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ABSTRACT

Multiple access techniques present many challenges and opportunities for the design of
massive wireless networks. Therefore, substantial research efforts were devoted to the
problem of serving users of the same network equally and simultaneously with some shared
resources (time and/or frequency). Thus, the improvement of multiple access techniques
of the next generations of mobile communications deserves a thorough study, which is the
main objective of this thesis. The research work presented in this thesis focuses on sparse
code multiple access (SCMA) and it is organized into two main parts. First, we study
the adaptation of SCMA according to the users’ needs in terms of energy, bandwidth
and quality of service. The proposed adaptive SCMA architecture not only rightfully
addresses the differences in users requirements, but also allows a more realistic use of the
knowledge of transmission channels by customizing the codebook of each group of users
which are clustered based on their channel state information. The second part concerns
the application of deep learning techniques in the aim of efficiently decoding the received
SCMA signal. Thus, a two-stage deep learning based SCMA detector was proposed under
the assumption of additive white Gaussian noise. The first stage consists in denoising
the signal using a denoising autoencoder before decoding it afterwards based on a deep
neural network which allows to simultaneously estimate all the transmitted bits in one-
shot. The complexity of SCMA detector and its performance in terms of bit error rate
were evaluated. However, the performance of this method is slightly worse than that of
the conventional SCMA detector, being rather iterative. Nevertheless, this comparison is
not fair, since our firstly proposed detector, contrary to the conventional one, assumes
that the SCMA codebook is unknown at the receiver. That is why, we propose a new
distance-based deep neural network detector under the assumption that the codebook is
known. The second proposed detector can be fairly compared to the conventional SCMA
one, our proposition provides better performances.
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RÉSUMÉ

Les techniques d’accès multiple présentent de nombreux défis et possibilités pour la con-
ception de réseaux sans fil massifs. Par conséquent, d’importants efforts de recherche ont
été consacrés au problème de la distribution égale et simultanée des ressources partagées
(temps et/ou fréquence) entre des utilisateurs d’un même réseau. Ainsi, l’amélioration
des techniques d’accès multiple des prochaines générations de communications mobiles
mérite une étude approfondie, ce qui est l’objectif principal de cette thèse. Le travail
de recherche présenté dans cette thèse se concentre sur l’accès multiple par code parci-
monieux. Dans un premier temps, nous étudions l’adaptation du SCMA en fonction des
besoins des utilisateurs en termes d’énergie, de bande passante et de qualité de service.
L’architecture SCMA adaptative proposée non seulement prend en compte les différences
entre les besoins des utilisateurs, mais permet également une utilisation plus réaliste de
la connaissance des canaux de transmission en personnalisant le livre de codes de chaque
groupe d’utilisateurs qui sont regroupés en fonction de leurs informations sur l’état du
canal. La deuxième partie concerne l’application de techniques d’apprentissage profond
dans le but de décoder efficacement le signal SCMA reçu. Ainsi, un détecteur SCMA en
deux étapes basé sur l’apprentissage profond a été proposé dans l’hypothèse d’un bruit
blanc Gaussien additif. La première étape consiste à débruiter le signal à l’aide d’un au-
toencodeur de débruitage avant de le décoder ensuite sur la base d’un réseau neuronal
profond qui permet d’estimer simultanément tous les bits transmis en une seule fois. Les
performances du détecteur SCMA en termes de taux d’erreur binaire et sa complexité ont
été évaluées. Cependant, les performances de cette méthode sont légèrement inférieures à
celles du détecteur SCMA conventionnel, étant plutôt itératif. Néanmoins, cette compara-
ison n’est pas juste, car le détecteur que nous avons proposé en premier lieu, contrairement
au détecteur conventionnel, suppose que le livre de code SCMA est inconnu au niveau
du récepteur. C’est pourquoi nous proposons un nouveau détecteur à réseau neuronal
profond basé sur la distance en supposant que le livre de codes est connu. Le deuxième
détecteur proposé peut être comparé équitablement au détecteur conventionnel de SCMA
et surpasse ses performances.
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GENERAL INTRODUCTION

General Context and Motivations

The next decades will encounter many emerging applications which will require to mas-
sively connect new devices. For instance, the aim of the internet of things (IoT) is to
massively connect various types of physical and virtual objects into a dynamic global
network infrastructure and to enable applications such as connected cars, industrial IoT,
smart cities, connected healthcare, etc [2]. The major targets of the fifth-generation (5G)
mobile communication systems and beyond are the massive connectivity, the ultra-high
data rates, the ultra-low latency, as well as flexible air interface design to support several
user requirements [3]. Early in 2014, the 5G was expected to increase the connectivity
density by 10 (at least 106/km2) [4]. Later, in 2021, there was more than 10 billion active
IoT devices. This number is projected to surpass 75 billion by the end of 2025 [5]. Thus,
it will be very difficult to satisfy this huge demand on data traffic and massive connec-
tivity without proposing new enhanced communications techniques especially enhanced
multiple access schemes.
One key of the evolution of wireless communication systems over their different genera-
tions was to propose new multiple access techniques including frequency-division multi-
ple access (FDMA) for first-generation (1G), time-division multiple access (TDMA) for
second-generation (2G), code-division multiple access (CDMA) for third-generation (3G),
and orthogonal frequency-division multiple access (OFDMA) for fourth-generation (4G)
[6], [7]. All these techniques are orthogonal, that is the wireless resources are orthog-
onally shared among multiple users in different domains as time, frequency and code.
The orthogonality of the allocated resource elements (REs) reduces the multiple access
interference and had enabled low-complexity and efficient receivers. The aforementioned
orthogonal multiple access (OMA) techniques are not sufficient to reply to the increas-
ing connectivity demand of the future generations since the number of supported users
is limited by the number of available orthogonal REs. In order to enable the massive
access, non-orthogonal multiple access (NOMA) mechanisms were introduced [8]. The
idea was to further exploit the REs by employing a non-orthogonal access, for instance,
multiple users can share the same narrow frequency band over the same time slot which
allows to serve more users at the expense of increasing the receiver’s complexity. The
NOMA techniques are divided into two main categories according to the type of allo-
cated resources, namely: power-domain NOMA (PD-NOMA) and code-domain NOMA
(CD-NOMA). However, other existing techniques can also assign resources belonging to
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multiple domains to multiple users in a non-orthogonal manner. Hence, the objectives of
5G and beyond motivated, and will continue to motivate, the research evolution of NOMA
techniques despite the fact that the third-generation partnership project (3GPP) decided
not to include them in 5G.
In the last decade, trying to incorporate PD-NOMA in 5G networks have gained atten-
tion of researchers around the globe [9]–[11]. The main idea of PD-NOMA is to exploit
a new dimension, that is the power. On the other hand, CD-NOMA was inspired by the
classic CDMA systems in which multiple users share the same RE by adopting a specific
signature per user. The key difference between CD-NOMA techniques and CDMA ones
is that the spreading sequences of the former are restricted to non-orthogonal low cross-
correlation sparse sequences.
Sparse code multiple access (SCMA) is among the CD-NOMA techniques that are con-
sidered by the new radio (NR) study in the 3GPP long-term evolution (LTE)-advanced,
since it was among the most reliable multiple access candidates for 5G [12], [13]. However,
as 5G networks are being rolled out in many different countries nowadays, the investiga-
tions on how to upgrade and expand them toward the 6th generation of wireless commu-
nications (6G) had started. In this context, the international telecommunication union
radio-communication sector (ITU-R) published its first release of the international mobile
telecommunications standard (IMT-2020 ) recommendation in February 2021 [14], and
initiated works for future technology trends report and vision recommendation for IMT
towards 2030 and beyond 6G, which are expected to complete around June 2022 and June
2023, respectively. After just recently approving its release 18 package for 5G-Advanced
in December 2021, the 3GPP technical specification group radio access networks (TSG-
RAN), in accordance with the ITU-R vision recommendation and other proponents, will
start preparing the technical specifications of 6G. As for the first commercial roll-out of
6G services, it is expected to be around 2030. An interconnection of everything as well as
the development of a ubiquitous intelligent mobile world for intelligent life is expected to
be realized. Artificial intelligence (AI) has the potential to be the foundation of beyond
5G and as of 6G, that is, it will be native and ubiquitous to make every component of the
future network, intelligent. At the beginning of the actual year, one of the initial works
listing the challenges of 6G, [15], confirmed that AI will be embedded everywhere, not
only in the network including the core, but also down to the air-interface design. In addi-
tion, AI will become a part of new services provided by the network in order to lead to a
more autonomous, secure and flexible network as well as more customized and privatized
applications. Thus, the objective of this research work is to contribute to fulfilling the
massive connectivity requirements for beyond 5G (B5G) and 6G relying especially on AI
techniques.
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Thesis Contributions

This thesis hopes to participate in developing a more realistic and powerful non-orthogonal
multiple access techniques such that their integration in the upcoming generations of wire-
less systems can be more probable. The main contributions of this thesis are summarized
as follows:

• Chapter 1 shows why multiple access techniques are important for the enhancement
of the massive access scenarios of B5G like massive machine-type communications
(mMTC), ultra-reliable low-latency communications (URLLC) and enhanced mobile
broadband (eMBB). Also, digging into the existing contributions and the various
discussions and decisions led by 3GPP, ITU and internet engineering task force
(IETF) about 5G and B5G explains our decision to focus on a specific technique
namely the SCMA.

• It is required to comprehensively study SCMA with the objective to explore its
architecture, the design of its encoder and detector, its interplay with other 5G
technologies such as millimeter wave (mmWave) communications and multiple-input
multiple-output (MIMO) systems. To the best of our knowledge, this effort is yet
to be conducted in the state-of-the-art, that is why we start by filling this gap in
Chapter 2.

• We propose an adaptive SCMA scheme to fit with more realistic scenarios of massive
communication where users have different channel conditions in addition to several
business requirements such as data rate, quality of service (QoS), and network prior-
ity. Unlike the traditional SCMA, the sparsity degree, the constellation size, and the
allocated power per user, can be adapted to each requirement in order to increase
the overall performance of SCMA system. Several proposition were introduced in
Chapter 3. This had inevitably required to adapt the irregular structure of SCMA
using our new proposed design of irregular SCMA codebooks.

• It is vital to push on with developing SCMA detectors that can outperform the
performance of the conventional message passing algorithm (MPA) based detector
in terms of both complexity and performance. In this Ph.D work, a new approaches
to improve SCMA detection performance using deep learning methods are explored.
The first contribution in this domain is to propose to jointly design and train a
denoising autoencoder (DEA) and deep neural network (DNN) to decode SCMA
signals over an additive white Gaussian noise (AWGN) channel.

• Despite the fact that the proposed DEA-DNN system has shown similar performance
to that of a conventional SCMA iterative detector, i.e. the MPA, with a complexity
lesser than that of the latter, nevertheless, this comparison is not totally fair. It was
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necessary to introduce a new deep-learning based detector under the assumption
that the SCMA codebook is known at the receiver as in the case of an MPA one.
The proposed detector can be fairly compared to MPA, and simulations confirmed
that its performance is better.

Publications

The following is a list of publications in refereed journals and conference proceedings
produced during my Ph.D. candidature.

Journal papers

1. M. Rebhi, K. Hassan, K. Raoof and P. Chargé, “Sparse Code Multiple Access:
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Conference papers

1. M. Rebhi, K. Hassan, K. Raoof, and P. Chargé, “An adaptive uplink SCMA
scheme based on channel state information,” URSI France 2020, Future Net-
work: 5G Beyond Workshop, Paris, France, Mars 2020, pp. 1–7.

2. M. Rebhi, K. Hassan, K. Raoof, and P. Chargé, “Deep Learning for a Fair
Distance-based SCMA Detector”, IEEE Wireless Communications and Net-
working Conference(WCNC), Austin-Texas,USA, April 2022.

Structure of the document

This thesis is divided into four Chapters. In the first Chapter, we start by presenting the
necessary notions concerning the requirements of B5G wireless systems before focusing
on the multiple access technique in general and more specifically the non-orthogonal ones
.
In the second Chapter, we will present a comprehensive study of SCMA by focusing on its
basic architecture and then by highlighting and comparing the several proposed methods
to optimize both its encoder and detector.
Later, in the third Chapter, we turn our attention to the irregular structure of SCMA and
we propose an adaptive design that fits to B5G user’s needs in some realistic scenarios
especially when the channel state information is considered. Three main scenarios are
investigated.
At the last Chapter, the application of deep learning techniques on SCMA detection
problem is introduced. We propose a fair distance-based SCMA detector in addition to
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evaluating the impact of the used hyper-parameters on the performance of our proposed
full system.
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Chapter 1 – Background and Problem Statement

1.1 Introduction

With the ever increasing demands of users for ubiquitous mobile services, the 5G of
wireless communication systems, the B5G and even the 6G are facing distinguishable
challenges motivated by the need for extremely high connection density with a large num-
ber of simultaneous services. One key of the evolution of wireless communication systems
over their different generations was to enhance the multiple access (MA) techniques to
guarantee better use of the radio spectrum and to enable far more devices to access the
network at the same time. In this Chapter we will present an overview of 5G, its character-
istics and the new technologies attached to it. Based on the orthogonality of the allocated
wireless resources shared among multiple users in different domains as time, frequency
and code, MA schemes are classified into two categories: (i) OMA and (ii) NOMA. Here,
our focus will be on the NOMA schemes designed either in the power or code domain.
Finally, we will examine how machine learning (ML) is generally employed to enhance
wireless networks performance and especially that of the MA techniques.

1.2 An Overview of 5G and beyond Technology

In this section, we will highlight the challenges imposed by the 5G when it comes to MA
techniques. The aim is to continue to enhance existing MA schemes in order to fulfill the
several needs of massive connected devices over 5G and beyond networks. In the next
subsections, we present characteristics, technologies and services of the 5G and B5G.

1.2.1 Evolution from 4G to 5G and beyond

5G is the fifth-generation of mobile telecommunications technology promoted to support
faster data rate and to provide higher connection density and much lower latency which
presents significant advances when compared to the forth generation of wireless communi-
cation, 4G, [3]. The potential throughput of 5G can reach around 20 Gb/s which exceeds
traditional wire-line network speeds [16]. Also, 5G increases the connectivity density to
cover at least 106 devices per km2 [4]. The latency refers to the time it takes for a packet
of information to be transmitted over a frequency band. 4G latency is about 60 to 98
milliseconds (ms) [17], while 5G drops to less than 1 ms which is about 100 times lower.
However, 6G latency is estimated to be instantaneous which will help developing real-time
applications. In addition, the 5G has the potential to be a more secure cellular network
than its predecessors thanks to its built-in security [18]. For all these reasons, 5G became
more attractive for several applications such as IoT.
Also, regarding the exploited spectrum, 4G works basically in the sub-3 GHz radio spec-
trum. While both 5G and 6G employ higher frequencies to transmit massive data rapidly.
For instance, 5G uses the sub-6 GHz frequencies, so-called low 5G band, and above 24.25
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GHz, known as high 5G band [19]. Regarding 6G, it should operate at 95 GHz to 3 tera-
hertz (THz) which will allow 6G to be around 1000 times faster than 5G [20]. Furthermore,
6G aims to enhance the massive connectivity on land, under the sea, and even in space,
enabling a smart infrastructure for the sustainable society [21].

1.2.2 The Technologies of 5G and beyond

The 5G radio access network (RAN) is based on a dense heterogeneous network which
contains several tiers, from macro base stations to small cell stations located on light
poles and building roofs, each station transmits signals over the 5G NR interface. One
key technology for 5G is mmWave communications which exploit the spectrum between
30 GHz to 300 GHz. The short wavelength of mmWave makes their application possible
for small cells in densely populated areas and backhaul communications to core network
such that 5G works better. However, the millimeter waves only travel short distances and
are susceptible to weather conditions and obstacles such as buildings, windows, walls and
leaves. That is why the line-of-sight transmissions are privileged. On the other hand, for
less dense areas, 5G networks have to use lower frequency bands such as low-band and
mid-band spectrum.
An essential way to increase the capacity of cellular networks is to increase the number
of antennas at base stations and mobile terminals which is called massive MIMO. How-
ever, this will not be possible without the recent advances in complementary metal oxide
semiconductor (CMOS) circuits which allow to pack more antennas in a smaller physical
size.
Early in 2014, the 5G was expected to increase the connectivity density by 10 [4]. In 2021,
the number of IoT devices and connected mobile users exceeded 50 billion of active hosts
[5]. The number of active IoT devices is expected to explode in the upcoming decades. It
will be very difficult to satisfy this huge demand on data traffic and massive connectivity
without proposing new enhanced communications techniques especially enhanced multi-
ple access schemes.
Furthermore, to ensure its implementation, the 5G architecture is based on virtualization
such that networking functionalities can be managed through software rather than hard-
ware. This attractive feature enables 5G architecture to be flexible in order to provide the
access, anytime and anywhere, for served users. Motivated by the need to accommodate
with the huge variety of applications and services enabled by 5G, and by the need to fit
with QoS requirements, slicing network architecture, evolved from the concept of RAN
sharing [22], is developed to play a central role in 5G mobile networks. The idea is to en-
able the multiplexing of independent virtualized networks over the same physical network
infrastructure so that each network slice is an isolated end-to-end network adapted to lay
the several needs solicited by a particular application. However, the increasing number of
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used radio base stations is making the software architecture of the slice-based networks
more complex. This can come at the expense of required delay of fractions of a millisecond
for some applications such as those for self-driving cars or remote surgery. The solution
is to mainly automate the processes in the central network management.

1.2.3 Standardization Organizations

Here, our aim is to highlight the reliability of 5G and beyond through the work proposed
by the most popular organizations of standardization on the filed of communication in all
over the world.

(a) The 3rd Generation Partnership Project :
3GPP is an international organization with communications-focus composed by a
group of telecommunications standard development bodies known under the name
of the organizational partners. For 5G, 3GPP continue to produce and publish the
technical specifications as it had done for 3rd and 4th generations of mobile net-
works. However, the organization was charged with formulating the 5G technical
specifications, which ultimately become standards. By the end of 2017, the first
5G specifications was proposed by 3GPP in its Release 15, including a set of tasks
and checkpoints to guide ongoing studies about 5G architecture and NR network at
that time, and also to discuss number of independent and autonomous radio access
technologies. The use of 5G with enhanced mobile broadband, ultra-reliability and
low latency, frequency ranges, and the importance of forward compatibility in radio
and protocol design was also a main panel for 3GPP Release 16.

(b) Internet Engineering Task Force :
IETF is a large international community around networking and is the premier
Internet standardization body that develops open standards through open processes.
The main mission of the IETF is to make the Internet works better by producing
relevant technical documents in order to manage the way ongoing works will design
and use the Internet. 5G affects IETF proceedings, for instance, the time-critical
communication and low-latency applications is one of the 5G use cases that is also
a component technology on which IETF is working in order to define mechanisms
to guarantee deterministic delays for some flows across a network. Furthermore,
thanks to IETF, the key specifications for virtualization functions are coming up.
The idea is to evolve internet protocols (IPs) to support network virtualization.
Moreover, new technologies under development by IETF are proposed including
routing-related testing, protocols for distributed networking, segment routing, and
path computation in order to meet the constraints of the 5G NR. Finally, IETF had
collaborated with 3GPP on the development of some of 5G technologies.
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(c) International Telecommunication Union :
ITU is the United Nations agency specialized in information and communication
technologies. It is founded to facilitate international connectivity in communications
networks. Its major mission is to allocate the global radio spectrum and satellite
orbits, and to develop technical specifications in order to ensure the interconnect
between networks and technologies. Start working on 5G in 2015, the ITU identified
three spectrum bands that will be used for this new generation of telecommunication
networks. Later in 2016, the criteria for selecting radio interface to be adopted in
5G technologies was refined. By the end of the same year, in order to meet higher
5G’s performances, ITU concluded a preliminary study including a focus on network
architecture, network management requirements and framework.

1.2.4 The Families of 5G Usage Scenarios

This subsection briefly introduces the three families of usage scenarios as defined by ITU-
R IMT for 2020 and beyond [4], namely eMBB, mMTC and URLLC. These are seen as
the use case categories that together cover the overall technical needs for the existing and
future services and applications as illustrated in Figure 1.2.1.

(a) enhanced Mobile BroadBand
Also known as extreme mobile broadband, the eMBB is enabled for data-driven use
cases that require high data rates across a wide coverage area. The aim behind is to
improve broadband access, mainly in densely populated areas, by enhancing indoor
and outdoor coverage in high-rise buildings and crowded city centers. The eMBB
supports stable connections with very high peak data rates, as well as moderate
rates for hundreds of cell-edge users in environments with heavy data traffic.

(b) massive Machine Type Communication
As a new category of cellular services, mMTC could support extremely high connec-
tion density of devices which requires to employ efficient multiple access strategies
in order to support the massive IoT networks. Its main aim is to provide connectiv-
ity to a huge number of devices (≈ 1 million devices per km2), that transmit and
receive only small data blocks using low bandwidth channels. The mMTC usage
case is also latency-tolerant.

(c) Highly reliable low latency communication
URLLC is a very essential usage scenario for 5G as it ensures the transmission of
data in few milliseconds and, as its name implies, it provides an ultra-high net-
work reliability which is more than 99.999% [23]. This category is mainly used in
critical-mission use cases such as a remote surgery, the intelligent transport system
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eMBB

System capacity

100 Mbps for every user

> 10 Gbps Peak

Spectrum Efficiency

1000 x Capacity/ km²

Multiple Access

Energy Optimization

Signaling Reduction

1000 x Connected Devices Low Latency (<1ms)

High Reliability ( 99.99%)

High Availability

Cost per bit Reduction

Data Rate

Figure 1.2.1: The families of 5G usage scenarios and the associated services and applica-
tions.

and especially for smart grids where latency-sensitive applications will require wide
coverage.

1.3 Non-Orthogonal Multiple Access

As explained in the previous section, the massive connectivity is one of the main require-
ments of the 5G and beyond. One key to fulfill this objective is to allow several devices to
efficiently access the same resources simultaneously, this approach is called multiple ac-
cess. Historically, proposing new MA techniques over different generations was a key of the
evolution of wireless communication systems, this includes FDMA for 1G, TDMA for 2G,
CDMA for 3G. However, the most advanced schemes of multiple access that was proposed
for 4G LTE, such as the OFDMA [24] and the single-carrier FDMA (SC-FDMA) [25],
can no longer meet the current needs of the new generations of wireless communications
in terms of data traffic and massive connectivity. Hence, it was legitimate to propose new
enhanced communications techniques especially enhanced multiple access schemes which
gave the birth of the so-called NOMA.
In this section, we will explain the NOMA concept, and review briefly its state-of-the-art,
before presenting the progress of its standardization.
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1.3.1 From OMA to NOMA

Based on how the resources are shared among multiple users, two types of multiple access
could be distinguished: OMA and NOMA. It is obvious from Figure 1.3.1 that users in
FDMA, TDMA and OFDMA based systems can be easily separated since they did not
occupy the same frequency band at the same time. While CDMA users employ orthogonal
codes and a simple correlation operation is sufficient to detect their signals. The non-
orthogonality means that users can exploit simultaneously resources belonging to two
different domains at least. For instance, different users could be sharing the same time
slot and the same subcarrier, so-called RE, for uplink or downlink communications while
still be able to decode the data of each user despite the existing inter-user interference
and the channel conditions.
By the end of 2013, in its Release 12, the 3GPP initiated further evolution of LTE in
order to face the expected increasing demands of future networks especially supporting
large scale heterogeneous traffic and users. That is why a new modulations and multiple
access schemes started to be developed to meet this growing demand. In 2017, 3GPP LTE-
advanced proposed NOMA as a promising technology for addressing the aforementioned
challenges by accommodating several users within the same RE [7]. By doing so, significant
bandwidth efficiency enhancement was expected to be attained over conventional OMA
techniques as presented in Figure 1.3.2 . Regarding to B5G, NOMA is recognized as the
promising candidate for the future generations of radio access technologies.

Figure 1.3.1: Multiple access techniques through different generations of wireless commu-
nication systems: (a) FDMA for 1G (a) TDMA for 2G (c) CDMA for 3G (d) OFDMA
for 4G.
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Figure 1.3.2: Theoretical bandwidth efficiency of PD-NOMA compared to that of OFDMA
for 2 users with respective rates R1 and R2 when both of user’s signals are successively
decoded based on SIC. R(max)

1 and R(max)
2 are fixed based on Shannon capacity for zero-

error transmission. P1 and P2 denote respectively the power allocated to user 1 and user
2. For OMA, P1 and P2 supposed to be fixed for each subcarrier of OFDMA. R(sim)

1 and
R

(sim)
2 denote the maximum rates that could be allocated to user 1 and user 2 when using

NOMA (simultaneous transmission).

1.3.2 NOMA’s Domains

According to how users are non-orthogonally multiplexed at available REs, NOMA schemes
are divided into two categories: PD-NOMA and CD-NOMA [26]. Apart from these two
categories, other existing alternative NOMA schemes was also proposed in the literature.
In this thesis, we will briefly present the key NOMA technologies by addressing only the
domains of power and code. Figure 1.3.3 gives a classification of existing multiple access
schemes.

Multiple Access Schemes

Orthogonal Multiple Access  (OMA) Non-Orthogonal Multiple Access  (NOMA)

PD-NOMACD-NOMATDMA CDMA OFDMA

LDS-CDMA MUSALDS-OFDM SAMA PSMASCMA

Figure 1.3.3: An overview of exiting multiple access schemes
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Figure 1.3.4: Illustration of downlink PD-NOMA principles. User A (near user) is with
better channel conditions, while user B (far user) is with poorer channel conditions.

Power-Domain NOMA

The basic idea of PD-NOMA, is to allow supporting more multiple access by employing
a new dimension: the signal’s power [9]. PD-NOMA is based on combining two key tech-
niques namely, superposition coding at the transmitter, and mainly successive interference
cancellation (SIC) at the receiver’s side to segregate user information.

(a) Superposition Coding (SC) : The fundamental concept of superposition coding
is to guarantee higher detection reliability by superimposing several users at the
same RE with a power allocation among users based on the near-far propriety.
More power is allocated when the normalized channel gain is smaller. In other words,
when the user is far from the base station (BS). Multiplexing users in PD-NOMA
consists of superimposing the constellation diagram of different users such that each
user’s information is modulated and summed among users with appropriate power
allocations so that the resulting signal still form higher-order constellation.

(b) Successive Interference Cancellation (SIC) : At the receiver side, SIC is
employed to cancel interference. The detection process start from the strongest user
to the weakest one such that each user can detect its message without substantial
interference imposed by the stronger users whose signals are already detected and
removed from the superposed signal. In this way, the message of the user with the
most allocated power is decoded where the messages from other ones are considered
as noise, and thus the decoded message is least contaminated. This mechanism is
depicted in Figure 1.3.4.

Code-Domain NOMA

The concept of CD-NOMA has been inspired by the classic CDMA systems which are
primarily built based on the idea of allowing multiple users to share the same RE by
employing unique user-specific spreading sequence that presents its signature. Users are
then separated by exploiting the differences among their different spreading codes.
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Unlike CDMA systems, the separation of NOMA users at the receiver may require so-
phisticated techniques, such as SIC and MPA, at the cost of an increased complexity.
According to the different designs of code, we can distinct several CD-NOMA schemes,
the main existing ones are presented in what follows.

(a) Low Density Spreading Code-Division Multiple Access (LDS-CDMA) :
The most basic scheme of CD-NOMA is the LDS-CDMA [27], [28] which directly
extends the CDMA. In CDMA systems, each user is associated to one among non-
sparse quasi-orthogonal spreading sequences. Each spreading sequence is composed
of a number of time slots so-called chips. The symbol of all users are spread over
different chips and superimposed before transmission. At the receiver, a simple low-
complexity correlation detector is sufficient to cancel the inter-sequence interference
thanks to the orthogonality of sequences, but this comes at the expense of the
number of connected users. LDS-CDMA aims to increase the number of users by
spreading their information over a small number of chips rather than all of them
which consequently limits the interference on each chip. Hence, low-density and
consequently non-orthogonal sequences are required. The MPA detector is needed
at the receiver even when the AWGN assumption is considered. Hence, LDS-CDMA
has the drawback of high multi-user detection complexity.

(b) Low Density Signature Orthogonal Frequency-Division Multiplexing (LDS-
OFDM) : LDS-OFDM can be interpreted as a transformed version of LDS-CDMA
where each user’s symbol is spreaded across a carefully selected number of subcar-
riers and superimposed in the frequency domain which makes LDS-OFDM more
adapted for strong frequency-selective channels [29].

(c) Multi User Shared Access (MUSA) : The main idea of MUSA is that users
are divided into several groups. In each group, the signal of each user is multiplied
by its specific power scaling coefficient. Next, the signals of all the users of a given
group are superimposed to be spreaded through a specific sequence [30] as presented
in Figure 1.3.5. The group-specific sequences are designed to be orthogonal such
that inter-group interference is easily eliminated at the receiver by using a low-
complexity correlator. Finally, a SIC detector can be employed to solve the intra-
group interference problem.

(d) SIC Amenable Multiple Access (SAMA) : Unlike MUSA, SAMA divides users
into several groups based on a joint design of the system signature matrix and
iterative multi-user interference cancellation technique such that a diversity gain is
obtained [31]. At the receiver side, an iterative MPA is used in an effective way.
The manner in which users are organized into groups accelerates the convergence
of the iterative detector at the receiver by first eliminating the most reliable users
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Figure 1.3.5: Basic principles of MUSA.

(the ones whose data is spreaded on more subcarriers) at each iteration which will
consequently facilitate decoding the less reliable users. The authors in [31] considered
that the above-described design possesses a convergence-amenable property.

(e) Pattern-Division Multiple Access (PDMA) : Motivated by the error propa-
gation problem caused by SIC in PD-NOMA, PDMA uses a specific sparse pattern
to map transmitted data onto small part of a group of resources [32]. The PDMA
pattern is a binary vector whose length is the number of resources in the group,
the binary value of each one among its entries determines if the user is mapped
to the corresponding resource. The patterns are selected to maximize the diversity
order while minimizing the overlapping among users. Belief propagation (BP) based
iterative detection and decoding is adopted at the receiver in an uplink scenario,
while BP or SIC method is applied in downlink scenario.

(f) Sparse Code Multiple Access (SCMA) : The idea of SCMA is to combine
together the bit to constellation mapping and low-density spreading. Indeed, this
technique attracts a lot of attention since it employs multi-dimensional constella-
tions, so-called codebooks, such that bits are directly mapped to different sparse
SCMA codewords. This leads to a constellation shaping gain and consequently to
better spectral efficiency [33]. However, some work is still needed to propose more
efficient codebook designs.
Among all existing CD-NOMA techniques, SCMA scheme is shown to achieve a
better link level performance [34]. Figure 1.3.6 illustrates a performance compari-
son between SCMA and some other CD-NOMA techniques, namely LDS-OFDM,
MUSA and PDMA, in terms of bit error rate (BER), through Rayleigh fading chan-
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nel. Simulations results confirm that SCMA scheme provides better performances
when compared to others. Comparison study between PD-NOMA and SCMA in [35]
showed that SCMA outperforms PD-NOMA when comparable resources allocation
strategies for heterogeneous cellular networks are employed. This gain in perfor-
mance is at the expense of more complexity where SIC method is used to separate
signals in the PD-NOMA case while the more sophisticated MPA one is used for
SCMA systems, the later costs more in terms of operations and materials [36]. That
is why a lot of research work was conducted to reduce the complexity of SCMA
detectors as it will be shown in Chapter 2, however additional future contributions
are expected to further enhance this aspect.

1.3.3 NOMA Progress of Standardization with 3GPP

In this subsection our aim is to review all technical outcome and specification set proposed
by the 3GPP, especially by its technical specification group TSG-RAN, to investigate
NOMA for LTE and 5G under Release 15 and Release 16. In April 2016, a discussion
on different multiple access techniques for both downlink and uplink was proposed in
[37] where OMA schemes, namely TDMA, FDMA and spatial-division multiple access
(SDMA), and NOMA ones, namely MUSA, LDS-CDMA, SCMA and resource-spread
multiple access (RSMA), were compared in order to provide candidates for the three dif-
ferent types of services for 5G networks whose requirements vary according to supported
functionalities: mMTC (improved link budget, low device complexity, low energy con-
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MUSA [31]
PDMA [33]
SCMA [86] (T𝑀QAM)

LDS-OFDSM [99]

Figure 1.3.6: Performance comparison of LDS-CDMA, MUSA, PDMA and SCMA, in
terms of BER, through Rayleigh fading channel : the number of orthogonal REs is 4 and
the number of users is 6.
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sumption and high density device deployment), eMBB (low latency and higher spectral
efficiency/throughput) and URLLC (low packet error rate and low latency). Then, by
the end of 2016, the activity on NOMA as work item, was put on hold to give way for
more basic 5G functionalities. Many NOMA schemes were evaluated in LTE Release 14
and the decision was to continue with NOMA as study item for 5G Release 15 at least
for mMTC. Later, due to the strong interest in both academia and industry [38], NOMA
study was revived in Release 15 for both URLLC and eMBB scenarios [39]. That is NOMA
was studied under four main aspects: I) transmission side NOMA schemes, II) receiver
algorithms, III) NOMA related procedures and IV) preliminary performance evaluations.
Furthermore in Release 16, 3GPP TSG RAN, during their 85th meeting in May 2016,
considered (a) 3 categories of CD-NOMA based on how data is spreaded over allocated
resources: symbol-level spreading such as MUSA, bit-level scrambling/interleaving such as
the interleave-division multiple access (IDMA), and joint modulation and spreading such
as SCMA, and (b) 3 major typical multi-users receivers: minimum mean square error
(MMSE) hard interference cancellation, elementary signal estimator with soft-input soft-
output decoder, and expectation propagation algorithm (EPA). Several proposed NOMA
schemes in 3GPP studies were categorized and compared, in a qualitative manner, in [40].
Recently, the authors in [41] had also highlighted the final conclusions presented in NOMA
study-items of 3GPP Release 15. No clear gain from NOMA over Release 15 and Release
16 mechanisms was observed in all studied scenarios. Mainly, in a large number of cases,
link-level results from many companies showed no gain, and the system-level simulations
do not provide conclusive performance enhancement. Currently, NOMA techniques are
not deployed in the 5G, and are not mentioned explicitly in the planning of 3GPP Re-
lease 17 and Release 18, where their content was largely decided at the December 2021.
However, NOMA is expected to be reconsidered in very high density scenarios of beyond
5G generations [41].

1.4 Machine Learning for Communication Systems

ML has recently attracted a lot of attention and is applied in many domains. In this
section, we start by presenting the definition of the concept of ML. Then, we will highlight
recent advances on ML before explaining how it is applied to wireless communication
networks. In the rest of this section, we will turn our focus to ML-based PD-NOMA and
CD-NOMA techniques. Finally, it is interesting to study specifically the ML application
for SCMA since the latter is the main topic of this thesis.
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1.4.1 What is Machine Learning?

ML is a field of study in artificial intelligence that is devoted to data analysis with an aim
to create, in an automatic way, trained models which can analyze and draw inferences
from patterns in data. This model can then be exploited on new data to make decisions.
Learning algorithms can be categorized according to the learning mode they employ.
Among the ML methods, two are the most widely adopted, namely: (i) the supervised
and (ii) the unsupervised learning. The supervised learning which refers to when the data,
which are employed to train the algorithm, are already labeled with correct answers. We
can divide the supervised learning problems into regression and classification ones. Both
problems have an objective which is to build a model that can predict from the attribute
variables, the value of the dependent attribute. Usually, the dependent attribute is nu-
merical when the problem is a regression one and categorical when the problem is a
classification one.
Unlike the supervised learning, and as its name implies, the unsupervised learning is when
the input data is not labeled. Indeed, the objective of this type of learning is to auto-
matically find some similarities among its input data. The two essential techniques of
unsupervised ML are: (i) Clustering and (ii) Association. Firstly, a clustering-based sys-
tem is able to find groups from the trained data, so-called clusters, and then classify the
predicted data according to the auto-defined new clusters. While an association-based sys-
tem consists of finding the adequate rules in order to discover interesting representations
and relationships which are hidden in large datasets.

1.4.2 Recent Advances on Machine Learning

ML techniques, including artificial neural networks, exist in the literature since several
decades. However, ML had known its more recent revival around 2006 thanks to some in
advances in deep learning (DL) which is one of the branches of ML. Here, "deep" refers to
the depth of the neural network which is employed in the learning process. In other words,
deep learning refers to the use of neural networks with a lot of layers and a lot of nodes per
layer such that higher-level features can be progressively extracted from raw inputs. Deep
neural networks can be used for supervised, semi-supervised and unsupervised learning.
For instance, since the early 2000s, DNNs have been used to implement language models
for natural language processing such as for Google’s neural machine translation system
[42].
Convolutional neural networks (CNNs) are widely applied to image and video recogni-
tion, recommendation systems and natural language processing [43]–[45]. CNN, called
also ConvNet, is a type of feed-forward artificial neural network which uses convolution
in place of general matrix multiplication in at least one of its layers, this approach was
inspired by the visual cortex of animals and allows processing data that has a known
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grid-like topology. As for recurrent neural network (RNN), as its name implies, it is an
artificial neural network with recurrent connections. It processes sequences by iterating
through the sequence elements and maintaining a state containing information relative to
what it has seen so far. In effect, an RNN is a type of neural network that has an internal
loop. This type of ML is mainly used for sequences of variable length, for instance time-
series and text. Such as an RNN can determine whether a phrase is positive or negative
which is also known as sentiment analysis: the network connects a positive or negative
answer to certain word sequences it has seen in training examples [46]. As special kind
of RNN, so-called the long short-term memory (LSTM), attracts more attention since
it is designed to be capable to learn long-term dependencies. In other words, LSTM is
the smart use of RNNs where it is conceived to remember things that have happened in
the past and to look for patterns across time in order to make sense to its next guesses.
An important approach to improve its performance was proposed in [47] by learning an
ensemble of LSTMs rather than learning a single one, however, the performance of the
ensemble depends on the accuracy and diversity of individual LSTMs.
Autoencoders (AEs) are employed for unsupervised learning which aim is to create a com-
pressed representation of raw data. Thanks to its bottleneck architecture, AE is composed
of an encoder and a decoder sub-models. The encoder compresses the input into its most
reliable features, and the decoder role is to recreate the input from its compressed version
provided by the encoder. AEs has many types with several uses, such as the denoising
AE, the sparse AE, the variable AE and the contractive AE [48]–[51]. Hence, AE is a
basic tool for representation learning.
Most of the above-mentioned concepts are known for a while, however, the ML learning
field suffered from a major slow-down throughout the 1990s and 2000s. The main rea-
son behind that is data and hardware since this field is guided by experimental findings
rather than by theory, algorithmic advances only become possible when appropriate data
and hardware are available to try new ideas or to scale up old ideas (as it is often the case).

1.4.3 How Machine Learning is Applied in Wireless Networks?

Further than its application in wide-ranging fields such as computer vision, healthcare,
speech and others, ML contributed also to advances in some aspects of wireless commu-
nication systems [52]. In addition to supervised and unsupervised learning as presented
in subsection 1.4.1, other learning paradigms, such as semi-supervised learning and rein-
forcement learning, are also exploited in wireless communication systems.
For instance, DL-based solutions are employed for signal detection in [53]–[55]. Some
other research works study channel encoding and decoding [56], [57]. Other works focus
on channel estimation, prediction, and compression as are [58], [59]. In addition, end-
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to-end communications and semantic communications were also considered in [60], [61].
Finally, resource allocation problem was investigated in [62], [63]. All these works had
pointed out that the performance of wireless networks does improve if ML is properly
exploited.
For instance, in [56] a deep neural network is used for MIMO detection where both block-
fading and variant channels are considered. Later, a neural network based estimation of the
channel state information (CSI) was proposed, firstly for OFDM systems [58], and recently
for 5G wireless communications [59] under the assumption of complicated channel distor-
tion and interference, where the aim is to reduce the high computational complexity that
makes the regular channel estimation mechanism unsuitable for future communication
networks. Newly, an application of ML to secure vehicular communications for internet
of vehicles was proposed in [61].

1.4.4 Machine Learning for NOMA

Since the end of 2018, several ML based NOMA schemes have been observed in the lit-
erature [64]–[71] with the aim of enhancing multiple access performance. Such approach
can be reasonably considered, not only thanks to ML breakthrough, but also because of
the improvement of the computational performance of wireless systems.
Hence, several schemes of NOMA were proposed by using DNN models [65], [66], [72]. For
instance, in [66], a non-convex DNN-based optimization for resources allocation is used to
minimize the total transmit power of a joint downlink of PDMA system. Similarly in [65],
a two user PD-NOMA scenarios were considered, a significant performance improvement
of a DNN receiver over a conventional SIC one is provided.
Recently, a CNN is considered for symbol-level multi-user detection in Welch bound equal-
ity spread based NOMA system [71], this NOMA scheme employs low-correlation spread-
ing signatures. The supervised learning based solution matches almost the conventional
detector performance. Also in [73], a CNN based approach to estimate the channel of
NOMA based mmWave hybrid systems was introduced. The idea is that users are grouped
into different clusters based on their channel gains, then a beamforming operation is ap-
plied on each cluster. Afterwards, a coarse estimation of the channel is made from the
received signal, this estimate is finally used as the input of the CNN model.
The application of LSTM networks for NOMA systems was also studied. Gui et al. pro-
posed, in their work [64], a supervised LSTM based PD-NOMA where channel states of
multiple users are automatically tracked by the LSTM network which already learned the
environment via offline training. It was proven that the LSTM-based framework is very
suitable for user activity and data detection of PD-NOMA systems. The authors in [70]
were motivated by proposing a joint precoding (on the transmitter side) and decoding
(on the receiver one) for downlink MIMO-NOMA, an AE was employed. The idea is to
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extract the important features from the transmission and reception processes in order to
provide a significant complexity reduction compared to the conventional process.

1.4.5 Machine Learning for SCMA

In this thesis, we are more interested in how deep learning was applied to design SCMA
systems. Very recently, this problem attracted some attention [74]–[80]. The main aim is
to design a detector by offline training a DNN such that one shot online non-iterative
decoding is performed with a relative low-complexity.
In [74], denoising autoencoders (DAEs) are used to jointly design the encoder and the
detector. Hence, one DNN generates the codebook automatically and must learn how to
efficiently map symbols to a complex constellation, another fully-connected DNN decodes
the received vector to detect the symbols. The training is based on an end-to-end objective
function which must be minimized in order to minimize the BER. The training data is
randomly generated with a given noise level. A similar approach is also studied in [80].
However, the aforementioned detectors can not be used with any given codebook. That is
why the proposition in [76] studied only the detection problem independently from how
codebook is designed and generated. A sparsely connected DNN was designed such that
the propagation between two of its layers is calculated based on how messages are passed
between subcarrier nodes and user nodes in traditional iterative MPA. The idea is to un-
fold the MPA factor graph iterations into the network layers which results in sparse DNN.
The simulated training data are generated dynamically to have a different noise level at
each step. The same unfolding principle was studied in [75] in order to propose a joint
detection and decoding of channel-coded SCMA systems. The channel coding is randomly
generated and is included in the training procedure which makes this proposition more
suitable for practical applications. The limitation of these methods is that they utilize
a fixed constellation mapping and they are only applied in the case of regular SCMA
codebooks.
A hybrid multiple access scheme was proposed in [79] where OFDMA orthogonal resources
are used for near users, and non-orthogonal SCMA based access is used for far ones. Two
deep learning-based detectors were proposed, one DNN for near users detection, and the
other is for far ones detection. In the two cases, a standard DNN structure was offline
trained via a simulated data.
The unique research work to employ CNN based detector for SCMA systems is proposed
in [77] where a blind detector is designed using unitary filters to fit with uni-dimensional
(1D) input instead of the common and known use of CNNs with two-dimensional (2D)
inputs. The drawback of this proposition is that its performance is limited in low signal-
to-noise ratio (SNR) regime when compared to that of the MPA.
Data in NOMA based wireless systems will be more and more complex and heteroge-
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neous which requires to employ powerful tools in order to inspect them and to detect the
transmitted bits. This means that the deep learning based solutions will be increasingly
attractive. However, there are still some challenges that must be overcome before the
deep learning based NOMA systems become reality. Firstly, despite the fact that exist-
ing propositions enhance the NOMA performance but this come at the expense of high
computational complexity which represents a major issue. Moreover, the optimal neural
network, in terms of architecture, depth, number of parameters and training data and
methods, is still a subject of research.

1.5 Focus of the Thesis

Multiple access techniques are very crucial for the evolution of different generations of
wireless communication systems from 1G to 5G. NOMA is the privileged multiple access
technique for beyond 5G. In this thesis, we are more interested by CD-NOMA techniques
since we think that they are more effective in terms of performance and flexibility. SCMA
mechanisms are designed to facilitate the support of massive connectivity and are consid-
ered as potentially promising multiple access candidate for future generations based on
their capacity to achieve a better link level performance. However, there are still numerous
challenging problems to be solved. In this Ph.D. work, we will focus on SCMA with the
aim to enhance the design of its codebook and its detector.
In regular SCMA, the users are uniformly served which it is not optimal since all users
don’t have the same business requirements, and their physical layer needs depend on many
factors such as the maximum allowed delay, the required rate and the targeted quality of
service. It will be more practical if the SCMA systems can be differently adapted to users
needs and their channel states for instance. Some works on adaptive or irregular SCMA
do exist, however this area must be further explored to propose some tailored codebook
designs and/or tailored detectors for adaptive SCMA systems.
Traditional SCMA suffers from high complexity due to the use of sophisticated iterative
decoders. One solution for SCMA codebook design and/or signal detection is to exploit
ML techniques and more specifically deep learning which proposes several efficient tools.
For the time being, this axis of research was rarely studied [74]–[80], that is why it is
deemed as promising and attractive.

One way to better clarify the focus of our thesis is by presenting its main contributions,
as follows,

• It is required to comprehensively study SCMA with the objective to explore its
architecture, the design of its encoder and detector, its interplay with other 5G
technologies such as mmWave and MIMO. To the best of our knowledge, this effort
is yet to be conducted in the state-of-the-art, that is why we start by filling this
gap.
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• In practice, users have different channel conditions and business requirements such
as data rate, QoS, and network priority. Here, an adaptive SCMA scheme is proposed
to tackle this problem. The idea is to divide users into different groups such as an
adaptive designed codebook is allocated to each group. Unlike the traditional SCMA,
the sparsity degree, the constellation size, and the allocated power per user, can be
adapted to each group requirements in order to increase the overall performance of
SCMA system. Simulation results show that the proposed scheme outperforms the
traditional regular SCMA.

• It is vital to push on with developing SCMA detectors that can outperform the
performance of the conventional MPA based detector in terms of both complexity
and bit error rate. In this Ph.D, a new approaches to improve SCMA detection
performance using deep learning methods are explored. First, we propose to jointly
design and train a DAE and DNN to decode SCMA signals over an additive white
Gaussian noise channel. Then, we propose a new distance-based DNN detector under
the assumption that the codebook is known at the receiver. The proposed detector
can be fairly compared to MPA, and simulations confirmed that its performance is
better than that of MPA.

In the following, a comprehensive study of SCMA is presented in Chapter 2. Then, a
new adaptive design of SCMA codebooks is introduced in Chapter 3. Finally, Chapter 4
concentrates on the application of deep learning techniques to SCMA detection problem.
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COMPREHENSIVE STUDY OF SCMA
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Chapter 2 – Comprehensive Study of SCMA

2.1 Introduction

In this Chapter, we will present the SCMA system architecture by presenting its basic
principles and its signal model. Then, existing methods for SCMA codebooks design will
be reviewed. Finally, we will explain how SCMA signal can be detected at the receiver
either using the traditional MPA or other more sophisticated methods. This will help
understanding why SCMA is considered as a promising massive multiple access candidate
for future generations of wireless communication systems, and will highlight its capacity
to fit with their requirements.

2.2 SCMA System Architecture

In this section, we want to highlight the principles of SCMA system in both uplink and
downlink links in order to explain how it can provide multiple access.

2.2.1 Basic Principles of SCMA

In this thesis, we consider a synchronous SCMA system with a BS and J separate users
so-called layers that receive and send their data from and for the BS over K OFDM
subcarriers, so-called REs. A SCMA transmitter encodes log2(Mj) data bits of user j
and maps them into a K-dimensional codeword, x(m)

j , which is selected from a distinct
codebook Cj of size Mj. Each codebook presents the signature of the corresponding user.
The codebooks are built based on multi-dimensional constellation, C = {Cj, 1 ≤ j ≤ J}.
As to the codewords of SCMA, they are sparse, i.e. only Nj � K of their entries are
non-zero and the rest are zeros. We denote Nj the codebook sparsity degree. The sparsity
key of SCMA that all codewords corresponding to the jth SCMA layer have a unique
location of non-zero entries at the same (K −Nj) positions.
Based on the different parameters of SCMA system, for instance, the size of codebook
for each user Mj and the codebook sparsity degree Nj, we can distinguish two kinds of
SCMA system architectures : (i) regular SCMA and (ii) irregular SCMA.
A regular SCMA system is defined by Nj = N, 1 ≤ j ≤ J and Mj = M, 1 ≤ j ≤ J , an
example is presented in Figure 2.2.1 where all users employ a codebook of size 4 and their
signals are spread over two REs, i.e. Mj = 4, Nj = 2, 1 ≤ j ≤ 6. The maximum degree of
user superposition on a given RE is denoted df , and the overloading factor, λ, is defined
by the ratio of number of users to number of REs, J

K
. Regrading the system in Figure

2.2.1, df = 3 and λ = 150%.
The irregular architecture, as its name indicates, is designed such that the codebooks are
allocated differently according to the different needs of users. In Chapter 3, we will focus
notably on existing irregular SCMA structures before proposing a new adaptive method
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Figure 2.2.1: Representation of the encoder of a regular SCMA system.

for irregular SCMA codebook design.
In the rest of this manuscript, a simple "SCMA" will refer implicitly to regular SCMA.

2.2.2 SCMA Signal Model

The codewords of all users, x(m)
j , 1 ≤ j ≤ J , are superimposed and exchanged over the

K REs. For an uplink scenario based SCMA, the K-dimensional uplink received vector
is given by,

y =
J∑
j=1

Hjx(m)
j + n, (2.1)

where y = (y1, · · · , yK)T , x(m)
j =

(
x

(m)
j,1 , · · · , x

(m)
j,K

)T
, Hj = diag(hj) and hj = (hj,1, · · · , hj,K)T

is the K × 1 channel gain vector of user j. The K × 1 vector n corresponds to the ad-
ditive zero-mean white circularly complex Gaussian noise with variance N0; i.e. n v

CN (0, N0IK), where IK is the identity matrix of size K. However, in a downlink scenario
based SCMA, the Equation (2.1) is transformed to express the K-dimensional downlink
received vector of user u, yu, as follows,

yu = Hu

J∑
j=1

x(m)
j + n. (2.2)

2.3 SCMA Codebook Design

The design of SCMA codebook for each user j is usually based on several steps, a descrip-
tion of each one among them is given in this section. The idea is that the constellation
function, associated with each user j generates a constellation set with Mj alphabets of
length Nj. Then, the mapping matrix Vj maps the Nj-dimensional constellation points
to SCMA codewords to form the codebook Cj.
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2.3.1 Codebook Design Procedure

We can describe a SCMA system by a K × J factor graph matrix F = (f1, · · · , fJ) whose
columns define the positions of non-zero elements of each user. Thus, the matrix F is
related to the codeword x(m)

j , in equation (2.1) and equation (2.2), by the fact that the
structure of F defines where zeros are located in the codebook from which the codeword
x(m)
j is selected.

Another way to represent the system is to employ V = {Vj, 1 ≤ j ≤ J} where Vj is
the mapping matrix of each user j, it is worth noting that fj = VjVT

j . For instance, the
system in Figure 2.2.1 is represented by,

F =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 ==> For instance, V1 =


1 0
0 1
0 0
0 0



A factor graph is depicted in Figure 2.3.1 where every circle represents a user (so-called
variable node) and every block represents a subcarrier (so-called function node).
As to the SCMA codebook design, it is considered as a joint optimization problem to find
both the optimum user-to-RE mapping matrices V∗ and the optimum multi-dimensional
constellation C∗, which can be defined as,

V∗, C∗ = arg max
V,C

D (φ(V , C; J, {Mj}, {Nj}, K)) (2.3)

where D is a design criterion and φ is the SCMA system as it was described above. How-
ever, when a SCMA system is fully loaded, one mapping matrix solution is possible and
hence it is automatically the optimal one.
Existing SCMA codebooks designs simplified this optimization problem into a suboptimal
multi-stage approach [81], such that the design of SCMA codebook is performed in three

Variable node (VN): 
𝑢𝑠𝑒𝑟 𝑗 , 1 ≤ 𝑗 ≤ 𝐽

𝑉𝑗=1→𝑘=1
(𝑡) 𝑈𝑘=4→𝑗=6

(𝑡)

𝑉𝑁1

𝐹𝑁1 𝐹𝑁2 𝐹𝑁3 𝐹𝑁4

Function node (FN) : 
𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑘 , 1 ≤ 𝑘 ≤ 𝐾

𝑉𝑁2 𝑉𝑁3 𝑉𝑁4 𝑉𝑁5 𝑉𝑁6

Figure 2.3.1: The factor graph corresponding to encoder of the SCMA system presented
in Figure 2.2.1.
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Figure 2.3.2: A block diagram of SCMA codebook design procedure.

main steps: firstly a mother constellation, Cmc, is designed, then user-specific transfor-
mation matrices, Tj, are used to generate user-specific multi-dimensional constellations
which are finally spread to generate the J codebooks. Hence, the optimization problem
in (2.3) is reformulated as follows,

{T∗j},C∗mc = arg max
{Tj},Cmc

D(φ(V∗, {TjCmc}; J, {Mj}, {Nj}, K)) (2.4)

such that the jth codebook is calculated by,

Cj = V∗jT∗jC∗mc. (2.5)

In the following parts of this section and inspired by the codebook design procedure,
illustrated in Figure 2.3.2, we present the major keys to design the mother constellation
and the appropriate transformation operators.

2.3.2 Mother Constellation Design

The mother constellation matrix of regular SCMA consists of N rows (or dimensions) of
sizeM which allows to represent each log2(M) bits with a constellation point of N entries,
the ith entry is a complex value which belongs to the ith dimension of the multi-dimensional
constellation. The designed codebook must possess a good distancing property among the
points of the overall multi-dimensional constellation according to the criterion D such
that performance can be enhanced. Exiting design criteria, D, were reviewed in [81]. In
the following, we present the definition of the most important ones.
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Euclidean distance: The Euclidean distance between two constellation points,
x(u)
i and x(m)

j , 1 ≤ u ≤ M , 1 ≤ m ≤ M , of user i and j respectively, 1 ≤ i ≤ J ,
1 ≤ j ≤ J , is calculated by,

dE
(
x(m)
j ,x(u)

i

)
= ‖x(m)

j − x(u)
i ‖ (2.6)

A classic design criterion is the minimum Euclidean distance of a multi-dimensional
constellation [82], [83], it is defined as,

d(min)
E = min

1≤u,m≤M
1≤i,j≤J

{
dE
(
x(m)
j ,x(u)

i

)}
(2.7)

This criterion is more useful for evaluating the design of Cmc when all users are
observing the same fading channel coefficients over their REs.

Euclidean kissing number: The key here is to count the number of distinct con-
stellation point pairs, when the Euclidean distance separating each pair is equal to
the minimum Euclidean distance employed by the mother constellation to separate
its points.

Product distance: The product distance between twoN -dimensional complex con-
stellation points, x(m)

j =
(
x

(m)
j,1 , · · · , x

(m)
j,N

)T
and x(u)

i =
(
x

(u)
i,1 , · · · , x

(u)
i,N

)T
, is expressed

as,
dP
(
x(m)
j ,x(u)

i

)
=

∏
1≤n≤N
x

(m)
j,n 6=x

(u)
i,n

|x(m)
j,n − x

(u)
i,n | (2.8)

The minimum product distance of a multi-dimensional constellation is given by,

d(min)
P = min

1≤u,m≤M
1≤i,j≤J

{
dP
(
x(m)
j ,x(u)

i

)}
(2.9)

This criterion is preferred when evaluating the design of Cmc in strong fading channel
case, i.e., when channel coefficients over employed subcarriers are different.

Product kissing number: It is the number of distinct constellation point pairs
with product distance equal to the minimum product distance.

Hence, having several dimensions gives SCMA additional degrees of freedom, this results
in an inherent shaping gain which is defined by the ratio of the minimum distance between
the codewords of normalized multi-dimensional constellation of size M to the minimum
distance between the points of a normalized traditional one-dimensional constellation of
the same size. For example, the shaping gain of 4-point two-dimensional constellation
as proposed in [33], [82] over quadrature phase shift keying constellation, in terms of
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Figure 2.3.3: Low-projection constellation : an example of QAM SCMA constellation
points of size M = 4 with two non-zero REs, labeled based on Gray coding. First step
rotates the constellations to ensure a maximum product distance between symbols which
enhances the detection process. The second step could better reduce the complexity of
the receiver since some constellation points collide over each RE, for instance the constel-
lation points corresponding to 00 and 11 in the M-sized constellation collide over the first
subcarrier, however, they have maximum distance over the second one which makes them
separable using Mp-QAM constellation while Mp ≤M .

Euclidean distance, is up to 1.25 decibel (dB). The gain on the minimum distance is
translated in terms of better system performance.
With the aim to optimize the design of the mother constellation, Cmc, several works
was proposed. For instance, in [82] the M -Beko mother constellation can be generated
by minimizing the average alphabet energy for a given minimum Euclidean distance be-
tween any two constellation points. Similarly, the M -Peng scheme [83] is designed based
on maximizing the minimum Euclidean distance between constellation points of different
users. In [84], a complex constellation building is proposed. Such that its imaginary part is
independent of its real one, which can help to reduce the decoding complexity, a shuffling
operation can be employed to separate the imaginary and the real part of the complex
constellation.
One approach to further reduce the complexity of the receiver is to conceive a low-
projection mother constellation [84]–[88], that is to employ a lesser number of colliding
constellation points over each dimension, however the codewords of each user can still be
decoded since they are distinct on other dimensions as shown in Figure 2.3.3. This will
decrease the complexity at the detector, for instance, MPA complexity can be reduced
from Mdf to Mdf

p , where Mp is the size of the constellation after projection. The best
employed criterion to design the low-projection constellations is product distance which
has to be adjusted to be as low as possible without degrading the performance in the high
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Table 2.3.1: Two examples of 2-dimensional constellations with 4-codewords where x(m)
n

is the nth entry of the mth codeword m, that is x(m)
n belongs to dimension n.

Codeword m
T4QAM 4LQAM

x
(m)
1 x

(m)
2 x

(m)
1 x

(m)
2

1 (00) + 3√
10 + 1√

10 −
√

2
2 −

√
2

2 i

2 (01) − 1√
10 + 3√

10 −
√

2
2 +

√
2

2 i

3 (10) + 1√
10 − 3√

10 +
√

2
2 −

√
2

2 i

4 (11) − 3√
10 − 1√

10 +
√

2
2 +

√
2

2 i

SNR zone.
However, optimizing spreading codes and constellations is not a new problem, differ-
ent approaches with their associated criteria exist in the literature [89]–[94]. These works
inspired a variety of multi-dimensional SCMA constellation designs. Based on the quadra-
ture amplitude modulation (QAM), the TMQAM scheme was proposed in [86] where the
design of the proposed constellation uses a shuffling method which establishes the N -
dimensional complex constellation from the Cartesian product of two N -dimensional real
symbols with a specific Euclidean distance. Then, a rotation is applied to maximize the
minimum product distance of both N -dimensional constellations. Similar to TMQAM,
the MLQAM [87] technique applies the shuffling method but its constellation has a low
number of projections. Also, the authors in [95] proposed a constellation for SCMA sys-
tems over Rayleigh fading channels based on a criterion derived from cutoff rate of MIMO
systems, their proposition was denoted asM -Bao. A spherical coding was also proposed in
[96] by the same authors of [95], however they shown that M -Bao codebooks outperform
the spherical coding based ones. The TMQAM, MLQAM and M -Bao are all based on
Cartesian product of two log2(M)-QAM which constitutes the M corners of a log2(M)-
dimensional hyper-cube. The authors in [97] proposed the MHQAM scheme based on
an optimization of rotation angles of the hyper-cube, this leads to a reduction of MPA
complexity from Mdf to (log2(M))df . For a better illustration of mother constellation
design, two examples of 2-dimensional ones with 4-codewords are provided in Table 2.3.1
and Figure 2.3.4.
Some multi-dimensional constellations are constructed by exploiting multi-radius rings

[87], [98]–[100], i.e. the constellation points of a given dimension are not randomly placed
but they belong to concentric rings. The M -point circular constellation MCQAM [87] is
based on the analysis of the signal space diversity for MIMO systems over Rayleigh fading
channels with a low number of projections for each complex dimension. MPA complexity is
then reduced from Mdf to (M − 1)df . A multi-dimensional SCMA codebook design based
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Figure 2.3.4: Illustration of two examples of 2-dimensional constellations with 4-
codewords, i.e. T4QAM [86] and 4LQAM [87]: (a) projection of T4QAM over first di-
mension, (b) projection of T4QAM over second dimension, (c) projection of 4LQAM over
first dimension and (d) projection of 4LQAM over second dimension.

on star-QAM constellations was proposed for uplink SCMA systems in [98], [99]. That
is the first dimension of mother constellation is constructed using a M -dimensional star-
QAM constellation, then, the other dimensions are obtained by scaling and permuting the
points of the first one, an example is illustrated in Figure 2.3.5. The mother constellation
parameters are obtained through computer search inspired by the approaches in [89], [93].
This approach is powerful for designing codebooks with large size and/or high dimension.
The optimization objective in [99] was to minimize the pairwise error probability between
two transmitted codewords x(a),x(b) which is given by,

P(x(a),x(b)|H) = Q

√‖H (x(a) − x(b)) ‖2

2N0

 . (2.10)

This criterion can be interesting since it is applied directly on the generated codewords
of the J codebooks and not on the mother constellation.
Multi-stage optimization of another ring-based approach was proposed in [100]. Each ring
is composed of uniformly spaced phase shift keying (PSK) points such that the whole rings
form an amplitude and phase shift keying (APSK) constellation which is capable of out-
performing the classic square shaped QAM constellation in peak-power-limited systems.
The first dimension is designed by maximizing the coded modulation capacity, then the
other dimensions of the mother constellation are deducted using optimized permutations.
Once the mother constellation is designed, optimized and evaluated based on one of the
above-presented design criteria, the applied transformations which are used to generate
the J codebooks must be designed to preserve the characteristics of the mother constel-
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Figure 2.3.5: An example of four-rings star-QAM mother constellation for the design of
a SCMA codebook of size M = 4 and sparsity degree N = 2 where α and β are 2 reel
design parameters.
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Figure 2.3.6: Illustration of the six 2-dimensional constellations with 4-codewords, gen-
erated by applying unitary rotation transformation, as described in equation (2.11), on
the T4QAM mother constellation [1]: the projections of the constellation of each user on
its associated two REs are depicted.

lation.

2.3.3 Transformation Operators Design

Once having the mother constellation of N -dimension, Cmc, different sets of operators
can be applied on top of it to build multiple sparse codebooks for several layers of SCMA.

62



2.3. SCMA Codebook Design

As one of the fundamental steps in the design of SCMA codebooks, the transformation
operators design was investigated in recent researches works [99]–[105]. A transformation
operator, Tj (see equation (2.5)), could be either one or a combination of typical opera-
tors such as complex conjugate, rotation operator, interleaving and vector permutation.
In most works, preserving an adequate Euclidean distance profile of the mother constella-
tion is based on applying a unitary rotation matrix [1], [33], [82]–[84], [86], [106]–[108]. The
authors in these research works have combined the mapping matrix and the transforma-
tion one to form a new rectangular matrix, FT . An example, forK = 4, N = 2 and M = 4,
is given by [1],

FT =


0 ϕ1 ϕ2 0 ϕ3 0
ϕ2 0 ϕ3 0 0 ϕ1

0 ϕ2 0 ϕ1 0 ϕ3

ϕ1 0 0 ϕ3 ϕ2 0

 (2.11)

where ϕ1 = ejθ1 , ϕ2 = ejθ2 and ϕ3 = ejθ3 . Traditionally, θ1 = 0, θ2 = π
3 , and θ3 = 2π

3 .
In this circumstance, the codebook of user 1, for instance, is calculated based on the
following mapping and transformation matrices,

V1 =


0 0
1 0
0 0
0 1

 and T1 =
ejθ2 0

0 ejθ1

.

The matrix FT respects the Latin criterion where not only non-zero elements in each row
are distinct but also those in each column which leads to controlling both dimensional
dependency and power variation of the multi-dimensional constellation, while keeping the
Euclidean distance unchanged [84], [106]. Figure 2.3.6 shows the normalized 2-dimensional
constellations with 4-codewords, generated by applying unitary rotation transformation,
as described in equation (2.11), on the T4QAM mother constellation, as presented in Ta-
ble 2.3.1. The projections of the constellation of each user on its associated two REs are
depicted in subfigures. The complete codebooks, as introduced in [1], are given in Figure
A of Appendix A.
In [95], multi-user codebooks are obtained via specific computer-designed rotation ma-
trices instead of the unitary rotation ones. Furthermore, a two-dimensional specific user
rotation is applied to the mother constellation proposed in [87] to generate the different
SCMA codebooks. In [103], the SCMA design and the security of the link are combined,
the codebooks are generated by rotating the mother constellation with random angles ex-
tracted from channel phases, this requires to know the CSI. These encrypted codebooks
protect exchanged information with low complexity.
An optimization of transformation operator was proposed in [102] based on a novel cri-

63



Chapter 2 – Comprehensive Study of SCMA

0 2 4 6 8 10 12 14 16

10-4

10-3

10-2

10-1

100

SCMA [1] (M-Beko)
SCMA [95] (M-Bao)
SCMA [86] (T!QAM)

IrSCMA [134]
SCMA [99] (star-QAM)

𝐸!/𝑁"

𝐵𝐸
𝑅

Figure 2.3.7: Performance evaluation of uplink SCMA system with different codebook
designs through Rayleigh fading channel : the number of orthogonal REs is 4 and the
number of users is 6.

terion to select the most appropriate permutation set in order to improve the probability
of reliable detection of the first user which largely improves the performance of MPA de-
tector. The proposed criterion tries to maximize the sum of distances among dimensions
of interfering codewords multiplexed on each RE. A permutation-based SCMA scheme
is proposed in [109], the idea is that the codebook of user j is designed by mapping the
encoded codeword to N among K REs whose positions are defined according to the values
of data bits to be transmitted, i.e. different non-zero locations of encoded complex vectors
are assigned to different codewords. This approach is different from the majority of SCMA
designs where the fixed positions of non-zero elements of each user are determined by the
columns of the factor graph matrix, F, as illustrated in subsection 2.3.1. The proposed
permutation approach increases the spectral efficiency without a complexity overhead
when compared to traditional SCMA. A combination of matrix permutation and rotation
is employed as transformation operator in [98], [99].
It is worth mentioning that labeling affects the performance of SCMA system in terms
of BER, hence it is important to employ the appropriate labeling. For instance, once the
multi-dimensional constellation is designed in [100], its labeling is optimized such that the
slope of the extrinsic information transfer (EXIT) chart is well adjusted.
A performance evaluation of uplink SCMA system with different codebooks through
Rayleigh fading channel is shown in Figure 2.3.7, it is obvious that the design of codebook
has an important effect on the system performance. A summary of existing SCMA code-
book designs is presented in Table B.1 of Appendix B. Furthermore, a review of SCMA
multi-dimensional constellations design was proposed in [81] in which further details on
some of the aforementioned SCMA codebooks can be found.
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2.4 SCMA Detector Design

A block diagram of classic SCMA system is shown in Figure 2.4.1, after the OFDM demod-
ulator, the transmitted signals must be estimated which requires to have some knowledge
of the communication channel, to segregate the SCMA codewords and finally to decode
the channel encoding after a deinterleaving operation.
In this section, our objective is to highlight existing algorithms and mechanisms employed
to enable the receiver to separate the superimposed codewords which were selected from
one of the above presented SCMA codebooks. Each RE of the SCMA systems is occupied
by several users which results in smaller distances among the constellation points and
could degrade the link performance.
Most existing works on SCMA detectors employ MPA or one of its variations, or a com-
bination of MPA and other methods. Hence, it is straight-forward to start by presenting
MPA in the next subsection before reviewing other techniques. Most existing methods
propose to sequentially apply the aforementioned steps, however some research works aim
to design joint detection methods for MIMO-SCMA systems. Deep learning is also em-
ployed in SCMA systems. A review of existing MIMO-SCMA detectors and deep-learning
based ones is provided. Also, in the Table D.2 of Appendix D, we summarize the SCMA
detection techniques by showing their approach, their assumptions and their complex-
ity order, based on the key parameters of SCMA system as presented in Table D.1 of
Appendix D.

2.4.1 Message Passing Algorithm

Traditional MPA

MPA is defined as an iterative parallel decoding technique based on passing the extrinsic
information from function nodes (FNs) to variables nodes (VNs) and vice versa [27],
[110] as shown in Figure 2.3.1. In each iteration, each FN of the factor graph computes
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its outgoing message to a given VN depending on the incoming messages received from
the rest of VNs. Then, each VN will send back its message depending on the received
messages from the reminder of FNs. Finally, one iteration is considered as completed
when one outgoing message has passed in both directions along every edge. The log-
likelihood-rates (LLRs) of each coded bit are calculated after few iterations in order to
estimate the bites of each user j. We can present MPA process based on three main steps
as shown in Algorithm 1 for a SCMA system of J users using M constellation points
through K orthogonal REs.

Variations of MPA

Despite being a referent decoder for SCMA, the complexity evaluation of MPA reveals that
it relies on a large number of exponential calculus which are of high complexity. With the
challenge to reduce this complexity and to fit with critical requirements of future wireless
networks, several variations of MPA were proposed, among them we present here, the
Max-Log-MPA [111], [112] and Log-MPA [112], [113] methods.

Max-Log-MPA : It is a simplified version of MPA based on a mathematical simpli-
fication which approximates the logarithm of a sum of exponential operations into a
maximum operation. The key purpose is to move the iterative decoding process into
logarithmic domain which eliminates the exponential terms in MPA by employing
the simplified formula of Jacobean logarithm,

log (exp (a1) + · · ·+ exp (an)) ≈ max (a1, . . . , an) (2.12)

Thus, passing numerous messages from FN to VN, and vice versa, will be very
less expensive in term of complexity. Based on (2.12), the expression of LLR(bi)
presented in Algorithm 1 is modified as follows,

LLR(bi) = max
{x(m)
j ∈Cj |bi=0}

(
log

(
P(x(m)

j )
))
− max
{x(m)
j ∈Cj |bi=1}

(
log

(
P(x(m)

j )
))

(2.13)

Log-MPA : The approximation of the Jacobean logarithm formula as presented in
(2.12) makes the Max-Log-MPA a sub-optimal solution and results in a performance
degradation. To mitigate this issue, a correction term was added by using another
Jacobean logarithm formula. The adopted approximation is given by,

log (exp (a1) + · · ·+ exp (an)) = aj + log
1 +

∑
i∈{1...n}\j

exp (−|aj − ai|)
 (2.14)

where aj = max (a1, . . . , an). Hence, the LLRs are further updated to be as below,
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Algorithm 1: Message Passing Algorithm
Input: y, N0,Cj,hj, j = 1, · · · , J .
Result: Estimate the value of coded bits for each user j, j = 1, · · · , J .
Definitions
VNs represent users, FNs represent resources or subcarriers,
U(k) = {j, 1 ≤ j ≤ J | VNj is connected to FNk},
R(j) = {k, 1 ≤ k ≤ K | FNk is connected to VNj}.
Step1: Initialization
The prior probability for each codeword is given by:
V 0
j→k(x

(m)
j ) = P(x(m)

j ) = 1
M
, j = 1, · · · , J, k ∈ R(j)

Step2: Iterative message passing along edges
while t ≤ Niter do

1. FN update: the message to be passed from FNk to one of its neighbors VNj,
k = 1, · · · , K, j ∈ U(k), for a given codeword x(m)

j ∈ Cj,m = 1, · · · ,M , is
calculated as,

U t
k→j(x

(m)
j ) =

∑
x(m)
i |i∈U(k)\j

exp
{
− 1
N0

∥∥∥∥yk −∑
j

hj,kx
(m)
j,k

∥∥∥∥2
} ∏
i∈U(k)\j

V t−1
i→k(x(m)

i )

2. VN update: the message to be passed from VNj to one of its neighbors FNk,
j = 1, · · · , J, k ∈ R(j), for a given codeword x(m)

j ∈ Cj,m = 1, · · · ,M ,
is given by,

V t
j→k(x

(m)
j ) =

∏
i∈R(j)\k U

t−1
i→j(x

(m)
j )∑

x(l)
j ∈Cj

∏
i∈R(j)\k U

t−1
i→j(x

(l)
j )

.

Normalization is necessary to keep the algorithm numerically stable.

end
Step 3 : Taking a decision (LLR at each VN)

1. For each layer j, j = 1, · · · , J , the posteriori probability of codeword
x(m)
j ,m = 1, · · · ,M is defined as,

P(x(m)
j ) =

∏
k∈R(j)

UNiter
k→j (x(m)

j )

2. Log-Likelihood-Rate for each coded bit, bi, 1 ≤ i ≤ log2(M), is represented by,

LLR(bi) = log
(
P(bi = 0)
P(bi = 1)

)
= log


∑
{x(m)
j ∈Cj |bi=0} P(x(m)

j )∑
{x(m)
j ∈Cj |bi=1} P(x(m)

j )


Finally, each bit is decided according to the value of its LLR as following,

b̂i =
{

1 if LLR(bi) ≤ 0
0 otherwise.
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Figure 2.4.2: Performance comparison of MPA, Log-MPA and MAX-Log-MPA variations
through Rayleigh fading channel : the number of orthogonal REs is 4 and the number of
users is 6.

rather than as in (2.13),

LLR(bi) =
 max
{x(m)
j ∈Cj |bi=0}

(
log

(
P(x(m)

j )
))

+

log
1 +

∑
m′∈{1...M}\m

exp
(
−| log

(
P(x(m)

j )
)
− log

(
P(x(m′)

j )
)
|
) ]

−
[

max
{x(m)
j ∈Cj |bi=1}

(
log

(
P(x(m)

j )
))

+

log
1 +

∑
m′∈{1...M}\m

exp
(
−| log

(
P(x(m)

j )
)
− log

(
P(x(m′)

j )
)
|
) (2.15)

Figure 2.4.2 presents the performance, in terms of BER, obtained by the three previ-
ously mentioned variations of MPA, namely MPA, Log-MPA and Max-Log-MPA, through
Rayleigh fading channel. It is obvious that, contrary to Max-Log-MPA, Log-MPA can
achieve near-optimum performance when compared to MPA due to the aforementioned
correction term which compensates for the performance loss of Max-Log-MPA. Further-
more, the performances of the three methods converge when SNR increases. However,
the computational complexity of Log-MPA is still a big challenge for some practical im-
plementations especially for energy-sensitive user equipment’s in the downlink scenario.
As the computation complexity of the above-mentioned detection algorithms increases
exponentially with df , the detection still takes considerable time. The parameter df must
be designed to be very small, which largely limits the choice of codebooks.
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Figure 2.4.3: MPA performance comparison for different number of iterations through
AWGN channel and Raleigh fading channel : the number of orthogonal REs is 4 and the
number of users is 6.

Most MPA variations are based on a fixed number of iterations which is not optimal since
a large number of iterations will considerably increase the complexity, while a low one will
lead to less performing detectors. Figure 2.4.3 evaluates the performance of MPA, in terms
of BER, for different number of message passing iterations when the channel is assumed
to be AWGN or Rayleigh distributed. In the two cases, the performance improves as the
number of iterations increases, nevertheless no significant improvement can be observed
beyond a certain limit. Moreover, the authors in [112] affirmed that the same convergence
behavior can be observed for Log-MPA and Max-Log-MPA. Therefore, a reasonable num-
ber of iterations can be set to 4. A flexible number of iterations was allowed in [124] by
supervising the convergence rate of each codeword probability which will guarantee to
reduce the complexity without compromising the performance.

2.4.2 Detectors for Channel-Coded SCMA

Each wireless link requires an error-correction channel coding, the turbo codes were used
in 4G systems, and the low-density parity-check (LDPC) codes and polar codes were
adopted by the 5G NR standard [114], [115]. Some SCMA detectors include the error-
correction codes structure into their design which gains a lot of attention in the literature.
For instance, the LDPC code was employed as the channel coding scheme for the SCMA
system in [116], [117] while a polar-coded SCMA was studied in [118]–[120].
In [116], the sparse factor graphs of LDPC coding and SCMA are combined into a joint
sparse graph in order to jointly perform the decoding and the detection on one graph.
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Then, MPA was simplified by using partial message passing based on a joint trellis repre-
sentation. Simulations showed that the joint approach is compatible with delay-sensitive
applications since it reduces the processing latency compared with disjoint turbo ap-
proaches. Another approach was studied in [117] by optimizing the interface between the
SCMA detector and the LDPC decoder which made a hardware solution feasible. The
authors proposed a MMSE with parallel interference cancellation (MMSE-PIC) detection
in the FN operations, and a bit LLR values for message passing. In order to minimize
the hardware overhead and to reduce the processing latency, both the proposed algorithm
and very large scale integration architecture are jointly designed.
Further in [118], a simple combination of MPA detector for SCMA and a soft-input soft-
output successive cancellation for polar coding was studied. The architecture of the re-
ceiver was adjusted by re-encoding the soft information of the polar codeword. The re-
constructed information is fed into the iterative SCMA detection procedure which results
in an additional coding gain. A joint factor graph of SCMA detector and polar decoder
are employed in [119], and hence a joint iterative message updating operation was intro-
duced.
The EXIT chart based analysis provided a more understating of how to optimize the
polar-coded SCMA system. More precisely, a weight factor was conceived and optimized
to mitigate the effect of the correlation among the soft outputs of polar decoder.
As for the CSI, it is not evident how to estimate its real value for some practical mMTC
applications where short packets are essentially exchanged. That is why it is interesting
to propose a joint channel estimation and decoding for polar-coded SCMA. In [120], the
joint detection and decoding scheme is based on traditional Max-Log-MPA detector for
SCMA and soft-successive cancellation list (S-SCL) algorithm for polar decoding. The S-
SCL provides the prior symbol probability for the SCMA detector while SCMA detector
calculates the prior information of the polar decoder. The joint detection and decoding
scheme is serialized with a frozen bit error rate mapper such that the CSI is updated at
each iteration. The iterative joint channel estimation and decoding scheme is initialized
with a sparse Bayesian learning based channel estimation.

2.4.3 MIMO-SCMA Detectors

A straight-forward extension of SCMA factor graph to multiple-antenna case makes the
number of resource nodes proportional to the number of antennas, this means that the
complexity will respectively increase exponentially. Several research works tried to over-
come this difficulty [121]–[127]. Figure 2.4.4 represents a block diagram of an uplink
MIMO-SCMA system when spatial multiplexing techniques is applied.
In [128] a maximum likelihood based detection for MIMO-SCMA signal was proposed
and compared to SISO-SCMA when using quadrature phase shift keying (QPSK)-mother
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Figure 2.4.4: Block diagram of an uplink MIMO-SCMA system with Nt = 2 transmit
antennas and Nr = 2 receive antennas.

constellation under AWGN channel. Simulations, confirmed that the interplay between
MIMO and SCMA can improve the performance of SCMA system in term of binary er-
ror. For instance, a gain of 2 dB is achieved when BER= 10−5 as presented in Figure
2.4.5. In [123] partial-decoding MPA was proposed, this method tries to remove redun-
dant combinations at FNs to reduce decoding complexity, however, it still suffers from the
exponential term in complexity. [125] introduced a stretched factor graph representation
for MIMO-SCMA systems which enables the design of a hybrid belief and expectation
propagation receiver that includes a channel decoder. Despite the relative low complexity
of this algorithm, its main shortcoming is that it can not be applied to user terminals
which are equipped with multiple antennas. In [124], a minimum singular value estima-
tion of the channel matrix is used to separate the resources into two categories according
to the channel condition at each resource. Then, a low-complexity jointly Gaussian algo-
rithm is applied to the well-conditioned resources, while the ML approach is used with
the resources with bad-conditioned channel. This will allow a certain trade-off between
performance and complexity when compared to the MPA detector. A similar approach
based on an antenna-subcarrier subset selection was introduced in [121], the selection
method is based on the channel norms. Furthermore, the MIMO-SCMA factor graph can
be partitioned into subgraphs by a QR decomposition of the channel matrix such that
the number of resource nodes depends only on the number of users sharing each resource,
df , this can reduce the complexity of messages calculation [122]. Unlike the later research
work, the authors in [127] associated the QR decomposition with EPA, and consequently
they proposed a sparse-channel-based EPA (SC-EPA) method which intends to reduce

71



Chapter 2 – Comprehensive Study of SCMA

Figure 2.4.5: Uncoded uplink MIMO-SCMA compared to SISO-SCMA based on QPSK
modulation when using maximum likelihood detection under AWGN channel [128].

the complexity by modifying the factor graph to create resource clusters, by exploiting
the channel sparsity and by proposing a high-parallelism message passing technique. The
effect of channel estimation errors on the SC-EPA performance was studied, it seems as
robust as some of existing methods.

2.4.4 Machine Learning based Detectors

In this subsection, we are interested in how machine learning was applied to design SCMA
detectors with the aim to design a detector by offline training a model such that one shot
online non-iterative decoding is performed with a relative low-complexity.
Since 2018, intelligent SCMA encoders and decoders were proposed in [74]–[76], [78]–[80]
based on supervised and unsupervised learning. These research works were reviewed in
Chapter 2 and could be divided into several categories based on the employed machine
learning technique. These categories are DNN, CNN and AE based detectors.
For instance, a jointly design of SCMA encoder and decoder is shown in Figure 2.4.6 where
a joint end-to-end objective function was employed to train two neural networks, the first
is a DNN which generates the codebook automatically and must learn how to efficiently
map symbols to a complex constellation, and the second is a fully-connected DNN which
decodes the received vector and detects the symbols. This approach may reduce the BER.
However, these techniques are less complex than conventional MPA but they can not yet
outperform it in terms of BER.
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Figure 2.4.6: Structure of the SCMA encoder/detector: DNNj, j = 1 · · · J, with an input
layer of m nodes and output one with 2K nodes (standing for the K-dimensional complex
codeword), represent the SCMA mapping process for one single user, namely User j.
Multiple DNNs are stacked together to form the SCMA DNN encoder, another DNN is
employed as a SCMA detector.

2.5 Conclusions

In this Chapter, we presented the structure and basic principles of SCMA. Then, SCMA
encoder and detector designs were reviewed through their most known techniques. In order
to propose well targeted perspectives and well guided projections on this multiple access
technique, we have reinforced this state-of-the-art by a simulations-based comparison
study of different existing approaches of codebook design as well as of signal decoding
and reception. These discussions highlighted that more work on irregular SCMA systems
is needed (this problem will be studied in Chapter 3) and that some new propositions on
deep-learning based SCMA detectors are required (this will be the subject of Chapter 4).
On the other hand, we have proposed some comprehensive Tables, available in the Annexes
of our thesis, that gather the majority of the codebook design techniques as well as the
different SCMA detection methods. The referenced works were categorized according to
some useful criteria. A complexity estimation of each technique was also elaborated. This
will allow the reader to possess a well knowledge of the state-of-the-art. 4.
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Chapter 3 – Adaptive SCMA Scheme

3.1 Introduction

As presented in the previous Chapter, in addition to the regular SCMA architecture, an
irregular one was proposed in the state-of-the-art. However, it is important to highlight
that most existing SCMA works are based on regular structure where users are treated
equally. Nevertheless, this scheme can not be adapted to different users’ business needs or
conditions in realistic scenarios. In order to fix that issue, the irregular SCMA architecture
is proposed.
In this Chapter, we will propose an adaptive design of SCMA codebooks based on an
irregular architecture to fit some particular users’ requirements for B5G networks.

3.2 Irregular SCMA

Several research works such as in [129]–[133] addressed how the irregular scheme of SCMA
can be adapted to various users’ needs in terms of rate, quality of service, priority and
also, how different allocation mechanisms were exploited to achieve the fairness among
users in the same network.

3.2.1 Non-regular Structure

As it was presented in the section 2.2, SCMA transmitter encodes the data bits of user j
and maps them into aK-dimensional codeword, x(m)

j , only Nj entries of x(m)
j are non-zero.

The codebook of each user j, Cj, is a constellation of Mj alphabets. In other words, Mj

is the size of codebook and Nj is its sparsity degree.
Figure 3.2.1 illustrates the SCMA system under three scenarios. A regular SCMA is
presented in Figure 3.2.1(a) where all users are spread over two REs (Nj = 2, 1 ≤ j ≤ J)
and employs a codebook of size Mj = 4, 1 ≤ j ≤ J . The system can be described with
the factor graph matrix Fss =

(
f (ss)
1 , · · · , f (ss)

J

)
as given in Equation (3.1), it is obvious

that all users have the same codebook sparsity degree.
The same factor graph matrix is valid when each user employs his specific constellation size
Mj as shown in Figure 3.2.1(b). This scenario allows to serve users at different data rates.
On the other hand, different sparsity degrees can be used such as each user sends log2(M)
bits over a specific number of subcarriers as depicted in Figure 3.2.1(c). An example of a
factor graph with different sparsity degrees is given by Fds =

(
f (ds)
1 , · · · , f (ds)

J

)
,

Fss =


1 0 0 1 1 0
0 1 0 1 0 1
1 0 1 0 0 1
0 1 1 0 1 0

 , Fds =


0 1 1 1 0 0
1 0 1 0 0 1
1 1 0 1 0 0
1 1 0 0 1 0

 (3.1)
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(g) (g) (g)

(g) (g) (g)

Figure 3.2.1: Presentation of the SCMA encoder for (a) regular system (b) irregular system
with different constellation sizes (c) irregular system with different codebook sparsity
degrees.

The codewords of all layers are then superimposed and transmitted over the K REs as it
was introduced in Equations (2.1) and (2.2).

3.2.2 Review of Existing Irregular SCMA Schemes

Early in 2015, an irregular SCMA codebook design was proposed in [129] with the aim to
assign different codebooks with various dimensions according to different users require-
ments. Simulations show that using an irregular codebook design does improve the system
performance in terms of BER. However the authors did not take into consideration the
impact of the correlation among users. One year later, another irregular SCMA design
was proposed in [130], the idea was to employ different rotated angles to design different
codebooks for several user needs, nevertheless the proposed codebooks are still far from
being optimal.
Based on other approach and motivated by the same aim, the authors in [131] studied the
resource allocation for different users in the same system by proposing a flexible resource
scheduling scheme. Other contribution in [132] proposed an energy-saving algorithm for a
joint codebook design and assignment, and power allocation for both uplink and downlink
SCMA scenarios.
Further, in order to enhance SCMA mapping system, researchers in [133] proposed a more
flexible uplink SCMA scheme by directly mapping a variable number of coded symbols
from each user onto subcarriers. This proposition improved the overloading factor and
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system performance at the expense of more complex signaling control.

3.3 Irregular SCMA Codebook Design

The steps to design a codebook for a regular SCMA system were presented in Chapter 2,
these steps are maintained here. Hence, designing an irregular SCMA codebook requires
to propose (a) a mother constellation design and (b) a transformation operators design.
However, the design of irregular SCMA depends on which parameter represents its irreg-
ular character, this may concern the sparsity degree or the codebook size as shown in
Figure 3.2.1. In the following subsections, our proposed design of mother constellations
and transformation matrices of irregular SCMA will be introduced.

3.3.1 Proposed Mother Constellation Design

As in the regular case, our objective is to solve the following joint optimization problem,
as it has been defined in Chapter 2,

V∗, C∗ = arg max
V,C

D (φir(V , C; J, {Mj}, {Nj}, K)) (3.2)

where D is a design criterion and φir is the irregular SCMA system as described in the
current chapter. Hence, our aim is to find the optimum user-to-RE mapping matrix V∗

and the optimum multi-dimensional constellation C∗.
The choice of the best design criterion is essential. Exiting design criteria, such as Eu-
clidean distance, Euclidean kissing number, product distance, and others, were investi-
gated in Chapter 2. Most existing criteria are applied directly to the mother constellation
while hoping that the transformation operators will preserve its proprieties. Here, we will
opt to employ a criterion that can be applied directly on the combination of codewords of
different users, since this combination is the vector to be really transmitted such that we
must be able to efficiently detect it. That is why we adopt the pairwise error probability
between the transmitted codeword, zt ∈ CC, and the detected codeword, zd ∈ CC, which
is expressed as,

P(zt, zd|H) = Q

√‖H (zt − zd) ‖2

2N0

 (3.3)

where H is the channel matrix as presented in section 2.3, and CC is the codewords
combination set which is given by,

CC =
{
z ∈ CK where z =

J∑
j=1

x(mj)
j ,x(mj)

j ∈ Cj, 1 ≤ mj ≤M, 1 ≤ j ≤ J
}
, (3.4)
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the cardinality of CC is MJ . Then, the error rate when zi is transmitted can be given by

P (zi|H) =
MJ∑
j=1
i 6=j

P (zi, zj|H) (3.5)

Our aim is to minimize the error rate, P (zi) , 1 ≤ i ≤ MJ − 1. Therefore, the design
criterion D, as defined in 3.2, is given by,

D = 1− P (zi|H) (3.6)

Moreover, for the AWGN channel, the pairwise error probability in (3.3) is reduced to,

P(zt, zd|H) = Q


√√√√d2

E (zt, zd)
2N0

 (3.7)

Hence, maximizing the design criterion D can be seen as maximizing the minimum square
Euclidean distance among the points of the codewords combination set, CC.
A ring-based approach, APSK, was proposed in [100] where each ring is composed of
uniformly spaced PSK points. The star-QAM constellation adds different phases between
adjacent rings compared to APSK [98], [99]. This makes the constellation points more
uniformly distributed in order to ensure a higher minimum distance between them. How-
ever, the inter-ring ratio must be also optimized in the case of star-QAM as in the case
of APSK. Our below-presented proposition is inspired by the work in [99] and extends it
to the case of irregular SCMA.
We have two distinct cases, namely systems with different codebook sparsity degrees and
those with different constellation sizes.

Case 1 : Irregular SCMA With Different Sparsity Degrees

Firstly, we study a SCMA system with three distinct groups of users as presented in Figure
3.2.1(c). That is, the idea that each group will be characterized with a different sparsity
degree and all of them use equal-sized codebooks. For instance, N (g)

1 = 3, N (g)
2 = 2,

N
(g)
3 = 1,M = 4 in the system to be studied in the following.

The mother constellation of regular star-QAM design is given by the following N ×M
matrix,

Cmc,star =
 αR

(d)
1 R

(d)
1 −R(d)

1 −αR(d)
1

−R(d)
2 αR

(d)
2 −αR(d)

2 R
(d)
2

 (3.8)

Here, users have different N values, that is why a mother constellation of size N =
max(N1, · · · , NJ) will be designed. However, only Nj dimension are employed to generate
the codebook Cj of user j since the mother constellation is multiplied with the mapping
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matrix, Vj, as expressed in Equation (2.5). The adopted factor graph matrix in this case
is Fds as defined in (3.1). For instance, we have,

V1 =


0 0 0
1 0 0
0 1 0
0 0 1

 V3 =


1 0
0 1
0 0
0 0

 V5 =


0
0
0
1



The employed mother constellation for irregular SCMA with different sparsity degrees is
expressed as,

C̈mc =


αR

(d)
1 R

(d)
1 −R(d)

1 −αR(d)
1

−R(d)
2 αR

(d)
2 −αR(d)

2 R
(d)
2

αR
(d)
3 R

(d)
3 −R(d)

3 −αR(d)
3

 (3.9)

where R(d)
2 = βR

(d)
1 and R(d)

3 = βR
(d)
2 . Hence, the mother constellation is defined by three

parameters, α, β and the radius of the inner ring, R(d)
1 . α denoted the power scaling effect

that is specific for each group and β denoted the interleaving which define the phase
between the different dimensions. That is, each dimension is generated from the previous
one by adding an interleaving and power scaling effect such as inter-layer interference can
be eliminated more easily.
Here, the work in [99] is extended by adopting a more powerful approach to optimize the
mother constellation of our irregular SCMA scheme. We consider α, β ∈ C in contrast to
[99] which allows to have some inter- and intra-dimensional rotations in addition to the
power variation, thanks to the complex pattern of α and β. The optimization consists of
finding the values of α and β which maximizes the codebook design criterion.
The average energy per symbol of employed 6-rings constellation of irregular SCMA when
N

(g)
1 = 3, N (g)

2 = 2 and N (g)
3 = 1 is expressed as,

Ë = (R(d)
1 )2 (1 + |α|2) (3 + 2|β|2 + |β|4)

6 (3.10)

Hence, assuming that average energy of Cmc is fixed to Ë = 1, the radii of the inner ring,
R

(d)
1 , is calculated as following,

R
(d)
1 =

√
6

(1 + |α|2) (3 + 2|β|2 + |β|4) (3.11)

Case 2 : Irregular SCMA With Different Constellation Sizes

Secondly, we study a SCMA system with three distinct groups of users as presented in
Figure 3.2.1(b). That is, the idea that each group will be characterized with a different
codebook size and all of them use the same sparsity degree. For instance,M (g)

1 = 2,M (g)
2 =

4,M (g)
3 = 8, N = 2 in the system to be studied in the following.
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Figure 3.3.1: Four-rings star-QAM mother constellation for regular (a) and irregular (b)
SCMA codebook design of size M = 4 and sparsity degree N = 2 when α and β are
respectively reel and complex.

For the case of adaptive SCMA system with different constellation sizes, the same ap-
proach is used but it must be adapted such that we have a distinct mother constellation
for each value of M , these mother constellations are denoted C̆m,1 ∈ CN×M(g)

1 , C̆m,2 ∈
CN×M(g)

2 , C̆m,3 ∈ CN×M(g)
3 . These matrices are given by,

C̆mc,1 =
 R

(d)
1 −R(d)

1

−R(d)
3 R

(d)
3



C̆mc,2 =
 αR

(d)
1 R

(d)
1 −R(d)

1 −αR(d)
1

−R(d)
2 αR

(d)
2 −αR(d)

2 R
(d)
2



C̆mc,3 =
 αR

(d)
3 αR

(d)
1 R

(d)
3 R

(d)
1 −R(d)

1 −R(d)
3 −αR(d)

1 −αR(d)
3

−R(d)
4 −R(d)

2 αR
(d)
4 αR

(d)
2 −αR(d)

2 −αR(d)
4 R

(d)
2 R

(d)
4


(3.12)

where R(d)
2 = βR

(d)
1 , R

(d)
3 = βR

(d)
2 and R(d)

4 = βR
(d)
3 . In this case, the factor graph matrix

Fss as defined in (3.1) is used.
The average energy per symbol of employed 8-rings constellation of irregular SCMA when
M

(g)
1 = 2,M (g)

2 = 4 and M (g)
3 = 8 is expressed as,

Ĕ = (R(d)
1 )2[ 4 (1 + |β|4) + (1 + |α|2) (3 + 3|β|2 + |β|4 + |β|6)]

12 (3.13)
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Hence, assuming that average energy of Cmc is fixed to Ĕ = 1, the radii of the inner ring,
R

(d)
1 , is calculated as following,

R
(d)
1 =

√
12

4 (1 + |β|4) + (1 + |α|2) (3 + 3|β|2 + |β|4 + |β|6) (3.14)

Consequently, once the complex values of α and β are found, the mother constellation is
completely calculated.
Hence, our optimization objective is reduced into finding the adequate α and β values
that maximize the minimum square Euclidean distance of the combination set CC. The
Algorithm 2 proposed bellow in the two aforementioned cases. Obviously, codebooks for
all users must be calculated before we can calculate CC.

3.3.2 Proposed Transformation Operators Design

The last step of the codebook design is to find the optimal transformation operators. Here,
we consider that scaling and interleaving operations are already included in the mother
constellation design. Therefore, the only transformation that we will apply on the mother
constellation, to generate the codebook of each user, is the rotation. Most existing works
in the literature employ the typical rotation angles in [84], [130].
As for our proposition, an optimized set of user-specific rotation matrices is adopted. The
nth entry of the Nj ×Nj diagonal rotation matrix for user j is defined as,

[Tj]n,n = ejθj,n , (3.15)

where θj,n ∈ [0, π[ since the different dimensions of each mother constellation are symmet-
ric. In order to simplify the optimization, quantized angles can be employed to represent
the semi-circle, i.e. θj,n can be obtained from a uniform grid as following,

θ ∈
{
iπ

Nθ

; 0 6 i 6 Nθ − 1
}

(3.16)

when Nθ is a design parameter.
It is worth mentioning that for the system proposed in Fig.3.2.1(c), a total number
of distinct rotation angles of 2

(
N

(g)
1 +N

(g)
2 +N

(g)
3

)
is needed. However, for the sys-

tem with different constellation sizes, we assign two rotation angles for each dimen-
sion with eight constellation points which is considered as a combination of two vectors
with four constellation points. This makes the total number of distinct rotation angles of
2
(
M

(g)
1 +M

(g)
2 + 2M (g)

3

)
.

In Algorithm 3, we propose a numerical search algorithm to assign the optimal rotation
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Algorithm 2: Optimization of mother constellation design
Input: SCMA system parameters: J,M,N,K,F
Initialize: α = rαe

jθα = 1, β = rβe
jθβ = 1

Tj are first assigned successively
Vj are calculated from factor graph matrices as expressed in Equation (3.1)
while θα ≤ π do

while rα ≤ αmax do
while θβ ≤ π do

while rβ ≤ βmax do
Cmc in given in Equations (3.9) and (3.12) in case 1 and case 2
respectively
For j = 1 · · · J,Cj = VjTjCmc

Compose the codewords combination set, CC as defined in 3.4
Compute, dmin, the minimal distance between the points of CC
if it is currently the maximum value of D in (3.6) then

save α and β
end
set the modulus value of rβ:
rβ = rβ + ∆r

end
set the phase value of θβ:
θβ = θβ + ∆θ

end
set the modulus value of rα:
rα = rα + ∆r

end
set the phase value of θα:
θα = θα + ∆θ

end
PS: αmax and βmax are the maximum modulus values within the optimization process.
∆θ and ∆r are the search steps for θ and r, they are set to π

24 and 0.1 respectively.
Output: C̆m,{i|1≤i≤3} or C̈m based on the optimized values of α and β

angle for each dimension of each user. This requires to find the optimal values of α and β
first which itself requires to know the rotation matrices. To solve this problem the rotation
angles are assigned successively in the first step, α and β are optimized before optimizing
the rotation angles in the second step as shown in Figure 3.3.2.

3.4 Adaptation of Irregular SCMA

We have proposed in the previous section a new method to design irregular SCMA code-
books. In this section, we will present how we could adapt the structure of irregular
SCMA in order to match the user requirement. Unlike the regular SCMA scenarios, for
each need, a different structure of adaptive SCMA can be employed. For instance, it is
not ideal to equally treat the users when they have different channel states, this may lead
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3rd dimension of user 2

1st dimension of user 6

2nd dimension of user 3

1st dimension

2nd dimension
3rd dimension

Figure 3.3.2: Rotation angles of different users are initialized to be assigned successively as
described in Step 1 of Algorithm 3. Here, in order to simplify the illustration we considered
a special case of two rings with no phase interleaving (α = 1) and β of modulus 1.)

Algorithm 3: Optimization of the transformation operations
Input: J users, Nθ rotation angles Nθ = 2

(
N

(g)
1 +N

(g)
2 +N

(g)
3

)
(in Case 1)

Nθ = 2
(
M

(g)
1 +M

(g)
2 + 2M (g)

3

)
(in Case 2)

Step 1: Phase assignment initialization The angles of the dimensions of the J
users are initialized successively as presented in Figure 3.3.2, i.e.,

θ
(init)
j,n − θ(init)

j,n−1 = π
Nθ
, 2 ≤ n ≤ Nj, 1 ≤ j ≤ J , where

θ
(init)
1,1 = 0, θ(init)

j,1 = θ
(init)
j−1,Nj + π

Nθ
, 2 ≤ j ≤ J .

Step 2: Phase assignment optimization

1. Optimize α and β based on Algorithm 2, these values are used in the following.

2. A numerical search algorithm is used to find Optimized θj,n of each dimension n,
1 ≤ n ≤ Nj, of each user j, 1 ≤ j ≤ J .

3. Compute the optimized rotation matrix [Tj]n,n = ejθj,n

Output: Tj , 1 ≤ j ≤ J

to poor QoS for users with bad channel conditions. In our work [134], differently from
[129]–[133], the knowledge of the channel state of each user was exploited to improve the
total performance of the system by adjusting either the number of REs to be allocated or
the size of the codebook of each user.
Hence, the proposed adaptive SCMA design is more realistic, the idea is to divided users
into different groups such that users belonging to the same group have the same needs
and will be associated to the same resources. In this section three different scenarios will
be studied:

(a) Adaptation scenario I
Description : all users have the same channel states but different needs in terms of
delay, bandwidth and packet-delivery,
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Objective : adjust the QoS according to user’s needs.

(b) Adaptation scenario II:
Description : users have different channel states,
Objective : achieve more fairness among users.

(c) Adaptation scenario III:
Description : users have different channel states,
Objective : achieve higher overall throughput.

3.4.1 Adaptation Scenario I : Different Quality of Service Levels

In this scenario, we assume that all users have the same channel states but different needs
in terms of delay, bandwidth and packet-delivery, our aim is to adapt irregular SCMA to
reply to these needs.
Referred as QoS, the quality of service is a fundamental key performance indicator for
wireless service over the 5G and beyond networks. Herein, we try to study how this
indicator can be employed to design our SCMA codebooks in association of a variety
of needs of SCMA users. The idea is that the QoS can be related directly to some of
the system parameters. When considering for instance the amount of data in the same
frame, if the QoS is important, the user is receiving and/or sending more of his data in
an effective manner. It is to say that when using a simultaneous connection, one user can
be proven against other ones, so we have to figure out how to let the data of this user
dominate the rest of the data exchanged in a single frame as shown in Figure 3.4.1.
For 5G network, the QoS is enforced based on flows of QoS [136]. Where each QoS flow
packets are classified and marked using QoS flow identifier (QFI). Then, the 5G QoS flows
are mapped in the access network to the data radio bearers.
We consider in this thesis some of the QoS parameters defined by 3GPP as part of QoS
implementation for 5G NR in 2018 [137]. We are interested in (i) the end-to-end delay,
(ii) bandwidth and (iii) and packet-delivery ratio. We denote P (j)

QoS the QoS parameters

Figure 3.4.1: Role of QoS in de-cluttering flows [135]
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Algorithm 4: Sparsity degree assignment according to the QoS parameters
Input: P (QoS)

j , ∀1 ≤ j ≤ J

P
(QoS)
j = { 1

Delayj
,Bandwidthj,Packet-Deliveryj}

NQoS = |P (QoS)
j | = 3 ; | · | denote the cardinality of the set.

Step 1: Assign weights for QoS parameters

w
(i)
j is the weight or the relative importance of each parameter q(i)

j ∈ P
(QoS)
j

associated with each user j, 1 ≤ j ≤ J .

Sumi = ∑J
j=1 q

(i)
j , i, 1 ≤ i ≤ NQoS

Compute w
(i)
j = q

(i)
j

Sumi , j, 1 ≤ j ≤ J, i, 1 ≤ i ≤ NQoS

Step 2: Calculate QoS importance for each user

The relative QI of each user,

QIj = ∑NQoS
i=1 w

(i)
j , j, 1 ≤ j ≤ J

Sort users in descending order according to their relative QoS importance, the
sorted users set is denoted UQoS

Step 3: Sparsity degree assignment

Divide UQoS into NG = 3 groups, each group is of cardinally b J
NG
e (where b.e

denoted the nearest integer)

Nj =


3; ; for the group formed of the first b J

NG
e entries in UQoS

1; ; for the group formed of the last b J
NG
e entries in UQoS

2; ; for the group formed of the resting J − 2b J
NG
e

Output: Nj, j, 1 ≤ j ≤ J

set of each user j, 1 ≤ j ≤ J .
The QoS parameters must allow us to decide if a given user must be served with better
QoS relatively to the other ones. Hence, the objective of our new proposed approach is to
calculate the relative QoS importance of each user such that the SCMA scheme can be
adapted accordingly. The idea is to first compute a specific weight to each parameter in
order to measure its relative importance for each user, in other words, this weight judge
which importance must be accorded to each user when compared to the other ones on the
basis of this parameter only. Thereafter, the relative QoS importance (QI) of each user,
QIj, is calculated by accumulating its relative importance on each parameter. Sorting the
users based on their QIj allows to divide them into three groups. The first group represents
the users that we want to emphasize since they have the higher relative QoS importance,
while the third group is the one in which users have lesser requirements in terms of delay,
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bandwidth and/or packet-delivery ratio. As for the second group, we represent the users
with no-specific needs. Finally, our proposed strategy is to assign a specific sparsity degree(
N

(g)
1 , N

(g)
2 or N (g)

3

)
to each group. The idea behind this strategy is that more sparse is

the codebook of a given user, less the data of this user are presented in the combined
codeword to be transmitted, and consequently less its communication link is efficient.
Hence, it is reasonable to think that this choice is more suitable to users accepting more
end-to-end delay and/or less packet-delivery ratio. On the other hand, more resources (i.e.
higher sparsity degree) is reserved for users with higher relative QoS importance. This
method is explained in Algorithm 4.

3.4.2 Adaptation Scenario II : Fairness Among Users

In this scenario, we assume users have different channel states, therefore, treating them
in the same manner means that users with bad channel conditions will have lesser QoS
when compared to users with better channel conditions. Our objective is to restore some
fairness among users by allocating more resources to users with bad channel conditions.
The users are divided into three groups, as shown in Figure 3.4.2, such that the users is
the same group have a similar channel state namely bad, good or excellent. To reach our
aim, we propose to assign a specific sparsity degree to each group, i.e. N (g)

1 = 3 for bad
channels and N

(g)
3 = 1 for excellent ones. This approach was inspired form the power-

domain NOMA where power allocation (i.e. resources allocation) among users is based on
the near-far propriety as was shown in Figures 1.3.4 and 3.4.3.
However, this method requires the knowledge of the CSI, hence, in the following para-
graph, we will rapidly review some existing methods before choosing the one to be em-

Figure 3.4.2: Users are divided into three groups based on their channel conditions. A
specific sparsity degree is assigned to each group, i.e. N (g)

1 = 3 for bad channels and
N

(g)
3 = 1 for excellent ones.
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SCMA Encoder

+
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Figure 3.4.3: Irregular uplink SCMA system with near and far users using different sparsity
degrees, N = 1 and N = 3 respectively, based on their channel states [134].

ployed in the rest of the current Chapter.

Existing SCMA Channel Estimation Methods

Existing channel estimation methods can be classified into three major categories [138]–
[144]: pilot-aided estimation, data-aided estimation pilot, so known as semi-blind estima-
tion, and blind estimation.
The pilot-estimation combines the knowledge of the transmitted and received signals to
estimate the channel matrix H as defined in subsection 2.2.2. Then, the channel estima-
tion is conducted either based on the Least-square estimation technique when the channel
and noise distributions are unknown, or based on MMSE estimator when the channel and
noise distributions are known. Moreover, data-aided estimation methods use and transmit
data symbols in addition to some pilot sequences to estimate the channel.
It is proven that using data-aided algorithms increase the spectral efficiency more than the
pilot-aided techniques when using orthogonal or non-orthogonal sequences for uncoded
and turbo-coded channels. In [143], two channel estimation techniques were investigated:
the pilot-estimation and the data-feedback-aided estimation algorithms, with the aim to
enhance the spectral efficiency in uplink SCMA scenario.
As for the blind channel estimation, despite that it saves time-frequency resources, due
to the lack of pilot signals, they have significant computational complexity and are less
effective than classical approaches especially for SCMA systems as demonstrated in [144].
In the following, we will employ the data-aided estimation method proposed in [143] which
is also described in Algorithm 5 of Appendix C.

Simulation Results

Here, we are assuming that users have not the same channel conditions. Thus, we are
studying the SCMA performances when users have different channel states. We suppose
that the J = 6 users can be classified into three groups such as the average SNR varies
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from one group to another. That is why, we introduce the SNR level fluctuation (in dB)
among the groups, which is denoted by δ, such that when the average SNR for all users
is γ then the average SNR per groups is either γ − δ, γ or γ + δ.
A performance evaluation of regular SCMA for different values of SNR level fluctuation
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Eb/N0
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uplink regular SCMA whith same CS
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BE
R

Figure 3.4.4: Performance evaluation of uplink SCMA in [84] when users have different
channel states (CSs) for different values of SNR level fluctuation δ = 0.5, δ = 2, δ = 4

is shown in Figure 3.4.4. Obviously, the BER increases when δ increases, for instance the
BER is 5 and 50 times higher for Eb/N0 = 15dB when δ = 2 and δ = 4. Hence, it is
recommended to design an adaptive SCMA codebooks which take into consideration the
variable nature of the state of channel for each user.
For the rest of simulations in this Chapter, δ = 2 is considered.
The idea here is to assign a different sparsity degree to each group depending on its
average channel condition which could be practically proportional to the average distance
between users and the base station as shown in Figure 3.4.3.
The BER performance of our proposed adaptive SCMA, as described in Figure 3.2.1(c),
is compared with the regular SCMA, as described in Figure 3.2.1(a), where the adaptive
sparsity degrees are N (g)

1 = 3, N (g)
2 = 2, N (g)

3 = 1 and that of regular SCMA is N=2 and
both codebook sizes are equal to M= 4. The design of irregular SCMA codebooks to be
employed in this scenario was introduced earlier in 3.3.1. In Figure 3.4.5, we compare the
performance of regular SCMA with SCMA based on the optimized codebooks as proposed
in this thesis. Despite the fact that regular uplink SCMA (red solid line) outperforms the
proposed adaptive SCMA (blue solid line) when all users have the same channel state,
it is the opposite when different channel states are taken into consideration, that is the
performance of regular SCMA degrades and that of the adaptive SCMA becomes better.
Clearly in Figure 3.4.5, the BER performance of the optimized adaptive SCMA codebook
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(green dashed line) is better than that of regular uplink SCMA (black dashed line) through
Rayleigh fading channels, e.g. for a BER of 10−4, a gain of almost 3 dB is achieved. This
can be explained by the fact that we allocate more REs (N (g)

1 = 3) for users with the
worst channel conditions.
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Figure 3.4.5: Performance comparison between regular uplink SCMA and adaptive uplink
SCMA with different sparsity degrees (N (g)

1 = 3, N (g)
2 = 2, N (g)

3 = 1) when the different
channel states are taken into consideration.

3.4.3 Adaptation Scenario III : Higher Overall Throughput

The idea of codebooks with different constellation sizes was inspired from the adaptive
digital modulation where the size of the constellation increases when the channel is bet-
ter and vice versa. Different order modulations allow you to send more bits per symbol
and thus achieve higher throughputs or better spectral efficiencies. Following the same
reasoning, we propose to adapt the codebook size of each user according to its channel
state. However, it must also be noted that when using a larger size of codebook, SNRs
are needed to overcome any inter-codeword interference and maintain a BER. The use of
adaptive SCMA allows a wireless system to choose the highest codebook size depending
on the channel conditions.
Here, we consider having three groups of users with three different channel states, hence
the two codebooks with 8 codewords are assigned to the group with the better channel
conditions, and the two codebooks with 2 codewords are assigned to the group with the
worst ones. BER performance of the proposed adaptive SCMA with different constella-
tion sizes is compared to the regular SCMA is Figure 3.4.7. Our proposal provides better
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Figure 3.4.6: Users are divided into three groups based on their channel conditions. A
specific codebook size is assigned to each group, i.e. M (g)

1 = 2 for bad channels and
M

(g)
3 = 8 for excellent ones.
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Figure 3.4.7: Performance comparison between regular uplink SCMA and adaptive uplink
SCMA with different constellation sizes (M (g)

1 = 2,M (g)
2 = 4,M (g)

3 = 8) when the different
channel states are taken into consideration.

performance, for instance a gain of 2 dB is achieved when BER is of 10−4.

3.5 Conclusions

This Chapter was dealing with propositions on the irregular SCMA architecture. First,
we proposed a new design of irregular SCMA in two cases: with different sparsity degrees
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and with different codebook sizes. Then, the designed codebook were employed to adapt
SCMA in three scenarios: (I) all users have the same channel states but different needs
in terms of delay, bandwidth and packet-delivery, (II) users have different channel states,
more fairness among users was achieved, and (III) users have different channel states,
higher overall throughput was achieved. Simulation results confirms that the different
objectives were achieved.
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4.1 Introduction

Field of study in artificial intelligence, ML is devoted to data analysis with an aim to
create knowledge, in an automatic way from data, by training a model. This model can
then be exploited on new data to make decisions.
We present in this Chapter our strategy to apply and use machine learning, mainly the
deep learning techniques, in order to enhance the performance of the SCMA detector in
an effective manner. We start by presenting the tools and mechanisms that we employed
in the remainder of this Chapter. Later, we explain our proposed architectures and we
analyze the several results comparing our systems with a conventional SCMA detector,
such as the MPA one.

4.2 Motivation and Objectives

Detecting SCMA signals, with the help of deep learning methods, is still very challenging
because of the presence of noise and fading channels. In addition, available works on
SCMA based on machine learning do not take into consideration the variation of channel
in realistic scenarios [75], [76], [78]–[80], [145], [146].
Motivated by this, we will try in this Chapter to help advancing this domain. The major
contributions of this Chapter can be summarized as follows,

1. A joint denoising and decoding approach for designing SCMA detector is proposed.
First, a denoising autoencoder is trained to mitigate the effect of AWGN by trying
to remove it from received signal. The input of the DAE is the noisy SCMA signal,
while the output is an estimation of the original noise-free one, i.e. the DAE aim is to
reconstruct the transmitted data by learning their representation. Then, a DNN is
adopted to learn how to detect the transmitted bits from the denoised SCMA signal.
The two blocks of the DAE-DNN detector are jointly trained using an end-to-end
objective function.

2. In fact, codebook and channel state information are supposed to be known at MPA-
based receiver. Hence, previous comparisons of DL-based SCMA detectors with
MPA are not fair. Here, the knowledge of SCMA codebook is integrated in the
detection process by exploiting the distances between the received vector and each
one among possible superimposed combination codewords. This will allow firstly to
estimate the nearest superimposed codeword vector, the chosen vector will be the
input of a DNN which objective is to decode the transmitted users’ bits. The idea
is that the knowledge of the codebook results in the knowledge of the set of vectors
to which belongs the noise-free received vector, such that the corrupted received
superimposed codeword is replaced by an estimated noise-free one.
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4.3 Machine Learning Configuration

To fit the objectives mentioned in the previous section, in this PhD work, specific machine
learning architectures and techniques are employed. In this section, we start by presenting
the several used techniques, then, our strategy of adjusting the hyper-parameters of the
neural network is explained.

4.3.1 Employed ML’s Techniques

In the following parts of this Chapter, we propose two methods to detect a SCMA signal
based on deep learning: (i) a joint denoiser and detector, denoted DAE-DNN-SCMA, will
be illustrated in section 4.4, and (ii) a fair SCMA detector based deep learning, denoted
as Fair-DNN-SCMA, will be highlighted in section 4.5 of the current Chapter. For each
system we proposed and train different models: a denoising autoencoder and deep neural
network .

Denoising Autoencoder

Generally, an AE is defined as a neural network trained in an unsupervised way in order
to attempt copying inputs to outputs [48]–[51]. The key feature of this bottleneck, as
presented in Figure 4.3.1, is that they teach themselves how to compress data from the
input layer into a shorter representation, and then uncompress that representation into
whatever format that best matches the original input. When using the back-propagation
technique [147], the unsupervised algorithm used by an AE, continuously trains itself by
setting the target output values, so-called labels, to equal the inputs. In order to help AEs
to better learn data and to avoid overfitting, some noise is artificially added to the original
data which introduces a new variant of AEs, this variant is called denoising autoencoder.
Two approaches can be employed to inject noise into data: either by adding a Gaussain
noise or by randomly dropping out some inputs as shown in figure 4.3.1.
Hence, the small-sized hidden encoding layers are forced to use dimensional reduction to
eliminate noise and reconstruct the inputs. Thus, the data denoising and the reduction of
dimension for data visualization are two interesting practical applications of AEs. In this
PhD work, we are especially interested in the firstly presented use of AE. Hence, a DAE
is incorporated into our studied models.

Deep Neural Network

Existing DL based SCMA detecting methods generally use fully connected DNNs as pro-
posed in [75], [76], [78]–[80], [145], [146]. Here, the first DAE based pre-processing (i.e.
denoising) step is followed also by a structure of fully connected layers which form a DNN.
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Figure 4.3.1: Denoising autoencoder architecture: Example of a DAE applied on images
from the modified national institute of standards and technology (MNIST) handwritten
digit database [148].

The hyper-parameters of our model will be largely studied in order to meet our require-
ments. Furthermore, this will allow us to compare our work with other existing ones et
consequently to evaluate the effect of adding the first block of DAE.

4.3.2 Training and Hyper-Parameters

It is important to mention that artificial neural networks have two main hyper-parameters
that control the topology or the architecture of the network: the number of layers and the
number of nodes in each hidden layer. Further, the activation functions used for hidden,
input and output layers should be specified when configuring the model as following.

(a) Number of layers in each model: It is defined also as the depth of the neural
network. It is obvious that, the number of layers can influence the performances
of the proposed model. The idea is that the performance of the deep neural model
could suffer from the vanishing gradients [149] when large number of hidden layers
is used. In addition, increasing the depth of the model, increases the accuracy until
it reaches a maximum, and finally drops.
A theoretical study of the impact of the depth of neural networks, which is pre-
sented in [150], explains that while deep networks perform better than shallow ones
in modeling complex non-linear functions, increasing the depth may not always pro-
duce the desired results. On the other hand, adding each layer is also expensive in
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terms of the time required to train the model.

(b) Number of nodes in each layer: the average number of nodes per layer is called
the width of the artificial model. It is a critical hyper-parameter to adjust until
obtaining optimal accuracy of the trained model before the emergence of vanishing
gradient problem.

(c) The activation function of hidden layers: the most commonly-used three acti-
vation functions that we can consider to be employed in hidden layers, are rectified
linear activation, hyperbolic tangent and sigmoid, as presented respectively in Figure
4.3.2, Figure 4.3.3 and Figure 4.3.4.

(i) Rectified linear activation (ReLU) : if the input value Iv is negative, then the
output value to be returned is Ov = 0, otherwise, the value Ov = Iv is returned.

Ou
tp
ut
:
𝑂 !

𝐼𝑛𝑝𝑢𝑡 ∶ 𝐼!

Figure 4.3.2: ReLU activation function.

(ii) Hyperbolic tangent (TanH) : for any real input value Iv ∈ R, the function
output value is given as Ov ∈ [−1, 1]. The larger the input is (Iv >> 0), the

Ou
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ut
:
𝑂 !

𝐼𝑛𝑝𝑢𝑡 ∶ 𝐼!

Figure 4.3.3: TanH activation function.

closer the output value will be to 1 (Ov ≈ 1), whereas the smaller the input is
(Iv << 0), the closer the output will be to −1 (Ov ≈ −1).
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(iii) Logistic (Sigmoid) : for any real input value Iv ∈ R, the output valueOv ∈ [0, 1].
Such that, the larger is the input (Iv >> 0), the closer is the output to one,

Ou
tp
ut
:
𝑂 !

𝐼𝑛𝑝𝑢𝑡 ∶ 𝐼!

Figure 4.3.4: Sigmoid activation function.

Ov ≈ 1, whereas when the input is very negative (Iv << 0), we have Ov ≈ 1.

In order to choose the appropriate activation function for our hidden and output
layers, it is important to acquire a prior knowledge on the input and output data
structure. That so, the interpretation of data at each hidden layer is important for
the whole model. The aim is that these layers learn how to treat similar data until
arriving to the last layer, that is why employing the batch normalization technique
is very essential.

(d) Input and output layer configuration: As their names indicate, the input and
output layers of the model represent the very beginning of workflow and the last
part of our artificial neural network, these two layers must be carefully configured. It
is important to mention that the purpose behind the use of an artificial network, is
to bring the initial data into the system for further processing by subsequent layers
of artificial neurons until giving the final required analysis of these data.

(i) The dimension of the input layer, so-called shape, should be configured accord-
ing to the dimension of the data to be treated. For example, when training a
model to treat images, the dimension of first layer should consider the size of
the image (height times width) multiplied by its number of color components,
i.e. 1 or 3 when using respectively grey-scale or red-blue-green images (one for
each of red, green and blue components). Moreover, for the case of complex
vector as input, the input of the artificial model can be a vector of real val-
ues formed from the real and imaginary parts of each element in the complex
vector.

(ii) For output layer, the important parameter to fix in addition to the activation
function, is the number of output nodes. The idea is that the number of output
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nodes could be 1 or more depending on the use cases : regression or classifi-
cation. For example, in the case of multi-classification of input data into n

different categories, the number of output nodes should be fixed to n and the
value of output i refers to the probability of the actual inputs to belong to cat-
egory i. The final decision is taken by finding the maximum probability. Here,
we use either the label-encoding technique, or one hot encoding technique, to
assign a unique binary code to specify each category [151].

4.4 Joint Denoiser and Detector of DL-based SCMA
(DAE-DNN-SCMA)

In this section, we will introduce the first contribution of this Chapter, that is combining
an unsupervised learning technique (namely DAE) and a supervised one (namely DNN)
to propose a new SCMA detector. In the following, we will explain the motivation behind
this combination, the structure of each one between the two learning blocks, and finally
their real impact on the performance of SCMA detector.

4.4.1 Motivation behind the Proposed Solution

Here, we train the DAE-SCMA on a dataset of SCMA signals which are corrupted over
an AWGN channel. The idea is that, the AE could learn the structure of transmitted
SCMA signals, one way to help him in this task is to add some noise which is exactly the
case when employing the received signals for learning, since the received signals are the
transmitted ones added to the AWGN. In other words, there is no need to add noise to
the data at the input of the DAE, as explained in Figure 4.3.1, they are already corrupted
by the channel effect. Thus, a self-supervising process is employed by the DAE in order
to estimate a reconstruction of the free-noise signal from the corrupted one.
Afterwards, once our estimated noise-free signal is ready, the proposed DNN is employed
to detect the transmitted bits from estimated denoised SCMA signal. The architecture
of the proposed SCMA detector is illustrated in Figure 4.4.1. The joint denoising and
detection process requires to train the whole network with an end-to-end loss function.
The idea is to improve the mean squared error of the the DAE-SCMA to give a better
approximation of the denoised SCMA signal which will be in turn used as the input of the
DNN detector. Regarding the second block, the final outputs are evaluated by measuring
their accuracy via the categorical cross entropy loss. The real objective is to increase the
overall SCMA performance which will be evaluated in terms of BER.
In the following subsections, we will present how the two blocks of the proposed DAE-
DNN-SCMA detector are configured and trained.
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Figure 4.4.1: Block diagram of the proposed DAE-DNN-SCMA detector.

4.4.2 Denoising SCMA Signals over AWGN Channel

In the 1st part of our proposed joint detector, we propose to configure and to train a
DAE hoping to eliminate the noise that corrupted the transmitted signal over the AWGN
channel.

Employed Model Structure

Our strategy is to to feed our DAE with SCMA signals corrupted with a Gaussian noise
which is added to the input vector in a random manner. Then, the configured model is
trained to predict the original uncorrupted SCMA signal as its output.
The autoencoder as presented in Figure 4.3.1 is composed of two phases: encoder and
decoder. They are implemented using either fully-connected dense layers or convolutional
layers, these implementations are respectively called deep autoencoder and convolutional
autoencoder. That is, in convolutional autoencoder, we use a single weight associated
with signals entering all neurons in a single convolution kernel, so-called filter. As for deep
autoencoder, each neuron is considered as independent and a different weight is assigned to
each incoming signal. In Table 4.4.1, it is obvious that using a convolutional autoencoder
is less complex than using a deep autoencoder in term of number of parameters needed
to train the full model in order to achieve equivalent performance. To conclude, we opted
to use a convolutional DAE instead of fully connected layers.
The K-dimensional received vector over AWGN channel, y, is given by,

100



4.4. Joint Denoiser and Detector of DL-based SCMA (DAE-DNN-SCMA)

Figure 4.4.2: The graph of our configured DAE

y =
J∑
j=1

xj + n = ÿ + n, (4.1)

the received SCMA signal is a Gaussain noise added to a combination of the codewords
of all users. Here, the input vector is arranged to form one column of real values.
The structure of our employed DAE is then, composed of an encoder which is based on
deep convolutional layers, and a decoder which provides the reverse operation based on
the transpose convolutional layers. The reduction of the spatial dimension of the inputs
is enabled by the depth of the structure. Our model configuration is presented in Figure
4.4.2.
This procedure forces our model to learn important features from data [152] such that

Model Depth Total Width Parameters Set Size Training time Accuracy
Deep AE 6 256 226144 1, 75 (seconds) 92, 68%
Conv. AE 6 256 272 1, 42 (seconds) 92, 85%

Table 4.4.1: Comparison between deep autoencoder and convolutional autoencoder in
terms of complexity and training time for fixed number of nodes and fixed depth after
100 epochs of training.
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the original uncorrupted version of the inputs is better recovered. Hence, the presence of
the AWGN in equation (4.1) is not expected to hinder the capacity of DAE to reconstruct
the original signal, ÿ, especially when the SNR ratio is not lower than certain level. In
other words, we built and trained a DAE to estimate the clean (without noise) transmit-
ted superimposed codeword from the SCMA received signal, y. The estimated vector is
denoted ˜̈y =

(˜̈y1, · · · , ˜̈yK)T .
Training and Validation Phase

The input of the DAE-SCMA can be expressed as y = Ω(ÿ) where Ω(·) is a corruption
process. Whereas the output is expressed as ˜̈y = Ω̃(y). So that, DAE-SCMA has to learn
how does the inverse function, Ω̃(·), work.

1. Encoder/decoder functions:
Let us denote E(xe; We,be) and D(xd; Wd,bd) as the encoder and decoder functions
of the DAE, respectively, where xe,xd are the inputs, We,Wd, be and bd are the
weights and biases of the encoder and the decoder respectively. The DAE-SCMA
process is expressed as following,

Ω̃(y) = ˜̈y = D(E(y; We,be); Wd,bd) (4.2)

2. Loss function:
The training process requires to choose a loss function, L, to estimate the reconstruc-
tion loss of our DAE so that the weights and biases can be updated to reduce the
loss on the next iteration. The loss function is computed and optimized as following,

W∗
e,b∗e,W∗

d,b∗d = arg min
We,be,Wd,bd

L(ÿ, ˜̈y) (4.3)

Training forces E and D to implicitly learn the structure of the superimposed code-
word, ÿ, despite the fact that it is corrupted by the added Gaussian noise over the
channel.

Here, the popular mean squared error (MSE) is adopted as the training loss function
of our DAE. The error between predictions and expected values is given by,

LMSE(ÿ, ˜̈y) = 1
K

K∑
i=1
‖˜̈yi − ÿi‖2 (4.4)

Thus, our proposed DAE will learn the structure of the received signal under dif-
ferent SNR regimes, that is, received signals are corrupted with noise with different
levels of intensity as presented in Figure 4.4.3. Here, we adopt to evaluate the system
performance as a function of a normalized SNR measure, Eb/N0, so-called SNR per
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bit.
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Figure 4.4.3: Illustration of the impact of the presence of noise on transmitted constellation
for different Eb/N0 values: (a) multiplexed constellations before transmission (ÿ), (b) Ω(ÿ)
when Eb/N0 = 2, (c) Ω(ÿ) when Eb/N0 = 9, (d) Ω(ÿ) when Eb/N0 = 15 and (e) Ω(ÿ)
when Eb/N0 = 20
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Figure 4.4.4: MSE as a function of Eb/N0 values (a) the same DAE is trained with signals
of different Eb/N0 values, (b) different DAEs are trained separately with signals of fixed
Eb/N0 value per DAE.

Figure 4.4.4 shows the achieved MSE versus different Eb/N0 values. Two cases were
studied: (a) the same DAE is trained with signals of different Eb/N0 values (the
blue curve), (b) different DAEs are trained separately with signals of fixed Eb/N0

value per DAE (the orange curve). A we can see clearly, it is better to allow the
model to learn the structure of the signal by meeting examples with different levels
of corruption.

After the learning phase, the curves for the training and validation sets can confirm that
the model adopted in Figure 4.4.2 have learned well the reconstruction problem. In Fig-
ure 4.4.5, we can see that the model converged reasonably quickly, and both training and
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Figure 4.4.5: Mean squared error over 100 training epochs of DAE-SCMA when the
used samples of SCMA received signal are corrupted over AWGN channel with Eb/N0 ∈
[6, 7, 8, 9].

validation performances remain equivalent. That is, the training and validation losses de-
crease to a point of stability with a minimal gap between the two final loss values. Hence,
our model achieves a good reconstruction fit of input signal, holds a steady performance
throughout training, and does not suffer from overfitting. The performance and conver-
gence behavior of our model confirms also that MSE is a good match to DAE architecture
when it comes to solving this problem.

4.4.3 Deep Neural Network based SCMA Decoder

For the 2nd part of our proposed joint detector, we propose and train a DNN in order to
decode the J log2 (M) bits of the J users from the estimated denoised received signal ˜̈y.
Employed Model Structure

The simulation parameters and the hyper-parameters of the employed DNN are given in
Table 4.4.2. A more detailed evaluation of the effect of hyper-parameters on the overall
performance will be given later. For the moment being, we chose the number of hidden
layers as 6 and the number of nodes per each hidden layer as 48. This represents a good
compromise between performance and complexity. On the other hand, this allow us to
make a fair comparison with existing DL-based SCMA detectors as reviewed in subsection
1.4.5 of the first Chapter of the current manuscript. The fully connected DNN which is
used in the rest of our proposition is presented in Figure 4.4.6 which illustrates its structure
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graph with its dense layers and dimensions (width:Input/output).

Parameter Value
Number of SCMA users J 6
Number of subcarriers K 4

Number of codewords for each user M 4
Number of nodes for input layer 8
Number of nodes for output layer 12

Number of nodes for DNN-SCMA’s hidden layer 48
Number of hidden layers for DNN-SCMA 6

Size of dataset 500000
Data used to train the model 80% of SCMA samples

Data used to validate the training phase 10% of SCMA samples
Data used to test the model(Prediction phase) 10% of SCMA samples

Eb/N0 values (dB) in the training set 6, 7, 8, 9
Training optimizer ADAM

Learning rate 0.0001
Batch size for training 4096

Training epochs 3000

Table 4.4.2: Summary of the experiment configurations

Training and Validation Phase

During the training phase, we adopt the train-valid-test split procedure [149]. That is, the
strategy is to split the dataset into train, and test data for validation: 80% of data is used
to train the model and 10% of data is used to validate the training phase and to guide
our efforts in possibly stopping training early. Once the model is trained without causing
an under- or over-fitting issue [151], we predict the behavior of our final model on new
data (10% of data), which is different from the one used to train and validate the model.
As shown in Figure 4.4.1, our aim here is to estimate J log2(M) transmitted bits from
the received signal as defined in (4.1), after the denoising operation. That is, the learned
denoised signal by the first DAE block is used as an input training data for the second
DNN block. The J log2(M) transmitted bits vector and the J log2(M) estimated decoded
bits vector are denoted as t(b) and r(b), respectively.

1. Activation function:
The employed activation function for the DAE is the rectified linear one (Relu),
while (TanH) was chosen as the activation function for the hidden layers of the fully
connected DNN.

2. Loss function:
Differently from the DAE, the learning of the DNN is supervised under the metric
of Accuracy. The adopted loss function is the categorical cross entropy (CCE) and
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Figure 4.4.6: The graph of our configured DNN model

is presented as follows,

LCCE
(
r(b), t(b)

)
= −

J log2(M)∑
i=1

t
(b)
i log

(
P
(
r

(b)
i = 1

))
(4.5)

where P(.) is the probability of an event, t(b) = [t(b)1 , ..., t
(b)
J log2(M)]T and r(b) =

[r(b)
1 , ..., r

(b)
J log2(M)]T . The purpose behind training the proposed fully-connected DAE-

DNN-SCMA detector is to estimate the optimum values of weights and biases,
WDNN, bDNN, in order to minimize the loss between r(b) and t(b), which can be
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Figure 4.4.7: The Accuracy as a function of the number of epochs when the Eb/N0 level
is low, medium and high.

expressed as,

min
WDNN,bDNN

− J log2(M)∑
i=1

t
(i)
b log

(
πi

[
R
(

y; WDNN,bDNN

)]) (4.6)

where,R (y; WDNN,bDNN) represents the DAE-DNN-SCMA detecting process which
outputs are the estimated bits vector r(b). πi[.] denotes the ith element of a vector.
The learning curves are presented in Figure 4.4.7.

3. Initialization of hyper-parameters:
In order to minimize the loss functions in (4.4) and (4.5), adaptive moment (ADAM)
estimation [153] is used for the training of both neural networks, and the learning
rate is set to 0.0001. During the training phase, to reduce the impact of the vanishing
gradients problem for feed-forward neural networks, the Xavier variable initialization
and the normalization via min-batches are adopted [154].

4.5 Fair SCMA Detector based Deep Learning (Fair-
DNN-SCMA)

In [75], [76], [78]–[80], [146], authors proposed DL based SCMA detectors and they com-
pared the performance of their propositions with that of the conventional MPA detector
for SCMA systems over AWGN channels. None among these propositions was capable of
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outperforming the MPA, the reason behind that is the fact that the MPA detector knows
the codebook of each user, this is not the case for the detectors in [75], [76], [78]–[80], [146].
Hence the above comparison is not fair. Motivated by this, we propose, in this research
work, a new method such that a fair comparison between the MPA detector and proposed
DL based one is feasible.

4.5.1 Proposed Solution

The solution we propose here, lies in integrating the knowledge of the codebook in the
learning process which is not the case for the method proposed in the subsection 4.4 of
the current Chapter.
For a SCMA system as described in Chapter 2, the K × 1 vector ÿ as in equation (4.1) is
a combination of J codewords, the jth codeword is a K × 1 vector which is chosen among
the M codewords of, Cj, the codebook of user j, as shown in Figure 2.2.1. Hence, ÿ ∈ CC
where CC is the codewords combination set which is given by,

CC =
{
z ∈ CK where z =

J∑
j=1

cj, cj ∈ Cj, 1 ≤ j ≤ J
}
, (4.7)

the cardinality of CC is MJ . The knowledge of codebooks Cj results in the knowledge of
CC.
In Figure 4.5.1, we present three examples of received SCMA signal constellation point
on each subcarrier (the red diamante). The other colored circles represent the projection
of the MJ members of CC on each RE (subcarrier).

-2 -1 0 1 2

Real

-2

-1

0

1

2

Im
g

Received signal 1 over RE1

-2 -1 0 1 2

Real

-2

-1

0

1

2

Im
g

Received signal 1 over RE2

-2 -1 0 1 2

Real

-2

-1

0

1

2

Im
g

Received signal 1 over RE3

-2 -1 0 1 2

Real

-2

-1

0

1

2

Im
g

Received signal 1 over RE4

-2 -1 0 1 2

Real

-2

-1

0

1

2

Im
g

Received signal 2 over RE1

-2 -1 0 1 2

Real

-2

-1

0

1

2

Im
g

Received signal 2 over RE2

-2 -1 0 1 2

Real

-2

-1

0

1

2

Im
g

Received signal 2 over RE3

-2 -1 0 1 2

Real

-2

-1

0

1

2

Im
g

Received signal 2 over RE4

-2 -1 0 1 2

Real

-2

-1

0

1

2

Im
g

Received signal 3 over RE1

-2 -1 0 1 2

Real

-2

-1

0

1

2

Im
g

Received signal 3 over RE2

-2 -1 0 1 2

Real

-2

-1

0

1

2

Im
g

Received signal 3 over RE3

-2 -1 0 1 2

Real

-2

-1

0

1

2

Im
g

Received signal 3 over RE4

Figure 4.5.1: Example of noise-free received signal compared to the MJ possible combi-
nations of codewords in CC over the K = 4 subcarriers; M = 4 and J = 6
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Figure 4.5.2: Block diagram of the proposed fair SCMA detector.

4.5.2 Pre-processing

Here, instead of sending, y, the noise-corrupted received vector, as presented in equation
(2.1), to the DNN inputs, we feed our model with an estimated value of ÿ, denoted as ̂̈y.
This estimation is facilitated by our prior knowledge of the research space. Since ÿ ∈ CC,
then its estimate is the most likely match among the MJ members of CC. In the presence
of Gaussian noise, the maximum-likelihood estimator of ÿ is the minimum mean square
error which is calculated based on the minimal square Euclidean distance between the
received vector and each element of CC, and it is expressed as,

̂̈y = min
{zi∈CC;1≤i≤MJ}

‖y− zi‖2 (4.8)

As shown in Figure 4.5.2, ̂̈y will replace the noisy received vector, y, as the input of the
DNN. We keep the same hyper-parameters as the DNN employed in subsection 4.4, we
just need to re-train a new initialized model with the new inputs, the obtained detector
is called Fair-DNN-SCMA.
As described in subsection 4.4, we can add a DAE block as the first step before estimat-
ing the transmitted superimposed codeword, i.e. the received vector y is replaced by its
denoised version ˜̈y, then the equation (4.8) can be rewritten as,

̂̈y = min
{zi∈CC;1≤i≤MJ}

∥∥∥˜̈y− zi

∥∥∥2
(4.9)

The obtained detector is called Fair-DAE-DNN-SCMA. The performance of different pro-
posed detectors is compared in the next section.

4.6 Analysis of Results

In this section, the BER performances of our proposed methods are compared to conven-
tional MPA detector [33] and the DL based one proposed in [80] for a SCMA transmission
over AWGN channel. The codebook given in [1] in adopted for all the compared methods.
The training data set is randomly simulated such that M = 4, J = 6 and K = 4 as
described in Figure 2.2.1.

109



Chapter 4 – Machine Learning for SCMA Detector and Channel Denoiser

4.6.1 Impact of Training Data with Different Noise Intensity
Levels

During the training phase for both of our proposed systems, data, with some Eb/N0 (en-
ergy per bit to noise power spectral density ratio) values, are generated randomly. The
choice of Eb/N0 values may lead to different learning results and consequently to differ-
ent performance levels of different proposed detectors. In order to avoid such situation,
selecting appropriate Eb/N0 values to generate our training data is investigated compre-
hensively. Thus, we can reduce the impact of weak signals due to too small SNR values
and keep away our model from overfitting if only high SNR values were employed. Figure
4.6.1 presents the categorical cross entropy loss across training epochs as a function of
Eb/N0. Also, Figure 4.6.2 shows the detection accuracy of our DAE-DNN-SCMA detector
for different Eb/N0 values.
Hence, some further investigations had been conducted to study this problem, and the
following scenarios were identified to be tested through intensive training of the DAE-
DNN-SCMA detector,

• S1: we trained using 6 dB ≤ Eb/N0 ≤ 9 dB,

• S2: we chose some lower Eb/N0 values, i.e. 2 dB ≤ Eb/N0 ≤ 5 dB,

• S3: we trained using all the tested values, i.e. Eb/N0 ∈ [0, 20] dB,

• S4: we proposed more complex architecture where a DAE-DNN model per Eb/N0 is
trained.
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Figure 4.6.1: Categorical cross entropy loss versus Eb/N0 for DAE-DNN-SCMA detector
as introduced in section 4.4 after 100 epochs to train the DAE-SCMA first and 3000
to train the whole system DAE-DNN-SCMA using the estimated denoised SCMA signal
samples.
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Figure 4.6.2: Accuracy versus Eb/N0 for DAE-DNN-SCMA detector as introduced in
section 4.4 after 100 epochs to train the DAE-SCMA first and 3000 to train the whole
system DAE-DNN-SCMA using the estimated denoised SCMA signal samples.
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Figure 4.6.3: The impact of the choice of Eb/N0 values on the training of DAE-DNN-
SCMA detector when using the configuration of DNN-SCMA model presented in Table
4.4.2. The several DAE-DNN-SCMA scenarios’ models, DAE-DNN-SCMA_S1, DAE-
DNN-SCMA_S2, DAE-DNN-SCMA_S3 and DAE-DNN-SCMA_S4, are compared to
MPA-SCMA detector in [33] and the proposed DL-SCMA in [80].

The performance of the DAE-DNN-SCMA detector, in terms of BER, when it is trained
based on each one of the aforementioned scenarios is illustrated in Figure 4.6.3. Simu-
lations results show that S1 is the best training strategy when compared to the other
scenarios. We adopt S1, for the training of DAE-DNN-SCMA detector, in the rest of
this work. Also, three among the 4 evaluated scenarios, namely S1, S2 and S3, outper-
form the DL based detector proposed in [80], which confirms that the denoising step had
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Figure 4.6.4: The loss function versus the depth after only 100 epochs of training when
the SCMA signal is transmitted over AWGN channel using Eb/N0 ∈ [6, 7, 8, 9].

helped the DNN to better learn the SCMA signal structure. Finally, the performance of
DAE-DNN-SCMA detector is slightly lower than that of MPA while still offering a lesser
complexity.

4.6.2 Impact of Hyper-Parameters

In this subsection, we will study the effect of hyper-parameters of our neural network on
the performance of the proposed detectors, we focus especially on two hyper-parameters,
namely the depth (the number of hidden layers) and the width (the number of nodes in
each hidden layer).
Figure 4.6.4 and Figure 4.6.5 show, respectively, the loss and the accuracy as a function
of the depth. It is clear that the number of layers does influence the two performances
metrics of the whole model, namely the loss and the accuracy. The performance will im-
prove when the depth increases until a certain value of depth (depth = 35 layers) and
then drops down. This can be explained by the vanishing gradients phenomenon.
Figure 4.6.6 illustrates the training time as a function of the depth, it can be approximated
by an exponential function. However, the training time increases considerably when the
depth is more that 10 layers. So, the depth must be chosen wisely to provide a good
compromise among training time, complexity and performance. We will opt to a depth of
6 in this Chapter.
The other hyper-parameter to be optimized is the width, Figure 4.6.7 shows the accuracy

versus the width. It is obvious that increasing the width when the other hyper-parameters
are fixed will improve the performance while the risk of overfitting is minimized. The num-
ber of nodes per layer will is chosen to be 48 which is sufficient to have good performances
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Figure 4.6.5: The accuracy versus the depth after only 100 epochs of training when the
SCMA signal is transmitted over AWGN channel using Eb/N0 ∈ [6, 7, 8, 9].
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Figure 4.6.6: The required training time versus the depth after only 100 epochs of training
when the SCMA signal is transmitted over AWGN channel using Eb/N0 ∈ [6, 7, 8, 9].

while having an acceptable complexity levels.
Once the values of these two main hyper-parameters are chosen, the other hyper-parameters
are adjusted such as the performance can be optimized as illustrated by the simulation
results presented in this section.

4.6.3 Performance Evaluation of Proposed Detectors

Figure 4.6.8 shows a performance comparison of the a SCMA system though AWGN chan-
nel when the following detectors are employed: traditional MPA [33], DL-based detector
in [80], the DAE-DNN detector (see subsection 4.4), and the Fair-DNN and Fair-DAE-
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Figure 4.6.7: Training and validation accuracy for different values of width, when depth =
6, after only 100 epochs of training when the SCMA signal is transmitted over AWGN
channel using Eb/N0 ∈ [6, 7, 8, 9].

DNN detectors (see subsection 4.5). Based on Figure 4.6.4 and Figure 4.6.5, we compare
the DL-based detector in [80] using respectively depth = 6 and depth = 15, for only 100
training epochs. Simulations show that DL-based methods can outperform MPA when
they are fairly compared to it. For example, comparing Fair-DNN (red solid line with
square symbols) with MPA when BER = 10−3 shows that Fair-DNN offers a gain of
0.5 dB. In addition, Fair-DNN is of lesser complexity. Furthermore, it was shown in the
previous section that adding a denoiser to the detection process leads to performance
improvement. However, we can see in Figure 4.6.8 that the two curves of Fair-DNN (red
solid line with square symbols) and Fair-DAE-DNN (orange dashed line with circle sym-
bols) are almost superimposed. This can be explained by the fact that the input of the
DNN is the best match to received vector in the combination set CC. Nevertheless, the
denoising step can be useful if another channel model is adopted, for instance DAE-DNN-
SCMA detector over a Rayleigh channel is actually under investigation. When DL-based
detector in [80] is trained using different value of depth, for only 100 training epochs,
simulations show that for instance when BER= 10−3, using more layers (purple solid line
with diamond symbols and orange solid line with diamond symbols), a gain of almost
1dB is achieved, which confirms what we proposed in the last subsection. However, when
training the model with larger number of epochs, fixing the depth to 6 offered a gain of
0.25 dB when BER= 10−3, compared to the case when depth is fixed to 15. Hence, we
can assume that the performance of our proposed DL-based decoders depends not only
on hyper-parameters that avoid the overfitting of the system, but also on the SNR and
the complexity of the whole system which are two issues that should be respected.
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Figure 4.6.8: Performance comparison of MPA-SCMA detector [33], DL-SCMA [80], our
proposed joint DAE-DNN-SCMA detector, our proposed Fair-DNN and Fair-DAE-DNN
detectors over AWGN channel when J = 6,M = 4 and K = 4.

4.6.4 Complexity Study of the Proposed Models

Here we look into the complexity of proposed detectors in terms of arithmetic operations.
In fact, DL-SCMA based detectors present less complex architecture compared to the
iterative MPA in terms of addition and logarithmic or exponential operations but with
more multiplication operators [80]. For instance, we use 14784 multiplication operations
when training DL-SCMA detector against 9456 after 5 iterations of MPA. On the other
hand, few logarithmic or exponential operations are used for offline training of DL-SCMA.
However, the advantage of DL-based detectors is that their complexity goes only during
the training process. That is, once the model is trained, the detection is performed through
one shot operation instead of iterative process as in the case of MPA. In this proposition,
adding the DAE does not increase the complexity a lot, moreover, the proposed fair
detector does not require the DAE when the channel is AWGN.

4.7 Conclusions

In this Chapter, we studied the application of deep learning to SCMA detection over
AWGN channels. Firstly, we highlighted our motivation and the objectives behind this
application. Then, we presented the strategy and techniques that we employed to train our
models. Here, we have suggested a joint denoising and decoding method based on a combi-
nation of denoising autoencoder as the first step and a deep neural network as the second
one. The proposed DAE-DNN-SCMA detector outperforms existing DL-based SCMA de-
tectors but still slightly less effective than the conventional MPA detector. Secondly, a
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new DL-based detection method that can be fairly compared to MPA was introduced. The
proposed Fair-DNN-SCMA detector assumes the knowledge of the SCMA codebook which
enables a distance-based selection of the codewords combination to be fed into the DNN.
Our proposed solution maintains lower computational complexity while achieving better
BER performance. One perspective of this Chapter is to extend the proposed methods to
the case of Raleigh fading channel.
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GENERAL CONCLUSIONS AND FUTURE

WORKS

This research work tries to enhance the performances of future wireless communication
generations, as Advanced 5G, B5G and even 6G, by contributing to providing suitable
multiple access schemes that are applicable in more realistic communications systems for
several wireless services. In this thesis, we focus on optimizing encoding and decoding
process of sparse code multiple access scheme.
In the following, the most important topics discussed in each Chapter are summarized,
and the main conclusions and contributions of this thesis are highlighted. Thereafter,
we present a list of possible near future work and perspectives that could lead to the
continuation of some of our propositions.

Summary and conclusions

In Chapter 1, we discussed the problematic, the context and the motivations of this work.
First, we will highlight the challenges imposed by the future generations when it comes to
multiple access techniques, especially the need of massive connected devices over wireless
networks, by introducing an overview of 5G and beyond technologies based on the several
5G scenarios, namely enhanced mobile broadBand, massive machine type communica-
tion and highly reliable low latency communication. Afterwards, the NOMA concept had
been explained and reviewed in both power domain and code domain through existing
publications and standardization works of 3GPP, IETF and ITU. These discussions were
concluded by illustrating why SCMA is prominent. To end with this Chapter, we have
reviewed the application of machine learning for communication systems especially the
existing contributions which are related to NOMA techniques.
Then, in Chapter 2, the SCMA architecture, the design of SCMA codebooks and existing
detectors of SCMA had been highlighted. The idea behind this Chapter is to further ex-
plain why SCMA is considered as a promising massive multiple access candidate for future
generations of wireless communications systems. Simulations and results presented in this
Chapter highlighted several comparisons of SCMA codebook designs and the impact of
the choice of SCMA detector on the system efficiency in term of BER for different SNR
levels.
Motivated by Chapter 2, we proposed an adaptive design for SCMA codebooks based on
an irregular architecture of SCMA in Chapter 3 of this Ph.D. work. The channel state
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information was taken into consideration under the assumption that different users could
suffer from different channel conditions. Thus, we explored three cases of study to better
satisfy the several demands of more realistic scenarios. First, we supposed that all users
have the same channel states but they have different needs in terms of delay, bandwidth
and packet-delivery and we adjusted the QoS according to user’s needs. Then, we analyzed
the system when users have different channel states. The purpose here was to achieve more
fairness among users in terms of their QoS. And finally, we assigned irregular codebooks
for each group of users in order to achieve higher overall throughput when assuming that
users have different channel states. Simulations confirmed that using an adaptive SCMA
design can achieve better performances compared to a conventional regular SCMA design.
In Chapter 4, the design of an SCMA detector is conducted. Our proposition employ a
branch of machine leaning, namely deep learning, with the purpose to enhance the per-
formance of SCMA detector in an effective manner. We proposed first a joint denoising
and decoding approach for designing SCMA detector. We trained a DAE to mitigate the
effect of AWGN by trying to remove it from received signal. The estimated denoised sig-
nal at the output of our proposed DAE is used as an input of a DNN whose output is
a binary sequence that represents an estimation of the transmitted data. Our proposed
model outperform existing deep-learning based ones in terms of bit error rate and gives a
performance which is slightly lesser than that of MPA while still having a reduced com-
plexity. Inspired by a fair comparison of DL based SCMA detectors and the convectional
SCMA one, MPA, we proposed a fair DNN detector exploiting the distances between the
received vector and each one among possible superimposed combination codewords. This
will allow firstly to estimate the nearest superimposed codeword vector, the chosen vector
will be the input of a DNN which objective is to decode the transmitted users’ bits. The
proposed fair-DNN-SCMA detector assumes the knowledge of the SCMA codebook which
enables a distance-based selection of the codewords combination to be fed into the DNN.
Our proposed solution maintained lower computational complexity while achieving better
BER performance when compared to MPA.

Perspectives

Beyond the contributions presented in this thesis, some questions remain open issues and
need further investigations. Below, we list some topics that may be viewed as the natural
continuity of our work:

• In this research work, the channel fading model is assumed to be Rayleigh or AWGN.
However, this assumption is not always realist especially when a line-of-sight be-
tween the mobile terminal and the base station exists in some mobile environments,
in this case, the fading is no longer of Rayleigh type. Thus, other channel fading
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models must be considered when studying multiple access techniques in general and
especially SCMA, for instance Rician or m-Nakagami fading.

• Further, as SCMA is a proposal for future cellular systems, the presence of co-
cell interference (CCI) is unavoidable due to the channel reuse employed in cellular
systems. Thus, it is interesting to know the sensitivity of our irregular SCMA decoder
when CCI is present over different channel fading models.

• Our propositions in the whole manuscript consider SISO systems. An important
perspective of our research work is to extend it to MIMO SCMA detectors using
deep learning when different channel models are assumed. Therefore, implementing
an analysis framework to investigate two fusion methods: early fusion to combine
features before classification and late fusion to combine the outputs after classifica-
tion could be an interesting continuity to our work, in order to perform the joint
detection and decoding of multi-dimensional constellation.

• CNN can be used to reduce the number of parameters which are needed to train the
deep learning model without sacrificing the performance. However, CNN training is
a bit slower than that of a DNN. Also, RNN models such as LSTM, requires more
parameters than CNN, but only about half of DNN, while being the slowest to train.
Nevertheless, their advantage comes from being able to look at long sequences of
inputs without increasing the network size. Thus, proposing a detector by employing
CNN or LSTM could be a good perspective to evaluate the impact of the both
models on the performance of our proposed fair SCMA decoder.

• An important issue in signal processing and image processing is the choice of an
optimal representation of our signals in order to optimize the performance of a
dedicated task (inference, classification or compression). The idea could be to train
a deep learning model on new representation of received SCMA signal. Thus, the
input of the proposed model will be a 2D-image resulting from transforming the
received SCMA multi-dimensional constellation, and the task of the neural network
is to classify these images into binary categorical sequences that define the output
of the model.

• Inspired by the last proposed perspective and our proposed fair distance-based
SCMA detector, an idea is exploit a set of vectors composed of the difference between
the received vector and each one among the possible combinations of codewords.
This gives a matrix of dimension M ×MJ instead of a vector of M entries, this will
enrich the inputs of the deep learning model. An DAE structure to reduce the noise
before training a CNN using low-dimensional images could be be considered.
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• SCMA is a more suitable technique for multiple access with small user overloading
as it gives lower BER compared to MUSA. When increasing user overloading, the
performance of SCMA degrades and thus MUSA gives better performance than it.
Thus, exploring the exploitation of irregular SCMA structure for transmission with
higher user overloading may enhance the performance of SCMA system compared
to MUSA.
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A Codebook Example

To better illustrates SCMA mapping, a numerical example of complete SCMA codebooks,
as described in [1] and depicted in Figure 2.3.4 and Figure 2.3.6, is provided in the
following.

Figure A.1: The 2-dimensional codebooks with 4-codewords, generated for J = 6 users, as
described in [1].
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B Review of Existing SCMA Codebook Designs
MQAM = M -sized constellation based on shuffling technique en Two N -dimensions

MLQAM = M -sized constellation based on shuffling technique with low number of projections
MHQAM = M -sized constellation optimized by a rotation angles of the hyper-cube

MCQAM = M -point circular constellation
M -Peng = Optimized M -sized mother constellation based on Euclidean distance

M -Beko = Optimized M -sized mother constellation based on the average alphabet energy
M -Bao = Optimized M -sized mother constellation based on criterion derived from cutoff rate of MIMO
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Table B.1: Review of existing SCMA codebook designs
Reference Year Approach Uplink /

downlink
Optimization

criterion
Description

Beko et al.
[82] 2012 M-Beko Uplink &

downlink

Average alphabet
energy for a given
minimum Euclidean

distance

M-Beko method formulates the constellation design as a
non-convex optimization problem which objective is to
minimize average alphabet energy between any two

constellations points. This method can offer an optimal
solution.

Boroujeni et
al. [86] 2013 TMQAM Uplink &

downlink

Euclidean distance,
product distance &
average product

distance

Using a unitary rotation to produce a multi-dimensional
mother constellation. This document introduces also the first
low-projection multi-dimensional constellation. USA Patent

US9509379B2.

Taherzadeh
et al. [84] 2014 Shuffling

QAM
Uplink &
downlink

Euclidean distance
& product distance

A systematic approach based on lattice constellations is
employed to design multi-dimensional constellation with a

reasonable minimum Euclidean distance which is then rotated
to reach a good product distance. Shuffling operation can be

applied.

Yu et al.
[98] [99]

2015
2018

Star-
QAM Uplink Pairwise error

probability

Codebook with large minimum Euclidean distance, using
star-QAM improves SCMA BER gain without sacrificing the

system implementation complexity.

Zhang et al.
[129] 2015 IrSCMA Uplink Not specified

Irregular SCMA: Various sparsity degrees for various user
needs. Authors introduced the notion of degree distribution of

SCMA. The first proposition of an irregular SCMA.

Yu et al.
[130] 2016 IrSCMA Down-

link EXIT chart

Irregular SCMA: this paper extends the proposition in [129]
via an optimization of the employed rotation angles. The
degree of user superposition on a each RE is constant in

contrast to [129].

Bao et al.
[95] 2016 M-Bao Uplink Cutoff rate of

MIMO system

Rotation matrices are obtained through exhaustive computer
search over compact parameterizations of unitary matrices, a
suboptimal solution was applied. Perfect channel knowledge is

assumed.

Bao et al.
[96] 2016 Spherical

codes Uplink Squared Euclidean
distance

Spherical codes design is formulated as a non-convex
second-order cone programming problem. Hybrid lattice and
spherical codes based constellations are also discussed. Low

peak-to-average power ratio. -

Metkarunchit
[87]

2017
Low-

projection
MC

Down-
link

Cutoff rate of
MIMO system

Circular QAM for SCMA mother constellation design,
complexity of MPA depends on the reduced number of

constellation points.

Peng et al.
[83] 2017 M-Peng Uplink &

downlink Euclidean distance
A joint design of codebook and mapping matrices. The

proposed solution is semi-definite relaxation of non-convex
quadratically constrained quadratic programming.

Yan et al.
[102] 2017

Dimen-
sion

distance-
based
design

Uplink &
downlink

Sum of distance
between dimensions

of interfering
codewords

Codebook design is based on turbo trellis coded modulation.
Phase rotation and interleaving employ an appropriate

permutation set which is selected according to the introduced
criterion.

Lai et al.
[103] 2017

Dynamic
codebook
design

Down-
link Not specified

A transmission of SCMA codewords designed using random
angles extracted from CSI wich will grant more secure

transmission process. Upper-bound-aided codebook design
was introduced.

Zhai et al.
[131] 2017 IrSCMA,

QAM Uplink Not specified Flexible resources scheduling scheme according to user’s
features.

Bao et al.
[100] 2018

Low-
projection
mother

constella-
tion

Uplink Coded modulation
capacity

Multi-stage optimization of multi-radius rings based
multi-dimensional constellation by permuting an

one-dimensional constellation. Introduction of a new design
criterion. Application of bit-interleaved BICM with iterative

multiuser detection.

Vameghesta-
hbanati et
al. [97]

2020 MHQAM Uplink
Frame-error-rate of
a LDPC-coded

system

Construction of gray-labelled mother constellation based on
hypercubes which is used along with BICM. Exhaustive

search is employed.
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C Data-aided-CSI Estimation Algorithm

Algorithm 5: Data-aided channel estimation and detection

Input : (y,ẏ)

Step 1 : Channel estimation by pilot-aided method: Estimate the channel
H̃(p) ∼ CN (0, σ(p)) only using pilot sequences according to (10).

Step 2 : Improve the estimated channel
while (the error in (11) in not minimized) do

(a) Data detection: MPA detection is performed based on obtained estimated
channel.

(b) Data re-construction: Reconstruction of transmitted data symbols after
detection of received signal and the channel based only on these data
symbols, denoted as H̃(d) ∼ CN (0, σ(d)) is estimated.

(c) Channel re-estimation: Re-estimate the channel H̃, using both, pilots and
reconstructed data symbols:

H̃ = αpH̃(p) + αdH̃(d) (10)

where, αp and αd are the optimum coefficients to compute by satisfying the
criterion of optimization which is the minimization of the mean square
estimation error variance as following:

min
{
|αp|2σ(p) + |αd|2σ(d)

}
; (11)

Step 3 : Final data detection: MPA detection is performed based on improved
estimated channel.

Output : J log2(M) decoded bits
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D Review of Existing SCMA Detector Designs
Only dominant part of complexity order is considered, notations are defined in Table D.1,

√
→ assumed to be known, × → assumed to be unknown.

D-L = Downlink
U-L = Uplink

SISO = single-input single-output
SIMO = single-input multiple-output
MISO = multiple-input single-output

MIMO = multiple-input multiple-output
BICM = Bit-Interleaved Coded Modulation

BP = Belief Propagation
CS-MPA = Compressed Sensing aided MPA

DMPA = Discretized MPA
EPA = Expectation Propagation

EPA = Expectation Propagation Algorithm
EXIT = Extrinsic Information Transfer

EML-MPA = Joint Extended Maximum Likelihood and MPA
FFT = Fast Fourier Transform

GA-MPA-B = Gaussian-Approximated MPA using Bits
GA-MPA-S = Gaussian-Approximated MPA using Symbols

GenA-MPA = Generalized Approximate MPA
ISD = Improved SD

LSD = List Sphere Decoding
MMSE = Minimum Mean Square Error

MMSE-PIC = MMSE with Parallel Interference Cancellation
MSD = Modified Sphere Decoding

MS-MPA = Multiple Scheduling MPA
MSTS = Modified Single Tree Search

PA-MPA = Partially Active Message Passing Algorithm
PD-MPA = Partial Decoding MPA

PSMA = Power-Domain Sparse Multiple Access
PM-MPA = Partial Marginalization Message Passing Algorithm

Q-MPA = Quantum-Assisted MPA
QSD-MPA = Quantum-Assisted Sphere Decoder based MPA

SC-EPA = Sparse-Channel based EPA
SD = Sphere Decoding

S-SCL = Soft-Successive Cancellation List
SS-MPA = Single Scheduling MPA

125



Appendices of The thesis

Table D.1: Key parameters in complexity analysis
Parameters Description

Nt Number of transmitter antennas
Nr Number of receiver antennas
K Spreading length (number of REs)
N Codebook sparsity degree
Niter Total number of iterations
M Codebook size
Mp Number of projection points on the constellation
df Degree of signal superposition on a given resource element
ds Maximum degree-of-freedom allowed in SIC-MPA receiver
J Number of users
NOL Number of outer loops for MIMO-SCMA detection
NIL Number of inner loops for MIMO-SCMA detection
Nv1 Average number of visited layers for Type I (ISD method)
Nv2 Average number of visited layers for Type II (ISD method)
s Sparsity level at the current iteration
PR Pass rate (ratio of removed combinations to all combinations)
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Table D.2: Review of existing SCMA detector designs
Reference

Year Approach Scenario CSI Add & Mult Complexity Description
Type Authors

M
PA

based
detectors

Zou et al.
[155] 2015 SIC-MPA SISO

D-L
√ Neglected &

O(NiterNrKM
ds
p )

Joint use of SIC and MPA. Only active
users per RE are considered. Specific
constellation design is needed to be

employed.

Zhang et
al. [156],
[157]

2016
2018 DMPA SISO

√ O(d3
f ln(df )) &

O(d3
f ln(df ))

Requires a small df which limits the choice
of codebook. Based on PDF discretizing

and FFT in VNs.

Yang et
al. [158] 2016

Threshold-
based
MPA

SISO
U-L

√ O(NiterJNM
df−1df ) &

O(2NiterJNM
dfdf )

Users are divided into two groups based on
the codeword reliability which is integrated
in the iterative process. Inconvenient : loss
of posterior information of users using the

same RE.

Qi et al.
[111] 2017 Max-log-

MPA
SISO
U-L

√ O(2KMdfdf )) &
0

Approximating the logarithm of a sum of
exponential operations into a maximum

operation.

Tian et
al. [159] 2017 Improved

Log-MPA
SISO
D-L

√ O(2JM(Mdf−1 − 1)) &
0

Log-MPA adds a correction term to
MAX-log-MPA. The authors improved

Log-MPA by updating the FNs only within
a restricted search region.

Wu et al.
[123] 2017 PD-MPA MIMO

U-L
√ O(NNiter(M − 1)Mdf−1d2

f .PR)
& Neglected

Removing redundant combinations while
updating the VNs. Based on Log-MPA.

Huang et
al. [160] 2017 GenA-MPA MIMO

U-L
√ Neglected &

O(JK2 +KNiterM
df
p )

Approximated priori probability transforms
the vector estimation problem into a scalar

one, it is suitable for hardware
implementation.

Huang et
al. [160] 2017 SIC-GenA-

MPA
MIMO
U-L

√ Neglected &
O(JK2 +NiterM

df
p )

Extends GenA-MPA by eliminating the
calculated user layer, the complexity is

reduced.

Dai et al.
[161] 2017 SS-MPA

MS-MPA
SISO
U-L

√ Not specified &
Not specified

A lookup table is introduced to substitute
the information calculation. SS-MPA jointly

updates the message at FNs and VNs.
MS-MPA executes different updates in

parallel.

Lai et al.
[116] 2018 LDPC-MPA SISO

U-L
√

Significant complexity reduction
Joint factor graph for SCMA and LDPC
channel decoding. MPA was simplified by

using partial message passing.

Gao et
al. [162] 2018 CS-MPA SISO

√ Not specified &
8K + 3KN + 2Ns2 + s3

The detector is divided into two phases :
MPA with few iterations followed by a

sparse error correction. The main
complexity lies in MPA.

Han et
al. [163] 2018 Serial MPA SISO

√ Not specified &
Not specified

Updates the probability of user output
codeword immediately when the

information of one of its corresponding FNs
is updated. EXIT charts are used to analyze

MPA performance.

Dai et al.
[164] 2018 PA-MPA MIMO

U-L × Neglected &
O(NOLNIL

∑Nr
n=1 2J)

An outer-loop iterative process for joint
MIMO and multi-user detection. A

basic-switching sliding window to separate
users into active and silent ones during each

iteration.

Jia et al.
[165] 2018 PM-MPA SISO

U-L
Not

specified
O(MdfNJ(Niter − t)) &
O((Niter(df − 1)MdfNJ)

The codewords of a given number of chosen
users are determined after a predefined

number of iterations. Only the message of
the undetermined users are updated in the

remaining iterations.

Lai et al.
[166] 2018 EML-MPA SISO

U-L
√ Neglected &

O(Mdf
p )

Trellis representation is introduced by
mapping SCMA constellation to a Galois
field. A truncated-messages based detector

is based on selecting the most reliable
messages.
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Reference Year Approach Scenario CSI Add & Mult Complexity Description
Type Authors

Ye et al.
[167] 2019 Q-MPA SISO

U-L
√ The cost function is calculated

O
(√

M
df+1
p

)
times

Algorithm-aided MPA is accelerated by
exploiting the results of a quantum search

which is applied at the FNs.

Ma et al.
[168] 2019 Edgewise

serial MPA
SISO
U-L

√ O(Kdf [(df + 1)Mdf −M ]) &
O(KdfMdf (2df + 1))

This method updates messages in an edge by
edge way such as a more reliable extrinsic
information is used in a balanced manner.

Shi et al.
[169] 2019 Log-MPA SISO

U-L
√ Not specified &

Not specified

MPA with flexible number of iterations. The
iterative process continues until the codeword
convergence rate is higher than a threshold. A
balance between BER and complexity can be

achieved.

Dai et al.
[126] 2019 GA-MPA-S

GA-MPA-B
MIMO
U-L × Neglected &

O (2NiterdfM)

Gaussian-approximation based MPA.
GA-MPA-S updates the symbol likelihood

ratios and GA-MPA-B is performed on bit level.
Complexity was pulled down from exponential

to linear order.

Peng et
al. [170] 2020 EML-MPA SISO

U-L
√ O(KMdfdf ) &

O(KMdf (df + 2))

Dynamic trellis based message passing
algorithm is proposed such as the truncation is

dynamically decreased as the iterations
progress. A channel adaptive version of this

algorithm is also introduced.

EPA
based

detectors

Meng et
al. [171] 2017 EPA SIMO

U-L
√

O(NiterNrKMdf )

This method is based on approximate Bayesian
interference. Instead of continuous exponential
terms, message passing is reduced to mean and
variance calculation of approximate Gaussian

distributions.

Yuan et
al. [125] 2018 Stretch-BP-

EP
MISO
D-L × O(Niter(Nt + J)

Stretched factor graph representation that
enables the design of a hybrid BP and EP

receiver with channel decoder. It can be only
applied to user terminals with single antenna.

Chen et
al. [172] 2018 Bayesian

Interference
SISO
U-L

√ O(N(df +M)) &
O(MNdf )

The authors proposed a Monte Carlo Markov
chain based SCMA detection algorithm. A new
joint update parallel probability sampler is

proposed.

Wang et
al. [127] 2020 SC-EPA MIMO

U-L
√ Neglected &

O(NdfNiter(6Nr + 5Mp))

QR decomposition is combined with EPA which
allows to exploit the channels sparsity. A

high-parallelism message passing technique is
proposed. The effect of channel estimation

errors is studied.

SD
based

detectors

Yang et
al. [173] 2017 SD SISO

U-L
√ O(dfKMdf ) &

O(KMdf (df + 1))

Space restriction of codeword research to a
hyper-sphere centered around the received

signal whose radius is adjusted according to the
noise power at the receiver. Method with high

complexity in the low SNR region.

Wei et al.
[88], [174]

2016
2017 LSD SISO

U-L
√ O(2N(df log2(M))3) &

Neglected

The search is limited to a list of all the
candidate lattice points within a given radius

around the received vector.
Vamegh-
estahba-
nati et al.

[175]

2017 MSD SISO
U-L

√ O((4df + 2)Nv1 + 2Nv2) &
O((4df + 2)Nv1 + 2Nv2)

Based on a modified tree search method. Using
the Tikhonov regularization to facilitate

applying SD to SCMA systems.

Li et al.
[176] 2018 MSTS SISO

U-L
√ Lesser number of cost function

calculations

Modified single tree search avoids the
unnecessary node searching by sorting channel
matrix in ascending order and by employing a

non-zero low bound enumeration.

Ye et al.
[167] 2019 QSD-MPA SISO

U-L
√ The cost function is calculated less

than O
(√

sM
df+1
p

)
times

A quantum search is used to identify all
possible codeword combinations within a given
hyper-sphere, thereafter MPA is applied on

identified points only.
Vamegh-
estahba-
nati et al.

[177]

2019 ISD SISO
U-L

√ O((4df + 2)Nv1 + 2Nv2) &
O((4df + 2)Nv1 + 2Nv2)

This method extends the MSD one to support
any arbitrary regular or irregular constellation

topology.

O
ther

SC
M
A

detectors

Sun et al.
[117] 2019 LDPC-coded

SCMA
SISO
U-L

√
O(660NILNOL)

The interface between the SCMA detector and
the LDPC decoder is optimized such as a proof
of concept was implemented using 40nm CMOS

technology.

Jiao et
al. [120] 2020 Polar-coded

SCMA
SISO
U-L × O(NiterJdfM

df )

Iterative joint channel estimation and decoding
scheme is proposed where Max-Log-MPA and
S-SCL algorithms are used, respectively, for

SCMA and polar decoding.

Lu et al.
[76] 2018 Deep

learning
SISO
U-L × Not specified

A DNN was designed such as the propagation
between two of its layers is calculated based on
how messages are passed between FNs and VNs

in traditional iterative MPA.

Lin et al.
[80] 2020 Deep

learning
SISO
U-L × Not specified

Autoencoders are employed to automatically
design SCMA codebooks and construct the

corresponding detetor through AWGN channels.
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Titre : Contributions sur les techniques d’accès multiple non-orthogonal pour les communications massives

Mot clés : Techniques d’accés multiple, Communication massive, SCMA, CD-NOMA, Apprentissage automatique

Résumé : Les techniques d’accès multiple présentent de nom-

breux défis et possibilités pour la conception de réseaux sans fil

massifs. Par conséquent, d’importants efforts de recherche ont été

consacrés au problème de la distribution égale et simultanée des

ressources partagées (temps et/ou fréquence) entre des utilisateurs

d’un même réseau. Ainsi, l’amélioration des techniques d’accès

multiple des prochaines générations de communications mobiles

mérite une étude approfondie, ce qui est l’objectif principal de cette

thèse. Le travail de recherche présenté dans cette thèse se con-

centre sur l’accès multiple par code parcimonieux. Dans un pre-

mier temps, nous étudions l’adaptation du SCMA en fonction des

besoins des utilisateurs en termes d’énergie, de bande passante

et de qualité de service. L’architecture SCMA adaptative proposée

non seulement prend en compte les différences entre les besoins

des utilisateurs, mais permet également une utilisation plus réaliste

de la connaissance des canaux de transmission en personnalisant

le livre de codes de chaque groupe d’utilisateurs qui sont regroupés

en fonction de leurs informations sur l’état du canal (CSI). La deux-

ième partie concerne l’application de techniques d’apprentissage

profond dans le but de décoder efficacement le signal SCMA reçu.

Ainsi, un détecteur SCMA en deux étapes basé sur l’apprentissage

profond a été proposé dans l’hypothèse d’un bruit blanc Gaussien

additif. La première étape consiste à débruiter le signal à l’aide d’un

autoencodeur de débruitage avant de le décoder ensuite sur la base

d’un réseau neuronal profond qui permet d’estimer simultanément

tous les bits transmis en une seule fois. Les performances du dé-

tecteur SCMA en termes de taux d’erreur binaire et sa complexité

ont été évaluées. Cependant, les performances de cette méthode

sont légèrement inférieures à celles du détecteur SCMA conven-

tionnel, étant plutôt itératif. Néanmoins, cette comparaison n’est pas

juste, car le détecteur que nous avons proposé en premier lieu, con-

trairement au détecteur conventionnel, suppose que le livre de code

SCMA est inconnu au niveau du récepteur. C’est pourquoi nous

proposons un nouveau détecteur à réseau neuronal profond basé

sur la distance en supposant que le livre de codes est connu. Le

deuxième détecteur proposé peut être comparé équitablement au

détecteur conventionnel de SCMA et surpasse ses performances.

Title: Contributions on non-orthogonal multiple access techniques for massive communications

Keywords: Multiple access techniques, Massive communication, SCMA, CD-NOMA, Machine learning

Abstract: Multiple access techniques present many challenges

and opportunities for the design of massive wireless networks.

Therefore, substantial research efforts were devoted to the prob-

lem of serving users of the same network equally and simultane-

ously with some shared resources (time and/or frequency). Thus,

the improvement of multiple access techniques of the next genera-

tions of mobile communications deserves a thorough study, which

is the main objective of this thesis. The research work presented in

this thesis focuses on sparse code multiple access (SCMA) and it

is organized into two main parts. First, we study the adaptation of

SCMA according to the users’ needs in terms of energy, bandwidth

and quality of service. The proposed adaptive SCMA architecture

not only rightfully addresses the differences in users requirements,

but also allows a more realistic use of the knowledge of transmis-

sion channels by customizing the codebook of each group of users

which are clustered based on their channel state information. The

second part concerns the application of deep learning techniques

in the aim of efficiently decoding the received SCMA signal. Thus,

a two-stage deep learning based SCMA detector was proposed un-

der the assumption of additive white Gaussian noise. The first stage

consists in denoising the signal using a denoising autoencoder be-

fore decoding it afterwards based on a deep neural network which

allows to simultaneously estimate all the transmitted bits in one-

shot. The performance of SCMA detector in terms of bit error rate

and its complexity were evaluated. However, the performance of this

method is slightly worse than that of the conventional SCMA detec-

tor, being rather iterative. Nevertheless, this comparison is not fair,

since our firstly proposed detector, contrary to the conventional one,

assumes that the SCMA codebook is unknown at the receiver. That

is why, we propose a new distance-based deep neural network de-

tector under the assumption that the codebook is known. The sec-

ond proposed detector can be fairly compared to the conventional

detector of SCMA and outperforms its performance.
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