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Foreword / Avant-propos

Seismic waves and earth models

Like an emotion, a mechanical wave can only
occur within a host body. This is a thrill of the lat-
ter. Disturbed by an excitation on its surface or in
its volume, the body will propagate the disturbance
within itself. The wave precisely is this propagated
disturbance. The excitation and the host body fully
characterize it. The wave equation, established in
its simplest form by Jean Le Rond d’Alembert in
1746, translates this complete dependence of the
wave u on the excitation f and on the mechanical
properties (e.g. the Young modulus E and the den-
sity ρ) of the host body:

Ondes sismiques et modèles de terre

A la manière d’une émotion, une onde mé-
canique ne peut survenir qu’au sein d’un corps
hôte. Il s’agit d’un tressaillement de ce dernier.
Perturbé par une excitation à sa surface ou dans
son volume, le corps va propager la perturbation
en son sein. L’onde est précisément cette pertur-
bation propagée. L’excitation et le corps hôte la
caractérisent complètement. L’équation d’onde,
établie sous sa forme la plus simple par Jean Le
Rond d’Alembert en 1746, traduit cette complète
dépendance de l’onde u à l’excitation f et aux pro-
priétés mécaniques (e.g. au module d’Young E et à
la masse volumique ρ) du corps hôte :

ρ
∂ 2u
∂ t2 = E

∂ 2u
∂x2 + f . (1)

Written in this way, the equation is valid for a one-
dimensional homogeneous body. x and t are space
and time, respectively. At any point x where the
excitation f does not act directly, a solution of the
equation is

Ainsi écrite, cette équation vaut pour un corps ho-
mogène unidimensionnel. x et t y sont l’espace
et le temps, respectivement. En tout point x où
l’excitation f ne s’exerce pas directement, une so-
lution de l’équation est

u(x, t) = f (x− ct), (2)

where c =
√

E/ρ is the wave propagation veloc-
ity. Thus it is clear that the wave is fully deter-
mined by the source excitation and the medium
in which it propagates. In underwater acoustics,
ultrasonic imaging and seismology, we can there-
fore use the recording of waves to estimate the
source that generated them and the properties of
the medium through which they traveled.

Seismic waves will be the main object of in-
terest in the present work. Their analysis makes it
possible to build seismic source models and earth
models at different scales. Seismic source mod-
els describe slip on a fault plane characterized by
its geographical position and its orientation. Earth
models describe the spatial distribution of mechan-
ical properties within the globe, lithosphere, crust,

où c =
√

E/ρ est la vitesse de propagation de
l’onde. Ainsi est-il clair que l’onde est totalement
déterminée par l’excitation source et par le milieu
dans lequel elle se propage. En acoustique sous-
marine, en imagerie ultrasonore, en sismologie,
on pourra donc utiliser l’enregistrement des ondes
pour estimer la source qui les a générées et les pro-
priétés du milieu qu’elles ont traversé.

Ce sont les ondes sismiques qui vont nous in-
téresser dans cet ouvrage. Leur analyse permet
de construire des modèles de sources sismiques
et des modèles de terre à différentes échelles.
Les modèles de sources sismiques décrivent le
glissement sur un plan de faille caractérisé par
sa position géographique et son orientation. Les
modèles de terre décrivent la distribution spa-
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sedimentary basins, etc., depending on the scale
of study (figure 1). The properties represented in
these models often are the velocities of the seis-
mic waves. The discontinuities of these properties
point out the boundaries of geological layers, giv-
ing access to the geometric and topological struc-
ture of the underground. In addition, the value of
the seismic velocities makes it possible to deduce
other properties with varying degrees of accuracy,
such as pressure, temperature, mineralogical com-
position, fluid content, etc. Therefore, the earth
models provided by the seismological community
find applications i) in fundamental earth sciences
for understanding the structure and dynamics of
our planet at different scales and ii) in engineer-
ing for the exploration and exploitation of under-
ground resources (hydrocarbons, ores , geothermal
energy, etc.), geological storage (CO2, hydrogen,
etc.) or the monitoring of damage to structures
(tunnels, mines, etc.).

Like any material object, our planet is made of
atoms. However, geologists do not always aim at
describing the Earth by its elementary constituents.
They can indeed consider minerals, rocks, geolog-
ical units, major provinces, global envelopes... all
these scales being nested, from the smallest (i.e.
the atom) to the largest (i.e. the globe). As a con-
sequence, the question of scale will also concern
seismologists. When building models, they will
wonder what their spatial resolution is, and how
the values obtained at this resolution connect to
the values at a smaller scale. Since seismic waves
are the data from which the models are built, it is
by studying their physics that seismologists will
be able to answer these questions. Over the past
decade, the development of non-periodic homoge-
nization has shed new light on the interactions be-
tween seismic waves and the multiple scales in-
volved in geology; this will be extensively dis-
cussed in this work.

tiale des propriétés mécaniques au sein du globe,
de la lithosphère, de la croûte, des bassins sédi-
mentaires, etc., selon l’échelle d’étude (figure
1). Les propriétés représentées dans ces mod-
èles sont très souvent les vitesses des ondes sis-
miques. Leurs discontinuités indiquent des lim-
ites d’unités géologiques et donnent ainsi accès à
la structure géométrique et topologique du sous-
sol. De plus, la valeur des vitesses sismiques per-
met de déduire, de manière plus ou moins précise,
d’autres propriétés comme la pression, la tem-
pérature, la composition minéralogique, le con-
tenu fluide... Ainsi les modèles de terre fournis
par les sismologues trouvent-ils leur utilité i) en
sciences de la terre fondamentales pour la com-
préhension de la structure et de la dynamique de
notre planète à différentes échelles et ii) en géo-
ingénierie pour l’exploitation de ressources souter-
raines (hydrocarbures, minerais, énergie géother-
mique...), le stockage (de CO2, d’hydrogène...) ou
le suivi d’endommagement d’ouvrages (tunnels,
mines...).

Comme tout objet matériel, notre planète est
constituée d’atomes. Cependant, les géologues
ne vont pas toujours chercher à décrire la Terre
par ses consituants élémentaires. L’on peut en ef-
fet considérer les minéraux, les roches, les unités
géologiques, les grandes provinces, les enveloppes
globales... toutes ces échelles étant imbriquées,
de la plus petite (i.e. l’atome) à la plus grande
(i.e. le globe). De facto, la question de l’échelle
va aussi concerner le sismologue. En produisant
ses modèles, il se demandera quelle est leur réso-
lution spatiale, et comment les valeurs obtenues à
cette résolution se connectent aux valeurs à plus
petite échelle. Les ondes sismiques étant la don-
née grâce à laquelle sont construits les modèles,
c’est en étudiant la physique de celles-ci que le
sismologue pourra répondre à ses questions. Au
cours de la dernière décennie, le développement de
l’homogénéisation non-périodique a jeté un nouvel
éclairage sur les interactions entre les ondes sis-
miques et les multiples échelles mises en jeu en
géologie ; il en sera longuement question dans cet
ouvrage.

Models and reality

I have heard many scientists declare, with the
apparent humility of a reflexive conclusion, that
models are an approximation of reality. This
means that an earth model like PREM (figure 1)

Modèles et réalité

J’ai entendu de nombreux scientifiques dé-
clarer, avec l’apparente humilité d’une conclusion
reflexive, que les modèles sont une approxima-
tion de la réalité. Cela signifie qu’un modèle de
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Figure 1: Left: An isotropic version of the PREM (Dziewonski, A. and D. Anderson, 1981. Preliminary
reference Earth model. Phys. Earth Planet. Inter. 25, 297–356). P-wave velocity (plain line), S-wave
velocity (dashed line) and density (dotted line) are represented. The water layer in the shallower part
of the original model has been removed. Right: A section across a subsurface model of the Groningen
region in The Netherlands. Vertical exaggeration is 8×. Modified from Renat et al., 2018 (Homogenized
elastic model of the Groningen gas field. MSc thesis, Université de Lorraine).

would be an approximation of our planet. Isn’t it
absurd ? PREM, like any earth model, is a math-
ematical abstraction1 made of numbers with units.
It is not made of atoms, minerals or rocks. How
could it be something close to our planet? Is a pic-
ture of a car an approximation of a car? Obviously
not. A soapbox is, because you can get into it and
drive. Would you drive a picture?

Models are a representation of reality. When
some claim that they approximate reality, I guess
they just intend to point out that models are not
perfect, i.e. they are not able to represent the whole
complexity of the reality we experience and ob-
serve. An earth model, for instance, will probably
never consist of a description of the nature and po-
sition of each atom that makes up the underground.
And even so, we already know that such a model
would remain limited, because it would not be able
to describe all the physical and biological phenom-
ena observed in geosciences. In particular, certain
scaling laws would be lacking in order to account
for macroscopic phenomena. Moreover, reality is
not only physical and biological. When Paul Elu-

terre comme PREM (figure 1) serait une approx-
imation de notre planète. N’est-ce pas absurde ?
PREM, comme tout modèle de terre, est une ab-
straction mathématique1. Il est fait de nombres,
non d’atomes, de minéraux ou de roches. Com-
ment pourrait-il approximer notre planète ? Le
dessin d’une voiture approxime-t-il une voiture ?
Bien sûr que non ! Une caisse à savon, oui, car
nous pouvons monter à l’intérieur et la conduire.
En revanche, conduirions-nous un dessin ?

Les modèles sont des représentations de la
réalité. Quand un scientifique déclare qu’ils en
sont une approximation, je devine qu’il entend
souligner leur caractère limité, en ce sens qu’ils
ne peuvent rendre compte de toute la complexité
du réel que nous vivons et observons. Un modèle
de terre, par exemple, ne consistera probablement
jamais en une description de la nature et de la posi-
tion de chaque atome qui compose le sous-sol. Et
quand bien même, nous savons déjà qu’un tel mod-
èle resterait limité, car il ne serait pas en mesure
de décrire tous les phénomènes physiques et bi-
ologiques observés en géosciences. Manqueraient

1Backus, G. and F. Gilbert (1968). The resolving power of gross earth data. Geophys. J. Int. 16(2), 169–205.
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ard writes that "The Earth is blue like an orange",
does he not express the reality of the emotion we
can feel when thinking of the spherical fullness and
the bluish softness of our planet?

In short, a model is the representation of one or
more particular objects or phenomena, from a par-
ticular angle: that of science. A fundamental ques-
tion then is that of the quality of the model: within
the strict limits of what it is supposed to represent,
how good is it? To continue with the example of
an earth model, the latter will be all the better if it
satisfies a large number and different types of ob-
servations (geophysical, geological, logs, etc.). In
doing so, it will be all the more useful and illumi-
nating2. Useful refers to the ability of a model to
impact concrete reality. A useful model can in par-
ticular give rise to a technology which will modify
the concrete conditions of our existence. An illu-
minating model will play on the abstract reality of
objects and phenomena, that is to say on the idea
that we have of them. Indeed, the new light sud-
denly thrown by a model on a thing (object or phe-
nomenon) instantly modifies our conception of this
thing. Therefore, models are both tools and mate-
rials for the production of reality. As fruits of the
"collaboration between the outside world and our
spirit"3, they participate in the incessant construc-
tion and deconstruction of reality.

This vision of reality, changing and at human
level, is opposed to that implied in the statement
that we criticized above and which asserts that a
model is an approximation of reality. In this state-
ment, the idea of a transcendent and authentic en-
tity indeed emerges. Such an undermining view4

inherits the tradition initiated by Plato in Phaedo,
the Republic, the Symposium and Timaeus. In
these works, the philosopher distinguishes a supe-
rior and authentic reality (the world of the eidos,
i.e. the concepts, ideas and abstractions) and a sen-
sible reality which would be only the idea (i.e. the
manifestation, or appearance) of the primary one.
While it is true that philosophers and scientists pro-
duce abstractions, it does not seem to me neces-
sary to assert that they belong to or tend towards a
superior reality which would govern a lower one.
Our products are characterized, as we have already
said, by the ability to explain some observations.

notamment certaines lois de mise à l’échelle pour
parvenir à rendre compte de phénomènes macro-
scopiques. De plus, la réalité n’est pas unique-
ment physique et biologique. Quand Eluard écrit
que "La Terre est bleue comme une orange",
n’exprime-t-il pas la réalité de l’émotion que nous
pouvons ressentir à l’idée de la plénitude sphérique
et de la douceur bleutée de notre planète ?

En somme, un modèle est la représentation
d’un ou plusieurs objets ou phénomènes partic-
uliers, sous un angle particulier : celui de la sci-
ence. Une question fondamentale est alors celle
de la qualité du modèle : dans les strictes lim-
ites de ce qu’il est censé représenter, dans quelle
mesure celui-ci est-il bon ? Pour poursuivre avec
l’exemple d’un modèle de terre, ce dernier sera
d’autant meilleur qu’il satisfera à un grand nombre
et à différents types d’observations (géophysiques,
géologiques, diagraphiques, etc.). Ce faisant, il
sera d’autant plus utile et éclairant2. Utile ren-
voie à la capacité d’un modèle à impacter la réalité
concrète. Un modèle utile peut notamment donner
lieu à une technologie qui modifiera les conditions
concrètes de nos existences. Un modèle éclairant
jouera quant à lui sur la réalité abstraite des ob-
jets et des phénomènes, c’est-à-dire sur l’idée que
nous nous en faisons. En effet, la lumière nouvelle
jetée soudain par un modèle sur une chose (objet
ou phénomène) modifie instantanément notre con-
ception de cette chose. Ainsi les modèles sont-
ils à la fois des outils et des matériaux de la fab-
rique du réel. Fruits de la "collaboration entre le
monde extérieur et notre esprit"3, ils participent
à l’incessante construction et déconstruction de la
réalité.

Cette vision du réel, mouvante et à hauteur
d’homme, s’oppose à celle sous-entendue dans le
poncif que nous avons critiqué plus haut et qui af-
firme qu’un modèle est une approximation de la
réalité. Dans cet énoncé sourd en effet l’idée d’une
entité transcendante et authentique. Cette under-
mining view4 hérite de la tradition initiée par Pla-
ton dans le Phédon, la République, le Banquet et
le Timée, ouvrages dans lesquels le philosophe
distingue une réalité supérieure et authentique (le
monde des eidos, c’est-à-dire des concepts, idées
ou abstractions) et une réalité sensible qui n’en

2Box, G. (1979). Robustness in the strategy of scientific model building. In R. L. Launer and G. N. Wilkinson (Eds.),
Robustness in Statistics, pp. 201–236. Academic Press.

3Morin, Edgar. "Science et Philosophie", interview by D. Bougnoux et B. Engelbach. Nonfiction, April 10, 2008.
4Harman, G. (2018). Object-oriented ontology: A new theory of everything. Penguin UK.
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One can marvel at the remarkable explanatory or
even predictive power of some of these products,
but what need is there to give their abstract nature
a primary character? I often marvel at the cen-
tral limit theorem, but it is not necessary for me
to grant the Gaussian a superiority over the mul-
tiple phenomena it accounts for. Does it precede
them? Is it its essence, or the outline of its essence?
No one knows, because the very idea of an essence
that would precede existence is only speculation.
To the Platonic tradition, I therefore prefer the par-
simonious wisdom of Edgar Morin. But the notion
of reality being able to feed infinite debates, I will
stop there my considerations on the subject and go
back to seismology.

serait que le produit ou l’apparence (idea). Or s’il
est vrai que philosophes et scientifiques produisent
des abstractions, il ne me semble pas nécessaire
de les prétendre appartenir à ou tendre vers une
réalité supérieure qui présiderait à une réalité in-
férieure. Nos productions se caractérisent, comme
nous l’avons déjà dit, par une aptitude à expli-
quer des observations. L’on peut s’émerveiller
du remarquable pouvoir explicatif voire prédic-
tif de certaines de ces productions, mais quel be-
soin y a-t-il de conférer à leur nature abstraite
un caractère premier ? Je m’émerveille souvent
du théorème central limite, mais il ne m’est pas
nécessaire d’accorder à la gaussienne une supéri-
orité sur les multiples phénomènes dont elle rend
compte. Les précède-t-elle ? En est-elle l’essence,
ou l’ébauche d’une essence ? Nul ne sait, car l’idée
même d’une essence qui précèderait l’existence
n’est que spéculation. A la tradition platonicienne
je préfère donc la sagesse parcimonieuse d’Edgar
Morin. Mais la notion de réalité pouvant nourrir
d’infinis débats, j’arrête là mes considérations sur
le sujet pour en revenir à la sismologie.

Modeling seismic waves

We have seen that earth models and seismic
sources models are deduced from the waves that
can be recorded on the surface of the globe or
sometimes even at depth. Whatever the method
used for this, it will be necessary, at a recurring
stage of the process, to model these waves, i.e.
to solve a wave propagation equation for a given
source and a given medium. In some very simple
cases (e.g. equation 1), analytical solutions exist
(e.g. equation 2), but these cases rarely correspond
to the geological complexity that we want to take
into account. Geological environments are indeed
heterogeneous and 3D. Moreover, they can present
behaviors much more complex than the simple lin-
ear elasticity involved in equation (1). For lack of
analytical solutions in such media, the resolution
of the wave equation will be done numerically, us-
ing simulation methods.

In addition to their implication in the construc-
tion of models, the numerical methods for model-
ing seismic wave propagation are essential to the
evaluation of the seismic risk, in particular the site
effects which can amplify the energy of the waves
on the surface and cause significant damage. These
methods are also involved in seismic survey design
in order to monitor or better image a given geolog-

Modélisation des ondes sismiques

Nous avons vu que les modèles de terre et de
sources sismiques se déduisent des ondes que l’on
peut enregistrer à la surface du globe ou parfois
même en profondeur. Quelle que soit la méth-
ode employée pour cela, il sera nécessaire, à une
étape récurrente du procédé, de modéliser ces on-
des, c’est-à-dire de résoudre une équation de prop-
agation pour une source et un milieu donnés. Dans
certains cas très simples (e.g. équation 1), la ré-
solution peut se faire analytiquement (e.g. équa-
tion 2), mais ces cas correspondent rarement à
la complexité géologique que l’on désire pren-
dre en compte. Les milieux géologiques sont
en effet hétérogènes et 3D. De plus, ils peuvent
présenter des comportements bien plus complexes
que la simple élasticité linéaire mise en jeu dans
l’équation (1). Faute de solutions analytiques dans
de tels milieux, la résolution de l’équation d’onde
se fera numériquement, via des méthodes de simu-
lation.

Outre leur implication dans la construction de
modèles, les méthodes de modélisation numérique
de la propagation des ondes sismiques sont in-
dispensables à l’évaluation du risque sismique,
notamment des effets de site qui peuvent am-
plifier l’énergie des ondes en surface et causer
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ical medium.
Whatever the application, most numerical

modeling methods require a mesh, i.e. a discretiza-
tion of the geometry of the medium. However, we
have seen that geological environments are com-
plex by nature: they are heterogeneous, 3D, and
above all they are discontinuous and multiscale.
These last two features pose major issues when
modeling waves numerically, because the required
mesh can be very difficult to generate and the com-
putational cost of the simulation can increase dra-
matically (figure 2). In many applications, these
two features are set aside. This is the case in
full waveform inversion (FWI) for instance. To
remain above the seismic resolution and mitigate
the non-uniqueness of the problem, FWI results
are restricted to smooth models without any small
scales. However, geological environments contain
some, and geological complexity should remain
one of the guide of seismological research.

Forgetting the complexity of geology, some
seismologists say that the resolution of the seis-
mic wave equation no longer is a problem. When
claiming this, I guess they also set aside the am-
bition to process the ever-increasing quantity of
data at our disposal. Despite the development of
artificial intelligence algorithms and the increas-
ing computational power, these data would ben-
efit from innovative simulation methods in order
to investigate them deeper and extract further in-
formation on geological environments and seismic
sources. There are more and more seismic data
because of i) new acquisition technologies such as
distributed acoustic sensing and ii) new types of
data such as rotational motion of particles, tremors
from non-volcanic sources, and noise. The corre-
lation of the latter between two seismic stations in-
deed gives information on the geological environ-
ment between the stations and therefore leads to a
huge amount of data. Better using and understand-
ing these data, with the help of better simulation
methods and tools, is one of our missions.

d’importants dégâts. Ces méthodes interviennent
également dans le design d’acquisitions sismiques
en vue de surveiller ou de mieux imager un milieu
géologique donné.

Quelle qu’en soit l’application, la plupart des
méthodes de modélisation numérique nécessite
un maillage, c’est-à-dire une discrétisation de la
géométrie du milieu. Or nous avons vu que les
milieux géologiques étaient complexes par nature :
ils sont hétérogènes, 3D, mais surtout disconti-
nus et multi-échelles. Ce sont ces deux derniers
traits qui posent les plus gros problèmes, car alors
le maillage peut être très difficile à générer, et le
coût de calcul de la propagation exhorbitant (fig-
ure 2). Dans nombre d’applications, ces deux traits
sont mis de côté. C’est le cas par exemple dans
l’inversion de formes d’onde complètes où, pour
demeurer au-dessus de la résolution sismique et
ne pas aggraver la non-unicité du problème, on
propose des modèles lisses, sans petites échelles.
Pourtant, la géologie en contient, et la complexité
de celle-ci me semble devoir rester un des phares
de la recherche sismologique.

C’est peut-être parce qu’ils ont perdu de vue
la complexité géologique que certains sismologues
affirment que la résolution de l’équation des on-
des sismiques est un problème résolu. Faut-
il aussi qu’ils n’ambitionnent pas de traiter à
fond l’énorme quantité de données dont nous dis-
posons et qui recèle encore, faute de méthodes
de simulation suffisamment performantes, bien
des informations sur les milieux géologiques et
les sources sismiques. Les données sismiques
sont en effet très nombreuses, en raison notam-
ment du développement de nouvelles technolo-
gies d’acquisition comme les systèmes de détec-
tion acoustique distribuée, mais aussi très variées.
Elles ne concernent plus seulement les mouve-
ments de translation des particules, mais aussi leur
rotation. De plus, elle ne mettent plus seulement en
jeu les séismes provoqués par une rupture soudaine
de la croûte terrestre, mais aussi les trémors de tout
type ainsi que le bruit sismique. La corrélation du
bruit entre deux stations fournit en effet des infor-
mations sur le milieu géologique entre les stations.
Ainsi s’ouvre un immense jeu de données. Mieux
le comprendre et l’utiliser, en s’aidant notamment
d’une meilleure simulation des signaux, est l’une
de nos missions.
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Figure 2: Mesh quality (smallest triangle height) versus computation time (using a discontinuous
Galerkin method). In this example, a gas-water contact is inserted in a 2D subsurface model. 20 depths
are considered, leading to 20 meshes. In some cases, the insertion of the contact leads to small and
elongated elements which make the wave simulation very long (a). In some other cases, the quality of
the elements is good enough so that the computation time is not so large (c). From Legentil et al., 2022
(Testing scenarios on geological models: Local interface insertion in a 2d mesh and its impact on seismic
wave simulation. Computers & Geosciences 159, 105013).





Chapter 1

Research activities

Introduction

I started my PhD on January 3, 2005. My advisor, Yann Capdeville, suggested that I should work on
the implementation of the spectral element method in 3D for setting up an adjoint-based full waveform
inversion. "What the hell is he talking about?" I thought. Of course I had studied seismology before; I
had learned wave physics and followed courses on inverse problem; I had completed a Master project
on receiver functions which resulted in a paper (Ritsema et al., 2009); but "What is this adjoint stuff and
the spectral elements? That sounds scary!". To defeat my ignorance and calm my anxiety down, I read
Komatitsch (1997); Komatitsch and Vilotte (1998); Komatitsch and Tromp (1999); Chaljub (2000) and
progressively understood what the spectral element method (SEM) was and why it enabled the efficient
computation of seismic wave propagation in heterogeneous media (subsection 1.1.1). First, the SEM
benefits from the ability of the finite element like methods to naturally handle complex interface geome-
try. Second, its convergence is spectral, which makes it very accurate. Third, it involves a diagonal mass
matrix, which makes it computationally tractable. As a result, the SEM has been proved to overcome
several limitations encountered in other numerical methods. A 2D code and a preliminary 3D code writ-
ten by Gaetano Festa and Elise Delavaud also helped me in understanding it. I enriched the 3D version
with i) a spherical deformation of the computational domain, ii) an automatic meshing of the solid earth
surface and Moho topography along with PREM (Dziewonski and Anderson, 1981) or other spherical
interfaces, iii) anisotropy and attenuation, iv) the ability of running on parallel architectures (subsection
1.1.2). That is how the structured version of RegSEM (Cupillard et al., 2012) was born.

As for the adjoint, 2005 was the year that Jeroen Tromp et al. (2005) and Yann Capdeville (2005)
brought back to light the idea introduced by Lailly (1983) and Tarantola (1984, 1988) twenty years earlier.
Reading these papers, I understood that the adjoint technique was ‘just’ an efficient way of computing
the gradient of a misfit functional (section 1.3). Exploration seismologists were used to implement it
for inverting P-waves under the 2D acoustic approximation, relying on finite difference algorithms to
solve the forward problem (e.g. Bunks et al., 1995; Pratt, 1999; Dessa et al., 2004; Ravaut et al., 2004).
At the global scale, the normal mode summation technique (e.g. Gilbert, 1971) along with a coupling
theory (Woodhouse and Dziewonski, 1984; Li and Romanowicz, 1995) were able to provide synthetic
seismograms in elastic models of the 3D earth (e.g. Li and Romanowicz, 1996), but only weak lateral
heterogeneities and 2D sensitivity kernels could be considered at best in this framework. Thanks to the
SEM, the accurate modeling of full elastic wavefields in 3D models with strong heterogeneities of any
shape became feasible, so it was time to consider it within an adjoint-based inverse problem to image the
earth interior from earthquake data. The first inversion of traveltimes has been applied to the southern
California crust (Tape et al., 2009); the first waveform inversion has been applied to the mantle below
the Australian continent (Fichtner et al., 2009).

Although I implemented the computation of adjoint kernels in RegSEM during my post-doc at UC
Berkeley (2008-2010), I have never carried out an inversion myself. One of the reason is that the 2000s
offered a new, very exciting type of seismological data in which I got interested: ambient noise corre-
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lations (Shapiro and Campillo, 2004). Such data opened the path to seismic tomography with no earth-
quake (e.g. Shapiro et al., 2005; Yao et al., 2006; Lin et al., 2007; Yang et al., 2007). In the context of full
waveform modeling and inversion mentioned in the previous paragraphs, my question was "Can noise
correlation waveforms be modeled and inverted?". This question actually asked for what the amplitude
of noise correlations contain. Whereas the phase was proved, under certain conditions, to correspond
to the one of the Green’s function, the behavior of the amplitude was much less clear, so I decided to
investigate it (subsection 1.4.2). This led to my first significant contributions to seismology (Cupillard
and Capdeville, 2010; Cupillard et al., 2011). Along these works, I proposed a method to model the noise
correlations waveforms between a given central station and some other stations of a network (Cupillard,
2008). The method is based on building a virtual source at the central station to generate an anisotropic
radiation which corresponds to the noise flux (subsection 1.4.3). Since 2008, Curtis and Halliday (2010);
Tromp et al. (2010); Fichtner (2014, 2015); Fichtner et al. (2016); Sager et al. (2018) have made good
progress in better understanding and accounting for the influence of noise source distribution on noise
correlation amplitudes, which asks for an update of the method I proposed fourteen years ago.

At the present day, the propagation of seismic waves can be accurately modeled in 3D heteroge-
neous media, using either the SEM or another numerical technique (see Virieux et al., 2011; Igel, 2017,
for a review of the various numerical methods available to model full waveforms). A decade ago, an
important step toward this goal was achieved thanks to the development of the non-periodic homoge-
nization method (Capdeville et al., 2010a,b; Guillot et al., 2010). Such a method enables to compute
proper effective properties for the seismic wave equation, allowing the correct account for the effect of
small heterogeneities on wave propagation (subsection 1.2.1). By small heterogeneities I mean structures
which are smaller than the minimum seismic wavelength propagating in the medium. Handling them ex-
plicitly in numerical simulations can be extremely challenging because they control the spatial sampling
of the medium and, consequently, the time sampling too (Courant et al., 1928). Small heterogeneities
therefore induce massive, possibly prohibitive, computation costs, so working with effective properties
is much preferable. Getting back to France after my post-doc at UC Berkeley, I worked with Yann
Capdeville again to develop the 3D finite element version of the non-periodic homogenization (subsec-
tion 1.2.2). This led to a research paper (Cupillard and Capdeville, 2018) and multiple extended abstracts
(Cupillard et al., 2015; Cupillard and Capdeville, 2017; Cupillard et al., 2020; Ibourichène et al., 2021)
as well as an on-going collaboration with Yann on the homogenization method (Capdeville et al., 2015,
2020; Renat et al., 2022). Yann’s works actually have a major influence on my current research, because
I believe that homogenization is an amazing tool to describe the relationship between the waves and the
various scales in which they stand or propagate. Therefore, I am pleased to put efforts in investigating
how it can help in easing the forward modeling (subsections 1.2.3 and 1.2.4) as well as in downscaling
full waveform inversion results (subsection 1.3.3) or source images (subsection 1.3.4). Contributing to
these efforts, my current research team (RING, GeoRessources Lab, Université de Lorraine/CNRS) has
been developing meshing tools (Merland et al., 2014; Pellerin et al., 2014; Botella et al., 2016; Pellerin
et al., 2017; Anquez et al., 2019; Legentil et al., 2022) and structural modeling approaches (e.g. Caumon
et al., 2009; Cherpeau et al., 2010; Bonneau et al., 2013; Julio et al., 2015; Ruiu et al., 2016; Godefroy
et al., 2019; Irakarama et al., 2021) which I greatly benefit from.

In this chapter, I give some more details on the four topics I just introduced (i.e. SEM, non-periodic
homogenization, waveform-based imaging and noise correlation) along with a summation of my contri-
butions to each of them. Most of all, I draw some perspectives based on my ongoing research. These
perspectives will guide my work as well as the students I will supervise in the next decades.

1.1 The spectral element method

Numerous techniques, like ray tracing or normal mode summation, have been developed for decades
to compute synthetic seismograms. For many purposes, ray tracing is very convenient, but it relies on
a high frequency approximation (e.g. Cervený, 2001), which means that it is only valid when seismic
wavelength is much smaller than the scale of heterogeneity. The normal mode summation technique
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is able to model low-frequency waves in 3D earth models (e.g. Li and Romanowicz, 1996), but the
computation cost of such a technique is quickly prohibitive as the number of modes to couple increases
with frequency. Moreover, it is limited to weak lateral heterogeneities.

To overcome these limitations, numerical solutions have been investigated. Finite difference schemes
have been developed (e.g. Alterman and Karal, 1968; Boore, 1972; Kelly et al., 1976; Virieux, 1984,
1986; Igel et al., 1995; Robertsson et al., 1994; Moczo et al., 2007) but they present intrinsic problems in
dealing with strong and deformed interfaces like basin edges, the Moho, the free surface and solid-fluid
discontinuities. Such limitations do not exist in finite element methods, but the low polynomial order
classically used in this kind of approaches make them inaccurate and dispersive when applied to elas-
todynamic problems (Lysmer and Drake, 1972; Backer, 1976; Marfurt, 1984; Toshinawa and Ohmachi,
1992). Since the 1990s, efforts have been focused on developing higher-order numerical modeling of
seismic wave propagation. An important result from these efforts is the discontinuous Galerkin method
(e.g. Dumbser and Käser, 2006). Another major result is the spectral element method (SEM). Initially
introduced in fluid mechanics (Patera, 1984; Maday and Patera, 1989), this method has been successfully
applied to elastodynamics with the increasing concern of developing numerical techniques ensuring both
a great precision and a reasonable numerical cost (Seriani and Priolo, 1994; Faccioli et al., 1997; Ko-
matitsch and Vilotte, 1998; Seriani, 1998; Komatitsch and Tromp, 1999).

1.1.1 Basics

We here outline the application of the SEM to elastodynamics. In particular, we point out the three
features that makes it accurate and computationally tractable.

Strong formulation of the elastodynamic problem

In his strong form, the elastodynamic problem is expressed using Newton’s second law of motion

∇ ·σ+ f = ρü (1.1)

and Hooke’s law
σ = C : ∇u. (1.2)

In these equations, u is the displacement field, σ is the stress field, f is the body force, ρ is the density
and C is the elasticity tensor. Applying these equations to a finite volume Ω surrounded by a boundary Γ,
given a Dirichlet condition u = g on ΓD and a Neumann condition σi jn j = hi on ΓN such that Γ = ΓD∪ΓN

and ΓD∩ΓN = /0, the solution u of the problem exists and it is unique (up to a rigid motion).

Weak formulation of the elastodynamic problem

The SEM is a finite-element method (FEM), so it relies on the weak form of the problem to be solved.
To write this form properly in the elastodynamic case, let us first define the functional spaces

V =
{

u : (Ω,T )→ R3 | ∀t ∈ T, ui(·, t) ∈ H1(Ω), ui(·, t) = gi(·, t) on ΓD
}

(1.3)

and
V0 =

{
u : (Ω,T )→ R3 | ∀t ∈ T, ui(·, t) ∈ H1(Ω), ui(·, t) = 0 on ΓD

}
, (1.4)

where T is the time range and H1(Ω) is the order-1 Sobolev space on Ω, i.e. the set of functions for
which the squares of both the function itself and its partial derivatives are Lebesgue integrable on Ω.
Using such definitions, the weak-form of the elastodynamic problem can be written as

Find u ∈V such that
∫

Ω

v · [∇ · (C : ∇u)] dx +
∫

Ω

v · f dx =
∫

Ω

v ·ρü dx, ∀v ∈V0, ∀t ∈ T.
(1.5)
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Applying the divergence theorem to the first integral, the Neumann condition appears explicitly and
our weak-form problem becomes

Find u ∈V such that
∫

Ω

∇v : C : ∇u dx
︸ ︷︷ ︸

a(v,u)

+
∫

Ω

v ·ρü dx
︸ ︷︷ ︸

(v,ρü)

=
∫

Ω

v · f dx
︸ ︷︷ ︸

(v,f)

+
∫

ΓN

v ·h dΓ

︸ ︷︷ ︸
(v,h)Γ

, ∀v ∈V0, ∀t ∈ T. (1.7)

Galerkin approximation

V is an infinite-dimensional space. To solve equation (1.7) numerically, we discretize this space, i.e.
we look for an approximated solution ud in a subspace of V , called V d , which is of finite dimension. We
therefore rewritte equation (1.7) as

Find ud ∈V d such that

a(vd ,ud)+(vd ,ρüd) = (vd , f)+(vd ,h)Γ, ∀vd ∈V d
0 , ∀t ∈ T.

(1.9)

In this last equation, we use the notations introduced undeneath the underbraces in equation (1.7).
The question then arises to find a relevant set of basis functions for V d . Within all the FEMs, piece-

wise polynomial functions are used, the pieces being the elements of the geometric discretization of the
domain Ω.

SEM features

In the SEM, the geometric discretization relies on hexahedral elements in order to benefit from advan-
tageous properties of tensorization. Although hexahedra are less favorable than tetrahedra for meshing
geometrically complex structures, a certain flexibility is ensured by a local geometrical transformation
from a reference element (i.e. the unit cube [−1;1]3) to any deformed element. Based on such a geometric
discretization, the three SEM features are the following:

• The basis functions are built from the tensorization of degree-n Lagrange polynomials associated
to n+1 interpolation nodes in [−1;1].

• The interpolation nodes are chosen to be the Gauss-Lobatto-Legendre (GLL) points.

• The integrals involved in our problem are evaluated using a GLL quadrature. As a consequence,
the interpolations nodes and the quadrature nodes are the same.

Inserting the polynomial interpolation and quadrature rules into the weak form (1.9) leads to an
algebraic system of equations which governs the displacement and its second-order time derivative at the
nodal positions for any instant t. This system can be written as

KU(t)+M Ü(t) = F(t), (1.10)

where U is a vector which contains the components of the displacement at the nodes, K is the stiffness
matrix, M is the mass matrix, and F is a vector which contains the contributions from both the body force
and the boundary conditions.

SEM properties

The choice of the basis functions as tensorized Lagrange polynomials and quadrature nodes collo-
cated with the interpolation nodes leads to the first interesting property of the SEM: the mass matrix is
diagonal. Such a property makes the computation of M−1 straightaway, which enables to discretize the
time evolution of our problem using an explicit time-stepping. In most of the SEM implementations, this
is ensured by a second-order finite-difference scheme.
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The choice of a Lagrangian interpolation associated with GLL points provides the second interesting
property of the SEM: the convergence is exponential (i.e. an increase of the polynomial degree leads to
an exponential decrease of the aliasing error). This property, called spectral precision, gives its name to
the method. It enables to use high-degree polynomials and to get a better accuracy as compared to more
classical FEMs.

1.1.2 Contributions

Regional scale implementation

The first applications of the SEM have dealt with the global scale on the one hand (Chaljub, 2000;
Komatitsch and Tromp, 2002a,b; Komatitsch et al., 2002; Capdeville et al., 2003; Chaljub et al., 2003;
Chaljub and Valette, 2004) and ground motion simulations on the other hand (Komatitsch et al., 2004;
Delavaud et al., 2006; Lee et al., 2008; Stupazzini et al., 2009; Chaljub et al., 2010). One of my con-
tributions has been to implement the method at the regional scale, which has given rise to RegSEM
(Cupillard et al., 2012). This code actually has two versions: a continental-scale version which is able to
generate regular meshes of crustal and mantle structures in spherical geometry, and a local-scale version
which uses an external mesh generator, CUBIT (http://cubit.sandia.gov), to produce 3D unstructured
meshes essentially designed to study the seismic response of sedimentary basins. My effort focused on
the continental-scale version (Cupillard, 2008); Elise Delavaud (2007) was in charge of the local-scale
version.

The continental-scale version of RegSEM can provide a regular mesh of any chunk of the earth
whose lateral size is smaller than 90◦. To do so, the code uses the so-called cubed sphere mapping
(Ronchi et al., 1996). For each element, this mapping allows defining the Cartesian coordinates of 27
control points. Using the Lagrange polynomials of degree 2 associated with these control points, the unit
cube can be deformed and the shape and position of each element in the chunk can be defined. Moreover,
spherical discontinuities within the velocity model can be honored in a versatile way: one just needs to
introduce the radius of each discontinuity, and then the code fills the seismic layers with the appropriate
number of elements. Of course, this number depends on the vertical size of the elements. This size is
first equal to the horizontal size introduced by the user, and then it is adjusted in each seismic layer to
fit the thickness of the layer. In the case of PREM (Dziewonski and Anderson, 1981), there is one more
level of sophistication because not only the thickness of the layers but also the seismic velocities in the
layers are used by the code to constrain and optimize the vertical size of the elements.

RegSEM can also mesh any surface and Moho topography. This is an important feature because
the crust has significant effects on surface waves (Montagner and Tanimoto, 1991; Curtis et al., 1998;
Shapiro and Ritzwoller, 2002; Marone and Romanowicz, 2007; Capdeville and Marigo, 2008; Ferreira
et al., 2010), even at relatively long period (up to about 60 s). The capability to consider any model with
a realistic crust is therefore a major benefit. To do so, the code uses only one layer of elements in the
crust. This means that discontinuities within the crust, such as the sediment-rock interface and the upper-
lower crust interface, cannot be taken into account. Moreover, the fact that only one layer of elements is
used to mesh the crust limits the frequency content that the simulation can handle. For example, when
performing a simulation in Tibet (where the crust is more than 70 km thick) with degree-8 polynomials,
the highest frequency to be propagated will be approximately 0.1 Hz. A simulation in a 3D crustal model
of Europe is shown in figure 1.1.

To avoid artificial reflections at the border of the chunk, absorbing boundary conditions have to be
implemented. RegSEM uses the velocity-stress formulation of the so-called Perfectly Matched Layers
(PML, Festa and Vilotte, 2005). This formulation requires an unphysical splitting of the field variables
along the directions of normal and parallel derivatives with respect to the interface between the PML and
the ‘normal’ elements. This means that in practice, the splitting directions have to be known at every GLL
node belonging to the PML, which is not obvious when working with Cartesian coordinates in a deformed
layer. Therefore, we here make an assumption: for all the GLL nodes of a given element, the splitting
directions defined at the center of the element are used. The effect of such an assumption on the stability
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Figure 1.1: Left: Top view of a regular hexahedral mesh of the European region. PML elements are
colored in light grey. The other elements show the depth of the Moho which is honored by the mesh. To
model the propagation of seismic waves, an earthquake is introduced in Romania. Stations are marked
in green. Right: Rayleigh waves obtained in the 0.02 - 0.05 Hz frequency range. Real data are shown in
black; results of a numerical simulation in a 3D model (CUB, Shapiro and Ritzwoller, 2002) are in red;
results in a 1D model (PREM, Dziewonski and Anderson, 1981) are in green.

and accuracy of the PML is not clear. Furthermore, our PML are isotropic, so spurious reflections can
be created when considering anisotropic media. To mitigate them, RegSEM takes advantage of the SEM
ability to use a different polynomial degree in each direction: in the PML, a higher polynomial degree is
introduced in the damping directions.

Solving the forward problem in waveform inversion

RegSEM has been used for various applications. Among those I have been directly involved in, two
aim at better understanding noise correlations (Stehly et al., 2011; Saade et al., 2015), one deals with
the numerical implementation of time reversal mirrors (Masson et al., 2014), and two aim at inverting
seismic waveforms for imaging the lithosphere and the asthenosphere at a continental scale (Yuan et al.,
2014; Zunino et al., 2016). I here provide the abstracts of these two latter studies.

Yuan et al. (2014), Lithospheric expression of geological units in central and eastern North America
from full waveform tomography, in Earth and Planetary Science Letters 402.SI, pp. 176–186: The Earth-
Scope TA deployment has provided dense array coverage throughout the continental US and with it, the
opportunity for high resolution 3D seismic velocity imaging of both lithosphere and asthenosphere in
the continent. Building upon our previous long-period waveform tomographic modeling in North Amer-
ica, we present a higher resolution 3D isotropic and radially anisotropic shear wave velocity model of
the North American lithospheric mantle, constructed tomographically using the spectral element method
for wavefield computations and waveform data down to 40 s period. The new model exhibits pronounced
spatial correlation between lateral variations in seismic velocity and anisotropy and major tectonic units
as defined from surface geology. In the center of the continent, the North American craton exhibits uni-
formly thick lithosphere down to 200–250 km, while major tectonic sutures of Proterozoic age visible in
the surface geology extend down to 100–150 km as relatively narrow zones of distinct radial anisotropy,
with VSV > VSH . Notably, the upper mantle low velocity zone is present everywhere under the craton
between 200 and 300 km depth. East of the continental rift margin, the lithosphere is broken up into
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a series of large, somewhat thinner (150 km) high velocity blocks, which extend laterally 200–300 km
offshore into the Atlantic Ocean. Between the craton and these deep-rooted blocks, we find a prominent
narrow band of low velocities that roughly follows the southern and eastern Laurentia rift margin and
extends into New England. We suggest that the lithosphere along this band of low velocities may be
thinned due to the combined effects of repeated rifting processes and northward extension of the hotspot
related Bermuda low-velocity channel across the New England region. We propose that the deep rooted
high velocity blocks east of the Laurentia margin represent the Proterozoic Gondwanian terranes of pan-
African affinity, which were captured during the Rodinia formation but left behind after the opening of
the Atlantic Ocean. Our results suggest that recurring episodes of tectonic events that are well exposed
at the surface also leave persistent scars in the continental lithosphere mantle, marked by isotropic and
radially anisotropic velocity anomalies that reach as deep as 100–150 km.

Zunino et al. (2016), Constitution and Structure of Earth’s Mantle: Insights from Mineral Physics and
Seismology, in Integrated Imaging of the Earth: Theory and Applications, AGU Monograph Series, pp.
219–243: This chapter describes a quantitative approach that integrates data and results from mineral
physics, petrological analyses, and geophysical inverse calculations to map geophysical data directly
for mantle composition and thermal state. Seismic tomography has proved an important tool to image
the inaccessible parts of the Earth. Computation of physical properties using thermodynamic models
is described and discussed, and an application of the joint inverse methodology is illustrated in a case
study where mantle composition and thermal state beneath continental Australia is determined directly
from seismic data. There is a growing consensus that the cause of the imaged wavespeed anomalies not
only relates to variations in temperature, but also bears a strong compositional component. However,
separation of thermal and chemical effects from seismic wave speeds alone is difficult and is further com-
plicated by the general insensitivity of seismic wave speeds to the density contrasts that are responsible
for driving mantle convection.

1.2 Non-periodic homogenization of the elastic wave equation

The homogenization method emerged in the seventies from research in micromechanics for predict-
ing the macroscopic response of composite and random materials to either static or dynamic excitations
(Bensoussan et al., 1978; Papanicolaou and Varadhan, 1981; Sanchez-Palencia, 1980). Since then, the
method has been successfully applied to many physical processes, such as heat transfer (e.g. Allaire
and Habibi, 2013), Stokes flow (e.g. Hornung, 1997), neutronic diffusion (e.g. Allaire and Capdeboscq,
2000), magnetization (e.g. Santugini-Repiquet, 2007) and elastic wave propagation (e.g. Boutin and Au-
riault, 1993; Fish and Chen, 2001, 2004; Parnell and Abrahams, 2008; Bacigalupo and Gambarotta,
2014). In this latter field, it has been adapted to non-periodic media by Capdeville and Marigo (2007,
2008); Capdeville et al. (2010a,b); Guillot et al. (2010), which has opened the path to the upscaling of
general elastic media, with no constraint on the shape and size of the heterogeneities.

1.2.1 Basics

Periodic homogenization

The homogenization theory relies on an ansatz for the solution of the physical problem in considera-
tion. The solution is indeed postulated to be a two-scale asymptotic expansion. For instance, the solution
u(x) of the 1D elastodynamic problem is written

u(x) =
+∞

∑
i=0

ε
iui

(
x,

x
ε

)
, (1.11)

where ε = l/λmin is the ratio of the periodic cell which constitutes the 1D medium to the minimum
wavelength propagating in this medium. By definition, l is microscopic and λmin is macroscopic. ε ,
which is called scaling parameter, is therefore much smaller than 1. It enables to explicitly separate



16 1.2. Non-periodic homogenization of the elastic wave equation

the scales within the coefficients ui of series (1.11), x being the macroscopic scale and y = x
ε

being the
microscopic scale. Plugging series (1.11) into the elastodynamic problem (i.e. the wave equation and
Hooke’s law) yields a cascade of equations which can be solved for each i using the average over the
periodic cell 〈 f 〉(x) = 1

λmin

∫
λmin
0 f (x,y)dy, ∀ f :R2→R, and the periodicity in y of the problem. It then

turns out that the zeroth-order term u0 does not depend on the microscopic scale y. One shows that
u0 actually is the solution of the so-called homogenized problem, which is a classical elastodynamic
problem with homogeneous effective properties

E? =

〈
1

E(y)

〉−1

and ρ
? = 〈ρ(y)〉 , (1.12)

E being the Young modulus and ρ the density. While the effective density ρ? is the average of the
initial density ρ , we note that the quantity to average for obtaining the effective Young modulus E? is the
inverse of the initial Young modulus E.

A crucial point in the homogenization theory is that the asymptotic convergence can be proved math-
ematically. One actually does not directly show the convergence of (1.11) towards the true solution.
Rather than studying a single problem for the physically relevant value of ε , one considers a sequence
of problems indexed by ε which is now regarded as a small parameter going to zero. The demonstrated
convergence then is limε→0 uε = u0 (e.g. Allaire, 1992). Such a demonstration provides rigorous mathe-
matical foundations for the homogenization theory. Of course, in practice, ε does not tend to zero; it is
what it is, and computing higher order terms may be valuable for reaching a better precision (e.g. Fish
and Chen, 2001).

Non-periodic homogenization

The non-periodic homogenization cannot rely on the scaling parameter ε defined in the periodic case.
It is necessary to introduce another parameter ε0 = λ0/λmin, where λ0 � λmin is the limit between the
small and the large length scales (λmin still being the minimum wavelength propagating in the medium).
ε0 therefore is a user-defined parameter which tells what is considered as small and what is considered
as large. Among other things, this parameter enables to build a low-pass filter F ε0 . When applied to a
given quantity defined in the domain, this filter simply removes all the scales smaller than λ0 from this
quantity.

As in the periodic case, the zeroth-order term of the non-periodic homogenization is the solution of
a classical elastodynamic problem with effective properties. To compute these upscaled properties, an
elastostatic equation has to be solved with periodic boundary conditions. Denoting by C the 4th-order
stiffness tensor of the initial medium, we can write this equation as

∇ ·
{

C :
[

I+
1
2
(∇χ+ t∇χ)

]}
= 0, (1.13)

where I is the 4th-order identity tensor and the solution χ is a 3rd-order tensor known as the corrector.
This solution is used to build two intermediate 4th-order tensors:

G =
1
2
(∇χ+ t∇χ)+ I and H = C : G. (1.14)

G and H are called strain and stress concentrators, respectively. After filtering the components of these
two tensors, the effective stiffness tensor C? is finally obtained with the double contraction

C? = F ε0(H) : F ε0(G)−1. (1.15)

As for the effective density ρ?, it is obtained by simply filtering the initial density ρ:

ρ
? = F ε0(ρ). (1.16)
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1.2.2 Contributions

In the last decade, my main contributions to the non-periodic homogenization were the implementa-
tion of the method in 3D using a finite element analysis (Cupillard and Capdeville, 2017, 2018) and the
application of it to complex geological media (Cupillard et al., 2015; Cupillard and Capdeville, 2018;
Capdeville et al., 2020). This effort allowed the benefit of working with homogenized media to be shown
(Cupillard and Capdeville, 2018; Capdeville et al., 2020) and apparent anisotropy to be investigated
(Cupillard et al., 2020).

Finite element resolution in 3D

Differential equation (1.13) can be seen as a classic elastostatic problem with a specific load consist-
ing in the divergence of the elastic tensor C. Such a divergence yields a 3rd-order tensor ∂iCi jkl . Thanks
to the symmetry of C (Ci jkl =Ci jlk), this tensor reduces to six force vectors. To determine the six corre-
sponding displacements, i.e. to solve equation (1.13), I implemented a tetrahedral finite element method
(Cupillard and Capdeville, 2017, 2018). The resulting code offers polynomial interpolations of degree 1,
2 or 3 and various quadrature rules which make it possible to investigate the behavior of the solution with
respect to discretization. Moreover, both linear and quadratic tetrahedra are enabled, leading to either
iso-, super- or sub-parametric elements. To solve the finite element linear system, PARDISO (Schenk
and Gärtner, 2006) is chosen. Finally, the low-pass filter F ε0 is applied in the space domain to obtain ρ?

and C?.
In theory, periodic boundary conditions are imposed to equation (1.13), meaning that the medium is

supposed to repeat itself periodically in the three dimensions. When dealing with geological media, this
condition is obviously not fulfilled. We therefore replace it by homogeneous Dirichlet conditions χ= 0
at the border. The effect in the volume of such an artificial condition decays exponentially (Dumontet,
1990), so our numerical solution is meaningless in a thin layer from the border of the domain. Such
meaningless values of χ do not matter, because the filtering process cannot be performed near the border
anyway. Some elastic material to be convolved with the filter wavelet is actually missing there, so we are
not able to compute the effective properties ρ? and C? using equations (1.15) and (1.16). The thickness
of the layer in which the filter cannot be applied is equal to half of the wavelet support. Solutions to these
boundary issues in the layered case are proposed by Capdeville and Marigo (2007, 2008) and discussed
in subsection 1.2.4.

When handling large models, the memory needs for achieving the computation of the effective prop-
erties can be very large. This is mainly because solving large linear systems, even sparse and symmetric,
is memory-demanding. This is also because high-order tensors are involved in the homogenization pro-
cess. For these two reasons, a distributed-memory computation is necessary. To speed up our code, we
also perform multithreaded computations whenever possible. Moreover, efficient algorithms based on
k-d trees and stack data structures are used to search for elements or points across the finite element
mesh.

To test the performance of our implementation, we stress our code with a large and highly diffractive
medium made of 1000000 cubes (100 in each direction). Each cube is 1km3 large and has isotropic
properties randomly taken in the range 2000− 4000kg.m−3 for density, 2.5− 5km.s−1 for S-wave ve-
locity, and 4− 8km.s−1 for P-wave velocity. Because we are not able to compute effective properties
near the border of the domain, we embed the random cubes with a 13km thick homogeneous medium
(figure 1.2, left-hand side). To mesh the whole medium, 12002256 tetrahedra are used. Because we
set λ0 to 1.6km (i.e. λmin = 8km and ε0 = 0.2), cubic interpolation functions are necessary to capture
a sufficient amount of details in the solution χ of our finite element analysis. Such a high degree leads
to a stiffness matrix which is 1607478992 large (i.e. 3 components at 53582633 interpolation points).
To achieve the computation, the domain is split into 100 overlapping subdomains, each of them being
treated independently from the others. Calculating the effective properties in a single subdomain then
requires about 116GB and four computing hours on a Intel Xeon X5680 processor (6 cores, 3.33GHz,
12MB Cache). The obtained homogenized model is shown in figure 1.2, right-hand side.
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Figure 1.2: A cut in the initial (left-hand side) and effective (right-hand side) random cube models used
to challenge our 3D non-periodic homogenization code. The green star represents the location of the
seismic source which produces u in the initial medium and u? in the effective medium. The green
triangle shows the location at which the waveforms in figure 1.3 are computed. From Cupillard and
Capdeville (2017).

To assess the accuracy of the computation, we compare a wavefield u? in the effective medium with
a wavefield u in the initial model. Both wavefields are generated by a point-source positioned in the
homogeneous layer (figure 1.2) where a force-vector acts in the z direction. The obtained displacements
are computed at 100 randomly chosen receiver locations using the SEM (Cupillard et al., 2012) with
absorbing boundary conditions.

We first compare the wavefields u and u? at a single receiver (figure 1.3). The location of the receiver
is shown in figure 1.2. At this location, u and u? are very similar. The residual u−u? is 8% at most in
the ballistic wave. In the more complex, smaller-amplitude, diffracted wavefield, it reaches 12%. When
computing waveforms in a model obtained by just filtering the component of the initial elastic tensor, the
residual is way worse, reaching 150% in both the ballistic and the diffracted wavefields.

The homogenization theory states that the error of the wavefield reconstructed in the effective medium
is a function of ε0: u−u? = O(ε0). By computing this error over the 100 receivers for different values
of ε0, we can check if we retrieve this convergence numerically. Figure 1.4 shows that a decay in ε

3/2
0 is

actually retrieved. This is probably because all our receivers are positioned in the middle of a cube, ‘far’
from the discontinuities, so the contribution of the higher-order terms of the homogenized solution are
particularly small. When filtering each component of the initial elastic tensor instead of computing the
effective medium with the homogenization technique, the convergence is way worse.

Application to complex subsurface models

Our 3D homogenization code has been applied to various geological models: Furfooz (Dewaide
et al., 2014), Ribaute (Caumon et al., 2009), Groningen (Romijn, 2017) and the SEG-EAGE overthrust
(Aminzadeh et al., 1997). This latter application is presented below along with wave simulations in both
the original medium and the homogenized medium, which emphasizes the benefit of the homogenization.

The SEG-EAGE overthrust model is 20km× 20km× 4km large. It is made of twelve faulted and
folded layers. All of them are isotropic. The P-wave velocity ranges from 2500m.s−1 to 6000m.s−1;
the S-wave velocity ranges from 1600m.s−1 to 3500m.s−1 (figure 1.5a). To perform wave propagation
simulations in such a medium, the finite-difference method can be considered at the price of using an
extremely small space-step to capture the effect of the discontinuities. Finite-element methods are more
suitable for taking discontinuities into account. This kind of methods relies on meshing the medium with
simple shapes like tetrahedra, hexahedra, pyramids, prisms, or a mix of those. Because tetrahedra enable
the maximum flexibility, we use them to mesh the overthrust (figure 1.5a’) and we rely on a mass-lumped
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Figure 1.3: Comparison of the wave-
field u in the initial random cube
model (black line) with the wave-
field u? in the corresponding effec-
tive medium (red dashed line) com-
puted at the receiver shown in fig-
ure 1.2. Both the ballistic wave
(visible in the z component) and
the diffracted wavefield (visible in
the three components) are well-
recovered in the effective medium.
When filtering each component of
the initial elastic tensor instead of
computing C? with the homogeniza-
tion technique, the green waveforms
are obtained, which do not fit u at
all. From Cupillard and Capdeville
(2017).
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Figure 1.4: Black diamonds show the error
100

∑
i=1

√∫
(ui−u?

i )
2dt√∫

u2
i dt

(i being the index of the re-

ceivers) for three different values of ε0 (0.2, 0.4 and
0.8). Gray crosses show the same error for a wave-
field computed in a model obtained by just filtering
the component of the initial elastic tensor. From Cu-
pillard and Capdeville (2017).
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finite-element method (Geevers et al., 2019) to compute seismic wave propagation. After an important
work for building the best possible mesh, using various surface and volume meshing algorithms in a row
(Pellerin et al., 2014; Si, 2015; Kononov et al., 2012) to benefit from the relevant features of each of
them, we obtain 75.5cm for the inner-sphere radius of the smallest element. Such a small value leads to
a small time-step within the wave propagation simulation, for numerical stability reasons. Computing a
12s long wavefield (hereafter denoted by u) for a single f0 = 3.125Hz Ricker source therefore requires
12.6 days on 40 Skylake cores.

Let us now compute the effective overthrust medium. To do so, we use the tetrahedral finite-element
code described in the previous paragraph. This code first solves equation (1.13), which is a static prob-
lem so there is no time-step involved and small elements in the mesh does not lead to computational
limitations. The main difficulty when solving this problem is to handle the large memory requirement.
We therefore cut the model into 200 overlapping subdomains, each of them being treated independently
from the others. λmin and ε0 are set to 200m and 0.75, respectively, so λ0 = 150m. In this configuration,
the whole computation (i.e. the resolution of the cell problem followed by the filtering of the stress and
strain concentrators) requires 3 hours and 100 Gb on a single PowerEdge M610 for each subdomain. The
result is shown in figure 1.5b and c.

By construction, the homogenized overthrust is smooth: it has no spatial variations smaller than
λ0. Computing waveforms in it therefore is very light: the mesh no longer need to honor geological
structures, and the size of the elements is constrained by λ0 only. Figure 1.5b’ shows a zoom in a regular
hexahedral mesh of the homogenized overthrust. All the elements are 2003 m3 large. They are used in a
degree-6 spectral element method (Cupillard et al., 2012) to compute the zeroth-order displacement u?

corresponding to the wavefield u generated in the original overthrust model. The computation cost of the
spectral-element simulation is 4163s on two Xeon Gold 6130 processors, which is 260 times less than
the computation cost required for u. A comparison between u? and u at a given point in space is shown
in figure 1.6. The error at this point is 8.73%. Such an error averaged over 200 randomly-positionned
points is 7.57%.

Using the same regular hexahedral mesh, we perform a spectral-element simulation in the original
overthrust model. In this case, the geological structures are not honored by the mesh. They are smoothed
by the numerical method itself, which is not a physical smoothing. As a consequence, the obtained
wavefield ubrutal does not match u. The error between the two wavefields reaches 21.8%. Refining the
regular mesh (using 1503 m3, 1203 m3, 1003 m3, 803 m3 and 603 m3 large elements), the error decreases
but the computation cost increases drastically, as shown in figure 1.7. This figure also shows that the
refinement has no impact on the wavefield computed in the homogenized medium. This is because
all the heterogeneities of the medium are properly captured by the coarsest mesh (i.e. 2003 m3 large
elements).

1.2.3 Perspective №1: Homogenization of multiscale fractured media

Tectonic processes and the industrial exploitation of the subsurface induce brittle deformations in
the earth crust, leading to fractures at all scales. These fractures are organized in networks which are
basically characterized by their density, connectivity and distribution of aperture, length and orientation.
Determining these parameters are essential for predicting the hydrogeological behavior of reservoirs or
understanding the fatigue of soils and engineering structures. However, direct measurements of fracture
parameters are rarely available. Apart from outcrops, cores and borehole images, fractured rocks are
seen in an effective way through mechanical properties derived from mechanical tests or seismic wave
data. It is therefore of practical interest to better understand how the waves upscale fractured media.

Geological observations have evidenced that a power law is appropriate to describe the density of a
fracture set as a function of the fracture size (Allègre et al., 1982; Bour and Davy, 1997; Bonnet et al.,
2001; Bour et al., 2002; Nieto-Samaniego et al., 2005; Neuman, 2008). Such a law suggests that a
fractured medium accommodates a continuum of fracture lengths. Nevertheless, for either theoretical or
computational reasons, studies on seismic wave propagation in fractured media have been restricted to a
short range of fracture sizes so far.
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Figure 1.5: a) S-wave velocity structure
of the overthrust model. a’) Zoom in a
lateral border of the model meshed with
tetrahedra. b) The homogenized version
of the model; the plotted quantity is the
Sh-wave velocity. b’) Zoom in a lateral
border of the homogenized model meshed
with hexahedra. c) Total anisotropy of the
homogenized overthurst. From Capdev-
ille et al. (2020).



22 1.2. Non-periodic homogenization of the elastic wave equation

Figure 1.6: Comparison between u (black) and u? (red) at a randomly-chosen point in space. Many
wiggles are observed because there is no absorbing boundaries in the two simulations. From Capdeville
et al. (2020).
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Figure 1.7: Error of ubrutal (blue) and u? (red) with respect to u. Both ubrutal and u? are computed using a
regular hexahedral mesh within a spectral-element method. The error of these two wavefields is plotted as
a function of the computation time associated with the size of the hexahedra (2003 m3, 1503 m3, 1203 m3,
1003 m3, 803 m3 and 603 m3). From Capdeville et al. (2020).

Two main approaches have been developed to study the seismic wave propagation in fractured media.
The first one relies on numerical simulations of waves in explicit representations of fractures as planar
displacement jumps ensured by the so-called linear slip model (e.g. Vasilyeva et al., 2019; Cho et al.,
2019). For computational reasons, this approach meets considerable difficulties in handling fractures
smaller than the wavelength and is often limited to 2D applications. The second approach is based on
effective medium theories which rely on an Elementary Representative Volume (ERV) (e.g. Schoenberg,
1980; Hudson, 1981). Assuming the ERV small with respect to the wavelength, then it is in a quasi-static
regime of stress so that techniques from micromechanics can be used to compute an equivalent medium.
In the case of penny-shaped cracks, these techniques can provide analytical results whereas a numerical
framing is necessary in more complex cases (Grechka and Kachanov, 2006a,b).

In the frame of a 18-month post-doc, Anaïs Ibourichène started working on the application of the
non-periodic homogenization method to fractured media to go beyond the ERV setting and explore the
effect of a wide distribution of crack sizes on seismic wave propagation. The preliminary results obtained
by Anaïs in 2D (Ibourichène et al., 2021) are presented below. First, the effective properties computed
using the homogenization in the case of Eshelby problems (Eshelby, 1957) are compared to analytical
solutions provided by various effective medium theories. Then, the homogenization is applied to a
synthetic mass rock which contains different fracture sets, each set being characterized by a length l (up
to λmin/4) and a density d ∼ l−3.

Comparison with effective medium theories in the Eshelby frame

As a preliminary investigation, the analytical solutions provided by various effective medium theories
are compared with the results of the non-periodic homogenization in the case of elliptical inclusions in a
host matrix (Eshelby, 1957). We represent the fractures by ellipses and we embed them in a host matrix
with properties similar to crustal rocks: VP = 4000m.s−1, VS = 2500m.s−1, ρ = 2400kg.m−3. To mimick
empty cracks, the fractures are filled with a thousandth of these values: VP = 4m.s−1, VS = 2.5m.s−1,
ρ = 2.4kg.m−3. For all the computations, we set the density of fracture centers to (8/λmin)

2 and we
align the major axis of all the ellipses along the x-direction. Moreover, interactions between fractures
are not allowed to ensure no departure from the length we set in the different computations. The Gmsh
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Figure 1.8: A triangular mesh of a fractured medium. In this example, the length of the fractures is equal
to λmin/16 and the aspect ratio is equal to 0.05.

software (Geuzaine and Remacle, 2007) is used to build the 2D mesh in which the homogenization will
be performed. As shown in figure 1.8, the mesh is refined in the vicinity of the fractures to ensure that
the heterogeneities will be correctly handled by our homogenization code.

As a first experiment, the aspect ratio of the elliptical fractures varies from 1/50 to 2/5 and we set
the length of the fractures to λmin/16. This length is much smaller than the minimum wavelength, so
the effective medium theories against which we want to compare the homogenization are valid. Posing
1 = xx, 2 = yy and 3 = xy, we plot the effective C11, C22, C33 and C12 components obtained by the various
theories (figure 1.9). Among the six independent components of the effective stiffness matrix, these four
are the significant ones because the effective medium of a rock mass affected by horizontally aligned
cracks is vertical transversely isotropic (VTI). In other words, C13 and C23 vanish. The results show
that the homogenized stiffness matrix fits the solutions derived from the self-consistent (O’Connell and
Budiansky, 1974; Budiansky and O’connell, 1976; Henyey and Pomphrey, 1982) and the differential
(Vavakin and Salganik, 1975; Hashin, 1988; Saenger and Shapiro, 2002; Orlowsky et al., 2003; Sævik
et al., 2013) schemes when the aspect ratio is lower than 0.1. For larger aspect ratios, the homogenization
result gets closer to the Mori-Tanaka (Mori and Tanaka, 1973) and the dual dilute (Sevostianov and
Kachanov, 2012) solutions. These two schemes are both based on the non-interaction approximation so
they are expected to give similar results.

In a second experiment, the aspect ratio of the fractures is set to 0.05 and we vary the length of the
ellipses from 0.3 to 0.8×λmin/16. Figure 1.10 shows that the effective C11, C22 and C12 components from
the homogenization are close to the solution obtained using the differential scheme. Because the aspect
ratio is small, the homogenized stiffness matrix is close to the self-consistent solution as well. As for
the Mori-Tanaka and the dual dilute schemes, they both provide Ci j values higher than the homogenized
ones. Two other analytical solutions are shown: the Castañeda and Willis (1995) one, which provides Ci j

values smaller than the homogenized ones, and the dilute one (e.g. Sevostianov and Kachanov, 2012),
which doesn’t perform well in this case.
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Figure 1.9: C11, C22, C33 and C12 components of the effective stiffness matrix as a function of the aspect
ratio of the elliptical fractures. The lines refer to the solutions from the different effective medium
theories (MT: Mori-Tanaka; DIFF: differential; DILD: dual dilute; SC: self-consistent) and the black
stars to the solution estimated by the non-periodic homogenization.

Figure 1.10: C11, C22, and C12 components of the effective stiffness matrix as a function of the fracture
length. The lines refer to the solutions provided by the different effective medium schemes (MT: Mori-
Tanaka; DIFF: differential; DILD: dual dilute; SC: self-consistent; PCW: Castaneda-Willis; DIL: dilute)
and the black stars correspond to the solutions calculated by the non-periodic homogenization.
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Homogenization of fractures with a density-length distribution following a power law

As a first application of the homogenization to a medium which contains fractures of different sizes,
we consider an isotropic host matrix in which we progressively add larger and larger fractures, following
a power law d ∼ l−α for the density of fractures d as a function of the fracture length l. Geological
observations suggest that 2 ≤ α ≤ 3 (Allègre et al., 1982; Bour and Davy, 1997; Bonnet et al., 2001;
Bour et al., 2002; Nieto-Samaniego et al., 2005; Neuman, 2008). In our application, we set α equal to 3.

The fractures are generated using a Discrete Fracture Network (DFN) algorithm which creates hori-
zontally aligned cracks with the desired density. The fractures are elliptical with an aspect ratio equal to
0.05. The first set of fractures that we introduce in the host matrix has a density equal to dmax = (8/λmin)

2

and a fracture length equal to lmin = λmin/16. These parameters lead to medium number 1 in figure 1.11.
On the top of this medium, a second set of fractures is introduced using a length equal to 2lmin. Following
the power law, the density of this set is dmax/8. This leads to medium 2 in figure 1.11. Finally, a third
medium is generated by introducing a third set of fractures with l = 4lmin and d = dmax/64 (figure 1.11).
The fracture length of this set is no longer small with respect to the minimum wavelength, so the effective
medium theories mentioned in the previous paragraph could not be applied to medium 3.

We homogenize the three fractured media. The obtained density and both the vertical and the hor-
izontal P-wave velocity are plotted in figure 1.11. Because the homogenized media are heterogeneous,
each effective quantity is shown as a dispersion bar around a mean value. As expected, when adding more
and more fractures, the density and the P-wave velocities decrease, and the amount of heterogeneities
increases. Interestingly, the horizontal P-wave velocity starts changing significantly when adding a few
long fractures (medium 3) whereas the variations of the density and the vertical P-wave velocity become
a bit smaller. This is one of the effects of having multiple fracture lengths with a realistic density-length
distribution in rocks.

In this preliminary experiment, the range of fracture lengths is quite narrow. To better understand
how the seismic waves behave as a function of the power law d ∼ l−α , we have to push this work further
by considering a larger range of lengths and different values of α . Moreover, the comparison between
the non-periodic homogenization and the effective medium theories developed in mechanics asks for a
deeper analysis, looking at the details of each theory to understand the similarities and the differences of
the results.

1.2.4 Perspective №2: Effective media for ground motion modeling

Seismic hazard assessment and in particular the estimation of ground motion at the local scale are
essential for mitigation policies as well as compensation for disasters supporting the resilience of the af-
fected territories. Indeed, seismic waves are modified, often amplified, by local geological and geotech-
nical conditions. These variations are known as site effects and are of two different types: lithological
site effects in the case of resonance of seismic waves in shallow geological layers and topographical site
effects in presence of irregular topographic features (Bard, 1997). Such a resonance amplifies some fre-
quencies of the waves at the surface and extends the ground motion duration, which potentially increases
the seismic impact on buildings and people.

To get a quick estimation of the ground motion generated by an event that just occurred or in proba-
bilistic studies such as Probabilistic Seismic Hazard Analysis (PSHA), Ground Motion Prediction Equa-
tions (GMPEs) are available. They are simple analytical expressions which allow translating the basic
features of an earthquake (magnitude, distance, tectonic regime) in a Peak Ground Acceleration (PGA) to
which the stakes located on the surface are submitted. However, these GMPEs do not explicitly depend
on the nature and geometry of the geological objects in which the seismic waves propagate. Moreover,
most of GMPEs are established using real seismicity catalogs in specific regional contexts, so they are
hardly transposable to other regions. The large uncertainty on the PGA estimated from GMPEs (e.g.
Douglas, 2003) reflects this disregard of the propagation medium.

To properly take into account the effects of shallow geological layers on seismic waves arriving at
the earth surface, various numerical methods are available. We can cite the discrete wavenumber method
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Figure 1.11: The effective density (third row) and P-wave velocities (bottom row) obtained when ho-
mogenizing the fractured media shown in the top row. These media are built by progressively adding
fracture sets in a host matrix. Each fracture set is characterized by a length (from lmin = λmin/16 to 4lmin)
and its associated density (second row). Modified from Ibourichène et al. (2021).
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Figure 1.12: Left: Geological cross-section of the lower Var valley near the Nice airport, France. Two
close-ups show several tangential contacts which imply small and elongated elements. Right: Ground
motion velocity induced by a vertical incident plane wave. The maximum frequency is 25 Hz. Because
of the small elements, the DGM simulation from which this result comes required 6 days on an Intel
Core I7 2.70 GHz processor. Modified from Anquez et al. (2021).

(DWM, e.g. Campillo and Bouchon, 1985), the boundary element method (BEM, e.g. Chaillat et al.,
2009), the finite difference method (FDM, e.g. Moczo et al., 2014), the finite element method (FEM, e.g.
Bielak et al., 2005), the spectral element method (SEM, e.g. Komatitsch and Vilotte, 1998; Stupazzini
et al., 2009) and the discontinuous Galerkin method (DGM, e.g. Mercerat and Glinsky, 2015). All these
techniques require a proper spatial discretization of the geological interfaces (i.e. a mesh) in order to
accurately account for their effects on wave propagation. In the common case where uncertainties exist
about the geometry of geological structures, this discretization should be computed on several possible
geological models for the rigorous assessment of the non-linear effects of geological uncertainties on
the simulated wavefield (Wellmann and Caumon, 2018). However, when the geometry of the interfaces
is complex, obtaining even a single deterministic mesh can be a difficult task and the computation of
wave propagation can be extremely costly. In particular, when the interfaces are close one to another,
involving tangential contacts and thin geological layers, the mesh required in the finite-element type
methods (FEM, SEM or DGM) can be challenging to generate. Most of all, this mesh may contain a
large number of elements and a few elongated elements, which results in gigantic wave simulation costs,
as exemplified above (subsection 1.2.2) as well as in figure 1.12.

To deal with this difficulty, the DGM enables the so-called p-adaptivity, which consists in using
a non-uniform polynomial degree distribution to relax constraints on the time-step in small elements
(Dumbser et al., 2007; Etienne et al., 2010). This method is all the more efficient when associated to
non-conforming meshes, as explored for finite-element type methods (Chaljub et al., 2003; Diaz and
Joly, 2005), but the coupling between the coarse and fine non-conforming elements in this context can
prove to be very complex, in particular for 3D meshes based on tetrahedra. Another solution for dealing
with complex geometry consists in implementing hybrid methods to benefit from the advantages of one
method in a given part of the space domain (e.g. the flexibility of the DGM where a complex geometry
is involved) and of another method in the rest of the domain (e.g. the efficiency of the SEM where
hexahedra can be easily handled). Hybrid methods include BEM-DWM (e.g. Bouchon et al., 1989),
FEM-BEM (e.g. Bielak et al., 1991), FEM-FDM (e.g. Moczo et al., 1997), tetrahedral-hexahedral FEM
(e.g. Ichimura et al., 2009), FEM-SEM (Casadei et al., 2002) and DGM-SEM (Terrana et al., 2017).
Most of these methods call for hex-dominant meshes, which can be challenging to generate (Yamakawa
and Shimada, 2003; Botella et al., 2016; Baudouin et al., 2014).

Instead of adapting the mesh to the geological medium, the non-periodic homogenization proposes
to adapt the medium to the physics of wave propagation. As explained and illustrated above, this method
allows smoothing a given geological medium (which contains all the scales, as shown in figure 1.12) up
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Figure 1.13: Example of a symmetric extension. The top surface of the overthrust model shown in figure
1.5a acts as a mirror, so tetrahedra fill the space above the surface.

to the minimum wavelength of the wavefield. The upscaled medium no longer contains discontinuities
so it can be discretized using a coarse mesh, the size of the elements (and, consequently, the time-step of
any wave simulation) being driven by the wavefield frequency instead of the geological structures.

The main difficulty when applying the homogenization to ground motion modeling is that a free
surface is involved, so the boundary issues mentioned in subsection 1.2.2 have to be tackled to compute
accurate effective properties at the border of the domain. In the layered case, Capdeville and Marigo
(2007) showed that any extension of the medium above the free surface (e.g. extending the boundary
values of density and elastic coefficients) leads to a zeroth-order solution, but such a solution is not
accurate enough for surface or grazing incident waves. Nonetheless, the symmetric extension (i.e. when
the boundary acts as a mirror, e.g. figure 1.13) naturally leads to a first-order solution. Moreover, deriving
a second-order correction is relatively easy in this case, which enables to compute an accurate solution
(Capdeville and Marigo, 2007). Such a result is still valid when smooth lateral variations are present.
In alluvial basins and sedimentary valleys where amplifications occur, strong lateral variations can be
involved, especially at the bedrock edges (e.g. figure 1.12). Moreover, the free surface can be non-flat.
In theses cases, a relevant extension has to be found, and improving the zeroth-order solution locally by
an adaptive filtering can be considered.

1.3 Inferring the earth interior and seismic source features from full wave-
forms

1.3.1 Basics

Deterministic inversion consists in finding a model m which explains some observed data dobs. To
do so, an objective function χ(m) involving the misfit between the observed data and synthetic data
dsyn = g(m), is minimized. g represents the forward operator, i.e. a tool which enables to evaluate the
response of a model m to the phenomenon at play. For instance, when inverting P-wave arrival-times
for estimating the P-wave speed structure of a given medium, g can be a ray tracing software. Table 1.1
shows some examples of forward modeling approaches as a function of the data type to be modeled. It
also provides some references to articles which implement these approaches to infer seismic velocities
within the earth.
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Table 1.1: References to some articles which involve a given forward modeling tool g as a function of the
seismic data type the authors aim at inverting. The ultimate goal of all the mentioned articles is to image
the seismic velocities within the earth. For each type of data, the classic L2-norm objective function is
provided.

Deterministic is opposed to Bayesian. Ideally, all the inverse problems should be solved in a Bayesian
way, i.e. estimating the likelihood of a large amount of models to derive the posterior probability of any
sample m of the model space. Unfortunately, when this later is a high-dimensional space or when the
forward problem is computationally demanding, such an approach is not tractable. For instance, when
considering full waveforms to infer seismic velocities in 3D, computing synthetic data on a single model
requires a significant amount of computational resources, and the model vector m can be as large as
millions, so exploring the model space is unfeasible. In this case, a deterministic approach is required.

Whatever the minimization algorithm, the gradient of the objective function ∂ χ/∂m has to be com-
puted at each iteration. Thanks to the adjoint technique (Lailly, 1983; Tarantola, 1984, 1988; Tromp
et al., 2005; Tape et al., 2007; Fichtner et al., 2006a,b; Liu and Gu, 2012), this can be done in an effi-
cient way. For each seismic event e = 1, ...,Ne, the adjoint technique yields event kernels Ke(m;x) with
respect to any given parameter (such as VP, VS...) at any point x in the medium via the interaction of
a regular wavefield, propagating from the event to the receivers, and an adjoint wavefield, propagating
from the receivers back to the event. When considering the classic L2-norm objective function within a
full waveform inversion (table 1.1), the adjoint source associated with the event e is given by

fe(m;x, t) =
Nr

∑
r=1

[
usyn

e,r (m;T − t)−uobs
e,r (T − t)

]
δ (x−xr), (1.17)

where Nr is the number of receivers and T is the length of the seismic waveforms. Then, the gradient is
obtained by

∂ χ

∂m
=
∫

K(m;x)B(x)dx, (1.18)

where B(x) is the vector of the basis functions in which to expand the model (e.g. splines, pixels) and
K(m;x) is simply the sum over e of the event kernels Ke(m;x). Such a gradient computation does not
depend on neither the number of parameters nor the number of receivers. It actually requires Ne forward
simulations + Ne adjoint simulations = 2Ne simulations at each iteration of the minimization scheme,
which makes it possible to use advanced wave equation solvers to infer seismic velocities (e.g. Brossier
et al., 2009; Fichtner et al., 2009, 2013; Pageot et al., 2013; Brossier et al., 2015; Operto et al., 2015;
Beller et al., 2017) and seismic source features (Liu et al., 2004; Kim et al., 2011; Somala et al., 2018;
Willacy et al., 2019) from full waveforms.
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Figure 1.14: Multiscale FWI strategy proposed by Fichtner et al. (2013). The upscaling of master models
to large-scale models is ensured by the homogenization method (section 1.2).

One of the main issues when performing a deterministic inversion is the risk of getting trapped in a
local minimum of the objective function. To mitigate this risk, significant efforts have been made to go
beyond the classic L2-norm (table 1.1) and to design more robust, convex objective functions (Fichtner
et al., 2008; van Leeuwen and Mulder, 2010; Bozdağ et al., 2011; Ma and Hale, 2013; Métivier et al.,
2016). Another issue with deterministic inversions is the lack of uncertainty estimation: only one single
’best’ model is returned with no probabilistic view of the model space. In the context of full waveform
inversion, remarkable papers recently came out to overcome this limitation and drew Bayesian ways of
inverting seismic full waveforms based on the construction of an artificial Hamiltonian system (Fichtner
and Simutė, 2018; Fichtner et al., 2019; Fichtner and Zunino, 2019; Gebraad et al., 2020) or a dipping
layer parameterization combined with model stitching (Visser et al., 2019; Guo et al., 2020).

1.3.2 Contributions

In subsection 1.1.2, I mention two continental scale imaging studies (Yuan et al., 2014; Zunino et al.,
2016) to which I have contributed by providing the forward modeling solution. In collaboration with An-
dreas Fichtner from ETH Zürich, I have also participated to the development of a full waveform inversion
(FWI) method which allows assimilating seismic data over a broad range of space scales (Fichtner et al.,
2013). The earth indeed is unevenly sampled by the data because both seismic stations and events are
unevenly distributed. As a consequence, the maximum frequency of the data and the resolution of the
tomographic models considerably varies from a region to another. The method Andreas developed aims
at handling this heterogeneity. It enables to invert different dataset in a consistent way (figure 1.14). A
key component of it is the homogenization technique (section 1.2) which allows including the knowledge
of the small scales in the large-scale inversions.

Our multiscale FWI method was applied to Eurasia (Fichtner et al., 2013), with a focus on Anatolia
where the coverage of seismic stations is particularly dense. At the continental scale, the structure is con-
strained by waveforms with periods between 30 and 200 s. Besides the well-known structural elements
of the Eurasian mantle, our model reveals a wide variety of more subtle features, such as the Armorican
Massif, the Rhine Graben and the Massif Central. Anatolia is crossed by waveforms with periods be-
tween 8 and 200 s. The model obtained shows the depth signature of the North Anatolian fault. Within
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Figure 1.15: Vertical slices (stretched by a factor of 3) through the Anatolia model obtained by multiscale
FWI. Key to marked features: ATB, Anatolide–Tauride Block; CAV, Central Anatolian Volcanics; IZ,
İstanbul Zone; KAIVF, Kırka–Afyon–Isparta Volcanic Field; KM, Kırşehir Massif; SZ, Sakarya Zone.
From Fichtner et al. (2013).

the crust, the fault zone is mostly bounded by several high-velocity blocks, suggesting that it developed
along the edges of continental fragments with high rigidity. Below the crust, the surface expression of
the eastern and central parts of the North Anatolian Fault Zone correlate with a pronounced low-velocity
band that extends laterally over 600 km. Around 100 km depth, the low-velocity band merges into the
shallow Anatolian asthenosphere, thereby providing a link to the Kırka–Afyon–Isparta Volcanic Field
and the Central Anatolian Volcanics (figure 1.15). We interpret the low-velocity band beneath the North
Anatolian Fault Zone as the upper-mantle expression of the Tethyan sutures that formed 60–15 Ma ago
as a result of Africa-Eurasian convergence. The structurally weak suture facilitated the formation of the
younger (less than 10 Ma) crustal fault zone. In this sense, the North Anatolian Fault Zone is not only a
crustal feature, but a narrow zone of weakness that extends into the upper mantle.

A latter article (Fichtner et al., 2018) makes the multiscale FWI method evolutionary, allowing for
posterior refinements of the model while keeping prior knowledge from the previous updates. Each
refinement may come from a particular inversion technique and rely on its own parameterization (figure
1.16a). Possible conflicting updates (meaning that previously assimilated data may be worse explained
by the updated model) are handled using a Gaussian approximation to find a deterministic solution that
optimally agrees with the independent updates. The methodology is applied at the global scale, leading to
the first-generation Collaborative Seismic Earth Model. This later aims at harnessing distributed human
and computing power. It comprises twelve refinements from full seismic waveform inversion, ranging
from regional crustal- to continental-scale models (figure 1.16b).

1.3.3 Perspective №1: Bayesian inversion of FWI images for reducing structural uncer-
tainties

Owing to the lack and incompleteness of subsurface data, significant uncertainties exist on the posi-
tion of structural surfaces (faults and horizons). Because structural modeling plays a key role in reservoir
planning and development, as well as in various other fields in geosciences such as nuclear waste storage
and geological hazard prediction, it is important to quantify and reduce these uncertainties.
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Figure 1.16: a) Schematic illustration of successive refinements m̂1, m̂2, ... being added to the smooth
initial model m̂0. Different updates may be parametrized differently, that is, have different types of
basis functions. b) Concrete example of VSV at 120-km depth in the initial model (top) and in the first-
generation Collaborative Seismic Earth Model (bottom). Refinement regions visible in this view include
Europe, Turkey, the Sea of Marmara region, the North Atlantic, the South Atlantic and North America.
From Fichtner et al. (2018).

A common way of quantifying structural uncertainties is to sample the ensemble of acceptable mod-
els by generating a relevant number of them stochastically (e.g. Cherpeau et al., 2010). Then, dynamic
reservoir data can be integrated to appraise the models and reduce the uncertainties (e.g. Suzuki et al.,
2008; Cherpeau et al., 2012). In collaboration with Guillaume Caumon, I propose to integrate ancil-
lary seismic data for reducing uncertainties on fault and horizon geometry. We see this as an essential
pathway to reduce uncertainties because seismic data and flow data are sensitive to different structural
features. Flow data are primarily sensitive to permeability while seismic data are sensitive to elastic
properties. Moreover, both flow and seismic data are sensitive to fault throw and layer thickness, but at
different scales. As a consequence, combining the two sources of information during the appraisal of
models should result in reducing structural uncertainties.

Stochastic structural models being created from reflection seismic data, we plan to focus our work on
the usage of borehole seismic data in order to benefit from a different illumination of the structures. As in
the work of Irakarama et al. (2019), we will work on raw data to avoid biases due to stacking, migration,
interpretation, time-to-depth conversion, etc. The uncertainty related to these processes will be managed
by the prior sampling of uncertainties using stochastic structural modeling (Thore et al., 2002; Cherpeau
and Caumon, 2015).

Raw seismic waveforms are explained by velocity models derived from FWI. As a consequence, the
data could be such velocity models instead of the waveforms themselves. In this context, the appropriate
forward modeling tool for mapping the model space (i.e. the geological structures) into the data space
(i.e. a FWI result) is the non-periodic homogenization operator presented in section 1.2. This operator
enables to compute the effective elastic medium of any structural model filled with elastic properties. The
obtained smooth medium is what the waves ’see’, i.e. the result of a FWI in case of sources and receivers
all around the medium. Weighting homogenization results by the actual source-receiver configuration
therefore leads to synthetic FWI images to be compared to the data.

The ingredients of the method to be implemented are (figure 1.17):
1. Priors on the structural parameters to be estimated along with a way of sampling them,
2. The homogenization operator for computing synthetic FWI images from structural models,
3. An appropriate function to estimate the local (i.e. spatialized) likelihood between the synthetic

images and the real FWI result,
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Figure 1.17: Principle of the inverse homogenization of a FWI image m f ,c,p to estimate structural pa-
rameters. Indices f ,c,p point out the fact that the FWI image depends on the frequency content of the
seismic data, on the source-receiver setting and on the parameterization of the inversion, respectively.

4. Bayes’ theorem to get the posterior distribution of the structural parameters.
This method was initiated by Bodin et al. (2015) who applied it to the layered case. In the frame of the

HIWAI project (ANR-16-CE31-0022-01), more complex synthetic cases were investigated (Capdeville
and Métivier, 2018; Hedjazian et al., 2021) and applications to seismic anisotropy in the earth mantle
were proposed (Alder et al., 2017; Magali et al., 2021). We intend to test the method at the exploration
scale in order to reduce structural uncertainties derived from reflection seismic images. In a preliminary
work (Irakarama et al., 2019), we showed how to rank structural interpretations using additional, VSP
data. Implementing the inverse homogenization method presented here would allow to go further. To
do so, we will benefit from stochastic structural modeling tools (e.g. Cherpeau and Caumon, 2015;
Wellmann and Caumon, 2018) and the recent advance from Legentil et al. (2022) in mesh local updating
(figure 1.18) to efficiently represent structural priors.

1.3.4 Perspective №2: Inverse homogenization of time-reversal focal spot

As mentioned in subsection 1.3.1, FWI can be set up to infer seismic source features such as location
and moment tensor (Liu et al., 2004; Kim et al., 2011; Somala et al., 2018; Willacy et al., 2019). Other
waveform-based methods are available for such a goal, including source scanning (e.g. Kao and Shan,
2004), match field processing (e.g. Cros et al., 2011), back-projection (e.g. Ishii et al., 2007) and time
reversal (e.g. Li and van der Baan, 2016). They are often called source imaging methods because they
all somehow focus waves to create an ‘image’ of the source. As compared to FWI, the main advantage
of these methods is the absence of prior source model and the direct (i.e. non-iterative) calculation of
the solution. However, they may require data processing to clean the input signals, with the notable
exception of time reversal, which is weakly sensible to noise (e.g. Gajewski and Tessmer, 2005; Cao
et al., 2012).

In collaboration with Zoé Renat and Yann Capdeville, I recently investigated the link between time
reversal focal spot (which is smooth in space) and actual seismic source (which holds a discontinuity)
in the light of point-source homogenization (Capdeville, 2021). This led to a paper submitted to Geo-
physical Journal International (Renat et al., 2022) whose content is given in chapter 3. Assuming a
point-source model, we show that the wavefield propagated backward in time from a closed surface of
receivers is equivalent to the sum of two low-wavenumber fields resulting from the homogenization of
the original point-source (figure 1.19). In other words, the homogenized point-source is the equivalent
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Figure 1.18: Insertion of a shape defined by an iso-value of a scalar field (b) in four regions of a geological
model (a). c) shows the resulting model for the scalar value 1000; only the four light blue regions (A1,
B2, B3, A4) are remeshed. From Legentil et al. (2022).

force for producing the focal spot.This result opens the path to the downscaling of time reversal focal
spots, following the inverse homogenization method described in the previous subsection (1.3.3).

1.4 Ambient noise correlations

By showing that a coherent signal can emerge from the correlation of seismic coda waves recorded at
a pair of stations, Campillo and Paul (2003) opened a new chapter in the history of seismology. Following
this work, cross-correlation was successfully applied to microseismic noise recordings (Shapiro and
Campillo, 2004) so that seismic tomography with no earthquake suddenly became possible (Shapiro
et al., 2005; Yao et al., 2006; Lin et al., 2007; Brenguier et al., 2007; Cho et al., 2007; Yang et al.,
2007; Lin et al., 2008; Bensen et al., 2008). Microseismic noise is generated by the ocean activity in
the 5-20 s period band, mainly (e.g. Longuet-Higgins, 1950; Friedrich et al., 1998; Stehly et al., 2006).
Therefore, tomographic models derived from microseismic noise correlations primarily consist in short-
period surface wave velocity maps. In the recent years, inversion of such maps in densely instrumented
regions led to crustal and upper mantle models with unprecedented resolution (e.g. Lu et al., 2018;
Nimiya et al., 2020). Moreover, body waves (e.g. Poli et al., 2012; Nakata et al., 2015) and higher
frequency noise sources such as roads (Nakata et al., 2015) or railways (Brenguier et al., 2019) have
been successfully explored.

1.4.1 Basics

Consider two stations A and B that are separated by a distance ∆. These stations respectively record
signals A(t) and B(t) due to random noise sources acting in the medium. We denote by Ap(t), Bp(t) the
signal received in A, B, respectively, from a single point-source P. The correlation between A(t) and B(t)
can thus be written

CAB(t) = ∑
p, p′

∫
Ap(τ)Bp′(t + τ)dτ . (1.19)

We assume that the signals produced by two distinct sources are uncorrelated. Therefore, the cross terms
p 6= p′ in the double sum ∑p,p′ vanish and expression (1.19) reduces to

CAB(t) = ∑
p

C p
AB(t), (1.20)
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Figure 1.19: Comparison of the x-component of the backward wavefield utr (black curve) to the forward
wavefield u (green dashed curve) in a 2D homogeneous medium. At the focal spot (e.g. at t2 and t1),
the two wavefields are different. This is because the ’sink wavefield’ us is missing. When taking such a
wavefield into account, i.e. comparing utr to u−us, the match is perfect (not shown in the figure). We
demonstrate that the zeroth-order forward and sink wavefields (u0 and us

0, respectively) generated by a
homogenized point-source are sufficient for matching utr (right-hand side column), which prevents from
representing the small scales of the source by a fine mesh. Such a result provides a new interpretation of
the focal spot and an efficient forward way to compute it. Modified from Renat et al. (2022).
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with
C p

AB(t) =
∫

Ap(τ)Bp(t + τ)dτ . (1.21)

To study what can emerge from CAB, let us place the noise sources and the stations on the surface of
a layered medium, so that we can use analytical expressions. For the sake of simplicity, we work with
fundamental mode surface waves, but overtones could be included by introducing a summation (e.g.
Snieder, 2004; Halliday and Curtis, 2008). In the frequency domain, the vertical-vertical component of
the fundamental mode surface wave Green’s tensor between two points U and V is given by (Aki and
Richards, 1980)

GUV (ω) =
exp
[
−i
(
k dUV + π

4

)]
√

π

2 k dUV
, (1.22)

where ω is the angular frequency, k(ω) is the wave-number and dUV is the horizontal distance between
U and V . Using equation (1.22) and denoting by |Sp(ω)|2 the power spectral density of source P, the
Fourier transform of cross-correlation (1.21) becomes

C p
AB(ω) =

2
π
|Sp(ω)|2 exp [i k (dAP−dBP)]

k
√

dAP dBP
. (1.23)

It follows that

CAB(ω) =
2
π

∑
p
|Sp(ω)|2 exp [i k (dAP−dBP)]

k
√

dAP dBP
. (1.24)

Replacing the summation over discrete sources by a surface integration (the variables with index p be-
come functions of the source location r), we obtain

CAB(ω) =
2
π

∫∫
|S(r;ω)|2 exp [i k (dA(r)−dB(r))]

k
√

dA(r)dB(r)
dr. (1.25)

When |S(r;ω)|2 is a smooth function of r, the integral in equation (1.25) can be evaluated using the
stationary phase approximation (Snieder, 2004). Let us use this approximation in a Cartesian coordinate
system. We position receiver A at the origin and receiver B on the positive x axis. Then

CAB(ω) =
2
ik

exp
[
i
(
k∆+ π

4

)]
√

π

2 k∆

∫
∞

∆

|S(x,y= 0;ω)|2dx

− 2
ik

exp
[
−i
(
k∆+ π

4

)]
√

π

2 k∆

∫ 0

−∞

|S(x,y= 0;ω)|2dx. (1.26)

This result shows that the Green’s function (GF) between A and B can emerge from the correlation of
random noise records. The first term on the right-hand side contains the acausal GF and arises because
of the noise sources at x > ∆. The second term contains the causal GF and arises because of the sources
at x < 0. Other demonstrations of this result include an analogy with time-reversal (Derode et al., 2003),
the fluctuation-dissipation theorem (van Tiggelen, 2003), the reciprocity theorem (Wapenaar, 2004) and
equipartition (Sánchez-Sesma and Campillo, 2006; Sánchez-Sesma et al., 2006).

Denoting by v(ω) the phase velocity of the fundamental mode Rayleigh wave and considering a
uniform distribution of noise sources such that |S(x,y= 0;ω)|2 = |S(ω)|2, equation (1.26) becomes

CAB(ω) = 2D
v(ω)|S(ω)|2

iω

{
exp
[
i
(
k∆+ π

4

)]
√

π

2 k∆
− exp

[
−i
(
k∆+ π

4

)]
√

π

2 k∆

}
. (1.27)

We limit the integration over x to a range bounded by a finite distance D� ∆. This is to prevent this
integration to diverge. In practice, there is no problem of divergence because of intrinsic attenuation.
Equation (1.27) shows that one has to differentiate the correlation in time to get the GF. Not only the
waveform but also the amplitude decay of the GF with distance ∆ is retrieved by the correlation.
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1.4.2 Contributions

Numerical experiments for investigating the amplitude of noise correlations

Noise correlations depend on the spatial distribution of the noise sources (e.g. equation (1.25)). In
other words, the signal which emerges from noise correlation corresponds to the GF when favorable
conditions are met. Most of the theoretical demonstrations require a uniform distribution of sources
(Lobkis and Weaver, 2001; Derode et al., 2003; van Tiggelen, 2003; Snieder, 2004; Wapenaar, 2004;
Sánchez-Sesma and Campillo, 2006; Sánchez-Sesma et al., 2006). Although this condition is not satisfied
in practice, noise correlations arrival-times were shown to be robust in many cases (e.g. Sabra et al.,
2005; Harmon et al., 2008; Yang and Ritzwoller, 2008; Tsai, 2009) so that both group and phase velocity
maps were established (e.g. Lin et al., 2008; Bensen et al., 2008; Yao and van der Hilst, 2009; Ekström
et al., 2009). By contrast, the behavior of the amplitude looked more complicated (Larose et al., 2007;
Gouédard et al., 2008; Prieto et al., 2009). In this context, I carried out a set of numerical experiments to
better understand it (Cupillard and Capdeville, 2010). The experiments consist in computing synthetic
noise recordings in a spherical Earth using a normal mode summation technique (e.g. Woodhouse and
Girnius, 1982).

Figure 1.20 shows the result of the first experiment, which aims at retrieving what the aforementioned
theories establish in the case of a uniform distribution of noise sources. In this experiment, three hundred
sources are randomly positioned on the surface of the Earth. Each source generates a 24-hr random
signal filtered between 66 and 200 s. An array of twelve receivers (n = 0, ...,11) records the wavefield
produced by the noise sources. The correlations between the vertical displacement at station 0 and the
vertical displacement at the other stations are performed. The Earth model is PREM (Dziewonski and
Anderson, 1981). The configuration of the experiment is shown in figure 1.20a. It is repeated 5 120
times (64 processors perform it 80 times each) and all the obtained correlations are then stacked. Figure
1.20b compares the time-derivative of the correlation between stations 0 and 6 with the corresponding
fundamental mode GF. As predicted by equation (1.27), the two curves match very well. We also plot
the comparison between the amplitude decay of the correlation along the array and the amplitude decay
of the GF. Again, the curves match very well, which confirms the theory.

Further numerical experiments were conducted to investigate the effect of non-uniform distributions
of noise sources. Figure 1.21 illustrates one of these experiments. The sources are contained in a 50◦-
radius patch. Taking the same stations as those involved in figure 1.20, we computed the correlations us-
ing three different processing techniques commonly applied to noise records: raw, one-bit normalization
and spectral whitening (e.g. Bensen et al., 2007). We observed that the amplitude decay of the funda-
mental mode GF is retrieved by the raw noise correlations. However, for the one-bit and the whitened
noise correlations, this is no longer true: the amplitude decay corresponding to these two processes is
less steep than the decay of the fundamental mode.

The overall conclusions of our paper are:
1. When the source distribution is uniform, both geometrical spreading and intrinsic attenuation are

recovered by the correlations, regardless the processing applied to noise.
2. Intrinsic attenuation is always contained in raw noise correlations. As for geometrical spreading, it

is dependent of the source distribution.
3. An amplitude decay is always observed in the one-bit and whitened noise correlations. In the case

of non-uniform distributions of sources, this decay corresponds neither to geometrical spreading nor
to intrinsic attenuation.

A theory for understanding the one-bit noise correlation

To enhance multiple scattering in coda records (e.g. Campillo and Paul, 2003; Larose et al., 2004)
or to get rid off non-stationary signals like earthquakes or spikes in long noise records (e.g. Shapiro and
Campillo, 2004; Shapiro et al., 2005; Bensen et al., 2007; Larose et al., 2007; Yao and van der Hilst,
2009), one-bit normalization if often applied prior to correlation. This process consists of retaining only
the sign (+1 or -1) of each sample in the records. Interestingly, such a strong non-linear operation is able



Chapter 1. Research activities 39

Figure 1.20: Noise simulations and correlations in the case of a uniform distribution of sources. a) Tiny
pixels indicate the location of 24 000 noise sources generated by a single processor. All the sources are on
the surface of the Earth. Diamonds represent eleven receivers (n = 1, ...,11). Two consecutive receivers
are separated by 5◦. The synthetic noise record from each station is correlated with the noise recorded at
receiver 0 (white star). The distance between stations 0 and 1 is 10◦. We plot the time-derivative of the
correlation between stations 0 and 6 and the corresponding fundamental mode Rayleigh wave GF (b).
We also compare the amplitude decay of the correlation with the amplitude decay of the GF (c). We see
that the correlation fits both waveform and relative amplitude of the GF. Modified from Cupillard and
Capdeville (2010).
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Figure 1.21: Noise simulations and correlations in the case of a non-uniform distribution of sources.
Top: The sources belong to a 50◦-radius patch centered on the equator at longitude -60◦. The stations are
the same as those involved in figure 1.20. Bottom: Comparison of the amplitude decay of the correlation
(gray line) with the amplitude decay of the GF (dotted line) for three different noise processing techniques
(raw, one-bit normalization and whitening). Modified from Cupillard and Capdeville (2010).
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Figure 1.22: Plot of the raw correlation CAB(t) using three different equations. The exact solution (equa-
tion (1.25)) is in blue, the solution involving the coherent noise is in dashed red and the solution given
by the stationary phase approximation (equation (1.27)) is in dotted green. The three curves match very
well.

to preserve some information on the amplitude (e.g. Cupillard and Capdeville, 2010). To understand how
that can work, I developed a theory based on the concept of coherent and incoherent noise (Cupillard
et al., 2011).

For each lag time t in the correlation CAB(t) between two raw noise records A(τ) and B(τ), we
first show that there exist two Gaussian signals At(τ) and Bt(τ) with zero mean and variance σ 2

At and
σ 2

Bt respectively, such that At(τ) and Bt(t + τ) are perfectly correlated and give rise to CAB(t). In other
words,

CAB(t) =
∫

At(τ)Bt(t + τ)dτ = σAt σBt . (1.28)

At(τ) and Bt(τ) are called coherent noise at lag time t. We also define incoherent noise at lag time t:

At(τ) = A(τ)−At(τ) and Bt(τ) = B(τ)−Bt(τ), (1.29)

with variances σ 2
At and σ 2

Bt , respectively.
Equation (1.28) has been demonstrated in the case of a uniform distribution of noise sources, but

one can reasonably think that coherent and incoherent noise also exist in the case of other distributions.
Moreover, equation (1.28) holds for broad band sources. In the case of narrow band sources, it is slightly
different. Figure 1.22 shows a comparison of the expression obtained in this last case (equation 46 in
Cupillard et al. (2011)) with the exact solution (1.25) and the approximation (1.27). For the calculation,
we take the real part of the expressions and |S(ω)| as a boxcar function H(ω0 +

∆ω

2 )−H(ω0− ∆ω

2 ),
where H is the Heaviside step function. In this case, we can show that

σAt σBt = 2Dv

∣∣∣∣∣
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]
dω

∣∣∣∣∣ (1.30)

Taking ∆ω = ω0 = 0.1π rad.s−1, v = 3km.s−1 and ∆ = 600km, we obtain the curves in figure 1.22. They
match very well, which illustrates the validity of our theory.

Based on our definitions of coherent and incoherent noise, we derive a general expression for the
one-bit noise correlation:

|Cob
AB(t)|= n

[
1− 2

π
arctan

(
σAt

σAt

)][
1− 2

π
arctan

(
σBt

σBt

)]
, (1.31)

where n is the number of samples in the correlation. The involved physical parameters are the standard
deviations of coherent and incoherent noise. More precisely, the ratio wRt = σRt/σRt at each receiver R
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Figure 1.23: Comparison between raw noise correlations and one-bit noise correlations obtained by
numerical simulation in an anelastic Earth (cf figure 1.20a). The time-derivatives of the two waveforms
from the pair of stations 0 and 6 (a) and the amplitude decays along the array of receivers (b) are plotted.

is the argument of an inverse tangent function. At a given time t, if there is no coherent noise at one
of the receivers, then no signal emerges from the correlation: Cob

AB(t) = 0 because wRt tends to infinity
so 1− 2

π
arctan(wRt ) = 0. On the contrary, if the coherent energy is large with respect to the incoherent

energy at both receivers, then most of the n samples contribute to the correlation so |Cob
AB(t)| is large.

In the case of a uniform distribution of noise sources, equation (1.31) simplifies and we show that

|Cob
AB(t)|=

(
2

πσ

)2

|CAB(t)|, (1.32)

where σ2 is the autocorrelation peak at any point in the surface of the medium. This equation sets the
equality between the raw and the one-bit noise correlations in the case of a uniform distribution of noise
sources. It is valid in both purely elastic and anelastic media. Obviously, the absolute amplitudes of the
two correlations are not the same, but the waveforms and the relative amplitudes are identical. This is
confirmed by the numerical experiment presented in figure 1.20a). Looking at the raw noise correlation
and the one-bit noise correlation from the pair of stations 0 and 6, a good match is observed (figure
1.23a). The amplitude decays along the array of receivers also match very well (figure 1.23b).

1.4.3 Perspective: Modeling full waveforms of ambient noise correlations

Studying the behavior of the amplitude of noise correlations allowed me to consider a method to
simulate the full waveform of these signals (Cupillard, 2008). The method is based on the time reversal
of the amplitude spectrum of the noise data. This enables to build a virtual source capable of radiating
the anisotropic flux of the seismic noise which crosses a given station. Indeed, the amplitude of the cor-
relations holds this flux, so it is necessary to take it into account to correctly simulate the full waveforms.
Figure 1.24 illustrates the propagation of the wavefield generated by the virtual source associated with
the AIGLE station in the Swiss Alps. Figure 1.25 shows the result of this propagation: at each station in
the network, we find the waveform corresponding to the correlation between AIGLE and the station.

Although very promising, this method needs to be improved in the light of significant advances in our
understanding of noise correlation waveforms within the last decade (Curtis and Halliday, 2010; Tromp
et al., 2010; Fichtner, 2014, 2015; Fichtner et al., 2016; Sager et al., 2018). Building proper virtual
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Figure 1.24: SEM sim-
ulation of the wavefield
generated by the virtual
source associated to sta-
tion AIGLE (star). The
L2-norm of the displace-
ment at the surface is rep-
resented. Triangles mark
the other stations of the
network.

Figure 1.25: Seismograms
obtained from the sim-
ulation presented in fig-
ure 1.24. The red star
is station AIGLE. Green
waveforms are obtained
in a 1D model (PREM,
Dziewonski and Anderson,
1981); red waveforms are
obtained in a 3D model
of the lithosphere (CUB,
Shapiro and Ritzwoller,
2002); black waveforms
are the data (i.e. noise cor-
relations).
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S U M M A R Y
Cross-correlation of ambient seismic noise recorded by a pair of stations is now commonly
recognized to contain the Green’s function between the stations. Although traveltimes extracted
from such data have been extensively used to get images of the Earth interior, very few
studies have attempted to exploit the amplitudes. In this work, we investigate the information
contained in the amplitudes and we probe the capability of noise correlations to recover
anelastic attenuation. To do so, we carry out numerical experiments in which we generate
seismic noise at the surface of a 1-D Earth model. One of the advantages of our approach is
that both uniform and non-uniform distributions of noise sources can be taken into account.
In the case of a uniform distribution, we find that geometrical spreading as well as intrinsic
attenuation are retrieved, even after strong non-linear operations such as one-bit normalization
and spectral whitening applied to the noise recordings. In the case of a non-uniform distribution
of sources, the geometrical spreading of the raw noise correlations depends on the distribution,
but intrinsic attenuation is preserved. For the one-bit noise and whitened noise correlations,
the interpretation of observed amplitude decays requires further study.

Key words: Surface waves and free oscillations; Seismic attenuation; Computational
seismology; Wave propagation.

1 I N T RO D U C T I O N

Recent developments have shown that the Green’s function (GF)
between two distant seismometers can emerge from the cross-
correlation of a sufficient duration of seismic noise recorded at both
seismometers (Shapiro & Campillo 2004). This fact provides new
data of great interest for seismologists, because they enable imag-
ing of Earth structure in aseismic regions. In most applications, the
emerging signal is dominated by surface waves. Group-speeds on
interstation paths are now widely measured and numerous high-
resolution tomographic images have appeared over the last 5 years
(e.g. Shapiro et al. 2005; Cho et al. 2007; Lin et al. 2007; Yang
et al. 2007; Bensen et al. 2008; Stehly et al. 2009).

The emergence of the GF between two stations is possible be-
cause the noise sources create a spatially and temporally incoherent
wavefield that carries, nevertheless, a small coherent part. This
small coherent part is due to the sources that produce paths, which
reach either one of the receivers via the other. A time-averaged
correlation of noise recorded at these receivers enables recovery of
this coherency. Prior to its use in seismology, this result was suc-
cessfully applied in other fields such as helioseismology (Duvall
et al. 1993) and ultrasonics (Lobkis & Weaver 2001; Weaver &
Lobkis 2001, 2003). Many theoretical developments subsequently

∗Now at: Seismological Laboratory, University of California, Berkeley, CA
94720, USA. E-mail: paulcup@seismo.berkeley.edu

explained the phenomenon. Lobkis & Weaver (2001) were the first to
describe the incoherent wavefield as a sum of equipartitioned modes
and show that correlation of two records of such a field yields the
GF. More recently, the wavefield was seen as an uncorrelated and
isotropic mix of plane waves from all propagation direction (Weaver
& Lobkis 2003). With this definition, Sánchez-Sesma & Campillo
(2006) and Sánchez-Sesma et al. (2006) show that equipartitioning
of the wavefield is a necessary condition for retrieving the exact GF.
Other developments, based on an analogy with time-reversal ex-
periments (Derode et al. 2003), the fluctuation-dissipation theorem
(van Tiggelen 2003) or reciprocity (Wapenaar 2004), and stationary-
phase derivation (Snieder 2004), also demonstrate the emergence
of GFs from ambient noise correlations.

All these theories only take into account the case of uniformly
distributed noise sources. Now, as Sánchez-Sesma & Campillo
(2006) assess, ‘an anisotropic flux as well as the absence of equipar-
tition has to be considered to fully understand the limitations of the
method’. Indeed, noise consistently observed in seismic records
mainly comes from the oceans (Longuet-Higgins 1950) so that its
distribution at the surface of the Earth clearly is non-uniform. Inter-
est in the effects of such a distribution has recently grown (Weaver
et al. 2009; Yao & van der Hilst 2009). In this paper, we study these
effects by computing correlations of numerically generated seismic
noise in an attenuating sphere. We also look at the influence on
correlations of two processing techniques commonly applied to
the noise records: one-bit normalization and spectral whitening
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Figure 1. Top panel: source and receiver configuration of our first experiment. Stations n = 1, . . . , 11 (black diamonds) are (n + 1) × 5◦ far from station 0
(white star). Tiny dot pixels indicate the location of 24 000 noise sources (80 realizations) randomly distributed on the surface of the Earth. Bottom panel: an
example of noise recorded at station 0 is presented (left panel) for the three different noise processing we consider (raw, one-bit normalization and whitening).
We also plot the amplitude spectrum of these recordings (right panel).

(Bensen et al. 2007). One-bit normalization is a procedure for re-
ducing the weight of the earthquakes that inevitably lie in seismic
records. It consists of retaining only the sign of the raw signal by
replacing all positive amplitudes with a 1 and all negative ampli-
tudes with a −1. Spectral whitening is often practiced as well to

enhance frequencies with low amplitude. Other noise-processing
techniques, not studied in this paper, can be found in Bensen et al.
(2007).

Traveltimes of ambient noise correlations have been extensively
used so far. In this paper, we want to probe the information con-
tained in the amplitude of such data. To do so, we compare our

C© 2010 The Authors, GJI
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Figure 2. Cross-correlations between the vertical displacement recorded at 0 and the vertical displacement at n (numbers on the left) in the case of a uniform
distribution of noise sources. Three data sets are presented corresponding to the three different noise processing investigated in this work: raw, one-bit
normalization and whitening.

synthetic correlations with the full waveforms of exact GFs com-
puted with a normal-mode summation technique. The behaviour of
our reconstructed Rayleigh waves with respect to the attenuation
(geometrical spreading and anelasticity) is addressed by carefully
analysing the amplitude decay with increasing interstation distance.
Our results are then discussed in the context of previous studies that
deal with the same topic (Larose et al. 2007; Gouédard et al. 2008;
Matzel 2008; Prieto et al. 2009).

2 U N I F O R M D I S T R I B U T I O N O F N O I S E
S O U RC E S

2.1 Experimental setup

We compute synthetic noise at the surface of a spherical attenuating
Earth to mimic the continuous oscillations that are consistently ob-
served in seismic records and commonly considered to come from
interactions between the atmosphere, ocean and seafloor. Such os-
cillations do not have a flat amplitude spectrum; two peaks gener-
ally are present around 14 and 7 s period, which are referred to as
primary and secondary microseism, respectively (Longuet-Higgins
1950; Friedrich et al. 1998; Stehly et al. 2006). Moreover, at longer
periods (150–500 s), the so-called Earth ‘hum’ is observed (Nawa
et al. 1998; Rhie & Romanowicz 2004; Kedar & Webb 2005). In
this work, we do not try to simulate the complex mechanisms, which
produce this kind of spectra. We will consider simple noise sources
with flat spectra in a specified frequency band.

To create our synthetic noise, we randomly position 300 sources
on the surface of the Earth. For each spatial component of each
source, we generate a 24-hr time-series with random phase and
flat spectrum filtered between 100 and 150 s. Using normal-mode
summation (e.g. Woodhouse & Girnius 1982) in the Preliminary
Reference Earth Model (Dziewonski & Anderson 1981), the effect
of all the sources is computed at 12 stations n = 0, . . . , 11. All
the stations are located on the equator. We distinguish receiver

n = 0 at longitude 0◦ from the other receivers n = 1, . . . , 11 at
longitude (n + 1) × 5◦ (Fig. 1). The correlations between the
vertical displacement recorded at 0 and the vertical displacement
at the other stations are computed. That is the result of what we
call a ‘realization’. Because a single realization is not enough to
get a good convergence, we perform 5120 realizations (we use 64
processors; each of them computes 80 realizations; the total number
of sources then is 1 536 000). Stacking all the realizations, we obtain
the waveforms represented in Fig. 2.

Three different cases are studied corresponding to different pro-
cesses applied to the noise records: (1) raw noise (no treatment is
done); (2) one-bit noise (meaning that only the sign of the wave-
forms is considered); (3) whitened noise (meaning that the spectral
amplitudes of each record are set to 1 in the chosen frequency band).
One-bit normalization is widely used to attenuate earthquake sig-
nals from real seismic records (e.g. Shapiro & Campillo 2004; Yao
et al. 2006) or enhance codas relative to first arrivals (e.g. Campillo
& Paul 2003; Paul et al. 2005). Although there is no earthquake
in our experiment, we apply a one-bit normalization because we
want to investigate the effect of such a strong non-linear operation
on the amplitude of cross-correlations. Frequency whitening is an-
other non-linear operation frequently used to prepare noise prior to
correlation. The whitening we adopt in this work is very aggressive:
the amplitude spectrum of the original raw noise is replaced by
a boxcar smoothed using a cosine-taper. This procedure has been
used in previous studies (e.g. Stehly et al. 2009). Less aggressive
and more sophisticated whitenings are described in Bensen et al.
(2007).

Fig. 1 shows a 4-hr noise record processed in the three ways
mentioned earlier. The effect of the one-bit normalization is clearly
visible in the time domain, whereas the whitening effect appears in
the frequency domain. Each process provides a set of correlations
(Fig. 2). All the correlations are symmetric: the waveforms at neg-
ative and positive times are the same in shape and amplitude. This
is because the energy flux is the same from station 0 to station n

C© 2010 The Authors, GJI
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Figure 3. Top panel: for each process applied to the noise records (raw, one-bit normalization and whitening), the correlation between stations 0 and 6 (grey
line) is compared with the corresponding Green’s function (dashed line) and the fundamental mode (dotted line). To focus on the Rayleigh wave, we use a 800 s
time window centred on t = 1000 s. The correlations are obtained using 1 536 000 noise sources (5120 realizations). These sources are uniformly distributed
on the surface of the Earth. Bottom panel: the dashed (dotted) line is the error between the correlation and the Green’s function (the fundamental mode) with
respect to the number of realizations. For every process, we converge to a small and stable error. Moreover, the error from the Green’s function is systematically
larger than the error from the fundamental mode.

Figure 4. Same as Fig. 3 but the time window is now 11 000 s wide. R1 (the Rayleigh wave travelling along the short arc of the great circle) and R2 (the
Rayleigh wave from the long arc) are both visible. Zooming in on a part of the signal where the energy of the fundamental mode is negligible shows that the
correlation can retrieve some, but not all, overtones. In the chosen time window, the error from the fundamental mode is very slightly smaller than the error
from the Green’s function. After a sufficient number of realizations, the two errors are small and stable for the three noise processing.

(negative part) than from n to 0 (positive part). As expected, the
arrival time of the wave packets increases as interstation distance
becomes larger. On the contrary, the amplitude decreases as inter-
station distance increases. This decay will be studied more precisely
at the end of Section 2.2.

2.2 Comparison with the Green’s function

The Green’s tensor between two stations in a laterally homogeneous
sphere can be easily computed using normal-mode summation. Fol-
lowing Woodhouse & Girnius (1982), we can write the vertical
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displacement Gnm at a station m due to a vertical Dirac delta func-
tion at another station n as a function of time t

Gnm(t) =
∑

k

ak(n)uk(m)eiωk t , (1)

where uk and ωk are the eigenfunctions and eigenfrequencies of the
Earth model, and ak are the excitation coefficients due to the vertical
Dirac delta function. Using this equation, we are able to calculate
the reference GFs against which we can compare our correlations.
To make the comparison possible, we have to differentiate the cor-
relations in time and correct them for a source term, which is the
power spectral density of the noise, recorded at one station. Indeed,
different authors (Lobkis & Weaver 2001; Snieder 2004; Colin de
Verdière 2006; Sánchez-Sesma et al. 2008) have demonstrated that,
in 3-D, we have

iωCnm(ω) ∝ |Sn(ω)|2Gnm(ω), (2)

where Cnm is the side of the correlation between n and m that corre-
sponds to the noise going from n to m, ω is the angular frequency and
Sn is the noise recorded at n. | | denotes the modulus of a complex
quantity.

Fig. 3 shows a comparison of the corrected correlations from
station 6 with the corresponding GF on the one hand, and with the
fundamental mode (eq. 1 restricted to k ∈ {fundamental mode}) on
the other hand. We chose a 800 s time window centred on t = 1000 s
to focus on the Rayleigh wave. For each kind of noise processing
(raw, one-bit normalization and whitening), the correlation fits both
the GF and the fundamental mode very well. Nevertheless, the
computation of the mean square deviation of the full waveform
(hereafter referred to as the error) shows that the fit is a little better
for the fundamental mode. This is mainly due to the discrepancy
between the GF and the correlation in the 650–850 s time window:
it looks like the correlation is not able to retrieve overtones. This
is confirmed in Fig. 4. This figure shows the same comparison as
in Fig. 3 but using a much larger time window (11 000 s). Zooming
in a part of the signal that has overtones only (the curve of the
fundamental mode is equal to zero), we see that some of them
are recovered whereas some others are not. This means that the
correlation of a seismic wavefield produced by noise sources, which
are uniformly distributed on the surface of a 1-D Earth, does not
perfectly converge to the GF. The convergence of such a correlation
towards the fundamental mode is better (this is visible on both
Figs 3 and 4) but is not perfect either. Nervertheless, the quality of
our reconstructed Rayleigh waves is very good for our purpose.

The reason why some overtones are not retrieved in our correla-
tions is that there are no noise sources at depth in our experiment.
Including such sources enables to recover all the overtones, as shown
in Fig. 5(a). This figure presents the raw noise correlation between
stations 0 and 6 when using sources everywhere in the medium. As
done before, we use two time windows to compare this correlation
with the GF and the fundamental mode. For each of these two win-
dows, we compute the error as a function of realizations. Because
a good convergence requires more realizations than in the case of
sources distributed on the surface, we performed 9600 realizations.
It is clear that the correlation now fits the GF better than the funda-
mental mode. Nevertheless, the error between the correlation and
the GF stabilizes to a non-zero value. This is because the amplitudes
are not correctly retrieved (see the zoom window in the overtones).
As stated by Snieder (2007), getting an equipartitioned wavefield
(and thus an accurate reconstruction of the GF) in an attenuating
medium requires a source excitation that is proportional to the local
dissipation rate. We do not use such a particular excitation here so

Figure 5. Raw noise correlation between stations 0 and 6 (grey line) emerg-
ing from a uniform distribution of noise sources in the interior of the Earth.
Two different experiments are carried out: one in an attenuating medium (a)
and one in a lossless medium (b). The result of each experiment is compared
with the GF (dashed line) and the fundamental mode (dotted line) using two
different time windows. The error as a function of realizations is computed
for each of these two windows. In both experiment, the correlation fits the
GF better than the fundamental mode. In the attenuating Earth, the ampli-
tudes are not very well recovered, so the error between the correlation and
the GF stabilizes to a non-zero value. In the lossless Earth, the GF is very
well retrieved.

we do not get the exact GF. We check that the anelasticity is indeed
the cause of the discrepancy between the GF and the correlation by
performing the same experiment in a lossless medium. The result
shows that the GF is accurately recovered in this case (Fig. 5b).
Similar observations are found for one-bit noise and whitened noise
correlations.

The purpose of this paper is to study the amplitude of surface
waves reconstructed by noise correlation in the context of noise
sources located on the surface of the Earth. Therefore, we do not
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Figure 6. Comparison of the amplitude decay of the envelope of the correlations (grey line) with their corresponding fundamental mode (dotted line) in the
case of a uniform distribution of noise sources. Top panel: The waveforms from the three processes (column) and all the stations (row) are presented. Bottom
panel: The maximum of amplitude is plotted as a function of interstation distance.

consider the correlations obtained using sources at depth in what
follows. As shown in Fig. 3, the quality of the Rayleigh waves
obtained using sources on the surface is very good. Because the
convergence of these waves towards the fundamental mode is better
than the convergence towards the GF, we choose the fundamental
mode as the reference in what follows and we compare the ampli-
tude decay of our reconstructed Rayleigh waves with the decay of
the fundamental mode (Fig. 6). We match the amplitude maximum
of the signals at station 1 so we can see how the relative amplitudes
evolve as interstation distance increases. We use the envelope of the
signals because it is closely related to the energy, and thus to the
attenuation (Aki & Richards 1980). We observe that the signal en-

velopes are very similar for each interstation distance and regardless
of the noise processing. Plotting the amplitude maximum as a func-
tion of interstation distance, we see that the decay of the correlation
is the same as that of the fundamental mode. This means that, in the
context of a uniform distribution of noise sources on the surface of
a radially symmetric Earth, cross-correlations contain geometrical
spreading as well as intrinsic attenuation, even after applying strong
non-linear operations on the amplitude of the noise like one-bit nor-
malization and frequency whitening. As the Rayleigh wave Green’s
function is highly dominated by the fundamental mode, the results
and the conclusion would be the same if considering the GF as the
reference.
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Figure 7. Configuration of the second experiment. Tiny dot pixels indicate the location of 24 000 noise sources (80 realizations). We see that all the sources
belong to a 50◦-radius patch centred on the equator at longitude −60◦. Again, we use station 0 (star) and stations n = 1, . . . , 11 (diamonds) as introduced in
Fig. 1. We add three new stations (6a, 6b and 6c) to study the anisotropy of the energy flux produced by such a distribution of noise sources.

Figure 8. Cross-correlations between the vertical displacement recorded at 0 and the vertical displacement at n (numbers on the left) in the case of noise
sources distributed in a big patch.

3 N O I S E S O U RC E S D I S T R I B U T E D
I N A B I G PAT C H

3.1 Experimental setup

It is important to study the case of a non-uniform distribution of
sources because seismic noise in the Earth mainly comes from the
oceans and is therefore non-uniformly distributed. Such a distribu-
tion produces an anisotropic energy flux that is difficult to consider
analytically and, therefore, has never been clearly taken into account.
We probe the effects of wavefield inhomogeneity, by repeating the
same experiment as the one in the previous section, except that the

noise sources are now confined in a 50◦-radius cap on the surface of
the sphere. The centre of this cap is on the equator at longitude −60◦

(Fig. 7). Reducing the source location area and keeping the same
number of realizations increases the source density. To investigate
the impact of our space-limited ‘noisy’ area on cross-correlations,
we use again a line of 12 stations (n = 0, . . . , 11) along the equator.
As the azimuths from station 0 are not all equivalent with respect
to the patch of noise sources, we add three new stations that are
not on the equator, 35◦ far from station 0 (as station 6 is), and call
them 6a, 6b and 6c. They lie at an azimuth of 60◦, 30◦ and 0◦ from
receiver 0.

Fig. 8 shows the correlations between the displacement recorded
at station 0 and the displacement from the other stations positioned
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8 P. Cupillard and Y. Capdeville

Figure 9. The correlations (grey line) from stations 6c, 6b, 6a and 6 (from the top to the bottom) are compared with the Green’s function (dashed line) and
the fundamental mode (dotted line) which are the same for the four stations because these latter are all 35◦ far from station 0. The relative amplitude of the
correlations is preserved (and so we adapt the Green’s function and the fundamental mode to match the amplitude of the correlations). For station 6, we also
plot the convergence as we did in Fig. 3.

on the equator (n = 1, . . . , 11). Strong asymmetry appears at all
stations and for all processes applied to the noise. This is due to
the anisotropy of the energy flux: the energy going from n to 0 is
much lower than the energy going from 0 to n. This effect has been
reported by many authors working on real data (Shapiro & Campillo
2004; Paul et al. 2005; Stehly et al. 2006; Yao et al. 2006; Nishida
& Fukao 2007; Bensen et al. 2008). In the following, we will only
consider waveforms at negative times (emerging from the noise
going from 0 to n). We observe that their amplitude decreases as
interstation distance increases. We will study this amplitude decay
in the next section.

3.2 Comparison with the Green’s function

Using eq. (2), we process our correlations to compare them with
the GF. Fig. 9 shows the Rayleigh wave from station 6. As we did
before in Fig. 3, we consider the fit to the GF as well as the fit to the
fundamental mode. Plotting the error as a function of the number
of realizations, we observe that the correlation fits the fundamental
mode better than the GF. This is true for all three processes applied

to the noise. We notice that the error becomes stable faster than it
did in the previous experiment (Fig. 3). This is simply because the
density of sources in the coherent zone, which is the vicinity of
the great circle passing through the two stations 0 and 6 (Snieder
2004; Roux et al. 2005), is higher in the current experiment. We
also notice that the final errors we get are larger than before. This
means that the wavefield produced by the current distribution of
noise sources is less equipartitioned than the wavefield due to a
uniform distribution. Nevertheless, the quality of the reconstructed
signal is satisfactory.

Fig. 9 also shows the correlations from stations 6a, 6b and 6c.
The relative amplitude of these correlations has been preserved to
clearly show that the energy flux is now anisotropic. The amplitude
of the reconstructed signal increases with increasing the azimuth.
This is because the number of noise sources in the coherent zone is
not the same in all azimuths. There are no sources on the great circle
defined by 0 and 6c (azimuth = 0◦, cf. Fig. 7) so the correlation from
6c has a very small amplitude. On the contrary, the number of noise
sources is high for stations 6 and 6a (azimuth = 90◦ and 60◦, re-
spectively) so the corresponding correlations have a large amplitude.
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Figure 10. Comparison of the amplitude decay of the envelope of the correlations (grey line) with their corresponding fundamental mode (dotted line) in
the case of noise sources distributed in a big patch. Top panel: The waveforms from the three processes (column) and all the stations on the equator (row)
are presented. Bottom panel: The maximum of amplitude is plotted as a function of interstation distance. The decay of the one-bit and the whitened noise
correlations does not fit the decay of the fundamental mode. It also fits neither geometrical spreading (thin black line) nor intrinsic attenuation (thick black
line).

Besides, we note that the phase of the correlation from station 6c
has nothing to do with the GF. This is because the noise sources
that contribute to the emergence of this correlation are far from the
vicinity of the great circle path resulting in erroneous traveltimes.
This effect is not explicitly discussed but is substantially contained
in the theoretical development of Roux et al. (2005). It has been
also observed on real data (Stehly et al. 2007; Gouédard et al.
2008).

We now look at the amplitude decay of the correlations obtained
from stations located at the equator. We compare the envelope of
these correlations with the envelope of the fundamental mode and
we plot the maximum of these envelopes as a function of inter-

station distance (Fig. 10). As was the case in the previous experi-
ment, the decay of the raw noise correlation is the same as that of
the fundamental mode. However, for the one-bit and the whitened
noise correlations, this is no longer true; the amplitude decay cor-
responding to these two processes is less steep than the decay of
the fundamental mode. We also plot the two terms that correspond
to the two different attenuation processes. Writing the amplitude
spectrum of the GF restricted to fundamental mode between station
0 and station n as

∣∣∣Gk∈ f und
0n (ω)

∣∣∣ ∝ 1
√

sin(dn)
exp

[
− ωdn

2c(ω)Q(ω)

]
, (3)

C© 2010 The Authors, GJI
Journal compilation C© 2010 RAS

78



10 P. Cupillard and Y. Capdeville

Figure 11. Configuration of the third experiment. The big black dot indicates the cap where the noise sources are. All the sources belong to a 5◦-radius patch
centred on the equator at longitude −60◦. We use twelve receivers on the equator: station 0 (star) and stations n = 1, . . . , 11 (diamonds).

Figure 12. Cross-correlations between the vertical displacement recorded at 0 and the vertical displacement at n (numbers on the left) in the case of noise
sources distributed in a small patch.

where dn is the angular distance between the two stations, c is the
Rayleigh wave speed and Q is the quality factor of the medium,
we recognize the first term of the product to be the geometrical
spreading and the second term to be the intrinsic attenuation. The
plot of these two terms in Fig. 10 shows that they both provide a
significant contribution to the amplitude of the fundamental mode.
The amplitude decay of the one-bit and the whitened noise corre-
lations does not fit any of the two terms. One can reasonably think
that the one-bit and the whitened data sets both contain information
on the intrinsic attenuation of the medium. However, in the case
of the distribution of noise sources studied in this section, it is not
possible to treat these data sets as one treats usual records (such as
earthquake records) to extract the intrinsic attenuation.

4 N O I S E S O U RC E S D I S T R I B U T E D
I N A S M A L L PAT C H

4.1 Experimental setup

To investigate extreme source inhomogeneity, one last experiment is
carried out. We now distribute the noise sources in a 5◦-radius patch
centred on the equator at longitude −60◦ (Fig. 11). The 12-stations
line along the equator is used again to compute correlations. As
expected, the obtained waveforms are asymmetric (Fig. 12). More-
over, for all three treatments used to process the noise records, we
observe that the amplitude decay of the correlations with increas-
ing interstation distance looks less strong than observed in the two
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Figure 13. The correlations (grey line) from station 6 are compared with the Green’s function (dashed line) and the fundamental mode (dotted line). The noise
sources producing the wavefield that we correlate are confined in a small patch. Top panel: A π/4 phase shift appears between the correlations and the two
other curves. Bottom panel: The phase shift is no longer visible when using the envelope of the signals.

previous experiments. We will carefully look at this variation of
amplitude in the next section.

4.2 Comparison with the Green’s function

There is substantial misfit between the corrected correlation (eq. 2)
from station 6 and the corresponding GF and fundamental mode
predictions (Fig. 13). This misfit mainly comes from a π/4 phase
shift, which is known to make phase velocity measurements from
noise correlations very ambiguous (Harmon et al. 2008). Indeed,
in the general case (i.e. the case of any given distribution of noise
sources), it is not clear whether the extracted GF is 2-D or 3-D. The
main difference between these two kinds of function precisely is a
π/4 shift (Aki & Richards 1980; Sánchez-Sesma & Campillo 2006).
In spite of the ambiguity, Yao et al. (2006) and Lin et al. (2008)
have succeeded in extracting phase velocity maps from noise cor-
relations. In this work, the π/4 phase shift is not a problem because
we use the envelope of the signals to study variations in amplitude.
As shown in Fig. 13, the envelope of the correlation is very similar
to the envelope of the fundamental mode, confirming the robustness
of group velocity measurements from noise correlations.

Fig. 14 shows how the amplitude of the correlations decreases
with increasing interstation distance. For each process, the decay is
very different from the decay of the fundamental mode. We think
this difference could be due to different geometrical spreading.
Indeed, the small patch can be viewed as a point source providing
a wavefield that is coherent between station 0 and station n (all the
paths going through 0 also go through n) such that

|C0n(ω)| = |S0(ω)||Sn(ω)| (4)

with

|S0(ω)| = A(ω)
√

sin(D)
exp

[
− ωD

2c(ω)Q(ω)

]
(5)

and

|Sn(ω)| = A(ω)
√

sin(D + dn)
exp

[
− ω(D + dn)

2c(ω)Q(ω)

]
, (6)

where A is the amplitude spectrum of the signal at the source and
D is the distance in degrees between station 0 and the point source

(60◦ in our simulation). We here assume that noise propagates as
surface waves. Substituting eqs (5) and (6) in eq. (4) gives

|C0n(ω)| = α(ω)
√

sin(D + dn)
exp

[
− ωdn

2c(ω)Q(ω)

]
, (7)

where α = |S0(ω)|2
√

sin(D) is a constant with respect to dn. From
expression (7), we see that intrinsic attenuation acts in the correla-
tion as it does in the GF. This is not true for geometrical spreading:
the term corresponding to this attenuation in eq. (7) is different from
the one in eq. (3). Correcting the amplitude decay of the raw noise
correlation using

√
sin(D + dn)/ sin(dn) confirms our theory: the

decay of the fundamental mode is retrieved, meaning that raw noise
correlations can be used to measure the attenuation of the medium
if the distribution of noise sources is known. This is a major re-
sult because it shows that meaningful information can be extracted
from the amplitude of raw noise correlations. The same correction
applied to the one-bit and the whitened noise correlations does not
enable to recover the good amplitude decay. Similarly to the pre-
vious experiment, further work is needed to understand what these
decays exactly contain.

5 D I S C U S S I O N A N D C O N C LU S I O N S

Records of synthetic noise computed in PREM using the normal-
mode summation method enabled us to investigate different features
of waveforms obtained by noise correlation. We paid particular at-
tention to the relative amplitude of such waveforms. We find that
this amplitude strongly depends on the distribution of noise sources
and the processing applied to the noise records prior to correla-
tion. If the sources are uniformly distributed on the surface of the
Earth, then the amplitude decay we observe along a line of stations
is the same as the decay of the Rayleigh wave Green’s function.
This is true regardless of the noise processing technique. If the
distribution is not uniform, then the amplitude decay depends on
the processing. Whereas raw noise correlations contain the intrin-
sic attenuation of the medium and geometrical spreading that is
determined by the position of the noise sources, one-bit noise and
whitened noise correlations result in decays that do not fit that of the
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Figure 14. Comparison of the amplitude decay of the correlations envelope (grey line) with their corresponding fundamental mode (dotted line) in the case of
noise sources distributed in a small patch. Top panel: Waveforms from the three processes (column) and all the stations (row) are presented. Bottom panel: (a)
The maximum of amplitude is plotted as a function of interstation distance. (b) A geometrical correction is applied to the correlations. The decay of the raw
noise correlation then fits the decay of the fundamental mode whereas the one-bit and the whitened noise correlations do not fit any decays (geometrical and
intrinsic attenuations of the fundamental mode are plotted using thin and thick black lines, respectively.)
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Rayleigh wave. These decays require further study to be properly
interpreted.

Our results are consistent with previous studies. Larose et al.
(2007) generates noise using a can of compressed air sprayed on the
surface of a plexiglass plate. The amplitude of the correlations they
acquire from an array of sensors starting at the air-jet source fits the
amplitude of waveforms obtained from an active experiment. This
is no longer true when frequency whitening is performed. Further-
more, the analysis of a seismic prospecting data set by Gouédard
et al. (2008) shows that geometrical spreading retrieved by correlat-
ing direct waves (i.e. non-scattered waves) depends on the position
of the sources. This observation indicates that the distribution of
noise sources has to be known to measure the attenuation of the
Earth from noise correlations. At present, our knowledge of this
distribution is too poor, but we think that it will be greatly improved
as localization of microseismic noise sources becomes a topic of
intense research (e.g. Gerstoft & Tanimoto 2007; Kedar et al. 2008;
Gerstoft et al. 2008).

A first important limitation in our experiment is that we do not
have any incoherent noise (such as local or acquisition-related noise)
or non-stationary phases (such as earthquakes) in our synthetics.
These signals are often present in real data and can affect the am-
plitude of the correlations. Including such signals in our simulation
could change our results. For instance, Figs 3 and 4 show that the
number of realizations needed to get a stable error is larger for the
one-bit than for the raw and the whitened noise correlation. This is
the opposite of what is observed in practice in real data (e.g. Larose
et al. 2004) because the one-bit normalization is usually employed
to process incoherent noise or non stationary phases. As we have
no such signals in our experiment, we do not take advantage of this
process and just lose information, making the convergence slower.

In this work, the ratio of interstation distance to wavelength ranges
from 2 to 15, as is the case for the ratio involved in correlations
of real seismic noise. For this reason, we believe that our results
are valid when using real seismic records. Nevertheless, our nu-
merical experiment has a second important limitation: it involves
long-period surface waves in a 1-D model whereas real seismic
noise mostly propagates at high frequency (0.05–0.2 Hz) and there-
fore is very sensitive to strong 3-D structures present in the crust.
Such structures scatter the incident wavefield and become secondary
noise sources, making the distribution much more uniform and the
wavefield much more equipartitioned than in the 1-D case (Hennino
et al. 2001; Gouédard et al. 2008). Because of this phenomenon,
the attenuation of the Earth may be easier to recover from noise
correlations without knowing the precise location of the primary
sources (Matzel 2008; Prieto et al. 2009). The great potential of
these data in investigating the interior of the Earth is confirmed, al-
though significant effort is still needed to improve our understanding
and better extract useful attenuation constraints.
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S U M M A R Y
Waveforms emerging from correlations of long seismic noise records are extensively used to
investigate the crustal and upper-mantle structure of the Earth. To remove the non-stationary
events that inevitably lie in seismic records, the so-called one-bit normalization is commonly
applied to the noise data. This processing consists of replacing each sample of a record by
its sign. Although it is a strong non-linear operation, it preserves the phase of the signal
emerging from correlation. Some recent studies show that information can also be extracted
from the amplitude of such correlations. In this paper, we develop a theory to understand
these non-intuitive results. A statistical approach is used to get an expression of the one-bit
noise correlation. This expression involves the standard deviations of coherent and incoherent
noise. These two kinds of noise are precisely defined, and explicit expressions of their standard
deviations are given in the case of a uniform distribution of noise sources generating surface
waves on a layered half-space. In this case, we show that the one-bit noise correlation has the
same phase and relative amplitude as the raw noise correlation. This is true in both elastic and
anelastic media. Numerical simulations are performed to support our theory.

Key words: Interferometry; Seismic attenuation; Theoretical seismology; Wave propagation.

1 I N T RO D U C T I O N

Seismic noise correlations are now widely used to get information about the structure of the Earth. Prior to correlation, different processing
steps have to be applied to the noise records. One of the most common processings is the one-bit normalization. It consists of retaining only
the sign (+1 or −1) of each sample in the records. It was first introduced in communication theory. Bond & Cahn (1958) demonstrated the
possibility of transmitting a continuous signal over a discrete channel by preserving the occurrence of the zero crossings only. Later, Voelcker
(1966a,b) and Voelcker & Requicha (1973) extended this result to get modulation procedures for representing signals in terms of real and
complex zeros. In seismology, Campillo & Paul (2003) used the one-bit normalization to process seismic coda. In this case, it enhances
multiple scattering and thus improves the signal-to-noise ratio of coda correlations (Larose et al. 2004). In the context of long noise records,
the one-bit normalization enables to remove non-stationary signals like earthquakes or spikes. For examples of applications of this technique,
one can refer to Shapiro & Campillo (2004), Shapiro et al. (2005), Larose et al. (2007) and Yao & van der Hilst (2009). More sophisticated
temporal normalizations can be found in Bensen et al. (2007) and Brooks & Gerstoft (2009).

The most common way to image the Earth interior from ambient seismic noise consists in evaluating dispersion curves of surface waves
emerging from noise correlations. Since most of the noise energy ranges from 5 to 20 s period, the obtained images provide information on
crustal and upper-mantle structure (e.g. Shapiro et al. 2005; Yao et al. 2006; Cho et al. 2007; Lin et al. 2007; Yang et al. 2007; Bensen
et al. 2008; Lin et al. 2008; Yao et al. 2008; Stehly et al. 2009). Several studies also attempted to use the amplitude of noise correlations to
investigate the origin of the seismic noise (Stehly et al. 2006; Pedersen et al. 2007; Yang & Ritzwoller 2008) and retrieve the attenuation of
the Earth (Matzel 2008; Prieto et al. 2009). It is extremely interesting to note that all these works apply one-bit normalization or other strong
non-linear operations to the noise records. In spite of such operations, information contained in both phase and amplitude of the correlations
seems to be preserved. Understanding this non-intuitive phenomenon is the primary motivation for this work.

Voelcker (1966a) showed that zeros are fundamental informational attributes of signals. Therefore, it is not very surprising to retrieve
some interesting information in one-bit noise correlations. Nevertheless, because of the lack of a theory, it is not clear so far what is effectively
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2 P. Cupillard, L. Stehly and B. Romanowicz

recovered. In this paper, a theoretical development is proposed to explain the full waveform (phase and amplitude) of the one-bit noise
correlation. First, we follow Snieder (2004) to get an expression of the raw noise correlation. Using this expression and a statistical approach
similar to Derode et al. (1999) and Larose et al. (2008), we introduce the concepts of coherent and incoherent noise. These two kinds of
noise are Gaussian and their variances can be evaluated using the central limit theorem. Then, we look at the one-bit noise correlation: we
apply basic laws of probability to the samples of one-bit noise records and we obtain a formula for the correlation. This formula involves the
standard deviations of both coherent and incoherent noise. In this work, we provide explicit expressions for these standard deviations in the
context of surface waves propagating in a layered medium. Extension to body waves and full 3-D cases is discussed at the end of the paper.
Both elastic and anelastic cases are investigated.

2 T H E R AW N O I S E C O R R E L AT I O N

2.1 General expression of the raw noise correlation

Consider two stations A and B that are separated by a distance !. These stations respectively record signals A(t) and B(t) due to random
noise sources acting in the medium. We denote by Ap(t), Bp(t) the signal received in A, B, respectively, from a single point-source P. The
correlation between A(t) and B(t) can thus be written as

CAB(t) =
∑

p, p′

∫
Ap(τ )Bp′ (t + τ )dτ. (1)

We assume that the signals produced by two distinct sources are uncorrelated. Therefore, the cross terms p %= p′ in the double sum
∑

p,p′

vanish and expression (1) can be reduced to

CAB(t) =
∑

p

C p
AB(t), (2)

with

C p
AB(t) =

∫
Ap(τ )Bp(t + τ )dτ. (3)

In the following, the sources and receivers are placed on the surface of a laterally homogeneous half-space (the elastic parameters of the
medium only depend on the depth z). For the sake of simplicity, we work with fundamental mode surface waves, but overtones could be
included by introducing a summation, as done by Snieder (2004), Halliday & Curtis (2008) or Kimman & Trampert (2010). Moreover, we
consider vertical displacements only, but the whole theory developed in this paper could be easily extended to all components of the Green’s
tensor. In the frequency domain, the vertical-vertical component of the fundamental mode surface wave Green’s tensor between two points U
and V is given by (Aki & Richards 2002)

GU V (ω) =
exp

[
− i

(
k dU V + π

4

)]
√

π
2 k dU V

, (4)

where ω is the angular frequency, k(ω) is the wavenumber and dUV is the horizontal distance between U and V . Using eq. (4) and denoting
by |Sp(ω)|2 the power spectral density of source P, the Fourier transform of cross-correlation (3) becomes

C p
AB(ω) = 2

π
|Sp(ω)|2

exp
[
i k

(
dAP − dB P

)]

k
√

dAP dB P
. (5)

It follows that

CAB(ω) = 2
π

∑

p

|Sp(ω)|2
exp

[
i k

(
dAP − dB P

)]

k
√

dAP dB P
. (6)

Replacing the summation over discrete sources by a surface integration (the variables with index p become functions of the source location
r), we obtain

CAB(ω) = 2
π

∫∫
|S(r; ω)|2

exp
[
i k

(
dA(r) − dB(r)

)]

k
√

dA(r) dB(r)
dr. (7)

2.2 The raw noise correlation in the case of a uniform distribution of sources

When |S(r; ω)|2 is a smooth function of r , the integral in eq. (7) can be evaluated using the stationary phase approximation (Snieder, 2004).
Let us use this approximation in a Cartesian coordinate system. We position receiver A at the origin and receiver B on the positive x-axis.
Then

CAB(ω) = 2
ik

exp
[
i
(
k! + π

4

)]
√

π
2 k!

∫ ∞

!

|S(x, y = 0; ω)|2dx

− 2
ik

exp
[
− i

(
k! + π

4

)]
√

π
2 k!

∫ 0

−∞
|S(x, y = 0; ω)|2dx . (8)
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On the one-bit noise correlation 3

This result shows that the Green’s function (GF) between A and B can emerge from the correlation of random noise records. The first term on
the right-hand side contains the acausal GF and arises because of the noise sources at x > !. The second term contains the causal GF and
arises because of the sources at x < 0. This result is not new. It was first demonstrated by Lobkis & Weaver (2001) using the assumption of
equipartitioning of the Earth’s normal modes. Other proofs followed, invoking the fluctuation-dissipation theorem (van Tiggelen 2003), an
analogy with time-reversal experiments (Derode et al. 2003), the reciprocity theorem (Wapenaar 2004) or the stationary-phase approximation
(Snieder 2004).

Denoting by v(ω) the phase velocity of the fundamental mode Rayleigh wave and considering a uniform distribution of noise sources
such that |S(x , y = 0;ω)|2 = |S(ω)|2, eq. (8) becomes

CAB(ω) = 2D
v(ω)|S(ω)|2

iω

{
exp

[
i
(
k! + π

4

)]
√

π
2 k!

−
exp

[
−i

(
k! + π

4

)]
√

π
2 k!

}

. (9)

We limit the integration over x to a range bounded by a finite distance D ( !. This is to prevent this integration to diverge. In practice, there
is no problem of divergence because of intrinsic attenuation. We study this case in Section 5. Eq. (9) shows that one has to differentiate the
correlation in time to get the GF. Not only the waveform but also the amplitude decay of the GF with distance ! is retrieved by the correlation.

Fig. 1 confirms the theory. This figure shows results from a numerical experiment similar to those carried out by Cupillard & Capdeville
(2010). The experiment consists in computing synthetic noise recordings in a spherical earth using a normal mode summation technique
(e.g. Woodhouse & Girnius 1982). 300 sources are randomly positioned on the surface of the Earth. Each source generates a 24-hr random
signal filtered between 66 and 200 s. An array of 12 receivers (n = 0, ..., 11) records the wavefield produced by the noise sources. The
correlations between the vertical displacement at station 0 and the vertical displacement at the other stations are performed. The Earth model
is PREM (Dziewonski & Anderson 1981). The configuration of the experiment is shown in Fig. 1(a). It is repeated 5120 times (64 processors
perform it 80 times each) and all the obtained correlations are then stacked. You can refer to Cupillard & Capdeville (2010) for more details.
Fig. 1(b) compares the time-derivative of the correlation between stations 0 and 6 with the corresponding fundamental mode GF. As predicted
by the theory, the two curves match very well. We also plot the comparison between the amplitude decay of the correlation along the array
and the amplitude decay of the GF. Again, the curves match very well, which confirms the theory.

3 C O H E R E N T A N D I N C O H E R E N T N O I S E

3.1 Definition

From a statistical point of view, cross-correlation (3) can be viewed as an ensemble average over time τ . Thus we can write

C p
AB(t) = σA p σBp ρ

p
AB(t), (10)

where σA p , σBp are the standard deviations of the stationary signals Ap(τ ), Bp(τ ), respectively, and ρ
p
AB (t) is the correlation coefficient between

Ap(τ ) and Bp(t + τ ). The standard deviation σA p , σBp is the square-root of the energy arriving in A, B, respectively, from a point-source P, so

σA p = 1√
dAP

(11)

and

σBp = 1√
dB P

. (12)

Using the inverse Fourier transform of eq. (5) we find the expression of ρ
p
AB.

ρ
p

AB(t) = 2
π

∫ |Sp(ω)|2

k
exp

[
iω

(
t − dB P − dAP

v(ω)

)]
dω. (13)

As σ 2
A p

and σ 2
Bp

are both energies from P, the power spectral density |Sp(ω)|2 should appear in their definitions. Nevertheless, it is possible
and much more practical to put this common factor in the definition of ρ

p
AB. We now substitute eq. (10) into eq. (2) and replace the summation∑

p by a surface integration. This gives us

CAB(t) =
∫∫

σA(r)σB(r)ρAB(r; t) dr, (14)

with

σA(r) = 1
√

dA(r)
, (15)

σB(r) = 1
√

dB(r)
, (16)

ρAB(r; t) = 2
π

∫ |S(r; ω)|2

k
exp

[
iω

(
t − dB(r) − dA(r)

v(ω)

)]
dω. (17)
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4 P. Cupillard, L. Stehly and B. Romanowicz

Figure 1. Source and receiver configuration of the simulation (a). Tiny pixels indicate the location of 24 000 noise sources generated by a single processor. All
the sources are on the surface of the Earth. Diamonds represent 11 receivers (n = 1, ..., 11). Two consecutive receivers are separated by 5◦. The synthetic noise
record from each station is correlated with the noise recorded at receiver 0 (white star). The distance between stations 0 and 1 is 10◦. We plot the time-derivative
of the correlation between stations 0 and 6 and the corresponding fundamental mode Rayleigh wave GF (b). We also compare the amplitude decay of the
correlation with the amplitude decay of the GF (c). We see that the correlation fits both waveform and relative amplitude of the GF.

Taking a uniform distribution of noise sources into account, we easily demonstrate (Appendix A) that

C 2
AB(t) =

∫∫
σ 2

A (r)ρAB(r; t) dr
∫∫

σ 2
B (r)ρAB(r; t) dr. (18)

This last expression shows that the instantaneous energy of the correlation is the product of the two functions

'A(t) =
∫∫

σ 2
A (r)ρAB(r; t) dr (19)

and

'B(t) =
∫∫

σ 2
B (r)ρAB(r; t) dr. (20)
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On the one-bit noise correlation 5

Figure 2. The two coordinate systems used in our derivation. We first consider a simple Cartesian system (x , y). Receivers A and B are positioned in (0, 0) and
(0, !), respectively. The quantity dA(r) − dB(r) is involved in our derivation. This quantity is constant over a hyperbola so we introduce the coordinates (θ , φ)
to work in a more convenient way. θ is the angle between the asymptote of a given hyperbola and the y-axis. φ the curvilinear coordinate along each hyperbola.

Let us study 'A(t) and 'B(t). Without changing our notations, we replace all the complex time-variables by their respective real part.
Eq. (18) is still valid in this case and the correlation coefficient becomes

ρAB(r; t) = 2
π

∫ |S(r; ω)|2

k
cos

[
ω

(
t − dB(r) − dA(r)

v(ω)

)]
dω. (21)

The value of dB(r) − dA(r) is constant over a hyperbola. Each hyperbola is characterized by θ which is the angle between its asymptotes and
the y-axis (Fig. 2). We denote by φ the curvilinear coordinate along each hyperbola. Following Roux et al. (2005) we make the change of
variables




x = !

2
sin θ cosh φ + !

2

y = !

2
cos θ sinh φ

with

{
θ ∈

[
− π

2 , π
2

]

φ ∈ R.
(22)

It follows

dA(r) = !

2
(cosh φ + sin θ ), (23)

dB(r) = !

2
(cosh φ − sin θ ) (24)

and

dB(r) − dA(r) = −! sin θ . (25)

We neglect the frequency-dependence of the phase velocity [v(ω) = v] and we use the fact that the distribution of noise sources is uniform
so we can rewrite (21) as a function of θ .

ρAB(θ ; t) = 2v

π

∫ |S(ω)|2

ω
cos

[
ω

(
t + ! sin θ

v

)]
dω. (26)

To perform the integration over ω, we need to choose an amplitude spectrum |S(ω)|. For the sake of simplicity, we consider a boxcar function
H (ω0 + !ω

2 ) − H (ω0 − !ω
2 ), where H is the Heaviside step function. We obtain

ρAB(θ ; t) = 2v

π

{
ci

[(
ω0 + !ω

2

) (
t + ! sin θ

v

)]
− ci

[(
ω0 − !ω

2

) (
t + ! sin θ

v

)]}
, (27)

where ci is the cosine-integral special function (Appendix B). This function is defined in the positive real number space R+∗ but we can
extend it to the set of negative arguments by posing ci(u) = ci(−u) ∀u ∈ R−∗. Moreover, ci is not defined at u = 0 but the function in braces
in eq. (27) has a finite limit when t → −! sin θ

v
so we can define it at 0 (Appendix B). Let us assume that the boxcar width !ω is very large.
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6 P. Cupillard, L. Stehly and B. Romanowicz

Figure 3. ρAB as a function of θ for four different values of t in the case of a large !ω = 1.99 ω0 (a). The four curves are positive for all θ . We also plot the
correlation CAB(t) using three different equations (b). The exact solution (eq. 33) is in blue, the solution involving the coherent noise (eq. 34) is in dashed red
and the solution given by the stationary phase approximation (eq. 38) is in dotted green. For the calculation we took f 0 = 0.05 Hz, v = 3 km s−1 and ! =
10 λ0 = 600 km.

Then ρAB(θ ;t) is always positive (Fig. 3a). This means that 'A(t) and 'B(t) can be defined as sums of variances. Each variance in the sum
'A(t), 'B(t) is the energy σ 2

A (r), σ 2
B (r), arriving in A, B, respectively, due to a noise point-source r weighted by a positive value ρAB(θ ;t).

Therefore, according to the central limit theorem, there exist for each lag time t two Gaussian signals At (τ ) and Bt (τ ) with zero mean and
variance σ 2

At = 'A(t) and σ 2
Bt = 'B(t), respectively, such that At (τ ) and Bt (t + τ ) are perfectly correlated and give rise to CAB(t). In other

words,

CAB(t) =
∫

At (τ )Bt (t + τ )dτ = σAt σBt . (28)

We call At (τ ) and Bt (τ ) coherent noise at lag time t. We also define incoherent noise:

At (τ ) = A(τ ) − At (τ ) (29)

and

Bt (τ ) = B(τ ) − Bt (τ ), (30)

with variances σ 2
At and σ 2

Bt . From eqs (28) to (30), it follows that
∫

At (τ )Bt (t + τ )dτ +
∫

At (τ )Bt (t + τ )dτ +
∫

At (τ )Bt (t + τ )dτ = 0. (31)

3.2 Comparing three different expressions of the raw noise correlation

Fig. 3(b) shows the correlation CAB(t) computed in three different ways.

(i) Using eqs (23), (24) and (27) and the Jacobian of the change of variable (22)

J =
(

!

2

)2

(cosh2φ − sin2θ ), (32)

we can rewrite the exact solution (14) as

CAB(t) = v!

π

∫ π
2

− π
2

∫ φ0

0

√
cosh2φ − sin2θ{ci+ − ci−}dφdθ, (33)
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On the one-bit noise correlation 7

where ci+ = ci[(ω0 + !ω
2 )(t + ! sin θ

v
)], ci− = ci[(ω0 − !ω

2 )(t + ! sin θ
v

)] and φ0 ( 1 is a finite value we introduce to bound the integration
over φ (such as D in eq. 9). A numerical calculation of the double integral gives the curve in blue.

(ii) Using again eqs (23), (24), (27) and (32) we can express 'A(t) and 'B(t) as a function of θ and φ0. Then we can rewrite (28).

CAB(t) = σAt σBt

=
√

'A(t)
√

'B(t)

=

√
v!

π

∫ π
2

− π
2

(sinhφ0 − φ0 sinθ ){ci+ − ci−}dθ

√
v!

π

∫ π
2

− π
2

(sinhφ0 + φ0 sinθ ){ci+ − ci−}dθ .

(34)
The two integrations over θ are performed numerically. We obtain the dashed red curve in Fig. 3(b). We see that this curve is indistinguishable
from the blue curve, which confirms expression (18). It is actually very easy to give another proof, different from Appendix A, of this
expression. Indeed, φ0 is large so both 'A(t) and 'B(t) reduce to

'A(t) = 'B(t) = v!eφ0

2π

∫ π
2

− π
2

{ci+ − ci−}dθ . (35)

Eq. (33) also reduces to

CAB(t) = v!eφ0

2π

∫ π
2

− π
2

{ci+ − ci−}dθ (36)

so

C2
AB(t) = 'A(t)'B(t). (37)

(iii) The expression of the correlation obtained using the stationary phase approximation is also plotted in Fig. 3(b) (dotted green). It
corresponds to the real part of the inverse Fourier transform of eq. (9).

CAB(t) = 2Dv

∫ ω0+ !ω
2

ω0− !ω
2

1
ω

[
cos

(
ωt + k! − π

4

)
√

π
2 k!

+
cos

(
ωt − k! + π

4

)
√

π
2 k!

]

dω. (38)

This approximate solution is good but not excellent. This is because !ω is large. Very low frequencies are therefore involved and the
exponential in the integrand in eq. (7) does not oscillate much.

3.3 Studying the case of narrow band sources

In practice, !ω is not large; most of the ambient noise energy is concentrated between 5 and 20 s (Longuet-Higgins 1950; Friedrich et al.
1998; Schulte-Pelkum et al. 2004; Stehly et al. 2006; Gerstoft & Tanimoto 2007; Pedersen et al. 2007; Kedar et al. 2008; Stutzmann et al.
2009), so !ω ∼ ω0. In this case, ρAB(θ ;t) can be negative (Fig. 4a) and 'A(t) and 'B(t) as expressed in (19) and (20) are no longer sums of
variances. Nevertheless, the stationary phase approximation can be used to rewrite these equations.

'A(t) =
∫ D+ !

2

!

σ 2
A (x, y = 0)ρAB(x, y = 0; t)dx

{
1 + o

[
(!/D)0

]}

+
∫ 0

!
2 −D

σ 2
A (x, y = 0)ρAB(x, y = 0; t)dx

{
1 + o

[
(!/D)0

]} (39)

and

'B(t) =
∫ D+ !

2

!

σ 2
B (x, y = 0)ρAB(x, y = 0; t)dx

{
1 + o

[
(!/D)0

]}

+
∫ 0

!
2 −D

σ 2
B (x, y = 0)ρAB(x, y = 0; t)dx

{
1 + o

[
(!/D)0

]}
, (40)

with

ρAB(x, y = 0; t) = v
√

x(x − !)
∫ ω0+ !ω

2

ω0− !ω
2

1
ω

[
cos

(
ωt + k! − π

4

)
√

π
2 k!

+
cos

(
ωt − k! + π

4

)
√

π
2 k!

]

dω. (41)

These expressions are easily obtained using eqs (A5)–(A8). Eq. (41) shows that the sign of ρAB is a constant over x for a given lag time t, so
we can define coherent noise At (τ ) and Bt (τ ) with variances σ 2

At and σ 2
Bt , respectively, as we did in the previous paragraph. We have

σ 2
At = sgn [ρAB(x, y = 0; t)] 'A(t) (42)

=
∫ D+ !

2

!

σ 2
A (x, y = 0)|ρAB(x, y = 0; t)|dx

{
1 + o

[
(!/D)0

]}

+
∫ 0

!
2 −D

σ 2
A (x, y = 0)|ρAB(x, y = 0; t)|dx

{
1 + o

[
(!/D)0

]}
, (43)
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8 P. Cupillard, L. Stehly and B. Romanowicz

Figure 4. ρAB as a function of θ for four different values of t in the case of a small !ω = ω0 (a). Unlike the case of a large !ω shown in Fig. 3, the four curves
can be positive or negative depending on θ . The correlation CAB(t) is also plotted using three different equations (b). The exact solution (eq. 33) is in blue, the
solution involving the coherent noise (eq. 46) is in dashed red and the solution given by the stationary phase approximation (eq. 38) is in dotted green. For the
calculation we took f 0 = 0.05 Hz, v = 3 km s −1 and ! = 10 λ0 = 600 km.

σ 2
Bt = sgn [ρAB(x, y = 0; t)] 'B(t) (44)

=
∫ D+ !

2

!

σ 2
B (x, y = 0)|ρAB(x, y = 0; t)|dx

{
1 + o

[
(!/D)0

]}

+
∫ 0

!
2 −D

σ 2
B (x, y = 0)|ρAB(x, y = 0; t)|dx

{
1 + o

[
(!/D)0

]}
(45)

and

CAB(t) =
∫

At (τ )Bt (t + τ )dτ = sgn [ρAB(x, y = 0; t)] σAt σBt . (46)

In the last equation we see that the sign of ρAB indicates if At (τ ) and Bt (t + τ ) are perfectly correlated or perfectly anticorrelated. Of course
we can also define incoherent noise.

Again, we plot CAB(t) using three different equations (Fig. 4b). (i) The exact solution (33) is represented in blue. (ii) The result from the
stationary phase approximation (eq. 38) is the dotted green curve. We see that it perfectly fits the blue curve, meaning that the approximation
is very good when !ω = ω0. (iii) The dashed red curve corresponds to eq. (46). In this last equation, σAt and σBt are obtained putting
expression (41) in (43) and (45). This gives

σAt = σBt =

√√√√2Dv

∣∣∣∣∣

∫ ω0+ !ω
2

ω0− !ω
2

1
ω

[
cos

(
ωt + k! − π

4

)
√

π
2 k!

+
cos

(
ωt − k! + π

4

)
√

π
2 k!

]

dω

∣∣∣∣∣ (47)

=
√

|CAB(t)| (48)

The fact that both σAt and σBt are equal to the square root of the correlation is not surprising. Indeed, expressions (39) and (40) have been
obtained using the zeroth-order version (o[(!/D)0]) of eqs (A6) and (A8). In this case, both 'A(ω) and 'B(ω) are equal to CAB(ω). This
explains why the blue and the dashed red curves are identical in the figure.
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4 T H E O N E - B I T N O I S E C O R R E L AT I O N

4.1 General expression of the one-bit noise correlation

One-bit normalization consists of retaining only the sign of the raw signal by replacing all positive amplitudes with a 1 and all negative
amplitudes with a −1. The one-bit noise correlation C ob

AB (t) between A(t) and B(t) can be written

C ob
AB(t) =

∫
sgn[A(τ )] sgn[B(t + τ )] dτ (49)

= n1(t) − n−1(t), (50)

where n1(t) and n−1(t) are the number of samples for which sgn[A(τ )] = sgn[B(t + τ )], and sgn[A(τ )] %= sgn[B(t + τ )], respectively.
For some samples τ, |At (τ )| > |At (τ )| or |Bt (t +τ )| > |Bt (t +τ )|: at one of the two stations, the incoherent noise has a larger amplitude

than the coherent noise and so controls the sign of the sample at this station. In this case, the two events sgn[A(τ )] = sgn[B(t + τ )] and
sgn[A(τ )] %= sgn[B(t + τ )] have the same probability. This is because of the incoherency of the random signals At (τ ) and Bt (t + τ ) (cf.
eq. 31). Therefore we have n1(t) = n−1(t) for this population of samples, which means that there is no contribution from this population to
the value of C ob

AB (t).
For the other samples, |At (τ )| < |At (τ )| and |Bt (t + τ )| < |Bt (t + τ )|: the coherent noise controls the sign of both A(τ ) and B(t +

τ ), so sgn[A(τ )] = sgn[At (τ )] and sgn[B(t + τ )] = sgn[Bt (t + τ )]. Because of the perfect correlation or anticorrelation between At (τ ) and
Bt (t + τ ) (cf. eqs 28 and 46) we have sgn[Bt (t + τ )] = sgn[At (τ )] ∀τ (so n−1(t) = 0) or sgn[Bt (t + τ )] %= sgn[At (τ )] ∀τ (so n1(t) = 0).
Therefore, we can write

|C ob
AB(t)| = n Pt

A Pt
B, (51)

where n is the total number of samples in the correlation, Pt
A is the probability that |At (τ )| > |At (τ )| and Pt

B is the probability that
|Bt (τ )| > |Bt (τ )|.

Coherent and incoherent noise are both Gaussian so we are able to express Pt
A and Pt

B (Appendix C). Denoting by σAt and σBt the
standard deviation of At (τ ) and Bt (τ ), respectively, we find

|C ob
AB(t)| = n

[
1 − 2

π
arctan

(
σAt

σAt

)][
1 − 2

π
arctan

(
σBt

σBt

)]
. (52)

Eq. (52) is the most important result of this paper. It gives the expression of the one-bit noise correlation and shows how it is related to
physical parameters. The involved physical parameters are the standard deviations of coherent and incoherent noise. More precisely, the ratio
wRt = σRt /σRt at each receiver R is the argument of an inverse tangent function. At a given time t, if there is no coherent noise at one of the
receivers, then no signal emerges from the correlation: C ob

AB (t) = 0 because wRt tends to infinity so 1 − 2
π

arctan(wRt ) = 0. On the contrary,
if the coherent energy is large with respect to the incoherent energy at both receivers, then most of the n samples contribute to the correlation
so |C ob

AB (t)| is large. As long as coherent and incoherent noise exist, eq. (52) is valid. In Section 3 we defined these two kinds of noise in the
case of a uniform distribution of sources. One can reasonably think that they also exist in the case of other distributions.

4.2 The one-bit noise correlation in the case of a uniform distribution of sources

Now we study what (52) becomes in the case of a uniform distribution of noise sources. From eqs (29) and (30) we have

σ 2
At = σ 2

A − σ 2
At , (53)

σ 2
Bt = σ 2

B − σ 2
Bt , (54)

respectively, where σ 2
A and σ 2

B are the variance of A(t) and B(t), respectively. Then

|C ob
AB(t)| =

[

1 − 2
π

arctan

√
σ 2

A

σ 2
At

− 1

] [

1 − 2
π

arctan

√
σ 2

B

σ 2
Bt

− 1

]

. (55)

In this last expression, we normalized the correlation by the number of samples. The distribution of sources is uniform so σ 2
A = σ 2

B = σ 2,
where σ 2 = CUU (t = 0) is the autocorrelation peak at any point U at the surface of the medium. Moreover, eq. (48) (and also eqs 35 and 36
in the case of a large !ω) shows that

σ 2
At = σ 2

Bt = |CAB(t)|, (56)

so (55) becomes

|C ob
AB(t)| =

[

1 − 2
π

arctan

√
σ 2

|CAB(t)|
− 1

]2

. (57)
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10 P. Cupillard, L. Stehly and B. Romanowicz

Figure 5. Comparison between raw noise correlations and one-bit noise correlations obtained by numerical simulation (cf. Fig. 1a). The time-derivatives of
the two waveforms from the pair of stations 0 and 6 are very similar (a). The amplitude decays along the array of receivers also match very well (b).

Noting that σ 2 ( |CAB(t)| and arctan 1
x = π

2 − arctan x, ∀x ∈ R+∗, we obtain

|C ob
AB(t)| =

[
2
π

arctan

√
|CAB(t)|

σ 2

]2

. (58)

The argument of the arctan function is close to zero so the first term of its Taylor series (arctan x = x) can be used as a good linear
approximation. It follows that

|C ob
AB(t)| =

(
2

πσ

)2

|CAB(t)|. (59)

This equation sets the equality between the raw and the one-bit noise correlations in the case of a uniform distribution of noise sources
generating fundamental mode surface waves. Of course, the absolute amplitudes are not the same but the waveforms and the relative amplitudes
are identical. Previous works (Derode et al. 1999; Larose et al. 2004) showed the emergence of a signal from a one-bit noise correlation and
studied its signal-to-noise ratio, but it is the first time that the equality (59) is demonstrated. Correlations from the numerical simulation (cf.
Fig. 1a) illustrate our result. One-bit noise correlations are compared to raw noise correlations (Fig. 5). We see that the waveforms and the
amplitude decays are the same.

5 W H AT H A P P E N S I N A N A N E L A S T I C M E D I U M

We now introduce intrinsic attenuation in the medium. The fundamental mode Rayleigh wave GF between two points U and V then is

GU V (ω) =
exp

[
−i

(
k dU V + π

4

)]
√

π
2 k dU V

exp
(

− k dU V

2Q

)
, (60)

where Q is the quality factor of the medium. Therefore, the raw noise correlation between A(t) and B(t) can be written in the frequency domain
as

CAB(ω) = 2
π

∫∫
|S(r; ω)|2 exp [i k (dA(r) − dB(r))]

k
√

dA(r) dB(r)
exp

[
− k

2Q
(dA(r) + dB(r))

]
dr. (61)

We assume that |S(r ;ω)|2 is a smooth function of r so we can use the stationary phase approximation. For the sake of simplicity, we consider
the signal emerging from the sources at x < 0 only. We obtain

CAB(ω) = − 2
ik

exp
[
−i

(
k ! + π

4

)]
√

π
2 k !

exp
(

− k!

2Q

)∫ 0

−∞
|S(x, y = 0; ω)|2 exp

(
kx
Q

)
dx . (62)

Expression (62) shows that the correlation contains the GF of the anelastic medium, including geometrical spreading as well as intrinsic
attenuation. We assume a uniform distribution of noise so we get

CAB(ω) = −2L
v(ω)|S(ω)|2

iω

exp
[
−i

(
k! + π

4

)]
√

π
2 k!

exp
(

− k!

2Q

)
, (63)

where L = Q
k is a factor also found by Snieder (2004). Eq. (63) shows that, again, the correlation has to be differentiate in time to match the

GF. To check eq. (63), we carry out a new numerical experiment in which an anelastic PREM is considered. Results are shown in Fig. 6. We
see that the time-derivative of the correlation fits both the waveform and the amplitude decay of the GF.

C© 2011 The Authors, GJI

Geophysical Journal International C© 2011 RAS

Chapter 3. Selected articles 93



On the one-bit noise correlation 11

Figure 6. Comparison between the GF and the raw noise correlation in an anelastic earth. We use the pair of stations 0 and 6 to compare the waveforms (a).
We see they are very similar. We also compare the amplitude decays (b). They are the same.

Following what we developed in Section 3, we introduce the functions σ A(r) and σ B(r) to write the correlation CAB in the time domain
as

CAB(t) =
∫∫

σA(r)σB(r)ρAB(r; t) dr. (64)

In an anelastic medium, we have

σA(r) =
exp

(
−k dA (r )

2Q

)

√
dA(r)

(65)

and

σB(r) =
exp

(
−k dB (r )

2Q

)

√
dB(r)

. (66)

Using the inverse Fourier transform of eq. (61), we then find that the correlation coefficient ρAB is the same than in the pure elastic case (cf.
eq. 17).

ρAB(r; t) = 2
π

∫ |S(r; ω)|2

k
exp

[
iω

(
t − dB(r) − dA(r)

v(ω)

)]
dω. (67)

The question now is to know if eq. (18) is still valid with the new definition of σ A(r) and σ B(r) (expressions 65 and 66). If so, then we will
be able to define coherent and incoherent noise, and the general formula for the one-bit noise correlation (52) (and also 55) will be usable.
Appendix D shows that

'A(t) =
∫∫

σ 2
A (r)ρAB(r, t) dr

= −2 ! +

(
1
2

)∫
v(ω)|S(ω)|2

iω
U

(
1
2
, 2;

k!

Q

)
exp

[
i
(
ωt − k! − π

4

)]
√

π
2 k!

dω (68)

and

'B(t) =
∫∫

σ 2
B (r)ρAB(r, t) dr

= −2 ! +

(
3
2

) ∫
v(ω)|S(ω)|2

iω
U

(
3
2
, 2;

k!

Q

)
exp

[
i
(
ωt − k! − π

4

)]
√

π
2 k!

exp
(

− k!

Q

)
dω. (69)

Considering the real part of these equations and assuming that v(ω) = v and |S(ω)| = H (ω0 + !ω
2 ) − H (ω0 − !ω

2 ), we get

'A(t) = 2 ! v +

(
1
2

) ∫ ω0+ !ω
2

ω0− !ω
2

U
(

1
2
, 2;

k!

Q

)
cos

(
ωt − k! + π

4

)

ω
√

π
2 k!

dω (70)

and

'B(t) = 2 ! v +

(
3
2

) ∫ ω0+ !ω
2

ω0− !ω
2

U
(

3
2
, 2;

k!

Q

)
cos

(
ωt − k! + π

4

)

ω
√

π
2 k!

exp
(

− k!

Q

)
dω. (71)
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In Fig. 7, we plot the two normalized functions 'A(t) and 'B(t) for two different values of !ω (1.99ω0 and ω0) and two different values of
Q (50 and 500). When Q is high, the two curves (plain blue for 'A, red dashed for 'B) are hardly distinguishable. This is not surprising: the
intrinsic attenuation is small so we are close to the elastic case and we have 'A(t) ∝ 'B(t) (the absolute amplitudes are different so there is
no equality). When Q is small, the effect of the intrinsic attenuation is significant and breaks the proportionality between the two functions.
In the same figure, we also plot the product 'A(t)'B(t) and we compare the result with the square of the correlation (63) written in the time
domain.

CAB(t) = 2 Q v2
∫ ω0+ !ω

2

ω0− !ω
2

cos
(
ωt − k! + π

4

)

ω2
√

π
2 k!

exp
(

− k!

2Q

)
dω. (72)

The two curves (plain blue for 'A(t)'B(t), red dashed for C2
AB(t)) are normalized. In each case, they match very well. This is a nice result

because it shows that eq. (18) still holds (up to a constant) in the anelastic case. We are not able to demonstrate this result analytically but the
extreme values of Q (50 and 500 correspond to extremely low and high magnitudes in the Earth) and !ω we use are good grounds to assess
it, at least to first order. Finally, we plot 'A(t)'B(t) and C2

AB(t) at t = t0 = !
2 − π

ω04 as a function of the interstation distance ! ranging from
3λ0 to 20λ0. Again, the curves match very well. This means that the proportionality constant between 'A(t)'B(t) and C2

AB(t) is not a function
of !. In other words, the amplitude decay of 'A(t)'B(t) is the same as the amplitude decay of C2

AB(t). We are now allowed to write

C 2
AB(t) / α'A(t)'B(t), (73)

where α is a positive constant over t and !. As the expression of ρAB(r;t) used in the definition of 'A(t) and 'B(t) is the same as the one in
the elastic case (cf. eqs 17 and 67), we can take advantage of all the properties detailed in Section 3 and define coherent and incoherent noise.
Therefore, formula (55) can be used to express the one-bit noise correlation. Putting the constant α into σ 2

At , we find

|C ob
AB(t)| =



1 − 2
π

arctan

√
σ 2

A

α|'A(t)|
− 1







1 − 2
π

arctan

√
σ 2

B

|'B(t)|
− 1



 . (74)

The distribution of noise sources is uniform so, again, we can use the fact that σ 2
A = σ 2

B = σ 2 = CUU (t = 0) ( 'A,B(t) to reduce (74) to

|C ob
AB(t)| =

(
2

πσ

)2 √
α|'A(t)|

√
|'B(t)|. (75)

'A(t) and 'B(t) have same sign so (75) becomes

|C ob
AB(t)| =

(
2

πσ

)2 √
α'A(t)'B(t) (76)

/
(

2
πσ

)2

|CAB(t)|. (77)

Similarly to the elastic case, we find that the one-bit noise correlation is equal to the raw noise correlation. This is confirmed by numerical
results. In Fig. 8 we compare the waveforms and the amplitude decays of raw and one-bit noise correlations. We see they are the same.

6 D I S C U S S I O N A N D C O N C LU S I O N S

We provided an expression for the one-bit noise correlation. This expression involves the standard deviations of coherent and incoherent
noise. For a given lag time t, the coherent noise At (τ ) at a receiver A is a Gaussian signal that one can extract from the full noise record A(τ )
and that perfectly correlates with the coherent noise Bt (t + τ ) from another full noise record B(t + τ ) at a receiver B. Then, the correlation
of the coherent noises is exactly the correlation of the full noise records:

∫
A(τ )B(t + τ )dτ =

∫
At (τ )Bt (t + τ )dτ . The incoherent noise is

the difference between the full noise record and the coherent noise. As long as you can define these two kinds of noise, our expression of the
one-bit noise correlation is valid.

In this work, we detailed the coherent and incoherent standard deviations in the case of a uniform distribution of noise sources generating
surface waves on a laterally homogeneous half-space. In this case, we showed that the one-bit noise correlation is equal to the raw noise
correlation and so contains the GF. This property has been known for a long time. It is true in both elastic and anelastic media and it has been
extensively used so far (e.g. Shapiro & Campillo 2004; Shapiro et al. 2005; Larose et al. 2007; Yao & van der Hilst 2009). Nevertheless,
there was no theoretical proof of it. We here give one for the first time. An important result is that the equality does not only hold for the
waveform but also for the relative amplitude: both geometrical spreading and intrinsic attenuation of the GF are retrieved by the one-bit noise
correlation when the distribution of noise sources is uniform. This means that information can be extracted from the amplitude of one-bit
noise correlations, which is not obvious because one-bit normalization is a very strong operation on the amplitude of noise recordings. In
the case of a non-uniform distribution of sources, one has to study the coherent and incoherent standard deviations which correspond to the
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Figure 7. Comparison between 'A(t) and 'B(t) (left-hand side column), 'A(t)'B(t) and C 2
AB (t) (middle column) and 'A(t0)'B(t0) and C 2

AB (t0) as a
function of ! (right-hand side column) for two different values of !ω: 1.99 ω0 (a) and ω0 (b). The medium is anelastic. Two different values of Q are tested:
50 and 500. The other parameters are f 0 = 0.05 Hz and v = 3 km s−1. All the waveforms (functions of t) are computed using ! = 10 λ0 = 600 km.
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Figure 8. Same as Fig. 5 in an anelastic earth.

given distribution to estimate both the waveform and the relative amplitude of one-bit noise correlations. This is in agreement with numerical
studies carried out by Cupillard & Capdeville (2010).

In pure elastic media, eq. (18) is rigorously demonstrated. This equation is at the basis of our theory. It relates the square of the raw
noise correlation C2

AB(t) and the variances 'A(t) and 'B(t). In anelastic media, C2
AB(t) is plotted and compared with the product 'A(t) ×

'B(t) to check if the expression is valid (Fig. 7, middle column) but no rigorous demonstration is provided. On the four plots, the curves are
very similar but they are not exactly the same. It is particularly visible when !ω = ω0 and Q = 50. This means that eq. (18) is only true to
first order when using the expressions we found for the coherent variances in the anelastic case. Further investigations are needed to check
if exact expressions of the variances exist in this case. Here, we use approximate expressions and we assume that the small discrepancies in
the amplitude decays (Fig. 7, right-hand side column) are due to these approximations. If it is not the case (i.e. if the small discrepancies are
effective in practice), then measurements of intrinsic attenuation from one-bit noise correlations will give approximate values of Q.

The derivation shown in this paper involves surface waves. It should be easy to write it for body waves as well. The GF between two
points U and V would be

GU V (ω) = exp(−ikdU V )
dU V

, (78)

and the coherent noise could be defined using the following correlation coefficient:

ρAB(θ ; t) =
∫ ω0+ !ω

2

ω0− !ω
2

cos
[
ω

(
t + ! sin θ

v

)]
dω (79)

= !ω sinc
[

!ω

2

(
t + ! sin θ

v

)]
cos

[
ω0

(
t + ! sin θ

v

)]
. (80)

This last expression is very similar to the correlation coefficient introduced in the review paper by Larose (2006). This means that our
definition of coherency is actually the same as previous definitions (Snieder 2004; Roux et al. 2005; Sabra et al. 2005). Here, we just go into
the details of the concept to extract the properties we need to understand the one-bit noise correlation.

The analytical expressions of the standard deviations we provide in this work are obtained in the case of a 1-D layered medium. An
extension of these expressions to a full 3-D case is not straightforward. It would require a description of complex GFs, and scattering should
be taken into account (Halliday & Curtis 2009). Scatterers act as secondary noise sources and drastically change the size of the coherent
and incoherent hyperbolas. When dealing with coda recordings, these hyperbolas depend on the part of the coda that is in use because such
recordings are non-stationary. In this case, our statistical model would need standard deviations which depend on the time in the noise record,
as suggested by Derode et al. (1999) and Larose et al. (2008). To study full 3-D cases, numerical simulations are actually necessary. Using
numerical tools to evaluate standard deviations and understand what the one-bit noise correlation exactly contains in complex media will be
the topic of future work.
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A P P E N D I X A : P RO O F O F E X P R E S S I O N ( 1 8 )

The goal of this appendix is to demonstrate that, in the case of a uniform distribution of noise sources, we have

'A(t)'B(t) = C 2
AB(t), (A1)

with

'A(t) =
∫∫

σ 2
A (r)ρAB(r, t) dr (A2)

and

'B(t) =
∫∫

σ 2
B (r)ρAB(r, t) dr. (A3)

We start from the Fourier transform of 'A(t):

'A(ω) = 2
πk

∫∫ |S(r; ω)|2

dA(r)
exp [i k (dA(r) − dB(r))] dr. (A4)

When |S(r ;ω)|2 is a smooth function of r , this integral can be evaluated using the stationary phase approximation:
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Assuming a uniform distribution of noise sources (|S(x , y = 0;ω)|2 = |S(ω)|2), it follows that

'A(ω) = 2D
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where D ( ! is a distance we introduce to perform the integration over x and prevent this integration to diverge.
In the same way we find
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Writing (A6) and (A8) in the time domain, we finally get

'A(t)'B(t) = 4D2
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We recognize the first term on the right-hand side to be the square of the inverse Fourier transform of eq. (9), that is to say the square of the
correlation between A(t) and B(t).

C© 2011 The Authors, GJI

Geophysical Journal International C© 2011 RAS

Chapter 3. Selected articles 99



On the one-bit noise correlation 17

A P P E N D I X B : P R E C I S I O N S O N E Q. ( 2 7 )

The cosine-integral special function ci is defined in R+∗ by (Abramowitz & Stegun 1972).

ci(u) = −
∫ ∞

u

cos x
x

dx . (B1)

The extension of the definition of ci to R−∗ is straightforward. Indeed, the change of variable y = −x in eq. (B1) yields

ci(u) = −
∫ −∞

−u

cos y
y

dy, (B2)

so it is natural to pose ci(u) = ci(−u) ∀u ∈ R−∗.
To fully describe expression (27), we now have to define the function ci[(ω0 + !ω

2 )(t + α)] − ci[(ω0 − !ω
2 )(t + α)] in 0. To do so, we

evaluate the limit of this function when t → −α. By definition we have
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The limit exists and is finite, so eq. (27) is defined and continuous in 0.

A P P E N D I X C : P RO O F O F E Q. ( 5 2 )

The probability density function of the random variables At (τ ) and At (τ ) is

f (x) = 1

σAt
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2 σ 2
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(C1)

and
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respectively.
Pt

A is the probability that |At (τ )| > |At (τ )| so
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This last integral can be calculated following Gradshteyn & Ryzhik (2007). Then
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In the same way we find the probability that |Bt (τ )| > |Bt (τ )|:
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Finally, we obtain
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A P P E N D I X D : !A A N D !B I N T H E A N E L A S T I C C A S E

'A(ω) = 2
πk

∫∫ |S(r; ω)|2 exp
(

−k dA(r )
Q
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dA(r)
exp [i k (dA(r) − dB(r))] dr. (D1)
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Using the stationary phase approximation in the Cartesian coordinate system shown in Fig. 2, we can reduce this expression to

'A(ω) = − 2
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dx . (D2)

To get this expression, we considered the signal emerging from the sources at x < 0 only. Assuming a uniform distribution of noise sources
(|S(x , y = 0;ω)|2 = |S(ω)|2), we are able to perform the integral over x following Gradshteyn & Ryzhik (2007). Expression (D2) then becomes
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where + is the gamma function and U is the confluent hypergeometric function of the second kind (Abramowitz & Stegun 1972). Writing
eq. (D3) in the time domain, we get
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In the same way we find
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S U M M A R Y
The spectral element method, which provides an accurate solution of the elastodynamic prob-
lem in heterogeneous media, is implemented in a code, called RegSEM, to compute seismic
wave propagation at the regional scale. By regional scale we here mean distances ranging from
about 1 km (local scale) to 90◦ (continental scale). The advantage of RegSEM resides in its
ability to accurately take into account 3-D discontinuities such as the sediment-rock interface
and the Moho. For this purpose, one version of the code handles local unstructured meshes and
another version manages continental structured meshes. The wave equation can be solved in
any velocity model, including anisotropy and intrinsic attenuation in the continental version.
To validate the code, results from RegSEM are compared to analytical and semi-analytical
solutions available in simple cases (e.g. explosion in PREM, plane wave in a hemispherical
basin). In addition, realistic simulations of an earthquake in different tomographic models of
Europe are performed. All these simulations show the great flexibility of the code and point
out the large influence of the shallow layers on the propagation of seismic waves at the regional
scale.

RegSEM is written in Fortran 90 but it also contains a couple of C routines. It is an open-
source software which runs on distributed memory architectures. It can give rise to interesting
applications, such as testing regional tomographic models, developing tomography using either
passive (i.e. noise correlations) or active (i.e. earthquakes) data, or improving our knowledge
on effects linked with sedimentary basins.

Key words: Site effects; Computational seismology; Wave propagation; Europe.

1 I N T RO D U C T I O N

Solving the wave equation in realistic geological media is a cru-
cial issue to properly model and study the propagation of seismic
waves. At large scale, the effect of both crust and upper mantle 3-D
structures on seismograms has been known for a long time (e.g.
Montagner & Tanimoto 1991). At local scale, geological site condi-
tions are now recognized as one of the dominant factors controlling
the variations in ground motion (e.g. Olsen 2000). The accurate in-
corporation of geological structures in wave propagation modelling
would therefore greatly improve the knowledge in fields such as
tomography and site effects estimation.

Numerous techniques, like ray tracing or normal mode sum-
mation, have been developed for decades to compute synthetic

∗Now at: ETH, Institut für Geophysik, 8092 Zürich, Switzerland.
†Now at: RISSC-Lab, Department of Physics, University Federico II,
Naples, Italy.
‡Now at: LPGN, UFR sciences et techniques, Université de Nantes, France.

seismograms. Ray tracing assumes that the seismic wavefield can
be modelled as a large number of very narrow beams (e.g. Cervený
2001). For many purposes, this technique is very convenient, but
it relies on a high frequency approximation, which means that it
is only valid when seismic wavelength is much smaller than the
scale of heterogeneity. In the case of low-frequency waves with
large Fresnel zones, the ray theory no longer holds. The normal
mode summation technique (e.g. Gilbert 1971), in addition with
a high-order perturbation theory (Lognonné & Romanowicz 1990;
Lognonné 1991; Clévédé & Lognonné 1996), is able to model waves
with large Fresnel zones in 3-D Earth models, but the computation
cost of such a technique is quickly prohibitive as the number of
modes to couple increases with frequency. Moreover, normal mode
perturbation methods are limited to weak lateral heterogeneities.

Direct numerical solutions have also been investigated to solve
the wave equation. Finite differences have been applied (e.g.
Alterman & Kara 1968; Boore 1972; Kelly et al. 1976; Virieux
1984, 1986; Olsen & Archuleta 1996; Moczo et al. 2007) but they
present intrinsic problems in dealing with strong and deformed in-
terfaces like basin edges, the Moho, the free surface and solid-fluid

C© 2012 The Authors 1
Geophysical Journal International C© 2012 RAS

Geophysical Journal International102



2 P. Cupillard et al.

discontinuities. Such limitations do not exist in finite element meth-
ods, but the low polynomial order classically used in this kind of
approaches make them inaccurate and dispersive when applied to
elastodynamic problems (Lysmer & Drake 1972; Dupond 1973;
Backer 1976; Marfurt 1984; Toshinawa & Ohmachi 1992). Since
the 1990s, efforts have been focused on developing higher-order
numerical modelling of seismic wave propagation. An important
result from these efforts is the discontinuous Galerkin method (e.g.
Dumbser & Käser 2006). Another major result, which is used all
along this paper, is the spectral element method (SEM). Initially
introduced in fluid mechanics (Patera 1984; Maday & Patera 1989),
this method has been successfully applied to elastodynamics with
the increasing concern of developing numerical techniques ensur-
ing both a great precision and a reasonable numerical cost (Seriani
& Priolo 1994; Faccioli et al. 1997; Komatitsch & Vilotte 1998;
Seriani 1998; Komatitsch & Tromp 1999). The SEM was first
applied at the global scale (Chaljub 2000; Komatitsch & Tromp
2002a,b; Komatitsch et al. 2002; Capdeville et al. 2003; Chaljub
et al. 2003; Chaljub & Valette 2004). In the more recent years, ap-
plications to local (Komatitsch et al. 2004; Delavaud et al. 2006;
Lee et al. 2008; Stupazzini et al. 2009; Chaljub et al. 2010; Peter
et al. 2011) and continental scales (Chen et al. 2007a; Fichtner et al.
2009a) appeared. Such applications of the SEM proved that a great
precision and a weak numerical dispersion can be obtained.

The SEM is a major contribution to seismology because it al-
lows to compute the whole seismic wavefield propagating in a 3-D
Earth model with no approximation on the wave equation (except
minor numerical approximations). In the recent years, it was used to
solve the inverse problem and get images of the Earth interior: Tape
et al. (2009) and Tape et al. (2010) developed a model in south-
ern California by inverting traveltime measurements down to 2 s
period; Fichtner et al. (2009b) and Fichtner et al. (2010) obtained
a model of the Australian region using a full waveform inversion
down to 30 s period. To avoid the large number of simulations clas-
sically required to compute all the Fréchet derivatives, these authors
implemented the adjoint technique (Tarantola 1984; Tromp et al.
2005; Fichtner et al. 2006a,b). This makes the computation of the
gradient of the misfit function independent of the number of sta-
tions and parameters of the model. When dealing with a large set
of sources, an alternative to the adjoint technique is the scattering-
integral approach (Chen et al. 2007b). In any case, with the current
computational power, one cannot solve the inverse problem using
the SEM with a classic procedure.

In this paper, we focus our attention on the forward modelling.
When using the SEM to compute 3-D seismic wave propagation,
the main practical issue consists in meshing the medium using hex-
ahedra. Indeed, the mesh has to honour the discontinuities of the
geological model under study to fully benefit from the accuracy of
the method and properly model effects associated with these dis-
continuities such as wave diffraction. Because realistic models of
the Earth often have complex geometry, lots of efforts and time are
usually needed to build an appropriate mesh. Casarotti et al. (2008b)
developed automatic procedures to create 3-D unstructured hexahe-
dral meshes, but it is still not possible to generate in a fully automatic
way meshes that would honour detailed geological discontinuities
such as realistic sediment-rock interfaces. The goal of this paper is
to promote a code, RegSEM, that can accurately take into account
3-D discontinuities in regional meshes and then compute seismic
waves within them using the SEM. More precisely, RegSEM has
two versions: a continental version which is able to generate struc-
tured meshes of crustal and mantle structures separated by a 3-D
Moho in spherical geometry, and a local version which uses an

external mesh generator, CUBIT (http://cubit.sandia.gov), to pro-
duce 3-D unstructured meshes essentially designed to study the
seismic response of sedimentary basins.

In a first part, RegSEM’s features are described, including the
different kinds of meshes the code can provide and/or handle.
In a second part, waveforms computed with RegSEM in simple
elastic models are compared to analytical or semi-analytical so-
lutions. These comparisons allow to validate the code. The last
part presents simulations of a real earthquake in different tomo-
graphic models of Europe. A comparison between synthetic seis-
mograms and real data enables to investigate the improvement of
the fit when using 3-D models and point out the great influence of
the shallow layers. The large number of simulations shown in this
work serves as a set of examples to put in evidence the capability
and the great versatility of RegSEM. The code sources, in addi-
tion with a manual and several examples, can be downloaded at
www.ipgp.fr/∼paulcup/RegSEM.html.

2 R E G S E M ’ S F E AT U R E S

2.1 The spectral element method

The SEM was developed in fluid dynamics in the 1980s (Patera
1984; Maday & Patera 1989) and was adapted to elastodynamics in
the 1990s (Seriani & Priolo 1994; Faccioli et al. 1997; Komatitsch &
Vilotte 1998; Seriani 1998; Komatitsch & Tromp 1999). The SEM is
similar to a finite element method. It is based on a primal variational
formulation of the equations of motion. This formulation enables to
naturally take into account both interface and free boundary surface
conditions, allowing a good resolution of evanescent interface and
surface waves.

The discretization process implies the decomposition of the spa-
tial domain into non-overlapping elements. Classical implementa-
tions of the SEM in computational seismology are based on hex-
ahedral elements to benefit from advantageous properties of ten-
sorization. Although hexahedra are less favourable than tetrahedra
for meshing geometrically complex structures, a certain flexibil-
ity is ensured by a local geometrical transformation from a refer-
ence element (unit cube) to any deformed element, as detailed in
Section 2.2.1. Unstructured meshes offer additional possibilities, as
seen in Section 2.2.2.

Associated with the domain decomposition, the functional dis-
cretization is based on a piecewise high-order polynomial approx-
imation. The specificity of the SEM holds in the choice of basis
functions intimately related to the Gauss–Lobatto–Legendre (GLL)
quadrature used to evaluate the integrals in the variational formu-
lation. The basis is obtained from the orthogonal Lagrange polyno-
mials associated with (N + 1) interpolation nodes (where N is the
polynomial order). These nodes are chosen to be the nodes of the
GLL quadrature. Such nodes define a tensor product grid where the
displacement, its spatial derivatives and products encountered in the
variational formulation are evaluated. The choice of a Lagrangian
interpolation associated with the GLL nodes gives the SEM a very
interesting convergence property: an increase of the polynomial or-
der leads to an exponential diminution of the aliasing error. This
property, called spectral precision, gives its name to the method.

Inserting the polynomial interpolation and quadrature rules into
the variational form of the equations of elastodynamics leads to a
system of ordinary differential equations governing the evolution at
the global nodal position, which can be written as follows:

MV̇ = Fext − Fint (U) + Ftrac (T ) (1)
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U̇ = V, (2)

where U, V and T are vectors containing the components of the
displacement, velocity and traction at the global nodes, respectively.
M is the mass matrix. The vectors Fext and Fint contain the exter-
nal and internal forces, respectively, and Ftrac corresponds to the
traction forces. The use of an orthogonal basis defined as the La-
grangian functions associated with the GLL nodes leads to a second
interesting characteristic of the hexahedral version of the SEM: the
mass matrix is diagonal. This property enables to use an explicit
time stepping in which the inverse mass matrix M−1 can be exactly
computed. In RegSEM, like in most of the SEM implementations,
this time stepping is a second-order finite difference scheme.

2.2 Meshing a chunk of the Earth with hexahedra

When using the SEM for 3-D complex geological models, the main
difficulty consists in meshing the model under study. Indeed, to
benefit from the high accuracy of the method and properly model
the effects linked with the geology, the mesh has to adapt the velocity
structure of the model, in particular the zeroth-order discontinuities
such as the Moho and the sediment-rock interface. This task often
requires significant efforts and time.

In this section, we describe two kinds of meshes in which
RegSEM can simulate seismic wave propagation. The first kind
corresponds to regular meshes of crustal and mantle structures in
spherical geometry. These meshes are suitable to compute seismic
waves for source–receiver distances ranging from 1 to 90◦. RegSEM
not only handles such meshes but it can also create them in a ver-
satile way: the size and the location of the chunk, the spherical
discontinuities and possible 3-D Moho and 3-D free surface can
be defined by the user. The second kind of meshes requires more
efforts from the user because it has to be generated externally. It cor-
responds to unstructured meshes. Such meshes can deal with more
complex geometries. In the following, they are used to study the
seismic response of sedimentary basins, but they could be designed
for other applications.

Before giving more details on the capabilities of RegSEM, it
must be pointed out two important conditions that all meshes have
to fulfill to make the SEM accurate and stable:

(i) In classical applications of the SEM, 4 ≤ N ≤ 8. For such
values of N , at least five GLL nodes per wavelength are needed
everywhere in the region to properly describe the seismic wavefield
(e.g. Komatitsch & Vilotte 1998). This means that the size of the
elements d and the polynomial order N are both constrained by the
shortest wavelength λmin propagated in the medium. This condition
can be summarized by the following relation:

d ≤ N
5

λmin. (3)

(ii) To ensure the stability of the time-marching, the time
step "t of the finite difference scheme has to verify the
Courant–Friedrichs–Lewy (CFL) condition:

"t ≤ C
[

"x
α

]

min

, (4)

where C denotes the Courant number, usually chosen between 0.3
and 0.4, and

[
"x
α

]
min

the minimum ratio of grid spacing "x (distance
between two GLL nodes) and P-wave speed α.

2.2.1 Regular meshes of crustal and mantle structures

RegSEM can provide a regular mesh of any chunk of the Earth
whose lateral size is smaller than 90◦. To do so, the code uses
the so-called cubed sphere mapping (Sadourny 1972; Ronchi et al.
1996). For each element, this mapping allows to define the Cartesian
coordinates of 27 control points. Using the Lagrange polynomials
of degree 2 associated with these control points, the unit cube can be
deformed and the shape and position of each element in the chunk
can be defined. Such a classical procedure enables to easily design a
structured and conformal mesh for any section of the Earth (Fig. 1).
Moreover, ellipticity can be taken into account using the Clairaut’s
equation (Dahlen & Tromp 1998).

As mentioned above, the seismic discontinuities in the velocity
model have to be honoured by the mesh. If all the discontinuities
are spherical, then RegSEM is quite versatile: one just needs to
introduce the radius of each discontinuity, and then the code fills the
seismic layers with the appropriate number of elements. Of course,
this number depends on the vertical size of the elements. This size
is first equal to the horizontal size dh introduced by the user, and
then it is adjusted in each seismic layer to fit the thickness of the
layer. In the case of PREM (Dziewonski & Anderson 1981), there
is one more level of sophistication because not only the thickness
of the layers but also the seismic velocities in the layers are used by
the code to constrain and optimize the vertical size of the elements.
Fig. 2 shows an example of a mesh of PREM. Some elements
within this mesh appear to have a large aspect ratio (up to 5). In
the context of the SEM, this is not a problem: accuracy is preserved
thanks to the high spatial degree of the method (Oliveira & Seriani
2011) and stability is kept up because the shear deformation of the
elements is small. Examples of simulations in PREM are shown in
Section 3.2.

RegSEM can also mesh any surface and Moho topography
(Fig. 3). This is an important feature because the crust has sig-
nificant effects on surface waves (Montagner & Tanimoto 1991;
Curtis et al. 1998; Komatitsch et al. 2002; Shapiro & Ritzwoller
2002; Marone & Romanowicz 2007; Ferreira et al. 2010), even at
relatively long period (up to about 60 s). The capability to consider
any model with a realistic crust is therefore a major benefit. To do
so, the code uses only one layer of elements in the crust. This means
that discontinuities within the crust, such as the sediment-rock in-
terface and the upper-lower crust interface, cannot be taken into
account. Moreover, the fact that only one layer of elements is used
to mesh the crust limits the frequency content that the simulation
can handle. For example, when performing a simulation in Tibet
(where the crust is more than 70 km thick) with a polynomial order
N = 8, the highest frequency to be propagated will be approximately
0.1 Hz. Examples of simulations in 3-D crustal models are shown
in Section 4.

Realistic models of the Earth all have thin shallow layers. This is
the case in Figs 2 and 3. Because of the CFL condition 4, these thin
layers imply a very small time step, which makes the computation
cost high:

(i) The mesh shown in Fig. 2 is designed to propagate a wavefield
with a minimum wavelength λmin = 60 km using a polynomial
order N = 4. The Earth model is PREM. In this case, ratio "x

α
is

minimum in a thin layer defined by two discontinuities at 15 and
24.4 km depth. Indeed, the elements used to mesh this layer have a
vertical size of 9.4 km, which is very small compared to the size of
the other elements. The layer has a P-wave speed α = 6.8 km s−1,
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Figure 1. A chunk of the Earth meshed by hexahedral elements. It is 20◦ × 40◦ large and 1400 km thick. The elements are gathered under different colours.
Each colour represents a subdomain. Here, the chunk is divided in eight subdomains. The star and the triangle correspond to the source and the station used in
Section 3.1.

Figure 2. A mesh for PREM. The shallowest fluid layer has been replaced by the underlying solid. The chunk is 20◦ × 40◦ large and 1400 km thick. The
horizontal size of the elements is dh = 0.44◦. This allows the propagation of a 20 s period wavefield using a polynomial order N = 4. The S-wave speed at
each GLL node on the vertical border of the domain is plotted. A zoom into the upper part of the model shows the discontinuities. The star and the triangle
correspond to the source and the station used in Section 3.2.
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RegSEM: a regional spectral element code 5

Figure 3. A mesh for CUB in the Atlantic–European region. The chunk is 30◦ × 70◦ large and 1500 km thick. The horizontal size of the elements is dh =
0.35◦. This allows the propagation of a 20 s period wavefield using a polynomial order N = 4. The S-wave speed at each GLL node on the border of the domain
is plotted. A zoom into the upper part of the southern side of the chunk shows the discontinuities. The transition between a thin oceanic crust and a thick
continental crust is visible. A map of the Moho corresponding to the present chunk is shown in Fig. 12.

so we find
[

"x
α

]

min

= 9.4/γN

6.8
s, (5)

where γ N is a coefficient which depends on N and which comes
from the fact that the GLL nodes are non-evenly spaced in an
element. For N = 4, γ N ( 6. Combining eqs 4 and 5 and taking
C = 0.35, we obtain "t ≤ 0.080637 s, which is small and makes the
computation cost high. Note that in practice, RegSEM computes
the time step automatically: it first finds

[
"x
α

]
min

by a grid search
and then determines "t using 4 with C = 0.35.

(ii) The mesh shown in Fig. 3 is designed to propagate a wavefield
with a minimum wavelength λmin = 50 km using a polynomial order
N = 4. The region under study is the Atlantic ocean and Europe.
The velocity model is CUB (Shapiro & Ritzwoller 2002), which has
a realistic crust. Such a crust is thin below the ocean: the minimum
thickness is about 7 km, so there are some elements that have a very
small vertical size compared to the size of the other elements. Ratio
"x
α

is minimum in these elements. Assuming a P-wave velocity
α = 5 km s−1 in the oceanic crust, we find the following condition
on the time step: "t ≤ 0.081667 s.

To avoid the small time step induced by a thin layer, recent
works developed techniques to replace the layer by a thicker effec-
tive medium (Capdeville & Marigo 2008; Fichtner & Igel 2008;

Lekić et al. 2010). These techniques yield a new layer with a large
and constant thickness at the top of the Earth. Although this kind
of effective layers is easy to mesh, we do not show examples of
computation in such media in this work.

2.2.2 Unstructured meshes of sedimentary basins

Basin effects are characterized by scattering, focusing and basin-
edge induced surface waves which are closely associated with the
geometry of the basin. These effects are recognized to be respon-
sible for a long duration of the seismic signal in the basin and
especially for large local amplifications. To accurately model and
study these effects, especially at high frequencies, it is important
that the sediment-rock interface is honoured. Considering the com-
plexity of most of these discontinuities, 3-D unstructured meshes
are necessary to achieve this goal. The local version of RegSEM
has the ability to handle such unstructured meshes where topol-
ogy is totally arbitrary. To do so, the code is written according to
a strategy of independence against the Cartesian coordinates. This
enables to handle the random orientation of the four different ob-
jects (elements, faces, edges and vertices) which compose the mesh.
Defining such objects allows to assign specific actions to each of
them, such as Neumann conditions (Section 2.5).

C© 2012 The Authors, GJI
Geophysical Journal International C© 2012 RAS

106



6 P. Cupillard et al.

Figure 4. Detail of a subdomain as part of the inner outline of the Caracas basin. The volume was meshed from the projection of the 2-D triangular front mesh.

The creation of the mesh is not performed by RegSEM; it
is done externally using the CUBIT mesh generation tool kit
(http://cubit.sandia.gov). Input mesh files for RegSEM are then cre-
ated from export CUBIT mesh files. Considering the limited choice
of commercial and non-commercial codes dealing with hexahedra
compared to the case of tetrahedra, we think that this tool kit offers
the best alternative. However, the CUBIT mesh generation for 3-D
complex structures is not totally automatic and requires many steps
and user interventions. Automatic procedures have been developed
by Casarotti et al. (2008b) to generate meshes according to different
strategies. Embedded in a parallel Message Passing Interface (MPI)
environment, they can fast create simple 3-D unstructured meshes.
However, in the case of a complex basin, the outcrop is generally
not honoured when this one exhibits too many variations. In this
case, a robust fully 3-D unstructured algorithm for hexahedra is still
not available.

The meshing technique we use in this paper has been success-
fully applied to the valley of Grenoble by Stupazzini et al. (2009).
It consists in building a conform mesh of the model from separately
meshed subdomains, to better control the size and shape of the
elements. This work requires a pre-process with a CAO software
which can handle NURBS (Non-Uniformal Rational B-Splines) ge-
ometries. From the digital terrain model data, this software creates
NURBS curves which define the interfaces of the 3-D model, the
topography, the basin basement and the numerical boundaries. The
total volume is then partitioned into subdomains which are also
defined by a group of curves and exported in an Initial Graphics
Exchange Specification format readable by CUBIT. These subdo-
mains are independently reconstructed by CUBIT which assembles
them in a conform way to form the whole domain. Each subdomain
can then be individually meshed. A more detailed description of
this meshing process can be found in Delavaud (2007) and in the
manual of the code. The advantage of this procedure holds in the
possibility of associating to each subdomain different element sizes

and types of meshing while the mesh remains conform. The number
of subdomains can be substantial, depending on the complexity of
the structures which have to be meshed. In the presence of a basin,
this partitioning is mainly controlled by its outline in surface which
needs to be isolated to correctly mesh the bend and the shape of the
edge. Fig. 4 shows one of the subdomains which defines the inner
outline belt of the Caracas basin. One of the triangular surface at
the ends of the subdomain is first meshed with a meshing scheme
called ‘triprimitive’ which applies to three side surfaces. The size
of the elements is inherited from an interval size assigned to the
edges. The total volume is then meshed by a projection (sweep) of
the two dimension mesh along the edges towards the opposite trian-
gular surface. As one can see, the element at the edge is particularly
deformed and introduces a very small minimum distance between
the GLL nodes. The variation of the free surface topography also
influences the cutting into subdomains needed to ensure a homo-
geneous mesh in depth. The meshing strategy remains the same as
the one described for the outline of the basin: the free surface is
first meshed with an unstructured meshing scheme, then a sweep is
applied in the vertical direction. Therefore, the mesh is unstructured
only in two directions (in depth for the interior outline belt of the
basin, and horizontally for the other parts). As an example, the case
of a simple hemispherical basin is presented in Fig. 5.

Meshes which honour geological discontinuities might present
highly deformed elements, especially at the edges. To assess the
quality of a mesh and identify such elements, CUBIT offers different
metrics. Skewness, distortion or shear associated with the Jacobian
of each element are possible quality measurements. In the case of the
SEM, the effect of deformed elements on precision and efficiency
is fortunately limited by the high degree of the method (Oliveira &
Seriani 2011).

A recent study by Pelties et al. (2010) compares the method that
interpolates the outline of a basin by Lagrange polynomials (e.g.
Komatitsch et al. 2004; Casarotti et al. 2008b; Lee et al. 2008)
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Figure 5. Mesh of a quarter of a half space containing a hemispherical basin. The model is cut into four quarters independently meshed using CUBIT and
then reassembled. The basin (yellow) is meshed first, then the free surface, and finally the volume. The blue elements correspond to the PML.

with a meshing that fully honours it (e.g. Stupazzini et al. 2009).
From tests performed at different frequencies in different velocity
contrasts, this study provides empirical rules to ensure the relia-
bility of Lagrange interpolation. In the case of 3-D simulations in
the Grenoble valley, Casarotti et al. (2008a) observed differences
in amplitude and phase of the order of 15 per cent between the two
methods above 1 Hz. At lower frequencies, the detail of the basin
shape has less, or even no, influence. Although it is not the scope of
this paper to present a comprehensive study about the differences
between honouring and not honouring interfaces, we briefly show
some comparisons based on a 2-D profile of the Caracas basin.
The effects of three meshing strategies on spectral ratios are pre-
sented. Spectral ratios are amplification factors with respect to the
spectrum of the incident plane wave. We compute them for fre-
quencies up to 5 Hz and for each receiver along the free surface.
In Fig. 6, on the left panel, the ratios are shown for a mesh that
respects the corners of the basin. These corners are critical because
they generate diffracted surface waves responsible for large amplifi-
cations. Bi-dimensional effects are characterized by amplifications

at frequencies higher than the fundamental frequency (0.5 Hz), es-
pecially above the thicker part of the basin at 1.5 Hz, 2.5 Hz and
3.5 Hz. We also consider a regular mesh in which the discontinuity
is interpolated at the GLL nodes (Fig. 6, mid panel). In this case,
we show the ratio in logarithmic scale of the spectra recorded at
the free surface of the regular mesh and those recorded at the free
surface of the honouring mesh. Up to 2 Hz, the spectra are almost
similar. At higher frequencies, large discrepancies appear, with ratio
of the order of 2. A third meshing strategy consists in respecting the
interface until a depth of 60 m, about 50 per cent of the minimum
propagated wavelength, and to interpolate the discontinuity in the
elements at the edges of the basin (Fig. 6, right panel). The spectra
obtained in this case are very similar to the fully honouring case up
to 2.5 Hz. Above this frequency, large but localized discrepancies
appear, also of the order of 2. This example put in evidence that the
entire rock-sediment interface, especially the edge of the basin,
should be respected for high frequency simulations (>2.5 Hz).
For shorter frequencies, the direct discretization of the interface
at the GLL nodes down to a reasonable depth seems appropriate.
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and implementation complexity could be discussed in more detail
based on the analysis conducted by Maday & Rønquist (1990).

2.3 Introduction of the elastic parameters

As RegSEM is able to handle a large set of meshes, it has to be
versatile in introducing elastic models as well. In the continental
version of the code, this is achieved thanks to a Fortran module that
the user can change by himself and which is conceived to provide the
elastic parameters at any location (radius, latitude and longitude) in
the Earth. Both radial and azimuthal anisotropies are implemented.
Moreover, the anelastic structure can be taken into account using a
series of standard linear solids, as suggested by Emmerich & Korn
(1987) and Komatitsch & Tromp (1999). The unstructured version
of the code is limited to lossless isotropic media.

Rotation and self-gravitation, which involve non-neglectible ef-
fects at the global scale and very long periods (Komatitsch & Tromp
2002b; Chaljub & Valette 2004), are not included. Propagation in
fluid has not been implemented, so the waves either from the outer
core or from the oceans cannot be simulated. Nevertheless, follow-
ing Komatitsch & Tromp (2002b), the mass of the oceans can be
taken into account when a bathymetry is used at the surface of the
Earth.

2.4 Absorbing boundary conditions

To avoid artificial reflections at the border of the chunk, it is
necessary to implement efficient absorbing boundary conditions.
RegSEM uses the velocity-stress formulation of the so-called
Perfectly Matched Layers (hereafter PML; see Festa & Vilotte
2005). This formulation requires an unphysical splitting of the field
variables along the directions of normal and parallel derivatives with
respect to the interface PML volume. This means that in practice,
the splitting directions have to be known at every GLL node belong-
ing to the PML, which is not obvious when working with Cartesian
coordinates in a deformed layer (such as the lowermost layer of
the chunks presented in Figs 1–3). Therefore, we here make an as-
sumption: for all the GLL nodes of a given element, the splitting
directions defined at the centre of the element are used. The effect of
such an assumption on the stability and accuracy of the PML is not
clear. Furthermore, our PML are isotropic, so spurious reflections
can be created when considering anisotropic media. Examples in
the following parts of the paper will show that our implementation
of the PML however provides satisfactory results.

Note that the SEM does not require to use the same polynomial
order for all directions. Our code takes advantage of this flexibility:
in the PML, it is possible to use a different polynomial order in the
damping directions. In the following, we will always use N = 8 in
these directions.

2.5 Sources

Force-vector and moment-tensor point-sources can be placed at
any location in the chunk. Four different functions are provided to
describe the time signal at the sources: a Gaussian, its derivative
(i.e. a Ricker wavelet), its antiderivative (i.e. an error function) or
the Fourier transform of a frequency band defined by a cosine taper.

More interestingly, in particular for basin response modelling,
an incident wavefield can be introduced in the unstructured ver-
sion of RegSEM. The method developed for that purpose is based
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on a decomposition technique and exploits the natural presence
of the traction in the SEM formulation, that is the Ftrac term in
eq. 1. The wavefield is introduced on an interface in the domain, for
example, the sediment-rock interface, by its action on the traction
forces (Neumann condition). Similar ideas had been introduced by
Bielak & Christiano (1984) in the context of finite elements for
the problem of soil–structure interaction. The main interest of this
method consists in avoiding the propagation of the incident field,
which is known analytically or numerically, as long as it has not
reached any discontinuity with which it will interact by reflection,
transmission or diffraction. This type of introduction is compatible
with any boundary conditions, including PML. Moreover, diffrac-
tion problems for non-vertical incidences are prevented. Finally, the
computational domain does not have to be large to hold the incident
wave. We refer to the manual of the code for more details about the
implementation of this method.

2.6 Parallel implementation

The SEM can be easily implemented on distributed memory archi-
tectures. Given a number n of CPUs, the computational domain has
to be divided into n subdomains. To do so, we use the software li-
brary METIS (http://glaros.dtc.umn.edu/gkhome/views/metis) that
ensures an efficient partitioning which minimizes the communi-
cations between the subdomains. These communications occur at
every time step of the time-marching scheme. To perform them, we
use the MPI. Fig. 1 shows an example of a chunk partitioned by
METIS. Fig. 7 shows the good scalability of our parallel implemen-
tation in the case of the experiment described in Section 3.1.

3 VA L I DAT I O N

In this part, a series of numerical experiments are carried out to
validate our code. We start with the simple case of a homogeneous
medium, then we consider a layered medium (PREM) and we finally
study the case of a hemispherical basin. For all these experiments,
a reference solution is known.

Figure 7. Scalability of the RegSEM parallel implementation. The simula-
tion used to do this test is the one described in Section 3.1. The points are
almost aligned, showing that the computation time goes like the inverse of
the number of CPUs.

3.1 Simulation in a homogeneous medium

We first consider a homogeneous medium in spherical geometry.
In such a context, the normal mode summation technique provides
a quasi-analytical solution (Capdeville 2000). The P-wave speed,
S-wave speed and density of the medium are α = 8 km s−1, β =
5 km s−1 and ρ = 3000 kg m−3, respectively. The chunk used in the
SEM simulation is shown in Fig. 1. The elements are 1.3◦ large.
This enables to use a 50 mHz cut-off frequency with a polynomial
order N = 8. The source is an explosion located at 10 km depth.
The receiver is on the free surface. The epicentral distance is 20◦.
On three Intel Xeon 2.5 GHz quad-core dual-processor nodes (i.e.
24 CPUs), it takes about 16 min to compute 1200 s. In Fig. 7,
the computation time for other numbers of CPUs is shown. The
scalability of our parallel implementation is seen to be good.

Fig. 8 shows the comparison between the SEM result and the
normal mode solution. All the seismograms are normalized with
respect to the amplitude of the vertical component obtained with
the SEM, so the relative amplitudes are preserved. Because the

Figure 8. Comparison of the SEM solution (dashed black) with the normal
mode solution (red) obtained in a homogeneous medium (α = 8 km s−1, β =
5 km s−1, ρ = 3000 kg m−3). The epicentral distance is 20◦. The residual
multiplied by 10 is plotted in green.
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source is an explosion, there is no SH energy and the waves only
lie on the vertical and radial components. On these components,
the traces obtained from the two methods are indistinguishable.
The plot of the residual multiplied by 10 shows that the maximum
error is around 2 per cent. This small error is essentially due to
the finite difference time-scheme whose order is only 2. On the
transverse component (whose y-axis is 100 times larger than the
other components), the SEM solution is not exactly zero: around
650 s, the residual multiplied by 10 reveals a spurious reflection
coming from the bottom of the chunk. This signal is extremely
small and is hardly seen on the radial and vertical components,
meaning that our PML are good.

3.2 Simulation in PREM

We use PREM to perform a second validation test. The thin fluid
layer which lies on the top of this model is replaced by the underlying
solid. The chunk used in the SEM simulation is shown in Fig. 2.
The elements are 0.44◦ large. This enables to use a 50 mHz cut-
off frequency with a polynomial order N = 4. The source-receiver
configuration is the same as in the previous test.

3.2.1 With no attenuation

We first do not take into account the anelastic structure of PREM. In
this case, the normal mode summation gives a good reference solu-
tion. Fig. 9 shows a comparison between this solution and our SEM
result. Again, the two waveforms are indistinguishable on both verti-
cal and radial components. Nevertheless, on the radial component,
the residual shows significant amplitudes after the main phases,
which was not the case in the test performed in the homogeneous
medium. This is explained by two reasons. First, our chunk is cut at
depth, so the phases reflected at the core–mantle boundary, such as
the PcS and ScS phases, are missing. Second, a spurious reflection
from the PML on the vertical sides of the chunk is detected. This
signal appears here because PREM is anisotropic. The magnitude of
this spurious reflection is similar to the error due to the finite differ-
ence time-scheme, so eventhough they are not perfect, our PML are
satisfactory. On the transverse component, a tiny reflection coming
from the bottom of the chunk is observed, as it was the case in the
homogeneous medium. This reflection arrives earlier here because
PREM velocities increase with depth.

3.2.2 With attenuation

When introducing the anelastic structure, the comparison between
the SEM and the normal mode solutions (Fig. 10) does not change
a lot. The main difference with the lossless case is a large residual
value (5–10 per cent) for the body waves and the beginning part
of surface wavetrain. This large value is probably due to the fact
that the normal mode result in an attenuating medium relies on a
first-order approximation. Nevertheless, we can conclude that the
attenuation is well taken into account in RegSEM because the SEM
and normal mode summation waveforms are very similar to each
other and are both very different from the lossless case.

3.3 Plane wave on a hemispherical basin

To validate our code with an unstructured mesh, we now consider the
half space containing the hemispherical basin of radius R (Fig. 5).
For such a simple shape, the boundary element method developed

Figure 9. Comparison of the SEM solution (dashed black) with the normal
mode solution (red) obtained in PREM with no attenuation. The epicentral
distance is 20◦. The residual multiplied by 10 is plotted in green.

by Sánchez-Sesma (1983) provides a semi-analytical solution of the
diffracted wavefield in the frequency domain. The parameters of the
material are summarized in Table 1. They respect the conditions on
the shear modulus µ, density ρ and Poisson coefficient ν described
by Sánchez-Sesma (1983): µR/µE = 0.3, ρR/ρE = 0.6, νR = 0.3
and νE = 0.25, where the exponents R and E correspond to the basin
and the rest of the half-space, respectively. The model is excited by
a plane P-wave with a vertical incidence. The results are presented
for a normalized frequency ηP = 2R

)P
, where )P is the wavelength

of the incident plane P wave. This normalized frequency determines
the central frequency f P of the Ricker pulse which defines the time
function of the incident plane wave. For the normalized frequency
ηP = 0.5 considered by Sánchez-Sesma (1983), f P = 5.76 Hz.

In the SEM simulation, a polynomial order N = 4 is chosen in the
elastic medium. The signal is recorded at the free surface, along the
line [Ox), where O is the centre of the basin and x a horizontal axis.
We are interested in the transfer function, which is the ratio between
the spectrum of the signal recorded at each receiver along this line
and the spectrum of the incident plane wave. Fig. 11 shows the

C© 2012 The Authors, GJI
Geophysical Journal International C© 2012 RAS

Chapter 3. Selected articles 111



RegSEM: a regional spectral element code 11

Figure 10. Comparison of the SEM solution (dashed black) with the normal
mode solution (red) obtained in PREM with attenuation. The epicentral
distance is 20◦. The residual multiplied by 10 is plotted in green.

transfer functions, for the SEM and the semi-analytical solution,
of the vertical and horizontal components of the displacement at
the normalized frequency ηP = 0.5 as a function of the normalized
distance x/R at t = 5 s. These transfer functions are also represented
at the normalized frequency ηP = 0.7 which corresponds to the
frequency f P = 8 Hz. As a result, the two methods provides the
same behaviour. Small differences of 2 per cent can be observed,
which is comparable to the numerical dispersion of the SEM and
the magnitude of the PML reflections.

A variability of the behaviour according to the frequency is ob-
served, knowing that the 1-D resonance frequency of the basin

equals αR/4R = 4.4 Hz. At 5.76 Hz, the curve is close to the
1-D case, with a maximum amplification at the centre of the basin,
about 175 per cent of the amplitude obtained in the case of a homo-
geneous medium. The amplitude decreases when approaching the
basin border and then keeps the state of a homogeneous medium.
The horizontal component, on the contrary, exhibits a null ampli-
tude at the centre of the basin, due to the symmetry, and reaches
its maximum at x/R = 0.5. Then it converges to a stable ampli-
tude. At 8 Hz, an important wave conversion appears around x/R =
0.35 where the horizontal component reaches its maximum and the
vertical component its minimum. Outside the sphere, the two com-
ponents tend to the same stable state as at 5.76 Hz. The maximum
amplification at the centre of the basin is reached for a normalized
frequency ηP = 0.61 (f P = 7 Hz), 1.6 times the 1-D resonance fre-
quency. These results underline the influence of the basin effects,
even in a simple and symmetric case.

4 S I M U L AT I O N S I N 3 - D M O D E L S
O F E U RO P E

In this part, we point out the influence of the shallow structures
(crust and uppermost mantle) on a regional wavefield. RegSEM’s
flexibility is used to generate structured meshes and simulate an
event in two 3-D models of the European region. The models are
Crust2.0 (Bassin et al. 2000) over the 1-D model PREM, and the
crustal and upper mantle model CUB (Shapiro & Ritzwoller 2002).
The corresponding synthetic seismograms are compared with the
normal mode solution in PREM, and above all with the real data
seismograms.

4.1 Models

Crust2.0 (Bassin et al. 2000) was obtained by compiling seismic
studies and tectonic, geological settings. The model is defined as
cells on a 2 × 2◦ geographical grid. In each cell, we average over
the different layers (there are up to seven layers, including ice or
water, sedimentary layers and layers in the bedrock) to get homoge-
neous seismic velocities and density. Then, a 2-D Gaussian filter is
applied horizontally to set up the seismic parameters at every GLL
nodes. Below the 3-D Moho, PREM is used to represent the deeper
Earth.

CUB (Shapiro & Ritzwoller 2002) is a radially anisotropic model
obtained by surface wave tomography. The model is derived from
the inversion of group and phase dispersion data of the fundamental
mode of both Rayleigh and Love waves in the 16–200 s period
range. It is defined on a 2 × 2◦ geographical grid. It is characterized
by a vertical block parametrization for the crust, a 3-D Moho and
a spline parametrization for the upper mantle. We actually use a
smoothed version of the CUB crust: the fluid and low-velocity
(β ≤ 2.4 km s−1) shallow layers are replaced by the underlying
material, and a vertical smoothing is applied within the crust using
the intrinsic interpolation law of the SEM. Moreover, because the
resolution of CUB is poor deeper than 250 km, a linear transition

Table 1. Parameters of the half-space containing the hemispherical basin used in Section 3.3. α, β and
ρ correspond to the P-wave velocity, S-wave velocity and density, respectively. Exponent R refers to the
basin and exponent E refers to the rest of the half-space. ηP is the normalized frequency.

αE βE ρE αR βR ρR R ηP

1730 m s−1 1000 m s−1 2000 kg m−3 1320 m s−1 710 m s−1 1200 kg m−3 75 m 0.5
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Figure 11. Transfer functions of the vertical and horizontal components of the displacement as a function of the normalized distance x/R at t = 5 s. We compare
the SEM (stars) and a semi-analytical solution (circles) based on an expansion of Bessel functions (Sánchez-Sesma 1983) in the case of a hemispherical basin,
for two frequencies: 5.76 Hz (ηP = 0.5) on the left and 8 Hz (ηP = 0.7) on the right.

Figure 12. Map of the Moho of model CUB (Shapiro & Ritzwoller 2002) in the Atlantic–European region. The source–receiver configuration used in
Section 4.3 is also shown.

towards PREM is imposed down to the transition zone. Again, we
use a Gaussian filter in the horizontal directions. The resulting model
in the Atlantic–European region is shown in Fig. 3. A map of the
Moho is shown in Fig. 12.

4.2 Data

The earthquake we consider has been recorded at 16 receivers on the
continental Europe. All data come from broad-band stations oper-
ated by the GSN, GEOSCOPE, GEOFON and MEDNET networks.
Both vertical and horizontal components on the BH channels are

selected. To be compared to the data, the synthetic seismograms are
convolved with the instrumental transfer function. This avoids the
deconvolution of the response on the data.

The comparison between data and synthetics is performed in four
period bands: 100–200 s, 50–100 s, 30–50 s and 20–30 s. To obtain
a quantitative estimate of the misfit between data and synthetics, we
apply a systematic cross-correlation between the two using a group
velocity criterion. Two parameters of the cross-correlograms are
extracted: the delay δt of the main peak and the amplitude ratio RA

between the main peak and the autocorrelation of the data. A perfect
matching therefore yields δt = 0 s and RA = 1. Our comparison is
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mainly based on the vertical component. The signal-to-noise ratio
in the radial and transverse components is often poor, so a more
severe data selection would actually be necessary to include more
horizontal components in our study. Note that the seismograms in
the 100–200 s period band are not presented because they show the
same behaviour as those in the 50–100 s period band. Furthermore,
in the shortest period band (20–30 s), waveforms are complex and
some correlation parameters therefore do not make sense.

4.3 Results

The event we investigate occurred along the Mid-Atlantic Ridge on
2010 May 25, at latitude 35.41◦N and longitude 35.93◦W. Its depth
has been estimated to 10 km and its USGS CMT solution provides
a moment magnitude of 6.3. The regional chunk used for the SEM
simulations of this event is shown in Fig. 3. A map view of the
chunk can be found in Fig. 12, representing also the source–receiver
configuration. The seismograms obtained at four relevant stations
are shown in Fig. 13. The correlation parameters for these stations

and the mean of the parameters over all the stations are presented
in Table 2.

In the long-period bands (100–200 s, 50–100 s), the synthetic
waveforms are similar to the data with a correct amplitude. However,
at every station, a systematic positive delay is observed between the
data and the synthetics computed in PREM or in Crust2.0. This
delay increases with the epicentral distance. CUB shows a much
better fit: for example, at station KIEV, models PREM and Crust
2.0 present a large delay (δt = 20 s and δt = 34 s, respectively)
whereas CUB shows a short delay (δt = −6 s). In the medium band
(30–50 s), the waveforms are still similar and the amplitude is still
correct. The CUB model improves the fitting to the data in compar-
ison with what PREM and Crust2.0 do. However, when increasing
the epicentral distance, the trends of the last two models differ. On
stations SSB and ECH (short paths), PREM and Crust2.0 both show
the same large positive delay. On stations AQU and KIEV (longer
paths), the Crust2.0 model presents an increasing delay (δt = 95 s)
while PREM model presents a decreasing delay (δt = 7.8 s). In
the short-period band (20–30 s), the waveforms significantly differ,

Figure 13. Waveforms induced by the mid-Atlantic ridge earthquake at four stations in Europe for three different period bands. We compare the real data
(grey) with the waveforms obtained in three different Earth models (PREM in blue, PREM+Crust2.0 in red and CUB in green).
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Table 2. Parameters (time delay δt in s and amplitude ratio RA) of cross-correlations between data and waveforms
obtained from a mid-Atlantic ridge earthquake in three different Earth models (PREM, Crust2.0 and CUB) at
four different stations for three different period bands. The average µall of the two parameters over all the stations
is also shown.

50–100 s " RA [PREM] δt [PREM] RA [Crust2.0] δt [Crust2.0] RA [CUB] δt [CUB]

SSB 3563.69 1.2104 19.9 1.0324 18.5 1.0454 −1.4
ECH 3791.79 1.4728 21.0 1.3104 23.3 1.2127 −2.2
AQU 4280.63 0.8988 19.1 0.7514 20.7 0.8565 1.9
KIEV 5378.05 1.1814 20.0 1.1647 34.0 1.2336 −6.0
µall 4498.27 0.4574 14.7 0.9828 19.7 1.2894 −6.0

30–50 s " RA [PREM] δt [PREM] RA [Crust2.0] δt [Crust2.0] RA [CUB] δt [CUB]

SSB 3563.69 1.4931 33.5 1.3292 51.8 1.3599 0.4
ECH 3791.79 1.5459 37.0 1.2138 62.9 1.2559 1.7
AQU 4280.63 0.8002 7.4 0.6084 38.8 0.8187 −18.0
KIEV 5378.05 0.9071 7.8 0.8694 94.7 0.9530 −6.5
µall 4498.27 0.6797 12.5 1.0752 60.0 1.4994 −9.3

20–30 s " RA [PREM] δt [PREM] RA [Crust2.0] δt [Crust2.0] RA [CUB] δt [CUB]

SSB 3563.69 2.0489 63.1 0.9551 96.2 1.8675 0.3
ECH 3791.79 2.4523 57.0 1.5337 135.1 2.1946 −3.7
AQU 4280.63 1.0182 30.7 0.6072 125.8 1.2822 −28.5
KIEV 5378.05 1.3895 −3.8 1.1147 165.1 1.0200 −27.6
µall 4498.27 0.9749 12.8 0.9433 124.6 1.8047 −33.2

in particular when increasing the epicentral distance. The Crust2.0
model always shows the worst waveforms and sometimes have non-
sense delays (δt = 165 s at KIEV) due to the strong coda wavetrain.
At short epicentral distance (SSB for example), the CUB model
presents very good fits (δt = 0.3 s) and is better than PREM (δt =
63 s). At longer epicentral distance (KIEV for example), situation
is reversed: PREM is better (δt = −3.8 s vs. δt = −28 s).

In the short-period range, the effect of the crust on delay times is
predominant. For oceanic paths, PREM has a too thick crust (slow
velocity compared to fast velocity in the underlying lithosphere)
which tends to induce positive delay times. The situation is reversed
in continents, which are characterized by a thick crust and fast
lithospheric velocities. Consequently, when only the effect of the
crust is taken into account in the numerical simulations, the delay
time tends to increase compared to what PREM does. That is exactly
what we observe: for Crust2.0, the fit to the data is always poor when
the path is dominantly oceanic or continental. The success of the
CUB model in almost all numerical simulations is due to the fact that
both crust and upper mantle 3-D structures are taken into account.
For some specific paths, the right balance in the mixing of oceanic
and continental paths can provide very good fits with PREM.

4.4 Conclusion

The comparison of seismograms computed in different Earth mod-
els clearly shows that the effect of the crust is large and non-linear.
For pure oceanic paths or pure continental paths, the account of
the crust tends to increase the residual delay times computed in
PREM. This effect is well known (Montagner & Tanimoto 1991).
When incorporating both crust and upper mantle 3-D structures,
the time residuals are significantly improved, particularly at periods
larger than 30 s. At short periods, the strong scattering effect of the
crust gives rise to long coda waves which often makes our simple
cross-correlation technique inefficient.

Our brief analysis puts in evidence how important the account for
the shallow structures is to correctly model the seismic wave prop-
agation at the regional scale. Previous studies (Komatitsch et al.

2002; Bozdag & Trampert 2008) used the SEM at the global scale
and already noted the great influence of the shallow parts, but they
did not honour the topography of the Moho. Because the compu-
tation cost is less important at the regional scale and because of
the ability of RegSEM to take into account any Moho topography,
this is overcome here. To exhibit the importance of honouring the
Moho, we compare two seismograms computed at the same station
(ANTO) in two different meshes of the CUB model (Fig. 14). In
the first mesh, the Moho is fully honoured. In the second mesh, the
elements at the top of the chunk are all 50 km thick, so the Moho
is not honoured at all. The differences between the two traces are
clear: a shift of half a period appears in the high frequency part of
the signals (20–30 s), in addition with large discrepancies in ampli-
tude (up to a factor of 2). At the global scale, similar differences are
observed by Capdeville & Marigo (2008). These results illustrate
the influence of the Moho on surface wavetrains and point out how
crucial meshing its topography is to get accurate seismograms.

Thanks to its flexibility, RegSEM is a suitable tool to assess the
quality of regional tomographic models, as done at the global scale
by Qin et al. (2009) and Bozdag & Trampert (2010). Nevertheless,
the simulations presented here do not give precise conclusions on
the quality of the CUB and Crust2.0 models. First, Crust2.0 is
used with PREM although they might not be compatible as these
two models have been obtained from two different data set and
techniques. Second, the brutal smoothing applied to Crust2.0 and
the CUB crust probably changes the effective elastic properties of
the two models. A more rigorous smoothing technique, such as the
one suggested by Capdeville et al. (2010) and Guillot et al. (2010),
should be used to precisely assess the models.

5 D I S C U S S I O N

We showed that RegSEM is an efficient tool to compute seismic
wavefields in geological media with possible complex geometries.
Two particular cases are preferentially investigated. At the local
scale, unstructured meshes of sedimentary basins (externally gen-
erated by CUBIT following the procedure suggested by Stupazzini
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Figure 14. Rayleigh wave (vertical component) computed at station ANTO from two different simulations of a mid-Atlantic ridge earthquake in model CUB.
In one simulation, the Moho is fully honoured (black line). In the other simulation, the Moho is interpolated by Lagrange polynomials of degree 4 defined in
50 km thick elements (red dashed line). The period range of the signals is 20–200 s.

et al. 2009) can be handled to study site effects. At longer scales (up
to 90◦), the influence on wave propagation of crustal and mantle 3-D
structures with a possible Moho topography can be simulated using
structured meshes generated by an internal routine. In both cases,
the shallow structures yield important non-linear effects, even at
wavelengths larger than the size of the heterogeneities. We showed
that meshing these shallow structures is a crucial issue for a proper
modelling of realistic wavefields.

In this work, the use of the SEM is limited to forward modelling.
As mentioned in Section 1, the method can also be used to solve the
inverse problem. A now classical and popular technique to achieve
this goal consists in computing sensitivity kernels using the ad-
joint method (Tarantola 1984; Tromp et al. 2005; Fichtner et al.
2006a,b). This can be done with RegSEM, which provides kernels
by simultaneously computing the adjoint wavefield and reconstruct-
ing the regular wavefield from time-reversed seismograms recorded
at the boundaries (Gauthier et al. 1986). This process prevents from
storing the whole regular wavefield, but it is rigorously valid in non-
dissipative media only. Nevertheless, an artificial amplification can
be introduced when reconstructing the regular wavefield in dissi-
pative media (Tarantola 1988). Performing tomographic inversions
using RegSEM is kept for future papers.

Another interesting application of our code is the computation of
synthetic microseismic noise correlations. These data were intro-
duced in seismology by Shapiro & Campillo (2004). Because most
of the microseismic energy is contained in the 5–20 s period range
and propagates as surface waves (Longuet-Higgins 1950), noise
correlations are very sensitive to the shallow structure. Therefore,
RegSEM is a suitable tool to perform realistic simulations (i.e. in-
cluding the full complexity of wave propagation in 3-D media) of
correlation waveforms. As discussed by Tromp et al. (2010), this is
crucial to go beyond the ray theory classically used when inverting
noise-correlation data. To mimick noise sources, the code imposes a
random traction at the free surface of the chunk using the Ftrac term

in eq. 1. First correlations computed with RegSEM can be found in
Stehly et al. (2011).

Eventhough RegSEM is a well advanced code, improvements
are considered. First, there are simple options that could be easily
added, such as introducing two layers of elements in thick crusts and
allowing for external source time functions. Second, the creation of
a realistic 3-D unstructured hexahedral mesh still remains a long
and little flexible process. Moreover, the computation cost can be
significantly high due to small or deformed elements resulting from
the meshing of the interfaces. A de-refinement in depth could be
set up to decrease the computation cost. Indeed, seismic velocities
increase with depth so the wavelengths in the deeper part of the
chunk are larger than in the shallow part. Therefore, keeping the
same horizontal size of the elements everywhere in the medium
yields an oversampling of the wavefield in the deeper part. This is
particularly obvious in PREM (Fig. 2) when going into the lower
mantle (i.e. crossing the 670 km discontinuity). To partially solve
the problems associated with the mesh generation, we could think
of a performant coupling between a tetrahedral SEM (Mercerat
et al. 2006) for complex geometries and a classical hexahedral
SEM for the rest of the domain. Refinement and de-refinement
not only in space but also in time could also greatly help for the
reduction in computation cost. More promising alternatives for the
modelling of complex heterogeneities can be found in the field of
mechanics. Homogeneization techniques, originally developed in
material mechanics for the static case, have been recently applied
to the propagation of seismic waves (Capdeville et al. 2010; Guillot
et al. 2010). We plan to adapt RegSEM to this new technique in
the future. Third, the PML could be improved. Figs 9 and 10 show
the presence of a spurious wave in the medium. The amplitude of
this wave is small but it could be even smaller if using filtering
PML (Festa et al. 2005) or implementing the unsplit convolutional
PML suggested by Martin & Komatitsch (2009). Finally, fluid could
be incorporated in the code, using either a normal mode coupling
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(Capdeville et al. 2003) or the acoustic version of the SEM. All
these improvements are in progress and will be available in future
versions.
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Paris 7.

Delavaud, E., Cupillard, P., Festa, G. & Vilotte, J.P., 2006. 3D Spectral
Element Method simulations of the seismic response in the Caracas basin,
in Proceedings of the Third International Symposium on the Effects of
Surface Geology on Seismic Motion, Grenoble, France, pp. 515–522.
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Lekić, V., Panning, M. & Romanowicz, B., 2010. A simple method for
improving crustal corrections in waveform tomography, Geophys. J. Int.,
182, 265–278.
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S U M M A R Y
Because seismic waves have a limited frequency spectrum, the velocity structure of the Earth
that can be extracted from seismic records has a limited resolution. As a consequence, one
obtains smooth images from waveform inversion, although the Earth holds discontinuities
and small scales of various natures. Within the last decade, the non-periodic homogenization
method shed light on how seismic waves interact with small geological heterogeneities and
‘see’ upscaled properties. This theory enables us to compute long-wave equivalent density and
elastic coefficients of any media, with no constraint on the size, the shape and the contrast of
the heterogeneities. In particular, the homogenization leads to the apparent, structure-induced
anisotropy. In this paper, we implement this method in 3-D and show 3-D tests for the very first
time. The non-periodic homogenization relies on an asymptotic expansion of the displacement
and the stress involved in the elastic wave equation. Limiting ourselves to the order 0, we
show that the practical computation of an upscaled elastic tensor basically requires (i) to
solve an elastostatic problem and (ii) to low-pass filter the strain and the stress associated
with the obtained solution. The elastostatic problem consists in finding the displacements
due to local unit strains acting in all directions within the medium to upscale. This is solved
using a parallel, highly optimized finite-element code. As for the filtering, we rely on the finite-
element quadrature to perform the convolution in the space domain. We end up with an efficient
numerical tool that we apply on various 3-D models to test the accuracy and the benefit of the
homogenization. In the case of a finely layered model, our method agrees with results derived
from Backus. In a more challenging model composed by a million of small cubes, waveforms
computed in the homogenized medium fit reference waveforms very well. Both direct phases
and complex diffracted waves are accurately retrieved in the upscaled model, although it is
smooth. Finally, our upscaling method is applied to a realistic geological model. The obtained
homogenized medium holds structure-induced anisotropy. Moreover, full seismic wavefields
in this medium can be simulated with a coarse mesh (no matter what the numerical solver
is), which significantly reduces computation costs usually associated with discontinuities and
small heterogeneities. These three tests show that the non-periodic homogenization is both
accurate and tractable in large 3-D cases, which opens the path to the correct account of the
effect of small-scale features on seismic wave propagation for various applications and to a
deeper understanding of the apparent anisotropy.

Key words: Numerical solutions; Computational seismology; Seismic anisotropy; Theoret-
ical seismology; Wave propagation; Wave scattering and diffraction.

1 I N T RO D U C T I O N

Seismic waves are one of the most powerful tools to image the
Earth’s interior. Giving access to the geometry of geological struc-
tures and to the distribution of mechanical properties within our
planet, they lead to a better understanding of geodynamic processes

and resource potentials. In the last decades, the seismic tomography
and imaging community took advantage of the increasing computa-
tional power and the development of efficient numerical methods to
improve its techniques and results. Accurate solutions to the forward
modelling (see Virieux et al. 2011, for a review of the various nu-
merical methods available to model the seismic wave propagation)

C© The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society. 983
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and the inverse problem (e.g. Pratt et al. 1998; Tromp et al. 2005;
Plessix 2006; Fichtner et al. 2008; Métivier et al. 2013; Brossier
et al. 2015; Warner & Guasch 2016) now allow accounting for full
seismic waveforms and getting robust and well-resolved models
of the Earth at different scales (from the subsurface in exploration
geophysics to the entire globe in seismology).

One of the important remaining challenges in seismic wave simu-
lation and inversion is the understanding of and the correct account
for the effect of small heterogeneities on wave propagation. By small
heterogeneities we here mean structures which are smaller than the
minimum seismic wavelength propagating in the medium. Seismic
waves indeed have a finite frequency band which implies the exis-
tence of a minimum wavelength, whereas heterogeneities within the
Earth can occur at all scales. When propagating through small het-
erogeneities, seismic waves naturally average the elastic properties
of the medium. A deeper understanding of this averaging process
could significantly improve the interpretation of seismic inversion
results, pointing out what small-scale features can be ‘hidden’ be-
hind the smooth images one usually obtains. A proper knowledge
of the averaging is of major interest for the forward modelling
as well, because replacing a given discontinuous and highly het-
erogeneous model by an effective (or, equivalently, ‘upscaled’ or
‘long-wave equivalent’) medium greatly eases the numerical sim-
ulation of wave propagation. When present, small-scale features
indeed control the spatial sampling of the model and, consequently,
the time sampling too. This is because of a stability condition that
all the wave simulators have to ensure (Courant et al. 1928):

!t ≤ C
[

!x
VP

]

min

, (1)

!t denoting the time-step of the simulation, C a constant and[
!x
VP

]

min
the minimum ratio of grid spacing !x and P-wave speed

VP. Small heterogeneities therefore induce massive, possibly pro-
hibitive, computation costs. In addition, an accurate simulation usu-
ally requires all the physical discontinuities to be honoured by the
mesh, which can lead to enormous meshing efforts, especially when
dealing with hexahedra (e.g. Casarotti et al. 2008; Peter et al. 2011).
For these reasons, working with effective media is much preferable.

Theoretical studies for understanding the effective properties of
heterogeneous elastic media was initiated in the sixties by Hashin &
Shtrikman (1963) and Hill (1965). These studies both use the pi-
oneering ideas of Voigt (1889) and Reuss (1929) to derive upper
and lower-bound effective constants of periodic materials. After
these works, many analytical derivations followed (e.g. Kutsenko
et al. 2013, and the references within), handling more and more
complex periodic units or improving accuracy and efficiency of the
effective properties calculation. In the case of waves propagating
in finely layered media, Backus (1962) derived formula for long-
wave equivalent elastic coefficients which are still widely used in
seismic exploration. Fruitfully, these formulae quantify the seis-
mic anisotropy produced by fine layering, showing that a stack of
isotropic layers can explain the anisotropy observed on wave mea-
surements. Schoenberg & Muir (1989) extended the Backus theory
by including any kind of anisotropy within each layer, which enables
the account for several sets of fractures in the layers. Further studies
on the upscaling of fractured media then came out, such as Sayers &
Kachanov (1991); Mauge & Kachanov (1994); Sayers & Kachanov
(1995); Schoenberg & Sayers (1995); Schoenberg & Helbig (1997);
Sayers (1998); Grechka & Kachanov (2006); Grechka (2007);
Carcione et al. (2012). At larger scale, particular efforts have been
focused on smoothing the Earth’s crust to ease the simulation of

long-period surface waves (Capdeville & Marigo 2008; Fichtner &
Igel 2008; Lekić et al. 2010). More recently, the understanding of the
seismic anisotropy in the upper-mantle drew the attention (Fichtner
et al. 2013a; Wang et al. 2013; Bodin et al. 2015). In this context,
Jordan (2015) developed an elegant effective medium theory for
random media in which statistics of the local anisotropy (produced
by lattice-preferred orientation of mineral grains for instance) are
separated from those of ellipsoidal geometric heterogeneities (i.e.
shape-preferred orientation of simple geological structures).

In this paper, the upscaling method in consideration is the two-
scale homogenization technique. This method emerged in the sev-
enties from research in micromechanics for predicting the macro-
scopic response of composite and random materials to either static
or dynamic excitations (Bensoussan et al. 1978; Sanchez-Palencia
1980; Papanicolaou & Varadhan 1981). Since then, the technique
has been successfully applied to many physical processes, such
as heat transfer (e.g. Allaire & Habibi 2013), Stokes flow (e.g.
Hornung 1997), neutronic diffusion (e.g. Allaire & Capdeboscq
2000), magnetization (e.g. Santugini-Repiquet 2007) and elastic
wave propagation (e.g. Boutin & Auriault 1993; Fish & Chen 2001,
2004; Parnell & Abrahams 2008; Bacigalupo & Gambarotta 2014).
In this last field, the two-scale homogenization was adapted to non-
periodic media within the last decade (Capdeville & Marigo 2007;
Capdeville et al. 2010a,b; Guillot et al. 2010; Cance & Capdeville
2015; Capdeville et al. 2015), which opened the path to the upscal-
ing of general elastic media, with no constraint on the shape and
size of the heterogeneities. The method has been tested in 1-D
(Capdeville & Marigo 2007; Capdeville et al. 2010a) and 2-D
(Capdeville et al. 2010b; Guillot et al. 2010; Capdeville et al. 2015);
the goal of the present paper is to show its efficiency (in terms of
accuracy and computation speed) on 3-D cases. To solve the ho-
mogenization problem, we will rely on a finite-element method, but
it is worth noting here that the algorithm proposed by Capdeville
et al. (2015) could be used as well. This latter is up and running on
continuous or pixel-based 3-D media.

The non-periodic two-scale homogenization actually is differ-
ent to what some authors called numerical homogenization (e.g.
Zijl et al. 2002; Grechka 2003; Gao et al. 2015) or heterogeneous
multi-scale methods (e.g. Engquist et al. 2009; Abdulle & Grote
2011). In these classes of techniques, the effective elastic tensor is
computed by solving the wave equation in the static regime (i.e.
at zero frequency so that a simple elastostatic problem arises) with
a set of unit stresses applied on a representative volume. Such a
volume implicitly delineates the small and the large scales. It fully
depends on the mesh and the numerical technique that will then be
used for simulating seismic waves. Even though our non-periodic
homogenization method also includes the numerical resolution of a
static problem, this latter does not involve a representative volume.
Our static problem is actually defined on the whole medium at once
with volume forces equal to the divergence of the elastic tensor
(eq. 33). Low-pass filtering the strain and the stress which result
from these forces then leads to the effective properties (eq. 30). Our
filter only depends on the minimum wavelength to be propagated in
the medium and a precision factor, so that the scales are separated by
the waves rather than imposed by a numerical method. This makes
non-periodic homogenization results physically meaningful and in-
dependent from wave equation solvers. Homogenized properties
actually reveal what the waves ‘see’. In particular, Capdeville et al.
(2013) showed that models obtained by full-waveform inversion are
homogenized models.

Applying the non-periodic homogenization method in 3-D does
not require further theoretical derivations than those developed in
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2-D by Capdeville et al. (2010b) and Guillot et al. (2010). In a first
part, the present paper recalls the ideas and concepts of the method.
From this theoretical part emerge the practical issues which have
to be tackled to get homogenized properties, namely (i) the reso-
lution of an elastostatic problem and (ii) a filtering process. The
second part of the article describes the implementation of a parallel
finite-element method for solving the 3-D elastostatic problem and
provides some details on the 3-D filtering. In a third part, the ac-
curacy and performance of the resulting homogenization code are
challenged on various elastic models: (i) a finely layered medium
for which analytical expressions of the upscaled properties are avail-
able, (ii) a large and highly heterogeneous medium in which refer-
ence seismograms can be computed and (iii) a realistic geological
model made of multiple folded and faulted horizons. Finally, we
discuss the possible improvements of our code and the numerous
perspectives opened by the 3-D homogenization method in terms
of solving forward and inverse problems.

2 T H E N O N - P E R I O D I C
H O M O G E N I Z AT I O N T H E O RY
I N A N U T S H E L L

We here attempt to give a synoptic overview of the non-periodic ho-
mogenization theory, starting from basics introduced in microme-
chanics for 1-D periodic materials (e.g. Bensoussan et al. 1978),
then extending these basics to non-periodic media (Capdeville et al.
2010a), and finally moving to the general 2-D/3-D non-periodic case
(Capdeville et al. 2010b; Guillot et al. 2010). Our goal is to provide
a digest of the theory to make the non-periodic homogenization un-
derstandable by a large number of geophysicists, so we intentionally
skip some technical details of the whole Capdeville et al. (2010a,b)
derivation to focus on the main ideas and concepts of the method.

2.1 1-D periodic homogenization

The homogenization theory relies on an ansatz for the solution
of the physical problem in consideration. In elastodynamics, the
displacement u(x; t) and the stress σ (x; t) involved in the 1-D case
(x being the space variable and t being the time) are postulated to
be two-scale asymptotic expansions:

u(x ; t) =
+∞∑

i=0

εi ui

(
x,

x
ε

; t
)

, (2)

σ (x ; t) =
+∞∑

i=0

εiσi

(
x,

x
ε

; t
)

, (3)

where ε = l
λm

is the ratio of the size of the periodic cell which con-
stitutes the 1-D medium to the minimum wavelength propagating
in this medium (Fig. 1). By definition, l is microscopic and λm is
macroscopic. ε, which is called scaling parameter, is therefore much
smaller than 1. It enables to explicitly separate the scales within co-
efficients ui and σ i of series (2) and (3), x capturing the large-scale
variations and y = x

ε
handling the small-scale variations. Because

any change in y induces a very slight change in x, the two variables
can be treated independently and the spatial derivative operator can
be written

∇ = ε−1∇y + ∇x . (4)

The introduction of the small-scale variable y = x
ε

also allows
us to rewrite the physical parameters E(x) (Young modulus) and
ρ(x) (density) of the medium as λm-periodic quantities E(y) and

Figure 1. 1-D periodic homogenization framework: a wavefield having a
minimum wavelength λm propagates in an infinite 1-D medium made of
periodic cells whose size l is much smaller than λm.

ρ(y). In other words, the l-periodic bar in the initial one-variable
problem is now seen as a medium containing only small scales
which are repeated in space with a λm-periodicity. Furthermore,
coefficients ui and σ i are assumed to be λm-periodic in y as are E
and ρ. This assumption imposes that small-scale variations of the
displacement and stress fields are due to local small-scale structures
of the medium. In seismology, such a phenomenon is commonly
called site effect.

Plugging eqs (2)–(4) into the elastodynamic problem (i.e. the
wave equation and Hooke’s law) yields a cascade of coupled equa-
tions which can be solved for each i using the average over the
periodic cell

〈 f 〉(x) = 1
λm

∫ λm
2

− λm
2

f (x, y) dy, ∀ f :R2 →R, (5)

and the periodicity in y of the problem. Doing so, it turns out that
the zeroth-order terms u0 and σ 0 do not depend on the microscopic
variable y. This result formalizes the poor sensitivity of the wave-
field to small heterogeneities. Going further, one shows that u0 and
σ 0 are the solution of the so-called homogenized problem, which
is a classical elastodynamic problem with homogeneous effective
properties E& and ρ& such that

ρ& = 〈ρ(y)〉 (6)

and

E& =
〈
E(y)[1 + ∇yχ (y)]

〉
. (7)

In this last equation, χ is the so-called first-order corrector. It is the
solution of the so-called cell problem, which is

∇y
[
E(1 + ∇yχ )

]
= 0 (8)

defined on the cell with periodic boundary conditions. Because an
analytical solution exists for this problem, eq. (7) finally reduces to

E& =
〈

1
E(y)

〉−1

. (9)

In conclusion, the quantity to average for obtaining the zeroth-
order long-wave equivalent Young modulus E& is the inverse of the
initial Young modulus E (eq. 9), whereas the zeroth-order long-wave
equivalent density ρ& simply is the average of the initial density ρ

(eq. 6).
Contrary to u0 and σ 0, the higher-order terms of series (2) and

(3) contain small-scale variations. For instance, the first-order dis-
placement term is y-dependent through the first-order corrector:

u1(x, y) = χ (y)∇x u0(x) + 〈u1〉(x). (10)

Examples of the contribution of this last term to the whole wavefield
can be found in Capdeville et al. (2010a). In the present work, we
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Figure 2. 1-D non-periodic homogenization framework: a wavefield having
a minimum wavelength λm propagates in a finite 1-D medium of size L.
Contrary to the periodic case, no assumption is made on the distribution of
the mechanical properties E(x) and ρ(x) within the medium.

focus on the order 0 so we do not provide any further details on the
higher-order terms.

A crucial point in the homogenization theory is that the asymp-
totic convergence can be proved mathematically. One actually does
not directly show the convergence of series (2) and (3) towards
the exact wavefield; one uses the so-called (-convergence instead
(Dal Maso 1993). Rather than studying a single problem for the
physically relevant value of ε, one considers a sequence of prob-
lems indexed by ε which is now regarded as a small parameter
going to zero. In other words, one builds a fictitious sequence of
problems in which the periodic cell becomes smaller and smaller.
In this context, one demonstrates that the exact solution converges
to the solution of the homogenized problem u0 and σ 0 (Nguetseng
1989; Allaire 1992). Such a demonstration provides rigorous math-
ematical foundations for the homogenization theory.

2.2 1-D non-periodic homogenization

Let us now consider any given distribution of the properties E and
ρ within a finite 1-D medium. The length of the medium is denoted
by L. Again, our goal here is to find long-wave equivalent proper-
ties. We denote by λm the minimum wavelength of the wavefield
propagating in the bar (Fig. 2). Inspired by the periodic homoge-
nization, we will represent the displacement u(x; t) and the stress
σ (x; t) as power series in ε (to be redefined) with coefficients ui and
σ i as functions of x and y = x

ε
. Plugging these series into the wave

equation and Hooke’s law will yield a cascade of equations. To get
a solution for these equations, let us bring a periodicity into the
problem by imposing periodic boundary conditions at the border of
the domain. We end up with an infinite medium made of a periodic
cell, so we can certainly benefit from the mathematical results of the
previous section (eqs 6 and 9). Nevertheless, two big issues remain:

(i) Because the boundary conditions are forced to be periodic, the
effective properties computed near the border of the domain are not
meaningful for any kind of physically interesting conditions such
as Dirichlet or Neumann conditions. In the present paper, we do not
investigate this issue. Disregarding boundary effects, we focus on
the computation of accurate effective properties in the interior of
the domain. Precisions on what we exactly mean by the interior of
the domain are given in Part 3.

(ii) Contrary to the periodic case, the size of the periodic cell is
not microscopic. The cell can contain various sizes of heterogeneity,
including macroscopic scales (i.e. sizes equal to or larger than λm),
so ε defined as the ratio of the size L of the periodic cell to the
minimum wavelength λm no longer is a relevant scaling parameter
to separate the scales through variables x and y = x

ε
. The goal of

the present section is (i) to redefine ε and (ii) to separate the scales
within the mechanical properties of the bar in a way that allows for
a solution of our homogenization problem.

2.2.1 Redefining ε

Because there is no quantity for defining the small scales yet, we
introduce λ0 < λm: all the heterogeneities whose size is smaller
than λ0 are considered as small. λ0 therefore is analogous to l in
the periodic case. Using it, we can bring in a new scaling parameter
ε0 = λ0

λm
< 1 and we can choose ε ≤ ε0. Similarly to the periodic

case, ε is a formal quantity which can go to zero to prove the (-
convergence of the asymptotic solution. It can be seen as the ratio of
a small length λ ≤ λ0 to the minimum wavelength of the wavefield
to be propagated λm, λ becoming smaller and smaller when studying
the convergence. In practice, the only physically relevant value of ε

is ε0.
With this definition of ε, variables x and y = x

ε
can be treated

independently. We denote by ) the set of functions f (x, y) : R2 →R
such that the x part of f carries the large-scale variations while the y
part of f handles the small-scale variations. As in the periodic case,
we impose coefficients ui and σ i of the asymptotic expansions (2)
and (3) to belong to ). Moreover, we can write the spatial derivative
operator ∇ as in eq. (4).

2.2.2 Separating the scales within the 1-D medium

In the non-periodic case, the main issue we face is that the medium
contains both microscopic and macroscopic scales, so we cannot
write E and ρ as a function of y only. Using a low-pass filter F ε0

(Appendix A) to separate large-scale and small-scale variations, we
will have to find a proper way to build Eε0 (x, y) and ρε0 (x, y) from
E(x) and ρ(x). By proper we here mean which allows for a solution
to the cascade of equations that arise when plugging eqs (2)–(4)
into the elastodynamic problem.

Let us introduce η = L
λ

(which implies that ε = L
ηλm

) and assume
that we properly built Eε0 (x, y) and ρε0 (x, y) from E(x) and ρ(x).
Because E and ρ are L-periodic in x, Eε0 and ρε0 are ηλm-periodic
in y. Assuming that coefficients ui(x, y) and σ i(x, y) are also ηλm-
periodic in y and using the average over the periodic cell

〈 f 〉(x) = 1
ηλm

∫ ηλm
2

− ηλm
2

f (x, y) dy, ∀ f :R2 →R , (11)

we can easily derive the cascade of equations. Similarly to the pe-
riodic case, it turns out that the zeroth-order displacement u0 and
stress σ 0 do not depend on y. Again, these fields are the solution
of the so-called homogenized problem, which is a classical elasto-
dynamic problem involving effective properties ρε0& and Eε0& such
that

ρε0&(x) = 〈ρε0 (x, y)〉 (12)

and

Eε0&(x) =
〈
Eε0 (x, y)[1 + ∇yχ

ε0 (x, y)]
〉
. (13)

Note that the effective properties no longer are homogeneous in
the non-periodic case. Moreover, they depend on the choice of ε0.
The first-order corrector χε0 (x, y) also depends on ε0. It necessarily
belongs to ) and it is ηλm-periodic in y. Similarly to the periodic
case, it is the solution of the cell problem, that is,

∇y
[
Eε0 (1 + ∇yχ

ε0 )
]

= 0 (14)

with periodic boundary conditions. As shown by Capdeville et al.
(2010a), function ∇yχ

ε0 (x, y) therefore satisfies

∇yχ
ε0 = −1 +

〈
1

Eε0

〉−1 1
Eε0

. (15)
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This last equation implies that

(i) Eq. (13) reduces to

Eε0&(x) =
〈

1
Eε0 (x, y)

〉−1

, (16)

which along with eq. (12) tells the quantity to average to get the
zeroth-order effective properties.

(ii) 1
Eε0 (x,y) belongs to ), which is the condition to meet for build-

ing Eε0 (x, y) properly. Another equation from our cascade tells that
ρε0 (x, y) has to lie in ) (Appendix B), so we also have a condi-
tion for building ρε0 (x, y) properly. Following these conditions, we
easily form

Eε0 (x, y) =
[
F ε0

{
1
E

}
(x) +

[
1
E

− F ε0

{
1
E

}]
(y)

]−1

(17)

and

ρε0 (x, y) = F ε0 {ρ}(x) + [ρ − F ε0{ρ}](y). (18)

Fig. 3 illustrates the mathematical construction. In this figure, sym-
bol g represents either ρ or 1

E , and FT stands for Fourier transform.
From any distribution of g over a length L extended to R by peri-
odicity (Fig. 3a), large scales (Fig. 3b) and small scales (Fig. 3c)
are extracted using F ε0 . Within the small scales, space variable x is
replaced by y = x

ε
(Fig. 3d), thus changing the L-periodicity in x to

a ηλm-periodicity in y. Then, the two-variable quantity gε0 (x, y) is
formed by simply adding the large scales (which are a function of
x) to the small scales (which are a function of y). Fig. 3(e) repre-
sents gε0 for a particular value of x = x̄ ; it shows the small scales
oscillating around F ε0 {g}(x̄).

2.2.3 Final results

Including eq. (18) into (12) yields

ρε0&(x) = 〈F ε0 {ρ}(x) + [ρ − F ε0{ρ}](y)〉
= 〈F ε0 {ρ}(x)〉 + 〈[ρ − F ε0{ρ}](y)〉
= F ε0{ρ}(x). (19)

Similarly, including eq. (17) into (16) leads to

Eε0&(x) =
[
F ε0

{
1
E

}
(x)

]−1

. (20)

Eqs (19) and (20) tell that the zeroth-order effective properties of
any 1-D medium can be computed by filtering the density and the
inverse of the Young modulus. This result can be easily intuited
from the solution inferred in the periodic case (eqs 6 and 9). We
have here given a rigorous demonstration for it.

To derive a zeroth-order solution for our non-periodic homoge-
nization problem, we introduced a new scaling parameter ε0. Be-
cause the obtained effective medium depends on this parameter
(eqs 19 and 20), u0 and σ 0 also depend on it. For sake of simplicity,
we did not index these two fields by ε0 as Capdeville et al. (2010a)
did. Nevertheless, we will study the ε0-convergence of these fields
in a specific case (Section 4.2).

2.3 3-D non-periodic homogenization

In the 3-D case, Hooke’s law involves a fourth-order tensor C to
relate the stress and the strain, so the linear elastic behaviour of a
given medium no longer is fully described by E only. Nevertheless,
the homogenization theory developed for 1-D non-periodic media

is still valid up to the zeroth-order effective properties (12) and (13)
which are now written

ρε0&(x) = 〈ρε0 (x, y)〉3 (21)

and

Cε0&(x) =
〈

Cε0 (x, y) :
[

I + 1
2

(
∇yχ

ε0 (x, y) + t∇yχ
ε0 (x, y)

)] 〉

3

,

(22)

where I is the fourth-order identity tensor, t is the transpose opera-
tor, : is the tensor contraction [A :B]i jkl = Ai jmn Bmnkl and 〈〉3 is the
average on y of any function f (x, y) :R3×2 →R over the periodic
cell. The first-order corrector χ ε0 now is a third-order tensor. It is
periodic in y and it necessarily belongs to )3 (the extension of )

to 3-D). It is the solution of the following cell problem:

∇y ·
{

Cε0 :
[

I + 1
2

(
∇yχ

ε0 + t∇yχ
ε0

)]}
= 0 (23)

with periodic boundary conditions. Contrary to the 1-D case, there
is no analytical solution for this problem here (unless the medium
is layered transverse isotropic, as demonstrated by Guillot et al.
(2010) and Lin et al. (2017)), so we are not able (i) to write Cε0& as
a function of Cε0 only and (ii) to get a mathematical condition on
Cε0 for properly separating the scales within the elastic properties
of the medium. To overcome this issue, a procedure inspired by
Papanicolaou & Varadhan (1981) is proposed. Introducing
Gε0 (x, y) and Hε0 (x, y) such that

Hε0 = Cε0 : Gε0 (24)

= Cε0 :
[

I + 1
2

(∇yχ
ε0 + t∇yχ

ε0 )
]

, (25)

this procedure enables an implicit construction of Cε0& such that
both Hε0 and χ ε0 are periodic in y and belong to )3, which are the
conditions to meet to get a proper solution to our homogenization
problem. Here are the steps of the procedure:

(i) Eq. (23) with periodic boundary conditions is solved using
C( y) instead of Cε0 (x, y). C( y) is just the original elastic tensor in
which the space variable x has been changed by y = ε0x, meaning
that all the scales within the medium are considered as small in this
first step. This yields a cell problem that we can solve numerically
(Part 3). The solution of such a cell problem is called the starting
corrector χ s( y). It can be seen as the static response of the medium
to local unit strains expressed by the identity tensor I.

(ii) From χ s , two tensors Gs and Hs are built:

Gs( y) = I + 1
2

[
∇yχ s( y) + t∇yχ s( y)

]
, (26)

Hs( y) = C( y) : Gs( y). (27)

Gs can be seen as the unit strains plus the strains associated with
the starting corrector. It is called strain concentrator. In the same
way, Hs is called stress concentrator.

(iii) Using F ε0
3 (the extension of F ε0 to 3-D, see Appendix C),

the large-scale and small-scale variations are separated in Gs and
Hs to form Gε0 and Hε0 :

Gε0 (x, y) = I +
[
Gs − F ε0

3 {Gs}
]

( y) :
[
F ε0

3 {Gs}(x)
]−1

, (28)

Hε0 (x, y)

=
[
F ε0

3 {Hs}(x) + [Hs − F ε0
3 {Hs}]( y)

]
:
[
F ε0

3 {Gs}(x)
]−1

. (29)
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988 P. Cupillard and Y. Capdeville

Figure 3. Separation of the scales within a 1-D medium of length L. g here represents either ρ or 1
E . From any distribution of g extended to R by periodicity

(top row), we build gε0 (x, y) (bottom row) using a low-pass filter Fε0 . In this figure, gε0 (x, y) is represented for a given x = x̄ . See the text for more details.

Through definitions (24) and (25), Gε0 and Hε0 are the strain and
the stress concentrators associated with the first-order corrector
χ ε0 . They are here constructed by separating the scales in Gs and Hs

(eqs 28 and 29). From such a construction, one can demonstrate that
Hε0 and χ ε0 are indeed periodic in y and belong to )3 (Appendix D).

(iv) Using (25) in (22), we note that Cε0& = 〈Hε0 〉3. Introducing
(29) into this latter equation, we end up with

Cε0&(x) = F ε0
3 {Hs}(x) :

[
F ε0

3 {Gs}(x)
]−1

. (30)

The zeroth-order effective elastic tensor given by the procedure
therefore is obtained by filtering the stress and the strain associated
with the starting corrector. This means that one just needs to go
through steps (i), (ii) and (iv) to get this tensor in practice. Step
(iii) would be necessary to obtain χ ε0 (through the construction
of Cε0 = Hε0 : Gε −1

0 and the resolution of eq. 23 for instance) in
order to access the first-order displacement. Because we focus on
the zeroth-order solution in the present paper, we will not deal with
this latter aspect. Furthermore, there is no demonstration for the
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minor and major symmetries of Cε0& yet. We do not address this
point here, but we have checked the symmetries (up to a certain
precision) in all the applications that we present in Part 4.

As regards the density, an equation similar to (B1) also emerges in
3-D, implying that ρε0 must lie in )3, so the scales can be separated
as they were in 1-D:

ρε0 (x, y) = F ε0
3 {ρ}(x) +

[
ρ − F ε0

3 {ρ}
]

( y). (31)

Using (31) in (21), the effective density comes out:

ρε0& = F ε0
3 {ρ}. (32)

As in the 1-D case, ρε0& is obtained by simply filtering the initial
density ρ.

3 I M P L E M E N TAT I O N O F T H E 3 - D
N O N - P E R I O D I C H O M O G E N I Z AT I O N

While the non-periodic homogenization theory involves many spe-
cific concepts and quantities, its zeroth-order result can be stated
quite shortly. From a given 3-D medium described by its density ρ

and its elastic tensor C, a long-wave equivalent density ρε0& can be
computed by just filtering ρ (eq. 32), and a long-wave elastic tensor
Cε0& can be obtained by

(i) Calculate the starting corrector χ s from the cell problem (23)
using C with periodic boundary conditions instead of Cε0 , that is,

∇y ·
{

C :
[

I + 1
2

(
∇yχ s + t∇yχ s

)]}
= 0. (33)

(ii) Build Gs and Hs from χ s using eqs (26) and (27), and then
filter these two quantities to get Cε0& (eq. 30).

Differential eq. (33) can be seen as a classic elastostatic problem
with a specific load consisting in the divergence of the elastic tensor
C. Such a divergence yields a third-order tensor ∂ iCijkl. Thanks to the
symmetry of C (Cijkl = Cijlk), this tensor reduces to six force vec-
tors. To determine the six corresponding displacements, eq. (33)
can be solved in two different ways: using a strong-form itera-
tive scheme based on Fast Fourier Transform (Moulinec & Suquet
1998; Capdeville et al. 2015) or using a more classic weak-form
finite-element approach (e.g. Hughes 2012). The latter is adapted
to strongly discontinuous media. It is the method we implement
here, relying on tetrahedral meshes. Because we want to investigate
the behaviour of the solution with respect to the discretization, our
code allows polynomial interpolations of degree 1, 2 or 3 (Worth
et al. 2012) in addition with various quadrature rules (Felippa 2004).
Moreover, both linear and quadratic tetrahedra are enabled, leading
to either iso-, super- or subparametric elements. The obtained linear
system involving six right-hand side members, we solve it using a
direct solver. Among several codes, PARDISO (Schenk & Gärtner
2006) is chosen here. Finally, the low-pass filter F ε0

3 is applied in
the space domain to obtain ρε0& and Cε0&. To perform the 3-D con-
volution, we use the quadrature associated with the mesh employed
in finite element analysis.

The periodicity imposed at the boundary ∂, of the elastic domain
, involved in eq. (33) means that the medium is supposed to repeat
itself periodically in the 3-D. When dealing with geological me-
dia, this condition is obviously not fulfilled. It is therefore replaced
by either a homogeneous Neumann condition or a homogeneous
Dirichlet condition. We choose the second option in our implemen-
tation so we impose χ s = 0 on ∂,. The effect in the volume , of
such an artificial condition decays exponentially (Dumontet 1990),

Figure 4. A classic distributed-memory workflow for solving the non-
periodic homogenization problem. (a) The domain , is decomposed in
n subdomains ,k. As an example here n = 3. In each subdomain, a local
stiffness matrix K k is computed. (b) The local stiffness matrices are assem-
bled to obtain the global stiffness matrix K . (c) The linear system is inverted
using a parallel solver. From the gradient of the solution, Gs is formed. (d)
Using the domain decomposition again, the effective properties Cε0& and
ρε0& are computed in each subdomain by filtering Gs , Hs =C :Gs and ρ. In
the outer domain (dotted grey), the filtering wavelet wε0 cannot be applied
so Cε0& and ρε0& cannot be computed. The same problem appears near the
frontiers between the subdomains, so we enlarge these latter to build n over-
lapping parts Pk equipped with an outer part P O

k and an inner part P I
k in

which the filter can be applied. (e) The result in the whole inner domain ,I

is obtained by merging the results from the n inner parts.

so our numerical solution is meaningless in a thin layer from the
border of the domain. Such meaningless values of χ s do not matter,
because the filtering process cannot be performed near ∂, anyway.
Some elastic material to be convolved with the wavelet is actually
missing there, so we are not able to compute the effective properties
ρε0& and Cε0& using (32) and (30). The layer ,O in which the filter
cannot be applied is called the outer domain. Its thickness is equal to
half of the wavelet support. Its complement ,I = , − ,O is called
the inner domain (or the interior of the domain). The solutions
proposed in the present paper make sense in ,I only. Further de-
velopments, such as those initiated by Capdeville & Marigo (2008,
2013), would be necessary to get meaningful effective properties in
,O.

When handling large models, the memory requirements for
achieving the computation of the effective properties can be very
large. This is mainly because solving large linear systems, even
symmetric, is memory-demanding. This is also because high-order
tensors are involved in the homogenization process. For these two
reasons, a distributed-memory computation is necessary. A classic
way of implementing it is presented in Fig. 4. It consists in

(a) Decomposing the domain , into n subdomains ,k such that
, =

⋃n
k=1 ,k . Each subdomain being handled by a processor, n

local stiffness matrices K k are computed.

Downloaded from https://academic.oup.com/gji/article-abstract/213/2/983/4831486
by guest
on 15 March 2018

126



990 P. Cupillard and Y. Capdeville

Figure 5. An alternative way of solving the non-periodic homogenization
in parallel. (a) The domain , is decomposed in n parts Pk. As an example
here n = 3. The parts overlap to equip them all with an outer part P O

k and an
inner part P I

k . Moreover, a homogeneous Dirichlet condition is applied at
the boundary of the parts to make each of them like a new domain in which a
linear system with a stiffness matrix Kk can be defined. (b) Solving the linear
system in each part leads to n tensors Gsk . (c) Filtering Gsk , Hsk =C :Gsk

and ρ, the effective properties are obtained in each inner part P I
k . (d) The

results from the n inner parts are gathered to obtain the effective properties
in the whole inner domain ,I.

(b) Assembling the local stiffness matrices to build the global
stiffness matrix K .

(c) Solving the linear system using a parallel solver to get the
finite element solution χ s of eq. (33). From χ s , Gs is formed fol-
lowing (26).

(d) Using the domain decomposition again to filter Gs , Hs =
C :Gs and ρ in each subdomain. From this filtering, the effective
properties Cε0& and ρε0& are derived. In the outer domain ,O (the
dotted grey lines in Fig. 4), these properties cannot be computed
because the filter cannot be applied. The same problem appears
near the frontiers between the subdomains, so we have to either
implement massive communications between the subdomains or
enlarge each subdomain ,k by a buffer layer ,B

k which is as thick as
half of the filtering wavelet support. This second option is sketched
in Fig. 4. It yields n overlapping parts Pk = ,k ∪ ,B

k . Along with
possible pieces of ,O in ,k, the buffer layer ,B

k acts as an outer part
P O

k = (,O ∩ ,k) ∪ ,B
k . The effective properties can be calculated

in the inner part P I
k = Pk − P O

k , so in the whole inner domain
because

⋃n
k=1 P I

k = ,I .
(e) Communicating between processors to gather the results from

the n subdomains.

Such a workflow would certainly work, but it imposes the reso-
lution of the whole linear system to fit the distributed-memory at
once, meaning that a large stiffness matrix requires a large parallel
computer. To overcome this limitation, we propose an alternative
implementation which consists in working on the parts Pk all along
the workflow (Fig. 5). Applying a homogeneous Dirichlet condition
χ s = 0 at the boundary of the parts, each of them becomes like
a new domain which is totally independent from the other parts.
Thanks to the outer parts P O

k , we get the effective properties in all
the inner parts P I

k , so in the whole inner domain ,I =
⋃n

k=1 P I
k .

Figure 6. Strategy for building well-balanced parts. (a) We partition ,I

instead of the whole domain ,, then forming n subdomains ,I
k . As an

example here n = 3. (b) Each subdomain is enlarged by a buffer layer ,B
k .

At the border of the domain, the buffer is the outer domain ,O (dotted
grey). We end up with n parts Pk =,I

k ∪ ,B
k which all have the same size.

Moreover, P I
k = ,I

k and P O
k = ,B

k .

This alternative implementation is embarrassingly parallel because
the parts are independent from each other all along the workflow,
which means that they can be treated sequentially. This allows for the
homogenization of large models on small computers, possibly lap-
tops, provided the available RAM covers the memory requirement
of every single part. Such a distributed-memory implementation is
also proposed by Capdeville et al. (2015).

To speed up our code, multithreaded computations are performed
whenever possible. Moreover, efficient algorithms based on k–d
trees and stack data structures (e.g. Cormen et al. 2009) are used to
search for elements or points across the finite element mesh. Last
but not least, the partitioning of the mesh is performed on ,I instead
of , to obtain well-balanced parts Pk (Fig. 6). The performance and
capabilities of the code are illustrated through examples in the next
part.

4 VA L I DAT I O N T E S T S

We here handle three different models to test the accuracy of the
homogenization method in 3-D and challenge our code. First, the
case of fine layers is investigated. For such a medium, analytical
expressions of the effective elastic parameters exist so we can just
compare the result of the homogenization with the result of these
expressions to validate our code. The second model we study is
made of small cubes. Because no reference solution for the effective
properties is available in this case, we base our validation on the
comparison of waveforms computed in the initial medium on the one
hand, and in the homogenized medium on the other hand. Finally, a
3-D geological model is handled to emphasize the efficiency of the
homogenization in a realistic case.

4.1 Homogenization of a finely layered medium

The first model we consider for testing our 3-D homogenization code
is a medium made of 60 isotropic layers randomly taken between 800
and 1200 m thick. Within each layer, the density is randomly chosen
in the 2000–4000 kg m−3 range. Because the medium is isotropic,
two parameters (e.g. the Lamé coefficients, or the S- and P-wave
velocities) are sufficient to define the elastic tensor in each layer.
We then randomly choose the S-wave velocity between 3000 and
5000 m s−1, and the P-wave velocity between 5000 and 8000 m s−1

(Fig. 7), with the constraint of having the Poisson’s ratio in the
0.1–0.45 range to make it geologically realistic.
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Figure 7. Comparison of effective properties computed with the 3-D non-periodic homogenization (dashed red) and the Backus theory (black) in the case of

an original layered medium (blue). The two equivalent media both are anisotropic (φ = V 2
PV

V 2
P H

and ξ = V 2
SH

V 2
SV

pointing out the rate of anisotropy) and agree very

well with each other.

The homogenization of the model is performed using
λ0 = 1600 m. In this case, the thickness of the outer domain (i.e.
half of the filtering wavelet support) is 6400 m (Appendix C), so
we take the extent of the layers equal to 15 km in order to get an
inner domain in which a solution can be computed. Following a rule
of thumb for the spatial discretization (Appendix E), each layer is
meshed by a single layer of tetrahedral elements equipped with in-
terpolation functions of degree 3. As expected from Backus (1962),
the resulting effective medium is transversely isotropic. In Fig. 7,
we represent it in terms of vertically- and horizontally polarized
wave velocity:

VPV =

√
Cε0&

zzzz

ρε0&
,

VP H =

√
Cε0&

xxxx

ρε0&
=

√
Cε0&

yyyy

ρε0&
,

VSV =

√
Cε0&

xzxz

ρε0&
=

√
Cε0&

yzyz

ρε0&
,

VSH =

√
Cε0&

xyxy

ρε0&
,

z being the vertical, layered direction, and (x, y) defining the hori-
zontal plane. Moreover, we emphasize the amount of anisotropy by

plotting φ = V 2
PV

V 2
P H

and ξ = V 2
SH

V 2
SV

.

The effective properties computed with the non-periodic homog-
enization in the layered case are expected to be the same as those
proposed by Backus (1962). A comparison between the two so-
lutions (Fig. 7) shows a very good match, meaning that our 3-D
implementation of the non-periodic homogenization works prop-
erly in the present case. As mentioned in Part 3, no solution can
be computed at the border of the domain because the convolution

Downloaded from https://academic.oup.com/gji/article-abstract/213/2/983/4831486
by guest
on 15 March 2018

128



992 P. Cupillard and Y. Capdeville

Figure 8. (a) Cut in the random cubes. The black lines emphasize the edges of the whole domain. (b) Cut in the homogenized medium. (c) Snapshot of the L2

norm of the wavefield u generated through the random cubes by a force along the z-axis at point xS marked by the blue star. (d) Snapshot of the L2 norm of
the wavefield u0 generated through the homogenized medium by the exact same force.

involved in the filtering operation is not possible there. Nonetheless,
extending the domain with a relevant material to make the convolu-
tion possible and to get satisfying effective properties at the border
would be possible. Simply extending the boundary values of den-
sity and elastic coefficients would lead to the zeroth-order solution
(Capdeville & Marigo 2007). To reach the first order, a continuous
periodic extension (in which the boundary actually acts as a mirror)
would have to be used (Leptev 2005; Capdeville & Marigo 2007).
We do not implement such extensions in the present work.

4.2 Homogenization of random cubes

To push our validation further, we challenge our homogenization
code to a highly heterogeneous medium made of small elastic
cubes with random isotropic properties. Each cube is 1 km3 large.
100 cubes are considered in each direction, which gives rise to a
large cubic volume made of 1 000 000 random cubes. As shown in
Fig. 8(a), this cubic volume is embedded in a 13 km thick homoge-
neous medium. Such a thickness corresponds to the support of the

filtering wavelet which will be used in the homogenization process.
In each small cube, the properties are randomly picked between
2000 and 4000 kg m−3 for the density, 2500 and 5000 m s−1 for the
S-wave velocity, and 4000 and 8000 m s−1 for the P-wave velocity.
As in the previous example, the Poisson’s ratio is constrained in the
0.1–0.45 range.

The homogenization of the random cubes is performed using
λ0 = 1600 m (i.e. λm = 8000 m and ε0 = 0.2). The spatial dis-
cretization is ensured by dividing every single cube into six tetrahe-
dra equipped with degree 3 interpolants. Using similar elements in
the homogeneous region, we end up with 12 002 256 tetrahedra and
160 747 899 degrees of freedom (three components at 53 582 633
interpolation points). To achieve the computation, the domain is
split into 100 overlapping subdomains. Calculating the effective
properties in a single subdomain then requires about 116 GB and
4 hr on an Intel Xeon X5680 processor (6 cores, 3.33 GHz, 12 MB
Cache, 6.4 GT s−1). The obtained homogenized model is shown in
Fig. 8(b).

To assess the quality of the effective medium calculated with
the non-periodic homogenization technique, we perform a seismic
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Figure 9. Comparison of the wavefields u (black), u0 (dashed red) and uF (green) computed at receiver A (Figs 8c and d). The maximum and dominant
frequencies of the Ricker function R(t) emitted at the source are equal to 0.5 and 0.2 Hz, respectively.

wave simulation in it and we compare the obtained seismograms
with traces computed in the initial model (i.e. the random cubes).
In other words, we solve the initial problem

{
ρ ü − ∇ · σ = f

σ = C :
[

1
2 (∇u + t∇u)

] (34)

and the homogenized problem

{
ρε0&ü0 − ∇ · σ 0 = f

σ 0 = Cε0& :
[

1
2 (∇u0 + t∇u0)

] (35)

to estimate the quality of ρε0& and Cε0& through the comparison of
u0 to u. In eq. (34) and (35), ¨ represents the second time-derivative
and f is the external force. This latter is chosen as a simple Ricker
function R(t) along the z-axis at a given point xS in the homogeneous
region: f (x, t) = R(t) δ(x − xS) ez . The dominant frequencies of
R(t) is chosen to be equal to 0.2 Hz. The two simulations are per-
formed using a spectral element method with PML-type absorbing
boundaries (Cupillard et al. 2012). Snapshots of the two obtained
wavefields are shown in Figs 8(c) and (d). They look very similar,
suggesting that our homogenized model is an accurate equivalent
medium for the seismic wave propagation.

We carefully compare u0 to u by looking at seismograms calcu-
lated at two particular receivers denoted by A and B in Figs 8(c)
and (d). Receiver A is on a P-wave nodal plane, 92 km away from
the source. The ballistic S-wave, which contains most of the seismic
energy, appears on the z-component (Fig. 9). We see that this wave
is very well-retrieved by the homogenized model, the difference be-
tween u0 and u (i.e. the residual) reaching 8 per cent at most. Apart
from the S-wave, a scattered wavefield is observed on the three com-
ponents. Our homogenized model also reconstructs this wavefield
very well. To emphasize the relevance of the homogenized solution,
Fig. 9 also shows seismograms computed in a medium obtained by
just filtering the initial density and elastic tensor. The displacement

and the stress propagating in this medium are denoted by uF and
σF , respectively. By definition, these two fields verify
{

F ε0
3 {ρ}üF − ∇ · σF = f

σF = F ε0
3 {C} :

[
1
2 (∇uF + t∇uF )

]
.

(36)

The waveforms of uF at receiver A do not fit the wavefield u in
the initial model. Neither the phase nor the amplitude is properly
reconstructed by the filtered medium, meaning that this latter does
not hold the correct effective properties for the seismic wave prop-
agation. Similar features are observed at receiver B (Fig. 10): uF is
far from u whereas the homogenized solution accurately recovers
the whole seismograms, including a ballistic P-wave which appears
at this receiver location.

The overall difference between u0 and u can be evaluated quan-
titatively using the error

E0 = 1
50

50∑

r=1

√√√√
∫ T

0 (u0 − u)2(xr ) dt
∫ T

0 u2(xr ) dt
, (37)

where xr is the randomly chosen location of receiver r. In eq. (37),
T is the duration of the simulated propagation. It is equal to 55 s
here. For ε0 = 0.2 (i.e. λ0 = 1600 m), we obtain E0 - 0.006.
Computing the same kind of error for the naive solution uF , we get
EF - 0.055 - 9E0. This result again emphasizes the much higher
accuracy of the homogenized solution u0. We also compute E0 and
EF for ε0 = 0.4 (i.e. λ0 = 3200 m), ε0 = 0.8 (i.e. λ0 = 6400 m)
and ε0 = 1.6 (i.e. λ0 = 12 800 m). This allows us to study how
fast u0 and uF converge to u. From the homogenization theory, we
expect E0 = O(ε0). Fig. 11 shows that we actually get E0 - O(ε3/2

0 ).
This unexpectedly fast convergence of u0 toward u could be due to
the weak contribution of the higher-order terms in the present case
study, as suggested by Capdeville et al. (2010b) in 2-D. Plotting also
EF in Fig. 11, it appears that the convergence of uF is way poorer.

The spectral element simulation of the wavefield u in the initial
model requires 126 hexahedra in each direction, that is, 2 000 376
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Figure 10. Comparison of the wavefields u (black), u0 (dashed red) and uF (green) computed at receiver B (Figs 8c and d). Contrary to receiver A, B records
a ballistic P-wave.

Figure 11. E0 (red) and EF (green) as a function of ε0. It is clear from this plot that u0 converges much faster than uF toward the target wavefield u.

elements in total. This is because a spectral element mesh has to
honour all the physical discontinuities of the model in study to make
the computation accurate, so each 1 km × 1 km × 1 km random cube
has to be captured by a hexahedron. As a consequence, the obtained
mesh highly oversamples the wavefield: because λm = 8 km, ele-
ments as large as 8 km × 8 km × 8 km with a polynomial order
larger than 4 would be sufficient if the medium was smooth enough
(i.e. if it only contained scales larger than λm). Because of the dis-
continuities, we here get a 512 times denser mesh, which yields a
4096 times higher numerical cost (a factor 512 in space times a
factor 8 in time because of eq. 1). Computing a 55 s long simulation
of u then takes about 6 hr on ten Intel Xeon X5680 processors. In
homogenized media, such as those computed here using ε0 = 0.2,
0.4, 0.8 and 1.6, coarser spectral element meshes can be used, then
decreasing the computation cost. When using ε0 = 0.4 for instance,
we get an effective medium of the random cubes that only contains
scales larger than λ0 = 3.2 km, so 3.2 km3 large hexahedra then suit

an accurate spectral element simulation of u0, which is 105 times
less numerically demanding than the simulation of u. Neverthe-
less, all the wave simulations presented in this paper are performed
within the same fine hexahedral mesh to avoid possible numerical
biases and thus make all our comparisons totally fair.

4.3 Homogenization of a realistic geological model

In this section, we use a subsurface model of the Ribaute area in
France (Caumon et al. 2009) as an illustration of the 3-D non-
periodic homogenization technique applied to a realistic geological
medium (Fig. 12a). Simulating waves in the model as it is (i.e.
composed of multiple faulted and folded horizons) is extremely
challenging because of the fine grid required to accommodate thin
layers and complex geometries formed by the discontinuities. Such a
fine grid indeed makes the computation cost of any wave simulation
enormous. Moreover, in the context of the spectral element method,
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Figure 12. (a) Structural model of a highly faulted and folded region near
Ribaute, Southern France. (b) Adaptive tetrahedral mesh of the model. This
mesh is used to perform the homogenization. The background colour cor-
responds to the (randomly chosen) isotropic S-wave velocity within each
layer of the model. (c) One of the S-wave velocities resulting from the ho-
mogenization. Another S-wave velocity is shown in Fig. 13. The difference
between these two velocities is plotted in (d), which emphasizes the seismic
anisotropy produced by the structure.

generating a hexahedral mesh which honours all the horizons and
faults, if possible, demands tremendous efforts. For these reasons,
we do not compute reference waveforms here; we just perform a
spectral element simulation in the homogenized model to show how
convenient working with effective properties is, and we compare the
results with a simulation in a model obtained by brutally filtering
the initial density and elastic tensor to exemplify that the choice of
the upscaling technique matters.

The initial model is made of five homogeneous isotropic layers
(Fig. 12b). To compute its effective properties using our finite-
element code, it is meshed with VorteXLib from RINGMesh
(Pellerin et al. 2017). We choose λ0 = 30 m and polynomial inter-
polants of degree 2, so the optimal volume for the tetrahedra is about
200 m3 (Appendix E). While smaller elements are needed around
the discontinuities for capturing their complex geometry, larger ele-
ments are allowed where the discontinuities have no influence, that
is, at a distance larger than the size of the filtering wavelet sup-
port. We therefore take advantage of the refinement-derefinement
technique proposed by Botella (2016) to generate an adaptive mesh
which minimizes the finite-element computation cost. We end up
with a 9 077 300 element mesh and 35 703 579 degrees of freedom.
The homogenized model is obtained in 9 min on 120 Intel Xeon
E5-2683 v4 (16 cores, 2.10 GHz, 40 MB Cache, 9.6 GT s−1). The

result is shown in Fig. 12(c). We have plotted the

√
C

ε0&
xyxy

ρε0& compo-

nent there to make the figure comparable to Fig. 12(b) where the
isotropic S-wave velocity of the initial medium is represented. As
expected, the homogeneous areas (i.e. the interior of the layers) are
not changed by the homogenization process, whereas all the dis-
continuities (i.e. the faults and the interfaces between the layers)
are smoothed. To illustrate the S-anisotropy produced by these dis-

continuities,

√
C

ε0&
xyxy−

√
C

ε0&
xzxz√

ρε0&
is plotted in Fig. 12(d). We observe that

the anisotropy can reach 20 per cent where high velocity contrasts
(i.e. at the bottom and the top of the fastest layer) occur.

Because the homogenized model is smooth, seismic waves
within it can be simulated using a coarse mesh. As an example,
a coarse hexahedral mesh supporting a spectral element simulation
(Cupillard et al. 2012) is shown in Fig. 13. The elements there are
60 m3 large and hold degree-8 polynomials to capture all the vari-
ations of the model. We see that the direct seismic wave front is
highly deformed by the effective structure and that strong reflected
and diffracted waves are generated, even though the medium con-
tains no discontinuities. Fig. 13 also shows waveforms obtained at
two stations. At station A, near the source, several S-waves reflected
on discontinuities are observed. Zooming in two of them emphasizes
important discrepancies between our homogenized solution and the
waveform computed in a medium obtained by just filtering the den-
sity and the elastic tensor of the initial model. These discrepancies
can be explained by the lack of anisotropy in this last medium. By
construction, it is fully isotropic, so it cannot hold the important
structure-induced anisotropy observed in our homogenized model
(e.g. Fig. 12d). As a consequence, the waveforms computed in the
two models at station A show significant differences in phase and
amplitude. Similar observations are also made far from the source,
at station B. In the light of the results presented in Section 4.2
and in previous 2-D studies (Capdeville et al. 2010b; Guillot et al.
2010), we can reasonably think that the waveforms computed in the
homogenized model are the most accurate, but we cannot assess it
because we do not provide any reference solution here. The main
point of this section is to show an application of our homogenization
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Figure 13. Left: three snapshots of the L2 norm of the wavefield u0 generated through the homogenized Ribaute model by a force along the x-axis acting at
the point marked by the yellow star. The wave simulation is performed using a spectral element method on a regular hexahedral mesh. Top right: x-component
of the displacement u0 recorded near the source, at station A. The displacement uF computed in a medium obtained by just filtering the density and the elastic
tensor of the initial model is also plotted. As expected, the direct S-wave (arriving around t = 0.05 s) is identical in the two simulations. On the contrary, the
reflected phases show significant differences. In particular, zooming in the waves reflected on the two major velocity contrasts (i.e. the bottom and the top of
the fastest layer) shows that uF arrives earlier than u0 with a different amplitude. Bottom right: x- and z-components of both u0 and uF recorded far from the
source, at station B. Because the direct S-wave has travelled through heterogeneities, it is now different in the two simulations. Obviously, discrepancies in the
later, multiply reflected and scattered energy, are also observed.

code to a 3-D realistic geological model and to put the importance
of the structure-induced anisotropy in evidence.

5 D I S C U S S I O N A N D C O N C LU S I O N S

Dealing with small-scale heterogeneities in seismic wave simu-
lation is a difficult task because it usually involves enormous
computation costs. To handle them, Graphics Processing Unit
(GPU) and/or High Performance Computing (HPC) implementa-
tions of well-established numerical techniques such as the Spec-
tral Element method (SEM), the Discontinuous Galerkin method
(DGM) and the Finite Difference method (FDM), have been
proposed (Komatitsch et al. 2010; Peter et al. 2011; Weiss
& Shragge 2013; Gokhberg & Fichtner 2016; Remacle et al.

2016; Rietmann et al. 2017). Furthermore, the DGM allows lo-
cal time-stepping and p-adaptivity (e.g. Dumbser et al. 2007;
Etienne et al. 2010; Minisini et al. 2013; Diaz & Grote 2015) which
mitigate stability constraint (1) and therefore reduce the overall
computation cost. In the context of the SEM and the FDM, Pelties
et al. (2011) proposed empirical laws on the mesh size to relax the
need of honouring geological discontinuities. Complementary to all
these numerical advances, the use of effective properties for the seis-
mic wave propagation can drastically reduce the computation cost
related to small-scale features while preserving a good accuracy. In
the recent years, the non-periodic homogenization method emerged
as a general technique to compute such effective properties. We
here applied it in 3-D for the first time. In part 2, we recalled the
theory of the homogenization, skipping some technical details to fo-
cus on the main ideas and concepts. Then we described an efficient,
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embarrassingly parallel implementation of the method. In part 4, we
challenged this implementation on various media, showing the high
accuracy of the non-periodic homogenization and the ability of our
code to handle large and complex 3-D models, with no restriction
on the size and shape of the heterogeneities. The code is available
at upon request.

Homogenizing complex geological media to ease the numeri-
cal simulation of full seismic wavefields has straight-forward ap-
plications in seismic risk assessment (e.g. Chaljub et al. 2010),
survey design (e.g. Wei et al. 2012), structural model validation
(e.g. Irakarama et al. 2017), seismic source characterization (e.g.
Silwal & Tape 2016) and seismic tomography for keeping subwave-
length geological details in the inversion (Fichtner et al. 2013b;
Capdeville & Cance 2015). Because it tells what the waves ‘see’,
the non-periodic homogenization also opens important perspectives
in the interpretation of full waveform inversion results. In particular,
the structure-induced (or, equivalently, ‘extrinsic’ or ‘apparent’ or
‘geometric’) anisotropy (Fichtner et al. 2013a; Wang et al. 2013)
and the structure-induced attenuation (Ricard et al. 2014) could be
downscaled, as recently initiated by Bodin et al. (2015), leading to
probability distributions of small-scale features and to better esti-
mations of the intrinsic anisotropy and attenuation at various scales,
from the Earth’s core up to the subsurface. In addition, Capdeville
et al. (2013) and Afanasiev et al. (2016) recently showed that the
homogenization can help in regularizing full waveform inversion
problems.

The non-periodic homogenization relies on a two-scale asymp-
totic expansion of the displacement and the stress involved in the
elastic wave equation. In this paper, we have investigated the zeroth-
order term and the associated upscaled properties. As shown by
Capdeville et al. (2010a,b) and Guillot et al. (2010), adding the
first-order term allows retrieving site effects (i.e. small-amplitude
high-frequency non-propagating signals) at the receivers. These au-
thors also show that a correction can be applied to the external
force term to take into account the effects of the local small-scale
structure at the source. A recent application of this correction can
be found in Burgos et al. (2016).

We have claimed that our method does not require any constraint
on the size and shape of the heterogeneities to be smoothed. In
other words, the homogenization is able to upscale any media. The
only limitation that has been noted so far occurs when trying to
model subwavelength focusing in Helmholtz resonators. In this ex-
treme case, the wavefield no longer holds a minimum wavelength,
so the non-periodic homogenization fails (Zhao et al. 2016). More-
over, we have mentioned that our homogenization theory is not
able to compute long-wave equivalent properties of heterogeneities
laying near Neumann or Dirichlet surfaces yet. A proper solution
only exists for smoothing a free-surface topography on top of a
homogeneous material (Capdeville & Marigo 2013) or fine hori-
zontal layers below a flat free-surface (Capdeville & Marigo 2008).
Relevant extensions of the model beyond its boundaries can also
leads to accurate effective properties (Leptev 2005; Capdeville &
Marigo 2007). Pushing these approaches would surely help the non-
periodic homogenization theory in handling heterogeneities near
various boundary shapes and conditions.

Besides these physical and theoretical limitations, slight numer-
ical weaknesses can be pointed out in our code. Even if it employs
powerful algorithms and an efficient parallel scheme, it could be op-
timized using Basic Linear Algebra Subprograms and the Fortran
column-major order more extensively, particularly when comput-
ing the stiffness matrix and when filtering the strain and the stress
associated with the starting corrector. The performance of the code

could also benefit from the nested homogenization technique pro-
posed by Capdeville et al. (2015) and from an iterative solver which
would be more efficient than a direct solver when dealing with very
large stiffness matrices. Most of all, developing an adaptive homog-
enization, taking into account the fact that the minimum wavelength
usually varies within the medium, would be a major advance.
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thesis, Université de Lorraine.
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A P P E N D I X A : T H E L OW- PA S S F I LT E R
I N T H E 1 - D C A S E

To separate the macroscopic and the microscopic scales, the non-
periodic homogenization method requires the use of a low-pass filter
F ε0 . Applied to any function f :R→R, this filter removes all the
scales smaller than λ0:

F ε0 { f }(x) =
∫

R
f (x ′)wε0 (x − x ′) dx ′ (A1)

where wε0 is the wavelet whose spectrum is

ŵε0 (k) =
{

1 for k ! 2π
λ0

0 for k > 2π
λ0

.
(A2)

In this last expression, ˆ represents the Fourier transform. Note that
the filter and the associated wavelet are indexed by ε0 because λ0

depends on the choice of ε0 (λ0 = ε0λm).
If defined by spectrum (A2), the wavelet wε0 has an infinite

support, which is unmanageable in practice. For that reason, we
introduce a cosine-taper to soften the cut-off:

ŵε0 (k) =






1 for k ! k0

1
2

[
1 + cos

(
π k − k0

!k

)]
for k ∈ ]k0; k0−!k]

0 for k > k0

(A3)

where k0 = 2π
λ0

. With such a definition, wε0 can be truncated with a
negligible error to get a compact support (Fig. A1).

Downloaded from https://academic.oup.com/gji/article-abstract/213/2/983/4831486
by guest
on 15 March 2018

136



1000 P. Cupillard and Y. Capdeville

Figure A1. A 1-D spectrum ŵε0 (left) and its corresponding wavelet wε0 (right). In this example, the length of the cosine-taper !k is equal to 0.5 k0.

Figure A2. 3-D spectrum ŵ
ε0
3 for !k = 0.5 k0 (left) and its corresponding 3-D wavelet w

ε0
3 (right). Because both ŵ

ε0
3 and w

ε0
3 are spherical, we represent them

as a function of ‖k‖ and ‖x‖, respectively. Comparing the obtained plots with Fig. A1, we note that the 3-D wavelet is different from just having the wavelet
of the 1-D case in all the directions. This is simply because the (inverse) spherical Fourier transform is not the (inverse) 1-D Fourier transform.

A P P E N D I X B : ρε0 M U S T B E L O N G T O %

Inserting eqs (2)–(4) and properties Eε0 (x, y) and ρε0 (x, y) instead
of E(x) and ρ(x) into the initial elastodynamic problem yields a
cascade of equations. For i = 0, it turns that

ρε0 (x, y)ü0(x) − ∇xσ0(x) − ∇yσ1(x, y) = f (x), (B1)

where f is the external force and ü0 is the second time-derivative of
the zeroth-order displacement. Because σ 1 has to lie in ), ρε0 must
belong to ) as well.

A P P E N D I X C : T H E L OW- PA S S F I LT E R
I N T H E 3 - D C A S E

F ε0
3 is the extension of the 1-D low-pass filter F ε0 (Appendix A) to

3-D. Applied to any function f :R3 →R, it removes all the scales
smaller than λ0:

F ε0
3 { f }(x) =

∫

R3
f (x ′)wε0

3 (x − x ′) dx ′, (C1)

where w
ε0
3 is the wavelet whose 3-D spectrum is

ŵ
ε0
3 (k) =






1 for ‖k‖ ! k0

1
2

[
1 + cos

(
π ‖k‖ − k0

!k

)]
for ‖k‖ ∈ ]k0; k0−!k]

0 for ‖k‖ > k0.

(C2)

k0 still is the cut-off wave-number 2π
λ0

. For all the applications within
the present paper (Section 4), the length of the cosine-taper !k has
been chosen to be equal to 0.5 k0. When using this value, a truncation
of the wavelet at ‖x‖ = 4 λ0 is satisfactory (Fig. A2).

A P P E N D I X D : Hε0 A N D χε0 A R E
P E R I O D I C I N y A N D B E L O N G T O %3

As a solution of a periodic boundary value problem, χ s is periodic
in y, so ∇yχ s is periodic in y. Gs therefore is periodic in y, as well
as Hs , consequently. Finally, Gε0 and Hε0 are both periodic in y. By
construction (eqs 28 and 29), they also belong to )3.

Let us denote the cross product by ∧. Because ∇y ∧ Gs = 0 and
∇y ∧ F ε0

3 { f } = F ε0
3 {∇y ∧ f } for any tensorial function f , we have

∇y ∧ Gε0 = 0, so Gε0 can be written as a constant plus a gradient
of a displacement χ ε0 . As a solution of eq. (23), ∇yχ

ε0 has no
rotational component, so we end up with

Gε0 = I + 1
2

(∇yχ
ε0 + t∇yχ

ε0 ). (D1)

By construction (eq. 28), 〈Gε0 〉3 = I (that would not be the case if
Gε0 was built as Eε0 and ρε0 are—eqs 17 and 18–), so

〈
1
2

(
∇yχ

ε0 + t∇yχ
ε0

) 〉

3

= 0. (D2)

For any tensorial function f ∈ )3 periodic in y,

〈 f 〉3 = 0 and ∇y g

= f =⇒ g is periodic in y and belongs to )3, (D3)

so χ ε0 is periodic in y and belongs to )3.
This demonstration can also be found in the seminal paper by

Capdeville et al. (2010b), section 3.5.
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A P P E N D I X E : H E U R I S T I C F O R
S A M P L I N G A M O D E L T O B E
H O M O G E N I Z E D

When honouring discontinuities, finite element meshes enable a
correct account for the geometry of the medium in which the phe-
nomenon to be simulated occurs. Nevertheless, the element size and
the interpolation degree which guarantee the accurate capture of the
phenomenon cannot be assessed rigorously in most of finite element
applications. To choose these two parameters, rules of thumb are of-
ten used. In the case of the non-periodic homogenization, we know
that our outputs ρε0& and Cε0& only contain scales larger than λ0,
so we sample them using a space-step dx = λ0

4 . This choice corre-
sponds to twice the Nyquist rate. Because Cε0& is obtained from the
space-derivative of the solution χ s of the finite element analysis, we

required an additional degree for this solution, so we want χ s to be
sampled by a space-step δx = λ0

5 . Such a sampling is ensured by
imposing

a
N

! λ0

5
, (E1)

where a is the length of the edges of the mesh and N is the inter-
polation degree. eq. (E1) is our heuristic for sampling a model to
be homogenized by our finite element code. In 3-D, assuming the
tetrahedral elements to be regular, we can rewrite this heuristic in
terms of the volume of the elements v given a degree N:

v !
√

2
12

(
Nλ0

5

)3

. (E2)
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SUMMARY

The time reversal method is based on the back-propagation of seismic waveforms recorded

at a set of receivers. When this set forms a closed surface and the elastic properties of the

medium are correct, the seismic energy focuses at the source location, creating a focal spot.

Such a spot is smooth in space, whereas the original wavefield usually shows a displacement

discontinuity at the source. The goal of the present paper is to discuss the link between the

focal spot and the original source using the concept of homogenized point-source recently

proposed by Capdeville (2021). We show that the back-propagated wavefield is equivalent

to the sum of two low-wavenumber fields resulting from the homogenization of the original

point-source. In other words, the homogenized point-source is the equivalent force for pro-

ducing the focal spot. In addition to the demonstration in the general 3D heterogeneous

case, we present some numerical examples in 2D.

Key words: Source observation – Theoretical seismology – Computational seismology
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Introduction

Seismic event localization and characterization can be performed using multiple methods and various

data such as travel times or waveforms. Two major families of methods can be distinguished. The

first one is based on travel time picking (e.g., ?). Because they rely on picking specific seismic phases,

travel time-based methods for determining the location and the mechanism of seismic events (Garmany

1979; Hampson & Russell 1984; Kennett & Sambridge 1992; Sambridge & Mosegaard 2002) are highly

sensitive to the quality of the data (i.e. signal to noise ratio). Moreover, they disregard significant

pieces of information contained in the seismic recordings. To overcome these limitations, waveform-

based methods have been developed (e.g., McMechan 1982; Schuster et al. 2004; Larmat et al. 2006;

Grigoli et al. 2016; Shi et al. 2019; Willacy et al. 2019). They rely on complete or partial recorded

signals. Their principle is to back-propagate data to either solve a full waveform inverse problem or focus

waves at the source location (Li et al. 2020). Full waveform inversion for seismic source characterization

(e.g., Willacy et al. 2019) consists in minimizing a misfit function between observed and synthetic data.

To do so, a prior source model is necessary to produce a first synthetic dataset. Then the gradient

of the misfit function is computed using an adjoint field calculation. The adjoint field is generated by

the data residuals at all receivers acting as sources. Other waveform-based approaches include partial

waveforms stacking (e.g., Kao & Shan 2004), match field processing (e.g., Cros et al. 2011), back-

projection (e.g., Ishii et al. 2007) and time reversal (e.g., Yang & Zhu 2019). They are often called

source imaging methods because they all somehow focus waves to create an "image" of the source. The

main advantage of these methods is the absence of prior source model and the direct (i.e. non-iterative)

calculation of the solution. However, they may require data processing to clean the input signals, with

the notable exception of time reversal, which is poorly sensible to noise (e.g., Gajewski & Tessmer

2005; Cao et al. 2012).

The time reversal technique was introduced by Fink (1992) in ultrasound acoustics. It has been

extended to elastic waves by Draeger & Fink (1997). It consists in reversing in time the recorded

signals and back-propagating them from the receivers. Under some conditions, the waves follow the

inverse path of the forward way and focus at the source position. Such a behavior can be explained

by the invariability of the wavefield through a reverse time operator because of the second-order time

derivative of the wave equation

ρün − ∂j(Cnjkl∂kul) = fn , (1)

with ρ the density, u the displacement, ü the second-order time derivative of the displacement, C the

elastic tensor, and f a force distribution acting in the medium. The result of the back-propagation

is a spot at the source location, named the focal spot. The conditions to apply time reversal are the

following:

(i) The receivers form a closed surface, called time reversal mirror.

(ii) The time reversal mirror does not perturb the wave propagation.
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(iii) The medium is well known. Errors on the velocity model or interface positions would generate

modifications in the wave path as compared to the path in the forward process.

(iv) The anelasticity is negligible. Anelastic attenuation would make a first-order time derivative

appear in the wave equation so that the time reversibility would not be verified.

In practice, conditions (i), (ii) and (iv) are difficult to satisfy: there is no continuous surfaces of receivers

in the underground, the velocity model presents uncertainties and the earth is anelastic. Nevertheless,

some solutions exist to overcome these difficulties. Cassereau & Fink (1992) developed a mathematical

model to perform time reversal with a plane mirror in acoustic media. Li & van der Baan (2016) applied

it in the 2D elastic case using wells as time reversal mirror. More recently, Finger & Saenger (2021)

used surface data as a plane mirror to locate microseisms in a geothermal reservoir. To quantify the

influence of the velocity model uncertainties on the focalization. Gajewski & Tessmer (2005) carried

out a sensitivity study. They showed that strong variations in the velocity model leads to a focal spot

shifted in time and space, whereas a smooth model (compare to the true model) leads to only a shift in

time. Furthermore, Bazargani & Snieder (2016) presented an optimization of time reversal which is able

to overcome some uncertainties on the velocity model. As for the anelasticity, Zhu (2014); Bai et al.

(2019) proposed a mathematical solution to compensate attenuation and validated it using numerical

experiments of time reversal for source locations.

Time reversal is used in multiple domains such as medicine (Fink 2015), underwater communication

(Kuperman et al. 1998) and geosciences (Li & van der Baan 2016). In the latter domain, applications

mainly deal with earthquake location and characterization: Larmat et al. (2008) applied it on glacial

earthquakes, Douma et al. (2015); Li & van der Baan (2016); Yang & Zhu (2019); Finger & Saenger

(2021) on microseismicity, and Rietbrock & Scherbaum (1994) to characterize an aftershock series.

Time reversal can also be used to follow fluid displacements in the ground using tremors (Steiner

et al. 2008). Other studies investigate time reversal for detecting scatterers (Shustak & Landa 2017;

Rabinovich et al. 2018; Givoli & Turkel 2012) or reconstructing the complete wavefield (van Manen

et al. 2006; Masson et al. 2014; Masson & Romanowicz 2017). In addition to the location, the focal

spot obtained with time reversal possibly contains pieces of information on the source mechanism and

the medium heterogeneities at the source. However, the question of the link between this focal spot and

the details of the source of the earthquake still remains. Some pieces of answers exist in the literature:

Kremers et al. (2011) succeeded to extract the centroid time in addition to the spatial location in the

case of a single point source from a time reversal simulation, but not in the case of multiple sources.

Chambers et al. (2014) proposed a method to recover the space and time location as well as the moment

tensor of a source. Nakahara & Haney (2015) showed a mathematical way to interpret the image of

the source based on point spread functions.

In this article, we present a new way to interpret the time reversal focal spot in the light of the

point-source homogenization. First, we present the theory of time reversal and a simple synthetic

example of the problem we want to tackle. Second, we interpret the time reversal wavefield using the

theory of point-source homogenization, which we illustrate with numerical 2D examples involving i)
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Figure 1. Set-up of the representation theorem. The star represents a point source. n is a unit-vector normal

to the closed surface S. The theorem allows us calculating the displacement at any point in the volume V .

an explosion, ii) P- and S-waves and iii) an extended source. Finally, we discuss the implications and

the limits of our results.

1 TIME REVERSAL

1.1 Theory

Relying on the four conditions presented in the introduction, we can go deeper into the physics of

time reversal. Let us first invoke the representation theorem (Masson et al. 2014), which reads in the

frequency domain as

ui(x) =

∫

V
Gin(x,x′) fn(x′) dV

+

∮

S
Gin(x,x′)nj Cnjkl ∂′kul(x

′) dS′

−
∮

S
un(x′)nj Cnjkl ∂′kGil(x,x

′) dS′,

(2)

with G(x,x′) the Green tensor between the points x and x′, n the unit normal vector to the closed

surface S, and V the volume bounded by S (Fig. 1). This theorem establishes that the displacement

at any position x can be retrieved from three terms:

• a volume integral which involves the body force f ;

• a surface integral which involves the normal traction Tn = nj Cnjkl ∂kul at the surface S;

• a surface integral which involves the tensor Mkl = un nj Cnjkl at the surface S.

In the frequency domain, reversing the time means taking the complex conjugate, denoted by ∗. Ap-

plying this to Eq. (2) and benefiting from the Green tensor reciprocity, the time-reversed displacement

is given by

u∗i (x) =

∫

V
Gin(x,x′) f∗n(x′) dV

+

∮

S
Gin(x,x′)nj Cnjkl ∂′ku

∗
l (x

′) dS′

−
∮

S
u∗n(x′)nj Cnjkl ∂′kGil(x,x

′) dS′.

(3)

When implementing this numerically, the surface S is discretized and the integrals are approximated
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by a quadrature:

u∗i (x) =

∫

V
Gin(x,x′) f∗n(x′) dV

+

n∑

r=1

αrGin(x,x′
r)T ∗n(x′

r)

−
n∑

r=1

αrM
∗
kl(x

′
r)∂
′
kGil(x,x

′
r),

(4)

with x′
r (r=1, ..., n) the quadrature nodes with the associated weight αr. Applying the Dirac property

f(x) =
∫
V f(x′)δ(x′ − x)dx′ to the last two terms and integrating by part the last term, we obtain

u∗i (x) =

∫

V
Gin(x,x′) f∗n(x′) dV

+

n∑

r=1

∫

V
αrGin(x,x′)T ∗n(x′)δ(x′ − x′

r)dV
′

+

n∑

r=1

∫

V
αrGil(x,x

′)∂′k[M
∗
kl(x

′)δ(x′ − x′
r)]dV

′.

(5)

This last equation means that we can reconstruct the time-reversed displacement u∗ from

• the time-reversed body force f∗, which actually acts as a sink;

• n monopoles derived from the time-reversed traction T ∗ at each point xr on the surface S:

fmr (x) = T ∗(x)δ(x− xr)αr ; (6)

• n dipoles derived from the time-reversed moment tensor M∗ at each point xr of the surface S:

fdr (x) = ∇ ·
[
M∗(x)δ(x− xr)

]
αr . (7)

In the time domain, Eq. (5) can be summarized as follows:

u(x, T − t) = utr(x, t) + us(x, t) (8)

with u(x, T − t) the forward displacement reversed in time (T being the propagation duration), utr =

um + ud the displacement generated from the closed surface (um being the displacement created by

the monopoles and ud the displacement created by the dipoles) and us the displacement generated by

the sink force. utr is the field that can be computed in practice because the force f is not available

(this is our unknown). As a consequence, we do not reconstruct u, but a smooth version of it, as we

will see in the following.

1.2 A simple example in 2D

To shed a first light on the similarities and discrepancies between u and utr, we compute the two

fields in a simple homogeneous 2D case with a perfect time reversal mirror. The model is a 10 km

x 10 km square with absorbing boundaries (PML). The source is a point-source equipped with the

identity moment tensor (i.e. an explosion) and a Ricker wavelet time function. The source and closed

surface positions are summarized in Fig. 2. The simulations are performed using the spectral element
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Figure 2. Set up of our first numerical experiment. The medium is homogeneous with Vp = 3200m/s, Vs =

2000m/s and ρ = 2200 kg/m3. The source (orange star) is positioned in the area defined by the green circle

which represents the closed surface on which the signal is recorded. The medium is surrounded by absorbing

boundaries. The blue disks mark three positions at which the wavefield is output in each simulation (backward

and forward) to do waveform comparisons.

software SPECFEM2D (Komatitsch & Vilotte 1998; Komatitsch & Tromp 1999) following a three steps

procedure:

(i) creation of the closed surface of receivers and estimation of the integration weights αr and the

normal vectors nr;

(ii) forward simulation using SPECFEM2D and storage of both the displacement and the stress

tensor at each receiver position to use them as input for the next step;

(iii) backward simulation using SPECFEM2D, to obtain the focal spot.

Fig. 3 shows the forward simulation u and the backward simulation utr obtained with both

monopole and dipole terms applied together. In the backward simulation, no waves are generated

beyond the closed surface S (Fig. 3 at t4). On the contrary, in the volume V embedded by the closed

surface S, we observe a wavefield which converges to the source location and forms a focal spot. At

t4 , t3 , t2, this wavefield perfectly corresponds to the forward displacement u. After (in reverse time) t2,

the backward wavefield diverges and no longer corresponds to the forward wavefield. If the sink term

was implemented, the energy would be absorbed at the source location and the wavefield would match

the forward simulation at all times (Masson et al. 2014). The absence of the sink actually creates the

focal spot which is different from the forward near-field. To go further, we compare the displacement

at three specific positions: beyond the closed surface, in the volume V far from the source position and

in the volume V near the source position (Fig. 2).

When the receiver lays beyond the recording surface (Fig. 4, top row), the backward displacement
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Figure 3. Snapshots of the x-component of the normalized displacement. The left hand-side column repre-

sents the forward displacement u. The right hand-side column is the backward displacement utr generated by

monopoles (Eq. (6)) and dipoles (Eq. (7)). The receivers are represented in green, and the sources in orange.
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Figure 4. Comparison of forward u and backward utr waveforms at three different receiver positions (Fig. 2).

The black line represents the backward displacement and the green dashed line the forward displacement. The

first column shows the x-component and the second column shows the z-component.

is zero, meaning that um = −ud. When the receiver is in the volume V and more than one wavelength

away to the source location (Fig. 4, middle row), the backward displacement perfectly matches the

forward displacement. Finally, when the receiver is less than one wavelength away to the source location

(Fig. 4, bottom row), the backward displacement does not match the forward displacement: there is a

smooth focal spot instead of a displacement discontinuity at the focalization time (i.e. the centroid time)

in the backward simulation. To better see what happens near the source, we record the displacement

along a receiver line positioned at the source depth and plot the displacement along this line for

different time steps (Fig. 5). The displacement at t4 and t3 confirms the results presented in the

previous figures: the backward displacement matches the forward displacement, even at the source

location. However, at earlier times (t1 and t2), the two displacements do not match. The backward

displacement is smoother than the forward displacement which presents a sharp discontinuity at the

source position. This discontinuity corresponds to the seismic rupture process, which is mathematically
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Figure 5. Plot of the x-component of the displacement along a line of receivers at the source depth for four

different time steps. The steps are those chosen on Fig. 2. The black line represents the backward displacement

u and the dashed green line the forward displacement utr.

modeled by a space-derivative of a Dirac function. In theory, this discontinuity is even sharper than

what we observed in Fig. 5 because the simulation is limited by the mesh resolution (Capdeville 2021).

In smooth media such as the homogeneous one we are considering in this subsection, the smoothness

of the focal spot is easily explained by the fact that utr is generated by two smooth forces (Eq. (6) and

Eq. (7)) so um and ud are smooth. In more complex media which contains small-scale features and

scatterers, the smoothness of the focal spot can be explained by the diffraction limit λmin/2 (Cassereau

& Fink 1992). Nevertheless, when specific scatterers (e.g., split ring resonators) lie near the source, this

limit can be beaten and superresolution (i.e. subwavelength focusing) can be obtained (de Rosny &

Fink 2002; Borcea et al. 2003; Fink 2006; Lerosey et al. 2007; Gelius & Asgedom 2011; Schuster et al.
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2012; Zhao et al. 2016). In the present work, we disregard this case and put this interesting property

of the time reversal on the side.

From Eq. (8), we can write the time reversal displacement as

utr(x, t) = u(x, T − t)− us(x, t), (9)

which means that the smooth time reversal wavefield can also be seen as a combination of two dis-

continuous wavefields: the forward and the sink. It is not trivial to prove that such a combination can

generate a continuous wavefield. In the following part, we show that it can be demonstrated thanks to

the theory of point-source homogenization developed by Capdeville (2021).

2 POINT-SOURCE HOMOGENIZATION

2.1 Principle and Mathematics

The non-periodic homogenization has proved to enable the computation of accurate effective prop-

erties for the elastic wave equation, which allows to perform wave simulations in complex geological

models using coarse meshes and a tractable computational cost (e.g. Capdeville et al. 2010; Cupil-

lard & Capdeville 2018; Capdeville et al. 2020). Homogenization consists in low-pass filtering relevant

quantities derived from the model to be smoothed, namely the strain and the stress concentrators. To

define the low-pass filter F ε0 , a scaling parameter ε0 is introduced:

ε0 =
λ0
λmin

, (10)

where λ0 is the wavelength under which the scales are considered as small (defined by the user) and

λmin the minimum wavelength to be propagated in the model.

Capdeville (2021) recently applied homogenization to a point-source. The idea is to filter the high-

wavenumber content of a point-source in order to compute a smooth effective source. Point-source

is a classic model for representing the mechanism of an earthquake. There are two major types of

point-sources: the single force f (Eq. (11)) and the couple force or stress source τ (Eq. (12)) (?):

f(x, t) = F δ(x− x0)g(t), (11)

τ (x, t) = Mδ(x− x0)g(t), (12)

with F a force vector, M a moment tensor, g a source time function, and δ the Dirac function. The

homogenization aims at separating the small scales (hereafter denoted by the y variable) and the large

scales (hereafter denoted by the x variable) within both the displacement and the stress fields. In other

words, the homogenization looks for the solution of the elastodynamic problem in the following form:

u(x,y, t) and σ(x,y, t). To do so, the method relies on asymptotic expansion of the two fields:

u(x, t) = u0(x,y, t) + ε0u1(x,y, t) + ε20u2(x,y, t) + · · · , (13)

σ(x, t) = σ0(x,y, t) + ε0σ1(x,y, t) + ε20σ2(x,y, t) + · · · , (14)
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where the two space variables relate through the scaling parameter ε0: y = x
ε0
. In what follows, we

focus on the couple force, the derivation for the single force case being similar (Capdeville 2021).

First of all, it can be shown (Appendix A) that a Dirac function can be decomposed as

δ(x) =
1

ε0
(I − F )(δ)(y) + F ε0(δ)(x), (15)

where F ε0 is the low pass-filter for the x variable (muting the wavenumbers larger than 1
λ0
) and F the

low pass-filter for the y variable (muting the wavenumbers larger than 1
λmin

). As a consequence, we

can assume that the couple force can be expanded as

τ (x, t) =
1

ε0
τ−1(x,y)g(t) + τ0(x)g(t). (16)

To obtain the coefficients τ−1 and τ0, we introduce the expansions (13), (14) and (16) into the wave

equation and Hooke’s law, which leads to

ρüi −∇x · σi −∇y · σi+1 = 0 , (17)

σi = c :

(
∇x(ui) +∇y(ui+1)

)
− τi, (18)

with c the elastic tensor and i denoting each order in the expansions. For sake of simplicity, we here

assume that c is smooth, i.e. c = c(x) (see Capdeville 2021, sections 2.4 and 3.4, for a discussion on

how handling small scale mechanical properties in source homogenization). Solving the system (17)

and (18) for each i, we end up with

u(x,y, t) = u0(x, t) + θ(y)g(t) +O(ε0). (19)

θ(y) is called the corrector; it contains only small scales. Eq. (19) shows that the wavefield can be

decomposed into a smooth wavefield u0 which propagates in the medium and a high-wavenumber part

θ which is not constrained by the dispersion relation. The corrector indeed satisfies the static partial

differential equation

∇y · c :∇y(θ) =∇y · τ−1. (20)

with periodic boundary conditions. As for the zeroth-order displacement u0(x, t), it is the solution of

the effective elastodynamic problem

ρü0 −∇x · σ0 = 0, (21)

σ0 = c :∇x(u0)− τ0 g(t). (22)

The procedure to determine the coefficients τ0 and τ−1 in practice is to solve Eq. (20) assuming a

starting stress τ−1,s = Mδ(y) and that all the variations of c are small so that c = c(y) (whatever

the true distribution of scales in c is). Doing so, we obtain the starting corrector θs(y). By filtering it,

the large and small scales can be separated within two quantities: the corrector θ for the small scales

and the source potential ψ for the large scales:

θ(y) = (I − F )θs(y), (23)
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Figure 6. Results of point-source homogenization for M = I in a 2D homogeneous medium using two values

of ε0. The top row represents the effective couple force τ0 and the bottom row shows the corrector θ along the

x-axis.

ψ(x) = F ε0
[
θs

(
x

ε0

)]
. (24)

From the potential and the corrector, τ0 and τ−1 are built:

τ−1(x,y) = c(x) :∇y(θ(y)), (25)

τ0(x) = c(x) :∇x(ψ(x)). (26)

From τ0, we easily derive the effective force f0 to apply in the effective wave propagation problem (21)

and (22) to get u0. Introducing (26) into (22) and then (22) into (21), we indeed have

ρü0 −∇ · c :∇(u0) = f0 (27)

with f0(x, t) = −∇ · τ0(x)g(t).

Fig. 6 shows τ0 and θ forM = I in a 2D homogeneous case. We test two values for ε0: ε0 = 1 to see

what happens when filtering at the minimum wavelength and ε0 = 0.5 because it corresponds to the

diffraction limit. The top row shows that the spatial spread of the effective couple force decreases with

ε0. Furthermore, we see that the potential ψ holds the large scales whereas the corrector θ contains

the small scales. Fig. 7 shows that the corrector contributes to the displacement only near the source.

When this latter is emitting (Fig. 7, top row), the corrector has a major role because it contains the

discontinuity at the source. When the source stops emitting (Fig. 7, bottom row), there is no difference

between the reference and the zeroth-order displacement. In the next section, we link this theory to

the focal spot of the time reversal.
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Figure 7. Comparison of the displacement generated by the homogenized point-source with a reference displace-

ment computed in a fine mesh at the source. Two values of ε0 are shown. The curves represent the x-component

of the displacement at two different time steps: t1 is a time near the source burst and t2 is a time when the

source has stopped emitting.

2.2 Application to time reversal

In the case of a stress source (12), the forward displacement u is the response to the body force

f(x, t) = −∇ · τ (x, t) = −M ·∇δ(x− x0)g(t). (28)

As we just saw, this displacement can be decomposed following Eq. (19). By reversing it in time, we

can write the first term of the right-hand side of Eq. (9) as

u(x,y, T − t) = u0(x, T − t) + θ(y)g(T − t) +O(ε0). (29)

For the sink displacement us(x, t), the body force is

f s(x, t) = −M ·∇δ(x− x0)g(T − t). (30)

Using decomposition (19) again, we can then write the second term of the right-hand of Eq. (9) as

us(x,y, t) = us0(x, t) + θs(y)g(T − t) +Os(ε0). (31)

Introducing (29) and (31) into Eq. (9), the time reversal displacement can be expressed as

utr(x, t) = u0(x,T − t) + θ(y)g(T − t) +O(ε0)− us0(x, t)− θs(y)g(T − t)−Os(ε0). (32)

The forces which generate the forward and the sink displacement (i.e. Eq. (28) and Eq. (30)) have the
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exact same spatial part, so the two correctors θ and θs are equal. Therefore, Eq. (32) reduces to

utr(x, t) = u0(x, T − t)− us0(x, t) +O′(ε0). (33)

This last equation is the main result of this paper. It demonstrates the smoothness of the time reversal

wavefield, including the focal spot, in a new way. Eq. (33) indeed shows that the back-propagated

wavefield can be seen as the sum of two low-wavenumber fields resulting from the homogenization

of the original point-source. In other words, the homogenized point-source is the equivalent force for

producing the time reversal wavefield, including the focal spot.

To better understand how Eq. (33) works, we compute u0 and us0 in the simple 2D case presented

in Section 1.2. The point-source is homogenized using ε0 = 0.5 and all the wave simulations are

performed in the same mesh. Fig. 8, left column, shows three snapshots of u0, us0, u0 − us0 and utr

along a horizontal line. At t < T − 2τb (top row), the sink did not start acting yet, so us0(x, t) = 0 and

the time reversal displacement utr(x, t) is equal to the zeroth-order forward displacement u0(x, T − t).
At t > T (bottom row), u0(x, T − t) vanishes and the time reversal displacement utr(x, t) is the

opposite of the zeroth-order sink displacement −us0(x, t). The middle row shows that in the time

interval T − 2τb < t < T , which corresponds to the focalization, the time reversal displacement is

a combination of the two non-zero displacements u0 and us0. This numerical experiment illustrates

Eq. (33). Moreover, it allows us defining the focal spot as an extended object both in space and time:

the focal spot begins when the displacement is different from the forward displacement and ends when

the displacement is the opposite of the sink displacement.

3 APPLICATIONS

To further illustrate the mathematical result of the previous part, we apply it to two more complex

synthetic cases. In the first one, we add an S-wave by taking M 6= I; in the second one, we model an

extended source using multiple point-sources. The elastic properties of the medium and the position

of the time reversal mirror remain unchanged.

3.1 Model with both P- and S-waves

To add an S-wave in our numerical simulation, we input the following moment tensor:

M =


−2 1

1 1


 . (34)

The source time function g(t) is a Ricker wavelet with a dominant frequency of 10Hz, leading to a

minimum wavelength of 66m.

Fig. 9 compares the backward simulation utr to the forward simulation u (see the two wavefields

on the left-hand side and the curves in the central column). As expected, the introduction of an S-wave

does not alter the conclusions we drew in Section 1.2. The time reversal still succeeds in reconstructing

the far field (e.g., at t3 and t4). On the contrary, in the focalization time interval (e.g., at t2), the
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Figure 8. Comparison of the time reversal displacement utr to the difference between the two zeroth-order

displacements u0 and us
0. The curves (left) and the time reversal wavefield (right) represent the x-component

at three different reverse time t. T is the forward simulation duration and τb is the centroid time of the source.

backward displacement does not match the forward displacement (central column) even if the two

wavefields may look similar at a glance (left columns). The forward displacement indeed shows a space

discontinuity whereas the backward displacement remains smooth. The bottom row of the figure (t1)

also shows this discrepancy, and it illustrates what happens when the sink term is not implemented:

the backward wavefield diverges from the source position whereas the forward wavefield reduces to a

point before vanishing.

The curves in the right-hand side column of Fig. 9 show a comparison between the backward
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Figure 9. Comparison of the x-component of the backward displacement utr to the forward displacement u

and to the point-source homogenization results u0 and us
0. The two left-hand side columns show the forward

and backward wavefields at four different time steps. The orange dots represent the sources and the green

dots represent the receivers. The central column shows the forward and backward displacements along a line

of receivers at forward source depth. The right-hand side column shows the two zeroth-order displacements u0

and us
0, and compares the backward displacement to the difference u0(x, T − t) − us

0(x, t), which is the main

result of the paper (Eq. (33)).

displacement utr and the zeroth-order displacement u0 and us0 computed from the homogenized point-

source. We oberve that u0(x, T − t)− us0(x, t) matches utr(x, t) everywhere in space and time, which

confirms Eq. (33). The same conclusion can be drawn using the z-component.
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3.2 Involving an extended sources

Extended sources can represent finite fault ruptures. They can be discretized in space using elementary

surfaces dSi at position xi (e.g., Yue & Lay 2020). In this case, the driving force can be written as

f(x, t) =
∑

i

fi(x, t), (35)

fi(x, t) = Mi∇δ(x− xi)gi(t)dSi, (36)

where Mi is the moment tensor of the ith point-source positioned at xi (?).

To derive our main result (33) in the case of an extended source discretized as multiple point-

sources, we rewrite Eq. (9):

utr(x, t) =
∑

i

ui(x, T − t)−
∑

i

usi (x, t), (37)

where ui and usi are the response to fi and f si = fi(x, T − t), respectively. Using the decomposition

(19) for each of these displacements, Eq. (37) becomes

utr(x, t) =
∑

i

(
u0,i(x, T − t) + θi(y)gi(T − t)

)

−
∑

i

(
us0,i(x, t) + θsi (y)gi(T − t)

)
+O(ε0).

(38)

As in the single point-source case, the correctors θi and θsi are equal for each point-source independently.

That leads to

utr(x, t) =
∑

i

(
u0,i(x, T − t)

)
−
∑

i

(
us0,i(x, t)

)
+O(ε0). (39)

This last equation is equivalent to (33) in the case of multiple point-sources.

To illustrate Eq. (39), we perform a numerical experiment in the 10 km x 10 km homogeneous

medium that we used in the previous sections. In this medium, we insert a horizontal finite fault

discretized using four point-sources. We choose the four corresponding moment tensors to be equal to

each other, i.e. Mi = M ∀i, where M is chosen arbitrarily:

M =


0.56 1

1 2.56


 . (40)

We take the four source time funtions gi having the same Ricker shape, but we shift them according

to the centroid time τi so that the rupture propagates toward the increasing point numbers: τ1 <

τ2 < τ3 < τ4. Moreover, we want the fault segment displacements to overlap in time, so we choose

∆τ = τi+1 − τi = Tw/2, with Tw the time support of the Ricker wavelet. Assuming a rupture speed

equal to Vs, the length of the segments is calculated using dS = Vs ∆τ .

Fig. 10 shows that the time reversal focal spot obtained in the case of an extented source is more

complex than the one obtained in the single point-source case. Despite this complexity, our theory

holds: in the right-hand side column of the figure, Eq. (39) is confirmed at three different times in the

focalization time interval. The only difference from the single point-source case is that the computations

of u0(x, t) and us0(x, t) have to be carried out separately: u0 is computed based on the forward source
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Figure 10. Left: The forward and backward wavefields in the case of an extended source made of four point-

sources. Three times in the focalization time interval are presented. Right: Comparison between the backward

displacement utr and the difference between the two zeroth-order displacements u0 and us
0 obtained from

the homogenization the four point-sources. The black line is the backward utrx , the read dashed one is the

homogenized sink displacement us0,x, the cyan dashed one is the homogenized forward displacement u0,x and

the blue dashed one is the difference u0,x − us0,x.

order (i.e. (x1, τ1), (x2, τ2), ..., (xn, τn)) whereas us0 is computed in the reverse order of the source

position (i.e. (xn, τ1), (xn−1,τ2), ..., (x1, τn)).
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4 DISCUSSION & CONCLUSION

As described by many works in the past, the time reversal displacement is shown to be smooth as

compared to the displacement generated by an earthquake which presents a spatial discontinuity at

the source location. Relying on the representation theorem and the point-source homogenization theory,

we demonstrated a direct relation between the time reversal wavefield and the displacement generated

by a homogenized point-source (Eq. (33)). By homogenized point-source, we mean the smooth effective

source derived from the homogenization theory developed by Capdeville (2021). The relation is satisfied

at all propagation times, including the focalization, which yields a new interpretation of the focal spot:

this latter can be seen as the sum of two zeroth-order displacements generated by the smooth effective

source.

Whereas considerable efforts have been made for spiking the focal spot (e.g., Kiser et al. 2011;

Fukahata et al. 2014; Douma & Snieder 2014; Anderson et al. 2015; Bazargani & Snieder 2016; Nakata

& Beroza 2016), our work leaves it intact and proposes to upscale the source model in order to derive

smooth displacements that fit the focal spot. Such a process requires to solve the static equation

(20), but then one no longer needs any small elements at the source location when simulating wave

propagation numerically because the effective source is free of small scales. We did not illustrate this

computational gain in the present paper; we rather used the same mesh for all the simulations to avoid

possible numerical bias and make our comparisons as accurate as possible.

Once the upscaling process is known, downscaling the focal spot can be considered to estimate

source model parameters. Adjoint tomography has been proved to successfully yield the moment tensor

(Liu et al. 2004). As for the location, the inverse problem is highly non-linear (Kim et al. 2011),

which makes adjoint tomography computationally expensive. Moreover, this technique is deterministic,

requiring an initial model and leading to a single solution which can correspond to a local minimum

of the misfit function. Our result opens the path to a Bayesian inversion that could overcome these

limitations. In such an inversion, the focal spot would be the data and the point-source homogenization

would be the first step of the forward modeling operation. The second step would be the computation

of a few time-steps of the two zeroth-order wavefields, which consists in just one simulation in the

case of a single point-source and in two simulations in the case of multiple point-sources. The main

advantage of using a homogenized point-source as compared to a classic point-source is that the mesh

does not have to be fine, so the simulation cost is low. The downscaling procedure we outline here is

inspired by what Hedjazian et al. (2021) developed to estimate small scale elastic properties.

It is worth noting that adjoint tomography also turns receivers into sources to backpropagate

signals (e.g., ?). Interestingly, Kim et al. (2011) use a time reversal simulation as an adjoint wavefield

to show how this latter captures the characteristics of the source. From a more practical point of view,

time reversal can be used to avoid the storage of the whole forward simulation. Recording the forward

wavefield along a close surface indeed allows to reconstruct it during the adjoint simulation so that the

two wavefields can be correlated on the fly to efficiently compute the gradient of the misfit function.

Doing so, the inverse problem can be solved without storing a large amount of data at each iteration.
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Our theoretical result (33) was illustrated using numerical experiments in a simple homogeneous

medium, but it is also valid in heterogeneous media. The main limitation of our work actually is that it

relies on a perfect mirror which does not exist in practical geoscience applications. This paper is purely

theoretical, and further investigations are required to generalize our result to more realistic setting

and to understand the focal spot when a partial mirror is involved (e.g., Cassereau & Fink 1993; Li &

van der Baan 2016).
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APPENDIX A: TWO-SCALE DECOMPOSITION OF THE DIRAC FUNCTION

The goal of this appendix is to demonstrate Eq. (15). We first separate the small and large wavenumbers

in a Dirac function using the low-pass filter F ε0 :

δ(x) = F ε0(δ(x)) + (I − F ε0)(δ(x)). (A.1)

Then we introduce F , the same filter than F ε0 for the variable y = x
ε0
. In other words, for any functions

h(x) and h̄(y) = h(ε0y), we have

F ε0(h(x)) = F (h̄(x/ε0)). (A.2)

Using this last equality in Eq. (A.1), it comes

δ(x) = F ε0(δ(x)) + (I − F )(δ(ε0y)). (A.3)

Finally, we note the following property of the Dirac function:

δ(ε0y) =
1

ε0
δ(y). (A.4)

Introducing Eq. (A.4) in Eq. (A.3), we obtain Eq. (15).

Chapter 3. Selected articles 161





Remerciements

Début 2008, lorsqu’il s’est agi de rédiger les remerciements de ma thèse, j’ai préféré prendre la route
pour aller saluer quelques amis de province avant mon départ pour la Californie. Il n’y a donc, à ce jour,
aucune trace écrite de la reconnaissance que je dois à ceux qui m’ont soutenu durant toutes ces années de
recherche, de mon DEA en 2004 jusqu’à la rédaction du présent manuscrit. J’y remédie ici, les larmes
aux yeux, le cœur content1.

À Luis Rivera, dont la sympathie et la pédagogie exceptionnelle m’ont initié aux insoupçonnables
subtilités de la sismologie quantitative. À son ami Jeroen Ritsema, pour m’avoir accueilli à l’IPGP et
encadré avec chaleur et bienveillance.

À Jean-Pierre Vilotte et Gaetano Festa, pour la patience et la précision de leurs explications de la
méthode des éléments spectraux.

À Geneviève Moguilny, sans doute l’une des personnes les plus remerciées de l’histoire de la recherche
française, pour son aide en HPC, son manuel LATEX et ses pots du vendredi. À Diego Mercerat, Éric
Clévédé, Constanza Pardo, et tous les autres fidèles au rendez-vous.

À mes sœurs de thèse : Élise Delavaud, Alexandrine Gesret, Anne Bécel et Gaye Bayrakci.
À Jean-Paul Montagner, pour l’attention qu’il a toujours porté à ses étudiants. À Nikolai Shapiro,

pour m’avoir soutenu au creux de la vague.
À Michel Campillo et Francisco Sánchez-Sesma, pour leurs rapports enthousiastes.

Au Real IPG (celui d’Alexandre Canitano, de Julien Roch, de Benoît Gotab, d’Eric Gayer, de Laurent
Guillot), qui fut à l’Est parisien ce que le SC Bastia est à l’île de Beauté : une gloire locale faite de tacles
piqués et de lourdes frappes non cadrées.

À Heiner Igel, pour l’émulation des Initial Training Networks SPICE et QUEST qu’il a portés et faits
vivre. À tous les sismologues rencontrés dans ce cadre merveilleusement stimulant : Daniel Peter, Lapo
Boschi, Ebru Bozdag, Tarje Nissen-Meyer, Shravan Hanasoge, Amir Khan, Andreas Fichtner, Thomas
Bodin, Pascal Audet... Tant de collaborations se sont construites lors des workshops annuels de ces deux
ITN !

À Barbara Romanowicz, pour m’avoir accueilli en post-doc au sein du Berkeley Seismological Lab-
oratory. Je ne cesse de mesurer l’énergie que Barbara déploie pour animer ce laboratoire et la richesse
des discussions scientifiques que j’ai pu y avoir, avec Ved Lekic, Sanne Cottaar, Shan Dou, Scott French,
Yder Masson, Huaiyu Yuan, Laurent Stehly, Aurélie Guilhem, Rob Porritt, Stéphanie Durand...

À Mathieu Hursin, mon premier pote outre-atlantique, mèche d’un feu d’artifice d’expatriés ayant
joyeusement coloré mon Ouest américain, de LA à Yellowstone, de Vegas à Gualala, de Tahoe à Capitola
: Gab, Raph, Raluca, Marine, Adrien, Clément, Thibault, Faiza, Pierre-Adrien, Eve, Cécile, François,
Marion, Ivan, Matthias... Nous avons conquis ensemble bien plus qu’un continent !

À mes très chers amis géographes-marxistes-footeux : Erin, Alex, Stacey et Tony. Je regrette de ne
plus vous voir...

À Daniela, Laurent, Joyce, Wanda et Kira, évidemment.

1Trenet, C. (1947). Retour à Paris.



164 Remerciements

À Alexandre Fournier, pour m’avoir fait parvenir l’annonce du poste que j’occupe depuis près de dix
ans.

À l’équipe RING et à tous ses satellites, pour m’avoir si chaleureusement acceuilli et soutenu quand
il le fallait. Pauline, Benoît, François, Julie, Christine, Denis, Julien, PH, Marianne, Marion, Yann, et
tous les thésards passés et présents, tous les ingénieurs, toutes les secrétaires, vous constituez ou avez
constitué un quotidien joyeux et bienveillant sans lequel je n’aurais su m’épanouir.

À Jean-Seb, pour son amitié, sa confiance, et son goût des choses bien faîtes qui alimente le mien
propre. Aux amis musiciens de Nancy ou d’ailleurs avec lesquels j’ai partagé bien plus que des partitions
et des concerts.

Au Wengé, dont la chaleur des cafés et des causeries a accompagné la rédaction de ce manuscrit. J’y
suis assis à l’instant même.

Aux vieux copains du lycée. Aux presque-aussi-vieux copains de Strasbourg.
À Marie.
À mes grands-frères de science : Yann et Guillaume.
À ma belle-famille, qui a appris que je dois bosser une heure ou deux veut dire j’en ai pour l’après-

midi.
À mes parents.
À Léonore.
À nos merveilleux enfants.

Merci !





Abstract

From high-frequency geophones used in near-surface exploration to broadband seismic stations de-
ployed around the globe, hundreds of thousands of instruments record the seismic waves that propagate
in our planet. The obtained data make it possible to study the mechanisms from which they originate
(rupture of the earth’s crust, magmatic upwelling, slow sliding of tectonic plates, glacier flow, ocean
swell, etc) and to image the geological structures that the waves crossed in order to understand the dy-
namics of their formation, exploit their resources, monitor their evolution, etc. Whatever the scale and
the object of study, simulating these data is necessary. Since the late 60s, numerical methods have been
developed to model the complete waveform of seismic recordings. My past, present and future works
are part of this perspective.

One of the most important issues for accurately modeling the propagation of seismic waves remains
the correct account for realistic geological environments. These indeed contain multiple scales and
often present a great geometrical complexity. In the last decade, the development of the non-periodic
homogenization technique helped to deal with these aspects. Homogenization indeed makes it possible
to calculate equivalent smooth media which can be easily integrated into numerical simulation methods.
Most of all, it opens new paths towards the inversion of seismic data for the assessment of geological
structures. These modeling and inversion aspects are here discussed and illustrated in different contexts
(lithosphere imaging, subsurface exploration, fractured media, seismic risk assessment, source imaging)
and for different types of data (earthquakes and noise correlations).

Résumé

Des géophones haute fréquence utilisés dans la prospection de la proche surface aux stations sis-
miques très large bande déployées tout autour du globe, des centaines de milliers d’instruments en-
registrent les ondes sismiques qui se propagent dans notre planète. Les données obtenues permettent
d’étudier les mécanismes qui en sont à l’origine (ruptures soudaines de la croûte terrestre, remontées
magmatiques, glissements lents des plaques tectoniques, écoulements glaciaires, houle océanique, etc) et
d’imager les structures géologiques traversées afin de comprendre la dynamique de leur formation, d’en
exploiter les ressources, de surveiller leur évolution, etc. Quels que soient l’échelle et l’objet d’étude,
simuler ces données est nécessaire. Depuis cinquante ans, des méthodes numériques se développent pour
modéliser le plus précisément possible la forme d’onde complète des enregistrements sismiques. Mes
travaux passés, présents et à venir s’inscrivent dans cette perspective.

L’un des verrous les plus importants pour modéliser de façon précise la propagation des ondes sis-
miques demeure la prise en compte correcte des environnements géologiques. Ceux-ci contiennent en
effet de multiples échelles et présentent souvent une grande complexité géométrique. Au cours de la
dernière décennie, le développement de l’homogénéisation non-périodique a contribué à gérer ces as-
pects. L’homogénéisation permet en effet de calculer des milieux lisses équivalents qui s’intégrent
facilement aux méthodes de simulation numérique. Ce faisant, elle ouvre de nouvelles perspectives
quant à l’inversion de données sismiques pour la reconnaissance des structures géologiques. Ces as-
pects de modélisation et d’inversion sont ici discutés et illustrés dans différents contextes (imagerie de la
lithosphère, exploration de la subsurface, milieux fracturés, évaluation du risque sismique, imagerie de
la source sismique) et pour différents types de données (de tremblements de terre et de correlations de
bruit).
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