
HAL Id: tel-03666912
https://hal.science/tel-03666912

Submitted on 12 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing the Cognitive Effectiveness of UML
Diagrams: Application of the Semiology of Graphics

Yosser El Ahmar

To cite this version:
Yosser El Ahmar. Enhancing the Cognitive Effectiveness of UML Diagrams: Application of the Semi-
ology of Graphics. Computation and Language [cs.CL]. Université de Lille (2018-..), 2018. English.
�NNT : �. �tel-03666912�

https://hal.science/tel-03666912
https://hal.archives-ouvertes.fr

Regional Doctoral School: Science for the Engineer Lille
North of France

Thesis Submitted to Obtain the Degree of

Doctor of the University of Lille
Discipline: Computer Science

Defended Publicly by

Yosser El AHMAR
December 6th, 2018

Enhancing the Cognitive Effectiveness of UML
Diagrams: Application of the Semiology of

Graphics
Thesis Supervisor: Xavier LE PALLEC

Thesis Co-supervisor: Sébastien GÉRARD

Jury
Kari SYSTÄ Professor, Tampere University of Technology, Finland, Referee.
Michel R.V. CHAUDRON Professor, University of Gothenburg, Sweden, Referee.
Monique NOIRHOMME Professor, University of Namur, Belgium, Inspector.
Sophie DUPUY-CHESSA Professor, University of Grenoble Alpes, France, Inspector.
Jean-Sébastien SOTTET Researcher, Luxembourg Institute of Science and Technology,

Luxembourg, Inspector.
Jordi CABOT Professor, Open University of Catalonia, Spain, Inspector.

University of Lille
Research center in Computer Science, Signal and Automatic Control of Lille - CRIStAL.

Alternative Energies and Atomic Energy Commission - CEA of Saclay
Laboratory for Integration of Systems and Technology - LIST.

Acknowledgments

First of all, I would like to express my sincere gratitude to Xavier LE PALLEC who
supervised this thesis. Xavier gave me the opportunity to do this research work and
created an ideal context for it. In addition to his support, advice and knowledge he
transmitted to me, I would like to thank him for his availability and encouragement.

I am also extremely grateful to Sébastien GÉRARD for his wise advice, his pertinent
remarks and his scientific rigor.

My sincere thanks goes to Kari SYSTÄ and Michel R.V. CHAUDRON who have
done me the honor to evaluate my work and to be the referees. I would like to thank
them for their constructive comments.

I would like to especially thank Michel R. V. CHAUDRON for welcoming me to
his laboratory as a visiting student. He gave me the opportunity to acquire knowledge
about empirical research. His insightful and timely remarks have had a positive impact
on my research.

I also thank Monique NOIRHOMME, Sophie DUPUY-CHESSA, Jean-Sébastien
SOTTET and Jordi CABOT for having accepted to be part of the jury members and
for their interesting comments and challenging questions.

The work presented in this thesis has been financed by the CEA and done within
the Laboratory for Integration of Systems and Technology (LIST). So thanks again to
Sébastien GÉRARD for hosting me in his laboratory.

A big thanks is addressed to all my colleagues, members of the LIST and the CAR-
BON teams for the very favorable atmosphere they created around me. In particular:
Camille, Fadoua, Sahar, Slim, Michel and Mickaël.

A special thanks to all my friends, who recognize themselves, who supported me
during the difficult times, especially my dear Narjes.

The totality of my gratitude and my thoughts go to my parents Mouhamed and
Karima, to my brother Oussema and my sister Ghada. They never stopped encouraging
me and giving me support. It is therefore natural that this document is dedicated to
them.

And, of course, I express my deepest gratitude for Houssem, my husband, who has
been able to bear me and to cheer me up with infinite patience during these years.

Finally, a big hug to my dear son Iyed who brought light and happiness to my life
some weeks before the defense of this thesis.

Antony, 01-25-2019

Contents

Contents iii

List of Figures v

List of Tables ix

List of Abbreviations x

1 Introduction 1
1.1 Context . 2
1.2 Problem statement . 3
1.3 Research questions . 5
1.4 Contributions . 6
1.5 Outline of the thesis . 8

2 The visual variables in the practice of UML 9
2.1 Design methodology . 10
2.2 The qualitative study . 12
2.3 The quantitative study . 20
2.4 Discussion of the results . 22
2.5 Conclusion . 23

3 State of the art 25
3.1 Software engineering . 26
3.2 The Semiology of Graphics (SoG) . 37

4 SoG-UML: Semiological guidelines for the visual enrichment of UML
diagrams 59
4.1 The UML concrete syntax: an exhaustive classification 61
4.2 SoG-UML . 64
4.3 SoG-UML: Color . 66
4.4 SoG-UML: Brightness . 75
4.5 SoG-UML: Size . 80
4.6 SoG-UML: Grain . 87
4.7 SoG-UML: Orientation . 91
4.8 Superposition of UML nodes . 95
4.9 Combinations of the retinal variables 101
4.10 Summary . 104
4.11 Discussion . 105

5 Evaluation 107

iii

CONTENTS

5.1 Lessons learned from a conducted experiment 110
5.2 Experiment definition . 113
5.3 Experiment design . 114
5.4 Color and UML: A quantitative experiment 116
5.5 Summary . 122

6 Implementations 123
6.1 FlipLayers . 124
6.2 Interactive keys for UML diagrams . 128

7 Conclusion 133
7.1 Conclusions . 134
7.2 Perspectives . 135

Bibliography 137

Appendix 142
Summary of SoG-UML guidelines . 142

iv

List of Figures

1.1 The visual variables . 2
1.2 Class diagram of an e-learning platform 4
1.3 Class diagram of an e-learning platform: distribution of tasks using

stereotypes . 5

2.1 Communications with non-familiars with UML 14
2.2 UML diagrams used in practice . 15
2.3 Utility of colors in practice . 18
2.4 The need for keys in practice . 19
2.5 The need for the visual variables in practice 19
2.6 Analysis of the visual variations in the models repository. 20
2.7 Different implementations of color to UML elements 21
2.8 The use of keys/legends in UML . 22

3.1 The three types of graphical representations 38
3.2 An UML class diagram: A network or a map 39
3.3 Points, lines and zones of the SoG. 39
3.4 Visual variables . 41
3.5 Continuous and dashed lines: a grain variation 43
3.6 Selective perception with colors . 44
3.7 Associative perception of shape . 44
3.8 Dissociative perception of the size . 45
3.9 Ordered perception of the size and the brightness 45
3.10 Non ordered perception of colors. 45
3.11 Quantitative perception of the size . 46
3.12 Empty activity diagram: A default grain variation 47
3.13 Selective perception of colors in an empty activity diagram 47
3.14 The map of France. 49
3.15 The brightness to express the population density. 49
3.16 A map with a title and keys. 50
3.17 Effective keys by Genon et al. [23] . 51
3.18 The notion of effective categories of the retinal variables: brightness. . . 52
3.19 Saturated colors do not have the same value of brightness. 52
3.20 Colors of the spectrum in different brightness. Saturated colors are

marked by a white circle. 53
3.21 Three effective categories of brightness. 54
3.22 Four effective categories of brightness. 54
3.23 Effective categories of brightness. 54
3.24 Effective categories of orientation for lines and points. 55
3.25 Different implementations of the size retinal variable to an UML class. . 56

v

LIST OF FIGURES

3.26 Color: different possible implementations on an UML class 56
3.27 Color: taking into account the embedding relationships 57

4.1 Cartography of the UML graphic nodes and the used visual variables. . 62
4.2 Cartography of UML graphic edges and the used visual variables. . . . 63
4.3 The identified graphic elements. 64
4.4 The class diagram of the Internet Banking System created by its devel-

opers. 65
4.5 The possible implementations of the color retinal variable on an UML

class. 67
4.6 Colors and the borders, separation lines and text thinness. 67
4.7 Impact of the line thickness on the selectivity of colors. 68
4.8 Coloring the UML node’s name compartment. 68
4.9 Implementations of colors which might alter the UML primary notation. 69
4.10 Effective implementation of the color retinal variable on an UML class. 69
4.11 Effective implementations of the color retinal variable to 4 different UML

nodes. 69
4.12 IBS class diagram: Medium level of the background color’s brightness. . 70
4.13 RGB and HSB codes of the colors used in Figure 4.12. 70
4.14 RGB and HSB codes of the colors used in Figure 4.15. 70
4.15 IBS class diagram: High level of the background color’s brightness. . . 71
4.16 Unreadability of the text labels in a dark background color of an UML

node. 71
4.17 IBS class diagram: Low level of the background color’s brightness. . . . 72
4.18 RGB and HSB codes of the colors used in Figure 4.17. 72
4.19 The same background color for UML nodes and icons. 73
4.20 Different background colors for UML nodes and icons. 73
4.21 Effective implementation of an icon in a white UML node. 73
4.22 White background color of icons in all levels of brightness of the main

UML node’s background color. 73
4.23 Effective implementation of icons in colored UML nodes. 74
4.24 Effective implementation of a port in a white ported and white contained

UML node. 75
4.25 Effective implementation of a port colored and white contained ported

UML node. 75
4.26 Effective implementation of a port in a white container. 75
4.27 Effective implementation of a port in a colored ported UML node and

contained in a colored container. 75
4.28 Effective implementation of a port in a white ported UML node and

contained in a colored container. 75
4.29 Possible implementations of the brightness retinal variable on an UML

class. 76
4.30 Brightness and borders, separation lines and text thinness. 77
4.31 Applying the brightness to the UML node’s name compartment. 77
4.32 Implementations of brightness which can alter the UML primary notation 77
4.33 Applying the brightness to only background 78
4.34 Effective implementation of the brightness to different UML nodes . . . 78
4.35 Text labels should not have different levels of brightness. 79

vi

LIST OF FIGURES

4.36 The effective implementation of the brightness retinal variable in the
IBS class diagram. 79

4.37 Possible implementations of the size retinal variable in a UML class. . . 81
4.38 Size variation on the area of UML nodes. 82
4.39 A size variation on the IBS class diagram. 82
4.40 A size variation of the borders and/or separation lines on an UML class. 83
4.41 A size variation of only the text of an UML class. 83
4.42 The effective implementation of the size retinal variable to a UML node. 83
4.43 Effective implementations of the size retinal variable to four UML nodes. 84
4.44 The effective implementation of the size retinal variable in the IBS class

diagram. 84
4.45 varying the size of only the separation lines and borders. 84
4.46 Varying the only the size of the text of an UML class. 85
4.47 Varying the size of the border and the text. 85
4.48 Effective implementation of the size retinal variable, in case the area of

the corresponding UML node cannot vary. 85
4.49 Effective implementation of the size retinal variable on the IBS class

diagram. 86
4.50 Effective implementation of the size retinal variables on icons. 86
4.51 Possible implementations of the grain visual variable to an UML class. 88
4.52 Applying the grain to the border lines of a UML class will alter the UML

primary notation. 88
4.53 Three examples of possible textures. 89
4.54 Null grain and the readability of text. 89
4.55 Grain and brightness. 89
4.56 The effective implementation of the grain retinal variable on the IBS

class diagrams. 90
4.57 Effective implementations on other UML nodes. 90
4.58 The effective implementation of the grain (here different textures) retinal

variable and icons. 91
4.59 Varying the orientation of the contained text of an UML node. 92
4.60 No phenomena of multiple parallel spots. 92
4.61 Varying the orientation of the text and the lines of separation. 93
4.62 No phenomena of multiple linear spots. 93
4.63 Changing the orientation of the whole UML node is problematic for

UML nodes having non-linear aspect. 93
4.64 Varying the orientation of UML nodes having a linear aspect. 94
4.65 Varying the orientation of a constant texture. 94
4.66 Example of a UML classes with a brightness variation and contained in

grained package. 95
4.67 An example of a combination between the size and the color retinal

variables. 102
4.68 Redundant combination of colors and grain in the IBS class diagram. . 103
4.69 Size and brightness to reinforce the quantitative perception in the IBS

class diagram. 104

5.1 Scope of the empirical study. 109
5.2 Experiment about the size variation on UML sequence diagrams: An

example of a question. 111

vii

LIST OF FIGURES

5.3 Reading the question via the web application. 112
5.4 Response time collection. 112
5.5 Experiments: the web application . 117
5.6 Answer correctness per implementation. 119
5.7 Box-plot: the results of the study. 120
5.8 Post experiment: Participants opinions 121
5.9 Post experiment: Participants opinions. 122

6.1 The graphical layer mechanism . 125
6.2 Using FlipLayers to express the project project progress in the IBS use

case diagram. 127
6.3 A layers stack: Project progress criteria. 127
6.4 The visibility property of FlipLayers 127
6.5 Visual annotation process using the interactive keys. 129
6.6 The interactive keys proposition for an ordered tag: Project progression. 130
6.7 The interactive keys proposition for a selective tag: Distribution of tasks.130
6.8 Assistance to the effective retinal variable use. 130
6.9 The interactive keys as captions or legends. 131
6.10 The interactive keys as captions or legends: two tags. 131

viii

List of Tables

3.1 Evaluation of three UML diagrams with the cognitive dimensions frame-
work. ⊕ mark designates a positive point, 	 indicates a negative point. 29

3.2 Positioning of the work of this thesis in relation to the CDs and the
PoNs frameworks. 36

3.3 Example of data for visual encoding. 38
3.4 Organization levels of information properties in UML. 41
3.5 Organization levels of the retinal variables. 46
3.6 Capacity of the retinal variables in the selective perception. 48
3.7 The population density per city in France in 2009 48

4.1 The used rules from the SoG to generate our guidelines about colors in
UML. 66

4.2 The used rules from the SoG to generate our guidelines about the bright-
ness in UML. 75

4.3 The used rules from the SoG to generate our guidelines about the size
variation in UML. 80

4.4 The used rules from the SoG to generate our guidelines about the grain
in UML. 87

4.5 The used rules from the SoG to generate our guidelines about the ori-
entation variation in UML. 91

4.6 The used rules from the SoG to generate our guidelines about the su-
perposition of the retinal variables in UML. 95

4.7 Containment relationship between UML nodes and colors. 96
4.8 Containment relationship between UML nodes and sizes. 98
4.9 Containment relationship between UML nodes and brightness. 99
4.10 Containment relationship between UML nodes and grain. 100
4.11 The used rules from the SoG to generate our guidelines about the com-

binations of the retinal variables in UML. 101

5.1 Hypothesis . 111
5.2 Hypothesis . 114
5.3 Questions of the study and the size of the related diagrams. 118

ix

List of Abbreviations

CDs Cognitive Dimensions

PoNs Physics of Notations

SoG Semiology of Graphics

UML Unified Modeling Language

x

Chapter 1

Introduction

Contents
1.1 Context . 2
1.2 Problem statement . 3
1.3 Research questions . 5
1.4 Contributions . 6
1.5 Outline of the thesis . 8

1

1.1. CONTEXT

1.1 Context
Graphical representations are a key element in software engineering. If textual repre-
sentations are efficient for linear reasoning, graphical ones score higher to show links
among a set of elements [31]. But, the effective use of such visual representations re-
quires to deeply understand how they work.

According to Jaques Bertin [10], graphical representations have three functions.
The first one is: saving information. It consists of drawing an inventory to save all in-
formation describing a particular situation or elements constituting a system (already
existing or future one). Therefore, the reader maintains a sort of memory in which
she/he can navigate to find relevant information for her/his task. This type of inven-
tory may for sure serve to communicate information between two or more than two
stakeholders. In fact, if the author assumes that some information is more relevant
for the task that the receivers have to accomplish, she/he can highlight it (e.g., by
increasing the volume of the sound of an audio representation or by increasing the
size of a spot in a graphical representation). Communication is the second elemen-
tary function of a representation. The third function is the treatment of information.
Some tasks like the optimization of a system or the determination of the behaviour of
a kind of customers need to infer information. By organizing in different manners the
information contained in a representation, readers may perceive (accidentally or not)
correlations that might form new knowledge that is valuable for their activity [38]. The
reorganization task represents a way to help humans to treat information. The tech-
niques of visualization of information that are mostly employed nowadays in Big Data
/ Business Intelligence have proven the effectiveness of the graphical representation for
many years in that objective.

For these three functions, the graphical system has a major benefit compared to
linear systems like the audio system or the textual one: it allows readers to rapidly
identify links between the represented elements [31]. But it also has the capacity to
instantly present multiple properties of an information with each displayed spot or
mark: via its position1 and via its visual aspect (color, shape, size, orientation, grain
and brightness). Each one of these means of visual variation allows to indicate different
values for a particular property. X and Y axis, color, shape, size, orientation, grain and
brightness are called visual variables. The visual variables except the X and Y planar
axis are called retinal variables [10]. They are all depicted in Figure 1.1.

Vertical
Position

Horizontal
 Position

Size Brightness Texture/Grain

Color Orientation Shape

Planar variables Retinal variables

Figure 1.1: The visual variables

The importance of the visual variables comes from their significance in the depth
perception [10]. Experimental psychology defines the perception in a third dimension

1in correspondence with the information in the plan (X or Y can indicate, each one, a value for a
particular property)

2

1.2. PROBLEM STATEMENT

as the result of multiple facts. First, the binocular vision (i.e., using two eyes) in a
limit of six meters. Second, the apparent movement of an object when the reader
moves. Third, the decrease of the size of a known object. Fourth, the decrease of the
brightness of a known contrast. Fifth, the reduction of the grain of a known texture.
Sixth, changing the known color of an object. Finally, the deformation of the shape
and orientation of a known object. All the previously mentioned variations except
from the two first ones are available to graphic authors to put information in a third
dimension. The retinal variables are relatively rapidly perceived because the reader’s
eye can detect their variation without moving the visual brush, the signals which are
received on the retina are sufficient. In fact, the retinal variables are pre-attentively
treated (without a conscious attention) by an automatic, very fast, and mostly parallel
dedicated system: the visual system. Then, the retinal variables that captured the at-
tention of the reader are cognitively processed by accessing to the short term memory
and/or the long term memory. The short term memory has a very limited capacity
and duration. It reflects the current attention of the reader. The cognitive processing
in the long term memory has an unlimited capacity and duration but is very slow and
sequential. Thus, the effective use of the retinal variables helps reducing the cognitive
load of the human readers by shifting some of the cognitive work to the visual system.

The massive use of schemes or diagrams in software engineering (95 % of practition-
ers [21]) is then understandable regarding the added value of the visual representations.
Of course, the need of effectiveness when creating this kind of systems has been and
remains a real academic and industrial problematic (see Diagrams and VL/HCC con-
ferences or the Journal of Visual Languages and Computing).

To enable object visual modeling tool interoperability, the Unified Modeling Lan-
guage (UML) standard has taken inspiration from existing works concerning software
modeling and has formed during the two last decades a good compromise between
human readability and interoperability. UML became the de-facto visual modeling
language for visualizing, specifying, constructing and documenting software intensive
systems. For that reason, UML is in the focus of this thesis. Practitioners have noted
several important benefits in using UML including: having a shareable common repre-
sentation of the system to be built [13], the ability to mitigate the growing complexity
of software by working at higher levels of abstraction and having more effective com-
munication [18]. From a practitioner’s point of view, communication seems to be the
most common benefit expected from modeling [18] and is ranked first among the im-
portant attributes of software models [21]. In addition, UML diagrams are frequently
used in support of maintenance tasks, to assist in navigating and understanding the
system [18].

1.2 Problem statement
Concerning the areas of improvement in UML, we note the possible difficulty to de-
scribe contextual information (essentially relies on the saving of information function).
Examples of contextual information can be the reasons why a diagram was written, its
most important or central element(s) or the reason of this significance. More specifi-
cally, UML does not specify effective ways to visually express extra-information on a
diagram. These extra-information is not limited to contextual ones and can also be
the will to highlight the recurring use of a pattern (e.g., Model, View and Controller).

3

1.2. PROBLEM STATEMENT

Furthermore, surveys about UML use in practice showed its unsuitability, sometimes,
as a communication vehicle of a project (communication function) [21]. This is mainly
due to differences of stakeholders levels of experience in UML. They might be familiar
with it (e.g., software developer) or not (e.g., clients).

Let us illustrate these facts via an example of a class diagram. It is shown in Figure
1.2 below. It describes the structure of an e-learning platform. Three types of users
can log in to the platform (i.e., Trainer, Trainee and the Administrator). They can
register to a training session, do the activities and use the means of communication
which are available (i.e., Video-conference, Messages, Chat and forums).

Training

idTraining

choiceFormation()

User

idUser

addUser()

Trainer

grade

Trainee

level

Administrator

idAdmin

Communication

idCommunication

VideoConf

idConf

call()

Message

content

sendMessage()

Chat

content

write()

Forum

subject

participate()

Registration

idRegistration

register()

Session

idSession()

connect()

Activity

idActivity

displayActivity()

Figure 1.2: Class diagram of an e-learning platform

We assume that a project manager uses the class diagram to discuss the progress
of the development of the e-learning platform with the client. For that, he can use the
diagram in Figure 1.2 without modifications. But, he adapts his speech to describe
the actual state of progress. He might say: "All the classes concerning the users were
implemented, but the administration of the platform part is not yet implemented. We
started implementing the video-conference mean of communication. The chat, the mes-
sages and the forum options are not yet implemented. The registration to a particular
session is already implemented and we begun implementing the activities management
part". In such case, the client might not be able to keep track of the discussion and
to have an overview about the progress of the project. He might wonder: What is
the percentage of the project’s progress? What remains to do? Can we estimate the
delivery time?. The project manager can also use the profiling mechanism [4] and
annotate each class by a stereotype named by the corresponding state of progress, as
illustrated in Figure 1.3 below. He can also add text within UML comments. Such
usages are recommended by [34], however they might not represent the best solutions.
In fact, textual representations processing is sequential and serial compared to visual

4

1.3. RESEARCH QUESTIONS

representations processing which is parallel as previously explained.

Training

idTraining

choiceFormation()

User

idUser

addUser()

Trainer

grade

Trainee

level

Administrator

idAdmin

Communication

idCommunication

VideoConf

idConf

call()

Message

content

sendMessage()

Chat

content

write()

Forum

subject

participate()

Registration

idRegistration

register()

Session

idSession()

connect()

Activity

idActivity

displayActivity()

<< Implemented>>

<<To implement>>

<< Implemented>>

<< Implemented>> << Implemented>>

<< In progress>> << In progress>>

<<To implement>>

<<To implement>>

<< Implemented>> << Implemented>> <<To implement>>
<< In progress>>

Figure 1.3: Class diagram of an e-learning platform: distribution of tasks using stereotypes

A legitimate question arises at this level: how to improve or upgrade the effective-
ness of UML to address these facts?

In software engineering, there are two major conceptual frameworks that deal with
the cognitive effectiveness 2 of visual notations in software engineering (i.e., including
UML): the Cognitive Dimensions (CDs) framework [25] and the Physics of Notations
(PoNs) framework [34]. The CDs framework is an evaluation technique for program-
ming environments 3. It captures a discussion support about cognitively relevant as-
pects of structure of programming environments. However, it is considered as only an
evaluation framework, providing guidelines to enhance the cognitive effectiveness in
each CD is out of its scope. The PoNs framework consists of a scientific framework
to create new cognitively effective visual notations and to evaluate existing ones. It
explores the power of the visual system to improve the cognitive effectiveness in some
dimensions of the CDs framework. The author of the PoNs has structured a scientific
basis for visual notations in software engineering. Nevertheless, the author has synthe-
sized research theories which led to some incompleteness in some principles. Designers
of visual notations cannot use them directly [42].

1.3 Research questions
In the context of UML, changing its specification (i.e., its concrete and/or abstract
syntax) to address the aforementioned facts does not represent the best and the only

2The cognitive effectiveness denotes the speed, ease, and accuracy with which a representation can
be processed by the human mind.

3Visual notations like UML and associated tools

5

1.4. CONTRIBUTIONS

solution. In fact, if we refer to the CDs framework, we can state for UML that the
OMG [4] has precisely and exhaustively specified its primary notation and its seman-
tics. But, it does not specify anything about the secondary notation dimension [25]
which refers to the free use and change of the visual variables that are not employed in
the UML primary notation (i.e., color, size, brightness, orientation and grain). There
is no rule governing the way in which the visual variables of the secondary notation can
be used. This leaves a big freedom and a possible mean to make UML more effective in
saving, communicating and treating information especially by taking advantage of the
visual variables. These latter are particularly powerful in reducing the cognitive work
required to read and understand the rational/information conveyed by the diagrams
and to navigate between them [34]. In that context, the following question arises 4:

RQ: How to improve the effectiveness of UML diagrams via an advanced usage
of their secondary notation visual variables?

1.4 Contributions
Addressing this question represents the main research axis of this thesis. The present
work is considered as a continuity of T.R. Green work regarding the CDs framework
and Moody’s work regarding the PoNs framework. The main characteristic of this
thesis is to explore the rules defined by the Semiology of Graphics (SoG) [10] in the
UML context/ work setting.

The SoG is one of the main references in cartography. It has been for a long time
adopted in the visualization of information works, in software visualization [30] and in
HCI, particularly in the work of Yuri Engelhart with one of the authors of the cognitive
dimensions [11]. In software engineering, it has been referenced by Moody in the PoNs
framework and in the works of Conversy [14].

The exploration of the visual variables in UML requires understanding of; (i) De-
tails about the situations of the use of UML in practice. (ii) Details about the actual
state of practice in using (or not) the visual variables in UML. If numerous empirical
studies treat the first scope by investigating the use of UML in practice, less researches
investigate the use of the visual variables. They mainly focus on the position visual
variable to find effective layouts [45] [40] [37] with sometimes studies about colors [46].
In order to fill this gap, we contribute an exploratory empirical study which consists
of both qualitative study via in-depth semi-structured interviews with practitioners of
UML and quantitative study via the analysis of the use of the visual variables in + 3500
UML diagrams. Among other results, both studies showed out a recurrent non effective
use of the visual variables in UML (e.g., no keys). They also revealed an existing need
to effectiveness in the use of the visual variables in UML including: the need to the
subtlety of the visual variations and the importance of the usability of modeling tools
in terms of rapidity, effectiveness and dynamism. This contribution has been published
in the Human Factors in Modeling workshop at the MODELS conference in 2017 [20].

In order to improve the effectiveness of UML in the situations of its use in practice
(i.e., captured in the previous empirical study), we present two additional contribu-
tions in this thesis. First, we define a scientific framework describing guidelines for the

4This is the general research question of this thesis. It is revisited and refined later on page 57.

6

1.4. CONTRIBUTIONS

visual enrichment of UML diagrams based on the SoG. It begins with synthesizing the
rules related to each visual variable from the SoG. At that stage, we observed that
the SoG generally deals with elementary marks (e.g., only one geometric or symbolic
shape) and not with composed ones which are massively used in UML. So, we proceed
to a kind of empirical classification of the elementary UML graphic components. This
aims at drawing an exhaustive list of them and to specify the way in which they are
bound together. This allows us to carefully adapt the SoG principles to UML. The
result is a list of sixty-one modeling guidelines in order to effectively exploit the UML
secondary notation except layouts. In fact, although the position visual variable (i.e.,
layout) is under modeler’s control, it is not treated by SoG-UML. We deem that there
exist many research works in the literature that deal with layouts like [45] [40] [37]. In
addition, animations are not in the scope of this thesis. The guidelines of SoG-UML
concern the effective implementation of each retinal variable in the UML graphic com-
ponents which are contained in a white background. They concern the border, text,
background, ports and icons. Then, the guidelines treat the possible containment of
UML graphic components having different categories of the retinal variables (e.g., a
green class contained in a dark package). Finally, SoG-UML treats the combination of
retinal variables on UML nodes. It relies on the design and action theory5 [26].

To validate the guidelines of SoG-UML, we contribute a validated design method-
ology of an empirical study having an experiment as strategy of inquiry. The design
methodology has been executed with the attendees of the Human Factors in Model-
ing workshop in 2016 and published in [19]. But, it failed because of problems that
we explain in Chapter 5. We list the lessons learned from it to help succeeding the
next experiments in the field of this thesis. Then, we detail the experiment that we
have conducted and which succeeded to give statistically significant results. It involved
ninety-five participants. It shows that the effective use of color helped the participants
to find the correct answer in a relatively short period of time compared to the use of
text via stereotypes. It validates three guidelines of SoG-UML. The design method-
ology of this experiment serves to validate the other guidelines of SoG-UML which
becomes then a testable theory [26].

The next contribution is a proof of concept tool integrated in the Papyrus envi-
ronment [24]. First, it consists of an implementation of the classical mechanism of
graphical layers found in existing image editors (e.g., gimp) named FlipLayers. The
retinal variables and the layers mechanism have been coupled together which aims at
enhancing the communication value of UML diagrams. Controlling the visibility of a
group of UML nodes together allows managing the complexity 6 of big UML diagrams
[34]. It also allows a better cognitive integration7 of the different views of an UML
model. This contribution has been published in the MODELS main conference in 2015
[8]. Second, we provide a prototype of an interactive keys to relatively rapidly decorate
UML diagrams using the retinal variables. The interactive keys aims at satisfying some
of the recommendations which have been mentioned by the UML practitioners in our
previous empirical study.

5A design and action theory is meant to give explicit prescriptions for constructing an artifact
6The ability of a visual notation to represent information without overloading the human mind.
7the cognitive demands on the reader to mentally integrate information from different diagrams

and keep track of where they are.

7

1.5. OUTLINE OF THE THESIS

1.5 Outline of the thesis
This thesis is structured as follows:

Chapter 2: The visual variables in the practice of UML presents how soft-
ware designers use the visual variables in their daily practice of UML. For that, we refer
to the results of the empirical study that we have conducted as a first contribution of
this thesis [20].

Chapter 3: State of the art proves how the CDs framework represents just an
evaluation framework of programming environments. Then, it illustrates how the PoNs
Framework principles are incomplete and cannot be directly used by visual notations
designers. In a second part, as we propose to refer to the SoG to enhance the cognitive
effectiveness of UML, we present a first refinement layer of the SoG in the context of
UML. For that, the basic theories of the SoG are exposed with a parallel positioning in
regards to UML. It shows that the SoG does not deal with complex graphic elements
like UML nodes (e.g., shapes that might contain text, headings, compartments, ports
and icons).

Chapter 4: SoG-UML: Semiological guidelines for the visual enrichment
of UML diagrams defines the framework which structures the effective use of each
retinal variable in UML, by managing the graphic complexity of the UML concrete
syntax. The main objective of SoG-UML is to enhance the cognitive effectiveness of
UML diagrams by taking advantage of the retinal variables.

Chapter 5: Evaluation establishes a validated design methodology of experi-
ments in order to assess the effective use of the retinal variables in UML. It makes of
SoG-UML a testable theory. For that, it presents the lessons learned from a conducted
but failed experiment [19]. Then, it defines the design methodology of an experiment
which has been executed and succeeded to give statistically significant results.

Chapter 6: Implementations presents how the SoG-UML guidelines might be
integrated to modeling tools. For that, it describes the prototypes of tools which have
been developed in the Papyrus environment [8].

Chapter 7: Conclusion and perspectives summarizes the contributions of the
thesis and exposes its perspectives.

8

Chapter 2

The visual variables in the practice
of UML

Contents
2.1 Design methodology . 10

2.1.1 Qualitative and quantitative methods 10
2.1.2 Interpretation of results . 11
2.1.3 Data collection procedures . 11

2.2 The qualitative study . 12
2.2.1 Analysis . 13

2.3 The quantitative study . 20
2.3.1 Analysis . 21

2.4 Discussion of the results . 22
2.5 Conclusion . 23

9

2.1. DESIGN METHODOLOGY

Studying the utility of the visual variables in UML requires a deep exploration
of the actual state of practice of both UML and the visual variables. On one hand,
there is a huge effort in the literature investigating UML in practice. For example,
[13][21][21][16] mainly address the purposes, the costs and benefits and the ways of
using UML in practice. But, they do not mention enough details about the situations
when practitioners need to visualize information and the kinds of information needed
within each situation. On the other hand, few works concentrate on the use of the
visual variables in UML. The majority of the existing researches focus on finding the
effective layouts (i.e., the position visual variable) based on diagram comprehension
and user preferences [45] [40] [37]. Some studies focus on colors like [9] and [46]. All of
these works are controlled experiments so they do not report on the practices of UML
users and their opinions about the visual variables. There is no qualitative research
in this area. We conducted then an empirical study [20] in order to fill this gap. It is
described in this Chapter.

2.1 Design methodology
The purpose of the study is to create more and better understanding about the situa-
tions of the UML use in practice. A situation refers to the activities, the stakeholders
who are involved in each activity, the information that they need to visualize, the
practices of UML users in employing UML and the purposes of such usage. In the
captured situations, the study aims at discovering the need for the visual variables in
practice. If such need exists, we want to gain a great understanding about the kinds
of visual annotation that UML practitioners perform, the purposes and the ways to do
so. As a triangulation method, we analyzed the use of the visual variables in + 3500
diagrams related to open source projects in ub [27][3]. The theoretical perspective of
the study is to help us exploring the benefits of the visual system as a mean of resolving
problems that the study might reveal. Obtained results can also help us studying the
usefulness of the visual variables in enhancing the effectiveness of UML in the captured
situations. Finally, they might help tool vendors enhancing the usability of their tools
by making more ergonomic visual automation. The study takes a deliberately broad
interpretation of results from both methods, as it is meant to be exploratory.

2.1.1 Qualitative and quantitative methods
We used a selective range of research techniques to gather data for our study. We
used both qualitative study via in-depth semi structured interviews and quantitative
study via the analysis of UML models related to open source projects in GitHub [3].
Such use of a variety of types of data helps us ensure a better coverage and a greater
understanding about our following two research questions:

What are the situations when practitioners use UML, particularly which in-
formation do they need to visualize in each situation?

RQ1

How and when do the practitioners use the visual variables in the previous
situations?

RQ2

The qualitative in-depth interviews with eight experts and practitioners of UML
helps us to gain understanding about the use of UML and the use of the visual variables

10

2.1. DESIGN METHODOLOGY

in practice. They allow us to understand the relationships between both kinds of use.
More precisely, they let us find out the information that the practitioners need to
visualize and the ways of using the visual variables (if so) to make them more visible.
The analysis of the UML models related to open source projects provides us with
quantitative data, particularly, about the use of the visual variables. It mainly answers
the second research question by allowing us to draw conclusions about the amount of
the visual variables use in a sample of + 3500 UML diagrams. This also enables us
to judge the effectiveness (or not) of such usages based on existing theories, the SoG
in this thesis [10]. This study is conducted in order to help us to achieve our goal in
exploring the high performances of the visual variables in UML.

2.1.2 Interpretation of results
We need to be particularly careful about how we analyze the results of our study and
the conclusions that will be drawn. In fact, the first intent of this work is to create
better understanding about the use of UML and the use of the visual variables in prac-
tice. It is not meant to verify hypothesis or generalize findings. It mainly serves as an
exploratory study to help ongoing researches around UML.

The analysis of our interview data has been carried out using the ‘grounded theory’
which is defined as a qualitative strategy in which the researcher derives a general
abstract theory of a process action or interaction grounded in the views of participants
in a study [41]. For that, we began by manually transcribing the interviews from audio
to textual form. We read throughout the data and identified themes and descriptions.
We tried to interrelate them using the grounded theory approach then we interpreted
the results.

The analysis of the UML models related to open source projects involved some basic
enumerations and simple statistical calculations to get overall sense about the use of
the visual variables in UML. The major effort was spent on the manual classification
of the different diagrams based on the different usages (or not) of each visual variable.
That helped us reporting on the state of practices of UML modelers in using the visual
variables. You can find a replication package of the study in [6].

2.1.3 Data collection procedures
Qualitative empirical study: In depth semi-structured interviews

We conducted a series of semi-structured in-depth interviews with eight participants
(six from industry and two researchers). Seven interviews have been carried out by
phone and one was a face to face interview. As the first intent of the present work
is to understand in depth the use of UML in practice, we were particularly interested
by practitioners of UML. They come from a variety of backgrounds and with a range
of expertise in UML. The interviews lasted approximately 30-60 minutes and began
with a brief announcement of the goal of the study. We also introduced the fact that
interviews would be anonymous and asked permission to record them. Then, we asked
participants about their current position and level of experience with modeling using
UML. We continued with questions about the situations of their use of UML to answer
our first research question. That included the purposes of using UML, the activities
done with UML diagrams, the employed diagrams, the reasons of using a particular

11

2.2. THE QUALITATIVE STUDY

diagram, the sought information and the ways of using UML in a project from the
beginning until the final steps. Then, we asked questions about their current use (or
not) of the visual variables in practice. That concerned the identification of the utility
of the visual variables in practice, the most used visual variables and the ways of
their use. As for any semi-structured interviews, we have identified a number of topics
that had to be covered in each interview. We also strongly encouraged participants
to explain the details of their claims by pointing out that the minor detail is very
important for our study. All the interviews have been conducted in a discussion mode
where the interviewer followed the logic and the reasoning of the participants. Finally,
the interviews were recorded and transcribed with the permission of the participants.

Quantitative empirical study: Analysis of real UML models

We manually analyzed how the visual variables were employed in + 3500 UML models
related to open source projects in GitHub [3] [27]. Most of these diagrams are class dia-
grams, exactly 3328 class diagrams, 392 are sequence diagrams (The models repository
is already biased towards structural (class) models [3]). That aims at gathering quan-
titative data that might reinforce the interviews results. To that end, we first began
by identifying the visual variables that we would study, notably: the size, brightness,
color, texture and orientation. Then, we manually classified the UML diagrams based
on the visual variables they contain (In case of two or more visual variables, we created
a new dedicated folder). For each visual variable (i.e., for each folder), we classified
the diagrams according to the kind of its implementation to UML elements. In fact,
we observed that each visual variable might be differently applied to them: on the
border, text, background, edges, heads and/or compartments. We also differentiated
significant visual variables variations and non significant ones. A visual variation is
considered as significant if there are different categories of this latter in a same dia-
gram (e.g., blue, green, red are different categories of the color visual variable). They
mean that authors of the corresponding diagrams wanted to express an information
using a particular visual variation. Such kind of variations is very important for our
study. We will further concentrate on their analysis to understand in depth their use
and answer our second research question. Non significant variation refers to the use of
a single category of a visual variable (e.g., all the classes are yellow).

2.2 The qualitative study
We have identified interviewees by searching practitioners who regularly use UML. We
asked all our contacts in order to identify industrial practitioners who might be willing
to be interviewed. We have first done an announcement on mailing lists containing po-
tential practitioners of UML: Papyrus tool developers and users community. We have
received two answers to that announcement. The first one has been discarded because
the corresponding profile did not match with our target population. The second one
was retained because he had the adequate target profile: practitioner and UML expert.
Then, we sent direct mails to industrial experienced practitioners in the MDE com-
munity. We asked them to participate in our study or ask other potential people who
might be interested and interesting for our study. We contacted eleven people, among
them six accepted our request, one person suggested another one who he deemed more
interesting for our study and who was retained, two people did not answer to our mails
and finally two indirect contacts did not accept to participate in our study because

12

2.2. THE QUALITATIVE STUDY

they were not experts and practitioners of UML. Below, it is an extract of an e-mail
sent to the participants:
“. . . .we are conducting an empirical study which aims at understanding in depth the
use of UML in practice. As a result, adequate solutions can be provided to enhance
the effectiveness of UML in real situations. In that context, we are searching for UML
practitioners for a 30 minutes to one hour interview. If you have some time to discuss,
please send me an e-mail to: yosser.elahmar@cea.fr... I would like to emphasize that
the collected data will be anonymous. . . .”
In total, we carried out eight interviews with eight participants who are all experts and
practitioners of UML. Roles of the interviewees range from1 the requirement manager
(1), software architect (1), software designer (2), consultants (1), software engineers (1)
and researchers (2). They work on different domains: transportation, aerospace engi-
neering and defense, avionics, telecommunication, E-commerce, insurance and banking.
Five hours and a half of interviews were recorded and manually transcribed.

2.2.1 Analysis
Situations of the use of UML in practice

Purposes of the use of UML The results of the qualitative study revealed that
communication is ranked first among the usages of UML in practice. The eight partic-
ipants have confirmed their use of UML diagrams as a communication vehicle. Com-
munications might be held internally within the project teams or with costumers. This
finding is also confirmed by the empirical studies that exist in this field like [21][18].
The next paragraph further focuses on our results about UML use in communications.
The second purpose of using UML is code generation. This finding is contradictory
with previous empirical studies [16] where code generation generally appears in the
last ranges. However, that seems logic in our case because most of our interviewees
are MDE approaches practitioners. They use models from early design steps until
maintenance tasks. The third purpose of using UML is to draw the participant’s own
understanding, in an informal way where UML diagrams are considered as a “map of
the system”. That might be done using a pen and paper or on a white board. In such
kind of use, participants do not care about the conformity of their diagrams to the
UML standard. Their goal mainly concerns the comprehension of the system to be
built and its conformity to the clients needs. Finally, UML diagrams are less employed
for model execution and model analysis.

UML and communications We asked our practitioners about their practices of
using UML diagrams for communications. We distinguished two types of audiences:
people who are familiar with UML (e.g., technical team) and non-familiar with UML
(e.g. customers). We found out that none of our practitioners modify (i.e., contextual-
ize) their diagrams for communications with people who are familiar with UML. They
argue that all the stakeholders already know and understand the language. However,
when it is about discussing with customers, they react differently (Figure 2.1). Most
of the practitioners do not modify their diagrams but try to adapt their speech to the
audience. Below, you will find two claims from our practitioners:
“. . .We kind of read the diagram to them then we say our interpretation and they just
hear what we say and they agree or not with that. . . ” (Transcript 3)

1The number in brackets refers to the number of participants having the corresponding role.

13

2.2. THE QUALITATIVE STUDY

1 1,5 2 2,5 3
Filter info.

Adapt the speech

Include textual info

Don’t use UML

Figure 2.1: Communications with non-familiars with UML

“I didn’t ask him to learn all of UML but like for the class diagram I would explain
the class you know what the class is, the attributes and relationships that takes only a
few minutes and then... the subject matter he is really familiar when he sees that these
boxes as you know class called solution or column or pump and types of things that are
easier to work with...” (Transcript 4)
Other interviewees would prefer to filter some information from their diagrams to keep
only those interesting for their communications. To that end, they omit technical de-
tails that don’t really matter to their customers. They try to keep diagrams simple to
better communicate.
“. . . we actually try to simplify as much as possible in our ... UML model because they
aren’t UML experts so we try to filter out all. . . We try not to overload our diagrams
with labels everywhere that non UML experts will not understand” (Transcript 7)
Finally, one practitioner prefers not to use UML when discussing with people who are
non familiar with UML.
Generally, all our practitioners were aware of the unsuitability of UML for all types
of communications. They try to find different manners to facilitate such use. Rare
of the practitioners has mentioned the recurrent use of the visual variables to adapt
the diagrams to communications. This fact is mainly due to problems with tools (see
Section 6).

Used UML diagrams Interviews showed that class diagrams and sequence dia-
grams are the most used in practice (Figure 2.2 below). Different reasons are given
to justify the choice of such particular diagrams. A software engineer argues that the
class diagram is the most expressive notation in UML for modeling data. A software
designer uses the class diagram to have a design of the database. A software architect
pointed out that the class diagram is used to divide the work among the different teams
which are involved in a same project. Class diagrams are also employed to draw the
business entities of the systems and to represent the functional relationships between
these latter. Concerning the sequence diagrams, they are mainly used to define the
interaction between the classes and interactions between users and the solution (i,e.,
the common definition of a sequence diagram). Sequence diagrams are also used in
the definition of the white box part of a solution and to realize specific use cases.
The use case diagrams and the state machines diagrams are ranked second among the
most used UML diagrams in practice. The purpose of creating use case diagrams is
to enumerate the functions to develop and to specify actors and the interactions be-
tween them. Eventually, this refers to the definition itself of a use case diagram. The

14

2.2. THE QUALITATIVE STUDY

1 2 3 4 5
Class

Sequence
Use cases

State machines
Activities
Structure
Interface

Components
Interaction

Figure 2.2: UML diagrams used in practice

requirement manager justifies his use of the use case diagrams by the fact that such
use is recommended by the safety requirement standard. Use cases are also used to
drive the software engineer thinking and they will be part of the documentation. State
machines are mostly used to design the behavior of the systems to be built or as an
executable model. Activity and structure diagrams are the fourth most used diagrams
by our practitioners. Activity diagrams are mostly seen as an elaboration of the use
cases and a representation of the systems features. They are also used for the business
process modeling and as a communication vehicle with customers. Then, on the last
position, come the interface, component and interaction diagrams. These findings are
coherent with previous empirical studies led in this area [16][18].

Pattern of UML use in practice We asked the interviewees to describe in detail
their practices in using UML to build a system or a project. We analyzed the an-
swers to this question and were able to identify a pattern of the use of UML by our
interviewees. All of our practitioners begin with gathering the requirements from the
customer. This might be done in a textual form or via a modeling session.
“The three people working on the project for example, we interview users who want
the system and we understand from them what the requirements are, then we translate
these requirements. It is like we have a modeling session, we sit with them the three of
us and we interview that, what do you imagine blablabla. And then we capture the use
cases and we start populating a use case diagram...” (Transcript 3)
At this level, the models serve as a support of communication with the customer and
within the technical team members. This step allows our participants to draw the
big picture of the systems to be built. One interviewee mentioned the advantages of
representing the system in a visual form instead of text.
“Drawing the system instead of writing is a good tool to communicate and share mind
viewpoint. The vision goes more quickly, we can decide more quickly about the archi-
tecture, the architecting stuff.” (Transcript 6)
Then, participants move to an understanding session where they review and check the
requirements of the customer to ensure that they fit with their customer’s needs.
“We want to represent the system as it is and we want to understand the needs may be
to understand the way to go to the system to be. So we used different diagrams offered,
provided by UML to draw the big picture of the – context to deeply understand what is
the need.” (Transcript 6)
To that end, they might need to go back to the customer and review the requirements
in another modeling session. Once ensured that their models match well with the re-

15

2.2. THE QUALITATIVE STUDY

quirements of the customer, they split the work among the people who are involved
in that project. To that end, UML might be employed as a discussion vehicle via the
class and the use case diagrams. Finally, each participant continue to use UML for
her/his particular needs: model simulation and execution where the models represent
the code. They might generate code from them or continue coding the system and
keep the created models in the documentation. In all cases, the models will populate
the documentation which describes each project or system. To these ends, most of
our practitioners use a modeling tool in their practice. One interviewee pointed out
that the use of a modeling tool depends on his needs. If it is about gaining his own
understanding of the system, he settles for a pen and paper. Otherwise, if it is about
automation, he does use a modeling tool.

Searched information We asked our practitioners about information they need to
visualize in practice. We distinguish two types of information. The first one refers to
the semantic information (i.e., what is modeled in a diagram). Below are examples of
semantic information mentioned by our interviewees:
• Input and output statements for the requirements: the interviewee who

mentioned this semantic information is a requirement manager. In her/his prac-
tice, she/he begins first by gathering the requirements from the customer. Second,
she/he reviews the requirements and draws the use case and the state machine
diagrams to build her/his own understanding. Then, she/he reviews the require-
ments. For that, she/he needs to check if the input requirements that are given
by the customer correspond to the output requirements that are represented in
the use case and the state machine diagrams.

• The communication between the objects in a sequence diagram: the
UML practitioner visually navigates in her/his sequence diagram to see the mes-
sages that are exchanged between the objects of her/his system. Such visualiza-
tion helps her/him understanding the logic of those communications.

• The concerns of each subsystem: the UML practitioner wants to see the
functionalities of each group of elements in her/his UML diagrams. For example,
a subsystem of an e-learning platform concern the users management and another
one concerns the database management.

• The calls of functions between the diagrams of a model: the UML prac-
titioner needs to visualize the relationships between different views of an UML
model. For example, she/he navigates between an UML class and its behaviour
in the state machine diagram.

• The interactions of a practitioner’s own system with the other subsys-
tems: the UML practitioner needs to see the communication of his subsystem
with the other practitioners subsystems. Such visualization helps her/him up-
dating her/his subsystem when a new interaction to it is created or updated.

• References for specific signals or events in the model: the UML prac-
titioner needs to find the elements that reference other ones in her/his UML
diagrams.

Second, we find what we call extra-semantic information. It consists in non-semantic
information but which can be extracted from an UML model. Examples of extra-
semantic information are:

16

2.2. THE QUALITATIVE STUDY

• Level of implementation of the classes: the UML practitioner needs to see
the classes that are already implemented, those that are in progress and finally
the classes that are not yet implemented.

• Bugs in the model in the case of model execution: before executing her/his
UML diagram, the UML practitioner checks his diagram through model valida-
tion. As a result, she/he can visualize the existing bugs (e.g., with red markers)
and fix them.

We observe that practitioners need to visualize information on their diagrams. Before
going to the documentation, UML diagrams are subjects of many visualizations where
practitioners need to search for important information to accomplish their tasks. If we
link this finding to the previous results about the purposes of using UML in practice,
most of the searched information belong to the “drawing of understanding” purpose:

The practitioners visually navigate in their diagrams to find accurate
information to build the mental map of their systems or projects.

The visual variables in practice

This subsection analyzes the answers of the practitioners about the second research
question: the use of the visual variables in practice. We first begun by asking our
interviewees about details of their use (or not) of color in practice. Then, we asked
them about their alternative means in case they have color-blind people in their teams.
It allowed us to introduce our question about the use of the other visual variables (i.e.,
size, brightness, texture/grain, orientation). We presented a brief presentation of each
visual variable if necessary.

Color We asked our practitioners about their need for colors in practice and about
examples of information they needed to highlight using them. Again, we distinguish
two types of information: semantic information and extra-semantic information. Only
two semantic information were mentioned by one single practitioner:

• Important features like inheritance

• Elements which have the same semantic like interfaces

Most of the interviewees used color to highlight extra-semantic information. The
progress of the implementation of classes has been mentioned by three practitioners.
They want to visualize the progress of the development of their classes directly on the
diagrams. Examples of extra-information are mentioned below:

• Role in the design (criticality, parts of patterns (especially MVC), parts of layers,
levels of security).

• Status in development (progress in implementation, testing, execution).

• Distribution of tasks between the stakeholders (ownership of each class).

Besides, one practitioner mentioned that color must not be used to highlight semantic
information. He argues that the diagram should be understood without coloring be-
cause colors might disappear in case of black and white printing.
“We have discussed and said that we should avoid coloring. At least if the colors have

17

2.2. THE QUALITATIVE STUDY

a specific semantic I mean you should be able to understand the diagram without the
colors we can’t put any semantic meaning into the colors because if you lose the colors
when you print into black and white printers I mean it is pretty fundamental to still
have the same semantic of the diagram”. (Transcript 5)
Furthermore, we observe that most of the examples of the highlighted information
using color are “selective” information: Practitioners want to highlight UML nodes be-
longing to a same group (e.g., MVC elements, elements that have the same semantics)
together. They may occasionally use colors for “ordered” information (e.g., progress of
implementation, important features).

1 1,5 2 2,5 3
Yes

Yes but problems with tools

No

Figure 2.3: Utility of colors in practice

Utility of colors in practice We asked our practitioners if the previously mentioned
use of color has been helpful. We found out that most of them agree on the added value
of colors and that their use was helpful in practice. Figure 2.3 details the answers of
the participants 2. Three interviewees totally agree on the utility of colors in practice.
The same number of interviewees confirm that colors are helpful in practice but there
are problems with modeling tools that hamper such use. Besides, they express their
need for an automatic and efficient tool and propose some recommendations that will
be discussed in Section 6. One interviewee stresses on the fact that colors are helpful
but only for communications.

The use of color In the case of the use of colors, we wanted to understand how
practitioners do chose them. We found out that only two practitioners use some in-
ternal conventions of their companies. Below are examples of conventions used within
two different companies:
“Non-tested functions: Blue; safety functions: yellow. . . ” (Transcript 1)
“To communicate the green means we have it, yellow means in progress, red means we
–“ (Transcript 3)
The majority of interviewees do not have internal conventions, they follow their own
tastes.
“In my domain which are in general embedded systems we can use blue for that software
functional related, I use orange for everything that software platform related to frame-
work system, drivers, etc and red for everything that is material, hardware related.”
(Transcript 7)
“I avoid red because red means mistake and green is nice because it means correct.”

2With one missing answer.

18

2.2. THE QUALITATIVE STUDY

(Transcript 1)
One practitioner says that they have internal conventions but they are used in an ad-
hoc manner.
“Unfortunately, this (internal reference documents) is used in an ad-hoc manner. We
have just documents to follow but no body follows them in a formal manner.” (Tran-
script 6)
Then, we wanted to know if practitioners add legends/keys when they use colors. We
found out that the majority of practitioners do add legends or would like to do so: two
practitioners confirm that if they use color, they add keys. Two other practitioners
would like to add keys but there are limitations in the used modeling tools (Figure
2.4).
At this level, we observe that most of the practitioners neither follow internal con-

2 2,5 3 3,5 4

No

Yes/ would like to add them

Figure 2.4: The need for keys in practice

ventions nor add keys when they use color. Such behavior is non effective because
keys are primordial if at least one visual variation does exist [10]. That might create
ambiguities to understand the diagrams in question (e.g., for the author himself after
a long time or for another team member who might need to read it while maintenance
tasks).

The other visual variables We asked an open ended question about the utility
of the other visual variables (i.e.; size, brightness, texture/grain and orientation) in
practice. The majority of our practitioners confirm that the use of the visual variables
might help using UML in practice (Figure 2.5). In parallel, they stressed on the effec-

2 4 6
Yes but problem with tools

Yes only for communication

Problems

Figure 2.5: The need for the visual variables in practice

tiveness and usability of the employed tools for that purpose. The utility of the visual

19

2.3. THE QUANTITATIVE STUDY

variables directly depends on the efficiency and usability of the tools. One interviewee
argues that these visual variables might be helpful only for communications. If it is
about understanding or using his own diagrams (i.e.; that he creates), he will not use
them.
“If I have to model a function, I AM the designer, I am modeling this function, so I
don’t see how I should use visual annotations.” (Transcript 1)
Another interviewee thinks that the use of the visual variables might impact the read-
ability of the diagrams: The size variation might make big diagrams less readable.
Texture might also create problems of readability and printing issues.
“Size: No because most of the time, the models are so complex. So having classes bigger
than others make the diagram less readable.” (Transcript 8)
“Texture: The diagrams are printed and stuck in the wall so using texture... to me it
is making the model less readable... it could be more beautiful for business people. For
technical people I don’t think it will be added value.” (Transcript 8)
The use of the visual variables depends also on the size of the working teams. In large
organizations, the use the different visual variables might create a mess.
“In smaller teams, probably they are perfectly well where you can align and decide the
coloring rules and so on but as long as get a little bit bigger, then going and using
different visual variables... just creates a mess.” (Transcript 5)
Ongoing researches about the use of the visual variables in UML should take into
account these claims and provide effective material (i.e., via theories and convenient
tools) to handle the aforementioned problems.

2.3 The quantitative study
We have randomly chosen a sample of +3500 diagrams from the GitHub models repos-
itory [3]. The repository was already biased towards structural models. That explains
the fact that 90% of our sample were class diagrams. In that context, 22% of the

Figure 2.6: Analysis of the visual variations in the models repository.

diagrams of our sample present significant visual variations (Figure 2.6). That means
that modelers did need to highlight information and used the visual variables to that
end. As depicted in Figure 2.6, color, brightness and size are the three visual variables
which are the most used. We found out that only one diagram is using the texture
visual variable and that the orientation is never used. 67 % of the diagrams present

20

2.3. THE QUANTITATIVE STUDY

Figure 2.7: Different implementations of color to UML elements

non significant variations (Figure 2.6). Such non-significant variations refer to the de-
fault configurations of the used modeling tools (e.g., by default, all the classes might
be yellow, blue, green, gray, etc,.). 11% of the diagrams are purely black and white
ones and do not present visual variations.

2.3.1 Analysis
Color

80% of the significant visual variations are expressed by using colors (Figure 2.6). We
analyzed details about such use and observed that they are differently applied to UML
elements: background, borders, edges, text, heads and compartments. We found out
that colors are applied to the background of the UML elements in 63% of the diagrams
that present significant color variations (i.e., classes or lifelines) (Figure 2.7). 10%
of the diagrams present a color variation of the contained text of an UML element:
class name, attributes, methods or even text related to comments. 9% of the diagrams
present color variations of the UML element’s borders, particularly the borders of
UML packages and classes. Finally, we observed that modelers add information in
their diagrams using colored text or arrows. We looked further into detail to find out
the information that modelers wanted to highlight. However, it was difficult to identify
them. This is due to the lack of keys or any information that designates the meaning
of each color variation. In fact, only 4% of the diagrams which present a color variation
do contain keys or simply meanings of the applied visual variations (Figure 2.8). 14%
of these keys are not up-to-date with the corresponding diagram. That might occur
because the used tool does not automatically update the keys. This observation is akin
to the previously mentioned statements in which practitioners have raised their need
to add keys and pointed out the limitations of tools to add these latter. The analysis
of the diagrams where keys are available showed that colors were always employed to
express selective information. Most of these diagrams present the Model, View and
Controller elements as highlighted information. They use the following sets of colors:
(pink, yellow and mauve), (green, yellow and mauve), (blue, orange and green) and
(yellow, green and red).

21

2.4. DISCUSSION OF THE RESULTS

Figure 2.8: The use of keys/legends in UML

Brightness and size

As mentioned above, the brightness is the second used visual variable. As for color,
brightness is mostly employed to highlight selective information. Modelers chose dif-
ferent levels of brightness of a particular color or ranges of white and gray. Brightness
is always applied to the background of UML elements.
For the size variations, significant ones are mostly applied to text. Modelers change
the thickness of the text that they want to emphasize (e.g., attributes, methods or just
a part of them). Once, different sizes of the text have been used.

2.4 Discussion of the results
The results of the interviews analysis show that UML diagrams are employed in sev-
eral situations (e.g., communication, drawing of understanding, analysis) using differ-
ent diagrams (e.g., classes, activities, state machines). These situations involve many
visualization tasks where practitioners need to research information important to ac-
complish their work. These information might be semantic or extra-semantic ones.
The interviews also show that colors are sometimes used in practice. Such use has
been recognized as helpful by our practitioners. Concerning the other visual variables
(i.e., size, brightness, texture/grain and orientation), practitioners do not actually use
them but deem that they might be helpful and useful in practice depending, of course,
on the usability of the modeling tools. To reinforce their claims, practitioners men-
tion recommendations about effective ones (i.e., tools). First, they express the need
to an automatic tool that updates the visual variations when the information change
or evolve. Concerning the extra-semantic information about the progress of the imple-
mentation, classes should automatically be updated when a class status moves from
in progress status to implemented one. Practitioners have also raised the need to add
keys when they use colors. They pointed out that not all the modeling tools present
such feature. In that context, they suggest to have interactive keys that enables, for
instance, the possible update of the visual variations in the UML diagram in the keys
and vice versa. They also recommended the possibility to define rules which map
the information to be highlighted and the corresponding visual variable. Furthermore,
practitioners stress the subtlety of the used visual variations. The visual variables have
to be associated with particular meanings. They also stress the necessity to consider
large organizations where a big number of people collaborate on the same models: the
tool should handle the conflicts that might appear.

22

2.5. CONCLUSION

As with the interviews, the results of the quantitative analysis of the UML models
show that color is the most used visual variable. But, concerning the other visual vari-
ables, it shows that brightness and size are also used to highlight information. In the
models repository, only 4% of the diagrams present keys and sometimes they are not
up-to-date with the corresponding diagrams. The latter finding confirms the interviews
results about the need of an automatic tool. Existing theories like [10] prove that keys
are mandatory when at least one visual variation does exist in a graphical represen-
tation. It helps reading and understanding the meanings of such variations. Indeed,
when we tried to analyze the models in the repository [3], we encountered problems to
understand the meanings of the visual variations applied by modelers. That might be
problematic in practice when modelers want to understand the diagrams which contain
some significant visual variations. In addition, we observed that the used visual vari-
ables are differently applied to UML elements: border, background, text, etc. In that
context, there are absolutely implementations which are more effective than others.
Via both research methods, we observed that colors are mostly employed to express
selective information. Based on [10], such use is effective. Selectivity is one of the per-
ceptive properties of colors thanks to which the human eye can rapidly select groups of
elements having the same color together. However, we also noticed that practitioners
use colors to express ordered information (e.g., the progress of the implementation of a
project). Such use is non effective [10]. In fact, the human eye cannot order colors but
it can spontaneously and rapidly order different levels of brightness (i.e., from dark to
bright and vice versa).

2.5 Conclusion
The present empirical study provides understanding of the use of UML and the visual
variables in practice. Eight interviews have been carried out with experts and prac-
titioners of UML. In addition, + 3500 UML diagrams were analyzed to discover the
employed visual variables and discuss the ways of their usage. Below are synthesized
the results revealed by the study:
UML in practice

• Communication is ranked first among the important attributes of UML models
(See paragraph Purposes of the use of UML, page 13).

• Class diagrams and sequence diagrams are the two diagrams which are the most
used by the practitioners (See paragraph Used UML diagrams, page 14).

• Practitioners noticed difficulties to use UML diagrams as a support to discuss
with people who are not familiar with this standard notation. They react differ-
ently to compensate for this (i.e., adapt the speech, filter some technical infor-
mation, include textual information) (See paragraph UML and communications,
page 13).

• There is a need to visualize information in UML diagrams: functionalities of
the system, source and destination of a message, input and output statements,
information related to project management (See paragraph Searched information,
page 16).

UML and the visual variables

23

2.5. CONCLUSION

• Most of the practitioners think that the visual variables might be useful in practice
(See paragraph The other visual variables, page 19).

• Color is the most used visual variable (See paragraph Color , page 21).

• A recurrent non-effective use of colors exists (e.g., no keys, colors to express
ordered information) (See paragraph Color , page 21).

• Different implementations of the visual variables are used: Background, borders,
text (See paragraph Color , page 21).

What remains to do with the visual variables?

• There is a need to study the effectiveness in the use of the visual variables in
practice (See paragraph Discussion of the results, page 22).

• Importance of the subtlety of the visual variations (i.e., to associate a meaning
to each variation) See paragraph Discussion of the results, page 22).

• Importance of the usability of modeling tools: automatic, interactive keys, rules
about the effective mapping between the information to be highlighted and the
visual variables See paragraph Discussion of the results, page 22).

These empirical results have definitively and strongly motivated us to propose the
adequate solutions in this thesis. What we were looking for were theories to effectively
employ the visual variables in UML. For that, we elaborated a framework called SoG-
UML that we present in Chapter 4. Such a theory was missing in the MDE community.
This is what we expose in the next Chapter with a complete state of the art. We also
implemented prototypes of automatic tools in the Papyrus environment [24] which
respect some of the practitioners recommendations that we describe in Chapter 6.

24

Chapter 3

State of the art

Contents
3.1 Software engineering . 26

3.1.1 The Cognitive Dimensions framework 26
3.1.2 Physics of notations framework 32
3.1.3 Summary . 36

3.2 The Semiology of Graphics (SoG) 37
3.2.1 Graphical representations: Maps, diagrams and networks . . 38
3.2.2 Points, lines and zones . 39
3.2.3 Organization levels of information properties 40
3.2.4 The visual variables . 41
3.2.5 Perceptive attitudes of the visual variables 43
3.2.6 Capacity of the visual variables 47
3.2.7 Creating effective graphical representations: analysis and read-

ing processes of the SoG . 48
3.2.8 Effective categories of the retinal variables 52
3.2.9 The problems of applying the SoG to UML 55

25

3.1. SOFTWARE ENGINEERING

As this thesis targets the cognitive effectiveness of the visual modeling language
UML, this Chapter discusses the main scientific works which deal with it in the whole
software engineering field, notably the Cognitive Dimensions (CDs) framework [25] and
the Physics of Notations (PoNs) framework [34]. For that, we describe both frameworks
and position the work of this thesis in regards to them. We show that the CDs does
not provide solutions to lighten the cognitive load of human beings in each dimension.
We also show how the PoNs cannot be directly employed to evaluate or create effective
visual notations. We conclude that our work complements both of them by exploring
the power of the visual system. To that end, we expose the basic theories of the
Semiology of Graphics (SoG) along with a parallel positioning in relation to UML.

3.1 Software engineering
This section states the two conceptual frameworks for visual notations which exist in
the literature: the CDs and the PoNs frameworks. On one hand, the CDs framework
emphasizes the importance of having cognitively effective programming environments
1. On the other hand, the PoNs framework explores the visual system to build effective
visual notations or evaluate existing ones. Strengthening the effectiveness of visual
notations represents then a common objective between the work of this thesis and
both of the frameworks. We present here the definition, the strengths and weaknesses
of both frameworks. Missing well-formalized guidelines about the use of the visual
variables is the conclusion of this Section and one of the main motivations of our work.

3.1.1 The Cognitive Dimensions framework
The cognitive dimensions framework is an evaluation technique for programming en-
vironments. It captures a discussion support about cognitively relevant aspects of
structure of programming environments. These cognitive aspects are called Cognitive
Dimensions (CDs). The CD framework serves as a starting point for later researches
about programming environments. We will discuss its limitations in giving solutions
to reduce the cognitive load which might be revealed by it.

The thirteen cognitive dimensions

The 1980s and 1990s witnessed the emergence of the first Visual Programming Lan-
guages VPLs (e.g., Entity Relationship diagrams (ER) in 1976). The same period has
been characterized by the advanced researches in psychology of programmers. It is
in that context that the CD framework has appeared. Based on researches about the
psychology of programmers, the authors consider that programming activity concerns
not only coding (or modeling), nor just comprehension. It is as much affected by the
programming environment, where programming environments include interactive de-
vices like modeling tools and non-interactive notations like UML. In that context, the
authors distinguish between "Psychology of programming" and "HCI of programming".
The psychology of programming has to do with the coding or modeling part (i.e., the

1We use terms employed by the authors of the cognitive dimensions framework. In the context of
our paper, programming activity denotes modeling activity. Programmers can be developers (coders)
or UML practitioners. Finally, the programming environment is composed of the modeling language
and the modeling tool.

26

3.1. SOFTWARE ENGINEERING

meaning of the code or the model). HCI of programming is about the interactions be-
tween programmers and the programming environment. Researchers define four types
of interactive activities that programmers perform while programming: search of in-
formation (e.g., where is the lifeline named "Client"), reuse (e.g., reuse a part of a
UML diagram in another), modification (e.g., update the name of a UML class and
propagate that update to other diagrams) and navigation to understand and compare
multiple diagrams (e.g., explore the semantically linked UML elements in a model).
By studying these activities, the authors became able to define a set of thirteen cog-
nitively relevant aspects of programming environments structure. These aspects are
called Cognitive Dimensions (CD) and form the cognitive dimensions framework. The
cognitive relevance denotes that undervaluing or non effectiveness in one or more than
one aspect of structure (CD) might cause a cognitive load to programmers. Equally,
ensuring the effectiveness on them might considerably reduce the cognitive load of pro-
grammers. Here is a quick description of each dimension.

Abstraction gradient denotes the levels of abstraction which are provided by a
programming language where an abstraction represents a grouping of elements to be
treated as one entity. Green et al. define three possible levels of abstractions of pro-
gramming languages: abstraction-hating, abstraction-tolerant or abstraction-hungry.
Abstraction hating languages do not provide abstraction facilities or allow a minimum
level of abstraction but can be easily learned by novices. An abstraction-tolerant lan-
guage allows a medium starting level of abstraction and abstraction-hungry languages
allow a higher one. But both of them allow new abstractions to be created and are
relatively difficult to learn. Programming languages should find the right balance be-
tween levels of abstraction and learnability.

Closeness of mapping concerns the mapping between the domain problem and
its corresponding code or diagram. The shorter the distance between the concepts of
reality and those of the programming language is, the better the cognitive load nec-
essary to understand and infer on the code or diagram is reduced. For example, this
dimension serves at evaluating the cognitive load necessary to map an UML activity
diagram to the cooking recipe it represents, or an UML state machine diagram to the
a pulley system it describes.

Consistency allows to answer the following question: when a person knows some
of the language structure, how much of the rest can he/she easily and successfully
guess. This dimension allows measuring the degree of difficulty to learn the language.
The higher it is, the easier the language is learnable.

Diffuseness/terseness refers to the number of symbols or graphic entities which
are necessary to express a meaning using a programming language. On one hand, the
bigger the diffuseness is, the more material is needed to scan it (e.g., screens). Also,
a big diffuseness causes a smaller proportion that can be held in the working memory
and a greater effort to search information through the text. On the other hand, a small
terseness (i.e., compactness) makes it difficult to compare two different representations.
This dimension allows measuring the degree of the diffuseness/terseness of a program-
ming language. Designers of the language should find the balance between both metrics.

Error proneness allows measuring how well a notation is successful in avoiding

27

3.1. SOFTWARE ENGINEERING

careless mistakes and is accurate in finding the mistake once committed. Following
are examples of mechanisms to decrease the error proneness in textual notations: code
completion, the declaration of new identifiers, debugging facilities, red markers on the
lines of code containing errors. In visual notations, model validation is a way to mini-
mize error proneness.

Hard mental operations indicates if a notation needs hard mental operations
to understand it. Conditionals, negations and/or combinations of them require a big
cognitive work to reason on such operations. If the human reader resort to another
more comprehensible notation (e.g., using a paper and a pencil, touching the screen
with fingers to follow the logic), then the notation does imply hard mental operations.
Notations should directly transcribe all the possible deductions to lighten the cognitive
work of the human readers.

Hidden dependencies measures the degree of visibility of the elements partici-
pating in dependencies (i.e., sources and destinations). A classic hidden dependency
is an excel cell in a formula which references other cells. Notations should explicitly
render the relationships of each element with the others. Such visibility facilitates the
search, modifications and deletion of elements. Contrarily, hidden dependencies involve
more cognitive work to perform the aforementioned actions.

Premature commitment allows measuring the premature commitment imposed
by the notation. Frequently, programmers begin by working in advance mentally or
in a paper or leave placeholders to fill later. If the notation imposes in advance many
internal dependencies and constraints which restrict the order of doing things, it will
require a lot of cognitive work. An example of premature commitments in UML is
the necessity to put elements in the right order. A modeler might need to model
parts of an activity diagram in a random order. Therefore, she/he should rearrange
the layout of the final diagram by putting each part in the right position, which might
cause a cognitive load. Modeling tools should provide facilities to simplify such actions.

Progressive evaluation allows verifying if a programming environment enables
programmers to frequently evaluate their work even with incomplete versions of it.
Code debugging or models simulations and validation are examples of mechanisms al-
lowing progressive evaluations in UML diagrams.

Role expressiveness is related to the expression of the roles of the components
of a notation. Roles can be conveyed via the use of meaningful identifiers names, well
structured code (e.g., code indentation), the secondary notation (see below), comments
or tags. The notation should provide the role of each component in the whole system.

Secondary notation refers to the free use of means which are not formally spec-
ified in the formal syntax of the language. This is to add extra-information above and
beyond the official semantics. For example, colors are under modeler’s control in UML.
UML practitioners might need to use them to express, for example, the model, view
and controller elements in a class diagram. This dimension serves at evaluating the
degree of freedom to use additional means which is given by a notation to programmers.

Viscosity denotes the resistance of a programming environment to local changes.

28

3.1. SOFTWARE ENGINEERING

It serves at evaluating the effort necessary to perform a modification to a model or a
program. The programming environment should provide rapid and automatic tools to
make modifications more viscous and fluid. Changing the name of an identifier might
be rapidly done, but the programming environment should propagate such modification
to all the places where the identifier in question has been used. In diagrams, changing
the position of a component might take a long time because of the crossing lines which
might occur.

Visibility and juxtaposability dimension denotes if all the materials which is
necessary to accomplish a task (e.g., parts of diagrams) are accessible without or with
a minimal cognitive load: if they can be readily seen, readily accessible to put them
visible or readily identified to be accessible (and then visible). For example, an UML
practitioner might need to see all the UML nodes which are semantically linked to
content of the diagram in front of her/him. The visibility dimension serves at point-
ing and evaluating the cognitive load required to access these semantically linked nodes.

Advantages of the CDs framework

The CDs framework aims at evaluating the effectiveness of programming environments
by assessing the cognitive load in each dimension. In table 3.1 below we have used
the CDs framework to evaluate the three most used UML diagrams in practice: Use
cases diagram, class diagram and sequence diagram [16] [18]. In this evaluation we
consider the diagrams in the Papyrus modeling environment [24]. In each dimension,
the framework allows us to state if there is a cognitive load or not via examples of
observations that we have made. This evaluation represents our own analysis and it
deserves to be completed by other experts. It shows the subjective side of the CDs
framework and needs empirical assessment in some dimensions (e.g., the hard mental
operations).

Table 3.1: Evaluation of three UML diagrams with the cognitive dimensions framework. ⊕
mark designates a positive point, 	 indicates a negative point.

Use case diagram Class diagram Sequence diagram
Abstraction
gradient

⊕ Objects, Actors
and Edges.

⊕ Objects and Edges. ⊕ Objects, Actors and
Events.

Closeness of
mapping

⊕ The functional-
ities of the real
system are directly
mapped to UML
use cases.
⊕ Stick-man is
close to the reality.
	 All the function-
alities are mapped
to the same UML
object: an UML
use case (i.e., an el-
lipse).

⊕ Objects of the real sys-
tem and relationships be-
tween them are respectively
mapped to objects and edges.
	 Different objects of the re-
ality are mostly mapped to
the same UML entity: an
UML class, which is not very
close to the reality 2.

⊕ The order of real sce-
narios is mapped in the
sequence diagram by pre-
serving such order.
⊕ Stick-man is close to the
reality.
	 As for classes, all the
objects of the reality are
mapped to the same UML
entity: an UML lifeline.

Consistency ⊕ If some of the language is learned, the whole diagram can be created.
Diffuseness 	 The diffuseness might be high for big diagrams.

2The use of DSLs can resolve such problem.

29

3.1. SOFTWARE ENGINEERING

Use case diagram Class diagram Sequence diagram
Error prone-
ness

⊕ The use case di-
agram does not in-
duce to a lot of er-
rors.
	 The "include"
and "extends" types
of edges might be
prone to error.
They have the
same graphical
notation but differ
by only the cor-
responding text
labels (Conception
error).

⊕ Types of the attributes and
parameters of the methods
are not prone to error. They
are all pre-defined in lists in
the properties view (Syntac-
tic error).
⊕ Text names are highlighted
by a red mark if they contain
spaces for example (Syntactic
error).
	 Choosing the right edges
in the palette might be
error prone. For example
some edges have the same
icon (associations, Associ-
ationBranch, ContextLink)
(Conception error).

	Might be error prone for
superimposed fragments
(Conception error).

Hard mental
operations

	 Extension points
are sometimes hard
to integrate.

⊕ Does not require hard men-
tal operations.

	 Might necessitate hard
mental operations to un-
derstand the logic of the
superimposed fragments
(conditions, negations,
loops).

Hidden de-
pendencies

	 Most of the properties of the graphic compo-
nents are hidden in the properties view.
	 Some information might be hidden because of
the restrained area of the graphic components:
use cases name, types of the attributes, parame-
ters of the methods.

	 Might be difficult if the
diagram contains a lot of
interactions: the names of
the source and destination
lifelines might be hidden
because they cannot fit in
the same screen.

Premature
commitment

⊕ Designers have the possibility to create parts
of the diagrams in a random order.
	 The necessity of laying out the UML elements
afterward to avoid the possible crossing edges
might create a cognitive load.

	 Designers should care
about the order of the
events in advance.

Progressive
evaluation

⊕ Designers can
review the require-
ments with the
technical team or
with the client
even if the use
case diagram is
unfinished.

⊕ Designers can see the evo-
lution of their diagrams pro-
gressively: designers can gen-
erate code at any step of the
diagram’s creation.

⊕ The sequence diagram
might be reviewed by the
team members before its
completion.

Role expres-
siveness

⊕ Stick-man is ex-
pressive.

	 UML interfaces, classes,
enumerations, dataTypes are
graphically similar. They
can’t rapidly reflect their
roles.

⊕ Stick-man is expressive.

30

3.1. SOFTWARE ENGINEERING

Use case diagram Class diagram Sequence diagram
Secondary
notation

⊕ Shapes, figures
(icons) are the only
visual variables
used in the primary
notations.
	 Color, size, orien-
tation, brightness
and grain are not
used.

⊕ Shapes, figures (icons) are
the only visual variables used
in the primary notations.
	 Color, size, orientation,
brightness and grain are not
used

⊕ Position, shapes, figures
are the only visual vari-
ables used in the primary
notation.
	 Size, brightness, color,
grain and orientation are
not used.

Viscosity

	 The necessity of laying out the diagrams after a deletion/add of an
object.
	 The modification of an attribute, method, properties of an edge should
be performed in the properties view.

Visibility
	 Visualizing the semantically linked elements with the other views is not
directly visible. They are put in the properties view.

As illustrated in Table 3.1, the CDs framework allows us to point out the possible
sources of cognitive load in our chosen modeling environment: Papyrus and the three
UML diagrams. Having a determinate number of dimensions to check our environ-
ment’s effectiveness allows us to do a rapid evaluation. We are sure that we target the
right dimensions and that an observed problem will almost certainly induce a cogni-
tive load to our users. There is no doubt then that the CDs framework has indeed
structured a great discussion support about programming environments (Around 1300
citations in Google scholar statistics since 1996). It might be considered as a starting
point for later researches about programming environments despite of some limitations
that we discuss in next paragraph.

Limitations and positioning

The CDs is only an evaluation framework. Our analysis of the three UML diagrams
in the Papyrus environment identifies only the sources of the cognitive load in each
dimension. The CDs framework does not provide us with guidelines to lighten such a
revealed cognitive work. For example, the CDs does not mention how to put all the
hidden dependencies as visible in the UML class diagram without overloading the hu-
man mind. In addition, it does not provide solutions to reduce the mental operations
that are needed to understand the nested fragments in a sequence diagram. Moreover,
mechanisms to enhance the visibility of the semantically linked elements from differ-
ent diagrams are not discussed. Then, the CDs does not describe effective techniques
to make the UML class diagram’s elements (e.g., interfaces, enumerations) more role
expressive. Finally it does not show how to effectively make the UML lifelines closer
to the objects of the reality they represent. In that context, many options of solutions
are available in the literature. For example, effective interaction techniques might be
employed in order to decrease the cognitive load in the visibility dimension by pro-
viding facilities of navigation between different semantically linked diagrams. We may
also take advantage of the human visual perception system, as it is the case of this
thesis. Many other potential solutions might emerge in the future for that purpose
(e.g., artificial intelligence).

The CDs framework mentions examples of solutions. Some of them take advantage
of the visual system like for the secondary notation dimension where T. Green et al.

31

3.1. SOFTWARE ENGINEERING

suggest to benefit from the additional graphic means to the formal syntax (e.g., color
and layout). But, many fundamental details are not specified like recommendations for
choosing the most visually selective colors or the difference between color and brightness
(i.e., dark and bright colors). In addition, the effective implementations of color to
UML nodes (i.e., to the border, to the text or both of them) are not discussed. Some
implementations can create an additional cognitive work to the human readers instead
of reducing it. Moreover, alternatives of color to take into account the possible color
blindness of practitioners are not mentioned. In the visibility dimension, the authors
propose the juxtaposition of parts of code or diagrams. However, if programmers
juxtapose two complex and large diagrams, going back and forth each diagram might
increase the cognitive load.

In this thesis, we explore the power of the visual system to reduce the cognitive load
in some dimensions of the CDs framework. Particularly, we study the effective ways
to employ all the available graphical means: the visual variables. Besides, the CDs
authors have described the visual system as a powerful extra-channel. They regret its
undervaluation: Regrettably, this extra channel of communication between programmer
and reader seems to have been little investigated. Below are listed the CDs that our
work tries to cover:

• Abstraction gradient: By grouping graphic components that share a particular
property together, readers become able to visually control them as one entity.

• Closeness of mapping: Mapping information of the reality to the closest visual
variable which will represent it reinforces the closeness of mapping in UML. For
example, ordered information like the progress of the implementation of a project
in a class diagram should be expressed by a visual variable which renders such
order (e.g., a brightness variation from light to dark).

• Diffuseness: The graphical layers mechanism allows to make invisible some parts
of the UML diagrams. In that way, the size of the diagram might be decreased
to fit in a same screen.

• Role expressiveness: A role is attributed to each graphic component (or a group
of them) by expressing a particular information in an UML diagram (e.g., a group
of classes which are developed by a particular developer of a technical team).

• Secondary notation: Is the core dimension of this thesis.

• Visibility and juxtaposition: Semantic links between elements belonging to dif-
ferent diagrams of an UML model might be visually accentuated by the use of
the same category of a visual variable.

The investigation of the power of the visual system has been also the core of the work
of Daniel Moody as denoted next.

3.1.2 Physics of notations framework
The physics of notations (PoN) is a scientific framework to create new cognitively
effective visual notations and to evaluate existing ones. It comes to explore the power
of the visual system to lighten the cognitive load in some dimensions of the CDs
framework. Moody has structured a scientific basis for visual notations in software
engineering. In fact, the PoN is based on a wide range of scientific theories and empirical

32

3.1. SOFTWARE ENGINEERING

researches. We will discuss the limitations of such high level guidelines in regards to
their easiness of operationalization in practice [42].

The 9 principles of the PoNs framework

The Physics of Notations (PoN) framework [34] has been published by Daniel L. Moody
in 2009. Moody has stressed on the importance of visual notations in software engi-
neering field. He has pointed out that most of the existing works (at that time and
till now) had been mainly spent in semantics of visual notations (i.e., the abstract
syntax). Their visual syntax (i.e., the concrete syntax) had been little discussed and
undervalued in their design level. The PoN comes to cover this gap. The name of this
framework comes from the fact that its main focus concerns physical (i.e., perceptual)
properties of notations rather than their logical (i.e., semantic) properties. Following
are explained the nine principles of the PoN:

Semiotic Clarity is the first principle of Moody’s framework. It denotes the ne-
cessity of having a one-to-one relationship between the semantic concepts of a visual
language and the graphic concepts.

Perceptual discriminability denotes that every symbol of the visual syntax
should be clearly distinguishable one from each other. Moody cites works from psy-
chology and cartography to define what is called the visual distance. This distance
might be measured by the number of visual variables used in the visual syntax and the
number of steps of each one (e.g., red, blue and green are three steps of the color visual
variable). The higher the visual distance is, the better the graphic objects of a visual
notation are perceptually distinguished. Moody introduces 4 notions to decrease the
visual distance between symbols:

• Primacy of shapes: Based on works around objects recognition, shapes are the
primary basis to distinguish between symbols. Moody recommends the use of
shapes from different families to increase the visual distance between them.

• Redundant coding refers to the use of multiple visual variables to distinguish
between symbols (e.g., by using colors to distinguish between classes and edges
in UML).

• Perceptual pop-out denotes the use of a unique value on at least one visual vari-
able. Such configuration allows the symbol to be relatively rapidly detected by
the human visual system, without conscious effort.

• Textual differentiation Moody recommends avoiding text to differentiate between
symbols. He encourages using the visual variables instead. Using text is cogni-
tively ineffective because it is serially treated by the human mind (i.e., contrarily
to the visual variables treatment which is automatic and parallel).

Semantic Transparency denotes the use of symbols that reflect their meanings. If
the Perceptual discriminability concerns the differences between the symbols, this prin-
ciple relates to the relationship between the symbol and its semantic meaning. The
higher the transparency is, the less the cognitive load to read or learn the representa-
tion is. The use of icons for instance helps speeding up their recognition. They are not

33

3.1. SOFTWARE ENGINEERING

often used in software engineering. This principle mainly refers to the role expressive-
ness dimension of the CDs framework.

Complexity Management is related to the capacity of a visual notation to rep-
resent information without overloading the human mind. Moody emphasizes the exis-
tence of perceptual and cognitive limits of the human mind that visual notations de-
signers should take into account. Diagram size and the number of diagrams elements
affect respectively the perceptual and cognitive limits. Visual notations should provide
mechanisms to manage the complexity in their primary notation. Moody proposes two
ways to reduce the complexity of large systems: modularization and abstraction. Mod-
ularization means providing mechanisms in the primary notation that allow dividing
large systems to small parts (e.g., packages in UML). Abstraction refers to the ability
of a visual notation to represent a system in different levels of abstractions. This prin-
ciple mainly refers to the abstraction gradient dimension of the CDs framework.

Cognitive Integration concerns only the systems which are represented by mul-
tiple diagrams. It denotes the ability of a notation to cognitively integrate information
from the different diagrams. Moody differentiates two kinds of cognitive integration.
The first one is at a conceptual level. It refers to the ability of a visual language to
help building a coherent mental representation of the whole system from its different
diagrams. The second kind of cognitive integration is the perceptual one. It denotes
the perceptual cues to help in navigating between the different diagrams. This princi-
ple mainly refers to the Visibility and juxtaposition dimension of the CDs framework.

Visual expressiveness refers to the use of the full range and capacities of vi-
sual variables. Moody presents 8 visual variables: X and Y planar dimensions, size,
brightness, color, texture, orientation and shape. He assimilates each visual variable to
a communication channel that designers must fully consider. For example, the UML
visual syntax mainly uses the shape visual variable (e.g., ellipses for use cases, rect-
angles for classes). It does not fully benefit from the other visual variables. Moody
briefly describes the perceptive properties of these visual variables based on the SoG.
This principle mainly refers to the secondary notation dimension of the CDs framework.

Dual Coding relies to the use of text to complement and reinforce the meaning
of a graphic symbol. Combining both text and graphic symbols to convey meaning
is better than using either one or another. Text and graphic symbols are differently
treated by the human mind. Such combination strengthens the referential connections
between them. Moody proposes to use annotations as well as comments to improve
the understanding of visual notations.

Graphic Economy concerns the number of the graphical symbols used in a nota-
tion. This number should be cognitively manageable by humans. There is a cognitive
limit beyond which the cognitive effectiveness is reduced. This limit is around 6.
Moody proposes three methods to manage the graphic complexity of a notation. Re-
ducing or partitioning the semantic complexity of a notation is the first strategy. The
second strategy consists of not visually encoding all the constructs of a notation. Some
constructs might be better expressed via only text. The third method is by taking
advantages from the visual expressiveness principle. Combining the visual variables in-
creases the perceptual discriminability and allows more manageable graphical symbols.

34

3.1. SOFTWARE ENGINEERING

This principle mainly refers to the Consistency dimension of the CDs framework.

Cognitive Fit refers to the ability of a notation to fit to the different contexts of
its use. Notations should provide different dialects to satisfy all types of audiences:
Novices and experts. They should also manage the different possible contexts of use:
communication, analysis, automation, etc.

Advantages of the PoNs framework

All the PoNs help visual notation designers to effectively translate their semantics into
graphics. It yields also to have effective perceptions of the semantics of a diagram’s
elements. In fact, the PoN has appeared almost 20 years after the first publication of
the CD framework. D. L. Moody denotes that the latter framework is not specifically
focused on visual notations. He also mentioned that the CDs are not design guidelines
and issues of effectiveness are out of the CDs framework’s scope. Moody suggests
to treat such issues via the PoN. For example, he defines the visual expressiveness
principle to show how an effective use of secondary notation CD might decrease the
cognitive load of humans.

Limitations and positioning

The principles are considered as high level guidelines. Störrle et al. [42] tried to use the
PoNs framework to analyze the UML Use cases diagram. They chose only two prin-
ciples: the semiotic clarity and the perceptual descriminability (i.e., because of space
constraints). They conclude that the principles are ambiguous and assumptions for
each principle are sometimes error prone. They also find that the principles are given
without quantitative data. They assume that the PoN, in its current form, is neither
precise nor comprehensive enough to be applied in an objective way to analyze practical
visual software engineering notations.

Ambiguities in some of the PoN principles are due to the fact that theories have
been too summarized. We will illustrate such observation in two principles. In the
visual expressiveness principle, the author had briefly mentioned the capabilities of each
visual variable. Some ambiguities might occur here. For instance, The author does not
precise if the number of perceptible steps of each visual variables apply equally to UML
nodes and UML edges. In addition, he does not discuss the effective implementations
of the visual variables to the graphic elements in software engineering. For example,
the implementation of the size visual variable to an UML node might concern its
area and/or its contained text (See figures in Chapter 4, Section 4.4). Moreover,
the notion of measurement level of information is not clearly explained. Concerning
the perceptual discriminability, the author explains the primacy of shapes. That was
based on theories of objects recognition. In fact, shape is the primary basis on which
objects are identified. The author proposes then to use shapes from different families
to distinguish graphic symbols of visual notations. But, the most effective families of
shapes that can be used are not mentioned. In the same principle, he explains that
visual distance can be increased by combining visual variables in the same symbol. In
this case, we wonder about the best combinations of visual variables that should be
used and about the worst ones that can present risks of effectiveness and should then
be avoided. Finally, the impacts of such combinations on complex symbols like UML
nodes (i.e., containing text) are not specified.

35

3.1. SOFTWARE ENGINEERING

These ambiguities prove that there are still multiple barriers which hinder the sys-
tematic definition of effective notations. Notably, in the following five principles that
we target in our research:

• Perceptual discriminability: We provide guidelines of effectiveness which help in-
creasing the visual distance between the graphic components in which a particular
visual variable (or a combination of visual variables) is applied.

• Complexity management: The layers mechanism allows managing the complexity
of big UML diagrams, by making visible or not some parts of the UML diagrams.

• Cognitive integration: Visually emphasizing the semantically linked UML ele-
ments of different diagrams helps enhancing the cognitive integration.

• Visual expressiveness: We define guidelines to effectively take advantage of the
full range of the visual variables in UML.

• Cognitive fit: Using the visual variables to show the important elements in a
communication, omitting information by putting them invisible via the layers
mechanism are methods to make UML better fit with people who are not familiar
with UML (e.g., clients).

We chose to investigate theories from the cartography field as defined in [10] to see
if we can find more precise guidelines or quantitative metrics.

3.1.3 Summary
Table 3.2 below summarizes the CDs and the PoNs that our work targets. They are
marked by Check-marks (X). CDs and PoNs which are related to each other are put
in the same lines.

Table 3.2: Positioning of the work of this thesis in relation to the CDs and the PoNs frame-
works.

CDs framework PoNs framework
CDs This thesis PoNs This thesis

Abstraction gradient X Complexity management X
Role expressiveness X Semantic transparency
Secondary notation X Visual expressiveness X
Visibility and juxtaposition X Cognitive integration X
Consistency Graphic economy
Progressive evaluation
Closeness of mapping X
Premature commitment
Diffuseness X
Error proneness
Hard mental operations
Hidden dependencies

Dual coding
Cognitive fit X
Perceptual discriminability X
Semiotic clarity

36

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

We have seen that for a designer of a visual notation who cares about the cognitive
effectiveness of his modeling environment might use the CDs to check if the delicate
points (i.e., cognitive load risks) are well treated. But, the "well treated" remains
subjective because the CDs point out the risky areas without providing guidelines to
resolve a revealed problem. Moody has proposed the PoN to remedy such weakness by
focusing on visual notations and excluding textual ones and interaction mechanisms.
His principles are very useful but they are sometimes incomplete and lead to ambigu-
ities. That is why we will study a framework, the SoG, which is much more general
while being much more precise and focused on UML.

3.2 The Semiology of Graphics (SoG)
Until the mid-60s, maps were generally only basic inventories and served as the artifi-
cial memory, whatever the disciplines where they were used3. During the 60s-70s, the
quantitative geography and its complex maps appeared, maybe thanks to the relative
availability of (very big) computers. It begun to become really important to answer
to the following questions: How to draw a map? What do we have to print in order
to effectively communicate, without loss of information? It is no coincidence that the
Semiology of Graphics (SoG) has been published for the first time in 1967. The SoG is
considered as one of the main theoretical foundations of the cartography science (and
Information Visualization). It aims at helping cartographers or statistical analysts to
construct effective graphical representations. The effectiveness of a graphical represen-
tation is defined as its capacity to provide the correct and complete answer to a given
question. The answer has to be given in a relatively short time compared to another
less effective graphical representation. The SoG is considered as the reference in the
cartography field. In [29], Kosslyn reviews five books on graphics and charts (i.e., in-
cluding the SoG) from the cognitive psychology viewpoint. The review was based on
fourteen criteria. Most of them have been fixed based on the properties of the human
visual processing system. For instance, he tries to assess if a book takes into account
the short term memory constraints in the proposed theories. Three criteria concern the
originality, the readability and the generality of each book. The results of the review
show that the SoG is placed among the three first best books in terms of originality and
generality 4. It is also ranked first in all the cognitive psychology criteria. However, it
is ranked last in the readability criterion [29]. The SoG is difficult to read due to the
complicated taxonomies, philosophical reasoning and the crossing references of figures.
The SoG is considered as "unique" because the author does not make references to any
previous works. The only author he cites is Zipf to define the notion of effectiveness of
visual representations. In fact, the theories described in the SoG represent the results
of the author’s long experience in cartography. It mainly reflects the results of his ob-
servations and manipulations of a large amount of graphic documents. In that context,
some researchers reproach the lack of empirical validation of the SoG theories. As an
attempt to validate these latter, Garlandini et al. [22] conducted a controlled exper-
iment. They have proven that the theories of the SoG related to the visual variables
and their characteristics are empirically validated.

3For example, the International Cartographic Association (ICA), the main scholarly organization
related to cartography, is born in 1959.

4A simple search in google scholar, done by Gill Palsky in 2017, a professor of cartography, in a
special tribute to Jaques Bertin in the fifty years old of the SoG. It showed that the SoG is still be
the most cited book among six other books of cartography

37

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

The SoG exhaustively treats all the possible types of graphical representations: maps,
networks and diagrams. It provides objective rules to support, using graphics, each
step of graphical representation design. It covers the data analysis process, the visual
representation of data and finally the reading process. That aims at providing a set of
mandatory rules to control the construction of effective graphical representations.

In this section, we will expose the basic theories of the SoG and, in parallel, position
UML in relation to each notion. This section represents a first refinement layer to adapt
the SoG principles to UML.

3.2.1 Graphical representations: Maps, diagrams and net-
works

The scope of the SoG is delimited to graphical representations which might be tran-
scribed: in a white plane page, having a medium size, in a normal lighting and using
the available graphic means. The kind of a graphical representation depends on the
nature of the information to transcribe in the two dimensional plan. Let us assume
that a designer wants to represent the registration frequency in his e-learning platform.
For that, he queried the corresponding database and got the information represented
in Table 3.3.

Table 3.3: Example of data for visual encoding.

Date Day 1 Day 2 Day 3 Day 4 Day 5
Number of registrations 75 50 10 25 5

Dates

Registrations

5
10

25

50

75

Day1 Day2 Day3 Day4 Day5

The registration number to e-learning platform per day The map of FranceInternet connexions

A diagram A network A map

Figure 3.1: The three types of graphical representations

For each date, there is a corresponding number of registrations. The adequate
visual representation is then a diagram, as shown in Figure 3.1. A diagram is the
adequate visual representation when it comes to transcribe two different information
properties (here the dates and the registration numbers) which are related to each
other. Now, if an information describes relationships between elements of the same
nature, the adequate representation is a network. An example of network is illustrated
in Figure 3.1. It might represent the courses which are frequently chosen together
by the students. Finally, if a designer wants to transcribe geographic data, a map
is the adequate graphical representation (Figure 3.1). Here, it might transcribe the
registration frequency per city.

38

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

Positioning of the graphical representations in UML: In software engineering,
most of the graphical representations are considered as networks. They are made of
graphic elements which have the same nature and which are linked to each other using
edges. In UML, we find classes which are related to each other using edges to form a
class diagram, use cases which are linked to each other to constitute a use case diagram,
activities which are connected to each other to compose an activity diagram, etc. UML
diagrams might also be seen as maps, as shown in Figure 3.2, where just like cities,
UML graphic components have a particular position (e.g., defined by an automatic
layout algorithm, imposed by the logical and chronological order of the events) and a
particular size (e.g., might depend on the contained text length).

An UML class diagram as a map An UML class diagram as a network

Figure 3.2: An UML class diagram: A network or a map

3.2.2 Points, lines and zones

Point Line Zone

Figure 3.3: Points, lines and zones of the SoG.

In the three types of graphical representations, different spots can be employed. The
SoG pragmatically identifies the forms in which any spot might be in correspondence
to the two planar dimensions (X and Y). In fact, as illustrated in Figure 3.3, a spot
might be a line, a point or a zone. These three forms represent the elementary spots
of the geometry. If a spot has a significant length but with no area, it is a line, the
equivalent of a line segment in geometry. If a spot has a non significant length and a
non significant area, it is a point. Points are mainly characterized by their position in
correspondence to the X and Y planar dimensions. Whatever the spot which represents
it is, only the center of this latter is significant. Finally, if a spot has a significant (fixed)
and measurable area, it is a zone. A city in a map is considered as a zone: it has a
significant area that is proportional to the real surface of the city and has a fixed
position that should accurately reflect its position in the reality. That is why map
drawers cannot change the position and the area of a zone.

39

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

Positioning of the graphic spots in UML: In UML, it is clear that edges cor-
respond to lines of the SoG. The other graphic components are considered as points:
they have non significant areas. In fact, difference of the area between the graphic
components in an UML diagram is not significant to the reader. For instance, such
difference might exist due to the different lengths of the contained text. Classes are
then considered as points, as well as use cases, classes, packages, etc,. Sometimes the
position of these latter is fixed to respect a meaningful order (e.g., states in a state
machines diagram). UML graphic components are then considered as points which
might sometimes have a fixed position.

3.2.3 Organization levels of information properties
Information is the key element of knowledge that a graphical representation transcribes.
For example, the diagram in Figure 3.1 above represents the following key information:
The registration numbers to the e-learning platform per day, the map in the same Fig-
ure illustrates the registration frequency to the platform per city as a key information.
Each information contains one or more than one concept which can vary. For example,
in the first information, we find two concepts of variation: the registration numbers and
the dates by days. The registration numbers change depending on the dates which also
vary, by a unity of a day. These concepts are called information properties (i.e., they
characterize a particular information). In that context, graphical representations serve
to encode information via its properties in a two dimensional plan. The categories of
an information property (e.g., days 1 until day 5 are the categories of the information
property date) can be organized differently. They can be ordered, qualitative or quan-
titative which refer to what are called organization levels. The organization level of
an information property refers to the way in which the corresponding categories are
organized between each other. Like in statistics, an information property might be
respectively ordinal, nominal or interval. The three levels are explained below one by
one. They will be illustrated based on the information properties that practitioners
needed to visualize in their practice of UML (See Chapter 2).

Qualitative organization level

Information properties are considered as qualitative if their categories are different from
each other and can be ordered in different manners without inducing to ambiguities.
In addition, they are equidistant.

Parts of a pattern (e.g., MVC), parts of layers, ownership of each class are three
qualitative information properties. Their categories are equidistant and might be or-
dered in different manners. Eva, Steven and Deve are three categories of the qualitative
information property ownership of classes. They are equidistant and can be re-ordered
based on the alphabetic order: Deve, Eva and then Steven.

Ordered organization level

An information property is considered as ordered if its categories are ordered in one
single and universally recognized manner. They can be compared to each other and
allow to state that a particular category is more or less/before or after another category.

40

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

Criticality, levels of security, progress in testing, in implementation or in execution
are ordered information properties. Their categories are organized in an universal order.
For instance, Implemented, in progress and to implement are three ordered categories of
the information property progress in implementation. Their re-organization is a source
of ambiguity.

Quantitative organization level

The quantitative level concerns countable categories which can be compared to each
other. It allows to state that a particular category is the double of that one, the half,
four times that, etc. Broadly speaking, it reflects the ratio between its categories.

The information property Quality metrics is quantitative. An example of a metric
might be the total number of methods of an UML class [43]. The related categories
are positive integers which might be compared to each other. It might be insightful
to see that a class has, for example, three times the number of methods compared to
another class.

Table 3.4 summarizes the information properties which has been discussed according
to their organization levels. Each information property can be characterized by only
one of the three possible organization levels defined by the SoG.

Table 3.4: Organization levels of information properties in UML.

Organization levels/
Information properties Qualitative Ordered Quantitative

Criticality X
Parts of a pattern X
Parts of layers X
Levels of security X
Progress in testing,
implementation,
or execution.

X

Ownership of each class X
Quality metrics X

3.2.4 The visual variables

Vertical
Position

Horizontal
 Position

Size Brightness Texture/Grain

Color Orientation Shape

Planar variables Retinal variables

Figure 3.4: Visual variables

For each spot (a point, a line or a zone), authors of a graphical representation can

41

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

define its position according to the two planar dimensions (X and Y). Also, they can
change its visual aspect by changing the size, brightness, grain, color, orientation or
shape. All of these visual characteristics of a spot are called the visual variables, in the
SoG jargon (Figure 3.4). The visual variables except the two planar dimensions are
called retinal variables.
Following are the definitions of each retinal variable (Figure 3.4 can help to better
understand them):

• Size: The variation of the area of a spot represents the visual stimuli
to the size variation.
Any spot, having a punctual or a linear signification, can vary its size without
changing its position, brightness, grain, color, orientation or shape.

• Brightness: Continuous progression that the eye perceives in the series
of grays which ranges from black to white.
This progression is independent from the color and we can range from black to
white by different levels of gray, blue, red, etc. Only one color should be used for
such transitions.

• Grain: The grain is the succession of photo-graphical reductions of the
similar spots that are contained in a particular texture.
In a specific surface and for a particular texture, these reductions increase the
number of spots, without varying the brightness. The grain is the quantity of
separable spots contained in a unit surface. Broadly speaking, we can say that
the grain corresponds to the magnification factor applied on the texture (if any).
In a particular brightness, the grain is the quantity of separable spots contained
in a unit area.

• Color: The color variation is the differentiation generally induced by
different colored excitations perceived between two ranges having the
same brightness.
Human readers cannot understand the colors sensations if, first of all, the notion
of color and the notion of brightness are not rigorously differentiated. Color and
brightness are two different retinal variables. Each one is characterized by its
perceptive properties.

• Orientation: A spot, in the form of a point, line or zone, can take an
infinity of different orientations without changing its center.
We can feel the differences of orientations as far as the spot represents a linear
aspect (i.e., the ratio Height/basis have to correspond to at least 4/1). The dif-
ference of angles between multiple parallel spots constitutes the stimuli of the
orientation variation.

• Shape: A spot having a constant area can take an infinity of shapes
(e.g., rectangles, circles, triangles).

42

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

To better take advantages of the retinal variables and ensure the effectiveness of
graphical representations in which they are used, it is important to study their charac-
teristics and the rules guiding their use. All UML users and tool vendors should take
them into account while respectively providing and using these retinal variables.

Visual variables and UML

For UML graphic nodes, the shape is the mainly used retinal variable. It includes
rectangles, ellipses, squares and circles. The brightness applied to the border is used
to distinguish between inherited states in state machine diagrams. The grain retinal
variable is also used in the borders of some UML graphic nodes via dashed and con-
tinuous border lines. In fact, as illustrated in Figure 3.5, a continuous line might be
seen as the result of a zoom on a dashed line.
Concerning graphic edges, we find that the grain, the shape and the brightness are the

Figure 3.5: Continuous and dashed lines: a grain variation

only used retinal variables. First, UML graphic edges might be expressed via dashed
lines or continuous ones, which corresponds to the grain variation. Second, the shape
variation is used at edges extremities, in the center or above them. We find triangles,
circles, diamonds and squares which might be empty or filled. This corresponds to a
brightness variation.

The retinal variables are not fully explored by the UML concrete syntax (e.g., orien-
tation, size, color). That leaves the non used retinal variables under modeler’s control.
Size, brightness, grain, color and orientation might then be used, as long as they do
not alter the UML primary notation. For example, the grain of UML nodes borders
cannot be changed because it has a semantic significance in UML (i.e., for inherited
states). However the grain of their background can be changed without altering the
UML visual syntax. The control is not totally explored by UML practitioners. In fact,
the retinal variables are already little used. We observe that color is the mainly used
one (Chapter 2).

3.2.5 Perceptive attitudes of the visual variables
If the information properties might be differently organized, it is likewise for the visual
variables. Their organization level refers to the perceptive attitude taken by the reader
when she/he perceives its variation. In fact, each human reader will spontaneously
order a series of values of brightness starting from the white to the black or from
black to white but never in an other different order. However she/he can order a
series of shapes in different manners, no visual order is fixed. The SoG distinguishes
four perceptive attitudes: associative, selective, ordered and quantitative. Below, we
explain each attitude:

43

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

Selective perceptive attitude

Figure 3.6: Selective perception with colors

In the selective perception, the human reader can visually select/isolate all the spots
belonging to the same visual category (e.g., same color, same size) and visually abstract
all the other ones. She/he can then perceive only the requested group. By decorating
spots with a selective visual variable, they will form different groups relatively easily
identifiable and the reader can visually select the group that she/he wants to see. In
Figure 3.6, the human eye (you) can easily visually select the group of blue points
from the red ones and read the word "UML". Selective attitude allows the readers to
answer questions about one single spot in a graphical representation like Where is the
lifeline named X?. It also helps the readers answering questions about a group of spots
like Where are all the MVC5-compliant controllers classes? This last perception can
be instantaneous if the used visual variable is selective. Otherwise, the perception can
take a relatively long time because the reader will search spot by spot until finding
her/his response.
Color is recognized to be a selective retinal variable, like the size, the brightness and
the grain. The orientation is selective only for lines and point. Zones having different
orientations are not selective.

Associative perceptive attitude

The human reader can spontaneously associate all the similar spots into one single
group, despite of a particular visual variable variation. In Figure 3.7, the reader’s eye
can associate all the spots in one single group thanks to the associative characteristic
of the shape. They are perceived as similar.
Association is required if the graphical representation combines two information prop-

Figure 3.7: Associative perception of shape

erties. The reader’s eye will relatively easily associate each representation of informa-
tion property with a particular associative visual variable, all categories combined (e.g.,
all colors combined, all shapes combined). For example, the human eye can visually
associate all the use cases together despite of a color variation on them: color is an
associative retinal variable as well as the shape and the orientation.

5Model-View-Controller design pattern

44

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

A dissociative visual variable, contrarily to an associative one, forbids the visual-
ization of all its categories combined. But also, it annihilates the perceptive attitudes
of the other visual variables when combined with it. For example, it might forbid to
operate a spontaneous visual selection of colors when they are combined with it. In
fact, it dominates all the combinations of visual variables done with it. This represents
what is called dissociation.

Figure 3.8: Dissociative perception of the size

Figure 3.8 illustrates a series of points with different categories of size. The reader’s
eye cannot associate all the spots in one single image. Contrarily to associative visual
variables, the different points do not have the same visual power, the same visibility.
This is due to the the difference of quantities of black in each spot.

Size and brightness are both dissociative retinal variables.

Ordered perceptive attitude

Ordered perception is used when the reader wants to compare two or more than two
categories. Such comparison is spontaneous, if the used visual variable is ordered.
Otherwise, it will require a careful analysis and the used visual variable is considered
as non ordered.

Figure 3.9: Ordered perception of the size and the brightness

Figure 3.10: Non ordered perception of colors.

It is clear, in Figure 3.10, that colors are not ordered. Each reader can establish a
different order, no spontaneous order is imposed. However, the size and the brightness
visual variables (figure 3.9) force immediately a significant and a universal order (e.g.,
from the biggest spot to the smallest on or inversely). They allow the human reader
to state that a spot is bigger or brighter than another.
The categories of an ordered visual variable might also be seen as only different. They
ensure the selective perceptive attitude.
Three retinal variable are recognized to be ordered: size, brightness and grain.

45

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

Quantitative perceptive attitude

Quantitative perception is used when we search to define, using numbers, the ratio
between two spots. When the perception is quantitative, the numerical ratio between
two spots is immediate.
The reader can perceive that a line length equals three times another line length, that
an area is 1/4 of another area, etc.

Figure 3.11: Quantitative perception of the size

Figure 3.11 shows a series of points with a size variation. They were created based
on the abacus of sizes that has been created by Jaques Bertin. The reader can sponta-
neously perceive that the second point is two times the smallest point, the third point
is two times the second point. The size retinal variable is the only quantitative retinal
variable.

Table 3.5 resumes the organization levels of the visual variables. The two planar
dimensions are the only visual variables which benefit from all the organization lev-
els. Empty cells mean that the corresponding visual variable does not guarantee the
corresponding organization level to answer questions about a group or all the spots of
a graphical representation (i.e., spots that are concerned by a variation of the corre-
sponding visual variable). They guarantee the corresponding organization level only
when the reader looks for one single spot.

Table 3.5: Organization levels of the retinal variables.

Associative Selective Ordered Quantitative
Size × X X X
Brightness × X X
Grain X X X
Color X X
Orientation X X6

Shape X

Positioning of the perceptive attitudes of the visual variables in UML

UML diagrams are mainly composed of shapes which are related to each other using
edges. As described earlier, the shape is an only associative retinal variable (i.e., that
means that any type of variation can be applied without constraints). Its use in UML
allows the human reader to associate all the graphic components in one homogeneous
image. However, it also does not allow the human reader to rapidly visually select the

6Except in zones

46

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

similar shapes together. Such visualization could help finding relevant information in
a particular diagram.

Figure 3.12: Empty activity diagram: A
default grain variation

Figure 3.13: Selective perception of colors
in an empty activity diagram

Figure 3.12 illustrates an empty skeleton of an activity diagram 7. Practitioners
might need to find a particular activity to accomplish their tasks. Visually grouping all
the activities together (i.e., using a selective retinal variable) might help targeting such
particular group and rapidly find the sought information. In Figure 3.12, there are 5
different shapes: circles, rectangles, diamonds and two other shapes (i.e., related to a
trigger and a sendSignalAction). The human eye (you) cannot rapidly visually select
the rectangles together, the diamonds together, etc. However, it can rapidly select the
circles against all the other shapes. In fact, there is a grain variation in this diagram
(Figure 3.12). Three categories of grain are employed: empty shapes, black circle and
a black circle with a white inner circle (the end point). Such use allows the human
eye to rapidly select the beginning and the end points of the diagram. But, it forbids
the spontaneous selection of the similar shapes together. The shape and the grain are
the only retinal variables used by the activity diagram’s primary notation. Now, if a
designer wants to allow the reader to visually rapidly select the similar shapes together,
he can use the size, the brightness, the color or the orientation retinal variables (i.e.,
the grain and the shape are already used). In Figure 3.13, the color is used to group
the similar shapes together. Designers should be careful about the use of the size
and the brightness retinal variables which are both dissociative (i.e., they cancel the
power/benefits of the other potential visual variations).

3.2.6 Capacity of the visual variables
The capacity of a visual variable defines the number of categories that a visual variable
is able to effectively identify. Effectiveness here means that the reader’s eye can perceive
the used number of categories in a relatively short time compared to another bigger
number of categories (e.g., the human eye can rapidly select a set of lines with 4
different sizes compared to another set of lines with 6 different sizes [10]).

The capacity of a visual variable depends on the organization level it is used for.
In fact, in associative, ordered and quantitative levels, the capacity of a visual variable
is unlimited from the pure graphical point of view but limited from the human eye

7At this level, we treat simple shapes as studied in the SoG. The containment of text in the UML
graphic components is treated in the next chapter.

47

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

capabilities point of view. For example, the human eye cannot perceive more than
20 categories between two points having a ratio of 1/10. However, in the selective
level, the capacity of each visual variable depends on whether the spot is a point, a
line or a zone. Table 3.6 summarizes the capacities of all the retinal variables in the
selective perception. Graphic authors should not exceed these numbers to ensure a
rapid perception of the categories of each retinal variable.

Table 3.6: Capacity of the retinal variables in the selective perception.

Size Brightness Grain Color Orientation
Points 4 3 2 to 3 7 4
Lines 4 4 3 to 4 7 2
Zones 5 5 4 to 5 7 -

3.2.7 Creating effective graphical representations: analysis
and reading processes of the SoG

In this subsection, we explain the two fundamental theories of the SoG that help
graphic authors creating effective graphical representations: the analysis process and
the reading process.

Analysis process

All the previously described basics from the SoG help graphic authors building effective
graphical representations. In fact, before any construction of a graphical representa-
tion, an analysis of the information to represent has to be performed, by identifying two
important notions. The first one is the main information that a graphical representa-
tion is meant to represent. Thereafter, graphic authors should identify the information
properties which might have different variations in the graphical representation.

Table 3.7: The population density per city in France in 2009

Cities City
1

City
2

City
3

City
4

City
5

City
6

City
7

City
8

City
9

City
10

City
11

City
12

City
13

City
14

City
15

Inhabitant
per km2

0-5 5-
15

15-
30

30-
50

50-
80

80-
110

110-
150

150-
250

250-
500

500-
1000

1000-
2000

2000-
4000

4000-
8000

8000-
15000

15000

Let us assume that we will graphically represent the data in Table 3.7. The main
information consists of the population density per city in France in 2009. The prop-
erties of this latter are two folds: the cities and the population density in terms of
number of inhabitants per Km2.

For each information property, graphic authors have to identify its organization
level and its corresponding categories. In our example, the cities are geographic data
which should be transcribed in the map in figure 3.14. The population density has an
ordered organization level and it holds 15 categories.

The organization level and the number of categories of an information property con-
trol the choice of the most effective visual variable. It is important to chose the visual

48

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

Figure 3.14: The map of France.

variable which has at least the same organization level as the information property it
will represent. Obviously, all the visual variables do not suit to all types of information
properties [10]. In fact, the human eye cannot perceive an order if the used visual vari-
able is not ordered; it cannot perceive a ratio if the visual variable is not quantitative.
The brightness is an ordered retinal variable. It has been employed to represent the or-
dered information property number of inhabitants per km2, as illustrated in Figure 3.15.

Figure 3.15: The brightness to express the population density.

But, such representation is not yet finished and the reader cannot understand the
brightness variation. Apart from recognizing that the map corresponds to the map of
France, the human reader cannot rapidly guess that the brightness variation represents
the population density. He also cannot relate it to a particular period of time. He
might question: What does a dark orange means? What is the main information that
this map communicates, the actual temperatures per city, the number of immigrants
per city, etc? In which period these information have been collected?.
That is why the analysis process is a primordial step that should not be undervalued.
It helps producing two important outcomes: a title and keys (also called captions or

49

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

Title

Keys

Figure 3.16: A map with a title and keys.

legends). They are primordial to ensure a relatively rapid reading process. The title
should mention the main information that a graphical representation describes (i.e.,
the first element that has been identified in the analysis process). The keys indicate the
information properties which are expressed in the graphical representation and their
corresponding visual variables variations.

Reading process

The outcome of the previous analysis process are graphical representations, like the
map in Figure 3.16. The SoG details the reading process of these graphical representa-
tions by the human readers. In fact, reading a graphical representation involves three
successive steps called: the external identification, the internal identification and the
perception of the information itself. If the external identification concerns the compre-
hension of the information that a graphical representation reflects via the title. The
internal identification concerns the understanding of the mappings between information
properties and their corresponding visual variables via the keys. The human reader
become then able to perceive the information in a graphical representation to answer
questions that he might need to answer to accomplish his task. Besides, based on
the SoG, graphic authors are able to determine all the questions that a human reader
might ask in front of a particular graphical representation. The title and the keys allow
decreasing the ambiguities which might occur when reading a graphical representation.
They allow decreasing the time necessary to read a graphical representation which is
a major factor of effectiveness.

Analysis process and reading process in UML A strongly related work in this
field does exist in the literature [23]. Genon et al. relate to the SoG to define guide-
lines in order to build effective keys in diagrams in software engineering. Their study
of the existing literature revealed three main articles studying the effective keys in in-
teractive environments. Interactive environment here means a sub-category of dynamic
environments where visual representations contain animations and the tool hosting the
diagram is equipped with functions allowing the user to directly interact on the diagram.

50

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

[17] describes guidelines to design effective keys for maps in dynamic environments,
which is not the actual case in software engineering. [44] also defines guidelines for
maps but makes a greater focus on user interactions. The work of Genon et al. is
complementary to [39] which relates to the SoG to show that such theory can be used
to empirically assess keys in dynamic environments.

Genon et al. refer to the SoG to help defining static keys for diagrams in software
engineering. They deem that keys are crucial for a relatively immediate diagram un-
derstanding. Three scenarios where conceived to demonstrate the applicability of their
guidelines in software engineering diagrams. The scenarios range from the impossibil-
ity of modifying the primary notation of the language to the possibility of completely
changing it through a medium level of freedom of its modification.

Figure 3.17: Effective keys by Genon et al. [23]

Figure 3.17 illustrates the result of the execution of their recommendations on an
UML class diagram. A title and keys are embedded to the diagram. The title denotes
the main information of the class diagram SuperElectronicMarket: Information Sys-
tem domain. The keys cover not only the secondary notation via the illustration of the
meaning of each color variation (blue for producers and green for consumers) but also
the UML primary notation where the semantic concepts are explained.
This work settles for prescribing guidelines to create effective keys in software engi-
neering. It does not discuss the effective implementations of the visual variables on
the software engineering graphic elements. For instance, the rational behind the appli-
cation of colors to the background of classes is not explained. In addition, guidelines
to help choosing the effective categories of the visual variables are not discussed. In
Figure 3.17, the authors chose the blue and the green colors together to express the
stakeholder related classes. We wonder then about the reasons of such choice and the
degree of its effectiveness.

51

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

3.2.8 Effective categories of the retinal variables
This section answers the previously asked questions by providing methods which allow
to choose the effective categories of each retinal variable. By effective categories, we
refer to those that the human eye can relatively easily and rapidly differentiate the one
from another. For example, the human eye can relatively rapidly differentiate between
a set of black and white points than two gray points with different levels of brightness,
as illustrated in Figure 3.18.

Figure 3.18: The notion of effective categories of the retinal variables: brightness.

Effective categories of the color retinal variable

To choose the effective categories of color, graphic authors should differentiate between
the notion of color and the notion of brightness. They are two different retinal vari-
ables which are characterized by different perceptive properties. The following formula
better illustrates such difference. For that reason, in a diagram, if colors are used and
if they present the same brightness, the reader will benefit from the selectivity induced
by them. But, if there are different brightness among them, another type of organi-
zation -coming from the brightness- will be perceived: the order. If the author of the
diagram does not intend to bring some elements to the front and others to the back,
she/he has to be careful about such use and the non wanted mix-up between color and
brightness.

Maximum Saturation

Constant brightness

Figure 3.19: Saturated colors do not have the same value of brightness.

In that context, using colors from the spectrum (violet, blue, green, yellow, orange,
red, purple and/or gray) might induce to an unwanted visual order. In fact, they have
different brightness depending on the color, as illustrated in Figure 3.19 above. They
are called saturated colors because they are pure ones. They contain neither black nor
white (or a very small quantity).
As depicted in Figure 3.20 below, the right and the left regions of the spectrum,

starting from the yellow, represent an ordered set of colors. The selectivity is in its
maximum near to the saturated colors (colors of the spectrum and contain a white
point in Figure 3.20) and decreases by moving away (Figure 3.20). The choice of the
selective colors is different depending on the brightness.

• In big brightness (i.e., light colors): colors are chosen around the yellow,
from green to orange. Light blue, violet, purple and red are less selective (Figure
3.20).

52

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

ColorB
rightness

Figure 3.20: Colors of the spectrum in different brightness. Saturated colors are marked by
a white circle.

• In medium brightness: we find the maximum number of selective colors. The
blue and red colors are diametrically opposite (Figure 3.20): violet, blue, green,
yellow, orange, red and purple might be used in this level of brightness.

• In low brightness (i.e., dark colors): the selective categories of colors range
from blue to red by the violet and purple. Dark green, yellow and orange are less
differentiated (Figure 3.20).

Following are described technical information about choosing the effective categories
of colors:
If a designer wants to effectively choose his selective colors based on the previous
method, he should use the Hue, Saturation, Brightness (HSB) system.
Light colors have a value of brightness (B) which is bigger than 70% (i.e., >= 150).
Medium levels of brightness are situated between 50% and 69% (i.e., 110<= B <150).
And, dark colors (i.e., low brightness) have a value of brightness which is lower than
50% (i.e., <110).

Color and daltonism Color is an excellent selective retinal variable. It can be easily
combined with the other visual variables and it is rapidly memorable. It has an absolute
psychological attraction. In fact, colors capture the attention of human readers. But,
the use of color is not suitable for color-blind people. Indeed, anomalies of chromatic
perception (i.e., color blindness) are more frequent than we usually believe. Color blind
people compensate this anomaly by searching, usually unconsciously, alternatives of
color to decrypt messages in a graphical representation. In that context, we mention
that there exist three types of daltonism [7]. We find the monochromatism which
consists of the total absence of the perception of colors. It is very rare (it affects A
person per 40 0000). People having monochromatism perceive only black and white.
The second type of daltonism is the Dichromate. It refers to the ability to perceive
only two colors from the three primary colors (red, green and blue): either only green
and blue or only red and blue or only red and green. The last type of daltonism is
what is called the anormal trichomate. It consists of weaknesses in the perception of
red, green or blue. Persons having this trouble cannot visually differentiate between
these three colors. Graphical representations have to provide alternatives of colors to
remedy for such possible problems (i.e., by making use of the other visual variables).

53

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

Figure 3.21: Three effective categories of
brightness.

Figure 3.22: Four effective categories of
brightness.

Figure 3.23: Effective categories of brightness.

Effective categories of the brightness retinal variable

To choose effective categories of brightness, the only constraint which has to be re-
spected is to employ equidistant ones. We find different sets of effective categories
which are recommended by the SoG as ready-to-use ones. As illustrated in Figure
3.21, for three categories of brightness: black, medium gray and white should be used.
For four categories of brightness, black, two levels of equidistant gray and white, as
shown in Figure 3.22.

More technically, in order to generate a formula for finding equidistant categories of
brightness, Jaques Bertin found that the only condition is to attribute a value different
from zero to white and a value different from one hundred to black (which corresponds
obviously to reality). In that context, if we denote:
W: The percentage of the White in the spot, W 6= 0.
B: The percentage of the Black in the spot, B 6= 100.
r: The common distance between the chosen categories of brightness. It denotes the
ratio between the values of brightness of two successive categories (i.e., a logarithmic
value). r ∈ N.
n: Number of categories, n ∈ N.

It is clear that we have to multiply the value of white W by the common difference
r the number of wanted categories n minus one times. Therefore, Bertin defines the
formula below:

B = Wr(n−1).
As a result, the common difference r will be:

r = n−1
√

(B/W).

Effective categories of the orientation retinal variable

The effective categories of orientations depend on the type of the spots. Below, these
categories are explained:
Two categories in lines: the line (0 degree) and its perpendicular (90 degree), as
illustrated in Figure 3.24.
Four categories in points: the horizontal (0 degree), the vertical orientation (90
degrees) and oblique orientations of thirty and sixty degrees, as shown in Figure 3.24.

Effective categories of the grain retinal variable

No particular method is described by the SoG to build effective categories of grain.
The only recommendation is to choose equidistant categories where the percentage of

54

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

Figure 3.24: Effective categories of orientation for lines and points.

black is the same in all the spots. In a diagram, it is preferable to avoid using low
values of grain (i.e., a lot of small spots), they will be altered after printings.

Effective categories of the size retinal variable

In a graphical representation, if the size retinal variable is used to express a quantita-
tive information, the categories of this latter should be proportional to the expressed
quantities. For that, the radius of a circle, the side of a square or a triangle should
be varied. The SoG provides a well established abacus to choose the circles which
correspond to a each quantity of an information property.

The effectiveness of the retinal variables categories in UML

In practice, most of the used colors are those of the spectrum. For example, according
to the interviews (Chapter 2), practitioners make use of the blue and the yellow to
respectively express tested and non tested functions. They also use the orange and red
to respectively express the material related classes and those related to the system.
In the models repository, the following ranges of colors were employed to express the
MVC elements: (pink, yellow and mauve), (green, yellow and mauve), (blue, orange
and green) and (yellow, green and red). Such usages are considered as non-effective
from the SoG viewpoint. They are characterized by different brightness while the
expressed information are only selective. In that context, we find that most of the
modeling tools, if not all, do already not differentiate between color and brightness.
They provide both of them to users via the same window, which might represent a
reason of such non-effective usages. Concerning the other retinal variables, we find
that they are not used in practice. Therefore, we cannot comment on the effectiveness
of their categories. They are not yet handled by UML modeling tools.

3.2.9 The problems of applying the SoG to UML
In this section, we presented the main guidelines of the SoG that are related to the
visual variables and their use to construct effective graphical representations. In that
context, a correct analysis process of the information properties to be transcribed is a
primordial step. The analysis process consists of mapping each information property
to the most convenient visual variable. The mapping has to be done based on the
perceptive properties of the visual variable and the organization level and the num-
ber of categories of the information property in question. Another basic step is the

55

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

annotation of the graphical representation with two elements: a title and keys. Both
elements help fastening the reading process of the resulting representation.

On one hand, we can state that UML does not take advantages of the whole set
of the visual variables in its primary notation. If the shape represents the most used
visual variable, the grain and brightness are very less employed. The use of the other
visual variables is usually left under modeler’s control. On the other hand, points, lines
and zones of the SoG are considered as simple graphic symbols. Certainly, J. Bertin has
studied combinations of retinal variables on them, superposition and containment of
points in zones. But complex graphic symbols like UML nodes have not been explicitly
explored. The complexity of UML nodes might be observed with one of the most used
UML nodes: the UML Class. It consists of a rectangle with four compartments. Each
compartment contains text. The contained text must be sufficiently large and easily
readable.

Figure 3.25: Different implementations of the size retinal variable to an UML class.

Figure 3.26: Color: different possible implementations on an UML class

In that context, many possible implementations of the retinal variables to the UML
nodes exist. For example, the application of the size retinal variable to an UML class
might concern only its area. But, it might also concern the area and the contained
text of the UML class, as depicted in Figure 3.25 above. Another example concerns
the application of a color variation to an UML class. Color can be applied to the
background of the class or to its default thin border lines (Figure 3.26). But, the color
application might also require increasing the border lines thickness, as shown in Figure
3.26.

56

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

Figure 3.27: Color: taking into account the embedding relationships

Moreover, taking into account the possible embedding of UML nodes when applying
a retinal variable to them is problematic. For example, coloring an UML class which
is embedded in a colored package might require increasing the thickness of the class
border lines (Figure 3.27). Also, the choice of the category of a visual variable for an
embedded UML node has to be careful. For instance, a class can have the same color
as the package in which it is embedded or a different one (Figure 3.27). Choosing the
same color for the embedded class and the package can hamper the readability of the
text, especially if the chosen color is dark (Figure 3.27).

UML graphic nodes are then very complex compared to points, lines and zones of
the SoG. The SoG principles cannot be applied to UML in an ad-hoc manner. They
have to be carefully adapted to the UML graphic complexities and particularities. The
graphic complexity of UML graphic nodes has not been addressed neither in the SoG
nor in the existing researches.

Reformulation of the research questions

In the first section, we illustrated that the present work is complementary to the CDs
framework and to the PoNs framework. Particularly, the work of this thesis is meant
to subscribe precise guidelines to reduce the cognitive load in some dimensions of
the CDs framework and some principles of the PoNs framework (See Table 3.2), by
taking advantage of the retinal variables. To that end, the theories of the SoG were
explored in the UML context. But, in the second section, we observed that the rules
of the SoG cannot be directly mapped to UML due to the graphic particularities and
complexities of the latter modeling language. These findings allow us to reformulate
our general research question: How to improve the effectiveness of UML diagrams via
an advanced usage of their secondary notation visual variables?. The following more
precise questions arise:

• RQ-1: What are the visual variables which belong to the UML secondary nota-
tion?
• RQ-2: What are the exact graphic particularities and complexities of UML?
• RQ-3: What are the effective ways to better take advantages of them in UML?
• RQ-4: How can we take into account the recommendations of the practitioners

mentioned in our conducted empirical study?

57

3.2. THE SEMIOLOGY OF GRAPHICS (SOG)

• RQ-5: How can we empirically assess the benefits of the visual variables of the
secondary notation in UML?

The next chapters present our contributions which address all of these research ques-
tions.

58

Chapter 4

SoG-UML: Semiological guidelines
for the visual enrichment of UML
diagrams

Contents
4.1 The UML concrete syntax: an exhaustive classification . 61
4.2 SoG-UML . 64
4.3 SoG-UML: Color . 66

4.3.1 Color variation on the main UML node 67
4.3.2 Color variation on text labels, borders and separation lines . 69
4.3.3 Color variation and icons . 72
4.3.4 Color variation on UML satellites/ports 74

4.4 SoG-UML: Brightness . 75
4.4.1 Brightness variation on the main UML node 76
4.4.2 Brightness variation and text, separation lines and borders . 78
4.4.3 Brightness variation and icons 80
4.4.4 Brightness variation on ports/satellites 80

4.5 SoG-UML: Size . 80
4.5.1 A- UML diagrams that support a size variation 81
4.5.2 B- UML diagrams that do no not support a size variation . . 84
4.5.3 Size variation and icons . 86
4.5.4 Size variation on satellites/ports 87

4.6 SoG-UML: Grain . 87
4.6.1 Grain variation on the Main UML node 88
4.6.2 Grain variation and text, separation lines and borders 89
4.6.3 Grain variation and icons . 90
4.6.4 Grain variation on satellites/ports 91

4.7 SoG-UML: Orientation . 91
4.7.1 Orientation variation on the main UML node 92
4.7.2 Orientation variation and text, separation lines and borders . 94

59

4.7.3 Orientation variation and icons 94
4.7.4 Orientation variation and satellites 94

4.8 Superposition of UML nodes 95
4.8.1 Color: containment of UML nodes having a color variation

on all the possible containers 96
4.8.2 Size: containment of UML nodes having a size variation on

all the possible containers . 98
4.8.3 Brightness: containment of UML nodes having a brightness

variation on all the possible containers 99
4.8.4 Grain: containment of UML nodes having a brightness vari-

ation in all the possible containers 100
4.8.5 Orientation: containment of UML nodes having an orienta-

tion variation on all the possible containers 101
4.9 Combinations of the retinal variables 101

4.9.1 Combinations of the retinal variables in UML 102
4.10 Summary . 104
4.11 Discussion . 105

60

4.1. THE UML CONCRETE SYNTAX: AN EXHAUSTIVE
CLASSIFICATION

To visually enrich his UML diagrams, a designer cannot use the SoG directly be-
cause of its unsuitability for composite graphic elements like UML nodes. Given the
eventual interest of such enrichment, we have completed the SoG by specific guidelines
for software modeling and particularly for UML. These guidelines are grouped in a
framework that we have simply named SoG-UML. To define SoG-UML, we relied on
the design and action theory, as defined by [26]. A design and action theory is meant
to give explicit prescriptions for constructing an artifact (e.g., methods, techniques,
principles). We describe then guidelines of effectiveness to better take advantage of
each retinal variables in UML. To guarantee a high level of accuracy of our guidelines,
we begin by an exhaustive empirical classification of the UML concrete syntax. With
such categorization, we became able to identify the retinal variables which belong to
the UML secondary notation and to draw an explicit list of all the graphic particu-
larities of UML. As a result, for each graphic element of the list stemming from the
previous classification and for each retinal variable of the UML secondary notation we
explain explicit guidelines of effectiveness.

4.1 The UML concrete syntax: an exhaustive clas-
sification

To analyze the UML graphic space, we started from the UML standard specification
[4]. We first classified the UML graphic nodes based on a containment criteria, which
refers to the possibility of an UML graphic node to be a container of another one and/or
to be contained in another one. Then, we grouped them based on their visual aspects.
That denotes their corresponding shapes and characteristics of each shape (i.e., bor-
der lines and corners), number of compartments, presence of icons and/or presence
of satellites (i.e., ports). We build then a clear vision about the UML graphic space,
especially about the visual variables which belong to the UML secondary notation. We
also ensure that all the graphic particularities of UML have been identified.

Results of the classification are depicted in the feature models1 which are shown in
Figure 4.1 and Figure 4.2. They are displayed in the next pages for space constraints.
As illustrated in the keys of each model, gray rectangles with a thick border denote
the visual variables which are locked by the UML primary notation. White rectangles
with a thick border denote the main graphic elements which might compose a graphic
component (i.e., graphic node or graphic edge). Finally, white rectangles with a thin
border refer to the alternatives of a graphic element or a visual variable. The relation-
ships between the different rectangles are equally explained in the keys. They can be
mandatory or optional.

Results of the classification show that the UML graphic nodes are complex due
to multiple facts. On one hand, UML graphic nodes might be composed of multiple
graphic elements. They are mainly characterized by a shape which can be a circle, a
rectangle, an ellipse or a symbol (e.g., stick man in a use case diagram). These shapes
have borders. Line borders can be continuous or dashed ones (a grain variation). They
also might be gray or black to denote a brightness variation (i.e., to differentiate inher-
ited and non inherited states). Corners of the shapes might be curved or folded. UML

1Feature model is used to help generating guidelines for other modeling languages as discussed in
the perspectives of this thesis.

61

4.1.
T

H
E

U
M

L
C

O
N

C
R

ET
E

SY
N

TA
X

:A
N

EX
H

A
U

ST
IV

E
C

LA
SSIFIC

AT
IO

N

UML Node

CompartmentContainer

Compartment
 Number

Contained Satellite

Position

Right Up

Shape

Circle Square Rectangle NumberOfShapes

Icon

PositionNumber

Right

Up Down

Circle

Shape

EllipseRectangle

Border

DashedContinous

CurvedCorners

Heading

In

Of

Label

Down

Brightness

EmptyFilled

FoldedCorner

Shape

Orientation

Not italicItalic

Grain

Circle Triangle

Brightness

EmptyFilled

Orientation

VerticalHorizontal

Other signs

Number

Grain

Without a crossWith a cross

Grain

Without an edgeWith an edge

Brightness

BlackGray

Left

Size

Not boldBold

With a white
inner circle

Black

Grain

Symbol

Mandatory

Optional

Alternative

Or

The main
graphic
components

The visual variables
 locked by the UML
primary notation

Characteristics of
the main graphic
components or
the visual variables

Figure 4.1: Cartography of the UML graphic nodes and the used visual variables.

62

4.1. THE UML CONCRETE SYNTAX: AN EXHAUSTIVE
CLASSIFICATION

UM
L

Ed
ge

Li
ne

Si
gn

Gr
ai

n

Da
sh

ed
Co

nt
in

ou
s

Sh
ap

e
Po

sit
io

n

Si
m

pl
e

ed
ge

Tr
ia

ng
le

Br
ig

ht
ne

ss

Fi
lle

d
Em

pt
y

Ex
tr

em
ity

Ce
nt

er
Di

om
on

d
Sq

ua
re

Ci
rc

le
Ha

lf
a

cir
cle

Gr
ai

n

W
ith

 a
 c

ro
ss

 in
 th

e
Em

pt
y

m
id

dl
e

Ab
ov

e
th

e
ed

ge
In

sid
e

th
e

ed
ge

Te
xt

 L
ab

el

Po
sit

io
n

M
an

da
to

ry

A
lte

rn
at

iv
e

Th
e

m
ai

n
gr

ap
hi

c
co

m
po

ne
nt

s

Th
e

vi
su

al
 v

ar
ia

bl
es

 lo
ck

ed
 b

y
th

e
U

M
L

pr
im

ar
y

no
ta

tio
n

Ri
gh

t
Ce

nt
er

Le
ft

Ch
ar

ac
te

ri
st

ic
s

of

th
e

m
ai

n
gr

ap
hi

c
co

m
po

ne
nt

s
or

th
e

vi
su

al
 v

ar
ia

bl
es

Fi
gu

re
4.
2:

C
ar
to
gr
ap

hy
of

U
M
L
gr
ap

hi
c
ed

ge
s
an

d
th
e
us
ed

vi
su
al

va
ria

bl
es
.

63

4.2. SOG-UML

nodes might also be composed of one or more than one compartment. In addition, they
might contain text which can have an italic font that we consider as an orientation vari-
ation (e.g., Text and Text). Text labels might also be bold or not which corresponds
to a size variation to denote UML active classes (e.g., Text and Text). Then, UML
nodes might be composed of icons. There may be one or several icons which might
be placed in different positions. They are also characterized by their shapes, where
we find triangles, circles and other composed ones. Triangles might be empty or filled,
which corresponds to a brightness variation. They might be horizontal or vertical,
which denotes an orientation variation. Finally, some UML nodes might have attached
satellites (i.e., ports). These ones might have different shapes and be characterized
by their number and position. Grain and brightness might vary for some satellites.
On the other hand, UML nodes are made to be parts of a whole UML diagram. In
fact, UML nodes are not only composed of multiple elements (i.e., compartments,
text, icons, ports), they can also be totally contained in another graphic nodes (e.g.,
a class in a package). Therefore, we have two types of UML graphic nodes: contain-
ers and contained ones. The Figure 4.3 below illustrates the complexity of UML nodes.

Figure 4.3: The identified graphic elements.

Concerning UML edges, Figure 4.2 illustrates all the constituents of an UML edge
and highlights the visual variables which are blocked by the UML primary notation.
UML edges are mainly composed of a line which might be continuous or dashed (a
grain variation). They are also characterized by a sign which has a particular shape
and position and also by a text label that has a fix position.

4.2 SoG-UML
We studied in SoG-UML all the retinal variables of the UML secondary notation based
on the previous classification. We excluded the position because we find that there
exist a huge effort in the literature that try to find the effective layouts (e.g., [45] [40]
[37]). For each retinal variable, we show and justify how to implement it as efficiently
as possible on all the groups stemming from the previous classification (i.e., main UML

64

4.2. SOG-UML

node, icons, ports, text labels, headings and compartments). For that, we pragmatically
expose the possible implementations and we identify the choice of the most effective
one based on the SoG. The rules of the SoG that have been used to justify it are
summarized in a table. We define for each rule in the table a rule identifier, a title,
the rule itself and its explanation. We distinguish two types of rules: basic rules like
definitions or rules that concern any visual variable and specific rules that concern
one particular visual variable. Basic rules have a rule identifier that begins with the
letter B. The other rules have a rule identifier that begins with the first letter of the
corresponding visual variable (e.g., C for color, S for size). BR is used as a rule identifier
for the brightness visual variable (i.e., to avoid using the letter B which is used for basic
rules). We mention the text from the book of the SoG that proves each rule in the
explanation column. That text is the result of our own translation from French to
English and is preceded by the page number in the book in the form of [SoG-Page
Number]. We generate then a set of guidelines for each group. They are in the form of
Should and Should not and are put in bold after their explanation.

An illustration scenario: Internet Banking System We will illustrate SoG-
UML along with an example of a scenario inspired from the results of our previous
empirical study (See Chapter 2). The scenario is based on a real project found in
the Lindholmen GitHub models repository [3]: Internet Banking System (IBS). In the

Figure 4.4: The class diagram of the Internet Banking System created by its developers.

context of a competition organized by IBM called The Great Mind Challenge [28], a
group of developers participated with the IBS project and got the 9th position. Figure
4.4 illustrates their class diagram. IBS is an online service which allows users to log
in, using a personal identifier and a password, into their banking account profile. The
classes which are responsible of the log in functionality are: Login and Personal-
LoginValidation, as shown in Figure 4.4. Users can view information related to their

65

4.3. SOG-UML: COLOR

accounts and edit them via the classes: MyProfile, ChangePassword and EditPro-
file. They are able to generate reports via the class named Report, search for data
about a particular period of time via the class named Search. They can also extract
bills and print them. The two following classes are responsible of these features: Bills
and Print. They can also request for Cheque books via (Request) and make different
online fund transfers (A2AMoneyTransfer, SendMoney, CardToCardTransfer).
Finally, all the data of the IBS are centralized in a database: DataBaseConnect.
We will use the visual variables to highlight information which might be relevant for
communications with the competition committee and so related to System’s concerns,
distribution of tasks, project progression, criticality and correlations between these lat-
ter. The diagram in Figure 4.4 is used as a reference in the forthcoming subsections.

4.3 SoG-UML: Color
Table 4.1 summarizes the rules of the SoG that we use to generate our guidelines about
the effective use of colors in UML.

Table 4.1: The used rules from the SoG to generate our guidelines about colors in UML.

Rule
identifier Title Rule Explanation

B1 Definition

The color variation is the
differentiation generally
induced by different col-
ored excitation that the
human eye can perceive
between two ranges having
the same brightness

Color and brightness are two different retinal
variable. Each one has its particular percep-
tive properties.
[SoG-85]: We cannot understand the colors
sensations if, first of all, we do not separate
rigorously the notion of colors of the notion
of brightness.

B2

One-to-one
mapping of
information
properties

In a diagram, colors should
express one single informa-
tion property.

During the analysis process, each informa-
tion property should be mapped to one sin-
gle retinal variable 2 which has (at least) the
same organization level.
[SoG-10] It is important to transcribe each
information property by one visual variable
which has at least the corresponding organi-
zation level and the length.

C1
Effective
categories
of colors

Medium levels of bright-
ness provide the biggest
number of selective colors.

The medium level of brightness offers seven
selective colors. While the low level provides
four selective colors and the high level gives
only three selective colors.
[SoG-87] Colors in medium level of bright-
ness offer the biggest number of selective col-
ors.

C2 Color and
size

The smaller the spot is,
the more important the
time necessary to distin-
guish the used colors is and
vice versa.

Big colored spots are easily distinguishable
by the human eye compared to smaller ones.
[SoG-89] The smaller the spot is, the less
the colors are visually distinguishable.

C3

Length of
the color
variation
and size

The smaller the spot is, the
less the number of selective
colors is and vice versa.

The length of the color variation depends on
the size of the spot.
[SoG-89] For very big areas, the number of
selective colors might reach one million col-
ors.

66

4.3. SOG-UML: COLOR

Table 4.1 continued from previous page

C4

Colors and
the types of
the
spots

In lines or points, light
colors are excluded be-
cause they are very near
to white, the default back-
ground color.

The selectivity of colors depends on the type
of the spot. The visual selection of light lines
and points against a white background
is very difficult. This fact is due to the very
low contrast between white and light colors.
[SoG-89] In lines (or points), light colors
are excluded. Black can replace them and
the ranges of colors will have a great visibil-
ity.

4.3.1 Color variation on the main UML node
We begin by studying the effective implementation of color on the main UML node,
here an UML class. For that, the Figure 4.5 illustrates the possible implementations.

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

AttributeName

ClassNameClassName

AttributeName

Figure 4.5: The possible implementations of the color retinal variable on an UML class.

The selectivity of color increases when the size of the corresponding spot raises (C2
- Color and size). It is likewise for the number of selective colors. The bigger the spot
is, the higher the number of selective colors is (C3 - Length of the color variation and
size). In addition, light lines cannot be accurately perceived on a white background
(C4 - Colors and the types of the spots). In that context, as border lines, lines of sepa-
ration and text are relatively thin, if we apply the color on them, such implementation
will negatively impact the selectivity of colors, the number of selective colors and their
visibility when light colors are employed. The reader can observe this in the Figure 4.6
below.

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

Figure 4.6: Colors and the borders, separation lines and text thinness.

Then, the following guideline stems:

| [SoG-UML #1] Colors should not be applied to borders, lines
of separation and/or text, when they are relatively thin.

67

4.3. SOG-UML: COLOR

Now, we explain the corollary statement to the previously defined guideline. Based on
C2 - Color and size and C3 - Length of the color variation and size, for an application
on the borders, separation lines and text: the bigger their size/thickness is, the better
the selectivity of colors on them is and the better light colors are selected against the
white background (C4 - Colors and the type of the spots). Figure 4.7 below illustrates
this reasoning on an UML class. So, based on this argumentation, we generate the
following guideline:

| [SoG-UML #2] The thicker the border and separation lines
are, the better colors are visually selected.

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

Thickness/Size

Figure 4.7: Impact of the line thickness on the selectivity of colors.

In order to fully benefit from the color variation in terms of selectivity (C2 - Color
and size) and number of selective colors (C3 - Length of the color variation and size),
colors should be applied to a big area of an UML node. For that, an alternative of im-
plementation is available. It consists of coloring the UML node’s name compartment,
as illustrated in Figure 4.8.

AttributeName

ClassName

Figure 4.8: Coloring the UML node’s name compartment.

But, coloring all of the compartments produces a more effective implementation
because it concerns the biggest area of an UML node, as required by the rules C2 -
Color and size and C3 - Length of the color variation and size. The following guideline
arises:

| [SoG-UML #3] Colors should be applied to the background
of an UML node.

To apply a color variation to the background, two possibilities exist as shown in Figure
4.9 below. We observe that these implementations are susceptible to change the shape
of the concerned UML node and so might alter the UML primary notation: an UML
class can no more be perceived as a rectangle with X compartments. Figure 4.10 below
illustrates then the effective implementation of the color retinal variable on an UML
class. The same type of implementation is appropriate for UML Decision, Use Case
and activity, as illustrated in Figure 4.11.

68

4.3. SOG-UML: COLOR

ClassName

AttributeName

ClassName

AttributeName

Figure 4.9: Implementations of colors which might alter the UML primary notation.

ClassName

AttributeName

Figure 4.10: Effective implementation of the color retinal variable on an UML class.

Condition UseCase Activity
ClassName

AttributeName

Figure 4.11: Effective implementations of the color retinal variable to 4 different UML nodes.

4.3.2 Color variation on text labels, borders and separation
lines

We have seen that coloring the background of an UML node is the best support to
implement the color variation. Now, we have to identify the set of colors which yield
to the best selectivity, but more important, we need to state the colors of text and
borders to use regarding the background.

Based on C1 - Effective categories of colors, medium level of brightness for colors is
the best level because it provides the biggest number of selective colors (High, medium
and small levels of brightness were explained in Chapter 3). In UML, high levels of
brightness ensure the best readability for black text labels and the best visibility of
the borders and separation lines. The contrast is sufficiently big to see the difference
between a bright background and black lines (C4 - Colors and the type of the spots).
However, this level provides only three selective colors. Whereas, the medium level
gives seven selective colors while ensuring the readability of black text and the visibility
of the other black constituents of an UML node (i.e., borders and separation lines).
Hence, the three following guidelines result:

| [SoG-UML #4] Colors in medium levels of brightness should
be used for UML nodes. They ensure the readability of black text
labels, borders and separation lines and provide the biggest number of
selective colors.

| [SoG-UML #5] In medium levels of brightness, text labels,
borders and separation lines should be black.

| [SoG-UML #6] In high levels of brightness, text labels, bor-
ders and separation lines should be black.

69

4.3. SOG-UML: COLOR

Figure 4.12 below illustrates the effective implementation of colors in medium level of
brightness in the IBS class diagram.

Figure 4.12: IBS class diagram: Medium level of the background color’s brightness.

Colors are used to express the distribution of tasks between the developers of the
system: Emily, Dave, Thomas, Alex and Isabell. The medium level of brightness al-
lowed us to employ five selective categories of colors. They are shown in Figure 4.13
with their RGB (Red, Green, Blue) and HSB (Hue, Saturation, Brightness) codes.

Figure 4.13: RGB and HSB codes of the colors used in Figure 4.12.

If we want to express the same information (i.e., the distribution of tasks) using
colors in high levels of brightness, we will not be able to represent all of its five cate-
gories. In fact, this level provides us with only three selective colors. Figure 4.15 below
shows how we used this level to represent the distribution of tasks of only three de-
velopers in the IBS class diagram. RGB and HSB codes are also detailed in Figure 4.14.

Figure 4.14: RGB and HSB codes of the colors used in Figure 4.15.

70

4.3. SOG-UML: COLOR

Figure 4.15: IBS class diagram: High level of the background color’s brightness.

Now, if a designer wants to use dark colors to express a particular information on
his diagram, keeping the default black color of text labels, borders and separation lines
represents a big mistake as illustrated in Figure 4.16 .

Figure 4.16: Unreadability of the text labels in a dark background color of an UML node.

C4 - Colors and the type of the spots concerns the selectivity of lines on white
backgrounds where black ones should be used to increase the contrast between both
of them. In this case, we discuss the selectivity of lines on dark backgrounds (i.e., the
background colors of the UML node). So, white text labels, borders and separation
lines should be used to ensure a maximum contrast. From where the following guideline
is generated:

| [SoG-UML #7] In low levels of brightness, text labels, bor-
ders and separation lines should be white.

Figure 4.17 below illustrates the effective implementation of text labels, borders and
separation lines on dark background colors of UML nodes, in the class diagram related
to the IBS. Dark colors are employed to highlight the main concerns of the IBS: Profile
management, Database management and Utilities and Figure 4.18 shows the RGB and
the HSB codes of the used colors.

71

4.3. SOG-UML: COLOR

Figure 4.17: IBS class diagram: Low level of the background color’s brightness.

Figure 4.18: RGB and HSB codes of the colors used in Figure 4.17.

In that context, note that:

| [SoG-UML #8] In medium brightness we find the maximum
number of selective colors. The blue and red colors are diametrically
opposite: violet, blue, green, yellow, orange, red and purple might be
used in this level of brightness.

| [SoG-UML #9] In big brightness: colors are chosen around
the yellow, from green to orange. Light blue, violet, purple and red
are less selective

| [SoG-UML #10] In low brightness (i.e., dark colors): the
selective categories of colors range from blue to red by the violet and
purple. Dark green, yellow and orange are less differentiated.

4.3.3 Color variation and icons
We showed in the previous paragraph that the readability of the text labels, the borders
and the separation lines depends on the background color of their UML node. Icons
rely on the same parameter (i.e., the background color of its UML node) because they
are also constituents of UML nodes. But, icons are characterized by two graphic ele-
ments: borders and a background. To ensure their selectivity against the background
of their corresponding UML node, we will mainly rely on their background which rep-
resents their biggest area. In fact, based on C2 - Color and size, the bigger the spot
is, the better colors are visually selected, and, in our case the better icons are selected
from the main UML node. For that, icons borders might keep their default black color.

72

4.3. SOG-UML: COLOR

But, they should have a different background color from their owning UML node. For
example, the icon is better visually selected when it has a gray background color than
white. Figure 4.21 below shows this implementation on a component diagram of the
IBS.

Customer Webserver Account details

Account statements

Funds transfer

Cheque transfer

Figure 4.19: The same background color
for UML nodes and icons.

Customer Webserver Account details

Account statements

Funds transfer

Cheque transfer

Figure 4.20: Different background colors
for UML nodes and icons.

Figure 4.21: Effective implementation of an icon in a white UML node.

We conclude then the following guidelines:

| [SoG-UML #11] The border of icons should be black.

| [SoG-UML #12] Icons should not have the same background
color as the UML node in which they are contained.

Figure 4.22: White background color of icons in all levels of brightness of the main UML
node’s background color.

Concerning colored UML nodes (neither white nor black), white background of icons
might be suitable for all colors in all the three possible levels of brightness. In fact,
for colors in big and medium levels, black borders of icons help to rapidly see them.
For low levels (i.e., dark colors), the white background of icons is excellent to rapidly
perceive them (i.e., thanks to the big contrast), as shown in Figure 4.22 above. Figure
4.23 below illustrates the effective implementation of icons which are contained in col-
ored UML nodes.

But, it is important to notice that icons should not have different colors from
each other. As stated by B2 - One-to-one mapping of information properties, colors

73

4.3. SOG-UML: COLOR

Customer Webserver Account details

Account
statements

Account
transfer

Account
Cheque

System’s concerns

Customers

Webserver

Acoount details

Figure 4.23: Effective implementation of icons in colored UML nodes.

have to be employed to express only one information property. If they are used to
convey a particular information property via the main UML node’s backgrounds, a
color variation on icons will induce to ambiguities. Hence, we produce the following
guideline.

| [SoG-UML #13] All of the icons in a diagram should have
the same background color.

4.3.4 Color variation on UML satellites/ports
To simplify the explanation, we propose to name the UML node in which the port is
attached as ported UML node. The color of ports depends on two parameters: the
color of the ported UML node and the color of the ported UML node’s container. To
increase the selectivity between these three graphic nodes, colors should be applied to
the port’s biggest area which means its background, as explained by C2 - Color and
size and C3 - Length of the color variation and size. The following guideline is then
prescribed:

| [SoG-UML #14] Colors should be applied to the background
of ports.

Concerning the ports borders, as for icons, black ones are suitable for all levels of
brightness of the used colors. The following guideline results:

| [SoG-UML #15] The border of ports should be black.

Now, a ported and white contained UML node might be white or colored, as shown
in the Figures 4.24 and 4.25. In both cases, the port should have a different selective

74

4.4. SOG-UML: BRIGHTNESS

Figure 4.24: Effective implementation of a
port in a white ported and white contained
UML node.

Figure 4.25: Effective implementation of a
port colored and white contained ported
UML node.

Figure 4.26: Effective implementation of a port in a white container.

color from it. But, in the case of a colored container, the ported UML node might also
be white or colored, as illustrated in the Figures 4.27 and 4.28. If this latter is white,
the port should have a different background color from the container. Otherwise, the
port should have a different selective color from the container and the ported UML
node.

Figure 4.27: Effective implementation of a
port in a colored ported UML node and
contained in a colored container.

Figure 4.28: Effective implementation of
a port in a white ported UML node and
contained in a colored container.

The following guideline is then prescribed:

| [SoG-UML #16] Ports should have a different selective color
from the UML node in which it is embedded and the container of this
latter.

4.4 SoG-UML: Brightness
Table 4.2 contains the employed rules of the SoG which helped use to generate our
guidelines about the effective use of the brightness in UML.

Table 4.2: The used rules from the SoG to generate our guidelines about the brightness in
UML.

Rule
identifier Title Rule Explanation

B3 Definition

The brightness variation is
the continuous progression
that the eye perceives in
the series of gray, which
ranges from black to white.

This variation is ordered, from the black
which has the lowest brightness to white
which has the biggest one.
[SoG-73]: This progression is independent
from the color and we can range from black
to white by gray, blue, red, etc.

75

4.4. SOG-UML: BRIGHTNESS

Table 4.2 continued from previous page

BR-1 High bright-
ness and se-
lectivity

In big levels of bright-
ness, the number of selec-
tive categories of all the
retinal variables, including
shapes, decreases to reach
zero with null brightness
(i.e., white spots).

Designers should be careful about the use of
high levels of brightness because it hampers
the selectivity of the other retinal variables.
[SoG-73]: In very big values of bright-
ness, the number of categories of sizes, col-
ors, shapes, orientations and grain decreases
which can be differentiated decreases to reach
zero with the null brightness.

BR-2 Brightness
and size

The smaller the spot is, the
smaller the number of se-
lective categories of bright-
ness is.

The small size of spots negatively impacts
the perceptive properties of the used retinal
variables on them including the brightness.
[SoG-73]: The length of the brightness
varies with the size of the spots. The more
the spot is small, more the length of selective
categories are reduced.

BR-3 Brightness
and dissocia-
tion

The brightness is dissocia-
tive. It prohibits the visu-
alization of spots, all cate-
gories combined.

Models authors should be careful about the
use of the brightness because it is dissociative
(It means that it hinders the visualization of
the UML nodes as a group.).
[SoG-73]: The brightness is dissociative and
it is impossible to visually abstract it.

BR-4 Effective
categories of
brightness

To have the biggest num-
ber of effective categories
of brightness, black and
white should be used.

For three effective categories of brightness,
choose: black, white and gray. For four cat-
egories, choose black, white and two levels of
gray.
[SoG-73]: The length of the brightness de-
pends evidently on available distance between
the black and white.

4.4.1 Brightness variation on the main UML node

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

Figure 4.29: Possible implementations of the brightness retinal variable on an UML class.

Figure 4.29 above shows the possible implementations of the brightness retinal vari-
able on an UML class.
The brightness is defined as the continuous progression that the eye perceives from
black to white via a series of gray or another color (B3 - Definition). In that context,
a small size of the spot decreases the number of selective categories of brightness (BR-2
- Brightness and size). In addition, high levels of brightness hinder the selectivity of
the other retinal variables, including the shape which is a key visual variation in UML
(BR-1 - High brightness and selectivity). Based on these rules, borders, text and sep-
aration lines are relatively thin, they cannot effectively support a brightness variation,

76

4.4. SOG-UML: BRIGHTNESS

as depicted in Figure 4.30.

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

Figure 4.30: Brightness and borders, separation lines and text thinness.

Besides, this kind of variation is already employed by the UML primary notation
to differentiate between inherited and non inherited states, which is not effective as
argued earlier. We conclude then the following guideline:

| [SoG-UML #17] The brightness variation should not be ap-
plied to the borders, separation lines and text: it is locked by the UML
primary notation and not effective from the SoG point of view.

To take advantage of the whole range of selective categories of brightness, we have to
implement it to a relatively big area of an UML node (BR-2 - Brightness and size).
The brightness variation might be applied to the class name compartment. The area
is relatively big compared to the borders, separation lines and text labels. Such imple-
mentation allows a better perception of the brightness variation, as shown in Figure
4.31.

ClassName

AttributeName

Figure 4.31: Applying the brightness to the UML node’s name compartment.

Figure 4.32: Implementations of brightness which can alter the UML primary notation

Obviously, the biggest part of an UML node is its background. Figure 4.32 illus-
trates the two first possibilities of applying the brightness to the background of UML
nodes. But, as for colors, these implementations might alter the shape of the concerned
UML node where an UML class is no more perceived as a rectangle with X compart-
ments.

77

4.4. SOG-UML: BRIGHTNESS

Figure 4.33: Applying the brightness to only background

Figure 4.33 shows a more effective implementation where the brightness is applied
to the background of the UML node. Such implementation allows to fully exploit the
perceptive properties of the brightness retinal variable in UML. It fits also with Deci-
sion, Use Cases and activities, as shown in Figure 4.34 below.

Condition UseCase Activity
ClassName

AttributeName

Figure 4.34: Effective implementation of the brightness to different UML nodes

We conclude then the next guideline:

| [SoG-UML #18] The brightness should be applied to the
background of UML nodes.

4.4.2 Brightness variation and text, separation lines and bor-
ders

We have deduced that the brightness should be applied to the background of UML
nodes. But, this choice might hamper the readability of the contained text as well
as no guidelines precising how the text brightness should be adapted to such varia-
tion. In that context, in high brightness the text might be black, which represents
the biggest contrast that can exist between both graphic elements. In low brightness
(i.e., dark backgrounds of UML nodes), the text brightness has to change to ensure
its readability. In a diagram, a first possible implementation consists at using white
text for all UML nodes having dark brightness and the default black text for the other
nodes, as shown in Figure 4.35. However, as explained by BR-3 - Brightness and
dissociation, the brightness is dissociative. Hence, the white text labels and the black
ones will be perceived as two different groups (i.e., dissociated). This phenomena is
illustrated in Figure 4.35 below where the brightness variation is used to express the
ordered information progress of the implementation of the IBS project. On one hand,
the text in dark gray classes is white. On the other hand, the text of the two other cat-
egories of brightness is black. Such implementation might create an ambiguity to the
human readers. In fact, an additional non-wanted brightness variation is created via
two groups of white and black texts. Moreover, classes having black text are grouped
into one group while belonging to two different categories of progression (i.e., 60% and

78

4.4. SOG-UML: BRIGHTNESS

30% progress), each one is expressed by a level of brightness.

Figure 4.35: Text labels should not have different levels of brightness.

The following guideline comes then:

| [SoG-UML #19] Text labels, separation lines and borders
should not have different values of brightness from each other.

A solution could be the following: eliminate low levels of brightness which oblige the
models authors to change the text brightness to white, as illustrated in Figure 4.36
below. The latter decision will negatively impact the number of categories that can be
used as stated by BR-3 - Brightness and dissociation. However, it is the most suitable
one in UML.

Figure 4.36: The effective implementation of the brightness retinal variable in the IBS class
diagram.

79

4.5. SOG-UML: SIZE

4.4.3 Brightness variation and icons
As depicted in Figure 4.1, the brightness of icons is locked by the UML primary nota-
tion. It has not to be changed because it might alter their semantic signification.

| [SoG-UML #20] The brightness of icons is locked by the
UML primary notation.

4.4.4 Brightness variation on ports/satellites
The brightness of the ports is also locked by the UML primary notation. They might
be black or white. We precise then the following guideline:

| [SoG-UML #21] The brightness of ports is locked by the
UML primary notation.

4.5 SoG-UML: Size
Table 4.3 outlines the rules of the SoG which has been used to argue about the effective
use of the size variation in UML.

Table 4.3: The used rules from the SoG to generate our guidelines about the size variation
in UML.

Rule
identifier Title Rule Explanation

B6 Definition

The variation of the area
of an UML node represents
the stimuli of the size vari-
ation.

In the quantitative perception, the areas
should be proportional to the quantities it
represents.
[SoG-71]: Any spot, having a punctual or
a linear signification, can vary its size with-
out changing its position, brightness, grain,
color, orientation or shape. The variation of
the area of a spot represents the visual stimuli
to the size variation.

S1 Size and
brightness

The bigger the brightness
is, the more the perceptive
properties of the size vari-
ation are loosed.

The size variation on empty and white spots
is not rapidly perceived by the human reader.
[SoG-71]: The size variation is perceptible
only with spots having dark values of bright-
ness. Empty and white spots make the size
variation lose all its spontaneous perceptive
properties.

S2 Size in points
and zones

Contrarily to points, zones
cannot change their size
(area).

The constituents of a zone can vary their size
(e.g., line thickness).
[SoG-71]: Zones cannot change their area.
But their constituents, points or lines can
vary in number or size. The extension of
the size variation is limited by the concerned
zone.

S3 Size and dis-
sociation

The size retinal variable is
dissociative.

It prohibits the visualization of the spots as
one entity.
[SoG-323]: It (the size variation) excludes
the perception of the density of a group all
categories combined

80

4.5. SOG-UML: SIZE

Table 4.3 continued from previous page

S4 Size and
combina-
tions of
forms

Combining points, lines
and/or zone in a graphical
representation increases
their visual selectivity.

[SoG-189]: Using different forms of spots
(i.e., points, lines and zones) guarantees a
high selectivity. It is easy to use and very ef-
fective. It is the most effective formula rec-
ommended for all sketching/drawings

Figure 4.37 below shows the possible implementations of the size retinal variable to
an UML node.

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

ClassName

AttributeName

MethodName

ClassName

MethodName

AttributeName

ClassName

AttributeName
AttributeName
AttributeName

Method1Name

Method2Name
Method3Name

ClassName

AttributeName
AttributeName
AttributeName

Method1Name

Method2Name
Method3Name

ClassName

AttributeName
AttributeName
AttributeName

Method1Name

Method2Name
Method3Name

ClassName

ClassName

AttributeName
AttributeName
AttributeName

Method1Name

Method2Name
Method3Name

ClassName

AttributeName

Figure 4.37: Possible implementations of the size retinal variable in a UML class.

As our guidelines are based on the SoG, we propose to build them on the same
hypothesis. We consider then that the whole diagram might be visible in the same
view (i.e., no hidden parts). That means that it might be seen "at a glance". In
such context, we observe that the size variation depends on multiple factors. First,
UML diagrams might have a big visual density (i.e., contain a lot of UML graphic
components). Varying the area of each UML node will affect the size of the whole
diagram. That might prohibit the visualization of the whole diagram at a glance. Our
choice of effective implementations takes into account this fact. In addition, the default
area of UML nodes depends on their contained text. Generally, UML practitioners use
long names of UML graphic nodes (e.g., classes, components, lifelines). Also, UML
nodes contain different amounts of text (i.e., number of attributes and methods). In
that context, we propose that all UML nodes, contained in a diagram, have the same
default area at the beginning of the application of the size retinal variable to an UML
diagram. Below is our reasoning about the effective implementations of the size retinal
variables.

4.5.1 A- UML diagrams that support a size variation
Size variation on the main UML node

Based on B6 - Definition, it is the variation of the area of a spot which represents the
stimuli of the size variation. The following guideline is then generated:

| [SoG-UML #22] The size retinal variable should be applied
to the area of an UML node.

81

4.5. SOG-UML: SIZE

ClassName

AttributeName

ClassName

AttributeName

Figure 4.38: Size variation on the area of UML nodes.

Figure 4.38 above shows how we vary the size of an UML node by increasing its area
via its height and width.

Figure 4.39 below illustrates the same variation in the IBS class diagram. The size
retinal variable is used to express the information property Criticality.

Figure 4.39: A size variation on the IBS class diagram.

Size variation and text labels, separation lines and borders

We have seen that the size variation of an UML node means the variation of its area.
But, as glimpsed by S1 - Size and brightness, the size variation is less significant with
empty and white spots. In that context, increasing only the area of UML nodes, as
shown in the figures 4.38 and 4.39, makes them relatively empty. The size of the text
is small compared to the area of the concerned UML node. Therefore, to avoid the
application of the size to a relatively empty UML nodes, three possibilities of imple-
mentations are available.
The first possibility consists of varying not only the area but also the size of the border
(i.e., line thickness) with or without varying the thickness of the separation lines, as
depicted in Figure 4.40.

82

4.5. SOG-UML: SIZE

ClassName

AttributeName

ClassName

AttributeName

Figure 4.40: A size variation of the borders and/or separation lines on an UML class.

However, such variation can be perceived as a non-significant size variation between
the text in one hand and the border and/or the separation lines in the other hand.
As the size retinal variable is dissociative (S3 - Size and dissociation), such variation
dissociates the text from the borders and separation lines, which prohibits the visu-
alization of an UML node as one entity. It is likewise for the second implementation
where we vary only the size of the contained text, as shown in Figure 4.41.

ClassName

AttributeName AttributeName

ClassName

Figure 4.41: A size variation of only the text of an UML class.

As a result, to avoid applying the size variation to a relatively empty UML nodes
(S1 - Size and brightness) and to take into account the dissiociative perceptive attitude
of the size retinal variable (S3 - Size and dissociation), we generate the following
guideline:

| [SoG-UML #23] The size retinal variable should be applied
not only to the area of UML nodes, but also to the text, separation
lines and borders.

The effective implementation is then depicted in Figure 4.42 on an UML class. Figure
4.43 shows it in the use cases, decisions and activities. Figure 4.44 shows the effective
implementation of the size retinal variable in the IBS class diagram where the size
variation is employed to express the levels of critically of each class.

ClassName

AttributeName

Figure 4.42: The effective implementation of the size retinal variable to a UML node.

83

4.5. SOG-UML: SIZE

ClassName

AttributeName Condition UseCase Activity

Figure 4.43: Effective implementations of the size retinal variable to four UML nodes.

Figure 4.44: The effective implementation of the size retinal variable in the IBS class diagram.

4.5.2 B- UML diagrams that do no not support a size varia-
tion

Size variation on the main UML node and text, separation lines and borders

If the UML diagram has a relatively big visual density. Varying the area of the UML
nodes might lead to the impossibility of its visualization in one single view. UML nodes
are then assimilated to zones of the SoG. In that context, as stated by S1 - Size and
brightness, the size variation consists on changing the size of its constituents, points or
lines can vary in number or size.

ClassName

AttributeName

ClassName

AttributeName

Figure 4.45: varying the size of only the separation lines and borders.

84

4.5. SOG-UML: SIZE

For that, varying the size of the UML node’s constituents can be executed in four
different manners, as illustrated in the Figures 4.45, 4.46 and 4.47. The first way is
depicted in Figure 4.45. We vary the size of only the border without and with lines
of separation (i.e., without varying it area). But, such variation might hamper the
visualization of an UML node as one entity, because of the dissociative property of the
size variation (S3 - Size and dissociation).

ClassName

AttributeName

MethodName

Figure 4.46: Varying the only the size of the text of an UML class.

ClassName

MethodName

AttributeName

Figure 4.47: Varying the size of the border and the text.

Another possibility of implementation is depicted in Figure 4.46. Only the size of
the contained text of an UML node is increased (i.e., without changing the area). In
such case, the text might be very long, it will exceed the border and turning back to the
next line will need to increase the height of the UML node. The third way is illustrated
in Figure 4.47. The size of the border and the text are increased in a constant area.
This implementation might hinder the readability of the text when categories of big
sizes are used.

In that context, as explained by S4 - Size and combinations of forms, using dif-
ferent forms of spots (i.e., points, lines and zones) guarantees a high selectivity. It
is easy to use and very effective. In UML, in order to benefit from the selectivity of
different forms of spots, we propose to add a point in the right corner of the graphic
element. Hence, changing the size of the point may be sufficient to effectively perceive
and understand the size variation as illustrated in Figure 4.48.

ClassName

AttributeName
AttributeName
AttributeName

Method1Name

Method2Name
Method3Name

ClassName

AttributeName
AttributeName
AttributeName

Method1Name

Method2Name
Method3Name

ClassName

AttributeName
AttributeName
AttributeName

Method1Name

Method2Name
Method3Name

Figure 4.48: Effective implementation of the size retinal variable, in case the area of the
corresponding UML node cannot vary.

85

4.5. SOG-UML: SIZE

Figure 4.49 illustrate the effective implementation in the IBS class diagram.

Figure 4.49: Effective implementation of the size retinal variable on the IBS class diagram.

We prescribe then the following guideline:

| [SoG-UML #24] The size retinal variable should be applied
to an additional point in the right corner of the UML node.

4.5.3 Size variation and icons

Figure 4.50: Effective implementation of the size retinal variables on icons.

To avoid applying the size retinal variable to relatively empty UML nodes (S1 -
Size and brightness), we propose to increase also the size of the contained icons. Oth-

86

4.6. SOG-UML: GRAIN

erwise, they will induce to a dissociative perception of the corresponding UML node,
as pointed by S3 - Size and dissociation. For that, both the borders and the area of
icons should vary their size, as shown in Figure 4.50.

We conclude then the following guideline:

| [SoG-UML #25] To ensure a better selectivity, the icon’s
area should vary proportionally with the area of its related UML node.

4.5.4 Size variation on satellites/ports
Varying the area of a port is obvious when applying the size retinal variable to it. The
latter variation refers to the definition of the size retinal variable, as mentioned by B6
- Definition. We chose to vary their line thickness to reinforce their perception against
any possible background. For that, we define the following guideline:

| [SoG-UML #26] Varying the size of a port implies varying
its area and its border lines thickness.

4.6 SoG-UML: Grain
Table 4.4 explains the used rules to justify our guidelines about the effective use of the
grain retinal variable in UML.

Table 4.4: The used rules from the SoG to generate our guidelines about the grain in UML.

Rule
identifier Title Rule Explanation

B4 Definition

The grain corresponds to
the magnification factor
applied on a particular tex-
ture.

It mainly consists of a zoom on a particular
texture.
[SoG-79]: Succession of photo-graphical re-
ductions of a semis of spots. In a specific sur-
face and for a regular semis, these reductions
increase the number of spots, without vary-
ing the brightness. In a particular bright-
ness, the grain is the quantity of separable
spots contained in a unit surface.

B2

One-to-one
mapping of
information
properties

In a diagram, grain should
express one single informa-
tion property.

During the analysis process, each informa-
tion property should be mapped to one sin-
gle retinal variable 3 which has (at least) the
same organization level.
[SoG-10] It is important to transcribe each
information property by one visual variable
which has at least the corresponding organi-
zation level and the length.

G1 Grain and
size

The bigger the spot is, the
bigger the number of selec-
tive categories of grain is.

As for any retinal variable, the bigger its size
is, the better its visual variation is perceived.
[SoG-73]: In points, the grain needs big
spots and do provide only two or three se-
lective categories.

87

4.6. SOG-UML: GRAIN

Table 4.4 continued from previous page

G2 Null grain

The null grain might dis-
appear from any graphical
representation and the in-
formation it represents will
also disappear.

The null grain is composed of multiple small
spots which are invisible to the naked eye. It
is difficult to reproduce it after printing for
example.
[SoG-73]: The null grain cannot be reduced
and disappears from any microfilmed repro-
duction.

4.6.1 Grain variation on the Main UML node
Figure 4.51 illustrates the possible implementations of the grain retinal variable to an
UML node (for the texture composed of small chronometers).

Figure 4.51: Possible implementations of the grain visual variable to an UML class.

Based on B4 - Definition, the grain is assimilated to a zoom that we apply to a
particular texture. The grain variation depends on the area of the spot in question.
The bigger it is, the higher the number of selective categories of grain is (G1 - Grain
and size). In that context, the grain variation might be applied to the borders and
separation line of UML nodes, as depicted in Figure 4.52. However, they are relatively
thin which decreases the number of selective categories of grain. In addition, this vari-
ation is already locked by the UML primary notation, as illustrated in Figure 4.1.

ClassName

AttributeName

Figure 4.52: Applying the grain to the border lines of a UML class will alter the UML primary
notation.

Then, the only other possible implementation consists of varying the grain of the
UML node’s background, which represents the biggest area. Such implementation al-
lows to build the biggest number of selective categories of grain (G1 - Grain and size).
We generate the the following guideline:

| [SoG-UML #27] The grain retinal variable should be applied
to the background of an UML node.

In that context, many textures are available, for which we can apply a grain variation.
Three examples of textures are depicted in Figure 4.53 below.

88

4.6. SOG-UML: GRAIN

Figure 4.53: Three examples of possible textures.

4.6.2 Grain variation and text, separation lines and borders
The grain variation is problematic in UML because it might interfere with the read-
ability of the contained text. But also, the spots of the used texture should be easily
identifiable to the naked eye. They might be significant to the reader (e.g., a chronome-
ter to express time). A designer should then avoid using null grain.

Figure 4.54: Null grain and the readability of text.

Null grain denotes a category of a grain variation where a lot of very small spots,
invisible to the naked eye, are used as shown in Figure 4.54. Besides, this grain is not
recommended by the SoG because it is difficult to build and cannot be reproduced
after printing (G2 - Null grain). We generate then the following guideline:

| [SoG-UML #28] Null values of grain where a lot of small
spots are used should be avoided in UML.

Based on B4 - Definition, the grain variation is created on a particular level of
brightness. This parameter can then be controlled to better ensure the readability of
the text of UML nodes. In that context, high levels of brightness are the best levels
which guarantee the visibility of the the black text, because of the big contrast between
both of them (i.e., black and white.

Figure 4.55: Grain and brightness.

Figure 4.55 shows how the brightness of the used texture affects the readability of
the text in an UML class (i.e., the class in the left has a low level of brightness and
the class in the right has a high level of brightness). We describe then the following
guideline:

89

4.6. SOG-UML: GRAIN

| [SoG-UML #29] High levels of brightness should be applied
to the used textures when applying grain variation.

Figure 4.56 illustrates the effective implementation of the grain retinal variable on the
IBS class diagram. The grain is used to express the ordered information property
progress of the implementation. As shown in the associated keys, three categories of
grain are employed.

Figure 4.56: The effective implementation of the grain retinal variable on the IBS class
diagrams.

Figure 4.57 shows the chosen implementation of the grain retinal variable in different
UML nodes.

Figure 4.57: Effective implementations on other UML nodes.

4.6.3 Grain variation and icons
Based on G1 - Grain and size, the smaller the spot is, the less the number of selective
categories of grain is. In that context, the area of UML icons is relatively small to
effectively support a grain variation. A zoom on a particular texture on them will not
be accurately perceived. We conclude then the following guideline:

| [SoG-UML #30] The background of icons should not have a
grain variation.

Figure 4.58 illustrates the effective implementation of icons in the IBS component
diagram.

90

4.7. SOG-UML: ORIENTATION

Figure 4.58: The effective implementation of the grain (here different textures) retinal variable
and icons.

4.6.4 Grain variation on satellites/ports
As illustrated in figure 4.2, the grain variation of the satellites is locked by the UML
primary notation (i.e., ports having a cross or not). Therefore, satellites have not to
vary their grain, as stated by our next guideline:

| [SoG-UML #31] Satellites have not to change their grain.
This variation is locked by the UML primary notation.

4.7 SoG-UML: Orientation
Table 4.5 includes all the rules of the OsG that we have used to find the guidelines of
effectiveness regarding the orientation retinal variable in UML.

Table 4.5: The used rules from the SoG to generate our guidelines about the orientation
variation in UML.

Rule
identifier Title Rule Explanation

B5 Definition

The difference of angles
between multiple parallel
spots constitutes the stim-
uli of the orientation vari-
ation.

An example of a variation of orientation is
the transition between a line and its perpen-
dicular. There is a variation of orientation of
90 degrees between both of them.[SoG-93]:
A spot (i.e., a point, line or zone) can take
an infinity of different orientations without
changing its center.

91

4.7. SOG-UML: ORIENTATION

Table 4.5 continued from previous page

O1
Orientation
and forms
of the spot

The human eye can feel the
differences of orientations
as far as the point repre-
sents a linear aspect.

Non linear spots would not stimulate the
reader to an orientation variation. [SoG-
93] We can feel the differences of orienta-
tions as far as the point represents a linear
aspect (The ratio Height/basis has to be at
least 4/1)

O2 Orientation
and zones

Varying the orientation in
big areas (zones) is the less
selective variation.

In zones, the variation of orientation consists
at building many parallel spots (e.g., lines)
in the whole area of a zone.
[SoG-93] In zones, the orientation varia-
tion is the easiest variation to construct, but
at the same time, it is the less selective vari-
ation. It has to be combined with another
selective variable to ensure the rapid percep-
tion of its variation

4.7.1 Orientation variation on the main UML node
Based on B5 - Definition, it is the difference of angles between multiple parallel spots
which constitutes the stimuli of the orientation variation. In that context, as stated
by 01 - Orientation and forms of the spot, the human eye can feel the differences of
orientations as far as the point represents a linear aspect. To find the effective im-
plementations regarding these rules, we begin by varying the orientation of the text
contained in UML nodes as illustrated in Figure 4.59.

Cl
as
sN
am
e

AttributeName

ClassName

At
tri
bu
te
Na
m
e Cl

as
sN
am
e

At
tri
bu
te
Na
m
e

Figure 4.59: Varying the orientation of the contained text of an UML node.

Cl
as
sN
am
e

AttributeName

ClassName

AttributeName

Cl
as
sN
am
e

AttributeName

C
lassN

am
e

AttributeName

Cl
as
sN
am
e

AttributeName

C
la
ss
N
am
e

AttributeName

C
la
ss
N
am
e

AttributeName

ClassName

AttributeName

Figure 4.60: No phenomena of multiple parallel spots.

However, such implementation would not create the phenomena of multiple parallel
spots B5 - Definition. In fact, in the same UML node, we will find two angles of
orientations: the significant variation of orientation (of the name or the rest of the text)
and the horizontal (default) angle. This fact might disturb the selective perception, as
shown in Figure 4.60. In this case (Figure 4.60), all the attributes compartment have

92

4.7. SOG-UML: ORIENTATION

a linear aspect (rectangle). However, in practice, they might have different shapes
(rectangles or squares) depending on the contained text of each compartment. The
same observation is generated by varying the orientation of the whole contained text
of an UML node and the separation lines, as illustrated in Figures 4.61 and 4.62.

Cla
ssN
am
e

Att
ribu
teN
am
e

Figure 4.61: Varying the orientation of the text and the lines of separation.

Cla
ssN
am
e

Att
ribu
teN
am
e

ClassName

AttributeName

Cla
ssN
am
e

Att
ribu
teN
am
e

ClassNameAttributeName

ClassNameAttributeName

Cla
ssN
am
e

Att
ribu
teN
am
e

ClassName

AttributeName

Cl
as
sN
am
e

At
tr
ib
ut
eN
am
e

Figure 4.62: No phenomena of multiple linear spots.

In Figure 4.63 below, the orientation of the whole UML node is varied. In this case,
the UML node does not have a linear aspect (i.e., the ratio Height/basis is less than
4/1) (01 - Orientation and forms of the spot). Then, the orientation variation will not
be rapidly perceived.

Cla
ssN
am
e

Att
rib
ute
Na
me

Figure 4.63: Changing the orientation of the whole UML node is problematic for UML nodes
having non-linear aspect.

In this case, we propose the following guideline:

| [SoG-UML #32] If the UML node has a linear aspect, the
orientation of the whole UML node can be changed.

Figure 4.64 illustrates the effective implementation of UML nodes having a linear as-
pect.

93

4.7. SOG-UML: ORIENTATION

Us
eC
as
e

Ac
tiv
ity

Figure 4.64: Varying the orientation of UML nodes having a linear aspect.

Now, if the UML node does not have a linear aspect, the orientation might be
applied to the background of UML nodes, as depicted in Figure 4.65.

Figure 4.65: Varying the orientation of a constant texture.

In such case, as stated by O2 - Orientation and zones, the orientation variation
the variation which is the less selective among the other retinal variables. In addition,
such variation will significantly impact the readability of the text (Figure 4.65). We
conclude then the following guideline:

| [SoG-UML #33] The orientation retinal variable should not
be applied to the background of UML nodes.

4.7.2 Orientation variation and text, separation lines and bor-
ders

As illustrated earlier, the text labels, separation lines and borders vary their orientation
in UML nodes having a linear aspects. The following guideline is then precised:

| [SoG-UML #34] Text, separation lines and borders should
all vary their orientation for UML nodes having linear aspects.

4.7.3 Orientation variation and icons
The orientation of icons is locked by the UML primary notation. If the main UML
node changes its orientation, the icon should take the same angle of variation, as stated
by the following guideline:

| [SoG-UML #35] The orientation of icons should always have
the same orientation of the main UML node.

4.7.4 Orientation variation and satellites
The orientation of the satellites should be the same as the UML node in which it is
attached. In fact, their orientation might change their shape. For example, a square
might be accidentally transformed to a diamond by a 90 degrees orientation.

94

4.8. SUPERPOSITION OF UML NODES

| [SoG-UML #36] The orientation of the satellites should be
the same as the UML node in which it is attached.

4.8 Superposition of UML nodes
We have studied the use of the retinal variables on UML nodes which are contained in a
white background. The present section treats the containment of UML nodes in other
ones (e.g., a class in a package). There exist 25 possibilities of containment between
UML nodes having a retinal variable variation. In fact, we have five retinal variables
and for each one, we study its variation on all the possible variations of the background.
Therefore, for each retinal variable, five possibilities of containment have to be carefully
discussed. The first column of each table is in the form of Content/Container. Content
refers to the UML nodes which are contained in a container. Container represents
any UML node which might contain other ones (e.g., package, fragment). We chose to
illustrate these variations via tables to see how we treat both of the container and the
content for each possibility of superposition. They are put in parallel column in each
Table. This presentation allows also to easily navigate between the different tables.

Figure 4.66: Example of a UML classes with a brightness variation and contained in grained
package.

Figure 4.66 shows an example of brightness variation of the classes (i.e., contents)
on a grained background (i.e., container). The latter variation is denoted Bright-
ness/Grain. Table 4.6 below details the rules of the SoG that we used to generate our
guidelines.

Table 4.6: The used rules from the SoG to generate our guidelines about the superposition
of the retinal variables in UML.

Rule
identifier Title Rule Explanation

Super-
1

Relationship
between the
background
and the main
information

The background of a
representation should be
brighter than the spots
that represent a particular
information.

UML diagrams are assimilated to maps of the
SoG: The container in the background and
the contained UML nodes are superimposed
to it.
[SoG-327]: A Linear selective problem in
maps leads then, from the beginning to two
categories of visibility, the one, the brightest
possible is dedicated to the background, the
other one, the stronger, is dedicated to the
original information.

95

4.8. SUPERPOSITION OF UML NODES

Table 4.6 continued from previous page

Super-
2

Superposition
of colors

Two superimposed spots
should have different col-
ors from each other.

Colors are perceived thanks to the difference
between two areas having different colors.
[SoG-89]: To get a color sensation, which
means a significant color difference, we must
have a covered surface with a uniform color
(the same in the whole surface) and which
has the opposite color (in the spectrum) to
another surface, with another uniform color.

Super-
3

Superposition
and bright-
ness

The background which
contains a brightness
variation should be white.

The length of the brightness depends on
the available distance between the black and
white. [SoG-73]: This latter will be de-
creased if the white is not white. It is there-
fore a major mistake to color in gray, blue,
green, red, etc., the paper of a graph or a
map in which the brightness variation is sig-
nificant

4.8.1 Color: containment of UML nodes having a color vari-
ation on all the possible containers

Table 4.7 discusses the containment of colored UML nodes in all possible backgrounds.

Table 4.7: Containment relationship between UML nodes and colors.

Content/container Content Container
Color/Color [SoG-UML #37] To get the

color sensation, choose col-
ors that are different from
the container’s color.
As for the container, UML nodes
should not have the same color as
their container (Super-2 - Su-
perposition of colors).

[SoG-UML #38] To ensure a
better visual selectivity, the
container should have a dif-
ferent color from the colors
of its contained elements.
Based on Super-2 - Superpo-
sition of colors, colors are per-
ceived thanks to the difference
between two areas having differ-
ent colors. The container should
then have a different color from
its contained UML nodes. Such
variation induces to a color sen-
sation to the reader.
That allows us to state that the
container and its contained UML
nodes should have different col-
ors from each other. Levels of
brightness of each one are dis-
cussed in Table 4.9.

96

4.8. SUPERPOSITION OF UML NODES

Content/container Content Container
Color/Brightness [SoG-UML #39] Choose col-

ors having all the same
brightness which is oppos-
able to the brightness of the
background.
If the container has a big value
of brightness, the contained el-
ements should have colors hav-
ing small value of brightness and
vice versa (Super-1 - Relation-
ship between the background and
the main information).

[SoG-UML #40] The con-
tainer should be as brighter
as its contained elements are
dark and vice versa.
The brightness variation might
correspond to a series of grays
(i.e., from white to black) or to
a particular hue (i.e., from light
to dark), as explained by B3 -
Definition.
What matters is that the con-
tained elements might be rapidly
visually selected. For that, the
container should be as brighter
as their contained elements are
dark and vice versa (Super-1
- Relationship between the back-
ground and the main informa-
tion).

Color/Grain [SoG-UML #41] Increase
the thickness of the borders
and the lines of separation to
better select the contained
UML nodes in a possible
very low value of grain.
When the background of the con-
tainer has a null grain (G2 -
Null grain), the borders of the
contained UML nodes will be no
more easily and rapidly selected.
That might alter the primary no-
tation: Viewers will not be able
to relatively rapidly select the ex-
act shape of the concerned con-
tained node.
Consequently, we propose to rel-
atively increase the thickness of
the border lines, separation lines
text of the contained UML nodes
to better select them from the
background (Super-1 - Rela-
tionship between the background
and the main information). The
line thickness of all the contained
elements should be the same (no
size variation).

[SoG-UML #42] Choose big
values of grain for containers
having more contained ele-
ments.
In fact, the container is assim-
ilated to the background of a
map. It has to ensure the selec-
tivity of its contained elements
(Super-1 - Relationship between
the background and the main in-
formation).

Color/Size No particular rules.
The fill of the background does
not change.

No particular rules.
The size variation of the con-
tainer does not harm the selec-
tivity (visibility) of the colored
contained elements as long as the
variation does not affect their
size (See Table 4.8 size/size: the
more the spot is small, the less
the colors are visually separable).

Color/Orientation No particular rules.
The fill of the background does
not change.

No particular rules.
The fill of the background does
not change.

97

4.8. SUPERPOSITION OF UML NODES

4.8.2 Size: containment of UML nodes having a size variation
on all the possible containers

Table 4.8 discusses the containment of UML nodes presenting a size variation in all
possible backgrounds.

Table 4.8: Containment relationship between UML nodes and sizes.

Content/container Content Container
Size/Size [SoG-UML #43] The size of

the contained elements must
be proportional to the size of
their container.
As explained by S1 - Size and
brightness, the size variation
loses all its perceptive properties
with empty spots.
Very small sizes of the con-
tained elements (compared to
their "very big" container) make
the container relatively empty.
[SoG-UML #44] The biggest
area of the contained ele-
ments is controlled by the
size of its container. These
latter must not exceed the bor-
ders of the corresponding con-
tainer.
[SoG-UML #45] There is a
limit under which the UML
nodes are no more visible.
When the size of the container
decreases, the sizes of the con-
tained elements might decease.
But, there is a limit under which
the contained UML nodes are
no more visible. Their con-
tained text have to be always
easily readable. In addition,
the layout of the contained el-
ements and their related edges
have to still be bright and read-
able (no intersections, texts re-
lated to the edges are readable,
text inside the contained UML
nodes is readable).

[SoG-UML #46] The small-
est size of the container is
controlled by its contained
UML nodes.
In fact, there is always a limit un-
der which the contained elements
might not be sufficiently bright
and the layout might be altered.

Size/Color No particular rules. No particular rules.
The color variation of the con-
tainer does not impact the size
variation of its contained ele-
ments.

Size/Brightness No particular rules. No particular rules. The
brightness variation of the con-
tainer does not impact the size
variation of its contained ele-
ments.

98

4.8. SUPERPOSITION OF UML NODES

Content/container Content Container
Size/Grain No particular rules. No particular rules.

The grain variation of the con-
tainer does not impact the size
variation of its contained ele-
ments.

Size/Orientation No particular rules. No particular rules.

4.8.3 Brightness: containment of UML nodes having a bright-
ness variation on all the possible containers

Table 4.9 presents the possibilities of containment between UML nodes presenting a
brightness variation in a all possible containers variations.

Table 4.9: Containment relationship between UML nodes and brightness.

Content/container Content Container
Brightness/Color [SoG-UML #47] Colors of

the contained UML nodes
should have a smaller level of
brightness compared to their
container.
The contained elements have all
the same value of brightness.
The latter value of brightness
should be smaller than the one
used for their container. This is
to ensure better selectivity.

[SoG-UML #48] The con-
tainer of UML nodes which
have a significant brightness
variation should be white.
On one hand, as defined in B3
- Definition, the brightness vari-
ation might range from black to
white via colors. On the other
hand, selective colors should
have the same value of bright-
ness (C1 - Effective categories
of colors). In that context, the
SoG proves that the length of the
brightness depends on the avail-
able distance between the black
and white. Based on Super-3 -
Superposition and brightness, it
is a major mistake if graphic au-
thors color in gray, blue, green,
red, etc., the paper of a graph
or a map in which the brightness
variation is significant. The SoG
says that it is better to apply
the brightness in a white back-
ground.

Brightness/
Brightness

[SoG-UML #49] The con-
tained UML nodes should
have a smaller value of
brightness than their con-
tainer.

[SoG-UML #50] The con-
tainer should be brighter
than its contained UML
nodes.
From the SoG point of view,
the container should be white
Super-3 - Superposition and
brightness. We propose that the
container have to be brighter
than its contained elements.

99

4.8. SUPERPOSITION OF UML NODES

Content/container Content Container
Brightness/Grain No particular rules. [SoG-UML #51] The con-

tainer should not have a
grain variation or a very big
value of grain where a big
zoom is applied to the spots
of the used texture. The grain
variation of the container might
be hidden by its contained ele-
ments. In addition, as recom-
mended by Super-3 - Superpo-
sition and brightness, the back-
ground of a brightness variation
should be white.

Brightness/size No particular rules.
The size variation of the con-
tainer does not affect the bright-
ness of its contained UML nodes.

No particular rules.

Brightness/ orien-
tation

No particular rules. No particular rules.

4.8.4 Grain: containment of UML nodes having a brightness
variation in all the possible containers

Table 4.10 discusses all the possibilities of containment between UML nodes presenting
a grain variation and all possibilities of containers variations.

Table 4.10: Containment relationship between UML nodes and grain.

Content/container Content Container
Grain/Grain No particular rules. [SoG-UML #52] The con-

tainer should have a maxi-
mum value of grain.
Big values of grain means that
many big spots are scattered in
the background of the container
(G2 - Null grain). It guarantees
many white spaces. Such vari-
ation ensures better readability
and selectivity of the contained
UML nodes.

Grain / Bright-
ness

[SoG-UML #53] If the con-
tainer is dark, then the
grain variation has to be as
brighter as possible.
Such perception could be
achieved by a redundant com-
bination Combi-1 - Redundant
combination with the brightness
- if possible - or with color.

[SoG-UML #54] The con-
tainer should have a bright-
ness as brighter as possible.
The container have to be as
brighter as possible to allow the
reader’s eye to select the con-
tained UML nodes (Super-3 -
Superposition and brightness).

100

4.9. COMBINATIONS OF THE RETINAL VARIABLES

Content/container Content Container
Grain/Size No particular rules.

The size variation does not affect
the background of the container,
so the effective implementation
of the grain in white background
is applied.

[SoG-UML #55] The size
variation should not affect
the grain variation of the
contained nodes.
As defined, the grain is succes-
sion of photo-graphical reduc-
tions of a semis of spots. It might
be assimilated to the zoom varia-
tion (B4 - Definition). If the size
variation of the container affects
the size of its contained elements,
the latter variation should not al-
ter the grain variation. This is by
adding the same degree of zoom
or de-zoom to all the contained
elements to ensure the same dis-
tance between the categories of
grain.

Grain/Color No particular rules. No particular rules.
Grain/Orientation No particular rules. No particular rules.

4.8.5 Orientation: containment of UML nodes having an ori-
entation variation on all the possible containers

We observe that no particular rules for the orientation variation in the different possible
backgrounds. The effective implementations for a white background are applicable in
all cases.

4.9 Combinations of the retinal variables
Table 4.11 includes the rules of the SoG that we have used to discuss the effective use
of the combinations of the retinal variables in UML.

Table 4.11: The used rules from the SoG to generate our guidelines about the combinations
of the retinal variables in UML.

Rule
identifier Title Rule Explanation

Combi-
1

Redundant
combination

Redundant combinations
are used to express one sin-
gle information property.

All the retinal variables of a combination ex-
press one single information property.
[SoG-187]: A combination of multiple vari-
ables, used to transcribe only one informa-
tion property, is a redundant combination.

Combi-
2

Significant
combination

Significant combinations
are used to express differ-
ent information proper-
ties.

Each retinal variable expresses one single in-
formation property.
[SoG-189]: When in the same spot, two
variables are used and each one is assigned
to express a different information property,
the combination is called "significant".

101

4.9. COMBINATIONS OF THE RETINAL VARIABLES

Table 4.11 continued from previous page

Combi-
3

Perceptive
properties of
a combina-
tion

A combination of retinal
variables holds the percep-
tive properties of the high-
est one in the Table 3.5

The retinal variables are ordered as follows:
Size and brightness have the highest level
but they are both dissociative. Then we find
the grain, colors, orientation and finally the
shape.
[SoG-186]: A combination of variables has
the properties of the highest organization
level, defined by the Table 3.5. Except the
combinations of brightness and size, both of
them are dissociative.

Combi-
4

Combination
of size and
brightness

A combination of the size
and the brightness reti-
nal variables reinforces the
readability of quantitative
information.

This combination can be used as long as the
information supports a dissociative percep-
tion.
[SoG-71]: A combination of the size and the
brightness retinal variables can be used to re-
inforce the readability of quantitative infor-
mation.

We treated the effective use of the retinal variable in a white background and all
the possibilities of superposition between each other. In this Section, we study the ef-
fective combinations of the retinal variables in UML nodes. In fact, the SoG identifies
63 possible combinations between these latter. An example of combination between
the shape (i.e., a square), the color (i.e., Cyan) and the size retinal variables is shown
in Figure 4.67.

Figure 4.67: An example of a combination between the size and the color retinal variables.

Combinations of the retinal variables might serve to describe one single informa-
tion property. Such combination is called redundant combination (Combi-1 - Redun-
dant combination). Combinations might also be used to describe different information
properties where each retinal variable concerns one single information. It is called a
significant combination (Combi-2 - Significant combination). At this level, one ques-
tion arises: what are the perceptive properties of the combination of different retinal
variables ?

A redundant combination holds the organization level and the length of the retinal
variable which has the highest organization level, as depicted in table 3.5. For example,
a combination of shape and color holds all the perceptive properties of color. In fact,
the color is higher than the shape in Table 3.5 (Combi-3 - Perceptive properties of a
combination).

4.9.1 Combinations of the retinal variables in UML
Effective implementation of a combination of retinal variables in UML

Figure 4.68 illustrates an example of a redundant combination of the color and the
grain retinal variables. It represents the union of the effective implementation of both

102

4.9. COMBINATIONS OF THE RETINAL VARIABLES

Figure 4.68: Redundant combination of colors and grain in the IBS class diagram.

retinal variables. In one hand, the effective implementation of colors is its application
to the background of an UML node. In the other hand, the effective implementation
of the grain retinal variable is to apply it to the background of an UML node also. As
a result, the effective implementation is to to apply the color to the background grain.
the following guideline stems then:

| [SoG-UML #56] The effective implementation of a combina-
tion between the retinal variables should be the union of the effective
implementation of each one.

Combinations of size and brightness

The brightness is ordered, but it is also dissociative. It can be combined with the
size to reinforce the perception of quantitative information, as stated by Combi-4 -
Combination of size and brightness. The following guidelines are then generated:

| [SoG-UML #57] The size is the only quantitative retinal vari-
able. It should be used to express quantitative information.

| [SoG-UML #58] Combination of size and brightness should
be used to reinforce the readability of quantitative variations.

Figure 4.69 illustrates such combination on the IBS class diagram. A redundant com-
bination between the size and the brightness retinal variables. It serves to express the
quantitative information property progress of the development. In that context, the
size is the most selective retinal variable. It might be combined with color, bright-
ness, grain, orientation or shape to reinforce visual the selection. However, authors of

103

4.10. SUMMARY

Figure 4.69: Size and brightness to reinforce the quantitative perception in the IBS class
diagram.

graphical representations have to be careful to the dissociative perception that it might
cause. In fact, because they are dissociative, the size and the brightness can exclude
the associative perception. They will dominate all the combinations done with them.
We generate then the following guidelines:

| [SoG-UML #59] Size should not be used when an associative
perception is required

| [SoG-UML #60] Brightness should not be used when an as-
sociative perception is required

In that context, the grain variation is the only retinal variable which can be used to
express visual ordering without changing the visibility of spots (i.e., without visual
dissociation), as describes the following guideline:

| [SoG-UML #61] The grain should be used to show visual
ordering if the information doesn’t support a dissociative perception.

4.10 Summary
In this chapter, we defined SoG-UML which is a SoG based framework to visually en-
rich UML diagrams. It relies on the design and action theory [26] to define 61 explicit
guidelines about the effective use of the retinal variables in UML. It meets the need of
effectiveness in using these variables, which has been stated by the UML practition-
ers of our previous empirical study (See Chapter 2). It deals with their non-effective
usages that we observed in >3500 UML diagrams (different implementations, no keys,
non-effective mapping of information properties). The main objective of SoG-UML is
to enhance the cognitive effectiveness 4 of UML diagrams by exploiting the benefits of

4The cognitive effectiveness denotes the speed, ease, and accuracy with which a representation can
be processed by the human mind.

104

4.11. DISCUSSION

the retinal variables. It complements the incompleteness that we revealed in the CDs
and the PoNs frameworks (see Chapter 3). It answers to our research questions: RQ-1,
RQ-2 and RQ-3.

For that, we explore the effective implementations of the retinal variables in the
UML graphic nodes. This is achieved by managing their graphic particularities which
have been identified via our empirical classification of the UML concrete syntax. An
implementation of a retinal variable denotes the manner in which it will be applied to
a particular UML node (e.g., to its border, background, both). In SoG-UML, we treat
not only UML nodes in a white background but also the combinations of the retinal
variables on them and their possible containment relationships. The 61 guidelines are
complementary to those explained in the first refinement layer of the SoG to UML: the
perceptive properties of the retinal variables (i.e., their organization level and length),
the analysis, the mapping of the retinal variable to the information properties and the
reading process.

The retinal variables might be used by UML practitioners to express information
properties in their diagrams in many situations and mainly for communication pur-
poses within the technical team or with their clients. They might use them for their
own understanding, to save information about their maintenance tasks or to generate
their documentation. Examples of information properties have been mentioned by our
practitioners: ownership of classes, project progression, concerns of the system.

4.11 Discussion
On one hand, most of the choices of effective implementations seem to be logic and
already known. For example, the application of colors to the background of an UML
node is very common and represents the existing default configuration in modeling
tools. However, our study of >3500 UML diagrams showed that there exist different
implementations which are used in practice (e.g., on borders, text name compartment).
In addition, there is no scientific framework which formalizes explicit guidelines about
such usages. On the other hand, some discussed implementations are not available in
the existing modeling tools. For example, changing the orientation of an UML node or
applying a grain variation. In our research, to find the most effective implementation of
a retinal variable, we chose to be pragmatic. We expose the possible implementations
and we justify the most effective ones based on the SoG. In addition, the 61 guidelines
should be automated and integrated in the modeling tools. In that way, UML modelers
can rapidly and effectively use the retinal variables in their practice. Moreover, even
though SoG-UML defines the effective implementations for redundant combinations
and superposition of the retinal variables, it is mandatory to precise that such types of
utilization are double edged. Their use should not overload the human mind. In that
context, an UML diagram has not to present more than two information properties5.
Finally, as mentioned earlier, SoG-UML relies on the design and action theory6. This
type of theory requires the definition of methods to validate the guidelines of the
proposed theory [26]. For that, we provide SoG-UML as a testable theory and we
define then, in the next chapter, a validated design methodology of an experiment to

5Layering can be used to display such number of visual variation as Chapter 6 explains later.
6A design and action theory is meant to give explicit prescriptions for constructing an artifact (e.g.,

methods, techniques, principles).

105

4.11. DISCUSSION

validate the SoG-UML guidelines. We also present prototypes of tools which realize
some of the SoG-UML guidelines in the Papyrus environment [24], as a proof of concept
ones. They are described in Chapter 6.

106

Chapter 5

Evaluation

Contents
5.1 Lessons learned from a conducted experiment 110

5.1.1 Variables of the study . 110
5.1.2 Hypothesis of the study . 111
5.1.3 Lessons learned . 111

5.2 Experiment definition . 113
5.2.1 Research questions . 113
5.2.2 Hypothesis formulation . 113

5.3 Experiment design . 114
5.3.1 Population, sample and participants 114
5.3.2 Data collection and materials 114
5.3.3 Method . 115
5.3.4 Data analysis procedures . 115
5.3.5 Threats to validity . 115

5.4 Color and UML: A quantitative experiment 116
5.4.1 Methodology of the experiment 116
5.4.2 Analysis . 119

5.5 Summary . 122

107

The validation of SoG-UML principles requires a lot of empirical studies. Figure
5.1 shows the elements that should be taken into account in each validation process.
It is displayed in the next page for space contraints.

First, we have five retinal variables with their corresponding perceptive proper-
ties. For each retinal variable, the effective implementation on each graphic element,
including the main UML node, icons, ports, text, borders and separation lines, the
containment relationships and the combinations of the retinal variables should be as-
sessed. In addition, all the UML diagrams should be taken into account. For each type
of UML diagram, the visual density variation should be assessed (i.e., small, medium
and large). In that context, to succeed the experiment, the scope should be delimited
to a few independent variables. For instance, one single retinal variable, one single
type of UML diagram, one single graphic element, two implementations on this latter,
one single perceptive property and the three possibilities of visual densities might be
assessed in one experiment. In such conditions, if we consider the five retinal variables
and only the four most used UML diagrams in practice, at least 20 experiments should
be conducted.

We define in this chapter a validated design methodology of an empirical study to
validate the SoG-UML guidelines. But first, we focus on the lessons learned from an
experiment which failed to give statistically significant results. Our validated study
consists of a quantitative methodology using an experiment as strategy of inquiry. We
also describe the results of the experiment which succeeded to give statistically sig-
nificant results. It aims at finding the effective implementation of the color retinal
variable on UML classes. It compares, on one hand, the implementation of the color
retinal variable on the border and, in the other hand, the background of UML classes
and the use of text via stereotypes. It empirically validates the effective implementa-
tions chosen by SoG-UML, where the color should be applied to the background of an
UML node or to a relatively thick border. It also shows that the use of colors helps
finding the correct answers in a relatively short time compared to the use of text via
stereotypes.

108

Fi
gu

re
5.
1:

Sc
op

e
of

th
e
em

pi
ric

al
st
ud

y.

109

5.1. LESSONS LEARNED FROM A CONDUCTED EXPERIMENT

5.1 Lessons learned from a conducted experiment
This section reports on an experiment which has been conducted with seventeen at-
tendees of the HuFaMo’16 workshop [2]. The experiment aimed at finding the most
effective implementation of the size retinal variable in UML sequence diagrams.
Fourteen questions have been asked about fourteen different sequence diagrams. These
diagrams were extracted from the Lindholmen database of UML diagrams [3]. They
belong to sixteen different projects. For each diagram, four different implementations
were tested. The experiment lasted around thirty minutes and each participant had to
answer twenty questions. In the following two subsections we briefly describe the vari-
ables and the hypothesis of the study. An extended version of the design methodology
is described in [19]. Then, we present the lessons learned from this experiment.

5.1.1 Variables of the study
The experiment had four independent variables. In fact, we tried to assess four different
implementations (Im) of the size retinal variable to three different graphic components
of the UML sequence diagram (i.e., message, lifeline and fragment). For each graphic
component, we had one implementation, called I, that we deemed effective based on
the SoG and three others that we judged less effective, called I’. We also varied the
size (S) of the used sequence diagrams based on the number of components contained
in them. They range from the small (S) ones by medium (M) to large diagrams (L).
In this experiment, we also considered the distance between the linked elements to
which we applied a size variation (L). For that, we considered the horizontal distance
(HD) which concerns, for example, the distance between the source and destination
lifelines of a message. We also considered the vertical distance (VD) which refers to the
distance between the message and the name of the concerned lifelines, for instance. Fi-
nally, we asked two types of questions (TI): questions which concern one single graphic
component (TI1) and those which concern more than one graphic component (TI2).
The experiment had two dependent variables. The first one is the response correctness
called (R) which might be false, true, complete or incomplete. Completeness here de-
notes if the participant has given all the elements of the correct answer or not. The
second dependent variable is the response time called T. Below, the variables of the
study are summarized:
Independent variables
Implementation Im (alternatives: Effective Implementation I, Other Implementa-
tions I’).
Size of the sequence diagram S (alternatives: small, medium, large).
Its layout (i.e., the distance between related graphic components) L (alternatives:
Horizontal distance HD, Vertical distance VD).
Type of information to highlight TI (alternatives: concerns only one graphic compo-
nent TI1, more than one graphic component TIn).
Dependent variables
Response correctness of the participants R (alternatives: true, false, complete, in-
complete).
Response time of participants T.

110

5.1. LESSONS LEARNED FROM A CONDUCTED EXPERIMENT

5.1.2 Hypothesis of the study
The hypothesis for assessing the effectiveness of the I size variations with the inde-
pendent variables are given in table 5.2. The alternative hypothesis H states that the
proposed effective implementations take less time to let participants give the right and
complete answer to a given question. The experimented effective implementation I is
proposed for each possible combination of (S, TI, L).

Table 5.1: Hypothesis

Dependent vari-
ables

Null hypothesis Alternative hypothesis

Response time T ∀ (S, TI, L); H0: T(I) >=
T(I’)

∀(S, TI, L) H1: T(I) < T(I’)

Response cor-
rectness R

∀ (S, TI, L); H0: R(I)=false
and incomplete; R(I’)=true
and complete

∀ (S, TI, L) H1: R(I)=true
and complete; R(I’)=false
and incomplete

5.1.3 Lessons learned

Figure 5.2: Experiment about the size variation on UML sequence diagrams: An example of
a question.

111

5.1. LESSONS LEARNED FROM A CONDUCTED EXPERIMENT

We have seen the variables and the hypothesis of the experiment. In this section, we
present the lessons learned after its execution and analysis steps. To better understand
these lessons, Figure 5.2 above shows an example of a question, its related sequence
diagram and the answer’s options from the web application which has been used for
the experiment.

Below, we explain the four lessons that we have taken from this study:
Ensure a good choice of the diagrams of the study
In the experiment, most of the sequence diagrams were related to the design of a
modeling tool project. They were a big source of confusion to the participants. The
sequence diagrams describe how to create UML diagrams using the modeling tool in
question. To eliminate such confusion, the diagrams should be well chosen. They have
to be simple and comprehensible. In addition, each participant worked on diagrams
which belong to different projects. Switching from a project to another was difficult
because the participants had to understand the context of each project. For that rea-
son, questions should also belong to the same project.
Ensure that the questions are sufficiently comprehensible
The questions were difficult to understand. There was an option which allows the
participant to indicate that she/he does not understand the question. Such option
was checked many times in the experiment. An example of an asked question was:
"What are the two main behaviors of the system when users want to execute an update
names?". It requires from the participant to remember three parameters: the number
of behaviours (two), the object which triggers the event (the user) and the name of the
event (update name). This type of questions was frequently asked, especially when it
concerns more than one graphic component (TI=TIn). For that reason, the questions
should be simple and comprehensible and they should be reviewed and tested many
times before the experiment.
Ensure the accuracy of the collected response times
The web application displays the question in a textual form. The participants were
meant to ensure that they well understood the question before clicking the button to
display the sequence diagram, as illustrated in Figure 5.3 below.

Figure 5.3: Reading the question via the web application.

Figure 5.4: Response time collection.

They also were meant to display the answers options after finding the correct an-

112

5.2. EXPERIMENT DEFINITION

swer in the diagram, as illustrated 5.4. In that way, the web application can accurately
collect the response times (i.e., the difference between the second and the first clicks).
However, the participants displayed the diagram before even reading the question and
the answers options before finding the correct answer. The response times were then
biased by such actions. In addition, during the experiment, each participant used his
own machine. Big diagrams did not fit to all screens. The participants had then to
scroll down and/or right to search for the correct answer in the diagram. Such action
also biased the response times, an important dependent variable of the study. For that
reason, ensuring that big diagrams fit on all the participants screens helps accurately
collecting the response times.
Use a large sample of participants and minimize the number of independent
variables
It is clear that the number of participants was not representative of the target pop-
ulation. Such quantitative study requires around 100 participant to give statistically
significant results. Indeed, the collected data from this experiment did not allow to
give statistically significant results. Especially that most of the answers were "I don’t
understand the question". In that context, four independent variables were used in
the experiment. With the small number of participants, each combination of these
latter had a small number of answers. That did not allow us to decide about the most
effective implementation of the size retinal variable for each combination.

5.2 Experiment definition
We took into account the previously identified lessons to define the following design
methodology of experiment. For that, we present the research questions, the variables
of the study and its hypothesis. Then, we provide the experiment design in terms of
population sample, data collection material, the method, the data analysis procedures
and the anticipated ethical issues.

5.2.1 Research questions
The effectiveness of an UML diagram is the key element that should be assessed in each
experiment. The effectiveness of a graphical representation is defined as its capacity
to allow the human reader to give the correct answer of a particular question. The
answer should be given in a relatively short time compared to another less effective
one [10]. In that context, the most effective implementations of a particular retinal
variable should guarantee the highest level of effectiveness. The conducted experiment
should then attempt to answer the following research questions:
RQ1: What is the most effective implementation of a retinal variable in a particular
type of UML diagram?
RQ2: How is the effectiveness of an UML diagram controlled by the implementation
of a particular retinal variable?

5.2.2 Hypothesis formulation
To answer the research questions, the experiment should have two independent vari-
ables and two dependent variables, as explained next.

113

5.3. EXPERIMENT DESIGN

Variables

Independent variables Implementation I (alternatives: Effective Implementation
I, Other Implementation I’, Text via stereotypes St).
Visual density of the diagram D (alternatives: Small S, Medium M, Big B).

Dependent variables Responses of participants R (alternatives: true, false).
Response time of participants T.

Hypothesis

The hypothesis for assessing the effectiveness of an implementation I of a particular
retinal variable with the independent variables are given in table 5.2. The alterna-
tive hypothesis H1 states that the effective implementation I takes less time to let
participants give the right answer to a given question.

Table 5.2: Hypothesis

Dependent vari-
ables

Null hypothesis Alternative hypothesis

Response Time
T

∀ (D); H0: T(I) >= T(I’)
and T(I) >= T(St) and
T(I’) >= T(St)

∀(D) H1: T(I) < T(I’) and
T(I) < T(St) and T(I’) <
T(St)

Response R ∀ (D); H0: R(I)= false,
R(I’)= false and R(St)=
false

∀ (D); H1: R(I)= true,
R(I’)= true and R(St)=
true

5.3 Experiment design

5.3.1 Population, sample and participants
The target population of the study is composed of the users of UML including: soft-
ware practitioners, researchers, students and modeling tools vendors. To find a rep-
resentative sample of it, the convenience sampling might be used [15]. For that, the
participants are not meant to be experts of UML. They should understand and know
the UML diagram of the study. In fact, we mainly try to assess human factors in mod-
eling and particularly vision (i.e., a factor that all the potential participants have). In
that context, as we use a quantitative methodology, the higher the number of partici-
pants is, the more statistically significant are the results. The number of participants
might be around one hundred participants (i.e., we tested the methodology with 95
participants and we had significant results, see Section 5.4).

5.3.2 Data collection and materials
To be aware of the complexity of modeling tools (i.e., the participants might not be fa-
miliar with the same modeling tool), a web application can be used in the experiments.
The web pages might be displayed on a tactile tablet, to help accurately collecting the
response times by eliminating the possible bias due to the non-familiarization with
the used computers (i.e., by using a mouse instead of simply touching a screen). The

114

5.3. EXPERIMENT DESIGN

web application should first display an explanation page which describes the answering
process. Then, it should ask the participants about their gender, level of experience in
UML, if they have visual deficiency(ies) and if they wear glasses. Then, the experiment
can start. The participant plays an audio question. She/he can listen to it many times
to ensure its comprehension. She/he becomes able to click a button to see the diagram.
An UML diagram which is visually annotated with an implementation of the retinal
variable will appear. In parallel, the application triggers a time counter. The partici-
pant can then touch the elements of the diagram which belong to the correct answer.
The application will save the position of each click. Therefore, in the analysis step,
the answers correctness can be assessed. Finally, the participant clicks on a button
to answer the next question. Thus, the application stops the chronometer and saves
the time spent to answer. This web application has been developed and used in the
context of this thesis (See Section 6.5).

5.3.3 Method
The experiment should be performed individually. The first step should consist of a
brief announcement of the goal of the experiment to the participant. Then, the respon-
sible of the experiment should explain the main treatment of the study which consists
of the reading and the visual extraction of information from a visually annotated UML
diagram. The mechanism of listening and answering the questions via the web applica-
tion should also be clearly explained. The participant can better understand the latter
mechanism by reading the explanation available in the first page of the web applica-
tion. Then she/he can fill the form with information about her/him (i.e., gender, visual
deficiencies, etc,.). After that, the participant should begin a training session on three
questions concerning three UML diagrams. The latter training aims at familiarizing
her/him with the web application. After that, the experiment can begin with fifteen
questions about fifteen UML diagrams. The estimated time for the whole experiment
is ten minutes. Finally, the participants answer a qualitative form at the end of the
experiment. They have to rank the studied implementations, give their opinion about
the use of the studied retinal variable in UML, if they already use it in practice or not
and if the use of this retinal variable helps finding rapidly the correct answer.

5.3.4 Data analysis procedures
The analysis process should start by reviewing the accuracy of the participants answers.
Then, only the correct answers should be taken into account in the analysis step. The
"false" and "no answers" should be eliminated. They will serve later to judge the effect
of each implementation on the the participants answers correctness. The ANOVA
statistical test might be used to analyze the data. It allows the analyst to decide if
she/he rejects or accepts the null hypothesis.

5.3.5 Threats to validity
This section reports on the internal and external threats to validity.

Internal validity

The first internal threat to validity is the possible gain of maturity by the participants
during the study. That may happen because each question should be asked three

115

5.4. COLOR AND UML: A QUANTITATIVE EXPERIMENT

times (i.e., for each implementation). Therefore, the web application should ensure
that diagrams will be randomly proposed, so that similar questions will not occur
successively. In addition, as mentioned before, participants might have some visual
deficiencies. This additional input will be mentioned before beginning the task and
its influence on the results should be taken into account. Differences of the luminosity
of different computers, the difference between the navigators, the screen sizes, etc.,
should be controlled in the experiment. For instance, the participants might use the
same tablet in the same conditions: lighting, setting and surrounding noise. Finally,
one of the outcomes of the study is the response time of participants. It is automatically
saved when the participant finds the response by clicking a button. Late clicking the
button will bias the results. The responsible of the experiment should stress on the
importance of this step in the introduction phase. Finally, the questions should be
simple and rapidly understood. For that, they must be reviewed and tested before the
experiment. They should be written in the language of the participants (e.g., French
for French participants).

External validity

The participants of the study will be around one hundred students, researchers and
UML users. They correspond to a representative sample of the target population of the
study. But, the participants are not in a natural setting, using their own modeling tool
and moving naturally to their UML diagrams. To minimize such difference of setting,
we propose that the questions should be inspired from the results of the previous
empirical study (Chapter 2). The information properties which are expressed by the
retinal variables can be the same as those mentioned by the practitioners. Such use
might help emulating the situations of the UML practice (i.e., the questions concern the
information properties that practitioners really needed to visualize in their practice).

5.4 Color and UML: A quantitative experiment

5.4.1 Methodology of the experiment
We have conducted an experiment which is based on the aforementioned methodology.
The main objective of the experiment is to identify the most effective implementation
of the color retinal variable on UML classes. In fact, the qualitative interviews with the
practitioners and the quantitative analysis of thee UML diagrams (Chapter 2) showed
that color is the most used retinal variable in practice. In addition, UML class diagram
belongs to the three most used UML diagrams in practice (Chapter 2).

The experiment involved ninety five participants. Eighty of them are student from
the University of Lille Sciences and Technology. The others are researchers on computer
science from the Research center in Computer Science, Signal and Automatic Control
of Lille (CRIStAL). They are decomposed as follows: seventy-four men and twenty-
one women. Concerning their level of experience in using UML, we find that fifty-two
participants have a medium level, thirty-eight are beginners and five participants are
experts. They executed the experiment one by one, on the same tablet and on the same
surrounding conditions. The variables, the hypothesis, the experiment definition and
the anticipated ethical issues of the study are the same as defined earlier in Section 6.3.

116

5.4. COLOR AND UML: A QUANTITATIVE EXPERIMENT

Two different implementations were assessed in this experiment. The first imple-
mentation consists of the application of the color to the background of an UML class.
Whereas, the the second implementation concerns the application of the color to a
relatively thick border. Eventually, both of the implementations are compared to the
the use of text via stereotypes. The experiment can be accessed via this link [36]. Fig-
ure 5.5 below shows the mechanism of answering the questions via the web application.

Identify the classes that
are developed by Philippe

and that begins by the
letter « C »

➂

➃

➄

Training

Training

Listen to the question

➀

Listen to the question

Show the diagram

➁

Distribution of tasks

Figure 5.5: Experiments: the web application

Each participant had to answer three questions in the training session. Then,
she/he had to answer fifteen questions about UML class diagrams describing a pizzeria
project. The questions are detailed in the Table 5.3 below. We distinguish two types
of questions. The first type of questions requires searching for a particular text in
the UML class (e.g., a particular attribute/method, a particular characteristic of the
UML class name). Such questions allow us to assess the influence of the coloration on
the readability of the text. The second type of questions requires identifying elements
which have the same color, there is no need to read text to find the correct answer.
The information properties that were expressed in the diagrams were based on those
pointed out by the practitioners in the previous empirical study (see Chapter 2). In
addition, the questions relate to diagrams having different visual densities. Small dia-
grams contain three UML classes. Diagrams having a relatively medium visual density
(i.e., compared to small ones) contain six or seven classes. Finally, diagrams having a
relatively big visual density contain eight or nine classes.

117

5.4. COLOR AND UML: A QUANTITATIVE EXPERIMENT

Table 5.3: Questions of the study and the size of the related diagrams.

Questions of the experiment Information
property

Type of the
question

Size of the dia-
gram

Identify the classes having a level of criticality
that equals 1 and that their name begins by
"C"

Criticality Text Big

Identify the classes that are responsible of the
access management and that their name be-
gins by "A"

System’s con-
cerns

Text Big

Identify the classes that are not members of
the inheritance relationship and that are not
enumerations

Inheritance rela-
tionship

Text Medium

Identify the classes that are developed by
Sébastien

Distribution of
tasks

Class Medium

Identify the classes that are non-members of
the inheritance relationship

Inheritance rela-
tionship

Class Medium

Identify the classes that are not members of
the inheritance relationship and that contain
the attribute named "Password"

Inheritance rela-
tionship

Text Small

Identify the classes that are not yet tested and
that contain the method named "Subscribe"

Testing progress Text Small

Identify the classes that are responsible of the
administrative management

System’s con-
cerns

Class Small

Identify the classes that are developed by "So-
phie" and that begin by "M"

Distribution of
tasks

Text Big

Identify the classes that are responsible of the
commands management

System’s con-
cerns

Class Big

Identify the classes having a level of security
that equals 3

Levels of secu-
rity

Class Big

Identify the classes that are developed by
Mathilde and that have at least one relation-
ship with the classes developed by "Quentin"

Distribution of
tasks

Class Big

Identify the classes that have a level of criti-
cality equals 3

Criticality levels Class Medium

Identify the classes that are developed by
Philippe and that contain the attribute named
"email"

Distribution of
tasks

Text Medium

Note that the same range of colors has been used for both implementations (i.e.,
background and border): a set of selective colors having the same level of brightness
(yellow, gray, blue and purple). The position of the keys did not change for all diagrams:
in the right upper corner. That aims at eliminating the possible influence on the
dependent variables of the study.

118

5.4. COLOR AND UML: A QUANTITATIVE EXPERIMENT

5.4.2 Analysis
We have seen the design of the study. In this section, we present the obtained results
about each dependent variable (i.e., answer correctness R and response times T). Then,
we illustrate the results of the post-experiment questionnaire.

Analysis of the answers correctness

Figure 5.6 below illustrates the answers of the participants per implementation (i.e.,
colors on the background, on the border or the use of text via stereotypes). The
implementation of colors on the background of UML classes helped the participants
to find the biggest number of correct answers (i.e., 431 correct ones) and, in parallel,
the lowest number of false answers (i.e., 37 false ones). Whereas, the implementation
of colors on the border of UML classes (416 correct answers against 47 false ones) is
ranked second and the use of stereotypes is the last one (411 correct answers against
47 false ones).

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460

Background Border Text

Answer correctness per implementation

True False No answer

Figure 5.6: Answer correctness per implementation.

Analysis of the response times R

At this step, we eliminated the false and no answers from the data. Then, we ex-
ecuted the ANOVA statistical test on the reminder of the data using R. Repeated-
measures ANOVA revealed a significant effect of Implementation on the Response time
(F(2,188)=12,21, p<0.05, η2=0.04). Pairwise comparisons showed a significant p-value
(p< 0.05) between the implementation which consists of using text via stereotypes and
both other implementations (i.e., border and background). There is a non significant
difference between the implementation of colors on the background and on the border.
The mean response times of respectively the background implementation, the border
implementation and stereotypes are: 9024.132ms, 9638.822ms and 10999.26ms (see
Figure 5.7 above). We also assessed the effect of the size of the diagrams and the types
of the questions on the response times. We found out that there is non significant

119

5.4. COLOR AND UML: A QUANTITATIVE EXPERIMENT

Figure 5.7: Box-plot: the results of the study.

(p>0.05) effect.

These results allow us to reject the null hypothesis and conclude that, as recom-
mended by SoG-UML, an effective implementation of a retinal variable, here colors,
helps having effective UML diagrams. The effectiveness is here illustrated via the big
number of correct answers and the reduced response times related to both implementa-
tions of colors. The non significant difference between both implementations of colors
is explained in SoG-UML, as stated by our following guidelines:

| Colors should be applied to the background of an UML node.

| The thicker the border and separation lines are, the better
colors are visually selected.

We used colors on a relatively thick border of UML classes, which represents an effec-
tive implementation along with the implementation of colors on the background. In
addition, coloring the background of UML nodes has no effect on the response times.
The use of effective colors in the experiment (i.e., medium level of brightness) does not
influence the readability of the text of the UML classes, as confirmed by our following
guideline:

| Colors in medium levels of brightness should be used for
UML nodes. They ensure the readability of black text labels, borders
and separation lines and provide the biggest number of selective colors.

120

5.4. COLOR AND UML: A QUANTITATIVE EXPERIMENT

Analysis of the post experiment results

The participants were asked to fill a post experiment questionnaire. They had to rank
the six following parameters from one to five (i.e., one means not good, five means:
excellent):

• The effect of using colors on the answer correctness.

• The effect of using colors on the rapid identification of the correct answers.

• Their preference in terms of implementations of colors: borders or background.

• Their preferences between the use of colors and the text via stereotypes.

• Their opinion about the use of keys on understanding the color variations.

• Their current usage of colors in UML.

Figures 5.9 and 5.8 below illustrate the participants answers of the post experiment
questions. We divided the answers on those having a rank lower than three and those
higher than three in Figure 5.9. In that context, we notice that most of the participants
find that the use of colors helped them to not only find the correct answer but also in
a shorter time. They also find that the use of the keys when colors are used facilitates
understanding the color variations.

Figure 5.8: Post experiment: Participants opinions

Concerning their preferences of implementations, we find that most of the partici-
pants would prefer applying colors to the background of UML nodes. In addition, most
of them would prefer using color than text after executing the experiment while they
were not used to employ them in practice.

These results reinforce the SoG-UML guidelines as the participants find that the
use of colors helps identifying the correct answers in a rapidly short time, the definition
itself of an effective graphical representation [10]. We note that two participants were
daltonien but found that the used colors were pretty distinguishable for them.

121

5.5. SUMMARY

Figure 5.9: Post experiment: Participants opinions.

5.5 Summary
In this chapter, we presented a design methodology of an empirical study, having an
experiment as a strategy of inquiry, to assess the SoG-UML guidelines. This method-
ology takes into account the lessons learned from a conducted but failed experiment in
the same objective. We executed the proposed experiment to assess the effective imple-
mentation of colors on UML classes. Results showed that three guidelines about colors
in SoG-UML are empirically validated. They also showed that the use of colors helped
most of the 95 participants to rapidly find the correct answers, compared to the use of
text via stereotypes. The results of the post-experiment questionnaire strengthen also
the SoG-UML guidelines. Most of participants find that colors were helpful and they
might use them henceforth.

The present design methodology is complementary to the theory proposed by SoG-
UML. As SoG-UML is based on the design and action theory, it should include methods
to assess its defined guidelines. If Moody [34] settles for giving the dependent and
independent variables of a possible empirical study to assess his principles, we define
a complete and validated design methodology. We also validate three guidelines of
SoG-UML.

122

Chapter 6

Implementations

Contents
6.1 FlipLayers . 124

6.1.1 FlipLayers Graphical Mechanism 124
6.1.2 Layer Stack . 125
6.1.3 FlipLayers Operators . 125
6.1.4 FlipLayers Graphical Properties 126
6.1.5 Summary and discussion . 128

6.2 Interactive keys for UML diagrams 128
6.2.1 Summary and discussion . 131

123

6.1. FLIPLAYERS

We have defined SoG-UML with a validated experimentation protocol. In this
chapter, we describe two prototypes of tools, as proofs of concept. They aim at struc-
turing the use of the visual variables in modeling tools, particularly in the Papyrus
modeling environment. In that context, the following question arises: How are these
visual variables actually presented: from the standard by modeling tools to users?

The OMG has standardized the bridge between the UML specification and model-
ing tools via the Diagram Definition framework (DD) [35]. DD specifies the mapping
between the UML abstract syntax and its concrete syntax. Its architecture distin-
guishes between the visual variables depending on whether UML practitioners have
control over them or not. DD identifies the color, size, orientation, brightness and
grain as auxiliary visual variables that might be interchanged between modeling tools.

Modeling tools are free on how UML practitioners access the visual variables. To
do that, they currently use property views, toolbars or CSS style-sheets [33]. UML
practitioners are also free to use these visual variables, when access is given by tools.
For that, they might rely on their own taste, preferences, culture, etc. They are also
free to define internal conventions within their team (e.g., the green color of a port
means that it is an input port). The freedom given to both tool-vendors and UML
practitioners might be disadvantageous insofar as no rules of effective use of the visual
variables are defined and/or integrated in modeling tools.

Both of our tools try then to fill this gap in Papyrus. The first tool, called Fliplayers,
introduces the concept of layers to UML modeling tools. The second tool is a continuity
of FlipLayers. It consists of an interactive keys for UML diagrams and provides a simple
and rapid way to effectively visually annotate UML diagrams. Fliplayers is released in
the Papyrus modeling environment [1] and is under work for further enhancements [5].
The interactive keys is still in the development step.

6.1 FlipLayers
FlipLayers is an implementation of the classical concept of layers (e.g., image manip-
ulation programs) in UML diagrams. In this section, we provide a general overview of
FlipLayers and its capabilities.

6.1.1 FlipLayers Graphical Mechanism
A diagram is one particular view of an underlying model. That is generally the reason
why multiple diagrams are needed to represent a system model where each one is
focusing on one or several concerns. The elements of a diagram consist of two kinds
of data: graphical data and domain (model) data. From the SoG viewpoint, graphical
data consists of values assigned to the visual variables used by the background, the
border and the text of labels. This kind of data can be modified by setting graphical
properties of the element. We make a difference between visual variables and graphical
properties because the graphical properties sometimes mix several visual variables (like
the Red-Green-Blue value which is the addition of a choice of a primitive color and
a brightness level). Note that modifying any model element (e.g., its name), in one
diagram may have to be reflected in other diagrams depicting that same element.
In contrast, modification of a graphical element (e.g., position, size, color), will a

124

6.1. FLIPLAYERS

priori impact only the diagram in which the change was made. A layer is a kind of

Figure 6.1: The graphical layer mechanism

filter and/or selector that can be overlaid on a diagram. Layering enables selective
control of the graphical properties of the graphical elements of a diagram. The layers
mechanism consists of a stack of layers which are superimposed on an underlying
diagram, called the base diagram, as illustrated in Figure 6.1. Each layer controls the
graphical properties of a chosen subset of domain elements of the base diagram. The
current version of FlipLayers does not support all the Bertin’s visual variables (Section
5.1.6 describing these limitations). On the other hand, the current visual variations
proposed by FlipLayers provides enough material to create numerous types of views.

6.1.2 Layer Stack
Layers can be placed on top of other layers in what is called a stack. A stack plays
a dual role: it allows superposition of visual information of individual layers, but it
also allows users to define how the layers are to be combined, thanks to a variety of
stack operators (e.g., and, or, xor). When a diagram is viewed through a stack, the
resulting view is a combination of the representations of individual layers based on the
values of these operators. This computation proceeds from the top layer downwards:
for each graphical element, an imaginary ray is “launched", starting from the top layer
and penetrating through the layers, asking each layer in turn if it controls the graphical
element. If so, the values of the graphical properties attached to layer are collected.
If there is only one value for a graphical property, then this value is applied to the
matching graphical element in the base diagram. If multiple values are collected for
a given graphical property, then the stack operator is used to calculate the resulting
values. A layer stack can itself be seen as a layer: the attached graphical elements are
the union of the graphical elements attached in layers, and graphical properties of each
graphical element are those calculated by the stack.

6.1.3 FlipLayers Operators
We have defined several stack operators in FlipLayers: the operator top simply holds
the first value encountered, that is to say the first value seen when looking at the
layers from the top. This is the default operator. For Boolean values, the and and or
operators perform a logical conjunction and disjunction operations respectively, and a
top operation for other types of values. We have also experimented with the operators
average, min, andmax, which compute an average or enforce the minimum or maximum

125

6.1. FLIPLAYERS

value for numerical values. The average operator allows visualizing intersections of sets:
each set of graphical element is attached to a layer thanks to an OCL expression. Each
layer shows its set with a different color.

6.1.4 FlipLayers Graphical Properties
Each layer associates a set of graphical variables whose values can be used to express
different information properties. The variables that are currently available are:

•Visibility. This allows selectively showing or hiding some elements of a diagram.
Hiding an element can help to reduce the visual complexity of large diagrams.

•Fill color This allows changing the background color of the UML elements, of
the border of these ones and also of their corresponding text.

•Brightness. This variable works in conjunction with the color variable; i.e., after
choosing a particular color, users can change its tone for each layer. Similarly to
the color, it affects backgrounds, borders and also text.

•Line thickness

•Text font

The graphical elements can be attached to a layer in two different ways: a) by
explicitly listing the graphical elements associated with the layer. b) by specifying an
OCL expression, which selects the subset of graphical elements in the base diagram
that are controlled by the layer. This form can be quite powerful, as it allows complex
expressions such as "all classes whose name begins with ’RT’ ", "all interfaces in which
at least one of the operations is named ’execute’”, "all elements stereotyped ’priority’
whose property ’value’ is equal to ’3’ " and so on. The user must also specify which
properties are attached to a layer. It is possible to associate only a subset of possible
graphical properties with a layer. As a result, only the graphical properties explicitly
associated with a layer can be set within that layer. A given graphical element can
be attached to several layers simultaneously. This allows, for example, to specify its
color in one layer, its font in another, and its visibility in a third. The user will then
see the graphical element decorated with the merge of graphical properties defined for
each layer using the algorithm described earlier.

Example of use of FlipLayers

The principle of using FlipLayers is as follows. The person who wants to create one or
several views starts by attaching a layer stack to the current base UML diagram. Then,
she/he creates a layer or several layers on top of this layer stack. She/he can assign
meaningful names to these different layers. Next, she/he selects the UML elements
that she/he wants to group together and appends them into one selected layer. At this
point, the author can modify the value of the different visual variables according to
the information property that she/he wants to express through the representation.

We consider a use case diagram of the Internet Banking System (IBS). We express
the project progress information property using Fliplayers, as shown in Figure 6.2.
We see that there is one layer for each group of use cases. Each layer has the color
property attached. After setting the values for each layer, we obtain the sum effect

126

6.1. FLIPLAYERS

Figure 6.2: Using FlipLayers to express the project project progress in the IBS use case
diagram.

Figure 6.3: A layers stack: Project progress criteria.

Figure 6.4: The visibility property of FlipLayers

shown in Figure 6.2. The visibility property might be attached to each layer. It allows
controlling its embedded elements, by making them visible or not. Figure 6.3 above
illustrates the layer tree of the use case diagram shown in Figure 6.2. The visibility
property is attached to Layer 2. Hence, users might make the corresponding use cases
visible or not, as illustrated in Figure 6.4.

127

6.2. INTERACTIVE KEYS FOR UML DIAGRAMS

Actors of FlipLayers

The main actors of FlipLayers are the Papyrus modeling tool users. They can create
graphical layers on top of their UML diagrams and are able to define different types
of relationships between them (e.g., and, or and xor). An actor of FlipLayers can be a
project manager who prepares a communication with his client or within his technical
team. He might also be a software designer who wants to save the semantically linked
elements between the UML diagrams of his model. Such information can help navi-
gating between the UML views to facilitate later maintenance tasks. Finally, an actor
of FlipLayers might be a software engineer who wants to build his own understanding
of the modeled system or to create documentation. Creating and manipulating lay-
ers might be considered as time consuming for UML practitioners. But, practitioners
can earn time while using the resulting diagrams via better communications, better
manipulations of large diagrams and via easier navigation between UML views.

6.1.5 Summary and discussion
A variety of graphical properties are available in FlipLayers, such as fill color, border
size, font of texts. One of these graphical properties is visibility, which can help hiding
elements of the base diagram and thus reduce the size and complexity of large diagrams.
All of these properties are used to convey meaning to human readers and to express
their different information properties. An example of using FlipLayers on the IBS use
case diagram was described. The use of FlipLayers and the retinal variables might fa-
cilitate stakeholder communication via meaningfully annotated UML diagrams. Such
approach primarily addresses readability issues associated with UML diagrams. It pro-
vides a general mechanism to improve the communication value of UML and to better
exploit UML for communication. One of the main expected results of such approach
is to reduce the required cognitive effort to understand complex diagrams. It serves
to highlight specific concerns in a given diagram, as well as to handle cross-cutting
concerns that may be shared by multiple diagrams (e.g., assigning the same color to
the semantically linked UML elements). But, FlipLayers presents some weaknesses.
It does not provide the retinal variables separately as recommended by the SoG (e.g.,
mixing colors and brightness). In addition, it does not guarantee the effectiveness in
using the retinal variables. For instance, it does not automatically generate keys when
at least one retinal variable is employed. The interactive keys comes then to cater for
these incompleteness in FlipLayers, as described in the next section.

6.2 Interactive keys for UML diagrams
The interactive keys is an Eclipse plug-in integrated in the Papyrus modeling environ-
ment. The main objective of this tool is to provide a simple, rapid and effective way to
use the retinal variables for the UML practitioners. To that end, it allows them to sim-
ply assign tags to their UML diagrams. The visual annotation of the UML components
(i.e., putting some components in a third dimension) is then done by giving values to
these tags. By tags, we refer to information properties that an UML practitioner wants
to express in her/his diagrams (e.g., project progression) and their values mean their
categories (e.g., done, in progress and to do are the values of the project progression
tag). The interactive keys also assists the practitioners in choosing the effective retinal
variables and their categories based on the characteristics of the corresponding tags.

128

6.2. INTERACTIVE KEYS FOR UML DIAGRAMS

Finally, it plays the role of the keys/legends or captions. It helps reading the visually
annotated UML diagrams by displaying the meaning of each retinal variable variation.
Below, are described the functionalities of the interactive keys.

Visual annotation: a simple tag of UML components

The interactive keys enables UML practitioners to simply define new tags or use ex-
isting ones in their UML diagrams. For that, they only have to enter the name of
their tags (e.g., a tag named distribution of tasks). Then, they have to simply select
the UML elements (e.g., use cases, classes, activities) that share the same value of the
tag (e.g., the classes that are developed by one developer named John) and assign this
value (i.e., John) to them. As illustrated in Figure 6.5 below, the UML practitioner
wants to express the implementation progress in his use case diagram. For that he
selects the use cases which have the same level of progression and tag them with their
corresponding level of progress (here done).

Figure 6.5: Visual annotation process using the interactive keys.

Each new tag will be automatically added to an UML profile which is attached to
the corresponding UML diagram. In this profile, the plug-in saves all the tags (i.e.,
as stereotypes) and their categories. It is dynamically updated and re-applied to the
diagram in question when a new tag or category of an existing one is added. In that con-
text, the attached profile just extends the Meta-class Element to support the elements
of all the types of UML diagrams. Then, for each new tag, the plug-in creates a new
stereotype which extends the meta-class Element. Thereafter, it creates an Enumer-
ation which will contain the categories of the tag in question as EnumerationLiterals.
The stereotype will then contain an attribute with that enumeration as type. This
automation helps fastening the visual annotation process for the practitioners.

Interactive keys: a rapid and an effective visual annotation using the retinal
variables

When a practitioner enters the name of a tag, she/he should mention the characteristic
of this one by simply choosing its organization level from a scroll-able list (i.e., selec-
tive/nominal, ordered or quantitative). As a result, the interactive keys will propose
the possible effective retinal variables and omits those which do not suit with the tag.

129

6.2. INTERACTIVE KEYS FOR UML DIAGRAMS

For example, if the tag is ordered, the interactive keys proposes the size, the brightness
and the grain. But, the color variable is omitted, as shown in Figure 6.8 below. In ad-
dition, for each each proposed retinal variable, a set of effective categories is given. For
example, a set of selective colors which have the same level of brightness is proposed as
ready-to-use categories. Also, the effective implementations, chosen by SoG-UML, are
directly provided (e.g., the colors and brightness to the background). The interactive
keys plug-in creates automatically a layer using FlipLayers. Thus, the visibility option
still be available.

Figure 6.6: The interactive keys proposi-
tion for an ordered tag: Project progres-
sion.

Figure 6.7: The interactive keys propo-
sition for a selective tag: Distribution of
tasks.

Figure 6.8: Assistance to the effective retinal variable use.

The interactive keys as captions or legends

The interactive keys allows displaying the mapping between each category of a reti-
nal variable and the category of the tag it expresses. It plays the role of the cap-
tions/legends. Figure 6.9 shows the resulted captions from the previous visual anno-
tation processes. The corresponding levels of the tag Project progression are displayed
below each level of brightness in the keys.

A practitioner can express another tag in the same diagram by using a different
retinal variable. Figure 6.10 illustrates an example where the Project progression and
the Complexity tags are expressed using respectively the brightness and the size retinal
variables. By observing this visual annotation, a project manager can see that there is
only one complex functionality which is finished: View transaction history. However,
two complex functionalities are still not yet done. Transfer money to a third part
account is not even begun and Pay bills is in progress. He might then rethink the

130

6.2. INTERACTIVE KEYS FOR UML DIAGRAMS

Figure 6.9: The interactive keys as captions or legends.

Figure 6.10: The interactive keys as captions or legends: two tags.

distribution of tasks to meet the approaching delivery day. The visibility option might
be enabled to visualize only one tag. In that context, the grain retinal variable might
be used instead of the size variation. However, this kind of variation is not yet available
in our plug-in, as stated in the next subsection.

6.2.1 Summary and discussion
The interactive keys aims at providing a simple and a rapid way to visually annotate
UML diagrams using the retinal variables. It allows an UML practitioner to focus
only on the concepts represented by the tags that she/he wants to express and makes
abstraction of the effective use of the retinal variables, which is handled by our plug-in.
Below is summarized the simple workflow of using the interactive keys:

1. Enter the name of the tag and its characteristics.

2. The interactive keys proposes the retinal variables which are suitable to the tag.

3. Begin the visual annotation:

(a) Select the UML elements which have the same value of the tag.

131

6.2. INTERACTIVE KEYS FOR UML DIAGRAMS

(b) Click on the corresponding category of a proposed retinal variable.
(c) Enter the value of the tag.
(d) The interactive keys displays this value under the corresponding category of

the retinal variable.

4. Go to 3 until completing all the categories of the tag.

5. The interactive keys displays the full captions.

6. Go to 1 for a new tag.

This proof of concept tool requires further improvements. For example, the grain and
the orientation retinal variables are not yet implemented. Their variation is difficult
to construct in the existent technical configurations. In addition, the keys should
be generated and embedded to each diagram. Also, it should further integrate the
recommendations of the practitioners in the previous empirical study (in Chapter 2).
For example, the dynamic variation of the values in the keys and the diagram can be
implemented.

132

Chapter 7

Conclusion

Contents
7.1 Conclusions . 134
7.2 Perspectives . 135

7.2.1 Operationalization of the SoG-UML guidelines in other DSMLs136
7.2.2 Interactive keys and crowdsourcing 136

133

7.1. CONCLUSIONS

7.1 Conclusions
The main objective of this thesis was to enhance the cognitive effectiveness of UML
diagrams by taking advantage of the following five retinal variables: color, size, bright-
ness, grain and orientation. We began our research by an empirical study to deeply
understand the actual state of practice in using UML and these retinal variables by
the UML practitioners [20], persons for whom this work is mainly conceived.

Results showed that UML diagrams are employed in different situations where prac-
titioners need to visualize information valuable for their tasks. In order to highlight
these information, practitioners sometimes rely on colors and they find that the use of
color helpful. The other retinal variables (i.e., size, brightness, texture/grain and orien-
tation), are not actually employed in practice but most of the practitioners think that
they might be useful. This usefulness is depends on the usability of modeling tools in
terms of rapidity, intelligence and dynamism. Subtlety in using these retinal variables
is also recommended by the necessity of attaching a meaning to each visual variation.
In the +3500 UML diagrams, color is also the most used retinal variable whereas the
size and brightness are less employed. The analysis of the UML diagrams revealed their
recurrent non-effective use. For instance, only four per cent of the diagrams had keys
when colors were used and sometimes they were not updated with the corresponding
diagrams. Moreover, the retinal variables were differently applied to the border, text,
background or compartments of UML nodes. Some of these implementations are more
effective than others (as discussed in Chapter 4). Finally, sometimes there was a non
effective use of colors via non effective categories or via using color to express ordered
information.

After the previous empirical investigation, we studied the existing works in the
literature which deal with the cognitive effectiveness of programming environments:
the cognitive dimensions framework and the physics of notations framework. We have
shown that the CDs framework represents an only evaluation framework by applying
its 13 dimensions to the three most used UML diagrams in practice (i.e., use case, class
and sequence diagrams). Then we presented the PoNs framework. We showed that,
although it represents a good scientific basis to build effective visual notations and to
evaluate existing ones, the principles cannot be used directly [42]. Research theories
were synthesized (i.e., including the SoG) which led to a certain incompleteness in some
principles. We chose then to study the SoG which is the reference of the cartography in
the context of UML which is the most widespread visual modeling language in software
engineering. That aims at providing explicit guidelines to lighten the cognitive load in
some dimensions of the CDs framework and some principles of the PoNs framework.

As a first refinement layer to adopt the SoG principles to UML, we presented the
main notions of the SoG along with a parallel positioning against UML. The visual
variables and their perceptive properties, the analysis and reading processes and the
characteristics of each retinal variable were discussed in the UML context. We partic-
ularly discussed the rules of the SoG which might be directly applied to UML. But at
that stage, we observed that the SoG principles cannot be directly mapped to UML
because of the graphic complexity of the UML concrete syntax which was not explicitly
addressed by the SoG.

134

7.2. PERSPECTIVES

For that, we empirically classified the UML concrete syntax and found out that
UML nodes are complex because of multiple facts. They are mainly composed of
shapes which might contain text labels, compartments, headings, icons and ports.
They can also be contained in each other (e.g., a class in a package). Then, for each
retinal variable, we were faced to the following problem: How can we handle such
graphic complexity and, in parallel, guarantee a better cognitive effectiveness of UML
diagrams by taking advantage of the retinal variables?

SoG-UML answers this question and defines 61 guidelines to visually enrich UML
diagrams. It relies on the design and action theory to describe explicit rules about
the effective use of the retinal variables in UML nodes. In SoG-UML, for each retinal
variable, we justified the choice of its most effective implementation on the groups
stemming from the previous classification, including the main UML nodes and their
inner constituents, the containment’s relationships and the combination of the retinal
variables. We illustrated the SoG-UML guidelines via the diagrams related to an Inter-
net Banking System IBS which was extracted from the Lindholmen database of UML
models [3].

To make of SoG-UML a testable theory, we presented a design methodology of
empirical study which serves to validate the SoG-UML guidelines. For that, we de-
scribed the lessons learned from a conducted experiment which did not succeed to
give statistically significant results. Then, we presented the design methodology of an
empirical study which was tested and succeeded to give significant results. It consists
of a quantitative methodology based on an experiment as strategy of inquiry. It was
executed with 95 participants from the University of Lille and the CRIStAL laboratory.
The main objective was to validate the effective implementation of the color retinal
variable on UML classes. Results showed that the use of colors, using the two tested
implementations, helped the participant to find the correct answer in a relatively short
time compared to the use of text via stereotypes. We tested the implementations of
colors on the background and on a relatively thick border of UML classes. Both imple-
mentations were recognized as effective in SoG-UML and were validated by the study.

Finally, we described two proof of concept tools which are integrated in the Papyrus
modeling environment. The first tool consists of an implementation of the classical
mechanism of graphical layers in UML diagrams. It provides the possibility to control
the visibility of a set of UML nodes together. Such functionality allows reducing the
complexity of big UML diagrams. In addition, combining such functionality with the
retinal variables might help enhancing communications with UML by supporting the
user’s discourse. The second prototype of tool consists of an interactive keys for UML
diagrams. It provides a simple, rapid and effective way to exploit the retinal variables in
UML. It allows practitioners to simply assign tags to their UML components and assists
them to an effective choice of the suitable retinal variables. Finally, it automatically
generates keys to help reading the applied visual variations.

7.2 Perspectives
The perspectives of this research work are numerous. We may think about enhancing
the interactive keys for UML by integrating the other retinal variables, about the
illustration of our guidelines via animated and interactive figures (in a website for

135

7.2. PERSPECTIVES

example), about studying animations and new visualizations in UML, about studying
the use of the visual variables to facilitate collaboration around UML diagrams and
obviously, about conducting the experiments using the defined design methodology.
Future research can also concern the usability of diagrams in software engineering in
a broader sense like helping practitioners to rapidly find accurate information in their
diagrams or helping them to navigate between the views of their models. But, we choose
to develop two other interesting perspectives of this work in the next two subsections:
the operationalization of the SoG-UML guidelines in other new or existing Domain
Specific Modeling Languages (DSMLs) and the enhancement of the interactive keys by
integrating the crowdsourcing mechanism.

7.2.1 Operationalization of the SoG-UML guidelines in other
DSMLs

To generate the SoG-UML guidelines, we followed a certain methodology. We begun
by creating a feature model which describes the UML concrete syntax. Then, we
treated the groups stemming from it to generate our guidelines, by avoiding to alter
the UML primary notation. In that context, feature modeling is mainly used in the
emerging software paradigm: the product line software engineering (PLSE). Feature
models describe the common features (i.e., commonalities) and the variable ones (i.e.,
variability) of the products of a particular domain (e.g., cars in the car manufacturing
domain). Their use aims at developing highly reusable core assets for a product line
[32]. The same methodology (i.e., that we used in SoG-UML) might be automated for
existing or new DSLs, where the products are guidelines of effectiveness of the retinal
variables for these DSMLs and the domain is the software engineering modeling one.
In fact, like UML, most of the DSMLs in this domain are composed of shapes which
might contain text and might be contained in each other (i.e., commonalities). The
starting point should then be a feature model which precises the visual variables of the
primary notation and the graphic particularities of the language. This feature model
can also be the same as defined for the UML concrete syntax, but, variability points
should be defined to support the particularities of each DSML (for example, they can
be extracted from a used profile which extends UML). Finally, the feature model can
be parsed to prescribe a guideline for each node or variability point, based on the rules
of the SoG.

7.2.2 Interactive keys and crowdsourcing
Crowdsourcing is a growing paradigm in which humans are the core computational
entities. In [12], Brambilla et al. used the crowdsourcing to refine the graphical notation
of DSMLs. This mechanism can be also used in our case to better take into account the
preferences of the UML practitioners. They can make the choice of the implementation
of a retinal variable that they deem effective and suitable to their contexts of use. Such
mechanism can be integrated in a configuration page of the interactive keys. Each
practitioner can rank the implementations and the most effective ones can then be
defined. The mapping of the retinal variables to the information properties along with
the effective categories can also be assessed via the crowd.

136

BIBLIOGRAPHY

Bibliography
[1] Fliplayers eclipse wiki page. https://wiki.eclipse.org/Papyrus/UserGuide/

Layers. accessed on 01-15-2019.

[2] Human factors in modeling workshop. http://hufamo.compute.dtu.dk. accessed
on 13-05-2018.

[3] Lindholmen models repository. http://oss.models-db.com/. accessed on 01-27-
2019.

[4] Object management group. http://www.omg.org/. accessed on 06-22-2018.

[5] Ongoing work around fliplayers. https://wiki.eclipse.org/Papyrus/Oxygen_
Work_Description/NewFeature/Layers. accessed on 01-15-2019.

[6] Replication package of our empirical study about the visual variables in UML.
https://www.zenodo.org/record/827357#.XDNkNZNKiu4. accessed on 01-07-
2019.

[7] Color and daltonism. http://daltonien.free.fr/daltonien/, May 2003. ac-
cessed on 06-22-2018.

[8] Ahmar, Y. E., Gerard, S., Dumoulin, C., and Pallec, X. L. Enhanc-
ing the communication value of UML models with graphical layers. In 18th
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, MoDELS 2015, Ottawa, ON, Canada, September 30 - October 2,
2015 (2015), pp. 64–69.

[9] Andriyevska, O., Dragan, N., Simoes, B., and Maletic, J. I. Evaluat-
ing UML class diagram layout based on architectural importance. In Visualizing
Software for Understanding and Analysis, 2005. VISSOFT 2005. 3rd IEEE Inter-
national Workshop on (2005), IEEE, pp. 1–6.

[10] Bertin, J., Berg, W. J., and Wainer, H. Semiology of graphics: diagrams,
networks, maps, vol. 1. University of Wisconsin press Madison, 1983.

[11] Blackwell, A., and Engelhardt, Y. Ameta-taxonomy for diagram research.
In Diagrammatic representation and reasoning. Springer, 2002, pp. 47–64.

[12] Brambilla, M., Cabot, J., Cánovas Izquierdo, J. L., and Mauri, A.
Better call the crowd: using crowdsourcing to shape the notation of domain-
specific languages. In Proceedings of the 10th ACM SIGPLAN International Con-
ference on Software Language Engineering (2017), ACM, pp. 129–138.

[13] Chaudron, M. R. V., Heijstek, W., and Nugroho, A. How effective is
UML modeling? Software & Systems Modeling 11, 4 (2012), 571–580.

[14] Conversy, S. Unifying textual and visual: a theoretical account of the visual
perception of programming languages. In Proceedings of the 2014 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software (2014), ACM, pp. 201–212.

137

https://wiki.eclipse.org/Papyrus/UserGuide/Layers
https://wiki.eclipse.org/Papyrus/UserGuide/Layers
http://hufamo.compute.dtu.dk
http://oss.models-db.com/
http://www.omg.org/
https://wiki.eclipse.org/Papyrus/Oxygen_Work_Description/NewFeature/Layers
https://wiki.eclipse.org/Papyrus/Oxygen_Work_Description/NewFeature/Layers
https://www.zenodo.org/record/827357#.XDNkNZNKiu4
http://daltonien.free.fr/daltonien/

BIBLIOGRAPHY

[15] Creswell, J. W. Research design: Qualitative, quantitative, and mixed methods
approaches. Sage publications, 2013.

[16] Dobing, B., and Parsons, J. How UML is used. Commun. ACM 49, 5 (May
2006), 109–113.

[17] Dykes, J., Wood, J., and Slingsby, A. Rethinking map legends with visual-
ization. IEEE Transactions on Visualization and Computer Graphics 16, 6 (2010),
890–899.

[18] Dzidek, W. J., Arisholm, E., and Briand, L. C. A realistic empirical
evaluation of the costs and benefits of UML in software maintenance. Software
Engineering, IEEE Transactions on 34, 3 (2008), 407–432.

[19] El Ahmar, Y., Le Pallec, X., and Gérard, S. Empirical activity: Assessing
the perceptual properties of the size visual variation in UML sequence diagram.

[20] El Ahmar, Y., Le Pallec, X., Gérard, S., and Ho-Quang, T. Visual
variables in UML: a first empirical assessment. In Human Factors in Modeling
(2017).

[21] Forward, A., Lethbridge, T. C., and Badreddin, O. Perceptions of Soft-
ware Modeling: A Survey of Software Practitioners. Tech. rep., University of
Ottawa, 2010.

[22] Garlandini, S., and Fabrikant, S. Evaluating the effectiveness and efficiency
of visual variables for geographic information visualization. Spatial information
theory (2009), 195–211.

[23] Genon, N., Perrouin, G., Pallec, X. L., and Heymans, P. Unlocking
visual understanding: Towards effective keys for diagrams. In Conceptual Modeling
- 35th International Conference, ER 2016, Gifu, Japan, November 14-17, 2016,
Proceedings (2016), pp. 505–512.

[24] Gérard, S., Dumoulin, C., Tessier, P., and Selic, B. 19 papyrus: A
UML2 tool for domain-specific language modeling. In Model-Based Engineering
of Embedded Real-Time Systems. Springer, 2010, pp. 361–368.

[25] Green, T. R. G., and Petre, M. Usability analysis of visual programming
environments: a cognitive dimensions framework. Journal of Visual Languages &
Computing 7, 2 (1996), 131–174.

[26] Gregor, S. The nature of theory in information systems. MIS quarterly (2006),
611–642.

[27] Hebig, R., Ho-Quang, T., Robles, G., Fernandez, M., and Chaudron,
M. R. V. The quest for open source projects that use UML: mining github. In
Proceedings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems (2016), ACM, pp. 173–183.

[28] IBM, I. B. M. C. The great mind challenge by ibm. http://www-07.ibm.com/
in/university/greatmind/tgmc_2009_bak.html, 2009. accessed on 06-22-2018.

138

http://www-07.ibm.com/in/university/greatmind/tgmc_2009_bak.html
http://www-07.ibm.com/in/university/greatmind/tgmc_2009_bak.html

BIBLIOGRAPHY

[29] Kosslyn, S. M. Graphics and human information processing: A review of five
books. Journal of the American Statistical Association 80, 391 (1985), 499–512.

[30] Lanza, M., and Marinescu, R. Object-oriented metrics in practice: using soft-
ware metrics to characterize, evaluate, and improve the design of object-oriented
systems. Springer Science & Business Media, 2007.

[31] Larkin, J. H., and Simon, H. A. Why a diagram is (sometimes) worth ten
thousand words. Cognitive science 11, 1 (1987), 65–100.

[32] Lee, K., Kang, K. C., and Lee, J. Concepts and guidelines of feature modeling
for product line software engineering. In International Conference on Software
Reuse (2002), Springer, pp. 62–77.

[33] LIST, C. Cascading stylesheets for UML in papyrus. https://wiki.eclipse.
org/MDT/Papyrus/UserGuide/CSS, February 2013. accessed on 06-22-2018.

[34] Moody, D. L. The physicss of notations: toward a scientific basis for constructing
visual notations in software engineering. Software Engineering, IEEE Transactions
on 35, 6 (2009), 756–779.

[35] Object Management Group. Diagram definition. http://www.omg.org/,
August 2015. accessed on 06-22-2018.

[36] PALLEC, X. L. Experiment about colors in UML. http://www.lifl.fr/
~lepallec/xpColor/, February 2018. accessed on 06-22-2018.

[37] Purchase, H. C., Colpoys, L., Carrington, D., and McGill, M. UML
class diagrams: an empirical study of comprehension. In Software Visualization.
Springer, 2003, pp. 149–178.

[38] Recanati, C. Characteristics of diagrammatic reasoning. In Proceedings of Eu-
roCogSci07, the european cognitive science conference (Delphi, Grèce, May 2007),
D. K. edited by Stella Vosniadou and A. Protopapas, Eds., the second european
cognitive science conference, Lawrence Erlbaum Associates, pp. pp 510–515.

[39] Riche, N. H., Lee, B., and Plaisant, C. Understanding interactive legends:
a comparative evaluation with standard widgets. In Computer graphics forum
(2010), vol. 29, Wiley Online Library, pp. 1193–1202.

[40] Sharif, B., and Maletic, J. I. An empirical study on the comprehension
of stereotyped UML class diagram layouts. In Program Comprehension, 2009.
ICPC’09. IEEE 17th International Conference on (2009), IEEE, pp. 268–272.

[41] Shull, F., Singer, J., and Sjøberg, D. I. Guide to advanced empirical
software engineering. Springer, 2007.

[42] Störrle, H., and Fish, A. Towards an operationalization of the “physics of
notations” for the analysis of visual languages. In International Conference on
Model Driven Engineering Languages and Systems (2013), Springer, pp. 104–120.

[43] Termeer, M., Lange, C. F., Telea, A., and Chaudron, M. R. V. Vi-
sual exploration of combined architectural and metric information. In Visualizing
Software for Understanding and Analysis, 2005. VISSOFT 2005. 3rd IEEE Inter-
national Workshop on (2005), IEEE, pp. 1–6.

139

https://wiki.eclipse.org/MDT/Papyrus/UserGuide/CSS
https://wiki.eclipse.org/MDT/Papyrus/UserGuide/CSS
http://www.omg.org/
http://www.lifl.fr/~lepallec/xpColor/
http://www.lifl.fr/~lepallec/xpColor/

BIBLIOGRAPHY

[44] Tudoreanu, M. E., and Kraemer, E. Legends as a device for interacting
with visualizations. Tech. rep., Citeseer, 2001.

[45] Wong, K., and Sun, D. On evaluating the layout of UML diagrams for program
comprehension. Software Quality Journal 14, 3 (2006), 233–259.

[46] Yusuf, S., Kagdi, H., and Maletic, J. I. Assessing the comprehension of
UML class diagrams via eye tracking. In 15th IEEE International Conference on
Program Comprehension (ICPC’07) (2007), IEEE, pp. 113–122.

140

Scientific Publications by Yosser EL AHMAR

Conference Publications
[1] Ahmar, Y. E., Gerard, S., Dumoulin, C., and Pallec, X. L. Enhancing the

communication value of UML models with graphical layers. In 18th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
MoDELS 2015, Ottawa, ON, Canada, September 30 - October 2, 2015 (2015),
pp. 64–69.

Workshop Publications
[1] Yosser El Ahmar, Xavier Le Pallec, and Sébastien Gérard. Empirical activity:

Assessing the perceptual properties of the size visual variation in UML sequence
diagram.

[2] Yosser El Ahmar, Xavier Le Pallec, Sébastien Gérard, and Truong Ho-Quang. Vi-
sual variables in UML: a first empirical assessment. In Human Factors in Modeling,
2017.

Appendix

Summary of SoG-UML guidelines
Following is a summary of the guidelines related to each retinal variable. Software
practitioners can use them when they add significant visual decorations to their dia-
grams. For each retinal variable, we present its definition, perceptive properties and the
methods to choose its effective categories. Then, we summarize its related guidelines
in SoG-UML.

142

Color
The color variation is the differentiation generally
induced by different colored excitations perceived
between two ranges having the same brightness.
Human readers cannot understand the colors sensations if,
first of all, the notion of color and the notion of brightness
are not rigorously differentiated. Color and brightness are
two different retinal variables. Each one is characterized by
its perceptive properties.

1. PERCEPTIVE PROPERTIES

1.1 Perceptive attitudes
The color retinal variable is associative and selective:

it can be used when a practitioner has an associative or a
selective information property (e.g., distribution of tasks be-
tween the team members, the tested and non-tested classes).

It is neither ordered nor quantitative: it cannot be
employed when a practitioner wants to convey an order or
quantities which should be compared between each other
(e.g., project progression, quality metrics)

1.2 Capacity
Table 1 mentions the capacity of the color variation: a

practitioner should not exceed the number which is men-
tioned in the perceptive attitude of the color cell. The ca-
pacity of the color variation is the same for points, lines and
zones. But, remember that UML nodes are considered as
points and UML edges as lines.

Table 1: Perceptive properties of the color retinal
variable.

Associative Selective Ordered Quantitative
Point Unlimited 7 No No
Line Unlimited 7 No No
Zone Unlimited 7 No No

1.3 Calculating effective categories of color
ColorB

rightness

Figure 1: Colors of the spectrum in different val-
ues of brightness. Saturated colors are marked by a
white circle.

• The selectivity is in its maximum near to the saturated
colors and decreases by moving away (Figure 1)

• The choice of the selective colors is different depending
on the brightness. Selective colors are near to satu-
rated colors and it decreases by going away.

• In big brightness (i.e., bright colors): colors are
chosen around the yellow, from green to orange. Light
blue, violet, purple and red are less selective (Figure
1).

• In medium brightness: we find the maximum num-
ber of selective colors. The blue and red colors are
diametrically opposite (Figure 1): violet, blue, green,
yellow, orange, red and purple might be used in this
level of brightness.

• In low brightness (i.e., dark colors): the selective
categories of colors range from blue to red by the violet
and purple. Dark green, yellow and orange are less
differentiated (Figure 1).

If a practitioner wants to effectively chose his selective col-
ors based on the previous method, he should use the Hue,
Saturation, Brightness (HSB) system.
Light colors have a value of brightness (B) which is bigger
than 70% (i.e., >= 150).
Medium levels of brightness are situated between 50% and
69% (i.e., 110<= B <150).
And, dark colors (i.e., low brightness) have a value of bright-
ness which is lower than 50% (i.e., <110).

2. GUIDELINES ABOUT COLOR IN UML
Figure 2 shows the effective implementation of the color

retinal variable in an UML class, Use Case, Decision and
UML activity.

Condition UseCase Activity
ClassName

AttributeName

Figure 2: Effective implementations of the color reti-
nal variable to 4 different UML nodes.

Following are the guidelines that we have defined in SoG-
UML about color on UML node on a white background.

• [SoG-UML #1] Colors should not be applied to bor-
ders, lines of separation and/or text, when they are
relatively thin.

• [SoG-UML #2] The thicker the border and separa-
tion lines are, the better colors are visually selected.

• [SoG-UML #3] Colors should be applied to the back-
ground of an UML node.

• [SoG-UML #4] Colors in medium levels of bright-
ness should be used for UML nodes. They ensure the
readability of black text labels, borders and separa-
tion lines and provide the biggest number of selective
colors.

• [SoG-UML #5] In medium levels of brightness, text
labels, borders and separation lines should be black.

• [SoG-UML #6] In high levels of brightness, text la-
bels, borders and separation lines should be black.

• [SoG-UML #7] In low levels of brightness, text la-
bels, borders and separation lines should be white.

• [SoG-UML #8] In medium brightness we find the
maximum number of selective colors. The blue and red
colors are diametrically opposite: violet, blue, green,
yellow, orange, red and purple might be used in this
level of brightness.

• [SoG-UML #9] In big brightness: colors are chosen
around the yellow, from green to orange. Light blue,
violet, purple and red are less selective.

• [SoG-UML #10] In low brightness (i.e., dark colors):
the selective categories of colors range from blue to
red by the violet and purple. Dark green, yellow and
orange are less differentiated.

Guidelines about the effective implementation of color
on icons:

• [SoG-UML #11] The border of icons should be black.

• [SoG-UML #12] Icons should not have the same
background color as the UML node in which they are
contained.

• [SoG-UML #13] All of the icons in a diagram should
have the same background color.

Guidelines about the effective implementation of color
on ports:

• [SoG-UML #14] Colors should be applied to the
background of ports.

• [SoG-UML #15] The border of ports should be black.

• [SoG-UML #16] Ports should have a different selec-
tive color from the UML node in which it is embedded
and the container of this latter.

2.1 Containment of UML nodes and color
Table 2 contains the guidelines about the containment col-

ored UML nodes on different backgrounds.

Table 2: Containment relationship between UML nodes and grains.
Content/container Content Container
Color/Color [SoG-UML #37] To get the color

sensation, choose colors that are
different from the container’s color.

[SoG-UML #38] To ensure a bet-
ter visual selectivity, the container
should have a different color from
the colors of its contained elements.

Color/Brightness [SoG-UML #39] Choose colors
having all the same brightness
which is opposable to the brightness
of the background.

[SoG-UML #40] The container
should be as brighter as its con-
tained elements are dark and vice
versa.

Color/Grain [SoG-UML #41] Increase the
thickness of the borders and the
lines of separation to better select
the contained UML nodes in a pos-
sible very low value of grain.

[SoG-UML #42] Choose big val-
ues of grain for containers having
more contained elements.

Color/Size No particular rules. No particular rules.

Color/Orientation No particular rules. No particular rules.

Brightness
Continuous progression that the eye perceives in the
series of grays which ranges from black to white.
This progression is independent from the color and we can
range from black to white by different levels of gray, blue,
red, etc. Only one color should be used for such transitions.

1. PERCEPTIVE PROPERTIES

1.1 Perceptive attitudes
The brightness retinal variable is selective and ordered.

When a practitioner needs to express a selective informa-
tion property (e.g., elements of a pattern) or an ordered one
(e.g., implementation progress), she/he can use it. However,
it is dissociative because it inhibits the visualization of the
UML nodes as a group.
The brightness is not quantitative, an UML practitioner
should not use it to convey a quantitative information prop-
erty.

1.2 Capacity
Table1 identifies the capacity of the brightens retinal vari-

able in the perceptive attitudes which characterize it. An
UML practitioner should not exceed the mentioned number
in the corresponding cells. Note that the UML nodes are
considered as points and edges as lines.

Table 1: Capacity of the brightness retinal variable
Associative Selective Ordered Quantitative

Point No 3 Unlimited No
Lines No 4 Unlimited No
Zones No 5 Unlimited No

1.3 Calculating effective categories of bright-
ness

Categories of brightness have to be equidistant
For short number of categories, you can apply the following
principles:
For 3 categories of brightness: choose black, medium gray
(<50/50 (B/W)) and white, as shown in Figure 1.
For 4 categories of brightness, choose black, gray (25/75),
gray (75/25) and white, as illustrated in Figure 2.

Figure 1: Three effective categories of brightness.

Figure 2: Four effective categories of brightness.

To generate a formula for finding equidistant categories of
brightness, Jaques Bertin found that the only condition is
to attribute a value different from zero to white and a value

different from one hundred to black (which corresponds ob-
viously to reality). In that context, if we denote:
W: The percentage of the White in the spot, W 6= 0.
B: The percentage of the Black in the spot, B 6= 100.
r: The common distance between the chosen categories of
brightness. It denotes the ratio between the values of bright-
ness of two successive categories (i.e., a logarithmic value).
r ∈ N.
n: Number of categories, n ∈ N.

It is clear that we have to multiply the value of white W
by the common difference r the number of wanted categories
n minus one times. Therefore, Bertin defines the formula be-
low:

B = Wr(n−1).
As a result, the common difference r will be:

r = n−1
√

(B/W).

2. GUIDELINES ABOUT THE BRIGHTNESS
IN UML

Figure 3 shows the effective implementation of the bright-
ness retinal variable to an UML class, Decision, Use case and
Activity. Below, we list the guidelines that we have gener-

Condition UseCase Activity
ClassName

AttributeName

Figure 3: Applying the brightness to the back-
ground is the effective implementation.

ated in SoG-UML for the use of the brightness in UML.

• [SoG-UML #17] The brightness variation should
not be applied to the borders, separation lines and
text: it is locked by the UML primary notation and
not effective from the SoG point of view.

• [SoG-UML #18] The brightness should be applied
to the background of UML nodes.

• [SoG-UML #19] Text labels, separation lines and
borders should not have different values of brightness
from each other.

• [SoG-UML #20] The brightness of icons is locked
by the UML primary notation.

• [SoG-UML #21] The brightness of ports is locked
by the UML primary notation.

2.1 Containment of UML nodes and the bright-
ness retinal variable

Table 2 summarizes the guidelines about the containment
of UML nodes having a brightness variation and all the pos-
sible retinal variables variation on their backgrounds.

Table 2: Containment relationship between UML nodes and brightness.
Content/container Content Container
Brightness/Color [SoG-UML #47] Colors of the

contained UML nodes should have
a smaller level of brightness com-
pared to their container.

[SoG-UML #48] The container
of UML nodes which have a signifi-
cant brightness variation should be
white.

Brightness/ Bright-
ness

[SoG-UML #49] The contained
UML nodes should have a smaller
value of brightness than their con-
tainer.

[SoG-UML #50] The container
should be brighter than its con-
tained UML nodes.

Brightness/Grain No particular rules. [SoG-UML #51] The container
should not have a grain variation or
a very big value of grain where a big
zoom is applied to the spots of the
used texture.

Brightness/size No particular rules. No particular rules.

Brightness/ orienta-
tion

No particular rules. No particular rules.

Size
The variation of the area of a spot represents the
visual stimuli to the size variation.
Any spot, having a punctual or a linear signification, can
vary its size without changing its position, brightness, grain,
color, orientation or shape.

1. PERCEPTIVE PROPERTIES

1.1 Perceptive attitudes

• The size retinal variable allows all the perceptive at-
titudes except association. It is selective, ordered
and quantitative, but, it inhibits the visualization
of the UML nodes in one group because it is dissocia-
tive.

• The size retinal variable is the only quantitative retinal
variable.

1.2 Capacity
Table 1 identifies the effective capacities of the size varia-

tion in the perceptive attitudes which characterize it.

Table 1: Capacity of the size retinal variable.
Associative Selective Ordered Quantitative

Point No 4 Unlimited* Unlimited*
Lines No 4 Unlimited* Unlimited*
Zones No 5 Unlimited Unlimited

Unlimited*: Unlimited, but the reader’s eye cannot per-
ceive more than 20 categories of size between two points
having areas in the ratio of 1/10.

1.3 Calculating effective categories of size
The area of spots has to be proportional to the quantity

of information property it expresses via the the variation of
the radius of a circle, the side of a square or a triangle. The
SoG provides an abacus of circles for all possible quantities.

2. GUIDELINES ABOUT THE SIZE RETI-
NAL VARIABLE IN UML

Figure 1 shows the effective implementation of the size
retinal variable to an UML class, Decision, Use case and ac-
tivity if the corresponding diagram has a relatively small or
medium visual density. Figure 2 shows the effective imple-
mentation of the size retinal variable in case the correspond-
ing diagram has a relatively big visual density.

Following are the guidelines of SoG-UML about the use
of the size retinal variable in UML.

• [SoG-UML #22] When the area of an UML nodes
can be varied: the size retinal variable should be ap-
plied to the area of an UML node.

• [SoG-UML #23] The size retinal variable should be
applied not only to the area of UML nodes, but also
to the text, separation lines and borders.

ClassName

AttributeName Condition UseCase Activity

Figure 1: The effective implementation of the size
retinal variable to a UML node.

ClassName

AttributeName
AttributeName
AttributeName

Method1Name

Method2Name
Method3Name

ClassName

AttributeName
AttributeName
AttributeName

Method1Name

Method2Name
Method3Name

ClassName

AttributeName
AttributeName
AttributeName

Method1Name

Method2Name
Method3Name

Figure 2: Effective implementation of the size reti-
nal variable, in case the area of the corresponding
UML node cannot vary.

• [SoG-UML #24] When the area of an UML node
cannot vary: the size retinal variable should be applied
to an additional point in the right corner of the UML
node.

• [SoG-UML #25] To ensure a better selectivity, the
icon’s area should vary proportionally with the area of
its related UML node.

• [SoG-UML #26] Varying the size of a port implies
varying its area and its border lines thickness.

2.1 Containment of UML nodes and the size
retinal variable

See Table 2.

Table 2: Containment relationship between UML nodes and size.
Size/Size [SoG-UML #43] The size of the

contained elements must be propor-
tional to the size of their container.
[SoG-UML #44] The biggest
area of the contained elements is
controlled by the size of its con-
tainer.
[SoG-UML #45] There is a limit
under which the UML nodes are no
more visible.

[SoG-UML #46] The smallest
size of the container is controlled by
its contained UML nodes.

Size/Color No particular rules. No particular rules.
Size/Brightness No particular rules. No particular rules.
Size/Grain No particular rules. No particular rules.
Size/Orientation No particular rules. No particular rules.

Grain
The grain is the succession of photo-graphical reduc-
tions of a semis of spots.
In a specific surface and for a regular semis, these reductions
increase the number of spots, without varying the bright-
ness. The grain is the quantity of separable spots contained
in a unit surface. Broadly speaking, we can say that the
grain corresponds to the magnification factor applied on the
texture (if any). In a particular brightness, the grain is the
quantity of separable spots contained in a unit area.

1. PERCEPTIVE PROPERTIES

1.1 Perceptive attitudes
The grain retinal variable is associative, selective and

ordered.

1.2 Capacity

Table 1: Capacity of the grain retinal variable
Associative Selective Ordered Quantitative

Point unlimited 2 to 3 unlimited No
Lines unlimited 3 to 4 unlimited No
Zones unlimited 4 to 5 unlimited No

1.3 Calculating effective categories of the grain
retinal variable

Categories of grain have to be equidistant.
The grain variation is associative. All its categories should
have the same visibility (i.e., the same quantity of black per
category). No particular rule is prescribed by the SoG.
Avoid using low values of grain: a lot of small spots
Low values of grain will be altered after printings. Graphic
authors should prefer big values of grain: a small number of
big spots.

2. GUIDELINES ABOUT THE USE OF THE
GRAIN RETINAL VARIABLE IN UML

Figure 1 illustrates the effective implementation of the
grain retinal variable in an UML class, Decision, Use case
and Activity.

Figure 1: Effective implementation of the grain reti-
nal variable.

• [SoG-UML #27] The grain retinal variable should
be applied to the background of an UML node.

• [SoG-UML #28] Null values of grain where a lot of
small spots are used should be avoided in UML.

• [SoG-UML #29] High levels of brightness should be
applied to the used textures when applying grain vari-
ation.

• [SoG-UML #30] The background of icons should
not have a grain variation.

• [SoG-UML #31] Satellites have not to change their
grain. This variation is locked by the UML primary
notation.

2.1 Containment of UML nodes and the size
retinal variable

See Table 2.

Table 2: Containment relationship between UML nodes and grains.
Content/container Content Container
Grain/Grain No particular rules. [SoG-UML #52] The container

should have a maximum value of
grain.

Grain / Brightness [SoG-UML #53] If the container
is dark, then the grain variation has
to be as brighter as possible.

[SoG-UML #54] The container
should have a brightness as brighter
as possible.

Grain/Size No particular rules. [SoG-UML #55] The size varia-
tion should not affect the grain vari-
ation of the contained nodes.

Grain/Color No particular rules. No particular rules.
Grain/Orientation No particular rules. No particular rules.

Orientation
A spot, in the form of a point, line or zone, can take
an infinity of different orientations without changing
its center.
We can feel the differences of orientations as far as the spot
represents a linear aspect (i.e., the ratio Height/basis have
to correspond to at least 4/1). The difference of angles be-
tween multiple parallel spots constitutes the stimuli of the
orientation variation.

1. PERCEPTIVE PROPERTIES

1.1 Perceptive attitudes
• The orientation retinal variable is associative.

• The orientation retinal variable is selective only in
points (linear ones) and lines.

1.2 Capacity
Table 1 summarizes the capacity of the orientation varia-

tion.

Table 1: Capacity of the orientation retinal variable
Associative Selective ordered Quantitative

Point Unlimited 4 No No
Lines Unlimited 2 No No
Zones Unlimited No No No

2. GUIDELINES ABOUT THE USE OF THE
ORIENTATION RETINAL VARIABLE IN
UML

Figure 1 illustrates the effective implementation of an
UML node having a linear aspect.

Us
eC
as
e

Ac
tiv
ity

Figure 1: Varying the orientation of UML nodes
having a linear aspect.

• [SoG-UML #32] If the UML node has a linear as-
pect, the orientation of the whole UML node can be
changed.

• [SoG-UML #33] The orientation retinal variable should
not be applied to the background of UML nodes.

• [SoG-UML #34] Text, separation lines and borders
should all vary their orientation for UML nodes having
linear aspects.

• [SoG-UML #35] The orientation of icons should al-
ways have the same orientation of the main UML node.

• [SoG-UML #36] The orientation of the satellites
should be the same as the UML node in which it is
attached.

2.1 Containment of UML nodes and the ori-
entation retinal variable

No particular rules for the containment of UML nodes
having an orientation variation in all possibilities of back-
ground (i.e., containers presenting a retinal variable varia-
tion).

Abstract - UML is a visual modeling language for specifying, constructing, and
documenting software intensive systems. UML diagrams play a central role in the
whole software engineering process, starting from early analysis, through implementa-
tion, to maintenance. One of the main weaknesses of UML, pointed out by surveys of
UML use in industry, is the difficulty to express the context of a particular diagram
or to enrich it to enhance its communication value. In fact, UML does not specify
effective ways to express contextual information (e.g., project management indicators,
quality indicators). To express this kind of information in a particular visual language,
the Cognitive Dimensions framework proposes to use its secondary notation: the visual
variables that are not used by the language. Unfortunately, in UML, this secondary
notation is not controlled. The first contribution of this thesis showed - via an empirical
study - that this results in a big variety of usages of these visual variables and mostly, in
not effective ways. It also showed that UML practitioners acknowledge the importance
of the secondary notation in their practice while confirming their lack of knowledge
about the associated effective practices. In this thesis, we refer to the Semiology of
Graphics (SoG) in order to target an optimal use of the UML secondary notation.
The framework SoG-UML is the result of our adaptation of the SoG to UML via 61
guidelines about the use of the visual variables in this language. We have realized a
first experiment to validate a part of these guidelines. Finally, we propose Fliplayers
and an interactive keys, two Papyrus plug-ins that respectively implement the layers
mechanism and the construction of "effective" keys.

Keywords UML, Cognitive Effectiveness, Visual variables, UML secondary nota-
tion, Semiology of Graphics.

Résumé - Le standard UML est un langage visuel de modélisation pour spéci-
fier, construire et documenter des systèmes logiciels. Une des faiblesses importantes
d’UML identifiées par les études de la pratique réelle d’UML concerne la difficulté à
spécifier le contexte pour un diagramme donnée ou à l’enrichir pour améliorer sa valeur
communicationnelle. En effet, UML ne dispose pas de mécanismes efficaces pour ex-
primer ce genre de données (exp. les indicateurs de gestion de projets, les indicateurs
de qualité). Pour les exprimer dans un langage visuel donné, le framework des di-
mensions cognitives propose d’utiliser sa notation secondaire : les variables visuelles
que le langage n’emploie pas. Malheureusement pour UML, cette notation secondaire
n’est pas régulée. La première contribution de la thèse a montré - à travers une étude
empirique - que ceci résulte en une grande variété d’utilisation de ces variables et, dans
de nombreux cas, de manière non efficace. Elle a aussi montré l’importance de la no-
tation secondaire dans le quotidien des experts UML tout en confirmant leur manque
de connaissance sur les bonnes pratiques associées. Dans cette thèse, nous nous ba-
sons sur la sémiologie graphique afin de viser une utilisation optimale de la notation
secondaire d’UML. Le framework SoG-UML est le résultat de notre adaptation de la
sémiologie à UML via 61 directives pour l’utilisation de variations visuelles dans ce
langage. Nous avons réalisé une première expérimentation pour valider une partie de
ces directives. Enfin, nous proposons Fliplayers et la légende interactive, deux plugins
Papyrus proposant respectivement un mécanisme de calques et la construction de lé-
gendes « efficaces ».

Mots clésUML, Efficacité cognitive, Variables visuelles, Notation secondaire d’UML,
Sémiologie graphique.

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Context
	Problem statement
	Research questions
	Contributions
	Outline of the thesis

	The visual variables in the practice of UML
	Design methodology
	The qualitative study
	The quantitative study
	Discussion of the results
	Conclusion

	State of the art
	Software engineering
	The Semiology of Graphics (SoG)

	SoG-UML: Semiological guidelines for the visual enrichment of UML diagrams
	The UML concrete syntax: an exhaustive classification
	SoG-UML
	SoG-UML: Color
	SoG-UML: Brightness
	SoG-UML: Size
	SoG-UML: Grain
	SoG-UML: Orientation
	Superposition of UML nodes
	Combinations of the retinal variables
	Summary
	Discussion

	Evaluation
	Lessons learned from a conducted experiment
	Experiment definition
	Experiment design
	Color and UML: A quantitative experiment
	Summary

	Implementations
	FlipLayers
	Interactive keys for UML diagrams

	Conclusion
	Conclusions
	Perspectives

	Bibliography
	Appendix
	Summary of SoG-UML guidelines

