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Apprentissage dans les disques de Poincaré et de Siegel de séries temporelles multidimensionnelles complexes suivant un
modele autorégressif gaussien stationnaire centré : application a la classification de données audio et de fouillis radar

Résumé : L’objectif de cette these est la classification de séries temporelles a valeurs complexes suivant un modele autorégressif
gaussien stationnaire centré. Nous étudions le cas des séries temporelles unidimensionnelles ainsi que le cas plus général des séries
temporelles multidimensionnelles. L’apport de cette these est a la fois méthodologique et technique. La méthodologie présentée permet
de représenter les lois des séries temporelles observées dans une variété riemannienne dans laquelle la classification sera effectuée. Les
étapes majeures de notre méthode sont : la définition de 1’espace des coefficients du modele paramétrique permettant de représenter
les séries temporelles considérées, 1’estimation des coefficients du modele paramétrique a partir de séries temporelles observées, mu-
nir ’espace des coefficients du modele paramétrique d’une métrique riemannienne inspirée de la géométrie de I’information et enfin
I’adaptation d’algorithmes de machine learning classiques aux variétés riemanniennes obtenues. Dans le cas des séries temporelles mul-
tidimensionnelles, nous travaillerons dans un espace produit qui fait intervenir le disque de Siegel (ensemble des matrices complexes de
valeurs singulieres strictement inférieures a 1) muni d’une métrique riemannienne produit. En plus de 1’apport méthodologique évoqué
précédemment, nous apportons des outils théoriques nouveaux pour classifier des données dans la variété de Siegel : nous donnons
les formules explicites du logarithme riemannien, de 1’exponentielle riemannienne et de la courbure sectionnelle de la variété obtenue
sur ’espace de Siegel. Notre modele de représentation des séries temporelles complexes suivant un modele autorégressif gaussien
stationnaire centré sera appliqué a la classification de séries temporelles simulées, au clustering de fouillis radar et a la classification de
séries temporelles audio stéréo stationnaires.

Mots-clés : séries temporelles suivant un modele autorégressif gaussien stationnaire a valeurs complexes, séries temporelles multidi-
mensionnelles, machine learning, géométrie de I’information, variétés riemanniennes, matrices Toeplitz par blocs, disque de Siegel,
fouillis radar, séries temporelles audio stationnaires, corrélation spatio-temporelle.

Multidimensional complex stationary centered Gaussian autoregressive time series machine learning in Poincaré and Siegel
disks: application for audio and radar clutter classification

Abstract: The objective of this thesis is the classification of complex valued stationary centered Gaussian autoregressive time series.
We study the case of one-dimensional time series as well as the more general case of multidimensional time series. The contribution
of this thesis is both methodological and technical. The methodology presented can be used to represent the probability distributions
of the observed time series in a Riemannian manifold in which the classification will be performed. The major steps of our method
are: the definition of the space of the coefficients of the parametric model used to represent the considered time series, the estimation
of the coefficients of the parametric model from observed time series, to endow the space of the coefficients of the parametric model
with a Riemannian metric inspired by information geometry and finally the adaptation of classical machine learning algorithms to the
Riemannian manifolds obtained. In the case of multidimensional time series, we will work in a product manifold which involves the
Siegel disk (set of complex matrices with singular values strictly lower than 1) endowed with a Riemannian metric. In addition to the
methodological contribution mentioned previously, we bring new theoretical tools to classify data in the Siegel manifold: we give the
explicit formulas of the Riemannian logarithm map, of the Riemannian exponential map and of the Siegel manifold sectional curvature.
Our representation model for complex stationary centered Gaussian autoregressive time series will be applied to simulated time series
classification, to radar clutter clustering and to stationary stereo audio time series classification.

Keywords: Complex stationary centered Gaussian autoregressive time series, multidimensional time series, machine learning, Informa-
tion geometry, Riemannian manifold, Block-Toeplitz matrices, Siegel disk, radar clutter, stationary audio time series, spatio-temporal
correlation.
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Résumé général

Le contenu de ce chapitre introductif est également rédigé en anglais dans le chapitre 1. Dans cette theése, nous présentons
une méthode pour classifier des séries temporelles a valeurs complexes suivant un modele autorégressif gaussien station-
naire centré. Notre motivation initiale vient du traitement du signal radar et en particulier de la classification du fouillis
radar, que nous détaillons dans la section 1. Ce probleme a déja été abordé dans de précédents travaux, notamment par
Frédéric Barbaresco [9, 12,34,37,38], Le Yang [0, 82], Alice Le Brigant [15] et Alexis Decurninge [3,26]. Nous présen-
tons les différents articles et manuscrits de theése qui ont servi de support au présent manuscrit dans la section II. Nous
résumons chaque chapitre de cette these dans la section III. Dans la section IV, nous nous concentrons sur les principales
contributions de cette these. Nous proposons quelques perspectives des possibles futurs développements de cette these
dans la section V.

I Motivations radar

La motivation initiale de 1’étude des séries temporelles a valeurs complexes qui suivent un modele autorégressif gaussien
stationnaire centré vient du traitement du signal radar, en particulier de I’étude du fouillis radar. Dans le langage radar,
nous distinguons les objets mobiles d’intérét premier que nous appelons les cibles et I’'information liée & 1’environnement
du radar que nous appelons le fouillis. Le fouillis radar est donc I’information enregistrée par un radar liée aux mers, aux
foréts, aux champs, aux villes et autres éléments environnementaux qui entourent le radar. Afin de mieux distinguer les
cibles du fouillis, il peut étre intéressant de développer des algorithmes de machine learning permettant de reconnaitre
différents types de fouillis. La connaissance du fouillis radar est utilisée dans 1’appendice F pour obtenir un estimateur de
détection a taux de fausses alarmes constant (CFAR).

Pour étudier les caractéristiques du fouillis radar, il est courant de supposer que les séries temporelles a valeurs
complexes liées au fouillis suivent un modele autorégressif gaussien stationnaire centré [ 13]. L’hypothese de stationnarité
des séries temporelles dans le cadre de I’étude du fouillis radar est justifiée par des temps d’observation extrémement
courts d’'une méme zone de I’environnement. Les lois de probabilités de ces séries temporelles sont représentées dans
des variétés riemanniennes dans les travaux de Le Yang [6,82] et d’Alice Le Brigant [15]. Nous reprenons ce modele de
représentation et 1’appliquons au clustering de fouillis radar dans le chapitre 8.

Afin d’affiner 1’étude des caractéristiques du fouillis radar, nous avons voulu ajouter a I’information temporelle con-
tenue dans chaque série temporelle une information spatiale en étudiant la corrélation entre des séries temporelles enreg-
istrées dans des zones spatialement proches. Pour cela, nous avons développé un modele spatio-temporel qui est étudié
dans I’appendice G. Afin de munir I’espace des coefficients de ce modele spatio-temporel d’une métrique, nous étudions
le cas plus général des séries temporelles stationnaires multidimentionnelles qui deviennent ainsi 1’objet d’étude principal
de cette these.

II Travaux associés

L’étude des séries temporelles radar stationnaires unidimensionnelles a été réalisée par Frédéric Barbaresco dans [8—12,

]. Dans ces travaux, les séries temporelles radar stationnaires sont représentées dans I’espace produit R* x D!
ou D représente le disque unité complexe. Cet espace est muni d’une métrique riemannienne inspiré de la géométrie
de I’information. L’espace R} permet de représenter la puissance quadratique moyenne de la série temporelle étudiée.
L’espace produit D"~ ! représente les coefficients du modele autorégressif, il représente donc 1’information Doppler
contenue dans la série temporelle.

L’algorithme de Burg est utilisé pour estimer les coefficients du modele autorégressif a partir d’une série temporelle
enregistrée. Cet algorithme est présenté dans les travaux de Frédéric Barbaresco et Alexis Decurninge [3,26].

La métrique riemannienne construite sur I’espace R x D"~ est présentée par Frédéric Barbaresco dans [37], [41],
[35], [34], [33] et les travaux connexes [23], [53], [29]. Cette métrique est également détaillée dans les travaux de these de
Le Yang [6,82] et dans les travaux de these d’ Alice Le Brigant [15]. Nous référons au livre de Shun-ichi Amari [73] pour
une présentation complete des outils de géométrie de 1’information utilisés pour construire cette métrique. Nous notons
R x D"~ la variété riemannienne présentée dans ces travaux : la variété R™+ x D"~ ! correspond a I’espace R* x D"~!

iv



muni d’une métrique riemannienne inspirée de la géométrie de I’information. Cette métrique Riemannienne est présentée
dans la section 4.1.3. Le calcul de la moyenne et de la médiane dans cette variété est utilisé pour détecter des cibles radar
dans les travaux de Le Yang [6, 82]. L’étude des courbes de la variété RT+ x D"~! est appliquée 2 la reconnaissance
de cibles radar dans le travail d’Alice Le Brigant [15]. Dans le travail de thése présenté ici, la variété R*+ x D*~!
sera utilisée pour le clustering de fouillis radar et plus généralement pour la classification de séries temporelles a valeurs
complexes suivant un modele autorégressif gaussien stationnaire centré.

L’un des objectifs de cette these est I’étude des séries temporelles multidimensionnelles a valeurs complexes suivant
un modele autorégressif gaussien stationnaire centré. Comme dans le cas des séries temporelles unidimensionnelles,
il est possible de représenter les séries temporelles multidimensionnelles par les coefficients du modele autorégressif.
Dans le cas de séries temporelles multidimensionnelles, ces coefficients autorégressifs sont des matrices carrées. Dans
I’article écrit par Ben Jeuris et Raf Vandebril [45], les coefficients matriciels du modele autorégressif sont 1égérement
modifiés pour appartenir au disque de Siegel SDx (ensemble des matrices complexes N x N de valeurs singulieres
strictement inférieures a 1). Les séries temporelles stationnaires multidimensionnelles seront alors représentées dans
I’espace ’H]J(, X SDR,_l, ou ”H,X, est I’espace des matrices hermitiennes définies positives. Cet espace sera muni d’une
métrique riemannienne produit dont la construction est détaillée dans I’article de Ben Jeuris et Raf Vandebril [45]. La
métrique produit sur I’espace ’HX, xS Dxfl induit une métrique riemannienne sur les espaces ’HX, et SDy. La métrique
du disque de Siegel SDy a été étudiée par Frédéric Barbaresco dans [38], [36] et dans I’article connexe [460]. A notre
connaissance, 1’application logarithme riemannien, 1’application exponentielle riemannienne et la courbure sectionnelle
de la variété riemannienne définie sur I’espace de Siegel SD n’étaient pas connues, ce sont des apports de cette these
qui ont été résumés dans 1’un de nos précédents articles [21]. Ces outils géométriques sont indispensables a 1’utilisation
de certains algorithmes de machine learning, notamment les algorithmes impliquant un calcul de la moyenne comme
I’algorithme des k-means.

III Principaux enjeux de la these

Cette thése a pour objectif de mettre a disposition du lecteur la grande majorité des outils méthodologiques et techniques
que nous utiliserons pour la classification des séries temporelles a valeurs complexes suivant un modele autorégressif
gaussien stationnaire centré. Parmi les outils présentés dans cette these, certains étaient déja connus et certains sont
nouveaux, nous détaillons les éléments nouveaux dans la section I'V. La structure de cette these est liée a la méthodologie
utilisée. Dans le chapitre 2 nous présentons plusieurs espaces de représentation des séries temporelles étudiées. Dans
le chapitre 3, nous munissons ces espaces d’une métrique riemannienne inspirée de la géométrie de 1’information. Dans
le chapitre 4, nous détaillons la métrique des variétés riemanniennes obtenues. Dans le chapitre 5, nous présentons des
algorithmes de machine learning adaptés a la structure de variété riemannienne. Dans les chapitres 6, 7, 8 et 9 nous
utilisons certains algorithmes de machine learning présentés dans le chapitre 5 sur les variétés détaillées dans le chapitre
4 pour classifier des séries temporelles stationnaires. Nous détaillons maintenant le contenu de chaque chapitre.

III.1 Résumé du chapitre 2 : Séries temporelles a valeurs complexes suivant un modele au-
torégressif gaussien stationnaire centré

Dans le chapitre 2, nous présentons différents modeles paramétriques associés aux processus stochastiques discrets a
valeurs complexes suivant un modele autorégressif gaussien stationnaire centré.

On note n — 1 I’ordre des processus stochastiques autorégressifs présentés dans cette section.

Dans le cas des séries temporelles unidimensionnelles, cela s’écrit :

n—1
u(k) + Z al P u(k —i) = w" k) (1)
i=1

ou a?‘l sont les coefficients de prédiction et les erreurs de prédiction w™~!(k) sont des processus gaussiens com-
plexes centrés indépendants et identiquement distribués de variance o2. Une telle série temporelle est donc entierement
paramétrée par les coefficients du modele autorégressif (a?*l, NN aﬁj) et par le coefficient 2. Nous définissons les
coefficients d’autocorrélation r; := E [u (k + i) u (k)*] De fagon équivalente, une série temporelle peut étre représentée
par sa variance 7 et les coefficients du modele autorégressif (af, .. ., a”1). Les coefficients a} sont appelés coefficients
de réflexion et seront notés p;, ils appartiennent au disque unité complexe D. En utilisant cette représentation, le proces-
sus stochastique discret étudié est donc représenté par les coordonnées (7o, /i1, - - . , fin—1) dans ’espace R* x D"~1. 11
est également possible de représenter une série temporelle par ses coefficients d’autocorrélation (rg,71,...,7,—1). Ces
coefficients déterminent entierement la matrice d’autocorrélation R du processus stochastique discret qui est une matrice

Toeplitz hermitienne définie positive :
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Nous notons Z un vecteur qui suit une loi normale complexe. La loi de Z est caractérisée par sa moyenne p := E [Z],
sa matrice de covariance I' := E [ZZH] et sa matrice de relation C' := E [ZZT]. Nous notons Z ~ CN (p,T', C) la loi
gaussienne complexe de moyenne p, de matrice de covariance I" et de matrice de relation C'. Nous appelons loi normale
circulaire symétrique centrée une loi normale complexe de moyenne nulle (¢ = 0) et de matrice de relation nulle (C' = 0).
Une loi normale circulaire symétrique centrée est donc caractérisée par sa matrice de covariance I' qui est hermitienne
définie positive. Lorsque la série temporelle a valeurs complexes est de longueur n, il est équivalent de supposer que la
série temporelle est une réalisation d’un processus stochastique autorégressif gaussien stationnaire centré et de supposer
que le vecteur u = [u(0),u(1),...,u(n — 1)]7 est la réalisation d’une loi normale circulaire symétrique centrée dont la
matrice de covariance R est Toeplitz hermitienne définie positive.

L algorithme de Burg 17 permet d’estimer les paramétres (ro, i1, - - . , bn—1) 2 partir des séries temporelles observées.
Le principe de I’agorithme de Burg est détaillé dans 1’appendice C.

Dans le cas des séries temporelles multidimensionnelles, le modele autorégressif est caractérisé par 1’équation suiv-
ante :

n—1
Uk) + Y, A7~ Uk = j) = W(k) (3)
Jj=1

ou W est le vecteur d’erreur de prédiction de taille /V de matrice de covariance X. La matrice de covariance X et les
coefficients de prédiction A?il sont des matrices carrées de taille N x N.

Ce modele peut donc étre paramétré par la matrice de covariance X et les coefficients du modele autorégressif
(AN, A%j). Nous définissons les coefficients d’autocorrélation R; := E [U (k+49)U (kJ)H], ou -f désigne
I’opérateur de transconjugaison d’une matrice complexe. La série temporelle étudiée peut également étre représentée par
le coefficient d’autocorrélation R et les coefficients de réflexion (A%, e AZ:%). Pour deux matrices complexes A et
B, nous notons A > B lorsque la matrice A — B est hermitienne définie positive. Nous montrons que les coefficients de
réflexion A’ appartiennent a ’espace Dy := {M e CV*N | Iy — MM > O}, ot M := JM*.J avec J la matrice anti-
diagonale [45]. II est également possible de transformer les coefficients de réflexion A} € D en coefficients M; € SDy
ou SDy = {M eCNVN | Iy — MMH > O} est appelé le disque de Siegel. Nous pouvons donc représenter la série
temporelle multidimensionnelle étudiée par le coefficient d’autocorrélation Ry et les coefficients (M, ..., M,,_1) appar-
tenant au disque de Siegel. En utilisant cette représentation, la série temporelle étudiée est donc représentée par les coor-
données (R, M, ..., M,_1) dans I’espace 7—[% X SDXfl. Il est également possible de représenter la série temporelle
étudiée par les coefficients d’autocorrélation (Ro, ..., R,_1). Ces coefficients caractérisent la matrice de covariance R

des données vectorisées U,, = [U(O)T, LU — l)T] . La matrice de covariance de U,, est la matrice Toeplitz par
blocs hermitienne définie positive R définie par :

Ry RE RE .. RE,
Ri Ry RE ... RE,

R—| B2 Ri Ry ... REL,| )
Rnfl Rn72 Rn73 v RO

Lorsque la série temporelle multidimensionnelle & valeurs complexes est de longueur n, il est équivalent de supposer
que la série temporelle est la réalisation d’un processus stochastique suivant une modele autorégressif gaussien stationnaire
centré et de supposer que le vecteur U,, est la réalisation d’une loi normale complexe circulaire symétrique centrée dont la
matrice de covariance R est Toeplitz par blocs hermitienne définie positive. L’algorithme 5 présenté dans la section 2.2.9
permet d’estimer les coefficients (Ro, M1, ..., M,_1) € H xS Dﬁfl a partir de séries temporelles multidimensionnelles
observées.

III.2 Résumé du chapitre 3 : Théorie de la géométrie de I’information

Dans le chapitre 3, nous munissons les espaces de représentation des séries temporelles a valeurs complexes suivant un
modele autorégressif gaussien stationnaire centré d’une métrique riemannienne inspirée de la géométrie de 1’information.
La théorie de la géométrie de I’information donne un cadre théorique qui permet de munir des espaces de lois paramétriques
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d’une métrique riemannienne. Comme vu dans le chapitre 2, les séries temporelles étudiées peuvent étre considérées
comme des réalisations de lois gaussiennes complexes circulaires symétriques centrées : u ~ CA (0, R, O). Dans le cas
unidimensionnel, la matrice R est Toeplitz hermitienne définie positive. Dans le cas multidimensionnel, la matrice R est
Toeplitz par blocs hermitienne définie positive. Dans le cas plus général ol la matrice de covariance R est simplement
hermitienne définie positive, nous pouvons utiliser les outils présentés dans le livre de Shun-Ichi Amari [73] pour définir
la métrique de la géométrie de I’information sur les lois gaussiennes circulaires symétriques centrées [15, 82]. Cette
métrique sur les matrices hermitiennes définies positives 7, est donnée par I’élément : ds? = trace (P~'dPP~'dP).
D’apres I’étude des différents espaces de représentation des séries temporelles a valeurs complexes suivant un modele
autorégressif gaussien stationnaire centré effectué au chapitre 2, la matrice de covariance Toeplitz R d’une série tem-
porelle unidimensionnelle stationnaire peut étre représentée par les coefficients (po, ft1,. .., pin—1) € RE X D=L, En
nous inspirant de la construction de la métrique de la géométrie de 1’information sur I’espace ’H]\L, nous construisons une
métrique riemannienne sur I’espace R* x D"~!. Nous notons R™* x D"~ la variété riemannienne obtenue. La métrique
construite est une métrique produit définie par :

2 U ||
dsgi+ ypn1 = N—5 + Z n—k)———. %)
o= (1= 1)
Pour les séries temporelles multidimensionnelles, la matrice de covariance Toeplitz par blocs R peut étre représentée
par les coefficients (Ro, M1, ..., M,_1) € Hf x S’D’X,_l. Nous construisons une métrique sur ’espace Hj; x SD’](,_l

en nous inspirant de la construction de la métrique de la géométrie de 1’information sur ’HE. Nous notons H}J” X SD?{1
la variété riemannienne obtenue. La métrique construite est une métrique produit définie par :

dspys v, spn1 =ntrace (Pt dPy By ' dPy) (6)
n—1
+ 3 (=1 trace (1= 0f") " de (1 - 0ff Q) aof).
=1

III.3 Résumé du chapitre 4 : Variétés riemanniennes associées aux séries temporelles station-
naires a valeurs complexes

Dans le chapitre 4, nous présentons certains outils géométriques utiles des variétés riemanniennes R™+ x D"~ et H* x
SDR{l obtenues dans le chapitre 3. Pour ces deux variétés, les outils géométriques présentés sont : 1’expression de
I’élément ds>2, I’expression de la distance entre deux points, le produit scalaire, la norme, la donnée d’une isométrie,
I’application logarithme riemannien, I’application exponentielle riemannienne, I’équation des géodésiques et la courbure
sectionnelle. Pour étudier ces outils géométriques, nous remarquons que ces variétés sont des variétés produits. En effet,
la métrique de la variété RT* x D"~! peut s’écrire :

n—1
2 2 2
dSgi+ ypn-1 = Ndsgs+ + Z (n—k)dsp (7)
k=1
2 dp3 2 | ]
avec ds = —Letdsy = .
R++ p(2] D (17|I—Lk|2)2

Nous notons R** la variété riemannienne définie sur I’espace R* par la métrique ds%H. Nous appelons disque
de Poincaré et notons D la variété définie sur le disque unité complexe D par la métrique ds3. Nous commengons par
étudier en détails les variétés R™* et D, puis nous utilisons la relation définie par I’équation 7 pour en déduire les outils
géométriques de la variété RT x D" 71,

P c i s . ++ n—1 P s . Py L

La métrique de la variété riemannienne Hy, ™ x SD};  peut également s’écrire comme une métrique produit :

n—1

2 2 2
dSHE+XSD;<]71 = ndSH;+ + I_Zl (n — l) dSSDN (8)
avec
d52H++ = trace (Pof1 dPy P(fl dPO)
N

dsdp, = trace ((I - QleI)% dsy (I - Q;LIQl)71 dQlH> .

Nous notons H3" la variété définie sur ’espace des matrices hermitiennes définies positives 3, par la métrique
dsZHF. Nous notons SDy la variété définie sur I’espace de Siegel SD y par la métrique ds%DN. Nous étudions d’abord
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les variétés H;* et SD v, puis nous utilisons la relation donnée dans 1’équation 8 pour en déduire les outils géométriques
de la variété riemannienne H;"™ x SD7'. L’élément de métrique dsgp - la distance et le produit scalaire de la variété
SDy sont donnés dans 1’article de Ben Jeuris et Raf Vandebril [45]. A la connaissance des auteurs, I’expression explicite
de I’application logarithme riemannien, de 1’application exponentielle riemannienne et de la courbure sectionnelle de
I’espace de Siegel n’étaient pas connues, la donnée de leurs expressions est donc une contribution majeure de cette these.

III.4 Résumé du chapitre 5 : Machine Learning sur des variétés riemanniennes

Dans le chapitre 5, nous détaillons des algorithmes de machine learning adaptés a la structure de variété riemannienne.
La plupart des algorithmes de machine learning classiques consideérent implicitement que les données a classifier sont des
données euclidiennes. Dans un espace euclidien, il est possible d’additionner deux éléments, de multiplier un élément
par un scalaire et de calculer trés facilement la moyenne 4, des éléments (21,...,ZN) : Tmean = % Zfil z;. La

1/2
distance entre deux points @ = (a1, ...,a,)etb = (b1,...,b,) est définie par: d (a,b) = (Z?:l (b; — ai)Q) ! . Cepen-
dant, ces opérations (entre autres) ne sont pas définies dans des variétés riemanniennes en général. Pour qu’un algorithme
de machine learning puisse fonctionner dans une variété riemannienne en respectant sa structure, il faut donc qu’il repose
sur des opérations qui soient définies dans des variétés riemanniennes. Pour les variétés R™+ x D"~ ! et H}, " x SDK,’I, les
opérations qui reposent sur les outils géométriques présentés dans le chapitre 4 seront bien définies. Certains algorithmes
de machine learning euclidiens classiques utilisent comme seul outil géométrique la notion de distance pour classifier
des données. Pour adapter ces algorithmes a des données appartenant a une variété riemannienne non euclidienne, il
suffit de remplacer la distance euclidienne par I’expression de la distance dans la variété riemannienne. Parmi les algo-
rithmes de classification supervisée utilisant uniquement la notion de distance, nous présentons 1’algorithme des k plus
proches voisins dans la section 5.3.1 et I’algorithme Kernel Density Estimation Classifier dans la section 5.3.2. Parmi
les algorithmes de clustering utilisant uniquement la notion de distance, nous présentons 1’algorithme de la classification
ascendante hiérarchique dans la section 5.4.1.

D’autres algorithmes de machine learning euclidiens classiques utilisent la notion de moyenne. Pour pouvoir utiliser
ces algorithmes dans une variété riemannienne non euclidienne, nous devons définir la notion de moyenne dans une variété
riemannienne. Dans la section 5.1.2, nous définissons la moyenne des points (1, .. ., 2 ) comme I’ensemble des minima
locaux de la fonction :

N
Hy(x) = Z d*(x, ;). 9

Une variété de Hadamard est une variété riemannienne complete, simplement connexe et de courbure sectionnelle
négative ou nulle. Lorsque la variété étudiée est une variété de Hadamard, la fonction Hx(x) posséde un unique minimum
local (et donc global) [82], [6]. Nous montrons dans le chapitre 4 que les variétés Rt + x D"~ ! et HEJ’ X SDX,*1 sont des
variétés de Hadamard. Pour approximer la valeur de la moyenne dans une variété de Hadamard, nous pouvons faire une
descente de gradient sur la fonction Hs. Le gradient de cette fonction a pour expression :

N
G (z) = -2 Z log,, (). (10)
i=1

Le calcul du gradient fait donc intervenir 1’application logarithme riemannien. Pour nous déplacer sur la variété rie-
mannienne dans la direction de ’opposé du gradient, nous utilisons ensuite 1’application exponentielle riemannienne.
L’algorithme d’approximation de la moyenne utilisant la descente de gradient est détaillé dans 1’algorithme 8. 11 ex-
iste également une méthode stochastique permettant d’approximer la moyenne [6], cette méthode est présentée dans
I’algorithme 9. Dans le chapitre 5, nous présentons deux algorithmes utilisant un calcul de moyenne pour classifier des
données : I’algorithme supervisé nommé Nearest Centroid Classifier présenté dans la section 5.3.3 et I’algorithme de clus-
tering des k-means présenté dans la section 5.4.3. Ces deux algorithmes utilisent trois outils géométriques : la distance,
I’application logarithme riemannien et 1’application exponentielle riemannienne. Pour chaque algorithme présenté dans
le chapitre S, nous préciserons les outils géométriques sur lesquels il repose et la complexité de 1’algorithme par rapport
au nombre de données d’entrée.

III.5 Résumé du chapitre 6 : Application a la classification de séries temporelles unidimen-
sionnelles simulées suivant un modéle autorégressif gaussien stationnaire centré

Dans le chapitre 6, nous appliquons certains algorithmes de machine learning présentés dans le chapitre 5 a la classi-
fication de séries temporelles unidimensionnelles simulées. Les séries temporelles simulées sont des séries temporelles
unidimensionnelles a valeurs complexes qui suivent un modele autorégressif gaussien stationnaire centré. Comme vu
dans la section 2.1 du chapitre 2, ces séries temporelles peuvent étre considérées comme des réalisations de lois circu-
laires symétriques centrées CA (0, R, 0) dont la matrice de covariance R. est Toeplitz. Nous pouvons donc simuler une
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série temporelle Z de matrice de covariance R grace a ’équation Z = RY2X o X est un vecteur aléatoire gaussien
complexe standard. Nous utilisons cette propriété pour simuler des séries temporelles unidimensionnelles dans le chapitre
6. Nous simulons 200 séries temporelles de matrice de covariance Toeplitz Ry et 200 séries temporelles de matrice de
covariance Toeplitz R;. Puis nous séparerons chacun de ses deux jeux de données en deux : 100 séries temporelles
sont utilisées comme jeu de données d’entrainement et 100 séries temporelles sont utilisées comme jeu de données de
test. Nous présentons plusieurs espaces de représentation des séries temporelles unidimensionnelles a valeurs complexes
suivant un modele autorégressif gaussien stationnaire centré. Dans chacun de ces espaces de représentation, nous util-
isons d’abord I’algorithme de la Tangent PCA 10 pour visualiser les jeux de données simulés. Ensuite, nous utilisons
I’algorithme supervisé du nearest centroid classifier présenté dans la section 5.3.3 pour classifier les séries temporelles
simulées. Enfin, nous visualisons la Tangente PCA du résultat de la classification obtenue et la matrice de confusion
correspondante.

III.6 Résumé du chapitre 7 : Application a la classification de séries temporelles multidimen-
sionnelles simulées suivant un modele autorégressif gaussien stationnaire centré

Dans le chapitre 7, nous appliquons certains algorithmes de machine learning présentés dans le chapitre 5 a la classifi-
cation de séries temporelles multidimensionnelles simulées. Les séries temporelles simulées sont des séries temporelles
multidimensionnelles a valeurs complexes qui suivent un modele autorégressif gaussien stationnaire centré. Comme vu
dans la section 2.2 du chapitre 2, ces séries temporelles peuvent étre considérées comme des réalisations de lois circulaires
symétriques centrées CN (0, R, 0) dont la matrice de covariance R est Toeplitz par blocs. Nous pouvons donc simuler
une série temporelle Z de matrice de covariance R grice a I’équation Z = RY2X ou X est un vecteur aléatoire gaussien
complexe standard. Nous utilisons cette propriété ainsi que 1’expression du modele autorégressif associé pour simuler
des séries temporelles multidimensionnelles a valeurs complexes. Nous simulons 200 séries temporelles de matrice de
covariance Toeplitz par blocs R et 200 séries temporelles de matrice de covariance Toeplitz par blocs R;. Puis nous
séparons chacun de ces deux jeux de données en deux : 100 séries temporelles sont utilisées comme jeu de données
d’entrainement et 100 séries temporelles sont utilisées comme jeu de données de test. Nous présentons plusieurs espaces
de représentation des séries temporelles multidimensionnelles a valeurs complexes qui suivent un modele autorégressif
gaussien stationnaire centré. Dans chacun de ces espaces de représentation, nous commengons par utiliser 1’algorithme de
la Tangent PCA 10 pour visualiser les jeux de données simulés. Ensuite, nous utilisons 1’algorithme supervisé du nearest
centroid classifier présenté dans la section 5.3.3 pour classifier ces données. Enfin, nous visualisons la Tangente PCA du
résultat de la classification obtenue et la matrice de confusion correspondante.

III.7 Résumé du chapitre 8 : Application au clustering de fouillis radar

Dans le chapitre 8, nous présentons une application de la méthode de classification des séries temporelles suivant un
modele autorégressif gaussien stationnaire centré présentée dans cette theése au clustering de séries temporelles radar. Les
données radar étudiées viennent d’un radar Thales situé a Saint-Mandrier sur la cote méditerranéenne francaise et orienté
vers la mer. Pour obtenir des informations sur son environnement, le radar étudié€ envoie des ondes électromagnétiques qui
vont se réfléchir sur I’environnement puis étre enregistrées par le radar. Il est possible de distinguer différentes directions
de provenance des échos, nous nous concentrons ici sur le faisceau d’élévation nulle. Dans un méme secteur angulaire
de quelques degrés, le radar Thales étudié envoie une rafale, c’est a dire une série d’une dizaine d’impulsions identiques.
Entre chaque impulsion il y a une phase d’écoute pendant laquelle les réflexions des ondes émises sont enregistrées. Lors
de la phase d’écoute, le début du signal enregistré correspond a la réflexion du signal émis sur les éléments les plus
proches du radar et la fin du signal enregistré correspond aux éléments les plus éloignés du radar. Chaque phase d’écoute
est ensuite subdivisée temporellement et nous appelons case distance la zone spatiale observée par le radar lors d’une
subdivision. A chaque case distance est associé un nombre complexe. Le module de ce nombre complexe représente le
module du signal enregistré dans la subdivision temporelle associée a la case distance étudiée. La phase de ce nombre
complexe représente la différence de phase entre le signal émis et le signal enregistré. Ce nombre complexe est obtenu
grice a une opération de convolution entre le signal émis et le signal enregistré, cette opération est nommée compression
d’impulsion. Lors de chaque rafale, nous représentons les informations associées au secteur angulaire observé sous la
forme d’une matrice U. Chaque ligne de la matrice U représente une méme case distance et chaque colonne représente
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une méme impulsion. Nous noterons :

| uop Uy ... U1 |
’ U1,0 Ui,1 Ul n—1 ‘

U= (11D
’ uUN—-1,0 UN-—-1,1 --- UN—-1n—1 ‘

ou IV représente le nombre de cases distance (environ 900) et n représente le nombre d’impulsions (environ 10).
Concernant le radar Thales étudié, les cases distances les plus proches du radar sont situées a environ 5 kilometres du
radar, les cases distances les plus éloignées sont situées a environ 60 kilometres, chaque case distance ayant une longueur
radiale de 60 metres. Lors de I’étude du secteur angulaire suivant (le radar tourne dans le sens horaire), le radar envoie
une nouvelle rafale dans la direction correspondante. L’information radar associée a ce nouveau secteur angulaire sera
représentée par une nouvelle matrice. Le nombre d’impulsions d’une rafale et la durée d’écoute entre deux impulsions
peut varier d’une rafale a une autre, deux rafales différentes seront donc associées a des matrices de tailles différentes en
général. Nous cherchons maintenant a effectuer le clustering des cases distances autour du radar en fonction de la nature de
I’environnement associé. Dans le langage radar, nous appelons cibles les objets d’intérét premier tels les avions, les drones,
les missiles, les navires... Nous appelons fouillis radars les signaux li€s a I’environnement tels les vagues, les champs, les
foréts, les zones urbaines, la pluie, la gréle... Nous supposons dans notre étude que la grande majorité des cases distances
a classifier correspondent a du fouillis radar (et non a des cibles). Nous supposons que les séries temporelles a valeurs
complexes associées au fouillis radar suivent un modele autorégressif gaussien stationnaire centré. Nous avons vu dans
le chapitre 2 que ces séries temporelles peuvent étre représentées par les coefficients (po, g1, - . , fin—1) € R% x D71,
La valeur de ces coefficients est alors associée a la nature du fouillis : le coefficient py représente I’intensité de la série
temporelle enregistrée et les coefficients (1, .. ., tn—1) représentent la structure Doppler de la série temporelle. Nous
choisissons d’effectuer le clustering des cases distances uniquement a partir des coefficients (p1, . . ., t,—1) représentant
I’information Doppler. Pour chaque case distance, nous estimons ces coefficients grace a 1’algorithme de Burg présenté
en détails dans I’appendice C. Nous utiliserons ensuite 1’algorithme du k-means 12 pour effectuer le clustering des cases
distances étudiées, chaque case distance étant représentée par les coefficients (u1, . - ., fin, 1) appartenant a I’espace D" !
muni de la métrique décrit dans la section 4.1.3 en omettant le terme de puissance py. Pour cette étude, nous choisissons
n = 8, ce qui correspond au nombre d’impulsions de la rafale la plus courte. Nous allons visualiser le résultat du clustering
dans le produit de disques unité complexes D™~ et nous allons visualiser le résultat spatial du clustering sur une carte de
terrain pour interpréter les résultats obtenus.

III.8 Résumé du chapitre 9 : Application a la classification de données audio stéréo

Enfin, dans le chapitre 9 nous utilisons plusieurs algorithmes de machine learning présentés dans le chapitre 5 pour
visualiser et effectuer la classification supervisée de données audio stéréo. Les données classifiées correspondent a des
bandes sonores de sons stationnaires téléchargées sur YouTube. Nous avons téléchargés trois types de sons stationnaires
: des bruits de feux de bois, des bruits de cascades et des bruits de vents. Parmi les autres bruits stationnaires, il y a la
mer lorsque le bruit des vagues est constant, la pluie intense, les douches, les ventilations, les seches cheveux, les seches
linges, les climatisations, les bruits de moteurs en régime continu, le gaz qui s’échappe d’une gaziniere... Chacun des
trois jeux de données téléchargés (feux, cascades, vents) est ensuite divisé en un jeu de données d’entralnement et un jeu
de données de test. Notre objectif est maintenant de classifier ces données. Une bande son stéréo est caractérisée par
un scalaire qui représente la fréquence d’échantillonnage (48000 Hz ici) et une matrice réelle dont le nombre de lignes
est égale au nombre de secondes d’enregistrement multiplié par la fréquence d’échantillonnage. Cette matrice a deux
colonnes ce qui correspond au nombre de canaux d’enregistrement. Toutes les bandes sons téléchargées doivent avoir
une méme fréquence d’échantillonnage, nous vérifions également que les deux canaux d’enregistrement sont différents
(sinon il s’agit d’un enregistrement mono). Nous supposons que les séries temporelles audio bidimensionnelles a valeurs
réelles a classifier suivent un modele autorégressif gaussien stationnaire centré. Nous nous placons ainsi dans le cadre
des séries temporelles multidimensionnelles suivant un modele autorégressif gaussien stationnaire centré présenté dans
la section 2.2. Pour chaque enregistrement audio stéréo, nous estimons les coefficients (R, M, . .., M,,_1) appartenant
a I’espace H" x SDXF1 grice a I’algorithme 5. Ici la dimension de la série temporelle est N = 2, nous choisissons
n = 4 pour le nombre de coefficients ce qui correspond a un modele autorégressif d’ordre trois. Nous munissons 1’espace
Hi xS D’]if_l de la métrique décrite dans la section 4.2.3. Nous remarquons que lorsque les séries temporelles d’entrée
sont 2 valeurs réelles, les coefficients (Rg, My, ..., M,_1) estimés par 1’algorithme 5 sont également des réels. Nous
pouvons remarquer que tout les outils géométriques de la section 4.2.3 ne font intervenir que des éléments réels lorsque
les matrices en entrée sont réelles : la sous-variété de H;™ x SD'% ! constituée de produits de matrices réelles est donc



une sous-variété totalement géodésique de Hi " x SDT;fl. Les outils géométriques présentés dans la section 4.2.3 sont
donc parfaitement adaptés au cas particulier des produits de matrices réelles de la variété H " x SDﬁfl. Les résultats de
classification de notre méthode sur le jeu de données audio constitué a partir de vidéos YouTube sont présentés dans la
section 9.2 en utilisant I’algorithme du nearest centroid classifier présenté dans la section 5.3.

IV Principales contributions

Nous résumons dans cette section les contributions techniques apportées par cette these.

IV.1 Coefficients de réflexion théoriques des processus stochastiques continus stationnaires
ayant un spectre de forme gaussienne

Dans I’appendice B, la fonction d’autocorrélation R d’un processus stochastique continu f a valeurs complexes est
définie par :

+o0
Ry(r) = jf(tmf*(t)dt. (12)

Cette définition est liée a la définition des coefficients d’autocorrélation d’un processus stochastique discret station-
naire u donnée dans la section 2.1.2 :

rp =71 (k) = E[u(n)u*(n — k)] = E[u(n + k)u*(n)] VkeZ. (13)

Ces deux définitions sont liées par la relation :

ry = Ry(kT). (14)

Pour simplifier les notations, nous normalisons 1’échelle temporelle et considérons la période d’échantillonnage 7" = 1
dans cette these.
La fonction d’autocorrélation Ry du processus stochastique continu stationnaire f a une transformée de Fourier ap-
pelée densité spectrale de puissance :
+o0

Sp(&) = J Ry(r)e ™7 dr. (15)

—0

La fonction d’autocorrélation Ry (7) est donc la transformée de Fourier inverse de la densité spectrale de puissance Sy (&)

+00
Ry(7) = f Sp(&)et?mETde. (16)

Nous prouvons dans 1’appendice B que le processus stochastique continu a valeurs complexes stationnaire f dont

la densité spectrale de puissance Sy a la forme d’une distribution gaussienne de moyenne m et de variance o2 avec un

coefficient de puissance P, i.e.:

Si(€) =P e e (17)
a les coefficients d’autocorrélation théoriques suivants :
re = Ry(k) = Pel?™mhe 2w 0"k yp 5 (18)

Ces coefficients peuvent étre obtenus en utilisant la transformée de Fourier inverse donnée dans 1’équation (16). Grace
a D’algorithme de Levinson 13, nous pouvons alors calculer explicitement I’expression des coefficients de réflexion
(41, - - -, pin ) & partir des coefficients d’autocorrélation (rg, 71, ..., 7,). Nous obtenons :

e = (71)k6i2wmk672ﬂ—202k vk > 1. (19)

Remarquons que dans ce cas particulier, nous avons y;, = 1§. Nous remarquons également que I’argument du coefficient
11, dépend seulement de la moyenne m et que son module dépend seulement de la variance o°2.
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IV.2 Les outils géométriques de la variété de Siegel

Nous montrons dans la section 2.2.8 que les séries temporelles multidimensionnelles a valeurs complexes qui suivent un
modele autorégressif gaussien stationnaire centré peuvent étre représentées dans I’espace ’HX, X SD’]([_1 ol ’HX, représente
I’ensemble des matrices hermitiennes définies positives et SD représente le disque de Siegel défini par I’ensemble des
matrices complexes dont les valeurs singuliéres sont strictement inférieures a 1 :

SDy ={MeCNV*N |1 - MM" >0}. (20)

Dans la section 3.2.3 du chapitre 3, nous munissons 1’espace ”Hj(, X SDR[_l d’une métrique produit inspirée de la

géométrie de I’information. Nous notons HE+ X SD’}\,_1 la variété riemannienne produit obtenue et dsa++st’H sa
N N

métrique qui a pour expression :

2 —1 —1
dSH;erSD’;,’l =ntrace (Py ' dPy Py " dP) 2D

n—1
+ 3 (=) trace (1= 20f") " de (1 - 0ff Q) aoff).
=1

Nous notons H}," la variété riemannienne construite en munissant ’espace H 3, de la métrique :

dsfw = trace (Py ' dPy Py ' dP) . (22)
Nous notons SD v la variété obtenue en munissant ’espace SD n de la métrique :
dsdp,, = trace (1= QQf") " de (1 - 0ff Q) aof"). (23)
Nous avons alors :
n—1
ds?—ij(ﬁxSqu,‘l :7”Lds|2_|jvr + 2 (n—1)dsp, . (24)

=1

Pour étudier les outils géométriques de la variété riemannienne produit H}" x SD§(,_1, nous commencons donc par
étudier les variétés H}" et SD . La variété riemannienne HY, " est une variété déja connue dont nous rappelons certains
outils géométriques dans la section 4.2.1. Cependant, les outils géométriques de la variété de Siegel SD  sont moins bien
connus. Dans I’article de Ben Jeuris et Raf Vandebril [45], I’application distance et I’expression du produit scalaire sont
donnés. Le carré de la distance entre deux points 2, ¥ € SDy a pour valeur :

1 I+C'?
2 2
dSDN (Q, qj) :Z trace <10g (I-CM)) (25)
= trace (arctanh2 (01/2)) (26)
avec C = (¥ — Q) (I — QHW) ™" (W7 — Q) (1 — QuH) ™",
L’expression du produit scalaire est, YQ € SDy, Vv, w € CV*V:
1 H\~1 Ho\ "L, H
(v, wyq =3 trace ((I Q0" v (I-0"Q) w ) (27)

+%trace ((I— QQH)flw (I—QHQ)AUH) .

D’apres I’article de Ben Jeuris et Raf Vandebril [45], I’application suivante :

Do (V) = (1— ") P (w—q)(1-fw) " (1-00)"

est dit étre une isométrie sur la variété de Siegel. Nous prouvons cette propriété dans 1’appendice E. Nous prouvons
également que la différentielle de I’isométrie ® a I’expression suivante :

(28)

1/2

Do (V) [h] = (I — M) (1—wa!) ™ h(1-fw) ™! (I-0fQ) (29)

Nous prouvons que I’inverse de la fonction ¢ décrite dans 1’équation (28) a la propriété suivante :

Ot (W) =D_q (V). (30)
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Cette propriété de I’isométrie ® est simplement mentionnée (sans preuve) dans I’article de Ben Jeuris et Raf Vandebril
[45].

La contribution théorique majeure de cette these est I’expression explicite de 1’application logarithme riemannien, de
I’application exponentielle riemannienne et de la courbure sectionnelle de la variété de Siegel.

L’ application logarithme riemannien a pour expression :

/2 1/2

logg, () = (I — Q)" v (I -QfQ) 31
’ ’ ’ 7 1/2
V' = arctanh (X) X0’ ou X = (\IJ u'H
v = (1-00") P (w-q)(1-fw) (1- i)
L’ application exponentielle riemannienne a pour expression :
HN—1/2 (7 o\t oy 1/2
expq (V) = (- 7)™ (v + Q) (1+07e)  (1-07Q) (32)
’ ’ ’ ’ 1/2
U = tanh (V)Y 'V ouy = (V'V H)
V' = (1-00m) Py (1-atio)?
La courbure sectionnelle en zéro du plan o défini par les matrices orthonormées F; et E5 a 1’expression suivante :
1 2 2
K(0) = 3 (HElEf—EgEfIH + | BN E, - EYE| ) (33)

La valeur de la courbure sectionnelle en un point quelconque peut ensuite étre obtenue en utilisant I’'isométrie ¢
décrite dans I’équation (28).

Pour plus de détails, les outils géométriques de I’espace de Siegel présentés dans cette these sont résumés dans la
section 4.2.2. L’appendice E est consacré a 1’étude du disque de Siegel et a la démonstration des outils mathématiques
nouveaux apportés dans cette these.

La connaissance des applications logarithmes et exponentielles riemanniens de la variété SD nous permet de con-
struire les applications logarithmes et exponentielles riemanniens de la variété riemannienne produit H3" x SD}I\fl, ce
que nous faisons dans la section 4.2.3. La connaissance de ces applications nous permet en autres d’utiliser les algorithmes
du chapitre 5 faisant intervenir un calcul de moyenne lors de la classification de séries temporelles multidimensionnelles
stationnaires représentées dans H; ™ x SD’; '

IV.3 Triangles rectangles infinitésimaux et courbure sectionnelle dans les variétés riemanni-
ennes

Dans la section D.4, nous prouvons la relation suivante entre la longueur de I’hypoténuse d’un triangle rectangle infinitési-
mal et sa courbure sectionnelle:

Theorem 1. Soit U un ouvert convexe relativement compact d’une variété Riemannienne complete M. Il existe une
constante Cy > 0 telle que pour tout triangle OAB de U rectangle en 0, nous ayons [’inégalité suivante:

d*(A,B) —d*(0,A) —d* (O, B) + %K (0)d? (0, A)d? (0, B)| < Cy (d (0, A) + d (0, B)). (34)

Dans les travaux de Andrei A. Agrachev, Davide Barilari et Luca Rizzi [4], ce théoréme est énoncé dans le cas
particulier ol le point O est fixé et les directions des points A et B en partant de O sont fixées. Le résultat énoncé dans
leurs travaux est dit étre dii & Loeper et Villani. Le théoreme 1 étudié ici est énoncé et prouvé indépendamment de ces
précédents travaux, dans un cadre plus général.

IV4 Classification de séries temporelles audio stationnaires dans H)," x SD’"!

Nous appliquons le modele multidimensionnel a la classification de séries temporelles audio stéréo stationnaires dans le
chapitre 9. A notre connaissance, c’est la premiere fois que la variété H]J(,+ X SDX,_1 est utilisée pour classifier des séries
temporelles audio stéréo stationnaires.
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IV.5 Le modéle spatio-temporel radar

Dans I’appendice G et dans ’article [83], nous proposons un modele spatio-temporel pour représenter le fouillis radar.
Dans ce modele, nous supposons que les séries temporelles enregistrées par le radar pendant une rafale sont des séries
temporelles stationnaires au sens large sur I’axe temporel comme sur 1’axe spatial, 1’axe spatial considéré étant 1’axe
radial.

En effet, nous supposons que la matrice d’observation Z du faisceau d’élévation nulle enregistrée pendant une rafale
pour un groupe de cases distance consécutives a la corrélation spatio-temporelle suivante:

Z = py*RY>NRI? (35)

avee |

e Z: la matrice des observations radar de dimension (p, n), ol p correspond au nombre de cases distance et n
correspond au nombre d’impulsions émises pendant la rafale.

* po: un nombre réel strictement positif qui correspond a 1’espérance de la puissance quadratique, i.e. pg = E [|z7 Ry |2]
pour tout (4, j) € [1,p] x [1,n].

* R,: lamatrice de corrélation spatiale normalisée de dimension (p, p). C’est une matrice Toeplitz hermitienne définie
positive puisque le signal est supposé étre stationnaire au sens large sur 1’axe spatial. Elle est dite normalisée dans
le sens ou ses coefficients diagonaux sont égaux a 1.

* R,;: la matrice de corrélation temporelle normalisée de dimension (n, n). C’est une matrice Toeplitz hermitienne
définie positive puisque le signal est supposé étre stationnaire au sens large sur 1’axe temporel.

e N: matrice de dimension (p, n) dont les coefficients sont des variables aléatoires Gaussiennes complexes centrées
réduites indépendantes.

Ce modele ressemble au modele présenté par Romain Couillet et al. [24], sauf pour la structure de la matrice de
covariance spatiale R qui est seulement supposée Toeplitz ici.
Nous présentons également un modele vectoriel équivalent :

7 = pi?RY’N (36)

ol Z est la vectorisation de la matrice Z et N est la vectorisation de la matrice N. La matrice de corrélation spatio-
temporelle normalisée R, est alors le produit de Kronecker de la matrice de corrélation spatiale normalisée R, et de la
matrice de corrélation temporelle normalisée R; :

R = Rs @ Ry. (37

En utilisant la structure spécifique de la matrice de covariance poRs:, nous construisons ensuite une variété rieman-
nienne inspirée de la géométrie de 1’information pour représenter les informations contenues dans un groupe de cases
distance spatialement proches.

IV.6 Codes open source Python sur geomstats

Certains des codes utilisés dans cette these sont mis en ligne dans le package public geomstats [52]. Geomstats est
un package Python de machine learning dans les variétés riemanniennes. Ce package met a disposition des variétés
riemanniennes et des algorithmes de machine learning adaptés a des variétés riemanniennes. Cette librairie donne un
cadre pour que chacun des algorithmes de machine learning mis a disposition soit compatible avec chacune des variétés
riemanniennes proposées. Un utilisateur travaillant sur une variété riemannienne différente de celles disponibles sur
geomstats pourra tout de méme utiliser tous les algorithmes de machine learning présents sur geomstats a condition de
définir la variété utilisée en respectant les conventions de geomstats. Dans cette thése, nous avons utilisé les algorithmes
de machine learning disponibles sur geomstats pour classifier des séries temporelles stationnaires unidimensionnelles
dans la variété R** x D! et des séries temporelles stationnaires multidimensionnelles dans la variété H{;™ x SDy .
Le produit de disques de Poincaré D" ~! utilisé dans le chapitre 8 au clustering de fouillis radar a été mis en ligne sur
la librairie geomstats pendant ce travail de these. L’algorithme de clustering de la classification ascendante hiérarchique
présenté dans la section 5.4.1, I’algorithme de classification supervisée des k plus proches voisins présenté dans la section
5.3.1 et’algorithme de classification supervisée nommé Kernel Density Estimation Classifier ainsi que plusieurs fonctions
noyaux usuelles présentés dans la section 5.3.2 ont également été mis en ligne sur geomstats pendant ce travail de these.
A terme, nous souhaiterions que la plupart des codes Python implémentés pour ce travail de theése soient mis en ligne sur
geomstats.
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V Perspectives

Dans cette section, nous suggérons deux possibilités de futurs développements de cette these. La premiere possibilité con-
cerne la classification supervisée de fouillis radar dans la variété riemannienne R*+ x D"~! dont les outils géométriques
sont présentés dans la section 4.1.3. La seconde, plus théorique, concerne la possibilité de retrouver les formules de la
variété de Siegel présentées dans la section 4.2.2 et dans 1’appendice E en considérant la variété de Siegel comme une
variété riemannienne homogene.

V.1 Classification supervisée de fouillis radar

Les données radar utilisées dans cette these ont été fournies sans labels. Dans le chapitre 8, nous effectuons la classification
non-supervisée de fouillis radar. Afin d’effectuer la classification supervisée de données radar, nous les avons labellisées
en utilisant la base de données Corine Land Cover. Il s’agit d’une base de données publique du gouvernement francais qui
partitionne le territoire frangais en polygones, chaque polygone étant associé a un label de terrain. Nous avons utilisé les
labels suivants : surfaces artificielles, zones agricoles, zones forestieres et semi-naturelles, marécages et enfin plans d’eau.
Chacun de ces labels est divisé en sous-catégories que nous n’avons pas utilisées. Nous avons retrouvé le label de terrain
de chaque case distance étudiée a partir de sa position GPS. Cependant, les performances de classification obtenues en
utilisant ces labels n’étaient pas satisfaisantes. La méthode de classification proposée dans cette these classifie les cases
distances a partir de I’information Doppler, or il semble que 1’information Doppler ne permette pas de retrouver avec
précision les labels de terrain. Cela est mis en évidence par les résultats du clustering de fouillis radar présentés dans la
section 8.4 ot I’on voit que les clusters ne sont pas liés aux labels de terrain : ils sont liés aux coefficients de réflexion
et donc a I'information Doppler. L’information Doppler dépend beaucoup de la position du radar par rapport a la case
distance étudiée. Pour la classification supervisée de fouillis radar, nous suggérons donc d’utiliser des labels se référant a
I’information Doppler plutot qu’au type de terrain.

V.2 L’étude de la variété de Siegel SDy comme variété Riemannienne homogene

Une variété riemannienne M est dite homogene s’il existe un groupe de Lie G qui agit transitivement et de maniere lisse
par isométries sur M. Une variété homogene M peut alors étre vue comme le quotient d’un groupe de Lie G d’isométries
par un sous-groupe K ou K est le sous-groupe des isométries de G qui fixe un certain point m € M.

La contribution théorique majeure de cette these concerne 1’étude des outils géométriques de la variété de Siegel SD
présentée dans la section 4.2.2 et dans I’appendice E. D’apres les travaux de Salem Said et al. [70,71], la variété de Siegel
possede une structure de variété homogene qui n’a pas été exploitée ici. Nous pourrions donc essayer de retrouver les
formules géométriques de la variété de Siegel présentées dans cette these en exploitant sa structure de variété homogene.

En dimension N = 1, la variété de Siegel SD correspond au disque de Poincaré D qui peut étre considéré comme le
quotient suivant [62] :

avece .

SU(1,1)={ga,ﬁ= ( % g )70‘|2—6|2:1}
0
—10

U(1)_{(€;0 i ),QGR}

En effet, le groupe de Lie SU(1, 1) agit transitivement sur D par isométries :
SU(1,1) xD—D
a f az+
7 = |HE|= =z
g a Bz +a
et les éléments de U (1) fixent le point 0.

La structure quotient du disque de Poincaré a notamment été exploitée dans les travaux de Pierre-Yves Lagrave pour
construire des réseaux de neurones équivariants [601-63].
Le disque de Poincaré D peut également €tre considéré comme le quotient suivant :

U(1,1)

D= T < v
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avece

U(l,l)z{geMg(C),ngHzPoth (é _01 )}

Ici, .H désigne I’opérateur de transconjugaison d’une matrice complexe, I’opérateur .* désigne la conjugaison com-
plexe et .7 désigne la transposition matricielle.

Plus généralement, la variété de Siegel SD de dimension N quelconque est également une variété homogene. La
variété de Siegel peut en effet &tre considérée comme le quotient suivant :

U(N,N)

SOy = T <o)

ol U(N) est le groupe unitaire de dimension N :

UN)={Ue My (C),UU" =1y}.

Plus précisément, si I’on pose P et S les matrices suivantes :

([ Iy Oy ( on Iy
(o ) s 8

U(N,N) = {g— ( fcl g ),ngH—P}

nous avons alors [71] :

et

U(N)x U(N) = {k= ( g 3 ),(U,V)eU(N)Q}.

Les groupes U(N, N) et U(N) x U(N) agissent sur la variété de Siegel SDy par transformations fractionnaires
matricielles :

U(N,N) x SDy — SDy
(( é g )9) — (AQ+ B) (CQ2+ D)™ ".

Par ailleurs, notons que nous distinguons ici la variété de Siegel SD  de la variété de Siegel symétrique (restreinte aux
matrices symétriques, voir section E.6). La variété de Siegel symétrique peut étre considérée comme le quotient %
ol Sp (2N, R) est le groupe symplectique réel [70]. Plus précisément, nous avons [71] :

Sp(2N,R) = {g= < é g >79P9H = PetgSg” =S}

et

U(N)—{k— (g (})* >7UUH—IN}.

Les algebres de Lie des groupes de Lie mentionnés dans cette section sont décrites dans [71].
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Chapter 1

Introduction

The content of this introduction chapter have been previously written in French in the "Résumé général". In this thesis,
we present a method to classify complex valued stationary centered Gaussian autoregressive time series. Our initial
motivation comes from radar signal processing and especially radar clutter classification, which we detail in Section
1.1. This issue has already been addressed in previous works, in particular by Frédéric Barbaresco [9, 12,34,37,38], Le
Yang [6, 82], Alice Le Brigant [15] and Alexis Decurninge [3,26]. We present the various articles and thesis manuscripts
that were used as support for this dissertation in Section 1.2. We summarize each chapter of this dissertation in Section 1.3.
In Section 1.4, we focus on the main contributions of this thesis. We propose a few perspectives for future developments
of this thesis in Section 1.5.
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1.1 Radar motivations

The initial motivation for studying complex valued stationary centered Gaussian autoregressive time series comes from
radar signal processing, in particular the study of radar clutter. In radar semantics, we distinguish between moving objects
of primary interest which we call targets and information related to the radar environment which we call clutter. Radar
clutter is therefore the information recorded by a radar related to seas, forests, fields, cities and other environmental
elements that surround the radar. In order to better distinguish targets from clutter, it may be interesting to develop



machine learning algorithms to recognize different types of clutter. Knowledge of radar clutter is used in Appendix F to
obtain a constant false alarm rate (CFAR) detection estimator.

To study the characteristics of the complex valued time series associated with radar clutter, it is common to assume
that they are stationary centered autoregressive Gaussian time series [13]. The assumption of stationarity of the time
series is here justified by extremely short observation times of the same zone of the environment. The laws of these time
series are represented in Riemannian manifolds in the works of Le Yang [0, 82] and Alice Le Brigant [15]. We use this
representation model and apply it to radar clutter clustering in Chapter 8.

In order to refine the study of the characteristics of radar clutter, we wanted to add spatial information to the temporal
information contained in each time series by studying the correlation between time series recorded in spatially close cells.
For this, we have developed a spatio-temporal model which is studied in Appendix G. In order to provide the space of the
coefficients of this spatio-temporal model with a Riemannian metric, we study the more general case of multidimensional
stationary time series which thus becomes the main object of study of this thesis.

1.2 Related work

The study of one-dimensional stationary radar time series was carried out by Frédéric Barbaresco in [8—12,39]. In these
works, the stationary radar time series are represented in the product space R* x D"~! where D represents the complex
unit disk. This space is endowed with a Riemannian metric inspired by information geometry. The space R is used to
represent the mean quadratic power of the studied time series. The product space D"~ ! represents the coefficients of the
autoregressive model, it therefore represents the Doppler information contained in the time series.

The Burg algorithm is used to estimate the coefficients of the autoregressive model from a recorded time series. This
algorithm is presented in the works of Frédéric Barbaresco and Alexis Decurninge [3,26].

The Riemannian metric constructed on the space R% x DL s presented by Frédéric Barbaresco in [37], [41],
[35], [34], [33] and related works [23], [53], [29]. This metric is also detailed in the thesis work of Le Yang [0, 82]
and in the thesis work of Alice Le Brigant [15]. We refer to Shun-ichi Amari’s book [73] for a full presentation of the
information geometry tools used to construct this metric. We denote R*+ x D"~! the Riemannian manifold presented
in these works: the manifold R*™ x D"~! corresponds to the space R* x D"~! endowed with a Riemannian metric
inspired by information geometry. This Riemannian metric is presented in Section 4.1.3. The computation of the mean
and median in this manifold is used to detect radar targets in the work of Le Yang [0, 82]. The study of the curves of the
manifold RT+ x D"~ ! is applied to the recognition of radar targets in the work of Alice Le Brigant [15]. In the thesis work
presented here, the manifold R*+ x D" ~! will be used for radar clutter clustering and more generally to the classification
of complex stationary centered Gaussian autoregressive time series.

One of the motivation of this thesis is the study of complex multidimensional stationary autoregressive centered
Gaussian time series. As in the case of one-dimensional time series, it is possible to represent multidimensional time
series by the coefficients of the autoregressive model. In the case of multidimensional time series, these autoregressive
coefficients are square matrices. In the article written by Ben Jeuris and Raf Vandebril [45], the matrix coefficients of the
autoregressive model are slightly modified to belong to the Siegel disk SD y (set of complex matrices N x N of singular
values strictly less than 1). The multidimensional stationary time series will then be represented in the space H i xS D"J\f1 ,
where H3; is the space of Hermitian Positive Definite (HPD) matrices. This space will be endowed with a Riemannian
product metric, the construction of which is detailed in the article written by Ben Jeuris and Raf Vandebril [45]. The
product metric on the space 1}, x SD'% ! induces a Riemannian metric on the spaces 3 and SD . The metric of the
Siegel disk SD have been studied by Frédéric Barbaresco in [38], [36] and the related work [46]. To our knowledge,
the Riemannian logarithm map, the Riemannian exponential map and the sectional curvature of the Riemannian manifold
defined on the Siegel space SD were not known, these are contributions of this thesis which have been summarized in
one of our previous articles [21]. These geometric tools are essential for the use of certain machine learning algorithms,
in particular algorithms involving a computation of the mean as the k-means algorithm.

1.3 Main dissertation issues

This thesis aims to provide the reader with the vast majority of methodological and technical tools that we will use for
the classification of stationary centered complex autoregressive Gaussian time series. Among the tools presented in this
thesis, some were already known and some are new, we detail the new elements in Section 1.4. The structure of this thesis
is linked to the methodology used. In Chapter 2 we present several representation spaces of the studied time series. In
Chapter 3, we endow these spaces with a Riemannian metric inspired by information geometry. In Chapter 4, we detail
the metric of the Riemannian manifolds obtained. In Chapter 5, we present machine learning algorithms adapted to the
Riemannian manifold structure. In Chapters 6, 7, 8 et 9 we use some machine learning algorithms presented in Chapter 5
on the Riemannian manifolds presented in detail in Chapter 4 to classify stationary time series. We now detail the content
of each chapter.



1.3.1 Summary of Chapter 2: Stationary centered complex Gaussian autoregressive time se-
ries

In Chapter 2, we present different parametric models associated with the complex stationary centered Gaussian autore-
gressive discrete-time stochastic processes.

We denote n — 1 the order of the autoregressive stochastic processes presented in this section.

In the case of one-dimensional time series, this is written:

n—1
uk) + > al "t u(k — i) = w" (k) (1.1)
i=1

where a?_l are the prediction coefficients and the prediction errors w™ (k) are independent identically distributed
centered complex Gaussian processes of variance o2. Such a time series is therefore entirely parameterized by the coeffi-
cients of the autoregressive model (a?‘l, cey aZj) and by the coefficient 2. We define the autocorrelation coefficients
r; == E[u(k +4)u(k)*]. Equivalently, a time series can be represented by its variance 7 and the coefficients of the
autoregressive model (al, ..., aZj). The coefficients a! are called reflection coefficients and are denoted y;, they belong
to the complex unit disk D. Using this representation, the discrete-time stochastic process studied is therefore represented
by the coordinates (rq, 1, ..., fin—1) in the space R* x D™~!. It is also possible to represent the time series by the
autocorrelation coefficients (rg,71,...,7,—1). These coefficients fully determine the autocorrelation matrix R of the

discrete-time stochastic process which is a Toeplitz Hermitian Positive Definite (THPD) matrix:

* * *
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*®
R = 79 71 To R Y (12)
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We denote by Z a vector which follows a complex normal distribution. The distribution of Z is characterized by
its mean p := E[Z], its covariance matrix I' := E [Z zH ] and its relation matrix C' := E [Z ZT]. We then denote
by Z ~ CN (i, T, C) the complex Gaussian distribution with mean j, covariance matrix I' and relation matrix C. We
call circularly-symmetric central complex normal distribution a complex normal distribution with zero mean (u = 0) and
zero relation matrix (C' = 0). A circularly-symmetric central complex normal distribution is therefore characterized by its
covariance matrix I" which is Hermitian Positive Definite. When the complex time series is of length n, it is equivalent to
assume that the time series is a realization of stationary centered Gaussian autoregressive discrete-time stochastic process
and that the vector u = [u(0),u(1),...,u(n — 1)]7 is the realization of a circularly-symmetric central complex normal
distribution whose covariance matrix R is Toeplitz Hermitian Positive Definite.

The Burg algorithm 17 can be used to estimate the parameters (g, i1, - - -, tin—1) from observed time series. The
principle of the Burg agorithm is detailed in Appendix C.

In the case of multidimensional time series, the autoregressive model is characterized by the following equation:

n—1
Uk)+ >, AP Uk — j) = W(k) (1.3)

j=1
where W is the prediction error vector of size N of covariance matrix 3. The covariance matrix 3 and the prediction
coefficients A?il are square matrices of size N x N. This model can therefore be parameterized by the covariance

matrix > and the coefficients of the autoregressive model (A{V o A%j). We define the autocorrelation coefficients
R;:=E [U (k+9)U (k)H], where - denotes the complex matrix conjugate transpose. The time series studied can also

be represented by the autocorrelation coefficient Ry and the reflection coefficients (A%, e ,AZ:%). For two complex
matrices A and B, we denote by A > B when the matrix A — B is Hermitian Positive Definite. We show that the
reflection coefficients A? belong to the space Dy := {M € CN*N | Iy — MM > 0}, where M := JM*J where J
denotes the anti-diagonal matrix [45]. It is also possible to transform the reflection coefficients A} € D into coefficients
M; € 8Dy where SDy = {M € CN*N | Iy — MM* > 0} is called the Siegel disk. We can therefore represent the
multidimensional time series studied by the autocorrelation coefficient Ry and the coefficients (M, ..., M, _1) which
belong to the Siegel disk. Using this representation, the time series studied is therefore represented by the coordinates
(Ro, Mi,...,M,_1) in the space Hj; x SD’X,_l. It is also possible to represent the time series studied by the auto-
correlation coefficients (R, ..., R,—1). These coefficients caracterize the covariance matrix R of the vectorized data

U, =[U0)7,....,Un- 1)T]T. The covariance matrix of U, is the Block-Toeplitz Hermitian Positive Definite matrix
R defined by:



Ry R RE ... RH

n—1
Ry Ry RE ... RE,

R—| B2 R Ry ... RE,| (1.4)
R, 1 Ry2 R,3 ... Ro

When the complex multidimensional time series is of length n, it is equivalent to assume that the time series is a
realization of a stationary centered Gaussian autoregressive stochastic process and to assume that the vector U, is the
realization of a complex centered circularly-symmetric central complex normal distribution whose covariance matrix R
is Block-Toeplitz Hermitian Positive Definite. In Section 2.2.9 we present Algorithm 5 which can be used to estimate the
coefficients (Ro, M1,...,M,_1) € ”Hj(, X SDR,_l from observed multidimensional time series.

1.3.2 Summary of Chapter 3: Information Geometry Theory

In Chapter 3, we endow the representation spaces of the complex stationary centered Gaussian autoregressive time se-
ries with a Riemannian metric inspired by information geometry. The information geometry theory provides a theoret-
ical framework to endow spaces of parametric probability distributions with a Riemannian metric. As seen in Chapter
2, the studied time series can be considered as realizations of complex circularly-symmetric central complex normal
distributions: u ~ CN (0,R,0). In the one-dimensional case, the matrix R is Toeplitz Hermitian Positive Definite
(THPD). In the multidimensional case, the matrix R is Block-Toeplitz Hermitian Positive Definite (BTHPD). In the
more general case where the covariance matrix R is simply Hermitian Positive Definite, we can use the tools presented
in the book of Shun-Ichi Amari [73] to define the information geometry metric on circularly-symmetric central com-
plex normal distributions [15, 82]. This metric on Hermitian Positive Definite matrices H, is given by the element:
ds? = trace (P_ldPP_ldP). According to the study of the different representation spaces of complex stationary cen-
tered Gaussian autoregressive time series carried out in Chapter 2, the Toeplitz covariance matrix R of a unidimensional
stationary time series can be represented by the coefficients (po, jt1,. .., fin—1) € R X D!, Taking inspiration from
the construction of the information geometry metric on the space 1, we construct a Riemannian metric on the space
R* x D"~!. We denote by R™+ x D"~! the Riemannian manifold obtained. The constructed metric is a product metric
defined by:

dp2 n—1 d X 2
dS%JrJrXanl = ’I’Lp720 + (n - k') ‘/»117!2 (15)
= (1= 1uP?)
For multidimensional time series, the Block-Toeplitz covariance matrix R can be represented by the coefficients
(Ro, My,..., M, 1) € Hf x SD’*. We construct a metric on the space H}, x SD’y ' taking inspiration from the

construction of the information geometry metric on 7—[}. We denote by HJJ(,+ X SDRf1 the Riemannian manifold obtained.
The constructed metric is a product metric defined by:

2 -1 -1
dSH;erSD}Lgl =ntrace (Po dPy P, dPO) (1.6)

n—1
+ 3 (0= trace (1= 0f) " de (1 - 0ff Q) " aof).
=1

1.3.3 Summary of Chapter 4: Riemannian manifolds associated with complex valued station-
ary time series

In Chapter 4, we present some useful geometric tools of the Riemannian manifolds R** x D"~! and H{,* x SD7% !
obtained in Chapter 3. For these two manifolds, the geometric tools presented are: the expression of the element ds?, the
expression of the distance between two points, the scalar product, the norm, an isometry, the Riemannian logarithm map,
the Riemannian exponential map, the equation of the geodesics and the sectional curvature. To study these geometric
tools, we notice that these manifolds are product manifolds. Indeed, the metric of the Riemannian manifold R*+ x D1
can be written:

n—1

ds%++an,1 = nd5§+Jr + Z (n — k) ds? 1.7)
k=1
|dpe|?

. dpg 2
with ds2,, = 22 and ds? = .
R++ P D (1= 1l?)



We denote R™* the Riemannian manifold defined on the space R* by the metric ds§++. We call Poincaré disk and
denote D the manifold defined on the complex unit disk D by the metric ds. We start by studying in detail the manifolds
R** and D, then we use the relation defined by Equation (1.7) to deduce the geometric tools of the product manifold
Rt+ x DL

The metric of the Riemannian manifold HJJ(,+ X SDXfl can also be written as a product metric:

n—1
dS2H?\—I+><SDTI<I_1 = nds'%'?'f’ + Z (n—1)dsdp, (1.8)
=1
with

dsﬁ'++ = trace (Pof1 dP, P(fl dPo)
N

dsdp, = trace ((I — QIQFY1 dsy (I - QFQ;)f1 dQﬁ) .

We denote by HY,* the manifold defined on the space of Hermitian positive definite matrices 3, by the metric d52H++ .
N

We denote by SD the manifold defined on the Siegel space SDy by the metric ds%DN. We first study the manifolds
H}" and SDy, then we use the relation given by Equation (1.8) to deduce the geometric tools of the Riemannian manifold
HY " x SD '. The metric element dsgp, - the distance and the scalar product of the manifold SDy are given by Ben
Jeuris and Raf Vandebril [45]. To the authors’ knowledge, the explicit expression of the Riemannian logarithm map, of the
Riemannian exponential map and of the sectional curvature of the Siegel space were not known, their explicit expressions
is therefore a major contribution of this thesis.

1.3.4 Summary of Chapter 5: Machine Learning on Riemannian manifolds

In Chapter 5, we detail machine learning algorithms adapted to the structure of Riemannian manifolds. Most classic
machine learning algorithms implicitly consider the data to be classified to be Euclidean data. In a Euclidean space, it
is possible to add two elements, multiply an element by a scalar and to compute easily the mean ¢4, Of the elements
1 N . . .
(T1,.. .y TN) ¢ Tmean = 7 Qi1 Ti- The distance between two points a = (a1,...,a,) and b = (b1,...,b,) is

1

defined by: d(a,b) = (Z?Zl (b; — ai)2) /2. However, these operations (among others) are not defined in Riemannian
manifolds in general. For a machine learning algorithm to operate in a Riemannian manifold while respecting its structure,
it must therefore be based on operations which are defined in Riemannian manifolds. For the manifolds R+ x D!
and H" x SDKFI, the operations which rely on the geometric tools presented in Chapter 4 will be well defined. Some
classical Euclidean machine learning algorithms use the notion of distance as their only geometric tool to classify data.
To adapt these algorithms to data belonging to a non-Euclidean Riemannian manifold, it suffices to replace the Euclidean
distance by the expression of the distance in the Riemannian manifold. Among the supervised classification algorithms
using only the notion of distance, we present the k-nearest neighbors (k-NN) algorithm in Section 5.3.1 and the Kernel
Density Estimation Classifier algorithm in Section 5.3.2. Among the clustering algorithms using only the notion of
distance, we present the Hierarchical Agglomerative Clustering (HAC) algorithm in Section 5.4.1.

Other classical Euclidean machine learning algorithms use the notion of mean. To use these algorithms in a non-
Euclidean Riemannian manifold, we must define the notion of mean in a general Riemannian manifold. In Section 5.1.2,

we define the mean of the set of points (1, ..., zy) as the set of local minima of the function:
N
Hy(z) = > d*(x, ;). (1.9)
i=1

A Hadamard manifold is a Riemannian manifold that is complete, simply connected and has everywhere non-positive
sectional curvature. When the studied manifold is a Hadamard manifold, the function Hs(x) has a unique local minimum
which is also the global minimum [82], [6]. We show in Chapter 4 that the manifolds R*+ x D" ! and Hj{,‘L X SDTZ{fl are
Hadamard manifolds. To approximate the value of the mean in a Hadamard manifold, we can perform a gradient descent
on the function H». The gradient of this function has for expression:

N
Ga () = =2 ) log, (i) . (1.10)
1=1

The computation of the gradient therefore involves the Riemannian logarithm map. To move on the Riemannian
manifold in the direction of the opposite of the gradient, we then use the Riemannian exponential map. A mean approx-
imation algorithm using a gradient descent is detailed in Algorithm 8. There is also a stochastic method to approximate
the mean [6], this method is presented in Algorithm 9. In Chapter 5, we present two algorithms using a computation of



the mean to classify data: the supervised algorithm named Nearest Centroid Classifier presented in Section 5.3.3 and the
k-means clustering algorithm presented in Section 5.4.3. These two algorithms use three geometric tools: the distance,
the Riemannian logarithm map and the Riemannian exponential map. For each algorithm presented in Chapter 5, we will
specify the geometric tools on which it is based and the complexity of the algorithm with respect to the number of input
data.

1.3.5 Summary of Chapter 6: Application to simulated unidimensional stationary centered
Gaussian autoregressive time series classification

In Chapter 6, we use some machine learning algorithms presented in Chapter 5 to the classification of simulated one-
dimensional time series. The simulated time series are complex one-dimensional stationary centered Gaussian autore-
gressive time series. As seen in Section 2.1 of Chapter 2, these time series can be considered realizations of circularly-
symmetric central complex normal distributions CA (0, R, 0) whose covariance matrix R is Toeplitz. We can therefore
simulate a time series Z of covariance matrix R using the equation Z = R'/2X where X is a standard complex normal
random vector. We use this property to simulate one-dimensional time series in Chapter 6. We simulate 200 time series
using the Toeplitz Hermitian Positive Definite (THPD) matrix Ry and 200 time series using the THPD matrix R. Then
we split each of its two datasets into two: 100 time series are used as the training dataset and 100 time series are used
as the testing dataset. We present several representation spaces of complex one-dimensional stationary centered Gaussian
autoregressive time series. In each of these representation spaces, we first use the Tangent PCA algorithm 10 to visualize
the simulated datasets. Then, we use the supervised algorithm of the nearest centroid classifier presented in Section 5.3.3
to classify the dataset. We finally visualize the Tangent PCA of the classification result obtained and the corresponding
confusion matrix.

1.3.6 Summary of Chapter 7: Application to simulated multidimensional stationary centered
Gaussian autoregressive time series classification

In Chapter 7, we apply some machine learning algorithms presented in Chapter 5 to simulated multidimensional time
series classification. The simulated time series are multidimensional complex stationary centered Gaussian autoregressive
time series. As shown in Section 2.2 of Chapter 2, these time series can be considered as realizations of circularly-
symmetric central complex normal distributions CA (0, R,0) whose covariance matrix R is Block-Toeplitz. We can
therefore simulate a time series Z of covariance matrix R using the equation Z = RY2X where X is a standard complex
Gaussian random variable. We use this property as well as the expression of the associated autoregressive model to
simulate complex multidimensional time series. We simulate 200 time series using the same Block-Toeplitz covariance
matrix Rg and 200 time series using the Block-Toeplitz covariance matrix R;. Then we split each of these two datasets
into two: 100 time series are used as the training dataset and 100 time series are used as the testing dataset. We present
several representation spaces of complex multidimensional stationary centered Gaussian autoregressive time series. In
each of these representation spaces, we first use the Tangent PCA algorithm 10 to visualize the simulated datasets. We
then use the supervised nearest centroid classifier algorithm presented in Section 5.3.3 to classify this dataset. We finally
visualize the Tangent PCA of the classification result obtained and the corresponding confusion matrix.

1.3.7 Summary of Chapter 8: Application to radar clutter clustering

In Chapter 8, we present an application of the classification method of complex stationary centered Gaussian autoregres-
sive time series presented in this thesis to the clustering of radar time series. The radar data studied come from a Thales
radar located in Saint-Mandrier on the French Mediterranean coast and oriented towards the sea. To obtain information
on its environment, the studied radar sends electromagnetic waves which will be reflected on the environment and then be
recorded by the radar. It is possible to distinguish different directions of origin of the echoes, we focus here on the beam
of zero elevation. In the same angular sector of a few degrees, the Thales radar studied sends a burst which is a series of
about ten identical pulses. Between each pulse their is a listening phase during which the reflections of the emitted pulses
are recorded. During the listening phase, the beginning of the recorded signal corresponds to the reflection of the signal
emitted on elements close to the radar and the end of the recorded signal corresponds to elements far from the radar. Each
listening phase is then subdivided temporally and we call distance cell the spatial zone observed by the radar during a
subdivision. Each distance cell is associated with a complex number. The modulus of this complex number represents
the modulus of the signal recorded in the temporal subdivision corresponding to cell studied. The phase of this complex
number represents the difference of phase between the emitted signal and the recorded signal. This complex number
is obtained by making a convolution between the emitted signal and the recorded signal, this operation is called pulse
compression. During each burst, we represent the information associated with the observed angular sector in the form of
a matrix U. Each row of the matrix U represents the same distance cell and each column represents the same pulse. We
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where IV represents the number of distance cells (approximately 900) and n represents the number of pulses (about 10).
Concerning the Thales radar studied, the closest distance cells to the radar are located about 5 kilometers from the radar,
the furthest distance cells are located about 60 kilometers, each distance cell having a radial length of 60 meters. When
studying the next angular sector (the radar turns clockwise), the radar sends a new burst in the corresponding direction.
The radar information associated with this new angular sector will be represented by a new matrix. The number of pulses
of a burst and the listening time between two pulses can vary from one burst to another, two different bursts will therefore
be associated with matrices of different sizes in general. We now seek to perform the clustering of the distance cells
around the radar according to the nature of the associated environment. We call targets the objects of primary interest
such as airplanes, drones, missiles, ships... We call radar clutter the signals related to the environment such as waves,
fields, forests, urban areas, rain, hail... We assume in our study that the vast majority of the distance cells to be classified
represent radar clutter (and not targets). We assume that the complex valued time series associated with radar clutter are
stationary centered Gaussian autoregressive time series. We show in Chapter 2 that these time series can be represented
by the coefficients (po, ft1,- .-, fin—1) € Rj x D"~1, The value of these coefficients is then associated with the nature
of the clutter: the coefficient py represents the intensity of the recorded time series and the coefficients (p1, ..., ftn—1)
represent the Doppler structure of the time series. We choose to perform the clustering of the distance cells using only the
coefficients (g1, . .., tn—1) representing the Doppler information. For each distance cell, we estimate these coefficients
thanks to the Burg algorithm presented in detail in Appendix C. We will then use the k-means algorithm 12 to perform the
clustering of the studied distance cells, each distance cell being represented by the coefficients (p1, . . ., n—1) belonging
to the space D"~ ! endowed with the metric described in Section 4.1.3 when we omit the power term pg. For this study,
we choose n = 8, which corresponds to the number of pulses of the shortest burst. We will visualize the result of the
clustering in the product of complex unit disks D" ~! and we will visualize the spatial result of the clustering on a ground
map to interpret the results obtained.

1.3.8 Summary of Chapter 9: Application to stereo audio classification

Finally, in Chapter 9 we use several machine learning algorithms presented in Chapter 5 to visualize and perform the
supervised classification of stereo audio data. The classified data corresponds to soundtracks of stationary sounds down-
loaded from YouTube. We downloaded three types of stationary sounds: sounds of wood fires, sounds of waterfalls and
sounds of winds. Other stationary noises include the sea when the sound of the waves is constant, heavy rain, showers,
ventilations, hair dryers, clothes dryers, air conditioning, continuous engine noise, gas coming out of a gas stove... Each
of the three downloaded datasets (fires, waterfalls, winds) is then divided into a training dataset and a testing dataset.
Our goal now is to classify this dataset. A stereo soundtrack is characterized by a scalar which represents the sampling
frequency (48000 Hz here) and a real matrix whose number of lines is equal to the number of seconds of recording mul-
tiplied by the sampling frequency. This matrix has two columns which corresponds to the number of recording channels.
All downloaded soundtracks must have the same sample rate, we also check that the two recording channels are different
(otherwise it is a mono recording). We assume that the two-dimensional real valued audio time series to be classified
are stationary centered Gaussian autoregressive time series. We thus place ourselves within the framework of the mul-
tidimensional stationary centered Gaussian autoregressive time series presented in Section 2.2. For each stereo audio
recording, we estimate the coefficients (Ro, M, ..., M,_1) belonging to the space H} " x SDK{I using Algorithm 5.
Here the dimension of the time series is N = 2, we choose n = 4 for the number of coefficients which corresponds to
an autoregressive model of order three. We endow the space H}; x SD ' with the metric described in Section 4.2.3.
We note that when the input time series are real valued, the coefficients (R, M1, ..., M,_1) estimated by Algorithm
5 are also real. We notice that all the geometric tools presented in Section 4.2.3 only involve real elements when the
input matrices are real: the submanifold of H}" x SDﬁfl made up of products of real matrices is therefore a totally
geodesic submanifold of H{ " x SD';{,_l. The geometric tools presented in Section 4.2.3 are therefore perfectly suited to
the particular case of products of real matrices of the manifold H{,* x SD7*. The classification results of our method on
the audio dataset made from YouTube videos are presented in Section 9.2 using the nearest centroid classifier algorithm
presented in Section 5.3.3.



1.4 Main contributions

We summarize in this section the technical contributions made by this thesis.

1.4.1 Theoretical reflection coefficients of stationary continuous stochastic processes with Gaus-
sian spectrum shape

In appendix B, the autocorrelation function Ry of a complex valued continuous stochastic process f is defined by:

Ry(r) = J f(t+ 1) f*(t)at. (1.12)

This definition is linked to the definition of the autocorrelation coefficients of a discrete-time stationary stochastic
process u given in Section 2.1.2 by:

r =71 (k) = E[u(n)u*(n — k)] = E[u(n + k)u*(n)] VkeZ. (1.13)

These two definitions are linked by the relation:

ry = Ry(kT). (1.14)

For simplicity we normalize the time scale and consider the sampling period 7' = 1 in this thesis.
The autocorrelation function Ry has a Fourier transform called the power spectral density:

+o0

S5(¢) = f Ry(r)e " dr. (L.15)

—o0

The autocorrelation function Ry (7) is therefore the inverse Fourier transform of the power spectral density Sy (§):

+00
Ry(1) = f Sp(€)et T de. (1.16)

We prove in Appendix B that the stationary continuous stochastic process f which power spectral density S has the
shape of Gaussian distribution of mean m and variance o2 with a power coefficient P, i.e.:

1 (E=m)?
S(€) =P T 1.17
£&) \V2mo? ( )

has the following theoretical autocorrelation coefficients:

2k2

re = Ry(k) = Pei>™mFe 200K yp > 1, (1.18)

These coefficients can be obtained using the inverse Fourier transform given in Equation (1.16). Thanks to the Levinson

algorithm 13, we can then compute explicitly the expression of the reflection coefficients (p1, .. ., iy ) from the autocor-
relation coefficients (rg, 71, ..., 7). We obtain:
p, = (—1)Fei2mmbe=2m°0"k g 5 q (1.19)

Note that in this particular case, we have y, = u¥. We also note also that the argument of the coefficient j1;, depends only
on the mean m and its modulus depends only on the variance o2.

1.4.2 The Siegel manifold geometrical tools

We show in Section 2.2.8 that the multidimensional complex stationary centered Gaussian autoregressive time series can
be represented in the space H; x SD’ " where H; represents the set of Hermitian Positive Definite matrices and SD
represents the Siegel disk defined by the set of complex matrices whose singular values are strictly lower than 1:

SDy ={MeCVN | T—-MM" >0}. (1.20)

In Section 3.2.3 of Chapter 3, we endow the space H}, x SD"N_l with a product metric inspired by information
geometry. We denote Hf\,* X SD;'\‘,_1 the Riemannian product manifold obtained and we denote dsf_‘H wsDn—1 its metric
N N

which has the following expression:
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We denote H;* the Riemannian manifold obtained when we endow the space H 3, with the metric:

ds}s+ = trace (Pyt dPy Pyt dP) . (1.22)
We denote SD  the manifold obtained when we endow the space SD with the metric:
dsdp,, = trace (I — u0f") " deu (1 - offeu) ™ anff). (1.23)
We then have:
n—1
dsfis v spnt =ndshsr + Dl (n—1)dsdp,. (1.24)

=1

To study the geometric tools of the product Riemannian manifold HY " x SD’;[_l, we therefore start by studying
the manifolds H}tﬁ and SDy. The Riemannian manifold H}tﬁ is an already known manifold, we recall certain of its
geometric tools in Section 4.2.1. However, the geometric tools of the Siegel manifold SDy are less well known. In the
article written by Ben Jeuris and Raf Vandebril [45], the distance map and the expression of the scalar product are given.
The square of the distance between two points 2, U € SD has the value:

1 I+ CY?
@B, (2, W) = trace <log2 (1—01/2)> (1.25)
= trace (arctanh2 (CI/Q)) (1.26)

with C = (U — Q) (I — Q#w) ™" (W7 — QH) (1 — QuH) ™",
The expression of the scalar product is, Y2 € SDy, Vv, w € CV*V:

(v, w)g :%trace((I—QQH)AU(I—QHQ)71 wH) (1.27)
+% trace ((I — QQH)71 w (I - QHQ)71 ’UH> .
The following application:

O () = (1— ") 2 (w—q)(1-w) " (1-00)"

is said to be an isometry on the Siegel manifold in [45]. We prove this property in Appendix E. We also prove that the
differential of the isometry ® has the following expression:

(1.28)

D®q (¥) [h] = (T — Q)2 (1 —w) " h (1 -0 w) " (1 fa)"?. (1.29)

We prove that the inverse of the function ® described in Equation (1.28) has the following property:
Ot (W) =D (V). (1.30)

This property of isometry ® is simply mentioned (without proof) in the article of Ben Jeuris and Raf Vandebril [45].

The major theoretical contribution of this thesis is the explicit expression of the Riemannian logarithm map, of the
Riemannian exponential map and of the sectional curvature of the Siegel manifold.

The Riemannian logarithm map has the following expression:

logq (¥) = (I — 00#) 2 v/ (1—aio)"? (1.31)

’ ’ ’ ’ 1/2
V' = arctanh (X) X0 where X = (\IJ v H

V= (1—00f) 2w —q)(1-atw)" (1-otQ)"?



The Riemannian exponential map has the expression:

expq (V) = (1 - 0) ™ (¥ + Q) (1+ 00 T -ato)"?

1/2

(1.32)

U = tanh (Y)Y~'V' where Y = (V’V’ H )
V' = (1-00f) Py (1 - o)

The sectional curvature at zero of the plan o defined by the orthonormal matrices £ and E5 has the following
expression:

1
K(0) = —3 (||ElE§H — BEM|* + |EFE, - E§E1||2) . (1.33)

The value of the sectional curvature at any point can then be obtained using the isometry ® described in Equation
(1.28).

For more details, the geometrical tools of the Siegel space presented in this thesis are summarized in Section 4.2.2.
We dedicate Appendix E to the study of the Siegel disk and to the proofs of the new mathematical tools brought in this
thesis.

The knowledge of the logarithm and exponential maps of the Riemannian manifold SD allows us to construct the
logarithm and exponential maps of the product Riemannian manifold H" x SD}(?I, which we do in Section 4.2.3.
The knowledge of these applications allows us, among other things, to use the machine learning algorithms presented in
Chapter 5 involving a computation of the mean when classifying multidimensional stationary time series represented in
the Riemannian manifold H{,* x SD’; .

1.4.3 Infinitesimal right triangles and sectional curvature in Riemannian manifolds

In Section D.4, we prove the following relation between the length of the hypotenuse of an infinitesimal right triangle and
the sectional curvature:

Theorem 2. Let U be a relatively compact convex open set of a complete Riemannian manifold M. There exists a constant
Cy > 0 such that for any triangle OAB of U rectangle in 0, we have the following inequality:

d*(A,B) —d*(0,A) —d* (O, B) + éK (0)d? (0, A)d? (0, B)| < Cy (d (0, A) + d (O, B))® (1.34)

In the works of Andrei A. Agrachev, Davide Barilari and Luca Rizzi [4], this theorem is stated in the particular case
where point O is fixed and the directions of points A and B starting from O are fixed. The result stated in their works
is said to be due to Loeper and Villani. The theorem 2 studied here is stated and proved independently of these previous
works, in a more general context.

1.4.4 Stationary audio time series classification in H};" x SD7 '

We apply the multidimensional model to the classification of stationary stereo audio time series in Chapter 9. To our
knowledge, this is the first time that the Riemannian manifold H" x SDrjifl is used to classify stationary stereo audio
time series.

1.4.5 The radar spatio-temporal model

In Appendix G and in the article [83], we propose a spatio-temporal model to represent the radar clutter. In this model,
we assume that the times series recorded by the radar during a burst are wide-sense stationary on both the temporal axis
and the spatial axis, the spatial axis considered being the radial axis.

Indeed, we assume that the observation matrix Z of the zero elevation beam recorded during a burst for a group of
consecutive cells has the following spatio-temporal correlation:

Z = pi?RV2NRT'? (1.35)

with:

e Z: radar observation matrix of size (p, n), where p corresponds to the number of cells and n corresponds to the
number of pulses emitted during the burst.
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* po: a positive real number which corresponds to the expectation of the quadratic power, i.e. pg = E [|z7 j |2] for all
(i,4) € [1,p] x [L,n].

* Rj: the scaled spatial autocorrelation matrix of size (p, p). It is a Toeplitz HPD matrix since the signal is assumed
to be wide-sense stationary on the spatial axis. Its diagonal coefficients are equal to 1.

e R;: the scaled temporal autocorrelation matrix of size (n, n). It is a Toeplitz HPD matrix since the signal is assumed
to be wide-sense stationary on the temporal axis. Its diagonal coefficients are equal to 1.

* N: matrix of size (p, n) whose coefficients are independent standard complex Gaussian random variables.

This model looks like to model presented by Romain Couillet et al. [24], except for the structure of the spatial covari-
ance matrix R which is only assumed to be Toeplitz here.
We also present an equivalent vectorized model:

7 = p*RY*N (1.36)

where Z is the vectorization of matrix Z and N is the vectorization of matrix N. The scaled spatio-temporal cor-
relation matrix R, is then the Kronecker product of the scaled spatial correlation matrix R, and the scaled temporal
correlation matrix R;:

Ry = Rs ® Ry. (137)

Using the specific structure of the covariance matrix pgRs: , we then construct a Riemannian manifold inspired by
information geometry to represent the information contained in a group of spatially close cells.

1.4.6 Open source Python codes on geomstats

Some of the codes used in this thesis are put online on the public package geomstats [52]. Geomstats is a public Python
package about machine learning in Riemannian manifolds. This package provides Riemannian manifolds and machine
learning algorithms adapted to Riemannian manifolds. This library provides a framework so that each of the available
machine learning algorithms is compatible with each of the available Riemannian manifolds. A user working on a Rie-
mannian manifold different from those available on geomstats will still be able to use all the machine learning algorithms
present on geomstats provided that the manifold used is defined using the conventions of geomstats. In this thesis, we
have used the machine learning algorithms available on geomstats to classify complex one-dimensional stationary time
series in the Riemannian manifold RT " x D"~! and complex multidimensional stationary time series in the Riemannian
manifold H}, " x SDT]ifl. The product of Poincaré disks D" ! used in Chapter 8 for radar clutter clustering was uploaded
to the geomstats library during this thesis work. The Kernel Density Estimation Classifier classification algorithm as
well as several usual kernel functions presented in Section 5.3.2 were also uploaded to geomstats during this thesis work.
Eventually, we would like most of the Python codes implemented for this thesis work to be shared on geomstats.

1.5 Perspectives

In this section, we suggest two possibilities for future developments of this thesis. The first possibility concerns the
supervised classification of radar clutter in the Riemannian manifold R** x D"~! whose geometric tools are presented
in Section 4.1.3. The second, more theoretical, concerns the possibility of finding the formulas of the Siegel manifold
presented in Section 4.2.2 and in Appendix E by considering the Siegel manifold as a homogeneous Riemannian manifold.

1.5.1 Supervised radar clutter classification

The radar dataset used in this thesis has been provided without labels. In Chapter 8, we perform unsupervised classification
of radar clutter. In order to perform the supervised classification of radar data, we labeled them using the Corine Land
Cover database. It is a public database of the French government which partitions the French territory into polygons, each
polygon being associated with a ground label. We used the following labels: artificial surfaces, agricultural areas, forest
and semi natural areas, wetlands and finally water bodies. Each of these labels is divided into subcategories which we
have not used. We found the ground label of each distance cell studied from its GPS position. However, the classification
performance obtained using these labels was not satisfactory. The classification method proposed in this thesis classifies
the distance cells from the Doppler information, but it seems that the Doppler information cannot be used to find the
ground labels with precision. This is highlighted by the radar clutter clustering results presented in Section 8.4 where we
can see that the clusters are not related to the ground labels: they are related to the reflection coefficients and therefore
to the Doppler spectra. The Doppler information highly depends on the position of the radar with respect to the distance
cell studied. For the supervised classification of radar clutter, we therefore suggest using labels referring to the Doppler
information rather than to the ground type.

11



1.5.2 The study of the Siegel manifold SD, as an homogeneous Riemannian manifold

A Riemannian manifold M is said to be homogeneous if there exists a Lie group G which acts transitively and smoothly
by isometries on M. A homogeneous manifold M can then be considered as the quotient of a Lie group G of isometries
by a subgroup K where K is the subgroup of isometries of G which fixes a certain point m € M.

The major theoretical contribution of this thesis concerns the study of the geometric tools of the Siegel manifold SD
presented in Section 4.2.2 and in Appendix E. According to the work of Salem Said et al. [70,71], the Siegel manifold has
a homogeneous manifold structure which has not been used here. We could therefore try to find the geometric formulas
of the Siegel manifold presented in this thesis by exploiting its structure as a homogeneous manifold.

In dimension N = 1, the Siegel manifold SDy corresponds to the Poincaré disk D which can be considered as the
following quotient [62]:

with:

SU(1,1) = {gw - ( % g ) o) = 18] = 1}
0

U(1)={( 6;0 o0 ),GGR}

Indeed, the Lie group SU(1, 1) acts transitively on D by isometries:
SU(1,1) xD—D
(5 2)) -5
Q2 = 2| = —
B a Bz +
and the elements of U(1) fix the point 0.

The quotient structure of the Poincaré disc has been used in particular in the work of Pierre-Yves Lagrave to build

equivariant neural networks [61-63].
The Poincaré disk D can also be considered as the following quotient:
U1 x U(1)
with

U(1,1) = {geMg(C),ngH = P where P = ( (1) _01 )}
Here, ./ denotes the transconjugation operator of a complex matrix, the operator .* denotes the complex conjugation
and .” denotes the matrix transposition.

More generally, the Siegel manifold SD y of any dimension N is also a homogeneous manifold. The Siegel manifold
can indeed be considered as the following quotient:

SDy =
where U () is the unitary group of dimension N

UN)={Ue My (C),UU" =1y}.

More precisely, if we set P and S the following matrices:

([ Ixn Oy [ oy Iy
e ) s )

U(N,N) = {g= ( é 1; ),ngH=P}

we then have [71]:

and



U(N) x U(N) = {kz ( (0] 3 ),(U,V)GU(N)Q}.

The groups U(N, N) and U(N) x U(N) act on the Siegel manifold SD by matrix fractional transformations:

U(N, N) x SDy — SDy
(( 4 )Q) — (AQ+ B) (CQ + D).

Moreover, note that we distinguish here the Siegel manifold SDy from the symmetric Siegel manifold (restricted to
symmetric matrices, see section E.6). The symmetric Siegel manifold can be considered of as the quotient %ﬁ’)m where

Sp (2N, R) is the real symplectic group [70]. Specifically, we have [71]:

Sp(2N,R) = {g= < é ]B; )7ngH = Pand gSg¢* =S}

and

U(N)—{k— (g L?* >,UUH_IN}.

The Lie algebras of the Lie groups mentioned in this section are described in [71].
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Chapter 2

Stationary centered complex Gaussian
autoregressive time series

In this chapter, we study complex stationary centered Gaussian autoregressive time series. We will present the case of one-
dimensional time series in Section 2.1 and we present the more general case of multidimensional time series in Section
2.2. For one-dimensional time series as for multidimensional time series, we mathematically define the properties of the
time series studied. We then describe several representation spaces for these time series and we will present different
relationships between these spaces.
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2.1 Unidimensional stationary centered complex Gaussian autoregressive time
series

In this section, we mathematically define one-dimensional complex stationary centered Gaussian autoregressive time
series. Throughout this section, we refer extensively to the book writen by Simon Haykin called "Adaptive Filter Theory"

[44].
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2.1.1 Stochastic process

According to the first chapter of Simon Haykin’s book [44], the term stochastic process is used to describe the temporal
evolution of a random phenomenon subject to probabilistic laws. The stochastic processes that interest us here are those
defined for regularly spaced discrete times. This restriction appears naturally in many applications such as in the study
of radar time series presented in Chapter 8 and in the study of audio time series presented in Chapter 9. A stochastic
process is not the realization of a single function of time: it is in theory an infinite number of different realizations of the
process. A particular realization of a discrete-time stochastic process is called a time series. To simplify the notations, we
normalize the time with respect to the sampling period. Hence, the sequence u(n — M), ..., u(n — 1), u(n) represents
the time series of length M + 1 made up of the present observation u(n) and of the M previous observations done at
times n — 1,...,n — M. We will use to bold letter u(n) to denote the stochastic process and we will denote by u(n) a
realization of this process, i.e. a time series. Implicitly, we call stochastic process u(n) the sequence of infinite length

{u(n)},.,. Likewise, the time series u(n) implicitly denotes the sequence of infinite length {u(n)}, .

2.1.2 Stationarity

We say that a stochastic process is strictly stationary if its statistical properties are invariant by temporal translation.
Formally, let u; be a continuous-time stochastic process and let f be its joint probability density at times t1 +7, ..., ¢, +7.
The stochastic process u; is said to be strictly stationary when:

Sfu Wtygrs st +0) = fa (Uey, ..oy ug,) VT ER VR ENt,... t, eR. 2.1

In practice, it is generally impossible to determine the joint probability distribution of a stochastic process from
discrete observations of this process. In general, we will therefore content ourselves with a partial characterization of this
process from its moments of order one and two.

We define the mean value of the discrete-time stochastic process u(n) by:

u(n) = Eu(n)] 22)
where E denotes the statistical expectation operator.
We define the autocorrelation function of the process u(n) by:

r(n,n—k)=E[un)u*(n—k)] VkeZ (2.3)
where the asterisk denotes the complex conjugation.
We define the autocovariance function of the process u(n) by:
c(n,n—k)=E[(u(n) — p(n)) (u(n — k) — p(n— k))*] VkeZ (2.4)
According to Equations (2.2), (2.3) and (2.4), the mean value (), the autocorrelation function r (n,n — k) and the
autocovariance function ¢ (n,n — k) are related by the following equation:
c(nyn—k)=r(n,n—k)—pn)p*(n—k). (2.5)

For a partial characterization of a stochastic process by its moments of order one and two, we just need to determine the
mean (n) and the autocorrelation function r (n,n — k) or to determine the mean p(n) and the autocovariance function
¢(n,n — k). Note that for stochastic processes with zero mean (u(n) = 0 for all n € Z), the autocorrelation function
r (n,n — k) is equal to the autocovariance function ¢ (n,n — k).

In the case of discrete strictly stationary signals, the mean value u(n), the autocorrelation function r (n,n — k) and
the autocovariance function ¢ (n, n — k) have simpler expressions. The mean value function is indeed constant:

wn)=p VYneZ. (2.6)

The autocorrelation and autocovariance functions only depend on the difference k£ between the time of observation n
and the time of observation n — k, that is:

r(n,n—k) =rk) 2.7)

and

c(n,n—k) = c(k). (2.8)

In the following, we will also denote by 7 := r(k) the autocorrelation coefficients of a wide-sense stochastic process
and by ¢y, := c(k) its autocovariance coefficients. The equations (2.6), (2.7) and (2.8) are not sufficient to guarantee that
a stochastic process is stationary in the strict sense. We say that a stochastic process is weakly stationary or wide-sense
stationary when it satisfies Equations (2.6), (2.7) and (2.8). The strict stationarity implies the wide-sense stationarity.
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However, there are wide-sense stationary processes which are not strictly stationary. For example, a a sequence of inde-
pendent random variables U = {u(n)}, ., with the same mean and the same variance is always wide-sense stationary,
but U is stationary in the strict sense only if the terms u(n) have the same law [7].

In the following sections, we will focus more specifically on wide-sense stationary processes of zero mean: p = 0.
The partial second-order characterization of these processes is then entirely determined by the value of the autocorrelation
coefficients {ry},_,. We will now define the autocorrelation matrix of a wide-sense stationary stochastic process from
the autocorrelation coefficients, then we will study the properties of the autocorrelation matrix.

2.1.3 Correlation matrix

Let u(n) denote a zero-mean wide-sense stationary stochastic process. We denote by ups(n) the stochastic process of
dimension M defined by:

uy(n) =[u(n—M+1),...,u(n—1),u)]", (2.9)

where the superscript 7' denotes the matrix transposition. We define the correlation matrix of size M of the stochastic
process u(n) by:

Ry = E [uy(n)ujy(n)], (2.10)

where the superscript H denotes the Hermitian transposition which is a standard transposition combined with a com-
plex conjugation. The autocorrelation matrix Rp; will simply be denoted R when the dimension of the matrix is not
ambiguous.

By replacing u,;(n) in Equation (2.10) by its expression in Equation (2.9), we find using the wide-sense stationarity
of u(n):

To r—1 oo ToM41
T1 To oo T_M+2
R=| . o . : 2.11)
T™mi—1 TM-—2 To

The coefficient ry on the main diagonal is always a positive real. For a complex stochastic process u(n), the other
coefficients r; for 7 # 0 are generally complex.

The correlation matrix R plays a fundamental role in the study of wide-sense stationary stochastic processes. We now
study different properties of the matrix R.

Property 1. The correlation matrix of a wide-sense stationary discrete-time stochastic process is Hermitian, i.e. R =

RY.

To prove this property, it suffices to notice that r_j, = 7.
The correlation matrix R is therefore entirely determined by the autocorrelation coefficients r fork = 0,1,..., M —
1. Indeed, we have:

* ES
70 r N SV
*
1 To e Taro
R = . . . . . (2.12)
"™—1 TM—-2 ... To

We say that a square matrix is 7oeplitz when all the elements of its main diagonal are equal and when all the elements
of a same diagonal parallel to the main diagonal are also equal.

Property 2. The correlation matrix of a wide-sense stationary discrete-time stochastic process is Toeplitz.

From the structure of the correlation matrix R described in Equation (2.12), we note that all the elements of the main
diagonal are equal to rp, that all the elements of the first diagonal above the main diagonal are equal to 7}, that all the
elements of the first diagonal below the main diagonal are equal to r; and so on for the other diagonals. The correlation
matrix R is therefore Toeplitz. Note that when u(n) represents a zero-mean stochastic process, its correlation matrix R
is Toeplitz if and only if the stochastic process u(n) is wide-sense stationary.

Let a be a complex non-zero vector of size M. We define y as the scalar product of the vector a and the stochastic
process uys(n):

y =aup(n). (2.13)

Hence, we have:
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E [y’ | —Evy*] (2.14)

Since E [|y|2] > 0, we have:

a’Ra > 0. (2.15)

A Hermitian matrix R which satisfies the property described in the previous equation for any complex vector a is
said to be nonnegative definite or positive semidefinite. A Hermitian matrix R which satisfies a” Ra > 0 for all non-zero
complex vector a is said to be positive definite.

Property 3. The correlation matrix of a discrete-time stochastic process is always positive semidefinite.
In most practical cases, the correlation matrix of a discrete-time stochastic process is positive definite.

Property 4. The correlation matrix of a wide-sense stationary process is always positive definite when and additive noise
is present which is almost always the case in practice.

This property has an important consequence: when the matrix R is positive definite, its inverse matrix R~ exists. The
presence of this additive noise is in particular present in the autoregressive models studied in next section. The correlation
matrix R of the wide-sense stationary stochastic processes presented in next section will therefore belong to the set of
Toeplitz Hermitian positive definite matrices of dimension M which we denote by 7;}.

2.1.4 Autoregressive models
Let us start by giving the definition of a white noise [7].

Definition 1. We call white noise a stochastic process w(n) whose:

* mean is zero: E[w(n)] =0 VneZ
* variance is constant: E [|w(n)|2] =02 VneZ

* autocorrelation is zero: E[w(n)w(k)*] =0 Vk # n.

A white noise is therefore a wide-sense stationary process by construction.
We now define the autoregressive processes of order M [7,44].

Definition 2. We say that a stochastic process u(n) is an autoregressive process (AR) of order M when it satisfies the
following equation:
u(n) +aun—1)+...+ayun — M) =w(n) VYneZ, (2.16)

where a1,as, . ..,ap are complex constants called the AR parameters and w(n) is a white noise. We say that a time
series u(n) is an autoregressive time series when it is a realisation of an autoregressive stochastic process.

We call Gaussian autoregressive process an autoregressive process whose white noise w(n) is Gaussian. We will
detail the properties of the particular case of Gaussian autoregressive processes in Section 2.1.10.
The term "autoregressive" comes from the fact that the present value u(n) of the stochastic process is equal to a linear

combination of the M previous values u(n — 1),...,u(n — M) plus an error term w(n), as shown by the following
equation:
M
u(n) = — Z agu(n — k) + w(n). (2.17)
k=1

The left terms of Equation (2.16) can be considered as the convolution of the sequence {u(n)} with the sequence
{a,}. We can indeed rewrite Equation (2.16) as follows:

M
Z agu(n — k) = w(n), (2.18)
k=0

by setting ag = 1.
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By taking the z-transform on both sides of Equation (2.18), we transform the convolution operation on the left side of
the equation into a multiplication of the z-transforms of the sequences {u(n)} and {a,}.

We note:
M
Ha(z) = ). anz ™" (2.19)
n=0
the z-transform of the sequence {a,, }, and we note:
0
U(z) = ), u(n)z™" (2.20)
n=0

the z-transform of the sequence {u(n)}, where z is a complex variable.
We can then rewrite Equation (2.18) into the form:

Ha(2)U(z) = W(2), (2.21)
where
W(z) = > w(n)z™" (2.22)
n=0

With the white noise w(n) acting as input, we may use Equation (2.17) to produce the AR process u(n) as output. In
Haykin [44], this transformation is seen as a filter called process generator. The transfer function of this transformation
equals:

Hoy -2 L 1 (2.23)

7 .
> apz™
n=0

The AR process generator transforming W (z) into U(z) is called an all-pole filter as its transfer function Hg(2) is
entirely determined by the position of its poles, as shown by:

1

Hg(z) = BV A— (2.24)
(1—piz™")
i=1
The parameters pq, pa, . . ., pas are the poles of Hg(2), they correspond to the roots of the characteristic equation:
l+arz b +az 2+ ... +ayz™=0. (2.25)

The AR process given in Equation (2.16) is wide-sense stationary if and only if the roots of the characteristic Equation
(2.25) all lie inside the unit circle in the z-plane [44]:
lpil <1 V1<i< M. (2.26)

When the process u(n) is wide-sense stationary, the coefficient a,; is therefore of modulus strictly less than 1:
lans| < 1 (2.27)

M
since apr = [ [ p; and |p;| < 1foralli € [1,n].
i=1
We denote by s and call reflection coefficient the coefficient ap; of the autoregressive model of order M. These
coefficients will play an important role in this thesis.

Note that the coefficients of the autoregressive model aq, . .., ays are the coefficients which minimize the expectation
of the square of the prediction error w(n) obtained by estimating the present value of the autoregressive process u(n)
as a linear combination of the M previous values u(n — 1),...,u(n — M). We now use this property to define the

autoregressive coefficients a] of a wide-sense stationary stochastic process which is not necessarily an AR process.

Definition 3. Let u(n) be a wide-sense stationary stochastic process. We call autoregressive coefficients of order M and

denote by aM | . .., a the coefficients which minimize the mean square prediction error, the prediction error associated
Yy ay M q p p
with the coefficients a . .. a}l being defined as the term w™ (n)) obtained by the following convolution operation:
M
Z au(n — k) = wM(n), (2.28)
k=0

by setting a}! = 1.
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This definition makes it possible to define the autoregressive coefficients of a wide-sense stationary process for any
order M.

Since the coefficients of the autoregressive model a{” Yo ,a% are those which minimize the quadratic mean of the
prediction error w (n), it is possible to show that w*(n) is uncorrelated with the past values u(n — k) for all k > 1 of
the process u(n) = {u(n)}, ..

2.1.5 Yule-Walker equation

A zero-mean autoregressive process of order M described by Equation (2.16) is entirely determined by the coefficients

at’, ..., a}] of the autoregressive model and by the variance o2 ,, of the white noise w™/ (n).
In this section, we show that these coefficients are in bijection with the autocorrelation coefficients ro, 71, ..., 7
M M 2
(a1 ,--.,aM,UWM)@(To,h,.-.,TM)- (2.29)

According to Equation (2.18), we have:

M
Z agu(n — k) =w(n) VneZ. (2.30)
k=0

By multiplying both sides of Equation (2.30) by u*(n — [) and then taking the expectation, we obtain:

M
E lE aru(n — k)u*(n — 1)1 =E[w(n)u*(n—10)] VneZ (2.31)
k=0

The left-hand side of Equation (2.31) can be expressed using the autocorrelation coefficients:

M M M
E lZ aru(n — k)u*(n — l)] = Z arE[u(n — k)u*(n —1)] = Z aRTy_g- (2.32)
k=0 k=0 k=0
We simplify the right-hand side of Equation (2.31) by observing that

E[wn)u*(n—-10)]=0 Vvix>1 (2.33)

since u(n — [) involves only samples of white noise up to time n — [ which are uncorrelated with the white noise
sample w(n) [44].
Since ag = 1, we finally obtain from Equations (2.31), (2.32) and (2.33):

M

rt Y ap =0 (2.34)
k=1
and therefore
M
M
ro=— > ap vy (2.35)
k=1
If we do this operation for all [ € [1, M], we obtain M equations which can be written in the matrix form:
1 ro o aM
* M
92 (& To oo Tar_o Ay
_ ) (2.36)
M mMi—1 ThM—2 e To a%
This equation is called the Yule-Walker equation [82] [15], it can also be written in the form:
Ryan = =Ty
~ M M1T
ap = [al 7-"7a]\/1] ) (2.37)
FM = [7“1, N ,T]yj]T
where Rj; corresponds to the matrix R defined in Equation (2.12).
When the matrix Ry, is invertible, we can express the coefficients (a{’,...,a}}) as a function of the coefficients
(ro,T1y- s TM):
dn = — Ryt (2.38)
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Note that this equation is equivalent to the following equation:

1 A
6M = — (ij> (?}y{) . (239)
To To

We denote p; = :—é for i € [0, M] the normalized correlation coefficients. The equation (2.39) defines a bijection be-
tween the normalized autocorrelation coefficients p1, ps, . . ., pas and the coefficients a1, ao, . . ., aps of the autoregressive
model:

(p1, P2, pM) < (ajl\/[,aéu,.. a%) (2.40)

We can use Equation (2.39) to compute the autoregressive coefficients (al!,ad?, ..., a}]) from the normalized au-

tocorrelation coefficients (p1, p2, ..., pan). We will see in Section 2.1.6 how to compute the normalized autocorrelation
coefficients (p1,p2, . .., par) from the autoregressive coefficients (af!,ad’, ..., al]).

We now express the variance of the zero- mean white noise 02 v as a functlon of the autocorrelation coefficients
70,71, .., and the autoregressive coefficients al?, ad?, ... all. By using the definition of an autoregressive process
of order M described by the convolution equation (2.28) and by recalling that the zero-mean white noise w!(n) is

independent of u(n — k) for all k > 1, we have:

o2 =E [w (n)w*(n)] (2.41)
[ M

=E Z arlu(n — k:)) WM*(n)] with a}! = 1 (2.42)
L \k=0

=E [u(n)w'*(n)] (2.43)

aMu(n — k:)) 1 (2.44)

L k=0
M
= > ai™E[u(n)u*(n — k)] (2.45)
k=0
M
_ Z a,ﬂ/[*rk. (2.46)
k=0
We can thus compute the variance of white noise O"QNM from the autocorrelation coefficients rg, r1, . . ., 77, the autore-
gressive coefficients a,ad?, ..., a% being of function of the coefficients rg, 71, ...,y according to Equation (2.38).
Explicitly, we have:

oot = Z an*ry, (2.47)
=rg + 2 apr, asall =1 (2.48)

_ ~H ~
=ro + ap Ty (2.49)

1~ \H~ . .
=79 + (*RerM) 7y according to Equation (2.38) (2.50)
=79 — TMRM TM- 2.51)
If we want to compute the autocorrelation coefficients rg, 71, . . . , 757 from the autoregressive coefficients a}?, ad?, ..

and the variance of white noise O"QNM , we can start by computing the normalized autocorrelation coefficients p1, po, . . ., pus
from the autoregressive coefficients a}?, al?, ..., a%. We present a method to do this in Section 2.1.6. We can then com-

pute the mean quadratic power coefficient ry by noticing that Equation (2.46) gives us:

M
Z ap*ry = (Z aé‘”*w) T, (2.52)
k=0

and therefore:

2
O WM

ro= 40— (2.53)
Z ak * i
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In the proof of Property 26 of Appendix A, we also prove the following relation:

M

020 = (H (1 - WF)) ro. (2.54)

k=1

This relation can be used to compute the coefficient o when the variance of the white noise U‘QN  and the reflection
coefficients pu1, po, . . ., ppr are known.

Once the value of the mean quadratic power rg is obtained, we just have to notice that r; = p;r to be able to compute

the autocorrelation coefficients r, ..., 7.

2.1.6 Levinson algorithm

In Definition 3, we define the autoregressive coefficients of a wide-sense stationary stochastic process. In general, wide-
sense stationary stochastic processes are not autoregressive processes of order M for M e N. If we want to model
a wide-sense stationary process u(n) as an autoregressive process, then it is useful to estimate the coefficients of the
autoregressive model of order M for several values of M, then to choose the order of the model which best corresponds
to the studied process u(n).

When the autocorrelation coefficients rg, 71, ...,y of the studied signal are known, it is possible to compute the
coefficients af', ay, ..., a" of the autoregressive model of order n € [1, M] using the Yule-Walker equation. The Yule-
Walker equation is indeed equivalent to Equation (2.38) that we give again here:

G = —R7, (2.55)
with
~ T
an = [al,...,an]",
Fon=[r1,...,rn)"

and R, the autocorrelation matrix of size n x n.

However, when we want to compute the coefficients @, for all n € [1, M], to use Equation (2.55) for all n € [1, M] is
not optimal in terms of computation time. It is indeed possible to use the Toeplitz structure of the matrix R, to iteratively
compute the vector coefficients a1, ds, . . ., aps using the value of the vector a,, to compute @, 1. It is the principle of the
Levinson algorithm 14 detailed in Appendix A. We show in particular that the following relation links the autoregressive
coefficients of successive order:

ap =ay} '+ ppalF Vke[1,n]. (2.56)

Using Equation (2.56), we can compute the autoregressive coefficients a{ forall 1 < ¢ < j < n from the reflection
coefficients ji1, 2, . - . , fin, where p; = al. The coefficients a{ are then computed iteratively on the order: the coefficients
of order j are used for the computation of the coefficients of order j + 1. The reflection coefficients ji1, p2, . . ., fin
therefore entirely determine the autoregressive coefficients a] for all 1 < i < j < n. In Appendix A, we show that the
autoregressive coefficients af forall 1 <7 < j < n are also entirely determined by the coefficients a7, a3, ..., a) of the
autoregressive model of order n. Equation (2.56) is indeed equivalent to the following equation:

an—l _ az B u"azik
ko 2
1- |Mn|
This last equation can be used to compute the coefficients of the autoregressive model of order n — 1 from the
coefficients of the autoregressive model of order n, the computation of the autoregressive coefficients is therefore done by
descending recurrence on the order of the autoregressive model. We prove Equation (2.57) in the proof of Property 29 of
Appendix A.
Finally, the algorithms presented establish the following equivalences:

(2.57)

(L1, ph2y vy i) < (af < (af,ay,...,an). (2.58)

) 1<i<j<n

We recall that we have presented in Equation (2.40) of Section 2.1.5 the equivalence between the normalized autocor-

relation coefficients p1, po, . .., pn (With p; = :—é) and the AR coefficients of order n:
(p1, P2,y pn) < (af,al, ... al). (2.59)
We have seen in Equation (2.39) of Section 2.1.5 that we can compute the autoregressive coefficients a7, a3, ..., an
from the normalized autocorrelation coefficients p1, po, . . ., p, €xpressing the Yule-Walker equation as follows:

1\ /1
a,n = - (Rn) <Fn) (260)
To To

21



with @, = [a},...,a"]".

We now study the inverse transformation, i.e. how to compute the normalized autocorrelation coefficients p1, pa, - .., pn
from the AR coefficients a7, a3, . .., a;,. We recall that the coefficients af, ay, ..., a;, entirely determine the AR coef-
ficients a for 1 < i < j < n, the explicit computation of the coefficients a] for 1 < ¢ < j < n — 1 can be obtained
by a descending recurrence on the order of the coefficients using Equation (2.57). In Appendix A, we present Algorithm
15 which performs the inverse operation than the Levinson algorithm: this algorithm can be used to compute the auto-
correlation coefficients rg, 71, . . ., r, from the mean quadratic power coefficient pg = r and the AR coefficients af with
1 <@ < j < n. If weuse Algorithm 15 by setting po = 1, we can compute the normalized autocorrelation coefficients
p1, P2, - - -, pn from the autoregressive coefficients a] with 1 < i < j < n.

Note that the Toeplitz Hermitian Positive Definite matrix I?,, is entirely determined by the autocorrelation coefficients
70,T1,---,Tn—1. We show in Appendix A that the reflection coefficients w1, o, ..., ttn—1 Where pup = aﬁ entirely
determine the AR coefficients az forall 1 < i < j < n — 1. From Equation (2.27), we have |u;| < 1 for all i € N*. This
inequality is also proven in the proof of Property 27 of Appendix A. The Levinson algorithm therefore defines a bijection
between the following spaces:

TF — R x D!
Ry = (po, pt1, 2, - - - fn—1) (2.61)

where 7" represents the set of Toeplitz Hermitian positive definite matrices and D represents the open complex unit
disk. This bijection will be used in Chapter 3 to build a Riemannian metric on the product space R* x D"~ inspired
by a metric defined on the space H;} coming from information geometry, where ;" represents the space of Hermitian
positive definite matrices (note that 77 < H;'). The Riemannian manifold obtained, denoted R**+ x D"~ 1, will then be
used to represent unidimensional complex stationary centered Gaussian autoregressive time series.

As seen in Equation (2.61), there is a one-to-one correspondence between a Toeplitz HPD matrix R,, € 7, and
the coefficients (po, i1, f12, - - -, pin—1) € R¥ x D!, In next section, we will see that a Toeplitz HPD matrix and its
corresponding reflection coefficients are closely related to a probability measure on the complex unit circle.

2.1.7 Orthogonal polynomials on the unit circle

As explained in the article of Ben Jeuris and Raf Vandebril [45], a one-to-one correspondence exists between a Toeplitz
HPD matrix and a probability measure on the complex unit circle, where the coefficients of the Toeplitz matrix are found as
the moments (or Fourier coefficients) of the corresponding probability measure [27,49,55]. The concept of orthogonality
for polynomials on the unit circle is linked to the probability measure on the complex unit circle considered, and therefore
indirectly to the related Toeplitz matrix. Finally, the computation of an orthonormal basis of polynomials on the unit circle
can be performed using the Szeg8’s recursion [76, 77], in which the Verblunsky coefficients arise. It turns out that these
coefficients are equal to the reflection coefficients y; appearing in Equation (2.61). ‘

In section 2.1.6, we refered to the Levinson algorithm 13 to efficiently compute the AR coefficients a for 1 < i <
j < M from the autocorrelation coefficients rg,71,...,7y. In Section 2.1.8, we give a method to estimate the AR
coefficients of a stochastic process from an observed time series u(0),u(1),...,u(n). In Section 2.1.9, we give two
methods to determine the order of the AR model which best corresponds (in a sense to be defined) to the time series
w(0),u(1),...,u(n) observed.

2.1.8 Autoregressive coefficients estimation

In section 2.1.6, we presented the Levinson algorithm which can be used to compute the autoregressive coefficients ag
for 1 < ¢ < j < n from the autocorrelation coefficients rg,r1,...,7,. In practice, the autocorrelation coefficients
70,71, .., Ty of an observed time series u(0),u(1),...,u(M — 1) of length M are generally not known. In this case, it
is possible to estimate the autoregressive coefficients a] pour 1 < i < j < n by starting by estimating the autocorrelation
coefficients 7, r1, . . ., Ty, then using the Levinson algorithm 14.

The autocorrelation coefficients are generally estimated by empirical mean:

M—i—1
DT ulk + iyu* (k). (2.62)

k=0

N 1
=
M-

However, this method is not very precise when the integer (M — i) is small. Moreover, this method does not guar-
antee that the Toeplitz Hermitian matrix ﬁnﬂ constructed from the autocorrelation coefficients 7, 71, . . . , 7, iS positive
definite. In the case where the estimated matrix §n+1 is not positive definite, at least one of the reflection coefficients
{1, 2, - . . , [in, obtained using the Levinson algorithm does not belong to the complex unit disk D, the AR coefficients
estimated are therefore not those of a stationary stochastic process.
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To estimate the AR coefficients of a stochastic process u(n) from a realization of a time series u(0), (1), ..., u(n—1),
we propose to use another method: the Burg algorithm. We devote Appendix C to the description of the Burg algorithm
16. The Burg algorithm estimates the AR coefficients iteratively on the order by taking advantage of the relation between
the AR coefficients of successive order:

ap = al™' + ppal ¥ Vke [1,n]. (2.63)

We show in Property 38 of Appendix C that the reflection coefficients u; estimated by the Burg algorithm belong
to the complex unit disk D: we have |u;| < 1 for all i € N*. We also present a Burg algorithm with a regularization
parameter penalizing irregular spectra: the regularized Burg algorithm 17.

2.1.9 Selecting model order

An autoregressive process can be used to generate data or to analyze existing data [44]. When we generate the data, we
choose the order M of the process to be generated. When we use an autoregressive model to analyze existing data, we
generally need to estimate the order of the autoregressive model M that best matches the data to be analyzed.

In this section, we present two methods to estimate the order of an autoregressive model. The first method is called AIC
and was developed by Akaike (1973) [2]. The second method is called MDL and was developed by Rissanen (1978) [65]
and Schwartz (1978). These two methods use arguments coming from information geometry.

Let uy,ue,...,uy be the data observed during /N independent realizations of a discrete-time stationary stochastic

process u(n) and denote by g(u;) the probability density of w;. We denote by f, (ui | @m) the conditional probability

density of u; with respect to the parameter @m, where ém represents the vector of estimated parameters which model the
studied stochastic process. The integer m represents the order of the model. We can therefore write:

p, - [éﬁ,égl,...,émr. (2.64)

In this thesis, we could choose §m = [Po, f1,- - - ,ﬂm_l]T. We could also choose §m = [Fo, 71,y -, ?m_l]T or any
equivalent set of parameters presented in the previous sections.

The studied stochastic process can be represented by several models of different orders. To choose the order m of
the model best suited to the stochastic process u(n), the information-theoretic criterion (AIC) proposed by Akaike is the
following: we choose to represent the stochastic process u(n) by the model of parameter ém, for which the function

AIC(m) = —2L (ém) +2m (2.65)

reaches its minimum, where the function L (§m> is the logarithm of the pseudo-maximum likelihood estimator [64]
of the model parameters:

L (ém) = max i In ( fa (ui | ém)) . (2.66)

The term L (@,L) described in Equation (2.66) is obtained by minimizing the Kullback-Leibler divergence between

the true density of unknown probability g(u) and conditional probability density f, (uZ | @m) We recall the expression
of the Kullback-Leibler divergence between these two functions:

Dy (@m) = f g(u)In (g (u)) du — J g(u)In (fu (u | ém)) du. (2.67)

In this thesis, we refer to the Burg algorithm [16] described in Appendix C to estimate the model parameter ém =
[Do, fi1s- - -, ﬁm_l]T. However, the Burg algorithm is not a maximum likelihood estimator of the autoregressive coeffi-
cients, an exact forward-backward maximum likelihood autoregressive parameter estimation method is given in [5] for
Gaussian autoregressive time series.

According to Equation (2.65), the function AIC(m) is a sum of two terms. The first term, —2L §m tends to

decrease rapidly as the order m of the model increases. The second term, 2m, represents a model complexity penalty
which makes the function AIC(m) an estimator of the Kullback-Leibler divergence. This second term grows linearly
with respect to the order m of the model. When we plot the graph of the function ATC(m) as a function of the model
order m we generally observe a unique minimum for a value m which will be designated as optimum order of the model
and noted MAIC for Minimum AIC [50].

We now present a second criterion that can be used to choose the optimal order of the model of a stochastic process
u(n). This second criterion proposed by Rissanen in 1978 [65], 1986 [66] and 1989 [67] is based on the idea of exactly
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describing observed data by coding them with a minimum of binary digits. Indeed, a model can be seen as a tool to
capture the characteristics and constraints of the observed data and therefore to reduce the number of digits necessary to
describe the data. Rissanen then proposes to use the number of digits necessary to code the observed data by exploiting
the constraints induced by the model as well as the number of digits necessary to describe the model as a criterion to
determine the quality of the model.

We can state Rissanen’s minimum description length (MDL) criterion as follows [44]: given a data set of interest and
a family of competing statistical models, the best model is the one that provides the shortest description length for the
data.

Mathematically, to determine the optimal number of parameters of the model, the MDL criterion proposed by Rissanen
is the following: we choose the integer m for which the following function of é\m:

MDL(m) = —L (ém) + %mln (N) (2.68)

reaches its minimum.

2.1.10 Complex Gaussian processes

When we study a wide-sense stationary autoregressive stochastic process of order M:

u(n) + au(n —1) + ... +apyu(n — M) = w(n),

the white noise w(n) is generally assumed to be Gaussian. The autoregressive stochastic process u(n) is then called
a Gaussian process. In this section, we start by recalling the definition of Gaussian stochastic processes with complex
values, then we study their properties.

We first recall the definition of a multivariate complex distribution.

Definition 4. A complex random vector Z is said to be Gaussian when the real random vector (Re (Z),Im (Z))" is
Gaussian.

Definition 5. A rime continuous complex stochastic process { X}, is said to be Gaussian if for all finite number k € N*
of time indices t1, ..., t; € T, the random variable:

th,.“,tk = (th PR ,th)

is a complex multivariate Gaussian random variable. This is equivalent to say that every linear combination of (Xy,, ..., X+,)
has a univariate complex Gaussian distribution.

A multivariate Gaussian complex distribution is characterized by its moments of order one and two.
Property 5. A multivariate complex Gaussian distribution Z is characterized by:

* its mean vector p = E[Z],

* its covariance matrixI' = E [(Z —p)(Z - u)H],

e its relation matrix C = E [(Z - (Z— ,u)T].
Its probability density function is then defined by [60]:

Je) = 7rﬂ\/det () detl(f‘ — CHT-10) o <_; ((2_ 2 IM)T) ( g lg )_ ( ;:Z )> 269

We denote by Z ~ CN (u, T, C) a complex Gaussian vector of mean p, of covariance matrix T' and relation matrix
C.

We now come back to the time continuous complex Gaussian stochastic processes described in Definition 5 and give
a first property of these processes.

Property 6. A wide-sense stationary Gaussian process is strict-sense stationary [7, 44].

The wide-sense stationarity being equivalent to the strict-sense stationarity for Gaussian processes, we might omit
to specify the kind of stationarity (wide-sense or strict-sense) for Gaussian processes and simply call them stationary
Gaussian processes.

We now detail a particular case of complex Gaussian processes: circularly-symmetric central complex Gaussian
distributions.
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Definition 6. A complex random vector Z is called circularly-symmetric if for every deterministic ¢ € |—m, 7|, the
distribution of €' Z equals the distribution of Z.

We now give an important property of the mean p and of the relation matrix C' of circularly-symmetric central complex
Gaussian distributions.

Property 7. The circularly-symmetric central complex Gaussian distributions are the multivariate complex Gaussian
distributions of zero mean (u = 0) and zero relation matrix (C = 0). The circularly-symmetric central complex Gaussian
distributions are therefore entirely determined by their covariance matrices I.

We can now define the circularly-symmetric centered complex Gaussian stochastic processes.

Definition 7. We call circularly-symmetric centered complex Gaussian stochastic processes the processes { X}, . for
which:
(Xtyy.o, Xp) ~CN(0,1,0) VkeN* Vty,... tpeT. (2.70)

We now study the circularly-symmetric centered complex Gaussian stochastic processes which are stationary.
Let u(n) be such a process of length N. The process u(n) therefore has the following characteristics:

* its mean is zero: u = E [u(n)] =0,
* since the process u(n) is wide-sense stationary, its autocorrelation function is of the form:

ry = E[u(n)u*(n — k)] Vke[0,N —1],

* its relation function is zero: E [u(n)u(n — k)] =0 Vke [0,N —1].

The autocorrelation coefficients g, 71, ..., n_1 determine the correlation matrix R of the Gaussian process u(n). We
recall that the covariance matrix I' coincide with the autocorrelation matrix R in the case of zero-mean stochastic processes
according to the definition of the autocorrelation and autocovariance coefficients given in Equations (2.3) and (2.4). We
denote in general A/ (0, R) the Gaussian vector of zero mean, of correlation matrix R and of zero relation matrix. The
joint probability density of the N samples of the process u(n) is then defined by:

fuU) = exp (-UPR7'U), (2.71)

1
7N det (R)
where
U = [u(1),u(2),...,u(N)]"

is an [V-by-1 data vector. The matrix R is then the N-by-N Toeplitz Hermitian Positive Definite matrix of the second
order moments defined in terms of u by R = E[UU¥].
We now give an important property about the moments of circularly-symmetric centered stationary Gaussian processes

[44].

Property 8. We denote by u,, = u(n),n € [1, N| the observations of a circularly-symmetric centered stationary Gaus-
sian process. According to Reed (1962):

e Ifk # 1, then:

E [uj1 ul ooulugug, .. utl] =0, (2.72)
where s; and t; are integers selected in the set {1,2,..., N}.
e Ifk =1, then
1
E [u;"1 ul ..oulugu, .. .utl] = Z n E [uja(i)uti] (2.73)
ogeS; i=1

where S| represents the set of permutations of the set [1,1]. The term on the right side of Equation (2.73) is
therefore a sum of 1! terms which are products of moments of order 2. Equation (2.73) is called the Gaussian
moment-factoring theorem.
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2.1.11 Power spectral density

The autocorrelation function of a wide-sense stationary centered discrete-time stochastic process u(n) is defined in Sec-
tion 2.1.2 by:

r(k) = E[u(n + k)u*(n)]. (2.74)

This function describes the moments of order 2 of the stochastic process u(n) in the time domain. The statistical
parameter associated with the autocorrelation function in the frequency domain is the power spectral density, which is
also called power spectrum or also spectrum [44]. The power spectral density is a widely used tool to describe time series.
We will recall its definition and its fundamental properties in this section.

Consider a wide-sense stationary centered discrete-time stochastic process u(n) and denote by (1) its autocorrelation
function defined for all [ € Z. In the following, we denote by u(n) with n € Z the time series of infinite length representing
a unique realization of the studied stochastic process. We start by focusing on a windowed portion of this time series by
defining the auxiliary time series:

_ u(”)z ne [[_NvN]]
un(n) = { 0. in| > N (2.75)

The length 2N + 1 of the window will then tend towards infinity. By definition, the discrete-time Fourier transform
of the time series Uy (n) is given by:

N

Uny(w) = Z uy(n)e 7en (2.76)
n=—N

where w € |—m, 7] is the angular frequency. We denote by U y (w) the random variable associated with the stochastic
process u(n) whose realization Uy (w) corresponds to the time series u(n). In general, the term Uy (w) is complex-
valued. Its complex conjugate has the following expression:

N

Up(w) = > uk(k)el". (2.77)
k=—N

By multiplying Equations (2.76) and (2.77), we obtain the expression of the square modulus of Up (w):

N N
Un@)P = > ) un(n)uk (k)e 7=k, (2.78)
n=—N k=—N

Equation (2.78) is obtained for each realization u(n) of the studied stochastic process. By taking the expectation on
each side of Equation (2.78), we obtain:

N N
E[|UN(w)|2]= N3 Elun(n)uk (k)] e 9 (2.79)
n=Nk=—N

where the symbol E denotes the expectation with respect to an infinity of independent realizations of the stochastic
process studied.
Note that we have:

E[u(n)u* (k)] =r(n—k) for—N<(nk)<N

€ ux () (0] - { for = N < 2:50)
We can therefore rewrite Equation (2.79) in the form:
N N 4
E [|UN(w)|2] = 3 N rn—kye R, 2.81)
n=—N k=—N
By setting | = n — k, we obtain:
Lelu N 1 i e it 2.82
SE[Un@P] = Y (1- 5 ) rwe 282)
I=—N
When the following equation holds
1 N-1
lim ——— > [i|r()e ! =0, (2.83)
N—w 2N +1 1= N+1
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then we have [44]

1 2 = ;
Ii —_E [ :| — _JWI_ 2.84
Aim B |[Un(@)*| = > r(e (2:84)
l=—0
The term on the right side of this last equation can be seen as the Fourier transform of the autocorrelation coefficients,
as we will see in Property 9. We can then define the function:

1
S(w) = lim —E [|UN(w)\2] . (2.85)

The term |Un (w)|? /N is called periodogram of the windowed time series ux (n). Equation (2.85) means that the
periodogram converges towards S(w) in mean, and not in square mean or any other form of convergence in general.

As mentioned in [44], when the limit presented in Equation (2.85) exists, the quantity S(w) has the following inter-
pretation (Priestley, 1981): the term S(w)dw is the average of the contribution to the total power from components of a
wide-sense stationary stochastic process with angular frequencies located between w and w + dw, the average is taken
over all possible realizations of the process.

Therefore, the quantity S(w) is the "spectral density of expected power" of the process, which is abbreviated as power
spectral density.

Using the equality described in Equation (2.84), we can rewrite the definition of the power spectral density given by
Equation (2.85) as

S(w) = i r(l)e 7!, (2.86)

To summarize, the power spectral density is defined directly from a wide-sense stationary stochastic process in Equa-
tion (2.85). The power spectral density can also be defined as the Fourier transform of the autocorrelation coefficients as
shown in Equation (2.86). These two points of view will now be used to present the fundamental properties of the power
spectral density.

We start by giving a first property directly related to Equation (2.86).

Property 9. The autocorrelation function and the power spectral density of a wide-sense stationary stochastic process
form a Fourier transform pair:

0]
Sw)= > re™!, —m<w<7 (2.87)
l=—o0
and Lo
r(l) = o S(w)ej‘*’ldw, leZ. (2.88)
T™J)—m

Equation (2.87) means that the power spectral density is the discrete Fourier transform of the autocorrelation function.
Equation (2.88) means that the autocorrelation function is the inverse of the discrete Fourier transform of the power
spectral density. This equation comes from the formula for inverting discrete Fourier transforms. This pair of equations
is called the Einstein-Wiener-Khintchine relation.

Property 10. The frequency support of the power spectral density S(w) is the Nyquist interval —m < w < .

Outside this interval, the power spectral density is 27-periodic:

S(w+2km) =S (w) VkeZ. (2.89)
Property 11. The power spectral density of a stationary discrete-time stochastic process is real.

We can indeed arrange the sum defining the power spectral density in Equation (2.86) to obtain [44]:
X .
S(w) =7(0) +2 ). Re [r(k)e /"] (2.90)
k=1
where Re represents the real part operator. Using the definition of the power spectral density given in Equation (2.85):

1 2
— lim —E [ U ] , 291
S(w) = Jim <E[[Un(w) @91)
we can also notice that the power spectral density is the limit of a series of real numbers and is therefore real.

Property 12. The power spectral density of a real-valued stationary discrete-time stochastic process is even (i.e. S(w) =
S(—w)). If the process is complex valued, its power spectral density is not necessarily even.
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Property 13. The mean-square value r(0) of a stationary discrete-time stochastic process equals the mean value of the
power spectral density S(w) over the interval |—m, 7|:

r(0) = — r S(w)duw (2.92)

=5 -
This property is obtained directly by evaluating Equation (2.86) at w = 0.
Property 14. The power spectral density of a stationary discrete-time stochastic process is nonnegative:
Sw)=0 Vw. (2.93)

This property follows directly from the definition of the power spectral density S(w) given in Equation (2.85):

1
Sw) = lim —E [|UN(W)\2] . (2.94)

We now define other spectra associated with the AR coefficients.

2.1.12 Autoregressive spectrum

We define the autoregressive spectrum of the complex centered wide-sense stationary process u(n) of autoregressive
n—1

coefficients a} !, ... ,a" "] asin [15]:

Pnfl

sSSP = p— . (2.95)
3 aénfl)e_mwkf

k=0

where P,_; € R* is the variance of the prediction error w" (k) of the linear autoregressive model presented in
Equation (2.16).

2.1.13 Capon spectrum

The Capon spectrum is defined as the harmonic mean of the autoregressive spectra of orders k = 1,...,n — 1:
(n—1) -1 1 nl (k) -1
SCapon(f) = n—1 Z SAR(f) . (296)
k=1

2.1.14 Example of stationary centered complex Gaussian autoregressive continuous stochastic
processes with Gaussian spectrum shape

We will prove in Appendix B that the complex autoregressive stationary continuous stochastic processes which power
spectral density S has the shape of Gaussian distribution of mean m and variance o2 with a power coefficient P, i.e.:

Si(€) =P e ot (2.97)

has the following theoretical autocorrelation coefficients :

r(k) = Pei2mmke=2m"0"k? (2.98)

This coefficient is obtained computing the continuous-time Fourier transform of the power spectral density S¢(§).

Thanks to the Levinson algorithm, we also prove in Appendix B that the reflection coefficients uy for k& = 1 of the
corresponding signal have the following expression:

g, = (—1)kei2mmbke=2mc%k yp > (2.99)

Note that in this particular case, we have u;, = p. Note also that the argument of the coefficient 115, depends only on
the mean m and its modulus depends only on the variance o.

2.2 Multidimensional stationary centered complex Gaussian autoregressive
time series
In this section, we define multidimensional complex stationary centered Gaussian autoregressive time series. We will

generalize the several notions presented for one-dimensional time series in Section 2.1 to multidimensional time series.
This section is mainly inspired by the work of Ben Jeuris and Raf Vandebril [45].
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2.2.1 Stochastic process

The definition of stochastic processes given in Section 2.1.1 is also available for multidimensional stochastic processes,
we therefore refer to this section for a more complete description of stochastic processes. We recall that a stochastic
process is not the realization of a single function of time: it is in theory an infinite number of different realizations of the
process. A particular realization of a discrete-time stochastic process is called a time series. In this section, we will use
the capital letters U(n — M), ..., U(n —1),U(n) to represent the multidimensional time series of length M + 1 made up
of the present observation U (n) and of the M previous observations done at times n — 1,...,n — M. Each observation
U (i) is a complex vector of dimension NV by 1. We will use to bold letter U(n) = {U(n)},., to denote the stochastic
process and we will denote by U (n) a realization of this process, i.e. a time series.

2.2.2 Stationarity

The definition of the stationarity given for multidimensional stochastic processes in this section is the same as the defi-
nition given in Section 2.1.2 for unidimensional stochastic processes by replacing the lowercase letters u, r and ¢ by the
capital letters U, R and C. The conjugate operator * is replaced by the conjugate transpose operator H.

As explained in Section 2.1.2, a stochastic process is strictly stationary if its statistical properties are invariant by
temporal translation. Formally, let U; be a continuous-time stochastic process of dimension N and let fy be its joint
probability density at times ¢; + 7, ..., ¢, + 7. The stochastic process Uy is said to be strictly stationary when:

fu Utysrs- s Utyvr) = fu(Ugy, ..., Up,)  Y7,¥neNty, ... ¢, €R. (2.100)
In practice, it is generally impossible to determine the joint probability distribution of a stochastic process from
discrete observations of this process. In general, we will therefore content ourselves with a partial characterization of this
process from its moments of order one and two.
We define the mean value of the process U(n) by:
u(n) = E[U(n)] 2.101)
where E denotes the statistical expectation operator.
We define the autocorrelation function of the process U(n) by:
R(n,n—k)=E[U(n)U"(n-k)] Vkez (2.102)
We define the autocovariance function of the process U(n) by:
C(n,n—k)=E [(U(n) — u(n)) (Uln — k) — p(n — k))H] Vk e Z. (2.103)
According to Equations (2.101), (2.102) and (2.103), the mean value p(n), the autocorrelation function R (n,n — k)
and the autocovariance function C' (n, n — k) are related by the following equation:
C(n,n—k)=R(n,n—k)— pn)u(n—k). (2.104)

For a partial characterization of a stochastic process by its moments of order one and two, we just need to determine the
mean /(n) and the autocorrelation function R (n,n — k) or to determine the mean p(n) and the autocovariance function
C (n,n — k). Note that for stochastic processes with zero mean (u(n) = 0 for all n € Z), the autocorrelation function
R (n,n — k) is equal to the autocovariance function C' (n,n — k).

In the case of wide-sense stationary time series, the mean value ;(n), the autocorrelation function R (n,n — k) and
the autocovariance function C (n, n — k) have simpler expressions. The mean value function is indeed constant:

pw(n) =p VneZ. (2.105)

The autocorrelation and autocovariance functions only depend on the difference k between the time of observation n
and the time of observation n — k, that is:

R(n,n—k) = R(k) (2.106)
and
C(n,n—k)=C(k). (2.107)

The equations (2.105), (2.106) and (2.107) are not sufficient to guarantee that a stochastic process is stationary in the
strict sense. We say that a stochastic process is weakly stationary or wide-sense stationary when it satisfies Equations
(2.105), (2.106) and (2.107).
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In the following sections, we will focus more specifically on wide-sense stationary processes of zero mean: p = 0.
The partial second-order characterization of these processes is then entirely determined by the value of the autocorrelation
coefficients R(k). We will now define the autocorrelation matrix of a multidimensional wide-sense stationary stochastic
process from the autocorrelation coefficients, then we will study the properties of this matrix.

2.2.3 Correlation matrix

Let U(n) = {U(n)}, . denote a zero-mean wide-sense stationary stochastic process of dimension N, each term U(1)
being a complex vector of dimension NV by 1. We denote by U (n) the random vector defined by the vector of dimension
M x N by 1:
Un(n) = [Un—M+1)7,... . Un-1)T,Uum"]", (2.108)
where the superscript 7' denotes the matrix transposition. We define the correlation matrix of size M of the stochastic
process U(n) by:

Ry =E[Un(n)UY(n)]. (2.109)

The autocorrelation matrix R, will simply be denoted R when the dimension of the matrix is not ambiguous.
By replacing U, (n) in Equation (2.109) by its expression in Equation (2.108), we find using the wide-sense station-
arity of U(n):

Ry R_1 L. R_M+1
R1 Ro ce R—M+2
R = . o . . (2.110)
Ry—1 Ry—2 ... Ry

The coefficient Ry on the main diagonal is always a Hermitian positive semidefinite matrix.
The correlation matrix R plays a fundamental role in the study of multidimensional wide-sense stationary stochastic
processes. We now study different properties of the matrix R.

Property 15. The correlation matrix of a wide-sense stationary discrete-time stochastic process is Hermitian, i.e. R =
RH
To prove this property, it suffices to notice that R_; = RkH .

The correlation matrix R is therefore entirely determined by the autocorrelation coefficients Ry fork = 0,1, ..., M —
1. Indeed, we have:

R, RY ... RE_|
R R, ... RH_
R - . R @2.111)
Ry—1 Rpy—o ... Ry

We say that a square matrix is Block-Toeplitz when it is Toeplitz by blocks.

Property 16. The correlation matrix of a wide-sense stationary discrete-time stochastic process is Block-Toeplitz with
blocks of dimension N by N.

From the structure of the correlation matrix R described in Equation (2.111), we note that all the blocks of the main
diagonal are equal to Ry, that all the blocks of the first diagonal above the main diagonal are equal to R¥, that all the
blocks of the first diagonal below the main diagonal are equal to R; and so on for the other diagonals. The correlation
matrix R is therefore Block-Toeplitz. Note that when U (n) represents a multidimensional zero-mean stochastic process,
its correlation matrix R is Block-Toeplitz if and only if the multidimensional stochastic process U(n) is wide-sense
stationary.

Property 17. The correlation matrix of a discrete-time stochastic process is always positive semidefinite.

The proof of this property is the same than the proof of Property 3 by taking a be a complex non-zero vector of size
M x N andy = alUys(n).
In most practical cases, the correlation matrix of a discrete-time stochastic process is positive definite.

Property 18. The correlation matrix of a wide-sense stationary process is always positive definite when and additive
noise is present which is almost always the case in practice.

This property has an important consequence: when the matrix R. is positive definite, its inverse matrix R ™! exists.
The presence of this additive noise is in particular present in the autoregressive models studied in next section. The
correlation matrix R of the multidimensional wide-sense stationary stochastic processes presented in next section will
therefore belong to the set of Block-Toeplitz Hermitian positive definite matrices which we denote by B;\% N
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2.2.4 Autoregressive models

We first recall the definition of a multidimensional white noise.

Definition 8. We call multidimensional white noise a stochastic process W (n) whose:
* meanis zero: E[W(n)] =0 VneZ
* variance is constant: E[W(n)W(n)?| =¥ VneZz
* autocorrelation is zero: E[W(n)W(k)#] =0 Vk # n.

A multidimensional white noise is therefore a wide-sense stationary process by construction.
We now define multidimensional autoregressive processes of order M.

Definition 9. We say that a stochastic process U(n) of dimension N by 1 is a multidimensional autoregressive process
(AR) of order M when it satisfies the following equation:

Un)+A4Un-1)+...+ Ay Un—M) =W(n) VneZ, (2.112)

where Ay, As, . .., Anr are square matrices called the AR parameters and W (n) is a white noise of dimension N by 1. We
say that a time series U (n) is an multidimensional autoregressive time series when it is a realisation of a multidimensional
autoregressive stochastic process.

We call multidimensional Gaussian autoregressive process an autoregressive process whose white noise W (n) is a
multidimensional Gaussian random variable. We will detail the properties of this particular case in Section 2.2.10.
The term "autoregressive" comes from the fact that the present value U(n) of the stochastic process is equal to a linear

combination of the M previous values U(n — 1),...,U(n — M) plus an error term W (n), as shown by the following
equation:
M
U(n) = = 3, 4U(n — k) + W(n). (2.113)
k=1

The left terms of Equation (2.112) can be considered as the convolution of the sequence {U(n)} with the sequence
{A,}. We can indeed rewrite Equation (2.112) as follows:

M
D1 AMNUM — k) = W(n), (2.114)
k=0

by setting Ag = I .

Note that the coefficients of the autoregressive model A1, ..., A, are the coefficients which minimize the expectation
of the square Frobenius norm of the prediction error W (n) obtained by estimating the present value of the autoregressive
process U(n) as a linear combination of the M previous values U(n — 1),...,U(n — M). We now use this property
to define the autoregressive coefficients A7 of a wide-sense stationary stochastic process which is not necessarily an AR
process.

Definition 10. Let U(n) be a wide-sense stationary stochastic process. We call autoregressive coefficients of order M and
denote by AM ..., AM the coefficients which minimize the expectation of the square Frobenius norm of the prediction
error, the prediction error associated with the coefficients AM ... AN being defined as the term W™ (n) obtained by
the following convolution operation:

M
DAY UM — k) = WM (n), (2.115)
k=0

by setting Ag = I .

This definition makes it possible to define the autoregressive coefficients of a wide-sense stationary process for any
order M.

Since the coefficients of the autoregressive model A, ... A} are those which minimize the expectation of the
square norm of the prediction error W™ (n), it is possible to show that W (n) is uncorrelated with the passed values
U(n — k) for all k > 1 of the process U(n) = {U(n)}

nez’
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2.2.5 Multidimensional Yule-Walker equation

A zero-mean autoregressive process of order M described by Equation (2.112) is entirely determined by the coefficients

AM . AM of the autoregressive model and by the variance Syyar of the white noise W (n).
In this section, we show that these coefficients are in bijection with the autocorrelation coefficients Ry, R1, ..., R
(A, .. AN, Swu) = (Ro,Ri,...,Ru). (2.116)
According to Equation (2.114), we have:
M
D AYUMm —k)=W(n) VneZ (2.117)
k=0

By multiplying both sides of Equation (2.117) by U(n — [)¥ and then taking the expectation, we obtain:

f AMU(n - k)U(n — l)H] =E[W(n)U(n-1)"] vVnez (2.118)
k=0

E

The left-hand side of Equation (2.118) can be expressed using the autocorrelation coefficients:

M M M
E [Z AMU(n — k)U(n — Z)H] = Y AVE[U(m -k U@ -D"] = > AR 4. (2.119)
k=0 k=0 k=0

We simplify the right-hand side of Equation (2.118) by observing that

E[Wn)Un-0)"]=0 vi>1 (2.120)

since U(n — [) involves only samples of white noise up to time n — [ which are uncorrelated with the white noise
sample W (n).
Since Ay = Iy, we finally obtain from Equations (2.118), (2.119) and (2.120):

M
Ri+ Y AV R, =0 (2.121)
k=1
and therefore
M
Ri=—= Y ARy (2.122)
k=1
Ay Ry = —Viy (2.123)
with:
Ay = [AM ... AM]
Vi = [Ru,...,Ru]
RO Rl R2 RMfl
R Ry Ry ... Ry (2.124)
Ry = RI R Ro ... Ru_s
RY_ RE_, RE . . R

Note that R, looks like the correlation matrix R 57 of the multidimensional stochastic process U(n) given in Equation
(2.111):

Re RE RE ... RHE_
R, Ry R{{ Rﬁ_z

Ry = | R Ry Ry ... Ry 4|, (2.125)
Ry—1 Ry—2 Ry-3 ... Ry
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When the matrix ﬁM is invertible, we can express the coefficients (A{VI e ,A%) as a function of the coefficients
(Ro, Rh ey RM)

T |
Ay = —VuR,, . (2.126)
We now express the variance of the zero-mean white noise EWM as a function of the autocorrelation coefficients
Ry, Ry, ..., Ry and the autoregressive coefficients A{W , Aé” o al M By using the definition of an autoregressive pro-

cess of order M described by the convolution Equation (2.115) and by recalling that the zero-mean white noise W (n)
is independent of U(n — k) for all £ > 1, we have:

S =E >WM( ) (WM (n ))H] 2.127)
ul H
=E AMU((n — ) (WM (n)) 1 with A) = Iy (2.128)
k=0
—E [U(n) (WM(n))H] (2.129)
~ o =
—E | U(n) (Z AMU(n — k;)) (2.130)
i k=0
I H
= Y E[Um)U" (n— k)| A} (2.131)
k=0
o H
=3 Reait”. (2.132)
k=0
We can thus compute the variance of white noise >y from the autocorrelation coefficients Ry, R, ..., Ry, the
autoregressive coefficients AN, A3 ... AM being of function of the coefficients Ry, Ry, . . ., Ry according to Equation

(2.126). Explicitly, we have:

M
Swa = Y R AP (2.133)
k=0
M H
=Ro+ Y RpAY" as AYf = Iy (2.134)
k=1
=Ry + Vi AL (2.135)
~ ~ o~ H
=Ry + Vi (—VMRX/I1> according to Equation (2.126) (2.136)
=Ry — Vi RV (2.137)

2.2.6 Multidimensional Levinson algorithm

In Definition 10, we define the autoregressive coefficients of a multidimensional wide-sense stationary stochastic process.
In general, wide-sense stationary stochastic processes are not autoregressive processes of order M for M e N. If we
want to approximate a wide-sense stationary process U(n) as an autoregressive process, it is then useful to estimate the
coefficients of the autoregressive model of order M for several values of M, then to choose the order of the model which
best corresponds to the studied process U(n).

When the autocorrelation coefficients Ry, R, ..., Ry of the studied signal are known, it is possible to compute the
coefficients AT, A%, ..., A" of the autoregressive model of order n € [1, M] using the multidimensional Yule-Walker
equation. The Yule-Walker equation is indeed equivalent to Equation (2.126). 4

In Section 2.1.6, we refer to the Levinson algorithm 13 to compute efficiently the autoregressive coefficients a? for
all 1 < ¢ < j < M from the autocorrelation coefficients rg,r1,...,73 of a unidimensional complex wide-sense
stationary centered time series. In the case of multidimensional time series, there exists a multidimensional version of the
Levinson algorithm which is only valid in the particular case where the autocorrelation coefficients Ry, Ry, ..., Ry of the
multidimensional complex wide-sense stationary centered time series are Toeplitz. A Block-Toeplitz HPD matrix whose
blocks are Toeplitz is called a Toeplitz-Block Block-Toeplitz HPD matrix. This set is denoted TA}’ N [45]. We present in
Algorithm 1 an algorithm which we call multidimensional Levinson algorithm to compute efficiently the autoregressive
coefficients A7 for all 1 < i < j < M of a multidimensional complex wide-sense stationary centered time series
from its Toeplitz-Block Block-Toeplitz HPD autocorrelation matrix R, [45]. To perform the multidimensional Levinson
algorithm, we define M := JM*J, where J denotes the anti-diagonal matrix:

33



(s
o
o
—

0 0 10
J = z

0 1 0 0

1 0 0 0

Algorithm 1 Multidimensional Levinson algorithm
Input: A Toeplitz-Block Block-Toeplitz HPD correlation matrix R, or its autocorrelation coefficients

(Ro, R1,..., Ry).
Initialization:
Py = Ry (2.138)
Al = —RiRy* (2.139)
fori=2,...n—1:do
Al = —NP (2.140)
-1
Aj=Ri+ )Y AR (2.141)
j=1
-1 * -1
Py=Ro+ Y JATVJR; = Ry + ). AR, (2.142)
j=1 j=1
i = [ﬁl_l,o] + Al [ﬁ .. ,Alfl,l] (2.143)
(2.144)

end for
return (P, Al,...,A""1)

We now consider a multidimensional complex wide-sense stationary centered time series whose correlation matrix is
a Toeplitz-Block Block-Toeplitz HPD matrix. Using the recursive relations induced by Algorithm 1, it it proved in the
work of Ben Jeuris and Raf Vandebril [45] that the coefficients A} of a such a time series belong the space:

Dy ={MeCVN |- MM >0} (2.145)

where the partial ordering between complex matrices A > B means that the difference (A — B) is a Hermitian
positive definite matrix.

Note that in dimension one, this space corresponds to the complex unit disk D. Unfortunately, the multidimensional
Levinson algorithm 1 is not surjective from the space of Toeplitz-Block Block-Toeplitz HPD matrices on the space Dy.
Indeed, we can see using Equation (2.139) that the coefficients:

10 10 0
R0=[O 1]eT; and A}=[0 O]eD2 (2.146)
correspond to the autocorrelation coefficient
—-10 0
Ry = [ 0 0 ] (2.147)

which is not Toeplitz. Moreover, the coefficients Ry and A} correspond to the Block-Toeplitz matrix:

1 0|—-10 O
[ R RE] | 0O 1] 0 0
Ri = [ Ri Ry | | -10 0[] 1 0 (2.148)
0 0 0 1
whose determinant is negative: det (R;) = —99 < 0. The matrix R; is not HPD, it is therefore not the correlation

matrix of a multidimensional wide-stationary time series.

34



It is proven in [45] that the coefficients (A%, A3 A M—1, M,l) € D%I -1 computed by the multidimensional Levin-
son algorithm 1 from a Toeplitz-Block Block-Toeplitz HPD matrix can be sligtly modified to belong to the Siegel disk
defined by:

SDy ={MeCNV*N|1-MM" >0}. (2.149)

Note that there also exists a more restrictive definition of the Siegel disk with an additional symmetry condition:
M = M7 [54,75].

In next section, we justify the representation of a Block-Toeplitz HPD matrix by coefficients belonging to the Siegel
disk SDyy called the Verblunsky coefficients.

2.2.7 Matrix orthogonal polynomials on the unit circle

As explained in the article of Ben Jeuris and Raf Vandebril [45], a Block-Toeplitz HPD matrix can be represented by
its Verblunsky coefficients [78,79]. By generalizing the scalar probability measure on the complex unit circle presented
in Section 2.1.7 to a nonnegative matrix measure, the Block-Toeplitz matrix defined by its moments is a Block-Toeplitz
HPD matrix [28,55,56]. On the other hand, constructing orthogonal matrix polynomials on the unit circle with respect
to the matrix measure results in a generalization of the Szegd recursion, with corresponding generalized Verblunsky
coefficients [1,25,28].

We use the proposed generalization of the Verblunsky coefficients [28] to define a new transformation of a Block-
Toeplitz HPD matrix in next section. We also detail in next section an algorithm based on the structure of the multidimen-
sional Levinson algorithm 1 that can be used to transform a Toeplitz-Block Block-Toeplitz HPD matrix R € TA}, N into

a HPD matrix Py = Ry and a product of (M — 1) Siegel spaces (21, Q2,...,Qp-1) € SD%I_l.
2.2.8 Parameterization of multidimensional autoregressive time series in Siegel disks

In the work of Ben Jeuris and Raf Vandebril [45], the coefficients (A{, A3,..., A?~1) computed from a Toeplitz-Block
Block-Toeplitz HPD matrix using Algorithm 1 are slightly modified to belong to the Siegel disk SDy (2.149) which
metric has been studied in [45, 54] and will be detailed in Section 4.2.2. It is indeed proven in [45] that the following
coefficients:

o =P 2Alp'? (2.150)

belong to the Siegel disk SDy (2.149), where the coefficients P,_; and A% are those computed by the multidimen-
sional Levinson algorithm 1. We recall that M := JM™*.J, where J denotes the anti-diagonal matrix. Since

Al = —AP T (2.151)

according to Equation (2.140) of the multidimensional Levinson algorithm 1, we therefore have:

O =—-PV2A P V2 (2.152)

We present Algorithm 2 which transforms a Toeplitz-Block Block-Toeplitz HPD matrix R 5y into coefficients (Py, Qq, ...

Hi % SD’;[_l. This algorithm is based on the multidimensional Levinson algorithm 1 and on Equation (2.152).
In general, the correlation matrix of a multidimensional complexe wide-sense stationary centered time series belongs
to set of Block-Toeplitz HPD matrices B:{ n and does not belong to the subset of Toeplitz-Block Block-Toeplitz HPD

matrices 7;L+N c th N+ We now present Algorithm 3 which performs the following transformation [45]:

By — HY x SD!

Ry (Py, Q1,0 Q). (2.162)

7Qn71) €

Itis indeed proven in the works of Dette and Wagener [28] and Fritzsche and Kirstein [32] that coefficients (1, ..., 2, —1)

computed by Algorithm 3 from a general Block-Toeplitz HPD matrix belong to the Siegel disk SD . Note that the matrix
R;_1 used in Equations (2.165), (2.166) and (2.167) of Algorithm 3 looks like the correlation matrix R;_1, as shown by
Equations (2.124) and (2.125).

The coefficients (Pp, 21, ...,2,—1) € 7—[?{, X SDTJ{fl obtained using Algorithm 3 when the correlation matrix R
belongs to TM+’ N C B:’ N correspond to the coefficients obtained using Algorithm 2. In the particular case where R, €

7;:]\,, it is then better to use Algorithm 2 than Algorithm 3 to compute the coefficients (FPy, 1, ..., p—1) € ”Hj(, X SD}(,_l
for complexity reasons as Algorithm 2 takes advantage of the Toeplitz-Block Block-Toeplitz structure of the matrix R,,
to perform a recursive computation.

The reciprocal of the transformation given by Algorithm 3 is detailed in Algorithm 4.
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Algorithm 2 Compute HPD and Siegel coefficients from a Toeplitz-Block Block-Toeplitz HPD matrix

Input: A Toeplitz-Block Block-Toeplitz HPD matrix R,, or its autocorrelation coefficients (Rg, R1, ..., Rn)-
Initialization:
Py =R, (2.153)
Al = —Ri Ry (2.154)
Q, = =Ry Y?R Ry 2 (2.155)
for/=2,..n—1:do
Al = AP (2.156)
-1
Aj=Ri+ Y AR (2.157)
j=1
-1 . -1
Py =Ro+ Y JATVJR; = Ro+ ) AR, (2.158)
j=1 j=1
A = [Al,ho] + Al [Aﬁj, N .7,411—1,1] (2.159)
O =—PPap (2.160)
(2.161)
end for
return (Po, Ql, ceny Qn—l)
Algorithm 3 Compute HPD and Siegel coefficients from Block-Toeplitz HPD matrix
Input: A Block-Toeplitz HPD matrix R, or its autocorrelation coefficients (Rg, Ry, ..., Ry).
Initialization:
Py =Ry (2.163)
fori=1,...n—1:do
O = — L2 (R — My_y) K72 (2.164)
Liy = Ro—[Ry,...; Ri_1) B[Ry, ooy R ]2 (2.165)
Ki 1= Ro—[RI,, ..., RITR7L R, ..., RITH (2.166)
My = [Ry, ..., Ri_1] B7 Y [RE, ... R (2.167)

end for
return (Py,Q,..., Q1) € Hi x SD !
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Algorithm 4 Compute Block-Toeplitz HPD matrix from HPD and Siegel coefficients

Input Coefficients (Py, Q1, ..., Q1) € Hi x SD .
Initialization:

Ry=F (2.168)

fori=1,....,n—1:do

R =M, — LK (2.169)
Liy = Ro—[Ry, ..., Ri_1]) B[Ry, .., R ] (2.170)
K1 =Ry— [R{il,... {1] CLIRE . RIHE (2.171)

—1

My = [Ry, ..., R 1] R4 [RE ..., REYH (2.172)

end for
return (Ro, R1,...,Ry—1)

In next section, we present an algorithm to estimate the coefficients (Pp, 1, ..., Q,—1) € 7-[} X SD’;?I of a multi-
dimensional complex wide-sense stationary centered autoregressive time series{U(n)},,., from a finite number of obser-
vations U(0),U(1),...,U(n — 1) of this time series.

2.2.9 Siegel coefficients estimation

In Section 2.2.5, we present in Equation (2.126) a formula to compute the autoregressive coefficients A7 for 1 < i < n
from the autocorrelation coefficients Ry, R1, ..., R,. In Section 2.2.8, we present Algorithm 3 which computes the
coefficients (P, 1, ...,Q,_1) € 7—[& X SD’]ifl from the autocorrelation coefficients Ry, R1, ..., R,. In practice, the au-
tocorrelation coefficients Ry, Ry, . . ., R,, of an observed time series U(0), U(1),...,U(M —1) of length M are generally
not known.

The autocorrelation coefficients can be estimated by computing the empirical mean:

1 n—i—1

. N rrH
Ri= ;0 Uk + ) U (k). (2.173)

However, this method is not very precise when the integer (M — i) is small. Moreover, this method does not guaran-
tee that the Block-Toeplitz Hermitian matrix R constructed from the autocorrelation coefficients Ro, Rh ey R _11s
positive definite.

To estimate the coefficients (FPo, 21, ...,$,_1) of a stochastic process U(n) from a finite number of observations
U(0),U(1),...,U(M —1) of single time series {U(n)} we present Algorithm 5 which generalize the Burg algorithm
16 to multidimensional time series.

nez’

For any positive-definite matrix R, we denote Rz the lower triangular matrix satisfying R = Rz (R%) " (Cholesky
decomposition of R). Rz can be made unique by requiring the diagonal elements to be positive. We also denote
R%:= (R%)_l.

Theorem 3. The matrices M, of Algorithm 5 satisfies, Vi € [1,n — 1]:
I—M,M7>0 (2.181)
i.e. the matrix M; has singular values of magnitude less or equal to one [51].

Proof. Let i € [1,n — 1], we first define the matrices Ey and Ej containing respectively the forward and backward
prediction errors:

Ef = [Fi—l,i;---aFi—l,p—l] (2182)
Ey:=[Bi—1i-1,...,Bi—1p-2] (2.183)
and
~ _ 1 ~ ~
Ey = (B Bf) 2 By, (EGEf =1) (2.184)
~ _ 1 ~ ~
By = (B, B * B, (EbE;f - I) (2.185)
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Algorithm 5 Estimate multidimensional reflection coefficients

Input A vector sequence Uy, ..., Up_1.
Initialization:
FO,k:BO,k:Uk k‘=0,...,p—1 (2174)
1%
Py =- U Uy, (2.175)
0 » ];0 k

for:=1,...n—1:do

p—1
R, = Z Fi 1 pFiq" (2.176)
k=i
p—1
RP, = Z Bi 14 1B 11" (2.177)
k=i
p—1
RIE =N F, 1 4B 151" (2.178)
k=i
F —3 pFB B -\
M;=—-R;_; * R (Ri—l 2) (2.179)
Fi,k = Fifl,k + MiBifl,kfl k = 1, P — 1
{ Bix = Bi s 1+M"F, 1, k=i,..,p—1 (2.180)
end for
return (Py, My, ..., M, _1)
With these definitions, we can write:
M; = E; Eff (2.186)
since
Rl = EfE{ R}, =EFE] RS =EE[ (2.187)
We now consider:
) H T H
0<| Zr [Ef E, ] (2.188)
Ey
[T M;
= Ml-H 7 } (2.189)
I M; I - Mz-MiH 0 I 0
“lo 1 [ 0 IHMﬂ I] (2-150)
—I-MM?>0 (2.191)
O

Note that if the number of linearly independent columns of the matrix l gf 1 is greater or equal to its number of
b

rows, then we have:
I—M;M? > 0. (2.192)

Under our model hypotheses, it occurs almost surely when: ¢ < p — 2 % N, where ¢ is the order of the model, p is the
number of observation vectors Uy and NV is the dimension of each vector Uy.

Once the coefficients (]30, Ql, ey ﬁn,l) € 7—[7\} X SDXfl have been estimated using Algorithm 5, we can can trans-
form these coefficients into the autocorrelation coefficients (ﬁo, ﬁl, ey }’én,1> using Algorithm 4. We can then use

Equation (2.126) to estimate the coefficients (A?*l, Ag“l, R AZ:}) from the autocorrelation coefficients (1%0, I%l, R I%n,1> .
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2.2.10 Complex Gaussian processes

When we study a multidimensional wide-sense stationary autoregressive stochastic process of order M:

Un)+A4Un—-1)+...+ AyUn— M) = W(n),

the white noise W (n) is generally assumed to be Gaussian. The stochastic process U(n) is then called a Gaussian
process.

The definition of a multivariate complex Gaussian distribution and its probability density function are given in Sec-
tion 2.1.10. Gaussian stochastic processes with complex values have also been studied in Section 2.1.10, in particular
circularly-symmetric centered complex Gaussian stochastic processes (see Definition 7).

We now generalize the definition of circularly-symmetric centered complex Gaussian stochastic processes given in
Definition 7 to multidimensional stochastic processes.

Definition 11. We call multidimensional circularly-symmetric centered complex Gaussian stochastic processes the pro-
cesses { X1}, for which:

(XT,.. XDV ~CN(0,T,0) VkeN* Vi, ... teT. (2.193)

We now study the circularly-symmetric centered complex Gaussian stochastic processes which are stationary.
Let U(n) be such a process of length M and dimension N. The process U(n) therefore has the following character-
istics:

* its mean is zero: p = E[U(n)] =0,

» since the process U(n) is wide-sense stationary, its autocorrelation function is of the form: Ry, = E[U(n)U(n — k)| Vk e
[0, M —1].

+ its relation function is zero: E [U(n)U(n — k)T| =0 Vke [0,M —1].

The autocorrelation coefficients Ry, R1, ..., Ry/—1 entirely determine the correlation matrix R of the multidimen-
sional Gaussian process U(n). Indeed, due to the stationarity of the process, the correlation matrix R is Block-Toeplitz
as seen in Equation (2.125). We recall that the covariance matrix I" coincide with the autocorrelation matrix R in the case
of zero-mean stochastic processes according to the definition of the autocorrelation and autocovariance coefficients given
in Equations (2.3) and (2.4). We denote in general A/ (0, R) the Gaussian process of zero mean, of correlation matrix R
and of zero relation matrix. The joint probability density of the M samples of the process U(n) is then defined by:

fuU) = exp (-UPR™'U), (2.194)

7V det (R)
where

U=[v@)T,u@7,..., umnT]"

is an M x N-by-1 data vector. The matrix R is then the Block-Toeplitz Hermitian Positive Definite matrix of shape
(M x N,M x N) of the second order moments defined in terms of U by R = E [UU*].

In this chapter, we presented several representation spaces of complex stationary centered Gaussian autoregressive
time series. In Section 2.1, we focused on unidimensional time series. Amoung others, we showed that unidimensional
complex stationary centered Gaussian autoregressive time series can be represented by their Toeplitz HPD correlation
matrix R € 7,7 or by the coefficients (po, i1, - - -, ftn—1) in the product space R* x D™= 1 In Section 2.2, we studied the
more general case of multidimensional time series. Amoung others, we showed that multidimensional complex stationary
centered Gaussian autoregressive time series can be represented by their Block-Toeplitz HPD correlation matrix R € B:{ N

or by the coefficients (P, {1, ...,$,_1) in the product space H{ x SDK?I. In the next chapter, we will endow these
representation spaces with a Riemannian metric inspired by the information geometry theory.
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Chapter 3

Information Geometry Theory

The information geometry theory can be used to endow the spaces of parametric probability distributions with a Rieman-
nian metric [73]. In this chapter, we endow the spaces R* x D"~ ! and ”H]J(, X SD"N_l used to represent complex stationary
centered Gaussian autoregressive time series in Chapter 2 with a Riemannian metric inspired by the information geometry
theory. The Riemannian metric constructed on the spaces R* x D"~! and HE xS D’;fl in this chapter is not the Fisher
metric (often referred to as the information geometry metric). Instead, the Riemannian metric constructed have a simpler
expression than the Fisher metric as it will be a product Riemannian metric.

The metric constructed in this chapter has also been studied using the Lie groups theory by Frédéric Barbaresco
in [39,40] based on the works of Jean-Marie Souriau, Jean-Louis Koszul and Ernest Vinberg [72]. This Lie groups point
of view has also been used by Pierre-Yves Lagrave for radar clutter classification using Neuronal Networks in [61-63].
However, in this chapter we will only adopt the Riemannian manifolds point of view obtained using the information
geometry theory presented by Shun-Ichi Amari in [73] to define a Riemannian metric on the representation spaces of
complex stationary centered Gaussian autoregressive time series presented in Chapter 2.

We start by presenting the information geometry metric in Section 3.1. The representation space of the unidimensional
model described previously in Section 2.1 will be endowed with a Riemannian metric in Section 3.2.2. The representation
space of the multidimensional model described in Section 2.2 will be endowed with a Riemannian metric in Section 3.2.3.
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3.2.3 Information theory and Block-Toeplitz Hermitian Positive Definite matrices . . . . . . . . . .. 50

3.1 Introduction to Information Geometry Theory

In this section we present the information geometry theory. For a more complete presentation of information geometry
tools, we refer to the book by Shun-ichi Amari called "Information Geometry and Its Applications" [73] from which this
section is inspired.

We start by introducing the notion of divergence.

3.1.1 Divergence definition

Let P and () be two points of a Riemannian manifold M with respective coordinates {p and {p. The divergence is
a differentiable function of P and (). The divergence between the points P and @ will be denoted by D[P : Q] or

D¢p : &l

The following definition is given in [73]:
Definition 12. The function D [P : Q)] is called a divergence when it satisfies the following criteria:

1) D[P:Q]=0 VY(P,Q)e M2
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2) D[P : Q] = 0 when and only when P = Q.

3) When P and Q are sufficiently close, by denoting their coordinates by {p and £ = Ep + d§, the Taylor expansion
of D is written as:

D €p +de] = ng (ép) dg'dg’ + 0 (|agl”) (.1

where the matrix G = (g; ;) is positive-definite, depending on {p.

The divergence D [P : (] represents the degree of separation between the points P and Q. The divergence is not
necessarily a symmetric map, therefore we have D [P : Q] # D [Q : P] in general. The square root of a divergence is
therefore not a distance in general. We call D [P : Q] the divergence from P to Q.

Several examples of divergences are given in the book by Shun-ichi Amari [73]. We now present an example of
divergence on probability distributions.

3.1.2 Kullback-Leibler Divergence

The Kullback-Leibler divergence is defined by S. Kullback and R. A. Leibler in the general case of probability measures
over aset X [47]. Let P and () be two probability measures over a set X such that P is absolutely continuous with respect
to @, then the Kullback-Leibler divergence from () to P is defined as

Dgr(P:Q) = J log <dQ) dP (3.2)

where 4 dQ is the Radon-Nikodym derivative of P with respect to (), and provided the expression o the right-hand side
exists.

If p is a measure on X such that P and @) are absolutely continuous with respect to p, then the expression of the
Kullback-Leibler divergence is:

Dkrlp:ql = L p(z)log (pgzo du(x) (3.3)

where p and g are the densities defined by p = 7 and g = dQ

In the following, we will often consider the set X = R™ and the measure du = dzx (the Lebesgue measure).

When the random variables associated with g and ¢ have discrete values, the integral is replaced by a sum.

We will now give a method to construct a divergence on a manifold from a convex function defined on this manifold.

3.1.3 Convex function and Bregman Divergence

Let X be a convex subset of a real vector space and let f : X — R be a function.
A function ¢ is said to be convex when the inequality

Ap(a) +(1=XN)Y ()= (Aa+ (1—-N)D) (3.4)

holds for all (a,b) € X? and for all scalar 0 < \ < 1.
A function v is said to be strictly convex when the inequality

AMp(a)+ (1=XN) (b)) < (Aa+ (1—A)b) (3.5)
holds for all (a,b) € X2 such that a # b and for all scalar 0 < X\ < 1.
When the function ¢ of coordinates & = (£1,&,...,&,) is of class C2 on an open convex subset X of a real vector

space, then the function 1 is strictly convex if and only if its Hessian matrix

(32
Hit)= (551‘953'

is positive-definite for all £ € X. Note that a function v convex for a coordinate system 6 will not necessarily be
convex expressed in another coordinate system £. The convexity is preserved affine change of coordinates [73].

We now give an example of a convex function on exponential families of probability distributions. An exponential
family of probability distributions is described by:

(0 (£)> (3.6)

p(z,0) = exp (Z 00" + k(z) — (9)) 3.7
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Convex function and Bregman divergence

Dyl&: &ol

Figure 3.1: The convex function z = % (§), its supporting hyperplane with normal vector n = V1 (§y) and divergence

Dy [€ : &o]

where p (x, 6) is the probability density of the distribution p of parameter 6 at the point =. The term k(z) is a function
of . The term exp (—1 (6)) is the normalization factor by which:

fp(xﬁ) dr = 1. (3.8)

The expression of ¢ () is therefore given by:

¥ (6) = log (J exp (Z O;x" + k(x)) dm) . (3.9)

The set of exponential families of probability distributions M = {p (x, 6)} is considered as a manifold of which 6 is
a coordinate system.

By differentiating twice the application 1) given in Equation (3.9), it is proved in [73] that its Hessian matrix is positive
definite. We have indeed:

VV () = Varg [z] . (3.10)

The function v is therefore a strictly convex function for the coordinate system #. This function is known as the
cumulant generating function in statistics and the free energy in statistical physics.
We now define the Bregman divergence associated with the convex function 1.

Definition 13. The Bregman divergence associated with the convex function 1) is defined by the function:

Dy [€: €] = ¥ (&) =¥ (S0) = Vi (&) - (€ —&o) - (3.11)

The Bregman divergence represents the difference between the convex function ¢ evaluated at the point & and its
tangent plane at £, evaluated at the point £. The figure 3.1 is given in [73] to illustrate the Bregman divergence from the
graph of the convex function 1 ().

Consider the example of an exponential family of probability distributions. The Bregman divergence from 6 to ¢’
associated with the function ¢ defined in Equation (3.9) of an exponential family is computed using:

Dy[0:60]=v¢(0)—v(0) -V (0)-(6—-0) (3.12)
From Shun-ichi Amari’s book [73], we have:
Dy [0:0'] = Dgr[p(z,0) :p(z,0)] (3.13)
where Dk, [p(z,0") : p(x,0)] is the Kullback-Leibler divergence defined in Section 3.1.2. This gives us here:
D [p (2,60') : p(2,0)] = fp (w,6") log (p (W')) dz. (3.14)
p(z,0)

42



3.1.4 Legendre transformation

We refer to the book "Convex Analysis" of R. Tyrrell Rockafellar [68] for a comprehensive study of the Legendre trans-

form of convex functions. This book studies the class of convex functions for which the Legendre transform is well defined

(see essentially strictly convex functions). Here, we will apply the Legendre transform to the function ¢ (6) associated

with an exponential family of probability distribution (3.9) which is a strictly convex function as seen in Equation (3.10).
We denote by £* the gradient of the strictly convex function v at the point &:

& =V (€). (3.15)

The gradient £* is equal to the normal vector v of the hyperplane tangent to the map 1) at the point £. Since the map
1) is convex, two different points of the manifold M will be associated with two different normal vectors. The map which
associates a point £ to the corresponding normal vector v is bijective and differentiable. We can therefore use the set of
normal vectors v cas a second coordinate system of M related with the coordinate system £ by Equation (3.15). This
transformation is called the Legendre transformation. The Legendre transformation has a dual structure concerning the
coordinate systems & and £*. To show it, we define the following function of £*:

P*(EF) =& =1 () (3.16)

where
£-&* =)k (3.17)

and ¢ is a function of £* defined by the inverse of the function £* = V) (&).
By differentiating Equation (3.16) with respect to £*, we obtain
¢ o€
VY  (§*) =6+ =& -V —.
PE(ET) = ¢ 65*5 ¥ (§) aer
Since the last two terms of Equation (3.18) cancel each other out according to Equation (3.15), we have two dual
coordinate systems in the following sense:

(3.18)

=V, &=V (£F). (3.19)

The function ¢)* is called the Legendre dual of .
The function ¢)* satisfies the following property:

Y*(€7) = max {¢-e -y (¢)}. (3.20)

When the function v is a convex function (not necessarily stricly convex) the "max" in Equation (3.20) should be
replaced by a "sup". However, the supremum is reached in the case of strictly convex functions [14], which justify the
expression given in Equation (3.20).

This property is frequently used to define the function ¢*.

We will now show that the function ¢* is convex for the coordinate system £*. The Hessian matrix of ¢* (£*) is
defined by:

¢
G* (%) = VVy* (%) = —, 3.21
(€)= VI9* (€)= 75 (3:21)
which is the Jacobian matrix of the transformation from £* to &.
The Hessian matrix of ¢ (£) has the expression:
oc*
G(€)=VVy(§) = 2 (3.22)
this is the Jacobian matrix of the transformation from & to £*.
Hence, we have
G* =G L. (3.23)

The matrix G* is therefore positive definite since G is positive definite. This proves that the function ¢* is convex for
the coordinate system £*.
We can define a new Bregman divergence from the dual convex function ¢* :

Dyw [¢* 5 €¥'] = v (%) = v* () = vu* (&) - (¢ - ¢¥). (3.24)
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which we call dual divergence.
According to Amari [73], we can prove that:

Dys [g* :g*’] —Dy[e €] (3.25)

The divergence defined from the convex function v (§) is equal to the divergence defined from the convex function
* (€*) if the order of the two input points is exchanged.

We now present the dual structure when the convex function v is the free energy « (6) defined in Equation (3.9).

The dual coordinate system given by the Legendre transformation is given by:

0% = Vi () = Eg [4], (3.26)

where Ey is the expectation with respect to p (z, 6).
Because of Equation (3.26), the dual coordinate system 6* is called the expectation parameter in statistics.
According to Equation (3.16), the convex function ¢* (6*) has the following expression:

YE(OF) =00 -4 (0), (3.27)

where 6 is a function of 8* given by the reciprocal of the function 6* = V1) (6).
According to [73], this proves that ¢)* is the negative entropy:

* (0%) = Jp (x,0)log (p (z,0)) dz. (3.28)

The dual divergence obtained from the convex function ¢* is the Kullback-Leibler divergence defined in Section
3.1.2:

Dy [9* : 9*/] = Dk [p(2,0) :p(z,0)], (3.29)

where § = Voo* (6*) and ¢’ = Vp* (6*').
We will now see how the Bregman divergence can be used to define a Riemannian metric.

3.1.5 Bregman Divergence and Riemannian Metric

Let ¢ be a convex function on a manifold M for a coordinate system . When df represents an infinitesimal line, the
square of its length ds is given by:

ds* =2Dy [0 : 0+ df] = ngdﬁidﬁj (3.30)
(2%
according to the third condition of the definition of the divergence (3.1).
We then notice that the Riemannian metric g; ; is given by the Hessian matrix of the convex function 1):

('/:2
9i,; (0) = mw (0) (3.31)
according to the definition of the Bregman divergence 13. Equation (3.31) can also be written as follows: g; ; () =

005 ().

We can also construct a Riemannian metric from the convex function ¥)* on the coordinate system 6* defined thanks
to the Legendre transformation 3.1.4. For convenience, we will denote by 7 the coordinate system 6* and by ¢ the convex
function 9)*.

The metric associated with the dual structure is therefore:

ds*? = 2D, [n:n+dn] = Zgi’jdmdnj (3.32)
4,3
where the matrix G* = (gi*j ) is the inverse of the matrix G' = (g; ;) according to Equation (3.23).
The dual Riemannian metric g*/ is given by the Hessian matrix of the convex function ¢ on the dual coordinate
system 7):

- o2
gt (77) — 67707]'90 (77) . (3.33)
015

This equation can also be written: g*7 () = 007 ¢ (7).
According to Equations (3.21) and (3.22), Ithe coordinate systems 6 and 7 are related by the following equations:

dn = Gdf, df =G~ tdn. (3.34)
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According to Equation (3.25), we have

D, [77 : 17’] =Dy [9/ : 9] . (3.35)

According to [74], the metric ds? and its dual metric ds*2 are equal:

ds® = ds*2. (3.36)

According to Equation (3.34), we have indeed:

ds* = d9T Gdf = (G’ldn)T G (Gdn) = dn" G~ tdn = ds**. (3.37)

These two dual metrics therefore define the same Riemannian manifold structure.
For an exponential family of probability distributions (3.7) whose convex function % (6) is given by Equation (3.9),
the matrix of the metric associated with the Bregman divergence coincides with the Fisher matrix, well known in statistics.

Theorem 4. The matrix G of the Riemannian metric associated with an exponential family is the Fisher matrix defined
by

9i.j (0) = Eg [0i1log (p (z,0)) 0; log (p (,0))], (3.38)

which can also be written:

915 (0) = —Eg [0:0; log (p (., 0))] . (3.39)

A proof of this theorem is given in Amari’s book [73]. The use of the Fisher metric on varieties of probability ditri-
butions is justified by the invariance properties of this metric by change of parameterization. These invariance properties
are studied in Amari’s book [73].

We will use the dual structure presented in this section to define a metric on the manifold of circularly-symmetric
central complex normal distributions in the following sections. We will set g*7 () = 0°07¢ (n) where ¢ is the neg-
entropy function defined in Equation (3.28).

3.2 Information theory of circularly-symmetric central complex normal dis-
tributions

In this section, we use the information geometry theory presented in Section 3.1 to endow the space of HPD matrices
with a Riemannian metric in Section 3.2.1. We will then use the results obtained in Section 3.2.1 to endow the particular
case of Toeplitz HPD matrices with a Riemannian metric in Section 3.2.2; we will also to endow the particular case of
Toeplitz-Block Block-Toeplitz HPD matrices with a Riemannian metric in Section 3.2.3.

3.2.1 Information theory and Hermitian Positive Definite matrices

As seen in Section 2.1.10, a complex multivariate Gaussian distribution Z is defined by its mean vector p := E[Z],
its covariance matrix I" := E [(Z — ) (Z - M)H] and its relation matrix C' := E [(Z —w)(Z— u)T]. The time series

studied in Section 2.1 can be considered as realizations of complex multivariate normal distributions of zero mean (y = 0),
of zero relation matrix (C' = 0) and Toeplitz covariance matrix I". We start by recalling the definition of circularly-
symmetric central complex normal distributions given in Section 2.1.10.

Definition 14. The circularly-symmetric central complex normal distribution corresponds to the case of zero mean
(11 = 0) and zero relation matrix (C = 0).

The probability density function of a circularly-symmetric central complex normal distribution of covariance matrix
I" has the following expression :

1
) = o Hrfl . 4
p(z,T) —det (D) ) exp( z z) (3.40)
This density also can be written:
p(2,T) =exp (—z"T 7'z —In(det () — nln (r)), (3.41)
or:
p(2,T) =exp (—z"T 'z +In(det (T7")) —nln(x)). (3.42)
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We set 6 := Vec (I‘*l) and T (z) = —Vec (zzH ) where Vec is the application which transforms a matrix M € C™"*"

into a vector of C" by superimposing the columns of M one under others.
We can therefore express the density the following way:

p(2,0) =exp(6-T(2) — v (6). (3.43)

where

¢ (0) =—In(det (T™")) +nln () (3.44)

with 6 = Vec (I'™1).

We recognize the structure of a probability distribution belonging to the exponential family (3.7).

The function v defined in Equation (3.44) is therefore a convex function for the coordinate system 6 according to
Equation (3.10).

We can therefore endow the space of Hermitian positive definite matrices H,;} with a Riemannian manifold structure
thanks to the metric resulting from the Bregman divergence (3.31):

62
i (0) = ——— 1 (6). 3.45)
95 (6) = =t 0) (
According to Theorem 4, this metric coincides with the Fisher metric:
2
5 (0) = —E — o z,0))|. 3.46
5 0) = ~s | =T og (2.0 | (.46

According to Section 3.1.4, the metric g; ; (/) has a dual structure.
The dual coordinate system is defined by 7 := V1 (#). From Equation (3.26), we have:

n=Ey[T (2)] = Vec(T). (3.47)

The neg-entropy function ¢ defined in Equation (3.28) is convex for the coordinate system 7, it is the dual function of
the function 4. For circularly-symmetric central complex normal distributions, the neg-entropy function has the following
expression:

¢ (n) :=Er [In(p(Z,1))] (3.48)
=Er [ln (w"dit(l“) exp (—zHF_lz)>] according to Equation (3.40) (3.49)
= —1In(det (T')) — nln(me) — Ep [T 2] (3.50)
=—In(det(T")) —nln(xw) —n (3.51)
= —1In(det (T')) — nln (mwe) (3.52)

with 7 = Vec (I"). As mentioned in [82], the function ¢ (7)) is a Kéhler potential. The definition and properties of a
Kdihler potential are detailed in [81].
We can therefore also define a Riemannian metric on the space of Hermitian positive definite matrices ! as follows:

('/32

g7 (n) = Fman ) (3.53)
(AN

Since ds? = ds*2 (3.36), the Riemannian metrics defined by Equations (3.31) and (3.53) are equivalents.

This metric endows the space ;% with a Riemannian manifold structure. The geometric tools of this manifold will be
presented in Section 4.2.1.

In Section 3.2.2, we will construct a Riemannian metric on the submanifold of circularly-symmetric central complex
normal distributions whose covariance matrix I is Toeplitz. In Section 3.2.3, we will construct a Riemannian metric on the
submanifold of circularly-symmetric central complex normal distributions whose covariance matrix I' is Block-Toeplitz.
For these two submanifolds, the Riemannian metric will be constructed using Equation (3.53).

3.2.2 Information theory and Toeplitz Hermitian Positive Definite matrices

We now use the information geometry metric presented in previous Section 3.1 to endow representation spaces of unidi-
mensional complex stationary centered Gaussian autoregressive time series presented in Section 2.1 with a Riemannian
metric. This section is inspired by the thesis work of Alice Le Brigant [15] and the work of Le Yang [6], [82].

We have seen in Section 2.1 that complex stationary centered Gaussian autoregressive time series can be represented
by their covariance matrices which is Toeplitz Hermitian positive definite.
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The time series studied in Section (2.1) are complex stationary centered Gaussian autoregressive time series of order
k:

k
u(l) + ). af u(l — i) = wk(1) (3.54)
i=1

where a are the prediction coefficients and the prediction errors w* (I) are independent identically distributed centered
complex Gaussian processes. Note that the coefficients w”* (1) are independent of the coefficients (u (I — 7)), .
We have seen previously that the covariance matrix of this time series is Toeplitz Hermitian positive definite (2.12):

ro Ty ry ... Ty
* *
T1 To ?"1 Irk'—l
*
Rpo1=|T "N o oo T2, (3.55)
e Tk—1 Tk—2 e To

The Levinson algorithm 13 presented in detail in Appendix A can be used to compute the coefficients ag of the
autoregressive model from the autocorrelation coefficients (7o, 71, ..., 7p—1)-

The neg-entropy function is expressed for circularly-symmetric central complex normal distributions in Equation
(3.48). We would like to express this function in the particular case of circularly-symmetric central complex normal
distributions whose covariance matrix is Toeplitz with respect to the mean quadratic power coefficient py = 7o € R and
the reflection coefficients (p1, . . ., fin—1) € D"~ ! defined by u; = al.

We denote by pi the expectation of the square mean of the estimation error of the autoregressive model when the
coefficients a¥ are optimal:

2
o= E [yw’f(z>| ] , (3.56)

where wy (1) is the error term defined in Equation (3.54).
We then have:

ro rf Ty ry 1 Dk

LT ry o 0

ro T T ... Tho| a5 = |0, (3.57)

Tk Th—1 Tk—2 ... T0 ay 0

Equation (3.57) gives us (k + 1) equations whose line i is obtained by performing the operation E [(-) u (I — 4)*] on
the right and left sides of Equation (3.54).
The first line gives us in particular:

pe=ro+ », ¥ d. (3.58)
j=1
In Appendix A, we define
k
pr =10+ ». 75 ak*, (3.59)
j=1

According to Proprerty 26 of Appendix A, we have:

Pt =y (1 - |m+1l2) vieN. (3.60)

The definitions of p given by Equations (3.58) and (3.59) coincide since py is real according to Equation (3.60) and
is therefore equal to its conjugate.
The coefficient pjy also has the following property:

Property 19. The coefficient pi, can be expressed as the quotient of the determinant of I'y+1 by the determinant of

Iy [43]:
g . det (Fk+1)

Pk = et T1) (3.61)
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Proof. Indeed, when we compute the determinant of the matrix Ry defined in Equation (3.55), by using the elements
of its last column and by using the associated minors, we obtain [15]:

k+1
det (Tpy1) = > (—D)FF 0k det (Ajgg) (3.62)
i=1
where the matrix A; ; is a matrix of size k obtained from the matrix I';4; by removing the row 7 and the column j.
Note that Ag1 k11 = L'k, therefore det (Ag1,,+1) = det (T'x).
For i € [1, k], we have:

B * * * T T
0 ri ra rE Ly
N ~
AR _ | Tim2 Tie3 Timd e T Ly (3.63)
" = & <. .
v T Tiel Ti—2 .. TR 4 L;
| Tk Te—1 Tk—2 ... rr Lk

To transform Equation (3.62), we would like to express the determinant of the matrix Af“ as a function of the

determinant of the matrix I'y,. We denote by Zj the j" row of the matrix Af“ and by L; the j th row of the matrix T',.
Note that

Vjel,i—1],L; = L;, Yje[i,k—1],L; = L;;1. (3.64)

We now modify the line Ly, of the matrix Af“ by an operation which does not change its determinant:

i—1 k-1 k-1
Ly—Le+ Y afyy ;Li+ Y af ;Li=Lesa+ Y afyy L (3.65)
j=1 j=i =1
J#i
From the equations defined by the matrix equation (3.57), we then have Ek = fal,z s1—i L

To obtain the matrix I';, (except for a multiplication of its i*" row) from the matrix Af“, it suffices to perform a cyclic
permutation of the last rows of the matrix A¥*1:

Li—1L; and Vje[i,k—1], Lij1 < L;. (3.66)

This operation modifies the determinant of the matrix Af *1 by a factor (—1)’“71'.
Therefore, we have:

det (A1) = (1) (=af ;) det (Dg) = (1) "1k, det (I'y). (3.67)
We finally have, coming back to Equation (3.62) :

k+1
det (Tgyr) = Y (=)0 det (A 441) (3.68)

i=1
k+1 ) ]

=3 D (D e, det (T) (3.69)
i=1
s 2(k+1

= D (0P ek det (Ty) (3.70)
=1

I
/.M;

S
I
o

r*af) det (T'},) (3.71)

by setting af = 1.
We also have p;, = Zf:o r¥ a¥ according to Equation (3.58). So we finally have:

K2

det (Fk+1) = Pk det (Fk) s (372)

which concludes the proof.
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Since pg = 19, we can prove by recurrence that
(3.73)

det (T'x) n Di.

(3.74)

According to Equation (3.60), we therefore have
—k

det (T',) = pj H (1= 1)

The neg-entropy function expressed for circularly-symmetric central complex normal distributions in Equation (3.48)
v(n) =—1In(det (I'x)) — nln(we), (3.75)
also has the following expression:
¢ (n) == Er [In(p(Z,T))] = —nln (po) 2 By (1= [uel*) = nin (e) (3.76)
The metric induced by the Hessian matrix of the neg-entropy function is therefore given by
2 o2 - 7
s°=———(nln(po) k)In (1 — |l ) dp;dp; (3.77)
2BidB; g !
where By = pg and 3; = p; foralli > 1.
We obtain:
d 2 n—1 d
ds? = n (po) + 3 (n—k) s (3.78)
Po k1 (1 _ |,Uk| )
We therefore have a product metric
n—1
ds* = )" dsj, (3.79)
k=0
We recognize a metric on R
d
ds? = n ( ;) (3.80)

and a metric on the complex unit disk which is equal to the metric of the Poincaré disk except for a multiplicative
(3.81)

2
2] Vi<k<n-—1.

constant:
dsi =(n—k) 7
(1= 1)

The metric defined by Equation (3.78) endows the space R* x D"~! with a Riemannian metric. This manifold is
x (D, dsn 1) and called Poincaré polydisk in [15]
(3.82)

denoted RT*+ x D71 := (Ri ds3)

,dst) x (D,ds?) x .
Note that this manifold is not endowed with the Flsher metric whose matrix G is defined in Equation (3.38) by
= —Ey [0i0;log (p (x,0))].

9i5 (0) = Eg [0 log (p (2,0)) 0; log (p (x,0))]
Indeed, in the particular case of AR process of order one (n = 2), the infinitesimal square length element given in
(3.83)

Equation (3.78) becomes:
ds* =2 dpo + 7‘dﬂl|2
y20] 2)?
1= [pa
which corresponds to the scalar product matrix
= 0
G = dJ 1 (3.84)
(1|p1?)?
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However, the Fisher matrix of on AR process of order one is:

2 —H1
»3 p0<1—\u1|2)
— [ 1

M1
pu(1—|u1|2) (1—\,“1\2)2

The computation of the coefficients gg o and g; 0 has been done explicitly in the thesis of Le Yang [82]. The matrix
G risher 18 not a diagonal matrix, therefore the associated metric is not a product metric. As a consequence, the de-
scription of the geometric tools (distance, Riemannian logarithm map, Riemannian exponential map, geodesics, sectional
curvature...) of the manifold obtained by endowing the space R* x D"~! with the Fisher metric would be very difficult.

As seen in Section 3.1 and explained in the book written by Shun-ichi Amari [73], if we consider an exponential
family whose probability density function (3.7) is given by:

GFisher = (385)

p(x,0) = exp (Z 00" + k(x) — (9)) =exp(0-z+k(x)—v(0)), (3.86)

then the scalar product matrix obtained by taking the Hessian of the convex function v (6) (related to the Bregman
divergence) is equal to the Fisher matrix (Theorem 4). As seen in Equation (3.36), this metric defines the same manifold
structure (same distance, geodesics...) than the dual metric defined by the Hessian of the negative entropy function on
the set of dual parameters obtained by the Legendre transformation. However, the manifold constructed in this section on
the set R¥ x D"~ using the Hessian of the negative entropy function does not correspond to the Fisher matrix. Indeed,
the set of dual parameters = Vec (') given in Equation (3.47) as been transformed into another set of parameters
(po, pt1, - - - in—1). However, the set of parameters (pg, (41, - -, ftn—1) might be the Legendre transform of a set of
parameters € which cannot be expressed in the form of Equation (3.86). In this case, the conditions of Theorem 4 are not
satisfied and the manifold obtained by considering the Hessian of the neg-entropy function on the set of dual parameters
does not necessarily coincide with manifold obtained using the Fisher metric.

We will present the geometric tools of the product manifold constructed here in Section 4.1 of Chapter 4. Now that we
have endowed with a Riemannian metric the space R* x D"~! which can be used to represent complex unidimensional
stationary centered Gaussian autoregressive time series, we endow with a Riemannian metric the space H X, X SDR,_l
presented in Section 2.2.8 which can be used to represent complex multidimensional stationary centered Gaussian autore-
gressive time series.

3.2.3 Information theory and Block-Toeplitz Hermitian Positive Definite matrices

In this section use the information geometry metric presented in Section 3.1 to endow representation spaces of multidi-
mensional complex stationary centered Gaussian autoregressive time series presented in Section 2.2 with a Riemannian
metric. The objective is to construct a Riemannian metric on one of the representation spaces of multidimensional com-
plex stationary centered Gaussian autoregressive time series. This section is inspired by the work of Ben Jeuris and Raf
Vandebril [45].

We recall the equation of the multidimensional complex stationary centered Gaussian autoregressive time series stud-
ied in Section 2.2:

n—1
Uk)+ Y, A7 Uk —j) = W(k) (3.87)
j=1

where W is the prediction error vector and the autoregressive coefficients A}’*l are square matrices. The predic-
tion errors W (k) are assumed to have independent and indentically distributed circularly-symmetric centered Gaussian
distributions. The coefficient W (k) is independent of the vectors U (k — j) forall j > 1.

The time series described by Equation (3.87) have a Block-Toeplitz Hermitian positive definite covariance matrix
according to Equation (2.125):

Ry RE RE ... RH T L
R, Ry RHE RHE | L,

R, R, R Ro RILs| Lz (3.88)
R, 1 Ry,—2 R,_3 Ry L,

We recall the formula of the neg-entropy function expressed for circularly-symmetric central complex normal distri-
butions given in Equation (3.48):

v (Ry,) = —In(det (Ry,)) —nln(we). (3.89)
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We have seen in Section 2.2.6 that the matrix coefficients A% of the autoregressive model belong to the set Dy :=
{F e CVXN | T -TT > 0}. We now try to express the function ¢ with respect to Ry and to the autoregressive coefficients
(A%, A3 .. AZ:}). We can then obtain a Riemannian metric on the space H 3 x D%fl by computing the Hessian matrix
of ¢ with respect to Ry and to the coefficients A%.

The autocorrelation coefficients I?; and the coefficients of the autoregressive model are related by the Yule-Walker
equations (2.123):

A, R, =-V, (3.90)
with:
A, = [A7,..., A"]
" = [Ri,...,Ru]
Ro Rl RQ Rn,1
R Ry, R R,_s (3.91)
B - | BRI R Ro_s
RE, RE, R, ... R,

We denote by L; the N first rows of the matrix R,,, Lo the next [N rows and so on where NN is the size of the blocks of
the matrix R,,. By permuting the rows of the matrix R,,, by the operation L; «— L, _; then the columns by C; «— C,,_;,
we can transform the matrix R,, into the matrix }Nin Hence we have, since there is an even number of real rows (of size
1) to permute:

det (R,,) = det (En) . (3.92)
Recall the block matrix inversion formula based on the notion of "Schur complement" [45]:
_ B—1
Rl_+11 _ (67} U Rl (3.93)

~R'UHq Ry'UHoRT

- -1
with o = (RO -0 Rl_lU lH ) . Note that the matrix «; is Hermitian positive definite as the main submatrix of the

-1
— 1+1°
We recall the notation M := JM*J, where J is the antidiagonal matrix. The auxiliary matrix P, involved in the

multidimensional Levinson algorithm 1 can be expressed as a function of the coefficient a;:

Hermitian positive definite matrix R

P = Ry + AU = Ry + UR'UH = ot (3.94)

Since the matrix oy is a Hermitian positive definite matrix, the matrix P, and therefore the matrix P, are also HPD
matrices.
Using the multidimensional Levinson algorithm 1, we have the following recurrence formula [45]:

Po= Py = AL A = (1- AiA}) Py (3.95)
with Py = Ry.
By recurrence, we therefore have:

B =Ry ]L[ (I - A;Z,?;i) . (3.96)

=0

The determinant of Eﬁn also has the following recurrence property [45]:

det (fzn) — det (fzn,l) det (Ro — U R UH 1) (3.97)
— det (RH) det (a;,) (3.98)
—det (Ry-1 ) det (P). (3.99)
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We therefore obtain by recurrence:

det (Ry) = [ ] det () (3.100)
i=0
and therefore, according to Equation (3.96) :
n—1 .
det (B, = (det (Ro))" [ ] (det (1 — 41)"". (3.101)
i=1

The neg-entropy function for circularly-symmetric central complex normal distributions recalled in Equation (3.89)
can therefore be expressed as a function of P and of the coefficients A? the following way:

v (Ry,) = —nlog (det (Py)) Z (n —1)log (det (I —T',I';)) — nlog (me) . (3.102)

We obtain the infinitesimal squared length ds? by computing the Hessian matrix of the function ¢ (we use complex
differentiation):

ds* =ntrace (Py 'dPyPy 'dP) (3.103)

+ 2 (n — 1) trace (I~ 1)~ dry (1= TyTy) ™ dly)
=1

We recognize a product metric. Up to a multiplicative constant, the metric obtained on H % is:

ds® = trace (Py 'dPy Py 'dP,) . (3.104)

This metric is well known and is discussed in Section 4.2.1 of Chapter 4.
However, the metric obtained on the spaces Dy is up to a multiplicative constant:

ds? = trace (I = TuTy) ™ dly (1= Tury) ™ dly). (3.105)

This metric on the space Dy does not correspond to the metric of a already known manifold and the explicit expression
of the distance on this manifold does not seem obvious [45]. However the "metric" defined by Equation (3.105) is not a
metric as it do not respect the indentity of indiscernables (d(z,y) = 0 <> = = y). Indeed, if we consider:

(00 _( d= dz

T, = ( 0 0) and dly = ( dns do ) (3.106)

then we obtain:

ds? = trace (I = TuTy) ™ dry (T =TTy ™ dTy) (3.107)
= trace (dI',dI;) (3.108)
= trace (d['}Jd['}J) where J = ( ? (1) ) (3.109)
_ dz1 dz dzf dz¥
= trace << dzs  dzy > ( d=f de (3.110)
=2Re (dz1dz}) + |dza) + |dzs]” . (3.111)

If we denote z; = dx; + idy; for j € [1, 4], then we obtain:

ds® =2dxydy + 2dydys + dad + dy? + da? + dy? (3.112)

which is not the infinitesimal element ds? of a metric: if dz; = dza = dzs = 0 and |dz4| > 0, then ds? = 0.
However, the set Dy := {I'€ CN*N | I — I'T > 0} looks like the space:

SDy = {QeCV*N | 1-Q0f > 0}. (3.113)

This space is called the Siegel space. Note that the Siegel space defined here has no symmetry condition; there is
another definition of Siegel space including this symmetry condition: Q = Q7.
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The Siegel space is commonly associated with a Riemannian metric which will be presented in Section 4.2.2.

Hence, we will transform the coefficients A% € Dy so that they belong to the Siegel space SD . We will then express
the metric ds? given in Equation (3.105) with respect to the newly obtained Siegel coefficients, hoping the recognize the
usual Riemannian metric of the Siegel disk.

To transform the coefficients A% € Dy so that they belong to the Siegel space SD, we can use the auxiliary matrix
P,_; which is used in Algorithm 1:

Q) = _1/2A1Pl_1/2. (3.114)

Since we have:
Al =-NPTY, (3.115)

We then have:
Q = 1/2Al 12 (3.116)

It has been proved by Dette and Wagener [28] and by Fritzsche and Kirstein [32] that this operation transforms a
Block-Toeplitz HPD matrix into coefficients which belong to the Siegel disk.

We would now like to express the neg-entropy function ¢ expressed for the circularly-symmetric central complex
normal distributions in Equation (3.89) with respect to the coefficient Py and to the coefficients 2; € SDy.

In the case where the blocks R; of the matrix R, are themselves Toeplitz, we have [45]:

A=A (3.117)
In this case:
det (1 - AjAf) =det (1 - APIAPY) (3.118)
— det (1 APIAR P ) (3.119)
det (I— Pl‘_ll/QAlPl—_llAFPfflﬂ) (3.120)
=det (I — Q). (3.121)

According to Equation (3.102), the function ¢ therefore has the following expression:

» (Ry,) = —nlog (det (Py)) 2 n —1)log (det (I — Q")) — nlog (re). (3.122)

As before, we obtain the metric ds? by computing the Hessian matrix of the function ¢ with respect to the coefficient
Py and to the coefficients €2; using the complex differentiation:

ds* =ntrace (Py 'dPyPy 'dP) (3.123)

+ 2 (n — 1) trace ((I — 0 hae, (- offa) ™ de’) .
=1

We have thus endowed the space H; x SD’ " with a product Riemannian metric.
The metric on H j{, remains the same as the metric obtained using the first transformation (3.105).
Up to a multiplicative constant, we recognize the usual metric on the Siegel space SD

ds? = trace (I —Q0f) ™ dsy (1 - 0f'2) ™ a0f). (3.124)

The metric given in Equation (3.124) can also be derived from the metric of the Siegel upper halfplane described by
Siegel himself [75], using the following bijection

Q=(B—il)(B+il)"" (3.125)

B=i(I+Q)(I—-Q)" (3.126)
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where B is an element of the Siegel upper halfplane (Im (B) > 0). Note that this link and the Siegel disk itself are
classically only defined for symmetric matrices (in order for the positive definiteness of Im (B) to make sense) [45].
However, removing the symmetry restriction only disrupts the link and the definition of the Siegel upper halfplane, while
the Siegel disk and its geometry remain well-defined.

For simplicity, we will use the metric defined by Equation (3.124) even when the blocks R; of the matrix R, are not
assumed to be Toeplitz. In addition to this simplification, the metric given in Equation (3.123) does not correspond to the
Fisher metric for an another reason. Indeed, the set of parameters (R, 21, ..., ,_1) might be the Legendre transform
of a set of parameters # which cannot be expressed in the form of Equation (3.7). In this case, the conditions of Theorem
4 are not satisfied and the manifold obtained by considering the Hessian of the neg-entropy function on the set of dual
parameters does not necessarily coincide with manifold obtained using the Fisher metric, as detailed in Section 3.2.2 in
the particular case where the blocks of the Toeplitz-Block Block-Toeplitz HPD matrix R, are of size one (the matrix R,
is then Toeplitz HPD matrix).

The geometric tools of this metric will be studied in detail in Section 4.2.2.

We devote Chapter 4 to the presentation of the geometric tools of the Riemanian manifolds obtained in Section 3.2.
The Riemannian manifold on the space H, obtained in Section 3.2.1 will be studied in Section 4.2.1. The manifold
R+ x D"! defined in Section (3.2.2) will be studied in Section 4.1.3. Finally, the manifold obtained on the space
H IJ\} X S’DXFl will be studied in Section (4.2.3) of Chapter 4.
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Chapter 4

Riemannian manifolds associated with
complex valued stationary time series

The spaces of representation of complex stationary centered Gaussian autoregressive time series have been studied in
Chapter 2. We have shown that the one-dimensional complex stationary centered Gaussian autoregressive time series pre-
sented in Chapter 2 in Section 2.1 can be represented by their Toeplitz covariance matrix or by their reflection coefficients
which belong to the space R* x D"~!. This product space has been endowed with a product Riemannian metric in Sec-
tion 3.2.2. The multidimensional complex stationary centered Gaussian autoregressive time series presented in Section
2.2 can be represented in at least three spaces. Indeed, the autocorrelation matrix R belongs to the space of Block-Toeplitz

HPD matrices B;;N, the coefficients (Rg, Al AT

) belong to 7—[}'{, X D}{,‘l and the coefficients (Rg, Q1, ..., Q1)

belong to H}; x SDXfl. This last space has been endowed with a Riemannian metric in Section 3.2.3. In this chapter,
we will present the geometric tools of the product manifolds obtained in Chapter 3.
The table 4.1 synthesizes the spaces and the metrics obtained in Chapter 3 and introduces the notations used in this

chapter.

Table 4.1: Manifolds synthesis

Manifold name and | Space Metric

symbol

Strictly positive real | Strictly positive reals R* dst,, = (%)2
manifold RT+

Poincaré disk D Complex unit disk ds? = [d=I”

D:={zeC,|z| <1}

Strictly positive reals
and Poincaré disks
product manifold
R+ x D1

space R* x Dn~1

Positive reals ans complex unit disks product

n—

T
dstii pn1 =ndsd., + > (n—k)ds}
k=1

HPD manifold HJJ(,Jr HPD matrices

HYy = {MeCVN | zHMz > 0,VzeCN}

dszH++ = trace (P~1 dP P~1 dP)
N

Siegel  manifold | Siegel disk dstp,, = trace (1 —0") ™" do (1 - 1)~ doH)
SDy SDy :={M eCN*N |- MMH >0}

n—1
HPD and Siegel | HPD and Siegel disks product space Hji x | ds? = nalsf_ﬁvr + l; (n—=1) ds%DN

disks product mani- | SD%*

fold Hi;™ x SDy "

++ n—1
HLt xsDY; =
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4.1 Manifolds associated with the unidimensional autoregressive model

The Riemman manifolds presented in this section come from the representation spaces of unidimensional complex sta-
tionary centered Gaussian autoregressive time series presented in Section 2.1 and endowed with a Riemannian metric
inspired by information geometry in Section 3.2.2.

4.1.1 The manifold of strictly positive reals R**
We denote R™ " the Riemannian manifold defined by the space R endowed with the following Riemannian metric:
dz\?
dsgis = <x> . 4.1)

We use here the natural coordinate system induced by the space R’ . The tangent space of R¥ is R.
The distance associated with this space is given by:

b
dr++ (a,b) = |log <a>‘ Va,be R%. 4.2)
The formula of the scalar product is given by:
ef *
e fr, = 3 Va e R, Ve, f eR. (4.3)
We deduce the expression of the squared norm:
2 v 2
v||) =<v,v), = (= aeRY,VveR. .
loll; = w.wo = (3) VaeRYweR @4)
For all ¢ € R%, the map defined by:
b
D, (b) = - 4.5)

is an isometry over the manifold of strictly positive reals R™ . We have in particular ®, (a) = 1 and ®,! = @, Ja-
The Riemannian logarithm map is defined by:

log, (b) = alog (b) Va,be RY. (4.6)
a

2
ar

We can check that we have d3 . (a,b) = [log, (b)]|
The Riemannian exponential map is defined by:

exp, (v) = aexp (%) Va € R% ,YveR. @.7)

We can check that the Riemannian logarithm map (4.6) and the Riemannian exponential map (4.7) are reciprocal of
each other:

log, (exp, (v)) =v VaeRY, VveR (4.8)
exp, (log, (b)) =b VYa,beR. 4.9)

The geodesics parameterized by ¢ starting from the point ¢ with an initial velocity v have the equation [82]:

t
¢ (t,a,v) = exp, (tv) = aexp (;) VteR,VaeRY ,VveR. (4.10)

Since the Riemannian manifold R™ is of dimension 1, its sectional curvature is not defined.

56



4.1.2 The Poincaré disk D
We denote D the Riemannian manifold defined by the complex unit disk D := {z € C||z| < 1} endowed with the follow-
ing metric:

d 2
ds? = B @.11)

(1=

We use the natural coordinate system induced by the complex unit disk D. Tangent space is C.
On this manifold, the distance between two points z; and 25 has the following formula:

1+ 12:;22*
dD (2’1,2’2) = — IOg b Vzl,z'g eD (412)
2 1 — |-Z1=22
1—21251<
or:
1 1+A
d - 21 4.13
b (21, 22) 5 Og(l—A) (4.13)
by noting A := | = —=%|, which can also be written:
—z125
dp (21, 22) = arctanh (A). 4.14)

The scalar product has the following expression:

1 * *
iy, = = 2y e D Vu,ve (4.15)

2
F(1-1eP)
We deduce from the scalar product the expression of the squared norm:

Jul?

HUHi :<U,U>Z =——— VzeD,VueC (4.16)
(1-1=P)
For all €2 € D, the map defined by:
v -0
Oq (V) = 00 vQ, ¥ eD 4.17)

is an isometry on the Poincaré disk D. In particular, this application sends the point Q2 in 0 : @ (2) = 0. This map
also has the following property: ®, L—o_g.
The Riemannian logarithm map has the following expression, V{2, ¥ € D:

o 2 U—Q 10
with v_Q
= — ). 4.1
o= (=g ) (4.19)

The Riemannian exponential map has the following expression, Vi € D, Vv € C:

(1 + €?) e(%> + ( — i)

exp, (v) = S (4.20)
(1 + fet?) 6(W> + (1 — jze'?)
with = arg (v).
The geodesic parametrized by ¢ starting from p with velocity v is given by [0]:
A 2|| t) "
o+ et 6<HM2 +(p—e

2]v]

(1+ ge?) e(wt) + (1 — fie’®)
with § = arg (v).
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The geodesic parameterized by the arc length starting from the point 4« with an initial velocity vector v/ [[v[| , has the
equation:

(N + ei@) e2t + (M _ ei@)

t = tv) = . - 4.22
since [[vf|,, = %
The sectional curvature of the Poincaré disk D is constant at all points of the complex unit disk:
K =—4. (4.23)

The curvature formula will be demonstrated in the more general case of Siegel space in Section E.7.

We will show in Section D.2 that if we multiply the metric ds? of a Riemannian manifold by a constant ¢ > 0, then
the sectional curvature K is divided by c.

So if we denote:

~ 4|dz|?
g A e (4.24)

(o)

then the curvature K of the Riemannian manifold obtained would be, according to Property 44 :

K= % =1 (4.25)

4.1.3 The Poincaré polydisk R™" x D"~!

This has previously been studied in the work of Le Yang [0], [82], in the work of Alice Le Brigant [15] and in the work
of Ben Jeuris and Raf Vandebril [45].
We define the product manifold of strictly positive reals and of Poincaré disks as the space R* x D"~! whose Rie-

mannian metric at the point of coordinates (pg, fi1, - - - , fn—1) is Written:
n—1
dstis pno1 = ndsie, + Z (n—k)ds? (4.26)
d 2 n—1 d X 2
d3is ypn1 =0+ 3 (n— k) _ldm” (4.27)
k= (1 - Iukl2)

This manifold is called Poincaré polydisk in the work of Alice Le Brigant [15]. We will not use this denomination
here not to confuse the manifold R*+ x D"~! with the manifold D" ! used in Chapter 8 to cluster radar time series.

We notice that the Riemannian metric dséJr+ «pn—1 Of the Poincaré polydisk is a weighted sum of metrics studied
previously. In this linear combination, the metric defined on the space R* in Equation (4.1) is used once and the metric
defined on the space D in Equation (4.11) in used (n — 1) times. This metric is therefore a product metric. The manifold
R** x D"~ ! is therefore a product manifold of the manifold R** studied in Section 4.1.1 and of (n — 1) times the
manifold D studied in Section 4.1.2, the metric of each space of the product manifold being multiplied by a constant.

When a product space has a product metric, then the squared distance between two points is the sum of the squared
distances of the spaces that compose the product space. Therefore, we have here:

d§++ xDn—1 ((Po 1y M1,15 o0y Un—1 1) (po,z,m,m ~--7ﬂn—1,2))

n—1
=ndg++ (Po.1,P0.2) Z (n—1)d (1.1, 15.2) (4.28)
ne1l 1+ Mz,l*#zf
—1 I—p1py
=nlog? <]902> + Z n log? T (4.29)
Po,1 =1 4 1 | Hrazie
1*#1,1#??2

We recall that the space 7,7 of Toeplitz Hermintian positive definite matrices is in bijection with the space avec
I’espace R* x D"~ via Algorithms 13 and 14. We can therefore endow the space 7,,” with a distance by defining:

d3 (Ty, T) i= diii pn1 (P01, 11,15 o5 n—11)5 (P0.25 11,2, -y n—1,2)) (4.30)
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where the coefficients (po_;, f41,4, .-, fin—1,;) are obtained from the matrices T; for ¢ = 1,2 using Algorithm 13 or
Algorithm 14.

The scalar product on the space RT™ x D" ! is also a weighted sum of the scalar product defined on R** in Equation
(4.3) and of (n — 1) times the scalar product defined on D in Equation (4.15).

Therefore, here we have Ve, f € R,VYpy € R% | Vuq, ..., up—1,01,...,00—1 € C,Vp1,..., tin_1 € D:

<(€, Upy .- ,un—l) 5 (fv U1y - - aU7z—1)>(p0}p,17,,,,,1,,",1)

n—1
e

ST

2 2°
N

The squared norm of the space R** x D! is also a weighted sum of the norm defined on R** in Equation (4.4)
and of (n — 1) times the norm defined on D in Equation (4.16).
Hence we have, Ve € R, Vpg € RY ,Vuq,...,upn—1 € C,Vu1, ..., i1 €D

n — k upvl + vpu 431)

2 n—l 2
2 € |ug |
1es vy s ttn1) oy o) n+ Dl (n—k) — (4.32)
= (1= lmel?)

We can obtain an isometry on the product manifold R** x D" ~! by taking the product of the isometry on R** defined
in Equation (4.5) and of (n — 1) isometries on the Poincaré disk (4.17).

The Riemannian logarithm map of the product manifold R** x D"~! is the product of the logarithm map of the
manifold R™ " presented in Equation (4.6) and of (n — 1) logarithm maps of the manifold D presented in Equation (4.18).
If we denote logg~+ the logarithm map defined on R** in Equation (4.6):

logg++ (Po,1,P0,2) = Po,1 log (ig’j) , (4.33)

and if we denote by logp the logarithm map defined on D in Equation (4.18):

ME,2 — Hk1
= [k, 1 k2

logp (p 1, pik,2) = (1 — \,uk,1|2) arctanh (‘ ) e0x (4.34)

with 619" — arg (ftk,z—lu@,l )’
—HE,1ME,2

* .
then we have, Vpo,1,p0,2 € RY, Viu1,1, oy fhn—1,1, 41,2, -5 fhn—1,2 € D:

logg++pn-1 (0,15 1,15 -+ in—1,1) 5 (0,25 #1,25 -+ Hin—1,2))
= (logg++ (Po,15P0,2) s logp (p1,1, p1,2) 5 - - - 108D (Hn—1,1, n—1,2)) - (4.35)
The Riemannian exponential map of the product manifold RT* x D"~ is also the product of the exponential map of
the manifold R** presented in Equation (4.7) and of (n — 1) exponential maps of the manifold D presented in Equation

(4.20).
If we denote expg++ the exponential map defined on R™™ in Equation (4.7):

U,
expr++ (Po, Vo) = Po €xp (po) Vpo € RY, Voo € R, (4.36)
0

and if we denote by expp the exponential map defined on D in Equation (4.20):

2|vg]

(1 + €%) 6(1,“%\2) + (pk — ")

expp Lk, Vk) = . (4.37)
4 ( 2|1)k‘2> ,
(1 + pget) e\l 4 (1 — fgei®e)
with 0, = arg (vg),
then we have, Vpy € R% ,Vug € R, Vi1, ..., fin—1 € D, Y1, ...,0p—1 € C:
€XPR++ xDn—1 ((p07 K1y eeey /jl’nfl) B (UO7 Vlyeeny 'Unfl))
= (expr++ (Po,v0) ,expp (H1,1) ;- -+, eXPp (Un—1,Vn—1)) - (4.38)
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The geodesics of the produt manifold R**+ x D™~ are also the product of the geodesics of the manifold R** presented
in Equation (4.10) and of (n — 1) geodesics of the manifold D studied in Equation (4.21):

CR"“*’ xDn—1 (tv (p(]a M1y ey :u’nfl) ) (’U07 U1y eeey vnfl))
= €XPR++ xpn-1 ((va M1y eeey :un—l) ) (t’Uo, tvh (a3} tvn—l)) (439)
= (expr++ (Po,tvo) , expp (K1, tv1) ;.. ., expp (Hn—1,t0n-1)) -

Let us now study the sectional curvature K of the product manifold RT* x D" 1. We recall that the sectional curvature
of the manifold R* ™ is not defined since it is a one-dimensional manifold. According to Equation (4.23), the Poincaré disk
D has a constant sectional curvature equal to —4. We also recall that when we multiply the metric ds? of a Riemannian
manifold by a constant c, its curvature is divided by c. The manifold R** x D™! is therefore the product of a manifold
of undefined curvature and (n — 1) manifolds of respective curvatures —4/ (n — k) for k ranging from 1 to (n — 1).

We can then obtain bounds of the sectional curvature of the product manifold R** x D"~! using Lemma 1 proved

in [82].
Property 20. The sectional curvature of the manifold Rt+ x D"~ is bounded between —4 and 0:
—-4<K<0 (4.40)

Proof. The property is true according to Lemma 1 since all the manifolds constituting the product manifold R*+ x D"~}
either have an undefined sectional curvature or a sectional curvature bounded between —4 and 0. O

4.2 Manifolds associated with the vectorial autoregressive model

The Riemman manifolds presented in this section come from the representation spaces of multidimensional complex
stationary centered Gaussian autoregressive time series presented in Section 2.2 and endowed with a Riemannian metric
inspired by information geometry 3.2.3. The three manifolds presented in this section generalize the manifolds presented
in Section 4.1 in higher dimension.

4.2.1 The HPD manifold
The space of Hermitian Positive Definite matrices H; is defined as:

Hi = {AeC™" |2 Az > 0,Vz e C"\ {0}}. (4.41)

This definition of the Hermitian Positive Definite matrices is equivalent to the fact that the matrix A is Hermitian and
has strictly positive eigenvalues. We will also denote by A > 0 a matrix A € H},.
We endow the space ”H]J(, with the following metric:

ds?,.s = trace (P~' dP P~'dP) VPe?M,. (4.42)
N

We use here the natural coordinate system induced by H 7. The tangent space of 7}, is the space H y of Hermitian
matrices. The metric d52H++ endow the space 7—[} with a Riemannian metric.
N

On this Riemannian manifold, the distance between two matrices A and B has the following expression:

dyyi+ (A, B) = Hlog (A*l/QBA*ﬂ) H2 VA, B e HE. (4.43)

The scalar product has the following expression:

(BE,F), = trace (A"'EA™'F) VAeH},VE,FeHy. (4.44)

The expression of the squared norm of the vector E expressed at the point A is therefore:

|E|% =(E,E), = trace(AT'EAT'E) VAeH},,VE € Hy. (4.45)

The following map is an isometry on the space H]’\L, for the metric described previously:

D4 (B)=A"V2BATY? YA BeHE. (4.46)

We have in particular ® 4 (A) = Iy and ;' = &4 1.
The differential of isometry ¢ has the following expression:

D® 4 (B)[h] = A~Y2hA™Y2 YA BeHi,VheHy. (4.47)
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The Riemannian logarithm map has the expression:

log 4 (B) = AY?log (A‘l/QBA‘W) AY2 YA BeH (4.48)

where the application log to the right of the equation represents the standard matrix logarithm map.
The Riemannian exponential map has the expression:

expy (V) = A2 exp (A—l/QVA—W) AY2 YAe HL WV e Hy (4.49)

where the map exp to the right of the equation represents the standard matrix exponential map.
The geodesics parameterized by ¢ starting from the point A with an initial velocity vector V have for equation:

C(t, A V) = expy (tV) = AY2 exp (tA‘l/QVA‘l/Q) AY2 YieR VAe HE VWV e Hy. (4.50)

The sectional curvature of the manifold HY,* given for the tangent space of the identity I,y has the following expres-
sion:

1
K () = 7 trace ((ElEQ - EQEl)Q) (4.51)
where F/; and F5 form an orthonormal basis of the tangent plane at the identity o.

Proof. We start by computing the sectional curvature in the identity Iy for all plane o. Thanks to the isometry ® (4.46)
and its differential (4.47), we can then compute the sectional curvature at any point.

We place ourselves within the framework of Theorem 7.

Let P be a point whose normal coordinates at the identity Iy are V = z1 E} + x5 Es, the vectors E; and E» forming
an orthonormal basis of the plane o.

We have P = exp;, (V) = exp (V') where the exponential map in the last member of the equality represents the
matrix exponential map.

We have:
P:Id+V+%V2+%V3+O(V3). 4.52)
By differentiating, we obtain:
dP =dV + % (VdV +dvV) + é (V2dV + VdVV +dVV?) + O (V?). (4.53)
Since P~ = exp (—V'), we have:
Pl =Id-V+ %VQ - év3 +0(V?). (4.54)

Using the previous two equations, we have:

1 1 1 1 1
PP = dV + SVdV + SdVV + 6v2dv — VvV + ngVQ +0 (V?) (4.55)

Hence, we have:

P YdPP~YdP =dV? + %dVQV — %deﬂ (4.56)

+ %dVVQdV — %dVVdVV

1 1 1

+ 6dv2v2 + 6V%{V2 - gVdvvczv
1

+ 1 @VV = Vav)* + 0 (V?)

Using the linearity of the trace and the property of invariance of the trace by permutation, i.e. trace(AB) =
trace (BA), we obtain:

trace (P~'dPP~'dP) = trace (dV?) — % trace ((Vav —avv)?) (4.57)

We recall that V' := 1 Ey + xoFs.
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Since the vectors E; and E; are orthogonal and normalized, we have trace (dV2) = dx? + dz3.
We deduce that the metric ds2H++ at the identity I has the expression:
N

ds},.+ =trace (P~' dP P~' dP) (4.58)
N
1
:dil?% + dI% - E trace ((ElEg — E2E1)2) (CCldJCQ — ZCQdCCl)Z +0 (1?3) . (459)

According to Theorem 7, the sectional curvature at the identity is therefore:

1
K (o) = 1 trace ((E1E2 - E2E1)2> ) (4.60)
O
We note that:
1
K(0) = = [IE1E> — E2E1 | 4.61)

Therefore, we have K (o) < 0.
According to the triangular inequality, we also have:

|E1Ey — B2 Erly < ||EvE2lly + [|E2EA | < [|E1||[|E2lly + |1 B2 |E1]l, = 2, (4.62)

which implies that K (o) > —1.
Finally, we have:

~1<K(s)<0 Vo. (4.63)

4.2.2 The Siegel disk

The Siegel manifold generalize the Poincaré disk studied in Section 4.1.2 to complex matrices. This section is an overview
of Appendix E dedicated to the Siegel disk in which a few additional properties and many proofs are given. The Rieman-
nian logarithm map, the Riemannian exponential map and the sectional curvature of the Siegel manifold are the main
contributions of this thesis. These novelties have been summarized in our previous work [21].

4.2.2.1 Definition

Definition 15. The Siegel disk is defined as the set of complex matrices M of shape N x N with singular values lower
than one, which can also be written:

SDy ={MeCNVN |1 -MM" >0} (4.64)
or equally:
SDy ={MeCN*N |1 - M"M >0} (4.65)

We use the partial ordering of the set complex matrices: we note A > B when the difference A — B is a positive
definite matrix.

Note that another definition of the Siegel disk also exists in other papers [54], imposing an additional symmetry
condition on the matrix M: M = M7 . We will note require the symmetry condition in our work.

Property 21. The Siegel disk can also be defined as the set of complex matrices M with a linear operator norm lower
than one: SDy = {M € CN || M|| < 1}, where || M|| = supxecw, | x|j=1 (1M X]]).

4.2.2.2 The metric
We endow the Siegel space SD  with the following metric:
dstp,, = trace ((I - Q)" d0 (1 - Q7Q) ™ a0). (4.66)

The expression of the square of the distance is given for all Q, ¥ € SDy by:
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I—-Ci2
= trace (arctanh2 (01/2)) (4.68)

1/2
o, (Q, D) % trace <10g2 (I ¢ )> (4.67)

with C = (U — Q) (I — Q# W) ™" (W7 — QH) (1 — QuH) ™",

Another distance named the Kobayashi distance measure di on the Siegel disk SDy is also given in [45].
The expression of the scalar product is then, V2 € SDy, Vv, w € CV*V:

1 - -
(wywyg =3 trace (1 —007) v (1 - 70) " w) (4.69)
1 - -
+ trace (1= Q07) " w (- Q) o).
The norm of a vector belonging to the tangent space is therefore:

0], = trace ((I—QQH)_IU(I—QHQ)_lvH) ) (4.70)

4.2.2.3 The isometry
According to [45], the following function is an isometry of the Siegel space for the distance defined in Equation (4.67) :

B (V) = (- 00" 2 (w—q)(1-fw) " (1-afQ)?. @.71)

We will prove this result in Theorem 9.
The differential of the isometry ® has the following expression:

Property 22. The differential of the isometry ® has the following expression:

Do (¥) [h] = (1 — Q™) (1— o) " h(1—"w) " (1-qHQ)"” 4.72)
We will prove Equation (4.72) in the proof of Property 46.
Property 23. The inverse of the function ® described in Equation (4.71) also has the following expression:
Dot (V) = d_q (V) (4.73)

We will present three proofs of Equation (4.73) in the proof of Property 49.

4.2.2.4 The Riemannian logarithm map

To compute the Riemannian logarithm map at a point ) the key idea here is to transport the problem at zero, compute a
certain logarithm at zero and transport the result back to 2. This idea is illustrated on Figure 4.1. If we want to compute
the logartithm map: logg, (¥), we first transport both €2 and ¥ using the isometry ®¢, (4.71). The point (2 is sent to zero,
and we denote ¥ the image of ¥ by ®g, :

U= @ (U) = (1 - 00H) (@ — ) (1- ") " (1- )" (4.74)
Then we compute the logarithm map at zero log,, (\I!l) :
’ ’ ’ ’ ’ 1/2
V' = log, (\1/ ) — arctanh (X) X0’ where X = (q/ g H ) . (4.75)

Finally, we transport back the logarithm to the point ) using the differential of the isometry ® given in Equation
(E.17):

V = log,, (¥) = D®_g (0) [V] = (1—00")?v (1-afq)"? (4.76)

We summarize the logarithm map in the following equation:

1/2

logq (¥) = (I — 00H) 2 v/ (1 - io)"?

4.77)

, , N2
V' = arctanh (X) X0 where X = (qf v H

v = (I-00H) P (w-q)(1-fv) " (1- i)
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The logarithm map computation
in the Poincaré disk

05

0.0

V' =logo(V')

-15
-15 -1.0 -05 00 05 10 15

Figure 4.1: The Poincaré disk logarithm map computation

The exponential map computation
in the Poincare disk

05

0.0

-0.5

-15
-15 -1.0 -05 00 05 10 15

Figure 4.2: The Poincaré disk exponential map computation
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4.2.2.5 The Riemannian exponential map

To compute the Riemannian exponential map at a point €2 the key idea here is to transport the problem at zero (as for the
logarithm), compute a certain exponential at zero and transport the result back to 2. This idea is illustrated on Figure 4.2.
If we want to compute the exponential map: expg, (V'), we first transport the vector V' at zero using the differential of the
isometry @ given in Equation (E.17):

V' :=D®q (Q) [V (4.78)
— (T— M) "2 (1 —0o!) v (1-ofa) " (1 - ata)'” (4.79)
—(1—00f) v (1-qfa)"? (4.80)
Then we compute the exponential map at zero exp (V/) :
U= expy (V) — tanh (V)Y ™'V where Y = (V’V’ H)l/2 . 4.81)

Finally, we transport back the exponential to the point €2 using the isometry ® _, which is the inverse of isometry @,
(see Property 49) and transport the point 0 back to €2 and the point ¥ back to expg, (V):

U :=expq (V) (4.82)
—o_q (v) (4.83)
—(1-00") 7 (v ) (1+07v) ot (4.84)

We summarize the exponential map in the following equation:

1/2

expq (V) = (I - QQH)*I/2 (\If + Q) (I + QH\I/) - (I -0M1q) (4.85)

, , SN2
U = tanh (Y)Y 'V’ where Y = (V 1% H)
V' = (1-00f) Py (1-qFa)”?

4.2.2.6 The geodesics

The expression the geodesics can be obtained using the exponential map: the geodesic starting from €2 with velocity V' is
given by the application :

C (6,9, V) = expg, (V). (4.86)

4.2.277 The symmetric Siegel disk

We defined the Siegel disk in Definition 16 as the set a complex matrices with singular values lower than one: SDy =
{M eCN. T —MM7 > O}. We recall that another definition of the Siegel disk also exists in other papers [54], imposing
an additional symmetry condition on the matrix M: M = M?. We will show in Section E.6 that the symmetric Siegel
disk is a totally flat submanifold of the Siegel disk.

Hence the formula of the logarithm map E.4.2 and the exponential map E.5.2 computed in previous sections are still
meaningful when working in the submanifold of symmetric matrices.

4.2.2.8 The sectional curvature

We first focus on the sectional curvature at 0. We can then obtain the sectional curvature at any point using the isometry
® defined in Equation (4.71) and its differential E.17. Indeed, the sectional curvature at the point €2 defined by the

tangent vectors F; and F is equal to the sectional curvature at the point 0 defined by the vectors D®q () [E;] and
Doq () [Ex].
Let o be a section defined at the point {2 = 0 by two orthonormal matrices £ and Fj.

Theorem 5. The sectional curvature at zero of the plan o defined by E1 and E has the following expression:

1
K(o) =3 (||E1E2H — BEM|* + |EFE, - E2HE1||2) (4.87)
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This theorem will be proved in Section E.7.1.

Corollary 1.
—4< K(0)<0 (4.88)

We recall that the Siegel space is a generalization of the Poincaré disk D defined as the complex unit disk endowed
with the metric:

d ,2
dsy = — Bl (4.89)

(1 lml?)”

If we perform Theorem 10 on the orthonormal basis vectors £y = 1 and E5 = ¢, we find that the curvature of the
Poincaré disk D is equal to —4.

4.2.3 The HPD Siegel product

The HPD Siegel product is a generalization of the manifold R* x D™~! studied in Section 4.1.3 to multidimensional
signals.

We endow the space H}; x SDXfl with the following metric [11,45]:
n—1
dsi'EJrXSD?(l :ndSQHV + Z (n—1)dsép, (4.90)
=1
dsayxs%,l =ntrace (Py " dPy Py' dPy) (4.91)

n—1
+ 3 (=1 trace (1= 0f") " de (1 - 0ff Q) aof).
=1

The expression of the distance between two points is then:

dH**xSD” L ((Po,1, 1,15 w0 Qu11), (Po,25 Q1,25 00, Qnm1,2))

—ndH++ (Po,1,Po2) Z n—1)dép, (U1, 2) (4.92)

—n Hlog (P V2 Py, P )H (4.93)

—1 140,
Z — trace | log? — i
=1 1- Cl

Cr=(Q2—Q1) (I - Qf Ql,z)i
(o —oft) (1 - Ql{g)fl

We recall that the space B‘Jr v of Block-Toeplitz Hermitian positive definite matrices is in bijection with the space
HE x SD’y! via the algorithms 3 and 2. We can therefore endow the space l’)’n  With a distance by defining:

@b (T0,T2) i= @ st (Poas Qa1s s Q1) (Po2y Q2,s B 1.2) (4.94)

where the coefficients (Pp ;, Q1 4, ..., 2,—1,;) are obtained from the matrices T fori = 1,2 using Algorithm 3. The
coefficients (P ;, 1 4, ..., 2n—14) can also be computed using Algorithm 2 in the particular case where the matrix 7; has

Toeplitz structured blocks (the matrix 7; is then a Toeplitz-Block Block-Toeplitz HPD matrix).

The scalar product on the space H}, ™ x SD?{l is also a weighted sum of the scalar product defined on H}; in Equation
(4.44) and of (n — 1) times the scalar product defined on SD y in Equation (4.69).

Therefore, we have VE, F € Hy,VFP, € H},VUl, o Un, Vi oo V1 e CVXN WO Q1 € SD:
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(B Uty Un 1) s (B V- Va Dy )
=ntrace (Py 'EPy 'F) (4.95)

n—1_— k B _
+k21nZ(trace((I—QkaH) U (1 0ff )T v
+ trace (1 - 0f) " Vi (1 - 2ff' ) " U

The squared norm on the space H, " x SD}Q—1 is therefore a weighted sum of the norm defined on 3, in Equation
(4.45) and of (n — 1) times the norm defined on SD  in Equation (4.70).
Hence, we have VE € Hy,VPy € H};, VU1, ..., Uy € CVXN vy ... Q1 € SDy:

2
||(E7 U,..., Unfl)H(Pg,Ql,...,Qn,l)
=ntrace (Py 'EP; 'E) (4.96)

n—1
+ 3 (n — k) trace ((1 — 0 7 U (- 0ffa,) U,ff) .
k=1

We can obtain an isometry on the product manifold H}, " x SD’; ! by taking the product of the isometry on H{,*
defined in Equation (4.46) and of (n — 1) isometries on the Siegel disk (4.71).

The Riemannian logarithm map of the product manifold H" x SDXfl is the product of the logarithm map of the
manifold H}" presented in Equation (4.48) and of (n — 1) logarithm maps of the manifold SDy presented in Equation
(4.77). If we denote logH;rv + the logarithm map defined on Hf\,* in Equation (4.48):

1OgH;+ (P071, P072) = P017/12 IOg (Pojll/2PQ,2A71/2) P017/12 VPQ,l, P()’g € HX,, (497)

and if we denote loggp ,, the logarithm map defined on SD in Equation (4.77) :

10gSDN (Qk,h Qk,z)
1/2 1/2

= (I = Qe %) Vi (T — % 1) (4.98)
’ ’ ’ /7 1/2
Vi = arctanh (X¢) X; 10, where X, = (9,0, 7)
/ —-1/2 -1 1/2
v, = (1 - Qk,lsz,g{l) (2 — Q) (I - nglgk,z) (1 - Qg{lﬂk,l)
then we have, VPO,l, P072 € HX/, VQI,la . Qn—l,la 91727 ceny Qn—1,2 € SDNI
logHvaDZ—l (Po,1s,1, 00, Qn—1.1) 5 (Po2, Q1,25 00, Qm1,2))
= (IOgHEJr (P()’l, P072) 710gSDN (91717 QLQ) go e ’logSDN (Qn—l,lv Qn—l,Q)) . (499)

The Riemannian exponential map of the product manifold H}" x SD}(,_l is also the product of the exponential map
of the manifold HY,* presented in Equation (4.49) and of (n — 1) exponential maps of the manifold SDy presented in
Equation (4.85).

If we denote by exp,,++ the exponential map defined on ’H,]‘\*, in Equation (4.49):

N
expyis (Po, Vo) = Py/* exp (PO‘1/2V0P0‘1/2) PY? WPy e Hi, WV e Hy, (4.100)

and if we denote by expgp , the exponential map defined on SD y in Equation (4.85):

H\~1/2 (& g\t Hey \1/2
expsp, (%, Vi) = (1= 0f) ™ (W + ) (1+0f ) (1-aff o)
1/2

(4.101)

Wy, = tanh (Vi) Y, 'V; where Vi = (Vv )
’ —1/2 —1/2
Vi = (I - Q) 2y (1 - off ) ™Y

then we have, VP, € ’HX,,VVO e Hn, VU, ... _1 € SDN,YV4, ..., V;u_1 € CVXN:
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eXpH;Jr XSD}fFl ((POa Qla [EES) Qn—l) 5 (V07 ‘/h [EES) ‘/TL—l))

_ (epov (Po, Vo), expsp,, (21, VA) .., exPspy, (U1, V,H)) . 4.102)

The geodesics of the product manifold H} " x SD?{1 are also the product of the geodesics of the manifold H},"
presented in Equation (4.50) and of (n — 1) geodesics of the manifold SDy presented in Equation (4.86):

Gt sprt (B (Po, 2, Q1) 5 (Vo, Vi, o, Vi)
= eXpHXr+ ><SDX,_1 ((_P()7 Qh aeey anl) 5 (t‘/(), tVl, ceey tanl)) (4103)

= <epoE+ (Po,tVo) ,expsp,, (21,tV1), ..., expsp, (Qn-1, tVn_1)> .

Let us now study the sectional curvature K of the product manifold H}, ™ x SD}(,_l. We recall that the manifold
HE* has a sectional curvature bounded between —1 and 0 (4.63). According to Equation (4.88), the Siegel manifold
SDy has a sectional curvature bounded between —4 and 0. We also recall that when we multiply the metric ds? of a
manifold by a constant ¢, its curvature is divided by c. The Riemannian manifold H]tﬁ X SDT]{fl is therefore the product
of a manifold of curvature bounded between —1 and 0 and of (n — 1) manifolds whose respective curvature are bounded
between —4/ (n — k) and 0 for k ranging from 1 to (n — 1). We can then have a bounding of the sectional curvature of
the product manifold Hi;" x SD'% ! using Lemma 1 proved in [82].

Property 24. The sectional curvature of the manifold H;(ﬁ X SDR,_1 is bounded between —4 and 0:
-4< K<0. (4.104)

Proof. The property is true according to Lemma 1 since all the manifolds constituting the product manifold Hj\’,+ X SD?{l
have a sectional curvature bounded between —4 and 0. O

We showed in Chapter 2 that complex stationary centered Gaussian autoregressive time series can be represented in
the space R* x D"~ for one-dimensional time series and in the space H}, " x SDZﬁ1 for multidimensional time series. In
Chapter 3, nous we endowed these spaces with a product Riemannian metric. In Chapter 4, we have given mathematical
tools to perform operations in the Riemannian product manifolds constructed in Chapter 3: we have given the explicit
expression of the distance, of the scalar product, of the norm, of an isometry, of the Riemannian logarithm map, of the
Riemannian exponential map and finally we gave a bounding of the sectional curvature. Thanks to these tools, we will be
able to rewrite some classical Machine Learning algorithms so that they respect the Riemannian manifold structure of the
data studied here. This work is the subject of Chapter 5 and of the Python package geomstats [52].
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Chapter 5

Machine Learning on Riemannian manifolds

In this chapter, some classical machine learning algorithms are generalized to Riemannian manifolds. Indeed, most
machine learning algorithms are designed to work on Euclidean data. We can then use all the operations defined on
vector spaces: we can add and subtract two elements, we can multiply and divide an element by a scalar... The squared
Euclidean distance between the points A = (a1, ..., a,) and B = (b1,...,b,)is givenby: d* (A, B) = 3", (b; — ai)’.
The mean of the points (z1,...,zy) is defined by: z = % Zfil x;. All these operations are available in a Euclidean
space but they are not defined in a Riemannian manifold in general. To classify data on Riemannian manifolds, we will
therefore generalize machine learning algorithms designed for Euclidean data so that they can work on any Riemannian
manifold. Machine learning algorithms operating in Riemannian manifolds use geometric tools such as the distance, the
scalar product, the Riemannian logarithm map, the Riemannian exponential map... Some of the codes of the algorithms
presented here are available on the public Python package about machine learning on Riemannian manifolds named
geomstats [52].

We start by defining the notion of mean over a Riemannian manifold in Section 5.1. In Section 5.2, we will present an
algorithm named Tangent PCA (TPCA) which generalizes the PCA to Riemannian manifolds. This algorithm will be used
in the application chapters to visualize the data in two dimensions. In Section 5.3 we present supervised classification
algorithms. In Section 5.4 we present unsupervised classification algorithms.
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5.1 Riemannian means
We start by defining the notion of p-mean in Section 5.1.1. The p-mean is defined as the set of minimizers of a certain

function. When p = 2, the p-mean is called the mean. This definition of the Riemannian mean generalizes the definition
of Euclidean mean to Riemannian manifolds. We will study the notion of Riemannian mean in Section 5.1.2.

5.1.1 The Riemannian p-mean

The p-mean of a dataset (x;);=1,.. n is defined as the set of minimizers of the function:

1 N
Hy 2 o Z d(z, z;)P. (5.1)

i=1
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This function is defined for the more general case of probability distributions on the manifold M in [6].

For p €]0, 1], there are several local minimizers of the function g in general. A clustering algorithm named the
p-mean-shift algorithm based an the non-uniqueness of the p-mean for p < 1 was presented in [20].

A Hadamard manifold is a Riemannian manifold that is complete, simply connected and has everywhere non-positive
sectional curvature. For p € [1, +00], the function ¢ has a unique global minimizer e, in Hadamard manifolds [82], [6].
The existence and uniqueness of the Riemannian p-mean has also been studied by Xavier Pennec in [58]. The expression
of the p-mean does not have an explicit formula in general.

In the following, we assume that the manifold studied is a Hadamard manifold. When p > 1, the p-mean can be
approximated by performing a gradient descent on the function H,, given in Equation (5.1).

When p > 1, the gradient of the function H,, is given by the function G, defined as follows:

N
G, (z) = —% Z dP=% (z,x;) log,, (z;), Vp> 1. (5.2)
i=1

Note that the computation of the gradient G, of the fonction H,, involves the Riemannian logarithm map.
When p = 1, the gradient of the function H; (z) = + Zfil d (x,x;) is not defined at points (z1,...,2ZN).
We then define the function:

Gi(z)=— )] Log, (zi) (5.3)

1<i<N|z;#z d(z, ;)

The vector G (z) is a subgradient of H; at z [6].

Algorithm 6 The p-mean approximation by gradient descent

Input: z1,..., 2y e M
Mo = T1

p = exp,,, (—t1Gy (ko))
k=1

while ¥ < K4, and d (pg, px—1) = e do
pr+1 = exp,, (—ter1Gp (k)
k=k+1
end while
return The coefficient p,, obtained during the last iteration.

A gradient descent used to approximate the p-mean is described in Algorithm 6. We denote ¢;, the step size used in the
gradient descent in Algorithm 6. Under certain conditions, it is proved in [6] that the agorithm 6 converges to the p-mean
ep when limy,_, o, t;, = 0 and that ZZO:l ty, = 0.

Algorithm 7 The stochastic p-mean approximation
Input: z1,..., 2y e M
Ho = Z1
Randomly choose uniformly ¢ € [2, N]
H1 = exp, (t1 p d (o, Hfi)piz log,,, (xz))
for k = 1tondo
Randomly choose uniformly ¢ € [1, N]
Hi+1 = €XP,,, (tk+1 pd (g, )P log,,, (xi))
end for
return The coefficient p,, obtained during the last iteration.

A stochastic method to approximate the p-mean is presented in Algorithm 7. We note again ¢ the size of the steps
used in this algorithm. When p € [1, 2[, the value of the product d (i, ;)" > log 1, (i) is not defined when y1, = 5,
we consider this product to be equal to zero by convention. Under certain conditions, it is proved in [0] that the agorithm
7 converges to the p-mean e, when Z}?:l t, = oo and that Z,il t? < o0. We frequently choose ¢}, = %—‘rl forall k > 1.

The p-mean has specific names for p = 1,2: e; is called the median and e, is called the mean. We will detail the
special case of the mean in next section.
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5.1.2 The Riemannian mean

We define the Riemannian mean as the p-mean defined in the previous section with p = 2. The mean of a dataset
(x;)i=1,... N is therefore the set of minimizers of the function:

N
Hy(x) = Z d?(z, z;).

The gradient of this function has for expression:

N
Gs (z) = -2 Z log,,. (z;) . 5.4
i=1

In Algorithm 6, the p-mean is approximated using a gradient descent. This algorithm therefore becomes Algorithm 8
when p = 2.

Algorithm 8 The mean approximation by gradient descent

Input: z,,...,2y € M
Mo = T1
N
M1 = €eXp,, (Qtl izt log,,, (T/l))
k=1

while k < K4, and d (ug, pip—1) = e do
N
Hk+1 = €Xp,, (2151«+1 2i-1log,, (:z:,;))
k=k+1
end while
return The coefficient u,, obtained during the last iteration.

Algorithm 7 which estimates the p-mean using a stochastic method becomes Algorithm 9 when p = 2.

Algorithm 9 The stochastic mean approximation
Imput: z1,..., 2y e M
Ho = T1
Randomly choose uniformly ¢ € [2, N
p1 = exp,, (t1log,, (z;))
for k = 1tondo
Randomly choose uniformly ¢ € [1, N]
fik+1 = exp,,, (2tr11log,, (z))
end for
return The coefficient y,, obtained during the last iteration.

We are now interested in the particular case of product manifolds endowed with a product metric, such as the manifolds
studied in Sections 4.1.3 and 4.2.3. For product manifolds with a product metric, the expression of the squared distance

between two points A = (aq,...,a,) and B = (by, ..., b,) on the product manifold M = M; x ... x M, is the sum of
the squared distances on the manifolds My, ..., M,:
di (A, B) = . diy, (a;,bi) . (5.5)
i=1
We denote by z the point of coordinates (1, . .., zy) and ai, . .., an the points of the dataset. We denote (a; 1, - .., @i n)

the coordinates of the point a;. Then, we have:
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Ha (@) (5.6)
=1
N n
=, D diy, (x.00y) (5.7)
i=1j=1
n N
=2 2 diy, (@), ai) (5.8)
j=1li=1
= > Ho, (1) - (5.9)

<
Il
fut

For the product manifolds endowed with a product metric, it is therefore possible to estimate independently the mean
in each of the spaces M; to estimate the mean M = M; x ... x M,.

For example we defined in Equation (4.30) the squared distance between two Toeplitz matrices 7} and 75 as a linear
combination of squared distances between the coordinates (po.1, 41,1, ---s in—1,1) and (po 2, f1,2, -, fin—1,2) Obtained
using the Levinson algorithm 13. Hence the coordinates can be averaged independently:

Ty = (| poo, p1,0s | s | Ha—10 | )
Thm—1 +— ( Po,m—1, Him—1, | "5 | bn—1,m—1 ) . (5.10)
! l l
T - ( Po, M1, R Hn—1 )

We now present an algorithm which generalizes the classical PCA to Riemannian manifolds. This algorithm will use
the Riemannian mean defined in Section 5.1.2.

5.2 A visualization tool: the TPCA

In this section the classical Euclidean Principal Componant Analysis (PCA) is generalized to Riemannian manifolds:
this algorithm is called the Tangent Principal Componant Analysis (TPCA). This method will be used in the application
chapters to visualize the data in a two-dimensional space.

The first step of the TPCA is to approximate the mean x of the dataset using Algorithm 8 or Algorithm 9 described in
Section 5.1.2.

Then we represent each point x; of the dataset by the tangent vector at the mean T z; := log, (x;) which we renor-
malize according to the scalar product at the mean. Hence, we represent each point x; of the Riemannian manifold by a
vector in the tangent space at the mean which is a vector space and therefore suitable for Principal Components Analysis.
Finally, we perform a classical PCA on the vectors Z x; for ¢ € [1, N] renormalized by the scalar product at the mean.
Interested readers may refer to [30] and [59] for more details on the TPCA.

We detail the TPCA in Algorithm 10.

Algorithm 10 The Tangent Principal Component Analysis algorithm

Imput: z1,..., 2y e M

Compute de mean p of the dataset x1,...,zN.

Compute the Riemannian logarithm map Z7; := log, (z;) Vi€ [1, N]

Define the renormalized vectors :%; renormalizing the vector Z z; using the scalar product matrix at the mean P, the
following way : T2 = Py T %, Vie [1,N].

Define the empirical covariance matrix S = % IZV: x:ﬁ ﬁ?H

Compute the eigenvalues Aq, ..., A\, and the asZ;c)lciated eigenvectors v1, ..., v,. The eigenvalues are sorted from the
largest to the smallest. As the matrix S is an HPD matrix in general when the number of points /N is largest than the
dimension n, the eigenvalues are positive reals and the basis (v1, . .., vy, ) is orthonormal.

return Project the vectors :%; on the basis vectors (v1, ..., vy) using the standard scalar product, where k denotes
the number of principal components desired.
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5.3 Supervised algorithms

In this section, we present supervised classification algorithms that work in Riemannian manifolds. For each algorithm,
we will specify the necessary geometric tools of the manifold (distance, scalar product, Riemannian logarithm map,
Riemannian exponential map...).

5.3.1 The K-Nearest Neighbors

The k-Nearest Neighbors (KNN) classifier principle is quite simple: each point of the target dataset is labeled according
to the k nearest points of the training set, i.e. a majority vote is performed on their labels. The number k of neighbors
to be taken into account is a parameter of the algorithm chosen by the user. The output of this classification algorithm
can also be a probabilistic result: for each point of the testing dataset, we give a vector whose coefficients indicate the
probability of each label. The probability of each label will be equal to the number of points in the training dataset of the
corresponding label among the k nearest neighbors of the point to be labeled. We just need to have an explicit expression
of the distance between two points to be able to use this algorithm on a manifold. For each point to label, we have to
evaluate n distances where n represents the number of points in the training dataset, then we have to sort these distances in
ascending order which is done in O (nlog (n)) operations. The complexity of this algorithm is therefore in O (nlog (n))
with respect to the number n of points of the training dataset.

5.3.2 The Kernel Density Estimation Classifier

To label a point  using the Kernel Density Estimation Classifier, we estimate the density distribution of each label of the
training dataset at the point x. The point x is then labeled according to the label having the greatest density at the point x.
This algorithm is studied in [48].

To estimate the density distribution of each label, we use a kernel function K. There are many possible kernel
functions K ;. The parameter s is a scale parameter affecting the size of the kernel. We now give some examples of kernel
functions. The following function is named the Gaussian radial kernel:

.2
G, (J:)=exp( * ) (5.11)
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We define the uniform radial kernel function by:

Us (2) = Los (5.12)

We define the triangular radial kernel function by:

T, (z) = (1 — f) 1a (5.13)

We define the parabolic radial kernel function by:

Py (z) = (1 - (x)Q) 1: (5.14)

We define the cosine radial kernel function by:

T[T
Cs (x) = cos (5 (;)) 1eyg (5.15)
We define the sigmoid radial kernel function by:
1
Ss (z) = lay (5.16)

We define the bump radial kernel function by:

B, (z) = exp (12> 1oy (5.17)
1-(3)°/
A few other kernel functions are described on the Python package geomstats [52].
Let = be a point to label. We denote by L; the label ¢ and x; 1, . . ., x; , the n; points of the training dataset associated

with the label 7. We start by choosing a kernel function K and a kernel size s. We then estimate the density D; of each
label L; at the point x:

j=1
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The point z is then labeled according to the label L; having the greatest density D; at the point z. The output of this
algorithm can also be a vector whose coefficient c; represents the probability that the point x is associated with the label
L;. We then have: ¢; = D; () / X3; Dj ().

To use this algorithm, it suffices to have an explicit expression of the distance on the manifold M considered.

To label the point z, this algorithm computes the distance between the point x and the n points of the training dataset.
The complexity of this algorithm is therefore O (n), where n is the number of points of the training dataset.

5.3.3 The Nearest Centroid Classifier

To use the Nearest Centroid Classifier, we first approximate the mean p; of each label L; of the training dataset. The target
point z is then labelled according to the label L; of the closest mean p;. This algorithm can also be called the Minimum
Distance to Mean. It is a supervised version of the clustering algorithm named k-means.

To approximate the mean p; of each label L; of the training dataset, we can use algorithms 8 and 9 presented in
Section 5.1.2. We recall that these mean approximation algorithms use the Riemannian logarithm map and the Riemannian
exponential map. They have a linear complexity with respect to the number of points to be averaged. If we denote by n;
the number of points in the training dataset associated with the label L; and if we denote by n the total number of points
of the training dataset, we have n = ). n;. The estimation of the means /; therefore has a linear complexity, i.e. in O (n)
with respect to the number n of points of the training dataset.

Once the averaging step has been completed, each point x is classified according to the label corresponding to the
nearest mean p;. When the number [ of different labels is small, this prediction is then very fast: it suffices to evaluate the
distances d (z, ;) for i € [1,1]. We label the point = according to the label L, corresponding to the minimum distance
d (z, p;) obtained. This step is done in O (1) operations, where [ is the number of distinct labels.

To use the Nearest Centroid Classifier algorithm, it is therefore sufficient to have an explicit expression of the distance,
the Riemannian logarithm map and the Riemannian exponential map of the studied manifold M. The averaging step is
done in O (n) operations, where n is the number of points in the training dataset. Then the labeling of each new data point
x is done in O () operations, where [ is the number of distinct labels. This algorithm is therefore extremely efficient when
we have a large number of points to label and when each label in the training dataset is well represented by its mean.

We will now present unsupervised classification algorithms. These algorithms are used to group spatially close points
into clusters, they can be used to structure unlabeled data.

5.4 Unsupervised algorithms

In this section, we will present unsupervised classification algorithms operating on Riemannian manifolds. For each
algorithm, we will specify the mathematical tools on which it is based. We will also give the complexity of each algorithm
with respect to the number of points of the dataset.

We will present the HAC algorithm in Section 5.4.1, we will present the mean-shift algorithm in Section 5.4.2 and
the k-means algorithm will be presented in Section 5.4.3. Finally we present in Section 5.4.4 a method called silhouette
which allows to measure and visualize the degree of separation between the clusters given by a clustering algorithm. This
tool can help to choose the number of clusters of an unsupervised algorithm.

5.4.1 The Hierarchical Agglomerative Clustering

The Hierarchical Agglomerative Clustering (HAC) works as follows: at the initial state, each point corresponds to a
cluster. Then, until the desired number of cluster is reached, merge the two closest clusters. To do this, we need to define
a measure of dissimilarity between clusters, i.e. a measure of dissimilarity between two sets of data. For example, we
can define the dissimilarity between two clusters ¢; = (¢1,1,...,¢1,n,) and co = (c2,1, ..., C2,p,) as the average distance
between a point belonging to c¢; and a point belonging to co:

1
daverage (Cla 02) = Z d (Cl,ia CZ,j) . (519)
MmN Sice
1sj<es

We can also define the dissimilarity between two clusters as being the minimum distance between a point of the cluster
c1 and a point of the cluster cs:

dsingle (Cl, 62) = Il'llIl d (Cl,i7 CQJ) . (520)
1<i<er
1<j<es

Note that the dissimilarity dg;ngie is not a mathematical distance on the set of clusters since it is not separated and
does not verify the triangular inequality.
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It is also possible to define the dissimilarity between two clusters as being the maximum distance between a point of
the cluster c¢; and a point of the cluster cs:

dcomplete (017 02) = max d (Cl,ia CQ,j) . (521)
1<i<ca
1<j<cs

Algorithm 11 The Hierarchical Agglomerative Clustering

Initialization:

Each point represents a cluster.

Choose a distance between clusters, for example the distance dqyerage presented in Equation (5.19), the distance dg;ngie

presented in Equation (5.20) or the distance dcompiete presented in Equation (5.21).

while The number of clusters is greater than the desired number of clusters do
Merge the two closest clusters according to the distance chosen previously. They now form a new cluster. The
number of cluster decrease by one at each loop.

end while

return Each point is labeled according to its final cluster.

The HAC algorithm is described in Algorithm 11. There exist a graphic named dendrogram which can be used to
visualize the clusters being merged. A dendrogram looks like a reversed tree which leafs represent the data to cluster. The
vertical axis represents the distance at which two clusters are from each other when they are merged. The leaves of the
tree represents the initial data, are therefore represented at zero height. Then we see the clusters merging with each other
as we rise along the y-axis until we reach the root at the very top: the height of the root represents the distance between
the last two clusters to be merged.

Once an clustering is obtained using the HAC algorithm, we can assign a new data point to an already existing cluster:
the points will be assigned to the closest cluster with respect to the average dissimilarity measure between clusters (5.19),
the single dissimilarity measure (5.20) or the complete dissimilarity measure (5.21), the new data point being considered
as a cluster with one element. We usually use the same cluster dissimilarity measure to assign a new data point to an
already existing cluster than the dissimilarity measure initialy used to create the clusters in the HAC algorithm.

Note that it suffices to have the explicit expression of the distance between two points of the manifold M to be able
to use the HAC algorithm. When we merge the first two clusters in the first iteration, we need to compute n (n — 1) /2
distances, where n is the number of points in the dataset. At each iteration of the algorithm, we recompute the distances
involving the clusters that have been modified in the previous iteration and we keep in memory the distances that have not
been modified. Whether we use the average, the single or the complete dissimilarity measure, we can use the dissimilari-
ties computed previously for the clusters ¢; and ¢; to compute easily the dissimilarities from the new cluster ¢ = ¢; U ¢; to
the other clusters. Finally, the complexity of the HAC algorithm when one of these three dissimilarity measures (average,
single or complete) is used is in O (n2) , where n denotes the number of points in the dataset.

5.4.2 The mean-shift

The mean-shift algorithm works as follows: each point x; of the dataset x1, ..., x, is associated with a point p; initially
placed in z; which moves along a gradient ascent of the estimated density function of the dataset z1, ..., ;.

In the mean-shift algorithm, we use a kernel function K (of size s) to define a function D estimating the density of
the dataset (z;);— .. N

1 N
D(x) = 2, K (d () (5.22)

where d(z, x;) represents the distance between x and z;. Several examples of kernel functions have been presented in
Section 5.3.2. A kernel function taking into account the curvature of the manifold is described in [48].
The gradient of the function D is givent by:

N
1 log, (z:)
d,D(:)=—-= > K.(d i) ————= 5.23
grad, D () =~ Y KL (@) G5 (523)
as the gradient of the function d (x, y) is:
log, ()
grad, d (-, y) = ————=. (5.24)
T Gy
To move along the gradient defined in Equation (5.23), we set p; o = x; and we build by reccurence:
Pij+1 = €Xp (th grad,, - D ()) ) (5.25)
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where ;1 represents the step size used in iteration j + 1.

Each sequence of points p; ; will tend towards a local maximum of the density function estimated by the function
D when j — oo. The points z; are then grouped according to the local maximum of the density where the points p;
have arrived: all the points x; whose points p; have reached the same maximum are grouped together in the same cluster.
The larger the scale parameter s of the kernel function K, the more regular the estimated density function will be. The
estimated density function will therefore have fewer local maxima, so the mean-shift algorithm will give fewer clusters.
The mean-shift algorithm has been adapted to the Siegel metric described in Section 4.2.2.2 in [22], [12].

According to Equations (5.23) and (5.25), it suffice to have an explicit expression of the distance function, of the
Riemannian logarithm map and of the Riemannian exponential map of the manifold M to use the mean-shift algorithm.

We now study the complexity of the mean-shift algorithm. For each point z; of the n points of the dataset, we associate
a point p; which moves along the gradient defined in Equation (5.23). To compute this gradient in iteration j, we compute
the distance between the point p; ; and each of the n points of the dataset. The complexity of the mean-shift algorithm is
therefore quadratic with respect to the number of points of the dataset.

5.4.3 The k-means

The k-means algorithm is an algorithm based on the mean. We describe the k-means algorithm in Algorithm 12.

Algorithm 12 k-means algorithm for k clusters

Initialization:
Pick randomly k points in the dataset. They now represent the barycenters of each cluster.
for i = 1 to loop number do
Assign each point of the dataset to the closest barycenter.
Compute the new barycenter of each cluster.
end for
return Each point is labeled according to the closest barycenter.

We denote by & the number of clusters of the k-means algorithm and we denote by (x; 1, .. ., z,nl) the n; points of
cluster ¢, for all ¢ € [1, k]. We denote by p; the mean of the cluster . The proof of the convergence of the algorithm is
done by noting that the sum:

k n;
§=2, 2, & (wiiy) (5.26)
i=1j=1

strictly decreases at each iteration of the algorithm. Depending on the initial values, the k-means algorithm can
converge toward several different final states. It is therefore usual to restart the k-means algorithm several times with
different initial cluster centers, then to compare the final states obtained. When different realizations of the k-means
algorithm give several different final results, the value of the sum S obtained during the last iteration can be a criterion
for choosing among the different final states: the smaller the value of the sum .S is, the more interesting is the clustering
obtained.

Once the k-means algorithm has been performed on a dataset, we can assign a new data point to an already existing
cluster for a low computational cost: the new data point will be assigned to the cluster having the closest barycenter. An
other version of the k-means called oneline k-means can be used when we expect the data points to be received one by
one. The oneline k-means algorithm is available on the Python package geomstats [52].

Let us study the mathematical tools useful to use the k-means algorithm. At each iteration of the k-means algorithm,
we use the definition of the distance on the manifold M to assign each point to the nearest barycenter. Then, we approx-
imate the mean of the new barycenter. The algorithms 8 and 9 described in Section 5.1.2 approximate the position of
the mean of a dataset using the Riemannian logarithm map and the Riemannian exponential map of the manifold M. To
use the k-means algorithm on a Riemannian manifold M, it is therefore sufficient to have the explicit expression of the
distance, of the Riemannian logarithm map and of the Riemannian exponential map on the manifold M.

Finally, we study the k-means algorithm complexity. At each iteration of the k-means algorithm, we compute the
distance between each point and each barycenter in order to determine if a point should stay in its current cluster or be
assigned to another cluster. This is done in O (kn) operations, where k is the number of clusters and n is the number of
points of the dataset. Then, we approximate the mean of each of the newly formed clusters. This step is done in O (n)
operations. For a fixed number k of clusters and a fixed number of iterations, the complexity of the k-means algorithm is
therefore linear with respect to the number of points of the dataset.

5.4.4 Silhouette

One of the challenges of clustering is to choose a meaningful number of clusters k. We now introduce a tool to guide us
in the choice of the number of clusters k.
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We now define the silhouette s(x) of a point x. Take any point x in the data set, and denote by A the cluster to which
it has been assigned. If A contains only one point =, we set s(x) = 0 as a neutral choice. When cluster A contains other
points apart from z, we define:

a(r) = minge 4\ (o d(7, y) (5.27)

Let us now consider a cluster C' different from A, and define:

c(x) = mingecd(z, y). (5.28)

After computing c¢(x) for all clusters C different from A, we select the smallest of those numbers, and denote it by:

b(xz) = mingzac(z). (5.29)

The value b(x) represents how far x is from the cluster that would have been the second best choice for .
Hence we have:

b(z) = minygad(z,y). (5.30)
The silhouette number s(x) is then computed as follows:

_ b(x) —a(x)
) = () (@)

The silhouette measures how much z is closer from the cluster A than the cluster that would have been the second
best choice for x.

We always have —1 < s(z) < 1.

The silhouette gives indications about the shape of the clusters given by the classification algorithm. Clusters with
small radius far from the other clusters will give silhouette values close to 1.

However, the silhouette does not give any information about the performance of the clustering agorithm. Most of the
time, if the clusters overlap, a perfect classification using the true labels (if they are known) will give a worst silhouette
than the k-means clustering. Moreover, well separated clusters with non-spherical interlaced shapes can also have a low
mean silhouette value.

When the clusters do not overlap, the average silhouette value can by used as a criterion to determine the number of
clusters: we classify the data with different number of clusters and keep the classification giving the best mean silhouette
value.

The silhouette is used in [17] on simulated radar clutter which was simulated using the model presented in Section 6.1.
Interested readers can read [69] for a reference about the silhouette construction, and [22] for another radar application.

The algorithms presented in Chapter 5 will be applied in Chapters 6, 7, 8 and 9 to classify complex stationary centered
Gaussian autoregressive time series. Among others, we will represent the unidimensional time series in the Riemannian
manifold R** x D"~! presented in Section 4.1.3 and the multidimensional time series in the Riemannian manifold
HiT x SDXF1 presented in Section 4.2.3. To be able to use the classification algorithms presented in Chapter 5, we will
therefore use mathematical tools presented in Chapter 4 such as the distance, the scalar product, the Riemannian logarithm
map and the Riemannian exponential map of the manifolds R+ x D"~ and H{" x SD;{,‘l.

(5.31)
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Chapter 6

Application to simulated unidimensional
stationary centered Gaussian autoregressive
time series classification

In this chapter, we will simulate complex one-dimensional stationary centered Gaussian autoregressive time series. The
simulated time series therefore correspond to the modeling hypotheses of Section 2.1. We have seen that these time
series can be represented by the power spectral density function S, by the autocorrelation coefficients (rg,71,...,7n—1)
associated with the Toeplitz HPD autocorrelation matrix R, or by the coefficients (pg, i1, - - - , tin—1) Where the coefficient
po = T is the mean quadratic power coefficient and the coefficients (u1, ..., u,—1) are called coefficients reflection. In
the particular case of signals whose power spectral density S has a Gaussian shape of power P, mean m and variance o2,

that is to say:

Sy(€) =P e 2% 6.1)

the theoretical autocorrelation coefficients are:

re = Ry(k) = Pei?™he 270Ky > 1 (6.2)

and the theoretical reflection coefficients are:

p, = (—1)kei2mmbke=2mck yp 5 (6.3)

This property presented in Sections 1.4.1 and 2.1 is proven in Appendix B.

In Section 6.1, we present a simulation model of complex one-dimensional stationary centered Gaussian autoregres-
sive time series based on the Toeplitz autocorrelation matrix R. In Section 6.2, we use Equation (6.2) and the simulation
model presented in Section 6.1 to simulate two datasets. The first dataset will consist of simulated time series having a
theoretical spectrum of Gaussian shape of power P, of mean m; and of variance o2, the second dataset will consist of
simulated time series having a theoretical spectrum of Gaussian shape of power P, of mean my # m; and of variance 2.
For each simulated time series, we will then use the regularized Burg algorithm 17 detailed in Appendix C to estimate the
theoretical coefficients (pg, i1, - - - , ftn—1) from the simulated time series.

Finally, we perform the supervised classification of the simulated time series in Section 6.3. Each of the two datasets is
slited into a training dataset and a testing dataset. To perform the classification, we will use the nearest centroid classifier

algorithm presented in Section 5.3.3 on different representation spaces.
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6.1 Simulation model

We have seen in Section 2.1 that the complex one-dimensional stationary centered Gaussian autoregressive time series
can be considered as realizations of multidimensional circularly-symmetric central complex normal distributions whose
covariance matrix R is Toeplitz:

To r} ry ..ok
1 ro ry r¥
R=|Tm™ ™ ro ... rig (6.4)
"m—1 Tn-2 Th-3 ... To
A stationary time series with a correlation matrix R can therefore be simulated using the equation:
7 = RY2x (6.5)

with:
R: the autocorrelation matrix (Toeplitz Hermitian Positive Definite).

X: astandard complex Gaussian random vector whose dimension is equal to the length of the time series.

We now use the simulation model presented in Equation (6.5) to simulate the data to be classified.

6.2 Simulated dataset

We simulate two datasets of 200 time series each. The first dataset consists of simulated time series having a theoretical
spectrum of Gaussian shape of power P; = 1, of mean m; = 0.1 and of variance o2 = 0.05. The second dataset consists
of simulated time series having a theoretical spectrum of Gaussian shape of power P, = 1, of mean my = —0.1 # my
and of variance 03 = 0.05. The length of each simulated time series is 20.

We simulate the two datasets using the simulation model presented in Equation (6.5):

Z = R'?X. (6.6)

To simulate the 200 vectors of the first dataset, we use the Toeplitz correlation matrix R; whose coefficients are
obtained using Equation (6.2):

rr = Ryp(k) = Pei?mmke 2wtk g 5

by noting P = P, = 1, m = m; = 0.1 and 02 = 02 = 0.05.

The coefficients of the Toeplitz correlation matrix Ro used to simulate the 200 vectors of the second dataset are also
obtained from Equation (6.2) by noting P = P, = 1 = P;, m = my = —0.1 = —m; and 0 = 02 = 0.05 = 0%.

Each of these two datasets is then splited into a training dataset consisting of 100 time series and a testing dataset
consisting of 100 time series.

We now present tools to visualize and classify the time series simulated in this section.

6.3 Classification

In this section, we present several methods to visualize and classify the time series simulated in the previous section.
Whatever method is used to represent the signals, they are classified using the nearest centroid classifier algorithm pre-
sented in Section 5.3.3. For each classification method presented, we start by visualizing the whole simulated dataset as
well as the theoretical positions associated with the correlation matrices Ry and R; used to simulate the time series. These
theoretical elements are only used to view the dataset, they are not used for classification. The nearest centroid classifier
algorithm is then performed on the simulated dataset. We present the Tangent PCA (or the PCA) of the classification
result on the testing dataset and we present the corresponding confusion matrix.

We start by presenting three Euclidean methods to represent the simulated time series based on their spectral estima-
tion: we will use the squared modulus of the FFT, the periodogram and the Capon spectra. For each of these three spectral
representation methods, we will study the spectra in standard scale and in logarithmic scale (dB).

For each spectral estimator (FFT square modulus, periodograms, Capon spectra) and for each scale (standard and
logarithmic), we will present four figures. The first figure represents the estimated spectra for each simulated signal. We
also represent the theoretical spectra computed from the coefficients used to simulate the time series. The second figure
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represents the PCA on the estimated spectra. The nearest centroid classifier algorithm is then performed on the spectra.
The third figure represents the PCA of the classification result obtained. Finally, the fourth figure represents the confusion
matrix of the classification obtained.

We then present a classification method based on the estimation of the Toeplitz autocorrelation matrix R of each
simulated time series. We compare the classification results of the obtained using the Euclidean metric on the estimated
HPD autocorrelation matrices R € H,;7 or the information geometry metric presented in Section 4.2.1.

Finally, we present a classification method based on the estimation of the coefficients (po, ft1,. .., ttn—1) € R¥ X
D"~ We compare the results of the classification obtained using the Euclidean metric on the space R* x D"~! or the
metric inspired by information geometry presented in Section 4.1.3.

6.3.1 The FFT square modulus

In this section, we represent the time series simulated in Section 6.2 by the squared modulus of their FFTs. We first
present the spectra obtained in standard scale then in logarithmic scale (dB).
We recall that for each time series u, the FFT f is defined by the equation:

f= %Wu, with: (6.7)
£:=[fo,  fu]” (6.8)
u=[ug,... up1]" (6.9)
Wi = w! where w = e (6.10)

Hence, the squared modulus of the FFT for the reduced frequency fr = k/N of a time series of length N has the

expression:
2
S (]ﬁ) = % ]:Z:::u(n)e_mmfl3 (6.11)
It is therefore an estimator for the frequencies f; = k/N of the power spectral density defined by:
S _ < —i2rmf _ 1 IHRS —i2nrnf i
(f) = m;w e = N1—1>r~Ii-loc E i ,;0 u(n)e (6.12)
with 7, = E [u(n + m)u(n)*].
We also recall the definition of the periodogram:
R 1= _ 2
Sper () = 7;0 u(n)e= 2™/ 6.13)

The periodogram therefore coincides with the squared modulus of the FFT for frequencies of the form f = k/N.
The periodogram is also defined by:

N—-1
Sper (f) = > F(m)e=2™mS, (6.14)
m=—(N-1)
with:
1 N—m-—1
P(m) = D ulk + m)u(k)*. (6.15)
k=0

We will use this second equation to compute the theoretical spectra associated with the autocorrelation matrices Ry
and R, by replacing the coefficients 7"(m) by the theoretical coefficients of the matrices Ry and R;.

We start by presenting the squared modulus of FFTs in standard scale. In Figure 6.1, we plot the squared modulus
of the estimated FFTs. The FFTs of the time series simulated with the Toeplitz autocorrelation matrix R are plotted in
red, the FFTs of the time series simulated with the autocorrelation matrix R; are plotted in blue. The theoretical spectrum
associated with the matrix Ry is plotted with a thick red line, the theoretical spectrum associated with the matrix R; s
plotted with a thick blue line. Figure 6.2 represents the PCA of the squared modulus of the FFT. Figure 6.3 represents the
PCA of the classification result using the nearest centroid classifier algorithm. Figure 6.4 represents the confusion matrix
of the classification result using the nearest centroid classifier algorithm.
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FFT Square Modulus Spectra
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Principal Component Analysis
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FFT Square Modulus Spectra (dB)

-40

o
H
o
&
-0.4 -02 0.0 02 04
Reduced Frequency
—— Spectra simulated with Gaussian shape of power = 1, mean = 0.1 and variance = 0.05 = Theoretical spectrum with Gaussian shape of power = 1, mean = 0.1 and variance = 0.05
—— Spectra simulated with Gaussian shape of power = 1, mean = -0.1 and variance = 0.05 @ Theoretical spectrum with Gaussian shape of power = 1, mean = -0.1 and variance = 0.05
Principal Component Analysis
.
.
20 *
*
.
10 .
*
0 *
* . .
* *
.
>
°
x -10
©
c
S
©
9,
2
=
T -20 .
S .
Q
)
-20 -10 0 10 20
First projection axis
Spectra simulated with Gaussian shape of power = 1, mean = 0.1 and variance = 0.05 Theoretical spectrum with Gaussian shape of power = 1, mean = 0.1 and variance = 0.05
@ Spectra simulated with Gaussian shape of power = 1, mean = -0.1 and variance = 0.05 Theoretical spectrum with Gaussian shape of power = 1, mean = -0.1 and variance = 0.05

Figure 6.6: PCA on the FFT square modulus spectra (dB)

We now present the classification of the squared modulus of the FFT in logarithmic scale. More precisely, the FFTs
are expressed in dB, i.e. the function z — 10 x log;, (x) is applied to the squared modulus of the FFT. In Figure 6.5,
we plot the squared modulus of the FFT in logarithmic scale. Figure 6.6 represents the PCA of the squared modulus of
the FFT expressed in dB. Figure 6.7 represents the PCA of the classification result obtained using the nearest centroid
classifier algorithm. Figure 6.8 represents the confusion matrix of the classification result obtained using the nearest
centroid classifier algorithm.

6.3.2 Periodograms

In this section, we represent the time series simulated in Section 6.2 by their periodograms. We first present the spectra
obtained in standard scale then in logarithmic scale (dB).
We recall the definition of the periodogram:

R L= 4 2
Sper (f) = 57| 2o wlme™ ™| (6.16)
n=0
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Figure 6.9: Periodograms

The periodogram is also defined by:

N—-1
Sper (f) = Z F(m)e=2mmI. (6.17)
m=—(N-1)
with:
1 N—m-—1
F(m) = = Z u(k + m)u(k)*, (6.18)
N k=0

We will use this second equation to compute the theoretical spectra associated with the autocorrelation matrices R
and R; by replacing the coefficients 7(m) by the theoretical coefficients of the matrices Ry and R .

We first present the periodograms in standard scale. In Figure 6.9, we present the spectra plotted from the peri-
odograms computed for each time series. We use 1001 points to plot the spectra: we compute the values of the function
Sper (f) for f ranging from —0.5 to 0.5 with a step size of 0.001. To plot the PCA and classify the periodograms, we use
1000 points: we eliminate one of the two extreme values (f = —0.5 or f = 0.5) since these two values always coincide
as they correspond to the same frequency. Figure 6.10 represents the PCA of the periodograms. Figure 6.11 represents
the PCA of the classification result obtained using the nearest centroid classifier algorithm. Figure 6.12 represents the
confusion matrix of the classification result obtained using the nearest centroid classifier algorithm.

We now present the periodograms in logarithmic scale (in dB). In Figure 6.13, we plot the periodograms in dB. Figure
6.14 represents the PCA of the periodograms expressed in dB. Figure 6.15 represents the PCA of the classification result
obtained using the nearest centroid classifier algorithm. Figure 6.16 represents the confusion matrix of the classification
result obtained using the nearest centroid classifier algorithm.

6.3.3 Capon spectra

In this section, we represent the time series by their Capon spectra. We first present the spectra obtained in standard scale
then in logarithmic scale (dB).

We begin by recalling the definition of Capon spectra.

We first define the autoregressive spectrum of the complex centered stationary Gaussian process u of autoregressive

coefficients a} !, ... a" "

n— P’I’L*
St (f) = ! . (6.19)
(n—1)

(n—1) _ionk
a, emi2mkf
k=0

where P,,_; € RY is the variance of the prediction error v"~1(k) of the linear autoregressive model presented in
Equation (2.28).
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Figure 6.10: PCA on periodograms
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Figure 6.11: PCA of the classification result of the nearest centroid classifier on the periodograms
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Figure 6.12: Confusion matrix of the classification result of the nearest centroid classifier on the periodograms
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Figure 6.15: PCA of the classification result of the nearest centroid classifier on the periodograms (dB)
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Figure 6.16: Confusion matrix of the classification result of the nearest centroid classifier on the periodograms (dB)
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Figure 6.17: Capon spectra

The Capon spectrum is then defined as the harmonic mean of the autoregressive spectra of orders k = 1,...,n — 1:

e 1 1 n—1 1
S(CapiZL(f) = m Z Sgk})%(f) . (620)
k=1

We choose n = 5 here. To estimate the Capon spectra of each of the simulated time series, we use the Burg algorithm
17 to compute the coefficients a] for 1 < i < j < 4. To compute the theoretical spectra, we use the Levinson algorithm
13 to compute the coefficients af for 1 < i < j < 4 from the theoretical autocorrelation coefficients (rq, 71, 7r2,73,74) Of
the theoretical autocorrelation matrix R used to simulate the signals.

We first present the Capon spectra in standard scale. In Figure 6.17, we present the computed Capon spectra for each
time series. We use 1001 points to plot the spectra: we compute the values of the function Sy, (f) for f ranging from
—0.5 to 0.5 with a step size of 0.001. To plot the PCA and classify the Capon spectra, we use 1000 points: we eliminate
one of the two extreme values (f = —0.5 or f = 0.5) since these two values always coincide as they represent the same
frequency. Figure 6.18 represents the PCA of the Capon spectra. The nearest centroid classifier is then performed on the
Capon spectra. Figure 6.19 represents the PCA of the classification result obtained. Figure 6.20 represents the confusion
matrix of the classification result.

We then present the Capon spectra in logarithmic scale (in dB). In Figure 6.21, we plot the Capon spectra in dB. The
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Figure 6.18: PCA on the Capon spectra
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Figure 6.19: PCA of the classification result of the nearest centroid classifier on the Capon spectra
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Figure 6.20: Confusion matrix of the classification result of the nearest centroid classifier on the Capon spectra
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Figure 6.21: Capon spectra (dB)

figure 6.22 represents the PCA of the Capon spectra in dB. The nearest centroid classifier algorithm is then performed on
the Capon spectra in dB. Figure 6.23 represents the PCA of the classification result obtained. Figure 6.24 represents the
confusion matrix of the classification result.

6.3.4 HPD matrices H,'

In this section, we represent the signals by their autocorrelation matrices R € H.T. We first present the classification
results obtained by endowing the space H," with the Euclidean metric, then by using the information geometry metric
presented in Section 4.2.1.

To estimate the autocorrelation matrices for each of the simulated time series, we start by using the Burg algorithm
17 to estimate the mean quadratic power coefficient py and the reflection coefficients p; = al for1 < i < n — 1. We
choose n = 5 here. Then, we use the inverse Levinson algorithm 15 to compute the coefficients (7o, 71, . .., 7n—1) from
the coefficients (Po, i1, - - -, fin—1) € R¥ x D"~ estimated previously. The theoretical correlation matrices are obtained
directly: they are the matrices used to simulate the data.

We first present the classification of autocorrelation matrices in the space H," endowed with the Euclidean metric.
Figure 6.25 represents the PCA of the estimated autocorrelation matrices for each time series. The nearest centroid
classifier algorithm is then performed on the estimated autocorrelation matrices using the Euclidean metric. Figure 6.26
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Figure 6.23: PCA of the classification result of the nearest centroid classifier on the Capon spectra (dB)

92



Confusion matrix

Spectra simulated with Gaussian shape of
power = 1, mean = 0.1 and variance = 0.
100 elements

Expected results

Spectra simulated with Gaussian shape of
power = 1, mean = -0.1 and variance = 0.05
100 elements

Spectra simulated with Gaussian shape of Spectra simulated with Gaussian shape of
power = 1, mean = 0.1 and variance = 0.05  power = 1, mean = -0.1 and variance = 0.05

Classification results

Figure 6.24: Confusion matrix of the classification result of the nearest centroid classifier on the Capon spectra (dB)
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Figure 6.25: PCA on the HPD matrices using the Euclidean metric

represents the PCA of the classification result obtained. Figure 6.27 represents the confusion matrix of the classification
result.

We now present the classification of the autocorrelation matrices in the space H;} endowed with the information
geometry metric presented in Section 4.2.1. Figure 6.28 represents the Tangent PCA 10 of the autocorrelation matrices
estimated for each time series. The nearest centroid classifier algorithm is then performed on the estimated autocorrelation
matrices using the information geometry metric. Figure 6.29 represents the Tangent PCA of the classification result
obtained. Figure 6.30 represents the confusion matrix of the classification result.

Comparing the confusion matrices 6.27 and 6.30, we note that for this experiment we obtain better classification
performance by endowing the space . with the information geometry metric than with the Euclidean metric.

6.3.5 Positive real axis and Poincaré disks R* x Dl

Finally, in this section we represent the time series by the coefficients (po, i1, . - -, fin—1) € R¥* x D1, We first present
the classification results obtained by endowing the space R* x D"~ with the Euclidean metric, then by using the metric
inspired by information geometry presented in Section 4.1.3.

To estimate the coefficients (po, i1, - -, tn—1) of each of the simulated time series, we use the regularized Burg
algorithm 17. Nous choose n = 5 here. The theoretical coefficients (po, f41, ..., tin—1) can be computed using the
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Figure 6.26: PCA of the classification result of the nearest centroid classifier on the HPD matrices using the Euclidean
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Figure 6.27: Confusion matrix of the classification result of the nearest centroid classifier on the HPD matrices using the
Euclidean metric
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Figure 6.28: TPCA on the HPD matrices using the Information Geometry metric

Tangent Principal Component Analysis

15
*
* .
*
1.0 -2 . - * . .
w2 * x
.
* * * .
. * I . ¢
. LI
* *
* * e
05 o 5oL * L * « o
* * * o M O
* * . .
- * ey o * = o . o .
o .
. * % " * - .. . .
.
0o 7 e * * .. o o ° .
* * L1 M
* o e . .
* * * . . o .
. o * * RO BEPA
* * F x* * . * .
_05 * * * * oo, . .
§ N * * . .
oo . . 5 .
o * M
%
© * * . .
S -10 = *
S~ w7 %
g * * .
5 .
a . . .
°
2 15
S *
[
)
-15 -1.0 -05 0.0 05 10 15 20

First projection axis

MW Predicted as spectra simulated with Gaussian shape of power = 1, mean = 0.1 and variance = 0.05 % Spectra simulated with Gaussian shape of power = 1, mean = 0.1 and variance = 0.05
MW Predicted as spectra simulated with Gaussian shape of power = 1, mean = -0.1 and variance = 0.05 @ Spectra simulated with Gaussian shape of power = 1, mean = -0.1 and variance = 0.05
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Figure 6.30: Confusion matrix of the classification result of the nearest centroid classifier on the HPD matrices using the
Information Geometry metric

Levinson algorithm 14 from the autocorrelation coefficients (rg,71,...,7,—1) of the autocorrelation matrix R used to
simulate the data. In Figure 6.31 we visualize the estimated reflection coefficients (fi1, . . ., [i,—1) estimated for each of
time series in the space D"~ !. The theoretical coefficients are also represented.

We first present the classification of the coefficients (po, fi1, ..., [in—1) estimated for each of the time series in
the space R¥ x D"~ ! endowed with the Euclidean metric. In Figure 6.32 we represent the PCA of the coefficients
(Po, fi1, - - -, fin—1) estimated for each of time series. The nearest centroid classifier algorithm is then performed on the
space R* x D"~! endowed with the Euclidean metric. In Figure 6.33 we represent the PCA of the classification result
obtained. In Figure 6.34 we represent the corresponding confusion matrix.

Finally, we present the classification of the coefficients (Po, fi1, - - ., fin—1) estimated for each time series in the space
R¥* x D"~ ! endowed with the metric inspired by information geometry presented in Section 4.1.3. The figure 6.35
represents the TPCA of the coefficients (Do, fi1, - - - , fin—1) estimated for each time series. The nearest centroid classifier
is then performed on the coefficients (Po, /i1, - .., fin—1) in the space R* x D"~! endowed with the metric inspired by
information geometry presented in Section 4.1.3. In Figure 6.36 we represent the TPCA of the classification result obtain.
Figure 6.37 reprensents the corresponding confusion matrix.

Comparing the confusion matrices 6.34 and 6.37, we note that for this experiment, the classification performance
achieved by endowing the space R x D"~ with the metric inspired by the information geometry are better than perfor-
mance obtained using the Euclidean metric.

Comparing the confusion matrices 6.30 and 6.37, we note that for this experiment the classification performance is
slightly better on the space R* x D"~ than on the space 7, when these two spaces are endowed with the metric coming
from information geometry. We therefore prefer to classify time series in the space R* x D"~! endowed with the metric
inspired by information geometry presented in Section 4.1.3 since it is a low dimensional space endowed with a product
metric, the computation times are therefore relatively short. In addition, the mean of several complex stationary centered
Gaussian autoregressive Gaussian time series represented in the space R x D"~ is still complex stationary centered
Gaussian autoregressive Gaussian time series.

By comparing all the confusion matrices obtained during this experiment, we notice that the best performance is
obtained by representing the simulated time series to be classified in the space R% x D"~ ! endowed with the Riemannian
metric inspired by information geometry.

We will therefore use the space R x D"~ ! endowed with the metric inspired by information geometry to perform
the clustering of real radar data in Chapter 8.
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Figure 6.32: PCA on R* x D™~ ! using the Euclidean metric
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Principal Component Analysis
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Tangent Principal Component Analysis
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Chapter 7

Application to simulated multidimensional
stationary centered Gaussian autoregressive
time series classification

In this chapter, we will simulate complex multidimensional stationary centered autoregressive Gaussian autoregressive
time series. We will then classify these time series.

Contents
7.1 Simulationmodel . . . . L L L L e e e e e e e e e e e e e e e e e e e e e 101
7.2 Simulated dataset . . . . . . . . L i e e e e e e e e e e e e e e e e e e e e e et 101
7.3 Classification . . . . . . . o i i i i i it i i i e e e e e e e e e e et e e e e e e e e 102
731 Classification in B} v . .. ... 102
7.3.2 Classification in HJJ(, X SDXfl ................................... 103

7.1 Simulation model

A complex multidimensional stationary centered autoregressive Gaussian time series can be simulated using a Block-
Toepliz Hermitian Positive Definite correlation matrix R:

Z = RY2X (7.1)
with:
R: the autocorrelation matrix (Block-Toeplitz Hermitian Positive Definite).

X: astandard complex Gaussian random vector whose dimension is equal to the dimension of the time series to simulate
times the length of the time series.

We can also use the equation of the autoregressive model:

n—1
Z(k)+ > AP Z(k - j) = W(k) (7.2)
j=1
where W is the prediction error vector of size N, the covariance matrix ¥ and the prediction coefficients A;‘fl are
square matrices of size N x N.
The autocorrelation coefficients A;‘*l can be computed from the autocorrelation coefficients R; of the autocorrelation
matrix R using Equation (2.123).

7.2 Simulated dataset

We simulate two datasets from two different Block-Toeplitz autocorrelation matrices Ry and R. We recall that a Block-
Toeplitz HPD matrix has the following structure:
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R, RE RE . RH

n—1
R, Ry RFE ... RH,

R_| B2 R Ry ... RE, | (7.3)
Rnfl Rn72 Rnfii cee RO

We choose here to simulate time series of length 2 using autocorrelation matrices R of sizes 6 x 6 made up of 3
blocks Ry, R; and R, of sizes 2 x 2. The Block-Toeplitz autocorrelation matrix R of the first dataset is defined by the
autocorrelation coefficients:

10 1+4 442 2 3 -1
Ro[l—i 8 ] Rl[ ~1 —4—¢] R2[1 —3+i]' 74
The Block-Toeplitz autocorrelation matrix R, of the second dataset is defined by the autocorrelation coefficients:
10 1—4 4+ 2 -2 3 21
RO_[1+¢ 8 ] Rl_[ 1 —4—¢] RQ‘[—1 —3+i]' (75

Before simulating data, we check that the Block-Toeplitz Hermitian matrices Ry and R4 constructed from the au-
tocorrelation coefficients described previously are HPD matrices. We simulate time series of length 20 and dimension
N = 2. For each simulated time series, we use Equation (7.1) to simulate the 3 first temporal elements (since n = 3
here), then we use Equation (7.2) to simulate the 17 following elements.

We simulate 200 time series associated with the autocorrelation matrix Ry and 200 time series associated with the
autocorrelation matrix R;. Each of these two datasets is then divided into a training dataset consisting of 100 time series
and a testing dataset consisting of 100 time series.

Note that the diagonal coefficients of the autocorrelation coefficients Ry, R; and Rs used to construct the Block-
Toeplitz HPD matrices Ry and R are equal, the time series simulated from the matrices Ry and R; cannot therefore
be dissociated using a one-dimensional method on only one of the two dimensions of the time series. To classify the
simulated time series, we will use two representation spaces of multidimensional time series that we present in the next
section.

7.3 Classification

In this section, we present the results of the classification of the time series simulated in the previous section. We first
represent the simulated time series in the space of Block-Toeplitz HPD matrices B;  Which we first endow with the
Euclidean metric, then with the information geometry metric on HPD matrices !, ; described in Section 4.2.1. The

simulated time series will then be represented in the space H 7, x SDRFI which we first endow with the Euclidean metric,
then with the metric inspired by information geometry described in Section 4.2.3. In each case, we will use the nearest
centroid classifier algorithm described in Section 5.3.3 to classify the data. Note that the dimension of the time series is
N = 2, we choose the number of coefficients n = 3 to classify the data, which corresponds to an autoregressive model of
order two.

7.3.1 Classification in B:; N

In this section, we classify the data simulated in Section 7.2 in the space B; N-

For each of the simulated time series, we start by estimating their Block-Toeplitz autocorrelation matrices R € B;f .

To estimate these matrices, we use Algorithm 5 to estimate the coefficients (]30, (All, ey Qn, 1) € 7—[7\} X SDTJ{fl. Then,

we use the relationships between the different representation spaces of the complex multidimensional stationary centered
Gaussian autoregressive time series presented in Section 2.2 to compute the autocorrelation matrices R € B:‘ n- The

coefficients (ﬁo, ﬁl, ey ]?2”,1) of the matrix R can indeed be computed from the coefficients (]307 ﬁh R Qn,l) €

Hi; x SD' ! using Algorithm 4.

The data is first classified using the Euclidean metric, then the information geometry metric on HPD matrices H;X N
described in Section 4.2.1.

We now present the classification of the signals simulated in Section 7.2 represented in the space ;" n endowed with
the Euclidean metric. Figure 7.1 represents the PCA of the studied dataset represented in the space BTT _n endowed with the
Euclidean metric. The 200 time series simulated from the autocorrelation matrix R are represented by red stars, the 200
time series simulated from the autocorrelation matrix R4 are represented by blue circles. The matrix Ry is represented
by a big red star and the matrix R; is represented by a big blue circle. Figure 7.2 represents the PCA of the classification
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Figure 7.1: PCA on multidimensional covariance matrices using the Euclidean metric

result obtained using the nearest centroid classifier algorithm. True labels are characterized by the shape of the dots,
predicted labels are characterized by the color of the dots. Finally, Figure 7.3represents the confusion matrix of the result
of the classification obtained using the nearest centroid classifier algorithm.

We now present the classification of the time series simulated in Section 7.2 represented in the space B, ; endowed
with the information geometry metric on HPD matrices H:x n presented in Section 4.2.1. The figure 7.4 represents the
Tangent PCA (see Section 5.2) of the dataset represented in the space B, , endowed with the information geometry
metric. The figure 7.5 represents the TPCA of the classification result obtained using the nearest centroid classifier
algorithm. Finally, Figure 7.6represents the confusion matrix of the result of the classification obtained using the nearest
centroid classifier algorithm.

Comparing the confusion matrices of Figures 7.3 and 7.6, we note that the classification obtained using the information
geometry metric gives a better result for this experience than the classification obtained using the Euclidean metric.

We now present the results of the classification when the time series are represented in the space H 3, x SDX,_l.

7.3.2 Classification in #;, x SD\*

In this section, we classify the data simulated in Section 7.2 in the space H} X SDRfl.

For each of the simulated time series, we start by estimating their coefficients (]30, ﬁl, ceey fln_l) € Hi, x SD’](f1
using Algorithm 5. The data is first classified using the Euclidean metric, then the metric inspired by information geometry
described in Section 4.2.3.

We now present the classification of the time series simulated in Section 7.2 represented in the space H]‘t, X SDXfl
endowed with the Euclidean metric. The figure 7.7 represents the PCA of the studied dataset represented in the space
HJ; x SD% ! endowed with the Euclidean metric. The 200 time series simulated from the autocorrelation matrix Ry
are represented by red stars, the 200 time series simulated from the autocorrelation matrix R are represented by blue
circles. The point (P, Q41, ..., Q1) € Hj; x SD?,_1 associated with the matrix Ry is represented by a big red star, the
point associated with the matrix R is represented by a big blue circle. We use Algorithm 3 to compute the theoretical
coefficients (Pp, Q1,...,Q,-1) € ’HX, X SDXfl from the theoretical autocorrelation matrices R. Figure 7.8 represents
the PCA of the classification result obtained using the nearest centroid classifier algorithm. Finally, Figure 7.9 represents
the confusion matrix of the classification result obtained using the nearest centroid classifier algorithm.

We finally present the classification of the time series simulated in Section 7.2 represented in the space H 7 x SD;’\',_l
endowed with the metric inspired by information geometry presented in Section 4.2.3. The figure 7.10 represents the
Tangent PCA of the dataset to be classified represented in the space 7-[} X SDRFI endowed with the metric presented in
Section 4.2.3. The figure 7.11 represents the Tangent PCA of the classification result obtained using the nearest centroid
classifier algorithm. Finally, Figure 7.12 represents the confusion matrix of the classification result obtained using the
nearest centroid classifier algorithm.

Comparing Figures 7.9 and 7.12, we note that the classification obtained using the metric inspired by information
geometry gives a better result for this experience than the classification obtained using the Euclidean metric.

Comparing the confusion matrices of Figures 7.6 and 7.12, we note that the results of the classification is very good on
the spaces B;‘ v and Hi; x SD’X,_l when using the metric inspired by information geometry. The performances obtained
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Figure 7.2: PCA of the classification result of the nearest centroid classifier on multidimensional covariance matrices
using the Euclidean metric
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Figure 7.3: Confusion matrix of the classification result of the nearest centroid classifier on multidimensional covariance
matrices using the Euclidean metric
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Tangent Principal Component Analysis

*
. * ek * *
. HO * *
1 o+ %
*h k. QT * ¥
. o *
. H DAY n * R
. * Ko, ok L B
* X Wit xky * ok * *
gy
0 Pt 2 ;o
* A P *
* ek ¥ P E
. * 8 e e
S . * *x * * ¥ *
o % * K . o oa ok
* % * * . *u
. P4 * e * Y
. *
. oo *
* *
2 * %
" *
=
©
<
s .
©
9
2
24
]
c
S .
1
0
-2 -1 0 1 2
First projection axis
% signals simulated with autocorrelation matrix Ro P Theoretical position of the autocorrelation matrix Ro
@ signals simulated with autocorrelation matrix Ry @ Theoretical position of the autocorrelation matrix Ry

Figure 7.4: TPCA on multidimensional covariance matrices using the Information Geometry metric
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Figure 7.6: Confusion matrix of the classification result of the nearest centroid classifier on multidimensional covariance
matrices using the Information Geometry metric
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Principal Component Analysis
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Figure 7.9: Confusion matrix of the classification result of the nearest centroid classifier on 7}, x SD7% " using the
Euclidean metric
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Tangent Principal Component Analysis
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Figure 7.10: TPCA on H{;" x SD};*

on the space B;  are slightly better. However, the space ’H]J(, X SDR,_1 has other advantages: it is of smaller dimension,
endowed with a product metric, the computation times are therefore potentially shorter and the mean of the coefficients
(Po, 1, ..., Q) € HX, X SD?{l of several complex multidimensional stationary centered Gaussian autoregressive
time series is equal to the coefficients of a complex multidimensional stationary centered Gaussian autoregressive time
series.
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Figure 7.11: TPCA of the classification result of the nearest centroid classifier on H, " x SDy !
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Figure 7.12: Confusion matrix of the classification result of the nearest centroid classifier on H{,* x SD’
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Chapter 8

Application to radar clutter clustering

The objective of this chapter is the clustering of radar clutter coming from a recording made in Saint-Mandrier, in
France [17-20]. The exact same dataset as the one presented here have been used by Pierre-Yves Lagrave in [61-63]
for radar clutter classification using Neuronal Networks and the Lie groups theory. Here we assume that the presence of
moving targets is rare in the recorded data, so we assume that the recorded signals are related to radar clutter, the radar
clutter being the signals recorded by a radar related to its environment: waves, fields, forests... In Section 8.1, we will
present the structure of the recorded data. The data will then be divided into distance cells, each cell representing a small
area around the radar in which a one-dimensional time series has been recorded. In Section 8.2, we will assume that the
complex one-dimensional time series recorded in each cell is a wide-sense stationary centered autoregressive Gaussian
time series. These time series have been presented in detail in Section 2.1. In Section 8.3, we will estimate the coeffi-
cients of the autoregressive model (po, {41, - . ., ftn—1) using the Burg algorithm presented in Section 2.1.8 and detailed
in Appendix C. We recall that the coefficient py corresponds to the mean quadratic power of the time series and the
coefficients (p1, ..., n—1) are called reflection coefficients and are coefficients of the autoregressive model (ui = aﬁ).
The reflection coefficients correspond to the Doppler information. In this chapter, we would like to cluster the data using
only the Doppler information: we will not use the mean quadratic power coefficient pg and we will classify the data on
the reflection coefficients (g1, ..., in—1) € D"~!. We define the manifold D" ! as the space D"~ ! endowed with the
metric of the Riemannian manifold R** x D"~ defined in Section 4.1.3 omitting the power coefficient py. Finally, we
will use the k-means algorithm presented in Section 5.4.3 on the Riemannian manifold D" ~! to perform the radar clutter
clustering in Section 8.4.

Contents
8.1 Radardatastructire . . . . . . v v v v v v v v v v ot ot o o ottt o oo ottt 110
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8.3 Model parameters estimation . . . . . . . . i 0 i ittt e e e e e e e e e e e e e e e e e e 111
8.4 Radarclutterclustering . . . . . . . . i i i i i i e e e e e e e e e e e e e e 111

8.1 Radar data structure

We first detail the input radar data. The data are studied after pulse compression. In this section, the input data will be
taken on a single burst for a single elevation corresponding to the horizontal beam. Therefore, the radar provides us a 2D
complex matrix presented in Equation (8.1).

| uop Uy ... U1 |
‘ U1,0 U1 Ul,n—1 ‘

U= (8.1)
‘ UN—-1,0 UN—-1,1 --- UN—-1n—1 ‘

Here the first coordinate corresponds to the spatial axis (index close to zero corresponds to cells close to the radar); the
second coordinate represents the temporal axis (pulse index in the burst). The parameter n denotes the number of pulses
of the burst and corresponds to the length of the temporal axis. The parameter N represents the total number of cells and
corresponds to the lenght of the spatial axis. The data to classify are the cells, each cell being represented by a row of the
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matrix U. In Section 8.4, the radar data will be clustered over 150 bursts (only the beam by zero elevation will be used).
Therefore, the input data will be 150 matrices Uy, Us, . .., Uis¢ with a similar structure than the matrix U presented in
Equation (8.1). Each matrix U; is constituted of N; cells, each cell being caracterized by a time series of length n;.

We now present the modeling assumptions made on the radar signal recorded in each of the distance cells.

8.2 Radar signal modeling

For each cell, we assume that the complex observation vector Z can be represented using a SIRV (Spherically Invariant
Random Vectors) model [13], [42]:

Z = VTR + bradar (8.2)
———— ~——

information coming from the environment  thermal noise coming from the radar itself
with:
T: clutter texture; it is a positive real random variable independent from = and b4 44

R: scaled environment autocorrelation matrix (Toeplitz Hermitian Positive Definite whose diagonal coefficients are equal
to one).

Ty brqdart independent standard complex Gaussian random vectors whose dimension is equal to the number of pulses.

The product 7R represents the environment autocorrelation matrix.

We assume that the mean power of the signal coming from the environment \/?Rl/ 2z is sufficiently larger than the
radar noise b,.4 44, to consider that the autocorrelation matrix of the whole signal Z will be close enough to the environment
autocorrelation matrix 7R to characterize the clutter.

We therefore place ourselves within the framework of the complex one-dimensional time series which are assumed to
be wide-sense stationary centered autoregressive Gaussian processes. These time series have been presented in Section
2.1.

We now present how to estimate the coefficients of the autoregressive model from the observed time series.

8.3 Model parameters estimation

In our clustering problem, the autoregressive coefficients (pw, Hils - ,/Li,n—1) of the radar signal will be estimated
independently for each cell u; = [u; 0, u; 1, .- 7ui,n,l]T
’ 0,0 0,1 U0,n—1 ‘ - (P0,05 10,15 -+ -+ 0,n—1)
’ U1,0 U1,1 Ul,n—1 ‘ - (ﬁl,Oaﬁl,lw"v,ﬁl,n—l)
U= (8.3)
[un—10 un—11 - UN—1n-1| | = (DN-1,0iAN=1,15--->AN-1n—1)
To estimate the autoregressive coefficients (po, i1, - . ., fin—1) from the column vector u associated with a row of

matrix 8.3, we use the Burg algorithm 17 presented in Section 2.1.8 and decribed in detail in Appendix C.

We now would like to cluster the data using only the Doppler information. Hence, we will not use the mean quadratic
power coefficient py and we will classify the data on the reflection coefficients (pi1, ..., fn_1) € D"t We define the
manifold D" ! as the space D"~ ! endowed with the metric of the Riemannian manifold R** x D"~! defined in Section
4.1.3 omitting the power coefficient py. In Section 8.4, we will use the k-means algorithm presented in Section 5.4.3 on
the Riemannian manifold D"~ to perform the radar clutter clustering.

8.4 Radar clutter clustering

We now present the clustering result using the k-means algorithm with four classes on the radar data recorded at Saint-
Mandrier. We display on Figure 8.1 a ground map of Saint-Mandrier (France) in which the radar geographical position is
represented by a red dot. The dataset contains 150 bursts of different shapes: both the number of pulses n and the number
of cells IV (see the matrix U defined in Equation (8.1)) vary from one burst to another.
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Figure 8.1: Ground map Saint-Mandrier
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Figure 8.2: Power map Saint-Mandrier
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Figure 8.3: Clustering map obtained with the k-means algorithm for 4 classes on the reflection coefficients

We plot on Figure 8.2 a map of the averaged power recorded by the radar cell per cell. The power is represented from
blue to yellow, yellow meaning that a lot of power has been recorded. The two well delimited grey zones in the south may
correspond to areas where the radar was in listen-only mode and did not emit any pulses.

We would like to cluster the data cell by cell. We decided not to use the power coefficient pg to cluster the radar
data: we only use the Doppler information which is contained in the reflection coefficients (1, . . ., ttn—1). As the length
of the signals varies from one burst to another, we decided to represent every time series in D"~ where n denotes the
length of shortest time series. As the main Doppler information is contained in the first reflection coefficients, the loss of
information is minor.

Figure 8.3 represents the result of the k-means clustering for four classes on the manifold D" 1. In Figure 8.4, we
visualize the clustering result on the four first reflection coefficients; the colors correspond to those of Figure 8.3. The first
reflection coefficient of the yellow, blue and red clusters are close to the edge of the complex unit disk: they correspond
to spectra with a narrow peak. The main difference between these three clusters is the argument of the first reflection
coefficient which is related to the average Doppler of the signal as shown in Equation (2.99) for stationary signals with
a Gaussian shape. The yellow cluster corresponds to waves moving towards the radar. The red cluster corresponds to
waves moving away from the radar. The blue cluster corresponds to elements with a zero radial speed: the waves whose
direction is perpendicular to the radar radial axis, the coast and the islands. The green cluster corresponds to spectra with
a flatter shape: they correspond to the distance cells far away from the radar, the cells hidden by the coast or the islands
and the cells in the two angular sectors in which the radar did not emit any pulses.

We now present a second clustering result in which the input time series have been modified to have a zero average
Doppler. To shift the average Doppler of the time series w(0),u(1),...,u(n — 1) to zero, we first estimate the first
reflection coefficient 11, using the Burg algorithm. Then, denoting 1; = r1e%%1, we replace the original coefficient u(k)
by the coefficient @(k) = u(k)e~**% . We then estimate the reflection coefficients fi1, fia, . . . , fin,_1 of this new time
series. We finally perform the k-means algorithm with four classes on the reflection coefficients i1, fia, . . . , fip—1 On the
manifold D"~!. We present in Figure 8.5 the result of the clustering on the four first reflection coefficients. Note that the
first reflection coefficients [i; observed in the first complex unit disk belongs to the seqment |—1, 0] of the real axis as
the time series has been modified to have a zero average Doppler. We also note that the result of the clustering is closely
related to the modulus of the first reflection coefficient. We present in Figure 8.6 the map of the clustering result. We note
some similarities between this map and the map of the average power presented in Figure 8.2.

We chose the k-means algorithm 5.4.3 here rather than the AHC 5.4.1 or the mean-shift 5.4.2 algorithms for complex-
ity reasons: the complexity of the k-means algorithm is linear with respect to the number of points of the dataset whereas
the complexity of the AHC or the mean-shift algorithm is quadratic.
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Figure 8.4: Visualization of the clustering result obtained with the k-means algorithm for 4 classes on the four first
coefficients of reflection
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Figure 8.5: Visualization of the clustering result obtained with the k-means algorithm for 4 classes on the four first
coefficients of reflection
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Figure 8.6: Visualization of the clustering result obtained with the k-means algorithm for 4 classes on the four first
coefficients of reflection
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Chapter 9

Application to stereo audio classification

In this chapter, we classify stereo audio recordings of stationary sounds. For this purpose, the soundtracks of YouTube
videos corresponding to stationary sounds have been downloaded. We will have three distinct classes of sounds: wood fire
recordings, waterfall recordings, and wind recordings. We will divide the records from each of these three classes into a
training dataset and a testing dataset. The audio dataset will be presented in detail in Section 9.1. We will assume that the
downloaded audio dataset follows the centered Gaussian autoregressive multidimensional model presented in Section 2.2.
We will compare several representation spaces of the studied multidimensional signals. For each of these representation
spaces, we will first use the TPCA presented in Algorithm 10 to visualize the downloaded audio dataset. Then we will
use the supervised classification algorithm of the nearest centroid classifier presented in Section 5.3.3 to classify the audio
dataset.
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9.1 The stereo audio dataset

In this section, we present the audio dataset on which the classification will be performed. The recordings are extracts of
100 seconds from soundtracks of YouTube videos. Each extract comes from a different video.

The downloaded soundtracks correspond to stationary sounds. For this study, we downloaded three types of sounds:
wood fires, waterfalls and wind noise. There are other stationary sounds: dense rain, the fire of a gas stove, the noise of a
ventilation system, the noise of an air conditioning system, the noise of an engine in general when its regime is stable, the
sound of the leaves of a tree continuously agitated by the wind...

To download soundtracks from YouTube videos, we used a free converter site called YouTube to WAV whose url
is: https://loader.to/enld/youtube-wav-converter.html. All audio files obtained with this converter
have a sample rate of 48,000H z. An audio recording from the same YouTube video may have a different sample rate
when downloaded using another site to extract the soundtrack from a YouTube video, so it is important to download all
the soundtracks with converters having the same sample rate to be able to compare the downloaded soundtracks.

Each downloaded video is characterized by its sample rate (48, 000 Hz here) and a two-dimensional real matrix. The
number of rows of this matrix is equal to the sample rate multiplied by the duration of the record in seconds. The number
of columns is equal to two, it corresponds to the number of channels of the record. For each record, we check that the two
columns of this matrix are distinct. Indeed, the two columns are equal when the original recording is in mono.

Finally, we extract 100 seconds from each downloaded soundtrack. The extract of 100 seconds generally corresponds
to the 10 to 110 seconds of the original soundtrack. Indeed, it is preferable not to use the very first seconds of the audio
recording because an effect gradually increasing the sound volume over the first seconds is sometimes used on YouTube
videos.

For each of the three classes (wood fires, waterfalls and winds), we separate our records into two parts: half of the
records will be used as a training dataset, the other half will be used as a testing dataset. We summarize the constitution
of the dataset used in this chapter in table 9.1.

We will now visualize and classify this dataset in different representation spaces in Section 9.2.
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Table 9.1: Number of records of the stereo audio dataset

Training set | Testing set
Fires 24 25
Waterfalls 21 22
Winds 32 33

9.2 Classification results

In this section, we classify the audio signals presented in Section 9.1 using the nearest centroid classifier algorithm studied
in Section 5.3.3. We use five different spaces to represent the signals to be classified. The first three representation spaces
are linked to one-dimensional signal classification methods already presented for simulated signals in Chapter 6: only
one of the two recording channels is then used to perform the classification. The following two representation spaces are
related to the multidimensional signal classification methods already presented for simulated signals in Chapter 7. We
start by representing the audio recordings by their periodograms in dB. Periodograms are calculated from only one of the
two recording channels. We then use the Euclidean metric to classify the periodograms expressed in dB. We then represent
the signals to be classified by their Toeplitz autocorrelation matrices R. This matrix is estimated for each of the signals
using only one of the two recording channels. We classify the Toeplitz autocorrelation matrices R in the Riemannian
manifold H' ™ whose metric is described in Section 4.2.1. Then, we represent the audio signals using only one of the two
recording channels in the manifold R** x D"~! whose metric is described in Section 4.1.3. After that, we represent two-
dimensional audio signals by their block-Toeplitz covariance matrices R. These matrices are then classified as elements
of the manifold H;' "\, whose metric is described in Section 4.2.1. Finally, we represent two-dimensional audio signals in
the HJJ\’,Jr X SDrjifl manifold described in Section 4.2.3. Throughout this section, we have N = 2 and we choose n = 4.
We will compare the classification performances obtained using the nearest centroid classifier algorithm in each of the
spaces described above.

9.2.1 Periodograms

We start by representing the audio time series to be classified by their periodograms using only one of the two recording
channels.

We recall that periodograms are estimators of the power spectral density S, as seen in Section 2.1.11. For a time series
u of length N, the periodogram is defined by:

2

~ 1 [Nt _
Sper (F) = 5| 23 u(m)e= > 9.1)
n=0

In Figure 9.1, we present the spectra plotted from periodograms expressed in dB computed for each audio signal. We
use 1001 points to plot each spectrum: we calculate the values of the function Sy, (f) for f ranging from —0.5 to 0.5
with a 0.001 step size. To plot the PCA and classify the periodograms expressed in dB, we use 1000 points: we eliminate
one of the two extreme values (f = —0.5 or f = 0.5) because these two values correspond to the same frequency. Figure
9.2 represents the PCA of the periodograms. Figure 9.3 represents the PCA of the classification result using the nearest
centroid classifier algorithm. Figure 9.4 represents the corresponding confusion matrix.

9.2.2 Unidimensional covariance matrices H *

In this section, we represent the audio signals by their autocorrelation matrices R € . estimated from only one of the
two recording channels of the audio data. We then endow the space ;" with the information geometry metric presented
in Section 4.2.1: we therefore classify the audio signals in the Riemannian manifold H *.

To estimate the autocorrelation matrices for each of the simulated signals, we start by using the regularized Burg
algorithm 17 to estimate the mean quadratic power coefficient py and the reflection coefficients p1; = ai for1 <i <n-—1.
We choose n = 4 here. Then, we use the inverse Levinson algorithm 15 to compute the coefficients (7o, 71, ..., n—1)
from the coefficients (P, fi1, - - - , fin—1) € R% x D"~ previously estimated.

Figure 9.5 represents the Tangent PCA of the estimated autocorrelation matrices for each signal. Figure 9.6 represents
the Tangent PCA of the classification result using the nearest centroid classifier algorithm. Figure 9.7 represents the
corresponding confusion matrix.

9.2.3 Classification in R*+ x D"!

Here we represent the audio signals by the coefficients (Po, i1, .. ., fln—1) € R¥ x D"! estimated from only one of
the two audio recording channels. We endow the space R* x D"~! with the metric inspired by information geometry
presented in Section 4.1.3. The audio dataset is therefore classified in the Riemannian manifold R*+ x D"~ 1,
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To estimate the coefficients (po, f41, - - - , ftnn—1) Of each of the simulated signals, we use the regularized Burg algorithm
17 with n = 4 here.

Figure 9.8 allows to visualize the coefficients (fiy, . .., fi,_1) estimated for each of the signals in the space D"~ 1. We
notice that the estimated coefficients are on the real axis, which is normal since the studied signals are real. Figure 9.9
represents the Tangent PCA of the coefficients (Do, fi1, - - -, fin—1) estimated for each signal. Figure 9.10 represents the
Tangent PCA of the classification result obtained using the nearest centroid classifier algorithm. Figure 9.11 represents
the corresponding confusion matrix.

9.2.4 Multidimensional covariance matrices H' ',

In this section, we represent each audio recording by its Block-Toeplitz autocorrelation matrix Re B:{_ ~- The data is then
classified using the Information geometry metric on the set of HPD matrices ', ; described in Section 4.2.1.

For each of the two-dimensional audio signals, we start by estimating their Block-Toeplitz autocorrelation matrices
Re B: ~- To estimate these matrices, we use Algorithm 5 to estimate the coefficients (]30, Ql, ey ﬁn_l) € HY x
SDﬁfl. Here we have N = 2 and we choose n = 4. Then, we use the relationships between the different representation
spaces of multidimensional complex centered stationary autoregressive Gaussian processes presented in Section 2.2 to

compute the autocorrelation matrices Re B:‘ ~- The coefficients (]/%07 El, ceey ]/%n,l) of matrix R are indeed computed

from the coefficients (]30, Q... ,@n,l) e Hj; x SD’y ! thanks to Algorithm 4.

We now present the classification of two-dimensional audio signals represented by their estimated autocorrelation
matrices R in the manifold H . Figure 9.12 represents the TPCA of the audio dataset represented in the manifold
H.* . Figure 9.13 represents the TPCA of the classification result obtained using the nearest centroid classifier algorithm.

Finally, Figure 9.14 represents the corresponding confusion matrix.

9.2.5 Classification in H}* x SD '

In this section, we classify two-dimensional audio signals using the Riemannian manifold H{, " x SD’XFI described in
Section 4.2.3.

For each audio signal, we use Algorithm 5 to compute the coefficients (130, ﬁl, e (Aln,1> € ”Hf\, X SDK,_I.
We now present the classification of audio signals represented by the coefficients (]30, ﬁl, ... ,ﬁn_l) in the Rie-

mannian manifold H},* x SD". Figure 9.15 represents the TPCA of the audio dataset represented in the manifold
H}’L X SD?\fl. Figure 9.16 represents the TPCA of the classification result obtained using the nearest centroid classifier
algorithm. Finally, Figure 9.17 represents the corresponding confusion matrix.

We now compare the classification performances obtained thanks to the nearest centroid classifier algorithm on the
different representation spaces of the audio signals. To this end, we compare the confusion matrices presented in Figures
9.4,9.7,9.11, 9.14 and 9.17 :we use the average of the diagonal values as an indicator of the performance. The average
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of the diagonal values of the periodogram confusion matrix is 0.76. This mean value is 0.78 for the classification on the
manifold H,J{ +, of 0.7 for the classification on the manifold RT* x D", of 0.75 for the classification on the manifold
H ¥\ and of 0.77 on the manifold H{, " x SD7'. In the case of the classification of two-dimensional audio data
presented here, multidimensional methods seem to have the same level of performance as unidimensional methods. This
result may have the following interpretation: the correlation between the two recording channels might not provide useful

information to determine the nature of the sounds (fires, waterfalls or winds).
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Appendix A

The Levinson algorithm

In Section 2.1, we studied complex stationary centered autoregressive Gaussian processes. We recall the definition of an
AR process of order M given in Section 2.1.4:

n—1
u(k) + Y ap " ulk — i) = w" (k) (A1)
=1

where a;“l are the prediction coefficients and the process w™ ! (k) is a white noise.

In this appendix, we would like to compute efficiently the autoregressive coefficients (af\’ )z assuming that we

=1,.,N’

.....

Contents
A.1 The autoregressive and correlation coefficients relation . . . . .. ... ... ............. 130
A.2 TheLevinsonalgorithm . . . . . . .. . 0 i i i i i it i it et et et et e 130
A.3 Equivalentset of parameters . . . . . . . . .t i i i it it e e e e e e e e e e e e 134

A.1 The autoregressive and correlation coefficients relation

We recall that due to the hypothesis of stationarity, the autocorrelation matrix of the process is Hermitian (Property 1) and
Toeplitz (Property 2) as seen in Section 2.1.3.

By applying the autocorrelation operator E[ - u(l)*] for [ € [0,k — 1] on the elements of the equation of the autore-
gressive model (A.1), we obtain the following system on the autocorrelation coefficients:

Ryay = -Tn
in = [a,...,aN]T (A2)
?N = [Tl,...,?”N]T

where R corresponds to the autocorrelation matrix R of the process. Equation (A.2) is known as the Yule-Walker
equation and has been studied in Section 2.1.5.
The solution of this problem is then obtained inversing the autocorrelation matrix Ry

an = —Ry' . (A3)

A.2 The Levinson algorithm

If we want to compute the auregressive coefficients @y for IV equal 1 to n — 1, we can invert the matrix Ry for N equal
1ton — 1 as in Equation (A.3).

However, we note that the matrix R and the vector 7y have specific structures allowing a recursive computation of
the coefficients @ for a lower computational cost. It is the principle of the Levinson algorithm [45] detailed in Algorithm
13.

Property 25. The coefficients a{ computed by the Levinson algorithm from the autocorrelation coefficients ry, are the
coefficients of the autoregressive model.
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Algorithm 13 The Levinson algorithm

Initialization: r
~ 1
iy =al = —— (A4)
To
for!=2,....,n—1:do
-1 .
DY TI—ja;
l Jj=1
a; = — 7 , (A.5)
ro+ Y, rjai_l *
j=1
! -1 -1 %
ay ay a1
- : : . :
0 = : — : a : '
t ! 1 tal . (A.6)
a1 ap_q ay
al 0 1
end for
Proof. We would like to compute @y of Equation (A.3) using the following properties:
Ry_q1dn_1=—TN_1 (A7)
ro i T3 TN-1
% %
T1 To 7’1 TN—2 B
Ryv=|l ™= m 7 i s || = Ry "NT1 (A.8)
YN-1 TN-2 TN-3 70 Fﬁfl o

where we denote by -7 the matrix transposition, -* the complex conjugate and -Z the backward operator that reverse

avector: 7% | = [rn_1,...,m1]%.
1
- : TN_ —Ry_1an_
Py = : _ N-1 | _ N—1aN-1 (A.9)
TN—1
N N TN
using Equation (A.7).
in = —Ry' T (A.10)
-1
o Ry_ o —Ry_1an—
AN = — N-1 N1 N-1GN—1 (A1)
Fﬁjjl o N
We inverse the matrix Ry using the formula given in [80] for inversing Toeplitz matrices:
N Ry, + Whiayt Vi Wy_1 oy —Ry_1dn—
ay = — N-1 N-1*N_1VN_-1 N-1®N_1 N—-16&N-1 (Alz)
= T =T
ay_1 VN_a ON_1 N

where :
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~BT p-1 ~Bx ~BT ~Bs
an-1=10—Tn_1 BNy_1TN_1 =T0+TN_1 AN_1

T _ _~BT p—1
Vo1 ="y By,

_ -1 ~B% _ ~Bx
Wno1=—-Ry_ T8I = an_y

We prove that Ry 1 a&X* , = —75* | applying E[ z(k) (-)*] on each side of Equation (A.1) for different values of k.

—aN-1
-, VI Ryn_1d
N-10Qpn_1 VN_1 IAIN-1 AN—-1

ay = — Z A.13
+Wn_1 O/,Nl_1 N ( )
=T T ~ =T
—QpN_1 VN—l Ry_1an_1+ Qn_1 TN
~ ~Bx _N
~ an—1 tayxy-,a
anN = N-17N (A.14)
N
an
where :
N _ -1 ~BT ~
ay = Qpn_q (TN +7TrN_q aN,l)
O]

We now would like to simplifie the computation of the denominator in Equation (A.5). We denote P;_; this denomi-
nator. Hence:

l
Pr=rg+ Y rjal¥ (A.15)

j=1

Property 26. We denote 1 = a% the reflection coefficients. The coefficients Py of successive orders are linked by the
following equation:

P =P (1= lmal?) VieN (A.16)
We deduce by an immediate recurrence that:

P, = (H (1 - |Mk|2)> ro (A.17)

k=1
Proof. Letl e N.

+1
Py =ro+ Y, rya5 (A.18)
j=1
l
= o+ Dyt b piy (A.19)
j=1
! *
=ro+ Y1y (af + s affy )" + e g (A.20)
j=1
l l
=ro+ Y,y af + pf (Z Ty apy ot 7”l+1> (A21)
i=1 =1
d l
2Ty Apyp1—j T4l
=1
=P+ Py ? 5 (A.22)
l
=P+ Py (—pisr) (A.23)
= P (1= i) (A24)
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Another proof of Property 26 is given at the very end of the thesis of Le Yang [

O
1.

Using Property 26, we can compute faster the denominator appearing in the computation of the reflection coefficient
af in Equation (A.5) of the Levinson algorithm 13. We give a fast version of the Levinson algorithm in Algorithm 14.

Algorithm 14 The Levinson algorithm (fast version)

Initialization:

for{=1,....,M:do

end for

P() =70
-1 1
R DIR Iy
i=1
al =
= —
Py
I -1 —1%
ay ay a1
~ N I ! :
=1, i DT Bl
a171 a4 ay
a; 0 1

P=P (1= |uf?)

(A.25)

(A.26)

(A.27)

(A.28)

If we want to compute the autocorrelation matrix Ry of the autocorrelation coefficients (7),_,  , from the mean

quadratic power coefficient Py and the reflection coefficients (aﬁ)
is done by Algorithm 15.

i=1,...,N’

we can inverse the Levinson algorithm. This

Algorithm 15 The reversed Levinson algorithm (fast version)

Initialization:

for!=1,...,M:do

end for

TOIPO

Jj=1
l -1 -1 %
ay a; a1
~ I ! :
a; = = + al
a l— 1—1 %
-1 a4 ay
a; 1

P= Py (1= |ul®)

(A.29)

(A.30)

(A.31)

(A.32)

Property 27. The coefficients a} lie in the complex unit disk D : |a}| <1 Vli=1,..,n— 1

Proof. In the PhD thesis of Alice Le Brigant [15], it is shown that P, = F [|w ‘2] Hence P, € R%. Then, we can use
Property 26 to prove that |aﬂ < 1. Indeed, the coefficient Py = r is positive. If we assume that there exist an index [ for

which a} > 1, then if we denote m the smallest index for which a} > 1, we have P, = P,,,_1 (1 - |um|2) < 0 which is

impossible.

Property 28. The modulus of the autoregressive coefficients is bounded the following way:

< (}) viemene
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with by convention (3) = 1forallneNand (}) = 0 when k > n.

Proof. We prove Property 28 by recurrence on the indice n.
Initialization: The property is true for n = 0 as a) = () = 1.
Heredity: We assume that there exists an integer n € N such that for all k € [0, n], we have:

|ag| < (n> (A.34)
k
We now prove that:
1

< (")) kepael (A35)

If Kk =n + 1, we have:
Y = ] <1= (" F h. (A.36)

n+1 n+ 1

If k& € [0, n], we recall the recurrence relation between the autoregressive coefficients which is given in vector form
in Equation (A.6):

aj, = al "+ pial T V(i 5) € N? (A37)
Therefore, we have:
’a?“’ <lap| + |nsal ’aﬁil_k’ according to the triangular inequality (A.38)
= lap | <lag] + |apt, x| since |ppia] <1 (A.39)
= o}t < (Z) + (n +711 B k) according to the recurrence hypothesis (A.40)
(" " A4l
1<) (o) aa
< |af ™ <<Z> + (k i 1> since (n i k> = (Z) Y (n, k) e N? (A.42)
il n+1 . n n n+1 9
@’ak+ ’<< i > since <kz)+ <k:—|—1> = (k+1> vV (n,k)eN (A.43)
Conclusion: We proved that:
| < (Z) ¥ (k,n) € N2, (A.44)
[

A.3 [Equivalent set of parameters

In this section, we highlight the relationships between different parameters of the autoregressive model.
In Equation (A.6), we give in vector form the following relation which links the AR coefficients of successive order:

ap =ay '+ ppaF Vke[1,n]. (A.45)

Using Equation (A.45), we can compute the autoregressive coefficients autorégressifs a{ pourtout 1 < i< j<n

from the reflection coefficients i1, yi2, . . ., fin, wWhere p; = ai. The coefficients a’ are then computed by successive

orders: the coefficients of order j are used to compute the coefficients of order j + 1. Therefore the reflection coefficients
{1, f2, - - . , b, entirely determine the autoregressive coefficients a) forall 1 < i < j < n.
We now show that the autoregressive coefficients (aj

. are also entirely determined by the coefficients

. ) I<i<j<n
at,ay,...,ar of the autoregressive model of order n.

Property 29. Equation (A.45) is equivalent to the following equation:

n n
n—1 _ O = Hnlp_g

Ay 2 (A.46)
1- |Mn|
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This last equation can be used to compute the coefficients of the autoregressive model of order n — 1 from the
coefficients of the autoregressive model of order n.

Proof. We use an equivalence proof starting from Equation (A.45).

ap = al ' + ppal" ¥ Vke[l,n—1]

n n—1 n—1%
- { ag = a . + unan#f
n _ n— n—1%
A N S
n _ n—1 n—1s%k
= { Uk - % ﬁﬂnan_lf*
n* —_ % N— n— *
Ap_ = Hplg ta, i Ly < L2
* 2 n—1
ap — ppal®, = (1 — |t ) ap Ly < Ly — pin Lo
=
nk % .n 2 n—1% %
ap’y = pmay = (1 = |y ) an_y Ly — Ly — pj Ly
n n¥k
—1 Ap —HUnQ, — 1 2
a” = T Ly — L/ (1 — |ptn )
< n R
n—1 _ Qg HnQy * 2
Up = n1,|#n|2 Ly < L3/ (1 — | )

n n
n—1 _ O = Hnlp_g

< a 5 Vke[l,n—1]
L — [pn]
O
Finally, we presented two algorithms that can be used to establish the following equivalences:
(pizseosmn) = () o (aliah,.a). (A47)
I<i<yisn

Other equivalences between parameter spaces involving autoregressive coefficients are presented in Sections 2.1.5 and
2.1.6.
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Appendix B

Theoretical reflection coefficients of
continuous stochastic processes with
Gaussian spectrum shape

In this appendix, we recall the relations between the spectrum of a continuous stochastic process, its autocorrelation
coefficients and its reflection coefficients in Section B.1. We then use the several properties given in Section B.1 to
compute the theoretical reflection coefficients of continuous stochastic processes with Gaussian spectrum shape in Section

B.2.

Contents

B.1 Spectra, autocorrelation coefficients and reflection coefficients . . . . .. ... ... ... ... ...

B.1.1 Useful properties about the continuous Fourier transform and usual Fourier transforms

B.1.2 Spectrum multiplied by a scalarconstant . . . . . . ... ... Lo oL
B.1.3 Translated spectrum . . . . . . . ... e e e e
B.1.4 Centered symmetric SPeCctra . . . . . . . . .« . it e e e e e e e e e

B.2 Application to the theoretical reflection coefficients computation of continuous stochastic processes
with Gaussian spectrumshape . . . . . . . . 0 0 i i i i e e e e e e e e e e e e

B.1 Spectra, autocorrelation coefficients and reflection coefficients

Let Sy be an integrable positive real function representing a spectrum shape. We denote r, (respectively 7) the auto-

correlation coefficients corresponding to the spectrum S (respectively S ) and a} (respectively ap) its autoregressive

coefficients.

The autocorrelation function R of a continuous complex valued stochastic process f is defined by:

+o0
Ry(r) = jf(tw)f*(t)dt.

It has a Fourier transform called the power spectral density:

+00

510 = | Bime >

Ry () is therefore the inverse Fourier transform of Sy (§):

+00
Ry(r) = J Sp(€)et 2 e,

(B.1)

(B.2)

(B.3)

B.1.1 Useful properties about the continuous Fourier transform and usual Fourier transforms

We recall some useful properties about the continous Fourier transform and we give the Fourier transforms of three usual

functions in the following tabular.
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Function Fourier transform Remarks
~ +90 )
f(x) FHE) =f(&) = § fla)e ™ d Definition
—00
af(z)+bg(x) af(&)+0bg() Linearity
f(x—m) e~ i2mmE f () Shift in time domain
f(ax) rarf () Scaling in the time domain
f(x) f(=§) Duality
tri(az) ﬁsing(%) tri(z) = max(1 — |z|,0)
e—alel “231%522 For Re(a) > 0.
e—ov’ ge_% For Re(a) > 0.

B.1.2 Spectrum multiplied by a scalar constant
We first study the case where Sy is multiplied by a complex scalar constant: we denote S r=ASp, A eC.

Property 30. If we denote S r = ASy, the autocorrelation coefficients of the corresponding spectra S rand Sy are linked
by the equation:
TE = Arg (B.4)

Proof. We denote R + the autocorrelation function associated with the power spectral density S . Using these notations,
we have:

Ry(r) = F (3;) (=) (B.5)
= F(ASy) (—7) (B.6)
=F(x— ASs(x)) (—7) (B.7)
= \F (Sy) (—7) (B.8)
= )\Rf(T) (B~9)
Therefore, we have:
T = AT (B.10)
O

Property 31. If we denote S + = ASy, the autoregressive coefficients of the corresponding spectra S + and S are equal:

ay = ap, (B.11)
Proof. Initialization: We have:
T A
T S AL . . (B.12)
To /\’I“o To

The property is initialized for n = 1.
Heredity: We assume that there existe n € N such that Vk € [1, n]:

ay = ay (B.13)

We now show that the property is true at the rank n + 1.
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e If K = n + 1, the Levinson algorithm gives us:

o Ifk

Conclusion:

and in particular:

B.1.3 Translated spectrum

We denote S the translated spectrum: S ()

Property 32. If we denote S ()
are linked by the equation:

Proof.

Therefore, we have:

Property 33. If we denote S ()
are linked by the equation:

~ _~ntl
Hn+1 =0y 1 q (B.14)
n
Prp1 + 2 Tny1-ja)
j=1

< n, the Levinson algorithm gives us:

—_ . (B.15)
Fo+ 3 Fant
j=1
n
YIS Z ATpi1-jaf
—_ (B.16)
Arg + Z Arjalf
=1
A (Tn+1 + > rnﬂja?)
=1
- ! (B.17)
A (ro + > m—a?*)
j=1
=[n+1 (B.13)
aptt =ag + a::i%aml k (B.19)
=ap +apiian " (B20)
=a;t! (B.21)
ap =a; V1<k<n (B.22)
L = fn Yn =1 (B.23)
O]
= S¢(z —m).

= Sy(x — m), the autocorrelation coefficients of the corresponding spectra §f and S¢
P = ey, (B.24)

Ry(r) = F (37) (=) (B.25)

= F (o= 8p(@)) (-7) (B.26)

=F(x— S¢(x—m))(—71) (B.27)

= e T F(8) (- 7) (B.28)

= ™ R (7) (B.29)

e = ey, (B.30)

O

= S¢(z —m), the autoregressive coefficients of the corresponding spectra S tand Sy
an = eizmmkgn (B.31)
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Proof. Initialization: We have:

~ 2Tm
~ o~ "1 i2Tm 1 i2mm
fin=df=—x = - — z
To To To

The property is initialized for n = 1.
Heredity: We assume that there existe n € N such that Vk € [1, n]:
&Z _ ei27rmk azL
We now show that the property is true at the rank n + 1.

e If K = n + 1, the Levinson algorithm gives us:

~ _~n+1
Hn+1 =0p 4

rn-‘rl + Z Tn4+1— 7(1
j=1

n
ZF&

ez27rm(n+1),r i1 + Z 6127rm(n+1 J)T b1
Jj=1

127rmj
a”?
J

n
2TMJ g . p—12TMG 4N ¥
ro + Zle irje Jaf
5=

T+l + 2 Tnt1-j@;
i2rm(n+1) | _ Jj=1

n
ro+ . rja?*
Jj=1

=€

2mm(n+1
=2ty

e If k£ < n, the Levinson algorithm gives us:
~n+l _~n ~n+l~nk
ap’ =ag + Gyt _g

ezQﬂ'mkan_FezZTrm(nJrl)azil —i2rm(n+1— k)

2rmk n+1l _n ES
(ak + an+1an+1—k )
:ezQkaaz-‘rl

=€

Conclusion:

and in particular:

Note that the mean m of a symmetric spectrum influence the argument of the reflection coefficients.

B.1.4 Centered symmetric spectra

n+1 k

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)
(B.40)
B.41)
(B.42)

(B.43)

(B.44)

Any real wide-sense stationary signal has a spectrum that is symmetrical about the y-axis. Reciprocally, we now assume

that S¢(x) is a centered symmetric real spectrum.

Property 34. If Sy(x) is a symmetric centered real spectrum, then its autocorrelation coefficients are real.

o~ +00
Proof. Conventional calculations show that S¢(&) =2 § Sy(x)cos(2mz€)dx
0

+00

Hence we have Rf(§) = S‘}(—f) =2 { S¢(x)cos(2ma€)dx, and R¢(§) e R VEER.
0

Property 35. If Sy(x) is a symmetric centered real spectrum, then its autoregressive coefficients are real.

Proof. We already proved that the autocorrelation coefficients ry, are real. We can prove easily that the coefficients aj} are

real too by recurrence on the index n using the Levinson algorithm.

139

O



B.2 Application to the theoretical reflection coefficients computation of con-
tinuous stochastic processes with Gaussian spectrum shape

We consider the spectrum Sy which shape corresponds to the density of a Gaussian distribution of mean m and variance
o2 with a power coefficient P, i.e.:

Si€) =P e T (B.45)

We compute the corresponding autocorrelation function R:
Ry(r) = Sp(=r) (since 8 (r) = Ry())

1 (z—m)?
=P T — e 202 —T
\V2mo? ( > (=)
1

-p efi27rm(7-r) T — 6721722 (—T) (B46)
2ro?
1 , T 2 2 2
-p 2rmT 67271' oc(—71)
1
V2mro? 552

— PeiQﬂ"mT6727T o T

Finally, if we want to simulate a signal f which sampling period is 7", the autocorrelation matrix R (which is Toeplitz)
will be defined by its coefficients:

r(k) = Ry (kT) (B.A7)

For simplicity we normalize the time scale and consider the sampling period 7' = 1. We then denote r;, = r(k). The
theoretical autocorrelation coefficients of a signal which power spectral density has the shape of Gaussian distribution of
mean m and variance o2 with a power coefficient P are therefore:

. 2 272
rp = PezZ'n’mkef%r o’k (B48)
Thanks to the Levinson algorithm, we can compute explicitly the expression of the reflection coefficient fi.

Property 36. The autoregressive coefficients of a continuous stochastic process with a Gaussian spectrum shape of mean

m and variance O'2 are:

ﬁ (1 _ 6747r2a'2(n+17i))

n __ k _i2nmk —2n202ki=1
ap = (—1)% e

(B.49)
(1 _ 67471'2021')

k
i=1
In particular, its reflection coefficients are given by:

p, = (—1)Fei2mmbe=2m° 0"k g 5 q (B.50)

To prove this formula, we will proceed by recurrence on the order of the model using the Levinson algorithm (14).

Proof. Using properties 31 and 33, we can consider the case where the power coefficient P = 1 and the mean m = 0.
It is therefore sufficient to show the spectra:

Sp(€) = e 207 (B.51)
of autocorrelation coefficients:

ry, = e"2m 0K (B.52)

ﬁ (1 _ 6—47r20'2(n+1—i)>

af = (~1)Fe 2o k=L (B.53)

k
H (1 _ 6—471'20'21')
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We now prove this equality by recurrence on the index n using the Levinson algorithm.

Initialization: We have:

—272g2
1 € _ e—27r2172

To 1
The property is initialized for n = 1.
Heredity: We assume that there existe n € N such that V& € [[1, n]:
ﬁ (1 _ 6747r20'2(n+17i)>

k
=1

(1 _ 67471'2027,')

7

ﬁ (1 _ 6747r2o'2(n+27i)>
k .
H (]_ _ 67471'20'27,)

i=1

ﬁ 17674#02 (n+1—1)

2 2 . 1
If we note X = e~ 4™ 9, we can see that the quotient =2

k 4n202
il;ll(l e 1rcr7.)

(B.54)

(B.55)

(B.56)

is a polynomial quotient in X . Similarly

to the fact that (Z) is always an integer, this quotient can always be reduced to a simple polynomial in X, and similarly

to the fact that (Z) = < " k)’ we have the following equality:
n—

k 2 o . n—k 2 2 ;
H (1 _ p—4r’o (n+1fz)) H (1 _ g4r%0 (n+171))
i=1 _ =1

—

(1 _ 6—47720'27l)

= (1 _ 6—47720'21')
i=1

i=1

Hence the coefficient a} can also be written, Yk € [1, n]:

min(k, n—k) 5 5 )
H (1 e (n+1—z))
_(_1\k,—27%0%k i=1
o ( 1) ¢ min(k, n—k)

[T (1 et

i=1

aj,

We now show that the property is true at the rank n + 1.

e If K = n + 1, the Levinson algorithm gives us:
1
Hn1 :CLZL

n
T4l + 2 Tng1-;05
=1

n

ro + », rja’*
1

T4t + 20 Tiln g j
=1

n
ro+ Y, rja?*
j=1 ’

n+1

AT
) Tjlp41—j

<

(B.57)

(B.58)

(B.59)

(B.60)

(B.61)

(B.62)

(B.63)



considering that aff = 1 for all n € N, which generalize the formula (B.58) to k = 0.

‘We now show that:

rip100 -
i+l nn**J _ (_1)(n+1)e—27r202(n+1) Vje [[O7 n]]
rjaj
which will prove that:
n — 71'20'2 n
Hog1 = (~1)0 D 2m o (),

Let’s prove Equation (B.64):

2 2. 2
R RN A
747‘]»@;}* _(* ) 6727.r20-2j2

min((n—j), 1L7(n7j))(176—47202(n,+171))

(=1)(n=9)g=270 (n—3) i=1

min((n=j). ni(nij))(lfe*‘“#“%)
i=1

min(g, nﬂ)(l_ef4w202(n+1ﬂ'))
_ i p—2m2027 i=1
( 1)je J min(G, n—j)

_e—4n2024
(1-e )

i=1

(12t (P i)

(_1)n+1627r20'2(n+1).
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(B.67)
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e If £ < n, the Levinson algorithm gives us:

n+l _ n n *
=0y + tnt+10, 41—k

ay
min(k, n—k) 40 (nt1—i)
1 — e o (n+1—2 )
:(71)]667271'20'2](7 lI;[l < +
min(k, n—k) o
H (1 _ 6747r20'21>
=1
(71)77,“1'16727720'2(7744'1)
(_1)(n+1—k)e—27r202(n+1—k)
g () (1 — 6—47r202(n+1—i))
1=1
min((n+1—k), n—(n+1—k))
(1 _ 6747r20'2i)
=1
:(_1 kef27r2crzk
2 _2 . k-1 2 2 .
I (1 _ g—iro (n+1—z)) (1 _ e—in%0 (n+1—z)>
i=1 —4m20? (n+1—k) i=1
k 1 —4n2024 e = 1 —4n2024
[T (1= etme) [T (1= emtme)
=1 i=1
_1)ke—27r202k

=(
g 1— 6747r20'2(n+17i))

|
—
—

.
I
—_

1_[ (1 — e—d4n?0%i)

i=1

((1 _ 67477202(n+17k)) + (1 _ 6747r202k) 6747T20'2(71+17’€)>

ki:[l (1 _ €—4W202(n+1—i))

:(71)k6727r202k =0

<.
Il
—

Conclusion:
Using properties 31 and 33, we finally prove that the clutter of spectrum:

1 (E=m)?
S- = Pie_ 202
#(&) \V2mo?

has the following autoregressive coefficients:

min(k, n—k
( ) (1 _ e—4ﬂ202(n+1—i))
Vi<k<n

(71)kei27rmk6727r202k i=‘1
min(k, n—k) ‘
H (1 _ 6747720'%)

i=1

ay =

and in particular:
; 2 2
fin = (71)7’7,67,271'7’717’7,67271’ on Vn > 1.

The k" coefficient of the model of infinite order is therefore:
. . 922 1
azo = lim GZ _ (_1)kez27rmk:e 2n 0’k
n—+0o0 k .
(1 _ 6747720'22)
i=1
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Appendix C

The Burg algorithms

The work presented in this appendix has been introduced by John Parker Burg in his thesis [16]. The Burg algorithm
estimates the coefficients a] of the linear autoregressive model from an observed time series [26]. We first define the
forward and backward prediction errors which are functions of the autoregressive coefficients ag . The aim of the Burg
algorithm is then to compute the coefficients af minimizing the prediction errors. The Levinson algorithm induce relations
between the forward and backward predictions errors of successive orders. The estimations are performed recursively on
the order of the model. The Burg algorithm is not a maximum likelihood estimator of the autoregressive coefficients, an
exact forward-backward maximum likelihood autoregressive parameter estimation method is given in [5] for Gaussian
autoregressive time series.
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C.1 The forward and backward prediction errors recurrence

We would like to justify the expression of the reflection coefficient p; of the regularized Burg algorithm 17.
We denote:

ay
a=1 : (C.1)
ai
and 4P the reversed version of d;:
ai
ad = (C.2)
a}

With these notations, the relation between the autoregressive coefficients presented in Equation (A.6) can be summa-

rized as follows:
~ ~Bx ~ ~ B
~ a;— a;’ aj— a;—
e N R e B ©

Letu = [ug, ..., u,—1] be a one-dimesional temporal signal.
We define the forward prediction error:

J
fl=w+ Y aluey, j<k<n-—1 (C.4)
=1
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and the backward prediction error:

J
bi = Up—j + 2 a{ Uk—j+l, J S k<n-1 (C.5)
=1

Theorem 6. The forward and backward prediction errors of successive orders are linked by the following relations:

. _ A
G, T b (C.6)
b, =l + M;+1 i
Proof. The proof is based on the Levinson recurrence.
I =+ Y el (C.7)
1=1
Uk—1 1
—up il | (C3)
Uk—j—1 |
~ [ ~Bx T k=1
a; a
= + ([ J ]+uj+1 . D : (C.9)
) | Uk—j-1
Uk—1 _ Uk—1
a 1" , abx 1" ,
—u+ | G S R ) : (C.10)
Ug—j—1 ) Up—j—1
= fi + i by (C.11)
j+1 .
j+1 j+1
b{c+ = Uk—(j+1) + Z a,l7+ Uk—(j+1)+1 (C.12)
1=1
Uk —j
=Gy AT | (C.13)
Uf
a‘ &B* *T uk*j
= Ug—(j+1) T ([ Oj ] + fj11 [ Jl ]) : (C.14)
Uk
= Up—(j+1) +[ OJ ] +Mj+1*[ 11 ] (C.15)
Uk Uk
=b_, + i fl (C.16)
O

The Burg algorithms presented in Sections C.2, C.3, C.4 and C.5 are based on the minimization of the forward and
backward prediction errors.

C.2 The classical Burg algorithm

We present the classical Burg algorithm in Algorithm 16.
We would like to justifie the expression of the reflection coefficient 41; in Equation (C.19).
The idea is to minimize the sum of the square modulus of the forward and backward prediction errors of order 7, i.e.
we would like to minimize the function:
2 2
|+

1 n—1 i
Ei =505 ;;J )fk (€21)
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Algorithm 16 The classical Burg algorithm

Initialization:
fe=b0=u k=0,.,n—1 (C.17)
1 n—1 )
po=— > |uxl (C.18)
"o
forj =1,...,M:do
S A I
25 fi b
Hj = =73 =~ 2 2 (€19
j—1 j—1
> ‘f}g ‘ + ‘bifl‘
k=j
where:
1= g_‘ll + b@l k=j,n—1 (€20,
b, = b{cfl—l—u;‘f,f: k=j,...,n—1
end for
return (po, M1y eees /f’/n—l)
Note that we can express E; as a function of forward and backward prediction errors of order j — 1 and y;:
1Ot =1%o x piet]?
Ej= 2(n — j) Z ‘f}C + bk—l‘ + ‘bk—l T 15 T (C.22)
k=j

Hence if the prediction errors of order j — 1 are already known, we can compute the optimal value of y; to minimize
E;.
J

Property 37. The minimal value of E; is obtained for:

n—1
j—1;7—1
2 Y fi by
k=j

hy = —— (C.23)
) —1 ) —1
2T PP
K=j
Proof.
B= nl‘ J 1+u-bj*1‘2+‘bj*1+u* = (C.24)
J 2(7’?/_]) = k 7 Yk—1 k—1 7 Jk
1 nol o 2
_ Fraa (C.25)
2(n—j) =

Ci=1 pi—1%
pi by fi
% 1J—1% pj—1
My 0p_q Jip Tt

2
2 j—1
i)+

|1

j—1 j—1
pi il
iR RI

2

2 j—1

il |77

If we denote p; = x + 4y, then we have:
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1 nl

Ei= 2(n—j) f ‘f ’
(z +iy) b4 74
(@ —iy) b )" f
(2% + %) ‘bi 11‘ +
no[
(@ +iy) fi 0T+
(x —iy) fi j— 1bj 1*+
(z% +9y° ‘ ’
Hence we have:
OE;(z + i 1 E
j(ax y)_g(n_j)kZ]bgﬂll Ig L,

1% 1
A
2 ‘bjil‘ +

1%
A+
_] lbj 1*+

j—1
2ol

1 n—1 ] ]
— o > ARe (o) +
2(71 _j) kZ:J k k—1

. 2 . 2
o (’f,glj + |1} )

Hence:

OFE;(x +1iy)

ox =0

2Zf] lb] 1*

< x=Re| —

i—1 i—1
kZ P+ b P
=j

We also have:
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. —1
aEJ(I + Zy) 1 nZ Z_bj_l j—1%

dy 2n—j) =
— i T
i-1)?
2y ‘bkil‘ +

i1k i1
i flT e+
el g i—1%
—ify byt
j-1]?
2y| 5|

n—1

-7 ,;j“m( )+
oy (i) i)

Hence:

OFE;(x + iy)

oy =0

nt =1L
2 kZ_ fe by
=j

—y=1Im

n—1
Jj—1 Jj—1
2 TP+ b
k=3
Hence the gradient of the function E; respectively to the coordinate = and y is null at the point:

=l pi— L
2 kZ‘ fi k-1
=j

Hi = i—1 i—1
kZ_ L7122
=j

As the function E is a strictly convex function, the function E; has a global minimum at ;.

Property 38. The modulus of the reflection coefficients estimated by Algorithm 16 are lower than one:

il <1, VjeN*

Proof. Note that V(j, k) we have:
. . 2 2
2| i | < [

If we sum the inequalities, we the have:
n—1
2 2
i—1 35—1%
2 YA | |
k=j

Yet, using the triangular inequality:

n—1
i1
<) ‘f;i
k=j

J—1
+ [0

n—1

2 <2 Y|y
i

n—1

j—1 75—1%
2 AT
k=j

Therefore:

148

(C.30)

(C.31)
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n—1 n=1
2 | HTY < Y AP+ TP (€39
k=j k=j
S R
2 kgfi b
: =j <1 (C.39)
ol P i1)?
2 ‘fk ‘ + ‘bk—l‘
k=j
— |yl <1 (C.40)
O

Note that | ;| = 1if and only if all inequalities in the proof of Property 38 are equalities. Therefore, we have |u1;| < 1
almost surely.

C.3 The regularized Burg algorithm

We present the regularized Burg algorithm in Algorithm 17.

Algorithm 17 The regularized Burg algorithm

Initialization:
fo=0=u, k=0,..,p—1 (C.41)
a)=1 k=0,...,p—1 (C.42)
1,
po == Y |uxl (C.43)
p k=0

forj=1,...,n—1:do

p—1 ) j—1 .
2 J—1 3j—1x% Jj J—1 j—1
P szk by +2k215k ap @y,
—j =

S L P e 12 ISt i) ie1)? o
mkgj)fk ‘ +‘bk_1‘ +2k§06k ‘ak ‘
where: .
Bl = ~(2m)2( = by? (€4
G = @ T et k=11 (C.46)
a; = W
o= fTN bl k=j..p—1 (C.47)
b, o= byl T k=gp—1 '
end for

return (po, /i1, -, fln—1)

We would like to justify the expression of the reflection coefficient y; in Equation (C.44).
The idea is to minimize the sum of the square modulus of the forward and backward prediction errors of order j plus

a regularization coefficient, i.e. we would like to minimize the function:
1 n—1 12
- 4
g 1

F; Gj

2 J 12
¥ ‘bi’ N ‘a{c‘ (C.48)
k=1
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The function F; has already been studied in the previous section dealing with the classical Burg algorithm C.2.
The function G is a regularization function of parameter . We explain why the function G; can be considered as
regularization function, then we will compute its derivative in order to minimize the function E}.

We denote A™(f) the polynomial associated with the autoregressive model of order m:

m .
= Y apre (C.49)
Note that this polynomial corresponds to denominator of the autoregressive spectrum S (f) presented in Equation

(2.95):

P
A™(f)
Hence the variation of the autoregressive spectrum S’ (f), are linked to the variations of the polynomial A™ (f) via
the equation:

Sur(f) = (C.50)

ASEnll) __Pn"g (C51)
df (Am(f))*

Hence we can obtain a smooth spectrum minimizing the modulus of the first order derivative A df(f ),

The following coefficient as been introduced in [8, 9] to quantify the variations of the polynomial A™ (f):

dA™(f
D" = f ‘ (C.52)
—1/2
Property 39. Using the previous notations, we have the following equality:
dAm m
f ' = (2m)? > K |ap)? (C.53)
—1/2 k=1
This equality justifies that the function G is called a regularization function.
Proof. We recall the expression of the polynomial A™ ( f) associated with the autoregressive model of order m:
= Z ayre=i2ks (C.54)
We compute the first order derivative of A™(f):
dAm(f) . S m,—j27
7o —j2m Y kaye 72k (C.55)
k=1
Hence its square modulus is:
2
dAhL(f) 2 :(271')2 i kanLe—j27rkf (C 56)
df k :
k=1
which gives:
dA™(f)[°
’ df(f) = (27)? Z il aa] ¥ e I2m(=Df (C.57)
1<il<m

Integrating with respect to f, we obtain:
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dA™(f
J ‘ (C.58)
—1/2
1/2
=@2m)? > dilal'a™ J eI (i=0f gf (C.59)
1<i,l<m 71/2
=(2m)* ) ilal"af™*1luy (C.60)
1<ii<m
= (27)? Z 2 al|? (C.61)
i=1
O
Property 40. The minimal value of E; is obtained for:
Jj-1 . .
= ] Z f] ! bJ 1* + 27y(27)? k21(j —k)? al, ! a?i,lc
i = — _ — o 5 (C.62)
LY \fz*( s+ 2r@m2 S G- b2 fal
k=j k=0
Proof. Let’s start by recalling the formula of the regularization function G:
J
= v (2n) Z 2| fc( (C.63)
Performing a summation index change, we have:
2 o 2
) DG —k)? ‘aﬁ,k’ (C.64)
k=0
We recall the following recurrence relation of the AR coefficients obtained in Appendix A:
af, = aj '+ pgalF Y (i,5) € N? (C.65)
with by convention ag = 1forall € N and af = 0 wheni > j.
Therefore, we have:
2 =y 1 —1 %|?
Gy =7 @n)® 3, (= k) [a ) + g a7 (C.66)
k=0
2 = -1
=7 (2m)° ) (7 —k)? ( aj-:k) + (C.67)
k=0
Mjak - *ai 11c*+
u;‘ai 1a§ e
2
ol
If we denote p; = x + iy, then we have:
jfl 1 2
G =~v2m)? Y (j — k)2 (’a; k( (C.68)
k=0
(x +1y) a, ! *aj::}c *
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Hence we have:

ac%(m-+iy) 2]_1 2 j—1% j—1%
DI
k=0
+ aiflaii}g
2
+ 2z ‘aifl‘ )
2j_1 i1 -1 i—1]?
= (27) (j—k)? (2 Re (ai_ a;:k) + 2z ‘ai_ ‘ )
k=0
Hence:
OFE;(x + iy)
CHE T _ g
ox
- OF;(x + iy) N 0G(z + iy) _o
ox ox

1 1o 2 2
= gy 2 A re () w2 (| i) +
=J

izl L 2
~ (27)? Z (j —k)? <2Re (a{c_lai:i) + 2z ’a{c_l) ) =0
k=0

n—1 . A J—1 .
25 XA e B G-k e

= r=Re| —

L n—1 i1 2 i1 2 izl 9
o kz_ )fk ‘ + ‘bk_l‘ + 2v(2m)? kzo (j—k) ’a
- -

We also have:

0G;(x + iy i L il g
J(ay ) _ 7(2702 Z (j— k)2 (z al 1 >x<a;_11€ *
k=0
—iaifla;::i
L2
+ 2y‘a?€71’ >
2];1 2 i—1 j—1 i—1]2
_ : j=1_j— j—
=y (2m) ,;0(] —k) <2 Im (ak aj_k) +2y)ak } >
Hence:
O0F;(x + iy)
=0
%y
— OF;(x + iy) N 0G;(z + iy) _0
oy 0y

G—1 1 j—1% j—1]? 12
arm (o) w2y (|07 + i) +

— k)2 (2 Im (ai_lagii

)+2y

2
afﬁ_l‘ > =0

k

n—1 . j—1 . .
g XA RO+ 0 Y G-k e e
c=1 o=

1
iy

n—1 . 12
o+

k=j
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1| +2v(27

j—1

k=0

125 k)2
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j—1’
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Hence the gradient of the function E; respectively to the coordinate = and y is null at the point:

j—1

w2 2 AN+ 292m)? Y (G- k)2 a) ! alTy
= — — k=1 — — (C.81)
=P 1 ( + oz 1‘ F2/(m)? 5 (G k2 a7
As the function E; is a strictly convex function, the function F; has a global minimum at y;.
O

Property 41. The coefficients j1; computed by the regularized Burg algorithm 17 belong to the complex unit disk for all
1<j<s:

lpil <1 V1<j<5 (C.82)

In practice, all the reflection coefficients estimated from a time series using the regularized Burg algorithm are of

modulus lower than one for all j € N*. Indeed, the modulus of the j”" coefficient tends to decrease as the model order

j increases. However, we only managed to write the proof for 1 < ¢ < 5 here. The main difficulty of the proof is the
coefficient (j — k)2 appearing in the expression of the coefficient j1;:

j—1

iy 2 AN+ 292m)? Y G-K)2 el el
= — 4 = —. (C.83)
= 2)f,z Pofprt] +2ven2’s G102 Jaf ]
k=j k=0

Proof. According to Equation (C.83), it is equivalent to prove that |4;| < 1 and to prove that:

9 n—1 —
— ijfj Ll 2y (2m)? 2 “talZ, (C.84)
y k=1
— 2
-1
<n_j]”‘f ’ ’bk 1) + 2y(2m)? g ’ ’
According to the triangular inequality, we have:
j—1
1 1 . -1 j—1
—J Z AN+ 2y2n)? ) G-k al Ty (C.85)
k=j k=1
<n ; ‘f,g L= 4 24(2m) 2 K)? Jaf " ol
k= k=1
In the proof of Property 38, we have already proven in Equation (C.36) that:
ES 1 1* O i1 ]? i—1)?
2 Z Fraviy BV IR (C.86)
k=j
Therefore, it is sufficient to show that:
- . . j—1 2
N G-K2a " alT < Y (G- k)2 ‘aggl‘ (C.87)
= k=0
to prove that |u;| < 1.
We recall that af = 1 for all n € N, Equation (C.87) can therefore be written:
Jj—1 ) ) Jj—1 2
SN G-k2a Tl <2+ Y (G- k)? ‘aggl‘ . (C.88)
k=1 k=1

Note that we cannot use the Cauchy-Schwarz inequality to prove directly this inequality because of the terms (j — k)2.
We now prove that

2 G-
k=1

j-1
a;:i’ <G+ Z G-
k=1

2 Jaf | (C.89)
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for all j € [1,5]. When Equation (C.89) is true, we can use the triangular inequality to prove that Equation (C.87) is

also true and therefore |p;| < 1.
For j = 1, Equation (C.89) gives:

0 0
M-k Jad] a3 ] <12+ Y (1K) [ad]?

k=1

=
—_

= 0<1

which is always true.
For j = 2, Equation (C.89) gives:

1 1
SN2 k)? |ab| |ad_p] <22+ D1 @ k)? |ab|’
k=1 k=1

= ’aHZ <4+ ‘aHQ

which is always true.
For j = 3, Equation (C.89) gives:

2 2
33—k [af| a3 ] <32+ D (3— k) |ad|
k=1 k=1

< afad]|a3] + [a}|[a3] <0 + 4[ai|" +[a3["
< 5|a?| |a3| <9+ 4]a?|” + |a3[*

Note that:

5 2
0 < (2a§}_4|ag}>
<0 <aladf’ 5 Jod] o3 + 22 Ja3f”
o 5of] |o3] <4 el + 2 a3

Moreover, we have:

3] <1

o ladf <o

162 16
9 9 2

By adding the inequalities (C.100) and (C.103), we obtain:

25 2 9 9 2
16 3] 16 16 Ja3]
< 5o 3] <5 + 4Jadl + a3

= 502 |a2| <9 + 4]a2 ] + |ad?

) ’aﬂ !a%} <4 }aﬂz +

which proves the inequality for 7 = 3.
For j = 4, Equation (C.89) gives:

3 3
SN k)? Ja}] a3 o] <4+ (4 k) |a}]’
k=1 k=1
| +

< 9a3||ad] + 4 a3| 3] + |a3| |ad] <16 + 9 |a3[* + 4 [a3|* + |a3[*

< 10|a3|[a3] <16 + 9]a?|” + a3
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Note that:

5 2
0 < <3|a§'}— 3|ag)>
< 0.<9]at* ~10[a3] o] + 2|
< 10af] o] <0[adf* + 2 Jad

Moreover, we have:

a3 <1
o W02 10
9 M3 =9
<0 <1§6 — % ag 2
By adding the inequalities (C.112) and (C.115), we obtain:
: 2 25,52 16 16
10 [af| |a3] <9 |a3|" + 9 la3|” + 99 |a3

< 10Jaf| |of] <+ 9]a3* + a3’
= 10/a3|[a3] <16 + 9]a?|” + a3’

which proves the inequality for j = 4.
For j = 5, Equation (C.89) gives:

4

k=1 k=1

16 |a?|[ad] + 9 |ad| [ad] + 4 |ad| [ad] + |ad|a?] <25 + 16 |a?|” + 9 |ad|” + 4 |ad]* + [al]”

< 17 |ad||ad] + 13|ad| |ad] <25 + 16 |ai|” + 9]as|” + 4]ad]” + |ai]”

Note that:

2
0< (4yagl| o my)

2
< 0<16al]” 17 o o] + [t

17 ol |of] <16]adf* + 27 [ad
Moreover, we have:
i <1
o 2202 220
64 " T 64
225 225 2
<0 sg;éij - zgi*|ai|

We also have:

2

0< (3laf] - T led])

2

< 0<0[adf’ ~ 13[a]ad] + 1y |od”

6
< 13]ad]ad] <9]ad]” + - [adf
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4
N5k Jap] [ad i <5+ D (5 k) |af|’
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(C.116)

(C.117)
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(C.119)

(C.120)
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(C.122)

(C.123)

(C.124)

(C.125)
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(C.127)

(C.128)
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Besides, we have according to Property 28:

ad <<§) _4

o |ad]* <16
25 25 100
|a3| Sgg ¥ 16= -
100 25 2

By adding the inequalities (C.124), (C.127), (C.130)and (C.134), we obtain:

89 225

17} ot + 13 o3| <16[a]" + 20

8425
576
— 17 |a?| ] + 13 |ad| |ai| <25 + 16 |a?]” + 9 |ad|* + 4

< 17 |af] |ag| + 13]a3] |a3| <

which proves the inequality for j = 5.

‘4| 64 64

225 69

1
7 ldl* +9lad]” + S ladl” +

+ 16 |a2” + 9]ad|* + 4ai]* + |ad]?

’a3| + ’a4|

C.4 The classical multisegment Burg algorithm

100

9

(C.131)

(C.132)

(C.133)

(C.134)

36 ]

(C.135)
(C.136)

(C.137)

O

The aim of the multisegment Burg algorithm presented in 18 is to estimate the coefficients of the autoregressive model of

N temporal signals (u’,... u
n.

N—l)

assuming these signals have the same autoregressive coefficients and the same lenght

Algorithm 18 The multisegment Burg algorithm

Initialization:

D= =l k=0, 1;1=0,..,N—1 (C.138)
1 N—-1n—1 5
Po=— || (C.139)
Y120 k=0
forj =1,...,M:do
N—-1n—1
2 Z Zf]z 1lbj 1l*
1=0 k=j
pj= v — (C.140)
Z Z f]i 11‘ ‘b] 1l’
=0 k=j
where:
o g WY k=g n—1;1=0,.,N—1
7>l J—1,1 % pj—1,1 . g (C.141)
b - bkfl + j Jk k_jv"'vn_Ll_O»---vN_l
end for
return (pOaula"anfl)
Here, the function to minimize is the sum of all forward and backward prediction errors:
] Nt
Ej=— > E (C.142)
N 1=0
N—1
1 12
-3 +}]
N 2(n—] ‘f ‘ k



Here [ denotes the index of the temporal signal, j is the order of the autoregressive model and k is the index of the
error(t < k<n-—1).

Property 42. The total error E; is minimized for:

N—-1n—1
A5—1,1
2 lZO kZ e
_ J
B = —N T ” ” (C.143)
ol
=0 k=j

Proof. The ideas of this proof are exactly the same than those of the proof of Property 37, we just add a sum over the
number of time series N. ]

Another possible method to estimate the reflection coefficients of several time series corresponding to several realiza-
tions of the same stochastic process is to use the one-dimensional classical Burg algorithm or regularized Burg algorithm,
then to approximate the mean of the reflection coefficients in the Poincare polydisk D" ! using the Kihler metric.

C.5 The regularized multisegment Burg algorithm

We present the regularized multisegment Burg algorithm in Algorithm 19.

Algorithm 19 The regularized multisegment Burg algorithm

Initialization:
= =l k=0,.n—11=0,..,N—1 (C.144)
ad=1 k=0,..,n—1 (C.145)
1 N—-1n-—1 9
Po=—c |uf (C.146)
Y0 k=0
forj=1,...,M:do
o Jnal a1k e I
Ny 2 2 fi Ty T2 X Bray aiTy,
L =0 k=j k=1 (C.147)
Hi L Nty 2 I il i o) ’
N k ‘ + |y ) +2 % B |ay )
1=0 k=j k=0
where:
By = ~(2m)?(k —j)* (C.148)
a'li_ = ai_l + 1 a?i,lc* k=1,...,5—1 (C.149)
a? = uj
Lo Y k= n—150=0,., N —1
U C YN o Ty (C.150)
k - /’(’] =1 —=Lit=U .., -
end for

return (po, M1, ...,/,Ln_l)

We would like to justify the expression of the reflection coefficient y; in Equation (C.147).
Here, the function to minimize is the sum of all forward and backward prediction errors plus a regularization factor:

1 N-1
Ej=~ 2 B+ G (C.151)
=0
N—-1 71 1 J
1 2 2
_ 7,1 2 21 4,1
e PR RST LY

k=1
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Here [ denotes the index of the time series, j is the order of the autoregressive model and k is the index of the error
G<k<n-1).

Property 43. The total error Ej; is minimized for:

N n—1 | . j—1 . )

—1,1 —1,1 —1 -1

WIZO kai by +2k21 Bray, aj_y
o -

(C.152)

Hj = — >

J—1,l
+ [

L N n—1 -1 2 Jj=1 il -1

N(n—3) > 2 ’fk ' ‘ ) +2 3 B ’ak )
1=0 k=j k=0

Proof. The ideas of this proof are exactly the same than those of the proof of Property 40, we just add a sum over the

number of time series V. O
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Appendix D

Sectional curvature in Riemannian manifolds

In this appendix, we will recall some useful properties on the sectional curvature of Riemannian manifolds. We will in
particular recall the links between sectional curvature and the metric.

Contents
D.1 Sectional curvature of a Riemannian manifold . ... ........... ... . ... 159
D.2 Curvature and metric scalar multiplication . . . ... ... ... ... i 159
D.3 Sectional curvature and product manifold . . .. ... ... ... ... .. . 0 0 e 160
D.4 Infinitesimal right triangles and sectional curvature in Riemannian manifolds . ... ........ 160

D.1 Sectional curvature of a Riemannian manifold

The following theorem relates the expression of the metric element ds? and the sectional curvature. This theorem is
detailed in the book of Francois Rouviere [31].

Let M be a general manifold and m a point of M. We choose an orthonormal basis of T}, M whose two first
vectors 7 and E> belongs to the plan o. For a tangent vector X close to zero, we have d (m,exp,, (X)) = || X].
We use the coordinate system corresponding to the normal coordinates around m, given by the reciprocal application
of (z1,...,2n) — exp,, (3, z:E;). We define exp,, (o) as the set of points of the form exp,, (z1E1 + x2E>). On
expm, (o), we have by definition z3 = ... = x,, = 0.

Theorem 7. On exp,, (o), the expression of the metric in normal coordinates has the following expression:
1
ds® =da? + dx3 — gK(o) (z1dxy — 2oda1)” (D.1)
+0 <(|x1| + |x2|)3> dz? + O ((\m + \xQ\)S) dzydzs + O ((m\ + |x2|)3) da2

where K (o) = K (E1, Es) denotes the sectional curvature of the plan o defined by E1 and Es.
Using the polar coordinate system related to x1 and xo by the equations x1 = r cos (0) and xo = rsin (6), we obtain:

ds* = dr* + (1 - z1)K(0)7“2> r?d0* + O (r°) dr® + O (r®) drdf + O (r°) d6* (D.2)

We can also compute the sectional curvature using the length of the hypotenuse of infinitesimal right triangles.

D.2 Curvature and metric scalar multiplication

In this section, we will show that if we multiply the metric ds? of a Riemannian manifold by a constant ¢ > 0, then the
sectional curvature K is divided by c.

~2 ~2
Property 44. Let E be a space endowed with two Riemannian metrics ds® and ds such that ds = cds® with ¢ > 0. Let
K be the sectional curvature associated with the Riemannian manifold (E , dsz) and K the sectional curvature associated

~2
with the Riemannian manifold (E ,ds ) Then, we have:

K =

Q\N

(D.3)
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Proof. We use the coordinate system corresponding to the normal coordinates around m, given by the reciprocal applica-
tion of (z1,...,2,) — exp,, (3, x;F;). We define exp,, (c) as the set of points of the form exp,, (z1E1 4+ z2E>). On
expm, (o), we have by definition z3 = ... = x,, = 0.

We recall Theorem 7 given in [31]:

On exp,, (o), the expression of the metric in normal coordinates has the following expression:

ds? =da? + da? — éK(a) (21dxy — 2od21)” (D.4)
+0 <(|x1| + |x2|)3> dz? + O ((\x1| + \xz\)f*) dzydzs + O ((m\ + |x2|)3) dz2

where K (o) = K (E1, E2) denotes the sectional curvature of the plan o defined by F; and Es.
If we denote:

Ty = +ex (D.5)
Ty = 2mo, (D.6)

then we have, by multiplying Equation (D.1) by the constant c:

~2 ~2 ~2 1K(o) /. ~ .~ \2
ds =dx, +dx, — 3 i ) (acldxg — xgdxl) D.7)
-~ ~ ~2 -~ ~ ~ ~ ~ ~ ~2

+0 (3] + [72)*) dzy + O (3] + [72])*) dordrz + O ((131] + 13a])° ) diy.

By identification, we have:

Roy= & i"). (D.8)
O
D.3 Sectional curvature and product manifold

Lemma 1. Let M, N be two Riemannian manifolds such that the sectional curvatures verify

—C < Ky, Ky <0, (D.9)
where C = 0 is a constant. Then the sectional curvatures of the product M x N also verify

—C < Kyxn <0, (D.10)
Proof. This lemma is proved in the work of Le Yang [82]. O

D.4 Infinitesimal right triangles and sectional curvature in Riemannian man-
ifolds

In this section, we study the relation between the length of the hypotenuse of an infinitesimal right triangle and the
sectional curvature.

Theorem 8. Let U be a relatively compact convex open set of a complete Riemannian manifold M. There exists a constant
Cy > 0 such that for any triangle OAB of U rectangle in 0, we have the following inequality:

& (A, B) — d (0, A) — & (0, B) + %K (0)d® (0, A) & (0, B)| < Cuy (d(0,A) + d(0,B))° (DA

In the works of Andrei A. Agrachev, Davide Barilari and Luca Rizzi [4], this theorem is stated in the particular case
where point O is fixed and the directions of points A and B starting from O are fixed. The result stated in their works is
said to be due to Loeper and Villani. It is here stated and proved independently of these previous works, in a more general
context. In order to prove Theorem 8, we introduce the coordinate system and the notations with which we are going to
work.
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Infinitesimal right triangle
in a Riemannian manifold
in normal coordinates

E;

Ey

Figure D.1: An infinitesimal right triangle in a Riemannian manifold in normal coordinates

Choice of coordinate system and notations Let U be a relatively compact convex open set of a complete Riemannian
manifold M. We denote by U the adherence of U in the manifold M. Note that U is a compact of M. Let O, A, and B
be three points of U forming a right triangle in O.

We choose a normal coordinate system of origin O whose orthonormal basis (E1, ..., F,) is such that the point A
has coordinates (a, 0,0, ..., 0) and the point B has coordinates (0,b,0,...,0).

The graphic D.1 represents the right triangle OAB in the orthonormal coordinate system (E1, ..., E,) centered at
the point O.

We denote by o the plane defined by E; and Fb.

We now study the variations of the squared length of the hypotenuse d? (A, B) when the points O, A and B vary in
U by continuing to form a right triangle in O. The orthonormal coordinate system (E1, ..., F,) will then vary to remain
centered at the point O and the vectors £y and E» will then be determined by the position of the points A and B.

We denote vxy the geodesic starting at X at ¢ = 0 and arriving at Y at ¢ = 1. We denote ~ := v p the geodesic that
starts at point A of coordinates (a, 0,0, ...,0) at time ¢ = 0 and ends at point B of coordinates (0,b,0,...,0) at¢t = 1.

We denote [(c) the length of the curve c.

Preliminary 1. We first show that Yt € [0, 1] we have ||z(t)|| < |a| + [b], where ||z(t)]| := I (Yo ))-
Since x(t) represents the coordinates of (t) in a normal coordinate system, we notice that [|(t)|| := I (v0+()) also
corresponds to the Euclidean norm of de z(¢) in the coordinate system (E1, ..., E,).

Proof. The straight lines starting at the origin are geodesics, therefore we have as mentioned previously I (yo4) = |a]

and ! (yor) = [b].
According to the triangular inequality, we have:

L(7) :==1(yaB) <l(v4a0) +1(voB) (D.12)
=1(v04) +1(v0B) (D.13)
= |a| + [0] (D.14)

Thus, we can bound the sum of the lengths of the sides of the triangle O AB:

I (voa) +1(vaB) +1(vBo) < 2(la] + [b]) (D.15)
Let (¢) be a point on the geodesic leading from point A to point B.
We have:
L(voa) +1(vayw) +1 () +1(vso) = 1(voa) +1(vas) +1(v80) < 2(|a| +[b]) (D.16)
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Therefore, at least one of the following two inequalities is true:

L(voa) + 1 (Vaywy) <lal +10] or 1(vyw8) +1(v80) <la| + |b] (D.17)

From the triangular inequality, we have:

L (voyw) <l(voa) +1(vayw) and 1 (o) <! (ws) +1(v80) (D.18)
From equations (D.17) and (D.18), we have that:

I (Yoyw) < lal + o (D.19)
Hence we have: ||z(t)|| < |a| +|b] V¥t e [0,1]. O
The following preliminary result will be used to prove preliminaries 3, 4 and 5.
We denote by O (M) the bundle of orthonormal bases of the Riemannian manifold M. The bundle of orthonormal

bases of the compact U will be denoted O (U). We denote by u an element of O (M ). Implicitly the element u defines
an orthonormal basis centered at the point O.

Preliminary 2. There exists & > 0 such that the application (u,x) — g;; (u,x) is an application of class C* on
O (M) x B(0,6), where B (0O, 0) is the open ball with center point O and radius 6.

Proof. Let (M, g) be a Riemannian manifold. Let U be an open subset of M and ¢ : U — ¢ (U) < R™ a local map. We
setp =¢ 1V =¢(U)— U.Let(i,j) € [1,n], for z € V the coefficient g; j(x) of the metric is defined by:

gij(x) == g (P(x)) (Tut) (€:) , Tut) (€5)) (D.20)

where by definition e; = (0,...,0,1,0,...,0) with the number 1 placed in the i*" position.
By definition the vector T3¢ (€;) € Ty (5 M is defined by:

d
T (e;) = — P (z + ae;) (D.21)
da|,_q
We now study the particular case of an exponential map centered at the point O € M. There exists § > 0 such that
this exponential map is injective on the open ball B (O, ). We set U = B (O, §), we have V = B (0, §) < R" and:
P(x) = expp (u(z)) VeeV (D.22)

where w is the orthonormal basis centered at the point O associated with the choice of the exponential map.
The element u € O (M) can also be seen as a linear map:

u :R" — ToM
d .
(xl, .. ,xd) — Z x'u(e;) . (D.23)
i=1
From Equation (D.22) and by linearity of u, we have:
P (x + ae;) = expy (u(z) + au (e;)) . (D.24)
According to Equation (D.21), this gives:
Tt (e:) = Ty expo () (u(es)) (D.25)

where T,y expo (+) (u (e;)) is the tangent map 7" at the point u(x) of the function expy, (-) in the direction of the
vector u (e;).
Coming back to Equation (D.20), we obtain:

9i,j (u, ) = g (expo (w(2))) (Tu(wy expo () (u(€:)) , Tugy expo () (u(e;))) - (D.26)
According to Equation (D.26), the application (u, z) — g; ; (u, x) is of class C* sur O (M) x B (O, 9).

We recall the Hadamard’s lemma which will be used in the proofs of the preliminaries 3, 4 and 5.
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Lemma 2. Let f : R™ — R be a function of class CP with p = 1. Then, for all a = (a1,...,a,) € R", there exists

functions g1, ..., gn, of class CP~1 such that for all v = (x1,...,x,) € R",
f@) = fla)+ ) (@i — ai) gi(). (D.27)
i=1
We necessarily have g;(a) = of j (a). The fonctions g; are not unique. The following functions are solutions of

Equation (D.27):

1
gi(x) = 51{ (a+t(x—a))dt. (D.28)
0 )

Preliminary 3. There exists § > 0 such that we can write the metric tensor g the following way:

Gi.j (u, J?) = 6i7j + Z hi,j,k,l (u, Z‘) xkxl (D.29)
k.l

where the functions h; ; 1.1 are functions of class C* on O (M) x B (O, ).

Proof. According to the book written by Frangois Rouviere [31], we have in normal coordinates:

gis (@) = b5 + O (ll2]*) (D.30)
We will now use Hadamard’s lemma 2 twice.
Let (,7) € [1,n]?. We set: fij = Gij — 0ij.
Since the function (u, z) — g; ; (u, ) is of class C* sur O (M) x B (O, §) according to Preliminary 2, the function
(u,x) — fij (u,x)is also of class C* on O (M) x B (O, ).
According to Equation (D.30), we have f; ;(0) = 0 and %’Z;j (0) =0 Vk e [1,n].
By applying Hadamard’s lemma to the function f at the point 0, we can write:

fig(u, ) Zh Se(u, ) (D.31)
with h; j p(u,z) = S; aag;;j (u,tz) dt. The functions (u,x) — h; ;r(u,x) are functions of class C* on O (M) x
B (0,9).
Moreover, we have according to Hadamard’s lemma:
9fij
hi jx(0) = o (0) =0 Vke][l,n]. (D.32)
By applying Hadamard’s lemma to the functions h; ; ;. at the point 0, we can write:
hij(x Z hijaal (D.33)
with A j k1 (u, ) = S(l) a}g’; “ (u,tz) dt. The functions (u, z) — h; j i (u, z) are functions of class C* on O (M) x

B (0,9).
According to Equations (D.31) and (D.33), we have:

i Z hija(z)abal. (D.34)

Since f; ;j := gi,; — 0;,;, we have proven that:

Gij (u,x) =8; ; + Z hijr (u, x) Fa! (D.35)
k.l
where the functions h; j 1, ; are functions of class C* on O (M) x B (O, ). O

Preliminary 4. There exists § > 0 such that we can write the Christoffel symbols T as follows:

x) = Z Bﬁj)l (u, x) x' (D.36)
1

where the functions iLZN are functions of class C* on O (M) x B (O, 0).
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Proof. We can express the Christoffel symbols I‘ﬁj with respect to the metric tensor g as follows:

1 n
k K,
iT 3 Z:Zlg (Oigrj + 059i1 — 01gi.5) - (D.37)

There exists 0 > 0 such that the functions (u,x) — g;; (u, ) are functions of class C* on O (M) x B (O, 9)
according to Preliminary 2.

The Christoffel symbols I'} ; are therefore also functions of class C'* with respect to (u, z) on O (M) x B (O, 6).

Then, we apply Hadamard S lemma 2 to the function Fk at the point 0.

We can write:

Ff’)j (u,z) = Fﬁj (u,0) + Z flf” (u, x) z (D.38)
]
with A% 1 (u,m) = (1) 0{; (u, tx) dt. The fonctions (u,x) — h¥ ;.1 (u, ) are functions of class C% on O (M) x
B(0,9)

According to the book by Francois Rouviere [31], we have F (u 0) = 0. We therefore have:

z) = > hE (u,2) 2t (D.39)
1

where the functions h ;. are functions of class C* on O (M) x B (O, ). O

Preliminary 5. There exists § > 0 such that we can write the element ds? as follows:

ds? (u,x)=2(d:c +f Z Rijrix’ eFdad dat + Z thlm(u z) zizd 2P dat da™ (D.40)
i z]kl i,5,k,l,m

where the functions Zid,k,hm are functions of class C* on O (M) x B (0, 9).

Proof. The following theorem is given in Frangois Rouviere’s book [31]:

ds? = Z (dari + = Z Rijrix ieFda? dat + . (D.41)
7 ©,7,k,l
where the . .. are terms of order > 3 with respect to the z°.
We will now show that there exists § > 0 such that the function (u,z) — ds? (u,z) is of class C® on O (M) x
B(0,9).
We have the following relation between the infinitesimal square length ds? and the metric tensor ¢:

ds*(u, ) Z gi.j(u, z)da’dx? . (D.42)
i,5=1
There exists 6 > 0 such that the functions (u,x) — ¢, ; (u,x) are of class C* on O (M) x B (0, ) according to

Preliminary 2. The function (u, z) — ds? (u, z) is therefore of class C* on O (M) x B (0, §).
We will now apply Hadamard’s lemma three times.

We set f = ds? — Y, (da')” + 3 2 Riggatatdel dat.
According to Equation (D.41), we have f(0) = 0, amk( ) =0 Vke[l,n] and
By applying Hadamard’s lemma to the function f at the point 0, we can write:

(0) =0 VY (j,k) € [1,n]2

BwJ :L’k

fu,z) = Z Tlm,m (u, ) zFdxdz™ (D.43)
k

with Zk,lm (u,z) = Sé % (u, tx) dt. The functions (u,z) — Tsz,m (u, x) are functions of class C* on O (M) x
B(0,9).

According to Hadamard’s lemma, we have:

of
oxk

Applying Hadamard’s lemma to the functions ?LkJ,’m at the point 0, we can write:

Zk,l,m (’LL, 0) (U 0) 0. (D44)

Petom (0, ) = Zhjklmux (D.45)
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ﬁhk Lm
m

with hj kim (U, ) = Sl (u,tx)dt. The fonctions (u,z) — ijkyl_’m (u, z) are functions of class C™ on
O(M)x B (O d).
According to Hadamard’s lemma, we have:

> Ohgim
R km (u,0) = a’;lj (u,0). (D.46)

According to the definition of ?Lm,m, we also have:

571k,z,m( ) — Lot
ERTE o 0xdoxk

(u,tx)dt (D.47)

Hence, we have: 8}%:;” (u,0) = L (u,0) = 0. From Equation (D.46), we therefore have hj kim (u,0) = 0.

Oxd ok

We now apply Hadamard’s lemma to the function h]—7 k,1,m at the point 0. We can write:

hympm (W) = Y0 higatm (u,z) ' (D.48)
i,7,k,l,m

FhJ k, l m

ozt

with f; igdelm (U, ) = Sl (u,tz) dt. The fonctions (u,x) — Zi,j’k,l}m (u, ) are functions of class C* on
O (M) x B(0,9).

Using equations (D.43), (D.45) and (D.48), we obtain:

f(u,x) = Z TLZ'J_’]CJ’m (u, z) x'a? ¥ dal dz™. (D.49)
i,9,k,l,m

Since f :=ds® — Y, (dz')” + %Z” py Rijpax'ahdad dat, we have:

ds® (u,z) = Z(dm Z Rijrix’ eFdad dat + Z thlm(u z) zizd P dat da™ (D.50)
i z]kl i,5,k,l,m

where the functions Zi,j,k,l,m are functions of class C* on O (M) x B (O, 9).

We now come back to the proof of Theorem 8.

Proof. We denote ¢ the positive real number considered in Preliminary 2 and used in Preliminaries 3, 4 and 5.
We set € = min (R, 36) where R is the minimum of the injectivity radii on the compact U.
We first consider the case where d (O, A) = eord (O, B) =
Then, by choosing

Sup(O A,B)eU3 |d2 (A7B) - d2 (O7A) - d2 (Oa B) + %K (0) d2 (Oa A) d2 (07 B)|

Cy = — = (D.51)
€

the inequality (D.11) stated in Theorem 8 is verified.
We now consider that both d (O, A) < cand d (O, B) < ¢
Then, according to Preliminary 1, we have:

0
lz@) < lal + bl < e+e< 5 +

M\c«.

=5 vtelo,1]. (D.52)

We can therefore use the results of Preliminaries 2, 3, 4 and 5.
We denote by ||2/(t)]|, ) the norm of the velocity vector of the geodesic v at the point () of coordinates z(t).
We have:

12O ) = D905 (w2 ®) () (1) (7) (®). (D.53)
.3
According to Preliminary 3, we can write:

gij (u,z) = d;j + Zhi,j,k,l (u, ) 2*a’ (D.54)
ol

where the functions h; j 1.; are functions of class C* on O (M) x B (0O, ).
We therefore have:
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||$/(t)Hi(t) :Z ((Si,j + Z Pi gkl (u, ) xkxl> (J;z)’ (t) (xj)’ (t)
ij Kl
=2 3805 (=) (@) (@) () + 3] higaa (w,z)2bat (2)
%,] ©,7,k,l

=l ®ls + X higwa (u,z) k2l (27) (t) (27) (1),

,3,k,1

Hence, we have:

@) llg = 12" )y = 25 hijes (w,z) abat (2) (1) (27)
i,,k,l
=% (vy) — 2 hi ki (u,x) zFa! (a:i)/ (t) (;vj)/ (t).

,5,k,1

According to Equation (D.12), we have:

L(y) < (lal + [0])

Therefore, we have:

2 (7) < (lal + [p])*

We also have:

(1) (27)" (1)

/

(t)

D hi g () bl () (t) (27) (8) < C1 (Jal + [B])*

iyj.k,l
Hence, according to Equation (D.59):
2 2

[/ ()| < Ca (|al + [b])
with Cy = 1 + C4.
We therefore have:

' ()]ly < Cs (Jal + [b])
with C3 = /(5.

Since ‘(x’)/ (t)‘ < [|2'(t)]],, we have:

() (t)) < Cy(jal+ b)) Vie[l,n]

(D.55)

(D.56)

(D.57)

(D.58)

(D.59)

(D.60)

(D.61)

(D.62)

(D.63)

(D.64)

(D.65)

Moreover, according to Preliminary 4, there exists & > 0 such that we can write the Christoffel symbols I" as follows:

Ff’j (u, ) = Zhﬁj,l (u,m)xl
l

where the functions flﬁ ;. are functions of class C* on O (M) x B (O, ).
We can therefore write:

ik < Ca(lal +[]) -

The equation of the geodesics using Christoffel’s symbols is recalled in Francois Rouviere’s book [

(=) (t) + i T (1) (7)) (2) (%) (8) = 0.

j,k=1

Therefore we have, according to Equations (D.65) and (D.67):

n

@) @] < X ('] + o)) Ca ('] + o)) Ca (o] + Ja?])

Jik=1

’(xi),/ (t)‘ <Cs (|2 + |x2‘)3 with C5 = n?C4C3 Vi e [1,n].
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We now show that:

(=)' () = —a+ (1) (t) with |(f1)’ (t)‘ < Cs (|al + (b))

(D.71)

Since x(t) is continuous on [0, 1] and of class C'! on 0, 1[, according to the mean value theorem, there exists a point

to € 10, 1[, such that:

Let ¢ € [0, 1], we have:

(=) () = (1) (to) + L (z1)" (s)ds

(:cl)/ (t)=—a+ J; (ml)” (s)ds.

Therefore, by setting (1)’ (t) := Sto (z1)" (s)ds, we have:
with

We show in a similar way that:

(22" (t) = b+ (£2) (¢) with ‘(f2)’(t)} < C5 (| + |B])°
(@) @] < Cs (lal + 1)° Vi3

Since (z%) (t) = (2%) (0) + S(t) (xi)/ (s)ds, we obtain from the equations (D.71), (D.77) and (D.78):

) = (1—t)a+ f1(t) with [f*(t)] < C5 (|a] + [b])°
) = bt + f2(t) with |f2(t)] < Cs (la] + [b])°
| < Cs (la] + [b])*  Vi=3.

(") (¢
(%) (¢
| (") @)

According to Preliminary 5, there exists § > 0 such that we can write the element ds? as follows:

ds? (u,z) = Z (dx +3 ;CJZR i et drd dat + ];mh ik (u, ) riad ok datda™

where the functions Zi,j,k,l,m are functions of class C* on O (M) x B (0, 9).
For the geodesic v, we therefore have:

ds® (u,x) = (:rl)/2 dt* + (xz)/2 dt* + 2 (mi)lz dt?
>3

+ % Z Ri,j’k,lacia:k (mj)/ (ml)ldtQ
(i,4,k,1)e{1,2}*

+
|

Z Rm',k,lxixk (xj)/ (ml)/ dt?
ior 'oﬁﬁlorl>3

Z ?L ikt (u, ) rlad ok (Jcl)/ (™) dt?.
ikl
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According to the equations (D.71), (D.77), (D.78), (D.79), (D.80) and (D.81), we have:

ds® (u, ) = (21)? dt? + (22)" dt? (D.84)
+ ! Z R jx'a” (mj)l (J?l)/dtQ
(4,4,k,0)e{1,2}*

+ f (u,z) dt?.

with | f (u, z)| < C (|a| + |b])” for a certain constant C' > 0.

ds® = (xl)IQ + (:vz)/Q + 1 2 Ri,j_,kyl:vimk (xj), (;vl)/ + f(u,x) dt? (D.85)
(4,5,k,01)e{1,2}4

2 1\/2 a2 1 1(,2\ 212 2
ds —[(m) +(x) +§R1212 (ac (x) —x (:U)) +f(u7x)] dt (D.86)

i = |2+ () = 3K ) (2 () - @)+ )| a2 D87)

Since a geodesic has constant speed, its squared length between points A and B is equal to the integral of its squared
speed between times 0 and 1 when (0) = A and (1) = B. We therefore have:

1
d* (4, B) =JO |2 ()I[% , dt (D.88)

1

- [ S ) () ()’ a D59
1 v . 1

= J Zgi,j (l‘(t)) dx'dx’? pn (D.90)
0 ij

[ as D.91

_L S (D.91)

We therefore have, using Equation (D.87):
Hence, we have:

1

d? (A, B) :J

0

@) ()

From the linearity of the integral, we have:

+f (u,x)] dt. (D.92)

1 1 1

9 1
d* (A, B) :J (wl (2?) — 22 (xl)) dt+L f(u, ) dt (D.93)

0

@g@ﬁ+f

0

() dt — %K(J)J

0

Note that we have:

1 1 1
] | f(u,w)dt‘< [ 17 waar< [ Gal + i de = € (al + iy’ (D.94)
0 0 0

We denote by f! and f? the functions such that:

(') (t) = —a+ f(t) (D.95)
(%) (t) =b + (). (D.96)

We have:
L (z1) (t)dt = z*(1) —2'(0) =0 —a = —a. (D.97)



Hence, we have:

fo frt)dt = Jo ((xl)/(t) + a) dt = L (xl)l (t)Ydt+a=—-a+a=0.

Therefore, we have:

According to Equation (D.71), we have:

Therefore:
(/Y7 (1) < C2 (Jal + b))
And finally:
1 1 9
L (a!) ()dt—a2+L (F)? (t)dt
with

Likewise, we have:

Jl ()" (t)dt = b + fl (f2)% (t)at
0 0

with
[ 2 @arl < [ |2 @] < [ 2+ 10°ar = €2 el +
0 0 0
We recall that:
2l (t) = (1 —t)a+ f1(t) with |f1(t)] < Cs5 (la] + [B])°
(1) (&) = —a+ (/1) () with | (/1) (8)] < Cs (Ja] + o])®
2?(t) = th+ f2(t) with |f2(t)| < Cs (|a] + [b])°
(+2)' (1) = b+ (£2)' (@) with |(72)' (8] < C5 (lal + o))"
Therefore:

() (@) (1)~ 22(0) (=) () = (1~ )b — (~tba))* + F 1)
=a®b? + f(t)

with ‘f(t)‘ < C (|al + B])°.
Therefore:

Jol (acl(t) (@2) (t) — 22(t) (z*)’ (t))2 dt = a2b* + Jol F(t)at
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with

1 5 1 B 1
ff(t)dt'éf ‘f(t)’dt<f C (la| + |))° dt = C (|Ja] + |0])° . (D.116)
0 0 0

Finally, by taking the expression of d? (A, B) in Equation (D.93) and replacing the integrals by the results obtained in
Equations (D.105), (D.107), (D.115), we obtain:

1

d* (A, B) =a® +L (Y

?(t)dt (D.117)

+ 0%+ f (2)* (t)dt
’ 1
- %K (o) (a2b2 + L f(t)dt)
1
+ L fu,z)dt

and therefore:

1 1 1 1
& (A,B)—a2—62+%K(cr)a2b2 —f (f1)2(t)dt+f (f2)2(t)dt—i1))K(cr)L f(t)dt+L f(u,x)dt‘

0 0
(D.118)

< Ll (rM? (t)dt’ n 01 f(t)dt' +

1
f () dt\

0
(D.119)

[ 02 0a+ 1o

0

1
<G (Ja] + 1B))° + CZ (la| + |b])° + 3 1K (@) C(al + 18))° + C (la] + |bl)?
(D.120)

which concludes the proof.
O
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Appendix E

The Siegel disk

This appendix is dedicated to the study of the Siegel disk. A summary of useful properties of the Siegel disk can be found
in Section 4.2.2 and in [21]. We give here a more detailed presentation of the Siegel manifold including the mathematical
proofs of the properties.
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E.1 Definition

Definition 16. The Siegel disk is defined as the set of complex matrices M of shape N x N with singular values lower
than one, which can also be written:

SDy ={MeCVN|T—-MM" >0} (E.1)
or equally:
SDy ={MeCVN | T-MPM >0} (E.2)

We use the partial ordering of the set complex matrices: we note A > B when the difference A — B is a positive
definite matrix.

Note that another definition of the Siegel disk also exists in other papers [54], imposing an additional symmetry
condition on the matrix M: M = M7 . We will note require the symmetry condition in our work.

Property 45. The Siegel disk can also be defined as the set of complex matrices M with a linear operator norm lower
than one: SDy = {M € CN || M|| < 1}, where | M || = supxecw, | x|=1 (M X]]).

E.2 The metric

We endow the Siegel disk SD with the following metric:

dsp,, = trace ((I —0f) "t do (1 - ofa) ™! dQH) . (E3)

171



The expression of the square of the distance is given for all Q, ¥ € SD,, by:

1 I+ CV?
d%DN (Q, \II) :Z trace (10g2 (I-CW)) (E4)
= trace (arctanh2 (01/2)) (E.5)

with C = (¥ — Q) (I — QHW) ™" (7 — Q) (1 — QuH) ™",
Another distance named the Kobayashi distance measure dg on the Siegel disk SD is also given in [45].
L’expression du produit scalaire est alors, Y2 € SDy, Vv, w € CV*V:

1 - -
(v, w)g = trace ((1—00f) v (1- o) w) (E.6)
1 - -
+ trace (1 - Q07) " w (- Q) o). (E.7)
The norm of a vector belonging to the tangent space is therefore:

lolff, = trace ((1 = Q) v (1 - Q7Q) o). (E.8)

E.3 The isometry

The following function is a key function in the Siegel disk:

1/2

B (V) = (- 00" 2 (W) (1-w) " (1-0HQ) (E.9)

In the article of Ben Jeuris and Raf Vandebril [45], this function is said to be an isometry for the Siegel distance
described in Equation (E.4). We will prove this result in Theorem 9.
We now study the differential of the isometry ®.

Preliminary 6. If || A|| < 1 and || B|| < 1, then:
(I+AB)*A=A(I+BA® VacR (E.10)

Proof. Let||A|| <1and ||B|| <1land @ €R.
Then we have | AB| < |4 [|B]| < 1.
Hence, we can express (I + AB)” as a power series:

(I + AB)™ = i (Z) (AB)" (E.11)

n—1

[T (a—1)
where () = 1 and, Vn € N*, (%) = olazl)(a=ntl) _ =0 .

n n! n!
Therefore, we have:

+00
(I+AB)* A = ( (i) (AB)") A (E.12)
n=0
+00 o
=S ( >(AB)”A (E.13)
n=0 n
+00 o
= ( )A (BA)" (E.14)
n=0 n
+o0 a
=A ( ) (BA)") (E.15)
n=0 n
=A(I + BA)" (E.106)

This preliminary will be very useful to prove next property.
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Property 46. The differential of the isometry ® has the following expression:
Do (U) [h] = (1 — QM) (1—wa) " n(1—afw) ™" (1- o)
Proof.

Dq (V) [A]
1/2

1/2

~

—ofw) ol | h(r-ofw) T (1-efe)”

1/2 1/2

(I —w0") + (W7 — Q") ] (1 — Q") b (1 - Q7 w) ™ (1-07Q)

1/2 1/2

1—00H) (I vQH) T (1 - W) (1 - 0fQ)

[
( )
— (1-0") |1+
—(1—oom)V? [I + (w0 — QQH) (1-wo) | n(1-atw) " (1- o)
= (-0 |
= (1—00%) 7 (
= (1-90") v

1— o) (1—wa!) " (1- ") (1-0fo)

h(l—Q"7w)” +(@—Q)(I—QHW)’1(QHh) (1-0fw) | (1- o)™

(E.17)

(E.18)
(E.19)
(E.20)
(E21)
(E.22)
(E.23)

(E.24)
O

Property 47. The differential of the isometry ® has the following property with respect to the conjugate transpose oper-

ator:

D®q (V) [h])" = DO () [RH].
The proof is immediate using Property 46.
Property 48. The inverse of the function ® described in Equation (E.9) is:

oot (T) = (1— M) (14 w0H) ™ (¥ + Q) (1 - o)
Proof.
= &g (V)
(I Q0™ (w - q) (1 - ow) " (1 - )"

o) Py (1) (1-0fw) = (W - )

v
< =
= (I-
s (-0 ¥ (1-070) P ra=w+ (1-00")" v (1-0"0) oy

@(I—QQH)UQ\P/(I—QHQ)_1/2+Q=(I+(I—QQH)1/2 (1-070) o) v

Using Preliminary 6, we can give another expression of the term 2 on the left side of Equation (E.31):

1/2 —1/2

Q=(I-99%)""Q(I-0"q)
We now give another expression for the first factor on the right side of Equation (E.31):
I+ (1-00")?w (1-afq) ol
=1+ (I — QQH) 12 v'oH (I — QQH)_1/2 using Preliminary 6
— (1-00m)" (1+9'0") (1-a0) ™"
Coming back to Equation (E.31) and using Equations (E.32) and (E.34), we obtain:
)2 (1—0e) P o = (1+ (1-00) P (1-ate) o) v
& (1=00m)"? (¥ +0) (1-ae) ™ = (1-00™)" (1+ v'a) (1-00") v
= (v +0)(r-0te) " = (1+wef) (1-00) e
—1 , _
)P (r+w'ef) (3 v e) (1-0fe) " .
Therefore we have shown that application @ is invertible and that:

ot (V) = (1 - QQH)1/2 1+ \PQH)A (W40 (I QHQ)fl/Z.
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In [45], the following property about ®~! is mentioned:

Property 49. The inverse of the function ® described in Equation (E.9) also has the following expression:
Dot (V) =0 _q (V) (E.40)
We present three proofs of this property.

Proof. Here is a first proof in which we reason by equivalence. The expression of <I)§1 () is given in Property 48. From
the definition of ® given by Equation (E.9), we have:

b (W) = (1-00") (@ + Q) (1+070) ! (1-0"0)" (E41)
Therefore, we have:
o' (U) =00 (V) (E.42)
< (T—00")? (1+wo") ™ (v + Q) (1- Q) (E43)
— (T—00") (@ 4+ Q) (T+07w) " (1 - )
< (I—00") (1+90") " (T + Q) (E.44)
— (U +Q) (I+9070) " (1-07Q)
e [T+ 04 (T+ 9077 Q- 0f (T+007) " - 0" (T+w0%) " 0 (E.45)
U (I+070) 7 + QI+ 0) T — 0 (1+070) 00— (I + 0" 0) " 00
Thanks to Preliminary 6, we notice that:
(T+90") ™ 0 =W (1 +07w)" (E.46)
Q" (I+90") ™ 0= (I+07w) " a0 (E.47)
Equation (E.45) is therefore equivalent to the following equation:
(I+wQ") 7 Q- (I +w0") " W= (I +070) " —w (I +07w) " a0 (E.48)
S (T+0") Q4+ 0 (T+079) 0l = Q (I +0"w) " + 0! (I+v0) ' v (E.49)
o (T+veh) ™ o4 wol (I + \I/QH) o=+ 07 1+ 0" ot (E.50)
o (T+90") (1+v0") = Q(I+QH ) (I + QD) (E.51)
=0=0 (E.52)

The condition defined by Equation (E.52) being true, we can conclude by equivalence that we have &, L)
d_, (U), which concludes the proof.

(i

Proof. Here is a second proof in which we start by checking the equality of the differentials of the function @51 ()
defined in Property 48 and of the function ®_¢, (V) defined in Equation (E.9), then we will check the equality of these
two functions at one point.
According to Property 46, the differential of the isometry ® has the following expression:
Do (U) [h] = (T — QM) (1—wa!) ' h(1-fw) ™" (1-aHo)"? (E.53)

Therefore, we have:

DO_q (0) [n] = (I— ) (1 +wH) " h(1+0w) " (1- )"’ (E.54)

Moreover, using the definition of the function @51 () given in Property 48, we have:

P+ wat)y ™ h— (14 ) (nf) (14 w0) (@ Q)] (1-070) " E55)
—1/2

P wt) T h - (14 w) (@ + )] (1-070) (E.56)
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However, we have according to Preliminary 6:

-7 (T+90") ™ (T +Q)

—I— (I+97%) 7" (27T 4+ 0f Q) (E.57)
— (T+0Q"0) ™" (T+070) — (27T + 0HQ)) (E.58)
— (T +0Q"0)™" (1-0"Q) (E.59)

Which gives us, coming back to Equation (E.56) :

D (5Y) () [h] = (T — QM) (1 + ") h (1 +QHw) ™" (1-QHQ) (1 - )™

— (1= (1 +w) " h(1+0"w) " (1- Q)

(E.60)
(E.61)

According to Equations (E.61) and (E.54), we have the equality of the differentials: D (®g,") (V) [h] = D®_q () [A].

To check the equality of the functions @51 and ®_q, It is sufficient to verify the equality of these two functions at one
point

From the expression of ®' (V) given in Property 48, we have ®5' (—Q) = 0. Likewise, the expression of &, (¥)
given in Equation (E.9) gives us: ®_q (—) = 0.

Since the functions ®," (¥) and ®_g, (V) both have the same differentials and have the same value at point —(2, we
have @' (V) = &_q () forall ¥ € SDy.

O

Proof. We now present a third proof which unlike the previous two proofs does not use the expression of <I>51 given in
Property 48.
In this proof, we will show that ®q (¥ _q (¥)) = ¥ and that &_q (dq (¥)) = ¥,V (Q, V) € SDy.

Qo (P_n (V)
—(1=00") 2 (@_o (B) — Q) (I — Q7d_q (v)) ' (1 - HQ)"? (E.62)
— (1—qaH")"? (E.63)
~1/2

(1-00f) " (@ +0) (1+07w) " (1-070)"” - q)

[—f (1-oam)™ "

(
(

(I-09"q)

(U +Q) (T+070) " (1-0HQ) 1/2)_1

1/2

We can obtain another expression of the second factor of Equation (E.63) using Preliminary 6:

(1—00f) (W +q) (1+07w) " (1-070)" —q
= (1-00") (w4 ) (1 +0fw) " — 0| (1-07e)" (E.64)
= (1—00") [+ Q) —Q((1+0"0)] (1+0"w) " (1- )" (E.65)
— (1= 00"V (v — 0o w) (1+ o"w) " (1 - o) (E.66)
—(1—0) 2 (1— 00" w (I + Q") " (1 - )" (E.67)
= (1—00") v (1+0"w) ™" (1- ") (E.68)

Preliminary 6 also allows us to obtain another expression of the third term of Equation (E.63):
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—1/2

I—0f (I—QQH) (T + Q) (I+QH\I,)*1 (I—QHQ)1/2)_1

-1
- (1-9)" (v + Q10) (1+0"w) " (1-00)")

—(1-0"0) (14 ofw) (1- )™

(E.69)
(E.70)
(E.71)
(E.72)

(E.73)

(E.74)

We now come back to Equation (E.63) in which we replace the second factor by the result obtained in Equation (E.68)

and the third factor by the result obtained in Equation (E.74). We obtain:

(I+0fw) " (1-af)"?

)
( )
(I—0fQ)™"? (1 +"w) (1- o) "
( )

N

After simplifications, we have:

o (Do (0) =T V(2,¥)e SD}

If we replace €2 by —(2 in Equation (E.76), we see that we also have:

B (Bq (V) =T V(Q,0) e SD
Using Equations (E.76) and (E.77), we can conclude that @51 =®_g.

Using properties 48 and 49, we obtain another expression of the isometry ®:

1/2 —1/2

Do (V) = &=L (W) = (1 — 0N (1 —wa") ™ (v - 0) (I - 07Q)
We will use Equation (E.78) to prove properties 50 and 51.

Property 50. The isometry ® has the following property with respect to the conjugate transpose operator:

B (1) = dgu ()

Proof
o (1) =274 (1)
— ((1-00M)" (1-wo) " (v -0) (1 - QHQ)’W)H
—(1—QfQ)" " (wf — ) (1—ouf) ! (1- o)’
=Poun (1)
Property 51.

1/2 1/2

B, (W) Do (W) = 1 — (1 — ™) (1 —wa™) ™" (1 — v (1 - u?) ™" (1 - Q)
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Proof.

Bq (V) Dg, (¥)7 (E.85)
=0 (0) D24, (1) (E.86)
— (1= 2w o) (1-"w) " (1- ") (1- )" (uH — of) (1 - u?) ™! (1 - o)

(E.87)
— (1= 2w ) (- ") (¥ — o) (1-out) " (1-of)"? (E.88)
—1— (1=00") " [1- (- 0) (1 - "w) " (@ - ) (1 - ou) ] (1 - o) (E.89)
—1— (1-00") " [(1—qu') - (w - ) (1-ew) " (w7 - af)| (1-u) " (1-00")"*  E90)
Note that:
(I—QUH) — (U — Q) (I-"w)™" (T7 - H) (E91)
— (1 —wQf) (1—w") ™ (E.92)
—Q(1-0"w) " (1 - " v) uH
— U (I-Q"w) " ok
+ U (1—0w) " oH
+Q(I-0"w) " uH
—Q(1-ofw) " of
— (T —w0") ™ —wH (1-woH)™ (E.93)
—Q(I-0"w) " v 4+ Qof (1 —vof) " wuH
— (1w~ guH
+ 0 (1 - w0
+Q(I-0"w) " uH
— Q0 (1 —waH)™
= (T - Q") (1 —wQ") ™ — (1 —af) (1 - v") " vo¥ (E.94)
= (T = Q") (1 —wQ") ™" (1 - vuH) (E.95)
By substituting this result into Equation (E.90), we finally obtain:
Bq (V) g ()7 (E.96)
—1— (1= 00") " [(1 - 00f) (1 - wa™) ™ (1 - ww™) | (1 - ouf) 7 (1 - o)™ (E.97)
- (- 0" "2 (1= wH) ™ (1 - wuH) (1 - QuH) ™! (1 - aoH)'? (E.98)
0

Property 52. If Q and U belong to the Siegel disk SDy, then ®q (V) also belongs to the Siegel disk SD .

Proof. We assume that €2 and ¥ belong to the Siegel disk SDy. By definition of the Siegel disk, the image ®q (V)
belongs to the Siegel disk if and only if I — ®g, () &g (¥)7 > 0.
Using Property 51, we have:

I — g (V) dg (W)7 (E.99)
— (1= )" 2 (1= wat) ™t (1 - weH) (1 - ouH) " (1 - )" (E.100)
— (1— M) (1 —woH) T (1 - wuH) Y (1 - we!) 2 (1 - ouH) T (1 - a0f)Y? (E.101)
“MMT with M = (I — ™)™ (1 - w7t (1 - wut)? (E.102)
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To prove that the matrix MM is positive definite, it is sufficient to prove that the matrix M is a full rank matrix,
which is true as M is the product of three full rank matrices.

Indeed, (I — QQH) > 0 since €2 € SDy and (I — \I/\I/H) > 0 since ¥ € SDy.

We now prove that the matrix (I —vOH ) is also a full rank matrix. Since ) and ¥ belong to the Siegel disk, we
have: ||| < 1and [|¥]| < 1. Hence, we have: ||[UQH || = [|¥ | ||| = ||¥]| ||| < 1. By the absurd, if there exists
X e CM\{0} such that (I — Q) (X) = 0, this would implie that: || X|| = ||@Q¥ (X)| < [|[wQ”|| |1X] < |X]|
which is impossible.

O

To prove that the map @ is an isometry, we will use the following preliminary which establishes a first relation between
the map ® and the distance on the Siegel space defined in Equation (E.4).

Preliminary 7. The distance on the Siegel disk defined in Equation (E.4) can also be expressed by the application ®
defined in Equation (E.9) as follows:

1 T 1/2
d?;DN (Q, D) =1 trace (log2 ([—i_gl/2>> (E.103)
= trace (arctanh2 (01/2>) (E.104)

with C' = @ () &g (¥)7.
Proof. We recall Equation (E.9) gives us the following expression of the square of the distance on the Siegel disk:
d?sDN (Q, ) = trace (arctanh2 (C1/2>) (E.105)

with C = (U — Q) (I — QFw) ™" (W7 — QH) (1 — QuH) ™",
Note that the function C' — arctanh? (C%/2) can be expressed as a Taylor series of the variable C' when ||z < 1.
Since the trace operator est invariant by change of base, we have when the matrices C; and C are similar:

trace (arctanh2 (011/2>) = trace (arctanh2 (C;/z)) (E.106)

We now define:
Cy =g (V) 0o (1) (E.107)
Cy = (U —Q) (T—"w) ™ (¥¥ — ) (1—uH)™", (E.108)

To prove Preliminary 7, it is therefore sufficient to prove that the matrices C; and Cs are similar.

Cy =g (V) Do (U)7 (E.109)
Oy =g (V) D¢, (07 dapres I'équation (E.78) (E.110)
¢ = (T—00m) 2w —q)(1-afv) " (1- o) (E.111)
(1—QfQ)™"? (vH — o) (1—u?) ™! (1-aaH)"?
¢y = (T— ") 2 (@ —q) (1-afw) " (v — o) (1 - QuH) ™" (1 - aH)*? (E.112)
¢y = (1—00") ¢, (1 - aof)'? (E.113)
Matrices C; and Cs are similar according to Equation (E.113), which concludes the proof.
O
Theorem 9. The function ® described in Equation (E.9):

B () = (1—00) 2 (@ —q) (1-0fw) " (1-oio)"? (E.114)

is an isometry for the Siegel distance described in Equation (E.4):
dgp,, (2, 7) :i trace <log2 (igii)) (E.115)
= trace (arctanh2 (01/2) ) (E.116)

with C = (U — Q) (I — QHW) ™ (W — QH) (1 — QuH) ™",
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We give two proofs of this theorem.
Proof. In this first proof, we will show that:
dspy (Po (Q),Pe (V) = dip,, (2, ¥) V2, ¥,0 € SDy

to prove that the application ® is an isometry.
According to Preliminary 7, it is sufficient to show that:

trace (arctanh2 (011/2)) = trace (arctanh2 <C21/2))

with:

C) =g () (Po (1)) (Pag e (Po (V)"

Cy =B (V) Bg (V)7

(E.117)

(E.118)

(E.119)
(E.120)

Note that the function C' > arctanh® (C/2) can be expressed as a Taylor series of the variable C' when ||z < 1.
Since the trace operator is invariant by change of base, it is sufficient to show that matrices C; and C5 are similar to

prove Equation (E.118).
Preliminary 7 will then allow us to prove Theorem 9.

We have:
Pyq() (Po (V) = (1 — Po () Po (Q)H)_1/2
(Po (V) — P26 (22))
(1- 26 (@ 26 (1)
(1- 0 @" 00 (@)
We define:

A= (1 ~ Be (Q) o (Q)H>71/2
B =06 (V) - de (1)
C = (I — 3 () g (q/))fl

D= (1 — 36 ()7 dg (Q))l/2

Therefore, we have:

Do, () (Po (¥)) = ABCD

Note that we have A = A and D = DH.
Therefore, we have:

H
C1 =Paq(0) (Pe (V) (Pae (o) (Po (V)))
=ABCDD"C" B AT
=ABCD?*C"B" A
Matrix C} is therefore similar to the product A2BCD?*CH B
We now study the terms A%, D?, B and C. Using Property 51, we obtain:

A2

(I— Do () e (Q)H>_1

((1—e0™)"” (1—e™) ™" (1- a0 (1-e") " (1- ™))

1 —1/2

— (1— 00" (1 —e0f) (1 - o0") ™! (1 - o™ (I - ee™)
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(E.121)

(E.122)
(E.123)

(B.124)

(E.125)
(E.126)

(E.127)

(E.128)
(E.129)
(E.130)

(E.131)

(E.132)

(E.133)



Remembering that ®¢ (Q)H = Ognu (QH ) according to Property 50, we obtain an expression of D? using Property

51 in which we make the change of variables © < ©% and Q « Qf . We obtain:

D? =1 — ®e ()" @6 (Q)

—(1-efe)* (1-afe) ™ (1-aHq) (1-e"q) " (1-e"e)"?

We now compute B:

B =6 (V) — 0o (©)
—(1-00") P lw-e)(1-0"v) "~ (@-0)(1-670) | (1- 676

1/2
—(1-00") " lw-0)(1-0"v) " (1-06"0) - (@-0)|(1-0"0)" (I -6"6)

By using several times Preliminary 6, we can give another expression for the following factor:

(T —0)(I-6"0)" (I-0"0) - (Q-0)
—(T-0)(I-0"0) " —(T-0)(T-0"r) " 6 0-0+6
— (W -0) (I-0"w) " — (v —ee!) (1-ve?) ' a-0+6

(I-0"0)" + o - (v —ee") (I-ve") " a-0

1-90") ' w40 (I-0"0) " (—eHT) — (1-06") (I-ve”) " q

)
1-we") v -0 (1-ve!) v - (1-00") (I-ve”) " q
1-00") (1-ve") ' v— (1-00") (I1-ve") ' q

1-00") (1-ve") " (v-9).

=
=
=
= (

Coming back to Equation (E.138), we obtain:

—1/2 1/2

B =(I-00")
= (I —e0™)

(1—00") (1-wve")™ (v —-q)(I-6"0)"" (1-06"6)
1/2

(I-ve") " (W -q)(T-0"0)" (1-e e)".

1/2
We can have another expression of B by noticing that:
B =g (1)~ Po (Q) = — (o () — Do (T)).

Then, by switching the roles of {2 and W in the previous formulas, we obtain:

B—-(I-00")"?(1—ge") ' (@-v) (1-e"w)" (1-ete)"
—(1-e0™) (1™ w-q)(1-e"w) " (1-e"e)*.

Finally, we give another expression of the factor C"
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(E.134)
(E.135)

(E.136)
(E.137)

(E.138)

(E.139)
(E.140)
(E.141)

(I—0"w) ' [(1—0"y) — 1] - [(I-veH) + ver —ee”| (1-ve) '

(E.142)
(E.143)
(E.144)
(E.145)
(E.146)

(B.147)
(E.148)

(E.149)

(E.150)
(E.151)



C = (1 ~ 36 () 0 (\1/))_1 (E.152)
_ (I — oL ()7 g (\If))_1 (E.153)
—(1-(1-e"e) (o —e") (1 - e0") " (1 - e6")" (E.154)

(1-00™) " (w-0) -0y (I-6"0) 1/2)_1

—(1-(-0"0)"* (2" — 0" (1-00") " (¥ -0) (1 - 0"w) " (I - eH@)”Q)_1 (E.155)
—((1-e"e) 1 (a7 —6") (1-e0") " (v -0) (1 -6"w) | (1- 6"6) 1/2)_1 (E.156)
—((1-0"0) *[(1-0"w) - (@ — ") (1-e0) " (w-0)| (1-6"w) " (I-6"6) 1/2>71 .
(E.157)
By using several times Preliminary 6, we give another expression for the following factor:

(I-0"w)— (7 —e) (I1-e0")"" (¥ - o) (E.158)
-0 -0 (1-00") " (T-0)+0" (I-00") v -0 (I-00") "6 (E.159)
—I1- 0"y — (T-0"0)™" (07 ¥ -"e) + e (I-en”) " v-ee (I-07e)"" (E.160)
—I—(I-0"0)" (2"v - 0"e) - 0"V + 6" (I-e0") ' v-ee (I-07e)"" (E.161)
— (I-0"0) " [(I-0"6) — (01T —"e)] (E.162)

+ 0" (1—e0") ' [1-(I-e0")]v -0 (I-0"e) ™"

—(1-0"0) " (1-0"v) + e (1—en") ! (60#) v —efe (1-0fe)” (E.163)

(1-0fe)™" (1-0%w) +efe (1-0e) v —efe (1-0e)" (E.164)
—(1-0"e) " (1-0"v)—e e (-0 e) " (1- ") (E.165)
—(1-0"0) (1-0%e)™ (1-0 V). (E.166)

We obtain, coming back to Equation (E.157) :
c=((1-e"e) " (1-00) (1-0f6) " (1-0v) (1-0"w) " (1-6"6)") o e
—((1-0"6)"" (1-0"e) " (- Q™) (1-6"w) " (I- eH@)”Q)_1 (E.168)
—(1-efe) " (1-e"w) (1-"w) " (1-0fe) (T-e%e) . (E.169)

We have seen previously that the matrix C; defined in Equation (E.119) is similar to the product of matrices A2 BC D?>C* BH.,
We also have, according to the expressions of A2, D?, B and C obtained in Equations (E.133), (E.135), (E.151) and
(E.169):

A’BCD*cH BM

1-00") " (1- et (1-00f) ™" (I - qeM) (I - 00*)
0™ (1-ae®) ™ (v - ) (1-6"w) " (- e"e)"
He) V2 (1—e"w) (1- 0 w) ! (I-qfe) (I - efe)
01e)"* (1-a"e) ™" (1-0fq) (I-eHa) ™" (I -e"e)
He) V2 (1—0"q) (1—-v7) ™" (1-ve) (1-ofe)
010)"? (1—wfe) " (v¥ —of) (1-ea") ! (1-eeH)"”

o) (1 o) (1 —00") T (1~ ) (1 - 9"w) ©171)
)

—1/2 (E.170)

1
—1/2

~
@

1/2

~

~
@

I
I

@

1 1/2

1-0%0) (1—w"q) ™ (v7 — o) (1 —en”) ™ (1-eeH)

= (
(
(
(
(
(
= (
(
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According to Equation (E.171), the matrix A2 BCD?C* BH is similar to the following matrix:

(I—00") ™ (W -Q) (I -"w)™" (1-0Q) (I-vQ)™" (¥ — ).

This matrix is also similar to the following product:

(T—00") 2w -q)(1-ofe) " (1-ai0)"” (E.172)
(1— Q)" (1—w"0)™" (w7 — o) (1 - o)~/ (E.173)
=D (V) Bg (V)7 (E.174)
—Cs. (E.175)

Since the similarity relation is an equivalence relation, we have shown that the matrices C; and C5 are similar, which
concludes the proof.
O

We now give a second proof of Theorem 9. We recall that the distance between two points €2 and ¥ in a Riemannian
manifold M is defined as the infimum of the lengths of the paths between 2 and ¥:

1
4(Q, ) = nﬂo IV O], at

where - is a path from  to ¥ in M such that v(0) = Q and v(1) = ¥. To prove that an application ® is an isometry, i.e.
d(Q,0) =d(®(Q),® (V) forall (Q,¥) € M?, it is therefore sufficient to prove that:

1D® (V) [v]lgew) = llvllg V¥ eEM,VveTgM.
Proof. In this second proof, we will show that:
ID®q (¥) [0]13, 0 = 0l ¥ (Q,¥) € SDF, Yo e CV*N (E.176)

to prove that the application ® is an isometry.
We first recall the expression of the square norm of the tangent vector v at point U:

||”UH‘21, =trace((ff\I/\IIH)_lv(If\I/H\II)_1 UH) (E.177)

Therefore, we have:

1D (%) [0]] ) = trace ((I — 00 (1) @0 (1)) D () o] (1 B (1) @0 (1)) Dg (0) 1]

(E.178)
We recall that:
Do () [v] = (I— Q) (1 —wH) "y (1—"w) " (- i)', (E.179)
Using the conjugate transpose operator in Equation (E.179), we obtain:
D®q (¥) [v]T = (1 - QHQ)"? (1 - wHQ) " o (1— )™ (1 - o), (E.180)
According to Property 51, we have:
[ =g (1) Do ()T = (1 — Q)2 (1 — w0~ (1 - weH) (1 - wo!)H (1- ") @&Is1)
Hence, we obtain:
( m\ ! o\~ 1/2 H oy~ 1 H HY\~1/2
I—3q(0)Pg (T) ) =(I—QQ ) (I—\I/Q )(I—\II\II ) (I—\IIQ )(I—QQ ) . (E.182)
Using Property 50, we obtain performing the transformations < Q and ¥ « W# in Equation (E.181):
I— 3 ()7 dq (0) = (1—70)* (1—-w"0) ™ (1-v"w) (1-v70) " (1-0P0)" . (E183)
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Hence, we obain:

-1 —1/2

(1= @0 () 0a () = (1-0Q)" (1-w7q) (1-ww) " (1-w0) (1-0'0) (E.184)
Using Equations (E.179), (E.180), (E.182) and (E.184), we obtain from Equation (E.178):
[DPa () [v]llgw) (E.185)
g\ ! H -1 H
— trace (1 — Bq (V) Bg (V) ) D®g (1) [v] (1 — 3q (1) 3 (sz)) D®g (1) [v] (E.186)
(I—0om)™" (1—wot) (1-wud)™" (1-woH) (1-qof) '/
 OOH\1/2  woHY -1  OH gL  OHO\ /2
Ctnace | 007 (1wt v -erwT (g-ang) E187)
(I-0"Q) (I-vHQ) (I-v7w) (I-vH"Q) (I-0Q7Q)
(1—-ai)'? (1-wiq)™ vl (I—Qui)™  (1-qof)'?
— trace (1 - ww™) "o (1 - 9Hw) " o) (E.188)
=3 (E.189)
O
E.4 The Riemannian logarithm map
E.4.1 Riemannian logarithm map at 0
In the article of Ben Jeuris and Raf Vandebril [45], the logarithm map at O is given by the formula :
log, () = +V Q (E.190)
with:
I+ (QaH)"?
v =2 (Q0)" log (7)1/2 (E.191)
I—(QOH)
where £ (A, Q) is defined as the solution of:
AZ + ZA" = Q (E.192)
However, the expression of the logarithm map at zero given in [45] can be greatly simplified.
Property 53. The Riemannian logarithm map of the Siegel disk at zero has the following expression:
logo () = arctanh (X) X 'Q  where X = (Q0H)"? (E.193)
Note that when || X|| < 1, we can express the function arctanh as a Taylor series:
+00 X2n+1
arctanh (X) = T;O o 1 1 (E.194)
Hence for all X in the Siegel disk, we can write the product arctanh (X) X~ the following way:
. +00 Xgn
arctanh (X) X~ = 7;0 o T 1 (E.195)
This new expression is also valid when the matrix X is not invertible.
Proof. Weset: X = (QQH)I/Q.
Therefore, V is the solution of the equation:
I+ X
X X" =1 E.196
V+V og <I — X) ( )
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Note that X = X and that log (1 +X ) can be written as a power series expansion of X as the singular values of X
are lower than one by definition of the Siegel domain:

log <I+X> =log(I+X)—log(I —X) (E.197)

I-X
n+1
< Z X") (E.198)

X2l (E.199)

n+1

s
e

Hence the expression log (—X) and X commute and V can be expressed explicitly as a function of X:

1 I+X 1
V—210g<I_X>X (E.200)
Hence, we proved that:
1 I+X
logy () = = 1o i X710 where X = (QQH)1/2 (E.201)
2 I-X
The reciprocal application of the hyperbolic tangent as the following expression:
1 I+X
arctanh (X) = - log (I i X> for || X < 1 (E.202)
Finally, we proved that:
log, (€2) = arctanh (X) X 'Q  where X = (QQ") 12 (E.203)
O

For consistency, we can check that:

d%p, (0,9) = [logy ()] (E.204)

On the one hand, we obtain from the expression of the distance (E.4):

d* (0,9) = trace (arctanh® (C))  with C' = (QQH)1/2 (E.205)

One the other hand, we obtain using the expression of the norm (E.8):

J10gy (€2)5 = trace (log, () log, (2)") (E.206)
= trace (arctanh (X)X 17 X1 H arctanh (X)H> (E.207)
= trace (arctanh (X) X ' X?X ' arctanh (X)) (E.208)
= trace (arctanh® (X)) (E.209)
1/2

where X = (QQf)
Therefore, we checked that d%p, . (0,9) = [[log, (Q)||§

E.4.2 The Riemannian logarithm map at any point

To compute the Riemannian logarithm map at a point {2 the key idea here is to transport the problem at zero, compute a
certain logarithm at zero and transport the result back to 2. This idea is illustrated on Figure E.1. If we want to compute
the logartithm map: logg, ('), we first transport both 2 and ¥ using the isometry ®q (E.9). The point 2 is sent to zero,
and we denote ¥’ the image of ¥ by ®q, :

V= Bq (U) = (I— 0072w —q)(1-o"w)" (1-07a)" (E210)
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The logarithm map computation
in the Poincaré disk

05

0.0

V' =logo(V)

Figure E.1: The Poincaré disk logarithm map computation

Then we compute the logarithm map at zero log,, (\I!l) :

/7 ! ’ 7 ’ 1/2
V' = log, (xp) — arctanh (X) X190  where X = (\11 o H) (E211)

And finally, we transport back the logarithm to the point {2 using the differential of the isometry ¢ given in Equation
(E.17):

V = log,, (¥) = Dd_g (0) [v] = (T—aoM)'"?V (1-qoHa)"? (E212)

Correspondance between the Siegel disk in dimension one and the Poincaré disk for the logarithm map We can
check that the logarithm map of the Siegel disk of dimension one corresponds to the logarithm map of the Poincaré disk
described in Section 4.1.2.

We compute the logarithm map log, (¥) of the Siegel disk of dimension one using the three steps described in Section
E4.2.

We start by computing the point v

U =dg () (E213)
Hy—1/2 Hoy—1 Hen1/2
= (I-00") "2 (w-q)(1-0"v)" (1-0Q) (E214)
T -0
e (E215)

Then we compute the logarithm map at zero:

V' =log, (v') (E216)
’ ;. 1/2 ,

=arctanh (X) X '¥  where X = (\I! U H) = ‘\I/ (E.217)

— arctanh (‘\I/D & (E218)

= arctanh (‘\IJD ¢ with = arg (\1/) (E219)

=arctanh <’ 1\11__9% D e with6 = arg <1\II__Q%> (E.220)

And finally, we compute the logarithm map log, (¥):
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logg, (1) =D _g (0) [V] (E.221)

— (1—00")"?V' (1 - a"q)"? (E.222)
- (1 - |Q|2) v’ (E.223)
= (1 - |Q|2) arctanh <' ;I:—Q(i D e with @ = arg (I\IJ—Q%]> (E.224)

This result corresponds to the expression of the Poincaré disk logarithm map described in Equation (4.18).

E.5 The Riemannian exponential map

E.5.1 Riemannian exponential map at (

Property 54. The Riemannian exponential map of the Siegel disk at zero has the following expression:

1/2

expy (V) = tanh (Y)Y 'V where Y = (VVH) (E.225)
We recall the definition of the hyperbolic tangent:
sinh (X X _ X 2X_1 1— —2X
tanh (X) = o (X) e —e” e € (E.226)

cosh(X) eX+e X eX+1 1+e2X

Proof. To prove this property, we will use the fact that the Riemannian exponential map at zero is the inverse of the
Riemannian logarithm map at zero.
We set: V' = log, (£2). Hence Q2 = exp, (V). According to Property 53, we have:

1/2

V = arctanh (X) X 7'Q  where X = (QQ") (E.227)
We recall that X = X .
To express € as a function of V, we first calculate the product V'V #:
VVH = arctanh (X) X 'QO7 X~ 7 arctanh (X)" (E.228)
= arctanh (X) X ' X?X ! arctanh (X) (E.229)
— arctanh? (X) (E.230)
Hence:
7 1/2
arctanh (X) = (VV*) (E.231)
Therefore:
X = tanh (V1)) (E.232)
We will note:
X = tanh (V) with Y = (VVH)"/ (E.233)
Using Equation (E.227) we can write:
Q = X (arctanh (X))~'V (E.234)
Using Equation (E.233), we otain:
Q = tanh (V) (arctanh (tanh (Y))) ™'V (E.235)
=tanh (Y)Y 'V (E.236)
We finally proved that:
expy (V) = tanh (Y)Y 'V where Y = (VVH)l/2 (E.237)
O
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The exponential map computation
in the Poincare disk

05

0.0

V' =logo(V)

Figure E.2: The Poincaré disk exponential map computation

E.5.2 The Riemannian exponential map at any point

To compute the Riemannian exponential map at a point €2 the key idea here is to transport the problem at zero (as for the
logarithm), compute a certain exponential at zero and transport the result back to 2. This idea is illustrated on Figure E.2.
If we want to compute the exponential map: expg, (V'), we first transport the vector V' at zero using the differential of the
isometry @ given in Equation (E.17):

V' :=D®q (Q) [V (E.238)
—(T— M2 (1— o)V (T-afa) ™ (1 - ata)'” (E.239)
—(1—0f) v (- (E.240)
Then we compute the exponential map at zero exp, (V) :
¥ = exp, (v) —tanh (Y)Y ™'V where Y = (v’ v’ H) 2 (E.241)

And finally, we transport back the exponential to the point 2 using the isometry ® _¢, which is the inverse of isometry
D, (see Property 49) and transport the point 0 back to 2 and the point ¥ back to expg, (V):

U :=expg (V) (E.242)
—d (fo) (E.243)
— (100" (v +q) (1+ QH\I/)_l (1-o"q)"? (E.244)

Correspondance between the Siegel disk in dimension one and the Poincaré disk for the exponential map We can
check that the exponential map of the Siegel disk of dimension one corresponds to the exponential map of the Poincaré
disk described in Section 4.1.2.

We compute the exponential map expg, (V') of the Siegel disk of dimension one using the three steps described in
Section E.5.2.

We start by computing the point I’

v = (100t v (1-afa)
v
11—

(E.245)

(E.246)
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The geodesics

Then we compute the exponential map at zero:

v = exp (V’)
’ ’ ’ 1/2 ’
=tanh (Y)Y 'V whereY = (V Vv H) = ‘V

oo (V) ¥

= tanh <‘V D ¢’ with § = arg (V,> =arg (V)

V] 0.
=tanh e with 8 = arg (V
(1— Q) e(V)

exp(2z)—1

Note that for all z in R, tanh(z) = Z55077

hence we can also write:

vi
, exp( = 2) -1
v = il e with 0 = arg (V)

Finally, we compute the exponential map expgq, (V):

expq (V) =®_o (\I’I)
— (100 (v ) (1+0mv) (1 -are)?
v+ Q
N

exp( 25 ) - 1€i9+Q

exp( 285 ) +1
_ P(l—ml?) with § = arg (V)

(exv () +1) +
(Q+ew exp(1 lQlQ)

(1 + Qei?) exp (1 llﬂllg) +(1- Qe“’)

(eXp (12‘\‘5/2“2) - 1) e

with § = arg (V)

This result corresponds to the expression of the Poincaré disk exponential map described in Section 4.1.2.

E.6 The symmetric Siegel disk

The isometry We first check that the isometry E.9 is meaninful in the symmetric Siegel disk.
Property 55. If Q and U are symmetric matrices, then ®q (V) is also a symmetric matrix.

Proof. We assume that {2 and ¥ are symmetric matrices.

Then, the expression of ¢ becomes:
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(E.247)

(E.248)

(E.249)

(E.250)

(E.251)

(E.252)

(E.253)

(E.254)

(E.255)

(E.256)

(E.257)

(E.258)

The expression the geodesics can be obtained using the exponential map: the equation of the geodesic
starting from 2 with velocity V' is given by the application ((t) : t — expg, (tV).

We defined the Siegel disk in Definition 16 as the set a complex matrices with singular values lower than one: SDy =
{M eCN. T - MM7 > 0}. We recall that another definition of the Siegel disk also exists in other papers [54], imposing
an additional symmetry condition on the matrix M: M = M?. We will show in this section that the symmetric Siegel
disk is a totally flat submanifold of the Siegel disk. Hence the formula of the logarithm map E.4.2 and the exponential
map E.5.2 computed in previous sections are still meaningful when working in the submanifold of symmetric matrices.



—1/2

o (1) = (T— 002 (v —q) (1-afw) ' (1- )" (E.259)

—(1-00) P w-) @I-av) " (1-00)" (E.260)
From Equation (E.78), we also have:
Pg (V) =04, (V) (E.261)
— (1= (1—waf) " (w-q) (1-ato) " (E.262)
—(1-00)P 1-wd) " (W -0)(1-a0) " (E.263)
Using both expressions of ®q:
o (V)" =0, ()" (E.264)
—(1-00) P w- @-av) " (1-00)" (E.265)
—Bg (V) (E.266)
which proves the property.
O

We now check that the differential of the isometry ® is meaningful in the symmetric Siegel space. The differential of
the isometry ® has been used to compute the logarithm E.4.2 and the exponential map. E.5.2 of the Siegel disk. Note that
the tangent space of the symmetric Siegel disk is the space of complex symmetric matrices.

Property 56. If ), U and h are symmetric matrices, then D®q, (V) [h] is also a symmetric matrix.
Proof. We assume that €2, ¥ and h are symmetric matrices.

Using Equation (E.17), we can write:

1/2

Do () [h] = (I — Q") (1—wa™) " h (1 - 0fw) " (1 - 0Q) (E.267)
—(1-00)* (1-wQ) " h(1-0u) " (1-00)" (E.268)
Then, we have:
Do (W) [h]T = (1 —00)"* (1 —w0) " h(1-0w) " (1-00)"? (E.269)
—D®q (¥) [A] (E.270)
which proves the property.
0

The Riemannian logarithm map
Property 57. If Q and U are symmetric matrices, then logg, (V) is also a symmetric matrix.

Proof. Let Q2 and ¥ be symmetric matrices. There are three steps to compute the Riemannian logarithm map. They are
described in Section E.4.2.
The first step is to compute the point W :

V= 3o (U) = (1—00) (@ - ) (1- ") (1-00)" (E.271)
The matrix ¥ is therefore symmetric, thanks to Property 55.
The second step is to compute the logarithm map at zero logy, (\Ill
’ ! ’ ’ ’ 1/2
V' = log, (\1/) — arctanh (X) X 10’ where X = <\If v H) (E272)
As || X || < 1, we can express arctanh (X) as a Taylor series:
o
tanh (X) = » —— X! E.273
arctanh (X) 7;0271-1-1 ( )
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Note that arctanh (X) is an odd application. Hence, arctanh (X) X ~! is an even application:

+o0
1
tanh (X) X1 = X2 E.274
arctanh (X) 7;0 T 1 ( )
Hence we can write V' the following way:
’ ’ ’ 1/2 r 1/2
V' = arctanh (X) X~'0'  where X = (\1/ v H) - (\If v ) (E.275)
P 1 ’ r 1/2
(> X2 | U where X — (qf v ) (E.276)
= 2n+1
T ]_ 0 1/2 n ’
- ((qf v ) ) v (E277)
= 2n+1
g 1 P TN\ ’
- v ) v E.278
= 2n+1 ( ( )
Therefore, we have:
' i 1 AN ’ 4
- ' ) v E27
v nz:lo 2n+1 ( ( %)
o 1 /T - T T\
-y v (\1/ v ) (E.280)
= 2n+1
o 1 ’ A N
-y v (\1/ v ) (E281)
n+1
n=0
To ]_ ;TN\ ’
-y (\If v ) v (E.282)
= 2n+1
=V’ (E.283)

which proves that the logarithm map at zero log,, (\IJ/> is symmetric.

The third and last step is to transport back the logarithm to the point {2 using the differential of the isometry ¢ given
in Equation (E.17):

1/2

V :=log, (¥) = D®_q (0) [V] = (1-00")"?v' (1-afQq) (E.284)

As Qand V' are symmetric matrices, we finally prove that the logarithm map log, (V) is a symmetric matrix using
Property 56.
O

The Riemannian exponential map
Property 58. If Q2 and V' are symmetric matrices, then expg, (V') is also a symmetric matrix.

Proof. Let 2 and V' be symmetric matrices. There are three steps to compute the Riemannian exponential map. They are
described in Section E.5.2.
The first step is to transport the vector V' at zero using the differential of the isometry ® given in Equation (E.17):

V' :=Ddq (Q) [V] (E.285)
—(1—00f) v (1-qato)"? (E.286)

The matrix V' is therefore symmetric, thanks to Property 56.

The second step is to compute the exponential map at zero exp, (Vl):

U= expy (V) —tanh (V)Y ™'V where Y = (V’V/ H) v (E.287)
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As ||Y]| < 1, we can express tanh (Y) as a Taylor series:

fanh (V) = io 22n (22(7;7:)!1) Bay,

n=1

Y2n—1

where B,, is the n*" Bernoulli number.
Note that tanh (V') is an odd application. Hence, tanh (Y) Y ~! is an even application:

400 22n (22n _ 1) BQn

h(Y)Y—! = v
tanh () 2
'i 2(n+1) (22(n+1) ) Bg(n+1) y2n
pay (2(n + 1))!

Hence we can write U the following way:

’ , ., 1/2 , =N 1/2
U =tanh (Y)Y 'V whereY = (V 1% H) = (V 1% ) /
<+oc 92(n+1) (22(n+1) _ 1)

By, , L =N 1/2
=t H)YZ") V' whereY = (V V)

P @2+ 1)
22(n+1) 22(n+1) — 1) B n ;=N\ 1/2 2n ’
_ Z ( ) Bonr) (v'v) v
L @+ 1)

+00 2(n+1) (22(n+1) _

1) Bo(ns1) [« \" <
20+ 1) (vv) v

HM

Therefore, we have:

T
+oo 92(n+1) 22(n+1) 1) Bo(n1) (VX})HV
2(n+ 1)

I
M§ P im

2(”+1) (220 — 1) Bausry |7 (iITV/T)n
(2(n + 1))!

92(n+1) (22(n+1) _ 1) Bz(

(2(n+ 1))!

92(n+1) (22(n+1) -1

2(n +1))!

D) v (‘?/V’)n

VBawn ()"

n=0

=0

which proves that the exponential map at zero exp (V'> is symmetric.

(E.288)

(E.289)

(E.290)

(E.291)

(E.292)

(E.293)

(E.294)

(E.295)

(E.296)

(E.297)

(E.298)

(E.299)

The third and last step is to transport back the exponential to the point §2 using the isometry ®_q which is the inverse

of isometry @, (see Property 49) and transport the point 0 back to 2 and the point ¥’ back to expq, (V):

U :=expgq (V)

—d_g (fo)

~(1-00%) "7 (v +0) (I+QH\I/)71 (1-0"q)"?

(E.300)
(E.301)

(E.302)

As Qand U’ are symmetric matrices, we finally prove that the exponential map expg, (V') is a symmetric matrix using

Property 55.
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E.7 The sectional curvature

We will focus on the sectional curvature at 0. We can then obtain the sectional curvature at any point using the isometry
® defined in Equation (E.9) and its differential E.17.

Indeed, the sectional curvature at the point €2 defined by the tangent vectors (which are matrices) £ and Ej is equal
to the sectional curvature at the point 0 defined by the vectors D®q, (Q2) [E1] et D®g () [E2].

E.7.1 In Euclidean coordinates

Let o be a section defined at the point {2 = 0 by two orthonormal matrices £y and Es.

Theorem 10. The sectional curvature at zero of the plan o defined by F1 and Fs has the following expression:
1 2 2
K(0) = =5 (|B: B — BBl |* + || EF By - B B4||*) (E.303)

Proof. We complete the orthonormal matrices F; and Es in an orthonormal basis (E1, ..., E,) as described in Section
D.1.
We recall the expression of the Siegel metric given in Section E.2:

ds? = trace ((1 - 00") " a0 (1 - 00) " a0 (E.304)

We set 2 = €XPy (-rlEl + J,‘QEQ).
We recall the expression of the exponential map at zero described in Section E.5.1:

expy (V) =tanh (Y)Y ™'V where Y = (VVH) Y2 (E.305)
12 12
Here we have V = 21 E1 + 29 FE>and Y = (VVH) = ((xlEl + xoEs) (x1E1 + 2o Es) ) .

As the curvature is a local property, we can use a limited of the fonction tanh.
We recall that Vz € C such that |z| < 27, we have:

tanh(z) = z — %z?’ +0 (2°) (E.306)
Hence, as Y is a matrix close to zero:
Q =tanh (Y)Y 'V (E.307)
0= <I - %W +0 (Y4)> (21E1 + 20F5) (E.308)
Q =(x1E1 + 22F2) (E.309)
- % (211 + 22F>) (21Ey + 20E2)™ (11Ey + 22B»)
+0 ((a| + |z2)))
Q =(x1E1 + 22F>) (E.310)

1

-3 (3B B By + 2i22 By E{ By + 22 E1 EY By + 2125 E1 B B+
2ixoBo B By + 2123 Es EY By + 2123 B> EY By + 23 E; EY )

+0 ({1 +la2])°)

Hence, we obtain using the conjugate transpose operator:
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O = (1 BEf! + 2,E]) (E:311)
— % (r1E1 + :UQEQ)H (r1E1 + 22F>) (x1 By + xgEg)H
+0 (2] + |21)°)
QY = (21 E{' + 2,E]) (E.312)
- % (3B E\Ef! + a}2o B B\EY + 23 Ef BB + 2123 Ef E,EY
+aiv EY E\EY! + 2123 EY E\ES' + 21235 B2 E{' + 23 EY B> E)Y)

+0 ((laa] + [22])°)

We now compute the infinitesimal variations:

dQ) = (d.IlEl + d.ZEQEQ) (E.313)
1
~3 [ (Bxfdxl)ElElHEl + (2z122dx + ZC%d(EQ)ElElI_IEQ‘i‘

VE\EX By + (23dxy + 221 39d2s) By EY o+
(21?1562611‘1 + JL‘%dl‘g)E E1HE1 + ( 2d$1 + 2$1l’2d1‘2)E2Ef{E2+
(z3dxy + 221 20d2e) Bo EY By + (323das) Bo EY Ey |

(221 20d21 + 22day

+0 ((aa + 2

Hence, using the conjugate transpose operator:

dQ" = (dz B{' + duyEj') (E.314)

-5l (322dx))Ef By B + (22120dxy + 23day) E¥ BV EF +
(2x129dxy + 2idas) EY By EY + (v3dxy + 221 20dx0) EY By EF +
M BB + (2kdxy + 22120day) BY BV B +

A BB + (3aidxs) B EoEH

(221 20dxy + 23da;

(z3dxy + 22 w0dxs

)E
)EA
+O< |z1| + |22|) )

We now compute the products:

Q0" = [(IlEl +22E2) + O ((Izl\ + Ile)?’)] [(xlE{f + 2B ) + 0 ((|x1| + |x2|)3)] (E.315)

QO =22FB\ EF + 2129 E B 4 21200 Bo EF + 22FB,EH + 0O <(|9€1| 4 |x2|)4) (E316)
and:

afa = [(flElH +xBy") + O ((Iarll + Ile)g)] [(x1E1 + 22y + O ((|:c1| n |x2|)3)] (E317)

QO =2?FBIE, + 212090 EF By + 2120 EY By + 23FEY Ey + O <(|x1| " |x2|)4> (E318)

We recall that VX € M, (C) such that || X || < 1, we have:

+o0
= > xn (E.319)

n=0
Hence:
(I-X)"'=I+X+0(X? (E.320)

Therefore, we can compute:
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and:

As ds? = trace ((I — QQH) “an (I — QHQ) ! dQH) , we now compute the product of the four terms:

(1-00") " =1+ 00" + 0 ((20")*)

—1
(1- Q0" T4+ 2B BF 4 2120 B B + aya By B 4 23 BB 4+ 0 ((|331| + |x2|)4)

(1-0t)" =1+ 00+ 0((@70)*)

(1—QHQ) ™" =T+ 22EYEy + 2120 B¥ By + 2129 B By + 23EX By + O ((|x1| + |x2|)4)

(1—00") " ao (1 - ")~ 4
= (dz1 By + daoEs) (dzi E{f + dao EJ')

— % (dz1E7 + dxo Es)

[ 3z2da))EFEV\ER + (20 20day + 22day) EY By EF +
(2x129dxy + 2idas) EY Es B + (23dxy + 231 20d2s) EY By EY +
(2x129dxy + 22da))EF B\EY + (22dxy + 201 20das) EY By EH +
(z2dxy + 2x129d2s) BY Bo EY + (323da,) EY By EY ]

+ (dx1 Ey + dxoEo)

(23E{" By + 2122 E{' By + 2122, EY Ey + 23 EY E))

(dmlEfI + dargEf)

1
—3 [ (322dxy)E\EY By + (2x120d2y + x3das) By B Eo+

(22 20dxy + 22dey) Ey\EY By + (23dy + 2x120das) By EY By +
(2z1xodry + x?dxl)EgEfIEl + (23dxy + 2x1x2dx2)E2Ef{Eg+
(z3dxy + 221 00d2e) Bo EY By + (32idas) Bo EY Ey

(dmlE{{ + dxgEf)

+ (2B B! + 2120 B + a2 S EY + 23 B, EY)

(dz1E1 + dxoEs)

(dzy EY' + dao E3')

+ 0 ((Jaa] + |2)*)

We now develop each term. We note A the term of order 2, and By, Bs, B3, B, the terms of oder 4.

A= (dx1Ey + dxoEy) (dﬂth{ + dszf)
A =d2?F\E + dzydey BV EY + doydes By ER + da2 B, ER

1
By :=— § (daclEl + da?QEQ)

[ (322dx)) B E\ B + (22100d2y + 23das) EY EVEF +
(2x129dx1 + 22das) EF By EF + (22dxy + 201 00das) EY o EF +
(2x172dxy + 2iday ) Ef By EY + (23dxy + 231 20d20) EY By EY +
(23dxy + 2x1w9das) EF By BE 4 (322day)EEE,EH
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3a3da?) By E{' E EY! (E.329)
2x1x2dx% + x?dwld@) ElElHElEf

2x1$2d33f + x%dazldxz) ElElliEQE{_I

T d:c% + 2x1:c2dx1dx2) ElE{_IEQEQH

2x122d2} + 2idardes) By Ey B BY

T dxf + lefcgdxldxg) ElEfElEf

z3dat + 2z 20dadas) By EY ES EY

3z3dzidzs) E1EY ESEY

3a3dxidas) B2 EY By EY

21 22dz1dzs + 23da}) B2 E{ By EY

2x1xodxrdrs + xldxg) EQE{{EQEIH

T d.’L‘ld.’L‘g + 221 zodxs ) EQEFEQE;I

2x1rodx1drs + x%dm E2E2HE1E{1

)
x5 2dxydzy + 2x1x9dxs ) EQEQHElEf
)

Izdl‘ldIQ + 2$1I2d562 EQEQI{EQE{I

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

W\HW\HW\HC@H—‘@M—‘WH—‘M\r—‘OJ\r—‘w\)—‘O.’)M—\OJ\HOO\HOO\HOJM—‘WM—‘MH—‘

3x3da3) E>EY ESES

By = (21 E\E{' + 2129 E1 EY + 320 B> By + 23> E)Y)
(dSUlEl + dIQEQ)
(dzyEf' + dao E5')
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By = (a3da?) ELE{' E\E{! (E.330)
+ (23dx1dxs) E\E{' E{EY
+ (v122d2?) ELE{ ELEY
(z129dx1dxy) By EF Ey B
(z122d23) B\ES By EY
(z179dx1dxy) B1EY E B
(23da?) ELEY B, B
(23dz1dxs) E1EY ESEY
(23dx1des) E2E{' E1EY
(z3da3) E>E{' E1EY
(z129dx dxs) By EE By BH
(z122d23) B2 B By EY
(x179dx1dxy) B2 EY By B
z172d73) B2 B3 B EY
dzidzs) E2EY ESE{

n
n
n
n
n
n
n
n
n
n
n
+
+ (23dx3) E2EY ESEY

(
(
(

€T
€T

B3 :i=— é [ (3z}dz1)E1E{ By + (2z122d21 + 21d2s) By Ef Eo+ (E.331)
(2z1xodry + x%dxz)ElEQHEl + (23dxy + 2x1x2d1‘2)E1E§E2+
(2z120dxy + 22da) ) Es EX By + (22dey + 22120das) Es EY By +
(z2dxy + 201 20d2s) By EX By + (322das) By EX By |
(dzy EY' + dao E3')
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3a3da?) By E{' E EY! (E.332)
3a3dxiday) By Eff E1 By

2x1$2d331 + xldxldxz) ElElliEQE{_I

2x1x2dx1dTs + xlde ElE{_IEQEQH

211 x9dx? + xidxydas) EyEX E B

2x1x2dx1dTo + xfdx ElEfElEf
r3da? + 2x1x0dr das) By EY By B
E\EYE,EY
2x1xodrdry + 23drd) By EY By EY
T dx% + 2z x9dx 1 dXo EQE{{EQEIH

T d.’L‘ld.’L‘g + 221 zodxs EQEFEQE;I

)
)
)
)
2)
2122d2} + 2idaides) B2 Ef By EY
)
)
2)
x3dat + 221 xadardas) B2 EY E1EY
v3darday + 231 20dal) B2 EY EYEY

3x3dzidzs) E2EY EoEf

(
(
(
(
(
(
(
(z3dw1das + 2wy 20da7)
(
(
(
(
(
(
(
(

W\HW\HW\HC@H—‘@M—‘WH—‘M\r—‘OJ\r—‘w\)—‘O.’)M—\OJ\HOO\HOO\HOJM—‘WM—‘MH—‘

3x3da3) E>EY ESES

By = (21B\Bf' + 21221 By + 3120, Ef + 23 B> EY) (E.333)
(dSUlEl + dIQEQ)
(dzyEY' + dao E5')
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By = (23da?) ELE{' E\E{! (E.334)
+ (23dx1dxs) E\E{' E{EY
+ (21dw1dzs) E1Ef B2 B
+ (23da3) B\ E{' B, EY
+ (v122d2?) BLES B EY
+ (zy29d21das) By EY By EY
+ (z129dx1d2y) ByEY By EF
+ (z122d23) BVE3 By EY
+ (v122d2?) BB By EY
+ (z1x0dr1dTsy) EgEfIElEf
+ (z129d1d2o) Bo EY By EF
+ (z122d23) B2 B By EY
+ (23da?) B2 EY B EY
+ (23dw1dzs) ExEY BV ES'
+ (23dwidas) EsEf By B!
+ (23dx3) E2EY ESEY

We denote B := By + Bs + B3 + B4. Adding the last equations, we obtain:
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= (0) E,EF E\EF

+

+
l\JN)

—+

Jr

Jr
Jr

N W~ Wl w\m oa\»—x oo\»—l w\>—~ C&J\H W = oo\»—l w\l\’) w\H w\H
%3
&
H
—ho

+
+ Jfll'gdl'l

+

Jr

n
+ 1+
+{+
n

-
-
(-
(+
-
(9
-
(+
-
(-
-
(
(
(3

+(0) B2 EY B, Y

Then we compute trace (A) and trace (B) as:

ds? = trace ((1 - 007) " a0 (1 - 7Q) " a0
ds® = trace (A +B+0 ((|:1:1| + |m2|)4))

ds? =trace (A) + trace (B) + O <(|:L"1\ + |:172|)4)

Hence, we compute:

As F; and E5 are the two first vectors of an orthonormal basis.

trace (A) = trace (d:z:fElEfI + dacldxgElEf + dxldxgEgEfI + dx%EQEf)
trace (A) =dz] trace (E1E{") + da1das trace (E1 E' + B> E{") + dzj trace (E2ES')

trace (A) =dz? + da3

2 2
- —gmlxgdxl + 3:vld:v1da:2> E\EFE EX
1
x1xodr? + 3x1dx1d:v2> E\EFE,EF
2 H H
dzl xlzgdzldzg + lede E\E" EyE,
2 5 H H
xlxgdxl 3$1d$1d$2 E\Ey' B E;
22 2
zdatl + 3x1x2dm1da:2
1
.’Elxzd{ﬂld(EQ
3
dxldm + xlzgdxz
mlda:ldajg
r1xodr1drs + a:lda:Q
zida? + :clxgd;vldxg 3x%dm§) EEPE,EH
2 H H
dSUldeQ + 3$1(E2d$2 E2E1 E2E2
1
radx? — *IlIdeld.Tg 3xfdx§) EyEEE ER
1
z3dridre — Bxlxgde) EyEYE\EY

2
+-addrydry — 3951:1:2(1:1:2) EEHE,EH

x%dx%) E\EYE,FY

E\EYE,EH

(E.335)

(E.336)
(E.337)

(E.338)

(E.339)

To compute trace (B), we first note the following equalities due to the invariance of the trace operator by commuta-
tion:

* trace (ElEfIElEQH) = trace (ElEfElE{{)
* trace (ElEfIEgE{{) = trace (EQE{_IE:[E{_I)
* trace (ElEfIEgEQH) = trace (EgEfElEf{)
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* trace (ElEngEf{) = trace (EQEf{ElEf)

* trace (E1 EHE, Ef) = trace (Eg ENE, Ef)

s trace (B2 Eff B2 EY') = trace (E2Ef B2 EfY)

Using these equalities, many simplifications appear and we obtain:

2
trace (B) = + (—Bxlmgdajf

1
+ —gxlmgdxl

+ o+
l\)
QU
ﬁ

+

+

+

(
(5
(s
(.
-
(s

m\»—l c,oM—t W oa\na w\»—l

2 2
+ gxfdxldxg + gxlmgd:ﬁf — 3

2
“xidry d;@) trace (B, B{ B1E37)

1 1 1
+ 3x1dx1dx2 —+ lexgdazl 3x§dx1dx2) trace (E]_E{—IEQE:{—I)

2 22

2
wldxz + = 3 5

3 da? —

1
3x1x2dac1dx2 +

3

2 1
acl + lexgdxldxg — Sxfdﬁ) trace (ElEQHElEQH)

1
dwl + xlxgdxldxz 3x§dm%> trace (EgEf{EgEfJ)

1 1 1
x%dxl — ga:lxgdxldxg — gﬁClIdelde + 3:cldx2> trace (ElEngE1 )

1 1 1
da:ldxg + lexgde + 3x2dx1dx2 - 3x1x2dx2) trace (ElEngEf)

2 2 2
+ < §$2d.’£1d.’£2 + 31'1£E2dx2 + Sdemlde 3x1m2dm§> trace (EQE{{EQEQI_I)

With simplifications, we obtain:

trace (B)

1
trace (B) = 5 trace (E\E{' E-E3 —

Note that:

(L
A
1 2
+ ( § d:cl + 3xlm2dac1d:£2 —
1 2
+ +§a: da:l 3$11‘2d1‘1d$2 +
1 2
+ ( 5 dml + 3x1m2dm1dx2

E\EYE\El + E\EY E,Ef

xlde

2
dxl 3x1x2dx1dx2 + a: dx2 trace ElE1 EyE, )

trace ( E1E2 EyE] )

xldxz trace ( E2E1 EsE; )

B EY — ByEY||” = trace ((ElEf — BB (B, EY - EgElH)H)

we can write:

12 E"

We show as well that:

=trace ((E1Ey' — E2E) (E,E{" —
= trace (+E1 EY B, Ef' — E\EJ BB} —

trace (ElEngElH) = trace (EgEf{ElEQH) ,

BB ||* = trace (+2 EyEY E,BY
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E\E]))

— E\EFE EF —

ZleQ) trace E1E2 E\E, )

— EQE{{EQEf{) (a:ldxg — Z‘le‘l)Q

EyE{' B, EY + BX B E\EJY)

EyEf B, B

1 1
—r1x2dx1dxs — 3%%(1%%) trace (ElE{{EgEf)

(E.340)

(E.341)

(E.342)



|EH By — EF By||° = trace ((E{HE2 —EFE) (BYE, - EfEl)H)
=trace ((E{' E> — B3 Ey) (EY'Ey — E{'E»))
=trace (+E{' E;EY Ey — E{' ByBY' By — EY E\EY By + EY E\Ef' E,)

As trace (E{{EQEQI—IEl) = trace (EQI_IElE{_IEQ) , We can write:

|Ef' B> — B3 B, |{2 =trace (+2 E{ E;EY By — B’ E;E{'Ey — EY E\EJ EY) (E.343)
=trace (+2 E1 E{' B, B — E»E{' B> BYY — B\EY By EY)

Hence we have:

trace (E1E{' ExEY' — E\ES B\EJ' + E\EY E,EY! — BB B> EYT) (E.344)
:% (B Bf — BB |” + || Bl B> — B By ) (E.345)

Therefore:
trace (B) = % (; (BB~ EBE | + || B B, - E§E1||2)) (¢1dwy — wadar )’ (E.346)

We recall Equation (E.338):

ds? = trace (A) + trace (B) + O ((\zl\ + |z2\)4)

Therefore, we have from Equations (E.339) and (E.346):

ds® =dx? + dx3 (E.347)
1 1
-1 (2 (I8 Bf — BB + || Es - E2HE1||2)) (21ds — wader)?
+ 0 ((a] + Jz2))")

We recall Equation (D.1) which gives a link between the metric element ds? and the sectional curvature [31]:

1
ds® =dx?} + dx3 — gK(O’) (z1dxg — zoda1)?
+0 <(|331| + |x2|)3> dz? + O ((\m + \a;g\)?’) dzidzs + O ((|x1\ + |$2|)3) dz2

By identification, we finally showed that:

1
K(o) = =3 (HElErf ~ BE|” + || B E; - EQHE1||2) (E.348)
O
Corollary 2.
—4<K(0)<0 (E.349)

Proof. If the base point considered is not zero, we first transport the problem at zero using the differential of the isometry
E.17.
Let E; an E5 be an orthonormal basis of the plan o at zero such that:

1
K(o) = =5 (I\ElEQH ~ BE{|)+ ||EfE, - EQHElui) (E.350)

Using the positivity of the norm, we have: K (o) < 0.
Due the triangular inequality, we have:

1
K(0) 2 =5 (BB |, + | BBl [1)° + (| B Ball, + || 25 Eal,)°) (E351)

I
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Using the inequality on the Frobenuis norm: ||AB||, < ||4]|, || B]|, and the fact that || E+ ||, = 1 and || Ez||, = 1, we
obtain:

K(o) > — ((1 +1)2 4+ (1+ 1)2) — 4 (E.352)

O

N | =

We recall that the Siegel space is a generalization of the Poincaré disk D defined as the complex unit disk endowed
with the metric:

Idukl2

(1 lml?)”

If we perform Theorem 10 on the orthonormal basis vectors £y = 1 and F» = ¢, we find that its curvature equals to
—4.

ds? = (E.353)

E.7.2 In polar coodinates

Let o be a section defined at the point £ = 0 by the two first vectors of an orthonormal basis (F1, ..., F,) as described
in Section D.1.
We recall the expression of the Siegel space scalar product given in Equation (E.6):

(v, w)q, =% trace ((I - QQH)71 v (I - QHQ)71 wH) (E.354)
+% trace ((1 — 00" w (1-0fQ)” UH) (E.355)

At the point {2 = 0, we obtain:

1
(v, w), =5 trace (UU)H + wvH) (E.356)

Hence the Siegel space scalar product at the point {2 = 0 corresponds to the classical Euclidean scalar product. As a
consequence, the Siegel space norm at the point 2 = 0 also correponds to the classical Euclidean norm.
We now use the polar coordinates in the plan o defined by E; and E5. We define:

E,:
E@i

cos () Eq + sin () Es (E.357)
—sin (0) E1 + cos (6) Es (E.358)

Note that we have || E,||, = || Es|l, = 1 and (E,, Eg), = 0.
Theorem 11. The sectional curvature at zero of the plan o defined by E, and Ey has the following expression:
K(o) = —% (IB-Ef - BB | + | BX B - B E,|) (E.359)
Proof. We first recall the expression of the Siegel metric given in Section E.2:
ds? = trace ((I - 00") " a0 (1 - 00) " a0 (E.360)

We set Q = exp, (TEp).
We recall the expression of the exponential map at zero described in Section E.5.1:

expo (V) = tanh (V) Y~'V  where Y = (VVH)"? (E.361)

1/2
Here we have V = 7B, and Y = (VVH) 2 = ((B,) (0E)") " = (BB,
As the curvature is a local property, we can use a limited of the fonction tanh.
We recall that Vz € C such that |z| < 27, we have:

1 2
tanh(z) = z — 523 + Ezg’ +0 (z7) (E.362)

Hence, as Y is a matrix close to zero:
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Q =tanh (V)Y 'V

_ _1 2 3 4 6
Q_<I e Zyiio(y )) (rE,)

Q=(rE,)
1

— 2 (rE,) (rE)" (rE,)

3
2

* 15
+0 (7'7)
Q =rE,
— %r3ETEf E,
2
15
+0 (r7)

+

= (rE,) (rE)® (rE,) (rEN (rE)

PE.EYE,E1E,

Hence, we obtain using the conjugate transpose operator:

off —rgH
1
3

2
+—r"E"E.EE.EX

)

15
+O(r

We now compute the infinitesimal variations.
We first recall that:

Hence:

dE, =d (cos(0) Ey + sin (0) Es)
dE, =d (cos(0)) E1 + d(sin (0)) Eo
dE, = —sin (0) dg E1 + cos (0) dg E»

dE, =dgEy

dEy =d (—sin (0) E; + cos (0) E2)
dEy =d (—sin (0)) Eq1 + d (cos (0)) E-
dEg = — cos (0) doEr + —sin (0) dgEs

dEy = — dpE,

dQ) = (drEr + T“dgEg)
1

+ % (5r%d,.E.EPE.EFE,
+1r°dyEyEY E.EF E,
+1r°dyE, E}'E,.EPE,
+r°dyE,EYEyEP E,
+1r°dyE,E¥E.ENE,

PEfE.EH

(3r%d, E,EP E, + r*dg By B E, + r*dgE, EJ'E, + r*dy E,E Ey)

+r°dyE,EYE.EFEy )

+0 (7"6)
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Hence, we have at the order 5:

dQ) = (drEr + ngEg)

1
-3 (3r°d.E,EN'E, + r*dgEgEF E,. + r*dg B, Ef' E, + r*dg E, E} Ey)

+ %7"4 d.E.EPE.EPE,
+0 (1"5)

Therefore, using the conjugate transpose operator:

dQ" = (d,E" + rdoEj)

1 , , ,
-3 (3r%d, EFE,Ef + r3dgEY B, Bl + r*dyEF EyEF + r*dgEf' E, EF)

2
+ §r4dTEf{ E.EHE.EH
+0 (r5)

We now compute the products:

1 2 =
QOOH = [TEr — gTSErETHEr + BTOErEﬁETEfET +0 (T7)]
1 2
[r Bl — S Bl BBl + BB BI'E,E + 0 (ﬂ)]

2
Q0! —=r?E,.EF — §T4ETE7{{ E.EM + 0 (%)

We obtain as well with < QH:

2
Q0 =r’E"E, - §r4EfETEf'ET +0 (r°)

We recall that VX € M,, (C) such that || X || < 1, we have:

+00
(I-Xx)"'=> x"
n=0
Hence:
I-X)'=T+X+X?+0(x%
Therefore, we can compute:
(1-00M) " =1+ 00" + (207)” + 0 ((2")*)
(I—00") ™ =1 +r*E,EY — %r‘*ErE;H E.E'+0 (r%) + " E.EIE.El + O (r°)
(I—00") ™ =1 +rE.EY + %r“ETEfI E.El' + 0 (r°)

and:

(1-0"0) " =1+ 00+ (270)" + 0 ((27Q)*)
(I-0"Q)" =1+r*EFE, - §T4E5ETE,{{ET +0 (%) +*EYE.EVE, + 0 (%)

(I-0"0) "' =1+ r*E"E, + %r‘lEfIETEfET +0(r°
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As ds? = trace ((I — QQH) “Lan (I - QHQ) - dQH) , we now compute the product of the four terms:

(I—00") "o (1 - o)™ ¥
- (I +rE.Ef + ér“ETEfIETEf{ +0 (7"6))
((d B, +rdgEp)
= é (3r*d,E,EF'E, + r*dgE, EF Eg + r*dyE, Ej' E, + r*dg EyEF E,)
+ gr‘ldrErEf( E.EHE,
+0(r°))
<I +r?EPE, + ér‘lEfETEf{Er +0 (r6))
((dEF +rdoE")
- % (3r*d, EFE.El' + r*dgEF E,EJ' + r*dgEF EgE! + r*dg Ej' E,E)
+ gr‘ldrEf,{ E.EHE.EH
+0(r°))

We now develop this product.
We denote S the product:

S = (I—Q0") ™ a0 (1 — ")~ do
S =8o + Sir + Sar® + S3r® + Sy + O (r°)

where S; is the coefficient of order i in 7.
We denote A the first term of the product:

where:

A= (1-00")™

1
3
A =Ag + Agr® + Ayr* + O (r%)

A= (I +7r°E.E” + -r*E,EYE.EF + O (r6)>

AO =
Ay :=E,E"
1
Ay =§ETE;H E.EX

We denote B the second term of the product:

where:

B :=dQ)
B = ( (dTET + ’I"dgE@)

1
-3 (3r°d,E.El'E, + r*dgE, EF Eg + r*dg E, Ej' E, + r*dg EgEF E,.)

2
+ §r4dTETEfI E.EYE,
+0 (T5) )

B =By + Bir + Byr® + Bsr® + Byr* + O (r°)
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BO IZdTET
Bl :=d0E9
By :=—d.E.EFE,

1
By :=— gd@ (E.EFEy + E,E'E, + E,EFE,)
2
By = gd,. E.EPE.EFE,
We denote C' the tird term of the product:
C:=(1-0")™"
1

3
C =Co + Cor® + Cyr* + O (r°)

C = (I +7?°EE, + -r*E¥E.EFE, + O (7"6))

where:

CO =
Cy:=EME,
1
C4 :ngﬁErEfIE’r‘

Finally, we denote D the fourth and last term of the product:

D :=d2
D =((d.E + rdogE{")

1

-3 (3r°d.Ef E.Ef + r*dgEF E, B} + r*dgEl BB} + r3dyEJ' E, EX)
2

+ §r4drEfI E.EME.EH

+0(r°))
D =Dg + Dyr + Dar® + Dsr® + Dyr* + O (r°)

where:

Dy :=d,EX
D, :=dgEY
Dy :=—d.EPE,.E"
1
Dy i= = 2dy (EFE.E] + EFEoE" + EJE,E)
2
Dy :=§drEf E.EFE.EH

We now devopp the product and compute the terms order by order.
The only term of order zero is:

S() IAoB()C()DO
So :(I) (drEr) (I) (dTETH)
Sy =d?E,EX

We now compute the coefficient of order 1:
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S1 =AgBoCoDy + AgB1CyDy (E.425)
S1=(I) (d-Ey) (I) (doBg") + (1) (deEg) (I) (drE;T) (E.426)
S1 =d,dy (E,E{' + EoE]") (E.427)

We now compute the coefficient of order 2:

So = AgByCoDy (E.428)
+ Ao BoC2Dy
+ Ao B2Cop Dy
+ A3 ByCy Dy
+ AyB1CyD1

Sy = (I)(d.E,) (I) (~d.EF E.E[T) (E.429)
+ (1) (deBy) (B Ey) (B
+(I) (—d.E.EPE,) (I) (d, E}T)
+(BED) (4,8, (1) (d, B
+ (1) (doEp) (I) (do E")

Sy =—d*E.EFE,EY (E.430)
+d*E,.E¥E, EY
~d’E,E*E, EX
+d*E,.E¥E, EY
+ dZEgE}
Sy =+ d2EyEff (E.431)

Then we compute the coefficient of order 3:

S3 = AgBoCoDs (E.432)
+ AgB3CyDy
+ AgB1CyDs
+ AgByCsD
+ AgB1C>Dy
+ AgBsCy Dy
+ AyByCy Dy
+ AyB,CoDy

1
Sz = (I)(d.E,)(I) (—Sd(, (BEFE,.E' + EFEyE + EJ'E, EF )) (E.433)

+(I) (;dg (E,EFEy+ E,EJ'E, + EgEf{Er)) (I) (d,.ET)

+ (I) (doEg) (I) (—dEJ E.EX)
+ (1) (d,B,) (B E;) (do Bg')
+(I) (do o) (E; Ey) (d,EYY)
+ (1) (~dr B BT E:) (1) (do B )
+ (B.Ef) (d,E,) (I) (do E4")
+ (B E) (doEp) (I) (4. EI)
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1
Sy = — gd,«d@ (E.EE.Ef' + E,EFEEl + E,EJ'E,E])
1

— gd,.dg (E.EFEyE! + E,El'E,EF + EgEF E,EF)

—d,dpEyEF E,EX

+d,doE,EFE,.E}

+d,dgEyEF B, EX

—d,dyE,.E¥E.EY

+d,doE,E"E,.E}l

+d,doE,EF E,EF

S3 =d,dy ( %EEH E.Ef
1
3
— gEEéH E.EX
1
3

+ -E.EFE,EY

EEf'E.Ef")

Finally we compute the coefficient of order 4:

Sy = AoBoCoD,4
+ AgBoC4 Dy
+ AgB4Cy Dy
+ A4 ByCo Dy
+ AgB1CyDs
+ AgB3CyDq
+ AgByCso Do
+ AgB>Coy D>
+ AsBgCo Do
+ AgByCy Dy
+ AsByC> Dy
+ AsB>Cy Dy
+ AgB1C3Dq
+ Ay B1Cy D1
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Sy= (I)(d.E)(I) (gdrEf E.EME.EM ) (E.437)
+ (1) (d,By) (;)EH E.Ef E> (d-El)
+ (I) (;dTETEf E.EX E) (I) (d,.ET)
+ (;)EEH EEH) (d-Er) (1) (d. E]T)
+ (1) (dgEg) (I) (—éde (EFE.Ef + EFEEF + EJE.EF ))

+ ) <—1d9 (E.El'Ey + E,Ej'E, + EgEfIET)> (I) (doEJT)

+(I)(d,E,) (BE,) (~d.El E.E[)

+ (1) (—d EEHE) ) (—d,EYE,EM)

+ (BB (d.E,) (1) (~d, EF E,E)

+(I) (~d.E,.EPE,) (EXE,) (d,ET)

+ (BB (doEy) (B E,) (d, B

+ (B, B)') (~d B, B E,) (D) (d, E]")

+ (I) (dg Eg) (EF E,) (doEY)

+ (B E)) (doEp) (I) (do ;")

Si= GEE! BB (E438)

3 T
+ gderEf E.EPE.EH

2
+ gderEf E.EPE.EH
1
+ gdiE,.E}ff E.EPE.EH
1
- gdg (EoEFE.EJ' + EgEF EyEY + EyE{'E,EF)

- %dg (E.EFEyE) + E.EJ'E,E}l + EyEF E,EJl)
~d*E,E"E,EFE, EX

+d*E,.EYE,EYE,.EF

~d*E.EfE,EYE.EF

—d?E,E"E,.E"E.EX

+d*E,E*E,E*E, EX

—d*E,E"E,.E"E.EX

+diEEM E,. E}

+diE.EFE B}
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2

3 E.EFE,El

1

— §E,. EfE.EH
1

+ gE@ EYE.El

Sy :d?)( +

1
— gEgEf{EgEfI

1
— 3 BBy E,ET)

ds? = trace ((1 - 00") " a0 (1 - 070) " a0
We have:

ds® = trace (S)
ds® = trace (So + 817 + Sor? + S3r3 + Surt + O (rs))
ds® =trace (So) + trace (S1) r + trace (S2) r? + trace (S3) r® + trace (Ss) 7 + O (r°)

Hence we compute the trace of the coefficients of order O to 4.
We compute the trace of the element of order 0 using Equation (E.424):

trace (So) = trace (d2E, E}T)
trace (Sp) =d> trace (E,E")
trace (So) =d2 | B, 5

trace (Sp) =d?

We compute the trace of the element of order 1 using Equation (E.427):

trace (S1) = trace (d.dg (E, E}f + EoE}"))
trace (S1) =d,dy trace (E, Ell + EgEH)
trace (S1) =d,dg (E,, Eg),

trace (S1) =0

We compute the trace of the element of order 2 using Equation (E.431):

trace (Ss) = trace (dj EgEg')
trace (S2) =dj trace (EoEj')
trace (S2) =d, ||E9H0

trace (S2) =d

We compute the trace of the element of order 3 using Equation (E.435):
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2
trace (S3) = trace ( d,dg ( gETEfIE,.Eg

1
+ gETEfI Ey,EH

2
- gE,ng E.EF

1
— 3B Bl EE))

trace (S3) =d,dp ( 2 trace (B, E B, EJ")
+ % trace (ETETHE(;EE)
. % trace (ETEéqETETH)
- % trace (Eo B E, EIT) )
Due to the invariance of the trace operator by commutativity, note that:
s trace (E,EF E,Ef') = trace (E, Ef E,E})
* trace (ETE{{E(;E{{) = trace (EgE,HETEﬁ)

Then we have:

2
trace (S3) =d,dp ( 3 trace (ETEfETEgi)
1
+ 3 trace (ETEf{EgEf{)
2
3 trace (ETEf{ETEf)

1
— 5 trace (E,EFEyER))
trace (S3) =0

Finally, we compute the trace of the element of order 4 using Equation (E.439):

2
trace (Sy) = trace (d3 ( + §ETETHE9E§I
1
— gE,,Eéq E.El

1
+ gEQETH E.EY

1
- gEgEf{ EyEH

1
— 3 BB BB ) )

trace (Sy) =dj ( + % trace (E, E EgEJ)
- %trace (E.EYE,.E}

% trace (Eg B E, E}

— Lirace (EgEF EyEF

(

)
)
)
_ ltrace EyEJ E.EF)

Due to the invariance of the trace operator by commutativity, note that:

trace (ETEngE(;H) = trace (E(;E;{ETEE)
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Hence:

Note that:

trace (Sy) =%d3 ( + trace (E, B EoEf')
— trace (ETEéqETEéq)
+ trace (Eg EF E, Ej)
— trace (EQETHEQETH)

BBl — ByEY|” = trace ((ETEf — ByEH) (B, EY - EeE{f)H)
=trace ((E.Ey' — EgEl") (EgEF — E, EJ"))

=trace (+E, E) EgEY — B, EJ'E, B}l — EgEP EyE]' + EoEl E, EJ")

As trace (ETEéquEﬁ) = trace (EgEfETEéLI), we can write:

|E-Ef" — EQETHH2 = trace (+2 EyEM E, B}l — E,.EJ'E,Ef' — EyEF EgEl)

We show as well that:

|EXEy — EYE,||* = trace ((Eng ~ E['E,) (E"Ey - EéqE,)H)

=trace ((EFEy — EJ'E,) (EJ'E, — EF Ey))

=trace (+EX EgEY'E, — EYEyEEy — Ef'E,EJ'E, + E}' E, B E,)

As trace (E;HEgEéHET) = trace (EéqETEfIEg), we can write:

|EFEy — ngE,,.H2 =trace (+2 Ef' EyEJ'E, — EF EgEM Ey — EJ'E,E§'E,)

Hence we have:

=trace (+2 E, EY EgyEj' — EgEN EgEF — E,EJ'E,Ej)

trace (E,E EgE)f — E,Ej'E,Ej' + EgEF E, EJ' — BBl EgE]T)

:% (IB.Ef - BB + | BX By - B E.|)

Therefore Equation (E.466) becomes:

trace (Sy4) =

We recall Equation (E.443):

ds® = trace (So) + trace (S1) r + trace (S2) r? + trace (S3) r® + trace (Ss) r* + O (r°)

(; (I15.Ef - BB + | BF By - EéHETHQ)) 2

Wl =

Therefore, we have from Equations (E.447), (E.451), (E.455), (E.462) and (E.471):

ds* = dr?
+ df*r?
+ % <; (5. B8 — BB + | B Ey - EfETH2)> do>r
+0 (r5)
ds* =dr?

+ (1 - é <—; (||ETE9H - EaE}f’||2 +||EF Ey - E;LIETHQ) 72)) 2462

+O(r

)
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We recall Equation (D.2) which gives a link between the metric element ds? expressed in polar coordinates and the
sectional curvature [31]:

ds® = dr® + (1 — ;K(o)r2> r?df? + O (r°) dr® + O (r°) drdf + O (r°) d6? (E.474)

Note that according to this expression, we only needed to compute the coefficient of order four trace (S4) to obtain
the sectional curvature K (o).
By identification, we finally show that:

1 2 2
K(o) =—5 (HErEf — BB |" + |EFEy — EJ'E,|| ) (E.475)
O
We can check that this formula corresponds to the result of Theorem 10 in Euclidean coordinates:
1 2 2
K(o) = —3 (||E1E2H ~ BE|”+ |EF E, - EYE,|| ) (E.476)
We start by computing the products using Equations (E.357) and (E.358):
E.E} = (cos (0) Ey + sin () Ey) (—sin () By + cos (6) Ey) (EA77)
E,Ef' =(cos (0) By + sin () E) (—sin (0) Eff + cos (0) E3)
E.E} = —cos (0)sin () EyEf + cos? (0) By E3 —sin® () EoEf + cos (0) sin (0) By B4
EgEM = (—sin (0) By + cos (0) Es) (cos (0) Ey + sin (0) Ey)" (E.478)
EgEf = (—sin(0) By + cos () Es) (cos (0) Ef + sin (9) E3)
EoEH = —cos (0)sin (0) By EYf — sin® (0) E1 B3 + cos® () EoEY + cos (6) sin (0) Ex B4
Finally, we have:
E, Bl — EgEM = (cos® (0) + sin® (0)) E1E3" + (— cos® (0) —sin® (9)) E>E{! (E.479)
E.EY — E,EH =E\FY — BB
With E,. <« E and Ey < EZ, we show as well that:
EfE, - EME,. = EFE, - EYE, (E.480)

Which confirmes that the two expressions of K (o) correspond: the expression given in polar coordinates in Theorem
11 and the expression given in Euclidean coordinates in Theorem 10:

K(o) =— % (HErng — E6E5||2 +||EFEy - EQHETHQ) (E.481)

1
K(0) == (|BBf - BB{|* + | EF B2 - B EA|) (E482)

E.7.3 Infinitesimal right triangles and sectional curvature in the Siegel space

In addition to the proof of the expression of the sectional curvature using Euclidean coordinates E.7.1 and using polar
coordinates E.7.2, we will prove the expression of the sectional curvature by using the length of the hypotenuse of an
infinitesimal right triangle.

The link between the Taylor series of the square length of the hypothenuse of an infinitesimal right triangle and the
sectional curvature has been studied in Section D.4 whose notations we will used.

Theorem 12. We consider a right triangle O AB rectangle in O whose point O is located at zero, i.e. the null matrix. In
the Siegel manifold, the limited expansion of the square length of the hypotenuse is:

A2 (A,B) =a® + b + é (||ElE§H — BB+ ||BY B, — ngElHQ) a2? + 0 <(|a| + \b|)5) (E.483)
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Corollary 3. According to Theorem 8, this is another proof that the sectional curvature at zero of the plan o defined by

FE1 and Es has the following expression:

1
K(o) = —5 (1B BY - B2BH | + | BI B, — BY By

Proof. We consider the infinitesimal right triangle O A B rectangle in O whose point O is located at zero.

We set u and v the vectors of the tangent space at zero such that:
o A = expy(iu)

* B = expy(Av)

s (u,v)y =0 < trace (uvf +vu) =0

where ) is a positive real.
We calculate the Taylor series of the length squared of the hypotenuse d? (A4, B) as A approaches 0.
According to Section E.2 on the metric of the Siegel manifold, we already have:

d*(0,A) = ||)\u||g = A% trace (uuH)

d*(0,B) = H)\U”(Q) = A trace (vo')

d* (A, B) = trace (arctanh2 (CX%))

where Cup = (B—A)(I—AYB)" (B — A") (I - AB")™

(E.484)

(E.485)
(E.486)

(E.487)

According to Section E.5.1 dealing with the expression of the Riemmannian exponential map of the Siegel manifold

at zero, we have:

A =expy (Au)
A =tanh (AX) (AX) " (i) where X = (uu!)"?
A =tanh (AX) X 1.

Likewise, we have:

B =tanh(\Y)Y 'v where Y = (vv") V2

We recall the Taylor series of the hyperbolic tangent function at zero:

tanh(z) = = — %z‘s +0(2°) V|z| < g

We therefore have:
A =tanh (AX) X 1u
A= (X/\ — %X3/\3 +0 ()\5)) Xl
A =ul— éXQu)\?’ +0 (/\5)
A =u)— éuuHuXo’ +0(N)
Likewise, we have:

B =ov)\— %’U’UH’U)\3 +0 ()\5)

We now calculate the Taylor series of the four terms of the product C'4 g of Equation (E.487).
The first term is (B — A):

B—A=(v—u))\—%(UUHv—uuHu))\3+O()\5).

The third term is (B# — A”) = (B — A)" | which gives by transconjugating the previous formula:

B — A" — (1 — )\ — é ("o —uHuu™) N + 0 (N7).
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(E.496)

(B.497)
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(E.499)



We now calculate the products A” B and ABH:

A"B = (u"X+ 0 (X)) (vA+ 0 (\?)) (E.500)
APB =u"vA? + 0 (\). (E.501)

Likewise, we have:
AB" = wP X2 + 0 (\Y). (E.502)

We recall the following Taylor series:

1-z)'=1+2+0 () V]z[<1. (E.503)

This formula will be used to compute the Taylor series of the second and fourth terms of C4 g defined in Equation
(E.487).
We now compute the Taylor series of the second term:

(1-A"B)" =1+ A4"B +0((4"B)") (E.504)
(I—AYB)™ =T +ufoX® + 0 (A1) (E.505)

Finally, the Taylor series of the fourth term is:

(1-AB")™ =1+ AB" + 0 ((AB™)*) (E.506)
(I—AB") ' =T+ w N> +0(\Y). (E.507)

We now calculate the Taylor series of the product of the first and the second term of C'4 g defined in Equation (E.487).

(B—A)(I—A"B)™" (E.508)
= ((v —U)A — % (vofv — wufu) N + O ()\5)) (I +uffoX? +0(\Y)) (E.509)
=(v—uA+ ((v —u)uflv — % (voffv — uuHu)) N +0(N). (E.510)

We then calculate the Taylor series of the product of the third and fourth terms of C4 p defined in Equation (E.487).

(BH — AH) (1 — ABH)™ (E511)
= <(1)H —uf)N = % ("o —uHuu™) X + O ()x5)) (I+wX+0(\)) (E.512)
= —u)\ + <(’UH —ufYurf — % ("o — uHuuH)) A +0 (V). (E.513)

We can now calculate the Taylor series of the product of four factors C 4 p defined in Equation (E.487). by multiplying
the Taylor series obtained in Equations (E.510) and (E.513).
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Capi=(B—A)(I—-A"B)™" (B¥ — A") (I — AB")™"

_ (@ St <(v w1 (oo - uuHu)) X 40 (x’)))

((UH —uf)\ + <(UH — u)uv — % (v vt — uHuuH)) N+ 0 ()\5)>

=(v—u) (UH —uH) 2

+ [(v = u) (" = u") uo™

1
—g(v—u) ("o — uHuu™)
+ (v —uw)uv (v —uH)
1
— g(vv U—uuHu) (v uH)] 2
+0 ()%

We now study the Taylor series of arctanh? (CX 2B> .

We recall the Taylor series of the function arctanh:
1 .
arctanh(z) = x + gz‘s +0(2°) Viz| <1
The limited expansion of the function 2 — arctanh?(z) is therefore:

2
arctanh®(z) = 2% + §x4 +0 (2% V]z| <1
Hence, we have:
2 .
arctanh? (C}/3) = Cap + SCh+0(Chp).

Using the Taylor series of C'4, g obtained in Equation (E.516), we have:

arctanh® (CX2B> =(v—u) (v —uf) N\

We now develop the products of the previous equation. For terms in A\?, we have:
(v—u) (v - uH) = ol —oufl — w4+ uu?.

For the terms in A%, we set:

Cr =(v—u) (v — ) uo®

Cy=— %(v—u) ("o — uHuu™)
Cs =(v —wyuv (v — o)
Cy=— % (vav—uuHu) (UH —uH)

(E.514)

(E.515)

(E.516)

(E.517)

(E.518)

(E.519)

(E.520)

(E.521)

(E.522)
(E.523)
(E.524)
(E.525)

(E.526)



We denote by C the term in A*. According to the previous equations, we have C' = C; + Cy + C3 + Cy + Cs.

We now develop the terms C1, Cs, Cs3, Cy and Cs.

Cy =(v—u) (UH — uH) uvl?

= (’UUH — vufl — uot! + uuH) uv
=vvfuv? — vufuv® — v uo™ + wuFuv®
1 H, H H, H
Cy =—§(v7u)(v v — uuu™)
= — § (vava — quuuH — uvvaH + uuHuuH)
1 1 1 1
= — gvava + gquuuH + guvvaH — guuHuuH

Cs =(v — u)uv (v — o)

= (’UUHU — UUHU) (UH - UH)

=vuTvof — vufou™ — v v + wu out
1 H H H H
C’4=—g(vv v —uu u) (v —u )
1
=— g (m;vaH — v ou — v uo® + uuHuuH)
1 1 1 1
= — vavaH + fvaqu + fuuHuUH — fuuHuuH
3 3 3 3
2 2
H H
Cs =3 (v —u) (" —u'))
2 H H H H\?
=— (vv — VU —uvT + uu )
3
2
=§ (vava — voflou — oyt + vollyut
— vuf oo + vulpu® + vuTuv™ — vuTuu®
—wH oo + v vu? + uu — wofuut
+uquvH — wuTou™ — v uo® + uuHuuH)
2 2 2 2
=+ *UUHUUH — fvaqu — fvauvH + fvauuH
3 3 3 3
2 2 2 2
— fqum;H + fququ + fquuvH — fquuuH
3 3 3 3
2 2 2 2
— fuva;H + fuvHqu + fuvHuvH — fuvHuuH
3 3 3 3
2 2 2
+ guquvH — guquuH - guuHuvH + guuHuuH

We can now calculate the term in A*:

C=C1+Cy+C5+Cy4+ Cs

1 1 2
C=+40 vava — gvaqu + gvauvH + gvauuH

I u m 1w w 1w u I u m
+ —0UT VU — VU VU — SUU UV — —0UT U

3 3 3 3

I u m 2 H, _H 1w u 2 H, _H
— —UVTUVVT + DUV VU — DUuvTUUT — SUuvT Uy

3 3 3 3

1 1 2
— fuquvH + fuquuH + guuHuvH +0 uuHuuH.

3 3
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According to Equation (E.487), we have:

@ (A, B) = trace (arctanh® (C}{3, ) ) (E.554)
where Cyp = (B—A)(I—AYB)" (B — A") (I — AB")™". (E.555)

We have obtained a Taylor series of arctanh® (CX %3) as \ approaches zero. The term in A? is given in Equation

(E.521) and the term in \* is given in Equation (E.550). To obtain the Taylor series of d? (A, B), we will therefore apply
the trace operator to the Taylor series obtained previously. By linearity of the trace operator, it suffices to calculate the
trace of the term in A\? and the trace of the term in \*.

For the term in A\? given in Equation (E.521), we obtain:

trace (UUH —vufl —wf + uuH) (E.556)
= trace (va) — trace (qu + uvH) + trace (uuH) (E.557)
= trace (vo') — (v, u), + trace (uu') (E.558)
= trace (va) + trace (uuH) . (E.559)

To calculate the trace of the term in A* given in Equation (E.550), we recall that trace (XY) = trace (Y X), therefore
many simplifications can be obtained.

1 1 1 1
trace (C') = trace (3vauuH 3ququ + 3quuvH - guvHuvH> (E.560)
1
trace (C) =3 (trace (vouu') — trace (vuvu'?) + trace (vu uv') — trace (wv? uv')) (E.561)

We now show that:

trace (vauuH) — trace (ququ) + trace (quuvH) — trace (uvHuvH)

:% (||UUH—UUH||2+ HUHu—qu||2> (E.562)
Indeed, we have:

l[ouf — uvHH2
= trace uf — uot? (U’U,H — uv )H) (E.563)
=trace (( ) ) (uv —vu )) (E.564)
= trace (vu wf — vufvu — vl un + uvHqu) (E.565)
=trace (vu UV ) — trace ququ) trace (uvHuvH) + trace (uvHqu) (E.566)
=2trace (quuvH) trace (ququ) — trace (uvHuvH) (E.567)

We also have:

o~ uto

= trace ( v — qu (vHu — qu)H) (E.568)
= trace ((vHu — UH’U) (u v —v u)) (E.569)
=trace ( HoyuHy — vy u — uouo + quvHu) (E.570)
= trace (v uuv) — trace (v uv™u) — trace (u?vu'v) + trace (uvofu) (E.571)
=trace (vauuH) — trace (uvHuvH) — trace (quUuH) + trace (vauuH) (E.572)
=2trace (UvHuuH) — trace (uvHuvH) — trace (ququ) . (E.573)

By adding the terms of Equations (E.567) and (E.573), we prove the equality of Equation (E.562).
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According to Equations (E.561) and (E.562), we have:

trace (C) = % (Hqu — uvHH2 + ||UHu - qu||2) . (E.574)

According to Equation (E.559) which details the term in A? and to Equation (E.574) which details the term in A, we
have the following Taylor series of the squared distance d? (A, B):

d* (A, B) = (trace (vv™) + trace (uu™)) A* + é (||11uH - uvHH2 + [ u — qu||2) M+0 (X)),  (EBS75)

O
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Appendix F

Applications to radar detection

The estimation of the clutter covariance matrix is an already known problem in radar detection [26]: it is useful to obtain
a detection estimator with a constant false alarm rate (CFAR). A fixed point estimator is used in [57]. The article of Le
Yang [6] uses the Riemannian median in the manifold R+ x D"~! the notice outliers and perform radar detection.
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We denote 7, denotes the set of Toeplitz Hermitian Positive Definite matrices of size n.

F.1 Detection using a known steering vector

As in [24], we would like to detect a perfectly known complex steering vector p multiplied by an unknown complex
number a characterizing the signal amplitude and initial phase and disturbed by an additive noise ¢ ~ CN'(0, M). Given
the complex observation vector y, the two hypothesis confronted in this detection problem are the following:

Hy: y=c
{ Hy: y=ap+c (ED

We first use the previous sections to estimate the clutter correlation matrix M of the area surrounding the cell under
study. We would like to construct a CFAR (Constant False Alarm Rate) test: the probability of declaring H; under
Hj should not depend on the nature of the clutter ¢ characterized by its correlation matrix M. We define the adaptive
normalized matched filter (ANMF) dector T

i)
T(y) =

S (F2)
‘yHM—ly‘ ‘pHM—lp‘

If we denote §y = M _%y andp=M -3 p, then T can be expressed the following way:

= E3
Knyn p||>‘ [co (F3)

where 0 denotes the real-valued Euclidean angle between the normalized vectors o and
their real and i 1mag1nary parts being considered separately.

If we assume that M ~ M and denote z ~ CA/ (0, 1) such that ¢ = M2z, then the statistic T" follows the following
laws:

[ ~ TaT i
Under Hy, T ‘<||m\|’|\17”>‘

e Under Hy, T ~ K oo ’ﬁ>‘

llz+apll

‘CE
e

seen as real vectors,

st

<

Hence, the angle # should be uniformly distributed over [—m, 7] under Hy and T should be rather close to 1 under
H;.

Therefore, we reject the hypothesis Hy when T is close to 1, i.e. 6 belongs to an interval of shape [7 — 3,7 + 3] U
[—3, 8]. We now want to construct a test of level «, i.e. we search § such that:

PHO (HE[W—ﬁ,’]T—&-ﬁ]U[—ﬂ,B]):Oé (F4)
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Hence, since 6 is uniformly distributed over [—m, 7] under H, g = o and then § = ga.
Finally, the hypothesis Hj is rejected when y belongs the rejection area:

R= {y eC",T(y) e [cos <ga) ,1]} (E.5)

F.2 Detection using a known autocorrelation matrix

We now assume that the autocorrelation matrix P € 7,} of the signal we try to detect is known. The two hypothesis
confronted in this detection problem are:

{ Hy : Yy =c, C’\N(O,M) (F.6)

Hy: y=p+c¢, p~N(0,P)and ¢ ~ N (0,M)
We consider the statistical model (C", {N (0, 2)}2e7’,¢> such that for X € 77, N (0, %) denotes the law on C" of

density:
1 ZHy=1z

= — E7
fE(Z) ™ det (Z)e ( )
The two hypothesis can then be reformulated as:
H() Y= 20 =M
{ H112221:P+M (FS)
We construct a test of level o looking for v € R¥ such that:
fe. ()
Py ( Sz =« (F.9)
’ fzo (2)
The hypothesis Hy is then rejected when y belongs the rejection area:
R— {yeC",le(y) 27} (E.10)
on (y)

To construct another test of level o with a more geometrical approach, we can estimate the autocorrelation matrix
Yy € T," of y using the Burg algorithm. We then look for + such that:

drs (21,17)
dys (20,?)

The hypothesis Hj is therefore rejected when y belongs the rejection area:

Py, >v]=a (E.11)

(F.12)
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Appendix G

The radar clutter spatio-temporal model

In this appendix, we assume that the times series recorded by the radar during a burst are wide-sense stationary on both
the temporal axis and the spatial axis, the spatial axis considered being the radial axis. In Chapter 8, the radar clutter
is clustered cell per cell. The spatio-temporal model presented here generalize the temporal model described in Chapter
8: we use the spatial correlation between spatially close cells in addition to the Doppler information contained in each

cell. In the article written by Romain Couillet et al. [

], the space correlation coefficient of sea clutter data is studied

for different range resolutions: the periodicity of the sea surface is highlighted by the periodicity of the spatial correlation
coefficient for a range resolution of 3 meters. The spatio-temporal model is also a particular case of the multidimensional
stationary centered complex Gaussian autoregressive model presented in Section 2.2. Using the assumption of stationarity
on both the temporal and spatial axes, we construct a Riemannian manifold to represent the information contained in a
group of spatially close cells. This model is also presented in detail in [83].
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G.2.2 The simplified spatio-temporal model . . . . . . . .. .. ... ... 224
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9.6 Generalization to higher dimensionalmodels. . . . . . . . . . ... it ittt i 230
G.1 The input data

We recall the context of radar clutter classification presented in Chapter 8. During each burst, we represent the information
associated with the observed angular sector in the form of a matrix U:

| wop Uy ... U1 |

‘ U1,0 U1 Ul,n—1 ‘
U =

‘ Up—1,0 Up—11 --- Up—1n—-1

‘ UN—-1,0 UN-1,1 --- UN—-1n—1 ‘

(G.1)

Each row of the matrix U represents the same distance cell and each column represents the same pulse. In this matrix,
N represents the number of distance cells and n represents the number of pulses emitted during the burst.
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In Chapter 8, we clustered each cell, i.e. each row of the matrix U, independently from one another based on its
reflection coefficients which characterize the Doppler information. In this appendix, we would like to use the spatial
correlation between consecutive cells in addition to the Doppler information contained in each cell.

Here the input data is not a single vector corresponding to a row of the matrix U, but a matrix corresponding to several
consecutive rows of the matrix U. For example, the following matrix contains the p first rows of the matrix U:

u0,0 up,1 cee Uo,n—1
U1,0 Uu1,1 cee Ul ,n—1
Z = ) . ) ) . (G2)
Up—-1,0 Up—1,1 --- Up—-1,;n—1

For the hypothesis of wide-stationarity on the spatial axis to be respected, the p cells studied together in the matrix Z
should belong to the same kind of clutter.

G.2 The model

We first present in Section G.2.1 a spatio-temporal model which generalizes the one-dimensional temporal model pre-
sented in Chapter 8 for radar clutter clustering (see Section 8.2). In this first model, a texture coefficient is present
(see [13] for more details about the clutter texture). We then present in Section G.2.2 a simplified spatio-temporal model.
For simplicity, we will refer to this second model to present the theory of following sections.

G.2.1 The general radar model

We assume that the matrix Z presented in Equation (G.2) has the following structure:

Z=T"?RV2NRT’ ¥ Biouar (G.3)
—_— —

information coming from  thermal noise coming
the environment from the radar itself

with:
e 7 radar observation matrix of size (p, n).

o T clutter texture; it is a diagonal matrix of size (p, p). Its diagonal coefficients are independent positive real random
variables. They are also independent from N and B,.q44:--

* R;: the scaled spatial autocorrelation matrix of size (p, p). It is a Toeplitz HPD matrix since the signal is assumed
to be wide-sense stationary on the spatial axis. Its diagonal coefficients are equal to 1.

e R;: the scaled temporal autocorrelation matrix of size (n, n). It is a Toeplitz HPD matrix since the signal is assumed
to be wide-sense stationary on the temporal axis. Its diagonal coefficients are equal to 1.

* N, B,qd4qr: matrices of size (p, n) whose coefficients are independent standard complex Gaussian random variables.

We now present an equivalent vectorized model:

~ ~1/9 12 R ~
Z= TYRY’N +  Bredar (G4)
S ~——
information coming from  thermal noise coming
the environment from the radar itself

with:

~

* Z: radar observation matrix of size (p x n,1).

o T clutter texture; it is a diagonal matrix of size (p x n,p x n). Its diagonal coefficients are independent positive
real random variables. They are also independent of N and B, 44

* R the scaled spatio-temporal autocorrelation matrix of size (p x n,p x n). Its diagonal coefficients are equal to
1.

« N s émdm: vectors of size (p x n,1) whose coefficients are independent standard complex Gaussian random
variables.
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We have the following correspondence between the terms of the matrix Equation (G.3) and the equivalent vectorized
Equation (G.4):

Zy Ny Bg
zZi N Bf
7 = . N = . Brada'r = . (GS)
L Z | [ N | By, |
Zo NO BO
Z1 Nl Bl
Z = N = -éradar = (G6)
prl prl Bp*l
Rs = Rs ® Ry (G.7)
T=T®I, (G.8)

We would like to represent the information contained in the matrix Z using its covariance matrix R;: we do not use
the clutter texture 7" to represent the radar data in this appendix.

To estimate the covariance matrix R,; from an observed matrix Z, we have to deal with the texture coefficient 7" and
the radar noise B,.,4q-. We generally assume that the diagonal coefficients of the texture matrix 7" are much larger than

one. The radar noise B,.qq4, can then be neglected: Z ~ T/ 2R§/ N RtT Y 2. The diagonal coefficients of the matrix T’
represents the expectation of the average quadratic power recorded in each cell. By setting ¢, the i*" diagonal coefficient

of the texture matrix 7', we have t;, = E [|u1 j \2] for all j € [1,n]. We can estimate the coefficient ¢; by averaging the

quadratic power of the i*" row of the matrix Z presented in Equation (G.2):
f-1 f |us 4] (G.9)
[ n P= 2,71 .

this estimation being more precise when the number of pulses n is large. If we divide each row of matrix Z by the square

/2

. . . ~1 . . _ 1/2 .
root of its average quadratic power, i.e. by ¢; = , we obtain a matrix which is almost equal to Ri/ ’N RT 2 We will

. . . . 12 . .
present a method to estimate the Toeplitz HPD matrices R, and R; from a matrix of the form Ri/ ’N RT Zin Section
G.4.

We now propose a simpler model without texture coefficient 7" and radar noise B.qqq -

G.2.2 The simplified spatio-temporal model

We assume that the matrix Z presented in Equation (G.2) has the following spatio-temporal correlation:
Z = py* RV’ NRI? (G.10)
with:
e 7 radar observation matrix of size (p, n).

* po: a positive real number which corresponds to the expectation of the quadratic power, i.e. pg = E [\uz j |2] for all
(i,5) € [L,p] x [1,n].

* R,: the scaled spatial autocorrelation matrix of size (p, p). It is a Toeplitz HPD matrix since the signal is assumed
to be wide-sense stationary on the spatial axis. Its diagonal coefficients are equal to 1.

* R;: the scaled temporal autocorrelation matrix of size (n, n). It is a Toeplitz HPD matrix since the signal is assumed
to be wide-sense stationary on the temporal axis. Its diagonal coefficients are equal to 1.

* N: matrix of size (p, n) whose coefficients are independent standard complex Gaussian random variables.
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We now present an equivalent vectorized model:
Z = p*Ri’N (G.11)
with:
« Z: radar observation matrix of size (p x n, 1).
* po: a positive real number which corresponds to the mean quadratic power.

* Rg: the scaled spatio-temporal autocorrelation matrix of size (p x n,p x n). Its diagonal coefficients are equal to
1.

« N: vector of size (p x n,1) whose coefficients are independent standard complex Gaussian random variables.

We have the following correspondence between the terms of the matrix Equation (G.10) and the equivalent vectorized
Equation (G.11):

Zy N
A N{
7 = . N = . (G.12)
L Z ] [ N
Zo No
Zl Nl
7 = N = (G.13)
Zp_l Np—l
Ryt = R; ® R (G.14)

The model presented in Section G.2.2 looks like to model presented by Romain Couillet et al. [24], except for the
structure of the spatial covariance matrix R4 which is only assumed to be Toeplitz here. We will consider this simplified
spatio-temporal model in next sections.

The covariance matrix py R is the Kronecker product of two Toeplitz HPD matrices:

pORst = Po Rs ® Rt = Rs ® (pORt) ) (GlS)

it is therefore a Toeplitz-Block Block-Toeplitz HPD matrix with a very specific structure. We now study the structure of
the associated autoregressive coefficients A’ and Siegel coefficients €2;.

G.3 The autoregressive coefficients and the Siegel coefficients

In Section 2.2, we have seen that a multidimensional stationary centered complex Gaussian autoregressive time series can
be represented by its block-Toeplitz covariance matrix R € B, ,,, by the coefficients (Po, Al Agj) € Hi x Dpt
where the coefficients A! are autoregressive coefficients or by the coefficients (P, Qy,...,Q,_1) € H; x SD?~! where
the coefficients 2; are Siegel coefficients. Using the relations given in Section 2.2 between these three representation
spaces, we study here the structure of the autoregressive coefficients A¢ and the Siegel coefficients €2; associated with the

spatio-temporal correlation matrix pgRs: = Rs ® (poRt).
In Section 2.2.5, a relation between the autocorrelation coefficients (Ri)O <i<M and the autoregressive coefficients

(AM),_,_,, has been given by the multidimensional Yule-Walker equation (2.123):
Ay Ry = -V VYMe[l,p—1] (G.16)
with:
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Ay = [AY,... A

Vi = [Ri,...,Rum]

Ry Ry Ry ... Ry

RH Ry Ri ... Ru—2 (G.17)
R’M _ Rgl R{I Ro R]u_g

RE . RE , REL . ... Ry

Hence, the autoregressive coefficients can be computed from the autocorrelation coefficients using Equation (2.126):
Ay = =V Ry}t (G.18)
The autoregressive coefficients associated with the covariance matrix poRs; = Rs ® (poR:) have a specific structure.

Property 59. The spatial autoregressive coefficients Asf can be expressed from the one-dimensional spatial reflection
coefficient [ig;:
Ast = psiTn Vi€ [1,p—1]. (G.19)

We now give two proofs of this property. The first proof is based on the multidimensional Yule-Walker equation, the
second proof uses the multidimensional Levinson algorithm.

Proof. We start by setting:

Tso Tsik ng rsTw,l
Ts1 T's0 sy Tsh—2
Ryi= | Ts2 Ts1 Tso - Tshig | . (G.20)
Tsm—1 TsM—2 TsM-3 T'so
Using this notation, we have:
TsoPolts rsiPoR: rshpoRe ... T _ipoRy
Ts1P0 Ry TsoPo R ripoR: ... Tsh_opolt
poRyt = Ry ® (poRy) = | Ts2Pol Ts1p0 Ry rsopole ... Tsh_sPolRy | (G.21)
rsp—1Pol:  Tspr—oPoRs  Tepr_spolty ... TsoPo Ry
Therefore, we have:
Ry RH Rg Rﬁfl
Ry Ry RE . R]\H/[_2
H
Ry =| B Ry Ro ..o By 3| with Ry = ry;poRe. (G.22)
Ry—1 Ry—2 Ry—3 ... Ro

By considering that the terms R A and I7M of Equation (G.18) have correlation coefficients defined by R; = r4,;po Ry,
we note that they are Kronecker products:

Ry =RT ® (poRy) (G.23)
Var = [Fo1s Poa - 7snr] ® (poRe) (G.24)

We recall the following properties of the Kronecker product:

(AQB) ' =A'@B !,
(A®B)(C®D) = (AC)® (BD).

Coming back to Equation (2.126), we obtain:
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Ay = — Ve Ry} (G.25)

-1
=~ ([rs1: 752, -, 7s1] ® (PoRy)) (BT ® (poRRy)) (G.26)
-1 _
=~ ([ro1,7o2 - rorr] @ (poR2) (BT @ (poRe) ™) (G.27)
=~ (e rans oo BE ) @ (00 R0) (r0R) ™) (G.28)
=las1" asd", . asy | ® I, (G.29)
where the coefficients [a sSa, . . a %] are the autoregressive coefficients obtained resolving the one-dimensional

Yule-Walker equation (see Equation (2.38)).
Therefore, the spatial autoregressive coefficient AS% can be expressed from the one-dimensional spatial reflection
coefficient ps,,:

AN = pgy I, VM e[1,p—1]. (G.30)
O

As the matrix pg R4, is a TBBT HPD matrix, another proof of Property 59 can be obtained using the multidimensional
Levinson algorithm 1.

Proof. We can check that the multidimensional Levinson algorithm 1 with the input matrix poRs; = Rs ® (poR¢) and
the one-dimensional Levinson algorithm 13 with the input matrix R are related by the following relations:

* Py = pokRy,
o Al =adll,.
We can prove by induction that, for all € [2,p — 1],
. Aé = af[n,
e A; =6 Ry with §; = r; + 23;11 T’l,j(lé»_l,

Py =pia Ry with pr_y =g + X5y rjal 1,
« A =5 ®1I, with@ = [d},...,d].

O
The Siegel coefficients associated with the covariance matrix poRst = Rs ® (poR:) also have a specific structure.

Property 60. The spatial Siegel coefficients Q)5 can be expressed from the one-dimensional spatial reflection coefficient
My
Qq = Ash = p I, Vie[1,p—1]. (G.31)

Proof. We can compute the coefficients (P, Q1,...,Q,_1) from a Toeplitz-Block Block-Toeplitz HPD matrix using
Algorithm 2. We can check that Algorithm 2 on the input matrix poRs; = Rs ® (poR:) is related to the one-dimensional
Levinson algorithm 13 on the input matrix R by the following relations:

s Py =pol,
o A% = a%]n,
e Oy =all,.
We can prove by induction that, for all [ € [2,p — 1],
. Af = af[n,
e A; =6 R, withé; =7 + 25;11 rl,jaé-fl,

. -1 I—1%
* Py =paRywithpy =71+, rja;

(P,_1 = P,_; since p;_; € Rand R, is a Toeplitz HPD matrix),
« A = ®1I, withd, = [all,...,af],

hd Ql = af[n
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The covariance matrix poRs; = Rs ® (poR:) can therefore be represented by the coefficients:

(POa Ql; ceey prl) = (pORtaMsllnv .. nu/sP_lIn) . (G32)

Note that the Toeplitz HPD matrix pgR; can be represented by the coefficients (po, sy N’tn71> e R* x DL
The bijection is given by the Levinson algorithm 13. The spatio-temporal correlation matrix poRs: = Rs ® (poR:)
can therefore be represented by the reflection coefficients (po, fiys - - s ftp 15 fs1s -5 Hsp_1) € RE x D*TP2 Note
that we could have seen it directly since the scaled temporal correlation matrix R, is in bijection with the temporal
reflection coefficients (Mtu ooy Moty 1) via the Levinson algorithm 13 and the scaled spatial correlation matrix R is
in bijection with the spatial reflection coefficients (,uSI, N M5p71) via the Levinson algorithm as well. However,
the study of the transformation of the scaled spatio-temporal correlation matrix pg R, into the reflection coefficients
(PO 111 - -+ s 1y 1o - - Hhsp_q) € RE x D"*P=2 via the coefficients (poR¢, psyLns - - -, fsp_11In) € Hjy x SDE
presented in this section is useful: the metric of the space H;" x SD?~! presented in Section 4.2.3 will be used to endow
the space R¥ x D" +P=2 with a Riemannian metric in Section G.5. As we assumed the time series to be wide-sense
stationary on both spatial and temporal axes, we expect this metric to have the same structure on both axes.

In next section, we present a method to estimate the spatio-temporal covariance matrix poRs: or equivalently the

coefficients (po, fte1, - - -, Mty 15 ths1s- - - 5 sp_1 ) from an observed matrix Z = p(l)/2 i/QNRtTl/2 (see Section G.2.2).

G.4 The model parameters estimation
We consider an observation matrix Z corresponding to the model described in Section G.2.2:

Z = piPRV2NRT'?, (G.33)

The parameters of this model are the mean quadratic power coefficient py € R* , the temporal correlation matrix R;
and the spatial correlation matrix R, which are Toeplitz HPD matrices with diagonal coefficients equal to one. According
to the previous section, this model can also be represented by the coefficients (po, Wty oy Mtpy1s Msts -« -5 Ns;;q) €
R* x D"*P=2 where the coefficients j; are the temporal reflection coefficients and the coefficients s are the spatial
reflection coefficients.

We can estimate the mean quadratic power coefficient pg by:

I IR S 2
0 = %Z D7 luigl? (G.34)
i=1j4=1

We can estimate the temporal reflection coefficients using the regularized Burg algorithm 17 on the rows of the

matrix Z defined in Equation (G.2). We first estimate the temporal reflection coefficients (/l}i’ /l}é, e ﬁt;q) of each
cell i € [1,p]. Then we can estimate the mean temporal reflection coefficients (""", fiys “™", ..., fin1") on the

manifold D" ! using Algorithm 8 which approximates the mean by gradient descent. The manifold D"~ corresponds to
the space D"~ ! endowed with the metric described in Section 4.1.3 omitting the power coefficient py.

We can estimate the spatial reflection coefficients using the same method but performing the regularized Burg algo-
rithm on the columns of the matrix Z instead of its rows. R

We can then estimate the scaled temporal correlation matrix R; using the reversed Levinson Algorithm 15 on the input
coefficients (1, ;7" """, g “™", ..., fien<1"). Indeed, we consider that the mean quadratic power coefficient p{***™ is
equal to one to obtain a scaled covariance matrix whose diagonal coefficients are equal to one.

Similarly, we can estimate the scaled spatial correlation matrix R using the reversed Levinson Algorithm on the input
coefficients (1, 7257 ", fiss ", ... Hsp 1)

We can then estimate the scaled spatio-temporal correlation matrix using formula (G.14): it is the Kronecker product
of the scaled spatial correlation matrix and the scaled temporal correlation matrix: Ry = Ry ® Ry.

An alternative estimation method of the spatial and temporal correlation matrices is presented in [24] which does not
use any Riemannian tools.

In next section, we endow the space R* x D"*P~2 with a Riemannian metric inspired by information geometry.

G.5 The Riemannian manifold associated with the spatio-temporal model

In Section 2.2, we have seen that a multidimensional stationary centered complex Gaussian autoregressive time series can

be represented by its block-Toeplitz HPD matrix R € B; ,, or by the coefficients (P, Q1,...,Q,-1) € H; % SD{’;l.

In Section 3.2.3, we have endowed the space H}t x S Dﬁfl with a Riemannian metric inspired by information geometry.
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The geometric tools of this metric are detailed in Section 4.2.3. We obtained a manifold denoted H} * x SDP™! whose
metric is given by:

p—1
dSQH#stﬁ*l =p dsQHﬁ + Z (p—1)dsdp, (G.35)
=1
with:
dsfyy+ = trace (P ' dPy Py dPy) (G.36)
dsdp, = trace (1 — 20f7) " doy (1 - 0ff Q)" aof"). (G.37)
According to Section G.3, the spatio-temporal correlation matrix Ry, = Rs ® R, is associated with the coefficients
(Rt, tsidn, .-, usp_lln) eHF x SDfL_l. If we take into account the mean quadratic power coefficient py € R*, then
the matrix po Ry, is associated with the coefficients (po Ry, ptsyIn, - - - fis,_11n) € H % SDPL,

The metric described in Equation (G.35) represents the matrix po R; into the manifold H; * up to multiplication of the
metric by a constant. However, this manifold does not take into account the Toeplitz structure of the matrix po R;. Since the
matrix po R; is a Toeplitz HPD matrix, we could instead represent it by the coefficients (po7 s e Ntnq) e R* xpn!
and use the metric presented in Section 4.1.3:

n—1
dsgisypn1 = ndspe + Y. (n—k)ds (G.38)
k=1
dn2 n—1 d 2
dsBes oot = n% Y (n— k) el (G.39)
0

Note that the metric ds%Dn described in Equation (G.37) is equal to the Poincaré metric up to multiplication by a
constant for the diagonal matrices ps1,:

dyus|?
dsdp = nds?  with ds? — |“7|22 (G.40)
(1= Iul)
Using Equations (G.38) and (G.40), we can transform the metric described in Equation (G.35):
p—1
dsiss wsprt = Pdsiyer + Y (p—1)dsp,
1=1
into the metric:
n—1 p—1
dshis ypniv—z =D (n dsgis + Z (n—k) ds%) + (p—1) (ndsp) (G40
k=1 =1
n—1 p—1
dshis ypniv—z =np dsgis + P Z (n—k)dsg +n (p—1) dsp (G.42)
k=1 =1
with
dp? dul?
dsge. = 20 and  ds? = % (G.43)
7 (1= 1u?)
We propose to use this metric on the coefficients (po, Wty v oy Moty 1y Hos1s - - - ,,uspfl) € R* x D""P~2 (o represent

the spatio-temporal information contained in the matrix Z = p(l)/ 2 i/ ’N RT '/2 described in Section G.2.2. Note that this
metric has similar structure on both the temporal and the spatial axes, which is expected since we assumed the time series
to be wide-sense stationary on both axes (the temporal correlation matrix R; and the spatial correlation matrix R are both
scaled Toeplitz HPD matrices).
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9.6 Generalization to higher dimensional models

In this section, we generalize the spatio-temporal model to models with possibly more than two dimensions. Let’s consider
the observation matrix Z of dimension n and shape (di,ds,...,d,). We assume that each axis ¢ of the matrix Z is
associated with the correlation matrix pg ?; where pg is the mean quadratic power coefficient:

Po = E [|Zi1,i2,...,i" 2] Y (il,ig, . 7in) € [[17(11]] X [[1, dgﬂ X ... X [[1, dn]]

and R; is a scaled Toeplitz HPD matrix (its diagonal coefficients are equal to one). We define Z as the vectorization of
the matrix Z, it is a large vector a size H?=1 d; whose scaled correlation matrix is Ry, d,..d, = Rd, ® Ri, ® ... ®@ Rq,,.
This model can be parametrized by the coefficients (pg, R, ..., R, ). Each scaled Toeplitz HPD matrix R; can also be
represented by the reflection coefficients (u,»l, ce Nz‘d,-—1) via the Levinson algorithm 13. This model can therefore be
parametrized by the coefficients (po, (11, - -, f1d,—1, 4215 s H2dy—1» - s Bnts- - - ing, —1) € R% X (I, di)=n,

We propose to use the following Riemannian metric on the space R* x DL, di)=n,

ds? (i (Hd> (ds§++ + idl 2 d; — k) dsD> (9.44)

R++xD
with
dp? dul?
ds2e, = W0 ang asy - 1T
2
7 (1 1nP)

This metric can be constructed by induction. It has been constructed for n = 1 in Section 3.2.2. It has been constructed
for n = 2 for the spatio-temporal model in Section G.5. To construct the metric of the model of dimension n + 1 from
the metric of the model of dimension n, we can note that Algorithm 2 transforms the Toeplitz-Block Block-Toeplitz

HPD matrix poRg, ...d,d,,, into the coefficients (pORd1 naﬂn+11IH ,...,Mn+1dn+1_111_[?:1 di) € ’Hf—’[?:l 4 X
SDn dl In Section 3.2.3, we have endowed the space Hnn x 8D "Jl dl with a Riemannian metric inspired by
i=1 "7 z
information geometry. We obtained a manifold denoted HH" X SDl—fn+ ! dl whose metric is given by:
dnt1—1
s’ o = dnprdshee  F Z dpi1 — dsSDm A (9.45)
7y i 5y i ey di
with:
dsHﬁI = trace (Py ' dPy Py ' dPy) (9.46)
i1 4
-1 -1
dsd,, = trace ((I—u0ff) ™" deu (1 - ff )~ aof"). (9.47)

Note that the metric dsZ described in Equation (9.47) is equal to the Poincaré metric up to multiplication by a
SDH?:l i

constant for the diagonal matrices fin 411 4

n d . 2
dsdo, . = (]‘[ di) sy with ds = ”‘—*”22 (9.48)
’ (1= lnsa?)

Using Equations (9.45) and (9.48), the coefficients (poRdl..idn, Hn411s-- -2 Hntig +171> € Hﬁn g X Ddn+1—1 gre
n i=1 @i
endowed with the following metric:

n dn4+1—1
ds? s Dt 1:dn+1ds (ﬂdz> D1 (dng1 — 1) dsp (9.49)

M, d i=1 =1

Instead of using the metric dsH++ on the coefficient pg R4, .. 4, , we choose to use on the coefficients
M7y ds

(p()a Higs--- 7,“1(11—17 H21s--- a,u2d2—17 sy Mngy - a,undn—l) € Rj— X D(H?:1 di)_n the metric proposed for the
multidimensional model of order n in Equation (9.44):

as (Hd) <d3R++ + Z Z dsD> : (9.50)

RETxD adio
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Therefore, we obtain:

) n+1 ) n+1 1 d;—1 )
ds? (i a) - = (H di> <dsR++ + ; Z ;1 (di — k) dsD> (9.51)
which is the metric proposed in Equation (9.44) for the model of order n + 1. This highlights that the metric proposed
can be constructed by induction using the metric presented in Section 3.2.3.

The radar spatio-temporal model presented in this appendix considers two axes: the temporal axis whose dimension
is related to the number of pulses of the burst and the spatial axis whose dimension is equal to the number of consecutives
cells considered along the radial axis. In Chapter 8, the radar clutter is studied using only the zero elevation beam.
However, if the space studied is a volume (clouds, rain, hail, snow...) then we could also use the elevation axis. We would
have a three dimensional observation matrix with a temporal axis and two spatial axes: a radial axis and an elevation axis.
We could then use the multidimensional model presented here with n = 3. If the assumption of stationarity is meaningful
on each axis, we could then use the multidimensional model presented here with n = 3 to represent the volume studied
in a Riemannian manifold.
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