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Heterogeneous catalysis is one of the pillars of the chemical industry as it is involved 

in a wide range of applications, from the production of fuels, chemicals and manufactured 

commodities to environmental protection and  sustainable chemical technologies. However, 

the design of catalysts with high efficiency, selectivity and stability remains a major challenge. 

As a matter of fact, the heterogeneous catalysis occurs usually at the surface of metal 

catalysts, therefore the downscaling of metal particles to the ultra-small size range, which 

increases the metal surface area and thus enhances the number of the metallic active sites, 

has become an important strategy for the design of new and efficient materials. Moreover, 

nanometric and subnanometric downsizing gives rise to a dramatic change in the electronic 

properties of metals, which in turn leads to promising catalytic performances (Figure 1.1).1,2 

 

Figure 1. 1: Illustration of the downsizing metal sizes, and evolution of the electronic 

structures.3 

On the other side, in the field of catalysis, hydrogen is involved in many industrially 

relevant reactions and it is known that hydrogen interaction with metal-based catalyst has 

important effects on the catalytic performance.4,5 The understanding of the interaction 

between the metal-based catalyst and hydrogen is paramount for the design of efficient 

catalysts. Many nanosize effects in hydrogen interaction are observed in metals. For example, 

it has been shown that Pd particles of a few nanometres absorb less hydrogen per Pd atom 

than bulk Pd,6 and that nanoparticles of non-absorbing elements such as Rh and Ir do absorb 

hydrogen and can even form a stable hydride at atmospheric temperature and pressure.7,8 

Moreover, the formed Rh hydride showed better catalytic performance than its metal 
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counterpart in the hydrogenation of butadiene.8 These behaviours are due to the important 

thermodynamic changes introduced by nanosizing. For particles with subnanometric 

dimensions, the thermodynamics of hydrogen absorption (and hydride formation) are 

expected to change due to increased surface/interface energy and kinetics as improved 

because of short diffusion paths and large number of surface active sites for dissociation and 

recombination. However, due to the experimental difficulties in elaborating and 

characterizing ultradispersed supported metals, the hydrogen sorption properties of such 

materials are very scarcely reported. 

In this context, the National Research Agency (ANR) is financing the UltraCat project, 

based on a collaboration between the Institut de Recherches sur la Catalyse et 

l’Environnement de Lyon (IRCELYON), the Institut de Chimie et des Matériaux Paris-Est 

(ICMPE) and Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS). The 

UltraCat project aims at the design and investigation of new catalysts based on ultradispersed 

metals in the form of nanometric particles down to isolated atoms, supported on mesoporous 

materials for reactions with high interest for clean-energy-production processes involving 

hydrogen. 

Within this context, this PhD project has three interrelated goals:  

• The design and synthesis of novel catalytic materials with controlled metal dispersion by 

tuning the metal particle dimension from nanoscale to atomic state through favourable 

interaction with carbon-based porous supports; 

• The evaluation of the performances of these new catalysts in selective hydrogenations: 

hydrogenation of butadiene and hydrogenation of levulinic acid; 

• The characterization of the interaction between hydrogen and these materials (hydrogen 

absorption/desorption), dependence on the metal cluster size and structure, and its 

interplay with catalysis. 

The structure of this manuscript consisted of 5 following chapters: 

Chapter 1 begins with a brief description of hydrogen generalities and applications, 

then hydrogen interaction with metals is discussed along with the nanosize effects in 

hydrogen-metal interaction. The synthesis methods and uses of ultradispersed metals in 

catalytic reactions are also described. 
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Chapter 2 describes the methodologies used for the preparation of the metal 

nanoparticles and single atom catalysts supported on carbon-based materials, and the 

characterization techniques used for the determination of their physicochemical properties, 

their interaction with hydrogen and the protocol of the catalytic experiments. 

Chapter 3 extensively discusses the interaction between hydrogen and Pd bulk, Pd 

nanoparticles with different sizes and Pd single atoms samples. 

Chapter 4 presents the characterization of Ir single atom catalyst and Ir nanoparticles 

as well as their performance in catalytic reaction of hydrogenation of butadiene and 

hydrogenation of levulinic acid. 

Chapter 5 describes the Co, Cu, Ni, Mo, Pd, Ir and Pt single atom catalysts with 

different metal loadings and their catalytic tests in the reaction of hydrogenation of butadiene 

and hydrogenation of levulinic acid. 

Lastly, the manuscript will end with a general conclusion of the most significant results 

obtained during this PhD work and we propose some research perspectives.
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1.1 Hydrogen: generalities, and current uses 

Hydrogen atom is composed of one electron and one proton, making it the lightest 

element. It is also the most abundant element in the universe, accounting for more than 75 

wt.% of the universe. At standard temperature and pressure conditions (STP), hydrogen is a 

diatomic gas with molecular formula H2 possessing the following features: colourless, non-

toxic, and highly flammable. Since hydrogen readily forms covalent bonds with most non-

metallic elements, most of the hydrogen on Earth exists in molecular forms such as water or 

organic compounds. 

In the context of energy insecurity, global climate change and protection of 

environment, hydrogen is identified as a critical and indispensable element of a decarbonised 

sustainable energy system to provide secure, cost-effective and non-polluting energy.9 Today, 

energy leaders see hydrogen as the lowest impact molecule in the global energy system.10 In 

this context, hydrogen can be seen as an energy carrier or a means of energy storage.  

Hydrogen has multiple industrial applications, mainly for the chemical and refining 

activities. As shown in Figure 1.2, about 55% of the total consumption of hydrogen is in 

ammonia production, an important part of fertilizers used in agricultural industries around 

the world. The second most important use is in petroleum refining process where hydrogen 

is commonly used in hydrocracking to create petroleum product, including gasoline and diesel 

or to remove contaminants like sulphur. Around 10% of hydrogen is employed to create 

methanol (CH3OH). The remaining 10% applications are categorized in miscellaneous uses 

such as, food industry, metalworking, welding or medical applications. Recently, hydrogen 

has been used more and more to produce synthetic fuels and in energy sector, as an 

alternative combustible fuel.11 

https://en.wikipedia.org/wiki/Standard_temperature_and_pressure
https://en.wikipedia.org/wiki/Diatomic_molecule
https://en.wikipedia.org/wiki/Gas
https://en.wikipedia.org/wiki/Transparency_(optics)
https://en.wikipedia.org/wiki/Covalent_bond
https://en.wikipedia.org/wiki/Molecular_geometry
https://en.wikipedia.org/wiki/Water
https://en.wikipedia.org/wiki/Organic_compound
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Figure 1. 2: Hydrogen applications in industry.  

The chemical industry use of hydrogen often involves a chemical process: the 

hydrogenation. Hydrogenation is a chemical reaction involving the molecular hydrogen (H2) 

which is added to an unsaturated moiety (Figure 1.3). For example, hydrogenation is used to 

saturate alkenes and aromatics from petrochemical refineries, making them less toxic and 

reactive. Moreover, in food industry, vegetable oils derived from polyunsaturated fatty acids 

can also be processed to improve their flavour stability and melting behaviour by 

hydrogenation reactions.12 

 

Figure 1. 3: Schematic representation of hydrogenation.13 

However, molecular hydrogen is rather unreactive at STP conditions and consequently, 

the hydrogenation reactions often require the use of catalysts, in particular transition metal-

based catalysts which can bind and therefore activate the hydrogen. The molecular H2 can 

thus be transformed into H- (hydride), H· (hydrogen radical) or H+ (proton) after being in 

contact with the metal catalysts. Subsequently, these forms of hydrogen are transferred to 

the substrate and prompt to bind with the reactants in order to produce the desired final 

product.14 As a major constituent in catalysis, the heterogeneous catalysis where the phase 
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of catalysts differs from that of the reactants or products, is involved in about 80% of 

industrial processes.15 

In heterogeneous catalysis, hydrogenation reaction is happened usually at the surface 

of metal catalyst, and the key step of the reaction mechanism is the dissociation of strong H-

H bond into two weak metal-H bonds with the metal atoms at the surface. However, the 

hydrogen metal interaction below the surface can also affect the catalytic activity. For 

example, by using Density Functional Theory (DFT) calculations, Aleksandrov et al.5 reported 

that the reaction rate of hydrogenation of ethyl was found to increase with increasing the 

content of hydrogen in the subsurface of Pd et Pt metal particles. In fact, hydrogen in 

subsurface of Pd et Pt metal particles could significantly decrease the bond energy of the 

adsorbed hydrogen atoms at the surface, i.e., the destabilisation of hydrogen at the surface 

accelerates the reaction. Morfin et al.8 demonstrated that the hydride form of 1 nm Rh 

nanoparticles was more active in hydrogenation of butadiene compared to Rh metal 

counterpart. The strong polar character of Rh-H bonds in Rh hydride leads to an increased 

positive charge of surface metal atoms which could attract hydrogen more strongly. 

Consequently, the strengthening of the Rh-H bond at the surface facilitates the hydrogen 

dissociative chemisorption and increases the catalytic activity. Therefore, it is necessary to 

understand the hydrogen interaction with metals below the surface in the domain of catalytic 

hydrogenation reaction, and this will be discussed in detail in the next paragraph. 

1.2 Hydrogen interaction with metals 

The dominant role of hydrogen in heterogeneous catalysis has become evident during 

the past few decades.16 Moreover, hydrogen absorption in metals/alloys/intermetallic 

compounds is considered as an attractive, high energy density and safe route to store 

hydrogen for further use as combustion fuel. Consequently, hydrogen interaction with metals, 

in particular transition metals, as frequently used in catalysis,17–19 has been extensively 

studied.5,20–23  

The hydrogen sorption process in metals, which consists of several steps (Figure 1.4 a) 

involves different energy barriers that can be described by the Lennard-Jones potential 

diagram,24 as shown in Figure 1.4 b.  



CHAPTER I: INTRODUCTION 
 

10 
 

      

Figure 1. 4: a) Schematic representation of the interaction of hydrogen in metals, and b) 

Lennard-Jones potential diagram corresponding to the successive energy barriers 

encountered by hydrogen during absorption/desorption in a metal. Ephys: energy for 

hydrogen physisorption, Echem: energy for hydrogen chemisorption, Epen: energy for hydrogen 

penetration in the subsurface, Edif: energy for hydrogen diffusion in the bulk, and EN–G: 

energy for the nucleation and growth of the hydride phase.24 

Away from the metal surface, the potential of H2 molecule and that of two hydrogen 

atoms are separated by the dissociation energy ( 1/2𝐻𝐻2 → 𝐻𝐻 , ED = 218 kJ·mol−1 H). 

Approaching the metal surface, the H2 molecule undergoes an attractive interaction via weak 

van der Waals forces leading to the physisorption with small energy (EPhys ≈ −5 kJ·mol−1 H) at 

an approximate distance of one H2 molecule radius (≈ 0.2 nm) from the metal surface. Closer 

to the surface, the H2 molecule must overcome an activation barrier for dissociation into two 

hydrogen atoms and formation of a chemical bond between H and metal atoms at surface. 

The activation barrier strongly depends on the nature of surface elements. This chemisorption 

step is characterised by the hydrogen atoms sharing their electron with the metal atoms at 

the surface and involves larger energy (EChem ≈ −50 kJ·mol−1 H) than in the case of 

physisorption. In the next step, the chemisorbed hydrogen atom can jump into the subsurface 

layer and finally diffuse in the available interstitial sites throughout the bulk metal lattice. The 

hydrogen atoms contribute with their unique electron to the conduction band of the metal. 

Once occupying the interstitial sites of the metal subsurface, hydrogen atoms can diffuse from 

one interstitial site to another to form firstly a solid solution (α phase) characterized by 

random hydrogen distribution within the interstitial sites. The absorption of the hydrogen 

atoms inside of the metal lattice and the formation of solid solutions with hydrogen causes 

the expansion of lattice parameters. Afterwards, as the hydrogen concentration increases in 

a b 
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the metal lattice, the hydrogen atoms begin to occupy interstitial sites in an ordered 

arrangement and subsequently the solid solution (α phase) transforms progressively to the 

metal hydride (𝛽𝛽 phase). Generally, the crystalline structure of the metal hydride phase is 

different from the solid solution. 

This hydrogen metal interaction process can be expressed by the chemical equation: 

𝑀𝑀 (𝑠𝑠) + 𝑥𝑥
2𝐻𝐻2 (𝑔𝑔)

↔ 𝑀𝑀𝐻𝐻𝑥𝑥 (𝑠𝑠)                Equation (1.1) 

The interaction process between hydrogen and metal can be described by pressure-

concentration-isotherms (PCI), as shown in Figure 1.5 a.  

At low gas pressure, random solid solutions (α) with hydrogen are formed, as 

described above, with the hydrogen concentration increasing linearly with the applied 

pressure. At a certain maximum hydrogen solubility, a new phase is formed, i.e., the metal 

hydride (𝛽𝛽) with ordered hydrogen occupation. This is evidenced in the PCI curves by the 

existence of a plateau at fixed pressure at a given temperature. This plateau represents the 

miscibility gap of the α and 𝛽𝛽 phases.  

  

Figure 1. 5: a) Pressure–concentration–isotherms plots and b) a van't Hoff curve (logarithm 

of the equilibrium or plateau pressure against the reciprocal temperature).24 

The increase of temperature is accompanied by the raise of plateau pressure and the 

reduction of the plateau width. The narrowing of the plateau width continues with the 

increase of temperature up to a critical temperature Tc, the plateau disappears totally and α 



CHAPTER I: INTRODUCTION 
 

12 
 

phase converts to 𝛽𝛽 phase continuously. The relationship between plateau pressure (Peq) and 

the temperature can be described by van’t Hoff equation (Figure 1.5 b) 

𝑙𝑙𝑙𝑙𝑃𝑃𝑒𝑒𝑒𝑒 = ∆𝐻𝐻
𝑅𝑅𝑅𝑅
− ∆𝑆𝑆

𝑅𝑅
                       Equation 1.2 

where ∆𝐻𝐻 and ∆𝑆𝑆 are the enthalpy and entropy change for the phase transition from the 𝛼𝛼 

to the 𝛽𝛽  phase, R is the ideal gas constant (8.314 m3·mol-1·K-1) and T is the absolute 

temperature (K).  

1.3 Hydrogen interaction with nanosized and ultradispersed metals 

In heterogeneous catalysis, the design of atom-efficient catalysts, i.e., with improved 

performance (activity, selectivity, stability) and minimized amount of rare and expensive 

materials, remains a major challenge.26,27 The downscaling of metal particles to the ultra-

small size range has become an important strategy for the design of new materials in this field.  

As shown in Figure 1.6, the surface free energy increases with the decrease of metal 

particle size. The ratio of surface/volume atoms, i.e., the number of low-coordinated metal 

atoms, which often play as active sites, increases as the metal size decreases. Therefore, 

downsizing of metal particle catalysts increases the atom utilization and consequently, this 

might boost the catalytic performance. The metal catalyst in the ideal form of a series of single 

and discrete atoms may maximize the atom utilization to 100% and increase the specific 

catalytic activity. Furthermore, size reduction also affects the electronic properties of metals. 

For example, a continuous energy level is characteristic of bulk metal. The decrease of metal 

size (<2 nm) leads to a more discrete energy level distribution and a widening of the HOMO-

LUMO gap in the case of clusters of several atoms. HOMO and LUMO are types of molecular 

orbitals, which stand for highest occupied molecular orbital and lowest unoccupied molecular 

orbital, respectively. Single atoms show discrete electronic levels. 
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Figure 1. 6: Illustration of the downsizing metal sizes and evolution of the geometric 

configuration, electronic structure and surface free energy as the size of metal particles 

decreases.28 

However, these nano- and sub-nanometric objects can easily agglomerate and create 

larger nanoparticles to decrease their free surface energy. Consequently, the surface area 

decreases, which leads to a loss of activity. Therefore, the metal catalysts are usually 

stabilized on support, although sintering occurs in most supported catalysts at high 

temperature. In the presence of supports, the catalytic selectivity, activity, and stability of 

nanocatalysts might be influenced by the mutual interaction between the metal and supports. 

Thus, it is obvious that the most important step is the control of the catalyst size 

distribution and shape as well as their dispersion on the support. Subsequently, the synthetic 

efforts to control and stabilize both metal nanoparticles and single atoms catalysts on a 

support are paramount for the catalyst design and further comprehension of reactive 

mechanisms. These aspects will be addressed in the next paragraph. 

1.3.1 Metal nanoparticles 

1.3.1.1 Synthesis of Metal nanoparticles 

The synthesis of metal nanoparticles is based on two types of methods: top-down and 

bottom-up (Figure 1.7). The top-down approach refers to the breaking of a solid to smaller 



CHAPTER I: INTRODUCTION 
 

14 
 

particles by chemical etching, mechanical ball milling, sputtering, etc. While the bottom-up 

approach consists in the preparation of nanoparticles by assembling elementary units into 

larger structures. The bottom-up approach is widely used due to a better control of size and 

shape of the nanoparticles.29 Furthermore, in order to hinder sintering, a promising strategy 

is the confinement of particles within a porous inert matrix such as, porous carbon 

materials.30 As the synthesis of nanoparticles is well documented in literature, we will not 

discuss in detail all synthetic methods for nanoparticles preparation but just focus on our 

bottom-up approach.  

 

Figure 1. 7: Different synthesis approaches available for the preparation of metal 

nanoparticles.31 

In our laboratory, the synthesis of metal nanoparticles is achieved by a liquid 

impregnation method (bottom-up approach), it consists of three steps: dispersion of the 

metal precursor onto porous support by liquid impregnation, the reduction of metal ions by 

chemical reducers (ex: H2), the nucleation and growth of metal nanoparticles within the pores 

of the support. The size of the metal nanoparticles may be controlled essentially by varying 

the synthesis parameters: precursor type, reduction temperature and support. Normally, the 

metal nanoparticles size increases with the increase of reduction temperature. For example, 

Bastide et al.32 obtained different sizes of Pd nanoparticles supported on a high surface area 

graphite (HSAG: 500 m2/g) by varying the reduction temperature. Pd nanoparticles with 

average size of 2, 6 and 18 nm were obtained at reduction temperatures of 300, 500 and 

800 °C, respectively. Furthermore, changing the support with different porosities and specific 

surface areas (SSA) is also a practical method to control the metal particle size. By using the 
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MIL-101(Cr) which has higher SSA (3000 m2/g) as HSAG, Malouche et al.33 successfully 

synthesized a 1 nm Pd nanoparticles at the reduction temperature 300 °C. 

Once the synthesis of supported nanoparticles is controlled, the next paragraph will 

highlight the specific interaction between nanoparticles and hydrogen since size effects are 

often encountered and are known to change the physicochemical properties of metal 

nanoparticles. Thus, the metal-hydrogen interaction, as described in paragraph 1.2, might 

also be affected by nanometric size effect. 

1.3.1.2 Hydrogen interaction with Metal Nanoparticles 

Reducing the size of metal particles to several nanometres leads to a dramatic change 

in the physicochemical properties. For example: the melting point of Au nanoparticles was 

found to be much lower than the melting point of Au bulk owing to the large surface-to-

volume ratio.34 Moreover, the thermal conductivity of silver nanoparticles was found smaller 

compared to metal bulk and it decreased with decreasing particle size.35 Therefore, the 

nanosize effect is also expected to change the hydrogen-metal interaction properties, e.g., 

the thermodynamics, the kinetics of reaction with hydrogen and eventually, showing trapping 

effects.  

Pd is the only element in noble metals that absorbs hydrogen at ambient temperature 

and pressure forming an interstitial metallic hydride PdH0.7. For this reason, bulk Pd is the 

most studied element for hydrogen storage and is one of the best understood metal-

hydrogen system. Therefore, nanosized Pd has become the model material to study the 

nanosize effect on metal–hydrogen interaction. Thus, the Pd-H system is used to discuss the 

size effect in this chapiter and this is also the object of our first experimental study in Chapter 

III. 

The size effect is obviously observed in the Pressure-Composition Isotherms (PCI) in 

Figure 1.8. Overall, the hydrogen absorption capacity diminishes with decreasing the Pd size. 

The hydrogen solubility and solubility limit (αmax) in the α phase increase with decreasing the 

Pd size and the hydrogen solubility and solubility limit (βmin) in the 𝛽𝛽 phase decrease with 

reducing the Pd size. Consequently, the width of the plateau narrows and the critical 

temperature decreases with decreasing the Pd size. Furthermore, the slope of the pressure 

plateau becomes steeper with decreasing the particle size. 
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Figure 1. 8: Pressure-composition-isotherms for Pd bulk (straight lines) and clusters (full 

squares indicate absorption and empty circles correspond to desorption). The α phase 

corresponds to a solid solution and the α’ (or β) is the hydride phase.36 

This change of hydrogen solubility has been explained by a core/shell model: a 

subsurface shell in which interstitial sites are less favourable for hydrogen atoms and a bulk-

like inner core that more easily absorb hydrogen to form a bulk-like hydride. Thus, the number 

of interstitial sites available for hydrogen and the volume that will transform into the hydride 

phase reduce with decreasing the size.30 This behaviour can be also explained by the 

thermodynamic changes of nanosized Pd-H system. The −∆𝐻𝐻  and −∆𝑆𝑆  of the 𝛼𝛼 → 𝛽𝛽 

transition has been found to reduce with the decrease of Pd size (Figure 1.9).37 On the other 

hand, the tilt of the slope makes the determination of the plateau pressure difficult and 

perhaps inaccurate, which could cause false diminution of the values of enthalpy and entropy 

change.38 The hydrogen absorption capacity diminishes as well with the decrease in Pd 

particle size. This is directly related to the narrowing of the miscibility plateau of Pd 

nanoparticles hydrogen phase diagram. 
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Figure 1. 9: Hydrogen concentration dependence of a) the heat of formation (−∆𝐻𝐻) and b) 

the standard entropy (−∆𝑆𝑆) for the phase transition α → β: bulk Pd (black), 7 nm (blue) and 

2.6 nm (red) Pd nanoparticles confined into PVP polymer.37 

Nanosize effect is also reflected on the kinetic properties during the 

hydriding/dehydriding process. The absorption and desorption kinetics improve due to the 

decrease of the hydrogen diffusion pathways and the increase of the specific surface area of 

metal nanoparticles. Langhammer et al.39,40 demonstrated by Monte Carlo simulations that 

the kinetics of the formation of the hydride phase increase with the decrease of Pd size. By 

using an indirect nanoplasmonic sensing method, they confirmed that the absorption and 

desorption kinetics enhance with decreasing the Pd size for 5.35, 2.47 and 1.81 nm Pd, as 

shown in Figure 1.10. Furthermore, Narayan et al.41 visualized the hydrogen absorption 

dynamics for Pd nanoparticles of different sizes by STEM-EELS techniques, the absorption 

kinetics were also shown to increase by decreasing the Pd size. 
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Figure 1. 10: Experimental hydrogen absorption (left column) and desorption (right column) 

kinetics for three mean diameters: a) 1.81 , b) 2.47, and c) 5.35 nm of Pd nanoparticles.40 

It has been reported that in PCI curves at room temperature, the desorption of 

hydrogen is partially irreversible: the desorption is not complete for Pd nanoparticles, while 

it is completely reversible for Pd bulk. As shown in Figure 1.11, the PCI curve for Pd bulk is 

fully reversible at low pressure, nevertheless the 7.0 and 2.6 nm Pd PCI curves show 

incomplete recovery between the absorption and desorption branches at low pressure.42 

Kobayashi et al.43 demonstrated that this irreversible part of hydrogen atoms was strongly 

trapped in the metal lattice of a 6.1 nm Pd nanoparticles by in situ XRD and solid-state 2H 

NMR measurement. Using a Gibbs approach for the construction of the absorption isotherm 

for 3.6 nm Pd nanoparticles, Ren et al.44 suggested that the responsible sites for H trapping 

are located within a surface shell of around 0.4 nm. Moreover, another study claims an 

irreversible trapping of H atoms inside 2.5 nm Pd nanoparticles and the desorption is 

uncomplete even at temperatures as high as 140 °C.45 
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Figure 1. 11: Pressure-Composition-Isotherms curves at room temperature for Pd bulk (black) 

and Pd nanoparticles of size 7.0 ± 0.4 nm (blue) and 2.6 ± 0.4 nm (red).42 

In addition, obvious size effects are also observed for the hydrogen desorption by 

Thermal-Desorption-Spectroscopy (TDS). Malouche et al.33 reported remarkable difference in 

the TDS spectra between 1.0 nm Pd and Pd bulk (Figure 1.12 a). The hydrogen desorption 

from bulk Pd undergoes two main steps: first, the small hydrogen quantity soluble in the β 

phase (hydride) is desorbed at low temperature followed by the desorption that accompanies 

the β → α phase transition (main desorption peak) at higher temperature. The typical two-

peak desorption from Pd hydride occurs at lower temperatures in 1 nm Pd than the bulk 

counterpart. A significant reduction of the activation energy of desorption was found for 1 

nm Pd (0.27 eV) compared to Pd bulk (0.51 eV) by Kissinger plots (Figure 1.12 b). This indicates 

that the thermal stability of Pd hydride decreases with decreasing the Pd size. 

 

Figure 1. 12: a)Thermo-desorption spectra of the bulk and 1 nm Pd with a heating rate of 2 

K/min and b) The Kissinger plots for bulk and 1 nm Pd.33 

a b 
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In conclusion, important changes in the thermodynamics and kinetics of reactions 

with hydrogen have been reported with the downsizing of Pd nanoparticles. Moreover, a 

hydrogen trapping effect was evidenced for hydrogen desorption in Pd nanoparticles.  

1.3.2 Single atom catalysts (SACs) 

Nanosize effects of metal-hydrogen interaction have been discussed in the previous 

section for metal nanoparticles (essentially for Pd nanoparticles) and compared to bulk. 

Consequently, one may wonder why not reducing the size of metal to an even smaller scale, 

i.e., single atom state. Indeed, recently the single atom catalysts (SACs), defined as catalysts 

in which all of active metal atoms exist as isolated single atoms stabilized on a support, have 

been introduced and gained considerable attention due to their maximized atomic utilization 

and unique electronic properties.2,46–48 Because of the changes in the active-site structure in 

comparison with metal nanoparticles, SACs are expected to have distinct behaviors in 

catalysis such as, high selectivity and stability.49–51 Since the first practical report of SACs 

(Pt/FeOx) by Qiao et al.52 in 2011, significant progress has been made in this field.53–56 SACs 

have shown superior catalytic performance (activity and/or selectivity) for several industrial 

relevant reactions such as, CO oxidation, MeOH oxidation, and electrochemical CO2 

reduction.52,53,57 

There are different types of SACs depending on the chemical interaction between the 

isolated metal atom and supports, including metal surfaces,58,59 metal oxides,60,61 metal-

organic frameworks (MOFs)62 as well as carbon-based materials.63,64 In this project, we will 

focus on the preparation SACs supported on carbon-based materials. The preparation of SACs 

on other supports is summarized in several recent review articles.51,65,66 

Carbon materials are presently chosen because of their high thermal and chemical 

stability, in acid or basic condition, together with their high surface area, porosity and their 

tuneable surface chemistry. Moreover, they have high conductivity while being cost effective. 

For these many reasons, carbons are often use as supports in heterogenous catalysis. The 

preparation of single metal atom supported on carbon-based materials is remaining rather 

challenging due to the high surface energy of isolated metal atoms which easily causes the 

aggregation into clusters. Up to now, great advances have been made in overcoming these 

difficulties. Among them, the strategy of nitrogen (N) doping on carbon support has been 

particularly studied. Actually, four different kinds of nitrogen can be observed on a nitrogen-
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doped carbon (Figure 1.13): pyridinic N, graphitic N, pyrrolic N or oxidized N, with increasing 

binding energies from 398.2, 399.4, 400.8 to 402.7 eV, respectively.67 Pyridinic-N and pyrrolic-

N are the nitrogen species at the edges or in the vacancies of the graphitic host. The pyridinic–

N bonds with two C atoms and contributes one p electron to the π system. Pyrrolic–N refers 

to N atoms incorporated in pentagonal ring and contributes two p electrons to the π system. 

Graphitic–N refers to N atoms that substitute C atoms in the hexagonal ring. 

 

Figure 1. 13: Schematic representation of different types of N atoms (graphitic, pyridinic, 

pyrrolic and oxidized N) in nitrogen-doped carbon.68 

If a metal is dispersed on such N doped carbon support, it is expected that there is 

more charge transfer between the metal atoms and the N atoms as N is more electronegative 

than C. Therefore, metal atoms may form stronger chemical bonds with the N-doped supports 

thus preventing aggregation. In fact, Yang et al.69 demonstrated by DFT calculation that the 

adsorption energy for transition metals (Si, Ti, V, Cr Mn, Fe, Co and Ni) on nitrogen-dopped 

graphene was stronger than pristine graphene and the transitional metals moieties as N4V2 

(N: nitrogen et V: vacancy) forming a 4-N centred structure showed the strongest binding 

energies (formation energy < -7 eV) (Figure 1.14). Similarly, through DFT calculation study, 

Cheng et al.70 demonstrated that Pt single atoms form stronger bond with nitrogen-doped 

graphene than pristine graphene. A charge transfer (about 0.25 e-) from Pt atom to the 

support occurs on the nitrogen-doped graphene for the single Pt atom case, while almost no 

charge transfer exists between the Pt atom and the pristine graphene. Moreover, nitrogen 

doping could cause defects, like vacancies, as well as developing edges of carbons, which 

provide additional anchor sites for the metal atoms.64,71  
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Figure 1. 14: a) Optimized structures and b) formation energies for N-doped graphene.69 

SACs are interesting for catalysis for the above-mentioned reasons, but their synthesis 

is complex, the main challenge is to avoid agglomeration and formation of 

clusters/nanoparticles. These aspects will be developed in the next section. 

1.3.2.1 Synthesis of SACs 

A variety of experimental techniques have been reported in recent literature for the 

preparation of carbon-based SACs, such as atomic layer deposition, wet chemistry synthesis, 

pyrolysis of Metal-Organic Frameworks (MOFs) or organometallic complexes, as well as ball 

milling. Certainly, the synthesis methods discussed in this section are not exhaustive, and 

many reviews can be found in literature.48,72,73  

Atomic layer deposition: Atomic layer deposition (ALD) is a thin film deposition 

technique where chemical precursors are sequentially introduced to the surface of a 

substrate where they chemically react directly with the surface to form sub-monolayers of 

film. The ALD generally consists of four steps described in Figure 1.15:  

(1) Introduction of the first precursor in the reactor chamber to form a layer on the substrate,  

(2) Purge of the excess first precursor and by-products, 

(3) Introduction of the second precursor, 

(4) Purge or evacuation of the excess second precursor and by-products. 

In this technique, the key factor is the self-limiting reaction cycles, which makes it 

possible to precisely control the dispersion of metal atoms onto the deposited materials. For 

example, by controlling the ALD cycle numbers, Huang et al.74 obtained Pd single atoms 

supported on C3N4 (0.5 wt.% Pd/C3N4) after one ALD cycle while nanoparticles of average size 

6.0 nm (3.5 wt.% Pd/C3N4) were formed after ten Pd ALD cycles. Furthermore, by using 
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dimethyl ((3,4-η) N,N-dimethyl-3-butene-1-amine-N) platinum (C8H19NPt) and O2 as 

precursors, Pt single atoms and very small Pt clusters were dispersed on the nitrogen-doped 

carbon cloth (NC-CC) for 10 cycles ALD, and increasing the number of ALD cycles resulted in a 

decrease in the fraction of single atoms and an increase of nanoparticles formation.75 It 

should be noted that although ALD shows great advantages in tailoring metal particle size and 

metal loadings by simply varying the number of ALD cycles or other parameters (ex: 

deposition temperature), the high cost of this technique restricts the industrial scalability.76 

 

Figure 1. 15: Schematics showing the different steps of the ALD process for SAC 

preparation.77 

Wet chemistry synthesis: SACs have also been prepared by wet chemistry routes. The 

most common method is the impregnation method, in which the metal precursors are 

dispersed on the carbon-based supports or incorporated during the synthesis of carbon hosts. 

The typical steps of the process are as follows: 1) introduction of the metal precursor on the 

carbon support by liquid impregnation along with a chelating agent and/or nitrogen source, 

2) drying step, 3) calcination under an inert gas or NH3 and /or reduction step, and 4) possibly, 

a post-treatment such as acid leaching to eliminate the formed metal nanoparticles. The 

incorporation process is a one-pot synthesis in which the metal precursor is mixed with a 

carbon and nitrogen source by impregnation accompanied by a calcination and/or reduction 

step and also a post-treatment step. It should be noted that for SACs of metal content less 

than 1 wt.%, adding the chelating agent is not always necessary. Hu et al.78 reported that 0.18 

wt.% Pd dispersed on graphitic carbon nitride was synthesized by a simple impregnation 

reduction approach without any chelating agent and post-treatment. However, the chelating 
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agent is widely used for higher loading SACs. For example, by using this impregnation method, 

Zhao et al.79 successfully synthesized high loading single atomic metals supported on 

nitrogen-doped carbon material (Figure 1.16). They chose the glucose as the chelating agent 

which efficiently sequestered metal ions and bound to carbon support during the process. 

The addition of glucose was in great excess compared to the quantity of metal added. The 

excessive glucoses also played a role to physically isolate glucose-metal complexes. Thus, the 

chelating agent together with the CNx species originating from the decomposition of 

melamine at high temperature can prevent the coalescence of the metal atoms during the 

pyrolysis. Melamine is employed here as a nitrogen resource added just after the drying step 

and before the pyrolysis step. Besides, the choice of carbon substrate played a key factor in 

the synthesis. They found that O-rich surface with high surface area carbon support was 

necessary to achieve uniform dispersion of glucose-metal complex and physically isolate 

metal centres on substrate. 

 

Figure 1. 16: Synthesis of M-NC SACs dispersed on carbon based support.79 

On the other hand, a low loading of 0.17 wt.% Mn SACs was prepared through one pot 

impregnation of Mn acetate, carbon nanotube and dicyandiamide, accompanied by a 

calcination under N2 at 600 °C and hydrochloric acid washing.80 In addition, high loading SACs 

can be prepared by this method as well. For example, Liu et al.81 reported that high loading 

of Pt (9.26 wt.%) metal single atoms were synthesized by a one-pot method by mixing metal 

salt solution with glucose and dicyandiamide (DICY) followed thermal pyrolysis at 900 °C 

under Ar atmosphere. In fact, during the pyrolysis at low temperature (550 – 750 °C), DICY 

was first assembled to form layered graphitic carbon nitride (g-C3N4), which can serve as a 

template to isolate Pt metal atoms in its frameworks at higher temperature (Figure 1.17). The 
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incorporation of nitrogen atoms in carbon frameworks is essential to form high loading metal 

SACs. Li et al.82 studied the effect of pyrolysis temperature on the metal dispersion in the 

range of 700 – 1000 °C. They found that the overall nitrogen loading in carbon nitride 

decreased from 26.53 wt.% to 5.17 wt.% with increasing the pyrolysis temperature from 

700 °C to 1000 °C. Consequently, the metal particles size increases with increasing the 

pyrolysis temperature due to the loss of nitrogen preventing them against aggregation. 

 

Figure 1. 17: Synthesis of M-NC SACs via one pot synthesis.81 

Pyrolysis of MOFs or organometallic complexes: First of all, it should be noted that 

Metal-organic frameworks (MOFs) can be directly used as supports for the immobilisation of 

metal single atoms owing to well-defined porous structures, good designability and ultrahigh 

surface area.83 MOFs are composed of metal-containing nodes and organic linkers, and metal 

ions in MOFs are typically characterized as atomically dispersed metal sites. With this 

characteristic, the direct pyrolysis of MOFs serves as an ideal route for preparing various 

metal SACs.84 As a classical Zn-based MOF, Zeolitic Imidazolate Frameworks (ZIFs), has been 

widely used for preparing N-doped porous carbons owing to the high N content ligands. For 

example, Yin et al.85 reported that a 4 wt.% Co SACs on nitrogen-doped porous carbon was 

prepared using a pyrolysis processes of a bimetallic Zn/Co ZIFs. Here, Zn in the ZIFs played a 

vital role in the formation of Co single atoms. In the first hand, Co metal atoms were more 

dispersed spatially with the addition of Zn atoms. Secondly, Zn species can be removed by the 

self-evaporation during the pyrolysis at high temperature (melting point: 419 °C; boiling point: 

907 °C). Thus, free N sites can be formed, which favour the stabilization of Co single atoms. 

In the contrary, Co nanoparticles were formed without the protection of Zn after the pyrolysis 

of a pure Co-containing ZIFs, as shown in Figure 1.18. Besides, Wei et al.86 reported that 

surprisingly Pd nanoparticles supported on ZIF-8 were transformed to thermally stable atoms 

via a top-down route above 900 °C in an inert atmosphere. Using density functional theory 

(DFT) calculation, they concluded that the formation of Pd single atoms was driven by the 
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formation of more thermodynamically stable PdN4 structure (two pyrrolic N and two pyridinic 

N) as mobile Pd atoms are preferentially sequestered on defects of nitrogen-doped carbon 

instead of metal aggregation. Furthermore, the pyrolysis temperature plays an important role 

as well. Wang et al.87 observed that during the pyrolysis of Co/Zn ZIFs, the coordination 

number of Co-N decreased from 4 to 2 with increasing the pyrolysis temperatures, the 

following structures Co-N4, Co-N3 and Co-N2 were obtained at 800 °C, 900 and 1000 °C, 

respectively. As discussed previously, N is lost during the pyrolysis at high temperature. 

 

Figure 1. 18: The formation of Co Nanoparticles/N-C (top) and Co Single-atoms/N-C 

(bottom).85 

Ball milling approach: SACs can be also synthesized by ball-milling approach as it is a 

powerful method to cut and/or reconstruct chemical bonds. It was initially developed in Bao’s 

group as shown in Figure 1.19.88 In fact, the graphite was first ball-milled to crush and 

exfoliate into graphene with some defects under Ar atmosphere. Afterwards, metal 

phthalocyanines (MPc) were ball-milled with the obtained graphene under Ar atmosphere. 

The structure of MPc was destroyed during the mechanical process to form MN4 centres. The 

latter could be embedded into the graphene defects to form metal single atoms. 4 wt.% Fe 

single atoms on nitrogen-doped carbon was first prepared by this method. MnN4, FeN4, CoN4, 

NiN4 and CuN4 SACs have been also successfully synthesized.89 
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Figure 1. 19: Scheme of a proposed mechanism for synthesis of metal SACs via ball milling 

method.88 

As discussed previously, important effects of physicochemical properties can be seen 

by reducing metal size into nanoscale. In comparison, the metal single atoms are expected to 

have “atomic size” effects on metal-hydrogen interaction properties compared to metal bulk 

or metal nanoparticles. The “atomic size” effects will be discussed in the next paragraph. 

1.3.2.2 Hydrogen interaction with SACs 

The downsizing of metal nanoparticles to metal single atoms causes dramatic changes 

in metal electronic properties and geometric structure. Consequently, the interaction 

between hydrogen and metals as nanoparticles and single atoms should have distinct 

behaviours. Unlike the hydrogen-bulk metal or hydrogen-metal nanoparticles systems, the 

hydrogen metal single atoms system has not been thoroughly studied so far. Szilágyi et al.90 

reported a Pd SACs supported on a metal-organic framework [NH2-MIL-101(Cr)]. Using a 

combination of DFT calculations, in-situ Raman spectroscopy and temperature-desorption 

spectroscopy, Pd(H2) complexes (Figure 1.20) were proved to form on single Pd atoms. In 

addition, hydrogen was strongly bound in the Pd(H2) complex with an elongated H-H bond by 

over 15%. This elongation signified that there was an activation or destabilisation of the H–H 

bonds, which could have very important consequences in hydrogenation reactions. 
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Figure 1. 20: Structure of the Pd(H2) complex as calculated by DFT, indicating bond lengths 

and angles.90 

On the other hand, Hossain et al.91 calculated hydrogen adsorption energy (Gibbs free 

energy: ΔGH) of transition metals during the reaction pathway of hydrogen evolution reaction 

(HER) by using a model where the transition metal coordinated with four nitrogen atoms 

forming strong covalent bonds are embedded on the graphene structure, as shown in Figure 

1.21. They found that Ni and Pd single atoms interacted weakly with hydrogen (ΔGH = 1.62 

and 1.86 eV, respectively), while Re, Mo, Ti, W and Ta bound strongly with hydrogen as they 

have large negative ΔGH (-0.92, -0.93, -0.94, -1.44 and -1.64 eV, respectively). The Co SACs 

which have a near zero value of ΔGH was predicted to have high HER activity according to 

Sabatier principle,92 and it has been confirmed by experimental results. Similar results were 

also obtained by Fung’s group.93  

 

Figure 1. 21: a) Metal coordinated with four nitrogen atoms in graphene sheet. d) Gibbs free 

energy (ΔGH) diagram for hydrogen adsorption reaction (Volmer reaction) toward a series of 

transition metals used as single atom catalysts.91 

1.4 Hydrogenation reactions with ultra-dispersed metal catalysts 

As discussed previously, the hydrogenation is an important process in industries. 

There are many kinds of hydrogenation reactions: alkyne (𝐶𝐶 ≡ 𝐶𝐶), alkene (𝐶𝐶 = 𝐶𝐶), oxygen-

a b 
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nitrogen double bond (𝑂𝑂 = 𝑁𝑁), carbon-nitrogen double bond (𝐶𝐶 = 𝑁𝑁) and carbon-oxygen 

double bond (𝐶𝐶 = 𝑂𝑂) hydrogenations are common hydrogenation reactions, for example: 

hydrogenation of acetylene, hydrogenation of 1-3-butadiene, hydrogenation of CO2. The 

dominant catalysts for hydrogenation are metal nanoparticles owing to their high catalytically 

metal active sites originated from the high dispersion of nanoparticles on a support. However, 

it has been shown that the single atom catalysts are also reactive for this reaction, sometimes 

performing better in hydrogenation than the nanoparticles. For example, Hu et al.78 

synthesized a Pd SACs supported on a graphitic carbon nitride. The Pd SACs catalyst was 

compared with a Pd nanoparticles sample embedded on the same support for the 

hydrogenation of styrene to ethylbenzene (Figure 1.22 a). Pd SACs catalyst was found to 

attain higher TOF value of 834 h-1 and yielded 98% conversion to ethylbenzene within 1.5h, 

while the TOF was 476 h-1 for Pd nanoparticles and the conversion was less than 55% in the 

same conditions. Wang et al.94 compared a Ru SACs on nitrogen-doped porous carbon with a 

Ru nanoparticles used in the hydrogenation of quinoline (Figure 1.22 b). The two catalysts 

showed 100% conversion of quinoline. However, the Ru SACs had a nearly 100% selectivity 

for the desired product to 1,2,3,4-tetrahydroquinolin (py-THQ) (2a), whereas the by-product 

5,6,7,8-tetrahydroquinoline (21%) (bz-THQ, 2b) was found for Ru nanoparticles. Moreover, 

the Ru SACs catalyst was very stable, it did not deactivate (same activity and selectivity) after 

5 cycles of reactions and its atomic dispersion remained unchanged. Shao et al.95 fabricated 

a stable atomically dispersed Ir catalyst supported on a porous organic polymer. The Ir SACs 

exhibited excellent catalytic activity during the liquid phase hydrogenation of CO2 to formate 

(Figure 1.22 c). In fact, the Ir SACs gave a turnover number (TON) as high as 6784 while the Ir 

nanocatalysts showed only several hundred TON value. The recycling tests indicated that 

there was no decrease in the catalytic activity after four uses. 
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Figure 1. 22: a) Hydrogenation of styrene,78 b) Hydrogenation of quinoline and Catalytic 

performance of Ru SACs and Nanoparticles catalysts,94 and c) Hydrogenation of CO2 to 

formate. 

In this PhD project, different kinds of metal single atom catalysts supported on carbon-

based materials were synthesized and tested in two hydrogenation reactions: gas-phase 

hydrogenation of butadiene and liquid-phase hydrogenation of levulinic acid. Therefore, a 

short overview of these reactions will be discussed briefly below. 

1.4.1 Hydrogenation of Butadiene 

Steam cracking is an industrial process that takes place at high temperature (about 

800 °C) and it is used for producing light olefins including ethylene, propylene, 1-butene, 

butadiene, isoprene, benzene.96 Among them, C4 cuts products, 1-butene and 2-butene, are 

intermediates widely used in industry for the polymerization process.96,97 However, the 

presence of 1-3-butadiene (0.3% to 6%) in C4 species is considered as a poison which causes 

unwanted side reactions and deactivates the catalysts.98 Consequently, the removal of 

butadiene is essential and it is normally reached by the heterogeneous catalytic 

hydrogenation reaction (Figure 1.23). Commonly, nanocatalysts based on Pd and Pt are 

widely used in the industrial process due to their high activity.99–103 However the over-

a 

b 

c 
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hydrogenation to undesirable product butane remains a major issue at high butadiene 

conversion for these catalysts.104  

 

Figure 1. 23: Schema of hydrogenation of butadiene to butenes (1-butene, Trans-2-butene 

and Cis-2-butene) and butane. 

Over the last few years, researchers have reported the selective hydrogenation of 1,3-

butadiene with SACs which showed promising catalytic performances. For example, Lucci et 

al.105 reported that low concentration of Pt SACs dispersed on Cu surface showed 90% 

selectivity to butenes at full conversion and the catalyst remained stable over 2 days at 160 °C. 

Through DFT study, Lv et al.58 showed that Pt single atoms embedded on Cu surface [Pt1/Cu(1 

1 1)] had a higher selectivity toward 1-butene than high Pt content catalyst [Pt4-line/Cu(1 1 1), 

i.e., four Pt atoms in a linear type]. Yan et al.106 compared an atomically dispersed 

Pd1/graphene catalyst prepared by ALD method with 3 different Pd nanoparticles supported 

on carbon catalysts and they found that the SAC showed an excellent reactivity by remaining 

100% butenes selective up to 95% conversion while the selectivity of Pd nanoparticle catalysts 

dropped sharply at high 1,3-butadiene conversion. Furthermore, Zhang et al.107 found that 

very small concentration (0.08 %) of isolated Au3+ on a ZrO2 support were highly selective in 

the hydrogenation of 1,3-butadiene to butene isomers. 

1.4.2 Hydrogenation of Levulinic Acid 

Recognized as one of the “top 10” most promising biomass-derived platform 

molecules by the U.S. Department of Energy,108 levulinic acid (LA) is used as a precursor to 

produce fuels, plasticizers, pharmaceuticals and other chemicals.109 Among these products, 

selective hydrogenation of LA to γ-valerolactone (GVL) (Figure 1.24) has received extensive 

attention due to its unique properties and various applications, such as a solvent, food 

additives and fuels.110,111  
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Figure 1. 24: Hydrogenation of levulinic acid.112 

The hydrogenation of LA is mainly operated in liquid phase in a batch reactor system 

by using metal-based heterogeneous catalysts, such as Cu, Fe, Ni, Ru, Ir and Pd.113–117 

However, as the reaction medium is generally at reaction temperature between 130 and 

220 °C and hydrogen up to 55 bar,115 catalysts tend to suffer deactivation due to metal 

leaching and sintering. For example, Shyam et al.118 reported that a significant decrease of 

reactivity was observed when the Cu/Ni hydrotalcite-derived catalyst was used for successive 

catalytic runs at 140 °C and 30 bar H2 without reactivation. Furthermore, Yan et al.119 reported 

that part of Ru was lost because of leaching during reaction process over a Ru/C catalyst at 

130 °C and 12 bar H2 pressure and its catalytic performance dropped after several recycle 

uses. Due to its high stability as compared to metal nanoparticle catalyst, single atom catalyst 

has been used recently in hydrogenation of LA to GVL. Cao et al.120 synthesized an Ir@ZrO2@C 

SAC which showed an excellent stability and selectivity in the hydrogenation of LA to GVL in 

acidic aqueous solution at 180 °C. In addition, Zhang et al.121 designed a Ru/TiO2@CN SAC, 

with 100% conversion of LA and a GVL selectivity of 100% at room temperature.  
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2.1 Synthesis 

2.1.1 Materials 

The purpose of this project is to synthesize ultra-dispersed metals in the forms of 

nanoparticles and single atoms supported on porous carbon hosts. Two types of commercial 

carbons have been used: a High Surface Area Graphite (HSAG with specific surface area of 

500 m2/g) from Imerys & Carbon and an Activated Carbon (AC with specific surface area of 

1400 m2/g) from STREM Chemicals. The AC was washed with 2 mol/L HNO3 during 24 h for 

the purpose of eliminating the impurities in the material and increasing the hydrophilicity of 

the AC. Afterwards, the AC was filtered and washed with distilled water until neutral pH was 

reached. In the end, the treated AC was dried at 120 °C for 24 hours to remove water. The 

treated AC instead of the initial AC was subsequently used in the synthesis of materials. 

The other chemical products used for the preparation of ultra-dispersed metals on 

porous carbons are listed below: 

Palladium chloride (PdCl2, 99.9%), copper nitrate hydrate (Cu(NO3)2·3H2O, > 98.0%), 

rhodium chloride hydrate (RhCl3·xH2O, 99.99%), platinum chloride (PtCl4, > 99.99%), and 

iridium chloride hydrate (IrCl3·xH2O, 99.8%) were bought from Alfa Aesar. Nickel nitrate 

hexahydrate (Ni(NO3)2·6H2O, 99.99%), sodium molybdate dihydrate (Na2MoO4·2H2O, > 99%), 

ethylenediaminetetraacetic acid (EDTA, [CH2N(CH2CO2H)2]2, > 99.0%), and melamine (C3H6N6, 

99%) were obtained from Sigma-Aldrich. Cobalt nitrate hexahydrate (Co(NO3)2·6H2O), 

ammonia solution (NH3·H2O, 28%), concentrated nitric acid (HNO3, 65%), concentrated 

chlorohydric acid (HCl, 37%) were purchased from VWR Chemicals. The deionized water used 

in all experiments was obtained through ion-exchange and filtration. All the chemicals were 

analytical grade and used without further purification. 

2.1.2 Metal nanoparticles supported on carbon materials 

The metal nanoparticles have been synthesized with a simple liquid-phase 

impregnation method adapted from a previous method.1 First, the porous carbon host was 

mixed with metal precursor solution in 10 mL aqueous solution under continuous magnetic 

stirring in a beaker. The solution was stirred (500 rpm) at room temperature for 2 h to 

completely disperse the carbon support and the metal precursor. Afterwards, the solution 

was dried under stirring at 60 °C until the total evaporation of water (about 3 h). Subsequently, 
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the recovered powder was dried at 70 °C overnight. The dried solid was finally reduced under 

5% H2/Ar flow (500 mL/min) at high temperature (300 - 800 °C) with a ramp of 10 °C/min. The 

metal nanoparticles supported on carbon were obtained after the reduction step. The 

schematic description of synthesis is shown in Figure 2.1. 

 

Figure 2. 1: Schematic illustration of the synthesis of metal nanoparticles supported on 

porous carbon materials. 

The metal precursor solution was prepared by dissolving the metal salt in distilled 

water with the final concentration 0.1 mol/L with one exception for palladium precursor 

solution that was obtained by dissolving the PdCl2 in 10% HCl solution with the final 

concentration 0.1 mol/L PdCl2.  

The metal nanoparticles were supported on two different carbon materials (HSAG and 

AC) to tune the metal nanoparticles size distribution. 

As the reactivity of metal precursors is different, the reduction conditions, 

temperature and time, have to be adapted for each metal precursor. For Pd samples, two 

reduction temperatures (300 or 500 °C) were used to control the nanoparticles size. The metal 

content over the entire sample mass was between 1 and 10 wt.% for different metals. The 

samples are named x-M@Y-z, where x ( wt.%) is the metal content over the entire sample 

mass, M is the metal, Y (HSAG or AC) stands for the carbon support and z (300 - 800 °C) 
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represents the reduction temperature. High loading (10 wt.%) Pd nanoparticles supported on 

carbon hosts were synthesized for the study of the interaction between Pd and hydrogen 

while low metal loadings (1 - 4 wt.%) were used as catalysts in hydrogenation of butadiene. 

More detail of synthesis information is assembled in table 2.1. 

sample Metal 
precursor 

Metal 
content 
(wt.%) 

Carbon 
support 

Reduction 
temperature 

(°C) 

Reduction 
time (min) Utilization 

10-
Pd@HSAG-

300 
PdCl2 10 HSAG 300 15 

Hydrogen 
interaction 

10-
Pd@HSAG-

500 
PdCl2 10 HSAG 500 15 

10-Pd@AC-
300 PdCl2 10 AC 300 15 

2-Co@AC-
400 Co(NO3)2·6H2O 2 AC 400 120 

Hydrogenation 
of butadiene 

2-Ni@AC-
400 Ni(NO3)2·6H2O 2 AC 400 120 

2-Cu@AC-
250 Cu(NO3)2·3H2O 2 AC 250 60 

2-Mo@AC-
800 Na2MoO4·2H2O 2 AC 800 60 

1-Pd@AC-
300 PdCl2 1 AC 300 15 

3.7-Ir@AC-
700 IrCl3·xH2O 3.7 AC 700 120 

1-Pt@AC-
300 PtCl4 1 AC 300 60 

Table 2. 1: List of metal nanoparticle samples, synthesis details and utilization.  

2.1.3 Metal single atom catalysts supported on carbon materials 

The synthesis of metal single atom catalysts supported on carbon materials consists 

of 4 main steps as described in Figure 2.2. The sample 1 wt.% Ir SAC supported on AC was 

taken as an example: 

(1) Impregnation: 200 mg of EDTA (ethylenediaminetetraacetic acid) was dispersed in 10 ml 

distilled water in a beaker under vigorous stirring, several drops of NH3·H2O were added to 

the solution to completely dissolve the EDTA. 3.8 mg of metal salt IrCl3·xH2O was then added 

to the solution. After the total dissolution of metal salt and the formation of a stable complex 

(the solution color is stable after about 6 h), 100 mg of the carbon host (AC or HSAG) was 

added. 
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(2) Evaporation: The solution was stirred (500 rpm) at room temperature for 2 h to 

completely disperse the carbon support and the metal complex. Afterwards, the solution was 

drying under stirring at 60 °C until the total evaporation of water (about 3 h). The recovered 

powder was dried at 70 °C in an oven overnight. 

(3) Grinding: The dried solid was mixed with 500 mg of melamine and hand milled during 15 

min. 

(4) Calcination: The mixture was calcined at 800 °C under Ar flow (200 mL/min) for 2 h with a 

ramp of 3 °C/min. The 1 wt.% Ir SAC sample was obtained after calcination. 

 
Figure 2. 2: Schematic illustration of the synthesis of metal SACs supported on porous carbon 

materials. 

An additional step of acid leaching was needed for certain samples: the obtained sample was 

washed with 10 mL diluted aqua regia (4 mL H2O, 6 mL 37% HCl, 2 mL 65% HNO3) for 6 h to 

eliminate the possibly formed metal nanoparticles during the calcination step. 

Here, EDTA serves as chelating agent to sequester and isolate precursor metal ions. 

The amount of EDTA added is in excess to physically isolate metal complexes and avoid 

coalescence. The quantity of EDTA used in the synthesis depends on the nature and content 

of metal precursor. The melamine, together with EDTA, serves as a nitrogen source for the 

formation of M-N moieties. The acid treated AC is chosen as the carbon support because of 

its high specific surface area (1400 m2/g). 
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The samples are named x-M-Y, where x stands for the metal content over the entire 

sample mass, M is the metal and Y stands for carbon support. For the purpose of comparison 

with the initial carbon supports and metal SACs in the study of hydrogen sorption properties 

and catalysis, a nitrogen doped carbon sample (CNx) was also prepared with same method 

without the addition of metal precursor. More detail of synthesis information is assembled in 

Table 2.2. 

sample Metal 
precursor 

Metal 
content 
(wt.%) 

Carbon 
support 

Mass of added compositions (mg) 
Acid 

leaching Metal 
precursor Carbon EDTA melamine 

CNx - - AC - 100 400 500 - 

1.0-Co-AC Co(NO3)2·6H2O 1.0 AC 10.1 100 200 500 no 

2.5-Ni-AC Ni(NO3)2·6H2O 2.5 AC 55.1 100 400 500 yes 

1.6-Cu-AC Cu(NO3)2·3H2O 1.6 AC 42.3 100 400 500 yes 

5.6-Cu-AC Cu(NO3)2·3H2O 5.6 AC 126.7 100 400 500 yes 

3.7-Mo-AC Na2MoO4·2H2O 3.7 AC 28.0 100 400 500 yes 

0.8-Pd-AC PdCl2 0.8 AC 7.0 100 400 500 yes 

7.5-Pd-AC PdCl2 7.5 AC 111.1 100 800 500 yes 

1.0-Ir-AC IrCl3·xH2O 1.0 AC 3.8 100 200 500 no 

3.4-Ir-AC IrCl3·xH2O 3.4 AC 20.4 100 350 500 no 

1.1-Pt-AC PtCl4 1.1 AC 7.2 100 400 500 yes 

11.7-Pt-AC PtCl4 11.7 AC 115.2 100 800 500 yes 

Table 2. 2: List of metal single atom catalyst samples and synthesis details. 

2.2 Characterization 

2.2.1 Physicochemical characterization 

2.2.1.1 Powder X-ray Diffraction analyses 

X-ray diffraction (XRD) is an important and non-destructive technique used in the field 

of materials characterization to obtain the crystalline structure of materials. X-rays are high-

energy electromagnetic radiation with wavelength ranging from about 10-3 to 10 nm which is 

close to the atomic length scale in crystals. These X-rays are produced by a cathode ray tube 

and filtered to obtain a monochromatic radiation. A beam of the generated monochromatic 

wave is then directed towards a powder sample (Figure 2.3). The crystalline sample consists 

of planes of atoms, with a space dhkl, reflecting the incident X-rays. The reflected X-Rays will 

interfere with each other. These interferences can be constructive (the waves add together 



  CHAPTER II: MATERIALS AND METHODS 

54 
 

in superposition) or destructive (the waves add together but cancel out). The interference will 

be constructive only if the path-length difference 2dhkl·sinθ equals an integer multiple of the 

wavelength of X-rays. This is summarized in the Bragg’s law equation: 

𝑛𝑛𝑛𝑛 = 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                    Equation 2.1 

where n is an integer, λ is the wavelength of the incident X-rays, d is the spacing of the crystal 

planes and θ  is the angle between the specimen surface and the incident (or diffracted) beam. 

These diffracted waves are then detected and counted. The wavelength in XRD experiments 

is known and the distance d between the lattice planes of the material can be determined. 

 

 Figure 2. 3: Bragg reflection for X-ray diffraction. 

In this work, the diffractometer used is a Bruker-D8 Advanced with Bragg-Brentano 

geometry. The 2θ range used is 10˚ to 90˚ at a scan rate of 1.33˚/min. The source used is a 

copper anticathode (λKα1 = 1.5406 Å) working at 40 kV and 40 mA. 

2.2.1.2 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) is a technique of choice to analyze the specimen 

surfaces. A typical SEM consists of an electron gun to emit electron source and accelerate by 

an anode, electromagnetic lenses to focus the electrons, a vacuum chamber to accommodate 

the specimen, and a selection of detectors to collect the signals emitted by the specimen. A 

schematic illustration of a SEM is displayed in Figure 2.4. 

 

Incident 
X-rays 

Reflected 
X-rays 

dhkl 
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Figure 2. 4: Schematic diagram of an SEM microscope.2 

Electrons are created by a thermionic electron gun and accelerated toward the 

specimen using a positive electrical potential (1-30 kV). The accelerated electrons are 

confined and focused using electromagnetic lenses into a thin beam. The beam interacts with 

the atoms of the specimen, producing secondary electrons, backscattered electrons and X-

rays that contain information about its surface morphology and chemical composition. These 

interactions and effects are detected and transformed into images or quantitative chemical 

information. 

In this project, SEM was used for simple imaging purposes. The analysis was carried 

out on a Zeiss Merlin microscope complemented from Oxford Instruments (Aztec EDS 

Advanced). The sample in powder form was placed on a carbon double-sided tape for direct 

analysis. 

2.2.1.3 Transmission Electron Microscopy 

Transmission electron microscopy (TEM) is an analytical tool to reveal sub-micrometer, 

internal fine structure in solids. It allows to obtain detailed micro-structural examination 

through high resolution and high magnification imaging because it produces images from a 
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sample by illuminating the sample with a focused beam of high energy electrons. A schematic 

illustration of a TEM is shown in Figure 2.5. 

 

Figure 2. 5: Schematic of core components of a TEM microscope.2 

TEM needs a high-vacuum system, i.e., 10-7 to 10-10 mbar is necessary in the area of 

the electron source. The column is evacuated to a vacuum of 10-5 to 10-7 mbar. Electrons are 

produced by thermionic emission (a tungsten filament, a LaB6 crystal or a ZrO/W Schottky 

emitter) or cold field emission. The emitted electrons have a low energy and are accelerated 

to a high speed through an acceleration voltage of 80-300 kV. The accelerated electron beam 

hits the specimen and either passes the sample unaffected or interacts with it to produce a 

wide range of secondary signals, some of these are summarized in Figure 2.6. A conventional 

bright-field (BF) image can be formed by using an objective aperture to select the direct 

(transmitted) electrons. In BF image, areas with crystalline or high mass materials which result 

in a strong weakening of the direct beam will appear dark. On the contrary, the objective 

aperture can also block unscattered (transmitted) beam and select the scattered electrons to 

form dark field (DF) image. The backscattered electrons and secondary electrons are used in 

scanning electron microscope (SEM). X-ray photons (EDS analysis: Energy Dispersive 

Spectroscopy) emitted from the sample are used to characterize both qualitatively and 

quantitatively the type of elements that are present in the sample and the percentage of each 
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element’s concentration. Finally, the electron energy loss spectrometry (EELS) evaluates the 

energy loss of inelastically scattered electrons and is very useful to determine the distribution 

of chemical elements including lighter elements, e.g.: B, C, N and O. 

 

Figure 2. 6: The interaction of incoming primary electrons with a specimen. 

In this project, the samples are metal nanoparticles or single atoms supported on 

carbon materials which are in the form of powders. The metal nanoparticles have been fully 

characterized in the laboratory ICMPE on a FEI Tecnai F20 (point-point resolution 2.4 Å) 

operated at 200 kV. The single atoms samples (SACs) were firstly characterized to ensure that 

there was no formation of metal nanoparticles or clusters. For sample preparation, the 

sample powder was dispersed by ultrasonication in ethanol solvent, then small drops of the 

suspension are placed on a carbon hollow grid. BF TEM images were collected. For metal 

nanoparticle samples, the metal nanoparticle size distribution and the average size have been 

determined by statistical analyses of several TEM images using the software ImageJ. For the 

SACs, samples were sent to the laboratory IPCMS to study their dispersion by Scanning 

transmission electron microscopy (STEM) with high-angle annular dark field (HAADF) 

detection on a Jeol 2100F (point point-to-point resolution 1.1 Å), equipped with a Cs-

corrected condenser at the probe level and operated at 200 kV. For sample preparation, the 

powder was dispersed in ethanol through ultrasonication, dropped onto a holey carbon 

hollow grid, and dried by a lamp. To avoid contamination during analysis and remove any 

residual carbon, the samples were Ar plasma-cleaned for 20 s (Plasma Prep 5, GaLa 

Instrumente). No filtering was applied on the STEM images.  
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2.2.1.4 Specific surface area & porosity 

Porous materials are characterized by their texture properties, such as specific surface 

area and porosity. The specific surface area is defined as the accessible area of solid surface 

per unit mass of material and the porosity which consists of pore shape and size, describes 

the ratio of the total pore volume to the volume of the particle. The pores are classified 

according to their size by the IUPAC (International Union of Pure and Applied Chemistry) as 

follows:3 

- Micropores have width smaller than 2 nm; 

- Mesopores have width between 2 and 50 nm; 

- Macropores have widths larger than 50 nm. 

Gas adsorption is the most common experimental method used for characterization 

of the surface and pore size distribution of porous materials. In practice, N2 is chosen as 

adsorption gas and the experiment is carried out at its boiling temperature (77.35 K). The 

physisorption isotherms are obtained experimentally, it describes the amount adsorbed N2 

as a function of the equilibrium relative pressure 𝑃𝑃/𝑃𝑃0 , where the 𝑃𝑃  is the equilibrium 

pressure of the adsorbate N2 and 𝑃𝑃0 is the saturation pressure. The sorption properties are 

depending on the type of porosity and consequently, the IUPAC classifies the following 8 

types of physisorption isotherms (Figure 2.7). 
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Figure 2. 7: IUPAC classification of sorption isotherms.4 

Type I isotherms are given by monolayer adsorption of microporous solids which have 

high uptakes of N2 at relatively low pressures because of the narrow pore width. Type I(a) 

isotherms are found for materials having mainly narrow micropores (< ~1 𝑛𝑛𝑛𝑛), and type 1(b) 

isotherms correspond to materials having broader pore size range including wider micropores 

and possibly narrow mesopores (< ~2.5 𝑛𝑛𝑛𝑛). 

Type II isotherms are given by the nonporous or macroporous materials, which have 

an unrestricted monolayer-multilayer adsorption. The inflection point B indicates the step 

that monolayer coverage is finished, and multilayer adsorption starts. 

There is no point B in the Type III isotherms, consequently the monolayer formation 

is not discernible on the surface of nonporous or macroporous solid. The adsorbate-

adsorbent interactions are weak. 

Type IV isotherms are given by mesoporous materials. The sorption process which 

begins with the monolayer-multilayer adsorption on the mesopore walls as the Type II 
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isotherm, is accompanied by capillary condensation. Capillary condensation is a phenomenon 

of gas condensation in pores at a pressure smaller than saturation pressure of the bulk phase. 

Type IV(a) curve shows capillary condensation with hysteresis. Hysteresis usually occurs when 

mesopore width exceeds a certain critical width (> ~4 𝑛𝑛𝑛𝑛). With mesopores of shorter width, 

type IV(b) isotherms without hysteresis are found. They are also observed on materials with 

conical and cylindrical mesopores closed at tapered end. 

Type V isotherms show a hysteresis loop. However, the sorption isotherm is similar to 

sorption isotherms of type (III) which indicate weak attractive adsorbate-adsorbent 

interactions. This is characteristic of mesoporous materials with low energy of adsorption. 

Type VI isotherms show layer-by-layer adsorption – adsorption on a highly uniform 

nonporous surface. The step-height represents the energies of adsorption for each adsorbed 

layer. 

The specific surface area of materials used in this project is determined by N2 sorption 

at liquid N2 temperature (77.35 K) by using the volumetric method. It measures the amount 

of N2 that adsorbs on the surface of porous solid as a function of gas pressure at equilibrium. 

The Brunauer-Emmett-Teller (BET) method is used to determine the specific surface area via 

the equation 2.2: 

1/𝑛𝑛[�𝑃𝑃0
𝑃𝑃
� − 1] = 1

𝑛𝑛𝑚𝑚𝐶𝐶
+ 𝐶𝐶−1

𝑛𝑛𝑚𝑚𝐶𝐶
∗ 𝑃𝑃
𝑃𝑃0

                Equation 2.2 

Where n is the quantity of the gas adsorbed at the relative pressure and nm is the quantity of 

adsorbate gas in a completed monolayer. C is the BET constant that can be expressed as 

Equation 2.3: 

𝐶𝐶 = exp (𝐸𝐸1−𝐸𝐸𝐿𝐿
𝑅𝑅𝑅𝑅

)                     Equation 2.3 

Where E1 is the adsorption energy of the first layer, EL is liquefaction energy of the second 

and higher layers and R is the ideal gas constant. 

Generally, in the range 0.05 and 0.35 of 𝑃𝑃/𝑃𝑃0 , the plot of 1/𝑛𝑛[�𝑃𝑃0
𝑃𝑃
� − 1] versus 𝑃𝑃/𝑃𝑃0  is a 

straight line, as shown in Figure 2.8: 
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Figure 2. 8: Typical BET plot. 

By the linearization of the BET plot, the slope s and the intercept i are given by equations 2.4 

and 2.5, respectively: 

𝑠𝑠 = 𝐶𝐶−1
𝑛𝑛𝑚𝑚𝐶𝐶

                               Equation 2.4 

 𝑖𝑖 = 1
𝑛𝑛𝑚𝑚𝐶𝐶

                                 Equation 2.5 

Therefore, the nm, the quantity of adsorbate gas in a completed monolayer is expressed as  

𝑛𝑛𝑚𝑚 = 1
𝑠𝑠+𝑖𝑖                                   Equation 2.6 

Finally, the specific surface area is calculated by: 

𝑆𝑆𝑡𝑡 = 𝑛𝑛𝑚𝑚 ∙ 𝑁𝑁𝐴𝐴 ∙ 𝜎𝜎𝑁𝑁2                                Equation 2.7 

Where NA is the avogadro constant (NA = 6.02214076×1023 mol−1) and 𝜎𝜎𝑁𝑁2 is cross-sectional 

area of N2 (𝜎𝜎𝑁𝑁2= 16.2x10-20 m2). 

The textural properties were determined with an Auto IQ Quantachrome instrument. 

Prior to the experiment, 60 mg of sample was outgassed under secondary vacuum at 220 °C 

for 18 hours. The specific surface area was obtained by the BET method in the range of 0.05-

0.2 𝑃𝑃/𝑃𝑃0. 

2.2.1.5 Raman Spectroscopy 

Raman spectroscopy technique is used to determine the vibrational, rotational and 

other low-frequency modes in molecular systems. This is a non-destructive analysis tool for 

the structural characterization of carbon materials. It is based on the interactions of incident 

light inelastically scattered by vibrating molecules within a material. 
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In Raman spectroscopy, sample is illuminated with a monochromatic light, usually 

formed from a laser in the visible, near infrared or near ultraviolet. The monochromatic laser 

beam interacts with the sample and produced scattered light. The Raman spectroscopy is 

used to study the structure disorder of carbon materials. As shown in Figure 2.9, two intense 

bands are present in Raman spectrum of an activated carbon material. The band at about 

1610 cm-1 (G band) is a commonly assigned to the bond stretching of pairs of sp2 carbon atoms 

(G mode). The D band close to 1350 cm-1 is usually assigned to a lattice breathing mode with 

A1g symmetry (D mode). This band cannot be seen for a highly crystalline carbon, however 

it becomes Raman active owing to the presence of structural disorder.  

  

Figure 2. 9: Raman spectrum of activated carbon materials, collected with an excitation λ = 

514 nm, and assignment of the main bands. The insets show a scheme of the vibrational 

modes associated with the two main bands.5  

In this project, the structure of carbon materials was investigated using a Raman 

spectrometer XPloRA PLUS from Horiba Jobin Yvon equipped with a diode laser emitting at 

532 nm. 
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2.2.1.6 X-Ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) is a technique for analyzing the surface 

chemistry of a material. XPS can measure the elemental composition, chemical state and 

electronic state within the surface (1-10 nm depth) of a material.  

The principle of XPS analysis can be described as follows: X-rays beam with energy, ℎ𝑣𝑣, 

provided by electron bombardment of a Mg or Al cathode in a high vacuum system, interacts 

with the electrons in the atomic shell with binding energy, 𝐸𝐸𝑏𝑏 , and photoelectrons are 

generated. The photoelectrons overcome the work function of the sample, 𝛷𝛷𝑠𝑠 , and are 

emitted to the vacuum with kinetic energy: 𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 = ℎ𝑣𝑣 − 𝐸𝐸𝑏𝑏 −𝛷𝛷𝑠𝑠 . The kinetic energy of 

emitted electrons is then measured by the analyzer with 𝛷𝛷𝐴𝐴 the work function. Thus, the 

binding energy of the chemical element is determined: 𝐸𝐸𝑏𝑏 = ℎ𝑣𝑣 − 𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘 − 𝛷𝛷𝐴𝐴 . This is 

summarized in the Figure 2.10. 

 

Figure 2. 10: Schematic explanation of relevant energy terms in XPS of solid surfaces.6 

The XPS experiment was carried out at the laboratory IRCELYON. It was carried out 

using a commercial instrument KRATOS Axis Ultra DLD equipped with an Al Kα (1486.6 eV) 

radiation source. 

2.2.1.7 X-Ray Absorption Spectroscopy 

X-ray Absorption Spectroscopy (XAS) is a powerful technique for determining the local 

structure of selected elements contained within a material. It consists in measuring the X-ray 

absorption coefficient 𝜇𝜇 of a specimen as a function of photon energy E of the incident X-ray 

beam which is usually produced at a synchrotron radiation facility. In the experiment (Figure 

2.11), the absorption coefficient 𝜇𝜇 is calculated by: 
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𝜇𝜇(𝐸𝐸)𝑥𝑥 = 𝑙𝑙𝑙𝑙 𝐼𝐼0
𝐼𝐼

                  Equation 2.10 

where 𝑥𝑥 is the sample thickness, 𝐼𝐼0 and 𝐼𝐼 are the intensities of the incident and transmitted 

beams.  

 

Figure 2. 11: Incident and transmitted X-ray beams in the presence of a  sample with x 

thickness. 

As shown in Figure 2.12, XAS spectrum consists of two energy regions: the first is X-

ray absorption near-edge spectroscopy (XANES) which encompasses three parts: the pre-

edge, the edge and the post-edge 50 eV above the edge and the second is Extended X-ray 

absorption fine structure (EXAFS) which extends from ~50 eV to 1000 eV above the edge. The 

XANES date are valuable for investigation of the local site symmetry and the valence state of 

the X-ray absorbing element, while the EXAFS provides information about the interatomic 

distances, near neighbor coordination numbers and degree of disorder. In our experiment, 

the EXAFS region is mostly exploited but the XANES is also used to identify the charge state 

of the absorbing atom. 
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Figure 2. 12: X-ray absorption spectrum showing the X-ray absorption region near edge 

structure (XANES) including the pre-edge feature and extended X-ray absorption fine 

structure (EXAFS) region.7 

In the EXAFS region, a core electron can be ejected from an atom to the continuum 

and this emitted photoelectron can be represented as an outgoing spherical wave. If the 

absorbing atom is surrounded by neighboring atoms, the outgoing photoelectron wave can 

be backscattered by the neighboring atoms and causing an incoming electron wave. The 

outgoing and incoming waves can interfere with each other either constructively or 

destructively, which result in the sinusoidal variation of the absorption coefficient 𝜇𝜇 versus E 

in the EXAFS spectrum. The EXAFS fine-structure function, 𝑥𝑥(𝐸𝐸), can be defined as 

𝑥𝑥(𝐸𝐸) = 𝜇𝜇(𝐸𝐸)−𝜇𝜇0(𝐸𝐸)
∆𝜇𝜇0(𝐸𝐸)

                  Equation 2.11 

where µ(𝐸𝐸) is the measured absorption coefficient, 𝜇𝜇0(𝐸𝐸) is a smooth background function 

corresponding to the absorption of an isolated atom, and ∆𝜇𝜇0(𝐸𝐸) is the measured jump in 

the absorption µ(𝐸𝐸)  at the threshold energy 𝐸𝐸0  of the absorption edge. The energy E is 

converted into the photoelectron wavevector 𝑘𝑘, 𝑘𝑘 = �2𝑚𝑚(𝐸𝐸−𝐸𝐸0)
ℏ2

. The EXAFS signal 𝑥𝑥(𝑘𝑘) in 𝑘𝑘 

space can be modeled by the following formula8: 
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𝑥𝑥(𝑘𝑘) = ∑ 𝑁𝑁𝑗𝑗𝑆𝑆02

𝑘𝑘𝑅𝑅𝑗𝑗
2 𝐹𝐹𝑗𝑗(𝑘𝑘)𝑒𝑒−2𝑅𝑅𝑗𝑗/𝜆𝜆𝑗𝑗(𝑘𝑘)𝑒𝑒−2𝑘𝑘

2𝜎𝜎𝑗𝑗
2
𝑠𝑠𝑠𝑠𝑠𝑠 [2𝑘𝑘𝑅𝑅𝑗𝑗 + 𝛷𝛷𝑗𝑗(𝑘𝑘)]𝑗𝑗           Equation 2.12 

where 𝐹𝐹𝑗𝑗(𝑘𝑘) is the photoelectron backscattering amplitude from each of the 𝑁𝑁𝑗𝑗 neighboring 

atoms of 𝑗𝑗th type, 𝑆𝑆0
2 is the amplitude reduction factor, 𝑅𝑅𝑗𝑗 is the interatomic distance, 𝜆𝜆𝑗𝑗(𝑘𝑘) is 

the photoelectron inelastic mean free path, 𝜎𝜎𝑗𝑗 is the Debye-Waller factor (thermal vibration 

and static disorder), 𝐹𝐹𝑗𝑗  is the photoelectron (back-)scattering amplitude, 𝛷𝛷𝑗𝑗(𝑘𝑘)  is the 

corresponding (back-)scattering phase for the 𝑗𝑗th atomic shell, and 𝑒𝑒−2𝑟𝑟𝑗𝑗/𝜆𝜆𝑗𝑗(𝑘𝑘)  is related to 

inelastic losses in the scattering process. 

The local structures of metal nanoparticles and single atom catalysts (SACs) were 

investigated by XAS in transmission mode on the ROCK beamline at the SOLEIL 

synchrotron.9,10 Three types of XAS experiments have been carried out. Simple acquisitions 

at room temperature were realized for certain metal SAC samples: Co, Mo, Ir and Pt. For Pd 

nanoparticle samples we have performed in situ XAS under controlled atmosphere (He and 

H2) at room temperature. Finally, the Ir SAC and nanoparticle samples were investigated by 

operando XAS coupled with mass spectroscopy during the reaction of the hydrogenation of 

butadiene: 

Simple XAS acquisition: The local structure of metal SAC samples: Co, Mo, Ir and Pt, and their 

corresponding metal bulks, was investigated by XAS at room temperature. The powder 

samples were placed inside a Lytle-type cell.11 The XAS spectra at the K-edge of Co (E0 = 7709 

eV), the K-edge of Mo (E0 = 20000 eV), L3-edge of Ir (E0 = 11215 eV) and L3-edge of Pt (E0 = 

11564 eV) were measured in air and at room temperature for an acquisition time of 20 

minutes. 1.0-Co-AC, 3.7-Mo-AC, 3.4-Ir-AC, 1.1-Pt-AC, 11.7-Pt-AC as well as 1.0-Ir-AC after the 

catalysis of hydrogenation of levulinic acid were also measured. The metal bulks (Co, Mo, Ir 

or Pt) were used as references. 

In situ XAS: The local structure of Pd bulk and Pd nanoparticles samples was studied by in situ 

XAS. The X-ray absorption spectra at the K-edge of Pd (E0 = 24350 eV) were measured at 

isothermal conditions at 25 °C. The powder samples were placed inside a Lytle-type cell which 

was connected to a gas distribution system that controls the gas flow composition at 

atmospheric pressure. Prior to any isothermal measurement the samples were treated under 

H2 flow (30 ml/min) at room temperature for 10-15 minutes to remove any oxide at the 

surface of nanoparticles, as demonstrated earlier.12 Then the H2 flow was replaced by He (30 
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ml/min) and the samples were heat-treated with the following temperature profile: heating 

to 250 °C with a ramp of 10 °C min-1, dwell at 250 °C for 10 minutes followed by cooling to 

25 °C with a ramp of 15 °C/min. The purpose of this treatment is to completely remove water 

molecules formed during reduction of the surface oxide layer at room temperature together 

with hydrogen atoms possibly adsorbed/absorbed in Pd nanoparticles. Such pre-treatment 

ensures the exploration of hydrogen sorption properties of clean nanoparticles without oxide 

layer or other interstitial impurities. Four samples: Pd bulk and 3 Pd nanoparticles: 10-

Pd@HSAG-500, 10-Pd@HSAG-300 and 10-Pd@AC-300, were measured under several H2 

partial pressures in a He flow (30 ml/min). The sequence of H2 partial pressures was the 

following: 0, 0.05, 0.25, 0.5 and 1 bar in absorption as well as 1, 0.5, 0.25, 0.05 and 0 bar H2 

in desorption at 25 °C. A Pd foil was used as reference. 

Operando XAS: Operando XAS on 1.0-Ir-AC SAC and 1-Ir@AC-700 nanoparticles samples 

during the hydrogenation of butadiene were carried out at the L3-edge of Ir (E0 = 11215 eV). 

Metal Ir foil and IrO2 were used as reference. The powder samples were placed inside a Lytle-

type cell. The experiment followed as close as possible the laboratory reaction conditions 

(described in 2.2.3.1 hydrogenation of butadiene). Prior to each operando experiment, the 

samples were pretreated to remove contaminants at the surface by heating to 250 °C for 1 h 

under continuous He/H2 flow (15 ml/min He and 15 ml/min H2) and then cooled down to 25 °C. 

Afterward, the catalysts were exposed to the reactive gas mixture (35 mL/min): 0.5% C4H6 + 

2.5% H2 + 97% He and temperature was raised to 200 °C with a ramp of 1 °C/min. The 

temperature was maintained at 200 °C for 1 h under reaction conditions. The XAS 

measurements were coupled with continuous mass spectrometry (MS) to determine the 

reaction kinetics and catalytic products.  

All XANES spectra were calibrated in energy and normalised at SOLEIL Synchrotron. 

The XAS data treatment and EXAFS refinements were performed with the MAX program 

package (CHEROKEE and Roundmidnight). The normalised spectrum was first treated by the 

software “CHEROKEE” to remove background, then the spectra of EXAFS and FT (Fourier 

transform) were obtained. The filtered spectra of EXAFS was extracted in the range of  3 - 

15 Å-1 of FT for Pd and 4 - 15 Å-1 for Co, Mo, Ir and Pt.13,14 EXAFS fitting was performed on 

first-sphere filtered spectra with the filtered spectra by the software “Roundmidnight”. 

Theoretical phases and amplitudes were computed with FEFF8 based on fcc Pd metal 
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structure for Pd samples and X-N4 (X = Co, Mo, Ir or Pt) for SACs samples. The refined 

parameters are the coordination number (N), the Debye-Waller factor (σ2), the nearest 

neighbour distance (R) and, for small Pd nanoparticles only, the C3 cumulant factor to account 

for deviations from Gaussian distribution. The energy shift ΔE0 was refined first for the metal 

reference and then fixed for further refinements. The goodness of fit was evaluated using the 

quality factor (QF).  

2.2.1.8 Inductively Coupled Plasma Spectroscopy 

Inductively Coupled Plasma (ICP) spectroscopy is an analytical technique that can be 

used to measure quantitatively the chemical elements at trace levels in materials. The first 

step in ICP is the sample preparation: solid samples are normally dissolved by acid treatment 

in a solution, e.g., HCl, HNO3 and aqua regia. The liquid solution of the sample is then 

transformed into a coarse aerosol form through a nebulizer. The aerosol is introduced in an 

argon-induced plasma, at around 7000-10000 K. At such high temperature, the aerosol is first 

dried to a solid, then atomization and ionization take place. Two kinds of detector 

technologies are used: Atomic Emission Spectroscopy (AES) and Mass Spectroscopy (MS). 

Atomic Emission Spectroscopy (ICP-AES) involves the measurement of the 

characteristic wavelength of light emitted from the atoms of samples. At high temperature, 

atoms are capable of absorbing radiation and electrons are excited from the ground state to 

higher energy levels. When the electrons return to the initial state, an emission of light 

(photons) occurs, as shown in Figure 2.13. Each element has a characteristic emission 

spectrum. The wavelengths are separated and identified, and the light intensity of each 

wavelength is measured with a spectrometer. Mass spectroscopy (ICP-MS) measures the ratio 

mass/charge (m/z) of ions produced by high temperature argon plasma. In the mass 

spectrometer, the ions are separated according to their m/z ratio and measured in function 

of their abundance. 
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Figure 2. 13: Schematic representation of atomic absorption and atomic emission energy 

transitions: LS, lower-energy state or ground state; HS, higher-energy state.15 

In this work, in order to determine the metal content in the SACs samples, ICP-AES 

was performed at IRCELYON using an ICP-AES ACTIVA DE HORIBA JOBIN YVON. The samples 

were dissolved by using the mixture of concentrated H2SO4 and aqua regia at 350 °C. 

2.2.1.9 Thermogravimetric Analysis 

Thermogravimetric Analysis (TGA) is a method of thermal analysis in which the mass 

of a sample is measured as a function of temperature changes in a controlled atmosphere. 

The experiment is carried out on a thermogravimetric analyzer. It contains a sample pan 

weighed by a precision balance. This sample pan is placed inside a furnace with a controlled 

temperature and environment. The sample is generally heated at constant rate to a fixed 

temperature under a variety of atmospheres, e.g., ambient air, vacuum and Argon. The 

temperature and mass of sample are recorded as function of increasing temperature with a 

constant rate. The TGA is often coupled with a spectrometer (FTIT: Fourier Transform Infrared 

Spectroscopy, or MS: Mass Spectroscopy) to analyze the volatile species and pyrolysis 

products, which can lead to understand how a compound or formulation decomposes and 

what components it contains. 

In this work, the formation of 1.0-Ir-AC has been monitored by the TGA-MS at 

IRCELYON. TGA-MS analysis was conducted on a Setaram Setsys Evolution 12 thermoanalyzer 

via a heated (ca. 150 °C) capillary with a Pfeiffer Omnistar quadrupole mass spectrometer 

(QMS). Degassed sample (20 mg of mixture of IrCl3, EDTA, AC and melamine) was placed in a 

Pt-based open crucible and heated from ambient temperature to 800 °C for 2 h , at a constant 

rate of 3 °C/min, under a flow of pure argon (40 ml/min). 
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Other samples were analyzed for the thermal stability of materials under continuous 

dry air flow condition by TGA at ICMPE. A SETARAM evo TGA 1160 evolution was used for this 

analysis. Degassed sample (20 mg) was placed in a Pt-based open crucible and heated up to 

800 °C with a ramp of 10 °C/min, under a flow of dry air (20 ml/min). 

2.2.2 Hydrogenation properties 

2.2.2.1 Pressure-Composition Isotherm 

Hydrogen sorption properties have been investigated by the Sievert method, also 

known as volumetric method. A general Sievert’s apparatus is schematically shown in Figure 

2.14 a. The system is composed of the following components: H2 gas supply, vacuum supply, 

pressure measurement, and two chambers (reference chambre: 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 and sample chambre: 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) connected by an isolation valve. The measurement follows an iterative process. Sample 

is placed in the sample chambre and separated from the reference chamber with a 

determined pressure and temperature. Hydrogen is loaded into the reference chamber at a 

pressure of 𝑝𝑝𝑖𝑖 = 𝑖𝑖 ∙ ∆𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖  with ∆𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖  being a selected pressure increment. After the 

stabilization of the gas temperature into the reference volume, the isolation valve is opened 

and the H2 gas expands to the sample cell. The gas expansion results in the drop of pressure 

in the reference chamber and the rise of pressure in the sample chambre. An equilibrium 

pressure (𝑝𝑝𝑒𝑒𝑒𝑒,𝑖𝑖) is reached for the sample after a suitable stabilization time.. Afterwards, the 

sample chamber is again isolated from the reference chamber. The absorption process is 

repeated at 𝑝𝑝𝑖𝑖+1 = (𝑖𝑖+ 1) ∙ ∆𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 up to the desired final pressure. The desorption process is 

identical as the absorption process except with a pressure decrement down to zero pressure. 

A schematic representation of pressure evolution of the absorption process is shown in Figure 

2.14 b. 
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Figure 2. 14: a) Schematic representation of a Sievert’s apparatus,16 and b) Schematics of the 

measurement procedure in a Sieverts apparatus. The schematics illustrates the acquisition of 

point i+1.17 

The amount of hydrogen absorbed or desorbed by a certain mass of sample can be 

calculated by the collected data 𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑒𝑒𝑒𝑒,𝑖𝑖  and 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 , with the formula: 𝑛𝑛(𝐻𝐻2 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) =

𝑃𝑃𝑖𝑖∙𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑃𝑃𝑒𝑒𝑒𝑒(𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟+𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝑅𝑅𝑅𝑅

, where R is ideal gas constant and T is temperature and a pressure-

composition isotherms (PCI) curve can be constructed by measuring the equilibrium pressure 

and the hydrogen concentration in the sample. A typical PCI curve of Pd bulk at room 

temperature is shown in Figure 2.15. At low hydrogen pressure, H2 is slightly dissolved by the 

metal and forms a solid-solution phase (α phase). When the gas pressure increases, the 

hydride phase (β phase) begins to form and the Pd starts to absorb large quantities of 

hydrogen at constant pressure (plateau pressure). The pressure augments rapidly after the 

Pd has totally been transformed into Pd hydride. This process is reversible by lowering the 

hydrogen pressure. 
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Figure 2. 15: Example of Pressure-Composition Isotherm of Pd bulk at RT. 
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In this work, the experiments were carried out to measure pressure composition 

isotherm (PCI) curves at different temperatures up to a maximum hydrogen pressure of 1 bar 

by an automated volumetric apparatus (Quantachrome Autosorb IQ). Prior to the experiment, 

the samples were degassed under secondary vacuum at 220 °C for 18h. 

2.2.2.2 Thermo-Desorption Spectroscopy 

Thermal desorption spectroscopy (TDS) is originally a surface characterization 

technique for the study of the interaction of reaction gases with solid surfaces as a function 

of sample temperature. It is widely used to investigate the hydrogen sorption behavior in 

metallic materials. The basic concept of this method is that the hydrogen absorbed by the 

material can be desorbed when it is heated to a higher temperature. 

A schematic illustration of TDS apparatus is shown in Figure 2.16. The experiment is 

performed at a high vacuum condition (typically, 10-6 bar). The sample is usually cooled to a 

certain temperature by liquid He, liquid N2 or simply at room temperature and then heated 

at a programed heating rate. The hydrogen desorbed from the sample is measured by a mass 

spectrometer (e.g., quadrupole mass spectrometer). The quantity of desorbed gas is recorded 

as a function of the sample temperature , i.e., a TDS spectrum. 

 

Figure 2. 16: Schematic illustration of thermal desorption spectroscopy apparatus.18 

The Kissinger method is usually used to estimate the activation energy of desorption. 

The Kissinger equation19 is described by the equation below: 

ln � 𝛽𝛽
𝑇𝑇𝑚𝑚2
� = − 𝐸𝐸𝑎𝑎

𝑅𝑅𝑇𝑇𝑚𝑚
+ ln𝑘𝑘0              (Equation 2.13)  

Where: 𝐸𝐸𝑎𝑎  is the activation energy, 𝛽𝛽  is the heating rate, 𝑇𝑇𝑚𝑚  is the temperature that 

corresponds to maximum desorption rate, 𝑅𝑅 is the gas constant and 𝑘𝑘0 is a pre-exponential 
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factor. By varying the heating rate 𝛽𝛽, a Kissinger linear plot of ln � 𝛽𝛽
𝑇𝑇𝑚𝑚2
� vs. 1

𝑇𝑇𝑚𝑚
 is obtained, and 

the activation energy is related to the value of the slope of the Kissinger plot.  

In this work, three experimental protocols were carried out at different temperature 

range. For our convenience, the unity of temperature used in TDS at cryogenic condition is 

Kelvin (K) instead of Celsius (°C), typically used in the high temperature range: 

(1) High-temperature TDS in the temperature range 25 – 225 °C (298-498 K): The samples 

were exposed to 1 bar H2 at room temperature and subsequently evacuated under secondary 

vacuum. Afterwards, the desorbed H2 partial pressure was recorded while heating to 225 °C 

with a constant heating rate of 5 °C/min. 

(2) Medium cryogenic TDS in the temperature range 78 – 310 K: The experience was carried 

out using an Oxford Instrument cryostat (ITC 5035) that uses liquid nitrogen as a coolant. The 

hydrogen partial pressure was recorded from 77 to 310 K with heating a heating rate of 2 – 

10 K/min. 

(3) Low cryogenic TDS in the temperature range 35 – 300 K: The experience was carried out 

using an ARS-4HW Compressor cryostat that employs liquid helium as a coolant. The 

hydrogen partial pressure was recorded from 35 to 300 K with a heating of 5 K/min. 

2.2.3 Catalysis 

The samples were evaluated in catalytic reaction of selective hydrogenations in 

different mediums at laboratory IRCELYON: hydrogenation of butadiene in gaseous condition 

and hydrogenation of levulinic acid (LA) in aqueous solution. 

2.2.3.1 Hydrogenation of butadiene 

Two protocols were carried out in the hydrogenation of butadiene, the first is the main 

reaction, hydrogenation of butadiene, and the second is the isomerization of butenes. 

Main reaction: The equipment of hydrogenation of butadiene is described in Figure 

2.17. The hydrogenation of butadiene was carried out under atmospheric pressure in a 

continuous flow fixed-bed stainless steel U shape reactor. The reactor was placed in a ceramic 

furnace and the temperature is controlled via a thermocouple. Before the reaction, 40 mg of 

catalyst was mixed with 100 mg Al2O3 and activated in situ with hydrogen by heating from 

room temperature (RT) to 250 °C at a heating rate of 4 °C/min and maintained at 250 °C for 1 
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h. Then the reactor was cooled down to RT under H2. The feed flow rate was set to 100 ml/min. 

The reactive gases (C2H2:H2:He) were mixed using mass flow controllers (Brooks and Vögtlin) 

with a ratio of 2:10:88. The temperature was heated to 200 °C with a ramp of 1°C/min and 

maintained at 200 °C for 1 h under reaction gases. The feed and effluent gases were analyzed 

online using Shimadzu GC-2014 gas chromatograph equipped with a Supelco alumina sulfate 

plot coupled with a silica capillary column and an FID detector.  

Butadiene conversion (%) is based on the initial concentration of butadiene in the 

reactive gases ([butadiene]0) and defined by: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (%) =
[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏]0−[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏]𝑡𝑡

[𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]0
× 100, where [butadiene]t refers to the concentration of butadiene 

detected by GC at time t. The selectivity to butenes (1-butene, trans-2-butene and cis-2-

butene) is defined as ∑𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏/(∑𝑃𝑃∑𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  + ∑𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) where Pi is the partial pressure of 

product i. 

 

Figure 2. 17: Schematic diagram of catalytic hydrogenation of butadiene test system. 

Isomerization of butenes: In order to understand the mechanism of hydrogenation of 

butadiene, the isomerization of butenes was realized on the same reaction instrument. 

Before the reaction, 40 mg of catalyst was mixed with 100 mg Al2O3 and activated in situ with 

hydrogen by heating from room temperature (RT) to 250 °C at a heating rate of 4 °C/min and 

maintained at 250 °C for 30 min. Then the reactor was cooled down to RT under He. After the 
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pretreatment, the feed flow rate was set to 100 ml/min with a mixture of 0.04% butenes/N2 

(10.5% 1-butene, 50.9% isobutene, 21.7% trans-2-butene and 16.9% cis-2-butene). The 

temperature was heated to 350 °C with a ramp of 1°C/min. The feed and effluent gases were 

analyzed online using the gas chromatograph mentioned above. 

2.2.3.2 Hydrogenation of levulinic acid 

The aqueous catalytic hydrogenation experiments were performed using a 300 mL 

high-pressure batch (Parr 4560) Hastelloy autoclave, equipped with a magnetically driven 

impeller and a liquid sampling system. The reaction temperature was monitored by a 

thermocouple probe, which was present inside a thermowell, in the reactor. A 150 mL 

aqueous solution of levulinic acid (LA) (0.17 M) and 0.8 g (or 0.4 g) of the catalyst were loaded 

into the reactor. After sealing, the autoclave was purged three times with Ar, heated up to 

160 °C, then pressurized with H2 up to 50 bar (or 150 bar) and stirred at 900 rpm. The reactions 

were conducted for 24 h, and the samples were collected periodically every 2 h during the 

day to follow the evolution of the reaction. The collected liquid samples were analyzed by a 

GC Agilent Technologies 6890N with a flame ionization detector employing a VF-WAXms 

column (30 m × 0.25 mm × 0.25 μm). The temperature was increased up to 190 °C under 

helium as a carrier gas. 

LA conversion (%) is based on the initial concentration of LA ([LA]0) and defined by: 

𝐿𝐿𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (%) = [𝐿𝐿𝐿𝐿]0−[𝐿𝐿𝐿𝐿]𝑡𝑡
[𝐿𝐿𝐿𝐿]0

× 100, where [LA]t refers to the concentration of LA at time 

t. Selectivity and yield of a product i are given by 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (%) = [𝑃𝑃𝑖𝑖]𝑡𝑡
[𝐿𝐿𝐿𝐿]0−[𝐿𝐿𝐿𝐿]𝑡𝑡

× 100 and 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (%) = [𝑃𝑃𝑖𝑖]𝑡𝑡 
[𝐿𝐿𝐿𝐿]0

𝑥𝑥100, where [Pi]t refers to the concentration of the product i at 

time t.  
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3.1 Synthesis of Palladium carbon materials 

The aim of this chapter is to study the interaction between hydrogen and ultra-small 

sized Pd and to follow H2 effect of down scaling from bulk material to nano, sub-nano and 

until single atom state (Figure 3.1). 

The following samples will be investigated: 

- 3 samples composed of Pd nanoparticles supported on two porous carbons (High 

Surface Area Graphite - HSAG - with 500 m2/g from Imerys Graphite & Carbon and the 

activated carbon, AC with 1400 m2/g from STREM Chemicals).  

-2 samples containing Pd single atom catalyst (SACs) with different concentrations 

dispersed on a nitrogen-rich activated carbon (AC, a commercial porous carbon - with 1400 

m2/g from STREM Chemicals),  

-for the sake of comparison, Pd bulk in powder form was also studied.  

 

Figure 3. 1: Illustration of downsizing Pd size from bulk state to single atom state.  

The synthesis of nanoparticles and SAC was detailed in Chapter II. 

The Pd SAC was prepared by a cascade anchoring strategy adapted from Zhao et al.1 

The Pd SAC was dispersed on a nitrogen-rich AC by the liquid impregnation of the pristine AC 

with PdCl2 precursor in an aqueous solution in the presence of a chelating agent (EDTA) 

followed by pyrolysis under Ar at 800 °C in the presence of a source of nitrogen (melamine). 

This treatment allows the simultaneous preparation of metal SAC and doping of carbon with 

nitrogen. The pyrolyzed sample was further leached with aqua regia for 6 h to remove 

possible large clusters/nanoparticles formed during pyrolysis. The samples are named x-Pd-

AC, where x (0.8 or 7.5 wt.%) stands for the metal content over the entire sample mass. A 
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nitrogen doped carbon sample (CNx) was prepared with same method without the addition 

of Pd precursor. 

 The Pd nanoparticles samples were prepared by a simple method based on the liquid 

impregnation of the carbon supports (AC or HSAG) with a H2PdCl4 precursor aqueous solution, 

followed by reduction under H2/Ar flow at 300 °C or 500 °C, as described earlier.2 The samples 

are named x-Pd@Y-z, where x (10 wt.%) is the metal content over the entire sample mass, Y 

(AC or HSAG) stands for the carbon support and z (300 or 500 °C) represents the reduction 

temperature. 

3.2 Pd nanoparticles supported on carbons 

First, we will discuss the physicochemical and hydrogen sorption properties of the 

three nanosized Pd supported on carbons prepared by liquid impregnation and subsequent 

reduction. 

3.2.1 Physicochemical properties of materials 

The synthesized materials were firstly characterized by X-Ray Diffraction (XRD) for the 

determination of their structural properties (Figure 3.2). Two carbon materials were used 

here: HSAG and AC. 

The HSAG is a crystalline graphite with the main diffraction peak at 26.4° (Miller index 

(002)). The HSAG maintains its crystalline structure after the synthesis of Pd nanoparticles. 

The sample 10-Pd@HSAG-500 (Figure 3.2 a) shows sharp Pd diffraction peaks indexed (111), 

(200), (220) and (311) along with the ones from graphite. However, the diffraction peaks 

broaden for the sample 10-Pd@HSAG-300 (Figure 3.2 b) and only the diffraction peak (111) 

can be noticed. This indicates that Pd nanoparticles formed in the latter sample might have a 

smaller size distribution than the former sample.3 

The AC is mainly amorphous with a small graphitic component, as proven by the 

presence of the (002) sharp peak at 26.4°. Nevertheless, some impurities are also present 

which give rise to several small additional diffraction peaks. The diffraction peaks of Pd are 

hardly visible in the diffractogram of 10-Pd@AC-300 (Figure 3.2 c), only the plane (111) is 

slightly noticeable as a broad contribution overlapping the carbon contribution at around 40-

50°. This suggests probably that the size of Pd nano-objects is too small to be detected by XRD 
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(too short coherence lengths for X-ray diffraction). This hypothesis will be further verified by 

transmission electron microscopy. 
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Figure 3. 2: XRD patterns of a) HSAG and 10-Pd@HSAG-500, b) HSAG and 10-Pd@HSAG-300 

and c) AC and 10-Pd@AC-300. 

These materials were characterized by Transmission Electron Microscopy (TEM) to 

analyse the dispersion of Pd on the carbon hosts as well as the formation of metal 

nanoparticles or clusters. 

     

 

 

 

 

Figure 3. 3: TEM images of 10-Pd@HSAG-500, 10-Pd@HSAG-300 and 10-Pd@AC-300, 

together with the particle size distribution of Pd nanoparticles. 

The TEM bright field images of different Pd samples are shown in Figure 3.3. For the 

samples 10-Pd@HSAG-500, 10-Pd@HSAG-300, 10-Pd@AC-300, Pd nanoparticles are noticed 

as the black spots. They are well dispersed on the carbon supports. The average particle size 
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was determined by the statistical analysis of particles size histograms. Pd nanoparticles 

embedded on HSAG have a mean size of 6.0(±1.7) nm for the reduction temperature 500 °C. 

The average particle size reduced to 2.0(±0.5) nm when the reduction temperature decreased 

to 300 °C. Pd nanoparticles supported on AC, which has a larger surface area than HSAG (AC: 

1400 m2/g > HSAG: 500 m2/g ), has the smallest average size, 1.4(±0.3) nm at a reduction 

temperature of 300 °C. Consequently, it can be concluded that the size of Pd nanoparticles 

decreases with decreasing the reduction temperature and with increasing the specific surface 

area of support. For the sake of the convenience and clarity, the samples containing Pd 

nanoparticles 10-Pd@HSAG-500, 10-Pd@HSAG-300 and 10-Pd@AC-300 will be further 

named 6.0 nm Pd, 2.0 nm Pd and 1.4 nm Pd, respectively. 

The textural properties were characterized by nitrogen adsorption/desorption 

measurements at 77 K. Figure 3.4 shows the N2 adsorption/desorption curves for HSAG, AC 

and the Pd samples. A hysteresis loop can be observed for both HSAG and AC, meaning that 

they contain mesopores. The micropores contribution is relatively high at low pressure values 

for AC, indicating that the AC is more microporous than the HSAG. 

The surface area, as determined by BET method in the relative pressure range P/P0 = 

0.05 – 0.20 decreases with the Pd nanoparticles dispersed on the support (Table 3.1). There 

are two reasons to explain the diminution of the surface area. First, the volumetric mass 

density of Pd (12.02 g/cm3) is bigger than C (graphite: 2.09-2.23 g/cm3, AC: 1.80-2.10 g/cm3). 

Therefore, adding Pd in carbon increases the density of the material. The specific surface area 

is defined as the total surface area per unit of mass. Thus, for the same kind of material, the 

higher the density, the smaller the specific surface area. Secondly, Pd nanoparticles 

supported on carbons can block the pores of the materials and consequently the accessible 

pores, and specific surface area decreases after the synthesis of Pd nanoparticles.  
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Figure 3. 4: N2 adsorption/desorption curves at 77 K of (a) HSAG, 6.0 nm and 2.0 nm Pd, and 

(b) AC and 1.4 nm Pd. 

sample Surface area (m2/g) 
HASG 500(±10) 

6.0 nm 450(±10) 
2.0 nm 430(±10) 

AC 1400(±10) 
1.4 nm 1170(±10) 

Table 3. 1: Specific surface area of HSAG, AC, 6.0 nm, 2.0 nm and 1.4 nm Pd. 

3.2.2 Nanosized Pd interaction with hydrogen 

The hydrogen sorption properties of Pd nanoparticles were characterized by several 

techniques including: Pressure-Composition Isotherms (PCI), in situ X-Ray Diffraction (in situ 

XRD), in situ X-Ray Absorption (in situ XAS), Thermal Desorption Spectroscopy (TDS) as well as 

a theoretical approach based on atomic simulations. 

3.2.2.1 Hydrogen sorption properties at room temperature 

The Pressure-Composition Isotherms (PCI) of these materials have been studied firstly 

at room temperature up to 1 bar H2. Figure 3.5 shows the details of absorption/desorption 

H2 curves of 1.4 nm, 2.0 nm, 6.0 nm Pd nanoparticles as well as Pd bulk. The carbon supports 

have negligible H2 uptake under present conditions4 (see also in section 3.3.1, Figure 3.24). 

Consequently, all H2 capacity can be related to H absorption in Pd, and the H absorbed can be 

expressed as H/Pd in x-axis. The PCI curves clearly show size effects when Pd size decreases. 

These effects can be summarized as followed: 

1) The total capacity at 1 bar H2 pressure diminishes with the decrease of Pd size; 
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2) The αmax solubility limit (solid solution) increases with the decrease of Pd size; 

3) The βmin solubility limit (hydride phase) decreases with the decrease of Pd size; 

4) The plateau becomes slopped for 6.0 nm and 2.0 nm Pd, and it completely disappears 

for 1.4 nm Pd; 

5) Absorption and desorption show only partial reversibility for Pd nanoparticles at low 

pressure, contrary to Pd bulk. 
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Figure 3. 5: Pressure-composition-isotherms curves for Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm 

Pd at 25 °C. Full and empty symbols stand for absorption and desorption, respectively. 

Overall, the hydrogen absorption capacity diminishes with decreasing the particles 

size. For example, at 1 bar H2 pressure, the total amounts absorbed are 0.70, 0.65, 0.45 and 

0.45 H/Pd for Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm Pd nanoparticles, respectively. Nützenadel 

et al.5 explained that the diminution of hydrogen absorption capacity is due to the relative 

number of interstitial sites which reduces with decreasing nanoparticle size. In fact, Pd atoms 

on surface provide only 50% of interstitial sites because they are half outside. Surface Pd 

atoms can be neglected for Pd bulk, while they can no longer be ignored for Pd nanoparticles. 

Normally, the proportion of surface atoms increases with decreasing particle size. 
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Consequently, the available interstitial sites decrease as the Pd size diminishes, along with 

the hydrogen capacity. The most recognized hypothesis to explain the increase of αmax is that 

there exist subsurface sites which are more favourable to form solid solution and a bulk-like 

inner core that acts like Pd bulk6–8. Upon this hypothesis, the interstitial sites of the subsurface 

are more favourable to be occupied and to form solid solutions with hydrogen than the bulk-

like ones.  

There are several explanations regarding the plateau which becomes steeper with 

reducing the particle size: surface tension, broad size distribution of nanoparticles, interfacial 

stress of the nanoparticles with the stabilizer/host.9–11 The absence of the plateau for 1.4 nm 

Pd indicates that the hydride phase is no longer formed and only solid solutions with H are 

expected, in very good agreement with previous findings for 1.0 nm Pd supported on MIL-

101.12  

The non-closing absorption/desorption PCI curves for Pd nanoparticles are ascribed to 

the hydrogen trapping in strong interstitial sites of the lattice, which will be discussed in detail 

later. 

To better understand hydrogen sorption properties with Pd at room temperature, in 

situ XRD under 1 bar H2 was carried out (Figure 3.6). The sample was first analysed by XRD 

under vacuum (initial state). Then 1 bar H2 was filled in the sample holder to check the hydride 

formation. Finally, XRD was recorded at dynamic vacuum (desorbed state). As shown in these 

diffractograms, the peaks of Pd shift to smaller 2θ angles under H2 as compared to Pd under 

vacuum owing to the formation of Pd hydride phase for Pd bulk, 6.0 nm and 2.0 nm Pd, while 

no noticeable shift for 1.4 nm Pd is observed. The latter observation can be explained by two 

plausible propositions. Firstly, as discussed previously, only the diffraction peak of Pd (111) is 

slightly noticeable for 1.4 nm Pd supported on AC due to the ultra-small particles size. 

Moreover, it overlaps with the diffraction peaks of AC support. Consequently, it is very 

difficult to discern the shift of diffraction peak under H2. Secondly, perhaps there is no hydride 

formation for 1.4 nm Pd under 1 bar H2 at room temperature to give rise to a remarkable shift 

of the diffraction peaks. The latter hypothesis is supported by the result obtained from PCI 

experiment at room temperature. We can also observe that the shift of the peaks becomes 

smaller as the Pd size reduces, which indicates smaller lattice parameter change with 

decreasing the Pd size. The lattice constants (a) have been determined for Pd samples under 
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vacuum and 1 bar H2 (Table 3.2). In order to have a clear comparison with the nearest RPd-Pd 

obtained from in situ XAS experiment discussed in the next paragraph, the nearest Pd-Pd 

distance (RPd-Pd) values have also been also determined by employing formula: 𝑅𝑅𝑃𝑃𝑃𝑃−𝑃𝑃𝑃𝑃 =

𝑎𝑎/√2 (Face-Centred Cubic) lattice (Table 3.2). All Pd samples have the same RPd-Pd distance 

(2.752 Å) under vacuum, in agreement with previous reported values for Pd bulk.13,14 The RPd-

Pd is 2.863, 2.844 and 2.822 Å for Pd bulk, 6.0 nm and 2.0 nm Pd under 1 bar H2, respectively. 

The decrease of the lattice parameter expansion with reducing Pd size under 1 bar H2 suggests 

that the H2 absorption capacity diminishes. This is consistent with the PCI curves shown in 

Figure 3.5. 
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Figure 3. 6: In situ XRD under vacuum (initial state), under 1 bar H2 (absorbed state) followed 

by vacuum (desorbed state) for Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm Pd at 25 °C.  
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Sample 
Bulk 6,0 nm 2,0 nm 1,4 nm 

a (Å) RPd-Pd (Å) a (Å) RPd-Pd (Å) a (Å) RPd-Pd (Å) - 
Initial state 3,891 2,751 3,891 2,751 3,892 2,752 - 

1 bar H2 4,049 2,863 4,022 2,844 3,991 2,822 - 
ΔR/R - 4,10% - 3,40% - 2,50% - 

Table 3. 2: Lattice parameter and the distance of nearest Pd-Pd (RPd-Pd) for Pd bulk, 6.0 nm, 

2.0 nm and 1.4 nm Pd determined by XRD under vacuum and under 1 bar H2, and the 

variation of RPd-Pd (ΔR/R) for Pd samples under 1 bar H2 as compared to initial state. 

In order to investigate the local structure change of Pd samples under 

absorption/desorption process at room temperature, in situ XAS was carried out under 

different H2 partial pressures at room temperature. Prior to the experiment, Pd samples were 

pre-treated under H2 and then He at high temperature, 250 °C, to completely remove water 

molecules formed during reduction of the surface oxide layer at room temperature together 

with hydrogen atoms possibly adsorbed/absorbed in Pd samples. Afterward, the samples 

were exposed under several H2 partial pressures: 0, 50, 250, 500 and 1000 mbar in absorption 

as well as, 1000, 500, 250, 50 and 0 mbar in desorption under isothermal conditions at 25 °C 

(Figure 3.7). More details of the experiment can be seen in Chapiter II materials and methods. 
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Figure 3. 7: Steps of in situ XAS experiment for Pd Bulk, 6.0 nm, 2.0 nm and 1.4 nm Pd. 

The Fourier Transform (FT) of EXAFS spectra for Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm 

Pd nanoparticles under different H2 partial pressures at 25 °C are shown in Figure 3.8. Under 
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H2, the main FT peak intensity decreases with decreasing the Pd size. FT peaks shift to larger 

distances and their intensity decreases with increasing H2 pressure. The latter observation is 

size dependent: the smaller the size, the minor the effect on FT.  
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Figure 3. 8: FT of the EXAFS spectra (𝑘𝑘2𝑥𝑥(𝑘𝑘)) for Pd bulk and 6.0 nm, 2.0 nm and 1.4 nm Pd 

under various partial pressures of H2 at 25 °C. 

The EXAFS refinement results for all samples are displayed in Table 3.3. Typical 

refinements are plotted in Figure 3.9. The average coordination number, N, (average of all 

experiment points) decreases from 11.5 for bulk (12 typical for bulk fcc metals) to 10.3, 7.9 

and 7.5 for 6.0 nm, 2.0 nm and 1.4 nm Pd, respectively. The decrease of N can be understood 

by an enlarged number of dangling bonds of surface atoms increasingly important with 

decreasing the size.15 The initial value of the Debye–Waller factor shows an increase from 

0.0066 to 0.0087 from Pd bulk to 1.4 nm particle size. This finding can be explained as an 

increase of the static disorder in nanoparticles due to the relaxation of bond lengths at the 

surface, which undergoes substantial strain. Moreover, within the same material, the Debye–

Waller factor rises with increasing the hydrogen pressure, which can be linked to the hydride 

phase formation and consequently, to the rise of the static disorder by hydrogen insertion 
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within the interstitials. It is worth noticing that the coordination numbers and Debye–Waller 

factors do not differ significantly for 2.0 nm and 1.4 nm Pd because the discrimination among 

these sizes is within the error bar by this experimental technique. 

Sample H2 pressure 
(mbar) 

RPd-Pd 
(Å) N σ2

 

(Å2) 
C3 

(10-4 Å3) 
QF 

Bulk 

0 2.748(1) 11.5(5) 0.0066(1) - 1.4 

50 2.842(1) 11.5(5) 0.0088 (1) - 0.8 

250 2.848(1) 11.5(5) 0.0084(1) - 1.5 

500 2.849(1) 11.5(5) 0.0084(1) - 1.5 

1000 2.852(1) 11.5(5) 0.0084(1) - 1.4 

500 2.850(1) 11.5(5) 0.0087(1) - 1.3 

250 2.848(1) 11.5(5) 0.0087(1) - 1.3 

50 2.842(1) 11.5(5) 0.0087(1) - 1.2 

0 2.747(1) 12.0(5) 0.0072(1) - 2.3 

6.0 nm 

0 2.748(1) 10.4(5) 0.0076(1) - 3.3 

50 2.804(1) 10.2(5) 0.0090(2) - 2.1 

250 2.823(1) 10.2(5) 0.0086(2) - 2.3 

500 2.826(1) 10.2(5) 0.0086(2) - 2.3 

1000 2.828(1) 10.2(5) 0.0086(2) - 2.3 

500 2.826(1) 10.3(5) 0.0086(2) - 2.4 

250 2.824(1) 10.2(5) 0.0086(2) - 2.3 

50 2.816(1) 10.2(5) 0.0086(2) - 2.2 

0 2.758(1) 10.4(5) 0.0076(2) - 3.2 

2.0 nm 

0 2.748(1) 7.6(5) 0.0085(2) 1.1(4) 3.5 

50 2.777(1) 7.7(5) 0.0091(2) 1.1(4) 2.0 

250 2.793(1) 7.9(5) 0.0098(2) 1.1(4) 2.1 

500 2.797(1) 8.0(5) 0.0098(2) 1.1(4) 2.3 

1000 2.799(1) 8.0(5) 0.0098(2) 1.5(4) 2.5 

500 2.798(1) 8.0(5) 0.0097(2) 1.1(4) 2.1 

250 2.795(1) 8.1(5) 0.0097(2) 1.1(4) 2.4 

50 2.785(1) 7.9(5) 0.0094(2) 1.1(4) 2.1 

0 2.768(1) 7.8(5) 0.0086(2) 1.5(4) 2.2 

1.4 nm 

0 2.745(1) 7.5(5) 0.0087(2) 1.1(3) 2.0 

50 2.772(1) 7.5(5) 0.0090(2) 1.1(3) 1.5 

250 2.789(1) 7.5(5) 0.0095(3) 1.1(3) 1.2 

500 2.794(1) 7.6(5) 0.0094(3) 1.1(3) 1.1 

1000 2.798(1) 7.5(5) 0.0094(3) 1.1(3) 1.1 
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500 2.795(1) 7.4(5) 0.0093(3) 1.1(3) 1.1 

250 2.792(1) 7.5(5) 0.0093(3) 1.1(3) 1.0 

50 2.779(1) 7.6(5) 0.0091(2) 1.1(3) 1.3 

0 2.764(1) 7.5(5) 0.0087(2) 1.1(3) 1.3 

Table 3. 3: EXAFS refinement result for Pd bulk and 6.0 nm, 2.0 nm and 1.4 nm Pd under 

various H2 pressures at 25 °C. The nearest Pd-Pd distance (RPd-Pd), the coordination number 

(N), the Debye-Waller factor (σ2), C3 cumulant and the confidence factor (QF) are given. 
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Figure 3. 9: Selected EXAFS refinements between FT (black) and fitted (red) for Pd bulk and 

6.0 nm, 2.0 nm and 1.4 nm Pd under He and 1 bar H2 at room temperature. 

The initial RPd–Pd (clean surfaces and H-free nanoparticles after heat-treatment, as 

described above) for 6.0 and 2.0 nm Pd particles is similar to the bulk value (2.748(1) Å). For 

1.4 nm Pd, the initial RPd–Pd is slightly smaller than the bulk value (2.745(1) Å). After exposed 

at 1 bar H2, the values become 2.852(1), 2.828(1), 2.799(1) and 2.798(1) Å for Pd bulk, 6.0 nm, 

2.0 nm and 1.4 nm Pd nanoparticles, respectively. A comparison of results obtained from in 

situ XRD and in situ XAS is shown in the Table 3.4. There is a good agreement between XRD 

and XAS results. 
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EXAFS RPd-Pd (Å) FCC 
Sample Bulk 6.0 nm 2.0 nm 1.4 nm 
Vacuum 2.748(1) 2.748(1) 2.748(1) 2.745(1) 
1 bar H2 2.852(1) 2.828(1) 2.799(1) 2.798(1) 
ΔR/R XAS 3.8% 2.9% 2.0% 2.0% 
ΔR/R XRD 4.1% 3.4% 2.5% - 

Table 3. 4: The distance of nearest Pd-Pd (RPd-Pd) for Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm Pd 

under vacuum and under 1 bar H2 determined by in situ XAS and comparison of ΔRPd-Pd/RPd-Pd 

found by in situ XAS and in situ XRD for desorbed Pd and Pd under 1 bar H2. 

Comparisons between the PCI curves and the RPd–Pd as function of pressure are shown 

in Figure 3.10. A good agreement is noticed between the PCI curves and the evolution of RPd–

Pd as function of pressure, irrespective of the particle size. 
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Figure 3. 10: Comparison between the PCI curves (expressed as H/Pd vs. Pressure) and the 

nearest Pd-Pd distances determined by EXAFS as function of H2 pressure for Pd bulk, 6.0 nm, 

2.0 nm and 1.4 nm Pd at 25 °C. Full and empty symbols stands for absorption and 

desorption, respectively. 

A thorough analysis of the refinements results in Table 3.3 allows us to draw several 

remarks: 
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(1) For Pd bulk the absorption/desorption is fully reversible. 

(2) For all Pd nanoparticles the values of RPd–Pd after desorption are all systematically larger 

than the initial ones: 2.758 vs. 2.748 Å for 6.0 nm Pd, 2.768 vs. 2.748 Å for 2.0 nm Pd and 

2.764 vs. 2.745 Å for 1.4 nm Pd. 

These findings are in good agreement with PCI curves proving that hydrogen 

absorption/desorption is not fully reversible in nano scaled Pd and H is irreversibly trapped 

inside the lattice of Pd nanoparticles. Moreover, the larger RPd–Pd observed after desorption 

suggests that H is trapped inside the volume of nanoparticles and not at the surface as 

adsorbed species, as recently suggested for Pd thin films.16 This is supported by the 

hypothesis that H atoms chemisorbed at the surface of Pd nanoparticles have a negligible 

effect on the overall nearest neighbour distances determined by EXAFS. 

To highlight the size dependence of this behaviour, Figure 3.11 displays the evolution 

of RPd–Pd as function of the inverse of particle size in three states: initial clean metal, absorbed 

state under 1 bar of H2 and desorbed state under He. Obviously, there is a size dependence 

of the quantity of trapped H (irreversible part): the smaller the size, the larger the irreversible 

H amount (the dashed area in Figure 3.11). 

 

Figure 3. 11: The variation of RPd-Pd as function of the inverse of particle size for several sizes 

of Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm Pd as initial state (triangle), absorbed state under 1 

bar H2 (square) and desorbed phase (circle). 
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However, one might object that nanoparticles are possibly not fully desorbed because 

of kinetic issues rather than H trapping, although this may seem counterintuitive since kinetics 

of hydrogen desorption for nanoparticles are enhanced relative to bulk. We have 

demonstrated that our results listed in Table 3.3 were obtained at thermodynamic 

equilibrium (see Figure 3.12). Pd bulk has the slowest kinetics for hydrogen desorption and 

reaches the initial metal value after around 400 s whereas, all nanoparticles attain a stable 

value of RPd-Pd distance in less than 200 s. However, the stabilisation values for all 

nanoparticles are above the Pd bulk, clearly indicating a H trapping, which is size dependent: 

the smaller the size, the larger final RPd-Pd value. Consequently, this is a clear size effect not a 

kinetic issue that can be explained by the H trapping inside the lattice of Pd. 
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Figure 3. 12: Kinetics of hydrogen desorption for Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm Pd at 

25 °C. The data are recorded during a pressure drop from 50 to 0 mbar H2 partial pressure in 

He flow. 

The total amounts of absorbed H in Pd nanoparticles at 1 bar H2 pressure and 25 °C 

are 0.65, 0.45 and 0.45 H/M for 6.0 nm, 2.0 nm and 1.4 nm Pd, respectively (from the PCI 

curves). The amount of trapped H can be calculated by dividing the expansion of the cell 

volume due to H trapping (from EXAFS results) per metal atom to the volume of the interstitial 

H atom in Pd. The latter one was determined from the variation of the lattice cell volume 

from Pd bulk metal to the hydride phase under 1 bar at 25 °C and the total amount of 

absorbed H in Pd bulk, as taken from the PCI curve. This value was found to be around 2.5(±0.2) 
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Å3 per H atom, close to 2.9 Å3 proposed by Peisl17 for various hcp, bcc, and fcc metals and 

alloys. Using this approach, the quantities of trapped H in Pd nanoparticles are approximately 

0.06, 0.12 and 0.12 H/M for 6.0 nm, 2.0 nm and 1.4 nm Pd, respectively. These values 

represent around 9, 26 and 26% of the total H sorption capacity for nanoparticles with 

average sizes 6.0, 2.0 and 1.4 nm, respectively. Consequently, the H trapping in Pd 

nanoparticles is increasingly important with decreasing the particle size. The amount of 

trapped H can be as high as 26% of the initial capacity for the smaller Pd nanoparticles (with 

2.0 and 1.4 nm average sizes). 

In order to check if H trapped inside Pd nanoparticles can be desorbed at high 

temperature, we have performed in situ XAS under He flow during heating to 250 °C (10 °C 

min-1). The results of EXAFS refinements (nearest neighbour distance) are plotted in Figure 

3.13. The nearest neighbour distance for Pd bulk steadily increases in agreement with the 

expected linear thermal expansion of metallic Pd (dotted line in Figure 3.13). However, Pd 

nanoparticles show a different behaviour with first a contraction of the nearest neighbour 

distance up to 150–170 °C followed by a linear rise almost parallel to the linear thermal 

expansion of Pd metal. The desorption at high temperature was also checked by the Thermo-

desorption Spectroscopy at high temperature. 
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Figure 3. 13: The thermal variation of RPd-Pd in in situ XAS under He flow during heating to 

250 °C for desorbed Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm Pd (10 °C/min). 
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In summary, size-dependent hydrogen trapping has been demonstrated in 6.0 nm, 2.0 

nm and 1.4 nm Pd nanoparticles: smaller the size, larger the amount of trapped hydrogen in 

Pd nanoparticles. However, the experiment results indicate that the trapped H are located in 

the volume of nanoparticles without providing a clear localization of H within the core or the 

subsurface of nanoparticles, therefore a theoretical approach based on simulations is 

required to better understand this phenomenon. 

3.2.2.2 Atomic Simulation 

To get insight at the atomic scale and investigate the stability of H inside the Pd 

nanoparticles, theoretical approach based on tight-binding (TB) and Density Functional 

Theory (DFT) calculations was performed by our collaborators Hakim Amara, Daniel Förster 

from ONERA-CNRS and Yann Magnin from MIT.18 More precisely, the formation energy (Ef) of 

H inserted in octahedral or tetrahedral interstitial sites along the radius of the nanoparticle 

was calculated according to the following equation : 

 𝐸𝐸𝑓𝑓 = 𝐸𝐸𝑃𝑃𝑃𝑃+1𝐻𝐻 − 𝐸𝐸𝑃𝑃𝑃𝑃 −
1
2
𝐸𝐸𝐻𝐻2               (Equation 3.3) 

where EPd+1H is the total energy of the Pd system (fcc bulk or nanoparticle) containing one 

hydrogen atom, EPd is the total energy of the pure Pd system and 𝐸𝐸𝐻𝐻2  is the total energy of 

the H2 molecule. The more negative Ef is, the more strongly the H atom is bound to 

neighbouring Pd atoms.  

The formation energy of H atoms located in interstitial sites along the radius of the 

nanoparticles containing 147 and 309 atoms in cuboctahedron form, i.e., from the centre to 

the outer surface, was calculated. The results are presented in Figure 3.14, where only the 

case of a nanoparticle containing 309 atoms is depicted, since the same conclusions can be 

drawn for the 147 atoms nanoparticle. 
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Figure 3. 14. (a) Cuboctahedron NP of Pd containing 309 atoms. (b) Presence of the 

hydrogen atom (white) in the subsurface position of the NP inducing a local distortion of the 

first layers. (c) Slide view showing the different planes within the NP. (d) Formation energy of 

a hydrogen atom occupying different sites (octahedral and tetrahedral) along the radius of 

the NP. The different coloured areas correspond to the regions indicated in (c) : blue and red 

correspond to the surface and subsurface, respectively. The most stable configuration is set 

to zero. 

First of all, for each location within the nanoparticle, the octahedral position is the 

most stable, in agreement with the bulk case. More interestingly, it is clearly observed that 

the further away from the core (surface and subsurface sites), the more stable the H atom 

(Figure 3.14 d). This is particularly true for H atoms occupying subsurface sites, which are the 

most stable configurations (red part in Figures 3.14 c and d). The energy gain of an atom 

located at the subsurface in comparison with a bulk position is significant in the order of 1 eV. 

Indeed, in the presence of a surface the relaxation process is easier and the elastic energy 

cost is lower. Analysis of the local distortions around the incorporated H atom clearly shows 

this effect (Figure 3.14 b). On the one hand, the H atom located at the core is strongly 

constrained and cannot distort the structure leading to low distortion (1 %). In contrast, the 

H atom in the subsurface octahedral position can maximize the formation of Pd-H bonds, 

which are favourable, while at the same time it is able to strongly distort the structure to relax 



 CHAPTER III: POROUS CARBONS WITH PALLADIUM 

100 
 

the stresses (around 7%). Such a configuration is more stable than in the surface position 

since by occupying an octahedral site, the H atom forms stronger bonds. As a result, the 

formation of Pd-H bonds and the elastic effect required to relax the structures favour the 

segregation of strongly energetic interstitial sites toward subsurface positions. It is to be 

noted that the subsurface position has often been put forward to explain the catalytic activity 

of transition or noble metals 19,20. Consequently, these DFT calculations suggest that hydrogen 

atoms are trapped at subsurface sites that are very stable and more favourable than bulk sites. 

It can be noted that no significant difference was observed for the two sizes of nanoparticles 

considered in the present work (147 and 309 atoms), since they have fairly similar diameters 

(1.7 and 2.1 nm, respectively). In both cases, the H atoms at subsurface positions are strongly 

bound to the Pd atoms and therefore less prone to leave the particle at room temperature, 

as observed experimentally. A higher temperature, around 150 °C, is needed for complete H 

desorption from these trapping sites. 

3.2.2.3 Thermodynamic properties 

In order to study the thermodynamic properties of Pd interaction with hydrogen, 

enthalpy (∆𝐻𝐻) and entropy (∆𝑆𝑆) change of hydride formation have been determined from the 

PCI at variable temperatures for Pd bulk, 6 nm and 2.0 nm Pd (Figure 3.15). 1.4 nm Pd was 

not studied because it did not show a clear phase transition from metal to hydride phase at 

room temperature in the PCI curves. 
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Figure 3. 15: Absorption PCI curves for Pd bulk, 6.0 nm and 2.0 nm at variable temperature 

(0 - 100 °C). 
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As described in Chapter 2, the plateau pressure (Peq) (determined as the halfway 

pressure between αmax and βmin) is related to the reaction ∆𝐻𝐻 and ∆𝑆𝑆, expressed by Van’t 

Hoff equation (Equation 3.1): 

𝑙𝑙𝑙𝑙𝑃𝑃𝑒𝑒𝑒𝑒 = ∆𝐻𝐻
𝑅𝑅𝑅𝑅
− ∆𝑆𝑆

𝑅𝑅
                  (Equation 3.1) 

 The Van’t Hoff plot of Pd samples is displayed below (Figure 3.14). By employing Van’t 

Hoff equation, ∆𝐻𝐻 and ∆𝑆𝑆 can be determined. ∆𝐻𝐻 and ∆𝑆𝑆 for Pd bulk are -36.2(±1.2) KJ·mol-

1 H2 and -89.1(±3.9) J·mol-1·K-1 H2, in agreement with previous studies.21 For 6.0 nm Pd these 

values are -34.7(±0.7) KJ·mol-1 H2 and -85.2(±2.2) J·mol-1·K-1 H2, whereas they are -31.4(±1.6) 

KJ·mol-1 H2 and -73.9(±5.0) J·mol-1·K-1 H2 for 2.0 nm Pd. Clearly, it was found that -∆𝐻𝐻 and -∆𝑆𝑆 

decrease with decreasing particle size. Yamauchi et al.22 pointed out that the -∆𝐻𝐻 value could 

be seen as the bond strength between hydrogen (H) and Pd in the hydride phase. This result 

indicates that the bond strength for Pd-H becomes weaker as the Pd size decreases. The 

entropy change during the hydride formation originates principally from the entropy loss of 

hydrogen gas.23 The diminution of -∆𝑆𝑆 value implies that hydrogen atoms in nanoparticles 

have larger entropy with decreasing the size. However, another hypothesis was proposed by 

Griessen et al.24 They pointed out that the discrepancy between ∆𝐻𝐻 and ∆𝑆𝑆 values obtained 

for a wide range of Pd nanoparticles might came from the statistical errors of the 

determination of accurate values of plateau pressure (Peq), as it is not easy to ascertain the 

Peq at constant concentration for slopped plateaus in the case of Pd nanoparticles. 
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Figure 3. 16: Van’t Hoff plots of Pd bulk, 6.0 nm and 2.0 nm Pd. The correlation coefficients 

for the linear regressions are 𝑅𝑅 > 0.99 for all the samples. 
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3.2.2.4 Desorption properties 

Hydrogen desorption properties from hydrogenated Pd samples were studied by the 

Thermo-Desorption Spectroscopy (TDS) technique. Two desorption protocols were used, 

depending on the temperature range to be studied. 

3.2.2.4.1 TDS in the temperature range 25 – 225 °C (298-498 K) 

As demonstrated by PCI and in situ XAS experiment, H is trapped inside the Pd 

nanoparticles after the desorption at ambient temperature and the trapped H can be 

completely desorbed at high temperature (around 150 °C). A TDS experiment between 25 - 

225 °C was carried out to supplement this study. The first protocol of the TDS experiment at 

high temperature for Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm Pd is described as follows. The Pd 

sample was first exposed to 1 bar of hydrogen at room temperature and the hydrogen gas 

was subsequently evacuated under secondary vacuum. Finally, the desorbed H2 partial 

pressure was recorded while applying 5 °C/min heating rate up to 225 °C. 

The thermo-desorption spectra are shown in Figure 3.17. No desorption peak of H2 is 

found for Pd bulk while desorption features are present in Pd nanoparticles. This confirms the 

H trapping in Pd nanoparticles, which is consistent with the results from PCI and in situ XAS. 

The maximum desorption peaks are around 75 °C, 85 °C and 105 °C for 6.0 nm, 2.0 nm and 

1.4 nm Pd, respectively. So, the desorption temperature increases as the Pd size decreases. 

This may suggest that the stability of trapped H increases with the reduction of Pd size.  
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Figure 3. 17: Thermo-desorption spectra of Pd bulk, 6.0 nm Pd, 2.0 nm and 1.4 nm Pd with a 

heating rate of 5 °C/min. 
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3.2.2.4.2 TDS in the temperature range 78 – 310 K 

The second protocol of the TDS experiment was carried out to study the kinetic 

properties of the hydrogen desorption of Pd nanoparticles at low temperature range. For our 

convenience, the unity of temperature used in TDS at cryogenic condition is Kelvin (K) instead 

of Celsius (°C), typically used in the high temperature range. The protocol of the experiment 

for Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm Pd is described as follows. Prior to the measurement, 

the sample was degassed at 473 K for 10 h under high vacuum. The desorbed sample was first 

exposed to 1 bar of hydrogen at room temperature then cooled down under gas pressure to 

77 K (liquid N2 coolant). The gaseous H2 was subsequently evacuated under secondary 

vacuum. Next, the desorbed H2 partial pressure was recorded while applying different 

constant heating rates (from 2 to 15 K/min) up to 310 K. Here, all Pd nanoparticles samples 

can form hydride phase at 77 K under 1 bar H2 as reported earlier for 1.0 nm Pd.12 

Thermo-desorption spectra of Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm Pd with a heating 

rate of 5 K/min are plotted in Figures 3.18. As shown in Figure 3.18, there are 2 desorption 

peaks for Pd bulk while 3 peaks for Pd nanoparticles. The first desorption peak for Pd 

nanoparticles samples at around 100-110 K is ascribed to the physisorption of H2 on the 

porous supports (HSAG and AC). The second desorption peak (𝑇𝑇𝛽𝛽)  points to the 

dehydrogenation from the 𝛽𝛽 phase, and the third peak (𝑇𝑇𝛽𝛽→𝛼𝛼) corresponds to desorption that 

accompanies the 𝛽𝛽 to α phase transformation.14,25 The second desorption peaks for the Pd 

nanoparticles are more evident in the spectra compared to the one for Pd bulk which is very 

broad peak. Vons et al.26 proposed that the areas of the 𝑇𝑇𝛽𝛽 peaks can be used to estimate the 

amount of hydrogen absorbed beyond 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 at room temperature and 1 bar H2. The fraction 

of hydrogen released in these peak increases with decreasing Pd size. Meanwhile, the areas 

of the 𝑇𝑇𝛽𝛽→𝛼𝛼  can be used to estimate the amount of hydrogen from the 𝛽𝛽  to α phase 

transformation which corresponds to the absorption/desorption plateau in PCI curves (Figure 

3.5). It decreases with decreasing Pd size. This finding is consistent with the result obtained 

from PCI characterization that shows that the relative amount of hydrogen absorbed after 

𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚 increases with the reduction of Pd size along with the narrowing of plateau. Moreover, 

the maximum desorption temperatures (𝑇𝑇𝛽𝛽 and 𝑇𝑇𝛽𝛽→𝛼𝛼) decrease as the Pd size decreases. This 

indicates that the thermal stability of Pd hydride (𝛽𝛽 phase) diminishes as the Pd size decreases. 
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Figure 3. 18: Thermo-desorption spectra of Pd bulk, 6.0 nm Pd, 2.0 nm and 1.4 nm Pd with a 

heating rate of 5 K/min. 

The TDS spectra with variant heating rates are shown in Figure 3.19. The activation 

energy of desorption is calculated using the Kissinger method27 illustrated by the equation 

below: 

ln � 𝛽𝛽
𝑇𝑇𝑚𝑚2
� = − 𝐸𝐸𝑎𝑎

𝑅𝑅𝑇𝑇𝑚𝑚
+ ln𝑘𝑘0              (Equation 3.2)  

Where: 𝐸𝐸𝑎𝑎 is the activation energy, 𝛽𝛽 is the heating rate, 𝑇𝑇𝑚𝑚 is taken equal to 𝑇𝑇𝛽𝛽→𝛼𝛼, 𝑅𝑅 is the 

gas constant and 𝑘𝑘0 is a pre-exponential factor. A linear dependence between ln � 𝛽𝛽
𝑇𝑇𝑚𝑚2
� and 1

𝑇𝑇𝑚𝑚
 

is expected, as depicted in Figure 3.20. The calculated values of Ea are 0.49(3), 0.33(1), 0.28(1) 

and 0.26(1) eV for Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm Pd, respectively (Table 3.5). The value 

obtained for Pd bulk is in good agreement with previous results.28 The strong decrease of the 

activation energy of desorption from bulk to Pd nanoparticles shows that the Pd nanoparticle 

samples have lower thermal stability than Pd bulk, and it decreases with the reduction of Pd 

size. The values for 2.0 nm and 1.4 nm Pd are comparable with the result of 1.0 nm Pd (0.27(2) 

eV) supported on MIL-101 reported by Malouche et al.12 They suggest that the diminution of 

activation energy is due to change of the rate limiting step from surface recombination or 

𝛽𝛽 → 𝛼𝛼  phase transformation in Pd bulk to hydrogen diffusion into α and β phases in Pd 

nanoparticles due to the shorter diffusion path and larger surface area. 
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Figure 3. 19: Thermo-desorption spectra performed at different heating rate for Pd bulk, 6.0 

nm, 2.0 nm and 1.4 nm Pd. 
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Figure 3. 20: The Kissinger plots for Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm Pd. The correlation 

coefficients for the linear regressions are 𝑅𝑅 > 0.99 for all the samples. 
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samples Ea (eV) 
Pd bulk 0.49(3) 

6.0 nm Pd 0.33(1) 
2.0 nm Pd 0.28(1) 
1.4 nm Pd 0.26(1) 

Table 3. 5: The calculated values of activation energy for Pd bulk, 6.0 nm, 2.0 nm and 1.4 nm 

Pd. 

3.3 Pd single atoms supported on carbons 

In this subchapter, we will discuss the physicochemical and hydrogen sorption 

properties of two samples formed by Pd single atoms supported on carbons and prepared by 

liquid impregnation and subsequent pyrolysis with EDTA and melamine, along with a nitrogen 

doped carbon CNx without metal.  

3.3.1 Physicochemical properties of materials 

The synthesized materials were characterized by X-Ray Diffraction (XRD) for the 

determination of their structural properties (Figure 3.21). As described in section 3.2.1, the 

AC is mainly amorphous with some impurities which give rise to several small additional 

diffraction peaks. For CNx, 0.8-Pd-AC and 7.5-Pd-AC samples, no extra diffraction peaks could 

be observed. This suggests that either the size of Pd nano-objects is too small to be detected 

by XRD (too short coherence lengths for X-ray diffraction) or they do not have a periodic 

arrangement as in the case of random distribution of SACs on the carbon support. This 

hypothesis will be verified by transmission electron microscopy. 

30 40 50 60 70 80 90

(200)(111)
7.5-Pd-AC

0.8-Pd-AC

CNx

In
te

ns
ity

 (a
.u

.)

2θ (°)

AC

 

Figure 3. 21: XRD patterns of AC, CNx, 0.8-Pd-AC and 7.5-Pd-AC. 
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These materials were characterized by Transmission Electron Microscopy (TEM) to 

analyse the dispersion of Pd on the carbon hosts as well as the formation of metal 

nanoparticles, clusters, or possibly single atoms. 

              

Figure 3. 22: TEM images of 0.8-Pd-AC and 7.5-Pd-AC. 

Pd nanoparticles could not be observed in the TEM images of the 0.8-Pd-AC and 7.5-

Pd-AC samples (Figure 3.22), indicating that the Pd is distributed as sub-nanometric clusters 

and/or SACs. However, the Pd clusters or SACs are too small to be detected by classic TEM 

(resolution 0.24 nm). These results are consistent with the ones obtained from XRD which 

showed an absence of diffraction peaks for the 0.8-Pd-AC and 7.5-Pd-AC samples. 

To determine the Pd distribution in the samples 0.8-Pd-AC and 7.5-Pd-AC, Scanning 

Transmission Electron Microscopy (STEM) was realised by Mounib Bahri and Ovidiu Ersen at 

IPCMS (Strasbourg). The high-angle annular dark-filed scanning TEM (HAADF–STEM) images 

are presented in Figure 3.23. The bright spots displayed are expected to be Pd atoms, as Pd 

has a higher atomic number Z than C and N. They have a higher density in 7.5-Pd-AC than in 

0.8-Pd-AC because the former is more concentrated in Pd. In conclusion, we successfully 

synthesized Pd single atoms with a homogenous distribution on a nitrogen doped carbon. 

0.8-Pd-AC 7.5-Pd-AC 
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Figure 3. 23: HAADF-STEM images of 0.8-Pd-AC and 7.5-Pd-AC, the bright spots in the red 

circles are Pd atoms. 

The textural properties were characterized by nitrogen adsorption/desorption 

measurements at 77 K. Figure 3.24 shows the N2 adsorption/desorption curves for AC, CNx 

and the Pd SACs materials. A hysteresis loop can be observed for AC, meaning that AC contain 

mesopores. The high adsorption at low pressure shows that it is also a highly microporous 

material.  

The surface area, as determined by BET method in the relative pressure range P/P0 = 

0.05 – 0.20 decreases drastically after pyrolysis (Table 3.6). The specific surface area reduces 

drastically for CNx (364 m2/g), 0.8-Pd-AC (425 m2/g) and 7.5-Pd-AC (281 m2/g), as compared 

0.8-Pd-AC 

7.5-Pd-AC 7.5-Pd-AC 

0.8-Pd-AC 
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to the initial AC (1400 m2/g) probably due to loss of porosities after the pyrolysis reaction with 

melamine and EDTA. 
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Figure 3. 24: Liquid N2 adsorption/desorption curves of AC, CNx, 0.8-Pd-AC and 7.5-Pd-AC. 

sample Surface area (m2/g) 
AC 1400(10) 
CNx 364(10) 

0.8-Pd-AC 425(10) 
7.5-Pd-AC 281(10) 

Table 3. 6: BET specific surface area of AC, CNx, 0.8-Pd-AC and 7.5-Pd-AC. 

To gain more information of the textural change of CNx and Pd-SACs after pyrolysis, 

the SEM analysis was carried out for AC, CNx and 0.8-Pd-AC. According to textural properties 

analysis, the pristine AC possesses both micropores and mesopores. Some mesopores can be 

clearly seen from the SEM images (Figure 3.25 b). After the pyrolysis with EDTA and melamine, 

the particle size of CNx and 0.8-Pd-AC increased. It seems that a crust is formed on the surface 

of AC and its porosity was lost during this process (Figure 3.25 d and f). 
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Figure 3. 25: SEM images of a, b) AC; c, d) CNx and e, f) 0.8-Pd-AC. 

3.3.2 Pd single atoms interaction with hydrogen   

Pressure-Composition-Isotherms (PCI) of these materials have been studied at room 

temperature and cryogenic temperature (77 K) up to 1 bar H2. A comparison of PCI curves at 

room temperature of 1.4 nm Pd nanoparticles and Pd single atom materials (0.8-Pd-AC and 

7.5-Pd-AC) with CNx and initial activated carbon is shown in Figure 3.26 a. 
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Figure 3. 26: Pressure-composition-isotherms curves of a) AC, 1.4 nm Pd, 0.8-Pd-AC and 7.5-

Pd-AC at room temperature and b) CNx, 0.8-Pd-AC and 7.5-Pd-AC at cryogenic temperature 

(77K). 

As displayed in the figure above, there is very little interaction between hydrogen and 

AC, CNx up to atmospheric pressure at room temperature with very small uptake under these 

conditions. Interestingly, the SAC samples also show low sorption of H2, close to the initial 

carbon. On the contrary, Pd nanoparticles with average size 1.4 nm have higher sorption 

capacity than Pd single atoms. This is due to hydrogen absorption in the volume of 

nanoparticles with formation of solid solution or hydride, as described in section 3.2.1. Thus, 

this result indicates that Pd single atoms has little interaction with hydrogen molecules as 

compared to Pd nanoparticles but also confirm that nanoparticles are not present in any of 

SAC samples. This agrees with the results obtained from XRD and HAADF-STEM images, 

showing no formation of Pd nanoparticles or clusters for 0.8-Pd-AC and 7.5-Pd-AC samples. 

The PCI curves for Pd single atom materials (0.8-Pd-AC and 7.5-Pd-AC) and CNx at 

cryogenic temperature (77 K) are shown in Figure 3.26 b. The hydrogen uptake capacity at 1 

bar is correlated to the specific surface area of materials and it enhances with increasing the 

surface area. Furthermore, it seems to be adhered to Chahine’s rule, which predicts a linear 

correlation of hydrogen adsorption capacity, at 77 K, with surface area (1 wt.% per 500 m2/g) 

(Figure 3.27).4,29,30 
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Figure 3. 27: Correlation between the BET surface area and the hydrogen storage capacity 

(at 1 bar H2 and 77 K) of CNx, 0.8-Pd-AC and 7.5-Pd-AC. The dashed line represents Chahine’s 

rule. 

The experiment of Thermo-Desorption Spectroscopy (TDS) in the temperature range 

35 – 300 K was carried out to study the difference of hydrogen desorption properties for 3 

samples based on the same AC material: CNx, 7.5-Pd-AC and 1.4 nm Pd. The protocol of the 

third TDS experiment is described as follows. Prior to the measurement, the sample was 

degassed at 473 K for 10 h under high vacuum. The desorbed sample was first exposed to 1 

bar of hydrogen at room temperature then cooled down under gas pressure to 35 K (closed 

He cooling circuit). After reaching the minimum temperature, the H2 gas is subsequently 

evacuated under secondary vacuum. Finally, the desorbed H2 partial pressure is recorded 

while applying a constant heating rate of 5 K/min up to 300 K. 

The thermo-desorption spectra are shown in Figure 3.28. The desorption before 120 

K can be attributed to the physisorption of H2 in the porosity of supports, and there are slight 

differences between the porous supports due to the different textural properties and the 

effects of the heteroatoms in the supports (N or Pd). The H2 desorption is completed at 

around 120 K for 1.4 nm Pd while it is finished at around 170 K for CNx and 7.5-Pd-AC with 

about 50 K high temperature difference (Figure 3.28, red rectangle). This feature might be 

due to the presence of N atoms dopped in carbon materials which may lead to larger 

interaction with H2 molecules. After 120 K, the 1.4 nm Pd shows a two-peak desorption 
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features (𝑇𝑇𝛽𝛽 and 𝑇𝑇𝛽𝛽→𝛼𝛼) (Figure 3.28, green rectangle) as discussed above (Figure 3.18). The 

7.5-Pd-AC shows no H2 desorption, same as sample CNx. This finding confirms that Pd 

nanoparticles are not formed in the 7.5-Pd-AC, which is consistent with the results obtained 

from STEM images and PCI experiment. 
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Figure 3. 28: Thermo-desorption spectra of CNx, 7.5-Pd-AC and 1.4 nm Pd with a heating rate 

of 5 K/min. 

3.4 Conclusion 

In this chapter, a study of the interaction between hydrogen and ultra-small size of Pd 

nanoparticles with different sizes and single atoms, was carried out. 

The first part of this chapter consists of the Pd nanoparticles supported on carbons. 

First, structural, nanostructural and textural characterization confirmed the successful 

preparation of Pd nanoparticles with 6.0, 2.0 and 1.4 nm average sizes embedded in two 

porous carbons: HSAG and AC. The hydrogen sorption properties of Pd nanoparticles had 

been thoroughly studied by means of both laboratory and synchrotron facilities. According to 

PCI curves at room temperature, the absorption capacity at 1 bar H2 diminishes with the 

decrease of Pd size, the plateau becomes more and more sloped for 6.0 and 2.0 nm Pd, and 

it completely disappears for 1.4 nm Pd. The absorption and desorption show only partial 
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reversibility for Pd nanoparticles at low pressure, while they are completely reversible for Pd 

bulk. The decrease of absorption capacity was confirmed by in situ XRD and in situ XAS, 

reflected by the decrease of the lattice expansion with reducing Pd size under 1 bar H2. The 

H trapping inside the lattice of Pd nanoparticles after the desorption process was also 

confirmed by in situ XAS and there is a size dependence of the quantity of trapped H: the 

smaller the size, the larger the irreversible H amount and the larger the binding energy of the 

trapped H inside of Pd nanoparticles. The DFT and TB simulations suggest that the strong H 

trapping sites are located at the subsurface of nanoparticles. The trapped H can be desorbed 

by heating to around 150–170 °C under vacuum or inert gas flow. The enthalpy and entropy 

change of hydride formation decrease with decreasing Pd size, indicating that the bond 

strength for Pd-H becomes weaker as the Pd size decreases and hydrogen atoms in 

nanoparticles have larger entropy with decreasing the Pd size. The TDS experiment showed 

that the thermal stability of hydrogenated Pd nanoparticles decreases as compared to Pd bulk. 

The Pd nanoparticles have lower activation energy of desorption as compared to Pd bulk. The 

diminution of activation energy is due to change of the rate limiting step from surface 

recombination or 𝛽𝛽 → 𝛼𝛼 phase transformation in Pd bulk to hydrogen diffusion into α and β 

phases in Pd nanoparticles. 

The second part of this chapter focused on the Pd single atoms supported on carbon 

material. Pd single atoms samples were successfully synthesized and embedded on nitrogen-

based carbon host, as confirmed by XRD and HAADF-STEM characterization. The interaction 

between hydrogen and Pd single atoms were studied by PCI at room temperature and at 

cryogenic temperature (77 K), as well as TDS at low cryogenic temperature range (35-310 K). 

The PCI and TDS experiments shows that there is very little interaction between hydrogen 

and Pd single atoms supported on carbon host, contrary to Pd nanoparticles.  



 CHAPTER III: POROUS CARBONS WITH PALLADIUM 

116 
 

3.5 References 

(1)  Zhao, L.; Zhang, Y.; Huang, L.-B.; Liu, X.-Z.; Zhang, Q.-H.; He, C.; Wu, Z.-Y.; Zhang, L.-J.; 

Wu, J.; Yang, W.; Gu, L.; Hu, J.-S.; Wan, L.-J. Cascade Anchoring Strategy for General Mass 

Production of High-Loading Single-Atomic Metal-Nitrogen Catalysts. Nat. Commun. 2019, 

10 (1). https://doi.org/10.1038/s41467-019-09290-y. 

(2)  Bastide, S.; Zlotea, C.; Laurent, M.; Latroche, M.; Cachet-Vivier, C. Direct Assessment 

from Cyclic Voltammetry of Size Effect on the Hydrogen Sorption Properties of Pd 

Nanoparticle/Carbon Hybrids. J. Electroanal. Chem. 2013, 706, 33–39. 

https://doi.org/10.1016/j.jelechem.2013.07.036. 

(3)  Vannice, M. A. Kinetics of Catalytic Reactions; Springer: New York, 2005. 

(4)  Poirier, E.; Chahine, R.; Bose, T. K. Hydrogen Adsorption in Carbon Nanostructures. Int. 

J. Hydrog. Energy 2001, 26 (8), 831–835. https://doi.org/10.1016/S0360-

3199(01)00014-3. 

(5)  Nützenadel, C.; Züttel, A.; Chartouni, D.; Schmid, G.; Schlapbach, L. Critical Size and 

Surface Effect of the Hydrogen Interaction of Palladium Clusters. Eur. Phys. J. - At. Mol. 

Opt. Phys. 2000, 8 (2), 245–250. https://doi.org/10.1007/s100530050033. 

(6)  Sachs, C.; Pundt, A.; Kirchheim, R.; Winter, M.; Reetz, M. T.; Fritsch, D. Solubility of 

Hydrogen in Single-Sized Palladium Clusters. Phys. Rev. B 2001, 64 (7), 075408. 

https://doi.org/10.1103/PhysRevB.64.075408. 

(7)  Pundt, A.; Sachs, C.; Winter, M.; Reetz, M. T.; Fritsch, D.; Kirchheim, R. Hydrogen 

Sorption in Elastically Soft Stabilized Pd-Clusters. J. Alloys Compd. 1999, 293–295, 480–

483. https://doi.org/10.1016/S0925-8388(99)00469-7. 

(8)  Pundt, A.; Kirchheim, R. HYDROGEN IN METALS: Microstructural Aspects. Annu. Rev. 

Mater. Res. 2006, 36 (1), 555–608. 

https://doi.org/10.1146/annurev.matsci.36.090804.094451. 

(9)  Salomons, E.; Griessen, R.; Groot, D. G. de; Magerl, A. Surface Tension and Subsurface 

Sites of Metallic Nanocrystals Determined from H-Absorption. Europhys. Lett. EPL 1988, 

5 (5), 449–454. https://doi.org/10.1209/0295-5075/5/5/012. 

(10)  Shegai, T.; Langhammer, C. Hydride Formation in Single Palladium and Magnesium 

Nanoparticles Studied By Nanoplasmonic Dark-Field Scattering Spectroscopy. Adv. 

Mater. 2011, 23 (38), 4409–4414. https://doi.org/10.1002/adma.201101976. 



 CHAPTER III: POROUS CARBONS WITH PALLADIUM 

117 
 

(11)  Narehood, D. G.; Kishore, S.; Goto, H.; Adair, J. H.; Nelson, J. A.; Gutiérrez, H. R.; Eklund, 

P. C. X-Ray Diffraction and H-Storage in Ultra-Small Palladium Particles. Int. J. Hydrog. 

Energy 2009, 34 (2), 952–960. https://doi.org/10.1016/j.ijhydene.2008.10.080. 

(12)  Malouche, A.; Blanita, G.; Lupu, D.; Bourgon, J.; Nelayah, J.; Zlotea, C. Hydrogen 

Absorption in 1 Nm Pd Clusters Confined in MIL-101(Cr). J. Mater. Chem. A 2017, 5 (44), 

23043–23052. https://doi.org/10.1039/C7TA07159K. 

(13)  KubotaTakeshi; KitajimaYoshinori; AsakuraKiyotaka; IwasawaYasuhiro. Pd L3-Edge 

XANES Spectra of Supported Pd Particles Induced by the Adsorption and the Absorption 

of Hydrogen. Bull. Chem. Soc. Jpn. 2003. https://doi.org/10.1246/bcsj.72.673. 

(14)  Zlotea, C.; Cuevas, F.; Paul-Boncour, V.; Leroy, E.; Dibandjo, P.; Gadiou, R.; Vix-Guterl, C.; 

Latroche, M. Size-Dependent Hydrogen Sorption in Ultrasmall Pd Clusters Embedded in 

a Mesoporous Carbon Template. J. Am. Chem. Soc. 2010, 132 (22), 7720–7729. 

https://doi.org/10.1021/ja101795g. 

(15)  Frenkel, A. I.; Hills, C. W.; Nuzzo, R. G. A View from the Inside: Complexity in the Atomic 

Scale Ordering of Supported Metal Nanoparticles. J. Phys. Chem. B 2001, 105 (51), 

12689–12703. https://doi.org/10.1021/jp012769j. 

(16) Wagner, S.; Pundt, A.; Wagner, S.; Pundt, A. Hydrogen as a Probe for Defects in Materials: 

Isotherms and Related Microstructures of Palladium-Hydrogen Thin Films. AIMS Mater. 

Sci. 2020, 7 (4), 399–419. https://doi.org/10.3934/matersci.2020.4.399. 

(17)  Peisl, H. Lattice Strains Due to Hydrogen in Metals. In Hydrogen in Metals I: Basic 

Properties; Alefeld, G., Völkl, J., Eds.; Topics in Applied Physics; Springer: Berlin, 

Heidelberg, 1978; pp 53–74. https://doi.org/10.1007/3540087052_42. 

(18)  Liu, W.; Magnin, Y.; Förster, D.; Bourgon, J.; Len, T.; Morfin, F.; Piccolo, L.; Amara, H.; 

Zlotea, C. Size-Dependent Hydrogen Trapping in Palladium Nanoparticles. J. Mater. 

Chem. A 2021, 9 (16), 10354–10363. https://doi.org/10.1039/D0TA12174F. 

(19) Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, 

S. D.; Schlögl, R. The Roles of Subsurface Carbon and Hydrogen in Palladium-Catalyzed 

Alkyne Hydrogenation. Science 2008, 320 (5872), 86–89. 

https://doi.org/10.1126/science.1155200. 

(20)  Aleksandrov, H. A.; Kozlov, S. M.; Schauermann, S.; Vayssilov, G. N.; Neyman, K. M. How 

Absorbed Hydrogen Affects the Catalytic Activity of Transition Metals. Angew. Chem. Int. 

Ed. 2014, 53 (49), 13371–13375. https://doi.org/10.1002/anie.201405738. 



 CHAPTER III: POROUS CARBONS WITH PALLADIUM 

118 
 

(21)  Lässer, R.; Klatt, K.-H. Solubility of Hydrogen Isotopes in Palladium. Phys. Rev. B 1983, 28 

(2), 748–758. https://doi.org/10.1103/PhysRevB.28.748. 

(22)  Yamauchi, M.; Ikeda, R.; Kitagawa, H.; Takata, M. Nanosize Effects on Hydrogen Storage 

in Palladium. J. Phys. Chem. C 2008, 112 (9), 3294–3299. 

https://doi.org/10.1021/jp710447j. 

(23)  Nanostructured Materials for Next-Generation Energy Storage and Conversion: 

Hydrogen Production, Storage, and Utilization, 1st ed. 2017.; Bashir, S., Chen, Y.-P., Liu, 

J. L., Eds.; Springer Berlin Heidelberg : Imprint: Springer: Berlin, Heidelberg, 2017. 

https://doi.org/10.1007/978-3-662-53514-1. 

(24)  Griessen, R.; Strohfeldt, N.; Giessen, H. Thermodynamics of the Hybrid Interaction of 

Hydrogen with Palladium Nanoparticles. Nat. Mater. 2016, 15 (3), 311–317. 

https://doi.org/10.1038/nmat4480. 

(25)  Stern, A.; Resnik, A.; Shaltiel, D. Thermal Desorption Spectra of the PdHxsystem in a 

Powder Form. J. Phys. F Met. Phys. 1984, 14 (7), 1625–1639. 

https://doi.org/10.1088/0305-4608/14/7/012. 

(26)  Vons, V. A.; Leegwater, H.; Legerstee, W. J.; Eijt, S. W. H.; Schmidt-Ott, A. Hydrogen 

Storage Properties of Spark Generated Palladium Nanoparticles. Int. J. Hydrog. Energy 

2010, 35 (11), 5479–5489. https://doi.org/10.1016/j.ijhydene.2010.02.118. 

(27)  Blaine, R. L.; Kissinger, H. E. Homer Kissinger and the Kissinger Equation. Thermochim. 

Acta 2012, 540, 1–6. https://doi.org/10.1016/j.tca.2012.04.008. 

(28)  Leardini, F.; Fernández, J. F.; Bodega, J.; Sánchez, C. Isotope Effects in the Kinetics of 

Simultaneous H and D Thermal Desorption from Pd. J. Phys. Chem. Solids 2008, 69 (1), 

116–127. https://doi.org/10.1016/j.jpcs.2007.08.005. 

(29)  Bénard, P.; Chahine, R. Storage of Hydrogen by Physisorption on Carbon and 

Nanostructured Materials. Scr. Mater. 2007, 56 (10), 803–808. 

https://doi.org/10.1016/j.scriptamat.2007.01.008. 

(30)  Balderas-Xicohténcatl, R.; Schlichtenmayer, M.; Hirscher, M. Volumetric Hydrogen 

Storage Capacity in Metal–Organic Frameworks. Energy Technol. 2018, 6 (3), 578–582. 

https://doi.org/10.1002/ente.201700636. 

 



            CHAPTER IV: POROUS CARBONS WITH IRIDIUM FOR SELECTIVE HYDROGENATION 
REACTIONS 

119 
 

 

 

 

CHAPTER IV: POROUS 

CARBONS WITH IRIDIUM FOR 

SELECTIVE HYDROGENATION 

REACTIONS  



            CHAPTER IV: POROUS CARBONS WITH IRIDIUM FOR SELECTIVE HYDROGENATION 
REACTIONS 

120 
 

  



            CHAPTER IV: POROUS CARBONS WITH IRIDIUM FOR SELECTIVE HYDROGENATION 
REACTIONS 

121 
 

4.1 Synthesis of Iridium carbon materials 

In this chapter, Ir single atom catalyst (SAC) and Ir nanoparticles (NP) samples were 

prepared, and they were tested in two catalytic reactions of selective hydrogenation in 

different mediums: hydrogenation of butadiene in gaseous condition and hydrogenation of 

levulinic acid (LA) in aqueous solution. 

Ir single atom catalyst (SAC) was prepared by a cascade anchoring strategy adapted 

from Zhao et al.1 The Ir SAC was dispersed on a nitrogen-rich AC (a commercial activated 

carbon - AC - with 1400 m2/g from STREM Chemicals) by the liquid impregnation of the 

pristine carbon AC with IrCl3·xH2O precursor in aqueous solution in the presence of a chelating 

agent (EDTA) followed by pyrolysis under Ar at 800 °C in the presence of a source of nitrogen 

(melamine). The sample was named χ-Ir-AC, where χ stands for the metal content (1.0 wt. %) 

over the entire sample mass. Carbon nitride (CNx) sample was also prepared with same 

method without addition of Ir precursor.  

For the sake of comparison, we have also prepared Ir nanoparticle (NPs) catalyst by a 

simple method based on the liquid-phase impregnation of the AC support with a IrCl3·xH2O 

precursor aqueous solution, followed by reduction under H2/Ar flow at 700 °C, as described 

earlier.2 The sample was named χ-Ir@AC-700, where χ stands for the metal content (3.7 wt. %) 

over the entire sample mass. 

4.2 Physicochemical characterization 

The synthesized Ir samples have been characterized by a large panel of techniques for 

their physicochemical properties. 

The synthesized hybrid material, together with CNx and initial AC, were characterized 

firstly by X-Ray Diffraction (XRD) for their structural properties (Figure 4.1). XRD patterns of 

1.0-Ir-AC and 3.7-Ir@AC-700 samples showed only contribution from activated carbon 

support and no diffraction peaks from fcc metal Ir (40.699 ° -(111); 47.326 ° -(200)). This 

suggests that Ir is well dispersed on the carbon host, either as ultra-small nanoparticles with 

too short coherence length to diffract X-rays,3 or as smaller size such as, sub-nanometric to 

single atom states (without periodic arrangement). This will be further verified by 

transmission electron microscopy for both metal containing samples. 
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Figure 4. 1: XRD patterns of AC, CNx, 3.7-Ir@AC-700 and 1.0-Ir-AC. 

The Ir hybrid materials were characterized by Transmission Electron Microscopy 

secondly (TEM) to see the dispersion of Ir on the carbon hosts as well as the distribution of Ir 

nanoparticles, sub-nanoparticles, nanoclusters, or possibly single atoms. 

         

Figure 4. 2: a) TEM image of 1.0-Ir-AC, b) HAADF-STEM image of 1.0-Ir-AC, and c) TEM image 

of 3.7-Ir@AC-700. 

While no Ir nanoparticles nor clusters could be found by classic TEM for 1.0-Ir-AC 

sample (Figure 4.2 a), the high-resolution aberration-corrected high-angle annular dark-field 

scanning transmission electron microscopy (HAADF-STEM) images showed isolated bright 

spots homogeneously dispersed on the support (Figure 4.2 b). The bright spots displayed in 

the images are Ir atoms as Ir has a higher atomic number Z than C, N and O. The size of spots 

of 1.0-Ir-AC is measured manuelly, the mean size is 2.0 (±0.4) Å on a basis of statistical analysis 

over 100 bright spots, corroborating that these Ir atoms are mainly in single atomic state. On 
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the contrary, Ir is agglomerated in the form of well dispersed nanoparticles on the carbon 

support for 3.7-Ir@AC-700 sample, as revealed by TEM images (Figure 4.2 c); the mean size 

is very small around 1.3 (±0.5) nm. For the sake of the convenience and clarity, the samples 

1.0-Ir-AC and 3.7-Ir@AC-700 will be further named Ir-SAC and Ir-NP, respectively. 

The textural properties were characterized by liquid nitrogen adsorption/desorption 

measurements (Brunauer–Emmett–Teller (BET)). Figure 4.3 shows the N2 

adsorption/desorption curves for AC, CNx and Ir-SAC. As shown in this figure, AC and Ir-SAC 

are microporous and mesoporous materials, whereas CNx is poorly porous with small 

microporosity still present. The specific surface area of CNx (364 m2/g) and Ir-SAC (671 m2/g) 

reduces tremendously compared to initial AC (1400 m2/g) probably due to loss of porosities 

after the pyrolysis reaction with melamine and EDTA.  
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Figure 4. 3: Liquid N2 adsorption/desorption curves of AC, CNx, and Ir-SAC, determined at 

ICMPE. 

To gain more information on the physicochemical changes induced by pyrolysis, the 

SEM analysis was carried out for AC and Ir-SAC (Figure 4.4). According to the textural 

properties analysis, the pristine AC possesses both microporous and mesoporous (Figure 4.3). 

Some mesopores can be clearly seen from the SEM images (Figure 4.4 b). After the pyrolysis 

with EDTA and melamine, the particle size of Ir-SAC increased as compared to AC (22.9 µm > 

7.6 µm). It seems that a crust is formed at the surface of AC after pyrolysis and some of its 

porosity was lost during this process (Figure 4 d), which is in good agreement with the results 

obtained from BET analysis. 
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Figure 4. 4: SEM images of a, b) initial AC; c, d) Ir-SAC. 

The Ir-SAC, CNx and initial AC were further studied by Raman spectroscopy. The latter 

signals arising from lattice vibrations of graphitic materials are very sensitive to the degree of 

structural disorder (defects). A common feature of all graphene and carbon graphitic 

materials is the presence of the G band (G for graphite) located around 1610 cm−1, which 

corresponds to the zone center vibration of carbon atoms against each other's in the layer 

planes. The presence of disorder in the graphitic lattice is associated with the occurrence of 

the D band (D for defect) around 1350 cm−1. All samples show these two dominant D and G 

peaks (Figure 4.5) proving a typical signature of amorphous carbon.4 

0 70 140 210size (µm)

22.9 µm

0 30 60 90
size (µm)

7.6 µm



            CHAPTER IV: POROUS CARBONS WITH IRIDIUM FOR SELECTIVE HYDROGENATION 
REACTIONS 

125 
 

500 1000 1500 2000 2500 3000 3500

CNx

 

 

G

Ir-SAC

AC

Raman shift (cm-1)

In
te

ns
ity

 (a
.u

.)

D

 
Figure 4. 5: Raman spectra of AC, CNx, and Ir-SAC. 

To obtain further information from the surface as well as the chemical state of 

nitrogen atoms and metal atoms as single atoms and nanoparticles, X-ray photoelectron 

spectroscopy (XPS) was performed for Ir samples. N 1s spectrum of Ir-SAC are presented in 

Figure 4.6 a. The N 1s spectrum shows four different bonding configurations of N atoms, 

which are attributed to pyridinic-N (398.6 eV), pyrrolic-N (399.7 eV), graphitic-N (401.2 eV) 

and oxidized-N (404.2 eV), respectively. Pyridinic-N and pyrrolic-N are the nitrogen species at 

the edges or in the vacancies of the graphitic host, respectively. The pyridinic–N bonds with 

two C atoms and contributes one p electron to the π system. Pyrrolic–N refers to N atoms 

incorporated in pentagonal ring and contributes two p electrons to the π system. Graphitic–

N refers to N atoms that substitute C atoms in the hexagonal ring. 

The Ir 4f spectrum of Ir-SAC is shown in Figure 4.6 b and compared with Ir-NP sample 

and Ir bulk. For Ir-SAC, Ir 4f has two main peaks at 62.5 eV (4f7/2) and 65.5 eV (4f5/2), the 

binding energies are higher than Ir in Ir-NP and Ir bulk. The results imply the positively charged 

nature of Ir species in Ir-SAC, which are different from Ir species in Ir-NP and Ir bulk. It should 

be noted that due to the partial oxidation of Ir nanoparticles in air, the binding energy of Ir 4f 

in Ir-NP is slightly larger than Ir bulk (61.6 eV > 60.8 eV). 
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Figure 4. 6: a) N 1s XPS spectrum of Ir-SAC and b) Ir 4f XPS spectra of Ir-SAC and Ir-NP; The 

black line at 60.8 eV is the binding energy of Ir bulk 4f7/2 taken from literature.5  

The Ir concentration in the different composites was determined by ICP-AES and the 

content of light elements: N, C and H, was analysed by CHNS technique. The results are listed 

in Table 4.1. The C content decreased for the synthesized materials compared to the pristine 

AC, while the concentration of N significantly increased for Ir-SAC and CNx. The content of 

oxygen is not measured due to the presence of impurities, such as aluminosilicates in the 

pristine AC, thus the sum of metal content as well as the light elements (N, C and H) is not 

100%. 

sample 
ICP-AES CHNS 

Metal content 
(wt. %) N (wt. %) C (wt. %) H (wt. %) 

AC - 0.47 (±0.08) 78.39 (±0.81) 0.22 (±0.04) 
CNx - 18.78 (±0.11) 62.92 (±0.30) 0.74 (±0.11) 

Ir-SAC 0.99(±0.01) 14.07 (±0.15) 68.97 (±0.11) 0.43 (±0.03) 
Ir-NP 3.70(±0.02) - - - 

Table 4. 1: Ir content of Ir-SAC and Ir-NP, determined by ICP-AES, and N, C and H 

concentration of AC, CNx and Ir-SAC, determined by CHNS. 
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4.3 Formation process and stability of Ir-SAC sample 

4.3.1 Formation process of Ir SAC sample 

The formation process of Ir-SAC was investigated by the thermogravimetric analysis 

coupled with mass spectroscopy (TGA-MS). A mixture of IrCl3, AC, EDTA and melamine (0.3 

wt.% IrCl3, 12.5 wt.% AC, 25.0 wt.% EDTA and 62.5 wt.% melamine) following the grinding 

procedure (Chapiter 2.1.3) before calcination was heated to 800 °C with a ramp of 3 °C/min 

under Ar flow (40 ml/min). The evolution of sample mass and gaseous products as well as the 

sample temperature were recorded by TGA-MS, as shown in Figure 4.7.  
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Figure 4. 7: TGA-MS data of the mixture of IrCl3, AC, EDTA and melamine (0.3 wt.% IrCl3, 12.5 

wt.% AC, 25 wt.% EDTA and 62.5 wt.% melamine), the final product after TGA is Ir-SAC. 

The pyrolysis process can be deconvoluted into several steps with the evolution of 

temperature and time, as shown in Figure 4.7: 

(1) 0 – 150 °C: At temperature lower than 150 °C, no significant weight loss is observed. 

(2) 150-300 °C: The mixture exhibits a smooth loss of about 15 wt.% in this range of 

temperature. This can be attributed to the sublimation and decomposition of EDTA, which 

begins to decompose at about 150 °C. The material undergoes decarboxylation and hydrolysis 
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process of the ethylene C-N link to form amine-based carbon materials with the release of 

CO2 and H2O.6 This attribution is confirmed by the presence of ion current peaks in the MS 

analysis associated to the mass of CO2+ (𝑚𝑚/𝑧𝑧 = 44), CO+ (𝑚𝑚/𝑧𝑧 = 28), and H2O+ (𝑚𝑚/𝑧𝑧 = 18). 

Two peaks at 𝑚𝑚/𝑧𝑧 = 16  and 𝑚𝑚/𝑧𝑧 = 17  were also detected, this can be ascribed to the 

ammonium solution (NH3·H2O) added during the synthesis. 

(3) 300-350 °C: The mixture shows a more marked weight loss with a steep decrease. This 

may be explained by the sublimation and condensation of melamine, accompanied by the 

formation of melem (C6N10H6) and the elimination of ammonium. This is highlighted by the 

presence of ion peaks of ammonia species: NH4+ (𝑚𝑚/𝑧𝑧 = 18), NH3+ (𝑚𝑚/𝑧𝑧 = 17) and NH2+ 

(𝑚𝑚/𝑧𝑧 = 16). 

(4) 350 -600 °C: At the higher temperature of up to 600 °C, melem begins to polymerize 

forming melon (C6N9H3) with a small loss of sample weight. 

(5) 600 – 800 °C: At high temperatures above 600 °C, melon polymerize to form graphitic 

carbon nitride, g-C3N4. The latter becomes unstable at about 650 °C and pyrolyzes into a new 

nitrogen-based carbon material (CNx).7–9 In this region, the fragment of carbon-nitrogen 

compounds was detected in the MS analysis: CN+ (𝑚𝑚/𝑧𝑧 = 26), HCN+ (𝑚𝑚/𝑧𝑧 = 27), and H2CN+ 

(𝑚𝑚/𝑧𝑧 = 28). 

(6) 800 °C: No weight loss nor gas product is discerned, therefore the newly formed CNx is 

stable at 800 °C. 

The thermal decomposition of melamine and the formation of graphitic carbon nitride are 

shown in Figure 4.8. HCl (𝑚𝑚/𝑧𝑧 = 38) was also detected during the pyrolysis process owning 

to the chloride from the IrCl3·xH2O precursor. During the calcination, Ir ions sequestered by 

EDTA can be subsequently incorporated into the newly formed nitrogen-based carbon 

network (CNx) from the pyrolysis of EDTA and melamine, preventing them from aggregation 

to form large metal clusters, as evidenced by XRD, HAADF-STEM and XPS analyses. 
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Figure 4. 8: Thermal decomposition of melamine and the formation of graphitic carbon 

nitride.7 

4.3.2 Stability of Ir-SAC sample 

The thermal stability of Ir-SAC was studied by TGA analysis under air flow. The Ir-SAC is 

stable up to around 450 °C, as shown in Figure 4.9. The Ir-SAC is less air resistant than the 

pristine AC while CNx is more stable than the pristine carbon. This can be explained by the 

existence of Ir atoms catalysing the oxidation process.10 The high oxidation resistance of CNx 

may be possibly originated from the strong covalent carbon nitrogen bonds.11 The mass loss 

at high temperature does not reach 0% due to the presence of around 10% impurity such as, 

alumina-silicates (also confirmed by ICP chemical analysis), which are very stable under these 

conditions.  
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Figure 4. 9:TGA under dry air flow of pristine AC, CNx, and Ir-SAC. 
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The stability of Ir single atoms against aggregation was studied at high temperature. 

Ir-SAC was heated to 400 °C for 30 min with a ramp of 10 °C/min under 5% H2/Ar (200 ml/min). 

The hydrogen treated sample was then characterized by HAADF-STEM (Figure 4.10). No Ir 

clusters nor nanoparticles after the thermal reduction treatment could be noticed, suggesting 

that the Ir-SAC is stable up to 400 °C. 

         

Figure 4. 10: HAADF-STEM images of Ir-SAC after H2 treatment at 400 °C. 

In conclusion, Ir single atom catalyst sample supported on a nitrogen-based carbon 

material was successfully synthesized by wet chemistry and pyrolysis method. The presence 

of Ir single atoms was confirmed by XRD, TEM and XPS characterizations, comparing with the 

Ir nanoparticles sample. Ir-SAC is a microporous and mesoporous amorphous carbon material, 

which has less surface area than the initial AC. The material shows high stability against 

oxidation under air condition (> 400 °C) and the Ir single atoms are stable up to 400 °C against 

aggregation. 

4.4 Catalytic test 

The synthesized Ir samples were evaluated in the catalytic reactions of selective 

hydrogenation in different mediums at laboratory IRCELYON: hydrogenation of butadiene in 

gaseous condition and hydrogenation of levulinic acid (LA) in aqueous solution. 

4.4.1 Hydrogenation of butadiene 

The catalytic test of hydrogenation of butadiene was carried out at laboratory 

IRCELYON. The hydrogenation of butadiene was performed under atmospheric pressure in a 

continuous flow fixed-bed reactor. Before the reaction, 40 mg of catalyst was mixed with 100 

mg Al2O3 and activated in situ with hydrogen by heating from room temperature (RT) to 



            CHAPTER IV: POROUS CARBONS WITH IRIDIUM FOR SELECTIVE HYDROGENATION 
REACTIONS 

131 
 

250 °C at a heating rate of 4 °C/min and maintained at 250 °C for 1 h. Then the reactor was 

cooled down to RT under H2. The reaction was then carried out from RT to 200 °C with a 

reaction gas flow of 100 ml/min (C2H2:H2:He = 2:10:88). The conversion and selectivity of Ir-

SAC and Ir-NP during the hydrogenation of butadiene reaction are shown in Figure 4.11. Ir-

SAC shows an impressive nearly 100% selectivity to butenes starting from 25 °C with high 

stability in the temperature range. The conversion increases steadily with rising the 

temperature reaching 80% at maximum temperature 200 °C. Furthermore, for Ir-SAC, the 

majority product is trans-2-butene which is rarely reported in the literature, where 1-butene 

is the majority product.12–14 Ir-NP behaves differently with high selectivity at low temperature 

and low conversion (below 30%). However, when the conversion exceeds 30% a sudden drop 

of the selectivity occurs to almost full hydrogenation to butane at high temperatures. 
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Figure 4. 11: Catalytic performance in hydrogenation of butadiene of Ir-SAC and Ir-NP. 

Conversion and selectivity to butenes as a function of temperature for Ir-SAC (a) and Ir-NP 

(b); Product distribution for Ir-SAC (c) and Ir-NP (d). 
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In order to understand the high selectivity for trans-2-butene of Ir-SAC, the 

isomerization of butenes was performed over Ir-SAC and CNx samples in the same reactor of 

the hydrogenation of butadiene. Ir-SAC or CNx was mixed with Al2O3 and pre-treated at 250 °C 

for 30 min under H2 and then under He to eliminate the H2 in the sample. After the pre-

treatment, the isomerisation reaction was realised from RT to 350 °C with a reaction gas flow 

of 100 ml/min of 0.4 % butenes/N2 (10% 1-butene, 51% isobutene, 17% cis-2-butene and 22% 

trans-2-butene). The results are shown in Figure 4.12. Interestingly, there is no isomerization 

reaction over the CNx support, the composition of butenes does not vary with the increase of 

temperature. However, Ir-SAC promotes the isomerization reaction from ambient 

temperature to go towards the thermodynamic equilibrium, with the increase of trans-2-

butene and the decrease of 1-butene in the beginning of the reaction. Therefore, this finding 

may be used to explain the high selectivity on trans-2-butene for Ir-SAC. In hydrogenation of 

butadiene over Ir-SAC, 1-butene may be the majority product in the first step. Thereafter, 1-

butene isomerizes probably to trans-2-butene to make a more thermodynamically stable 

mixture of butenes. Thus, trans-2-butene becomes the principal product in hydrogenation of 

butadiene over Ir-SAC catalyst. 
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Figure 4. 12: Isomerization of butenes over Ir-SAC and CNx. The solid line represents the 

initial composition of butenes, the dashed line represents the thermodynamic equilibrium 

composition as a function of temperature (without considering the isobutene), the void 

square represents the results of CNx and the solid square represents the results of Ir-SAC. 



            CHAPTER IV: POROUS CARBONS WITH IRIDIUM FOR SELECTIVE HYDROGENATION 
REACTIONS 

133 
 

To gain in-depth knowledge of the local structure of Ir-SAC such as, the chemical 

coordination environments and electronic feature in reactive conditions of hydrogenation of 

butadiene, we have performed operando X-ray absorption energy spectroscopy (XAS) for Ir-

SAC. For the sake of comparison, we have also investigated Ir-NP under the same reactive 

conditions. The experiment was followed as close as possible to the laboratory reaction 

conditions. Samples were heated to 250 °C for 1 h under He/H2 flow (15 ml/min He and 15 

ml/min H2) and then cooled down to room temperature. Afterward, the catalysts were 

exposed to the reactive gas mixture (35 mL/min): 0.5% C4H6 + 2.5% H2 + 97% He and 

temperature were heated to 200 °C with a ramp of 1 °C/min. The temperature was 

maintained at 200 °C for 1 h under reaction condition (Figure 4.13). The XAS measurements 

were coupled with continuous mass spectrometry (MS) to determine the reaction kinetics 

and catalytic data.  

 
Figure 4. 13: Process of operando XAS experiment Ir-SAC and Ir-NP. 

The X-ray absorption near edge structure (XANES) and extended X-ray absorption fine 

structure (EXAFS) spectra before reaction at RT are shown in Figure 4.14. Ir bulk and IrO2 were 

used as references. As shown in Figure 4.14 a, the intensity of the white line of Ir-SAC is close 

to IrO2 which indicates that its oxidation state approaches that of IrO2. For Ir-NP, the white 

line peak is situated at almost the same level of that of Ir bulk demonstrating metallic species. 

The oxidation states of Ir in Ir-SAC and Ir-NP were calculated according to the method 

proposed by Hambley et al15 and compared to those of well-known references: bulk metal 

Ir(0) and oxide Ir(IV)O2 (Figure 4.15). The oxidation state of Ir was estimated using the following 
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equation:  𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 4 × ��𝑎𝑎
𝑏𝑏
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�, where a refers 

to the maximum of the intensity of the white line and b is the lowest point of the trough after 

the white line. 
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Figure 4. 14: a) XANES spectra at the Ir L3-edge of Ir bulk (black), Ir-NPs (red), Ir-SAC (blue) 

and IrO2 (green) before reaction at RT, and b) their corresponding Fourier transform. For the 

sake of comparison, FT have been stacked.  

Initially, Ir in Ir-SAC has an oxidation state of +3.2, while Ir in Ir-NP displays +0.1 

(slightly oxidized nanoparticles). This further confirms that Ir exists as single atoms well 

dispersed in Ir-SAC. To follow the change in the electronic properties of Ir-SAC in operando 

conditions we have applied the same data treatment (Table 4.2 and Figure 4.15). 
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Figure 4. 15: XANES spectra of Ir bulk (black), Ir-NP (red), Ir-SAC (blue) and IrO2 (green) 

showing the difference in peak heights for these samples, and the parameters a and b used 

for the assessment of the oxidation state. 

The Fourier transforms of EXAFS spectra of the initial samples are compared to Ir bulk 

and IrO2 in Figure 4.14 b. Ir bulk shows typical peaks for the fcc metal with the dominant one 

at approximately 2.58 Å (Ir-Ir nearest distances). The IrO2 shows distinct features compared 

to bulk with a main peak at around 1.62 Å corresponding to the Ir-O nearest neighbours of 

the tetragonal structure of the oxide. The FT of Ir-SAC is clearly different comparative to metal 

and oxide samples and features a single peak at around 1.6 Å with low intensity. This peak 

can be ascribed to the backscattering from the nearest neighbours of Ir-X (X = N/C/O). 

However, EXAFS cannot distinguish between light elements close to each other such as, C, N 

or O because of their close scattering amplitude. It is worth noting that Ir-Ir scattering peak 

(around 2.6 Å) is not visible, which clearly confirms atomic dispersion of Ir in Ir-SAC without 

any metal agglomeration. On the other side, the FT of Ir-NP is nearly the same as Ir bulk. 

To reveal the local structure of Ir-SAC under reactive conditions, we have performed 

EXAFS refinements based on a structural model where one metal iridium is coordinated with 

four light atoms Ir-(N,C)xOy (x + y = 4), as proposed in the literature.16,17 The EXAFS fitting 

results such as, the coordination number-N, the Debye-Waller factor-σ² and the nearest 

neighbours Ir-X distance-R are listed in Table 4.2. Typical refinements results are plotted in 

Figure 4.16.  
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Conditions EXAFS XANES 

Step Gas T (°C) N σ2 (Å2) R (Å) QF a/b 

Initial state air 25 4.0 (1) 0.0052 (3) 2.016 (1) 0.14 2.473 

Initial state He 25 4.0 (1) 0.0052 (3) 2.016 (1) 0.11 2.473 
Introduction of 
reduction gas H2/He 25 4.0 (1) 0.0052 (3) 2.016 (2) 0.12 2.468 

Pretreatment ramp H2/He 

25 4.0 (1) 0.0053 (3) 2.016 (1) 0.10 2.465 

50.5 4.0 (1) 0.0055 (3) 2.015 (2) 0.10 2.446 

84.2 3.9 (1) 0.0061 (4) 2.012 (1) 0.07 2.407 

117.6 3.6 (1) 0.0059 (4) 2.008 (1) 0.06 2.349 

150.6 3.3 (1) 0.0059 (4) 2.005 (1) 0.06 2.312 

183.6 3.2 (1) 0.0059 (4) 2.001 (1) 0.05 2.283 

216.3 3.1 (1) 0.0057 (4) 1.999 (1) 0.04 2.249 

252 3.0 (1) 0.0057 (5) 1.997 (1) 0.05 2.216 

Pretreatment at 
250 °C H2/He 

250 2.9 (1) 0.0057 (5) 1.996 (1) 0.05 2.228 

250 2.9 (1) 0.0056 (4) 1.995 (1) 0.04 2.204 

250 2.9 (1) 0.0052 (5) 1.995 (1) 0.05 2.194 

250 2.9 (1) 0.0053 (4) 1.995 (1) 0.05 2.189 

250 2.8 (1) 0.0052 (4) 1.995 (1) 0.04 2.185 

Pretreatment cooling H2/He 34.1 2.9 (1) 0.0049 (4) 1.996 (1) 0.06 2.199 
Introduction of 

reactive gas mixture C4H6/H2/He 24.9 3.0 (1) 0.0049 (5) 1.997 (1) 0.06 2.222 

Reaction ramp C4H6/H2/He 

24.8 3.0 (1) 0.0048 (4) 1.998 (1) 0.05 2.225 

64.7 3.1 (1) 0.0051 (5) 2.001 (1) 0.06 2.250 

106.5 3.1 (1) 0.0053 (4) 2.001 (1) 0.05 2.244 

147.7 3.1 (1) 0.0054 (4) 1.999 (1) 0.05 2.232 

198.6 3.0 (1) 0.0055 (4) 1.996 (1) 0.05 2.206 

Reaction at 200 °C C4H6/H2/He 

200 3.0 (1) 0.0054 (4) 1.996 (1) 0.05 2.206 

200 2.9 (1) 0.0051 (5) 1.997 (1) 0.06 2.204 

200 3.0 (1) 0.0053 (4) 1.996 (1) 0.05 2.204 

Final state He 33.4 3.1 (1) 0.0053 (4) 1.996 (1) 0.05 2.232 

Table 4. 2: EXAFS refinements result for Ir-SAC under operando conditions. The coordination 

number (N), the Debye–Waller factor (σ2) and the nearest Ir–X (X=N,C,O) distance (R) are 

given. The values of the ratio of a/b from XANES analysis are also given. 
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Figure 4. 16: EXAFS fitting of Ir-SAC before pretreatment under He flow at 25°C (a, b) and 

after reaction under He flow at 25°C (c, d). 

The evolution of the coordination number-N, and the nearest neighbours Ir-X 

distance-R are plotted in Figure 4.17. Initially the Ir atoms are surrounded by 4 light atoms 

(N/C/O) and the valence state is +3.2 (Table 4.2), which is similar to Ir3+ in homogeneous 

iridium (III) porphyrins and phthalocyanines complexes.18–20  

During the pre-treatment under H2 gas at 250 °C, the coordination number (N) reduces 

from 4.0 to 3.0 and further stabilizes to this latter value during the reaction at 200 °C. The 

coordination number reduction is accompanied by the diminution of the nearest distance Ir-

X (RIr-x) (2.016 to 1.996 Å). Same tendency was found for the Ir oxidation state, it gradually 

reduces from +3.2 to +2.0, as shown in Figure 4.18. Therefore, a partial reduction of Ir occurs 

during the pre-treatment under H2 accompanied by a loss of approximately 1 neighbor light 

atom. This hints to Ir atoms surrounded by 3 light elements (N/C/O) as being the main reactive 

species in the hydrogenation of butadiene. The coordination configuration M (metal) -X3 has 
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been already reported for Cu, Mn and Co single atom catalysts supported on carbon nitride 

based materials,21–23 and Ir (II) complexes (RN4)Ir(COD)2+ where Ir was found to be 

coordinated with 3 nitrogen atoms.24 Moreover, Fang et al.25 found that Pt in Pt1/N-C SAC 

shows the same diminution of the coordination number (N) (from 4 to 2) and the oxidation 

state (+ 1.89 to + 1.12) under electroreduction conditions, as evidenced by operando XAS.25 

These authors hypothesized that the high catalytic activity of the electrochemical hydrogen 

evolution reaction was mainly due to this evolution of the electronic and the atomic 

structures. 
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Figure 4. 17: Variation of coordination number (N) and the nearest neighbor distance Ir-X 

(RIr-X) in operando XAS conditions.  
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Figure 4. 18: Variation of Ir oxidation state in Ir-SAC in operando XAS conditions.  

The decrease of the distance Ir-X (Figure 4.17) associated to the reduction of 

coordination number might be explained by the de-coordination of one longer distance Ir-X 

amongst Ir-X4. As can be seen from the literature, the bond lengths of M-N are noticeable 

smaller than M-O in metal SACs. For example, the distances Cu-N and Cu-O were found to be 

1.91 Å and 2.01 Å, respectively, in a Cu SAC supported on carbon dots.26 In a ZnNx/C catalysts, 
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the distances Zn-N and Zn-O are 2.00 Å and 2.14 Å, respectively.27 Furthermore, the bond 

length of Ir-N in an Iridium Pincer complex, (NCN)Ir(CH2CH3)Cl(OH2), is 2.051 Å which is 

significantly shorter than RIr-O 2.259 Å.28 Therefore, we hypothesize that RIr-N is shorter than 

RIr-O in Ir single atom catalysts based on nitrogen doped carbon materials. Assuming that the 

initial configuration is Ir-(N,C)xOy (x + y = 4), it evolves into Ir-(N,C)xOy-1 during the reduction 

pre-treatment. Thus, the loss of one longer bond length may result in the decrease of RIr-X, as 

observed in our results (Figure 4.17). 

The variation of the geometric and the electronic configuration is reflected by the 

reduction of the intensity of both the white-line and the FT peak of Ir-SAC before 

pretreatment and after reaction (Figure 4.19 a). Furthermore, it is important to notice that Ir-

SAC are stable during reaction without coalescence and formation of metallic aggregates 

since any new peak at 2.6 Å could not be observed after reaction (Figure 4.19 b), in agreement 

with our previous study of stability at high temperature under H2 (section 4.2.2). 
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Figure 4. 19: a) XANES spectra at the Ir L3-edge of Ir-SAC before pretreatment and after 

reaction; b) Fourier transform of k2-weighted Ir L3-edge EXAFS data. 

The gaseous product distributions during reaction of both Ir-SAC and Ir-NP were 

detected by mass spectroscopy. The molecular masses of butadiene, butene and butane are 

54, 56 and 58, respectively. As shown in Figure 4.20, the peaks of their fragments in MS 

spectrum range from 𝑚𝑚/𝑧𝑧 = 15 to 𝑚𝑚/𝑧𝑧 = 59 and their product pools are very similar. After 

a careful selection, 𝑚𝑚/𝑧𝑧 = 54 , 𝑚𝑚/𝑧𝑧 = 56  and 𝑚𝑚/𝑧𝑧 = 58  were chosen to represent 

butadiene, butene and butane, respectively, although they are not the principal peaks. As 

shown in Figure 4.21,  Ir-SAC was highly active and selective to butene while butane was the 
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principal product for Ir-NP. The result is consistent with laboratory catalytic tests, confirming 

that operando XAS experiments were conducted in same laboratory conditions.  

 

Figure 4. 20: Mass Spectrum of butadiene, 1-butene and butane. (From NIST chemistry 

Webbook) 



            CHAPTER IV: POROUS CARBONS WITH IRIDIUM FOR SELECTIVE HYDROGENATION 
REACTIONS 

141 
 

Time

butene (56)

butane (58)In
te

ns
ity

 (a
.u

.)

butadiene (54) 30

60

90

120

150

180

210

T 
(°C

)

Ir-SAC

  

butane (58)

butadiene (54)

Time

In
te

ns
ity

 (a
.u

.)

butene (56)

Ir-NP

30

60

90

120

150

180

210

T 
(°C

)

 

Figure 4. 21: Product distribution during the reaction of hydrogenation of butadiene for Ir-

SAC and Ir-NP, as detected by mass spectroscopy during operando XAS experiments. 

4.4.2 Hydrogenation of levulinic acid 

As discussed above, Ir-SAC are reactive and highly selective in hydrogenation of 

butadiene. Furthermore, the catalyst is proved to be very stable in this gaseous reaction 

condition. Another study was carried out to find out their reactivity and stability in aqueous 

reaction condition: hydrogenation of levulinic acid (LA). The latter reaction was realised in a 

batch reactor at 160 °C and under 50 bar H2 pressure (the molar ratio of LA to Ir was 620), 

and the results are shown in Figure 4.22.  
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Figure 4. 22: a) Conversion of levulinic acid in water for Ir-SAC catalyst, b) Recycling 

experiments of the Ir-SAC catalyst. Reaction conditions: LA (0.17 M in 150 ml water), 800 mg 

catalyst (the molar ratio of LA to Ir was 620), H2 (50 bar), 160 °C, 24 h. 
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Figure 4.22 a shows the evolution of the LA concentration and its products over 

reaction time. The LA conversion at 24 h is near 80% with a selectivity 100% to y-valerolactone 

(GVL). This result is comparable with a Ir SACs (0.6% Ir@ZrO2@C) sample reported in the 

literature, which achieved a LA conversion of 99% and a GVL selectivity of 98.8% after 10 h 

reaction under 180 °C and 40 bar H2 condition (LA/Ir = 500).29 However, the Ir SACs are less 

reactive than the Ir nanoparticle catalysts. For example, Du et al.30 synthesized 1.9 nm 

nanoparticles 4.5% Ir catalyst supported on carbon nanotubes, it showed complete 

conversion of LA to GVL in less than 1 h in aqueous solution at 50 °C under 20 bar H2 (LA/Ir = 

445). Moreover, Wang et al.31 reported that 100% conversion of LA to GVL in 1.5 h was 

attained with a 1.5 nm 3.0% Ir/SiC nanoparticles catalyst under 50 °C and 2 bar H2 reaction 

condition (LA/Ir = 500). 

The stability of Ir-SAC was investigated by performing multiple recycling test in the 

same reaction condition, the result is shown in Figure 4.22 b. Surprisingly, the recycled sample 

shows a slight activation through recycling runs. An increase in LA conversion from 80% to 90% 

is observed for the 2nd cycling reaction, and the LA conversion stabilizes at 90% for the 3rd 

cycling run. Two hypotheses could be attributed to the increase of the catalytic reactivity of 

Ir-SAC, such as: the increase of surface area and the formation of Ir nanoparticles. Several 

characterization analyses have been performed in order to understand this behaviour. The 

liquid nitrogen adsorption/desorption measurements were firstly realized to check the BET 

surface area after the 1st cycling sample. 
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Figure 4. 23: Liquid N2 adsorption/desorption curves of Ir-SAC and Ir-SAC after 1st cycle. 
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As shown in Figure 4.23, Ir-SAC has a surface area of 686 m2/g and micropore area of 

466 m2/g, while the surface area and the micropore area decrease slightly to 668 m2/g and 

440 m2/g, respectively, for Ir-SAC after 1st cycling sample. Therefore, marginal changes in the 

BET surface area were observed in Ir-SAC after reaction, the increase of surface area as the 

reason for catalytic activity activation could be excluded. For this reason, the used sample 

was characterized by HAADF-STEM to check the distribution of Ir atoms (Figure 4.24). 

According to the STEM images, no noticeable agglomeration is observed and Ir atoms exist 

mainly as single atom states or as multimers. 

  

Figure 4. 24: HAADF-STEM images of Ir-SAC after 1st cycle. 

To gain more information over the Ir sample after the reaction, the Ir content in the 

reaction solution of 1st cycle run was determined by ICP-AES, and the content of light 

elements for all the used samples: N, C and H, was analysed by CHNS technique. As shown in 

Table 4.3, 4 mg Ir is presented in the Ir-SAC sample, while the Ir content found in the reaction 

solution is less than 0.02 mg. Thus, the catalyst is stable against the leaching process. However, 

the N content decreases from 14.07% to 12.20% after the 1st cycle reaction and retain at 

around 12% after 3rd reaction. Meanwhile, the C content and H content increase slightly. This 

indicates that there is a loss of N in the nitrogen-based carbon support under high 

temperature and high hydrogen pressure condition. This loss of N could probably result in the 

de-coordination of Ir species, which may aggregate to form Ir rafts or nanoclusters.  
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sample 
ICP-AES CHNS 

Ir content (mg) N (wt.%) C (wt.%) H (wt.%) 
Ir-SAC 4 14.07 (±0.15) 68.97 (±0.11) 0.43 (±0.03) 

1st cycle < 0.02 12.20 (±0.03) 70.49 (±0.34) 1.05 (±0.07) 
2nd cycle - 12.27 (±0.04) 72.64 (±0.86) 0.88 (±0.01) 
3rd cycle - 12.51 (±0.10) 75.22 (±0.15) 1.05 (±0.01) 

Table 4. 3: Ir content of I.0-Ir-AC and in the reaction solution of 1st cycle run, determined by 

ICP-AES, and N, C and H concentration of Ir-SAC, 1st cycle, 2nd cycle, and 3rd cycle run 

samples, determined by CHNS. 

In order to confirm the hypothesis of formation of Ir rafts or nanoclusters, the spent 

sample was characterized by XAS (Figure 4.25). The XANES of spent sample shows slightly 

different feature than the initial sample, and the difference is highlighted by the FT of EXAFS 

spectra. The Ir-Ir scattering peak (around 2.6 Å) is observed for the used sample, which clearly 

confirms the formation of Ir-Ir metal bond, suggesting the formation of Ir rafts or nanoclusters. 
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Figure 4. 25: a) XANES spectra at the Ir L3-edga of Ir-SAC (black) and Ir-SAC after 1st cycle 

(red) and b) their corresponding Fourier transform. For the sake of comparison, FT have been 

stacked. 

In conclusion, Ir-SAC is reactive and selective in hydrogenation of butadiene to 

butenes in gaseous condition, in particular highly selective on trans-2-butene. It also showed 

moderate reactivity in hydrogenation of levulinic acid in aqueous solution to GVL. The Ir single 

atoms is proved to be stable against aggregation in gaseous condition, however the 

coalescence of Ir single atoms is observed after the reaction of hydrogenation of levulinic acid.  
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4.5 Conclusion 

In this chapter, Ir single atom catalyst (Ir-SAC) has been extensively studied for its 

physicochemical properties, formation process and stability under high temperature and 

hydrogen atmosphere. Afterwards, the catalytic reactivity of Ir-SAC was studied in 

hydrogenation of butadiene in gaseous condition and hydrogenation of levulinic acid (LA) in 

aqueous solution. Ir nanoparticles sample (Ir-NP) was also synthesized and its catalytic 

performance in hydrogenation of butadiene was determined for comparison to Ir-SAC. 

The first part of this chapter consists of the physicochemical characterization of Ir-SAC 

and Ir-NP. Ir single atoms or Ir nanoparticles were successfully synthesized and embedded on 

nitrogen-based carbon (CNX) host or AC host, respectively. The newly formed CNx is 

microporous and mesoporous amorphous material, which has less surface area than the 

initial AC. The Ir atoms in Ir-SAC have a higher binding energy than Ir in Ir-NP and Ir bulk, by 

XPS. 

The second part of this chapter focused on the study of the formation process of Ir-

SAC and its stability. Nitrogen-based carbon network (CNx) was formed by the pyrolysis of 

EDTA at low temperature (150 – 300 °C) accompanied by the pyrolysis of melamine at high 

temperature (300 – 800 °C). During the calcination, Ir ions sequestered by EDTA can be 

subsequently incorporated into the CNx framework, preventing them from aggregation to 

form large metal clusters. The synthesized Ir-SAC shows high stability under air and hydrogen 

atmosphere up to 400 °C. 

The last part of this chapter is dedicated to the study of the catalytic reactivity of Ir-

SAC. In the hydrogenation of butadiene, the conversion of Ir-SAC increases with the increase 

of reaction temperature and it reaches 80% at 200 °C. It shows an impressive nearly 100% 

selectivity to butenes, with the majority product trans-2-butene, throughout the course of 

the reaction. To the best of our knowledge, it is the first time that trans-2-butene as a majority 

product is observed in hydrogenation of butadiene. In comparison, Ir-NP behaves differently 

with low selectivity to butenes while the conversion exceeds 30%. By means of operando XAS 

experiment, it is believed that Ir forms stable bond with 4 N (and/or C, O) and its oxidation 

state (OS) is + 3.2 before the reaction. The coordination number (N) and the oxidation state 

(OS) are partially reduced to around 3 and + 2.0, respectively, during the pretreatment and 

reaction condition. This evolution of the electronic and atomic structure of Ir-SAC is the 
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possible reason of the high catalytic activity of Ir-SAC in the hydrogenation of butadiene. In 

hydrogenation of LA, Ir-SAC shows moderate catalytic activity. Ir-SAC is proved to be stable 

against aggregation in hydrogenation of butadiene, while not in hydrogenation of LA, as 

confirmed by XAS characterization.  
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5.1 Synthesis of single atom catalysts with various transition metals supported on activated 

carbon 

The main aim of this chapter is to synthesize low loading (< 5 wt.%) single atom 

catalysts (SACs) with various transition metals: Co, Ni, Cu, Mo, Pd, Ir and Pt, supported on 

nitrogen-based activated carbon (AC) and then to evaluate them in catalytic reactions of 

selective hydrogenation in different mediums: hydrogenation of butadiene in gaseous 

condition and hydrogenation of levulinic acid (LA) in aqueous solution. Besides, the synthesis 

with high metal loading (> 5 wt.%) SACs for Cu, Pd and Pt metals was also tested, and some 

preliminary studies are shown in this chapter. 

The metal (M) SAC was prepared by a cascade anchoring strategy adapted from Zhao 

et al.1 The M-SAC was dispersed on a nitrogen-rich AC by the liquid impregnation of the 

pristine AC with metal precursor in an aqueous solution in the presence of a chelating agent 

(EDTA) followed by pyrolysis under Ar at 800 °C in the presence of a source of nitrogen 

(melamine). This treatment allows the simultaneous preparation of metal SAC and doping of 

carbon with nitrogen. The pyrolyzed sample was further washed with aqua regia for 6 h to 

remove possible large clusters/nanoparticles formed during pyrolysis, except for Co and Ir 

samples. The samples are named x-M-AC, where x (wt.%) stands for the metal content over 

the entire sample mass and M = Co, Ni, Cu, Mo, Pd, Ir or Pt. More details of synthesis can be 

found in Chapter II Materials and Methods. 

For the purpose of comparison, except for iridium, the corresponding metal 

nanoparticles samples were prepared by a simple method based on the liquid impregnation 

of the activated carbon support with the metal precursor aqueous solution, followed by 

reduction under 5% H2/Ar flow at high temperature (250 – 800 °C). The samples are named 

X-M@AC-Y, where X (wt.%) is the metal content over the entire sample mass, M = Co, Ni, Cu, 

Mo, Pd or Pt and Y represents the reduction temperature. 

5.2 Physicochemical characterization 

The metal single atom catalysts (SACs) are divided into two categories according to 

the metal loading: low metal loading SACs (< 5 wt.%) and high metal loading SACs (> 5 wt.%). 

The physicochemical properties of the low metal loading SACs will be presented first, 

afterwards the high metal loading SACs will be discussed. 
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5.2.1 Low metal loading SACs (< 5 wt.%) 

The synthesized low loading (< 5 wt.%) SACs materials were firstly characterized by X-

Ray Diffraction (XRD) for the determination of their structural properties (Figure 5.1). 

The AC is an amorphous carbon with some impurities which give rise to several small 

sharp diffraction peaks in the range 30 - 50.0°. XRD patterns of all metal SAC samples showed 

contribution from activated carbon support and no diffraction peaks from metals can be 

discerned. This suggests that the metals are very well dispersed on the carbon support, same 

as discussed in Chapter IV for Ir samples. The metal can be either as ultra-small clusters with 

too short coherence length to diffract X-rays, or as even smaller size such as, single atom sates. 

This will be further verified by transmission electron microscopy. 
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Figure 5. 1: XRD pattern of pristine AC, 1.0-Co-AC, 2.5-Ni-AC, 1.6-Cu-AC, 3.7-Mo-AC, 0.8-Pd-

AC, 3.4-Ir-AC, and 1.1-Pt-AC. 

The SACs materials were characterized by Transmission Electron Microscopy (TEM) to 

analyse the dispersion of metals on the carbon host. One detailed example for 3.4-Ir-AC is 

given in Figure 5.2. In classic bright field TEM images as displayed by Figure 5.2 a and b, no Ir 

nanoparticles nor clusters could be observed, while high-resolution aberration-corrected 
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high-angle annular dark field scanning electron microscopy (HAADF-STEM) images showed 

that Ir existed at atomic scale as isolated bright spots homogeneously dispersed on the carbon 

support (Figure 5.2 c and d).  

 

  

Figure 5. 2: a), b) Classic bright field TEM images and c), d) HAADF-STEM images of 3.4-Ir-AC. 

The HAADF-STEM images of the other samples, Co, Ni, Cu, Mo, Pd and Pt SACs, are 

shown in Figure 5.3, together with their counterpart nanoparticles samples for comparison. 

The white spots of 1.0-Co-Ac, 2.5-Ni-AC and 1.6-Cu-AC are not clearly noticeable in the 

annular dark field (ADF) microscopy images possibly due to small contrast between these 

metals and the carbon support. In fact, it has been reported that ADF signal is approximately 

proportional to the second power of the atomic number, Z.2 Some of the white spots are 

indicated by the yellow arrows and they are in the size of atomic scale. As the atomic number 

increases, the contrast in the STEM images enhances for 3.7-Mo-AC, 0.8-Pd-AC and 1.1-Pt-AC 

samples. Large amount of subnanometric clusters or rafts of atoms (< 1 nm) of Mo are 

a b 

c d 
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observed to be homogeneously dispersed on the carbon support for 3.7-Mo-AC, while Pd and 

Pt atoms are well dispersed on the supports as isolated single atoms. On the contrary, the 

metal nanoparticles are shown as blacks spots in the bright field TEM images, and they are 

homogeneously dispersed on the activated carbon support with different average size 

ranging from 2 to 9 nm: Co ≈ 2.3 ± 0.4 nm, Ni ≈ 4.9 ± 1.0 nm, Cu ≈ 7.4 ± 2.4 nm, Mo ≈ 8.2 ± 3.7 

nm, Pd ≈ 5.5 ± 1.7 nm and Pt ≈ 5.0 ± 1.8 nm. 
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Figure 5. 3: HAADF-STEM images of 1.0-Co-AC, 2.5-Ni-AC, 1.6-Cu-AC, 3.7-Mo-AC, 0.8-Pd-AC 

and 1.1-Pt-AC (top), and TEM images of 2-Co@AC-400, 2-Cu@AC-250, 2-Ni@AC-400, 2-

Mo@AC-800, 1-Pd@AC-300, 1-Pt@AC-300 (bottom). 
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The metal concentration in the different composites was determined by ICP-AES and 

the content of light elements, N, C and H, was analysed by CHNS technique. The results are 

listed in Table 5.1. The C content decreased for the synthesized materials compared to the 

pristine AC, while the concentration of N significantly increased for SACs samples. The N 

content is nearly zero in AC and reaches around 14-19 wt.% after the pyrolysis, except for 3.7-

Mo-AC, which has only 6.8 wt.% of nitrogen. The N content is in large excess as compared to 

metal loading and it plays a key role to stabilize/coordinate the metal atoms. The relatively 

low content of nitrogen in 3.7-Mo-AC sample is a possible reason for the formation of Mo 

atomic rafts. The hydrogen content increased slightly after the synthesis for all the SACs 

materials. It should be noted that the content of oxygen is not measured due to the presence 

of impurities, such as aluminosilicates in the pristine AC, the sum of metal content as well as 

the light elements (N, C and H) is not 100%. 

sample 
ICP-AES CHNS 

Metal content 
(wt. %) N (wt. %) C (wt. %) H (wt. %) 

AC - 0.47 (±0.08) 78.39 (±0.81) 0.22 (±0.04) 
1.0-Co-AC 0.95 (±0.01) 13.95 (±0.33) 68.97 (±0.54) 0.43 (±0.13) 
2.5-Ni-AC 2.50 (±0.01) 17.21 (±0.10) 60.34 (±0.20) 1.46 (±0.23) 
1.6-Cu-AC 1.55 (±0.01) 15.52 (±0.07) 61.56 (±0.15) 1.07 (±0.02) 
3.7-Mo-AC 3.67 (±0.06) 6.80 (±0.02) 69.52 (±0.15) 0.69 (±0.09) 
0.8-Pd-AC 0.77 (±0.02) 19.01 (±0.81) 64.39 (±0.26) 0.94 (±0.20) 
3.4-Ir-AC 3.44 (±0.05) 17.06 (±0.03) 60.04 (±0.09) 1.07 (±0.14) 
1.1-Pt-AC 1.10 (±0.01) 19.64 (±0.53) 63.27 (±0.24) 1.13 (±0.01) 

Table 5. 1: Metal content of AC, 1.0-Co-AC, 2.5-Ni-AC, 1.6-Cu-AC, 3.7-Mo-AC, 0.8-Pd-AC, 3.4-

Ir-AC and 1.1-Pt-AC, determined by ICP-AES and their corresponding concentration of N, C 

and H determined by CHNS. 

To obtain further information from the surface as well as the chemical state of 

nitrogen atoms and metal atoms in SACs materials, X-ray photoelectron spectroscopy (XPS) 

was performed. As an example, N 1s and Co 2p spectra of 1.0-Co-AC are presented in Figure 

5.4. As discussed in Chapter IV for 1.0-Ir-AC sample, the N 1s spectrum (Figure 5.4 a) of Co 

sample shows four different bonding configurations of N atoms, which are attributed to 

pyridinic-N (398.6 eV), pyrrolic-N (399.7 eV), graphitic-N (401.2 eV) and oxidized-N (404.2 eV), 

respectively. Pyridinic-N and pyrrolic-N are the nitrogen species at the edges or in the 
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vacancies of the graphitic host. The pyridinic–N bonds with two C atoms and contributes one 

p electron to the π system. Pyrrolic–N refers to N atoms incorporated in pentagonal ring and 

contributes two p electrons to the π system. Graphitic–N refers to N atoms that substitute C 

atoms in the hexagonal ring. The Co 2p can be deconvoluted into four peaks as well. As shown 

in Figure 5.4 b, two main peaks at 781.2 eV and 796.9 eV correspond to Co 2p3/2 and Co 2p1/2, 

respectively, these values are similar to the Co 2p binding energy in cobalt oxide.3,4 Two 

satellite peaks are observed at 786.2 eV and 803.6 eV suggesting the presence of Co2+.5 No 

signal from zero valence Co metal (binding energy of bulk Co 2p2/3: 778.2 eV) could be 

observed from the XPS data.6 These findings are consistent with the results found for other 

Co single atoms supported on nitrogen-based carbon materials. For example, Li et al.7 

reported an atomically dispersed cobalt dispersed onto nitrogen-doped graphene, the Co 2p 

spectra of XPS showed two main peaks at 780.9 eV and 796.2 eV, and with the presence of 

two satellite peaks. Moreover, similar binding energy was reported by Liu et al.8 for a Co SACs 

dispersed on carbon nitride nanosheet.  
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Figure 5. 4: a) N 1s and b) Co 2p XPS spectra of 1.0-Co-AC; The black line at 778.2 eV is the 

binding energy of Co bulk 2p3/2 taken from literature.6 

To gain more information on the chemical coordination environments and atomic 

dispersion of single atom catalysts, 1.0-Co-AC, 3.7-Mo-AC, 3.4-Ir-AC and 1.1-Pt-AC were 

investigated by X-ray absorption (XAS) spectroscopy. The X-ray absorption near edge 

structure (XANES) and X-ray absorption fine structure (EXAFS) spectra are shown in Figure 5.5. 
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Bulk metals foils were used as references. As shown in Figure 5.5 a, c, e and g, the XANES 

spectra of 1.0-Co-AC, 3.7-Mo-AC, 3.4-Ir-AC and 1.1-Pt-AC show distinct features as compared 

to their counterpart metal. They have a higher intensity of the “white line” than metal bulks, 

which indicates that they have a different oxidation state.  

The Fourier transforms (FT) of EXAFS spectra of 1.0-Co-AC, 3.7-Mo-AC, 3.4-Ir-AC and 

1.1-Pt-AC are compared to Co, Mo, Ir and Pt bulk in Figure 5.5 b, d, f and h. Co bulk shows 

typical peaks for the close-packed-hexagonal metal structure with the dominant one at 

approximately 2.18 Å (Co-Co nearest distances), while 1.0-Co-AC shows a single dominant 

peak at around 1.53 Å. This peak can be ascribed to the backscattering from the nearest Co 

neighbours X (X = N/C/O). However, EXAFS cannot distinguish between light elements close 

to each other such as, C, N or O because of their close scattering amplitude. Thus, we can 

conclude that Co-Co metal bond scattering peak (around 2.18 Å) are absent for 1-Co-AC, 

suggesting that no metal nanoparticles were formed in this sample. The FT of Ir, Pt SAC 

samples are similar to the Co one. Ir bulk (or Pt bulk) (face-centred-cubic structure) has its 

dominant peak at 2.58 Å (or 2.59 Å) (Ir-Ir (or Pt-Pt) nearest distances), whereas the single 

dominant peak is at around 1.62 Å (or 1.67 Å) originating from the backscattering of Ir-X (or 

Pt-X where X = N/C/O) for the 3.4-Ir-AC (or 1.1-Pt-AC). The metal-metal scattering paths could 

not be observed for these two SAC samples: 3.4-Ir-AC and 1.1-Pt-AC. On the contrary, Mo 

bulk (body-centred cubic) shows two main peaks at approximately 2.38 and 2.85 Å for the 

first and second coordination shell of Mo-Mo bond, respectively.9 For the 3.7-Mo-AC, besides 

the peak of Mo-X (X = N/C/O) at around 1.33 Å, a significant peak at about 2.85 Å is noticed 

which can be hypothetically ascribed to the Mo-Mo metal bond. This finding might indicate 

the formation of Mo rafts or nanoclusters with bonds close to a 2D structure that might be 

distinct to the 3D bulk lattice. These results confirm the atomic dispersion of cobalt atoms in 

the 1.0-Co-AC, iridium atoms in the 3.4-Ir-AC and platinum atoms in the 1.1-Pt-AC, as well as 

the formation of both Mo SACs and rafts in 3.7-Mo-AC, in very good agreement with HAADF-

STEM. 
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Figure 5.5: XANES spectra at the, a) K-edge of Co bulk (black) and 1.0-Co-AC (red), c) K-edge 

of Mo bulk (black) and 3.7-Mo-AC (red), e) L3-edge of Ir bulk (black) and 3.4-Ir-AC (red), and 

g) L3-edge of Pt bulk (black) and 1.1-Pt-AC (red); their corresponding Fourier Transform, b) 
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Co bulk and 1.0-Co-AC, d) Mo bulk and 3.7-Mo-AC, f) Ir bulk and 3.4-Ir-AC, and h) Pt bulk and 

1.1-Pt-AC. 

To reveal the local structure of metal M (M = Co, Ir, Mo or Pt) SACs, EXAFS refinements 

were performed based on a known structural model where one metal atom is coordinated 

with four light atoms M-(N, C)xOy (x + y = 4), as proposed for 1.0-Ir-AC sample in Chapter IV. 

The EXAFS fitting results such as, the coordination number (N), the Debye-Waller factor (σ2), 

the nearest neighbours M-X distance and the confidence factor (QF) are listed in Table 5.2. 

The results of 3.7-Mo-AC are not listed because of the poor quality of the EXAFS data and 

complex fit for Mo rafts. Typical refinements results are plotted in Figure 5.6. The fitted Co, Ir 

and Pt coordination numbers are around 4, indicating that each metal atoms coordinate with 

four light atoms (N/C/O) on the support. Notably, the four-configuration mode is found in 

metal porphyrins complexes.10–12 The nearest distance of M-X is found to be 1.990(3) Å for 

1.0-Co-AC, 2.015(3) Å for 3.4-Ir-AC and 1.996(4) Å for 1-Pt-AC. These values are consistent 

with results reported in the literature. For example, the distance Co-X was found to be 1.96(2) 

Å in a Co SAC supported on a hierarchically ordered pours N-doped carbon.13 In a Ir/CN 

catalyst, the distance Ir-X was 2.00(2) Å.14 Moreover, the bond length of Pt-X in a Pt SAC on 

nitrogen doped carbon dots was 1.99(2) Å.15 

Sample N σ2 (Å2) RM-X (Å) QF 
1.0-Co-AC 4.0(2) 0.0147(14) 1.990(3) 0.1 
3.4-Ir-AC 4.0(1) 0.0050(4) 2.015(3) 0.2 
1.1-Pt-AC 4.0(3) 0.0043(7) 1.996(4) 0.7 

Table 5. 2: EXAFS refinements result for 1.0-Co-AC, 3.4-Ir-AC and 1.1-Pt-AC at 25 °C. The 

coordination number (N), the Debye–Waller factor (σ2), the nearest M–X (M = Co, Ir or Pt, X 

= N,C,O) distance (R) and the confidence factor (QF) are given. 
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Figure 5. 6: EXAFS fitting of SACs at 25 °C, a, b) 1.0-Co-AC, c, d) 3.4-Ir-AC, and e, f) 1.1-Pt-AC. 

5.2.2 High loading SACs (> 5 wt.%) 

The synthesized high loading SACs materials (> 5 wt.%) were firstly characterized by 

XRD for the determination of their structural properties. As shown in Figure 5.7, no diffraction 
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peaks of pure metals can be observed suggesting that they are well dispersed on the carbon 

support. HAAF-STEM characterization is then used to verify the dispersion of the metals. 
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Figure 5. 7: XRD pattern of pristine AC, 5.6-Cu-AC, 7.5-Pd-AC and 11.7-Pt-AC.  

The HAADF-STEM images of 5.6-Cu-AC, 7.5-Pd-AC and 11.7-Pt-AC are shown in Figure 

5.8. At low magnification, no metals nanoparticles can be observed. However, well dispersed 

bright spots can be observed in the high magnification images. For 5.6-Cu-AC, some white 

spots are indicated by the yellow arrows and they are in the size of atomic scale. As the metal 

concentration is very high, the bright spots are very densely dispersed on the carbon support, 

in particular for 7.5-Pd-AC and 11.7-Pt-AC. Single atoms as well as oligomers such as, dimers, 

trimers, tetramers, are observed in STEM images, however it is difficult to distinguish among 

them.  
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Figure 5. 8: HAADF-STEM images of 5.6-Cu-AC, 7.5-Pd-AC and 11.7-Pt-AC. 

The metal concentration in the different composites was determined by ICP-AES, the 

results are shown in Table 5.3. The metal concentrations are 5.64, 7.45 and 11.72 wt.% for 

5.6-Cu-AC, 7.5-Pd-AC and 11.7-Pt-AC, respectively. 

sample Metal content (wt. %) 
5.6-Cu-AC 5.64(±0.05) 
7.5-Pd-AC 7.45(±0.04) 
11.7-Pt-AC 11.72(±0.08) 

Table 5. 3: Metal content of 5.6-Cu-AC, 7.5-Pd-AC and 11.7-Pt-AC, determined by ICP-AES. 

5.6-Cu-AC 5.6-Cu-AC 5.6-Cu-AC 

7.5-Pd-AC 7.5-Pd-AC 7.5-Pd-AC 

11.7-Pt-AC 11.7-Pt-AC 11.7-Pt-AC 
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The 11.7-Pt-AC was investigated by XAS to check the chemical coordination 

environments and the Pt atomic dispersion. The results were compared with 1.1-Pt-AC and 

Pt bulk. The XANES and EXAFS spectra are shown in Figure 5.9. The XANES spectrum of 11.7-

Pt-AC is very similar to 1.1-Pt-AC but different when compared to Pt bulk. The intensity of 

white line is between those of Pt bulk and 1.1-Pt-AC, indicating that the oxidation state is 

among the metallic Pt bulk and the pure SAC form of 1.1-Pt-AC. The FT of EXAFS spectra of 

the Pt bulk, 1.1-Pt-AC and 11.7-Pt-AC are shown in Figure 5.9 b. Same as the 1.1-Pt-AC, Pt-X 

(X = N,C or O) back-scattering peak is observed at approximately 1.67 Å, which means the 

formation of Pt single atoms. Moreover, no Pt-Pt metal distances (around 2.59 Å) could be 

found, consequently, metal nanoparticles were not formed in the 11.7-Pt-AC sample. 

However, a small peak at around 2.0 Å is found which might be ascribed to the Pt-Cl bond 

formed during the leaching of the sample with the aqua regia (HNO3 + 3HCl). In fact, the 

leaching mechanism of metallic Pt can be explained with the oxidation of Pt by HNO3, then 

the oxidized Pt ions react with chloride ions (HCl) resulting in hexachloroplatinate(IV) (PtCl62-) 

ions. As reported in literature, the scattering peak of Pt-Cl in H2PtCl4 is around at 2 Å in EXAFS 

analyses.16,17  
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Figure 5. 9: a) XANES spectra at the L3-edge of Pt bulk (black), 1.1-Pt-AC (blue) and 11.7-Pt-

AC (rose); b) their corresponding Fourier Transform. 

The local structure of Pt is revealed by EXAFS refinements based on a two-shell 

structural model where the first shell is Pt coordinated with four light atoms M-(N, C)xOy (x + 

y = 4) as for the pure SAC sample, and the second shell corresponds to nearest neighbours of 

the rhombohedral structure of PtCl2 (𝑅𝑅3�𝑚𝑚). The EXAFS fitting results such as, the coordination 

number (N), the Debye-Waller factor (σ2), the nearest Pt-X and Pt-Cl distance and the 
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confidence factor (QF) are listed in Table 5.4. Typical refinements results are plotted in Figure 

5.10. The fitted Pt coordination numbers of the first shell are around 4 and the nearest 

distance of Pt-X is found to be 1.989(3) Å, similar to the 1.1-Pt-AC. Pt is also found to be 

coordinated with around 1 Cl at a distance around 2.198 Å. 

Sample Shell N σ2
 (Å2) RM-X (Å) QF 

11.7-Pt-AC 
Pt-X 4.2(3) 

0.0040(6) 
1.989(3) 

0.27 
Pt-Cl 0.8(0.6) 2.198(14) 

Table 5. 4: EXAFS refinements result for 11.7-Pt-AC under He flow at 25 °C. The coordination 

number (N), the Debye–Waller factor (σ2), the nearest Pt–X and Pt-Cl distance (R) and the 

confidence factor (QF) are given. 
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Figure 5. 10: EXAFS fitting of 11.7-Pt-AC under He flow at 25 °C. 

In conclusion, single atom catalysts with several transition metals were synthesized 

with low loading (< 5 wt.%) and high loading (> 5 wt.%) concentration. The metal SACs were 

studied by several characterization techniques: XRD, HAADF-STEM, XPS and XAS, which 

showed that the metal atoms were ultra-dispersed on nitrogen-based carbon supported as 

single atoms or multimers (clusters or rafts). 

5.3 Catalytic test 

The low metal loading SACs materials were evaluated in catalytic reaction of selective 

hydrogenations in different mediums at laboratory IRCELYON: hydrogenation of butadiene in 

gaseous condition and hydrogenation of levulinic acid (LA) in aqueous solution. 

5.3.1 Hydrogenation of butadiene 

The low loading SACs materials were firstly tested in hydrogenation of butadiene. The 

catalytic reaction was performed under atmospheric pressure in a continuous flow fixed-bed 
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reactor. Before the reaction, 40 mg of catalyst was mixed with 100 mg Al2O3 and activated in 

situ with hydrogen by heating from room temperature (RT) to 250 °C at a heating rate of 

4 °C/min and maintained at 250 °C for 1 h. Then the reactor was cooled down to RT under H2. 

The reaction was then carried out from RT to 200 °C with a reaction gas flow of 100 ml/min 

(C2H2:H2:He = 2:10:88). The catalytic performance of SACs samples is compared with the 

corresponding metal nanoparticles, and the results are shown in the figures (Figure 5.11 – 

5.16) as follows. 
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Figure 5. 11:Catalytic performance in hydrogenation of butadiene of a) 1.0-Co-AC (SAC) and 

b) 2-Co@AC-400 (NP). Conversion and selectivity to butenes as a function of temperature, as 

well as their corresponding product distributions. 

1.0-Co-AC (SAC) is slightly reactive in this reaction, below 20% conversion at high 

temperature. The conversion increases with the rise of the temperature and it is about 16% 

when the temperature is superior to 180 °C. The selectivity to butenes attains nearly 100% 

during the whole reaction. The major products are 1-butene and T2-butene.  

The Co nanoparticle sample, 2-Co@AC-400, is very reactive in the beginning of the 

reaction, nearly 60% conversion is achieved at room temperature. However, it deactivates 

rapidly and only 12% conversion is found at 40 °C. The reactivity increases slowly with the rise 

in temperature, the maximum being reached at 130 °C with 35% conversion. The selectivity 

to butenes reaches 90%, except at room temperature. Same as 1.0-Co-AC, the main products 

are 1-butene and T2-butene. The 1-butene decreases and T2-butene increases with 

temperature during the reaction for both samples. 
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Figure 5. 12:Catalytic performance in hydrogenation of butadiene of a) 2.5-Ni-AC (SAC) and 

b) 2-Ni@AC-400 (NP). Conversion and selectivity to butenes as a function of temperature, as 

well as their corresponding product distributions. 

2.5-Ni-AC is not reactive during the reaction whereas, Ni nanoparticles, 2-Ni@AC-400, 

are highly reactive in this reaction. They show complete conversion above 140 °C, and butane 

is the main product during the reaction. 
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Figure 5. 13:Catalytic performance in hydrogenation of butadiene of a) 1.6-Cu-AC (SAC) and 

b) 2-Cu@AC-250 (NP). Conversion and selectivity to butenes as a function of temperature, as 

well as their corresponding product distributions. 

The Cu single atom catalysts and nanoparticles catalyst are both not active during the 

reaction. The conversion is nearly zero, irrespective the reaction temperature. 
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Figure 5. 14:Catalytic performance in hydrogenation of butadiene of a) 3.7-Mo-AC (SAC) and 

b) 2-Mo@AC-800 (NP). Conversion and selectivity to butenes as a function of temperature, 

as well as their corresponding product distributions. 

The Mo catalysts are not very active for this reaction. The conversion increases slowly 

from 0% to 5% for SAC samples, 3.7-Mo-AC, and from 0% to 10% for nanoparticles, 2-Mo@AC-

800, with rising the temperature from room temperature to around 200 °C. The selectivity to 

butenes is high around 90% but the catalysts are not reactive. 
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Figure 5. 15:Catalytic performance in hydrogenation of butadiene of a) 0.8-Pd-AC (SAC) and 

b) 1-Pd@AC-300 (NP). Conversion and selectivity to butenes as a function of temperature, as 

well as their corresponding product distributions. 

No reactivity is found for Pd SAC catalyst, 0.8-Pd-AC. However, Pd nanoparticles, 1-

Pd@AC-300, has a good performance for this reaction. The conversion increases progressively 
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with temperature and reaches full conversion at 110 °C and higher temperatures. Pd 

nanoparticles have a high selectivity to butenes at low temperature (< 60 °C) and T2-butene 

and 1-butene are primary products. As the temperature rises, the selectivity to butane 

increases along with the decrease of 1-butene and T2-butene. The butane becomes the main 

product when the temperature surpasses 140 °C. 
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Figure 5. 16:Catalytic performance in hydrogenation of butadiene of a) 1.1-Pt-AC (SAC) and 

b) 1-Pt@AC-300 (NP). Conversion and selectivity to butenes as a function of temperature, as 

well as their corresponding product distributions. 

Similar to Pd SAC, Pt SAC catalyst, 1.1-Pt-AC, shows no reactivity for this reaction. 

Nevertheless, the Pt nanoparticles, 1-Pt@AC-300, are reactive, like Pd case discussed before. 

20% conversion is observed at the beginning of the reaction with 100% selectivity to butenes. 

The Pt nanoparticles deactivates at 40°C but regain activity with the increases of the 

temperature. The selectivity to butenes declines with increasing reaction temperature. The 

butane becomes the major product after 180 °C at full conversion. 

The metal SACs catalysts: 1.0-Co-AC, 3.7-Mo-AC and 0.8-Pd-AC after the catalytic test 

were verified by TEM analysis (Figure 5.17). No metal clusters nor nanoparticles after the 

hydrogenation of butadiene could be noticed, suggesting that the Co, Mo and Pd single atoms are 

stable up to 250 °C under hydrogen atmosphere and up to 200 °C under reaction condition.  
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Figure 5. 17: TEM images of 1.0-Co-AC, 3.7-Mo-AC and 0.8-Pd-AC after the hydrogenation of 

butadiene. 

5.3.2 Hydrogenation of levulinic acid 

As discussed above, single atom catalysts showed different reactivity and selectivity 

in gaseous reaction of hydrogenation of butadiene as compared to metal nanoparticles. 

Another study was carried out to find out their catalytic performance in aqueous reaction 

condition: hydrogenation of levulinic acid (LA). The latter reaction was realised in a batch 

reactor at 160 °C and under 150 bar H2 pressure, the detail of reaction condition can be found 

in Chapter 2 Materials and Methods. The results of hydrogenation of LA for these low loading 

SACs samples are shown in Figure 5.18.

1.0-Co-AC after reaction 3.7-Mo-AC after reaction 0.8-Pd-AC after reaction 
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Figure 5. 18: Conversion of levulinic acid in water for a) 1.0-Co-AC, b) 2.5-Ni-AC, c) 1.6-Cu-AC, 

d) 3.7-Mo-AC, e) 0.8-Pd-AC, f) 1.1-Pt-AC and g) 3.4-Ir-AC; reaction conditions: LA (0.17 M in 

150 ml water), 400 mg catalyst, H2 (150 bar), 160 °C, 24 h. 

The Co, Ni, Pd and Pt SACs are not reactive for this reaction. The conversion of LA was 

nearly zero after 24 h reaction. On the other side, 1.6-Cu-AC and 3.7-Mo-AC catalysts were 

slightly more active and the conversion of LA to GVL was 18% and 13%, respectively. The 3.4-

Ir-AC showed a full conversion after 24 h reaction. 

The tested SACs catalysts showed poor catalytic reactivity in the hydrogenation of 

levulinic acid as compared to metal nanoparticles catalysts found in the literature.18,19 For 

example, Liu et al.20 reported that 100% conversion of LA to GVL in 4h was attained with a 22 

nm 5% Ni nanoparticles catalyst supported on nitrogen-doped mesoporous carbon under 

200 °C, 30 bar H2 and dioxane solvent reaction condition. Moreover, Hengne et al.21 
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synthesized 13.5 nm nanoparticles 5% Cu catalyst supported on ZrO2, it showed complete 

conversion of LA to GVL in 5h in aqueous solution at 200 °C under 34.5 bar H2. In addition, 

Upare et al. reported that a 5% Pd supported on carbon catalyst gave excellent reactivity of 

100% conversion of LA in dioxane solution within 50h at 265 °C and under hydrogen pressure. 

Single atom catalyst has been studied in many catalytic reactions, such as, 

electrochemical reactions (ORR: oxygen reduction reaction, MOR: methanol oxidation 

reaction and HER: hydrogen evolution reaction) and various hydrogenation reactions.22,23 

However, few studies concern the hydrogenation of levulinic acid. Cao et al.24 synthesized an 

Ir@ZrO2@C SAC which showed complete conversion in 10 h in the hydrogenation of LA to 

GVL in acidic aqueous solution at 180 °C under 40 bar H2. Zhang et al.25 designed a 

Ru/TiO2@CN SAC and LA could be completely converted to GVL within 13 h at room 

temperature under 60 bar H2. Obviously, the SACs reported in literature have much better 

catalytic reactivity than our SACs materials based on Co, Ni, Cu, Mo, Pd and Pt. However, we 

can recall that the 1.0-Ir-AC catalyst described in Chapter IV reaches a conversion of 49% LA 

to GVL under the same reaction conditions, which outperformed all our tested catalysts in 

this chapter, except 3.4-Ir-AC. 

5.4 Conclusion 

In this chapter, a study of physicochemical properties of single atom catalysts with 

various transition metals supported on carbon-based materials, as well as their performance 

in catalytic reaction of hydrogenation of butadiene and hydrogenation of levulinic acid (LA) 

was carried out. For the purpose of comparison, metal nanoparticles samples were also 

synthesized and studied for its catalytic performance in hydrogenation of butadiene. 

The first part of this chapter consists of the physicochemical characterization of the 

metal SACs with two different categories according to the metal content: low metal loading 

(< 5 wt.%) and high metal loading (> 5 wt.%). The low metal (Co, Ni, Cu, Mo, Ir, Pd and Pt) 

loading SACs were proved to be ultra-dispersed on the nitrogen-based carbon support as 

single atoms or multimers (clusters or rafts), as confirmed by XRD, HAADF-STEM, XPS and XAS 

characterization. Moreover, three high metal loading SACs were successfully synthesized for 

Cu, Pd and Pt. 



CHAPTER V: POROUS CARBONS WITH VARIOUS TRANSITION METALS FOR HYDROGENATION 
REACTIONS 

175 
 

The second part of this chapter focused on the study of the catalytic reactivity of low 

metal loading SACs. In hydrogenation of butadiene, Co, Cu and Mo SACs and nanoparticles 

show poor conversion of butadiene: < 20%. The Ni, Pd and Pt SACs show nearly zero reactivity, 

while their corresponding nanoparticles samples reaches full conversion of butadiene at high 

temperature with the butane as the majority product. The metal SACs catalysts seem stable 

against reaction condition. In hydrogenation of LA, the metal SACs catalysts show mediocre 

reactivity, except Ir SACs which has a full conversion of LA to GVL after 24h. Co, Ni, Pd, Pt SACs 

are not reactive for this reaction. The conversions for Cu and Mo samples are 18% and 13%, 

respectively.  
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The objective of this Ph.D. thesis work was to synthesize the ultra-dispersed metal 

particles at nanoscale or even smaller size such as single atom state supported on carbon-

based materials. Afterwards, the synthesized hybrid materials have been studied to highlight 

their interaction with hydrogen and tested in selective hydrogenation reactions: 

hydrogenation of butadiene in gaseous condition and hydrogenation of levulinic acid (LA) in 

aqueous solution. The main idea is to compare the hydrogen interaction and the catalytic 

reactivity between metal nanoparticles and single atom catalysts (SACs). In catalysis, the focus 

is on the SACs as the metal nanoparticles have been already well studied in the literature. 

Firstly, three 10 wt.% Pd nanoparticles samples with different average sizes: 6.0, 2.0, 

and 1.4 nm, and two Pd single atom catalysts (SACs) samples with different metal content: 0.8 

and 7.5 wt.%, supported on carbon-based materials were synthesized and characterized. From 

the PCI curves at room temperature for Pd nanoparticles, the absorption capacity at 1 bar H2 

diminishes with the decrease of Pd size. The absorption and desorption show only partial 

reversibility for Pd nanoparticles at low pressure, while they are completely reversible for Pd 

bulk, which indicates that hydrogen is trapped inside Pd nanoparticles after the desorption 

process. The decrease of absorption capacity was confirmed by in situ XRD. In situ XAS at 

synchrotron together with TDS experiment confirmed the H trapping inside the lattice of Pd 

nanoparticles, and a size dependence H trapping effect was found: the smaller the size, the 

larger the irreversible H amount and the higher the binding energy experienced by H atoms. 

The DFT and TB simulations suggest that the trapped H is situated at the subsurface of 

nanoparticles. Moreover, the bond strength for Pd-H becomes weaker as the Pd size 

decreases and hydrogen atoms in nanoparticles have larger entropy with decreasing the Pd 

size. During the desorption process, a change of the rate limiting step from surface 

recombination or 𝛽𝛽 → 𝛼𝛼 phase transformation in Pd bulk to hydrogen diffusion into 𝛼𝛼 and 𝛽𝛽 

phases in Pd nanoparticles was demonstrated. On the other side, contrary to Pd nanoparticles, 

Pd SACs showed very little interaction with hydrogen, as confirmed by PCI and TDS 

experiments. 

Thereafter, 1.0 wt.% Ir single atom catalyst (Ir-SAC) and 3.7 wt.% Ir nanoparticles 

sample (Ir-NP) were prepared, and a comparative study of Ir-SAC and Ir-NP was carried out to 

determine their physicochemical properties and the catalytic performance in selective 

hydrogenation reactions. The Ir single atoms in Ir-SAC and Ir nanoparticles in Ir-NP were 
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confirmed by HAADF-STEM characterization. The chemical state of Ir atoms in Ir-SAC is 

different form Ir atoms in Ir-NP. Ir forms stable bond with 4 N (and/or C,O) with an oxidation 

state of + 3.2 in Ir-SAC, and the XPS binding energies of Ir 4f are 62.5 eV (Ir 4f7/2) and 65.5 eV 

(Ir 4f5/2), which is higher than Ir in Ir-NP and Ir bulk. In hydrogenation of butadiene, Ir single 

atoms were partially reduced, and the coordination number and oxidation state decreased to 

around 3 and +2.0 after the pretreatment at 250 °C under hydrogen. Ir-SAC showed 80% 

conversion at 200 °C with nearly 100% selectivity to butenes, especially with the majority 

product trans-2-buene which is rarely seen in literature. The reduced Ir single atoms are 

thought to be the active species in this reaction. In comparison, Ir-NP showed low selectivity 

to butenes while the conversion exceeded 30% at temperature up to 120 °C. In hydrogenation 

of LA, Ir-SAC had a moderate conversion of LA to γ-valerolactone: 80% conversion after 24 h 

reaction time. Ir-SAC showed high stability under air condition up to 400 °C and under 

hydrogenation of butadiene reaction condition, however the agglomeration of Ir single atoms 

was observed after the hydrogenation of LA. 

Finally, studies of physicochemical properties of single atom catalysts with various 

transition metals supported on carbon-based materials, and the performances in catalytic 

reactions of hydrogenation of butadiene and hydrogenation of levulinic acid (LA) were carried 

out. For the purpose of comparison, metal nanoparticles samples were also synthesized and 

studied for the catalytic performance in hydrogenation of butadiene. The SACs samples were 

divided into two categories according to the metal contents: low loading (< 5 wt.%) and high 

loading (> 5 wt.%). The low metal (Co, Ni, Cu, Mo, Ir, Pd and Pt) loading SACs and high metal 

(Cu, Pd and Pt) loading SACS samples were proved to be ultra-dispersed on nitrogen-based 

carbon supported as single atoms or multimers (clusters or rafts), as confirmed by XRD, 

HAADF-STEM, XPS and XAS characterization. The catalytic tests were performed using the low 

loading SACs and their corresponding metal nanoparticles. In the hydrogenation of butadiene, 

Co, Cu and Mo SACs and nanoparticles showed poor conversion of butadiene: < 20%. The Ni, 

Pd and Pt SACs showed no reactivity, while their corresponding nanoparticles samples had full 

conversion of butadiene at high temperature with the butane as the majority product. The 

metal SACs seemed stable under the reaction condition. In hydrogenation of LA, the metal 

SACs showed mediocre reactivity, except 3.5% Ir SACs which has a full conversion of LA to GVL 
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after 24h. Co, Ni, Pd, Pt SACs are not reactive for this reaction.  The conversions for Cu and Mo 

samples are 18% and 13%, respectively. 

In perspective, for Pd nanoparticles, the nanosize effects, in particular the H trapping 

at subsurface sites of Pd nanoparticles was observed. Trapped H at the subsurface may play 

an important role in hydrogenation reactions through a subsurface hydrogen-induced 

electronic effect leading to the stabilization of metal-H bonds at the surface. Therefore, other 

studies may be carried out to check if other metal nanoparticles, such as Ir, Rh or Pt which has 

been frequently used in heterogeneous catalysis, have similar H trapping effect. 

Moreover, the hydrogen interaction with Pd SACs were proved to be completely 

different compared to Pd nanoparticles from PCI and TDS measurements. A more complete 

systematic study of the hydrogen interaction with Pd SACs, as well as with other metal SACs, 

including physisorption and chemisorption properties, may be carried out. As confirmed in 

operando XAS, Ir-SAC was partially reduced under hydrogen at high temperature under 

hydrogen atmosphere. Another XAS experiment may be carried out to check the reversibility 

of this process, i.e., if the reduced Ir-SAC could be oxidized to the initial chemical state after 

exposure in an oxidized environment (ex: in air condition). In additional, same operando XAS 

may be realized to observe if other metal single atoms in SACs samples have the similar change 

of chemical state under hydrogen condition at high temperature. 

Finally, in catalysis, the reaction conditions were chosen empirically, no large effort 

was spent to find the best reaction condition. For example, in hydrogenation of butadiene, 

the pretreatment temperature was set at 250 °C, other pretreatment temperatures may be 

tried. In hydrogenation of LA, water was chosen as the solvent, however other solvent may be 

used, e.g., dioxane and ethanol. Furthermore, the SACs are used frequently in other 

hydrogenation reactions, such as electrocatalysis and hydrogenation of CO2. Therefore, the 

metal SACs samples may be tested in other hydrogenation reactions. 



 

 
 



 

 
 

  



 

 
 

Study of the interaction between hydrogen and ultradispersed metals for heterogeneous catalysis 

Heterogeneous catalysis is one of the pillars of the chemical industry as it is involved in a wide range of 
applications. The heterogeneous reaction occurs usually at the surface of metal catalysts, therefore the 
downscaling of metal particles to the ultra-small size range, which increases the metal surface area and thus 
enhances the number of the metallic active sites, has become an important strategy for the design of new and 
efficient materials. Moreover, nanometric and subnanometric downsizing gives rise to a dramatic change in the 
electronic properties of metals, which in turn leads to promising catalytic performances. 

The purpose of this PhD work is to synthesize ultra-small metal particles at nanoscale or even smaller 
size such as, single atom state, supported on carbon-based materials, to study their interaction with hydrogen 
for the purpose of their utilization in selective hydrogenation reactions : hydrogenation of butadiene in gaseous 
condition and hydrogenation of levulinic acid in aqueous condition. In this work, Pd nanoparticles  with different 
sizes (6.0, 2.0 and 1.4 nm), and various transition metals (Co, Ni, Cu, Mo, Pd, Ir and Pt) single atom catalysts (SACs) 
were synthesized by liquid impregnation methods. The obtained hybrid materials were characterized by a wide 
range of laboratory characterization techniques and by synchrotron radiation. 

One of the main experimental results proved  an interesting H trapping phenomenon in Pd nanoparticles 
and confirmed by theoretical calculations. H is trapped inside the subsurface interstitial sites of Pd nanoparticles 
and a size effect is highlighted : the smaller the Pd particle size, the larger the fraction of trapped H and the higher 
the binding energy experienced by these H atoms.  

Another important result related to catalysis demonstrated that, among all the SACs samples, Ir-SAC has 
the best catalytic performance : high reactivity in hydrogenation of butadiene with nearly 100% selectivity to 
butenes, in particular with the majority product of trans-2-butene, which is rarely reported in literature. In 
comparison, Ir nanoparticles show low selectivity to butenes while the conversion is high (> 30%). Ir-SAC has also 
a relatively good conversion of levulinic acid to γ-valerolactone: 80% conversion in 24 h reaction. 
Keywords: heterogeneous catalysis, metal nanoparticles, single atom catalysts, hydrogen 

 

Etude de l’interaction entre l’hydrogène et des métaux ultra-dispersés pour la catalyse hétérogène 

La catalyse hétérogène est l'un des piliers de l'industrie chimique car elle intervient dans un large 
éventail d'applications. La réaction catalytique se produit généralement à la surface des catalyseurs métalliques, 
c'est pourquoi la réduction des particules métalliques à une taille ultra-petite, qui augmente la surface du métal 
et accroît ainsi le nombre de sites actifs, est devenue une stratégie importante pour la conception de nouveaux 
matériaux efficaces. En outre, la réduction de la taille à l'échelle nanométrique et subnanométrique entraîne un 
changement radical des propriétés électroniques des métaux, ce qui se traduit par des performances catalytiques 
prometteuses. 

L'objectif de ce travail de thèse est de synthétiser des particules métalliques à taille nanométrique 
contrôlée allant jusqu’à la dispersion ultime sous forme d’atomes isolés supportés sur des matériaux à base de 
carbone et d'étudier leur interaction avec l'hydrogène en vue de leur utilisation dans de réactions 
d'hydrogénation sélective : l’hydrogénation du butadiène en phase gazeuse et l’hydrogénation de l'acide 
lévulinique en phase liquide. Dans ce travail, des nanoparticules de Pd de différentes tailles (6,0, 2,0 et 1,4 nm) 
et divers métaux de transition (Co, Ni, Cu, Mo, Pd, Ir et Pt) sous forme d’atomes isolés (single atoms catalysts-
SACs, en Anglais) ont été synthétisés par des méthodes d'imprégnation liquide. Les matériaux hybrides obtenus 
ont été caractérisés par une large palette de techniques de caractérisation de laboratoire et par le rayonement 
synchrotron. 

Un des faits marquants de ce travail est la mise en évidence d’un phénomène de piégeage de l'H  dans 
les nanoparticules de Pd confirmé aussi par des calculs théoriques. L’hydrogène est piégé dans les sites 
interstitiels de la subsurface des nanoparticules de Pd et un effet de taille est observé : plus la taille des particules 
de Pd est petite, plus la fraction d'H piégé est grande et plus l'énergie de liaison Pd-H est élevée.  

Un autre fait marquant est obtenu en catalyse et démontre que, parmi tous les SACs étudiés, Ir-SAC a 
la meilleure performance catalytique : haute réactivité dans l'hydrogénation du butadiène avec une sélectivité 
de presque 100% en butènes, en particulier avec le produit majoritaire étant le trans-2-butène, ce qui est 
rarement rapporté dans la littérature. En comparaison, les nanoparticules d’Ir montrent une faible sélectivité en 
butènes alors que la conversion est élevée (> 30%). Ir-SAC présente également une conversion relativement 
bonne de l’acide lévulinique en γ-valerolactone : 80% de conversion en 24 h de réaction. 
Mot clés : catalyse hétérogène, nanoparticules métalliques, catalyseurs des atomes isolées, hydrogène 
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