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Cohérence du réseau et local non-local dualité dans les matériaux à éléctrons f

Résumé : Dans cette thèse, nous étudierons les systèmes d’électrons f sous deux aspects différents : d’une
part la formation et la brisure de cohérence du réseau, et d’autre part la nature des électrons f qui peuvent
être localisé, itinérant ou dual. Dans la première partie, nous aborderons le sujet de la cohérence du réseau
dans les systèmes 4f sous l’angle de la substitution atomique des atomes magnétiques par des atomes
non-magnétiques. Nous traiterons du désordre généré par la substitution par la théorie de champ moyen
dynamique. Nous commençons par généraliser le diagramme de phase de type Doniach avec la substitution
en considérant les phases : ferromagnétique, antiferromagnétique et paramagnétique Kondo. Nous étudions
également la pertinence de nos diagrammes de phases vis-à-vis des données expérimentales des alliages à la
base de cérium. Par la suite, nous nous concentrerons sur la phase paramagnétique Kondo avec un réseau
carré afin d’étudier les signatures de la brisure de cohérence du réseau en diluant les impuretés magnétiques.
Pour cela, on analyse les signaux de photoémission, les masses effectives, le local potential scattering, et
l’ordre de charges. Nous confirmerons les précédentes prédictions de transition type Lifshitz entre les systèmes
dilués et denses. De plus, nous détecterons une nouvelle concentration critique pour une instabilité au liquide
de Fermi. Ce dernier est caractérisé par une annulation de la masse effective. La deuxième partie de cette
thèse traite le caractère dual apparent des électrons 5f dans les fermions lourds à la base d’actinides, où
les degrés de liberté 5f itinérants et localisés semblent coexister. Nous utiliserons la méthode des bosons
esclaves invariants par rotation pour étudier l’influence de corrélations intra-atomiques, i. e., de type de
règle de Hund. Nos résultats confirmerons la conjecture selon laquelle les corrélations intra-atomiques
peuvent renforcer les anisotropies dans l’intégrale de saut effectif 5f -5f , et conduisent à une localisation
partielle sélectif en orbitale. Enfin, nous analysons les différentes phases partiellement localisées en fonction de
la masse de quasi-particules, l’occupation, d’aimantation et la configuration de valence dépendantes en orbitale.

Mots-clés : matériaux fortement corrélés, matériaux quantiques, transition de phases quantiques,
fermion lourd, théorie de champ moyen dynamique, bosons esclaves invariants par rotation, l’alliages Kondo
désordonnés, brisure de cohérence, photoémission résolue en angle, transition de Lifshitz, topology de surface
de Fermi, dualité, localisation partielle sélectif en orbitale

Lattice coherence and local non-local duality in f-electron materials

Abstract: In this thesis, we will study f -electron systems under two different aspects: the formation and the
breakdown of lattice coherence, and the nature of f -electrons, which can be either localized, itinerant, or
dual. In the first part, we study lattice coherence in 4f systems with the atomic substitution of magnetic
atoms by non-magnetic atoms. We will deal with the substitutional disorder by using the dynamic mean-field,
theory. We start by generalizing the Doniach type phase diagram with substitution by considering the
phases: ferromagnetic, antiferromagnetic, and paramagnetic Kondo. We also study the relevance of our phase
diagrams by comparing the experimental data of various cerium-based Kondo alloys. Next, we will focus
on the Kondo paramagnetic phase on a square lattice in order to study the signatures of lattice coherence
breakdown with the dilution of magnetic impurities. To do this, we analyze the photoemission signals, the
effective masses, the local potential scattering, and the charge order. We confirmed previous predictions of a
Lifshitz-type transition between dilute and dense impurity systems. In addition, we detect a new critical
concentration for a Fermi liquid instability. The latter is highlighted by a vanishing effective mass. The second
part of this thesis deals with the apparent dual character of 5f electrons in actinide-based heavy-fermion
compounds where itinerant and localized 5f -degrees of freedom seem to coexist. We adopt the rotationally
invariant slave-boson method to study the influence of intra-atomic, i. e., Hund’s rule type correlations. Our
results confirm the conjecture that intra-atomic correlations may enhance anisotropies in the effective 5f -5f
hopping and thus eventually lead to orbital-selective partial localization. Finally, we analyze the different
partially localized phases in terms of orbital-dependent quasiparticle mass and occupation, magnetization,
and valency configurations.
Keywords: strongly correlated systems, quantum matter, quantum phase transitions, heavy-fermion, dy-
namical mean-field theory, rotationally invariant slave-bosons, disordered Kondo alloys, coherence breakdown,
angle-resolved photoemission spectroscopy, Lifshitz transition, Fermi surface topology, duality, orbital-selective
partial localization
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Foreword

The investigation of the electronic properties of a material is one of the key elements
to understanding the state of matter. The electronic properties in a solid get defined
either by the delocalization of the electrons by forming coherent Bloch states through
the overlapping of their wave functions of neighboring sites or by its localization due
to strong Coulomb repulsion. A usual way to study them is to use the band theory,
which captures the physical properties defined by freely moving electrons in the
periodic potential of a lattice. This picture of free electrons is supported by Landau’s
Fermi liquid theory [1], which adiabatically connects low-energy excitations to the
non-interacting one with one-to-one correspondence. These low-energy excitations
are also called quasiparticles, and they are characterized by the renormalized mass
with a finite lifetime. Even though this Fermi liquid theory correctly defines the
various macroscopic properties like resistivity of varieties of metals, it tends to fail
to capture the underlying physics of complex systems with strong electron-electron
interactions [2]. For these systems, one might do band-structure calculations using
theories based on density functional theory (DFT) [3, 4]. Again, DFT fails to capture
the low-energy excitations when the electron-electron interactions become strong.
This gave rise to alternative methods like dynamical mean-field theory (DMFT) [5,
6] to study the strongly correlated systems. The study of these strongly correlated
systems is the core subject of this thesis.

Research in strongly correlated electronic systems presents a challenge on both
experimental and theoretical sides. Experimental studies of these systems are not
straightforward and might require extreme experimental conditions [7] such as very
low temperature, high pressure, and/or high magnetic field. Therefore, a forward
theoretical understanding of the correlation effect is useful. But, the theoretical
treatment of the correlations can be tedious and can require particular theoretical [8]
and numerical [9] techniques. In the simplest scenario, we can define models em-
bedded with the terms defining the interactions between electrons. However, the
exact resolution of these models remains a difficult task and is possible only under
certain contexts such as low dimensionality. In order to have qualitative results
on the thermodynamic limit, we often use methods with some approximations on
electronic interactions or on the dimensionality of the system.

In this thesis, we focus on two distinct systems in this thesis: rare-earth-based
compounds and uranium-based compounds, where both have strong electron-electron
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correlations with partially filled 𝑓 -shell. Even though our research into these two
systems is separate, they provide a complementary view of the physics that may
emerge from the nature of 𝑓 -electrons, which can be localized, itinerant, or both
(dual) [10].

This thesis contains two independent parts for 4 𝑓 and 5 𝑓 systems. Every part
contains an introduction, methods and approximations, results, and conclusions.
Below, we present a summary of each chapter:

Chapter 1 is a common opening chapter for the two halves, in which we place
our subject in the context of several strongly correlated electron systems. We give an
overview of a variety of strongly correlated systems, including their notable features
and possible microscopic origins. We also go over various choices of theoretical
methods available. Finally, we will discuss the motivations that led to this thesis and
our goals.

Part I: Kondo alloys
Chapter 2 is the introductory chapter of the first part of this thesis. In this part, we

present an introduction to Kondo physics by tracing its historical developments. The
Kondo effect occurs when a localized magnetic impurity immersed in a metal host
interacts with the conduction electrons. In lattice systems with many impurities, this
effect could lead to a coherent macroscopic manifestation. One of the experimental
indicators of this lattice coherence is the enlargement of the Fermi surface vis-à-vis
the single impurity system. This lattice coherence and its breakdown as a function
of the concentration of magnetic impurities is the core problem of this part. Here,
We present experimental evidence and theoretical treatment of lattice coherence and
its breakdown on various Kondo systems, and finally, we express our motivation for
this study.

Chapter 3 is dedicated to the theoretical aspects of this part related to the treat-
ment of disorder and Kondo interaction decoupling. The dynamical mean-field
theory is used extensively in strongly correlated systems, and it becomes exact at
the limit of infinite coordination. Here, we start by detailing our model Hamil-
tonian, and then we introduce matrix dynamical mean-field theory (DMFT) for
the paramagnetic phase. Thereafter, we extend former DMFT formalism for the
antiferromagnetic phase. The Kondo interaction is decoupled through mean-field
approximations. At last, we present the system of self-consistent equations and our
method of their numerical resolution.

Chapter 4 discusses our findings from DMFT on the phase diagrams of Kondo
alloys. To put our study in context, we present an overview of the pressure and the
atomic substitution as tuning factors for Kondo alloys. Then we show our results
on a lattice with one magnetic impurity per site, followed by phase diagrams with
magnetic impurity dilution. Finally, we explore the relevance of our findings by
comparing them to experimental data.
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Chapter 5 is devoted to our findings on lattice coherence upon the magnetic impu-
rity dilution in the paramagnetic Kondo phase. Through photoemission signals, we
show and analyze the hallmarks of lattice coherence breakdown in Fermi surfaces,
the density of states, and electronic band structure. The influence of disorder on the
effective mass and quasiparticle lifetime is also investigated. Finally, we extend the
phase diagram obtained in the previous chapter.

Chapter 6 continues the study of the paramagnetic Kondo phase. Here, to char-
acterize further the coherence breakdown in Kondo alloys, we look at local potential
scattering and charge order.

Chapter 7 summarize the important findings of our study of Kondo alloys and
discusses future directions for both experimental and theoretical research.

Part II: 5f electrons in Uranium alloys
Chapter 8 is the introductory chapter of the second part. The f-electron can

acquire both itinerant and localized nature in this chapter. This paradigm was mo-
tivated by the direct evidence of this dual nature of 𝑓 -electron was observed in
UPd2Al3 through photoemission. However, other direct or indirect experimental
evidence pointing towards the dual nature of 𝑓 -electron in uranium-based com-
pounds was also observed. This duality might be driven by the interplay between
multiple microscopic origins: Hund’s coupling, spin-orbit coupling, and Coulomb
interaction. Furthermore, it could potentially result in orbital-selective partial local-
ized phases. To motivate this study, we present a summary of prior experimental
findings, microscopic origins, and theoretical investigations.

Chapter 9 covers the most key theoretical aspects of this section. At first, we
present our model Hamiltonian, and thereafter, we present the rotationally invari-
ant slave boson (RISB) approach with mean-field approximations. Finally, we will
present the system of self-consistent equations that need to be solved numerically.

Chapter 10 presents the numerical aspects of our study. Solving RISB equations is
time-consuming and prone to numerical errors. Thus, they require special attention.
During our study, we have employed multiple numerical schemes to obtain the
correct physical ground-state solutions. Here, we describe our local and global
reduction schemes in detail.

Chapter 11 presents the results on UPt3 upon varying the orbital-dependent
electronic bandwidth. We will first show and discuss our results using isotropic
bandwidth, followed by an analysis of the effect of anisotropies on orbital-dependent
electronic bandwidth. Finally, we present our phase diagram with orbital-selective
partially localized phases, and we characterize them.

Chapter 12 summarizes the key aspects of this part and discusses the future
prospects.
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Chapter 1

General introduction

Electrons in a material define the physical properties like magnetic, optical, transport,
and electronic, embedded in them. Moreover, these electrons can further interact
with each other to give rise to some extraordinary features in so-called strongly
correlated material systems (SCES). This strong electron-electron interaction may
lead them to have either an itinerant character contributing to the chemical bonding,
a localized character with no contribution to chemical bonding or even both, making
them dual. Throughout this thesis, this localized versus the itinerant character of
electrons will be our central theme.

Within band theory [11], a material is a conductor when it has partially filled
energy bands. This condition is fulfilled when it has an odd number of electrons per
unit cell. Similarly, if a material has an even number of electrons per unit cell, it will
act as an insulator due to fully filled energy bands. The above descriptions through
band theory are valid for most materials, where interaction between electrons does
not play an essential role in the determination of physical properties like conductivity.
Hence, the low-temperature physical properties can be understood through a model
like free-electron model [12] in these materials. However, with strong electron-
electron interactions, a material with a partially filled band can become an insulator.
A concrete example would be V2O3 [13], where a transition from metal to an insulator
happens due to localization of conducting electrons driven through strong electron-
electron Coulomb repulsion at low temperature even with partially filled energy
bands. Furthermore, the variation of these electron-electron interactions can further
lead the localized character of an electron to an itinerant. This is the case found in
many 𝑓 -electron systems [14, 15] with odd or non-integer number of electrons per
unit cell, where the application of external pressure can drive a phase transition with
localized to itinerant electrons. Again in 𝑓 -electron systems, a new paradigm [16, 17]
has emerged where 5 𝑓 electrons can acquire dual character: it can have both itinerant
and localized features. From this observation, a natural question about the nature of
𝑓 -electron with the variation of the electron-electron interaction can be raised, which
we will be treating in this thesis. Besides form this specific itinerant versus localized
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CHAPTER 1. GENERAL INTRODUCTION

feature, the strong correlation between electrons induces many other phenomena,
which we will be presenting below.

1.1 Strongly correlated electron systems

The history of SCES started in the 1930s when transition-metal oxide NiO [18] par-
tially filled 𝑑-electron band was found to be an insulator. In the same decade, in-
creasing resistivity was observed in impure gold and silver [19] at low temperatures,
which was again unexpected. Later on, Nevill Mott and Rudolf Peierls [20] pointed
out the possible role of electron-electron correlations for this insulating behavior in
NiO with an odd number of electrons per unit cell, and in 1949 a theory [21] was
established based on very-strong Coulomb repulsion. However, increasing resistiv-
ity [19] in some impure metals at low temperature remained unsolved for almost
three decades. It was only explained three decades later by Jun Kondo [22], nam-
ing this effect as the Kondo effect that became a prototype of strongly correlated
phenomena. Besides these two historical examples, we could note a series of exper-
imental SCES discoveries, features, and breakthroughs like the first heavy-fermion
system [23], first heavy-fermion superconductivity [24], high temperature supercon-
ductivity in cuprates [25], non-Fermi liquids [2] quantum phase transitions [26], and
ferromagnetic superconductors in 5 𝑓 -electron systems [27].

1.1.1 Large diversity of families of systems with remarkable macro-
scopic emergent phenomena

In this section, we will present various families of SCES with their macroscopic
properties. Let’s start with 𝑓 -electron systems, where quasiparticle mass can reach
hundreds of times of bare electron mass. The first 𝑓 -electron system to be found
of this kind was CeAl3 [23]. Later on, a wide range of 4 𝑓 and 5 𝑓 -electron heavy-
fermions were discovered. Figure 1.1 shows this wide range of materials and the
universal scaling feature when the so-called Kadowaki-Woods ratio between the 𝐴
coefficient of the resistivity 𝜌(𝑇) = 𝜌0 + 𝐴𝑇2 and the square linear coefficient of
the specific heat 𝛾 = 𝐶𝑣/𝑇 is plotted. In addition to heavy-fermion behavior, these
systems may present unconventional1 heavy-fermion superconductivity. The first
compounds to be found as heavy-fermion superconductors in 4 𝑓 and 5 𝑓 -systems are
CeCu2Si2[24] and in UBe13 [28] respectively. Also, a few numbers of 5 𝑓 -systems were
also found to have ferromagnetic superconductivity [29] and while might present
duality [16, 17, 29].

SCES are also famous for high-temperature superconductivity 𝑇𝑐 which can be
found in cuprates and iron pnictides. Cuprates remains on the top of the podium

1Unconventional because it can not be explained by BCS theory
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with 𝑇𝑐 of 133K [30] at 1 atm and 166 K [31] at 23 GPa. The highest 𝑇𝑐 observed in
iron pnictides is 55 K [32]. Another example of SCES is vanadates with vanadium
sesquioxide V2O3 seen as an archetype of the Mott insulator [13]. Indeed, V2O3 is
metal at high temperatures, and it becomes an insulator at low temperatures due
to strong correlations. SCES also exhibit exotic phases like spin-liquids [33] and
spin-ice [33, 34], and can be found in pyrochlores oxides family (R2Ti2O7, where R3+

is a rare earth atom) and spin ladders systems like Sr14−𝑥Ca𝑥Cu24O41 [35]. Further-
more, the spin ladders systems like Sr14−𝑥Ca𝑥Cu24O41 also exhibit charge density
wave phases along with the superconducting phase. Apart from 𝑓 -electron sys-
tems, heavy-fermion behavior can be observed in transition metal oxide such as
LiV2O4 [36]. As most of SCES, ruthenates like Sr2RuO4 can present superconductiv-
ity [37]. SCES also include organic conductors like 𝜅−(𝐵𝐸𝐷𝑇−𝑇𝑇𝐹)2𝑋 systems [38,
39], or even in cold atoms [40, 41] systems.

Besides the theoretical study and understanding of SCES, the strong correlation
in some materials has a real potential to be used in near-future technologies in elec-
tronic devices [42] like non-volatile memory, also known as Mottronics [43]. Colossal
magnetoresistance [44] and magnetocaloric effect [45] found in manganites [45–48]
can be used in spintronics [47, 48] and in magnetic refrigeration technology. Com-
plex oxides like doped lanthanum manganites, we can observe multiferroicity [49]
effect, which has its potential use in devices [50, 51]. Of course, there is high 𝑇𝑐
superconductivity a wide range of uses like high transmission lines.

1.1.2 Various microscopic mechanisms and interactions

Strong correlations in strongly correlated electron systems come from the interplay
and competition between the multiple degrees of freedom of an electron: spin,
orbital, lattice, or charge. Coulomb interaction could be the most common interac-
tion that may lead to a variety of spin ordering patterns as well as metal-insulator
transition [13]. In iridates [53, 54] or cold atoms [41], spin-orbit coupling may con-
tribute orbital-dependent Mott transition. Orbital-dependent physics may appear
from Hund’s coupling in multi-orbital SCES like in ruthenates [55–57], and iron
pnictides [58, 59], iron chalcogenides or in 5 𝑓 systems [60]. More importantly, there
can be a complex interplay between all these couplings, which might necessitate a
theoretical treatment.

1.1.3 Appropriate theoretical methods

Exploration of the physical properties of SCES presents a challenge on theoretical
sides. To illustrate this challenge, we can note the failure of density functional theory
to describe for Mott insulator with partially 𝑑-shells [61]. Thus, one needs to choose a
method carefully to treat electronic correlations. Ab-intio methods like local density
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Figure 1.1: Kadowaki–Woods ratio for a wide range of 4 𝑓 and 5 𝑓 -electron heavy-
fermion materials with normalized 𝐴̃ = 𝐴/(𝑁(𝑁 − 1)) and 𝛾̃ = 𝛾/(𝑁(𝑁 − 1)) with
ground-state degeneracy 𝑁 . From [52]
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approximation (LDA) + U [62, 63], self-interaction corrected LDA [64], linear muffin-
tin orbitals [65, 66], hybrid functional approach [67–69] and generalized gradient
approximation [70] could be employed to calculate more accurately the chemical
and electronic structure of a material. However, one might need to know some
characteristic parameters value, normally experimental data, for a specific material.

Simpler but effective, model-based approaches could be an alternative to ab-intio
since they tend to capture electron-electron interaction more accurately giving better
qualitatively results. One could choose any methods among: slave-bosons [71–74],
variational method with Gutzwiller wave function approximation [75], mean-field
methods like dynamical mean-field theory [5], exact diagonalization [76], density
matrix renormalization group [77], quantum Monte Carlo [78] and cluster pertur-
bation theory [79, 80]. Additionally, both ab-intio and model-based method can be
mixed for more realistic modelling of electronic properties in real materials. For in-
stance, one can combine dynamical mean-field theory with density functional [6, 81].
DFT+DMFT has been used extensively and successfully to study real materials [82,
83].

1.2 Motivations

In this section of this thesis, we will disclose our motivations and objectives.

1.2.1 Strongly correlated 𝑓 -electron systems

In this thesis, we focus on the effect of strong electronic correlations present on
𝑓 -electrons material: the rare earth metals (lanthanides) and the actinides with
electronic configurations [Xe]4 𝑓 𝑛5𝑑0−16𝑠2 and [Rn] 5 𝑓 𝑛 6𝑑0−17𝑠2 respectively. The
whole series of lanthanides and actinides are formed by successive addition of an
electron on the 4 𝑓 or 5 𝑓 shells.

From the figure 1.2, we can observe that the wave functions of 4 𝑓 and 5 𝑓 shells
are contracted while compared to the wave functions of other electrons in 𝑠, 𝑝 and 𝑑
shells. Thus, the 4 𝑓 shell is more inner towards the nucleus and spatially localized
except in europium, samarium, and ytterbium. Furthermore, the spatial extension of
these orbitals shrinks as the atomic number increases, with Ce being more spatially
extended for lanthanides. In 4 𝑓 systems, the strong correlation is the result of the
interaction between partially filled localized electrons in 4 𝑓 electronic shells and the
conduction electrons. In contrast to lanthanides, the spatial extent of 5 𝑓 orbital varies
upon atomic number: larger spatial distribution for light actinides [84] whereas for
heavy actinides [85] spatial extent is similar to those of lanthanides.
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Figure 1.2: Radial extend of 4 𝑓 electrons in Sm3+ and Pu3+ respectively with both
relativistic and nonrelativistic effects. 𝑥-axis in radial distance from the nucleus
whereas 𝑃(𝑅) radial probability to find an electron at a distance 𝑟 from the nucleus.
From [86]
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1.2.2 Lattice coherence and local-itinerant duality
In 4 𝑓 and 5 𝑓 systems, the localized 𝑓 -electrons are immersed in a sea of conduction
electrons with which they may interact. At high temperatures, 𝑓 -electrons remains
localized as seen through the observation of Curie Weiss susceptibility. However, at
sufficiently low temperatures, strong electronic correlations may arise at the atomic
level. Remarkably, a macroscopic coherent state can manifest on periodic lattice
despite the short-distance nature of these local correlations. In this thesis, we will
study the formation and robustness of this lattice coherence. As a first approach,
we conduct this study by diluting the atoms with 𝑓 -electrons. The dilution can
be done through isostructural atomic substitution of the atom with 𝑓 -electron by
the atoms without 𝑓 -electrons. The second approach for this study consists of
varying electronic correlations based up on the application of external parameters
like pressure. We address all these questions about the lattice coherence on 4 𝑓
electronic systems in the first part of this thesis. Similarly, the question of duality
will be treated on the in uranium alloys in the second part of this thesis.
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Chapter 2

An overview of Kondo systems

Kondo systems are the systems where magnetic impurities are randomly distributed
in a metallic crystal and interact with conduction electrons. In our case, these metallic
impurities are the 4 𝑓 electrons present in rare earth metals. In these systems, the
interaction between these localized magnetic impurities and conduction electrons,
also known as Kondo effect [87, 88]. This effect can lead to unexpected behaviors [89]
at low temperature, rich phase diagrams, non-Fermi liquid behaviors [2], small and
large Fermi surfaces [15], and many other emergent phenomenons [90]. In this
introductory chapter of part one of this thesis, we will present an overview of Kondo
physics following the historical events in the development of Kondo physics while
exposing the motivations of this current study.

2.1 Introduction to Kondo physics

2.1.1 Kondo effect as a scattering process

The journey of Kondo physics started with the observation of a minimum resistivity
in impure gold [19] (see figure 2.2(a)) and in CuFe [91] in the early 1930s at low
temperatures. At that time, this came with a big surprise, since normally, the

Figure 2.1: Schematic view of spin-flip process during electron scatter in Kondo
model.
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resistivity decreases with decreasing temperature and tends towards saturation at
low temperatures. Later, the logarithm increase of resistivity was observed whenever
magnetic impurities are present in the host metal. This effect puzzled for thirty years
until Jun Kondo [22] provided an explanation with the assumption that the effect
arises through the interaction spins of the localized and conduction electrons. This
interaction leads to the model known as the Kondo single-impurity model

ℋ =
∑

k

𝜖k𝑐
†
k𝜎𝑐k𝜎 + 𝐽𝐾S𝐼s𝑐(0) , (2.1)

where 𝑐†k𝜎(𝑐k𝜎) describe creation (annihilation) operators of conduction electrons
with spin 𝜎 =↑, ↓ and momentum k. 𝜖k is non-interacting dispersion. S𝐼 is the impu-
rity spin, and s𝑐(0) is the conduction electron spin density at the impurity site with
𝐽𝐾 > 0 being antiferromagnetic coupling. The resistivity in ordinary metals origi-
nates from the scattering processes where the phonon contribution is proportional
to 𝑇5, dominating at high temperatures and the electron-electron contribution of the
order 𝑇2, characterizing the Fermi liquid state. In addition to these contributions,
the scattering of conduction electrons from the impurity is also considered through
the spin-flip process. In the later process, the electron spin can flip together with a
simultaneous spin-flip of the impurity. Schematic representation of spin process can
be found in the figure 2.1. Within model 2.1 and Born approximations, an expression
of resistivity for impurity scattering part 1 is obtained

𝑅𝑖𝑚𝑝 = 𝑅0[1 −
2𝐽𝐾𝜌
𝑁

log( 𝑘𝐵𝑇
𝑊

) + . . .] , (2.2)

where 𝑅0 is temperature-independent residual resistivity from Born approxima-
tion and 𝑊 electronic bandwidth. For antiferromagnetic coupling 𝐽𝐾 > 0 and for
𝑘𝐵𝑇 ≫𝑊 , the resistance will increase logarithmically. However, the expression (2.2)
contain the problem that it diverges as 𝑇 → 0. A year after Jun Kondo explanation,
Abrikosov extended the previous calculation by calculating all the terms given by
[(𝐽𝐾𝜌/𝑁) log(𝑘𝐵𝑇/𝑊)]𝑛 which gave rise to even strong divergence at𝑇 → 0. Through
the summation of leading terms, he obtained

𝑅𝑖𝑚𝑝 =
𝑅0

[1 + 𝐽𝐾𝜌 log( 𝑘𝐵𝑇𝑊 )]2
. (2.3)

One can remark that the above equation (2.3) diverges at a characteristic temperature
which is expressed as

𝑘𝐵𝑇𝐾 ≈𝑊 exp
(
− 1/𝐽𝐾𝜌) . (2.4)

Thus, the characteristic temperature 𝑇𝐾 determined from the expression (2.4) is the
so-called Kondo temperature.

1A demonstration can be found in chapter four in [92]
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Figure 2.2: Two historical example showing Kondo effect. (a) Resistivity of impure
gold from 1 K to 5 K where we observe a minimum resistivity around 4 K, extracted
from [19]. (b) Resistivity of Ce𝑥La1−𝑥Cu6 series with Ce-La substitution. Single-
impurity Kondo effect can be seen at 𝑥 = 0.094 and multi-impurity at 𝑥 = 1.0,
extracted from [89].

In order to study the low energy characteristics, Anderson and his co-workers [93–
95] used a new approach based on scaling known as poor’s man scaling, where high-
energy excitations are eliminated gradually. The effect of eliminated states is retained
in a set of energy-dependent running couplings 𝐽𝐾(𝑊) in order to preserve the low-
energy behavior of the system. They found an expression of Kondo temperature
similar to equation (2.4), but with a pre-factor

√
𝐽𝐾𝜌. From this scaling approach,

few conclusions can be drawn: physics is governed by scaling independent Kondo
temperature 𝑇𝐾 , and different systems have the same low energy behavior.

The theory developed from the perturbation theory progressively breaks at
low temperatures. Similarly, all the analytical methods starting from the high-
temperature region break down near 𝑇𝐾 . With a severe need to understand the low
energy characteristics, Wilson developed a non-perturbative numerical normaliza-
tion group [96] which showed that when the Kondo interacting becomes large and
below the Kondo temperature 𝑇𝐾 , the ground-state is marked by the formation of
spin-singlet states between the conduction band electrons and the local impurity
spin. In his study, he also found that the ratio of magnetic susceptibility 𝜒 to Som-
merfeld coefficient 𝛾 was two, which is twice the value observed for a non-interacting
system.

Nozières [97, 98] also provided the essentials of the ground-state physical prop-
erties at the strong coupling regime (when 𝐽𝐾 → ∞). In his study, the impurity is
bound to the conduction electrons and forms a singlet state, and is decoupled from
the rest of the system. It acts only as a scattering center for the conduction electrons.
Since the coupling is large but not infinite, the conduction electrons can polarize the
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singlet, which can again affect another electron. In this way, a "local Fermi liquid"
can be formed through local electron-electron interaction. This single-impurity "lo-
cal Fermi liquid", analogous to Landau’s Fermi liquid theory where the resistivity
curves behave as 𝜌(𝑇) = 𝜌0 + 𝐴𝑇2, specific heat behaves as 𝐶 = 𝛾𝑇 and magnetic
susceptibility behave as 𝜒(𝑇) = 𝜒0 − 𝛼𝑇2. This was observed experimentally in a lot
of diluted Kondo alloys [99–101].

Finally, almost 50 years later, the single-impurity Kondo problem was solved
exactly [102, 103] by using the Bethe ansatz. The exact solution confirmed the singlet
ground state calculated by Wilson and the local Fermi liquid theory elaborated by
Nozières.

2.1.2 From single-impurity to Kondo lattice

In the 1970s, the experimental realizations of a new class of systems based on rare
earth metals gave rise to new phenomena due to the presence of multiple impuri-
ties and the correlations generated by them. Concurrently, a series of theoretical
developments were made to explain the physics of multi-impurity systems. Thus,
in this section, we will present an overview of the physics of multi-impurity Kondo
systems.

2.1.2.1 Magnetism versus Kondo: Doniach’s argument

The complexity in Kondo systems increases with the increasing number of impu-
rities. Indeed, the impurities can interact with each other via Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction. Doniach [104] argued the scaling behaviors of
this RKKY interaction in multi-impurity systems. In his paper, he showed that there
are two competing energy scales in Kondo systems proportional to the Kondo cou-
pling 𝐽𝐾 . The magnetically ordered phase competes with the paramagnetic Kondo
phase with two different temperature scales: Kondo energy scales as 𝑇𝐾 ∝ 1

𝜌0
𝑒−1/𝐽𝐾𝜌0

whereas the Ruderman-Kittel-Kasuya-Yoshida state (RKKY) inter-impurity magnetic
interaction scales as 𝑇𝑅𝐾𝐾𝑌 ∝ 𝐽2

𝐾
𝜌0. Indeed, magnetic order is stabilized when the

strength of the Kondo interaction, i.e. the corresponding 𝑇𝐾 , is relatively small. Fig-
ure 2.3 resumes schematic view of this competition in a phase diagram. This picture
was confirmed through multiple theoretical studies [105–111].

Later based on Doniach argument, another kind of quantum criticality was pro-
posed [112–117] where we observe the breakdown of Kondo effect with change of
localized to itinerant behavior of impurity spins. Indeed, a system can undergo a
phase transition at zero temperature upon application of external parameters due to
quantum fluctuations, known as quantum phase transition [26]. In Kondo lattice this
can be done through the application of pressure like in CeRu2Ge2 [118, 119], external
field like in YbRh2Si2 [120] or substitution like in CeCu6−𝑥Au𝑥 [121], is of second-
order nature. This transition at𝑇 = 0 at the quantum critical point (QCP), separates a

14



CHAPTER 2. AN OVERVIEW OF KONDO SYSTEMS

Figure 2.3: Schematic view of Doniach’s phase diagram. Blue line indicate Kondo
temperature 𝑇𝐾 and red line indicate magnetic order temperature scale 𝑇𝑅𝐾𝐾𝑌 .

magnetically ordered phase from the non-ordered phase. The two separated phases
on two sides of QCP compete with each other with similar energy scales, and in its
vicinity a non-Fermi liquid behavior [2, 118, 122] can be observed. However, mostly
this QCP is hidden by a superconducting dome [24]. The microscopic nature and
mechanism of QPT seem an interesting subject to explore, but it remains out of the
scope of this thesis.

2.1.2.2 Effect of electronic filling: Nozières’s exhaustion problem and coherence
formation

The physical properties of the impurity scarce Kondo system can be understood
in terms of a single-impurity scenario. However, in lattice systems, a coherent
macroscopic Fermi liquid ground state can be realized where localized quantum
magnetic impurities contribute to the formation of non-local, i.e. Bloch waves,
fermionic quasiparticle excitations. A question about the mechanism of formation of
this coherent Fermi liquid Kondo ground state can be raised when the concentration
of magnetic impurities is larger than the concentration of conduction electrons. This
was the question of ‘exhaustion’ raised by Nozières [98, 123]. Photoemission [124]
results on Kondo lattice showed that the spectral weights and the Kondo resonance
at 𝐸𝐹 were inconsistent with the description of the single-impurity model with the
temperature scale 𝑇𝐾 . Thus, he proposed that there are two energy scales, the Kondo
temperature 𝑇𝐾 and a coherence temperature 𝑇∗ lower than 𝑇𝐾 . This proposition was
discussed in many papers, and authors now agree that the ratio of these two energy
scales depends only on the band filling 𝑛𝑐 [125–129].
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Figure 2.4: Schematic representation of Kondo lattice with impurity concentration 𝑥
greater than electronic filling 𝑛𝑐 in large Kondo coupling scenario. Impurity spins
are represented by blue double arrows and conduction electrons are represented by
green arrows. Red glow represent the formation of spin-singlet formation between
impurity spins and conduction spins screening the local moments.

The formation of the coherence macroscopic phase influences the transport prop-
erties. For instance, figure 2.2 shows the resistivity for Ce𝑥La1−𝑥Cu6. For low Ce
concentrations, a saturation of maximum resistivity is observed as 𝑇 → 0. For high
Ce concentrations, the resistivity gets maximum around coherence temperature 𝑇∗,
and then it starts to decrease for lower temperatures. The difference in these two
behaviors can be understood from the coherence formation in the lattice. At low
temperatures, the screened moments become strong scatters, thus the rise in resis-
tivity is observed at first. Below, coherence temperature 𝑇∗, coherent scattering of
the Kondo singlets takes place with the conservation of momentum, this leads to the
decrease of resistivity after a maximum of around 𝑇∗. Furthermore, this decrease in
resistivity at low temperature shows the characteristic Fermi liquid 𝑇2 dependence.

In the coherent phase, 𝑓−electron levels may enter the description of the Fermi
surface, which enlarges the Fermi surface. Experimentally, this enlargement of the
Fermi surface can be observed from photoemission experiments, for example, the
figure 2.5 presents a large Fermi surface of Kondo lattice YbRh2Si2 obtained through
ARPES for 𝑇 < 𝑇𝐾 . Also, at low temperatures, the local density of states at Fermi
level 𝜌(𝐸𝐹) presents a distinct large peak also known as Kondo resonance [130–132].
In order to understand the coherence formation and the large Fermi surface in Kondo
lattice, we should at first consider the case of large Kondo coupling as in the exact
strong-coupling treatment [133] of Kondo lattice. Here, we have𝑁 𝑓 = 𝑁𝑥 number of
Kondo impurities on 𝑁 sites and 𝑁𝑐 = 𝑁𝑛𝑐 number of conduction electrons. Since,
every conduction electron is bound to an impurity spin, which gives us 𝑁 𝑓 − 𝑁𝑐

number of unscreened impurity spins per site. Knowing this, we can deduce that
the conduction electrons can only hop from the impurity bound site to the bachelor
impurity site. We could now think the other way around: the effective charge carriers
are the holes from the site with the unscreened Kondo spin. In this case, we can
deduce that the number of quasiparticles would be 2𝑁 𝑓 −(𝑁 𝑓 −𝑛𝑐) = 𝑁 𝑓 +𝑁𝑐 , where
the two come from spin degeneracy. This also shows that the observation of enlarged
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Fermi surface (see figure 2.5) comes from the participation of impurity electron in its
formation, as per Luttinger’s theorem [134]. A schematic representation is presented
in the figure 2.4.

The coherent Fermi liquid phase can also be established from the magnetically
ordered ground state in the Kondo lattice. This can be done by increasing the Kondo
coupling, applying external pressure. Let’s take a concrete example of CeRu2Ge2
for the illustration. CeRu2Ge2 is ferromagnetic with Curie temperature of 8 K, and
Kondo temperature of 1.9 K. This low𝑇𝐾 implies low Kondo coupling 𝐽𝐾 . By applying
pressure of 76 kbar [118], a complete suppression of magnetically ordered phase is
observed, followed by coherent Kondo Fermi liquid phase with enhanced effective
masse.

Figure 2.5: Left: large Fermi surface of YbRh2Si2 seen through (a) band renormal-
ization calculation and (b) ARPES, where 𝑓 -electron enter the description of Fermi
surface at the temperature 𝑇 < 𝑇𝐾 . Right: small Fermi surface of YbCo2Si2 (a) LDA
calculation and (b) ARPES, at the temperature 𝑇 > 𝑇𝐾 . From [135]

2.2 Kondo substitution in Kondo alloys

In Kondo alloys, the number of Kondo impurities can be diminished through the
substitution of Kondo atoms with magnetic impurities by non-magnetic atoms. This
substitution can break the lattice coherence and can induce change in the Fermi
surface structure. In this section, we present different aspects of Kondo substitution
related to the lattice coherence and its breakdown.
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Figure 2.6: Schematic representation of dilution of magnetic impurities. In both case,
impurity spin (in blue arrow) forms a spin-singlet with conduction spin, represented
by red glow. Right: the conduction electrons hop from singlet site to bachelor site,
left: the conduction electrons hops from non-magnetic site to non-magnetic site.

2.2.1 Strong coupling picture

With a description of the large Fermi surface in Kondo lattice obtained, we could
now deplete Kondo atoms. This will reduce the number of Kondo impurities 𝑁 𝑓

while the number of conduction electrons 𝑁𝑐 remains the same. When 𝑁 𝑓 < 𝑁𝑐

upon dilution of magnetic impurities, each impurity still captures one conduction
electron by forming Kondo singlets. This leaves only 𝑁𝑐 − 𝑁 𝑓 free conduction
electrons, which can hope freely only on sites without magnetic impurity. In this
case, the Fermi surface contains only 𝑁𝑐 − 𝑁 𝑓 free electrons, thus the Fermi surface
is considerably reduced. This scenario is illustrated in the figure 2.6. It has been
proposed that the transition between large and small Fermi surfaces happens when
𝑁 𝑓 = 𝑁𝑐 [136].

2.2.2 Weak coupling limit

The theoretical works predict a fundamental difference between dense and dilute
Kondo alloys. But, this strong coupling does not represent the experimental reality
where Kondo coupling can not be infinity. Thus, one must study the limit of in-
termediate to weak coupling limit. A study [137, 138] on weak coupling limit was
conducted on the Bethe lattice through the adapted version of the statistical DMFT
method [139, 140] and with matrix DMFT [141] to treat the Kondo substitution with
the disorder. In that study, the neighborhood fluctuations and low dimensional-
ity issues were analyzed through the local potential scatterings, a site-dependent
effective local energy level. For weak coupling, local potential scattering showed
a smooth crossover from the dilute to dense impurity concentration regime. This
was in contrast with the strong coupling picture, where a clear separation of dilute
and dense regimes was obtained. Furthermore, for intermediate values of impurity
concentration 𝑥, the distribution local potential scattering could be found outside
the non-interacting electronic bandwidth, showing the possible breakdown of Lut-
tinger’s theorem [134].
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2.2.3 Experimental realization of lattice coherence breakdown

In order to show the lattice coherence breakdown, let’s take the previous example
of CeCu6 (see figure 2.2(b)) where magnetic Ce is substituted by non-magnetic
and iso-electronic La atom. In this particular example, one can follow the gradual
breakdown of coherence as Ce atoms get depleted by following the resistivity curves.
The breakdown of Kondo coherence also marks the change of the Fermi surface from
large to small. This is because the singlet forming 𝑓 -electrons does not participate
in the Fermi surface. Similarly, the enhanced effective mass becomes far lesser
enhanced.

Substitution of Kondo atoms can also generate pressure effects in addition to
the dilution of Kondo impurities. Ce atoms with the ionic radius of 101 pm are
slightly smaller than La atoms with the ionic radius of 103.2 pm [142]. Thus Ce-La
substitution increases the volume of the cell without altering the lattice structure.
The increase in cell volume has the same effect as negative pressure, which decreases
𝐽𝐾 and favors the magnetically ordered phase. A concrete example would be the case
of Ce𝑥La1−𝑥Ru2Si2 [119] series where only 8% of Ce substitution generates a phase
transition from coherent Kondo to antiferromagnetic phase.

In addition to cell volume change, the Kondo substitution can generate sub-
stitutional disorder. This disorder can also be responsible for the breakdown of
Kondo coherence, along with phase transition from coherent Kondo magnetically
ordered phase or to a single-impurity local Fermi liquid regime. Non-Fermi liq-
uid behavoir [2], a deviation from Fermi liquid properties, can be observed in dis-
ordered 𝑓 -electron system with substitution [143]. In disordered Kondo system
Ce𝑥La1−𝑥Ni2Ge2 [101] series, no magnetic ordering was observed upon magnetic
dilution, but the coherent Fermi liquid in dense Kondo regime get replaced by the
non-Fermi liquid state before local Fermi liquid state at the very dilute regime. The
disorder may be one of the possible origins of this non-Fermi liquid behavior, with-
out ignoring the fact the non-Fermi liquid behavior can appear in the vicinity of
magnetic phase transition.

Kondo substitution can also break the ground-state magnetic phase present in
many Kondo lattices like antiferromagnetism in CeCu2Ge2 [144] or ferromagnetism
like in CeRu2Ge2 [118] ground-state. For instance, the substitution in CeCu2Ge2 [100]
series found that the antiferromagnetic phase survives up to dilution state with
𝑥 ≈ 0.8 and further dilution 𝑥 ≈ 0.03 led to single-impurity behavior. Similar results
were seen on Ce𝑥La1−𝑥Ni2Ge2 [101] series at very dilute case, even though CeNi2Ge2
has a paramagnetic ground-state. Compiling all the observations, we can deduce the
following possible scenarios with substitution: coherent paramagnetic Kondo phase
(dense Kondo) leading to single-impurity Kondo regime, coherent paramagnetic
Kondo phase to magnetically ordered phase, coherent paramagnetic Kondo phase
to non-Fermi liquid phase to single-impurity Kondo regime, magnetically ordered
phase to single-impurity Kondo regime.
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2.3 Motivations and objectives
Crucial differences between dilute and dense regimes were observed through DMFT
on Bethe lattice at strong coupling regime [136, 141], through finite-size calcula-
tions [145], Monte Carlo simulations [146–148], numerical renormalization group [149],
or local-moment approach [150, 151] and also through statistical DMFT by analyzing
local potential scatterings [137]. However, these studies lacked a systematic study of
the Fermi surface with the depletion of Kondo atoms which we will be addressing in
this work. Also, in this thesis, we will consider the possibility of having a magneti-
cally ordered phase in order to verify Doniach’s argument with Kondo substitution.
For this particular study, we will consider 1D, 2D, and 3D systems. The possible
experimental signatures of coherence breakdown between dilute and dense Kondo
regimes through photoemission will be also analyzed on 2D system. We also analyze
local potential scattering and the possibility of charge ordering. More importantly,
each of our studies will be considered with the possibility of having experimental
realizations. This part is organized as follows:

The next chapter 3 is dedicated to the methodical and numerical aspect of Kondo
alloys. There, we present two matrix DMFT methods: one for the paramagnetic
Kondo phase and the other for the magnetically ordered phase. The DMFT method
for the magnetically ordered phase is one of the original works of this thesis, which
can be seen as an extension of previous DMFT [5] and matrix DMFT [141]. Again, in
this chapter, we will present our approach to decouple the Kondo interactions and
the numerical algorithm.

Chapter 4 present the results concerning the magnetic phase diagram of Kondo
alloys upon substitution using DMFT. The pertinence of our results will be com-
pared with experimental data of cerium-lanthanum substitution and with Doniach’s
picture.

Chapter 5 will be the core chapter of this part where we search various signatures
of lattice coherence breakdown through photoemission. Systematic studies will be
done with magnetic impurity concentration 𝑥, electronic filling 𝑛𝑐 , and the Kondo
coupling strength 𝑇𝐾 . We will analyze the Fermi surfaces, the effective masses,
density of states, and the ARPES derived bands along with the disorder effect.

In chapter 6, we present and analyze our results on local potential scattering and
charge order. This chapter has two motivations: one to produce the pertinence of our
results with previous studies [137, 138] and the other to support the results obtained
in the chapter 5 for coherence breakdown.

Chapter 7 resumes this study and presents the future perspectives.
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Chapter 3

Model, method and approximations

This chapter is dedicated to the theoretical aspects of Kondo alloys. First, we start
with the presentation of our model Hamiltonian, followed by the dynamical mean-
field theory, which treats the disorder. Thereafter, we derive our self-consistent
equations through mean-field approximations on Kondo interaction, and finally, we
present our method of their numerical resolution.

3.1 The Kondo alloy model

We consider the Kondo alloy model (KAM)

ℋ =
∑
𝑖 𝑗𝜎

(𝑡𝑖 𝑗 − 𝜇𝛿𝑖 𝑗)𝑐†𝑖𝜎𝑐 𝑗𝜎 + 𝐽𝐾
∑
𝑖∈𝒦

S𝑖s𝑖 , (3.1)

where 𝑐(†)
𝑖𝜎 corresponds to annihilation (creation) operators for conduction elec-

trons on a site 𝑖 with spin 𝜎 =↑, ↓. 𝐽𝐾 > 0 is the local Kondo antiferromagnetic
interaction between the local spin density of conduction electrons s𝑖 , and quantum
spin 1/2 operators S𝑖 representing Kondo impurities. The Kondo impurities are
distributed randomly with a site concentration 𝑥 on a sub-part Kondo-sites 𝒦 of the
periodic lattice with 𝑁 sites. The complementary non-Kondo sites, with concentra-
tion 1 − 𝑥, will be denoted 𝒩 . 𝜇 is the chemical potential fixing the electronic filling
𝑛𝑐 per site. Despite the disordered nature of Kondo alloys, the nearest-neighbor
inter-site electronic hopping energy 𝑡𝑖 𝑗 remains constant, 𝑡𝑖 𝑗 = 𝑡, respectively from
the random nature 𝒦 or 𝒩 of sites 𝑖 and 𝑗. In this model, each local Kondo spin de-
scribes a local 4 𝑓 1 electronic state (Ce-based materials) or a 4 𝑓 13 hole state (Yb-based
materials) with fixed valence. Thus, every 𝒦 -site will have exactly one impurity.
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3.2 Treatment of disorder due to Kondo impurity sub-
stitution

The Eq. (3.1) describes the randomness of the distribution of Kondo atoms during
Kondo substitutional. Thus, an appropriate method is required to treat the disorder
generated due to substitutional randomness. In our case, we have opted dynamical
mean-field theory [5] method. However, below we present a short selection of
available methods.

3.2.1 An overview of methods

Multiple methods can take account of disorder presence in alloys and depends upon
the considered systems. For example, exact diagonalization [152, 153] works only
for small systems. Density-matrix renormalization group [154] is efficient to obtain
the low-energy properties for low-dimensional systems. We can also note real-space
variational Gutzwiller wave functions [155], quantum monte carlo [156] methods,
and Hartree-Fock based diagonalization [157] can be used to simulate disordered
systems. And finally, there is dynamical mean-field theory [5, 141] which we will be
using in this part of this thesis.

3.2.2 A brief introduction to dynamical mean-field theory (DMFT)

A simple but effective mean-field theory can be employed in order to have a qual-
itative insight into physical properties. A well-known mean-field approach is the
Weiss mean-field theory, which is a static mean-field approach. However, the static
mean-field approximations are unable to capture a complete picture of the effect
of correlations and also suffer from drawbacks [158]. This leads us to a dynami-
cal mean-field theory (DMFT) where the fluctuation due to correlations are treated
dynamically. The conceptual DMFT framework was developed Metzner and Voll-
hardt [159], Kotliar and Georges [160]. Later DMFT was applied to numerous
correlated models describing strongly correlated systems [5].

DMFT makes use of infinite dimension or coordination 𝑑, 𝑍 = ∞ where a model
defined in a lattice is reduced to a single site local problem embedded into a dynam-
ical mean-field generated by other fermions. In DMFT, the mean-field is dynamical,
and the quantum fluctuations are taken into account at the local level. In SCES,
DMFT is a very versatile method that can be used to study the effect of coupling,
electronic fillings, densities, and temperature on a system. It has been used ex-
tensively and has been successful to study Metal insulator transitions [5, 161, 162],
disorder [149, 163–167], to generate phase diagrams and ARPES properties [81]. For
a much better accurate understanding of electronic properties in real materials, the
DMFT method has also been combined with ab-initio methods [6, 81]. This com-
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bined method DFT+DMFT has been used extensively in real materials study [82,
83].

3.2.3 Matrix DMFT/CPA

In this part of this chapter, we will extend the matrix DMFT/CPA formalism initially
developed in [5, 141] to treat the effect of randomness and disorder in binary Kondo
alloys with a possibility to include the magnetically ordered (MO) phases. One of the
key points of our approach is that it permits us to investigate disorder in Kondo alloys
at finite temperature, whereas is not possible in a static mean-field approach. At first,
we will start by detailing the matrix DMFT/CPA formalism for the paramagnetic
phase. Thereafter, we explain matrix DMFT formalism for a bipartite system for
Néel ordered antiferromagnetic phase.

3.2.3.1 Paramagnetic Kondo phase

In this section, we detail our matrix DMFT/CPA formalism to treat paramagnetic
Kondo phase for Kondo alloys which was initially developed in [141]. In order to
capture the alloying effect, we remap the single local site scheme [5] into two local
site problems which can be either Kondo site (𝒦 -site) or non-Kondo site (𝒩-site).
This gives us the Eq. (3.1) as

ℋ =
∑
𝑖 𝑗𝜎

(𝑡𝑖 𝑗 − 𝜇𝛿𝑖 𝑗)𝑐†𝑖𝜎𝑐 𝑗𝜎 + 𝐽𝐾
∑
𝑖∈𝒦

S𝑖s𝑖 . (3.2)

The term on the right-hand side of the Eq. (3.2) represents local Kondo impurities
on a fixed subset 𝒦 (Kondo) of lattice sites, which have been randomly distributed
with a site concentration 𝑥. To take account of all the configurations, we introduced

the projection operators as P†
𝑖
=

(
𝑥̂𝑖 𝑦̂𝑖

)
and P𝑖 =

(
𝑥̂𝑖

𝑦̂𝑖

)
, where 𝑥̂𝑖 = 1 − 𝑦̂𝑖 equals

to 1 if 𝑖 is an 𝒦 -site site or ’0’ otherwise. These projection operators make possible
to take account of various configuration possibilities between Thus, we rewrite the
KAM Eq. (3.2) as

𝐻 =
∑
𝑖 𝑗𝜎

𝛾𝑖 𝑗P†
𝑖WP𝑗𝑐†𝑖𝜎𝑐 𝑗𝜎 + 𝐽𝐾

∑
𝑖

𝑥̂𝑖S𝑖s𝑖 , (3.3)

where W =

(
𝑡 𝑡

𝑡 𝑡

)
is transfer matrix. 𝛾𝑖 𝑗 is the structure factor of the under-

lying periodic lattice such that the non-interacting dispersion is given by 𝜖k =∑
𝑖 𝑗 𝛾𝑖 𝑗𝑡𝑖 𝑗𝑒

𝑖k(R𝑗−R𝑖). Furthermore, we can write the action corresponding to the
Eq. (3.3)
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Figure 3.1: Schematic view of matrix-DMFT approach of mapping a lattice problem
(a) into a two local site local problem (b).

𝑆 = −
∑
𝑖 𝑗𝜎

∫ 𝛽

0
𝑑𝜏𝑐†𝑖𝜎(𝜏){𝛾𝑖 𝑗P

†
𝑖WP𝑗−(𝜕𝜏−𝜇)𝛿𝑖 𝑗}𝑐 𝑗𝜎(𝜏)−𝐽𝐾

∑
𝑖

∫ 𝛽

0
𝑑𝜏𝑥̂𝑖S𝑖(𝜏)s𝑖(𝜏) . (3.4)

In the above equation, 𝑐†
𝑖𝜎(𝜏) and 𝑐 𝑗𝜎(𝜏) are Grassemann variables which follows

anti-commutation relation, but they aren’t fermionic operators as in 3.3 while 𝜏
represents imaginary time. Equally, we write the partition function related to the
action (3.4) as

𝒵 = Π𝑖 Tr𝑖[𝒯𝜏𝑒𝑆] , (3.5)

where 𝒯𝜏 describes chronological order in imaginary time variable. Following DMFT
formalism, the next step to map the lattice problem into a two local sites effective
problem as in figure 3.1.

3.2.3.1.1 Local effective action and cavity method Here, a local site can be either
𝒦 -site or 𝒩-site which is tagged by the index 𝑎. The action (3.4) can be further split
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into two different parts as 𝑆 = 𝑆𝑎
𝑙𝑜𝑐

+ 𝑆(𝑎)

𝑆 =𝑆𝑎
𝑙𝑜𝑐

+ 𝑆(𝑎)

= −
∑
𝜎

∫ 𝛽

0
𝑑𝜏𝑐†𝑎𝜎(𝜏)(𝜕𝜏 − 𝜇)𝑐𝑎𝜎(𝜏) − 𝐽𝐾

∫ 𝛽

0
𝑑𝜏𝑥̂𝑎S𝑎(𝜏)s𝑎(𝜏)

−
∑
𝑗𝜎

∫ 𝛽

0
𝑑𝜏{𝛾𝑎 𝑗P†

𝑎WP𝑗𝑐†𝑎𝜎(𝜏)𝑐 𝑗𝜎(𝜏) + 𝛾𝑗𝑎P†
𝑗WP𝑎𝑐†𝑗𝜎(𝜏)𝑐𝑎𝜎(𝜏)} + 𝑆

(𝑎) . (3.6)

(3.7)

The term 𝑆𝑎
𝑙𝑜𝑐

includes all the interactions including the local site 𝑎 and the cavity term
𝑆(𝑎) include all the contributions that are not taken account by the term𝑆𝑎

𝑙𝑜𝑐
. The parti-

tion function is expressed as 𝒵 = 𝑒𝛽ℱ
(𝑎) Tr𝑎[𝒯𝜏𝑒𝑆

𝑎
𝑙𝑜𝑐 ], where ℱ (𝑎) = 1

𝛽 𝑙𝑛(Π𝑖≠𝑎 Tr𝑖[𝑒𝑆
(0)])

is the free energy in the presence of the cavity. The term 𝑆𝑎
𝑙𝑜𝑐

is rewritten as

𝑆𝑎
𝑙𝑜𝑐

=
∑
𝜎

∫ 𝛽

0
𝑑𝜏𝑐†𝑎𝜎(𝜏)(𝜕𝜏 − 𝜇)𝑐𝑎𝜎(𝜏) − 𝐽𝐾

∫ 𝛽

0
𝑑𝜏𝑥̂𝑎S𝑎(𝜏)s𝑎(𝜏) + 𝑆∆ , (3.8)

where 𝑆∆ = 𝑙𝑛⟨𝑒𝑥𝑝(−∑
𝑗𝜎

∫ 𝛽

0 𝑑𝜏{𝛾𝑎 𝑗P†
𝑎WP𝑗𝑐†𝑎𝜎(𝜏)𝑐 𝑗𝜎(𝜏) + 𝛾𝑗𝑎P†

𝑗
WP𝑎𝑐†𝑗𝜎(𝜏)𝑐𝑎𝜎(𝜏)})⟩(𝑎),

with ⟨. . . ⟩(𝑎) denotes average value in the presence of the cavity.

3.2.3.1.2 Limit of infinite coordination number (𝑧 = ∞) The next step is to eval-
uate the newly expressed dynamical local bath term 𝑆∆ in the limit of large coor-
dination (𝑧) number. In the limit of infinite dimensions or, equivalently, of infinite
coordination number 𝑧 → ∞, DMFT becomes exact as a mean-field theory in clas-
sical statistical mechanics. In this case, one can neglect spatial fluctuation in the
system, considering only on-site dynamical fluctuations.

So at first, we rescale the hopping parameter as 𝑡𝑖 𝑗 =
𝑡𝑖 𝑗√
𝑧

in order to have finite
average kinetic energy in this limit [168]. Similarly, the transfer matrix W will be aslo
rescaled as W̃ = W/

√
𝑧. Now, the average value ⟨. . . ⟩(𝑎) is calculated by cumulant

development as 𝑆∆ =
∑∞
𝑛=1 =

𝐶𝑛
𝑛! .

The first order cumulant is the average value of the expression (3.8) and since the
average value Grassemann variables ⟨𝑐 𝑗𝜎(𝜏)⟩ = 0 and ⟨𝑐†

𝑗𝜎(𝜏)⟩ = 0 due to the disorder

nature of the phase, the𝐶1 = −∑
𝑗𝜎

∫ 𝛽

0 𝑑𝜏{P†
𝑎W̃P𝑗𝑐†𝑎𝜎(𝜏)⟨𝑐 𝑗𝜎(𝜏)⟩+P†

𝑗
W̃P𝑎 ⟨𝑐†𝑗𝜎(𝜏)⟩𝑐𝑎𝜎(𝜏)} =

0 and equally all the impair order terms 𝐶2𝑛+1 = 0. Furthermore, the pair order terms
𝐶2𝑛 ∼ 1/𝑧𝑛−1 when 𝑧 → ∞. Thus, the dynamical bath term can be expressed as
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𝑆∆ =
1
2 = −

∫ 𝛽

0
𝜕𝜏

∫ 𝛽

0
𝜕𝜏′

∑
𝑖 𝑗𝜎

𝛾𝑎𝑖𝛾𝑗𝑎𝑐
†
𝑎𝜎(𝜏)P†

𝑎W̃⟨P𝑖P†
𝑗 𝑐𝑖𝜎(𝜏)𝑐

†
𝑗𝜎(𝜏

′)⟩(𝑎)W̃P𝑎𝑐𝑎𝜎(𝜏′)

= −
∫ 𝛽

0
𝜕𝜏

∫ 𝛽

0
𝜕𝜏′

∑
𝜎

𝑐†𝑎𝜎(𝜏)P†
𝑎∆𝜎

𝑎 (𝜏 − 𝜏′)P𝑎𝑐𝑎𝜎(𝜏′) , (3.9)

where ∆𝜎
𝑎 (𝜏 − 𝜏′) = ∑

𝑖 𝑗 𝛾𝑎𝑖𝛾𝑗𝑎W̃⟨P𝑖P†
𝑗
𝑐𝑖𝜎(𝜏)𝑐†𝑗𝜎(𝜏′)⟩(𝑎)W̃ =

∑
𝑖 𝑗 W̃G(𝑎)

𝑖 𝑗
W̃ is the dynami-

cal local bath.

3.2.3.1.3 Determination of dynamical local bath and local action Here, we de-
fine a Green’s function as 𝐺𝜎

𝑖 𝑗
(𝜏 − 𝜏′) = −⟨𝑇𝜏𝑐†𝑖𝜎(𝜏)𝑐 𝑗𝜎(𝜏′)⟩. Thus, the next step of this

formalism to establish an expression of dynamical local bath ∆𝜎
𝑎 (𝜏 − 𝜏′). To do so,

we need to redefine the Green’s function in the presence of the cavity to the Green’s
function without the cavity. For that, we do a diagrammatic expansion of the cavity
correlation function along with all the paths and excluding the paths passing through
site 𝑎. We also define a local propagator Π𝜎

𝑖𝑖
(𝜏 − 𝜏′) which contains all the local cor-

relations. With the help of Fourier transform as 𝐺(𝜏 − 𝜏′) = 1
𝛽

∑
𝑖𝜔𝑛 𝑒

−𝑖𝜔𝑛(𝜏−𝜏′)𝐺(𝑖𝜔𝑛),
all the Green’s function as well as local propagators can be expressed in terms of
fermionic Matsubara frequencies.

Since, we treat a paramagnetic phase and both 𝐺𝜎
𝑖 𝑗
(𝑖𝜔) and the local propagator

Π𝜎
𝑖𝑖
(𝑖𝜔) are diagonals on spin, we omit the spin index. We also escape 𝑖𝜔 from now

in order to simplify the reading. We express the correlation Green function 𝐺𝜎
𝑖 𝑗

with
the sum of all the direct paths leading 𝑖 → 𝑗 as

𝐺𝑖 𝑗 =
∑

𝑎𝑙𝑙𝑝𝑎𝑡ℎ𝑠

Π𝑖𝑖𝛾𝑖𝑖1P†
𝑖 W̃P𝑖1Π𝑖1 𝑖1𝛾𝑖1 𝑖2P†

𝑖1
W̃P𝑖2 . . .Π𝑖𝑝 𝑖𝑝𝛾𝑖𝑝 𝑗P†

𝑖𝑝
W̃P𝑗Π𝑗 𝑗 , (3.10)

We introduced site-dependent Green’s function matrix as

P𝑖𝐺𝑖 𝑗P†
𝑗 =

(
𝑥̂𝑖 𝑥̂ 𝑗𝐺𝑖 𝑗 𝑥̂𝑖 𝑦̂ 𝑗𝐺𝑖 𝑗

𝑦̂𝑖 𝑥̂𝑖𝐺𝑖 𝑗 𝑦̂𝑖 𝑦̂ 𝑗𝐺𝑖 𝑗

)
. (3.11)

Multiplying the Eq. (3.10) by P𝑖 on left side and P†
𝑗

on the right side and by taking
the average over disorder denoted by ⟨. . . ⟩𝑑𝑖𝑠 , we get

⟨G𝑖 𝑗⟩𝑑𝑖𝑠 = ⟨P𝑖𝐺𝑖 𝑗P†
𝑗 ⟩𝑑𝑖𝑠 =

∑
𝑎𝑙𝑙𝑝𝑎𝑡ℎ𝑠

⟨P𝑖Π𝑖𝑖𝛾𝑖𝑖1P†
𝑖 W̃P𝑖1Π𝑖1 𝑖1𝛾𝑖1 𝑖2P†

𝑖1
W̃P𝑖2 . . .Π𝑖𝑝 𝑖𝑝𝛾𝑖𝑝 𝑗P†

𝑖𝑝
W̃P𝑗Π𝑗 𝑗P†

𝑗 ⟩𝑑𝑖𝑠 .

(3.12)
Since we consider only direct paths connecting 𝑖 → 𝑗 and a site can be either 𝒦
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or 𝒩-site, the above-average value G𝑖 𝑗 lead to

⟨G𝑖 𝑗⟩𝑑𝑖𝑠 =
∑

𝑎𝑙𝑙𝑝𝑎𝑡ℎ𝑠

Π0𝛾𝑖𝑖1W̃Π0𝛾𝑖1 𝑖2W̃ . . .Π0𝛾𝑖𝑝 𝑗W̃Π0 , (3.13)

with Π0 = ⟨P𝑖Π𝑖𝑖P†
𝑖
⟩𝑑𝑖𝑠 . From the diagrammatic expansion, one can obtain a

Dyson like equation as (see appendix B.1)

⟨G𝑖 𝑗⟩𝑑𝑖𝑠 = Π0(𝛿𝑖 𝑗 +
∑
𝑙

𝛾𝑖𝑙W⟨G𝑙 𝑗⟩𝑑𝑖𝑠) . (3.14)

3.2.3.1.4 Local Green’s function We introduce disordered-averaged local Green’s
matrix as

G𝑙𝑜𝑐 = ⟨G𝑖𝑖⟩𝑑𝑖𝑠 =
(
𝑥𝐺𝒦 0

0 (1 − 𝑥)𝐺𝒩

)
, (3.15)

where 𝐺𝒦 and 𝐺𝒩 are the local Green’s functions for site 𝒦 and 𝒩-site re-
spectively. Further, we define the Green’s function in reciprocal k space through
Fourier transform as Gk =

∑
k⟨G𝑖 𝑗⟩𝑑𝑖𝑠𝑒 𝑖k(R𝑗−R𝑖). Using the Fourier transform and the

Eq. (3.14), we obtain

G−1
k = Π−1

0 − Ek , (3.16)

where 𝐸k is dispersion matrix as

Ek =

(
𝜖k 𝜖k

𝜖k 𝜖k

)
. (3.17)

Furthermore, the transformation of Green’s function form imaginary time 𝜏 to
Matsubara frequency (𝑖𝜔𝑛) is obtained through Fourier transformation as𝐺(𝜏−𝜏′) =
1
𝛽

∑
𝑖𝜔𝑛 𝑒

−𝑖𝜔𝑛(𝜏−𝜏′)𝐺(𝑖𝜔𝑛). Thus, we can now express the local Green’s function matrix
in terms of Green’s function in reciprocal k space as

G𝑙𝑜𝑐(𝑖𝜔) =
∑

k
Gk(𝑖𝜔) , (3.18)

where 𝑖𝜔𝑛 = 𝑖𝜋𝑇(2𝑛+1) is fermionic Matsubara frequency, while𝑇 is the temperature
of the system.

G𝑙𝑜𝑐(𝑖𝜔) =
∑

k
Π−1

0 (𝑖𝜔) − Ek . (3.19)
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3.2.3.2 Dynamical local bath

Like in the standard DMFT formalism, the relation between local Green’s function
with cavity and without cavity is expressed as

⟨P𝑖𝐺(𝑎)
𝑖 𝑗

P†
𝑗 ⟩𝑑𝑖𝑠 = ⟨G(𝑎)

𝑖 𝑗
⟩𝑑𝑖𝑠 = ⟨G𝑖 𝑗⟩𝑑𝑖𝑠 − ⟨G𝑖𝑎⟩G−1

𝑙𝑜𝑐
⟨G𝑎 𝑗⟩𝑑𝑖𝑠 . (3.20)

Inserting the Eq. (3.20) into the equation of dynamical local bath in (3.9)

∆(𝑖𝜔𝑛) =
∑
𝑖 𝑗

𝛾𝑎𝑖𝛾𝑗𝑎W̃⟨G(𝑎)
𝑖 𝑗
⟩𝑑𝑖𝑠W̃ − (

∑
𝑖

𝛾𝑖𝑎W̃⟨G𝑎𝑖⟩)G−1
𝑙𝑜𝑐

(
∑
𝑗

𝛾𝑗𝑎W̃⟨G𝑎 𝑗⟩) . (3.21)

From now, we can follow the standard DMFT formalism, and after some straight-
forward algebraic steps, we obtain

∆(𝑖𝜔) = [[Π0(𝑖𝜔)]−1 − [G𝑙𝑜𝑐(𝑖𝜔)]−1] . (3.22)

3.2.3.2.1 Self-consistent equations At the end, the our self-consistent equation
for local Green’s matrix becomes

G𝑙𝑜𝑐(𝑖𝜔) =
∑

k

[(𝑖𝜔 + 𝜇)I − K(𝑖𝜔) + G𝑙𝑜𝑐(𝑖𝜔)−1 − Ek]−1 (3.23)

=
∑

k

[(𝑖𝜔 + 𝜇)
(
1 0
0 1

)
−

(
𝜅𝒦 𝜅𝒦𝒩

𝜅𝒩𝒦 𝜅𝒩

)
+

(
𝑥𝐺𝒦 0

0 (1 − 𝑥)𝐺𝒩

)−1

−
(
𝜖k 𝜖k

𝜖k 𝜖k

)
]−1 ,

(3.24)

where, K(𝑖𝜔) = Σ(𝑖𝜔) + [G𝑙𝑜𝑐(𝑖𝜔)]−1. Σ(𝑖𝜔) is self-energy matrix, is related to local
propagator Π0(𝑖𝜔) = 𝑖𝜔 + 𝜇 − Σ(𝑖𝜔). After some lines of algebraic operations, we
get our final results is: where 𝑑𝑒𝑡(𝑖𝜔) = (𝑖𝜔 + 𝜇 − 𝜅𝒦 (𝑖𝜔) + 1

𝑥𝐺𝒦 (𝑖𝜔) − 𝜖k)(𝑖𝜔 + 𝜇 −
𝜅𝒩 (𝑖𝜔) + 1

(1−𝑥)𝐺𝒩 (𝑖𝜔) − 𝜖k) − (𝜅𝒦𝒩 (𝑖𝜔) + 𝜖k)2 and knowing Δ𝒦 (𝑖𝜔) = 𝑖𝑤 +𝜇−𝜅𝒦 and
Δ𝒩 (𝑖𝜔) = 𝑖𝑤 + 𝜇 − 𝜅𝒩 , our three self-consistent equations are :

𝑥𝐺𝒦 (𝑖𝜔) =
∑

k

1
𝑑𝑒𝑡(𝑖𝜔)(Δ𝒩 (𝑖𝜔) + 1

(1 − 𝑥)𝐺𝒩 (𝑖𝜔) − 𝜖k) , (3.25)

0 =
∑

k

(𝜅𝒦𝒩 + 𝜖k)
𝑑𝑒𝑡(𝑖𝜔) , (3.26)

(1 − 𝑥)𝐺𝒩 (𝑖𝜔) =
∑

k

1
𝑑𝑒𝑡(𝑖𝜔)(Δ𝒦 (𝑖𝜔) + 1

𝑥𝐺𝒦 (𝑖𝜔) − 𝜖k) . (3.27)
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with

𝜅𝒦𝒩 (𝑖𝜔) = −1 − 2𝑥 + 𝑥(𝑖𝜔 + 𝜇 − Σ𝒦 )𝐺𝒦 − (1 − 𝑥)(𝑖𝜔 + 𝜇)𝐺𝒩 )
𝑥𝐺𝒦 − (1 − 𝑥)𝐺𝒩

, (3.28)

where 𝐺𝒦 and 𝐺𝒩 is obtained from local effective action for 𝒦 and 𝒩 site.

3.2.3.2.2 Local actions Local Green’s functions for𝐺𝒦 (𝑖𝜔) 𝒦 -sites and for𝐺𝒩 (𝑖𝜔)
𝒩-sites are obtained respectively from the local actions below

𝑆𝒦 = −
∫ 𝛽

0
𝜕𝜏

∫ 𝛽

0

∑
𝜎

𝜕𝜏′𝑐†𝒦𝜎(𝜏)((𝜕𝑡 − 𝜇)𝛿(𝜏 − 𝜏′) + Δ𝜎
𝒦 (𝜏 − 𝜏′))𝑐𝒦𝜎(𝜏′) ,

− 𝐽𝐾
∫ 𝛽

0
𝑑𝜏S𝑎(𝜏)s𝑎(𝜏) (3.29)

𝑆𝒩 = −
∫ 𝛽

0
𝜕𝜏

∫ 𝛽

0

∑
𝜎

𝜕𝜏′𝑐†𝒩𝜎(𝜏)((𝜕𝑡 − 𝜇)𝛿(𝜏 − 𝜏′) + Δ𝜎
𝒩 (𝜏 − 𝜏′))𝑐𝒩𝜎(𝜏′) .

(3.30)

3.2.3.3 Antiferromagnetic phase

Matrix DMFT/CPA formalism detailed in the previous section (3.2.3) is designed to
treat only the paramagnetic Kondo phase. Thus, to take account of the magnetically
ordered phase, we have generalized the previous approach. To do so, we consider
a bipartite lattice where a unit cell is composed of two lattice sites (see figure 3.2).
Thus, we have remapped two local sites schemes to four local site problems (see
figure 3.3) belonging to two sub-lattices 𝐴 or 𝐵 on a bipartite lattice.

Figure 3.2: Figure illustrating the bipartite nature of the lattice for a Néel ordered
antiferromagnetic phase. Dotted rectangle in the figure represent a unit cell com-
posed two lattice sites belonging to each sublattices 𝐴 and 𝐵.

In this new mapping scheme, a local site can be either Kondo (𝒦 ) or non-Kondo
(𝒩) marked by index 𝑎, and it can either belong to sublattice 𝐴 or 𝐵 which is marked
by index 𝛼. So all together, we have four local site problems (see figure 3.3), which
makes it more complex than it was initially. But further, we show that these four local
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Figure 3.3: Schematic view of the generalized matrix-DMFT approach of mapping
a lattice problem (a) onto four effective sites (b) in a bipartite system interacting
with dynamical effective local bath in each case, where • denotes sub-lattice A and
◦ denotes sub-lattice B, red arrows are Kondo impurity spins, and the black arrows
denotes the dynamical local baths.

sites problem can be reduced into two local sites problems, using the symmetries of
the phases considered.

3.2.3.4 Local Green’s function

The formalism here is similar to that in section (3.2.3) up to average over the disorder
of Green’s functions. The details of the calculations can be found in the appendix B.1.
We rewrite the Dyson-like equation in k-space

G𝜎
kk′ = Π𝜎

k′−k +
∑
k′′

Π𝜎
k′′−k𝛾k′′G𝜎

k′′k′ . (3.31)

Due to the bipartite nature of lattice, we define the local propagator of a site in
sublattice A as Π𝐴 and a site in sublattice B as Π𝐵. By considering the bipartite
nature of the lattice and developing the expression ( 3.31) over the Reduced Brillouin
zone (RBZ), we get a (4 × 4) matrix equation

¯̄G𝜎
kk′ =

(
G𝜎

kk′ G𝜎
kk′+Q

G𝜎
k+Qk′ G𝜎

k+Qk′+Q

)
=


(
Π+

𝜎 Π−
𝜎

Π−
𝜎 Π+

𝜎

)−1

−
(
Ek 0
0 Ek+Q

)
−1

𝛿kk′ , (3.32)
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where Π+
𝜎 =

Π𝜎
𝒩+Π𝜎

𝐵

2 and Π−
𝜎 =

Π𝜎
𝒩−Π𝜎

𝐵

2 and kk′ ∈ RBZ and Q is order vector of
considered phase. ¯̄G𝜎

kk′ is a tensor with it’s each element is a (2 × 2) matrix. The
details of the calculations to obtain the Eq. (3.32) can be found in the appendix B.2.

Similarly, we have two disordered-averaged local Green’s matrix for two sublat-
tices 𝐴 and 𝐵 as G𝜎

𝑙𝑜𝑐,𝐴
and G𝜎

𝑙𝑜𝑐,𝐵
respectively. From these two (2 × 2) local Green’s

matrices, we define a (4 × 4) local Green’s matrices as

¯̄G𝜎
𝑙𝑜𝑐

=

(
G𝜎
𝑙𝑜𝑐,𝐴

0
0 G𝜎

𝑙𝑜𝑐,𝐵

)
. (3.33)

Here, the unit cell is two times larger than the original, thus the Brillouin zone is
reduced by two folds. So expanding the over k to reduced Brillouin zone (RBZ), we
get

G𝜎
𝑙𝑜𝑐,𝐴

=
1
𝑁

∑
k∈𝑅𝐵𝑍

{G𝜎
kk + G𝜎

kk+Q + G𝜎
k+Qk + G𝜎

k+Qk+Q} , (3.34)

G𝜎
𝑙𝑜𝑐,𝐵

=
1
𝑁

∑
k∈𝑅𝐵𝑍

{G𝜎
kk − G𝜎

kk+Q − G𝜎
k+Qk + G𝜎

k+Qk+Q} . (3.35)

(3.36)

Expressing the (4 × 4) local Green’s matrix with the help of the equations (3.34)
and (3.35) and (3.32), and with some algebraic calculation (see appendix B.4), we get

¯̄G𝜎
𝑙𝑜𝑐

=
2
𝑁

∑
k∈𝑅𝐵𝑍

(
[[Π𝜎

𝐴
]−1 − EkΠ𝜎

𝐵
Ek]−1 0

0 [[Π𝜎
𝐵
]−1 − EkΠ𝐴Ek]−1

)
. (3.37)

Finally, we deduce the expression for the local Green’s matrix as

G𝜎
𝑙𝑜𝑐,𝛼(𝑖𝜔𝑛) =

2
𝑁

∑
k∈𝑅𝐵𝑍

[Π𝜎
𝛼(𝑖𝜔𝑛)]−1 − EkΠ𝜎

𝛼̄(𝑖𝜔𝑛)Ek]−1 . (3.38)

3.2.3.4.1 Determination of dynamical local bath Similarly, as in paramagnetic
case, the dynamical local bath is for bipartite lattice is expressed as

∆𝜎 =
∑
𝑖 𝑗

𝛾𝑖𝛼𝛾𝛼 𝑗W⟨G(𝛼)
𝑖 𝑗

⟩𝑑𝑖𝑠W . (3.39)
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Here, a cavity site can belongs to either sublattice 𝐴 or 𝐵 tagged by index 𝛼. As
before, we define (4 × 4) dynamical local bath matrix as

¯̄∆ =

(
∆𝜎
𝐴

0
0 ∆𝜎

𝐵

)
. (3.40)

Knowing the relation ⟨G(𝛼)
𝑖 𝑗

⟩𝑑𝑖𝑠 = ⟨G𝑖 𝑗⟩𝑑𝑖𝑠 − ⟨G𝑖𝛼⟩G−1
𝑙𝑜𝑐

⟨G𝛼 𝑗⟩𝑑𝑖𝑠 which relates the
disorder-averaged Green’s function to the disorder-averaged Green’s function in the
presence of the cavity and putting int the expression (3.40) and with some algebraic
manipulations (see appendix...), we get

¯̄∆ =

(
[Π𝜎

𝐴
]−1 0

0 [Π𝜎
𝐵
]−1

)
−

(
[G𝜎

𝑙𝑜𝑐,𝐴
]−1 0

0 [G𝜎
𝑙𝑜𝑐,𝐵

]−1

)
. (3.41)

The above Eq. (3.41) is further simplified to

∆𝜎 = [Π𝜎
𝛼]−1 − [G𝜎

𝑙𝑜𝑐,𝛼]
−1 . (3.42)

The detailed step-by-step calculations can be found in the appendix B.5.

3.2.3.4.2 Self-consistent equations In order to study the disordered binary Kondo
alloy problem, we need to solve the self-consistent equations numerically. The self-
consistent equations are determined from the matrix Eq. (3.38) and are presented
below

𝑥𝐺𝜎
𝒦𝛼 =

2
𝑁

∑
k∈𝑅𝐵𝑍

1
𝐷𝜎

k

{
Δ𝜎
𝒩𝛼 + ((1 − 𝑥)𝐺𝜎

𝒩𝛼)
−1 − 𝐻𝜎

k𝛼̄
}
, (3.43)

0 =
2
𝑁

∑
k∈𝑅𝐵𝑍

1
𝐷𝜎

k

{
𝜅𝜎
𝒦𝒩𝛼 + 𝐻𝜎

k𝛼̄
}
, (3.44)

(1 − 𝑥)𝐺𝜎
𝒩𝛼 =

2
𝑁

∑
k∈𝑅𝐵𝑍

1
𝐷𝜎

k

{
Δ𝜎
𝒦𝛼 + (𝑥𝐺𝜎

𝒦𝛼)
−1 − 𝐻𝜎

k𝛼̄
}
, (3.45)

where 𝐻𝜎
k𝛼̄ =

𝜖2
k

(𝑑𝑒𝑡)𝜎𝛼̄
(Δ𝜎

𝒦 𝛼̄ + Δ𝜎
𝒩 𝛼̄ + (𝑥𝐺𝜎

𝒦 𝛼̄)
−1 + ((1 − 𝑥)𝐺𝜎

𝒩 𝛼̄)
−1 + 2𝜅𝒦𝒩 𝛼̄) and 𝐷𝜎

k =

(Δ𝜎
𝒦𝛼 + (𝑥𝐺𝜎

𝒦𝛼)
−1 − 𝐻𝜎

k𝛼̄)(Δ
𝜎
𝒩𝛼 + ((1 − 𝑥)𝐺𝜎

𝒩𝛼)
−1 − 𝐻𝜎

k𝛼̄) − (𝜅𝜎
𝒦𝒩 ,𝛼 + 𝐻𝜎

k𝛼̄)
2 with

𝜅𝜎
𝒦𝒩𝛼 = −

1 − 2𝑥 + 𝑥(𝑖𝜔 + 𝜇 − Σ𝜎
𝒦𝛼)𝐺

𝜎
𝒦𝛼 − (1 − 𝑥)(𝑖𝜔 + 𝜇)𝐺𝜎

𝒩𝛼

𝑥𝐺𝜎
𝒦𝛼 − (1 − 𝑥)𝐺𝜎

𝒩𝛼

. (3.46)
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3.3 Treatment of local Kondo interaction
Within DMFT formalism, one have to use a local impurity solver to resolve DMFT/CPA
self-consistent equations as in section (3.2.3) and (3.2.3.3) representing many-body
problem defined by the local effective action on a Kondo site, Eq. 3.29.

3.3.1 An overview of methods
In order to treat an interaction, one needs to choose an adapted impurity solver
to that interaction keeping in mind the goal of the study. Each decoupling can
have its own advantages like in the continuous-time quantum Monte Carlo method
(CTQMC) [169] which is particularly applicable for multiband and time-dependent
correlations. CTQMC suffers from potential sign problems and slow convergence.
One can also employ density-matrix renormalization group [170, 171] for low dimen-
sional quantum problems. Dynamical cluster approximation [172] is a technique that
includes short-ranged dynamical correlations in addition to the local dynamics of
the dynamical mean-field approximation while preserving causality. One can also
choose the numerical renormalization group approach [173] for quantum impurity
systems. There are approximate solvers like non-crossing approximation [174] which
are fast but not exact.

Here, we employ mean-field approximations as local impurity solvers to describe
both purely magnetically ordered and pure Kondo paramagnetic phases. Indeed,
we want to focus on the physical observable like the ARPES and PES signatures of
these different phases along with effective masses of quasi-particles that may emerge
from the KAM. The aim is to investigate the effect of Kondo alloying and the effect
of disorder, focusing on the change in Fermi surface structure via ARPES signatures,
decoherence effects, and discontinuity of effective masses. We thus use the Weiss
mean-field approximation for MO phases while Kondo mean-field approximation
for pure paramagnetic Kondo phase since it was previously successfully used be-
fore [105, 113, 126, 138]. Below, we present the two different mean-field approaches.

3.3.2 Magnetically ordered phases: Weiss mean-field approxima-
tion

Weiss mean-field channel is used to solve the action (?? while assuming a mag-
netically ordered phase. We restrict our study to pure ordered phase ignoring the
possibility of mixed phases where the Kondo effect and magnetic order might co-
exist. Furthermore, we assume that the magnetic order is either ferromagnetic (F) or
staggered antiferromagnetic (AF). Invoking the 𝐴 ↔ 𝐵 symmetries of these phases
as in table 4.1, the single site effective DMFT/CPA action can be solved assuming this
site belongs to the sublattice 𝐴. Consequently, hereafter, in this section, we consider
only 𝛼 =A, and we omit the 𝛼 index.
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The Kondo interaction is decoupled using the standard Weiss mean-field approx-
imation as S ·s ≈ ⟨𝑆𝑧⟩𝑠𝑧+𝑆𝑧 ⟨𝑠𝑧⟩−⟨𝑆𝑧⟩⟨𝑠𝑧⟩ which leads us to the local magnetizations
𝑚 𝑓 ≡ ⟨𝑆𝑧⟩, and 𝑚𝑐 ≡ ⟨𝑠𝑧⟩ = 1

2
∑

𝜎 𝜎𝑧 ⟨𝑐†𝜎𝑐𝜎⟩ as order parameters on a Kondo site be-
longing to the sublattice 𝐴. The local effective action (3.29) becomes quadratic, and
the local Green function on a 𝒦 -site can be expressed explicitly in terms of the bath
and order parameters as

𝐺𝜎
𝒦 (𝑖𝜔) = 1

𝑖𝜔 + 𝜇 − Δ𝜎(𝑖𝜔) − 𝜎𝐽𝐾
𝑚 𝑓

2

. (3.47)

Finally, to complete the general DMFT/CPA self-consistent equations described
in section 3.2.3.3 which relate the local Green functions and the dynamical bath, the
chemical potential 𝜇 and the order parameters 𝑚 𝑓 and 𝑚𝑐 are determined by solving
the following self-consistent equations:

𝑛𝑐 = 𝑥
1
𝛽

∑
𝑖𝜔

𝐺𝒦𝜎(𝑖𝜔) + (1 − 𝑥)1
𝛽

∑
𝑖𝜔

𝐺𝒩𝜎(𝑖𝜔) , (3.48)

𝑚𝑐 =
1

2𝛽

∑
𝑖𝜔,𝜎

𝜎𝐺𝒦𝜎(𝑖𝜔) , (3.49)

𝑚 𝑓 = −1
2 tanh(𝛽𝑚𝑐 𝐽𝐾

2 ) . (3.50)

These equations (3.48, 3.49, 3.50) are solved self-consistently using the DMFT in
order to find the self-consistent solutions for 𝜇, 𝑚 𝑓 and 𝑚𝑐 .

3.3.3 Paramagnetic Kondo phases: "large N" slave-bosons mean-
field approximation

Like above, the Kondo interaction is decoupled using mean-field to solve the local
effective action on a K-site, which in given by Eq. (3.29) assuming a paramagnetic
Kondo correlated state. We neglect again the possibility that magnetic order might
co-exist with Kondo local strong correlations. Consequently, hereafter, in this section,
we omit the 𝛼 sublattice index. We follow the standard mean-field approximation
as introduced by Lacroix and Cyrot in ( [105]), which is analogous to the “large N"
expansion or slave boson approximation developed by Coleman in ( [175]) and Read
and Newns in ( [176]).

At first, we start by representing Kondo spin operator within Abrikosov’s fermionic
representation S𝜎𝜎′ = 𝑓 †𝜎 𝑓𝜎′ − 𝛿𝜎𝜎′/2. Thereafter, the Kondo interaction in Eq. (3.29)
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is mapped and decoupled as

S · s → 1
2

∑
𝜎𝜎′

𝑐†𝒦𝜎𝑐𝒦𝜎′ 𝑓
†
𝜎′ 𝑓𝜎 (3.51)

≈ 1
2

∑
𝜎𝜎′

⟨𝑐†𝒦𝜎 𝑓𝜎⟩ 𝑓
†
𝜎′𝑐𝒦𝜎′ + ⟨ 𝑓 †𝜎′𝑐𝒦𝜎′⟩𝑐†𝒦𝜎 𝑓𝜎 − ⟨ 𝑓 †𝜎′𝑐𝒦𝜎′⟩⟨𝑐†𝒦𝜎 𝑓𝜎⟩ . (3.52)

The mean-field description as in Eq. (3.52) results in an emergent effective hy-
bridization between the conduction electrons and the Abrikosov fermions, 𝑟 =
𝐽𝐾
2
∑

𝜎⟨𝑐†𝒦𝜎 𝑓𝜎⟩, which can be identified as an order parameter for the Kondo phase.
An additional constraint

∑
𝜎 𝑓

†
𝜎 𝑓𝜎 = 1 restricts the number of Abrikosov fermions to

one, which are imposed by introducing a Lagrange parameter 𝜆(𝜏). With the mean-
field approximation, 𝜆 is assumed to be constant and determined self-consistently
in order to satisfy the 𝑓 occupancy constraint on average.

Since here we are considering the paramagnetic Kondo phase, for the sake of
clarity, hereafter we skip the spin index 𝜎. The local effective action (3.29) becomes
quadratic and the local Green function on a 𝒦 -site can be expressed explicitly in
terms of the bath and order parameters as

𝐺𝒦 (𝑖𝜔) = 1
𝑖𝜔 + 𝜇 − Δ𝜎(𝑖𝜔) − 𝑟2

𝑖𝜔+𝜆
. (3.53)

For a non-Kondo site, the Green function can be obtained directly from the electronic
bath Δ

𝐺𝑐𝒩 =
1

𝑖𝜔 + 𝜇 − Δ(𝑖𝜔) . (3.54)

The Kondo self-energy involved in Eq. (3.53) thus has a pole singularity Σ𝐾(𝑖𝜔) =
𝑟2

𝑖𝜔+𝜆 which captures several relevant aspects of Kondo physics.
Finally, to complete the general DMFT/CPA self-consistent equations described

in section 3.2.3 which relate the local Green functions and the dynamical bath, the
chemical potential 𝜇, the order parameter 𝑟, and the Lagrange multiplier 𝜆 are
determined by solving the following self-consistent equations:

𝑛𝑐 = 𝑥
2
𝛽

∑
𝑖𝜔

𝐺𝒦 (𝑖𝜔) + (1 − 𝑥)2
𝛽

∑
𝑖𝜔

𝐺𝒩 (𝑖𝜔) , (3.55)

𝑟

𝐽𝐾
= − 𝑟

𝛽

∑
𝑖𝜔

𝐺𝒦 (𝑖𝜔)
𝑖𝜔 + 𝜆

, (3.56)

1 =
2
𝛽

∑
𝑖𝜔

𝑟2𝐺𝒦 (𝑖𝜔)
(𝑖𝜔 + 𝜆)2 . (3.57)

In this mean-field description, 𝑟 is an order parameter for the Kondo param-
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agnetic phase. It describes the low temperature magnetic entanglement between
conduction electrons and Kondo impurities spins. The Kondo crossover tempera-
ture is replaced by a transition at Kondo temperature 𝑇𝐾 , defined as the temperature
where 𝑟 continuously vanishes. It can be computed from 𝐽𝐾 by solving the equa-
tion 1

𝐽𝐾
= − 1

𝛽

∑
𝑖𝜔

𝐺0(𝑖𝜔)
𝑖𝜔 , where 𝐺0(𝑖𝜔) is the non-interacting Green’s function and is

independent on 𝑥, as discussed in[141]. The equations (3.55, 3.56, 3.57) are solved
self-consistently to find the self-consistent solutions for 𝜇, 𝜆 and 𝑟.

3.4 Numerical approach and algorithm scheme

Two different DMFT loops were used to solve numerically paramagnetic Kondo
phase and magnetically ordered phases as depicted on figures 3.4a and 3.4b re-
spectively. DMFT full self-consistency was obtained using imaginary Matsubara
fermionic frequencies to determine the effective dynamical electronic bath and the
mean-field order parameters. Due to the constraints over computational power and
time-limit, we introduced a cut-off frequency that was taken much larger than the
bandwidth of the system, and the finite temperature introduced was taken at least 80
times smaller than 𝑇𝐾 . Thus, the solutions described here correspond to the possible
ground states.

Ansatz
solutions at

𝑇 = 0

𝜇, 𝑟 ,𝜆
MF order

parameters

𝐺𝑙𝑜𝑐
Local Green’s

function

Δ

Local effective
bath

𝜇, 𝑟 ,𝜆,Δ, 𝐺𝑙𝑜𝑐
Output

Eq. (3.42)

Eq. (3.22)

Eq
s.

(3
.5

5)
,(

3.
56

),
(3

.5
7)

(a)

Ansatz
solutions at

𝑇 = 0

𝜇, 𝑚𝑐 , 𝑚 𝑓

MF order
parameters

𝐺𝜎
𝑙𝑜𝑐

Local Green’s
function

Δ𝜎

Local effective
bath

𝜇, 𝑚𝑐 , 𝑚 𝑓 ,Δ
𝜎 , 𝐺𝜎

𝑙𝑜𝑐
Output

Eq. (3.42)

Eq. (3.38)

Eq
s.(

3.
48

),
(3

.4
9)

,(
3.

50
)

(b)

Figure 3.4: (3.4a) DMFT loop for paramagnetic Kondo phase and (3.4b) for magnet-
ically ordered phases
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We describe our numerical approach in the following steps below:
i) We start with our solution obtained for𝑇 = 0 as ansatz at 𝑥 = 1 or with the solution
obtained when 𝐽𝐾 = 0.
ii) 𝐺𝜎

𝒦 ,𝛼 and 𝐺𝜎
𝒩 ,𝛼 are actualized from the Eq. (3.42).

iii) From the actualized 𝐺𝜎
𝒦 ,𝛼 and 𝐺𝜎

𝒩 ,𝛼, we compute new dynamical local bath
(∆𝜎

𝛼(𝑖𝜔)) from Eq. (3.38). We iterate until convergence for the order parameters.
iv) We evaluate our new MF orders parameter form the set of equations (3.55,3.56,3.57)
or (3.48,3.49,3.50) for a given phase.
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Chapter 4

Magnetic phase diagrams of Kondo
alloys

Kondo alloys present very rich phase diagrams, and these phase diagrams depend
upon various parameters. In this chapter, we analyze experimental and theoretical
phase diagrams of Kondo alloys considering three parameters: the Kondo coupling
between magnetic impurities and conduction electrons 𝐽𝐾 , the electronic filling 𝑛𝑐 ,
and the concentration of magnetic impurities 𝑥. At first, we start by presenting the
state-of-the-art on both experimental and theoretical aspects of phase diagrams of
Kondo alloys. Later, we present and discuss our results on the ground state phase
diagrams obtained for Kondo lattice (𝑥 = 1.0) and with substitution.

4.1 A state of the art

4.1.1 Experimental phase diagrams

Decades of experiments in Kondo alloys revealed that various types of ground
states could be stabilized with a large diversity of unconventional quantum phases
and behaviors [177]. The unconventional phase includes unconventional supercon-
ductivity [178, 179] like in heavy-fermion compound CeCu2Si2 [24, 180], heavy-
fermion paramagnetic phase, metallic spin-liquid [181] and also non-Fermi liquid
phases [2]. They also exhibit more conventional magnetically ordered phases such
as antiferromagnetic phases like in CeCu2Ge2 [100, 182, 183] or ferromagnetic phase
like in CeRu2Ge2 [118]. Furthermore, a phase transition can be obtained by the appli-
cation of pressure or atomic substitution from these conventional or unconventional
phases. Below, we present an experimental overview of these parameters on various
Kondo alloys.
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4.1.1.1 Mechanical pressure as tuning parameter

In chapter 2, we have presented Doniach’s argument explaining the stabilization of
magnetically ordered phases at low Kondo coupling. This Doniach’s argument was
verified experimentally for a multitude of Kondo lattices where the Kondo coupling
𝐽𝐾 was controlled by applying pressure. The applied pressure can be either exter-
nal mechanical pressure, negative pressure through hydrogenation, or negative or
positive chemical pressure through atomic substitution. The application of exter-
nal pressure usually reduces the volume of lattice, which consequently increases
the Kondo interaction. Thus, this increase in Kondo interaction can yield a phase
transition from a magnetic phase to a paramagnetic phase. For instance, application
of pressure in Ce-based Kondo alloys like in CeRu2Ge2 [118] or in CeAu2Si2 [184]
changed the magnetically ordered ground state present at atmospheric pressure into
heavy-fermion paramagnetic phase. Meanwhile, the scaling of the Kondo temper-
ature [118] was also in good agreement with Doniach’s argument. Other than the
positive external pressure, a negative pressure also can be applied from hydrogena-
tion. For example, the hydrogenation in CeRuSi [185] led to the transition from
paramagnetic heavy-fermion phase to antiferromagnetic phase.

Application of pressure is not limited to magnetic to non-magnetic transition but
can also reveal unconventional phases. Indeed, pressure-induced superconductivity
was found in Ce based compounds like CeRh2Si2 [186], CePtSi2 [187], CeRhIn5 [188]
or CeNiGe3 [189] and unusual nonmagnetic ordered state in CeCoSi [190]. Pressure
can also induce breakdown of Fermi liquid properties like in CeRu2Ge2 [118].

4.1.1.2 Substitution as tuning parameter

In Kondo alloys, one can substitute either the rare-earth atom, transition metal, or
metalloid atom. Each of these substitutions can act as a tuning parameter which we
will be presenting below.

4.1.1.2.1 Transition metal or metalloid substitution In most cases, Cerium-based
Kondo alloys are of type CeT𝑎X𝑏 where T is a transition metal like Ru and X is a
metalloid such as Si or Ge. Apart from rare-earth atoms, in these alloys, we can
substitute either a transition metal atom or metalloid atom with another atom of
the same group of the periodic table. This substitution can modify the Kondo
coupling and the electronic filing at the same time, even though the electronic is
difficult to evaluate experimentally. Thus, these substitutions can act as a tuning
parameter. An example of a magnetic phase diagram through metalloid substi-
tution is presented in the figure 4.1 where Si atoms are substituted by Ge atoms
(extracted from [119]). This Si-Ge substitution generated a cascade of magnetic
phase transitions from ferromagnetic to two different antiferromagnetic phases and
paramagnetic phase at the end. A cascade of phase transitions is expected with
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Figure 4.1: Magnetic phase diagram of CeRu2(Si𝑥Ge1−𝑥). Substitution of Si by
Ge increases the unit cell volume. A cascade of magnetic to non-magnetic phase
transition is observed for increase Si concentration. From [119]

varying electronic filling (see section 4.3.1). In other experiment, Si-Ge substitu-
tion conducted on CeNi(Si𝑥Ge2−𝑥) [191] series led to non-Fermi liquid behavior
at the concentration 𝑥 = 1, but globally phase diagram [192] was consistent with
Doniach argument. Regarding transition metal substitution, Ru-Co substitution in
CeRu2−𝑥Co𝑥Ge2 [193] showed a smooth crossover from RKKY to Kondo regime with
increasing 𝑥. Cu-Ni substitution in CeCu2Si2 [194] suppressed both antiferromag-
netic fluctuations and superconductivity, and it led to a dramatic crossover from the
HF regime to the intermediate-valence regime with progressive Ni doping.

4.1.1.2.2 Rare earth metal substitution In Kondo systems, the concentration of
Kondo impurities 𝑥 is another relevant parameter besides the electronic filling 𝑛𝑐
and pressure. Continuous tuning of 𝑥 can be realized experimentally in Kondo
alloys heavy-fermions by isostructural substitution of a magnetic rare-earth atom
with a non-magnetic one. This induces remarkable changes in macroscopic physi-
cal properties, and the dilution of magnetic impurities from the Kondo lattice can
yield a phase transition. As La atom is slightly larger than Ce atom, Ce-La isostruc-
tural substitution enlarges the crystal volume, thus reducing the Kondo coupling.
One can imagine that this reduction of Kondo coupling can lead from paramag-
netic phase to magnetic ordered phase transition. Indeed, this was observed for
Ce𝑥La1−𝑥Ru2Si2 [119] where the dilution of magnetic impurities led to a phase
transition from paramagnetic to magnetically ordered phase. This is not always
true since in Ce𝑥La1−𝑥Cu2Ge2 [100] series a phase transition from antiferromagnetic
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(AF) to paramagnetic (PM) was observed. Another Ce-La substitution in the se-
ries Ce𝑥La1−𝑥Cu6 [89, 195] revealed an evolution from coherent dense Kondo lattice
regime to dilute Kondo regime whereas in the series Ce𝑥La1−𝑥FePO [196] coexistence
of spin glass with dilute Kondo regime is observed. Other types of rare-earth substi-
tutions can also unexpected result like Fermi-surface instabilities in unconventional
superconductors like Ce𝑥Yb1−𝑥CoIn5 [197] and Nd2−𝑥Ce𝑥CuO4 [198].

The Fermi liquid properties were seen from resistivity measurements for Ce𝑥La1−𝑥Pt2Si2 [99]
and Ce𝑥La1−𝑥Cu2Ge2 [100] series. But in multiple cases, Ce-La substitution led to
non-Fermi liquid behavior [122]. Such as for Ce𝑥La1−𝑥Ni2Ge2 [101] and Ce𝑥La1−𝑥PtIn [199]
series, substitution led to dense-dilute transition along with non-Fermi liquid behav-
ior. In some Ce-La substitution, Fermi liquid properties were not consistent over dif-
ferent physical quantities. This is the case for Ce-La substitution in Ce𝑥La1−𝑥Ni9Ge4 [200,
201] where non-Fermi liquid behavior was observed in specific heat measurements
while Fermi liquid behavior in magnetic susceptibility. This raises an additional
question about the origin of these non-Fermi liquid behaviors upon dilution. These
handfuls of examples clearly show that Ce-La substitution can considerably alter
the behavior of physical quantities, which also motivates our study of binary Kondo
alloys of this thesis.

4.1.2 Phase diagrams through various theoretical approaches

Another pertinent parameter besides pressure is the electronic filling (𝑛𝑐). Vari-
ous theoretical studies revealed Doniach-like phase diagrams [105, 106, 202, 203].
Multiple theoretical techniques were employed in order to explore the effect of 𝑛𝑐
for Kondo lattice model (KLM) like for one-dimensional systems by exact diago-
nalizationn [129], by density matrix renormalization group [204–206], by a unitary
transformation involving a bosonization of delocalized conduction electrons [207],
for two-dimensional systems by DMFT with numerical renormalization group [111,
208, 209], cellular dynamical mean-field theory and variational Monte Carlo [210]
and by dynamical cluster approach [211] and for three-dimensional systems by
mean-field [105]. Some the theoretical studies [109, 212, 213] in Kondo lattice model
also pointed out that magnetic order can coexist with Kondo effect.

Important attention was also focused on the issue of coherence in the param-
agnetic phase of dense Kondo systems. The robustness of a coherent Kondo state
has then been investigated in the framework of the Kondo lattice model by several
complementary theoretical approaches [123, 125–129, 133, 214–217].
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4.2 Symmetries considerations for numerical calcula-
tions

In our study of Kondo alloys, we consider only pure paramagnetic Kondo phase
(K), pure ferromagnetic phase (F) or antiferromagnetic (AFII) phase with purely
staggered Néel order with ordering vector Q = (𝜋,𝜋). Using the DMFT method,
the lattice problem has been mapped onto four single-site effective problems that
account for the possible local correlations, 𝑎 = 𝒩 or 𝒦 , on sublattice 𝛼 =A or B. For
different reasons, in each case, we can restrict the problem to two effective sites.

Transformations invariance
K F AFII

A → B
𝜎 → 𝜎̄ yes no yes
A → B
𝜎 → 𝜎 yes yes no
A → A
𝜎 → 𝜎̄ yes no no

Table 4.1: Table that resumes local Green’s function invariance according to the
transformations for K, F and AFII phases

In table 4.1, we analyze the symmetry properties of the various phases that we
consider. Sites A and B are equivalent for Kondo decoupled F and K phases, and
there we recover the two effective sites dynamical approach as developed in [141].
As AF phase with Néel order obeys the transformations (A→B, 𝜎 → 𝜎̄), the basis
and the Green’s function remains invariant through this transformation. Thus, the
correlation functions for a site in sublattice A with spin 𝜎 are equivalent to the
correlation functions for a site in sublattice B with spin 𝜎̄. Therefore, evaluating
Green’s functions for a site in sublattice A or B with spin 𝜎 and 𝜎̄ is sufficient
to study the AFII phase. So again, we bring back two effective sites dynamical
approach instead of four effective sites.

4.3 Results: ground-state phase diagram
In this section, we present and discuss the ground state phase diagrams obtained for
periodic Kondo lattice as well as for Kondo alloys for electronic filling 𝑛𝑐 = 0.30, 0.70
and 0.90. In each case, the phase diagrams were obtained by comparing the energies
of each considered phase. The expressions to compute the energies of each phase
are detailed in the appendix A. At First, we studied the phase diagrams for periodic
Kondo lattice for 1D ‘chain’, 2D ‘square’, and 3D ‘cubic’ lattices. We reproduced
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the existing results, which validated our method. Thereafter, we studied the phase
diagrams of Kondo alloys by varying the Kondo atom concentration 𝑥.

4.3.1 Tuning of 𝑛𝑐 and 𝑇𝐾 for periodic Kondo lattice

Q𝐴𝐹𝐼
0 Q𝐴𝐹𝐼𝐼

0 Q𝐴𝐹𝐼𝐼𝐼
0

1D 𝜋

2D (𝜋, 0) (𝜋,𝜋)
3D (0, 0,𝜋) (𝜋,𝜋, 0) (𝜋,𝜋,𝜋)

Table 4.2: commensurate AF phases with and their respective wave ordering vectors.

In order to validate our DMFT approach, we calculated the solutions for param-
agnetic Kondo phase (K), ferromagnetic phase (F), and commensurate antiferro-
magnetic phases for periodic 1D ‘chain’, 2D ‘square’ and 3D ‘cubic’ Kondo lattices
without using DMFT algorithm at 𝑇 = 0 with varying 𝑛𝑐 . We then studied the same
problem for the 2D ‘square’ lattice using the DMFT algorithm. We came up with the
same results. However, we didn’t calculate the solutions below 𝑛𝑐 < 0.25 with DMFT
because the algorithm becomes more time-consuming. We have equally omitted to
evaluate AF I in our DMFT calculations, however, it doesn’t change the qualitative
results.

Figure 4.2 shows the phase diagrams obtained for 1D ‘chain’, 2D ‘square’ and
3D ‘cubic’ lattices at T = 0 with K, F and AF phases with several commensurate
antiferromagnetic phases (see table 4.2). The ground-state phase diagrams are con-
sistent with Doniach’s Phase diagram [104]. Three distinct phases can be seen for
1D lattice with magnetic phase dominates at small 𝐽𝐾

𝑊 and Kondo phase is observed
at large 𝐽𝐾

𝑊 . At half-filling, the transition between AF to Kondo phase occurs around
𝐽𝐾
𝑊 ≃ 0.40, and it gradually decreases with 𝑛𝑐 . With decreasing 𝑛𝑐 at 𝑛𝑐 ≈ 0.62, tran-
sition from AF to F is observed. Further reduction of 𝑛𝑐 saturates the ferromagnetic
phase, and it is stabilized for low electronic filing. The phase diagram obtained for
2D square lattice is remarkably similar to that obtained by Lacroix and Bernhard
[109]. At half-filling a transition between K and AFII is obtained at around 𝐽𝐾

𝑊 ≃ 0.20
at a similar value obtained in [218]. The transition from AFII to F is observed at
𝑛𝑐 = 0.57, similar as in [106, 109]. The transition between AFII and AF I is ob-
served at around 𝑛𝑐 ≃ 0.68 whereas AF I → F is observed at 𝑛𝑐 ≃ 0.28. In [111],
a stripped magnetism was observed at 0.32 < 𝑛𝑐 < 0.65 which is quite similar to
the region(0.28 < 𝑛𝑐 < 0.68) where our AF I is stabilized. Similar observations for
3D ‘cubic’ lattice were observed. When the number of conducting electrons 𝑛𝑐 is
low, saturated F phase is observed up-to 𝐽𝐾

𝑊 ≃ 1.0 which is followed by Kondo phase
afterwards. At half filling, the transition AFIII → K, occurs at 𝐽𝐾

𝑊 ≃ 0.18 as in [219].
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l
Figure 4.2: phase diagrams (a) 1D ‘chain’, (b) 2D ‘square’,
(c) 3D ‘cubic’ lattices at T = 0. K = paramagnetic Kondo phase, F = ferro-
magnetic phase, sat. F = saturated ferromagnetic phase and AF = antiferromagnetic
phase
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Whereas the transitions AFIII → AFII, AFII → AF I and AF I → F occurs around
𝑛𝑐 ≃ 0.73, 0.36, 0.11 receptively for low 𝐽𝐾

𝑊 .

In summary, a cascade of antiferromagnetic phases to ferromagnetic phases is
observed as we move from higher 𝑛𝑐 to lower 𝑛𝑐 in each case for low 𝐽𝐾/𝑊 , and
paramagnetic Kondo phase is observed for higher 𝐽𝐾/𝑊 . Since all three phases
diagrams have the same form, we will concentrate only on the 2D square lattice to
study the effect of dilution of magnetic impurities.

4.3.2 Tuning of 𝑥 and 𝑇𝐾 at fixed 𝑛𝑐 for Kondo alloys

We used the DMFT algorithm to study binary Kondo alloys for the concentrations
𝑥 ∈ [0.01, 1] for different 𝑛𝑐 with different couplings 𝐽𝐾 considering pure K, F, and
AFII phases. We present in the figure 4.3 the ground-state phase diagrams obtained
for 𝑛𝑐 = 0.90 and 0.30. Here, the strength of the Kondo interaction is represented by
the ratio between the corresponding Kondo temperature 𝑇𝐾 and the non-interacting
electronic bandwidth 𝑊 . All three-phase diagrams present similar forms and are
Doniach-like: at low Kondo temperature (𝑇𝐾) MO phase is found to be the ground
state, and this MO phase is suppressed by the paramagnetic Kondo phase at higher
𝑇𝐾 .

4.4 Discussion: comparison with experimental data

The above phase diagrams are compatible with the phase diagrams of some al-
loys as Ce𝑥La1−𝑥Ru2Si2 [119] where substitution of Ce with La give rises to MO,
Ce𝑥La1−𝑥Cu2Ge2 [100] where antiferromagnetic phase was seen up-to very low
concentration of Ce, and Ce𝑥La1−𝑥Pt2Si2 [99] paramagnetic Kondo phase persists
with substitution. In the real isostructural Ce-La substitution series, experiments
show that the strength of the Kondo interaction decreases when decreasing Cerium
concentration. The opposite monotonic variation of 𝑇𝐾 with 𝑥 is observed with
Ytterbium-based Kondo alloys. This is due to the effective pressure effect that is
related, with the difference of lattice parameters between Ce- (or Yb-) and La-based
(or Lu-) compounds. Therefore, in order to provide a scenario for real Kondo alloys,
using the (𝑥-𝑇𝐾) phase diagrams depicted in figure 4.3, one has to characterize Ce-La
substitution with a non-constant but rather monotonous line.
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Figure 4.3: from left to right: ground state phase diagrams of the Kondo alloys
for 𝑛𝑐=0.30, 0.70 and 0.30. AFII = Néel ordered anti-ferromagnetic phase, and F =
ferromagnetic phase

Our results suggest a coherent scenario for Ce-La substitution in various Ce-based
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Figure 4.4: Schematic description of the Kondo alloys phase diagrams depicted on
figure 4.3, with Kondo (K) and magnetically ordered (MO) phases. In order to fix
the energy scale, the K-MO transition is arbitrarily chosen to be realized here at
𝑇𝐾 ≈ 10 Kelvin for the Kondo lattice (𝑥 = 1) and at around 1 Kelvin in the dilute limit
𝑥 ≪ 1. Dashed lines describe four examples of Kondo alloys: Ce𝑥La1−𝑥Pt2Si2 (circle),
Ce𝑥La1−𝑥Ni2Ge2 (star), Ce𝑥La1−𝑥Ru2Si2 (square) and Ce𝑥La1−𝑥Pd2Si2 (triangle).
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HF materials. Here, we focus only on 122-family, but the scenario isn’t restricted to
these compounds, and we expect that it can be much more general. Figure 4.4 is the
generalized phase diagram obtained through our DMFT calculations where we have
placed a few Ce-based 122-family HF materials. For several of Kondo lattice (𝑥 = 1)
122 compounds, the Doniach argument is consistent with the occurrence of magnet-
ically ordered ground state when the strength of the Kondo coupling 𝑇𝐾 becomes
smaller than about 10 Kelvin. We can thus depict various Kondo alloys on a single
schematic phase diagram, where the energy scale is arbitrarily fixed (see figure 4.4).
For Ce𝑥La1−𝑥Pt2Si2, the paramagnetic phase persists with substitution, with 𝑇𝐾 de-
creasing from 70 K (𝑥 = 1) to 2.6 ± 0.6 K (𝑥 = 0.10) [99]. For Ce𝑥La1−𝑥Ni2Ge2, the
ground state also remains paramagnetic, but the Kondo interaction is smaller, from
30 K for 𝑥 = 1 to 1 K for 𝑥 = 0.01 [101]. Invoking the present scenario, the vicinity
of a magnetically ordered phase at intermediate Ce concentration might explain the
non-Fermi liquid behavior that has been reported for this Kondo alloy [101]. For
Ce𝑥La1−𝑥Ru2Si2, the Kondo lattice (𝑥 = 1) is paramagnetic with 𝑇𝐾 = 24 K, but an
antiferromagnetic ground state is stabilized below the critical concentration 𝑥 = 0.91
[119] and down to the smallest concentrations for which this alloy was synthesized.
The Kondo lattice CePd2Si2, which is characterized by a smaller𝑇𝐾 =9 K, has an anti-
ferromagnetic ground state with a Néel temperature 𝑇𝑁 =9.9 K. For Ce𝑥La1−𝑥Pd2Si2,
the antiferromagnetic phase is observed when 𝑥 > 0.75, but a paramagnetic Kondo
ground state is obtained at lower Cerium concentrations, with𝑇𝐾 decreasing down to
2.8 K for 𝑥 = 0.20 [220]. Another example of 122 Ce-La substituted compound has a
similar behavior as CePd2Si2: the Kondo alloy Ce𝑥La1−𝑥Cu2Ge2 was indeed reported
to be antiferromagnetic with 𝑇𝑁 = 4.1 K and 𝑇𝐾 = 4 K for 𝑥 = 1, and a surprising
persistence of antiferromagnetic order down to 𝑥 = 0.10 [100]. Our present scenario
might also explain this persistence. Of course, the quantitative energy scale used for
the schematic figure 4.4 was chosen arbitrarily to mimic various 122 Ce-based com-
pounds in a coherent scenario. However, we expect that the qualitative properties
observed experimentally should remain universal beyond the specific cases that are
analyzed here.
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Chapter 5

Photo-emission properties of Kondo
alloys

In this chapter, we present our results on the photo-emission properties of Kondo
alloys upon the dilution of Kondo impurities for a large range of Kondo coupling
and three electronic fillings 𝑛𝑐 = 0.30, 0.70 and 0.90. For this, we will analyze the
photo-emission spectrum in terms of Fermi surfaces, band-structure and density of
states, and effective mass focusing on the paramagnetic Kondo phase. This analysis
will further complete the phase diagram presented in chapter 5.

5.1 A state of the art

The angle-resolved photoemission spectroscopy (ARPES) technique is based on
the photoelectric effect described a century ago. In this technique, a photon of
sufficient energy is projected to the crystal, which ejects an electron from the material,
following the absorption of an X-ray photon. By measuring the kinetic energy
and angle distributions of the emitted photoelectrons, the technique can map the
electronic band structure and Fermi surfaces of the system. ARPES is used to
characterize materials because it gives access directly to the Fermi surface topology
and band structure. On Kondo alloys, it was first Park et al. [221] conducted ARPES
experiments on multiple Ce-based Kondo lattice systems, since then this probe
was employed extensively to study the electronic structure of correlated electronic
systems [15]. These experimental technics have already been proven to be very
useful to investigate the physics of 𝑓−electron systems, including Kondo alloys [15,
222].

Enlargement of Fermi surface due to the coherent participation of 4 𝑓 electrons are
directly observed by ARPES experiments on varieties of Kondo lattice systems. The
ARPES experiments carried on varieties of Kondo lattice systems like CeRu2Si2 [223–
225], CeRu2Ge2 [226], CeBi [227],CeNiSn [228] and YbRh2Si2 [135, 229, 230] showed
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large Fermi surfaces due to the coherent participation of 4 𝑓 electrons. ARPES can
also reveal anisotropic properties present in some Kondo alloys. For example, soft
x-ray ARPES revealed anisotropic Fermi surface structures: large along Γ − 𝑋 di-
rection for CeRu2Si2 [231] and smaller along with other directions. Meanwhile,
LaRu2Si2 showed a smaller Fermi surface as predicted through model calculations
(see figure 5.1). Additionally, photoemission spectroscopy experiments also revealed
limitations of the single impurity models for describing dense Kondo systems [124,
232, 233]. However, a complete picture of the evolution of large Fermi surface for
dense Kondo to small Fermi surface in dilute Kondo upon dilution remains still an
open question.

ARPES can give access directly also to the band structure, and angle-integrated
photoemission spectroscopy gives access to the density of states of a crystal. In
Kondo lattice, ARPES experiment [223] on CeRu2Si2 and URu2Si2 indicated 𝑓 − 𝑑

band mixing at low temperatures and exclusions of 𝑓 -electrons in the Fermi surface
above 𝑇𝐾 . While in CeCoGe1.2Si0.8 [234] the heavy hybridized conduction band as
well as dispersive Kondo resonance peaks were observed directly. In another ARPES
experiment, similar band structures were obtained on both Kondo lattice CeRh2Si2
and in Ce-La substituted Kondo alloy Ce0.84La0.16Ru2Si2 [235]. This similarity was
astonishing because below the critical concentration 𝑥 = 0.07, the antiferromagnetic
phase appears. Similarly in the band structure before and after the critical con-
centration indicates that the change in band structure might be continuous across
𝑥𝑐 . ARPES in CeRh2Si2 [236] also revealed the surface and bulk hybridization in
antiferromagnetic Kondo lattice.

Important works were also done in theoretical part to determine the electronic
structures of Kondo alloys either by ab-initio methods like DFT, linear muffin-tin
orbital [66, 237], or DMFT/DMFT+ab-initio calculations [81]. Fermi surface ob-
tained through ab-initio calculations were consistent with ARPES derived Fermi
surfaces [227, 229, 230, 238]. Combined DMFT and DFT method was employed to
study temperature dependent Fermi surface in multiple cases [239–242].

5.2 Theoretical approach for disordered systems

Some physical quantities like the density of states, spectral function, and effective
masses, showing the electronic structure of a system can be extracted directly from
local self-energy. Since the system that we are studying is disordered and ran-
dom, one must include all the processes of creation and annihilation of a fermion
that goes from one type of site to another type of site. In our case, we have four
different processes: Kondo site to Kondo site, Kondo site to non-Kondo site, non-
Kondo site to Kondo site and non-Kondo site to non-Kondo site. Below, we obtain a
disordered-averaged one-body Green’s function from these four different processes.
This disordered-averaged one-body Green’s function will be used to obtain photoe-
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Figure 5.1: Left figures: Electronic density curve showing Kondo resonance peak
(below) at on-resonance ARPES spectra. Right figure: Comparison of ARPES derived
hybridized band and PAM hybridized band. From [231].

mission signals.

5.2.1 Disorder averaged one-body Green’s function

Here, we will derive the expression for one-body Green’s function for paramagnetic
Kondo phase. In pure Kondo phase the sub-lattices A and B are equivalent and
doesn’t depend on spin 𝜎, the sites 𝛼 and 𝛼̄ are equivalent which gives makes the
local propagator equivalent for each site [Π𝛼(𝑖𝜔𝑛)]−1 = [Π𝛼̄(𝑖𝜔𝑛)]−1 = [Π0(𝑖𝜔𝑛)]−1

and similarly the dynamical local bath for the sites 𝛼 and 𝛼̄ are equivalent, hence
Δ𝛼(𝑖𝜔𝑛) = Δ𝛼̄(𝑖𝜔𝑛) = Δ(𝑖𝜔𝑛). We recover the equation for G𝜎

𝑙𝑜𝑐
(𝑖𝜔𝑛) as in [141]

G𝑙𝑜𝑐(𝑖𝜔𝑛) =
∑

k

G(k, 𝑖𝜔𝑛) =
∑

k

[[Π0𝜎(𝑖𝜔𝑛)]−1 − Wk]−1 , (5.1)

with [Π0𝜎(𝑖𝜔𝑛)]−1 = (𝑖𝜔𝑛 +𝜇)I−Σ𝜎(𝑖𝜔𝑛), where I is 2× 2 identity matrix. Following
the steps as in [141], disordered-averaged K-dependent 2×2 Green’s function matrix
G(k, 𝑖𝜔𝑛) can be expressed as

G(k, 𝑖𝜔𝑛) =
(
𝑖𝜔𝑛+𝜇−Σ𝒦 (𝑖𝜔𝑛)−(1−𝑥)Δ(𝑖𝜔𝑛)

𝑥 − 𝜖k Δ(𝑖𝜔𝑛) − 𝜖k

Δ(𝑖𝜔𝑛) − 𝜖k
𝑖𝜔𝑛+𝜇−𝑥Δ(𝑖𝜔𝑛)

1−𝑥 − 𝜖k

)−1

, (5.2)
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where, self-energy Kondo Σ𝒦 (𝑖𝜔𝑛) = 𝑟2

𝑖𝜔𝑛+𝜆 . Inverting this (2 × 2) matrix, we get the
matrix elements of G(k, 𝑖𝜔𝑛). We sum up all the four matrix elements of the matrix
(5.2) defining the four different processes to get our one-body Green’s function as

𝒢(k, 𝑖𝜔𝑛) = 𝐺𝒦𝒦 (k, 𝑖𝜔𝑛) + 𝐺𝒦𝒩 (k, 𝑖𝜔𝑛) + 𝐺𝒩𝒦 (k, 𝑖𝜔𝑛) + 𝐺𝒩𝒩 (k, 𝑖𝜔𝑛) , (5.3)

where 𝐺𝒦𝒦 (k, 𝑖𝜔𝑛), 𝐺𝒦𝒩 (k, 𝑖𝜔𝑛), 𝐺𝒩𝒦 (k, 𝑖𝜔𝑛) and 𝐺𝒩𝒩 (k, 𝑖𝜔𝑛) are the matrix ele-
ments of the matrix (5.2). With a some straight forward algebraic manipulations, we
obtain an expression analogous to one-body interacting Green’s function as

𝒢(k, 𝑖𝜔𝑛) =
(
𝑖𝜔𝑛 + 𝜇 − Σ𝐴𝑙𝑙𝑜𝑦(𝑖𝜔𝑛) − 𝜖k

)−1
. (5.4)

where the self-energy is expressed with the help of Kondo self-energy Σk(𝑖𝜔𝑛) =

𝑟2/(𝑖𝜔𝑛 + 𝜆) alloy as

Σ𝑎𝑙𝑙𝑜𝑦(𝑖𝜔𝑛) =
𝑥

Σ−1
𝒦 (𝑖𝜔𝑛) − (1 − 𝑥)𝐺𝒩(𝑖𝜔𝑛)

. (5.5)

We can easily verify that this one-body Green’s function (Eq. 5.4) reproduces standard
results at several limits. At extreme dilute limit (𝑥 = 0), we obtain non-interaction
Green’s function 𝐺0(k, 𝑖𝜔𝑛) = 1/(𝑖𝜔𝑛 + 𝜇 − 𝜖k) whereas when 𝑥 = 1, we obtain
𝐺(k, 𝑖𝜔𝑛) = 1/(𝑖𝜔𝑛 + 𝜇 − Σ𝒦 (𝑖𝜔𝑛) − 𝜖k). Thus, one-body Green’s function take
account all the processes relates both 𝒦 and 𝒩 sites. All the observable properties
related to our system is confined intoΣ𝑎𝑙𝑙𝑜𝑦 . So now, we present below the definitions
and expressions of some quantities that we have analyzed in this chapter.

5.2.2 Spectral function and Fermi surface

In non-interacting system, the spectral function is defined as

𝒜0(k, 𝜔) = 𝛿(𝜔 − 𝜖k) , (5.6)

with 𝛿 being delta Dirac function. Similarly, in this study, we define the spectral
function at a frequency 𝜔 and a wave-vector k from the disorder-averaged one-body
Green’s function as

𝒜(k, 𝜔) = − 1
Π
𝐼𝑚(𝒢(k, 𝜔 + 𝑖𝜂+)) . (5.7)

where 𝜂 is an infinitesimal positive number. The Fermi surface for a system is
obtained from the equation 5.7 by evaluating it at Fermi level 𝜔 = 0 over first the
Brillouin zone.
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Figure 5.2: First Brilloin zone of the square lattice, with indications of the points
Γ = (0, 0), 𝑋 = (0,𝜋), and 𝑀 = (𝜋,𝜋).

5.2.3 Local density of states

Another quantity that we can obtain form one-particle Green function is density of
states (d.o.s). The d.o.s is obtained by a summation of spectral function (Eq. 5.6) over
all k.

𝜌(𝜔) = 1
𝑉

∫
𝑘

𝒜(k, 𝜔)𝑑k , (5.8)

where 𝑉 is the volume of Brillouin zone. This quantity can be obtained from angle
integrated photoemission spectroscopy.

5.2.4 Local self-energy and effective mass

In this chapter, we are also interested in the effective mass of quasiparticles. This
quantity can be obtained through self-energy. At low-energy, the Taylor expansion
of self-energy can be written in as

Σ(𝜔) = Σ(0) + 𝜔
𝜕Σ(𝜔)
𝜕𝜔

��
𝜔=0 + 𝑂(𝜔2) (5.9)

= Σ(0) + (1 − 𝑚∗)𝜔 + 𝑂(𝜔2) , (5.10)

where 𝑚★ is effective mass and is defined as

𝑚★

𝑚
= 1 − 𝜕ℜ(Σ(𝜔))

𝜕𝜔

��
𝜔=0 . (5.11)

5.3 Results: Spectral function and electronic density of
states

In this section, we analyze the spectral function 𝒜(k, 𝜔), which is related ARPES
signal and the local electronic density of states with a focus on the specific signatures
of the transitions and crossovers in the paramagnetic Kondo phases. In particular,
we address the issues of one-branch versus multi-branches dispersion in spectral
function along with gap-less, pseudogapped, or gapped local electronic density
of states. We solved the self-consistent equations (3.25, 3.26 and 3.27) for various
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electronic fillings, and we obtained similar qualitative results in all cases. Therefore
here, we choose 𝑛𝑐 = 0.70 to present an overview of different situations depending
on 𝑥 and 𝑇𝐾 . Overall we identify two different scenarii depending on the strength of
the Kondo interaction: the relatively high𝑇𝐾 regime (see figure 5.3) and the relatively
small 𝑇𝐾 regime (see figure 5.4), typically separated by a threshold corresponding to
𝑇𝐾 around𝑊/10.

In both cases, the dilute Kondo limit (𝑥 ≪ 1) and the dense Kondo limit (𝑥 =

1) generate usual results. The dilute Kondo limit (𝑥 ≪ 1) reproduces the non-
interacting electronic structure, which is characterized here by a well-defined single
branch electronic dispersion and a density of states with a van-Hove singularity
usual for the square lattice. The Kondo lattice limit (𝑥 = 1) also presents universal
signatures with two branches resulting from the effective hybridization between
conduction electrons and the local levels associated with Kondo spins. The resulting
density of states also presents a gap. For intermediate concentrations 𝑥, the situation
depends on the strength of the Kondo interaction.

5.3.1 Evidence for a Lifshitz-like transition in the Kondo phase at
large 𝑇𝐾

The numerical results obtained for various Kondo impurity concentrations at rela-
tively large Kondo coupling 𝑇𝐾/𝑊 = 0.169 are presented in the figure 5.3. In the
intermediate concentration regime, as long as 𝑥 > 𝑛𝑐 , the dilution of Kondo impuri-
ties does not close the hybridization gap characterizing the coherent dense regime.
Since we have fixed 𝑛𝑐 < 1 in the dense case, the Fermi level is inside the lower band.
When decreasing 𝑥, a third band starts to be formed inside the gap, and a transition
from dense to dilute Kondo regimes occurs at 𝑥 = 𝑛𝑐 . This transition is marked by
the shift of the Fermi level from the lower band to the third band. Upon further
dilution of Kondo impurities in the regime 𝑥 < 𝑛𝑐 , the hybridization gap is filled
giving rise to three branches structures separated by two pseudogaps.

Let us consider at first 𝑥 > 𝑛𝑐 regime in order to understand the formation of
the third band and the breakdown of the coherence of the Kondo impurities. In
this dense regime and at strong Kondo coupling, the KAM can be mapped onto an
effective Hubbard model where quasiparticles are the unscreened Kondo impuri-
ties [133, 243–245]. The corresponding “Coulomb repulsion” in this case of the order
𝑇𝐾 which is very large compared to 𝑊 . Apart from half-filling which corresponds
to a Kondo insulator for 𝑥 = 1, the system is a strongly correlated metal. Consid-
ering particle-hole general symmetry, let us depict a situation where the effective
Fermi level is inside the lower band. The gapped local d.o.s characterizing Kondo
lattices at large 𝑇𝐾 reflects the two Hubbard bands separated by an energy of the
order of 𝑇𝐾 and the states in the upper Hubbard band correspond to singlet-triplet
excitations. Dilution of Kondo atoms in the dense regime (𝑛𝑐 < 𝑥 < 1) changes the
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Figure 5.3: Spectral function evaluated for 𝑛𝑐 = 0.70 at relatively strong coupling 𝑇𝐾/𝑊 =
0.169 for Kondo impurity concentrations 𝑥 = 0.01, 0.30, 0.70, and 1.00. The wavevector k
axis corresponds to the high symmetry lines Γ−𝑋 −𝑀 −Γ in the square lattice first Brillouin
zone (see figure 5.2). The corresponding electronic density of states 𝜌(𝜔) is plotted on the
right side. Each individual cases of this figure are indicated in the phase diagram depicted
in the figure 5.9.

number of carriers and the Fermi level gets closer to the upper edge of the effective
Hubbard band. The transition realized at 𝑥 = 𝑛𝑐 for strong Kondo interaction may
thus be analogous to a doping-induced Mott transition [13], which also presents the
formation of a quasiparticule peak inside the Hubbard gap. However, the effective
model is different for 𝑥 < 𝑛𝑐 : in this dilute regime and for strong Kondo interaction,
quasiparticles emerge from the supernumerary conduction electrons which do not
form Kondo singlets. The third central band may be associated with the motion of
these conduction electrons on the non-Kondo sites. When decreasing 𝑥, this third
band (see 𝑥 = 0.30 in the figure 5.3) looks like the 𝑥 = 0.01 band but distorted. This
is consistent with previous argument about the origin of the third band since in the
both cases, most of the sites are non-Kondo. Thus in the extreme dilute case, the
d.o.s of non-interacting 2D square lattice is recovered while the lower and the up-
per Kondo-related bands disappear. Further, the states in the fully occupied lower
band represent the electrons forming singlets on Kondo sites whereas the upper
unoccupied band corresponds to excitations of a second electron on a Kondo site.

5.3.2 Evidence for a new critical concentration at low 𝑇𝐾

We now focus on the output of spectral function obtained for the relatively small
Kondo coupling case. Figure 5.4 illustrates the results obtained for 𝑇𝐾/𝑊 = 0.019.
We observe that the two branches structure characterizing the dense Kondo state is
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Figure 5.4: Spectral function evaluated for 𝑛𝑐 = 0.70 at relatively small coupling 𝑇𝐾/𝑊 =
0.019 for Kondo impurity concentrations 𝑥 = 0.01, 0.08, 0.50, and 1.00 with 𝑥★ = 0.08. The
wavevector k axis corresponds to the high symmetry lines Γ−𝑋 −𝑀 −Γ in the square lattice
first Brillouin zone (see figure 5.2). The corresponding electronic density of states 𝜌(𝜔) is
plotted on the right side. Each individual case of this f are indicated in the phase diagram
depicted in the figure 5.9.

preserved upon dilution even for 𝑥 < 𝑛𝑐 . Furthermore, the effect of disorder-related
decoherence is maximum at around 𝑥 = 𝑛𝑐 which leads to a broadening of the
branches as well as a reduction of the quasiparticle lifetime. This maximum deco-
herence also results in a partial filling of the hybridization gap leaving a pseudogap
near the Fermi level. Upon further dilution of Kondo atoms, the two branches merge
to form a single branch structure along with the disappearance of the pseudogap.
This occurs at a critical concentration 𝑥★ which depends on the strength of the Kondo
interaction. We find that 𝑥★ ≪ 𝑛𝑐 at very small𝑇𝐾 , and 𝑥★ → 𝑛𝑐 when𝑇𝐾 approaches
around𝑊/10.

5.4 Results: Fermi surface

In this section we analyze the experimental signatures in the Fermi surfaces obtained
from the spectral function 𝒜(k, 𝑖𝜔 = 𝑖0+). Figure 5.5 depicts the Fermi surface
spectra computed for a paramagnetic Kondo ground state within broad ranges of 𝑥
and 𝑛𝑐 . For all values considered for the Kondo interaction and the electronic filling,
we find that the Fermi surface of the Kondo lattice (𝑥 = 1) is large, and it includes
the contributions from both the conduction electrons and the Kondo spins. This
universal feature is in good agreement with previous theoretical and experimental
results [15, 135, 222–230]. It can be well understood in terms of the Luttinger theorem,
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which stipulates that all fermionic degrees of freedom participate in the formation
of the Fermi liquid ground state.

5.4.1 Fermi surface in the Kondo phases: coherence breakdown

We now focus on the possible breakdown of this coherent Kondo lattice state when
decreasing 𝑥. For a relatively strong Kondo interaction (𝑇𝐾/𝑊 = 0.175) we observe
the Lifshitz-like transition at 𝑥 = 𝑛𝑐 that was predicted in [136]. In this case, the
spectral function corresponds to relatively long lifetime quasiparticles with a well-
defined Fermi surface (excepted at the transition). Figure 5.6 shows clearly this
discontinuity of Fermi surface at 𝑇𝐾/𝑊 = 0.175. In this case, the volume of the
Fermi-surface shrinks when increasing 𝑥 in the dilute regime 𝑥 < 𝑛𝑐 , and it increases
with 𝑥 in the dense regime 𝑥 > 𝑛𝑐 . This feature is consistent with the fact that Kondo
impurities behave as hole-dopant for 𝑥 < 𝑛𝑐 and particle-dopant for 𝑥 > 𝑛𝑐 .

Figure 5.6: Fermi surface structure for 𝑇𝐾/𝑊 = 0.175 for 𝑛𝑐 = 0.70 at 𝑥 = 𝑛𝑐 − 0.1,
𝑥 = 𝑛𝑐 and 𝑥 = 𝑛𝑐 + 0.1 from left to right. A clear evidence of Lifshitz-like transition
is marked by the discontinuity of Fermi surface at 𝑥 = 𝑛𝑐 .

For 𝑇𝐾/𝑊 = 0.082, and 0.0058, the evolution of the Fermi surface along with
concentration 𝑥 is more gradual, and the Lifshitz-like transition around 𝑥 = 𝑛𝑐
seems to become a crossover at lower values of 𝑇𝐾 . Furthermore, the broadening of
the Fermi surface spectra around the Fermi wavevectors is maximal around 𝑥 = 𝑛𝑐
due to disorder-related decoherence.

Fermi surface spectra provide apparent signatures of the Kondo lattice coherence
breakdown transition at 𝑥 = 𝑛𝑐 , especially for systems with relatively strong Kondo
interaction, corresponding to 𝑇𝐾 typically larger than 𝑊/10. This Lifshitz like tran-
sition separating dense and dilute Kondo phases at 𝑥 = 𝑛𝑐 becomes a crossover for
smaller𝑇𝐾 . At small𝑇𝐾 , we identified another critical concentration from the spectral
functions (see section 5.3) at 𝑥★ characterizing the merging of two spectral function
branches. However, the Fermi surfaces at figure 5.5 do not present clear signatures
of any characterized feature at or around this critical concentration 𝑥★. This is not
surprising since the electronic excitation spectrum is not accessible from the Fermi
surfaces.
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Figure 5.5: FS spectra assuming a Kondo paramagnetic ground state for 𝑥 = 0.01,
0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00 (from left to right) and 𝑛𝑐 = 0.20,
0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00 (from bottom to top). Each square corre-
sponds to the first Brillouin zone of the square lattice (see figure 5.2). From top to
bottom, 𝑇𝐾/𝑊 = 0.175, 0.082, and 0.0058: the Lifshitz-like transition around 𝑥 = 𝑛𝑐
is observed for a sufficiently strong Kondo interaction, and it becomes a gradual
crossover for smaller values of the interaction. The red lines for 𝑇𝐾/𝑊 = 0.082 and
0.0058 separates the regimes 𝑥 < 𝑥★ and 𝑥 > 𝑥★. In both cases, 𝑥★ increases with in-
creasing 𝑛𝑐 . However, for 𝑇𝐾/𝑊 = 0.0058, this is not visible because 𝑥★ lies between
𝑥 = 0.01 and 𝑥 = 0.20 for all values of 𝑛𝑐 considered.
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Figure 5.7: Fermi surface spectra for 𝑛𝑐 = 0.30 and 𝑥 = 0.05, 0.35, 0.65 and 0.95. (a)
𝑇𝐾/𝑊 = 0.012 with Kondo ground states: we observe signatures of a breakdown of
coherence associated with a change of topology in the Fermi-surface. (b) 𝑇𝐾/𝑊 =

0.0031 with ferromagnetic ground states: we observe Zeeman splitting effect only.

Figure 5.8: Fermi surface spectra for 𝑛𝑐 = 0.90, and 𝑥 = 0.05, 0.35, 0.65 and 0.95. (a)
𝑇𝐾/𝑊 = 0.0143 with Kondo ground states: we observe signatures of a breakdown
of coherence associated with a change of topology in the Fermi-surface. (b) 𝑇𝐾/𝑊 =

0.0045 with antiferromagnetic ground states: we observe only the folding of the
Fermi-surface which results from the staggered Néel ordering.

5.4.2 Fermi surface in the magnetically ordered phases
We also studied the Fermi surfaces in the magnetically ordered phases of Kondo
alloys, as depicted in figure 5.7 (for 𝑛𝑐 = 0.30, where the small Kondo coupling
ground state is ferromagnetic) and in figure 5.8 (for 𝑛𝑐 = 0.90, where the small Kondo
coupling ground state is antiferromagnetic). The Zeeman splitting is obtained,
and we are also able to reproduce the folding of the Brillouin zone in the Néel
antiferromagnetic state as in [246] . For both magnetically ordered states, we find that
the evolution of the Fermi surface is either absent or very smooth and gradual upon
varying 𝑥. This result is in contrast with the coherence breakdown which is predicted
in the Kondo phases. A possible explanation for this difference may be obtained by
considering the Kondo lattice limit (𝑥 = 1). In this case, Kondo spins contribute to
the formation of a large Fermi surface for the Kondo coherent state, while they do not
contribute for the magnetically ordered states. The breakdown of coherence which
is depicted here in Fermi surfaces spectra for the Kondo phase is thus related to the
contribution of Kondo ions to forming strongly correlated fermionic quasiparticles.
This breakdown of coherence is different from the breakdown of Kondo effect that
distinguishes Kondo phases from pure magnetically ordered phases. Indeed, Kondo
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effect is still present in the non-coherent dilute Kondo phase. In our calculations, we
did not consider the possibility of mixed states where magnetic order might coexist
with Kondo effect. For such states, we expect coherence breakdown signatures that
might be concomitant with Fermi surface reconstructions resulting from magnetic
order.

5.5 Results: emergence of two transitions in the param-
agnetic Kondo phases

The phase diagram of the KAM is depicted in figure 5.9. It was obtained by compar-
ing the energies of each phase considered: paramagnetic Kondo, antiferromagnetic
and ferromagnetic phases. From these phase diagrams, we observe that in the re-
gion with small values of Kondo coupling, the long-range magnetically ordered
phases are stabilized. Their competitions and their stabilities for the KAM, which
is consistent with Doniach argument, was discussed elsewhere [247]. For small to
intermediate values of 𝑇𝐾 , a paramagnetic Kondo phase with three distinct zones
are identified: a dilute Kondo at 𝑥 ≪ 1, a dense Kondo at 𝑥 ≈ 1 separated by a large
zone of intermediate state 𝑥★ < 𝑥 < 𝑛𝑐 . When increasing the Kondo coupling, 𝑥★
tends towards 𝑛𝑐 and for strong coupling only dilute and dense Kondo phases are
obtained, separated by a Lifshitz transition.

Now, we analyze the different regions of paramagnetic Kondo phases by means of
effective self-energy Σ𝐴𝑙𝑙𝑜𝑦(𝜔) and its corresponding effective mass 𝑚★ with a focus
on spectral function, which is related to experimental observation of ARPES signals.
The transition observed in the Fermi surfaces (see section 5.4) at 𝑥 = 𝑛𝑐 for sufficiently
large values of Kondo coupling is characterized by a discontinuity of Σ𝐴𝑙𝑙𝑜𝑦(𝜔 = 0)
(solid line in figure 5.9). Since the real part of the self-energy is related with a
rescaling of the Fermi level, we interpret this transition as a signature of the Lifshitz
transition that was predicted elsewhere [136] from a strong coupling approach of
the Kondo alloy: for 𝑥 > 𝑛𝑐 , all magnetic degrees of freedom from conduction
electrons are frozen by Kondo singlets formation. The Fermi liquid quasiparticles in
this coherent dense regime are formed by the remaining degrees of freedom from
unscreened Kondo impurities. In the dilute regime 𝑥 < 𝑛𝑐 , the microscopic nature of
quasiparticles is different and emerges from unscreened conduction electrons. Our
result shows that this strong coupling picture may be realized for𝑇𝐾 ≳ 𝑊

10 . Therefore,
in order to observe a signature of coherence breakdown at 𝑥 = 𝑛𝑐 from ARPES
experiments on Kondo alloys, one would need to consider 𝑓−electron compounds
with relatively large Kondo temperatures. In this case, a valence fluctuation or
valence transition might also become relevant as well but this issue is beyond the
scope of the present work.
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Figure 5.9: Ground state phase diagram of the KAM as functions of 𝑥 and 𝑇𝐾/𝑊 for (a)
𝑛𝑐 = 0.30, (b) 𝑛𝑐 = 0.70 and (c) 𝑛𝑐 = 0.90. (▲) indicates the individual cases presented in
the figure 5.3 and figure 5.4 for 𝑛𝑐 = 0.70. In the Kondo phases the solid line indicates the
discontinuity of the self-energy observed at 𝑥 = 𝑛𝑐 for sufficiently strong 𝑇𝐾 . This transition
from the dense coherent Kondo phase becomes a crossover marked by an inflection in the
self energy at smaller 𝑇𝐾 (doted line), and a significant increase in the intensity of imaginary
part of the self-energy (color or black and white gradient). A continuous vanishing of the
effective mass 𝑚★ is obtained at concentration 𝑥★ (dashed line), and we find 𝑚★ < 0 in the
intermediate region 𝑥★ < 𝑥 < 𝑛𝑐 . We also solved the DMFT equations obtained for a Bethe
lattice, considering the Kondo paramagnetic solution only and the same values of model
parameters as depicted here. Results for Bethe lattice can be found in the appendix C.2.
We were not able to distinguish the figures corresponding to the Bethe lattice from the ones
depicted here for the 2D square lattice. This strong similarity excludes several interpretations
that might invoke specificities of the lattice structure.

Hereafter, we analyze different situations with smaller Kondo coupling. The
transition predicted at 𝑥 = 𝑛𝑐 separating dense and dilute Kondo regimes becomes
a crossover at smaller coupling and the quasiparticle lifetime is significantly shorten
due to disorder incoherence effects. Indeed, the self-energy is found to be continuous
and characterized by an inflection around this crossover 𝑥 = 𝑛𝑐 (dotted line in
figure 5.9, see also figure 5.10).

Whereas, the imaginary part, Σ′′
𝐴𝑙𝑙𝑜𝑦

(0), which is relatively small at strong cou-
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Figure 5.10: (a) Real part of the self-energy Σ′
𝐴𝑙𝑙𝑜𝑦

(0)/𝑊 , (b) Effective mass 𝑚★/𝑚0 as
functions of 𝑥, for 𝑛𝑐 = 0.70. Different Kondo temperatures have been used for the numerics,
illustrating the transition (at strong𝑇𝐾) and crossover (at smaller𝑇𝐾) obtained around 𝑥 = 𝑛𝑐 .
The inset in (b) is a focus around the critical concentration 𝑥★ which is characterized by a
vanishing of 𝑚★ when 𝑇𝐾 relatively small. At intermediate concentrations 𝑥★ < 𝑥 < 𝑛𝑐 we
find 𝑚★ < 0.
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Figure 5.11: Imaginary part of self-energy Σ′′(0)/𝑇𝐾 for 𝑇𝐾/𝑊 = 0.169, 0.019 and
0.006. Σ′′(0)/𝑇𝐾 is negative and increases with increasing 𝑇𝐾 with a maximum at
𝑥 = 𝑛𝑐 .

pling, becomes large around this crossover at smaller coupling (see color/black-
white gradient in figure 5.9).

In agreement with the spectral function analysis of section 5.3 for intermediate
values of Kondo coupling, we found a third intermediate phase, which is separated
from the dilute phase by a transition line in the 𝑥 − 𝑇𝐾 phase diagram: at the
critical concentration 𝑥★, the effective mass𝑚★ vanishes continuously. This transition
separates the very dilute regime (𝑥 < 𝑥★) with 𝑚★ > 0 from an intermediate regime
(𝑥★ < 𝑥 < 𝑛𝑐) characterized by 𝑚★ < 0 (see inset of figure 5.10 and dashed line in
figure 5.9). From our numerical data, we found a power law relation 𝑇𝐾/𝑊 ∝ (𝑥★)𝛾
with an exponent 𝛾 < 1 and the exponent itself depends on the filling 𝑛𝑐 .

We found 𝛾 = 0.71, 0.78 and 0.83 for 𝑛𝑐 = 0.30, 0.70 and 0.90 respectively as
shown in the figure 5.12. This transition produces signatures in spectral function
(see section 5.3) where two branches merge to one branch at 𝑥★ (see figure 5.4).
Meanwhile, Fermi surface structures (see figure 5.5) do not show a clear signature
of 𝑥★. Keeping in mind that the dispersion relation is 𝜔 + 𝜇 − Σ𝐴𝑙𝑙𝑜𝑦(𝜔) = 𝜖k, the
frequency dependence of the real part 𝜔 − Σ′

𝐴𝑙𝑙𝑜𝑦
(𝜔) + Σ′

𝐴𝑙𝑙𝑜𝑦
(0) is represented in

figure 5.13. We can thus interpret the transition at 𝑥 = 𝑥★ as the gradual formation
(or extinction) of extra branches in the one-electron excitations, as suggested by the
low-frequency dependence of this quantity, which changes from locally monotonous
(at 𝑥 < 𝑥★) to locally non-monotonous (at 𝑥 > 𝑥★). The second branch could
then be associated with coherent and dispersive singlet-triplet excitations that may
propagate. Such triplet excitations are gaped out at strong Kondo coupling, but they
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Figure 5.12: Evolution of the critical concentration 𝑥∗ with respect to the Kondo
coupling 𝑇𝐾/𝑊 presented here on 𝑙𝑜𝑔 − 𝑙𝑜𝑔 scale. Solid line represent 𝑛𝑐 = 0.90,
dashed line represent 𝑛𝑐 = 0.70 and dotted line represent 𝑛𝑐 = 0.30 with a slope 𝛾 of
0.83 ± 0.013, 0.78 ± 0.006, and 0.71 ± 0.016 respectively.

might also reveal a pseudogap in PES at smaller Kondo coupling as analyzed in the
section 5.3. This intermediate state is thus a precursor to the coherent state which is
realized around 𝑥 ≈ 1. It is very interesting to see that such a pre-coherent state may
start being formed at a relatively small concentration 𝑥★.

Imaginary part of self-energyΣ′′(0)/𝑇𝐾 is presented in the figure 5.11. We quickly
remark that Σ′′(0)/𝑇𝐾 < 0, which shows that our calculation respects the causality.
We could also observe that the Σ′′(0)/𝑇𝐾 increases considerably with increasing
𝑇𝐾 while getting maximum value at 𝑥 = 𝑛𝑐 . This shows us that finite lifetime
of quasiparticle is minimum at 𝑥 = 𝑛𝑐 . However, two very important features
could make the transition at 𝑥★ observable experimentally: first, the imaginary part
of Σ′′

𝐴𝑙𝑙𝑜𝑦
(0) remains relatively small around 𝑥★ (see color/black-white gradient in

figure 5.9 and figure 5.11). We can thus expect that the excitations are long lifetime
quasiparticles that could be revealed by photo-emission. Secondly, 𝑥★ depends on
the strength of the Kondo interaction. We may thus expect that this transition could
be tuned by applying pressure on a compound with a fixed concentration 𝑥. Of
course, we are aware that mechanical pressure is not fully compatible with ARPES
experiments. However, since the underlying phenomenon is a transition in the one-
electron excitation spectrum, we may expect signatures in other sorts of experiments
that could be realized under pressure, e.g., Raman spectroscopy.
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Figure 5.13: Frequency dependence of the real part of the self-energy, 𝜔−Σ′
𝐴𝑙𝑙𝑜𝑦

(𝜔)+
Σ′
𝐴𝑙𝑙𝑜𝑦

(0) for 𝑛𝑐 = 0.70 and 𝑇𝐾 = 0.019. Top: for 𝑥 in the vicinity of the critical
point 𝑥★ = 0.08 which is characterized by 𝑚★ = 0, we observe the emergence of a
non-monotonicity at low energy. This leads to the gradual formation of a multiple-
branches dispersion for 𝑥 > 𝑥★. Center: for 𝑥 in the vicinity of 𝑛𝑐 , the maximum is
realized at 𝜔 < 0 for 𝑥 < 𝑛𝑐 and at 𝜔 > 0 for 𝑥 > 𝑛𝑐 resulting in a second change
of sign of 𝑚★. Bottom: for 𝑥 close to 1, we observe signatures of the singularity
Σ𝐾(𝜔) = 𝑟2

𝜔+𝜆 which is obtained in the mean-field approximation for the Kondo
lattice. The non-monotonicity obtained at lower concentrations is reminiscent of this
singularity, and we expect this feature to survive qualitatively beyond the mean-field
approximation.

5.6 Discussion

Our results confirm the existence of a transition at 𝑥 = 𝑛𝑐 between a coherent dense
Kondo regime (for 𝑥 > 𝑛𝑐) and a dilute Kondo regime (for 𝑥 < 𝑛𝑐) [136]. This
Lifshitz-like transition may be observed in ARPES experiments through the analysis
of Fermi surface for Kondo alloys with a Kondo temperature higher than about
1/10 bandwidth. A shrinking of the Fermi-surface is expected when increasing 𝑥
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in the dilute regime, while the Fermi surface is enlarged with 𝑥, in connection with
the Luttinger theorem, in the coherent dense Kondo regime. It could be obtained
experimentally in the materials with a relatively large 𝑇𝐾 . We have also shown that
this transition at 𝑥 = 𝑛𝑐 becomes a crossover at smaller values of Kondo interaction.

While Doniach argument is recovered, with magnetically ordered ground states
stabilized at very small Kondo coupling, we identified a broad region of parameters
where an intermediate paramagnetic Kondo state can be stabilized. This corresponds
to values of𝑇𝐾 between𝑊/100 and𝑊/10 with the regime of concentrations 𝑥★ < 𝑥 <
𝑛𝑐 which can be realized in a large variety of heavy-fermion Kondo systems. Unlike
the dilute and the dense Kondo states, this intermediate phase is characterized by a
negative effective mass. Here, the negative effective mass does not mean instability,
but it is rather a Fermi liquid phase. It corresponds to the emergence of an extra
branch in the electronic dispersion and a formation of a pseudogap in the local
density of states at 𝑥 > 𝑥★.

We also analyze the effects of decoherence resulting from disorder, which may
spoil the possibilities of analyzing ARPES signals. We find that these effects are rel-
atively small at strong Kondo coupling, which may make possible the observability
of the transition at 𝑥 = 𝑛𝑐 . However, this requires compounds with a relatively large
value of 𝑇𝐾 . At smaller values of Kondo interaction, disorder-induced decoherence
may become significant, with a maximal effect around 𝑥 = 𝑛𝑐 . This disorder-induced
decoherence reduces the opportunities of observing signatures in the Fermi surface
at 𝑥 = 𝑛𝑐 for small coupling. We still expect relatively well-defined quasiparticles
around 𝑥 = 𝑥★ even though contrary to the transition at 𝑥 = 𝑛𝑐 , the transition at
𝑥 = 𝑥★ cannot be observed directly from the Fermi surface structures. We considered
an infinite coordination number, the fluctuations in neighboring atoms configura-
tions [138] in our calculations are neglected. This might induce fluctuations of the
local effective Kondo hybridization [165, 166, 248], resulting in additional broaden-
ing of spectral function. Indeed, the experiments involving low energy excitations
(e.g. ARPES) are more appropriate. This opens rich perspectives for experimental
investigations of the breakdown of coherence on Kondo alloys. Since we predict that
𝑥★ varies with the strength of the Kondo interaction, this transition might be realized
not only by atomic substitution but also by applying pressure in a Kondo alloy with
fixed stoichiometry (i.e. fixed 𝑥 and 𝑛𝑐).
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Chapter 6

Local potential scattering and charge
inhomogeneity in Kondo alloys

In this chapter, we will present our results on local potential scattering and charge
inhomogeneities in order to characterize the dilute and dense Kondo regimes. Sim-
ilar to the previous chapter 5, here we will analyze different quantities with large
Kondo coupling and also with Kondo coupling for various electronic filling upon the
dilution of Kondo impurities. This will permit us to further characterize the critical
concentrations at 𝑥 = 𝑛𝑐 and 𝑥 = 𝑥∗ seen through the photo-emission spectrum.

6.1 Introduction

6.1.1 Local potential scattering

We define local potential scattering (LPS) 𝑆𝑎(𝑖𝜔) as

𝐺𝑐𝑐𝑎 (𝑖𝜔) = 𝐺0(𝑖𝜔 + 𝑆𝑎(𝑖𝜔)) , (6.1)

where the index 𝑎 denotes either 𝒦 -site or 𝒩-site, 𝐺0(𝑖𝜔) = 1/(𝑖𝜔 − 𝜖k) is non-
interacting Green’s function and 𝐺𝑐𝑐𝑎 (𝑖𝜔) is local Green’s function for conduction
electrons as expressed in the equations (3.53 - 3.54). 𝑆𝑎(𝑖𝜔) is a site dependent com-
plex quantity with its real part can be seen as an effective energy level of conduction
electron on a given site with respect to the non-interacting bandwidth. By com-
paring this real part with the chemical potential 𝜇0(𝑛𝑐) for non-interacting electrons
with 𝑛𝑐 electronic filling as defined by the Eq. (6.2), we can deduce hole-dopant or
particle-dopant nature of the quasiparticles.

𝑛𝑐 =

∫ 𝜇0(𝑛𝑐)

−𝑊/2
𝜌0(𝜔)𝑑𝜔 (6.2)

Furthermore, the imaginary part of 𝑆𝑎(𝑖𝜔) is linked with the quasiparticle’s
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lifetime. Thus, one can extract the information about localized or itinerant behavior
of 𝑓 -electrons depending upon the position of the 𝑆𝑎(𝑖𝜔) to the non-interacting
bandwidth.

In this chapter, we will only concentrate on static part of LPS at zero frequency.
Thus, we define

𝑆𝑎(0) = 𝑆′𝑎 + 𝑖𝑆′′𝑎 , (6.3)

where 𝑆′𝑎 and 𝑆′′𝑎 are real and imaginary part of 𝑆𝑎(0).
Local potential scattering was previously studied for Bethe lattice in [138] in the

Kondo alloy model using two complementary DMFT and stat-DMFT approaches
while taking account of structural disorder fluctuations due to impurity substitution.
In their study, they found that the real part of the LPS can shift outside the non-
interacting electronic bandwidth while depleting Kondo sites. They also found a
clear signature of Kondo lattice coherence breakdown 𝑥 = 𝑛𝑐 marking emergence of
two Fermi liquid phases: a coherent Fermi liquid for 𝑥 > 𝑛𝑐 and a local Fermi liquid
𝑥 < 𝑛𝑐 at strong 𝐽𝐾 .

6.1.2 Charge inhomogeneity

It was first in 1934, Wigner [249] introduced the concept of charge ordering, the
long-range ordered pattern of electron density, in the gas of electrons. Following
its first introduction, numerous systems [250] have been found showing charge
ordering. In strongly correlated systems, charge ordering is found in transition
metal compounds like in manganates [251, 252]. Again in SCES, charge ordering is
found to cause multiferroicity [253] in some groups of strongly correlated systems.
Regarding 𝑓 -electron systems, the charge ordering is less common but can occur in
the systems where the intersite Coulomb interaction may be strong enough to lead
to a 4f-charge disproportionate like in Yb4As3 [254, 255].

Charge order was studied previously in Kondo lattice system [208] at quarter
filling using DMFT where the paramagnetic charge-ordered state was found for
small coupling strengths for a bipartite Bethe lattice, and it vanishes as a first-order
phase transition for strong coupling. In this study, the charge order was found to
be an insulator. Further, charge order was also studied in a two-dimensional Kondo
Lattice Model [210] using two complementary approaches: variational Monte Carlo
method [78] for the ground state and cellular dynamical mean-field theory [256]. In
their study, they found charge order as an insulator at quarter filling.

In this part of this chapter, inspired from previous studies of charge order, we
will analyze charge inhomogeneities present between Kondo and non-Kondo sites.
Thus, we define the charge occupation for each type of site as

𝑛𝑎 =
1
𝛽

∑
𝑖𝜔

𝐺𝑐𝑐𝑎 (𝑖𝜔) , (6.4)
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where the occupation 𝑛𝒦 and 𝑛𝒩 satisfies a sum rule 𝑛𝑐 = 𝑥𝑛𝒦 + (1 − 𝑥)𝑛𝒩 .

6.2 Results: Local Potential scattering

Here, we present our LPS results at Fermi level (𝜔 = 0) for 2D square lattice, however,
supplementary calculations for Bethe lattice were also performed, and we got similar
results as obtained in [138], and are presented in the appendix C.3. As before in the
chapter 5, we consider two Kondo coupling: a relatively large Kondo coupling
𝑇𝐾/𝑊 = 0.169 and an intermediate Kondo coupling 𝑇𝐾/𝑊 = 0.019 in order to
analyze LPS to find additional signatures of the critical concentrations 𝑥 = 𝑥★ where
the cancellation of effective mass 𝑚∗ occurs (see section 5.3) and 𝑥 = 𝑛𝑐 where
Lifshitz-like transition occurs (see chapter 5.4).

6.2.1 Large 𝑇𝐾 case

At first, we focus on a large Kondo coupling scenario with𝑇𝐾/𝑊 = 0.169 for 𝑛𝑐 = 0.70
where evidence of Lifshitz-like transition was observed through the analysis of Fermi
surface structures (see section 5.4). Figure 6.2.2 represents the results for the LPS
at Fermi level for large coupling. An obvious limit to analyze should be the Kondo
lattice limit (𝑥 ≃ 1). At Kondo lattice limit (𝑥 ≃ 1), the real part 𝑆′𝒩 is situated outside
the electronic bandwidth with finite positive imaginary part, and the real part 𝑆′𝒦
is inside the electronic bandwidth with the negligible but non-negative imaginary
part. One should notice that 𝑆′𝒦 is almost constant for the concentrations 𝑥 > 𝑛𝑐 .
This shows the extent of coherence of coherent dense regime up to the concentration
𝑥 > 𝑛𝑐 as in [138] for Bethe lattice at finite 𝐽𝐾 . For 𝑥 = 1.00, 𝑆′ equals to the chemical
potential of non-interacting electrons 𝜇0(𝑛𝑐 + 1), with 𝑛𝑐 + 1 electronic filling. This
corresponds to the large Fermi surface verifying the Luttinger ’theorem’ [134] where
all the fermionic degree of freedoms participates in the formation of the Fermi
surface. Upon dilution, at 𝑥 = 𝑛𝑐 , both quantities 𝑆𝒦 and 𝑆𝒩 presents discontinuities.
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Figure 6.1: Evolution of local potential scattering 𝑆𝑎(0) for 𝑛𝑐 = 0.70 relatively large
Kondo coupling𝑇𝐾/𝑊 = 0.169 represented on Argand diagram. Solid line represent
LPS for 𝒦 -site whereas dashed line represent LPS for 𝒩-site. (•) indicates Kondo
lattice (𝑥 = 1.00), short vertical solid line indicates the concentrations 𝑥 = 𝑛𝑐 ± 0.01
and (✖) the most diluted case (𝑥 = 0.01). Light red background highlights the
electronic bandwidth𝑊 .

At 𝑥 < 𝑛𝑐 , 𝑆′𝒦 crosses out the non-interacting bandwidth through the upper
limit while 𝑆′𝒩 enters inside the non-interacting bandwidth through lower limit.
Interestingly, 𝑆′′𝒦 acquire a finite value whereas 𝑆′′𝒩 cancels out. For 𝑥 ≪ 𝑛𝑐 , 𝑆′𝒩
coincide with the chemical potential 𝜇0(𝑛𝑐) corresponding to a small Fermi surface.
In contrast to the previous calculations in [138] for the Bethe lattice, here we did
not observe the change of sign in the imaginary part of LPS for either 𝒦 -site or for
𝒩-site.

6.2.2 Low 𝑇𝐾 case

From our previous analysis of spectral function in the low Kondo coupling case, we
had identified a new critical concentration 𝑥∗ where the cancellation of effective mass
happens. Here, we present and analyze results for the same value of 𝑇𝐾/𝑊 = 0.019
and for 𝑛𝑐 = 0.70. Figure 6.2 present the LPS for𝒦 -site and𝒩-site for low𝑇𝐾 case. As
soon as we compare the figure 6.2 for low𝑇𝐾 case with the figure for large𝑇𝐾 , we find
two clear differences: i) the discontinuity at 𝑥 = 𝑛𝑐 for both 𝑆′𝒦 and 𝑆′𝒩 disappears
and ii) 𝑆′𝒩 is always situated inside the electronic bandwidth. Like for the large 𝑇𝐾 ,
at 𝑥 = 1.00, 𝑆′𝒦 corresponds to 𝜇0(𝑛𝑐 + 1) showing that the Luttinger theorem is still
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Figure 6.2: Evolution of local potential scattering 𝑆𝑎(0) for 𝑛𝑐 = 0.70 relatively low
coupling 𝑇𝐾/𝑊 = 0.019 represented on Argand diagram. Solid line represent LPS
for 𝒦 -site whereas dashed line represent LPS for 𝒩-site. (•) indicates Kondo lattice
(𝑥 = 1.00), short vertical solid line indicates the concentrations 𝑥 = 𝑛𝑐 ± 0.01 and
(✖) the most diluted case (𝑥 = 0.01). Light red background highlights the electronic
bandwidth𝑊 .

verified. Even though the discontinuity at 𝑥 = 𝑛𝑐 disappears, 𝑆′𝒦 crosses the upper
limit shortly after 𝑥 = 𝑛𝑐 marking the extent of coherence of Kondo lattice. Thus,
this disappearance of discontinuity at 𝑥 = 𝑛𝑐 translates the transformation of dilute-
dense transition into a crossover. Upon further dilution of magnetic impurities at
𝑥 ≪ 𝑛𝑐 , 𝑆′𝒩 corresponds to the chemical potential 𝜇0(𝑛𝑐) and also 𝑆′′𝒩 cancels out.
LPS clearly presents evidence of Liftshitz-like transition, but it was unable to present
any signatures of the transition at 𝑥 = 𝑥★.

6.3 Results: Charge inhomogeneity

In this section, we present our results on the average charge occupation and its
average distribution over the randomly distributed 𝒦 -sites and 𝒩-sites to study
further the critical concentrations: 𝑥 = 𝑛𝑐 and 𝑥★ in paramagnetic Kondo phase. We
also analyze the distribution of charge between the Kondo sites and non-Kondo sites
concerning the impurity concentration 𝑥 and electronic filling 𝑛𝑐 . It permits us to
study the distribution of charge inhomogeneity with the alloying effect.

Let us first start by analyzing the infinite 𝐽𝐾 → ∞ case. In this case, we can derive
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Figure 6.3: Charge occupation on 𝒦 and 𝒩-sites with the dilution of magnetic
impurities 𝑥 for different Kondo temperature 𝑇𝐾 . Left: occupation for Kondo site,
Right: occupation for non-Kondo site. The solid lines represent theoretical values
expected for 𝑇𝐾/𝑊 → ∞. 𝑛𝒦 and 𝑛𝒩 verifies the sum rule as: 𝑥𝑛𝒦 + (1− 𝑥)𝑛𝒩 = 𝑛𝑐 .
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two relations for charge occupations in two different regimes: 𝑥 < 𝑛𝑐 and 𝑥 > 𝑛𝑐
and is presented in the Eq 6.5.

𝑥 < 𝑛𝑐 ,

𝑛𝒦 = 0.5 ,
𝑥𝑛𝒦 + (1 − 𝑥)𝑛𝒩 = 𝑛𝑐/2 ,

gives 𝑛𝒩 = 𝑛𝑐 − 𝑥/2(1 − 𝑥) .

𝑥 > 𝑛𝑐 ,

𝑛𝒩 = 0 ,
𝑥𝑛𝒦 + (1 − 𝑥)𝑛𝒩 = 𝑛𝑐/2 ,

gives 𝑛𝒦 = 𝑛𝑐/2𝑥.

(6.5)

From the above figure 6.3, we can observe that at the large Kondo coupling
𝑇𝐾/𝑊 = 0.350, our results follow the theoretical large Kondo coupling limit (see
Eq. 6.5). For dense regime 𝑥 > 𝑛𝑐 , the occupation 𝑛𝒦 rises steadily upon depleting
Kondo atoms up to 𝑥 = 𝑛𝑐 , and 𝑛𝒩 is zero. This is because all the conduction
electrons are occupied, forming singlets with impurities electrons. In our case, 𝑛𝒩
is not rigorously zero since the Kondo coupling is not infinite. The dense-dilute
transition concentration at 𝑥 = 𝑛𝑐 is marked by a kink in 𝑛𝒦 and 𝑛𝒩 for the large
𝑇𝐾 . For dilute regime 𝑥 < 𝑛𝑐 , 𝑛𝒩 increases gradually whereas 𝑛𝒦 becomes a plateau
with a value 0.50. Lowering𝑇𝐾 increases the probability of charge occupation in non-
Kondo sites even at 𝑥 ≈ 1.0 and suppress the kink present at 𝑥 = 𝑛𝑐 . Thus, charge
inhomogeneity is present in Kondo alloys between Kondo and non-Kondo sites
upon dilution, and the intensity of charge inhomogeneity decreases with decreasing
Kondo coupling.

6.4 Discussion

In this chapter, we have analyzed local potential scattering and charge inhomogeneity
with substitution to find new signatures of the transitions at 𝑥 = 𝑥∗ and 𝑥 = 𝑛𝑐 . At
first, we can observe that for large Kondo coupling at 𝑥 ≳ 𝑛𝑐 , 𝑆′𝒩 is situated outside
and below of non-interacting electronic bandwidth, showing that 𝒩-sites are empty.
However, 𝑆′𝒦 is found inside the non-electronic bandwidth, with 𝑆′𝒦 corresponding
to 𝜇0(𝑛𝑐 + 1) at 𝑥 = 1.00. This verifies the Luttinger theorem and shows that the
occupied Kondo sites behave like particle doping for the concentrations 𝑥 ≳ 𝑛𝑐 even
for the low 𝑇𝐾 . Furthermore, 𝑆′′𝒦 is very small, indicating the quasiparticles are well-
defined with a long lifetime on Kondo sites. This result is concordant with the large
Fermi surface and self-energy found in the previous chapter 5 in the dense regime.
Upon dilution for large Kondo coupling, at 𝑥 ≃ 𝑛𝑐 , 𝑆′𝒦 shifts outside above while 𝑆′𝒦
enters inside the non-interacting bandwidth. This shows that all the𝒦 -sites are fully
occupied and don’t contribute to the transport properties. On the other hand, at the
very dilute case, 𝑆′𝒩 situated inside the non-interacting bandwidth corresponds to
𝜇0(𝑛𝑐), confirming the small Fermi surface. In this case, the quasiparticles in 𝒩-sites
are well-defined since 𝑆′′𝒦 ≃ 0. However, as expected, from the charge occupation,
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the probability of occupation of non-Kondo sites increases with decreasing 𝑇𝐾 even
for the dense regime. The transition between dilute and dense Kondo regimes at
large 𝑇𝐾 happens at 𝑥 = 𝑛𝑐 is marked by a discontinuity in local potential scattering
and a sudden rise in occupations of non-Kondo sites. We again confirm that this
transition at 𝑥 = 𝑛𝑐 becomes a mere crossover for intermediate to low 𝑇𝐾 , since
the discontinuities in local potential scattering disappear and the kinks in charge
occupations become smoother. In this study, either local potential scattering or
charge occupations gave any signatures of the transition at 𝑥 = 𝑥★ or negative
effective mass of quasiparticles. This can be understood since the transition at
𝑥 = 𝑥★ is related to the electronic excitation spectrum, thus not accessible at zero
energy.
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Conclusion and Perspectives

In this part of the thesis, we have thoroughly studied 𝑓 -electron substitution in
Kondo alloys which permitted us to answer multiple pending questions related to
lattice coherence and its breakdown.

For this study, we used DMFT to treat the disorder in combination with the
mean-field coupling of the Kondo interaction. Firstly, the study of the paramag-
netic phase was carried out by using matrix DMFT, which was already developed
previously. However, the study of magnetically ordered phases for the binary alloy
with substitution needed its generalization. Thus, we generalized this formalism in
order to incorporate magnetically ordered phases with the disorder. On the purely
theoretical side, this generalization is an original work of this thesis. Using the above
methods, we constructed at first the phase diagram of the Kondo lattice (𝑥 = 1.00)
for the 1D chain, 2D square, and 3D cubic lattices. For this particular study, we
considered a wide range of electronic fillings 𝑛𝑐 along with low to strong Kondo
couplings. The results obtained for all three lattices were consistent with previous
studies proving the pertinence of our numerical approach. Thereafter, we diluted
the impurity concentration for only 2D square system by tuning 𝑥 for 𝑛𝑐 = 0.30,
0.70, and 0.90. We obtained a Doniach-like phase diagram with Kondo substitution
marked by magnetically ordered phases dominating at low 𝐽𝐾 .

Even though this study is theoretical, the experimental relevance of our results
was not left behind. Our magnetic phase diagrams of Kondo alloys were compared
with the experimental data of Ce-La substitution for various cerium-based heavy-
fermions. Our comparisons were consistent, and it provided how the Kondo alloys
with the magnetically ordered ground-state like in CeCu2Ge2 [100] or the param-
agnetic Kondo ground-state like in CePt2Si2 [99] can resist the dilution of magnetic
impurities.

After the generalization of Doniach’s argument to Kondo substitution, our study
focuses on the study of the breakdown of the coherent Kondo phase. For this,
we analyzed photoemission spectra, local potential scattering, and charge inhomo-
geneity under dilution while varying Kondo coupling. Predicted results [136] were
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obtained for large Kondo coupling on the dense (𝑥 ∼ 1.00) and dilute (𝑥 ∼ 0.01),
with large and small Fermi surfaces respectively. Furthermore, the analysis of local
potential scattering on Kondo-sites (𝑆′𝒦 ) confirms the verification of the Luttinger
theorem [134] at the dense regime for all the values of Kondo couplings. The tran-
sition between the dilute and dense regimes happens around 𝑥 = 𝑛𝑐 for Kondo
strength 𝑇𝐾/𝑊 ≳ 0.10. This transition is characterized by Lifshitz-like transition and
the shifting of 𝑆′𝒦 outside and above the non-interacting bandwidth, revealing that
the transport properties are assured only from the movement of electrons on the 𝒩-
sites. As 𝑇𝐾/𝑊 decreases, the probability of charge occupation at 𝒩-sites increases.
Thus, for 𝑇𝐾/𝑊 ≲ 0.10, a crossover happens between the dense and dilute regimes.
Surprisingly for intermediate to low Kondo strength, the crossover at 𝑥 ≃ 𝑛𝑐 is fol-
lowed by a vast region where quasiparticles acquire negative-effective masses with
two-branches electronic dispersion. In this negative-mass region, 𝑆′𝒦 also shifts out-
side and above the non-interacting bandwidth, as seen for large 𝑇𝐾/𝑊 . At the end of
this negative effective mass region, we found the presence of a critical concentration
𝑥∗ where the quasiparticle effective mass cancels out. This critical concentration 𝑥∗
was characterized by the merging of two the spectral function bands. This result
was completely unexpected. Compiling all the information, we constructed more
detailed versions of the phase diagram for Kondo alloys for various 𝑛𝑐 .

In the continuation of this work, one could explore the optical conductivity in CPA
formalism [257–264] to find the signatures of the transitions at 𝑥∗ and 𝑥 = 𝑛𝑐 . Indeed,
optical conductivity can provide additional information about particle-hole nature
of quasiparticle, spectral weight [265] which is also liked with electron mass and also
possible non-Fermi liquid behavior [266]. From a fundamental point of view, this
work also suggests the possible emergence of exceptional points at 𝑥★ where two
dispersive branches merge and 𝑚★ vanishes. Recently, the presence of exceptional
points along with the Kondo effect was proposed on multiple occasions [90, 267] by
theoretical means. In appendix D, we propose an origin of negative mass. This has
to be further developed and analyzed in the context of the exceptional point, which
makes it another promising perspective of this thesis.

Our extension of matrix DMFT formalism only considers two commensurate
magnetically ordered phases: Néel ordered antiferromagnetic phase and ferromag-
netic phase. So, in future works, this work can be extended to include other commen-
surate and non-commensurate magnetically ordered phases. We have also omitted
the possibility of having coexisting phases, which has been a subject of study in
multiple theoretical studied [109, 111, 213, 268] primarily for Kondo lattices. In
future works, the effect of disorder and alloying could be studied on the coexistence
of multiple phases.

Experimental consistencies of transition between dilute-dense paramagnetic Kondo
phases still remain to be explored. An obvious choice would experiment like ARPES
or dHvA can give direct access to the electronic structure and thus can provide di-
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rect evidence of our predicted transitions. There might be a need to apply external
pressure to cross the transition temperature of 𝑥 = 𝑥∗ and 𝑥 = 𝑛𝑐 . Knowing that
these experimental probes are not fully compatible with the applied external pres-
sure, an alternative option would be Compton scattering. It can be conducted with
respect to various experimental conditions like external pressure, atomic substitu-
tion, temperature, or magnetic field. More recently, Compton scattering experiments
were successfully conducted on Kondo lattices CeRu2Si2 [269] and YbRh2Si2 [270] in
order to explore the Fermi surfaces related to localized versus itinerant behavior of
𝑓 -electrons.
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Chapter 8

Introduction

In continuation of our study of strongly correlated 𝑓 -electron materials, in this part
of this thesis, we proceed to 5 𝑓 systems. In 5 𝑓 systems, due to their non-integer
partially filled shells, multiple energy scales compete with each other: the exchange
bandwidth, the 5 𝑓 bandwidth, the spin-orbit interaction, and intra-atomic 𝑓 − 𝑓

Coulomb interaction. The interplay and competition between these interactions can
give rise to a very complex phase diagram at low temperature with conventional
phases like ferromagnetic [29], antiferromagnetic [178], or conventional supercon-
ductivity, unconventional heavy-fermion superconductivity [29, 178] or even some
sometimes enigmatic states [271]. This plethora of phases with very different micro-
scopic mechanisms makes them interesting to study.

Figure 8.1: Wigner-Seitz radius (𝑅𝑊𝑆) of 5𝑑, 4 𝑓 and 5 𝑓 metals as a function of atomic
number Z, where Wigner-Seitz radius is defined as (4𝜋/3)𝑅3

𝑊𝑆
= 𝑉 while 𝑉 being

the equilibrium volume of the primitive unit cell. From [272]

Upon the 5 𝑓 -shell filling, the 𝑓 -electrons can be either localized, itinerant, or
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sometimes ambiguously can acquire both localized and non-localized characteris-
tics [10, 250, 273]. Let us focus, at first, only on the localized versus itinerant behavior
in actinides. This can be visualized by comparing the Wigner-Seitz radius of actinides
with transition metals and rare-earth metals. Figure 8.1 presents this comparison.
With the increase in 5 𝑓 -electrons count, at first, the volume of actinides decreases
similarly as transition metals, and then a sharp rise is noticed around Pu. After Pu,
the Wigner-Seitz radius evolves similarly to rare-earth atoms. These two different
tendencies mark both the itinerant and localized behavior of 5 𝑓 electrons, and the
frontier between them lies near Pu. Additionally, clear evidence of these two differ-
ent tendencies are also observed through various experiments where transuranium
(primarily Np, Pu, and Am) compounds were found to have analogous features as
the rare-earth compounds [274–278] and the 𝑓 -electrons in light actinides have the
tendency to be itinerant. Similarly, we can observe that uranium lie between these
two tendencies, and thus 5 𝑓 states can also be seen as intermediate states between
3𝑑 and 4 𝑓 states.

8.1 Nature of 5 𝑓 electrons in uranium based compounds

8.1.1 Hill criterion

In 1970, H. Hill [280] proposed a criterion based on 𝑓 -atom spacing to explain the
formation of ground-state phase with localized or itinerant 𝑓 -electrons. Figure 8.2
shows the critical temperatures of various uranium-based compounds according to
uranium-uranium atomic distance. From this figure, we can observe that phases
with itinerant electrons occur at a short uranium-uranium distance, whereas the
phases with localized electrons occur at a large uranium-uranium distance. Overall,
this Hill limit between itinerancy and localization lies around 3.5 Å. To understand
this criterion, we can look out to the 5 𝑓 wave function, which is more spatially
extended than that of 4 𝑓 wave function (see figure 1.2). Thus, 5 𝑓 wave function can
overlap with their neighboring sites to form coherent Bloch states within the Hill
limit.

The itinerant scenario promoted by Hill criterion for UB2 with U-U distance of
3.123 Å smaller than Hill limit was confirmed through angle-resolved photoelectron
spectroscopy [281] where 5 𝑓 states participate in the formation of Fermi surfaces.
On the other hand, the localized 5 𝑓 states were found on UPd3 [282, 283] with large
U-U separation.

8.1.2 Heavy fermions

From the figure 8.2, we can observe that some compounds like UPt3, UBe13 do
not obey the Hill criterion even with a large U-U distance. More interestingly,
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Figure 8.2: Hill plot for various uranium based compounds showing the transition
temperatures of itinerant or localized 𝑓 -electron phases with respect to inter-atomic
uranium-uranium distance. From [279].

they can gain quasiparticle mass hundreds of times of bare electron mass [28, 284,
285]. Furthermore, the discovery of heavy-fermion with metallic low-temperature
behavior [284, 286] with narrow 5 𝑓 bands in these compounds came as a surprise.
Until now, ten uranium-based heavy fermions are found: UBe13, UPt3, UPd2Al3,
UNi2Al3, URu2Si2, UGe2, UIr, UCoGe, URhGe, and UTe2. One can be tempted to
relate the heavy fermionic behavior of 4 𝑓 compounds with those of 5 𝑓 compounds.
However, here we deal with intermediate valent compounds [287] with no distinct
valence peaks [288], thus the Kondo mechanism treated in the first part of this thesis
is excluded. Thus, this raises the question about the microscopic mechanism that
leads to heavy fermions.

8.2 Microscopic mechanism: dualism of 𝑓 -electron

In this section, we present the dual nature of 5 𝑓 -electrons as a microscopic mecha-
nism that can lead to the heavy fermionic behavior in uranium-based compounds. In
our case, a part of 5 𝑓 electrons is itinerant, whereas the remaining remains localized.
The itinerant part comes from the hopping mediated through the hybridization with
conduction states. Thus, the itinerant part participates in the formation of the Fermi
surface. On the other hand, the localized part gets scatters off giving effective mass
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enhancement, similarly as for Pr metal where heavy-mass of conduction electrons
results from virtual crystal-field excitations of localized 4 𝑓 2 electrons [289].

This dual model [290] showed some faithful results on effective masses and dHvA
frequencies on UPt3 [17] and UPd2Al3 [291] when compared with the experiment re-
sults [292, 293]. Furthermore, the dual model applied to UPt2Si2 [294] was consistent
with the experimental observation of probable field-induced first-order Lifshitz-type
transition.

Apart from these successful applications, a clear sign of dual nature of 𝑓 electrons
for UPd2Al3, UPt3 was observed by identifying the high-resolution photoemission
spectra [287, 295] with a localized system UPd3 and an itinerant system UB2. More re-
cently, two different types of X-ray experiments were employed to UM2Si2 (M=Pd, Ni,
Ru, Fe), which showed both localized and itinerant 5 𝑓 states with different levels of
itineracy for each compound depending upon their 5 𝑓 band-filling. The co-existence
of superconductivity along with ferromagnetism found in UCoGe and URhGe [296]
is also compatible with this vision of the dual character of 𝑓 -electrons.Similarly, Lif-
shitz transitions were observed in UCoGe [297] indicates further the dual picture
of 5 𝑓 states. Furthermore, in these heavy fermionic systems, 𝑓 -electron count was
found to be somewhere between 2 and 3 [287, 298–300], supports our dual picture.

8.3 Phenomenological modeling of duality

Duality was a direct or indirect subject of study on multiple studies through various
approaches. We could note particularly, the case when orbital-selective localization:
electrons get Mott localized in particular orbitals while other remains delocalized
on other orbitals. Several mechanisms were proposed that can lead to the orbital-
selective localization: crystal-field splitting of two bands of equal bandwidth [301]
where orbital-selective localization can occur under doping, crystal field splitting
of multi-band systems with unequal kinetic energy of electrons, band hopping
anisotropies [302], the Hund’s rule coupling enhances the orbital differentiation [56,
303].

The above examples concern primarily 3𝑑 and 4𝑑 systems with large crystal-
field, however the crystal-field effect on 5 𝑓 systems is rather small or irrelevant
when compared to other interactions. Thus, here we propose that the competition
between intra-atomic correlations and hopping leads to orbital-selective localization.
More precisely, intra-atomic correlations resulting from the anisotropic part of the
Coulomb repulsion may considerably enhance pre-existing hopping anisotropies
where the states with sub-dominant hopping channels get localized.
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8.3.1 Model Hamiltonian

In this section, we present our model Hamiltonian. Due to the large nuclear charge
in uranium, the spin-orbit interaction 1 is of the order of 1 eV. This large spin-orbit
interaction makes the electrons couple with their individual angular momentum 𝑗 𝑗-
coupling instead of 𝐿𝑆-coupling. With 𝑙 = 3 being orbital angular momentum and
𝑠 = 1

2 being the spin and large spin-orbit, we use total angular momentum 𝑙⊗ 𝑠 = (𝑗 =
5
2) ⊕ (𝑗 = 7

2) basis as single-particle states instead of 𝑙 = 3, magnetic quantum number
𝑚 and spin 𝑠, noting that both basis are equivalent and transformation between two
basis are unitary. Figure 8.3 show a schematic view is of this spin-orbit coupling.
Since the spin-orbit splitting between 𝑗 = 5/2 and 𝑗 = 7/2 is around 1 eV, we do not
consider the states with 𝑗 = 7/2 [304]. Thus, we write our Hamiltonian on 𝑗 𝑗𝑧 basis
set, with 𝑗𝑧 being azimuthal quantum number

ℋ =
∑

<𝑎,𝑏>, 𝑗𝑧

𝑡 𝑗𝑧 𝑐
†
𝑎 𝑗𝑧
𝑐𝑏 𝑗𝑧 + 𝐻𝐶𝑜𝑢𝑙. , (8.1)

where 𝑐†
𝑎 𝑗𝑧
(𝑐𝑎 𝑗𝑧 ) denotes creator(annihilator) operator which creates(annihilate) a 5f-

electron on site 𝑎with angular momentum 𝑗 = 5/2 and 𝑧-components 𝑗𝑧 = −5/2...5/2,
𝑡 𝑗𝑧 is the nearest site hopping in orbital index 𝑗𝑧 . First term describes the Kinetic
energy operator whereas the 𝐻𝐶𝑜𝑢𝑙. describes the local Coulomb repulsion which is
identical as in [60] will be defined more precisely in the chapter 9.

Figure 8.3: Schematic view 𝑗 𝑗-coupling scheming for an local 𝑓 -electron. (a) spin-
orbit splitting and (b) crystal-field splitting. Since, 5f electrons are closer to the
nuclei, thus the crystal-field splitting is smaller and less relevant.

1The spin-orbit interaction scales as 𝑍4 with the atomic number.
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8.3.2 Approaches
We intend to solve the Hamiltonian (8.1), but full microscopic treatment becomes
very tedious since the Hilbert space increases exponentially with the number of
uranium sites. However, the treatment becomes possible for the small clusters like
in [60], where this model Hamiltonian was solved for two, three, and four site
clusters which captured the essential physics. Figure 8.4 presents a phase diagram
obtained through exact diagonalization for a two-sites cluster with five electrons,
characterized by 𝑧-component of the total angular momentum 𝒥𝑧 = 𝐽1𝑧 + 𝐽2𝑧 , where
𝐽1𝑧 and 𝐽2𝑧 are angular momentum projections on site 1 and 2 respectively. In this
study, orbital-dependent partial localizations of 𝑓 -electrons occurs with five partially
localized phases: two ferromagnetically correlated phases with 𝒥𝑧 = 15/2, 11/2 and
three antiferromagnetically correlated phases with 𝒥𝑧 = 1/2, 3/2, 5/2 were found.
For 𝑡3/2 > 𝑡1/2, at weak hopping, phase with 𝒥𝑧 = 15/2 determined by fully localized
𝑗𝑧 = 5/2, 1/2 and delocalized 𝑗𝑧 = 3/2 was obtained. It was seen that the increase in
hopping 𝑡3/2 partially breaks the Hund’s rule with 𝑡3/2 > 𝑡1/2, thus at intermediate
hopping a phase with 𝒥𝑧 = 5/2 and at high hopping a phase 𝒥𝑧 = 11/2, 1/2 was
observed. Furthermore, for 𝑡3/2 < 𝑡1/2, a phase with 𝒥𝑧 = 3/2 was observed with
empty 𝑗−3/2.

Figure 8.4: Phase diagram obtained through exact diagonalization for two-sites clus-
ter, derived from total magnetization 𝒥𝑧 = 𝐽1𝑧 + 𝐽2𝑧 , where 𝐽1𝑧 and 𝐽2𝑧 are angular
momentum projections on site 1 and 2 respectively. Here, only 𝑓 2 and 𝑓 3 configu-
rations are considered. 𝑡3/2 and 𝑡1/2 = 𝑡5/2 are nearest-site hopping along orbitals
𝑗𝑧 = 3/2 and 𝑗𝑧 = 1/2, 5/2 respectively. Extracted from [60, 305]

Similarly, approaches with approximations and simplifications can also be ap-
plied. For example, cluster perturbation theory was employed for linear chain [250,
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306] to calculate 5 𝑓 spectral functions. In their study, both dispersive quasiparticle
peaks near Fermi energy and incoherent local excitations were seen at the low-energy
part of the spectra, suggesting the dual nature of 5 𝑓 electrons. Even though small
cluster calculations give essential qualitative physics related to duality, the physical
properties in the thermodynamic limit remain to be explored. Thus, in this present
work, we adopt a slave-boson mean-field approach to find the ground-state phase
diagram.

8.4 An outline to slave-bosons approaches
In this section, we will give details on various slave-bosons approaches with their
advantages and drawbacks. The slave-boson representations were first introduced
by Holstein-Primakoff [307] and Schwinger [308] where spins operators may be rep-
resented by Bose operators. But, it was Barnes [71, 309] who first introduced a
representation involving both auxiliary bosonic and fermionic operators for Ander-
son model [310]. This particular method was further generalized to cure its defaults.
Thus, there is not only one possible slave boson representation, but rather multiple
versions of them exist [72, 74, 309, 311] which are more or less connected to each
other. Below, we present two versions of slave-bosons representations in order to
present a general idea behind the slave-bosons approaches.

8.4.1 Barnes’ representation

In this slave-bosons approach [71, 309], the idea is to decompose the local electronic
excitations into spins and charge degree of freedom by using bosonic and fermionic
operators. With this idea, Barnes mapped the four physical states of an electron by
using two bosonic and one fermionic operators. The table 8.1 resumes the mapping.

Initial physical states Barnes’s slave boson representation

|0𝑖⟩ ↦→ |𝑣𝑎𝑐⟩
| ↑𝑖⟩ ↦→ 𝑐†

𝑖↑ |𝑣𝑎𝑐⟩
| ↓𝑖⟩ ↦→ 𝑐†

𝑖↓ |𝑣𝑎𝑐⟩
| ↑↓𝑖⟩ ↦→ 𝑐†

𝑖↑𝑐
†
𝑖↓ |𝑣𝑎𝑐⟩

|0𝑖⟩ ↦→ 𝑒†𝑖 |𝑣𝑎𝑐⟩
| ↑𝑖⟩ ↦→ 𝑓 †

𝑖↑ |𝑣𝑎𝑐⟩
| ↓𝑖⟩ ↦→ 𝑓 †

𝑖↓ |𝑣𝑎𝑐⟩
| ↑↓𝑖⟩ ↦→ 𝑑†𝑖 |𝑣𝑎𝑐⟩

Table 8.1: Table resuming Barnes slave-boson representation

In the table 8.1, |𝑣𝑎𝑐⟩ denotes vacuum state and 𝑒†
𝑖
, 𝑑†

𝑖
are bosonic operators cor-

responding to an empty and doubly-occupied site whereas 𝑓 †
𝑖𝜎 is fermionic creation

operator for an electron of spin 𝜎 in a site 𝑖. Similarly, 𝑒†
𝑖
, 𝑑†

𝑖
obey Bose commutation

relations and 𝑓 †
𝑖𝜎 obey Fermi anti-commutation relations. One could notice that the
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empty site |0⟩ is created from a vacuum state rather than assumed as a pre-existing
state. The use of auxiliary operators to represent spin and charge components en-
larges the Fock space than that of the original physical states. In order to eliminate
the non-physical states and to ensure the physical meaning of results, the enlarged
Fock space should be span back as original. This can be done by enforcing by
constraint below

𝑒†𝑖 𝑒𝑖 + 𝑑
†
𝑖 𝑑𝑖 +

∑
𝜎

𝑓 †𝑖𝜎 𝑓𝑖𝜎 = 1 . (8.2)

The constraint (8.2) is a completeness equation. The physical second quantized
operators can be written in terms of projection operators as

𝑐𝑖𝜎 = |0𝑖⟩⟨𝜎𝑖 | + 𝑧𝜎 |𝜎̄𝑖⟩⟨↑↓𝑖 | , (8.3)

where 𝑧𝜎 = 1 or −1 for 𝜎 =↑ or ↓ respectively. With the help of auxiliary bosons and
fermions and the equation (8.3), the physical creator (annihilator) operators can be
expressed by as

𝑐𝑖𝜎 = 𝑒†𝑖 𝑓𝑖𝜎 + 𝑧𝜎𝑑𝑖 𝑓
†
𝑖𝜎 . (8.4)

This representation is used in multiple cases primarily when 𝑈 → ∞ [312, 313]
because the double occupancy operators drop out. From the above equation (8.4), we
can clearly observe that this slave boson representation mixes fermionic operators
with bosonic operators. Charges are expressed in terms of bosons, whereas spin
degrees are represented by fermion operators. The bosonic operators do not carry
spin. Unequal treatment of spin and charge components might lead to unnecessary
errors in any approximations [73]. This disadvantage paves a path to a new slave
boson representation where spin and charge degrees of freedom may be expressed
in terms of bosons.

8.4.2 Kotliar and Ruckenstein’s representation

To overcome the separate bosonic and fermionic representation of charge and spin
degree of freedom, Kotliar and Ruckenstien [72] introduced a new representation
with two additional bosons linked with the spin degree of freedom. Thus, both the
spin and charge degree of freedom of physical electron operators are represented
by slave-boson. To do so, they introduced slave bosons to each of four states per
site and a spin doublet of fermion operators for singly occupied sites. The table 8.2
resumes the mapping.
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Initial physical states KR’s slave boson representation

|0𝑖⟩ ↦→ |𝑣𝑎𝑐⟩
| ↑𝑖⟩ ↦→ 𝑐†

𝑖↑ |𝑣𝑎𝑐⟩
| ↓𝑖⟩ ↦→ 𝑐†

𝑖↓ |𝑣𝑎𝑐⟩
| ↑↓𝑖⟩ ↦→ 𝑐†

𝑖↑𝑐
†
𝑖↓ |𝑣𝑎𝑐⟩

|0𝑖⟩ ↦→ 𝑒†𝑖 |𝑣𝑎𝑐⟩
| ↑𝑖⟩ ↦→ 𝑝†

𝑖↑ 𝑓
†
𝑖↑ |𝑣𝑎𝑐⟩

| ↓𝑖⟩ ↦→ 𝑝†
𝑖↓ 𝑓

†
𝑖↓ |𝑣𝑎𝑐⟩

| ↑↓𝑖⟩ ↦→ 𝑑†𝑖 𝑓
†
𝑖↑ 𝑓

†
𝑖↓ |𝑣𝑎𝑐⟩

Table 8.2: Table resuming Kotliar and Ruckenstien’s slave bosons representation

Here, 𝑒†
𝑖
, 𝑝†

𝑖𝜎 and 𝑑†
𝑖

are bosonic operators associated with an empty site, a site
with one electron with spin 𝜎 and doubly occupied site respectively, whereas 𝑓 †

𝑖𝜎
are auxiliary fermionic operators. Like in Barnes’s approach (see section 8.4.1), the
introduction of auxiliary operators enlarges the initial Hilbert space. In order to
eliminate nonphysical states, constraints (8.5) and (8.6) should be enforced.

𝑒†𝑖 𝑒𝑖 +
∑
𝜎

𝑝†𝑖𝜎𝑝𝑖𝜎 + 𝑑
†
𝑖 𝑑𝑖 = 1 , (8.5)

𝑓 †𝑖𝜎 𝑓𝑖𝜎 − (𝑝†𝑖𝜎𝑝𝑖𝜎 + 𝑑
†
𝑖 𝑑𝑖) = 0 . (8.6)

The constraint (8.5) is a completeness relation that translates either a site is empty
(|0𝑖⟩), singly occupied, or double occupied and the number of bosons per site is one.
The constraint (8.6) translates that when a site is occupied it is either singly or double
occupied. It also translates that the counting of 𝑓 †

𝑖𝜎 𝑓𝑖𝜎 or 𝑝†
𝑖𝜎𝑝𝑖𝜎 + 𝑑

†
𝑖
𝑑𝑖 is equivalent.

In this representation, the physical electron operators are expressed as

𝑐𝑖𝜎 = 𝑓𝑖𝜎(𝑒†𝑖 𝑝𝑖𝜎 + 𝑝
†
𝑖𝜎̄𝑑𝑖) (8.7)

= 𝑧̄𝑖𝜎 𝑓𝑖𝜎 , (8.8)

where 𝜎̄ is the opposite sign of 𝜎 and the relation 𝑧̄𝑖𝜎 = 𝑒†
𝑖
𝑝𝑖𝜎 + 𝑝†𝑖𝜎̄𝑑𝑖 is the new

renormalization factor for auxiliary fermions 𝑓𝑖𝜎.
From the renormalization factor, one can define the quasiparticle weight as 𝑍𝜎 =

⟨𝑧̄†
𝑖𝜎 𝑧̄𝑖𝜎⟩. Within mean-field approximation as 𝑒𝑖 → 𝑒, 𝑝𝑖𝜎 → 𝑝𝜎, and 𝑑𝑖 → 𝑑, the

quasiparticle weight is rewritten as 𝑍𝜎 = (𝑒𝑝𝜎 + 𝑝𝜎̄𝑑)2. One of the example of the
use of this approach is that it can capture Mott metal-insulator transition. To do so,
we can consider half-filled one-band Hubbard model in paramagnetic phase. 𝑍𝜎

plays the role of mass renormalization and of quasiparticle residue. In this simple
case, a localization of an electron can be obtained when quasiparticle weight 𝑍𝜎 → 0
vanishes.

Different from previous approach, the mixing of fermionic and bosonic opera-
tors in the completeness relation is gone and thus faithfully describes the electrons
moving on site 𝑖 to 𝑗. Even though KR’s representation corrects the previous rep-
resentation, the spin degree of freedom is not rotationally invariant. The transverse
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components of the spin operator may not be simply represented in the terms of auxil-
iary operators since 𝑆𝑥,𝑦 is neither related to 1

2
∑

𝜎𝜎′ 𝑓
†
𝜎 𝜏

𝑥(𝑦)
𝜎𝜎′ 𝑓𝜎′ nor to 1

2
∑

𝜎𝜎′ 𝑝
†
𝜎𝜏

𝑥(𝑦)
𝜎𝜎′ 𝑝𝜎′.

Thus, the spin representation |𝜎⟩ is not spin rotation invariant making it depen-
dent on the choice of quantization axis in spin space. This shortcoming lead to the
development of spin-rotation-invariant slave boson approach [73].

8.4.3 Li, Wölfe and Hirschfeld’s representation
Li, Wölfe, and Hirschfeld’s slave boson representation (LWH) [73, 311] corrects the
spin non-invariance problem that was stated in previous sections. In their approach,
Li, Wölfe and Hirschfeld represented the operator product 𝑝†

𝑖𝜎 𝑓
†
𝑖𝜎 of KR’s mapping

(8.2) as a composite particle of spin 1
2 . The LWH mapping is resumed in the table

8.3.

Initial physical states LWH’s slave boson representation

|0𝑖⟩ ↦→ |𝑣𝑎𝑐⟩
| ↑𝑖⟩ ↦→ 𝑐†

𝑖↑ |𝑣𝑎𝑐⟩
| ↓𝑖⟩ ↦→ 𝑐†

𝑖↓ |𝑣𝑎𝑐⟩
| ↑↓𝑖⟩ ↦→ 𝑐†

𝑖↑𝑐
†
𝑖↓ |𝑣𝑎𝑐⟩

|0𝑖⟩ ↦→ 𝑒†𝑖 |𝑣𝑎𝑐⟩

| ↑𝑖⟩ ↦→
1√
2
{𝑝†

𝑖↑↓ 𝑓
†
𝑖↓ + 𝑝

†
𝑖↑↑ 𝑓

†
𝑖↑}|𝑣𝑎𝑐⟩

| ↓𝑖⟩ ↦→
1√
2
{𝑝†

𝑖↓↓ 𝑓
†
𝑖↓ + 𝑝

†
𝑖↓↑ 𝑓

†
𝑖↑}|𝑣𝑎𝑐⟩

| ↑↓𝑖⟩ ↦→ 𝑑†𝑖 𝑓
†
𝑖↑ 𝑓

†
𝑖↓ |𝑣𝑎𝑐⟩

Table 8.3: Table resuming Li, Wölfe and Hirschfeld’s slave bosons representation

From the above mapping (8.3), we can observe that this method introduces al-
together two auxiliary fermionic quasiparticule operators : 𝑓𝑖↑, 𝑓𝑖↓ and six bosonic
operators : 𝑒𝑖 , p𝑖 , 𝑑𝑖 where,

p𝑖 =

(
𝑝𝑖↑↑ 𝑝𝑖↑↓

𝑝𝑖↓↑ 𝑝𝑖↓↓ .

)
(8.9)

𝑒𝑖 and 𝑑𝑖 are associated with empty site and doubly occupied site whereas 𝑝𝑖𝜎𝜎′ is
associated with singly occupied. The first index 𝜎 in single-particle boson is associate
with local state and the second index 𝜎′ is associated with the auxiliary fermion
quasi-particle degree of freedom. Also, the bosons 𝑝𝑖𝜎𝜎′ permits to connect the low-
energy quasiparticule excitations to its identical high-energy local counterpart as
well as other local configurations such as a state with opposite spin configuration.
Thus, this general structure renders spin rotationally invariant. Further, 𝑝𝑖𝜎𝜎′ can be
represented as

𝑝𝑖𝜎𝜎′ =
1
2

∑
𝜇=0,𝑥,𝑦,𝑧

𝑝𝜇𝜏
𝜇
𝜎𝜎′ , (8.10)

where 𝜏𝜇 are Pauli matrices and 𝜏0 it the unit matrix.
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Knowing that the spin values of auxiliary pseudo-fermions 𝑓𝑖𝜎 should be 1
2 , the

possible spin values for 𝑝𝑖𝜎𝜎′ bosons are 𝑆 = 0 or 𝑆 = 1. Accordingly, a scalar field
spin singlet 𝑝0 and a vector field spin tripletp𝑖 = (𝑝𝑖𝑥 , 𝑝𝑖𝑦 , 𝑝𝑖𝑧) is defined for 𝑆 = 0 and
𝑆 = 1 respectively. The 𝑆 = 0 boson 𝑝𝑖0 represent the charge degree of freedom of the
spinor states whereas the 𝑆 = 1 boson p𝑖 describes spin degree of freedom. However,
one should note that these fields do not automatically represent the electron charge
and spin operators because the density operators involve the square of the matrix p𝑖
of the equation (8.9).

To recover the initial physical space, the auxiliary operators need to satisfy the
following constraints

𝑒†𝑖 𝑒𝑖 + 𝑑
†
𝑖 𝑑𝑖 +

∑
𝜎𝜎′

𝑝†𝑖𝜎𝜎′𝑝𝑖𝜎𝜎′ = 1 , (8.11)

𝑓 †𝑖𝜎′ 𝑓𝑖𝜎 −
∑
𝜎1

𝑝†𝑖𝜎1𝜎′
𝑝𝑖𝜎𝜎1 − 𝛿𝜎𝜎′𝑑

†
𝑖 𝑑𝑖 = 0 , (8.12)

𝑝†𝑖0p𝑖 + p†
𝑖 𝑝𝑖0 − 𝑖p

†
𝑖 × p𝑖 =

∑
𝜎𝜎′

𝑓 †𝑖𝜎𝜏𝜎′𝜎 𝑓𝑖𝜎′ . (8.13)

Enforcement of the completeness constraint (8.11) ensure that a site is either empty,
singly occupied, or doubly occupied, whereas enforcement of the constraint (8.12)
ensure the number of electrons matches the number of 𝑝 bosons and 𝑑 bosons. The
constraint (8.13) ensures that the spin of the physical electrons matches the spin of
the bosons. With this at hand, the electron operators may be written as

𝑐†𝑖𝜎 =
∑
𝜎′

(𝑝†𝑖𝜎𝜎′ 𝑓
†
𝑖𝜎′𝑒𝑖 + 𝜎𝜎′𝑑†𝑖 𝑓𝑖𝜎′𝑝𝑖𝜎̄′𝜎̄) =

∑
𝜎′
𝑅†
𝑖𝜎𝜎′ 𝑓

†
𝑖𝜎′ , (8.14)

𝑐𝑖𝜎 =
∑
𝜎′

(𝑒† 𝑓𝑖𝜎′𝑝𝑖𝜎′𝜎 + 𝜎𝜎′𝑝†𝑖𝜎̄𝜎̄′ 𝑓𝑖𝜎′𝑑𝑖) =
∑
𝜎′
𝑓𝑖𝜎′𝑅𝑖𝜎′𝜎 , (8.15)

where 𝑅𝑖𝜎′𝜎 = 𝑒†
𝑖
𝑝𝑖𝜎′𝜎+𝜎𝜎′𝑝𝑖𝜎̄′𝜎̄𝑑𝑖 . The operator 𝑅𝑖𝜎′𝜎 describes the sum of processes:

from a singly occupied site to an empty site and from a doubly occupied site to a
singly occupied site with time-reserved spin. Furthermore, this formalism makes the
foundation for rotationally-invariant slave-boson, which can be applied to the general
multi-orbital systems [74] and we will be using the latter formalism throughout this
thesis.

8.4.4 Other variations of slave-bosons techniques

In this section, we present a non-exhaustive selection of other variations of slave-
bosons. Each of the slave-boson variations was developed for specific purposes or
as an extension of previous. We could start from the slave-boson developed by
Coleman [314] for the mixed-valent impurity problem, which is inspired by Barnes’
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approach [309]. In his approach, the Hubbard operators [315] were replaced by a
product of boson and fermion operators in order to avoid notorious algebraic calcula-
tions. Slave-boson techniques are also generalized to study superconductivity [316–
319] or even Kondo cloud [320]. Further, Li, Wölfe, and Hirschfeld’s representa-
tion in the section 8.4.3 has been generalized to multi-band models by Lechermann,
Georges, Kotliar, and Parcollet [74] and also by Bünemann [321] where, e.g., the
effects of multiple orbitals, orbital degeneracy, and the Hund’s rule can be studied.
In the past, multi-orbital RISB method was applied to study the strongly correlated
real systems like UO2 [322], iron chalcogenides [323] or Nd1−𝑥Sr𝑥NiO2 [324] with
good agreement with experimental data.

8.5 Motivations and objectives

The dual model presented by Zwicknagl et al. [10, 325] (see section 8.3.1) gave
some promising reproducing dHvA frequencies and core-level photoemission spec-
tra [326], suggesting orbital-selective partial localization due to anisotropic band-
widths. Indeed, small cluster calculations [60] showed the partial localization (see
figure 8.4) of 𝑓 -electrons, but their calculations suffered problems at non-interacting
limit. Moreover, a full thermodynamic calculation is still missing. Thus, in this
thesis, we consider all the 𝑓 -electron configurations: 𝑓 0, 𝑓 1, 𝑓 2, 𝑓 3, 𝑓 4, 𝑓 5 and 𝑓 6

with non-integer valency, as suggested by multiple experiments. The local correla-
tions will be treated through the rotationally-invariant slave-boson approach [74],
and we will consider 𝑗 𝑗-coupling scheme while ignoring crystal field effects. This
work is the continuation of the previous work conducted by Duc-Anh Le [327],
where he conducted the necessary analytical calculations. Here, we do not intend
to perform 𝑎𝑏 − 𝑖𝑛𝑡𝑖𝑜 calculation, but we plan to provide a possible microscopic
description of the duality of 𝑓 -electron. Thus, in this thesis, we analyze orbital-
selective Mott transitions and construct a phase diagram with partially localized
phases, considering paramagnetic and ferromagnetic phases. Further, we will also
analyze orbital-dependant electronic filling, quasiparticle weight, magnetization,
and 𝑓 -electron configuration in terms of bandwidth anisotropies. Below, we present
the organization of this part of the thesis.

Chapter 9 is dedicated to the theoretical details of our study. We will start
by detailing the model Hamiltonian. Thereafter, we will present the rotationally-
invariant slave-boson approach and the mean-field approximations within. Finally,
we will present our system of equations to be solved numerically.

Chapter 10 presents the numerical aspects of our study. We will give details about
our local and global minimization schemes along with different routines used.

Chapter 11 is dedicated to the presentation of our results. At first, we present
the result for the isotropic case, and thereafter, the effect of anisotropies in orbital-
dependent electronic bandwidth will be studied in terms of orbital-selective Mott
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localization. Then, we will build and analyze our phase diagram with partially
localized phases.

Chapter 12 present the conclusions of our study along with future prespectives.
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Chapter 9

Model and rotationally-invariant slave
bosons

In this chapter, we present the model, method, and approximations that we have used
to study the duality of 5 𝑓 electrons. At first, we start by detailing the model Hamilto-
nian, thereafter the method rotationally invariant slave-boson approach (RISB), and
the mean-field approximations along with the self-consistent equations.

9.1 Model Hamiltonian

Our model Hamiltonian to describe 5 𝑓 electrons is

ℋ =
∑

<𝑎,𝑏>, 𝑗𝑧

{𝑡 𝑗𝑧 − 𝜇𝛿𝑎𝑏}𝑐†𝑎 𝑗𝑧 𝑐𝑏 𝑗𝑧 + 𝐻𝐶𝑜𝑢𝑙. , (9.1)

where 𝑐†
𝑎 𝑗𝑧
(𝑐𝑎 𝑗𝑧 ) denotes creator(annihilator) operator which creates(annihilate) a 5f-

electron on site 𝑎with angular momentum 𝑗 = 5/2 and 𝑧-components 𝑗𝑧 = −5/2...5/2
and 𝜇 is the chemical potential fixing the 𝑓 -electron occupation 𝑛 𝑓 . We assume that
the nearest site hopping 𝑡 𝑗𝑧 is diagonal in the orbital index 𝑗𝑧 . The first term of
the Hamiltonian describes the kinetic, whereas the second term 𝐻𝐶𝑜𝑢𝑙. reflects the
Coulomb interaction. This Coulomb interaction is further expressed as

𝐻𝐶𝑜𝑢𝑙. =
1
2

∑
𝑎

∑
𝑗𝑧1 , 𝑗𝑧2 , 𝑗𝑧3 , 𝑗𝑧4

⟨𝑗𝑧1 𝑗𝑧2 |𝑈̂ | 𝑗𝑧3 𝑗𝑧4⟩𝑐†𝑎 𝑗𝑧1
𝑐†𝑎 𝑗𝑧2

𝑐𝑎 𝑗𝑧3𝑐𝑎 𝑗𝑧4 , (9.2)
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with ⟨𝑗𝑧1 𝑗𝑧2 |𝑈̂ | 𝑗𝑧3 𝑗𝑧4⟩ are Coulomb matrix elements which are evaluated as

⟨𝑗𝑧1 𝑗𝑧2 |𝑈̂ | 𝑗𝑧3 𝑗𝑧4⟩ = 𝛿 𝑗𝑧1+𝑗𝑧2 , 𝑗𝑧3+𝑗𝑧4

∑
𝐽

⟨5
2 𝑗𝑧1

5
2 𝑗𝑧2 |𝐽𝐽𝑧⟩𝑈𝐽 ⟨𝐽𝐽𝑧 |

5
2 𝑗𝑧2⟩

=
∑
𝐽

𝑈𝐽𝐶
𝐽𝐽𝑧
5/2, 𝑗𝑧1 ;5/2, 𝑗𝑧2

𝐶
𝐽𝐽𝑧
5/2, 𝑗𝑧3 ;5/2, 𝑗𝑧4

. (9.3)

where 𝐶 ...... are the Clebsh-Gordon coefficients and 𝐽 denotes the total angular mo-
mentum and 𝐽𝑧 = 𝑗𝑧1 + 𝑗𝑧2 = 𝑗𝑧3 + 𝑗𝑧4.

9.2 Method: rotationally-invariant slave-bosons
In order to study the model Hamiltonian (9.1) and to treat the intra-atomic correla-
tions, we use the rotationally invariant slave bosons approach (RISB) as introduced
by Lechermann et al. [74]. An introduction to slave-boson approaches in the sec-
tion 8.4 of chapter 8, while below we present a short overview of the RISB formalism
and the equations related to it. We would like to point out that this work continues
the theoretical and numerical work conducted by Duc-Ahn Le [327] based on the
previous work.

9.2.1 Expanded Hilbert space and basis set
By taking account of quasiparticles orbital degree of freedom within RISB formalism,
we introduce the auxiliary fermionic operators 𝑓 †

𝑎 𝑗𝑧
, 𝑓𝑎 𝑗𝑧 associated each orbital 𝑗𝑧 and

bosonic operators 𝜙†
𝐴,𝑛
, 𝜙𝐴,𝑛 where𝐴 is a basis of local Hilbert space and 𝑛 label Fock

states. These newly introduced operators are used to replace the operators 𝑐†
𝑗𝑧
, 𝑐 𝑗𝑧 and

connect the initial physical Hilbert space with the auxiliary particle Hilbert space.
To do so a basis set for physical Hilbert space as well as for auxiliary Hilbert space
needs to be defined.

Initial physical states for 𝑀 = 0, 1 RISB representation

|0⟩ ↦→ |𝑣𝑎𝑐⟩
|𝜂 𝑗𝑧⟩ ↦→ 𝑐†𝑗𝑧 |𝑣𝑎𝑐⟩

|0⟩ ↦→ 𝜙† |𝑣𝑎𝑐⟩
|𝜂 𝑗𝑧⟩ ↦→

∑
𝑗′𝑧

𝜙†
𝑗𝑧 𝑗

′
𝑧
𝑓 †𝑗𝑧 |𝑣𝑎𝑐⟩

Table 9.1: Table showing RISB mapping for zero and one particle sector (𝑀) and
𝑀 =

∑
𝑗𝑧
𝜂 𝑗𝑧 .

Table 9.1 shows the RISB mapping only for zero (𝑀 = 0) and (𝑀 = 1) particle
sectors, where the slave bosons 𝜙†

𝑗𝑧 𝑗
′
𝑧

connects physical Fock states |𝜂 𝑗𝑧⟩ to quasipar-
ticle state |𝜂′

𝑗𝑧
⟩. In this particular case, the atomic multiplets are also Fock states.
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However, for 𝑀 ≥ 2, the is not necessarily true. Thus, it would be natural to define
a new basis set associating both atomic mulitplets and Fock states. Even though,
the basis sets can be chosen arbitrarily, we choose multiplet-Fock basis set where a
multiplet state |Γ⟩ is an eigenstate state of local interaction as 𝑈̂ |Γ⟩ = 𝐸Γ |Γ⟩ and a
Fock state |𝑛⟩ an eigenstate state of the occupation number operator

∑
𝑗𝑧
𝑓 †
𝑗𝑧
𝑓𝑗𝑧 . More

precisely, multiplet basis |Γ⟩ is chosen for initial physical Hilbert space whereas
Fock state |𝑛⟩ is chosen for auxiliary Hilbert space. Here, a multiplet state with
𝑀-particles, total angular momentum 𝐽, and it’s projection over 𝑧− direction 𝐽𝑧 is
labelled as |Γ⟩ = | 𝑓 𝑀 ; 𝐽 , 𝐽𝑧⟩. Similarly, a Fock state |𝑛⟩ = |𝜂−5/2𝜂−3/2𝜂−1/2𝜂1/2𝜂3/2𝜂5/2⟩
represent 𝑀-particle states such as 𝑀 =

∑
𝑗𝑧
𝜂 𝑗𝑧 . The choice of using multiplet-Fock

basis is because the local interactions are diagonal in the multiplet basis, and it also
simplifies the constraints. For now, we ignore the site-index to simply the notation
and a multiplet in multiple-Fock basis is defined as

|Γ⟩ ≡ 1√
𝐷Γ

∑
𝑛

𝜙†
Γ𝑛 |𝑣𝑎𝑐⟩ ⊗ |𝑛⟩ , (9.4)

where 𝐷Γ denotes the dimension of the sub-space of the Hilbert space with particle
number identical to that of Γ. The relation (9.4) insures a proper normalization of a
state. The underline in |Γ⟩ distinguishes |Γ⟩ from |Γ⟩ since |Γ⟩ lives in Hilbert space of
quasiparticle and boson states whereas |Γ⟩ lives in Hilbert space of physical electron.
From the equation (9.4), we identify the slave-bosons 𝜙Γ𝑛 associated to each pair of
atomic multiplet |Γ⟩ and quasiparticles Fock state |𝑛⟩.

9.2.2 Local constraints

The slave-boson mapping of enlarges the Hilbert phases, which needs to be reduced
in order eliminate non-physical states. Thus, the local constraints need to be enforced.
In our case, the constraints [74] are ∑

Γ𝑛

𝜙†
Γ𝑛𝜙Γ𝑛 = 1 , (9.5)∑

Γ𝑛𝑛′
⟨𝑛 | 𝑓 †𝑗𝑧 𝑓𝑗𝑧 |𝑛

′⟩𝜙†
Γ𝑛′𝜙Γ𝑛 = 𝑓 †𝑗𝑧 𝑓𝑗𝑧 . (9.6)

The constraint (9.5) is the completeness equation ensuring that the physical states
are single boson states as Eq. (8.11). The constraint (9.6) ensures the conservation
of quasiparticle number by considering the correct slave-bosons with the same total
particle charge sector in the physical and quasiparticle Hilbert space.
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9.2.3 Representation of physical electron operators and RISB Hamil-
tonian

The action of creation operator in enlarged Hilbert space should be same as in
physical Hilbert space. This lead us to the equation

⟨Γ|𝑐 𝑗𝑧 † |Γ′⟩ = ⟨Γ|𝑐†𝑗𝑧 |Γ
′⟩ . (9.7)

The 𝑐 𝑗𝑧 operators are expressed in term of auxiliary bosons and fermions as

𝑐 𝑗𝑧 = 𝑅†
𝑗𝑧
[Φ] 𝑓𝑗𝑧 , (9.8)

where Φ is slave-boson matrix and the operator 𝑅†
𝑗𝑧
[Φ] is defined as

𝑅†
𝑗𝑧
[Φ] =

𝛾̂𝑗𝑧 [Φ]√
𝑛̂ 𝑗𝑧 [Φ](1 − 𝑛̂ 𝑗𝑧 [Φ])

, (9.9)

with

𝛾̂𝑗𝑧 [Φ] =
∑

ΓΓ′,𝑛𝑛′
⟨Γ|𝑐†𝑗𝑧 |Γ

′⟩⟨𝑛 | 𝑓 †𝑗𝑧 |𝑛
′⟩𝜙†

Γ𝑛𝜙Γ′𝑛′ , (9.10)

𝑛̂ 𝑗𝑧 =
∑
Γ𝑛

⟨𝑛 | 𝑓 †𝑗𝑧 𝑓𝑗𝑧 |𝑛⟩𝜙
†
Γ𝑛𝜙Γ𝑛 . (9.11)

By using the Eq. (9.8) and reintroducing the site-index, the Hamiltonian (9.1) is
written in terms of auxiliary bosons as

𝐻 = −
∑

<𝑎,𝑏>, 𝑗𝑧

𝑡 𝑗𝑧
[
𝑅 𝑗𝑧 [Φ𝑎]𝑅†

𝑗𝑧
[Φ𝑏] 𝑓 †𝑎 𝑗𝑧 𝑓𝑏 𝑗𝑧 +

∑
𝑎,Γ𝑛

𝐸Γ𝜙
†
𝑎,Γ𝑛𝜙𝑎,Γ𝑛 , (9.12)

where 𝐸Γ is the eigenvalues of the local interaction 𝑈̂ as 𝑈̂ |Γ⟩ = 𝐸Γ |Γ⟩.

9.2.4 Basis transformations

The basis set for the physical Hilbert space can be chosen arbitrarily in the RISB
formalism due to its rotational invariance. Thus, a linear transformation can be
applied to change a basis set to another set. For instance, the basis transforma-
tion from multiplet-Fock basis to Fock-Fock basis can be done by applying a linear
transformation as

𝜙†
𝑛′𝑛 =

∑
Γ

⟨Γ|𝑛′⟩𝜙†
Γ𝑛 . (9.13)
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Similarly, a linear transformation to change into multiplet-multiplet basis can be
done as

𝜙†
ΓΓ′ =

∑
𝑛

⟨𝑛 |Γ′⟩𝜙†
Γ𝑛 . (9.14)

We can combine the above two linear transformation (9.13) and (9.14) in order to
find the relation between the Fock-Fock bosons and the multiplet-multiplet bosons

𝜙†
ΓΓ′ =

∑
𝑛𝑛′

⟨Γ|𝑛′⟩⟨𝑛 |Γ′⟩𝜙†
𝑛′𝑛 . (9.15)

Whether on a Fock-Fock basis or multiplet-multiplet basis, the first index refers to a
state in the initial physical Hilbert space, whereas the second index refers to a state
in the auxiliary Hilbert space.

9.3 Approximations

We have rewritten the effective Hamiltonian (9.1) within RISB formalism. Now,
we can further apply mean-field approximations, considering a constant density of
states to obtain self-consistent equations.

9.3.1 Mean-field approximations for auxiliary fields

The mean-field approximations are

• The slave-bosonic operators are replaced by their expected valuers as𝜙†
𝑎,Γ𝑛

, 𝜙𝑎,Γ𝑛 →
𝜑Γ𝑛 .

• The constraints (9.5-9.6) are applied through enforcing Lagrange parameters 𝜆
and 𝜆 𝑗𝑧 respectively.

With these approximations in hand and by invoking Fourier transformation, the
RISB Hamiltonian (9.12) is rewritten as

ℋ𝑀𝐹 =
∑
k, 𝑗𝑧

𝜖k, 𝑗𝑧𝑍 𝑗𝑧 [Φ] 𝑓 †k, 𝑗𝑧 𝑓k, 𝑗𝑧 −
∑
k, 𝑗𝑧

𝜆 𝑗𝑧 𝑓
†

k, 𝑗𝑧 𝑓k, 𝑗𝑧 +𝒩
∑
Γ𝑛

𝐸Γ𝜑
2
Γ𝑛 + 𝜆𝒩

(∑
Γ𝑛

𝜑2
Γ𝑛 − 1

)
+𝒩

∑
𝑗𝑧

𝜆 𝑗𝑧𝑛 𝑗𝑧 [Φ] + 𝜇𝒩
(∑
𝑗𝑧

𝑛 𝑗𝑧 [Φ] − 𝑛 𝑓 ), (9.16)

where, 𝜖k𝑗𝑧 are the energy levels associated with the nearest neighbor hopping
integrals 𝑡 𝑗𝑧 , 𝒩 is the total number of sites and 𝜇 is the chemical potential fixing
number of 𝑓 -electrons 𝑛 𝑓 . In the above Eq. (9.16), 𝑍[Φ] is the quasiparticle weight
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which is defined as

𝑍 𝑗𝑧 [Φ] = 𝑅2[Φ] =
𝛾2
𝑗𝑧
[Φ]

𝑛 𝑗𝑧 [Φ](1 − 𝑛 𝑗𝑧 [Φ])
, (9.17)

where 𝛾𝑗𝑧 and 𝑛 𝑗𝑧 are explicit functions of the slave-bosons 𝜑Γ𝑛 and are defined
similarly as the operators 𝛾̂𝑗𝑧 and 𝑛̂ 𝑗𝑧 as in the equations (9.10 - 9.11) but with mean-
field approximations. In order to obtain the relations for mean-field parameters
𝜆, and 𝜇, we minimize the free energy of the system ℱ = − 1

𝛽 𝑙𝑛𝑇𝑟[𝑒−𝛽𝐻
𝑀𝐹 ], where

𝛽 = 1
𝑘𝐵𝑇

with 𝑘𝐵 being Boltzmann constant and 𝑇 is the temperature of the system.
Thus, we write our saddle-point equations as

∑
Γ𝑛

𝜑2
Γ𝑛 = 1 , (9.18)∑

𝑗𝑧

𝑛 𝑗𝑧 [Φ] = 𝑛 𝑓 , (9.19)

𝑛 𝑗𝑧 [Φ] =
1
𝒩

∑
k

⟨ 𝑓 †k𝑗𝑧 𝑓k𝑗𝑧⟩ , (9.20)

2(𝐸Γ + 𝜆)𝜑Γ𝑛 = −
∑
𝑗𝑧

(𝜆 𝑗𝑧 + 𝜇)
𝜕𝑛 𝑗𝑧[Φ]

𝜕𝜑Γ𝑛
− 1
𝒩

∑
𝑗𝑧

𝜕𝑍 𝑗𝑧 [Φ]
𝜕𝜑Γ𝑛

∑
k

𝜖k𝑗𝑧 ⟨ 𝑓 †k𝑗𝑧 𝑓k𝑗𝑧⟩ , (9.21)

with
⟨ 𝑓 †k𝑗𝑧 𝑓k𝑗𝑧⟩ = 𝑛𝐹(𝜖k𝑍 𝑗𝑧 [Φ] − 𝜆 𝑗𝑧 ) , (9.22)

where 𝑛𝐹 is Fermi distribution. From the expressions of 𝑍 𝑗𝑧 [Φ], 𝛾𝑗𝑧 [Φ], and 𝑛 𝑗𝑧 [Φ],
the partial derivation 𝜕𝑍 𝑗𝑧 [Φ]

𝜕𝜑Γ𝑛
is expressed as

𝜕𝑍 𝑗𝑧 [Φ]
𝜕𝜑Γ𝑛

= 𝑍 𝑗𝑧 [Φ]
2𝑛 𝑗𝑧 [Φ] − 1

𝑛 𝑗𝑧 [Φ](1 − 𝑛 𝑗𝑧 [Φ])
𝜕𝑛 𝑗𝑧 [Φ]
𝜕𝜑Γ𝑛

+ 2
𝛾𝑗𝑧 [Φ]

𝑛 𝑗𝑧 [Φ](1 − 𝑛 𝑗𝑧 [Φ])
𝜕𝛾𝑗𝑧 [Φ]
𝜕𝜑Γ𝑛

, (9.23)

with,

𝜕𝛾𝑗𝑧 [Φ]
𝜕𝜑Γ𝑛

=
∑
Γ′𝑛′

⟨Γ|𝑐†𝑗𝑧 |Γ
′⟩⟨𝑛 | 𝑓 †𝑗𝑧 |𝑛

′⟩𝜑Γ′𝑛′ , (9.24)

𝜕𝑛 𝑗𝑧 [Φ]
𝜕𝜑Γ𝑛

= 2𝜑Γ𝑛 ⟨𝑛 | 𝑓 †𝑗𝑧 𝑓𝑗𝑧 |𝑛⟩ . (9.25)
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9.3.2 Constant density of states

For our numerical calculations, within the mean-field equations (9.18-9.21), we con-
sider an orbital-dependent constant density of states as

𝜌 𝑗𝑧 (𝜔) =
1
𝑊𝑗𝑧

𝜃

(
𝑊𝑗𝑧

2 − |𝜔 |
)
, (9.26)

where, 𝑊𝑗𝑧 and 𝜃 are orbital-dependent electronic bandwidth and Heaviside func-
tion respectively.

9.4 Self-consistent equations system and parameters

In this section, we present our self-consistent equations. To do so, we consider
the constant density of states provided by the Eq. (9.26) along with the average
occupation ⟨ 𝑓 †k𝑗𝑧 𝑓k𝑗𝑧⟩ from the Eq. (9.22), at zero temperature the Eq. (9.20) can be
expressed as

𝑛 𝑗𝑧 [Φ] =
∫

𝜌 𝑗𝑧 (𝜔)𝑛𝐹(𝜔𝑍 𝑗𝑧 [Φ] − 𝜆 𝑗𝑧 )𝑑𝜔 =
𝜆 𝑗𝑧

𝑊𝑗𝑧𝑍 𝑗𝑧
+ 1

2 . (9.27)

In the similar way, one can treat the Eq. (9.21). Hence, we resume our final set of
self-consistent equations as

∑
Γ𝑛

𝜑2
Γ𝑛 = 1, (9.28)∑

𝑗𝑧

𝑛 𝑗𝑧 [Φ] = 𝑛 𝑓 , (9.29)

𝑛 𝑗𝑧 [Φ] =
𝜆 𝑗𝑧

𝑊𝑗𝑧𝑍 𝑗𝑧
+ 1

2 , (9.30)

[𝐸Γ + 𝜆 + 𝜇
∑
𝑗𝑧

⟨𝑛 |𝑐†𝑗𝑧 𝑐 𝑗𝑧 |𝑛⟩]𝜑Γ𝑛 =
∑
𝑗𝑧

𝑊𝑗𝑧

2 𝛾𝑗𝑧 [Φ]
𝜕𝛾𝑗𝑧 [Φ]
𝜕𝜑Γ𝑛

. (9.31)

Similarly, the energy of the system pre site is obtained from the Eq. (9.16) as
⟨ℋ𝑀𝐹⟩
𝑁 , which gives the final equation as

⟨ℋ𝑀𝐹⟩
𝑁

= 𝐸[Φ] = −
∑
𝑗𝑧

𝑊𝑗𝑧

2 𝑍 𝑗𝑧 [Φ]𝑛 𝑗𝑧 [Φ](1 − 𝑛 𝑗𝑧 [Φ]) +
∑
Γ𝑛

𝐸Γ𝜑
2
Γ𝑛 . (9.32)
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The equations (9.28-9.31) makes a set of self-consistent equations to minimize
the energy (9.32). Within RISB formalism, a density matrix needs to be constructed
𝑛 𝑗𝑧 =

∑
Γ𝑛 𝜑

2
Γ𝑛
⟨𝑛 | 𝑓 †

𝑗𝑧
𝑓𝑗𝑧 |𝑛⟩. This construction of this density matrix can lead to a large

amount of auxiliary slave-bosons operators. However, the number of slave bosons
could be reduced using symmetries of local interactions. For instance, the particle
number conservation of the local Hamiltonian and diagonal nature of interaction 𝑈̂
on a multiplet basis leads to cancellation of all the slave-bosons 𝜑Γ𝑛 with ⟨𝑛 |Γ⟩ = 0.
Thus in our case, slave-bosons numbers can be reduced considerably to 116 and can
be found in the appendix E.
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Numerical approach: algorithm and
technical challenges

Numerical resolution of RISB equations can be very tedious and challenging. The
difficulties can be purely numerical or algorithmic, or even both. Thus, each step of
numerical calculation should be carefully chosen in order to get the correct solution.
Assuming that all the technical difficulties are fixed, the resolution of RISB equations
can be very time-consuming. This makes the optimization of numerical codes very
necessary whenever possible. In our case, we chose Python due to its large libraries
in optimization routines. Furthermore, the python functions were compiled by using
Numba [328] whenever possible for faster executions. Finally, for our study, we have
used different types of optimization routines mixed together.

10.1 Reduction of Hilbert space and slave-bosons

In the previous chapter, we have seen that we are dealing with 116 slave-bosons
present in six different particle charge sectors (see appendix E). Ideally, we should
consider all the 116 𝜑Γ𝑛 spanning through the Hilbert space of all six particle sectors.
But, this leads to 116 equations to be solved self-consistently. However, depending
upon the 𝑊/𝑈4, solving all 116 equations along with two physical constraints is
not always necessary since the ground state might not be composed of all 𝑓 -electron
configurations. To demonstrate at first, we consider the atomic limit𝑊 = 0. From the
previous dual model calculations and from Hund’s, the ground-state at𝑊/𝑈4 = 0 is
composed of 𝑓 2 and 𝑓 3 configurations with 𝐽 = 4 and 𝐽 = 9/2 respectively. So, in this
case, we can consider only the slave-bosons representing 𝑓 2 and 𝑓 3 configurations.
This assumption will reduce the number of 𝜑Γ𝑛 to 36 instead of 116. Now, with
a slight increase in 𝑊 , electrons can hop as 𝑓 3 ↔ 𝑓 4. Thus, the slave-bosons
representing 3 or 4 electrons particle sectors can become non-zeros. Figure 10.1
schematizes this process where we do a preliminary optimization within a 𝜆 and 𝜇
grid. This preliminary grid calculation permits us to have an initial guess parameter

105



CHAPTER 10. NUMERICAL APPROACH: ALGORITHM AND TECHNICAL
CHALLENGES

𝐺𝑢𝑒𝑠𝑠

𝑓 2, 𝑓 3

𝜆, 𝜇, Φ

𝐺𝑢𝑒𝑠𝑠

𝑓 2, 𝑓 3, 𝑓 4

𝜆, 𝜇, Φ

𝐺𝑢𝑒𝑠𝑠

𝑓 0, 𝑓 1... 𝑓 5, 𝑓 6

𝜆, 𝜇, Φ

. . .

𝜆, 𝜇, Φ

Output

𝜆, 𝜇, Φ

Output

𝜆, 𝜇, Φ

Output

𝑓 1, 𝑓 2, 𝑓 3,

𝑓 4, 𝑓 5, 𝑓 6
input Eqs.

𝜆 and 𝜇 grid

...

𝜆1, 𝜇1, Φ1

𝜆2, 𝜇2, Φ2

𝜆𝑛 , 𝜇𝑛 , Φ𝑛

...

9.28-9.31Φ𝑖𝑛𝑖𝑡𝑎𝑙

Figure 10.1: Schematic view of intial optimizing process to get guess parameters
while considering various 𝑓 -configurations using the Eqs. 9.28-9.31. Whenever the
physical constraints are satisfied, the scheme ejects an output with 𝜆, 𝜇 and slave-
boson vector Φ.

without any phase consideration. However, one need not do initial calculation over
𝜆 and 𝜇-grid for each value of 𝑊 , but rather when there is a jump in mean-field
parameters or a phase transition is suspected.

10.2 Minimization of Energy

Using a single optimization technique can lead to a local minimum or the worst-
case scenario to nonphysical results. In our work, we have used various classes of
optimization routines to assure the convergence of RISB mean-field equations to their
global minimum. Below, we present the python routines that we have considered
and their advantages and drawbacks, and how we have used them in our code.
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10.2.1 Choice of optimization algorithms

During our whole numerical optimization process, the choice of algorithm and the
method of iteration was a crucial step. We found that gradient-based methods were
not so effective for either local minimization or global minimization of energy. So we
have used gradient-free methods throughout our study. To solve the auto-consistent
equations (9.28-9.31), we have used the derivative-free Powell method from NLopt
library [329] along with Scipy’s [330] least-squares. For local minimization of energy
was either conducted by using Pymoo’s [331] heuristic pattern search and/or Scipy’s
trust region method was used. Furthermore, global minimization was conducted
with Scipy’s stochastic basin hopping or with differential evolution.

10.2.2 Global and local optimizations

The methods described in section 10.2.1 were used to find local or global minima.
Figure 10.2 shows the schematic view of an overall view of local minimizations.
During our calculations, we found that an iterative method where a previous so-
lution is injected to calculate a new solution for a new set of parameters was not
efficient.However, it can be used in some situations, for example, non-interacting
case 𝑈 = 0. The local optimization iteration process can be defined in the following
steps.

i) At first, a set of non-zeros 𝜑𝐺𝑢𝑒𝑠𝑠
Γ𝑛

slave-bosons are determined as guess param-
eters by using the method in section 10.1.

ii) We actualize the mean-field parameters 𝜆 and 𝜇 for given hopping with 𝜑𝐺𝑢𝑒𝑠𝑠
Γ𝑛

as input. In the meantime, 𝜑𝐺𝑢𝑒𝑠𝑠
Γ𝑛

is actualized into 𝜑Γ𝑛 .

iii) A local minimization is conducted with routines stated above in the section 10.2.1.
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Ansatz
input of 𝜑𝐺𝑢𝑒𝑠𝑠

Γ𝑛 for a given phase

evaluation of
𝜆, 𝜇

local minimization of 𝐸[Φ]
calculation of 𝜑Γ𝑛 from Eq. 9.31
with constraints 9.28 and 9.29

evaluation of 𝐸[Φ] from Eq. 9.32

Figure 10.2: Schematic view of local minimization for a given phase with a set of 𝜑Γ𝑛

non-zeros.

During our numerical calculations, we found that the slave-boson matrix Φ for a
given particular solution with partially localized orbitals is not always unique. Thus,
in order to assure the ground-state phase diagram, a systematic global optimization
must be conducted after the local minimization. Figure 10.3 presents our complete
algorithm scheme, which includes the global optimization step.

10.3 Numerical error tolerance on constraints
We have altogether two physical constraints: the completeness equation

∑
Γ𝑛 𝜑

2
Γ𝑛

= 1
and the conservation of fermionic particle number

∑
𝑗𝑧
𝑛 𝑗𝑧 [Φ] = 𝑛 𝑓 . The convergence

of a solution is defined upon the tolerance of these constraints. From the equa-
tion 9.32, we can also deduce that the numerical error on the energy is proportional
to the number of non-zeros slave-bosons. Since, we can have up to 116 non-zeros
bosons, this addition can significantly impact the differentiation between two close
phases. During our minimization of energy, we found that the minimums of ener-
gies can be as close as 0.1% to each other relatively. Thus, all our solutions were
calculated with a minimum tolerance of 10−6.
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Ansatz
input of 𝜑𝐺𝑢𝑒𝑠𝑠

Γ𝑛 for a given phase

evaluation of
𝜆, 𝜇

global minimization of 𝐸[Φ]

fine-tuning of the results
output

𝜆, 𝜇, Φ, 𝐸[Φ]

if constraints
satisfied

if
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local minimization of 𝐸[Φ]
calculation of 𝜑Γ𝑛 from Eq. 9.31
with constraints 9.28 and 9.29

evaluation of 𝐸[Φ] from Eq. 9.32

calculation of 𝜑Γ𝑛 from Eq. 9.31
with constraints 9.28 and 9.29

evaluation of 𝐸[Φ] from Eq. 9.32

calculation of 𝜑Γ𝑛 from Eq. 9.31
with constraints 9.28 and 9.29

Figure 10.3: Schematic view of the complete numerical process. The light green
background shows the local minimization process, and its output is injected into a
global minimization routine.
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Chapter 11

Results

In this chapter, we present the numerical results that we have obtained by solving
the self-consistent equations (9.18 - 9.21). In our calculations, we consider two
different orbital-dependent electronic bandwidths: 𝑊3/2 and 𝑊1/2 = 𝑊5/2, along
with 𝑓 -electron count and Coulomb interactions as parameters. Depending upon
case of study, we will be varying the electronic bandwidths, Coulomb interactions,
and 𝑓 -electron count 𝑛 𝑓 . Table 11.1 resumes the parameters used on various cases.

𝑛 𝑓 𝑈0 Δ𝑈2 Δ𝑈4 𝑊3/2 𝑊5/2 =𝑊1/2

Non-interacting
limit from 3.0 to 2.5 0 0 0 𝑊 𝑊

Atomic limit (2+3)/2 = 2.5 21.00 eV -2.72 eV -3.79 eV 0 0
General case (2+3)/2 = 2.5 21.00 eV -2.72 eV -3.79 eV 𝑊 𝑊 ′

Table 11.1: Table resuming the parameters for different case of study.

After checking the limits of our model, we will perform a full calculation by vary-
ing orbital-dependent electronic bandwidths to analyze the effect of its anisotropies.
For that, we also consider non-integer 𝑓 -electron count 𝑛 𝑓 = 2.5, which is justi-
fied through the experimental observations [287, 298–300, 332] where 𝑓 -electron
valencies situate between 2 and 3 for uranium-based heavy-fermions. Here, we con-
sider the Coulomb interactions𝑈𝐽=4 = 17.21𝑒𝑉 ,𝑈𝐽=2 = 18.28𝑒𝑉 and𝑈𝐽=0 = 21.00𝑒𝑉
which was obtained from the local density approximation 5 𝑓 wave functions calcula-
tion [17] for UPt3. From these Coulomb parameters, one could notice the anisotropic
as Δ𝑈4 = 𝑈𝐽=4 −𝑈𝐽=0 = −3.79 eV and Δ𝑈2 = 𝑈𝐽=2 −𝑈𝐽=0 = −2.72 eV. This anisotropy
depends weakly upon the chemical environment are usually not screened whereas
𝑈0 get screened. The choice of UPt3 is motivated by the previous calculations [17,
327] done within the dual model. This will permit us to make a direct comparison
of our results with the previous calculations whenever possible.
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11.1 Non-localized paramagnetic phase in isotropic hop-
ping case

In this section, we present our results for non-interacting (𝑈 = 0) and atomic (𝑊𝑗𝑧 = 0)
limits on the isotropic line (𝑊 =𝑊1/2 =𝑊1/2 =𝑊5/2). The solutions on the isotropic
line are highly degenerate. Nevertheless, the analytical solutions for both limits can
be determined. Thus, these limits set a benchmark for our numerical method to
produce consistent results. Furthermore, the solutions at these limits provide us a
solid starting point to perform global minimization for other sets of parameters𝑊3/2
and𝑊3/2 =𝑊1/2.

11.1.1 Non-interacting limit

At first, we start from electronic occupation 𝑛 𝑓 = 3.00 in the non-interacting limit.
Thereafter, we will gradually decrease 𝑛 𝑓 to obtain the intermediate occupation
𝑛 𝑓 = 2.5. For 𝑛 𝑓 = 3.0 with 𝑈 = 0, all the slave-bosons 𝜑𝑛𝑛′ on the Fock-Fock basis
set are equivalent and the slave-boson matrix is diagonal. From this argument, we
can easily determine the amplitudes of slave-bosons as

𝜑𝑛𝑛′ =
𝛿𝑛𝑛′√

64
. (11.1)

Instead of Fock-Fock basis set, one can freely choose multiplet-multiplet basis set
to represent both physical and auxiliary states. The linear transformation (9.15) can
be applied to the equation (11.1) to obtain 𝜑ΓΓ. However, we perform our numerical
work using multiplet-Fock basis, and we apply again a linear transformation to
obtain 𝜑Γ𝑛 as

𝜑ΓΓ =
∑
𝑛

⟨𝑛 |Γ⟩𝜑Γ𝑛 . (11.2)

With the relations 11.1, and 11.2, we solved the RISBMF equations from 𝑛 𝑓 = 3.00
to 2.5. Figure 11.1 shows the numerical results with slave-boson probabilities. For
𝑛 𝑓 = 3.00, all the slave-boson amplitudes are equivalent with |𝜑ΓΓ |2 = (1/

√
64)2 =

0.015625 and the orbitals are fully delocalized 𝑍 𝑗𝑧 = 1. As soon as 𝑛 𝑓 is moved away
from the half-filling 𝑛 𝑓 = 3.0, the symmetry of |𝜑ΓΓ |2 over all charge sectors breaks.
However, the symmetry over the same particle sector is still preserved.

11.1.2 Atomic limit

At the atomic limit𝑊 = 0, the ground-state verifies the Hund’s rule, and is made up
of the local atomic multiplets | 𝑓 2; 𝐽 = 4, 𝐽𝑧⟩ and | 𝑓 3; 𝐽 = 9/2, 𝐽𝑧⟩ with the conditions
below
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Figure 11.1: Evolution of slave boson probabilities |𝜑ΓΓ |2 on multiplet-multiplet basis
along with 𝑓 -electron occupation from 𝑛 𝑓 = 3.0 to 𝑛 𝑓 = 2.5 for charge sectors 𝑓 𝑀
configurations for non-interacting case (see table 11.1).

4∑
𝐽𝑧=−4

|𝜑 𝑓 2;𝐽=4,𝐽𝑧⟩,| 𝑓 2;𝐽=4,𝐽𝑧⟩ |2 =
1
2 , (11.3)

9/2∑
𝐽𝑧=−9/2

|𝜑| 𝑓 3;𝐽=9/2,𝐽𝑧⟩,| 𝑓 3;𝐽=9/2,𝐽𝑧⟩ |2 =
1
2 . (11.4)

Expanding the expressions 11.3 and 11.4, we can deduce that the values of each
slave-boson contributing to the ground-state solution at the atomic limit is

|𝜑|𝑀=2;𝐽=4,𝐽𝑧⟩,|𝑀=2;𝐽=4,𝐽𝑧⟩ |2 =
1

18 , (11.5)

|𝜑|𝑀=3;𝐽=9/2,𝐽𝑧⟩,|𝑀=3;𝐽=9/2,𝐽𝑧⟩ |2 =
1

20 . (11.6)

From the equations 11.3 and 11.4, one can deduce that the ground-state energy at
the atomic limit is the sum of Coulomb energy of | 𝑓 2; 𝐽 = 4, 𝐽𝑧⟩ and | 𝑓 3; 𝐽 = 9/2, 𝐽𝑧⟩
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Figure 11.2: Diagonal slave bosons probabilities |𝜑ΓΓ |2 on the isotropic line (𝑊 =𝑊 ′)
for all six charge sectors | 𝑓 𝑀 ; 𝐽 , 𝐽𝑧⟩. The black arrows on the x-axis points the towards
the threshold values of𝑊/𝑈0 where transition in valency configuration is observed.

configurations as

𝐸0(𝑊 = 0) =
𝑈4 +𝑈𝑀=3,𝐽=9/2

2 = 34.76𝑒𝑉 . (11.7)

In order to solve the mean-field equations numerically at the atomic limit, we
start from the solution obtained for 𝑛 𝑓 = 2.5 at 𝑈 = 0. Thereafter, we gradually
increase the Coulomb integrals 𝑈𝐽 with 𝑊 ≫ 𝑈 until 𝑈0 = 21.00 eV, 𝑈2 = 18.28 eV
and𝑈4 = 17.21 eV. Thereafter, we slowly decrease the isotropic electronic bandwidth
until 𝑊 = 0. We found that the ground state is highly degenerate i.e. any set of
slave-boson matrix Φ fulfilling the conditions 11.3 and 11.4 with the energy 𝐸0 can
be a solution. This made the numerical resolution challenging. However, we were
able to recover the analytical solutions 11.5 and 11.5 with ground-state energy 𝐸0.
The numerical result is presented in the figure 11.2. This also shows the correctness
and robustness of our numerical method to solve RISBMF equations.

11.1.3 From atomic limit to non-interacting limit: the appearance
of three distinct regions

In this section, we will present our results on the isotropic line while moving
from atomic limit to non-interacting limit by gradually increasing isotropic elec-
tronic bandwidth. Figure 11.2 presents the slave-boson probabilities on a multiplet-
multiplet basis. By analyzing the non-zeros slave-bosons probabilities, we can dis-
tinguish two thresholds on electronic bandwidth, delimiting three regions: the first
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Figure 11.3: Quasiparticules weight 𝑍 𝑗𝑧 as a function of electronic bandwidth𝑊/𝑈0
on the isotropic line (𝑊5/2 = 𝑊3/2 = 𝑊1/2) for orbitals 𝑗𝑧 = 5/2, 3/2 and 1/2 for
paramagnetic phase. The inset shows a zoom of 𝑍 𝑗𝑧 around small𝑊/𝑈0.

region lies between𝑊/𝑈0 = 0 to ≈ 1.32, the second region lies between𝑊/𝑈0 ≈ 1.32
to ≈ 3.27, and the third region lies for 𝑊/𝑈0 ≳ 3.27. Furthermore, the signatures of
the thresholds can also be observed in the quasiparticle weight 𝑍 𝑗𝑧 and mean-field
energies 𝐸.

Let’s start with the first region. As per Hund’s rule, the ground state of the
system at atomic-limit is made up of from 𝑓 2 and 𝑓 3-electron configurations with
total angular momentum 𝐽 = 4 and 𝐽 = 9/2 respectively. As soon as the isotropic
electronic hopping gets a finite value 𝑊 > 0, the slave-bosons associated with 𝑓 4

configuration become non-zeros, suggesting valency configuration transition. Here,
the ground-state is made up of local configurations: | 𝑓 2; 𝐽 = 4, 𝐽𝑧⟩, | 𝑓 3; 𝐽 = 9/2, 𝐽𝑧⟩,
| 𝑓 3; 𝐽 = 5/2, 𝐽𝑧⟩, | 𝑓 3; 𝐽 = 3/2, 𝐽𝑧⟩, | 𝑓 4; 𝐽 = 4, 𝐽𝑧⟩, | 𝑓 4; 𝐽 = 2, 𝐽𝑧⟩ and | 𝑓 4; 𝐽 = 0, 𝐽𝑧⟩.
Due to Hund’s rule, the quasiparticles weight 𝑍 𝑗𝑧 associated with each orbital 𝑗𝑧 is
anisotropic such that 𝑍5/2 ≠ 𝑍3/2 ≠ 𝑍1/2. The inset in the figure 11.3 presents this
anisotropic behavior.

The second region starts at𝑊/𝑈0 ≈ 1.32 and is marked by slave-boson associated
with configurations | 𝑓 1; 𝐽 = 5/2⟩, | 𝑓 5; 𝐽 = 5/2⟩, | 𝑓 2; 𝐽 = 2⟩ and | 𝑓 2; 𝐽 = 4⟩ becoming
non-zero. Thus, these additional local multiplets contribute to the formation of
ground-state. The quasiparticle weight presents a large 𝑍 𝑗𝑧 around 𝑊/𝑈0 ≈ 1.32.
Similar behavior is also observed in the energy and the mean-field parameters and
is presented in the figurefigure 11.4. Similar jumps in energies were seen in the two
sites model [60] resulting from the competition between Coulomb interaction and
hopping.
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Figure 11.4: 𝐸 − 𝐸0 on the isotropic line from 𝑊/𝑈4 = 0 to large 𝑊/𝑈0 large. The
inset shows the mean-field parameters 𝜆 and 𝜇.

The third region starts approximately at𝑊/𝑈0 ≈ 3.27 where all the slave-bosons
on all the charge sectors become non-zeros. Thus, the ground-state is composed
of all the configurations: 𝑓 0, 𝑓 1, 𝑓 2, 𝑓 3, 𝑓 4, 𝑓 5, and 𝑓 6 as for non-interacting limit.
From the figure 11.4, we can observe that the mean-field parameter 𝜆 cancels out,
and 𝜇 changes its sign from negative to positive as in the non-interacting case. The
quasiparticle weight is isotropic and recovers the value 𝑍 𝑗𝑧 ≃ 1 for large𝑊 .

In this isotropic case, we were able to recover the non-interacting limit from
the atomic limit. The results on both limits are similar to those obtained by Duc-
Anh Le [327]. However, multiple differences were obtained. For low hopping,
we obtained anisotropic 𝑍 𝑗𝑧 , which was not observed in the previous study [327].
Furthermore, successive transitions in valency configurations were observed due
to interplay between Hund’s rule, Coulomb interaction, and increasing bandwidth:
( 𝑓 2, 𝑓 3) → ( 𝑓 2, 𝑓 3, 𝑓 4) → ( 𝑓 1, 𝑓 2, 𝑓 3, 𝑓 4, 𝑓 5) → ( 𝑓 0, 𝑓 1, 𝑓 2, 𝑓 3, 𝑓 4, 𝑓 5, 𝑓 6). However,
due to the isotropic nature of electronic bandwidth, no orbital-selective Mott transi-
tion was observed in this case which is not the case when the anisotropic in electronic
bandwidths are present.

11.2 Ground-state phase diagram

After the isotropic case, we solved the RISBMF equations considering paramagnetic
(PM) and ferromagnetic (FM) phases in the range of 0 ≤ 𝑊1/2 ≤ 15 and 0 ≤ 𝑊5/2(=
𝑊1/2) ≤ 15. In order to simply, we note 𝑊 = 𝑊3/2 and 𝑊 ′ = 𝑊5/2 = 𝑊1/2. Her,
a paramagnetic phase is characterized by having symmetric 𝑗𝑧 and −𝑗𝑧 orbitals:
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𝑛 𝑗𝑧 = 𝑛−𝑗𝑧 and 𝑍 𝑗𝑧 = 𝑍−𝑗𝑧 . Similarly, a ferromagnetic phase is characterized by
having at least one orbital 𝑗𝑧 being fully occupied and its counterpart −𝑗𝑧 being
empty: 𝑛 𝑗𝑧 = 1, 𝑍 𝑗𝑧 = 0 and 𝑛 𝑗𝑧 = 0, 𝑍 𝑗𝑧 = 0. Also, a saturated ferromagnetic phase
(SFM) is characterized by having all the 𝑗𝑧 orbitals occupied and all −𝑗𝑧 empty.

From our numerical calculations, we have found altogether twelve phases with
partially localized orbitals: five PM, five FM, and two SFM phases. Furthermore,
each phase can be either one-electron localized or two-electron localized. From here,
if a phase is paramagnetic with 𝑗𝑧 = 5/2 and 1/2 localized, we will note it as PM 5

2 ,
1
2
.

The table 11.2 regroups the necessary information on the orbitals occupancy and the
quasiparticle weight of the different partially localized phases.

Localized
orbitals (𝑗𝑧)

Phase
Orbital occupancy Quasiparticle weight

𝑛 5
2

𝑛 3
2

𝑛 1
2

𝑛− 1
2

𝑛− 3
2

𝑛− 5
2

𝑍 5
2

𝑍 3
2

𝑍 1
2

𝑍− 1
2

𝑍− 3
2

𝑍− 5
2

5/2, 1/2 PM 5
2 ,

1
2

0.50 0.25 0.50 0.50 0.25 0.50 0 . . . 0 0 . . . 0
FM 5

2 ,
1
2

1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0
SFM 5

2 ,
1
2

1 0.50 1 0 0 0 0 1 0 0 0 0

5/2, 3/2 PM 5
2 ,

3
2

0.50 0.50 0.25 0.25 0.50 0.50 0 0 . . . . . . 0 0
FM 5

2 ,
3
2

1 1 0.25 0.25 0 0 0 0 . . . . . . 0 0
SFM 5

2 ,
3
2

1 1 0.50 0 0 0 0 0 1 0 0 0

5/2 PM 5
2

0.50 . . . . . . . . . . . . 0.50 0 . . . . . . . . . . . . 0
FM 5

2
1 . . . . . . . . . . . . 0 0 . . . . . . . . . . . . 0

3/2 PM 3
2

. . . 0.50 . . . . . . 0.50 . . . . . . 0 . . . . . . 0 . . .

FM 3
2

. . . 1 . . . . . . 0 . . . . . . 0 . . . . . . 0 . . .

1/2 PM 1
2

. . . . . . 0.50 0.50 . . . . . . . . . . . . 0 0 . . . . . .

FM 1
2

. . . . . . 1 0 . . . . . . . . . . . . 0 0 . . . . . .

Table 11.2: Orbitals occupations (𝑛 𝑗𝑧 ) and quasiparticules weights (𝑍 𝑗𝑧 ) for various
partially localized phases. Here, PM signifies paramagnetic phase, FM signifies fer-
romagnetic phase and SFM signifies saturated ferromagnetic phase and the notation
PM 5

2 ,
1
2

means paramagnetic phase with 𝑗𝑧 = 5/2 and 𝑗𝑧 = 1/2 orbitals localized.

In order to construct a phase diagram, we compare the energies. The energy for
each phase is obtained from the equation below

𝐸[Φ] = −
∑
𝑗𝑧

𝑊𝑗𝑧

2 𝑍 𝑗𝑧 [Φ]𝑛 𝑗𝑧 [Φ](1 − 𝑛 𝑗𝑧 [Φ]) +
∑
Γ𝑛

𝐸Γ𝜑
2
Γ𝑛 . (11.8)
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Figure 11.5: Energies of partially localized phases along the line𝑊 +𝑊 ′ = constant:
(a)𝑊 +𝑊 ′ = 7 and (b)𝑊 +𝑊 ′ = 14 while𝑊 =𝑊3/2 and𝑊 ′ =𝑊5/2 =𝑊1/2. Colors
of each line correspond to the color of each phase in figure 11.6.

The first term of the equation (11.8) gives the kinetic energy, and the second term
is related to the energy due to local interactions. The total energy of the system for
a given phase depends only on the contribution from its non-localized orbitals.

In order the effect of anisotropies, we present the energies of each partially
localized phase along the line 𝑊 +𝑊 ′ = 7 and 𝑊 +𝑊 ′ = 14 in the figure 11.5.
The representation of the energies along these lines permits us to include all the
phases in the ground state phase diagram (see figures 11.6 and 11.7). First, we can
clearly remark that the energy of the partially localized phase decreases linearly
with increasing 𝑊𝑗𝑧 due to a decrease of kinetic energy. However, it is partially
compensated by energy due to local interaction. Furthermore, we observe that the
FM and PM phases with the same localized orbitals are degenerate. The crossing of
energies curves translating phase transitions happens smoothly except near isotropic
line where a jump in energy for non-localized paramagnetic phase is seen (see
section 11.1.3).

For smaller electronic bandwidths with anisotropy, the two-electrons localized
phases are found to be more stable than a one-electron localized phase. However,
phases with one-electron localized can be stabilized for larger hopping when𝑊 >𝑊 ′

and𝑊 ′ >𝑊 . Depending upon the anisotropy, different sets of orbitals can be local-
ized. For𝑊 >𝑊 ′, either 𝑗𝑧 = 5/2, 1/2 or 𝑗𝑧 = 5/2 or 𝑗𝑧 = 1/2 orbitals can be localized.
For 𝑊 ′ > 𝑊 , either 𝑗𝑧 = 5/2, 3/2 or 𝑗𝑧 = 3/2 can be localized. Figure 11.6 compiles
our results and presents the ground-state phase diagram. Below, we present detailed
information about the various one-electron and two-electron localized phases on the
different parts of our phase diagram.
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Figure 11.6: Phase diagram with partially localized phases for the electronic band-
widths 0 ≤ 𝑊 ≤ 15 and 0 ≤ 𝑊 ′ ≤ 15. Solid lines are guides to the eyes separating
two phases. (FM/PM) indicates that ferromagnetic and paramagnetic phases are
degenerate.

Figure 11.7: Figure showing the line 𝑊 +𝑊 ′ = 7 and 𝑊 +𝑊 ′ = 14 on the phase
diagram.
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11.2.1 One-electron localized phases

Let’s start from the situation 𝑊 > 𝑊 ′ where we found FM 5
2
, PM 5

2
, FM 1

2
and PM 1

2
phases. All these phases were found for 𝑊 ≥ 5.20 eV. The local configurations
| 𝑓 2; 𝐽 = 4, 𝐽𝑧⟩, | 𝑓 3; 𝐽 = 9/2, 𝐽𝑧⟩, and | 𝑓 3; 𝐽 = 5/2, 𝐽𝑧⟩ made up the phase FM 5

2
. Similarly,

the local configurations | 𝑓 2; 𝐽 = 4, 𝐽𝑧⟩, | 𝑓 3; 𝐽 = 9/2, 𝐽𝑧⟩, | 𝑓 3; 𝐽 = 5/2, 𝐽𝑧⟩, | 𝑓 3; 𝐽 = 3/2, 𝐽𝑧⟩
and | 𝑓 4; 𝐽 = 4, 𝐽𝑧⟩ made up the phase FM 1

2
. From our calculations, the localization

of orbital 𝑗𝑧 = 5/2 was more energetically favorable than the localization of 𝑗𝑧 = 1/2.
This can be understood since the Coulomb matrix element ⟨𝑗𝑧 𝑗𝑧 |𝑈̂ | − 𝑗𝑧 − 𝑗𝑧⟩ in the
Hamiltonian (9.1) is 0.23 eV larger for 𝑗𝑧 = 5/2 than 𝑗𝑧 = 1/2. Moreover, PM phases
are degenerate with FM phases, and they can be obtained by the linear combination
of two FM phases with its counterpart obtained by flipping the quantization axis.
Either way, none of these one-electron localized phases were found to be in the
ground-state phase diagram. This result is in contrast with the previous result
obtained within RISB [327] and also in the two-site model [60].

For the anisotropy 𝑊 < 𝑊 ′, we were able to localize the orbital 𝑗𝑧 = 3/2 both
in FM or PM phases. As before, PM and FM phases are degenerate and PM phase
can be obtained by the combination of two FM phases. The local configurations
| 𝑓 2; 𝐽 = 4, 𝐽𝑧⟩, | 𝑓 3; 𝐽 = 9/2, 𝐽𝑧⟩, | 𝑓 3; 𝐽 = 5/2, 𝐽𝑧⟩, | 𝑓 3; 𝐽 = 3/2, 𝐽𝑧⟩, | 𝑓 4; 𝐽 = 4, 𝐽𝑧⟩, and
| 𝑓 4; 𝐽 = 2, 𝐽𝑧⟩ made up both FM and PM phases. This phase is found to be stable
when𝑊 ′ ≳ 10.40 eV. Similar result was obtained in previous calculation [327] but in
our case the transition between FM 3

2
(PM 3

2
) and FM 5

2 ,
3
2
(PM 5

2 ,
3
2
) happens at𝑊 ′ ≃ 10.30

eV instead of𝑊 ′ ≃ 2.60 eV [327].

A possible explication of localization of one-electron can be done in an analogous
manner as Mott localization. Following the same scenario, the Coulomb interaction
⟨𝑗𝑧 𝑗𝑧 |𝑈̂ |− 𝑗𝑧− 𝑗𝑧⟩ between the electrons on 𝑗𝑧 and−𝑗𝑧 orbitals compete with the orbital-
dependent electronic bandwidth as ⟨𝑗𝑧 𝑗𝑧 |𝑈̂ |−𝑗𝑧−𝑗𝑧⟩

𝑊𝑗𝑧
. Thus, under a certain threshold in

⟨𝑗𝑧 𝑗𝑧 |𝑈̂ |−𝑗𝑧−𝑗𝑧⟩
𝑊𝑗𝑧

, the localization of an electron in an orbital 𝑗𝑧 can happen.

11.2.2 Two-electrons localized phases

Here, we analyze the phases with two localized electrons. At first, we concentrate
on the region 𝑊 > 𝑊 ′, where we obtained localization of electrons in the orbitals
𝑗𝑧 = 5/2 and 1/2.
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Figure 11.8: Schematic view of an electron hopping from a site-𝑖 with 𝑓 𝑀 configura-
tion to a site-𝑗 with 𝑓 𝑀

′ configuration. For 𝑀′ < 𝑀, this hopping becomes favorable.
For instance, the hopping from 𝑀 = 3 to 𝑀 = 2 is more favorable than other way
around since the hopping from 𝑀 = 2 to 𝑀 = 3 will create more energetic states
with 𝑀 = 1 and 𝑀 = 5 particles.

Let’s us consider 𝑊 ≲ 5.20 eV with 𝑊 ′ = 0 eV, in this case SFM 5
2 ,

1
2

was found to
be stable. The formation of this phase follows the Hund’s rule with the multiplets
| 𝑓 2; 𝐽 = 4, 𝐽𝑧 = 3⟩ = |000101⟩ and | 𝑓 3; 𝐽 = 9/2, 𝐽𝑧 = 9/2⟩ = |000111⟩ forming the
macroscopic phase. From these multiplets, we can easily deduce that only the
electron in 𝑗𝑧 = 3/2 orbital from 𝑓 3 configuration can hop to 𝑓 2, since hopping from
𝑓 2 to 𝑓 3 will give less favorable high energetic 𝑓 4 electron state (see figure 11.8).
Similar results were also obtained in two-sites model [60] where a phase with total
magnetization 𝒥𝑧 = 15/2 was obtained. The 𝒥𝑧 = 15/2 (see figure 8.4) in two-sites
model corresponds to our SFM 5

2 ,
1
2

with only positive orbitals occupied. At𝑊 ⋍ 5.20
eV, transition from SFM 5

2 ,
1
2

to FM 5
2 ,

1
2

(PM 5
2 ,

1
2
) happens with additional mulitplets

| 𝑓 3; 𝐽 = 4, 𝐽𝑧 = 3/2⟩, | 𝑓 3; 𝐽 = 3/2, 𝐽𝑧 = 3/2⟩ and | 𝑓 4; 𝐽 = 4, 𝐽𝑧 = 4⟩ contributing to the
formation of the ground-state for FM 5

2 ,
1
2

(PM 5
2 ,

1
2
) phase.

For 𝑊 ′ > 𝑊 , only the orbitals 𝑗𝑧 = 5/2 and 3/2 are localized simultaneously in
either PM, FM or SFM. For low 𝑊2, SFM 5

2 ,
3
2

and FM 5
2 ,

3
2

competes with each other
but FM 5

2 ,
3
2

was found to be the ground state. Same as above, FM 5
2 ,

3
2

and PM 5
2 ,

3
2

are degenerate. Both phases follow the Hund’s rule where SFM 5
2 ,

3
2

is made up of
local multiplets | 𝑓 2; 𝐽 = 4, 𝐽𝑧 = 4⟩, and | 𝑓 3; 𝐽 = 9/2, 𝐽𝑧 = 9/2⟩ whereas FM 5

2 ,
3
2

have
additional local multiplets | 𝑓 3; 𝐽 = 9/2, 𝐽𝑧 = 7/2⟩ and | 𝑓 4; 𝐽 = 4, 𝐽𝑧 = 4⟩ than SFM 5

2 ,
3
2
.

11.3 Physical signatures and manifestations of duality

In this section, we will treat the various aspects of partially localized phases through
quasiparticle weight 𝑍 𝑗𝑧 , electronic occupancies 𝑛 𝑗𝑧 , magnetization 𝑚𝑧 =

∑
𝑗𝑧
𝑛 𝑗𝑧 𝑗𝑧

and 𝑓 -electron valency configurations along 𝑊 +𝑊 ′ = 7 and 𝑊 +𝑊 ′ = 14 (see
figure 11.7).

11.3.1 Quasiparticle weight

An orbital is localized when 𝑍 𝑗𝑧 = 0 and delocalized when 𝑍 𝑗𝑧 ≠ 0. With these
definitions on hand, we can now analyze the quasiparticle weight of our ground-
state phase diagram up on anisotropy of non-interacting electronic bandwidth.
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Figure 11.9: Quasiparticle weights of non-localized orbitals along the line: 𝑊+𝑊 ′ = 7
((a) and (c)) and 𝑊 +𝑊 ′ = 14 ((b) and (d)) in the phase diagram. Only delocalized
orbitals are presented here for PM phases ((c) and (d)) and for FM phases ((a) and
(b)). Localized orbitals per phase are indicated on the top the figure, and aside of
each line for each orbital. Vertical dotted lines are guides for eyes marking frontier
between phases whereas solid vertical gray line indicate isotropic point.

Figure 11.9(a) and (c) presents𝑍 𝑗𝑧 for non-localized orbitals on the line𝑊+𝑊 ′ = 7
for FM and PM phases respectively. Since there is no equivalent counterpart phase
of SFM in PM phase, 11.9(c) misses 𝑍 𝑗𝑧 partially. The left side of each graph in
figure 11.9 corresponds to the anisotropic region with 𝑊 > 𝑊 ′ where only orbital
𝑗𝑧 = 3/2 is delocalized. For FM 5

2 ,
1
2

quasiparticle weights of delocalized orbitals are
orbital dependent: 𝑍−3/2 ≠ 𝑍3/2. This orbital dependency can be explained through
the hopping of an electron from one local mulitplet to another. In this phase,
the electrons in 𝑗𝑧 = 3/2 can hop from 𝑓 3-configuration to 𝑓 2-configuration which
produces more energetic favorable 𝑓 3-configuration than the hopping of electrons in
𝑗𝑧 = −3/2 from 𝑓 3 → 𝑓 3 which produces 𝑓 4-configuration. Thus, the orbital 𝑗𝑧 = 3/2
is more delocalized than 𝑗𝑧 = −3/2. Furthermore, we observe that 𝑍3/2 in PM 5

2 ,
1
2

and FM 5
2 ,

1
2

are different even though both phases are degenerate. Thus, the internal
magnetic configuration can lead to the different quasiparticle weights per orbitals,
even for degenerate phases.
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Decreasing W gradually saturates the FM 5
2 ,

1
2

phase leading to SFM 5
2 ,

1
2

phase with
delocalized 𝑗𝑧 = 3/2 orbital (𝑍3/2 = 1) and localized −3/2 orbital (Z−3/2 = 0). In
this case, only hopping of 𝑗𝑧 = 3/2 is possible from 𝑓 3 to 𝑓 2-configuration. Upon
further decrease of anisotropy 𝑊 ≃ 𝑊 ′, a sharp discontinuity in Z𝑗𝑧 is observed
which marks the onset of non-localized paramagnetic phase (PM𝑛𝐿). With𝑊 ′ >𝑊 ,
orbitals 𝑗𝑧 = 5/2 and 3/2 get localized. The quasiparticle weight for delocalized
𝑗𝑧 = 1/2 and −1/2 remains same for FM phase which was not the case when 𝑗𝑧 = 5/2
and 1/2 were localized. This can be explained since either an electron in 𝑗𝑧 = 1/2
or −1/2 can hop from the local multiplet | 𝑓 4; 𝐽 = 4, 𝐽𝑧⟩ to another local multiplet
| 𝑓 3; 𝐽 = 9/2, 𝐽𝑧⟩, to generate again | 𝑓 4; 𝐽 = 4, 𝐽𝑧⟩, forming the macroscopic FM 5

2 ,
3
2

or
PM 5

2 ,
3
2

phase.
In figure 11.9(b) and (d), we present 𝑍 𝑗𝑧 on the line 𝑊 +𝑊 ′ = 14. Similar con-

clusions can be drawn for FM 5
2 ,

1
2
(PM 5

2 ,
1
2
), PM𝑛𝐿 and FM 5

2 ,
3
2
(PM 5

2 ,
3
2
) phases. However

for 𝑊 > 𝑊 ′, FM 3
2
(PM 3

2
) with only one electron localized is present. In this phase,

similar as above, the quasiparticle weights are orbital-dependent with 𝑗𝑧 = 1/2 being
more delocalized than 𝑗𝑧 = 5/2.

11.3.2 Occupations and magnetization

In this section, we will analyze the occupancies and the magnetization of the ground-
state phase diagram. Here, we define the magnetization as

𝑚𝑧 =
∑
𝑗𝑧

𝑛 𝑗𝑧 𝑗𝑧 . (11.9)

We found that the orbitals 𝑗𝑧 and −𝑗𝑧 will be localized when sum of their occu-
pancies equals to 1: 𝑛 𝑗𝑧 + 𝑛−𝑗𝑧 = 1. From this condition, we can deduce that in PM
phase, a localized 𝑗𝑧-orbital will have occupancy of 𝑛 𝑗𝑧 = 0.5 whereas in FM phase it
will be either 0 or 1. Figure 11.10 presents occupations of delocalized orbitals and the
figure 11.11 presents the net magnetization in FM phase of our ground-state phase
diagram for𝑊 +𝑊 ′ = 7 and𝑊 +𝑊 ′ = 14.

Starting from FM 5
2 ,

1
2

phase with increasing𝑊2, 𝑛3/2 increases gradually whereas
𝑛−3/2 decreases gradually. Similar behavior was also obtained in quasiparticle hop-
ping (see figure 11.9). This lead in gradual increase of net magnetization until the
saturation of orbital 3/2 and the magnetization 𝑚𝑧 = 3.75 at phase transition to
SFM 5

2 ,
1
2
. Since, the magnetization between the phases FM 5

2 ,
1
2

and SFM 5
2 ,

1
2

does not
present a discontinuity, it suggests that the transition is second-order. Meanwhile,
all other phase transitions seem to be of first-order since the discontinuities in mag-
netization are present.

On the other hand for𝑊 ′ >𝑊 and in FM 5
2 ,

3
2
(PM 5

2 ,
3
2
), the occupation of delocalized

orbital 𝑗𝑧 = 1/2 remains constant 𝑛±1/2 = 0.25 with constant magnetization of𝑚𝑧 = 4
for FM 5

2 ,
3
2

phase. As for one-electron localized phase FM 3
2
, the occupancies depends
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Figure 11.10: Electronic occupations for delocalized orbitals along 𝑊 + 𝑊 ′ = 7:
(a) and (c), and along 𝑊 +𝑊 ′ = 14: (b) and (d). Upper digrams (a) and (b) are
for FM phases whereas middle diagrams (c) and (d) are for PM phases. Localized
orbitals are indicated on the top the figure, and aside of each line for each orbital.
Vertical dotted lines are guides for eyes marking frontier between phases whereas
solid vertical gray line indicate isotropic point.
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up on orbitals with 𝑛1/2 < 𝑛5/2. This is again consistent with our 𝑍 𝑗𝑧 where electrons
in 𝑗𝑧 = 1/2 were more delocalized than 𝑗𝑧 = 5/2.

Figure 11.11: Magnetization is presented for only FM phases along𝑊 +𝑊 ′ = 7 (left),
along 𝑊 +𝑊 ′ = 14 (right). Localized orbitals are indicated on the top the figure.
Vertical dotted lines are guides for eyes marking frontier between phases whereas
solid vertical gray line indicate isotropic point.

11.3.3 Fermi surfaces

The quasiparticle weight 𝑍 𝑗𝑧 normalizes the electronic bandwidth as 𝑊𝑗𝑧 →𝑊𝑗𝑧𝑍 𝑗𝑧 .
From the equation (9.30), we can evaluate the chemical potential 𝜆 𝑗𝑧 fixing electronic
occupation 𝑛 𝑗𝑧 per orbital. With this in hand, we present this renormalized effective
bandwidths in the figures 11.12 and 11.13 for one-electron localized phases with𝑊 =

0,𝑊 ′ = 14.0 and two-electron localized phases with𝑊 = 10.0,𝑊 ′ = 0.0 respectively.
Similarly, the Fermi surfaces also become orbital dependent. Furthermore, we also
present a schematic view of Fermi surfaces corresponding to each delocalized orbitals
on 2D square lattice with dispersion 𝜖k, 𝑗𝑧 =

𝑊𝑗𝑧

4 (𝑐𝑜𝑠(k𝑥)+𝑐𝑜𝑠(k𝑦)). The Fermi surfaces
are obtained form the spectral function 𝒜(k, 𝜔) = − 1

Π
𝐼𝑚(𝐺 𝑗𝑧 (k, 𝜔 + 𝑖𝜂+)) at 𝜔 = 0,

where 𝜂 is an infinitesimal positive number and the Green function 𝐺 𝑗𝑧 (k, 𝜔+ 𝑖𝜂+) =
1/(𝜔 + 𝑖𝜂+ − 𝜖k + 𝜆 𝑗𝑧 ).
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Figure 11.12: Up: renormalized electronic bandwidth (𝑊𝑗𝑧𝑍 𝑗𝑧 ) for 𝑗𝑧 = 3/2 localized
orbital, calculated at the parameters 𝑊 = 0 and 𝑊 ′ = 14 for paramagnetic phase
(a) and ferromagnetic phase (b). For each bar, black color indicates the electronic
bandwidth below Fermi level with occupied states and gray color indicates the
electronic bandwidth with unoccupied states. Down: schematic view of Fermi
surfaces on 2D square lattice. Thin black line represent the Fermi surfaces. Darker
blue color shades around Fermi surfaces indicate low Fermi velocity 𝑣𝐹 ∝ 𝑍 𝑗𝑧𝑊𝑗𝑧 with
high effective mass 𝑚∗, whereas lighter blue color shades indicate lighter effective
with higher Fermi velocity. The width of the shades is determined by 1/𝑊𝑗𝑧𝑍 𝑗𝑧
representing schematically the density of states at Fermi level.

First, we can observe the symmetry between 𝑗𝑧 and −𝑗𝑧 orbitals in PM phases,
since bandwidths for both orbitals are renormalized similarly. On the other hand, for
its counterpart FM phase, all the𝑊𝑗𝑧 are renormalized differently. This difference in
bandwidth normalization will reduce the number of Fermi surface sheets by twice in
PM phases compared to their degenerate FM phases. For example, we can refer to the
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Figure 11.13: Up: renormalized electronic bandwidth (𝑊𝑗𝑧𝑍 𝑗𝑧 ) with 𝑗𝑧 = 5/2 and
𝑗𝑧 = 1/2 localized orbitals calculated at the parameters𝑊 = 10 and𝑊 ′ = 0 for para-
magnetic phase (a), ferromagnetic phase (b) and saturated ferromagnetic phase (c).
For each bar, black color indicates the electronic bandwidth below Fermi level with
occupied states and gray color indicates the electronic bandwidth with unoccupied
states. Down: schematic view of Fermi surfaces on 2D square lattice. Thin black
line represent the Fermi surfaces. Darker blue color shades around Fermi surfaces
indicate low Fermi velocity 𝑣𝐹 ∝ 𝑍 𝑗𝑧𝑊𝑗𝑧 with high effective mass 𝑚∗, whereas lighter
blue color shades indicate lighter effective with higher Fermi velocity. The width
of the shades is determined by 1/𝑊𝑗𝑧𝑍 𝑗𝑧 representing schematically the density of
states at Fermi level.

127



CHAPTER 11. RESULTS

figure 11.12 where PM 3
2

phase presents two unique sheets of Fermi surfaces whereas
its counterpart degenerate FM 5

2
present four sheets of Fermi surfaces. Moreover,

this difference between Fermi surfaces in two degenerate phases is a direct result
of orbital-dependent occupancies. Similar situation can be also observed in two-
electron localized phases (see figure 11.13).

Here, the quasiparticle weight 𝑍 𝑗𝑧 is the inverse of the effective mass 𝑚∗ [324].
We can also relate the quasiparticle weight as 𝑍 𝑗𝑧 ≡ [1 − 𝜕𝑅𝑒(Σ(𝜔))/𝜕𝜔]|𝜔=0]−1

with comparison to the previous definition of our effective mass in the chapter 5.
Furthermore, as the effective mass gets larger, the electrons move slowly. This can
be easily understood from free electron model where 𝑣𝐹 = ℏ−1𝜕𝜖k/𝜕k|k=k𝐹 = ℏk𝐹/𝑚
with 𝜖k = ℏk2/2𝑚. In the figures 11.12 and 11.13, the darker to lighter blue color
shades around Fermi surface represent schematically the lower to higher Fermi
velocity. And, the width of the shades represents schematically the density of states
at the Fermi level, which is determined by 1/𝑊𝑗𝑧𝑍 𝑗𝑧 . Here, we observe that the
delocalized orbital with larger Fermi surfaces will have smaller Fermi velocity with
larger effective mass. This can be understood through Coulomb repulsion that
increases when occupancy increases, decreasing the degree of delocalization.

11.3.4 𝑓 -electron valency configurations

In this section, we will analyze the slave-boson probabilities described as

𝑝(𝑀) =
∑
𝛼𝛽∈𝑀

|𝜑𝛼𝛽 |2 , (11.10)

where 𝛼, 𝛽 can be a set of basis set representing physical Hilbert space and
auxiliary Hilbert space in𝑀 particle charge sector. Here, 𝑝(𝑀)may be interpreted as
the weight for finding a state characterized by 𝛼, 𝛽 in 𝑓 𝑀-electron configuration. Thus
analyzing 𝑝(𝑀) per 𝑓 -electron configuration permits us to have more insight over
the multi-configurational nature of 5 𝑓 orbitals [333, 334] and the effect of anisotropy
on it.

Here, we rewrite the completeness Eq. (9.28) and the conservation of number of
fermions from the Eq. (9.29) as ∑

𝑀

𝑝(𝑀) = 1 , (11.11)∑
𝑀

𝑀𝑝(𝑀) = 2.5 . (11.12)

From the Eqs. (11.11) and (11.12), we can show that the variations on 𝑝(2) and 𝑝(3)
depend linearly upon 𝑝(4) as 𝑝(4) = 𝑝(2) − 0.5 and 𝑝(4) = 1

2(0.5 − 2𝑝(3)). In the
figure 11.14, we plot Δ𝑝(2) = 𝑝(2) − 0.5, Δ𝑝(3) = 𝑝(3) − 0.5 and Δ𝑝 = 𝑝(4) along the
line𝑊+𝑊 ′ = 7 and𝑊+𝑊 ′ = 14. First, we can observe that our results are consistent
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Figure 11.14: Variations of slave bosons probabilities Δ𝑝(𝑀) per 𝑓 -electron configu-
ration represented here for lines 𝑊 +𝑊 ′ = 7 ((a) and (c)) and 𝑊 +𝑊 ′ = 14 ((b) and
(d)). Slave bosons probabilities for FM phases are presented in the upper panel ((a)
and (b)) whereas PM phases are presented in the lower panel ((c) and (d)). Here,
Δ𝑝(2) = 𝑝(2) − 0.5, Δ𝑝(3) = 𝑝(3) − 0.5 and Δ𝑝 = 𝑝(4).
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with the theoretical prediction since the small variations in 𝑝(4) coincide with Δ𝑝(2).
This small 𝑝(4) values creates the small deviations of 𝑝(2) and 𝑝(3) from half-half
weight. However, the differences between the two-particle sectors and three-particle
sector enlarges with increasing anisotropy.
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Conclusions and perspectives

In this thesis, we looked at the link between duality in 5 𝑓 electrons with orbital-
selective partially localized phases and the origin of heavy-fermionic behavior in
uranium-based compounds. For that, we have carried out theoretical modal cal-
culations using rotationally-invariant slave-bosons (RISB), considering the typical
Coulomb parameters for uranium-based heavy-fermion compounds. This part em-
phasizes two major aspects: it contains a comprehensive discussion on algorith-
mic and numerical aspects and on the microscopic mechanism leading to putative
orbital-selective localization.

The numerical treatment of RISB presents a great challenge due to the large
number of parameters to be optimized. The procedure requires 116 non-linear self-
consistent equations to be solved. In this thesis, we have developed an efficient
algorithm based both on the local search of minimal and on the global search of min-
imal to solve RISB equations. For this, we combine gradient-based methods for the
local optimization and non-gradient methods like basin hopping, simulated anneal-
ing, and differential evolution for global optimization. A complete schematic view
is present in the figure 10.3. Before performing the full optimization calculations,
one needs a good initial input parameter. For that, we have developed a strategy
(see figure 10.1) based on grid search combined with the reductions of Hilbert space
defined by the charge sectors of 𝑓 -electrons. This permits us to scan all the partially
localized phases spanning through all the charge sectors.

Our study started with the verification of the relevance of our numerical method.
This was confirmed by the faithful reproduction of the analytical results at the atomic
limit, where the multiplets | 𝑓 2; 𝐽 = 4⟩, | 𝑓 3; 𝐽 = 9/2⟩ formed the ground state, and on
the non-interacting limit all the orbitals were fully delocalized. From atomic limit,
increasing the electronic bandwidth in isotropic case (𝑊3/2 = 𝑊5/2 = 𝑊) induces
transitions in 𝑓 -electron valency configurations to the more energetic states. More
importantly, the transition in valency configurations happens stepwise: ( 𝑓 2, 𝑓 3) at
𝑊 = 0, ( 𝑓 2, 𝑓 3) → ( 𝑓 2, 𝑓 3, 𝑓 4) for 0 < 𝑊/𝑈0 ≲ 1.32, ( 𝑓 2, 𝑓 3, 𝑓 4) → ( 𝑓 1, 𝑓 2, 𝑓 3, 𝑓 4, 𝑓 5)
at 𝑊/𝑈4 ≃ 1.62, and ( 𝑓 1, 𝑓 2, 𝑓 3, 𝑓 4, 𝑓 5) → ( 𝑓 0, 𝑓 1, 𝑓 2, 𝑓 3, 𝑓 4, 𝑓 5, 𝑓 6) at 𝑊/𝑈0 ≃ 3.27.
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For𝑊 ≫ 𝑈0, we recover the results of non-interacting limit with 𝑍 𝑗𝑧 ≃ 1.00.

With the results in isotropic line in hand, we varied the anisotropy (𝑊3/2 ≠

𝑊5/2(= 𝑊1/2) in electronic bandwidth with 𝑓 -electron count 𝑛 𝑓 = 2.5. We found
that the intra-atomic correlations enhances the anisotropies resulting in the partial
localization of electrons on the sub-dominant hopping channel. Altogether we have
found twelve partially localized phases: three one-electron localized PM phases,
three one-electron localized FM phases, two two-electron localized PM phases, two
two-electron localized FM phases, and two two-electron localized SFM. Thereafter,
we constructed an orbital-selective partially localized phase diagram by compar-
ing their energies. Figure 11.6 presents this phase diagram. At a low electronic
bandwidth region with anisotropy, two electrons localization tends to be favorable.
These two-electron localized phases follows the Hund’s rule with the multiplets
| 𝑓 2; 𝐽 = 4⟩, | 𝑓 3; 𝐽 = 9/2⟩ and | 𝑓 4; 𝐽 = 4⟩ forming the ground-states. More precisely,
when 𝑊3/2 > 𝑊5/2 with 𝑊3/2 ≲ 5.20, SFM phase with orbitals 𝑗𝑧 = 5/2 and 𝑗𝑧 = 1/2
localized is found be more stable than PM or FM phases. This SFM 5

2 ,
1
2

phase lead
to FM 5

2 ,
1
2

(PM 5
2 ,

1
2
) when 𝑊3/2 ≳ 5.20. For 𝑊3/2 < 𝑊5/2, FM (PM) phase with orbitals

𝑗𝑧 = 5/2 and 𝑗𝑧 = 3/2 is found to be more stable instead of SFM 5
2 ,

3
2
. With sufficiently

large 𝑊5/2, FM 5
2 ,

3
2

(PM 5
2 ,

3
2
) lead to FM 3

2
(PM 3

2
) with only one-electron localization.

The mechanism of localization of one-electron can be similar to that of Mott local-
ization where the ratio of 𝑈𝑗𝑧

𝑊𝑗𝑧
plays a vital role. Furthermore, our phase diagram is

consistent with the previous results [60, 327].

To gain further insight into the nature of the partially localized phases, we have
analyzed Fermi surfaces, orbital occupations, magnetization, and 𝑓 -electron valency
configurations. With FM and PM being degenerate but having different occupations
per non-localized orbitals, FM phases have twice more unique Fermi surface sheets
than their counterpart PM phase. As expected, we observed that the magnetization
of two-electron localized phases is larger than that of one-electron localized phases.
We also found that increasing electronic bandwidth changes the 𝑓 -electron valency
configurations, where four electrons states can form the ground-state satisfying
Hund’s rule for two-electron localized phases. Furthermore, we also find that the
bandwidth anisotropy increases the weight of 𝑓 2 configuration.

This study has several perspectives. At first, the model calculations can be ex-
tended to the parameters 𝑊3/2 > 15 eV and 𝑊5/2(𝑊1/2) > 15. In this case, the more
energetic configurations like 𝑓 5, 𝑓 1 can participate in the formation of partially lo-
calized phases. This may stabilize one-electron localized phases like FM 5

2
(PM 5

2
) as

ground-state for 𝑊3/2 > 𝑊5/2, which was observed in previous study [327]. One
could also seek the possibility of having an antiferromagnetic phase in the further
analysis of partially localized phases. Furthermore, this present study provides cru-
cial information to perform a future model calculation with the inclusion of magnetic
field and also more qualitative band-structure calculations for other uranium-based
heavy-fermions. A second direction is to account for more general DOS profiles. A
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final goal is certainly to combine the present ansatz with material-specific ab-initio
calculations. Hence, this thesis puts a new brick on the understanding of the dualism
of 5 𝑓 electrons and paves a new way for more realistic band structure calculations.
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Appendix A

Evaluation of energies and ground
state phase diagrams

Total energy in each phase is determined by taking average of the Hamiltonian per
site as 𝐸/𝒩 = ⟨𝐻⟩/𝒩 , where 𝒩 is the total number of sites in our system. Below, we
present the equations to calculate energy for each considered phase.

A.1 Expressions of energies

Paramagnetic Kondo phase
𝐸𝐾

𝒩 =
1
𝒩

∑
k𝜎

𝜖k⟨𝑐†k𝜎𝑐k𝜎⟩ − 𝑥
2𝑟2

𝐽𝐾
(A.1)

Ferromagnetic phase
𝐸𝐹

𝒩 =
1
𝒩

∑
k𝜎

𝜖k⟨𝑐†k𝜎𝑐k𝜎⟩ + 𝑥𝐽𝐾𝑚 𝑓𝑚𝑐 (A.2)

Antiferromagnetic phase
𝐸𝐴𝐹

𝒩 =
1
𝒩

∑
k∈𝑅𝐵𝑍,𝜎

{𝜖k⟨𝑐†k𝜎𝑐k𝜎⟩ + 𝜖k+Q⟨𝑐†k+Q𝜎𝑐k+Q𝜎⟩ + 𝑥𝐽𝐾𝑚 𝑓𝑚𝑐 (A.3)

A.2 Evaluation of ground state phase diagram
Since we have noticed that ground energies (without interaction, 𝐽𝐾 = 0) for each
method are not exactly same. So the phase diagram were constructed by evaluating
the energies differences 𝐸𝐾 − 𝐸0

𝐾
(𝐽𝐾 = 0), 𝐸𝐹 − 𝐸0

𝐹
(𝐽𝐾 = 0) and 𝐸𝐴𝐹 − 𝐸0

𝐴𝐹
(𝐽𝐾 = 0).
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Appendix B

Matrix DMFT/CPA for Néel ordered
antiferromagnetic phase

In this chapter of the appendix, we present a complete detail of our calculations and
techniques that we have used to obtain DMFT equations. The first step would be the
diagrammatic expansion. From now, every 2 × 2 matrices are represented by bold
letters, and every 4× 4 matrices are represented by bold letters and two bars upon it.

B.1 Diagrammatic development of Green function

In this diagrammatic expansion, we consider only direct part connecting from site 𝑖
to site 𝑗. Thus, Green’s function 𝐺𝜎

𝑖 𝑗
for Kondo alloy model can be expressed as

𝐺𝜎
𝑖 𝑗 =

∑
𝑎𝑙𝑙𝑝𝑎𝑡ℎ𝑠

Π𝜎
𝑖𝑖𝛾𝑖𝑖1P

†
𝑖WP𝑖1Π𝜎

𝑖1 𝑖1
𝛾𝑖1 𝑖2P†

𝑖1
WP𝑖2 . . .Π𝜎

𝑖𝑝 𝑖𝑝
𝛾𝑖𝑝 𝑗P†

𝑖𝑝
WP𝑗Π𝜎

𝑗 𝑗 , (B.1)

multiplying above equation by the projectors P𝑖 on left side and P†
𝑗

on the right side,
and taking average over disorder, we get

⟨P𝑖𝐺𝜎
𝑖 𝑗P

†
𝑗 ⟩ =

∑
𝑎𝑙𝑙𝑝𝑎𝑡ℎ𝑠

⟨P𝑖Π𝜎
𝑖𝑖P

†
𝑖 ⟩𝛾𝑖𝑖1W⟨P𝑖1Π𝜎

𝑖1 𝑖1
P†
𝑖1
⟩𝛾𝑖1 𝑖2W . . . ⟨P𝑖𝑝Π𝜎

𝑖𝑝 𝑗𝑝
P†
𝑗𝑝
⟩𝛾𝑖𝑝 𝑗W⟨P𝑗Π𝜎

𝑗 𝑗P
†
𝑗 ⟩ .

(B.2)

We simplify the notation as ⟨P𝑖Π𝜎
𝑖𝑖

P†
𝑖
⟩ = ⟨Π̃𝜎

𝑖
⟩, the equation B.2 is rewritten as
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⟨G𝜎
𝑖 𝑗⟩ = ⟨Π̃𝜎

𝑖𝑖⟩𝛿𝑖 𝑗 +
∑

𝑎𝑙𝑙𝑝𝑎𝑡ℎ𝑠

⟨Π̃𝜎
𝑖𝑖⟩𝛾𝑖𝑖1W⟨Π̃𝜎

𝑖1 𝑖1
⟩𝛾𝑖1 𝑖2W⟨Π̃𝜎

𝑖2 𝑖2
⟩ . . . 𝛾𝑖𝑝 𝑗W⟨Π̃𝜎

𝑗 𝑗⟩ (B.3)

= ⟨Π̃𝜎
𝑖𝑖⟩𝛿𝑖 𝑗 + ⟨Π̃𝜎

𝑖𝑖⟩
∑

𝑎𝑙𝑙𝑝𝑎𝑡ℎ𝑠

𝛾𝑖𝑖1W⟨Π̃𝜎
𝑖1 𝑖1

⟩𝛾𝑖1 𝑖2W⟨Π̃𝜎
𝑖2 𝑖2

⟩ . . . 𝛾𝑖𝑝 𝑗W⟨Π̃𝜎
𝑗 𝑗⟩ (B.4)

= ⟨Π̃𝜎
𝑖𝑖⟩𝛿𝑖 𝑗 + ⟨Π̃𝜎

𝑖𝑖⟩
∑
𝑙

𝛾𝑖𝑙W
∑

𝑎𝑙𝑙𝑝𝑎𝑡ℎ𝑠

⟨Π̃𝜎
𝑙𝑙
⟩𝛾𝑙1 𝑙2W⟨Π̃𝜎

𝑙2 𝑙2
⟩ . . . 𝛾𝑙𝑝 𝑗W⟨Π̃𝜎

𝑗 𝑗⟩ (B.5)

= ⟨Π̃𝜎
𝑖𝑖⟩𝛿𝑖 𝑗 + ⟨Π̃𝜎

𝑖𝑖⟩
∑
𝑙

𝛾𝑖𝑙W⟨G𝜎
𝑖 𝑗⟩ . (B.6)

Finally,

⟨G𝜎
𝑖 𝑗⟩ = Π𝜎

𝑖 (𝛿𝑖 𝑗 +
∑
𝑙

𝛾𝑖𝑙W⟨G𝜎
𝑙 𝑗
⟩) , (B.7)

where Π𝜎
𝑖
= ⟨Π̃𝜎

𝑖𝑖
⟩ =

〈(
𝑥̂𝑖 𝑥̂𝑖Π

𝜎
𝑖𝑖

𝑥̂𝑖 𝑦̂𝑖Π
𝜎
𝑖𝑖

𝑦̂𝑖 𝑥̂𝑖Π
𝜎
𝑖𝑖

𝑦̂𝑖 𝑦̂𝑖Π
𝜎
𝑖𝑖

)〉
. We would like take Fourier transform

of above equation so multiplying both sides by 1
𝑁

∑
𝑖 𝑗 𝑒

𝑖k′Rj−𝑖kRi , so we get

G𝜎
kk′ =

1
𝑁

∑
𝑖 𝑗

𝑒 𝑖(k
′−k)RiΠ𝜎

𝑖 +
1
𝑁

∑
𝑖 𝑗

𝑒 𝑖k
′Rj−𝑖kRiΠ𝜎

𝑖 𝛾𝑖𝑙WG𝜎
𝑙 𝑗
, (B.8)

with few lines of algebraic calculations, we obtain

G𝜎
kk′ = Π𝜎

k′−k +
∑
k′′

Π𝜎
k′′−k𝛾k′′G𝜎

k′′k′ . (B.9)

B.2 Green’s function matrix in reduced Brillouin zone

Here, we are treating Néel ordered antiferromagnetic (AF) phase with wave ordering
vector Q = (𝜋,𝜋) considering two lattice sites in a unit antiferromagnetic cell. To do
so, we have to rewrite the equations on the reduced Brillouin zone (RBZ) considering
the bipartite organization in AF lattice with two sub-lattices 𝐴 and 𝐵 and 𝛿0 between
the distance between the first neighboring sites. In this way, the local propagator
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terms are written in RBZ i.e. k′, k ∈ 𝑅𝐵𝑍 as:

Π𝜎
(k′−k) =

1
𝑁

∑
𝑖

Π𝜎
𝑖 𝑒

𝑖(k′−k)Ri

=
1
𝑁

∑
𝑖∈𝐿𝐴

Π𝜎
𝑖 𝑒

𝑖(k′−k)Ri + 1
𝑁

∑
𝑖∈𝐿𝐵

Π𝜎
𝑖 𝑒

𝑖(k′−k)Ri

=
1
𝑁

{
Π𝜎
𝐴

∑
𝑖∈𝐿𝐴

𝑒 𝑖(k
′−k)Ri + Π𝜎

𝐵

∑
𝑖∈𝐿𝐴

𝑒 𝑖(k
′−k)(Ri+𝛿0)

}
=

1
𝑁

{
Π𝜎
𝐴

𝑁

2 𝛿kk′ + Π𝜎
𝐵

𝑁

2 𝛿kk′

}
=

Π𝜎
𝐴
+ Π𝜎

𝐵

2 𝛿kk′ , (B.10)

where Π𝜎
𝐴

and Π𝜎
𝐵

are local propagators for a site in a sublattice 𝐴 or 𝐵 respectively.
Similarly, the other three local propagators are expressed as

Π𝜎
(k′+Q−k) =

Π𝜎
𝐴
− Π𝜎

𝐵

2 𝛿kk′ , (B.11)

Π𝜎
(k′−k+Q) =

Π𝜎
𝐴
− Π𝜎

𝐵

2 𝛿kk′ , (B.12)

Π𝜎
(k′+Q−k+Q) =

Π𝜎
𝐴
+ Π𝜎

𝐵

2 𝛿kk′ . (B.13)

To be more clear and concise, we define Π+
𝜎 =

Π𝜎
𝐴
+Π𝜎

𝐵

2 and Π−
𝜎 =

Π𝜎
𝐴
−Π𝜎

𝐵

2 . G𝜎
kk′ is

expanded in RBZ as

G𝜎
kk′ = Π𝜎

k′−k +
∑
k′′

Π𝜎
k′′−k𝛾k′′WG𝜎

k′′k′

= Π𝜎
k′−k +

∑
𝑘′′

{
𝛾k′′Π𝜎

k′′−kWG𝜎
k′′k′ + 𝛾(k′′+Q)Π𝜎

(k′′+Q)−kWG𝜎
(k′′+Q),k′

}
= Π+

𝜎𝛿kk′ +
∑
𝑘′′

{
𝛾k′′Π+

𝜎WG𝜎
k′′k′𝛿kk′′ + 𝛾(k′′+Q)Π−

𝜎WG𝜎
(k′′+Q),k′𝛿kk′′

}
= Π+

𝜎𝛿kk′ + Π+
𝜎EkG𝜎

kk′ + Π−
𝜎Ek+QG𝜎

k+Q,k′ , (B.14)

with Ek = 𝛾kW and Ek+Q = 𝛾k+QW are dispersion matrices.
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similarly,

G𝜎
k,k′+Q = Π−

𝜎𝛿kk′ + Π+
𝜎EkG𝜎

k,k′+Q + Π−
𝜎Ek+QG𝜎

k+Q,k′+Q , (B.15)

G𝜎
k+Q,k′ = Π−

𝜎𝛿kk′ + Π−
𝜎EkG𝜎

k,k′ + Π+
𝜎Ek+QG𝜎

k+Q,k′ , (B.16)

G𝜎
k+Q,k′+Q = Π+

𝜎𝛿kk′ + Π−
𝜎EkG𝜎

k,k′+Q + Π+
𝜎Ek+QG𝜎

k+Q,k′+Q . (B.17)

We would like to express the matrix ¯̄G𝜎
kk′ which is a tensor whose components

are G𝜎
kk′ ,G𝜎

k+Q,k′ ,G𝜎
k,k′+Q and G𝜎

k+Q,k′+Q. We define a 4 × 4 matrix as ¯̄G𝜎
kk′ =(

G𝜎
kk′ G𝜎

kk′+Q
G𝜎

k+Qk′ G𝜎
k+Qk′+Q

)
. Inserting relations B.14, B.15, B.16 and B.17 along with few

calculations, we get

¯̄G𝜎
kk′ =


(
Π+

𝜎 Π−
𝜎

Π−
𝜎 Π+

𝜎

)−1

−
(
Ek 0
0 Ek+Q

)
−1

𝛿kk′ (B.18)

.

B.3 Some relations using Pauli matrices

Here, we define a 4 × 4 matrix K such as K =

(
a b
c d

)
where each a, b, c and d are the

blocks of 2× 2 matrices and K. With the help of three Pauli matrices 𝜎𝑥 , 𝜎𝑦 and 𝜎𝑧 as
2 × 2, we can write the expressions below which will be useful to map 4 × 4 Green’s
function matrices to 2 × 2 Green’s functions matrices.

•

(
a 0
0 0

)
= 1

2(1 ⊗ 1 + 𝜎𝑧 ⊗ 1)K1
2(1 ⊗

1 + 𝜎𝑧 ⊗ 1)

•

(
b 0
0 0

)
= 1

2(1 ⊗ 1 + 𝜎𝑧 ⊗ 1)K1
2(𝜎𝑥 ⊗

1 − 𝑖𝜎𝑦 ⊗ 1)

•

(
c 0
0 0

)
= 1

2(𝜎𝑥 ⊗ 1+ 𝑖𝜎𝑦 ⊗ 1)K1
2(1 ⊗

1 + 𝜎𝑧 ⊗ 1)

•

(
d 0
0 0

)
= 1

2(𝜎𝑥 ⊗1+ 𝑖𝜎𝑦 ⊗1)K1
2(𝜎𝑥 ⊗

1 − 𝑖𝜎𝑦 ⊗ 1)
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•

(
0 0
0 a

)
= 1

2(𝜎𝑥 ⊗1− 𝑖𝜎𝑦 ⊗1)K1
2(𝜎𝑥 ⊗

1 + 𝑖𝜎𝑦 ⊗ 1)

•

(
0 0
0 b

)
= 1

2(𝜎𝑥 ⊗ 1− 𝑖𝜎𝑦 ⊗ 1)K1
2(1 ⊗

1 − 𝜎𝑧 ⊗ 1)

•

(
0 0
0 c

)
= 1

2(1 ⊗ 1 − 𝜎𝑧 ⊗ 1)K1
2(𝜎𝑥 ⊗

1 + 𝑖𝜎𝑦 ⊗ 1)

•

(
0 0
0 d

)
= 1

2(1 ⊗ 1 − 𝜎𝑧 ⊗ 1)K1
2(1 ⊗

1 − 𝜎𝑧 ⊗ 1)

B.4 Local Green’s function matrix

We define a local Green’s function matrix as

G𝜎
𝑙𝑜𝑐,𝛼 =

(
𝑥𝐺𝜎

𝒦 0
0 (1 − 𝑥)𝐺𝜎

𝒩

)
, (B.19)

where 𝛼 denotes sublattice type: A or B. Now, we would like to express G𝜎
𝑙𝑜𝑐,𝛼 in recip-

rocal k-space. To do so, we use the Fourier transform as G𝜎
𝑙𝑜𝑐,𝛼 = 1

𝑁

∑
kk′∈𝐵𝑍 G𝜎

kk′𝑒
𝑖(k−k′)R𝛼 .

Here, k,k’ are in normal first Brillouin zone. Since, here we are considering anti-
ferromagnetic phase with ordering vector (Q = (𝜋,𝜋)) with two lattice sites per unit
cell. We have the Brillouin zone reduced by half. We have to rewrite above equation
on reduced Brillouin zone (RBZ).

G𝜎
𝑙𝑜𝑐,𝛼 =

1
𝑁

∑
kk′∈𝐵𝑍

G𝜎
kk′𝑒

𝑖(k−k′)R𝛼 (B.20)

=
1
𝑁

∑
kk′∈𝑅𝐵𝑍

{G𝜎
kk′ 𝑒

𝑖(k−k′)R𝛼︸    ︷︷    ︸
𝛿kk′

+G𝜎
k+Qk′𝑒

𝑖(k−k′)R𝛼 𝑒 𝑖QR𝛼

+ G𝜎
kk′+Q𝑒

𝑖(k−k′)R𝛼 𝑒−𝑖QR𝛼 + G𝜎
k+Qk′+Q𝑒

𝑖(k−k′)R𝛼} , (B.21)

the factor 𝑒±𝑖QR𝛼 is whether +1 or -1 depending upon sublattice type ‘A’ or ‘B’.
Rewriting 𝑒±𝑖QR𝛼 as 𝛼,finally our equation becomes :

G𝜎
𝑙𝑜𝑐,𝐴

=
1
𝑁

∑
k∈𝑅𝐵𝑍

{G𝜎
kk + G𝜎

k+Qk + G𝜎
kk+Q + G𝜎

k+Qk+Q} , (B.22)

G𝜎
𝑙𝑜𝑐,𝐵

=
1
𝑁

∑
k∈𝑅𝐵𝑍

{G𝜎
kk − G𝜎

k+Qk − G𝜎
kk+Q + G𝜎

k+Qk+Q} . (B.23)

We define a new 4 × 4 local Green’s function matrix ¯̄G𝜎
𝑙𝑜𝑐

composed of G𝜎
𝑙𝑜𝑐,𝛼∈𝐴

and G𝜎
𝑙𝑜𝑐,𝛼∈𝐵 as below
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¯̄G𝜎
𝑙𝑜𝑐

=

(
G𝜎
𝑙𝑜𝑐,𝐴

0
0 G𝜎

𝑙𝑜𝑐,𝐵

)
. (B.24)

Putting the equations (B.22, B.23) in (B.24) we get

¯̄G𝜎
𝑙𝑜𝑐

=
1
𝑁

∑
k∈𝑅𝐵𝑍

(
G𝜎

kk + G𝜎
k+Qk + G𝜎

kk+Q + G𝜎
k+Qk+Q 0

0 G𝜎
kk − G𝜎

k+Qk − G𝜎
kk+Q + G𝜎

k+Qk+Q

)
.

(B.25)
Using relations in B.3, we can express the equation (B.25) as

¯̄G𝜎
𝑙𝑜𝑐

=
1
𝑁

∑
k∈𝑅𝐵𝑍

{1
2((1 + 𝜎𝑧) ⊗ 1) ¯̄G𝜎

kk
1
2((1 + 𝜎𝑧) ⊗ 1) + 1

2((1 + 𝜎𝑧) ⊗ 1) ¯̄G𝜎
kk

1
2((𝜎𝑥 − 𝑖𝜎𝑦) ⊗ 1)

+ 1
2((𝜎𝑥 + 𝑖𝜎𝑦) ⊗ 1) ¯̄G𝜎

kk
1
2((1 + 𝜎𝑧) ⊗ 1) + 1

2((𝜎𝑥 + 𝑖𝜎𝑦) ⊗ 1) ¯̄G𝜎
kk

1
2((𝜎𝑥 − 𝑖𝜎𝑦) ⊗ 1)

+ 1
2((𝜎𝑥 − 𝑖𝜎𝑦) ⊗ 1) ¯̄G𝜎

kk
1
2((𝜎𝑥 + 𝑖𝜎𝑦) ⊗ 1) + 1

2((𝜎𝑥 − 𝑖𝜎𝑦) ⊗ 1) ¯̄G𝜎
kk

1
2((1 − 𝜎𝑧) ⊗ 1)

+ 1
2((1 − 𝜎𝑧) ⊗ 1) ¯̄G𝜎

kk
1
2((𝜎𝑥 + 𝑖𝜎𝑦) ⊗ 1) + 1

2((1 − 𝜎𝑧) ⊗ 1) ¯̄G𝜎
kk

1
2((1 − 𝜎𝑧) ⊗ 1)}

,

(B.26)

where ¯̄G𝜎
kk is defined in the section B.2. With some simple algebraic calculations we

obtain a simplified equation as

¯̄G𝜎
𝑙𝑜𝑐

=
1

2𝑁

∑
k∈𝑅𝐵𝑍

{((𝜎𝑧+𝜎𝑥)⊗1) ¯̄G𝜎
kk((𝜎𝑧+𝜎𝑥)⊗1)+((1+ 𝑖𝜎𝑦)⊗1) ¯̄G𝜎

kk((1− 𝑖𝜎𝑦)⊗1)} .

(B.27)
Inserting the expression B.18 in the above Eq. B.27 and knowing that,

• {(𝜎𝑧 + 𝜎𝑥) ⊗ 1}−1 = ((𝜎𝑧 + 𝜎𝑥)−1 ⊗ 1) = 1
2((𝜎𝑧 + 𝜎𝑥)−1 ⊗ 1) (B.28)

• {(1 − 𝑖𝜎𝑦) ⊗ 1)−1}−1 = ((1 − 𝑖𝜎𝑦)−1 ⊗ 1) = 1
2((1 + 𝑖𝜎𝑦) ⊗ 1) (B.29)

• {(1 + 𝑖𝜎𝑦) ⊗ 1)−1}−1 = ((1 + 𝑖𝜎𝑦)−1 ⊗ 1) = 1
2((1 − 𝑖𝜎𝑦) ⊗ 1) (B.30)

We get

¯̄G𝜎
𝑙𝑜𝑐

=
1

2𝑁

∑
k∈𝑅𝐵𝑍

{{1
4((𝜎𝑧 + 𝜎𝑥) ⊗ 1)( ¯̄M𝜎−1 − ¯̄Ek)((𝜎𝑧 + 𝜎𝑥) ⊗ 1)}−1

+ {1
4((1 + 𝑖𝜎𝑦) ⊗ 1)( ¯̄M𝜎−1 − ¯̄Ek)((1 − 𝑖𝜎𝑦) ⊗ 1)}−1} ,
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where ¯̄M =

(
Π+

𝜎 Π−
𝜎

Π−
𝜎 Π+

𝜎

)
and ¯̄Ek =

(
Ek 0
0 Ek+Q

)
. with the help of usual matrix relations:

{A−1B−1C−1} = {CBA}−1 and A−1 + B−1 = A−1(B + A)B−1, and with few lines of
straight forward algebraic calculations, we arrive to the expression

¯̄G𝜎
𝑙𝑜𝑐

=
2
𝑁

∑
k∈𝑅𝐵𝑍

(𝜎𝑥 ⊗ 1)
{
(𝜎𝑥 ⊗ 1) ¯̄M𝜎−1

𝐷 (𝜎𝑥 ⊗ 1) − (1 ⊗ Ek) ¯̄M𝜎
𝐷(1 ⊗ Ek)

}−1
(𝜎𝑥 ⊗ 1) ,

(B.31)
with M𝜎−1

𝐷
= (1 ⊗ Π+

𝜎 + 𝜎𝑧 ⊗ Π−
𝜎 )−1. Again, with few lines of few lines matrix

calculations, we arrive our final expression

G𝜎
𝑙𝑜𝑐,𝛼 =

2
𝑁

∑
k∈𝑅𝐵𝑍

(Π−1
𝛼𝜎 − EkΠ𝛼̄𝜎Ek)−1 . (B.32)

where 𝛼 = 𝐴, 𝐵 and 𝛼̄ = 𝐵, 𝐴.

B.5 Dynamical local bath

In this section of this appendix, we will be deriving the equation of dynamical local
bath. At first, we write the expression of the dynamical local bath as

∆𝜎 =
∑
𝑖 𝑗

𝛾𝑖𝛼𝛾𝛼 𝑗W⟨G(𝛼)
𝑖 𝑗

⟩𝑑𝑖𝑠W , (B.33)

with 𝛼 is a cavity site either belongs to sublattice A or B. Inserting ⟨G(𝛼)
𝑖 𝑗

⟩𝑑𝑖𝑠 =

⟨G𝑖 𝑗⟩𝑑𝑖𝑠 − ⟨G𝑖𝛼⟩G−1
𝑙𝑜𝑐

⟨G𝛼 𝑗⟩𝑑𝑖𝑠 in the equation B.33, we get

∆𝜎
𝛼 =

∑
𝑖 𝑗

𝛾𝑖𝛼𝛾𝛼 𝑗W⟨G𝜎
𝑖 𝑗⟩𝑑𝑖𝑠W −

(∑
𝑖

𝛾𝑖𝛼W⟨G𝜎
𝑖𝛼⟩𝑑𝑖𝑠

)
[⟨G𝜎

𝛼𝛼⟩𝑑𝑖𝑠]−1 ©­«
∑
𝑗

𝛾𝛼 𝑗 ⟨G𝜎
𝛼 𝑗⟩𝑑𝑖𝑠W

ª®¬ .
(B.34)

In order to express the Eq. B.34 in reciprocal k-space is reduced Brillouin zone, we
perform the same type of method as in B.21. Thus, we can easily express each term
of the Eq. B.34 in RBZ as
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∑
𝑖

𝛾𝑖𝛼W⟨G𝜎
𝑖𝛼⟩𝑑𝑖𝑠 =

1
𝑁

∑
k∈𝑅𝐵𝑍

{𝛾kWG𝜎
kk + 𝛼𝛾kWG𝜎

kk+Q

+ 𝛼𝛾k+QWG𝜎
k+Qk + 𝛾k+QWG𝜎

k+Qk+Q} , (B.35)∑
𝑗

𝛾𝛼 𝑗 ⟨G𝜎
𝛼 𝑗⟩𝑑𝑖𝑠W =

1
𝑁

∑
k∈𝑅𝐵𝑍

{𝛾kG𝜎
kkW + 𝛼𝛾kG𝜎

kk+QW

+ 𝛼𝛾k+QG𝜎
k+QkW + 𝛾k+QG𝜎

k+Qk+QW} , (B.36)∑
𝑖 𝑗

𝛾𝑖𝛼𝛾𝛼 𝑗W⟨G𝜎
𝑖 𝑗⟩𝑑𝑖𝑠W =

1
𝑁

∑
k∈𝑅𝐵𝑍

{𝛾k𝛾kWG𝜎
kkW + 𝛼𝛾k𝛾k+QWG𝜎

kk+QW

+ 𝛼𝛾k+Q𝛾kWG𝜎
k+QkW + 𝛾k+Q𝛾k+QWG𝜎

k+Qk+QW} , (B.37)

where 𝛼 = 1 if a site belongs to sublattice A or -1 if a site belongs to sublattice B. In
order to find the expression of ∆𝜎

𝛼, we describe a tensor ∆𝜎 composed of ∆𝜎
𝛼∈𝐴 and

∆𝜎
𝛼∈𝐵 as :

∆𝜎 =

(
∆𝜎
𝐴

0
0 ∆𝜎

𝐵

)
. (B.38)

The next step would be rewriting B.38 using 𝛿0 between A and B sites, and we obtain

∆𝜎 =
∑
𝑖 𝑗

(
𝛾𝑖𝛼𝛾𝛼 𝑗WG𝜎

𝑖 𝑗
W 0

0 𝛾𝑖+𝛿0𝛾𝛼+𝛿0 𝑗+𝛿0 WG𝜎
𝑖+𝛿0 𝑗+𝛿0

W

)

−
∑
𝑖

(
𝛾𝑖𝛼WG𝜎

𝑖𝛼 0
0 𝛾𝑖+𝛿0𝛼+𝛿0 WG𝜎

𝑖+𝛿0𝛼+𝛿0

) (
G𝜎
𝑙𝑜𝑐,𝐴

0
0 G𝜎

𝑙𝑜𝑐,𝐵

)−1 ∑
𝑗

(
𝛾𝛼 𝑗G𝜎

𝛼 𝑗W 0
0 𝛾𝛼+𝛿0 𝑗+𝛿0 G𝜎

𝛼+𝛿0 𝑗+𝛿0
W

) .
(B.39)

We insert Eqs. B.35, B.36 and B.37 in each of the terms of B.39 and treating with Pauli
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matrices, we obtain∑
𝑖

(
𝛾𝑖𝛼WG𝜎

𝑖𝛼 0
0 𝛾𝑖+𝛿0𝛼+𝛿0WG𝜎

𝑖+𝛿0𝛼+𝛿0

)
= −(1 ⊗ 1) + (1 ⊗ Π+

𝜎 + 𝜎𝑧 ⊗ Π−
𝜎 )−1 ¯̄G𝜎

𝑙𝑜𝑐

(B.40)∑
𝑗

(
𝛾𝛼 𝑗G𝜎

𝛼 𝑗W 0

0 𝛾𝛼+𝛿0 𝑗+𝛿0G𝜎
𝛼+𝛿0 𝑗+𝛿0

W

)
= −(1 ⊗ 1) + G𝜎

loc(1 ⊗ Π+
𝜎 + 𝜎𝑧 ⊗ Π−

𝜎 )−1

(B.41)∑
𝑖 𝑗

(
𝛾𝑖𝛼𝛾𝛼 𝑗WG𝜎

𝑖 𝑗
W 0

0 𝛾𝑖+𝛿0𝛾𝛼+𝛿0 𝑗+𝛿0WG𝜎
𝑖+𝛿0 𝑗+𝛿0

W

)
= −(1 ⊗ Π+

𝜎 + 𝜎𝑧 ⊗ Π−
𝜎 )−1 + (1 ⊗ Π+

𝜎

+ 𝜎𝑧 ⊗ Π−
𝜎 )−1G𝜎

loc(1 ⊗ Π+
𝜎 + 𝜎𝑧 ⊗ Π−

𝜎 )−1

(B.42)

Putting all three equations obtained above into the equation B.39, and we get an
equation

∆𝜎 = (1 ⊗ Π+
𝜎 + 𝜎𝑧 ⊗ Π−

𝜎 )−1 − [ ¯̄G𝜎
𝑙𝑜𝑐

]−1 . (B.43)

From the above equation, one can also derive the equation for dynamical local
bath for sub-lattices 𝛼 =A or B:

∆𝜎
𝛼 = [Π𝜎

𝛼]−1 − [G𝜎
𝑙𝑜𝑐,𝛼]

−1 . (B.44)
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Appendix C

Results on Bethe lattice

Parallelly, with 2D lattice, we have equally evaluated DMFT equations for Bethe
lattice with infinite coordination. In this appendix, we present the phase diagram,
some results on local potential scattering, and static magnetic susceptibility that
we have obtained for Bethe lattice. However, for the calculations on Bethe lattice,
we have considered only the paramagnetic Kondo case. The aim of these extra
calculations is to verify the pertinence of our DMFT study of the 2D lattice.

C.1 Equations for local Green’s functions
Here, we present the equations for dynamical local bath and the local Green’s func-
tions for Bethe lattice. Since we consider Bethe lattice with infinite coordination, the
Green’s functions can be replaced by local Green’s functions in the equations for the
dynamical local bath in the Eq 3.21. This lead us to a much simpler equations as

Δ(𝑖𝜔) = 𝑥𝑡2𝐺𝒦 (𝑖𝜔) + (1 − 𝑥)𝑡2𝐺𝒩 (𝑖𝜔) , (C.1)

Furthermore, the equation C.1 can be inserted in the expressions of local Green’s
functions 𝐺𝒩 (𝑖𝜔) = 1/(𝑖𝜔 + 𝜇 − Δ(𝑖𝜔)) and 𝐺𝒦 (𝑖𝜔) = 1/(𝑖𝜔 + 𝜇 − Δ(𝑖𝜔) − Σ𝐾(𝑖𝜔)).
With few lines of algebraic calculations, we can obtain the equations as

𝐺𝒦 (𝑖𝜔) = 𝑎

2𝑥𝑡2

[
1 −

√
1 − 4𝑥𝑡2

𝑎2

]
, (C.2)

𝐺𝒩 (𝑖𝜔) = 𝑏

2(1 − 𝑥)𝑡2

[
1 −

√
1 − 4(1 − 𝑥)𝑡2

𝑏2

]
, (C.3)

with 𝑎 = 𝑖𝜔 + 𝜇 − (1 − 𝑥)𝑡2𝐺𝒩 (𝑖𝜔) − Σ𝐾(𝑖𝜔) and 𝑏 = 𝑖𝜔 + 𝜇 − 𝑥𝑡2𝐺𝒦 (𝑖𝜔). Now,
we have all the equations necessary to perform the DMFT loop as for 2D lattice.
Numerically, We solve DMFT equations 3.19 and 3.22 along with self-consistent
equations 3.25, 3.26 and 3.27 for paramagnetic phase.
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C.2 Phase diagram

Au contrary to the 2D lattice, here we don’t consider magnetically ordered phase.
The aim is to compare the dilute-dense paramagnetic Kondo phase diagram with a
2D lattice.

Figure C.1: Dense-dilute phase diagram for paramagnetic Kondo phase for Bethe
lattice for 𝑛𝑐 = 0.30, 0.70 and 0.90. Yellow-blue background represent imaginary
part of self-energy representing decoherence.

As we can remark that the paramagnetic phase diagram for Bethe lattice in
figure C.1 is similar to that of 2D lattice in figure 5.9.
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C.3 Local potential scattering
The local potential is described in section 6.1.1. We use the same definition, and we
analyze local potential scattering for Bethe lattice in paramagnetic phase as for 2D
lattice. It will permit us to compare our result with previously published results on
local potential scattering in [138].

C.3.1 Large Kondo coupling

Figure C.2 present the results for large Kondo coupling at𝑇𝐾/𝑊 = 0.169 for 𝑛𝑐 = 0.70.
In this figure, we can clearly observe that the discontinuity seen in 2D lattice at 𝑥 = 𝑛𝑐
is present here along with other characteristics. Here, the only difference that we
observe is that the imaginary part of local potential scattering can take negative
values. The negative values for local potential scattering were also observed in [138].

Figure C.2: Local potential scattering for Bethe lattice in paramagnetic Kondo phase
for Kondo coupling 𝑇𝐾/𝑊 = 0.169 and for 𝑛𝑐 = 0.70. Solid line represent LPS for
𝒦 -site whereas dashed line represent LPS for 𝒩-site. (•) indicates Kondo lattice
(𝑥 = 1.00), and (✖) the most diluted case (𝑥 = 0.01). Light red background highlights
the electronic bandwidth𝑊 .

C.3.2 Low Kondo coupling

Figure C.3 present the results for large Kondo coupling at𝑇𝐾/𝑊 = 0.009 for 𝑛𝑐 = 0.70.
In this figure, we can clearly observe that the discontinuity seen in 2D lattice at 𝑥 = 𝑛𝑐
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disappears, and it is translated by a jump near 𝑥 = 𝑛𝑐 . 𝑆𝒩 (0) remains inside the non-
interacting electronic bandwidth and the 𝑆𝒦 (0) slowly crosses the bandwidth at the
upper edge of the electronic bandwidth. Again, we observe that the imaginary part
can take negative values.

Figure C.3: Local potential scattering for Bethe lattice in paramagnetic Kondo phase
for Kondo coupling 𝑇𝐾/𝑊 = 0.009 and for 𝑛𝑐 = 0.70. Solid line represent LPS for
𝒦 -site whereas dashed line represent LPS for 𝒩-site. (•) indicates Kondo lattice
(𝑥 = 1.00), and (✖) the most diluted case (𝑥 = 0.01). Light red background highlights
the electronic bandwidth𝑊 .
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Appendix D

Toy model for negative mass

In this part of the appendix, we present a simple toy model to explain the possible
origin of the cancellation of the effective mass corresponding to the exceptional point.

D.1 Two reservoirs model

Figure D.1: Schematic view of two reservoirs (a) and (b) to which an impurity site
interacts.

We consider an impurity site that is coupled with the two reservoirs (a) and (b) via
the hybridizations 𝑉𝑎 and 𝑉𝑏 respectively. In this case, the local Green function at
the impurity can be written as

𝐺
𝑖𝑚𝑝

0 (𝜔) = 1
𝜔 − 𝜆 + 𝑖𝑠𝑖𝑔𝑛(𝜔)Δ𝑏

, (D.1)

where Δ𝑏 = 𝜋𝜌𝑏(0)𝑉2
𝑏
, 𝜌𝑏(0) being density of states of reservoir (b) at Fermi level. We

rewrite 𝜆̃ = −𝜆 + 𝑖Δ𝑏 . Furthermore, the local self-energy describing the reservoir (a)
can be written as

Σ𝑎(𝜔) = 𝑉2
𝑎 𝐺

𝑖𝑚𝑝

0 (𝜔) . (D.2)
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Henceforth, the effective mass can be expressed as

𝑚∗
𝑎 = 1 − 𝜕ℜ(Σ𝑎(𝜔))

𝜕𝜔

��
𝜔=0 = 1 +

(𝜆2 − Δ2
𝑏
)𝑉2

𝑎

(𝜆2 + Δ2
𝑏
)2

. (D.3)

If the imaginary part Δ𝑏 is zero, the effective mass is always larger or equal to 1.
Otherwise, 𝑚∗ can be decreased or even negative if the arg(𝜆̃) > 𝜋/4.

D.2 Application to Σ𝑎𝑙𝑙𝑜𝑦(𝜔)
We rewrite the expression of self-energy alloy (see Eq. 5.5 in the section 5.2.1) as

Σ𝑎𝑙𝑙𝑜𝑦(𝜔) =
𝑥𝑟2

𝜔 + 𝜆 − (1 − 𝑥)𝑟2𝐺𝒩 (𝜔) . (D.4)

At 𝜔 = 0 and with 𝐺𝒩 (0) = 𝐺′
𝒩 (0) + 𝑖𝐺′′

𝒩 (0), we can identify from the equa-
tion (D.4) and (D.1) where the reservoir (a) acts as Kondo sites and reservoir (b) acts
as non-Kondo sites. Thus, the hybridization 𝑉2

𝑎 will get dressed by a factor 𝑥, the
probability of having a Kondo site and similarly, (1 − 𝑥) will dress the quantities
related to non-Kondo sites. Thus, we get

ℜ(𝜆̃) = −𝜆 + (1 − 𝑥)𝑟2𝐺′
𝒩 (0) , (D.5)

ℑ(𝜆̃) = −(1 − 𝑥)𝑟2𝐺′′
𝒩 (0) . (D.6)

Thus, dependent upon the value of ℜ(𝜆̃) and ℑ(𝜆̃), 𝑚∗ can be either negative or
positive. Hence, we can obtain both nature: particle or hole.
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Appendix E

Slave-bosons mappings

In this section, we present the mapping of slave-bosons on multiplet-Fock basis set.
Altogether there are 64 multiplets with 116 slave-bosons. The table below resumes
the multiplets and slave bosons according to different changer sectors.

𝑓 𝑛 𝐽 𝐽𝑧 |Γ𝑛⟩ 𝐸Γ 𝜙Γ𝑛

0 0 0 |Γ1⟩ = |000000⟩ 0 𝜙1,|000000⟩

1 5/2 5/2 |Γ2⟩ = |000001⟩ 0 𝜙2,|000001⟩

3/2 |Γ3⟩ = |000010⟩ 𝜙3,|000010⟩

1/2 |Γ4⟩ = |000100⟩ 𝜙4,|000100⟩

-1/2 |Γ5⟩ = |001000⟩ 𝜙5,|001000⟩

-3/2 |Γ6⟩ = |010000⟩ 𝜙6,|010000⟩

-3/2 |Γ7⟩ = |100000⟩ 𝜙7,|100000⟩

2 4 4 |Γ8⟩ = |000011⟩ 𝑈4 𝜙8,|000011⟩

3 |Γ9⟩ = |000101⟩ 𝜙9,|000101⟩

2 |Γ10⟩ =
√

5|000110⟩ + 3|001001⟩ 𝜙10,|001100⟩,
𝜙10,|001001⟩

1 |Γ11⟩ =
√

5|001010⟩ +
√

2|010001⟩ 𝜙11,|001010⟩,
𝜙11,|010001⟩

0 |Γ12⟩ = 2|001100⟩ + 3|010010⟩ + |100001⟩ 𝜙12,|001100⟩,
𝜙12,|010010⟩,
𝜙12,|100001⟩

-1 |Γ13⟩ =
√

5|010100⟩ +
√

2|100010⟩ 𝜙13,|010100⟩,
𝜙13,|100010⟩

-2 |Γ14⟩ =
√

5|011000⟩ + 3|100100⟩ 𝜙14,|011000⟩,
𝜙14,|100100⟩
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-3 |Γ15⟩ = |101000⟩ 𝜙15,|101000⟩

-4 |Γ16⟩ = |110000⟩ 𝜙16,|110000⟩

2 2 |Γ17⟩ = 3|001100⟩ −
√

5|001001⟩ 𝑈2 𝜙17,|001100⟩,
𝜙17,|001001⟩

1 |Γ18⟩ =
√

2|001010⟩ −
√

5|010001⟩ 𝜙18,|001010⟩,
𝜙18,|010001⟩

0 |Γ19⟩ = 4|001100⟩ − |010010⟩ − 5|100001⟩ 𝜙19,|001100⟩,
𝜙19,|010010⟩,
𝜙19,|100001⟩

-1 |Γ20⟩ =
√

2|010100⟩ −
√

5|100010⟩ 𝜙20,|010100⟩,
𝜙20,|100010⟩

-2 |Γ21⟩ = 3|011000⟩ −
√

5|100100⟩ 𝜙21,|011000⟩,
𝜙21,|100100⟩

0 0 0 |Γ22⟩ = |001100⟩ − |010010⟩ + |100001⟩ 𝑈0 𝜙22,|001100⟩,
𝜙22,|010010⟩,
𝜙22,|100001⟩

3 9/2 9/2 |Γ23⟩ = |000111⟩ 𝑈3, 9
2

𝜙22,|000111⟩

7/2 |Γ24⟩ = |001011⟩ 𝜙22,|001011⟩

5/2 |Γ25⟩ = |010011⟩ + |001101⟩ 𝜙25,|010011⟩,
𝜙25,|001101⟩

3/2 |Γ26⟩ = |001110⟩ +
√

32
5 |010101⟩ + |100011⟩ 𝜙26,|001110⟩,

𝜙26,|010101⟩,
𝜙26,|100011⟩

1/2 |Γ27⟩ = |010110⟩ +
√

4
5 |011001⟩ + |100101⟩ 𝜙27,|010110⟩,

𝜙27,|011001⟩,
𝜙27,|100101⟩

-1/2 |Γ28⟩ = |011010⟩ +
√

4
5 |100110⟩ + |101001⟩ 𝜙28,|011010⟩,

𝜙28,|100110⟩,
𝜙28,|101001⟩

-3/2 |Γ29⟩ = |011100⟩ +
√

32
5 |101010⟩ + |110001⟩ 𝜙29,|011100⟩,

𝜙29,|101010⟩,
𝜙29,|110001⟩

-5/2 |Γ30⟩ = |110010⟩ + |101100⟩ 𝜙30,|110010⟩,
𝜙30,|101100⟩

-7/2 |Γ31⟩ = |110100⟩ 𝜙31,|110100⟩

158



APPENDIX E. SLAVE-BOSONS MAPPINGS

-9/2 |Γ32⟩ = |111000⟩ 𝜙32,|111000⟩

3/2 3/2 |Γ33⟩ = |001110⟩ −
√

5
8 |010101⟩ + |100011⟩ 𝑈3, 3

2
𝜙33,|001110⟩,
𝜙33,|010101⟩,
𝜙33,|100011⟩

1/2 |Γ34⟩ = |010110⟩ −
√

5|011001⟩ + |100101⟩ 𝜙34,|010110⟩,
𝜙34,|011001⟩,
𝜙34,|100101⟩

-1/2 |Γ35⟩ = |011010⟩ −
√

5|100110⟩ + |101001⟩ 𝜙35,|011010⟩,
𝜙35,|100110⟩,
𝜙35,|101001⟩

-3/2 |Γ36⟩ = |011100⟩ −
√

5
8 |101010⟩ + |110001⟩ 𝜙36,|011100⟩,

𝜙36,|101010⟩,
𝜙36,|110001⟩

5/2 5/2 |Γ37⟩ = |010011⟩ − |001101⟩ 𝑈3, 5
2

𝜙37,|010011⟩,
𝜙37,|001101⟩

3/2 |Γ38⟩ = |001110⟩ − |100011⟩ 𝜙38,|001110⟩,
𝜙38,|100011⟩

1/2 |Γ39⟩ = |010110⟩ − |100101⟩ 𝜙39,|010110⟩,
𝜙39,|100101⟩

-1/2 |Γ40⟩ = |011010⟩ − |101001⟩ 𝜙40,|011010⟩,
𝜙40,|101001⟩

-3/2 |Γ41⟩ = |011100⟩ − |110001⟩ 𝜙41,|011100⟩,
𝜙41,|110001⟩

-5/2 |Γ42⟩ = |110010⟩ − |101100⟩ 𝜙42,|110010⟩,
𝜙42,|101100⟩

4 4 4 |Γ43⟩ = |001111⟩ 𝑈4,4 𝜙43,|010011⟩

3 |Γ44⟩ = |010111⟩ 𝜙44,|010111⟩

2 |Γ45⟩ =
√

5|100111⟩ + 3|011011⟩ 𝜙45,|100111⟩,
𝜙45,|011011⟩

1 |Γ46⟩ =
√

5|101011⟩ +
√

2|011101⟩ 𝜙46,|101011⟩,
𝜙46,|011101⟩

0 |Γ47⟩ = 2|110011⟩ + 3|101101⟩ + |011110⟩ 𝜙47,|110011⟩,
𝜙47,|101101⟩,
𝜙47,|011110⟩

-1 |Γ48⟩ =
√

5|110101⟩ +
√

2|101110⟩ 𝜙48,|110101⟩,
𝜙48,|101110⟩
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-2 |Γ49⟩ =
√

5|111001⟩ + 3|110110⟩ 𝜙49,|111001⟩,
𝜙49,|110110⟩

-3 |Γ50⟩ = |111010⟩ 𝜙50,|111010⟩

-4 |Γ51⟩ = |111100⟩ 𝜙51,|111100⟩

2 2 |Γ52⟩ = 3|100111⟩ −
√

5|011011⟩ 𝑈4,2 𝜙52,|100111⟩,
𝜙52,|011011⟩

1 |Γ53⟩ =
√

2|101011⟩ −
√

5|011101⟩ 𝜙53,|101011⟩,
𝜙53,|011101⟩

0 |Γ54⟩ = 4|110011⟩ − |101101⟩ − 5|011110⟩ 𝜙54,|110011⟩,
𝜙54,|101101⟩,
𝜙54,|011110⟩

-1 |Γ55⟩ =
√

2|110101⟩ −
√

5|101110⟩ 𝜙55,|110101⟩,
𝜙55,|101110⟩

-2 |Γ56⟩ = 3|111001⟩ −
√

5|110110⟩ 𝜙56,|111001⟩,
𝜙56,|110110⟩

0 0 |Γ57⟩ = |110011⟩ − |101101⟩ + |011110⟩ 𝑈4,0 𝜙57,|110011⟩,
𝜙57,|101101⟩,
𝜙57,|011110⟩

5 5/2 5/2 |Γ58⟩ = |011111⟩ 𝑈5, 5
2

𝜙58,|011111⟩

3/2 |Γ59⟩ = |101111⟩ 𝜙59,|101111⟩

1/2 |Γ60⟩ = |110111⟩ 𝜙60,|110111⟩

-1/2 |Γ61⟩ = |111011⟩ 𝜙61,|111011⟩

-3/2 |Γ62⟩ = |111101⟩ 𝜙62,|111101⟩

-5/2 |Γ63⟩ = |111110⟩ 𝜙63,|111110⟩

6 0 0 |Γ64⟩ = |111111⟩ 𝑈6,0 𝜙64,|111111⟩

with

𝑈3, 9
2
=

9𝑈2 + 33𝑈4
14 ,

𝑈3, 3
2
=

15𝑈2 + 6𝑈4
7 ,

𝑈3, 5
2
=

4𝑈0 + 5𝑈2 + 9𝑈4
6 ,

𝑈4,4 =
𝑈0 + 5𝑈2 + 12𝑈4

3 ,

𝑈4,2 =
𝑈0 + 8𝑈2 + 9𝑈4

3 ,

𝑈4,0 =
4𝑈0 + 5𝑈2 + 9𝑈4

3 ,

𝑈5, 5
2
=

2𝑈0 + 10𝑈2 + 18𝑈4
3 ,

𝑈6,0 =
𝑈0 + 5𝑈2 + 9𝑈4

3 .

160



List of Figures

1.1 Kadowaki–Woods ratio for a wide range of 4 𝑓 and 5 𝑓 -electron heavy-
fermion materials with normalized 𝐴̃ = 𝐴/(𝑁(𝑁−1))and 𝛾̃ = 𝛾/(𝑁(𝑁−
1)) with ground-state degeneracy 𝑁 . From [52] . . . . . . . . . . . . 4

1.2 Radial extend of 4 𝑓 electrons in Sm3+ and Pu3+ respectively with both
relativistic and nonrelativistic effects. 𝑥-axis in radial distance from
the nucleus whereas 𝑃(𝑅) radial probability to find an electron at a
distance 𝑟 from the nucleus. From [86] . . . . . . . . . . . . . . . . . 6

2.1 Schematic view of spin-flip process during electron scatter in Kondo
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Two historical example showing Kondo effect. (a) Resistivity of im-
pure gold from 1 K to 5 K where we observe a minimum resistivity
around 4 K, extracted from [19]. (b) Resistivity of Ce𝑥La1−𝑥Cu6 series
with Ce-La substitution. Single-impurity Kondo effect can be seen at
𝑥 = 0.094 and multi-impurity at 𝑥 = 1.0, extracted from [89]. . . . . . 13

2.3 Schematic view of Doniach’s phase diagram. Blue line indicate Kondo
temperature𝑇𝐾 and red line indicate magnetic order temperature scale
𝑇𝑅𝐾𝐾𝑌 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Schematic representation of Kondo lattice with impurity concentra-
tion 𝑥 greater than electronic filling 𝑛𝑐 in large Kondo coupling sce-
nario. Impurity spins are represented by blue double arrows and
conduction electrons are represented by green arrows. Red glow rep-
resent the formation of spin-singlet formation between impurity spins
and conduction spins screening the local moments. . . . . . . . . . . 16

2.5 Left: large Fermi surface of YbRh2Si2 seen through (a) band renor-
malization calculation and (b) ARPES, where 𝑓 -electron enter the de-
scription of Fermi surface at the temperature 𝑇 < 𝑇𝐾 . Right: small
Fermi surface of YbCo2Si2 (a) LDA calculation and (b) ARPES, at the
temperature 𝑇 > 𝑇𝐾 . From [135] . . . . . . . . . . . . . . . . . . . . . 17

161



LIST OF FIGURES

2.6 Schematic representation of dilution of magnetic impurities. In both
case, impurity spin (in blue arrow) forms a spin-singlet with conduc-
tion spin, represented by red glow. Right: the conduction electrons
hop from singlet site to bachelor site, left: the conduction electrons
hops from non-magnetic site to non-magnetic site. . . . . . . . . . . 18

3.1 Schematic view of matrix-DMFT approach of mapping a lattice prob-
lem (a) into a two local site local problem (b). . . . . . . . . . . . . . . 24

3.2 Figure illustrating the bipartite nature of the lattice for a Néel ordered
antiferromagnetic phase. Dotted rectangle in the figure represent a
unit cell composed two lattice sites belonging to each sublattices 𝐴
and 𝐵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Schematic view of the generalized matrix-DMFT approach of map-
ping a lattice problem (a) onto four effective sites (b) in a bipartite
system interacting with dynamical effective local bath in each case,
where • denotes sub-lattice A and ◦ denotes sub-lattice B, red arrows
are Kondo impurity spins, and the black arrows denotes the dynami-
cal local baths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 (3.4a) DMFT loop for paramagnetic Kondo phase and (3.4b) for mag-
netically ordered phases . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Magnetic phase diagram of CeRu2(Si𝑥Ge1−𝑥). Substitution of Si by Ge
increases the unit cell volume. A cascade of magnetic to non-magnetic
phase transition is observed for increase Si concentration. From [119] 41

4.2 phase diagrams (a) 1D ‘chain’, (b) 2D ‘square’, (c)
3D ‘cubic’ lattices at T = 0. K = paramagnetic Kondo phase, F = fer-
romagnetic phase, sat. F = saturated ferromagnetic phase and AF =
antiferromagnetic phase . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 from left to right: ground state phase diagrams of the Kondo alloys
for 𝑛𝑐=0.30, 0.70 and 0.30. AFII = Néel ordered anti-ferromagnetic
phase, and F = ferromagnetic phase . . . . . . . . . . . . . . . . . . . 47

4.4 Schematic description of the Kondo alloys phase diagrams depicted
on figure 4.3, with Kondo (K) and magnetically ordered (MO) phases.
In order to fix the energy scale, the K-MO transition is arbitrarily
chosen to be realized here at 𝑇𝐾 ≈ 10 Kelvin for the Kondo lattice
(𝑥 = 1) and at around 1 Kelvin in the dilute limit 𝑥 ≪ 1. Dashed
lines describe four examples of Kondo alloys: Ce𝑥La1−𝑥Pt2Si2 (circle),
Ce𝑥La1−𝑥Ni2Ge2 (star), Ce𝑥La1−𝑥Ru2Si2 (square) and Ce𝑥La1−𝑥Pd2Si2
(triangle). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

162



LIST OF FIGURES

5.1 Left figures: Electronic density curve showing Kondo resonance peak
(below) at on-resonance ARPES spectra. Right figure: Compari-
son of ARPES derived hybridized band and PAM hybridized band.
From [231]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 First Brilloin zone of the square lattice, with indications of the points
Γ = (0, 0), 𝑋 = (0,𝜋), and 𝑀 = (𝜋,𝜋). . . . . . . . . . . . . . . . . . . 55

5.3 Spectral function evaluated for 𝑛𝑐 = 0.70 at relatively strong coupling 𝑇𝐾/𝑊
= 0.169 for Kondo impurity concentrations 𝑥 = 0.01, 0.30, 0.70, and 1.00. The
wavevector k axis corresponds to the high symmetry lines Γ − 𝑋 − 𝑀 − Γ

in the square lattice first Brillouin zone (see figure 5.2). The corresponding
electronic density of states 𝜌(𝜔) is plotted on the right side. Each individ-
ual cases of this figure are indicated in the phase diagram depicted in the
figure 5.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Spectral function evaluated for 𝑛𝑐 = 0.70 at relatively small coupling 𝑇𝐾/𝑊 =
0.019 for Kondo impurity concentrations 𝑥 = 0.01, 0.08, 0.50, and 1.00 with
𝑥★ = 0.08. The wavevector k axis corresponds to the high symmetry lines
Γ − 𝑋 − 𝑀 − Γ in the square lattice first Brillouin zone (see figure 5.2). The
corresponding electronic density of states 𝜌(𝜔) is plotted on the right side.
Each individual case of this f are indicated in the phase diagram depicted in
the figure 5.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.6 Fermi surface structure for 𝑇𝐾/𝑊 = 0.175 for 𝑛𝑐 = 0.70 at 𝑥 = 𝑛𝑐 − 0.1,
𝑥 = 𝑛𝑐 and 𝑥 = 𝑛𝑐 + 0.1 from left to right. A clear evidence of
Lifshitz-like transition is marked by the discontinuity of Fermi surface
at 𝑥 = 𝑛𝑐 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 FS spectra assuming a Kondo paramagnetic ground state for 𝑥 =

0.01, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00 (from left to
right) and 𝑛𝑐 = 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00 (from
bottom to top). Each square corresponds to the first Brillouin zone
of the square lattice (see figure 5.2). From top to bottom, 𝑇𝐾/𝑊 =

0.175, 0.082, and 0.0058: the Lifshitz-like transition around 𝑥 = 𝑛𝑐 is
observed for a sufficiently strong Kondo interaction, and it becomes
a gradual crossover for smaller values of the interaction. The red
lines for 𝑇𝐾/𝑊 = 0.082 and 0.0058 separates the regimes 𝑥 < 𝑥★ and
𝑥 > 𝑥★. In both cases, 𝑥★ increases with increasing 𝑛𝑐 . However, for
𝑇𝐾/𝑊 = 0.0058, this is not visible because 𝑥★ lies between 𝑥 = 0.01
and 𝑥 = 0.20 for all values of 𝑛𝑐 considered. . . . . . . . . . . . . . . . 60

5.7 Fermi surface spectra for 𝑛𝑐 = 0.30 and 𝑥 = 0.05, 0.35, 0.65 and 0.95.
(a) 𝑇𝐾/𝑊 = 0.012 with Kondo ground states: we observe signatures of
a breakdown of coherence associated with a change of topology in the
Fermi-surface. (b) 𝑇𝐾/𝑊 = 0.0031 with ferromagnetic ground states:
we observe Zeeman splitting effect only. . . . . . . . . . . . . . . . . 61

163



LIST OF FIGURES

5.8 Fermi surface spectra for 𝑛𝑐 = 0.90, and 𝑥 = 0.05, 0.35, 0.65 and 0.95.
(a) 𝑇𝐾/𝑊 = 0.0143 with Kondo ground states: we observe signatures
of a breakdown of coherence associated with a change of topology in
the Fermi-surface. (b) 𝑇𝐾/𝑊 = 0.0045 with antiferromagnetic ground
states: we observe only the folding of the Fermi-surface which results
from the staggered Néel ordering. . . . . . . . . . . . . . . . . . . . . 61

5.9 Ground state phase diagram of the KAM as functions of 𝑥 and 𝑇𝐾/𝑊 for (a)
𝑛𝑐 = 0.30, (b) 𝑛𝑐 = 0.70 and (c) 𝑛𝑐 = 0.90. (▲) indicates the individual cases
presented in the figure 5.3 and figure 5.4 for 𝑛𝑐 = 0.70. In the Kondo phases
the solid line indicates the discontinuity of the self-energy observed at 𝑥 = 𝑛𝑐

for sufficiently strong 𝑇𝐾 . This transition from the dense coherent Kondo
phase becomes a crossover marked by an inflection in the self energy at
smaller𝑇𝐾 (doted line), and a significant increase in the intensity of imaginary
part of the self-energy (color or black and white gradient). A continuous
vanishing of the effective mass 𝑚★ is obtained at concentration 𝑥★ (dashed
line), and we find 𝑚★ < 0 in the intermediate region 𝑥★ < 𝑥 < 𝑛𝑐 . We
also solved the DMFT equations obtained for a Bethe lattice, considering the
Kondo paramagnetic solution only and the same values of model parameters
as depicted here. Results for Bethe lattice can be found in the appendix C.2.
We were not able to distinguish the figures corresponding to the Bethe lattice
from the ones depicted here for the 2D square lattice. This strong similarity
excludes several interpretations that might invoke specificities of the lattice
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.10 (a) Real part of the self-energy Σ′
𝐴𝑙𝑙𝑜𝑦

(0)/𝑊 , (b) Effective mass 𝑚★/𝑚0 as
functions of 𝑥, for 𝑛𝑐 = 0.70. Different Kondo temperatures have been used
for the numerics, illustrating the transition (at strong 𝑇𝐾) and crossover (at
smaller 𝑇𝐾) obtained around 𝑥 = 𝑛𝑐 . The inset in (b) is a focus around the
critical concentration 𝑥★ which is characterized by a vanishing of 𝑚★ when
𝑇𝐾 relatively small. At intermediate concentrations 𝑥★ < 𝑥 < 𝑛𝑐 we find
𝑚★ < 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.11 Imaginary part of self-energy Σ′′(0)/𝑇𝐾 for 𝑇𝐾/𝑊 = 0.169, 0.019 and
0.006. Σ′′(0)/𝑇𝐾 is negative and increases with increasing 𝑇𝐾 with a
maximum at 𝑥 = 𝑛𝑐 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.12 Evolution of the critical concentration 𝑥∗ with respect to the Kondo
coupling 𝑇𝐾/𝑊 presented here on 𝑙𝑜𝑔− 𝑙𝑜𝑔 scale. Solid line represent
𝑛𝑐 = 0.90, dashed line represent 𝑛𝑐 = 0.70 and dotted line represent
𝑛𝑐 = 0.30 with a slope 𝛾 of 0.83 ± 0.013, 0.78 ± 0.006, and 0.71 ± 0.016
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

164



LIST OF FIGURES

5.13 Frequency dependence of the real part of the self-energy, 𝜔−Σ′
𝐴𝑙𝑙𝑜𝑦

(𝜔)+
Σ′
𝐴𝑙𝑙𝑜𝑦

(0) for 𝑛𝑐 = 0.70 and 𝑇𝐾 = 0.019. Top: for 𝑥 in the vicinity of the
critical point 𝑥★ = 0.08 which is characterized by 𝑚★ = 0, we observe
the emergence of a non-monotonicity at low energy. This leads to
the gradual formation of a multiple-branches dispersion for 𝑥 > 𝑥★.
Center: for 𝑥 in the vicinity of 𝑛𝑐 , the maximum is realized at 𝜔 < 0 for
𝑥 < 𝑛𝑐 and at 𝜔 > 0 for 𝑥 > 𝑛𝑐 resulting in a second change of sign of
𝑚★. Bottom: for 𝑥 close to 1, we observe signatures of the singularity
Σ𝐾(𝜔) = 𝑟2

𝜔+𝜆 which is obtained in the mean-field approximation for
the Kondo lattice. The non-monotonicity obtained at lower concen-
trations is reminiscent of this singularity, and we expect this feature
to survive qualitatively beyond the mean-field approximation. . . . 67

6.1 Evolution of local potential scattering 𝑆𝑎(0) for 𝑛𝑐 = 0.70 relatively
large Kondo coupling 𝑇𝐾/𝑊 = 0.169 represented on Argand diagram.
Solid line represent LPS for 𝒦 -site whereas dashed line represent
LPS for 𝒩-site. (•) indicates Kondo lattice (𝑥 = 1.00), short vertical
solid line indicates the concentrations 𝑥 = 𝑛𝑐 ± 0.01 and (✖) the most
diluted case (𝑥 = 0.01). Light red background highlights the electronic
bandwidth𝑊 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Evolution of local potential scattering 𝑆𝑎(0) for 𝑛𝑐 = 0.70 relatively
low coupling 𝑇𝐾/𝑊 = 0.019 represented on Argand diagram. Solid
line represent LPS for 𝒦 -site whereas dashed line represent LPS for
𝒩-site. (•) indicates Kondo lattice (𝑥 = 1.00), short vertical solid line
indicates the concentrations 𝑥 = 𝑛𝑐±0.01 and (✖) the most diluted case
(𝑥 = 0.01). Light red background highlights the electronic bandwidth
𝑊 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Charge occupation on 𝒦 and 𝒩-sites with the dilution of magnetic
impurities 𝑥 for different Kondo temperature 𝑇𝐾 . Left: occupation
for Kondo site, Right: occupation for non-Kondo site. The solid lines
represent theoretical values expected for 𝑇𝐾/𝑊 → ∞. 𝑛𝒦 and 𝑛𝒩
verifies the sum rule as: 𝑥𝑛𝒦 + (1 − 𝑥)𝑛𝒩 = 𝑛𝑐 . . . . . . . . . . . . . . 74

8.1 Wigner-Seitz radius (𝑅𝑊𝑆) of 5𝑑, 4 𝑓 and 5 𝑓 metals as a function of
atomic number Z, where Wigner-Seitz radius is defined as (4𝜋/3)𝑅3

𝑊𝑆
=

𝑉 while 𝑉 being the equilibrium volume of the primitive unit cell.
From [272] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.2 Hill plot for various uranium based compounds showing the tran-
sition temperatures of itinerant or localized 𝑓 -electron phases with
respect to inter-atomic uranium-uranium distance. From [279]. . . . 85

165



LIST OF FIGURES

8.3 Schematic view 𝑗 𝑗-coupling scheming for an local 𝑓 -electron. (a) spin-
orbit splitting and (b) crystal-field splitting. Since, 5f electrons are
closer to the nuclei, thus the crystal-field splitting is smaller and less
relevant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.4 Phase diagram obtained through exact diagonalization for two-sites
cluster, derived from total magnetization 𝒥𝑧 = 𝐽1𝑧 + 𝐽2𝑧 , where 𝐽1𝑧 and
𝐽2𝑧 are angular momentum projections on site 1 and 2 respectively.
Here, only 𝑓 2 and 𝑓 3 configurations are considered. 𝑡3/2 and 𝑡1/2 = 𝑡5/2
are nearest-site hopping along orbitals 𝑗𝑧 = 3/2 and 𝑗𝑧 = 1/2, 5/2
respectively. Extracted from [60, 305] . . . . . . . . . . . . . . . . . . 88

10.1 Schematic view of intial optimizing process to get guess parameters
while considering various 𝑓 -configurations using the Eqs. 9.28-9.31.
Whenever the physical constraints are satisfied, the scheme ejects an
output with 𝜆, 𝜇 and slave-boson vector Φ. . . . . . . . . . . . . . . . 106

10.2 Schematic view of local minimization for a given phase with a set of
𝜑Γ𝑛 non-zeros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

10.3 Schematic view of the complete numerical process. The light green
background shows the local minimization process, and its output is
injected into a global minimization routine. . . . . . . . . . . . . . . 109

11.1 Evolution of slave boson probabilities |𝜑ΓΓ |2 on multiplet-multiplet
basis along with 𝑓 -electron occupation from 𝑛 𝑓 = 3.0 to 𝑛 𝑓 = 2.5
for charge sectors 𝑓 𝑀 configurations for non-interacting case (see ta-
ble 11.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.2 Diagonal slave bosons probabilities |𝜑ΓΓ |2 on the isotropic line (𝑊 =

𝑊 ′) for all six charge sectors | 𝑓 𝑀 ; 𝐽 , 𝐽𝑧⟩. The black arrows on the x-axis
points the towards the threshold values of 𝑊/𝑈0 where transition in
valency configuration is observed. . . . . . . . . . . . . . . . . . . . . 114

11.3 Quasiparticules weight 𝑍 𝑗𝑧 as a function of electronic bandwidth
𝑊/𝑈0 on the isotropic line (𝑊5/2 = 𝑊3/2 = 𝑊1/2) for orbitals 𝑗𝑧 =

5/2, 3/2 and 1/2 for paramagnetic phase. The inset shows a zoom of
𝑍 𝑗𝑧 around small𝑊/𝑈0. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11.4 𝐸 − 𝐸0 on the isotropic line from 𝑊/𝑈4 = 0 to large 𝑊/𝑈0 large. The
inset shows the mean-field parameters 𝜆 and 𝜇. . . . . . . . . . . . . 116

11.5 Energies of partially localized phases along the line𝑊+𝑊 ′ = constant:
(a)𝑊 +𝑊 ′ = 7 and (b)𝑊 +𝑊 ′ = 14 while𝑊 =𝑊3/2 and𝑊 ′ =𝑊5/2 =

𝑊1/2. Colors of each line correspond to the color of each phase in
figure 11.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

166



LIST OF FIGURES

11.6 Phase diagram with partially localized phases for the electronic band-
widths 0 ≤ 𝑊 ≤ 15 and 0 ≤ 𝑊 ′ ≤ 15. Solid lines are guides to the
eyes separating two phases. (FM/PM) indicates that ferromagnetic
and paramagnetic phases are degenerate. . . . . . . . . . . . . . . . . 119

11.7 Figure showing the line 𝑊 +𝑊 ′ = 7 and 𝑊 +𝑊 ′ = 14 on the phase
diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.8 Schematic view of an electron hopping from a site-𝑖 with 𝑓 𝑀 config-
uration to a site-𝑗 with 𝑓 𝑀

′ configuration. For 𝑀′ < 𝑀, this hopping
becomes favorable. For instance, the hopping from 𝑀 = 3 to 𝑀 = 2 is
more favorable than other way around since the hopping from 𝑀 = 2
to 𝑀 = 3 will create more energetic states with 𝑀 = 1 and 𝑀 = 5
particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.9 Quasiparticle weights of non-localized orbitals along the line: 𝑊 +
𝑊 ′ = 7 ((a) and (c)) and𝑊+𝑊 ′ = 14 ((b) and (d)) in the phase diagram.
Only delocalized orbitals are presented here for PM phases ((c) and
(d)) and for FM phases ((a) and (b)). Localized orbitals per phase are
indicated on the top the figure, and aside of each line for each orbital.
Vertical dotted lines are guides for eyes marking frontier between
phases whereas solid vertical gray line indicate isotropic point. . . . 122

11.10Electronic occupations for delocalized orbitals along 𝑊 +𝑊 ′ = 7: (a)
and (c), and along 𝑊 +𝑊 ′ = 14: (b) and (d). Upper digrams (a) and
(b) are for FM phases whereas middle diagrams (c) and (d) are for
PM phases. Localized orbitals are indicated on the top the figure, and
aside of each line for each orbital. Vertical dotted lines are guides for
eyes marking frontier between phases whereas solid vertical gray line
indicate isotropic point. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11.11Magnetization is presented for only FM phases along 𝑊 +𝑊 ′ = 7
(left), along 𝑊 +𝑊 ′ = 14 (right). Localized orbitals are indicated
on the top the figure. Vertical dotted lines are guides for eyes mark-
ing frontier between phases whereas solid vertical gray line indicate
isotropic point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

167



LIST OF FIGURES

11.12Up: renormalized electronic bandwidth (𝑊𝑗𝑧𝑍 𝑗𝑧 ) for 𝑗𝑧 = 3/2 localized
orbital, calculated at the parameters 𝑊 = 0 and 𝑊 ′ = 14 for param-
agnetic phase (a) and ferromagnetic phase (b). For each bar, black
color indicates the electronic bandwidth below Fermi level with oc-
cupied states and gray color indicates the electronic bandwidth with
unoccupied states. Down: schematic view of Fermi surfaces on 2D
square lattice. Thin black line represent the Fermi surfaces. Darker
blue color shades around Fermi surfaces indicate low Fermi velocity
𝑣𝐹 ∝ 𝑍 𝑗𝑧𝑊𝑗𝑧 with high effective mass 𝑚∗, whereas lighter blue color
shades indicate lighter effective with higher Fermi velocity. The width
of the shades is determined by 1/𝑊𝑗𝑧𝑍 𝑗𝑧 representing schematically
the density of states at Fermi level. . . . . . . . . . . . . . . . . . . . . 126

11.13Up: renormalized electronic bandwidth (𝑊𝑗𝑧𝑍 𝑗𝑧 ) with 𝑗𝑧 = 5/2 and
𝑗𝑧 = 1/2 localized orbitals calculated at the parameters 𝑊 = 10 and
𝑊 ′ = 0 for paramagnetic phase (a), ferromagnetic phase (b) and sat-
urated ferromagnetic phase (c). For each bar, black color indicates
the electronic bandwidth below Fermi level with occupied states and
gray color indicates the electronic bandwidth with unoccupied states.
Down: schematic view of Fermi surfaces on 2D square lattice. Thin
black line represent the Fermi surfaces. Darker blue color shades
around Fermi surfaces indicate low Fermi velocity 𝑣𝐹 ∝ 𝑍 𝑗𝑧𝑊𝑗𝑧 with
high effective mass 𝑚∗, whereas lighter blue color shades indicate
lighter effective with higher Fermi velocity. The width of the shades
is determined by 1/𝑊𝑗𝑧𝑍 𝑗𝑧 representing schematically the density of
states at Fermi level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

11.14Variations of slave bosons probabilities Δ𝑝(𝑀) per 𝑓 -electron con-
figuration represented here for lines 𝑊 +𝑊 ′ = 7 ((a) and (c)) and
𝑊 +𝑊 ′ = 14 ((b) and (d)). Slave bosons probabilities for FM phases
are presented in the upper panel ((a) and (b)) whereas PM phases are
presented in the lower panel ((c) and (d)). Here, Δ𝑝(2) = 𝑝(2) − 0.5,
Δ𝑝(3) = 𝑝(3) − 0.5 and Δ𝑝 = 𝑝(4). . . . . . . . . . . . . . . . . . . . . . 129

C.1 Dense-dilute phase diagram for paramagnetic Kondo phase for Bethe
lattice for 𝑛𝑐 = 0.30, 0.70 and 0.90. Yellow-blue background represent
imaginary part of self-energy representing decoherence. . . . . . . . 152

C.2 Local potential scattering for Bethe lattice in paramagnetic Kondo
phase for Kondo coupling 𝑇𝐾/𝑊 = 0.169 and for 𝑛𝑐 = 0.70. Solid line
represent LPS for𝒦 -site whereas dashed line represent LPS for𝒩-site.
(•) indicates Kondo lattice (𝑥 = 1.00), and (✖) the most diluted case
(𝑥 = 0.01). Light red background highlights the electronic bandwidth
𝑊 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

168



LIST OF FIGURES

C.3 Local potential scattering for Bethe lattice in paramagnetic Kondo
phase for Kondo coupling 𝑇𝐾/𝑊 = 0.009 and for 𝑛𝑐 = 0.70. Solid line
represent LPS for𝒦 -site whereas dashed line represent LPS for𝒩-site.
(•) indicates Kondo lattice (𝑥 = 1.00), and (✖) the most diluted case
(𝑥 = 0.01). Light red background highlights the electronic bandwidth
𝑊 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

D.1 Schematic view of two reservoirs (a) and (b) to which an impurity site
interacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

169



LIST OF FIGURES

170



List of Tables

4.1 Table that resumes local Green’s function invariance according to the
transformations for K, F and AFII phases . . . . . . . . . . . . . . . . 43

4.2 commensurate AF phases with and their respective wave ordering
vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.1 Table resuming Barnes slave-boson representation . . . . . . . . . . . 89
8.2 Table resuming Kotliar and Ruckenstien’s slave bosons representation 91
8.3 Table resuming Li, Wölfe and Hirschfeld’s slave bosons representation 92

9.1 Table showing RISB mapping for zero and one particle sector (𝑀) and
𝑀 =

∑
𝑗𝑧
𝜂 𝑗𝑧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

11.1 Table resuming the parameters for different case of study. . . . . . . . 111
11.2 Orbitals occupations (𝑛 𝑗𝑧 ) and quasiparticules weights (𝑍 𝑗𝑧 ) for various

partially localized phases. Here, PM signifies paramagnetic phase, FM
signifies ferromagnetic phase and SFM signifies saturated ferromag-
netic phase and the notation PM 5

2 ,
1
2

means paramagnetic phase with
𝑗𝑧 = 5/2 and 𝑗𝑧 = 1/2 orbitals localized. . . . . . . . . . . . . . . . . . 117

171



LIST OF TABLES

172



Bibliography

1. Landau, L. D. The theory of a Fermi liquid. Soviet Physics Jetp-Ussr 3, 920–925
(1957).

2. Stewart, G. R. Non-Fermi-liquid behavior in 𝑑- and 𝑓 -electron metals. Rev.
Mod. Phys. 73, 797–855 (4 Oct. 2001).

3. Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 136, B864–
B871 (3B Nov. 1964).

4. Kohn, W. & Sham, L. J. Self-Consistent Equations Including Exchange and
Correlation Effects. Phys. Rev. 140, A1133–A1138 (4A Nov. 1965).

5. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-
field theory of strongly correlated fermion systems and the limit of infinite
dimensions. Rev. Mod. Phys. 68, 13–125 (1 Jan. 1996).

6. Pavarini, E., Vollhardt, D., Koch, E. & Lichtenstein, A. DMFT: From Infinite
Dimensions to Real Materials tech. rep. (Theoretische Nanoelektronik, 2018).

7. Avella, A. & Mancini, F. Strongly correlated systems: experimental techniques
(Springer, 2014).

8. Avella, A. & Mancini, F. Strongly correlated systems: theoretical methods (Springer
Science & Business Media, 2011).

9. Avella, A. & Mancini, F. Strongly Correlated Systems (Springer, 2013).

10. Zwicknagl, G. & Fulde, P. The dual nature of 5f electrons and the origin of
heavy fermions in U compounds. Journal of Physics: Condensed Matter 15, S1911
(2003).

11. Ashcroft, N. W., Mermin, N. D., et al. Solid state physics 1976.

12. Slater, J. C. The Electronic Structure of Metals. Rev. Mod. Phys. 6, 209–280 (4
Oct. 1934).

13. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod.
Phys. 70, 1039–1263 (4 Oct. 1998).

14. Moore, K. T. & van der Laan, G. Nature of the 5 𝑓 states in actinide metals. Rev.
Mod. Phys. 81, 235–298 (1 Feb. 2009).

173



BIBLIOGRAPHY

15. Fujimori, S.-i. Band structures of 4f and 5f materials studied by angle-resolved
photoelectron spectroscopy. J. Phys.: Condens. Matter 28, 153002 (Mar. 2016).

16. Knöpfle, K., Mavromaras, A., Sandratskii, L. & Kübler, J. The Fermi surface of
UPd2Al3. Journal of Physics: Condensed Matter 8, 901 (1996).

17. Zwicknagl, G., Yaresko, A. N. & Fulde, P. Microscopic description of origin of
heavy quasiparticles in UPt3. Phys. Rev. B 65, 081103 (8 Feb. 2002).

18. De Boer, J. H. & Verwey, E. J. Semi-conductors with partially and with com-
pletely filled 3d-lattice bands. Proceedings of the Physical Society (1926-1948) 49,
59 (1937).

19. de Haas, W., de Boer, J. & van dën Berg, G. The electrical resistance of gold,
copper and lead at low temperatures. Physica 1, 1115–1124 (1934).

20. Mott, N. & Peierls, R. Discussion of the paper by de Boer and Verwey. Proceed-
ings of the Physical Society (1926-1948) 49, 72 (1937).

21. Mott, N. F. The basis of the electron theory of metals, with special reference to
the transition metals. Proceedings of the Physical Society. Section A 62, 416 (1949).

22. Kondo, J. Resistance minimum in dilute magnetic alloys. Progress of theoretical
physics 32, 37–49 (1964).

23. Andres, K., Graebner, J. E. & Ott, H. R. 4 𝑓 -Virtual-Bound-State Formation in
CeAl3 at Low Temperatures. Phys. Rev. Lett. 35, 1779–1782 (26 Dec. 1975).

24. Steglich, F. et al. Superconductivity in the Presence of Strong Pauli Paramag-
netism: CeCu2Si2. Phys. Rev. Lett. 43, 1892–1896 (25 Dec. 1979).

25. Bednorz, J. G. & Müller, K. A. Possible high T c superconductivity in the Ba-
La- Cu- O system. Zeitschrift für Physik B Condensed Matter 64, 189–193 (1986).

26. Vojta, M. Quantum phase transitions. Reports on Progress in Physics 66, 2069–
2110 (2003).

27. Saxena, S. et al. Superconductivity on the border of itinerant-electron ferro-
magnetism in UGe2. Nature 406, 587–592 (2000).

28. Ott, H. R., Rudigier, H., Fisk, Z. & Smith, J. L. UBe13: An Unconventional
Actinide Superconductor. Phys. Rev. Lett. 50, 1595–1598 (20 May 1983).

29. Aoki, D., Ishida, K. & Flouquet, J. Review of U-based ferromagnetic super-
conductors: Comparison between UGe2, URhGe, and UCoGe. Journal of the
Physical Society of Japan 88, 022001 (2019).

30. Schilling, A., Cantoni, M., Guo, J. & Ott, H. Superconductivity above 130 k in
the hg–ba–ca–cu–o system. Nature 363, 56–58 (1993).

31. Monteverde, M. et al. High-pressure effects in fluorinated HgBa2Ca−2Cu3O8+
𝛿. EPL (Europhysics Letters) 72, 458 (2005).

174



BIBLIOGRAPHY

32. Zhi-An, R. et al. Superconductivity at 55 K in iron-based F-doped layered qua-
ternary compound Sm [O1-xFx] FeAs. Chinese Physics Letters 25, 2215 (2008).

33. Gardner, J. S., Gingras, M. J. P. & Greedan, J. E. Magnetic pyrochlore oxides.
Rev. Mod. Phys. 82, 53–107 (1 Jan. 2010).

34. Bramwell, S. T. & Gingras, M. J. Spin ice state in frustrated magnetic pyrochlore
materials. Science 294, 1495–1501 (2001).

35. Vuletić, T. et al. The spin-ladder and spin-chain system (La, Y, Sr, Ca) 14Cu24O41:
Electronic phases, charge and spin dynamics. Physics reports 428, 169–258
(2006).

36. Kondo, S. et al. LiV2𝑂4: A Heavy Fermion Transition Metal Oxide. Phys. Rev.
Lett. 78, 3729–3732 (19 May 1997).

37. Maeno, Y., Kittaka, S., Nomura, T., Yonezawa, S. & Ishida, K. Evaluation of spin-
triplet superconductivity in Sr2RuO4. Journal of the Physical Society of Japan 81,
011009 (2011).

38. Kanoda, K. Recent progress in NMR studies on organic conductors. Hyperfine
Interactions 104, 235–249 (1997).

39. McKenzie, R. H. A strongly correlated electron model for the layered organic
superconductors 𝜅-(BEDT-TTF)2X. arXiv preprint cond-mat/9802198 (1998).

40. Zwerger, W. Mott–Hubbard transition of cold atoms in optical lattices. Journal
of Optics B: Quantum and Semiclassical Optics 5, S9 (2003).
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