased Monte Carlo estimation for the price of a digital Call option in the Stein-Stein type model for different values of the parameters σ 1 and σ 2 .

	σ 1 σ 2	Euler Scheme Delta Half-width Variance Delta Half-width Variance Delta Half-width Variance Exponential sampling Beta sampling
	0 0.3 1.23092 0.0306499 39.126 1.2445 0.00157472 16.5247 1.24456 0.00199696 18.5815
	0.1 0.15 2.20347 0.0403758 67.8968 2.17998 0.0049492 163.229 2.18349 0.00400828 74.8611
	0.2 0.25 1.27673 0.0311925 40.5237 1.27004 0.00456344 138.776 1.27093 0.00239161 26.6516
	0.3 0.4 0.79344 0.0247765 25.5675 0.793619 0.0023143 35.6918 0.792876 0.00144989 9.79521
	0.4 0.5 0.617625 0.0219193 20.0107 0.623268 0.00168461 18.9116 0.622453 0.00115744 6.24217

Table 4 .

 4 8 -Comparison between the unbiased Monte Carlo estimation for the Delta of a digital Call option in the Stein-Stein type model for different values of the parameters σ 1 and σ 2 .

	σ 1 σ 2	Euler Scheme Vega Half-width Variance Vega Half-width Variance Vega Half-width Variance Exponential sampling Beta sampling
	0 0.3	0	0	0 -0.000131092 0.00343628 78.6873 0.000348826 0.00401465 75.0995
	0.1 0.15 -0.0369417 0.0147786 9.09656 -0.0279754 0.00583723 227.061 -0.0278411 0.00446809 93.0219
	0.2 0.25 -0.0292455 0.0138245 7.95983 -0.0324527 0.00764528 389.506 -0.0368005 0.00445648 92.539
	0.3 0.4 -0.0415594 0.015675 10.2334 -0.0437127 0.00764653 389.633 -0.0405366 0.0042496 84.1467
	0.4 0.5 -0.0538733 0.0178463 13.2649 -0.0526566 0.00643334 275.8048 -0.0546736 0.00423566 83.5954

Table 4 .

 4 9 -Comparison between the unbiased Monte Carlo estimation for the Vega of a digital Call option in the Stein-Stein type model for different values of the parameters σ 1 and σ 2 .

Table 4 .

 4 .10, Table4.11, Table4.12 respectively for the Call option and in Table4.13, Table4.14, Table4.15 for the digital Call option. Here again, the unbiased estimators perform very well for all range of values of the parameters. 10 -Comparison between the unbiased Monte Carlo estimation for the price of a Call option in the model with σ S pxq " σ 1 cospxq `σ2 for different values of the parameters σ 1 and σ 2 .

	σ 1 σ 2	Euler Scheme Price Half-width Variance Price Half-width Variance Price Half-width Variance Exponential sampling Beta sampling
	0.1 0.15 0.110563 0.000847678 0.0299274 0.111364 0.000124637 0.10352 0.111372 0.000153086 0.109198
	0.2 0.25 0.193444 0.00164016 0.112042 0.193513 0.000243912 0.396457 0.193538 0.000291832 0.396832
	0.3 0.4 0.294835 0.00281222 0.329386 0.295101 0.000416276 1.15476 0.295277 0.000496958 1.15075
	0.4 0.5 0.372503 0.0039339 0.644546 0.373974 0.000648198 2.79991 0.374822 0.000693144 2.23866

Table 4 .

 4 11 -Comparison between the unbiased Monte Carlo estimation for the Delta of a Call option in the model with σ S pxq " σ 1 cospxq `σ2 for different values of the parameters σ 1 and σ 2 .

	σ 1 σ 2	Euler Scheme Vega Half-width Variance	Exponential sampling Vega Half-width Variance Vega Half-width Variance Beta sampling
	0.1 0.15 -0.00775169 9.12481e-05 0.000346781 -0.00651665 0.00112781 8.47614 -0.00739643 0.00128018 7.63629
	0.2 0.25 -0.0156966 0.000218523 0.00198885 -0.0142195 0.00220569 32.4202 -0.015778 0.00245716 28.1324
	0.3 0.4 -0.0233796 0.000412417 0.00708403 -0.0174822 0.00373758 93.0911 -0.0179794 0.00413541 79.6854
	0.4 0.5 -0.0307742 0.000670215 0.0187084 -0.0311582 0.00565561 213.151 -0.0304437 0.0042962 153.747

Table 4 .

 4 [START_REF] Bernis | Monte Carlo evaluation of Greeks for multidimensional barrier and lookback options[END_REF] -Comparison between the unbiased Monte Carlo estimation for the Vega of a Call option in the model with σ S pxq " σ 1 cospxq `σ2 for different values of the parameters σ 1 and σ 2 .

	σ 1 σ 2	Euler Scheme Price Half-width Variance Price Half-width Variance Price Half-width Variance Exponential sampling Beta sampling
	0 0.3 0.466531 0.00241015 0.241934 0.468532 0.000363404 0.880049 0.468702 0.000466623 1.01455
	0.1 0.15 0.481467 0.00241291 0.242488 0.481189 0.000371395 0.91918 0.481203 0.000469696 1.02795
	0.2 0.25 0.442993 0.00240127 0.240155 0.445142 0.000368266 0.903758 0.445054 0.000456271 0.970033
	0.3 0.4 0.406075 0.00237603 0.235133 0.407653 0.000357256 0.850523 0.407567 0.000441207 0.907039
	0.4 0.5 0.377704 0.00234699 0.22942 0.380003 0.000346223 0.798802 0.380009 0.000429336 0.858886

Table 4 .

 4 [START_REF] Bohn | Error analysis of regularized and unregularized least-squares regression on discretized function spaces[END_REF] -Comparison between the unbiased Monte Carlo estimation for the price of a digital Call option in the model with σ S pxq " σ 1 cospxq `σ2 for different values of the parameters σ 1 and σ 2 .

	σ 1 σ 2	Euler Scheme Delta Half-width Variance Delta Half-width Variance Delta Half-width Variance Exponential sampling Beta sampling
	0 0.3 1.23339 0.0306795 39.2017 1.24309 0.00156929 16.411 1.24507 0.0019971 18.5841
	0.1 0.15 1.51796 0.0338824 47.8142 1.51053 0.00193524 24.9572 1.51051 0.00242614 27.4265
	0.2 0.25 0.816965 0.0251319 26.3063 0.834766 0.00107561 7.70968 0.834635 0.00132928 8.23333
	0.3 0.4 0.52951 0.0203232 17.2025 0.527783 0.000676488 3.04964 0.527829 0.000838507 3.27608
	0.4 0.5 0.389601 0.0174702 12.7117 0.403047 0.000518279 1.79001 0.403017 0.0006438 1.93127

Table 4 .

 4 14 -Comparison between the unbiased Monte Carlo estimation for the Delta of a digital Call option in the model with σ S pxq " σ 1 cospxq `σ2 for different values of the parameters σ 1 and σ 2 .

	σ 1 σ 2	Euler Scheme Vega Half-width Variance Vega Half-width Variance Vega Half-width Variance Exponential sampling Beta sampling
	0 0.3	0	0	0 0.000525633 0.00341519 77.7246 -0.00121724 0.00401747 75.2048
	0.1 0.15 0.0107747 0.00798181 2.65345 0.00924064 0.00351717 82.4356 0.00920282 0.00407047 77.2024
	0.2 0.25 0.0138531 0.00905046 3.41153 0.0129711 0.00349226 81.2719 0.0125995 0.00391887 71.5586
	0.3 0.4 0.0123139 0.00853288 3.03249 0.0117377 0.00336349 75.389 0.0119138 0.00375579 65.7269
	0.4 0.5 0.0153924 0.00953999 3.79057 0.0170944 0.00319472 68.0131 0.0168796 0.00363443 61.548

Table 4 .

 4 [START_REF] Bouchard | Discrete-time approximation of bsdes and probabilistic schemes for fully nonlinear pdes[END_REF] -Comparison between the unbiased Monte Carlo estimation for the Vega of a digital Call option in the model with σ S pxq " σ 1 cospxq `σ2 for different values of the parameters σ 1 and σ 2 .

 Lt f px, yq " pr ´1 2 a S pm t py 0 qqqB x f px, yq `1 2 a S pm t py 0 qqB 2 x f px, yq `bY pm t py 0 qqB y f px, yq `1 2 a Y pm t py 0 qqB 2 y f px, yq `ρpσ S σ Y qpm t py 0 qqB 2

	Lf px, yq " pr	´1 2	a S pyqqB x f px, yq	`1 2	a S pyqB 2 x f px, yq `bY pyqB y f px, yq
	`1 2	a Y pyqB 2	

y f px, yq `ρpσ S σ Y qpyqB 2 x,y f px, yq, x,y f px, yq for any f P C 2 b pR 2 q.

Step 1: Probabilistic representation for a bounded and continuous map h

 where we used the boundedness of a Y , the Lipschitz regularity of b Y , the inequalities sup 0ďtďT |B y P t h| 8 ď C for " 1, 2 and, for the last inequality, the inequality Er|ş s tn σ Y pm u´tn q dB u ||G n , ζ 1 " t 1 , ¨¨¨, ζ n " t n , N T " ns ď C|σ Y | 8 ps tn q 1{2 ď CT1{2 . Recall now that PpN T " n, ζ 1 P dt 1 , ¨¨¨, ζ n P dt n q " p1 ´F pT tn qq ś n´1 j"0 f pt j`1 ´tj qdt 1 , ¨¨¨, dt n on the set ∆ n pT q so that from Lemma 4.6.2 and the estimate (4.2.22), we obtain ¨¨¨, ζ n , s, T q|1 tN T "nu ds ´1{2 dt 1 ¨¨¨dt n dt n`1 ă 8.

				E " ż T	|Gpζ 1 , ı
					ζn	
					ż T	ż		n ź
	ď C pt i ´ti´1 q Hence, by Lemma 4.6.1, it holds tn ∆npT q pT ´tn q i"1
	E " 1 tN T "nu	n`1 ź i"1	θ i	ż T ζn	" 1 2	pa s	q ı ds	ı
	"			ż T				ı
	" E	1 tN T "nu				
	" E " n ź	θ i p1 ´F pT ´ζn`1 qq ´1pf pζ n`1 ´ζn qq ´1
		i"1					
	ˆ" 1 2	pa Y p Ȳn`1 q ´aY pm n qqD	p2,2q

¨¨¨, ζ n " t n , N T " n ı Y p Ȳ ζn, Ȳn s q ´aY pm s´ζn p Ȳn qqqB 2 y P T ´shp Xζn, Xn s , Ȳ ζn, Ȳn s q `pb Y p Ȳ ζn, Ȳn s q ´bY pm s´ζn p Ȳn qqqB y P T ´shp Xζn, Xn s , Ȳ ζn, Ȳn ζn Gpζ 1 , ¨¨¨, ζ n , s, T q ds n`1 P T ´ζn`1 hp Xn`1 , Ȳn`1 q `pb Y p Ȳn`1 q ´bY pm n qqD p2q n`1 P T ´ζn`1 hp Xn`1 , Ȳn`1 q ı 1 tN T "n`1u

 ´ζn`1 qq ´1pf pζ n`1 ´ζn qq ´1rI pc n`1 S qsP T ´ζn`1 hp Xn`1 , Ȳn`1 q1 tN T "n`1u Y qp Ȳ ζn, Ȳn s q ´pσ S σ Y qpm s´ζn p Ȳn qqqB 2 x,y P T ´shp Xζn, Xn i p1 ´F pT ´ζn`1 qq ´1pf pζ n`1 ´ζn qq ´1I p1,2q n`1 pc n`1 Y,S qP T ´ζn`1 hp Xn`1 , Ȳn`1 q1 tN T "n`1u

	p2,2q n`1 pc n`1 Y q q ´aS pm s´ζn p Ȳn qqq In a completely analogous manner, we derive E " n`1 ź i"1 θ i 1 tN T "nu ż T ζn 1 2 pa S p Ȳ ζn, Ȳn s ˆrB 2 x P T ´shp Xζn, Xn s , Ȳ ζn, Ȳn s q ´Bx P T ´shp Xζn, Xn s , Ȳ ζn, Ȳn s qsds ı `Ip2q n`1 pb n`1 Y qs " E " n ź i"1 θ i p1 ´F pT ´ζn`1 qq ´1pf pζ n`1 ´ζn qq ´1 ˆrI p1,1q n`1 pc n`1 S q ´Ip1q n`1 ı and E " n`1 ź i"1 θ i 1 tN T "nu ż T ζn ρppσ S σ s , Ȳ ζn, Ȳn s " E " n ź ˆPT 4.6. Appendix i"1	q ds ı

´ζn`1 hp Xn`1 , Ȳn`1 q1 tN T "n`1u ı . θ

 .2. Indeed, from Lemma 4.6.2, the estimate (4.2.22), the tower property of conditional expectation and the identity (4.2.6), we obtain pf pζ i ´ζi´1 qq ´1pζ i ´ζi´1 q ´1 2 1 tN T "ju

	Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models
									with unbounded drift
	which in turn yields		
		n´1 ÿ j"0	E "	ˇˇhp XN T `1, ȲN T `1q ˇˇN T `1 ź i"1	|θ i | 1 tN T "ju	ı	ď |h| 8	ÿ ně0	pCT 1{2 q n Γp1 `n{2q
									" |h| 8 E 1{2,1 pCT 1{2 q
	so that the series converge absolutely. Similarly,
		ˇˇE " P T ´ζn hp Xn , Ȳn q	n`1 ź	θ i 1 tN T "nu	ıˇˇˇď	C n |h| 8 T	n 2
									i"1
	E "	ˇˇhp XN T `1, ȲN T `1q ˇˇN T `1 ź	|θ i | 1 tN T "ju	ı
						i"1	
	ď C j |h| 8 E " p1 ´F pT ´ζj qq	´1 j ź	ı
								i"1
		ż				j		
	" C j |h| 8				ź ps i ´si´1 q ´1 2 ds j
		∆ j pT q	i"1		
		j 2	Γ j p1{2q		
				Γp1 `j{2q		

" C j |h| 8 T

 yq E " ppT ´ζn , Xn , Ȳn , x, yq Xi´1 , Ȳi´1 , Xi , Ȳi , ζ n`1 q ˇˇN T " n, ζ n`1ı dxdy which can be justified as follows. From the upper-bound estimate (4.2.4), Lemma Xi´1 , Ȳi´1 , Xi , Ȳi , ζ n`1 q ˇˇN T " n, ζ n`1

	n`1 ź 4.6.2, Lemma 4.6.3, it holds ˇˇE " ppT ´ζn , Xn , Ȳn , x, yq p1 ´F pT ´ζn qq ´1 ż pR 2 q n ˆn ź θ i p 4.6. Appendix n`1 ź i"1 ppT ´ζn , x n , y n , x, yq θ i p ıˇˇď i"1
	i"1

 P C b pR 2 q. Moreover, from the previous computations, the following upperbound holdsˇˇE" ppT ´ζN T , XN T , ȲN T , x, yq

			N T `1 ź	ı
			θ i	dxdy	(4.6.10)
			i"1
	for any h N T `1 ź	ıˇˇ"
			θ i
		i"1	
	ˇˇÿ	ż	n`1 ź
	ně0	∆npT q	i"1

2

hpx, yqE

" ppT ´ζN T , XN T , ȲN T , x, yq E " ppT ´sn , Xn , Ȳn , x, yq θ i ˇˇN T " n, ζ n`1 " p0, s 1 , ¨¨¨, s n , T q ı ˆp1 ´F pT ´sn qq n ź i"1

 |θ i px i´1 , y i´1 , x i , y i , ζ n`1 q| p ppζ i ´ζi´1 , x i´1 , y i´1 , x i , y i q dx n dy n ď C n`1 p1 ´F pT ´ζn qq ´1 ż pR 2 q n qc pT ´ζn , x n , y n , x, yq

	E " |hp Xn`1 , Ȳn`1 q| p |θ ˆn ź n`1 ź i"1
	i"1

i | p ˇˇN T " n, ζ n`1 ı " ż R 2 |hpx, yq| p E " ppT ´ζn , Xn , Ȳn , x, yq n`1 ź i"1 |θ i p Xi´1 , Ȳi´1 , Xi , Ȳi , ζ n`1 q| p ˇˇN T " n, ζ n`1 ı dxdy.

The above formula is justified by Lemma 4.6.2 and Lemma 4.6.3 which yield E " ppT ´ζn , Xn , Ȳn , x, yq n`1 ź i"1 |θ i p Xi´1 , Ȳi´1 , Xi , Ȳi , ζ n q| p ˇˇN T " n, ζ n`1 ı ď Cp1 ´F pT ´ζn qq ´1 ż pR 2 q n ppT ´ζn , x n , y n , x, yq ˆn ź i"1

 1 2 ´αq ă 1 ´α 189 4.6. Appendix and that h P B γ pR 2 q, from the previous computation, we obtainEr|hp XN T `1, ȲN T `1q| p

			N T `1				
			ź	|θ i | p s
			i"1				
	"	`8 ÿ	E " E " |hp Xn`1 , Ȳn`1 q| p	n`1 ź	|θ i | p ˇˇN T , ζ n`1	1 N T "n ı	ı
		i"0			i"1	
	ď E " C N T `1p1 ´F pT ´ζN T qq	´1 N T ź
							i"1

 .2.14) and (4.2.8), we getB Ȳi E i,n " hp Xi`1 , Ȳi`1 qθ i`1 Xi`1 hp Xi`1 , Ȳi`1 qB Ȳi Xi`1 θ i`1 Ȳi`1 hp Xi`1 , Ȳi`1 qB Ȳi Ȳi`1 θ i`1

											ı
	" E i,n	" B ı	`Ei,n	" B ı
	`Ei,n	" hp Xi`1 , Ȳi`1 qB Ȳi θ i`1	ı
	" E i,n	" hp Xi`1 , Ȳi`1 q " I	p1q i`1 pB Ȳi Xi`1 θ i`1 q	`Ip2q i`1 pm 1 i θ i`1 q	ıı
	`Ei,n	" hp Xi`1 , Ȳi`1 qI i`1 p2q	´σ1 Y,i ´ρi Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 ¯θi`1	¯ı
	`Ei,n	" hp Xi`1 , Ȳi`1 qI	p2q i`1 ´σY,i	ρ 1 i 1 ´ρ2 b i	´b1 ´ρ2 i Z 1 i`1 ´ρi Z 2 i`1 ¯θi`1	¯ı
	`Ei,n					
											e,X i`1	ı	`Ei,n	" B Ȳi`1 hp Xi`1 , Ȳi`1 q Ñ Ý θ	i`1 e,Y	ı
						`Ei,n	" hp Xi`1 , Ȳi`1 q Ñ Ý θ	i`1 c	ı
			" E i,n	" hp Xi`1 , Ȳi`1 q	" I	p1q i`1 p Ý Ñ θ	e,X i`1 q	`Ip2q i`1 p Ñ Ý θ	e,Y i`1 q	`Ý Ñ θ	c i`1	ıı .
	Combining the two previous identities, we see that the difference
	B Ȳi E i,n	" hp Xi`1 , Ȳi`1 qθ i`1	ı	´´E i,n	" B Xi`1 hp Xi`1 , Ȳi`1 q Ý Ñ θ	i`1 e,X	ı
		`Ei,n	" B Ȳi`1 hp Xi`1 , Ȳi`1 q Ý Ñ θ	e,Y i`1	ı	`Ei,n	" hp Xi`1 , Ȳi`1 q Ñ Ý θ	i`1 c	ı"
	E i,n	" hp Xi`1 , Ȳi`1 qI	p2q i`1	´m1 i θ i`1	´Ý Ñ θ	e,Y i`1 ¯ı `Ei,n	" hp Xi`1 , Ȳi`1 qB Ȳi θ i`1	ı
	´Ei,n	" hp Xi`1 , Ȳi`1 qI	p1q i`1 p Ý Ñ θ	e,X i`1 q ı	`Ei,n	" hp Xi`1 , Ȳi`1 qI i`1 pB Ȳi Xi`1 θ i`1 q p1q ı
	`Ei,n	" hp Xi`1 , Ȳi`1 qI	p2q i`1	´σ1 Y,i ´ρi Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 ¯θi`1	¯ı
	`Ei,n	" hp Xi`1 , Ȳi`1 qI	p2q i`1 ´σY,i	b	ρ 1 i 1 ´ρ2 i	´b1 ´ρ2 i Z 1 i`1 ´ρi Z 2 i`1 ¯θi`1 ¯ı (4.6.12)
	´Ei,n	" hp Xi`1 , Ȳi`1 q Ý Ñ θ	c i`1

" hp Xi`1 , Ȳi`1 qB Ȳi θ i`1 ı .

On the other hand, again from the IBP formula (4.2.14), we obtain

E i,n " B Xi`1 hp Xi`1 , Ȳi`1 q Ý Ñ θ

 Combining the three previous identities and gathering similar terms, we obtain

	and	Ý Ñ θ	e,X i`1 in (4.4.3), one obtains	Ý Ñ θ	e,Y i`1
	I i`1 p2q	´m1 i θ i`1	´Ý Ñ θ	e,Y i`1 ¯" ´pf pζ i`1 ´ζi qq	´1" I i`1 ´B Ȳi c i`1 p2,2q Y ¯`I i`1 ´B Ȳi c i`1 p1,2q Y,S	¯ı
	and						I i`1 p p1q Ý Ñ θ
		I i`1 p2q	´m1 i θ i`1	´Ý Ñ θ	e,Y i`1 ¯`B Ȳi θ i`1	´Ip1q i`1 p Ñ Ý θ	e,X i`1 q
	" pf pζ i`1 ´ζi qq	´1"	´Ip1q i`1 pB Ȳi c i`1 S q	`Ip2q i`1 pB Ȳi b i`1 Y q
		σ S,i ´´σ 1 S,i	´2I	p1,1q

e,X i`1 q " pf pζ i`1 ´ζi qq ´1I p1,1q i`1 ´B Ȳi c i`1 S ¯.

 Following similar lines of reasonings as those used in the proof of Lemma 4.6.2, namely using the fact that d i`1 P M i,n p X, Ȳ , 0q as well as Lemma 4.2.3, we conclude P M i,n p X, Ȳ , ´1{2q, i P t0, ¨¨¨, n ´1u .

	D i`1 d i`1 p1q S , D i`1 d i`1 p1,1q S , D i`1 d i`1 p2q Y , D i`1 d i`1 p2,2q Y , D i`1 d i`1 p1q Y,S , D i`1 d i`1 p2q Y,S , D i`1 d i`1 p1,2q Y,S , D i`1 e Y,i`1 p1q S	,
	D i`1 e Y,i`1 p2q Y					
	f pζ i`1 ´ζi q Ý Ñ θ i`1 Note also that e,Y	
	e X,i`1 S	" B Ȳi c i`1 S	
			"	1 2	pa 1 S p Ȳi`1 qB Ȳi Ȳi`1	´a1 S pm i qm 1 i q
			"	1 2	pa 1 S p Ȳi`1 q ´a1 S pm i qqB Ȳi Ȳi`1	`1 2	a 1 S pm i qpB Ȳi Ȳi`1	´m1 i q
							.1 concerning the
	weight sequences p Ñ Ý θ	e,Y i q 1ďiďn`1 , p Ý Ñ θ	e,X i q 1ďiďn`1 and p Ñ Ý θ

c i q 1ďiďn`1 . S , d i`1 Y , d i`1 Y,S , e Y,i`1 S , e Y,i`1 Y P M i,n p X, Ȳ , 1{2q and

 1 S,i {σ S,i | `|σ 1 Y,i {σ Y,i | `|σ Y,i {σ S,i | `|ρ 1 i {p1 ´ρ2 i q| `|ρ 1 i ρ i {p1 ´ρ2 i q| ď C. We thus conclude that f pζ i`1 ´ζi q ´B Ȳi Xi`1 f pζ i`1 ´ζi qθ i`1 ¯, I ¯¯f pζ i`1 ζi qθ i`1 ¯belong to M i,n p X, Ȳ , ´1{2q.In order to do this, we remark that

			´Ip2q i`1	´m1 i θ i`1	´Ý Ñ θ	e,Y i`1 ¯`B Ȳi θ i`1	´Ip1q i`1 p Ý Ñ θ	i`1 q e,X ¯P
	M i,n p X, Ȳ , ´1{2q.					
	It thus suffices to prove I i`1 p2q p1q i`1	´σ1 Y,i pρ i Z 1 i`1	b1
	´ρ2 i Z 2 i`1 qf pζ i`1 ´ζi θ i`1 ¯and I i`1 ´σY,i p2q i`1 B Ȳi Xi`1 " ρ 1 i ? 1´ρ 2 i ´b1 ´ρ2 i Z 1 i`1 ´ρi Z 2 ´1 2 a 1 S,i `σ1 S,i Z 1 i`1 P M i,n p X, Ȳ , 1{2q,
	D i`1 pB Ȳi Xi`1 q " p1q	σ 1 S,i σ S,i	P M i,n p X, Ȳ , 0q,		
	σ 1 Y,i pρ i Z 1 i`1 `b1 ´ρ2				

i Z 2 i`1 q P M i,n p X, Ȳ , 1{2q,

6.3 Emergence of jumps in the renewal process N

 qf pζ i`1 ´ζi qθ i`1 q belong to M i,n p X, Ȳ , ´1{2q. From Lemma 4.2.3, we thus conclude thatI ´B Ȳi Xi`1 f pζ i`1 ´ζi qθ i`1 ¯, I qf pζ i`1 ´ζi qθ i`1 ¯belong to M i,n p X, Ȳ , ´1{2q.From the preceding arguments, we eventually deduce that f pζ i`1 P M i,n p X, Ȳ , ´1{2q for any i P t0, ¨¨¨, n ´1u.Finally, from the very definition of the weights on the last time interval Chapter 4. Probabilistic representation of IBP formulae for stochastic volatility models with unbounded drift belongs to M n,n p X, Ȳ , 0q and that belongs to M n,n p X, Ȳ , 1{2q. The proof is now complete. The next result is used in the proof of the probabilistic representation in Theorem 4.3.1 to express that time integrals add jumps to the renewal process N . In what follows, N is a renewal process in the sense of Definition 4.2.1. Let n P N and G : tpt 1 , . . . , t n`2 q : 0 ă t 1 ă ¨¨¨ă t n`1 ă t n`2 :" T u Ñ R be a measurable function such that E " ş T ζn |Gpζ 1 , . . . , ζ n , s, T q|1 tN T "nu ds Gpζ 1 , . . . , ζ n , s, T q1 tN T "nu ds

	p1 ´F pT ´ζn qq Ñ Ý θ	e,X n`1 "	´1 2	a 1 S,n	`σ1 S,n Z 1 n`1
	Lemma 4.6.1 ı
								ă
	8. Then, it holds						
	" ż T						ı
	E						
		ζn					
	" E						
	1 i`1 `b1 ´ρ2						pαq i`1 pσ Y,i	?	ρ 1 i 1´ρ 2 i	b p	1 ´ρ2 i Z 1 i`1	ρi
	Z 2 i`1 p1q i`1 p2q i`1	´σ1 Y,i pρ i Z 1 i`1 `b1 ´ρ2 i Z 2 i`1 qf pζ i`1	ζi
	qθ i`1 ¯and I i`1 ´σY,i p2q q Ý Ñ c θ i`1 Ý b ρ 1 i ? 1´ρ 2 i p 1 ´ρ2 i Z 1 i`1 ´ρi Z 2 i`1 ζi Ñ e,Y θ n`1 and Ý Ñ θ e,X n`1 one directly gets that
	p1 ´F pT ´ζn qq Ý Ñ θ	e,Y n`1 " m 1 n	`σ1 Y,n ´ρn Z 1 n`1 `a1 ´ρ2 n Z 2 n`1	σY,n
			ρ 1 n 1 ´ρ2 a n	´a1 ´ρ2 n Z 1 n`1 ´ρn Z 2 n`1	194

i Z 2 i`1 qf pζ i`1 ´ζi qθ i`1 q and D 4.

"

 Gpζ 1 , . . . , ζ n , ζ n`1 , T qp1 ´F pT ´ζn`1 qq ´1 p1 ´F pT ´ζn qqpf pζ n`1 ´ζn qq ´11 tN T "n`1uThe proof follows by rewriting the above expectations using (4.2.6). We rewrite the expectation on the right-hand side in integral form. By Fubini's theorem, we obtain Gps 1 , ¨¨¨, s n`1 , T qp1 ´F pT ´sn`1 qq ´1p1 ´F pT ´sn qqpf ps n`1 ´sn qq

ı .

Proof.

E " Gpζ 1 , . . . , ζ n , ζ n`1 , T q p1 ´F pT ´ζn`1 qq ´1p1 ´F pT ´ζn qqpf pζ n`1 ´ζn qq ´11 tN T "n`1u ı " ż ∆ n`1 pT q ´1 ˆp1 ´F pT ´sn`1 qq n ź j"0 f ps j`1 ´sj q ds n`1 " ż ∆npT q

 Ȳi qB Ȳi´1 Ȳi , D

	4.6. Appendix
					Ý Ñ θ	e,X i	" pf pζ i ´ζi´1 qq ´1I	p1q i pe X,i S q " pf pζ i ´ζi´1 qq ´1pI	p1q i p1qD i´1 pc i p2q S q	´Dp1q i D i´1 pc i p2q S qq,
			D i p1q	Ý Ñ θ	e,X i	" pf pζ i ´ζi´1 qq ´1e X,i S D i I p1q i p1q, p1q
		I	p1q i p Ý Ñ θ	e,X i	q "	Ý Ñ θ	e,X i	I	p1q i p1q	´Dp1q i	Ý Ñ θ	e,X i	,
	I	p1q i pθ i D i´1 Xi q " pθ i I p2q	p1q i p1q	´Dp1q i θ i qD	p2q i´1 Xi	´Dp1q i pD i´1 Xi qθ i , p2q
													S	1	I	p1q i`1 p1q	´Dp1q i`1 e X,i`1 S	" D i pc i`1 p2q S qI	p1q i`1 p1q	´Dp1q i`1 D i pc i`1 p2q S q,
				D i pI p2q	p1,1q i	pc i S qq " D i pc i p2q S qpI	p1q i p1qq 2 `2c i S I i p1qD p1q i I p2q i p1q p1q	´Dp2q i pc i S qD i I p1q	p1q i p1q,
					D	p2q i pI	p1q i pc i S qq " D i pc i p2q S qI	p1q i p1q `ci S D i I p2q i p1q, p1q
				D i pI p2q	p2q i pb i Y qq " b 1 Y p Ȳi qI i p1q `bi p2q Y D i I p2q	p2q i p1q ´b2 Y p Ȳi q,
			D i pI p2q	p1,2q i	pc i Y,S qq " D	p2q i pc i Y,S qI i p1qI p1q	p2q i p1q `ci Y,S D i I p2q	p2q i p1qI	p1q i p1q `ci Y,S I	p2q i p1qD i I p2q	p1q i p1q
													´Ip1q i p1qD i p2,2q	pc i Y,S q ´2D i pc i p2q Y,S qD i I p2q i p1q, p1q
				D	p2q i´1 pI	p1,1q i	pc i S qq " D i´1 pc i p2q S qpI	p1q i p1qq 2 `2c i S I i p1qD p1q i´1 I p2q	p1q i p1q
													´Dp2q i´1 pc i S qD i I p1q	p1q i p1q ´ci S D i´1 pD p2q i I p1q	p1q i p1qq,
					D i´1 pI p2q	p1q i pc i S qq " D i´1 pc i p2q S qI	p1q i p1q `ci S D i´1 I p2q	p1q i p1q,
				D i´1 pI p2q	p2q i pb i Y qq " b i Y D i´1 I p2q	p2q i p1q	`Ip2q i p1qpb 1 Y p Ȳi qB Ȳi´1 Ȳi	´b1 Y pm i´1 qm 1 i´1 q ´b2
				p2q i´1 pI i p1,2q	pc i Y,S qq " D i´1 pc i p2q Y,S qI	p1q i p1qI i p1q `ci p2q Y,S pI	p2q i p1qD i´1 I p2q	p1q i p1q	`Ip1q i p1qD i´1 I p2q	p2q i p1qq
													´Ip1q i p1qD i´1 pD p2q i pc i p2q Y,S qq	´Dp2q i´1 pI	p1q i p1qqD i pc i p2q Y,S q ´ci Y,S D i´1 D p2q i I p2q i p1q p1q
													´Dp2q i´1 pc i Y,S qD i I p2q	p1q i p1q.
			D i θ i "pf pζ i ´ζi´1 qq p2q	´1" D i pI p2q	p1,1q i	pc i S qq	´Dp2q i pI	p1q i pc i S qq	`Dp2q i pI	p2q i pb i Y qq	`Dp2q i pI	p1,2q i	pc i Y,S qq	ı ,
			D i´1 θ i "pf pζ i ´ζi´1 qq p2q	´1" D i´1 pI p2q	p1,1q i	pc i S qq	´Dp2q i´1 pI	p1q i pc i S qq	`Dp2q i´1 pI	p2q i pb i Y qq	`Dp2q i´1 pI	p1,2q i	ı Y,S qq pc i ,
													Ý Ñ θ	e,Y i	" m 1 i´1 θ i `pf pζ i ´ζi´1 qq ´1pI i p1qD p1q i´1 pc i p2q Y,S q	´Dp1q i D	p2q i´1 pc i Y,S qq,
													D i p2q	Ý Ñ θ	e,Y i	" m 1 i´1 D i θ i `pf pζ i ´ζi´1 qq p2q	´1" D i pD p2q i´1 pc i p2q Y,S qqI i p1q p1q
													`Dp2q i´1 pc i Y,S qD i I p2q	p1q i p1q	´Dp2q i D i D p1q i´1 pc i p2q Y,S q ı ,
													I	p2q i p Ý Ñ θ	e,Y i q "	Ý Ñ θ	e,Y i I	p2q i p1q	´Dp2q i	Ý Ñ θ	e,Y i ,
			I	p2q i pm 1 i´1 θ i	´Ý Ñ θ	e,Y i q " ´pf pζ i ´ζi´1 qq ´1I	p1,2q i	pD i´1 pc i p2q Y,S qq
													" ´pf pζ i ´ζi´1 qq ´1´D p2q i´1 pc i Y,S qI	p1q i p1qI	p2q i p1q	´Ip1q i p1qD i D p2q i´1 pc i p2q Y,S q
													´Dp2q i´1 pc i Y,S qD i I p1q	p2q i p1q	´Dp1q i D i´1 pc i p2q Y,S qI	p2q i p1q	`Dp2q i D i D p1q i´1 pc i p2q Y,S q ¯,
													199

Y p

Résumé détaillé

Since it is also the procedure used for the direct algorithm, the numerical comparison between the two will be more relevant.

The smallness condition on LT 2 is precisely given in the statement of Proposition 2.4.4. This condition should not come as a surprise since we use Picard iteration. The smallness condition on η is not restrictive in practice as the quantity it controls should go to zero to obtain the convergence of the numerical procedure.

Deviating slightly from Definition 2.2.7, we will use for the initialization of the current SGD step, the last value computed at the previous step instead of a random value.

The numerical experiments were realised by C++ 17 on a MacBook Pro 6-core Intel Core i7, using only one core and compiling with optimisation flag '-O3' in gcc. The deep BSDEs solver[START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF], using Tensorflow, spends most of the time to build the graph for the NN and initialize the variables when the dimension is small then the learning phase is quick. On the contrary, our algorithm builds the approximation grid space quite efficiently (less than 1 second when d ď 100, level ď 3) and then the runtime is spent on the the SG algorithm.

We give the proof with full computation for the Crank-Nicolson scheme only, see Section

3.5.2. l

3.3. A learning method for Runge-Kutta schemes

The server of the Laboratory LPSM, which has 32 cores CPU and

GPUs

3.5. Appendix

This dynamical system is obtained by removing the noise, that is, by setting σY " 0, from the dynamics of Y in (4.1.1).

As before, we use the convention ř H ¨¨¨" 0, ś H ¨¨¨" 1.

Acknowledgements

Scholarship Council, so that I have a chance to study in France. I would

Norm equivalence constants

We now provide some estimates for the value of α K and κ K appearing in Assumption 2.2.3. Proposition 2.4.5 Suppose that Assumption 2.3.1 holds. In the setting of Section 2.3.1.2, there exists a constant k ď 1 such that

Proof. For any u " py, zq P R K y ˆRd Kz , any 0 ď n ď N ´1 and any l P t1, ¨¨¨, du, from (2.2.6) we have

Using Lemma 2.4.5, we obtain

Note that in our setting,

Since the basis functions pχ k q 1ďkďK forms a Riesz basis [START_REF] Griebel | Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems[END_REF], there exists a constant c ě 1 such that it holds

We also observe that

Since X 0 " Upp0, 1q d q, we similarly deduce that with pU, Vq :" N m P S ρ d 0 ,d 1 ,L,m pR Nm q, recall (3.1.11)-(3.1.12). The implemented implicit Euler scheme is then given by Definition 3.3.1 (Implemented implicit Euler scheme) The numerical solution is computed using the following step:

-Compute a minimizer of the loss function:

In the following, we build on this approach to obtain implementations of the theoretical Runge-Kutta schemes given in Definition 3.2.1. For sake of completeness, let us also mention that the explicit Euler scheme could be considered instead, with essentially the same empirical result, see Section 3.4. Namely, for pϕ, ψq P CpR d , Rq ˆCpR d , R d q, we introduce the loss function at step n ă N :

with pU, Vq :" N m P S ρ d 0 ,d 1 ,L,m pR Nm q, recall (3.1.11)-(3.1.12). Similarly, we have the following lemma and the definition of implemented explicit Euler scheme. • For n " N , initialize ÛN " g, VN " σ J ∇ x g, ÂN " 0.

Lemma 3.3.2 Under our standing assumptions,

• For n " N ´1, ¨¨¨, 1, 0, given Ûn`1 , Vn`1 , -Compute a minimizer of the loss function:

.12) recall (3.3.10). -Set p Ûn , Vn q :" N m p¨; θ ‹ n q P S ρ d 0 ,d 1 ,L,m pR Nm q, recall (3.1.11)-(3.1.12).

For the Runge-Kutta scheme in the general case: the computational time is more than Q times the computational time of CN scheme, as expected. In Figure 3.3, we compare the convergence rate of the 5 schemes mentioned above. We verify that the implicit Euler scheme and explicit Euler scheme are almost order 1. The CN scheme is almost order 2. The convergence rate of RK-2 scheme is slightly less than CN scheme, but the error is smaller. The RK-3 scheme converges so fast that we are not able to observe any convergence order.

In Figure 3.4, we plotted the error w.r.t. the time cost for the 5 schemes mentioned above. We see that the Euler schemes are too slow reach a small error. The RK-3 scheme is very fast but it spend too much time even the number of time steps N is small. As we expected, CN scheme is faster than RK-2 scheme. In conclusion, if we want an error smaller than 0.01 « 2 ´6.64 , CN scheme seems to be the best scheme to use.

Cox-Ingersoll-Ross process

In this section, we test the CIR process as we mentioned before,

Chapter 4

Probabilistic representation of IBP formulae for stochastic volatility models with unbounded drift

The content of this chapter is from an article in collaboration with Noufel Frikha, Houzhi Li [START_REF] Chen | Probabilistic representation of integration by parts formulae for some stochastic volatility models with unbounded drift[END_REF]. Submitted to ESAIM: Probability and Statistics.

Contents

for sake of completeness. Indeed, in our numerical experiences, we observed that the variance of the Monte Carlo estimator in the Exponential sampling case slightly increases with respect to M 1 . Nevertheless, we observe a good behaviour of the unbiased estimators for all three quantities and for all the values of the parameter σ S .

σ