
HAL Id: tel-03663275
https://hal.science/tel-03663275v1

Submitted on 10 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Game Theory for Real-Time Synthesis: Decision,
Approximation, and Randomness

Benjamin Monmege

To cite this version:
Benjamin Monmege. Game Theory for Real-Time Synthesis: Decision, Approximation, and Random-
ness. Computer Science and Game Theory [cs.GT]. Aix-Marseille Université, 2022. �tel-03663275�

https://hal.science/tel-03663275v1
https://hal.archives-ouvertes.fr

HABILITATION À DIRIGER DES RECHERCHES

Benjamin MONMEGE

Game Theory for Real-Time Synthesis:
Decision, Approximation, and Randomness

Théorie des jeux pour la synthèse temps-réel: décision, approximation et aléatoire

Discipline : Informatique

Laboratoire : Laboratoire d’Informatique et Systèmes

Composition du jury

Eugène Asarin Examinateur
Université de Paris

Béatrice Bérard Examinatrice
Sorbonne Université

Véronique Bruyère Rapporteuse
Université de Mons

Marcin Jurdziński Rapporteur
University of Warwick, UK

Nicolas Markey Rapporteur
CNRS, Irisa

Pierre-Alain Reynier Examinateur
Aix-Marseille Université

Yann Vaxès Examinateur
Aix-Marseille Université

Résumé

Les systèmes logiciels sont omniprésents et leur fiabilité est souvent cruciale, en parti-
culier pour ceux qui fonctionnent dans du matériel embarqué, où la sobriété énergétique
est aussi un paramètre crucial. Pour apporter des garanties sûres, les méthodes formelles
sont utilisées depuis de nombreuses années, avec beaucoup de succès, avec entre autres
des techniques basées sur les automates et le célèbre model checking. Au lieu de créer
manuellement un logiciel, son modèle et de vérifier celui-ci dans un deuxième temps, un
autre paradigme consiste à synthétiser automatiquement un logiciel correct par construc-
tion, en utilisant la théorie des jeux. Deux joueurs, le contrôleur et un environnement,
s’affrontent dans un jeu à somme nulle joué sur un graphe de toutes les configurations du
système. L’énergie, ou d’autres mesures quantitatives selon le problème envisagé, sont
ensuite modélisées par l’ajout de poids dans les jeux. Certains résultats préliminaires
avaient été obtenus en présence de pondérations positives uniquement, mon objectif a été
d’autoriser l’usage de poids négatifs permettant de modéliser des données quantitatives
plus riches. Ce manuscrit résume mes contributions dans l’étude d’une combinaison d’un
objectif d’accessibilité avec une métrique de gain total : on s’intéresse donc à des jeux de
plus court chemin où un joueur veut atteindre une cible du graphe tout en minimisant
le poids accumulé. Notre étude commence par le cas des jeux sur graphes finis, avec la
recherche d’algorithmes efficaces pour calculer les valeurs et stratégies optimales. Nous
continuons ensuite en ajoutant des horloges et des contraintes de temps dans les jeux,
afin de concevoir des programmes efficaces satisfaisant certaines spécifications temps-réel.
Cela conduit à une classe de jeux notoirement difficiles où l’indécidabilité émerge très
rapidement. Notre travail consiste en la recherche de fragments possédant des résultats
décidables, soit en limitant le nombre d’horloges, soit les comportements cycliques du jeu.
Un dernier chapitre étudie également l’utilisation de randomisation dans les stratégies
afin de limiter la quantité de mémoire nécessaire pour que les joueurs jouent de manière
optimale.

2

Abstract

Software systems are ubiquitous, and their reliability is often crucial, especially for the
ones operating in embedded hardware, where the energetic sobriety moreover matters.
To bring reliable guarantees, formal methods have been used for many years, with great
success, among them automata based techniques and the renowned model checking
approach. Instead of manually building a model, and verify it afterwards, another
paradigm consists in automatically synthesising such correct by construction software,
using game theory. Two players, the controller and an environment, are fighting one
against the other in a zero-sum game played on a graph of all possible configurations of
the system. Energy, or other quantitative metrics of interest, are then modelled by the
addition of weights in the games. While some results have been obtained in the presence
of non-negative weights only, my objective has been to incorporate negative weights in
the picture, to model richer quantitative behaviours. This manuscript aims at studying
a combination of reachability objective with the total-payoff metrics, i.e. shortest-path
games where one player wants to reach a target of the graph while minimising the
cumulated weight. Our study starts with the case of finite graph games, with the search
for efficient algorithms to compute optimal values and strategies. We then continue by
adding clocks and time constraints in the games, in order to design efficient programs
satisfying some real-time specifications. This leads to a notoriously difficult class of
games where undecidability emerges very quickly. Our work consists into the search for
fragments with decidable results, either by limiting the number of clocks, or the cyclic
behaviours in the game. A last chapter also studies the use of stochasticity in strategies
in order to limit the amount of memory needed for players to play optimally.

3

Contents

Introduction 5

1 Shortest-Path and Total-Payoff Games 9
1.1 Weighted games with arbitrary weights . 12
1.2 Shortest-path games . 17
1.3 An efficient algorithm to solve total-payoff games 23
1.4 Implementation and heuristics . 27
1.5 Divergent shortest-path games . 29

2 Weighted Timed Games: Models and Problems 34
2.1 Modelling real-time constraints . 34
2.2 Weighted timed games . 35
2.3 Problems and first results . 39
2.4 Region abstraction . 40
2.5 Corner-point abstraction . 43

3 Weighted Timed Games with One Clock 46
3.1 Continuity of the value function . 47
3.2 Bi-weighted timed games . 50
3.3 Simple weighted timed games . 57
3.4 Simple weighted timed games with only urgent locations 59
3.5 Finite optimality of general simple weighted timed games 61
3.6 Towards non-simple weighted timed games 65

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games 70
4.1 Value functions and value iteration algorithm 71
4.2 Divergent and almost-divergent weighted timed games 74
4.3 Deciding divergence and almost-divergence 78
4.4 Deciding infinite values . 81
4.5 Semi-unfolding of weighted timed games 83
4.6 Computing values . 85
4.7 Strategy synthesis . 90

5 Random Strategies in Weighted Timed Games 94
5.1 Playing stochastically in shortest-path games 96
5.2 Playing stochastically in weighted timed games 104

Conclusion 112

Bibliography 114

4

Introduction

Formal methods to improve the quality of software

Software systems are ubiquitous, in our private equipments or industrial facilities, and
sometimes perform as critical systems. Under these conditions, ensuring their reliability
is crucial. Moreover, these systems must deal with larger and larger data, and must
thus scale in terms of complexity. Finally, many of those systems operate in embedded
hardware, where not only the speed of computation matters but also the energetic sobriety
to work with limited batteries.

To solve these various issues, and bring reliable guarantees, formal methods have been
used for many years, with great success, among them automata based techniques and the
renowned model checking approach. Real-time and energy-aware extensions have also
been studied thoroughly, allowing for studying and verifying time-sensitive embedded
software.

Game theory for software synthesis

But verifying a model of a system requires that such a system has been designed
previously, which is a harder and harder task, with the current complexity of the embedded
systems. Another paradigm consists in automatically synthesise such software, that is
correct by construction.

One of the famous techniques to do so consists in game theory, already theorised by
John Nash for economic purposes. In computer science, two players, the controller and an
environment, are fighting one against the other in a zero-sum game played on a graph of
all possible configurations of the system. A winning strategy for the controller results in a
correct program, while the environment is a player modelling all uncontrollable events
that the program must face: signals incoming from the actual environment (human users
of the program, weather conditions, etc.), uncertainty of the physical parameters, or exact
timing of certain actions performed by the program. Many possible objectives have been
studied in such two-player zero-sum games played on graphs: reachability of a target
state, safety from a bug state, repeated reachability to model liveness of a program, and
even all possible ω-regular objectives [GTW02].

Apart from such qualitative objectives, more quantitative ones are useful in order to
select a particular strategy/program among all the ones that are correct with respect to a
qualitative objective. Some metrics of interest, mostly studied in the quantitative game
theory literature, are mean-payoff, discounted-payoff, or total-payoff. All these objectives
have in common that, in finite games, both players have strategies using no memory or
randomness to win or play optimally [GZ04].

Combining quantitative and qualitative objectives, enabling to select a good strategy
among the valid ones for the selected metrics, often leads to the need of memory to play
optimally.

5

Contents

Content of this manuscript

One of the most fundamental combinations showing this need for memory, and that will
be thoroughly studied in this manuscript, consists in the shortest-path games combining
a reachability objective with a total-payoff quantitative objective: they have been studied
in [Kha+08] in the case of only non-negative weights, and we will further study this model
in presence of negative weights in Chapter 1. Another case of interest is the combination
of a parity qualitative objective (modelling every possible ω-regular condition), with a
mean-payoff objective (aiming for a controller of good quality in the average long-run),
where controllers need memory, and even infinite memory, to play optimally [CHJ05].

Chapter 1 also presents the use of techniques for shortest-path games in order to solve
efficiently total-payoff games with both positive and negative weights.

Game-theoretic methods for controller synthesis is even more crucial in a real-time
setting, where the design of programs satisfying some real-time specifications remains a
notoriously difficult problem, prone to many bugs. Formal methods have incorporated
the notion of time, by considering timed automata [AD94] that extend finite state
automata with timing constraints, providing an automata-theoretic framework to model
and verify real-time systems. While this has lead to the development of mature verification
tools, the synthesis requires to extend this setting to the two-player game-theoretic case.
Reachability timed games have thus been introduced, and shown decidable [AM99], and
even EXPTIME-complete [JT07].

For many real-time applications, this qualitative setting is again too coarse to model
faithfully the system, which again motivates a shift to a quantitative setting. Weighted
extensions of timed automata [Beh+01; ALP04] and timed games [Bou+04a; ABM04]
have thus been considered in order to measure the quality of the winning strategy for the
controller. There, weights are twofold: transitions are equipped with weights as in the
untimed setting, but locations (i.e. states) are also equipped with rates of weights, the cost
being then proportional to the time spent in this location, with the rate as proportional
coefficient. In this setting, the possibility to use negative weights on transitions and
locations is crucial when one wants to model energy or other resources that can grow or
decrease (linearly with respect to the time) during the execution of the system under study.
We will recall useful definitions and classical techniques like the region or corner-point
abstractions in Chapter 2.

While solving the optimal reachability problem on weighted timed automata has been
shown to be PSPACE-complete [Bou+07] (i.e. the same complexity as the non-weighted
version), weighted timed games are known to be undecidable [BBR05]. Several restrictions
have then been considered in order to regain decidability. A first one consists in limiting
the number of clocks of the underlying timed automaton. When in presence of only
non-negative weights (both in transitions and locations) and with a single clock, weighted
timed games become decidable [Bou+06], with an exponential-time complexity [Rut11;
HIM13]. We will present our extension of this positive result to the case where negative
weights are allowed in Chapter 3. Technical restrictions have to be considered limiting the
presence of resets in some cycles of the game, letting the unconstrained case of weighted
timed games with one clock still open. We are currently investigating this problem, with
Julie Parreaux and Pierre-Alain Reynier, hoping to close the decidability gap (since the
problem indeed becomes undecidable with two clocks in the negative setting [Bri+14],
contrary to the non-negative case where the undecidability is only known with at least

6

Contents

three clocks).
Another very interesting restriction to recover decidability consists in not restraining

the number of clocks, but the weights allowed on cycles of the game. The class of strictly
non-Zeno cost weighted timed games with only non-negative weights has thus been
introduced and studied [Bou+04a]: this hypothesis requires that every execution of the
timed automaton that follows a cycle (of the region automaton) has a weight far from
0 (in interval [1,+∞), for instance). In this context, applying unfolding techniques and
using results of [ABM04], the class becomes decidable. Chapter 4 aims at presenting our
work to extend this setting in the presence of negative weights: in the so-called divergent
weighted timed games, each execution that follows a cycle (of the region automaton) has a
weight in (−∞,−1] ∪ [1,+∞). We proposed a triply-exponential-time algorithm allowing
one to compute the values and almost-optimal strategies, while deciding the divergence is
PSPACE-complete.

Even in the case where weighted timed games are undecidable, for instance for non-
divergent ones with at least two clocks, it is tempting to still aim for some positive results.
Such research direction has been introduced in [BJM15] where authors relax the strictly
non-Zeno cost condition (for games with only non-negative weights) to allow for cycles of
weight exactly 0 (while still preventing those of weight arbitrarily close to 0). For such
games, the value cannot be computed precisely in most generality (since the corresponding
decision problem is shown undecidable), but the value can be approximated. We present,
also in Chapter 4, a highly non-trivial extension of this line of work in presence of negative
weights.

As said earlier, in shortest-path games with both positive and negative weights, it is
known that the player desiring to reach the target requires memory to play optimally.
This is of course even more true in the context of weighted timed games. More precisely,
the memory needed is pseudo-polynomial for untimed games (i.e. polynomial if constants
are encoded in unary) and even exponential for timed games, which can be prohibitive
from an applicability point of view. An important challenge is thus to find ways to avoid
using such complex strategies, e.g. by proposing alternative classes of strategies that are
more easily amenable to implementation.

One way to do so, that we explore in Chapter 5 is to trade memory for randomness.
Such trade-off is inspired by some work on Street or Müller games, both in the un-
timed [CAH04] or timed setting [CHP08a]. Memory or randomness is also crucial in
multi-dimensional objectives [CRR14]: for instance, in mean-payoff parity games, if there
exists a deterministic finite-memory winning strategy, then there exists a randomised
memoryless almost-sure winning strategy. In our context of shortest-path games, we
explain how to trade memory for randomness, by using the particular shape of optimal
strategies for the player who wants to reach the target: they can always search for negative
cycles of the game, play for a sufficiently long time in such cycles if possible, before
switching to a strategy attracting the game to the target. Optimal strategies are thus
obtained by the combination of two memoryless strategies. Randomisation is thus done,
roughly speaking, by choosing between the two memoryless strategies with a well-chosen
distribution of probabilities.

To lift such randomisation results in the timed setting, we first propose an original
definition of the expected payoff, by considering necessary conditions on the strategies for
this expectation to be well-defined (intuitively, the controller not only must reach the

7

Contents

target, they must do it quickly enough). We strongly rely on the presence of switching
strategies, that we only know of in divergent weighted timed games, the setting that we
thus consider in the second part of Chapter 5. It has to be noticed that randomisation
only comes from the strategies of both players: in the presence of randomness also in the
game itself, the situation becomes much more complex, even undecidable with at least
two clocks [BCJ09].

Biographical sketch since the PhD

My PhD thesis, defended in October 2013, addressed the specification of quantitative
properties with logical and automata frameworks. This manuscript presents some work I
achieved since the beginning of my post-doctorate position in Université libre de Bruxelles,
and then as a Maître de Conférences in Aix-Marseille Université, with many co-authors.
I refer to the corresponding published articles in the beginning of each chapter.

For space issues, I decided not to present some other results obtained during this period,
that I hereby shortly summarise.

— With Serge Haddad [HM15; HM18], we proposed a new algorithm, called interval
iteration, to improve the usual value iteration technique for Markov chains and
(interval) Markov decision processes.

— With Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Guillermo A. Pérez, and
Gabriel Renault [Bri+15c], we investigated the presence of failures in quantitative
games.

— With Thomas Brihaye, Morgane Estiévenart, Gilles Geeraerts, Hsi-Ming Ho, and
Nathalie Sznajder [Bri+16b], we studied real-time synthesis based on the MITL
logic, and explained why this is a hard problem, and under which assumptions it
can become tractable.

— With Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Arthur Milchior [Bri+18],
we proposed a new tool to translate MITL formula into timed automata, in a
compositional fashion, both in the classical timed-words semantics [Bri+17b], and
in the signal semantics [Bri+17c].

— With Damien Busatto-Gaston, Pierre-Alain Reynier, and Ocan Sankur [Bus+19],
we synthesised robust controllers in timed Büchi automata.

— With Théodore Lopez, and Jean-Marc Talbot [LMT19], we determinised finitely-
ambiguous copyless cost register automata.

— With Thomas Brihaye, Gilles Geeraerts, Marion Hallet, and Bruno Quoitin [Bri+19],
we initiated a work on the dynamics in games, using simulation-based techniques
with an application to routing.

8

1 Shortest-Path and Total-Payoff Games

This chapter presents some results obtained with Thomas Brihaye, Damien Busatto-Gaston,
Amit Kumar Dhar, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux and Pierre-Alain Reynier,
published in the conferences CONCUR [Bri+15b] and FoSSaCS [BMR17], the journal Acta
Informatica [Bri+17a], the workshop Cassting [Bri+16a], as well as a submitted journal article
[Bri+21].

Table of contents

1.1 Weighted games with arbitrary weights . 12
1.2 Shortest-path games . 17
1.3 An efficient algorithm to solve total-payoff games 23
1.4 Implementation and heuristics . 27
1.5 Divergent shortest-path games . 29

Games played on graphs are nowadays a well-studied and well-established model for
the computer-aided design of computer systems, as they enable automatic synthesis of
systems that are correct-by-construction. Of particular interest are quantitative games,
that allow one to model precisely quantitative parameters of the system, such as energy
consumption. In this setting, the game is played by two players on a directed weighted
graph, where the edge weights model, for instance, a cost or a reward associated with the
moves of the players. Each vertex of the graph belongs to one of the two players who
compete by moving a token along the graph edges, thereby forming an infinite path called
a play. With each play is associated a real-valued payoff computed from the sequence
of edge weights along the play. The traditional payoffs that have been considered in the
literature include total-payoff [GZ04], mean-payoff [EM79] and discounted-payoff [ZP96].
In this quantitative setting, one player aims at maximising the payoff while the other
tries to minimise it. So one wants to compute, for each player, the best payoff that they 1

can guarantee from each vertex, and the associated optimal strategies (i.e. that guarantee
the optimal payoff no matter how the adversary is playing).

Such quantitative games have been extensively studied in the literature. Their associated
decision problems (is the value of a given vertex above a given threshold?) are known to be
in NP ∩ coNP. Mean-payoff games have arguably been best studied from the algorithmic
point of view. A landmark is Zwick and Paterson’s pseudo-polynomial time (i.e. polynomial
in the weighted graph when weights are encoded in unary) algorithm [ZP96], using the
value iteration paradigm that consists in computing a sequence of vectors of values that
converges towards the optimal values of the vertices. After a fixed, pseudo-polynomial,
number of steps, the computed values are precise enough to deduce the actual values of
all vertices. Better pseudo-polynomial time algorithms have later been proposed, e.g., by

1. In this document, we will use the singular they pronouns to describe the players.

9

1 Shortest-Path and Total-Payoff Games

[BV07; Bri+11; CR15], also achieving sub-exponential expected running time by means
of randomisation.

Our first objective in this chapter is to focus on total-payoff games in the presence of
both positive and negative weights 2. Given an infinite play ρ, we denote by ρ[k] the prefix
of ρ of length k, and by TP(ρ[k]) the (finite) sum of all edge weights along this prefix.
The total-payoff of ρ, TP(ρ), is the inferior limit of all those sums, i.e.

TP(ρ) = lim inf
k→∞

TP(ρ[k])

Compared to mean-payoff (and discounted-payoff) games, the literature on total-payoff
games is less extensive. Gimbert and Zielonka [GZ04] have shown that optimal memoryless
strategies always exist for both players and the best algorithm known before our works to
compute the values runs in exponential time [GS09], and consists in iteratively improving
strategies. Other related works include energy games where one player tries to optimise
its energy consumption (computed again as a sum), keeping the energy level always
above 0. Note that it differs in essence from total-payoff games where no condition on
the energy level is required: in particular, the optimal total-payoff could be negative, and
even −∞, and it is a priori not possible to simply lift all the weights by a constant to
solve total-payoff games by solving a related energy games. Moreover, this difference
makes difficult to apply techniques solving energy games in the case of total-payoff games.
Probabilistic variants of total-payoff games have also been studied, but the weights are
restricted to be non-negative [Che+13].

We argue that the total-payoff objective is interesting as a refinement of the mean-
payoff. Indeed, the total-payoff is finite if and only if the mean-payoff is null. Then,
the computation of the total-payoff enables a finer, two-stage analysis of a game G:
(i) compute the mean payoff MP(G); (ii) subtract MP(G) from all edge weights, and
scale the resulting weights if necessary to obtain integers. At that point, one has obtained
a new game G′ with null mean-payoff; (iii) compute TP(G′) to quantify the amount
of fluctuation around the mean-payoff of the original game. Unfortunately, no efficient
(i.e. polynomial, or at least pseudo-polynomial time) algorithms for total-payoff games
was known before our works, and straightforward adaptations of Zwick and Paterson’s
value iteration algorithm for mean-payoff do not work, as we demonstrate at the end of
Section 1.1. Our goal was to fill in this gap by introducing the first pseudo-polynomial
time algorithm for computing the values in total-payoff games.

Our solution is a non-trivial value iteration algorithm that proceeds through nested
fixed points (see Algorithm 2). A play of a total-payoff game is infinite by essence. We
transform the game so that one of the players (the minimiser) must ensure a reachability
objective: we assume that the game ends once this reachability objective has been met.
The intuition behind this transformation, that stems from the use of an inferior limit
in the definition of the total-payoff, is as follows: in each play ρ whose total-payoff is
finite, there is a position ℓ in the play after which all the partial sums TP(ρ[i]) (with
i ⩾ ℓ) will be larger than or equal to the total-payoff TP(ρ) of ρ, and infinitely often
both will be equal. For example, consider the game depicted in Figure 1.1(a), where the
maximiser player (henceforth called Max) plays with the rectangular vertices and the
minimiser (Min) with the circular vertices. For both players, the optimal value when

2. Note that those games are different from total-reward games as studied in [TV87].

10

1 Shortest-Path and Total-Payoff Games

v4v3 v5v2v1
−2 −1

2 12

−1 −1

(a)

TP(ρ) = 2

0

1

2

3
TP(ρ[k])

k
0 1 2 3 4 5 6 7 8 9 10

(b)

Figure 1.1 – (a) A total-payoff game, and (b) the evolution of the partial sums in ρ.

playing from v1 is 2, and the play ρ = v1v2v3 v4v5 v4v3 (v4v5)
ω reaches this value (i.e.

TP(ρ) = 2). Moreover, for all k ⩾ 7: TP(ρ[k]) ⩾ TP(ρ), and infinitely many prefixes
(ρ[8], ρ[10], ρ[12], . . .) have a total-payoff of 2, as shown in Figure 1.1(b).

Based on this observation, we transform a total-payoff game G, into a new game that
has the same value as the original total-payoff game but incorporates a reachability
objective for Min. Intuitively, in this new game, we allow a new action for Min: after
each play prefix ρ[k], they can ask to stop the game, in which case the payoff of the play
is the payoff TP(ρ[k]) of the prefix. However, allowing Min to stop the game at every
moment would not allow us to obtain the same value as in the original total-payoff game:
for instance, in the example of Figure 1.1(a), Min could secure value 1 by asking to stop
after ρ[2], which is strictly smaller than the actual total-payoff (2) of the whole play ρ.
So, we allow Max to veto to stop the game, in which case both must go on playing. Again,
allowing Max to turn down all of Min’s requests would be unfair, so we parameterise the
game with a natural number K, which is the maximal number of vetoes that Max can
ask (and we denote by GK the resulting game). For the play depicted in Figure 1.1(b),
letting K = 3 is sufficient: trying to obtain a better payoff than the optimal, Min could
request to stop after ρ[0], ρ[2] and ρ[6], and Max can veto these three requests. After that,
Max can safely accept the next request of Min, since the total payoff of all prefixes ρ[k]
with k ⩾ 6 are larger than or equal to TP(ρ) = 2. Our key technical contribution is to
show that for all total-payoff games, there exists a finite, pseudo-polynomial, value of K
such that the values in GK and G coincide (assuming all values are finite in G: we treat
values +∞ and −∞ separately). Now, assume that, when Max accepts to stop the game
(possibly because they have exhausted the maximal number K of vetoes), the game moves
to a target vertex, and stops. By doing so, we effectively reduce the computation of the
values in the total-payoff game G to the computation of the values in the total-payoff
game GK with an additional reachability objective (the target vertex) for Min.

In the following, such refined total-payoff games—where Min must reach designated
target vertices—will be called games with shortest-path-payoff, shortly shortest-path games,
(originally called min-cost reachability games in [Bri+15b; Bri+17a] and simply weighted
games in [BMR17]). Failing to reach the target vertices is the worst situation for Min, so
the payoff of all plays that do not reach the target is +∞, irrespective of the weights along
the play. Otherwise, the payoff of a play is the sum of the weights up to the first occurrence
of the target. As such, this problem nicely generalises the classical shortest-path problem
in a weighted graph. This class of games is indeed very natural and interesting in its
own, especially in the presence of both positive and negative weights. They represent a
traditional extension of (qualitative) games with reachability objectives, and may therefore

11

1 Shortest-Path and Total-Payoff Games

model many situations interesting in practice. We have demonstrated this by applying
this framework to the efficient energy distribution in a smart grid [Bri+16a]. We will
also see in next chapters how to make shortest-path games even more useful, by adding
real-time constraints.

In the one-player setting (considering the point of view of Min for instance), shortest-
path games can be solved in polynomial time by Dijkstra’s and Floyd-Warshall’s algorithms
when the weights are non-negative and arbitrary, respectively. Khachiyan et al [Kha+08]
have proposed an extension of Dijkstra’s algorithm to handle the two-player case with
only non-negative weights. However, in our more general setting (two players, arbitrary
weights), this problem had never been studied as such, except that the associated decision
problem was known to be in NP ∩ coNP [FGR12]. 3

Thus, as a second contribution in this chapter, we present a value iteration algorithm
enabling us to compute in pseudo-polynomial time the values of a shortest-path game. In
addition, we show how to compute optimal strategies for both players and characterise
them: there is always a memoryless strategy for Max, but we exhibit an example (see
Figure 1.2) where Min needs (finite) memory. Those results on shortest-path games are
exploited in Section 1.3 where we present our efficient algorithm for total-payoff games.
We briefly present a prototype implementation in Section 1.4, using as a core the numerical
model-checker PRISM. This allows us to describe some heuristics able to improve the
practical performances of our algorithms for total-payoff games and shortest-path games
on certain subclasses of graphs.

As a last contribution, we introduce in Section 1.5 the class of divergent shortest-
path games, for which we are able to compute the values and optimal strategies in
polynomial time. Divergence is inspired by the strictly non-Zeno cost property introduced
in [Bou+04b] to obtain the decidability of the same problems in weighted timed games,
that we will study in the next chapters. It consists in intuitively ensuring that long enough
plays will have a value that diverges towards +∞ or −∞: for that, we require the absence
of cycles of accumulated weight 0. We can even extend slightly the result by requiring
almost-divergence, meaning that every cycle of weight 0 must only contain smaller cycles
of weight 0: therefore, we allow for cycle of weight 0 as long as they are not obtained by
alternating positive and negative cycles. This paves the way of Chapter 4 where similar
fragments are studied as a way to compute (for divergent games) or approximate (for
almost-divergent games) the value of weighted timed games.

1.1 Weighted games with arbitrary weights

In this section, we formally introduce the (untimed) game model we consider throughout
this manuscript. We denote by N, Z, Q, R, and R⩾0 the set of natural numbers,
integers, rational and real numbers, and non-negative real numbers respectively. We let
Z∞ = Z ∪ {−∞,+∞} and R∞ = R ∪ {−∞,+∞}. The set of vectors indexed by V with
values in S is denoted by SV : the components of such a vector x ∈ SV are written xv or
x(v) depending on the context. We let ≼ be the pointwise order over R∞

V , where x ≼ y

3. A pseudo-polynomial time algorithm to solve a very close problem, called the longest shortest path
problem has been introduced by [BV07] to eventually solve mean-payoff games. However, because of this
peculiar context of mean-payoff games, their definition of the length of a path differs from our definition
of the payoff and their algorithm can not be easily adapted to solve our shortest-path problem.

12

1 Shortest-Path and Total-Payoff Games

if and only if x(v) ⩽ y(v) for all v ∈ V .
We consider two-player turn-based games played on weighted graphs and denote the

two players by Max and Min.

Definition 1.1. A weighted game is a tuple ⟨VMin, VMax, E,wt⟩ where V = VMin ⊎ VMax

is a set of vertices partitioned into the sets VMin and VMax of Min and Max respectively,
E ⊆ V × Σ× V is a set of directed labelled edges such that for all vertices v and labels a,
there is at most one edge (v, a, v′) ∈ E, and wt : E → Z is the weight function, associating
an integer weight with each edge. The weighted game is called finite if V and Σ are finite.

In our drawings, Max vertices are depicted by rectangles; Min vertices by circles. In
this chapter, we will not draw labels on edges, for simplicity, and will more generally
suppose that the label of the edge (v, a, v′) is always a = v′ so that we remove them
from the presentation 4. For every vertex v ∈ V , the set of labels of outgoing edges is
denoted by Σ(v) = {a ∈ Σ | ∃v′ ∈ V, (v, a, v′) ∈ E}, and the set of successor vertices by
E(v) = {v′ ∈ V | ∃a ∈ Σ, (v, a, v′) ∈ E}. We will denote an edge (v, a, v′) with the arrow
v

a−→ v′. Finally, we let W = maxe∈E |wt(e)| be the greatest edge weight (in absolute
value) in the game graph.

A finite play ρ is a finite path in the graph of the game, i.e. ρ = v0
a0−→ v1

a1−→ · · · ak−1−−−→ vk
such that for all 0 ⩽ i < k, vi

ai−→ vi+1 ∈ E. We let FPlays be the set of finite plays, and
FPlaysMin (resp. FPlaysMax) the subset of finite plays ending in a vertex of Min (resp. Max).
A play is a maximal (i.e. infinite or that cannot be extended by one more edge) sequence
ρ = v0

a0−→ v1
a1−→ · · · such that every finite prefix v0

a0−→ v1
a1−→ · · ·

ak−1−−−→ vk, denoted by
ρ[k], is a finite play. We let Plays be the set of plays.

The cumulated weight of a finite play ρ = v0
a0−→ v1

a1−→ · · · ak−1−−−→ vk is obtained by
summing up the weights along ρ, i.e.

wt(ρ) =
k−1∑
i=0

wt(vi, ai, vi+1)

Based on this simple definition, we may define three classical payoff functions. In order
for the two first definitions to define a payoff to all plays, we forbid maximal plays that
would be finite. This is done by classically assuming that the games we consider are
deadlock-free, i.e. for all vertices v, Σ(v) ̸= ∅.

— The total-payoff of an (infinite) play ρ is given by 5

TP(ρ) = lim inf
k→∞

wt(ρ[k])

— The mean-payoff computes the average weight of ρ, i.e.

MP(ρ) = lim inf
k→∞

wt(ρ[k])

k

4. We keep labels in the definition since we will give the semantics of timed games in the next chapter,
by using the labels as a way to give the time spent in a location, as well as the chosen transition.

5. Our results can easily be extended by substituting a lim sup for the lim inf. The lim inf is more
natural since we adopt the point of view of the maximiser Max, where the lim inf is the worst partial
sum seen infinitely often.

13

1 Shortest-Path and Total-Payoff Games

— The shortest-path-payoff (we will often shorten this to shortest-path, in particular
speaking about shortest-path games) of a play ρ = v0

a0−→ v1
a1−→ · · · computes the

cumulated weight before reaching a given set of target vertices Vt ⊆ V . In this
context, we suppose that V is the disjoint union of VMin, VMax and Vt, and that Vt

are the only deadlock vertices of the game: therefore, a play is finite if and only if
it visits (and then ends) in a target vertex. Formally, the shortest-path-payoff of a
play ρ is given by

SP(ρ) =

{
+∞ if ρ is infinite
wt(ρ[k]) if vk ∈ Vt

The choice to give a payoff +∞ to a play that does not reach the target is a
corollary of the decision to give the reachability of the game to Min, that wants
to minimise the payoff: therefore, not reaching the target is necessarily the worst
possible situation for Min.

A strategy for Min (resp. Max) is a recipe dictating how to play, i.e. a mapping
σ : FPlaysMin → Σ (resp. σ : FPlaysMax → Σ) such that for all finite plays ρ = v0

a0−→ v1
a1−→

· · · ak−1−−−→ vk in FPlaysMin (resp. FPlaysMax), σ(ρ) ∈ Σ(vk). When we want to emphasise
on the players, we will denote σMin and σMax the strategies of Min and Max, respectively.
Moreover, we let ΣMin and ΣMax be the sets of strategies of Min and Max, respectively. A
(finite or infinite) play ρ = v0

a0−→ v1
a1−→ · · · conforms to a strategy σ of Min (resp. σ of

Max) if for all k such that vk ∈ VMin (resp. vk ∈ VMax), we have that ak = σ(ρ[k]).
A strategy σ is memoryless if for all finite plays ρ, ρ′ ending in the same vertex,

σ(ρ) = σ(ρ′). It is then sufficient to describe the value of σ on vertices only (and not
all finite plays). A strategy σ is said to be finite-memory if it can be described in a
memory with a finite number of bits. A usual formal definition goes through an encoding
with deterministic Moore machines. We will not use it in this manuscript but we refer
interested readers to the definition we use in [Bri+17a].

For all strategies σMin and σMax, for all vertices v, we let play(v, σMin, σMax) be the
outcome of σMin and σMax, defined as the unique play conforming to σMin and σMax

and starting in v. Naturally, the objective of Max is to maximise the payoff. In this
model of zero-sum game, Min then wants to minimise the payoff. We let Val(v, σMax)
and Val(v, σMin) be the respective values of the strategies, being the payoff obtained as a
best-response of the opponent. Formally, they are defined as{

Val(v, σMax) = infσMin∈ΣMin
P(play(v, σMax, σMin))

Val(v, σMin) = supσMax∈ΣMax
P(play(v, σMax, σMin))

where P is a payoff function, either TP, MP, or SP. Each vertex v of the game is then
associated with two possible values. The upper value of v is the best Min can hope for
when choosing first their strategy:

Val(v) = inf
σMin∈ΣMin

Val(v, σMin)

while the lower value of v is the best Max can hope for:

Val(v) = sup
σMax∈ΣMax

Val(v, σMax)

14

1 Shortest-Path and Total-Payoff Games

We may easily see that Val ≼ Val. When needed, we may index the various sets and
mappings associated with a game G by its name, for instance writing ValG and ValG for
the values of the game. We say that strategies σ⋆

Max of Max and σ⋆
Min of Min are optimal

if, for all vertices v, Val(v, σ⋆
Max) = Val(v) and Val(v, σ⋆

Min) = Val(v), respectively.
A game G is said to be determined when for all vertices v, its lower and upper values

are equal. In that case, we write Val(v) = Val(v) = Val(v), and refer to it as the value
of v in G. Mean-payoff and total-payoff games are known to be determined, with the
existence of optimal memoryless strategies [ZP96; GZ04]. Using an indirect consequence
of Martin’s theorem [Mar75], we can show with an ad-hoc proof that

Theorem 1.2. Shortest-path games are determined, even if the set of vertices is infinite,
countable or not.

Proof. We reproduce here the proof of the unpublished article [Bri+21]. Consider a
quantitative game G and a vertex v ∈ V . We will prove the determinacy result by using
the Borel determinacy result of [Mar75]. First, notice that the payoff mapping SP is
Borel measurable since the set of plays with finite shortest-path-payoff is a countable
union of cylinders. Then, for an integer M , consider WinM to be the set of plays with a
payoff less than or equal to M . It is a Borel set, so that the qualitative game defined over
the same graph with winning condition WinM is determined. We now use this preliminary
result to show our determinacy result.

We first consider cases where either the lower or the upper values is infinite. Suppose
first that Val(v) = −∞. We have to show that Val(v) = −∞ too. Let M be an integer.
Since Val(v) < M , we know that for all strategies σMax of Max, there exists a strategy
σMin for Min, such that SP(play(v, σMin, σMax)) ⩽ M . In particular, Max has no winning
strategies in the qualitative game equipped with WinM as a winning condition, hence,
by determinacy, Min has a winning strategy, i.e. a strategy σMin such that every strategy
σMax of Max verifies SP(play(v, σMin, σMax)) ⩽ M . This exactly means that Val(v) ⩽ M .
Since this holds for every value M , we get that Val(v) = −∞. The proof goes exactly in
a symmetrical way to show that Val(v) = +∞ implies Val(v) = +∞.

Consider then the case where both Val(v) and Val(v) are finite values. For the sake
of contradiction, assume that Val(v) < Val(v) and consider a real number r strictly
in-between those two values. From r < Val(v), we deduce that Min has no winning
strategy from v in the qualitative game with winning condition Winr. Identically, from
Val(v) < r, we deduce that Max has no winning strategy from v in the same game. This
contradicts the determinacy of this qualitative game. Hence, Val(v) = Val(v).

Natural problems on weighted games are of three kinds, considering here the point of
view of Min though the same questions can be asked by taking the point of view of Max
too:

— the value problem: given a game G, an initial vertex v and a threshold α ∈ Z∞, do
we have Val(v) ⩽ α?

— the existence problem: given a game G, an initial vertex v and a threshold α ∈ Z∞,
does there exist a strategy σMin of Min such that Val(v, σMin) ⩽ α?

— the synthesis problem: given a game G, compute an optimal strategy for Min.

In the context of weighted games on a finite set of vertices, like this chapter focuses on
(we now drop the labels from edges in particular), value and existence problems are almost

15

1 Shortest-Path and Total-Payoff Games

equivalent: in particular, we will see that infimum/supremum in the value definitions are
indeed minimum/maximum, except if the values are −∞ where Min will need an infinite
sequence of strategies to target a value as low as they want. To decide the value and
existence problems, we will rely on the computation of the value function, which will also
enable the computation of optimal strategies, solving the synthesis problem too. The
situation will be much different (and more complex) in the context of timed games (that
have an infinite, uncountable, set of vertices) we will consider in the next chapters.

Before our contributions, total-payoff games have been mainly considered as a refinement
of mean-payoff games [GZ04]. Indeed, if the mean-payoff value of a game is positive
(resp. negative), its total-payoff value is necessarily +∞ (resp. −∞). When the mean-
payoff value is 0 however, the total-payoff is necessarily different from +∞ and −∞, hence
total-payoff games are particularly useful in this case, to refine the analysis of the game.
Deciding the value problem for total-payoff and mean-payoff games can be achieved in
NP ∩ coNP [ZP96]. Gawlitza and Seidl [GS09] refined the complexity to UP ∩ coUP, and
values are shown to be effectively computable solving nested fixed point equations with a
strategy iteration algorithm working in exponential time in the worst case. Because of
this strong relationship between mean-payoff games and total-payoff games, we can show
that total-payoff games are, in some sense, as hard as mean-payoff games, for which the
existence of a (strongly) polynomial time algorithm is a long-standing open question.

Our contribution is to improve on this state-of-the-art and present a pseudo-polynomial
time algorithm for total-payoff games. In many cases (e.g. mean-payoff games), a successful
way to obtain such a more efficient algorithm is the value iteration paradigm. Intuitively,
value iteration algorithms compute successive approximations x0, x1, . . . , xi, . . . of the
game value by restricting the number of turns that the players are allowed to play: xi
is the vector of optimal values achievable when the players play at most i turns. The
sequence of values is computed by means of an operator F , letting xi+1 = F(xi) for all i.
Good properties (Scott-continuity and monotonicity) of F ensure convergence towards its
smallest or greatest fixed point (depending on the value of x0), which, in some cases, is
the value of the game.

Let us briefly explain why, unfortunately, a straightforward application of this approach
fails with total-payoff games. In our case, the most natural operator F is such that

F(X)(v) =

{
maxv′∈E(v)

(
wt(v, v′) +X(v′)

)
if v ∈ VMax

minv′∈E(v)

(
wt(v, v′) +X(v′)

)
if v ∈ VMin

Indeed, this definition matches the intuition that XN is the optimal value after N
turns. Then, consider the example of Figure 1.1(a), limited to vertices {v3, v4, v5} for
simplicity. Observe that there are two simple cycles with weight 0, hence the total-payoff
value of this game is finite. Max has the choice between cycling into one of these two
cycles. It is easy to check that Max’s optimal choice is to enforce the cycle between
v4 and v5, securing a payoff of −1 from v4 (because of the lim inf definition of TP).
Hence, the values of v3, v4 and v5 are respectively 1, −1 and 0. In this game, we
have F(X) =

(
2 + X(v4),max(−2 + X(v3),−1 + X(v5)), 1 + X(v4)

)
, and the vector

(1,−1, 0) is indeed a fixed point of F . However, it is neither the greatest nor the smallest
fixed point of F . Indeed, it is easy to check that, if X is a fixed point of F , then
X + (α, α, α) is also a fixed point, for all α ∈ Z ∪ {−∞,+∞}. If we try to initialise

16

1 Shortest-Path and Total-Payoff Games

v1 v2

,

−W

−1

0

0

Figure 1.2 – A shortest-path game (with W a positive integer) where Min needs memory
to achieve its optimal strategy.

the value iteration algorithm with value (0, 0, 0), which could seem a reasonable choice,
the sequence of computed vectors is: (0, 0, 0), (2,−1, 1), (1, 0, 0), (2,−1, 1), (1, 0, 0), . . .
that is not stationary, and does not even contain (1,−1, 0). Notice that (−∞,−∞,−∞)
and (+∞,+∞,+∞) are fixed points, so that they do not allow us to find the correct
answer too. Thus, it seems difficult to compute the actual game values with an iterative
algorithm relying on the operator F , as in the case of mean-payoff games. 6 Notice that,
in the previous example, the Zwick and Paterson’s algorithm [ZP96] to solve mean-payoff
games would easily conclude from the sequence above, since the vectors of interest are
then (0, 0, 0), (1,−0.5, 0.5), (0.33, 0, 0), (0.5,−0.25, 0.25), (0.2, 0, 0), . . . indeed converging
towards (0, 0, 0), the mean-payoff values of this game.

Instead, as explained in the introduction, we propose a different approach that consists
in reducing total-payoff games to shortest-path games. The aim of the next section is to
study these games, and we reduce total-payoff games to them in Section 1.3.

1.2 Shortest-path games

In this section, we solve shortest-path games. We start by studying a fundamental
example giving hints about the difficulty of the problem.

Example 1.3. Consider the shortest-path game displayed in Figure 1.2, where W is a
positive integer and , is the target. We claim that the values of vertices v1 and v2 are
both −W . Indeed, consider the following strategy for Min: during each of the first W
visits to v2 (if any), go to v1; else, go to ,. Clearly, this strategy ensures that the target
will eventually be reached, and that either (i) the edge from v1 to , (with weight −W)
will eventually be traversed; or (ii) the edge from v1 to v2 (with weight −1) will be
traversed at least W times. Hence, in all plays following this strategy, the payoff will be
at most −W . This strategy allows Min to secure −W , but they cannot ensure a lower
payoff, since Max always has the opportunity to take the edge from v1 to , (with weight
−W) instead of cycling between v1 and v2. Hence, Max’s optimal choice is to follow this
edge as soon as v1 is reached, securing a payoff of −W . The strategy of Min we have
just given is optimal, and there is no optimal memoryless strategy for Min. Indeed, in v2,

6. In the context of stochastic models like Markov decision processes, [Str66] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards the
accurate value: [Put94] gives a more detailed explanation in Ex. 7.3.3.

17

1 Shortest-Path and Total-Payoff Games

always going to , does not ensure a payoff at most −W ; and, always going to v1 does
not guarantee to reach the target, and this strategy has thus value +∞.

Shortest-path games (with both positive and negative weights) are one of the simplest
games where one of the player needs memory to play optimally. This need stems from
the combination of two objectives, a reachability one and a total-payoff one, that is one
of the possible known sources of the need for memory.

We now show how to solve those games, i.e. how to compute Val(v) for all vertices v,
in pseudo-polynomial time:

Theorem 1.4. Let G be a shortest-path game.

1. For all v ∈ V , deciding whether Val(v) = +∞ can be done in polynomial time.

2. For all v ∈ V , deciding whether Val(v) = −∞ is as hard as solving mean-payoff
games, in NP ∩ coNP and can be achieved in pseudo-polynomial time.

3. Computing all values Val(v) (for v ∈ V), as well as optimal strategies (if they exist)
for both players, can be done in (pseudo-polynomial) time O(|V |2|E|W).

4. If Val(v) ̸= −∞ for all vertices v ∈ V , then both players have optimal strategies.
Moreover, Max always has a memoryless optimal strategy, while Min may require
finite (pseudo-polynomial) memory in their optimal strategy.

5. In the presence of only non-negative weights, both players have memoryless optimal
strategies, and the above complexity drops down to polynomial time.

This shows that the value problem, the existence problem, and the synthesis problem
can all be solved in pseudo-polynomial time, and even in polynomial time when weights
are non-negative. We now give the ingredients needed to prove the theorem.

Values +∞ To prove the first item of Theorem 1.4, it suffices to notice that vertices
with value +∞ are exactly those from which Min cannot reach the target. Therefore
the problem reduces to deciding the winner in a classical reachability game, that can be
solved in polynomial time [Tho95], using an attractor construction.

Observe that we can safely remove from the game graph all those vertices with value +∞,
without changing the values of the other vertices. Hence, when need be, we can assume
that the shortest-path games we consider contain no vertices with value +∞, as they can
be removed by this polynomial-time preprocessing. In those games, one can construct in
polynomial time a memoryless strategy, called an attractor strategy, ensuring to reach the
target in less than |V | steps from every vertex. In the following, we therefore assume that
all vertices have a value different from +∞.

Values −∞ To prove the second item, we notice that vertices with value −∞ in a
shortest-path game are exactly those with a value < 0 in the mean-payoff game obtained
by adding a self-loop of weight 0 on the target vertices.

On the other hand, we can show that every mean-payoff game can be transformed
(in polynomial time) into a shortest-path game such that a vertex has value < 0 in the
mean-payoff game if and only if the value of its corresponding vertex in the shortest-path
game is −∞. To do so, without loss of generality, we may suppose that the graph of

18

1 Shortest-Path and Total-Payoff Games

Algorithm 1: Value iteration for shortest-path games. Gray lines correspond to
the computation of optimal strategies for both players
Input: Shortest-path game G, W greatest weight in absolute value

1 foreach v ∈ V do
2 if v ∈ Vt then X(v) := 0
3 else X(v) := +∞
4 repeat
5 Xpre := X
6 foreach v ∈ VMax do
7 X(v) := maxv′∈E(v)

(
wt(v, v′) + Xpre(v

′)
)

8 σMax(v) := argmaxv′∈E(v)

(
wt(v, v′) + Xpre(v

′)
)

9 foreach v ∈ VMin do
10 X(v) := minv′∈E(v)

(
wt(v, v′) + Xpre(v

′)
)

11 if X(v) ̸= Xpre(v) then
12 σ1

Min(v) := argminv′∈E(v)

(
wt(v, v′) + Xpre(v

′)
)

13 if Xpre(v) = +∞ then σ2
Min(v) = σ1

Min(v)

14 foreach v ∈ V \ Vt do
15 if X(v) < −(|V | − 1)W then X(v) := −∞

16 until X = Xpre

17 return X

the game is bipartite, in the sense that E ⊆ VMax × VMin ∪ VMin × VMax. 7 The associated
shortest-path game is the same game with one more vertex , that is the only target.
We add all edges from v to , with v ∈ VMin, of weight 0. The crucial property is that
Min can guarantee a value −∞ in this shortest-path game if and only if they can force a
negative cycle of the original mean-payoff game (thus, if and only if the mean-payoff is
< 0) as long as they want before reaching the target (which they can always do as long as
they have the opportunity to play, reason why we first assumed the game to be bipartite).

Computing all values Now that we have discussed the case of vertices with value in
{−∞,+∞}, let us present our core contribution on shortest-path games, which is a
pseudo-polynomial time, value iteration algorithm to compute the values of those games.
Note that this algorithm is correct even when some vertices have value in {−∞,+∞}, as
we will argue later.

Our value iteration algorithm for shortest-path games is given in Algorithm 1. As
it can be seen, this algorithm consists in computing a sequence of vectors X. Initially
(line 1), X(v) = +∞ for all vertices but the target vertices v where X(v) = 0. Then, a
new value of X is obtained by optimising locally the value of each vertex, and changing to
−∞ the value X(v) of all vertices v such that the computed value X(v) has gone below a
given threshold −(|V | − 1)W (line 7). The following proposition states the correctness of
Algorithm 1.

7. It suffices to add a vertex of the opponent in-between two vertices of the same player related by an
edge: in this vertex, the opponent has no choice but to follow the transition chosen by the first player.

19

1 Shortest-Path and Total-Payoff Games

Proposition 1.5. If a shortest-path game G is given as input (possibly with values +∞ or
−∞), Algorithm 1 outputs the value vector, after at most (2|V |−1)W |V |+2|V | iterations.

To establish this proposition, we consider the sequence of values that vector X takes
along the execution of the algorithm. The intuition behind this sequence is that the i-th
iterate is the value vector of the game if we impose that Min must reach the target within
i steps (and gets a payoff of +∞ if they fail to do so). In order to formalise this intuition,
we define, for a play ρ = v0

a0−→ v1
a1−→ · · · :

SP⩽i(ρ) =

{
SP(ρ) if vk ∈ Vt for some k ⩽ i

+∞ otherwise

and we then let

Val
⩽i
(v) = inf

σMin∈ΣMin

sup
σMax∈ΣMax

SP⩽i(play(v, σMax, σMin))

Successive values of Val
⩽i can be obtained by the iterative application of an opera-

tor F : ZV
∞ → ZV

∞ mapping every vector X ∈ ZV
∞ to the vector F(X) defined, for all

vertices v, by:

F(X)(v) =

0 if v ∈ Vt

max
v′∈E(v)

(
wt(v, v′) +X(v′)

)
if v ∈ VMax

min
v′∈E(v)

(
wt(v, v′) +X(v′)

)
if v ∈ VMin .

(1.1)

Then, we can indeed show that for all vertices v:

Val
⩽0

(v) =

{
0 if v ∈ Vt

+∞ otherwise
and ∀i ⩾ 1 Val

⩽i
= F(Val

⩽i−1
)

Moreover, the computation performed in each loop of Algorithm 1 is exactly the same as
the one in F . Therefore, by induction, Val⩽i is the vector X obtained after i iterations of
the main loop.

Notice that operator F is monotonic (i.e. F(X) ≼ F(Y) for all X ≼ Y), and that
Val

⩽1
= F(Val

⩽0
) ≼ Val

⩽0, so that the sequence (Val
⩽i
)i⩾0 is non-increasing: for all i ⩾ 0,

Val
⩽i+1

≼ Val
⩽i. Observe also that for all v ∈ V , for all i ⩾ 0, and for all strategies σMin

and σMax:
SP⩽i(play(v, σMin, σMax)) ⩾ SP(play(v, σMin, σMax))

Indeed, if a target vertex is reached within i steps, then payoffs are equal. Otherwise,
SP⩽i(play(v, σMin, σMax)) = +∞. Thus, for all i ⩾ 1,

Val
⩽i

≽ Val = Val

The main question is now to characterise the limit of the sequence (Val
⩽i
)i⩾0 that is

returned by the algorithm, and more precisely, to prove that it is the value Val of the
game. Indeed, at this point, it would not be too difficult to show that Val is a fixed

20

1 Shortest-Path and Total-Payoff Games

point of the operator F , but it would be more difficult to show that it is the greatest
fixed point of F , that is indeed the limit of the sequence (Val

⩽i
)i⩾0 (by Kleene’s theorem,

applicable since F is Scott-continuous). Instead, we need to study refined properties of
this sequence, namely its stationarity and the speed of its convergence, to deduce that
Val is the greatest fixed point of F . Here are the main steps of the proof:

— The first |V |+ 1 iterations emulate the classical attractor computation: if v ∈ V
is a vertex discovered after k ⩽ |V | steps of attractor, then for all j < k, we have
Val

⩽j
(v) = +∞ and Val

⩽k
(v) ⩽ kW . In particular, for all v ∈ V , Val⩽|V |

(v) ⩽ |V |W .
Therefore, the presence of vertices with value +∞ does not interfere.

— The sequence (Val
⩽i
)i⩾0 stabilises after (2|V | − 1)W |V |+ |V | steps, when all values

of the game are finite. Moreover, the limit value is equal to the vector Val of values
of G.

— If the game contains vertices with value −∞, Val
⩽i will not converge for these

vertices, but when it reaches an integer below −(|V | − 1)W , we are sure that its
value is indeed −∞, which proves correct the line 7 of the algorithm.

Example 1.6. We close this discussion on the computation of the values by an example
of execution of Algorithm 1. Consider the shortest-path game in Figure 1.2. The
successive values for vertices (v1, v2) computed by the value iteration algorithm are the
following: (+∞,+∞), (+∞, 0), (−1, 0), (−1,−1), (−2,−1), (−2,−2), . . . , (−W,−W +1),
(−W,−W). This requires 2W steps to converge (hence a pseudo-polynomial time).

Strategies of Min As we have seen earlier, Min does not always have optimal memoryless
strategies. However, we will see that one can always construct so-called negative cycle
strategies (NC-strategies), which are memoryless strategies that have a meaningful struc-
ture for Min, in the sense that they allow them either: (i) to reach the target by means of
a play whose value is lower than the value of the game; or (ii) to decrease arbitrarily the
partial sums along the play, when it does not reach the target (in other words, the partial
sums tend to −∞ as the play goes on). So NC-strategies are not optimal in general as
they do not guarantee to reach the target, but in this case they guarantee that Min will
play consistently with their objective, by decreasing the value of the play prefixes.

Formally, an NC-strategy is a memoryless strategy σMin for player Min such that, for
all cyclic finite plays v0 → · · · vk−1 → vk = v0 conforming to σMin,

wt(v0, v1) + · · ·+ wt(vk−1, vk) < 0

We define the fake value, fake(v, σMin), of an NC-strategy σMin as the supremum of the
cumulated weight of the finite plays that conform to it and start in v:

fake(v, σMin) = sup
{
SP(v0 → · · · vk−1 → vk) | v0 = v, vk ∈ Vt, ∀vi ∈ VMin, σMin(vi) = vi+1

}
Notice that the fake value is not necessarily equal to the value of σMin, since, in the

definition of the fake value, we only consider plays that do reach the target, and ignore
those that do not (in the computation of the actual value of σMin, these plays would yield a
payoff +∞). However, the fake value of a vertex is always smaller than or equal to its value.
We say that an NC-strategy is fake-optimal if its fake value is smaller than or equal to the

21

1 Shortest-Path and Total-Payoff Games

optimal value of the game from all vertices. In particular, if the optimal value of a vertex v
is −∞, the set {SP(v0 → · · · vk−1 → vk) | v0 = v, vk ∈ Vt, ∀vi ∈ VMin, σMin(vi) = vi+1} is
empty for all fake-optimal strategies σMin, hence the supremum of this set is indeed −∞.

Example 1.7. On the game of Figure 1.2, the memoryless strategy σMin mapping v2 to
v1 is an NC-strategy as the only two possible cycles v1 → v2 → v1 and v2 → v1 → v2 have
weight −1. The value of σMin from v2 is +∞ as the play v2 → v1 → v2 → v1 → v2 → · · ·
agrees with it and does not reach the target, but the fake value of σMin is −W , since the
play v2 → v1 → , is the finite play that agrees with σMin with the biggest cumulated
weight possible. Since we know that the actual optimal value is −W , the strategy σMin is
fake-optimal.

By combining a fake-optimal NC-strategy with a memoryless strategy reaching target
vertices, we may obtain optimal (when possible) finite-memory strategies of a very
special shape. We call such strategies switching strategies, described by two deterministic
memoryless strategies σ1

Min and σ2
Min, as well as a switching parameter α ∈ N. It allows

us to build a (finite-memory) strategy σMin playing along σ1
Min, until eventually switching

to σ2
Min when the length of the current finite play is greater than α.

Indeed, if we let σ1
Min be a fake-optimal NC-strategy, and σ2

Min be any strategy obtained
from an attractor computation (thus reaching a target vertex in a most |V | steps), then
we can show that the switching strategy σMin described by (σ1

Min, σ
2
Min, (2W (|V | − 1) +

N)|V |+ 1) guarantees a value Val(v, σMin) ⩽ max(−N,Val(v)). In particular, if the value
of all vertices is finite, then one can construct an optimal finite-memory strategy by
considering N = −(|V | − 1)W . If the value of a vertex is −∞, this also says that there
is an infinite family of strategies that allows one to secure a value which is arbitrarily
low (remember that, by definition, −∞ cannot be the value that corresponds to a single
strategy).

It only remains to explain how to build a fake-optimal NC-strategy σ1
Min. Without loss

of generality, we suppose that no vertices have value +∞, since for these vertices, all
strategies are equivalent. For vertices of value −∞, we can obtain σ1

Min as an optimal
strategy for Min in the associated mean-payoff game (obtained by adding a self-loop
of weight 0 on target vertices). Since the mean-payoff value is negative, this strategy
guarantees that it does not reach a target, thus generating a fake value −∞, equal to the
optimal value of the vertex. Moreover, since it is a memoryless strategy, we know that, as
soon as Max plays a memoryless strategy that necessarily reaches a cycle, this cycle must
have a negative weight (at most the optimal value of the initial vertex): this strategy is
thus a fake-optimal NC-strategy.

Consider finally the case where no vertices have value +∞ or −∞. For all vertices
v ∈ VMin, we let σ1

Min(v) be a vertex v′ ∈ E(v) that minimises wt(v, v′) + Val(v′). We can
show that this construction indeed yields a fake-optimal NC strategy σ1

Min, by proving
(by induction) that all cycles it creates have a negative weight and that if it reaches the
target, it does so with a payoff at most the value of the initial vertex. Notice that this
definition is exactly what is computed in line 12 of Algorithm 1. Note also that line 13
indeed computes an attractor strategy. This ends the search for strategies for Min.

Strategies of Max Let us now show that Max always has a memoryless optimal strategy.
For vertices with value +∞, we already know a memoryless optimal strategy for Max,

22

1 Shortest-Path and Total-Payoff Games

namely every strategy that remains outside of the attractor of the target vertices. For
vertices with value −∞, all strategies are equally bad for Max. We now explain how to
define a memoryless optimal strategy σMax for Max in case of a game containing only
finite values. For every finite play ρ ending in a vertex v ∈ VMax of Max, we let σMax(ρ)
be a vertex v′ ∈ E(v) that maximises wt(v, v′) + Val(v′). This is clearly a memoryless
strategy, and we can show that it is optimal. Notice that line 8 of Algorithm 1 indeed
computes such a strategy σMax.

Non-negative case Finally, to show the last item of Theorem 1.4, notice that, in the
absence of negative cycles, the (optimal) switching strategy obtained for Min cannot loop
in negative cycles, and thus the first (memoryless) strategy σ1

Min cannot cycle and thus
must reach a target vertex in a most |V |+ 1 edges. Therefore, the second strategy σ2

Min,
and the switch threshold, are never used, and Min has thus an optimal memoryless
strategy. Moreover, consider Val

⩽|V |, the value with bounded horizon |V |. For every
vertex v, we have Val

⩽|V |
(v, σ1

Min) = Val(v), so that Val
⩽|V |

≼ Val. As Val ≼ Val
⩽i holds

for all i ≥ 0, we have Val = Val
⩽|V |, which means that Algorithm 1 converges in at most

|V | iterations, thus running in an overall polynomial time.

1.3 An efficient algorithm to solve total-payoff games

We now turn our attention back to total-payoff games (without reachability objective).
Building on the results of the previous section, we present a pseudo-polynomial time
algorithm for solving those games in the presence of arbitrary weights, thanks to a
reduction from total-payoff games to shortest-path games. The shortest-path game
produced by the reduction has size pseudo-polynomial in the size of the original total-
payoff game. Then, we show how to compute the values of the total-payoff game without
building the entire shortest-path game, and explain how to deduce memoryless optimal
strategies from the computation of our algorithm.

Reduction to shortest-path games We provide a transformation from a total-payoff
game G to a shortest-path game GK (where K is a parameter in N) such that the values of
G can be extracted from the values in GK (as formalised below). Intuitively, GK simulates
the game where players play in G; Min may propose to stop playing and reach a fresh
vertex , acting as the target; Max can then accept, in which case we reach the target, or
refuse at most K times, in which case the game continues. Structurally, GK consists of a
sequence of copies of G along with some new states that we now describe formally. For
all n ⩾ 1, we define the shortest-path game Gn with vertices of Min being

V n
Min = {(v, j) | 1 ⩽ j ⩽ n, v ∈ VMin} ∪ {(stop, v, j) | 1 ⩽ j ⩽ n, v ∈ V }

vertices of Max being

V n
Max = {(v, j) | 1 ⩽ j ⩽ n, v ∈ VMax} ∪ {(veto, v, j) | 1 ⩽ j ⩽ n, v ∈ V }

23

1 Shortest-Path and Total-Payoff Games

v1 v2

v3

−W

−1

0

0

0

Figure 1.3 – A total-payoff game

v1, 3

stop, v1, 3

v2, 3

stop, v2, 3

v3, 3

stop, v3, 3

−1

−W

veto, v1, 3

veto, v2, 3

veto, v3, 3

v1, 2

stop, v1, 2

v2, 2

stop, v2, 2

v3, 2

stop, v3, 2

−1

−W

veto, v1, 2

veto, v2, 2

veto, v3, 2

v1, 1

stop, v1, 1

v2, 1

stop, v2, 1

v3, 1

stop, v3, 1

−1

−W

veto, v1, 1

veto, v2, 1

veto, v3, 1

,

Figure 1.4 – Shortest-path game G3 associated with the total-payoff game of Figure 1.2

and edges given by

En =
{(

v, j) → (stop, v′, j) | v → v′ ∈ E, 1 ⩽ j ⩽ n
}

∪ {(stop, v, j) → (v, j) | v ∈ V, 1 ⩽ j ⩽ n}
∪ {(stop, v, j) → (veto, v, j) | v ∈ V, 1 ⩽ j ⩽ n}
∪ {(veto, v, j) → (v, j − 1) | v ∈ V, 1 < j ⩽ n}
∪
{
(veto, v, j) →, | v ∈ V, 1 ⩽ j ⩽ n

}
all of weight zero, except edges (v, j) → (stop, v′, j) that have weight wt(v, v′).

Example 1.8. For example, considering the total-payoff game of Figure 1.3, the corre-
sponding shortest-path game G3 is depicted in Figure 1.4 (where weights 0 have been
removed).

The next proposition formalises the relationship between the two games:

Proposition 1.9. Let K = |V |(2(|V | − 1)W + 1). For all v ∈ V and k ⩾ K,

— ValG(v) ̸= +∞ if and only if ValG(v) = ValGk(v, k);

24

1 Shortest-Path and Total-Payoff Games

v1

stop, v1

v2

stop, v2 ,
v3

stop, v3

−1

−W
max(0, Z(v2))

max(0, Z(v1))

max(0, Z(v3))

Figure 1.5 – Shortest-path game GZ associated with the total-payoff game of Figure 1.2

— ValG(v) = +∞ if and only if ValGk(v, k) ⩾ (|V | − 1)W + 1.

The bound K is found by using the fact (informally described in the previous section)
that if not infinite, the value of a shortest-path game belongs in [−(|V |−1)×W+1, |V |×W],
and that after enough visits of the same vertex, an adequate loop ensures that Gk verifies
the above properties.

Value iteration algorithm for total-payoff games By Proposition 1.9, an immediate
way to obtain a value iteration algorithm for total-payoff games is to build game GK , run
Algorithm 1 on it, and map the computed values back to G. We take advantage of the
structure of GK to provide a better algorithm that avoids building GK . Intuitively, we
first compute the values of the vertices in the last copy of the game (vertices of the form
(v, 1), (stop, v, 1) and (veto, v, 1)), then of those in the penultimate (vertices of the form
(v, 2), (stop, v, 2) and (veto, v, 2)), and so on.

We sketch the intuitions that lead to the formalisation of these ideas. Let Zj be a vector
mapping each vertex v of G to the value Zj(v) of vertex (v, j) in GK . Then, we define an
operator H such that Zj+1 = H(Zj). Thus, assuming that we have computed the values
of all vertices in the jth copy, H returns the value of the vertices in the (j +1)th copy. In
other words, the definition of H(Z) for some vector Z is to extract from GK one copy of
the game (that we call GZ), and make Z appear in the weights of some edges as illustrated
in Figure 1.5. This game, GZ , simulates a play in G in which Min can opt for ‘stopping
the game’ at each round (by moving to the target), obtaining max(0, Z(v)), if v is the
current vertex. Then, we can define H(Z)(v) as the value of v in GZ . By construction, it
is easy to see that Zj+1 = H(Zj) holds for all j ⩾ 1, i.e. that H indeed corresponds to
computing the values of the vertices in the (j + 1)th copy, given the values in the jth
copy. Furthermore, letting Z0(v) = −∞ for all v, and Z1 = H(Z0), we can prove that:

— H is monotonic (but may not be Scott-continuous);

— the sequence (Zj)j⩾0 converges towards ValG .

These arguments are the main ideas justifying Algorithm 2 to solve total-payoff games.
Intuitively, the outer loop computes, in variable Y, a non-decreasing sequence of vectors
whose limit is ValG , and that is stationary (this is not necessarily the case for the sequence
(Zj)j⩾0). Line 1 initialises Y to Z0. Each iteration of the outer loop amounts to running
Algorithm 1 to compute H(Ypre) (lines 10 to 13), then detecting if some vertices have

25

1 Shortest-Path and Total-Payoff Games

Algorithm 2: A value iteration algorithm for total-payoff games
Input: Total-payoff game G, W largest weight in absolute value

1 foreach v ∈ V do Y(v) := −∞
2 repeat
3 foreach v ∈ V do Ypre(v) := Y(v); Y(v) := max(0,Y(v)); X(v) := +∞
4 repeat
5 Xpre := X
6 foreach v ∈ VMax do X(v) := maxv′∈E(v)

[
wt(v, v′) + min(Xpre(v

′),Y(v′))
]

7 foreach v ∈ VMin do X(v) := minv′∈E(v)

[
wt(v, v′) + min(Xpre(v

′),Y(v′))
]

8 foreach v ∈ V such that X(v) < −(|V | − 1)W do X(v) := −∞
9 until X = Xpre

10 Y := X
11 foreach v ∈ V such that Y(v) > (|V | − 1)W do Y(v) := +∞
12 until Y = Ypre

13 return Y

v1 v2 v3
−W

1

W
0

Figure 1.6 – An example total-payoff game where each execution of the inner loop requires
two iterations while the outer loop takes W iterations to stabilise.

value +∞, updating Y accordingly (line 11, following the second item of Proposition 1.9).
It can then be shown that, for all j > 0, if we let Yj be the value of Y after the jth
iteration of the main loop, then Zj ≼ Yj ≼ ValG , which ensures the correctness of the
algorithm.

Proposition 1.10. If a total-payoff game G is given as input, Algorithm 2 outputs the
vector of optimal values, after at most K = |V |(2(|V |−1)W +1) iterations of the external
loop. The complexity of the algorithm is O(|V |4|E|W 2).

The number of iterations in each internal loop is controlled by Theorem 1.4. On the
example of Figure 1.2, only 2 external iterations are necessary, but the number of iterations
of each internal loop would be 2W . By contrast, for the total-payoff game depicted in
Figure 1.6, each internal loop requires 2 iterations to converge, but the external loop
takes W iterations to stabilise. A combination of both examples would experience a
pseudo-polynomial number of iterations to converge in both the internal and external
loops, matching the W 2 term of the above complexity: this gives rise to the parametric
example of Figure 1.7.

Optimal strategies In Section 1.2, we have shown, for all shortest-path games, the
existence of a fake-optimal NC-strategy permitting to reconstruct an optimal (finite-
memory) switching strategy for Min (if every vertex has value different from −∞, or a

26

1 Shortest-Path and Total-Payoff Games

v1 v2 v3

v4 v5 v6

v7 . . . v3(n−1)

v3n−2 v3n−1 v3n

v3n+1

−W

−1

0

0
1

W −W

−1

0

0
1

W

W −W

−1

0

0
1

W

0

Figure 1.7 – Parametric total-payoff game

strategy ensuring every possible negative threshold for vertices with value −∞). Given
a total-payoff game G, if we apply this construction to the game GY with Y = ValG , we
obtain an NC-strategy σ1

Min. Consider the memoryless strategy σ∗
Min, obtained by keeping

the decisions of σ1
Min on non-stop vertices. Strategy σ∗

Min can indeed be shown to be
optimal for Min in G. Notice that σ1

Min, and hence σ∗
Min, can be computed during the last

iteration of the value iteration algorithm, as explained in the case of shortest-path games.
A similar construction can be done to compute an optimal strategy for Max.

We finally summarise the results we have obtained in the context of total-payoff games:

Theorem 1.11. Let G be a total-payoff game. Computing all values of G, as well as
optimal memoryless strategies for both players, can be done in (pseudo-polynomial) time
O(|V |4|E|W 2).

1.4 Implementation and heuristics

In this section, we report on a prototype implementation of our algorithms. 8 For
convenience reasons, we have implemented them as an add-on to PRISM-games [Che+13],
although we could have chosen to extend another model-checker as we do not rely on the
probabilistic features of PRISM models (i.e. we use the PRISM syntax of stochastic multi-
player games, allowing arbitrary rewards, and forbidding probability distributions different
of Dirac ones). We then use rPATL specifications of the form ⟨⟨C⟩⟩Rmin /max=?[F∞φ] and

8. Source and binary files, as well as some examples, can be downloaded from http://www.ulb.ac.
be/di/verif/monmege/tool/TP-MCR/.

27

http://www.ulb.ac.be/di/verif/monmege/tool/TP-MCR/
http://www.ulb.ac.be/di/verif/monmege/tool/TP-MCR/

1 Shortest-Path and Total-Payoff Games

Table 1.1 – Results of value iteration on a parametric example
without heuristics with heuristics

W n t ke ki t ke ki

50 100 0.52s 151 12 603 0.01s 402 1 404
50 500 9.83s 551 53 003 0.42s 2,002 7 004
200 100 2.96s 301 80 103 0.02s 402 1 404
200 500 45.64s 701 240 503 0.47s 2 002 7 004
500 1 000 536s 1 501 1 251 003 2.37s 4 002 14 004

⟨⟨C⟩⟩Rmin /max=?[Fc⊥] to model respectively shortest-path games and total-payoff games,
where C represents a coalition of players that want to minimise/maximise the payoff, and
φ is another rPATL formula describing the target set of vertices (for total-payoff games,
such a formula is not necessary). We have tested our implementation on toy examples.
On the parametric one of Figure 1.7, results obtained by applying our algorithm for
total-payoff games are summarised in Table 1.1, where for each pair (W,n), we give the
time t in seconds, the number ke of iterations in the external loop, and the total number
ki of iterations in the internal loop.

Notice that due to the very little memory consumption of the algorithm, there is no
risk of running out of memory. However, the execution time can become very large. For
instance, in case W = 500 and n = 1000, the execution time becomes 536s whereas the
total number of iterations in the internal loop is greater than a million.

We close this section by sketching two techniques that can be used to speed up the
computation of the fixed point in Algorithms 1 and 2. Both accelerations rely on a
topological order of the strongly connected components (SCC for short) of the game
graph, given as a function cp : V → N, mapping each vertex to its component, satisfying
that

— cp(V) = {0, . . . , p} for some p ⩾ 0,

— cp−1(q) is a maximal SCC for all q,

— and cp(v) ⩾ cp(v′) for all (v, a, v′) ∈ E. 9

In case of a shortest-path game with , the unique target, cp−1(0) = {,}. Intuitively,
cp induces a directed acyclic graph whose vertices are the sets cp−1(q) for all q ∈ cp(V),
and with an edge (S1, S2) if and only if there are v1 ∈ S1, v2 ∈ S2 such that (v1, v2) ∈ E.

The first acceleration heuristic, very classical, is a divide-and-conquer technique that
consists in applying Algorithm 1 (or the inner loop of Algorithm 2) iteratively on each
cp−1(q) for q = 0, 1, 2, . . . , p, using at each step the information computed during steps
j < q (since the value of a vertex v depends only on the values of the vertices v′ such
that cp(v′) ⩽ cp(v)).

The second acceleration heuristic, more ad-hoc, consists in studying more precisely
each component cp−1(q). Having already computed the optimal values Val(v) of vertices
v ∈ cp−1({0, . . . , q − 1}), we ask an oracle to precompute a finite set Sv ⊆ Z∞ of possible
optimal values for each vertex v ∈ cp−1(q). For shortest-path games and the inner
iteration of the algorithm for total-payoff games, one way to construct such a set Sv

9. Such a mapping is computable in linear time, e.g., by Tarjan’s algorithm [Tar72].

28

1 Shortest-Path and Total-Payoff Games

is to consider that possible optimal values are the one of non-looping paths inside the
component exiting it: this stems from the existence, in shortest-path games, of optimal
strategies for both players whose outcome is a non-looping path (see Section 1.2).

Finally, we note that we can identify classes of weighted graphs for which there exists an
oracle that runs in polynomial time and returns, for all vertices v, a set Sv of polynomial
size. On such classes, Algorithms 1 and 2, enhanced with our two acceleration techniques,
run in polynomial time. For instance, for all fixed positive integers L, the class of weighted
graphs where every component cp−1(q) uses at most L distinct weights (that can be
arbitrarily large in absolute value) satisfies this criterion. Table 1.1 contains the results
obtained with the heuristics on the parametric example presented before. Observe that the
acceleration technique permits here to drastically decrease the execution time, the number
of iterations in both loops not even depending anymore on W . Even though the number
of iterations in the external loop increases with heuristics, due to the decomposition, less
computation is required in each internal loop since we only apply the computation for
the active component.

1.5 Divergent shortest-path games

So far, we have seen that solving shortest-path games can be performed in pseudo-
polynomial time, though the best computational lower-bound is PTIME for the value or
existence problems (since it is already the case for unweighted reachability games [Imm81]).
It is thus tempting to try to close this gap. In this last section, we introduce a subclass
of shortest-path games that we are able to solve in polynomial time. The same core
techniques are then lifted in Chapter 4 in the timed setting. It is based on the restriction
on the allowed cycles (i.e. cyclic finite plays) in the game:

Definition 1.12. A shortest-path game G is divergent if every cycle ρ of G satisfies
wt(ρ) ̸= 0.

Divergence is a property of the underlying weighted graph, independent from the
repartition of vertices between players. The term divergent reflects that cycling in the
game ultimately makes the accumulated weight grow in absolute value. We will first
formalise this intuition by analysing the strongly connected components (SCC) of the
graph structure of a divergent game (the repartition of vertices into players does not
matter for the SCC decomposition). Based on this analysis, we will obtain the following
results:

Theorem 1.13. The value problem over divergent shortest-path games is PTIME-complete.
Moreover, deciding if a shortest-path game is divergent is an NL-complete problem when
weights are encoded in unary, and is in PTIME when they are encoded in binary.

We now sketch the proof of this result, based on a careful analysis of the SCCs.

SCC analysis A finite play ρ in G is said to be positive (respectively, negative) if
wt(ρ) > 0 (respectively, wt(ρ) < 0). It follows that a cycle in a divergent shortest-path
game is either positive or negative. A cycle is said to be simple if no vertices are visited
twice (except for the common vertex at the beginning and the end of the cycle). We will
rely on the following characterisation of divergent games in terms of SCCs, whose proof

29

1 Shortest-Path and Total-Payoff Games

v1 v4

v2

v3

v5

v6

v7

v8

v9

,
−∞

−9

−9

+∞
1

1

+∞

0

2

0−1

1

−2

−1

−10

−1

1

1

−1
−1 2

Figure 1.8 – SCC decomposition of a divergent shortest-path game: {v1, v2, v3, v4} and
{v7} are negative SCCs, {v6} and {v8, v9} are positive SCCs, and {v5} is a
trivial positive SCC.

relies on the fact that weights of cycles are integers and thus two cycles of weight −p < 0
and p′ > 0 can be concatenated enough times to obtain a cycle of weight 0.

Proposition 1.14. A shortest-path game G is divergent if and only if, in each SCC of G,
all simple cycles are either all positive, or all negative.

Computing the values We already know how to compute vertices of value +∞ in
polynomial time, thanks to attractors. We now assume that all values are in Z ∪ {−∞}.
The first heuristics studied before explains that the value of vertices can safely be computed
SCC by SCC in a bottom-up fashion (starting with target vertices).

Example 1.15. Consider the shortest-path game of Figure 1.8. Near each vertex is
placed its value. By a computation of the attractor of the target for Min, we obtain
directly that v4 and v7 have value +∞. The inverse topological order on SCCs prescribes
then to compute first the values for the SCC {v8, v9}, with target vertex , associated
with value 0. Then, we continue with SCC {v6}, also keeping a new target vertex v8 with
(already computed) value 0. For the trivial SCC {v5}, a single application of the value
iteration operator F suffices to compute the value. Finally, for the SCC {v1, v2, v3, v4},
we keep a new target vertex v5 with value 1. 10 Notice that this game is divergent, since,
in each SCC, all simple cycles have the same sign.

For a divergent game G, Proposition 1.14 allows us to know in polynomial time if a
given SCC is positive or negative, i.e. if all cycles it contains are positive or negative,
respectively: it suffices to consider an arbitrary cycle of it, and compute its weight. A
trivial SCC (i.e. with a single vertex and no edges) will be arbitrarily considered positive.

We have already seen in page 23 that if a game does not contain any negative cycle
(like in a positive SCC), the value iteration algorithm stabilises after a number of steps at
most the number of vertices of the SCC.

10. This means that, in the definition of F , a vertex v of Vt is indeed mapped to its previously computed
value, not necessarily 0.

30

1 Shortest-Path and Total-Payoff Games

Example 1.16. For the SCC {v8, v9} of the game in Figure 1.8, starting from a vector
mapping v8 and v9 to +∞, and , to 0, after one iteration, the value of v8 changes for
value 0, and after the second iteration, the value of v9 stabilises to value 2.

Consider then the case of a negative SCC. Contrary to the previous case, we must deal
with vertices of value −∞. However, in a negative SCC, those vertices are easy to find
(contrary to the general case of (non divergent) games where the problem of deciding if a
vertex has value −∞ is as hard as solving mean-payoff games, by Theorem 1.4). These
are all vertices where Max cannot unilaterally guarantee to reach a target vertex:

Proposition 1.17. In a negative SCC with no vertices of value +∞, vertices of value
−∞ are all the ones not in the attractor for Max to the targets.

Thus, we can compute vertices of value −∞ in polynomial time for a negative SCC.
Then, finite values of other vertices can be computed in polynomial time with the following
procedure. From a negative SCC G that has no more vertices of value +∞ or −∞, consider
the dual (positive) SCC G̃ obtained by:

— switching vertices of Min and Max;
— taking the opposite of every weight in edges.

Sets of strategies of both players are exchanged in those two games, so that the upper value
in G is equal to the opposite of the lower value in G̃, and vice versa. Since shortest-path
games are determined (Theorem 1.2), the value of G is the opposite of the value of G̃,
that can be computed in polynomial time by the value iteration procedure, as observed
before. Alternatively said, we may interpret this result as follows:

Proposition 1.18. The value iteration algorithm, initialised with all values being −∞,
applied on a negative SCC with n vertices, and no vertices of value +∞ or −∞, stabilises
after at most n steps.

Example 1.19. Consider the SCC {v1, v2, v3, v4} of the game in Figure 1.8, where the
value of vertex v5 has been previously computed. We already know that v4 has value +∞
so we do not consider it further. The attractor of {v5} for Max is {v2, v3}, so that the
value of v1 is −∞. Then, starting from the vector mapping v2 and v3 to −∞, the value
iteration algorithm computes this sequence of vectors: (−9,−∞) (Max tries to maximise
the payoff, so they prefer to jump to the target to obtain −10 + 1 than going to v3 where
they get −1−∞, while Min chooses v2 to still guarantee 0−∞), and then (−9,−9) (now,
Min has a choice between the target giving 0 + 1 or v3 giving 0− 9) which stabilises.

Class decision We explain why deciding the divergence of a shortest-path game is an
NL-complete problem when weights are encoded in unary. First, to prove the membership
in NL, notice that a shortest-path game is not divergent if and only if there is a positive
cycle and a negative cycle, both of length at most |V |, and belonging to the same SCC. 11

To test this property in NL, we first guess a starting vertex for both cycles. Verifying that
those are in the same SCC can be done in NL. Then, we guess the two cycles on-the-fly,

11. If the game is not divergent, there exists an SCC containing a negative simple cycle and a positive
one by Proposition 1.14. This implies the existence of a negative cycle and a positive cycle in the same
SCC, both of length at most |V |. Reciprocally, this property implies the non-divergence, by the same
proof as for Proposition 1.14.

31

1 Shortest-Path and Total-Payoff Games

keeping in memory their cumulated weights (smaller than W × |V |, with W the biggest
weight in the game, and thus of size at most logarithmic in the size of G, if weights are
encoded in unary), and stop the on-the-fly exploration when the length of the cycles
exceeds |V |. Therefore testing divergence is in coNL = NL [Imm88; Sze88].

The NL-hardness (indeed coNL-hardness, which is equivalent [Imm88; Sze88]) is shown
by a reduction of the reachability problem in a finite automaton. More precisely, we
consider a finite automaton with a starting state and a different target state without
outgoing transitions. We construct from it a shortest-path game by distributing all states
to Min, and equipping all edges with weight 1. We also add a loop with weight −1 on the
target state and an edge from the target vertex to the initial state with weight 0. Then,
the game is not divergent if and only if the target can be reached from the initial state in
the automaton.

When weights are encoded in binary, the previous decision procedure gives NP member-
ship. However, we can achieve a PTIME upperbound with the following procedure. For
every vertex v, let Cv = {wt(ρ) | ρ cycle containing v}. Using Floyd-Warshall’s algorithm,
it is possible to compute in polynomial time inf Cv (in particular, it detects if Cv ≠ ∅), as
well as supCv in a dual fashion. Then, Proposition 1.14 allows us to guarantee that a
shortest-path game G is divergent if and only if 0 ̸∈ [inf Cv, supCv], for all vertices v such
that Cv ̸= ∅.

Almost-divergence extension With divergent shortest-path games, we described a
class where the value problem is polynomial instead of pseudo-polynomial. This gain in
complexity came at a cost, the absence of cycles of weight 0. However, one could argue
that such cycles are useful from a modelling point of view. We argue that some of those
cycles can be allowed, without losing too much:

Definition 1.20. A shortest-path game G is almost-divergent if every cycle ρ of weight 0
satisfies the following property: for every decomposition of ρ into the concatenation of
two smaller cycles ρ′ and ρ′′, ρ′ and ρ′′ have weight 0 too.

Intuitively, a game is almost-divergent if its cycles of weight different from 0 cannot
be combined to create a cycle of weight 0. Almost-divergence is a weaker property than
divergence, and thus every divergent weighted game is almost-divergent. Theorem 1.13
can be extended as follows:

Theorem 1.21. The value problem over almost-divergent shortest-path games is PTIME-
complete. Moreover, deciding if a given shortest-path game is almost-divergent is an
NL-complete problem when weights are encoded in unary, and is in PTIME when they are
encoded in binary.

The proof is more involved than in the divergent case, since 0-cycles must be taken
care of in a special way. We will only describe the machinery to solve this case in the
timed setting of Chapter 4, but we refer readers interested to knowing further details on
the untimed setting to the article [BMR21].

Conclusion

In this chapter, we have provided pseudo-polynomial time algorithms to solve total-
payoff games with arbitrary (positive and negative) weights, as well as shortest-path games.

32

1 Shortest-Path and Total-Payoff Games

These algorithms are variations of the classical value iteration technique. The result on
total-payoff games relies on a reduction to shortest-path games. We have characterised
the optimal strategies that one can extract in total-payoff and shortest-path games.

In the specific case of shortest-path games, we have introduced divergence and almost-
divergence, two natural restrictions that allow us to recover a polynomial-time (even linear
time) algorithm, more amenable to results in the presence of weights of large amplitude
in the graph.

As future works, we would like to push further the shortest-path games in a context of
non-zero sum games where each player wants to optimise their cumulated payoff until
reaching their own target. As a possible direction, the search for Nash equilibria in this
context will most likely benefit from our better understanding of optimal strategies for
both players in the underlying zero-sum games. We have initiated this study in [Bri+16a],
with an application to the efficient energy distribution in a smart grid. This bridge from
zero-sum to non-zero-sum games has also been investigated for concurrent priced games
by [Kli+12], and by [BDS13] to find simple Nash equilibria for large classes of multiplayer
cost games.

Another long-term perspective is to continue searching for polynomial-time algorithms
for the whole class of shortest-path and total-payoff games. We have seen that it strongly
relates to mean-payoff games, for which the search for such polynomial-time algorithms is
a long-standing open question. We claim that shortest-path games, with the presence of
the special target, gives a decomposition of the game that is not present in mean-payoff
games, and could lead to new algorithms. As a next direction, the use of stochasticity (as
we will study in Chapter 5) could give us new insights towards polynomial-time algorithm,
based on a parallel with interior-point methods to solve linear programs.

33

2 Weighted Timed Games: Models and
Problems

This chapter follows the presentation of the submitted journal article [BMR21] (written with
Damien Busatto-Gaston and Pierre-Alain Reynier), and recalls results obtained with Thomas
Brihaye, Gilles Geeraerts, Axel Haddad, Shankara Narayanan Krishna, Engel Lefaucheux, Lak-
shmi Manasa, and Ashutosh Trivedi, published in the conferences CONCUR [Bri+14] and
FSTTCS [Bri+15a], as well as a submitted journal article [Bri+21].

Table of contents

2.1 Modelling real-time constraints . 34
2.2 Weighted timed games . 35
2.3 Problems and first results . 39
2.4 Region abstraction . 40
2.5 Corner-point abstraction . 43

We have studied in the previous chapters shortest-path games and total-payoff games
played on finite graphs equipped with integer weights. From a modelling point of view,
these discrete games do not allow us to consider thinner behaviours due to real-time
evolution. For instance, consider a model of costs for electrical power consumption.
Fixed costs, like the ones in shortest-path games, are useful (e.g. contract costs) but not
sufficient. Indeed, most of the cost depends (linearly) on the time a given appliance is
used. Discretising the time is always a possibility, but this makes the model size blow
out, and we do not know if we lose too much precision, thus missing possibly interesting
behaviours. We will instead model such situations with timed automata [AD94] equipped
with weights, both on transitions (to model fixed costs) and on vertices (to model costs
depending linearly on the time spent in a vertex).

In this chapter, we introduce the models of weighted timed games we will use, based
on the presentation of [BMR21] (that itself benefits from the historic introduction of this
model [ABM04; Bou+04b]), focusing only on the shortest-path objective we have studied
in the previous chapter.

2.1 Modelling real-time constraints

We first introduce notions that let us express timing constraints, useful to then define
weighted timed games, and introduce classical tools for their study.

Let X = {x1, . . . , xn} be a finite, non-empty set of variables called clocks. A valu-
ation ν : X → R⩾0 is a mapping from clocks to non-negative real numbers, such that
ν(x1), . . . , ν(xn) are called the coordinates of ν. Equivalently, ν can be seen as a point in

34

2 Weighted Timed Games: Models and Problems

space RX
⩾0. We denote 0 the valuation such that for all x ∈ X , ν(x) = 0. Given a real

number t ∈ R, we define ν + t as the valuation such that ∀x ∈ X , (ν + t)(x) = ν(x) + t
if it exists. 1 If t is non-negative, we say that we performed a time elapse of delay t.
The time-successors of ν are the valuations ν + t with t ⩾ 0. Similarly, we refer to all
ν + t in RX

⩾0 with t ⩽ 0 as time-predecessors of ν. The set of points that are either
time-predecessors or time-successors of a valuation ν form the unique “diagonal” line in
RX
⩾0 that contains ν. If Y is a subset of X , we define ν[Y := 0] as the valuation such that

∀x ∈ Y, (ν[Y := 0])(x) = 0 and ∀x ∈ X\Y, (ν[Y := 0])(x) = ν(x). This operation is called
a reset of clocks Y.

We extend those notions to sets of valuations in a natural way. The set of time-successors
of Z ⊆ RX

⩾0, denoted PostTime(Z), contains the valuations that are time-successors of
valuations in Z. The reset of Z ⊆ RX

⩾0 by Y, denoted Z[Y := 0], contains the valuations
ν[Y := 0] such that ν ∈ Z.

The term atomic constraint will refer to an affine inequality in one of the following
forms:

— A strict (resp. non-strict) non-diagonal atomic constraint over clock x ∈ X and
constant c ∈ Q is an inequality of the form x ▷◁ c with ▷◁ ∈ {>,<} (resp. ▷◁ ∈
{⩾,⩽}).

— A strict (resp. non-strict) diagonal atomic constraint over clocks x and y ∈ X
and constant c ∈ Q is an inequality of the form x − y ▷◁ c with ▷◁ ∈ {>,<}
(resp. ▷◁ ∈ {⩾,⩽}).

Let ⊤ and ⊥ denote two special atomic constraints, defined as x ⩾ 0 and x < 0 for an
arbitrary x ∈ X . A guard g over X is a finite conjunction of atomic constraints over
clocks in X . In particular, guards let us define x = c as shorthand for x ⩽ c ∧ x ⩾ c, and
c1 < x < c2 as shorthand for x > c1 ∧ x < c2. A guard is said strict (resp. non-strict,
diagonal, non-diagonal) if all of its atomic constraints are strict (resp. non-strict, diagonal,
non-diagonal). We let Guards(X) denote the set of all guards over X , and Guardsnd(X)
the subset of non-diagonal guards. For all constants c ∈ Q and ▷◁ ∈ {⩾,⩽, >,<}, we
say that valuation ν ∈ RX

⩾0 satisfies the atomic constraint x ▷◁ c (resp. x− y ▷◁ c), and
write ν |= x ▷◁ c (resp. ν |= x− y ▷◁ c), if ν(x) ▷◁ c (resp. ν(x)− ν(y) ▷◁ c). We say that
valuation ν ∈ RX

⩾0 satisfies guard g, and write ν |= g, if ν satisfies all atomic constraints
in g. For g ∈ Guards(X), let JgK denote the set of all ν ∈ RX

⩾0 such that ν |= g. Such
sets are called zones and form convex polyhedra of RX

⩾0. A guard g is said satisfiable
when the zone JgK is non-empty, and a zone is called rectangular when the associated
guard is non-diagonal. The universal zone refers to J⊤K = RX

⩾0 and the empty zone refers
to J⊥K = ∅. Guard g is the closed version of a satisfiable guard g where every strict
constraint of comparison operator < or > is replaced by its non-strict version ⩽ or ⩾.
The zone JgK is the topological closure of Z = JgK, and is also denoted Z.

2.2 Weighted timed games

We now turn our attention to weighted timed two-player games with a shortest-path
objective towards a set of target locations. The semantics will be given in terms of an
infinite shortest-path game.

1. If t is negative, ν + t may not belong to RX
⩾0

35

2 Weighted Timed Games: Models and Problems

Definition 2.1. A weighted timed game (WTG) is a tuple G = ⟨LMin, LMax, Lt, Lu,X ,∆,wt, fwt⟩
with

— L = LMin ⊎LMax ⊎Lt a finite set of locations split between players Min and Max (in
drawings, locations belonging to Min are depicted by circles and the ones belonging
to Max by squares) and a set of target locations;

— Lu ⊆ LMin ⊎ LMax a set of urgent locations where time cannot be delayed;

— X a finite set of clocks;

— ∆ ⊆ L× Guardsnd(X)× 2X × L a finite set of transitions ℓ
g,Y−−→ ℓ′ from location ℓ

to location ℓ′, labelled by a non-diagonal guard g and a set Y of clocks to reset (in
drawings, the reset of a clock x ∈ Y will be denoted by x := 0);

— wt : ∆⊎L → Z a weight function associating an integer weight with each transition
and location;

— and fwt : Lt ×RX
⩾0 → R∞ is a function mapping each target configuration to a final

weight.

The addition of final weights is not standard, but we will use it in the process of solving
those games: in any case, it is possible to simply map a given target location to the
weight 0, allowing us to recover the standard definitions of the literature.

The presence of urgent locations is also unusual: in a timed automaton, urgency can be
modelled with an additional clock u that is reset just before entering the urgent location
and with guards u = 0 on outgoing transitions. However, when limiting the number of
clocks as we will do in Chapter 3, we regain modelling capabilities by allowing for such
urgent locations. The weight of an urgent location is never used, and will thus not be
given in drawings: instead, urgent locations will be displayed with a u inside.

The semantics of a weighted timed game G is defined in terms of an (infinite) shortest-
path game JGK whose vertices are configurations (ℓ, ν) ∈ L×RX

⩾0. Configurations are split
into players according to the location ℓ, and a configuration (ℓ, ν) is a target if ℓ ∈ Lt.
The labels of JGK are given by R⩾0 ×∆ and will encode the delay that a player wants to
spend in the current location, before firing a certain transition. For every delay t ∈ R⩾0,
transition δ = ℓ

g,Y−−→ ℓ′ ∈ ∆ and valuation ν, JGK contains an edge (ℓ, ν)
t,δ−→ (ℓ′, ν ′) if

— ν + t |= g;

— ν ′ = (ν + t)[Y := 0];

— and t = 0 if ℓ ∈ Lu.

The weight of such an edge takes into account both discrete and continuous costs: it is
given by t× wt(ℓ) + wt(e).

As usual in related work [ABM04; Bou+04b; BJM15], we will make some hypotheses
on the games.

— First, we will assume that weighted timed games have only non-diagonal guards
where all constants are integers: this is without loss of generality since we can apply
the methods of [Bér+98] to remove diagonal guards.

— Moreover, we will assume that all clocks are bounded by the greatest constant M
that appears in guards, and we restrict JGK to configurations in L× [0,M)X . This
is known to be without loss of generality for (weighted) timed automata [Beh+01,

36

2 Weighted Timed Games: Models and Problems

−2

ℓ1

2

ℓ2

,
fwt = 0

−1

ℓ4

−2

ℓ3

u

ℓ5

x ⩽ 2
x := 0
0

1 ⩽ x < 3
1

x < 3
0

2 ⩽ x < 3
3

x < 3
0

x < 3
0

x < 3
0

x < 3
x := 0
3

1 < x < 3
0

x := 0
1

Figure 2.1 – A weighted timed game with a single clock x. Weights are indicated in bold
font on locations and transitions. The target location is ,, whose final
weight function is zero. Location ℓ5 is urgent.

Theorem 2]: it suffices to replace transitions with unbounded delays with self-loop
transitions periodically resetting the clocks. We do not know if it is the case for the
weighted timed games defined above. Indeed, the technique of [Beh+01] cannot be
directly applied. This would give too much power to player Max that would then be
allowed to loop in a location where an unbounded delay could originally be taken
before going to the target. In [Bou+04b], the situation is simpler since the game is
concurrent, and thus Min always has a chance to move outside of such a situation.
Trying to detect and avoid such situations in our turn-based case seems difficult in
the presence of negative weights, since the opportunities of Max crucially depend
on the configurations of value −∞ that Min could control afterwards: we will see
in Proposition 4.15 that detecting such configurations is undecidable, which is an
additional evidence to motivate the decision to focus only on bounded weighted
timed games.

— Without loss of generality, we also suppose the absence of deadlocks in JGK except
on target locations, i.e. for each location ℓ ∈ L\Lt and valuation ν ∈ [0,M)X , there
exist t ∈ R⩾0 and δ = (ℓ, g,Y, ℓ′) ∈ ∆ such that (ℓ, ν) t,δ−→ (ℓ′, ν ′), and no transitions
start from Lt.

— We finally assume that the final weight functions satisfy a sufficient property ensuring
that they can be encoded in finite space: they must be piecewise affine with a finite
number of pieces and are continuous on each region (we will recall in Section 2.4
the formal definition of regions). In particular, infinite final weights are constant
over regions, i.e. if some configuration (ℓt, ν) has final weight +∞ or −∞, then for
every valuation ν ′ in the same region as ν, fwt(ℓt, ν) = fwt(ℓt, ν

′). The standard
final weight function (ℓt, ν) 7→ 0 satisfies this property. Moreover, the computations
we will perform in the following maintain this property as an invariant.

An example of weighted timed game satisfying those assumptions is depicted on
Figure 2.1.

Notions of plays, strategies and values are obtained for G, by considering the similar

37

2 Weighted Timed Games: Models and Problems

2/3 x

Val

0 1 2 3

0

1

2

3
Val(ℓ4, ·)

Val(ℓ2, ·)

Figure 2.2 – Value functions

notions on JGK, defined in Chapter 1. Because of the infinite nature of the timed games,
optimal strategies may no longer exist: for example, a player may want to let time elapse
as much as possible, but with a delay t < 1 because of a strict guard, preventing them to
obtain the optimal value. We naturally extend the definition to almost-optimal strategies,
taking into account small possible errors: we say that a strategy σ⋆

Min of Min is ε-optimal
if, for all initial configurations (ℓ0, ν0)

Val((ℓ0, ν0), σ
⋆
Min) ⩽ Val(ℓ0, ν0) + ε

Symmetrically, a strategy σ⋆
Max of Max is ε-optimal if, for all initial configurations (ℓ0, ν0)

Val((ℓ0, ν0), σ
⋆
Max) ⩾ Val(ℓ0, ν0)− ε

Example 2.2. In the weighted timed game of Figure 2.1, observe that the location ℓ1 of
Max has value +∞ no matter the initial valuation in [0, 3), since Max can avoid the target.
Moreover, locations ℓ3 and ℓ5 of Min have value −∞ no matter the initial valuation in
[0, 3): indeed, Min can loop in-between the two locations, cumulating a weight ⩽ −1 each
time, before switching to the target when the weight is low enough. The value in ℓ4 is
only determined by the transition to , (since Max tries to avoid ℓ3), and depicted in
blue in Figure 2.2. In location ℓ2, the value that Min can get while jumping through the
transition to , is depicted in red. While jumping to ℓ2 after a delay 0 (since wt(ℓ2) > 0,
Min wants to minimise the time spent in this location), Min can also obtain the value
of ℓ4. Therefore, the value of location ℓ2 is obtained as the minimum of these two curves,
depicted in green. Observe the intersection point in x = 2/3 requiring to refine the usual
regions (to be formally defined in Section 2.4).

As a corollary of Theorem 1.2 (that was stated even in infinite shortest-path games),
we obtain that:

Theorem 2.3. All weighted timed games are determined, i.e. Val(ℓ, ν) = Val(ℓ, ν) for
each location ℓ and valuation ν.

In the rest of this manuscript, we therefore use the notation Val to refer to both values.
We also introduce the notation Val(ℓ) regrouping all values of configurations in location ℓ,
i.e. a mapping RX

⩾0 → R∞ such that Val(ℓ)(ν) = Val(ℓ, ν) for all ν ∈ RX
⩾0.

38

2 Weighted Timed Games: Models and Problems

We denote by wL
max (resp. w∆

max) the maximal weight in absolute values of locations
(resp. of transitions) in G:

wL
max = max

ℓ∈L
|wt(ℓ)| and w∆

max = max
δ∈∆

|wt(δ)|

Moreover, we denote by wmax a bound on the weight of edges in JGK, that exists since
clocks are bounded by M :

wmax = MwL
max + w∆

max

The integer wmax is at most exponential in the size of G, and can thus be stored in
polynomial space.

2.3 Problems and first results

We consider several problems related to weighted timed games throughout this manuscript,
as already stated in the previous chapter: the existence problem, the value problem and
the strategy synthesis problem. Because optimal strategies may no longer exist, the
synthesis problem now takes as an input a weighted timed game and an error paramater ε,
and asks for the computation of an ε-optimal strategy for Min.

It is well-known that the existence problem is undecidable, even in the presence of only
non-negative weights in locations and transitions. We sharpened this result in [Bri+14],
by reducing the necessary number of clocks to obtain this undecidability result:

Theorem 2.4. The existence problem is undecidable in weighted timed games:

— with three or more clocks and only non-negative weights [BBR05; BBM06];

— with two or more clocks and arbitrary weights [Bri+14].

Indeed, in [Bri+14], we also show that this undecidability result is very robust since it
continues to hold (with the same number of clocks) if we want to find a strategy for Min
whose value v satisfies v ▷◁ r with ▷◁ ∈ {<,=, >,⩾}. We also studied the bounded-time
restriction, hoping to recover decidability as it is the case in many related problems [OW10;
Bri+13]. However, with a sufficient number of clocks we still get undecidability:

Theorem 2.5 ([Bri+14]). Let G be a weighted timed game, and constants K,T ∈ N. The
decision problem corresponding to the existence of a strategy of Min reaching the target
with a shortest-path payoff at most K, while keeping the total time elapsed within T units,
is undecidable with five or more clocks (and even with weights 0 and 1).

In [Bri+14], we were also able to modify the proof in order to show undecidability of
a slightly different problem, asking for Min to reach target locations (that is thus not
a deadlock) infinitely often each time with an accumulated weight in a given interval
[−η, η] (with η > 0).

It is less trivial to formally relate the existence problem with the value problem (asking
whether Val(ℓ, ν) ⩽ α). Bouyer, Jaziri and Markey [BJM15] have formally shown that,
already in the non-negative case:

Theorem 2.6 ([BJM15]). The value problem is undecidable.

39

2 Weighted Timed Games: Models and Problems

We will study in the following chapters classes of weighted timed games where value
and existence problems are decidable, and also study the synthesis problem in this case.

When the value problem is undecidable, we also consider the value approximation
problem that consists, given a precision ε ∈ Q>0, in computing an ε-approximation
of Val(ℓ,0). More generally, we will try to compute an ε-approximation of the whole
value function (and not only for the particular initial configuration (ℓ,0)): this means
that we want to compute (in a format that we will detail when needed) a function
V : L × [0,M)X → R∞ such that ∥Val − V∥∞ ⩽ ε, where ∥ · ∥∞ denotes the classical
∞-norm of mappings, so that ∥f∥∞ = supx |f(x)|.

2.4 Region abstraction

The analysis of timed systems often rely on the crucial notion of regions, as introduced
in the seminal work on timed automata [AD94]. We will define an extension of regions
that will be useful in the following, and see regions as a special case.

Given a finite set of rational numbers S ⊆ Q, S is said to be of granularity 1/N if
S ⊆ QN = {c/N | c ∈ Z}. Such N always exists, and one can find the smallest one by
decomposing elements of S as irreducible fractions c/c′ with c ∈ Z, c′ ∈ N \ {0} and
use the least common multiple of all c′ as N . A guard g is said to be of granularity
1/N if all constants in the atomic constraints of g form a set of granularity 1/N . A
zone is of granularity 1/N if it can be described by a guard of granularity 1/N . Let
GuardsN (X ,M) denote the set of guards over X bounded by M and of granularity 1/N ,
and let GuardsndN (X ,M) denote the non-diagonal ones. Given a finite set of guards
G ⊆ Guardsnd(X ,M), we can find N such that G ⊆ GuardsndN (X ,M), by denoting S ⊆ Q
the set of constants used in atomic constraints of G and using N the smallest integer
such that S is of granularity 1/N . For all a ∈ R⩾0, ⌊a⌋ ∈ N denotes the integral part of
a, and fract(a) ∈ [0, 1) its fractional part, such that a = ⌊a⌋+ fract(a).

Definition 2.7. With respect to the set X of clocks, a granularity N ∈ N \ {0} and an
upper bound M ∈ N \ {0}, we define 1/N -regions as subsets of valuations r characterised
by a valuation ι ∈ [0,M)X called the integral part of r such that ι(x) ∈ QN for every
x ∈ X , and an ordered partition R0 ⊎R1 ⊎ · · · ⊎Rm splitting X into m+ 1 subsets. The
ordered partition is denoted 0 = R0 < R1 < · · · < Rm, where R0 can be empty but
Ri ̸= ∅ for 1 ⩽ i ⩽ m. We denote by RegN (X ,M) the set of 1/N -regions bounded by M .

A valuation ν ∈ [0,M)X belongs to r if

— for all x ∈ X , ι(x)N = ⌊ν(x)N⌋;
— for all x ∈ R0, fract(ν(x)N) = 0;

— for all 0 ⩽ i ⩽ m, for all x, y ∈ Ri, fract(ν(x)N) = fract(ν(y)N).

— for all i, j such that 0 ⩽ i < j ⩽ m, for all x ∈ Ri and all y ∈ Rj , fract(ν(x)N) <
fract(ν(y)N).

With granularity N = 1, we recover the classical notion of regions from [AD94]. The
set of valuations contained in a 1/N -region r characterised by ι and 0 = {x01, . . . , x0m0

} <
{x11, . . . , x1m1

} < · · · < {xm1 , . . . , xmmm
} can be described by a formula, constructed as a

conjunction of inequalities over X : If we let f(x) denote the term (x− ι(x))N , and Ei

40

2 Weighted Timed Games: Models and Problems

x1

x2

1 20

1

2

x1

x2

1 20

1

2

Figure 2.3 – All 1/1-regions in Reg1({x1, x2}, 2) on the left, their refinement of granularity
1/3 in Reg3({x1, x2}, 2) on the right.

denote the formula f(xi1) = · · · = f(ximi
) for every 0 ⩽ i ⩽ m, then ν ∈ r if and only if its

coordinates satisfy

E0 ∧ E1 ∧ · · · ∧ Em ∧ 0 = f(x01) < f(x11) < · · · < f(xm1) < 1 .

Therefore, every 1/N -region is a zone of granularity 1/N , associated to a guard in
GuardsN (X ,M). Regions of RegN (X ,M) form a finite partition of [0,M)X , and the
number |RegN (X ,M)| of 1/N -regions is polynomial in MN and exponential in |X |. If
ν is a valuation in [0,M)X , [ν] denotes the unique region that contains ν. Valuations
in the same 1/N -region satisfy the same guards in GuardsN (X ,M). In fact, zones
associated to guards in GuardsN (X ,M) can be described as a finite union of regions in
RegN (X ,M). If r is a 1/N -region in RegN (X ,M), then the time-successor valuations
in PostTime(r) ∩ [0,M)X form a finite union of regions in RegN (X ,M), and the reset
r[Y := 0] of Y ⊆ X is a region in RegN (X ,M). A 1/N -region r′ is said to be a time
successor of the 1/N -region r if there exists ν ∈ r, ν ′ ∈ r′, and t > 0 such that ν ′ = ν + t.

Example 2.8. Figure 2.3 represents the 24 regions of granularity N = 1 with upper
bound M = 2 over two clocks. The green region is characterised by ι = (1, 0) and
0 = {x1} < {x2}, corresponds to the formula 0 = x1 − 1 < x2 < 1 and thus is equal to the
zone Jx1 = 1 ∧ 0 < x2 < 1K. The red region is characterised by ι = (0, 1) and 0 = {x1, x2}.
The black region is characterised by ι = (1, 1) and 0 < {x1} < {x2}. The blue region is
characterised by ι = (0, 0) and 0 < {x1, x2}.

The partition into regions can be maintained throughout the play in a weighted timed
game. By forgetting about the precise valuation of clocks, we obtain a region abstraction
(that is usually called the region automaton in the literature).

Definition 2.9. Given a weighted timed game G = ⟨LMin, LMax, Lt, Lu,X ,∆,wt, fwt⟩
such that all clocks are bounded by M and all guards belong to GuardsndN (X ,M) for some
granularity 1/N , we define the region abstraction of G as the finite labelled transition sys-
tem ⟨L×RegN (X ,M), T ⟩ labelled over RegN (X ,M)×∆, where T contains all transitions

(ℓ, r)
r′′,δ−−→ (ℓ′, r′) such that

— δ = ℓ
g,Y−−→ ℓ′ is a transition of G;

— r′′ is a time-successor of r such that r′′ = r in case ℓ ∈ Lu;

— r′′ |= g;

— r′′[Y := 0] = r′.

41

2 Weighted Timed Games: Models and Problems

The states of the region abstraction are called region states, and its paths are called
region paths. As there are finitely many regions, the region abstraction of G is a finite
transition system, where paths p represent a sequence of regions alternating between
letting time elapse and taking edges, following some path π in G. We say that π contains
the region path p. From a play ρ = (ℓ0, ν0)

t1,δ1−−−→ (ℓ1, ν1)
t2,δ2−−−→ · · · in G, we can construct

a region path p = (ℓ0, [ν0])
[ν0+t1],δ1−−−−−−→ (ℓ1, [ν1])

[ν1+t2],δ2−−−−−−→ · · · , and say that ρ follows p.
From the region abstraction, we can construct a region game that can be seen as a

product of the original weighted timed game with the region abstraction.

Definition 2.10. Given a weighted timed game G = ⟨LMin, LMax, Lt,X ,∆,wt, fwt⟩ such
that all clocks are bounded by M and all guards belong to GuardsndN (X ,M) for some gran-
ularity 1/N , we define the region game of G as the weighted timed game RN (G) = ⟨LMin×
RegN (X ,M), LMax × RegN (X ,M), Lt × RegN (X ,M), Lu × RegN (X ,M),X ,∆′,wt′, fwt′⟩
whose locations are region states, wt′ and fwt′ are obtained trivially from wt and
fwt by forgetting about regions, and ∆′ is defined by transforming every transition
(ℓ, r)

r′′,δ−−→ (ℓ′, r′) in T , where δ is labelled by (g,Y), into a transition (ℓ, r)
g′′,Y−−−→ (ℓ′, r′),

with Jg′′K = r′′ ⊆ JgK.

Every play in G exists in RN (G) as a play following a region path p, and conversely
every play in RN (G) following some region path p is contained in the play π of G followed
by p. By projecting away the region information of RN (G), we obtain that for all ℓ ∈ L,
1/N -regions r, and ν ∈ r, ValG(ℓ, ν) = ValRN (G)((ℓ, r), ν).

In particular, this enrichment with region information is enough to solve (unweighted)
reachability timed games, where the objective of Min is to reach the target. We can model
that in the setting of weighted timed games by letting all weights be 0. Then, Min can
guarantee value 0 if and only if they have a strategy guaranteeing to reach the target set
of locations. These games have been studied in [AM99; JT07] showing that the existence
problem is EXPTIME-complete (with at least two clocks), by using the region game as a
tool. Indeed, in this context, the winner is constant over each region, which enables the
possibility to only consider an untimed version of the region game, resulting in the study
of a untimed reachability game. Even better, we may let all weights of locations be 1,
and weights of transitions be 0, in which case the cumulated weight of a play is the time
spent before reaching the target. This gives rise to the so-called reachability-time games
where Min wants to reach the target as soon as possible: the existence problem for those
games is also EXPTIME-complete [AM99; JT07].

A timed game G can be scaled by N ∈ N \ {0} by multiplying every constant in
the guards of G by N . The executions in the scaled game are scaled versions of the
executions in G, where delays and valuations are multiplied by N . This means that we
can restrict the constants to integer values without loss of generality. Formally, let G be a
weighted timed game, with guards in GuardsndN (X ,M), such that N ∈ N \ {0} is as small
as possible for the constants in G. There exists a weighted timed game G′ with guards
in Guardsnd1 (X ,MN) such that all problems on G can be solved by considering similar
problems on G′. Moreover, if constants are encoded in binary, the size of G′ is at most
quadratic in the size of G [AD94].

From now on, we assume that the guards in the weighted timed games we consider
have granularity 1/N = 1, such that every constant that appears in atomic constraints
belong to Z. In this case, we omit N from previous notations about regions, such that

42

2 Weighted Timed Games: Models and Problems

1/N -regions are simply called regions, RegN (X ,M) is denoted Reg(X ,M), and RN (G)
becomes R(G).

2.5 Corner-point abstraction

Despite all the interest and success of regions to study timed systems, they are not
sufficient to handle weighted timed games (even with a single player). Indeed, for a
single-clock case, and in a location ℓ of weight 1, spending time in ℓ from region (0, 1) to
region {2} can cost any possible weight in the interval (2, 3). We therefore must also keep
a more precise information of where we are inside each region. This is the goal of the
corner-point abstraction used in [Beh+01; Lar+01] to study one-player weighted timed
games with non-negative weights, and generalised in [Bou+07] to handle negative weights,
and in [BBL08] for the multi-cost setting.

If r is an 1/N -region, let r denote its topological closure, i.e. the smallest zone that
contains r associated to a non-strict guard. The corners of r are valuations in r that
belong to QX

N . If r is characterised by an integral part ι and a clock ordering 0 = R0 <
R1 < · · · < Rm, then ι is a corner of r. If m = 0 then r = {ι}, otherwise r does not
include its corners but contains valuations arbitrarily close to them. The corners of r are
the vertices of the polytope r, such that r is their convex hull.

Example 2.11. Corners of the green region in Figure 2.3 are the valuations (1, 0)
and (1, 1).

We call corner state a triple (ℓ, r, v) that contains information about a region state
(ℓ, r) of RN (G), and a corner v of the 1/N -region r. Every region has at most |X | + 1
corners.

Definition 2.12. The corner-point abstraction ΓN (G) of a weighted timed game G is the
weighted timed game obtained as a refinement of RN (G) where guards on transitions are
enforced to stay on one of the corners of the current 1/N -region: the locations of ΓN (G)
are all corner states of RN (G), associated to each player accordingly, and transitions

are all (ℓ, r, v) g′′,Y−−−→ (ℓ′, r′, v′) such that there exists δ = (ℓ, r)
g,Y−−→ (ℓ′, r′) a transition

of RN (G) such that the model of guard g′′ is a corner v′′ satisfying the guard g (recall
that g is the closed version of g), v′′ ∈ PostTime(v), v′ = v′′[Y := 0], and there exist two

valuations ν ∈ r, ν ′ ∈ r′ such that ((ℓ, r), ν)
t′,δ−−→ ((ℓ′, r′), ν ′) for some t′ ∈ R⩾0 (the latter

condition ensures that the edge between corners is not spurious, i.e. created by the closure
of guards). Weights of locations and transitions are trivially recovered from ΓN (G). We
define the final weight function of ΓN (G) over the only valuation v reachable in location
(ℓ, r, v) (with ℓ ∈ Lt) by fwt((ℓ, r, v), v) = limν→v,ν∈r fwt(ℓ, ν) (the limit is well defined
since fwt is piecewise affine with a finite number of pieces on region r).

The weighted timed game ΓN (G) can be seen as a finite shortest-path game by removing
guards, resets and rates of locations, and replacing the weights of transitions by the actual
weight of jumping from one corner to another: a transition ((ℓ, r), v)

g′′,Y−−−→ ((ℓ′, r′), v′)
becomes an edge from ((ℓ, r), v) to ((ℓ′, r′), v′) with weight t · wt(ℓ) + wt(t), with t ∈ R⩾0

the only delay such that Jg′′K = {v + t}. Note that delay t is necessarily a rational of the
form α/N with α ∈ N, since it must relate corners of 1/N -regions. In particular, this

43

2 Weighted Timed Games: Models and Problems

(ℓ0, r0)

(ℓ1, r1) (ℓ2, r2)

(ℓ3, r3)

ρ

ρ

g0,Y0 g1,Y1 g2,Y2

Figure 2.4 – A play ρ (in blue), its projected path p in the region game (in black), and
one of its associated corner plays ρ (in green).

proves that the cumulated weight wt(ρ) of a finite play ρ in ΓN (G) is indeed a rational
number with denominator N .

We will call corner play every play ρ in the corner-point abstraction ΓN (G): it can
also be interpreted as an execution in G where all guards are closed (as explained in the
definition above). It straightforwardly projects on a finite path p in the region game
RN (G): in this case, we say again that ρ follows p. Figure 2.4 depicts a play, its projected
path in the region game and one of its associated corner plays.

Let ρ be a corner play following a region path p. The weight of ρ refers to its weight in
ΓN (G). It is possible to find a play ρ following p close to ρ, in the sense that we control
the difference between their respective cumulated weights: for all ε > 0, there exists a
play ρ in G following p such that |wt(ρ) − wt(ρ)| ⩽ ε. Thus, corner plays allow one to
obtain faithful information on the plays that follow the same path.

Lemma 2.13. If p is a finite region path in RN (G), the set of cumulated weights
{wt(ρ) | ρ play of G following p} is an interval bounded by the minimum and the maximum
values of the set {wt(ρ) | ρ corner play of ΓN (G) following p}.

The corner-point abstraction has originally been used (under the name of priced
regions) in [Beh+01] to solve one-player weighted timed games with only non-negative
weights (called priced timed automata) using a branch-and-bound state-space exploration
algorithm of the corner-point automaton. They notice that such algorithm is “guaranteed
to be rather inefficient” since it relies on the data structure of regions, that we know to
be prone to state-space explosion in practice. In [Lar+01], this drawback is solved by
using priced zones instead, described as a usual zone (the semantics of a conjunction of
atomic guards) and an affine function describing the weight over this zone: they choose
to represent it with an offset, as well as derivatives of the affine function with respect
to each clock-dimension. This work requires (as we do in this manuscript) all clocks
to be bounded. This last restriction is removed in [BCM16] by considering abstraction
techniques and effective inclusion checking of priced zones.

We will study in Chapter 3 a very restricted fragment of one-clock weighted timed game
(still with two-players and both positive and negative weights) where the corner-point
abstraction (with granularity N = 1) may faithfully be used, also advocating why this is
hopeless to generalise the use of such techniques for a more general fragment.

In Chapter 4, speaking about the divergent fragment we already studied in Section 1.5
for the untimed setting, we will see that the corner-point abstraction, though with
a granularity N ≠ 1, may also be used to obtained decidability or approximation
results. In this context, we will more precisely use some theoretical tools stemming
from the corner-point abstraction. Notably, when focussing on a cyclic region path

44

2 Weighted Timed Games: Models and Problems

(ℓ, r)

(ℓ1, r1) (ℓ2, r2)

(ℓ, r)

(ℓ, r)

Figure 2.5 – A region cycle p in the region game (in black), its associated corner plays
(in green), and its folded orbit graph (in blue). Note that there is no edge
between the top right corner and the bottom right corner, as no corner play
goes from the former to the latter.

p = (ℓ1, r = r1)
r′1,δ1−−−→ (ℓ2, r2)

r′2,δ2−−−→ · · · r′n,δn−−−→ (ℓ1, r) (that we call a region cycle in the
following), and to study some properties of the corner plays following this cycle, we only
need to consider the aggregation of all the behaviours following it. Inspired by the folded
orbit graphs (FOG) introduced in [Pur00], we define the folded orbit graph FOG(p) as a
graph whose vertices are the corners states of region r, and that contains an edge from
corner v to corner v′ if there exists a corner play ρ from (ℓ1, r, v) to (ℓ1, r, v

′) following p.
We fix ρ arbitrarily and label the edge between v and v′ in FOG(p) by this corner play: it
is then denoted by v

ρ−→ v′. An example is depicted in Figure 2.5. The folded orbit graph
inherits interesting topological properties from the corner-point abstraction. For instance,
an important property of the corner-point abstraction is that corner plays cannot get
stuck as long as they follow a region path: if p is a region path starting from (ℓ, r) and
ending in (ℓ′, r′), for all corners v of r and v′ of r′, there exist a corner play following p
that starts in (ℓ, r, v), and a corner play following p that ends in (ℓ′, r′, v′). With respect
to the folded orbit graph, this implies that for all vertices v, there exists at least one
outgoing edge v

ρ′−→ v′, and at least one incoming edge v′′
ρ′′−→ v in FOG(p).

45

3 Weighted Timed Games with One
Clock

This chapter presents some results obtained with Thomas Brihaye, Gilles Geeraerts, Axel
Haddad, Shankara Narayanan Krishna, Engel Lefaucheux, Lakshmi Manasa, and Ashutosh
Trivedi, published in the conferences CONCUR [Bri+14], and FSTTCS[Bri+15a].

Table of contents

3.1 Continuity of the value function . 47
3.2 Bi-weighted timed games . 50
3.3 Simple weighted timed games . 57
3.4 Simple weighted timed games with only urgent locations 59
3.5 Finite optimality of general simple weighted timed games 61
3.6 Towards non-simple weighted timed games 65

Undecidability results given in Theorem 2.4 force us to imagine restrictions to regain
decidability. A first one that we study in this chapter is to restrict the number of clocks.
We know that games with two (if negative weights are allowed) or three clocks are
undecidable. We therefore focus here on weighted timed games with only one clock. These
are very close to (untimed) shortest-path games, though the decidability status of the
value or existence problem is not settled so far, in the presence of negative weights.

As a first attempt towards decidability, we study a fragment of one-clock weighted
timed games by restricting the number of distinct weights allowed in locations. This
permits us to encode the game into the corner-point abstraction introduced in Section 2.5,
and to compute the value of a particular configuration. We will also demonstrate why this
fragment is the largest one for which the corner-point abstraction technique is applicable.

To allow for more distinct weights in locations, crucial from a modelling point of view,
we refer to the results of [Bou+06] showing the decidability of the value problem for
one-clock weighted timed games with only non-negative weights. A 3-exponential time
algorithm was first proposed to compute the value function, further refined in [Rut11;
HIM13] into an exponential time algorithm. The key point of those algorithms is to
reduce the problem to the computation of optimal values in a restricted family of weighted
timed games called simple weighted timed games, where the underlying automata contain
no guard, no reset, and the play is forced to stop after one time unit. More precisely, the
weighted timed game G is decomposed into a sequence of simple weighted timed games
whose value functions are computed and re-assembled to yield the value function of G. A
survey summarising results on weighted timed games can be found in [Bou15]. From a
lower-bound perspective, the best known result has been obtained recently by Fearnley,
Ibsen-Jensen and Ravani [FIS20], showing that the value problem of one-clock weighted
timed games is PSPACE-hard, even with only non-negative weights.

46

3 Weighted Timed Games with One Clock

−2

ℓ1

−14

ℓ2
4

ℓ3

3

ℓ4

8

ℓ5

−12

ℓ6

−16

ℓ7

,

1

2

6

−7

Figure 3.1 – A simple weighted timed game, where all guards are 0 ⩽ x ⩽ 1 and clock x
is never reset. Transitions without labels have weight 0.

The second contribution of this chapter is thus the extension of this technique for
simple weighted timed games with arbitrary weights. This is highly non trivial since
several proof arguments of [Bou+06; Rut11; HIM13] heavily relies on the non-negativity
of weights. What is still currently not working as good as in the non-negative weights is
the decomposition of general one-clock weighted timed games into a sequence of simple
weighted timed games. We still explain how to push our technique as much as possible,
yet not obtaining the decidability of the whole class of one-clock weighted timed games
with arbitrary weights so far.

In this chapter, all weighted timed games are restricted to only one clock, denoted by x.
We will thus no longer recall this restriction. Moreover, in this chapter, we consider a
valuation ν of the clock x to be a value in R⩾0 (instead of a mapping {x} → R⩾0).

3.1 Continuity of the value function

Allowing for only one clock drastically reduces the modelling power of weighted timed
games, though we might benefit from urgent locations that allow us to model urgency
without paying the need for a second clock. However, this severe restriction allows us
to recover stronger properties, like the continuity of the value function over each region,
which will appear to be very useful in the rest of the chapter.

An example of weighted timed game is given in Figure 3.1. This is a very special
case of simple weighted timed game where all guards on transitions are 0 ⩽ x ⩽ 1
(hence this guard is not displayed and transitions are only labelled by their respective
discrete weight) and the clock is never reset. It is easy to check that Min can force
reaching the target location , from all configurations of the game so that all values are
different from +∞. Let us comment on the optimal strategies for both players. From
a configuration (ℓ4, ν), with ν ∈ [0, 1], Max better waits until the clock takes value 1,
before taking the transition to ,. Hence, the value is Val(ℓ4, ν) = 3(1− ν)− 7 = −3ν− 4.
Symmetrically, it is easy to check that Min better waits as long as possible in ℓ7, hence
their value is Val(ℓ7, ν) = −16(1− ν) for all ν ∈ [0, 1]. However, optimal value functions
are not always that simple, see for instance the value function of ℓ1 displayed in Figure 3.2,
which is a piecewise-affine function. To understand why value functions can be piecewise

47

3 Weighted Timed Games with One Clock

ν
0

1
4

1
2

3
4

9
10 1

Val(ℓ1, ν)

−9.5

−6

−5.5

−2

−0.2

Figure 3.2 – Value function of location ℓ1 in the weighted timed game of Figure 3.1

affine in this very simple setting, consider the sub-game enclosed in the dotted rectangle
in Figure 3.1, and consider the value that Min can guarantee from a configuration of the
form (ℓ3, ν) in this sub-game. Clearly, Min must decide how long they will delay in ℓ3
and whether they will go to ℓ4 or ℓ7. Their optimal value from all (ℓ3, ν) is thus

inf
0⩽t⩽1−ν

min
(
4t+ 3(1− (ν + t))− 7, 4t+ 6− 16(1− (ν + t))

)
= min(−3ν − 4, 16ν − 10)

Since 16ν − 10 ⩾ −3ν − 4 if and only if ν ⩽ 6/19, the best choice of Min is to move
instantaneously to ℓ7 if ν ∈ [0, 6/19] and to move instantaneously to ℓ4 if ν ∈ (6/19, 1],
hence the value function of ℓ3 (in the sub-game) is a piecewise-affine function with two
pieces.

This shape for value functions is not specific to this case, and we therefore will rely
on the notion of piecewise-affine value function (we will update this notion in the next
chapters, when generalising to more than one clock). Formally, for a set of guards
S ⊆ Guard(x), we let JSK =

⋃
g∈SJgK. In the context of games with only one clock, regions

can be made more succinct by only considering zones {a} and (a, b) with a and b constants
appearing in the guards of the game 1. Therefore, assuming M0 = 0 < M1 < · · · < Mk

are all the integers appearing in the guards of S (to which we add 0 if needed), we let

RegS = {(Mi,Mi+1) | 0 ⩽ i ⩽ k − 1} ∪ {{Mi} | 0 ⩽ i ⩽ k}

be the set of (one-clock) regions of S. Observe that RegS can also be seen as a set of
guards.

Definition 3.1. A piecewise-affine value function over S is a function f : JRegSK → R∞
such that over each region r ∈ RegS , f is either infinite or it is a continuous piecewise
affine function with a finite set of cutpoints (points where the first derivative is not
defined) {κ1, . . . , κp} ⊆ Q, and satisfying f(κi) ∈ Q for all 1 ⩽ i ⩽ p. We denote by
PAFS the set of all piecewise-affine value functions over S.

In particular, if f(r) = {f(ν) | ν ∈ r} contains +∞ (resp. −∞) for some region r, then
f(r) = {+∞} (resp. f(r) = {−∞}).

1. This is inspired by a construction by Laroussinie, Markey, and Schnoebelen [LMS04].

48

3 Weighted Timed Games with One Clock

We consider in this chapter weighted timed games where the final weight function
fwt maps every location to an affine value function, i.e. for all ℓ ∈ Lt, there exists
(a, b) ∈ Q2 such that for all ν ∈ [0,M], fwt(ℓ, ν) = aν + b. We denote by RegG the
set RegSG of regions of G with SG the set of all guards occurring on some transitions,
and PAFG the set of all piecewise-affine value functions over RegG . We further denote
by wt

max = supν∈[0,M]maxℓ∈Lt |fwt(ℓ, ν)| = maxℓ∈Lmax(|fwt(ℓ, 0)|, |fwt(ℓ,M)|) (the last
equality holds because we have assumed that fwt(ℓ, ·) is affine).

We now discuss a first useful preliminary property of the value functions of such one-
clock weighted timed games. We have already shown the determinacy of weighted timed
games in a broader context (Theorem 2.3), ensuring the existence of the value function.
We now state and sketch the proof of a stronger result, that is, for all ℓ, Val(ℓ, ·) is a
piecewise continuous function that might exhibit discontinuities only on the corners of
the regions of RegG .

Theorem 3.2. For all (one-clock) WTGs G, for all r ∈ RegG, for all ℓ ∈ L, Val(ℓ, ·) is
either equal to +∞, or equal to −∞, or is a continuous function over r.

Proof. The proof of continuity of Val(ℓ, ·) over a region r (for some fixed location ℓ) can
be done by using the classical definition of continuity: for all ν ∈ r, for all ε > 0, there
exists δ > 0 such that for all ν ′ with |ν − ν ′| ⩽ δ, we have |Val(ℓ, ν)− Val(ℓ, ν ′)| ⩽ ε. To
this end, we even show a stronger property (Lipschitz-continuity):

∀(ν, ν ′) ∈ r2 |Val(ℓ, ν)− Val(ℓ, ν ′)| ⩽ wL
max|ν − ν ′|

By symmetry, it requires to show for instance:

∀(ν, ν ′) ∈ r2 Val(ℓ, ν ′) ⩽ Val(ℓ, ν) + wL
max|ν − ν ′|

Now comes a schema of proofs by double simulation that we have used many times with
great success in the context of weighted timed games. By using the definition of the
upper value, we need to show that for all strategies σMin of Min, there exists a strategy
σ′
Min such that

∀(ν, ν ′) ∈ r2 Val((ℓ, ν ′), σ′
Min) ⩽ Val((ℓ, ν), σMin) + wL

max|ν − ν ′|

Showing such an inequality requires, for each strategy σ′
Max of Max, to build a strategy

σMax of Max such that

∀(ν, ν ′) ∈ r2 SP(play((ℓ, ν ′), σ′
Min, σ

′
Max)) ⩽ SP(play((ℓ, ν), σMin, σMax))+wL

max|ν−ν ′|

Indeed, it is not necessary to build strategy σMax for all plays, but only for the ones that
are consistent with σMin. This is equivalent to show the existence of a function g mapping
plays ρ′ from (ℓ, ν ′) consistent with σ′

Min (that will be chosen by Max) to plays from (ℓ, ν)
consistent with σMin, and such that:

SP(ρ′) ⩽ SP(g(ρ′)) + wL
max|ν − ν ′|

Thus, our proof strategy is to build, given a strategy σMin of Min such a strategy σ′
Min

and a function g. We do it by induction on the length of the finite plays ρ′ taken as

49

3 Weighted Timed Games with One Clock

5

ℓ0

−5ℓ2

,

5 ℓ1

x = 0

x = 0

y = 1, y := 0

x = 1, x := 0

Figure 3.3 – A WTG with 2 clocks whose value function is not continuous inside a region

arguments in σ′
Min and g. The idea is to try to let the finite plays ρ′ and g(ρ′) as close

as possible, which is possible because of the one-clock restriction. We therefore define
σ′
Min(ρ

′) and g(ρ′) for all plays ρ′ from (ℓ, ν ′), consistent with σ′
Min of length k − 1 and

k, respectively. This construction is performed by induction, keeping as an induction

hypothesis: for all plays ρ′ = (ℓ1, ν
′
1)

c′1−→ · · ·
c′k−1−−−→ (ℓk, ν

′
k) from (ℓ, ν ′), consistent with

σ′
Min, if we let (ℓ1, ν1)

c1−→ · · ·
cℓ−1−−−→ (ℓℓ, νℓ) = g(ρ′):

1. ρ′ and g(ρ′) have the same length k;

2. for every i ∈ {1, . . . , k}, νi and ν ′i are in the same region;

3. valuations do not get further apart than at the beginning of plays: |νk−ν ′k| ⩽ |ν−ν ′|;
4. cumulated weights stay close: wt(ρ′) ⩽ wt(g(ρ′)) + wL

max(|ν − ν ′| − |νk − ν ′k|).
Details of this induction proof can be found in [Bri+15a].

Let us consider the example in Figure 3.3, with two clocks x and y. One can easily
check that, starting from a configuration (ℓ0, (x 7→ 0, y 7→ 0.5)), the following cycle can
be taken: (ℓ0, (x 7→ 0, y 7→ 0.5))

0,δ0−−→ (ℓ1, (x 7→ 0, y 7→ 0.5))
0.5,δ1−−−→ (ℓ2, (x 7→ 0.5, y 7→

0))
0.5,δ2−−−→ (ℓ0, (x 7→ 0, y 7→ 0.5)), where δ0, δ1 and δ2 denote respectively the transitions

from ℓ0 to ℓ1; from ℓ1 to ℓ2; and from ℓ2 to ℓ0. Observe that the cumulated weight of this
cycle is null, and that no other delays can be played, hence Val(ℓ0, (x 7→ 0, y 7→ 0.5)) = 0.
However, starting from a configuration (ℓ0, (x 7→ 0, y 7→ 0.55)), and following the same
path, yields the cycle (ℓ0, (x 7→ 0, y 7→ 0.55))

0,δ0−−→ (ℓ1, (x 7→ 0, y 7→ 0.55))
0.45,δ1−−−−→

(ℓ2, (x 7→ 0.45, y 7→ 0))
0.55,δ2−−−−→ (ℓ0, (x 7→ 0, y 7→ 0.55)) with cumulated weight −1. Hence,

Val(ℓ0, (x 7→ 0, y 7→ 0.55)) = −∞, and the function is not continuous although both clocks
values (x 7→ 0, y 7→ 0.5) and (x 7→ 0, y 7→ 0.55) are in the same region. Observe that this
holds even for weighted timed automata, since our example requires only one player.

3.2 Bi-weighted timed games

As a first attempt to obtain a decidable subclass of weighted timed games, we rely on
the corner-point abstraction by considering the maximal fragment where it can be used
to solve the value problem. We need to restrict the set of distinct weights appearing in
locations, so that no two different non-positive or non-negative weights co-exist.

50

3 Weighted Timed Games with One Clock

1 ℓ1

1

ℓ2

−1

ℓ3

−1

ℓ4

1

ℓ5

, fwt = 0

0 < x ⩽ 1
x := 0
0

x ⩽ 1
1

1 < x ⩽ 2
0

1 ⩽ x ⩽ 2
−1

x ⩽ 2
0

x < 1
x := 0
0

1 ⩽ x ⩽ 2
x := 0
0

1 ⩽ x ⩽ 2
x := 0
0

Figure 3.4 – A bi-weighted timed game

Definition 3.3. A bi-weighted timed game is a weighted timed game where weights of
locations come from a doubleton set {p−, p+} with p− < p+ two distinct elements of
{−c, 0, d}, with (c, d) ∈ (N \ {0})2 (no condition is made on the weights of transitions).
We let 1WTG(p−, p+) be the set of such games.

Example 3.4. An example of bi-weighted timed game is given in Figure 3.4. More pre-
cisely, it belongs to the class 1WTG(−1, 1). Another example, in the class 1WTG(−2, 1),
could be obtained by replacing all weights −1 in locations by −2. Figure 3.5 depicts two
examples of weighted timed games with one clock that are not bi-weighted, because they
contain three different weights {−1, 0, 1} in locations.

Our contribution is to show that a particular value problem (for an initial valuation 0
of the clock x) is decidable for bi-weighted timed games, as well as the synthesis problem.

Theorem 3.5. If G is a bi-weighted timed game, and ℓ one of its locations, the value
Val(ℓ, 0), as well as an ε-optimal strategy for Min when it exists, can be computed in
pseudo-polynomial time (polynomial when weights of transitions and locations are encoded
in unary). The complexity drops to polynomial time when all weights are non-negative.

Remark. This result was originally obtained in [Bri+14] only for the case where c = d = 1,
but it was noted by Engel Lefaucheux during an internship co-supervised by Gilles
Geeraerts and myself [Lef15] that all proofs can be extended to the more general case
of c ̸= d.

The proof of Theorem 3.5 is based on the corner-point abstraction, that we redefine
in the special context of games with only one clock: subdividing each zone (a, b) into
three parts: two small parts around the corners of the region, and a big part in-between.

51

3 Weighted Timed Games with One Clock

The crucial argument is to show that players can play almost-optimally by only jumping
around the corners, and never into those big parts (Lemma 3.8). Then, Lemma 3.11
shows a stronger result that one can restrict attention to strategies that play closer and
closer to the corners as the play goes. Finally, we combine these results to show that the
corner-point abstraction of bi-weighted timed games is sufficient to compute the value as
well as ε-optimal strategies (Lemma 3.14). This not only yields the desired result, but
also provides us further insight into the shape of ε-optimal strategies for both players.

Reduction to η-region-uniform strategies

We say that two valuations (ν, ν ′) ∈ (R⩾0)
2 are region-equivalent, and we write ν ∼ ν ′,

if they are in the same region of RegG . We extend the equivalence relation ∼ from
valuations to configurations in a straightforward manner. We also generalize it to plays:

for two (finite or infinite) plays ρ = (ℓ0, ν0)
t0,δ0−−−→ · · · and ρ′ = (ℓ′0, ν

′
0)

t′0,δ
′
0−−−→ · · · we say

that ρ ∼ ρ′ if the lengths of ρ and ρ′ are equal, and they define sequences of regional
equivalent states (i.e. ℓi = ℓ′i and νi ∼ ν ′i for all i) and follow equivalent edges (i.e. δi = δ′i
and νi + ti ∼ ν ′i + t′i for all i).

We instantiate the corner-point abstraction in this setting by isolating corners of the
regions into closed balls around them, of a fixed radius η. To do so, we consider a
refinement of the region equivalence relation that we call the η-region equivalence relation,
and we write ∼η, for a given η ∈ (0, 1/3): ν ∼η ν ′ if both valuations are close or far from
the corners, with respect to the distance η. Equivalence classes are called η-regions, that
can be order by their lower bounds. For instance, letting M0 = 0 < M1 < · · · < Mk be
all the integers appearing in the guards of G, the set of η-regions is

{0}, (0, η], (η,M1−η), [M1−η,M1), {M1}, (M1,M1+η], . . . , [Mk−η,Mk), {Mk}, (Mk,+∞)

We also extend the relation ∼η to configurations and plays.
We next introduce the strategies of a restricted shape with the properties that they

depend only on the η-region abstraction of plays; their decision is uniform over each
η-region; and they play η-close to the corners of the regions.

Definition 3.6. A strategy σ is said to be η-region-uniform if

— for all finite plays ρ ∼η ρ′ ending respectively in (ℓ, ν) and (ℓ, ν ′), we have σ(ρ) =
(t, δ) and σ(ρ′) = (t′, δ′) with δ = δ′ and ν + t ∼η ν ′ + t′;

— for every finite play ρ ending in (ℓ, ν), if σ(ρ) = (t, δ) with ν+ t ∈ (Mk,Mk+1), then
we have ν + t ∈ (Mk,Mk + η] ∪ [Mk+1 − η,Mk+1).

We write UΣη
Min and UΣη

Max for the set of η-region-uniform strategies for Min and Max.
We also define an upper value UVal

η when both players are restricted to use only η-region-
uniform strategies: for all configurations (ℓ, ν),

UVal
η
(ℓ, ν) = inf

σMin∈UΣη
Min

sup
σMax∈UΣη

Max

SP(play((ℓ, ν), σMin, σMax))

We do not need to prove that these restricted games with respect to the sets of
strategies are indeed determined, which is the reason why we introduce only an upper
value associated to Min.

52

3 Weighted Timed Games with One Clock

0

ℓ1

1 ℓ2

−1

ℓ3

−1

ℓ4

,
x ⩽ 1

x = 1
x := 0

x ⩽ 1 x = 1

x = 1

0

ℓ1

−1 ℓ2

1

ℓ3

1

ℓ4

,
x ⩽ 1

x = 1
x := 0

x ⩽ 1 x = 1

x = 1

Figure 3.5 – Two weighted timed games G1 and G2 that are not bi-weighted, where all
weights of transitions are 0, as well as final weights.

Example 3.7. Consider the weighted timed game G1 shown in Figure 3.5 (that is not
bi-weighted). Notice that the only freedom when starting the play in (ℓ1, 0) is the choice
of a strategy of Max in (ℓ1, 0). Indeed, no choice is allowed in locations ℓ3 and ℓ4. In
configuration (ℓ2, ν), Min may either go to ℓ4 after a delay of 1−ν resulting in a cumulated
weight 1× (1−ν)+(−1)×1 = −ν, or go to ℓ3 after a delay t such that ν+ t ⩽ 1 resulting
in a cumulated weight t+ (−1)× (1− ν − t) = −1 + ν + 2t that is minimal when t = 0.
The best choice of Min in (ℓ2, ν) therefore depends on the position of ν, relative to 1/2:
if ν ⩽ 1/2, they choose the transition to ℓ3; if ν > 1/2, they choose the transition to ℓ4.
Therefore, the optimal choice for Max in ℓ1 is to delay 1/2 time units before jumping in
location ℓ2. We then see that Val(ℓ, 0) = −1/2. However, the optimal strategy of Max is
not η-region-uniform, since they are obliged to jump in the middle of a region. Instead,
an η-region-uniform strategy will delay t time units with t ∈ [0, η] ∪ [1− η, 1]. Hence, the
upper value when players can only use η-region-uniform strategies is UVal

η
(ℓ, 0) = −1.

Contrary to this example, the next lemma shows that, in bi-weighted timed games,
the upper value of the game increases when we restrict ourselves to η-region-uniform
strategies. Intuitively, every cost that Max can secure with general strategies, they can
also secure it with η-region-uniform strategies against η-region-uniform strategies of Min.

Lemma 3.8. For all bi-weighted timed games G and η ∈ (0, 1/3), Val ≼ UVal
η.

Reduction to η-convergent strategies

A similar result concerning the lower values of the games can be shown in case of η-region-
uniform strategies. In subsequent proofs, we need a stronger result to avoid situations
detailed in Example 3.10, where Max needs infinite precision to play incrementally closer
to corners (as well as an infinite memory). For this reason, we restrict the shape of
strategies to force them to play at distance η/2n of corners when playing the nth round
of the play. The slight asymmetry in the definitions for the two players is exploited in
proving subsequent results.

Definition 3.9. A strategy σ is said to be η-convergent if σ is η-region-uniform and for
all finite plays ρ of length n ending in (ℓ, ν), letting σ(ρ) = (t, δ):

53

3 Weighted Timed Games with One Clock

0 −1,
x := 0

x > 0

Figure 3.6 – A bi-weighted timed game where Max needs to play closer and closer to the
corners

— if σ ∈ ΣMin, there exists k such that either |ν + t −Mk| ⩽ η/2n+1, or t = 0 and
ν ∈ (Mk + η/2n+1,Mk + η];

— if σ ∈ ΣMax, there exists k such that either ν+t ∈ {Mk+η/2n+1}∪[Mk−η/2n+1,Mk),
or t = 0 and ν ∈ (Mk + η/2n+1,Mk + η].

We let CΣη
Min and CΣη

Max be respectively the set of η-convergent strategies for Min and
Max, and we define, for every configuration (ℓ, ν),

CValη(ℓ, ν) = sup
σMax∈CΣη

Max

inf
σMin∈CΣη

Min

SP(play((ℓ, ν), σMin, σMax))

Example 3.10. Consider the bi-weighted timed game of Figure 3.6. Max would like to
exit as soon as possible from their location of weight −1 < 0, but because of the guard,
they must spend some time before exiting. If they play according to a finite-memory
strategy, there must be a bound ε such that they always stay in their state for a duration
bounded from below by ε. Min can then exploit it by letting the play continue for an
arbitrarily long time to achieve an arbitrarily small payoff. On the other hand, if Max
plays an infinite-memory η-convergent strategy by staying in their location for a duration
ε/2n in the n-th visit, they ensure a payoff −ε for an arbitrarily small ε > 0, resulting in
the value 0 of the game for both locations.

It is clear from the previous example that Max needs infinite-memory strategies to
optimise their objective. The following lemma formalises our intuition that the lower value
of the game decreases when we restrict ourselves to η-convergent strategies. Intuitively,
every cost that Min can secure with general strategies, they can also secure it with
η-convergent strategies against an η-convergent strategy of Max.

Lemma 3.11. For all bi-weighted timed games G and η ∈ (0, 1/3), CValη ≼ Val.

Observe that this lemma fails to hold when location weights can take more than two
values as exemplified in the games G2 of Figure 3.5. It shows a game with three distinct
weights with lower and upper value equal to 1/2. However, when restricted to η-convergent
strategies, the lower value equals 1.

So far we have shown that CValη ≼ Val ≼ UVal
η. Our next goal is to find a common

bound being both a lower bound on CValη and an upper bound on UVal
η by studying the

value of a finite shortest-path game.

Finite abstraction of bi-weighted timed games

We now construct the finite shortest-path game G̃, as a finite abstraction of the infinite
shortest-path game JGK, based on η-regions. This is a refinement of the corner-point

54

3 Weighted Timed Games with One Clock

abstraction Γ(G) studied in Section 2.5. Since we have learned that η-region-uniform
strategies suffice, we limit both players to remain at a distance at most η from the corners
of regions. Only η-regions close to the corners are of interest, and moreover η-regions
after the maximal constant MK are not useful since G is bounded. Let Iη be the set of
remaining useful η-regions. For example, if constant appearing are M1 = 2 and M2 = 3,
we have Iη = {{0}, (0, η], [2−η, 2), {2}, (2, 2+η], [3−η, 3), {3}}. We next define the delay
d(I, J) between two such η-regions I and J , the lower bound a of I being less than the
lower bound b of J , as the closest integer to b− a. For example, d((2, 2+ η], [3− η, 3)) = 1
and d({0}, [2− η, 2)) = 2.

Definition 3.12. For every bi-weighted timed game G, we let G̃ be the finite shortest-path
game G̃ = ⟨VMin, VMax, Vt,Σ, E,wt⟩ where:

— vertices are of the form (ℓ, I) with ℓ ∈ L and I ∈ Iη, partitioned into Min vertices,
Max vertices and final vertices depending on the location only;

— Σ = Iη ×∆;

— E is the set of edges (ℓ, I)
J,δ−−→ (ℓ′, J ′) such that I is before J , δ = ℓ

g,Y−−→ ℓ′, J ⊆ JgK
and J ′ = J [Y := 0]. Action (J, δ) symbolises that the player wants to let time
elapse until it reaches the η-region J , then playing transition δ of G. It simulates
any decision (t, δ) in G, with t any delay reaching a point in J .

— wt((ℓ, I)
J,δ−−→ (ℓ′, J ′)) = wt(ℓ)× d(I, J) + wt(δ).

Example 3.13. Consider the abstraction of the bi-weighted timed game of Figure 3.4
shown in Figure 3.7. Observe that we depict only a succinct representation of the real
abstraction, since we only show the reachable part of the game from (ℓ1, 0), and we have
removed multiple edges (introduced due to label hiding) and kept only the most useful
ones for the corresponding player. For example, consider the location (ℓ5, {0}). There
are edges labelled by (J, δ) for every interval J ∈ Iη, all directed to (ℓ4, {0}) due to a
reset being performed there. We only show the best possible edge—the one with lowest
weight—since location ℓ5 belongs to Min. Each vertex contains the η-region it represents.
The value of vertex (ℓ1, 0) is 1, and an optimal strategy for Min is to jump in location ℓ2,
and then to delay 1 time unit, before jumping in ℓ3.

A bi-weighted timed game G and its finite abstraction G̃ relate as follows:

Lemma 3.14. If ValG̃(ℓ, {Mk}) is finite for all 0 ⩽ k ⩽ K and ℓ ∈ L, then, for all ε > 0,
there is η ∈ (0, 1/3) such that UValηG(ℓ,Mk)− ε ⩽ ValG̃(ℓ, {Mk}) ⩽ CValηG(ℓ,Mk) + ε.

We now explain how to combine the previous lemmas to obtain Theorem 3.5. In case
of infinite values ValG̃(ℓ, {Mk}), we can show directly that ValG(ℓ,Mk) = ValG̃(ℓ, {Mk}).
Otherwise, let ε > 0. By Lemma 3.14, we know that there exists η ∈ (0, 1/3) such that
for every location ℓ ∈ L and 0 ⩽ k ⩽ K:

UVal
η
A(ℓ,Mk)− ε ⩽ ValG̃(ℓ, {Mk}) ⩽ CValηA(ℓ,Mk) + ε

Moreover Lemmas 3.8 and 3.11 show that:

CValη(ℓ,Mk) ⩽ ValG(ℓ,Mk) ⩽ UVal
η
(ℓ,Mk)

55

3 Weighted Timed Games with One Clock

{0}

{0} [0, η] [1−η, 1) [1, 1+η] [2−η, 2]

{0} (0, η] [1−η, 1) {1} {0}

,

0

1 1
2

2

0

1 1 2

0
0

0

1
1 1

0

0
−1

−1

1

3

ℓ1

ℓ2

ℓ5

ℓ4

ℓ3

Figure 3.7 – Finite shortest-path game associated with the bi-weighted timed game of
Figure 3.4.

0 0

1

0

0

1

,
x ⩽ 1, y := 0

y = 0

y = 0

x = 1

x = 1

y = 1

y = 1

Figure 3.8 – A two-clock weighted timed game with weights of locations in {0,+1} and
value 1/2

Both inequalities combined permit to obtain

ValG̃(ℓ, {Mk})− ε ⩽ ValG(ℓ,Mk) ⩽ ValG̃(ℓ, {Mk}) + ε

Taking the limit when ε tends to 0, we obtain that Val(ℓ,Mk) = ValG̃(ℓ, {Mk}). Therefore,
computing the values of the finite shortest-path game G̃ with Theorem 1.4 allows one to
compute the (exact) values of G in clock valuation 0 (or any Mk) in pseudo-polynomial
time. Moreover, in case the values are finite, the previous reasoning allows us to compute
ε-optimal strategies for both players, also in pseudo-polynomial time: Max may require
infinite memory strategies, whereas finite memory is sufficient for Min.

This result implies that the value in valuations Mk of all bi-weighted timed games are
either infinite or integers. This property fails if we allow more than one clock, as shown in
Figure 3.8 even with only locations of weight in {0, 1}: indeed, we have Val(ℓ1, 0) = 1/2
with ℓ1 the leftmost location. It also fails if we allow more than two weights as was shown
in Figure 3.5, where the value in G1 with weights in {−1, 0, 1} is −1/2, while the value in
G2 is 1/2. This ensures that techniques of corner-point abstraction used for bi-weighted

56

3 Weighted Timed Games with One Clock

timed games cannot be extended to a larger class of games.
Finally, notice that if all weights of G are non-negative, the exact computation in the

finite abstraction G̃ can be performed in polynomial time (see Theorem 1.4), resulting in
a polynomial algorithm to solve bi-weighted timed games with non-negative weights.

3.3 Simple weighted timed games

As a second, more ambitious, attempt to get decidability for one-clock weighted timed
games, we will solve the special case of simple games, where no guards and reset are
allowed, and time stops after 1 time unit. Formally, an r-simple weighted timed game,
with r ∈ Q+ ∩ [0, 1], is a weighted timed game G = (LMin, LMax, Lf , Lu,∆,wt, fwt) such

that for all transitions ℓ
g,Y−−→ ℓ′, JgK = [0, r] (the clock is also bounded by r) and Y = ∅.

Hence, transitions are henceforth denoted by ℓ → ℓ′, dropping the useless guard and reset.
Then, a simple weighted timed game is a 1-simple weighted timed game. Remember that
Val(ℓ) denotes the function mapping a valuation ν to the value Val(ℓ, ν).

Theorem 3.15. Let G be a simple weighted timed game. Then, for all locations ℓ, either
Val(ℓ) = +∞, or Val(ℓ) = −∞, or Val(ℓ) is a piecewise-affine value function with at most
an exponential number of cutpoints (in the size of G). The value functions Val(ℓ) for all
locations ℓ, as well as a pair of optimal strategies for both players (that always exist when
no values are infinite) can be computed in exponential time.

Let us now highlight the main steps to establish this theorem. The central argument
consists in showing that all simple weighted timed games admit finitely-describable optimal
strategies for both players. To this end, we rely on several new definitions.

We start by the case of Max: we will show that Max has always a memoryless optimal
strategy. However, this is not sufficient to show that Max has an optimal strategy that
can be finitely described: indeed, a memoryless strategy associates a decision to each
configuration of the game, and there are uncountably many such configurations because
of the possible values of the clock. Thus, we introduce the notion of finite memoryless
strategies (FM-strategies for short). Such strategies partition the set [0, 1] of possible clock
values into finitely many intervals, and ensure that the same move is played throughout
each interval: this move can be either to wait until the clock reaches the end of the
interval, or to take immediately a given transition.

Definition 3.16. A strategy σ is a finite memoryless strategy (FM-strategy for short)
if it is a memoryless strategy and for all locations ℓ, there exists a finite sequence of
rationals 0 ⩽ νℓ1 < νℓ2 < · · · < νℓk = 1 and transitions (δ1, . . . , δk) ∈ ∆k such that

1. for all 1 ⩽ i ⩽ k, either for all ν ∈ (νℓi−1, ν
ℓ
i], σ(ℓ, ν) = (0, δi), or for all ν ∈ (νℓi−1, ν

ℓ
i]

σ(ℓ, ν) = (νℓi − ν, δi) (assuming νℓ0 = min(0, νℓ1));

2. if νℓ1 > 0, then σ(ℓ, 0) = (νℓ1, δ1).

We let pts(σ) be the set of νℓi for all ℓ and i, and I(σ) be the set of all successive
intervals generated by pts(σ). Finally, we let |σ| = |I(σ)| be the size of σ.

The case of Min is more involved, since the need for memory already seen in finite
shortest-path games accumulates with the difficulties due to time. We thus mimic the
switching strategies used in the untimed setting: first play an FM-strategy σ1

Min that

57

3 Weighted Timed Games with One Clock

allows them to lower the weight of the play sufficiently low, by forcing negative cycles (if
any); second, play another FM-strategy σ2

Min that ensures that the target will eventually
be reached. A threshold α describes after how many rounds to switch. Computing the
latter of these two strategies is easy: σ2

Min is an attractor strategy, which guarantees Min
to reach the target (when possible). Thus, the main difficulty in identifying optimal
switching strategies is to characterise σ1

Min. It must be a negative-cycle strategy, as in the
untimed setting. We update the definition in this timed setting though. Those strategies
are FP-strategies which guarantee that all cycles taken have cost of −1 at most, without
necessarily guaranteeing to eventually reach the target (as this will be taken care of by
σ2
Min).

Definition 3.17. A negative-cycle strategy (NC-strategy for short) σMin of Min is an
FP-strategy such that for all plays ρ = (ℓ1, ν)

c1−→ · · · ck−1−−−→ (ℓk, ν
′) conforming to σMin

with ℓ1 = ℓk, and ν, ν ′ in the same interval of I(σMin), the sum of weights of discrete
transitions is at most −1, i.e. wt(ℓ1, ℓ2) + · · ·+ wt(ℓk−1, ℓk) ⩽ −1.

This definition allows one to find an upper bound on the weight of the plays following
such NC-strategies, by iteratively removing sub-plays starting and ending in the same
pair of locations and intervals:

Lemma 3.18. Let ρ be a finite play conforming to an NC-strategy σMin. Then

wt(ρ) ⩽ wt
max + wL

max + (2|σMin| − 1)× |L|w∆
max − (|ρ| − 3|σMin|)/|L| .

Among those NC-strategies, we identify the ones that guarantee Min to obtain the
optimal value (or better) when the target is reached, but do not necessarily guarantee to
reach the target. For an NC-strategy σMin, and a configuration s, we let the fake value
be defined by

fakeσMin
G (s) = sup{wt(ρ) | ρ ∈ Plays, σMin, ρ reaches a target}

Thus, fakeσMin
G (s) ⩽ ValσMin(s). We then say that an NC-strategy σMin is fake-optimal if

its fake value, in every configuration, is equal to the optimal value of the configuration in
the game, i.e. fakeσMin

G (s) = ValG(s) for all configurations s.
The final step is to combine such an NC-strategy σ1

Min with the attractor strategy
σ2
Min, to obtain a switching strategy σ′

Min that satisfies Val
σ′
Min

G (s) ⩽ fakeσMin
G (s) for all

configurations s (only supposing that ValG(ℓ, ν) ̸= +∞, for all ℓ and ν, i.e. that strategy
σ2
Min allows Min to reach the target from all configurations). In particular, if σ1

Min is
fake-optimal, then Val

σ′
Min

G (s) ⩽ fakeσMin
G (s) = ValG(s) which means that σ′

Min is optimal.
Thus, proving Theorem 3.15 reduces to showing that
1. Min has a fake-optimal NC-strategy;
2. Max has an optimal FM-strategy; and
3. ValG(ℓ) is a piecewise-affine value function of PAFG , for all locations ℓ.

Moreover, all strategies and value functions can be computed in exponential time. We
gather these three properties in saying that G is finitely optimal.

The proof is by induction on the number of non-urgent locations of the game. In
Section 3.4, we address the base case of games with urgent locations only (where no time

58

3 Weighted Timed Games with One Clock

Algorithm 3: solveInstant(G,ν)
Input: r-simple weighted timed game G = (LMin, LMax, Lf , Lu,φ,∆,wt), ν ∈ [0, r]

1 foreach ℓ ∈ L do
2 if ℓ ∈ Lf then X(ℓ) := φℓ(ν) else X(ℓ) := +∞
3 repeat
4 Xpre := X
5 foreach ℓ ∈ LMax do X(ℓ) := max(ℓ,ℓ′)∈∆

(
wt(ℓ, ℓ′) + Xpre(ℓ

′)
)

6 foreach ℓ ∈ LMin do X(ℓ) := min(ℓ,ℓ′)∈∆
(
wt(ℓ, ℓ′) + Xpre(ℓ

′)
)

7 foreach ℓ ∈ L such that X(ℓ) < −(|L| − 1)w∆
max − wt

max do X(ℓ) := −∞
8 until X = Xpre

9 return X

can elapse). Since these are very close to the untimed shortest-payoff games studied in
Chapter 1, we adapt the algorithm in this work and obtain the solveInstant function
(Algorithm 3). This function can also compute Val(ℓ, 1) for all ℓ and all games G (even
with non-urgent locations) since time cannot elapse anymore when the clock has value
1. Next, using the continuity result of Theorem 3.2, we can detect locations ℓ where
Val(ℓ, ν) ∈ {+∞,−∞}, for all ν ∈ [0, 1], and remove them from the game. Finally, in
Section 3.5, we handle simple weighted timed games with non-urgent locations by refining
the technique of [Bou+06; Rut11] (that originally worked only with non-negative weights).

3.4 Simple weighted timed games with only urgent locations

Throughout this section, we consider an r-simple weighted timed game G where all
non-final locations are urgent, i.e. Lu ∪ Lf = LMin ∪ LMax. Since all locations in G are
urgent, we may extract from a play ρ = (ℓ0, ν)

c0−→ (ℓ1, ν)
c1−→ · · · the clock values, as well

as weights ci = wt(ℓi, ℓi+1), hence denoting plays by their sequence of locations ℓ0ℓ1 · · · .
We first explain how we can compute the value function of the game for a fixed clock

value ν ∈ [0, r]: more precisely, we will compute the vector (Val(ℓ, ν))ℓ∈L of values for
all locations. Since no time can elapse, it consists in an adaptation of the techniques
developed in Chapter 1 to solve (untimed) shortest-path games. The main difference
concerns the weights being rational (and not integers) and the presence of affine final value
functions. Still, because of the particular structure of the game G (where a real price is
paid only on the target location, all other weights being integers), for all plays ρ, wt(ρ) is
a value from the set Zν,φ = Z+ {φℓ(ν) | ℓ ∈ Lf}. We further define Z+∞

ν,φ = Zν,φ ∪{+∞}.
Clearly, Zν,φ contains at most |Lf | values between two consecutive integers, i.e.

∀i ∈ Z |[i, i+ 1] ∩ Zν,φ| ⩽ |Lf | (3.1)

We can then summarise the adaptation of the untimed techniques in Algorithm 3. The
crucial argument to show termination is to notice that the possible values taken by the
components of vector X, apart from {−∞,+∞}, are among

PossValν = [−(|L| − 1)w∆
max − wt

max, |L|w∆
max + wt

max] ∩ Zν,φ

59

3 Weighted Timed Games with One Clock

ν0 r

Figure 3.9 – Network of affine functions defined by FG : functions in bold are final affine
functions of G, whereas non-bold ones are their translations with weights k ∈
[−(|L|−1)w∆

max, |L|w∆
max]∩Z. PossCPG is the set of abscissas of intersections

points, represented by black disks.

that has a cardinality bounded by |Lf | ×
(
(2|L| − 1)w∆

max + 2wt
max + 1

)
. Thus the loop in

the algorithm terminates after a number of steps at most |Lf | × |L| ×
(
(2|L| − 1)w∆

max +
2wt

max + 1
)
+ |L|, pseudo-polynomial with respect to the size of G.

Finally, optimal FM-strategies for Max, and fake-optimal NC-strategies for Min can be
computed as in Chapter 1.

Now let us explain how we can reduce the computation of Val(ℓ) (for all ℓ) to a finite
number of calls to Algorithm 3. We first study a precise characterisation of these functions,
in particular showing that these are piecewise-affine value functions of PAF{[0,r]}.

We first define the set FG of affine functions over [0, r] as follows:

FG = {k + φℓ | ℓ ∈ Lf ∧ k ∈ [−(|L| − 1)w∆
max, |L|w∆

max] ∩ Z}

Observe that this set is finite and that its cardinality is 2|L|2w∆
max, pseudo-polynomial in

the size of G. Moreover, this set contains enough information to compute the value of
the game in each possible value of the clock: for all ℓ ∈ L, for all ν ∈ [0, r]: if Val(ℓ, ν) is
finite, then there is f ∈ FG such that Val(ℓ, ν) = f(ν).

Using the continuity of the value functions (Theorem 3.2), this shows that all the
cutpoints of Val are intersections of functions from FG , i.e. belong to the set of possible
cutpoints

PossCPG = {ν ∈ [0, r] | ∃f1, f2 ∈ FG f1 ̸= f2 ∧ f1(ν) = f2(ν)}

This set is depicted in Figure 3.9 on an example. Observe that PossCPG contains at
most |FG |2 = 4|Lf |4(w∆

max)
2 points (also pseudo-polynomial in the size of G) since all

functions in FG are affine, and can thus intersect at most once with every other function.
Moreover, PossCPG ⊆ Q, since all functions of FG take rational values in 0 and r ∈ Q.
Thus, for all ℓ, Val(ℓ) is a piecewise-affine value function (with cutpoints in PossCPG and

60

3 Weighted Timed Games with One Clock

pieces from FG), and we can characterise it completely by computing only its value on its
cutpoints. Hence, we can reconstruct Val(ℓ) by calling Algorithm 3 on each rational clock
value ν ∈ PossCPG . From the optimal strategies thus computed, we can also reconstruct
a fake-optimal NC-strategy for Min and an optimal FM-strategy for Max, hence:

Proposition 3.19. Every r-simple weighted timed G with only urgent locations is finitely
optimal. Moreover, for all locations ℓ, the piecewise-affine value function Val(ℓ) has
cutpoints in PossCPG of cardinality 4|Lf |4(w∆

max)
2, pseudo-polynomial in the size of G.

3.5 Finite optimality of general simple weighted timed games

In this section, we consider simple weighted timed games with non-urgent locations.
We first prove that all such games are finitely optimal. Then, we introduce Algorithm 4 to
compute optimal values and strategies. Throughout the section, we fix a simple weighted
timed game G = (LMin, LMax, Lf , Lu,φ,∆,wt). Before presenting our core contributions,
let us explain how we can detect locations with infinite values. As already argued, we
can compute Val(ℓ, 1) for all ℓ assuming all locations are urgent, since time cannot elapse
anymore when the clock has value 1. This can be done with Algorithm 3. Then, by
continuity, Val(ℓ, 1) = +∞ (resp., Val(ℓ, 1) = −∞) if and only if Val(ℓ, ν) = +∞ (resp.,
Val(ℓ, ν) = −∞) for all ν ∈ [0, 1]. We remove from the game all locations with infinite
value without changing the values of other locations. Thus, we henceforth assume that
Val(ℓ, ν) ∈ R for all (ℓ, ν).

To prove finite optimality and to establish correctness of our algorithm, we rely in both
cases on a construction that consists in decomposing G into a sequence of simple weighted
timed games with more urgent locations. Intuitively, such games are easier to solve since
they are closer to an untimed game (in particular, when all locations are urgent, we
can apply the techniques of Section 3.4). More precisely, given a set L′ of non-urgent
locations, and a clock value r0 ∈ [0, 1], we define a (possibly infinite) sequence of clock
values 1 = r0 > r1 > · · · and a sequence GL′,r0 , GL′,r1 , . . . of simple weighted timed games
such that

1. all locations of G are also present in each GL′,ri , except that the locations of L′ are
now urgent; and

2. for all i ⩾ 0, the value function of GL′,ri is equal to ValG on the interval [ri+1, ri].
Hence, we can re-construct ValG by assembling well-chosen parts of the value
functions of the games GL′,ri (assuming infi ri = 0).

To formalise these constructions, let r ∈ [0, 1] and x⃗ = (xℓ)ℓ∈L be a vector of rational
values. Then, we let wait(G, r, x⃗) be the r-simple weighted timed game in which both
players may now decide, in all non-urgent locations ℓ, to wait until the clock takes value r,
and then to stop the game, adding the weight xℓ to the current price of the play. Formally,
wait(G, r, x⃗) = (LMin, LMax, L

′
f , Lu,φ

′, T ′,wt′) is such that

— L′
f = Lf ⊎ {ℓf | ℓ ∈ L \ Lu};

— for all ℓ′ ∈ Lf and ν ∈ [0, r], φ′
ℓ′(ν) = φℓ′(ν), for all ℓ ∈ L \ Lu, φ′

ℓf
(ν) =

(r − ν) · wt(ℓ) + xℓ;
— T ′ = T ∪ {(ℓ, [0, r],⊥, ℓf) | ℓ ∈ L \ Lu};
— for all δ ∈ T ′, wt′(δ) = wt(δ) if δ ∈ T , and wt′(δ) = 0 otherwise.

61

3 Weighted Timed Games with One Clock

ValGℓ,r
(ℓ, ν)

νa r

•

•

ν1 ν2

ValGℓ,r
(ℓ, ν1)

ValGℓ,r
(ℓ, ν2)

Figure 3.10 – The condition (3.2) (in the case L′ = ∅ and ℓ ∈ LMin): graphically, it means
that the slope between every two points of the plot in [a, r] (represented
with a thick line) is greater than or equal to −wt(ℓ) (represented with
dashed line).

Then, we consider the game wait
(
G, r, (ValG(ℓ, r))ℓ∈L

)
obtained thanks by letting x⃗ be

the value of G in r. This first transformation does not alter the value of the game, for
clock values before r:

Lemma 3.20. For all ν ∈ [0, r] and locations ℓ, ValG(ℓ, ν) = Valwait(G,r,(ValG(ℓ,r))ℓ∈L)(ℓ, ν).

Next, we make locations urgent. For a set L′ ⊆ L \ Lu of non-urgent locations, we
let GL′,r be the simple weighted game obtained from wait

(
G, r, (ValG(ℓ, r))ℓ∈L

)
by making

urgent every location ℓ of L′. Observe that, although all locations ℓ ∈ L′ are now urgent
in GL′,r, their clones ℓf allow the players to wait until r. When L′ is a singleton {ℓ}, we
write Gℓ,r instead of G{ℓ},r.

While the construction of Gr does not change the value of the game, turning locations
urgent does. Yet, we can characterise an interval [a, r] on which the value functions
of H = GL′,r and H+ = GL′∪{ℓ},r coincide, as stated by the next proposition. The
interval [a, r] depends on the slopes of the pieces of ValH+ as depicted in Figure 3.10:
for each location ℓ of Min, the slopes of the pieces of ValH+ contained in [a, r] should be
⩽ −wt(ℓ) (and ⩾ −wt(ℓ) when ℓ belongs to Max). It is proved by lifting optimal strategies
of H+ into H, and strongly relies on the determinacy result of Theorem 2.3. Hereafter,
we denote the slope of ValG(ℓ) in-between ν and ν ′ by slopeℓG(ν, ν ′) =

ValG(ℓ,ν
′)−ValG(ℓ,ν)
ν′−ν .

Lemma 3.21. Let 0 ⩽ a < r ⩽ 1, L′ ⊆ L\Lu and ℓ /∈ L′∪Lu a non-urgent location of Min
(respectively, Max). Assume that GL′∪{ℓ},r is finitely optimal, and for all a ⩽ ν1 < ν2 ⩽ r

slopeℓGL′∪{ℓ},r
(ν1, ν2) ⩾ −wt(ℓ) (respectively, ⩽ −wt(ℓ)) (3.2)

Then, for all ν ∈ [a, r] and ℓ′ ∈ L, ValGL′∪{ℓ},r(ℓ
′, ν) = ValGL′,r(ℓ

′, ν). Furthermore, fake-
optimal NC-strategies and optimal FM-strategies in GL′∪{ℓ},r are also fake-optimal and

62

3 Weighted Timed Games with One Clock

ValGℓ⋆,r
(ℓ⋆, ν)

ν

ValG(ℓ
⋆, r)

left(r) r

Figure 3.11 – In this example L′ = {ℓ⋆} and ℓ⋆ ∈ LMin. left(r) is the leftmost point such
that all slopes on its right are smaller than or equal to −wt(ℓ⋆) in the graph
of ValGℓ⋆,r

(ℓ⋆, ν). Dashed lines have slope −wt(ℓ⋆).

optimal over [a, r] in GL′,r.

Given an SWTG G and some finitely optimal GL′,r, we now characterise precisely the
left endpoint a of the maximal interval ending in r where the value functions of G and GL′,r

coincide, with the operator leftL′ : (0, 1] → [0, 1] (or simply left, if L′ is clear) defined as

leftL′(r) = inf{r′ ⩽ r | ∀ℓ ∈ L ∀ν ∈ [r′, r] ValGL′,r(ℓ, ν) = ValG(ℓ, ν)} .

By continuity of the value (Theorem 3.2), this infimum exists and ValG(ℓ, leftL′(r)) =
ValGL′,r(ℓ, leftL′(r)). Moreover, ValG(ℓ) is a piecewise-affine value function on [left(r), r],
since GL′,r is finitely optimal. However, this definition of left(r) is semantical. Yet,
building on the ideas of Lemma 3.21, we can effectively compute left(r), given ValGL′,r .
We claim that leftL′(r) is the minimal clock value such that for all locations ℓ ∈ L′ ∩LMin

(respectively, ℓ ∈ L′ ∩ LMax), the slopes of the affine sections of the piecewise-affine value
function ValGL′,r(ℓ) on [left(r), r] are at least (at most) −wt(ℓ). Hence, left(r) can be
obtained (see Figure 3.11) by inspecting iteratively, for all ℓ of Min (respectively, Max),
the slopes of ValGL′,r(ℓ) by decreasing clock values until we find a piece with a slope
greater than −wt(ℓ) (respectively, smaller than −wt(ℓ)). This enumeration of the slopes
is effective as ValGL′,r has finitely many pieces, by hypothesis. Moreover, this guarantees
that left(r) < r.

It only remains to choose L′. With what we have obtained above, a natural choice
is to let L′ = {ℓ⋆} with ℓ⋆ a non-urgent location of minimum weight (i.e. for all ℓ ∈ L,
wt(ℓ⋆) ⩽ wt(ℓ)). Given r0 ∈ [0, 1], we let r0 > r1 > · · · be the decreasing sequence of
clock values such that ri = leftℓ⋆(ri−1) for all i > 0. Then, one can reconstruct ValG on
[infi ri, r0] from the value functions of the (potentially infinite) sequence of games GL′,r0 ,
GL′,r1 , . . . Assuming finite optimality of those games (by induction), this proves that G is
finitely optimal under the condition that r0 > r1 > · · · eventually stops, i.e. ri = 0 for
some i. The crucial argument is to relate the optimal value functions with the final value
functions:

63

3 Weighted Timed Games with One Clock

Lemma 3.22. Assume that GL′,r is finitely optimal. If ValGL′,r(ℓ
⋆) is affine on a non-

singleton interval I ⊆ [0, r] with a slope greater 2 than −wt(ℓ⋆), then there exists f ∈ FG
(see definition in page 60) such that for all ν ∈ I, ValGL′,r(ℓ

⋆, ν) = f(ν).

Then, the proof of termination of the sequence of ri’s is achieved by showing that, for
all i, the owner of ℓ⋆ has a strictly better strategy in configuration (ℓ⋆, ri+1) than waiting
until ri in location ℓ⋆, and relying on the finiteness of FG :

Lemma 3.23. If Gℓ⋆,ri is finitely optimal for all i ⩾ 0, then
1. if ℓ⋆ ∈ LMin (respectively, LMax), ValG(ℓ

⋆, ri+1) < ValG(ℓ
⋆, ri) + (ri − ri+1)wt(ℓ

⋆)
(respectively, ValG(ℓ⋆, ri+1) > ValG(ℓ

⋆, ri) + (ri − ri+1)wt(ℓ
⋆)), for all i; and

2. there is i ⩽ |FG |2 + 2 such that ri = 0.

By iterating this construction, we make all locations urgent iteratively, and obtain the
finite optimality of all simple weighted timed games. Moreover, for all locations ℓ, ValG(ℓ)
can be shown to have at most O

(
(w∆

max|L|2)2|L|+2
)

cutpoints.
This construction suggests a recursive algorithm in the spirit of [Bou+06; Rut11] (for

non-negative weights). From a simple weighted timed game G with minimal non-urgent
location ℓ⋆, solve recursively Gℓ⋆,1, Gℓ⋆,left(1), Gℓ⋆,left(left(1)), . . ., handling the base case
where all locations are urgent with Algorithm 3. While our results above show that this
is correct and terminates, we show that this recursion can be avoided. Instead of turning
locations urgent one at a time, we make them all urgent at once, and compute directly
the sequence GL\Lu,1, GL\Lu,left(1), . . . of simple weighted timed games with only urgent
locations. Its proof of correctness relies on the finite optimality of simple weighted timed
games and, again, on our basic result linking the value functions of G and games GL′,ri .

However, the key argument of Lemma 3.23 that ensures termination of the recursive
algorithm cannot be applied in this case. Instead, we rely on the following result, stating,
that there will be at least one cutpoint of ValG in each interval [left(r), r]. Observe that
this lemma relies on the fact that G is finitely optimal, hence the need to first prove this
fact independently with the sequence Gℓ⋆,1,Gℓ⋆,left(1),Gℓ⋆,left(left(1)), Termination then
follows from the fact that ValG has finitely many cutpoints by finite optimality.

Lemma 3.24. Let r0 ∈ (0, 1] such that GL′,r0 is finitely optimal. Suppose that r1 =
leftL′(r0) > 0, and let r2 = leftL′(r1). There exists r′ ∈ [r2, r1) and ℓ ∈ L′ such that

1. ValG(ℓ) is affine on [r′, r1], of slope equal to −wt(ℓ), and
2. ValG(ℓ, r1) ̸= ValG(ℓ, r0) + wt(ℓ)(r0 − r1).

As a consequence, ValG(ℓ) has a cutpoint in [r1, r0).

Algorithm 4 implements this new non-recursive algorithm. In our algorithm, we combine
value functions thanks to the � operator. Let f ∈ PAFS and f ′ ∈ PAFS′ be two piecewise-
affine value functions on sets of guards S, S′, such that [[S]] ∩ [[S′]] is a singleton. We let
f � f ′ be the function in PAFS∪S′ such that (f � f ′)(ν) = f(ν) for all ν ∈ [[RegS]], and
(f � f ′)(ν) = f ′(ν) for all ν ∈ [[RegS′]] \ [[RegS]].

Each iteration of the while loop computes a new game in the sequence GL\Lu,1,
GL\Lu,left(1), . . ., solves it thanks to Algorithm 3, and thus computes a new portion of

2. For this result, the order does not depend on the owner of the location, but on the fact that ℓ⋆ has
minimal weight amongst locations of G.

64

3 Weighted Timed Games with One Clock

Algorithm 4: solve(G)
Input: SWTG G = (LMin, LMax, Lf , Lu,φ,∆,wt)

1 f⃗ = (fℓ)ℓ∈L := solveInstant(G, 1) /* fℓ : {1} → R∞ */
2 r := 1
3 while 0 < r do /* Invariant: fℓ : [r, 1] → R∞ */
4 G′ := wait(G, r, f⃗(r)) /* r-SWTG G′ = (LMin, LMax, L

′
f , L

′
u,φ

′, T ′,wt′) */
5 L′

u := L′
u ∪ L /* every location is made urgent */

6 b := r
7 repeat /* Invariant:fℓ : [b, 1] → R∞ */
8 a := max(PossCPG′ ∩ [0, b))
9 x⃗ = (xℓ)ℓ∈L := solveInstant(G′, a) /* xℓ = ValG′(ℓ, a) */

10 if ∀ℓ ∈ LMin
fℓ(b)−xℓ

b−a ⩽ −wt(ℓ) ∧ ∀ℓ ∈ LMax
fℓ(b)−xℓ

b−a ⩾ −wt(ℓ) then
11 foreach ℓ ∈ L do fℓ :=

(
ν ∈ [a, b] 7→ fℓ(b) + (ν − b)fℓ(b)−xℓ

b−a

)
� fℓ

12 b := a ; stop := false

13 else stop := true

14 until b = 0 or stop
15 r := b

16 return f⃗

ValG on an interval on the left of the current point r ∈ [0, 1]. More precisely, the vector
(ValG(ℓ, 1))ℓ∈L is first computed in line 1. Then, the algorithm enters the while loop,
and the game G′ obtained when reaching line 6 is GL\Lu,1. Then, the algorithm enters
the repeat loop to analyse this game. Instead of building the whole value function of G′,
it builds only the parts of ValG′ that coincide with ValG . It proceeds by enumerating
the possible cutpoints a of ValG′ , starting in r, by decreasing clock values (line 8), and
computes the value of ValG′ in each cutpoint thanks to Algorithm 3 (line 9), which yields
a new piece of ValG′ . Then, the if in line 10 checks whether this new piece coincides with
ValG , using the condition given by Lemma 3.21. If it is the case, the piece of ValG′ is added
to fℓ (line 11); repeat is stopped otherwise. When exiting the repeat loop, variable b
has value left(1). Hence, at the next iteration of the while loop, G′ = GL\Lu,left(1) when
reaching line 6. By continuing this reasoning inductively, one concludes that the successive
iterations of the while loop compute the sequence GL\Lu,1, GL\Lu,left(1), . . . as announced,
and rebuilds ValG from them. Termination in exponential time is ensured by Lemma 3.24:
each iteration of the while loop discovers at least one new cutpoint of ValG , and there
are at most exponentially many (note that a tighter bound on this number of cutpoints
would entail a better complexity of our algorithm).

3.6 Towards non-simple weighted timed games

In [Bou+06; Rut11; HIM13], general weighted timed games with non-negative weights
are solved by reducing them to a finite sequence of simple weighted timed games, by
eliminating guards and resets. It is thus natural to try and adapt these techniques to the
general case, in which case Algorithm 4 would allow us to solve general simple weighted

65

3 Weighted Timed Games with One Clock

timed games with arbitrary weights. Let us explain where are the difficulties of such a
generalisation.

The technique used to remove strict guards from the transitions of a weighted timed
game G, i.e. guards of the form (a, b], [b, a) or (a, b) with a, b ∈ N, consists in enhancing
the locations with regions while keeping an equivalent game G′. This technique can be
adapted to arbitrary weights, as we have already seen before: this is the purpose of
the corner-point abstraction of Definition 2.12, that moreover allows one to consider a
corner of a region, that is a point of its topological closure, as a point of the region itself.
Interestingly, we can transform an ε-optimal strategy of G′ into an ε′-optimal strategy
of G with ε′ < 2ε and vice-versa.

The technique to handle resets, however, consists in bounding the number of clock
resets that can occur in each play following an optimal strategy of Min or Max. Then,
the weighted timed game can be unfolded into a reset-acyclic game with the same value.
By reset-acyclic, we mean that no cycles in the configuration graph visit a transition
with a reset. This reset-acyclic weighted timed game can be decomposed into a finite
number of components that contain no reset and are linked by transitions with resets.
These components can be solved iteratively, from the bottom to the top, turning them
into simple weighted timed games. Thus, if we assume that the weighted timed games
we are given as input are reset-acyclic, we can solve them in exponential time, and our
techniques show that their value functions are piecewise-affine with at most exponentially
many cutpoints.

In [Bou+06], the authors showed that with one-clock weighted timed games and non-
negative weights only we could bound the sufficient number of resets by n, the number of
locations, without changing the value functions. Unfortunately, the arguments to bound
the number of resets do not hold for arbitrary weights, as shown by the weighted timed
game in Figure 3.12. We claim that Val(ℓ0) = 0; that Min has no optimal strategies, but
a family of ε-optimal strategies σε

Min with respective value ε; and that each σε
Min requires

memory whose size depends on ε and might yield a play visiting at least 1/ε times the
reset between ℓ0 and ℓ1 (hence the number of resets cannot be bounded). For all ε > 0,
σε
Min consists in: waiting 1 − ε time units in ℓ0, then going to ℓ1 during the ⌈1/ε⌉ first

visits to ℓ0; and to go directly to ℓf afterwards. Against σε
Min, Max has two possible

choices:

1. either wait 0 time unit in ℓ1, wait ε time units in ℓ2, then reach ℓf ; or

2. wait ε time unit in ℓ1 then force the cycle by going back to ℓ0 and wait for Min’s
next move.

Thus, all plays according to σε
Min will visit a sequence of locations which is either of

the form ℓ0(ℓ1ℓ0)
kℓ1ℓ2ℓf , with 0 ⩽ k < ⌈1/ε⌉; or of the form ℓ0(ℓ1ℓ0)

⌈1/ε⌉ℓf . In the
former case, the weight of the play will be −kε+ 0 + ε = −(k − 1)ε ⩽ ε; in the latter,
−ε(⌈1/ε⌉) + 1 ⩽ 0. This shows that Val(ℓ0) = 0, but there is no optimal strategy as none
of these strategies allow one to guarantee a value of 0 (neither does the strategy that
waits 1 time unit in ℓ0).

If bounding the number of resets is not possible in the general case, it could be done
if one adds constraints on the cycles of the game. This kind of restriction was used
in [BCR14] where they introduce the notion of robust games. Such games requires among
other things that every play starting and ending in the same pair of location and region
has either a positive weight or a weight smaller than −1. Here we require a less powerful

66

3 Weighted Timed Games with One Clock

0

ℓ0

−1

ℓ1

1 ℓ2

,

x = 1

x ⩽ 1

x ⩽ 1

x = 1, x := 0

1

Figure 3.12 – A weighted timed game where the number of resets in optimal plays cannot
be bounded a priori.

assumption as we put this restriction only on cycles containing a reset.

Definition 3.25. A negative-reset-acyclic weighted timed game is a weighted timed game
where for every location ℓ ∈ L and every cyclic finite play ρ starting and ending in (ℓ, 0),
either wt(ρ) ⩾ 0 or wt(ρ) < −1.

The weighted timed game of Figure 3.12 is not a negative-reset-acyclic weighted timed

game as the play (ℓ0, 0)
0−→ (ℓ1, 1 − 1/2)

−1/2−−−→ (ℓ0, 0) is a cycle containing a reset and
with a negative weight strictly greater than −1. On the contrary, in Figure 3.13, we
show a negative-reset-acyclic weighted timed game and its region game. Here, every cycle
containing a reset is between ℓ0 and ℓ1 and such cycles have at most weight −1. The
value Val(ℓ0, 0) is 0 in this game but no strategies for Max can achieve it because of the
guard x > 0. As this guard is not strict anymore in the region game, both players have
an optimal strategy (this is not always the case).

This allows us to give a bound on the value of a negative-reset-acyclic weighted timed
game G. Letting k = |RegG | be the number of regions, for all configurations (ℓ, ν):

— either Val(ℓ, ν) ∈ {−∞,+∞},
— or −|L|MwL

max − |L|2(|L|+ 2)w∆
max︸ ︷︷ ︸

Valinf

⩽ Val(ℓ, ν) ⩽ |L|MwL
max + |L|kw∆

max︸ ︷︷ ︸
Valsup

.

Using this, one can give a bound on the number of cycles that it is sufficient to allow.
The idea is that if a reset is taken twice and the generated cycle (with a single clock,
traversing twice the same transition with a reset creates a cycle) has positive weight,
either Min can modify their strategy so that it does not take this cycle or the value of the
game is +∞ as Max can stop Min to reach an accepting state. On the contrary if the cycle
has negative weight, then by definition, this weight is less than −1. Thus by allowing
enough such cycles, as we have bounds on the values of the game, we know when we will
have enough cycles to get under the lower bound of the value of the game. By solving the
copies of the game, if we reach a value that is smaller than the lower bound of the value,
then it means that the value is −∞. More precisely, the value of a negative-reset-acyclic
weighted timed game can be computed by solving k = 2n(Valsup−Valinf) WTGs without
resets and using the same set of guards. Moreover, from ε-optimal strategies on those

67

3 Weighted Timed Games with One Clock

0ℓ0 −1 ℓ1

,

1, x < 1 0 < x < 1

x < 1

−1, x < 1, x := 0
0ℓ0, {0}

0

ℓ0, [0, 1]

−1 ℓ1, [0, 1]

−1 ℓ1, {0}

,

x = 0 x = 0

1
1

−1, x :=
0

−1

Figure 3.13 – A negative-reset-acyclic weighted timed game and its region game (some
guards were removed for a better readability)

k games, we can build kε-optimal strategies in the original game. With this, we can
conclude:

Theorem 3.26. Let G be a negative-reset-acyclic weighted timed game. Then for every
location ℓ ∈ L, the function Val(ℓ) is computable in exponential time, and is piecewise-
affine with at most an exponential number of cutpoints. Moreover, for every ε > 0, there
exists (and we can effectively compute) ε-optimal strategies for both players.

The robust games defined in [BCR14] restricted to one-clock are a subset of the negative-
reset-acyclic weighted timed games, therefore their value is computable with the same
complexity. While we cannot (yet) extend the computation of the value to all (one-clock)
weighted timed games, we can still obtain information on the nature of the value function:

Theorem 3.27. The value functions of all one-clock weighted timed games are piecewise-
affine value functions with at most exponentially many cutpoints.

Proof. Let G be a one-clock weighted timed game. Let us replace all transitions
(ℓ, g, {x}, ℓ′) resetting the clock by (ℓ, g, ∅, ℓ′′), where ℓ′′ is a new final location with
φℓ′′ = ValG(ℓ, 0): observe that ValG(ℓ, 0) exists even if we cannot compute it, so this
transformation is well-defined. This yields a negative-reset-acyclic weighted timed game G′

such that ValG′ = ValG .

Conclusion

In this chapter, we have pushed previously existing algorithms to solve one-clock
weighted timed games, in order to be able to model arbitrary (positive and negative)
weights. We obtained a positive result for the special case of simple games, where no guards
and resets are allowed, that is easily extendable to the presence of guards. This complexity

68

3 Weighted Timed Games with One Clock

result is comparable with previously obtained results in the case of non-negative weights
only [HIM13; Rut11], even though we follow different paths to prove termination and
correction (due to the presence of negative weights). In order to push our algorithm as
far as we can, and allow for some resetting transitions, we have introduced the class of
negative-reset-acyclic games for which we obtain the same result: as a particular case, we
can solve all weighted timed games with one clock for which the clock is reset in every
cycle of the underlying region automaton.

As future works, it is appealing to solve the full class of weighted timed games with
arbitrary weights and one clock. We have shown why our technique breaks down in
this more general setting, thus it could be interesting to study the difficult negative
cycles without reset as their own, with different techniques. This is the object of current
promising works performed with Julie Parreaux and Pierre-Alain Reynier.

Another question, wide open, is to solve weighted timed games with only non-negative
weights and two clocks, since in the non-negative case, the undecidability barrier is at
three clocks (see Theorem 2.4). Simpler fragments could be investigated to go in this
direction, for instance where only one of the two clocks is allowed to be tested and reset,
while the other clock follows the simple restriction investigated in this chapter.

69

4 Value Iteration Methods:
(Almost-)Divergent Weighted Timed
Games

This chapter presents results obtained with Damien Busatto-Gaston, Julie Parreaux, and
Pierre-Alain Reynier, published in the conferences FoSSaCS [BMR17], FSTTCS [BMR18] and
ICALP [MPR21], and follows the presentation of the submitted journal article [BMR21].

Table of contents

4.1 Value functions and value iteration algorithm 71
4.2 Divergent and almost-divergent weighted timed games 74
4.3 Deciding divergence and almost-divergence 78
4.4 Deciding infinite values . 81
4.5 Semi-unfolding of weighted timed games 83
4.6 Computing values . 85
4.7 Strategy synthesis . 90

At this stage, it seems that we have almost a clear picture of the decidability frontier:
a large fragment of one-clock weighted timed games is decidable (Chapter 3), while it
becomes undecidable with two clocks (in the presence of negative weights). To push
further the decidability frontier, we must thus consider other kinds of restrictions on the
weighted timed games than the number of clocks.

In [Bou+04b], a completely different kind of restriction was studied, to obtain decid-
ability: in the presence of non-negative weights only, a weighted timed game satisfies
the strictly non-Zeno cost property when every finite play ρ in G following a cycle in the
region game RegG satisfies wt(ρ) ⩾ 1. Then, as plays grow, their weight ultimately grows
above any fixed bound, and diverges towards +∞ for an infinite execution. Thus, it is
only necessary to unfold the game graph to a finite depth in order to compute optimal
values and (ε-)optimal strategies. This can be done thanks to the technique of [ABM04],
solving tree-shaped weighted timed games with non-negative weights. They develop a
heavy machinery to cut the clock space into small chunks (regions are not fitted for
that purpose, since, as we have already seen, players may have to play in the middle of
regions to play optimally) over which the value function is affine. Instead of unfolding and
compute the value of a tree-shaped game, we may understand this technique as another
appearance of the value iteration paradigm we have already exploited in previous chapters.
We start this chapter by recalling this paradigm in the timed setting. We then exploit
it in the setting of games with arbitrary weights and arbitrarily many clocks, where no
decidable fragments were know before our contribution.

70

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

4.1 Value functions and value iteration algorithm

The value of a game has been defined as a mapping of each configuration (ℓ, ν) to a
value in R∞. We call value functions such mappings from L×RX

⩾0 to R∞. If V represents
a value function, we denote by Vℓ the mapping ν 7→ V(ℓ, ν). As observed in [Bou+04b;
ABM04], one step of the game is summarised in the following operator F mapping each
value function V to a value function V′ = F(V) defined by V′

ℓ(ν) = fwt(ℓ, ν) if ℓ ∈ Lt,
and otherwise

V′
ℓ(ν) =

sup
(ℓ,ν)

t,e−→(ℓ′,ν′)

[
t · wt(ℓ) + wt(e) +Vℓ′(ν

′)
]

if ℓ ∈ LMax

inf
(ℓ,ν)

t,e−→(ℓ′,ν′)

[
t · wt(ℓ) + wt(e) +Vℓ′(ν

′)
]

if ℓ ∈ LMin

(4.1)

where (ℓ, ν)
t,e−→ (ℓ′, ν ′) ranges over valid transitions in G. This generalises a similar

operator used in Chapter 1 in the untimed setting.
Then, starting from V0 mapping every configuration (ℓ, ν) to +∞, except for the

targets mapped to fwt(ℓ, ν), we let Vi = F(Vi−1) for all i > 0. The value function Vi

contains the value ValiG , which is intuitively what Min can guarantee when forced to reach
the target in at most i steps. More formally, we let wti(ρ) the weight of a maximal play
ρ at horizon i, as wt(ρ) if ρ reaches a target in at most i steps, and +∞ otherwise. Then,
ValiG(ℓ, ν) = infσMin

supσMax
wti(play((ℓ, ν), σMin, σMax)) refers to the value at horizon i.

We compare value functions componentwise: if V,V′ are two value function, we let
V ⩽ V′ if V(ℓ, ν) ⩽ V′(ℓ, ν) for all configurations (ℓ, ν). Notice that F is a monotonic
operator, i.e. if V ⩽ V′, then F(V) ⩽ F(V′). Moreover, F(V0) ⩽ V0 since V0 maps
every non-target state to +∞, and target state keep the same value. It follows that the
sequence (Vi)i∈N is non-increasing, as Vi = F i(V0) ⩾ F i(F(V0)) = Vi+1.

We have seen in Chapter 1 that, in the case of an (untimed) shortest-path game, this
sequence converges in finite time towards the greatest fixed point of F that appears to be
the value of the game. Such a computation of the greatest fixed point in finite time might
not be possible in the timed setting, since the value problem is undecidable in general.
We will come back later on this technique, also used by [Bou+04b] for special classes of
weighted timed games.

We will heavily rely on the class of piecewise-affine value functions, and a way to
efficiently encode them, as developed in [ABM04]. This class is closed by the application
of operator F . Let n denote the number of clocks, such that X = {x1, . . . , xn}, and ℓ ∈ L
a location of G. An affine value function is a mapping Vℓ : [0,M)X → R∞ such that for
all ν ∈ [0,M)X ,

Vℓ(ν) = a1 · ν(x1) + · · ·+ an · ν(xn) + b

with partial derivatives ai ∈ Q for 1 ⩽ i ⩽ n, and additive constant b ∈ Q. In this case,
we say that Vℓ is defined by the equation y = a1x1 + · · ·+ anxn + b where the variable
y ̸∈ X refers to Vℓ(x1, . . . , xn). We also consider infinite mappings ν 7→ +∞ and ν 7→ −∞
to be affine value functions, defined by y = +∞ and y = −∞, respectively.

Intuitively, we define a piecewise-affine value function as a partition of [0,M)X into
finitely many polyhedra, called cells, each equipped by an affine value function. Formally,
an affine inequality is an equation I of the form

a1x1 + · · ·+ anxn + b ≺ 0

71

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

where b ∈ Q is the additive constant of I, ≺ ∈ {<,⩽} is its comparison operator, and for
every 1 ⩽ i ⩽ n, ai ∈ Q is the i-th partial derivative of I. Similarly, an affine equality is
an equation E of the form

a1x1 + · · ·+ anxn + b = 0

We say that ν ∈ RX
⩾0 satisfies I (resp. E), and write ν |= I (resp. ν |= E), if a1 · ν(x1) +

· · ·+ an · ν(xn) + b ≺ 0 (resp. = 0) holds. In this case, JIK (resp. JEK) refers to the set
of valuations that satisfy I (resp. E). Equalities (resp. inequalities) are equivalent when
they are satisfied by the same valuations. In particular, multiplying the additive constant
b and all partial derivatives ai by the same factor N ∈ N \{0} gives an equivalent equality
(resp. inequality), and we will therefore assume that they are always integers.

Definition 4.1. A cell is a set c ⊆ RX
⩾0, defined by a conjunction of affine inequalities

I1 ∧ · · · ∧ Im, such that ν ∈ c if and only if for all 1 ⩽ i ⩽ m, ν |= Ii. We write
c = JI1 ∧ · · · ∧ ImK in this case.

Cells are convex polyhedra, and the intersection of finitely many cells is a cell. From
every affine inequality I, we can extract an affine equality E(I), of identical partial
derivatives and additive constant. Then, we call borders of a cell c = JI1 ∧ · · · ∧ ImK the
affine equalities E(I1), . . . , E(Im). The closure c of a cell c is obtained by replacing every
comparison operator < by ⩽ in its affine inequalities. Note that regions and zones are
particular cases of cells, where borders are of the form x+ b = 0 or x− x′ + b = 0. An
example of cell and its borders is given in Figure 4.1.

2x1 + x2 − 2 = 0

x2 − 1 = 0

x1

x2

1 20

1

2

Figure 4.1 – The cell 2x1 + x2 − 2 < 0 ∧ x2 − 1 < 0 in gray, and its borders in blue.

Let E be an affine equality of equation a1x1 + · · ·+ anxn + b = 0. We say that RX
⩾0 is

partitioned by E into three cells:

— c<, defined by a1x1 + · · ·+ anxn + b < 0;

— c>, defined by a1x1 + · · ·+ anxn + b > 0, i.e. −a1x1 − · · · − anxn − b < 0;

— c=, defined by a1x1+· · ·+anxn+b = 0, i.e. the conjunction of a1x1+· · ·+anxn+b ⩽ 0
and −a1x1 − · · · − anxn − b ⩽ 0.

Then, given a set E = {E1, . . . , Em} of affine equalities, we denote cj<, cj> and cj= the
three cells obtained from Ej ∈ E . For every mapping ϕ : E → {<,>,=}, we define cϕ as
the cell c1ϕ(E1)

∩ · · · ∩ cmϕ(Em). Every valuation of RX
⩾0 belongs to some cϕ, and if ϕ ̸= ϕ′

then cϕ ∩ cϕ′ = ∅: hence, the set of mappings {<,>,=}E provides a partition of RX
⩾0

into 3m cells. We say that RX
⩾0 is partitioned by E into m′ ∈ N cells if m′ of those 3m

72

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

cells are non-empty. In fact, m′ is bounded by O((2m)n) (see, e.g., [Mat02, Prop. 6.1.1]),
and we denote Splits(m,n) this bound (polynomial in m and exponential in n) on the
number of cells in the partition. Similarly, a cell c ⊆ RX

⩾0 is partitioned by E into at most
Splits(m,n) sub-cells that have non-empty intersection with c. In particular, under the
bounded clocks assumption we will partition [0,M)X instead of RX

⩾0.

x1

x2

1 20

1

2

Figure 4.2 – A partition of [0, 2)X according to the two affine equalities of Figure 4.1.

Example 4.2. The 9 cells that partition [0, 2)X according to E = {2x1 + x2 − 2 =
0, x2 − 1 = 0} are represented in Figure 4.2.

Definition 4.3. A partition P is defined by a cell cP and a set EP of affine equalities,
such that P encodes the set of cells that partition cP according to EP , called base cells.

The cell cP is called the domain of P . We denote [ν]P the base cell that contains
valuation ν ∈ cP .

Definition 4.4. A partition value function F defined over a partition P is a mapping
from the base cells of P to affine value functions. It encodes a mapping from cP to R∞,
denoted JF K: if ν ∈ cP and F ([ν]P) is defined by y = a1x1 + · · ·+ anxn + b, then JF K(ν)
equals a1 · ν(x1) + · · ·+ an · ν(xn) + b.

A partition value function F of domain cP is continuous if for all ν ∈ cP , for every
base cell cb such that ν ∈ cb, if F (cb) is defined by y = a1x1 + · · · + anxn + b then
JF K(ν) = a1 · ν(x1) + · · ·+ an · ν(xn) + b. In other words, the affine equations provided by
F to neighbouring cells should match on the borders that separate them.

Finally, the piecewise-affine value function Vℓ : [0,M)X → R∞ of a location ℓ is
encoded as a pair (P, F) where P is a partition of domain [0,M)X , and F is a partition
value function defined over P , such that JF K = Vℓ.

A piecewise-affine value function (P, F) is said continuous on regions if for every
region r ∈ Reg(X ,M), the restriction of F to domain r is continuous. There could be
discontinuities in F , but only at borders separating different regions. In particular, if a
partition value function is continuous over regions, and JF K(ν) = +∞ (resp. −∞) for
some ν, then for all ν ′ in the same region as ν, JF K(ν ′) = JF K(ν).
Remark. In [ABM04], the domain of partitions is always a single region, and one value
function is associated to each region. We define value functions over [0,M)X instead,
in order to obtain a symbolic algorithm, independent of regions. This induces slight
differences in the way value functions are defined, because the mappings of [ABM04] are
continuous everywhere while ours can have discontinuities at borders between regions.
They define their partitions with overlaps over borders, such that RX

⩾0 is partitioned by
an affine equality into two cells, c⩽ and c⩾, instead of the three c<, c> and c=. This
changes the number of cells Splits(m,n), but not asymptotically.

73

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

Cells are bounded and convex polyhedra. Elementary operations over cells (emptiness,
intersection and inclusion tests) can be seen as instances of linear programming, and can
thus be performed in polynomial time. The main result of [ABM04], that we have formally
reproved and extended to deal with negative weights, is to show that this data structure
allows one to effectively compute the iterates (Vi)i∈N. Contrary to the case without
clocks, recalled before, this sequence does not stabilise in general. The algorithms we
present in this chapter are thus based on reasons to either make the sequence stabilise (the
divergent restriction we will first study) or stop its computation after a sufficient number
i of turns to obtain a good approximation of the value (in the case of almost-divergent
weighted timed games we will also introduce soon).

4.2 Divergent and almost-divergent weighted timed games

In this section, we introduce several classes of weighted timed games for which we state
the results that this chapter shows. Let us recall first the class of weighted timed games
studied in [Bou+04b], a large class with non-negative weights where the value problem is
known to be decidable.

Definition 4.5. A weighted timed game G with non-negative weights satisfies the strictly
non-Zeno cost property when every finite play ρ in G following a cycle in the region
automaton R(G) satisfies wt(ρ) ⩾ 1.

The intuition behind this class is that the weight of any long enough execution in G
will ultimately grow above any fixed bound, and diverge towards +∞ for an infinite
execution. Therefore, the value of G is equal to the value ValiG at some horizon i large
enough, making the value problem decidable. It is shown in [Bou+04b] that i can be
bounded exponentially in the size of G.

We introduce divergent weighted timed games, as a natural generalisation of the strictly
non-Zeno cost property to weights in Z.

Definition 4.6. A weighted timed game G is divergent when every finite play ρ in G
following a cycle in the region automaton R(G) satisfies wt(ρ) /∈ (−1, 1).

If G has only non-negative weights on locations and edges, this definition matches with
the strictly non-Zeno cost property, we will therefore refer to their class as the class of
divergent weighted timed games with non-negative weights.

As in [Bou+04b], we could replace (−1, 1) by (−κ, κ) to define a notion of κ-divergence.
However, since weights and guard constraints in weighted timed games are integers, for
κ ∈ (0, 1), a weighted timed game G is κ-divergent if and only if it is divergent.

Our contributions on divergent weighted timed games summarise as follows:

Theorem 4.7. The value problem over divergent weighted timed games is decidable in
3-EXPTIME, and is EXPTIME-hard. Moreover, deciding if a given weighted timed games
is divergent is a PSPACE-complete problem.

In [BJM15], the authors slightly extend the strictly non-Zeno cost property, to allow
for cycles of weight exactly 0 while still preventing those of weight arbitrarily close to 0:

74

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

weights in Z weights in N

divergent strictly non-Zeno cost

almost-divergent simple

Figure 4.3 – Classes of weighted timed games, and their respective restrictions to non-
negative weights.

Definition 4.8. A weighted timed games G with non-negative weights is called simple
when every finite play ρ in G following a cycle in the region automaton R(G) satisfies
wt(ρ) ∈ {0} ∪ [1,+∞).

Unfortunately, it is shown in [BJM15] that the value problem is undecidable, even
for simple weighted timed games. They propose a solution to the value approximation
problem, as a procedure computing an approximation of the value of every configuration.
The intuition is that cycles of weight exactly 0 are only possible when every (non-negative)
weight encountered along the cycle equals 0, allowing one to define a subgame where
every cyclic execution has weight 0. They can then analyse this subgame separately, by
applying a semi-unfolding procedure on R(G).

We introduce a class of weighted timed games that will extend this simplicity notion
and allow negative weights, so that cyclic executions of weight exactly 0 are allowed, but
not those close to 0. The first attempt would lead to the requirement that every finite play
following a cycle in the region automaton R(G) has a weight in (−∞,−1]∪{0}∪ [1,+∞).
However, we did not obtain positive results for the value approximation problem on this
class of weighted timed games since cycles of weight exactly 0 do not have the good
property presented above for simple weighted timed games. Instead, we require a stability
by decomposition for cycles of weight 0.

If p = (ℓ0, r0)
r1,e0−−−→ (ℓ1, r1)

r2,e1−−−→ · · · (ℓk−1, rk−1)
r0,ek−1−−−−→ (ℓ0, r0) is a region cycle in

R(G), it is either simple (i.e. for all i, j such that 0 ⩽ i < j < k, (ℓi, ri) ̸= (ℓj , rj)) or we
can extract smaller cycles from it. Indeed, if p is not simple, there exists a pair (i, j) such
that 0 ⩽ i < j < k and (ℓi, ri) = (ℓj , rj). Then, for such a pair, we can write p = p1p2p3
such that |p1| = i, |p3| = k − j. It follows that p2 and p3p1 are both region cycles around
(ℓi, ri). This process is called a decomposition of p into smaller cycles p′ = p3p1 and
p′′ = p2.

Definition 4.9. A weighted timed game G is almost-divergent if every play ρ following
a cycle p of R(G) satisfies wt(ρ) ∈ (−∞,−1] ∪ {0} ∪ [1,+∞), and if wt(ρ) = 0 then for
every decomposition of p into smaller cycles p′ and p′′, and plays ρ′ and ρ′′ following p′

and p′′, respectively, it holds that wt(ρ′) = wt(ρ′′) = 0. 1

Clearly, every divergent weighted timed game is almost-divergent. Moreover, as we
will see in Proposition 4.19, when weights are non-negative, this class matches the simple

1. Once again, we could replace −1, 1 by −κ, κ with 0 < κ < 1 to define an equivalent notion of
κ-almost-divergence.

75

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

weighted timed games of [BJM15] therefore inheriting their undecidability result. We will
thus refer to simple weighted timed games as almost-divergent weighted timed games
with non-negative weights. Figure 4.3 represents the hierarchy of the classes of games
that we introduced.

Example 4.10. Consider the weighted timed game G in Figure 2.1 (page 37). The
loop on ℓ1 contains a cycle of R(G) around (ℓ1,0) that jumps to the region 1 < x < 2.
For every d ∈ (1, 2), there exists a play ρ following this cycle that uses delay d, so that
wt(ρ) = 3 − 2d ∈ (−1, 1). It follows that G is neither divergent nor almost-divergent.
Changing the guard on this loop to 2 ⩽ x < 3 makes G divergent, as every region cycle
left in G iterates the loops around (ℓ1,0) and (ℓ3,0) of cumulative weights in (−3,−1]
and (−5,−1), respectively.

0

ℓ0

1

ℓ1

−1

ℓ2

1

ℓ3

0

ℓ4

ℓt

fwt(x1, x2) = x1

0 < x1 < 1
x1 := 0

0

x2 < 2
1 < x1 < 2
x2 := 0

0

1 < x1 < 2
x1 := 0

1
x2 = 1
x2 := 0

1
x1 = 1

0

1 < x1 < 2, x2 < 1
x1 := 0

−2

x2 = 0

0

x1

x2

1 20

1

2

ℓ0,0

x1

x2

1 20

1

2

ℓ1,1

x1

x2

1 20

1

2

ℓ2,−1

x1

x2

1 20

1

2

ℓ3,1

x1

x2

1 20

1

2

ℓ4,0

x1

x2

1 20

1

2

ℓt

fwt(x1, x2) = x1

0

0
1 1 0

−2

0

Figure 4.4 – A weighted timed game G with two clocks x1 and x2, and the portion of its
region game R(G) accessible from configuration (ℓ0, (0, 0)). The states of
R(G) are labelled by their associated region, location and weight, and edges
are labelled by a representation of their guards and resets. For example, the
edge from (ℓ0, r0) to (ℓ1, r1) in R(G) highlights the time successors of the
region r0 that satisfy the guard 0 < x1 < 1, and the arrow represents the
direction in which this set of points is projected by the clock reset x1 := 0,
so that we end up in the region r1.

Example 4.11. Consider the weighted timed game G in Figure 4.4, and its region game
R(G). We chose an example where R(G) is isomorphic to G for readability reasons. R(G)

76

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

contains one SCC {ℓ1, ℓ2, ℓ3, ℓ4}, made of two simple cycles, p1 = ℓ1 → ℓ2 → ℓ1 and
p2 = ℓ1 → ℓ3 → ℓ4 → ℓ1, so that:

— all plays following p1 have cumulative weight in the interval (1, 3),
— and all plays following p2 have cumulative weight 0.

As every cycle p of R(G) either iterates p2 only, or contains p1, it holds that a play ρ
following p satisfies wt(ρ) ∈ {0} ∪ [1,+∞), and if wt(ρ) = 0 then any decomposition of p
into smaller cycles p′ and p′′ implies that they all follow iterates of p2, so that plays along
them must have cumulative weight 0. Therefore, G is almost-divergent. If one removes ℓ4,
G becomes divergent.

Our first result on almost-divergent weighted timed games is the following extension of
the approximation procedure for non-negative weights:

Theorem 4.12. Given an almost-divergent weighted timed game G, a location ℓ and
ε ∈ Q>0, we can compute an ε-approximation of ValG(ℓ,0) in time triply-exponential
in the size of G and polynomial in 1/ε. Moreover, deciding if a weighted timed game is
almost-divergent is a PSPACE-complete problem.

To obtain these results on divergent and almost-divergent weighted timed games, we
follow a computation schema that we now outline. First, we will always reason on the
region game R(G). The goal is to compute or approximate ValR(G)((ℓ0, [0]),0) for some
initial location ℓ0. Techniques of [ABM04], based on the partition value functions we have
recalled previously, allow one to compute the (exact) values of a tree-shaped weighted
timed game. The idea is thus to decompose as much as possible the game R(G) as a tree.
First, we decompose the region game into strongly connected components (SCCs, left of
Figure 4.5): we must think about the final weight functions as the previously computed
approximations of the values of SCCs coming after the current one in the topological
order. We will keep as an invariant that final weight functions are piecewise affine with a
finite number of pieces, and are continuous on each region.

For an SCC of R(G) and an initial state (ℓ0, [0]) of R(G) provided by the SCC
decomposition, we show that the game on the SCC is equivalent to a game on a tree built
from a semi-unfolding (see middle of Figure 4.5) of R(G) from (ℓ0, [0]) of finite depth,
with certain nodes of the tree being kernels (parts of R(G) that contain all cycles of weight
0). The semi-unfolding is stopped either when reaching a final location, or when some
location (or kernel) has been visited for a certain fixed number of times. Notice that, for
divergent weighted timed games, there are no kernels, which simplifies the computation.

Then, we compute or approximate ValG(ℓ0,0) with a bottom-up computation on the
semi-unfolding. This computation is exact on nodes labelled by a single region state s,
but approximated on kernel nodes Ks, if any. For the latter, we use the already studied
corner-point abstraction (right of Figure 4.5) over 1/N -regions to compute values, and
prove that, with an appropriately chosen N , this provides an ε-approximation of values.

This resolution of the value problem for divergent weighted timed games and approxi-
mation problem for almost-divergent weighted timed games heavily relies on the region
abstraction, and requires one to construct R(G) entirely and compute its SCCs, before
unfolding it partially in a tree-shaped structure. Our second result is a more symbolic
approximation schema based on the value iteration algorithm only: the computations are
not performed on the region abstraction, but instead use the partition value functions
introduced before, that can cover several regions.

77

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

s0

s

Ks′

s

s

sf

Ks′′

sf

stopped leaf

fwt(sf)

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3

Figure 4.5 – Static approximation schema: SCC decomposition of R(G), semi-unfolding
of an SCC, corner-point abstraction for the kernels

Theorem 4.13. Let G be an almost-divergent weighted timed game such that ValG(ℓ, ν) >
−∞ for every configuration (ℓ, ν). Then the sequence (ValkG)k⩾0 converges towards ValG
and for every ε ∈ Q>0, we can compute an integer P such that ValPG is an ε-approximation
of ValG for all configurations.

Note that we have to control for configurations (ℓ, ν) of value −∞, where the non-
increasing sequence (ValkG(ℓ, ν))k∈N (that starts at +∞) will diverge towards −∞, but
has no hope of approximating it. However, we will show that the configurations with
value −∞ can be computed pre-emptively:

Proposition 4.14. For almost-divergent weighted timed games, the −∞-value problem is
EXPTIME-complete.

The exponential upper bound is obtained in Section 4.4. This contrasts with the general
case (not necessarily almost-divergent), where the −∞-value problem is undecidable:

Proposition 4.15. Given a weighted timed game G and an initial location ℓ0, the decision
problem asking whether ValG(ℓ0,0) = −∞ is undecidable.

The rest of this chapter aims at giving hints of the proofs of these various results.

4.3 Deciding divergence and almost-divergence

In this section, we will study properties that region cycles must satisfy in divergent or
almost-divergent weighted timed games. This will give us a better understanding of the
modelling power these classes confer, as well as enable us to provide procedures of optimal
complexity to decide if a weighted timed game fulfils the divergence or almost-divergence
conditions.

Let us start with properties that hold for all almost-divergent weighted timed games G.
A region cycle p of R(G) is said to be a positive cycle (resp. a negative cycle, a 0-cycle) if
every finite play ρ following p satisfies wt(ρ) ⩾ 1 (resp. wt(ρ) ⩽ −1, wt(ρ) = 0).

We start by showing that, in an almost-divergent game, all cycles p = t1 · · · tn of R(G)
(with t1, . . . , tn edges of R(G)) are either 0-cycles, positive cycles or negative cycles 2, and
we can classify a cycle by looking only at one of the corner plays following it:

2. In contrast, Definition 4.9 only requires that each play following a region cycle has weight in
(−∞,−1] ∪ {0} ∪ [1,+∞), without disallowing a region cycle to contain plays of different types.

78

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

Lemma 4.16. Let G be an almost-divergent weighted timed game. A region cycle p is a
positive cycle (resp. a negative cycle, a 0-cycle) if and only if there exists a corner play ρ
following p with wt(ρ) > 0 (resp. wt(ρ) < 0, wt(ρ) = 0). Moreover, every region cycle in
G is either positive, negative, or a 0-cycle.

An important result is that the sign of cycles is stable by rotation. This is not trivial
because plays following a region cycle can start and end in different valuations, therefore
changing the starting region state of the cycle could a priori change the plays that follow
it and the sign of their weights.

Lemma 4.17. Let p and p′ be region paths of an almost-divergent weighted timed game.
If pp′ is a positive cycle (resp. a negative cycle, a 0-cycle), then p′p is a positive cycle
(resp. a negative cycle, a 0-cycle).

Therefore, region cycles in almost-divergent games behave well: we can compose and
rotate them while preserving their sign in the expected way.

We now focus on strongly connected components (SCCs) of the region abstraction
R(G). An SCC S of R(G) is said to be positive (resp. negative) if every cycle in S is
positive (resp. negative), i.e. if every play ρ following a region cycle in S satisfies wt(ρ) ⩾ 1
(resp. wt(ρ) ⩽ −1).

Proposition 4.18. A weighted timed game G is divergent if and only if, each SCC of
R(G) is either positive or negative.

Likewise, an SCC S of R(G) is said to be non-negative (resp. non-positive) if every
region cycle in S is either a positive cycle or a 0-cycle (resp. either a negative cycle or
a 0-cycle), i.e. every play ρ following a region cycle in S satisfies either wt(ρ) ⩾ 1 or
wt(ρ) = 0 (resp. either wt(ρ) ⩽ −1 or wt(ρ) = 0). We obtain:

Proposition 4.19. A weighted timed game G is almost-divergent if and only if each SCC
of R(G) is either non-negative or non-positive.

We now prove these two results, which makes it even clearer how the (almost-)divergence
can be useful. First, note that if G is divergent it has no 0-cycle, and Proposition 4.19
implies that each SCC of R(G) is either positive or negative. Conversely, if each SCC of
R(G) is either positive or negative, Proposition 4.19 implies that G is divergent. Therefore,
Proposition 4.18 is a corollary of Proposition 4.19. The rest of this section now proves
Proposition 4.19.

To prove the reciprocal implication of Proposition 4.19, we only need to show that
non-negative (resp. non-positive) SCCs of R(G) satisfy the almost-divergent condition.
By definition, they only contain plays ρ following region cycles p such that wt(ρ) ∈
{0} ∪ [1,+∞) (resp. wt(ρ) ∈ (−∞,−1] ∪ {0}). Then, assume wt(ρ) = 0 and that p can
be decomposed into smaller cycles p′ and p′′. Definition 4.9 requires us to show that
all plays ρ′ and ρ′′ following p′ and p′′, respectively, are such that wt(ρ′) = wt(ρ′′) = 0,
i.e. p′ and p′′ are 0-cycles. Note that by Lemma 4.17, p′p′′ is a 0-cycle. As p′ and p′′ are
contained in the same SCC, they are either both non-negative cycles or both non-positive
cycles. Let ρ′ρ′′ be a play following p′p′′, so that ρ′ follows p′ and ρ′′ follows p′′. Then,
wt(ρ′ρ′′) = wt(ρ′) + wt(ρ′′) = 0, it follows that wt(ρ′) = wt(ρ′′) = 0, i.e. p′ and p′′ are
0-cycles.

79

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

For the direct implication, the situation is more complex: we need to be careful while
composing cycles with each other. A very helpful tool in this context is the folded orbit
graphs, introduced on page 45. Suppose that G is almost-divergent, and consider two
cycles p and p′ in the same SCC of R(G). We need to show that they are both either
non-positive or non-negative.

Consider first the case where they share a region state (ℓ, r), and suppose by contradic-
tion that p is negative and p′ is positive. We assume that (ℓ, r) is the first region state of
both p and p′, possibly performing a rotation of the cycles if necessary (in particular this
preserves their sign by Lemma 4.17). We construct a graph FOG(p, p′) as the union of
FOG(p) and FOG(p′) (that share the same set of vertices), colouring in blue the edges
of FOG(p) and in red the edges of FOG(p′). A path in FOG(p, p′) is said blue (resp. red)
when all of its edges are blue (resp. red).

Since FOG(p) and FOG(p′) are finite graphs with no deadlocks, from every corner of
FOG(p, p′), we can reach a blue simple cycle, as well as a red simple cycle. Since there are
only a finite number of simple cycles in FOG(p, p′), there exists a blue cycle C and a red
cycle C ′ that can reach each other in FOG(p, p′). Denote by v and v′ the first corners of
cycles C and C ′, respectively. Now, everything is finite, and weights of plays in-between
corners of the folded orbit graphs are integer, so they can be recombined to get a 0-cycle.

To finish the proof of the direct implication of Proposition 4.19, we need to consider the
case where the two cycles p and p′ do not share any region states. By strong connectivity,
in R(G), there exists a path p1 from the first state of p to the first state of p′, and a
path p2 from the first state of p′ to the first state of p. Consider the cycle p′′ of R(G)
defined by pp1p

′p2. By the almost-divergence of G, p′′ must be either positive, negative or
a 0-cycle. Since it shares a state with both p and p′, the previous case allows us to prove
a contradiction in both positive and negative cases, and therefore p′′ must be a 0-cycle.
This contradicts the hypothesis as one of the decompositions of p′′ into smaller cycles
produces p and p1p

′p2, with p a non-0-cycle. This concludes the proof of Proposition 4.19.
Remark. These characterisations of divergent or almost-divergent WTGs in term of
SCCs provide an intuitive understanding of the modelling power these classes hold. For
divergence, the model should have a global structure (the SCC decomposition) linking
modules in an acyclic fashion. For each module, we have to choose between a positive
dynamic, where weights always eventually increase, and a negative dynamic, where
weights always eventually decrease. For almost-divergence, the modules may also have
portions that are (eventually) neutral with regard to weight accumulation. In both classes,
arbitrarily small weights should not be allowed to accumulate.

The previous characterisation can be used to study the membership problem for divergent
(resp. almost-divergent) weighted timed games, i.e. the decision problem that asks if
a given weighted timed game is divergent (resp. almost-divergent). As mentioned in
Theorems 4.7 and 4.12, we show that it is PSPACE-complete for both of these classes.

Relying on the previous characterisation of Propositions 4.18 and 4.19, the algorithms
will consist in only considering region cycles of length bounded by the number of corners
in the corner-point abstraction Γ(G). For divergent weighted timed game, this will be
correct by using the following result:

Lemma 4.20. Let G be a weighted timed game. An SCC S of R(G) is positive (resp. neg-
ative) if and only if every region cycle in S, of length at most |Γ(G)|, is positive (resp. neg-
ative).

80

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

Then, to decide if a game is not divergent, using Proposition 4.18, it suffices to search
for an SCC of the region automaton containing a cycle such that there exists a corner
play following it of non-negative weight, and a cycle such that there exists a corner
play following it of non-positive weight, both of length bounded by B = |Γ(G)| ⩽
|L| × |Reg(X ,M)| × (|X | + 1). We can test this condition in NPSPACE: we guess a
starting region for each cycle, use standard reachability analysis [AD94] to check that they
are in the same SCC of R(G) (in PSPACE), and use the following result with comparison
⩾ 0 and ⩽ 0, respectively, to check the sign of each cycle.

Lemma 4.21. Consider a weighted timed game G, a region state (ℓ, r) of R(G), a bound
B ∈ N, and a comparison operator ▷◁ ∈ {<,>,⩽,⩾,=, ̸=}. Deciding if there exists a
corner play ρ following a cycle p of R(G) starting from (ℓ, r), such that |p| ⩽ B and
wt(ρ) ▷◁ 0, is in PSPACE (i.e. it can be done using space polynomial in |G| and log(B)).

Since the bound B is at most exponential in |G|, this check can be performed in PSPACE.
This shows that the membership problem for divergent weighted timed games is in
coNPSPACE = coPSPACE = PSPACE by the theorems of Immerman-Szelepcsényi [Imm88;
Sze88] and Savitch [Sav70]. The problem can also be shown PSPACE-hard (indeed the
coPSPACE, which is identical) by a reduction from the reachability problem in a timed
automaton.

For almost-divergent weighted timed games, the length of the required region cycles is
bigger, because of the possible presence of 0-cycles.

Lemma 4.22. Let G be a weighted timed game. An SCC S of R(G) is non-negative
(resp. non-positive) if and only if every region cycle in S, of length at most |Γ(G)|2, is
either a positive cycle or a 0-cycle (resp. either a negative cycle or a 0-cycle).

Then, to decide if a game is not almost-divergent, we distinguish two cases:
— There exists a region cycle, of length at most B = |Γ(G)|2, and two corner plays ρ

and ρ′, both following p, such that wt(ρ) = 0 and wt(ρ′) ̸= 0.
— An SCC of the region automaton contains a cycle such that there exists a corner

play following it of negative weight, and a cycle such that there exists a corner play
following it of positive weight, both of length bounded by B = |Γ(G)|2.

We can test both conditions in NPSPACE, by guessing the starting regions of these cycles
and using respectively Lemma 4.21 (for the second condition) and the following result
(for the first condition):

Lemma 4.23. Consider a weighted timed game G, a region state (ℓ, r) of R(G), a bound
B ∈ N, and comparison operators ▷◁, ▷◁′ ∈ {<,>,⩽,⩾,=, ̸=}. Deciding if there exists a
cycle p of R(G) starting from (ℓ, r), and two corner plays ρ and ρ′, both following p, such
that |p| ⩽ B, wt(ρ) ▷◁ 0 and wt(ρ′) ▷◁′ 0, is in PSPACE.

This shows that the membership problem for divergent and almost-divergent weighted
timed games is in coNPSPACE = coPSPACE = PSPACE [Imm88; Sze88; Sav70].

4.4 Deciding infinite values

There are three reasons for an infinite value to appear in a weighted timed game:

81

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

— an infinite value (+∞ or −∞) could appear in a final weight function and be
propagated along a play;

— a value +∞ could be obtained if Min is not able to reach a target location;

— a value −∞ could be obtained if Min is able to reach a negative cycle, loop arbitrarily
many times inside, and then reach a target location.

This section explains how to detect the three situations in the region game R(G) of
an almost-divergent weighted timed game G. Before that, let us start by formalising a
way to safely remove region states of R(G) for which the value of all their associated
configurations is known to be infinite. Let S+∞ be a subset of S = L × Reg(X ,M),
such that ValR(G)((ℓ, r), ν) = +∞ for all (ℓ, r) ∈ S+∞ and ν ∈ r. If a configuration of
G is in the attractor of Max towards S+∞, then Max has a strategy giving it value +∞.
Moreover, attractor being computable over regions all the configurations in the same
region have a value +∞: therefore we could add this region to S+∞. We will thus assume
that S+∞ is closed by attractor for Max. We can define the same notion for a set S−∞ of
states with value −∞, that can be assumed closed by attractor of Min.

Lemma 4.24. In R(G), let S+∞ be a set of region states of value +∞ closed by attractor
of Max, and let S−∞ be a set of region states of value −∞ closed by attractor of Min.
Removing the region states S+∞ ∪ S−∞ from R(G) will not change any other value.

Infinite final values

As a first step, we explain how to compute and remove all region states with value
+∞, and region states with value −∞ because of final weights. The only states with
infinite value that will remain are some states that derive a value of −∞ from arbitrary
accumulation of negative weight, and we will deal with them later.

Recall that the final weight function fwt has been supposed piecewise affine with a
finite number of pieces and is continuous on each region. In particular, final weights +∞
or −∞ are given to entire regions. Then, let S−∞

t ⊆ Lt ×Reg(X ,M) (resp. S+∞
t) denote

the set of target region states that fwt maps to −∞ (resp. +∞).

Proposition 4.25. If a region state of G is in the attractor of Min towards S−∞
t (resp. in

the attractor of Max towards S+∞
t), then it has value −∞ (resp. +∞). Moreover, if we

remove those states from R(G), the value of the other configurations does not change.

Then, assuming that all final weights are finite, configurations with value +∞ are those
from which Min cannot reach the target region states: thus, they can also be computed
and removed using the attractor algorithm.

Proposition 4.26. If fwt maps all configurations to values in R, then a configuration
((ℓ, r), ν) has value +∞ if and only if (ℓ, r) is not in the attractor of Min towards region
states Lt × Reg(X ,M). Moreover, if we remove those region states from R(G), the value
of the other configuration does not change.

We can now assume that all configurations have value in R∪ {−∞} and that all target
region states have final weight in R: the precomputation needed so far consists only of
attractor computations, that can be performed in complexity linear in |R(G)|.

82

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

As previously explained, finding all states of value −∞ is harder (in particular un-
decidable in general), but whenever we do manage to find them we can safely remove
them by Lemma 4.24. The solution is quite simple for divergent weighted timed games,
and slightly more involved in almost-divergent weighted timed games, because of the
apparition of 0-cycles. In order to only present one uniform solution, we directly deal
with the more general almost-divergent case. To do so, we introduce a new tool, the
kernels, that will also be very useful in the rest of the study.

Kernel of an almost-divergent weighted timed game

Kernels are a way to group all 0-cycles of a weighted timed game. We study those
kernels and give a characterisation allowing computability. In [BJM15], kernels have also
been studied, and contain exactly all transitions and locations of weight 0. Contrary to
their non-negative case, the situation is more complex in our case with arbitrary weights
since 0-cycles could go through locations or transitions that have a weight different from
0. Moreover, it is not trivial (and may not be true in a non almost-divergent weighted
timed game) to know whether it is sufficient to consider only simple 0-cycles, i.e. cycles
without repetitions.

We will now construct the kernel K as the subgraph of R(G) containing all 0-cycles.
Formally, let TK be the set of edges of R(G) belonging to a simple 0-cycle, and SK be
the set of states covered by TK. We define the kernel K of R(G) as the subgraph of R(G)
defined by SK and TK. Edges in T\TK with starting state in SK are called the output
edges of K. We define it using only simple 0-cycles in order to ensure its computability.
However, this is of no harm, since the kernel contains exactly all the 0-cycles, which will
be crucial in our approximation schema.

Proposition 4.27. A cycle of R(G) is entirely in K if and only if it is a 0-cycle.

Values −∞ coming from negative cycles

Equipped with the kernels, we are now ready to remove the only remaining configurations
having a value −∞ in R(G). Indeed, if the SCC is non-positive, let Tt be the set of edges
of R(G) whose end state has location in Lt. We prove that a configuration has value −∞
if and only if it belongs to a region state where player Min can ensure the LTL formula
on edges ϕ = (G¬Tt) ∧ ¬FGTK, thus giving us:

Proposition 4.28. In an SCC of R(G), the set of configurations with value −∞ is a
union of regions computable in time linear in the size of R(G). Moreover, if we remove
those states from R(G), the value of the other configurations does not change.

From this point on, we assume that no configurations of R(G) have value +∞
or −∞, and that the final weight function maps all configurations to R. Since
fwt is piecewise affine with finitely many pieces, fwt is bounded. Let wt

max denote the
supremum of |fwt|, ranging over all target configurations.

4.5 Semi-unfolding of weighted timed games

Given an almost-divergent weighted timed game G, we describe the construction of its
semi-unfolding T (G) (as depicted in Figure 4.5). This crucially relies on the absence of

83

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

states with value −∞ which has been explained in Section 4.4.
We only build the semi-unfolding T (G) of an SCC of G starting from some state

(ℓ0, r0) ∈ S of the region game, since it is then easy to glue all the semi-unfoldings
together to get the one of the full game. We thus assume in this section that R(G)
is an SCC. Since every configuration has finite value, we will prove that values of the
game are bounded by |R(G)|wmax + wt

max. As a consequence, we can find a bound γ
linear in |R(G)|, wmax and wt

max such that a play that visits some state outside the kernel
more than γ times has weight strictly above |R(G)|wmax + wt

max, hence is useless for the
value computation. This leads to considering the semi-unfolding T (G) of R(G) (nodes
in the kernel are not unfolded, see Figure 4.5) such that each node not in the kernel is
encountered at most γ times along a branch: the end of each branch is called a stopped
leaf of the semi-unfolding. In particular, the depth of T (G) is bounded by |R(G)|γ, and
thus is polynomial in |R(G)|, wmax and wt

max. Leaves of the semi-unfolding are thus of
two types: target leaves that are copies of target locations of R(G) for which we set the
target weight as in R(G), and stop leaves for which we set their target weight as being
constant to +∞ if the SCC R(G) is non-negative, and −∞ if the SCC is non-positive.

More formally, if (ℓ, r) is in K, we let Kℓ,r be the part of K accessible from (ℓ, r) (note
that Kℓ,r is an SCC as K is a disjoint set of SCCs). We define the output edges of Kℓ,r as
being the output edges of K accessible from (ℓ, r). If (ℓ, r) is not in K, the output edges
of (ℓ, r) are the edges of R(G) starting in (ℓ, r).

We define a tree T whose nodes are either labelled by region states (ℓ, r) ∈ S\SK or
by kernels Kℓ,r, and whose edges are labelled by output edges in R(G). The root of the
tree T is labelled with an initial region state (ℓ0, r0), or Kℓ0,r0 (if (ℓ0, r0) belongs to the
kernel), and the successors of a node of T are then recursively defined by its output edges.
When a state (ℓ, r) is reached by an output edge, the child is labelled by Kℓ,r if (ℓ, r) ∈ K,
otherwise it is labelled by (ℓ, r). Edges in T are labelled by the edges used to create them.
Along every branch, we stop the construction when either a final state is reached (i.e. a
state not inside the current SCC) or the branch contains 3|R(G)|wmax + 2wt

max + 2 nodes
labelled by the same state ((ℓ, r) or Kℓ,r). Leaves of T with a location belonging to Lt

are called target leaves, others are called stopped leaves.
We now transform T into a weighted timed game T (G), by replacing every node

labelled by a state (ℓ, r) by a different copy (ℓ̃, r) of (ℓ, r). Those states are said to inherit
from (ℓ, r). Edges of T are replaced by the edges labelling them, and have a similar
notion of inheritance. Every non-leaf node labelled by a kernel Kℓ,r is replaced by a copy
of the weighted timed game Kℓ,r, output edges being plugged in the expected way. We
deal with stopped leaves labelled by a kernel Kℓ,r by replacing them with a single node
copy of (ℓ, r), like we dealt with node labelled by a state (ℓ, r). State partition between
players and weights are inherited from the copied states of R(G). The only initial state
of T (G) is the state denoted by (ℓ̃0, r0) inherited from (ℓ0, r0) in the root of T (either
(ℓ0, r0) or Kℓ0,r0). The final states of T (G) are the states derived from leaves of T . If
R(G) is a non-negative (resp. non-positive) SCC, the final weight function fwt is inherited
from R(G) on target leaves and set to +∞ (resp. −∞) on stopped leaves.

Proposition 4.29. Let G be an almost-divergent weighted timed game, and let (ℓ0, r0)
be some region state of R(G). The semi-unfolding T (G) with initial state (ℓ̃0, r0) (a
copy of a region state (ℓ0, r0)) is equivalent to G, i.e. for all ν0 ∈ r0, ValG(ℓ0, ν0) =
ValT (G)((ℓ̃0, r0), ν0).

84

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

Note that the semi-unfolding procedure of an SCC depends on wt
max, where fwt can be

the value function of an SCCs under the current one. Assuming all configurations have
finite value, we can bound all values in the full game by |R(G)|wmax + wt

max, which lets
us bound uniformly the unfolding depth of each SCC and gives us a bound on the depth
of the complete semi-unfolding tree:

|R(G)|(3|R(G)|wmax + 2wt
max + 2) + 1 (4.2)

4.6 Computing values

In this section we conclude the proofs of Theorems 4.7 and 4.12, with a triply-exponential
upper bound on computing (resp. approximating) values in divergent (resp. almost-
divergent) weighted timed games.

These upper bounds are obtained by computations performed on the semi-unfolding
T (G) described in Section 4.5. Whereas the computation is direct for divergent weighted
timed games, we then extend it to almost-divergent weighted timed games by first
explaining how to compute value approximations in kernels.

Acyclic and divergent WTGs

We first focus on the class of acyclic weighted timed games where the value problem
is decidable, as shown by [ABM04]. Notice that, with respect to the result obtained
in [ABM04], our setting is more general, in the sense that we allow for negative weights
and for final weights, where they do not do so explicitly. Moreover, their result is stated
for concurrent games, a generalisation of the turn-based games we consider. This leads to
simplifications in the proofs, and makes easier some parts of the complexity analysis (that
we skip in this manuscript). We need, in Section 4.6, to bound the partial derivatives of
the functions we compute, which cannot be deduced from their result directly. For reasons
detailed in the PhD thesis of Damien Busatto-Gaston [Bus19], we are not able to replicate
their (incomplete) complexity analysis. We therefore rely on a doubly-exponential upper
bound instead of the exponential one originally claimed in [ABM04]. Last but not least,
this detailed analysis allows us to solve the synthesis of ε-optimal strategies for both
players, as will be detailed in Section 4.7.

Theorem 4.30. Given i ⩾ 0, computing ValiG can be done in time doubly-exponential in
i and exponential in the size of G.

The intuition behind the result is the observation that the mappings V0
ℓ are piecewise

affine for all ℓ, and a proof that F preserves piecewise affinity, so that all iterates Vi
ℓ

can be computed using piecewise-affine functions. In order to bound the size of Vi
ℓ (in

particular, its number of pieces), we need the fine encoding via cells and partition value
functions previously introduced.

We are now able to compute the values of a divergent weighted timed game G, thus
proving Theorem 4.7. By definition, such a game contains no 0-cycles, and thus the kernel
K is empty. In this case, the semi-unfolding T (G) is a tree of depth i exponential in G,
and thus of doubly-exponential size. Proposition 4.29 ensures that the values of T (G)
coincide with the values of G. By Theorem 4.30, we can compute the (exact) values in
T (G) in time doubly-exponential in i and exponential in the size of T (G). We thus obtain

85

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

a triply-exponential algorithm computing the value of a divergent WTG. Equivalently,
this shows that the value problem is in 3-EXPTIME for divergent WTGs.

Approximation of kernels

To generalise our computations to almost-divergent weighted timed games, we start
by approximating a kernel K of a weighted timed game G by extending the region-based
approximation schema of [BJM15]. More precisely, we thus consider here a weighted
timed game G composed of a kernel (a subgraph of a region game containing only 0-cycles,
as defined in Section 4.4) and some target locations equipped with final weights. In the
setting of [BJM15], not only cycles but all finite plays in kernels have weight 0, allowing
for a reduction to a finite game. In our setting, we have to approximate the timed
dynamics of runs, and therefore resort to the corner-point abstraction (as shown on the
right of Figure 4.5).

Our goal is to compute an ε-approximation of the value of the kernel (in a given initial
configuration). Since final weight functions are piecewise affine with a finite number of
pieces and continuous on regions, they are Λ-Lipschitz-continuous on regions, for a given
constant Λ ⩾ 0. The technique to obtain the approximation is to consider regions of a
refined enough granularity: we thus pick

N(ε,Λ) =

⌈
wL
max |L||Reg(X ,M)|+ Λ

ε

⌉
(4.3)

later denoted N when the parameters ε and Λ are clear from context.
Consider then the corner-point abstraction ΓN (G) described in Section 2.5, with

locations of the form (ℓ, r, v) such that v is a corner of the 1/N -region r. Two plays ρ of
G and ρ′ of ΓN (G) are said to be 1/N -close if they follow the same path p in RN (G). In
particular, at each step the configurations (ℓ, ν) in ρ and (ℓ′, r′, v′) in ρ′ (with v′ a corner
of the 1/N -region r′) satisfy ℓ = ℓ′ and ν ∈ r′, and the edges taken in both plays have
the same discrete weights. Close plays have close weights, in the following sense:

Lemma 4.31. For all 1/N -close plays ρ of G and ρ′ of ΓN (G), |wtG(ρ)−wtΓN (G)(ρ
′)| ⩽ ε.

In particular, if we start in some configurations (ℓ, ν) of G, and ((ℓ, r, v), v) of ΓN (G),
with ν ∈ r, since both players have the ability to stay 1/N -close all along the plays, a
bisimulation argument allows us to obtain that the values of the two games are also close
in (ℓ, ν) and ((ℓ, r, v), v), respectively:

Lemma 4.32. For all locations ℓ ∈ L, 1/N -regions r, valuations ν ∈ r and corners v
of r, |ValG(ℓ, ν)− ValΓN (G)((ℓ, r, v), v)| ⩽ ε.

We can thus obtain an ε-approximation of ValG(ℓ, ν) by computing ValΓN (G)((ℓ, r, v), v)
for any corner v of r. Recall that ΓN (G) can be considered as an (untimed) shortest-path
game. Thus we can apply the result of Chapter 1, where it is shown that the optimal
values of such games can be computed in pseudo-polynomial time (i.e. polynomial with
respect to the number of locations, at most (|X |+ 1)|L||RegN (X ,M)|, and the weights of
transitions wmax encoded in unary, instead of binary): more precisely, the value ValΓN (G)
is obtained as the i-th iterate of an operator, with i = ((2(|X | + 1)|L||RegN (X ,M)| −
1)wmax+1)(|X |+1)|L||RegN (X ,M)|, polynomial in |L|, wmax, M and N , and exponential

86

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

in |X |. We then define an ε-approximation of ValG , named Val′N , on each 1/N -region by
interpolating the values of its 1/N -corners in ΓN (G) with a piecewise-affine function: if ν
is a valuation that belongs to the 1/N -region r, then ν can be expressed as a (unique)
convex combination of the 1/N -corners v of r, so that ν =

∑
v αvv with αv ∈ [0, 1] for all

v, and we let Val′N (ℓ, ν) =
∑

v αvValΓN (G)((ℓ, r, v), v) for all locations ℓ of G.
Moreover, we can control the growth of the Lipschitz constant of the approximated

value for further use.

Lemma 4.33. Val′N is an ε-approximation of ValG, i.e. ∥Val′N − ValG∥∞ ⩽ ε. Moreover,
Val′N is piecewise affine with a finite number of pieces and 2(wL

max |L||Reg(X ,M)|+Λ)-
Lipschitz-continuous over regions.

The time complexity needed to compute Val′N is polynomial in |L|, wmax, M and N ,
and exponential in |X |.

Approximation of almost-divergent weighted timed games

We now explain how to approximate the value of an almost-divergent weighted timed
game G, thus proving Theorem 4.12. After having computed the semi-unfolding T (G)
described in Section 4.5, we perform a bottom-up computation of the approximation. The
addition of kernels (with respect to the case of divergent weighted timed games studied
before) requires us to compute an approximation instead of the actual value. Notice that
the techniques used in Theorem 4.30, applied for i = 1 step (and not for the whole tree
as for divergent weighted timed games), allow us to compute the value of a non-kernel
node of T (G), depending on the values of its children. There is no approximation needed
here, so that if we have computed ε-approximations of all its children, we can compute
an ε-approximation of the node. More formally, this is justified by the following lemma
with i = 1:

Lemma 4.34. Let G and G′ be two weighted timed games that only differ on the final
weight functions fwt and fwt′. Then, ∥ValG − ValG′∥∞ ⩽ ∥fwt− fwt′∥∞. Moreover, for
all i ∈ N, ∥ValiG − ValiG′∥∞ ⩽ ∥fwt− fwt′∥∞.

We now explain in details the full process of approximation of the value ValG(ℓ0, ν0)
of an almost-divergent WTG G: it is a bottom-up computation on the tree T rooted in
(ℓ0, r0) (with r0 the region of ν0) that we used to describe the semi-unfolding T (G). By
Proposition 4.29, the value we want to approximate is equal to ValT (G)((ℓ̃0, r0), ν0). For a
node s in T , let Vs denote the exact value function of the corresponding node in T (G).
In particular, the value function at the root of T is equal to ν 7→ ValT (G)((ℓ̃0, r0), ν). Our
algorithm iteratively computes an approximated value function V′

s for all nodes s of T .
To obtain an adequate ε-approximation of ValG(ℓ0, ν0), we will thus need to guarantee

a precision in kernels that depend on the number of kernels we visit in the semi-unfolding.
Let α be the maximal number of kernels along a branch of the tree T . For a given node s
in T , we also let α(s) be the maximal number of kernels along the branches of the subtree
rooted in s. Finally, let us denote by h(s) the maximal length of a branch in the subtree
rooted in s.

We will maintain, along the bottom-up computation, that V′
s is a Λs-Lipschitz-

continuous mapping on regions such that

Λs ⩽ max(2, |X |)h(s)(2wL
max |L||Reg(X ,M)|+Λ) and ∥Vs−V′

s∥∞ ⩽ α(s)ε/α (4.4)

87

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

where Λ is the maximal Lipschitz constant of the final weight functions of G. In particular,
at the root of T where α(s) = α, we indeed recover an ε-approximation of the value of
the game in configuration (ℓ0, ν0).

For leaf nodes s of T , Vs and V′
s are equal to the final weight function fwt of T (G),

and we thus get the invariant (4.4) for free (knowing that α(s) = h(s) = 0).
For an internal node s of T (that either gives rise to a single state (ℓ, r) of T (G), or to a

kernel Kℓ,r), let us suppose that the value of all children s′ of s in T have been computed
and verify the invariant (4.4).

If s is a node of the form (ℓ, r) (that is not part of a kernel), we define two WTGs G̃
and G̃′ that contain the state (ℓ, r) as well as its children in T . The children s′ are made
target states with respective final weight functions given by Vs′ and V′

s′ . Moreover, we
know that

α(s) = max
s′

α(s′) and h(s) = max
s′

h(s′) + 1

By definition, Vs is equal to ν 7→ ValG̃(s, ν) and thus to ν 7→ Val1G̃(s, ν) since G̃
is acyclic of depth 1. Our approximation algorithm consists in letting V′

s = ν 7→
Val1G̃′(s, ν). By Lemma 4.34 (with i = 1 and ε being maxs′ α(s

′)ε/α), ∥Vs − V′
s∥∞ ⩽

α(s)ε/α. It is possible to show that V′
s is Λs-Lipschitz-continuous on regions with

Λs ⩽ max(maxs′ Λs′ , |wt(ℓ)| + (|X | − 1)maxs′ Λs′): with the help of the invariant (4.4)
for all children s′, and since |wt(ℓ)| ⩽ wL

max and h(s′) ⩽ h(s) − 1, we obtain Λs ⩽
max(2, |X |)h(s)(2wL

max |L||Reg(X ,M)|+ Λ).
If s is a node of the form Kℓ,r, we define two WTGs G̃ and G̃′, that contain the locations

of the kernel Kℓ,r of T (G), as well as the children of s in T (reached by output edges of
Kℓ,r). The children s′ are made target states of respective final weight functions Vs′ and
V′

s′ . Moreover, we know that

α(s) = max
s′

α(s′) + 1 and h(s) = max
s′

h(s′) + 1

Thus, games G̃ and G̃′ are identical, except for their final weight functions that are ε-close.
Thus, we know by Lemma 4.34 that ∥ValG̃ − ValG̃′∥∞ ⩽ maxs′ α(s

′)ε/α. Moreover, by
definition, Vs is equal to ν 7→ ValG̃(s, ν). Our approximation algorithm consists in
letting V′

s be equal to an ε/α-approximation of ValG̃′ , obtained by Lemma 4.33 with
a granularity N(ε/α,maxs′ Λs′): we thus have ∥ValG̃′(s, ·) − V′

s∥∞ ⩽ ε/α, and V′
s is

Λs-Lipschitz-continuous on regions with Λs ⩽ 2(wL
max |L||Reg(X ,M)| +maxs′ Λs′). By

triangular inequality, we deduce that ∥Vs − V′
s∥∞ ⩽ maxα(s′)ε/α + ε/α = αsε/α.

Moreover, with the help of invariant (4.4) for Λs′ , we once again obtain that Λs ⩽
max(2, |X |)h(s)(2wL

max |L||Reg(X ,M)|+ Λ).
We thus obtain an algorithm that faithfully computes an ε-approximation of the value

of the game. Let us now discuss the complexity of the algorithm. Overall, the biggest
Lipschitz constant for V′ is max(2, |X |)h(2wL

max |L||Reg(X ,M)|+Λ) with h the height
of the semi-unfolding that is |R(G)|(3|R(G)|wmax + 2wt

max + 2) + 1 as noticed in (4.2)
(page 85). This Lipschitz constant is thus at most doubly-exponential with respect to the
size of G. Therefore, the biggest granularity N used in kernel approximations (described
in (4.3)) can be globally bounded as doubly-exponential in the size of G and polynomial
in 1/ε. This entails that each kernel approximation can be performed in time doubly-
exponential in the size of G, and polynomial in 1/ε. As the height of the semi-unfolding is

88

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

at most exponential in the size of G, the number of kernel approximations needed is at most
doubly-exponential. The rest of the algorithm consist in applying Theorem 4.30, outside
of the kernels. A careful complexity analysis allows one to obtain a triply-exponential
algorithm computing an ε-approximation of the value of an almost-divergent WTG, which
concludes the proof of Theorem 4.12. This complexity is polynomial in 1/ε as N is linear
in 1/ε.

A symbolic algorithm

The previous approximation result suffers from several drawbacks. It relies on the
SCC decomposition of the region automaton. Each of these SCCs have to be analysed
in a sequential way, and their analysis requires an a priori refinement of the granularity
of regions. This approach is thus not easily amenable to implementation. We instead
explain how to follow a symbolic approach as stated in Theorem 4.13, based on the value
iteration paradigm, i.e. the computation of iterates of the operator F , recalled in page 71.

Notice that configurations with value +∞ are stable through value iteration, and do not
affect its other computations. Since Theorem 4.13 assumes the absence of configurations
of value −∞, we will therefore consider in the following that all configurations have finite
value in G.

Consider first a game G that is a kernel, with final weight functions that are Λ-Lipschitz-
continuous on regions. By Lemma 4.32, there exists an integer N(ε,Λ) such that solving
the untimed weighted game ΓN(ε,Λ)(G) computes an ε/2-approximation of the value of
1/N corners.

Using the results of Chapter 1, we know that those values are obtained after a finite
number of steps of (the untimed version of) the value iteration operator, depending on
the number |L||RegN(ε,Λ)(X ,M)|(|X |+1) of locations of the region game. More precisely,
if one considers a number of iterations

P (ε,Λ) = |L||RegN(ε,Λ)(X ,M)|(|X |+1)(2(|L||RegN(ε,Λ)(X ,M)|(|X |+1)− 1)wmax +1) ,

then Val
P (ε,Λ)
ΓN(ε,Λ)(G)

((ℓ, r, v), v) = ValΓN(ε,Λ)(G)((ℓ, r, v), v). From this observation, we deduce
the following property of P (ε,Λ):

Lemma 4.35. If G is a kernel with no configurations of infinite value, then |ValG(ℓ, ν)−
Val

P (ε,Λ)
G (ℓ, ν)| ⩽ ε for all configurations (ℓ, ν) of G.

Once we know that value iteration converges on kernels, we can use the semi-unfolding
of Section 4.5 to prove that it also converges on non-negative SCCs when all values are
finite.

Lemma 4.36. If G is a non-negative SCC with no configurations of infinite value, we can
compute a bound P+(ε,Λ) such that |ValG(ℓ, ν)−Val

P+(ε,Λ)
G (ℓ, ν)| ⩽ ε for all configurations

(ℓ, ν) of G.

Proving the same property on non-positive SCCs requires more work, because the
semi-unfolding gives final weight −∞ to stop leaves, which does not integrate well with
value iteration (initialisation at +∞ on non-target states). However, by unfolding those
SCCs slightly more (at most |R(G)| more steps), we can obtain the desired property with
a similar bound P−.

89

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

Lemma 4.37. If G is a non-positive SCC with no configurations of infinite value, we can
compute P−(ε,Λ) such that |ValG(ℓ, ν)− Val

P−(ε,Λ)
G (ℓ, ν)| ⩽ ε for all configurations (ℓ, ν)

of G.

Now, if we are given an almost-divergent weighted timed game G and a precision ε, we
can add the bounds for value iteration obtained from each SCC by Lemmas 4.36 and 4.37,
and obtain a final bound P such that for all k ⩾ P , ValkG is an ε-approximation of ValG .
This concludes the proof of Theorem 4.13.

Overall, this leads to an upper bound complexity that is of the order of a tower of
α exponentials, with α exponential in the size of the input game. However, we argue
that this symbolic procedure is more amenable to implementation than the previous
approximation schema. First, it avoids the three already mentioned drawbacks (SCC
decomposition, sequential analysis of the SCCs, and refinement of the granularity of
regions) of the previous approximation schema. Then, it allows one to directly launch the
value iteration algorithm on the game G, and we can stop the computation whenever we
are satisfied enough by the approximation computed: however, there are no guarantees
whatsoever on the quality of the approximation before the number of steps P given above.

If G is not guaranteed to be free of configurations of value −∞, then we must first
perform the SCC decomposition of R(G), and, as G is almost-divergent, identify and
remove regions whose value is −∞, by Proposition 4.28. Then, we can apply the value
iteration algorithm.

We also note that if G is divergent, the unfolding of kernels is not needed, so that
Lemmas 4.36 and 4.37 construct bounds P+(ε,Λ) and P−(ε,Λ) allowing one to compute
the exact values of G. Moreover, these bounds become exponential in the size of G instead
of being non-elementary, so that the overall complexity of the symbolic algorithm is
3-EXPTIME, matching the result of Section 4.6.

As a final remark, notice that our correctness proof strongly relies on Section 4.6, and
thus would not hold with the approximation schema of [BJM15] (which does not preserve
the continuity on regions of the computed value functions, in turn needed to define final
weights on 1

N(ε,Λ) -corners).

4.7 Strategy synthesis

We are also interested in the synthesis problem, that asks for an ε-optimal strategy of
Min. In this section, we will prove the following result:

Theorem 4.38. Let ε > 0 and let G be a divergent weighted timed game. We can compute
in triple exponential time an ε-optimal strategy for Min.

Recall that in the value iteration algorithm of Section 4.1, one step of the game is
summarised by the operator F mapping each value function V to a value function
V′ = F(V) (defined in (4.1)). Intuitively, ε-optimal strategies can be extracted from the
value iteration operator, by mapping each play that ends in (ℓ, ν) with ℓ ∈ LMin to a
choice (t, e) such that the transition (ℓ, ν)

t,e−→ (ℓ′, ν ′) is ε-optimal. However, the choice
depends on the step i in the value iteration computation. Formally, if A is a set, f is a
mapping from A to R∞ and ε > 0, let arginf ε

a∈Af(a) denote the set of elements a∗ ∈ A

such that f(a∗) ⩽ infa∈A f(a) + ε. Then, let us name σi,ε
Min a strategy defined from the

90

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

application of (4.1) in Vi = F(Vi−1), so that for all finite plays ρ ending in (ℓ, ν) and
ℓ ∈ LMin,

σi,ε
Min(ρ) ∈ arginf ε

(ℓ,ν)
t,e−→(ℓ′,ν′)

(
t · wt(ℓ) + wt(e) +Vi−1

ℓ′ (ν ′)
)

(4.5)

Now, let σ⋆,i,ε
Min denote a strategy that maps every finite play ρ ending in LMin \ Lt to

(t, e) = σj,ε
Min(ρ), with j = max(0, i− |ρ|).

Proposition 4.39. The strategy σ⋆,i,ε
Min is εi-optimal for Min during the first i steps:

|Vali((ℓ, ν), σ⋆,i,ε
Min)− Vali(ℓ, ν)| ⩽ εi

We now explain how to extract some strategies σi,ε
Min from the partition value functions,

in order to solve the synthesis problems on acyclic and divergent games (games where a
known i ∈ N implies Val = Vali).

We will use affine inequalities over n + 1 variables to encode constraints on the
choice of delays. Formally, an affine delay inequality is an equation I of the form
add ≺ a1x1 + · · ·+ anxn + b, with all ai, b and ad integers of Z, ad ̸= 0 and ≺ ∈ {<,⩽}.
We say that I is a lower bound if ad < 0, and that it is an upper bound if ad > 0.

Definition 4.40. A partition strategy function S defined over a partition P is a mapping
from the base cells of P to a tuple (e, Il, Iu, p), where e is an edge of G, Il and Iu are
two affine delay inequalities that are respectively lower and upper bounds, and finally
p ∈ {l,u} selects one of the two.

Given a precision ε > 0, a partition strategy function encodes a mapping from cP
to pairs (e, dε) denoted JSKε, with e ∈ E and dε ∈ R⩾0. Let ν ∈ cP and S([ν]P) be
equal to (e, Il, Iu, p), with Il defined by add ≺ a1x1 + · · · + anxn + b and Iu defined by
a′dd ≺′ a′1x1 + · · ·+ a′nxn + b′. Let D ⊆ R⩾0 denote the interval of delays d that satisfy
both add ≺ a1ν(x1) + · · · + anν(xn) + b and a′dd ≺′ a′1ν(x1) + · · · + a′nν(xn) + b′. We
denote by dl and du the lower and upper bounds of D. Let Dε denote D ∩ (dl − ε, dl + ε)
if p = l, and D ∩ (du − ε, du + ε) if p = u. We denote by dεl and dεu the lower and upper
bounds of Dε. Then, JSKε(ν) = (e, dε) with dε =

dεl+dεu
2 ∈ Dε.

We argue that partition strategy functions can be used to compute a positional strategy
σi,ε
Min given an encoding of Vali−1

G as partition value functions, so that (4.5) holds.
We assume that for all ℓ ∈ L, Vi

ℓ is piecewise affine with finitely many pieces and is
Λ-Lipschitz-continuous over regions. By the previous study, it is possible to obtain that Λ
is at most exponential in the size of G and i.

Proposition 4.41. For all ε > 0 and i ∈ N \ {0}, we can compute in time doubly-
exponential in i and exponential in the size of G a partition P i

ℓ and a partition strategy
function Si

ℓ for each location ℓ ∈ LMin\Lt, so that JSi
ℓK

ε
Λ (ν) = σi,ε

Min(ℓ, ν).

By Proposition 4.39, we can therefore solve the synthesis problem in triple exponential
time for all weighted time games G so that ValG = ValiG with i at most exponential in the
size of G. This holds for acyclic games, where i is bounded by |R(G)|, and also for divergent
games, where i can be bounded by Lemmas 4.36 and 4.37 (in the special case with no
kernel), assuming that an exponential time pre-computation using Proposition 4.28 is
used to remove the valuations of value −∞. This concludes the proof of Theorem 4.38.

91

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

We can then refine this study in order to construct good strategies for Min that have a
special form, the switching strategies, already studied before in Chapters 1 and 3. Recall
that a switching strategy σMin is described by two deterministic memoryless strategies
σ1
Min and σ2

Min, as well as a switching threshold α. The strategy σMin then consists in
playing strategy σ1

Min until either we reach a target location, or the finite play has length
at least α, in which case we switch to strategy σ2

Min.

Theorem 4.42. In a divergent weighted timed game, for all ε > 0 and N ∈ N, there exists
a switching strategy σMin for Min such that for all configurations (ℓ, ν), ValσMin(ℓ, ν) ⩽
max(−N,Val(ℓ, ν)) + ε.

In particular, if all configurations have a finite value, there exists an ε-optimal switching
strategy. In the presence of a configuration with value −∞, we can build from Theorem 4.42
a family of switching strategies (indexed by the parameter N) whose value tends to −∞.

The proof of Theorem 4.42 requires to build both strategies σ1
Min and σ2

Min, as well as
a switching threshold α. As usual, the second strategy σ2

Min only consists in reaching
the target and is thus obtained as a memoryless strategy from a classical attractor
computation in the region game R(G). In contrast, the first strategy σ1

Min requires more
care. We build it so that it fulfils two properties, that we summarise in saying that σ1

Min

is fake-ε-optimal :

1. each finite play conforming to σ1
Min from (ℓ, ν) and reaching the target has a

cumulated weight at most Val(ℓ, ν) + |ρ| ε (in particular, if Val(ℓ, ν) = −∞, no such
plays should exist);

2. each finite play conforming to σ1
Min following a long enough cycle in the region game

R(G) has a cumulated weight at most −1.

Here, “fake” means that σ1
Min is not obliged to guarantee reaching the target, but if it

does so, it must do it with a cumulated weight close to Valℓ,ν , the error factor depending
linearly on the size of the play. The second property ensures that playing long enough
σ1
Min without reaching the target results in diminishing the cumulated weight. Then, if

the switch happens at horizon α big enough, Min is sure that the cumulated weight so
far is low enough so that the rest of the play to reach a target location (following σ2

Min

only) will not make the weight increase too much. In the absence of values −∞ in Val,
the first property allows one to obtain a αε-optimal strategy even in the case where the
switch does not occur (because we reach the target prematurely). The construction of a
fake-ε/α-optimal strategy σ1

Min (the linear dependency on the length of the play in the first
property of fake-optimality is thus taken care by a division by α here) relies on the fact
that Val is a fixpoint of the operator F , to play almost-optimally at horizon 1: σ1

Min(ℓ, ν)
is chosen as one of the edges (ℓ, ν) t,e−→ (ℓ′, ν ′) such that the value t×wt(ℓ)+wt(e)+Valℓ′,ν′

is close enough to F(Val)ℓ,ν .
Turning our study to the point of view of Max, looking for good strategies for this other

player, we show that no switch is necessary to play ε-optimally: memoryless strategies
are sufficient to guarantee a value as close as wanted to the deterministic value. For
a configuration with a value equal to −∞, all the deterministic strategies for Max are
equivalent where they are all equally bad. Without loss of generality, we can therefore
suppose that there are no configurations in G with a value equal to −∞. Then, remaining
values are bounded in absolute value by we

max|R(G)|, since optimal plays have no cycles.

92

4 Value Iteration Methods: (Almost-)Divergent Weighted Timed Games

We use that fact to build a memoryless deterministic strategy σMax analogous to strategy
σ1
Min before:

Theorem 4.43. In a divergent weighted timed game, there exists a memoryless ε-optimal
strategy for player Max.

Conclusion

Our study of weighted timed games belongs to a series of works that explore the
frontier of decidability. We introduced the first decidable class of weighted timed games
with arbitrary weights and no restrictions on the number of clocks. We have given an
approximation procedure for a larger class of weighted timed games, where the exact
problem becomes undecidable. In addition, we have proved the correctness of a symbolic
approximation schema, that does not start by splitting exponentially every region, but
only does so when necessary. We argue that this paves the way towards an implementation
of value approximation for weighted timed games. Such tool would likely struggle with
instances of moderate size, but could help with the design and testing of alternative
approaches that trade theoretical guarantees with performance.

Another perspective is to extend this work to the concurrent setting, where both players
play simultaneously and the shortest delay is selected. It should be noted that several
known results on weighted timed games with non-negative weights [Bou+04b; ABM04;
BJM15] are stated in such a concurrent setting. We did not consider this setting so far
because concurrent weighted timed games are not determined, and several of our proofs
rely on this property for symmetrical arguments (mainly to lift results of non-negative
strongly connected components to non-positive ones).

A long-standing open problem is the approximation of weighted timed games, i.e. whether
one can compute an arbitrarily close approximation of the value of a given game. We
successfully solved this problem on the class of almost-divergent games, but we were not
able to extend further our techniques to more general games. As a first step, we could
try to consider the slightly larger class of 0-isolated games, where we ask for every cycle
of the region game to have a weight either ⩾ 1, or ⩽ −1, or exactly 0. We do not have
approximation results on this 0-isolated class, and as such it forms a natural intermediate
step between the best known decidable class and the general case. However we must
prepare ourselves to possibly negative answers (the value of a weighted timed game could
be non approximable). Therefore, pursuing better lower bounds in various settings could
help in the future, in order to close the remaining complexity gaps.

93

5 Random Strategies in Weighted Timed
Games

This chapter presents results obtained with Julie Parreaux and Pierre-Alain Reynier, published
in the conferences CONCUR [MPR20] and ICALP [MPR21].

Table of contents

5.1 Playing stochastically in shortest-path games 96
5.2 Playing stochastically in weighted timed games 104

Strategies considered so far in this manuscript are deterministic. Though the game has
no stochastic edges, it is possible to allow players to use stochastic strategies: a player may
choose, depending on the current history, the probability distribution on the successors.
For the controller (Min), this is a chance to describe less firmly their strategy, and let
some place to the randomness: it could blur the lines sufficiently to let them secure a
greater value a priori (even if we will see that this is not the case, in the following). For
the environment (Max), allowing stochastic strategies (possibly with memory) strengthens
the modelling power of weighted (timed) games since it forces a priori Min to optimise
their payoff even in the presence of uncertainties.

In game theory, enabling randomisation in the strategies is often crucial. For instance,
Nash equilibria are only ensured to exist in matrix games (like rock-paper-scissors) when
players can play at random [Nas50]. In the context of games on graphs, the use of
randomisation in strategies is only interesting in classes of games where memory is needed
since otherwise memoryless (deterministic) strategies suffice. For shortest-path games
and weighted timed games, the study is thus very much interesting in the presence of
both positive and negative weights, where we have observed in previous chapters the need
for memory, finite or even infinite, in strategies.

The tradeoff between memory and randomisation has already been investigated in
many classes of games where memory is required to win or play optimally. This is for
instance the case for qualitative games like Street or Müller games thoroughly studied
(with and without randomness in the arena) in [CAH04]. The study has been extended
to timed games [CHP08a] where the goal is to use as little information as possible
about the precise values of real-time clocks. Memory or randomness is also crucial in
multi-dimensional objectives [CRR14]: for instance, in mean-payoff parity games, if there
exists a deterministic finite-memory winning strategy, then there exists a randomised
memoryless almost-sure winning strategy.

In the context of shortest-path games, here is the intuition leading to the tradeoff we
study between memory and randomness. Consider the shortest-path game depicted on
the left of Figure 5.1, that we already studied thoroughly in Chapter 1 (see Figure 1.2).
Recall that, from v2, player Min could reach directly ,, thus leading to a payoff of 0, or

94

5 Random Strategies in Weighted Timed Games

v1 v2

,

0

−1

−10 0

v1 v2

,

−1

−10

p, 0

1−p, 0

v1 v2

,

q,−1

1−q,−10

p, 0

1−p, 0

Figure 5.1 – On the left, a shortest-path game, where Min requires memory to play
optimally. In the middle, the Markov decision process obtained when letting
Min play at random, with a parametric probability p ∈ (0, 1). On the right,
the Markov chain obtained when Max plays along a memoryless randomised
strategy, with a parametric probability q ∈ [0, 1].

choose to go to v1, in which case Max either jumps directly in , (leading to a beneficial
payoff −10), or comes back to v2, but having already capitalised a total payoff −1. We
can continue this way ad libitum until Min is satisfied (at least 10 times) and jumps to ,.
This guarantees a value at most −10 for Min when starting in v2. Reciprocally, Max can
guarantee a payoff at least −10 by directly jumping into , when they must play for the
first time. Thus, the optimal value is −10 when starting from v1 or v2. However, Min
cannot achieve this optimal value by playing without memory. We have introduced the
notion of switching strategy that allows a concise representation of an optimal strategy
for Min: turning in a negative cycle long enough, before reaching the target. In general,
such strategies use pseudo-polynomial memory with respect to the weights of the game
graph.

In this example, such a switching strategy can be mimicked using randomisation only
(and no memory), Min deciding to go to v1 with high probability p < 1 and to go to the
target vertex with the remaining low probability 1− p > 0 (we enforce this probability to
be positive, in order to reach the target with probability 1, no matter how the opponent
is playing). The resulting Markov decision process (MDP) is depicted in the middle
of Figure 5.1. The shortest-path problem in such MDPs has been thoroughly studied
in [BT91], where it is proved that Max does not require memory to respond optimally.
Denoting by q the probability that Max jumps in v2 in its memoryless strategy, we obtain
the Markov chain (MC) on the right of Figure 5.1. We can compute the expected value
in this MC, as well as the best strategies for both players: in the overall, the optimal
value remains −10, even if Min no longer has an optimal strategy. They rather have
an ε-optimal strategy, consisting in choosing p = 1− ε/10 that ensures a value at most
−10 + ε. The first contribution of this chapter is to show that deterministic memory and
memoryless randomisation always provide the same power to Min in shortest-path games.

We then lift this result to the weighted timed games. A first important challenge is
to analyse how to play stochastically in such timed games. Starting from a notion of
stochastic behaviours in a timed automaton considered in [Ber+14] (for the one-player
setting), we propose a new class of stochastic strategies. Compared with [Ber+14], our
class is larger in the sense that we allow Dirac distributions for delays, which subsumes the
setting of deterministic strategies. However, in order to ensure that strategies yield a well-
defined probability distribution on sets of executions, we need measurability properties
stronger than the one considered in [Ber+14] (we actually provide an example showing

95

5 Random Strategies in Weighted Timed Games

that their hypothesis was not strong enough).
Then, we turn our attention towards the expected cumulated weight of the set of plays

conforming to a pair of stochastic strategies. We first prove that under the previous
measurability hypotheses, this expectation is well-defined when restricting to the set of
plays following a finite sequence of transitions. In order to have the convergence of the
global expectation, we identify another property of strategies of Min, which intuitively
ensures that the set of target locations is reached quickly enough. This allows us to define
a notion of stochastic value (resp. memoryless stochastic value) of the game, i.e. the best
value Min can achieve using stochastic strategies (resp. memoryless stochastic strategies),
when Max uses stochastic strategies (resp. memoryless stochastic strategies) too.

To lift the results from finite to timed games, we strongly rely (for now) on the presence
of switching strategies for Min obtained at the end of the previous chapter for divergent
weighted timed games. We will thus focus on this class of games, and show that the two
versions of stochastic values are equal to the deterministic value. In other terms, we show
that Min can emulate memory using randomisation, and vice versa. Moreover, combining
memory and randomisation does not increase Min’s capabilities.

5.1 Playing stochastically in shortest-path games

We extend the notion of strategies of both players to be able to incorporate randomisa-
tion. For a set V , we denote by Dist(V) the set of distributions over V (equipped with an
underlying σ-algebra). When V is finite, these are all mappings f : V → [0, 1] such that∑

v∈V f(v) = 1. The support of a distribution f is the set {v ∈ V | f(v) > 0}, denoted
by supp(f). A Dirac distribution is a distribution with a singleton support: the Dirac
distribution of support {v} is denoted by Diracv.

In this chapter, we thus now call a strategy for Min over a shortest-path game G any
mapping σMin : FPlays

Min → Dist(V) such that for all finite play ρ ∈ FPlaysMin ending
in vertex vk ∈ VMin, the support of the distribution σMin(ρ) is included in E(vk) (the
possible successors of vk). A play or finite play 1 ρ = v0 → v1 → · · · → vk · · · conforms
to the strategy σMin if for all k such that vk ∈ VMin, we have that σMin(ρ[k])(vk+1) > 0.
A similar definition allows one to define strategies σMax : FPlays

Max → Dist(V) for Max,
and plays conforming to them. We let rΣMin and rΣMax be the (randomised) strategies of
players Min and Max, respectively.

The previous notion of strategies, used so far in this manuscript, can be recovered:
a strategy σ is deterministic if for all finite plays ρ, σ(ρ) is a Dirac distribution, and in
this case, we let (as before) σ(ρ) denote the unique label in the support of this Dirac
distribution. To clarify the distinction, we change the notations of the sets of deterministic
strategies of players Min and Max, respectively, to let them be dΣMin and dΣMax.

A strategy σ is memoryless if for all finite plays ρ, ρ′ ending in the same vertex, we
have σ(ρ) = σ(ρ′). We let mΣMin and mΣMax be the memoryless (possibly randomised)
strategies of players Min and Max, respectively.

When starting in a vertex v0, we would like to measure the expected shortest-path
payoff of the plays conforming to some strategies σMin ∈ rΣMin and σMax ∈ rΣMax. We
start by defining a probability distribution on the sets of plays. Indeed, sets of plays can

1. Once again, in this untimed setting, we do not need the labels on edges, and thus remove them
from all the notations.

96

5 Random Strategies in Weighted Timed Games

be equipped with a σ-algebra, generated by cylinders that are all plays starting with a
given finite prefix. By Caratheodory’s theorem, defining a probability measure on this
σ-algebra only requires to associate a probability with each finite play. Thus, letting ρ be
a finite play from v0 conforming to σMin ∈ rΣMin and σMax ∈ rΣMax, we let PσMin,σMax

v0 (ρ)
be defined as 1 if ρ = v0, and

PσMin,σMax
v0 (ρ → v) =

{
PσMin,σMax
v0 (ρ)× σMin(ρ)(v) if ρ ∈ FPlaysMin

PσMin,σMax
v0 (ρ)× σMax(ρ)(v) if ρ ∈ FPlaysMax

We then also write PσMin,σMax
v0 the unique probability measure on the sets of plays. In

particular, letting TPathsv0 be the set of plays from v0 that reach a target, this is a
measurable set of plays since it is a countable union of finite plays (the ones reaching the
target). We then write PσMin,σMax

v0 (TPathsv0) the probability to reach the target from v0,
while following strategies σMin and σMax.

The expected shortest-path payoff starting from vertex v0, conforming to strategies
σMin ∈ rΣMin and σMax ∈ rΣMax, is then defined as

EσMin,σMax
v0 =

∑
ρ∈TPathsv0

PσMin,σMax
v0 (ρ)TP(ρ)

We use the total-payoff function here, instead of the shortest-path payoff, since the
reachability of the target is ensured by the fact that ρ is taken in TPathsv0 .

Under the condition PσMin,σMax
v0 (TPathsv0) = 1 to reach the target with probability 1, we

can show that when ρ grows, the probability PσMin,σMax
v0 (ρ) diminishes exponentially, while

TP(ρ) only grows linearly, which ensures the convergence of the above series:

Lemma 5.1. Under the condition that PσMin,σMax
v0 (TPathsv0) = 1, the sum in the definition

of the expected payoff EσMin,σMax
v0 converges to a real number.

To prove that, we strongly rely on the fact that at any time of the computation the
number of possible successors of a vertex is finite, since counter-examples of convergence
can easily be found when infinite branching occurs: this will be one of the main challenges
of the timed generalisation in the rest of this chapter.

We leave to Min the responsibility for guaranteeing the condition of reaching the target
with probability 1. This asymmetric choice with respect to the players is grounded in
our controller synthesis background, Min being the controller desiring to reach a target
location with minimum expected payoff, while Max is an uncontrollable environment.

Definition 5.2. A strategy σMin ∈ rΣMin is said to be proper if for all vertices v0 and
strategies σMax ∈ rΣMax, PσMin,σMax

v0 (TPathsv0) = 1. We let rΣp
Min be the set of proper

strategies, as well as mΣp
Min the subset of memoryless proper strategies.

We are then ready to define three possible values for shortest-path games. In this
randomised context, showing determinacy, i.e. the equality of upper and lower values, is
more challenging (though feasible by using Blackwell determinacy results [Mar98]), and
we will indeed not rely on such results in the following, only focusing on the value of the
controller, i.e. the upper value that Min can guarantee.

97

5 Random Strategies in Weighted Timed Games

— The most general definition is the randomised value: for a strategy σMin, we let

pVal(v0, σMin) = sup
σMax∈rΣMax

EσMin,σMax
v0

so that the upper randomised value is then given by

pVal(v0) = inf
σMin∈rΣp

Min

pVal(v0, σMin)

— the usual deterministic value that we have studied so far in this manuscript is
obtained by limiting the previous formulas to deterministic strategies, in which case
the expected payoff is limited to the payoff of the unique generated play: we now
denote by dVal this values (instead of just Val);

— and finally the memoryless value, when restricting players to play with memoryless
(randomised) strategies:

mVal(v0, σMin) = sup
σMax∈mΣMax

EσMin,σMax
v0

mVal(v0) = inf
σMin∈mΣp

Min

mVal(v0, σMin)

Then, our contribution is as follows:

Theorem 5.3. For all finite shortest-path games, and all vertices v0,

pVal(v0) = dVal(v0) = mVal(v0)

Therefore, Min does not gain power when they are allowed to play at random, and
randomisation without memory is able to mimic the memory required to play optimally
in such games.

Let us briefly consider the point of view of Max. Notice that when Min has chosen
their proper strategy σMin, Max must choose theirs as if they were playing in a Markov
decision process (MDP) whose states are in bijection with the memory used in σMin. This
MDP has thus possibly infinitely many states but still a finite branching (since each state
of the MDP has a number of outgoing edges at most the maximal outdegree of vertices
in G). Under this context, it is possible to generalise results shown in [BK08; BT91] for
finite MDPs, to show that Max has a best response that is well-behaving:

Lemma 5.4. In an MDP with finite branching, Max has an optimal strategy that is
deterministic and memoryless.

Proof. For all strategies σMax of Max, generating a vector of expected payoff (xs) for
all states s of the MDP, we construct a deterministic and memoryless strategy σ′

Max

generating a greater expected payoff. For all states s of the MDP, we choose σ′
Max(s)

in the support of σMax(s), that maximises the expected payoff at horizon 1 obtained by
adding the weight of the next edge (s, s′) to the expected payoff xs′ . Thanks to Bellman
equations in Markov chains, and by using Knaster-Tarski theorem, we can compare the
fixpoints of two operators in the two Markov chains obtained by playing with σMax and
σ′
Max, to show that they are equal.

98

5 Random Strategies in Weighted Timed Games

v0 v1

v2

v3

,
0

−1

−10

1 1

1 0

−15

v0 v1

v2

v3

,
p, 0

−1

−10

1−p, 1 1

p, 1 1−p, 0

−15

Figure 5.2 – On the left, a more complex example of shortest-path game. On the right,
the MDP associated with a randomised strategy of Min with a parametric
probability p ∈ (0, 1).

Example 5.5. In Figure 5.1, a shortest-path game is presented on the left, with the MDP
in the middle obtained by picking as a memoryless strategy for Min the one choosing to go
to v1 with probability p ∈ (0, 1) and to the target vertex with probability 1− p. Another
more complex example is given in Figure 5.2 where the memoryless strategy for Min
consists, in vertex v1, to choose successor v0 with probability p ∈ (0, 1) and successor v2
with probability 1− p, and in vertex v3, to choose successor v1 with the same probability
p and the target vertex with probability 1− p.

We now sketch the proof of Theorem 5.3. First, by the inclusion of deterministic
strategies into stochastic ones and relying on the previous lemma showing that Max can
always respond with a deterministic strategy, we can easily obtain that

Lemma 5.6. For all finite shortest-path games, and all vertices v0,

pVal(v0) ⩽ Val(v0)

We show the other inequalities by a simulation of deterministic strategies with ran-
domised (memoryless) ones, and vice versa. We start here by ruling out the case of values
+∞. Indeed, dVal(v) = +∞ signifies that Min is not able to reach a target vertex from v
with deterministic strategies. This also implies that Min has no memoryless randomised
strategies to ensure reaching the target with probability 1, and thus mVal(v) = +∞.
Reciprocally, if mVal(v) = +∞, then Min has no memoryless strategies to reach the target
with probability 1 (since this is the only reason for having a value +∞). Since reachability
is a purely qualitative objective, and the game graph does not contain probabilities, Min
cannot use memory in order to guarantee reaching the target: therefore, this also means
that dVal(v) = pVal = +∞. In the end, we have shown that dVal(v) = +∞ if and only
if mVal(v) = +∞ if and only if pVal(v) = +∞. We thus remove every such vertex from
now on, which does not change the values of other vertices in the game.

Simulating deterministic strategies with memoryless strategies

We first show that mVal(v0) ⩽ dVal(v0). The trick of Lemma 5.6 cannot be applied since
memoryless strategies and deterministic strategies are orthogonal subsets of strategies.
We proceed by a simulation of a deterministic strategy of Min with a memoryless strategy.
To ease the process (and this is indeed crucial, as we will also see in the timed setting,

99

5 Random Strategies in Weighted Timed Games

since we do not know how to proceed without it), we start with a switching strategy for
Min, which we know by Chapter 1 to be sufficient for Min to play optimally. We thus
let σ1

Min and σ2
Min be two memoryless strategies composing the switching strategy, and α

be the switching parameter α. The strategy of Min then consists in playing along σ1
Min,

until eventually switching to σ2
Min when the length of the current finite play is greater

than α. Moreover, strategy σ1
Min is chosen so that every cyclic finite play conforming to

σ1
Min has a negative total weight. For all N ∈ N, the parameter α can vary so that the

switching strategy σMin has a deterministic value dVal(v0, σMin) ⩽ max(−N, dVal(v0)). We
simulate it with a memoryless (randomised) strategy, denoted σp

Min, with a parametrised
probability p ∈ (0, 1). This new strategy is a probabilistic superposition of the two
memoryless deterministic strategies σ1

Min and σ2
Min.

Formally, we define σp
Min on each strongly connected components (SCC) of the graph

according to the presence of a negative cycle. In an SCC that does not contain negative
cycles, for each vertex v ∈ VMin of the SCC, we let σp

Min(v) = Diracσ1
Min(v)

: player Min

chooses to play the first strategy σ1
Min of the switching strategy, thus looking for a negative

cycle in the next SCCs (in topological order) if any. In an SCC that contains a negative
cycle, for each vertex v ∈ VMin of the SCC, we let σp

Min(v) be the distribution of support
{σ1

Min(v), σ
2
Min(v)} that chooses σ1

Min(v) with probability p and σ2
Min(v) with probability

1 − p, except if σ1
Min(v) = σ2

Min(v) in which case we choose it with probability 1. Note
that the MDPs in Figures 5.1 and 5.2 are obtained by applying this strategy σp

Min.
Notice that σp

Min is a proper strategy, i.e. for all strategies σMax ∈ mΣMax,

Pσp
Min,σMax

v0 (TPathsv0) = 1

Thanks to the characterisation of [BK08, Lemma 10.111], this can be shown by proving
that for all σMax ∈ mΣMax, all bottom SCCs (the ones we cannot exit) of the Markov
chain obtained by playing along σp

Min and σMax consist in a unique target vertex, which
holds because of our definition of σp

Min.
To conclude, we then only need to show that for ε ∈ R⩾0 small enough, there exists p̃

close enough to 1 such that for all p ∈ [p̃, 1),

mVal(v0, σ
p
Min) ⩽ dVal(v0, σMin) + ε

This entails the expected result. Indeed, if dVal(v0) ∈ Z, we get (with N = |dVal(v0)|)
that mVal(v0, σ

p
Min) ⩽ dVal(v0) + ε, and thus mVal(v0) ⩽ dVal(v0) since this holds for

all ε > 0. Otherwise, dVal(v0) = −∞, and letting N tend towards +∞, we also get
mVal(v0) = −∞.

Thanks to Lemma 5.4, against σp
Min, Max has a best response that is deterministic,

therefore, we can fix a deterministic and memoryless strategy σMax and show that

Eσp
Min,σMax

v0 ⩽ dVal(v, σMin) + ε (5.1)

whenever p < 1 is close enough to 1. By gathering the finite number of lower bounds
about p, for all deterministic memoryless strategies of Max (there are a finite number of
such), we obtain the desired lower bound p̃ for p.

The case where the whole game graph does not contain any negative cycle is easy. In
this case, σp

Min chooses the strategy σ1
Min with probability 1, by definition since no SCC

100

5 Random Strategies in Weighted Timed Games

contain a negative cycle (this is the only reason why we defined σp
Min as it is, for such

SCCs): a play from initial vertex v0 conforming to σp
Min is thus conforming to σ1

Min. Since
the graph contains no negative cycles and all cycles conforming to σ1

Min must be negative,
all plays from v0 conforming to σ1

Min reach the target set of vertices, with a total payoff at

most dVal(v0, σMin). This single play has probability 1, thus Eσp
Min,σMax

v0 ⩽ dVal(v0, σMin),
which proves that mVal(v, σp

Min) ⩽ dVal(v0, σMin) as expected.
Now, suppose that the graph game contains negative cycles. We let c > 0 be the

maximal size of an elementary cycle (that visits a vertex at most once), w− > 0 be the
opposite of the maximal weight of an elementary negative cycle, and w+ ⩾ 0 be the
maximal weight of an elementary non-negative cycle (or 0 if such a cycle does not exist).

Example 5.7. In the graph of Figure 5.1, we have c = 2, w− = 1, and w+ = 0 (since
there is no non-negative cycles). In the game graph of Figure 5.2, we have c = 3, w− = 1,
and w+ = 3.

The difficulty comes from the possible presence of non-negative cycles too. Indeed,
when applying the switching strategy σMin, all cycles conforming to σ1

Min have a negative
weight. This is no longer true with the probabilistic superposition σp

Min, as can be seen in
the example of Figure 5.2. Finding an adequate lower-bound for p requires to estimate
Eσp

Min,σMax
v0 , by controlling the weight and probability of non-negative cycles, balancing

them with the ones of negative cycles. The crucial argument comes from the definition
of the superposition σp

Min, which implies that all cycles conforming to σp
Min and σMax of

non-negative total weight contain at least one edge of probability 1− p.
Showing (5.1) is then done by partitioning the set Π of plays starting in v0, conforming

to σp
Min and σMax, and reaching the target set of vertices, into subsets Πi,ℓ according to

the number i of edges of probability 1− p they go through, and their length ℓ (we always
have i ⩽ ℓ). The partition is depicted in Figure 5.3:

— Π0,N, depicted in yellow, contains all plays with no edges of probability 1− p;
— Π>0,⩾L, depicted in blue, contains all plays with i ⩾ 1 edges of probability 1− p,

and a length of at least L(i) = ia+ b with

a =

⌈
c

(
1 +

w+

w−

)⌉
and b =

|dVal(v0, σMin)|+ |V |W + w−

w− c+ |V |

— Π>0,<L, depicted in red, is the rest of the plays, i.e. plays with i ⩾ 1 edges of
probability 1− p and a length less than L(i). We also let Πi,<L(i) be the set of plays
with i ⩾ 1 edges of probability 1− p, and a length of at most L(i), so that Π>0,<L

is the union of all such sets.
Partitioning the plays allows us to carefully control non-negative cycles: plays with a
large enough length can compensate for the presence of non-negative cycles and thus
obtain a favorable weight (< dVal(v0, σMin)). We let γ0,N (resp. γ>0,⩾L and γ>0,<L) be the

expectation Eσp
Min,σMax

v0 restricted to plays in Π0,N (resp. Π>0,⩾L and Π>0,<L). By linearity
of expectation,

Eσp
Min,σMax

v0 = γ0,N + γ>0,⩾L + γ>0,<L

The end of the proof, very technical and that can be found in the report version of the article
available at https://arxiv.org/abs/2005.04985, consists in controlling separately the

101

https://arxiv.org/abs/2005.04985

5 Random Strategies in Weighted Timed Games

i

ℓ L(i)

Π0,N

Π>0,⩾L

Π>0,<L

Figure 5.3 – Partition of plays Π.

three terms to obtain the desired inequality (5.1).

Simulating memoryless strategies with deterministic strategies

To finish the proof of Theorem 5.3, we show that dVal(v0) ⩽ mVal(v0) and dVal(v0) ⩽
pVal(v0): we here focus on the second inequality, but both are shown exactly the same way.
For a given strategy σMin ensuring that Min reaches the target set Vt with probability 1, and
that can be memoryless or not, we build a deterministic strategy σ′

Min which guarantees a
value dVal(v0, σ

′
Min) at least as good as pVal(v0, σMin) + ε, with ε > 0 as small as we want.

The first attempt to build a deterministic strategy σ′
Min would be to use classical

techniques of finite-memory strategies, for instance in Street or Müller games: for instance,
to ensure the visit of two vertices v1 and v2 infinitely often during an infinite play (to
win a Müller game with winning objective {v1, v2}), we would try to reach v1 with a
first memoryless strategy, and then reach v2 with another memoryless strategy, before
switching again to reach v1 again, etc. The main reason why this naive approach fails is
that the plays are essentially finite in shortest-path games. We thus cannot delay the
choices and must carefully play as soon as the play starts.

Instead, our solution is, once again to rely on the concept of switching strategy, and
define σ′

Min as the switching strategy described by two memoryless deterministic strategies
σ1
Min (to be defined later) and σ2

Min (an attractor strategy), and the switching parameter
α = max(0, |V |W − pVal(v0, σMin))× |V |+ 1.

Example 5.8. In the game of Figure 5.1, the attractor strategy is σ2
Min(v2) = ,. We

then choose σ1
Min(v2) so as to minimise the immediate reward obtained by playing one

turn and then getting the value ensured by σMin:

σ1
Min(v2) = argmin

v′∈{v1,,}

[
wt(v, v′) + pVal(v′, σMin)

]
= v1

For an appropriate choice of α, we thus recover the optimal switching strategy for this
game.

The construction of σ1
Min in general is split in two parts. First, we restrict the possibilities

for σ1
Min(v) to the set

Ẽ(v) = argmin
v′∈E(v)

[
wt(v, v′) + pVal(v′, σMin)

]

102

5 Random Strategies in Weighted Timed Games

v0 v1 ,
−1

1

0

−1
v0 v1 ,p,−1

1− p, 1

1− p, 0

p,−1

Figure 5.4 – On the left, a game with no negative cycles where σp
Min is optimal. On the

right, the MC obtained when playing along σp
Min.

of successor vertices of v that minimise the expected value at horizon 1. With respect to
the previous example, this forbids the use of edge (v2,,) in particular. We let G̃ be the
game obtained from G by removing all edges v → v′ from a vertex v ∈ VMin such that
v′ /∈ Ẽ(v). Then, we can show that each finite play of G̃ from a vertex v has a total payoff
at most pVal(v, σMin), and each cycle in the game G̃ has a non-positive total weight.

Example 5.9. Consider the game graph on the left of Figure 5.4, and the memoryless
strategy σp

Min giving rise to the MDP/MC on the right of Figure 5.4. We can compute
pVal(v0, σ

p
Min) = −2p2/(1− p(1− p)) and pVal(v1, σ

p
Min) = (p2 − 3p+ 1)/(1− p(1− p)).

Consider p close enough to 1 so that pVal(v0, σ
p
Min) ⩽ −3/2 and pVal(v1, σ

p
Min) ⩽ −1/2.

Then, we have Ẽ(v0) = {v1} and Ẽ(v1) = {,}. The corresponding game graph G̃
contains only edges (v0, v1) and (v1,,), and thus no cycles. The unique finite play from
vertex v0 has total-payoff −2 ⩽ pVal(v0, σ

p
Min). In particular, the only possible memoryless

deterministic strategy σ1
Min in G̃ is optimal in G.

For each vertex v in the game, we also let d(v) be the distance (number of steps) of v
to the target given by an attractor computation to the target in G̃. We then let, for all
vertices v ∈ VMin, σ1

Min(v) be a vertex v′ ∈ Ẽ(v) that minimises d(v′).

Example 5.10. Consider again the game of Figure 5.4, but with a new memoryless
strategy σp

Min defined by σp
Min(v0) = Diracv1 and σp

Min(v1) = δ such that δ(v0) = 1 − p
and δ(,) = p, where p ∈ (0, 1). Then, we can check that pVal(v0, σ

p
Min) = −2 and

pVal(v1, σ
p
Min) = −1. Thus, Ẽ(v0) = {v1} and Ẽ(v1) = {v0,,}. Not all memoryless

deterministic strategies taken in G̃ are NC-strategies, since it contains the cycle v0 →
v1 → v0 of cumulated weight 0. We thus apply the construction before, using the fact
that d(,) = 0, d(v1) = 1 and d(v0) = 2 (since the edge (v0,,) is not present in G̃).
Thus, σ1

Min is defined by σ1
Min(v0) = v1 and σ1

Min(v1) =,, and is indeed an NC-strategy.

The final step is to show that σ1
Min is always an NC-strategy (i.e. all cycles of G̃

conforming with σ1
Min have a negative total weight). Combined with our choice of

switching parameter α, we can show that the total-payoff of every play conforming to
σ′
Min, that must necessarily reach the target, is at most the expected value obtained by

playing along σMin.

Characterisation of optimality

All shortest-path games with values different from −∞ admit an optimal deterministic
strategy for both players: however, Min may require memory to play optimally. In this
case, we also have seen that Min does not have an optimal memoryless (randomised)

103

5 Random Strategies in Weighted Timed Games

strategy: they only have ε-optimal ones, for all ε > 0. But some shortest-path games
indeed admit optimal memoryless strategies for Min: the strategy σp

Min described above is
indeed optimal in games not containing negative cycles, for instance. We characterise the
shortest-path games in which Min admits an optimal memoryless strategy.

Remember from Chapter 1 that, in order to compute values dVal(v), we may use a
value iteration paradigm consisting in computing iterates (X(i))i⩾0 in ZV

∞ of an operator
F : ZV

∞ → ZV
∞ defined in (1.1) (page 20). We introduce a new notion, being the most

permissive strategy of Min at each step i ⩾ 0 of the computation. It maps each vertex
v ∈ VMin to the set

Ẽ(i)(v) = {v′ ∈ E(v) | wt(v, v′) +X
(i−1)
v′ = X(i)

v }

of vertices that Min can choose. For each such most permissive strategy Ẽ(i), we let G̃(i)

be the game graph where we remove all edges (v, v′) with v ∈ VMin and v′ /∈ Ẽ(i)(v). This
allows us to state the following result:

Theorem 5.11. Let G be a shortest-path game such that dVal(v) ̸= −∞ for all vertices v.
The following assertions are equivalent:

1. Min has an optimal memoryless deterministic strategy in G (for dVal);

2. Min has an optimal memoryless (randomised) strategy in G (for mVal);

3. X
(|V |−1)
v = X

(|V |)
v = dVal(v) for all vertices v (this means that the sequence (X(i))i

is stationary as soon as step |V | − 1), and Min can guarantee to reach Vt from all
vertices in the game graph G̃(|V |−1).

This characterisation of the existence of optimal memoryless strategy is testable in
polynomial time since it is enough to compute vectors X(|V |−1) and X(|V |), check their
equality, compute the sets Ẽ(|V |−1)(v) (this can be done while computing X(|V |)) and check
whether Min can guarantee reaching the target in G̃(|V |−1) by an attractor computation.
The proof of implication 3 ⇒ 1 is constructive and actually allows one to build an optimal
memoryless deterministic strategy when it exists, that respects the most permissive
strategy.

5.2 Playing stochastically in weighted timed games

We aim at extending the previous study in the context of weighted timed games. Before
doing so, we must introduce stochastic strategies in the context of weighted timed games,
that we investigated for the first time a year ago. We will however strongly rely on a line of
works aiming at studying stochastic timed automata [Ber+14; Bou+16; Ber+18; Bou+20],
thus extending the results in the context of two-player games (instead of model-checking)
and with weights, which indeed represents the main challenge in order to give a meaning
to the expected payoff.

Naturally, deterministic strategies for Min are extended to more general stochastic strate-
gies as mappings σMin : FPlays

Min → Dist(∆×R⩾0) where each finite play is associated to a
probability distribution over the set of pairs of transition and delay. Since ∆ is a finite set,
this is equivalent to letting first Min choose a transition via σ∆

Min : FPlays
Min → Dist(∆), and

then, knowing the chosen transition, choose a delay via σ
R⩾0

Min : FPlays
Min×∆ → Dist(R⩾0),

104

5 Random Strategies in Weighted Timed Games

the support of the distribution σ
R⩾0

Min(ρ, δ) being included in the interval I(ρ, δ) of valid
delays. We can then recombine σ∆

Min and σ
R⩾0

Min to obtain the distribution σMin(ρ). Similar
definitions hold for Max whose general strategies are denoted by σMax.

Notice that deterministic strategies are a special case of such strategies, where the
distributions are chosen to be Dirac distributions. Another useful restriction over strategies
is the non-use of memory: as before, a strategy σMin is said to be memoryless if for all
finite plays ρ, ρ′ ending in the same configuration, we have that σMin(ρ) = σMin(ρ

′). A
similar definition holds for Max.

Probability measure on plays.

We fix two randomised strategies σMin and σMax for both players, and an initial
configuration (ℓ0, ν0). Our goal is to define a probability measure on plays. To do so,
and following what we have done in the untimed setting and the work of [Ber+14] for
stochastic timed automata, the set of plays starting from (ℓ0, ν0) and conforming to σMin

and σMax can naturally be equipped with a structure of σ-algebra whose generators are all
subsets of plays that start with a finite prefix following the same sequence π of transitions
with some Borel-measurable constraints on the delays taken along π. The a priori idea is
thus to define a probability measure PσMin,σMax

ℓ0,ν0
on such generators which extends uniquely

as a probability measure over the whole σ-algebra, by Carathéodory’s extension theorem.
Consider thus a finite sequence of transitions π, starting in location ℓ, and a play

ρ ending in the same location ℓ. We define the probability PσMin,σMax
ρ (π) taking into

account all possible plays that start with ρ and continue according to π (we leave the
Borel-measurable constraints on the delays for now, but discuss them later). It is defined
by induction on the length of π by

PσMin,σMax
ρ (ε) = 1

and for all transitions δ = (ℓ, g, Y, ℓ′) ∈ ∆,

PσMin,σMax
ρ (δπ) =

∫
I(ρ,δ)

σ∆
Min(ρ)(δ)× PσMin,σMax

ρ
t,δ−→

(π) dσ
R⩾0

Min(ρ, δ)(t)

This definition is very similar to the one in [Ber+14] except that we choose to decouple
the distribution on pairs of ∆×R⩾0 by first selecting a transition and then delay, whereas
authors of [Ber+14] consider independent choices, the one on transitions being described
by some weights on transitions (depending on the current region).

For modelling purposes, authors of [Ber+14] enforce that probability distributions
on delays do not forbid any delays of the interval I(ρ, δ) of possible delays, thus ruling
out singular distributions like Dirac ones that would consider taking a single possible
delay (like deterministic strategies do). More formally, they require σ

R⩾0

Min(ρ, δ) to be
absolutely continuous (i.e. equivalent to the Lebesgue measure) on interval I(ρ, δ). We
claim that even with this assumption, the previous definition of the probability may not
be well-founded, as demonstrated by the following example.

Example 5.12. Consider the weighted timed game of Figure 5.5, where only Min plays
(so we can see it as a stochastic timed automaton), and the memoryless strategy σMin

(partially) defined as follows. We let A be any non-Lebesgue-measurable subset of [0, 1).

105

5 Random Strategies in Weighted Timed Games

ℓ0 ℓ1

,
ℓ2

δ1
x < 1

δ2
x < 2

δ3
x < 1

δ4
x ⩽ 2

Figure 5.5 – A (one-player) weighted timed game with a single clock x and all weights
equal to 0, in which a memoryless strategy for Min does not generate a
probability measure.

We denote A the set [0, 1) \A and 1A the characteristic function of the set A. We start
by defining the delays to match as closely as possible the setting of [Ber+14] here. For
delays in ℓ0 and ℓ2, we consider uniform probability distributions on the appropriate
intervals. In ℓ1, for all t1 ∈ [0, 1), we let σ

R⩾0

Min((ℓ1, t1), δ2) be the uniform distribution on
[0, 2−t1] if t1 ∈ A, and the truncated exponential distribution on [0, 2−t1] with parameter
λ = 1 otherwise. For the choice of transitions from ℓ1 (the only place where there is a
choice), for all t1 ∈ [0, 1), we let σ∆

Min(ℓ1, t1)(δ2) = (3 − t1)/(4 − 2t1) = f(t1) if t1 ∈ A
and σ∆

Min(ℓ1, t1)(δ2) = (1 + e−(1−t1) − 2e−(2−t1))/(2− 2e−(2−t1)) = g(t1) if t1 ∈ A. In the
setting of [Ber+14], the strategy in ℓ1 can be obtained by first choosing a delay similarly
as ours, and then choosing transition δ2 with either probability 1/2 or 1 depending on
whether transition δ3 is fireable after letting the chosen delay elapse: authors of [Ber+14]
would describe this by putting weight 1 on both transitions δ2 and δ3 in the stochastic
timed automaton. The intricate formulas above for the transitions are thus simply a way
to mimic their setting in ours. Let us try to compute the probability of the path π = δ1δ2
from configuration (ℓ0, 0):

PσMin
ℓ0,0

(δ1δ2) =

∫
I((ℓ0,0),δ1)

σ∆
Min(ℓ0, 0)(δ1)× PσMin

(ℓ0,0)
t1,δ1−−−→(δ2) dσ

R⩾0

Min((ℓ0, 0), δ1)(t1)

=

∫ 1

0
1× PσMin

(ℓ0,0)
t1,δ1−−−→(δ2) dt1

that requires h : t1 7→ PσMin

(ℓ0,0)
t1,δ1−−−→(δ2) to be a measurable function on [0, 1] to be well-

defined. For t1 ∈ [0, 1) ∩A,

h(t1) =

∫
I((ℓ1,t1),δ1)

σ∆
Min(ℓ1, t1)(δ2)×1 dσ

R⩾0

Min((ℓ1, t1), δ2)(t2) =

∫ 2−t1

0
f(t1)

dt2
2− t1

= f(t1)

Similarly, if t1 ∈ [0, 1) ∩ A, h(t1) = g(t1). Functions f and g are measurable and never
match over [0, 1). Thus, would h be measurable, so would be (h− g)/(f − t) that is equal
to the characteristic function of A: this contradicts the non-measurability of A. And thus,
it is not possible to define the probability PσMin

ℓ0,0
(δ1δ2) of path δ1δ2.

From this example, we see the importance to moreover enforce that the distributions
σ∆
Min(ρ) and σ

R⩾0

Min(ρ, δ) are “measurable with respect to the sequence of delays along
the play ρ”. This is easy to define for the transition part. For delays, since we want
deterministic strategies to be a subset of stochastic strategies, we must be able to choose

106

5 Random Strategies in Weighted Timed Games

delays by using Dirac distributions, and by extension discrete distributions (that are not
absolutely continuous, as [Ber+14] requires). This results in the following hypothesis:

Hypothesis 5.13. A strategy σMin satisfies this hypothesis if

1. for all transitions δ0, . . . , δk, δ, the mapping

(t0, . . . , tk−1) 7→ σ∆
Min((ℓ0, ν0)

(t0,δ0)···(tk−1,δk−1)−−−−−−−−−−−−→)(δ)

is measurable ((ℓ0, ν0)
(t0,δ0)···(tk−1,δk−1)−−−−−−−−−−−−→ denotes the unique play starting from (ℓ, ν0)

and firing successively the edges defined by delay ti and transition ti);

2. for all plays ρ and transition δ, the probability distribution σ
R⩾0

Min(ρ, δ) (of the
random variable t) is described by a cumulative distribution function (CDF) that
is the sum of an absolutely continuous function G(ρ, δ) and Heaviside functions 2

t 7→
∑

i αi(ρ, δ)H(t − ai(ρ, δ)). Moreover, for all transitions δ0, . . . , δk−1, δ, the
mappings

(t0, . . . , tk−1, t) 7→ G(ρ, δ)(t), (t0, . . . , tk−1) 7→ αi(ρ, δ), and (t0, . . . , tk−1) 7→ ai(ρ, δ)

must be measurable (where ρ denotes the play (ℓ0, ν0)
(t0,δ0)···(tk−1,δk−1)−−−−−−−−−−−−→).

This hypothesis allows us to obtain, by induction on the length of the paths (reason
why we need to not only define the probability starting from an initial configuration
(ℓ0, ν0) but more generally from a finite play ρ):

Lemma 5.14. If σMin and σMax are strategies satisfying Hypothesis 5.13, the probabilities
PσMin,σMax
ρ (π) of following a sequence of transitions π after the play ρ are well defined. It

can be extended into a probability distribution over maximal paths π starting in the last
location of ρ.

The probability measure easily extends to unions of maximal paths: in particular,
PσMin,σMax
ℓ0,ν0

(TPathsℓ0,ν0) is set as the sum
∑

π∈TPathsℓ0,ν0
PσMin,σMax
ℓ0,ν0

(π) of probabilities of
all paths reaching Lt from ℓ0. Authors of [Ber+14] go one step further, by using
Carathéodory’s theorem to extend the probability measure on paths (PσMin,σMax

ρ (π)) to a
measure on plays, whose σ-algebra is generated by maximal plays with Borel-measurable
constraints on the delays. We do not formally need this further extension and will only
use such extension to give an intuitive introduction of the expected payoff below. In
the following, we let rΣMin and rΣMax be the sets of (randomised) strategies satisfying
Hypothesis 5.13, for both players. We let mΣMin and mΣMax be the respective subsets of
memoryless strategies.

Expected payoff of plays.

As explained before, by Carathéodory’s theorem, the set of plays can be equipped with
a probability distribution, and we are interested in the expectation of the random variable
TP(ρ) (where ρ conforms with two fixed strategies σMin and σMax). As in the untimed

2. We let H denote the mapping from R to [0, 1] such that H(t) = 0 if t < 0 and H(t) = 1 otherwise.
Recall that it is the CDF of the Dirac distribution choosing t = 0.

107

5 Random Strategies in Weighted Timed Games

setting, this only makes sense if the probability to reach a target location is equal to 1.
We thus now require that PσMin,σMax

ℓ0,ν0
(TPathsℓ0,ν0) = 1 (i.e. the probability to follow an

infinite path is 0). We will see afterwards that this is not a sufficient condition to ensure
that the expected payoff is finite.

Intuitively, we would like to let

EσMin,σMax
ℓ0,ν0

=

∫
ρ
TP(ρ) dPσMin,σMax

ℓ0,ν0
(ρ)

where the integral ranges over all plays starting in (ℓ0, ν0), conforming to σMin and σMax

that reach the target. To make it more formal, we follow a small detour, consisting in
mimicking the construction of the probability before: first define the expected payoff of
all plays following a given sequence of transitions, and then sum over all possible such
sequences. As before, we also extend the definition to not only fix an initial configuration
(ℓ0, ν0) but a possibly longer finite play ρ. We would thus consider the expectation along
a fixed path π reaching Lt:

EσMin,σMax
ρ (π) =

∫
ρ′

TP(ρ′) dPσMin,σMax
ρ (ρ′) (5.2)

where the integral now ranges over the plays ρ′ that can extend the prefix of play ρ, and
that follow the path π. We would then let

EσMin,σMax
ρ =

∑
π∈TPathsρ

EσMin,σMax
ρ (π)

where TPathsρ is the set of paths reaching the target that can be put after the finite
play ρ.

Once again, the integral in (5.2) is problematic, for the very same reason as above.
However, now that we have a finite path π in hand, we can try to unravel it step-by-step.
Indeed, if π = δπ′, and supposing for instance that δ starts in a location ℓ of Min, we
would expect EσMin,σMax

ρ (δπ′) to be equal to:∫
I(ρ,δ)

σ∆
Min(ρ)(δ)

(∫
ρ′

TP(
t,δ−→ ρ′) dPσMin,σMax

ρ
t,δ−→

(ρ′)
)
dσ

R⩾0

Min(ρ, δ)(t)

By definition of the total-payoff and linearity of the integral, this can be rewritten as∫
I(ρ,δ)

σ∆
Min(ρ)(δ)

[(
twt(ℓ)+wt(δ)

) ∫
ρ′
dPσMin,σMax

ρ
t,δ−→

(ρ′)︸ ︷︷ ︸
=PσMin,σMax

ρ
t,δ−→

(π′)

+

∫
ρ′

TP(ρ′)dPσMin,σMax

ρ
t,δ−→

(ρ′)︸ ︷︷ ︸
=EσMin,σMax

ρ
t,δ−→

(π′)

]
dσ

R⩾0

Min(ρ, δ)(t)

With this informal justification in mind, we now give a formal definition, that does not
use the probability distribution on plays, but only requires the one on paths:

Definition 5.15. We define the expected weight EσMin,σMax
ρ (π) of plays that can extend

ρ (the cumulated weight of ρ is thus not counted in the expectation) and that follow
the path π. It is defined by induction on the length of π by EσMin,σMax

ρ (ε) = 0 and for all
transitions δ = (ℓ, g, Y, ℓ′):

108

5 Random Strategies in Weighted Timed Games

0ℓ ,

δ0, x ⩽ 1,1

δ1, x ⩽ 1,1

Figure 5.6 – A weighted timed game where Min has a strategy reaching the target with
probability 1 but with an expected total payoff equal to +∞

EσMin,σMax
ρ (δπ) =

∫
I(ρ,δ)

σ∆
Min(ρ)(δ)

[(
twt(ℓ)+wt(δ)

)
PσMin,σMax

ρ
t,δ−→

(π)+EσMin,σMax

ρ
t,δ−→

(π)
]
dσ

R⩾0

Min(ρ, δ)(t)

We then define the expected weight

EσMin,σMax
ρ =

∑
π

EσMin,σMax
ρ (π) (5.3)

when this sum converges.

Hypothesis 5.13 is sufficient to show the well-definition of all expectations EσMin,σMax
ρ (π),

using similar reasons as in the finite case (probabilities exponentially decrease, while
total-payoff only linearly increase).

However, the infinite sum in EσMin,σMax
ρ can be problematic, as demonstrated by the

following example.

Example 5.16. Consider the weighted timed game of Figure 5.6, where only Min plays,
and the memoryless strategy σMin defined as follows. For all t ⩽ 1, σ∆

Min(ℓ, t)(δ0) = t,
σ∆
Min(ℓ, t)(δ1) = 1− t, and, for all i ⩾ 2 and δ ∈ {δ0, δ1}, σ

R⩾0

Min((ℓ, 1− 1/i), δ) is the Dirac
distribution selecting the delay t = 1/i− 1/(i+ 1). Notice that we can extend the delay
distribution (continuously for instance) so that this strategy satisfies Hypothesis 5.13. For
all i ⩾ 1, there is a unique play conforming to σMin of length i that reaches the target from
configuration (ℓ, 12): it has a weight i and a probability 1

i+1

∏i
j=2(1−1/j) = 1/[i(i+1)]. In

particular, PσMin

ℓ,1/2(TPathsℓ,1/2) =
∑

i⩾1 1/[i(i+1)] = 1. Moreover EσMin

ℓ,1/2(δ
i−1
0 δ1) = 1/(i+1).

The overall expectation would thus be EσMin

ℓ,1/2 =
∑

i⩾1 1/(i+1), which is a diverging series.
This example can easily be adapted to only consider continuous distributions on the
delays (instead of Dirac ones).

We thus need a stronger hypothesis to ensure its convergence. As in the untimed
setting where we asked for the probability to reach the target to be fulfilled only by Min,
we adopt here again an asymmetrical point of view, relying only on hypothesis on the
strategy σMin of Min.

Definition 5.17. A strategy σMin ∈ rΣMin of Min is said proper if for all finite plays ρ and
strategies σMax ∈ rΣMax, PσMin,σMax

ρ (TPathsρ) = 1 and the infinite sum in (5.3) converges.

We let rΣp
Min be the set of proper strategies of Min, mΣp

Min the subset of memoryless
proper strategies. Notice that a deterministic strategy of Min is proper as soon as it
guarantees to reach the target set of locations (remember that we have ruled out configu-
rations with a deterministic value dVal(ℓ, ν) = +∞ where Min cannot deterministically
guarantee to reach the target Lt): this shows that proper strategies exist (even without
using memory). For stochastic strategies, we have seen above that reaching the target set

109

5 Random Strategies in Weighted Timed Games

of locations with probability 1 is a necessary but not sufficient condition to be proper.
Not only we must reach the target almost surely, but we must do it quickly enough so that
the expectation converges. We now give a sufficient condition for a strategy to be proper:

Hypothesis 5.18. A strategy σMin ∈ rΣMin of Min satisfies this hypothesis if there
exists m ∈ N and α ∈ (0, 1] such that for all finite plays ρ and strategies σMax ∈ rΣMax,
PσMin,σMax
ρ (

⋃
n⩽m TPathsnρ) ⩾ α, where TPathsnρ denotes the subset of TPathsρ containing

only paths of length n.

This hypothesis can indeed be shown as a sufficient condition for a strategy to be
proper.

Now that we have associated an expected payoff to each convenient pair of strategies,
we are able to mimic the classical definition of value to stochastic strategies. Let ℓ be a
location and ν be a valuation. For all σMin ∈ rΣp

Min and σMax ∈ rΣMax, we let

pVal((ℓ, ν), σMin) = sup
σMax∈rΣMax

EσMin,σMax
ℓ,ν

Then, we let
pVal(ℓ, ν) = inf

σMin∈rΣp
Min

pVal((ℓ, ν), σMin)

once again only focussing on the value of Min. We also define the memoryless values
mVal((ℓ, ν), σMin) and mVal(ℓ, ν), where all strategies are taken memoryless.

Our main contribution is to relate these different notions of values, relying on a similar
proof schema as in the untimed setting before (that we thus omit in this manuscript). It
will thus be crucial to have in our hands ε-optimal deterministic strategies for Min that
are switching strategies. Hopefully, we have shown the existence of such for divergent
weighted timed games in Theorem 4.42 (where we can moreover check that strategies
σ1
Min and σ2

Min can be taken so as fulfilling Hypotheses 5.13 and 5.18), which is why we
stick to such divergent games. In this context, memory can thus be fully emulated with
stochastic choices, and combining memory and stochastic choices does not bring more
power to players, which we summarise by:

Theorem 5.19. In all divergent weighted timed games and for all configurations (ℓ, ν),

pVal(ℓ, ν) = dVal(ℓ, ν) = mVal(ℓ, ν)

Conclusion

We have studied the tradeoff between memory and randomisation in strategies of finite
shortest-path games and weighted timed games, showing that Min guarantees the same
value when they are allowed to use both memory and randomisation, or simply one of
these two capabilities. In particular, we showed how randomisation can emulate memory
in this context, based on the switching strategies, and vice versa. In the untimed setting,
we have also studied the existence of optimal memoryless strategies, which turns out to be
equivalent to the existence of optimal memoryless deterministic strategies, and testable
in polynomial time.

For weighted timed games, one of the main challenge was to formally define the notion
of expected payoff in this continuous uncountable system. The result we have obtained

110

5 Random Strategies in Weighted Timed Games

about emulation of memory and randomisation is restricted to divergent weighted timed
games, by our need of switching strategies as a technical tool. The next step is to try to
extend our study to more general weighted timed games, like the class of almost-divergent
ones for instance. We do not know yet if similar ε-optimal switching strategies exist also
in this context.

Another question concerns the implementability of the randomised memoryless strate-
gies, that have been shown to suffice to play almost-optimally in divergent weighted timed
games: even if they use no memory, they still need to know the precise current clock
valuation. In (non-weighted) timed games, previous work [CHP08b] aimed at removing
this need for precision, by using stochastic strategies where the delays are chosen with
probability distributions that do not require exact knowledge of the clocks measurements.
In our setting, we aim at further studying the implementability of the randomised strate-
gies of Min, e.g. by requiring them to be robust against small imprecisions. This crosses
the path of some of our other works (not described in this manuscript) about the synthesis
of robust controllers in timed automata [Bus+19].

111

Conclusion

This manuscript summarises some of my contributions in the area of controller synthesis
in the untimed and timed setting, with quantitative objectives of shortest-path and total-
payoff. The problem is phrased in the framework of zero-sum two player games, where
one player models the controller, and the other an uncontrollable, and full antagonistic,
environment.

Many of these contributions deal with some algorithms to compute the optimal value
of such games, shortest-path games, total-payoff games or weighted timed games. A
last chapter also studies various notions of optimal value, when allowing player to use
randomisation (instead of memory).

Some perspectives have already been proposed in the end of each chapter. I describe
now three additional possible developments, more ambitious and long term, that I have
not yet investigated.

Interior-point method and polynomial-time algorithms

One concerns the computation of the optimal values in shortest-path games and
divergent weighted timed games. We have explained how to compute such values,
with value iteration techniques. The theoretical result we have obtained in the last
chapter, relating those values with the ones when restricted to use only randomisation
and no memory, could pave the way to new kind of computation (or approximation)
algorithms, possibly with better complexity. In particular, we would like to investigate
the use of interior-point methods that allow for polynomial-time algorithms solving
linear programming, whereas simplex methods, resembling the value iteration paradigm,
works with an exponential-time complexity. In our context, interior points could be
the non-deterministic randomised strategies, while the corners of the simplex are indeed
deterministic strategies: having a way to dynamically improve from a randomised strategy
to a better one, in the same way as the interior-point method proposes a way to move in
the interior of the set of valid points of the linear program, could enable new types of
algorithms. Knowing the proximity of shortest-path games with mean-payoff games (and
thus parity games), for which the search for polynomial-time algorithms is a long-standing
open question, motivates the research in this direction.

Evolutionary game theory on graphs

Another perspective consists in drawing parallels between shortest-path or total-payoff
games, possibly in the presence of time, and the realm of evolutionary game theory. This
theory has been successfully applied in the context of biology or economics, where evolving
populations with a mix of strategies compete. Most of the work has been performed in
matrix games (and not games on graphs). Such dynamical aspects are crucial in this
setting, and in contrast, most of the work in computer science has been focused on more

112

5 Random Strategies in Weighted Timed Games

static and classical game theory on graphs, for controller synthesis purposes in particular
as has been studied in this manuscript. Bridging the gap between evolutionary game
theory and games on graphs seems thus necessary to propose new techniques for both
communities. We have initiated the search in this direction in [Bri+19] by allowing players
to repeatedly update their respective strategies (for instance, to improve the payoff with
respect to the current strategy profile). This generates a dynamics in the game which
may eventually stabilise to an equilibrium. We have used simulation relations and graph
minors in order to characterise the termination of such dynamics, applying our techniques
to the context of interdomain routing problems. Yet much still needs to be done, which
requires understanding better the structure of strategies in games on graphs, that will be
affected along the dynamics.

Robust strategies in weighted timed games

We have seen in this manuscript some examples where cumbersome behaviours, like
Zeno convergence of delays, are necessary for players to play optimally. However we
could claim that this is not a realistic behaviour in the real world, and thus try to
study what happens when they are forbidden. This is strongly related with the search
for robust controllers in timed automata (as we have studied in [Bus+19] for instance).
Connecting these two faces of the prism of my work is a tempting direction of research
that will certainly be very fruitful. The study of randomisation in strategies was one of
the preliminary steps towards this, since it allows the players to blur the lines, and thus
play in a more robust fashion. This was however preliminary work, since, for now, players
may still use the precise information of the clock valuations. We would thus like to make
this knowledge less precise, and see whether players can adapt their strategy, while not
losing too much with respect to the optimal value.

113

Bibliography

[ABM04] Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. “Optimal Reachability
for Weighted Timed Games”. In: Proceedings of the 31st International Collo-
quium on Automata, Languages and Programming (ICALP’04). Vol. 3142.
Lecture Notes in Computer Science. Springer, 2004, pp. 122–133 (cit. on
pp. 6, 7, 34, 36, 70, 71, 73, 74, 77, 85, 93).

[AD94] Rajeev Alur and David L. Dill. “A Theory of Timed Automata”. In: Theo-
retical Computer Science 126.2 (1994), pp. 183–235 (cit. on pp. 6, 34, 40, 42,
81).

[ALP04] Rajeev Alur, Salvatore La Torre, and George J. Pappas. “Optimal Paths in
Weighted Timed Automata”. In: Theoretical Computer Science 318.3 (2004),
pp. 297–322 (cit. on p. 6).

[AM99] Eugene Asarin and Oded Maler. “As Soon as Possible: Time Optimal Con-
trol for Timed Automata”. In: Hybrid Systems: Computation and Control.
Vol. 1569. Lecture Notes in Computer Science. Springer, 1999, pp. 19–30
(cit. on pp. 6, 42).

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, 2008 (cit. on pp. 98, 100).

[Beh+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Judi
Romijn, and Frits W. Vaandrager. “Minimum-cost Reachability for Priced
Timed Automata”. In: Proceedings of the 4th International Workshop on
Hybrid Systems: Computation and Control (HSCC’01). Vol. 2034. Lecture
Notes in Computer Science. Springer, 2001, pp. 147–161 (cit. on pp. 6, 36,
37, 43, 44).

[Bér+98] Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. “Charac-
terization of the Expressive Power of Silent Transitions in Timed Automata”.
In: Fundamenta Informaticae 36.2-3 (1998), pp. 145–182 (cit. on p. 36).

[BCJ09] Jasper Berendsen, Taolue Chen, and David N. Jansen. “Undecidability of
Cost-Bounded Reachability in Priced Probabilistic Timed Automata”. In:
Proceedings of the 6th Annual Conference on Theory and Applications of
Models of Computation (TAMC’09). Vol. 5532. Lecture Notes in Computer
Science. Springer, 2009, pp. 128–137 (cit. on p. 8).

[Ber+18] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Pierre P. Carlier.
“When are stochastic transition systems tameable?” In: Journal of Logical
and Algebraic Methods in Programming 99 (2018), pp. 41–96 (cit. on p. 104).

114

Bibliography

[Ber+14] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, Quentin Menet, Chris-
tel Baier, Marcus Größer, and Marcin Jurdzinski. “Stochastic Timed Au-
tomata”. In: Log. Methods Comput. Sci. 10.4 (2014) (cit. on pp. 95, 104–
107).

[BT91] Dimitri P. Bertsekas and John N. Tsitsiklis. “An Analysis of Stochastic
Shortest Path Problems”. In: Math. Oper. Res. 16.3 (1991), pp. 580–595
(cit. on pp. 95, 98).

[BV07] Henrik Björklund and Sergei Vorobyov. “A Combinatorial Strongly Subex-
ponential Strategy Improvement Algorithm for Mean Payoff Games”. In:
Discrete Applied Mathematics 155 (2007), pp. 210–229 (cit. on pp. 10, 12).

[Bou15] Patricia Bouyer. “On the Optimal Reachability Problem in Weighted Timed
Automata and Games”. In: Proceedings of the 7th Workshop on Non-Classical
Models of Automata and Applications (NCMA’15). Vol. 318. books@ocg.at.
Austrian Computer Society, 2015, pp. 11–36 (cit. on p. 46).

[Bou+07] Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-François
Raskin. “On the Optimal Reachability Problem of Weighted Timed Au-
tomata”. In: Formal Methods in System Design 31.2 (2007), pp. 135–175
(cit. on pp. 6, 43).

[Bou+16] Patricia Bouyer, Thomas Brihaye, Pierre Carlier, and Quentin Menet. “Com-
positional Design of Stochastic Timed Automata”. In: Proceedings of the
International Computer Science Symposium in Russia (CSR 2016). Vol. 9691.
Lecture Notes in Computer Science. Springer, 2016. doi: 10.1007/978-3-
319-34171-2_9 (cit. on p. 104).

[BBM06] Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. “Improved Undecid-
ability Results on Weighted Timed Automata”. In: Information Processing
Letters 98.5 (2006), pp. 188–194 (cit. on p. 39).

[Bou+20] Patricia Bouyer, Thomas Brihaye, Mickael Randour, Cédric Rivière, and
Pierre Vandenhove. “Decisiveness of Stochastic Systems and its Application
to Hybrid Models”. In: Proceedings of the 11th International Symposium on
Games, Automata, Logics, and Formal Verification (GandALF’20). Ed. by
Davide Bresolin and Jean-François Raskin. Vol. 326. Electronic Proceedings
in Theoretical Computer Science. 2020 (cit. on p. 104).

[BBL08] Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. “Optimal Infinite Schedul-
ing for Multi-Priced Timed Automata”. In: Formal Methods in System Design
32.1 (2008), pp. 3–23 (cit. on p. 43).

[Bou+04a] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen.
“Optimal Strategies in Priced Timed Game Automata”. In: Proceedings of
the 24th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’04). Vol. 3328. Lecture Notes in Computer
Science. Springer, 2004, pp. 148–160 (cit. on pp. 6, 7).

115

https://doi.org/10.1007/978-3-319-34171-2_9
https://doi.org/10.1007/978-3-319-34171-2_9

Bibliography

[Bou+04b] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen.
“Optimal Strategies in Priced Timed Game Automata”. In: Proceedings of
the 24th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’04). Vol. 3328. LNCS. Springer, 2004, pp. 148–
160 (cit. on pp. 12, 34, 36, 37, 70, 71, 74, 93).

[BCM16] Patricia Bouyer, Maximilien Colange, and Nicolas Markey. “Symbolic Op-
timal Reachability in Weighted Timed Automata”. In: Proceedings of the
28th International Conference on Computer Aided Verification (CAV’16).
Vol. 9779. Lecture Notes in Computer Science. Springer, 2016, pp. 513–530
(cit. on p. 44).

[BJM15] Patricia Bouyer, Samy Jaziri, and Nicolas Markey. “On the Value Problem
in Weighted Timed Games”. In: Proceedings of the 26th International Confer-
ence on Concurrency Theory (CONCUR’15). Vol. 42. Leibniz International
Proceedings in Informatics. Leibniz-Zentrum für Informatik, 2015, pp. 311–
324. doi: 10.4230/LIPIcs.CONCUR.2015.311 (cit. on pp. 7, 36, 39, 74–76,
83, 86, 90, 93).

[Bou+06] Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Ras-
mussen. “Almost Optimal Strategies in One-Clock Priced Timed Games”. In:
Proceedings of the 26th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’06). Vol. 4337. Lecture Notes
in Computer Science. Springer, 2006, pp. 345–356 (cit. on pp. 6, 46, 47, 59,
64–66).

[BCR14] Romain Brenguier, Franck Cassez, and Jean-François Raskin. “Energy and
Mean-Payoff Timed Games”. In: Proceedings of the 17th International Con-
ference on Hybrid Systems: Computation and Control (HSCC’14). ACM,
2014, pp. 283–292 (cit. on pp. 66, 68).

[Bri+13] T. Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J.-F. Raskin, and J. Worrell.
“Time-Bounded Reachability for Monotonic Hybrid Automata: Complexity
and Fixed Points”. In: Automated Technology for Verification and Analysis.
Vol. 8172. LNCS. Springer, 2013, pp. 55–70 (cit. on p. 39).

[BBR05] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. “On Optimal
Timed Strategies”. In: Proceedings of the Third international conference on
Formal Modeling and Analysis of Timed Systems (FORMATS’05). Vol. 3829.
LNCS. Springer, 2005, pp. 49–64 (cit. on pp. 6, 39).

[BDS13] Thomas Brihaye, Julie De Pril, and Sven Schewe. “Multiplayer Cost Games
with Simple Nash Equilibria”. In: Proceedings of the International Symposium
on Logical Foundations of Computer Science (LFCS’13). Vol. 7734. Lecture
Notes in Computer Science. Springer, 2013, pp. 59–73 (cit. on p. 33).

[Bri+16a] Thomas Brihaye, Amit Kumar Dhar, Gilles Geeraerts, Axel Haddad, and Ben-
jamin Monmege. “Efficient Energy Distribution in a Smart Grid Using Multi-
Player Games”. In: Proceedings of the Cassting Workshop on Games for the
Synthesis of Complex Systems (Cassting’16) and the 3rd International Work-
shop on Synthesis of Complex Parameters (SynCoP’16). Vol. 220. Eindhoven,

116

https://doi.org/10.4230/LIPIcs.CONCUR.2015.311

Bibliography

Netherlands: EPTCS, Apr. 2016, pp. 1–12. doi: 10.4204/EPTCS.220.1
(cit. on pp. 9, 12, 33).

[Bri+16b] Thomas Brihaye, Morgane Estiévenart, Gilles Geeraerts, Hsi-Ming Ho, Ben-
jamin Monmege, and Nathalie Sznajder. “Real-Time Synthesis is Hard!” In:
Proceedings of the 14th International Conference on Formal Modeling and
Analysis of Timed Systems (FORMATS’16). Ed. by Martin Fränzle and
Nicolas Markey. Vol. 9884. Lecture Notes in Computer Science. Quebec
city, Canada: Springer, Aug. 2016, pp. 105–120. doi: 10.1007/978-3-319-
44878-7_7 (cit. on p. 8).

[Bri+15a] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and
Benjamin Monmege. “Simple Priced Timed Games Are Not That Simple”.
In: Proceedings of the 35th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’15). Ed.
by Prahladh Harsha and G. Ramalingam. Vol. 45. Leibniz International
Proceedings in Informatics (LIPIcs). Bangalore, India: Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, Dec. 2015, pp. 278–292. doi: 10.4230/
LIPIcs.FSTTCS.2015.278 (cit. on pp. 34, 46, 50).

[Bri+21] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Ben-
jamin Monmege. “One-Clock Priced Timed Games with Arbitrary Weights”.
Submitted. 2021 (cit. on pp. 9, 15, 34).

[Bri+15b] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege.
“To Reach or not to Reach? Efficient Algorithms for Total-Payoff Games”.
In: Proceedings of the 26th International Conference on Concurrency Theory
(CONCUR’15). Ed. by Luca Aceto and David de Frutos Escrig. Vol. 42.
LIPIcs. Madrid, Spain: Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Sept. 2015, pp. 297–310. doi: 10.4230/LIPIcs.CONCUR.2015.297 (cit. on
pp. 9, 11).

[Bri+17a] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege.
“Pseudopolynomial Iterative Algorithm to Solve Total-Payoff Games and
Min-Cost Reachability Games”. In: Acta Informatica 54.1 (Feb. 2017), pp. 85–
125. doi: 10.1007/s00236-016-0276-z (cit. on pp. 9, 11, 14).

[Bri+15c] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Benjamin Monmege, Guillermo
A. Pérez, and Gabriel Renault. “Quantitative Games under Failures”. In: Pro-
ceedings of the 35th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’15). Ed. by Prahladh
Harsha and G. Ramalingam. Vol. 45. Leibniz International Proceedings in
Informatics (LIPIcs). Bangalore, India: Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Dec. 2015, pp. 293–306. doi: 10.4230/LIPIcs.FSTTCS.2015.
293 (cit. on p. 8).

[Bri+19] Thomas Brihaye, Gilles Geeraerts, Marion Hallet, Benjamin Monmege, and
Bruno Quoitin. “Dynamics on Games: Simulation-Based Techniques and
Applications to Routing”. In: Proceedings of the 39th IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’19). Ed. by Arkadev Chattopadhyay and Paul Gastin.

117

https://doi.org/10.4204/EPTCS.220.1
https://doi.org/10.1007/978-3-319-44878-7_7
https://doi.org/10.1007/978-3-319-44878-7_7
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.278
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.278
https://doi.org/10.4230/LIPIcs.CONCUR.2015.297
https://doi.org/10.1007/s00236-016-0276-z
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.293
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.293

Bibliography

Vol. 150. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dec.
2019, 35:1–35:14. doi: 10.4230/LIPIcs.FSTTCS.2019.35 (cit. on pp. 8,
113).

[Bri+17b] Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege.
“MightyL: A Compositional Translation from MITL to Timed Automata”. In:
Proceedings of the 29th International Conference on Computer Aided Verifi-
cation, Part I (CAV’17). Ed. by Rupak Majumdar and Viktor Kunčak.
Vol. 10426. Lecture Notes in Computer Science. Heidelberg, Germany:
Springer, July 2017, pp. 421–440. doi: 10.1007/978-3-319-63387-9_21
(cit. on p. 8).

[Bri+17c] Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege.
“Timed-Automata-Based Verification of MITL over Signals”. In: Proceedings
of the 24th International Symposium on Temporal Representation and Rea-
soning (TIME’17). Ed. by Sven Schewe, Thomas Schneider, and Jef Wijsen.
Vol. 90. LIPIcs. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Oct. 2017, 7:1–7:19. doi: 10.4230/LIPIcs.TIME.2017.7 (cit. on
p. 8).

[Bri+14] Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi
Manasa, Benjamin Monmege, and Ashutosh Trivedi. “Adding Negative Prices
to Priced Timed Games”. In: Proceedings of the 25th International Conference
on Concurrency Theory (CONCUR’14). Ed. by Paolo Baldan and Daniele
Gorla. Vol. 8704. Lecture Notes in Computer Science. Roma, Italy: Springer,
Sept. 2014, pp. 560–575. doi: 10.1007/978-3-662-44584-6_38 (cit. on
pp. 6, 34, 39, 46, 51).

[Bri+18] Thomas Brihaye, Arthur Milchior, Gilles Geeraerts, Hsi-Ming Ho, and Ben-
jamin Monmege. “Efficient algorithms and tools for MITL model-checking
and synthesis”. In: Proceedings of the 23rd International Conference on En-
gineering of Complex Computer Systems (ICECCS’18). CPS, Dec. 2018,
pp. 180–184. doi: 10.1109/ICECCS2018.2018.00027 (cit. on p. 8).

[Bri+11] Luboš Brim, Jakub Chaloupka, Laurent Doyen, Rafaella Gentilini, and Jean-
François Raskin. “Faster Algorithms for Mean-Payoff Games”. In: Formal
Methods for System Design 38.2 (2011), pp. 97–118 (cit. on p. 10).

[Bus19] Damien Busatto-Gaston. “Symbolic controller synthesis for timed systems:
robustness and optimality”. Theses. Aix Marseille Université, Dec. 2019. url:
https://hal.archives-ouvertes.fr/tel-02436831 (cit. on p. 85).

[BMR17] Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier.
“Optimal Reachability in Divergent Weighted Timed Games”. In: Proceedings
of the 20th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS’17). Ed. by Javier Esparza and Andrzej S.
Murawski. Vol. 10203. Lecture Notes in Computer Science. Uppsala, Sweden:
Springer, Apr. 2017, pp. 162–178. doi: 10.1007/978-3-662-54458-7_10
(cit. on pp. 9, 11, 70).

118

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.35
https://doi.org/10.1007/978-3-319-63387-9_21
https://doi.org/10.4230/LIPIcs.TIME.2017.7
https://doi.org/10.1007/978-3-662-44584-6_38
https://doi.org/10.1109/ICECCS2018.2018.00027
https://hal.archives-ouvertes.fr/tel-02436831
https://doi.org/10.1007/978-3-662-54458-7_10

Bibliography

[BMR18] Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier.
“Symbolic Approximation of Weighted Timed Games”. In: Proceedings of the
38th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’18). Ed. by Sumit Ganguly and
Paritosh Pandya. Vol. 122. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dec. 2018, 28:1–
28:16. doi: 10.4230/LIPIcs.FSTTCS.2018.28 (cit. on p. 70).

[BMR21] Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier.
“Optimal Controller Synthesis for Timed Systems”. Submitted to Logical
Methods in Computer Science. Mar. 2021 (cit. on pp. 32, 34, 70).

[Bus+19] Damien Busatto-Gaston, Benjamin Monmege, Pierre-Alain Reynier, and
Ocan Sankur. “Robust Controller Synthesis in Timed Büchi Automata: A
Symbolic Approach”. In: 31st International Conference on Computer Aided
Verification (CAV 2019). Ed. by Isil Dillig and Serdar Tasiran. Vol. 11561.
Lecture Notes in Computer Science. Springer, July 2019, pp. 572–590. doi:
10.1007/978-3-030-25540-4_33 (cit. on pp. 8, 111, 113).

[CAH04] Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. “Trading
Memory for Randomness”. In: Proceedings of the The Quantitative Evaluation
of Systems, First International Conference. QEST ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 206–217. isbn: 0-7695-2185-1 (cit.
on pp. 7, 94).

[CHJ05] Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdziński. “Mean-
Payoff Parity Games”. In: Proceedings of the 20th Annual Symposium on
Logic in Computer Science (LICS’05). IEEE Computer Society Press, 2005,
pp. 178–187 (cit. on p. 6).

[CHP08a] Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S. Prabhu.
“Trading Infinite Memory for Uniform Randomness in Timed Games”. In:
Hybrid Systems: Computation and Control, 11th International Workshop,
HSCC 2008, St. Louis, MO, USA, April 22-24, 2008. Proceedings. 2008,
pp. 87–100 (cit. on pp. 7, 94).

[CHP08b] Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S. Prabhu.
“Trading Infinite Memory for Uniform Randomness in Timed Games”. In:
Hybrid Systems: Computation and Control. Ed. by Magnus Egerstedt and
Bud Mishra. Springer, 2008, pp. 87–100 (cit. on p. 111).

[CRR14] Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. “Strat-
egy Synthesis for Multi-Dimensional Quantitative Objectives”. In: Acta In-
formatica 51 (2014), pp. 129–163. doi: https://doi.org/10.1007/s00236-
013-0182-6 (cit. on pp. 7, 94).

[Che+13] Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, David Parker, and Aistis
Simaitis. “Automatic Verification of Competitive Stochastic Systems”. In:
Formal Methods in System Design 43.1 (2013), pp. 61–92 (cit. on pp. 10,
27).

119

https://doi.org/10.4230/LIPIcs.FSTTCS.2018.28
https://doi.org/10.1007/978-3-030-25540-4_33
https://doi.org/https://doi.org/10.1007/s00236-013-0182-6
https://doi.org/https://doi.org/10.1007/s00236-013-0182-6

Bibliography

[CR15] Carlo Comin and Romeo Rizzi. An Improved Pseudo-Polynomial Upper
Bound for the Value Problem and Optimal Strategy Synthesis in Mean Payoff
Games. Tech. rep. 1503.04426. arXiv, 2015 (cit. on p. 10).

[EM79] Andrzej Ehrenfeucht and Jan Mycielski. “Positional Strategies for Mean
Payoff Games”. In: International Journal of Game Theory 8.2 (1979), pp. 109–
113 (cit. on p. 9).

[FIS20] John Fearnley, Rasmus Ibsen-Jensen, and Rahul Savani. “One-Clock Priced
Timed Games are PSPACE-hard”. In: Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Sciences (LICS’20). ACM,
2020, pp. 397–409. doi: 10.1145/3373718.3394772 (cit. on p. 46).

[FGR12] Emmanuel Filiot, Rafaella Gentilini, and Jean-François Raskin. “Quantitative
Languages Defined by Functional Automata”. In: Proceedings of the 23rd
International Conference on Concurrency theory (CONCUR’12). Vol. 7454.
Lecture Notes in Computer Science. Springer, 2012, pp. 132–146 (cit. on
p. 12).

[GS09] Thomas Martin Gawlitza and Helmut Seidl. “Games through Nested Fix-
points”. In: Proceedings of the 21st International Conference on Computer
Aided Verification (CAV’09). Vol. 5643. Lecture Notes in Computer Science.
Springer, 2009, pp. 291–305 (cit. on pp. 10, 16).

[GZ04] Hugo Gimbert and Wiesław Zielonka. “When Can You Play Positionally?” In:
Proceedings of the 29th International Conference on Mathematical Founda-
tions of Computer Science (MFCS’04). Vol. 3153. Lecture Notes in Computer
Science. Springer, 2004, pp. 686–698 (cit. on pp. 5, 9, 10, 15, 16).

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke. Automata, Logics, and
Infinite Games: A Guide to Current Research. Vol. 2500. Lecture Notes in
Computer Science. Springer, 2002 (cit. on p. 5).

[HM15] Axel Haddad and Benjamin Monmege. Why Value Iteration Runs in Pseudo-
Polynomial Time for Discounted-Payoff Games. Technical note. Université
libre de Bruxelles, June 2015 (cit. on p. 8).

[HM18] Serge Haddad and Benjamin Monmege. “Interval Iteration Algorithm for
MDPs and IMDPs”. In: Theoretical Computer Science 735 (July 2018),
pp. 111–131. doi: 10.1016/j.tcs.2016.12.003 (cit. on p. 8).

[HIM13] Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen.
“A Faster Algorithm for Solving One-Clock Priced Timed Games”. In: Pro-
ceedings of the 24th International Conference on Concurrency Theory (CON-
CUR’13). Vol. 8052. Lecture Notes in Computer Science. Springer, 2013,
pp. 531–545 (cit. on pp. 6, 46, 47, 65, 69).

[Imm81] Neil Immerman. “Number of Quantifiers is Better Than Number of Tape
Cells”. In: Journal of Computer and System Sciences 22.3 (1981), pp. 384–406
(cit. on p. 29).

[Imm88] Neil Immerman. “Nondeterministic Space is Closed Under Complementation”.
In: SIAM Journal on Computing 17 (1988), pp. 935–938 (cit. on pp. 32, 81).

120

https://doi.org/10.1145/3373718.3394772
https://doi.org/10.1016/j.tcs.2016.12.003

Bibliography

[JT07] Marcin Jurdziński and Ashutosh Trivedi. “Reachability-Time Games on
Timed Automata”. In: Proceedings of the 34th International Colloquium
on Automata, Languages and Programming (ICALP’07). Vol. 4596. LNCS.
Springer, 2007, pp. 838–849 (cit. on pp. 6, 42).

[Kha+08] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, Vladimir
Gurvich, Gabor Rudolf, and Jihui Zhao. “On Short Paths Interdiction Prob-
lems: Total and Node-Wise Limited Interdiction”. In: Theory of Computing
Systems 43 (2008), pp. 204–233 (cit. on pp. 6, 12).

[Kli+12] Miroslav Klimoš, Kim G. Larsen, Filip Štefaňák, and Jeppe Thaarup. “Nash
Equilibria in Concurrent Priced Games”. In: Proceedings of the 6th inter-
national conference on Language and Automata Theory and Applications
(LATA’12). Vol. 7183. Lecture Notes in Computer Science. Springer, 2012,
pp. 363–376 (cit. on p. 33).

[LMS04] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. “Model
Checking Timed Automata with One or Two Clocks”. In: Proceedings of
CONCUR’04. 2004, pp. 387–401 (cit. on p. 48).

[Lar+01] Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas
Hune, Paul Pettersson, and Judi Romijn. “As cheap as possible: Efficient
cost-optimal reachability for priced timed automata”. In: Proceedings of the
13th International Conference on Computer Aided Verification (CAV’01).
Vol. 2102. Lecture Notes in Computer Science. Springer, 2001, pp. 493–505
(cit. on pp. 43, 44).

[Lef15] Engel Lefaucheux. “Negative Prices for Priced Timed Games”. Internship
report. 2015 (cit. on p. 51).

[LMT19] Théodore Lopez, Benjamin Monmege, and Jean-Marc Talbot. “Determini-
sation of Finitely-Ambiguous Copyless Cost Register Automata”. In: 44th
International Symposium on Mathematical Foundations of Computer Science
(MFCS 2019). Ed. by Peter Rossmanith, Pinar Heggernes, and Joost-Pieter
Katoen. Vol. 138. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Sept.
2019, 75:1–75:15. doi: 10.4230/LIPIcs.MFCS.2019.75 (cit. on p. 8).

[Mar75] Donald A. Martin. “Borel Determinacy”. In: Annals of Mathematics 102.2
(1975), pp. 363–371 (cit. on p. 15).

[Mar98] Donald A. Martin. “The Determinacy of Blackwell Games”. In: The Journal
of Symbolic Logic 63.4 (1998), pp. 1565–1581 (cit. on p. 97).

[Mat02] Jiri Matousek. Lectures on Discrete Geometry. Berlin, Heidelberg: Springer-
Verlag, 2002. isbn: 0387953744 (cit. on p. 73).

[MPR20] Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier. “Reaching
Your Goal Optimally by Playing at Random with No Memory”. In: Proceed-
ings of the 31st International Conference on Concurrency Theory (CONCUR
2020). Ed. by Igor Konnov and Laura Kovács. Vol. 171. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Sept. 2020, 26:1–26:21. doi:
10.4230/LIPIcs.CONCUR.2020.26 (cit. on p. 94).

121

https://doi.org/10.4230/LIPIcs.MFCS.2019.75
https://doi.org/10.4230/LIPIcs.CONCUR.2020.26

Bibliography

[MPR21] Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier. “Playing
Stochastically in Weighted Timed Games to Emulate Memory”. In: ICALP’21.
Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2021 (cit. on pp. 70, 94).

[Nas50] John F. Nash. “Equilibrium Points in n-Person Games”. In: Proceedings
of the National Academy of Sciences of the United States of America 36.1
(1950), pp. 48–49 (cit. on p. 94).

[OW10] J. Ouaknine and J. Worrell. “Towards a Theory of Time-Bounded Verifica-
tion”. In: Automata, Languages and Programming. Vol. 6199. LNCS. Springer,
2010, pp. 22–37 (cit. on p. 39).

[Pur00] Anuj Puri. “Dynamical Properties of Timed Automata”. In: Discrete Event
Dynamic Systems 10.1-2 (2000), pp. 87–113 (cit. on p. 45).

[Put94] Martin L. Puterman. Markov Decision Processes. New York, NY: John Wiley
& Sons, Inc., 1994 (cit. on p. 17).

[Rut11] Michał Rutkowski. “Two-Player Reachability-Price Games on Single-Clock
Timed Automata”. In: Proceedings of the Ninth Workshop on Quantitative
Aspects of Programming Languages (QAPL’11). Vol. 57. Electronic Proceed-
ings in Theoretical Computer Science. 2011, pp. 31–46 (cit. on pp. 6, 46, 47,
59, 64, 65, 69).

[Sav70] Walter J. Savitch. “Relationships Between Nondeterministic and Determinis-
tic Tape Complexities”. In: Journal of Computer and System Sciences 4.2
(1970), pp. 177–192 (cit. on p. 81).

[Str66] Ralph E. Strauch. “Negative Dynamic Programming”. In: The Annals of
Mathematical Statistics 37 (1966), pp. 871–890 (cit. on p. 17).

[Sze88] Róbert Szelepcsényi. “The Method of Forced Enumeration for Nondeter-
ministic Automata”. In: Acta Informatica 26.3 (1988), pp. 279–284 (cit. on
pp. 32, 81).

[Tar72] Robert E. Tarjan. “Depth First Search and Linear Graph Algorithms”. In:
SIAM Journal on Computing 1.2 (1972), pp. 146–160 (cit. on p. 28).

[Tho95] Wolfgang Thomas. “On the Synthesis of Strategies in Infinite Games”. In:
Symposium on Theoretical Aspects of Computer Science (STACS’95). Vol. 900.
Lecture Notes in Computer Science. Springer, 1995, pp. 1–13 (cit. on p. 18).

[TV87] F. Thuijsman and O. J. Vrieze. “The bad match; a total reward stochastic
game”. In: Operations-Research-Spektrum 9.2 (1987), pp. 93–99. doi: 10.
1007/BF01732644 (cit. on p. 10).

[ZP96] Uri Zwick and Michael S. Paterson. “The Complexity of Mean Payoff Games”.
In: Theoretical Computer Science 158 (1996), pp. 343–359 (cit. on pp. 9,
15–17).

122

https://doi.org/10.1007/BF01732644
https://doi.org/10.1007/BF01732644

	Page de titre
	Introduction
	Shortest-Path and Total-Payoff Games
	Weighted games with arbitrary weights
	Shortest-path games
	An efficient algorithm to solve total-payoff games
	Implementation and heuristics
	Divergent shortest-path games

	Weighted Timed Games: Models and Problems
	Modelling real-time constraints
	Weighted timed games
	Problems and first results
	Region abstraction
	Corner-point abstraction

	Weighted Timed Games with One Clock
	Continuity of the value function
	Bi-weighted timed games
	Simple weighted timed games
	Simple weighted timed games with only urgent locations
	Finite optimality of general simple weighted timed games
	Towards non-simple weighted timed games

	Value Iteration Methods: (Almost-)Divergent Weighted Timed Games
	Value functions and value iteration algorithm
	Divergent and almost-divergent weighted timed games
	Deciding divergence and almost-divergence
	Deciding infinite values
	Semi-unfolding of weighted timed games
	Computing values
	Strategy synthesis

	Random Strategies in Weighted Timed Games
	Playing stochastically in shortest-path games
	Playing stochastically in weighted timed games

	Conclusion
	Bibliography

