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A B S T R A C T

Artificial Intelligence (AI) and machine learning algorithms are taking
up the lion’s share of the technology market nowadays, and hardware AI
accelerators are foreseen to play an increasing role in numerous applica-
tions, many of which are mission-critical and safety-critical. This requires
assessing their reliability and developing cost-effective fault tolerance
techniques; an issue that remains largely unexplored for neuromorphic
chips and Spiking Neural Networks (SNNs).

A tacit assumption is often made that reliability and error-resiliency in
Artificial Neural Networks (ANNs) are inherently achieved thanks to the
high parallelism, structural redundancy, and the resemblance to biological
neural networks. However, prior work in the literature unraveled the
falsity of this assumption and exposed the vulnerability of ANNs to
faults, proving that without adequate designs and proper protection
measures, ANNs remain at risk of performance failure due to faults.

In this thesis, we tackle the subject of testing and fault tolerance in hard-
ware SNNs. We start by addressing the issue of post-manufacturing test
and behavior-oriented self-test of hardware neural networks and propose
a self-testable version of an analog biologically plausible spiking neuron
circuit at transistor-level. Then we move to defect-oriented testing, where
transistor-level fault simulations on a large scale are usually prohibitive in
time and cost. Therefore, we follow a bottom-up approach starting from
transistor-level fault injection into a single analog Integrate-and-Fire (I&F)
neuron and propose a behavioural-level fault model that is specific to
SNNs, yet agnostic to the circuit design and architecture. We demonstrate
the acceleration offered by this fault model by performing fault injec-
tion experiments that pinpoint the critical fault types and locations on
two SNNs that we designed for two neuromorphic datasets, namely the
N-MNIST and IBM’s DVS-gesture datasets. By leveraging observations
from these experiments, we propose a neuron fault tolerance strategy for
SNNs, optimized for low area and power overhead.

Finally, we present a hardware-in-the-loop case-study which would
be used as a platform for demonstrating fault-injection experiments and
fault-tolerance capabilities.
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R É S U M É

L’intelligence artificielle (IA) et les algorithmes d’apprentissage auto-
matique sont au sommet du marché de la technologie de nos jours. Dans
ce contexte, les accélérateurs matériels d’IA devraient jouer un rôle de
plus en plus primordial pour de nombreuses applications, surtout ceux
ayant une mission critique et un haut niveau de sécurité. Cela nécessite
d’évaluer leur fiabilité et de développer des techniques peu coûteuses de
tolérance aux fautes ; un problème qui reste largement inexploré pour
les puces neuromorphiques et les réseaux de neurones impulsionnels
(Spiking Neural Networks, SNNs).

Il est souvent présumé que la fiabilité et la résilience aux erreurs
dans les Réseaux de Neurones Artificiels (ANN) sont intrinsèquement
obtenues grâce au parallélisme, à la redondance structurelle et à la res-
semblance avec les réseaux de neurones biologiques. Cependant, des
travaux antérieurs dans la littérature ont révélé le non-fondement de cette
hypothèse et ont exposé la vulnérabilité des ANN aux fautes, prouvant
que sans des conceptions adéquates et des mesures de protection appro-
priées, les ANNs restent à risque de manque de performance en raison
des fautes.

Dans cette thèse, nous abordons le sujet de test et de la tolérance aux
fautes pour les SNNs matériels. Nous abordons tout d’abord la question
du test de post-fabrication des réseaux de neurones matériels et de leur
autotest orienté sur le comportement. À l’issue de cette phase, nous
proposons une version auto-testable d’un d’un neurone impulsionnel
biologiquement plausible au niveau transistor. Ensuite, nous abordons le
sujet de simulations de fautes à grande échelle au niveau des transistors
qui est généralement contraignant en temps. Par conséquent, nous sui-
vons une approche ascendante partant de l’injection de fautes au niveau
transistor dans un seul neurone analogique du type Integrate-and-Fire
(I&F) afin de proposer un modèle de fautes au niveau comportemental.
Ce modèle est spécifique aux SNN et indépendant de la conception et
l’architecture du circuit. Nous démontrons l’accélération offerte par ce
modèle de fautes en effectuant des expériences d’injection de fautes. Ces
expériences identifient les types et les emplacements de fautes critiques
sur deux SNN que nous avons conçus pour la classification des basses de
données N-MNIST et DVS-gesture d’IBM. En exploitant les observations
de ces expériences, nous proposons une stratégie de tolérance aux fautes
des neurones pour les SNNs qui a été optimisée afin de minimiser les
surcoûts en surface et puissance du circuit.
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Enfin, nous présentons une étude de cas "matériel dans la boucle"
qui serait utilisée comme plateforme pour démontrer les expériences
d’injection de fautes et les capacités de tolérance aux fautes.
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1 I N T R O D U C T I O N

"If the brain were so simple we could understand it,
we would be so simple that we couldn’t."

— Emerson M. Pugh

1.1 preface

Understanding how the human brain works and building a machine
that can match its computing power and efficiency has been a major force
driving computer science research for decades. Nowadays, computers
have reached remarkable performance levels in routine information pro-
cessing such as basic math, and they even sometimes surpass human
capacity in terms of computational speed and memory storage. However,
the human brain still has an undeniable edge that is yet to be matched by
a computer in non-routine tasks such as reasoning, awareness, problem
solving, and learning from experience.

The first approach was a top-down strategy that looked at solving
cognitive tasks algorithmically, i.e., mimicking the function but not the
structure, and the von Neumann architecture quickly became the stan-
dard platform for this solution. The other approach took inspiration from
biology for a bottom-up strategy and tried to imitate the structure of the
biological brain in the hope of creating a machine that can think.

The earliest definitions of Artificial Intelligence (AI) were depicted in
the mid-20th century when Alan Turing proposed the stored-program
concept [1], [2]. He described an abstract machine that consists of an
infinite memory strip and a scanner that moves through the memory,
reads its contents, and modifies it according to a program of instructions
also stored in memory, with the implication that if the machine operates
on, it would modify and improve its own program. He went on to
describe an "intelligent machine" as one that can learn from experience,
and that the possibility of letting the machine alter its own instructions is
the way to provide this mechanism.

The Turing Machine was perhaps the earliest design of a distributed-
processing system, and the inspiration from which Artificial Neural

1



2 introduction

Networks (ANNs) were eventually designed. However, his ideas could not
be further exploited until the 1970s when Very Large Scale Integration
(VLSI) technologies were developed. With the computing revolution that
followed that era, ANNs began to regain attention.

1.1.1 AI Hardware Accelerators

Today, AI has invaded our everyday lives affecting the way we work
and spend our free time. Deep learning algorithms [3], and machine
learning in general, are increasingly dominating the computer industry
with applications that perform fundamental tasks like speech recogni-
tion, computer vision, and natural language processing, all the way to
robotics, Internet-of-Things (IoT), autonomous self-driving vehicles, smart
healthcare, etc. In all these applications, AI algorithms rely on hardware
cores for performance acceleration in one form or another. AI hardware
accelerators originally made use of existing technologies and traditional
processors, such as general-purpose Central Processing Units (CPUs) and
Graphic Processing Units (GPUs) [4], and to this day, the actual processing
typically runs on giant servers in the cloud using CPU or GPU clusters.
However, this hardware is too large to fit inside a portable device and it
needs far more power than a device battery can provide.

Take IoT edge devices as an example; edge computing technology aims
at pushing the execution of AI algorithms away from the cloud side and
closer to the user side, i.e., the edge. Achieving this goal will contribute
many advantages to the existing paradigm, e.g., provide availability of the
application even in the absence of an internet connection, avoid latency,
save network bandwidth which is overly occupied with the moving of
data back and forth between the user and the cloud, and offer a much
needed privacy since the data would be handled locally.

Compared to the human brain that has a neuron density of around
10, 000/mm2 and consumes approximately 10−11 Joules per spike [5]
-which means it runs on about 20 Watts-, CPUs are estimated to be about
108 less efficient in terms of size and energy consumption. In addition,
several AI applications require a real-time response, as is the case with
autonomous vehicles; an application running in constantly changing con-
ditions with data coming from cameras, radars, accelerometers, sensors,
etc. In the presence of this huge amounts of data, performing inference
or on-line learning with a Neural Network (NN) running in software
on a CPU is not an option. All these restrictions, along with other more
technical challenges, such as the von Neumann bottleneck, also known
as the memory-wall problem, and the approaching end of Moore’s law
[6], have made it crucial to find alternative architectures. Even with AI
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accelerators like GPUs and Field Programmable Gate Arrays (FPGAs) [7]
which perform far better than CPUs for AI related tasks, over one mag-
nitude of cost-energy-performance improvements can be obtained with
Application Specific Integrated Circuits (ASICs) [8], [9].

1.1.2 Neuromorphic Computing

Neuromorphic computing, a term introduced by Carver Mead in the early
1990s [10], is the technology that uses special purpose VLSI silicon ANN

implementations that resemble -or are inspired from- biology. Unlike the
traditional von Neumann architecture that adopts a central processing
system where a logic core performs computations on data fetched from
memory, neuromorphic computing distributes the computational load
and the memory among a multitude of elements.

Mainstream neural modeling nowadays is mostly digital and done at
software-level, which is convenient since digital simulations offer precise
and noise-free outputs. However, this paradigm ignores the fact that
neural computing in the brain, which ANNs are essentially trying to
emulate, is analog and noisy in nature. Biological NNs perform tremen-
dous high-speed parallel computations in the presence of noise. They are
highly adaptable and are even capable of exploiting noise in the environ-
ment to enhance computations [11], all the while consuming very little
power and occupying a small space. In contrast, even the most powerful
supercomputers cannot simulate neural connectivity in real time [12],
[13].

Hence, it was only natural to look for something more suited to the
objective in hand, and this was when neuromorphic technology started to
appear in the spotlight. Silicon implementations provide a compromise
between biological NNs and digital computers in terms of power and
space, in addition to being far faster than biology [14]. While conventional
ANNs fall under this description as well, the term "neuromorphic" usually
refers to Spiking Neural Networks (SNNs).

Today, there exist many hardware neuromorphic chips either in digital,
mixed analog-digital, or purely analog form. Some famous examples
include: IBM’s TrueNorth chip [15], Furber’s SpiNNaker chip [16], MIT’s
Eyeriss [17], and Intel’s Loihi chip [18]. These chips offer compact designs
that incorporate large numbers of neurons and synapses with a very low
power consumption and have been used to demonstrate various simple AI
applications. However, their user base still consists mostly of universities
and industrial research groups [19]. Before neuromorphic technology can
move on to the actual industry field and take over the role dominated by
mature conventional ANNs, many obstacles would have to be overcome.
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For example, SNNs cannot be trained using standard learning techniques
like the back propagation algorithm. They also need benchmark data
sets in spiking form, which are not readily available yet. The specific
advantages of SNNs, as well as the challenges they face, will be further
discussed in Chapter 2.

1.1.3 Is AI Hardware Fault-Tolerant?

A major preoccupation nowadays is the trustworthiness of AI systems.
This includes privacy, avoidance of unfair bias, resilience to adversarial
attacks, hardware dependability, etc. AI applications to test-related tasks
have been extensively studied over the past decades [20], [21], including
on-chip NNs as a Built-In Self-Test (BIST) engine for mapping low-cost
measurements to chip-level pass/fail 1-bit decisions [22]. However, the
"inverse" problem of testing and reliability of AI hardware has been
customarily overlooked.

Biological NNs have remarkable error resilience and fault-tolerance
capabilities. Not only can the brain tolerate a finite number of faults
in the neurons and synapses, but it is also capable of regenerating or
rewiring network elements to make up for larger damage. Modeled after
the immensely parallel architecture and operation principles of biological
NNs, both conventional ANNs and spike-based SNNs are assumed to be
inherently as fault-tolerant as their biological counterparts. Moreover,
both ANNs and SNNs usually contain more computational units than the
minimum requirements of a certain cognitive task, a property known as
over-provisioning [23], which allows for a certain degree of robustness
[24].

However, arguing that this assumption is true based only on architec-
ture resemblance to biology or over-provisioning is somewhat impru-
dent. In fact, many recent experiments have shown that AI hardware
accelerators are limited by the constraints and imperfections of the VLSI

technologies and are vulnerable to hardware-level faults resulting from
manufacturing defects, process variations, aging, and Single Event Up-
sets (SEUs).

With the foreseen industrialization and high-volume production of
hardware NNss in the coming years, special attention must be paid to
the fault-tolerance aspect of AI hardware. Given that several targeted
applications are safety-critical and mission-critical for which AI hardware
accelerators must meet the functional safety standards regulated by every
application domain, e.g., ISO 26262 for automotive and IEC 61508 for
industrial systems, testing strategies specific to hardware NNs remains a
topic that is largely unexplored [25].
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But why does this need to be a special case? If a hardware NN is
basically a VLSI circuit, either analog or digital, why can’t standard testing
and fault tolerance techniques apply directly and be enough?
The answer to this question is the motivation behind the work carried
out in this thesis.

1.2 motivation

Typically, post-manufacturing testing in the VLSI industry aims at de-
tecting manufacturing errors and is done per manufactured chip. In
high-volume production, testing is performed on Automated Test Equip-
ment (ATE) and needs to be completed in a few seconds. When it comes
to safety- and mission-critical applications, testing would also need to be
performed in the field concurrently with the operation or in idle times,
in order to detect latent defects, aging, etc., calling for BIST capabilities to
be added into the design to allow stand-alone evaluation of the health
status of the chip without relying on external test instruments.

Testing strategies also vary depending on the type of the Integrated Cir-
cuit (IC), i.e., digital or analog. Testing of digital ICs is considered a mature
field today [26], [27]. On the other hand, post-manufacturing testing for
analog ICs still relies on measuring certain performance metrics of the cir-
cuit and comparing them to the nominal case [28], hence tests are still spe-
cific to the particular IC (e.g., Analog-to-Digital Converter (ADC), Digital-
to-Analog Converter (DAC), Phase-Locked Loop (PLL), filter, Operational
Amplifier (OpAmp), etc.), and specific to different architectures within
each IC class (i.e., Successive-Approximation Register (SAR), pipeline, Σ∆,
etc., architectures for the ADC class). BIST for analog ICs is not widespread
since analog signal paths are sensitive and BIST circuitry tapping into
them loads the IC and degrades the performance.

Like any other VLSI circuit, hardware NNs are prone to hardware faults
that can happen any time during the chip’s lifetime, and standard post-
manufacturing testing strategies can technically be sufficient. State-of-
the-art deep ANNs comprise a multitude of layers of different types, i.e.,
convolution, pooling, fully connected, etc., tens of millions of synaptic
weight parameters, and they perform a myriad of operations in a single
forward pass. From a hardware perspective, this entails immensely dense
designs, albeit with a certain degree of architectural modularity. Hence,
intuitively, testing efficiency can be largely improved by exploiting the
architectural particularities of hardware NNs and targeting only those
fault scenarios that have a measurable effect on performance [29].

Most likely, post-manufacturing testing for digital NN implementations
will not be any different than testing of regular digital ICs. However,
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for purely analog NN implementations or implementations with analog
sub-blocks, e.g., analog neurons, new post-manufacturing and BIST test
strategies will need to be developed since, in the first place, it is not
clear for specifications we should be testing. In addition, adapting testing
strategies to each network type, architecture, or data type is an exhaustive
task.

To this end, in the course of this thesis we investigated the possibility
of global testing strategies and generic fault-tolerance techniques that can
be applied to hardware SNNs, independent of the architecture, design,
and data propagated through the network. The goal is to enable SNNs

with fault tolerance capabilities against hardware-level faults.
The followed methodology is discussed next.

1.3 methodology

To achieve our goal, we adopted a methodical approach of evaluating the
robustness of a neural network against hardware-level faults, to which
extent they affect the NN, and how they can be mitigated or bypassed.
The approach comprises 3 main steps:

1. Simulation of faults injected at transistor level to understand how
they affect the circuit.

2. Creating abstract fault models that can be used to test the network
at system level.

3. Developing cost-effective fault tolerance mechanisms for SNNs.

At every step, the findings are evaluated and exploited to optimize the
next.

1.3.1 Fault Injection

The first step towards our goal is fault injection experiments. Fault in-
jection is the intentional introduction of faults in a system to examine
their effects [30]. While not really adequate for improving the system
performance or debugging design errors, fault injection and simulation is
a very effective way of testing the resilience and fault-tolerance capability
of a system against known faults. In general, fault injection experiments
can be helpful in evaluating the functional safety of a system with respect
to the standard regulations of the respective domain.

Performing hardware-level fault injection experiments in hardware
NNs, carried out at transistor-level or at system-level, can be a helpful
tool so as to:
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v Associate behavioral errors with hardware faults.

v Determine which faults are catastrophic and which are redundant.

v Build a compact fault model that can test the network regardless of its
architecture, thereby reducing the post-manufacturing test costs.

v Identify critical layers and components within the network, so that
appropriate strategies for hardening, self-test, error mitigation, error
recovery, fault-tolerance, etc. can be followed.

v Understand the propagation of faults across layers. For example, it
is shown that the normalization layers reduce the impact of faults by
averaging fault values with adjacent correct values.

v Develop effective design-for-test techniques that exploit the hardware
particularities.

1.3.2 Fault Modeling

After performing fault-injection experiments at transistor-level, we exploit
the results in order to build a fault model and a fault taxonomy that is
specific to SNNs.

For the fault model to be efficient, it needs to be defined with certain
characteristics. The fault model should be:

v Consistent with manufacturing defects that can affect the chip, i.e.,
with the transistor-level faults.

v Defined at the behavioral level to allow the acceleration of fault simu-
lation for deep SNNs.

v Abstract, meaning that it can be used to test any SNN regardless of its
architecture or implementation.

A fault model of this style allows the acceleration of large-scale fault
injection experiments for deep SNNs. This way, the vulnerabilities of the
network can be assessed, and measures can be taken to bypass or mitigate
their effects.

1.3.3 Fault Tolerance

The final step in this work is proposing some fault tolerance techniques
in compliance with the results of the fault simulation experiments. But
before we can do that, we need to illustrate what fault tolerance actually
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means, and how it differs from other terms often encountered in the
literature.

A system is said to be reliable if it performs correctly with high proba-
bility in the presence of faults under previous stated conditions, meaning
that statistics and probability theory are needed to estimate the reliability
of a system. Reliability is a quality over time that is associated with fail-
ures that happen unexpectedly. Other popularly used terms are robustness
and error resilience, which describe the tolerance of the system to noisy
inputs and inexact computations.

Fault tolerance, on the other hand, is a property of the system that
guarantees its proper operation in the event that one or more faults have
manifested themselves in the system. This means that fault tolerance
entails taking action to detect and bypass or counteract the effects of
faults.

1.4 thesis structure

In this thesis, we explore the inherent resiliency aspects of hardware
SNNs to hardware-level faults and propose cost-effective fault-tolerance
techniques applicable to any SNN.

In Chapter 2, we review the literature on SNNs and the work done to
make them fault tolerant. Then, we kick off the experiments by designing
a behavior-oriented BIST for a biologically inspired analog neuron in
Chapter 3. Afterwards, we move on to a more practically adopted neuron
model in Chapter 4, where we perform defect-oriented testing that maps
transistor-level faults in analog neuron implementations into behavioral-
level fault models. In Chapter 5, these fault models are used to assess
the resiliency of a complete network, demonstrating the experiment on 2
separate SNNs. We leverage the results of these experiments in Chapter
6 to develop a neuron fault tolerance strategy for SNNs, and we show
the fault-tolerant SNN architecture. In Chapter 7, we show a hardware
convolutional SNN designed to run on FPGAs, and which we use as a
platform to validate the ideas developed in this work. Finally, Chapter 8
concludes the work.



2
S P I K I N G N E U R A L N E T W O R K S
& T H E I R FA U LT T O L E R A N C E :
A L I T E R AT U R E R E V I E W

Despite all the impressive advances achieved by conventional ANNs,
the human brain still excels in the most basic cognitive tasks. Originally
a topic of interest in theoretical neurobiology and biophysics research,
spiking neural networks were designed as an attempt to mimic the bio-
logical neural networks to enable the analysis of elementary processes of
the brain. With the technological leap in AI and deep learning, neuromor-
phics and SNNs have come to the spotlight as a promising new paradigm
that can possibly take deep learning to places it could not reach before.

In this chapter, we offer a basic literature review of the two pillar topics
of this thesis: SNNs in hardware and previous efforts to make them fault
tolerant.

2.1 spiking neural networks

A biological or an artificial neural network is made up of neurons con-
nected in a sophisticated complex pattern through synapses. The neuron
is the basic processing unit in a neural network, and according to the
computational paradigm of their processing units, ANNs can be clas-
sified into three generations [31]. The first generation is based on the
McCulloch-Pitts neurons, or the perceptrons. Built exclusively to give
digital outputs, a multilayer perceptron is able to compute every boolean
function with only one hidden layer. The second generation is based
on neurons implementing an "activation function", such as the sigmoid
function. Neural networks from the second generation can compute func-
tions with analog inputs and outputs, which give them a more realistic
essence than the first-generation networks if their output is thought of as
representing the average firing frequency of a biological neuron. Nonethe-
less, functionality-wise, both generation models are very different from
biological neural networks.

9
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Neurons in the brain communicate through discrete short electrical
pulses called spikes. A typical neuron fires spikes at a frequency that is
less than 100MHz, which means that a window of 20− 30ms is needed
only to compute the current firing rate [31]. However, experimental
results have shown that a visual processing task can be completed in just
20− 30ms, thus it was doubtful that biological neurons actually use the
firing rate as a main coding scheme [32], [33]. Instead, it seemed that the
timing of spikes plays an important role in neural coding [34].

These findings made way for a third generation of neural networks
that uses spiking neurons as the basic element. Spiking neurons commu-
nicate -much like their biological counterparts- through spikes and code
information in a spatio-temporal manner, making them more biologically
realistic compared to the previous two models. In this section, we review
the basic concepts of SNNs.

2.1.1 The Spiking Neuron

The spiking neuron is the basic building block of neuromorphic systems
and where most of the processing takes place. A spiking neuron is often
described as an integrator with a threshold [35]. Instead of constantly
firing, as in the case of first- and second-generation neurons, a spiking
neuron accumulates inputs from preceding neurons, and if a certain
number of spikes occur within a specific time frame, it generates a spike
of its own.

2.1.1.1 The Spike

The Spike, also known as the action potential, is the primary means of
communication in between spiking neurons. It is a short electrical pulse
of around 100mV amplitude and a 1− 2ms duration, that represents
an abrupt momentary change in the state of the neuron. Spikes are
stereotypical events, shown in Fig. 2.1, that do not change form as they
propagate from pre-synaptic to post-synaptic neurons. Consequently, the
shape of the spike carries no information. Instead, the timing of each
spike and the length of the inter-spike intervals are the key aspects of
information coding in SNNs.

2.1.1.2 The Membrane Potential

The membrane potential is the voltage that describes the state of the
spiking neuron at any given time. In the quiescent state with no input
spikes, the membrane potential of a typical biological neuron is strongly
polarized at a resting voltage of about −65mV . Incoming spikes evoke
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Figure 2.1: A spike

a positive or a negative change in the membrane potential, referred
to as the post-synaptic potential. An excitatory input will reduce the
negative polarization of the membrane potential, i.e., depolarize it, while
an inhibitory input will hyperpolarize the membrane voltage even further.

2.1.1.3 Spike Generation

The mechanism of spike generation is conceptually illustrated in Fig.
2.2. When an input spike arrives, the membrane potential increases for
a moment before it starts decaying again. This decay of the membrane
voltage between incoming spikes is known as the leakage, which plays a
significant role in the temporal correlation between spikes. Temporal cor-
relation is a crucial concept which facilitates the possibility of exploiting
the temporal information contained in real-world sensory data [31].

After the neuron spikes, the membrane potential returns to the resting
value and stays there until the next input spike comes along. The neuron
cannot fire again until a certain period has passed, which is known as
the absolute refractory period. In response to an input stimulus, spiking
neurons can emit a chain of action potentials, called a spike train, that
can have regular or irregular intervals.

Membrane Potential

TimeIncoming Spikes

Threshold
(ϑ)

Vrest

tf

Figure 2.2: The dynamics of spike generation.
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2.1.2 Neural Coding Schemes

The concept of mean firing rate dates back to the 1920s [36], where
Adrian et al. proved that the firing rate of certain neuron types in the
muscles is related to the strength of the applied stimulus. For so long
after that, the firing rate was thought to be the principle neural coding
scheme. However, neuroscience experiments have demonstrated that for
high-speed neural processing, the timing characteristics of individual
spikes and spike trains cannot be ignored [32].

In SNNs, Coding schemes can be classified into [37]:

1. Rate Coding Schemes: converting the activity level of neurons into
a firing rate, which does not benefit from sparse spikes inherent
to biological systems [38]. The neuron firing rate can be calculated
according to:

v The spike count: averaging over time.

v The spike density: averaging over several runs.

v The population activity: averaging over the activity of several
neurons that act together.

2. Spike Coding Schemes: Coding strategies that are based on the timing
of individual spikes. There are many timing aspects through which
neurons in the brain communicate information, including:

v Time to first spike: in systems that require ultra-fast information
processing, such as tactile and olfactory systems, the delay be-
tween the beginning of the input stimulus and the first output
spike was shown to carry enough information [39], [40].

v Phase coding: where neurons can encode information in the
phase of a spike with respect to some background oscillations.

v Rank order coding: information is coded in the order of output
spikes in populations of neurons [41].

v Correlation and synchrony: a coding scheme based on the obser-
vation that neurons that encode pieces of the same information
object fire synchronously.

Nonetheless, the distinction between rate coding and spike coding
scheme is not very sharp, i.e., some of the codes that are viewed as timing
codes can also be interpreted as variations of a rate code. For example,
the time-to-first-spike coding scheme is related to the firing rate scheme
since a neuron that spikes early would be expected to have a high firing
rate, and vice versa.
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2.2 spiking neural networks in hardware

2.2.1 Neuron Models

There are numerous models of spiking neurons used in neuromorphic
systems [42], most of which perform the accumulation and firing function,
albeit with different mechanisms. In the simplest deterministic model,
the neuron is assumed to fire whenever its membrane potential reaches
a threshold (ϑ). The fired spike travels along the synapse that has an
efficacy, or weight (ω).

Spiking neuron models can be grouped into broad categories based on
their degree of complexity and their resemblance to biology in structure
or function [43]. The question of which neuron model to use usually
depends on the type of problem at hand [44]. These categories are:

v Biologically-Plausible Models:
These models are built to explicitly model the behaviors observed
in biological neurons and are mostly used for accurate simulations
of biological neural systems. One of the most famous models of this
category is the classical Hodgkin-Huxley model [45], which uses four-
dimensional nonlinear differential equations to describe neural be-
havior. Other models like the Morris-Lecar model [46] try to simplify
things by reducing the dimensions of the nonlinear equations. In any
case, these models are often used to simulate a small number of neu-
rons since they are usually very expensive to implement.

v Biologically-Inspired Models:
Biologically inspired models, on the other hand, try to replicate the
neural behaviors without the obligation of emulating the physical
activity of biological systems. Consequently, they are much simpler
than the biologically plausible models in terms of computations and
implementations and can therefore be more efficient in modeling large-
scale systems. There are many models in this category that are very
common in neuromorphic literature, including the FitzHugh–Nagumo
model [47], [48] and the popular Izhikevich model [49], which can
reproduce biologically accurate behavior with a set of two-dimensional
ordinary differential equations.

v Integrate-and-Fire Models:
Another category of spiking neuron models especially suited for mini-
mizing computational complexity is the Integrate-and-Fire (I&F) mod-
els. These models can vary in complexity from the basic integration
and firing function to something approaching the complexity level of
the Izhikevich model. While not biologically realistic, I&F models are
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still complex enough to incorporate spiking dynamics. Beside the basic
I&F model, there are also the leaky I&F model, the resonate-and-fire
model [50], and the quadratic I&F model [51]. More complex imple-
mentations also exist, such the Adaptive Exponential Integrate and
Fire model [52].
Another model that can technically fall under this category, although
it performs the neural behavior in the form of response kernels rather
than differential equations, is the Spike-Response Model (SRM) [34].
The SRM is a generalized form of the I&F model and will be discussed
in more details in Chapter 5.

2.2.2 Address Event Representation

In the attempt to build neural networks that resemble the human brain,
the communication problem becomes evident. Compared to digital sys-
tems where each gate is connected to a relatively small number of outputs,
a typical neuron can carry outputs to thousands of targets. This massive
interconnection is easily built in biology using 3-D structures. However,
it becomes a challenge when brought to 2-D silicon substrates [53]. On
the other hand, a typical neuron fires at a rate ranging from 1− 10 kHz,
which means that a cluster of neurons can have a collective firing rate
in the kHz to low MHz range; a rate that modern digital systems can
effortlessly hold. Therefore, in neuromorphic systems, communication
is usually carried out between clusters of neurons by time-multiplexing
spikes on a single channel. In neuromorphic systems, this is done using
the Address Event Representation (AER) protocol [54].

AER is a communication protocol that makes use of the fact that spikes
carry no information other than the fact that neuron i fired at time tf,
and sends out only this information. Each neuron in a cluster is assigned
a unique address and every generated spike is encoded into a sequence
that indicates the identity (or address) of the neuron that fired that spike
and the time at which it fired. This way, huge synaptic connections can be
avoided, and the hardware resources can be efficiently allocated where
they are needed.

There are multiple approaches to the implementation of AER event-
based systems that exploit the features of a hardware neural network
[55]. The simplest form is a basic AER scheme where the whole network
can share a single communication channel, and all events are processed
through an external block that controls their traffic. Other schemes dis-
tribute this multiplexing among several points in the network. A more
sophisticated scheme puts a router block within each cluster module that
is responsible for directing traffic between modules. Using this scheme
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can be helpful in large-scale systems because it allows a 2-D mesh archi-
tecture where each module is only connected to its immediate neighbors.
The router-based scheme will be further explained in the case study
presented in Chapter 7.

2.3 neuromorphic technology prospects and challenges

Judging by the rise in research activity over the past decade [43], neuro-
morphic computing is becoming mainstream with every passing day. This
is mainly because of the many advantages that this technology promises,
which could potentially take neuromorphic technology far beyond what
has been accomplished by conventional ANNs. These advantages can be
summed up into:

1. Power efficiency.
Much like biological neural networks, SNNs are built for event-
driven information processing. Information from the outside world
is usually sparse, which means it can be processed in a way much
more efficient than the frame-based approach of conventional ANNs.
ANNs perform data sampling at predefined time steps that ignores
the speed of incoming information. SNNs on the other hand process
spikes as they come, meaning that the network is only working
when there is something to be processed, otherwise, no computa-
tions are taking place. This event-driven operation is the basis of
the huge power savings promised by neuromorphic computing and
could make neuromorphic systems the go-to solution for applica-
tions such as IoT at the edge and autonomous vehicles. For example,
IBM’s TrueNorth Chip is a Complementary MOS (CMOS) ASIC made
up of 5.4 billion transistors that make up 1 million neurons and 256
million synapses, all the while consuming only 73 mW.

2. Speed of computation.
Information in the brain is transmitted in the form of spikes propa-
gating from layer to layer as soon as they are generated by a neuron.
In contrast, conventional ANNs compute the output of neural layers
sequentially, introducing significant delays while each layer waits
for the output of the previous one to be computed. SNNs incor-
porate time into their model of operation together with the state
of neurons and synaptic weights, thus information flows in the
form of spike trains propagating between neurons asynchronously.
When combined with event-based sensors, this leads to pseudo-
simultaneous information processing, where a first estimation of the
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output can be calculated at the output layer almost immediately
after the introduction of the first input spikes [56].

3. Predisposition to bio-inspired unsupervised learning.
While supervised learning techniques have become the standard
for ANNs, to this day, exact mechanisms of supervised learning in
biology are still a mystery and presumably not the primary source
of learning. The Hebbian process of learning proposed by Hebb
in 1949 was the first attempt at explaining how learning occurs in
the brain. The Hebbian plasticity principle, and the more compre-
hensive version known as Spike Timing-Dependent Plasticity (STDP)
[58], [59], entail that the change in the weight of a synapse is pro-
portional to the timing between pre- and post-synaptic spikes. Since
SNNs are designed to use spike timing to code information, it is
due to make full use of these unsupervised biologically inspired
learning algorithms.

4. Inherent robustness to noise.
As discussed in Section 2.1.1.1, spikes have a standard shape that
holds no information, making the presence of a spike the most
important aspect. Moreover, every neuron generates its own set of
spikes instead of just passing the same signal along, hence there is
a kind of regeneration of signals at every neuron [60]. This gives
SNNs an advantage similar to that observed in digital systems, that
is their robustness to noise.

But with great promise comes great challenges. Despite all its promis-
ing prospects, neuromorphic technology still faces many obstacles that
need to be addressed before it can be implemented in real world applica-
tions. The main obstacles that face neuromorphic technology today and
stop it from realizing its full potential are discussed next.

1. Benchmark datasets in spiking form.
While it is counted as a drawback of SNNs that they cannot achieve
high accuracy levels on typical benchmark datasets such as the
MNIST handwritten digits dataset [61] or the CIFAR image dataset
[62], the real issue is with the nature of these datasets. These datasets
were created in a frame-based format which is fundamentally differ-
ent from the way SNNs operate. The conversion of typical datasets
into a spiking format is usually inefficient, since frame-based for-
mat holds a huge amount of redundant data that is simply not
present in event-based formats. In the recent years, a new direc-
tion is being followed of directly collecting datasets in spiking
format using Dynamic Vision Sensors (DVSs), such as the N-MNIST
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dataset (a neuromorphic version of the MNIST dataset) [63], the
Dvs-Gesture dataset [64], along with other benchmark datasets that
are optimized for visual recognition [65], [66].

2. Efficient spike-based learning algorithms.
Another major limitation of SNNs is the lack of efficient training
algorithms that leverage the full potential of spike coding capabili-
ties. Conventional ANNs have reached amazing performance levels
using supervised learning techniques that are based on gradient-
descent, such as the ubiquitous back propagation algorithm [67].
However, applying back propagation directly to ANNs is infeasible
since spikes are non-differentiable. Over the years, many approaches
to training SNNs emerged. The first approach was the conversion of
trained conventional ANNs into SNNs by adapting the weights and
parameters, which offered SNNs the opportunity to benefit from
the strength of deep learning but at the cost of less efficiency. On
the other hand, multiple approaches have been proposed to use
variants of the back propagation algorithm for direct training of
SNNs [68]–[70]. Nonetheless, due to the complexity and asynchronic-
ity of spike-based computing, the issue of SNN training algorithms
remains a huge challenge for neuromorphic technology.

3. Efficient architectures.
There are various neuromorphic chips that exist today from multi-
ple manufacturers and research labs, e.g., the TrueNorth chip from
IBM [15], the SpiNNaker chip from the University of Manchester
[16], Eyeriss from MIT [17], and Intel’s Loihi chip [18]. With the ap-
proaching end of Moore’s law, the scaling down of VLSI chips needs
more innovative solution to allow the scalability of neuromorphic
chips and ANNs to incorporate more neurons and synapses without
compromising the power consumption. In a neural network, the
number of synapses is usually much higher than that of neurons,
which is why synaptic implementations are usually kept simple
and a lot of effort is being directed into improving synaptic imple-
mentations and finding better materials and techniques to achieve
the synaptic function.

One of the biggest bottlenecks in ASIC implementations for neuro-
morphic systems is the on-chip memory that holds the parameters
and the synaptic weights. The standard technique used today is the
on-chip or off-chip Static Random Access Memory (SRAM). However,
they do not provide sufficient capacity to cope with the large num-
ber of parameters and synaptic weights in ANNs. The typical SRAM

density is 100− 200 F2 per bit cell, where F is the technology node
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[71] with a capacity of a few megabytes on-chip. Emerging technolo-
gies such as Non-Volatile Memory (NVM) devices, e.g., memristor
crossbars, are attracting so much interest these days because of their
analog nature and the capability of doing in-memory computations
[72]–[74].

4. Robust and reliable hardware.
In Chapter 1 we discussed the appeal of neuromorphic technology
for safety-critical applications and how this made their testing a
must. However, there is still a gap in the literature concerning
testing techniques and fault-tolerance strategies applied for SNNs.
This issue will be discussed in more detail in the rest of this chapter.

2.4 state-of-the-art in testing and fault tolerance in

hardware neural networks

Despite all the major breakthroughs achieved by ANNs, their transfer
into hardware unavoidably poses multiple factors that can degrade their
performance. Perhaps the most important risk of hardware platforms
is their susceptibility to faults either during manufacturing, such as
physical defects and process-induced variations, or in the field due to
environmental factors and aging. Consequently, fault detection and fault
tolerance are essential to achieve better performance levels.

In this section, we review the concepts of fault tolerance and then we
explore the body of work that has been carried out in the field of testing
and fault tolerance for hardware neural networks.

2.4.1 Fault, Error, and Failure

While sometimes used interchangeably, fault, error, and failure are dis-
tinct concepts in fault-tolerant systems. A fault is the anomaly in the
physical condition of a circuit arising from a defect in the manufacturing
process. This fault can reflect as an error at the functional level of the
system, e.g., deviation of the output from the expected value. If this
deviation is large enough, this error can eventually lead to failure to
meet the intended functionality purposes. Fig. 2.3 shows the conceptual
relationship between the three terms.

Like all mass-produced ICs, hardware neural network circuits are pre-
destined to have faults. These faults can be hard faults leading to fatal
errors and eventual failure of the circuit, or they can be soft faults which
manifest as non-fatal errors that could simply disrupt or degrade the
circuit performance.
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Faults can also be classified according to their temporal characteristics
into permanent and transient faults. Permanent faults, as the name
implies, are irreversible, e.g., shorts and opens, bridging and stuck-at
faults. They are usually a manifest of a physical damage either during
manufacturing or after employment. Transient faults on the other hand
are temporary and they are often triggered by external factors.

2.4.2 Fault Injection in the Literature

As stated in Section 1.3.1, fault injection experiments are done with
various goals in mind. They can be used to showcase the tolerance of an
ANN to certain faults, to identify the critical faults in order to decrease
testing time and cost, or to build cost-effective fault tolerance techniques.

Faults in a neural network can be observed at the signals in the com-
munication channels, the synaptic weights, or at the neurons. There have
been many attempts in the literature to find fault models suited for neural
networks and to perform fault injection experiments accordingly. Fault
injection experiments for different ANN architectures have been recently
performed using fault models at different levels of abstraction, some of
which we discuss in this section.

In [75], Bolt provided a framework for developing behavioral-level
fault models for multi-layer perceptrons based on the fault location
and characteristics to facilitate the investigation of their inherent fault
tolerance. Another attempt was made by Chandra et al. [76], where a
fault model was proposed for feedforward activation-based ANNs that
covered external noise which can introduce faults to the input of the
network, and structural faults at the layers, neurons, and synapses. They
also introduced some fault and parameter-sensitivity measures for these
networks.

While these fault models are meant to be abstract and hence usable on
any ANN regardless of its design or architecture, they are not accountable
in the study of defect tolerance of hardware ANNs. Several fault injection

Fault

Physical Level

Error

System Level

Failure

Behavioral Level

Figure 2.3: Cause-Effect relationship between fault, error and failure.
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experiments for different ANN architectures have been recently performed
using fault models at different levels of abstraction, which exposed the
vulnerabilities of AI hardware accelerators to hardware-level faults. Faults
have been injected in the form of:

v Transistor-level faults:
In [77], Temam investigated this issue by analyzing the differences
between gate-level defects (stuck-at) and transistor-level defects (shorts
and opens in transistors) in the fundamental logic operators of a multi-
layer perceptrons, i.e., adders and multipliers. The author then created
a gate-level fault model from faults injected at transistor level and
used this model to inject faults into a 2-layer multi-layer perceptron
designed in Verilog and synthesized with Synopsys Design Compiler.
The performance of the network for different tasks was shown to drop
with the number of injected defects and the amplitude of the errors
they introduce.

v Stuck-at faults:
Nonetheless, the stuck-at fault model has become very popular in
modeling faults in neurons and synapses, following the footsteps of
digital-circuits testing, because of the wide range of faults it can cover
[78]. Using the stuck-at model for an ANN, faults in neurons can be
modeled as stuck-at-1, stuck-at-0 or stuck-at-(-1) depending on the
neuron model, and in synapses as stuck-at-value, where value falls in
the range of [ωmin,ωmax].

In [79], stuck-at faults were used to verify the test coverage capability of
on-line test strategies based on Software Test Libraries (STL) proposed
for embedded systems running ANN applications. The strategies are
evaluated on Convolutional Neural Networks (CNNs) running on an
open-source RISC-V platform. Then the different testing strategies are
evaluated based on the inference time penalty and fault detection time
trade-off, where fault detection time is the worst-case time to detect a
fault from the moment of occurrence.

Gate-level stuck-at and transition faults were used in [80] for testing
First-In-First-Out (FIFO) based and Scratchpad based neural network
hardware accelerators. Stuck-at faults were also considered in [81]
for a systolic-array based neural network accelerator, i.e., the Tensor
Processing Unit (TPU), where the network was shown to be severely
sensitive to permanent faults in its Multiply-and-Accumulate (MAC)
units, with the classification accuracy dropping from 74.13% to 39.96%
when only 0.005% of the MAC units were faulty.

In [82], Gebregiorgis et al. proposed the conversion of neuromorphic
circuit testing into a Boolean satisfiability (SAT) problem that can gener-
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ate test patterns tailored to the important faults that can affect an ANN,
defining an "important" fault as one that drops the inference accuracy
of the circuit beyond an acceptable level. The authors demonstrated
their test flows on the Register-Transfer Level (RTL)-level hardware im-
plementation of two ANNs and showed that by choosing an appropriate
margin, the number of important faults can be significantly reduced
and that testing costs can be equally reduced by focusing only on these
faults and ignoring others that were found non important.

Permanent faults causing stuck-at activations at a quantized value
were investigated in [83] for convolutional Quantized Neural Networks
(QNNs). The experiments were carried out on FPGA-based hardware
accelerated to enable fast evaluation, and the robustness of the network
was assessed and optimized as a result.

v Stuck-at faults in the conductance of memristors in memristor
crossbars:
Fault models and injection experiments specific to memristor crossbars
have also been studied. In [84], fault injection is performed for a shallow
2-layer SNN with a memristor-crossbar connecting the two layers. An
in-house simulator was developed for the fault injection campaign and
all simulations were performed with the CPU of a PC. Although a fault
taxonomy was proposed, fault injection experiments considered only
"dead" neurons, i.e., neurons that do not fire, and "dead" synapses, i.e.,
synapses that do not allow signal transfer from one neuron to another.

Liu et al. in [85] showed that for 20% affected memristors in the crossbar,
the classification accuracy can drop from 92.64% to 39.4%. In [86] and
[87], stuck-at faults in the conductance of memristor crossbars were
used to qualify techniques to boost the fault tolerance of Resistive
Random-Access Memory (RRAM) crossbar-based accelerators.

v Bit flips in data-paths, buffers, and memory:
Another form of faults considered for testing all- (or partly-) digital
ANNs hardware is the static and/or transient bit flips. Li et al. [88]
considered transient SEUs in data paths and buffers, demonstrating
their experiments on four convolutional neural network accelerators
written in C++ and implemented using an open-source simulator
framework. Faults were randomly injected in the hardware components
and the error propagation through the network was studied. Their
results show that the sensitivity of the network to faults depends upon
the architecture and topology of the network, the used data type, and
the position of the flipped bit. The authors concluded that the projected
Failure-in-Time (FIT) rate of faulty Deep Neural Networks (DNNs) can
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exceed the safety standards, e.g., ISO 26262 for automotive, by orders
of magnitude.

In [89], single bit flips were injected into a randomly chosen word
from the activation function computations or the weights of a small
multi-layer perceptron with 2 hidden layers. Bit flips were again used
in fault injection experiments at software layer in [90], where Bosio et
al. evaluated the effects of these faults on the performance of two CNNs

and classified errors into masked and observed faults, which were
further classified into safe and unsafe faults according to their impact
on the classification accuracy. They used this fault classification to
assess the criticality of faults per layer and per bit category. The analysis
was further extended in [91] with additional data representations in
the form of five additional fixed-point formats with sizes ranging
from 32 bits down to 6 bits. Bit flips were introduced to observe the
resulting percentage of unsafe faults. The authors concluded that the
convolutional layers are more reliable than fully-connected layers, and
that the criticality of the bit flips is linked to the type of bits and data
precision.

In [92], the correlation between fault rate and classification accuracy
of DNNs was investigated through bit flips injection into the memories
of weights, activations, and hidden states, and the variance of fault
tolerance levels was compared across six SNNs models, layers, and
structures. Their analysis showed that there is a Bit-Error Rate (BER)
threshold beyond which the error increases exponentially. Across the
DNN models, this threshold varies from 4× 10−9 to 6× 10−6, while for
a particular DNN model the error across different layers varies up to
2781x. They also concluded that the bit position as well as the dynamic
range of values that the data type offers play an important role in fault
sensitivity.

This observation was further examined in [93], where Santos et al.
performed fault injection, in the form of bit flips, to evaluate the
reliability of a DNN implemented in three different precisions (half,
single, and double) on NVIDIA mixed precision GPUs. They studied
the propagation of faults through the network and the effect of mixed-
precision data on the criticality of faults and showed that reducing the
precision on GPUs can reduce the error rate resulting from faults and
improve the performance.

Another experiment in the form of bit flips in the weight memory
was carried out by Neggaz et al. in [94]. Neggaz et al. developed and
used a fault injection engine implemented in Python to analyze the
reliability of classification CNNs accelerated on a GPU. They considered
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two data types, the 32-bit float and 8-bit fixed point, and incrementally
injected random bit flips and measured the classification accuracy.
They observed less vulnerability to bit flips in the case of the 8-bit
representation as opposed to the 32-bit representation, and hence
reached the conclusion that weight quantization has a positive impact
on CNN’s resilience to SEUs.

These experiments elucidated the vulnerabilities of AI hardware acceler-
ators to hardware-level faults. A common conclusion across many of these
studies is that fault sensitivity varies across network architectures, types
of layers, as well as across low-level components, i.e., activation functions
and synapses. However, the vast majority of the aforementioned fault
injection experiments concern level-based DNNs and memristor crossbars,
while few experiments have focused on SNNs.

2.4.3 Fault Tolerance in the Literature

According to the way it is achieved, fault tolerance can be classified
into active and passive [29]. In this section, we provide a review of the
most common fault tolerance techniques applied to ANNs by presenting
a handful of works representing each technique.

1. Passive Fault Tolerance: Passive fault-tolerance schemes entail no spe-
cial response to the occurrence of a fault, i.e., no fault detection or
localization, no retraining after fault occurrence, and no reconfigura-
tion of the system. Instead, the intrinsic characteristics of the system
are leveraged to mask the known effects of faults and ensure the cor-
rect operation of the system in case the fault happens. The two main
categories often practiced as passive fault tolerance techniques are:

v Explicit Redundancy:
This method starts with a trained network that has a minimal
architecture necessary to implement the given task, then extra
neurons or synapses are added to split the burden with the
original ones. Contrary to intuition, the blind addition of hidden
units in a neural network before training does not improve its
fault tolerance [95]. Instead, the redundancy should be added
with proper adjustments and after careful considerations of the
role each unit plays in achieving the task at hand.

In [96], the hidden neurons in a 2-layer NN are replicated after
the network is trained, then the inputs and the biases are ap-
propriately scaled. In [97], Chiu et al. developed a quantification
method for the sensitivity of neurons and synapses in a feedfor-
ward ANN, and based on that measure, unnecessary units are cut
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from the network. Afterwards, they retrain the network based
on the new architecture and dynamically add extra units until
there are no critical points in the network, resulting in an order
of magnitude less performance degradation than a randomly
trained feedforward network of the same size.

The same approach was followed by Dias et al. [98], where parts
of the network are duplicated, and the network architecture is
rearranged so that the functionality is maintained without the
need for retraining. Critical synapses are split, and the weight is
divided among them to weaken their impact, and critical neurons
are duplicated so each one can do half the work, which increases
the fault-tolerance of the network up to 46%.

v Modified Learning:
This category goes to the training phase of the network and adds
extra options or enforces constraints on the learning algorithm to
ensure the network’s tolerance to possible faults.

Faults can be injected to the network during training, as in the
case of [99] where Arad et al. modified the training experience of
the network by performing the training with the increasing prob-
ability that several hidden neurons are faulty. They demonstrated
that using this method provided the network with the ability to
tolerate two simultaneous faults, and that this tolerance is linked
to the size of the dataset used for training.

Another direction is adding some regularization terms to evenly
distribute the weights and computations across the elements in
the network and hence force the algorithm to produce a network
with better fault tolerance. In [100], Bernier et al. proposed a mod-
ified version of the backpropagation algorithm that has an extra
term proportional to the error caused by weight deviations. Their
algorithm successfully reduced the sensitivity of the network to
possible faults in weight values without degrading the network
performance or increasing the training time. A similar idea was
developed in [101] by developing a training algorithm suited for
a special fault model they assumed.

Uniformity of weight distribution can also be achieved by con-
straining the weights of neurons in a specific layer in the network
to a specified range before training [102].

The passive fault tolerance techniques discussed above are effective
in terms of improving the inherent fault tolerance of ANNs. However,
they usually come at a cost. This cost can be in terms of size, as in the
case of explicit redundancy, and the network can become too large
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with too many hidden neurons or parameters than necessary. The cost
can also be in terms of computations complexity and training time
when the action is taking at the training level.

2. Active Fault Tolerance: On the other hand, in the active fault tolerance
scheme, explicit resources are added to test the performance of the
system, detect the presence of faults, and compensate for their effects.
Active fault tolerance equips the system with the ability to recover from
faults when they happen or completely bypass faulty elements in the
network. There are many techniques that fall under this fault-tolerance
class, namely:

v Weight shifting:
Fault tolerance can be realized by a technique known as weight-
shifting. Khunasaraphan et al. [103] proposed a self-recovery
mechanism for feedforward networks where the weights of faulty
synapses are shifted to other fault-free ones, and links to a faulty
neuron are considered faulty as well and get shifted as well.

v Retraining:
It can also be realized by retraining of the network after faults
happen so that the network can adapt to the faulty architec-
ture. Hashmi et al. [104] studied the inherent fault tolerance of a
biologically-plausible computational model of cortical perceptual
maps used for vision recognition tasks and implemented on a gen-
eral purpose GPU. They demonstrate that when a fault happens,
the network does not need to be reprogrammed or recompiled
to use non faulty units in the GPU. Instead, a simple retraining
can adapt the network to the modified architecture even without
explicitly excluding the faulty parts.

Retraining was also considered by Deng et al. [105] for mitigating
timing errors in a multilayer perceptron modeled at RTL level.
Retraining is done to redistribute weights and avoid the effects of
timing errors.

Pandey et al. [89] proposed the use of a checker neuron for real-
time resilience against soft errors in feed-forward neural network
architectures. The checker neuron estimates the output of a layer,
compares it against the output of the actual neuron layer, and
when the difference is outside a specified limit, it triggers an error
signal. In this case, the error can be corrected by bypassing the
whole layer and subsequently re-training.

In [106], a fault-tolerant design of Google’s TPU hardware acceler-
ator is proposed. If a MAC unit is detected to be faulty, then it is
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pruned, i.e., bypassed, using multiplexers that are added into the
design.

Liu et al. [85] studied the fault tolerance of memristor-based neural
network by identifying the significant weights and developing a
retraining algorithm that can compensate for 20% random single
bit failures. Another technique based on on-line detection of
faults and retraining to tolerate them is proposed in [107] for
RRAM-based neuromorphic systems.

v Biologically-inspired self repair:
A self-repair mechanism adopted from biology is explored by
Naeem et al. [108], and further expanded in [109] and [110], that
is based on astrocyte cells. In biological NNs, an astrocyte is a
subtype of glial cells abundantly available in the brain, which
provide feedback to synapses and regulate their transmission. In
the presence of faults in the synapses which cause a drop in their
probability of release, neurons can become silent. The authors
demonstrate that astrocyte cells can repair this fault by increasing
the probability of release of the non-faulty synapses, and hence
the network can self-repair in the presence of up to 80% fault
distribution.

Another idea was presented in [111] where the authors designed
an SNN used for controlling the motion of a robotic car and im-
plemented it in FPGA. Fault tolerance is achieved using Dynamic
Partial Reconfiguration (DPR), a technique specific to FPGAs that
enable the modification of the circuit mapped on the board with-
out having to turn it off. The authors use adjustable thresholds
and clock rates to compensate for faults that can affect the neuron
firing rates.

In the end, it is worth noting that most of the fault injection and fault
tolerance work in the literature concerns conventional ANNs and their
multiple implementations. Hence, there is a huge gap when it comes to
global fault models and fault tolerance techniques that can be applied to
a SNN of any depth, any architecture, and any implementation. For the
integration of SNNs in critical applications to materialize, dependability
and resilience become of utter importance. Therefore, the thesis addresses
a timely problem that has been little studied as of today.



3 A S E L F - T E S T I N G A N A L O G
S P I K I N G - N E U R O N C I R C U I T

In the first step of this work, we addressed the problem of post
manufacturing test and self-test of hardware-implemented spiking neu-
rons [112]. To keep matters simple, we tried to find a small analog circuit
that captures the most important features of spiking neurons, and we
studied the applicability of self-test to it. Among the countless number
of hardware implementations of spiking neurons, we chose a compact
implementation of a biologically inspired spiking neuron model. In this
chapter, we present the circuit design and features, then we propose a
self-testable version of it.

3.1 a biological perspective

Although all biological neural networks communicate through the tem-
poral patterns of their output spike trains, not all neurons behave in the
same manner. Neurobiological studies have shown that cortical neurons
are not morphologically or physiologically homogeneous [113]. They
differ in their chemical properties as well as their electrical fingerprint,
which is determined by the intrinsic membrane properties.

From a behavioral point of view, the different intrinsic membrane
properties of cortical neurons determine the way a neuron translates
an input from a synapse into a spike output. These differences appear
as variations in the shapes of the output firing patterns of the neuron
in response to post-synaptic stimuli, examples of which are shown in
Fig. 3.1. While there are many subcategories and many variations, the
neuronal intrinsic firing patterns in response to a prolonged stimulus can
be grouped into 4 main classes [113], [114]:

1. Regular Spiking (RS) Neurons: Regular spiking neurons are the
most common in the brain. In response to a long-duration stimulus
of constant amplitude, the neuron fires repeatedly, exhibiting grad-
ual adaptation of its firing frequency, i.e., the inter-spike intervals
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(a) Regular Spiking (b) Fast Spiking

(c) Intrinsic Bursting (d) Chattering

Figure 3.1: Intrinsic Firing Patterns of Cortical Neurons

increase gradually until it settles to a stable frequency, as shown in
Fig.3.1a. The output firing frequency increases with the increase in
the amplitude of the input stimulus, but the basic behavior stays
the same.

2. Fast Spiking (FS) Neurons: Neurons in this class have faster rates of
hyperpolarization and depolarization. As a result, they can respond
to a constant input stimulus with relatively high-frequency periodic
spike trains that undergo little or no noticeable adaptation, as shown
in Fig.3.1b.

3. Intrinsically-Bursting (IB) Neurons: The term “burst” refers to a
cluster of high frequency spikes which are followed by a period
of silence. While any neuron can produce a cluster of spikes in
response to repetitive phasic synaptic input, the intrinsic bursting
behavior is distinguished only when it is due to the intrinsic mem-
brane properties of the neuron and independent of the synaptic
input. Intrinsically bursting neurons responds to a prolonged input
stimulus with a single burst followed by repetitive smaller clusters
or single spikes, as shown in Fig. 3.1c.

4. Chattering (CH) Neurons: A chattering cell responds to a synaptic
stimulus with repeated bursts of spikes, shown in Fig. 3.1d, with
an inter-burst interval that depends on the strength of the input
stimulus. Although a single burst is similar to that produced by an
IB neuron, the chattering pattern is strikingly different. Hence, it
has been presumed as a distinct class of neurons, primarily present
in the visual cortex.
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3.2 the biologically-inspired neuron circuit

3.2.1 The Mathematical Model

In Chapter 2, we discussed the various types of spiking neuron models
that exist in the literature and that the choice of the model to use de-
pends upon the application. For the purpose of demonstrating a behavior
oriented built-in self-test, we picked an analog VLSI implementation of
a biologically inspired neuron model capable of generating the 4 firing
patterns discussed above.

The designed neuron is inspired by the Izhikevich model [49]; a simple
model that captures many biological aspects of spiking neurons, e.g.,
realistic spike shape and firing patterns, using a two-dimensional system
of ordinary differential equations of the form

v ′ = 0.04v2 + 5v+ 140− u+ I (3.1)
u ′ = a(bv− u) (3.2)

and an adjunct resetting mechanism

if v > 30 mV , then

 v← c

u← u+ d
(3.3)

where v is the membrane potential, u is a membrane recovery variable
that can slow down changes in v, I is the input synaptic currents, and a,
b, c and d are dimensionless parameters. The choice of the 30 mV and
the parameter values depend on the fitting criteria of the neuron to be
modeled, which is beyond the scope of this work. Detailed analysis and
possible applications of this model can be found in [49].

3.2.2 The Neuron Circuit

For the purpose of our work, we are interested in the hardware imple-
mentation of the model [115], shown in Fig. 3.2. This circuit implements
the Izhikevich model using a simple 14-transistor and 2-capacitor CMOS

design, where the basic form of the mathematical model is preserved
but the non-linearity is introduced through the underlying characteristics
of the MOSFETs. By tuning two control variables, Vc and Vd, the circuit
is capable of producing the 4 basic firing patterns of biological neurons
with a spike shape that resembles that of real neurons.
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The mathematical model of the circuit is of the form [115]:

V̇ =



k

Cv

{
α

[
1

2

(
W

L

)
M1

(V − VT )
2

]

−β

[
1

2

(
W

L

)
M4

(U− VT )
2

]
+
I

k

}
, when V > U− Vt

k
Cv

{ (
W
L

)
M4

(
(U− Vt)V − 1

2V
2
)
+ I
k

}
, when V < U− Vt

(3.4)

U̇ =
k

Cv

{
α

[
1

2

(
W

L

)
M1

(
L

W

)
M2

(
W

L

)
M7

(V − VT )
2

]

− γ

[
1

2

(
W

L

)
M6

(U− VT )
2

]} (3.5)

where V is the membrane potential, U is a slow variable, Cv and Cu are
the membrane and slow variable capacitance values respectively, and I is
the post-synaptic current. (W/L)Mx is the gate width-to-length ratio of
transistor Mx, VT is the transistor threshold voltage, k = µ×Cox of the
MOSFETs, and α, β and γ values depend upon VT , V and U.

Equations (3.4) and (3.5) explain the changes in signals V and U with
the input synaptic current. When V reaches an external set threshold
value, Vth, an output spike is produced and V and U are reset, as follows

if V > Vth, then

V ← Vc

U← U+ f (Vd)
(3.6)

Fig. 3.3 explains the most important aspects of the circuit’s operation.
The spiking behavior of the circuit is represented by the two variables,
V and U, which are the voltages accumulated on capacitors CV and
CU, respectively. Capacitor CV integrates the post-synaptic input current
I in addition to a positive feedback current IV . A leakage current Il is
generated by transistorM4, and the net sum of these voltages is integrated
on capacitor CV as

CV
dV

dt
= I+ IV − Il (3.7)

When V reaches the threshold value, Eq. (3.6), the comparator gener-
ates two short-duration pulses, namely VA and VB, and the circuit spikes.
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Figure 3.2: Transistor-Level Implementation of the Spiking Neuron Circuit

Figure 3.3: High-Level Model of the Spiking Neuron Circuit

Pulse VA activates transistor M5, discharging capacitor CV and hyper-
polarizing V to a predetermined value Vc. Pulse VB turns on transistor
M8, which has a narrow channel, so that only a small amount of charge
from Vd passes to capacitor CU. The two capacitors are sized so that CU
charges more slowly than CV . With every spike, voltage on CU increases
a little, thus increasing the leakage current through M4 and the current
through M6, which is diode-connected to act like a non-linear resistor
that discharges CU. Leakage slows down the charging of CV , allowing
the refractory period between spikes and enabling the adaptation of the
output spike train. By varying control voltages Vc and Vd, the relative
speeds of V and U can be controlled and the four basic firing patterns
can be obtained.



32 a self-testing analog spiking-neuron circuit

The neuron circuit is designed in the AMS 0.35 µmHV CMOS H35B4D3

technology. The input stimulus is a constant current pulse of a relatively
long duration, and the output of the circuit is a pulse train whose pattern
is determined by the values of the control voltages Vc and Vd. The 4
patterns are shown in Fig. 3.4 using combinations of Vc and Vd shown in
Fig. 3.5 as diamond points. Fig. 3.5 also shows approximate areas in the
Vc-Vd space that produce each firing pattern.
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Figure 3.4: Output Spike Train Patterns of Neuron.
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Figure 3.5: Approximate areas in the control voltages space Vc-Vd that produce
the different firing patterns. The diamond points correspond to the
nominal control voltages combinations used to produce each firing

pattern.

3.3 the built-in self-test

3.3.1 BIST Architecture

The proposed BIST architecture for the spiking analog neuron is illustrated
in Fig. 3.6. The BIST wrapper includes a ramp generator block that applies
ramps at the two control voltages of the neuron aiming to excite the
neuron across its different operation modes and produce the four firing
patterns. Voltage Vd is ramped from 1.9 V to 2.8 V , and during this
duration Vc is ramped once from 0.1 V to full scale and then ramped
again from 0.1 V to half the full scale, as shown with the saw-tooth
stimulus in Fig. 3.6. These values were chosen based on the approximated
firing areas in Fig. 3.5. A healthy neuron should produce the RS, CH, and
FS firing patterns during the first full Vc ramp, and the IB firing pattern
during the second half Vc ramp. The ramps do not have any stringent
requirements, hence low-precision stepwise ramp generators can be used
in this context.

The following step would be a digital block connected to the output
of the neuron to digitize the analog output, store the digital signature,
and try to identify within this digital signature the four firing patterns,
i.e., to match excerpts of the digital signature to the desired firing pat-
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Figure 3.6: BIST Architecture.

terns. The assumption here is that a functional neuron should be able
to generate all intended firing patterns. If one or more firing patterns
are missing, the neuron is declared faulty. In essence, the proposed BIST

architecture is behaviour-oriented, i.e., it targets verifying one of the
functional specifications of the neuron, which is its ability to provide all
firing patterns.

There are various advantages to this BIST architecture. First, a single BIST

wrapper is sufficient to test the complete spiking neural network where
the neurons connected sequentially to the BIST wrapper. Moreover, the
proposed BIST architecture tests the neurons themselves independently
of the application and of the data that is processed through the neural
network for training or inference. This dissociates the test procedure from
the underlying training algorithm and the cognitive task that the neural
network is performing. In other words, this BIST architecture is suitable
for versatile use as it looks solely at the hardware.

The proposed BIST can be used for both post-manufacturing testing to
catch manufacturing faults, and self-testing in idle times to catch faults
that occur in the field that may affect the network inference. Applying the
BIST on-line can help detect failures and trigger error-correction actions,
i.e., neutralizing the faulty neuron and replacing it with a fresh spare
neuron, and then attempting to retrain.
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Figure 3.7: Neuron Output Response to BIST Stimuli.

3.3.2 Expected BIST Response

Fig. 3.7 shows the simulation of the functional neuron by applying the
BIST stimuli, i.e., by ramping the two control voltages. As expected, the
four firing patterns appear at the output. Specifically, RS appears first
between 5 and 10 µs, CH follows between 10 and 20 µs. FS comes next
between 20 and 25 µs, and IB appears last between 25 and 30 µs. A
stimulus time of few µseconds is enough to excite the neuron in all four
operation modes, thus the test is very fast.

3.3.3 BIST Verification

The proposed BIST principle is that a faulty neuron loses its ability to
produce one or more firing patterns. A neuron could be faulty due to
process variations or due to physical defects, i.e., random spots or voids
on the die surface that may occur due to errors during the manufacturing
steps and that translate into short- and open-circuits or extreme variation.
In the field, a neuron can become faulty due to aging (time-dependent
dielectric breakdown, hot carrier injection, etc.), and latent defects that
go undetected at time-zero during manufacturing testing and manifest
themselves later in the field of operation. They could also be provoked
by environmental stress, i.e., humidity, temperature, etc. However, both
aging and latent defects translate in the end to process variations or
defects.
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For our experiments, we verified our test viability for both causes.
Neurons with process variations were generated by performing a Monte
Carlo (MC) analysis with mismatch and inter-die variations using the
statistical Process Design Kit (PDK) of the technology. Physical defects, on
the other hand, were manually introduced into the circuit since the design
is compact enough, comprising only 14 transistors and 2 capacitors. De-
fective neurons were generated by assuming a classical defect-modeling
approach [116]. We consider 2 faults per transistor; a drain-to-source short
and an open-gate. Drain-to-source shorts are straight forward. Open-gate
defects are introduced following the simulation method in [117], where
instead of an ideal open circuit which cannot be handled by the simula-
tor, a gate-open is implemented with a weak pull-up or pull-down gate
voltage. More specifically, the gate-to-source voltage is controlled by the
drain-to-source voltage with a gain coefficient set to a default value of 0.5.
Considering additional shorts across other terminals and opens in other
terminals are shown to be redundant in practice and only increase defect
simulation time. As for the capacitors, we consider 3 types of faults; short-
and open-circuits and a ±50% variation.

3.4 results and discussion

Using the proposed BIST setup, we performed 36 physical-defect simula-
tions and a MC analysis with 100 runs. Fig. 3.8 shows the response of the
neurons in the first 5 runs of the MC analysis. In this excerpt, it is evident
that neurons 1, 3 and 4 are behaving correctly, i.e., the four firing patterns
appear in the output response. On the other hand, neurons 2 and 5 are
clearly not producing all four firing patterns, thus they are detected by
the BIST and considered faulty.

In total, the test yield by the BIST is around 70%, showing that analog
neuron circuits can suffer a lot from process variations, thus requiring a
thorough and comprehensive post-manufacturing test procedure.

As for the physical defects, the circuit is simulated with only one
defect manually injected at a time. As expected, physical defects in such
a compact analog design are very significant. All transistor faults and
severe capacitor faults resulted in a failure in the neuron functionality. The
proposed BIST approach was capable of achieving 90.6% defect coverage.
The escaped defects not detected by the BIST were the ±50% variation in
CU and the +50% variation in CV . Since these capacitor values control the
speed of the neuron response, i.e. the rate of charging and discharging, a
50% variation proved to be tolerable and the neuron can eventually be
tuned to accommodate these variations.
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4 H A R D WA R E - L E V E L FA U LT
M O D E L I N G

In the previous chapter, we applied a behaviour-oriented self-test
that targeted the failure of the circuit to meet the required functionality.
Nevertheless, this test is still circuit specific and needs to be adapted for
every neuron. An important step towards global reliable-design solutions
of AI hardware accelerators is understanding the effect of hardware-level
faults on the performance. However, transistor-level fault simulations on
a large-scale prove to be time and resource consuming, and hence, a need
arises for a higher-level abstraction. In this chapter, we investigate the
effects of transistor-level faults on the performance of an analog neuron
[118]. We follow a bottom-up approach starting from transistor-level
simulations to develop a neuron behavioral-level fault model that can
be readily employed for performing behavioral-level fault simulation of
deep SNNs.

4.1 fault simulation framework

To serve our purpose of building a taxonomy of neuron faulty behaviours,
and eventually a behavioral-level fault model for the neuron, we perform:

1. Monte Carlo simulation with 1000 runs using the technology PDK,
considering both global and local process variations to model the
soft faults.

2. Structural defect-oriented simulation in an automated workflow
using the mixed-signal defect simulator Tessent®DefectSim by Men-
tor®, A Siemens Business [116].

In analog VLSI circuits, hard faults refer to physical defects caused by
foreign particles on the wafer surface, wafer mishandling (e.g., scratching,
and over- or under-itching), mask misalignment, etc. Soft faults, on the
other hand, happen due to the inherent variability of the VLSI manufac-
turing process, e.g., local geometric deformations (i.e., variation in the
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effective channel length and width), doping concentration variations, etc.
To enable the efficient simulation, detection, and effective mitigation of
these faults, they need to be modeled into the transistor-level. The fault
model should be able to sufficiently quantify the dominant faults that
affect the circuit.

We consider a standard defect model for the transistors that includes
stuck-on and stuck-off behaviors. Stuck-on is modeled with a short-circuit
across the drain and short terminals implemented with a default small
resistance of 10Ω. Stuck-off is modeled with an open-circuit at the gate
terminal. Since the simulator cannot handle ideal opens and since a very
high series-resistance would have no effect, a gate open is implemented
with a weak pull-up or pull-down gate voltage. In particular, the gate-to-
source voltage is controlled by the drain-to-source voltage with a gain
coefficient set to a default value of 0.5 [117]. Finally, for passive elements,
i.e., resistors and capacitors, the defect model includes large variations of
±50%. For our neuron, the defect model size is Ndefects = 46.

4.2 the spiking neuron

4.2.1 Behavioral Model

The I&F model is nowadays one of the most dominant and widely used
for describing spiking neurons [119]. This is because it offers enough
complexity to capture the characteristics of biological neural processing,
along with the capability of simple mathematical analysis and intuitive
understanding of the model dynamics.

The I&F model explains the dynamics of a neuron through its mem-
brane potential, Vm:

Cm ·
dVm

dt
= Isyn + Iinj, (4.1)

where Cm is the membrane capacitance, Isyn is the post-synaptic current
fed to the neuron, and Iinj is the current injected into the neuron either
externally or through a positive feedback path.

The simplicity of the I&F model comes from the separation of the sub-
threshold integration dynamics from the spike generation mechanism.
Because a spike is a momentary surge in voltage, and hence a stereotyped
event whose form holds no information, spike generation is not regarded
as an intrinsic part of the model and is not formally stated. Instead, the
model usually focuses on the evolution of the sub-threshold membrane
potential and then add the spike generation. This distinction allows for
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better understanding of the information processing capabilities of the
neurons [119].

The spike generation behavior is characterized by a firing time tf and
a threshold criterion, i.e., the neuron produces a spike at time tf when
Vm reaches the threshold value, Vref:

tf : Vm(t
f) = Vref. (4.2)

As soon as the neuron fires, the membrane potential is reset to a value
Vreset < Vref:

lim
t→tf;t>tf

Vm(t) = Vreset. (4.3)

For t > tf, the neuron dynamics again follow Eq. (4.1) until the next time
Vm reaches Vref.

4.2.2 Transistor-Level Design

Fig. 4.1 shows the transistor-level design of the I&F neuron used in this
work. It is designed in the AMS 0.35µm technology and was originally
part of a neuromorphic cortical-layer processing chip for spike-based
processing systems [120].

The neuron takes the input current spikes Isyn coming from the
synapses, integrates them on capacitor Cm, and fires a spike at the output
Vspike when the capacitor voltage Vm reaches a certain threshold Vref.
The circuit has an extra set of input/output nodes, namely the Ack and
Rqst nodes, which are used by the AER communication protocol.

The main blocks are a comparator and a set of inverters that control
the signal flow. During the charging time of the capacitor the circuit
is inactive, transistors Mp1 and Mn4 are off, and transistor Mp2 is on.
Since the comparator is constantly following Vm and comparing it to Vref,
its bias current is kept low through transistor Mn1 to minimize power
consumption. As Vm increases towards Vref, node n1 starts changing
state and switches on two transistors: (i) transistor Mp1, which slowly
introduces a positive feedback current that accelerates the charging of the
capacitor, and (ii) transistor Mn3 through node n2, which offers a brief
surge in the comparator bias current. Combined, these actions speed up
the transition time of the comparator output.

Once the transition is complete, i.e., node n1 is low and node n2 is
high, node n3 goes low and an output request signal is sent to the AER

communication block by pulling up line Rqst. After a few nanoseconds,
the AER block acknowledges back the request and the Ack input pulls
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Figure 4.1: I&F Neuron

node n4 up and turns on transistor Mp3 which produces the output spike
of the neuron. Node n4 has three main effects on the neuron circuit: (i) it
turns transistor Mn2 on to keep the comparator bias current high during
the back transitioning, (ii) it turns off transistor Mp2 which cuts off the
positive feedback path to the capacitor, and (iii) it turns transistor Mn4

on to reset Vm to Vreset so the capacitor is able to charge again.

4.3 spiking neuron faulty behaviors

To stimulate the neuron, an input current pulse of 10µs width was used,
shown in Fig. 4.2a. In a fault-free scenario, the neuron should start spiking
at regular intervals after the input stimulus begins and stop spiking once
the input stimulus is over, as shown in Fig. 4.2b.

Fault simulation experiments revealed that there are two categories of
faults in the neuron behavior that can result from a fault in the circuit.
Some faults are catastrophic, i.e., the behavior of the neuron is faulty,
and the neuron is no longer functional. Other faults are parametric, i.e.,
the output of the neuron deviates slightly from the nominal output, but
the neuron produces an output spike train showing variations in timing
parameters with respect to the nominal response. Catastrophic faulty
behaviors were observed in 31 defect simulations, while parametric faulty
behaviors were observed across the 1000 Monte Carlo runs and in the
remaining 15 defect simulations.

4.3.1 Catastrophic Faults

We observe six different behaviors that fall under this category. These
faults are considered fatal to the circuit operation. The neuron is not
spiking correctly in response to the input stimulus, and it is considered
defective. These faults are observed only as a result of physical defects in
the circuit elements, and they are listed next, along with an example of
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Table 4.1: Catastrophic faulty behaviors resulting from defect simulation.

Catastrophic
faulty

behavior

Number of defect
simulations producing it

(Ndefects = 46)

Example
neuron

response
Saturated 5 Fig. 4.2c

Dead 12 Fig. 4.2d
Stuck-at-X 1 Fig. 4.2d
Stuck-at-1 10 Fig. 4.2e

Ghost-spike firing 1 Fig. 4.2f
Long-duration spike firing 2 Fig. 4.2g

a root-cause defect. Table 4.1 provides a summary of catastrophic faulty
behaviors and shows the number of defects that produce them.

1. Saturated Output
A state where the neuron is constantly firing regardless of the
presence of an input stimulus. Fig. 4.2c shows a saturated output
caused by a stuck-on transistor Mp1. This defect triggers a constant
high feedback current to the capacitor, so the capacitor is always
charging even without a current from the synapse.

2. Dead Output
A state where the neuron output is stuck-at-0 when it should be
spiking. The red curve in Fig. 4.2d shows a dead output caused
by a stuck-on transistor Mn4. The capacitor cannot charge since
it is constantly held at its reset value and, thereby, the neuron is
incapable of spiking.

3. Stuck-at-X output
A state where the neuron output gets stuck at an arbitrary DC value
between the supply voltage Vdd and ground. The blue curve in Fig.
4.2d shows such a faulty behavior caused by a stuck-off transistor
Mp3. This defect isolates the neuron output from the Ack signal
and, in the case of an ideal stuck-off, it turns the output node into a
floating node which can settle to any DC value. Given our modeling
of stuck-off transistor, the neuron node ends up settling at 1.1 V.

4. Stuck-at-1 output
A state where the neuron output gets stuck at Vdd. This faulty
behavior can be produced even in the absence of an input stimulus,
or it gets triggered once an input stimulus comes along. An example
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root-cause defect for the former case is a stuck-on transistor Mn6,
as shown with the dotted red curve in Fig. 4.2e, while an example
root-cause defect for the latter case is a stuck-off transistor Mn5, as
shown with the blue curve in Fig. 4.2e. A stuck-on transistor Mn6

forces node n1 to be permanently low and, thereby, node n2 to be
permanently high. In the start-up, Ack is high, thus n3 enables the
Rqst and Ack goes low producing a spike. When Ack goes low, node
n3 is floating but retains its low value, thus Ack is permanently set
low and the output gets stuck-at-1. On the other hand, a stuck-off
transistorMn5 cuts off Vref from the comparator input. According to
our modeling of stuck-off transistor, the gate voltage of Mn5 varies
with time and is set equal to VG,Mn5(t) = (VD,Mn5(t)+VS,Mn5(t))/2,
where VD,Mn5(t) and VS,Mn5(t) are the drain and source voltages of
Mn5, respectively. Initially the comparator output is high, and the
capacitor keeps charging. At some point t = ts, Vm exceeds VG,Mn5
and the neuron eventually spikes. At the time of spiking VG,Mn5(ts)

is lower than Vreset, thus node n1 gets permanently stuck at a low
value and the output gets stuck-at-1 as explained above for the
stuck-on transistor Mn6.

5. Ghost-spike firing
A state where the neuron generates extra spike(s) that is(are) not a
result of the membrane potential exceeding the reference voltage.
We refer to these spikes as "ghost" spikes. Fig. 4.2f shows such
a faulty behavior caused by a stuck-off transistor Mp4. When the
neuron spikes, the path from node n3 to ground gets cut-off. Node
n3 is floating since the defect isolates node n3 from node n2. Because
of our defect model, node n3 will eventually be weakly pulled up
to Vdd. Simulations show that it first gets weakly pulled up to
Vdd stopping spiking and then again it is weakly pulled down to
ground producing a second ghost spike before it is finally stabilized
bringing the neuron to its resting state.

6. Long-duration spike firing
A state where the neuron produces spikes of longer duration. Fig.
4.2g shows such a faulty behavior caused by a stuck-off transistor
Mp5. When signal Ack goes low and the neuron spikes, node n4
does not go immediately high to instantaneously reset the mem-
brane potential and restart the integration. Instead, node n4 is
initially weakly pulled up to Vdd and gradually increases. As a re-
sult, the capacitor starts resetting but at a slow rate, thus extending
the duration of the output spike.
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(b) Nominal neuron output.
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(c) Saturated output caused by a stuck-on Mp1 transistor.
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Figure 4.2: Examples of catastrophic faulty behaviors.
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4.3.2 Parametric Faults

As for the parametric faulty behaviors, we consider two types of timing
parameters, namely the time-to-first-spike and the firing rate. It should
be noticed that such timing variations may not be problematic at network-
level, i.e., they may be accommodated during training. Fig. 4.3 shows
the histograms of the time-to-first-spike and the firing rates observed
across the Monte Carlo runs and the defect simulations, excluding the
simulations that led to a catastrophic faulty behavior as discussed above.
Results suggest a correlation between the time it takes for the neuron
to fire its first spike and the firing rate, i.e., a neuron that produces a
first spike faster has a higher firing rate, and vice versa. This neuron is
implemented with no adaptation mechanism and simulated with the
initial condition for the capacitor voltage set equal to the reset value,
hence the time-to-first-spike is equal to the inter-spike interval, which is
the inverse of the firing frequency.

This data was collected from 1000 Monte Carlo runs and 15 defects that
result in timing variations. As evident from the figure, the timing param-
eters of the circuit are very sensitive to process variations and mismatch.
Time-to-first-spike values are distributed around a mean value of 0.702µs
with a standard deviation of 0.1µs, Fig. 4.3a. Similarly, firing frequencies
are also normally distributed around a mean value of 1.38MHz and vary
with a standard deviation of 94kHz, Fig. 4.3b.

On the other hand, out of 46 physical defects, only 15 result in timing
variations, as shown in red in both parts of Fig. 4.3. Some of these
variations are barely noticeable, i.e., they cause a change in the time-to-
spike that is so small that the firing frequency is not affected. An example
is a stuck-off transistor Mp2. This transistor is on in the idle state of the
circuit, and once the neuron spikes, it is responsible for cutting off the
positive feedback path to the capacitor. When it is stuck-off, the feedback
path is cut from the start and the capacitor charges only through the
synaptic input. Since this feedback current is applied to accelerate the
charging rate of the capacitor, its absence has very small effect on the
actual circuit operation, and the neuron spikes with a frequency almost
equal to the nominal value.

Other defects can lead to a clear change in the firing frequency, albeit
without affecting the functionality of the neuron. For example, a 50%
decrease in the membrane capacitance results in a similar decrease of the
integration time constant, i.e., the charging speed of the capacitor. This
entails that the capacitor reaches the reference voltage faster than the
nominal case, thus producing an earlier first spike and by definition, spike
at a higher firing rate of over 2 MHz. Other defects that can lead to an
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apparent variation in the circuit timing are stuck-off defects in transistors
Mn1, Mn2 and Mn3. As explained in section 4.2.2, these three transistors
form a dynamic biasing circuit for the comparator that momentarily
change its bias current to control the transition rate. Consequently, when
one of them gets stuck-off, the transition rate of the comparator is affected
and ends up altering the firing rate of the neuron.
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Figure 4.3: Histograms of timing variations.
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4.4 behavioral-level fault model

Based on the experiments conducted in this work, we propose a fault
model according to the different faulty behaviors observed in section 4.3.
This model can be used to test spiking neurons based on the I&F model
in a complete network.

At the behavioral level, these faults can be recreated depending on
their types. Parametric faulty behaviors are emulated by manipulating
the model parameters described in section 4.2.1. For example, timing vari-
ations can be represented as changes in either the membrane capacitance
Cm in Eq. (4.1), the reference voltage Vref in Eq. (4.2) or the reset voltage
Vreset in Eq. (4.3). Catastrophic faults on the other hand are modeled a lit-
tle differently. For example, a dead output or an output that is stuck-at-1
or stuck-at-X can be simulated just by forcing the neuron output to take
the respective value. A saturated output is obtained by forcing a high
constant input current applied form the start, so the neuron is spiking
all the time. A delay in the resetting mechanism of the neuron would
produce output spikes with long duration. Finally, the ghost-spike firing
can be recreated by simply adding ghost spikes to the nominal spike
train after decreasing their widths.



5
FA U LT I N J E C T I O N A N D
R E S I L I E N C Y A N A LY S I S I N
S P I K I N G N E U R A L N E T W O R K S

Now that we have investigated the effects of hardware faults on
a single neuron circuit, it was time to look at the bigger picture. In this
chapter, we translate the hardware-level neuron faults into an abstract
behavioral-level fault model, consistent with manufacturing defects, that
can be used to perform fault-injection experiments for deep SNNs [121].

To demonstrate, we design two deep convolutional spiking neural
networks that perform the classification of the N-MNIST dataset [63],
which is a neuromorphic version of the MNIST dataset [61], and IBM’s
DVS-gesture dataset [64]. We propose a framework for accelerating fault
injection for deep SNNs, and we perform a large-scale fault injection
experiment to grade the criticality of different faults for the cognitive
task.

Fault criticality is investigated across the different components, i.e.,
neurons and synapses, across the layers, as well as within-layers and
synaptic matrices depending on the location of the affected component.
Our experiment shows that certain fault types and fault locations can
drastically reduce the SNN performance. This type of experiment helps
assess reliability, pinpoints the reliability-critical parts in the architecture,
and offers valuable insights and guidelines for developing hardware-level
self-test and error-tolerance techniques optimized for low overhead.

5.1 fault models

As discussed in Chapter 4, fault simulations at transistor-level for a large-
scale SNN can be tedious and demanding in terms of time and resources.
However, to get a comprehensive look into the way hardware faults
influence SNNs and to what extent they disrupt their intended tasks, it is
inevitable to perform some sort of fault injection experiments. In this part
of the work, we propose a taxonomy of faults for neurons and synapses
modeled at behavioral level. In other words, we model faults as variations

49
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or errors in behavioral parameters of the neurons and synapses without
the need to specify their root-causes, which can be process variations,
defects, aging, transient noise, voltage variations, temperature variations,
etc. In this way, the fault model becomes independent of the hardware
implementation and independent of the learning algorithm or the data
processed through the network. This classification paves the way for an
abstract technique to perform fault injection campaigns for deep SNNs in
which we treat the network as a distributed system where neurons and
synapses are discrete entities that can fail independently.

5.1.1 Neuron Fault Models

Starting off with neurons, we use the neuron fault model extracted from
fault simulations in Chapter 4 to define three main fault types according
to their effect on the network. The first two fault types explicitly act on
the output spike train, while the third type acts on internal parameters
of the neuron and implicitly affect the output spike train.

1. Dead Neuron Fault: A fault in the neuron that leads to a halt in its
computations and a zero-spike output.

2. Saturated Neuron Fault: A fault that causes the neuron to be firing
all the time, even without any external stimuli.

3. Timing-Variation Fault: A fault that results in timing variations in
the output spike train, i.e., time-to-first-spike or the firing rate. Many
parametric faults can give rise to timing variations in a spiking
neuron, for example:

a) Integration Fault: A fault that affects the integration process
of incoming spikes. This fault changes the response time of the
neuron and can subsequently influence the rate at which the
neuron spikes.

b) Threshold Perturbation Fault: A fault in the value of the thresh-
old at which the neuron spikes, which can change the fre-
quency of spiking or eventually cause the neuron to be stuck
either at a saturated or a dead state.

c) Refractory Period Fault: A fault that can influence the refrac-
tory mechanism of a spiking neuron and eventually restrain
the output of the neuron or completely stop it from firing.

Other faulty behaviors that were observed from the previous experi-
ment in Chapter 4 were considered specific to the spiking neuron circuit
used for the experiment. Hence, they were not considered at the behav-
ioral level.
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5.1.2 Synapse Fault Models

As discussed in Chapter 2, synapses represent the second building block
of neural networks. Synapses transfer signals from neurons in layer l to
neurons in layer l+1, and they determine the significance of each signal
on the recipient neuron through the weights. Building on this, weight
errors can be used to model faults in the synapses. Here we define two
synaptic fault types:

1. Dead Synapse: A fault interpreted as a cut in the synapse circuit
that obstructs the transmission of signal from neuron i in layer l to
neuron j in layer l+1.

2. Saturated Synapse: A fault that causes the synapse to transfer the
signal from neuron i in layer l to neuron j in layer l+1 with a
weight of a relatively high value, be it positive or negative. In the
implementation of the SNN used in this work, weight values are
unconstrained, adding a level of freedom in the learning process
since weights can take any value in the positive or the negative
range. A saturation fault can push this weight towards the positive
or negative maximum.

5.2 case studies

To actually model the faults defined before, we needed a spiking neural
network that we can experiment with. There exist many frameworks
for facilitating the behavioral modeling and simulation of ANNs, such
as TensorFlow [122], Keras [123], and PyTorch [124]. Each framework
implements its own approach for solving AI problems while providing
different trade-offs between simplicity and modularity. However, none
of these frameworks have integrated support for SNNs. To this end, we
designed two deep convolutional SNNs for the classification of the N-
MNIST and IBM’s DVS-gesture datasets. Both SNNs are modeled using
primitives in the open-source Spike LAYer Error Reassignment (SLAYER)
framework [68], which is a framework completely built on PyTorch,
inheriting all its benefits and capabilities. The networks are trained using
batch learning with a variation of the back-propagation algorithm, and
the winning class is selected by observing the neuron which is triggered
the most, i.e., produces the highest number of spikes.

The SLAYER framework uses the Spike Response Model [34] (SRM) to
model spiking neurons in the network. Discussed in Chapter 2; the SRM
is a generalized form of the ubiquitous I&F model. The model equations
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and parameters are essential for the fault-simulation experiment, and
they are presented next.

5.2.1 The Spike Response Model

In the SRM, the state of the neuron at any given time is determined by
the value of its membrane potential, u(t), which must reach a certain
threshold value, ϑ, for the neuron to produce an output spike. The
membrane potential of a neuron j in layer l is calculated as:

ulj(t) =
∑
i

ωl−1,li,j (ε ∗ sl−1i )(t) + (v ∗ slj)(t) (5.1)

where sl−1i (t) is the pre-synaptic spike train coming from neuron i in the
previous layer l− 1, slj(t) is the output spike train of the neuron, ωl−1,li,j is
the synaptic weight between the neuron and the neuron i in the previous
layer l− 1, ε(t) is the synaptic kernel, and v(t) is the refractory kernel.

In Eq. (5.1), the spiking action of the neuron is described in terms
of the neuron’s response to the input pre-synaptic spike train and the
neuron’s own output spikes. The incoming spikes by the neurons in
the previous layer are scaled by their respective synaptic weights and
fed into the post-synaptic neuron. The response of the neuron to the
input spikes is defined by the synaptic kernel ε(t) which distributes the
effect of the most recent incoming spikes on future output spike values,
hence introducing temporal dependency. Theoretically speaking, ε(t) can
take many forms according to the performed experiments [34]. For our
experiments, we use the form [68]:

ε(t) =
t

τs
· e(1−

t
τs

) ·H(t) (5.2)

where H(t) is the unit step function and τs is the time constant of the
synaptic kernel. The second term in Eq. (5.1) incorporates the refractory
effect of the neuron’s own output spike train onto its membrane potential
through the refractory kernel. The form used here is:

v(t) = −2ϑ
t

τref
· e(1−

t
τref

) ·H(t) (5.3)

where τref is the time constant of the refractory kernel.
When u(t) > ϑ the neuron fires a spike, e.g., slj(t) = 1. If u(t) < ϑ, then

the neuron remains silent, e.g., slj(t) = 0.
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Figure 5.1: Samples of N-MNIST saccades snapshots in 2-D format. Black
regions indicate no events, red indicates ON events, and blue

indicates OFF events.

5.2.2 Case Study (1): The N-MNIST SNN

5.2.2.1 The N-MNIST Dataset

The N-MNIST, or the Neuromorphic-MNIST dataset [63], is a spiking,
version of the famous MNIST dataset. The MNIST (Modified National
Institute of Standards and Technology) dataset [61] is a large collection of
handwritten digits that has become a benchmark dataset used for training
and testing image processing systems. It consists of 70, 000 grey-scale
images that were normalized to fit a 28x28 pixel size.

The N-MNIST dataset also comprises 70, 000 sample images generated
from the saccadic motion of a DVS in front of the original images of the
MNIST dataset. The motion of the sensor generates two types of events:
a pixel switching from low brightness to high brightness and vice versa.
As a result, the images have a third dimension of 2 channels to carry
information about the events sign. Fig. 5.1 shows three snapshots of
different sample saccades. The movement of DVS camera in front of the
images leads to an increase in their dimensions both horizontally and
vertically, hence the resulting images are of size 34x34x2. In addition, the
samples in the N-MNIST dataset are not static; each sample has duration
of 300 ms.

5.2.2.2 The N-MNIST SNN Architecture

The SNN architecture is inspired from the LeNet-5 network [125] and is
shown in Fig. 5.2. It is composed of 3 convolution layers, SC1, SC2 and
SC3, that extract features from the dataset images, and 2 fully connected
ones, SF4 and SF5, that perform the classification of the derived features.
Progressing through the layers, the number of kernels increase from 6

in layer SC1 to 120 in layer SC3 that is then flattened into a 1x1 data
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Figure 5.2: Architecture of the SNN for the N-MNIST dataset.
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Figure 5.3: Learning Curve of the N-MNIST SNN.

representation. A stride of 2 was used as the aggregation technique
instead of pooling layers, i.e., the image dimensions are halved after
every convolution layer. Layers SF4 comprises 50 neurons, and the output
layer SF5 comprises 10 neurons corresponding to the digit classes from 0

to 9.
To train the network, the dataset is split into a training set of 60, 000

samples and a testing set of 10, 000 samples. The network achieved a
classification accuracy of 98.08% on the testing set, which is comparable
to the performance of state-of-the-art level based DNNs. Fig. 5.3 shows
the learning curve for 20 epochs with a size-12 batch learning.
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Figure 5.4: TOP: a video frame of an individual performing a few gestures
from the dataset, from left to right: right-hand wave, left-hand wave,
arm roll and air drums. Bottom: A 2-D representation of the same

video frame above but in spiking form [64].

5.2.3 Case Study (2): The DVS-gesture SNN

5.2.3.1 The DVS-gesture Dataset

Contrary to the N-MNIST dataset that was converted from frame-based to
event-based by a DVS camera, IBM’s DVS-gesture dataset [64] was directly
created in spiking form for event-based systems. The dataset consists
of 1, 342 samples that represent 11 hand and arm gestures grouped
in 122 trials. The gestures are performed by 29 individuals standing
against a still background in front of a 128x128 dynamic vision sensor,
DVS128. Each individual performs each gesture under 3 different lighting
conditions for approximately 6 seconds. Fig. 5.4 shows a few samples
of the DVS-gesture dataset in addition to a picture of the actual person
performing the gesture in real time.

Generally speaking, hand gestures provide a means for communication
that is independent of language, age, or culture. They are indispensable as
well in applications requiring human-computer interaction, such as sign-
language recognition and gaming. Real-time hand-gesture recognition is
considered a realistic problem that is well equipped for event-based sys-
tems. They require low-latency responses that cannot be accommodated
by a frame-based system.
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5.2.3.2 The DVS-gesture SNN Architecture

The architecture that we used is proposed in [68] and is shown in Fig. 5.5.
the network consists of 2 convolutional layers, SC1 and SC2, that extract
features, 3 pooling layers, SP0, SP1 and SP2, that compress the data, and
2 fully connected layers, SF1 and SF2, that perform the classification. The
number of kernels increase from 2 at the input layer to 32 at the last
pooling layer. The data is then flattened to a 2084 1x1 representation. The
last hidden layer has 512 neurons and the output layer has 11 neurons,
each classifying one gesture.
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To train the network, samples from the first 23 subjects are used for
training and samples from the last 6 subjects are used for testing. Due
to computation limitations of the neuromorphic simulation, we used a
trimmed version of the dataset samples of 1.5s. The network performs
with an 82.2% accuracy on the testing set, which is acceptable considering
the shortened samples of the dataset and the shallower architecture than
of the one proposed in the original work [64]. The learning curves are
shown in Fig. 5.6.

5.3 fault modeling & injection methodology

The SLAYER framework used to design the networks in our case studies
does not inherently support the injection of faults in the SNN. Therefore, to
implement the fault injection and failure analysis necessary for our work,
we had to figure out how to introduce these faults into the behavioral
model, and then customize the flow of computations both at the spiking
part and at the core level of PyTorch.

The hardware fault models described in Section 5.1 are introduced into
the code as follows:

• Neuron Faults

1. Dead Neuron Fault: A dead neuron is modeled by forcing the
output spike train of the neuron to be always low.

2. Saturated Neuron Fault: Modeled by skipping the computations
and forcing constant output spiking activity at the neuron in ques-
tion.

3. Timing-Variation Fault: We refer to them as parametric faults, since
they are modeled by manipulating the parameters of the neuron
model in Section 5.2.1 as:

a) Integration Fault: Modeled as a deviation in the value of τs in
Eq. (5.2).

b) Threshold Perturbation Fault: Modeled as a perturbation in
the value of ϑ.

c) Refractory Period Fault: This fault is modeled as a variation
in the value of τref in Eq. (5.3).
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• Synapse Faults

1. Dead Synapse: This fault is simply modeled as a zero weight, i.e.,
giving a zero value to ωi,j in Eq. (4.1).

2. Saturated Synapse: We consider both positive and negative satura-
tion for this fault, modeled by assuming a relatively large absolute
value of the weight, i.e., ωi,j in Eq. (4.1).

Fig. 5.7 illustrates how neuron faults are injected in layer l and synapse
faults are injected in the synaptic matrix connecting layer l with layer
l+ 1. In particular, if neuron nx in layer l is dead, then its spike train
output calculation is bypassed and its output is forced permanently to 0,
e.g., slx = 0. If neuron ny in layer l is saturated, then its spike train output
calculation is bypassed and its output is forced permanently to 1, e.g.,
sly = 1. For a fault in the synapse connecting neuron i in layer l to neuron
j in layer l+ 1, we modify the synapse weight, e.g., ωl,l+1i,j = ω̄l,l+1i,j , where

ω̄l,l+1i,j is 0 for a dead synapse fault, has a relatively high positive value
for a positive saturation fault, or has a relatively low negative value for a
negative saturation fault.

As for timing-variation faults in neurons, that we refer to as parametric
faults, a simple modification of the parameters of a single neuron is
not possible because these parameters are set at the beginning of the
simulation and shared among all neurons in the network. Our approach,
as illustrated in Fig. 5.7, is to create a dummy faulty layer (dfl) identical
to layer l with the exception that all neurons have the target parametric
fault. The neurons in dfl are driven by the incoming spike trains from
the neurons in layer l− 1. Then, the output spike train of the neuron nz
in layer l where the parametric fault is to be injected is replaced by the
output spike train of the corresponding neuron n

′
z in dfl, e.g., slz = sdflz .

Throughout most of our experiments, unless stated otherwise, we
consider a single fault assumption where one fault is injected at a time
affecting one element at a time. While time consuming, this approach
helps paint a clear and thorough picture of the specific fault effects.
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Figure 5.7: Fault injection methodology.

5.4 fault injection experiments & results :
(1) the n-mnist snn

5.4.1 Neuron Faults

Examining the N-MNIST SNN architecture shown in Fig. 5.2, layers SC3,
SF4 and SF5 appear to be relatively small in size comprising 120, 50 and
10 neurons, respectively. Taking this into account, we kick off the fault
injection experiments with these layers, presenting the results in detail.
Afterwards, we extend the experiment to include layers SC1 and SC2 as
well. The results for each fault type are presented next.

5.4.1.1 Dead Neuron Faults

Fig. 5.8 shows the effect of a dead neuron in the last three layers on the
classification accuracy of the network. The effect is shown in the form of
a heat map, with the neuron number on the x-axis and the layers SC3,
SF4 and SF5 on the y-axis. Each box corresponds to a specific neuron in
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Figure 5.8: Effect of dead and saturated neuron faults on the N-MNIST SNN
classification accuracy in the last 3 layers.

the layer, and the box color refers to the network classification accuracy
achieved in the presence of a fault in set neuron. The color map is shown
at the bottom of the figure.

Each neuron at the output layer is responsible for an output class,
hence as expected, a dead neuron in layer SF5 immediately drops the
classification accuracy to (1− 1

#classes) ∗ 100% = 90% since one class is
always misclassified. As for the last hidden layer, SF4, only a few dead
neurons cause the classification accuracy to fall to about 90%. On the
other hand, a dead neuron in layer SC3 has no effect on the overall
classification accuracy of the network.

As for the first 2 convolutional layers, SC1 and SC2, visualizing the
results on a per neuron basis would be a bit hard since they are much
bigger in size. Instead, we present the results of these faults in terms of
percentage of neurons, as shown in the columns labeled "dead" in Fig.
5.9. In this representation, the x-axis shows the layer of the network, and
the y-axis shows the percentage of neurons that, when faulty, cause the
classification to drop to the value indicated by the color. The value of the
classification accuracy is elaborated in the color map at the bottom of the
figure. The figure shows that a dead neuron in layers SC1 and SC2 has
no effect on the classification accuracy.
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Figure 5.9: Effect of dead and saturated neuron faults on the N-MNIST SNN
classification accuracy.

5.4.1.2 Saturated Neuron Faults

The effect of a saturated neuron fault is shown in the heat map of Fig.
5.8b. When a neuron in the output layer SF5 saturates, this neuron is
always the one with the greatest number of output spikes and its class is
always the winner. This means that only one digit is correctly classified
at all times regardless of the input and the accuracy drops to a value of

1
#classes ∗ 100% = 10%. Layer SF4 is also seriously affected by this fault
type with the classification accuracy dropping to 10% for some neurons,
suggesting that a saturation error is crucial in a SNN. However, the effect
of a saturated neuron in layer SC3 is barely visible, and only two neurons
cause the accuracy to drop no lower than 70%. The same goes for a
saturated neuron in layers SC1 and SC2, that apparently have no effect
on the classification accuracy of the network, as seen in the columns
labeled "Sat." in Fig. 5.9.

5.4.1.3 Parametric Faults

As discussed in Section 5.3, parametric faults are modeled by manipulat-
ing the parameters of the neuron model. For each fault type discussed
below, the corresponding parameter of every neuron is varied around
its nominal value and the classification accuracy is evaluated. After the
fault has been simulated for every neuron in the layer, the average of the
resulting classification accuracies is computed to represent the effect of a
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parametric fault on this particular layer. The maximum and minimum
classification accuracies are also shown for comparison. Moreover, results
are shown only for the last three layers since the first two convolutional
layers were not affected by parametric faults.

a) Integration Faults:
Fig. 5.10 demonstrates the effect of neuron integration faults for each

of the three layers SC3, SF4 and SF5. On the x-axis, the value of τs is
expressed as a percentage of the nominal value used during training,
while the value of the classification accuracy is put on the y-axis. A
smaller τs in Eq. (5.2) implies a narrower synaptic kernel, i.e., a decreased
integration time window and hence a reduced maximum possible value
for the membrane potential. Consequently, the neuron spiking probability
is reduced, and, in the extreme case, the neuron could end up as a dead
neuron. Similarly, it can be argued that a higher τs increases the spiking
probability and in the extreme the neuron could end up as a saturated
neuron.

As evident from the results in Fig. 5.10, only layer SF5 appears to
be severely affected by integration faults. For τs values below 30% of
the original value, the accuracy drops only to 90%, while values of τs
larger than 150% cause it to drop to about 70%. Layer SF4 is only slightly
affected by this fault as the average accuracy decreases to no less than
96% and only by very small values of τs below 1%. On the other hand,
layer SC3 is immune.
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Figure 5.10: Effect of integration faults on the last 3 layers of the N-MNIST

SNN.
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b) Threshold Perturbation Faults:
The effect of a threshold perturbation fault in a neuron in layers SC3,

SF4 and SF5, i.e., a perturbation in the value of threshold ϑ, is shown in
Fig. 5.11. Small thresholds trigger spiking at lower values of the mem-
brane potential and the neuron spikes more than usual, which can lead
to misclassification of some outputs and a drop in the overall accuracy. In
the extreme case, the neuron could end up saturated. On the other hand,
a high threshold requires higher values of the membrane potential for
spiking, thus causing the neurons to spike less and less, until eventually
the neuron is not capable of spiking anymore and behaves as a dead
neuron.

In the output layer SF5, it is obvious that when the threshold value is
less than 50% of the original value, it results in severe drops in the average
classification accuracy all the way down to 45%, whereas higher values
of ϑ above 200% cause the accuracy to drop ever so slightly, with values
no lower than 92%. As for layers SC3 and SF4, threshold perturbation
faults have no visible effect on the network performance.
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N-MNIST SNN.
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c) Refractory Period Faults:
Biological spiking neurons have an inherent minimum interval between

two consecutive output spikes known as the refractory period, explained
in Chapter 2. This value can be programmed into an artificial spiking
neuron model to control the maximum spiking frequency of the neuron. A
fault that causes the refractory period to be too high will make it difficult
for the neuron to spike, and the neuron could end up with a dead output.
On the other hand, if this period gets too short, the maximum spiking
frequency can no longer be controlled and will be left to the model, which
might not be critical.

Results presented in Fig. 5.12 show that for layer SF5, τref must drop
below 30% of the nominal value for the classification accuracy to start de-
creasing. In addition, τref values below 15% result in severe classification
accuracy drop down to 10%. In the meanwhile, large values of τref, up to
300%, have no effect on the accuracy. Moreover, layers SC3 and SF4 are
not affected by refractory period faults.
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Figure 5.12: Effect of refractory period faults on the last 3 layers of the
N-MNIST SNN.
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5.4.2 Synapse Faults

Compared to neuron faults that propagate to many neurons in the next
layer, synapse faults play a less important role since they affect only one
neuron in the next layer. In this part of the experiment, we consider faults
only in the synaptic connections between layers SC3 and SF4 and layers
SF4 and SF5. The number of synaptic connections in the first layers is
huge and proved to be time and resource consuming.

To select the values of weights suitable for simulating each fault type,
the actual weight values resulting from the network training are exam-
ined. Figs. 5.13 and 5.14 display the weights of the synapses. Each box
represents a synaptic connection between a neuron in layer l on the
x-axis and a neuron in layer l+ 1 on the y-axis, with the color of the box
indicating the approximate weight value according to the color maps at
the bottom of each figure. The results for synaptic faults are presented
next.
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5.4.2.1 Dead Synapse Faults

Figs. 5.13 and 5.14 show that most of the weight values rendered by
the training are relatively small, with a mean value of approximately
zero. Therefore, a dead synapse is not expected to be of much impact
on the classification accuracy of the network. The results of the dead-
synapse fault simulation are shown in Fig. 5.15, where again the x- and
y-axes indicate neurons in different layers and boxes indicate a synaptic
connection between 2 neurons. The color of the box in this case represents
the classification accuracy according to the color map at the bottom of
the figure.

A dead synapse in the synaptic matrix between layers SF4-SF5 results
in a classification accuracy no less than 85%, and only about 10 synapses
can cause this drop when faulty as seen in Fig. 5.15b. Meanwhile, dead
synapses between layers SC3-SF4 have no visible effect on the perfor-
mance, as shown in Fig. 5.15a.
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Figure 5.15: Effects of a dead synapse fault on synaptic connections between (a)
layers SC3-SF4 and (b) layers SF4-SF5.
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5.4.2.2 Saturated Synapse Faults

The values chosen to simulate negative and positive saturation faults
were again chosen relative to the synapse weight distribution in Figs 5.13
and 5.14. Effects of negative and positive saturation are shown in Fig.
5.16 and 5.17, respectively.

a) Negative Saturation:
A negatively saturated synapse is of no effect between layer SC3-

SF4, and hardly significant between layers SF4-SF5, as shown in Figs.
5.16a and 5.16b, respectively. A synapse that is saturated to a negative
maximum will discharge the membrane potential of the post-synaptic
neuron, thus reducing its spiking frequency. At the extreme case, the
neuron will behave as dead and dead neurons have a little effect on the
overall classification accuracy of the network.
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Figure 5.16: Effects of a negatively-saturated synapse fault on synaptic
connections between (a) layers SC3-SF4 and (b) layers SF4-SF5.
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b) Positive Saturation:
In contrast, a positively saturated synapse in both sets of synaptic con-

nection can cause a drastic effect on the network classification accuracy,
as shown in Figs. 5.17a and 5.17b. A fault of this kind in a single synapse
can cause the accuracy to drop to a value as low as 10%, shown by the
dark blue boxes in Fig. 5.17.

The reason that positive saturation appears to be more prominent is
that a positively-saturated synapse magnifies the effect of the pre-synaptic
neuron on the post-synaptic one, granting it with a higher membrane
potential overall as shown from Eq. (5.1), which increases the chance that
the post-synaptic neuron will fire, and in turn creating a domino effect on
the following layers until the output layer where the classification takes
place. In the extreme case, a positively saturated synapse may cause the
post-synaptic neuron to saturate and, as deducted from the neuron fault
simulation experiments, saturated neurons can have a severe effect on
the classification accuracy.
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Figure 5.17: Effects of a positively-saturated synapse fault on synaptic
connections between (a) layers SC3-SF4 and (b) layers SF4-SF5.
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5.5 fault injection experiments & results :
(2) the dvs-gesture snn

Since the second case study, i.e., the DVS-gesture SNN, is much larger in
size than the N-MNIST SNN, we choose to repeat only some of the fault
injection experiments. For the sake of proving the validity of our fault
models, we considered the most significant neuron faults, the results of
which are presented next.

5.5.1 Neuron Faults

5.5.1.1 Dead Neuron Faults

The effect of a dead neuron in different layers of the DVS-gesture Network
is shown in the columns labeled "Dead" in Fig. 5.18. With 82.2% maximum
classification accuracy achieved by this network, it is clear that a dead
neuron in either layer SC1 or SC2 has no effect on the accuracy. On the
other hand, about 80% of neurons in the output layer, SF4 cause a drop in
the accuracy to about 70%. Dead neurons in layer SF3 also seem to have a
significant effect on the network in this case. To quantify some examples,
about 5% of neurons in this layer, when dead, cause the accuracy to drop
to 10%, and another 10% of the neurons drop the accuracy to around 20%
when dead.
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Figure 5.18: Effect of dead and saturated neuron faults on the DVS-gesture
SNN classification accuracy.
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In short, dead neurons seem to be a little more significant in the DVS-
gesture SNN case study than in the case of the N-MNIST SNN. This could
be due to the inherent difference between the complexity of the datasets.

5.5.1.2 Saturated Neuron Faults

Similar to the N-MNIST SNN case, saturated neurons in the case of the
DVS-gesture SNN always have a significant influence on the network
classification accuracy, as shown in the columns labeled "Sat." in Fig. 5.18.

As expected, a saturated neuron in the output layer, SF4, instantly
drops the classification accuracy to less than 10%. A saturated neuron in
the rest of the layers can also lead to significant drops in the classification
accuracy, evident by the blue-ish segments in Fig. 5.18. When looking at
the results of layers SC1, SC2 and SF3, an inverse relationship is observed
between the number of outgoing synapses from a layer and the effect of
saturated neuron faults on neurons in this layer. I.e., synapses connecting
SC1 and SC2 are much less than of those connecting SC2 and SF3, while
the effect of a saturated neuron in layer SC1 is notably larger than in
layer SC2.

5.5.1.3 Parametric Faults

In the case of the N-MNIST SNN, we considered 3 forms of parametric
faults in a neuron. All 3 fault types gave remarkably similar results;
the last hidden layer and the output layer are practically the only ones
affected, and the classification usually drops at very low or very high
values of the examined parameter. Hence, for the case of the DVS-gesture
SNN, we considered only 1 fault type to represent all parametric faults
that can affect a spiking neuron.

Shown in Fig. 5.19, the results of an integration fault in a spiking
neuron is shown for layers SF3 and SF5. The value of τs in Eq. (5.2) is
again changed around its nominal value for one neuron at a time and
then the classification accuracy is calculated. Fig. 5.19 shows the average
of all the accuracies for a given layer in addition to the span between the
maximum and the minimum values that arise from this error.

Results show that this fault type can seriously affect the output layer
SF4, dropping the accuracy to about 70% for τs values less than the
nominal, and a sweeping drop to less than 20% when τs is more than
200% of its nominal value. The last hidden layer, SF3 contributes to
significant classification accuracy drop only when τs is reduced to less
than 50%, while large values of τs do not seem to disturb the network.
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Figure 5.19: Effect of integration faults on the last 2 layers of the DVS-gesture
SNN.

5.6 discussion

Experiments conducted in this chapter offer an insight into the various
factors that contribute to the vulnerability of spiking neural networks to
hardware faults. These deductions will be the starting point on which we
build the fault tolerance strategy in the next part of the work.

Besides the obvious factor that is the type of the fault; the complexity
of the network architecture, the type of layer, and the location of the fault
within the network hierarchy play an important role in the severity with
which faults affect the performance of the SNN.

By default, convolutional layers are not fully connected, which means
they have less outgoing synaptic connections. Therefore, a fault in a
neuron in a convolutional layer is less likely to have a drastic effect on
the network performance. In contrast, faults affecting neurons in fully
connected layers had far more serious effects regardless of the fault type.

Fault type, on the other hand, is perhaps the most significant factor
of all. Fault simulation experiments have conveyed that saturation faults
are much more severe than any other fault type that can affect a spiking
neuron. However, fault location within the network is of great influence
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as well. All performed experiments show that the closer the fault is to the
output layer, the more severe its effect will be. The output layer is always
the most vulnerable since there is usually one neuron for every output
class, which means that special attention should be paid to making this
layer more robust and tolerant against hardware errors. The last hidden
layer is second in line with notably less fault aftermath.

As for the single entities of the network, neuron faults were found to
be more critical than synapse faults. This makes sense because while a
synapse links 2 neurons together, a neuron in layer (l) is usually connected
to many neurons in layer (l+ 1). This means that a fault in a neuron will
spread out as it propagates through the network and eventually cause
more damage.



6 N E U R O N FA U LT T O L E R A N C E

After performing large-scale fault injection experiments and pin-
pointing the critical fault types and locations; in this chapter we leverage
these observations and propose a neuron fault-tolerance strategy for
SNNs that is optimized for low area and power overhead [121]. Generally
speaking, standard fault-tolerance techniques for regular VLSI circuits
can be employed, such as Triple Modular Redundancy (TMR) and Error
Correction Codes (ECCs) for memories. However, efficiency can be largely
improved by exploiting the architectural particularities of AI hardware ac-
celerators and targeting only those fault scenarios that have a measurable
effect on performance.

As discussed in Section 2.4.3, fault tolerance can be classified into
active and passive depending on how it is achieved and at what level is
applied. In this chapter, we exploit the findings from our fault injection
experiments to sketch some possible fault tolerance solutions that can be
implemented in a hardware neural network. We propose cost-effective
fault tolerance strategies tailored to address severe faults in the SNN and
consisting in multiple layers of protection. Firstly, we propose passive
fault tolerance based on dropout to nullify the effect of certain faults,
then we project several active fault tolerance techniques to detect and
recover from the remaining critical faults.

6.1 passive fault tolerance strategy

As a first step, we aimed at implementing passive fault tolerance such
that the SNN is by construction capable of withstanding some faults
without any area and power overheads. In this fault tolerance paradigm,
the network is trained using a technique known as dropout [126]. In this
section, a brief introduction to dropout is provided along with the specific
parameters used to train our SNN case studies. After that, for verification
purposes, a multiple fault simulation experiment is carried out to prove
that dropout indeed helps nullify the effect of dead neuron faults and

73



74 neuron fault tolerance

neuron timing variations in all hidden layers in addition to increasing the
tolerance of the network to multiple simultaneous faults. Consequently,
active fault tolerance, which implies area and power overheads, gets
simplified since it only needs to focus on saturation neuron faults in the
hidden layers and on all fault types only for the output layer.

6.1.1 Training with Dropout

The dropout training technique was originally proposed to prevent over-
fitting and reduce the generalization error on unseen data. The idea is
to temporarily remove neurons during training with some probability p
along with their incoming and outgoing connections. At test time, the
final outgoing synapse weights of a neuron are multiplied by p. For a net-
work with n neurons, there are 2n "thinned" scaled-down networks, and
training with dropout combines exponentially many thinned network
models. The motivation is that model combination nearly always im-
proves performance, and dropout achieves this efficiently in one training
session.

For the N-MNIST SNN we used p = 10% in the input and SC1 layers,
20% in layers SC2 and SC3, and 50% in layer SF4. Training with dropout
resulted in a slight improvement in the classification accuracy from
98.08% to 98.31%. For the DVS-gesture SNN we used p = 50% only in
layer SF3. In this case, dropout significantly increased the classification
accuracy from 82.2% to 87.88%.

The beneficial effect of dropout on passively nullifying the effect of
dead neuron faults is shown for each layer in Figs. 6.1a and 6.1b for the
N-MNIST and DVS-gesture SNNs, respectively. For instance, for layer SF4
of the N0-MNIST SNN, dead neurons have no effect on the SNN trained
with dropout. Moreover, the difference between the percentage of neurons
that -when saturated- cause a dramatic drop in the classification accuracy
of the network is huge and the classification rate does not fall below 50%.
This is likewise evident in the case of layer SF3 of the DVS-gesture SNN.

Training with dropout is also rewarding in the case of timing variation
faults in the last hidden layers as shown in Figs. 6.2b and 6.3b for the
N-MNIST and DVS-gesture SNNs, respectively. Compared to the non-
dropout cases in Figs. 6.2a and 6.3a, variations in τs from 1% to 300%
have now no effect. The reason behind this result is that dropout essen-
tially equalizes the importance of neurons across the network, resulting in
more uniform and sparse spiking activity across the network. Therefore,
if a neuron in a hidden layer becomes dead or shows excessive timing
variations, this turns out to have no effect on the overall classification
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accuracy. On the contrary, dropout may magnify the effect of saturation
faults in neuron, e.g., layer SF3 of the DVS-gesture SNN.

Finally, we observe that dropout does not compensate for faults in the
output layer since in this layer there is one neuron per class and any fault
will either overshadow this class or cause it to dominate the other classes.
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Figure 6.1: Effect of neuron faults on classification accuracy with and without
dropout for: (a) N-MNIST SNN, and (b) DVS-gesture SNN.
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Figure 6.2: Effect of neuron timing variations for the N-MNIST SNN.
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Figure 6.3: Effect of neuron timing variations for the DVS-gesture SNN.
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6.1.2 SNN Tolerance to Multiple Faults

So far, we have proved that dropout can effectively diminish the effect
of a dead neuron on the functionality of an SNN. But what happens if
more than one neuron becomes faulty at the same time? In other words,
what percentage of dead neuron faults can dropout help the network
withstand? To answer this question and, hence, further verify the gains
that can come from using dropout in the training phase, multiple faults
are injected into the network simultaneously to assess its tolerance.

The results of this multiple fault injection campaign are presented in
Fig. 6.4 where the classification accuracy is plotted as a function of the
percentage of dead neuron faults introduced into the last hidden layer of
the N-MNIST SNN (Fig. 6.4a) and the DVS-gesture SNN (Fig. 6.4b). The
baseline classification accuracies with and without dropout are shown
as straight lines for reference. The experiment starts with the injection
of dead faults into 5% randomly chosen neurons from the last hidden
layer, then with every step, faults are injected into an extra 5% of the
neurons. This process is repeated until 90% of the neurons of the layer
are simultaneously dead. Moreover, in order to properly generalize the
results, the experiment is repeated 10 times and the calculations are
averaged at every step.

A first glance at Fig. 6.4 clearly shows that with the increase of the
percentage of dead neurons, the network performance degrades much
faster in the case of standard training than in the case trained using
dropout. Moreover, the SNNs employing dropout can withstand larger
rates of dead neurons at once. More specifically, the N-MNIST SNN

trained using dropout does not lose any classification accuracy with a
dead neuron rate of up to 40%, compared to a 10% limit without dropout.
As for the DVS-gesture SNN, the classification accuracy drops a little
faster, but the network is still able to perform with over 80% classification
accuracy at a dead neuron rate of 20% which corresponds to 102 dead
neurons in the last hidden layer.
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Figure 6.5: TMR at the output layer.

6.2 active fault tolerance strategy

6.2.1 Active Fault Tolerance in the Output Layer

As for the most critical output layer, we propose to directly use TMR for
a seamless recovery solution from any single fault type. In particular, a
group of three identical neurons vote for the decision of a certain class, as
shown in Fig. 6.5. The voter is a simple 4-gate structure that propagates
the output upon which the majority of neurons agree. This means that a
faulty neuron in the group, be it dead, saturated, or showing excessive
timing variations, is outvoted and bypassed. Performing TMR only in the
last layer will result in negligible increase in the area and power overhead
and a reasonable overhead to pay to ensure strong fault tolerance. The
reason is that the number of neurons in the output layer is typically
small compared to the size of the whole network. For example, in the
N-MNIST SNN, the output layer neurons account for about 0.57% of the
neurons in the whole network. This percentage gets even less for the
more complicated DVS-gesture SNN, where the output layer represents
around 0.04% of the total number of neurons.

6.2.2 Active Fault Tolerance in the Hidden Layers

Following a training that employs dropout, the network is left with
the vulnerability of the output-layer neurons and the risk posed on the
overall performance by a saturated neuron in a hidden layer. This means
that a cost-effective strategy to implement fault-tolerance into a neural
network would be to solely focus on these two cases. We propose two self-
test schemes for neuron saturation detection, namely an offline scheme
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that can run during idle times of operation and an online scheme that
can run concurrently with the operation. Regarding the faulty recovery
mechanism, we propose the "fault hopping" concept to simplify the
hardware implementation, and we propose two recovery mechanisms at
neuron-level and system-level.

6.2.2.1 Offline Self-Test

An offline saturation detection scheme is depicted in Fig. 6.6. In this
approach, neuron saturation is declared based on the neuron’s activity in
the absence of an input. The operation of the circuit is divided into two
modes: self-test mode and operation mode, and a multiplexer is assigned
to every neuron to switch between modes. During normal operation, the
neurons are receiving inputs from the previous layer through synapses,
processing them and propagating them to the next layer. When the
circuit is switched to the self-test mode through the test enable signal, an
ad hoc internally generated test stimulus is applied to all the neurons
simultaneously. The neuron outputs are then paired with a saturation
detection signal through AND gates. There is a delay between the start
of the detection signal and the end of the test stimulus. This delay is
important to ensure that any activity detected is uncorrelated with the
input of the neuron and is indeed a result of saturation. The output of
an AND gate going high indicates neuron saturation. This is captured
by the latch which raises an error flag signal. A simulation is shown in
Fig. 6.6 using the I&F neuron shown in Fig. 6.8 which is designed in the
AMS 0.35µm technology.

There are two main advantages to this detection paradigm. Firstly, it
only adds a multiplexer, an AND gate, and a latch per neuron, thus the
area overhead of the test circuitry is relatively small compared to a single
neuron in the original network. Secondly, the approach is fast since it
tests all neurons in parallel and it can also be applied multiple times
during the chip’s lifetime, which allows it to detect aging-induced errors,
possibly with some latency.
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6.2.2.2 Online Self-Test

The second fault tolerance scheme is a mechanism that can catch a
saturated neuron during normal operation, i.e., online detection, as shown
in Fig. 6.7. This approach is applied on a per-neuron basis and takes
advantage of the temporal dependency between the input and output of a
spiking neuron. In other words, we count the number of spikes a neuron
produces after every single input spike using a counter whose reset port
is connected to the input of the neuron. In fault-free operation, the neuron
needs to integrate multiple input spikes before it can produce a spike
of its own, hence the counter is always reset, and the flag signal stays at
zero. On the other hand, a saturated neuron will produce more spikes
than usual causing the counter’s output to overflow before an input spike
resets it again. In this case, A latch is set, and an error flag is raised,
suggesting that this neuron is saturated, and a recovery mechanism is
activated.
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Based on our simulations, 23 uncorrelated spikes clearly indicate satu-
ration; thus it suffices to use a 3-bit counter. Fig. 6.7 shows a simulation
using the I&F neuron of Fig. 6.8. This online self-test scheme entails an
area overhead comprised of a counter and a latch per neuron. All neu-
rons are monitored individually, and neuron saturation is detected in
real-time.

While the proposed scheme entails an area overhead comprised of a
counter and a latch per neuron, it offers some advantages to the resilience
of the system to faults, and hence its robustness. Firstly, the detection runs
seamlessly during normal operation without causing any disruptions,
which saves time that is usually spent on testing. Moreover, the test is
automatically valid throughout the lifespan of the chip without the need
for external interventions.

6.2.2.3 Recovery Mechanisms

Behavioral-level fault experiments performed earlier, indicated that elim-
inating saturated neurons provides considerable improvement in the
accuracy. Therefore, we propose the concept of "fault hopping" where the
critical saturation neuron fault is artificially translated to a dead neuron
fault. By applying this idea, the network performance is restored since a
dead neuron has essentially no effect after training with dropout. This
approach leads to an elegant hardware implementation and saves signif-
icant costs as opposed to the standard approach, which is to duplicate
or triplicate neurons, or provision the SNN with spare neurons that are
kept "fresh" and switch the connections of a detected saturated neuron
to a spare neuron [29]. By addressing this idea, we propose two types of
recovery operations: transistor-level and system-level.

v Neuron-Level Recovery

Neuron-level recovery is implemented by switching-off the satu-
rated neuron. For example, for the I&F neuron in Fig. 6.8, this can be
achieved by connecting a single extra transistor MC in the tail part
of the comparator inside the neuron. This transistor is controlled
by the neuron error flag signal. If a neuron gets saturated, MC

becomes open-circuit and the biasing connection of the comparator
is suddenly ceased, which ultimately deactivates the neuron, and
its output becomes zero.

The area overhead of this approach is just one additional transistor
per neuron. On the other hand, the power consumption is reduced
since the saturated neuron, once deactivated, does not consume
power anymore.
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Figure 6.8: I&F neuron design showing the recovery operation at neuron-level.

v System-Level Recovery:

System-level recovery operation is based on the manipulation of
the weights linked to the saturated neurons. Typically, the commu-
nication between neurons and synapses in the SNN is performed by
a controller, particularly AER-based controller [53]. AER controllers
perform multiplexing/demultiplexing of spikes generated from or
delivered to all neurons in a layer onto a single communication
channel. Rather than delivering the actual spike, the controller en-
codes the address of the neuron that spiked and translates it into
the addresses of the destination neurons, and then the weights
corresponding to every synaptic connection are loaded accordingly.

By leveraging this operation, the proposed system-level recovery
approach is based on equipping the controller with the ability to
recognize the neuron error flag and update the outgoing synaptic
weights to zero. There are two ways to manipulate the weights: we
can either set all weights of the saturated neuron to zero, or we
can create and address a null row in the memory that replaces the
actual weights. In both approaches, the weights of the saturated
neuron are nullified, and the saturated output is trapped unable to
propagate further.

The system level approach has nearly no additional cost in terms
of area overhead since it is reused across all neurons. However,
the power consumption is higher compared to the transistor-level
solution since saturated neurons, which are still operating, consume
power.





7 A S P I K I N G N E U R A L N E T W O R K
H A R D WA R E I M P L E M E N TAT I O N

Throughout this thesis, we investigated the effects of hardware
faults on SNNs and proposed strategies for passive and active fault toler-
ance that can help the network maintain proper operation under faulty
conditions. Hardware faults were translated into their behavior-level
effects that enabled us to perform experiments at the software simu-
lation layer. However, to fully validate these experiments and solidify
the obtained conclusions, there was a need for a hardware neural net-
work implementation flexible enough to allow the execution of multiple
experiments.

In this chapter, we present an event-driven configurable convolutional
node designed in Very High-Speed Integrated Circuit Hardware De-
scription Language (VHDL) for FPGAs and that can be used to construct
large-scale convolutional SNNs. The node was designed by Camuñas-
Mesa et al. [127] and demonstrated as a building block of a convolutional
SNN for poker card symbol recognition with various biologically inspired
capabilities. We outline the strategy followed to transform it into an
autonomous hardware-in-the-loop platform where we can construct ar-
bitrary networks and use direct spike-based training algorithms in an
accelerated manner.

7.1 the convolutional node

The convolutional node used in this work is designed as a generic block
that can be used to build multi-layer feature maps for convolutional
SNNs. The ports of the node are optimized for a 2-D layout, which is an
efficiently adopted structure in hardware convolutional neural networks
since it optimizes the use of on-chip space. Each node has four bidirec-
tional ports connecting it to its immediate neighbors to the North, South,
East and west.
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The node consists of three main blocks; a convolutional unit, an internal
configuration block, and a router, as shown in Fig. 7.1. Each block has its
own designated function that will be highlighted in this section.

7.1.1 The Convolutional Unit

The convolutional unit is where the transformation of input events into
output events takes place. It computes the convolution between an input
event evin(t, x,y,p,k) and a kernel wk(x,y) to produce an output event
evout(t, x,y,p), where t is time, x and y are the address coordinates, p
is the polarity of the event, and k is the kernel ID in the kernel memory.
Shown in Fig. 7.2, the convolutional unit consists of a 128×128 I&F neuron
(pixel) array, a few memory blocks, FIFO input and output registers, a
controller block and an Serial Peripheral Interface (SPI) block.

To understand what each block is responsible for, we must look at the
features of the node. A brief description of these features is given next.
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7.1.1.1 Unit Parameters

The convolutional unit has a set of adjustable parameters, some of which
need to be assigned before implementation, while others can be set
dynamically after. By tuning these parameters, the unit can be config-
ured according to the needs of the application. These parameters can be
divided into two groups:

1. Pre-implementation Parameters
These parameter need to be set before the hardware implementation
of the network. They are:

a) Address range of input events: Since the unit communicates through
an AER protocol, it is very important to specify the address space
of the events. For input events, the address range is identified by
xmaxin and ymaxin , which are the maximum values of x and y that
the input event can have.

b) Address range of output events: As for the output events, the
address range is defined by the number of pixels used out of
the 128× 128 array. This corresponds to xmaxout and ymaxout , i.e., the
maximum values x and y the output event can take.

c) Neuron memory size: The neuron memory is where the state of
each pixel is stored after every convolution operation. The size
is assigned though the number of pixels used, nx × ny and the
number of bits needed to store the state, nbits.

d) Kernel memory size: The memory assigned to the kernels of the
convolution is divided into two parts. The first part holds the
kernel weights, and its size is assigned by the number of kernels
Nk and the maximum acceptable size of a kernel, xmaxk × ymaxk .
The second part of the memory holds the kernel parameters, i.e.,
the size of the kernel and the center shift of the kernel position.

e) Rate saturation memory size: The rate saturation mechanism
imposes a maximum frequency on the output of the convolutional
unit, essentially implementing the refractory period feature of
biological neurons. This refractory period is stored in a designated
memory block whose size is specified by the number of pixels in
the block, nx × ny, and the number of bits needed to represent
the period.

f) Rate saturation period range: In addition to the actual refractory
period, the range of values it can take is also specified before
implementation, TminR and TmaxR .



90 a spiking neural network hardware implementation

2. Post-implementation Parameters
In contrast, these parameters are sent to the convolutional unit through
the SPI block, which means that they can be modified after the hard-
ware implementation. The post-implementation parameters are:

a) Threshold: The pixels are I&F neurons that fire when the threshold,
Th is passed. As stated in Section 2.1.1.2, events in a biological
NN can be either excitatory or inhibitory, i.e., cause the membrane
potential to increase or decrease, respectively. Following the same
paradigm, in this implementation, the events can be positive
(excitatory) or negative (inhibitory), hence there is an upper and
lower threshold. However, since only positive numbers are used
in the FPGA implementation, the actual positive and negative
thresholds inside the implementation are 0 and 2× Th, and Th
marks the reset value of the pixels.

b) Leakage parameters: Leakage is the decay of the membrane poten-
tial in between incoming spikes. In this implementation, leakage
is introduced to the network as a pulse of period Tleak and ampli-
tude Nleak that is added to or subtracted from the value of the
neuron state. The global leakage mechanism is further discussed
in Section 7.1.1.3.

c) Kernel values and parameters: The weights of the kernels and
the kernel parameters that will be written in the kernel memory.

d) Rate saturation interval: The actual value of the refractory pe-
riod TR inside the pre-defined range.

Neuron Memory

Input FIFO
Input
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ki xiin yiin ti pi

Parameters Kernels

Kernel Memory

Address
Calculation

Block

Controller Block

Convolution 
Process

Input event (i)

Figure 7.3: A conceptual figure showing the process of reading input events
from the FIFO by the controller block.
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7.1.1.2 The Convolution Operation

The input FIFO register receives input events and stores them until they
are read by the controller block. When an input event arrives, the con-
troller reads its parameters, i.e., the address coordinates (xin,yin), the
polarity (p), the time stamp (t), and the kernel ID (k), and two operations
are executed. First, the coordinates of the pixels affected by the incoming
event are calculated by the address calculation block, using the address
of the input and the kernel parameters corresponding to kernel ki. After-
wards, the kernel weights are retrieved from the kernel memory and the
pixels are updated with the results of the multiplication of these kernels
with the input event. This process is conceptually illustrated in Fig. 7.3.

7.1.1.3 Global Leakage

The controller block houses a synchronous global counter that counts
clock cycles and is responsible for implementing the leakage feature.
When the counter reaches the value of the leakage period Tleak, a pulse
of amplitude NLeak is sent to all the pixels of the convolutional unit. If
the value of a pixel is greater than the reset value Th, Nleak is subtracted
from that value, and if the pixel value is less than Th, on the other hand,
the value Nleak is added to the value in the memory. I.e., depending on
the value stored in each pixel memory relative to the reset voltage Th, the
value of Nleak is either added or subtracted to bring the value closer to
Th but without actually crossing it, as shown by the red lines in Fig. 7.4.
This process ensures that all neurons converge towards the reset value,
preserving the temporal correlation property between successive input
events.

7.1.1.4 Rate Saturation Mechanism

Another important feature of this convolutional unit is the imposition of
the refractory period property found in biological neural networks. As
explained in Chapter 2, the refractory period is the minimum interval
between two consecutive spikes. To implement this function in the con-
volutional unit, the time at which a pixel produces a spike, t0, is read
from the global counter. When the threshold is crossed again by the same
pixel at time t1, this time is compared to (tlim = t0 + TR) to check if the
refractory period has passed. If the period has indeed passed, the pixel
is allowed to produce an output event, and the register holding the tlim
value is cleared. If not, the threshold value is held in the register until
the next input event comes and the pixel is allowed to spike again. This
process is illustrated in Fig. 7.4.
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Figure 7.4: The change in the state of the neuron with the incoming spikes. The
red lines represent the effect of the leakage mechanism, and TR

represents the refractory period that stops the neuron from spiking
too soon.

7.1.1.5 Output Event Generation & Traffic Control

With every incoming event, the values of the corresponding pixels are
updated and compared to the positive and negative thresholds. If the
value of a threshold is reached by a pixel and the condition imposed by
the rate saturation mechanism is fulfilled, i.e., the refractory period has
passed, the pixel produces an output event with address (xout,yout) and
polarity pout and write it in the output FIFO register.

Because of the AER communication protocol, the convolutional unit
receives a flow of input events and sends out another flow of output
events through the FIFO registers. Using a fullFIFO signal, a dropping
mechanism is implemented to control the flow of these events. When
the register is full, the fullFIFO signal is activated, and the incoming
events are discarded until the events in the FIFO are read by the controller
and there is room for more events. While this implies that the output
events would get down-sampled and some information will eventually
be lost, the spatio-temporal correlation of the passing events is preserved,
keeping the integrity of the information carried in these events.
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7.1.2 The Router

The second block in a convolutional node is the router. In hardware im-
plementation of neural networks, the highly dense connectivity required
between neurons poses a challenge in terms of on-chip area. Routers
provide a practical solution to this problem by acting as a network layer
between the convolutional units and the physical implementation. They
are responsible for handling the transmission of the events from their
origin to their destination according to the routing scheme [55].

In this design, the destination-driven addressing scheme is adopted.
This means that for every event, there is a routing header that carries the
x and y coordinates of the destination node in the mesh distribution of
nodes, which will be illustrated later in Section 7.2.2. The router receives
events from two main sources, either the local convolutional unit within
the node, or a neighboring node through one the four ports. For external
events, the router analyzes the header address and compares it to the
address of the local node. If they match, then the event is directed to the
local convolutional unit. If not, the router locates the destination node
with respect to the local one and decides the port through which the
event should be passed. In the case of a local event, i.e., coming from the
local convolutional unit, the router adds the appropriate node address in
the routing header according to the pre-programmed routing table, and
sends the event through the corresponding output port.

The block diagram of the destination-driven router is shown in Fig. 7.5,
featuring a highly parallel architecture where every port, in addition to
the local unit, has its own set of blocks that can handle its traffic. The
basic building blocks of the router are:

1. RouterIN:
There are four RouterIN blocks in the router, each one is responsible for
receiving external events from a certain port. The RouterIN performs
the comparison between the incoming event address and the local
address of the node and decides whether to send the event to the local
unit through the local arbiter, or to pass it on to one of the other three
ports through their respective arbiter blocks.

2. Arbiter:
The Arbiter handles the output path of events coming from the RouterIN
blocks or the local convolutional unit. Moreover, it regularizes the
traffic of outgoing events by a prioritizing algorithm that does not
allow two successive outputs from the same interface. The destination-
driven router has five Arbiters, four of which are assigned to the four
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Figure 7.5: Block diagram of the destination-driven router.

ports of the node, and the fifth is assigned to carry events to the local
convolutional unit.

3. RouterOUT:
The router is equipped with a single RouterOUT block responsible
for preparing events coming from the local convolutional unit to be
sent out to their final destinations. Through the routing table, which
is configured before the network operation, the appropriate header is
added to the events, and they are forwarded to one of the four Arbiters
to be sent through the respective port.

7.1.3 The Configuration Block

The configuration data of the convolutional node is sent through an SPI.
Each parameter value is sent with an index indicating its ID so that it can
be correctly interpreted by the controller block. In addition to the unit
parameters and the kernel weights, the router configuration is also done
via the SPI. The router needs two important settings, the local address
of the node and the routing table information necessary for redirecting
events through the ports of the convolutional node.
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(a) (b)

Figure 7.6: Generation of the poker card symbols dataset: (a) Picture taken with
a frame-driven camera. (b) 2-D image obtained by collecting events

in a 5ms window [128]. The red square represents the 32x32
window that shows the centered used for the symbols dataset.

7.2 the experiment

7.2.1 The Poker-Card Symbols Dataset

To test the network, a dataset of poker card symbols was used, as shown
in Fig. 7.6. A deck of 40 poker cards was presented in front of a DVS sensor
during a 1s period. The events were recorded and processed to present a
32× 32 pixel window that shows only the centered symbol as shown by
the red square in Fig. 7.6. The stimulus has 174, 644 events in total with a
duration of 950ms and an average speed of 184 k events per second.

To verify the traffic control feature and its effects on the network
behavior, the dataset was presented in different slowed down versions,
ranging from 100% to 1% of the original speed.

7.2.2 The Convolutional SNN

The convolutional SNN used was originally designed by Pérez-Carrasco
et al. [128], trained in software in a frame-based format and then the
weights and parameters were mapped into spiking form by transforming
frame-based values into spiking rates. Afterwards, the weights and pa-
rameters were scaled and rounded, and then tuned to make up for the
discrepancies between hardware and software implementations using
simulated annealing as an optimization algorithm.
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Figure 7.7: Schematic block diagram of the convolutional SNN used for this
experiment.

The network is shown in Fig. 7.7, which consists of 4 convolutional
layers and 2 sub-sampling layers that reduce the address space between
layers by a factor of 2. The 2-D layout of the FPGA implementation is
shown in Fig. 7.8, where the nodes are arranged in a 6× 4 mesh with
bidirectional connections between the routers of each block and its imme-
diate neighbors. The network contains 22 nodes, every node carries an
identification number corresponding to its y and x address in the mesh,
and its color indicates the respective layer in the network. Nodes (5, 4)
and (6, 4) are not part of the original network, they are added just for
routing purposes, and they do not perform any processing. There is an
extra splitter block at the input side which receives signals coming to the
network and sends them to the nodes of the first layer, and a merger block
at the output side of the network which sends signals out of the network.
As explained in Section 7.1.2, the internal routers are configured so that
events can propagate to their destination address through the nodes via
the shortest path possible.

7.2.3 The Experimental Setup & Results

For the hardware implementation of this network on FPGA in [127], no
simulation test bench was constructed. The experimental setup used
is shown in Fig. 7.9, where the FPGA board is connected to several in-
terfaces. The configuration of the network is accomplished through a
microcontroller board that delivers the parameters and the kernels from
the computer to the FPGA through the SPI interface. An AER data player
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board [129] receives AER events and delivers them to the FPGA to be
processed by the network. Afterwards, the events are sent out to the
computer through a USB port on another board.

Using the above setup, the network was stimulated using the different
versions of the dataset. At 1% of the original speed, all the events in the
dataset are processed by the network and a classification rate of 97.5%
is achieved. When the real-time version of the network was used, the
traffic control mechanism discarded over 80% of the events. However, the
network managed to reach a classification rate of 70%.

7.3 putting the hardware in the loop

Hardware-in-the-Loop (HIL) simulation is a technique used to develop
and test complex real-time systems. It provides an efficient platform that
incorporates the specifics and complexity of a hardware implementation
into a real-time simulation framework. The main idea is to see how the
system behaves in the real world without having to wait until it is actually
integrated in the application. HIL is very popular in automotive industry
where every electronic system deals with tons of data coming from real
world sensors and ever changing conditions.

The case study presented in this chapter is based on a configurable
event-driven convolutional node whose architecture allowed the im-
plementation of large convolutional SNNs on cheap commercial FPGAs.
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Figure 7.9: The experimental setup used for the convolutional SNN in [127].
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Figure 7.10: Hardware-in-the-Loop setup of the Xilinx FPGA board.

However, to communicate with the board for configuration and mea-
surements, a complex setup had to be used in [127] as shown in Fig.
7.9. The extra boards were custom-created for spike-based systems by
Serrano-Gotarredona et al. [129], and hence not available for commercial
use like the FPGA part. Hence, the setup in [127] cannot realize its full
potential as a generic platform.

In this work, we turn the FPGA implementation of this design into a
standalone entity without the need for any extra custom hardware. Using
Hardware Description Language (HDL) CoderTM in Matlab, the Zynq®
UltraScale+TM MPSoC ZCU104 FPGA board was put into the simulation
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loop and directly controlled from the computer. The HIL setup is shown
in Fig. 7.10.

HDL Coder™[130] is a Matlab toolbox that can primarily generate
VHDL code from Matlab functions and Simulink Models, automating the
programming of various FPGAs using third party synthesis tools, such
as Xilinx ISE and Vivado for Xilinx boards. It can also generate test
benches for verifying VHDL designs along with the HDL Verifier™toolbox
and third-party simulation tools such as ModelSim. This tool provides
a comprehensive environment that can run HDL simulations using the
FPGA-in-the-Loop feature that tests the design of the actual hardware.

Such a setup has many advantages for this design in general, and for
our work in particular. As discussed in Section 7.2.2, the network demon-
strated on the convolutional node presented above has transformed from
a conventional ANN into spiking form. The network weights and parame-
ters needed to be adjusted and optimized for use on the FPGA. The new
HIL setup can skip all these steps by performing training directly with
the FPGA in the loop. That way, the resulting values would be ready for
use with no further processing. In addition, it will be possible to experi-
ment with spiking datasets, such as the N-MNIST and the DVS-gesture
datasets, in order to realize the full potential of the event-based node.

Using the new HIL setup will also be of great benefit in fault injection
and simulation experiments. In Chapter 2, we presented a body of work
concerned with fault injection and fault tolerance of ANNs, the majority of
which were carried out at the software layer. With the scaling-up of neural
networks, comprehensive testing that covers multiple fault scenarios
becomes prohibitive, in terms of time and cost. Meanwhile, the same
operation carried on in hardware would be much faster, allowing more
extensive fault injection campaigns and thorough analysis of reliability
and fault resilience capabilities.





8 C O N C L U S I O N S

The deployment of AI hardware accelerators in a variety of appli-
cations including safety-critical ones, requires assessing their inherent
reliability and developing cost-effective fault tolerance techniques. Be-
cause the main inspiration has always been the human brain, research has
not stopped at the immense progress achieved by conventional ANNs and
deep learning. The trend is moving more and more towards biologically
inspired architectures, materials, mechanisms, and learning techniques,
hoping that if we can create circuits that behave like the brain, one day
we will be able to achieve its performance levels. While we have not
come close, neuromorphic systems and spike-based neural networks are
certainly a step in the right direction.

With their massively parallel architectures and distributed computa-
tions, ANNs can tolerate a certain degree of inaccuracy in their calculations
or noise in their inputs. However, the myth of total immunity to faults of
any kind is far from true. In the literature, several fault-injection experi-
ments have been carried out to evaluate the tolerance of ANNs to various
fault types and to take measures towards ensuring their reliability. How-
ever, most of the work is focused on conventional level-based ANNs since
they are predominant platforms for AI and deep learning.

In this thesis, we explore the inherent fault tolerance of SNNs at different
levels of abstraction. We perform fault injection experiments and try to
link transistor-level and behavioral-level together towards generic and
comprehensive fault tolerance techniques.

8.1 thesis contributions

Thesis contributions can be summarized as follows:

in chapter 3 we proposed a compact behavior-oriented BIST architec-
ture for an analog biologically inspired spiking neuron that can be
shared among all neurons in the neural network. This architecture
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consists of a ramp generator block that controls two bias voltages to
produce all four different firing patterns at the output in the fault-
free case, and a digital block that checks if any of these patterns is
missing, in which case it flags a fault detection. The BIST achieves
a test yield of 70% in the case of process variations and over 90%
defect coverage.

in chapter 4 we performed Monte Carlo analysis and defect simula-
tion for an analog I&F neuron at transistor level. Then we observed
and categorized the resulting faulty behaviors into catastrophic
ones that destroy the neuron to translate transistor-level faults into
behavioral-level faults and errors. We then used our observations
to form a comprehensive behavioral-level fault model that can be
used to test spiking neurons regardless of their implementation.

in chapter 5 we presented a taxonomy of faults and an abstract fault
model based on SNNs, in addition to a fault-injection framework
that allows an accelerated large-scale analysis of fault effects on the
classification accuracy. We performed fault-injection experiments on
two SNNs specifically designed for the classification of the NMNIST
dataset and the DVS-gesture dataset. The experiments demonstrate
that the criticality of faults and the severity of their effect on the
circuit performance depend on a combination of multiple factors:
the fault type, fault location in the hierarchy of the SNN, and the
relative depth of the network architecture.

in chapter 6 we leveraged the findings from our large-scale fault injec-
tion experiments to develop some possible fault tolerance solutions
that can be implemented in a hardware SNN. We proposed cost-
effective fault tolerance strategies tailored to address critical faults
in the SNN consisting in multiple layers of protection. Firstly, we
proposed passive fault tolerance based on dropout to nullify the ef-
fect of certain faults, then we projected several active fault tolerance
techniques to detect and recover from the remaining critical faults.

in chapter 7 we prepare to demonstrate the ideas and experiments
presented in this thesis on an actual hardware convolutional neu-
ral network. We presented the configurable event-driven network
designed to run on an FPGA platform and highlighted the strategy
we followed to transform it into an autonomous hardware-in-the-
loop platform in an effort to accelerate simulations, training and
fault-injection experiments.
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8.2 future perspectives

As extensive as the work carried out in this thesis was, it can never be
complete. There are many axes along which this work can be extended.

To complete the picture and validate all the ideas presented in this
work, the hardware platform presented in Chapter 7 needs some prepa-
rations to be used to demonstrate the fault injection experiments and
the proposed fault tolerance ideas. On top of the original network that
classifies poker card symbols, we plan on using the convolutional node to
build a completely configurable network that can be used to implement
any SNN architecture. Putting the hardware-in-the-loop will allow spike-
based training with the FPGA incorporated directly in the training loop to
avoid any extra adaptation or optimization of the network parameters, in
addition to the use of benchmark spiking datasets such as the N-MNIST
and the DVS-gesture datasets. Afterwards, the hardware implementation
should be ready as a platform for future experimentation.

Throughout the thesis, most of the fault injection experiments we car-
ried out focused on neurons, since they are the main computational nodes
of SNNs. However, to comprehensively assess the fault tolerance capabili-
ties of SNNs, synapses would have to be considered as well. In Chapter
5, dead and saturated faults in the synaptic weights were considered for
the rather small N-MNIST SNN. In the future part of this experiment, we
plan on studying synaptic fault models that can accurately represent pos-
sible hardware faults in SNN implementations. Given that the number of
synapses is usually much higher than that of neurons, we would need to
optimize these fault models to allow for cost-effective large-scale synaptic
fault injection experiments on deep SNNs. Moreover, we are planning on
extending the study to cover the resilience of SNNs to latent faults caused
by natural aging of the hardware components.

Another future perspective would be to work on improving the fault
tolerance ideas presented in Chapter 6. As far as fault tolerance goes, the
ideas presented in this work focused only on neuron faults. We plan to
continue with the optimization of fault tolerance capabilities for neurons
in deep SNNs and extend them to include synaptic connections as well.
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