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A B S T R A C T

Stochastic modelling of non-spherical particles in turbulence: The motion of small non-
spherical particles suspended in a turbulent flow is relevant for a large variety of natural
and industrial applications such as aerosol dynamics in respiration, red blood cells motion,
plankton dynamics, ice in clouds, combustion, to name a few. Anisotropic particles react on
turbulent flows in complex ways, which depend on a wide range of parameters (shape, inertia,
fluid shear). Inertia-free particles, with size smaller than the Kolmogorov length, follow the
fluid motion with an orientation generally defined by the local turbulent velocity gradient.
Therefore, this thesis is focused on the dynamics of these objects in turbulence exploiting
stochastic Lagrangian methods. The development of a model that can be used as predictive tool
in industrial computational fluid dynamics (CFD) is highly valuable for practical applications
in engineering. Models that reach an acceptable compromise between simplicity and accuracy
are needed for progressing in the field of medical, environmental and industrial processes.

The formulation of a stochastic orientation model is studied in two-dimensional turbulent
flow with homogeneous shear, where results are compared with direct numerical simulations
(DNS). Finding analytical results, scrutinising the effect of the anisotropies when they are
included in the model, and extending the notion of rotational dynamics in the stochastic
framework, are subjects addressed in our work. Analytical results give a reasonable qualitative
response, even if the diffusion model is not designed to reproduce the non-Gaussian features
of the DNS experiments.

The extension to the three-dimensional case showed that the implementation of efficient
numerical schemes in 3D models is far from straightforward. The introduction of a numerical
scheme with the capability to preserve the dynamics at reasonable computational costs has been
devised and the convergence analysed. A scheme of splitting decomposition of the stochastic
differential equations (SDE) has been developed to overcome the typical instability problems
of the Euler–Maruyama method, obtaining a mean-square convergence of order 1/2 and a
weakly convergence of order 1, as expected. Finally, model and numerical scheme have been
implemented in an industrial CFD code (Code_Saturne) and used to study the orientational
and rotational behaviour of anisotropic inertia-free particles in an applicative prototype of
inhomogeneous turbulence, i.e. a turbulent channel flow. This real application has faced two
issues of the modelling: the numerical implementation in an industrial code, and whether and
to which extent the model is able to reproduce the DNS experiments. The stochastic Lagrangian
model for the orientation in the CFD code reproduces with some limits the orientation and
rotation statistics of the DNS.

The results of this study allows to predict the orientation and rotation of aspherical particles,
giving new insight into the prediction of large scale motions both, in two-dimensional space,
of interest for geophysical flows, and in three-dimensional industrial applications.

Keywords: Turbulent flows, anisotropic particles, wall shear, Lagrangian stochastic model,
numerical scheme for SDEs, weak and strong numerical convergence
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R É S U M É

Modélisation stochastique de particules non sphériques en turbulence: Le mouvement de
petites particules non-sphériques en suspension dans un écoulement turbulent a lieu dans
une grande variété d’applications naturelles et industrielles. Par exemple, ces phénomènes
impactent la dynamique des aérosols dans l’atmosphère et dans les voies respiratoires, le
mouvement des globules rouges dans le sang, la dynamique du plancton dans l’océan, la glace
dans les nuages ou bien la combustion. Les particules anisotropes réagissent aux écoulements
turbulents de manière complexe. Leur dynamique dépend ainsi d’un large éventail de para-
mètres (forme, inertie, cisaillement du fluide). Les particules sans inertie, dont la taille est
inférieure à la longueur de Kolmogorov, suivent le mouvement du fluide avec une orientation
généralement gouvernée par le gradient local de vitesse turbulente. Cette thèse est axée sur
la dynamique de tels objets en turbulence en ayant recours à des méthodes Lagrangienes
stochastiques. Le développement d’un modèle qui peut être utilisé comme outil prédictif dans
le cadre de la dynamique de fluides numérique (CFD) au niveau industriel est d’un grand
intérêt pour les applications concrètes en ingénierie. Par ailleurs, pour progresser dans le
domaine de la médecine, de l’environnement et des procédés industriels, il est nécessaire que
ces modèles atteignent un compromis acceptable entre simplicité et précision.

La formulation d’un modèle stochastique pour l’orientation de telles particules est tout
d’abord présentée dans le cadre d’un écoulement turbulent bidimensionnel avec un cisaillement
homogène. Des simulations numériques directes (DNS) sont produites pour guider et évaluer
la proposition de modèle. Les questions abordés dans ce travail portent sur la représentation
de formes analytiques du modèle, sur les effets des anisotropies inclues dans le modèle, et
sur l’extension de la notion de dynamique rotationnelle dans le cadre de cette approche
stochastique. Les résultats obtenus avec le modèle, comparés avec la DNS, produisent une
réponse qualitative acceptable, même si ce modèle diffusif n’est pas conçu pour reproduire les
caractéristiques non-gaussiennes des expériences numériques (DNS).

L’extension au cas tridimensionnel du modèle d’orientation pose le problème de son implé-
mentation numérique efficace. Dans ce travail, un schéma numérique capable de simuler la
dynamique d’orientation de telles particules, à un coût de calcul raisonnable, est introduit.
La convergence de ce schéma est également analysée. Pour ce faire, un schéma fondé sur
la décomposition de la dynamique a été développé pour résoudre les équations différen-
tielles stochastiques (EDS) de rotation de ces particules. Cette décomposition permet de
surmonter les problèmes d’instabilité typiques de la méthode Euler–Maruyama; on a ainsi
obtenu une convergence en norme L2 d’ordre 1/2 et une convergence faible d’ordre 1, comme
classiquement attendu. Enfin, le schéma numérique a été implémenté dans un code CFD
industriel (Code_Saturne). Ce modèle a ensuite été utilisé pour étudier l’orientation et la rotation
de particules anisotropes sans inertie dans le cas d’un écoulement turbulent inhomogène, à
savoir un écoulement de canal plan turbulent. Cette application dans un cas pratique a permis
de mettre en evidence deux difficultés liées au modèle : d’abord, l’implémentation numérique
dans un code industriel, ensuite la capacité du modèle à reproduire les expériences numériques
obtenues par DNS. Ainsi, le modèle stochastique Lagrangien pour l’orientation de sphéroïdes
implémenté dans Code_Saturne permet de reproduire, avec certaines limites, les statistiques
d’orientation et de rotation de sphéroïdes mesurées dans la DNS.

Cette thèse propose un modèle et son implémentation numérique, permettant de prédire
l’orientation et la rotation de particules non-sphériques dans un contexte turbulent, ouvrant
ainsi la voie vers une meilleure prédiction des mouvements de tels objets à grande échelle à la
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fois dans le cas bidimensionnel (avec des applications dans les écoulements géophysiques) et
dans le cas tridimensionnel (avec des applications industrielles).

Keywords: Écoulement turbulent, particules anisotropes, écoulement de paroi, modèles Lag-
rangiens stochastiques, schémas numériques pour les EDS, analyse de convergence faible et
forte
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1I N T R O D U C T I O N

A thorough understanding of the behaviour of two-phase systems, made up by discrete objects
as fibres and particles in a wide range of shapes and sizes (polymeric chains, solid particles,
droplets or bubbles) in a turbulent fluid flow, is a challenging, open issue of interest for many
environmental, biological, physical and industrial processes.

Pollutant transport by atmospheric flows, ice crystals in clouds, colloidal particle dynamics
in filtration systems, combustion, design of new material-surface properties, plankton motion
in oceans, red blood flow through blood vessels are example of possible applications of two-
phase flows. In all of these fields, the knowledge of the complex dynamics of non-spherical
particles suspended in a turbulent flow is crucial for any novel device and any technological
advancement.

One of the most striking examples of the dispersed two-phase flow is represented by the
water cycle (ice, water, vapour), involving several situations, including the air/ocean interface,
and the precipitation (evaporation, condensation and formation of clouds and rain). Here
droplets in a very wide dimension range, also departing from sphericity, are an example of
poly-dispersed two-phase flow. Raindrop size distributions are key elements for a reliable
precipitation prediction, and inputs to hydrological and environmental modelling.

A second example of two-phase flow is the dynamics of eruptions and ashes dispersion in
the atmosphere. The motion of liquid magma inside the chimney, together with formation of a
bubbly regime, and the subsequent stream of hot gases with particles of a large variety in size
and shape, represent a vivid illustration of a poly-dispersed multi-phase turbulent flow, whose
predictions of the spread in the atmosphere are of utmost importance for air traffic.

A relevant industrial example is brought by boilers used in thermal generation. In a combus-
tion chamber, inert sand and solid fuel or coal particles of different sizes are transported by an
injected gas, as we can see in Fig. 1.1 (left panel). Optimal use of the process that guarantees
a minimum of pollutants is based on the dynamics of the flow of solid particles inside the
boiler, which are separated and eventually reinserted in the cycle. Methods of simulating these
processes are really needed to improve the efficiency.

Another field of interest is the cavitation problem, concerning the evolution of bubbles and
whether they grow or collapse in the flow, as displayed in Fig. 1.1 (right panel). Severe erosions
of turbine blades and propellers can be caused by bubble collapse on the material surface and
avoided by in-depth research on the cavitating flow in thermosensitive fluids.

Pumping clogging is equally an ongoing subject of investigation, extensively studied to
optimise the geometries for the flow passage that can resist clogging by foreign substances, and
in many cases fibrous materials. Due the high cost of testing the anti-clogging performance of
pump designs, developing models and performing simulations in industrial codes is highly
required.

The disperse two-phase flows show complex phenomena associated to both, transport of
particles by fluid motion, and particle-particle interactions. Fluid-particle interactions have
the potentiality to modify particle shape, temperature, composition as well as the fluid local
Reynolds number, phase and density. Particle-particle interactions can lead to agglomeration
or fragmentation in case of solid particles, and to coalescence or break-up of droplets and
bubbles. It is easy to imagine that complexity is prone to be afforded by a variety of methods.
In fact, the description levels attempted to study turbulent flows in physics span from the
microscopic to the mesoscopic and macroscopic scales, greatly differing in the information

1



2 introduction

Figure 1.1: Left panel: Example of fly ash particles within boiler’s combustion chamber generated by
burning the molten pulverized mineral coal in electric power generating plants. Image reproduced
from Dong et al. (2013). Right panel: Example of cavitation on marine propeller at different angular
speed of the propeller. Image reproduced from van Terwisga et al. (2021).

content, assumptions, kind of description, and techniques developed for data simulation and
data analysis.

Using the terminology in the realm of the classical statistical physics, at the microscopic
scale, molecular dynamics (MD) has been studied and typical molecular behaviour investig-
ated in terms of global variables of the molecule ensemble, as mean molecular free path or
inter-collision time. The mesoscopic level of description is intermediate, and replaces molecular
dynamics with stochastic models in which distribution functions carry out particle informations
evolving in turbulence. A variety of models as, among the others, the Smoothed Particle Hy-
drodynamics (SPH) or the Dissipative Particles Dynamics (DPD), Stochastic Rotation Dynamics
(SRD), Smoothed Dissipative Particle Dynamics (SDPD), has been worked out. The macro-
scopic level, finally, supersedes any microscopic information with locally averaged variables,
representing very large ensembles of molecules, and is the case treated by the Navier–Stokes
equations.

1.1 hydrodynamical levels of description

Three levels of descriptions are also used in the study of single-phase and disperse two-phase
flow turbulence. In this case the classification refers to the degrees of freedom rather than to
physical scales. The microscopic approach deals with all degrees of freedom considered in
the formulation, while mesoscopic approach applies some form of reduction of variables, and
macroscopic models study relations among averaged quantities.

The complete solution of the Navier–Stokes equations corresponds to the microscopic level
of description of single-phase turbulent flows, since all degrees of freedom are calculated.
Numerical simulations are used to solve the equations (Direct Numerical Simulations, DNS),
with appropriate initial and boundary conditions, producing single realisations of the flow,
eventually analysed by statistical methods. In principle, it is possible to simulate the degrees of
freedom of a fine-grained model relying on the mathematical description of the phenomena
through the Navier-Stokes equations. In practice, when a large number of particles moves
into a high Reynolds-number flow, the problem becomes rapidly untractable, as the computa-
tional time increases approximately with Re11/4. Therefore, considering that most of the real
life turbulent flows have high Reynolds numbers, variables-reduction techniques have been
introduced, and the macroscopic and mesoscopic approaches developed.
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Fig. 1 Effect of filtering of the flow structures (identified by means of a 2D slice of the fluid vorticity) in HIT. a DNS, no filter
applied, b LES with filter width ! = 5ηK , c LES with filter width ! = 10ηK , where ηK is the Kolmogorov length scale. The
progressive loss of small-scale details of the flow, which are not felt by the Lagrangian particles as they evolve within the fluid
domain, is apparent. Reprinted from [18]

to describe the physics of the dispersed phase in terms of kinetic equations. The macroscopic model is then
obtained from the mesoscopic model using an averaging procedure to obtain the moments of the density
function appearing in the kinetic equations (for instance, the zero-order moment of the density function is
related to concentration, the first-order moment to the mean momentum) [35]. Recent work [82,83] has shown
that particle kinetic variables alone are not sufficient to ensure well-posedness of the model: Rather, extended
formulations, in which additional variables related to the underlying turbulent flow (like the fluid velocity
seen by a particle along its trajectory) appear in the particle state vector, should be adopted in line with what
is currently done in Lagrangian formulations [82,83,86]. Such hierarchical structure is the starting point for
several simulation techniques, which are discussed at length in [35]. Here, we are interested in Euler–Lagrange
(EL) simulations based on large-eddy simulation (LES) of turbulence. The reader is referred to [124] for a
comprehensive account of the theoretical foundation, modelling issues, and numerical implementation of the
Eulerian–Lagrangian approach for multiphase flows in this context. LES has emerged as a powerful simulation
technique that allows lower computational cost compared with microscopic models based on direct numerical
simulation (DNS) while retaining good statistical accuracy. This is because LES is based on the concept of
spatial filtering, by which a low-pass filter is applied to separate the flow into large-scale motions that are
directly computed (resolved on the computational grid using filtered flow equations) from small subgrid scale
(SGS) motions whose effects are modelled [97]. A visualization of LES spatial filtering effects is provided in
Fig. 1, which shows the impact on the flow structures in homogeneous isotropic turbulence (referred to as HIT
hereinafter) for different filter widths [18].

The use of LES is particularly justified in practical applications dealing with turbulent flows (shear-
dominated flows [94] or reacting flows controlled by large-scale mixing [95], in particular), where the sta-
tistical properties of the larger and most energetic scales are of interest. In order to accurately describe the
large scales, one must model the small scales in a faithful way. Due to the complex statistical properties of
turbulence, many models and methodologies have been proposed in the past (see [35,68,78,80,94–96] for a
comprehensive review). While none of the models is proposed can be considered as a substitute for DNS, still
the performance of some models can be considered fairly accurate: For instance, as far as the most common
Eulerian turbulence statistics in flows where the rate-controlling processes occur in the resolved large scales
are concerned [47,96]. Modelling capabilities are much less established in flows where these processes occur
at the smallest scales (e.g. molecular mixing and chemical reactions in turbulent combustion at high Reynolds
and Damkohler numbers [67,88,95,96,103,104], droplet break-up in liquid spray atomization at high Weber
number [7,15] or momentum transfer in near-wall flows at high Reynolds number [58,96]).

In this review, we focus on LES modelling for two-phase dispersed flows, where the dynamics of the
dispersed phase is intricately linked to the interplay that occurs between particles and turbulence at the particle
scale [20,48,74,120]. Modelling issues arise when spatial filtering affects such interplay, preventing particles
from interactingwith the unresolved SGS structures. As a result, particle trajectories in LESfields progressively
diverge from those that would have been obtained in a laboratory experiment or in DNS (regarded as exact
numerical experiment [76]). In the EL framework, trajectory divergence is mainly due to inaccurate estimation

Figure 1.2: Effect of filtering of the flow structures (identified by means of a 2D slice of the fluid
vorticity) in HIT. In (a) DNS, no filter applied, (b) LES with filter width ∆ = 5ηK , (c) LES with filter width
∆ = 10ηK , where ηK is the Kolmogorov length scale. The progressive loss of small-scale details of the
flow, which are not felt by the Lagrangian particles as they evolve within the fluid domain, is apparent.
Image reproduced from Calzavarini et al. (2011).

The macroscopic level deals with mean-flow equations, as conceived in the fundamental work
of Reynolds in 1894. The Reynolds-averaged Navier-Stokes (RANS) approaches provide insights
on the mean-flow evolution, sensitive mostly to the geometry of the flow domain, boundary
and external conditions. In RANS, flow variables are split into mean and fluctuating parts
using Reynolds-decomposition. The insertion of decomposed variables into the Navier-Stokes
equations, followed by an averaging, gives rise to the closure problem of Reynolds-stress tensor.
RANS models are widely used in industrial applications where the geometry and physics of
the problem are complicated, and the averaged flow variables are helpful to characterise the
system.

Mesoscopic approaches address more particle-turbulence interaction details than mean
values treated by the RANS. Simulations of particle interactions with fluid fields are grid-
based and characterised by a mesh-length determining the spatial resolution of the model.
Deterministic and stochastic components are both present, with the stochastic contribution
obtained from direct simulation of large-scale processes. Filtering functions are used by the
large-eddy simulations (LES) to define the spatial grid. Large scale motions, on the scale of
the mesh-length, are explicitly treated while the others are modelled by sub-grid scale (SGS)
fields description. A visualisation of LES spatial filtering effects is provided in Fig.1.2, which
shows the impact on the flow structures in homogeneous isotropic turbulence for different filter
widths. The underlying concept is that only SGS interactions, in the inertial and dissipative
regime, are universal and prone to be modelled. LES constitutes nowadays a widespread
technique, with affordable computational costs and good predictivity, including statistical
fluctuations pertaining to the large-scale phenomena. LES is well suited to study those practical
applications with shear-dominated flows and turbulence reacting by large-scale mixing, where
the simulation of statistical properties on large-scales is really relevant.

Alternative mesoscopic models, which lies in between DNS/LES and RANS methods, have
been developed with the purpose to reintroduce information on the whole range of fluctuations.
These approaches are referred to as PDF and FDF methods, where their name derive from
the information that they produce, which indicates that they aim at simulating the probability
density function (PDF) and the filtered density function (FDF). Compared to the previous
approaches, they are formulated in terms of particle systems where stochastic models are used
to represent the evolution of the instantaneous variables attached to each particle. Although the
interest of these methods is marked for scalar variables when single-phase reactive flows are



4 introduction

involved, in the following we essentially concentrate on the dynamical variables which are the
positions and velocities of a large number of fluid particles. Central to these methods are the
stochastic Lagrangian models, which involve new concepts and require additional mathematical
tools. The mathematical background comes from the concepts of diffusion processes and stochastic
differential equations (SDE). One of the simplest Lagrangian stochastic models is the Langevin
equation, which provides a model for the velocity following the motion of a fluid particle. These
methods are commonly used for predicting the disperse two-phase flows since the Lagrangian
point of view seems a natural choice when an ensemble of ‘real’ particles are embedded in a
flow.

1.2 outline of the thesis

The goal of this thesis is to study the dynamics of small non-spherical particles suspended in a
turbulent flow which is relevant to many natural and industrial processes, ranging from the
deposition of aerosol in respiratory organs and the motion of red blood cells travelling through
blood vessels, to plankton dynamics in ocean, ice-crystal formation in clouds, combustion
systems, distribution of cellulose fibres in paper, and pulp industry.

In particular my interest focuses on the modelling of the dynamics of non-spherical particles
in turbulence by means of the stochastic Lagrangian approach. The dissertation starts with a
brief excursus on most intriguing results concerning particles with non-spherical shape and on
recent advances in their modelling. Firstly, a coarse-grained stochastic model to describe the
dynamics of non-spherical particle is introduced. In two-dimensional case, analytical results
are discussed against DNS. Secondly, a numerical scheme for the model, extended to the
three-dimensional case, is developed and examined by investigating its numerical convergence.
Finally, the model is implemented in an industrial CFD code (Code_Saturne), where both,
modelling challenges, and numerical issues are faced. Indeed, the behaviour of both, the
physical model and its numerical scheme are examined in the practical context of a turbulent
channel flow.

General context and motivations

In Chapter 2, an overview on the motion of small (' Kolmogorov length) non-spherical
particles in turbulence is presented. Moreover, a short review on stochastic modelling ap-
proaches for small turbulent scales and their coupling with non-spherical particle dynamics
is given. Anisotropic particles react on a turbulent flow in complex ways which depend on
a wide variety of parameters, with great emphasis in literature on particle shape, inertia and
fluid shear. Inertialess particles, with a size smaller than the Kolmogorov length, behave as
tracers which passively follow the fluid motion and assume an orientation p which preferen-
tially samples certain directions defined by the local turbulent velocity gradient. This picture,
already quite intricate in the homogenous isotropic turbulence (HIT), becomes even more
difficult to treat in a turbulent channel due to the presence of near wall structures. When
inertial particles are considered, the preferential alignment changes from tracers, becoming
as inertia increases, less and less impacted by the fluid velocity gradient tensor. Furthermore,
preferential alignment causes the non-spherical particles to tumble and to spin, characterising
their rotational dynamics. Despite the advances in the studies of preferential alignment and
rotation using direct numerical simulation (DNS) in HIT and wall turbulence, the modelling
of small scale turbulence dynamics still remains an open issue. In fact, the orientation and
rotation of non-spherical particles are strongly affected by turbulent structures in the viscous
range which are not directly accessible by fluid modelling approaches.



1.2 outline of the thesis 5

From DNS perspective, computer simulations are widely used to understand and improve
the description of the complex dynamics of such processes. However, due to the limitations in
computational power, a wide range of approaches have been developed for particle dynamics
in turbulent flows, related to the multi-scale character of the problem. These models, that have
been developed for different purposes, present various levels of description and information
content. At fundamental hydrodynamic level, DNS have been largely used to get access to
a microscopic level of description by capturing all the information about the fluctuations in
space and time. Conventionally, DNS have been performed to characterise the dynamics of
non-spherical particles in reduced settings such as limited domain size, simple geometry, small
number of particles and moderate Reynolds number. Conversely, from a macroscale point of
view, our aim is to develop a model that can be used as a predictive computational tool in CFD
codes. In this framework, the fluid phase is modelled by a small set of statistical mean fields
which are described by Reynolds averaged Navier–Stokes (RANS) models. Meanwhile, the
dispersed-phase, composed by solid particles, is modelled by a set of stochastic differential
equations (SDEs) describing their dynamics. In this context, we propose an SDE which models
the orientation of an axisymmetric ellipsoidal inertialess particle in turbulent shear flows that
can be coupled to classical Lagrangian stochastic models.

Dynamics of rigid fibres in two-dimensional shear flow

Non-spherical particles transported by an anisotropic turbulent flow preferentially align with
the mean shear and intermittently tumble when the local strain fluctuates. In Chapter 3,
such intricate behaviour is studied for inertialess, rod-shaped particles embedded in a two-
dimensional turbulent flow with homogeneous shear. We start by developing a Lagrangian
stochastic model for the rods angular dynamics and its results have been compared with DNS
ones. The model consists in superposing a short-correlated random component to the steady
large-scale mean shear, and can thereby be integrated analytically. To reproduce the single-time
orientation statistics obtained from DNS, it is found that such approach has to properly account
for the effect of the mean shear onto the Lagrangian statistics of the turbulent velocity gradients.
This leads to include anisotropic correlations in noise fluctuations by measuring an effective
correlation tensor for the velocity gradient fluctuations from DNS data. The model is calibrated
by introducing a tuning parameter which has the effect of rescaling in time the diffusion part
with respect to the drift one, and the results are compared with DNS. Then, the model is used to
address the two-time statistics of the rods orientation. Besides, to extend the notion of rotation
rate statistics, an alternative definition with respect to what has been previously investigated
in DNS literature under the notion of ‘tumbling rate’ has been proposed. It allows to identify
the mode of rotation in the stochastic model. Indeed, the tumbling rate can be associated to the
stationary probability flux of the rods unfolded angle. While the complex behaviour observed
in the DNS indicates a stretched-exponential tails in the probability distribution of the unfolded
angle in a diffusive regime, the diffusion model gives a reasonable qualitative response, even if
it is not designed to reproduce the characteristics of the Lévy walk.

Lagrangian stochastic model: an efficient numerical method

Chapter 4 focuses on studying and developing a semi-implicit splitting numerical method
to integrate in time the non-linear SDE which forms the particle’s orientation model in three
dimensional case. Moreover, in the same spirit of Chapter 3, an alternative definition of the
rotational modes of a non-spherical particle in three dimensions has been introduced for the
stochastic model and its numerical convergence has been analysed. Interestingly, the solution
of the SDE is constrained to stay on a manifold SO(3) which arises a significant issue whether
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or not this geometric constraint is preserved by the numerical scheme used. Classical Euler–
Maruyama method commonly fails to converge with optimal rate or eventually diverges, when
coefficients have non-bounded first derivative (i.e., globally Lipschitz condition fails). This
last scenario includes the SDE orientation model, that involves polynomial coefficients. Thus,
specific numerical methods need to be tailored for this problem. We construct a scheme by
using the splitting decomposition of the SDE. The numerical scheme is shown to be mean-
square convergent of order 1/2 and weakly convergent with order 1, pointing the ability of
the proposed method to preserve the geometric features with a reasonable computational cost.
Moreover, the long time behaviour has been analysed by observing the marginal probability
density functions in time. These converge to the invariant measures which have been derived
analytically. In the last part of the work, the model and its numerical scheme is illustrated
in a semi-real applicative case by considering the non-spherical particles embedded in a
homogeneous shear flow.

Dynamics of inertialess spheroids in a channel flow

The aim of Chapter 5 is to experiment the stochastic Lagrangian model previously developed
and to study the orientational and rotational behaviour of inertialess non-spherical particles in
a turbulent channel. Whereas the translational motion of non-spherical particles is controlled
by the turbulent motion at large scales, rotational motion is determined by the fluid velocity
gradient tensor, at small scales. The latter poses a modelling challenge when predicting the
rotational dispersion of non-spherical particles by means of an hybrid Eulerian/Lagrangian
PDF method. This is due to lack of information on the velocity gradient tensor, which is
dominated by the turbulence structure in the viscous range. The proposed stochastic model
in Chapter 3 and its numerical scheme discussed in Chapter 4 have been implemented in an
industrial CFD code (Code_Saturne) and detailed comparisons with DNS are carried out. Indeed,
this last part of the work represents the bridge between two different issues of the modelling:
the first concerns whether and to which extent the model is able to reproduce (features of the)
‘reality’; the second is about its numerical implementation within an industrial code framework.
Moreover, a detailed statistical investigation on the orientation and rotation has been performed
by considering the mean-field information by filtering the DNS dataset, which can be treated
as a ‘perfect’ RANS providing finer details on time-filtered DNS trajectories, as well as on the
mean velocity gradient tensor in the buffer layer. The DNS results indicate that, similarly to
earlier studies, rod-like particles preferentially align their symmetric axes parallel to the wall,
whereas disk-like particles were normal to the wall.

The shape-dependence of the particle orientations affects their rotation where two qualit-
atively different modes of rotations are found, at the centre and near the wall, respectively.
The stochastic differential equation (SDE) model for the orientation reproduces, with some
limits, the orientation and rotation statistics out of the viscous layer employing ‘perfect’ RANS
approach. Conversely, for the RANS case, results are less close to DNS, due to its limit to
reproduce the mean-field above the turbulent log-layer. The aforementioned findings reveal the
time-reversal invariance of the model that constitutes a major limit of the model for accurately
reproducing the distinctive behaviour of rod- and disk-like particles.
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Outline. In this chapter we present an overview about the motion of small ('
Kolmogorov length) non-spherical particles in turbulent flows. There is a vast lit-
erature about this, since the study of the dynamics of such particles is relevant in
many natural and industrial applications. Non-spherical particles interact with turbu-
lent flows in a complex way, depending on a wide variety parameters; namely their
shape, inertia and fluid shear. We will discuss about how the orientation and rotation
dynamics of both inertial and inertialess particles can be described, for the particular
case of spheroidal particles. Then, we will investigate how the preferential orientation
is affected by the turbulent velocity gradient in homogeneous and inhomogeneous
turbulent flows, as well as the associated rotational rate statistics. To conclude, we will
list existing stochastic modelling approaches for non-spherical particles in turbulence
and their importance in order to make the study of orientation accessible within the
industrial framework.

2.1 introduction

The investigation of aerosol transport processes has attracted considerable attention since
they are relevant for the understanding and for the optimization of many environmental and
industrial applications. Industrial processes include the combustion of pulverised solid fuels
(Stein et al. (2013), polymers processing (Jarecki et al. (2012)), molding of fibre-reinforced
composites (Yashiro et al. (2012)) or colloidal particles deposition/resuspension for filtration
systems, as well as spray cooling processes (Henry et al. (2012)). Aerosol transport is also
affecting natural phenomena, including dust storms (Lu and Shao (2001)), ice-crystal in clouds
(Pinsky and Khain (1998); Korolev et al. (2003)) or plankton in the oceans (Jumars et al. (2009);
Guasto et al. (2012)). These examples are only few of the fields in which the knowledge
of particle dispersion plays a crucial role. Such kind of flows (referred to as polydispersed
two-phase flows), are made of discrete particles (solid particles, droplets, bubbles), all having a
wide range of sizes and shapes embedded in a turbulent fluid flow.

The particles behaviour is expected to be affected by their size and shape, deformability,
translational/rotational diffusivity, collision rate, aggregation or fragmentation, electrostatic
force and gravitational acceleration (Minier (2016)). Most of the works on particle dispersion
in fluids deals with idealized spherical particles (Balachandar and Eaton (2010)); however,
as one can expect, most natural and industrial solid aerosol particles are non-spherical. The
shape and orientation of particles can affect industrial processes, as in papermaking where
mechanical properties are regulated by the alignment of the cellulose fibres in the pulp (Lundell
et al. (2011)), or in the case of fractal soot emitted by combustion engines, where shape and
orientation determine the radiative properties of the aerosols (Moffet and Prather (2009)). The
non-spherical shape plays an important role in the study of the dispersion of pollen and seeds
(Sabban et al. (2017)), the dynamics of ice clouds (Heymsfield (1977)), the lifecycle of diatom
plankton (Musielak et al. (2009)) and sediment transport in rivers (Vercruysse et al. (2017)).
Moreover, the addition of fibres in a fluid flow can significantly alter the suspension rheology
(Butler and Snook (2018); Daghooghi and Borazjani (2015)).

7
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Figure 2.1: Sketch of spheroid shapes used to investigate the dynamics of anisotropic particles with p,
the unit vector along their symmetric axis, and their possible rotations. In (a) prolate ellipsoid with λ > 1
corresponds to rigid rod; (b) spherical particle with λ = 1 and (c) oblate ellipsoid with λ < 1 corresponds
to rigid disk. The tumbling motion is referred to the rotations Ωx′ and Ωy′ ; the spinning motion is referred
to the rotation Ωz′ .

Beyond the complexity of turbulence and two-phase flow with spherical particles, which
is already a challenging problem to solve, the motion of non-spherical particles in turbulent
flows is even more intricate, due to their rotational dynamics that is already complicated in
simple laminar flows. The presence of turbulence makes the problem even more challenging,
with forces and torques that vary according to the particle orientation. In particular, within
this intriguing framework, we want to focus our attention on a crucial issue for non-spherical
particles in turbulence: the investigation of translation, orientation and rotation of small
spheroidal particles at low concentration in turbulent flows. We are going to assume that the
suspension of spheroidal particles is diluted, with particle size smaller than the Kolmogorov
length scale. In other words, we are considering a one-way coupling where the feedback from
spheroidal particles on the fluid phase is ignored and particle-particle collisions neglected.

It is worthwhile to mention that the assumption of small spheroidal particle is fundamental
to justify point-particle approach, since when particles have at least one dimension larger
than the Kolmogorov length scale, they interact with the non-linear spatial variation of the
velocity field. Conversely, large particles have been studied with particle-resolved approach
(Tenneti and Subramaniam (2014)). The exception is the slender rod limit, for which Olson and
Kerekes (1998) and Shin and Koch (2005) develop expressions for the response of a thin fibre
to a spatially varying velocity field.

A spheroid, i.e. an axisymmetric ellipsoid, is often adopted as a model of non-spherical
particle, nonetheless many others shapes have been considered, we refer to Jeffery (1922);
Bretherton (1962); Brenner (1963); Harris and Pittman (1975); Chevillard and Meneveau (2013),
to name a few. Any spheroid shape is parametrised by a single aspect ratio λ = b/a, defined as
the ratio of the distance from centre to the pole along the symmetry axis b and the equatorial
radius of spheroids with semi-axis a. The aspect ratio λ > 1 corresponds to a prolate spheroid
or fibre (Fig. 2.1a), λ = 1 to a sphere (Fig. 2.1b) and λ < 1 corresponds to an oblate spheroid
or disk (Fig. 2.1c). The rotations of axisymmetric particles are naturally decomposed into a
component along the symmetry axis, called spinning, and components perpendicular to the
symmetry axis, called tumbling (see Fig. 2.1).

The study of non-spherical particles suspended in a viscous fluid flow has been a topic for
research through many decades. The case of an ellipsoidal particle immersed in a creeping
viscous fluid was studied by Jeffery (1922). In addition, analytical work on particles of different
shapes has been investigated by Brenner (1963, 1964a) and a general monograph on the subject
has been provided by Happel and Brenner (1973). All these different analytical studies assume
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Stokes flow conditions around the particles, i.e. particles are assumed small enough so that
inertial effect and rotational diffusion can be neglected. Many researchers have subsequently
extended these works to study non-spherical particle suspensions in more general terms,
considering inertial effects and turbulent flow. For example, Karnis et al. (1963, 1966) observed
that at large Reynolds number, inertial effects become significant, so that the behaviour of
non-spherical particles differs from the Jeffery’s theory.

Inertialess and inertial particles imply a different treatment of the problem, leading to a
distinct kind of dynamics. In general, solid particles are usually identified by a characteristic
particle response (or relaxation) time τp, which is the response of the particle to perturbations
produced by the underlying turbulence, and the flow Reynolds number. The particle Stokes
number, St, is then the ratio of the particle response time τp, to a characteristic time of the flow,
τf . This relaxation time for a spheroidal particle depends on the particle shape and can be
expressed analytically (Shapiro and Goldenberg (1993)) for either oblate or prolate spheroids as
a function of particle aspect ratio (λ). Conversely, for inertia-free particles (St = 0) the relaxation
time τp is much shorter than the shortest time scale of turbulence, i.e. the Kolmogorov time scale
τη , and the particle responds almost immediately to turbulent fluctuations. Such inertia-free
particles are often referred to as tracers since they passively translate along with the flow.

In general, turbulent dispersed flows are characterised by a wide range of length- and
time-scales that bring to a possible classification according to different levels of descriptions
(or information contents). Details span from microscopic to macroscopic levels, with a possible
intermediate step constituted by mesoscopic descriptions (Fox (2012)).

In principle, all levels of coupling between particles and fluid can be applied to the three
different approaches for the description of turbulence. Firstly, the microscopic approach deals
with all details of the flow around each particle and resolves all scales of fluid motion up to the
Kolmogorov scale by means of direct numerical simulations (DNS). Secondly, the mesoscopic
description resorts to a filtered fluid velocity, as in large-eddy simulations (LES). In this case,
the fluid velocity at the particle position is not exactly known, being replaced by its filtered
value. Finally, the macroscopic approach, giving a statistical description of the fluid flow, is
employed, based on the Reynolds-averaged Navier-Stokes equation (RANS) and additional
models for the effects of the turbulence on the particles need to be developed.

Alternatively, at either mesoscopic or macroscopic level, Lagrangian stochastic models can be
used for both, single-phase, and dispersed two-phase turbulent flows (Minier and Peirano
(2001)). These approaches are referred to as PDF (Probability Density Function) methods,
since pdfs of relevant variables are simulated, giving a statistical description of either single-
and two-phase flows. Moreover, for the dispersed two-phase flows, Lagrangian stochastic
models have been developed in the context of RANS, and also used within LES framework for
extending predictivity to particle dynamics.

Following the growing interest in the subject, different physical and numerical modelling
approaches have been used to study the motion of non-spherical particle in various flow fields.
A modern exhaustive review of these models used to describe non-spherical particles motion,
alongside with numerical and experimental methods for measuring particle dynamics, has
been done by Voth and Soldati (2017).

Direct numerical simulations have been largely used to study many aspects of the motion of
non-spherical particles in turbulent flow. In particular, a wide range of classes of spheroids (in
terms of their aspect ratio) have been considered using this approach, where the particles are
characterised either by the presence of inertia (quantified by the particle relaxation time τp) or
by the absence of inertia, and both are transported in flows with different levels of turbulence.

The dynamics of tracers spheroidal particles in homogeneous isotropic turbulence (HIT) has
been subjected to several numerical studies (Shin and Koch (2005); Pumir and Wilkinson (2011);
Chevillard and Meneveau (2013); Gustavsson et al. (2014); Ni et al. (2014); Byron et al. (2015)).
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Moreover, tracers particles were investigated by Challabotla et al. (2015b) and Zhao et al. (2015)
in turbulent channel flow. On the other hand, the majority of the literature on the dynamics of
inertial spheroidal particles has been performed in turbulent channel flow (Mortensen et al.
(2008); Marchioli and Soldati (2013)).

At the same time, a wide variety of experimental measurements have been developed for
determining the motion of non-spherical particles. The full motion has been studied by Marcus
et al. (2014), where they measure the orientation and rotation of spheroidal particles across a
range of aspect ratio in the HIT framework. Conversely, with respect to inhomogeneous flows,
Carlsson et al. (2010a) provide some measurements on fibre orientation in the bulk and near
wall regions of headbox geometry relevant to the paper industries.

Currently, fully resolved simulations in multiphase flows (based on DNS approach for
the fluid and Lagrangian particle tracking for the solid particle phase) are computationally
expensive approaches. Indeed, these methods are not designed to handle suspensions of a
large number of small finite size particles, as often met in engineering applications, and as
required to obtain reliable particle statistics in a turbulent flow environment. Among very
practical applications, Asgharian and Anijilvel (1995) analysed the deposition of fibres in
human and rat airways developing an empirical formulation of the problem. Moreover, more
analytical work has been done by Tian et al. (2012) using commercial CFD software to study
low Reynolds number flows in a circular duct reporting that the particle aspect ratio, different
size of particles and particle-to-fluid density ratio, all these situations significantly affect the
transport and deposition of non-spherical particles. A similar kind of investigation at a high
shear Reynolds number, with an approach based on LES to predict a fully developed solid-gas
flow in a channel geometry has been conducted by Njobuenwu and Fairweather (2015, 2016).

This chapter is organised as follows: Section 2.2 reports the two different mathematical
models largely used to describe the orientation and rotation dynamics of inertial and iner-
tialess spheroidal particles, respectively. Furthermore, an alternative approach to describe
the orientation dynamics of non-spherical tracers particles is provided. In Section 2.3, the
preferential orientation in homogeneous and inhomogeneous turbulent flows will be discussed.
Section 2.4 presents the rotation rate statistics associated to the rotational dynamics and their
strong dependence on aspect ratio. Section 2.5 highlights the statistical models used to describe
the behaviour of non-spherical particles in turbulence and their importance in order to make
accessible the study of orientation within the industrial framework. These models are strictly
related with the stochastic models for the velocity gradient tensor, for which we will list a
small existing literature. Conclusions are reported in Section 2.6.

2.2 evolution equations for anisotropic particle orientation

While different models are used to describe particle translation and rotation in turbulent flows,
here we intend to focus our attention on two models among the others, by considering as
entering parameters the particle shape and particle relaxation time; clearly the latter does not
enter in the inertialess model.

The motion of rigid fibres in a turbulent flow is commonly studied through an Eulerian-
Lagrangian approach (Balachandar and Eaton (2010)). The Eulerian formulation of the fluid
phase is governed by the mass and momentum conservation equations (incompressible Navier–
Stokes equations). In addition, the presence of the fibres is assumed not to affect the underling
flow, i.e. there is no reaction force from the fibres in the fluid. Therefore, the fluid particle
system is one-way coupled and we consider only dilute fibre suspensions. The particle phase
is represented in the Lagrangian framework, and fibres are modelled as point-wise spheroidal
particles given that their size is considered smaller than the Kolmogorov length scale.
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2.2.1 Inertial particles

The mathematical model for the inertial fibres has been derived from the methodology outlined
by Zhang et al. (2001) and subsequently adopted by Mortensen et al. (2008). The translational
and rotational motion of a single inertial fibre (in subscript p) of mass mp is governed by the
kinematic and dynamical equations of rigid-body, in vector form:

dXp

dt
= up, (2.1)

mp
dup

dt
= FD, (2.2)

d(I ′ ·Ω′p)
dt

+ Ω′p × (I ′ ·Ω′p) = N ′. (2.3)

Equation (2.2) is written in the inertial frame of reference (x = (x, y, z)) and Eq. (2.3) is
formulated in the fibre frame (x′ = (x′, y′, z′)); I ′, Ω′p and N ′ represent the moment of inertia
tensor, the angular velocity of the particle and the torque in the fibre frame, respectively. The
expressions for the torque on prolate and oblate spheroids can be found in Challabotla et al.
(2015a). For non-spherical particles, the drag force, FD can be expressed as

FD = µQᵀK ′Q
(
u− up

)
, (2.4)

where µ is the kinematic viscosity of the fluid and u is the fluid velocity at fibre position. Finally,
K ′ is the resistance tensor for spheroidal particles (Brenner (1964b); Challabotla et al. (2015a)).
The orthogonal transformation matrix Q converts particle coordinates to the co-moving frame
(Qᵀ is its transpose).

From a numerical perspective, the matrix Q has been expressed in terms of four Euler
parameters, and its time evolution was solved using rigid-body kinematic equations (e. g.,
Zhang et al. (2001); Mortensen et al. (2008); Marchioli et al. (2010)). Moreover, the associated
numerical scheme to solve the Eq. (2.2) in terms of Euler parameters uses a fourth-order Runge–
Kutta scheme, while Eq. (2.3) is solved using a mixed explicit-implicit differencing procedure
developed by Fan and Ahmadi (1995), which is specifically tailored for solving stiff ordinary
differential equations. The method has been ameliorated by Zhao and Van Wachem (2013a),
using quaternions dynamics by removing the need to explicitly compute the transformation
matrix Q, improving numerical efficiency.

2.2.2 Tracers particles

For a small tracer particle with size smaller than the Kolmogorov length scale ηK, the local flow
around the particle can be considered inertia-free and Stokes flow solutions can be used to
relate the rotational dynamics of the particle to the local velocity gradient tensor. The problem
was afforded by Jeffery, who considered spheroids, showing that particle shape enters in the
orientation dynamics through the shape parameter Λ (Jeffery (1922); Bretherton (1962)),

Λ =
λ2 − 1
λ2 + 1

. (2.5)

The shape parameter Λ takes values in the range [−1, 1], with Λ = −1 corresponding to
infinitely thin discs (λ→ 0), Λ = 0 to spherical particles and Λ = 1 to infinitely elongated rods
(λ→ ∞).

Following reference (Monin and Yaglom (2013)), we can define a mapping between Eulerian
and Lagrangian coordinatesMt0,t : x0 ∈ R3 → X ∈ R3, where X(t;x0, t0) denotes the position
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at time t of a fluid particle which was at the position X(t0;x0, t0) = x0 at the initial time t0.
Given the initial position of a fluid particle, this mapping is fully defined at any time by

dX
dt

= u(X, t). (2.6)

Then, the orientation p of a spheroidal tracer particle with a shape parameter Λ owning a
centre of mass velocity that matches the fluid velocity at the particle position, is described by
the Jeffery’s equation (Jeffery (1922)),

dp
dt

= Op+ Λ (S p− ppᵀ S p) , (2.7)

where S = (A +Aᵀ)/2 is the rate-of-strain tensor, and O = (A −Aᵀ)/2 is the rate-of-
rotation tensor which are the symmetric and antisymmetric part of the velocity gradient tensor
Aij = ∂ui/∂xj along its Lagrangian trajectory. Equation (2.7) is valid for axisymmetric particles,
and it has also been extended (new derivation) to tri-axial ellipsoid by Junk and Illner (2007).

The first term on the right-hand side of Eq. (2.7) denotes the rotation rate caused by the
vorticity and the second term denotes the rotation rate caused by the strain, where the
elongation of p due to the contribution of S is subtracted by the non linear term ppᵀ S p, such
that the orientation vector p is constrained to be a unit vector.

From a numerical point of view, in DNS, Eq. (2.7) is integrated along the particle trajectory.
The presence of a non-linear term in Eq. (2.7) requires higher order integration schemes in
time, such as second/fourth order Adam–Bashforth or Runge–Kutta (Press et al. (1986)), used
for example by Parsa et al. (2012).

As said, Eq. (2.7) is a non-linear vector equation, and it is seemingly hard to solve. However,
the non-linearity is only apparent: it is due to the geometric constraint that p is a unit vector.
The underlying dynamics is in fact linear. The vorticity O rotates p, and the strain S aligns and
stretches p towards its strongest eigendirection. The non-linear term is simply the stretching
component of the strain, which is subtracted in order to prevent elongation of p. Bretherton
(1962) realised that one may instead model the orientation of the particle with any vector q
which obeys the same linear terms, but without compensating for any elongation:

dq
dt

= (O+ ΛS) q. (2.8)

Owing to the common linear terms in Eq. (2.7) and (2.8), the vector q will have the same
angular dynamics as p. In addition, q may be stretched and compressed by the strain S. But
since we are only interested in the angular degrees of freedom, we can at any instant recover p
by normalising q to unit length. Thus, the general solution of the Jeffery’s equation is given by
solving Eq. (2.8) for q, then the solution to Eq. (2.7) is given by normalising q to unit length:

p =
q

‖q‖ . (2.9)

The advantage of this approach is that it is easier to solve the linear Eq. (2.8) than the non-linear
Eq. (2.7). In addition, this consideration is useful to present the next paragraph since it furnishes
the link between the Jeffery’s equation and the upcoming discussion.

2.2.2.1 Cauchy–Green tensor

A different picture can be adopted in order to investigate the orientation of non-spherical
particles in turbulent flows. Furthermore, we anticipate that this picture will be used in next
chapters to develop a macroscopic stochastic Lagrangian model for the orientation.
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In the case of a rod tracer particle (Λ = 1), the orientation dynamics can be reduced to the
study of a passive vector problem. Among the many applications related to the problem of
passive vectors we find the orientation of a thin rod (Parsa et al. (2011); Pumir and Wilkin-
son (2011); Einarsson et al. (2013); Gustavsson et al. (2014)), and of material line segments
(Dresselhaus and Tabor (1992); Lüthi et al. (2005)). In particular, there are two studies (Parsa
et al. (2011); Wilkinson et al. (2011)) that used the eigenvector of the Cauchy–Green strain
tensor to understand the orientation of rods in two-dimensional flows. This means that a
simple description can be used by studying the local alignment of the rod direction with the
eigenvalues of the left Cauchy–Green strain tensor (Wilkinson et al. (2009); Bezuglyy et al.
(2010); Wilkinson et al. (2011); Ni et al. (2014); Hejazi et al. (2017)), since the infinitesimally thin
rods must converge to the leading eigenvector of this tensor (Ni et al. (2014)).

D(∆t; X, t0)

x0 X(∆t;x0, t0)

êR1

êR2

êL1 ≡ p

êL2

Figure 2.2: Sketch of deformation. A fluid element at initial position x0 at time t0 is mapped to final
position X after time ∆t by the flow. The circular fluid element is also deformed by the flow to an ellipse.
The eigenvectors of the left (êL1 , êL2 ) and right (êR1 , êR2 ) Cauchy–Green tensors are shown in
two-dimensional case.

In continuous mechanics, the Eulerian coordinates system can be considered as the present
configuration, while the Lagrangian one as the configuration of reference. In the absence of
material deformation caused by the velocity field, the present (Eulerian) and the reference
(Lagrangian) frames should be the same. Thus, the effect of the velocity field is to deform
the configuration rendering the present coordinate different from the reference coordinate
frame. The transformation (deformation) tensor between the two frames contains important
information about the material deformation.

In fact, considering a fluid element (blob), having a size L much smaller than the viscous
length ηK of the velocity, that is initially spherical. After a certain time ∆t it will be stretched
into an ellipse by the flow, as in Fig. 2.2. The stretching is the ratio between the semi-major
axis of the ellipse and the radius of the circle. The evolution between the initial configuration
x0 and final one X of the blob can be described in terms of the deformation gradient tensor
Dij(t; X, t0) = ∂Xi(t;x0, t0)/∂x0

j . Then the solution of D is obtained by integrating the linear
differential equation,

dD
dt

= A(t)D(t), with intial condition D(0) = 1 (2.10)

where 1 is the identity matrix. The deformation gradient tensor describes the evolution of
the infinitesimal separation vector r between two neighbourhood points in the fluid r(t) =
D(t, t0)r(t0), where r(t0) is the initial infinitesimal separation at time t0.

The deformation gradient tensor includes both rotation and strain, D = V R = RU

(called also ‘polar decomposition’), where R is the rotational matrix and U , V are the left
and right stretch tensor respectively (Ni et al. (2014)). The left Cauchy–Green strain tensor,
C(L) = DDᵀ = V RRᵀV ᵀ = V V , has eigenvectors (êL1 , êL2 , êL3) along the principal axis
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of the ellipse formed after the fluid element is deformed over ∆t. The right Cauchy–Green
strain tensor, C(R) = DᵀD = UᵀRᵀRU = U U , has eigenvectors (êR1 , êR2 , êR3) along the
initial direction that will become the principal axis after deformation. Thus, the eigenvector
of the left Cauchy–Green strain tensor gives the preferred direction toward which a rod at
that location will rotate due to the deformation of the fluid. These two tensors have the same
eigenvalues σ1 > σ2 > σ3 > 0, corresponding to extension for the largest one, compression for
the smallest and both extension or contraction for the intermediate one. The leading eigenvector
êL1 associated to the largest eigenvalue σ1 is called Lagrangian stretching direction, while the
eigenvector êL3 that corresponds to the smallest eigenvalue σ3, is the compressing direction.
The middle one êL2 , forms an orthogonal bases with the other two. A simplified picture of this
mechanism is presented in Fig. 2.2 for two-dimensional case, where we have only stretching
and compression directions. Furthermore, the properties of these eigenvalues are of great
interest in studies of turbulence since they are directly related to the Lyapunov exponent
(Pierrehumbert and Yang (1993); Bec et al. (2006)).

It has been shown (Balkovsky and Fouxon (1999); Ni et al. (2014)) that the rod orientation
vector will be perfectly oriented along with the Lagrangian stretching direction êL1 , in the long
time limit. Thus, for a small rod (Λ = 1), when p0 is the initial direction of the rod at time t0,
the orientation at time t is given by,

p(t) =
r(t)
‖r(t)‖ , r(t) = D(t, t0)p0. (2.11)

This solution was first given by Szeri and Leal (1993) and corresponds to Eq. (2.7) for a slender
rod (Λ = 1).

2.3 preferential alignment

Non-spherical particles in turbulence are oriented by the effect of the deterministic part of
the velocity gradient tensor and randomised by the stochastic fluctuating part of it. The
preferential orientation has been widely investigated and it is the result of the competition
between the alignment by the mean velocity gradient and/or (depending on the flow field) by
the fluctuating contributions.

Tracers spheroidal particles are randomly oriented with respect to the laboratory frame
of reference in homogeneous isotropic turbulence (HIT). Nonetheless, the complex angular
dynamics has been investigated, using DNS, in terms of the alignment with respect to the
vorticity vector ω and the eigensystem of strain rate S. Pumir and Wilkinson (2011) integrate
Eq. (2.7) for rods-like particles (Λ = 1) studying how slender rods induce a preferential
alignment with the local velocity gradient tensor. In particular, it has been shown that rod-like
particles tend to align their symmetry axis p with the instantaneous vorticity vector of turbulent
flow ω = ∇× u (Pumir and Wilkinson (2011); Parsa et al. (2012); Byron et al. (2015)), whereas
disk-like particles preferentially orient p perpendicular to ω (Gustavsson et al. (2014); Byron
et al. (2015)). Moreover, many authors (Guala et al. (2005); Parsa et al. (2012); Pumir and
Wilkinson (2011); Gustavsson et al. (2014); Ni et al. (2014); Chevillard and Meneveau (2013))
have analysed how p aligns with the eigenvectors of the local strain rate tensor S, showing
that rod-like particles p tends to align strongly with the intermediate eigenvector of the strain
rate tensor, slightly less with the largest one (most extensional) and strongly perpendicular to
the smallest (most compressive). For thin disk-like, particles are preferentially aligned with the
smallest eigenvector of the strain rate tensor. The aforementioned findings are encapsulated
in Fig. 2.3. Experimentally, Ni et al. (2015) have been able to access both the orientation of
non-spherical particles and the velocity gradients tensor in order to obtain consisting results
with the previous numerical studies.
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Figure 2.3: Spherical probability density functions of the orientation of fibres (left panel) and disks (right
panel) in the coordinate system defined by the eigenvectors of the strain rate tensor in HIT. Image
reproduced from Voth and Soldati (2017).

The orientation of tracer spheroids have been also investigated in turbulent channel flow.
Zhao and Andersson (2016) have uncovered the mechanism that gives rise to preferential
particle alignment with the vorticity and left Cauchy-Green strain tensor in anisotropic turbu-
lence. They showed that the alignment of the fluid vorticity vector with the strongest Lagrangian
stretching direction in the bulk of the channel, just as in HIT (Ni et al. (2014)), vanishes close
to the walls. Moreover, all over the channel they found that the symmetry axis of the prolate
spheroid aligns with the direction of the strongest Lagrangian stretching, whereas oblate
spheroids are oriented with the direction of the Lagrangian compression. Furthermore, their
analysis revealed that the directions of the strongest Lagrangian stretching and compression in
near-wall turbulence are in the streamwise and wall-normal directions, respectively.

As analysed by Andersson et al. (2015), in the centre of the channel, particles are almost
randomly oriented since the velocity field is nearly isotropic, whereas near the walls the
alignment strongly depends on the particle shape. In disk-like particles p strongly aligns along
the wall-normal direction, but rod-like becomes parallel to the wall with p mostly aligned in
the stream-wise direction (Challabotla et al. (2015b)).

In the case of inertial spheroids, the same analysis has been largely investigated mainly in
turbulent channel flow (Zhang et al. (2001); Mortensen et al. (2008); Marchioli et al. (2010);
Marchioli and Soldati (2013); Challabotla et al. (2015a); Zhao et al. (2015)). As an example, a
totally different alignment is observed (with respect to the inertial-free particles) with disk-like
particles becoming aligned perpendicular to wall-normal direction.

2.4 rotation rate

The qualitatively different preferential orientation of non-spherical particles, depending on
their aspect ratio λ, has a profound impact on their rotational behaviour.

As said, the rotational dynamics in the case of inertialess spheroidal particle in turbulent flow
is described by the temporal evolution of the unit vector p(t) indicating the orientation of the
particle axis and the time derivative of p(t), the rotation rate. Thus, a spheroid rotates with a
total angular velocity Ω which is distributed into two motions: the tumbling, which corresponds
to the rotation of the axis of symmetry of the particle, and the spinning, corresponding to the
rotation about that axis. The evolution of the vector p can be rewritten as,

dp
dt

= Ω× p. (2.12)
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Figure 2.4: Mean square rotation rate as a function of aspect ratio for tracer particles in homogeneous
isotropic turbulence. Image reproduced from Voth and Soldati (2017).

With respect to Eq. (2.7) the total angular velocity of the particle can be identified as Ω =
ω/2 + Λp×Sp. Here the antisymmetric part of the velocity gradient A has been rewritten as
Op = (ω × p)/2, where the vector ω is equal to the vorticity vector.

The particle angular velocity Ω can be decomposed into two components, one parallel and
one orthogonal to the orientation vector p; they read respectively:

Ω⊥p = p× (Ω× p) (2.13)

Ω‖p = |Ω · p|p, (2.14)

such that Ω = ‖Ω · p‖p + p × ṗ, with a norm ‖Ω‖2 = |Ω · p|2 + ‖p × ṗ‖2. Finally, the
magnitude of these two quantities refers to the definition of spinning and tumbling rate
respectively (Byron et al. (2015)).

The variance of tumbling rate, 〈‖dp/dt‖2〉 (a way to rewrite 〈‖Ω⊥p‖2〉), for a rod-like particle
(Λ = 1) has been investigated, using DNS. In HIT, by Shin and Koch (2005) who observed that
this quantity was smaller than the expectations for a randomly oriented rod-like particle. Parsa
et al. (2011) presented experimental and DNS results on the probability distribution of tumbling
rate of a spheroid as a function of aspect ratio. Marcus et al. (2014) develop an experimental
technique to measure the tumbling rate for a wide range of aspect ratios, including disk-like
particles (Λ = −1).

The full body rotation rate, including tumbling and spinning rate has been studied by Byron
et al. (2015) both, numerically and experimentally. They observe that the variance of the total
rotation rate is almost independent from the aspect ratio. Furthermore, they found that a rod
spins more than it tumbles, while a disk tumbles more than it spins. The effect of the particle
shape on tumbling and spinning rate saturates at a constant value, remaining insensitive to the
change of the aspect ratio outside the range 0.1 < λ < 10.

Most of these features crucially depend on the precise dynamics of the spheroids and fluid
vorticity, in relation to the alignment with the eigensystem of the local stain rate. The slower
tumbling rate of a rod has been explained with the fact that the component of the vorticity
along the rod axis does not contribute to its tumbling rate. Conversely, disk behaviour shows
that the axis aligns perpendicular to the vorticity, explaining the larger variance of the tumbling
rate for disks than for rods. Figure 2.4 summarizes DNS and experimental measurements in



2.5 lagrangian stochastic models for the orientation 17

HIT for the variance of total rotation rate, given by the sum of spinning and tumbling rate as a
function of the aspect ratio.

These quantities have also been investigated for inertialess spheroidal particles in turbulent
channel flow by Challabotla et al. (2015b). An extensive study including both, inertialess and
inertial spheroids has been provided by Zhao et al. (2015). They conclude that rotation rate
statistics for a tracer spheroid in the bulk of the channel are close to the HIT case. On the other
hand, spheroids in the near wall region are affected by both the mean shear and anisotropic
fluid vorticity, and their rotational behaviour is totally different from the channel centre.

The addition of particle inertia has been considered in many works (Marchioli and Soldati
(2013); Zhao et al. (2015)). It has been observed that the inertia reduces tumbling and spinning
rate, leading to a more isotropic rotation at the centre channel, whereas near to the wall inertial
spheroids respond strongly to the mean shear by causing for example, inertial disks to spin
much faster than inertial rods, having an opposite trend with the HIT case in Fig. 2.4.

2.5 lagrangian stochastic models for the orientation

Jeffery equation (2.7) is fully characterized in terms of the velocity gradient tensor. The velocity
gradient tensor Aij(t) = ∂ui/∂xj(t) fluctuates, being dominated by the small-scale motions,
of the order of the Kolmogorov length scale ηK, and it results similar in many different
turbulent flows. In addition, it identifies many fundamental and intrinsic properties of small-
scale motions in turbulence. Indeed, this tensor encodes interesting geometric and statistical
information such as the alignment of vorticity with respect to the strain-rate eigenvectors, rate
of deformation and shapes of fluid material volumes, non-Gaussian statistics, and intermittency,
as explained by Meneveau (2011).

Here we want to briefly recall that, the time evolution of A following fluid particles can be
obtained by taking the gradient (∂/∂xj) of the Navier-Stokes equations. For incompressible
flow, the resulting equation reads

DAij

Dt
= −Aik Akj −

∂2P
∂xi∂xj

+ ν
∂2 Aij

∂xk∂xk
(2.15)

where D/Dt stands for the Lagrangian material derivative (i.e., D/Dt ≡ ∂/∂t + uk∂/∂xk), P is
the pressure divided by the density of the fluid, and ν is the kinematic viscosity. Equation (2.15)
is not closed in terms of A at position x and time t due to the last two terms in the right-hand
side of the equation, the pressure Hessian ∂2P/∂xi∂xj and the viscous term ν∇2 Aij. The trace of
the above equation with the incompressibility condition Aii = 0 leads to the Poisson equation
∇2P = −Aik Akj, showing that the pressure field is highly non-local (Meneveau (2011)).

Equation (2.15) represents a non-trivial dynamical equation (unclosed), that gathers inside
several geometric, statistical, and dynamical turbulence phenomena. As said, many practically
important applications can be strongly affected by the properties of the velocity gradient tensor.
Moreover, here, we want to underline that, from a modelling point of view, resort a model for
Eq. (2.15) represents an hard task by the presence of pressure Hessian and viscous effects.

Despite the highly complexity of Eq. (2.15), several Lagrangian stochastic models for the
velocity gradient tensor have been proposed in literature (Girimaji and Pope (1990); Cantwell
(1992); Brunk et al. (1998); Chertkov et al. (1999); Jeong and Girimaji (2003); Chevillard and
Meneveau (2006); Biferale et al. (2007); Vincenzi et al. (2007); Pumir and Wilkinson (2011);
Pereira et al. (2018)), as reviewed by Meneveau (2011). Some of these models are for coarse-
grained velocity gradients and obey to isotropic Gaussian statistics, e. g., are the result of linear
Ornstein–Uhlenbeck processes (Brunk et al. (1998); Vincenzi et al. (2007); Pumir and Wilkinson
(2011)) or constructing a phenomenological model by considering the Lagrangian dynamics of
four points (the tetrads of fluid particles, see Chertkov et al. (1999)), as well as multi scale model
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(Biferale et al. (2007)). Alternatively, others describe transient or quasi-steady state behaviour
(Cantwell (1992); Jeong and Girimaji (2003)). Girimaji and Pope (1990) introduced a model
for the pressure Hessian and viscous Laplacian in the evolution dynamics of A designed to
reproduce log-normal stationary statistics for the pseudo dissipation, leading to more realistic
strain-vorticity but their model introduces several additional free parameters. A more complex
and refined model is the recent fluid deformation approximation (RFDA) model (Chevillard
and Meneveau (2006)), which predicts a variety of local, statistical, geometric and anomalous
scaling properties of 3D turbulence.

2.5.1 Modelling context

In order to understand the dynamics of inertialess spheroidal particles in turbulence, the
Lagrangian statistics of the velocity gradient tensor has to be included, to properly take into
account the orientation dynamics coming from integration of Eq. (2.7) along the particle
trajectory. This sheds light on both, the complexity of understanding particle orientation
statistics with respect to difficulty to identify what are the important features in the dynamics
of the velocity gradient that mainly affect particle orientation.

In this context, most of the present studies of non-spherical tracer particles in turbulent flows
has been done using DNS. In fact, the advantage of DNS over macroscopic and mesoscopic
description is that it yields a complete information about the velocity field on the finest
Kolmogorov scale, by providing a microscopic description of the influence of the velocity
gradient tensor on the non-spherical particle dynamics.

The need to develop and investigate statistical models on the small scale fluctuations aiming
to reproduce the orientation statistics of the unitary vector p, are different:

(i) In theoretical studies, it is necessary to introduce models in order to gather analytical
expressions to face the problem. Specifically, these studies have mainly focused on the
derivation of the model equations for the probability of the orientation in which turbulent
fluctuations are described by an effective isotropic diffusion term (Olson and Kerekes
(1998); Shin and Koch (2005)). Turitsyn (2007) derived an analytical expression for the
probability density function of a rod-like polymer in a random flow overlapping a
mean shear and a short correlated isotropic fluctuation model. Vincenzi (2013) derived
the exact probability density function of a spheroidal tracer particle transported by
an homogeneous random flow, introducing the simplest form of statistical anisotropy
(axisymmetric statistics).

(ii) The comparison of DNS results for the particle rotation with those obtained by models,
is instructive to understand which aspects of the particle dynamics are influenced by the
nature of turbulence and which aspects can be explained by simple statistical models
(Byron et al. (2015)).

(iii) The statistics of the velocity gradient tensor are of both practical and theoretical import-
ance in the study of turbulence (Wallace (2009)). In particular, the dynamics of turbulence,
including velocity gradient, can be better understood in a Lagrangian frame following the
flow (Falkovich et al. (2001)). Moreover, the velocity gradients in turbulence are highly
non-Gaussian with considerable spatio-temporal complexity. The highly non-trivial dy-
namics can be important for a wide range of applications where the velocity gradients
enclose a rich description of the local flow.

Meanwhile, from a theoretical perspective, the statistics of the velocity gradient are
essential in exploring internal intermittency and multifractality (Kolmogorov (1962);
Oboukhov (1962); Parisi and Frisch (1985)). These features brought out the increasing
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interest to investigate, in isolate manner, the evolution equation of the velocity gradient
along Lagrangian path. In fact, the equation for A contains two unclosed terms that have
to be modelled: the deviatoric part of the pressure Hessian, and the viscous Laplacian
(Meneveau (2011)). These two terms have motivated a number of studies (Girimaji and
Pope (1990); Cantwell (1992); Chertkov et al. (1999); Chevillard and Meneveau (2006);
Biferale et al. (2007); Pereira et al. (2018)) to attempt closure models for governing the
Lagrangian evolution of the velocity gradient tensor.

More recently, the study of Jeffery’s equation (2.7) and the particle rotation rate as a
function of the shape parameter, turned out to be a precise and demanding way to test the
accuracy of different models for the velocity gradient tensor (Chevillard and Meneveau
(2013); Pereira et al. (2018)).

(iv) In the context of mesoscale models description, LES is becoming progressively attractive
in view of the continuous improvement of sub-grid scale (SGS) models for both fluid
and particle phase. Indeed, a large part of turbulent kinetic energy may be resolved by
replacing the fine-scale details of the flow with SGS models. While such approach, in
many cases, succeeded to simulate high Reynolds number turbulence, some applications
require a more detailed representation of the fine-scale properties of the velocity gradient
dynamics that are not resolved in LES modelling context.

Examples include particle dispersion (Sawford (2001)), rotation and orientation dynamics
(Chevillard et al. (2008); Pumir and Wilkinson (2011)), break up and coalescence of drop
and bubbles (Maniero et al. (2012); Biferale et al. (2014)) and polymer stretching-relaxation
dynamics (Balkovsky and Fouxon (1999); Chertkov (2000); Procaccia et al. (2008)).

Indeed, a possible approach to recover small scale details of turbulence dynamics is to
employ Lagrangian stochastic models. These models have been developed to predict
particle dispersion, deposition and re-suspension, especially in the context of RANS
for industrial applications (Minier (2016)). However, efforts have been devoted to the
extension of stochastic closure to LES with SGS modelling.

In this context, the Lagrangian stochastic approaches deal with the modelling of the fluid
velocity seen by the particle which determines the filtering error impacting the estimation
of the velocity field acting on particles in LES. Furthermore, adopting a stochastic
closure for the fluid velocity seen, typically involves a Wiener process with uncorrelated
independent increments and continuous trajectories that are nowhere differentiable and
are not realizations of the fluid like in Navier–Stokes equations. Rather, they represent
actually different realizations of a stochastic process associated to a one-point probability
distribution function equation for the fluid velocity seen. Thus, the notion of the local
velocity gradient is missed in the classical Lagrangian stochastic approach (Peirano et al.
(2006)).

Results from a priori tests demonstrate that SGS fluctuations mostly affect particles
orientation and rotation, leading to error prediction on the particle alignment with the
vorticity and eigenvectors of the strain rate tensor (Chin and Geiser (2011); Johnson and
Meneveau (2018)). Thereby, a Lagrangian stochastic model for SGS velocity gradient
tensor seen by the particle has been adopted in order to recover small scale details.

(v) Despite the ever present toll of DNS, it will be not very handy to design large scale system
at practical Reynolds number (used in industrial applications), therefore a contracted
probabilistic description is needed.

In particular, just for a single-phase flow, a macroscopic statistical description of the fluid
flow can be employed based on RANS, which greatly reduces the computational efforts.
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However, in such a simulation an additional model for the effects of turbulence on the
particle is required (Minier (2016)). In order to take into account the effect of turbulence
on particle motion, a stochastic turbulence dispersion model is introduced.

Indeed, over the last decades, Lagrangian stochastic models have been more and more
used for both single-phase flows and dispersed two-phase turbulent flows. These ap-
proaches are referred to as PDF (probability density function) methods. Following the
presentation of standard Lagrangian stochastic model for dispersed two-phase flow in
Minier (2016), the particle state vector (which gathers the variables of interest attached to
each particle) is made up by particle location and velocity as well as the velocity of the
fluid seen by the particle Z = (Xp,up,us) for a spherical inertial particle.

Conversely, in case of non-spherical particle, the fibre state vector is complemented with
the particle rotation Ωp (or orientation) and the modelled Lagrangian velocity gradient
seen, i.e. Z = (Xp,up,us, Ωp,As). From this point of view, a useful discussion has been
given by Minier (2016), but no attempts are present in literature to solve either, analytic-
ally or numerically a mesoscopic model or macroscopic (depending on the number of
components and the hierarchy of the particle/fibre state vector), based on Lagrangian
stochastic approach, that could be interesting for many industrial applications.

In the following part, we want to describe some examples where the different models for
the velocity gradient tensor have been applied to the study of the orientation dynamics of
non-spherical particles.

The simple case, when the particle orientation vector and the velocity gradient tensor A
are assumed to be statistically independent, has been proposed by Shin and Koch (2005) to
analytically investigate a rod-like particle in HIT. In particular, an analytical expression for
the variance of tumbling rate has been derived, and later on the same calculation has been
extended by Parsa et al. (2011) to non-spherical particles with a finite aspect ratio. They observe
that the assumption of statistical independence makes no difference between rod- and disk-like
particles, in contrast with DNS result that leads to marked differences between these two cases
(e. g., DNS result in Fig. 2.4).

Byron et al. (2015) numerically explore the simple model in an isotropic homogeneous
Gaussian random velocity field focusing on the behaviour of the variance of both tumbling and
spinning rates. They explain that the main difference between turbulence and random Gaussian
velocity field is that turbulence breaks time reversal invariance such that the velocity gradient
tensor A and Aᵀ have different probabilities, which is not the case for a Gaussian model.
This difference results to be fundamental for the orientation statistics because the orientation
dynamics of a rod- and disk-like particle are settled by A = O + S and −Aᵀ = O − S,
respectively. Moreover, they observe that turbulent flows show a stronger vorticity fluctuations
than the random flow model, leading to long-living vortex structures responsible for the
particle alignment, which impact the relation between spinning and tumbling rates.

Several models for A have been tested by Chevillard and Meneveau (2013) in order to solve
Eq. (2.7) in HIT. Among these, a linear Ornstein–Uhlenbeck process where the relaxation
terms involve the simple Kolmogorov time scale τη . For this Gaussian model no preferential
alignment of p with the vorticity can be observed, as well as no preferential alignment with
the intermediate eigendirection of strain rate as found in DNS. This model correctly predicts
only the preferential alignment of disk-like particles with the most contracting eigendirection.
Furthermore, in line with others studies (Shin and Koch (2005); Pumir and Wilkinson (2011);
Byron et al. (2015)), the model finds out that, assuming statistically independent A and p, as
well as Gaussian process for A, a poor prediction of the tumbling rate is obtained with respect
to DNS results.
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Figure 2.5: (Colour online) Comparative assessment of the particle SGS models for ellipsoidal particles in
HIT. Left panel: time behaviour of the mean particle alignment with vorticity, 〈|p · eω |〉. Right panel:
particle mean square rotation rate, 〈 ṗi ṗi〉, as a function of particle aspect ratio, λ. Labels FDNS and LES
indicate a priori and a posteriori tests without particle SGS model, respectively. Labels LES+SDE and
LES-ADM indicate simulations with the stochastic and the ADM-based particle SGS model, respectively.
Image reproduced from Chin and Geiser (2011).

A more realistic Gaussian process has been proposed for the velocity gradient statistics.
Pumir and Wilkinson (2011) have considered an Ornstein–Uhlenbeck process for A with
different correlation time scales for the symmetric and antisymmetric part. Indeed, from DNS
they measured that, in turbulence, the correlation time scale for the rotation rate of velocity
gradient is significantly longer than that of the strain rate. They observed some degree of
alignment between p and vorticity; nonetheless this effect is weak, and their results are overall
in line with the Gaussian model studied by Chevillard and Meneveau (2013).

The stochastic model of Girimaji and Pope (1990) has been used to compute the long-time
variance of tumbling rate for rod-like particles in HIT by Shin and Koch (2005). This model
incorporates an approximate description of the correlation between the strain and rotation
rate of A by means of the prescription of a log-normal probability density function for the
pseudo-dissipation. It gives a reasonable approximation of the variance of tumbling rate that is
about 13% smaller than obtained by DNS.

More refined stochastic models have been developed and tested using Eq. (2.7) in order
to provide an accurate level of intermittency for the dissipation and enstrophy fluctuations
and multifractality (Chevillard and Meneveau (2013); Pereira et al. (2018)). In these cases the
non-linear dynamics of the velocity gradient tensor in the viscous range is taken into account
and the tensorial structure is captured with remarkable accuracy by the model. This includes
the degree of alignment trend of vorticity with the strain rate eigendirections, as well as the
relative probability of prolate and oblate deformation in the strain eigendirections. Furthermore,
the preferential alignment and rotation rate of spheroidal tracer particles are better predicted
in HIT using this advanced model. In particular, the variance of tumbling rate is accurately
reproduced for a prolate particle (λ > 1), but underestimated for oblate particles (λ < 1). These
results point out the necessity for further improvements in stochastic Lagrangian models for
the velocity gradient tensor. Specifically, a model that successfully leads to a more accurate
prediction of tumbling rate for disk-like particles.

The prediction of orientation and rotation statistics of tracers spheroidal particles using LES
method has been presented by Chin and Geiser (2011). These authors have considered the
effect of including a sub-grid closure in the equation of motion (2.7) evolving in HIT and have
quantified this effect in terms of particle alignment within the rotation and strain tensor and
particle orientation distribution. In particular, the turbulent energy dissipation rate results to
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be reduced when SGS velocity fluctuations are not accounted for. To recover these small scale
effects, the stochastic Ornstein–Uhlenbeck model of Pumir and Wilkinson (2011) for SGS and a
model based on approximate deconvolution method (ADM, see Marchioli (2017)) have been
tested. The results of the behaviour of different tests is shown in Fig. 2.5.

The preferential alignment of p with the unit direction vector of vorticity field for a rod-like
particle is presented in the left panel of Fig. 2.5. The stochastic model (LES-SDE) under-
predicted the preferential alignment compared to DNS results since the stochastic model is
Gaussian with a vorticity and strain rate that are not directly related. The ADM-based model
has a little influence on preferential alignment compared to a-priori (FDNS) and a-posteriori
(LES) results, emphasizing the effect of ADM to recover fluid enstrophy near cut-off scale. The
mean squared tumbling rate as a function of aspect ratio is shown in the right panel of Fig. 2.5.
Overall, the difference between reference DNS and results obtained with or without any of the
particle SGS models is either marginal or increased, indicating that small scale quantities are
extremely complex to model.

A notable exception is the work of Johnson and Meneveau (2018), to extend the stochastic
model of Johnson and Meneveau (2016) (in isotropic turbulence) to predict velocity gradients
and, at the same time, the deformation features of small droplets in an inhomogeneous
turbulent channel flow, by coupling the model to an LES solution for the large scale flow. As
said, while straight use of coarse-grained velocity gradients in a large scale flow simulation
leads to a significant error, the stochastic modelling technique can be coupled to LES to provide
small scale information about trajectories.

The authors showed the capability of this approach to the channel flow case to capture
the main small scale effects in inhomogeneous flow. Still, they remark that the closures for
the pressure Hessian and viscous Laplacian terms used in isotropic turbulence, require to
be revised to capture important near-wall effects in the buffer region and viscous sublayer,
i.e. accounting near-wall deviations from the approximate isotropy hypothesis of the current
model.

2.6 conclusions

Anisotropic particles are present in many natural and industrial flows. These particles react on
a turbulent flow in complex ways which depend on a wide variety of parameters, with great
emphasis in literature on particle shape, inertia and fluid shear. Inertialess particles, with a
size smaller than the Kolmogorov length, behave as tracers which passively follow the fluid
motion and assume an orientation p which preferentially samples certain directions defined by
the local turbulent velocity gradient. This picture, already quite intricate in the homogeneous
isotropic turbulence (HIT), becomes even more difficult to treat in a turbulent channel due to
the presence of near wall structures. When inertial particles are considered the preferential
alignment changes from tracers, becoming as inertia increases, less and less impacted by the
fluid velocity gradient tensor. Furthermore, preferential alignment causes the non-spherical
particles to tumble and to spin, characterising their rotational dynamics. Direct numerical
simulation (DNS) in HIT and wall turbulence are widely used to understand and improve the
description of the complex dynamics of preferential alignment and rotation of non-spherical
particles.

Despite the advances in the DNS studies, the modelling of small scale turbulence dynamics,
which impacts the orientation and rotation of a non-spherical particle, still remains an open
question since it is not directly accessible using fluid modelling approaches. A strategy that has
been proposed by several authors in order to mimic the behaviour of non-spherical particles
in turbulent flows consists in coupling existing stochastic models for the Lagrangian velocity
gradient with the equation for the orientation.
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Outline. In this chapter, the complex behaviour of inertialess rod-shaped particles
embedded in a two-dimensional turbulent flow, with homogeneous shear, is studied.
We introduce s Lagrangian stochastic model for the rods angular dynamics. It consists in
superposing a short-correlated random component to the steady large-scale mean shear,
and can be thereby integrated analytically. Within the model, an effective anisotropic
correlation tensor is introduced, to properly account for the effect of the mean shear
onto the Lagrangian statistics of the turbulent velocity gradients. Then, single-time
orientation statistics obtained from DNS, are compared with the models results derived
from the semi-analytical expression for the stationary distribution of the folded angle.
We propose an alternative definition of tumbling rate applicable to diffusive dynamics,
in terms of the stationary probability flux of the rods unfolded angle, to address the
two-time statistics of the rods orientation. While the complex behaviour observed in the
DNS shows a non-Gaussian distribution of the unfolded angle in a diffusive regime,
the diffusion model is intended to provide a reasonable qualitative response, even if it
is not designed to reproduce such a behaviour.

3.1 introduction

The manifestation of turbulence is everywhere in nature, at all scales from quantum systems,
for example in super-fluid helium 4, to Universe, for instance in galaxy formation. Two-
dimensional (2D) turbulence is nowhere realised in nature or in laboratory but only in computer
simulations. Nevertheless, there are numerous situations, in natural flow and in laboratory
experiments, which are constrained to quasi-two-dimensional or layer-wise motion. Most
examples arise in geophysical and planetary flows. For example, 2D turbulence is relevant
to the dynamics of oceanic currents, the motion of intense eddies such as tropical cyclones,
the existence of polar vortex, the dispersion of tracers in the oceans or of chemical species
in the polar stratosphere, a key factor in the production of the ozone hole and in other large
scale motions of planetary atmospheres ( Charney (1971); Dritschel and Legras (1993); Waugh
et al. (1994)). Figure 3.1, showing an image of Jupiter’s northern hemisphere (left panel)
illustrates the similarity with a vorticity field in numerical simulation of 2D Navier–Stokes
equations (centre panel) as measured in different systems. The theory and phenomenology
of 2D turbulence in homogeneous isotropic case has been largely investigated and is quoted
in several reviews (Kraichnan and Montgomery (1980); Tabeling (2002); Boffetta and Ecke
(2012)) and books (Batchelor (1953); Lesieur (1987); Frisch (1995)). It should also be added
that many important turbulent configurations exist that deviate from the idealized situation
of homogeneous isotropic turbulence (HIT), where pure 2D Navier–Stokes equations can be
amended by the addition of extra-terms, e. g., in the presence of external mechanisms such as
rotation, stratification, confinement, shear, or magnetic fields where the dynamics depends on
the value of a control parameter (rotation rate, magnetic field strength, aspect ratio, shear rate,
etc...) in order to represent physically relevant situations. These different physical situations
have been investigated in numerical simulations and experiments of thin/thick layers (Xia et al.
(2009); Benavides and Alexakis (2017)), in rotating and stratified turbulence (Godeferd and
Lollini (1999); Deusebio et al. (2014); Machicoane et al. (2016)) and in magnetohydrodynamic
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Figure 3.1: Left panel: Image (from NASA’s Juno spacecraft) of storms and turbulence in the folded
filamentary region of Jupiter’s northern hemisphere. Center panel: Snapshot of a vorticity field in a
numerical simulation of the 2D Navier–Stokes equations. Right panel: Large green bloom of
phytoplankton in the Gulf of Finland (Baltic Sea), that spread across hundreds kilometres (images by
NASA’s Landsat satellite, on July 2018).

(MHD) turbulence (Favier et al. (2010); Alexakis (2011); Baker et al. (2017)). They have been
observed in different geophysical flows: e. g., where the atmosphere acts like a 2D flow at
large scale and as a three-dimensional (3D) flow at small scales (Charney (1971); Byrne and
Zhang (2013)), or in the ocean (King et al. (2015)). Similar behaviour has been attributed to
astrophysical flows (like the atmosphere of Venus and Jupiter (Izakov (2013))), and accretion
discs (Gressel and Pessah (2015)), in plasma flows (Yoshizawa et al. (2003)) and in industrial
applications like in Tokamak (Diamond et al. (2005)) and wind turbines (Devinant et al. (2002)),
either due to the thinness of the layer, to fast rotation or to the presence of strong magnetic
fields.

Among other reasons or prospects to get involved in studies on 2D turbulence, there is the
connection to the 3D turbulence problem. The current literature has shown the existence of a
common conceptual framework between two- and three-dimensional turbulence. Phenomena,
such as cascades, coherent structures, dissipative processes, filamentation mechanisms take
place in both systems. On the other hand, turbulence is simpler to represent and easier to
compute in two than in three dimensions, and physical experiments provide much more
information when the flow is thoroughly visualized and probed through a combination of
special sensors and cameras. Therefore, working in 2D space may be instructive to test ideas
or theories, prior to considering them in the three-dimensional world. Besides, the idealised
2D turbulence provides a starting point for modelling phenomena and it can be used as a
simplified framework for certain turbulence problems allowing a systematic investigation of
the control parameters and ultimately easier to handle from an analytical view point. Alongside
this, it is noteworthy that 3D turbulence is not three dimensional in all respects; an example is
represented by the worms (elongated structures), which populate the dissipative range: they
are long tubes and thus can be tentatively viewed as two-dimensional objects. One may also
add that 2D turbulence is helpful for understanding turbulence in general. Turbulence is a
general phenomenon, involving non linear dynamics and broad range of scales, including as
particular cases two- and three-dimensional fluid turbulence; so that a common conceptual
framework exists, and 2D turbulence can obviously be used to understand several aspects of
the general problem.

This chapter is devoted to analyse and model the orientation statistics of non-spherical
particles immersed in a 2D homogeneous turbulent shear flow. The motivation arises from the
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importance of controlling and predicting flows seeded with non-spherical particles (fibres, discs,
or inclusions with more general shapes) which occurs in many natural and industrial processes.
Sediment transport in dams (Vercruysse et al. (2017)), ice crystals in the atmosphere (Heymsfield
(1977)), pulp fibres in paper making (Lundell et al. (2011)) or swimming microorganisms in the
ocean as particular application of quasi-2D case in Fig. 3.1 (right panel) (Musielak et al. (2009)),
are some examples. Moreover, recent work (Parsa et al. (2011); Calzavarini et al. (2020)) has
renewed the interest in the Lagrangian studies with anisotropic particles, specifically in 2D
turbulence.

In most of these applications the flow is highly turbulent and particles rotational dynamics,
their alignment trends and correlations with the flow, become of considerable interest. When
their size falls in active turbulent scales, the particles filter the fluid in a complex manner and
show a very intricate dynamics (Qureshi et al. (2007); Ouellette et al. (2008); Brown et al. (2009)).
Particles with sizes in the dissipative range have a more tractable behaviour. When their slip
velocity is small enough, the local flow has a weak inertia and Stokes solutions can be used to
relate particle rotational dynamics to the local velocity gradient tensor. This problem was first
considered in the classic paper of Jeffery (1922) to derive evolution equations for the orientation
of general ellipsoidal objects.

In turbulent flows the velocity gradient tensor Aij = ∂ui/∂xj is dominated by small-scale
motions and fluctuates on length and time scales of the order of the Kolmogorov dissipative
length ηK and time scale τη . From an experimental perspective, the orientation dynamics
of particles smaller than ηK has been studied in atmospheric flows (Krushkal and Gallily
(1988); Newsom and Bruce (1998)) and in water tunnels (Bernstein and Shapiro (1994)). As to
numerical studies, they consist in simulating, in addition to the fluid flow, the orientation of
particles by integrating Jeffery’s equation along Lagrangian trajectories. Simulations have been
carried out in homogeneous isotropic turbulence (Shin and Koch (2005); Pumir and Wilkinson
(2011); Parsa et al. (2012)), as well as in turbulent channel flows (Zhang et al. (2001); Mortensen
et al. (2008)) and in chaotic velocity fields (Wilkinson et al. (2009)). At a theoretical level, most
studies consisted in deriving model equations for the probability distribution of orientations, in
which turbulent fluctuations are approximated by an effective isotropic diffusion term (Olson
and Kerekes (1998); Shin and Koch (2005)). Much still needs to be understood in the presence
of flow anisotropies. For instance, it was found by Turitsyn (2007) that the superposition of a
constant mean shear to short-correlated isotropic fluctuations deeply influences the rotation of
extensible polymers and consequently their size distribution.

Here, we focus on the orientation and rotation of a rod-like particle in the presence of a mean
shear, since we expect that spheres and rods will rotate in qualitatively different fashions. As
long as the Reynolds number at the particle scale is small, the local flow is well approximated
by a Stokes flow. If in addition their inertia can be neglected, spheres will rotate with an angular
velocity given by half of the flow vorticity. An inertialess anisotropic particle, however, will
also couple with the strain-rate. In a 2D Stokes flow with uniform velocity gradients, the unit
orientation vector p of a rod-like particle follows Jeffery (1922) equation,

dpi
dt

= Aij pj − pi pk Akl pl (3.1)

where Aij(t) = (∂ui/∂xj)(X(t), t) is the gradient tensor of the fluid-velocity field u, evaluated
along the particle trajectory X(t), which is assumed to be that of a tracer, i.e. dX(t)/dt =
u(X(t), t).

To study the dynamics of ellipsoidal particles in turbulence, it is necessary to extend the
understanding of the Lagrangian statistics of the velocity gradient tensor, and to include the
orientation dynamics, resulting from integrating Eq. (3.1) along the particle trajectory. This
is a challenging problem, because of the complexity of quantifying statistically the particle
orientation with respect to the velocity gradient tensor. In this frame, the rod orientation
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is solved numerically, performing direct numerical simulations (DNS). At the same time a
Lagrangian stochastic model is developed. In more detail, the flow viewed by the rods is
modelled by the superposition of a constant shear and a random component corresponding
to a chaotic velocity field. In the spirit of classical works (Batchelor (1959); Kraichnan (1968)),
the chaotic velocity part is assumed to be Gaussian and to have zero correlation time. The
assumption of temporal decorrelation is adequate when the correlation time of the flow is
short compared to the characteristic time scale of the velocity gradient tensor. Furthermore,
such models are a great simplification of real flows and can be successfully applied for the
analysis of advection by turbulent flows, as pointed out by Falkovich et al. (2001). As long as
statistical properties of real flows are unknown, our approach is one possible way to model
single rod in chaotic flows. This approach, albeit restrictive, allows to derive most of the results
analytically and can form a basis for future studies of more intricate problems.

We report the main results in this chapter. First, we propose a stochastic model to describe
the dynamics of thin rods in a turbulent shear flow. The model is derived by coarse-graining the
deformation gradient tensor that fully characterises the orientation of fluid blob which evolves
within a turbulent flow. We assume that the fluctuations of the velocity gradient tensor are
Gaussian and delta-correlated in time and distinguished by an effective anisotropic diffusion
correlation tensor.

In addition, the model contains the information about the integral Lagrangian correlation
time that leads to define the validity of the model in terms of a Kubo number Ku = τI/τω � 1,
i.e. the ratio between the integral time scale and the characteristic turnover time of the velocity
gradient tensor. Under this hypothesis, the probability density function of the Lagrangian
stochastic model associated to the folded angle of the rod is derived analytically. Moreover,
three different ways to model the effective correlation tensor are tested: firstly assuming the
tensor to be isotropic without any knowledge about the Kubo number, secondly introducing an
anisotropic character through the simple measurement of instantaneous correlations letting Ku
to be a constant parameter. Lastly, we measure the Kubo number Ku in the DNS by providing
the model with an effective anisotropy correlation tensor for the velocity gradient fluctuations.
Then, the angular distribution of the model is compared with the DNS. Both model and DNS
results show that the angular distribution is concentrated in the region of small angles for
large values of the shear rate, and this preferential alignment strengthens as the mean shear
increases. In particular, in the DNS results the shear rate parameter and the amplitude of the
velocity gradient fluctuations suffice to fully characterise the shape of the angle distribution.
By contrast, in the stochastic model, a calibration parameter is introduced to rescale in time the
model with respect to DNS. The model is tuned either to fit the probability density function
(PDF) or to reproduce the average value of the orientation angle in the three declinations of the
model. In particular, a good agreement with the DNS measurements is found using an effective
correlation tensor, underlying the importance of anisotropy fluctuations within homogeneous
shear flow turbulence.

Second, we study the statistics of time periods between consequent events of rod tumbling.
Particularly, the classical measurement of tumbling rate in the DNS case (Parsa et al. (2012))
are not well defined in the model since the stochastic process which describes rod orientation
is not differentiable in time. For this purpose, an alternative definition of tumbling rate is
presented, providing another way to measure the tumbling rate experimentally. We show
that this alternative definition can be identified through the long term evolution of the mean
angular displacement (angular increment with respect to an initial point). The analytic results
of the model are then compared with the DNS measurements revealing that the model is able
to reproduce the DNS for some values of the calibration parameter. Finally, the variance of
the angular displacement is investigated, revealing the limits of the stochastic model. Indeed,
the unfolded angle trajectory in DNS resembles a Lévy walk. Furthermore, the fluctuations of
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the angular displacement around its average are non-trivial in DNS and exhibit a highly non-
Gaussian behaviour, which is confirmed by the PDF of the variance of the angular displacement
showing some exponential tails. This underlies the presence of the anomalous diffusion, and
the limits of the stochastic model to reproduce these features.

The plan of this chapter is as follows. In Section 3.2 we describe the numerical method
for direct numerical simulation (DNS) in turbulent homogeneous shear flow and present the
results on the preferential alignment of rods. Section 3.3 is devoted to introduce the Lagrangian
stochastic model for the rods orientation and the analytical derivation of the stationary PDF
for the orientation angle. Moreover, the results are compared with DNS. In Section 3.4 we
introduce two-time statistics, by presenting an alternative definition for the tumbling rate
which is investigated both numerically (DNS) and analytically with regards to the Lagrangian
model. Some conclusions are drawn in Section 3.5.

3.2 two-dimensional homogeneous turbulence with shear

We consider two-dimensional turbulence described by the Navier–Stokes equations for an
incompressible flow in the presence of mean shear,

∂tu+ u · ∇u = −∇P + ν∇2u− α (u− σ y êx) + f ,

∇ · u = 0.
(3.2)

Here u(x, t) = {ux(x, y), uy(x, y)} is the divergence-free velocity field with a constant unit
density, P is the pressure per unit density that enforces incompressibility and ν is the kinematic
viscosity. The flow is put in motion by a linear friction, with coefficient α to an underlying linear
flow along the y axis. In the absence of external forcing (f = 0), the fluid velocity relaxes to the
2D shear flow u∞ = σ y êx with amplitude σ, which is a stable stationary solution of Eq. (3.2).
In order to maintain a developed turbulent state, an input of kinetic energy is provided by the
stochastic forcing f .

The incompressible turbulent fluctuations u′ = u− u∞ are then homogeneous in space
and stationary in time. Equation (3.2) can be rewritten for the scalar fluctuating vorticity field
ω = (∇× u′)êz ≡ (∂xu′y − ∂yu′x)êz solving

∂tω + u · ∇ω = ν∇2ω− α ω + fω, (3.3)

with fω = ∇× f . The equations of motions are complemented by appropriate boundary
conditions, which are taken to be periodic on a square domain of size L2. The forcing in
Eq. (3.3) is assumed Gaussian, homogeneous, isotropic, white in time, with correlations,

〈 f̂ω(k, t) f̂ω(k′, t′)〉 = C exp

(
−(k− k̄ f )

2

2µ2
f

)
δ(k + k′) δ(t− t′), (3.4)

where the forcing f̂ω is expressed in the Fourier space and k̄ f , µ f need to be set properly, such
that the forcing will be concentrated over large spatial scales (C is a constant factor). Here the
angular brackets 〈·〉 stand for ensemble average.

Conversely to the 3D turbulence, the non-linearity in Eq. (3.3) conserves the enstrophy
Z = (1/2)〈ω2〉, that together with the kinetic energy E = (1/2)〈|u′|2〉 characterise the
resulting turbulent state. Namely, the budgets of these two inviscid quadratic invariants satisfy,

dE
dt

= 0 =− 2νZ − α E − σR+ εI, (3.5)

dZ
dt

= 0 =− 2νP − αZ + ηI, (3.6)
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where we have introduced the Reynolds shear stress R = 〈u′x u′y〉 and the palinstrophy
P = (1/2)〈|∇ω|2〉. The quantities εI and ηI are the injection rates of kinetic energy and
enstrophy, respectively, and are fully determined by the stochastic forcing. As already said, in
2D the vorticity of each fluid parcel is conserved, which implies the existence of two quadratic
invariants: the energy and the enstrophy. These two constrains led Kraichnan (1967) to propose
the existence of two different inertial ranges for 2D turbulence: one with constant energy flux,
extending from the injection scale toward larger scales and one with constant enstrophy flux,
extending from the injection scale down to the viscous scale. The first leads to an inverse
energy cascade and the latter to a direct enstrophy cascade. When dissipation is present, an
external forcing f is necessary to produce a statistically stationary state characterised by the
injection of turbulent fluctuations at a scale ` f .

Those fluctuations are removed, either at much larger scale `α � ` f by the friction, or
at much smaller scales `ν � ` f by viscosity. The two intervals of scales ` f � ` � `α and
`ν � ` � ` f are the inertial ranges over which universal statistics are expected. A more
quantitative approach is detailed in Kraichnan (1967); Eyink (1996). The energy and enstrophy
dissipated by friction at large scales, εα and ηα, respectively, are balanced by energy/enstrophy
input and by viscous dissipation, i.e. εI = εα + εν and ηI = ηα + ην. The two scales characteristic
of friction and viscosity are `2

α = εα/ηα and `2
ν = εν/ην. With the relation at the forcing scale,

`2
f ' εI/ηI, one obtains

εν

εα
=

(
`ν

` f

)2 (
` f

`α

)2
ην

ηα
, (3.7)

ην

ηα
=

(
`α/` f

)2
− 1

1−
(
`ν/` f

)2 . (3.8)

In the limit of an extended direct inertial range `ν � ` f , one has from Eq. (3.7) that εν/εα → 0;
all the energy is flowing to large scales in an inverse energy cascade. Furthermore, when
`α � ` f one obtains ηα/ην → 0; all the enstrophy goes to small scales to generate the direct
enstrophy cascade (e.g., Kraichnan and Montgomery (1980); Boffetta and Ecke (2012)).

Similarly, by balancing the different dissipative rates in Eqs. (3.5) and (3.6), one can express
the friction scale `α = (E/Z)1/2 and the viscous dissipation scale `ν = (Z/P)1/2. These length
scales define two Reynolds numbers: an outer-scale Reynolds number Rα = `α/` f which
measures the ratio between inertial and frictional forces, and a viscous Reynolds number
Rν = (` f /`ν)2, which balances inertial and viscous forces. These two numbers prescribe the
extensions of the inverse energy cascade and of the direct enstrophy cascade, respectively.

Here, we focus on the direct cascade of energy, which corresponds to `α & ` f � `ν, and
thus Rα ∼ 1 and Rν � 1. In the presence of shear (σ > 0), the flow develops anisotropies
and the energy budget is affected by the Reynolds stress. The importance of shear has to be
measured by non-dimensionalising it with a characteristic time scale of the flow. Still, the flow
time scales are themselves modified by shear, so that the choice cannot be made a priori. In
our protocol, the only time scale that is prescribed by the simulation setup is the forcing time
scale τf = (`2

f /ε I)
1/3 = η−1/3

I . The influence of shear on the energy and enstrophy budget is
then measured by the non-dimensional shear rate parameter σ̄ = τf σ. In the developed regime
attained once σ has been prescribed, the shear needs to be compared to the typical dynamical
timescale of the direct cascade, namely τω = (2Z)−1/2. The associated shear rate parameter is
then σ∗ = τωσ.
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3.2.1 Numerical method

We perform direct numerical simulations by using a pseudo-spectral solver. To construct
periodic solutions that account for the mean flow, we follow (Rogallo (1981); Rogers and Moin
(1987); Pumir (1996)) and integrate Eq. (3.3) on a distorting frame defined by x′ = x− t σ y,
y′ = y. The integration domain is the two-dimensional torus [0, 2π]2 at resolution 1282. The
distorted grid is regularly shifted back to the Cartesian grid at times multiple of 1/σ. We
make use of the vorticity formulation Eq. (3.3), together with the Biot–Savard law to obtain
the fluctuating velocity u′ as a function of the vorticity ω. The stochastic forcing is approx-
imated as the sum of independent modes whose variances behave as a Gaussian centred at
wave number k̄ f = 4 and variance µ f = 0.5, in Eq. (3.4)in order to reduce the anisotropy of
the box. Time marching uses a second-order Runge–Kutta method, which is explicit for the
non-linear term and implicit for the friction and viscous terms. Furthermore, simulations are
performed with an hyperviscosity and hypofriction in place of the viscous dissipation and lin-
ear friction term in the right-hand side of Eq. (3.2), that is by replacing it with (−1)p+1νp∇2pu

and (−1)q+1αq∇−2qu, respectively. The motivation for the use of hyperviscosity (p ≥ 1) and
hypofriction (q ≥ 0) is to reduce the range of scales over which dissipative terms contribute
substantially, whereby extending the inertial range for a given spatial resolution (Lindborg and
Alvelius (2000); Haugen and Brandenburg (2004)). It has been observed that such a modified
dissipation might affect velocity statistics at the transition between inertial and dissipative scales
(Frisch et al. (2008)). Still, the situations and effects that we consider here are related to the direct
cascade of enstrophy, which is only weakly perturbed. The double cascade scenario (Kraichnan
(1967)) can be affected by the weak values of frictional dissipation (αq), where a semi-stable
equilibrium can be set up so that an unstable regime emerges (Tabeling (2002)), as shown below.
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Figure 3.2: Left panel: Enstrophy Z(t) in time for seven values of friction dissipation αq labelled in
capital letters; (A: αq = 0.9), (B: αq = 1), (C: αq = 1.5), (D: αq = 2.5), (E: αq = 3.5), (F: αq = 5), (G: αq = 7).
Here τs is the correlation time of the super-structure formation. Right panel: Enstrophy spectrum Z(k)
for different values of αq.

In order to find a stable configuration on long times, in units of turnover time (based on τω),
we carried out runs in the case of homogeneous isotropic turbulence (mean shear rate σ = 0).
Different values of the friction coefficient αq have been tested by covering almost one order of
magnitude. These values are labelled in increasing order with capital letters from A to G, and
are summarised in the caption of Fig. 3.2.

In Fig. 3.2 (left panel) the enstrophy in time for different runs is shown. The presence of
large values for the cases A to C is related to the presence of a semi-stable state. Indeed, at
large scales, when neglecting the viscosity effect, the competition between advection, which
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redistributes energy among the scales, and friction, which dissipates energy at large scales,
becomes a key factor. Accordingly, the dependency of friction dissipation on the enstrophy is
confirmed by the spectrum of enstrophy in Fig. 3.2 (right panel).

Figure 3.3: Snapshot vorticity field ω for different values of friction dissipation αq (A-F, G has been
omitted resulting very similar to F) taken at a fixed time corresponding to vertical dotted line in Fig. 3.2
(left panel). Blue corresponds to negative values (cyclonic eddies) and red to positive values (anticyclonic
eddies).

The instantaneous vorticity fields are shown in Fig. 3.3, where time has been taken within a
single burst of enstrophy (and corresponds to the vertical dotted line of Fig. 3.2 (left panel)).
These bursts in time of enstrophy lead to the formation of intense vortex structures (counter- or
clockwise) which are four times larger, in terms of amplitude, for the cases A and B compared
to the others. The origin of these super-structures within the flow can be explained assuming
that in some regions of the domain the vorticity becomes parallel to the velocity, that implies
the formation of Beltrami regions (as a solution of Euler equation at large scale), where the
advection term becomes zero. This means that if the frictional term is not large enough to
dissipate the contents of energy at large scale, the emergence at some localised wave number
of these super-structures will occur. The correlation time τs associated to the permanence of
bursts in time of Z is visually depicted in Fig. 3.2 (left panel). This characteristic time can be
estimated considering the vorticity Eq. (3.3) in the Fourier space as an Ornstein–Uhlenbeck
process. That is, replacing the linear friction with the hypofriction term, neglecting the viscous
effect at large scale and assuming the advection term zero under the Beltrami property, this
leads to,

∂tω̂ = −αq`
2q
f ω̂ + f̂ω (3.9)

where f̂ω is a white noise. Therefore, the correlation time of this process can be read as
τs ≈ α−1

q `
−2q
f (as in Fig. 3.2 (right panel)) and can result to be very long for small αq.

The spontaneous emergence of these super-structures along time affects the probability
distribution of the vorticity as shown in Fig. 3.4 (left panel), where the cases A to C result to
be strongly skewed. From this last observation, a question arises: either the system explores
all accessible phase space with equal probability, or it can be trapped for long in a part of it.
This question wants to shed light on the mechanism ensuring ergodicity in 2D turbulence,
and on the role of the friction parameter in order to reach an equilibrium state in a finite time
(even longer but finite). The convergence of the vorticity field (i.e. ergodicity assumption) has
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Figure 3.4: Left panel: Probability density function (PDF) of the vorticity for different values of friction
dissipation αq. Right panel: Cumulative integral for the skewness of vorticity. The inset shows the average
values in time of the skewness of vorticity as a function of αq.

been tested, as shown in Fig. 3.4 (right panel). As we can see, the cumulative integral for the
skewness of the vorticity, in cases A to C, does not reach an equilibrium state and we can assert
that even for longer times other bursts of enstrophy occurs driving away the system far from
the equilibrium state. In conclusion, this analysis exhibits the strong dependence of friction
dissipation αq on the statistics of vorticity and on the tendency of 2D turbulent systems to reach
a steady statistical equilibrium at long times. Hereinafter, the case F is chosen to investigate the
rods’ orientation in a turbulent shear flow since its distribution seems to be the most symmetric
one.

Several numerical experiments varying the mean shear rate σ have been performed. The
forcing mechanism has been kept constant by producing an injection rate εI and ηI and
the forcing scale ` f ≈ 1.56 (in units where the box size is 2π). Figure 3.5 shows how the
global quantities, i.e. E , Z , P and R, vary when the shear rate σ is increased. The left panel
demonstrates that the kinetic energy is depleted down to ≈ 20% of its value at σ = 0. This
change of kinetic energy is partly explained by a decrease of the Reynolds stress, as observed
on the centre panel of Fig. 3.5. The three quantities E , Z and P characterise the fluid and
the structures within the flow. Another important quantity, in the presence of shear flow, is
the Reynolds stress (centre panel) which decreases as σ increases (not for the last value); the
negative sign comes from the imposed direction of the mean shear rate.
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The resulting modifications of the turbulent properties are summarized in the right panel
of Fig. 3.5, which represents the two typical scales `ν and `α (in inset). These are the typical
variation scales of the vorticity and velocity, respectively. Particularly, in 2D turbulence, the
characteristic friction length scale is associated to the inverse energy cascade, while the viscous
length scale is characterised by the direct cascade of enstrophy. These two decrease as the shear
rate increases, which is confirmed by the relative variations of energy and enstrophy, in the left
panel.

To get further insights on the spatial properties of the turbulent field, we have plotted on
Fig. 3.6 the kinetic energy spectrum E(k), obtained for different values of the mean shear rate.
The spatial scaling of the turbulent velocity field does not depend strongly from the value of
the shear. For all σ∗, one observes a clear inertial range where E(k) ∼ k−n, with n > 3, that
is a spectrum steeper than Kraichnan’s prediction. The energy content of the smallest mode
seems to strongly vary as a function of the shear rate. This is due to the fact that the spectrum
is evaluated from discrete modes that are defined with respect to the distorted coordinates. In
addition, the peak values observed in the energy spectrum matches with the imposed mean
forcing mode k̄ f = 4.
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Figure 3.6: Shell-averaged kinetic energy spectra of the turbulent fluctuations, defined as
E(k) = ∑k≤|k′ |<k+1 〈|û′(k)|2〉 for various values of the shear rate.

3.2.2 Preferential alignment of rods

The flow is seeded with uniformly distributed tracers that are tracked during its time evolution.
Each tracer is provided with an orientation which is integrated numerically along its trajectory.
In general this orientation is described by Jeffery’s equation (3.1). In 2D, this equation can be
conveniently simplified rewriting the vector p = (px, py) = (cos θ, sin θ) in terms of a folded
orientation angle θ̄ = arctan(px/py) ∈ [−π/2, π/2] with respect to a fixed axis. Finally, the
evolution of tracers’ positions X(t) and unfolded orientations θ(t) ∈ R is obtained according
to,

dX
dt

= u(X, t), (3.10)

dθ

dt
=

σ

2
(cos(2θ)− 1) +

ω

2
− ∂xu′x sin(2θ) +

1
2
(∂xu′y + ∂yu′x) cos(2θ), (3.11)

here the incompressibility condition has been used to simplify the last equation.
The unfolded orientation angle θ, as for the Jeffery’s dynamics, is driven from one side by

the antisymmetric part of the velocity gradient ω/2, and on the other, by its symmetric part.
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Figure 3.7: Vorticity field ω (coloured background) for two different values of the shear rate parameter
σ∗. Blue corresponds to negative values (cyclonic eddies) and red to positive values (anticyclonic). On the
top of this field, the orientations of fibres are shown as black segments.

Considering that Eq. (3.1) is invariant with respect to the transformation p → −p, then the
preferential alignment can be regarded in terms of the folded angle θ̄(t) ∈ [−π/2, π/2].

Figure 3.7 shows two snapshots of an instantaneous orientation of rods, together with the
vorticity field, in the developed regime, in the absence of shear (left panel) and when shear is
present (right panel). The particle orientation is visually correlated with the vorticity structures,
i.e. rods tend to be trapped in strong cyclonic and anticyclonic vortices for σ∗ = 0 and to line
up along stretched filaments, when σ∗ becomes large. Furthermore, one clearly observes that
anisotropies develop in the vorticity field. First, the vorticity becomes skewed toward negative
values (shown in blue). This is due to the depletion of anticyclonic vortices by the shear.
Second, vortex filaments tend to be stretched by the shear and to align with an oblique angle.
In order to quantify these effects, the one-point one-time probability distribution (PDF) of
vorticity is shown in left panel of Fig. 3.8. Even if the mean value remains zero, the distribution
becomes strongly skewed toward cyclonic (negative) values when σ∗ increases. At σ∗ = 0, the
distribution consists of a Gaussian core, followed by exponential tails, as predicted for instance
by Falkovich and Lebedev (2011). Such a behaviour persists at negative values when shear is
present. The positive tail is still exponential but with a decay rate that increases as a function
of σ∗. The main effect of shear is thus to deplete anticyclonic vortices.

Figure 3.8 (left panel) shows the PDF of θ̄ for different values of the shear parameter σ∗.
While it is almost uniform when shear is weak, it develops a peak that moves towards θ̄ = 0
when the shear becomes stronger. In inset is reported the average value of folded orientation
angle 〈θ̄〉 as a function of shear rate. The mean orientation can be directly related to the
behaviour of the vorticity distribution, namely, as soon as it becomes skewed, the cyclonic
vortices start to take down by the small effect of the shear resulting in an increase of the mean
orientation (increasing part of the plot). When the shear becomes sufficiently large the vorticity
structures are replaced by elongated filaments in the direction of the mean shear, and rods
tend to align along them, so that the mean orientation decreases (decreasing part of the plot).
In addition, 〈θ̄〉 can be interpreted as a direct measurement of the flow anisotropies since it
expresses the pitch angle with respect to the horizontal direction, for vorticity filaments. Indeed,
in perspective, it could be interesting to measure the mean angle between the components of
vorticity gradient ∇ω to understand if there is a perfect agreement between this measurement
and 〈θ̄〉.
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Figure 3.8: Left panel: Probability density function (PDF) of the vorticity ω for different values of the
shear rate parameter σ∗. Right panel: Distribution of the rods angle θ̄ = arctan py/px with respect to the
horizontal for different values of the shear. Inset shows the average value of θ̄ as a function of σ∗.

3.3 orientation model

The Jeffery’s equation (3.1) can be investigated by modelling the velocity gradient tensor
Aij in the Lagrangian reference frame and then integrating along particles trajectories. A
number of recent numerical and theoretical studies (presented in Chapter 2) attempted to
recover the statistics of orientation of non-spherical particles (rod, ellipsoid, disk) by assuming
that the velocity gradients obey to isotropic Gaussian statistics, e. g., are the result of linear
Ornstein–Uhlenbeck processes (Brunk et al. (1998); Pumir and Wilkinson (2011); Vincenzi
(2013)). Moreover, this Gaussian assumption, albeit restrictive, allowed a fully analytical
solution for the probability density function of the angular orientation (Vincenzi (2013)).
Otherwise, more refined model for Aij (along Lagrangian trajectory) have been proposed in
literature (e. g., Girimaji and Pope (1990); Chertkov et al. (1999); Chevillard and Meneveau
(2006); Biferale et al. (2007)) with the aim of representing specific features encoded in the
tensor, such as the alignment of vorticity with respect to the strain-rate eigenvectors, rate of
deformation and shapes of fluid material volumes, non-Gaussian statistics or intermittency, and
they have been the focus of extensive studies (Meneveau (2011)). In contrast with the HIT case,
few analytical results seem to exists on shear flow geometry for the probability distribution of
orientations in homogeneous shear turbulence. The orientation motion of rod-like polymers
was examined either analytically (Turitsyn (2007)) or numerically (Chertkov et al. (2005); Celani
et al. (2005)) in a random flow from the superposition of a mean shear and short correlated
isotropic fluctuation. Otherwise, the dynamics of semi-flexible objects in an extensional flow
was analysed by Plan and Vincenzi (2016).

In the following section a Lagrangian stochastic model for the rod orientation will be
presented. Its formulation is not restricted to two-dimensional flows (the subject of this chapter)
but its validity extends also to three-dimensions. To describe and model the behaviour of a
rod-like particle injected in a turbulent flow, in the presence of a mean shear velocity component
along the x-axis, some assumptions have to be made, due to the interplay between spatial and
temporal properties of the velocity field.

As introduced in Chapter 2, the evolution between initial and final configuration of a
fluid blob can be described in terms of the deformation gradient tensor Dij(t, t0;x0) =

∂Xi(t;x0, t0)/∂x0
j which expresses the evolution of the infinitesimal separation vector r of

two points advected by the flow (Wilkinson et al. (2009)), (the dependencies on x0 will be
omitted from now on). Furthermore, it has been shown (Balkovsky and Fouxon (1999); Ni et al.



3.3 orientation model 35

(2014)) that the rod will be preferentially aligned with the longest principal axis of the ellipsoid,
and at long times it will be perfectly oriented in the direction of the eigenvector corresponding
with the largest eigenvalue of the deformation gradient tensor.

Thus, in the limit of small rod (ellipsoid with high aspect ratio), the rod approximates the
separation vector, and one can determine the orientation p(t) = r(t)/‖r(t)‖ in Eq. (3.1) from
the characterisation of the deformation gradient tensor (by renormalising the vector r). Thus,
the stochastic Lagrangian model for the motion of rods in turbulence takes into account the
dynamics of r(t), as we will detail hereafter.

To follow the evolution of the fluid element, it is natural to work in the Lagrangian reference
frame where the velocity u(X(t), t) simply follows the Lagrangian trajectories X(t). Since the
variation of the velocity field on the scale of the fluid element (L� `ν) is smooth, due to the
viscosity, it can be expanded in a Taylor series; namely the velocity difference between two
fluid points is given by the velocity gradient multiplied by the distance (so called Batchelor
(1959) regime). Then the kinematics of the fluid element is fully determined by the velocity
gradient tensor. In this regime, the Lagrangian flow is described by the end-to-end separation
vector r = X1 − X2 between two fluid particles obeying to the ordinary differential equation,

dri(t)
dt

= Aij(t) rj(t), (3.12)

where Aij = ∂jui(X(t), t) is Lagrangian velocity gradient. In the presence of a mean shear
contribution the velocity gradient can be decomposed into the sum of mean and fluctuating
part, i.e. Aij = 〈Aij〉+ A′ij. The finite integral Lagrangian correlation time τ

ijkl
I of fluctuations

is defined as,

τ
ijkl
I =

1

〈A′2ij (0)〉
1/2 〈A′2kl(0)〉

1/2

∫ ∞

−∞
〈A′ij(0)A′kl(τ)〉 dτ (3.13)

where the integrand is the correlation of the velocity gradient Cijkl(τ) = 〈A′ij(0)A′kl(τ)〉 and
the signal of velocity gradient has been assumed stationary in time (τ = t− t′). Moreover, the
solution of Eq. (3.12) can be written in terms of the Lagrangian deformation tensor Dij(t, 0)
(with t > 0) according to,

ri(t) = Dij(t, 0)rj(0), (3.14)

where Dij(t, 0) characterises the full history of the distortion withstand to the fluid element
from the initial time t = 0 up to time t (see Section 2.2.2). We recall that the matrix Dij(t, 0)
satisfies dDij(t, 0)/dt = Aij(t)Dij(t, 0) with Dij(0, 0) = δij (where δij is the Kronecker delta)
and the solution can be written in the following form,

D(t, 0) = T exp
[∫ t

0
A(s)ds

]

= 1 +
∞

∑
n=1

∫ t

0

∫ sn

0
· · ·

∫ s2

0
A(sn)A(sn−1) · · ·A(s1)ds1 · · · dsn−1dsn,

(3.15)

where T is the time ordering operator (or Dyson (1949) series). It is worth noticing that
if the velocity gradient matrix and its integral commute, the series is truncated at the first
order, and classical exponential solution is recovered; this means that all the difficulties rely
on commutation operations, which make the time ordering operator not very handy for
direct calculations. The semi-group property of evolution matrix allows to write D(t, 0) =
D(q∆t, (q− 1)∆t) · · ·D(∆t, 0) with t = q∆t > (q− 1)∆t . . . 2∆t > ∆t > 0, where we have fixed
the resolution time scale of our model to ∆t. Somehow we are defocusing the signal associated
to the evolution matrix by an amount above which, it becomes smooth. Namely, the model
will be the result of a coarse graining procedure, where the finer details of the dynamics of
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Dij(∆t, 0) will be discarded. In addition, by choosing a time scale resolution of the model
smaller than the typical turnover time of the vorticity (which is of the order of the inverse
of velocity gradient fluctuations) ∆t � τω, Eq. (3.15) can be is simplified by the following
approximation. In this case, the series in expression (3.15) have been cut at n = 1 and the rest
is of the order O(∆t/τω). So the leading term within the time interval [0, ∆t] reads

Dij(∆t, 0) ' δij +
∫ ∆t

0
〈Aij〉 (s)ds +

∫ ∆t

0
A′ij(s)ds + O

(
∆t
τω

)
, (3.16)

where the decomposition Aij = 〈Aij〉+ A′ij has been used.
Considering the case where ∆t is much larger than the maximum value of the integral Lag-

rangian correlation time of the velocity gradient τI = max (τijkl
I ), the fluctuation contribution

behaves as a sum of many independent, identically distributed, random variables Zij
q which

allows to rewrite the integral fluctuations in Eq. (3.16) as,

Sij
n =

n

∑
q=1

Zij
q =

n

∑
q=1

∫ qτI

(q−1)τI

A′ij(s)ds (3.17)

where n ∝ ∆t/τI. These fluctuations Sij
n are governed by the central limit theorem Sij

n /(
√

2n ζ),
where ζ2 is the variance of Zij

q , becomes, for large n, a Gaussian random variable. The case
of short correlated strain was first solved by Kraichnan (1968) for the problem of passive
scalar transport, and most of the analytic results have been obtained in this frame, so called
‘Kraichnan model’, where velocity statistics are assumed to be Gaussian and delta-correlated in
time. The variance of white noise Gaussian fluctuations reads,

2n ζ2 = 2
∆t
τI
〈
∫ qτI

(q−1)τI

A′ij(s)ds
∫ qτI

(q−1)τI

A′kl(s)ds〉

' 2
∆t
τI

τ2
I 〈A′ij(0)A′kl(0)〉 ,

(3.18)

where the velocity gradient fluctuations are assumed constant within the interval τI. Therefore,
the 2-point correlation function can be written as (for t > t′),

〈Sij
n (t)Skl

n (t
′)〉 = 2 τI Cijkl(0)min(t′, t), (3.19)

where Cijkl(0) = 〈A′ij(0)A′kl(0)〉. The maximum value of the integral Lagrangian correlation
time τI provides a measurement of the Lagrangian velocity gradient memory. In (3.19), we
remark that the information about the different components of τ

ijkl
I ((3.13)) has been not

considered since we took the maximum over ijkl.
In order to recover that relevant information in anisotropic flows, i.e. considering the full

tensor structure of the integral Lagrangian correlation time τ
ijlkl
I , we introduce also a different

approximation for the 2-point correlation function of Sij
n (t) that depends upon the integral of

correlation. We underline that when τI is finite in the prescribed regime ∆t� τI, an effective
diffusive regime arises, as observed by Taylor (1922). Specifically, a general relation for an
effective diffusion coefficient can be derived employing the Leibniz rule (following the same
argument of Shalchi (2011)),

Ceff
ijkl =

1
2

(
〈
∫ ∞

0
Cijkl(τ)dτ〉+ 〈

∫ ∞

0
Cklij(τ)dτ〉

)
. (3.20)

In this way, the case where fluctuations are stationary white in time Gaussian processes can be
represented by the 2-point correlation function,

〈Sij
n (t)Skl

n (t
′)〉 ' 2 Ceff

ijkl min(t′, t). (3.21)
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It is important to remark that, in order to derive the model for the evolution matrix, two
different hypotheses have been taken into account: the first, i.e. ∆t � τω, leads to consider
only the leading term of the expression (3.15) and the second, i.e. ∆t� τI, leads to assume a
short correlated velocity gradient tensor. This means that the resolution time scale ∆t of our
model has to satisfy τI � ∆t� τω, implying that the validity of the model can be defined in
terms of the Kubo number Ku = τI/τω � 1.

The parameter Ku turns out to be a dimensionless measurement of the correlation time with
respect to typical turnover time of the vorticity and it determines the domain of validity of
various turbulent regimes, such as linear processes (diffusive) or more complex ones (sub- and
super-diffusive). Furthermore, this parameter is a measure of particle capacity of exploring the
spatial structure of the velocity field, before that it drastically changes in time and space. In
other words, Ku determines the importance of the Lagrangian non-linearity within the velocity
field. When Ku� 1 we are in the diffusive regime approximation, which confirms the above
analysis.

In Eq. (3.16) we have identified A′ij as a Gaussian process stationary in time, whose integral
can be reinterpreted in terms of a Wiener matrix, such that the integral of fluctuating part
becomes a stochastic one. The standard ambiguity between the choice of Itô or Stratonovich
interpretation for the SDE associated to r(t), it is here solved by the presence of asymptotic
expansion for the time order exponential (Castell (1993)). Namely, the generalisation of Dyson
series to stochastic differential equations (SDEs) were proposed by several authors (Castell
(1993); Blanes et al. (2009); Kamm et al. (2020)) and corresponds to the Stratonovich prescription
of Eq. (3.14). The model for r(t) is recovered by replacing Eq. (3.16) into Eq. (3.14).

Finally, using the group property on the operator Dij to recombine the evolution matrix up
to the instant of time t, the solution of the Stratonovich stochastic equation in Eq. (3.12) can be
expressed as,

ri(t) = ri(0) +
∫ t

0
〈Aij〉 (s) rj ds +

∫ t

0
βimj rj ◦ dwm

t (3.22)

where ◦ corresponds to the integral in Stratonovich form. The third order tensor βimj has been
introduced in order to link the model fluctuations and the Lagrangian correlation function
through the equality,

βimjβkml = 2 Ceff
ijkl . (3.23)

To make a comparison between the model and DNS, it is useful to adimensionalise Eq. (3.22)
with the characteristic quantity τω,

dri(t) = 〈Aij〉 τω rj d
(

t
τω

)
+ βimj

√
τω rj ◦ d

(
dwm

t√
τω

)

= 〈A∗ij〉 rj dt∗ + β∗imj rj ◦ dwm
t∗ .

(3.24)

To simplify the notation, we are going to omit the star (∗) referring all quantities in model
(Eq. (3.24)) to dimensionless ones. Finally, the stochastic version of Jeffery’s equation (3.1) can
be obtained by normalising Eq. (3.22) by its length, i.e. p(t) = r(t)/‖r(t)‖.

Limiting now ourself to the 2D case, it is possible to reduce the complexity of the analysis
and the associated stochastic calculus, following the same procedure made in the DNS. Indeed,
reintroducing the folded orientation angle θ̄(t) = arctan(py(t)/px(t)) = arctan(ry(t)/rx(t))
valued in the torus domain T = [−π/2, π/2], and applying the Itô formula to Eq. (3.22) (see
derivation in Appendix A.1), the SDE for θ̄(t) can be expressed as the toroidal equation,

dθ̄t = a(θ̄t)dt + b(θ̄t)dWt in T, (3.25)
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where Wt is introduced as a new one dimensional Brownian motion, after making use of the
martingales representation of the scalar stochastic integral arriving with the Itô formula (see
Appendix A.1). Besides, the coefficients of Eq. (3.25) are respectively,

a(χ̄) =
σ∗

2
(cos(2χ̄)− 1) +

1
4

∂χ̄b2(χ̄), (3.26)

b(χ̄) = (γ0 + γ1 sin(2χ̄) + γ2 sin(4χ̄) + γ3 cos(2χ̄) + γ4 cos(4χ̄))1/2 . (3.27)

Here we made the distinction between the stochastic variable θ̄t and canonical variable χ̄. The
parameters γi (with i = 0, . . . , 4), as detailed in Appendix A.1 are

γ0 = f +
k
2
+

3
4
(`+ g)

γ1 = 2(h− j)

γ2 = −(h + j)

γ3 = (`− g)

γ4 =
1
2

(
−2 f + k +

1
2
(`+ g)

)

(3.28)

where f = C1111, g = C1212, h = C1112, j = C1121, k = C1221 and ` = C2121. In the following the
forth-order tensor Cijkl is a generic tensor that need to be specified. Particularly, it will replaced
by C iso

ijkl , Caniso
ijkl or C int

ijkl , depending on the choice of the approach considered in order to model

Ceff
ijkl in Eq. (3.23) as we will see in Section 3.3.1.
In an attempt to compare the results of orientation dynamics in the DNS case with the results

produced by the model, we first derive the stationary distribution of the folded angle. It is
useful to introduce the Fokker–Planck equation, associated to the dynamics of θ̄t described by
Eq. (3.25), in the form of continuity equation,

∂tP(χ̄, t) + ∂χ̄ j(χ̄, t) = 0, (3.29)

having defined the probability flux or current to be,

j(χ̄, t) := a(χ̄)P(χ̄, t)− 1
2

∂χ̄

(
b2(χ̄)P(χ̄, t)

)
, (3.30)

which represents the amount of flow of probability across a fixed point per unit time.
The probability flux associated to the Fokker–Planck equation (3.29) has been related in

literature to the caustic formation rate, to study the clustering of particles suspended in a
random flow, in cases where the inertia of the particles is significant (Wilkinson and Mehlig
(2005)). In particular, the probability flux contains information about the mixing rate of particles,
such as collision rate (Wilkinson and Mehlig (2005)). In the present work, new insights on
the probability flux, that can be used to characterise the rotation rate (‘tumbling rate’) of an
anisotropic particle, will be discussed in Section 3.4.

Due to the fact that SDE (3.25) is a folded toroidal diffusion, the Fokker–Planck equation
is complemented with periodic boundary conditions P(−π/2, t) = P(π/2, t), and the usual
normalisation of unitary mass condition. Moreover, the process θ̄t is an ergodic diffusion as
detailed in García-Portugués et al. (2019), so that a unique invariant measurement, describing
the equilibrium of θ̄t, exists, given as the stationary solution Pst(χ̄) of Eq. (3.29),

∂χ̄Pst(χ̄) =
1

b2(χ̄)

[
2a(χ̄)− ∂χ̄b2(χ̄)

]
Pst(χ̄) +

2J
b2(χ̄)

, (3.31)



3.3 orientation model 39

where the probability flux is constant in time for the stationary distribution and has been
identified with j(χ̄) = −J . It is important to remark that the diffusion coefficients b2(χ̄) > 0 is
required to be strictly positive, such that Eq. (3.31) turns out to be well defined. This assumption
has been verified in Appendix A.2. Now, integrating Eq. (3.31) yields,

Pst(χ̄) =
eΨ|χ̄−π/2

N

(
1 + 2A

∫ χ̄

− π
2

e−Ψ|s−π/2

b2(s)
ds

)
. (3.32)

To simplify the notation, the integral functional Ψ|s−π/2 =
∫ s
−π/2

1
b2(r)

(
2a(r)− ∂r

[
b2(r)

])
dr has

been introduced. Imposing the periodicity and unitary mass, the condition the two constant
factors A and N introduced in Eq. (3.32) are, respectively:

A =
e−Ψ|π/2

−π/2 − 1

2
∫ π/2
−π/2

e
−Ψ|sπ/2

b2(s) ds
, (3.33)

N =
∫ π

2

− π
2

eΨ|r−π/2

(
1 + 2A

∫ r

− π
2

e−Ψ|s−π/2

b2(s)
ds

)
dr. (3.34)

The asymptotic long time behaviour corresponds, in the presence of the mean shear σ∗ > 0, to
a non zero probability flux that reads,

J = Pst(π/2)A. (3.35)

Moreover, the positive (or negative) sign of the probability flux is related to the sign of the
velocity component of the mean shear σ∗.

3.3.1 Correlations of turbulent gradients induced by shear

In order to compute the stationary distribution of the model Eq. (3.32) and compare it with
DNS results, we need to specify the form of the effective diffusion tensor Ceff

ijkl and consequently
βimj (see Eq. (3.20)-(3.24)) associated to the homogeneous turbulent shear flow.

In 3D turbulence, models and simulations commonly assume the diffusion coefficient
tensor to be homogeneous and isotropic. Namely, statistical turbulence modelling has been
dominated by the ideas of Kolmogorov hypothesis, known as the ‘K41’ model (Frisch (1995)).
The K41 hypothesis assumes that, in intense turbulence and far away from any boundaries
or singularities, the statistics of turbulent flow should be universal at length and time scales
that are small compared with the injection of energy into the flow. If these small-scale statistics
are to be universal, they must be independent of the large-scale flow structures. In particular,
K41 predicts that at small scales the turbulence should ‘forget’ any preferred directions of
the large-scale flow and that the small-scale fluctuations should be statistically homogeneous
and isotropic. Conversely, in 2D case this picture is not longer valid due to the presence of
intense structures at all scales. Moreover, the coarse-grained model is aimed to reproduce the
behaviour of the system on scales much larger than the Kolmogorov viscous scale `ν and an
effective diffusion tensor arises which accounts for the presence of anisotropies within the
turbulent flow. Thus, the isotropic homogeneous assumption on the correlations of the velocity
gradient can not provide a realistic behaviour of the model in the presence of mean shear flow.

Here three different choices on the construction of velocity gradient correlation tensor have
been considered. Indeed, we will proceed in the presentation from the straightforward case,
where the correlations are assumed to be isotropic and can be explicitly written out, to the
non-trivial case where the effective diffusion tensor Ceff

ijkl needs to be evaluated from DNS,
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providing a full characterisation of the anisotropies for the model. An intermediate stage has
been considered measuring the one-point, one-time correlation of the velocity gradient as a
function of shear rate σ∗, which provides a first attempt to introduce some anisotropy within
the model.

Briefly, we want to summarise the construction of correlations tensor in general, both to
underline the hypothesis to construct it and to justify the three choices made. Here, we are going
to consider the two-time correlations of the velocity gradient tensor Cijkl(τ) = 〈∂ju′i(0)∂lu′k(τ)〉
along the particle trajectory, assuming the velocity gradient tensor ∂ju′i stationary in time.
Considering an invertible map ψ(i, j) that assigns to each pair of indices (i, j), 1 ≤ i, j ≤ n a
single index ψ(i, j) that ranges from 1 to n2 (Moakher (2008)), it is possible to rewrite the 4-th
order tensor in matrix form. Under this map the correlation tensor can be rewritten as,

Cψ(i,j),ψ(k,l)(τ) =




C1111 C1112 C1121 C1122

C1211 C1212 C1221 C1222

C2111 C2112 C2121 C2122

C2211 C2212 C2221 C2222




(3.36)

The incompressibility of the flow field ensures that the elements in the first column of mat-
rix (3.36) are the exact opposite of the elements of last column; in addition C1111 = −C2211
(incompressibility condition), since

〈∂1u′1(0)∂1u′1(τ)〉+
〈
∂2u′2(0)∂1u′1(τ)

〉
= 0.

This means that we can rewrite the matrix (3.36) in the general form as,

Cψ(i,j),ψ(k,l)(τ) =




f (τ) h(τ) j(τ) − f (τ)

h(−τ) g(τ) k(τ) −h(−τ)

j(−τ) k(−τ) `(τ) −j(−τ)

− f (τ) −h(τ) −j(τ) f (τ)




. (3.37)

Here we have reduced the tensor to six parameters and rewritten the lower triangular part as
Cijkl(τ) = Cklij(−τ). It is worth noticing that the general incompressible case depends upon
nine independent parameters, where h(τ) 6= h(−τ), j(τ) 6= j(−τ) and k(τ) 6= k(−τ).

A simple description can be made regarding the isotropic case, which means to consider
the symmetric transformation within a square. That is, using the parity with respect to the
diagonal, i.e. (x1, x2) 7→ (x2, x1) leading to,

C1212(τ) = C2121(τ) = g(τ) = `(τ),

C1112(τ) = C2221(τ) = h(τ) = −h(τ)⇒ h(τ) = 0,

C1121(τ) = C2212(τ) = j(τ) = −j(τ)⇒ j(τ) = 0,

C1221(τ) = C2112(τ) = k(τ) = k(−τ).

In the isotropic case, three independent parameters are necessary to describe the correlation
tensor. In this simplest case the effective correlation tensor in Eq. (3.21) can be replaced by C iso

ijkl
assuming that it is isotropic and incompressible. The integral Lagrangian correlation time τI, in
this case, does not depend on the space and Ku = τI/τω represents a simple rescale parameter,

C iso
ijkl = αiso

Ku
τω

(3δikδjl − δijδkl − δilδjk). (3.38)

In addition, using isotropic hypothesis the model is strongly simplified since only the value of
γ0 is not null in Eq. (3.27).
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Figure 3.9: Left panel: One-point, one-time correlation Cijkl(0) of the fluid velocity gradient tensor
renormalised for the characteristic time scale τω as a function of the shear parameter. The horizontal
dashed lines correspond to isotropic statistics. Right panel: Effective correlation tensor Ceff

ijkl measured as
in Eq. (3.20) renormalised for the characteristic time scale τω as a function of the shear parameter.

The values of the three parameters for Cijkl(0) are shown in left panel of Fig. 3.9 (constant dot
lines). The C iso

ijkl has been conveniently calibrated for different values of a constant parameter
αiso by considering that several approximations were made to develop the model.

More precisely, one can imagine that the model is the result of having applied a high pass
filter to the signal of the evolution matrix D. Consequently, the filter requires a tuning action
in order to optimise some specific information coming from the original signal. This means
that the choice of time scale ∆t to drive the coarse-grained model is partly arbitrary in the
sense that could depend up-to a constant value. Then, ten different values of αiso linearly
spaced have been selected within a range, to minimize the error in terms of both the peak of
the orientation distribution and the average values 〈θ̄〉 with respect to the DNS results. These
values are reported in x-axis of Fig. 3.13.

In left panel of Fig. 3.10 the results of the angle distribution of the model are shown, for
αiso = 0.075, for different values of the shear rate. It immediately stands out that the distribu-
tion Pst is in good agreement at small values of σ∗ but becomes less peaked than the DNS
when shear rate increases. Moreover, the inset reports the average values of the orientation’s
model as a function of σ∗ for different values of αiso in increasing order (from violet to yellow
solid lines). Only for small values of the shear rate the model is close to the DNS (markers),
revealing that the usage of C iso

ijkl in the modelling is not sufficient to represent the DNS statistics
in the presence of a mean shear flow.

Increasing the model complexity and the information that the DNS has to provide, we choose
to model the effective correlation tensor taking into account the anisotropic character of the
velocity gradient tensor by introducing a Caniso

ijkl , and a tuning parameter is set up as αaniso.
In this case the integral Lagrangian correlation time τI remains constant but the one-time
Lagrangian correlation tensor Cijkl(0) is evaluated for the different values of the shear rate,

Caniso
ijkl = αaniso Ku τω Cijkl(0). (3.39)

Figure 3.9 (left panel) shows the dependency on the six parameters as a function of the shear
rate. One observes that the most important deviations from the isotropic case occurs both
for the component along the mean shear C1212 = 〈(∂yu′x)2〉, which increases as a function
of σ∗, and for the component C1212 = 〈(∂xuy)2〉, which is depleted by shear. In this case the
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matrix (3.37) is still symmetric but its values depend on σ∗. It should be emphasised that the
choice, on how the correlation of the velocity gradient tensor is considered, relies on the easy
access that the DNS information can provide, which is in the spirit of a, as much as, possible
stand-alone modelling.

The stationary distribution of the model in Eq. (3.32) is shown in Fig. 3.10 (right panel), for
αaniso = 0.18. In this case, a better agreement is obtained with the DNS results, in terms of
peaks of PDF for large values of σ∗. The average value of the folded angle is shown in the inset,
for different values of αaniso, in increasing order (from violet to yellow solid lines). Here we
find a good agreement with the DNS for small values of σ∗ and an amelioration with respect
to the isotropic case, also for large σ∗. We should point out that the value of αaniso = 0.18 fixed
to plot the PDFs, corresponds to the second-last curve in violet, for 〈θ̄〉. This means that in this
approach the best that the model can perform is to reproduce qualitatively the PDFs behaviour,
but remaining sufficiently far in terms of average values for the fixed αaniso = 0.18 used for the
PDF.

In order to better quantify the effects of the anisotropy on the model orientation and to
understand its limits, we measured the nine components of the correlation matrix for different
values of the shear parameter. Figure 3.11 shows the behaviour of the nine components of Cijkl
renormalised by their standard deviation as a function of time-lag. For σ∗ = 0 (left panel) the
correlation tensor is isotropic, where the symmetries of the matrix (3.37) are well preserved
g(τ) = `(τ), j(τ) = h(τ) = 0 and k(τ) = k(−τ). Moreover, the main contribution is given
by the components associated to the vorticity, which means that the cyclonic/anticyclonic
structures within the flow have a very long lifetime compared with the strain surrounding
regions. Moving to σ∗ = 2.8 (right panel), the anisotropic behaviour of the correlations is
detected, with the most significant deviation obtained for the components related to the
vorticity, and the vortices tend to be twisted by the shear in a different manner.
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Figure 3.10: Stationary distribution of the rods angle Pst(χ̄) with respect to the horizontal in the model
for different values of the shear (in legend). Results using an isotropic correlation tensor C iso

ijkl , choosing

αiso = 0.075 (left panel) and anisotropic correlation tensor Caniso
ijkl , choosing αaniso = 0.18 (right panel).

Inset: average values of θ̄ for the DNS measurements (black diamond; as in inset of Fig. 3.8). In the model
solid lines corresponds to ten values linearly spaced (see x-axis of Fig. 3.13) of αiso (inset left panel) and
αaniso (inset right panel) from smaller to bigger values (from violet to yellow solid lines) as a function of
σ∗.
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Figure 3.11: Correlations of the fluid velocity gradient tensor renormalised by their standard deviation

κij = 〈A
′2
ij (0)〉

1/2
as a function of time-lag τ. Left panel: σ∗ = 0. Right panel: σ∗ = 2.8.

Having evaluated the matrix (3.37), we can compute the effective correlation tensor Ceff
ijkl

according to Eq. (3.20). This expression corresponds to symmetrise the matrix (3.37) where the
upper-triangular elements have been averaged with their lower-triangular counterpart.

Figure 3.9 (right panel) shows the measurement of Ceff
ijkl as a function of σ∗. For values smaller

than σ∗ < 0.15 the components of the integral Lagrangian correlation time rapidly decreases
due to the presence of the shear and at larger values, the anisotropies start to develop, in
particular for the component along the mean shear direction Ceff

1212. Moreover, the Ceff
ijkl is very

different from one-point, one-time Cijkl (left panel), especially for small values of σ∗, where we
find Ceff

1212 = Ceff
2121 = −Ceff

1221, underling that the effective correlation tensor is dominated by the
presence of vortex structures. This can be explained by considering that the total Lagrangian
integral time is given by two contributions: the first is the fraction of time spent by a fluid
tracer within a vortex structure Tstruct, and the latter is the time spent by itself in a strain
region TSR. Therefore, Tstruct � TSR, where the integral time associated to the component of
the antisymmetric part of the velocity gradient is larger than its symmetric counterpart.

After evaluating, from DNS, the effective correlation tensor Ceff
ijkl , we can introduce for the

model an integral correlation tensor containing the Lagrangian integral correlation information
that reads,

C int
ijkl = αint Ceff

ijkl , (3.40)

where, in the same spirit of what we did before, a constant tuning parameter αint is introduced.
Moreover, in this case the Ku number depends on the space and is included in the definition of
Ceff

ijkl .

The angular distribution in the model is less peaked for small values of σ∗ than the DNS
counterpart. On the other hand a good agreement is re-established at large values, as shown
in Fig. 3.12 (calibration parameter αint = 0.053). This behaviour is confirmed by looking at
the average orientation (in inset) where the model perfectly reproduces the DNS (markers)
trend within the interval parameters 0.045 < αint < 0.074 as soon as σ∗ > 1.2. In contrast, the
model does not respond in the similar way for small values of the shear rate. In this range of
σ∗, the model starts to be far from the hypothesis Ku� 1, since the flow is dominated by pure
rotational region and a new characteristic scale of the order 1/σ∗ arises. That is, the resolution
time scale ∆t chosen to coarse grain, becomes smaller than 1/σ∗ and consequently the short
correlation strain approximation becomes feeble (limit of validity of the model).
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Finally, it is interesting to notice that, the choice of a Ceff
ijkl (by using C int

ijkl in the model) for
the model fluctuations is an important feature in the presence of anisotropic flow since this
tensor contains a crucial information about level fluctuations. In perspective, this approach
could be extended also to three dimensional anisotropic flows where, for example, in the case
of a turbulent channel flow, the anisotropies close to the wall are of high relevance.

With the intent to provide a global picture between the different approaches presented above,
we have defined a global error of the mean orientation of the model with respect to DNS,
which could represent the goodness of these three stages. In more detail, this error globally
estimates the trend of the model for different values of the calibration parameter in the regime
of large σ∗, where the assumption of the model are still valid. The error can be defined as

err〈θ̄〉% =

∫
0.7<σ∗<max(σ∗)

(
〈θ̄〉model − 〈θ̄〉DNS

)2 dσ∗
∫

0.7<σ∗<max(σ∗) 〈θ̄〉
2
DNS dσ∗

× 100. (3.41)

The results are shown in Fig. 3.13 (from left to right panel) for different values of αiso, αaniso
and αint in the three approaches, respectively. In agreement with the results above, we find that
the smallest error is provided by considering an effective correlation tensor errint%, whereas
for the two other cases the error (erriso%, erraniso%) is overall higher. A global estimation on
the error for the stationary PDF of θ̄ is provided evaluating the L2-norm,

errPst % =
∫ π

2

− π
2

∣∣∣Pmodel
st (r)−Pdns

st (r)
∣∣∣
2

dr× 100. (3.42)

Inset of Fig. 3.13 shows the results for the error of the PDF errPst for the three declinations
for the correlations of velocity gradient tensor. Different curves (from deep violet to yellow)
correspond to the values, in increasing order, of αiso, αaniso and αint, respectively. Finally, the
third declination of the model appears to be the proper one to consider and will provide the
base to analyse the two-time statistics in the next section.

box size effect Here, we would like to give an insight into the peculiar behaviour of
both Cijkl , and Ceff

ijkl results in Fig. 3.9, for the last two values of σ∗. In fact, for these values of
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Figure 3.12: Stationary distribution of the rods angle Pst(χ̄) with respect to the horizontal in the model
with an integral correlation tensor C int

ijkl , choosing αint = 0.053 for various values of the shear. Inset:
average values of θ̄ for the DNS measurements (black diamond; as in inset of Fig. 3.8). In the model solid
lines correspond to ten values linearly spaced (see x-axis of Fig. 3.13) of αint from smaller to bigger values
(from violet to yellow solid lines) as a function of σ∗.
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Figure 3.13: (Colour online) Error of 〈θ̄〉 (Eq. (3.41)) as a function of calibration parameter using C iso
ijkl ,

Caniso
ijkl and C int

ijkl (from left to right panels). Inset: Error of probability distribution function for the unfolded

angle (Eq. (3.42)) as a function of calibration parameter using C iso
ijkl , Caniso

ijkl and C int
ijkl . Solid lines (from deep

violet to yellow) correspond to the values of tuning parameter (x-axis of the plot) in increasing order.

the shear rate we observe a non-monotonic trend for Ceff
ijkl or, equivalently, a non-monotonic

derivative trend of Cijkl . In principle, as σ increases, the vorticity should decorrelate fast, since
the presence of the shear rate tends to stretch the fluid in a chaotic manner. In order to clarify
this effect, we show in Fig. 3.14 a snapshot of the vorticity field superposed with the rod
alignment for the extremely large value of the shear rate parameter σ = 64.

Looking at Fig. 3.14, we observe that the vorticity field appears strongly elongated with an
alternation of negative and positive bands, all parallel to each other. Moreover, the length of
these bands corresponds to the size of the domain (Lx). This means that, if we compute the
velocity gradient correlations, we should find that they stay correlated for infinite long time,
due to the absence of enough chaotic motion. That is, a Lagrangian tracer would be trapped
within a stripe (either positive or negative bands) without the possibility to escape, remaining
confined periodically within either positive or negative vorticity structure.

The mechanism of appearance of these bands for large values of the shear rate seems to be
associated to the size of the box Lx, which is not large enough with respect to the values of the
shear rate.

Figure 3.14: Test case: Vorticity field ω (coloured background) for the shear rate parameter σ = 64. Blue
corresponds to negative values (cyclonic eddies) and red to positive values (anticyclonic). On the top of
this field, the orientations of fibres are shown as black segments.



46 particles in 2d turbulence

3.4 tumbling statistics

In the previous sections we have studied the folded stationary distribution function which
can be measured experimentally by averaging the rod orientation over large time periods,
or equivalently over a large number of independent realizations. However, the dynamics of
the rod is non-stationary, due to continuous tumbling. The usually called "tumbling rate" is
the root-mean-squared speed of orientation defined as 〈‖dp/dt‖2〉1/2, i.e. the rate of change
of the orientation vector p (see, e. g., Voth and Soldati (2017)). As discussed in Chapter 2, a
wide range of studies has explored the tumbling rate statistics in DNS both numerically (e. g.,
Byron et al. (2015); Shin and Koch (2005)) and experimentally (e. g., Parsa et al. (2012); Marcus
et al. (2014)). Moreover, we want to emphasize that experimental techniques for imaging
the dynamics of individual non-spherical particles in a turbulent environment have recently
become available. These techniques still represent a challenging problem and are affected by
large experimental uncertainties when time and spatial resolution are greatly lowered (tens or
hundreds of microns at high Reynolds numbers). Moreover, the tumbling rate in the framework
of stochastic Lagrangian models, is not properly defined due to the presence of stochastic
integral for the orientation vector pt.

Thereby, the natural question which arises is whether there are some quantities, which
would allow experimental observations and quantitative model description of the tumbling
process. Here we introduce another definition of the tumbling rate, which can be measured
experimentally and used to describe the tumbling process.

Our aim is now to give some analytical and numerical results both for the stochastic
Lagrangian model and the DNS as regarding some tumbling rate statistics in its reformulation.
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Figure 3.15: Typical trajectories of the angular displacement δθ(t) = θ(t)− θ(0) with the horizontal in
the absence of shear (left panel) and for σ∗ = 2.8 (right panel). Their average behaviour is shown in black
lines.

The total number of rod’s rotations can be described by considering the unfolded angle
θ(t) on the real line of the folded angle θ̄(t). More precisely, we are interested in looking at
the dynamics of the angular displacement δθ(t) = θ(t)− θ(0) that represents the change in
time of the unfolded angle with respect to its initial position. Figure 3.15 shows a sample of
trajectories of angular displacement (extracted from DNS) in the absence of shear (left panel)
and for moderate value of σ∗ (right panel). In the first case, trajectories fluctuate along their
mean 〈θ(t)〉 = θ(0). Still, one observes that this is certainly not diffusion because fluctuations
involve strong ballistic excursions during which θ(t) varies quasi linearly. This corresponds to
events during which tracers are captured by a vortex structure. They are also present in the
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sheared case but with a negative bias that reflects the skewness of the vorticity distribution.
Note that the random motion of the angle, which is a combination of diffusion with long-range
excursions resembles the behaviour of Lévy walks.

Indeed, from this visual assessment, we can define the tumbling as the account of turns of a
rod for the unfolded dynamics θ(t). When the rod is in an unstable equilibrium configuration
θ(t) = kπ, k ∈ Z the velocity gradient fluctuations can bring the rod out of the region, and
this induces a fast rotation which is globally linear in time. This means that the tumbling rate
can be associated to the mean behaviour of the trajectories of the angular displacement.

Thus, we can define the tumbling rate as the long time behaviour of the rotation rate of the
orientation θ̇∞

θ̇∞ '
d
dt
〈δθ(t)〉 for large t, (3.43)

when the time becomes large (i.e. when the increment is large with respect to the initial point
θ(0)). Moreover, it is important to notice that the above definition remains valid in the presence
of mean velocity gradient, otherwise the tumbling rate can be associated to the rate of change
in time of the variance of the angular displacement 〈δθ2(t)〉, as we will see in Section 3.4.3.

Based on the physical interpretation of tumbling regarding the trajectories of the unfolded
process θ(t), the tumbling rate can be reinterpreted in terms of stochastic Lagrangian model
using statistical mechanics arguments. The unfolded dynamics of the model can be briefly
expressed by the following stochastic differential equation,

dθt = a(θt)dt + b(θt)dWt in R. (3.44)

where Wt is the same Brownian motion introduced in Eq. (3.25) and the coefficients a, b are still
given by Eqs. (3.26)-(3.27). In what follows we will make use of the flow-solution of Eq. (3.44):
for all χ→ R, for all 0 ≤ s ≤ t we introduce the map (s, χ)→ θ(t; χ, s), where θ(t; χ, s) denotes
the solution of Eq. (3.44) starting from χ as instant of time s.

Here, it is important to remark that the initial condition of the SDE (3.44) is θ0 and will be
specified where necessary for analytical computation. To derive an analytical expression for
the tumbling, it is natural to introduce the non-stationary Fokker–Planck equation P(χ, t),
associated to Eq. (3.44),

∂tP(χ, t) = −∂χ [a(χ)P(χ, t), t)] +
1
2

∂2
χ

[
b2(χ)P(χ, t)

]
. (3.45)

Unfortunately, the solution of Eq. (3.45) is not enough tractable to extract analytically the
probability density function P of the unfolded angle. On the other hand, to make the problem
tractable, statistical information can be recovered using the stochastic representation formula.
The latter is usually called Feynman–Kac representation for the solution of a class of second
order linear partial differential equations.

3.4.1 Feynman–Kac formula for the unfolded dynamics

Here a general representation on Feynman–Kac formula is given, since it will be needed to
derive the unfolded statistics for the model. We consider Kolmogorov backward equation, which
is the Cauchy problem,

∂sv(χ, s) + Lv(χ, s) = f (χ) in R× [0, t]

v(χ, t) = φ(χ) on R.
(3.46)

Consider the operator L as the infinitesimal generator related to SDE (3.44)

L =
1
2

b2(χ)∂2
χ + a(χ)∂χ . (3.47)
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Under the smoothness assumption of f , φ; and recalling a, b to be smooth functions as defined
in Eqs. (3.26)-(3.27); with b2 > 0 (see Appendix A.2). The unique solution, R× [0, t] 3 (χ, s) 7→
v(χ, s), of Eq. (3.46) is smooth as well and the Itô formula allows to represent the solution as,

v(χ, s) = 〈φ(θ(t; χ, s))〉 −
∫ t

s
〈 f (θ(r; χ, s))〉 dr. (3.48)

Our purpose is to derive analytical expression for the complex statistics in the right hand
side of Eq. (3.48), by using the Kolmogorov backward equation and the fact that the operator L
is the adjoint operator of the stationary Fokker–Planck equation Eq. (3.31) solved by Pst. We
observe from Eq. (3.48) that

〈φ(θ(t; θ0, 0)〉 − 〈φ(θ0)〉 −
∫ t

0
〈 f (θ(r; θ0, 0)〉 dr

= 〈v(θ0, 0)− v(θ0, t)〉 = −
∫ t

0

∂v
∂s

(θ0, s)ds = −
∫ t

0

∫

R

∂v
∂s

(χ, s)P0(χ)dχds,
(3.49)

The choice of the stationary distribution Pst of the folded angle, as a starting distribution
of tumbling dynamics P0 in Eq. (3.45), allows us to study analytically both the average and
the variance of the angular displacement. Since we are interested to look at its asymptotic
behaviour, i.e. when t is very large, this particular choice does not impact the final result.
Namely, in the long time regime the system completely forgot the information about initial
condition showing that no memory effects are introduced in the dynamics (Markovian system).
We recall that the stationary Fokker–Planck PDE for Pst in Eq. (3.31) can be rewritten as

b2(χ̄)∂χ̄Pst(χ̄) =
[
2a(χ̄)− ∂χ̄b2(χ̄)

]
Pst(χ̄) + 2J . (3.50)

Thus, computing the integral in Eq. (3.49), with Kolmogorov PDE and integrating by part, as
well as using Eq. (3.50), we obtain

− ∂

∂s

∫ π
2

− π
2

v(χ, s)Pst(χ)dχ

=
∫ π

2

− π
2

[
a(χ)∂χv(χ, s) +

1
2

b2(χ)∂2
χv(χ, s)− f (χ)

]
Pst(χ)dχ

=
∫ π

2

− π
2

∂χ(v(χ, s))
[
Pst(χ)a(χ)− 1

2
∂χ

(
Pst(χ)b2(χ)

)]
dχ

+
1
2

∫ π
2

− π
2

∂χ

[
Pst(χ)b2(χ)∂χ(v(χ, s))

]
dχ− 〈 f (θ̄∞)〉

=−J
[
v(π

2 , s)− v(−π
2 , s)

]

+
1
2
Pst
(

π
2
)

b2 (π
2
) [

∂χv
(

π
2 , s
)
− ∂χv

(
−π

2 , s
)]
− 〈 f (θ̄∞)〉 .

(3.51)

In the last equality, the periodicity of Pst(π/2) = Pst(−π/2) and b(π/2, t) = b(−π/2, t) has
been used. We denoted by θ̄∞ a random variable of the folded angle distributed according to
stationary distribution Pst.

The information about ∂χv(χ, s) can be determined introducing the Feynman–Kac repres-
entation for the function w(χ, s) = ∂χv(χ, s). Thus, the general form of Kolmogorov backward
equation associated to w(χ, s) reads

∂sw(χ, s) + L̃w(χ, s) + ∂χ(a(χ))w(χ, s) = f ′(χ) in R× [0, t]

w(χ, t) = φ′(χ) on R,
(3.52)
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with an infinitesimal generator

L̃ =
1
2

b2(χ)∂2
χ +

[
a(χ) +

1
2

∂χb2(χ)

]
∂χ (3.53)

related to the flow diffusion $t = $(t; χ, s) solving,

d$t =

[
a($t) +

1
2

∂χb2($t)

]
dt + b($t)dWt, in R (3.54)

and leading to the Feynman–Kac representation,

w(χ, s) = 〈φ′($(t; χ, s) exp
(∫ t

s a′ ($(r; χ, s)
)

dr〉

−
∫ t

s
〈 f ′ ($(r; χ, s)) exp

(∫ r
s a′ ($(z; χ, s)) dz

)
〉 dr.

(3.55)

Integrating in time Eq. (3.51)

〈v(θ0, 0)− v(θ0, t)〉 =−J
∫ t

0

[
v
(

π
2 , s
)
− v

(
−π

2 , s
)]

ds

+
1
2
Pst
(

π
2
)

b2 (π
2
) ∫ t

0

[
w
(

π
2 , s
)
− w

(
−π

2 , s
)]

ds− t 〈 f (θ̄∞)〉 .
(3.56)

This last expression is in a general form and will allow to compute analytically, introducing
some simplification, the mean and variance of the increment of angular displacement δθt.

3.4.2 Average of angular increment displacement

As said, we are interested in the tumbling rate which is associated to the average angular
displacement that, in term of stochastic process, can be expressed as δθt = θt − θ0. So we are
looking at the process with respect to the initial condition θ0. The tumbling rate can be directly
identified in the right-hand side of Eq. (3.51), when the Feynman–Kac formula is applied with
φ(χ) = χ and f = 0. The two contributions in Eq. (3.51) will be analysed separately hereafter.
The π/2-periodicity of the coefficients a, b(θ(t; χ, s)) = a, b(θ(t; χ, s) + kπ/2) shall ensure the
π-periodicity of the flow solution (χ) 7→ θ(t; χ, s). Moreover, the uniqueness of the path-wise
solution of Eq. (3.44) allows to write,

θ(t; π
2 , s) = θ(t;−π

2 , s) + π, (3.57)

and consequently

−J
∫ t

0
[v(π

2 , s)− v(−π
2 , s)]ds = −J

∫ t

0
〈θ(t; π

2 , s)〉 − 〈θ(t;−π
2 , s)〉 ds = −πJ t. (3.58)

Moving on the second term in Eq. (3.56), considering the periodicity of the coefficients of $t in
Eq. (3.54) and the fact that ∂χφ = 1, f = 0 allows to write,

w(π
2 , s)− w(−π

2 , s) = 〈exp
[∫ t

s ∂θa($(t; π
2 , r))dr

]
〉 − 〈exp

[∫ t
s ∂θa($(t;−π

2 , r))dr
]
〉 = 0. (3.59)

Finally the tumbling rate defined in Eq. (3.43) can be expressed for the model as,

θ̇∞ '
d
dt
〈δθt〉 = −π J . (3.60)
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From a physical point of view, this means that the tumbling dynamics in the Lagrangian
stochastic model is linear in time with a slope coefficient which is related to the probability
flux J of the stationary density function Pst (Eq. (3.32)).

It is important to recall that the analytical expression (3.60) has been obtained through a
particular choice of the initial distribution P0 = Pst. In the asymptotic behaviour (t→ ∞) this
choice has no impact on the result, since for any choice of initial condition θ0 of SDE (3.44) the
ergodic theorem applied to the folded orientation angle allows to write,

〈δθt〉 =
∫ t

0
〈a(θ̄s)〉 ds ' 〈a(θ̄∞)〉 t, (3.61)

where θ̄∞ ∼ Pst-distributed with respect to a particular choice of the initial condition of
the unfolded angle. Furthermore, the property of toroidal diffusion as explained by García-
Portugués et al. (2019) has been used. From the integration of Eq. (3.31) in [−π/2, π/2], we find
that 〈a(θ̄∞))〉 = −πJ . This confirms the result obtained in Eq. (3.60) using the Feynman–Kac
representation and it gives an alternative way to derive the expression of tumbling rate in the
stochastic Lagrangian model.

The average value of the angular displacement is shown in Fig. 3.16 (left panel) for the DNS
(solid lines) and the stochastic model (dashed lines, for the fixed value of the tuning parameter
αint = 0.053), as a function of time for different values of the shear rate. The value of tuning
parameter corresponds to the optimal choice to achieve a good agreement for both average
and PDF for the unfolded angle θ̄ (as in Fig. 3.12).

The angular displacement in both DNS and model is zero when σ∗ = 0 (absence of flux
J = 0) and becomes increasingly negative with σ∗ > 0, since the rods are rotating in average
in the clockwise direction by the shear. Asymptotically, looking at the DNS results, one finds
that 〈δθ(t)〉 ' θ̇∞ t where the rotation rate θ̇∞ is negative, which confirms the analysis made
above for the stochastic model.

Regarding the model behaviour for large values of shear rate, it does not reproduce well
the behaviour of the DNS for this particular choice of the tuning parameter αint = 0.053. At
the same time, we want to underline that by using the model with a calibration parameter of
αint = 0.053 the discrepancy with respect to the DNS is around 20% for large values of σ∗.

In order to better quantify the limit of the model, in Fig. (3.16) (right panel) the measurements
of tumbling rate, for different values of αint (lines), are compared with the DNS (markers). To
improve the understanding of the model behaviour, we choose to extend the range of values of
αint used to analyse the mean and PDF of unfolded angle in Section 3.3. Increasing the value of
the calibration parameter, the model starts to be closer to the DNS. Particularly, the value of
αint = 0.1 reproduces the DNS result. In DNS, the effect that the tumbling is higher than the
model (at least for small values of αint such as αint = 0.053) comes from the fact that the DNS
angle trajectories (in Fig. 3.15 ) resemble Lévy walks.

When the shear rate increases due to a non-trivial trajectories behaviour, the tumbling rate is
enhanced, since the rods are strongly moved away from their equilibrium position (i.e., 0 or π).

The effect that in the model the tuning parameter needs to be increased (with respect to
the one considered for the folded statistics in Section 3.3) in order to reproduce DNS results,
can be explained in the following way. When we consider the unfolded statistics, the effect of
diffusion becomes more important than the drift part (not in a trivial way since the diffusion is
included in the drift, see Eq. (3.26)). In some sense, the important effect in the model is that the
diffusion becomes sufficiently strong, when the shear parameter increases, to bring out the
rods from their stable position (equilibrium points, i.e. 0 or π) so that rods tumble.

It is not surprising that the value of the tuning parameter αint does change. Indeed, in the
model, the average of the unfolded dynamics 〈δθt〉 has been related to the probability flux J of
the stationary distribution Pst of the folded angle. Conversely, in DNS the fluctuations around



3.4 tumbling statistics 51

0 1000 2000 3000 4000 5000 6000
t/τω

−3000

−2500

−2000

−1500

−1000

−500

0
〈δ

θ(
t)
〉(

in
ra

d)

σ∗ = 0.00
σ∗ = 0.03
σ∗ = 0.07
σ∗ = 0.15
σ∗ = 0.33
σ∗ = 0.77
σ∗ = 1.26
σ∗ = 1.77
σ∗ = 2.80
σ∗ = 3.79

10−1 100

σ∗
−0.8

−0.6

−0.4

−0.2

0.0

τ ω
θ̇ ∞

DNS
αint = 0.04
αint = 0.053
αint = 0.067
αint = 0.087
αint = 0.1
αint = 0.15
αint = 0.2
αint = 0.25
αint = 0.3
αint = 0.5
αint = 0.7
αint = 0.9

Figure 3.16: Left panel: Average angular displacement of the unfolded angle δθ(t) = θ(t)− θ(0) as a
function of time showing a linear behaviour 〈δθ(t)〉 ' θ̇∞ t at long times. DNS results (lines) and model
(dashed lines), choosing αint = 0.053, for different values of shear rate parameter σ∗. Right panel:
Asymptotic angular velocity θ̇∞ as a function of the shear rate parameter in the DNS (markers) and the
model (continuous lines) for different values of αint parameter (in legend).

the peak of the stationary distribution of θ̄ in 0 or π (for large value of σ∗) are independent
from the tumbling dynamics. That is, in DNS case the flux of the Fokker-Planck equation is
extremely complex and does not appear in divergence form as in the model.

Finally, we can say that changing the value of tuning parameter in this case is although
justified since the dynamical behaviour of the folded dynamics in real life can not be directly
related to the folded one through J . However, interestingly, the result for the tumbling rate θ̇∞
(in Fig. 3.16) can be reproduced by the model just by tuning the parameter which is the same
for all σ∗.

3.4.3 Variance of angular increment displacement

Here, we investigate the variance of the angular displacement as it has been defined above. A
direct approach on the second order moment of angular displacement shows,

〈θ2
t 〉 − 〈θ2

0〉 =
∫ t

0
〈θsa(θ̄s)〉 ds +

∫ t

0
〈b2(θ̄s)〉 ds. (3.62)

The terms a, b are periodic and can be written in term of the folded angle dynamics θ̄s. The
second term of right-hand side is a classical diffusive behaviour and it has an ergodic limit as
the time increases compatibly with the Pst. Diversely, the first term goes far from the same
direct an asymptotic analysis due to the fact that θs is not ergodic. This observation motivates
the introduction of a Poisson equation and with Feynman–Kac representation in order to derive
an analytical expression for the variance of the angular displacement.

The first step in this direction is to consider the variance of the angular displacement in the
case where θ0, the initial condition associated to the SDE (3.44), is distributed according to the
stationary distribution of the folded angle given in Eq. (3.31). This allows to identifies θ0 = θ̄∞
and we are interested in looking into the tumbling dynamics for large t such that

〈δθt〉 − 〈δθt〉2 = 〈(θt − θ0)
2〉 − (〈θt〉 − 〈θ0〉)2 . (3.63)

In the above expression, the second term is known from Eq. (3.60) as
(
〈θt〉 − 〈θ̄∞〉

)2
= π2J 2t2.

The first term is now analysed separately.
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For any choice of θ0 we can write,

〈δθ2
t 〉 =

〈
(θt − θ0)

2
〉
=

〈(∫ t

0
a(θ̄s)ds +

∫ t

0
b(θ̄s)dWs

)2
〉

=

〈(∫ t

0
a(θ̄s)ds

)2
+
∫ t

0
b2(θ̄s)ds

〉 (3.64)

We are interested in d
dt 〈(θt − θ0)

2〉. Considering the first term in Eq. (3.64),

d
dt

〈(∫ t

0
a(θ̄s)ds

)2
〉

=

〈
d
dt

(∫ t

0
a(θ̄s)ds

)2
〉

=2 〈a(θ̄t)
∫ t

0
a(θ̄s)〉 ds = 2 〈

∫ t

0
a(θ̄t) a(θ̄s)〉 ds

=2 〈
∫ t

0
a(θ̄0) a(θ̄s)〉 ds = 2 〈a(θ̄0)

∫ t

0
a(θ̄s)〉 ds

(3.65)

We consider now ψp the solution of the Poisson equation associated to the process θt on the
torus domain [−π/2, π/2]:

Lψp(χ) = a(χ)− 〈a(θ̄∞)〉 , on
(
−π

2 , π
2
)

ψp
(

π
2
)
= ψp

(
−π

2
)

,
(3.66)

where L is the infinitesimal generator introduced in (3.47). We want to remark that all the
coefficients of this equation are periodic with periodic derivatives. Thus ψp has periodic
derivatives, i.e. ψp is at least C1 on the torus. Then, by applying the Itô’s lemma to ψp(θ̄t), we
get ∫ t

0
a(θ̄v)dv = t 〈a(θ̄∞)〉+ ψp(θ̄t)− ψp(θ̄0)−

∫ t

0
ψ′p(χ) b(θ̄v)dWv (3.67)

Next, considering θ̄0 distributed according to the equilibrium measure Pst,

2 〈a(θ̄0)
∫ t

0
a(θ̄s)ds〉 =

〈
a(θ̄0)

(
t 〈a(θ̄∞)〉+ ψp(θ̄t)− ψp(θ̄0)−

∫ t

0
ψ′p(χ) b(θ̄v)dWv

)〉

=2 t 〈a(θ̄∞)〉2 + 2 〈a(θ̄0)ψp(θ̄t)〉 − 2 〈a(θ̄∞)ψp(θ̄∞)〉 .
(3.68)

Letting the time increasing, for the second term in equation above, we can observe that
2 〈a(θ̄0)ψp(θ̄t)〉 becomes decorrelated and Eq. (3.68) reads,

2 〈a(θ̄0)
∫ t

0
a(θ̄s)ds〉 ' 2 t 〈a(θ̄∞)〉2 + 2 〈a(θ̄∞)〉 〈ψp(θ̄∞)〉 − 2 〈a(θ̄∞)ψp(θ̄∞)〉 . (3.69)

Turning to the second contribution of Eq. (3.64) and using the periodicity property of b2,
this term involves only the ergodic process θ̄s. This allows to compute this term applying the
ergodic mean 〈∫ t

0
b2(θ̄s)ds

〉
' 〈b2(θ̄∞)〉 t. (3.70)

At this point, the variance of the angular displacement (Eq. (3.63)), by taking its derivative in
time, can be rewritten by simplifying some terms when t is large enough. Indeed, recalling
that − d

dt
(
〈θt〉 − 〈θ̄∞〉

)2
= −2 π2J 2t and that the term 2 t 〈a(θ̄∞)〉2 = 2 π2J 2t in Eq. (3.69),

this leads to have,

d
dt

(
〈δθ2

t 〉 − 〈δθt〉2
)
= 〈b2(θ̄∞)〉+ 2 〈a(θ̄∞)〉 〈ψp(θ̄∞)〉 − 2 〈a(θ̄∞)ψp(θ̄∞)〉 . (3.71)
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Now, we can rewrite 〈b2(θ̄∞)〉 in terms of 〈θ̄∞a(θ̄∞)〉, from the stationary distribution Pst in
Eq. (3.31). Rearranging Eq. (3.50),

b2(χ̄)∂χ̄Pst(χ̄) =
[
2a(χ̄)− ∂χ̄b2(χ̄)

]
Pst(χ̄) + 2J .

∂χ̄

(
b2(χ̄)Pst(χ̄)

)
= 2a(χ̄)Pst(χ̄) + 2J

Integrating the equation above in [−π/2, π/2], we get

∫ π
2

−π
2

b2(χ̄)Pst(χ̄)dχ̄− πb2(π
2 )Pst(

π
2 ) =

∫ π
2

−π
2

dχ̄
∫ χ̄

π
2

2a(χ̄)Pst(χ̄)dχ̄ + 2(χ̄ + π
2 )J

〈b2(θ̄∞)〉 = πb2(π
2 )Pst(

π
2 ) + π2J + π 〈a(θ̄∞)〉 − 2 〈a(θ̄∞)θ̄∞)〉 .

(3.72)

So with 〈a(θ̄∞)〉 = −πJ ,

〈b2(θ̄∞)〉+ 2 〈a(θ̄∞)θ̄∞〉 = πb2(π
2 )Pst(

π
2 ). (3.73)

Replacing this last equality in Eq. (3.71), we get,

d
dt

(
〈δθ2

t 〉 − 〈δθt〉2
)
=πb2(π

2 )Pst(
π
2 )− 2 〈a(θ̄∞)θ̄∞〉

+ 2 〈a(θ̄∞)〉 〈ψp(θ̄∞)〉 − 2 〈a(θ̄∞)ψp(θ̄∞)〉 .
(3.74)

Now we can use the Feynman–Kac representation associated to the following Poisson equation

Lψ(χ) = a(χ)− 〈a(θ̄∞)〉 , on
(
−π

2 , π
2
)

ψ
(

π
2
)
= ψ

(
−π

2
)
= 0,

(3.75)

where we have now specified the constant value zero for ψp at the boundary. According to
Friedman (2010) Vol.1, Theorem 5.1, the Feynman–Kac formula is

ψ(χ) = −
〈∫ τ

χ
I

0
a(θ̄χ

s )ds− τ
χ
I 〈a(θ∞)〉

〉
(3.76)

where we have introduced the hitting time τ
χ
I = inf

t>0
[|θχ

t | ≥ π/2], with I = (−π/2, π/2). This

random time represents the first time that the process θχ stating at χ, hits the boundaries −π/2

or π/2. The difference between ψ and ψp is just a constant value and thus

2 〈a(θ̄∞)〉 〈ψp(θ̄∞)〉 − 2 〈a(θ̄∞)ψp(θ̄∞)〉 = 2 〈a(θ̄∞)〉 〈ψ(θ̄∞)〉 − 2 〈a(θ̄∞)ψ(θ̄∞)〉 .

By rewriting Eq. (3.76)

ψ(χ) = −
〈∫ τ

χ
I

0
a(θ̄χ

s )ds

〉
+ 〈τχ

I 〉 〈a(θ̄∞)〉 = − 〈θ̄χ

τ
χ
I

∣∣χ = θ̄∞〉+ χ + 〈τχ
I 〉 〈a(θ̄∞)〉 . (3.77)

Replacing ψ(χ) in the last two terms of Eq. (3.74),

2 〈a(θ̄∞)〉 〈ψ(θ̄∞)〉 −2 〈a(θ̄∞)ψ(θ̄∞)〉
=− 2 〈a(θ̄∞)〉 〈〈θ̄χ

τ
χ
I

∣∣χ = θ̄∞〉〉+ 2 〈a(θ̄∞) 〈θ̄χ

τ
χ
I

∣∣χ = θ̄∞〉〉

− 2 〈a(θ̄∞)θ̄∞〉 − 2 〈a(θ̄∞)〉 〈a(θ̄∞) 〈τθ̄∞
I 〉〉

+ 2 〈a(θ̄∞)〉 〈θ̄∞〉+ 2 〈a(θ̄∞)〉2 〈τθ̄∞
I 〉 .

(3.78)
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Coming back to Eq. (3.74), we get

d
dt

(
〈δθ2

t 〉 − 〈δθt〉2
)
=πb2(π

2 )Pst(
π
2 ) + 2 〈a(θ̄∞)〉 〈θ̄∞〉 − 4 〈a(θ̄∞)θ̄∞〉

− 2 〈a(θ̄∞)〉 〈a(θ̄∞) 〈τθ̄∞
I 〉〉+ 2 〈a(θ̄∞)〉2 〈τθ̄∞

I 〉
− 2 〈a(θ̄∞)〉 〈θ̄ θ̄∞

τθ̄∞
I

〉+ 2 〈a(θ̄∞) 〈θ̄χ

τ
χ
I

∣∣χ = θ̄∞〉〉 ,

(3.79)

that, by replacing 〈a(θ̄∞)〉 = πJ and 〈a(θ̄∞)θ̄∞〉 from Eq. (3.73), becomes

d
dt

(
〈δθ2

t 〉 − 〈δθt〉2
)
=− πb2(π

2 )Pst(
π
2 ) + 2 〈b2(θ̄∞)〉 − 2πJ 〈θ̄∞〉

− 2 〈a(θ̄∞)〉 〈a(θ̄∞) 〈τθ̄∞
I 〉〉+ 2 〈a(θ̄∞)〉2 〈τθ̄∞

I 〉
− 2 〈a(θ̄∞)〉 〈θ̄ θ̄∞

τθ̄∞
I

〉+ 2 〈a(θ̄∞) 〈θ̄χ

τ
χ
I

∣∣χ = θ̄∞〉〉 .

(3.80)

This analytical expression should represent the estimation of the diffusion coefficient

Dσ =
d
dt

(
〈δθ2

t 〉 − 〈δθt〉2
)

,

corresponding to the tumbling diffusive behaviour. In DNS, this diffusive coefficients is
asymptotically re-established by measuring the long time variance of the angular displacement.
Before to compare Dσ with DNS results, some simplifications can be discussed in order to
compute Eq. (3.80).

A first approach consists in focusing on the first three terms in Eq. (3.80). They are easy
to evaluate since they depend only on the knowledge of the stationary distribution Pst in
Eq. (3.32). Conversely the other terms associated to the hitting time at the boundary of the
domain are more complex to compute, as they can not directly provided by the simple
knowledge of the stationary distribution Pst. We remark that in the case of σ∗ = 0 and by
choosing a parametrization of C iso

ijkl as in Eq. (3.38), where a = 0 and b is constant we have a
right prediction on the diffusion coefficient. For this reason, a first approximation in order to
estimate the diffusion coefficient Dσ is to neglect the terms involving the hitting time, such
that,

DI
σ = −πb2(π

2 )Pst(
π
2 ) + 2 〈b2(θ̄∞)〉 − 2πJ 〈θ̄∞〉 , (3.81)

where DI
σ constitutes our first approach in the estimation of the diffusion coefficient. In this

case, we expect that this approximation should work in the limit of σ∗ small.
Alternatively, a different estimation of Eq. (3.80) can be introduced by going a bit far on the

manipulation of the terms that involves the hitting time. When σ∗ is large, we can assume that
the instantaneous rotation is always in the same sense with large probability, and under the
imposed shear that is negative. So starting at point χ, we can evaluate that 〈θ̄τ

χ
ψ

∣∣χ = θ̄∞〉 = −π/2,

and the mean rotation velocity is θ̇∞ ' −π J . This leads to estimate the mean hitting time as,

〈τχ
I 〉 =

χ + π/2

π J and 〈τθ̄∞
I 〉 =

〈θ̄∞〉+ π/2

π J . (3.82)

Thus the following term in Eq. (3.80),

−2 〈a(θ̄∞)〉 〈θ̄χ

τ
χ
I

∣∣χ = θ̄∞〉+ 2 〈a(θ̄∞) 〈θ̄χ

τ
χ
I

∣∣χ = θ̄∞〉〉 = 0 ,
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and Eq. (3.80) can be simplified by considering 〈a(θ̄∞)〉 = −πJ and Eq. (3.73),

d
dt

(
〈δθ2

t 〉 − 〈δθt〉2
)
= − πb2(π

2 )Pst(
π
2 ) + 2 〈b2(θ̄∞)〉 − 2πJ 〈θ̄∞〉

+ 2πJ 〈a(θ̄∞)
θ̄∞

πJ 〉+ 2(−πJ )2 〈θ̄∞〉
πJ

= 〈b2(θ̄∞)〉 .

(3.83)

This means that a second evaluation on the diffusion coefficient Dσ gives

DII
σ = 〈b2(θ̄∞)〉 , (3.84)

constituting our second approach in its estimation.
The above derivation of DII

σ is based on heuristic arguments. We want to remark here that the
function ψ admits an analytical solution in the same spirit of the solution of Pst in Eq. (3.32).
We are pursuing the formal derivation of DII

σ by employing this analytical form. Moreover, the
fact of considering σ∗ large to derive expression (3.84) is in line with the aim of the model,
whose goal is to reproduce DNS results for large values of the shear rate parameter. Hereafter
we will first show the results for the DNS, and then we will compare it to the two different
approximations DI

σ and DII
σ .
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Figure 3.17: Left panel: Variance of the angular increment δθ(t) as a function of time showing in the
DNS measurement. Right panel: Measurements of diffusion coefficient Dσ in the diffusive regime
t/τω ∈ [2.0 103, 1.0 104] as a function of σ∗ in DNS.

Figure 3.17 (left panel) shows the DNS measurements for the variance of the angular
displacement δθ(t) as a function of time. After a ballistic regime at very small time, there is
a transition zone at intermediate time where the behaviour of the system is super-diffusive
but without a clear emergence of stable regime. At much longer times, a diffusive behaviour is
asymptotically recovered. The elapsed time to reach the diffusive regime depends on the shear
rate parameter. In fact as σ∗ increases, the intermediate time to reach the diffusive behaviour
decreases. The reliance on the shear rate can be explained by considering that small values
of σ∗ coincide with very long Lagrangian correlations of the velocity gradient compared to
larger value of σ∗. In general, in the diffusive regime, the behaviour of the variance of angular
displacement is described by 〈δθ2(t)〉 − 〈δθ(t)〉2 = Dσ t. Left panel of Fig. 3.17 shows the
DNS measurement of the diffusion coefficient Dσ, within the range t/τω ∈ [2.0 103, 1.0 104]
as function of the shear rate σ∗. As the shear rate increases, the diffusion coefficient becomes
smaller due to the presence of the shear that tends to deplete the structures within the flow.
Furthermore, Dσ, for the last three values of σ∗, becomes constant. This saturation could be
originated by the effect of finite domain. Indeed, as pointed out in Paragraph 3.3.1 (Box size
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effect) there is a limit in performing the DNS for large values of the shear rate while keeping
the box domain constant. That is, when the value of σ is too strong and the size of the box is
maintained constant, the elongated structures induced by the shear become all parallels to the
imposed direction of the shear (see Fig. 3.14, snapshots of the vorticity structures appear as
stripes) and are of the order of the box length Lx. This could produce the saturation effects,
impacting the measurements that we had analysed.

Still, this is not completely clear, and in order to shed light on such behaviour, one needs to
perform others simulations increasing both the value of the shear rate and, at the same time,
the size of the computational domain Lx. This could confirm or infirm the saturation that so
far we are observing.
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Figure 3.18: Left panel: Measurements of diffusion coefficient DI
σ in Eq.(3.81) (continuous line with

upper triangular markers) and DII
σ in Eq.(3.84) (dotted line with lower triangular markers) for different

values of the tuning parameter αint (as in legend). In black cross marked line corresponds to the model
result by integrating numerically Eq. (3.44) for the tuning parameter αint = 0.1. Right panel:
Measurement of the diffusion coefficient Dσ: in DNS (in black diamond line), in the model according to
Eq. (3.81) (in red upper triangles marker dotted line), in the model according to Eq. (3.81) (in blue lower
triangles marker dashed line), and in the model result by integrating numerically Eq. (3.44) (in green
starred marker line), for the tuning parameter αint = 0.9, as a function of σ∗. The numerical integration
for the model has been performed using an Euler–Maruyama scheme with an integration time-step
∆t = 5 · 10−4 and with a final time T = 1000.

comparison between model and dns results The analytical result of diffusion
coefficient DI

σ in Eq. (3.81) (continuous line with upper triangular markers) and DII
σ in Eq.(3.84)

(dotted line with lower triangular markers) are shown in Fig. 3.18 (left panel) for different
values of αint (in legend). In this case the two approaches match for small values of σ∗ and
for any values of αint. As soon as the shear rate parameter increases, the term estimation of
DII

σ becomes larger than the DI
σ, which means that the terms related to the hitting time has an

important weight in the estimation of the diffusion coefficients.
To confirm the validity of the analytical expressions (3.81) and (3.84), a direct numerical

integration of Eq. (3.44) (using an Euler–Maruyama scheme) for αint = 0.1 has been performed.
This result matches with the analytical prediction when σ∗ ≤ 1.25 for both DI

σ and DII
σ , and for

larger values a small discrepancy arises, we have checked the behaviour even if in Fig. 3.18

(black line crosses) is not directly visible. It is also true that from the direct numerical integration
some error bar in measuring the derivative in time of the variance of δθt should be expected.
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Another important consideration is the dependence on αint in both of two approaches .
Indeed, the general idea all along this chapter was to keep constant the tuning parameter αint
as function of σ∗, even if it has an impact on the behaviour of DI

σ and DII
σ .

As we can notice, the model for αint = 0.1, does not reproduce the DNS result (see right
panel of Fig. 3.18). As soon as αint increases, the model becomes closer and closer to DNS result
(see right panel of Fig. 3.18). Figure 3.18 (right panel) shows the comparison of the diffusion
coefficient Dσ in DNS case compared with the DI

σ, DII
σ and numerical integration of Eq. (3.44),

having fixed αint = 0.9.
Moreover, to better understand the analytical expression (3.80), a direct numerical integration

of Eq. (3.44) has been performed for αint = 0.9. In this case, the analytical prediction follow the
same trend of DNS and we find also a good agreement, for small value of σ∗, for both DI

σ and
DII

σ . Conversely, for σ∗ ≥ 0.32, the analytical expression DII
σ in (3.84) has a better agreement, as

expected, than DI
σ when compared with DNS result. In the first analytical approach Eq. (3.81),

the model tends to underestimates the diffusion coefficient which means that some important
effects are inscribed in the estimation of the terms related to the hitting time in Eq. (3.80).
Interestingly, the numerical integration of the model and DII

σ match very well between them
and, as well with DNS. This may suggests that DII

σ in Eq. (3.84) is a good approximation for
the diffusion coefficient of for the variance of the angular displacement.

Another point worthy of discussion, concerns the good choice of αint = 0.9 to reproduce
the DNS result. Actually, this value is larger than the one used to mimic the statistics of the
mean angular displacement (right panel in Fig. 3.16). The effect to increase the value of αint
is justified since the PDF of δθ (in Fig. 3.19) shows stretched-exponential tails in the diffusive
regime. This means that the diffusion in the model has to be increased in order to replicate the
large fluctuations embedded in the complex DNS behaviour.
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Figure 3.19: Probability density function (PDF) of the angular increment δθ(t) = θ(t)− θ(0) centred and
rescaled to unit variance for σ∗ = 0 (left panel) and σ∗ = 2.6 (right panel). The different curves
correspond to different time lags logarithmically spaced between t = 80 τω and t = 6000 τω (from light
yellow to dark violet).

To finish this overview, we have plotted in Fig. 3.19 the probability density function of the
increment δθ(t) at different times for σ∗ = 0 (left panel) and σ∗ = 2.8 (right panel) computed in
DNS case. Here, the distribution have been centred and rescaled to unit variance. At first glance,
one observes strong qualitative differences between these two cases. The presence of shear
completely depletes fluctuations at positive values, as already observed for the vorticity. The
different curves correspond to different time lags, logarithmically spaced between t = 80 τω

and t = 6000 τω (from light yellow to dark violet). As the time increases, the tails of the
distribution for both σ∗ = 0 (left panel) and σ∗ = 2.8 (right panel) tend to shrink, being this
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behaviour most noticeable in the presence of shear. Indeed, it seems that as time increases the
dark lines tend to a more Gaussian behaviour.

Another observation is that the presence of stretched-exponential tails would indicate
the angle experiencing a Lévy walk, as observed the trajectories in Fig. 3.15. Moreover, the
PDF confirms the complex dynamics in the DNS case, underlying the limit of the model in
reproducing these intricate behaviours. Despite the limits of the model and its dependence on
a tuning parameter, when the anisotropic effects are introduced, model results are very close
to the DNS.

3.5 conclusions

We have studied the dynamics and statistics of the like-rod particle placed in an homogeneous
turbulent shear flow. In the framework of a velocity flow model consisting of a stationary part
and a delta-correlated chaotic part, we have obtained several analytical results by considering
the Lagrangian stochastic model of a rod. Furthermore, to assess the applicability conditions
and the limitations of our stochastic model, direct numerical simulations have been performed.
The range of validity of the model has been defined by means of the dimensionless Kubo
number Ku� 1. Moreover, the model has been developed considering the anisotropy of the
velocity gradient correlations within the homogeneous turbulent shear flow.

Firstly, the stationary angular distribution was discussed in detail both for the DNS and
model case. We obtained an explicit expression for the stationary probability distribution of
the folded angle θ̄. Moreover, the behaviour of this distribution depends on the shear rate
parameter σ∗ and coincides with the DNS results, having introduced a tuning parameter αint
for the velocity gradient correlations. Secondly, the orientation dynamics of the rod has shown
the importance of considering the anisotropic correlations within the model, in order to better
reproduce the DNS measurements.

In the presence of mean shear the tumbling dynamics of a rod consists of aperiodic transitions
between two unstable states: the one aligned with the direction of the shear and that anti-
aligned with it. When a fluctuation takes the rod away from the aligned or anti-aligned states,
and moves it into the unstable region of the flow, the mean shear makes the rod flip. In this
framework, an alternative definition to measure the tumbling rate has been proposed, such that
future experimental works could take advantage of it. It consists in counting the total number
of turns that the unfolded angle is making and regarding to its long time asymptotic behaviour.
In particular, the derivative of the long-time behaviour of the average angular displacement
〈δθ(t)〉 has been identified as the quantity that allows to have an alternative definition of
tumbling rate. The analytical expression of such quantity has been computed and compared
with DNS, resulting in good agreement. Additionally, we have shown that the tumbling rate
can be associated to the probability flux of the stationary distribution of the unfolded angle
dynamics. This led to make an equivalent view-point of what Wilkinson and Mehlig (2003) did
in another context in order to define the rate of coagulation of suspended particles eventually
coagulated (caustic formation).

Moreover, the trajectories of the angular displacement δθ(t) are a combination of diffusion
with long-range excursions, that resemble to mimic the behaviour of Lévy walks. In this respect,
a future perspective could be to model the fluctuations of the velocity gradient by using an
α-stable process, in an attempt to get a more realistic description of the complex dynamics
observed in DNS. α-stable processes belong to the family of Lévy ones, and are relatively
straightforward to simulate. However, the use of such processes involves the introduction of
additional parameters that need to be calibrated, adding some level of complexity.

Lastly, the variance of angular displacement has been measured in DNS, revealing that the
diffusive behaviour at long time strongly depends on the shear rate parameter. In the diffusive
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regime an asymptotic analysis allows to derive the diffusion coefficient of the model. When
this is compared with the DNS one, a limitation of the model emerges. Indeed, this statistic is
strongly affected by the non-Gaussian behaviour of the real measurements which are not taken
into account in the model. Nevertheless, in our view, the latter provides an open perspective,
in which the anisotropic behaviour on the velocity gradient correlation is taken into account,
and a possible extension to the case of non-Gaussian statistics could be the subject of new
investigations as anticipated above.





4N U M E R I C A L S C H E M E F O R T H E O R I E N TAT I O N O F N O N - S P H E R I C A L
PA RT I C L E S

Outline. In this chapter we present an extension of the stochastic Lagrangian model,
developed in Chapter 3 for the orientation of non-spherical particle, to the three
dimensional case. This model will be coupled with the stochastic classical hybrid
Eulerian/Lagrangian for the description of the dispersed phase. Moreover, an alternative
definition of the rotational modes of a non-spherical particle in three dimensions will
be introduced, in the same spirit of Chapter 3. We propose and analyse a semi-implicit
splitting numerical method for the non-linear stochastic differential equation (SDE)
present in the model (for which globally Lipschitz condition fails); our goal is to
preserve the geometric features hidden in this system and to obtain convergent schemes.
The analysis will be followed by the application to a semi-real case, considering the
non-spherical particles embedded in a homogeneous shear flow.

4.1 introduction

Investigating the dynamics of non-spherical particles suspended in turbulent flows is funda-
mental in making advances in several engineering and environmental applications such as
clouds in the atmosphere, plankton dynamics in the ocean, combustion systems and paper-
making, to name a few. A modern exhaustive review on the subject, including models used to
describe non-spherical particles motion, alongside with numerical and experimental methods
for measuring particle dynamics, has been provided by Voth and Soldati (2017).

A standard approach which can be used for simulations of millions of small particles, is the
point-particle approach (Kuerten (2016)). These particles are much smaller than the Kolmogorov
length scale ηK, and the velocity gradient can be assumed spatially uniform (smooth) since
below this scale viscosity regularises the velocity fluctuations. Besides, in this framework, the
Eulerian/Lagrange (Stock (1996); Eaton (2009); Soldati and Marchioli (2009)) approach is often
used to investigate the particle motion in flow. While the Eulerian approach is adopted for the
turbulence field, the non-spherical particles are treated in the Lagrangian framework. This is
the approach considered in our study.

4.1.1 From micro to macro approach

A direct numerical simulation (DNS) (Fan and Ahmadi (1995); Marchioli et al. (2010)) is
possible, and remains a unique computational tool that provides informations about a number
of quantities currently inaccessible in laboratory, and constitutes a valuable asset in understating
turbulence phenomena. In such simulations, the motion of wide range of eddies, from physical
systems, down to Kolmogorov dissipation length scale, is explicitly accounted for. In such case,
the orientation dynamics has been studied in homogeneous isotropic turbulence (HIT) (Shin
and Koch (2005); Pumir and Wilkinson (2011); Parsa et al. (2012); Chevillard and Meneveau
(2013); Byron et al. (2015)), as well as experimentally (Bernstein and Shapiro (1994); Newsom
and Bruce (1998); Ni et al. (2015)). At the same time, studies of anisotropic particles in
inhomogeneous turbulent flow, for example in a turbulent channel flow (Zhang et al. (2001);
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Mortensen et al. (2008); Marchioli et al. (2010); Marchioli and Soldati (2013); Zhao et al. (2015))
have been motivated by their particular relevance for industrial applications.

However, the complexity of non-spherical particle suspended in a turbulent flow has limited
the application of advanced engineering techniques, as computational fluid dynamics, to the
design and optimization of the various unit operation and processes, resulting in lower product
quality and efficiency. Application of these techniques requires the development of reduced
physical models for anisotropic particles within turbulent flow, that can be implemented
into predictive industrial computational tools. Indeed, performing DNS of typical industrial
problems is computationally very expensive or even sometimes unfeasible. Thus, in the case
of large number of particles and turbulent flows at high Reynolds numbers, as well as in the
presence of complex geometries, the number of degrees of freedom is huge and one has to
resort to a contracted probabilistic description. In this case, the fluid phase is described by
a small set of statistical mean fields, such as Reynolds Averaged Navier–Stokes Simulations
(RANS), or large-eddy simulations (LES) (Pope (2001)).

On the other hand, the dispersed phase is directly described by a large number of particles
which are individually tracked by a set of equations describing their dynamical behaviour.
Time evolution of the variables of interest is described by stochastic differential equations
(SDEs), the so-called Langevin equations, and has been extensively analysed by Minier and
Peirano (2001). The study of the orientational and rotational motion of non-spherical particles
using mean-field/PDF (probability density function) approaches has received less attention
than DNS. For example, the problem has been studied by Chen et al. (2016) using an LES,
where a model for the sub-grid scale (SGS) was introduced by means of an SDE for the velocity
gradient tensor, and results have been obtained for the HIT.

One of the purposes of this chapter is to introduce a three-dimensional formulation of
the stochastic Lagrangian model presented in Chapter 3, for the orientation of non-spherical
particles, which can be added to the transport stochastic model of the dispersed phase. The
flow is assumed to be sufficiently diluted that the effects of the particles on the flow can be
neglected. In addition, Jeffery (1922) approach has been considered, where particles are small
inertialess tracers with a size smaller than the Kolmogorov length scale ηK but sufficiently
large to neglect Brownian motion (molecular diffusion). It is worth to underline, as pointed out
by Minier et al. (2001), the multi-scale character of the problem : the Kolmogorov time-scale τη ,
the Lagrangian integral time-scale of the fluid TL, and the integration time-scale ∆t. The first
two are physical characteristic time-scales, whereas ∆t represents the ‘observation’ time-scale.
The latter, such as that used in industrial codes, impacts the choice of the model.

Another point of interest is the rotational behaviour of an axisymmetric particle, actively
investigated in HIT (Parsa et al. (2012); Gustavsson et al. (2014); Marcus et al. (2014); Byron et al.
(2015)) and in turbulent channel flow (Zhao et al. (2015); Zhao and Andersson (2016); Zhao et al.
(2019)) using DNS. In particular, the rate of change of tumbling, which denotes the orientational
dynamics of the symmetry axis of the particle, and of spinning, which indicates the rotation of
the particle around its own symmetry axis, has been analysed. Conversely to these previous
studies, in DNS framework, the stochastic model for the orientation is described by an SDE
that is nowhere differentiable in time, so that alternative definitions of both, tumbling, and
spinning rate are introduced.

4.1.2 Numerical challenge

The accuracy on predicting the orientation of non-spherical particles in this framework depends
on two ingredients: the Lagrangian stochastic model for the orientation, and the numerical
algorithm. The purpose of the orientation model is to describe the physics as accurately as
possible (within purposes/hypotheses of the model), with the resulting computation being
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economically feasible. On the other hand, accurate numerical algorithms are required to solve
the modelled SDE. Both of these factors affect the accuracy of the numerical prediction of the
orientation of non-spherical particles. From the numerical perspective, the time step, to avoid
increasing the computational time should be the same for the integration of mean-field and
SDE, imposed externally by the algorithm that solves the mean-field equations for the fluid.
This implies that there is no possibility to control the time step when integrating the SDE for
the model orientation.

Besides the 3D extension of the model, another question we want to tackle here is ‘What
is a suitable numerical scheme for large integration time steps that can be used for the
SDE associated to the model, without damaging the statistical properties of the orientation?’
Answering this question leads to a better understanding of the behaviour of numerical errors
(in weak and strong sense) of the scheme adopted for the SDE, and of the validity of the
integration scheme in the industrial computation setting (large number of particles, large
integration step-size). In this framework, developing efficient and accurate numerical tools
is highly valuable for improving the performance of industrial codes, ensuring the release
of highly-efficient computational schemes. Specifically, the Lagrangian stochastic model for
the orientation has been implemented in the Lagrangian module of Code_Saturne, that is a
free, open-source software developed and released by Électricité de France (EDF) to solve
computational fluid dynamics applications.

As said, for practical computations, the orientation model is interfaced with mean-field/PDF
transport models. The fluid field consists of a set of partial differential equations (PDEs)
describing the dynamics of mean quantities (Markatos (1986); Launder (1990); Wilcox et al.
(1998)) and a set of SDEs which describes the variables of interests for the discrete particles
(Peirano et al. (2006)). In this approach, the numerical solution is obtained by using a hybrid
method (Muradoglu et al. (2001); Peirano et al. (2006)) where the mean fluid properties are
computed by numerically solving the mean field equation with classical finite difference or
finite volume methods (Jones (1994)), whereas the properties of particles are determined by
solving the SDEs (Pope (1995); Peirano et al. (2006)).

The development of an efficient, stable and accurate numerical scheme faces two main
difficulties. The first one arises from the nature of stochastic models: SDEs do not obey the
rules of ordinary differential equation (ODE) and one has to deal with the theory of stochastic
integrals. The second one is related to the mathematical model of complex physical processes
and its constraints.

Numerical schemes for SDEs are iterative methods where trajectories of the solution are
computed at discrete time steps. These schemes are now abundant and their convergence
is classified according to their type, i.e. the path-wise approximation (strong sense) or the
approximation to the probability distribution (weak sense), and order of convergence (Pagés
(2018)).

In this context, we are interested on both, the statistics of the particle orientation and rotation
(which are connected to the study of the weak convergence), and on the behaviour of the
stochastic trajectories (linked to the study of the strong convergence), due to the complexity of
the model. In particular, the turbulent fluctuations of the symmetric and antisymmetric part of
the velocity gradient are modelled by Brownian motions where the correlation tensor of the
velocity gradient has been considered anisotropic (see, e. g., Chapter 3). This implies that is rel-
evant to ensure that the characteristic features of trajectories are faithfully resolved to construct
a strongly convergent approximation scheme. Particularly, the strong approximation may show
the influence of certain parameters (e. g., the different shape of the particles or different time
scales in turbulence) and it can lead to understand the consequence of certain interactions
among components of the orientation vectors, by having introduced some anisotropies within
the fluctuating part of the velocity gradient. Moreover, the orientation vector p is of unitary
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norm, that is the modelled SDE for the orientation lives on a sphere, implying that the direct
simulation of the trajectories needs to reproduce accurately their motion on this curved surface.
Thus, both, weak and strong solutions (Pagés (2018)) for the SDE of orientation are studied.

Traditionally, there are two fundamentally different algorithmic approaches to solve numer-
ically complex physical processes, considered in discrete form: (i) a fully coupling approach
where governing equations are solved as a single, usually very complicated system; (ii) a
decoupling approach in which governing equations are decoupled in simpler sub-problems
and are solved as simpler tasks. The operator splitting methods (Blanes et al. (2008)) belong to
the second type, and are used to solve complex physical models of different nature, especially
in geophysical and environmental physics. These methods were originally designed to reduce
the computational difficulties by decomposing delicate differential equations, of both, determ-
inistic, and stochastic nature, into simpler solvable equations. Interested readers can find more
general details in the overview papers of Strang (1968); Marchuk (1968).

When dealing with SDEs, decomposition methods require particular attention due to the
presence of the stochastic integral in the Itô or Stratonovich formulation. In addition, those
methods have been mostly explored in the case of non-globally Lipschitz diffusion coefficients
(see, e. g., Higham et al. (2002); Mattingly et al. (2002)), due to their effectiveness in presence
of superlinearly growing coefficients. Indeed, when the coefficients of an SDE are globally
Lipschitz continuous, then standard results (e. g., Pagés (2018)) show convergence of the Euler–
Maruyama approximation in the strong and numerically weak sense to the exact solution of
the SDE. Conversely, as studied by Hutzenthaler et al. (2011), for a large class of SDEs with
non-globally Lipschitz continuous coefficients (in both drift and diffusion part), the Euler–
Maruyama approximation converges neither in the strong mean-square sense nor in the weak
sense to the exact solution at a finite time point. This requires to pay particular attention on the
choice of a suitable numerical scheme, since the orientation equation that we are going to focus
on, presents difficulties coming from the non-globally Lipschitz diffusion coefficient similar to
what has been explored by Hutzenthaler et al. (2011).

In this work, we propose to apply a splitting method for the approximation of the Lagrangian
stochastic model for the orientation, where the SDE is appropriately decomposed in different
contributions to obtain numerical solutions with less computational complexity.

Then, each sub-part of the splitting requires a numerical discretisation to generate paths of
the SDE as much computationally efficient as possible. Thus, the construction of explicit or
semi-implicit schemes which are capable to maintain the properties of the complex physical
process for time steps as large as possible is, here, of fundamental relevance. This leads to an
important issue related to the SDE that describes the orientation of a non-spherical particle. The
orientation vector is of unitary norm, that is numerically we have to deal with the preservation
of structural properties of the SDE, which is well-established in the context of ODE, by means
of Geometric numerical integrators, (Hairer et al. (2006)) but less explored for its stochastic
counterpart (Piggott and Solo (2016)). In classical setting of SDE, evolving without preserving
structural properties (geometrical constraints), there is a vast literature on the weak and strongly
convergent schemes, such as Euler–Maruyama, Milstein or high order Itô-Taylor approximation
schemes; nevertheless they could fail in preserving structural properties.

Particular attention is paid in developing a numerical scheme for each sub-part of the
splitting, in order to meet all the requirements. Furthermore, an accurate analysis on the
numerical error both, in weak and strong sense, is provided for each sub-part. Then, for each
sub-part of the splitting, a first order Euler–Maruyama scheme has been considered since
the choice of a splitting technique introduces an additional source of error coming from the
composition operator of the splitting.

Statistical error of the Monte Carlo scales as
√

Np, where Np is the number of particles. Due
to the slow convergence of the Monte Carlo particle method, most likely the statistical error
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dominates other numerical errors, including the time-stepping error (when it becomes small).
Hence, using high-order accurate SDE schemes in this context, only increases the complexity
of the schemes, without helping to reduce the overall numerical error.

To determine the formal order of accuracy and convergence of the numerical scheme, the
exact solution of the problem (for the weak error), or an accurate trajectory estimate (for the
strong error), is required to provide a reference for evaluating the numerical error . In the
weak error analysis, for some cases, the exact solution to the problem may be obtained with
simplification of the problem. In our case, the exact solution to the problem is derived assuming
the HIT case, where the mean field contribution is set to zero. This choice is justified since we are
mainly interested on the behaviour of the stochastic part of the numerical scheme. Conversely,
the deterministic part of the splitting method, coming from the mean-field contribution, is
much better known, e. g., Press et al. (1986), so that only a brief sketch of the implementation
will be considered.

The study of the numerical error of the Monte Carlo, is computationally demanding. A large
number of particles are required in the Monte Carlo simulation to make the statistical error
negligible compared to the other numerical errors. In order to study the convergence, in weak
and strong sense, of the SDE scheme with respect to time, we have performed simulations in
parallel via OpenMPI. Besides, the numerical tests have been implemented on a customised
code, specifically designed to make numerical analysis affordable.

Ultimately, long-time behaviours of SDEs are also a notable concern in stochastic processes
(e. g., Khasminskii (2011)). The dynamical properties of SDEs have been largely investigated,
including stochastic stability (Mao (2007); Khasminskii (2011)) and ergodicity (Hairer (2005)),
among the others. The SDE that we consider lives in SO(3), thus there exists an invariant
measure, i.e. the distribution of the process converges to a unique limit for any starting initial
condition. This is a reason for the study of long-time behaviour, since it allows to investigate
whether the discretisation of the SDE preserves or not such a property. In real applications this
is an important key-point, since the initial value is negligible and usually should not impact
the observed phenomena. Moreover, in an ergodic system time average along trajectories
and ensemble average across trajectories coincide. Indeed, such property can be exploited on
computing statistical observables, evaluating them on a single path simulated over a long time
horizon instead of relaying on a large amount of trajectories. Numerical methods are quite
sensitive in preserving long time behaviour; for instance, we refer to Roberts and Tweedie (1996);
Mattingly et al. (2002). In particular, we show that the constructed splitting algorithm along
with a suitable numerical approximation for each of its sub-parts, asymptotically preserves the
ergodicity and moments are bounded.

4.1.3 Main contributions

The aim of this chapter is resumed in the following five points, recollecting the main contribu-
tions that we brought:

(i) The model presented in Chapter 3 is extended to a non-spherical particle of arbitrary
axisymmetric shape, described by a single shape parameter, Λ. Furthermore, assumptions
are discussed, that have been introduced to reduce model complexity and to build a test-
case where an analytical solution of the moments exists and can be used to numerically
investigate the weak convergence.

(ii) The SDE which describes the orientation of non-spherical particles does not allow to
compute the derivative in time of the process, that implies to find a new formulation for
the rotation statistics, i.e. tumbling and spinning rate, for the model.
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(iii) Considering a splitting algorithm and introducing a novel approximation technique, we
construct a semi-implicit Euler–Maruyama scheme that preserves the unitary norm of the
orientation vector for a specific sub-part of the splitting. For the other sub-parts, classical
methods for the ODE and SDE are considered and discussed. Moreover, we show that the
stochastic sub-parts of the splitting converge weakly and strongly with order ∆t and

√
∆t,

respectively. Then the study of convergence of the splitting is extended by composing
the two stochastic sub-equations in the HIT case, where the mean field contributions are
set to zero. When the splitting scheme is applied, the weak and strong convergence rate
match that of classical Euler–Maruyama method (Pagés (2018)).

(iv) The long-time behaviour is analysed, showing that the constructed splitting method
well reproduces the invariant distribution in HIT case. This result is used to compare
analytical and numerical results of tumbling and spinning rate in their new formulations.

(v) A representative test case, in a more realistic applicative setting, has been considered, in
which a mean field part is accounted through a mean homogeneous shear flow. Here, the
numerical strong convergence of the decomposition method and the long-time behaviour
are studied revealing the robustness of the numerical scheme.

The rest of the work is organised as follows. In Section 4.2, we briefly recall hybrid Lagrangian
stochastic model for the fluid velocity which is in general implemented in an industrial code (in
our case Code_Saturne), in order to furnish a general setting in which the orientation model is
implemented. In Section 4.3, we introduce the Lagrangian stochastic model for the orientation
and the rotational statistics associated to the model. In Section 4.4, the splitting method and the
numerical schemes of different sub-parts are presented, followed by the discussion of strong
and weak numerical convergence. In addition, the homogeneous isotropic turbulence case is
tested and its long time behaviour, including tumbling and spinning statistics, analysed. In
Section 4.5, the splitting scheme is tested for an homogeneous shear flow, including its strong
numerical convergence and its long time behaviour. Conclusions are reported in Section 4.6.

4.2 lagrangian stochastic model for the fluid velocity

The Lagrangian stochastic model for the orientation has been implemented in an industrial
CFD code (Code_Saturne) and here, the general context of its applicative framework is briefly
presented. Stochastic modelling approaches have become increasingly used for the study of
polydispersed two-phase flow. These approaches are referred to as PDF (Probability Density
Function) methods (Peirano et al. (2006)), where turbulent closure is achieved through a mod-
elled transport equation for the joint PDF of some variables, which constitute the state vector
of the process. Moreover, among these approaches, a complete description of polydispersed
two-phase flow is represented by a hybrid Moments/PDF method which gathers two different
points of view, and two different levels of information. The fluid phase is approached by the
classical Eulerian moment method, limited to the first two moments in RANS or to the filtered
field in LES, numerically obtained by solving PDEs on a grid, whereas the dynamics of the
dispersed phase is the one-point PDF, directly simulated by a stochastic process solving the
SDEs for the time evolution of the particle state vector (Peirano et al. (2006)). In this approach,
describing particle dynamics in high Reynolds number turbulent flow, the standard particle
state vector, with inertia, contains particle location and velocity, as well as the velocity of
the fluid seen by the particle, i.e. Z = (Xp,up,us), as presented by Peirano et al. (2006). The
choice is valid for inertial spherical particles. Furthermore, when other phenomena need to be
accounted for, the particle state vector is naturally extended to include the relevant variables
attached to each particle.
The general form, for a spherical inertial particle (when only drag forces act on particles), of
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the state-of-the-art of Langevin model (Minier (2016)) where the equation of the velocity of the
fluid seen comes from an extension of the generalised Langevin model (GLM) (Pope (2001)) for
the fluid particles, takes the form,

dXp,i = up,i dt (4.1)

dup,i =
1
τp

(
us,i − up,i

)
dt (4.2)

dus,i = −
1
ρ f

∂ 〈Pf 〉
∂xi

dt +
(
〈up,j〉 − 〈u f ,j〉

) ∂ 〈u f ,i〉
∂xj

dt + G∗ij
(

us,j − 〈u f ,j〉
)

dt + Bs,ij dW̃j(t), (4.3)

where W̃j(t) is a vector of independent Wiener processes. The following model involves
conditional means such as for example 〈up(t)|x〉, 〈u f (t)|x〉, which means that all the mean
field quantities within the model need to be evaluated at time t for the particle at position
x = Xp(t). The matrix G∗ij is build from the matrix Gij of the GLM (Pope (2001)) and is given by
G∗ij = −(1/2 + 3/4 C0)(ε/k) Hij where C0 is a constant, k is the fluid turbulent kinetic energy
and ε is the mean dissipation rate of the turbulent kinetic energy. The matrix Hij accounts
for the crossing-trajectories effect and contains the Csanady factors which stand for the ratio
between the timescale of the fluid particle velocities TL and the timescale of the fluid velocity
seen by discrete particles. The general diffusion coefficients matrix Bs,ij can be found in Minier
(2016), as well as more others details on Eqs. (5.4)-(5.6).

In this work, we consider anisotropic inertialess particles since from a modelling perspective
they represent a more complex case to address. This comes from the fact that anisotropic tracer
particles are responsive to the intricate turbulence behaviour, in contrast to the case of inertial
ones, that do not mimic all these features, reacting smoothly to turbulence.

In perspective, the extension of the model to anisotropic inertial particles is interesting and
implies the additional work of including the particle relaxation time τp in the Jeffery’s equation.
We would underline that the numerical scheme, hereafter developed can be adapted to the
inertial case since it deals with the general numerical problem of orientation that remains the
same for both, inertialess and inertial particles.

When anisotropic inertialess particles are considered, the fibre state vector is supplemented
by the particle orientation vector p. In this case, particles consist of fluid tracers by meaning that
particle velocity tends towards fluid velocity, getting a relevant fibre state vector Z = (X f ,u f ,p).
The Langevin model in Eqs. (4.1), (5.5) and (5.6), using some simplification detailed in Minier
(2016), in the particle tracer limit of vanishing inertia (i.e. in this case us = u f ), as explained in
(Chibbaro and Minier (2011)), reverts continuously to the Simplified Langevin Model (SLM)
developed by Pope (1994), becoming

dX f ,i = u f ,i dt (4.4)

du f ,i = −
1
ρ f

∂ 〈Pf 〉
∂xi

dt− 1
TL

(
u f ,i − 〈u f ,i〉

)
dt +

√
C0ε dW̃i(t). (4.5)

The Lagrangian time scale of the velocity correlation is defined by TL = 1
( 1

2+
3
4 C0)

k
ε with the

other quantities detailed in Minier et al. (2004); Peirano et al. (2006). In the above Langevin
model which has been reduced for the position and velocity of the fluid seen Eqs. (4.4)-(4.5),
the fluid mean velocity field 〈u f ,i〉, the turbulent kinetic energy k, the mean dissipation rate
ε and the mean pressure gradient are provided by an Eulerian solver. In this case, for the
two-phase calculation performed with Moment/PDF approach, the time step can be further
constrained by the fluid flow computation. From now on, the discussion will be focused on the
SDE that models the orientation disregarding the external framework.
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4.3 lagrangian stochastic model for the orientation

An axisymmetric ellipsoid, i.e. a spheroid, is the simplest shape commonly adopted to closely
represent non-spherical particles, where the shape of a spheroid is easily parametrised by the
aspect ratio λ, as shown in Fig. 2.1 of Chapter 2). Aspect ratio is defined as the ratio between
the symmetry axis and the two equal axes. Moreover, we consider a small spheroidal tracer
particle whose size is smaller than the Kolmogorov length scale ηK, so that the local flow
around the particle can be considered to be inertia-free and Stokes flow solutions can be used
to relate the rotational dynamics of the particle to the local velocity gradient tensor.

In this section, we briefly recall the Jeffery’s equation presented in Chapter 2 that has been
largely used to investigate the orientation and rotation in DNS context. Then, the Lagrangian
stochastic model for the orientation of a rod-like particle developed in Chapter 3, is extended
to spheroidal particle. In addition, the model is required to be coherent with the considered
transport equations, Eqs. (4.4)-(4.5), and the associated numerical scheme for the orientation
has to be transparent, i.e. it does not introduce numerical constraints on the modelled transport
part of the system in Eqs. (4.4)-(4.5). Ultimately, the rotation statistics of the model is discussed
to clarify the link on what has been already investigated in DNS (Parsa et al. (2012)).

4.3.1 Deterministic equation for the orientation

The problem was tackled by Jeffery (1922) who considered a spheroidal tracer particle that has a
centre of mass velocity matching the fluid velocity at the particle position dX(t)/dt = u(X(t), t),
where X(t) is the Lagrangian position at the centre of mass of the particle, and u(X(t), t) is
the fluid velocity at the particle position. The orientation p of spheroidal rigid particles is
described, in terms of the particle shape parameter Λ, by the Jeffery’s equation (Jeffery (1922)),
that we recall to be,

dpi
dt

= Oij pj + Λ
(
Sij pj − pi pk Skl pl

)
, Λ =

λ2 − 1
λ2 + 1

, (4.6)

where Sij = (Aij + Aji)/2 is the rate-of-strain tensor, and Oij = (Aij − Aji)/2 is the rate-of-
rotation tensor which are the symmetric and antisymmetric part of the velocity gradient tensor
along the Lagrangian trajectory.

In a turbulent flow, a small spheroidal particle rotates in response to the velocity gradient
along its Lagrangian trajectory and Eq. (4.6) results to be fully characterised in terms of this
latter. The velocity gradient tensor Aij(t) = ∂ui/∂xj(t) fluctuates and is dominated by the small-
scale motions of the order of the Kolmogorov scale ηK. Its fluctuating part results similar in
many different turbulent flows and it has been extensively studied by Meneveau (2011). Indeed,
the dynamics of spheroidal particle in turbulence is strictly related to a better understanding
of the Lagrangian velocity gradient. For this purpose, the complex particle angular dynamics
has been investigated in DNS by studying the alignment of p with respect to the eigenvectors
of the rotation rate Oij and the strain rate Sij (Pumir and Wilkinson (2011)). Furthermore, it is
important to underline that this feature is the fundamental basis for developing a model for the
orientation (Chevillard and Meneveau (2013)). DNS is still the most common method and an
important tool for analysing the role played by the velocity gradient tensor on the orientation
and rotation of the particles, as argued in Chapter 2, in HIT (Shin and Koch (2005); Pumir and
Wilkinson (2011); Parsa et al. (2012); Chevillard and Meneveau (2013); Byron et al. (2015)), or in
a turbulent channel flow (Mortensen et al. (2008); Marchioli et al. (2010); Marchioli and Soldati
(2013); Challabotla et al. (2015a); Zhao and Andersson (2016)).

Following the presentation given in Chapter 2, the orientation of a spheroid, characterised
by the shape parameter Λ, can be described by a linear ODE representing a generalisation
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of Eq. (4.8) to any shape, where the long-time dynamics is determined by the eigenvalues
and eigenvectors of the matrix O+ ΛS (Ni et al. (2014)). Moreover, it is still satisfied for an
incompressible flow Tr(O+ ΛS) = 0 since Tr(A) = 0. Bretherton (1962) realised that we may
alternatively model the orientation of the particle with any vector q which obeys the same
linear terms, but without compensating for any elongation:

dqi
dt

=
(
Oij + ΛSij

)
qj, (4.7)

defining pi = qi/‖q‖, where pi is the solution of Eq. (4.6). Owing to the common linear terms
in Eq. (4.6) and (4.7), the vector q will have the same angular dynamics as p. In addition, q may
be stretched and compressed by the strain Sij. However, since we are only interested in the
angular degrees of freedom, we can at any instant recover p by normalising q to unit length.

Also, from a numerical perspective, in DNS Eq. (4.6) is integrated along the particle trajectory
on a time-lapse of a multiple of Kolmogorov time scale using an Adams-Bashforth second
order in time scheme or following the methodology proposed by Fan and Ahmadi (1995). The
use of these higher order integration schemes comes primarily to the presence of non-linear
terms in Eq. (4.6) and by the deterministic nature of the orientation equation, i.e. it does not
present much numerical difficulties since well known classical schemes are used (Press et al.
(1986)).

4.3.2 Stochastic model for the orientation

Despite the accuracy and completeness of informations provided by the DNS, it will not be
handy to design large scale systems at practical Reynolds numbers for industrial applications.
Indeed, in practical applications it is necessary to resort to a mesoscopic or macroscopic
description of the phenomena to make the problem affordable.

Several Lagrangian stochastic models for the velocity gradient tensor, which have found
several applications in the mean-field/PDF framework, have been proposed in literature (e. g.,
Girimaji and Pope (1990); Chevillard and Meneveau (2006); Pumir and Wilkinson (2011) and
presented in Chapter 2. In fact, many practical situations require a more detailed representation
of the finer scale properties of the velocity gradient tensor. Relevant examples include rotation
and orientation dynamics (Pumir and Wilkinson (2011); Chevillard and Meneveau (2013)),
or polymer stretching-relaxation dynamics (Balkovsky and Fouxon (1999); Chertkov (2000);
Procaccia et al. (2008)). The stochastic modelling techniques for the velocity gradient tensor,
for example, have been coupled to LES to provide small-scale information along trajectories
(e. g., Chen et al. (2016); Johnson and Meneveau (2018)). In this way, the effect of large-scale
features captured in LES is transmitted to the small scale dynamics. The work of Chen et al.
(2016) represents one of the first attempts to study the orientation of anisotropic particles, by
coupling an Ornstein–Uhlenbeck model for the velocity gradient tensor to an LES, in isotropic
homogeneous turbulence. In the same context, Johnson and Meneveau (2018) studied the
deformation of droplets in a turbulent channel flow introducing a more refined model for
the velocity gradient tensor (Johnson and Meneveau (2016)). However, these works represent
attempts in including the velocity gradient statistics which have not received much attention in
the modelling context.

In Chapter 3, the Lagrangian stochastic model for the orientation of a rod-like particle has
been presented. We recall that the model considers a linear companion,

dri = 〈Aij〉 rj dt + βimj rj ◦ dwm
t , pi =

ri
‖r‖ . (4.8)

where ◦ corresponds to the integral in Stratonovich form and ‖ · ‖ is the Euclidean norm. The
closure of the model has been obtained by assuming that the velocity gradient fluctuations
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A′ij = Aij − 〈Aij〉 are Gaussian and short correlated in time. In particular, the diffusion tensor
in expression (3.23) has been expressed as,

βimjβkml = 2 Ceff
ijkl , (4.9)

where Ceff
ijkl represents the effective diffusion tensor in expression (3.20). Moreover, two different

limits have been assumed: when the observation time of the dynamics is much larger than the
integral correlation time (τI = max(τijkl

I )), i.e. ∆t� τI, and when ∆t� τη , i.e. the observation
time is smaller than the Kolmogorov time scale τη . The latter corresponds to the typical
turnover time of the velocity gradient fluctuations. Then, the Kubo number has been defined
Ku = τI/τη � 1 giving the working hypothesis of the model.

The Lagrangian stochastic model for the orientation can be recovered using Eq. (4.8), by
considering that the symmetric and antisymmetric part of the velocity gradient tensor play a
different role as in the Jeffery’s equation (4.6), since the symmetric part is driven by the shape
parameter Λ. Therefore, rewriting the linear Eq. (4.8) in terms of any vector q as in Eq. (4.7),
leads to

dqi(t) =
(
〈Oij〉+ Λ 〈Sij〉

)
qj dt +

(
βa

imj + Λ βs
imj

)
qj ◦ dwm

t , (4.10)

pi =
qi
‖q‖ , (4.11)

where the orientation p, as we will show in the following, can be derived by using Itô’s
Lemma. Equation (4.10) is expressed in the Stratonovich sense (◦) and dwm

t (m = 1, . . . 9) is
a vector of nine-dimensional Wiener process whose components are independent, standard
one-dimensional Wiener processes. The fluctuations contribution are expressed in terms of
symmetric and antisymmetric tensor (using the superscript s, a for anti- and symmetric part)
βs

imj = (βimj + β jmi)/2, βa
imj = (βimj − β jmi)/2, respectively.

In this case we consider extrinsic coordinates, so that we can well mimic the deterministic
dynamics and take into account the physics of the problem. This choice adds some advantages
from the numerical point of view, since intrinsic coordinates would introduce singularities and
cause instabilities.

4.3.2.1 Model assumptions and parametrisations

In general, the integral correlation time τ
ijkl
I in Eq. (4.9), and consequently Ceff

ijkl , could be
measured by DNS data, providing the spatial dependence of the diffusion tensor among
coordinates of Eq. (4.10). Moreover, its form is not known in advance as for the two dimensional
case analysed in Chapter 2.

Here, we restrict ourselves to consider the case where there is no spatial dependence on
the integral correlation time τ

ijkl
I . This assumption is firstly motivated by the fact that we are

interested to develop and investigate a suitable numerical scheme, thus we aim to simplify as
much as possible the model to compute most of the results analytically. Secondly, even if the
hypothesis is restrictive for the general model, one of the postulates of turbulent theory is that
at small scales, the statistical properties of turbulence should be universal, at least for infinite
Reynolds numbers. This hypothesis is explicitly made by the Kolmogorov theory (‘K41’) (Frisch
(1995)), which has been assumed in a number of phenomenological models (Nelkin (1994)).
Because of the postulated universality at small scales, one expects that the velocity gradient
tensor has the highest possible symmetry, in particular, it can be considered homogeneous and
isotropic.

We anticipate that the numerical approximation scheme associated to the SDE for the
orientation is not constrained to a particular choice of the correlation tensor of the velocity
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gradient fluctuations. Indeed, its numerical adaption can be extended to other choices of the
tensor that depend exclusively on the physical model. However, the isotropic case presents
some advantages: firstly, some analytical solutions can be derived by allowing a fair comparison
both with numerical approximations and with previous existing results (e. g., Parsa et al. (2012);
Byron et al. (2015)); secondly, the numerical scheme can be analysed in more detail by having a
direct control on the role played by each term in Eq. (4.17), that we will define below.

Under homogeneous and isotropic assumptions, we can rewrite Eq. (4.9) as,

βimjβkml = 2 τI Cijkl(0), (4.12)

by having considered the approximation made in expression (3.19) and where the tensor
Cijkl(0) = 〈A′ij(0)A′kl(0)〉 is homogeneous and isotropic. This strongly simplifies the expression
of the tensor since it can be expressed in terms of the Kronecker δ-tensor, and symmetry
imposes that, for a fourth-order isotropic tensor:

Cijkl = c1δikδjl + c2δijδkl + c3δilδjk. (4.13)

We use the Einstein convention of summation of repeated indices throughout.
The coefficients are derived by imposing that the correlation tensor of the velocity gradient

fluctuations 〈A′ij(0)A′kl(0)〉 = 〈∂ju′i∂lu′k〉 satisfies incompressibility (trace-free), homogeneity,
and isotropy (Pumir (2017)).

More specifically, incompressibility imposes that Ciikl , related to 〈A′ii A′kl〉 = 0, satisfy c1 +
3c2 + c3 = 0. In addition, the homogeneity imposes Cijji = 0 (related to 〈A′ij A′ji〉 = 0), which
leads to: c1 + c2 + 3c3 = 0. Last, the dissipation of turbulent kinetic energy is equal to Cijij = ε/ν
(related to ν 〈A′ij A′ij〉 = ε), which gives, 3c1 + c2 + c3 = ε/(3ν). This leads to the explicit
expression for one point correlation of the velocity gradient fluctuations,

Cijkl(0) =
ε

30ν
(4δikδjl − δijδkl − δilδjk). (4.14)

The second order moment of the velocity gradient tensor fluctuation is therefore expressed
in terms of only one dimensional quantity: the correlation time scale of the velocity gradient
tensor. It is defined by ε/ν = τ−2

η where ε is the turbulent energy dissipation rate, and ν is the
kinematic viscosity of the fluid. Finally Eq. (4.12) is recovered,

βimjβkml = 2 D Ku(〈Aij〉) (4δikδjl − δijδkl − δilδjk), (4.15)

where D = 1/(30τη) and Ku = τI/τη .

The Stratonovich formulation of Eq. (4.10) is not very suitable to make computations and
develop a numerical scheme, thereby we will take advantage from the Itô formulation. Applying
the conversion rule from Stratonovich to Itô integral, as reported in Appendix B.1, Eq. (4.10)
becomes

dqi =
(
〈Oij〉+ Λ 〈Sij〉+ 5D Ku(Λ2 − 1)δij

)
qj dt +

(
βa

imj + Λ βs
imj

)
qj dwm

t . (4.16)

The Lagrangian stochastic model for the orientation p can be obtained using the Itô’s Lemma
on the renormalisation function q 7→ p = F(q) with pi = Fi(q) = qi/‖q‖ getting, as presented
in Appendix B.2,

dpi = 〈Oil〉 pldt + Λ
(
〈Sil〉 − pi pj 〈Sjl〉

)
pldt

− νs

2
Λ2 pidt + νsΛ

(
dWs

il − pi pjdWs
jl

)
pl −

νa

2
pidt + νadWa

il pl ,
(4.17)
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or in the Stratonovich (∂) form,

dpi = (〈Oil〉+ Λ 〈Sil〉) pldt−Λpi pj 〈Sjl〉 pldt

+ (νa∂Wa
il + νsΛ∂Ws

il) pl − νsΛpi pj∂Ws
jl pl ,

(4.18)

where νs =
√

6 D Ku and νa =
√

10 D Ku (with D = 1/(30τη)) contain the scaling parameters.

We have used the matrix notation for the Wiener process Wil
t = w3(i−1)+l

t , that is the Wiener
vector wm

t has been expressed in terms of a 3 by 3 matrix using the same nine scalar Wiener
processes as outlined in 2 in Appendix B.1. In addition, the Wiener matrix has been decomposed
in its symmetric and antisymmetric part (using the superscript a, s for the anti- and symmetric
part) Ws

il = (Wil
t + Wli

t )/2 and Wa
il = (Wil

t −Wli
t )/2 respectively. Finally, Eq. (4.17) results to

be the stochastic version of Jeffery’s equation (4.6). Consequently, this last equation preserves
the same structure of the deterministic one, where the dynamics is driven by two main
contributions, the mean-field and the Gaussian fluctuating part.

In the following, we will consider a probability space and therefore the expectation operator
E[·] that comes with the set of Brownian motions previously introduced in Eq. (4.17). We will
still denotes the ensemble average 〈·〉.

properties and remarks on the sde model Equation (4.17) is presented adopting an
extrinsic coordinate system (Cartesian coordinates), since we do not want to loose the physical
description of the problem in the equation. Indeed, considering extrinsic coordinates provides
a direct interpretation of the role of the Brownian symmetric and antisymmetric matrices
with respect to the symmetric and antisymmetric part of the velocity gradient tensor in the
deterministic Jeffery’s equation (Eq. (4.6)). It is important to remark that, when switching to an
intrinsic description, the physical interpretation of the problem could become much harder,
and some singularities are introduced which numerically should be avoided.

To create a link with the two dimensional case in Chapter 3, we would remind that an
intrinsic description has been used in that case to reduce the difficulties and to study the
problem analytically. However, the 2D problem represents a simplified case since the intrinsic
description leads to a scalar equation: that would never be the case in the three dimensional
setting.

Here, in addition, the extrinsic description is associated to a numerical scheme implemented
in a CFD code; this is more flexible with respect to an intrinsic one, since it allows a further
enrichment of the physical model by maintaining the same structure of the numerical scheme
under consideration. The discussion about the choice of extrinsic and intrinsic coordinates
is brought to attention due also to the nature of Eq. (4.17): in fact, its solution evolves on
the manifold SO(3). In the literature, many authors investigated how to formulate SDEs on
manifolds.

One option is to work extrinsically and to consider only manifolds embedded in Rn, that
implies defining SDEs in the Cartesian space and then confine the solutions to the manifold.
Another approach is to use an interpretation of SDEs on manifolds where the existence of
solutions is defined intrinsically. A survey of various approaches to understand SDEs on
manifolds has been given by Armstrong et al. (2018).

Moreover, these two approaches are strictly related to the convention used for the SDEs,
i.e. Itô (e. g., Eq. (4.17)) or Stratonovich (e. g., Eq. (4.18)). In general, since Stratonovich and
Itô calculus are just on two-coordinate systems, one would expect to be able to work using
both conventions interchangeably. Often, in modelling physics and engineering systems,
Stratonovich calculus is chosen, as shown in Chapter 3). On the other hand, the Itô integral has
a number of good probabilistic properties and is used because more handling from a numerical
point of view.
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4.3.3 Spinning and tumbling rates in the stochastic model

The preferential orientation of non-spherical particles has profound implications for the particle
rotation statistics. As detailed in Chapter 2, the rotational dynamics of spheroids in turbulent
flows is related to the temporal evolution of a unit vector p(t), which can be also expressed in
terms of the total angular velocity of the particle Ω = ω/2 + Λp×Sp, such that the Jeffery’s
equation (4.6) can be rewritten as dp/dt = Ω× p .

In the Lagrangian stochastic model for the orientation, Eq. (4.17), due to the presence of
stochastic integrals, the particle angular velocity Ω is not properly defined. This requires to
introduce a suitable statistics to describe the spinning and tumbling rates for the stochastic
model. More precisely, we identify the angular displacement vector associated to the particle
angular velocity Ω dt = ∂φ (in Stratonovich formulation) as the measurement that properly
characterises the tumbling and spinning statistics. Equation (4.18) in terms of rotational
dynamics can be rewritten as

dp = ∂φ× p, (4.19)

and its Itô form (Eq. (4.17)),

dp = dφ× p− 1
2
(ν2

a + Λν2
s )p dt. (4.20)

Here the angular increment dφ associated to the particle angular velocity can be identified
discarding the Itô-Stratonovich transformation term since it does not provide any contribution
to the rotational dynamics,

dφ =
1
2
〈ω〉 dt + Λ(p× 〈S〉p)dt +

νa

2
dwa + νsΛp× dWsp. (4.21)

The mean antisymmetric part of the velocity gradient tensor has been rewritten as 〈O〉 p =
(〈ω〉 × p)/2, where 〈ω〉 is the mean vorticity vector. Analogously, the fluctuating part becomes
dWa p = (dwa×p)/2, where we have identified the increment of the vorticity vector fluctuation
in terms of antisymmetric matrix Wa, as wa = 2(Wa

32, Wa
13, Wa

21)
ᵀ.

Similarly to the presentation of the tumbling and spinning rate given above for the determ-
inistic case (Byron et al. (2015)), we can define the orthogonal and parallel projection of the
angular increment dφ on p (a sketch is given in Fig. 4.1) as,

φ⊥p(t) =φ⊥p(0) +
∫ t

0
p× (dφ× p) , (4.22)

φ‖p(t) = φ‖p(0) +
∫ t

0
p · dφ. (4.23)

We remark that the term p× (dφ× p) = dφ× p since the Stratonovich term is zero when we
take the cross product with p.

Going a bit further in the computation, i.e. replacing Eq. (4.21) in Eq. (4.22) and (4.23)
respectively, we get

φ⊥p(t) = φ⊥p(0) +
∫ t

0

[
1
2
(1− ppᵀ) 〈ω〉+ Λp× 〈S〉p

]
ds

+
∫ t

0

[νa

2
(1− ppᵀ)dwa + νsΛp× dWsp

]
,

(4.24)

φ‖p(t) = φ‖p(0) +
1
2

∫ t

0
p · 〈ω〉 ds +

νa

2

∫ t

0
p · dwa, (4.25)

where 1 is the identity matrix.
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Figure 4.1: Sketch of angular increment in the Lagrangian stochastic model in Eq. (4.21). The total
angular increment dφ has been decomposed in tumbling dφ⊥p and spinning dφ‖p components in
Eq. (4.22) and (4.23) respectively. The latter has been projected along Cartesian axis.

Independently to the type of flow that we are considering (i.e. homogeneous isotropic,
homogeneous shear or wall bounded turbulent flow), the rotational dynamics of the spheroidal
particle can be characterised by the mean and variance of the tumbling and spinning quantities
defined for the stochastic model.

In terms of averages, the tumble and spinning motion can be identified by the norm of the
mean of the orthogonal φ⊥p and parallel projection φ‖p, respectively,

Φ̂⊥p(t) =
d
dt
∥∥E
[
φ⊥p(t)

]∥∥ , (4.26)

Φ̂‖p(t) =
d
dt

E
[
φ‖p(t)

]
, (4.27)

The mean of the parallel projection φ‖p at the equilibrium state goes to zero, since the SDE (4.17)
for the orientation behaves in average as its deterministic counterpart, Eq. (4.6), which contains
only even terms, given the symmetry p → −p. Computing the norm of the mean of the
orthogonal φ⊥p and parallel projection φ‖p is interesting to have a control on the behaviour of
the variances as we can see hereafter.

In equivalent manner, the second observable associated to the tumbling and spinning rate is
the variance of the norm of the orthogonal and parallel projection. These two quantities can be
expressed as,

Φ⊥p(t) =
d
dt

[
E
∥∥φ⊥p(t)

∥∥2 −
∥∥E
[
φ⊥p(t)

]∥∥2
]

, (4.28)

Φ‖p(t) =
d
dt

[
E
[
φ2
‖p(t)

]
−E

[
φ‖p(t)

]2
]

(4.29)

We draw the attention on the definitions given in Eqs. (4.26), (4.28) and (4.29), since they
represent the extension to the 3D case of the mean and variance of the angular displacement
defined in Chapter 3 for the 2D case. Indeed, these quantities fully characterize the modes
of rotation in 3D for the Lagrangian stochastic model, Eq. (4.17), and they can be analysed
for different types of flows. Interestingly, these statistics are not easy to handle since are not
ergodic, representing a challenging case of study from a numerical point of view.
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4.3.3.1 Tumbling and spinning in homogeneous isotropic turbulence

The first test case consists in deriving and investigating the analytical formulation of tumbling
and spinning rates for the stochastic model in HIT. In this case, the mean contribution of the
velocity gradient tensor is zero and Eq. (4.17) becomes,

dp1 =− 1
2

(
ν2

s Λ2 + ν2
a

)
p1dt + (νadWa

1l + νsΛdWs
1l) pl − νsΛp1 pjdWs

jl pl

dp2 =− 1
2

(
ν2

s Λ2 + ν2
a

)
p2dt + (νadWa

2l + νsΛdWs
2l) pl − νsΛp2 pjdWs

jl pl

dp3 =− 1
2

(
ν2

s Λ2 + ν2
a

)
p3dt + (νadWa

3l + νsΛdWs
3l) pl − νsΛp3 pjdWs

jl pl .

(4.30)

It is important to notice that the set of equations above, when they are not coupled with the
Lagrangian transport models, makes the stochastic model for pt reversible in time due to the
presence of Brownian motions. In fact, the forward and backward Kolmogorov operators are
self-adjoint.

This ‘time reversibility’ is directly related to a change of |Λ| → −|Λ| in Eq. 4.30 which
implies that rod-like particles (Λ > 0) have the same statistical behaviour of disk-like particles
(Λ < 0). This is an important difference with respect to Eq. (4.6) studied in DNS, where the
turbulence breaks time reversal invariance.

In Eq. 4.30 the mean contribution of the velocity gradient tensor is zero which means that
the Eq. (4.28) and (4.29) are reduced to compute the averaged squared values. By considering
Eq. (4.22), having used Eq. (4.21), we get

Φhit
⊥p =

d
dt

E
∥∥φ⊥p(t)

∥∥2

=
d
dt

E

∥∥∥∥
∫ t

0

[νa

2
(1− ppᵀ)dwa + νsΛp× dWsp

]∥∥∥∥
2

=
d
dt

E

[∫ t

0
ν2

a + ν2
s Λ2dt

]
= ν2

a + ν2
s Λ2,

(4.31)

where the Itô isometry has been applied to compute the stochastic integral (detailed computa-
tion is presented in Appendix B.3).

Applying the same considerations, the spinning rate can be obtained by using Eq. (4.21) in
Eq. (4.23),

Φhit
‖p =

d
dt

E
[
φ‖p(t)

]2
=

d
dt

E

[
νa

2

∫ t

0
p · dwa

]2

=
d
dt

E

[∫ t

0

ν2
a

2
dt
]
=

ν2
a

2
.

(4.32)

These analytical results are constant in time.
Further, replacing the definitions of Λ = (λ2− 1)/(λ2 + 1), νs =

√
6 D Ku and νa =

√
10 D Ku

with D = 1/(30τη) in Eq. (4.31) and (4.32), we get,

Φhit
⊥p =

Ku
3τη

+
Ku
5τη

(
λ2 − 1
λ2 + 1

)2

, (4.33)

Φhit
‖p =

Ku
6τη

. (4.34)

Similar qualitatively result for Eq. (4.33) has been obtained by Parsa et al. (2012) using different
arguments. In particular, they assume the independency between the velocity gradient tensor
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A and the orientation p for a randomly oriented spheroidal particle. Even if the statistics are
different from those derived by Parsa et al. (2012), in our opinion the results are qualitatively
comparable. Moreover, both statistics are restricted to the observation of the tumbling and
spinning dynamics in the diffusive regime (long-time limit of the phenomena). Interestingly,
the behaviour of rod- and disk-like particles in Eq. (4.33) and (4.34) is the same, which comes
from time reversibility. Conversely, in turbulence time irreversibility is present leading to a
different behaviour between rod- and disk-like particles as presented in Fig. 2.4 of Chapter 2.

4.3.3.2 Tumbling and spinning in homogeneous shear flow

A second test case for the derivation of tumbling and spinning statistics can be built by consid-
ering a turbulent homogeneous shear flow (HSF). Indeed, HSF is statistically homogeneous,
i.e. turbulence statistics are invariant under spatial translations and therefore simpler than
wall-bounded turbulence, such as a turbulent channel flow. This implies that is still possible to
derive some analytical solutions about statistics. Despite the simplicity, HSF remains physic-
ally relevant since it owns several common features with more general wall-bounded flows.
Moreover, it represents a good framework to test the numerical scheme since it does not add
too much difficulties coming from the mean part contribution in Eq. (4.17).

In the HSF case, the flow is characterised by mean profiles of the velocity components
〈ux〉 = σy, 〈uy〉 = 〈uz〉 = 0, where x is the streamwise direction, y is the cross-terms coordinate
along which the mean velocity varies, and σ is a constant mean shear rate, σ = d 〈ux〉 /dy. This
means that the mean contribution of the velocity gradient can be written as,

〈Aij〉 =




0 σ 0

0 0 0

0 0 0


 = 〈Sij〉+ 〈Oij〉 =

1
2




0 σ 0

σ 0 0

0 0 0


+

1
2




0 σ 0

−σ 0 0

0 0 0


 , (4.35)

For this particular choice of the mean shear, Eq. (4.17) becomes,

dp1 =
σ

2
(Λ + 1)p2dt− σΛp2

1 p2dt− 1
2

(
ν2

s Λ2 + ν2
a

)
p1dt

+ (νadWa
1l + νsΛdWs

1l) pl − νsΛp1 pjdWs
jl pl ,

dp2 =
σ

2
(Λ− 1)p1dt− σΛp2

2 p1dt− 1
2

(
ν2

s Λ2 + ν2
a

)
p2dt

+ (νadWa
2l + νsΛdWs

2l) pl − νsΛp2 pjdWs
jl pl ,

dp3 =− σΛp1 p3 p2dt− 1
2

(
ν2

s Λ2 + ν2
a

)
p3dt

+ (νadWa
3l + νsΛdWs

3l) pl − νsΛp3 pjdWs
jl pl .

(4.36)

The equations above have the coefficients that are constant in time both in drift and diffusion
part. Further, the stochastic orientation vector pt lives on a sphere so that the process is ergodic,
converging towards an equilibrium measure. This represents an important property that will
be used, hereafter, to derive some semi-analytical forms about tumbling and spinning statistics.

In the presence of mean velocity gradients we can compute the norm of the mean of the
orthogonal projection φ⊥p, according to Eq. (4.26),

Φ̂hsf
⊥p(t) =

d
dt

∥∥∥∥E

[∫ t

0
g⊥(ps)ds

]∥∥∥∥ , with g⊥(ps) =
σ

2




−(Λ− 1)p1 p3

(Λ + 1)p2 p3

(Λ− 1)p2
1 − (Λ + 1)p2

2


 , (4.37)



4.3 lagrangian stochastic model for the orientation 77

where we have explicitly computed g⊥(p(t)) = (1− ppᵀ) 〈ω〉 /2 + Λp× 〈S〉p, that corres-
ponds to the drift part of Eq. (4.24).

Regarding the variance of the norm of the orthogonal projection in Eq. (4.28), this can
be rewritten by superimposing the contribution of mean shear and that coming from the
fluctuations, the latter already computed in the HIT case, leading to,

Φhsf
⊥p(t) =

d
dt

[
E

∥∥∥∥
∫ t

0
g⊥(ps)ds

∥∥∥∥
2
−
∥∥∥∥E

[∫ t

0
g⊥(ps)ds

]∥∥∥∥
2
]
+ Φhit

⊥p. (4.38)

Similarly, the same analysis can be performed for the parallel projection φ‖p. The scalar
quantity associated to the spinning that differs from zero is the norm squared since, as said,
the expectation E[φ‖p] is always zero by the symmetry p→ −p, and it can be written as,

Φhsf
‖p (t) =

d
dt

E

∥∥∥∥
∫ t

0
g‖(ps)ds

∥∥∥∥
2
+ Φhit

‖p , with g‖(ps) =
σ

2
p3, (4.39)

where we have explicitly computed g‖(ps) = p · 〈ω〉 /2, that corresponds to the drift part of
Eq. (4.25).

We now derive the semi-analytical forms (using ergodicity assumption) to compare with
numerical results for the quantities introduced above, i.e. the mean quantity Φ̂hsf

⊥p(t), as well

as the variance Φhsf
‖p (t) and Φhsf

‖p (t), respectively. Equation (4.37) can be strongly simplified
if we consider the long time behaviour, by applying the ergodicity assumption. Under this
hypothesis we get,

Φ̂hsf
⊥p∞
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t→∞

d
dt

(∥∥∥∥E

[∫ t

0
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2
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∑
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∑
i=1

E
[

g⊥i (p∞)
]2
) 1
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(4.40)

Equivalently for Eq. (4.38), after an initial time t0, the process reaches a stationary state, i.e.
allowing to considering a time lag τ = |t0 − s|. In this way, we can write,
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⊥p∞
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3
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(4.41)

where the stationarity measure has been used to define

Rg⊥i
(τ) = E

[
g⊥i (pt0)g⊥i (pt0+τ)

]
−E

[
g⊥i (pt0)

]
E
[

g⊥i (pt0+τ)
]

. (4.42)

In analogy with the presentation made for the tumbling, a semi-analytical expression for the
norm squared of the parallel projection φ‖p is given by,

Φhsf
‖p∞

=
∫ ∞

t0

E
[

g‖(pt0)g‖(pt0+τ)
]

dτ + Φhit
‖p . (4.43)
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Finally, these semi-analytical expressions (4.40), (4.41) and (4.43) will be used as diagnostic
tool for the numerical scheme. For clarity we list their final results below,

Φ̂hsf
⊥p∞

=

(
3

∑
i=1

E
[

g⊥i (p∞)
]2
) 1

2

, (4.44)

Φhsf
⊥p∞

= 2
3

∑
i=1

∫ ∞

t0

Rg⊥i
(τ)dτ + Φhit

⊥p , (4.45)

Φhsf
‖p∞

=
∫ ∞

t0

E
[

g‖(pt0)g‖(pt0+τ)
]

dτ + Φhit
‖p . (4.46)

Interestingly, Eq. (4.44) can be easily computed by evaluating the moments E[g⊥i ] in the long
time limit (p∞) where Eq. (4.17) is stationary in time, and all moments do not depend on
time. Conversely, Eq. (4.45) and (4.46) correspond to compute the time correlations of each
contribution g⊥i or g‖i , which is numerically much harder than just evaluate the moments in
the stationary state as for the case of Eq. (4.44).

4.4 numerical scheme

In this section we develop a numerical method for weak and strong solutions of SDE (4.17).
We would like first to remark that finding a numerical solution to an SDE, as (4.17), is a much
harder problem than considering an ODE, such as the deterministic counterpart, Eq. (4.6). In
general, all the well developed high-order ODEs schemes degrade to low-order accuracy when
applied to Itô SDE and, even worse, they can lead to inconsistent schemes because most ODE
schemes violate the non-anticipatory property of Itô SDEs. The numerical solution of SDEs is
a broad research area. In general, SDEs are difficult to solve analytically and many attempts
have been made to develop efficient numerical methods, as in Mao (2007); Pagés (2018).

Equation (4.17) has to be treated carefully since its solution is a vector in R3 which represents
an orientation of unitary norm. The unit length is preserved by the presence of the non-linear
terms, both in the drift and in the stochastic contributions. In particular, the solution evolves in
the manifold SO(3), and this underlines the geometric character of SDE (4.17). As mentioned
in paragraph 4.3.2.1, for such kind of systems both, Stratonovich and Itô formulations are
possible, having their advantages and drawbacks.

Several integration schemes have been developed for Itô and Stratonovich formulations,
as for example Itô SDE schemes (Klauder and Petersen (1985); Greiner et al. (1988); Milstein
(1994); Platen (1995); Mackevičius and Navikas (2001); Pagés (2018)), and Stratonovich SDE
schemes (Burrage and Tian (2002); Tian and Burrage (2002); Rößler (2009)). In this work, the Itô
convention will be adopted since in general is very convenient in the development of numerical
schemes for SDEs. However, the employment of these two formulations for the splitting scheme
that we will develop do not present a numerical issue.

In order to preserve the unit norm all along the simulation we have to deal with the
discretisation of non-linear terms, not only in the drift part but also in the stochastic one, which
adds more drawbacks from a numerical point of view.

In fact, for a large class of SDEs with non-globally Lipschitz continuous coefficients in both
drift and diffusion part (similar to our case), it has been proved that the Euler–Maruyama
scheme does not converge neither in the strong mean-square sense nor in the numerically weak
sense to the exact solution at a finite time point, as discussed in Hutzenthaler et al. (2011)).
This requires to pay particular attention on the choice of the numerical scheme.

Moreover, as said before, the solution evolves on the manifold SO(3); this underlines a
significant issue whether or not this geometric feature of SDE (4.17) is preserved, especially for
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long time simulations, which is as important as in the deterministic case (Hairer et al. (2006)).
Numerically, preserving the norm, is a delicate point since the numerical solution tends to drift
off the manifold and the accuracy of the solution strongly depends on the time step.

As said, employing a classical Euler–Maruyama discretisation scheme without paying
attention to the time step used, implies that the resulting numerical trajectories leave the
manifold instantly, often leading to wrong estimate and to non-convergence. In order to avoid
such failures, discretisation schemes that preserve the manifold structure have been studied.
Such algorithms are known as geometric integrators (Hairer et al. (2006)). We would like to
remark that the preservation of manifold structure can also result in computational efficiency
gains. A larger step size may be sufficient to obtain a given level of accuracy when compared
to what might have been expected from non-geometric considerations, with the added bonus
of geometry preservation (Faltinsen et al. (2001)).

Many geometric integrators for SDEs are based on their well understood deterministic
counter-parts, but key difficulties often arise in their extension to the stochastic setting; the
area of convergence analysis for stochastic geometric integrators is a recent research field. An
exhaustive presentation of the geometric SDE integrators can be found in Piggott (2016).

In general, there are two types of numerical methods for differential equations and their
stochastic counterpart on manifolds: the first consists in numerical methods whose solutions
automatically stay on the manifold (intrinsically); for example, Lie group methods such as
the Crouch–Grossman method (Crouch and Grossman (1993)), the constrained Runge–Kutta
method (Munthe-Kaas (1998); Carbonell et al. (2005)), the Magnus expansion method or
variations thereof (Burrage and Burrage (1999); Blanes et al. (2009); Marjanovic et al. (2015)), the
spectral element method Li et al. (2018a), and the stochastic Lie group integrators (Malham and
Wiese (2008)) can maintain the numerical solutions on the correct Lie groups. The second kind
of numerical methods is designed to stay on the correct manifolds by using some constraints
explicitly (extrinsically), such as the discrete gradient methods (McLachlan et al. (1999); Li et al.
(2018b)), the averaged vector field methods (Quispel and McLaren (2008); Cai et al. (2018)) and
the projection methods (Hairer et al. (2006); Zhou et al. (2016)). All these studies have been
developed according to specific types of SDEs. For our problem we want to adopt a pragmatic
approach to solve the three dimensional SDE (4.17), by adopting the quaternions dynamics.
In general, quaternions have been largely used to solve the deterministic problem (Zhao and
Van Wachem (2013b)) of the orientation on a sphere, nonetheless, in our knowledge, their
adaptation to SDEs is limited to few studies (Piggott (2016)).

Another difficulty relies on the coupling between the orientation model and the mean field,
solved by CFD methods; in particular, the coupling is done by means of the mean symmetric
and antisymmetric velocity gradients 〈O〉 and 〈S〉. They evolve on a discrete grid in space and
time. This implies that there is no possibility to control the time step when integrating the SDE
since it is imposed by the mean contribution; thus, the choice of a suitable numerical scheme
to integrate the SDE (4.17) is also constrained by stability issues. This motivates the question:
‘For which choice of the time step does the numerical method reproduce the characteristics of
the model?’. This naturally brings up the discussion about the approach to adopt in terms of
choice of an explicit or implicit method in time.

Efforts have been made to develop explicit and implicit numerical methods for solving SDEs,
as reported in the overviews Mao (2007); Pagés (2018)). We refer to explicit method, if it is
explicit both in deterministic and stochastic components. Otherwise, if both deterministic
and stochastic components are implicit, a numerical integrator is then called implicit method.
Not much work has been done to introduce an implicit numerical integrator of SDEs; as an
example, we refer to Kloeden and Platen (1992). Explicit SDE schemes are usually used for
simplicity and efficiency, while implicit schemes can achieve better convergence and stability,
when compared to the explicit ones, and they have no constraints related to the time step. Other
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methods mix explicit and implicit discretisation, by considering implicit drift components
and explicit stochastic (i.e. diffusion) contributions (Milstein (1994)). We can refer to such
methods as semi-implicit (or drift-implicit) since the introduction of implicitness is restricted to
the deterministic terms.

In this approach the goal is to improve stability properties with respect to a pure explicit
method; Saito and Mitsui (1996) proposes various schemes showing stability analyses. Other
techniques exist, we can mention Burrage and Tian (2001), which propose a method that
is a combination of the semi-implicit Euler method and the implicit Euler method, called
‘the composite Euler method’, or Milstein et al. (1998) that constructs ‘the balanced implicit
method’ by introducing modified implicit coefficients to both the deterministic and stochastic
components of the explicit Euler method, based on a splitting technique.

As mentioned before, the choice of an explicit Euler–Maruyama discretisation would suit the
case of globally Lipschitz coefficients, which is not our case; we will have to pay attention to the
complexity of the SDE under study in order to understand which choice has to be preferred. It
will turn out that, after sub-dividing the problem, we will evaluate the choice of both, explicit
and semi-implicit.

The development of a numerical scheme for the SDE (4.17) involves the complexity of the
problem as well. There are two fundamentally different algorithm approaches: either a fully
coupling approach, for which the governing equations are solved as single system (usually very
complicated), or the decoupling approach, for which the equations are decoupled in simpler
sub-problems and are solved as simpler tasks.

The latter includes the splitting methods that were originally designed to reduce the compu-
tational difficulties by decomposing delicate deterministic differential equations into simpler
solvable ones: the general details are exposed in the overview papers of Strang (1968); Marchuk
(1968); McLachlan and Quispel (2002). In a second moment, they were applied also to stochastic
problems Petersen (1998); Shardlow (2003). Methodologically, splitting methods are numerical
solvers that belong to the class of the decomposition methods. These methods have been
applied in various fields, in computational fluid dynamics (Hundsdorfer and Verwer (2013);
Sheng (1989)), particle tracking with collisions (Dullweber et al. (1997); Hairer et al. (2006);
Chin and Geiser (2011)) and multi-scale problems (Weinan et al. (2003); Abdulle et al. (2012)).

Splitting methods are characterised by fast implementation, thanks to separation into simpler
computable parts, accuracy, obtained via higher order splitting schemes or adaptive splitting
schemes, and flexibility, important for adapting the method to modifications of a physical
model, e. g., time-, spatial-dependency, non-linearity of stochastic operators. In particular, the
time step is imposed by the mean field PDF approach, and it may be large; thus, stability with
respect to large time steps is an issue that we need to take into account.

Specifically to the analysis of SDEs, the split-step backward Euler (SSBE) method has been
studied by Higham et al. (2002); Mattingly et al. (2002). In order to improve numerical stability
of the SSBE method, based on the work of Mattingly et al. (2002), the split-step method has
been introduced by Ding et al. (2010), and split-step backward balanced Milstein methods by
Wang and Liu (2009).

4.4.1 Splitting scheme

Our proposed method appropriately splits the different contributions coming from Eq. (4.17)
and it applies a suitable numerical integration (explicit or semi-implicit as detailed hereafter) for
each resulting part, in order to obtain a stable numerical solution with reduced computational
complexity. To achieve all this, a split-step-forward method is chosen. The orientation dynamics
in Eq. (4.17) is characterised by a geometric structure where the orientation dynamics changes
under the action of the velocity gradient tensor by the averages of stretching and rotation
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contributions. Equation (4.17) can be decomposed for the splitting algorithm in four separate
processes:

- a drift term that represents the mean stretching (MS), given by the symmetric part of the
mean velocity gradient;

- a drift term that represents the mean rotation (MR), given by the antisymmetric part of
the mean velocity gradient;

- a stochastic term that represents the Brownian stretching (BS), given by the symmetric
Wiener matrix;

- a stochastic term that represents the Brownian rotation (BR), given by the antisymmetric
Wiener matrix.

They are:

MS :
dps(t)

dt
= Λ

(
〈S〉ps − psp

ᵀ
s 〈S〉ps

)
(4.47)

MR :
dpa(t)

dt
= 〈O〉pa(t) (4.48)

BS : dpbs(t) = −
ν2

s
2

Λ2pbsdt + νsΛ
(
dWs pbs − pbsp

ᵀ
bs dWs pbs

)
(4.49)

BR : dpba(t) = −
ν2

a
2
pbadt + νapbadWa. (4.50)

All these sub-parts are characterised by having a unitary norm ‖p‖ = 1 and the subscripts (s, a,
bs, ba) denote the symmetric, antisymmetric, Brownian symmetric and Brownian antisymmetric
parts, respectively. The original Cauchy problem related to Eq. (4.17) is solved in [0, T] with
initial condition p0 = p(t = 0). When applying time integration, we consider one step-size
∆t > 0 and we decompose the interval [0, T] into sub-intervals [tk, tk+1] with tk+1 = tk +∆t and
k = 0, . . . , N − 1; on each sub-interval [tk, tk+1] we solve sequentially the four sub-problems to
obtain p̃k+1 ≈ p(tk+1).

As said, the idea behind the splitting approach is to split Eq. (4.17) into explicitly solvable
subequations, and to apply a proper composition of the resulting solutions. A standard
procedure is to use a Lie–Trotter composition (Trotter (1959)) or, less common, the Strang
composition (Strang (1968)), both of them being analysed by Tubikanec et al. (2020).

Here, a first-order splitting method using the Lie–Trotter composition is employed,

p̃(tk+1) = (Lba ◦ Lbs ◦ La ◦ Ls)p̃(tk), (4.51)

where Ls, La, Lbs, Lba denotes the operators associated to Eqs. (4.47), (4.48), (4.49) and (4.50)
respectively. The different sub-problems are connected via the initial conditions:





p̃s(tk+1) = Ls(p̃s(tk), tk, tk+1) with p̃s(tk) = p̃(tk),

p̃a(tk+1) = La(p̃a(tk), tk, tk+1) with p̃a(tk) = p̃s(tk+1),

p̃bs(tk+1) = Lbs(p̃bs(tk), Ws(tk, tk+1), tk, tk+1) with p̃bs(tk) = p̃a(tk+1),

p̃ba(tk+1) = Lba(p̃ba(tk), Wa(tk, tk+1), tk, tk+1) with p̃ba(tk) = p̃bs(tk+1),

(4.52)

and the approximation at the next iteration time step is restored by p̃(tk+1) = p̃ba(tk+1). In
this approach the original problem (4.17) is replaced by the sub-problems Eq. (4.52) on the
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sub-intervals t ∈ [tk, tk+1]. As detailed in Eq. (4.52), the four Eqs. (4.47)-(4.50) are advanced in
order (MS, MR, BS, BR) with each one taking one full time step at once and the result is
integrated at first order accuracy.

In the deterministic case, where ODEs are involved, the change of the original problem with
sub-problems usually results in some error, called local splitting error. If the operators (with
coefficients constant in time) involved in the splitting are commutative, the method is exact;
conversely, i.e. if they do not commute, the induced error is of order ∆t. In general, in Eq. (4.52),
a local splitting error is produced by the non-commutative character of the operators La and Lbs.

Here we want to remark that numerically Eq. (4.22) and (4.23) for the tumbling and spinning
respectively, can be directly discretised in [0, T] with time step ∆t and tk+1 = tk + ∆t as,

φ̃⊥p,k+1 = φ̃⊥p,k + p̃k × p̃k+1 , (4.53)

φ̃‖p,k+1 = φ̃‖p,k +
1
2
p̃k · 〈ω〉∆t +

νa

2
p̃k · ∆wa

k, (4.54)

which results to be numerically an easier task compared to choose a suitable numerical
integration scheme for the SDE (4.21).

Remark 1 (On the Brownian tensor reduction) The model is developed by introducing 9d-
Brownian vector w or equivalently a the 3× 3 Brownian matrix W, with Wij = w3(i−1)+j (see
Remark 2). Considering then the stochastic stretching and rotation parts in the orientation
decomposition, we can observe that (i) Ws, considering alone, can be reduced to a 6d-Brownian
vector, (ii) Wa, considering alone, can be reduced to a 3d-Brownian vector, (iii) Ws and Wa are
just uncorrelated, not independent.

The reduction/simplification of the Brownian vector from 9 to 6 or 3 (through the Lévy
theorem identification that transform the SDE without transforming the law of the solution) is
then possible, for instance for the weak error analysis purpose of each separate sub-equations
of stochastic stretching and rotation.

Considering specifically the Brownian rotation part, we can also transform the equation
in a more intrinsic way and work with the 2d Brownian motion on the sphere, having the
Laplace-Beltrami operator as infinitesimal generator on the unit sphere.

But the algorithm needs to be performed with its 9 Brownian components to preserve the
correct correlation structure of the noise part form a sub-part of the splitting to another. In
particular, this is mandatory if the model is applied to compute some unfolded quantities such
as φ, φ⊥p and φ‖p. The dynamics of these latter relies on the triplet (p, Ws, Wa) as it is shown
in SDE (4.22)-(4.23) and force p to be computed with the dependent Brownians (Ws, Wa).

4.4.2 Error criteria

Following Pagés (2018), we introduce the definitions of strong and weak convergence. In
this context, the weak convergence is appropriate to guarantee the accuracy of the particle
orientation and rotation rate statistics and also to ensure that spurious numerical integration
errors do not affect the results or can be taken under control in real applications. Equally
important is the study of the strong convergence due to the intricate behaviour of the trajectories
within the model. In fact, the model involves the diffusion tensor that, in general, could be
much more intricate than the isotropic structure here considered. For these reasons, both strong
and weak convergence errors will be analysed in the numerical results.
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We consider the solution p(T) of the SDE (4.17) after time T from the deterministic initial
condition p(0) = p0. This can be written as the Itô integral of Eq. (4.17) in a more general
compact form,

p(T) = p0 +
∫ T

0
D(p(t))dt +

∫ T

0
B(p(t))dWt (4.55)

where D(p(t)) and B(p(t)) are the drift and diffusion coefficients, respectively. Then, a numer-
ical approximate solution to p(T), denoted by p̄(T), is obtained by approximately integrating
Eq. (4.17) in a sequence of time steps of size ∆t. The numerical approximation p̄(T) can be
obtained by using increments of Wiener processes; and, for the scheme to be consistent, p̄(T)
must converge to p(T) as ∆t tends to zero.

Strong convergence. The numerical scheme, for p(T) ∈ L2(Ω), is deemed to be strong
β-order accurate if the error

Errs(pi) =

(
E sup

0≤t≤T
|pi(t)− p̄i(t)|2

) 1
2

≤ Cs(T)(∆t)β (4.56)

for some constant Cs which may depend on T but is independent from ∆t. For instance, in the
case of Euler–Maruyama scheme, we get a strong convergence of order β = 1/2. We would
like to remark that, with respect to the classical definition of mean-square convergence, we
strengthen the condition by adding the supremum over t ∈ [0, T]. In the following, we will be
interested not only in the strong convergence of p, but also in the processes φ⊥p (Eq. (4.22))
and φ‖p (Eq. (4.23)) defined in Section 4.3.3 to compute the statistic tumbling and spinning for
the stochastic model. The main reason to analyse the strong convergence of these two processes
is that we do not have access to an analytical prediction of them. In this case, an analogous
definition of Eq. (4.56) is employed for Errs(φ⊥p) and Errs(φ‖p) for these two processes.

Weak convergence. In the case of weak convergence, it is meaningful to consider the
convergence of p(T) and p̄(T) in distribution. Such convergence is analysed in terms of
expectation E[ f (p(T))] of a sufficiently smooth test function f . For f the minimal constraint is
that the expectation is well defined, and in our case since the process pt is bounded, smoothness
is the only condition. Thus, the numerical scheme is deemed to be weak β-order accurate if the
error,

Errw( f ) = |E[ f (p(T))]−E[ f (p̄(T))]| ≤ Cw(T)(∆t)β (4.57)

for some constant Cw which may depend on T but is independent from ∆t. For instance, in the
case of Euler–Maruyama scheme, we get a weak of convergence of order β = 1.

A possible amelioration for some future perspectives, on the study of the weak error, can
be the employment of the Richardson–Romberg extrapolation (Pagés (2018)), a sequence
acceleration method used to improve the rate of convergence of a sequence of estimates. In
particular, it does not add any additional numerical complexity and at the same time increases
the order of convergence.

4.4.2.1 Splitting scheme: a step by step error evaluation

The presentation of numerical convergence is structured as follows: we present a suitable
numerical scheme for both the Brownian rotation sub-step (BR) and for the Brownian stretching
sub-step (BS) of the splitting; then the strong and weak convergence will be analysed. In
particular, for the Brownian stretching (BS), two different discretisation schemes are introduced
and compared. Finally, the strong and weak convergence for the splitting algorithm will be
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tested in the HIT where the contributions coming from the mean field in Eq. (4.17) are set to
zero.

To demonstrate the convergence of the schemes under study, the exact solution (or an
accurate estimate of it) is required. In the following, for the strong convergence, we compare
the numerical solution to an approximation of the exact one computed, at a suitable refined
time step, whereas, for the weak convergence, an expression of the exact solution is provided.

In particular, the expression of the exact solution for weak convergence is obtained by
a simplification of Eq. (4.17), in the HIT case. This assumption allows to derive analytical
expressions for first, second and third moments of the orientation p ,which are used as test
functions in Eq. (4.57). They are derived applying the Itô’s Lemma to Eq. (4.17), as reported in
Appendix B.4, getting

E[pi](t) =E[pi](0)e−
c
2 t (4.58)

E[pi pj](t) =E[pi pj](0)e−
3c
2 t (4.59)

E[p2
i ](t) =E[p2

i ](0)e
− 3

2 ct +
1
3
(
1− e−

3
2 ct) (4.60)

E[p3
i ](t) =e−3ct(E[p3

i ](0)−
3
5

E[pi](0)
)
+

3
5

E[pi](0)e−
c
2 t (4.61)

where the constant c takes different values with respect to the sub-equation considered:

c =





Λ2ν2
s for (BS) Eq. (4.49)

ν2
a for (BR) Eq. (4.50)

Λ2ν2
s + ν2

a for (BS) + (BR) Eq. (4.49) + (4.50)

(4.62)

where we recall that νs =
√

Ku/(5τη) and νa =
√

Ku/(3τη).
As mentioned above, the convergence tests are performed in the case of HIT flow, that is

Eq. (4.48)-(4.47) for MS and MR are not taken into account. This choice has been made since
we are mainly interested to analyse the weak and strong error related to the stochastic part
of the splitting algorithm scheme. In fact, the deterministic part has been widely studied in
literature, unlike the stochastic one where the investigation remains limited. Moreover the
constant c is always positive and for t → ∞ the results in Eq. (4.58) to (4.61) are compatible
with the uniform distribution on a sphere:

ρ(p1, p2, p3) = ρ(p) =
1

(2π)3/2 exp
(
−‖p‖

2

2

)
(4.63)

4.4.2.2 Numerical parameters

In the following we list the numerical parameters used to study the strong and weak con-
vergence. The case of rod-like particles with a shape parameter Λ = 1 in Eq. (4.17) has been
considered. Each test case is integrated on t ∈ [0, T] for different time steps ∆t = 2−h, with
h = 1, . . . , 12. For the strong error evaluation the reference trajectory is computed with h = 13,
which has been denoted as ref(∆t) = 2−13. The final time T = 0.5 is the same for all choices, in
order to show the asymptotic convergence with respect to the time step ∆t. We perform the
convergence test for each simulation trial using the same number of particles Np = 5 · 108, and
for the weak convergence an empirical estimator is introduced, by repeating the trials inde-
pendently Ne = 10. A total of four different values of the characteristic time scale parameter
τη = 0.01, 0.1, 1, 10 are considered, fixing the Kubo number Ku = 1 (Eq. (4.17)). In this way
we aim to estimate the influence of τη both on weak and strong convergence. Moreover, two
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different choices of initial conditions have been used: p0
a = (1, 0, 0) and p0

b = (1, 1, 1)/
√

3; this
is done in order to observe the order of convergence for all moments, since they might be zero
for a particular choice of the initial condition. For instance, this is the case of p0

a for Eq. (4.59).
Numerically the strong error that we are going to evaluate becomes,

Errs(pi) =

(
1

Np

Np

∑
n=1

sup
k∈[0,K],T=K∆t

∣∣∣ p̄n,ref(∆t)
i,k∆t − p̄n

i,k∆t

∣∣∣
2
) 1

2

. (4.64)

The same definition is applied for processes φ⊥p and φ‖p, respectively. The numerical weak
error is evaluated as,

Errw( f ) =
1

Ne

Ne

∑
m=1

∣∣∣∣∣E[ f (p(T))]exact − 1
Np

Np

∑
n=1

[ f (p̄n(T))]

∣∣∣∣∣
m

. (4.65)

This is a general formula for a generic test function f ; in our case the expressions of the exact
solutions are obtained by replacing f (p) with pi, pi pj and p3

i and applying Eq. (4.58) to (4.61).

4.4.3 Discretisation of the Brownian Rotation

In this section, we are interested in the sub-part of the splitting scheme represented by Eq. (4.50),
that we recall to be,

dpba(t) = −
ν2

a
2
pbadt + νadWapba,

where we remark that pba is a unitary vector, i.e. ‖pba‖ = 1. This equation is linear, i.e. globally
Lipschitz, so a priori an Euler–Maruyama scheme should converge in this context. However, in
this equation there is the additional geometric constraint of unitary norm that numerically is
not preserved. In other words, we can say that Eq. (4.50) contains a singularity that is visible
when a change from Cartesian to spherical coordinates is applied (the latter is singular in one
of the two angles).

Equation (4.50) represents a Brownian motion on a sphere (Van Den Berg and Lewis (1985))
and can be rewritten in the Stratonovich formulation (∂) as,

dpba(t) =
νa

2
∂wa × pba; (4.66)

where the vector wa = 2(Wa
32, Wa

13, Wa
21)

ᵀ = (W8 −W6, W3 −W7, W4 −W2)
ᵀ has been used as

in Section 4.3.3 to bring up the cross product (×). This means that Eq. (4.66) can be interpret as
a rotational kinematics equation for the vector pba induced by the angular increment ∂wa.

Diffusion processes on a curved surface, usually a sphere, in a three dimensional Euclidean
space R3 arise in several contexts. For example, at cellular level, diffusion is an important
mode for the transport of biological substances such as lipids or proteins (Krishna et al. (2000);
Faraudo (2002); Sbalzarini et al. (2006)). Alternatively, spherical diffusion occurs on a wide
range of different scales, from micro to macro, such as in swimming of bacteria motion (Li
et al. (2008)), spin dynamics Antoine et al. (1991), polymer systems (Snook (2006)) and global
migration patterns of marine mammals Brillinger (2012).

While diffusion in Euclidean space has been extensively studied, both analytically and
numerically (Wax (1954); Gould et al. (1996)), there have been fewer studies of diffusion on
curved surfaces. Often Monte Carlo simulation algorithms for such models on curved spaces
are constructed using approximate tangent plane methods, which are accurate only for very
small time steps, which makes algorithms computationally expensive. Algorithms allowing
simulation over larger time steps are hence of particular interest for our purposes. To cite
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other previous works, some algorithms are based on an approximation of transition density of
Brownian motion on the sphere (Nissfolk et al. (2003); Carlsson et al. (2010b)), others studies
include the diffusion of Brownian particles on the surface of a sphere using the distribution
of solid angles (Krishna et al. (2000); Brillinger (2012)). Mijatović et al. (2018) develops an
algorithm for increments of Brownian motion on an sphere of arbitrary dimension based on
Wright–Fisher diffusion. On the other hand, there is a relatively underdeveloped literature on
the analysis and verification of strong and weak convergence of numerical schemes for SDEs on
manifold with respect to those evolving without geometric constraints. To cite an example, the
strong convergence of SDEs evolving in SO(n) have been studied by Piggott and Solo (2016)
using geometric SDE integrators based on the exponential Euler–Maruyama scheme.

Direct approach for Brownian rotation scheme. In order to underline the limit and diffi-
culties beyond the development of a suitable numerical scheme to solve Eq. (4.50), here we
present what we will call ‘direct scheme’ approach by discretizing Eq. (4.50) using a semi-
implicit Euler–Maruyama scheme. An issue related to the discretisation of Eq. (4.50), is the
preservation of the unitary norm: in fact, at each time step the solution has to be re-normalized;
if the norm tends to zero, singularities are introduced. In this case the employment of such
numerical scheme presents some limits that we try to underline in Section 4.4.3.2, after having
presented an alternative numerical strategy using quaternions.

Starting with an initial condition p̂ba,0 such that ‖p̂ba,0‖ = 1, the discretised version of
Eq. (4.50) in [0, T], with time step ∆t and tk+1 = tk + ∆t, reads:

p̃ba(1),k+1 =
[

p̂ba(1),k +
νa

2

(
∆wa

2,k p̂ba(3),k − ∆wa
3,k p̂ba(2),k

)] 1

1 + ν2
a

2 ∆t

p̃ba(2),k+1 =
[

p̂ba(2),k +
νa

2

(
∆wa

3,k p̂ba(1),k − ∆wa
1,k p̂ba(3),k

)] 1

1 + ν2
a

2 ∆t

p̃ba(3),k+1 =
[

p̂ba(3),k +
νa

2

(
∆wa

1,k p̂ba(2),k − ∆wa
2,k p̂ba(1),k

)] 1

1 + ν2
a

2 ∆t
,

(4.67)

where at each time step we re-normalize and obtain p̂ba,k+1 = p̃ba,k+1/‖p̃ba,k+1‖. We remark
that the norm of p̃ba,k+1 can tend to zero, that could give problems in terms of convergence, by
introducing a singularity in the numerical scheme.

Moreover, the error regarding norm convergence, as detailed in Appendix B.5, reads:

E‖p̃ba,k+1‖2 = 1− ν4
a

4
∆t2 +O(∆t3) (4.68)

So, at least for the mean, the norm of the ‘direct scheme’ is not preserved and, as we will
show later, this error, regarding just the norm, converges with same rate than the one obtained
by the scheme in Eq. (4.87) that use quaternions to solve the Brownian rotation. However,
the constant factor in front of ∆t2 in Eq. (4.68), is much larger than the one found evaluating
the norm of the quaternions in Eq. (4.88). This difference already could give some insight
in preferring the quaternion scheme at least for large time step size. In Fig. 4.2, we plot the
strong error as a function of the time step ∆t, for different values of τη ; in particular, Fig. 4.2a
shows the behaviour of the strong error for the first component pba,1 (for simplicity, since all
the components act in the same manner), in Fig. 4.2b we plot the first component of the vector
φ⊥pba

(for the same reason) and in Fig. 4.2c the scalar φ‖pba
, as defined by Eq. (4.53) and (4.54).

We choose as initial condition for the particle orientation p0
a = (1, 0, 0). Looking at Fig. 4.2, the

direct scheme converges with a strong rate of order 1/2. We remark that for different choices
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Figure 4.2: Stochastic rotation sub-step through the ‘direct scheme’ (BRD): Strong error (Errs) of the
numerical scheme in Eq. (4.67) against the time step ∆t for different values of τη . In (a) the first
component of pba, (b) the first component φ⊥pba

of tumbling and (c) the spinning φ‖pba
. Black line

indicates the slope 1/2; the initial condition of particle orientation is p0
a = (1, 0, 0).

of τη the magnitude of the error changes; in fact, for τη = 10 (i.e., a small diffusion coefficient,
νa ≈

√
1/τη), we get a better error than for τη = 0.01. Finally, we would like to remark that the

study of strong error is extremely sensitive to the trajectory that needs to stay on manifold (a
sphere in our case). Indeed, if the gap with respect to the reference trajectory becomes large
this has a huge impact on strong convergence, that, in our case, is emphasised by taking the
supremum as in Eq. (4.64).

Moving to consider the weak error as a function of ∆t, as shown in Fig. 4.3, we can observe
that the behaviour of the weak error strongly depends on the parameter τη . In Fig. 4.3a the first
component of the moment E[pba] converges with a slope 1 as expected by the employment
of first order Euler–Maruyama scheme, choosing as initial condition for particle orientation
p0

a = (1, 0, 0). The same behaviour is observed for the higher moments E[p2
ba,1], E[p3

ba,1] in
Fig. 4.3b and 4.3c respectively. In order to show the weak convergence of the cross moment
E[pba,1 pba,2], presented in Fig. 4.3d, the initial condition has been fixed to p0

b = (1, 1, 1)/
√

3.
In fact, by choosing the initial condition p0

a = (1, 0, 0), the cross moments are identically zero
(Eq. (4.59)), which means that we are evaluating only the Monte Carlo error of the performing
test.

The magnitude of the weak error is strongly impacted by the amplitude of diffusion coef-
ficient νa ≈

√
1/τη . In terms of error, the scheme reacts in a special manner for the critical

value of τη = 0.01. We would expect that the error convergence for τη = 0.01 (blue line) would
have been above the error convergence for τη = 0.1 (orange line), which is not the case. A
possible explanation is that the analytical solution overcomes the machine precision since
we need to compute an exponential of a very small number; for instance, considering the
exact solution for E[p2

ba,1] (Eq. (4.60)) leads to the evaluation of ∼ exp (−50). This brings some
numerical drawbacks since we are computing an error which is very close to zero. Moreover,
this behaviour is more amplified in even moments with respect to odd ones, as Eqs. (4.58)-(4.61)
show, for the same reason. A special case is represented by the convergence of E[pba,1 pba,2]
for τη = 10, where the magnitude of the error is of the same order of Monte Carlo using as
initial condition p0

b. In order to observe the convergence of order 1 the number of particles Np
should be significantly increased. We want to underline that this effect will be noticeable for all
numerical convergence tests performed in this Chapter.
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Figure 4.3: Weak error (Errw) for the stochastic rotation sub-step through a direct scheme (BRD) in
Eq. (4.67) against the time step ∆t for different values of τη . In (a), (b), and (c) the first three moments of
the first component pba,1 for an initial condition of particle orientation p0

a = (1, 0, 0). In (d) the second
cross moment pba,1 pba,2 is shown using a different initial condition p0

b = (1, 1, 1)/
√

3. Black line indicates
the slope 1.

From the study of strong and weak error shown above the employment of a semi-implicit
Euler–Maruyama scheme in Eq. (4.67) seems to be reasonable and very direct to implement.
Nevertheless, it hides some limits that are not straight away evident by just observing the
convergence of the renormalised vector p̂ba,k+1 = p̃ba,k+1/‖p̃ba,k+1‖. Indeed, some issue are
strictly related to non-renormalised vector and p̃ba,k+1, as well as by observing the marginal
probability density function of the components of p. In particular, these issues are empathised
for small values of τη , i.e. large value of the diffusion coefficient, and taking large time step
∆t. They will be briefly discussed in Section 4.4.3.2, after the presentation of an alternative
numerical strategy to solve the Brownian rotation.

We are going to anticipate that the case shown above motivates the construction of a
numerical scheme that lives on a sphere in order to get better performance on the rotational
motion. This problem has been solved in the deterministic case by introducing the quaternion
dynamics. In our case, since we are working with an SDE, additional work to adapt the
quaternions to the stochastic case is required.

A further advantage of introducing quaternions is characterised by the study of inertial
particles. When, the interest is to consider the dispersion of a large numbers of rigid inertial
non-spherical which are moved according to their inertia and to hydrodynamic drag and
rotate according to hydrodynamic torque, the most common and convenient way is to compute
rotational properties of particles in body frame and, then transform them into world space. In
general, this implies that the time integration of the rotation operator, to transform vector and
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tensor variables between the different frameworks is addressed by using unit quaternion (Zhao
and Van Wachem (2013b)). This could suggest that in the development of a stochastic model
for the translation and rotation of non-spherical inertial fibres a suitable numerical scheme that
use quaternion dynamics could be necessary. Another interesting application which involves
the numerical integration of stochastic quaternions is the Brownian Dynamics of rigid particles
of arbitrary shape, where the torque of the body can be written in terms of the unit quaternions
describing its orientation (Delong et al. (2015)).

rotation in SO(3) We now introduce basic concepts about rotation properties in SO(3)
and the quaternion dynamics, which will be useful in the following to define our numerical
scheme. The integration of rotation for a given angular velocity is often required in practice.
The application areas include many disciplines such as navigation in aerospace technologies,
robotics, computer graphics or classical dynamics of rigid bodies, to name a few. In general, the
deterministic motion of rigid bodies include translation and rotation. In contrast to translational
motion where the motion is formed by addition of incremental displacements, rotations
combine in the form of products of the incremental rotations matrices. Thus, efficient and
accurate integration of rotation is still actively investigated, especially nowadays that ever
increasing computational power allows for larger systems to be considered, which requires
numerical integration schemes that are both, accurate and not too much computationally
expensive.

In the kinematics of rotational motion several different approaches are available to describe
the rotation between two different frames, and in general the best approach depends specifically
on the problem. In particular, the translation and rotation motion of a non-spherical rigid
particle can be determined in two Cartesian coordinates: in body space (Lagrangian framework),
where the origin of the Cartesian coordinates is fixed at the particle mass centre and the axis
of coordinates rotates along with the particle, and in the world space (Eulerian framework),
where the coordinates are fixed in the origin of the initial Cartesian reference frame. The most
commonly used method to describe the rotational motion are rotation matrices, Euler angles
and unit Quaternions (Diebel (2006)).

The special orthonormal group SO(3) = {R ∈ R3×3 |RTR = 1 and det(R) = 1} (where 1

indicates the identity matrix), the set of rotation matrices is often viewed as the most convenient
representation because the rotation operation is simply a matrix-vector multiplication, and
the matrix columns form an orthonormal basis. A vector v transforms from one coordinates
system to another by the application of the rotation matrix as,

v′ = Rv (4.69)

where v′ represents the rotated counterpart of v. Further, given an angular velocity vector ω
expressed, for example, in the body frame, the time derivative of the rotation matrix is given by

dR

dt
= R [ω]×, (4.70)

where [ ]× denotes the antisymmetric 3× 3 matrix of the form

[ω]× =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (4.71)

Direct numerical integration of the differential equation (4.70) with standard integration
routines, such as explicit Runge–Kutta methods, does not preserve the structure of SO(3). The
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column of R becomes non-orthogonal and even non-unit length due to the truncation and
round-off error of the numerical integration at every time step. These errors can be reduced by
using high-order methods with small time step over a short integration time, but performing
integration over long times becomes difficult. The problem of maintaining the structure SO(3)
is an example of a wider class of problems addressed by the geometrical numerical integration
method (Budd and Piggott (2003)). For the rotation problem, higher order exponential methods
can be employed (Andrle and Crassidis (2013)) but are hard to derive and to implement.

Another approach makes use of Euler angles to represent three composed axis rotations
by mapping the rigid particle in the body space to the world space. Computationally, this
method guarantees R is orthonormal, even if these angles involve a combination of sin and cos
functions, which are non linear. On the other hand, this representation contains singularities,
i.e. there are some orientations giving rise to the loss of one degree of freedom, when two of
three axis are rotating into a parallel configuration (also called the Gimbal lock problem). This
method works in applications involving one or two dimensional rotations, but for a general 3D
rotation it turns out to be most often not suitable.

Since all three-parameter representations suffer from singularities, unit quaternions can be
employed (four-parameter representation) in order to avoid these problems. Quaternions were
introduced by Hamilton (1844) and reviewed in Sola (2017)). A quaternion is defined by,

q = q0 + q1 ê1 + q2 ê2 + q3 ê3 (4.72)

where q0, q1, q2, q3 are real numbers and êi are unit vectors directed along the x, y and z axis
respectively. Quaternions can be also written as a real number and a vector,

q = (q0,q). (4.73)

The conjugate and the norm of a quaternion are defined respectively as,

q∗ =q0 − q1 ê1 − q2 ê2 − q3 ê3 (4.74)

‖q‖ =√q∗q =
√

q2
0 + q2

1 + q2
2 + q2

3. (4.75)

A unit quaternion is defined as a quaternion of unitary norm ‖q‖ = 1, which implies q∗ = q−1

having defined q−1 = q∗/‖q‖.
In general, dealing with the numerical integration in quaternions implies that the time

integration of the rotation is addressed using unit quaternions (other methods exists using
non-unit quaternion (Rucker (2018)). After the time step, the corresponding rotation matrix is
computed from quaternions and used to determine the orientation in the rotated configura-
tion by Eq. (4.69). This requires the inverse relationship between rotation matrices and unit
quaternions. The rotation matrix corresponding to the unit quaternion is given by,

R =
(
q̂2

0 − q̂ᵀq̂
)

1 + 2q̂q̂ᵀ + 2q0[q̂]×, q̂ =
q

‖q‖ . (4.76)

Equation (4.69) expresses the transformation of a vector by a rotation matrix and is equivalent
to,

v′ = qvq−1 = Rv (4.77)

Thus, the quaternion dynamics is first solved to determine the rotation matrix and subsequently
R is applied to v to compute the vector in the rotated framework. However, other methods exist
to directly compute the vector in the rotated framework without the necessity of determining
the corresponding rotation matrix (e. g., Zhao and Van Wachem (2013b)).
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Equation (4.70) can be solved by using the unit quaternions. Indeed, the time derivative of
the unit quaternion is determined by the angular velocity vector ω as,

dq
dt

=
1
2
Fq(ω) q (4.78)

where

Fq(ω) =

(
0 −ωᵀ

ωᵀ [ω]×

)
=




0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0




. (4.79)

In order to preserve the constraint of a unit quaternion, the new quaternion solved by Eq. (4.78)
requires a re-normalisation after each integration time step.

Several algorithms have been developed to integrate unit quaternions to represent rotations.
Some of them are based on the Taylor expansion of Eq. (4.78). The Euler method is the most
simple algorithm, however the re-normalisation procedure brings numerical errors, including
the relatively large truncation error of the first-order Euler scheme. To reduce these errors, other
schemes, based on the Taylor expansion, have been developed such as the leap-frog method
(Walton and Braun (1993)), the second order Adam–Bashforth method (Mortensen et al. (2008)),
the Runge–Kutta method (Press et al. (1986)) and the scalar factor method (Kleppmann (2007)).

As said, the numerical integration of a Brownian motion in SO(3) results to be a much harder
problem than the deterministic counterpart presented above. Moreover, a simple discretisation
scheme to integrate Eq. (4.50) leads to a significant error or, even worst, it does not converge,
as we have shown in Fig. 4.2. In order to derive a better integration method for this part of the
splitting algorithm we can introduce unit quaternions to represent the stochastic rotation. The
main steps consist in solving the rotation kinematics in the unit quaternion space and then
using the solutions to reconstruct the matrix that rotates the vector pa in the new configuration.

Compared to the deterministic case, where the integration of unit quaternion is performed
on the angular velocity ω, in the stochastic case we have to work with angular increments
represented by the Wiener vector ∂wa in Eq. (4.66). This leads to an analogous formulation for
the time derivative of unit quaternions (4.78) in the stochastic case,

dq
dt

=
νa

4
Fq(∂wa) q (4.80)

where the matrix Fq(∂wa) depends on the Wiener vector ∂wa in the Stratonovich form (∂) and
has the same structure of the matrix (4.79). Equation (4.80) can be rewritten in a different way
to appear as a classical SDE,

dq =
νa

4
Q(q) ◦ dwa, (4.81)

where Q is the diffusion matrix,

Q =




−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0




. (4.82)

The Stratonovich (◦) formulation has been adopted to preserve the properties of unit qua-
ternions. To derive the SDE (4.81) in the Itô form, we can apply the classical transformation



92 numerical scheme for the orientation of non-spherical particles

between these two stochastic integral (with the observation that wa has the form of
√

2×
3d-standard Brownian motion), such as the Itô formulation of Eq. (4.81) which is given by,

dqi =
ν2

a
16

3

∑
j=0

3

∑
k=1
Qjk

∂Qik
∂qj

dt +
νa

4
Qik(q)dwa

k = −
3

16
ν2

aqidt +
νa

4
Qik(q)dwa

k. (4.83)

The strategy presented above to solve a Brownian rotation in SO(3) using unit quaternions is
very general and can be applied in other contexts involving Brownian motion on a sphere, as
well (Antoine et al. (1991); Krishna et al. (2000); Brillinger (2012)).

Equation (4.50) is a sub-part of a splitting algorithm, which means that we are interested in
tracking the increment of rotations produced by the angular increment dwa. In this case, the
employment of unit quaternions to reconstruct the rotation matrix corresponds to compute
the incremental rotation associated to the Brownian rotation step of the algorithm. Indeed, the
solution of Eq. (4.81) in time can be computed with respect to a fixed reference axis qfix that
can be arbitrarily chosen since we are interested in the incremental rotation matrix. Then, the
orientation in the rotated framework, equivalent to Eq. (4.69), is given by,

pba(t + ∆t) = R∆t(q)pba(t), (4.84)

where the rotation matrix is given by Eq. (4.76).

4.4.3.1 Numerical scheme

Numerically Eq. (4.83) has been discretised using a semi-implicit Euler–Maruyama scheme.
Moreover, the reference frame has been fixed to qfix. The discretised version of Eq. (4.83) in
[0, T] with time step ∆t and tk+1 = tk + ∆t, reads:

q̃0,k+1 =
[
q̃0,k +

νa

4
(
− q̃1,k ∆wa

1,k − q̃2,k ∆wa
2,k − q̃3,k ∆wa

3,k
)] 1

1 + 3
16 ν2

a ∆t

q̃1,k+1 =
[
q̃1,k +

νa

4
(
q̃0,k ∆wa

1,k − q̃3,k ∆wa
2,k + q̃2,k ∆wa

3,k
)] 1

1 + 3
16 ν2

a ∆t

q̃2,k+1 =
[
q̃2,k +

νa

4
(
q̃3,k ∆wa

1,k + q̃0,k ∆wa
2,k − q̃1,k ∆wa

3,k
)] 1

1 + 3
16 ν2

a ∆t

q̃3,k+1 =
[
q̃3,k +

νa

4
(
− q̃2,k ∆wa

1,k + q̃1,k ∆wa
2,k + q̃0,k ∆wa

3,k
)] 1

1 + 3
16 ν2

a ∆t
.

(4.85)

In order to preserve the unit constraint, the quaternion q̃k+1 requires to be re-normalized at
each time step,

q̂k+1 =
q̃k+1
‖q̃k+1‖

. (4.86)

In addition, we are going to fix in time q̃k = qfix, since the solution of Eq. (4.85) involves an
increment of the rotation. As said, the choice of fixing a reference quaternion is totally free: the
simplest one consists of selecting the unitary quaternion qfix = (1, 0, 0, 0).

Furthermore, for this choice, the form of Eq. (4.85) is strongly simplified, leading to, rewriting
in vector form in terms quaternion increments,

(
∆q̃0,k+1; ∆q̃1,k+1; ∆q̃2,k+1; ∆q̃3,k+1; ∆q̃4,k+1

)ᵀ

=
(

1;
νa

4
∆wa

1,k;
νa

4
∆wa

2,k;
νa

4
∆wa

3,k

)ᵀ 1
1 + 3

16 ν2
a ∆t

(4.87)
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In order to preserve the unit constraint, the quaternion ∆q̃k+1 requires re-normalisation at each
time step, ∆q̂k+1 = ∆q̃k+1/‖∆q̃k+1‖.

Moreover, as we did for the direct scheme, the error regarding norm convergence, as detailed
in Appendix B.5, in this case reads:

E‖∆q̃k+1‖2 = 1−
(

3
16

)2
ν4

a ∆t2 +O(∆t3), (4.88)

where the error converges with ≈ ∆t2, and with a constant factor which is smaller than that
found using a the direct schemes in expression (4.68).

After solving Eq. (4.87) and re-normalising at each time step, the rotation matrix (4.76) is
computed and the orientation vector is updated as:

p̂ba,k+1 = R∆t(∆q̂k+1)p̃ba,k. (4.89)

where in this case at each time step the updated orientation vector it is already normalized, i.e.
‖p̂ba,k+1‖ = 1.

The scheme presented above converges in strong and weak sense. We show in Fig. 4.4 the
strong error as a function of the time step ∆t, for different values of τη ; in particular, Fig. 4.4a
shows the behaviour of the first component pba,1 (for simplicity, since all the components act
in the same manner), in Fig. 4.4b we plot the first component of the vector φ⊥pba ,1 (for the
same reason) and in Fig. 4.4c the scalar quantity φ‖pba

. The three quantities converge in a
strong sense but with an error that is driven by the amplitude of the diffusion coefficient
(νa ≈

√
1/τη). In particular, the error decreases proportionally to 1/τη . As we can observe in

the results, the value τη = 0.01 represents a limit-case for which the SDE becomes difficult to
solve.
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Figure 4.4: Stochastic rotation sub-step (BR): Strong error (Errs) of the numerical scheme in Eq. (4.89)
against the time step ∆t for different values of τη . In (a) the first component of pba, (b) the first
component φ⊥pba

of tumbling and (c) the spinning φ‖pba
. Black line indicates the slope 1/2; and the

initial condition of particle orientation is p0
a = (1, 0, 0).

Moving to consider the weak error as a function of ∆t as shown in Fig. 4.5, we can observe
that the behaviour of the weak error strongly depends on the parameter τη . In Fig. 4.5a the first
component of the moment E[pba] converges with a slope 1 as expected by the employment
of first order Euler–Maruyama scheme, choosing as initial condition for particle orientation
p0

a = (1, 0, 0). The same behaviour is observed for the higher moments E[p2
ba,1], E[p3

ba,1] in
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Figure 4.5: Weak error (Errw) for the stochastic rotation sub-step (BR) in Eq. (4.89) against the time step
∆t for different values of τη . In (a), (b), and (c) the first three moments of the first component pba,1 for an
initial condition of particle orientation p0

a = (1, 0, 0). In (d) the second cross moment pba,1 pba,2 is shown
using a different initial condition p0

b = (1, 1, 1)/
√

3. Black line indicates the slope 1.

Fig. 4.5b and 4.5c respectively. In order to show the weak convergence of the cross moment
E[pba,1 pba,2], presented in Fig. 4.5d, the initial condition has been fixed to p0

b = (1, 1, 1)/
√

3.
In fact, by choosing the initial condition p0

a = (1, 0, 0), the cross moments are identically zero
(Eq. (4.59)), which means that we are evaluating only the Monte Carlo error of the performing
test.

As mentioned before, there is a strong impact from the amplitude of diffusion coefficient
νa ≈

√
1/τη . In terms of error, the scheme reacts in a special manner for the critical value

of τη = 0.01. We would expect that the error convergence for τη = 0.01 (blue line) would
have been above the error convergence for τη = 0.1 (orange line), which is not the case. A
possible explanation is that the analytical solution overcomes the machine precision since
we need to compute an exponential of a very small number; for instance, considering the
exact solution for E[p2

ba,1] (Eq. (4.60)) leads to the evaluation of ∼ exp (−50). This brings some
numerical drawbacks since we are computing an error which is very close to zero. Moreover,
this behaviour is more amplified in even moments with respect to odd ones, as Eqs. (4.58)-(4.61)
show, for the same reason.

A perspective, in order to better understand this behaviour is the investigation of the variance
of the weak error that would shed light on these results.
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4.4.3.2 Remarks about ‘Direct’ and Quaternion scheme

The strong and weak numerical convergence for the ‘direct’ scheme in Eq. (4.67) and the
quaternion scheme in Eq. (4.89) seems to be very similar both in order of convergence and
magnitude of the error. The quaternion scheme perform slightly better that the direct scheme,
regarding the magnitude of the weak error for τη = 0.01 and large ∆t

Indeed, the performance and any possible distinction of the direct scheme with respect to
the employment of more sophisticated quaternions dynamics should not be limited to the
observation of strong and weak convergence of each component of the unitary vector p and
consequently to the projected quantities φ⊥pba

, φ‖pba
. In fact, the renormalization step, in some

sense, could mask some important differences between these to schemes.
In order to empathised the better performance of quaternions against a direct discretisation

of Eq. (4.67), it is important to evaluate the sensibility of these two schemes to perform the
rotation before the renormalisation step. This consists to compute the symmetric path-wise
quantity E[ max

0≤t≤T
(1− ‖ñ(t)‖)2], where the vector ñ with ‖ñ‖ 6= 1, corresponds to p̃ba,k+1 for

the direct scheme in Eq. (4.67) and q̂k+1 to quaternions scheme in Eq. (4.85), respectively. The
path-wise error with respect to the unitary norm is shown in Fig. 4.6 (left panel), choosing
a final time T = 10, as a function of time step ∆t. For the choice of τη = 0.01 (i.e., a small
diffusion coefficient, νa ≈

√
1/τη) and sufficiently large time step ∆t ≤ 0.03 the error for the

direct scheme is one order of magnitude grater that the quaternion scheme, that shed the light
of one advantages in using quaternions. Even better case, in terms of magnitude of the error, is
represented by choosing τη = 0.1, where the quaternion scheme converges for all values of ∆t
considered. This shows that the rotation performed with the quaternion scheme introduces a
small error before the renormalization step.

Finally, in order to confirm the rate of convergence found in the analytical expression (4.68)
and (4.88), we show the E[(1− ‖ñ(t)‖)2] in Fig. 4.6 (right panel), where the slope of black line
is 2.
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Figure 4.6: Left panel: Path-wise error for the norm of the non-normalised vector ñ against the time step
∆t for different values of τη . The vector ñ with ‖n̂‖ 6= 1, corresponds to p̃ba,k+1 for the direct scheme in
Eq. (4.67) and q̂k+1 to quaternions scheme in Eq. (4.85), respectively. Right panel: Mean error convergence
against the time step ∆t for different values of τη . Simulation performed with an initial condition a
p0

a = (1, 0, 0), number of particles Np = 106, time step ∆t = 2−h with h = 1, . . . , 12, final time T = 10 and
time scale parameter τη = 0.01, 0.1. Black line indicates the slope 2.

The investigation of the scheme at long-time behaviour it is not enough discriminant for these
two schemes since they converges naturally on the uniform measure on the sphere. Therefore,
another important aspect, it is the behaviour of the marginal probability density functions P(pi)
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Figure 4.7: Left panel: Marginal probability density function P(pi) for the direct and quaternion scheme.
Black lines the three marginal distributions at the stationary state have the same value
P(p1) = P(p2) = P(p3) = 1/2. Simulation performed with an initial condition a p0

a = (1, 0, 0), number
of particles Np = 106, time step ∆t = 0.1, final time T = 0.1 and time scale parameter τη = 0.01. Right
panel: Weak error for the test function f = (p1 − 1/2)2 as a function of ∆t. Simulation performed with an
initial condition a p0

a = (1, 0, 0), number of particles Np = 106, time step ∆t = 2−h with h = 4, . . . , 12,
final time T = 0.0625 and time scale parameter τη = 0.01. Black line indicates the slope 1.

in the short time. In the case of uniform rotation on a sphere, the three marginal distribution
at the stationary state have the same value P(p1) = P(p2) = P(p3) = 1/2. Figure 4.7 (left
panel) shows the marginal distributions at final time T = 0.1 starting from an initial condition
p0

a = (1, 0, 0) and τη = 0.01. The direct scheme holds for long time the memory about the initial
condition, and as a result the P(p1) is not uniform being asymmetric. Conversely, the scheme,
which operates using quaternions, well reproduces the uniform stationary distribution 1/2.
This feature could be interesting when the study of the orientation stochastic model it is no
longer in the framework of HIT flows, but in unstationary regimes. To underline the difference,
observed in the marginals distributions, the weak error for the test function f = (p1 − 1/2)2 is
shown in Fig.4.7 (right panel) for a final time T = 0.0625 and τη = 0.01. The magnitude of the
weak error for the direct scheme is four times larger than the quaternion scheme.

4.4.4 Discretisation of the Brownian Stretching

Here we will analyse the orientation given by the symmetric part of the velocity gradient
fluctuations Eq. (4.49), that we recall to be,

dpbs(t) = −
ν2

s
2

Λ2pbsdt + νsΛ
(
dWs pbs − pbsp

ᵀ
bs dWs pbs

)
.

Equation (4.49) is a sub-part of the splitting algorithm and requires the design of a numerical
scheme. In the continuous case the unitary norm is intrinsically preserved by the non-linear
term pbsp

ᵀ
bs dWs pbs; on the other hand this constraint is never satisfied in the discretised

version since this term requires to be explicitly solved. Moreover, the presence of non-linearities
in the diffusion part introduces a further difficulty related a priori to the non-globally Lipschitz
diffusion coefficient as investigated by Bossy et al. (2021) and references therein.
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The three components of the Eq. (4.49) are rewritten as,

dpbs,1 =− ν2
s

2
Λ2 pbs,1dt +

νs

2
Λ
[
2pbs,1(1− p2

bs,1)dW1 − 2pbs,1 p2
bs,2dW5 − 2pbs,1 p2

bs,3dW9

+ pbs,2(1− 2p2
bs,1)(dW2 + dW4) + pbs,3(1− 2p2

bs,1)(dW3 + dW7)

− 2pbs,1 pbs,2 pbs,3(dW6 + dW8)
]

dpbs,2 =− ν2
s

2
Λ2 pbs,2dt +

νs

2
Λ
[
2pbs,2(1− p2

bs,2)dW5 − 2pbs,2 p2
bs,1dW1 − 2pbs,2 p2

bs,3dW9

+ pbs,1(1− 2p2
bs,2)(dW2 + dW4) + pbs,3(1− 2p2

bs,2)(dW6 + dW8)

− 2pbs,1 pbs,2 pbs,3(dW3 + dW7)
]

dpbs,3 =− ν2
s

2
Λ2 pbs,3dt +

νs

2
Λ
[
2pbs,3(1− p2

bs,3)dW9 − 2pbs,3 p2
bs,1dW1 − 2pbs,3 p2

bs,2dW5

+ pbs,1(1− 2p2
bs,3)(dW3 + dW7) + pbs,2(1− 2p2

bs,3)(dW6 + dW8)

− 2pbs,1 pbs,2 pbs,3(dW2 + dW4)
]

(4.90)

An alternative approach to describe the orientation in Eq. (4.49) is to consider the linear
evolution of Eq. (B.8), equivalent to Eq. (4.16), but rewritten in terms of Wiener matrix Wt, and
the subsequent re-normalisation, to preserve the unitary norm. We recall that Eq. (B.8) involves
both the symmetric and the antisymmetric contributions; for this sub-part of the splitting
scheme, we are interested only on the symmetric part of the velocity gradient fluctuations.

Isolating the symmetric contribution from Eq. (B.8), we have

dqbs =
5
6

ν2
s Λ2qbsdt− νs

3
ΛTr(dW)qbs + νsΛdWsqbs, (4.91)

Rewritten in components,

dqbs,1 =
5
6

ν2
s Λ2qbs,1 −

νs

3
Λqbs,1 (dW1 + dW5 + dW9)

+
νs

2
Λ (2qbs,1dW1 + qbs,2(dW2 + dW4) + qbs,3(dW3 + dW7))

dqbs,2 =
5
6

ν2
s Λ2qbs,2 −

νs

3
Λqbs,2 (dW1 + dW5 + dW9)

+
νs

2
Λ (qbs,1(dW2 + dW4) + 2qbs,2dW5 + qbs,3(dW6 + dW8))

dqbs,3 =
5
6

ν2
s Λ2qbs,3 −

νs

3
Λqbs,3 (dW1 + dW5 + dW9)

+
νs

2
Λ (qbs,1(dW3 + dW7) + qbs,2(dW6 + dW8) + 2qbs,3dW9) .

(4.92)

The orientation is given by coupling Eq. (4.91) with the normalisation pbs(t) = qbs(t)/‖qbs(t)‖.
For numerical stability reason, we anticipate that Eq. (4.91) requires the employment of an ex-
plicit scheme in order to prevent the appearance of singularities coming from the positive sign
in the drift term. Indeed, the mean reverting term in Eq. (4.91) and (4.49) have opposite sign;
this suggests that a semi-implicit scheme is not indicated for the discretisation of Eq. (4.91).
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4.4.4.1 Numerical scheme

Two different numerical schemes are investigated for Eq. (4.90) and (4.92). Numerically, a
semi-implicit Euler–Maruyama scheme has been used to discretise Eq. (4.90). In this case,
starting with an initial condition p̂bs,0 such that ‖p̂bs,0‖ = 1, the discretised version of Eq. (4.90)
in [0, T] with time step ∆t and tk+1 = tk + ∆t, reads:

p̃bs(1),k+1 =
[

p̂bs(1),k

+
νs

2
Λ
[
2p̂bs(1),k(1− p̂2

bs(1),k)∆W1,k − 2p̂bs(1),k p̂2
bs(2),k∆W5,k − 2p̂bs(1),k p̂2

bs(3),k∆W9,k

+ p̂bs(2),k(1− 2p̂2
bs(1),k)(∆W2,k + ∆W4,k) + p̂bs(3),k(1− 2p̂2

bs(1),k)(∆W3,k + ∆W7,k)

− 2p̂bs(1),k p̂bs(2),k p̂bs(3),k(∆W6,k + ∆W8,k)
]] 1

1 + ν2
s
2 Λ2∆t

p̃bs(2),k+1 =
[

p̂bs(2),k

+
νs

2
Λ
[
2p̂bs(2),k(1− p̂2

bs(2),k)∆W5,k − 2p̂bs(2),k p̂2
bs(1),k∆W1,k − 2p̂bs(2),k p̂2

bs(3),k∆W9,k

+ p̂bs(1),k(1− 2p̂2
bs(2),k)(∆W2,k + ∆W4,k) + p̂bs(3),k(1− 2p̂2

bs(2),k)(∆W6,k + ∆W8,k)

− 2p̂bs(1),k p̂bs(2),k p̂bs(3),k(∆W3,k + ∆W7,k)
]] 1

1 + ν2
s
2 Λ2∆t

p̃bs(3),k+1 =
[

p̂bs(3),k

+
νs

2
Λ
[
2p̂bs(3),k(1− p̂2

bs(3),k)∆W9,k − 2p̂bs(3),k p̂2
bs1∆W1,k − 2p̂bs(3),k p̂2

bs(2),k∆W5,k

+ p̂bs(1),k(1− 2p̂2
bs(3),k)(∆W3,k + ∆W7,k) + p̂bs(2),k(1− 2p̂2

bs(3),k)(∆W6,k + ∆W8,k)

− 2p̂bs(1),k p̂bs(2),k p̂bs(3),k(∆W2,k + ∆W4,k)
]] 1

1 + ν2
s
2 Λ2∆t

,

(4.93)

where at each time step we re-normalize and obtain p̂bs,k+1 = p̃bs,k+1/‖p̃bs,k+1‖.
As detailed in Appendix B.5, for this scheme we have:

E‖p̃bs,k+1‖2 = 1− ν4
s

4
Λ4∆t2 +O(∆t3). (4.94)

This error converges with the same order of expression (4.88) for the quaternion.
Numerically, an explicit Euler–Maruyama scheme has been used to discretise Eq (4.91). By

considering as initial condition q̂bs,0 such that ‖q̂bs,0‖ = 1, the discretised version of Eq. (4.91)
in [0, T] with time step ∆t and tk+1 = tk + ∆t, reads:

q̃bs(1),k+1 =

(
1 +

5
6

νsΛ2∆t
)

q̂bs(1),k −
νs

3
Λq̂bs(1),k (∆W1,k + ∆W5,k + ∆W9,k)

+
νs

2
Λ
[
2q̂bs(1),k∆W1,k + q̂bs(2),k(∆W2,k + ∆W4,k) + q̂bs(3),k(∆W3,k + ∆W7,k)

]

q̃bs(2),k+1 =

(
1 +

5
6

νsΛ2∆t
)

q̂bs(2),k −
νs

3
Λq̂bs(2),k (∆W1,k + ∆W5,k + ∆W9,k)

+
νs

2
Λ
[
q̂bs(1),k(∆W2,k + ∆W4,k) + 2q̂bs(2),k∆W5,k + q̂bs(3),k(∆W6,k + ∆W8,k)

]

q̃bs(3),k+1 =

(
1 +

5
6

νsΛ2∆t
)

q̂bs(3),k −
νs

3
Λq̂bs(3),k (∆W1,k + ∆W5,k + ∆W9,k)

+
νs

2
Λ
[
q̂bs(1),tk

(∆W3,k + ∆W7,k) + q̂bs(2),k(∆W6,k + ∆W8,k) + 2q̂bs(3),k∆W9,k

]

(4.95)

and the orientation will be as p̂bs,k+1 = q̃bs,k+1/‖q̃bs,k+1‖ = q̂bs,k+1.
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Figure 4.8: Stochastic stretching sub-step (BS): Strong error (Errs) of the numerical scheme in Eq. (4.93)
(BSNL) and Eq. (4.95) (BSL) against the time step ∆t for different values of τη . In (a) the first
component of pbs, (b) the first component of the vector φ⊥pbs

of tumbling. Black line indicates the slope
1/2; and the initial condition of particle orientation is p0

a = (1, 0, 0).

Figure 4.8 shows the strong error for the schemes Eq. (4.93) and (4.95) as a function of the
time step ∆t, for different values of τη . The two schemes have the same behaviour for the first
component pbs,1 and φ⊥pbs ,1, as shown in Fig. 4.8a and 4.8b respectively. Furthermore, the order
of convergence for the values of τη = 0.1, 1, 10 is 1 following the prediction of the classical
Euler–Maruyama scheme. Conversely, the value of τη = 0.01 highlights the limit of the scheme
for these particular choices of ∆t. Indeed, for this value of τη the SDE (4.49) becomes stiff and
the time step ∆t needs to be adapted to this particular choice of time scale parameter. Here we
remark that the stretching part does not contribute to spin the particles around its symmetric
axis as can be seen from Eq. (4.23), i.e. φ‖pbs

= 0.
The weak error as a function of ∆t is shown in Fig. 4.9; we can observe that the behaviour

of the two schemes is the same, as shown for the strong error, with an order of convergence
for the weak error of 1. The first component of the moment E[pbs] is visible in Fig. 4.9a for
the initial condition of particle orientation p0

a = (1, 0, 0): we can observe a strong dependence
on the τη parameter. Moreover, for ∆t > 0.01 the behaviour of the two schemes results to
be slightly different for τη = 0.01. The same behaviour is observed for the higher moments
E[p2

bs,1], E[p3
bs,1] in Fig. 4.9b and 4.9c respectively. In order to show the weak convergence

of the cross moment E[pbs,1 pbs,2], shown in Fig. 4.9d, the initial condition has been fixed to
p0

b = (1, 1, 1)/
√

3.
As remarked for the weak convergence of the Brownian rotation part (Fig. 4.5), we still notice

a strong influence of the amplitude of the diffusion coefficient νs ≈
√

1/τη . However, in this
case, a less marked effect on computing the exponential of very small numbers is present with
respect to the previous results; in fact, considering the exact solution for E[p2

bs,1] (Eq. (4.60)),
leads to the evaluation of ∼ exp (−15) instead of ∼ exp (−50), as remarked in the previous
case. A special case is represented by the convergence of E[pbs,1 pbs,2] for τη = 10, where the
magnitude of the error is of the same order of Monte Carlo using as initial condition p0

b,
and to observe the convergence of order 1 the number of particles Np should be significantly
increased.
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Figure 4.9: Stochastic stretching sub-step (BS): Weak error (Errw) of the numerical scheme in Eq. (4.93)
(BSNL) and Eq. (4.95) (BSL) against the time step ∆t for different values of τη . In (a), (b), and (c) the
first three moments of the first component pbs for an initial condition of particle orientation p0

a = (1, 0, 0).
In (d) the second cross moment pbs,1 pbs,2 is shown using a different initial condition p0

b = (1, 1, 1)/
√

3.
Black line indicates the slope 1.

4.4.5 Splitting scheme for HIT

In the previous Sections 4.4.3 and 4.4.4 a suitable numerical scheme for Brownian rotation and
stretching sub-parts of the splitting, and the analysis of weak and strong convergence have
been presented.

The scope of this section is to investigate the accuracy of the splitting algorithm in a strong
and weak sense using the Lie–Trotter composition in Eq. (4.52), in the case of HIT, where the
mean contribution is set to zero, i.e. Ls and La are not present. This simplification of the original
problem is fully justified since the analytical solution for moments in Eqs. (4.58)-(4.61) can be
used to study exactly the weak convergence without resorting to a method of manufactured
numerical solution. Furthermore, we are mainly interested on the numerical behaviour of the
stochastic contribution in Eq. (4.17) which results to be much more delicate to treat numerically
compared to its deterministic counterpart. Setting to zero the mean part in Eq. (4.52) and
expliciting the operators Lbs and Lba, the splitting algorithm reads,




dpbs(t) = −
ν2

s
2

Λ2pbsdt + νsΛ
(
dWs pbs − pbsp

ᵀ
bs dWs pbs

)
with pbs(tk) = p(tk),

dpba(t) = −
ν2

a
2
pbadt + νapbadWa. with pba(tk) = pbs(tk+1);

(4.96)
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then the solution at later time steps is given by p(tk+1) = pba(tk+1). The order of advancement
of the two schemes is the one presented in Eq. (4.96). Early preliminary tests showed that the
results in time of the moments by changing the order of operations, i.e. performing first the
Brownian rotation and then the Brownian stretching, do not affect final results. For sake of
clarity, in this study the strong and weak convergence by changing the order of operations has
not been analysed. We argue that the covariance matrix computed by commuting the matrices
Ws and Wa is always zero due to the intrinsic structure of the symmetric and antisymmetric
construction of the matrix W , which could explain the insensitivity under the change of the
order of the operations.
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Figure 4.10: Splitting scheme in HIT: Strong error (Errs) of the splitting algorithm Eq. (4.96) using the
numerical scheme in Eq. (4.93) followed by Eq. (4.89) (BRNL) and Eq. (4.95) followed by Eq. (4.89)
(BRL), against the time step ∆t for different values of τη . In (a) the first component of p, (b) the first
component φ⊥p of tumbling and (c) the spinning φ‖p. Black line indicates the slope 1/2; and the initial
condition of particle orientation is p0

a = (1, 0, 0).

In the following, we analyse both strong and weak convergence for two different discretisations
of Eq. (4.96) obtained by:

- BRNL, i.e. Eq. (4.93) followed by Eq. (4.89);

- BRL, i.e. Eq. (4.95) followed by Eq. (4.89).

Figure 4.10 shows the strong error for the three quantities p1, φ⊥p,1 and φ‖p against ∆t for
different values of τη , in Fig. 4.10a, 4.10b and 4.10c respectively. The order of convergence
is 1/2, confirming that the composition of operators in this case obeys to the convergence
of the two sub-parts of the splitting algorithm. It is interesting to notice that the stretching
sub-part is dominant with respect to the rotation; this can be explained considering that the
stretching sub-part produces higher values of the strong error with respect to the rotation
sub-part. Furthermore, we observe that BRNL and BRL have the same behaviour.

The weak error as a function of the time step ∆t, for different values of τη is presented in
Fig. 4.11. The behaviour of the weak error of the moments is equivalent to that observed in
the sub-part of the splitting with an order of convergence of 1. The results of E[p1], E[p2

1] and
E[p3

1] has been obtained with an initial condition p0
a = (1, 0, 0), and are shown in Fig. 4.11a,

4.11b, and 4.11c respectively. Alternatively, the initial condition p0
b = (1, 1, 1)/

√
3 has been

used to show the order of convergence of E[p1 p2] in Fig. 4.11d. Moreover, the magnitude of the
weak error for various moments are much closer to the one produced in the stretching sub-part
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compared to the rotation part. This indicates that the stretching contribution is dominant as
for the strong convergence, which suggests that the numerical method used in the stretching
sub-part should be refined to obtain better error results.
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Figure 4.11: Splitting scheme in HIT: Weak error (Errw) of the splitting algorithm Eq. (4.96) using the
numerical scheme in Eq. (4.93) followed by Eq. (4.89) (BRNL) and Eq. (4.95) followed by Eq. (4.89)
(BRL), against the time step ∆t for different values of τη . In (a), (b), and (c) the first three moments of
the first component pbs for an initial condition of particle orientation p0

a = (1, 0, 0). In (d) the second
cross moment pbs,1 pbs,2 is shown using a different initial condition p0

b = (1, 1, 1)/
√

3. Black line indicates
the slope 1.

4.4.5.1 Long time behaviour

Here we study the asymptotic behaviour of the spitting scheme in HIT Eq. (4.96), using the
first declination, i.e. performing the scheme in Eq. (4.93) followed by Eq. (4.89). The asymptotic
convergence in real applications is very important in order to evaluate the evolution of the
system for an elapsed simulation time which is in general very long. Moreover, in an ergodic
system there is a coincidence between time average along trajectories and ensemble average
across trajectories. Indeed, such property can be exploited on computing statistical observables
of the process evaluating them from a single path simulated over a long time horizon instead
of relaying on a large amount of trajectories. For this purpose, the marginal probability
distribution function (PDF) expressed in spherical coordinates is analysed and compared with
analytical results. Then, the numerical evaluation of the tumbling and spinning rate in Eq. (4.53)
and (4.54) are compared with the analytical results in Eq. (4.33) and (4.34).
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For a randomly orientated particle, as in HIT case, simple analytical expressions for the
marginals PDFs in spherical coordinates are given by,

Pφ(ϕ) =
1
2

sin(ϕ), (4.97)

Pθ(ϑ) =
1

2π
, (4.98)

where the transformation from Cartesian coordinates (p1, p2, p3) to spherical coordinates with
unitary radius (1, ϑ, ϕ) is given by,

ϕ = arccos (p3/‖p‖) , ϑ = arctan (p2/p1) , (4.99)

with 0 ≤ ϕ ≤ π and 0 ≤ ϑ ≤ 2π. Figure 4.12 shows the evolution in time of the numerical
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Figure 4.12: Evolution in time of marginal PDF computed numerically for the angles ϕ (left panel) and ϑ

(right panel) in HIT case. The different curves correspond to different instant of time logarithmically
spaced between t ∈ [0.1, 50] starting from a deterministic initial condition p0

a = (1, 0, 0). In black line the
analytical result of Eq. (4.97) (left panel) and Eq. (4.98) (right panel). Simulation performed with a
number of particles Np = 105, time step ∆t = 10−2, final time T = 50, time scale parameter τη = 1 and a
shape parameter Λ = 1. Inset: the values of the PDF in π/2, i.e. Pφ(ϕ = π/2) at different instant of time
t ∈ [0.01, 50] are displayed in log-log plot for the angle ϕ (inset left panel). Equivalently, the values of the
PDF in π, i.e. Pθ(ϑ = π), in time are reported for the angle ϑ (inset right panel).

results for Pφ(ϕ) (left panel) and Pθ(ϑ) (right panel) starting from an initial condition p0
a =

(1, 0, 0). The different curves indicate different instants of time and are logarithmically spaced
t ∈ [0.1, 50]. As time increases, the numerical results collapse on the analytical curves (in black
line). This confirms that the numerical scheme is able to converge toward the analytical PDF
and for long time it remains stable. Moreover, the convergence of the PDF towards the invariant
measure for the two marginal PDFs is exponentially fast as shown in the inset of Fig. 4.12

for ϕ (inset left panel) and ϑ (inset right panel). This last result suggests that the numerical
method developed is geometrically ergodic (i.e. converges exponentially fast), which is an
high-valuable characteristic that can be take in advantage in real applications.

Tumbling and Spinning

We want to use the long time behaviour as discussed above, to evaluate the tumbling and
spinning rate for the stochastic Lagrangian model of orientation (Eq. (4.17)), which has been
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defined in Section 4.3.3. In particular, for the HIT case, in Eq. (4.33) and (4.34), the derivative in
time of the average value of the norm squared of φ⊥p and φ‖p has been computed analytically
(Section 4.3.3.1).

Therefore, it is important to evaluate if the numerical scheme developed is able to reproduce
these statistics. As we already know from the convergence analysis, the processes associated to
these quantities converge in strong sense, but nevertheless the uncertainties of these statistics
in long time behaviour remain an open question. Numerically Eq. (4.33) and (4.34) have been
computed as follow,

Φ̃⊥p =
1

T − t0

[
1

Np
∑
n

∥∥∥φ̃(n)
⊥p(T)

∥∥∥
2
− 1

Np
∑
n

∥∥∥φ̃(n)
⊥p(t0)

∥∥∥
2
]

, (4.100)

Φ̃‖p =
1

T − t0

[
1

Np
∑
n

(
φ̃
(n)
‖p (T)

)2
− 1

Np
∑
n

(
φ̃
(n)
‖p (t0)

)2
]

, (4.101)

where the numerical solution of φ̃⊥p and φ̃‖p is given by Eq. (4.53) and (4.54), respectively.
In this case the numerical simulations are performed varying the particle aspect ratios λ or

the shape parameter Λ. The numerical parameters used are: the number of particles Np = 105,
the time step ∆t = 10−3, the final time T = 1000, the time scale parameter τη = 1. Moreover,
we are using as initial condition a uniform distribution on a sphere. Regarding the final time
T, we would like to underline that it is 2000 times bigger with respect to the one fixed for
the convergence study (T = 0.5); this highlights the robustness and stability with respect to
long times. The time scale parameter τη = 1 has been selected from the convergence study as
intermediate value. The initial and final time were fixed at t0 = 10, T = 1000, verifying that t0
is large enough and all the moments are well converged and stationary in time.
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Figure 4.13: Analytical tumbling rate Eq. (4.33) (green line) and spinning rate Eq. (4.34) as a function of
the particle aspect ratio λ for the HIT case. Markers show results of numerical simulations of Eq.(4.100)
and (4.101). Simulations are performed with a number of particles Np = 105, time step ∆t = 10−3, final
time T = 1000, time scale parameter τη = 1 and using as initial condition a uniform distribution on a
sphere.

Figure 4.13 shows the comparison between the analytical (solid lines) and numerical (markers)
results for the tumbling rate Φhit

⊥p and spinning rate Φhit
‖p as a function of the particle aspect

ratio λ. These two results match with the analytic expressions, with the deviations between
analytical (lines) and numerical (markers) reported in Table 4.2 for σ = 0, confirming that
the stochastic part of the numerical scheme is able to reproduce these statistics for long
time simulations. Moreover, this shed light on the discretisation used (Eq. (4.53) and (4.54))
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to compute these quantities, which is a practical simple tool to evaluate the tumbling and
spinning in the stochastic model, without adding other numerical difficulties.

4.5 numerical test with mean shear

In this section, the proposed splitting scheme for the SDE (4.17) is illustrated in an homogeneous
shear flow case (HSF), introduced in Section 4.3.3.2. In presence of a mean velocity gradient,
the splitting scheme corresponds to Eq. (4.52), with the four elementary operators. Expressing
them in their extended form, we have





dps(t)
dt

= Λ
(
〈S〉ps − psp

ᵀ
s 〈S〉ps

)
with ps(tk) = p(tk),

dpa(t)
dt

= 〈O〉pa(t) with pa(tk) = ps(tk+1),

dpbs(t) = −
ν2

s
2

Λ2pbsdt + νsΛ
(
dWs pbs − pbsp

ᵀ
bs dWs pbs

)
with pbs(tk) = pa(tk+1),

dpba(t) = −
ν2

a
2
pbadt + νapbadWa. with pba(tk) = pbs(tk+1),

(4.102)
where the solution at the next iteration time step is restored by p(tk+1) = pba(tk+1). The first
two sub-parts of the splitting are deterministic, involving only the mean velocity gradient that
has been split in its symmetric and antisymmetric contributions. We recall that the matrices
〈S〉 and 〈O〉, defined in Eq. (4.35), are constant in time.

The mean stretching (MS) sub-step of the splitting, i.e. Eq. (4.47), is composed by the
symmetric part of the mean velocity gradient tensor 〈S〉. This first sub-step in Eq. (4.102), as
the stochastic counterpart, consists in a linear part that stretches the vector p modifying both
its orientation and unitary norm; the latter is preserved by the non-linear term. A suitable
numerical solution for this sub-part can be achieved employing classical numerical methods
for the ODE, such as exponential method through a diagonalisation procedure or high-order
Runge–Kutta methods. Specifically, for this numerical test, a fourth-order Runge–Kutta (RK4)
method has been implemented to solve this sub-part of the splitting.

The second sub-step in Eq. (4.102), corresponds to the mean rotation (MR) sub-step of the
splitting, i.e. Eq. (4.48). This sub-part involves the antisymmetric part of the mean velocity
gradient tensor 〈O〉, that purely rotates the vector p in a new position by preserving its unitary
norm.

The presence of the antisymmetric matrix 〈O〉 (constant in time) allows to directly solve the
rotation dynamics of this sub-part of the splitting, by reconstructing the rotation matrix R
(where its properties have been discussed in Section 4.4.3). Let us consider the mean angular
velocity 〈ω〉, identified by the relation 〈O〉 p = (〈ω〉×p)/2; then the rotation vector ζ = 〈ω〉∆t
encodes the increment of rotation over the period of time ∆t. In this way the solution of the
deterministic rotation sub-part is obtained by the exponential map (Celledoni and Owren
(2003)) which is given by the Rodriguez formula (Bottasso and Borri (1998)),

R = 1 +
sin(‖ζ‖)
‖ζ‖ [ζ]× +

1− cos(‖ζ‖)
‖ζ‖2 [ζ]2×, (4.103)

where [ζ]× is the antisymmetric matrix associated to the rotation vector ζ, as in Eq. (4.71).
Then, the orientation in the rotated framework, between two instant of times is given by,

pa(t + ∆t) = R∆t(ζ)pa(t). (4.104)

The aim of this section is to study the behaviour of the splitting scheme relative to the
stochastic part presented in Section 4.4.5, in the presence of a mean velocity gradient. This
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Figure 4.14: Splitting scheme in HSF: Strong error (Errs) of the splitting algorithm Eq. (4.102) using RK4

for the mean stretching in Eq. (4.47) (MS) and the Rodriguez formula for the mean rotation Eq. (4.48)
(MR); followed by the stochastic part Eq. (4.96) using numerical scheme (BRNL) (for τη = 1) against
the time step ∆t for two different values of shear parameter σ. In (a) the first component of p, (b) the first
component φ⊥p of tumbling and (c) the spinning φ‖p. Black line indicates the slope 1/2; the initial
condition of particle orientation is p0

a = (1, 0, 0).

means that we are not directly focused on the convergence analysis as done before, but
rather to test the coupling between the stochastic and deterministic part. Moreover, this
case introduces additional difficulties because of the presence of deterministic terms. Indeed,
an exact solution for the moments is no longer accessible; from a numerical point of view
additional parameters, such as the shear rate σ, affect the convergence error. Here, we restrict
ourself to testing the strong error convergence by fixing τη = 1 (with the amplitude diffusion
coefficient νs, νa ≈

√
1/τη) and considering two different values of the shear rate σ = 0.5, 8 for

〈S〉 and 〈O〉, defined in Eq. (4.35).
Figure 4.14 shows the strong error as a function of the time step ∆t for the two values of σ.

The deterministic sub-parts Eq. (4.47) (MS) and Eq. (4.48) (MR) are implemented as described
above and are followed by their stochastic counterparts using the numerical scheme (BRNL)
in Eq. (4.96). The first component p1 (p2, p3 have the same behaviour) is shown in Fig. 4.14a,
where the strong error converges with a slope slightly greater than 1/2 when ∆t < 10−2 for
both values of σ. This could be explained by the presence of high order schemes for the mean
stretching (MS), and an exact solution for the mean rotation (MR); it means that the splitting
scheme marginally mixes the different orders of convergence.

The magnitude of the error strongly depends on the values of the shear rate, but does
not deviate significantly from the ones observed for the strong convergence in HIT case (
Section 4.4.5), when ∆t becomes sufficiently small. Same observations can be done for φ⊥p,1
of tumbling and spinning φ‖p in Fig. 4.14b and 4.14c, respectively. For this two quantities the
magnitude of the error does not increase significantly moving from σ = 0.5 to σ = 8.

4.5.1 Long time behaviour

Analogously on what we did in Section 4.4.5.1, the asymptotic behaviour is hereafter analysed.
The marginal probability distribution function (PDF) expressed in spherical coordinates has
been studied. In this case, an analytical solution for the stationary marginals PDFs of ϕ and ϑ
is not available and only numerical results are reported.

Figure 4.15 shows the evolution in time of the numerical results for Pφ(ϕ) (left panel) and
Pθ(ϑ) (right panel) starting from an initial condition p0

a = (1, 0, 0). The different curves indicate
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different instants of time and are logarithmically spaced t ∈ [0.1, 50]. As time increases, the
numerical results approach the same value (from violet to yellow lines). Compared to the
HIT case, where the orientation is uniformly distributed on a sphere, the presence of a mean
shear rate tends to align the vector p along its direction which corresponds to ϕ = π/2 and
ϑ = 0, π, 2π. These two results confirm that the numerical scheme converges toward a unique
invariant measure. Moreover, the convergence towards the invariant measure for the two
marginal PDFs is exponentially fast as shown in the inset of Fig. 4.15 for ϕ (inset left panel)
and ϑ (inset right panel).
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Figure 4.15: Evolution in time of marginal PDF computed numerically for the angles ϕ (left panel) and ϑ

(right panel). The different curves correspond to different instant of time logarithmically spaced between
t ∈ [0.1, 50] starting from a deterministic initial condition p0

a = (1, 0, 0). In black line the analytical result
of Eq. (4.97) (left panel) and Eq. (4.98) (right panel). Simulation is performed with a number of particles
Np = 105, time step ∆t = 10−2, final time T = 50, time scale parameter τη = 1 and a shape parameter
Λ = 1. Inset: the values of the PDF in π/2, i.e. Pφ(ϕ = π/2) at different instants of time t ∈ [0.01, 50] are
presented in log-log plot for the angle ϕ (inset left panel). Equivalently, the values of the PDF in π, i.e.
Pθ(ϑ = π), in time are reported for the angle ϑ (inset right panel).

Tumbling and Spinning

Inherent to the asymptotic behaviour of the numerical scheme, it is interesting to compute
numerically the norm of the orthogonal projection Φ̂⊥p in Eq. (4.26), and of the parallel
projection Φ̂‖p in Eq. (4.27), that we recall has to be zero. These two quantities, numerically,
are evaluated as,

̂̃Φ
hsf
⊥p =

1
T − t0

[
1

Np
∑
n

∥∥∥φ̃(n)
⊥p(T)

∥∥∥− 1
Np

∑
n

∥∥∥φ̃(n)
⊥p(t0)

∥∥∥
]

, (4.105)

̂̃Φ
hsf
‖p =

1
T − t0

[
1

Np
∑
n

(
φ̃
(n)
‖p (T)

)
− 1

Np
∑
n

(
φ̃
(n)
‖p (t0)

)]
, (4.106)

where the numerical solution of φ̃⊥p and φ̃‖p is given by Eq. (4.53) and (4.54), respectively.
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Due to the lack of analytical results, ̂̃Φ
hsf
⊥p is compared with its semi-analytical form in

Eq. (4.44), that we recall here to be,

Φ̂hsf
⊥p∞

=

(
3

∑
i=1

E
[

g⊥i (p∞)
]2
) 1

2

with g⊥(ps) =
σ

2




−(Λ− 1)p1 p3

(Λ + 1)p2 p3

(Λ− 1)p2
1 − (Λ + 1)p2

2


 .

The numerical parameters are the same used in the HIT case. Concerning Φ̂hsf
‖p , it should always

be zero (Section 4.3.3.2).
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Figure 4.16: The mean tumbling rate Eq. (4.26) and spinning rate Eq. (4.27) as a function of the particle
aspect ratio λ in HSF for different values of the shear rate parameter σ (as in legend). Markers show
results of numerical simulations of Eq. (4.106) and (4.105). Semi-analytical Eq. (4.44) (lines in left panel)
and analytical result Φ̂‖p = 0 (black line in left panel). Simulations are performed with a number of
particles Np = 105, time step ∆t = 10−3, final time T = 1000, time scale parameter τη = 1 and using as
initial condition a uniform distribution on a sphere.

Figure 4.16 shows numerical results (in markers) as a function of particle aspect ratio λ of
Eq. (4.105) (left panel) and Eq. (4.106) (right panel), which are compared to semi-analytical
Eq. (4.44) (in lines) and zero (black line), respectively. Four different values of the shear rate
parameter σ are used (in legend). Both ̂̃Φ⊥p and ̂̃Φ‖p evaluated numerically match with their
semi-analytical/analytical values, with the deviations between semi-analytical (lines) and
numerical (markers) reported in Table 4.1. The maximum of the error between these two
approaches can be observed in the right panel of Fig. 4.16 (for the left panel the behaviour is
the same); it passes from order 2× 10−3 for σ = 8 to 10−4 for σ = 0.5. Thus, the error values
increase with σ, which is reasonable compared to strong convergence results.

As we did for the HIT case, we consider the variance of the norm of φ⊥p and φ‖p, that is
Φ̃⊥p and Φ̃‖p in Eq. (4.28) and (4.29), respectively. We compare the numerical approximations
given by Eq (4.100) and (4.101) with the semi-analytical definitions in Eq. (4.45) and (4.39), that
we recall to be,
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Error of mean Φ̂⊥p and Φ̂‖p

λ 0.01 0.07 0.4 0.6 1.0 1.66 2.5 14.28 100.0

σ = 0.5
Êhsf
⊥p 0.000025 0.000013 0.000008 0.000048 0.000038 0.000044 0.000035 0.000055 0.000038

Êhsf
‖p 0.000089 0.000104 0.000051 0.000018 0.000041 0.000080 0.000059 0.000007 0.000053

σ = 3.5
Êhsf
⊥p 0.000935 0.000916 0.000259 0.000086 0.000036 0.000076 0.000312 0.000872 0.000908

Êhsf
‖p 0.000060 0.000125 0.000127 0.000080 0.000023 0.000376 0.000147 0.000255 0.000087

σ = 4.5
Êhsf
⊥p 0.001411 0.001376 0.000383 0.000098 0.000051 0.000161 0.000414 0.001361 0.001409

Êhsf
‖p 0.000376 0.000092 0.000119 0.000280 0.000111 0.000024 0.000301 0.000344 0.000086

σ = 8
Êhsf
⊥p 0.003592 0.003407 0.000784 0.000179 0.000043 0.000185 0.000804 0.003449 0.003621

Êhsf
‖p 0.000276 0.000127 0.000630 0.000850 0.002023 0.001144 0.000011 0.000055 0.000630

Table 4.1: Values of the errors Êhsf
⊥p =

∣∣∣∣ ̂̃Φ
hsf
⊥p − Φ̂hsf

⊥p∞

∣∣∣∣ and Êhsf
‖p =

∣∣∣∣ ̂̃Φ
hsf
‖p − Φ̂hsf

‖p∞

∣∣∣∣ of mean tumbling and

spinning rate in the model Φ̂⊥p (Eq. (4.26)), Φ̂‖p (Eq. (4.27)), for some values of λ. These values are
relative to the deviation between markers and continuous lines in Fig. 4.16.

Figure 4.17 represents numerical results (in markers) and semi-analytical solutions (in lines)
as a function of the particle aspect ratio λ for different values of the shear rate σ (in legend).
We present the variance of the tumbling rate (Eq. (4.38)) in the right panel, and the spinning
rate (Eq. (4.39)) in left panel. We observe that the spinning (in right panel) results are in
a good agreement for all values of the particle aspect ratio λ, with the deviations between
semi-analytical (lines) and numerical (markers) reported in Table 4.2. In addition, the maximum
relative error is given by spherical particles (λ = 1) which is ≈ 0.5%. This shows that the
unfolded statistic of spinning rate in the stochastic model is well reproduced by the numerical
splitting scheme.
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Figure 4.17: The variance of tumbling rate Eq. (4.28) and spinning rate Eq. (4.29) as a function of the
particle aspect ratio λ in HSF for different values of the shear rate parameter σ (as in legend). Markers
show results of numerical simulations computed according to Eq.(4.100) and (4.101) in HSF. Moreover,
black cross markers are the analytical results obtained for the case of sphere (λ = 1) (in Appendix B.6).
Semi-analytical tumbling rate in Eq. (4.45) (lines in left panel) and semi-analytical spinning rate in
Eq. (4.46) (lines in right panel) are reported. Simulations are performed with a number of particles
Np = 105, time step ∆t = 10−3, final time T = 1000 , time scale parameter τη = 1 and using as initial
condition a uniform distribution on a sphere.
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Left panel of Fig. 4.17 shows the comparison between numerical and semi-analytical results
of the tumbling rate in the stochastic model as a function of λ. For small values of λ a good
agreement is found, also compared to the exact solution for λ = 1 (details are presented in
Appendix B.6), which is shown in the black crosses markers. Moreover, we notice that the
results differ for the flattest disks (λ� 1) and equivalently for long rods (λ� 1), in particular
for large values of σ. The error between these two approaches is reported in Table 4.2.

A possible source of error could be the computation of the semi-analytical results for
the tumbling; in fact, it leads to evaluate integral correlations of several components, such
as Rp1 p3(τ),Rp2 p3(τ), Rp2

1
(τ), Rp2

2
(τ) and Rp1 p2(τ)). It is a numerically difficult task, more

difficult than computing directly Φ̃⊥p. Other difficulties come from the fact that for the spinning
we compute only a second order moment, while for the tumbling fourth order moments are
considered. In addition, the spinning only involves p3, conversely the tumbling gathers the
contributions of all components of p. We would remark that, in the presence of shear, the SDE
that describes the orientation (Eq. (4.36)) shows a simpler structure for component p3 than for
the other two components.

We are still searching a clear explanation for the error associated to the tumbling; in per-
spective, other methods of analysis can be used to compute this correlation, different with
respect to Monte Carlo evaluation.

Error of variance Φ⊥p and Φ‖p

λ 0.01 0.07 0.4 0.6 1.0 1.66 2.5 14.28 100.0

σ = 0
Ehit
⊥p 0.001857 0.001541 0.000227 0.000182 0.000279 0.001906 0.001692 0.002248 0.002379

Ehit
‖p 0.001786 0.001481 0.000821 0.001128 0.000367 0.001117 0.000616 0.001456 0.001549

σ = 0.5
Ehsf
⊥p 0.054828 0.053699 0.023996 0.007241 0.000137 0.009160 0.025728 0.055718 0.057170

Ehsf
‖p 0.000749 0.001883 0.001235 0.001244 0.003162 0.002228 0.001604 0.000300 0.000650

σ = 3.5
Ehsf
⊥p 0.103256 0.114694 0.134366 0.054659 0.008298 0.064419 0.136334 0.132703 0.126056

Ehsf
‖p 0.020740 0.005817 0.043774 0.000481 0.039395 0.077273 0.008652 0.004965 0.005912

σ = 4.5
Ehsf
⊥p 0.176494 0.185755 0.168004 0.071884 0.006968 0.070441 0.176106 0.177326 0.170685

Ehsf
‖p 0.030356 0.033789 0.027787 0.118855 0.193280 0.168652 0.145102 0.090144 0.094814

σ = 8
Ehsf
⊥p 0.384828 0.415358 0.234539 0.090977 0.043472 0.151385 0.299867 0.433211 0.386030

Ehsf
‖p 0.079306 0.145548 0.099135 0.371444 0.103639 0.104940 0.382177 0.130605 0.117721

Table 4.2: Values of error Ehsf
⊥p =

∣∣∣Φ̃hsf
⊥p −Φhsf

⊥p∞

∣∣∣ and Ehsf
‖p =

∣∣∣Φ̃hsf
‖p −Φhsf

‖p∞

∣∣∣, of the variance of tumbling
and spinning rate in the model Φ⊥p (Eq. (4.28)) and Φ‖p (Eq. (4.29)), for some values of λ. Moreover, on
first line is reported the HIT case (σ = 0) (in Fig. 4.13) computed with respect analytical results in
Eq. (4.33) and (4.34), for tumbling and spinning rate, respectively. These values are relative to the
deviation between markers and continuous lines in Fig. 4.17.

4.6 conclusions

We studied the orientation and rotation dynamics of non-spherical tracer particles in a turbulent
flow in the context of stochastic modelling, also referred as PDF approach. In the first part of
the work, we have proposed a Lagrangian stochastic model for the three dimensional case, able
to describe the orientation of non-spherical particles. This model has been coupled to classical
hybrid Eulerian/Lagrangian stochastic methods, obtaining a complete system for the dynamics
of non-spherical tracer particles in a turbulent flow. The ‘classical’ definitions, used in DNS, of
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tumbling and spinning rate, associated to the rotation dynamics of non-spherical particles, are
not accessible by the stochastic model. However, a different notion of these two statistics has
been introduced.

In the second part of the work, we constructed and analysed a semi-implicit splitting
numerical method for the non-linear stochastic differential equation (SDE) proposed in the
model. Classical Euler–Maruyama method commonly fails to converge with optimal rate, or
eventually diverges, when coefficients have not bounded first derivative (i.e., globally Lipschitz
condition fails), which is the case of the SDE under study. Another key point is that the
numerical scheme is not constrained by the assumptions of the model, and stay insensitive to
the particular choice of tensor correlations introduced. The semi-implicit splitting numerical
method includes four different sub-parts: the first two are related to the deterministic stretching
and rotation contribution of the mean velocity gradient; the others two are represented by the
stochastic Brownian stretching and Brownian rotation contribution for the velocity gradient
fluctuations. In particular, a semi-implicit Euler–Maruyama for the Brownian rotation sub-part
has been developed by adapting the deterministic quaternion dynamics to the stochastic case.
This allowed to find a convergent scheme avoiding to introduce more intricate numerical
methods.

In overall, the semi-implicit splitting method has been proved to be mean-square convergent
of order 1/2 and weakly convergent of order 1. Moreover, we showed that, in contrast with
classical Euler–Maruyama type methods, the proposed splitting method is able to preserve the
geometric features of the SDE under study (namely, the constraint to lie on a manifold SO(3)).
This makes our scheme applicable at reasonable computational costs. Further, we pointed out
that our method is stable on long times, which is an high-valuable feature for real applications.
The statistics of tumbling and spinning rate were well numerically reproduced when compared
to the analytical solution in homogeneous isotropic turbulence.

In the last part of the work, the numerical scheme was analysed in a semi-real case, by
considering the non-spherical particles embedded in a homogeneous shear flow. This last
case confirmed the effectiveness of the numerical scheme for the study of the model in other
turbulent flows, such as a turbulent channel flow, as we discuss in the Chapter 5.

As a perspective, the numerical splitting scheme could be adapted to treat also inertial
particles, since it deals with the general numerical problem of the orientation, that remains
the same for both inertialess and inertial particles. Therefore, the extension of the model to
anisotropic inertial particles is interesting and implies the additional work of including the
particle relaxation time τp in the Jeffery’s equation.
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Outline. In the following chapter the orientational and rotational behaviour of in-
ertialess spheroidal particles in a turbulent channel is investigated by coupling the
orientation stochastic Lagrangian model to an hybrid Eulerian/Lagrangian PDF method.
The proposed model and its numerical scheme discussed in Chapter 4 have been im-
plemented in an industrial CFD code (Code_Saturne) and detailed comparisons of the
orientation statistics with DNS are carried out. Indeed, this last part of the work rep-
resents the bridge between two different issues of the modelling: the first concerns
whether and to which extent the model is able to reproduce features of the ‘reality’;
the second is about its numerical implementation within an industrial code. Moreover,
to better understand the capability and limit of the model, a detailed investigation
has been performed using the mean-field information by filtering the DNS dataset,
which can be treated as a ‘perfect’ RANS. Finally, the characterisation of tumbling and
spinning motion within the model is discussed in terms of the statistics introduced in
Chapter 4, while the classical deterministic definitions of the motions is employed for
presenting results from DNS.

5.1 introduction

The dynamics of solid particles suspended in a wall-bounded turbulent flow is important in
order to understand the hydrodynamics of solid suspensions. In particular, here, the interest
is on the prediction of flow-induced alignment and rotation of non-spherical particles in a
turbulent suspension which is of interest in many areas of science and engineering, as well as
in many practical applications. Particles asphericity impacts on the fundamental properties
of turbulence and on the rheological properties of suspensions, being relevant in applications
ranging from the dispersion of plastic micro-particles, to the distribution of cellulose fibres in
the paper and pulp industry, to the motion of red blood cells travelling through blood vessels,
and ice-crystal dynamics in clouds, to name a few.

In this work, we focus the discussion to small inertialess rigid fibres, with a size smaller
than the Kolmogorov length scale ηK, such that point-particle approach can be applied,
assuming dilute conditions and additionally, neglecting the feedback on the flow. Moreover, the
dynamics of non-spherical particles is studied by approximating the actual particle shape as an
axisymmetric ellipsoid, i.e., either prolate (rod-like) or oblate (disk-like) spheroids (Fig. 2.1 in
Chapter 2).

Following growing interest in the subject, physical modelling and different numerical
approaches have been used to study the motion of non-spherical particles in various flow fields,
with an extensive literature having been produced, as reviewed by Voth and Soldati (2017).
Previous studies have revealed the dynamics of inertialess spheroidal particles in homogeneous
isotropic turbulence (HIT) both, using direct numerical simulations (DNS) (Shin and Koch
(2005); Pumir and Wilkinson (2011); Chevillard and Meneveau (2013); Gustavsson et al. (2014);
Ni et al. (2014); Byron et al. (2015)), and also experimental investigations (Parsa et al. (2012);
Marcus et al. (2014); Ni et al. (2015)). These have shown that particles preferentially align
with respect to fluid vorticity and strain, which causes particle rotation to differ from that
of spherical fluid particles. Specifically, rods tend to align their symmetry axis with the local
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fluid vorticity vector, which leads particles to preferentially rotate around their symmetric axis
(Parsa et al. (2012)). Conversely, disks align their long axes with the local fluid vorticity, leading
to minimal rotations about their symmetry axis (Byron et al. (2015)).

These results represent a special case, however, since lack of mean shear distinguishes HIT
from most of the turbulent flows found in practice. This motivates the study of particles in
turbulent channel flows, that represent an interesting case for particle motion, since the flow
changes among qualitatively different states while increasing distance from the channel wall.
In the bulk region of the channel, where the vorticity field is nearly isotropic, particles orient
almost randomly (Andersson et al. (2015)), while the alignment near the channel walls crucially
depends on the aspect ratio. Disk-like particles strongly align their symmetry axis p in the
wall-normal direction, whereas rod-like tracer particles align parallel with the wall, mostly
in the streamwise direction (Challabotla et al. (2015b)). The strong preferential orientation of
non-spherical particles reduces the mean particle rotation below that for spheres, which is
equal to the mean fluid rotation. In spite of the substantial reduction of mean angular velocity
of tracers with high aspect ratio, enhanced fluctuations of the streamwise component of the
angular velocity has been observed by Challabotla et al. (2015b).

Zhao et al. (2015) showed the existence of two qualitatively different modes of inertialess
spheroids rotation in channel-flow turbulence. Just as in HIT (Parsa et al. (2012); Byron et al.
(2015)), rods preferentially spin and disks tumble in the central region (‘centre mode’). In
the near-wall region, however, both tumbling and spinning are suppressed while increasing
asphericity (‘wall mode’). Spheroidal particles in ‘centre mode’ are nearly randomly oriented
in the channel centre, where the mean shear vanishes and the vorticity field is almost isotropic.
The local fluid vorticity vector ω and the orientation vector of rod-like particles p are both
preferentially aligned in the strongest Lagrangian stretching direction, while disk-like particles
orient in the Lagrangian compression direction, which is perpendicular to the fluid vorticity
vector (Ni et al. (2014); Zhao and Andersson (2016)). The shape-dependent particle rotational
behaviour is therefore caused by how a spheroidal particle orients itself relatively to the local
fluid vorticity. In ‘wall mode’, rod- and disk-like spheroids are preferentially aligned in the
Lagrangian stretching (streamwise) direction and the Lagrangian compression (wall-normal)
direction, respectively. The rotational behaviour is strongly affected by the mean shear (i.e.
anisotropic fluid vorticity), and is therefore qualitatively consistent with a spheroid rotation
in uniform shear flow, following the so-called Jeffery orbits (Challabotla et al. (2015b); Voth
(2015)).

The role of deterministic factors, i.e. the mean shear and vorticity anisotropy, on the ori-
entational behaviour of spheroidal particles has been studied by a direct simulated turbulent
Couette–Poisueille flow (Yang et al. (2018)). This flow was used to achieve a better understand-
ing of spheroidal particle rotation in sheared turbulence by exploring the different mechanisms
that identify the rotation in the centre and near the wall, namely the anisotropy of the particle
orientation and fluid shear. These are the two main factors influencing the particle rotational
behaviour. It has been found that in the centre region the mean shear has practically no
influence on the particle orientations. In the wall region, however, mean shear plays a role in
particle rotation whenever particles are preferentially oriented. Furthermore, findings on the
orientation and rotation behaviour near the high shear wall show an almost undistinguishable
behaviour on respect to previous studies in the turbulent channel flows (Zhao et al. (2015)).

Considering the relevance of the problem for industrial processes, models that reach an
acceptable compromise between simplicity and accuracy are needed. In all the above mentioned
works, the turbulent flow field is treated as a continuous phase, and simulated in the Eulerian
frame using a direct numerical simulation (DNS). Discrete particles interact with the flow
eddies and are solved by Lagrangian particle tracking. DNS may be regarded as a numerical
experiment providing the most promising way to reproduce features of turbulence up to
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the smallest Kolmogorov scale, giving access to a complete picture. Nonetheless, DNS is
computationally expensive and not designed to handle suspensions of a large number of
small finite-size particles in complex geometries or high Reynolds number, as often met in
engineering systems. To overcome the noted shortfalls of DNS methods, turbulence models are
still necessary to describe the motion of particles in turbulent flow. Within this framework, a
Lagrangian stochastic method predicting particle-laden turbulence (also referred to as PDF
method, e. g., Minier (2016)) is adopted. The influence of the underlying turbulent fluid is
represented by a stochastic model of the particle equation of motion. However, adopting a
stochastic closure for the fluid seen by the particle would yield a velocity field where the
velocity gradients would be unavailable.

Many micro-physical processes such as, orientation and rotation of fibres, deformation of
bubbles and polymers dynamics strongly depend on the velocity gradient tensor, which is
dominated by the turbulent structure in viscous range. Recently, the modelling challenge
on how to reproduce a detailed dynamics of small scale properties of turbulence that are
not accessible by using Reynold Averaged Navier-Stokes Simulations (RANS) or Large Eddy
Simulations (LES) has been investigated by Chen et al. (2016); Johnson and Meneveau (2018).
These authors introduced a method for coupling existing stochastic models for the velocity
gradient tensor with coarse-grained fluid simulations (see Section 2.5 in Chapter 2). However,
this problem have not received much attention in the modelling context and, while their
method is tailored for small scales, other approaches have to be envisaged depending on the
physics scale of interest.

In this work, the orientation and rotation of spheroidal particle is studied by using the
stochastic Lagrangian model for the orientation developed in Chapters 3-4. The observation
timescale ∆t was assumed to be longer than the characteristic timescale of the velocity gradient
seen by the particle, such that gradients can be regarded as fast processes and removed from the
particle state vector. The model and the numerical scheme presented in Chapters 4 constitute
the basis for the study of an applicative prototype of inhomogeneous anisotropic flow. Our
model for particle orientation has been coupled with an hybrid Euler-Lagrangian stochastic
transport. In particular, we have investigated the turbulent channel flow for which DNS were
available thanks to the work of co-authors in Campana et al..

More specifically, the results on the orientation and rotation statistics are analysed in three
different cases. Firstly, a DNS dataset of turbulent channel flow (provided by simulations
performed by co-authors in Campana et al.) is used as experimental results for judging the
performance of the model. Secondly, in order to provide insight into the accuracy of the
stochastic Lagrangian orientation model, isolated from hybrid stochastic Eulerian/Lagrangian
(with RANS), an a priori case is constructed by filtering the DNS dataset (A-DNS), which
can be treated as ‘perfect’ RANS results. Lastly, the next case consists of running the hybrid
RANS case using the CFD code (Code_Saturne) (provided by simulations performed by co-
authors in Campana et al.) with no input from the DNS, which provides relevant results on
the performance of the model in real industrial test case simulations. The comparison of the a
priori (A-DNS) case with the DNS results will be explored in most details. This choice is made
to highlight the contribution provided by the model itself, as well as to understand its intrinsic
limit for reproducing orientation and rotation statistics.

The results obtained both for the orientation and for rotation statistics in A-DNS and
RANS-type simulations are used for a preliminary investigation performed with a stochastic
Lagrangian model of particle orientation. In this respect, proposing a model directly on the
orientation represents, in our view, a more difficult task than exploring Jeffery’s equation
coupled with the stochastic Lagrangian model for the velocity gradient since the deterministic
rotation statistics used in DNS are no longer applicable.
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The work is organised as follows. The three different methodologies for the fluid and particle
motion, as well as brief recalls on the stochastic Lagrangian model for the orientation and
the underlying assumptions, are presented in Section 5.2. Results about the variance of the
orientation vector p conditioned on the wall normal direction y+ for the rod- and disk-like
particles in DNS, A-DNS and RANS cases are discussed in Section 5.3. In Section 5.4 the
rotation rate statistics are firstly presented for the DNS case and then for the model, using the
alternative definition of the rotation modes introduced in Chapter 4. Conclusions are provided
in Section 5.5.

5.2 methodology

We consider the motion of inertialess spheroidal particles smaller than the Kolmogorov length
scale in a fully developed turbulent channel flow. The particle concentration is very diluted, so
that one-way coupling from fluid to particles is assumed, and collisions between particles are
neglected. In this section, the governing equations for turbulent flow in the DNS, filtered DNS
(A-DNS) and mean-field/PDF approach (Peirano et al. (2006)) are presented.

5.2.1 DNS method

The turbulent channel flow of a dilute suspension is computed by DNS in Eulerian framework.
The fluid motion is considered governed by the incompressible Navier–Stokes equations,

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂P
∂xi

+ ν
∂2ui

∂x2
j

,
∂uj

∂xj
= 0, (5.1)

with a kinematic viscosity ν, where u(x, t) and P(x, t) are the velocity and pressure field
(divided by density), respectively. In the following, the channel is sufficiently long and has a
sufficiently high-aspect-ratio, that the flow is homogeneous in the streamwise x and spanwise
z directions; the only direction of inhomogeneity is the wall-normal y direction. A friction
Reynolds number is defined as Reτ = uτh/ν, based on the channel half-height h and a friction
velocity

uτ =

√
−h

ρ

d 〈Pw〉
dx

=

√
τw

ρ
(5.2)

where d 〈Pw〉 /dx is the mean pressure gradient in the streamwise direction (externally applied
pressure gradient that drives the flow in the channel) and τw = −h d 〈Pw〉 /dx is the wall shear
stress. Hereafter, the superscript ‘+’ denotes the normalisation by viscous scale for velocity
(uτ), length (δν = uτ/ν) and time (τν = ν/u2

τ). Such quantities are given in wall (or viscous)
units.

The Lagrangian point-particle approach is used to describe the dynamics of small inertialess
particles. These tracer-particles passively follow the translational motion of the local fluid, with
a rotational motion determined by the Jeffery’s equation (Jeffery (1922)), that we recall to be,

dpi
dt

= Oij pj + Λ
(
Sij pj − pi pkSkl pl

)
, (5.3)

where Oij and Sij are the antisymmetric and symmetric parts of the fluid velocity gradient Aij

along tracer trajectories. The shape parameter Λ = (λ2 − 1)/(λ2 + 1) is related to the aspect
ratio λ of the ellipsoid, defined as the ratio between the length of the symmetry axis and that
of two equal axis (see Fig. 2.1).
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5.2.1.1 Simulation set up

The spheroids are suspended in a channel flow whose dynamics is integrated by the open-
source spectral code Channelfow 2.0 developed at EPFL (https://www.channelflow.ch). The
DNS has been performed by co-authors in Campana et al.. The chosen domain size is
4πh× 2h× 4πh/3 and simulations are performed using a de-aliased spectral code (Fourier-
Chebyshev) with 1923 collocation points. Time marching is done by a variable step-size,
third-order semi-implicit backward differentiation formula (SBDF3) with a time step regularly
adjusted to satisfy the CFL condition and capped to ∆tmax. The flow is maintained in a stat-
istical steady state by imposing a constant bulk velocity. The resulting Reynolds number is
Reτ ≈ 395. A summary of the numerical parameters is shown in Table 5.1.

h Lx Lz Nx Ny Nz ∆x+ ∆tmax Ub ν τw Reτ

1 4π 4π/3 192 193 192 25.9 0.01 0.835 1.25 10−4 2.44 10−3 395

Table 5.1: Parameters of the numerical simulation: channel half-width h; domain sizes in the streamwise
(Lx) and spanwise (Lz) directions; resolutions Nx, Ny and Nz; step size ∆x+ in the streamwise direction
(in wall units); capped value ∆tmax of the adaptative time step; bulk velocity Ub; kinematic viscosity ν;
wall shear stress τw = ν ∂yU(0); friction Reynolds number Reτ =

√
τw h/ν.

Particle trajectories (positions and orientations) are integrated using a second-order Adams–
Bashforth scheme. Evaluating the fluid velocity at the particle location requires a high-order
scheme to avoid spurious oscillations (Choi et al. (2004); Hinsberg, van et al. (2013)). As
advocated by Stelzenmuller et al. (2017), we did not use a costly full spectral interpolation but
rather a third-order Hermite cubic interpolation which requires evaluating the second-order
derivatives of the fluid velocities at every time step. In order to evaluate the fluid velocity
gradient, several schemes (trilinear, truncated Hermite, full Hermite) have been tested in the
case of rods (Λ = 1). To assess such a choice, the particles tumbling rate 〈‖dp/dt‖2〉 and their
spinning rate (1/4) 〈|p ·ω|2〉, where ω = ∇× u denotes the fluid vorticity at the particles
position, have been measured. Up to statistical errors, no significant differences have been
observed, advocating in favour of the cost-efficient trilinear interpolation that is used in the
sequel.

Figure 5.1 shows the instantaneous vorticity amplitude (top) and the simultaneous orientation
of rods (down) in a slice along the x and y directions. One clearly sees that close to the walls,
the rods are preferentially aligned with the mean flow direction. In addition, one guesses that
their orientation tends to follow the streamlines associated to detachment events.
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Figure 5.1: Top: instantaneous amplitude of the vorticity field in the z = 0 plane (white: low values, dark
red: high values). Down: orientation of rods at the same instant of time for tracers located in the slice
0 < z < 0.025.

https://www.channelflow.ch
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The results of Eulerian-averaged velocity profile and Reynolds stress components for the
DNS are shown in left and right panel of Fig. 5.2, respectively. The mean streamwise velocity
profile U(y) = 〈ux〉 shows the expected log-law behaviour U+(y+) = (1/κ) log y+ + b at
y+ & 20, with the extracted Von Kármán constant κ = 0.384 and b = 4.17, as obtained from the
experimental measurements of Samie et al. (2018). The velocity variances (right panel) clearly
reproduce the measurements in DNS or experiments (e. g., Pope (2001); Samie et al. (2018)).
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Figure 5.2: Left panel: Mean velocity profile U(y) = 〈uy〉 (in wall units). The two dashed lines denote the
linear viscous boundary layer U+(y+) = y+ at y+ . 5 and the turbulent log layer
U+(y+) = (1/0.384) log(y+) + 4.17 at y+ & 20. Right panel: Reynolds stress components as a function
of the wall-normal coordinate y+. The DNS results are in lines with circle markers and RANS in lines
with starred markers.

5.2.1.2 A-DNS case

For the a priori test case (A-DNS), every 200 time steps of DNS, 450 snapshots of the velocity
gradient tensor has been averaged and the results stored on a uniform grid of 193 cells in
wall-normal direction with y+ ≈ 4 for the first point away from the wall. Moreover, the
trajectories computed from the fully resolved DNS dataset have been filtered in time with
the same resolution above, and a total number of 450 snapshots stored. We anticipate that
for this test case the orientation model for the spheroids (Eq. (5.12)) was disjointed from the
hybrid Eulerian/Lagrangian solver and stand-alone integrated by using the numerical splitting
scheme proposed in Chapter 4.

5.2.2 Hybrid PDF method

In two-phase flow modelling, various methods can be followed. Here, we consider a hybrid
Eulerian-Lagrangian PDF approach (Minier et al. (2001)). The continuous phase is described by
a classical Eulerian momentum approach, i.e. the fluid phase is represented by RANS equations
(Pope (2001)). On the other hand, the particle phase is solved with a PDF approach, where the
instantaneous exact equations are replaced with a set of modelled instantaneous equations. In
general, for inertial spherical particles, the modelled equations for the particle velocity (up)
and the velocity of the fluid seen by the particle (us), are the Langevin equations, that is a
set of stochastic differential equations (SDEs). Then, particles are characterised by a particle
state vector Z = (Xp,up,us), being Xp the particle position, whose study is detailed in Minier
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(2016). We recall from Chapter 4 that the general form of the state-of-the-art Langevin model
(Minier (2016)) takes the form,

dXp,i = up,i dt (5.4)

dup,i =
1
τp

(
us,i − up,i

)
dt (5.5)

dus,i = −
1
ρ f

∂ 〈Pf 〉
∂xi

dt +
(
〈up,j〉 − 〈u f ,j〉

) ∂ 〈u f ,i〉
∂xj

dt + G∗ij
(

us,j − 〈u f ,j〉
)

dt + Bs,ij dW̃j(t), (5.6)

where W̃j(t) is a vector of independent Wiener processes. We anticipate that this Brownian
vector is independent from that one introduced within the model for the orientation (Eq. (5.12)).
The matrix is given by G∗ij = −(1/2 + 3/4 C0)(ε/k) Hij where C0 is a constant, k is the fluid
turbulent kinetic energy and ε is the mean dissipation rate of the turbulent kinetic energy. The
matrix Hij accounts for the crossing-trajectories effect. The general diffusion coefficients matrix
Bs,ij , as well as more others details on Eqs. (5.4)-(5.6) can be found in Minier (2016).

Compared to the case of inertial spherical particles presented above, here, in the presence of
non-spherical inertialess particles, a fundamental aspect is the choice of the fibre state vector.
Firstly, by considering (spheroidal) tracer particles, the models Eqs. (5.4), (5.5) and (5.6), using
some simplification detailed in Minier (2016), need to be taken in the limit of vanishing inertia
(τp → 0), that corresponds to consider the particle velocity tending towards the fluid velocity,
i.e. in this case us = u f . In this limit the modelled equations become (Chibbaro and Minier
(2011)),

dX f ,i = u f ,idt (5.7)

du f ,i = −
1
ρ f

∂ 〈Pf 〉
∂xi

dt− 1
TL

(
u f ,i − 〈u f ,i〉

)
dt +

√
C0ε dW̃i(t) (5.8)

where TL represents the Lagrangian time scale of the velocity correlation and is defined by
TL = 1

( 1
2+

3
4 C0)

k
ε and the other quantities are defined precisely in Minier et al. (2004); Peirano

et al. (2006). This model corresponds to the Simplified Langevin Model (SLM, Pope (1994)). In
the above Langevin model, which has been reduced for the position and velocity of the fluid
Eqs. (5.7)-(5.8), the fluid mean velocity field 〈u f ,i〉, the turbulent kinetic energy k, the mean
dissipation rate 〈ε〉 and the mean pressure gradient, are provided by an Eulerian solver. In this
case, for the two-phase calculation performed with Moment/PDF (or Eulerian/Lagrangian)
approach, the time step can be further constrained by the fluid flow computation.

5.2.2.1 Lagrangian stochastic model for the orientation

Fibre modelling can be cast into the framework of microscopic, mesoscopic and macroscopic
approaches. The stochastic (or mesoscopic) description brings the gap between DNS studies
(microscopic) and averaged rheological relations (macroscopic). In this regard, presenting a
stochastic Lagrangian model for the orientation of spheroidal tracer particle requires a brief
discussion on how the fibre state vector can be defined.

Studying the orientational and rotational motion using Jeffery’s equation (5.3) along a
Lagrangian trajectory, requires knowledge of the velocity gradient, evaluated at the particle
position, which means the fibre state vector is Z = (X f ,u f ,p,A f ), where A f is the fluid
velocity gradient along the Lagrangian trajectory. With respect to spherical particles, the fibre
state vector is supplemented by particle orientation p and the fluid velocity gradient. This,
from a modelling point of view, represents the fine-scale properties of the flow, that needs to
be modelled.
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Moreover, it should be noted that adopting a stochastic closure for the velocity of the fluid
seen, which typically involves a Wiener process with uncorrelated, independent increments
and continuous trajectories, nowhere differentiable, would yield no information on the velocity
gradient. In fact, any knowledge about velocity increments in space as in DNS, are lost in the
stochastic Lagrangian trajectories. Therefore, a stochastic Lagrangian model for the velocity
gradient tensor seen by the particles was introduced (Chin and Geiser (2011); Chevillard and
Meneveau (2013); Johnson and Meneveau (2018)), to include informations about the detailed
dynamics of small scale turbulence.

However, small scale quantities are extremely complex to model. In addition, the model
developed in Chapter 4 has been designed for an observation time ∆t, larger than the Lag-
rangian correlation integral time of the velocity gradient τI. This implies that Aij along the
particle trajectory can be regarded as a fast process, such that the fibre state vector is reduced
to Z = (X f ,u f ,p) and the coarse-grained information about Aij is embedded in the SDE for p.

Recalling from Section 4.3 (in Chapter 4), the stochastic model for the orientation of spher-
oidal particles has been introduced using the vector q, which obeys the same linear terms in
Eq. (5.3), but without compensating for any elongation, so that:

dqi(t) =
(
〈Oij〉+ Λ 〈Sij〉

)
qj dt +

(
βa

imj + Λ βs
imj

)
qj ◦ dwm

t , pi =
qi
‖q‖ , (5.9)

where the orientation p is obtained by re-normalizing the vector q. Equation (5.9) is expressed
in the Stratonovich sense (◦) and dwm

t (m = 1, . . . 9) is a vector of a nine-dimensional Wiener
process whose components are independent, standard, one-dimensional Wiener processes.
The fluctuations contribution are expressed in terms of symmetric and antisymmetric tensors
βs

imj = (βimj + β jmi)/2, βa
imj = (βimj − β jmi)/2, respectively.

Then, the closure of the model has been obtained assuming the velocity gradient fluctuations
A′ij = Aij − 〈Aij〉 Gaussian and short-correlated in time. In particular, the diffusion tensor in
expression (3.23) has been expressed as,

βimjβkml = 2 Ceff
ijkl , (5.10)

where Ceff
ijkl represents the effective diffusion tensor in expression (3.20). Furthermore, two

different limits have been assumed: when the observation time of the dynamics is much larger
than the integral correlation time (τI = max(τijkl

I )), i.e. ∆t � τI, and when ∆t � τη , i.e. the
observation time is smaller than the Kolmogorov time scale τη , corresponding to the typical
turnover time of the velocity gradient fluctuations. Then, the Kubo number has been defined
Ku = τI/τη � 1 giving the working hypothesis of the model.

5.2.2.2 Model assumptions

The modification induced by the mean shear on the velocity gradient correlation tensor, is far
more intricate than the case of HIT flow, which can be fully analysed in terms of only one
dimensional quantity ε/τη . As discussed in Chapter 3, in the presence of shear, the effective
diffusion tensor Ceff

ijkl fairly reproduced the the statistics for the orientation of a rod part. Indeed,
this means, as we have seen, that the integral Lagrangian correlation time strongly depends on
its different components τ

ijkl
I , and for an inhomogeneous flow, it depends also on the distance

from the wall (y+). For this reason, hereafter, a brief discussion on the behaviour of the integral
Lagrangian correlation time τ

ijkl
I is presented.

Figure 5.3 (right panel) shows the integral Lagrangian autocorrelation time τ
ijij
I as a function

of y+. The overall behaviour of the integral time of the velocity gradient tensor tends to increase
moving toward the centre of the channel. However, it strongly depends on the components. As
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we can see, as an example, the component 1212 (orange line in lower triangular markers) is non
monotonic with a minimum at y+ ≈ 10. This is the most important contribution, representing
the component related to ∂yu′x, which expresses the inhomogeneous direction.

Another interesting quantity is constituted by the measurement of Kuijkl (in this case we
report in the inset only the ijij components), versus the distance from the wall. We can notice
that the Kubo parameter changes with y+: its variation, considering the set of components, is
not extremely large, except for the 1212 and 1313. Therefore, we can consider its value fairly
constant as a function of y+, and varies, depending on the component, between 1.5 and 5. The
already complex behaviour of τ

ijkl
I in the 2D homogeneous shear flow (Chapter 3) becomes

even more intricate in a turbulent channel due to the effects of shear and inhomogeneity.
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Figure 5.3: Left panel: Averaged kinetic energy dissipation ε = 2ν 〈SijSij〉 as a function of y+, where S
denotes the symmetric part of the velocity gradient. Both the full dissipation (using S) and the turbulent
dissipation (using S′) are represented in DNS and RANS case. In inset the Kolmogorov time scale
τη =

√
ν/ε, in viscous units, is reported for both DNS and RANS as a function of y+. Right panel: DNS

measurements of the integral correlation time τ
ijij
I (autocorrelation components) as a function of the

distance from the wall. In inset the measurements of Kubo parameter Kuijij = τ
ijij
I /τη as a function of y+.

Due to this intricate picture, in order to investigate the orientation model, the same assump-
tions discussed in Chapter 4 have been used for the correlation of βimj. Recalling that the
correlation tensor of the velocity gradient fluctuations Cijkl(0) = 〈A′ij(0)A′kl(0)〉 was considered
homogeneous, isotropic and satisfying incompressibility condition, we have

βimjβkml = 2 D Ku(〈A′ij〉 , y+) (4δikδjl − δijδkl − δilδjk), (5.11)

where D = 1/(30τη) and Ku as previously discussed is taken as a scalar quantity with a
possible dependence on y+. The outcome of considering isotropic fluctuations within the
model for the orientation coincides to treat the Kubo number as a tuning parameter.

Under this hypothesis, the Lagrangian stochastic model for the orientation p was obtained
using the Itô’s Lemma on the renormalisation function q 7→ p = F(q) with pi = Fi(q) = qi/‖q‖.
From Section 4.3 we recall the equation to be,

dpi = 〈Oil〉 pldt + Λ
(
〈Sil〉 − pi pj 〈Sjl〉

)
pldt

− νs

2
Λ2 pidt + νsΛ

(
dWs

il − pi pjdWs
jl

)
pl −

νa

2
pidt + νadWa

il pl ,
(5.12)

where νs =
√

6 D Ku and νa =
√

10 D Ku (with D = 1/(30τη)) contain the scaling parameters.

We have used the matrix notation for the Wiener process Wil
t = w3(i−1)+l

t , that is the Wiener
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vector wm
t has been expressed in terms of 3 by 3 matrix using the same nine scalar Wiener

process (Section 4.3). In addition, the Wiener matrix has been decomposed in its symmetric
and antisymmetric part Ws

il = (Wil
t + Wli

t )/2 and Wa
il = (Wil

t −Wli
t )/2 respectively. Finally,

Eq. (5.12) results to be the stochastic version of Jeffery’s equation (5.3).
As said, the fluctuating part of the model depends on the ratio Ku(y+)/τη(y+). Several tests

have been performed in order to find a good value of the ratio Ku(y+)/τη(y+) which gives
comparable results, when fitting the variance of the orientation 〈p2

i |y+〉 (no sum on i), as we
will present in Section 5.3. Interestingly, it turns out that the best agreement is obtained by
fixing Ku = 1, and taking the value of τη in the bulk of the channel, so that this ratio for
the model is taken constant all along the channel, i.e. we have a value of 1/τbulk

η that drives
the diffusive part of the orientation model. A first explanation for this result can be given by
considering that Kuijkl , as observed above, shows a very weak dependence along the channel.
On the other hand, it is not clear why the best choice corresponds in fixing the value of τbulk

η

in the centre of the channel. From preliminary tests we obtained that using the value of τη(y+)
as in inset of Fig. 5.3 (right panel), the variance of the orientation vector p remained randomly
oriented for all the shape parameters across the channel. This means that the diffusion term in
the model is stronger than the mean velocity gradient contribution.

Finally, these tests have been performed in the case of the A-DNS set-up, and then, the same
configuration has been used to assess how the model performs when coupled with RANS.
Indeed, both turbulence dissipation, and consequently τbulk

η results for the RANS are in perfect
agreement with DNS measurements, as shown in Fig. 5.3 (left panel). This ensures that the
fluctuating part of the model in A-DNS and RANS cases are the same, leading to the conclusion
that any difference that we will experience by observing both orientation and rotation statistics
can be attributed to other contributions, such as mean velocity gradient, and/or the trajectories
behaviour, but not to the stochastic part of the orientation model in Eq. (5.12).

In general, the integral correlation time τ
ijkl
I in Eq. (5.10), measured from DNS data, could

provide the spatial dependence of the diffusion tensor within the coordinates of Eq. (5.9). We
notice, as a perspective, that an effective correlation tensor could be tailored by applying a
sort of homogenization between the components of the integral time correlation τ

ijkl
I , in order

to provide some information about anisotropic fluctuations of the velocity gradient, that are
completely discarded when isotropic and homogeneous assumptions are made.

5.2.2.3 Simulation set up

In the hybrid Lagrangian-Eulerian PDF approach, the first step is to evaluate the mean field
fluid variable which is included in the Lagrangian model Eqs. (5.7)-(5.8). The channel flow
has been solved on an infinite one dimensional rectangular box of size x = 0.05, y = 1 and
z = 0.05. The domain is discretised with 1 cell along the streamwise direction and 100 cells
along y direction. Periodic boundary conditions are imposed along the x and z directions while
a symmetry condition is imposed along y = 1 and a wall condition is imposed on the bottom
surface zy = 0. The flow is numerically computed using Code_Saturne (developed by Électricité
de France), assuming that the flow is incompressible and by imposing a streamwise pressure
gradient corresponding to a given friction velocity. The properties of the turbulent steady
flow are obtained using a LRR-IP Rij − ε model (Launder et al. (1975)) with a Rotta constant
C0 = 3.5 (i.e. CR = 1 + 1.5 C0 = 6.25). The diffusion model used in the fluid simulation is the
isotropic model of Shir, while the wall function model corresponds to the two-scale log wall
function model implemented in Code_Saturne. The fluid viscosity is set to ν = 0.0025, so that
the flow Reynolds number based on near-wall scales is Reτ = 395.

Spheroidal particles are tracked within this turbulent flow using the Lagrangian module in
Code_Saturne. The orientation model for the spheroids (Eq. (5.12)) is integrated by using the
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numerical splitting scheme developed in Chapter 4. Particles are initially injected uniformly in
the domain and uniformly oriented. As for the fluid case, periodic boundary conditions are
imposed along the x- and z-direction while a symmetry is imposed for y = 1. A wall boundary
condition is applied for particles crossing the internal face at y+ ≈ 20.

Another difficulty arises here for the boundary condition that has to be applied for spheroid
orientations. More precisely, we cannot resort to the use of a simplified model where the
orientation of a spheroid is fixed to a given value after the boundary condition is applied. This
is indeed not consistent with the measurements made using DNS simulations: the spheroids
coming from the region below y+ ≈ 20 display a range of possible orientations. This distribution
of orientation strongly depends on the aspect ratio of the spheroids : spherical particles have a
uniform distribution, while rods have a higher probability to be aligned along the streamwise
direction and disks have a higher tendency to align along the wall normal direction. These
measurements show that the boundary conditions for spheroid orientation have non-trivial
distributions of orientations.

In order to study the orientation, different kinds of boundary conditions on the orientation
were applied. Some preliminary tests have been performed by modifying the boundary
condition on the orientation of spheroids using data available from the DNS measurements.
The idea was to resort the orientation distribution which gives a higher probability to be
aligned with the x-direction as the aspect ratio nears Λ = 1 (rods), and a higher probability to
be aligned with the y-direction as the aspect ratio nears Λ = −1 (disks). Preliminary results
did not show significant improvements on the model capability to reproduce the orientation
statistics. Moreover, imposing the orientation distribution (at y+ ≈ 20) coming from DNS
measurements is not properly in the spirit of modelling, which would limit as much as possible
external inputs. Interestingly, as we will briefly discuss later, using such kind of near-wall
information for the orientation can introduce an irreversibility within the model.

The RANS results provide a quite accurate description of the mean velocity profile within
the first part of the log-layer, as shown in Fig. 5.2 (right panel). However, the bulk velocity
appears to be underestimated. Considering the Reynolds stress profiles globally in Fig. 5.2 (left
panel), they are different from DNS data, except for the component 〈u′xu′y〉, where they match
perfectly. A good agreement is found also for 〈u′z〉.

It should be noted that the aim of using RANS is not meant to evaluate its goodness with
respect to DNS, but to provide a preliminary test of the orientation model in an industrial
CFD code. Moreover, in the context of hybrid Eulerian/Lagrangian PDF methods, it is not
necessarily true that the improvement in the prediction of the fluid mean velocity 〈u f ,i〉 leads
to an improvement in the overall predictivity of the model. In this respect, is interesting to
understand for the velocity of the fluid seen u f ,i, whether Eq. (5.8) is coherent with the fluid
phase description provided by the Eulerian solver. Indeed, when hybrid Eulerian/Lagrangian
methods are used on particle simulations, a consistency issue could arise between Eulerian
and Lagrangian solvers. The inconsistency is the so called spurious drift effect (Minier and
Peirano (2001)) that is recurrent in many Lagrangian stochastic models. In particular, it refers
to the limit case of particle tracers, where the Lagrangian mean velocity field directly extracted
from the Langevin model must be equal to that coming from the turbulence model chosen in
the Eulerian solver.

In our case, this is a key point since we have to simulate the behaviour of inertialess
particles. The Langevin model implemented in Code_Saturne is consistent in the tracer limit by
construction, and is thus free from spurious drifts. However, this model showed some limits
in accounting for the presence of near-wall instantaneous coherent structures, restricting the
analysis of the orientation results to y+ & 20.

In perspective, others hybrid methods (Chibbaro and Minier (2008)) can be considered.
In particular for the prediction of coherent structures, which are relevant when studying
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particle dynamics near the walls. A better estimate of average fluid quantities can arise from
improvements in Langevin equations, provided that possible inconsistency errors are faced.

5.3 orientation results

Inertialess particles are transported by local fluid, regardless of their shape. The shape para-
meter Λ (or equivalently the aspect ratio λ) has a strong impact on the particle orientation
and rotation dynamics as shown in the snapshot (from DNS) of Fig. 5.4, where the orientation
of rod-like particles differs from that of disk-like particles. Inertialess particles are uniformly

(a)

(b)

(c)

(d)

Figure 5.4: Instantaneous distribution of prolate particles with shape parameter in DNS: Λ = 0.95 in
(a)-(b) and oblate particles with shape parameter Λ = −0.95 in (c)-(d). The shape reflects the particle
orientation and colour-coding indicates the tumbling rate in (a) and and the spinning rate in (b) of
prolate particles; and the tumbling rate in (c) and the spinning rate in (d), of oblate particles, in viscous
units. The background contour represents instantaneous streamwise velocity of fluid in x− y plane.

distributed in space all across the channel. In the bulk region of the channel, spheroids are
randomly oriented since turbulence is nearly homogeneous and isotropic. Far from the core
region of the channel, the shape of the particles determines the preferential orientation of
spheroids. Particularly, in the near wall region, rods particles (Λ = 0.95 in Fig. 5.4a or 5.4b) are
strongly aligned in the streamwise direction, while disks (Λ = −0.95 in Fig. 5.4c or 5.4d) show
a preferential orientation of their symmetric axis p in the wall-normal direction. This behaviour
is in line with previous works that consider almost two regions of the channel flow: a region
near the centre and a region near the wall of the channel (Challabotla et al. (2015b); Yang et al.
(2018); Jie et al. (2019)).
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We anticipate that the different behaviour of the preferential orientation in various regions of
the channel, impacts also the two contributions to particle rotation, i.e. tumbling and spinning.
The colour coding in Fig. 5.4 reveals the different behaviour of tumbling, in Fig. 5.4a, and
spinning, in Fig. 5.4b for rod-like particles, and analogously for disk-like particles in Fig. 5.4c
and Fig. 5.4d.
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Figure 5.5: Mean-squared components of the orientation vector p, in DNS, as a function of the distance
y+ to the boundary for different values of the shape parameter Λ as labelled. In (a) streamwise, (b)
wall-normal and (c) spanwise directions, respectively. In (d) scalar measure of particle orientation
anisotropy POA = | 〈|px|2|y+〉 − 1/3|+ | 〈|py|2|y+〉 − 1/3|+ | 〈|pz|2|y+〉 − 1/3| renormalised to its
maximum value (4/3).

The squared average components, in DNS, of the orientation vector p are shown in Fig. 5.5a
for the streamwise, in Fig. 5.5b for the wall-normal, and in Fig. 5.5c for the spanwise component,
each time as a function of the distance from the wall, for the entire range of the shape parameter,
from Λ = −1 to Λ = 1 (in legend). Prolate particles are oriented, noticeably, differently from
oblate particles, across the viscous sub-layer and buffer-layer y+ ≈ 30. Spherical particles
are always randomly oriented all along the wall-normal direction, with a squared averaged
equal to 1/3. It can be observed from Fig. 5.5b that the preferential orientation, moving from
oblate to prolate particles, varies monotonically. Moreover, longer rods in the viscous sub-layer
y+ < 5 become perfectly aligned with the mean shear, and very flat disks perfectly align
perpendicular to the flow direction. Indeed in this region the presence of the mean shear is
dominant, such that the alignment reaches a constant value which is different for each Λ.
More intricate variations are visible along streamwise direction in Fig. 5.5a. The alignment in
the streamwise direction, for Λ = 1 and Λ = −1, confirms the behaviour of spheroids in the
wall-normal direction. A less clear picture is given by the range of values with finite aspect
ratio. In this case, the behaviour of the alignment above the log-layer is no longer monotonic,
showing a qualitatively different orientation of prolate particles with respect to the oblate
ones. In fact, the alignment of prolate particles increases from the centre of the channel up
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to y+ ≈ 10, to subsequently decrease in the buffer region, reaching a minimum within the
viscous sub-layer. This behaviour is less marked in the case of oblate particles.

The mechanism could be explained by the presence of coherent structures within the channel
flow. In wall-bounded turbulence the flow can be described as a collection of interacting
coherent structures that greatly contribute to the flow dynamics. The existence of extreme stress
events near the wall of the turbulent channel are referred to ‘sweeps’ and ‘ejections’, in accord
with a common terminology, and have been linked to the action of quasi-streamwise vortices
(Polanco (2019)). These are elongated vortical structures almost aligned with the streamwise
coordinate, but slightly tilted in the wall-normal direction. The quasi-streamwise vortices are
typically found in the buffer-layer and their average diameter is of 40 viscous units, that is,
comparable to the size of the buffer region. Away from the buffer layer, the most significant
coherent motions are hairpin vortices. These are formed by pairs of quasi-streamwise vortices
that lift up from the wall and merge forming a loop (Marusic and Adrian (2010)). Hence
quasi-streamwise vortices are often the legs of hairpin vortices, and represent their extension
into the inner region of the flow (Adrian (2007)). The head of a hairpin vortex is typically
located above y+ ≈ 100. The presence of these structures can explain the particular behaviour
of the orientation within the buffer-layer and in the emitting zone of viscous sub-layer.

This picture of intricate structures leads to a non-trivial preferential particle alignment
in anisotropic turbulence with both, vorticity, and Lagrangian stretching direction of the
velocity gradient tensor, as investigated by Zhao and Andersson (2016), and could explain
the aforementioned findings about particle orientation. Finally, the behaviour of streamwise
and wall-normal components is directly reflected along spanwise direction in Fig. 5.5c, since
the sum of the squared average components must stay unitary. Regarding the behaviour in
the bulk region of the channel, 〈|px|2|y+〉 ≈ 〈|py|2|y+〉 ≈ 〈|pz|2|y+〉 ≈ 1/3, irrespective of the
particle shape. This confirms that both, prolate and oblate particles tend to orient themself
randomly in the almost isotropic homogeneous vorticity field.

A measurement of the anisotropy of the orientation is shown in Fig. 5.5d, where the
particle orientation anisotropy (POA) renormalised, measures the deviation from the random
distribution 1/3. Oblate particles present much more departure from isotropy than prolate
shapes, especially above the buffer layer. This is a direct consequence of the particular behaviour
of the squared average of the orientation vector for the streamwise components. Further, the
deviation from random distribution between oblate and prolate particles tends to decrease
when |Λ| becomes small. Earlier, the particle orientation anisotropy has been investigated in
Couette–Poiseuille flow by Yang et al. (2018), observing almost the same behaviour for the
half-height of the domain considered in their investigation.

The mean squared orientation results for the model in the a priori (A-DNS) test case, are
shown in Fig. 5.6. All results are presented for y+ & 4, since the stochastic model was not
designed to reproduce the features above the viscous sub-layer. Indeed, particles below this
threshold are no longer resolved by the classical stochastic hybrid Eulerian/Lagrangian PDF
method. The overall results show that a fairly good agreement is obtained between model
prediction and DNS data for y+ & 30, in particular for prolate particles (upper triangles).

The orientation of both, oblate and prolate particles in the model for the wall-normal
component, in Fig. 5.6b, slightly overestimates the DNS (continuous lines) in the log-layer
region. Moreover, the model above this region, for small values of |Λ|, tends to reach a constant
value approaching channel walls. The trend of the curves for each Λ all along y+, moderately
deviates from DNS, with a slope of the first derivative (with respect to y+) which is less
pronounced in the model than in DNS. This can be related to the presence of anisotropy
fluctuations all along the channel in the DNS case, particularly approaching the channel wall.
Conversely, the model considered an isotropic correlation tensor for the velocity gradient
fluctuations. Indeed, as we have presented in Chapter 3, including this additional feature in
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Figure 5.6: Mean-squared components of the orientation vector p as a function of the distance y+ to the
boundary for different values of the shape parameter Λ as labelled. DNS case (continuous lines) and
model in A-DNS case (markers: Λ < 0 in lower triangles, Λ = 0 in circle, Λ > 0 in upper triangles). In (a)
streamwise, (b) wall-normal and (c) spanwise directions, respectively. In (d) scalar measure of particle
orientation anisotropy POA = | 〈|px|2|y+〉 − 1/3|+ | 〈|py|2|y+〉 − 1/3|+ | 〈|pz|2|y+〉 − 1/3|
renormalised to its maximum value (4/3).

the model is not easy already in two-dimensional homogeneous shear flow, which becomes
even more intricate in a three-dimensional channel flow. Additionally, another possible reason
that could explain this difference relies on having considered a constant parameter 1/τbulk

η for
the model fluctuations. Indeed, it is possible that a finer tuning is required, by introducing a
dependency on y+. In our opinion, from a modelling point of view, it could be better to fully
explain the employment of this constant factor, that at present is not justified, than to tune the
orientation statistics along the wall normal direction.

Figure 5.6a shows the behaviour of the streamwise component. Here, a good agreement is
found for prolate particles for y+ & 30. In contrast, the change of concavity is not reproduced
by the model for y+ . 12, by the presence of complex turbulent structures within this region.
For oblate particles we find that the model is able to qualitatively reproduce DNS results all
along the channel, even if flatter disks remain more isotropic than the DNS.

A limit of the model can be observed, regarding the mean squared orientation for the
spanwise component in Fig. 5.6c. Indeed, prolate (in upper triangles) and oblate particles (in
lower triangles) have the same behaviour (they are exactly superposed). Prolate particles with
finite aspect ratio are well reproduced by the model for y+ & 30 and an even better behaviour
is found for longer rod (Λ = 1) that matches DNS results all along y+.

The fact that prolate and oblate particles act in the same manner in the model can be
explained by the ‘time reversibility’ of the model. Indeed, the model considers a Gaussian
noise for the velocity gradient fluctuations. In case of Gaussian stochastic processes, there
is time symmetry t 7→ −t. This means that the probability of velocity gradient fluctuations
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A′ and −A′ are the same. Moreover, having imposed the isotropy condition means that the
probability of A′ and A

′ᵀ are the same (Il’Yn and Zybin (2015)). This implies, in the orientation
model (Eq. (5.12)), that changing |Λ| 7→ −|Λ| has the effect in Eq. (5.3) (considering only the
fluctuations) to obtain A′ = O′ + |Λ|S′ and −A′ᵀ = O′ − |Λ|S′. This corresponds to have a
model for the orientation which behaves in the same manner, having the same probability
passing from considering prolate Λ to oblate particles −Λ.

Conversely, velocity gradient in turbulence is characterised by highly non-Gaussian statistics.
As a result, time symmetry is broken, since the time reversal t 7→ −t would also reverse the
direction of energy flux. That is, a real turbulent flow is time irreversible due to the dissipation,
with energy that flows from large scales into small scales. In particular, Xu et al. (2014) showed
that the motion of a single fluid particle provides a clear manifestation of time irreversibility.
Namely, fast moving particles suddenly decelerate into regions where the fluid motion is slow,
and the mechanism can be attributed to the presence of rare ‘flight-crash’ events, as defined
by the authors. The implication of time asymmetry on the motion of fluid particles has been
extensively studied, being of great interest in Lagrangian turbulence (Falkovich (2009); Jucha
et al. (2014); Xu et al. (2014); Il’Yn and Zybin (2015); Xu et al. (2016)).
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Figure 5.7: Mean-squared components of the orientation vector p as a function of the distance y+ to the
boundary for different values of the shape parameter Λ as labelled. DNS case (continuous lines) and
model with RANS (using Code_Saturne) case (markers: Λ < 0 in lower triangles, Λ = 0 in circle, Λ > 0 in
upper triangles). In (a) streamwise, (b) wall-normal and (c) spanwise directions, respectively. In (d) scalar
measure of particle orientation anisotropy
POA = | 〈|px|2|y+〉 − 1/3|+ | 〈|py|2|y+〉 − 1/3|+ | 〈|pz|2|y+〉 − 1/3| renormalised to its maximum
value (4/3).

The comparison between the model (A-DNS) and DNS results for the measurements of the
global particle anisotropy with the mean squared orientation is reported in Fig. 5.6d. Firstly, the
same behaviour for positive and negative values of Λ confirms the observation in Fig. 5.6c, that
was restricted only to the case of the spanwise component. Here, the time reversibility of the
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model is more visible since we are considering the global contribution of the three components.
We can argue that the anisotropy in the channel flow is driven by two main contributions: the
first is given by the mean part of the velocity gradient tensor, which increases getting closer to
the channel wall; the second is related to the fluctuations, where the correlations become more
and more anisotropic near the wall.

This means that the anisotropy of mean contribution tends to dominate, at least for y+ & 20,
the contribution of anisotropic fluctuations. Moreover, model results confirm that the presence
of fluctuations are still important far from the wall, leading to a different trend for the model
and the DNS. In particular, this information highlights that in order to improve the model
behaviour the addition of an anisotropic correlation tensor for the fluctuations of the velocity
gradient, is needed, as we did in the two dimensional case (Chapter 3).

Following previous results of the model, in the a priori case (A-DNS), we want to analyse
the behaviour of the mean squared components of the orientation p in the RANS case. These
results are presented in Fig. 5.7, for y+ & 20. The streamwise and wall-normal directions, in
Fig. 5.7a and 5.7b, exhibit a fairly good agreement with DNS data (continuous line). Close
to the centre of the channel, the model predicts a slightly more random orientation, in both,
long rod (λ > 0) and flatten disk (λ < 0), as already observed for the A-DNS case in Fig. 5.7a.
Furthermore, for such kind of particles, within the zone 20 . y+ . 50, the model shows a less
steep trend (in both very oblate and very prolate particles) while approaching the wall of the
channel with respect to the results obtained for DNS and A-DNS.

A possible explanation of the discrepancy between the RANS and A-DNS results can be
given considering the component of the mean velocity gradient tensor 〈∂ux/∂y〉. In fact, the
variation of this component with y+ from the centre towards the wall of the channel is smoother
than the DNS case. In particular, for y+ . 50 its derivative is steeper than the prediction of
RANS.

In the spanwise direction, the behaviour under change of Λ → −Λ is still present, which
confirms the time reversibility of the model, as pointed out in Fig. 5.5c (DNS case). Finally, the
particle anisotropy (POA) in Fig. 5.7d, does not appear very different from the A-DNS case.

We want to remark that the RANS results are obtained without imposing a near-wall model
on the orientation. On the other hand, as anticipated in Section 5.2.2.3, the RANS model has
been also tested imposing the orientation distribution measured from DNS data. It is clear that
this information was too detailed for the modelling. Nonetheless, by using this kind of near-wall
model for describing particle orientation at y+ ≈ 20 , the reversible behaviour observed and
discussed in the A-DNS and RANS cases, was broken. In fact, a slightly distinction between
oblate and prolate particles was observed. This phenomenon suggests, in perspective, that
one possible approach to introduce irreversibility in the model behaviour, consists in the
development of near-wall models for particle orientation.

5.4 rotation results

The rotational dynamics of any non-spherical particle strongly depends on how the particle
orients itself in a turbulent flow. The various states of particle rotation are therefore distinctly
different in isotropic and anisotropic wall turbulence. In the latter, the strong fluid vorticity
field in the near-wall region, in combination with the preferential particle orientation observed
in Fig. 5.5, makes the rotational dynamics of the spheroidal particles crucially dependent on
the shape and on the wall-normal direction y+ of the channel.

The measurements of the particle, in their ‘classical’ definitions (Byron et al. (2015)), tumbling
rate 〈‖dp/dt‖2〉 and their spinning rate (1/4) 〈|p ·ω|2〉, where ω is the fluid vorticity at the
particle position in the DNS case as a function of the distance from the wall, are reported in
Fig. 5.8. The variation of tumbling (left panel) for different values of the shape parameter Λ
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(in legend) indicates that the asymmetry between prolate and oblate particles observed in the
bulk, which is close to the HIT case, persists in the turbulent boundary layer. Moreover, the
tumbling rate is strongly depleted for oblate and prolate particles with zero or infinite aspect
ratio (Λ = −1 or Λ = 1), when entering in the viscous sub-layer.
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Figure 5.8: DNS results of mean-square tumbling rate (left panel) and spinning rate (right panel) in
viscous units τν, as a function of the distance y+ to the boundary for various values of Λ as labelled.

The spinning rate (right panel) shows as well these asymmetries all along the wall-normal
direction, where now the prolate particles tend to spin faster than oblate particles. Moreover,
the spinning rate shows a change of sign of the derivative in the interval 1 . y+ . 5 for both
oblate and prolate particles, but not for spherical ones (Λ = 0). This behaviour happens in the
critical zone, i.e. when particles enter in the viscous sub-layer, where there is an interaction
between the shear dominant region and the buffer-layer.

We can observe that both tumbling and spinning rates are maximal close to the boundary,
and decrease when moving away from the walls. This effect certainly originates from the fact
that turbulent shear is maximal at the boundary. A special case is represented by the limit case
of the longest rods (Λ = 1) and flatten disks (Λ = −1). Finally, it is important to notice that the
quasi-discontinuous behaviour is an artefact coming from the choice of the parameters. Indeed,
we anticipate that, as we will see from Fig. 5.9 (left panel), the rotation rates in the viscous
sublayer show a regular behaviour once represented as a function of the aspect ratio λ, rather
than the shape parameter Λ.

In order to shed light on the effect of shear, Fig. 5.9 reports the mean square rotation rates
obtained in the bulk (right panel) of the channel and in the viscous sublayer (left panel), as a
function of the aspect ratio, rather than of the shape parameter. In the right panel of Fig. 5.9,
the tumbling, the spinning and the total rotation, in the bulk of the channel, have been rescaled
by the Kolmogorov time τη =

√
ν/ε.

The various components of the rotation rate reveal that the bulk of the channel is nearly HIT,
and measurements confirm similar findings in HIT from other groups, Parsa et al. (2012); Byron
et al. (2015). All mean-square rates show similar behaviours, with a higher tumbling for oblate
particles (disks with small aspect ratios), and a higher spinning for prolate particles (rods with
large aspect ratios). Moreover, the asymmetry between oblate and prolate particles (that is
when changing |Λ| 7→ −|Λ|) is clearly visible, indicating the importance of time-irreversible
statistics of the fluid velocity gradients along tracer trajectories, also discussed in Ni et al.
(2014); Byron et al. (2015).

On the other hand, on the left panel, the three rotation rates in the viscous sub-layer, rescaled
by the viscous time scale τν, show the strong shear effect on the particle aspect ratio. In the
viscous sub-layer, the strong preferential orientation of highly elongated aspherical particles
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Figure 5.9: Left panel: Mean-square tumbling, spinning, and total rotation rates (in viscous units), in
DNS, inside the viscous boundary layer (y+ < 0.2) as a function of particle aspect ratio λ. Right panel:
Mean-square tumbling, spinning, and total rotation rate in the flow bulk (at y = h) as a function of
particle aspect ratio λ.

(i.e. |Λ| ∼ 1), makes the observed rotation rates qualitatively consistent with spheroids in
Jeffery orbits, for simple shear flows. Voth (2015) argued that oblate spheroids, bringing their
symmetry axis near the wall-normal direction, will spend a long time in this orientation before
tumbling. Here, we similarly observe that rod-like particles, having their axis almost aligned in
the streamwise direction, rarely tumble.

As discussed in Chapter 4, the tumbling and spinning rates, in their definition used to
analyse the DNS results, are not properly defined in the stochastic model for the orientation,
due to the presence of a stochastic integral. Therefore, in order to study the rotation behaviour
in the stochastic model, alternative definitions for the tumbling and spinning rates have been
developed (Section 4.3.3 in Chapter 4). We recall that these two quantities read

Φ⊥p(t, y+) =
d
dt

[
E
∥∥φ⊥p(t, y+)

∥∥2 −
∥∥E
[
φ⊥p(t, y+)

]∥∥2
]

, (5.13)

Φ‖p(t, y+) =
d
dt

[
E
[
φ2
‖p(t, y+)

]
−E

[
φ‖p(t, y+)

]2
]

, (5.14)

where in the presence of channel flows, due to the inhomogeneity, additional difficulties
arise from the dependence of these quantities on y+. Equation (5.13) and (5.14) represent the
extension to the 3D case of the variance of the angular displacement defined in Chapter 3 in
the 2D case.

The Lagrangian stochastic model (Eq. (5.12)) provides the measurements of the total rate of
the norm squared of angular displacement and its orthogonal and parallel projections along p.
Moreover, these quantities are cumulated for a certain elapsed time, conversely to the DNS
statistics where the rotations modes are represented by the instantaneous change in time of the
rotation. Despite the different definition in the model, the rotational dynamics of a spheroids
can be understood in terms of the angular variation under the action of both the mean shear
and fluctuations.

Equation (5.13) and (5.14) have been conditioned with respect to the position y+, which
means to evaluate

Φ⊥p(t, y+) =
1

T∗

[
E

∥∥∥∥
∫ T∗

0
dφ⊥p(t, y+)

∣∣∣y+
∥∥∥∥

2

−
∥∥∥∥E

[∫ T∗

0
dφ⊥p(t, y+)

∣∣∣y+
]∥∥∥∥

2
]

, (5.15)
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Φ‖p(t, y+) =
1

T∗

[
E

[(∫ T∗

0
dφ‖p(t, y+)

∣∣∣y+
)2
]
−E

[∫ T∗

0
dφ‖p(t, y+)

∣∣∣y+
]2
]

, (5.16)

where the integrals have been computed according to their numerical discretization presented
in Section 4.4 (Chapter 4). The time T∗ has been fixed to ten times the frequency of reading the
filtered DNS dataset for the A-DNS case, i.e. T∗ = 2. Further, the channel half-height has been
subdivided in 48 levels along the wall-normal directions to evaluate the integral, in order to
cumulate the tumbling and spinning. We want to point out that these quantities can not be
directly compared to the DNS results. Indeed, in the model the tumbling and spinning are
characterised in terms of angular rate, whereas in DNS, they have been expressed in terms
of rotation rate. However, in the model the statistics in Eq. (5.15) and (5.16) represent a first
attempt to evaluate the tumbling and spinning along the channel.

The quantitative comparison between rotation dynamics in the model and in DNS is not
straightforward. In this respect, how the statistics in the model can be adapted to the DNS
remains an open question. Indeed, the simulating statistics in Eq. (5.15) and (5.16) can not
be trivially computed in DNS since integration in a finite time interval and conditioning of
tumbling and spinning with respect y+, are two major issues deserving careful scrutiny.

Figure 5.10 shows the variance of the norm of the orthogonal (tumbling) and parallel
(spinning) projections on p, the orientation vector. These two quantities have been tested in
A-DNS case. As we can see in left panel of Fig. 5.10, the Eq. (5.15), which characterises the
tumbling, tends to increase approaching the wall of the channel. For y+ & 100, the tumbling
within the model is constant. This observation highlights the importance of the anisotropic
fluctuations far from the wall since we are looking at the second order moments that cause a
decreasing of tumbling approaching the central region of the channel in DNS. In this respect,
it could be possible that a tuning parameter has to be set in order to find such behaviour for
y+ & 100.

Even if, as previously noted, this quantity is not directly comparable to DNS results, some
common features may be highlighted. When approaching the wall, the model suggests that
spheres (Λ = 0) are among the various shapes, those are tumbling faster. Furthermore, the
way they are classified using the shape as parameter as a function of y+, is in agreement with
results obtained from DNS. Similar considerations hold for the description of the spinning in
the model, as shown, in Fig. 5.10 (left panel). A remarkable difference is represented by the fact
that, at y+ & 100 the response of the model is equivalent with respect to the shape Λ. Moreover,
these two statistics confirm the time-reversible character of the model. That is, prolate and
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Figure 5.10: A-DNS results of mean-square tumbling rate (left panel) and spinning rate (right panel)
A-DNS results in viscous units τη , as a function of the distance y+ to the boundary for various values of
Λ as labelled.
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Figure 5.11: Left panel: Mean-square tumbling, spinning, and total rotation rates (in viscous units), in
A-DNS, at y+ ≈ 4 as a function of particle aspect ratio λ. Right panel: Mean-square tumbling, spinning,
and total rotation rate in the bulk region (at y = h) as a function of particle aspect ratio λ.

oblate particles behave in the same way for the two statistics. Finally, it is interesting to notice
that the significant change in the behaviour of both tumbling and spinning occurs at y+ ≈ 65
which corresponds to the point where the mean velocity gradient component 〈∂ux/∂y〉 rapidly
increases. This mean that approaching the channel wall, where the turbulent velocity gradient
fluctuations are small and the mean shear rate is large, the diffusion approximation works
qualitatively well since the angular dynamics is dominated by the mean shear rate.

As we did for the DNS case, in Fig. 5.11 we show the tumbling, spinning and total rotation
rates (in units of τη) for y+ ≈ 4 (left panel) and in the bulk of the channel (left panel), as
a function of particle aspect ratio. As expected, in the bulk region we find the analytical
result computed in Chapter 4 for the HIT (Fig. 4.13), which validates both the numerical
implementation used to compute these statistics, and the limit of the model. In the left panel
of Fig. 5.11, we can appreciate the behaviour of the model when the shear starts to dominate
approaching the wall. At least for oblate particles (λ < 1) a similar qualitative behaviour on the
rotation is recorded, when compared to DNS results. Even not willing to confront directly the
two different statistics, the above considerations provide a qualitative picture of the rotation
modes from the model.

10−1 100 101

λ

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
sq

ua
re

an
gu

la
r

ra
te

(τ
−

1
η

)

Φ⊥ model
Φ‖ model

(Φ⊥ + Φ‖) model

Figure 5.12: Mean-square tumbling, spinning, and total rotation rates (in units of τη), in RANS, in the
log-layer (y+ ≈ 20) (dashed lines) and in the flow bulk (y = h) (continuous lines) as a function of particle
aspect ratio λ.
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The RANS results are reported in Fig. 5.12. In this case, the measurements of tumbling and
spinning rate in the model remain constant all along the channel. Indeed, here both the lower
magnitude of the mean velocity gradient 〈∂yux〉 and looking at y+ & 20, make the RANS case
similar to the HIT case as in Fig. 5.12, where continuous lines refer to the bulk of the channel
and dotted lines to y+ ≈ 20 (in units of τη).

Moreover, a possible explanation for the discrepancy between RANS and A-DNS could be
relied to the trajectories behaviour. The tumbling and spinning statistics for the model, actually,
strongly depend on the path-wise attitude and on the time spent by the particles close to the
wall (Voth (2015)). This means that a future investigation could be the analysis of the residence
time of the spheroids within different regions of the channel, since their asphericity impacts
this time. For example, the presence of the Lagrangian coherent structures (Haller (2015)) act as
organizers of transport in fluid flow having a clear impact on the particle trajectories. Therefore,
it is possible to hypothesize that inertialess spheroids are captured by, and partially move along
with, the coherent vortices modifying the residence time, especially in near-wall turbulence.

5.5 conclusions

In this work, orientation and rotation statistics of inertia-free spheroidal particles in a turbulent
channel flow have been presented. Fifteen different spheroidal tracers were considered, ranging
from oblate (Λ = −1) to prolate particles with Λ = 1. The orientation model presented in
Chapter 4 has been interfaced with the Eulerian/Lagrangian PDF method in order to study
the orientation and rotation of spheroidal particles. In particular, the stochastic model and its
numerical scheme discussed in Chapter 4 have been implemented in a CFD code (Code_Saturne),
and detailed comparisons with DNS are carried out. A thorough statistical investigation on the
orientation and rotation has been performed by considering mean-field informations obtained
by filtering the DNS dataset, which can be treated as a ‘perfect’ RANS (A-DNS), providing
finer details on time-filtered DNS trajectories, as well as on the mean velocity gradient tensor
in the buffer layer.

In the near-wall region, for the DNS case, the flattest disks were strongly aligned in the wall-
normal direction, whereas the longest rods aligned themselves with the streamwise direction.
The inertia-free particles were evenly distributed across the channel, and the shape-dependence
of their preferred orientations impact on their angular velocities, such that tumbling and
spinning are reduced close to the walls for strong aspherical particles.

The model showed a good agreement with DNS results far from the wall. The variance of
the orientation vector p in the A-DNS case reacts in a slightly better way than the RANS. This
difference, given by the known limits of RANS in reproducing the mean velocity gradient
of the fluid phase, confirms the potential of the model especially if coupled to more refined
turbulence models for the fluid phase (which should include near-wall turbulence description).
On the other hand, among the limits of the model, the time reversibility is the most significant,
having a strong impact on both, orientation and rotation statistics. Indeed, in perspective,
addition of time-symmetry breaking effects within the model, or through a wall condition
on the orientation, should be really interesting, providing informations on the distinctive
behaviour of oblate and prolate particles.

Another important aspect is the characterisation of the rotation in the model. The method-
ology introduced in Chapter 4 to study the tumbling and spinning modes has revealed that
these quantities can be used to describe the rotation in a turbulent channel flow. However, to
identify suitable statistics for both tumbling and spinning that provides a direct quantitative
comparison between the model and DNS remains an open question.

The tumbling rate observed in DNS for spherical particles (Λ = 0) decreased with increasing
asphericity both for rod-like and disk-like spheroids. Moreover, both tumbling and spinning
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rate decrease approaching the centre of the channel, with the exception of very long rods
(Λ = −1) and flattened disks (Λ = −1). The substantial reduction of the tumble and spin
motions of spheroids with high asphericity was attributed to Jeffery-like orbiting.

In general, the model showed the same qualitative behaviour compared with DNS results
on the wall, but in terms of angular rate for the A-DNS and in terms of rotation rate for the
DNS simulation. In contrast, RANS results were not able to capture the change of tumbling
and spinning all along the channel since they remain constant with y+, reproducing only the
HIT character in the bulk of the channel.

Finally, another flow in which the effects of mean shear on particle orientation and rotation
can be investigated is the homogeneous shear turbulent flow. A particularly attractive advantage
of such flows is that the mean shear is the same everywhere. Indeed, this is also an interesting
case where the anisotropies are accounted for, without dealing with the inhomogeneities that
complexify the study of the model. Moreover, it would be the natural extension of what we
have done in Chapter 3, with a more refined classification of the anisotropies, within the model
and in the analytical results.
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a.1 appendix : itô’s lemma on the orientation

Starting from the equation for the separation vector Eq. (3.24), that we rewrite 〈Aij〉 = aij to
simplify the notation:

dri = aijrjdt + βiklrl ◦ dwk

for i = 1, 2, we want to compute the Itô’s Lemma for the orientation angle θ = arctan(ry/rx).
The multidimensional Ito’s lemma for θ states:

dθ =
2

∑
i,j

Jθ
i aijrjdt +

1
2

2

∑
i,j,l,l′

4

∑
k

Jθ
i β jklrl

∂

∂rj
(βikl′rl′) dt

+
1
2

2

∑
i,j,l,l′

4

∑
k

Hθ
ij

(
βiklrl β jkl′rl′

)
dt +

2

∑
i,l

4

∑
k

Jθ
i βiklrlw

k
t ;

where Jθ
i = −∑2

j εijrj

(
∑2

p r2
p

)−1
and Hθ

ij = ∑2
l,l′

(
εilrlrj + ε jl′rl′ri

) (
∑2

p r2
p

)−2
are respectively

the gradient and hessian matrix of θ. Here we are denoting with εij is the Levi-Civita symbol.
Regarding the stochastic integral, applying for example the martingale representation ()The-

orem 4.2 in Chapter 3 of Karatzas and Shreve (1998)). This reduction of the noise is true in law
only. And their is no direct identification between wk

t and one dimensional Wt, (except in the
isotropic case, maybe). Such that we obtain:

dθ
Law
=

2

∑
i,j

Jθ
i aijrjdt +

1
2

2

∑
i,j,l,l′

4

∑
k

Jθ
i β jklrl

∂

∂rj
(βikl′rl′) dt

+
1
2

2

∑
i,j,l,l′

4

∑
k

Hθ
ij

(
βiklrl β jkl′rl′

)
dt +

(
2

∑
i,i′ ,l,l′

4

∑
k

Jθ
i βiklrl Jθ

i′βi′kl′rl′

) 1
2

dWt

=I + II + III + IV,

(A.1)

where these four last terms correspond to the four terms of the equation above. The effective
correlation tensor in Eq. (3.20) can be rewritten as:

Ceff
(i,j);(k,l) =




Ceff
1111 Ceff

1112 Ceff
1121 Ceff

1122

Ceff
1211 Ceff

1212 Ceff
1221 Ceff

1222

Ceff
2111 Ceff

2112 Ceff
2121 Ceff

2122

Ceff
2211 Ceff

2212 Ceff
2221 Ceff

2222




=




f h j − f

g k −h

sym. ` −j

f




. (A.2)

We recall the relation β jkl βikl′ = 2Ceff
jlil′ . Here the computation will use the general notation of

Cijkl instead of Ceff
ijkl to simply the notation. Moreover, we are going to analyse each term in

Eq. (A.1) separately, in order to make easier the presentation.

139



140 appendix : chapter 3

term I The term I in Eq. (A.1) is, by replacing the definition of Jθ
i ,

I =
2

∑
i,j

Jθ
i aijrjdt = −

2

∑
i 6=m,j

εimrmaijrj

(
2

∑
p

r2
p

)−1

dt.

Since the only component different from zero of aij is a12 = σ∗ and by replacing pi =

ri

(
∑2

p r2
p

)−1/2
, i.e. p = (cos θ, sin θ), we get:

I =
2

∑
i,j

Jθ
i aijrjdt = −σ∗p2

2dt =
σ∗

2
(cos(2θ)− 1) dt.

term II The term II in Eq. (A.1), using the equality β jkl βikl′ = 2Cjlil′ and by replacing the
definition of Jθ

i and p = r/‖r‖, leads to

II =
1
2

2

∑
i,j,l,l′

4

∑
k

Jθ
i β jklrl

∂

∂rj
(βikl′rl′) dt =

2

∑
i,j,l,l′

4

∑
k

Jθ
i β jkl βikl′rlδl′ jdt

= −
2

∑
i 6=m

2

∑
j,l,l′

εimrmCjlil′rlδl′ j

(
2

∑
p

r2
p

)−1

dt

= −
2

∑
i 6=m

2

∑
j,l

εimCjlij pm pldt

We develop the computation considering the matrix (A.2):

II = −
2

∑
j,l,

(
Cjl1j p2 pl − Cjl2j p1 pl

)
dt

= −
(
C1111 p2 p1 + C2112 p2 p1 + C1211 p2

2 + C2212 p2
2

− C1121 p2
1 − C2122 p2

1 − C1221 p1 p2 − C2222 p1 p2
)
dt

= −
(

f p2 p1 + kp2 p1 + hp2
2 − hp2

2 − jp2
1 + jp2

1 − kp1 p2 − f p1 p2

)
dt = 0

term III The term III in Eq. (A.1), using the equality β jkl βikl′ = 2Cjlil′ and by replacing the
definition of Hθ

ij and p = r/‖r‖, leads to

III =
1
2

2

∑
i,j,l,l′

4

∑
k

Hθ
ij

(
βikl β jkl′rlrl′

)
dt

=
1
2

2

∑
i 6=m

2

∑
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∑
l,l′

4

∑
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(
εimrmrj + ε jnrnri

)
βikl β jkl′rlrl′

(
2

∑
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r2
p

)−2

dt

=
2

∑
i 6=m

2

∑
j 6=n

2

∑
l,l′
Cil jl′

(
εim pm pj + ε jn pn pi

)
pl pl′dt
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=2
2

∑
l,l′

[
(C1l1l′ − C2l2l′) p1 p2 +

1
2
(C1l1l′ − C2l2l′)

(
p2

2 − p2
1

)]
pl pl′dt,

developing the computation considering the matrix (A.2):

III = 2
{ [1

2
(C1121 + C2111)(p2

2 − p2
1) + (C1111 − C2121)p1 p2

]
p2

1

+

[
1
2
(C1122 + C2112)(p2

2 − p2
1) + (C1112 − C2122)p1 p2

]
p1 p2

+

[
1
2
(C1221 + C2211)(p2

2 − p2
1) + (C1211 − C2221)p1 p2

]
p1 p2

+

[
1
2
(C1222 + C2212)(p2

2 − p2
1) + (C1212 − C2222)p1 p2

]
p2

2

}
dt

= 2
[
3(j + h)p2

1 p2
2 − jp4

1 − hp4
2 + (2 f − `− k)p3

1 p2 + (−2 f + g + k)p3
2 p1

]
dt.

Now, considering that p = (cos(θ), sin(θ)), the different terms can be rewritten as:

p3
1 p2 =

1
4
(sin(2θ) +

1
2

sin(4θ)), p4
1 =

1
8
(3 + 4 cos(2θ) + cos(4θ)),

p3
2 p1 =

1
4
(sin(2θ)− 1

2
sin(4θ)), p4

2 =
1
8
(3− 4 cos(2θ) + cos(4θ)),

p2
1 p2

2 =
1
8
(1− cos(4θ)).

So the third term in Eq. (A.1) becomes

III = 2
[1

4
(g− `) sin(2θ) +

1
8
(4 f − 2k− (`+ g)) sin(4θ)

+
1
2
(h− j) cos(2θ)− 1

2
(h + j) cos(4θ)

]
dt

=
(
−γ3

2
sin(2θ)− γ4 sin(4θ) +

γ1

2
cos(2θ) + γ2 cos(4θ)

)
dt

with γ1 = 2(h− j), γ2 = −(h + j), γ3 = (`− g) and γ4 = (−2 f + k(`+ j)/2)/2.

term IV The term IV in Eq. (A.1) using the equality β jkl βikl′ = 2Cjlil′ and by replacing the
definition of Jθ

i and p = r/‖r‖, leads to

IV =
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∑
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i Jθ
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2 dWt

=
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i 6=s
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developing the computation considering the matrix (A.2):

IV =
√

2

(
2

∑
l,l′

[
C1s1s′ p

2
2 + C2s2s′ p

2
1 − (C2s1s′ + C1s2s′) p2 p1

]
ps ps′

) 1
2

dWt

=
√

2
[ (
C1111 p2

2 + C2121 p2
1 − (C1121 + C2111) p1 p2

)
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1
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2
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2 + C2122 p2
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(4 f − 2k)p2

1 p2
2 − 4jp3

1 p2 + 4hp3
2 p1 + `p4

1 + gp4
2

] 1
2 dWt.

(A.3)

Using the same relations between Cartesian and polar coordinates system introduced for the
term III in Eq. (A.1), this leads to,

IV =
√

2
[1

2

(
f +

k
2
+

3
4
(`+ g)

)
+ (h− j) sin(2θ)− 1

2
(h + j) sin(4θ)

+
1
2
(`− g) cos(2θ) +

1
2

(
− f +

k
2
+

1
4
(`+ g)

)
cos(4θ)

] 1
2
dWt

= (γ0 + γ1 sin(2θ) + γ2 sin(4θ) + γ3 cos(2θ) + γ4 cos(4θ))
1
2 dWt,

where γ0 = ( f + k
2 + 3

4 (` + g)) and the others already has been defined as γ1 = 2(h − j),
γ2 = −(h + j), γ3 = (`− g) and γ4 = (−2 f + k + (`+ j)/2)/2.

Finally, Eq. (A.1) can be rewritten by summing the four terms as,

dθ =
(σ

2
(cos(2θ)− 1)− γ3

2
sin(2θ)− γ4 sin(4θ) +

γ1

2
cos(2θ) + γ2 cos(4θ)

)
dt

+ (γ0 + γ1 sin(2θ) + γ2 sin(4θ) + γ3 cos(2θ) + γ4 cos(4θ))
1
2 dWt

(A.4)

with

γ0 = f +
k
2
+

3
4
(`+ g)

γ1 = 2(h− j)

γ2 = −(h + j)

γ3 = (`− g)

γ4 =
1
2

(
−2 f + k +

1
2
(`+ g)

)
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σ∗ 0.00 0.03 0.07 0.15 0.33 0.77 1.26 1.77 2.80 3.79

γ0
Caniso 0.7565 0.7559 0.7612 0.7433 0.7311 0.7084 0.7210 0.7223 0.7065 0.7389

C int 66.8319 49.3522 36.7193 21.4299 12.3579 7.7984 6.5343 6.0211 6.0748 8.0637

γ1
Caniso 0.0033 −0.0008 −0.0160 −0.0734 −0.1642 −0.1883 −0.1665 −0.1518 −0.1165 −0.1007

C int 0.6818 0.2007 0.2778 −0.6735 −2.4257 −1.3606 −0.7794 −0.6748 −0.4338 −0.3979

γ2
Caniso −0.0015 −0.0002 −0.0022 −0.0027 0.0052 0.0317 0.0442 0.0455 0.0394 0.0354

C int 0.0034 0.0184 −0.0002 −0.0171 0.0581 0.2195 0.1815 0.1779 0.1428 0.149452

γ3
Caniso −0.0095 −0.0014 −0.0032 −0.0179 −0.1031 −0.2961 −0.4134 −0.4818 −0.5741 −0.7004

C int −0.1937 0.0441 −0.2509 −0.5446 −2.1580 −3.6875 −4.4623 −4.9191 −5.9903 −9.2379

γ4
Caniso 0.0028 0.0021 0.0004 −0.0004 −0.0057 0.0043 0.0328 0.0528 0.0885 0.1300

C int 0.0477 0.0058 0.0460 0.0235 −0.0264 0.2027 0.4348 0.5986 0.9369 1.7944

Table A.1: Values of γi (with i = 0, . . . , 4) used in the model (in the normalised case, i.e. by multiplying
for τω) when we use Caniso or C int to study the model as a function of the shear rate σ∗ . The values of
the tuning parameters, here, are αaniso = αint = 1.

a.2 appendix : positivity of diffusion coefficient

We can compute the positivity of the diffusion coefficient b2(χ̄) in Eq. (3.27). Considering the
result in Eq. (A.3),

(IV)2 = 2((4 f − 2k)p2
1 p2

2 + 4hp3
2 p1 − 4jp3

1 p2 + gp4
2 + lp4

1).

In the case of isotropic tensor C iso
ijkl (with αiso = 1), considering that f = −k =, g = l = 3 f ,

h = j = 0, we get

(IV)2 = 2(6 f p2
1 p2

2 + 3 f p4
1 + 3 f p4

2) = 6 f > 0

where the diffusion coefficients in the model is constant b2. For the other cases, i.e. using in the
model either Caniso

ijkl or C int
ijkl , we consider that periodicity of the coefficient b2(χ̄) in Eq. (3.27).

Figure A.1 shows the positivity of b2(χ̄) when the model uses Caniso
ijkl (left panel) and C int

ijkl (right
panel).
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Figure A.1: Measurement of the diffusion coefficient b2(χ̄) in Eq. (3.27), for all values of the shear rate
parameter σ∗, as a function of the unfolded angle. In left panel the results in the case of Caniso

ijkl and in the

right panel the results for C int
ijkl . These results are computed for a value of a tuning parameter

αaniso = αint = 1, for the two cases, respectively.





BA P P E N D I X : C H A P T E R 4

b.1 appendix : stratonovich–itô convention

In this section we detail the conversion rule to pass from the Stratonovich stochastic differential
equation (SDE) to Itô one. More precisely, the Itô formulation contains an extra drift term
(see Øksendal (2003)). Equation (4.10) has been presented in the Stratonovich form, which we
rewrite in the more compact form:

dqi(t) = āidt + β̄ikjqj ◦ dwk, (B.1)

and the Itô formulation reads:

dqi(t) = aidt + β̄ikjqjdwk. (B.2)

where,

ai := āi +
1
2

d

∑
j,l,l′

n

∑
k

β̄ jklql
∂

∂qj

(
β̄ikl′ql′

)
, (B.3)

having identified from Eq. (4.10),

āi =
(
〈Oij〉+ Λ 〈Sij〉

)
qj.

In both Eq. (B.1) and (B.2), we have introduced β̄ikj = βa
ikj + Λ βs

ikj, being βs
ikj = (βikj + β jki)/2

and βa
ikj = (βikj − β jki)/2 the symmetric and antisymmetric part of the fluctuation tensor

respectively.
In order to pass from Eq. (B.1) to (B.2), we need to compute Eq. (B.3). For d = 3 and n = 9,

since βikj does not depend on q and recalling that ∂ql′/∂qj = δl′ j (with δij to be the Kronecker
delta),

ai = āi +
1
2

d

∑
j,l,l′

n

∑
k

β̄ jklql
∂

∂qj

(
β̄ikl′ql′

)
= āi +

1
2

d

∑
j,l,l′

n

∑
k

β̄ jkl β̄ikl′qlδl′ j

We replace the definition of β̄ikj and βa
ikj, βs

ikj:

ai =āi +
1
2

d

∑
j,l,l′

n

∑
k

1
4

[(
β jkl − βlkj

)
+ Λ

(
β jkl + βlkj

)]
[(βikl′ − βl′ki) + Λ (βikl′ + βl′ki)] qlδl′ j.
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We develop the products:

ai = āi +
1
8

d

∑
j,l,l′

n

∑
k

[ (
β jkl − βlkj

)
(βikl′ − βl′ki) + Λ2

(
β jkl + βlkj

)
(βikl′ − βl′ki)

+ Λ
(

β jkl − βlkj

)
(βikl′ + βl′ki) + Λ

(
β jkl + βlkj

)
(βikl′ − βl′ki)

]
qlδl′ j

= āi +
1
8

d

∑
j,l,l′

n

∑
k

[ (
β jkl βikl′ − β jkl βl′ki − β jkl βikl′ + βlkjβl′ki

)

+ Λ2
(

β jkl βikl′ + β jkl βl′ki + βlkjβikl′ + β jkl βikl′ + βlkjβl′ki

)
+ 2Λ

(
β jkl βikl′ − βlkjβl′ki

) ]
qlδl′ j

= āi +
1
8

d

∑
j,l,l′

n

∑
k

[ (
β jkl βikl′ − β jkl βl′ki − β jkl βikl′ + βlkjβl′ki

)

+ Λ2
(

β jkl βikl′ + β jkl βl′ki + βlkjβikl′ + β jkl βikl′ + βlkjβl′ki

)
+ 2Λ

(
β jkl βikl′ − βlkjβl′ki

) ]
qlδl′ j.

By the fact that βikjβmkn = 2D Ku C∗ijkl with C∗ijkl = 4δikδjl − δijδkl − δilδkj (see Eq. (4.15)) we get:

ai = āi +
D Ku

4

d

∑
j,l,l′

[ (
C∗jlil′ − C∗jll′i − C∗jlil′ + C∗l jl′i

)
δl′ j + Λ2

(
C∗jlil′ + C∗jll′i + C∗l jil′ + C∗l jl′i

)
δl′ j

+ 2Λ
(
C∗jlil′ − C∗l jl′i

)
δl′ j

]
ql ,

that we rewrite as:

ai = āi +
D Ku

4

d

∑
l,l′

[
(C∗l′ lil′ − C∗l′ ll′i − C∗ll′il′ + C∗ll′ l′i) + Λ2 (C∗l′ lil′ + C∗l′ ll′i + C∗ll′il′ + C∗ll′ l′i)

+ 2Λ (C∗l′ lil′ − C∗ll′ l′i)
]
ql .

Using the definition of C∗ijkl , we obtain:

ai = āi +
D Ku

4

(
20Λ2 − 20

)
qi = āi + 5D Ku

(
Λ2 − 1

)
qi.

Thus, if we replace it in Itô formulation (B.2) reads:

dqi(t) =
(
〈Oij〉+ Λ 〈Sij〉+ 5D Ku

(
Λ2 − 1

)
δij

)
qj dt + β̄ikjqjdwk. (B.4)

We can go further in the reformulation that will be useful to present the model and developing
a numerical scheme, by considering the transformation that we detail in the following remark.

Remark 2 We can rewrite
β jkl ql dwk = Djlmn ql dWmn, (B.5)

where Wmn is Wiener matrix. This implies that if wk is a vector 9× 1, Wmn it’s the correspondent 3
by 3 matrix, issued by its components; which means to map Wmn

t = w3(m−1)+n
t and schematically to

write,

w = (W1, . . . W9)
ᵀ ⇐⇒W =




W1 W2 W3

W4 W5 W6

W7 W8 W9


 (B.6)
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The diffusion tensor Dijkl =
√

2 D KuD∗ijkl is derived by imposing C∗ijkl = D∗ijmnD∗klmn. It maintains
the properties of the correlation tensor such as isotropy and incompressibility; its general form reads

D∗ijmn = d1δimδjn + d2δijδmn + d3δinδjm

D∗klmn = d1δkmδln + d2δklδmn + d3δknδlm

with d1, d2, d3 coefficients that have to be computed. Replacing the general form of D∗ijmn into the relation
C∗ijkl = D∗ijmnD∗klmn brings to:

C∗ijkl =d2
1δikδjl + d1d2δijδkl + d1d3δilδjk

+ d2d1δijδkl + d2
2δijδmm + d2d3δijδlk

+ d3d1δilδjk + d3d2δijδkl + d2
3δikδjl

=
(

d2
1 + d2

3

)
δikδjl +

(
2d2d1 + 3d2

2 + 2d2d3

)
δijδlk + 2d1d3δilδjk.

Since we know C∗ijkl = 4δikδjl − δijδkl − δilδjk, it leads to solve the linear system composed by d2
1 +

d2
3 = 4, 2d2d1 + 3d2

2 + 2d2d3 = −1 and 2d1d3 = −1. The solution gives the definition of Dijkl =√
2 D KuD∗ijkl , with:

D∗ijkl =
1
2
(√

3 +
√

5
)
δikδjl −

√
3

3
δijδkl +

1
2
(√

3−
√

5
)
δilδjk. (B.7)

Considering the equivalence in Expr. (B.5) in Remark 2 and the relations β̄ikj = βa
ikj + Λ βs

ikj,
being βs

ikj = (βikj + β jki)/2 and βa
ikj = (βikj − β jki)/2; Eq. (B.4) can be rewritten as:

dqi(t) =
(
〈Oij〉+ Λ 〈Sij〉+ 5D Ku

(
Λ2 − 1

)
δij

)
qj dt

+
1
2
(Λ + 1)DijmnqjdWmn +

1
2
(Λ− 1)DjimnqjdWmn.

Expressing the form of the tensor Dijkl =
√

2 D KuD∗ijkl , where D∗ijkl is defined in Expr. (B.7)
and simplifying the equation above,

dqi(t) =
(
〈Oij〉+ Λ 〈Sij〉+

5
6

ν2
s

(
Λ2 − 1

)
δij

)
qj dt

− νs

3
Λ

3

∑
m=1

dWmmqi + νsΛdWs
ijqj + νadWa

ijqj,
(B.8)

where we have introduced two parameters related to the symmetric and antisymmetric part of
the fluctuations νs =

√
6 D Ku and νa =

√
10 D Ku. Moreover, we have identified the symmetric

part and antisymmetric matrices Ws
ij =

(
Wij + Wji

)
/2, Wa

ij =
(
Wij −Wji

)
/2 of the Wiener

matrix Wij (see Remark 2).
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b.2 appendix : itô’s lemma on the orientation

In order to recover the orientation vector p, we apply Itô’s Lemma (see Øksendal (2003)) on
Eq. (B.4), since we can write p as a function of q; in fact, p = q/‖q‖. We obtain:

dpi =
( d

∑
j,l

Jp
ij

((
〈Ωjl〉+ Λ 〈Sjl〉

)
+ 5D Ku

(
Λ2 − 1

)
δjl

)
ql

+
1
2

d

∑
j,m,l,l′

n

∑
k

Hp
ijm

(
β̄ jkl β̄mkl′qlql′

) )
dt +

d

∑
j,l

n

∑
k

Jp
ij

(
β̄ jklql

)
dwk

:= (I + II + III) dt + IV,

(B.9)

where the first line corresponds to the contribution relied to the first derivative, the second
line to the hessian matrix and the quadratic term, while in the last line we have the stochastic
contribution, in particular Jp and Hp are the Jacobian and Hessian of pi = qi/(∑d

s q2
s )

1/2

respectively, defined as,

Jp
ij =

∂

∂qj

(
qi

(∑d
s q2

s )
1/2

)
=

δij

(∑d
s q2

s )
1/2
− qiqj

(∑d
s q2

s )
3/2

Hp
ijk =

∂2

∂qi∂qj

(
qk

(∑d
s q2

s )
1/2

)

=− qkqj
∂

∂qi

(
1

(∑d
s q2

s )
3/2

)
− qj

(∑d
s q2

s )
1/2

∂qk
∂qi

+
∂

∂qi

(
δkj

(∑d
s q2

s )
1/2

)

=3
qiqjqk

(∑d
s q2

s )
5/2
− qk

(∑d
s q2

s )
3/2

δij −
qj

(∑d
s q2

s )
3/2

δik −
qi

(∑d
s q2

s )
3/2

δjk

We now develop the computation. We star by the first term, which comes from the mean
velocity gradient:

I =
d

∑
j,l

Jp
ij

(
〈Ojl〉+ Λ 〈Sjl〉

)
ql

=
d

∑
j,l

δij

(∑d
s q2

s )
1/2

(
〈Ωjl〉+ Λ 〈Sjl〉

)
ql −

qiqj

(∑d
s q2

s )
3/2

(
〈Ωjl〉+ Λ 〈Sjl〉

)
ql

=
d

∑
l
(〈Ωil〉+ Λ 〈Sil〉) pl −Λpi pj 〈Sjl〉 pl .

Here, we replaced pi = qi/(∑d
s q2

s )
1/2 and we have used the fact that

qiqj

(∑d
s q2

s )
3/2
〈Ojl〉 ql = 0

since the cubic term of the antisymmetric part of the velocity gradient is null.

Passing to the term II, it is easy to prove that II = 0 sice it is fully diagonal.

We then focus on III:

III =
1
2

d

∑
j,m,l,l′

n

∑
k

Hp
ijm β̄ jkl β̄mkl′qlql′

=
1
2

d

∑
j,m,l,l′

n

∑
k

(
3

qiqjqk

(∑d
s q2

s )
5/2
− qk

(∑d
s q2

s )
3/2

δij −
qj

(∑d
s q2

s )
3/2

δik −
qi

(∑d
s q2

s )
3/2

δjk

)
β̄ jkl β̄mkl′qlql′
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We recall that β̄ikj =
(

Γa
ikj + Λ Γs

ikj

)
, Γs

ikj = (βikj + β jki)/2 and Γa
ikj = (βikj − β jki)/2. Thus we

obtain:

III =
1
8

d

∑
j,m,l,l′

n

∑
k

(
3pi pj pm pl pl′ − pi pl pl′δjm − pj pl pl′δim − pm pl pl′δij

)

[ (
β jkl βmkl′ − β jkl βl′km − βlkjβmkl′ + βlkjβl′km

)

+ Λ2
(

β jkl βmkl′ + β jkl βl′km + βlkjβmkl′ + βlkjβl′km

)

+ 2Λ
(

β jkl βmkl′ − βlkjβl′km

) ]

By the fact that βikjβmkn = 2D Ku C∗ijkl with C∗ijkl = 4δikδjl − δijδkl − δilδkj (see Eq. (4.15)) we get:

III =
D Ku

4

d

∑
j,m,l,l′

(
3pi pj pm pl pl′ − pi pl pl′δjm − pj pl pl′δim − pm pl pl′δij

)

[ (
C∗jlml′ − C∗jll′m − C∗l jml′ + C∗l jl′m

)
+ Λ2

(
C∗jlml′ + C∗jll′m + C∗l jml′ + C∗l jl′m

)
+ 2Λ

(
C∗jlml′ − C∗l jl′m

) ]

We develop the products:

III =
D Ku

4

d

∑
j,m,l,l′

{

3pi pj pm pl pl′
[
(Λ2 + 1)

(
C∗jlml′ + C∗l jl′m

)
+ (Λ2 − 1)

(
C∗jll′m + C∗l jml′

)
+ 2Λ

(
C∗jlml′ − C∗l jl′m

) ]

−pi pl pl′
[
(Λ2 + 1) (C∗mlml′ + C∗lml′m) + (Λ2 − 1) (C∗mll′m + C∗lmml′) + 2Λ (C∗mlml′ − C∗lml′m)

]

−pj pl pl′
[
(Λ2 + 1)

(
C∗jlil′ + C∗l jl′i

)
+ (Λ2 − 1)

(
C∗jll′i + C∗l jil′

)
+ 2Λ

(
C∗jlil′ − C∗l jl′i

) ]

−pm pl pl′
[
(Λ2 + 1) (C∗ilml′ + C∗lil′m) + (Λ2 − 1) (C∗ill′m + C∗liml′) + 2Λ (C∗ilml′ − C∗lil′m)

]}

Thanks to the definition of C∗ijkl we obtain:

III =
D Ku

4

d

∑
j,m,l,l′

{
6pi pj pm pl pl′

[
Λ2
(

3δjmδll′ − 2δjlδml′ + 3δjl′δlm

)
+ 5

(
δjmδll′ − δjl′δlm

) ]

− 10(Λ2 + 1)pi − 4Λ2 (3pi − 2pi + 3pi)
}

=− D Ku
4

(
12Λ2 + 20

)
pi = −

1
2

D Ku
(

6Λ2 + 10
)

pi

Ultimately, we consider the diffusion term IV,

IV =
d

∑
j,l

n

∑
k

Jp
ij β̄ jkl ql dwk.

We replace the definition of β̄ikj = βa
ikj + Λ βs

ikj, βs
ikj = (βikj + β jki)/2 and βa

ikj = (βikj − β jki)/2.
Thus, we obtain:

IV =
1
2

d

∑
j,l

n

∑
k

Jp
ij

[(
β jkl − βlkj

)
+ Λ

(
β jkl − βlkj

)]
qldwk.
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Without loss of generality, we apply transformation β jkl ql dwk = Djlmn ql dWmn (Eq. (B.5)) as
detailed in Remark 2. We obtain:

IV =
1
2

√
2 D Ku

d

∑
j,l,m,n

Jp
ij
[
D∗jlmnqldWmn −D∗l jmnqldWmn

+ Λ
(
D∗jlmnqldWmn +D∗l jmnqldWmn

) ]
.

We replace the definition of Jp
ij and of p :

IV =
1
2

√
2 D Ku

d

∑
j,l,m,n

(
δij

(∑d
s q2

s )
1/2
− qiqj

(∑d
s q2

s )
3/2

)

[
(Λ + 1)D∗jlmn + (Λ− 1)D∗l jmn

]
qldWmn

=
1
2

√
2 D Ku

d

∑
j,l,m,n

{
[(Λ + 1)D∗ilmn + (Λ− 1)D∗limn] pl

−
[
(Λ + 1)D∗jlmn + (Λ− 1)D∗l jmn

]
pi pj pl

}
dWmn.

Using the definition of the tensor D∗ijkl in Expr. (B.7) and by developing the computations:

IV =
1
2

√
2 D Ku

d

∑
j,l,m,n

{[
(Λ + 1) (d1δimδln + d2δilδmn + d3δlmδin)

+ (Λ− 1) (d1δlmδin + d2δliδmn + d3δimδln)
]

pl

−
[
(Λ + 1)

(
d1δjmδln + d2δjlδmn + d3δlmδjn

)

+ (Λ− 1)
(

d1δlmδjn + d2δl jδmn + d3δjmδln

) ]
pi pj pl

}
dWmn

=
1
2

√
2 D Ku

d

∑
j,l

{
Λ(d1 + d3) (dWil + dWli) pl

+ 2Λd2 pi

d

∑
m

dWmm + (d1 − d3) (dWil − dWli) pl

−Λ(d1 + d3)
(

dWjl + dWl j

)
pi pj pl

− 2Λd2 pi

d

∑
m

dWmm − (d1 − d3)
(

dWjl − dWl j

)
pi pj pl

}
,

and since − 1
2

√
2 D Ku(d1 − d3)

(
dWjl − dWl j

)
pi pj pl is null,

IV =
1
2

√
2 D Ku

d

∑
j,l

{Λ
2
(d1 + d3) (dWil + dWli) pl

+
1
2
(d1 − d3) (dWil − dWli) pl −

Λ
2
(d1 + d3)

(
dWjl + dWl j

)
pi pj pl

}
.

By using (already defined in Eq. (B.8)) the symmetric part and antisymmetric matrices Ws
il =

(Wil + Wli) /2 and Wa
il = (Wil −Wli) /2 we get:

IV =
√

2 D Ku
d

∑
j,l

{
Λ(d1 + d3)dWs

il pl + (d1 − d3)dWa
il pl −Λ(d1 + d3)pi pjdWs

jl pl

}
.
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We can now put together the results obtained for I, II, III and IV; Eq. (B.9) becomes,

dpi = (〈Oil〉+ Λ 〈Sil〉) pldt−Λpi pj 〈Sjl〉 pldt− 1
2

D Ku
(

6Λ2 + 10
)

pidt

+
√

2 D Ku
{

Λ(d1 + d3)dWs
il pl + (d1 − d3)dWa

il pl −Λ(d1 + d3)pi pjdWs
jl pl

}
.

If we replace the values d1 = (
√

3 +
√

5)/2, d2 = −
√

3/3 and d3 = (
√

3−
√

5)/2, (from
Expr. (B.7)) we finally get:

dpi = (〈Oil〉+ Λ 〈Sil〉) pldt−Λpi pj 〈Sjl〉 pldt−
(νs

2
Λ2 +

νa

2

)
pidt

+ (νadWa
il + νsΛdWs

il) pl − νsΛpi pjdWs
jl pl ,

(B.10)

and the Stratonovich (∂) form results to be,

dpi = (〈Oil〉+ Λ 〈Sil〉) pldt−Λpi pj 〈Sjl〉 pldt

+ (νa∂Wa
il + νsΛ∂Ws

il) pl − νsΛpi pj∂Ws
jl pl ,

(B.11)

two parameters related to the symmetric and antisymmetric part of the fluctuations νs =√
6 D Ku and νa =

√
10 D Ku and with the symmetric part and antisymmetric matrices Ws

il =
(Wil + dWli) /2, Wa

il = (Wil −Wli) /2 have been used.

b.3 appendix : itô isometry

In this section we present first the explicit form of Eqs. (4.22) and (4.23); then these expressions
will be used to derive the analytical forms of Exprs. (4.28) and (4.29) in the case of homogenous
isotropic turbulence. Recalling Eqs. (4.21), (4.23) and (4.22), which are respectively,

dφ =
1
2
〈ω〉 dt + Λ(p× 〈S〉p)dt +

νa

2
dwa + νsΛp× dWsp, (B.12)

φ⊥p(t) =
∫ t

0
p× (dφ× p) , (B.13)

φ‖p(t) =
∫ t

0
p · dφ. (B.14)

Here the mean antisymmetric part of the velocity gradient tensor has been rewritten as
〈O〉 p = (〈ω〉 ×p)/2, where ω is the vorticity vector. Analogously the fluctuating part becomes
dWa p = (dwa × p)/2, where we have identified the vorticity vector fluctuation as wa =
2(Wa

32, Wa
13, Wa

21)
ᵀ.

Then replacing Eq. (B.12) into (B.14) and (B.13) respectively, we get

φ⊥p(t) =
∫ t

0
p×

[
1
2
〈ω〉 × p+ Λ (〈S〉p− ppᵀ 〈S〉p)

]
ds

+
∫ t

0
p×

[νa

2
dwa × p+ νsΛ (dWsp− ppᵀdWsp)

]

=
∫ t

0

[
1
2
(1− ppᵀ) 〈ω〉+ Λp× 〈S〉p

]
ds

+
∫ t

0

νa

2
(1− ppᵀ)dwa + νsΛp× dWsp,

(B.15)
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φ‖p(t) =
∫ t

0
p ·
[

1
2
〈ω〉+ Λp× 〈S〉p

]
ds

+
∫ t

0
p ·
(νa

2
dwa + νsΛp× dWsp

)

=
1
2

∫ t

0
p · 〈ω〉 ds +

νa

2

∫ t

0
p · dwa.

(B.16)

where 1 is the identity matrix. Now we want to focus the attention only on the stochastic
part which means to set to zero the mean contributions in Exprs (B.15) and (B.16). In order to
compute the expectation of the norm squared for the quantities φ⊥p and φ‖p, we need to apply
the Itô isometry for the stochastic integrals. Recalling the definition of the Itô isometry from
the book of Øksendal (2003),

Definition 3 (Itô isometry) Let B : [0, T]×Ω→ Rn be a standard n-dimensional Brownian motion
and M : [0, T]×Ω→ Rd×n be a matrix valued stochastic process adapted to the natural filtration of
the Brownian motion. Then

E

[∥∥∥∥
∫ T

0
Mt dBt

∥∥∥∥
2
]
= E

[∫ T

0
‖Mt‖2

F dt
]

,

where the norm in the right-hand side is the Frobenious norm of the matrix valued process.

The expectation of the norm squared for the quantity φ⊥p can be written as,

E
∥∥φ⊥p(t)

∥∥2
=E

∥∥∥∥
∫ t

0

(νa

2
(1− ppᵀ)dwa + νsΛp× dWsp

)∥∥∥∥
2

=E

∥∥∥∥
∫ t

0
M dw

∥∥∥∥
2
= E

[∫ t

0
‖M‖2 ds

]
=
(

ν2
a + ν2

s Λ2
)

t,

(B.17)

here we have applied Definition 3. The standard 9-dimensional Brownian vector w has been
used by reshaping the same 9 elements of the matrix W (see. Remark 2). The matrix M3×9 has
been constructed in order to apply the Itô’s isometry and, for sake of simplicity, we will define
it by blocks of3 by 3 matrices, so that:

M1:3,1:9 =
1
2
[M1:3,1:3M1:3,4:6M1:3,7:9].

We have:

M1:3,1:3 =




0 m(−)p1 p3 −m(−)p1 p2

2Λνs p1 p3 m(+)p2 p3 m(−)p2
1 + m(+)p2

3

−2Λνs p1 p2 −m(−)p2
1 −m(+)p2

2 −m(+)p2 p3




M1:3,4:6 =



−m(+)p1 p3 −2Λνs p2 p3 −m(−)p2

2 −m(+)p2
3

−m(−)p2 p3 0 m(−)p1 p23

m(−)p2
2 + m(+)p2

1 2Λνs p1 p2 m(+)p1 p3




M1:3,7:9 =




m(+)p1 p2 m(−)p2
3 + m(+)p2

2 2Λνs p2 p3

−m(−)p2
1 −m(+)p2

3 −m(+)p1 p2 −2Λνs p1 p3

m(−)p2 p3 −m(−)p1 p3 0




where m(+) = νa + Λνs and m(−) = νa −Λνs.
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In analogous way, the expectation of the norm squared for the quantity φ‖p leads to,

E
[
φ‖p(t)

]2
= E

[∫ t

0

νa

2
pdwa

]2
=

ν2
a

2
E

[∫ t

0
‖p‖2

F ds
]
=

ν2
a

2
t, (B.18)

where p has unitary norm. In addition, we remark that the explicit form of wa, in terms of the
elements of the matrix W, is wa = (W8 −W6, W3 −W7, W4 −W2).

b.4 appendix : moments’ equation

In the absence of mean field contribution, it is possible to compute an analytical solution for
the first three moments. Recalling that Eq. (4.17) when the mean contribution is zero reads

dpi = −
νs

2
Λ2 pidt + νsΛ

(
dWs

il − pi pjdWs
jl

)
pl −

νa

2
pidt + νadWa

il pl . (B.19)

The latter equation contains the two contribution of Eq. (4.49) and (4.50). Applying the Itô’s
lemma to the function f (pt) that takes values pi, pi pj and p3

i and then computing the expecta-
tion, we get

d
dt

E[pi](t) =−
c
2

E[pi] (B.20)

d
dt

E[pi pj](t) =−
3c
2

E[pi pj] (B.21)

d
dt

E[p2
i ](t) =

c
2

(
1− 3E[p2

i ](t)
)

(B.22)

d
dt

E[p3
i ](t) =

3
2

c
(

E[pi](t)− 2E[p3
i ](t)

)
(B.23)

These equations have the same structure for the three Eqs. (4.49), (4.50) and (B.19); differing for
a constant factor c for the Brownian stretching part, Brownian rotation part and the composition
of these two. The coefficient takes the value respectively

c =





Λ2ν2
s for (BS) Eq. (4.49)

ν2
a for (BR) Eq. (4.50)

Λ2ν2
s + ν2

a for (BS) + (BR) Eq. (4.49)+ (4.50).

(B.24)

Then the solution for the moments is

E[pi](t) =E[pi](0)e−
c
2 t (B.25)

E[pi pj](t) =E[pi pj](0)e−
3c
2 t (B.26)

E[p2
i ](t) =E[p2

i ](0)e
− 3

2 ct +
1
3
(
1− e−

3
2 ct) (B.27)

E[p3
i ](t) =e−3ct(E[p3

i ](0)−
3
5

E[pi](0)
)
+

3
5

E[pi](0)e−
c
2 t (B.28)

easy to see that the resulting equations for the moments have the same structure for the three
Eqs. (4.49), (4.50) and (B.19)); differing for a constant coefficient c for the Brownian stretching
part, Brownian rotation part and the full Brownian i.e. the composition of the first two.
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b.5 some scheme’s properties

In this section we want to compute the expectation of norm of the numerical schemes used in
the splitting algorithm. In particular, we want to highlight the difference between the näive
approach by using a semi-implicit Euler–Maruyama scheme Eq. (4.67) and the semi-implicit
Euler–Maruyama scheme using the quaternion approach Eq. (4.87). Moreover, for the stretching
part of the splitting the semi-implicit Euler–Maruyama scheme Eq. (4.93) will be analysed.

b.5.1 About the näive Brownian rotation scheme

Recalling the semi-implicit Euler–Maruyama scheme in Eq. (4.67), with a starting initial
condition p̂ba,0 such that ‖p̂ba,0‖ = 1, it reads

p̃ba(1),k+1 =
[

p̂ba(1),k +
νa

2

(
∆wa

2,k p̂ba(3),k − ∆wa
3,k p̂ba(2),k

)] 1

1 + ν2
a

2 ∆t

p̃ba(2),k+1 =
[

p̂ba(2),k +
νa

2

(
∆wa

3,k p̂ba(1),k − ∆wa
1,k p̂ba(3),k

)] 1

1 + ν2
a

2 ∆t

p̃ba(3),k+1 =
[

p̂ba(3),k +
νa

2

(
∆wa

1,k p̂ba(2),k − ∆wa
2,k p̂ba(1),k

)] 1

1 + ν2
a

2 ∆t
,

where at each time step we re-normalize and obtain p̂ba,k+1 = p̃ba,k+1/‖p̃ba,k+1‖.
By computing the expectation of the norm squared we have

E‖p̃ba,k+1‖2 =
(1 + ν2

a ∆t)

(1 + ν2
a

2 ∆t)2
, (B.29)

Since the map x 7→ (1+2x)
(1+x)2 expands around zero as 1− x2 +O(x3), we get for the norm of the

semi-implicit Euler–Maruyama scheme for Brownian

E‖p̃ba,k+1‖2 = 1− ν4
a

4
∆t2 +O(∆t3). (B.30)

So, at least for the mean, the norm is not preserved and the error generated regarding just the
norm squared converge with a rate ∆t2.

b.5.2 About the quaternion Brownian rotation scheme

Recalling the semi-implicit Euler–Maruyama scheme in Eq. (4.87), that solve the increment of
quaternions with respect to the fixed unitary quaternion qfix = (1, 0, 0, 0). We recall that the
scheme reads

(
∆q̃0,k+1; ∆q̃1,k+1; ∆q̃2,k+1; ∆q̃3,k+1; ∆q̃4,k+1

)ᵀ

=
(

1;
νa

4
∆wa

1,k;
νa

4
∆wa

2,k;
νa

4
∆wa

3,k

)ᵀ 1
1 + 3

16 ν2
a ∆t

.

In order to preserve the unit constraint, the quaternion ∆q̃k+1 requires re-normalisation at
each time step, ∆q̂k+1 = ∆q̃k+1/‖∆q̃k+1‖. Using the same strategy above we have that the
expectation of the norm squared is

E‖∆q̃k+1‖2 =
1 + 3

8 ν2
a ∆t

(1 + 3
16 ν2

a ∆t)2
(B.31)
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Since the map x 7→ (1+2x)
(1+x)2 expands around zero as 1− x2 +O(x3), we get for the norm of the

semi-implicit Euler–Maruyama scheme for Brownian rotation using quaternions before the
renormalization step that

E‖∆q̃k+1‖2 = 1−
(

3
16

)2
ν4

a ∆t2 +O(∆t3). (B.32)

b.5.3 About the Brownian stretching scheme

We consider the stretching sub-part of the splitting scheme and we recall its numerical imple-
mentation in the non-linear version in Eq. (4.93) to be,

p̃bs(1),k+1 =
[

p̂bs(1),k

+
νs

2
Λ
[
2p̂bs(1),k(1− p̂2

bs(1),k)∆W1 − 2p̂bs(1),k p̂2
bs(2),k∆W5 − 2p̂bs(1),k p̂2

bs(3),k∆W9

+ p̂bs(2),k(1− 2p̂2
bs(1),k)(∆W2 + ∆W4) + p̂bs(3),k(1− 2p̂2

bs(1),k)(∆W3 + ∆W7)

− 2p̂bs(1),k p̂bs(2),k p̂bs(3),k(∆W6 + ∆W8)
]] 1

1 + ν2
s
2 Λ2∆t

p̃bs(2),k+1 =
[

p̂bs(2),k

+
νs

2
Λ
[
2p̂bs(2),k(1− p̂2

bs(2),k)∆W5 − 2p̂bs(2),k p̂2
bs(1),k∆W1 − 2p̂bs(2),k p̂2

bs(3),k∆W9

+ p̂bs(1),k(1− 2p̂2
bs(2),k)(∆W2 + ∆W4) + p̂bs(3),k(1− 2p̂2

bs(2),k)(∆W6 + ∆W8)

− 2p̂bs(1),k p̂bs(2),k p̂bs(3),k(∆W3 + ∆W7)
]] 1

1 + ν2
s
2 Λ2∆t

p̃bs(3),k+1 =
[

p̂bs(3),k

+
νs

2
Λ
[
2p̂bs(3),k(1− p̂2

bs(3),k)∆W9 − 2p̂bs(3),k p̂2
bs1∆W1 − 2p̂bs(3),k p̂2

bs(2),k∆W5

+ p̂bs(1),k(1− 2p̂2
bs(3),k)(∆W3 + ∆W7) + p̂bs(2),k(1− 2p̂2

bs(3),k)(∆W6 + ∆W8)

− 2p̂bs(1),k p̂bs(2),k p̂bs(3),k(∆W2 + ∆W4)
]] 1

1 + ν2
s
2 Λ2∆t

,

where at each time step we re-normalize and obtain p̂bs,k+1 = p̃bs,k+1/‖p̃bs,k+1‖. We want
to examine the ability of the equation above into preserve the norm of the corresponding
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approximation. Taking the expectation of the square of each coordinates in Eq. (4.93) and
summing the result we obtain expectation

E‖p̃bs,k+1‖2 =
[
1 +

ν2
s

4
Λ2∆t

[
4p̂2

bs(1),k(1− p̂2
bs(1),k)

2 + 4p̂2
bs(1),k p̂4

bs(2),k + 4p̂2
bs(1),k p̂4

bs(3),k

+ 2p̂2
bs(2),k(1− 2p̂2

bs(1),k)
2 + 2p̂2

bs(3),k(1− 2p̂2
bs(1),k)

2

+ 8p̂2
bs(1),k p̂2

bs(2),k p̂2
bs(3),k

+ 4p̂2
bs(2),k(1− p̂2

bs(2),k)
2 + 4p̂2

bs(2),k p̂4
bs(1),k + 4p̂2

bs(2),k p̂4
bs(3),k

+ 2p̂2
bs(1),k(1− 2p̂2

bs(2),k)
2 + 2p̂2

bs(3),k(1− 2p̂2
bs(2),k)

2

+ 8p̂2
bs(1),k p̂2

bs(2),k p̂2
bs(3),k

+ 4p̂2
bs(3),k(1− p̂2

bs(3),k)
2 + 4p̂2

bs(3),k p̂4
bs1 + 4p̂2

bs(3),k p̂4
bs(2),k

+ 2p̂2
bs(1),k(1− 2p̂2

bs(3),k)
2 + 2p̂2

bs(2),k(1− 2p̂2
bs(3),k)

2

+ 8p̂2
bs(1),k p̂2

bs(2),k p̂2
bs(3),k

]] 1

(1 + ν2
s
2 Λ2∆t)2

,

having used the independence of the Brownian vector components, and the fact that ‖p̂bs,k‖ = 1.
We then observe that

4p̂2
bs(1),k(1− p̂2

bs(1),k)
2 + 4p̂2

bs(1),k p̂4
bs(2),k + 4p̂2

bs(1),k p̂4
bs(3),k + 8p̂2

bs(1),k p̂2
bs(2),k p̂2

bs(3),k

= 4p̂2
bs(1),k

(
(1− p̂2

bs(1),k)
2 + p̂4

bs(2),k + p̂4
bs(3),k + 2p̂2

bs(2),k p̂2
bs(3),k

)

= 8p̂2
bs(1),k(1− p̂2

bs(1),k)
2.

Moreover

(2p̂2
bs(2),k + 2p̂2

bs(3),k)(1− 2p̂2
bs(1),k)

2 = 2(1− p̂2
bs(1),k)(1− 2p̂2

bs(1),k)
2

and the sum of the two last contributions is now

8p̂2
bs(1),k(1− p̂2

bs(1),k)
2 + 2(1− p̂2

bs(1),k)(1− 2p̂2
bs(1),k)

2

= (1− p̂2
bs(1),k)

(
8p̂2

bs(1),k − 8p̂4
bs(1),k + 2− 8p̂2

bs(1),k + 8p̂4
bs(1),k

)

= 2(1− p̂2
bs(1),k).

So going back to the norm and considering the same results for the other two components we
get,

E‖p̃bs,k+1‖2 =
(1 + ν2

s Λ2∆t)

(1 + ν2
s
2 Λ2∆t)2

.

Since the map x 7→ (1+2x)
(1+x)2 expands around zero as 1− x2 +O(x3), we get for the norm of the

semi-implicit Euler–Maruyama scheme for Brownian stretching before the renormalization
step that

E‖p̃bs,k+1‖2 = 1− ν4
s

4
Λ4∆t2 +O(∆t3). (B.33)
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b.6 stochastic tumbling and spinning with spherical particles

Here, the tumbling and spinning rate for the stochastic model in Eq. (4.28) and (4.29), will be
compute for a spherical particle (Λ = 0) and assuming the presence of an homogenous shear
flow as the one presented in Section 4.3.3.2. Equation (4.17) for Λ = 0 reads,

dp1 =
σ

2
p2dt− 1

2
ν2

a p1dt + νadWa
1l pl

dp2 =− σ

2
p1dt− 1

2
ν2

a p2dt + νadWa
2l pl

dp3 =− 1
2

ν2
a p3dt + νadWa

3l pl .

(B.34)

Then, the probability density function, at the stationary regime (that we will call t0), can be
explicitly determined, considering that for a sphere the only possible distribution for the
orientation is the uniform law on the sphere. In order to compute explicitly the moments we
can pass to spherical coordinates (p1, p2, p3) 7→ (sin φ cos θ, sin φ sin θ, cos φ) where (ϕ, ϑ) ∈
[0, π] × [0, 2π] and the uniform law on the sphere ρ(ϕ, ϑ) = sin φ/(4π). In this case the
moments can be computed as,

E[ f (p1, p2, p3)] =
∫ π

0

∫ 2π

0
ρ(φ, θ)dθdφ. (B.35)

The moments involved to compute the stumbling and spinning are, E[pi] = 0, E[p2
i ] = 1/3,

E[pi pj] = 0, E[p2
i p2

j ] = 1/15, E[p4
i ] = 1/5 and E[p1 p2 p2

3] = 0.

b.6.1 Stochastic spinning

In the case of Eq. (4.28), considering that E[p3] = 0,

Φ‖p =
σ2

2

∫ t

0
E [p3(t0)p3(s)] ds +

ν2
a

2
. (B.36)

At the stationary regime, considering p3 in Eq. (B.34), and multiplying it for p3(t0), and
renaming the stochastic term with M ,

d(p3(t0)p3(t)) = −
1
2

ν2
a p3(t0)p3(t)dt +M p3(t0), (B.37)

then, considering the solution of this equation and taking the expectation we had E[p3(t0)p3(t)] =
E[p3(t0)p3(t0)] exp

(
−ν2

a t/2
)
. By computing the spinning for very long time behaviour,

Φ‖p =
σ2

2

∫ ∞

0
E[p3(t0)p3(t0)] exp

(
−ν2

a
2

s
)

ds +
ν2

a
2

= −σ2

ν2
a

E[p2
3(t0)] exp

(
−ν2

a
2

s
)∣∣∣∣

∞

0
+

ν2
a

2
=

σ2

3ν2
a
+

ν2
a

2

(B.38)
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b.6.2 Stochastic tumbling

In the case of tumbling the method is equivalent but with the implication of high order
moments.

Φ⊥p =
σ2

2

{ ∫ t

0
E [p1 p3(t0)p1 p3(s)]−E [p1 p3(t0)]E [p1 p3(s)] ds

+
∫ t

0
E [p2 p3(t0)p2 p3(s)]−E [p2 p3(t0)]E [p2 p3(s)] ds

+
∫ t

0
E
[

p2
3(t0)p2

3(s)
]
−E

[
p2

3(t0)
]

E
[

p2
3(s)

]
ds
}
+ ν2

a

=
σ2

2

{ ∫ t

0
E [p1 p3(t0)p1 p3(s)] ds +

∫ t

0
E [p2 p3(t0)p2 p3(s)] ds

+
∫ t

0
E
[

p2
3(t0)p2

3(s)
]
−E

[
p2

3(t0)
]

E
[

p2
3(s)

]
ds
}
+ ν2

a ,

(B.39)

where we have simplified the above equation taking the values at the stationary initial time t0.
Using the Itô’s lemma to compute higher polynomial equation for p,

dp2
3(t) =

ν2
a

2
(1− 3p2

3(t))dt +M , (B.40)

and its solution reads,

E[p2
3(t)] = E[p2

3(t0)] exp
(
−3

2
ν2

a t
)
+

1
3

(
1− exp

(
−3

2
ν2

a t
))

. (B.41)

Multiplying Eq. (B.40) for p2
3(t0) we get,

d(p2
3(t0)p2

3(t)) =
ν2

a
2
(p2

3(t0)− 3(p2
3(t0)p2

3(t)))dt +M (p2
3(t0)p2

3(t)), (B.42)

solving this last equation and taking the expectation we had,

E[p2
3(t0)p2

3(t)] = E[p4
3(t0)] exp

(
−3

2
ν2

a t
)
+

1
3

E[p2
3(t0)]

(
1− exp

(
−3

2
ν2

a t
))

. (B.43)

Finally the contribution of this part in Eq. (B.39) can be expressed as,

∫ t

0
E
[

p2
3(t0)p2

3(s)
]

ds−
∫ t

0
E
[

p2
3(t0)

]
E
[

p2
3(s)

]
ds

∫ t

0
E
[

p4
3(t0)

]
exp

(
−3

2
ν2

a s
)

ds +
1
3

E[p2
3(t0)]

∫ t

0

(
1− exp

(
−3

2
ν2

a s
))

ds

−E
[

p2
3(t0)

] ∫ t

0

[
E[p2

3(t0)] exp
(
−3

2
ν2

a t
)
+

1
3

(
1− exp

(
−3

2
ν2

a t
))]

ds

=
2

3ν2
a

(
E
[

p4
3(t0)

]
−E

[
p2

3(t0)
]2
)
=

8
135ν2

a

(B.44)

The two other contributions of the tumbling are coupled as,

dp1 p3(t) =
σ

2
p2 p3(t)dt− 3

2
ν2

a p1 p3(t)dt +M , (B.45a)

dp2 p3(t) = −
σ

2
p1 p3(t)dt− 3

2
ν2

a p2 p3(t)dt +M . (B.45b)
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Computing the expectation

d
dt

E[p1 p3(t)] =
σ

2
E [p2 p3(t)]−

3
2

ν2
a E[p1 p3(t)], (B.46a)

d
dt

E[p2 p3(t)] = −
σ

2
E [p1 p3(t)]−

3
2

ν2
a E[p2 p3(t)], (B.46b)

the solution will be,

E[p1 p3(t)] =
(

E [p1 p3(t0)] cos
(

σt
2

)
+ E [p2 p3(t0)] sin

(
σt
2

))
exp

(
−3

2
ν2

a t
)

, (B.47a)

E[p2 p3(t)] =
(

E [p2 p3(t0)] cos
(

σt
2

)
−E [p1 p3(t0)] sin

(
σt
2

))
exp

(
−3

2
ν2

a t
)

. (B.47b)

d(p1 p3(t0)p1 p3(t)) =
σ

2
p1 p3(t0)p2 p3(t)dt− 3

2
ν2

a p1 p3(t0)p1 p3(t)dt +M p1 p3(t0), (B.48a)

d(p2 p3(t0)p2 p3(t)) = −
σ

2
p2 p3(t0)p1 p3(t)dt− 3

2
ν2

a p2 p3(t0)p2 p3(t)dt +M p2 p3(t0). (B.48b)

We need to add two more equations in order to solve the full system,

(p1 p3(t0)p1 p3(t), p1 p3(t0)p2 p3(t), p2 p3(t0)p1 p3(t), p2 p3(t0)p2 p3(t)) 7→ (x1, x2, x3, x4)

This system is coupled two by two,

dx1 =
σ

2
x2dt− 3

2
ν2

a x1dt +M p1 p3(t0), (B.49a)

dx2 = −σ

2
x1dt− 3

2
ν2

a x2dt +M p1 p3(t0), (B.49b)

solving the system and taking the expectation,

E[x1(t)] =
(

E [x1(t0)] cos
(

σt
2

)
+ E [x2(t0)] sin

(
σt
2

))
exp

(
−3

2
ν2

a t
)

, (B.50a)

E[x2(t)] =
(

E [x2(t0)] cos
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σt
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)
−E [x1(t0)] sin
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exp
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2
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a t
)

. (B.50b)

The contribution of tumbling for this term in the long time limit,

∫ t

0
E [p1 p3(t0)p1 p3(s)] ds =

∫ t

0
E
[

p2
1 p2

3(t0)
]

cos
(σ

2
s
)

exp
(
−3

2
ν2

a s
)

ds

= E
[

p2
1 p2

3(t0)
] (3

2
ν2

a

)(
4

σ2 + 9ν4
a

)
=

2
5

(
ν2

a
σ2 + 9ν2

a

) (B.51)

For the second term,

dx3 =
σ

2
x4dt− 3

2
ν2

a x3dt +M p2 p3(t0), (B.52a)

dx4 = −σ

2
x3dt− 3

2
ν2

a x4dt +M p2 p3(t0), (B.52b)

solving the system and taking the expectation,

E[x3(t)] =
(

E [x3(t0)] cos
(

σt
2

)
+ E [x4(t0)] sin

(
σt
2

))
exp

(
−3

2
ν2

a t
)

, (B.53a)
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E[x4(t)] =
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. (B.53b)

The contribution of tumbling for this term in the long time limit,

∫ t

0
E [p2 p3(t0)p1 p3(s)] ds =

∫ t

0
E
[
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(B.54)

Summing all contribution in Eq. (B.39), the stochastic tumbling for a sphere (Λ = 0) in the
long-time limit reads,

Φ⊥p = σ2
[

2
5

(
ν2

a
σ2 + 9ν2

a

)
+

4
135ν2

a

]
+ ν2

a (B.55)

b.7 appendix : complement material convergence

Here the additional plots on the strong and weak convergence error all along the numerical
results is reported. We resume the parameters used to study the strong and weak convergence.
The case of spheroidal particles with a shape parameter Λ = 1 in Eq. (4.17) has been considered.
Each test case is integrated on t ∈ [0, T] for different time steps ∆t = 2−h, with h = 1, .., 12, and
the stopping time T = 0.5 is the same for all choices, in order to show the asymptotic conver-
gence with respect to the time step ∆t. We perform the convergence test for each simulation trial
using the same number of particles Np = 5 · 108, and repeat the trials independently 10 times.
A total of four different values of the characteristic time scale parameter τη = 0.01, 0.1, 1, 10 are
considered, fixing the Kubo number Ku = 1 (see, Eq. (4.17)); in this way we aim to estimate the
influence of τη both on weak and strong convergence. Moreover, two different choices of initial
conditions have been used: p0

a = (1, 0, 0) and p0
b = (1, 1, 1)/

√
3.
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BR, τη = 0.01; BR, τη = 0.1; BR, τη = 1; BR, τη = 10;

Figure B.1: Stochastic rotation sub-step (BR): Strong error (Errs) of the numerical scheme in Eq. (4.89)
(BR) against the time step ∆t for different values of τη . In (a) the three components of pbs, (b) the three
components of φ⊥p of tumbling and (c) the spinning φ‖p. Black line indicates the slope 1/2; and the
initial condition of particle orientation is p0

a = (1, 0, 0).
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BR, τη = 0.01; BR, τη = 0.1; BR, τη = 1; BR, τη = 10;

Figure B.2: Stochastic rotation sub-step (BR): Strong error (Errs) of the numerical scheme in Eq. (4.89)
(BR) against the time step ∆t for different values of τη . In (a) the three components of pbs, (b) the three
components of φ⊥p of tumbling and (c) the spinning φ‖p. Black line indicates the slope 1/2; and the
initial condition of particle orientation is p0

b = (1, 1, 1)/
√

3.
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Figure B.3: Stochastic stretching sub-step (BS): Strong error (Errs) of the numerical scheme in Eq. (4.93)
(BSNL) and Eq. (4.95) (BSL) against the time step ∆t for different values of τη . In (a) the three
components of pbs, (b) the three components φ⊥p of tumbling. Black line indicates the slope 1/2; and the
initial condition of particle orientation is p0

a = (1, 0, 0).
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Figure B.4: Stochastic stretching sub-step (BS): Strong error (Errs) of the numerical scheme in Eq. (4.93)
(BSNL) and Eq. (4.95) (BSL) against the time step ∆t for different values of τη . In (a) the three
components of pbs, (b) the three components φ⊥p of tumbling. Black line indicates the slope 1/2; and the
initial condition of particle orientation is p0

b = (1, 1, 1)/
√

3.
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(BRNL, τη = 0.01); (BRNL, τη = 0.1); (BRNL, τη = 1); (BRNL, τη = 10);
(BRL, τη = 0.01); (BRL, τη = 0.1); (BRL, τη = 1); (BRL, τη = 10);

Figure B.5: Splitting scheme in HIT: Strong error (Errs) of the splitting algorithm Eq. (4.96) using the
numerical scheme in Eq. (4.93) followed by Eq. (4.89) (BR−BSNL) and Eq. (4.95) followed by Eq. (4.89)
(BR−BSL), against the time step ∆t for different values of τη . In (a) the three components of p, (b) the
first component φ⊥p of tumbling and (c) the spinning φ‖p. Black line indicates the slope 1/2; and the
initial condition of particle orientation is p0

a = (1, 0, 0).
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(BRNL, τη = 0.01); (BRNL, τη = 0.1); (BRNL, τη = 1); (BRNL, τη = 10);
(BRL, τη = 0.01); (BRL, τη = 0.1); (BRL, τη = 1); (BRL, τη = 10);

Figure B.6: Splitting scheme in HIT: Strong error (Errs) of the splitting algorithm Eq. (4.96) using the
numerical scheme in Eq. (4.93) followed by Eq. (4.89) (BR−BSNL) and Eq. (4.95) followed by Eq. (4.89)
(BR−BSL), against the time step ∆t for different values of τη . In (a) the three components of p, (b) the
first component φ⊥p of tumbling and (c) the spinning φ‖p. Black line indicates the slope 1/2; and the
initial condition of particle orientation is p0

b = (1, 1, 1)/
√

3.
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Figure B.7: Splitting scheme in HSF: Strong error (Errs) of the splitting algorithm Eq. (4.96) using the
numerical scheme in Eq. (4.93) followed by Eq. (4.89) (BR−BSNL) followed by Eq. (4.89) (BR−BSL),
against the time step ∆t for different values of τη . In (a) the three components of p, (b) the first
component φ⊥p of tumbling and (c) the spinning φ‖p. Black line indicates the slope 1/2; and the initial
condition of particle orientation is p0

a = (1, 0, 0).
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Figure B.8: Stochastic rotation sub-step (BR): Weak error (Errw) of the numerical scheme in Eq. (4.89)
(BR) against the time step ∆t for different values of τη . In (a) the three components of E[pi], (b) the three
components of E[p2

i ], (c) the three components of E[pi pj] and (d) the three components of E[p3
i ] for the

initial condition of particle orientation p0
a = (1, 0, 0). Black line indicates the slope 1.
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Figure B.9: Stochastic rotation sub-step (BR): Weak error (Errw) of the numerical scheme in Eq. (4.89)
(BR) against the time step ∆t for different values of τη . In (a) the three components of E[pi], (b) the three
components of E[p2

i ], (c) the three components of E[pi pj] and (d) the three components of E[p3
i ] for the

initial condition of particle orientation p0
b = (1, 1, 1)/

√
3. Black line indicates the slope 1.
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Figure B.10: Stochastic stretching sub-step (BS): Weak error (Errw) of the numerical scheme in Eq. (4.93)
(BSNL) and Eq. (4.95) (BSL) against the time step ∆t for different values of τη . In (a) the three
components of E[pi], (b) the three components of E[p2

i ], (c) the three components of E[pi pj] and (d) the
three components of E[p3

i ] for the initial condition of particle orientation p0
a = (1, 0, 0). Black line

indicates the slope 1.
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Figure B.11: Stochastic stretching sub-step (BS): Weak error (Errw) of the numerical scheme in Eq. (4.93)
(BSNL) and Eq. (4.95) (BSL) against the time step ∆t for different values of τη . In (a) the three
components of E[pi], (b) the three components of E[p2

i ], (c) the three components of E[pi pj] and (d) the
three components of E[p3

i ] for the initial condition of particle orientation p0
b = (1, 1, 1)/

√
3. Black line

indicates the slope 1.
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Figure B.12: Splitting scheme in HIT: Weak error (Errw) of the splitting algorithm Eq. (4.96) using the
numerical scheme in Eq. (4.93) followed by Eq. (4.89) (BR−BSNL) and Eq. (4.95) followed by Eq. (4.89)
(BR−BSL), against the time step ∆t for different values of τη . In (a) the three components of E[pi], (b)
the three components of E[p2

i ], (c) the three components of E[pi pj] and (d) the three components of E[p3
i ]

for the initial condition of particle orientation p0
a = (1, 0, 0). Black line indicates the slope 1.
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Figure B.13: Splitting scheme in HIT: Weak error (Errw) of the splitting algorithm Eq. (4.96) using the
numerical scheme in Eq. (4.93) followed by Eq. (4.89) (BR−BSNL) and Eq. (4.95) followed by Eq. (4.89)
(BR−BSL), against the time step ∆t for different values of τη . In (a) the three components of E[pi], (b)
the three components of E[p2

i ], (c) the three components of E[pi pj] and (d) the three components of E[p3
i ]

for the initial condition of particle orientation p0
b = (1, 1, 1)/

√
3. Black line indicates the slope 1.
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