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Chapter 1

Introduction

1.1 General theory of classical nonlinear Schrodinger
equations

In this section, we would like to introduce the general theory on classical nonlinear
Schrédinger equations. We consider the following power type nonlinear Schrédinger
equation:

{iut+Au+/\|u|au =0, (1.1)

u(0) = .

where v : RXRN—HC )\—jzland0<a<—(0<a<001f]\7_1 2). The
equation is called focusing if A = 1 and defocusing if A = —

Let [ be a open subset of R with 0 € I. We observe that u € L‘"’(I7 HY(RY)) is
a solution of if and only if u satisfies the following integral equation (see [16],
Proposition 3.1.3]):

ult) = S(t)¢+m/0 St — 8)[ul"u(s) ds, (1.2)

where S(t) is the Schrédinger group.

It is well known that is locally well posed on H'(RY™). More precisely,
for any ¢ € HY(RY), there exists a unique maximal solution v € C(I, H'(R"))
of (1.2). This solution u satisfies a blow up alternative and depends continuously
on the initial data (see Section for details). Finally, u satisfies the following
conservation laws:

M(u(t)) = ¢ (03 = el (1)
B(u(t) = 3 IVu(t) [ — 5 lu(0) 5 = B(), (1.4
P(u(t)) := Tm /RN u(t, )Vt ¢) de = P(p). (1.5)



1.1.1 Strichartz estimates

Strichartz estimates are an important tool to study the local well posedness of dis-
persive equations. In this section, we introduce the Strichartz estimates for the
Schrédinger group.

The following well known result is the fundamental estimate for Schrodinger
group.

Proposition 1.1. If p € [2,00] and t # 0, then S(t) maps L (RN) continuously to
LP(RN) and
_N(i_1 /
1S@)elr < (@t ™Gl for all p € L ®Y).
Before stating the Strichartz estimates, we need the following definition.

Definition 1.2 (Admissible pairs). We say that a pair (¢,r) € [2,00] X [2,00] is
admissible if

2N (53) @M £

We say that the pair is a strictly admissible pair if (q,r) # (2, Jg—ﬁf) The point

2
(2, ]\%—J_VQ) is called endpoint.

Theorem 1.3 (Strichartz estimates). For any admissible pairs (qi,71), (q2,72) there
exist C' > 0 such that the following holds:

e Homogeneous estimate. For any ¢ € L*(RY) we have

1S@ellpgrn < Cllellze-

e In homogeneous estimate. For F € LgéLZQ (R x RY), we have

Using Strichartz estimates, one can prove the local well posedness of (1.2) in
HY(RY) (see e.g [16, Theorem 4.4.1]).

< C|F

Lgl L;l

/O t S(t — s)F(s) ds

! /
[y
LIy

1.1.2 Abstract local theory

In this section, we would like to introduce the general method to establish the local
theory for evolution equations. For a deeper discussion of the local well posedness,
we refer to [I7]. Let X be a Banach space and A be a linear operator in X with
D(A) the domain of A. We assume that A is the generator of a bounded continuous
group (S(t)),cg in X. We consider the following Cauchy problem:

{ut:Au+f(u), (16)

u(t = 0) = uy,



where v : R — X. We see that S(t)uo is the unique solution of (1.6)) in the case
f =0. In Duhamel form, (1.6]) is rewritten as follows:

u(t) = S(t)uo + /0 S(t—s)f(u(s))ds. (1.7)

Formally, under smoothness and boundedness conditions on f and u, a function «
solves if only if u solves (see |17, Lemma 4.1.1], [I7, Proposition 4.1.6],
[17, Corollary 4.1.7], [I7, Corollary 4.1.8], [17, Proposition 4.1.9]). Thus, we reduce
the study of the local theory of to the study of the local theory of (L.7). Local
well posedness of is usually established by using contraction mapping theorem.
In our case, we are interested in the Schrédinger equations i.e A = iA. The
definition of a strong and weak solution to nonlinear Schrédinger equations is given
in [16], Definition 3.1.1|. The definition of locally well posed is given in [16], Definition
3.1.5]. We would like to recall and give some comments on this. We say that the
problem is locally well-posed in H'(RY) if the following properties hold:

(1) Let ug € H'(RY). Then there exists a unique solution in H*(RY) for the prob-
lem ([1.7). Moreover, the solution is defined on a maximal interval (Tinin, Tinax)
with Thax and Ty, depending on wug. In some cases, it is useful to prove the
existence of blow up solutions.

(2) There is the blowup alternative: If Ti. < oo then limy 7, ||u(t)|| g = oco. A
similar statement holds for T},;,. This blowup alternative is useful to prove the
existence of global solutions. Indeed, if we can show that ||u(t)||z: is bounded
when t is close to Ty then Ty, = 00.

(3) The solution depends continuously on the initial value i.e if u,y — wug in
HYRYN) and if I C (Tmin, Tmax) is a closed interval, then the corresponding
solution w, with initial data u,q is defined on I for n large enough and satisfy
\|tn, — || poo(r, 1y — 0. This property is useful to verify the conservation laws
in H*(RY) of (L.7). Indeed, the conservation laws are obtained for an smooth
enough and decaying solution of (L.6). We know that under some conditions
of f, a solution of also solves (1.7). By an approximation argument and
using the continuous dependence of the solution on the initial value, we may
show rigorously the conservation law for a solution of (L.7).

1.1.3 Global well posedness and blow up

Consider the equation . As in the previous section, (|1.1}) is locally well posed on
H'(RY) in the energy sub-critical case i.e 0 < o < 1. Moreover, the conservation
laws are satisfied. Let u € C((Tinin, Tmax), H*(RY)) be the maximal solution of
corresponding with the initial data u(0) = ug. In this section, we present the well
known results of global well posedness (Tiax = 00 and Ty, = —00) and blow up of
this solution (Tiax < 00 or Tiyin > —00)



Global well posedness

In the case A < 0, using the conservation of mass and energy we may prove that the
H'-norm of u is uniformly bounded in time. This implies that the solution exists
globally in time. In the case A > 0, the situation is more complex. If 0 < a < %,

or a = + and [Jugl|r2 small enough then the solution is global. We may expect the
existence of blow up solutions for a > %. Thus, in the focusing case, a = % is a

threshold between global existence an blow up. These are the most complex cases
to study the long time dynamic of . In this section, we focus on introducing
the well known results on global existence of solutions of (L.1).

First, in the case of small initial data, the solution is global. More precisely, we
have the following result.

Theorem 1.4. Let 0 < a < ﬁ. There exists a number a > 0 such that if
|luol| g1 < a then the associated solution u of (L.1)) is global.

This theorem is proved by using Sobolev-embedding theorem and a boostrap
argument.

In the case « sufficiently large, the solution is global for oscillating data. We
have the following result.

20(a+2) g4

4 _ 2-N+VN?112N+4 _ 2a(a+2)
Theorem 1.5. Assume 7 > a > ap = N and a = Ta(N—3)"

ug € HY(RY) be such that | - lug(-) € L*(RY). Given b € R, set

L2
uop(z) = e%uo(x),

and let uy, be the maximal solution of (1.1) with the initial data ug,. There exists a
number by such that if b > by then wy is global. Moreover, u, € L*(R, L*T2(RY)) N
LV (R, WP (RN)) for every admissible pair (v, p).

Moreover, if « is given as in Theorem and the space time norm of initial data
is small in some space, we also obtain the global existence of solution.

Theorem 1.6. Let ug € H'(RY), ag be as in Theorem and u be the associated
solution of (L.1) with initial data uy. There exists a number gy such that if ug
satisfies

4—(N—2)x
supt 2a(at+2) ||S(t>U0| Lat2 < &g
teR
then u s global and satisfies
4—(N—2)«
esssup t 202 ||u(t)|| parz < 00.
teR

For the proof of the above theorems, we refer to [I6] and references therein.

Blow up of solution

As said in the previous section, the existence of blow solution for (1.1]) only occurs in
the focusing case for a > %. These assumptions are made throughout this section.



In [45], the author used the following functional

£6) = [ JaPlutt. o) de
RN

Assume that the initial data belongs to weighted space

S={pe H'RY): | |p(-) € L*R")}.
Then the associated solution u of (1.1) satisfies v € C((Tinin, Timax), ). Thus, the
function f is well defined. Moreover, f € C?(Tiuin, Tmax) and we have the following
virial identity
4(Na — 4) o
OZ—HHU(t)HLjfz;
where E(ug) is the energy. Since Na > 4, if we assume E(ug) < 0 then f(t) <d <0

for some constant ¢ independent in time. This implies that the time of existence of
the solution is finite in both directions. More precisely, we have the following result.

Theorem 1.7 (Glassey [45]). Let ug € ¥ be such that E(ug) < 0. Then the corre-
sponding solution of (1.1)) blows up in finite time.

In the radial setting, the condition x|ug(z)| € L*(RY) can be removed. We have
the following result.

Theorem 1.8 (Ogawa-Tsutsumi [96]). Let N > 2 and

4 Ca< 4

NSYSN 2
If ug € HYRY) is such that E(ug) < 0 and ug is radial, then the corresponding
solution of (1.1)) blows up in finite time in both directions.

In the case N = 1, a = 4, Ogawa-Tsutsumi [97] proved that any solution with
negative energy blows up in finite time. More precisely, we have the following result.

Theorem 1.9 (Ogawa-Tsutsumi [97]). Let N =1, a = 4, uy € H'(R) be such that
E(ug) < 0. Then the corresponding solution of (1.1) blows up in finite time.

f'(t) = 16E(uo) —

2<a<4ifN=2)

In the mass critical case a = %, the existence and uniqueness of blow up solution
with critical mass was obtained in [88]. More precisely, we have the following result.

Theorem 1.10 (Merle [88]). Let ug € H'(RY) be such that the associated solution
of (L.1) blows up in finite time T > 0. Moreover, assume that ||uo|r2 = ||Q||L2,
where Q) is the unique radial positive solution of the elliptic equation

Au + |u|%u = u.

There exist 0 € R, w > 0, v € RY, 2, € RN such that

N
W\ 2 9 jle—z iw r—=T
w= () e <w< T _xo))’

and fort < T,

u(t,z) = (TL_t>

N4

eltila—nlP AT+ (=140 (TLt((x —x) — (T - t)xo)) .

10



In the critical case o = %, if the initial data has larger mass than the mass of
ground state profile then the situation is more complex. In [90] 89, O], the authors
proved that in the focusing mass critical case, if the initial data ug has the mass near
the mass of ground state profile (), and ug has negative energy and zero momentum
then the associated solution blows up in finite time. We have the following result.

Theorem 1.11 (Merle-Raphael [90, 89, O1]). Let N =1 or N > 2 with a spectral
assumption. Then there exists a number a > 0 and a constant C' > 0 such that the
following is true. Let ug € H*(RY) be such that

1
0 < lluolZs - 1QI1% < a, Eww<—(

\Zm( [y Vol da:)\)Q
5 .

[|uol| L2

Let u(t) be the corresponding solution of (1.1). Then u blows up in finite time T > 0
and for t close to T':

N[

In|n(T —t
Vu(®)|3: < C (%)

and

N[

Y

WMM@>@(@@11%

T—1

for some constant C,Cy > 0.

1.1.4 Standing waves and stability theory

The equation (1.1} is invariant by Galilean transform. More precisely, if u solves
(1.1) then for any v € RY, the following function solves (1.1)):

2
ei (%(z—vt)—&- lUL ¢

)u(t, x —vt).

The equation admits a special type of solution called solitary waves. A solitary
wave of is a solution of the form ey (x — vt), where o € H*(RY). In the case
v = 0, this solution is called standing wave.

In the defocusing case A = —1, there is no standing wave of (L.1)). In the focusing
case A = 1, there is no standing wave in the case w < 0. Throughout this section,

we only consider the focusing case i.e A = 1. Assume w > 0, the standing waves of
(1.1)) are of the form e™y(x), where ¢ solves:

{—Aw+ww—wﬁw=0

o e HI®M)\ {0} (18)

The function ¢ is called ground state if it solves the following variational problem

inf{S, (v);v is a solution of (1.8)},
where S,, is defined by

1
o+ 2

lullzas

1 w
Sulw) = 5 IVl + 5 Jul3s -

11



Existence of a radial positive ground state ¢ can be shown by using variational
techniques (see [71] and the references therein). Moreover, the set of ground state
is the following

G ={"p(-—y);0 e R,y € RV}

It turns out that in some cases the solution is close to the orbit of the standing
wave if the initial data is enough close to the standing wave profile. Before stating
the main results, we need the following definition.

Definition 1.12. Let ¢ be a solution of (1.§). The standing wave e™!p(z) is said
to be orbitally stable in H'(RY) if for all ¢ > 0 there exists § > 0 such that if
ug € H'(RYN) satisfies ||ug — ¢||g1 < & then the maximal solution u(t) of with
u(0) = ugp exists for all t € R and

su inf  [Ju(t) — e?p(- — <e.
up inf[lu(t) = (- = )l
Otherwise, the standing wave is said to be unstable.
In addition, If there exists a sequence ¢, — ¢ in H'(RY) as n — oo such that
the associated solution u, of (1.1)) with initial data ¢, blows up in finite time for all

n, then the standing wave is said to be strongly unstable or unstable by blow up in
finite time. The strongly instability of standing waves implies its instability.

We have the following result.

Theorem 1.13. Let ¢ be a ground state of (L.8). If 0 < o < % then the standing
wave e“'p(x) is orbitally stable.

There are many methods to prove the stability of standing waves. One of them
is the variational method introduced by Cazenave and Lions [15] [18]. This method

relies on the following compactness result.

Proposition 1.14. Let 0 < a < %. Fix p > 0. Consider the following minimization

problem
dy = inf{E(v) : v € H'RY), vl = p}, (1.9)

where E is the functional energy of (1.1) in the focusing case. Let v, € H'(RY)
satisfy the following condition:

E(v,) = d,, and ||v,|[32 — p.

Then there exist a sequence (y,) € RY and a function v € HY(RY) such that up to
a subsequence we have

V(- — yn) — v strongly in H'(R™).
In particular, E(v) = d, and ||v]|7. = p.

By using Proposition Cazenave and Lions [I8] proved Theorem [I.13] See
also Le Coz [71].

The method of Cazenave and Lions relies on the variational characterization and
the uniqueness of ground state under phase shift and translation. In the general case,

12



for standing wave which is not a ground state this method may be not applicable.
However, in [49, [50], Grillakis-Shatah-Strauss introduced a famous theory which can
treat for larger class of bound state. This theory especially treat to the evolution
equation with Hamilton structure.

Let £ and M be the functional of the energy and the mass of (L.I). Let ¢, be a
solution of (L.8), where the subscript is to exhibit the dependence of solution with
the parameter w. Set H, = E"(p,) —wM"(p,) and d(w) = E(p,) —wM(p,). It
turns out that the stability of bound state depends on the convexity or concavity
of function d : w — d(w). Before stating the main result, we need the following
important assumption.

Assumption A1l. Assume that H, has exactly one simple negative eigenvalue
and

. 0 0
ker(Hw) = {ZSDoM a_lSOwa ) agow} >

and the rest of its spectrum is positive and bounded away from zero.
The main result is the following.

Theorem 1.15 (Grillakis-Shatah-Strauss [49] Theorem 2, Theorem 4.7). Under
Assumption A1, the bound state ey, is orbitally stable if and only if the function
d(-) is strictly convez in a neighborhood of w. If the function d is strictly concave
then the bound state ety is orbitally unstable.

The main ingredient in the proof the stability of the about theorem is a coercivity
property of operator H,. Consider the case ¢, is a ground state. Assumption Al
is verified by the work in |71, Lemma 4.14-Lemma 4.19]. The condition d"(w) > 0
is equivalent to a < Thus, using Theorem we obtain the conclusion of
Theorem [L.I3l

It turn out that the stability of ground states depend on the nonlinear exponent
. Indeed, in the case a > +, d’(w) < 0 then using Theorem we obtain that
the ground state is unstable. Moreover, in this case and the case o = %, ground
states are strongly unstable. More precisely, we have the following result.

4
N

Theorem 1.16. Let ¢ be a ground state of (1.8)). If a > % then the standing wave
e“to(x) is unstable by blow up in finite time.

For the proof of the above theorem, we refer the reader to |71, Theorem 5.3].

1.2 Gross-Pitaevskii equation
In this section, we would like to introduce the following equation:
iy + Au+u(l — |ul?) =0, (1.10)

where u : R x RV — C satisfies the nonvanishing boundary condition |u| — 1 as
|z| — oo. The equation (|1.10]) is called Gross-Pitaevskii equation. Its energy is
given by

1 1
B(w) = 5IVulls + 5 [ (u? = 1ds,

13



which is defined on the energy space
E={ueH,(RY): Vue L*RY), |[ul> -1 € L*R")}.
Consider the Madelung transform
u=/pe, for u#0.

The hydrodynamical variables (p,v = 2V0) satisty the hydrodynamical system

{pt +div(pv) =0,

vt+v-VU+2Vp:2V<AT*{)ﬁ>.

(1.11)

1.2.1 Cauchy problem

First, we recall the definition of Zhidkov spaces which were introduced in [120]:
XHRY) = {u e L*(R"),0% € L*R"), 1 < |a| < k}, (1.12)
equipped with the natural norm
lull e = lullze + SrcareelOull e

The global well-posedness of in one dimension in the energy space £ was
proved in [119 120]. In higher dimensions, the situation is more complex.

As shown in [42], the space & C X' (RY) + H'(RY) is a complete metric space
with the following distance metric:

dp(u, @) = [ — allxr e + [l = [af*]|e.

In [42], the author established the local and global theory of (1.10)) in the energy
space &.

Theorem 1.17 (Gérard [42]). Let N = 2,3. For each ug € &€, there exists a unique
solution u € C'(R, &) of (L.10) with the initial data u(0) = uy. Moreover, u satisfies
the following properties:

e Regularity: If Auy € L*(RY) then Au € C(R, L*(RY)).
e Conservation energy: for allt € R, we have E(u(t)) = E(up).

e For each R >0, T > 0, there exists C > 0 such that for each ug,ug € £ such
that E(up) < R and E(ug) < R, the corresponding solutions u, U satisfy

sup dg(u(t), u(t)) < Cdg(uo, o).
[t|<T

In dimension N = 4, in [42], Gérard proved that (1.10) is globally well-posed in

the case of small energy of the initial data. The proof uses the contraction mapping
theorem.
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Theorem 1.18 (Gérard [42]). Let N = 4. There exists § > 0 such that, for every
ug € & such that E(ug) < 0, there exists a unique solution of ue CR,E)
with Vu € L2 (R, LY(R*)) and u(0) = ug. Moreover, the energy is conserved and the
solution satisfies the reqularity property and Lipschitz continuity stated in Theorem

[L17

In [69], the authors improved the result of [42] in the case N = 4 for arbitrary
large energy of the initial data.

Theorem 1.19 (Killip-Oh-Pocovnicu-Visan [69]). Let N = 4 and vy € €. There
exists a unique solution u € C(R,&) of (1.10) with the initial data u(t = 0) = uy.

We also mention the work of Gallo [4I], in which the author proves the local
theory on energy space £ for general nonlinearity.

1.2.2 Travelling waves
Travelling waves of are special solutions of the form (up to a space rotation)
u(t,x) = Uz — ct,y...,xy), (1.13)
for a speed ¢ € R and the profile U, solves the equation
—icoU, + AU, + U,(1 — |U.]*) = 0. (1.14)

In dimension N = 1, travelling waves for ([1.10]) are uniquely (up to translation and
phase shift) given by

9 _ 2 5 _ 2
Uclzx) = 2C tanh (Tcx> + i%,

for |c| < /2. In this case, travelling waves are called dark solitons. In the case of
higher dimensions, the situation is more complex.

In the case N > 2, the situation is more complex. In many cases, the travelling
waves are constant functions. We have the following result.

Theorem 1.20 (Gravejat [46], [47], Bethuel-Saut [12]). Consider (1.10) and a trav-
elling wave profile U, solving (1.14). Assume ¢ =0 for N > 2 or ¢ > V2 for N > 2
or ¢ =+/2 for N =2. Then U, is a constant function.

In [81], Maris developed the above result for general cases of ([1.10)).
Non-existence of non-constant travelling waves also holds in the case of high
dimensions with small energy. More precisely, we have the following result.

Theorem 1.21 (Bethuel-Gravejat-Saut [8], de Laire [33]). Let N > 3. For (1.10)),
there exists a number ¢ > 0 such that a travelling wave profile U, with energy

E(U) <k,

15 constant.
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We consider the following minimization problem
d, = inf{E(u),u € W(RY), p(u) = p}, (1.15)
where p € C and W(RY) = {1} + V(RY) with V(RY) is defined by
VRY) = {v:RY = C, s.t. (Vo,Re(v)) € LA(RY)2 Im(v) € LYRY), and VRe(v) € L5 (RV)},

and p is the first component of momentum function defined by

1
p(u) = —/ (101w, u — 1) dz,
2 RN

where (f,g9) = RefReg + ImfImg. We have the following result.
Theorem 1.22 (Bethuel-Gravejat-Saut [8]). The following holds:
(i) For N =2 and p > 0, there exists a minimizing travelling wave U, for ([1.15).

(ii) For N = 3, there exists p. > 0 such that there exists a minimizing travelling

wave U, for (1.15) if and only if p > p..

For the general nonlinearity case, see Chiron-Maris[20].
The uniqueness of solutions to the minimization problem was proved in the case
of large momentum. More precisely, we have the following result.

Theorem 1.23 (Chiron-Pacherie [21L22]). Let N = 2. There exists a number py > 0
such that, for each p > po, there exists a unique (up to phase shift and translation)
minimizer U, of (1.15). Moreover, they form a smooth branch of travelling waves.

In the case 0 < ¢ < v/2 (Subsonic travelling waves), the existence of non constant
travelling wave is proved in dimensions N > 3.

Theorem 1.24 (Maris [82], Bellazzini-Ruiz [4]). Let N > 3. There exists a non
constant travelling wave U, of ([.10) for each 0 < ¢ < /2.

1.2.3 Orbital and asymptotic stability of travelling waves
In dimension N =1

Before presenting the well known results, we introduce the following distance in the
energy space &

2
A1, o) = / G — P+ (L= VP2 — o1 + [[oa? = al?[”
R

We have the following stability result.

Theorem 1.25 (Bethuel-Gravejat-Saut [7], Bethuel-Gravejat-Saut-Smets [9]). Let
¢ be such that ¢ < 2. There exist 6, > 0 and K. > 0 such that, for each uy € &

satisfying the condition
0= dC(U,O, UC) < (Sc,
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then the corresponding solution w of (1.10)) is such that there exist two functions
a € C'(R,R) and 0 € C(R,R) with

sup |d'(t) — ¢| < K0,
teR

such that the following holds:

supd. (e Du(- + a(t),t),U.) < K.6.

teR

The asymptotic stability of dark solitons is as follows.

Theorem 1.26 (Bethuel-Gravejat-Smets [11], Gravejat-Smets [48|, Cuccagna-Jenk-
ins [30]). Let ¢ € (—v/2,v/2). There exists 5. > 0 such that for each ug € £ satisfies

dc(UOa Uc) < 507

then there exist a number co € (—v2,v/2) and two functions a € C*(R,R) and
0 € C'(R,R) with
a'(t) = oo, and0'(t) — 0,

as t — 0o such that the correspoding solution u of (1.10) satisfies
e OOu(- +a(t),t) = U.. locally uniformly on R.

In 78], Lin used the abstract theory of Grillakis-Shatah-Strauss [49, [50] to prove
the stability and instability of travelling waves in the case of general nonlinearity.
More precisely, we have the following result.

Theorem 1.27 (Lin [78]). Consider the following equation:
ity + Uge + f(Jul*)u =0, (1.16)

where f € C*(RY) and f(po) = 0 for some py > 0 and satisfies other conditions. Let
¢ > 0 be small enough. Then there exists a travelling wave U.(z — ct) = a.e"%(x —ct)
solution to (1.16). This solution is stable when % < 0 and unstable when % >0,

where
A £o
P :Im/ U, U, (1 — ) dz.
R |Ue|?

Here the stability means that for all € > 0, there exists & > 0 such that if the initial
data uy = age’® satisfies

/ (lag(- +s) = aZllm + 105(- + ) = Oz 22) < 6,
seR

then
;gﬂg(lla(t)Q(' +5) = aZllm 4+ [|0@) (- +5) — .| 2) <e,

fort € R*. Here u(t) = a(t)e®®® is the solution of (1.16)) with a(0) = ay, 6(0) = 6.

Instability means that the travelling wave is not stable.
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In higher dimensions

In the case N = 2,3, we equip the energy set £ the following metric distance

d(f.9) = lf = gllz2so) + IV = Vllzz + 1" = gl 2=

We have the following result.

Theorem 1.28 (Chiron-Maris [20]). Let M, be the set of minimizing travelling
waves U, with scalar momentum p. Fiz U, € M,. For all € > 0, there exists d > 0
such that for each ug € € such that

d(UO, Up) < 5,
then the corresponding solution u of (1.10)) satisfies

sup inf d(u(-,t .
sup, inf (u(-1),U) <e

The proof of the above theorem used the variational problem of minimizing the
energy with fixed momentum.

1.3 The derivative nonlinear Schrodinger equations

This thesis is devoted to the study of Schrodinger-type equations, especially deriva-
tive nonlinear Schrédinger equations i.e the equations of the following form:

(1.17)

g+ Uge + INu|?uy + tpui, + blultu = 0,
u(0) = wy,

where u : R xR —- C,be R and A\, u € R.
The equation (1.17) is invariant under the scaling transformation:

ug(t,z) = H%U(KJQt, RT).

Moreover, in the case b = 0, the equation has a complete integral structure.
We may use inverse scattering techniques to study the long time behaviour of this
equation. In [I], by using this techniques, Bahouri and Perelman proved the global
existence of solution in H2(R). This was an open problem in long time.

Let u be a H'(R) solution of (L.17). We consider the Gauge transform

x

u(t, ) = u(t, z) exp (m /

— 00

]u(t,y)|2dy) ) (1.18)

It is easy to check that v is a H'(R) solution of the following equation
0y + Vg + iC1|V]|?Vy + icv?*T, + c3lv|*v = 0, (1.19)

where ¢y, co, c3 are the constants which depend on a, A, 4, b. The dynamics of solu-
tions of (|1.17)) is equivalent to the dynamics of solutions of ((1.19)). For each of choice
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of the value of a, we have another equation equivalent to . In some cases, if
we choose a suitable value of a then studying the long time dynamics of solutions of
(1.19) is easier than for (1.17). This is one of advantage of this transform. Specially,
let u be a solution of the Chen-Liu-Lee equation [19]:

iy + Uy + i|ul*u, = 0. (1.20)

Let v be the Gauge transform of u given by (1.18)) with a = ’71 Then v is a solution
of the Kaup-Newell equation [68]:

iy + Vg +1(JV]?0), = 0. (1.21)

Let w be the Gauge transform of u given by (1.18) with a = 3. Then w is a solution
of the Gerdzhikov-Ivanov equation [44]:

1
Wy 4 Wep — 1WA, + 5|w|4w =0. (1.22)

Moreover, (1.17)) has some conservation laws in the energy space:

Ju(t) 32 = ol (1.23)
E(u(t)) = E(uy), (1.24)
P(u(t)) = Plu), (1.25)
where
B9) = ool — 52T (ol ovion) - P o, — 2 [ fope
and

Plu(t)) :Im/uxmmﬁ/ |4 da,
R 2 R

1.3.1 Local theory

In this section, we present some well-known results for the local theory of ,
some method used and our main goal on establishing local well-posedness of this
kind equation.

Local theory of has attracted a lot of interests in several years (see e.g
[24, 25], 66, B8, 59 107, 108, 111l 112] and references therein). The main difficulty
is the appearance of the derivative term. We cannot use the classical contraction
method for this type of nonlinear Schrédinger equations. Some methods were used
to overcome this difficulty. In |24} 25, 107, [L08], the authors used the Fourier restric-
tion method to established local well-posedness and global well-posedness results for
. By using this method, we can directly use the contraction mapping theorem
for the Duhamel form of equation to obtain existence results. Another ap-
proach was used in [56] 111 [1T2] where the authors used an approximation argument
to prove the existence of solutions. Another method was used in [58, 59, 100], where
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the authors used a Gauge transform to obtain a system of two equations without
derivative nonlinearities from the original equation ([1.17). More precisely, we set

olt,7) = exp (g |t dy) u(t, ),

Y(t, z) = exp (z% /:O lu(t, y)|? dy> (uz(t, x)+ i%|u!2u(t, :C)) :

We observe that if u solves (1.17]) then (p, ) solves the following system

i1+ par = (A — )™ — b,
W0+ Yaw = —i\ = 0?5 — (B (Bl + 26°50) (1.26)
—3b|p|*) — 2] [Pp?3).

By definition, the functions ¢ and 1 satisfy the following relation

V=, —i (%) [l (1.27)
The Cauchy problem of the system ([1.26]) is established by classical arguments. The
main difficulty in this method is to prove that the relation (1.27)) is conserved under
the flow of the system . When we prove this relation, the existence of solutions
of is implied by the existence of solutions of the system (1.26). The uniqueness
and continuous dependence on initial data of solutions of is obtained by the
corresponding properties of solutions of the system.

Recently, the inverse scattering transform (IST) was used to proved global well
posed result in the case b = 0 of (1.17). In [66], Jenkins-Liu-Perry-Sulem proved
that for any initial data vy € H*?(R) = {u € H?(R),| - |?u(-) € L?*(R)} then
the associated solution of is global existence in H**(R). Moreover, in [101],
Pelinovsky and Shimabukuro proved the global existence result of solutions of
in the space H*(R) N H“'(R). Finally, in [I], Bahouri and Perelman proved that
the equation (|1.21)) is globally well posed in H%(R). Moreover, the authors proved
that for any initial data in H2(R), the associated solution is uniformly bounded in
time. This solves an open problem in long time.

1.3.2 Stability theory

In this section, we introduce the well known results on stability and instability of
solitons of the equation ((1.17)).

Solitons

In the case A # 0 or pu # 0, has no Galilean invariance as in the case of
simple power nonlinearity. Thus, the family of solitary waves has two parameters
(frequency and speed) which make the studying of stability and instability is more
difficult than the usual cases. Consider in the case A = 1 and p = 0. The
solitons of are solutions of the form

R, (t,x) = e"”tqﬁwﬁ(x —ct),
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where ¢, . € H'(R). It is clear that ¢, . solves
—¢" +wo +icy’ —i|o[*¢' —blgl'p =0, xR

As in [55], we use the gauge transformation

bucl) =)o (= 1 [ fouctPay)

Let vy =1+ %b. The positive radial profile @, . obtained as follows: if v > 0,

2dw—c?) if —2y/w<c<?2
2 (z) = {\/c2+v<4wc2)zosh<¢4wc2x>c ' '\/Z) ¢ <2V, (1.28)
(cx)—zc-i-’y lf C = 2\/(7],
if v <0,
2(4w — ¢?)
2 (z) = if —2vw <c< —2s,\/w,
o(7) V2 +v(4w — ) cosh(Viw — 2x) — ¢
(1.29)
where s, = %

On stability /instability of solitons

As we know, has no Galilean invariance. We know that has a two
parameter family of solitary waves. In [23], in the case b = 0, u = 0, Colin and Ohta
proved that the solitons are orbitally stable in the whole range of parameters values
by using variational methods. In this case, in [70], Kwon and Wu showed that the
algebraic soliton u,, 5 s is orbitally stable (up to scaling symmetry).

In the case yp = 0, A = 1 there are many works on the stability /instability of
solitons of (1.17). In [99], in the case b > 0, Ohta proved there exists k = k(b) € (0, 1)
such that the solitons wu, . of is stable if —2y/w < ¢ < 2k+/w and unstable if
2ky/w < ¢ < 2y/w. The stability /instability of solitons in the case ¢ = 2ky/w is an
open problem. In [55], Hayashi showed a relation between the stability /instability
of solitons and the positivity of momentum of the solitons. More precisely, if the
momentum is positive then the solitons are stable and if the momentum is negative
then the solitons are unstable. Moreover, the author proved that in the case b < 0,
the momentum of solitons is positive, hence solitons are orbitally stable. Specially,
in [95], Ning-Ohta-Wu showed that the algebraic soliton u,,, ,; is unstable in the
case b > 0 sufficient small.

1.3.3 Multi-solitons theory

In this section, we present the multi-solitons theory.

A multi-soliton of a dispersive equation is a solution which behaves at large time
like a finite or infinite sum of solitons. Usually, in the Cauchy problem theory,
when the mass of the initial data is small, the solution exists globally in time.
The existence of multi-solitons shows that there also exists a global solution with
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arbitrary large mass. The main motivation of multi-solitons theory comes from the
conjecture called soliton resolution conjecture. This conjecture states that all global
solutions of a dispersive equation behave at large time like a sum of a radiative term
and solitons. Thus, multi-solitons theory gives us more information about the long
time behaviour of solutions.

In classical nonlinear Schrédinger equations, the existence of multi-solitons was
showed in |26, 28| 35, [72] [73], 84], T18]. For focusing energy-critical nonlinear Schrodinger
equation, Jendrej [63] proved existence of pure two-bubles in space dimension N > 7.
The main ingredient in [63] is a uniformly bounded of a sequence of solutions and by
taking a weak limit to obtain the desired solution. This argument goes back to the
works Martel [83], Merle [87], Bellazzini-Ghimenti-Le Coz [3]. A similar argument
was used to obtain the existence of two buble solutions for energy critical equations
in dimension N = 6, see Jendrej [64]. For the energy-critical focusing wave equation
with spatial dimension N = 5, [65] proved existence of multi-bubble solutions which
blows up in infinite time at any K given points, K > 2. For Klein-Gordon equa-
tions, see the works [27,29]. The stability of multi-solitons was shown for generalized
Korteweg-de Vries equations and L2-subcritical nonlinear Schrédinger equations in
[85, 86]. In |74], Le Coz and Wu proved a stability result of multi-solitons of (1.17
in the case b = 0. In this thesis, we prove the existence of multi solitons of ((1.17
for any value of b. First, we recall the definition of multi solitons.

2
Let K € N* and (;,wj,¢;)j=1,x be given parameters such that w; > 7, ¢; # ¢
for j # k. Let R, ., be the soliton associated with the parameters w;, c; for each j.
A multi-soliton profile is defined by

K
R(t,x) =) €% R, .t x). (1.30)
j=1
Definition 1.29. A solution u of ([1.17)) is called a multi-soliton if it behaves like a
multi-soliton profile at large time, i.e:
|lu(t) — R(t)||zr — 0 as t — oc.
In the next part, we consider the following equation
iUy + Ugy + 1T, + blu|*u = 0. (1.31)

Let R, .(t,z) be a solution of (1.31)) of form ', .(x — ct). Let P, . be the
associated function defined by

C i [*
0o =exp (=i [ s dy) o (182

We note that the profile @, . is well defined when ®,, . restricted on R~ belongs to
L*(R™). Thus, @, does not need to belong to L*(R). In this thesis, we prove the
existence of multi kink solitons of (I.31). Our motivation comes from the works
[73, [72] for classical nonlinear Schrodinger equations. Before stating the next result,
we need the definition of multi kink solitons of (1.31]).
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Definition 1.30. The half kink solution R, . of (1.31) is a solution of (1.31) of the
type €“'¢,, .(x — ct) where ¢, . is such that the associated function @, . defined in
(1.32)) verifies

—0" 4 (w—5) @ — £0° + 907 =0,
lim, ,, ®(z) =0,

(1.33)
lim, , o ®(z) > 0,

® is a real valued function.
We have the following definition of multi-kink-soliton.

Definition 1.31. Let K € N* and R, ., be a half kink solution of (L.31]). Let
(0, ¢;,w;) =0,k be given parameters. The multi-kink-soliton profile is defined by

K
V=> "R, (1.34)
=0

A multi-kink-soliton of ([1.31)) is a solution u of (1.31]) such that
lu—=V|g — 0, ast— oc.

In the next part, we consider the following general derivative nonlinear Schrodinger
equation:
WUt + Uy + 2’|u|2‘7u$ = O’ (1.35)
u(0) = wo.
The local existence and global existence of solutions of ([1.35) were studied in many
works (see e.g [56] 103] and reference therein).
The equation ((1.35)) has a two parameters family of solitary waves defined as follows

c 1 xr—ct
Ruc = Quelr —ct)expi | wt + - (z — ct) — 27.(n) d
e = Puelr C)epo(w +2(ffj ct) 20+2/_Oo ©e(n) ?7)

2

where w > < and

(0 +1)(4w — ¢?)
2/w(cosh(ov/4w — c%y) — )

In [80], Liu-Simpson-Sulem showed that in the case o > 2, the solitons of
are orbitally unstable; in the case 0 < o < 1 they are orbitally stable. In the
case 0 € (1,2), the situation is more complex. The authors proved that there
exists zg € (—1,1) such that if ¢ < 2z9y/w then the soliton is orbitally stable and
if ¢ > 2z9\/w the soliton is orbitally unstable. In [52], in the case 1 < o < 2,
the authors proved that the soliton is unstable in the critical frequency case i.e
¢ = 2z9y/w.

The multi-soliton profile and multi-solitons of are defined similarly as the
ones of (1.17). The stability of multi-solitons of was obtained in [I10] in the
case 1 <o < 2.

Puw,c (y) 20 =
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1.4 Our main results

In this section, we present the main results of this thesis.

1.4.1 Local theory

All well known results on the Cauchy problem of are established on the usual
Sobolev spaces H*(R). To our knowledge, there is no result for a local theory of
under nonvanishing boundary conditions. One of our goals in this thesis is to
study the Cauchy problem of under nonvanishing boundary conditions. Our
main results are the following.

Theorem 1.32. Let X*(R) be the Zhidkov space defined in (1.12)). Consider the
following special case of (1.17))

2

WUy + Ugy = —1U Ty, (1.36)

The equation is locally well-posed in X*(R) and ¢+ H?*(R) for any ¢ € X*(R).
Moreover, if ||¢z||r2 and |[ug — ¢||mr are small enough then there exist T > 0 and
unique solution u € ¢+ C([=T,T), H*(R))NL ([T, T], W) of (L.36). Moreover,
all non-vanishing stationary solutions of in XY(R) are constant functions or
functions of form ek, where

_ ~1 PR ()
o) = 2VB+ \/nchosh(Z\/E(x —x0)) + ﬁg’ = /x (k(y) 4 ) w

for some constants 6y, z9 € R, B > 0.

To study the Cauchy problem of (1.36), we use the idea in Hayashi-Ozawa [58]
59, [100]. Set

v=u, + %|u|2u (1.37)
If u solves (1.36)) then (u,v) solves the following system

1.38
Lv = aw? + 2|ul*v + u?|ul?D, (1.38)

{Lu = —iu®v + §|u|*u,
where L = i0,+0,, is the Schrodinger operator. We establish the local well posedness
of solutions of in spaces X*(R), ¢ + H*(R) and ¢ + H'(R) with restrictions
on ¢. Moreover, we prove that the relation ([1.37)) is conserved. The existence of
solutions of in X4(R) is obtained by the following argument. Let uy € X*.
Set vy = uos + 5|uo|*uo. Let (u,v) be the corresponding solution of with the
initial data (ug,vo). We may prove that v = u, + £|ul*u in the time interval of
existence of solutions. Thus, u solves

' 1
Lu = —iu? (ﬂx — %|u|2ﬂ> + §|u|4u = —iu’h,.
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This implies the existence in X*(IR) of solutions of (1.36). The uniqueness and other
properties of X*(R) solutions of (1.36) follow from the corresponding properties
of the associated solutions of (1.38)). The proof of local well posedness of
is completed. Similarly, we have the local well posedness of in the cases
¢+ H*(R) and ¢ + H'(R).

To prove the uniqueness of stationary solution of in X(R), we use the
suitable changes of variables as in [94]. More precisely, let ¢ be a nonvanishing
stationary solution of in X!(R). Then we may write ¢ as

o(z) = k()"
where k,0 € C*(R) and k > 0. We prove that 6 and k satisfy the following

B k
_o r 1.
0=~ (1.39)
o—@—3k3+33k—2a (1.40)
92 12 ’ ‘

for some B > 0, a € R. Since the relation (|1.39)), we may obtain the formulation of
0 by the formulation of R. Moreover, k satisfies k — 2v/B € H*(R). Combining to

(1.40), we have a = %g. Setting h = k — 2v/B, we have h € H*(R) and
5)
0= hay — oh* 5V Bh* — 4Bh.

By a classical argument, we may obtain the explicit formulation of A and thus the
explicit formulation of k. This completes the proof of Theorem [1.32, For detail
discussion, we refer reader to Chap [2]

1.4.2 Stability theory

In this section, we consider (1.17)) on the half line with Robin boundary condition
at O:
Wy + Vgp = 50|20, — 2070, — S|o|tv, Vo € RY,
v(0,2) = vo(z), (1.41)
v.(t,0) = aw(t,0), VteR,

where a € R is a given constant.
The equation ([1.41) has a standing wave of the form e™“'p (z), where w > o?
and

V(1) = 2/w sech? (2\/5|x| + tanh™! (%)) : (1.42)
The linear part of can be written as follows
v, 4+ Hyv =0, v(0) = vy,
where H, is the self adjoint operator which is defined by
H,:D(H,) C LQ( ) — LA(R™),
H.v = v,,, D(H,) = {ve H*(R") : v,(0) = aw(0)} .
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The equation (1.41) in Duhamel form is the following

) t
v(t) = ety — z/ e Hat=5) g(y(s)) ds, (1.43)
0
where ) 3
g(v) = %|U|2vx — %v%m — 1—6]v|4v.

It turns out that the self adjoint operator H, has a relation with the following delta
potential Schrédinger operator on the whole line

H,: D(H,) C L*(R) — L*(R),

Hyu =g, D(H,)={ue H*R\0)NH(R),u,(07) — u,(07) = yu(0)}.
More precisely, the operator H,, can be seen as the restriction of the operator Hy,
on even functions and we have

ety = (f2oty) [, (1.44)

where ¢ € D(H,) and ¢ is the even function on R whose restriction on R* is ¢. It
is well known that the operator e'#2e! is hounded on H'(R) (see e.g [61]). It implies
that the operator ¢/»? is bounded on H'(RT). We assume that is locally well
posed on H'(RT). By formal calculation, we show that has two conservation
laws: conservation of the mass and the energy. In this thesis, we use these tools to
study the dynamics of (1.41). Our main results are the following.

Theorem 1.33. Let a > 0 and vy € ¥ = {v € D(H,),zv € LQ(R+)}. If the energy
of vy be negative, then the associated H'(R™) solution of (1.36) blows up in finite

time.

Let w > a? and ey, be the standing wave of (1.36). If « < 0 then the standing
wave 1s orbitally stable. If o > 0 then the standing wave is unstable by blow up.

To prove the existence of blow up solutions, we use a similar arguments as in
Glassey [45]. Define

ult, z) = v{t, z) exp (—3 / rv<t,y>|2) ,
1) = / 22o(t)2 dz = / 2ut)? dz,
R+ R+
J(t) :Im/ Tuudr.
R+
By a direct calculation, we have

O () =4J(t) — / rlu(t)|* doe < 4J(t),

R+
I () = 2/ fua? — zm/ uPusT dz + alu(t, 0)|2 = 4E(v) — alu(t, 0)2
R+ Rt
<A4E(v) = 4E(vy).
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Here, we use the condition o > 0. Thus, it is easy to show that
I(t) < I(0) 4+ 4J(0)t + 8E(vo)t?.

This implies that the time of existence must be finite.
Let €', be the standing wave of (1.41)) defined in (1.42)). To prove the stability
of standing waves in the case o < 0, we use variational techniques. Set

1 1
500) = 5 (I By + wllo oy + aloOF) = ol (149
3
Ky(v) = ”va%Q(R"’) +uf||“||2L2(1R+) +alp(0)* - EHUH%G(R"’)v (1.46)
3
N(v) =3S,(v) — §Kw(v), (1.47)
d(w) = inf{S,,(v)|v € H'(R*)\ 0, K, (v) = 0}. (1.48)

First, we prove the following compactness result: If (v,) C H'(R™) satisfy

Su(vn) = d(w),
K, (v,) = 0,
then there exists a constant #, € R such that v,, — €%, where ¢, is the standing
wave profile. Next, we prove that under the assumption o < 0, if (v,) C H'(R™T)
satisfies
|vn — cpwHHl(Rﬂ — 0 as n — oo,

then the corresponding solution v(t) of satisfies N(v,(t)) — 3d(w) as n — oo.
Combining the above tools, we conclude the stability of standing waves in the case
a < 0 by a contradiction argument.

To prove the instability by blow up of the standing waves in the case a > 0, we
may use a similar argument as in [7I]. The case a = 0 is not difficult. We consider
the case a > 0. Define

V={ve HR"): K,(v) <0,S,) < dw), P(v) <0},

where P(v) = 8%5(1})\)’)\:1 = [vallfome) — 16ll0l%6@s) + 5l0(0)]*. We prove that
V is invariant under flow of (L.41). Moreover, we prove that if ¢ € V is such that
| - |p(-) € L*(R") then the corresponding solution v of blows up in finite
time on H'(R™). Thus, to conclude the instability by blow up of standing waves,
we only need to construct a sequence ¢, — ¢ in H'(RT) such that ¢, € V and
| - |on(+) € L*(RT) for each n. This sequence can be obtained from a scaling of (.
Thus, we complete the proof of Theorem [1.33] For more details, we refer the reader
to Chapter

1.4.3 Multi solitons theory

In [72, [73], Le Coz-Li-Tsai proved the existence and uniqueness of multi solitons for
classical nonlinear Schrodinger equations by using fixed point arguments around the
desired profile. We cannot directly apply this argument to obtain similar results for
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derivative monlinear Schrédinger equations, because of the presence of derivatives in
the nonlinearities. In this thesis, we improve the method of Le Coz-Li-Tsai [72][73] to
obtain the existence of multi- solitons solutions of derivative nonlinear Schrodinger
equations under an implicit condition on the parameters. Our first main result is
the following.

Theorem 1.34. Considering (1.17), we assume that X = 1, p = 0. Let (0}, ¢j, w;) be
sequence of parameters such that —2,/w; < ¢; < 2,/wj if v >0 and —2,/w; < ¢; <
—23*\/@ if v <0, where vy = 1+ 1—366 and S, = % Let R be the multi-soliton
profile defined in . Then there exists a certain positive constant C, such that
if the parameters (wj, c;) satisfy

Co (04 1 Rulaeiz) 0+ [ Blligose) + IRl e ) < ovi= il hyley = i, (1.49)

where hy =  [4w; — c?, then there exist Ty > 0 depending on wy, ...,wk, C1, ..., Cx and
a solution u of (L.17) on [To, 00) such that
|u— R||g: < Ce ¢, VWt > T,

where A = 5 and C' is a positve constant depending on the parameters wy, ..., Wk, C1, ..., Ck -

We note that the condition (1.49)) ensures that ¢; # ¢; for i # j. Thus, the
solitons are separated at large time.
Let us sketch the proof of the above theorem. Define

i
) =ex (5 [ TuttnPay) ute.a)
v = e 5lel
= Pz 5 Pl e
We observe that if u solves (1.17)) then (p, 1) solves a system of the form

Lo = P(p, 1),
Y = 0up — 5(l0p),

where L = 10, + 0., and P, () are polynomials of variables ¢, 1 and their conjugates.
Let R be the multi-soliton profile and ¢ = u — R. Then R solves

LR+ 4| R*R, +b|R|*R = e Mv(t, 2),

where A = 7% and [|v|| 2 is bounded. Define

i) =exp (5 [ IR 0Pd ) Rit.0)

—00

b
k= hy = 5|h*h.
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We prove that (h, k) solves

Lh = P(h,k) + e *m(t, z),
Lk = Q(h, k) + e n(t, x),

where m,n satisfy ||m||pecm1 + [[72| ooz bounded. Let ¢ = ¢ — h and Y =1 —k.
Then

b= — 516+ P @+ k) — [hPh), (1.51)

and (,1)) solves

LU = Q(3.5) — QU k) — eVt ). (152

We construct the solution of ((1.52)) by similar arguments as in |73, Proposition 3.1].
The relation (1.51]) is proved by using the exponential decay in time of solutions of

(1.52)) and the assumption ([1.49). This implies that the profile (y, ) solves ([1.50).
Then, by setting

{Lﬁzf%ﬁﬁw—Pw%ﬁ—e”%da@,

u(t, ) = exp (—%/ Iso(t,y)de> o(t, ).
we obtain a solution w of which satisfies the desired property.

Next, consider the equation (1.31). In [72, [73], Le Coz-Li-Tsai have successfully
proved the existence of multi-kink-soliton solutions of classical nonlinear Schrédinger
equations. In this thesis, we use a similar method as in the proof of Theorem [1.34]
to prove the existence of multi-kink-soliton solutions for the equation (1.31). Our
result is the following.

Theorem 1.35. Consider (1.31)). We assume that b < &. Let (0;,w;, ¢;)j=o...

parameters such that 2,/7 < co < 2y/wy, 2,/w; < ¢; > 25,,/wj, where v = g — Lfb

and S, = | /%. Let V' be given as in (1.34)). There exists a certain positive constant

C. such that if the parameters (w;, c;) satisfy

C%O+mwwgdu+Whmw+mw%w)<w:megmm—%@%m—%Q,

where h; = /4w, — c?, then there exist a solution u to (1.31)) such that
||U—VHH1 g C'e*)‘t. thTo,

where A = & and C, Ty are posilive constants depending on the paramelers wy, ..., Wk, Co, -+, CK -

For details, we refer to Chapter

Consider the equation (1.35). The stability of multi solitons of has been
studied in [74] for 0 = 1 and in [I10] for o € (1,2). In this thesis, we give the proof
of existence of multi solitons in the cases c =1 oroc =2 or o > % We have the
following result.

29



Theorem 1.36. Let 0 > g oro=1oro=2. Let (0;,w;,c;) be parameters such

that 0; € R and w; > o and R be the multi-soliton profile of (1.35) defined similarly

4
to the one of the equation (1.17). There exists a certain positive constant C, such

that if the parameters (wj, c;) satisfy

2(0—1 o .
Co (U IRIEZD O+ 1R i) (04 [ Rallimse + RIS ) < v o= inf hyle;—cil

where hj = | /4w; — c?, then there exist a solution u to (1.31)) such that

”U — R”Hl < C'e_)‘t. Vit 2 To,

Vx

where A = ¥ and C, Ty are positive constants depending on the parameters wy, ..., Wk, Co, ...

16

Our method is similar to the one in the case of equation (1.17)). In the proof of
Theorem [1.36] we use the following inequality

(a+ b)2(‘7_2) —a?77) <D L pg2eD7 e b > 0.

The condition o > % ensures that the order of b on the right hand sight of the above
inequality is larger than 1. This is an important point to close fixed point argument.
For details, we refer to Chapter o

1.4.4 Instability of algebraic standing waves

This section is to present our work on the triple power nonlinear Schrédinger equa-
tion:

iy + Au + ar|ulu + aslu|®u 4+ aslulPu =0, (t,z) € R x R, (1.53)

where aq,as,a3 € R and n € {1,2,3}.

In [79], Liu-Tsai-Zwiers studied a 1D triple power nonlinear Schréodinger equation.
In particular, the authors presented a picture which shows regions of existence,
stability and instability of standing waves with positive frequency. In [36], the
authors proved the instability of standing waves with zero frequency i.e algebraic
standing waves. Our goal is to study the existence and stability of algebraic standing
waves of triple power nonlinear Schréodinger equations. Before stating our main
result, we recall the definition of algebraic standing waves for (1.53)).

A standing wave of is a solution of form e™'¢,,(x). In this thesis, we are
interested in the case of frequency equals to zero i.e w = 0. The profile ¢g, which
we prefer to denote by ¢, solves the following equation:

A¢ + a1]d]¢ + az| 6] + as|6[°¢ = 0. (1.54)

The equation (1.54)) admits a unique radial positive solution. This solution is alge-
braically decaying in space. Moreover, it is a minimizer of a variational problem.
Our main goal is to prove orbital instability of this solution. We have the following
result.
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Theorem 1.37. Let ¢ be the radial positive solution of (1.54) and ay = —1, a3 =1
and ay small when ay > 0. The algebraic standing wave ¢ of (1.53)) is orbitally
unstable in H'(R).

The above theorem is a direct consequence of the following result.

Proposition 1.38. Assume the assumptions of Theorem[1.37 and
RS (M) |a=1 < 0, where v (x) = )\%v()\:z:).

Then the algebraic standing wave ¢ is unstable.

Define

L=<ve H'(RY): inf — (- — 1 <ep.
No={oe Y |t o el -l <2
Let up € N and u(t) be the corresponding solution of (1.53)). We define the exit
time from the tube N, by

T*(ug) := inf{t > 0: u(xt) ¢ N.}.

Set I. := (=T (ug), T (ug)). Then, I, is the maximal interval for which the solution
stays in N.. Thus, to prove the instability of ¢, we show that there exists ¢ > 0
such that there exists a sequence (¢,) satisfying ||¢, — ¢||gr — 0 as n — oo and
|I.(¢n)| < oo for all n. The conclusion of Theorem is proved by the following

result.

Proposition 1.39. There ezists € > 0 such that for all ug € N such that P(ug) < 0,
S(up) < p and | - |ug(-) € L*(R), we have |I.(ug)| < oo, where

1 1 a 1
S(0) = 5IVolRs + 310%l — Lol - £llelis,
N Nay 3N
P(0) = 380" act = Vol + T lvlls = =2 ollts = S5 ol
K(©) = Vol + ol = azllollbe — o]

i = inf {S(U) cv e H3RY) A L3(RY)\ {0}, K (v) = o} .

The existence of the desired sequence follows by using a suitable scaling of ¢.
For details, we refer to Chapter [6]

31



Chapter 2

On the Cauchy problem for a
derivative nonlinear Schrodinger
equation with nonvanishing
boundary conditions

2.1 Introduction

In this chapter, we are interested in the Cauchy problem for the following derivative
nonlinear Schédinger equation with nonvanishing boundary conditions:

{i@tu + 0%u = —iu?0u,

u(0) = up, (2.1)

where v : R; x R, — C, 9 = 0, denotes derivative in space and 9; denotes derivative
in time.

Our attention was drawn to this equation by the work of Hayashi and Ozawa
[58] concerning the more general nonlinear Schrédinger equation

{i@tu + 0%u = iNu|*Ou + ipu*du + f(u), (2.2)

u(0) = up.

When A =0, u = —1, f = 0, then reduces to (2.1)). This type of equation is
usually refered to as derivative nonlinear Schridinger equations. It may appear in
various areas of physics, e.g. in Plasma Physics for the propagation of Alfvén waves
[93, [106].

Under Dirichlet boundary conditions in space, the Cauchy problem for has
been solved in [58]: local well-posedness holds in H'(R), i.e. for any uy € H'(R)
there exists a unique solution u € C'(I, H'(R)) of on a maximal interval of time
1. Moreover, we have continuous dependence with respect to the initial data, blow-
up at the ends of the time interval of existence I if I is bounded and conservation
of energy, mass and momentum.

The main difficulty is the appearance of the derivative term —iuu,. We cannot
use the classical contraction method for this type of nonlinear Schrédinger equations.
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In [58] Hayashi and Ozawa use the Gauge transform to establish the equivalence
of the local well-posedness between the equation (2.2) and a system of equations
without derivative terms. By studying the Cauchy problem for this system, they
obtain the associated results for (2.2). In [56], Hayashi and Ozawa construct a
sequence of solutions of approximated equations and prove that this sequence is
converging to a solution of , obtaining this way the local well-posedness of
(2.2). The approximation method has also been used by Tsutsumi and Fukuda in
[111, 112]. The difference between [56] and [I11), [112] lies in the way of constructing
the approximate equation. In [56], the authors use approximation on the non-linear
term, whereas in [I11], 112] the authors use approximation on the linear operator.

To our knowledge, the Cauchy problem for has not been studied under
non-zero boundary conditions, and our goal in this paper is to initiate this study.
Note that non-zero boundary conditions on the whole space are much rarely consid-
ered in the literature around nonlinear dispersive equations than Dirichlet boundary
conditions. In the case of the nonlinear Schrédinger equation with power-type non-
linearity, we refer to the works of Gérard [42 43| for local well-posedness in the energy
space and to the works of Gallo [40] and Zhidkov [120] for local well-posedness in
Zhidkov spaces (see Section for the definition of Zhidkov spaces) and Gallo
[4T] for local well-posedness in uy + H'(R). In this paper, using the method of
Hayashi and Ozawa as in [58] on the Zhidkov-space X*(R), (k > 4) and in the space
¢+ H*(R) (k = 1,2) for ¢ in a Zhidkov space, we obtain the existence, uniqueness
and continuous dependence on the initial data of solutions of in these spaces.
Using the transform

v=20u+ %|u!2u, (2.3)

we see that if u is a solution of then (u,v) is a solution of a system of two
equations without derivative terms. It is easy to obtain the local wellposedness of
this system on Zhidkov spaces. The main difficulty is how to obtain a solution of
from a solution of the system. Actually, we must prove that the relation (2.3)
is conserved in time. The main difference in our setting with the setting in [59] is
that we work on Zhidkov spaces instead of the space of localized functions H'(R).
Our first main result is the following.

Theorem 2.1. Let ug € X*(R). Then there exists a unique mazimal solution of
R.1) v € CUTmin, Trnaz), XH(R)) N CH((Trnin, Trnaz) X2(R)). Moreover, u satisfies
the two following properties.

e Blow-up alternative. If )4, < 00 (resp. T > —00) then

t—=Tmax (Tesp. Tmm)H ( )||X2

e Continuity with respect to the initial data. If u} € X*(R) is such that u —
ug in X4R) then for any subinterval [T1,Ts] C (Toin, Tinaz) the associated
solutions of equation (2.1) (u™) satisfy

. n_ 0o pu— .
Tim [lu™ = ul| e 7y 1.5 = 0
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To obtain the local wellposedness on ¢ + H*(R) for ¢ in Zhidkov spaces X'(R).
First, we use the transform v = du + %|u|?>u. We see that if u € ¢ + H*(R) then
v € 5|¢|*¢ + H**(R). This motivates us to define & = u — ¢ and 0 = v — £|¢[*¢.
We have

b =00+ L+ 6P+ 6) — [9P) + 00, (2.4

We see that if u is a solution of then (u,?) is a solution of a system of two
equations without the derivative terms. For technical reasons, we will need some
regularity on ¢. With a solution of the system in hand, we want to obtain a solution
of (2.1). In practice, we need to prove that the relation (2.4) is conserved in time.
Our main second result is the following.

Theorem 2.2. Let ¢ € X*(R) and ug € ¢ + H*(R). Then the problem (2.1) has a
unique mazimal solution u € C((Truin, Tinaz), @ + H*(R)) which is differentiable as
a function of C((Tmin, Traz), @ + L*(R)) and such that uy € C((Thnin, Tnaz), L*(R)).
Moreover u satisfies the following properties.
(1) Blow-up alternative: If Tpap < 00 (resp. T > —00 then
li t) — = 00.
iy, g,y 1) = Olliy) = o0
(2) Continuous dependence on initial data: If (ud) C ¢ + H*(R) is such that ||uf —
uollgz — 0 as n — oo then for all [T1, T3] C (Tin, Tinaz) the associated solutions
(u") of 1) satisfy
hm Hun — uHLoo([ThTQLHZ) = O
n—oo
In the less regular space ¢ + H'(R), we obtain the local well posedness under a
smallness condition on the initial data. Our third main result is the following.

Theorem 2.3. Let ¢ € X*(R) such that ||0||r2 is small enough, uy € ¢ + H*(R)
such that ||ug — ¢|| g (w) is small enough. There exist T > 0 and a unique solution u

of such that
u—¢ € C([-T,T], H (R)) N L*([-T,T], WH>*(R)).

In the proof of Theorem[2.3] the main difference with the case ¢-+H?(R) is that we
use Strichartz estimates to prove the contractivity of a map on L>°([-T,T], L*(R))N
LA([=T,T], L=(R)). In the case of a general nonlinear term (as in ([2.2))), our method
is not working. The main reason is that we do not have a proper transform to give a
system without derivative terms. Moreover, our method is not working if the initial
data lies on X'(R). Tt is because when we study the system of equations, we would
have to study it on L>°(R), but we know that the Schrédinger group is not bounded
from L*(R) to L>*(R). Thus, the local wellposedness on less regular spaces is a
difficult problem for nonlinear derivative Schrédinger equations.

To prove the conservation laws of , we need to use a localizing function,
which is necessary for integrals to be well defined. Indeed, to obtain the conservation
of the energy, using (2.1)), at least formally, we have

0u(|0ul*) = 0x(F (w)) + 04(G (u)),
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for functions F' and G which will be defined later. The important thing is that when
u is not in H'(R), there are some terms in G(u) which do not belong to L'(R),
hence, it is impossible to integrate the two sides as in the usual case. However,
we can use a localizing function to deal with this problem. Similarly, we use the
localizing function to prove the conservation of the mass and the momentum. The
localizing function y is defined as follows

x € C'(R) and even , suppy C [-2,2], and x = lon[-1,1]. (2.5)

For all a € R and R > 0, we define

XaR(%) = X (x 0 a) =X (’“T—]_%a’) . (2.6)

To prove the conservation of mass, we use the similar notations as in [34] section 7|

m™*(u) = inf 1imsup/(|u\2 — @) Xa.rdr, m~ (u)=suplim inf/(|u|2 — @) Xa.r dz.
R R

a€R R oo acR R—o0

If w is such that m*(u) = m~(u) we define generalized mass as

x
Xr(x) = x <E) : (2.7)
Our fourth main result is the following.

Theorem 2.4. Lel gy € R be a constant and ug € go+H?*(R) andu € C((Thins Trnaz)> o+
H?(R)) be the associated solution of (2.1) given by Theorem[2.4 Then, we have

E(u) := / |8u|2dx+lIm/(|u\2ﬂ—qg’)5’uda:
R 2 Jr

5 [l = oYl +2lao?) o = Blao), 29
Plu) = %zm/R(u — qo)0dz — /R }l(\uﬁ g2 dz = Plug). (2.9)

Jor all t € (Toin, Tinaz). Moreover, u satisfies m™(u(t)) = m*(ug) (respectively
m~(u(t)) = m~(ug)). In particular, if ug has finite generalized mass then the gen-
eralized mass is conserved by the flow, that is m(u(t)) = m(uo).

Remark 2.5. When ¢y = 0, we recover the classical conservation of mass, energy and
momentum as usually defined.

In the classical Schrodinger equation, there are special solutions which are called
standing waves. There are many works on standing waves (see e.g [71], [16] and the
references therein). In [120], Zhidkov shows that there are two types of bounded
solitary waves possessing limits as * — do00. These are monotone solutions and
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solutions which have precisely one extreme point. They are called kinks and soliton-
like solutions, respectively. In [120], Zhidkov studied the stability of kinks of classical
Schrédinger equations. In [10], the authors have studied the stability of kinks in the
energy space. To our knowledge, all these solitary waves are in Zhidkov spaces i.e
the Zhidkov space is largest space we know to find special solutions. We want to
investigate stationary solutions of in Zhidkov spaces. Before stating the next
main result, we need the following definition:

Definition 2.6. The stationary solutions of (2.1)) are functions ¢ € X?(R) satisfying
Guz + i0%0, = 0. (2.10)

In [94], the authors proved the existence of periodic traveling waves of a derivative
nonlinear Schrodinger equation using a skillful changes of variables. In this paper,

we use a similar changes of variables as in [94] to prove the existence and uniqueness
of stationary solution of (2.80) on X?(R). Our fifth main result is the following.

Theorem 2.7. Let ¢ be a stationary solution of (2.1) (see Definition [2.6). The
followings is true:

(1) If ¢ is not a constant function and satisfies
inf [¢(z)] > 0
then ¢ is of the form ek where

_ = _a_ [T (LW
k(x)_2\/g+\/%cosh(2\/§(x—xo))+l2f/§’ 7= /ac (k(y) 4 )d%

for some constants 0y, zg € R, B > 0.
(2) If ¢ is a stationary solution of ({2.1)) such that ¢p(co) =0 then ¢ =0 on R.

Remark 2.8. We have classified stationary solutions of (2.1)) for the functions which
are vanishing at infinity, and for the functions which are not vanishing on R. One
question still unanswered is the class of stationary solutions of (2.1)) vanishing at a
point in R.

This paper is organized as follows. In Section [2.2] we give the proof of local
well posedness of solution of on Zhidkov spaces. In Section we prove the
local well posedness on ¢ + H*(R) and ¢ + H'(R), for ¢ € X*(R) a given function.
In Section [2.4] we give the proof of conservation laws when the initial data is in
qo + H?*(R), for a given constant ¢y € R. Finally, in Section , we have some
results on stationary solutions of on Zhidkov spaces.

Notation. In this paper, we will use in the following notation L for the linear part
of the Schrodinger equation, that is

L:z8t+82

Moreover, C denotes various positive constants and C(R) denotes the constant de-
pending on R.
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2.2 Local existence in Zhidkov spaces

In this section, we give the proof of Theorem [2.1]

2.2.1 Preliminaries on Zhidkov spaces

Before presenting our main results, we give some preliminaries. We start by recalling
the definition of Zhidkov spaces, which were introduced by Peter Zhidkov in his
pioneering works on Schrédinger equations with non-zero boundary conditions (see
[120] and the references therein).

Definition 2.9. Let k € N, k > 1. The Zhidkov space X*(R) is defined by
X*R) = {u € L>(R) : ou € H*'(R)}.

It is a Banach space when endowed with the norm

k
s = [lme + D _10% 22
a=1

It was proved by Gallo [40, Theorem 3.1 and Theorem 3.2] that the Schrédinger
operator defines a group on Zhidkov spaces. More precisely, we have the following
result.

Proposition 2.10. Let k > 1 and ug € X*(R). Fort € R and x € R, the quantity

e A2 0im [ e yo(z + 2v/E2)dz if t >0,
e—0 R

S(t)uo(x) :== (2.11)

o™/ =1/2 i e(*ifs)%ug(x +2v/—tz)dz if t < 0.
e—0 R

is well-defined and S defines a strongly continuous group on X*(R). For all uy €
X*(R) and t € R we have

1S (#)uollxcr < C(R)(L+ [£/*) o xv-
The generator of the group (S(t))|ier on X*(R) is i0* and its domain is X*T2(R).

Remark 2.11. Since, for all ¢ € X*(R), we have ¢+ H*(R) C X*(R), the uniqueness
of solution in X*(R) implies the uniqueness of solution in ¢ + H*(R), and the
existence of solution in ¢ + H*(R) implies the existence of solution in X*(RR).

2.2.2 From the equation to the system

The equation contains a spatial derivative of u in the nonlinear part, which
makes it difficult to work with. In the following proposition, we indicate how to
eliminate the derivative in the nonlinearity by introducing an auxiliary function and
converting the equation into a system.
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Proposition 2.12. Let k > 2. Given u € X*(R), we define v by
v=0u+ %|u|2u (2.12)

Hence, v € XF"Y(R). Furthermore, if u satisfies the equation (2.1)), then the couple
(u,v) verifies the system

Lu = Pi(u,v), (2.13)
Lv = Py(u,v), '
where P, and Py are given by
1
Py (u,v) = —iu*0 + ~|ul*u,
2 (2.14)

3
Py(u,v) = iwv® + §|u|4v + u?|ul*.
Proof. Let u be a solution of (2.1) and v be defined by (2.12)). Then we have
] 1
Lu = —iu?0u = —iu® (ﬂ+ %(!u\%)) = —iu’T + §]u|4u,

which gives us the first equation in (2.13)).
On the other hand, since L and 9 commute and u solves (2.1)), we have
Lv= 8(Lu)+%L(!u\2u) - 8(—iu28ﬂ)+%L(\u12u) - —i(u282ﬂ+2u|8u]2)—|—%L(|u\2u).
(2.15)

Using
L(uww) = L(u)v +uL(v) + 20udv, L(u) = —Lu + 207, (2.16)

we have
L(Jul*u) = L(v*T) = L(u*)u + v*L(u) + 20(u?)0u
= (2L(w)u + 2(0u)?)) u + v*(—Lu + 20°7) + 4u|Oul?
= 2L(u)ul* + 2u(0u)? + 2u*0*u — u®Lu + 4u|Ou|®. (2.17)
We now recall that u verifies (2.1)) to obtain
' 1
%L(|u!2u) = w*Oulul® + iu(0u)? + iu*d0*u + 58u!u|4 + 2iu|Oul. (2.18)
Subsituting in (2.15)), we get
1
Lv = —i(u?0%u + 2u|Ou®) + v?0ulul* + itu(0u)? + iu*0*u + §8u|u|4 + 2iu|ul?,
1
= u*0ulul?® + iu(ou)® + §8u|u|4.

Observe here that the second order derivatives of u have vanished and only first
order derivatives remain. Therefore, using the expression of v given in (2.12)) to
subsitute du, we obtain by direct calculations

3
Lv = iww® + §\u|4v + u?|u|*w,

which gives us the second equation in (2.13]). O]
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2.2.3 Resolution of the system
We now establish the local well-posedness of the system ([2.13]) in Zhidkov spaces.

Proposition 2.13. Let k > 3, and (ug,v9) € X*(R) x X*(R). There ezist Trpin <
0, Thaz > 0 and a unique mazimal solution (u,v) of system such that
(u,v) € C((Tmin, Trmaz), X*(R)) N C*((Trmins Trnaz ), X*2(R)). Furthermore the fol-
lowing properties are satisfied.

e Blow-up alternative. If T}, < 00 (resp. T > —o0 then

lim (lu@llxr + lo(@®)][x1) = oo

t—=Tmaz (Tesp. Tmin)

e Continuity with respect to the initial data. If (u?,v}) € X* x X* is such that
lug = wollxx + [lvg — vol[xx =0

then for any subinterval [Ty, T] C (Tnin, Tinax) the associated solution (u™, v™)

of (2.13) satisfies

Jim ([l =l oy zag 00 + 107 = Ve my x0) = 0.

Proof. Consider the operator A : D(A) C X*2(R) — X*"%(R) defined by A = i9?
with domain D(A) = X*(R). From Proposition we know that the opera-
tor A is the generator of the Schrédinger group S(¢) on X*72(R). From clas-
sical arguments (see [I7, Lemma 4.1.1 and Corollary 4.1.8]) the couple (u,v) €
C((Trmins Trmaz ) X*(R)) N C((Thins Trnaz ), X 2(R)) solves if and only if the
couple (u,v) € C((Thnin, Trnaz ), X¥(R)) solves

{(u, v) = S(t) (g, v0) — i [ S(t — s)P(u, v)(s)ds, (219
u(0) = up € X*(R),v(0) = vy € X*(R),

where S(t)(u,v) := (S(t)u, S(t)v), P(u,v) = (Pi(u,v), Po(u,v)) and P, and P, are
defined in (2.14). Consider P as a map from X*(R) x X*(R) into X*(R) x X*(R).
Since P, and P, are polynomial in u and v, the map P is Lipschitz continuous on
bounded sets of X*(R) x X*(R). Since (see |[I7, Theorem 4.3.4 and Theorem 4.3.7|),
there exists unique maximal solution (u,v) € C((Thuin, Trmaz), X*(R) x X*(R)) N
CY((Toin, Trnaz), XF72(R) x X*72(R)) of system (2.13)). Moreover, (u, v) satisfy blow-
up alternative continuous dependence on initial data in X*(R) x X*(R). It remains
to prove the blow-up alternative in X!'(R) x X!(R). We use the similar arguments
as in [120, Proof of Theorem 1.2.4]. For each 1 < s < k — 1, since the map P
is Lipschitz continuous on bounded sets of X*(R) x X*(R), there exists Ty, and
Tsmaz such that (u,v) is the maximal X*(R) x X*(R) solution of system on
(Tsmins Tsmaz) and (u,v) satisfy:

lim (fJu(®)]

tﬁTsmaz (I"eSP- Tsmzn)

xs + [[o(t)]

Xs) = OQ.
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It is sufficient to prove that 11,02 = Tree and Thpin = Thin. We have
Timaz 2 Tomae = - 2 T(k—l)ma:l: 2 Taz-

We first prove Timar = Tomaz. Assume Thinae > Tomaz. For t € [0, Topa.], since

(2.19) we have

) 2maz]

t
[ullx2 + [[ollx> < lluollx2 + [lvollx> + e pax (Jullxr + flvllxr + 1)4/ (lu(s)llx> + llv(s)llx2) ds.
0

By Gronwall’s inequality in integral form we obtain

sup  ([|ul[x2 + [Jv]|x2) < .
te[0,Tomax)

This contradicts to blow-up alternative of (u,v) in X?(R) x X%(R). Thus, Timee =
Tomaz- By apply many times this arguments we obtain 71,,4. = Tiee and by similar
arguments we have Tq,;, = Tinin. This completes the proof of Proposition 2.13] [

2.2.4 Preservation of the differential identity

The following proposition establishes the link from (2.13) to (2.1)) by showing preser-
vation along the time evolution of the differential identity

1
Vo = 6%0 + §|U0|2UO.
Proposition 2.14. Let ug,vy € X3(R) be such that

{
Vo = 8u0 + §UO|U()|2.

Then the associated solution (u,v) € C((=Tpin, T™), X3(R) x X3(R)) obtained in
Proposition satisfies for all t € (=T, T™) the differential identity

v=0u+ %|u|2u

Proof. Given (u,v) € C((—=Tpin, T™), X3(R) x X3(R)) the solution of (2.13)) ob-
tained in Proposition we define

w = 0u+ 3|u|2u.
2
Our goal will be to show that w = v. We first have
P
Lu = —iut + §|u| u

1
= —iu?(v — W) — W + §]u\4u

= —iu?(v — W) — iv?ou.
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Applying L to w and using (2.17) and the expression previously obtained for Lu,
we get

Lw = 8(Lu) + %L(|u|2u)

= 0(Lu) + % (2Lulul* + 2u(0u)? + 2u*0*u — u*Lu + 4u|dul?)
= O(—iu? (v — W) — iu’0n)
i

. <2(—iu28ﬂ)|u|2 + 20(9u)? — ¥ (—in20m) + 2u20%T + 4u|8u|2>

+ 5 2@ — ) uf? — ol )
_ (—za(u% _ @) + w2 ulr(® — ) + %|u|4(v _ w))
+ (—ia(u%‘?ﬂ) + w*Ou|ul? + iu(du)? + %\u!‘l@u + u?0*u + 2iu|8u!2)
=1 + L.
As in the proof of Proposition we obtain
I, = iuw? + g|u|4w + |u*u*w.
Furthermore
I = 8(—i®(@ — ) + w2|u> (5 — B) + %|u|4(v _ w)
= —iu*0(v — W) — 2iudu(v — W) + v?|u)* (@ — W) + %|u|4(v —w).

It follows that

Lw— Lv = 11 + (IQ — L’U) (220)
— I + i(w — o) (w + 0) + g|uy4(w o)+ PR @ -7 (2.21)
= (w—v)A; + (W — D) Ay — iv?0(v — W), (2.22)

where A; and A, are polynomials of degree at most 4 in u, Ou, v, Jv and their
complex conjugates. Hence,

20U — w)”

(Lw — Lv)(W —v) = |w — v|*A; + (W — 0)*Ag — iu =K, (2.23)

where K is a polynomial of degree at most 6 in u, v, w, du, dv, Ow and their complex
conjugates. Remembering that L = i0, + 0%, and taking imaginary part in the two

sides of (2.23) we obtain

%atm — o + Tn(D (0w — 00)(T — ) = Tm(K). (2.24)
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Let x : R — R be a cut-off function such that
X € CI(R>7 Supp(X) - [_27 2]7 X = Lon (_17 1)7 0 < X < ]-7 |X/<l’>|2
For each n € N, define
x
Xn(7) = X (—) :

n
Multiplying both sides of (2.24)) by x, and integrating in space we obtain

%atH(w—v)\/mig + /R T (8 (9w — 90)(@ — 7)) Xnda = /R Tn(K)xnda. (2.25)

For the right hand side, we have

= )2
/Im(K)X"dx :Im/ |w—”|2A1Xnd$+Im/(@—U)QAgxndx—Im/z’zﬂM
R R . :

< x(z) for allz € R.

~Y

Xndz,

and therefore
1
/ Tn(K)xude| < |(w—0) e (141 = + | Aolli) 45 / 2O((T — @) xnde
R R

We now fix some arbitrary interval [—T7, T] such that 0 € [=T1, T5] C (=T nin, T™*)
in which we will be working from now on, and we set

R = ||| oo (11,151, x3) + [V | oo (171,72, %) -

From the fact that A; and Ay are polynomials in u, du, v, dv of degree at most 4,
for all ¢t € [T}, T»] we have

[A1]lo + [[ Azl e < C(R).
It follows that
1
/Im(K)Xnd:c < [(w = v)y/xall32:C(R) + 5 ‘/(6 —w)* (O(u?)xy + u*0xy)dz) | .
R R
By definition of x we have

|0(u?)xn| < C(R)xn,

¢ (5)] < rempfx (5) < eV

|u*0xn| < 2]~
n

Hence,

[ ntads| < lw - ovTlow + A2 | [ @ - w s
<@t = o)yl + S0 [ o ulyrds
<@Vt + S8 [ - gy
<O - )yl + S (/ <| - wwwciw)é (/ d:c)%
<c@lw- ol + S w -yl 20
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In addition, we have

/R Tn(d (0w — O0)(T — T)) x)da

/R Tin(((0w — O0)(®@ — 1)) X,)dx

1,y
/RIm ((310 — Ov)(w —v)ﬁx (E)> dx
g/](‘?w—ﬁvﬂw—vﬁ\/%dx
R n
1
< Cllow = 0vlrafl(w = v) Vx| 2

< ) ) e (2.27)

From ({2.25)), (2.26)), (2.27) we obtain that

ol ~ o)Vl < ORI = vl + < = ol (225)
< OB = VRl + S (2.29)

where we have used the Cauchy inequality |z| < Define the function g :

[_Tb TQ] by

2

9= ll(w —v)yXallz2-
Then by definition of w we have g(t = 0) = 0. Furthermore, from ([2.29)) we have

C(R)
< .
By Gronwall inequality for all ¢ € [=T},T5] we have
C(R C(R
g < \ﬁﬁ) exp(C(R)(To +T1)) < \(/ﬁ) (2.30)

Assume by contradiction that there exist ¢ and x such that
w(t, z) # v(t,x).
By continuity of v and w, there exists € > 0 such that (for n > |z|) we have
9(t) = (w = v)y/Xallz> > &

Since € > 0 is independant of n, we obtain a contradiction with (2.30) when n is
large enough. Therefore for all ¢ and x, we have

v(t,z) = w(t, x),

which concludes the proof. O]
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2.2.5 From the system to the equation
With Proposition in hand, we give the proof of Theorem
Proof of Theorem 2.1 We start by defining vg by

Vg = 8U0 + %’UQFUQ € X3<R)

From Proposition there exists a unique maximal solution (u,v) € C((Tin, Trnaz), X (R) X
X3(R)) N CY(Truins Trnaz), X (R) x X1(R)) of the system (2.13) associated with
(uo, vo). From Proposition for all t € (Thnin, Tinas) We have

v = du+ Sful’u. (2.31)

It follows that )
Lu = —iuv + §|u|4u = —iu*ou,

and therefore u is a solution of (2.1)) on (Tyin, Tmaz). Furthermore
uc C<<Tm'ma Tma:p)a Xg(R)) N Cl(<Tmm7 Tmax)a Xl(R))

To obtain the desired regularity on u, we observe that, since v has the same regularity
as u, and verifies (2.31]), we have

Ou=v— %\u|2u € C((Toin: Tonaz)s X3(R)) N C (Touins Tonae)s X1 (R))
This implies that
u € C((Tmzna Tmax)a X4(R)) N Cl((Tmina Tmaw)a XQ(]R))

This proves the existence part of the result. Uniqueness is a direct consequence from

Proposition and Proposition [2.13]
To prove the blow-up alternative, assume that 7},,,, < oo. Then from Proposition

.13 we have
im (Ju(®)x @) + o) x:@) = o0

max

On the other hand, since (2.31]) we obtain

im ([Ju(®) e + 10u() [ x1m) = 0.
It follows that
lim  [Ju(t)] x2®) = oo

t_> max

Finally, we establish the continuity with respect to the initial data. Take a subin-
terval [T, Ty C (Thuins Tinaz), and a sequence (uf) € X*(R) such that uf — ug in
X1, Let u, be the solution of (2.1)) associated with u? and define v, by

v, = Ou, + %|un|2un (2.32)
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By Proposition the couple (u,,v,) is the unique maximal solution of system
@.13) in

C((Thin, Trnaz ), X*(R) x X3(R)) N C ((Trnins Tnaz), X (R) x X' (R)).
Moreover, we have

ngrfoo (Hu” = ullzeo(ir 1, x%) + flvn = v||L°°([T1,T2]7X?’)) =0 (2.33)

Since v and v, verify the differential identity (2.32]), we have

?

O(up, —u) = (v, —v) 5

(|un|2un — ]u\Qu) )

Therefore we have

i =l . x = 0.

which completes the proof. O

2.3 Results on the space ¢ + H"2(R) for ¢ € X*(R)

In this section, we give the proof of Theorem [2.2] and Theorem

2.3.1 The local well posedness on ¢ + H*(R)

From the equation to the system

Define ,
v=20u+ %|u!2u (2.34)

Since Proposition [2.12] if u solves (2.1]) then (u, v) solves the following system:
Lu = —iu?v + §|ul*v,
Lv = uv? + 3|u|*v + u?|ul*D,

u(0) = o,

v(0) = vy := dug + %|ug|*uo.

(2.35)
Let ¢ € X*(R). Define @ = u — ¢, 0 = v — £[¢[*¢. We have if u solves (2.I) then

(u, ) solves:

(2.36)
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where
Quli0,0) = ~iCa+ 0 (- $10P5) + 3la+o'a+0) - Lie), (237
Quli,0) = (@ +9) o+ %w%)Q rylael (v 5loPe) @3
(i 9Pl o (5 51015) - SL(oPo) (2:39)

Resolution of the system

Let k > 1. We note that if ¢ € X**2 then Q; : (@, 0) — Q1(@, v, ¢) and Qy : (@, ) —
Q2(a, v, ¢) defined as in (2.37) and (2.39)) are Lipschitz continuous on bounded set of
H%(R) x H*(R). By similar arguments to the one used for the proof of Proposition

we obtain the following local well-posedness result:

Proposition 2.15. Let k > 1, ¢ € X*2 4y, 0y € H*(R). There exist Tm < 0,
Tiaz > 0 and a unique mazimal solution (4,v) of the system such that
0,9 € C((Tomin, Trmaz), H*(R)) N C*((Trnins Trnaz ), H*2(R)).  Furthermore the fol-
lowing properties are satisfied.

e Blow-up alternative. If Ty,qp < 00 (resp. Ty > —00 then

Lim ll gt + 15| ¢) = oo
t_>Tmax(7‘esp_ Troin (H ||Hk || ||Hk)

e Continuity with respect to the initial data. If ay, 9% € H*(R) are such that
[ag = tol| mx + 1|05 — Tollx — 0

then for any subinterval [Ty, Ty C (Tiin, Tinaz) the associated solution (4™, ™)

of (2.36) satisfies

JMm (1 = all oo o ey + 10" = 0l i mag 1)) = 0.

Preservation of a differential identity
Let (g, U) be defined as in section [2.3.1} By an elementary calculation, we have

?

g = Ot + §(|ﬁ0 + 0% (to + ¢) — [0[°0) + 0. (2.40)
We have the following results:

Proposition 2.16. Let ¢ € X*(R) and 1,09 € H*(R) satisfy (2.40). Then the
associated solution (u,v) obtained in Proposition also satisfy (2.40) for allt €
(Tmina Tmam) .
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Proof. We define
w:aa+%(|a+¢\2(a+¢) — [o*¢) + 0¢. (2.41)
Set u =10+ ¢, v="0+ 5|0]*), w =W+ £[p|*¢. We have
w = OJu+ %|u|2u (2.42)
Since (@,?) is a solution of (2.3€]), we have (u,v) is a solution of (2.35). We have
Lu = —iv*(v — W) + H,

where H defined by
1
H = —iu’w + §|u|4u.

By using and the previously expression obtained for Lu, we get
Lw = 0(Lu) + %L(\UPU)
:éXLu)+—%<2LOQMA2+2ﬂﬁ%024—%ﬁ8%1—1ff@5—%4ﬂ8uﬁ)
=0 (—iv*(v—w)) + 0H
+1 (H!u|2 — i |u)* (v — W) +u(du)? + u*d*u — %uZ (w*(v —w)+ H) + 2u|8u\2)
= —i0 (u2(0 1)) + e’ (5~ ) + ol (0~ w) + K,
where K is defined by
K:@H+¢Hmﬁ+m@mﬁmﬁyﬂ—éﬁﬁ+mm&&.

Using (22.42)) to replace the term Ou in K and remark that the role of w is the same
the one of v as in Proposition [2.12] we have

K = iuw* + g|u|4w + u?|ul*w.
Thus,
Lw — Lv = —id (( — 1)) + u[u*(@ — @) + %|u|4(v —w) + (K — L))
= 0 (@ — ) + u' (v — ) + %\u!4(v _ w)

3
+ iu(w? — v?) + §|u]4(w — ) + u?|ul*(w — D)

= —iu?0(T — W) + A(v — w) + B(v — ),
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where
A= —|ul* —iu(v +w),

B = —2iudu = —2iu (w - %|u|2u) = —2iuw — |u|*u’.

This implies that
L( — 7) = —i(t + ¢)?0(0 — w) + A(0 — ) + B(® — ). (2.43)
Multiplying both sides of (2.43)) by @ — 7, taking the imaginary part, and integrating

over space with integration by part for the first term of right hand side of (2.43]), we
obtain

d,_ o < (7 ~ ~ =02
1@ = 022 S (@ + @l ]|08 + 99l + [[Allz + [| Bl )| @ — Bl[7.-

By Gronwall’s inequality we obtain
t

lo—o1Z: < H@D(O)—ﬁ(O)II%zXGXP(C/ (lla+0 e (| 0u+0¢ || oo+ || Al oo +[| Bl| L) ds).
0

Using the fact that @w(0) = ©(0), we obtain w = 0, for all . This implies that

- - . -
0 =0+ (|i+ ¢[*(@+ ¢) — [¢°¢) + 0.
This completes the proof of Proposition [2.16] ]

From the system to the equation

Now, we finish the proof of Theorem

Proof of Theorem[2.3. Let ¢ € X*(R) and ug € ¢ + H*(R). We define vy € X*(R),
g € H*(R) and 9y € H'(R) in the following way:

i

U028UO+2

- - 7
u0|u0\2, Uy = ug — @, and vy = vy — §|¢’2¢-
We have )

1

fo = 0o + 5 ([0 + 0 (@ + 6) ~ [6[°) + 0.

From Proposition there exists a unique maximal solution (@, ?) € C((Trin, Tinaz), HH(R))N
CY(Tynins Trnaz), H1(R)) of (2.36)). Let uf € H3*(R) be such that

Hﬁg — aO“HQ(]R) — 0

as n — oo. Define o) € H?(R) by

i = 0y + (1 + 012 + 6) ~ 19°0) + 99,
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From Proposition there exists a unique solution maximal solution.

a", " e C((T, T ), HAR) N CH(T,, T ), L2 (R))

min’ - mazx min’ - mazx

of the system (2.36). Let [T1,T5] C (Tonin, Tmaz) be any closed interval. From [I7,
proposition 4.3.7|, for n > Ny large enough, we have 17,75 C (T, T7..)- By
Proposition for n > Ny, t € [T}, T,], we have

1

0t = 0" + S(|a" + 9 (@" + ¢) — |6°¢) + 99
By Proposition [2.15] we have

lim sup (@(0) — (t) ey + 17(0) — 90l ) = 0.

=0 ¢ [Ty, Th]

We obtain that for all ¢ € [T}, Ty, and then for all t € (Tyin, Trnaz):

0= 0u+ s(|a+ o> (@ + ¢) — |¢|*p) + 0.

N | =

This follows that
ot € C((Tomin, Trnaz ), H (R)) N C ((Thnin, Trnaz ), H*(R)).
Hence we have
i € C((Trmin, Trnaz)s H*(R)) N C*((Thmins Trnaw), L2 (R)).

Define u = ¢ + u and define v by
v=10+ 3-|gb|2gzﬁ = OJu + E|u|2u
2 2 '

Since (u, v) solves (2.36)), we have (u, v) solves (2.35)). Therefore, u € ¢+C((Trnin, Tynaz), H*(R))N
Cl((Tminv Tmax), L? (R)) solves:

1
Lu = —iu’v + §|u|4u = —iu*ou.

This establishes the existence of a solution to . To prove uniqueness, assume
that U € ¢ + C((Trin, Trnaz), H*(R)) N C*((Trnin, Trnaz ), L*(R)) is another solution
of @I). Set V =0U + L|UPU, and U =U — ¢, V =V — |¢[?¢. Thus, (U,V) €
C((Tonins Trmaz)s H'(R)) 0 C* ((Trnin, Tinaz), H*(R)) is a solution of (2.36). By the
uniqueness statement in Proposition we obtain U = @. Hence, u = U, which
proves uniqueness. The blow-up alternative and continuity with respect to the initial
data are proved using similar arguments as in the proof of Theorem This
completes the proof of Theorem [2.2] n

2.3.2 The local well posedness on ¢ + H*(R)

In this section, we give the proof of Theorem using the method of Hayashi and
Ozawa [59]. As in Section we work with the system (12.36]).
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Resolution of the system

Since we are working in the less regular space ¢+ H'(R), we cannot use Proposition
Instead, we establish the following result using Strichartz estimate.

Proposition 2.17. Consider the system (2.36). Let ¢ € X?*(R), 19,0 € L*(R).
There exists R > 0 such that if |||\ 12 + ||Tol/z2 < R then there exist T > 0 and a

unique solution (a,0) of the system (2.36)) verifying

fb, S C([_Ta T]7 L2<R>> N L4<[_T7 T]? LOO(R))
Moreover, we have the following continuous dependence on initial data property: If
(up,op) € L3(R) x L*(R) is a sequence such that ||uf — ol|s + [|0F — Toll2 — O then
for n large enough we have ||uf||2 + ||0§|l2 < R and the associated solutions (u", ™)

satisfy:
Hﬁ" — fLHLooLQQLzLLoo —+ Hﬁn — 6HL°°L20L4L°° — O,

where we have used the following notation:
L¥L? = L®([-T,T], L*(R)), L*'L* = L*[-T,T], L>°(R))

and the norm on L L*NLAL> is defined, as usual for the intersection of two Banach
spaces, as the sum of the norms on each space.

Proof. Let @1, Q2 be defined as in system (2.36). By direct computations, we have

(It + ol —[o[Y)i — 0%, (2.44)

N

Qu(@,3,6) = —i(i+ )%F — 5|0PB( +20) +

. 2 . 2 . 2
Qa(,9,0) = i (v + %w%) +id (v + %w%) - (gw%) + it o'
3 -

+ ZiloPo(li + ol = |6f*) + 5@+ @)l + oI

= S16P8((@+ o)%la+ 6 - |8P°6%) — 50°(|6I%9). (2.45)
Thus,
Qu(@, 5.0 S [ol(lal + 6 + I |al* + 6f*al + (1al +o1*la) + |s|(|al' + allsf*) +[0%|

< [ollaf? + [oll6P + [af” + |all¢|* + 0%,

Qs (1,3, )| S Il (1212 + I61°) + o (12l + lel ¢[*) + [&1(lal* + ¢[*)

+loP(lal* +[allol’) + [ol(1al® + [8°) + [oP (1" + [oP[al) + [0*(|o*¢)]
S lallo)* + [allo|° + |gllof* + |ol*o] + |al*|o] + |of*|al*
+[al*1o] + [6P|9] + 0 (8" ¢)]-

Consider the following problem

(6, 8) = S(t)(itg, ) — i /0 S(t — $)Q(iL, 5, ) ds (2.46)
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where Q) = (Q1,Q2). Let
B(ii, B) = S(t) ito, 7o) —i/OtS(t — $)Qds.
Assume that |||l z2®) + ||To||r2®) < £ for R > 0 small enough. For T' > 0 we define
the space X7 r by
Xpp = {(8,5) € (C(=T, ], IAR)) 1 LX(=T, T}, L (R)))? : (@ )|z iz < R}

We are going to prove that for R,T" small enough the map & is a contraction from
XT,R to itself.

We first prove that for R, T small enough, ® maps Xr g into X7 . Let (4,0) €
X7 r. By Strichartz estimates we have

| @ (1, D) || (Lo 2nrareeyz S || (@

S

A

0, 00)||2xz2 + |Q|l L1 r2xrir2,

+ ([[@1llzrz2 + [|Qal[z122)-

»’klbu

We have

1@z S a0l ez + 1ol|6P iz + @[ iz + |0°¢]| 112
S0l zeelllfs e + 190 el @3 oo + 1l Es oo |l Lo 2 + 1076|122
< @03 (|0 oo 2 |2 o + (2T) 2 18]| oo 2| 6]l Lo (27)
il oo ]| oo 22 + 1187012 (2T)
R

S @T): R’ + (21)3||¢]l~ R+ R+ (2T)|¢]1x= < .

for T, R small enough. Similarly, we also have

R

||C~22HL1L2 < 1

for T', R small enough. Therefore, for T, R small enough, we have
_ 3R
||®(uvv)||(L°°L2ﬂL4L°°)2 < T < R.

Hence, ® maps from X7 p into itself.

We now show that for 7, R small enough, the map ® is a contraction from Xr p
to itself.
Indeed, let (uy,vy), (ug,v2) € Xr . By Strichartz estimates we have

H‘I) U1,Ul) ®(U2,U2)H (Le° L2NLAL>)?2

—||/ (t = ) (Qur, 1) — Qluz, va)) ds| ,

(LooLQmL4Loo)2
5 ||Q1(U17U1) - Ql(u27v2)”L1L2 + ||Q2(U1,01) - Qz(UQ,UQ)Hle-

Using the same kind of arguments as before we obtain that ® is a contraction on
X7 r. Therefore, using the Banach fixed-point theorem, there exist 7' > 0 and
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a unique solution (@,v) € C([-T,T], L*(R)) N L*([-T,T], L(R)) of the problem
(2.46). As above, we see that if h, & € C([-T,T), L*(R)) N L*([-T,T], L°(R)) then
Q1(h, k, ¢),Q2(h,k,¢) € LY[-T,T],L*(R)). By [17, Proposition 4.1.9], (u,0) €
C([-T,T), L*(R)) N L*([-T, T}, L>(R)) solves if only if (a, ) solves (2.36)).

Thus, we proved the existence of a solution of . The uniqueness of solution of
(2.36) is obtained by the uniqueness of solution of ([2.46)).

It is remains to prove the continuous dependence on initial data. Assume that
(uf,vd) € L*(R) x L*(R) is such that

lug — Toll 2wy + llvg — Doll 2wy — O,
as n — oo. In particular, for n large enough, we have
Jug |22 + oGl 2@ < R.

There exists a unique maximal solution (u™,v™) of system ({2.36]), and we may assume
that for n large enough, (u", v™) is defined on [T, T]. Assume that T" small enough
such that

H/&HLOOLQOLALLOC + H{]”LOOLQQLALOO —+ Sup(HUnHLooLQQLzLLoo + ||Un||L°°L2ﬂL4L°°) < 2R
n

(2.47)
We have (u,0) is a solution of the following system

(6,5) = S(t)(din, 7o) — /0 S(t — 5)(Qu (.. 0), Qa(is 3, 0)).

Similarly, (u",v™) are solutions of the following system

(u",0") = S(t)(ug, vg) — Z/o S(t = s)(Qi(u", 0", 9), Qa(u”,v", 9)).
Hence,

(u" — u, 0" — )
= S(t)(ug - 7:607@3 - f}U) - Z/() S(t - S)(Ql(aaﬁ>¢> - Ql(unavn7¢)a Q2(ﬁ71~}7¢) - Q2(un’vn’ ¢))

Using Strichartz estimates and (2.47)), for all ¢t € [T, 7] and R, T small enough, we
have

||Un — 'l~L||LooL2mL4Loo + ||’Un — f)HLooLQmLALLoo
S [lug — @ollr2 + [lvg — Dol 22
+ HQ1</&?®7¢) - Ql(unvvn7¢)HL1L2 + HQQ(avﬁa ¢) - QQ(U”,U”,¢))“L1L2
S llug = tollz2 + [[vg — vol|z2
+ R(”un - {LHLOOLQQLALLOO + ”Un — ’ﬁ”LooLZm[ﬁLoo).
For R < % small enough, we have

1 N N N N
5(“'&“ — uHLOOL2ﬁL4L°° + ||Un — U||LooL2mL4Loo) < ||U0 — Ug”L?(R) + HUO — U6L||L2(]R)

Letting n — 400 we obtain the desired result. O]
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From the system to the equation
Now, we finish the proof of Theorem

Proof of Theorem|[2.3. Let ¢ € X*(R) be such that [|0¢]z2 is small enough. Let
up € ¢ + H'(R) be such that [[ug — @z is small enough. Set vo = dug + £|uo|*uo,
iy = ug — ¢ and Ty = vy — £|p|*¢. We have

i

Up = g + E(Wo + o2 (@0 + ¢) — |¢°p) + 9¢.
Furthermore, 1y € H*(R), 9y € L*(R) satisfy:

ol 22y + |0l z2@®) S ol m) + 1|0]| L2,

which is small enough by the assumption. By Proposition there exist 7" > 0
and a unique solution (@,v) € C([-T,T], L*(R))NL*([-T,T], L°>°(R)) of the system
(2.36). Let uf € H*(R) satisty ||uff — @ol/ g r) — 0 as n — 4o00. Set

o = 0+ - (5 + 0P + 0) — |6f) + 00

Let (u",v™) be the H?(R) solution of the system (2.36]) obtained by Proposition [2.15]
with data (uj,v}). By Proposition we have

?

vt = 0u" + S(ju" + P (" + ) — [6°¢) + 90 (2.48)

Furthermore,
|ug — @ol| L2y + llvg — TollL2r) — 0.

From the continuous dependence on the initial data obtained in Proposition [2.17]
(u™ v™), (@, 0) are solutions of the system (2.36) on [—T,T] for n large enough, and

as n — oo. Letting n — oo on the two sides of (2.48), we obtain for all t € [T, T
N _
0 =0+ (|u+ (@ +¢) - [¢°9) + 09, (2.49)
which makes sense in H~!(R). From (2.49)) we see that du € C([-T,T], L*(R)) and

([2.49) makes sense in L*(R). Then @ € C([-T,T], H'(R)) N L*([-T,T], L>(R)).
By the Sobolev embedding of H'(R) in L>°(R) we obtain that

1+ 6 (@ + ¢) = 6P @l par= < M@l pare + Nlall@|* |z~
< allgageellillzoeroe + @l pape @ Lo oo < 00

Hence, |a+¢*(a+¢) —|¢]*¢ € L*L>®. From (2.49)) we obtain that 9a € L*L> which
implies @ € L*([-T,T],W"*(R)). Set u = @+ ¢, v = 0 + £[|*¢, then u — ¢ €
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C([-T,T), H\(R)) N LY([-T,T],W*(R)) and v — i|¢|*¢ € C([-T, T}, L*(R)) N
LY[-T,T], L>(R)). Moreover,

v=0u-+ 3|u]2u.
2
Since (u,v) solves (2.35]), we have
1
Lu = —iuv + §|u|4u = —iu*ou.

The existence of a solution of the equation follows. To prove the uniqueness
property, assume that U € C([-T,T),¢ + H'(R)) N L*([-T,T], ¢ + W'>(R)) is
another solution of the equation (2.1I). Set V' = 9U + £|U|*U and U=U~-¢,
V =V —i¢[?¢. Hence U € C([-T,T), H'(R)) N L*([-T,T],W"*(R)) and V €
C([=T,T], L*(R)NLA([~T,T], L*(R)). Moreover, (U, V) is a solution of the system
(2:36). By the uniqueness of solutions of (2.36]), we obtain that U = 4. Hence,
u = U, which completes the proof. O

2.4 Conservation of the mass, the energy and the
momentum

In this section, we prove Theorem . Let o € R and u € gy + H?*(R) be a solution
of (2.1)). Let x and xr be the functions defined as in (2.5) and (2.7). We have

1 r\\2 L \E 1
Xl L2) = (/Rﬁ <X’ (}—%>> da:) = EHX/HLz(R) — 0asR — 0co.  (2.50)

Similarly, for each a € R, we have
HX;,RHLQ(]R) — 0as R — oo. (2.51)

By the continuous dependence on initial data property of solution, we can assume
that ug € qo + H*(R), so that

u e O((Tmm7Tmax)a qo + Hg(R))

It is enough to prove conservation of generalized mass, conservation of energy ({2.8)
and conservation of momentum ([2.9) for any closed interval [Ty, T1] € (Tmin, Trnaz)-
Let Ty < 0, T1 > 0 be such that [Ty, T1] C (Toin, Trnaz)- Let M > 0 be defined by

M = sup ||u— qollm3m)-
tE[T(),Tl}

2.4.1 Conservation of mass

Multiplying both sides of (2.1) by @ and taking imaginary part to obtain

Re(uut) + Im(0*ut) + Re(Ju*udu) = 0.
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This implies that

0= 50U(uP) + O(Tn(@um) + J0(|ul")
= S0P ~ &) + 0Tn(@um) + 10(1ul* — af).

By multiplying both sides by g, integrating on space, and integrating by part
we have

(lul* =)

1
0= 8,5/ —(Juf* = ¢)xrdx — /Im(@uﬂ)x’R — / ~————xgdx
R 2 R R 4
1 1
=0 [ S0P = @xade — [ (Tmoum + Gl - o)) e, 252
R R
Denote the second term of (2.52)) by K, using (2.50), we have
1 1
K| < 1 Zm(0uw) + 7 (el = go) 22 lIXRllz> S C<M)E — 0as R — oc.
2

Thus, by integrating from 0 to ¢ and taking R to infinity we obtain

R—o0

. 1 1
i ([ 00 = @t — [ Sl - @xade) =0, (25)
R R

Similarly, for each a € R, we have

R—o0

. 1 1
lim (/ §(|u]2 — qé)xa,Rdx — / 5(\140]2 — qg)xadex) = 0. (2.54)
R R

as R — oo. This implies that m™(u(t)) and m~(u(t)) are conserved in time. In
particular, if m™*(ug) = m~(ug) = m(ug) then m™(u(t)) = m~(u(t)) = m(u(t)) =
m(up). This completes the proof of conservation of mass.

2.4.2 Conservation of energy

Now, we prove the conservation of the energy. Since u solves ([2.1)), after an elemen-
tary calculation, we have

8,(|0u)?) = 8 (2Re(Dudyu) + Re(u?(90)?) — |0ul?|u|? — |u|*Tm(wdu))
+ [u|*0Tm(udu) + 2Zm(|u|*Owuy). (2.55)
Recall that we have
OTn(Out) = —%@t(w) _ i@(|u|4). (2.56)
Furthermore,

Oy Im(|u*udn) = 4Tm(u|u|*0u) + OTm(|u|*uda).
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Thus,
2 Tm(|ufw6) — % (0,Tm(|u[?ud) — OTm(jul>udy@)) . (2.57)
Combining (2.55), and we obtain
1
o,(|0uf) = 0 (m(auam) + Re(u2(07)) — uf2|Ouf® — [u|*Tm(Ou) — §Im(|u|2u0tﬂ)>
1 I R B
+ §8tIm(|u| uou) — =0(|ul”) — gat(]u| ).

8

Hence,
1 1
o (100 — 5Zn(uPu — o) + 51l - )
1 1
=0 (27&;(81@,@) + Re(u?(00)%) — |ul*|0u|® — |u|*Tm(Oua) — §Im(|u|2u8tﬂ) - §(|u|8 - qg))

1 .
+ §qS’Im8t8(u — qo)-

Multiplying both sides by x g, integrating in space and integrating by part we obtain
1 1
or [ (10 = Snl(lufu — 0w + G0l* = ) ) xud
R
1
- — / Xr (QRe(auatﬂ) + Re(u?(01)?*) — |ul?|0u|?* — |u|*Tm(Ouw) — §Im(|u|2u8ﬂ)
R

1 3 -
_§(|u|8 _ qg)> dr — %Im@t/ (u— QO)X/R dzx.
R

Integrating from 0 to ¢ we obtain
[ (100 = 5B = o) + G0l - ) ) xndo (2.58)
- [ (10w = Sz (uoluo — @om) + Gllul® = o)) xwde @259
— /0 t /R X (2Re(OudyT) + Re(u(9)%) — |ul?|0u)? — [u|*Tm(Oun)
—%Im(|u!2u8tﬂ) - é(\ul8 - q§)> dar ds (2.60)
b (zm /R 0= q0)oxndz — Tn /R = dx) | (2.61)

Denoting the term (2.60) by Ag, using (2.50)), we have
|Ar| < IRl 2]|2Re(0uds) + Re(u?(01)?) — |ul*|0ul® — |u|*Tm(Ouw) (2.62)

1 _ 1
- QIm(IU\QuatU) - gw — )|l (2.63)
< CM)|[¥allzz — 0 as R — . (2.64)
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Moreover, using (2.50|) again, we have

Im/ (u— qo)xr dx
R

< lu = qoll 2 lIxglle S C(M)|IxXkl2 — 0 as R — oc.
(2.65)

< luo — ol ezl X2 S C(M)|Xgll2 = 0 as R — co.
(2.66)

Im/ (up — QO)X/R dx
R

To deal with the term (2.58]), we need to divide it into two terms. First, using
u € qo+ H3*(R), as R — oo, we have

/R (|0u|2 - %Im((|U|2u — qg’)@ﬂ)) Xrdx — /R (|8u|2 — %Im((lulQU - qg)aﬂ)) dz.

(2.67)
Second, by easy calculations, we have

1 1
5 [0l = drn—g [l = dxnds (269

R R

1
= E/R [(Jul* = @) (Jul* + gg|ul* — 2q5) + 3a5([ul* — 4§)] xr dx (2.69)

1

~ 5 | W = ol + ol = 2a8) + 3l aal? = G3)] i

1 1
= & [0l = @2 + 2xndo — [ (o = ol + 2xnde (270

R R

'S 2 2 % 2 2

+ 5 [l = g@)xrde = - | (luol® = gg)xr da. (2.71)
R R
Denote the term (2.70) by Bg, we have
1
B~ [ (= a)(ul’ + aEluf = 2a8) do
1
~ 5 [ ol = @) (lual* + ol — 268) o (2.72)
R

as R — 4o0. The term (2.71) converges to 0 as R — oo by (2.53). Finally, we have
. 1 1
lim (= [ (Jul® = go)xrde — = [ (Juol” — g5)xr dz
R—o0 6 R 6 R
1 1
=5 [ = @R+ 2y do = G [ (o = @l + 24 e 273)

Combining (2.73) and (2.67)) we have

I%im ( the term (2.58) — the term (2.59))
—00
1 1
= [ 1ou = STn(uPu = a)om) o+ 5 [ (ul? = (1l +265) da

1 - 1
- / Ouol? — TP — )07 dr — / (luol — @) (Juol? + 22) de (2.74)
R R
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Combining (12.58))-(2.66]), (2.74), we have

1 1
/ [Ouf* = STm([ul*u — ¢3)0w) dx + = /(IUI2 —q3)*(Jul* + 245) dx
R

R

1 1
— / |Oug|* — éIm(|u0\2u0 — ¢2)Oug) dx + G /(|u0\2 — @2)*(Juol® + 24¢3) d.
R R

This implies (22.8)).

2.4.3 Conservation of momentum

Now, we prove (2.9). Multiplying both sides of (2.1)) by —0u and taking real part

we obtain
0 = —Re(iu0u + 0*udu + iu*(0u)?)
— Tin(w,07) + Tn(u?(9)?) — %8(|8u\2). (2.75)
Moreover, by an elementary calculation, we have
O Im(udu) = 2Zm(u0u) + 0Zm(udyu).
Replacing Zm(u,0u) = L (8,Zm(udu) — 0Im(udyu)) in (2.75)), we obtain that

0— (%atzmmam - %azmmam)) + 2Re(wd ) Tn(ud) — S0(]0uP)

1
4

1

= 0| Entuom) — 0ul* = )] + 0 |Zallufudm) — FlouP — S1ul - )|

Multiply both sides by xg, integrating on space and integrating by part, we have

1

0= 3t/ FIm(uﬁﬂ) — ~(Ju]* - qé)} Xrdr — / {Im(\u|2u8ﬂ) - 1|au|2 !
P 4 . 2

Sl = a8)| Xt

1 1 1
=0 [ | ntuom) — {u ~ @ - SablluF - )| xado
R
1 1
- [ [t Gloup - §1ut - )| X (2.76)
R
Denoting the second term of (2.76) by Dg, we have
. 1 1
1Dl < Zn(uu0) ~ jouf® — < (Jul® = )|l S CODIfliz 0
(2.77)

as R — oo. Integrating from 0 to ¢ the two sides of (2.76) and taking R to infinity,
using (2.77) and (2.53), we have

/ Ezmwaa)—iuuﬁ—qgﬂ i [ Bzm(uoau—o)—}l(\uoy?—qgf dr. (2.78)

We thus obtain the conservation of momentum, which completes the proof of The-

orem [2.4]
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2.5 Stationary solutions

In this section, we give the proof of Theorem To convenience for readers, we first
introduce a fundamental lemma which is a classical version of the Cauchy-Lipschitz
theorem:

Lemma 2.18. Let C1,Cy € R and f : R — R be a C* function. There exists a
unique real valued C? local solution of following equation

Ugy = f(u)u
u(0) = 1, (2.79)
uz(0) = Cs.

Remark 2.19. Let C,,C5 € C and f be considered as C! function from R? to R2.
By using Picard’s uniqueness and existence theorem for system equations, we obtain
the existence and uniqueness of complex valued solution for (2.79). However, the
Lemma [2.18]is sufficient for our analysis in this paper.

Now, we give the proof of Theorem [2.7] We use the similar of variable changing
as in |94, Proof of Proposition 1.1].

Proof of Theorem[2.7. Let ¢ be a nonconstant solution of (2.10) such that m =
inﬂfg |¢(x)| > 0. From (2.10), we have ¢ € X?(R). Using the assumptions on ¢ we
re

can write ¢ as A
¢(x) = R(z)e”™

where R > 0 and R, 0 € C*(R) are real-valued functions. We have

¢ = (R, +i0,R),
Guw = €7 (Ryy + 2i R0, + iRO,, — RO?).

Hence, since ¢ satisfies (2.10)) we obtain
0= (Rue — RO? + R*0,) +i(2R.0, + RO, + R*R,).
This is equivalent to

0 = R,, — RG> + R0, (2.80)
0=2R,0, + RO,, + R*R,. (2.81)

The equation (2.81) is equivalent to
2 | "
Hence there exists B € R such that

1
B = R%0, + ZR“. (2.82)
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This implies

B R?
Substituting the above equality in (2.80)) we obtain
B RN\ (B R
0= Mo R(ﬁ‘z) o (ﬁ—z)
B?> 5R® 3BR
Re =5~ 15+ 5 (2.84)

We prove that the set V = {z € R: R,(x) # 0} is dense in R. Indeed, assume there
exists # € R\ V. Thus, there exists  such that B(z,e) € R\ V. It implies that for
all y € B(x,¢), we have R,(y) = 0so R = Cy on B(z,¢) for some constant Cy. Let
zo € B(z,¢) then R(zy) = Cy and R,(zy) = 0. By Lemma[2.18, R = Cj,. By (2.83),
0, is constant. Thus, ¢(x) is of form Ce®, for some constants C, o € R. If a = 0,
¢ is a constant and if a # 0 ¢ is not in X'(R), which contradicts the assumption of
¢. From (2.84)), we have

B2 5R® 3BR
0 =1 (Rm‘ﬁ‘ﬁ+7)
df1,., B> 5 ., 3B
—@{5 st et T
Hence there exists a € R such that
1, B* 5 4 3B,
“=3f o Tttt
This is equivalent to
5 3B
0=R!R*+B*~ —R+ "—R"— 2aR?
48 2
1 5 3B
= —[(R*,]*+B?> - —R}+ —R*— 2aR".
Set k = R?. We have
1 5 3B
0= Zki + B? — Ek‘* + 7/& — 2ak. (2.85)

Differentiating the two sides of (2.85)) we have

kow 5 s

On the other hand, since k, = 2R, R # 0 for a.e x in R, we obtain the following
equation for a.e x in R, hence, by continuity of k, it is true for all x in R:

koo D 4
== 2 Bk — 2a. 2.
0=~ 5k +3Bk~2a (2.86)
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Now, using Lemma we have k — 2v/B € H*(R). Combining with (2.86) we
obtain a = %g. Set h =k — 2¢/B. Then from (2.86) h € H*(R) solves

0 = hyy — 2h% — 5v/Bh? — 4Bh,
h > —2v/B,
Since h € H*(R), there exists xyp € R such that h,(x¢) = 0. Indeed, if h, does not

change sign on R then |h(—00)| > 0 or |h(c0)| > 0. This contradicts to h € H*(R).
Multiplying both sides of (2.87)) by h, we obtain

(2.87)

1 9 ) 4 5V B 3 9
0= 2633<hx) 243z(h ) 3 0o (h*) — 2B, (h7).
Since h € H3(R) we have h(oo) = h,(oc) = 0 and hence,
1 o 9.4 OVDB 4 9
— = — — 2Bh*. 2.
2(hgc) 5+ 3 h® + 2Bh (2.88)

Using hy(zo) = 0, since (2.88)), we have h(xzg) = 0 or h(zg) = 3(—5 =+ V10)VB. If
h(zo) = 0 then by using Lemma we have h = 0, this is a contradiction. Since
h > —2V/B, we obtain h(zy) = 2(—5+v/10)v/B. Define v(z) = h(z +x). We have

0= Vgp — 20% — 5v Bv? — 4B,
v(0) = (=54 V10)VB, (2.89)
v,(0) = 0.

Using Lemma there exists a unique solution v of (2.89). Moreover, we can
check that the following function is a solution of (2.89):

-1
v(x) = :
/ 5 5
n—Bcosh(Q\/Ex) + 575
Hence,
—1
h(z) =

\/ 725 cosh(2v/B(x — x¢)) + 125/5

This implies

—1
k=2VB+h=2VB+ :
\/ 725 cosh(2v/B(z — x0)) + 125’/5

Furthermore, using 6, = % — %, there exists 6y € R such that

9(:5):90—/;(%—9 dy.

Now, assume that ¢ is a solution of (2.10) such that ¢(cc) = 0. We prove ¢ =0 on
R. Multiplying both sides of (2.10) by ¢ then taking the imaginary part we obtain

— 1
axl'm(gbx(b) + Za’c(|¢|4) =0
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On the other hand, ¢(o0) = ¢.(00) = 0 then on R we have

Tn(de0) + }l|¢|4 = 0. (2.90)

If there exists yo such that ¢,(yo) = 0 then from we have ¢(yo) = 0. By the
uniqueness of Cauchy problem we obtain ¢ = 0 on R. Otherwise, ¢, does not vanish
on R. From now on, we will consider this case. Multiplying both sides of by
¢, then taking the real part, we have

1d - —
= §%|¢x’2 — 2Re( 0P ) Iim(Pp.)
1d 1
= 2Ll - aul) ol

_ ALy e L
= (3l - her)

1
|¢:Jc|2 - 6‘¢|6 =0.

Hence, since ¢, is non vanishing, ¢ is also non vanishing on R. We can write ¢ = pe®
for p > 0, p,0 € C*(R). Similar to (2.80) we have

This implies that

0= —pb + puw + 0y (2.91)
Replacing ¢ = pe? in (2.90) we have
0= p*0, + lp4.
4
Then 6, = 5p?, replacing this equality in (2.91)) we obtain
0= pr — 1%05-

Multiplying both sides of the above equality by p, we obtain

) d (1 D
0= poepe — — K = 7 \5 2 —p° .

Hence,
o 5
T
Moreover, ¢ is non vanishing on R then p > 0 and then p, is not change sign on R.

If p, > 0 then since p(oco) = 0 we have p < 0 on R, a contradiction. Hence, p, < 0

and p, = —/%p°. From this we easily check that
1
p(0)2 +/5/12z

which implies the contradiction, for the right hand side is not a continuous function
on R. This completes the proof. O

pi(x) =
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Lemma 2.20. Let B > 0 be the constant given as the above. The following is true:
k—2VB e L*(R), ke X*(R).

Proof. Using ¢ € L*(R) we obtain k € L>(R). On the other hand, since ¢ € X?(R),
we have ¢, € L*(R), ¢., € L*(R) and it easy to see that

k‘2
[6al* = 37 + k6% € L'(R),

|Pua|® = b + 6 \/E2+‘ b —\/E02——k"g 2eLl(R)
This implies
k
—2_ ¢ [*(R) and V&b, € L*(R
e IR) (®)
k.0 k k2
2 4 0VE € LA(R) and —% — VEO? — —2_ ¢ L*(R).
N/ (R) Wi ™ (R)
Using /m < k < ||k||z=, 0, = 434;’“2 € L*(R), k, = 2RR, € L*>( indeed |p,|* =

|R.|* + |RO,|? € L>=(R)) we have

k, € L? and 0, € L2,
0., € L? and k,, € L.

By using 0, = 43476’“2 € L*(R), we have 4B — k? € L?(R). Thus, B > 0 and
2V B — k € L*(R). If B = 0 then k € L*(R), hence, R € L*(R). Which contradicts
to the assumption m > 0. Thus, B > 0. It remains to prove that k.., € L*(R).

Indeed, from ¢,,, € L*(R) we have

2

Kose  n e L'(R) (2.92)

2vk
where M, N are functions of 0,0,,0.., k, k., ky. We can easily check that M, N €
L*(R). Hence, from (2.92) and the facts that 6, € H'(R), k € X%(R), k bounded
from below we obtain 0,.,, kzze € L?(R). This implies the desired results. O

From now on, we will denote ¢p is the stationary solution of (2.10) given by
Theorem [2.7] with 6, = 0. We have

o5 ="V, (2.93)
k(z) =2VB -1 : 2.94
) ! \/nchosh(Q\/E:B) + 125’/5 290
O(z) =— /xoo % - # dy. (2.95)

We have the following asymptotic properties for ¢p at oco.

63



Proposition 2.21. Let B > 0 and ¢p be kink solution of (2.1). Then for x > 0,

we have
o —\/ 2\/5\ < e~ VBz,

As consequence ¢ converges to \/2v/B as x tends to co and there exists limit of
¢ as x tends to —oo.

Proof. Since (2.94) we have

|k —2vVB| < e 2VBe,

Hence, for all x € R we have

[¢5(2) =\ 2VB| 5 |7 /k(x) = VE@)| + [Vk(z) - \/2VB (2.96)

1 .
S [IKll7 €7 = 1] 4 e7VBe (2.97)

Moreover, for x > 0, we have

. *|B
|eze(r)_1|<|g(x>|</ __E’ dx

(e}
</
x

5/ ’k—2\/§’ dmﬁ/ e_QExdx§6_2@”.

Combining with (2.97) we obtain

p5(z) — \/2VB| S e VP

As consequence ¢p converges to v/ 2v/B as z tends to co. Since (2.94), we have
12

|k —2vB| € L'(R) and k > (2— 152;\/5) VB. Thus, 8 — & = 1528 ¢ [L(R).

Hence since (2.95) we have

o= [ (i)

Hence,
*“( B k
oo = (= [ (55 =5 ) V2
This completes the proof. n
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Chapter 3

On the derivative nonlinear
Schrodinger equation on the half line
with Robin boundary condition

3.1 Introduction

In this chapter, we consider the derivative nonlinear Schrédinger equation on [0, +00)
with Robin boundary condition at 0:

Wy + Vg = £|0P0, — 2027, — S|v|*v  for z € Ry,

v(0) = ¢, (3.1)
0,v(t,0) = av(t,0) VteR,

where o € R is a given constant.
The linear parts of (3.1)) can be rewritten in the following forms:

10y +ﬁav =0 for x € Ry,
v(0) = o,

where H, are self-adjoint operators defined by

H,: D(H,) c L*(R,) — L*(R,),
Hott = gy, D(H,) = {u€ H}Ry):u,(0%) = au(0%))} .

We call et : R — L(L*(R")) is group defining the solution of (3.2).

The derivative nonlinear Schrédinger equation was originally introduced in Plasma
Physics as a simplified model for Alfvén wave propagation. Since then, it has at-
tracted a lot of attention from the mathematical community (see e.g [24], 25| 57, 58],
60, 68, 108, 109]).

Consider the equation (3.1)), and set

u(t,z) = exp (%/OO |v(t,y)|2dy) u(t,z).
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Using the Gauge transformation, we see that u solves
iy + U = 10, (|u|*u), tE€R, z € (0,00), (3.3)

under a boundary condition d,u(t,0) = awu(t,0) + 2|u(t,0)|*u(t,0). In all line case,
there are many papers to deal with Cauchy problem of (see e.g [59, I11L 112]).
In [59], the authors establish the local well posedness in H'(R) by using a Gauge
transform. Indeed, since u solves on R, by setting

bty =exp (i [ JutePay ) ute.o),

—00

k= h, + %|h|2h, (3.4)

we have h, k solve

(3.5)

ih + hyy = —ih2k,
ik, + kyp = ik2h.

By classical arguments, we can prove that there exists a unique solution h,k €
C([0,T], L*(R)) N L*([0, T], L>(IR)) given hg, ko € L*(R) are satisfy (3.4). To obtain
the existence solution of (3.1)), the authors prove that the relation satisfies for
all t € [0,T]. Thus, if we set

utt.) = oxp (i [ Jhie.o)dy ) nie.o),
then v € C([0,T], H'(R)) solves (3.1). In [I], the authors have proved the global
well posedness of given initial data in Hz(R). In half line case, [L16] Wu prove
existence of blow up solution of under Dirichlet boundary condition, given
initial data in ¥ := {uy € H*(RT), zuy € L*(R")}. In this paper, we give a proof of
existence of blow up solution of under Robin boundary condition.

To study equation (3.1), we start by the definition of solution on H*(R"). Since
contains a Robin boundary condition, the notion of solution in H*(R") is not
completely clear. We use the following definition. Let I be an open interval of R.
We say that v is a H'(R™) solution of the problem on [ if v e C(I, HY(R"))
satisfies the following equation

_ t
u(t) = e'flaty —z'/o eiH‘l(t—S)g(v(s)) ds, (3.6)

where ¢ is the function defined by

Let v € C(I, D(H,)) be classical solution of (3.1]). At least formally, we have

1
SOu[oP) = =0, Zm(v,7).
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Therefore, using the Robin boundary condition we have

O (% /000 v]? dx) = —ZIm(v,v)(00) + Zm(v,v)(0)
= ZIm(v,v)(0)
= aZm(|v(0)]*)
= 0.

This implies the conservation of the mass. By an elementary calculation, we have
O | |v |2_i|v|6 = 0, | 2Re(v U)—l\v|2|v !2—1—11)262
t T 16 T Ut 2 - 2 > .

Hence, integrating the two sides in space, we obtain

2 1, % _ 3 1 , , 1 )
O (/R+ g |* d — 1_6|”| dx) = —2Re(v,(0)7:(0)) + 5|v(0)| u,(0)|? — 5U(O) 0,(0)

2

Using the Robin boundary condition for v, we obtain

2 Liys = —2aRe(v(0)v = —ad(|v(0)?
a(AJ%wm—EMdQ—-zndmmm» Al (O)P).

This implies the conservation of the energy.

In this paper, we will need the following assumption.

Assumption A. We assume that for all ¢ € H'(RT) there exist a solution
v € C(I, H(RT)) of for some interval I C R. Moreover, v satisfies the

following conservation law:

1
M(v) = 5 lollinge) = M(g),

1 1 o
Bv) = 3lleeliage) = g5lvlisn + SO

The existence of blowing up solutions for classical nonlinear Schrodinger equa-
tions was considered by Glassey [45] in 1977. He introduced a concavity argument
based on the second derivative in time of ||zu(t)||3. to show the existence of blow-
ing up solutions. In this paper, we are also interested in studying the existence of
blowing-up solutions of (3.1). In the limit case &« = 400, which is formally equivalent
to Dirichlet boundary condition if we write v(0) = 1¢/(0) = 0. In [116], Wu proved
the blow up in finite time of solutions of with Dirichlet boundary condition
and some conditions on the initial data. Using the method of Wu [I116] we obtain
the existence of blowing up solutions in the case a > 0, under a weighted space
condition for the initial data and negativity of the energy. Our first main result is
the following.

Theorem 3.1. We assume that Assumption A holds. Let o > 0 and ¢ € 3 where
Y= {u € D(H,),zu € LQ(R+))}

such that E(p) < 0. Then the solution v of (3.1) blows-up in finite time i.e Ty >
—00 and Thgr < +00.
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2

Remark 3.2. In (3.1)), if we consider nonlinear term i|v|?v, instead of £|v|*v, — 0?7, —
2 |v|*v then there is no conservation of energy of solution. Indeed, set
utt.) = ottn)eww (< [otnPay).
If v solves
g+ Vge = 1|00y,
0,v(t,0) = av(t,0)
then u solves 4 '
Uy + Ugy = S|ulPu, — 20T, — |ultu, (3.7)
dpu(t,0) = au(t,0) — f|u(t, 0)[*u(t, 0). '

By an elementary calculation, since u solves (3.7)), we have

1 1 1
O (|u1\2 - 1—6]u|6> = 0, (27&(%@) — §|u|2|uz|2 + éuzu_f) :

Integrating the two sides in space, we obtain

2 L6 _ _ 1 9 s 1
) (/}R+ [ual” = 75 lul dx) = —2Re(us (0)7(0) + S[u(0)* s (0)* = Su(0)*u(0) .

Using the boundary condition of u, we obtain

2 1 [§ _ (M 1 2
or ([ hua? = Jglulde ) = ~20Re(u(0)ud0) - SZ(u(0)u0) 00

where A = —1Zm(u(0)]u(0)[u:(0)) + 5|u(0)|* <a2 + 2= |u(0)* = (a + i\u(O)\2)2>.
Moreover, we can not write A in form 9;B(u(0)), for some function B : C — C.
Then, there is no conservation of energy of u and hence, there is no conservation of
energy of v.

The stability of standing waves for classical nonlinear Schrodinger equations was
originally studied by Cazenave and Lions [18] with variational and compactness
arguments. A second approach, based on spectral arguments, was introduced by
Weinstein [114, 115] and then considerably generalized by Grillakis, Shatah and
Strauss [49, 50] (see also [31], [32]). In our work, we use the variational techniques
to study the stability of standing waves. First, we define

1

1
Su®) 1= 5 |I0allFaqmey + wlltllEaesy + alv (O] = = Iolozey,

3
Ko(v) = llvallze@s) + wllvllzz@e + alv(O)] = fellollzoes)-
We are interested in the following variational problem:

d(w) == inf {S,(v) | K,(v) =0,v € H'(R")\ {0}} . (3.8)
We have the following result.

68



Proposition 3.3. Let w,a € R such that w > o?. All minimizers of (3.8) are of
form e€®p, where 0 € R and ¢ is given by

Y= 2\4/Zsech% 2v/wr + tanh ™! -« .
Vw

We give the definition of stability and instability by blow up in H'(R"). Let
w(t,z) = e“'y(r) be a standing wave solution of (3.1]).

(1) The standing wave w is called orbitally stable in H'(R™) if for all £ > 0, there
exists 0 > 0 such that if vy € H'(R") satisfies

|vo — @l mm+y < 6,
then the associated solution v of (3.1) satisfies

N i
btlelﬂgérellf&uv(t) e’ ollmmyy <e.

Otherwise, w said to be unstable.

(2) The standing wave w is called unstable by blow up if there exists a sequence
(¢n) such that lim ||, — ¢| g1 r+) = 0 and the associated solution v, of (3.1)
n—oo

blows up in finite time for all n.
Our second main result is the following.

Theorem 3.4. Let a,w € R be such that w > o?. The standing wave €™y, where o
18 the profile as in Proposition solution of (3.1)), satisfies the following properties.

(1) If a < 0 then the standing wave is orbitally stable in H*(RT).
(2) If a > 0 then the standing wave is strongly unstable.

Remark 3.5. To our knowledge, the conservation law play an important role to study
the stability of standing waves. However, the existence of conservation of energy is
not always true (see remark [3.2). Our work can only extend for the models with
nonlinear terms provide the conservation law of solution.

This paper is organized as follows. First, under the assumption of local well
posedness in H'(RT), we prove the existence of blowing up solutions using a virial
argument Theorem [3.1] In section [3.2.1] we give the proof of Theorem Second,
in the case a < 0, using similar arguments as in [23]|, we prove the orbital stability
of standing waves of (3.1). In the case a > 0, using similar arguments as in [71],
we prove the instability by blow up of standing waves. The proof of Theorem is
obtained in Section 3.2.2]

3.2 Proof of the main results

We consider the equation (3.1)) and assume that Assumption A holds.
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3.2.1 The existence of a blow-up solutions

In this section, we give the proof of Theorem using a virial argument (see e.g [45]
or [I16] for similar arguments). Let o > 0. Let v be a solution of (3.1). To prove
the existence of blowing up solutions we use similar arguments as in [116]. Set

I(t) = /000 22|v(t)|? d.

ult, ) = v(t, 7) exp (—% / P dy> (3.9)

be a Gauge transform in H'(R, ). Then the problem (3.1]) is equivalent with

{z’ut + Uy = i|u|?uy, (3.10)

5 (0) = au(0) + £|u(0)[*u(0).

The equation (3.10) has a simpler nonlinear form, but we pay this simplification
with a nonlinear boundary condition. Observe that

I(t) = / 2 |u(t)]? dx = / 22|v(t)|? d.
0 0
By a direct calculation, we get
Ol (t) = 272e/ u(t, v)Ou(t, z) do = 27?5/ 22U (iU + |ul?uy) dr  (3.11)
0 0
o0 1 o0

= QIm/ 2xuu, dr — —/ 2x|u|* dz (3.12)
0 2 Jo

= 4Im/ ru, T dz —/ x|u|* dz. (3.13)
0 0

Define o
J(t) = Im/ ru,ude.
0
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We have
O J(t) = /OOO Ty dx + /OOO TUUL d
= —TIm /00 U, dr — Tm /Oo(xﬂ)xut dx
0 0
= —2Tm /000 TU, dr — TIm /OOO wu dx
= —2Tm /OO Tl (U + |u|*uy) do — Tm /OO Uity + |u|*u,) dz
0 0
= —2Re /000 TUpUgy AT — ’Re/ooo Wy dv — Im /000 |u|?u, da
__ /oo 20| dr — Re(Tiu)(+00) + Re(Tiu, )(0) + Re/oo Wy do — T /Oo [P,
0 0 0
_ /OOO o ? dz + Re(T(0)(0)) + /Ooo o ? dz — T /Ooo P, da
_ 2/0@ iy 2 dz — Tom /OO (|2, da: + Re(T(0)u, (0)).
0

0

Using the Robin boundary condition we have
O J(t) = 2/ g |* do — Im/ |u|?u, i dx + alu(0)]?.

0 0
Moreover using the expression of v in term of u given in (3.9), we get

oo 1 [e.e]
Oy J(t) = 2/ v |* do — g/ [v|® dz + a|v(0)[?
0 0
=4E(v) — alv(0)]* < 4E(v) = 4E(y).
By integrating the two sides of the above inequality in time we have

J(t) < J(0) +4E(p)t. (3.14)
Integrating the two sides of (3.11) in time we have

t t 00
](t):](0)+4/ J(s)ds—/ / r|u(s, z)|* dr ds
0 o Jo
t
< I(O)+4/ J(s)ds.
0
Using (3.14) we have

1(t) < 1(0) + 4 / (J(0) + 4 (¢)s) ds
< 1(0) + 4J50)t + 8E(p)t>.
From the assumption E(p) < 0, there exists a finite time 7, > 0 such that I(7,) = 0,
I(t) > 0for 0 <t <T,.
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Note that
/ |g0(x)|2dx:/ (¢, 22 dz = —27ze/ wolt 1)t ) do
0 0 0

< 2lzollz @ lvellzeyy = 2V (@) ||vel 2Ry -
Then there exists a constant C' = C(¢) > 0 such that

C
||Uac||L2(R+) > ——— — too ast — T..
’ 2,/1(t)

Then the solution v blows up in finite time in H*(R™). This complete the proof of
Theorem B.11

3.2.2 Stability and instability of standing waves

In this section, we give the proof of Theorem [3.4] and Proposition First, we find
the form of the standing waves of (3.1)).

Standing waves

Let v = e™'p be a solution of (3.1)). Then ¢ solves

0 = ue — wp + 3Tm(0sP) e + 5ll*e, for z >0

p2(0) = ayp(0), (3.15)
p € H*(RT).

Set ) 3
Ai=w— ~Tm(p, ) — —|¢|*
By writing ¢ = f 4 1g for f and g real valued functions, for x > 0, we have
f:m: = Af7
Jux = Ag.
Thus,
02 (f29 — 92 f) = fo29 — Guaf = 0 when z # 0.
Hence, by using f,g € H*(RT), we have
fo(2)g(2) = go(2) f(x) = 0 when z 7 0.
Then, for all x # 0, we have
In(pe(2)p(x)) = galx) f(2) = falz)g(z) =0,
hence, (3.15)) is equivalent to

0= ¢ — wp + 15lel"p, forz >0

©:(0) = ap(0), (3.16)
o € H(RT).

We have the following description of the profile ¢.
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Proposition 3.6. Let w > o?.

of (3.16), which is of the form

p = 23/wsech? (2\/5:1: + tanh ™! (\_/—g)) : (3.17)

There exists a unique (up to phase shift) solution

for all z > 0.

Proof. Let w be the even function defined by

w(z)_{ p(r) if o >

o(— x)1fx<0

Then w solves
3
0 = —Wge +ww — 1x|w|*w, for x # 0,

we(0%) — w, (07) = 2auw(0), (3.18)
we HAR)\ {0} N H'(R).

Using the results of Fukuizumi and Jeanjean [38], we obtain that

w(z) = 2w sech? <2\/$|a:| + tanh™! (%))

up to phase shift provided w > o?. Hence, for z > 0 we have

() = 20/ sech? (2\/5\:13] + tanh ™! (\_/_g»

up to phase shift. This implies the desired result. O

The variational problems

In this section, we give the proof of Proposition First, we introduce another
variational problem:

d(w) = inf {§w(u) | v even, K, (v) = 0,0 € H'(R) \ {0}} , (3.19)
where S,,, K,, are defined for all v € H*(R) by
~ 1 1,
Su®) i= 5 |I0allFamy + wlvllae + 20l (O)] = o loqe),
3

Ko (v) = [lvallzm) + @llollzam) + 2010 (0)F = FE vl zo@m

The functional K,, is called Nehari functional. The following result has proved in
[38, 39].

Proposition 3.7. Let w > o® and ¢ satisfies

{—wm + 2adp + wp — 1—36|90I490 =0, (3.20)

p € H'(R)\ {0}
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Then, there ezists a unique positive solution ¢ of (3.20). This solution is the unique
positive minimizer of (3.19). Furthermore, we have an explicit formula for ¢

o(z) = 2¢/wsech? <2\mxy + tanh™! (\_/—g» .

We have the following relation between the variational problems.

Proposition 3.8. Let w > o?. We have
1~
d(w) = éd(w).
Proof. Assume v is a minimizer of (3.8)), define the H'(R) function w by

_J v(z)ifz >0,
w(z) = {v(—x) if x < 0.

The function w € H'(R) \ {0} verifies
S,(w) = 28,(v) = 2d(w),
K, (w) = 2K,(v) = 0.
This implies that B B
d(w) < Su(w) = 2d(w). (3.21)
Now, assume v is a minimizer of . Let w be the restriction of v on R*, then,
K, (w) = %f{w(v) = 0.

Hence, we obtain

d(w) = S, (v) = 25, (w) > 2d(w). (3.22)
Combining and we have
d(w) = 2d(w).
This implies the desired result. [

Proof of Proposition[3.3. Let v be a minimizer of (3.8)). Define w(z) € H*(R) by

| v(x)ifz >0,
w(z) = {v(—x) if x <0.

Then, w is an even function. Moreover, w satisfies
K, (w) = 2K,(v) = 0,
Su(w) = 28,(v) = 2d(w) = d(w).

Hence, w is a minimizer of (3.19). From Propositions , w is of the form ey,
where 6 € R is a constant and ¢ is of the form

2w sech? (2\/c_u|x| + tanh™! (—_a)) :
Vw
Hence, v = w|g+ satisfies
v(z) = o),
for z > 0. This completes the proof of Proposition [3.3 n
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Stability and instability of standing waves

In this section, we give the proof of Theorem . We use the notations S, and K,
as in Section First, we define

3
N(v) == gellollzoms, (3.23)
L(v) = ||val[Z2 sy + wllvllF2 @) + alv(0)]. (3.24)

We can rewrite S,,, K, as follows

11

S, =-L— =N,
27 6

K,=1L—N.

We have the following classical properties of the above functions.
Lemma 3.9. Let (w,a) € R? such that w > o*. The following assertions hold.

(1) There exists a constant C > 0 such that

L(v) > CHvaql(Rﬂ Yo € H'(RT).

(2) We have d(w) > 0.
(3) If v e HY(R") satisfies K, (v) < 0 then L(v) > 3d(w).
Proof. We have

[v(0)|* = —/0 Op(Jv(z)]?) do = —2723/0 v(x)v,(z) dx
< 2[Jv]| Lot [Jvel 2y

Hence,

L(v) = [Jva||Z2(@r) + wllvl|Ze e + alv(0)[?

> [lvallZo@e) + wlivlZe@e) — 2l [l 2@ lve | 2

> Clollinen + 1 = OvellZa@e + (W = O)lvllze@r) — 2lalllvllz@n lvel 2@
Z

Cllvllin sy + 2v/(1 = O)(w = C) = 2aDvll 2@+ 1vel 2 e)-

From the assumption w > o2, we can choose C' € (0,1) such that

2y/(1 = C)(w —C) —2|a| > 0.

This implies (1). Now, we prove (2). Let v be an element of H'(R") satisfying
K,(v) = 0. We have

CHUH%P(R-F) < L(v) =N(v) < Cl”“”?{l(Rﬂ-
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Then,
. C

10151 gy = o

From the fact that, for v satisfying K, (v) = 0, we have S,(v) = S,(v) — + K, (v) =
$L(v), this implies that

d(w) = %inf{L(v) v € H'(RY), K,(v) =0} > — C ¢

> 0.
Cy

——

< 0. Then, there exists

Finally, we prove (3). Let v € H'(R") satisfying K (v)
= 0. Since v # 0, we have

A € (0,1) such that K, (Alv) = ML(v) — XNN(0v)

3d(w) < L) = ML(v) < L(v). n
Define

N(w) = 2 ol (3.25)

L(w) = lloal2: + wlloll2: + 2alu(0)]* (3.26)

We can rewrite S,,, K, as follows

[ A v

K,=L-N.

LN
CD

As consequence of the previous lemma, we have the following result.
Lemma 3.10. Lel (w,a) € R? such that w > o®. The following assertions hold.

(1) There ezxists a constant C' > 0 such that
L(v) = C|v||}n Vv e HY(R).
(2) We have d(w) > 0.
(3) If v e H' satisfies K, (v) < 0 then L(v) > 3d(w).
We introduce the following properties.

Lemma 3.11 (Brezis-Lieb [I4]). Let 2 < p < 0o and (f,) be a bounded sequence in
LP(R). Assume that f, — f a.e in R. Then we have

1fnllze = 1fn = flIZo = /120 = 0

Lemma 3.12. The following minimization problem 1is equivalent to the problem
(3.19) i.e same minimum and the minimizers:

1 -
d := inf {1—6||u||6L6 u even ,u € HY(R)\ {0}, K, (u) < O} . (3.27)
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Proof. We see that the minimizer problem ([3.19) is equivalent to following problem:
1 .
inf {EHUH% cueven u € H'(R)\ {0}, K, (u) = O} : (3.28)

Let v be a minimizer of (3.19) then K, (v) < 0, hence, d(w) = ||v[|Ss > d. Now, let
v be a minimizer of (3.27). We prove that K, (v) = 0. Indeed, assuming K, (v) < 0,

we have

~ 3)\4
KuMozv(mm§+wmmﬁawwmf—;@wm)<o

as 0 < X is small enough. Thus, by continuity, there exists a Ay € (0,1) such
that K,(Apv) = 0. We have d < d(w) < £|Aov[|Ss < L[[v[|% = d. Which is a
contradiction. Tt implies that K, (v) = 0 and v is a minimizer of (3.28)), hence v is
a minimizer of ([3.19). This completes the proof. O

Now, using the similar arguments in [39, Proof of Proposition 2|, we have the
following result.

Proposition 3.13. Let (w,a) € R? be such that o < 0, w > a? and (w,) C H(R)
be a even sequence satisfying the following properties

S(wy) = d(w),

K, (w,) — 0.

as n — o0o. Then, there exists a minimizer w of (3.19)) such that w, — w strongly
in H'(R) up to subsequence.

Proof. In what follows, we shall often extract subsequence without mentioning this
fact explicitly. We divide the proof into two steps.

Step 1. Weakly convergence to a nonvanishing function of minimizer
sequence We have

L) = S.(w,) -

as n — oo. Then, (w,) is bounded in H!(R) and there exists w € H'(R) even such
that w, — w in H*(R) up to subsequence. We prove w # 0. Assume that w = 0.
Define, for u € H'(R),

1 w 1 )
S9(u) = g lluallZs + lhullds — =l
3
K (u) = |lug||72 + wllull7z — TGHUII%

Let 1, be minimizer of following problem
d’(w) = inf {S2(u) : weven ,u € H'(R) \ {0}, K (u) = 0}

1
= inf {1_6”“”%6 cueven ,u € H'(R)\ {0}, K (u) < 0} .
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We have K (w,) = K,(w,) — 2a|w,(0)]* = 0, as n — oco. Since, o < 0. we have
K, (1,) < 0 and hence we obtain

(w) < el = () (3.29)

We set

1
\ - <Hf9anlliz +W|lwnlliz)4
"= .

%HwnH%G

We here remark that 0 < d(w) = lim

= |wy||%6. It follows that
n—oo

1 ‘
16

161wl Zs

M1 = — 0,

as n — oo. We see that K2(\,w,) = 0 and \,w, # 0. By the definition of d°(w),
we have

1 .
d’(w) < EH)\nwnHGLG — d(w) as n — 0.

This contradicts to (3.29). Thus, w # 0.
Step 2. Conclude the proof Using Lemma we have

Ky(wy) — Ky(w, —w) — K,(w) = 0, (3.30)
L(wy,) — L(w, —w) — L(w) — 0. (3.31)

Now, we prove K,(w) < 0 by contradiction. Suppose that K, (w) > 0. By the
assumption K, (w,) — 0 and (3.30]), we have

K, (w, —w) = —K,(w) < 0.

Thus, K, (w, —w) < 0 for n large enough. By Lemmam (3), we have L(w, —w) >
3d(w). Since L(w,) — 3d(w), by (3.31), we have

L(w) = lim (L(w,) — L(w, —w)) < 0.
n—oo
Moreover, w # 0 and by Lemma (1), we have L(w) > 0. This is a contradiction.
Hence, K,(w) < 0. By Lemma [3.10[ (2), (3) and weakly lower semicontinuity of L,
we have

3d(w) < L(w) < lim inf L(w,) = 3d(w).

n— oo

Thus, L(w) = 3d(w). Combining with (B.31), we have L(w, — w) — 0, as n — oc.
By Lemma (1), we have w,, — w strongly in H*(R). Hence, w is a minimizer
of (3.19). This completes the proof. O

To prove the stability statement (1) for « < 0 in Theorem [3.4] we will use similar
arguments as in the work of Colin and Ohta [23]. We need the following property.
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Lemma 3.14. Let a < 0, w > o?. If a sequence (v,) C H'(R") satisfies

So(vy) = d(w), (3.32)
K, (v,) = 0, (3.33)

then there exist a constant 0y € R such that v,, — €%, up to subsequence, where @
is defined as in Proposition 3.5

Proof. Define the sequence (w,) C H'(R) as follows,

wo(z) = v () for x > 0,
"N L op(—2) for & < 0.

We can check that

Su(wy) = 28,(v,) = 2d(w) = d(w),
Ko, (w,) = 2K,(v,) = 0,

as n — oo. Using Proposition [3.13] there exists a minimizer wy of (3.19)) such that
w, — wy strongly in H'(R), up to subsequence. For convenience, we assume that
w, — wp strongly in H'(R). By Proposition there exists a constant 6 € R such
that

00 =

Wy =€ 7,

where ¢ is defined by

| p(x) for z > 0,

Pla) = {go(—:r;) for z < 0. (3-34)

Hence, the sequence (v,) is the restriction of the sequence (w,) on Rt and satisfies

v, — e, strongly in H'(R™),

up to subsequence. This completes the proof. O
Define
Al = {v € H'Y(RT)\ {0} : S,(v) < d(w), K,(v) > O} ,
A, = {v € H'Y(RT)\ {0} : S,(v) < d(w), K,(v) < O} ,
Bf ={ve H'(R*)\ {0} : S,(v) < d(w), N(v) < 3d(w)},
B, ={ve H'(R")\ {0} : S,(v) < d(w), N(v) > 3d(w)}

We have the following result.

Lemma 3.15. Let w,a € R? such that o < 0 and w > o?.
(1) The sets Al and A, are invariant under the flow of (3.1).
(2) AL =B and A, = B .
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Proof. (1) Let ug € A} and u(t) the associated solution for on (Tinin, Tinaz)-
By up # 0 and the conservation laws, we see that S, (u(t)) = S, (uo) < d(w) for t €
(Tin, Tinaz)- Moreover, by definition of d(w) we have K, (u(t)) # 0 on (Thin, Trmaz)-
Since the function ¢ — K, (u(t)) is continuous, we have K, (u(t)) > 0 on (Tin, Thnaz)-
Hence, A is invariant under flow of (3.1)). By the same way, A; is invariant under
flow of (3.1).

(2) If v € AJ then by (3.26), we have N(v) = 3S,(v) — 2K, (v) < 3d(w),
which shows v € B, hence AT C BI. Now, let v € Bf. We show K,(v) > 0 by
contradiction. Suppose that K, (v) < 0. Then, by Lemma [3.10] (3), L(v) > 3d(w).

Thus, by (3.26) and (3.25)), we have

5u(0) = 5 L) ~ SN () > d(w),

which contradicts S,(v) < d(w). Therefore, we have K,(v) > 0, which shows
v e Al and BY C AY. Next, if v € A, then by Lemma [3.10] (3), L(v) > 3d(w).
Thus, by and (3.25), we have N(v) = L(v) — K,(v) > 3d(w), which shows
v € B;. Thus, A; C B,. Finally, if v € By, then by (8.26) and (3.25), we
have 2K, (v) = 35,(v) — N(v) < 3d(w) — 3d(w) = 0, which shows v € A, hence,
B, C A7 . This completes the proof. O

From Proposition we have

Since a < 0, we see that

&) = Oullelae = 50ull8l 3 > O
where ¢ is defined as and we know from [39], [38] that
Aull @72y > 0,
for o < 0. We define the function h : (—gg,£9) — R by
h(1) =d(w £ 1),

for 9 > 0 sufficiently small such that A”(7) > 0 and the sign + or — is selected such
that h'(7) > 0 for 7 € (—¢&¢,0). Without loss of generality, we can assume

(1) = d(w + 7).

Lemma 3.16. Let (w,«) € R? such that w > o and let h be defined as above.
Then, for any € € (0,e0), there exists & > 0 such that if vy € H'(RY) satisfies
|lvo — @l @+y < 6, then the solution v of with v(0) = vy satisfies 3h(—¢) <
N(v(t)) < 3h(e) for all t € (Trin, Trmaz)-

Proof. The proof of the above lemma is similar to the one of [23] or [I04]. Let
e € (0,g9). Since h is increasing, we have h(—e) < h(0) < h(e). Moreover, by

K,(p) =0 and (3.25)), (3.26), we see that 3h(0) = 3d(w) = 3S,(¢) = N(p). Thus,
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if ug € H'(R") satisfies ||ug — ¢[|g1r+) < ¢ then we have 3h(0) = N(ug) + O(9)
and 3h(—e) < N(up) < 3h(e) for sufficiently small 6 > 0. Since h(£e) = d(w £ ¢)
and the set BE are invariant under the flow of by Lemma to conclude
the proof, we only have to show that there exists 6 > 0 such that if uy € H'(R")
satisfies ||ug — @||gr+) < 0 then S,i.(up) < h(4e). Assume that uy € H'(R")
satisfies |lug — /g1 @+) < 0. We have

Swis(UO) = Swia(@) + O(9)
= Su(p) eM(p) + O(0)
= h(0) £ e (0) + O(6).

On the other hand, by the Taylor expansion, there exists 71 = 71(¢) € (—&, &g) such
that

h(%e) = h(0) £ eh/(0) + i;h"(m.

Since h"(7m1) > 0 by definition of h, we see that there exists § > 0 such that if
uy € H'(R") satisfies [Jug — @[/ grr+) < 0 then S,i.(ug) < h(%e). This completes
the proof. O

Proof of Theorem[3.4] (1). Assume that ¢“' is not stable for (3.1). Then, there
exists a constant £, > 0, a sequence of solutions (v") to (3.1), and a sequence
{t.} € (0,00) such that

v,(0) — ¢ in H'(R"), gnﬂg”%(t") — ol mEs > e (3.35)
=

By using the conservation laws of solutions of (3.1]), we have

Sw(Vn(tn)) = Su(va(0)) = Su(p) = d(w). (3.36)

Using Lemma |3.16] we have

N(vn(ts)) — 3d(w). (3.37)

Combined (3.36)) and (3.37), we have

Ko(0n(tn)) = 250 (tn(ts)) — gN(vn(tn)) .

Therefore, using Lemma [3.14] there exists 6, € R such that (v,(t,,.)) has a subse-
quence (we denote it by the same letter) that converges to ¢y in H'(RT), where
¢ is defined as in Proposition Hence, we have

. i0
égﬂgl\vn(tn) —e"ollmwey — 0, (3.38)
as n — oo, this contradicts (3.35)). Hence, we obtain the desired result. O

Next, we give the proof of Theorem (2). We divide the proof in two cases.
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First, let @« = 0. In this case, we use similar arguments as in Weinstein [I13].
We have

1 1
E,(v) = §Hva:||%2(R+) - @HU“GLG(W):
1
P(v) = HU:vH%%Rﬂ - 1_6"1}“26(R+)'

Thus, E(p,) = P(p,) =0. Let ¢ > 0 and ¢, . = (1 +¢)p,. We have

1 1 1
E(pue) = (146)° 5l pullza@s) = (146)° lloulzoms = ((1+e)*=(14€)°) 5wl za@r) < 0.

In the addition, |z|p, () € L*(R") by exponential decay of ¢,. Using Theorem
, the solution associated to ¢, . blows up in finite time. As ¢, . — ¢, in H'(RT),
we obtain the instability by blow-up of standing waves.

Now, let o > 0 and e™’¢ be the standing wave solution of (3.1). We use similar
arguments as in [71]. Introduce the scaling

vy(x) = A%v()\x).

Let S,,, K, be defined as in Proposition for convenience, we will remove the
index w. Define

0 1 o
P(v) == as(w)lle = [lvall 2@y — Ellvlliemﬂ + §|v(0)l2.

In the following lemma, we investigate the behaviour of the above functional under
scaling.

Lemma 3.17. Let v € H'(R") \ {0} be such that v(0) # 0, P(v) < 0. Then there
exists Ao € (0, 1] such that

(Z) P(U/\O) =0,
(1)) Ao =1 if only if P(v) =0,
(iii) 5S(va) = $P(v2),
(iv) ZS(va) >0 on (0,X) and ZS(vy) <0 on (Ag, 00),
(v) The function X — S(vy) is concave on (Ao, 00).

Proof. A simple calculation leads to

\? pYe!
P(vx) = N|Jvg||7omsy — EHUH%W) + 7\@(0)|2-

Then, for A > 0 small enough, we have

P(U)\) > 0.
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By continuity of P, there exists Ay € (0, 1] such that P(v,,) = 0. Hence (i) is proved.
If \g =1 then P(v) = 1. Conversely, if P(v) = 0 then

Ao — A2
2

Ao — A2
2

0= P(ux) = AoP(v) + alv(0)* = alv(0)[*.

By the assumption v(0) # 0, we have \g = 1, hence (ii) is proved. Item (iii) is
obtained by a simple calculation. To obtain (iv), we use (iii). We have

A A2\
P(vy) = M)\, 2P(vy,) + (—O‘ - 0 O‘) [v(0)]?

2 2
~Aa(A — A) 9
= S O,

Hence, P(vy) > 0 if A < Ag and P(vy) < 0if A > X¢. This proves (iv). Finally, we
have

a

— = Pv) — = 2 :

~35(3) = P(u) = SI(0) <0

This proves (v). O
In the case of functions such that v(0) = 0, we have the following lemma.

Lemma 3.18. Let v € H'(R") \ {0}, v(0) =0 and P(v) = 0 then we have
S(vy) = S(v)  for all X > 0.

Proof. The proof is simple, using the fact that

0 1
Fr 0 (W) = T P(u) = AP(v) = 0.

Hence, we obtain the desired result. O]

Now, consider the minimization problems

dp = inf {S(v) : v e M}, (3.39)
m = inf {S(v),v € H'(R")\ 0,5 (v) =0},

where

M={ve H'R")\0,P(v)=0,K(v) <0}.
By classical arguments, we can prove the following property.

Proposition 3.19. Let m be defined as above. Then, we have
m = inf {S(v) : v € H'(RT)\ 0, K(v) =0} .
We have the following relation between the minimization problems m and d,.

Lemma 3.20. Let m and dy be defined as above. We have
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Proof. Let G be the set of all minimizers of (3.40). If ¢ € G then S’(p) = 0. By the
definition of S, P, K we have P(p) = 0 and K(¢) = 0. Hence, ¢ € M, this implies
S(p) = dyp. Thus, m = dpg.

Conversely, let v € M. If K(v) = 0 then S(v) > m, using Proposition [3.19]
Otherwise, K (v) < 0. Using the scaling vy (z) = A2v(\z), we have

32 a\
K(vy) = )\QHUIH%%W) - 1_6”U||%6(R+) +W||UH%2(R+) + 7|U(O)|2 - WHUH%%W) >0,

as A — 0. Hence, K(vy) > 0 as A > 0 is small enough. Thus, there exists A\; € (0,1)
such that K (vy,) = 0. Using Proposition S(vy,) = m. We consider two cases.
First, if v(0) = 0 then using Lemma [3.18] we have S(v) = S(vy,) = m. Second,
if v(0) # 0 then using Lemma we have S(v) > S(vy,) = m. In any case,
S(v) = m. This implies dyq = m, and completes the proof. H

Define
Vi={ve H'R")\{0}: K(v) <0,P(v) <0,S(v) <m}.
We have the following important lemma.

Lemma 3.21. If vy € V then the solution v of (3.1) associated with vy satisfies
v(t) €V for all t in the time of existence.

Proof. Since S(vg) < 0, by conservation of the energy and the mass we have
S(v) = E(w)+wM((v) = E(vg) + wM (vg) = S(vg) < m. (3.41)

If there exists to > 0 such that K(v(fp)) > 0 then by continuity of K and v,
there exists t; € (0,%o] such that K(v(t;)) = 0. This implies S(v(t1)) = m, using
Proposition [3.19] This contradicts (3.41). Hence, K(v(t)) < 0 for all ¢ in the time
of existence of v. Now, we prove P(v(t)) < 0 for all ¢ in the time of existence of v.
Assume that there exists ¢t > 0 such that P(v(tg)) > 0, then, there exists 3 € (0, to]
such that P(v(t3)) = 0. Using the previous lemma, S(v(t3)) > m, which contradicts

(3.41). This completes the proof. O

Using the above lemma, we have the following property of solutions of (3.1]) when
the initial data lies on V.

Lemma 3.22. Let vy € V, v be the corresponding solution of (3.1)) in (Toin, Timaz)-
There exists 6 > 0 independent of t such that P(v(t)) < =9, for all t € (Trin, Tinaz)-

Proof. Let t € (Thin, Timaz); v = v(t) and uy(x) = A2u(Az). Using Lemma m
there exists Ao € (0,1) such that P(uy,) = 0. If K(uy,) < 0 then we keep Ao.
Otherwise, K(uy,) > 0, then, there exists Ao € (Ao, 1) such that K(uz ) = 0. We

replace \g by XO. In any case, we have

S(ux) = m. (3.42)
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By (v) of Lemma we have

§u) — S(ung) > (1= Xo) - S(ur) acr = (1= Aa)Pla).
In addition P(u) < 0, we obtain
S(u) — S(uy,) = (1= Xo)P(u) > P(u). (3.43)
Combined (3.42) and (3.43), we obtain

S(vg) —m = S(v(t)) —m = S(u) —m = S(u) — S(uy,) > P(u) = P(v(t)).

Setting
-6 := S(vg) —m,

we obtain the desired result. O

Using the previous lemma, if the initial data lies on V' and satisfies a weight
condition then the associated solution blows up in finite time on H'(R'). More
precisely, we have the following result.

Proposition 3.23. Let ¢ € V such that |x|p € L*(RT). Then the corresponding
solution v of (3.1)) blows up in finite time on H'(RT).

Proof. By Lemma there exists ¢ > 0 such that P(v(t)) < —d for t € (Thuin, Trnaz)-
Remember that

9,
a”l’v(t)ni%ﬂ%ﬂ = J(t) —/ r|v|*dz, (3.44)
R+

where J(t) satisfies
0uJ(6) = 4 (2un Ban, = 5ol + alo (O ) = S(P((1) < 85
This implies that
J(t) = J(0) + S/OtP(v(s))ds < J(0) — 8dt.
Hence, from (3.44)), we have
o6, = o) ey + [ sy ds— [ [ alotd s

t
0
t
< Hxv(O)H%z(Rﬂ +/ (J(0) — 8ds) ds
0
< H.TU(O)||%2(R+) + J(O)t — 45t2

Thus, for ¢ sufficiently large, there is a contradiction with ||zv{| 2®+) > 0. Hence,
Thae < 00 and T,,;, > —oo. By the blow up alternative, we have

lim ||vg||2m+) = t lim ||vg||2+) = oo.

t— max mn

This completes the proof. n
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Proof of Theorem (2). Using Proposition we need to construct a sequence
(©n) C V such that ¢, converges to ¢ in H'(RT). Define

oa(a) = Aip(x).

We have
S(p)=m, P(p)=K(p)=0, ¢(0)#0.

By (iv) of Lemma [3.17]
S(pr) < m for all A > 0.

In the addition,
P(py) <0 for all A > 1.

Moreover,

, 3
LK (92) = 22 (H%H%?(Rﬂ - eleliey ) el

= 2M(K(p) = wlllL2@e) — le(0)) + alp(0)”
= =20 @llZ2@+) — a(2A = 1] (0)”
<0,

when A > 1. Thus, K(¢)) < K(p) = 0 when A > 1. This implies ¢, € V when
A > 1. Let A\, > 1 such that \,, — 1 as n — oco. Define, for n € N*

Pn = P

then, the sequence (y,,) satisfies the desired property. This completes the proof of
Theorem [3.4] O

86



Chapter 4

Multi-solitons Part 1: Construction
of multi-solitons and multi
kink-solitons of derivative nonlinear
Schrodinger equations

4.1 Introduction

In this chapter, we consider the derivative nonlinear Schrédinger equation:

iUy + Ugy + 10uPu, + gy + f(u) =0,

(4.1)
u(0) = uo.

where a, u € R, f: C — C is a given function and u is a complex valueed function
of (t,z) € R x R.

In [I11], 112], Tsutsumi and Fukuda used an approximation argument to prove
the existence of solutions of in the case « = —2, u = —1. In this case
with f = 0, Biagioni and Linares [13] proved that the solution map from H*(R)

1

to C([-T,T], H*(R)) is not locally uniformly continuous, for 7' > 0 and s < 3.

The H= solution in this case is global if luol|2. < 27 by the work of Miao-Wu-
Xu [92]. Later, Guo and Wu [53] improved this result; that is, H? solution is
global if |lug||3, < 4. The Cauchy problem of was also studied as in [107],
where gauge transformation and Fourier restriction method are used to obtain local
well-posedness in H®, s > 1/2. In [100], Ozawa studied the Cauchy problem and
gave a sufficient condition of global well-posedness for (4.1). The proof was used
gauge transformations which reduce the original equations to systems of equations
without derivative nonlinearities. In [58, 59|, in the case o = 2u, Hayashi-Ozawa
proved the unique global existence of solutions to in Sobolev spaces and in the
weighted spaces with smallness on the initial data |lu||7, < %‘. In the case a = —2,
pw=—1, f =0, Wu [116] improved the global results in [58, £9]. More precisely,
the author proved that the solutions exist globally in time under smallness on the
initial data ||ug||,2 < V27 + €., where ¢, is a small positive constant. Later, Wu
[T17] improved this results for larger bounded on the initial data ||ugl|2 < V4.

87



The proof combines a gauge transformation and conservation laws with a sharp
Gagliardo-Nirenberg inequality. In [37], by using variational argument, Fukaya-
Hayashi-Inui gave results covering the result of Wu [117]. The authors showed that
in the case f = 0, a = 1, u = 0, the H' solutions of exist globally in time
for the initial satisfies ||ugl|2. < 4m or |lugl[?. = 4m and P(up) < 0, where P
is the momentum functional which is conserved under the flow of (4.1). In [25],
Colliander-Keel-Staffilani-Takaoka-Tao proved by the so-called I-method the global
well posedness in H*(R), s > 1 of if lugll3: < 27 (see also [24]). In the
case f = 0 and pu = 0, is a completely integrable equation. The complete
integrability structure of equation was used to prove global existence of solutions in
H*2(R) by [66] and in H*(R), s > % by [I].

In the case p = 0 and f(u) = blul*u, there were a lot of works on studying
stability and instability of solitons of (4.1)). The family of solitons of has two
parameters (w,c). In the case b = 0, Guo and Wu [51] proved that the solitons are
orbitally stable when w > % and ¢ < 0 by using the abstract theory of Grillakis-
Shatah-Strauss [49], 50]. After that, Colin and Ohta [23] improved this result for all
w > % using variational techniques. In [99], Ohta proved that for each b > 0 there
exists a unique s* = s*(b) > 0 € (0, 1) such that the soliton u, . is orbitally stable if
—2y/w < ¢ < 2s*\/w and orbitally unstable if 2s*\/w < ¢ < 24/w. In the case b < 0,
the stability result is obtained in [54]. In the case b = 0, Kwon-Wu [70] proved a
stability result of solitons in the zero mass case. Removing the effect of scaling in
the stability result of this work is an open question.

4.1.1 Multi-solitons
First, we focus on studying the following special form of (4.1)):

iy + Uy + | u*u, + blul*u = 0. (4.2)

Our first goal in this paper is to study the long time behaviour of solutions of
. More precisely, we study the multi-solitons theory of . The existence of
multi-solitons is a step towards the proof of the soliton resolution conjecture, which
states that all global solutions of a dispersive equation behave at large times as a
sum of a radiative term and solitons. The theory of multi-soliton has attracted a lot
of interest. In [72] [73], Le Coz-Li-Tsai proved existence and uniqueness of finite and
infinite soliton and kink-soliton trains of classical nonlinear Schrodinger equations,
using fixed point arguments around of the desired profile. Another method was
introduced in [84] for the simple power nonlinear Schrédinger equation with L2-
subcritical nonlinearities. The proof was established by two ingredients: uniform
estimates and a compactness property. The arguments were later modified to obtain
the results for L2-supercritical equations [28] and for profiles made with excited states
[26]. One can also cite the works on the logarithmic Schrédinger equation (logNLS)
in the focusing regime in [35]. In [I18], the inverse scattering transform method (IST)
was used to construct multi-solitons of the one dimensional cubic focusing NLS. We
would like also to mention the works on the non-linear Klein-Gordon equation [29]
and [27], and on the stability of multi-solitons for generalized Korteweg-de Vries
equations and L2-subcritical nonlinear Schrédinger equations from Martel, Merle
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and Tsai [85],[86]. In [74], Le Coz-Wu proved a stability result of multi-solitons of
in the case b = 0. Our motivation is to prove the existence of a multi-solitons in
a similar sense as in |73}, [72]. The method used in [73,[72] cannot apply directly in our
case. The reason is the appearance of the derivative nonlinearities. To overcome this
difficulty, we use a Gauge transformation to obtain a system of Schrédinger equations
without derivative nonlinearities. We may use Strichartz estimates and fixed point
argument to construct a suitable solution of this system. This solution satisfies a
relation which is proved by using the Gronwall inequality and the condition on the
parameters and we obtain a solution of . This solution satisfies the desired
property.

Consider equation (4.2)). The soliton of equation is a solution of the form
Ry o(t,x) = €“',, (x — ct), where ¢, . € H'(R) solves

—us + W +ich, —i|¢]*d, — blg'"6 =0, zER. (4.3)

Applying the following gauge transform to ¢, .

gbw,c(x) - q)w,c(x) exXp (ng - %/ |(I)w,c(y)|2 dy) )

— 00

it is easy to verify that @, . (see e.g |23, Proof of Lemma 2|) satisfies the following
equation.

2 c 3 16
—P,, — — ) D+ = |DPD — —~|D/ D = =1+ —b. 4.4
#(e-G)orglore- Soele =0 qm1eh (1)

The positive even solution of (4.4) is explicitly obtained by: if v > 0 (b > 72,

2(4UJ—C2) 'f _ 2 2
(I)i c(x) — { \/02+"{(4w—c2)Zosh(\/4w—02z)—c ! . \/C_d << \/57 (45)

i if ¢ = 24/,

and if v <0 (b < —53),

2(4w — *)
P2 () = if —2vw <c< —2s,./w,
(@) V2 +v(4w — ) cosh(Vdw — 2x) — ¢
where s, = s.(7) = /L. We note that the following condition on the parameters

1—v"
~v and (w,c) is a necessary and sufficient condition for the existence of non-trivial
solutions of (4.2)) vanishing at infinity (see [3]):

-3
if7>0(<:>b>ﬁ)then — 2w < ¢ < 2w,

-3
ifvy<0(&b< E) then — 2y/w < ¢ < —2s,V/w.

Let (¢;,w;) satisfying for each 1 < j < K the condition of existence of soliton. For
each j € {1,2,.., K}, we set

Ri(t,z) = €% R,, . (t,x).
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The profile of a multi-soliton is a sum of the form:

R=> R (4.6)

7j=1
A solution of (4.2)) is called a multi-soliton if

lu(t) = R(t)]lm < Ce™,

for some C, A > 0 and ¢ large enough. For convenience, we set h; = , /4w; — c?. We

D, ., (v) = V2h; (, /¢ + yh? cosh(hjz) — cj>75 . (4.7)

As each soliton is in H*(R), we have R € H*(R). Our first main result is the
following.

rewrite

-

Theorem 4.1. Let K € N* and for each 1 < j < K, let (0;,¢;,w;) be a set of
parameters such that 0; € R, ¢; # ¢y, for j # k and ¢; such that —2,/w; < ¢; < 2,/w;
ify >0 and —2,/w; < ¢; < —2s.\/w; if v < 0. The multi-soliton profile R is given as
m . Then there exists a certain positive constant C, such that if the parameters
(wj, ¢;) satisfy

Cu (14 I Rellzze ) (U RN szei) + IRl ) < 0= Eyles — ], (48)
then there exist Ty > 0 depending on wy, ...,wk, C1, ..., cx and a solution u of (4.2))

on [Ty, 00) such that
|lu— R||m < Ce™™, Vt>T, (4.9)

where A = & and C'is a posilive constant depending on the paramelers wy, ..., Wk, 1, ..

We observe that the formula for solitons in the case v > 0 and in the case v < 0
is similar. Thus, in the proof of Theorem we only consider the case v > 0. The
case v < 0 is treated by similar arguments.

Remark 4.2. We give an example of parameters satisfying (4.8). Let d; < 0,
h; € R for all j € {1,2,..., K} such that d; # dj, for all j # k. Let (¢j,w;) =
(Mdj, ;(h3 + M?d2)). We prove that for M large enough, the condition is
satisfied. By this choosing, we have h; < |¢;| and ¢; < 0 for all j. We have

2h? 2

H(ij,c]'HQLOO < S -+

\/CFhd = ¢ &l

Moreover,

—\/2 -
0Dy, ., = T\/_h?. /¢ 4 vh sinh(hjz) (« /¢ 4 yhZ cosh(hjz) — cj)

ol o
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Thus, for all j, we obtain

0@, c,| S h3y/ 2+ vh?|sinh(h;z) (w/ ¢ +yh3 cosh(h;x)
%
Sh? (,/c + yh? cosh(hjz) — cj)

2

\/H

\_/
|
vlw

~ h.j|®wj>c]’ 5

In the addition, we have

1OR}][Loe = [|0¢u; ¢l o0 = (0P e[| e + ‘

C .
J 3
E(I)Wjacj - quj,cj

Lo
C.

< 0 1~ + %u%j,cAum TSR

2 B3

- |ej| +

o Vel

Thus, the left hand side of (4.8)) is bounded by

h3 h. BA
1+ lc;] + 1+ = >+ —J>.
(( 1§<:K (V T Ve ]I3>> ( 1§<:K &l 1§<:K ch

(4.10)
By our choosing, (4.10) is order M2 and the right hand side of (4.8)) is order M.
Thus, (4.8)) is satisfied for M large enough.

4.1.2 Multi kink-solitons

Second, we consider another special case of (4.1)) as follows
iy + Uy + 1T + blu|*u = 0. (4.11)

Our goal is to construct multi kink-solitons of . The motivation comes from
[73, [72], where the authors have constructed an infinite multi kink-soliton train for
classical nonlinear Schrédinger equations by using fixed point arguments. However,
in the case of (£.11]), this method can not directly be used due to the appearing of
a derivative term. To overcome this difficulty, use a transformation and work on a
system of two equations without derivative nonlinearites.

Consider the equation . First, we would like to define a kink solution of
(£.11)). Let R, . be a smooth solution of of the form:

Ro,o(t, 1) = ', (1 — ct), (4.12)

where ¢, . is smooth and solves

~Gue +wo +ich, —i¢’d, —blo['¢ =0, wxeR. (4.13)

91



If ¢, |r+€ H'(RT) then the following Gauge transform is well defined:

C 1 [*
CI)w,c = exp <—Z§ZE + Z/ |¢w,c(y)|2 dy> gbw,c-

Since ¢, solves (4.13), @, . is smooth and solves
c? 3. = c 3 o5 16
" — — | 2= Im(®D,)P— = |P[*P+—7|P['® =0, ~v:=5——b. (4.14
#(o=G) o= Sm@00- fopar il =0, 5= T T (@1

Since @, . [g+€ H*(RT), by similar arguments as in [23, Proof of Lemma 2|, we can
prove that
Im<q)w,caxq)w,c> = 0.

Thus, P, . solves
Oy + N o - C|oPd+ Snjofio = 0 (4.15)
J— w — — —_ —_— — . .
v 4 2 167

Now, we give the definition of a half-kink of (4.2)).

Definition 4.3. The function R, . is called a half-kink solution of (4.2)) if R, . is of
the form (4.12)) and the associated @, . is a real valued function solving (4.15)) and
satisfying:

lim ®(x) # 0,

rorEeo (4.16)
lim ®(z) =0,

T—Foo

Where@:w—%f:R%R.

For more convenience, we define
_ g3
The following result about the existence of a half-kink profile is stated in [72] as
follows.

Proposition 4.4. Let f : R — R be a C' function with f(0) = 0 and define
F(s):= [ f(t)dt. For& € R, let

¢(@) := inf {g >0,F(¢) - %w@ = 0}

and assume that there exists w, € R such that

C@) >0, f(0) =@ <0, [f(¢(@))—an(@)=0. (4.17)

Then, for @ = @y, there exists a half-kink profile ® € C*(R) of ([4.16)) i.e ® is unique
(up to translation), positive and satisfies ' > 0 on R and the boundary conditions

lim ®(z) =0, lim ®(x)= (@) >0. (4.18)
T—r—00 T—00
If in addition,
f(¢(@n)) =@ <0, (4.19)
then for any 0 < a < @1 — max{f'(0), f'({(&))} there exists D, > 0 such that
D' (z)] + | (2) Loco| + [((@1) — @(2))Lss0| < Doe ™, Vz € R. (4.20)
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We have the following remarks.
Remark 4.5.

(1) Asin [72, Remark 1.15], using the symmetry © — —x and Proposition [4.4] implies
the existence and uniqueness of half-kink profile ® satisfying

lim &(x) =((@;) >0, lim ®(z)=0.

T—r—00 T—00

(2) In our case, f(s) = §s° — &vs°. We may check that if v > 0, ¢ > 0 then there

exist W, = % and ((@) = ,/% satisfying the conditions (4.17), (4.19) and the
definition of the function . Thus, using Proposition if v >0, ¢ > 0 then there
exists a half-kink solution of (4.2) and the constant a in Proposition [{.4] satisfy
2
0<a< C—.
Ay

(3) Consider the half-kink profile ® of Proposition Since @ solves (4.16) and
satisfies (4.20), we have

@ ()] + |"(x)| < Dae™ .

Now, we assume v > 0. Let K > 0, 6y, wp, co € R be such that 2,/wy > co > /27.
For 1 < j < K, let (6;,wj,c;) € R be such that ¢; > ¢y, ¢; # ¢ for j # k,
2,/w; > ¢; > 25, /w; for s, = ,/%. Set R; = ewﬂRw].’cj, where R, . € H'(R) is
the soliton solution of (4.11)) with the associated profile defined in (4.5). Let ®( be
the half-kink profile given in Remark (1) associated with the parameters wy, co
and R,, ., be the associated half-kink solution of (£.11). Set Ry = ¢ R, .- The
multi kink-soliton profile of (4.11]) is defined as follows:

K
V=CRo+) R (4.21)

j=1
Our second main result is the following.

Theorem 4.6. Considering (4.11)), we assume that b < % (v >0). Let V be given
as in (4.21). There exists a certain positive constant C, such that if the parameters

(wj, ¢j) satisfy

Co (14 WVallzgerze) (4 IV gerse) + IV s ) < e o= min (;gghjrcj ~ aliinfle; - 00|> ,

(4.22)
then there exist a solution u to (4.11)) such that
|u—V|m < Ce™. YVt =T, (4.23)
where A = & and C, Ty are positive constants depending on the parameters wy, ..., Wk, Co, -, Ck -

We have some following discussions about the above theorem.
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Remark 4.7.

(1) The condition ¢3 > 27 in Theorem |4.6|is a technical condition and we can remove
this. The constant a in Proposition [4.4] satisfies

2

C
0<a< -2
a 4’}/

Thus, under the condition ¢3 > 27, we can choose a = % This fact makes the proof
easier and we have

90 (2) |+ @)+ 1B ()| + @ () o+ \ (\/2 - 00(o)) Luc

(2) By similar arguments as above, we can prove that there exists a half-kink solution

of (4.2 which satisfies the definition[£.3] To our knowledge, there are no result about
stability or instability of this kind of solution.

<e izl (4.24)

(3) Let v > 0. We give an example of parameters satisfying the condition (4.22]) of
Theorem [4.6] As in Remark [4.2] we have

Doje; = V2h; <, /i —h3 cosh(hjx) + cj>T ., Vi=1,.. K.

Hence, choosing h; < c;, for all j, we have

2 2
282 _

1D ;1700 < :
" ,/c?—yh?%—cjfvcj

By similar arguments as in Remark [4.2] for all 1 < j < K, we have

2 3
J

h .
|0R; || < —= + hj\/65 + —=.
) \/C_] J J \/;?

Now, we treat to the case j = 0. Let ®, be the profile given as in Proposition
associated to the parameters ¢y, wg and Ry be the associated half-kink solution of

([4.2). From (4.20), Remark [4.5] and Remark [4.7] we have

[ Pol[z= < V<o,
0@l S 1,

Thus,
[ Rol| Lo S /<o,
3 3
H@ROHLOOLOC § 1 + Cé 5 Cg.

This implies that for h; < ¢; (j =1, .., K) the left hand side of (4.22) is estimated
by:

hj

Col (14 + —L + hj /¢ + <1+\/c0+ —— 1.
; VEi v c3 ;ﬁ

J
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Choosing ¢y =~ 1, the above expression is estimated by:

C, 1+Z +h\/—+\/, <1+Z%) (4.25)

Let hj,d; € RT, d; # dj, for all j # k, 1 < j,k < K. Set ¢; = Md;, w; =
1(h2 + M?d?). We have (4.25)) is of order M° and the right hand side of is
of order M*. Thus, by these choices of parameters, when M is large enough, the
condition (4.22)) is satisfied.

The proof of Theorem uses similar arguments as in the one of Theorem
To prove Theorem our strategy is the following. Let R be the multi-soliton
profile. Our aim is to construct a solution of which behaves as R at large
times. Using the Gauge transform (4.26)), we construct a system of equations of
(p,1). Let h,k be the profile under the Gauge transform of R. We see that h,k
solves the same system as ¢, up to exponential decay pertubations. The decay
of these terms is showed by using the separation of solitons. Set ¢ = ¢ — h and
¢ = 1) — k. We see that if u solves then (¢,v) solves (1.35). By using the
Banach fixed point theorem, we show that there exists a solution of this system
which decays exponentially fast at infinity. Using this property and combining with
the condition , we may prove a relation between ¢ and . This relation allows
us to obtain a solution of satisfying the desired property.

This chapter is organized as follows. In the section we prove the existence
of multi-solitons for the equation (4.2)). In the section [£.3] we prove the existence of
multi kink-solitons for the equation . In the section we prove some tools
which is used in the proofs in the section and the section [£.3] More precisely,
we prove the exponential decay of the pertubations in the equations of h, k (Lemma
Lemma and the existence of exponential decay solutions of the systems
considered in the proofs of the main results in the section [£.2] (Lemma [4.13). Before
proving the main results, we recall Strichartz estimates and introduce some notations
used in this chapter. We need the following definition of admissible pairs.

Definition 4.8. Let N € N*. We say that a pair (¢, r) is admissible if

and
2N
2<r<m 2<r<xoif N=12<r<ooif N =2).

Lemma 4.9. (Strichartz estimates)(see e.q [16, Theorem 2.3.3]) Let S(t) be the
Schrodinger group. The following properties holds:

(i) There exists a constant C' such that for all ¢ € L*(RY), we have
1SCellce@er < Cllellze,

for every admissible pair (q,r).
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(i) Let I be an interval of R and to € 1. Let (v,p) be an admissible pair and
f e LV (I,LF(RN)). Then, for all admissible pair (q,r), the function

t

Es B (t) = / S(t— s)f(s)ds
to

belong to L4(1, L™ (RN)) N C(I, LA (RY)). Moreover, there exists a constant C

independent of I such that

1@ sl oy < CUfllprir ey, for all f € L7 (1,17 (RY)).

Notation.
(1) Fort >0, the Strichartz space S([t,0)) is defined via the norm

[ullstoony = sup |l e s (t00)xR)
(g,r) admissible

The dual space is denoted by N([t,00)) = S([t,00))*.
(2) For z = (a,b) € C? a vector, we denote |z| = |a| + |b].
(3) We denote a S b, for a,b > 0, if a is smaller than b up to multiplication by a

positive constant. Moreover, we denote a = b if a equal to b up to multiplication by
a positive constant.

(4) We denote a Sy b if there exists a constant C(k) depending only on k such that
a < C(k)b.

Particularly, we denote a S, b if there exists a constant C depending only on the
parameters wi, ..., Wk, C1, ..., Cg such that a < Cb.

(5) Let f € CY(R). We use Of or f, to denote the derivative in space of the function
f.
(6) Let f(z,y,z,..) be a function. We denote |df| = |fo| + | fy] + |f] + .-

4.2 Proof of Theorem 4.1

In this section, we give the proof of Theorem We divide our proof into three
steps.

Step 1. Preliminary analysis

Considering the following transform:

{so(t, v) = exp (5 7, [ult. )P dy) u(t @), (4.26)
b =0p — 3lele.
By similar arguments as in [59] and [100], we see that if u solves then (p, 1)
solves the following system
Ly = ig*) — blol*e,
Lyp = —i®D — 3blool*v — 2ble %0,
¢ |t=0= o = exp (% ffoo |U0(?J)|2 dy) U,
Y |i—o= 10 = o — £|wol*¢0,

(4.27)

96



where L = i0; + O,,. Define
P(p, ) = ip*) — blo[*y,
Qlp, ) = —i*D — 3blo|*v — 2| ™.
Let R be the multi soliton profile given in (4.6)). Since R; solves (4.2)), for all j, by

an elementary calculation, we have

K K
iR+ Ryy+i|R|°R,+D|R|'R = i (\RPRx > ijPij> +b (\R[“R -> |Rj\4Rj> .
j=1 j=1
(4.28)
From Lemma we have
K K
[RPR, =Y |RjPRiu||  +|IRI'R =) IR|'Ry||  <e™, (4.29)
j=1 H?2 Jj=1 H?2
where X\ = sv,. Thus, we rewrite ([4.28) as follows
iRy + Ryy +i|RI*R, + b|R[*R = e Mu(t, ), (4.30)
where v(t) € H?(R) is such that ||v(t)]| 52 is uniformly bounded in ¢. Define
h(t, z) = exp (% / yR|2dy> R(t,), (4.31)
k=h, — %|h|2h. (4.32)
By an elementary calculation, we have
Lh = ih*k — b|h|*h + e *m(t,z) = P(h, k) + e m(t, x),
Lk = —ik*h — 3b|h|*k — 2b|h|2h%k 4+ e n(t, z) = Q(h, k) + e n(t, ),
where m, n satisty
m = vexp (%/ |R|? dy) - h/ Im(vR) dy, (4.33)
n = mg — ilh|?m + %h?m. (4.34)

From Lemma {4.12 we have ||m(t)||g: + ||n(f)||z uniformly bounded in ¢. Set ¢ =
¢ —h and ¢ = ¢ — k. Then ¢, 1 solve:

Lg% = P(p,) — P(h, k) — e m(t,z),
Ly = Q(p,9) — Q(h, k) — e n(t, x).

Set = (@,1), W = (h, k), H = —e"(m,n) and f(g, ) = (P(g,v), Q(p,¥)). We
express solutions of (4.35)) in the following form:

(4.35)

n(t) =i / St — )W ) — FOW) + H](s) ds, (4.36)
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where S(t) is the Schrodinger group. Moreover, by using 1 = d¢ — %|¢[*p, we have

§ =0 — 516+ 2B+ ) — bR, (4.37)

Step 2. Existence a solution of (4.35))
From Lemma there exists T, > 1 such that for Ty, > 7. there exists a
unique solution 1 defined on [Ty, 00) of (4.35]) such that

e ([Inllsqitoon xsiitoon) + € UIMallsoonxsioon) < 1, VE = Ty, (4.38)
Thus, for all ¢t > Ty, we have
1Bl + &l S e, (4.39)

Step 3. Existence of multi-solitons
Let n be the solution of (4.35) found in step 1. We prove that the solution

n=(p,v) of ([&.33) satisfies the relation [.37). Set o = @+ h, ¥ = ¢ + k and
v=0p - ol
= 0P B Prp.

Since h solves Lh = P(h, k) + e~m(t,z) and @ solves Ly = P(p,v) — P(h, k) —
e m(t,z), we have Ly = P(p,1). Similarly, Ly = Q(p,1). We have

Lo = P(p, 1),
Ly = Q(p, ).

Thus,
L = Lo = Qo) - (00~ 3 L(1oP))
= Q) - (00 = (LR + PLE) +20()09))

i o
= Q(p,¢) — (0L90 - 5(2L90|90!2 +2(09)°P — @* L + 20°0,,p) + 490\890|2)) :
(4.40)

Moreover,

Lo = P(p,v) = ip”y — blp|*p
= z‘goz(w —v) + iapzﬁ — b|g0|4<p. (4.41)
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Combining and and by an elementary calculation, we obtain
- B
Lip — Lo = Q(p, %) — 9(ip* (¥ —v)) — |p[*@* (¥ —v) — §|90|4(¢ —v) = Q(p,v)
= (Q(p,¥) = Qly.v)) = 2ipdp(yp — v) — ig®d(Y — v)
1
—lePe* (¥ —v) = Slel* (¥ = v)
= —i(¥? — v*)% = 3blp|* (¢ — v) = 2lp[*P* (¥ — )

— 2ip (v + %|¢|2¢) (¥ —v) —ip*d(¢ — v)

~ PP =) — 3ol — o) (1.42)

e — =1 —vand ([1.42) we have
Lip—Lo = (0—0) A, 0, ¢, h, k)+ () — 0)B(4, 0,3, h, k) —i(p+h)*0(¥ — ¥), (4.43)

where

Define v = v — k. Sinc

5 S 1
A= —i(p + 7+ 2k)(¢+ h) — 3b|g + h|* — 512+ h|*,
B = —2b|¢ + h|*(¢ + h)?* — 2i(¢ + h) (17 +k+ %\@ + h|* (@ + h)) — @+ h* (¢ + h)2

We see that A, B are polynomials of degree at most 4 in (Q;, 0, @, h, k). Multiplying

both sides of (4.43) by QZ — v then taking imaginary part and integrating over space
using integration by parts, we obtain

1 ~ ~ ~ ~
EatHw - {}H%Q = Im/R@b - 6)2A<¢a 67 @a ha k) + W - ?7)23(1% 67 (157 h> k)

+ 20+ WG ) dr.

Thus,

1, - _ .
‘gatuw = 0ll2| S 10 = OllZ2 (| Al + 1 Bllz + 10( + h)* || 2.

By using Gronwall inequality, we obtain
1 (t) = B(t)]122

N
S 19 = o) aexp ([ (1AL~ + 1Bl + 10+ P ds) . (240
t
Combining (@38), (39), using k = hy — £{h[*h, & = O — §(1G+h2(B+h) — [h*),
|h| = |R| and the Sobolev embedding H*(R) < L>, we have, for t > Ty:
1@+ hllzee S T+ Al

S 1011z + 18l zee + @l 1Al 700

. I PN -
o= = [0 = 505 + b6 + ) — i
LOO

S 1+ 1102l L + [|All7-.
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Thus,
N
/ ([Allze + Bl + 10(¢ + 7)?|| 1) ds
t

N
S /t (1o + 18l + (1Kl )@ + Pl + 16 + Al + 116+ hllze 0 + Kl 2
+ (Jﬂ@HLw + [1Allz=) 0@l + [l ) ds
S /t (L4 10l + &l ) (X + [IAllzoe) + 1+ 12l Zee + (L4 [Alloe) (1] 2 + (1] 2)
+ (L [[AllL=) (102 o + 1]l L) ds
N
S /t Lt [RllZoe + l[El oo (1 + ([l o) + 1]] 0w (1 + [[Al| o)
+ (Ji + Al (10B ]| + s Loe) ds
S /t L+ [Allzoe + [l oo (1 + [[All o) + 108 2o (L + [[Al] )
+ (Nl + [[Allz ) (102l o + 1Kl + [| 2]} ) ds
S /t L+ (7l + Vel (L4 [[Allzoe) + 0Bl (1 + 1l o) ds

S (N = (14 Al e+ Kl e (14 1Al oe2e)
108l e = (U3 gy + 113 )

(N = 8)(1 4 | Rl + (Iallzoor + | RIZ o) 1+ [ Rll o))
(N = 3L+ Rl pe)

S (N = 8)(1+ | Rl o + | Rullioose (1 + | Bll o)) + (N = 1)

W

(14 IRl ).
Thus, there exists a certain positive constant Cj such that
N
/ ([Allzee + [|Bllz= + 10(¢ + 7)?|| 1) ds
t
3
< Co ((N = )1+ | Bll e+ I Rell oo (L [ Rl pos2)) + (N = ) (1 1R e 0))
Let C, = 32Cy. From the assumption (4.8)), we have
Uy A
5

Co (14 [ Rallzoroe) (1 + | Rl pooroe) + | R] oo o) < 3=

Hence, fix t and let N large enough, we have
N
/ ([Allzee + [ Bllz= + 0@ + h)*|| 1) ds < (N = t)A.
¢

Combining with (4.39)) and (4.44)), we obtain, for N large enough:

16(t) = BE)|2: S €PN W03 = =AN=12,
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Let N — oo, we obtain .
[(t) = o(t)[|72 = 0.
This implies that ¢) = & and we have

;
Y=v=0p— 5!90!290- (4.45)

Define u = exp (—% I o) dy) ¢. Combining (4.45)) with the fact that (o, 1))

solves

Lp = Q(e, ),
we obtain that u solves (4.2)). Moreover,

ow (=3 [ lewPay)o-exo (5 [ hwPar)n

S e = bl = [|@[]m
Combining with (4.39)), for t > Ty, we have

{Lso = P(p, 1),

[ = Rl[m =

Hl

|lu— R||m < Ce ™,

for a constant C' depending on the parameters wy, ...,wg, ¢, ..., cx. This completes
the proof of Theorem

4.3 Proof of Theorem

In this section, we prove Theorem We use the similar idea in the proof of
Theorem However, the argument used in this section cannot apply to (4.2)) (see
Remark . We divide our proof into three steps:

Step 1. Preliminary analysis

Set

vi=1u +£|u|2u
=t g )

By an elementary calculation, we see that if u solves (4.2)) then (u,v) solves the
following system:

Lu = —iw®v+ (5 —b) |ul*u,
Lv = U+ (3 = 3b) |ul*v + (1 — 2b)|u|*u’D,

(4 \tzoz Uo,

(4.46)
U |t=0= vg = Qug + %|u0|2u0.

Define
- 1 4
P(u,v) = —iu"v + 5 b |ul*u,

Qu, v) = iv*T + <; _ Bb> ' + (1 — 25)|u[227.
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Let V' be the multi kink-soliton profile defined in (4.21). Since R; solves ({4.2)), for
all j, by an elementary calculation, we have

K K
Vi 4+ Vi + VAV, + 0[V|'V =i (WE = R?R_jx) +0 <|V|4V -3 |RjI4Rj> :
=0 =0

(4.47)
From Lemma {4.14] we have
K K
VAV, =Y RIRuL| 4+ |[IVI'V =D IR R|| < (4.48)
7=0 H2 J=0 H?
for A = {zv.. Thus, we rewrite (£.47) as follows
iVy + Ve + VAV, + VIV = e Mm(t, z), (4.49)

where m(t) € H*(R) such that ||m(t)| g= uniformly bounded in ¢. Define

h=1V,
i
k = h, + =|h|?h.
+2Ih
By an elementary calculation, h, k satisfy the following system.
— 1
Lh = —ih*k + (5 - b) |h|*h + e Pm = P(h,k) + e m,

Lk = ik*h + (; - 3b) \h|*k + (1 — 2b)|h)2h%E + e~ n = Q(h, k) 4+ e Pn.

where n = m, + i|h|*m — Lh®m satisfies |[n(¢)||p uniformly bounded in ¢. Let
@ =u—hand o =v — k. Then (@, 0) solves:

{La = P(u,v) = P(h, k) = e"?m, (4.50)

Lo = Q(u,v) — Q(h, k) — e .

Define n = (@,9), W = (h, k), H = e"*(m,n) and f(u,v) = (P(u,v), Q(u,v)). We
find a solution of (4.50) in the Duhamel form

n:—z'/tOOS(t—s)[f(W—i-n)—f(W)+H](s)d5. (4.51)
Moreover, from v = u, + %|u|*u, we have
ﬁ:ﬁx+%(|ﬂ+h|2(a+h) — |h?h). (4.52)
Step 2. Existence a solution of (4.51])

From Lemma there exists T, > 1 such that for Ty > T, there exists a
unique solution 1 defined on [Ty, 00) of (4.51)) such that

M|l (11,00 xS(100)) T €Ml s(lt.00)xS(1100) < 1, VE = T, (4.53)
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where A = f£. Thus, for all ¢ > Tp, we have

|| g+ ||| < e (4.54)

~Y

Step 3. Existence of multi kink-solitons
By using similar arguments as in the proof of Theorem [{.1] we can prove that the

solution 1 = (p, ) of (&.51) satisfies the relation (£.52)) provided assumption (4.22)
is verified. This implies that

¥ = Uy + = (|@ + h*(@+ h) — |h|*h).

N =

Set u=u-+h, v=1v+ k. We have
v=u, + %|u|2u (4.55)

Since (u,v) solves (4.50]), we infer that u, v solve

Lu = P(u,v),
Lv = Q(u,v).

Combining with (4.55), we have u solves (4.2)). Moreover, for t > T, we have
lu =Vl = llallm S e

This completes the proof of Theorem [4.6]

Remark 4.10. We do not have the proof for the construction of multi kink-solitons
for . The reason is that if the profile R in the proof of Theorem is not in
H'(R) then the function i defined as in (#.31)) is not in H'(R). Thus, the functions
m, n defined as in (4.33) and are not in H'(R) and we can not apply Lemma
to construct a solution of system (4.35)).

4.4 Some technical lemmas

4.4.1 Properties of solitons

In this section, we prove some estimates on the multi-soliton profile used in the proof
of Theorem [A.1]

Lemma 4.11. There exist Ty > 0 and a constant X > 0 such that the estimate

(4.29) is uniformly true for t > Tj.

Proof. First, we need some estimates on the soliton profile. We have

[Rj(2,0)] = [@u 0, (2 = )] = V205 (/2 + 912 cosh(h(w = 1)) - ;)

< i la—cst]
— l‘—Cj
NhJ7|CJ| ez :

N
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Moreover,

‘aRj(xvt” = |6¢wj,0j (37 - Cjt)’
/2 -
= T\/_hi ¢ +h3 [sinh(h;(z — c;t)]| (@ /3 4 vh3 cosh(hy(x — ¢jt)) — cj)

< 6—23 |z—c;t|
h]7|CJ| '

~J

(NI

By an elementary calculation, we have
—h.:
‘82Rj($’t)’ + ’3333'(%75)\ Shyle;| ez loertl,

For convenience, we set

K
X1 =i|R’R, =i Y |R;|"Rj,, (4.56)
j=1
K
X2 = [RI'R = |R;|'R;. (4.57)
j=1

Fix ¢t > 0. For z € R, choose m = m(z) € {1,2,..., K} so that
|z — ¢pt] = min |z — ¢t
J
For j # m, we have
1 t
|z —cjt| > §|cjt — Cpt] = §|cj — Cl-
Thus, we have

(R — Rp)(z,t)| + |(OR — ORp(,1))| + |0°R — 0*Rp| + |0°R — 03 R,
<Y (R, )] + [0R; (2, 1)| + |0 Ry (x,1)] + |0° R; (. 1))
J#Fm
G e
Shireferlerc| Om (T, ) =D 72 o=t
i#m
Recall that
Uy = }I;ghﬂcj — Ckl.
We have
|(R=Rpn) (@, )|+ (OR=0R (2,1))|+]0* R—0 Ry |+]0° R—0° Ry | S 0 (,1) S e,
Let fi,91,7m and fs, go, 79 be the polynomials of u, uy, Uy, Uz, and conjugates sat-
isfying:
Z|U;|2Ux = fl(uvﬂa uz)a |U|4U = f?(u7ﬂ)7

, 8(|u|4u) = ¢2(u, uy, 4@, ..),

~—

a<l|u|2u$) - gl(uv Uy, Uggy Uy ..

o O (Jul*u) = ro(u, Uy, Uge, T, ..).

~—

82(z]u|2ux) = 7°1<u7 Ugy Ugy, uwmzaﬂa ..
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Denote

A= sup (df1] + |dfa| + |dgi| + |dga| + |dri| + |dra]),
Iu\+|um\+\Uzz|+|%mKj;lleHm
We have
x| + x| + 10xa] + [9x2| + |0%xa | + \52X2’
<R, Ry) = fi( Bony Bona)| + | f2(R) = fo(Bon)| + Y (1f1(By, Rja)| + | fo(R)])

Jj#Em
+ |91(R7 Rxa Rxm; ) - gl<Rma Rmxa Rmazxa )‘ =+ ‘92(R7 R:):a ) - gZ(Rm: Rmza )’
+ Z<91<Rja Rjz, Rjee, .-) + 92(Rj, Rjz), )
j#m
+ |T1(R Rx>R:c:r:7Ra:xxa- ) Tl(Rma Rmxa Rmxza Rmxzxa )‘
+ |T2(R7 R$7RJ?J}7") r?(-Rma
+ Z(Tl(Rj) ijy Rjacx; Rjacac;m ) + TQ(Rj7 Rjam Rja:acy ))
i#m
A(|R — Rm| + |Ry — Rua| 4 |Raw — Rinaa| + | Roze — Ringas|)
+ Z A(|Rj| + |Rj:c| + |Rj:cac| + |ijzx|)
i#m
<24 (IRl + |Rjal + [Rjua| + | Rjsaa)
Jj#Fm
Sp Om(t, ).

In particular,

M) m:r:;r»--)|

X1 lw2e + [x2llwze Sp e 1%t

Moreover, we have

Ix1llw2a + lIxallwe
K

(IR * Rzl zr + 10 R 1 Rya)ll 22+ 110° (1R [* Ry )| 2

=1

+ HR5HL1 + 0 R 1" Ry) [ o2 + 19*(|R;|* R)) | 1)
K
S R + IR 32 + 1R s + I1R; 50 + 1Ry 3 + I Bsl[32) < € < o0
j=1

By Holder inequality, for 1 < r < oo, we have

I llwer + Ixellwer Sp e300 ¥r € (1, 00).
Choosing r = 2 we obtain:

_Vky

Ixallae + lIxellme Spe s,

Thus, for t > Ty, where Tj large enough depend on the parameters wy, ..., wg, 1, ..., Cx,
we have

X1 llmz + Xl < e, V> T,
Let A = T£, we obtain the desired result. u
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4.4.2 Prove the boundedness of v, m,n

Let v, m and n be given as in (4.28)), (4.33)) and (4.34)) respectively. In this section,

we prove the uniform in time boundedness in H%(R) of v and in H*(R) of m,n. We
have the following result.

Lemma 4.12. There exist C' > 0 and Ty > 0 such that for all t > Ty the functions
v, m,n satisfy
o)z + [[m@) [l + In(®) ][ < C,

Proof. Let x1 and xo be defined as in (4.56)) and (4.57)) respectively. We have

e M = x1 + bxa.

By Lemma we have [|v(¢t)||z2 < D, for some constant D > 0. From (4.33)), we
have

Imllg> S Nlvllae + (2l a2 llvll g2l Rl g2 < Ch,
for some constant C; > 0. From, , we have
Inllze S llmellzz + [R1Z Imllm < lmflm (1 + [|AlF) < s,
for some constant Cy > 0. Moreover, we have
Inellze < lImaellze + [1lF [Imllm < Imlla=(1 + A7) < Cs,

for some constant C3 > 0. Choosing C' = D + C + Cy + C5, we obtain the desired
result. O

4.4.3 Existence solution of system equation

In this section, we prove the existence of solutions of (4.36)). For convenience, we
recall the equation:

n(t) =i / St — )W ) — FOW) + H(s) ds, (4.58)

where 1 = (@, ) is unknown function, W = (h, k), H = —e~"*(m,n) and f(u,v) =
(P(u,v),Q(u,v)), where P,(Q are defined by

1
P(u,v) = —iu’v + (5 - b) |u|*u,
Q(u,v) = iv*u + <; - 319) lu|*v + (1 — 2b)|ul*u*v.

The existence of solutions of (4.58)) is established in the following lemma.
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Lemma 4.13. Let H = H(t,z) : [0,00) x R — C?, W = W (t,z) : [0,00) x R — C?
be given vector functions which satisfy for some C; >0, Cy >0, A >0, Ty > 0:

W (t)|| oo x oo + M| H (8)||r2xr2 < Cy V= Ty, (4.59)
1OW ()|l 2 xr2 + |OW ()| Looxpoe + M| OH (8)|| poxre < Ca, Yt = Ty, (4.60)

Consider equation (4.58). There exists a constant A\, such that if X > X\, then there
exists a unique solution n to (4.58) on [Ty, 00) x R satisfying

M0l s((t00)) xS (00 + €O s((t00)) xS (ooy) < 1, VE = T

Proof. We use similar arguments as in |72} [73]. We rewrite (4.58) into n = ®n. We
shall show that, for A sufficiently large, ® is a contraction map in the ball

B = {n:nlx = e lnlls(roonxso) + € 10nls(t00pxs(itoc) < 1} -

Step 1. Proof that ® maps B into B
Let t > Ty, n = (n1,m2) € B, W = (wy,wy) and H = (hy, hy). By Strichartz
estimates, we have

127|000 xs1t.00)) S (W 1) = FIW )N (.00 x N (1,00 (4.61)
+ ||HHL}L%([t,oo))xL;Lg([t,oo)). (4.62)

For (4.62), using (4.59)), we have

[ H || 2 £z (it,00)) x L1 22([tr00)) = 1P ll e 22,000 + 12l 2122 (1,00))

o 1
< / e Mdr < —e M,
' A

For (4.61), we have

|\ P(W +n) — P(W)| = |P(wy + 01, wa +12) — P(wy, ws)]
S Hwi +m)*(we + m2) — wiwz] + [|m + wi*(m + wi) — [w;|[*w]|
Soml+ el + [mf?

Thus,

[P(W + 1) — POW)n(too) S Imllngesey + 12l vy + 175 vy

S lmllzizzee) + 102l 21 L2 (t00) + ||U?||L;L§(t,oo)

e’\Td7'+/ Hm(T)HE,{de

t

a 0 7 3

e 4 / I ()1 0m ()1
t

X /Oo o= (T/2243/20)7 1
t

S

T~

N

Sl > = > =

N
o
.

S 1 ~(7/2243/22)t < le—)\t'
72X 1 3/2X A

AN

(&
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By similar arguments as above, we have

e M,

QW + 1) — QW) n(too) S

> =

Thus, for A large enough, we have

I _
17| 5(1t,00) xS ([t.00))) < 0 AL

It remains to estimate ||0Pn||s(jt,00)xS([t,00)))- By Strichartz estimate we have

0P| 5(1t,00)x 511,00 S NOF W + 1) = FIV) | N(1t.00)) < N(lt,00)) (4.63)
+ [|OH || N ([t,00))x N([t.00)) - (4.64)

For (4.64), using (4.60]), we have

1OH [ n(it.ooy x Nitoo)) < ([0l LrL2(it.ooy) + [[0h2] L1 L2 (k.00
o0 1

< / e dr = —e M. (4.65)
t A

~Y

For (4.63), we have

[0CfF (W +n) = FW)) N ((t.00)) x N ([t.00))
= [[0(P(W +n) = PW))|[n(t,00)) + 10(QW + 1) — QW) n(t,00))

Furthermore,

0(P(W +n) — P(W))]
S10((wy +m)*(wa + 1) — wiws)| + [9(Jwy + m|* (wy +m) — wi]*wy)]
Slonl(Inl* + W) + oW (Inf* + [W]|nl)

+ 1ol (" + W1 + (oW | (In]* + [nl|W]?).

Thus, we have

1O(P(W + 1) — POW)) | n(it.00))
< Moml(nf* + W) oo + OW (0l + [WIInDI e (4.66)
+lloml(nl* + W) xeoon + HOWI(Inl* + [0lWF) oo (4.67)

For (4.66)), using (4.59)) and (4.60) and the assumption € B we have

H1om| (10l + W ) | x it + NOW (0 + W] 0] v (ie,00)

S ol a2 00 + NV 222 (1,000 + NOW 101 | 222100
+ [[[OW W0l L1 2 (1t,00))

S 0022 22 (roop 1175 e + 11001 21 22 (1,000 TV I 0 10
+ ||’3W|HL°°L°°H’77\||L$L§°([t,oo))|||77||’L3/3Lg([t,oo))

+ W[z Lo 11OW ]| Lo o< 01| 22 22 (t.00))
1

A

—t
S —e
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For (4.67)), using (4.59)) and (4.60) and the assumption n € B we have

Honl(nl* + W) nqesey + W01 + 10lW ) || v (e,00)
S onl(nl* + W12z ooy + NOW (0" + [0l [W )| 21 22 (1,00
S ||877HL-?-°L§([’57°°))’|n|‘%$Lg°([t,oo)) + HW”%OOLOOHaﬁHL}L%([t,oo))

+ NOW | oo 2 1011t Lo 11,00y F N1OW oo oo W17 o0 10w 1] 2 22 (1,009

1
5 XG_)\t.
Hence,
T _
1OPOW + 1) = POV )I(eoo S ye (4.68)
By similar arguments, we have
L _
10(QMW + 1) = QW) lIn(eeop S e *, (4.69)

Combining (4.68)) and (4.69)), we obtain
1
1O (W +n) = FW)) | v (oo x Nty S v€ - (4.70)

Combining (4.65)) and (4.70]), we obtain

1, 1
109n]ls(1.00px 51000 S 3¢ < g€

if A > 0 1is large enough. Thus, for A > 0 large enough
[Pnlx < L. (4.71)

This implies that ® map B onto B.
Step 2. ¢ is contraction map on B

By using (4.59) and (4.60) and similar estimates as for the proof of (4.71)), we

can show that, for any n € B, k € B,

1
127 = @rllx < 5lln - &llx-

By Banach fixed point theorem there exists a unique solution on B of (4.58)). [

4.4.4 Properties of multi kink-solitons profile

In this section, we prove some estimates on the multi kink-solitons profile used in
the proof of Theorem

Lemma 4.14. There exist T, > 0 and a constant X > 0 such that the estimate
(4.48)) is uniformly true for t > To.
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Proof. For convenience, set

By similar arguments in the proof of Lemma [4.11, we have
—h.
|[Rj(, )] + |0R; (w, 1)| + [0° Ry (w, )] + |0°R; (w, 1)| Sy ey €77 17791,
for all 1 < j < K. Define
K
=V iy BT
5=0

K
X2 = [VI*V =) |R;|'R;.

=0
Fix t > 0. For z € R, we choose m = m(z) € N such that

|z — cpt| = min |z — ¢;t|.
jeN

If m > 1 then by the assumption ¢y < ¢; for j > 0 we have x > cyt. Thus, by
the asymptotic behaviour of @y as in Remark [4.7] we can see Ry as a soliton. More
precise, we have

|Ro(t,2)| + [Ry(t, x)] + | RG (¢, )] + | RY' (¢, 2)] S e 2lemeotl g eminet,
Using similar argument as in the proof of Lemma [4.11] we have:
I(R—Rp)(z,t)|+|(OR—ORwm)(z, )|+ |(0°R— 9* Ry ()| + |0P R— 8 Ry | < €71V,

Let fi, 91,71 and fs, g2, 79 be the polynomials of u, u,, Uyy, Urer and their conjugates
such that for all u € H3(R):

iu2u_x = fl(uaﬂ7 Ux), |U|4U = f2(u7ﬂ)a
a(lu2u_1’> - gl(u7 Ug, U’I$7a7 ")7 a(|u|4u) - QQ(U, Uz7ﬂ, ")7

O* (iu*g) = 11 (U, Us, g, Unae, U, ), O (Jul*u) = rao(u, Uy, Upe, T, ..).
Denote

A= sup (df1|+ |dfa| +|dga|+ |dgz| + |dri|+|dra]).

K
|ul+luz |+ uze |+ uwes < Rolly 4,00 + 22521 1R | g gy
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In the case m = 1, we have

Ixal + Ixel + 10x1| + [0xz2| + 07 x| + 07 x2]
S [Rol?[Roe| + [Rol” + [f1(V, ) = (R, )| + [ f2(V, ...) = fa(R, )]
+ (Vo) = gi(R, )+ [g2(V ) — g2(R, )|
K
+ [ (V,) = ri(R, D+ [ra(Ve ) = ra(B, )| + (R, Re, B) = Y fi(R;, Rya, By

J=1

Mw

jx:"

K
+1fo(R,R) =Y fo( Ry, B))| + |g1(R, Ra,y ) —
j=0

J=1

K K
+|92(R,Rz,.. ZQQ 75 jx,.)|+|7"1 R me' ZTl jx,..
7=0

J=0
K

+1r2(R, Ry, ) = > _1a(Ry, Ry, )|

=0
< [Rol?|Roa| + |Rol” + A|Ro|
+ A(|(R = Rp)(x, )| + [(OR — ORy) (z,t)| + |(0°R — O°Ryy) (2, 1) + |0°R — 0°R,))

K
+A Y (IRl +|0R;| + |0°R;| + |0°Ry))

Jj=1j#m
K
S |Ro?|Rox| + |Rol® + AlRo| + A Y (IR;| + |0R;| + [0°R;| + |0° Ry )
j=1,j#m
< efivt

~P

In the case m = 0, we have

xal + Ixal + 10xal + [0xal + [0%xa| + 6% x|
S Z (’fv<vv Vﬂcv ) - fv(R0> aRO? )‘ + ‘gv<vv an ) - gU(R07 aROa )’

v=1,2

+ |Tv(‘/a ‘/ac» ) - TU(RCH aRO)D
+ A Z <|fv(Rj7RjJ:7”)|+|gv( Jaca- )|+|Tv( ija“)D

K

S AIR|+ A (IR;| + |0R;| + |0°R;| + |0° Ry )
j=1

<, eVt

In all case we have

_ 1y,
X1 O lwzee + [[x2(B) e Sp e (4.72)
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On one hand,

X1 () [w2a
K
S (IR Rslln + 10(R R | o+ 10° (R Ry )[10)
§=0
K
S IR s + 10Ro[lw2s < C < oo
j=1

On the other hand,
[Ix2(8) w2

K
SHVITV = Rol* Rollwa + Y IR waa

j=1

S

K K
[Ro[* Y IR+ ) IR,
j=1 j=1

K K

S D MRl Blllwea + Y 1R 52
K

S

K
+ D IRl
1

W2l j=

[y

<

Jj=1

Y (IRjllwaa | Rolliyzse + 1I1R;]32) < € < o0,

—_

<

Thus,
D (@®llwza =+ Ixa (@) flwza < oo (4.73)
From (4.72)) and (4.73)), using Hélder inequality, we have

— Lo
i@l + el <p es* "

Let Tj be large enough, we have
i@l + o (®)llaz < e 5%, Vit > T,

Setting A\ = %v*, we obtain the desired result. O]
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Chapter 5

Multi-solitons Part 2:Construction of
multi-solitons for a generalized
derivative nonlinear Schrodinger
equations

5.1 Introduction

In this chapter, we consider the following generalized derivative nonlinear Schrédinger
equation:
i0pu + 02u + i|ul* Opu = 0, (5.1)

where o € RT is a given constant and v : R, x R, — C.

The local well-posedness and global well- posedness of was studied in [50]
when the initial data is in the Sobolev space H}(Q), where Q is any unbounded
interval of R. In this work, Hayashi-Ozawa used an approximation argument. In
[103], Santos proved the local well-posedness for small size initial data in weighted
Sobolev spaces. The arguments used in this work follow parabolic regularization
approach introduced by Kato [67].

The equation has a two parameters family of solitons. The stability of
the solitons has attracted the attention of many researchers. In [80], by using the
abstract theory of Grillakis-Shatah-Strauss [49, [50], Liu-Simpson-Sulem proved that
in the case o > 2, the solitons of are orbitally unstable; in the case 0 < o < 1,
they are orbitally stable and in the case o € (1,2) they are orbitally stable if ¢ <
2z04/w and orbitally unstable if ¢ > 2z5y/w for some constant zo € (0,1). In the
critical case ¢ = 22p/w, Guo-Ning-Wu [52] proved that solitons are always orbitally
unstable. In [110], in the case ¢ € (1,2), Tang and Xu proved the stability of
the sum of two solitary waves in the energy space using perturbation arguments,
modulational analysis and an energy argument as in [85, 86]. In this chapter, we
show the existence of multi-soliton trains in energy space in the case o > g Before
stating the main result, we give some preliminaries on multi-soliton trains of (5.1).

As mentioned in [80], the equation (5.1)) admits a two-parameters family of soli-
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tary waves solutions given by

' c 1 x—ct -
Yue(t, ) = Py (T — ct) exp (z (wt + 5(96 —ct) — o 1 2 / ©e(n) dn)) :

—00

(5.2)
where w > % and
oy (o +1)(4w — ?)
Cie(y) = : (5.3)
2\/w (cosh(a\/llw — c?y) — 2\%)

The profile ¢, . is a positive solution of

c? c 20+1
_82 w,c - w,c S wc2g w,e T T8 Ao wc4g wczO. 54
y¢,+<w 4)90,+2|<p,!<p, (20+2)2!<ﬂ,|90, (5.4)
Define '
Pue(y) = Puc(y)e®®), (5.5)
where
O e I UL (5.6)
w,C y - 2y 20__|_ 2 - (pw7c 77 77 :
Clearly, we have .
Voolr,t) = et o(x — ct). (5.7)
and ¢, . solves
_a§¢w,c + w¢w,c + icay¢w,c - i’¢w,c’208y¢w,c = 07 Yy € R. (58)

Let K € N. For each 1 < j < K, let (wj,¢j,x;,0;) € R* be parameters such that
c2 .
w; > +. Define, for each j =1,.... K
Rj(tv I) = €i9j¢wj,cj (tu T — xj)

and define the multi-soliton profile by
R=> R, (5.9)

For convenience, define h; = /4w; — cjz, for each j = 1,..., K. Our main result is
the following.

Theorem 5.1. Let o > g, K € N* and for each 1 < j < K, (0;,w;,c;,x;) be a
sequence of parameters such that z; € R, 0; € R, ¢; # ¢, for 7 # k. The multi-
soliton profile R is given as in (5.9)). There exists a certain positive constant C.
such that if the parameters (w;, ¢;) satisfy

Co (U IRIEZ D+ IRy )(1 o+ 00 Rl + [ RIE)) < 00 = inf hyles—eil,
(5.10)
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then there erists a solution u of (5.1) such that
Hu - RHHl < C€_>\t, A Z T‘o7

for positive constants C,Ty depending only on the parameters wy, ...,Wg,C1, ..., Ck

_ 1
and \ = 16V«

We have the following comment about the restriction o > g

Remark 5.2. By Lemma the following inequality holds for o > 2:
(a +b)2e2 — g200=2 < p2e=D 4 221 forall a,b > 0. (5.11)

The condition o > 2 ensures that the order of b on the right hand side of (5.11)) is
larger than 1. This is used in the proof of Lemma |5.9]

The condition ([5.10f) is an implicit condition on the parameters. Below, we show
that for large, negative and enough separated velocities, the condition ((5.10) holds.

Remark 5.3. We prove that there exist parameters (wj, ¢;,0;,z;) for 1 < j < K such
at the condition is satisfied. Let M >0, h; >0, d; <0, for each 1 < j < K.
We chose (¢j,w;) = (Md;, $(h3 + M?d?)). We verify that this choice satisfies the
condition for M large enough. Indeed, we see that ¢; < 0 and h; < |¢ | for
M large enough. We have

20 h2
Saw]-,ci ~
S 2/ (Cosh(ahjy) 2f>
1
hi \ % — sinh(oh;y)
axsowj,cj ~ 2\/_ N 1+%.
<cosh(ahjy) - #@)

Using | sinh(z)| < | cosh(z)| for all z € R we have

upael < (52=) 1 S s
zPwjci|l c T~ [ Puwje |-
2,/w (cosh(ch,y) — \Jﬁ)

Thus,

2

h
IRl zooroe = [|Quyc;llee S % ol <1
]

||8:ch||L°CL°° = Haxqbwj,CjHL"oLo"
1
20 + 2

20+1
Pt

G
E‘Pwm- o

N ||90wg7cg |L°° + |CJ|||90wg7Cg
h2
SN +| ¢l 2\/
4] ;]
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Hence,

IRl S Y %

J

h2
10: Rl £ \/| +|c]r2{/‘
j J J

1R 1 1 = IRl 2 + 102 Rl Toe 2 = P 72 + 1000, ;172

1 1
h? s h2 o )
Sl s (72) | = (o) e
J L2 Y

cosh(ahjy)i

AN

o 1 1

<hehl= h" -
2,/w;j hj 7

where we use h; < 2,/w;. Thus,

1
IR Gwin S hi
J

Furthermore,

The condition ((5.10) satisfies if the following estimate holds:

1_ h? h?

1 -/ o .

<1+ E hg ) 1+ E 2 ’C_j’+]cj|2 |c_j] <<;2£hj’0j_0k|. (5.12)
j j

We see that the left hand side of (5.12) is order M "2 and the right hand side
of (5.12)) is order M'. Hence, the condition (5.10) satisfies if we choose M large
enough.

Remark 5.4. We may replace the condition (5.10]) by the following condition

(A4 IBIGE D) AR )1+ 100 Rl e + | RIFG) < Co. = inf hyle; — e

(5.13)
where C' is a certain positive number. We do not know exactly what this constant
is. The condition (5.10]) says that we can choose the parameters such that the right
hand side of (5.10)) is arbitrary larger than the left hand side and hence the condition

(5.13)) satisfies.

Our strategy of the proof of Theorem [5.1]is as follows. First, we define o, 1) based
on u in such a way that ¢ and ¢ satisfy a system of nonlinear Schrédinger equations
without derivatives (see (5.16)). Let R be a multi-soliton profile which satisfies the
assumptions of Theorem Then R solves up to a small perturbation. Let
(h, k) be defined in a similar way as (g, 1) but replace u by R. We see that (h, k)
solves up to small perturbations. Setting ¢ = ¢ — h and 1; =1 — k, we see
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that if u solves then ((,7) solves a system and a relation between ¢ and 1)
holds and vice versa. By using the Banach fixed point theorem, we prove that there
exists a solution (@, 1)) of this system which exponential decays in time on H'(R) for
t large. Combining with the assumption , we can prove a relation between ¢
and 1. Thus, we easily obtain the solution u of satisfying the desired property.

This chapter is organized as follows. In Section [5.2] we prove the existence of
multi-soliton trains for the equation (5.I). In Section we prove some technical
results which are used in the proof of the main result Theorem 5.1} More precisely,
we prove the exponential decay of perturbations in the equations of h, k (Lemma
and the existence of decaying solutions for the system of equations of ¢, 1; (Lemma

5.).

Before proving the main result, we introduce some notation used in this chapter.

Notation.

(1) We denote the Schridinger operator as follows
(2) Given a time t € R, the Strichartz space S([t,00)) is defined via the norm

HUHS([t,oo)) = sup HUHL;?L;([t,oo)xR)-
(g,r) admissible

We denote the dual space by Nt,00) = S([t,00))*. Hence for any (q,r) admissible
pair we have

HUHN([t,OO)) < Hu”Lg’L;’([t,oo)xR)'
(3) For a,b € R?, we denote |(a,b)| = |a| + |b|.

(4) Let a,b > 0. We denote a < b if a is smaller than b up to multiplication by a
positive constant and denote a <. b if a is smaller than b up to multiplication by a
positive constant depending on c. Moreover, we denote a =~ b if a equals to b up to
multiplication by a positive constant.

5.2 Proof of the main result

In this section we give the proof of Theorem We use the Banach fixed point
theorem and Strichartz estimates. We divide our proof in three steps.

Step 1. Preliminary analysis. Let v € C'(I, H'(R)) be a H'(R) solution of
on I. Consider the following transform:

o(t,z) = exp(iN)u(t, x), (5.14)

¥ = exp(iN)d,u = dup — 5o, (5.15)

where

1 x
A= 5/ Ju(t, y)|* dy.
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As in [56] section 4|, we have
oA = —oTm([ul“DG0,0) + oTn [ /_ C o (e, dy | — i|u]40.
Thus, using |u| = |¢| and Zm(ud,u) = Im(py)), we have
O = —ol POV Ing) + 0 [ 0(ule ) In(a0,) do — 7101
— —olel VIn(ew) + o [ Ou(lePeINIn() do = gl

Since u solves (5.1]), we have

L(exp(i\))u + exp(iA) Lu + 20, (exp(i\))0,u
L(exp(iA))u + exp(iN) (Lu + 4|u|* w)
L(exp(iA))u

(i0; + 02) (exp (i) )u,

- [-etiajan + ax<exp<z'A>§|uP”>} u

Ly

= —pd, A + [exp(z/\) |u|? + L exp(i\)0, (]u\z")] u

2

1 1
= g0t ¢ |51l + 30.(6)

— ol DeTntpn) — oo [ DIl In(p0) do

+ Zlel* 0 — Jelel +ioloP T gRe(p0,)
—aW” Voo (Tm(py) + iRe(@0:0))

—op [ 1P o = D0u(lpP)In(E0) do
= a7 Vo (Tm(By) + iRe(Py)))

~olo =V [ 1P 2Rel)In(ev) da

T

= io|p|*V*) — o(0 — 1)90/ |02 T (yp*F?) dy

—00

118



As in [56] section 4|, we have
Lty = L(exp(i\)O,u)

= exp(il) { ) O (|ul*))0u + o|ul* ™V Tm (a0, u)dpu

o / Tn(B, (|u[2~ D7) D,0) dy(?mu}

= 5016y + ol Tn() — o [ Ou(fu ) I dyd
_ _iax(wff)w + ol Q2D Tn(B) — o) /_oo 0u (|0~ Im(pe0) dy
= ol p(Tm(By) — iRe(Gpp))

— oy / (0 = DI 2Re(00) Tn(70) dy
— ol Tn(F) — iRe(F)

~olo =10 [ [P 2R Enlp0) n() dy
= —ig| | VY*p — a0 — 1)y / PO N Tn(y?5) dy

Thus, if u solves (5.1]) then (p, 1) solves

Lo =iolpl"Ne*p —a(o — g [*|e|* D Im(v*@?) dy, (5.16)
Ly = —io|pP V5 — oo — D) [* ol Tm(4*F?) dy. '
For convenience, we define
P(p,1p) = io|p V™) — oo — 1)90/ 0?2 Im(4°%%), (5.17)

Qo) = —iolpl2T V425 — oo — 1)) / PO DI, (5.18)

Let R be the multi-soliton profile defined in ([5.9). Define h, k by

h(t,2) = exp (% / Rt 2)[27 dy) Rt z),

—00

k= d.h — 3|h\20h.
Since R; solves ) for each 1 < j < K, we have
LR+ z’|R]2°'Rx == iR Rjs +i|RI*R,. (5.19)

J

By Lemma for t > T, large enough we have

— ilRj|* Rjy + i[RI R,

J

<e M (5.20)

H2
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Thus, we rewrite (5.19)) as follows:
LR+ i|R|*R, = e v, (5.21)

where
v=e(=) i|Rj|* Rj, +i| R R,). (5.22)
J

By an elementary calculation, we have

Lh = io|h2e=V0%% — o(0 — Dh [*_ |h2O2Tm(k2R") dy + e >m(t, ),
Lk = —io|h*" " Vk*h — o(o — 1)k [*_ |h]2("_2)Im(k252) dy + e Mn(t, ).
(5.23)

where

m = exp (% / |R|* dy> v—oh / |RI>“~YZm(Rv) dy, (5.24)

n = exp (% / |R|* dy) e M (Opv — aﬁwR/ |R*“VIm(Ru)dy).  (5.25)

— 00

Since v is uniformly bounded in time in H?*(R), we see that m,n are uniformly

bounded in time in H'(R). Let » = ¢ — h and ¢ = ¢ — k. Then (, ) solves:

{L@ = P(p,¢) — P(h, k) — e Mm(t, z), (5.26)

L = Q. ¥)) = Q(h, k) — et x).

Set 1 = (¢,9), W = (h,k) and f(p,9) = (P(,9),Q(¢,%) and H = e (m,n).
We find a solutions of (5.26) in Duhamel form:

o) =i [ OV +0) = FOV) + H() ds, (527
t
where S(t) denote the Schrodinger group. Moreover, since ¢ = 9,0 — £|¢[*7 ¢, we
have ,
~ B 1, o~ o
¥ =0:0 = (1@ + Al (2 + D) = |B7h). (5.28)

Step 2. Existence of a solution of the system
From Lemma there exists T, > 1 such that for Ty > T, there exists a unique
solution n of (5.26|) defined on [Tp, T) such that

Inllx = e[l s(i000) x5 (000 + € 10en| s((t.00))x 5[0y < 1 VE = T, (5.29)

Thus, for all t > T}, we have

1l + 19l S 7. (5.30)

Step 3. Existence of a multi-soliton train

120



We prove that the solution n = (¢, @/) ) of satisfies the relation ( - Set
go = gp+h V=1 +k and v = 8zg0——|<p|2<p andv = v—k Since (p,1)) solves
and (h, k) solves (5.23), we have (i, ) solves . Furthermore,

7; ag
Lv = 0: Lo = S L(1¢*7). (5.31)

Moreover,

L(l¢[*¢)

= (i0, + 02)(p7 D7) = i (7 P7) + D27 P7)

= i(0 4+ D)|p[*Op + io |0
+0,((0 + 1)|¢* 0o + ol V%0, )

=i(o + 1)|90|208t90 +iolpNGP 0P + (0 + 1) (B2l el* + &cw@ (lp*)]
+0 (028107 + (0 + )00 Vo + (0 — 1)o7V (0:2)7]

= (04 Dol (ibp + 02) + ol V(10 + 059) + (0 + 1)0up0:(|0]*)
+0(0 4+ D00 e Vo + (0 = 1)(0:2) [P

= (0 + 1)|p[* Ly + o|p|* " Vp*(~ Lo + 20%%) + (0 + 1)0upd: (|0]*)
+0(0 + )]0l Vo + 0 (0 — 1)(8:2)* [P,

Combining with (5.31)) and using (5.16)), we have
/L. g
Lv = 0. Lo = S L(1¢7p)

i i - _ _
= 0:Lp — 5 [(o+ Dl L + ol (— Ly + 2029)

+(o + 1)0:p0: (™) + o(0 + DI0upl*| "7 Vo + (0 — 1)(0:0)* |02 ]

= 0u(P(p, ) = P(p,0)) + 0 P(p,0) = %(0 + Dl (P(e,¥) — Plg,v))

— S0+ DIpP Plp,) + Solpl e (Pl 9) - Pl v)
+%0\¢|2(°1)902W—@'0!wl2(” V* 02
2 [0+ D000, (16) + 0l + DlosePlePe g
to(o — (@716l

= .(P(p. ) — Plo.v)) — 2(o + DIgl (Ple. %) — Plp,v))

+%wW“%ﬂH%w—PWw»+m%w,

where G(p,v) contains the remaining ingredients and G(p,v) only depends on ¢
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and v:

G(p,v)
= 835P<907 U)

i i i N
= 5@+ DIl Plov) + §0|90|2( Vo?P(p,v)

. o— — i o o—
— io|p|* D ?02p — 5 [0+ D0wp0:(j07) + o (0 + 1)|0x0* || Ve
+o(o —1)(0:0)* |7 . (5.32)

As the calculations of Ly in the step 1, noting that the role of v is similar to the
role of 1 in the process of calculation, we have G(¢,v) = Q(p,v) (see Lemma
for a detailed proof). Hence,

Lw —Lv= Q(@? W - Q((pa U) - aa:<P(907 w) - P((p, U))

n %(a + D)el* (P(¢,%) — Pg,v))

N %0|w|2("‘”902(13(90,¢) = P(p,0)).

Thus,
L — Lo = Ly — Lo

S0+ Vel (Plp, 6+ k) = Plp, 0 + )

— 2oleP V(P T 1 F) — Pl o 1 B)) (533

+

Multiplying both side of (5.33) by Y — 0, taking imaginary part and integrating over
space with integration by parts we obtain

S0l — o1l

=T [ (QUerT+ 1) = Qe+ R)(G ) da (5.31)
—Im/R@x(P(SOaQZ’—F/{) — P(p, 7+ k) (¢ — B) da (5.35)
+(0+ 1)Im/R %|¢]20(P(gp, b+ k) — Plp, o+ k)¢ — D) do (5.36)
~oTn [ SIePT VAPl o D)~ Ploi T D) - T)de. (53)

We denote by A, B,C, D the terms (5.34), (5.35)), (5.36)) and (5.37) respectively.
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First, we try to estimate A, B,C, D in term of R. We have

AlS (Q(s@ Y+ k) = Qo0+ k) (Y — 1) da

/W“ (64 K = (04 )@ — ) do
e[ |@+0 [ 1oz + b2t dy

~+8) [ 1ol T+ 177 dy} (G- B de

< / PPOVB( + k) — (5 + k)2) (D — ) da

[ @ =0 [ 1o+ k2 | (-

+

/R{@Jrk)/_ |l Im(B (¢ + k) — (ﬁ+k)2))dy} (& — ) da
< I = 12 llpll22 1 + & + 2]

|1l In(( 4 b7 dy

+ 19 — ol[7:

Lge

+ {1 = Ol 2|8 + Kl 2

/ PO I Tn(@ (D + R — (@4 k)%)) dy

S =0l lell% 1 + 0 + 2kl + [l — al|Z2 0™ (& + )% 1
+ 116 = 0l 2215 + El| 2l (@ + k)* = (04 K)?) [
S = 0lZalell 7%l + 0+ 2|z + [l = BlIZa 0™ (& + k)2 1o
+ [0 = 0l 7219 + Ell 210D (8 + T+ 2K) |12
S Il = oll72 K, (5.38)

Lge

where,
= lll %19 + 5 + 2kl oo + 1™V (W + k) [loe + 18+ k|2 |0V (& + 8 + 2k) | 2.
Furthermore,

Bl < / 0, (|oP VR — ) - T da

-+ ‘/ az (90 |§0’20 QIm( ((w + k) (f} + k)2)) dy> (¢ _5) dr
/a |90|201 —U) dx| +
xw/ PP D Im(@* () — 0) (P + T+ 2k)) dy(¢) — T) da

[l 05 — o7

‘/90|<p|20 DIm(p —v)(@/’+v+2k))(¢—5)da: .
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By using integration by parts for the second term of (5.39) and using Hélder in-
equality we have

1B] S 19— 9122110 (|| | e + 19 — 31221102 (|| V) || 1o
+ [102]| 2 H/ 2D Tn(F () — 0) (P + T + 2k)) dy| oo |9 — 0| 22
+ |9 — 3|22 )| * (W + D + 2K)|| oo
Sl = 022010210 PO 0 | o + (|19 — 31221102 (|02 0?) || oo
+ 11020l L2 19 — |22 ]| 0% (b — ) (b + D + 2k) || (5.40)
+ 1 = |72 11* (W + T + 2k) || 1
Sl = 93201010270 | e + (190 — 31321102 (|02 0?) || oo

+ 10l 219 = 0122l 0 (@ + 5+ 28) |2 + |9 — D72 10%7 7 (W + T+ 2k) =
= || — 9] 72 Ko, (5.41)

where
Ky 1= 110: (10w + [9u0l 207D (G54 20) 12+ |02 (6454 28) | .

Using (5.17)), we have

ICl <

/ o P D2 - T da
R

/R Iso|2"90/ P2 Im(B? (O + k) — (0 + &)%) dy() — T) da
Sl — 872119 || e
+ 1Y — 012 ||902”+1||L2||/ 0PI In(B? () — D) (¢ + B+ 2k)) dy || 1

S = ollZallo® = + 1 = 8l 2 0* 229V (4 = 0) (4 + T + 2k) 12
S = BllZalleo" = + 1 = o172 10> 229V (0 + 0 + 2k) | 12
= [[¢ — 07K, (5.42)

+

where 3
K3 = (0" || oo + 9% |12l D (4 + T + 2k)|| .
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Now, we give an estimate for D. We have

DIS / PPV PG — 5)(F — T) da
R

/R P02 / PO DIn(@(F + B — (54 kb)) dy(@ — 7) da
<11 — 0P 0™
11— 3l 2 e / PO DTG (D + k) — (&4 k%)) dyll

S = oliZallo" e + 19 = 2 ll® 22 ll™ D (8 = 0) (W + T+ 2k) |12
S = ollZallo" = + 19 = 12 0* 2219V (0 + T + 2k) | 12
= [l — 0[lZ- K, (5.43)

_|_

where 3
Ky o= (0" || oo + 9% |12l D (4 + T + 2k)|| 2.

Combining (5.38)), (5.41), (5.42)) and (5.43)), we have

atH?E - 17”%2 N ||775 - 17“%2(}(1 + Ky + K3 + Ky).

Using the Gronwall inequality, we have
R 3 N
166) = (01 5 108) = o) oo [0+ Kt K K
t
N
< e Mexp ( / (K1 + Ky + K3 + Ky) ds) : (5.44)
t

Now, we try to estimate Ky + Ky + K3 + K4 in term of R. Wh~en we have this kind
of estimate, we will use the assumption (5.10) to obtain that ¢» = 0. We have

N
/ (K1+K2+K3+K4)d8
t

N
- / IoIPZ M0 + 8 + 2Kl + 6% D@ + k)l
t

+ 1|5 4 k| 12]|@* "V () + © + 2k)|| 12 ds (5.45)

N
+ / 10 (el V) 2 + 10l 2 [10* 7 (4 + 0+ 2K) | 2
t

+ | (W + © 4 2Kk)|| 1 ds (5.46)
N
" / le* lzoe + 107 229%™ (0 + T + 2k) | 2 ds (5.47)
t
N ~
N / o e + 1% 2l ™D () + 0+ 2k) || 2 ds (5.48)
t
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Using (5.29) and - we have

[@llzoe < NPllze + 1Rl S 1+ 1A Lo (5.49)
lellze < M@llee + [1pll S 1+ [[R]l22 (5.50)
[¥]lLee S 1 (5.51)

We denote by Zy, Zy, Z3, Z, the terms (5.45)), (5.46), (5.47) and (5.48]) respectively.
Using (5.49), (5.50)), (5.51), (5.29) and (5.30)), for N > ¢, we have

120 SNl o N TS L2110 + 0 + 2k pagenvy
+ (N = )@l 7S 21l oo 2 + [[El| oo 12)?
+ [0+ Kl 4 tN)L2||90||L°°L2||80||LooLoo(||¢ + Ol zag.nypee + [kl Lag.nypee)
S (N = O @l2% e (1 + [ oo oo (N — £)7)
=01+ RS2 @+ (1Kl 2)
+ (N = )5 (1 + [El| oeg2) (14 ol goorz) (1 + [BIF2T2) (1 + (N = )3 ][ oo )
S (N = ) [[ll oo (1 + 113255 + (N = )1+ A7 22 (1 + [k ]13 e 2)
+ (N = )|l oo oo (1 + [[El| oo 2) (14 [l poor2) (1 + |RI3Z2)
= (N —t)Wy(h, k).
Similarly, for N > t, we have
22| S Haa:SOSOQU*lHLl ez + (N = 01020l ez @I 7 1210 + 8 + il oo 22
+ (N = )3 | l|2% ke (19 + Bl zagenvyzoe + 1Kl zagenyze)
S (N = 1)5([10:8 sz + [10ehll ez )0l 3%
+ (N —)(1+ [[hl[722) (1 + I#lz=22)
+ (N = )5 (1+ B35 ) (L + (N = £)5[[El| o 1)
S (N = )10kl oo (1 + 112255 + (N = )1+ [R5 2) (1 + [l oo 2)
+ (N = )|l oo (1 + [|A][3%7)
= (N — t)Ws(h, k),

and
|Z3| = | Z4]
S (N =) ([|@ll oo poe + Al oo roe)™

o 2(c—1 7 ~
+ (N = )|l oo 21011 2% e |01 72 R (19 + 8| oo 2 + || oo 2)

SN =)L+ |2l 1% o) + (N = ) (14 [|A]l oo £2) (1 + [|B]| 3% 0 ) (1 + || el| oo 22)
= (N — )Ws(h. k).

Hence, from ((5.44)), we have

670) — o) < NGXP(/tN(K1+K2+K3+K4)ds)

S e Nexp((N — t)(Wi(h, k) + Wa(h, k) + Wa(h, k) (5.52)

~Y
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The above estimate is not enough explicit. As said above, we would like to estimate
the right hand side of (5.52)) in terms of R. Noting that |h| = |R| and |k| = |0, R)|,

we have
Wi(h, k) = |0a Rl oo (1 + [ RI3% ) + (1 + | RIZZ ) (1 + 100 R 3o 2)
+ 10e Rl oo (1 + (105 Rl oo r2) (1 + | Rl poo2) (1 + | RIFZ,2)
< L+ IRIZS) [10u Rl oo e (1 + | Rl pooroe) + (1 + [|0aR| o 12)
H|0w Rl| oo oo (1 + [|0a Rl| o 12) (1 + || Rl oo 12)]
< (L4 IR[792) %

X [10aRllzoeroo (L + | Rllesr) + (L4 | RN o gr) + 1105 Rl pooroe (14 [| B[ Lo )]

Lo L

S U+ IRIZZLD A+ [ Rl ) (1 + (102 Rl oo 20)-
Similarly, by noting that |9,h| < |k| + |h|?** ™, we have

Wa(h, k) S (1Kl s noe + N30 (1 4 IIRNZEZ2) (1 + [ oo o)
+ (L [PIPD) (U + (1Rl zoer2) + [Ell e oo (14 RYZEZ2) (1 + 1l oo o)

< (L+ [l D)x
X [(1El|ow e + [1AIZRE) (1 + [[Al oo L)
H(L A+ [[Ellzoer2) + [l oo oo (1 + [ ]| oo o0 )]

< (1+ [|R]*e D) x
% [(1+ [l poo o) (1Kl ooz + [1]2%0E0) + (1 + [kl poer2)]
= (1+||RI[7,2)
% [(1+ | Bllooroe) (100 Rl e o + [R5 1) + (1 + |0 Rl| oo r2)]

2(oc—1) o
(1 IRIFZ D A+ [ Bll o) (1 + 100 R oo + I RIF L)
20+1 )

2(oc—1)
L+ IRIFZ D A+ (BRI ) (14 100 R oo + I RIF L),

IZANRZA

and

Wa(h, k) = (14 | Rll1% ) + (14 [ Rl poep2) (1 + [R5 ) (1 + 0o R] oo 2)
(L + IR E) [+ 1R Toe o) + (14 1R 0w £2) (1 + (100 R oo 2)]

Lo [

<
S (L4 | RIZELe )X+ | Rl oo )
~Y oo, Lo H1

Combining the above estimates, we have

Wi(h, k) + Wa(h, k) + Ws(h, k)
S U+ RIZCD @+ R i) (14 100 Rl| o1 + | RIS )
+ (L + [R5 (L4 (1R Ze )

S U+ RIZZD @+ R i) (14 100 Rl o1 + | R )
+ (14 [ RIZZD A+ [ RIF% o) (1 + 1 RIF o)
(1+ IRIFZD A+ (RN prn) (4 100 R oo e + RIS )-
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Thus, there exists a positive constant Cy such that

Wi(h, k) + Wa(h, k) + Ws(h, k)
< Co (U IRIZZZD 1+ IR )+ 10 R e + [ RIZE))
Let C, = 16Cy. Using the assumption , we have
Wilh, k) + Walh k) + Wa(h,k) < 25 = A
for ¢ large enough. Thus, by , we have

(1) = o) |72 < e NN,
for ¢ large enough. Letting N — oo in the above estimate, we obtain
1o (1) = oll7. =0,
for all ¢ large enough. This implies that
~ i
§ =00~ sloPo—k, (553)

and then ,
1
w = 0190 - §|90|290-

Moreover, since (1, @) solves (5.26) we have (1, ) solves (5.16). Combining with
(5.53), if we set
Z’ T
u = exp (—5/ Jol* dy) v

then u solves (5.1)). Furthermore,

i i
exp <—§|90I2" dy) @ — exp <§|h!2" dy) h
Hl

< Clllellm I10lla)lle = Alla S N@llm S e,

lu = Rl[m =

Thus for ¢ large enough, we have
lu = Rl < Ce™, (5.54)
for A = 1—161)* and C = C(wy, ..., wk, €1, ..., cx ). This completes the proof of Theorem

B.Il

Remark 5.5. In the case ¢ = 1, the integrals in disappear. In the case,
o = 2, the integrals reduce into [*_ Zm(1)*3?) dy, we do not need to use the
inequality (5.56). Thus, by similar arguments as in the proof of Theorem we
may prove that there exist multi-solitons solutions of when 0 =1 or o = 2.
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5.3 Some technical lemmas

5.3.1 Properties of solitons

In this section, we give the proof of (5.20). We have the following result.

Lemma 5.6. There exist C' > 0 and a constant A > 0 such that for t > 0 large
enough, the estimate (5.20) uniformly holds in time.

Proof. First, we need some estimates on the profile. We have

|Rj(t’x)| = ’¢Wj7cj (t,l’)| - |¢wj,cj- (:L’ - Cjt)| = |90wj,cj- (x - Cjt)|

2
4w; 5

2,/wj cosh(ah (x —¢jt)) — 2%)

Q

AN

~J

dw; — ¢ ¥
2\/_ cosh ohj(x —c;t)) — 2% cosh(oh;(x — cjt))>

dy = & ¥ 2/mtlel \¥
— |¢;]) cosh(ohj(x — ¢;t)) ~ \cosh(ch;(z — ¢;t))

|:(3 cj t|
SWJ ‘CJ 2 !

Furthermore,

h2 % —sinh(oh,;
0Py e; (y) ™ ( ) < (7hy9)

2,/w; O\ tae
cosh(ohjy) — \/C—ZT)

Thus,
K2\ | sinh(ch,y)|
0000, £ (57 e
=P W 2,/@; o]\ 3 |
( — \/_57]> cosh(ch;y)'*2e
1 _hy
~wj,lcj T ~owylel e z ‘y|7

cosh(oh;y)2s
Using the above estimates, we have
|8ij(t,$)| |3m%] cj( )| = |am¢wj c]< Cjt)l

= ’axSOon,Cj( o ]t) + ZQOWj,Cj( cjt)ﬁxewj,cj (.CL' — Cjt)‘
S |8m(20qu7Cj (ZL‘ — Cjt)| + |Q0wj,c]- (LL' — Cjt)||8x9wj7cj(;p — Cjt)|
Seples] 100y e, (. — cjt)| + ez 1ot

hj
< e 2 le—¢jt|
~Swjle .
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By similar arguments, we have

2Ry (¢, )|+ |O2R, (1, )] gy €7,
For convenience, we set
X = —i|R[*? 0, R +i%;|R;|* 0. R;,
f(R,R,0:R) = i|R|*’O,R,
9(R, R,0,R,0, R, 92 R) = i0,(|R[** 0, R),
r(R,0.R,..,0°R,0,R,0°R) = i0*(|R|* 0, R).

Fix t > 0, for each z € R, choose m = m(z) € {1,2,..., K} so that
|z — cpt| = min |z — ¢;t|.
J
For j # m we have

1 t
|z —cit] = =(Jx — ¢jt| + |z — ent]) = §|cjt — Cpt] = =|e; — el

2 J

DN | —

Thus, we have

|(R - Rm)(ta ZL‘)| + |ax(R - Rm)(t7x)| + |a§(R - Rm)(ta {L‘)| + |8§(R - Rm)(ta LL')|

< STUR (1,2 + [0, Ryt )] + 102, (8, )| + |02 ¢, )

J#Fm
U I
§w1,..,wK,|cl\,..,\cK| 5m(t,l') = Z €T| '7t"
JFm

Recall that

Uy = }%hj]cj — g

We have
(R — Rn)(t, )| + [0:(R = Rp) (t,2)| + |07(R — Ryn)(t, )| + [0 (R — Rup) (¢, 2)| < 0m(t, )

< e i
We see that f, g, are polynomials in R, 9,R, 9*R, >R, 0, R and 9?>R. Denote

A= sup (Idf] + ldg| + |dr).
[u]+]0zul+[02ul+|03u| <301 Ryl a

We have
x|+ [9u x|+ [92x]
<|f(R,R,0.R) = fr, 0.5, .|+ 19(R, R, 0:R,..) = g(Rp, Rin, 0 Ry, )|
+ (R, 0.R,..,03R,R,..) — (R, 0 Ry .., O2Rpp, Ry )|
+ Bjem(f(Ry, Ry, 02 R;) + g(Ry, 0, Ry, 2Ry, Ry, 0o Ry) + 1(Ry, ..., YRy, Ry, ..., D2 R;))
S A(IR = Ryl +|0.(R = Ry)| + [02(R = Ryn)| + |0;(R — Ry)|)
+ AS e (IR + 0. R)] + |07 R,| + |05 ;1)
S 2AY (| Ry + 10:R;| + |02R;| + |92 R;))
< 2A0,,(t, ).
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In particular, )
Ixllwese S e ™ (5.55)

Moreover,
Ixllwer S (IR P70 Ryl + 1102 (1 By 27 0u Ry )| 1r + 105 (1R51* 02 R)) || 1)
SR 20 + 1) + IRy 3 + 1By [3577) < oo
Thus, using Holder inequality we obtain

1
— 2 Ukt
HXHH2 §w1,~~,wKu|01\,~-,\CK| e s

It follows that if ¢ > max{wy, ..., wk, |c1], ..., |cx|} is large enough then

x|l < e 160,

Setting \ = %v*, we obtain the desired result. O]

5.3.2 Some useful estimates
Lemma 5.7. Let x > 0. Then there exists C = C(x) such that

(a+b)" —a® < O(x)(b" + ba™ ). (5.56)
for all a,b > 0.

Proof. Ifx =0o0rx=1o0rb=0or a=0 then (5.56) is true for C'(z) = 1. Consider
a,b>0. If 0 <2z <1 then using m* > m for m <1 and 0 < z < 1 we have

a w+ b x> a n b _1
a+b a+b a+b a+b

(a+0b)* <a® 40",
if we choose C'(z) = 1 then (5.56) holds. Considering a,b > 0 and x > 1, we set

Hence,

g(z) =2, VzeR.
We have g is class C'. Thus, there exists £ € (a,a + b) such that
[(a+0)" = a”| = |g(a+b) — g(a)] = |bg'(€)] = bxg™™" < xb(a+b)"".

If z—1 < 1 then (a+b)*! < a® ' +b! and hence we choose C(z) = z. Ifz—1> 1
then by Jensen’s inequality for convex function f(z) = 2®~! we have

(a—i_b)m_l < al‘—1+bz—1

2 2
We obtain
(a+b)" —a® < xb(a+b)" 1 <2 2xb(a® ! + 1" 71).
Choosing C(x) = 2°~2x, we obtain the desired result. O
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5.3.3 Proof G(p,v) = Q(p,v)

Let G(p,v) be defined as in (5.32)) and @ be defined as in (5.18). Then we have the
following result.

Lemma 5.8. Let v = 0, — %|@|2¢. Then the following equality holds:
G(p,v) = Qp,v).

Proof. We have

xT

P(p,v) = iolol V™t — o(0 — 1)90/ o2 Tim(v* %) dy,

Qp.v) = —iolp*" V5 — (0 — 1)@/ e I Ca

?

Glp,v) = 0 P(p,v) = (o + )|el*P(e,v)

i ) e _
+ §0|90\2( Vo?P(p,v) —io|p| V2027
i 3 ”
— — (0 + 1)0:00,(|0*°) + oo + 1)[0:0* || ™ Vo

2
+o(0 = 1)(8:9)* ¢ 27 .

The term contains [ || "2 Zm(v?%?) dy in the expression of G(p,v) is the fol-
lowing.

x

—olo = o [ 1P In() dy

—00
T

(@ + gl (1)olo = Vg [ 1P Tn(*5?) dy

i

2 -
i o— — ’ o— —
- 50\90|2( Vo (—1)o(o — 1)s0/ 0?72 Iim(v*%?) dy

= (o= 1) [ 1o n(eR) dy (90 - (0 + DIl + 50167 )

z - B i .
— oo = 1) [ 1P T dy (0~ Gl

—00

— oo~ 1) / o2 Tn(v?%?) dy,

—00

which equals to the term contains [*_[p|*“~?Zm(v*%?)dy in the expression of
Q(¢,v). We only need to check the equality of the remaining terms. The remaining
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terms of G(¢,v) is the following.

i00,(|p|* V™) — o (0 — 1)|* D pTm(v*F?)

Z o - g—
— =(o + Dl (io|p|* VD)

2
+ 50l (—iolp M IB) —iolpPT Ve (557)
?: g g—
— o+ D006 + oo + ol
+o(o = 1)(8:2)% |07 . (5.58)
Noting that 8,(|¢[*) = 2Re(v®) and v = d, — £|¢[*?, we have
the term ( -

= i00,(|p[*“™V)p%0 + io|p[*7 V208,00 + io|p|*7 V0,0
~ (o~ DIeP D p2Re(up) Tn(v) + 0Ll %D
+ 0% P Re(0) — io |V 02p
= 2i (0 — )| I Re(vp) 0’ + 2ic |07 V00, + io|p[*7 V0, (T — D,p)
— 20(0 — 1)|[*" " oRe(vip) Im(vp) + %ﬂwl“"‘zw% + 02| 2P Re(p0)
= 20(0 — 1)|¢|*" P Re(v)p (100 — Tm(vp)) + 2ic|* " V00, v
ialo b0, (S1P ) + golol 6+ ool e Re(en)
= 2io (0 — 1)|p[* P p(Re(vip))? + 2ia 0|7V 08, v
- %“R@IQ(“‘%Q(20|¢|2(“‘1)Re(v¢) + 10> 0,9)
+ %ds@l“”soz@ + 0|7 Re( D)
= 2io(0 — 1)|p[* P p(Re(vi))? + 2ia 0|7V 8, v
_ %U|s0|40_2902@x¢+ %0|¢|4a—2w26
= 2ia(o — Dlpl D p(Re(uo))? + 2iolo* Vgt + Jolpl' (T ~ 0,7)

: o— — 3 o— — i o
= 2io(0 — 1)||* 2 p(Re(vP))? + 2ic| 0?0, + 10117
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Moreover, using Re(0,¢®) = Re(vp) we have
the term ([5.58])
= _72 [0(0 + 1)|0:01% |V + 0 (0 + 1|V 0,0(0:50 + 820P)
+o(o - 1)(3¢)Q|90|2("_2)s03}
> =" [2010¢2 02D + o0 — D)o 20,50% (0.7 + 0: )
+20(a + 1)||*D 81907?5('0_)}

5 L 2000020V + 20(0 — 1) |20, 50 Re(vp)
+20 (0 + 1)|p*" 0,0 Re(vP)]
= —i [a]0¢|*|e*" Vo + o(o — 1)|p|* D0, B  Re(vp)
+o (o +1)|p[*7 0, oRe(vp)]
= —i [0|00|p]?" o + (0 — 1| P Re(vP)p(0:P¢ + 0:P)
+20)p|* V0, Re(vp)]
= —i [0]0¢|*|e[*" Vo + 20 (0 — 1)|p* P (Re(v) )]
= —2io(0 — 1)|[* " P p(Re(vp))*
— 010, |p* M — 2ia|p|* D, Re(vP).

Combining the above expressions we obtain

the remaining term of G(p,v)

’60 ‘2(0 1)

= 2i0] "0, + 2010|p — i010,pl? oo = 20|V Re(v7)
= il 0,p(6T — Re()) + Lolol¥p — ioldugPlo"T

= 2016 D0, Tn(e) + Solel*p — iolupl o

= 0"V, p(2Im (D) + 10, ) + %0|¢|60¢

= ol V0,0(ITn(p0,7) + o7 + iRelp0,7) — T 90,7) + 1oliel’

2042 60
| |

o— — i
= —alpP"o,0(|p + i0p) + 70l

—_ o Z loa
= —io|p|* VB(0,0)? — o || Dup + 10\90|6 ©

. o—1)— ? o o ¢ o t ag
= —io|pl* " Vg (v + 5lel? 90> — olepl* (v + 5lel? sO) + 5ol

= —io|p[* Vg2

This is exactly the remaining terms of Q(¢,v). Thus, G(¢,v) = Q(¢,v).
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5.3.4 Existence of a solution of the system

In this section, using similar arguments as in [72] [73], we prove the existence of a
solution of (5.26)). For convenience, we recall the equation:

o) =i [ S(e= IOV +a) ~ V) + H)(5)ds. (5.59)
where
W= (),
H = e (m,n),

fle, ) = (Pe, ¥), Qg ¥)).

We have the following lemma.
Lemma 5.9. Let H= H(t,z):[0,00) x R - C* W =W(t,x) : [0,00) x R — C?
be given vector functions which satisfy for some Cy >0, Cy >0, A >0, Ty > 0:
W ()| oo oo + M H () || p2xze < C1, VE=Ty,  (5.60)

1OW ()| 2xr2 + |OW (8)|| oo x oo + M| OH (8)||L2xr2 < Co, Yt = Ty, (5.61)
Consider equation (5.59)). There exists a constant \. independent of Cy such that if
A = A then there exists a unique solution n of (5.59) on [Ty, 00) x R satisfying

Ml sit.o0n xs(itiooy + € N1OMN st sty <1, VE2 T,
Proof. We rewrite (5.59) by n = ®n. We show that, for A large enough, ® is a
contraction map in the following ball
B = {n: Inllx = e”[Inllsoonxsioon + € 10alls(to0ncsiitoen <1}

We will use condition A > 1 in the proof without specifying it.

Step 1. Proof ® maps B into B

Let t > To, n = (m1,m2) € B, W = (wy,ws) and H = (hy,hy). By Strichartz
estimates, we have

1P|l 51,000 5(1t00)) S NV 4+ 1) = FV) [ N(1t.00)) x N (00 (5.62)
+ HHHL;LQ% [t,00)) x LL L2 ([t,00)) - (5.63)
For (5.63), using (5.60)), we have
[H || L2 r2 00y x L2 22 (it00)) = lhallLerz oo + Ih2llLirz (o)
S| oeMdr<seM < e 5.64
N/t\ € T X Ae 106 ( )

For (5.62), we have
[P(W +n) — P(W)]
= |P(wy + 11, ws + 12) — P(w1, wo)|
< le + m|2a—1)<w1 + 7]1)2“}2 + 1 — |w1|2(0 )wfw_2 (5.65)

xT

-ﬁwﬁwn/|m+mW”mmm+mﬂm+mw

—00

—w; / |wy |22 Tn(wiir?)| . (5.66)

— 00
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Using the assumption o > g and Lemma we have

the term ({5.65))
S Mwy 4+ m P = Jwi PO Jwy + m1 [Py + 70|

+ [Jwn PO [ (wn +m)? = wdlfwz + ol | + [ e
< (mPC™Y + w1 PV (W] + [n])?

+ [on D (| + [ )z + 1] + w1 22 ||
< (P + Il WP H (WP + )

+ WP (W] + [nl*) (W] + nl) + W] ||

S (7= + (W PT2) (0P + (W) + Il W PD (W2 + [0?) + [W )
Sl + W) + [l WP+ [ PIWPED 4 W 27|
S P+ W

Moreover,

the term
Sl [ ot PO+ Pl + o dy
+ | /_x (lwr 4+ 71277 — Jun 2772wy + no|?|wy + mi|* dy
ol [ a0 B+ )~ 0T T
ol [ o T3+ 0 - Ty
St [ WP+ Py + W1 [ (P o P+ ) dy
W] WP f? o+ sl (W + ) d
+W1[ WED osl2 + ls dy
Sl [ WPl dy W] [ WP+ P dy
WL WP 4 ) dy + W[ WP DI PII(W] + ) dy

< / WP+ o> dy + W] / WP 4 [nf dy.

Thus, we obtain
|[P(W 4n) — P(W)]

< 2+ [l W + o) / WP + o> dy + W] / WP + o dy.
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Similarly,

QW +n) = QW)
S Wl [ R Py W[l

5

Hence, using o > 7, we have:

£ W+ 1) = FV)] N (1t.00)) x N ([t,00))
SIPW +n) = POW)| 1Lz (teo)) + 1QW + 1) — QW) [l L1 22 ((t,00))

snw%ﬂm@m@www/“uw%+w%@humm»
4wm¢/|www*+w%@mﬂmm»

S H’77|HL00L§([15,00))H’77"’%3@0([@00))

sz | | 19E -+ 10 dy

L LEe([t,00))
+ |||W|||L$°Lg([t,oo))||/ In|[W =+ 0> dyl| £1 0 (1,00))

S e lnlllnezz ooy W7 + 0% | poo
+ Wl zee 2 11l 22 22 (0o |12 - 101277 | 2o 12 (1,00))

5 6—5)\t + |||77|||L}L§([t,oo)) — 6—5)\16 +/ e—)\TdT
t

1 1
< BN L DA — Xt

Combining with (5.64) and (5.62)), (5.63]) we obtain

1 _
1P| 5(1t,00)) x S([t00)) < € A (5.67)
We have
10: @l s(1t.00)) xS (1t.00)) S N0 (fW + 1) — FW )N (lt.00)) %N ([t,00)) (5.68)
+ 102 H || 1 12 (t,00)) x LLL2 ([t,00)) - (5.69)

For (5.69)), using (5.61)) we have

e 1 1
HaIHHL}.L%([t,oo))XL}.L%([t,oo)) 5 / 67)‘7- dr = Xef)‘t < EeiAt, (570)
t

For (5.68), we have

10:(f(W +n) = FIWD N (000 x N (lt00)) = [[10:(PW + 1) = P(W)) [ v(t,00))
+10:(QW + 1) — QW) N (ft.00))-
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Furthermore,

|0:(P(W + 1) — P(W))]

SN0 (Jwy 4+ mi 2D (wy 4+ m)2 (@s + 7y) — |wi [P D wiw,)| (5.71)
oo tm) [ P T )@+ 70 dy
—&Ewl/ w1 |22 Tm(wiw?) dy‘ (5.72)

+ | (w1 4 m1) [wy + m P Im((ws + 12)* (W1 +77,)°)
—wy|w; |2 Im(wiw, )| . (5.73)
For (5.71]), we have

the term ([5.71))
S (nl + (0?7 + [0an) (W] + W1 + 0| + [n]*7 + |0:n])

Thus,
1 _ 1 _
[the term (5. T2 .00y S lllnl +100lllz1zz S Se M< 10° M

For (5.72)), using Lemma we have
|| the term (5.72)[| 1112 (t,00))

S H3771HL;L3([t,oo))H/ |wi + |2 Im((wa + 102)* (W1 + 7)?) dy||pse e
— 00

+ Hamw1HLt°°Lg><

/ (Jwr + 012 Tm((wo + m2)* (@1 + 1y)) — |w1 [ Im(wiw?)) dy

X
—00 LT LE®
S0 L2 qitoon wr 4+ m P2 Tm((wy + 12)* (@1 + 7)) Lo 12
+ [[lwr + m [P Tm((ws + 02) (@1 +7,)%) — [ws [P Tn(wiw?)[| 1
© 1, 1 _
S 10 lszeomn + Mnlissiy < [ e dr S 5o < e,
t
For (5.73)), using Lemma we have
[the term (5.73)(|£1 22 (1t,00))
Sl r2ie.co)
oo 1 1
< /t e—AT dr 5 Xe—)\t < 1—06_)\t,
Combining the above estimates, we obtain
10:(P(W + 1) = PW))||n(t,00))
3
<0 (PW +n) = POV)l| 12200y < 75€ (5.74)

10
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Similarly,

10:(Q@W +1) = QUV)lIv(troon < 75¢

Combining the estimates (5.68), (5.69), (5.70), (5.74) and (5.75)), we have

7
0= 0| 5(1t,00)) xS ([t,00)) < ¢ AL

Combining (5.67) with (5.76), we obtain

—At

||(I)7]||S([t,oo))x5([t,oo)) + ||axq)77”5([t,oo))xS([t,oo)) < Ee )

Thus, for A large enough
[Prl[x < 1.

This implies that ® maps B into B.
Step 2. ¢ is a contraction map on B

(5.75)

(5.76)

(5.77)

By using (5.60)), (5.61) and a similar estimate of (5.77), we can show that, for any

n € B and k € B we have

1
127 = Pxllx < Slin = wllx-

for A\ large enough. From Banach fixed point theorem, there exists a unique solution
in B of (5.59) and thus a solution of (5.26]). This completes the proof of Lemma

(5%
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Chapter 6

Instability of algebraic standing
waves for nonlinear Schrodinger
equations with triple power
nonlinearities

6.1 Introduction

In this chapter, we are interested in the following triple power nonlinear Schrédinger
equation:

iy + Au+ ay|ulu + agulPu + aslufPu =0, (t,z) € R x R", (6.1)

where ay,as,a3 € R and n € {1,2,3}.
The standing waves of are solutions of the form wu,(t, ) = e*“'¢, (), where
@, solves:
—Woy + Ady, + ar|du|dy + a2|¢w’2¢w + a3’¢w|3¢w = 0. (6.2)

In [79)], the authors study existence and stability of standing waves of in
one dimension. Existence of standing waves is obtained by ODE arguments. By
studying the properties of the nonlinearity, the authors give domains of parameters
for existence and nonexistence of standing waves. Stability results are obtained by
studying the sign of an integral found by Iliev and Kirchev [62], based on the criteria
of stability of Grillakis, Shatah and Strauss [49, K0, [L05].

In the special case w = 0, the profile ¢y, which for convenience we denote by ¢,
satisfies:

A¢ + a1]dl¢ + as|p]*d + as|p|*p = 0. (6.3)
The equation (6.3) can be rewritten as S'(¢) = 0 where S is defined by
1 ai (05} as
S() = FlIVollz: - §||U||:is — ol = g||v||‘25- (6.4)
Define
X = H'®R")NL*R"Y), and ||ullx = ||Vul[2 + ||Jul/Ls, (6.5)

d = inf{S(v) : v e X\ {0}, (v) = 0}.
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The algebraic standing waves are standing waves with algebraic decay. In this
paper, we are only interested in a special kind of algebraic standing waves which are
minimizers of the problem (6.6]). Throughout this paper, for convenience, we define
an algebraic standing wave as a solution of solving problem (6.6). Thus, the
function ¢ is an algebraic standing wave of if ¢ € G, where G is defined by

G:={ve X\ {0}: 5w =0,Sw) = d}. (6.7)

The instability of algebraic standing waves was studied in [36] for double power
nonlinearities. Using similar arguments as in [36], we study existence and instability
of algebraic standing waves for the nonlinear Schréodinger equation with triple power
nonlinearities .

First, we study the existence of algebraic standing waves of (6.1). As in [79], we
will use the abbreviation D: defocusing when a; < 0 and F': focusing when a; > 0.
In Section we prove the following result.

Proposition 6.1. Let n = 1. The equation (6.3) has an unique even positive solu-
tion ¢ in the space H(R) in the following cases: DFF, DDF, DFD and a; = a3z =
-1, ay > \/%. Moreover, all solutions of (6.3)) are of the form e?¢(x —x¢) for some
0,x9 € R. They are all algebraic standing waves of (6.1)).

In high dimensions, the situation is more complex than in the one dimension.
The solutions of are very diverse. It is not easy to describe all such solutions
as in the dimension one. Thus, classifying the algebraic standing waves of is
not easy problem. It turns out that a radial positive solutions of is also an
algebraic standing wave of (6.1). To study the positive radial solutions of (6.3), we
prove the following result in Section

Proposition 6.2. Let n = 2,3 and DDF or DFF. Then there exists a unique radial
positive solution of (6.3)).

Before stating the next results, we need some definitions. Firstly, we define the
Nehari functional as follows:

K(v) = (S"(v),v) = [Vvllze — allvlzs — asllvllze — as|vllzs. (6.8)
The rescaled function is defined by:

v Mz) = A2u(\). (6.9)

The following is Pohozhaev functional:

na, nas 3nas
P() i= 038 aar = Vol = “S ol — “2ellde - 2ol (6.10)
The Nehari manifold is defined by:
K:={veX\{0}: K(v)=0}.
Moreover, we consider the following minimization problem:
p:=inf{S(v):v e K}. (6.11)
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The following is the set of minimizers of problem (6.11)):
M:={vek:Sw) =u} (6.12)

Finally, we define a specific set which uses in our proof:
B:={ve H(R"):S(v)<uP)<0}. (6.13)

It turns out that the solution of given by Proposition [6.2] satisfies a varia-
tional characterization and each algebraic standing wave of is up to phase shift
and translation of this special solution. More precise, in Section [6.3] we prove the
following result.

Proposition 6.3. Letn = 1,2,3 and DDF or DFF. Then the radial positive solution
¢ of (6.3) given by Proposition and Proposition satisfies

S(¢) = .

where S and p are defined as in (6.4), (6.11) respectively. Moreover, all algebraic
standing waves of equation (6.1)) are of the form

€i00¢<' - Io),
for some 6 € R and xy € R™.

Remark 6.4. (1) In case DFD, we only obtain the result on existence of algebraic
standing waves when n = 1 (see Proposition [6.1). The variational characteri-
zation of algebraic standing waves and stability or instability of these solutions
are open problems, even in dimension one.

(2) By using similar arguments as in [36, Proof of Proposition 3.5], we prove

that the algebraic standing waves in higher dimensions (n = 2,3) are also in
HY(R™).

(3) By scaling invariance of (6.1), we may assume |a;| = |asz| = 1 without loss of
generality. This assumption will be made throughout the rest of this paper.
Before stating the main result, we define the orbital stability and orbital insta-
bility of standing waves.

Definition 6.5. Let u,(t,z) = ¢, (z) be a standing wave solution of (6.1). We
say that this solution is orbitally stable if for all £ > 0 there exists § > 0 such that

for each vy € H'(R™) such that ||ug — @]z <  then the associated solution u of
(6.1)) is global and satisfies

inf — e, (- — .
per L 1u(t) — e%u(- —y)llm <e

Otherwise, u,, is orbitally unstable.

Our main result is the following.
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Theorem 6.6. Let n = 1,2,3. Assume that the parameters of (6.1) satisfy DDF
or DFF when n = 2,3 or DFF and ay < %ﬁ when n = 1. Then the algebraic

standing wave ¢ given as in Proposition[6.1] and Proposition[6.3 is orbitally unstable
in H'(R™).

The rest of this paper is organized as follows. In Section [6.2], we find the region
of parameters aj, az, ag in which there exist solutions of the elliptic equation (6.3)).
Specially, in one dimension, all solution of are algebraic standing waves. In
Section [6.3] we establish the variational characterization of solutions given in Section
6.2l The existence of algebraic standing waves in high dimensions is also proved in
section In Section [6.4] we prove instability of algebraic standing waves.

6.2 Existence of solution of the elliptic equation

First, we find the region of parameters a;, as, az in which there exist solutions of

63).

6.2.1 In dimension one

Let n = 1. To study the existence of algebraic standing waves, we use the following
lemma (see [5], [79, Proposition 2.1])

Lemma 6.7. Let g be a locally Lipschitz continuous function with g(0) = 0 and
let G(t) = fg g(s)ds. A necessary and sufficient condition for the existence of a
solution ¢ of the problem

6 € C2(R), Tlimyum d(z) =0, 6(0) >0,
Guz + g(¢) = 0,

is that ¢ = inf {t > 0: G(t) = 0} exists, c > 0, g(c) > 0.

(6.14)

Using Lemma we have the following result.

Lemma 6.8. Let g(u) = ayu® + asu® + asu® be such that g satisfies the assumptions
of Lemma [6.7] for some ai,as,a3 € R. Then there exists a positive solution ¢ of
(6.14). Moreover, all complex valued solutions of (6.14) are of form:

ez — x0),
for some 6y, xo € R.

Proof. By Lemma there exists a real valued solution ¢ of (6.14). We have
Goz + 0107 + a29° + agp’ = 0. (6.15)

Since lim,_, 1, ¢(x) = 0, there exists z( such that ¢,(zo) = 0. Multiplying two sides
of (6.15) by ¢, and noting that lim, ., ¢(z) = 0 we obtain

L o a3, a2, a3 ;5
- 2 < & =0. Nl
2¢x+3¢+4¢+5¢ 0 (6.16)
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We see that ¢ is not vanishing on R. Indeed, if ¢(z;) = 0 for some z; € R then
¢x(x1) = 0 by (6.16). Thus, ¢ = 0 by uniqueness of solutions of which is a
contradiction. Then, we can assume that ¢ > 0.

The value ¢(xo) is a positive solution of G(u) = v’ + %u* 4+ %u® = 0. Since
g satisfies the condition in Lemma [6.7] it follows that G(u) = 0 has a first positive
solution ¢ such that g(c) > 0. If ¢(xy) # ¢ then G has another positive zero d > ¢
such that d = ¢(zp). By continuity of ¢, there exists z; > xy such that ¢(z1) = ¢
and by ¢-(x1) = 0. This conclusion implies that every positive solution of
has a critical point such that the value of solution at this point equals to c.

Let u be a complex valued solution of (6.14). We prove that u = ¢ ¢(z—x), for
some 6y, o € R. We use similar arguments as in [16, Theorem 8.1.4]. Multiplying
the equation by %, and taking real part, we obtain:

d (1 9 A1, 3 G2, 4 A3 s
— | =y - - = =0.
7 (Gl + Sl + 2l +

Thus,
1
Shal? + Sl + Zul* + Ll = K.

Using lim, 1 u(z) = 0 we have K = 0. In particular, |u| > 0. Indeed, if u
vanishes then u, vanish at the same point, hence, v = 0. Therefore, we may write
u = pe’?, where p > 0 and p,0 € C?(R). Substituting u = pe in (6.14) we have
2p,0; + pO,, = 0 which implies there exists K € R such that 00, = K and SO

0, = £. Moreover, since lu,| is bounded, it follows that p?6? is bounded. Thus, K—;
p x P

is bounded. Since p(z) — 0 as z — oo, we have K = 0. Thus, since p > 0 we have
6 = 6 for some 6, € R. Thus u = e™®p. Since p is a positive solution of (6.15]), there
exists xo € R such that p(x2) = ¢ and p,(z2) = 0. Thus, by uniqueness of solution
of (6.15)), there exists z3 € R such that p(z) = ¢(z — x3) and u = e®p(x — z3).
This implies the desired result. O

Moreover, we have the following result.

Lemma 6.9. Let g and ¢ be as in Lemma . Then ¢ € HY(R).

Proof. Firstly, since g satisfies the assumption of Lemma , we have a; < 0 (see
the arguments in the proof of Proposition [6.1). As in the proof of Lemma up
to a translation, we may assume that ¢,(0) = 0 and let ¢ = ¢(0). Then ¢ is an even
function of x. Furthermore, ¢ satisfies

%gzﬁi +G(g) =0. (6.17)

Moreover, ¢,.(0) = —g(#(0)) = —g(c) < 0. Therefore, there exists a > 0 such that
¢ < 0 on (0,a). We claim that a = co. Otherwise, there would exists b > 0 such
that ¢, < 0 on (0,b) and ¢,(b) = 0. Thus, ¢(b) < c is a positive zero of G. This is
a contradiction since ¢ is the first positive solution of G. Hence, ¢, < 0 on (0, 00).
Thus, there exists 0 < | < ¢ such that lim,_,., ¢(x) = [. In particular, there exists
Ty — 00 such that ¢.(x,,) — 0 as m — oo. Passing to the limit in we have
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G(l) = 0 and hence [ = 0 by definition of ¢. Therefore ¢ decreases to 0, as x — oo.
Thus, from (6.17)), for |z| large enough, we have

ai

2 3
0~ -

Then 3
—¢, ~ cp?, for some ¢ > 0.

Thus, for |z| large enough, we have

0> ¢, + cor.

It follows that ¢ < m for some ¢, d > 0. Hence ¢ € L*'(R) N L>(R), especially

¢ € L*(R). Combining this and (6.17), we obtain that ¢, € L?*(R). Thus, ¢ €
H'(R), this completes the proof of Lemma . ]

Now, we comeback to the proof of Proposition
Proof of Proposition[6.1] A solution of (6.3)) in the space X satisfies

Upe +g(u) =0, u € C*R), and xgriloou(x) =0, (6.18)
From Lemma [6.7, the necessary condition for existence of solutions of is
a; < 0. Indeed, let ¢ is the first positive root of G(u) then G’(¢) = g(c) > 0. Thus,
G do not change sign on (0, c¢) and is increasing in a neighborhood of ¢. Tt follows
that G < 0 on (0,¢) and hence a; < 0.
To conclude the existence of solution of , we consider the three cases DDF,
DFF, DFD. In the case DDD we have G < 0 on (0, 00), therefore there is no solution

of (E.13)

In the case DDF (i.e a1 = —1, a3 < 0, ag = 1), we have

g(s) = —5* + aps® + s*,

1 1
G(s) = —533 + %34 + 555.

Thus ,

and g(c) = (c®* + asc — 1). Tt easy to check that c is larger than the largest root of
2% + agr — 1. Thus, g(c) > 0. It follows that in case DDF, there exists a solution of
6.15).

By similar arguments, in the case DFF, has a solution. In the case DFD,
has a solution if and only if as > \/%.

Let ¢ be a solution of (6.18). From Lemma all solution of are of the
form e¢(x — x¢), and belong to H'(R) by Lemma Thus, they are all algebraic
standing waves of (6.1]). This completes the proof of Proposition m
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6.2.2 In higher dimensions

In this section, we prove existence and uniqueness of a radial positive solution of
(6.3) when a; = —1, a3 = 1 and n = 2,3. The existence result is a consequence of
the following theorem.

Theorem 6.10 ([6],Theorem 1.1). Let g be a locally Lipschitz continuous function
from RY to R with g(0) = 0, satisfying

(1) o =1inf{¢ > 0,9(¢) > 0} exists, and o > 0.
(2) There exists a number ¢ > 0 such that G(¢) > 0, where

Define (o = inf{¢ > 0,G(¢) > 0}. Then, (y exists, and () > .
(3) limyy, L2 > 0.
(4) g(s) >0 for s € (o, Go]. Let B =inf{¢ > (o, 9(¢) = 0}. Then, (o < B < o0.

(5) If B = oo then @ =0, with | < 222, (If n = 2, we may choose for | just any
finite real number).

Then there exists a number ¢ € (o, B) such that the solution u € C*(RT) of the
Initial Value problem

—u" — =/ = g(u), forr >0,
u(0) =¢, u'(0)=0

has the properties: u >0 on R, v/ <0 on R™ and

Tlg(r)lo u(r) = 0.
In our case, we have
g(s) = —s* + ags® + s*, (6.19)
—1 1
G(s) = ?53 + %54 + 355. (6.20)

It is easy to check that the function g and G satisfy the conditions of Theorem [6.10]
—a a2 “, . —a a2 64

M (the positive zero of g), (o = EaVA aa ”%2+15 (the
positive zero of G), f = oo and 4 <1 < 5 when n =3 and [ > 4 when n = 2. Thus,
in high dimensions (n = 2,3), there exists a decreasing radial positive solution of

63).

The uniqueness of a radial positive solution is obtained by following result.

when n = 2,3 with a =

Theorem 6.11 (|[102], Theorem 1). Let us consider, forn > 2, the following equation
Au+ g(u) =0, (6.21)

where g satisfies the following conditions:
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(a) g is continuous on [0,00) and g(0) =0,
(b) g is a C'-function on (0,00),
(¢) There exists a > 0 such that g(a) =0 and

g(u) <0 for 0 <u < a,
g(u) >0 for u > a.

(@) £ 89] 522 foru>0,u £ a, where G(s) = [} f(r)dr.

g(u)
Then (6.21)) admits at most one radial positive solution.

The function g given in (6.19) satisfies conditions (a), (b), (c) of Theorem [6.11]
for a the positive root of g. When n = 2,3, the condition (d) is satisfied if only if

i %834—%82—%8 >n
ds | s24ays—1 |~

-2
57 for s > 0,5 # a. (6.22)

We prove that (6.22)) holds. We only need to show that

d [3s°+%2s*—3s] _ 1
- 2 ) f .
ds{ s2 4 ags — 1 6 ors7a
This is equivalent to
1, 2ay 4 ai 2
= — - - 1>0,
5s+58+(2+5 ass +

which is true for all s > 0, ay € R by the fact that

1, 2ay 4 (ai 2 1, , 3 5\ 2, 1
Sgty iz By 2 == Zfay—2) +2824 = >0.
5° T 55+(2+5 aps =gl +as)+ogla=—g) +55 45

Thus, there exists a unique radial positive solution of (6.3) by Theorem This
completes the proof of Proposition

6.3 Variational characterization

Let n = 1,2,3. In this section, we prove Proposition By the assumption of
Proposition we may pick a; = —1 and a3 = 1. We recall that S, K, P are

defined in ([6.4), and (6.10)).
Let M and K be defined as (6.12) and (6.8)). First, as in [36], we prove that M

is not empty. We set

1 1 1
T(w) = ZIVols + S olds + oo loll,
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which is well defined on X. The functional S is rewritten as

S(0) = L)~ Sl + 2ol + ol
1
S(v) = ZK(’U) + J(v).

We can rewrite p as
p=inf{J(v): v € K}. (6.23)

Lemma 6.12. Let v € HY(R"). If K(v) <0 then u < J(v). In particular,
p=inf{J(v) :v e X \ {0}, K(v) < 0}. (6.24)

Proof. Since K (v) < 0 and K(Av) > 0if A > 0 small enough, there exists \; € (0, 1)
such that K(Av) = 0. Therefore, by (6.23) and since the function A — J(Av) on

(0, 00) is increasing, we have
p < J(Av) < J(v).
This completes the proof. n

Lemma 6.13. The following is true:
> 0.

Proof. Let v € K. By using the Gagliardo-Nirenberg inequalities, for some ¢ € (0,5)
and 0 € (0,4), we have

[oll7s S IVl llv]55° < CullVoll3s + Callv]l3s,
[ollzs S IVoll 2 llvll7z° < CsllVollze + Callv]|7s,
we have
0= K(v) > (1=C1[|V0||}2—|az|Cs]| Vo1 72) [ Voll72+(1=Collv]| 75 —|az| Cal|v] 3) 0] 75,

It follows that 1 < Cy[|Vu|[3, + |as|Cs|| V3. < C||[Vol3, + 5 or 1 < Cofjv|l3s +
|as|Cyl|v]|s < Clv]|3s + 35, for some C,C > 0. Hence, ||Vovl|z or [[v]|3; bounded
below by some constant. In two cases, J(v) is bounded below by some constant.

Combining with (6.23)) we have the conclusion. O
We need the following results.

Lemma 6.14 ([2, [76]). Let p > 1. Let (f,) be a bounded sequence in H'(R™) N
LPTYR™). Assume that there exists ¢ € (p,2*—1) such that limsup,,_, || fallze+1 > 0.
Then there exist (y,) C R™ and f € H'(R") N LPYY(R™)\ {0} such that (fu(- — yn))
has a subsequence that converges to f weakly in H*(R™) N LPTH(R™).

Lemma 6.15 ([14]). Let 1 < r < co. Let (f,) be a bounded sequence in L"(R"™) and
fo— faeinR" asn — co. Then

1 fallzr = ILfe = fllZe = £

e — 0,

as n — 0.
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Now, we comeback to prove the set M is not empty.

Lemma 6.16. If (v,) € X is a minimizing sequence for u, that is,
K(v,) — 0, S(v,) = u,

then there exist (y,) C R", a subsequence (vy,), and vy € X \ {0} such that v, (- —
Yn,) = vo in X. In particular, vy € M.

Proof. Since K(v,) — 0 and S(v,) — u, we have
J(vn) — 1, (6.25)
-1 a9 3
— lolize + L llollze + 75 vlizs = w (6.26)

From (6.25), we infer that (v,) is bounded in X. Also, since g > 0 by Lemma
and the Gagliardo-Nirenberg inequality |[v]|3; < [|[Vo||3. + [[v]|34, we have
lim sup,,_,oo||vn||z4 > 0. Then, by Lemma[6.14] there exist (y,) C R™ and vy € X\ {0}
and a subsequence of (v,(- — ¥,)), which we still denote by the same notation, such
that v, (- — y,) — vg weakly in X. we put w, := v,(- — yn)-

We can assume that w, — vy a.e in R™ and we prove that w, — vy strongly in
X. By Lemma we have

J(wy) — J(w, —v9) — J(vg), (6.27)
K(wy,) — K(w, —vg) = K(vy). (6.28)

Since J(vg) > 0 by vy # 0, it follows from (6.27)) and (6.25)) that

lim J(w, —v) = lim J(w,) — J(v) < lim J(w,) = p.
From this and we have K (w, — vg) > 0 for n large. Thus, since K (v,) — 0
and we obtain K (v,) < 0. By and weak lower semicontinuity of the
norms, we have

p< J(v) < lim J(w,) = p.

Combining with (6.27)) imply that J(w, — vo) — 0 thus, w, — vy strongly in X.
This completes the proof. n

Proof of Proposition[6.3. Firstly, we prove the variational characterization of ¢ as
follows

S(¢) = p.

This means that ¢ is a minimizer of (6.11). From Lemma we have M # ().
Let ¢ € M. We divide the proof of this to three steps.
Step 1. There exists § € R such that e?¢y is a positive function.
We use similar arguments as in [36, Lemma 2.10]. Put v := |Reyp|, w := |Zmyp| and
Y := v+ tw. By a phase modulation, we may assume that v # 0.

Since 6] = || and [Vi| = [Vg|, we have K(1) — K() and S(1) = S(p).
Thus, ¢ € M. Then, there exists v € R such that

S'() = yK' ().
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Hence,
V(K (¥), ) = (S'(4), ¥) = K(¢) = 0. (6.29)

Moreover, using K (1) = 0 we have

(K'(¥), 1) = ONK (M) |x=1
= WK (AY)[a=1 — 4K ()
= (2IVl7e +3l[elzs — dazl¥lTe — 5lllzs)
—4(IVYll72 + 1Wl7s = asll9llza = [l0lZs)
= =2[[Ve[7: — [¥ll7 — l0l7s < 0.

Combining with (6.29), we deduce v = 0. Thus, S’(¢)) = 0. Hence, v solves the
following equation

(A + || — asle”> = [[*)v = 0.

Since v is nonnegative and not identically equal to zero, using [77, Theorem 9.10|, we
infer that v is positive function. Furthermore, since K(|¢)|) < K(v) and S(|¢]) <
S(v), it follows from Lemma we have K(|¢]) = K(¢) and S([¢]) = S(¥).
Then, [|[V|¢]]|rz = |[V¥]|z2. By [77, Theorem 7.8], there exists a constant ¢ such
that w = cv for some ¢ > 0.

Since v is continuous and positive, Rep and Zmep do not change sign. Then, there
exist constants A = =1 and n € R such that Rep = \v and Zmp = nv. Taking § € R
such that e~ = &iz:?”, we have ep = ¢ (\ +in)v = |\ + in|v. This completes the
step 1.

Step 2. Radial symmetry of minimizer.

Since [75, Theorem 1], there exists y € R" such that ¢?p(- — y) is a radial and
decreasing function.

Step 3. Conclusion.

Since ¢ and €p(- — y) are positive radial solutions of (6.3), using Proposition

we obtain

¢=e"p(-—y),
Thus, S(¢) = S(p) = p, ¢ € M and each element of M is of form e?¢(- — ) for
some 0,y € R.

It remains to classify all algebraic standing waves of . We only need to prove
that G = M # (), where G and M are defined in (6.7) and (6.12)), respectively. We
use similar arguments as in |36, Proof of Theorem 2.1]. We divide the proof of this
in two steps.

Step 1. M C G.

Let v € M. Then, S'(¢) = 0. Now, we show that ¢y € G. Let v € X \ {0}
such that S’(v) = 0. From K(v) = (S’(v),v) = 0 and by definition of M, we have
S(1) < S(v). Thus, ¥ € G and M C G.

Step 2. G C M and conclusion.

Let ¥ € G. Then K(¢) = (S'(¢),¢) = 0. As the above, ¢ € M. As in step 1,
¢ € G. Therefore, S(¢)) = S(¢) = p, which implies » € M. Thus G C M, which
completes the proof of Proposition O
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It turns out that the algebraic standing waves of (6.1)) in high dimensions (n =
2,3) belongs to H'(R™). To prove this, we need the following lemma (see [36, Lemma
3.4]).

Lemma 6.17. Let o € C'([0,00)) be a positive function. If there exist p, A > 0such
that
¢ (r) + Ap(r)'* <0, for allr >0,

e ()

Proof of Remark[6.4](2). We use similar arguments as in [36, Proof of Proposition
3.5]. Firstly, we denote ¢(r) as function of ¢ respect to variable r = |z|. Since ¢ is
positive decreasing radial function, we have

then

lolfte> [ Jofdo > IBRIGR)E = CRYIGR)F,

<

for all R > 0. Hence,
o(x) < |z|75||¢|| s, for all z € R.
For r > ry large enough, we have
wlg? + ¢ < 567
Since ¢ solves and is decreasing as a function of r, this implies

n—1

¢"(r) = ¢"(r) +

1
¢ (r) =¢* —axp® — ¢* > 5(;52, for r > ry.
Multiplying the two sides by ¢' and integrating it on [r,00), we get
/ 2 1 3
o' (r) quﬁ , forr > rg.

Since ¢’ < 0 we obtain that

Njw

¢

<0, for r > .

W

¢'(r) +
By Lemma [6.17, we deduce that
o(r) < Cr2, for r > rq.

Thus, ¢ € L*(R"), for n = 1,2,3. From the proof of Proposition , we have
¢ € M. Hence, |V¢| € L*(R") and ¢ € H'(R™). This completes the proof. O
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6.4 Instability of algebraic standing waves

Let n = 1,2,3. In this section, we prove Theorem Throughout this section,
we consider the case DDF or DF'F and as small. Then we may pick a; = —1 and
az = 1. First, we prove the following result by using similar arguments as in [98]
(see also [36], Proof of Proposition 5.1]).

Proposition 6.18. Assume that
DS (PM |1 < 0, where v (z) := A2v(\z). (6.30)
Then the algebraic standing wave ¢ is unstable.

We define a tube around the standing wave by

N, = {v c H'R™ : inf |jv—e“(-—y)||lm < 6} :

(0,y)eERxR™

Lemma 6.19. Assume (6.30) holds. Then there exist e1,61 € (0,1) such that: For
any v € N, there exists A(v) € (1 — 01,1+ 81) such that

p < Sw)+ (A(v) = 1)P(v).
Proof. First, we recall that S, K and P are defined as in (6.4)), and (6.10)),
respectively.
Since 925(¢*)|a=1 < 0, by the continuity of the function
(A v) = RS(Y),

there exist 1,6, € (0,1) such that 93S(v*) < 0 for any A € (1 —&;,1 + &;) and
v € N,. Moreover, by the definition of P we have

S(v*) < S(w) + (A —1)P(v), (6.31)

for A€ (1 —6;,1+ ;) and v € NV,.
Moreover, consider the map:

n n 3n
A\ v) = K (%) = N[Vo[72 + A2 v]l7s — a2X"[v]|7a — A% [[o]l7.

Note that K(¢) =0 and

n 3n
K (M) |r=1 = 2[|Voll7= + §II¢II3is — nas|¢ll7a — 7||¢||is~
Thus,

8,\K(¢)‘)|,\:1 - aAK(¢A)|>\:1 - 5P<¢)
= -31Vol3. - 5ol +

nas

TW)HZD-
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Thus, in the case ay < 0, we have O\K(¢*)[x=1 < 0. In the case as > 0, using
P(¢) = 0, we have

nas

n . 3n
TII¢||%4 = IVél7: + gllcbllis - Ellfbﬂis

n
<396l + 3 I9l%s,

hence we also have 0\ K (¢*)[x=; < 0. In all cases, by the implicit function theorem,
taking e; and d; small enough, for any v € N, there exists A(v) € (1 — 1,1+ d1)
such that A(¢) = 1 and K (v*®)) = 0. Therefore, by definition of y as in we
obtain:

1< SE) < S(w) + (A(w) — 1)P(v).

This completes the proof. O

Let ug € N and u(t) be the associated solution of (6.1)). We define the exit time
from the tube N. by

TF(ug) := inf{t > 0: u(xt) ¢ N.}.
We set I (ug) := (=T (uo), T (up)).

Lemma 6.20. Assume (6.30) holds and let €1 be given by Lemma . Then for
any ug € BNN,,, where B is defined as in (6.13)), there exists m = m(ug) > 0 such
that P(u(t)) < —m for all t € 1., (up).

Proof. For t € I, (ug), since u(t) € N, it follows from Lemma [6.19] that
= 5(uo) = = S(u(t)) < —(1 = Au(t))) P(u(?))-

In particular, since u > S(ug) by ug € B, we have P(u(t)) # 0. By continuity of the
flow and P(ug) < 0 we obtain

P(u(t)) <0, 1—A(u(t)) >0.
Therefore, we obtain

This completes the proof. n
Lemma 6.21. Assume (6.30)) holds. Then |I.,| < oo for all ug € BNN, N, where

Y={ve H'(R):zve L*R)}. (6.32)

Proof. Let u(t) be associated solution of ug € BN N, NX. By the virial identity
and Lemma [6.20] we have

d2
T lleu®)z: = 8P(u(t)) < —8m(uo)
for all ¢t € I, (up), which implies |1, (uo)| < co. This completes the proof. O
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Let x be a smooth cut-off function such that

1 fo<r<y,
X(r) =1 if r > 9.

||

and for R > 0 define xg(x) = x (E)'

The following is similar as in [36, Lemma 4.5].

Lemma 6.22. There ezists a function R : (1,00) — (0,00) such that xr¢* €
BNXNN, forall X > 1 close to 1, and that xroy¢* — ¢ in H'(R™) as A | 1.

Proof. We divide the proof in three steps.
Step 1: Prove ¢* — ¢ in H'(R") as A | 1.
We have

16 = @l + 16" — 22

<IAEAN) = o)l + 16N = ()l + IAES(A) = G(A) 22 + [6(A) — ¢()] 22

= (A2 = A" [|9]l i + A7 (|91 12) (6.33)
o) = Gl + l[6(A) = o)l 2 (6.34)

The term (6.33)) converges to zero as A — 1. To prove the term (6.34)) converges to
zero as A — 1, we prove for all ¢ € P, 1 < p < oo, then the following holds

lo(A\x) — ¢(x)||Lr — 0, as A — 1.

Indeed, we only need to consider ¢ is a integrable step function, by density of step
function in LP(R™). It is sufficient to consider ¢ = 1 4, for some measurable set A.
We have ¢(A\z) = 11,4 and

lp(Ax) — ()70 = 1114 — LallZs
—u{dreAdzd AU{ze A g A})

<uu0+u(§A>—2M(4m§A),

this converges to zero when A converges to 1. Thus, if we consider V¢ as a vector
function then the term (6.34) converges to zero as A converges to 1.
Step 2: xr()@* — ¢ as A — 1 for some function R.
Choosing R : (1,00) — (0,00) such that R(A\) — oo as A — 1. Thus, for all
v € HY(R"), we have

XrR)U — U, as A — 1

and xpo¢™ — ¢ in HY(R™) as A | 1, since step 1.

Step 3: Conclusion.

We claim that ¢* € B for A > 1 close to 1. Since 9,5(¢*)|x=1 = 0 and 925 (¢*)|a=1 <
0, there exists A\; > 1 such that 9,S(¢*) < 0 and S(¢*) < p for A € (1,\;). We
see that P(¢*) = AS(¢*) < 0 for A € (1,\;). Moreover, taking A; close to
1, we get ¢* € N, for all A € (1,\;). Since xp( has compact support and
IXroy@™ — @Ml — 0 as X — 1, we have xpo¢™ € BNAN,, NX for A close to 1.
This completes the proof. n
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Proof of Proposition[6.18, By Lemma [6.22] there exists R : (1,00) — (0, 00) such
that xp(¢* — ¢ in Hl(R”) as A | 1. Moreover Xr9®* € BN NN, for A > 1

close to 1 Thus, by Lemma u ][El Xr @) < oo for A > 1 close to 1 and
since X pgr(x (Z5>‘ —¢pas A\ —1in H we have ¢ is unstable. This completes the
proof. O

Proof of Theorem [6.6. Using Proposition [6.18] we only need to check the condition
(6.30). We have

( 2)

0RS(¢M) a1 = IVolze + ——5— Illzs — 11|75

—1
ol - D

3n(3n —2)
20

We divide into three cases.
Case n = 1:
In this case, we have

1 3
28 )bt = 191172 — 19112 — 55 llolEs.

In the case DDF, using K (¢) = 0 and P(¢) = 0 we have

1 3 1 1
0= P(6) - 1K(@) = S0/ — 1% — 5lloll

Thus,
1 1
6122 = S l1813 + 911
It follows that

1 1
RI(Nhar = 6 l16l17s — 191120

1 110 1 Qo
—%MW—EBOW%+%W%—ZMW—H@)

5&2

5
= —gllol: — 5 ||¢||Ls + =5 I¢llze- (6.35)

Thus,
03S(¢M)[r=1 < 0.

This implies the instability of algebraic standing waves in the case DDF.
In the case DFF, using (6.35) and the fact that a||¢||2s + b||¢[|3; = 2v/ab||¢||2. for
all a,b > 0 we have

5(12

) 1
296 = (Hmm+5wm)—ﬁwmﬁ- ol

18
5&2

= ——||¢||?is - —||¢||i5 +t =

5&2

< -
27\/—H¢||L4 t 0 ||¢>HL4 <0,

5 191174

since we have assumed ay < 15[ Thus, in the case DFF and as < 15[ we obtain
the instability of algebraic standing waves.
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Case n = 2:
In this case, we have

%5 (6.36)

a 6
RGN her = 19013 = S ol — 219

Moreover,
1 a9 3
0= P(6) = V6l + g0l% — Zlollt: — Nl

Replacing %614 = [IV6]2: + L0]12: — 2|6]3: in (B36). we obtain
2 QAN Los 3115
SN her = —5 1101l — 2Nl <.
The instability of algebraic standing waves in the case n = 2 follows.

Case n = 3:
In this case, we have

1 3a 63
03S(M)r=1 = Vo732 + 16l%s — 72||¢||‘i4 - %||¢||‘25- (6.37)
Moreover,
1 3&2 9
0= P(6) = V6l + 5 I6ls — Z20l% — o8l
Hence,

83\5@)\)’)\:1 = 8§S(¢A)’>\=1 - 2P(¢)

3 27
= —||Vo|7. — 1||¢||?is - %Hﬁb”is < 0.

The instability of algebraic standing waves in case n = 3 follows. This completes
the proof of Theorem O
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